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PREFACE 

 
Without mathematics, there is not much we can do to progress in our knowledge 
and technologies in mechanics, engineering, and science. In recent years, this 
statement has become applicable to business (such as the mathematical modeling 
and prediction of stock and currency exchange markets), or even social sciences 
(such as statistical analysis of data). The study of differential equations has been a 
very important branch of mathematics or of applied mathematics since the time of 
Leibniz, Bernoulli and Euler, and this is the main subject of the present book. Its 
evolution ties closely with engineering and scientific applications in the 18th 
century. In these two-book sequels, we focus on discussion of the theories and 
applications of differential equations in engineering and mechanics. This volume 
focuses on the theory, and the next one is on applications.  
 In college, I took two “engineering mathematics” courses, one from the 
Mathematics Department taught by a mathematician, and the other from the Civil 
Engineering Department taught by Dr. Yan Sze Kwan, an MIT PhD graduate 
majoring in physics. Although I loved both the textbooks that they adopted for the 
Advanced Engineering Mathematics course (one used Kreyszig, 1979 and the other 
used Wylie, 1975), I enjoyed the teaching from the physicist much more than from 
the pure mathematician. Their emphases are different: the mathematician covered 
no background, physical meaning or applications, whilst the physicist emphasized 
application and usefulness of the technique, without loss of rigor. The syllabi of 
these subjects did cover a wide range of topics (although sometimes the coverage 
was very superficial) that is much broader than what we teach to our students today. 
For example, I learned vectors, matrices, vector calculus, Gauss and Stokes 
Theorems, statistics and probability, complex variables including the residue 
theorem and conformal mapping, special functions, calculus of variations, Laplace 
transform, and differential equations. For the differential equation part, the teaching 
mainly covered ordinary differential equations but not much on partial differential 
equations (except for the wave equation), let alone the classification of second 
order PDE as hyperbolic, parabolic and elliptic, integral transforms, integral 
equations, etc. 
 Once I entered graduate school, I found that a lot of the mathematical 
techniques in solving differential equations were employed in various graduate 
courses in mechanics and engineering, like wave propagation in solids, continuum 
and solid mechanics, fracture mechanics, and wave hydrodynamics. Although my 
mathematics education at college exposed me to a wide range of topics, I still had 
to pick up various subjects in applied mathematics by self-learning or by sitting in 
on courses that I did not have the luxury to take, such as perturbation theory, 
asymptotic analysis, Fourier series expansion, integral transforms, boundary 
integral equations, Green’s function method, integro-differential equations, 
eigenfunction expansions, variational principle, and weighted residue methods. 
However, there was no single book covering my needs. After my master's degree 
studies in structural engineering from the Asian Institute of Technology and with 
the encouragement of Professor Pisidhi Karasudhi, I decided to pursue a PhD 
degree in Theoretical and Applied Mechanics (TAM) from Northwestern 
University (NU) under the supervision of Professor John Rudnicki. The TAM 
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program at Northwestern University requires students to take three mathematics 
courses before graduation. I formally took a series of three one-quarter courses on 
Differential Equations on Mathematical Physics I, II & III offered by Professor 
William L. Kath. Even though the course covered extensively on partial differential 
equations that included Laplace equation (or the potential theory), wave equations, 
Green’s functions and distribution theory, I found that it remains essential for me to 
continue self-learning on different mathematical topics in solving differential 
equations for my research work as well as for understanding technical papers by 
others. 
 The most commonly raised question by educators and students alike is how 
much engineering mathematics is enough for an engineer or a scientist. There is a 
continuous debate on what needs to be covered for engineering and mechanics 
students. But one thing for sure is that you need to read a lot of books in 
mathematics for which the target audiences are not engineers. Some books are by 
far too theoretical and jammed with pages of axioms and theorems without talking 
about applications, and others covered a lot of applications but the topics are not 
advanced enough and specific enough for engineers and mechanicians. For 
example, most textbooks on differential equations contain a chapter on numerical 
methods, yet after learning that, you still have no idea on what the Newton-
Raphson method, Newmark beta method and Wilson theta method are. They are 
the standards in solving structural dynamics problems. Another example is that 
nearly all textbooks on partial differential equations discuss solely the solutions of 
the wave equation, Laplace equation and heat equation, but engineers and 
mechanicians are typically required to obtain the solutions of biharmonic equations, 
the Poisson equation, Helmholtz equation, or nonhomogeneous wave equation. 
There is a clear gap between the traditional topics covered on PDEs and what 
engineers and mechanicians need to learn. The second volume of Selvadurai’s 
(2000) two-volume book series entitled Partial Differential Equations in 
Mechanics focuses on biharmonic and Poisson equations and is clearly motivated 
by such deficiency.  
 A few years back, I was given the opportunity to teach Engineering Analysis 
and Computation for undergraduate civil engineering students. I find that there is 
no single book that can cover what I want to teach, with focus on engineering and 
mechanics applications. About one sixth of the materials in this two-book series 
resulted from preparation of the lecture notes for the course. The remaining content 
is clearly beyond the undergraduate level, and targets graduate students and 
researchers.  
 When I was a graduate student, I was tempted to ask those “big shots” with 
superb mathematical skills what “mathematics books” they studied when they were 
young. Nowadays, many of my graduate students are asking me the same question. 
They seem to believe that there exists a single “secret book” that I studied seriously 
when I was young. To be frank, there is no such book. You have to learn your way 
step by step. With this in mind, the present book, hopefully, can partially satisfy 
some of my students. If the present book will be the first book being recommended 
to students by professors as their “secret book,” my time in preparing the present 
book would not be wasted. One main feature of the present book is that detailed 
step-by-step analyses and proofs are given such that most college students with 
basic training in engineering mathematics can follow through many advanced 
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topics. Hopefully, seemingly difficult and advanced topics will be made accessible 
to everyone. Following the advice of Morris Kline (1977), whenever possible, we 
will introduce a topic through its historical background, intuitive reason, physical 
motivations, potential applications, and relevance to the real world. Interesting 
stories of mathematicians and their problems will be given (either in the text or in 
the biography section). Illustrative examples and workable problems are included 
for each topic, hoping to provoke readers to read, learn, think, and ask. 
 The main purpose of these two companion-volume books on differential 
equations is to provide readers with most of the essential topics on differential 
equations that one is likely to encounter in solving engineering and mechanics 
problems. The target students are those studying engineering and mechanics, but 
science students may find the present work useful. However, substantial amount of 
material in these book volumes will form useful reference materials for researchers 
and practitioners in dealing with differential equations. There are twenty-eight 
chapters in these two volumes, fifteen for volume one and thirteen for volume two.  
 Volume one consists of fifteen chapters and focuses on reviewing the 
essential mathematical techniques in solving differential equations. Some of these 
chapters discuss classical techniques for undergraduate students, some are mainly 
for graduate students, and there are also some exclusively for researchers. We are 
going more for the breath rather than the depth in our coverage, hoping that 
students can find and learn the essential mathematical skills in a more 
comprehensive single volume. Many of the topics covered by these chapters can 
easily evolve into an independent book. Chapter 1 provides an overall summary of 
mathematical preliminaries, Chapter 2 gives an overall view on differential 
equations, Chapter 3 deals with ODEs, Chapter 4 considers series solutions for 
second order ODEs, and Chapter 5 discusses systems of first order ODEs. These 
four chapters can easily fill up lectures for an undergraduate course on 
“introduction to ordinary differential equations” or more. Chapter 6 covers first 
order PDEs, which is normally not covered in engineering courses, Chapter 7 
considers higher order PDEs, Chapter 8 summarizes the idea of Green’s function 
method, Chapter 9 deals with the classical topics of wave, diffusion and potential 
equations in mathematical physics, and Chapter 10 discusses solution of boundary 
value problems in terms of eigenfunction expansions. These four chapters can form 
a graduate course on “partial differential equations in engineering and mechanics.” 
Chapter 11 covers integral and integro-differential equations, Chapter 12 serves an 
introduction to the asymptotic expansion and perturbation, Chapter 13 deals with 
calculus of variations, Chapter 14 summarizes the concept of variational methods, 
and finally Chapter 15 examines numerical methods. Each of the six chapters can 
be a graduate course on its own right. These chapters are expected to provide 
general knowledge on more advanced topics in engineering and mechanics. 
Readers interested in numerical analyses probably should study Chapters 13 15 
together.  Chapter 12 is an important introduction to the domain of studying 
nonlinear differential equations.  
 Volume two consists of thirteen chapters focused more on applications of 
differential equations on variable topics. The choices of this topic are shaped by my 
former background and interests in engineering and in mechanics. 
 The unfailing and continuous support from my wife Lim, my son Magnum, 
and my daughter Jaquelee is what keeps me going when I face difficult times. 
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Regular training with the PolyU swimming team and interactions with swimmers 
from masters swimming allows me to refresh my mind and my body from being 
drained by this ambitious book project.   
 After I finished my first book Analytic Methods of Geomechanics, I told 
myself that I was not going to write another one because it is just too demanding 
both physically and mentally. However, most first-time marathon finishers will 
swear that they will never run another marathon again in their lives right after the 
race. It is just too demanding. Yet many return to marathon training after only a 
few months. Marathon running is an addictive behavior. As a former marathoner, I 
know too well this feeling and here I go again. 
 This book project was encouraged by Mr. Tony Moore, a senior editor of 
civil engineering at CRC Press (imprint of Taylor & Francis). The expert assistance 
from Production Editor Michele Dimont and Editorial Assistant Scott Oakley is 
highly appreciated. A special thank you goes to my former undergraduate students, 
who through their comments shaped some of the contents of this book. 

  
K.T. Chau 

Hong Kong 
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   CHAPTER ONE 
 

Mathematical Preliminaries 

1.1 INTRODUCTION 

The main focuses of the present book are the application on differential equations in 
engineering and in mechanics, and on the associated solution techniques used in 
solving these equations. Readers are expected to have general education and 
training in engineering mathematics, including differentiation and integration, 
vector analysis, matrix operation, and basics in algebra and trigonometry. Indeed, 
engineering and science students would have taken engineering mathematics before 
they embark on taking a course on differential equations.  It is, however, impossible 
to cover all preliminary mathematics in a single chapter before we continue on our 
discussion on differential equations. This chapter will not only cover some 
elementary topics that we need for later development in this book, but also touch 
upon some less familiar, yet important, topics.  
 We will in this chapter review binomial theorem, differentiation, integration, 
Jacobian, complex variables, Euler’s polar form for complex variables, elementary 
functions like circular functions (e.g., sine and cosine) and hyperbolic functions 
(e.g., sinh and cosh), differentiation of complex functions, integration using the 
Cauchy integral formula and residue theorem, Gauss and Kelvin-Stokes theorems, 
series expansions (including Taylor series expansion, Maclaurin series expansion, 
Laurent’s series expansion), and vector calculus. Most of these topics are typically 
covered in the first two years of engineering mathematics courses. In addition, we 
have added some more advanced topics that are unlikely being covered in 
elementary engineering mathematics courses, and they are the Frullani-Cauchy 
integral, Ramanujan’s master theorem, Ramanujan’s integral theorem, Darboux’s 
formula, Mittag-Leffler’s expansion, Borel’s theorem, and tensor analysis. Both 
differential and integral forms of gradient, divergence, and curl are discussed. 
Helmholtz’s representation theorem is also discussed. Some of these advanced 
topics can be skipped in the first reading but they form the essential basis for more 
advanced analysis in applied mathematics and in engineering mechanics. 
 Before we summarize some essential mathematical backgrounds needed for 
later analysis of differential equations, we recall here the definitions of algebraic 
functions and transcendental functions.  If w(x) is a solution of the following 
polynomials,  
 1

0 1 1( ) ( ) ... ( ) ( ) 0n n
n nP x w P x w P x w P x  (1.1) 

where P0  0, P1(x),...,  Pn(x) are polynomials of x and n is positive integer, w = 
f(x) is called an algebraic function. On the other hand, any function which cannot 
be expressed as a solution of (1.1) is called a transcendental function. 
Transcendental functions include exponential functions, trigonometric functions (or 
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circular functions such as sine and cosine), hyperbolic functions (such as sinh and 
cosh), and logarithmic functions.       

1.2 BINOMIAL THEOREM 

Typically, the binomial theorem has been covered in high school or in a first-year 
college mathematics course. It is, however, so useful that we will employ it 
repeatedly in our analyses on differential equations. To start with, we all learn in 
high school that the square of a sum can be expanded like 
 2 2 2( ) ( )( ) 2a b a b a b a ab b  (1.2) 
where a and b are any real numbers. This expansion can easily be generalized to 
other integer (whole number) powers as 
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2 2 2
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( ) 2

( ) 3 3

( ) 4 6 4
...

a b

a b a b

a b a ab b

a b a a b ab b

a b a a b a b ab b

 (1.3) 

Clearly, there is a pattern in the coefficient of this expansion as the value of the 
integer power increases. It can be checked in a straightforward manner that the 
coefficients can be put in a triangular pattern as shown Figure 1.1. 
 

 
 

Figure 1.1 The Pascal triangle or Yang Hui/Jia Xian triangle (the figure on the right is adopted 
from Zhu, 1303) 
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The triangle shown in Figure 1.1 expressed in terms of coefficients of power 
expansions is normally called the Pascal triangle in western literature and was 
discovered by Pascal in 1654, but it later was discovered that it has been known to 
other mathematicians well before Pascal. For example, it was known to German 
mathematician Petrus Apianus in 1527 and to Yang Hui in 1261 (his last name is 
Yang). The triangle on the right of Figure 1.1 is the extraction from Zhu’s book in 
1303 (Zhu, 1303). In China, the term “Yang Hui triangle” gets its popularity 
because of the excellent book by Hua Loo Keng (Hua, 1956), the most influential 
mathematician in modern China (see biography section at the end of this book). In 
its introduction, Hua (1956) remarked that Yang Hui mentioned that this triangle 
was reported earlier in a book by Jia Xian (last name is Jia).  Based on the fact that 
Jia’s book is lost today, Hua decided to called it the Yang Hui triangle in his book 
and even use it as the title of his excellent book. Being the authority in mathematics 
in China, it was not challenged. This use or misuse of terminology by Hua (1956) 
has been recently criticized by historians. Thus, in China, both the names of “Yang 
Hui triangle” and “Jia Xian triangle” have been used in the literature.  
 Mathematically, the binomial theorem can be expressed as: 

 1 2 2 1( 1)( )
2

n n n n n nn nx h x nx h x h nxh h  (1.4) 

Although the Jia Xian triangle has been known since at least AD 1200, the 
binomial formula given in (1.4) was believed discovered by Isaac Newton. The 
coefficient on the right hand side of (1.4) is called the binomial coefficient. It can 
be defined as 

 ( 1)...( 1) !
! !( )!

r
n

n n n r nC
r r n r

 (1.5) 

so that 
 1 2 2 1

1 2 1( )n n n n n n n n n n
n nx h x C x h C x h C xh C h  (1.6) 

In (1.5), the factorial function n! has been used (i.e., 5! =5 4 3 2 1 = 120). This 
binomial coefficient is found extremely useful in probability analysis, which 
however is out of the scope of the present book. For example, the binomial 
coefficient given in (1.5) can be interpreted as the number of different ways of 
taking r objects from n different objects. Taking 1 object at a time (or r =1), we 
can clearly see that there are exactly n different ways. Putting r = 1 in the right 
hand side of (1.5) gives exactly n (note that 1! = 1). It is clear from Figure 1.1 that 
the Pascal triangle or Jia Xian triangle can be generated by two adjacent terms to 
form the binomial coefficient of the next row as shown in Figure 1.2. This summing 
rule can also be proved analytically in Example 1.1.  
__________________________________________________________________ 
Example 1.1  
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 (1.7) 

__________________________________________________________________ 
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Figure 1.2 Summing rule in generating the coefficients on next row 

 
Example 1.2 illustrates the series expansion of the function ex with e being the base 
of natural logarithms (i.e., e = 2.71828 18284 59045 23536 0287...). The definition 
of e will be given in Example 1.4.  
__________________________________________________________________ 
Example 1.2 
 

 

2 3

2 3
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x n
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n n n n
x n x n n x

x x x

 (1.8) 

__________________________________________________________________ 
 
Actually (1.8) can be viewed as a Taylor series expansion, and this will be covered 
later in Section 1.13.2.  
 In fact, if we set x = 1 in (1.8), we also have the definition of the e. This was 
first considered by Leonard Euler, who was the most prolific researcher in the 
history of mathematics. There are 886 publications of Euler listed in the website of 
the Mathematics Department at Dartmouth University. Interested readers can 
download them from http://www.math.dartmouth.edu/~euler/tour/tour00.html. We 
will see later in this book that Euler’s name will be mentioned repeatedly. Euler is 
actually one of the main pioneers of differential equations and nearly all of his 
theories on differential equations are related to the solving of real problems. Most 

1 
1    1 

1    2     1 
1    3     3     1 

1     4     6     4     1 
1    5    10   10    5     1 

1     6   15   20   15    6     1 
……………………… 

http://www.math.dartmouth.edu/~euler/tour/tour00.html
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of the notations that we use today were proposed by Euler, such as , e, i (=( 1)1/2), 
f(x), sinx and cosx (Havil, 2003). Laplace once said “Read Euler, read Euler, he is 
the master of us all” (Dunham, 1999).  
 We will next review the essence of calculus, which consists of differentiation 
and integration. They are the bread and butter of differential equations. 

1.3 DIFFERENTIATION 

To the general public, calculus is believed to be invented by Isaac Newton. In fact, 
it was invented independently by British physicist and mathematician Isaac Newton 
and by German mathematician and diplomat Gottfried Wilhelm Leibniz. The 
currently adopted notation for differentiation and integration are all due to Leibniz. 
In a sense, we owe more to Leibniz than to Newton. The following disputed story 
between Newton and Leibniz was told by the most popular physicist of our time, 
Professor Stephen W. Hawking (Hawking, 1988) in the appendix of his celebrated 
book A Brief History of Time.  
 

Isaac Newton was not a pleasant man. His relations with other academics were 
notorious, with most of his later life spent embroiled in heated disputes.... 
  A more serious dispute arose with the German philosopher Gottfried Leibniz. 
Both Leibniz and Newton had independently developed a branch of mathematics 
called calculus, which underlies most of modern physics. Although we now 
know that Newton discovered calculus years before Leibniz, he published his 
work much later.  A major row ensued over who had been first, with scientists 
vigorously defending both contenders. It is remarkable, however, that most of 
the articles appearing in defence of Newton were originally written by his own 
hand and only published in the name of friends! As the row grew, Leibniz 
made the mistake of appealing to the Royal Society to resolve the dispute. 
Newton, as president, appointed an “impartial” committee to investigate, 
coincidentally consisting entirely of Newton’s friends! But that was not all: 
Newton then wrote the committee report himself and had the Royal Society 
publish it, officially accusing Leibniz of plagiarism. Still unsatisfied, he then 
wrote an anonymous review of the report in the Royal Society’s own periodical. 
Following the death of Leibniz, Newton is reported to have declared that he had 
taken great satisfaction in “breaking Leibniz’s heart.” (pp. 181 182, Hawking, 
1988) 

   
In fact, the initial relation between Newton and Leibniz is not as Hawking (1988) 
described above. The following extraction from Newton’s first edition of Principia 
(1687) gives another side of the story: 
 

In letters which went between me and that most excellent geometer, G.W. 
Leibniz, 10 years ago, when I signified I was in the knowledge of a method of 
determining maxima and minima, of drawing tangents, and the like ... that most 
distinguished man wrote back that he had also fallen on a method of the same 
kind, and communicated his method which hardly different from mine, except in 
his form and words and symbols. (Gjertsen, 1986)   
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However, in the third edition of Principia (1726), which was published 10 years 
after the death of Leibniz, the above reference to Leibniz work was removed. 
Probably, we all should learn something from this notorious story.  
 We now return to the technical side. Differentiation of a function f(x) can be 
defined as a limit process of looking the ratio of the change of f versus the change 
of x:  

  
0

lim
h

f x h f xdf f x
dx h

 (1.9) 

If we plot f versus x, differentiation of f with respect to x is actually the slope of the 
curve. Figure 1.3 illustrates this geometric meaning of differentiation. It is also clear 
from Figure 1.3 that when f'(x) = 0, the point x is either a maximum or a minimum. 
At the maximum point, clearly the slope of the curve is changing from positive to 
negative whereas the slope at the maximum point is zero. Thus, we must have f''(x) 
< 0 at a maximum point, and a similar argument shows that we must have f''(x) > 0 
at a minimum point. Because of these, differentiation is useful in maximizing or 
minimizing certain functions. In addition, for a derivative to exist, the curve shown 
in Figure 1.3 must be continuous and smooth. In mathematical terms, we require 
that the same differentiation is obtained at point a whether we approach the point a 
from the left or from the right 
   lim ( ) lim ( )

x a x a
f x f x  (1.10) 

where  is a small number.  
 In Figure 1.3, we also demonstrated the mean value theorem for 
differentiation.  In particular, if f(x) is continuous and differentiable in the interval 
(a, a+h), there is a value a+ h (0 <  < 1) such that 
   ( ) ( ) ( )f a h f a hf a h  (1.11) 
Before we discuss more rules of differentiation, let us consider a very important 
formula related to taking a limit. It is called L’Hôpital’s rule.  In particular, when 
f(x)/g(x) tends to the indeterminate form of 0/0 or /  as the limit of x  a, then 
we can evaluate the limit as: 

 lim lim
( ) ( )x a x a

f x f x
g x g x

 (1.12) 

If the right hand side of (1.12) remains as in an indeterminate form of 0/0 or / , 
we can reapply (1.12) repeatedly. Note that a finite limit of any indeterminate form 
may exist or may not exist. The so-called L’Hôpital’s rule is actually discovered by 
Johann Bernoulli (also known as John Bernoulli), but his student Gillaume 
Francois Antoine de L’Hôpital published this rule in his first textbook on calculus 
in 1696. As a result, this was mistaken as the result by L’Hôpital (Maor, 1994). 

1.3.1 General Formulas 

The most important formula for differentiation is probably the power law rule, 
which is defined as  

 1n nd x nx
dx

 (1.13) 
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 Figure 1.3 Geometric interpretation of differentiation 

 
To see the proof, we employ the binomial theorem given in (1.4). In particular, we 
can expand the following limit by using the binomial theorem: 

1 2 2 1

0 0

1 2 2 1

0

1 2 2 1 1

0

( ) 1 ( 1) lim lim [ ]
2

1 ( 1)lim [ ]
2

( 1)lim[ ]
2

n n
n n n n n n

h h

n n n n
h

n n n n n
h

x h x n nx nx h x h nxh h x
h h

n nnx h x h nxh h
h

n nnx x h nxh h nx

 

  (1.14) 
Without going into the details, we report the following commonly used formulas of 
differentiation: 
 
Constant rule: 

 0d c
dx

 (1.15) 

Sum rule: 

 d du dvu v
dx dx dx

 (1.16) 

Product rule: 

 d dv duuv u v
dx dx dx

 (1.17) 

Quotient rule: 

 2

du dvv ud u dx dx
dx v v

 (1.18) 

Constant multiplier rule: 

f 

x 

0df
dx

0df
dx

0df
dx

0df
dx

a a h

( )f a h

a h
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 d ducu c
dx dx

 (1.19) 

where c is a constant, u and v are both function of x. These formulas were known to 
Leibniz in 1675, but they were not published until 1684. The proofs of them are 
straightforward and will not be reported here. 

1.3.2 Chain Rule 

Among different rules of differentiation, the chain rule is probably the most 
powerful. Mathematically, it can be written as 

 dy dy du
dx du dx

 (1.20) 

where y(u) and u(x). This can be proved by noting that 

 
0 0

( ) ( ) ( ) ( )lim , lim
u x

dy y u u y u du u x x u x
du u dx x

 (1.21) 

Then, the differentiation on the left of (1.20) can be written as: 

 

0

0

0 0

{ ( )} { ( )} { }lim

{ ( )} { ( )} ( ) ( )lim [ ]
( ) ( )

{ } { } ( ) ( )lim lim

x

x

u x

dy u x y u x x y u
dx x

y u x x y u x u x x u x
u x x u x x

y u u y u u x x u x
u x

dy du
du dx

 (1.22) 

In deriving (1.22), we note by definition that u= u(x+ x) u(x), and u  0 as 
x  0. This completes the proof of (1.20).  

 The mastery of the chain rule is essential for later analysis of differential 
equations. For example, we can apply the chain rule to the power rule of an 
arbitrary u(x) as (putting y(u) = un in (1.13)): 

   1( )n n nd d du duu u nu
dx du dx dx

 (1.23) 

Differentiation of elementary functions forms the basis for the analysis of 
differential equations. The commonly used differentiation formulas for circular or 
trigonometric functions are 

2sin cos , cos sin , tan secd du d du d duu u u u u u
dx dx dx dx dx dx

  

1 1 1
22 2

1 1 1sin , cos , tan
11 1

d du d du d duu u u
dx dx dx dx dx dxuu u

 

  (1.24) 
The differentiation formulas for hyperbolic functions are 
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 2(sinh ) cosh , (cosh ) sinh , (tanh ) sechd du d du d duu u u u u u
dx dx dx dx dx dx

  

1 1
2 2

1
2

1 1(sinh ) , (cosh ) ,
1 1

1(tanh )
1

d du d duu u
dx dx dx dxu u

d duu
dx dxu

 (1.25) 

Differentiation of logarithms and exponential functions are 

 

1 1ln , log , ln ,
ln

u u
a

u u

d du d du d duu u a a a
dx u dx dx u a dx dx dx
d due e
dx dx

 (1.26) 

1.3.3 Leibniz Theorem on n-th Order Differentiation 

The Leibniz rule for taking the n-th differentiation of a product of two functions f 
and g is: 

 
0

( )
nn k n k

k
nn k n k

k

d d f d gfg C
dx dx dx

 (1.27) 

where the binomial coefficient appears in (1.27) has been defined in (1.5). For 
example, if n = 4, we have  

 
4 4 3 2 2 3 4

4 4 3 2 2 3 4( ) 4 6 4d d f d f dg d f d g df d g d gfg g f
dx dxdx dx dx dx dx dx dx

 (1.28) 

This formula is useful in dealing with higher order differentiation. For small n, the 
validity of (1.27) can be checked easily. The proof of (1.27) for general n can be 
done by using mathematical induction. For n = 1, we have 

 0 1
1 1

1! 1!( )
0!(1 0)! 1!(1 1)!

d df dg df dg df dgfg C g C f g f g f
dx dx dx dx dx dx dx

 (1.29) 

where we have used (1.5). The validity for n = 1 is established. Next, we assume 
(1.27) is true for the case of n = k. That is, we have 

 

1 2 2
0 1 2

1 2 2

1
1

1

( )

...

k k k k

k k kk k k k

k k
k k
k kk k

d d f d f dg d f d gfg C g C C
dxdx dx dx dx dx

df d g d gC C f
dx dx dx

 (1.30) 

Taking differentiation with respect to x once more time, we obtain 
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1 1 1 2
0 1

1 1 1 2

2 3 1 2
2

2 3 1 2

2 1 1
1

2 1 1

1
0 1

1

( ) ( ) ( )

( )

... ( ) ( )

(

k k k k k

k kk k k k k

k k

k k k

k k k k
k k
k kk k k k

k

k kk

d d f d f dg d f dg d f d gfg C g C
dx dxdx dx dx dx dx dx

d f d g d f d gC
dx dx dx dx

d f d g df d g d g df d gC C f
dx dxdx dx dx dx dx

d fC g C
dx

1 2
0 1 2

1 2

1
1

1

) ( ) ...

( )

k k

k k kk k

k k
k k k
k k kk k

d f dg d f d gC C C
dxdx dx dx

df d g d gC C C f
dx dx dx

 (1.31) 

By employing the definition of the binomial coefficient given in (1.5) and the result 
established in Example 1.1, we can easily show that 

 
0 0 1 1 0 1 1

1 1 1
1 2 1 1 1

1 1

1, 1 1 ,

, 1 1

k k
k k k k k k k k

k k k k
k k k k k k k

C C C C C C C k C

C C C C C C k C
 (1.32) 

Thus, substitution of (1.32) into (1.31) gives 
 

 

1 1 1 2
0 1 2

1 1 11 1 1 2

1
1

1 1 1

( ) ...
k k k k

k k kk k k k

k k
k k
k kk k

d d f d f dg d f d gfg C g C C
dxdx dx dx dx dx

df d g d gC C f
dx dx dx

 (1.33) 

This agrees with (1.27) for the case of n = k+1. Therefore, if (1.27) is true for the 
case of k, (1.27) is also true for k+1. By mathematical induction, (1.27) is valid for 
all values of n starting from n = 1.  

1.3.4 Leibniz Rule of Differentiation for Integral 

Another important formula by Leibniz is the differentiation of integral: 

 
( ) ( )

( ) ( )

( , ) ( ) ( )( , ) [ , ( )] [ , ( )]
h x h x

g x g x

d df x dh x dg xf x d d f x h x f x g x
dx dx dx dx

 (1.34) 

where both lower and upper limits are functions of x. The formal definition of 
integration will be deferred to a later section. To prove (1.27), we first write the 
integral as  

 
( )

( )
( ) ( , )

h x

g x
x f x d  (1.35) 

The change of this integral with respect to an increment of x is considered:  

 
( ) ( )

( ) ( )
( ) ( ) ( ) ( , ) ( , )

h x x h x

g x x g x
x x x x f x x d f x d  (1.36) 

The first integral on the right hand side of (1.36) can be split into three integrals as 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( , ) ( , )

( , ) ( , )

g x h x

g x x g x

h x x h x

h x g x

x f x x d f x x d

f x x d f x d
 (1.37) 

The second and fourth integrals on the right hand side have the same limits and are 
grouped together, and the limits of the first integral on the right hand side are 
reversed. Thus, (1.37) can be rewritten as: 

 

( ) ( )

( ) ( )

( )

( )

( ) [ ( , ) ( , )] ( , )

( , )

h x h x x

g x h x

g x x

g x

x f x x f x d f x x d

f x x d
 (1.38) 

The first term on the right of (1.38) can be expressed as: 

 
( ) ( )

( ) ( )

[ ( , ) ( , )][ ( , ) ( , )]
h x h x

g x g x

f x x f xf x x f x d x d
x

; (1.39) 

whereas, by the mean value theorem for integration (Spiegel, 1963), we can express 
the last two integrals on the right of (1.38) as 

 
( )

1
( )

( , ) ( , )[ ( ) ( )]
h x x

h x
f x x d f x x h x x h x  (1.40) 

 
( )

2
( )

( , ) ( , )[ ( ) ( )]
g x x

g x
f x x d f x x g x x g x  (1.41) 

where h(x)< 1<h(x+ x), and g(x)< 2<g(x+ x). Substituting (1.39) (1.41) into 
(1.38) and dividing the whole expression by x yields   

( )
1 2

( )

( ) [ ( , ) ( , )] ( , ) ( , )
h x

g x

x f x x f x h gd f x x f x x
x x x x

 

  (1.42) 
Finally, we can take the limit that x goes to zero to give 

 
( )

0 ( )

( ) ( ) ( , )lim ( , ( )) ( , ( ))
h x

x g x

d x x f x dh dgd f x h x f x g x
dx x x dx dx

 (1.43) 

which is the Leibniz formula given in (1.34). This completes the proof of (1.34). 
This formula will be used repeatedly in the later part of this book. 

1.3.5 Partial Derivative 

When a function f depends on more than one variable (say x and y), differentiation 
has to be modified as partial differentiation.  In particular, two partial derivatives 
are defined as, depending on differentiating with respect to x or y 

 
.0

.0

( , ) ( , )lim ( ) ,

( , ) ( , )lim ( ) ,

y const xx

x const yy

f f x x y f x y f f
x x x
f f x y y f x y f f
y y y

 (1.44) 
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Note that the partial differentiation with respect to the variable x or y is represented by 
the comma-subscript convention (see the last terms in (1.44)). When we take the 
partial differentiation with respect to x, we will keep y constant. Similarly, in taking 
partial differentiation with respect to y, we keep x as constant. This idea can easily 
be extended to the partial differentiation of function with three or more variables 
(say, x, y, and z) derivative.  The symbol  is not a Greek letter, and it was invented 
by Legendre and has been adopted since (Cajori, 1993). Some people pronounce  
as “partial differentiation,” some call it “partial d,” but it was introduced as a 
rounded “d” so as to distinguish it from the normal “d.” Therefore, it seems easier 
to call it as “round”.  
 An important consequence of partial differentiation lies in the calculation of 
the total change of a function or its total differential, which is defined as: 

 f fdf dx dy
x y

 (1.45) 

This fundamental result will repeatedly be used in the analysis of differential 
equations (e.g., the exactness of 1st ODE and solving 1st order PDE). To show the 
validity of (1.45), we first note that the total change of f when x increases to x+ x 
and y increases to y+ y is 

 
( , ) ( , )
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )[ ] [ ]

f f x x y y f x y
f x x y y f x y y f x y y f x y
f x x y y f x y y f x y y f x yx y

x y

      (1.46) 

0 0

( , ) ( , ) ( , ) ( , )lim [ ] lim [ ]
x y

f x x y y f x y y f x y y f x ydf x y
x y

f fdx dy
x y

 

  (1.47) 
This completes the proof of (1.45). When f depends on n variables (xi, i =1,2,..., n), 
the total differential becomes 

  1 2
1 2

... n
n

f f fdf dx dx dx
x x x

 (1.48) 

The chain rule discussed in Section 1.3.2 has to be revised for the case of multiple 
variables; and, in view of (1.45) we have: 

 df f dx f dy
dt x dt y dt

 (1.49) 

where f is a function of both x and y, and both x and y are functions of t. Equation 
(1.46) is of particular importance in fluid mechanics and it is the basis of the so-
called convective derivative or material derivative. We will return to this in Section 
2.8.2 of Chapter 2.  
__________________________________________________________________ 
Example 1.3 Consider the following partial derivative of a product of two functions 
u and v: 
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2

1 2 1 2 2
2 2

1 2 1 2 1 2 1 2

 ( ) ( )v uuv u v
x x x x x

u v v v u uu v
x x x x x x x x

 (1.50) 

_________________________________________________________________ 
 
The geometric meaning of partial derivative f/ x and f/ y are demonstrated in 
Figure 1.4. They are the corresponding slopes for function f(x,a) and f(b,y). 
 

Figure 1.4 Geometric meaning of f/ x  and f/ y   

1.3.6 Commutative Rule for Partial Derivatives 

If a function has a continuous and smooth second derivative, and the second 
derivative is commutative as: 

 
2 2

 f f
x y y x

 (1.51) 

This is known as Clairaut theorem. To prove this, let us consider the following 
function: 
 0 0 0 0 0 0 0 0 ( , ) ( , ) ( , ) ( , )G f x h y k f x y k f x h y f x y  (1.52) 
Next, let us further assume that 
  ( , ) ( , ) ( , )x y f x h y f x y  (1.53) 
  ( , ) ( , ) ( , )x y f x y k f x y  (1.54) 
With the definition given in (1.53), we can consider x being x0 and y being y0 or 
y0+k 
 0 0 0 0 0 0 ( , ) ( , ) ( , )x y k f x h y k f x y k  (1.55) 
 0 0 0 0 0 0 ( , ) ( , ) ( , )x y f x h y f x y  (1.56) 
Then, (1.52) can be rewritten as 

f
x

a

b

( , )b a

( , )f x y

y

Slope of  ( , )f x a

x

z

f
y

a

b
( , )b a

( , )f x y

y

Slope of  
( , )f b y

x

z
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 0 0 0 0 ( , ) ( , )G x y k x y  (1.57) 
Similarly, using the definition of (1.54) we have  
 0 0 0 0 0 0 ( , ) ( , ) ( , )x y k f x h y k f x h y  (1.58) 
 0 0 0 0 0 0 ( , ) ( , ) ( , )x y f x y k f x y  (1.59) 
Thus, alternatively the function G defined in (1.52) can be expressed as 
 0 0 0 0 ( , ) ( , )G x h y x y  (1.60) 
Recall the mean value theorem that 

 ( ) ( ) ( )f b f a f a b
b a

 (1.61) 

Application of this mean value theorem to (1.57) leads to 

 
0 0 0 0 0 0 1 1

0 0 1 0 0 1

 ( , ) ( , ) ( , ) 0 1

{ ( , ) ( , )}

G x y k x y k x y k
y

f fk x h y k x y k
y y

 (1.62) 

Application of this mean value theorem to (1.60) gives 

 
0 0 0 0 0 2 0 2

0 2 0 0 2 0

 ( , ) ( , ) ( , ) 0 1

{ ( , ) ( , )}

G x h y x y h x h y
x

f fh x h y k x h y
x x

 (1.63) 

Applying the mean value theorem for the second time to both (1.62) and (1.63), we 
obtain 

 
2

0 3 0 1 3 ( , ) 0 1fG hk x h y k
x y

 (1.64) 

 
2

0 2 0 4 4 ( , ) 0 1fG kh x h y k
y x

 (1.65) 

Thus, we obtain 

 
2 2

0 2 0 4 0 3 0 1 ( , ) ( , )f fx h y k x h y k
y x x y

 (1.66) 

Consideration of the limiting case that h  0 and k  0 gives 

 
2 2

0 0 0 0 ( , ) ( , )f fx y x y
y x x y

 (1.67) 

Thus, the order of partial differentiation can be reversed if the second derivative is 
a smooth function of x and y at point (x0, y0). 

1.4 INTEGRATION 

When a function f(x) is plotted against x as shown in Figure 1.5(a), the area under 
the curve f can be approximated by summing the areas of n columns. 
Mathematically, we can write 
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 1 2[ ( ) ( ) ... ( ) ]nA f x x f x x f x x  (1.68) 
The actual area under the curve can be written as an integration if we take the limit 
of n approaching infinity 

 
1

( ) lim ( )
nb

ina
i

f x dx f x x  (1.69) 

If the integration is not integrated along the x axis from a to b but instead along a 
curve C in space or in a plane as shown in Figure 1.5(b), we have the contour 
integral. A curve C is depicted in Figure 1.5(b) from Point A to Point B. The 
direction of a curve C can be defined from Point A to Point B in Figure 1.5(b) or 
vice versa. Similar to (1.69), the line integration along curve C is defined as a sum 
 

 
Figure 1.5 Integration as a sum of areas and a sum of lengths 

 

     
1

( , ) lim ( , )
n

i inC
i

f x y ds f x y s  (1.70) 

where the length of each segment along the curve C is s, and point (xi, yi) is the 
point at the center of the segment i. The value of the line integral will be negative if 
we integrate from Point B to Point A. Formula (1.70) can be extended easily to 3-D 
space. If the curve C forms a closed contour (Point A overlaps with Point B), the 
integral sign will be changed to   

    
1

( , ) lim ( , )
n

i in
i

f x y ds f x y s
n

f x y ds( , ) lim, )  (1.71) 

 When a function f depends on more than one variable, we can extend the idea 
of a single integration to multiple integrations.  For example, using the polar 
coordinate shown in Figure 1.6(a), we can define area integration as: 

  
2

1

( )

( )
( , ) ( , )

g

g
R

f r dA f r drd  (1.72) 

Similarly, we can extend the area integration to volume integration, which is 
formed by the revolution of a curve y(x) about the x axis as shown in Figure 1.6(b) 
or about the y axis as shown in Figure 1.6(c). 
 

f 

x 

          

a b1x
2x 3x

4x nx

x

ix

C 

A

B

x

y

1
2

n
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Figure 1.6 Area evaluation in terms of double integral  

1.4.1 Integration by Parts 

One of the most important formulas of integration is integration by parts: 
   u dv uv v du  (1.73) 

This technique will be used repeatedly in solving differential equations, and the 
mastery of this technique is essential. This formula can be generalized to the case 
of an integrand involving the n-th derivative of a function f multiplying another 
function g: 
 ( ) ( 1) ( 2) ( 3) ( )  ...( 1)n n n n n nf g dx f g f g f g fg dx  (1.74) 

When upper and lower limits of integration are given, these formulas should be 
modified accordingly by assigning the limits to the non-integral parts in (1.73) and 
(1.74). 

1.4.2 General Rules of Integration  

There are a lot of mathematical handbooks on integration (e.g., Gradshteyn and 
Ryzhik, 1980; Zwillinger, 2012; Spiegel, 1968). Carrying out integration may not 
be an easy matter and, in general, integration is much more difficult than 
differentiation. Instead of summarizing all known integration formulas here, we 
only report some useful formulas that we would encounter repeatedly in solving 
differential equations   

x 
1( )r g

2 ( )r g

y ( , )f r y 

x 

(a) (b) 

(c) 

x 

y 
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1

1

n
n uu dx

n
 (1.75) 

 1 lndu u
u

,    u ue du e  (1.76) 

 
ln

ln 
ln ln

u a u
u u a e aa du e du

a a
 (1.77) 

In addition, we report two general rules for carrying out integration 

 1 ( ) ( )f ax dx f u du
a

 (1.78) 

 ( ){ ( )} ( )
( )

dx F uF f x dx F u du du
du f x

 (1.79) 

1.4.3 Some Transformation Rules  

There are some well-established rules for integrands containing certain groups of 
arguments. Here are some of them and their associated change of variables should 
be used: 

 1 ( ) ( )F ax b dx F u du
a

,   u ax b  (1.80) 

 2 ( ) ( )F ax b dx uF u du
a

,   u ax b  (1.81) 

 1 ( ) ( )nn nF ax b dx u F u du
a

,   nu ax b  (1.82) 

 2 2 ( ) ( cos )cosF a x dx a F a u udu ,   sinx a u  (1.83) 

 2 2 2 ( ) ( sec )secF a x dx a F a u udu ,   tanx a u  (1.84) 

 2 2 ( ) ( tan )sec tanF x a dx a F a u u udu ,   secx a u  (1.85) 

 1 ( ) ( )ax F uF e dx du
a u

,   axu e  (1.86) 

  (ln ) ( ) uF x dx F u e du ,   lnu x  (1.87) 

 1 (sin ) ( )cosxF dx a F u udu
a

,  1 sin xu
a

 (1.88) 

 
2

2 2 2
2 1 (sin ,cos ) 2 ( , )

1 1 1
u u duF x x dx F
u u u

,   tan
2
xu  (1.89) 

Note, however, that there is no guarantee that these changes of variables will 
always work. It depends on the particular functional form of F involved. In Section 
1.7.4, we will see that Cauchy’s integral formula for complex variables is a very 
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powerful technique even for integrating real functions. Another less known 
technique is Ramanujan’s master theorem and the related Ramanujan’s integral 
theorem, and these will also be discussed in Sections 1.9 and 1.10. 

1.4.4 Mean Value Theorem  

Similar to the mean value theorem in differentiation given in (1.11), the mean value 
theorem also exists in integration. We have actually used the mean value theorem 
in the proof of the Leibniz rule of differentiation for the integrals in (1.40) and 
(1.41) in Section 1.3.4. In particular, there exists a point c within the upper and 
lower limits such that:  

  ( ) ( ) ( ),
b

a
f x dx b a f c    a c b  (1.90) 

  ( ) ( ) ( ) ( ) ,
b b

a a
f x g x dx f c g x dx    a c b  (1.91) 

where f(x) is a less rapid changing function comparing to g(x). This idea can be 
extended to double integrations. Similarly, the mean value theorem for the double 
integral can be established as   
 0 0( , ) ( , )

R

f r dA Af r   (1.92) 

where the point (r0, 0) lies within the domain of integration. 

1.4.5 Improper Integral 

When the integrand is not defined at its end point of integration, the integration can 
be modified as   

 
0

 ( ) lim ( )
b b

a a
f x dx f x dx  (1.93) 

where f(a) tends to infinity. The integral given in (1.93) must exist in order that the 
integral is well defined. Another typical improper integral involves infinity as the 
upper limit  

  ( ) lim ( )
b

ba a
f x dx f x dx  (1.94) 

Again, the limit on the right hand side of (1.94) must exist in order for (1.94) to be 
well defined. 

1.4.6 Laplace/Gauss Integral 

Let us consider an integral that we often encounter in engineering applications. The 
integral was known as the Laplace integral or Gauss integral. It is defined as 

 
2

0
 xI e dx  (1.95) 
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Note that (1.95) is an improper integral in the sense defined in the last section. As is 
normally done in engineering, we will omit the limit process but simply assume the 
limit exists. To evaluate (1.95), we will first note that the integrand in (1.95) is an 
even function with respect to x = 0. Thus, we can extend the integral to  

  
21 

2
xI e dx  (1.96) 

Next, a clever mathematical trick is proposed. We can expand the integration to an 
area integration of an infinite domain as 

 
2 2 2 22 ( )1 1 1 

2 2 4
y x x yI e dy e dx e dxdy  (1.97) 

This integral can easily be evaluated by using the polar form, as shown in Figure 
1.7.  
 

 
Figure 1.7 Area evaluation in terms of the double integral  

 
In particular, we assume 
 2 2 2 cos , sin ,x r y r r x y  (1.98) 
The limits of integration for  < x, y <  become 0 < r <  and 0 <  < 2 . The 
integral actually represents an area integral. From geometric consideration given in 
Figure 1.7, we must have 
  dA dxdy rd dr  (1.99) 
Thus, the integral becomes 

 
2 2 222 ( )

0 0

1 
4

x y rI e dxdy e rd dr  (1.100) 

The integration can be conducted separately for  and r  as 

 
22 2 2

0
0

1 1 [ ] ( ) ( )
4 2 4

rI e d r  (1.101) 

Finally, taking the square root of (1.101) gives  

 
2

0
 

2
xe dx  (1.102) 

This result will be used repeatedly in the later part of this book. 

dx

dy
dr

d

x

y

r

x

y
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1.5 JACOBIAN  

In (1.100) of the last section, we have seen that when a change of variables is 
applied to an area integral, an additional factor needs to multiply the increment of 
the new variables.  In general, we can cast the integral as 
  ( , ) ( , )f x y dxdy f J d d  (1.103) 

where J  is the additional factor. The symbol J  is normally used to represent 
this factor. The factor J was derived by Jacobi and is referred to as Jacobian. It is 
an important quantity for any mapping of a function of two variables.  
 Following Hardy (1944), let us consider the following function in terms of u 
and v: 
  ( , ) 0u v  (1.104) 
We assume there is an existence of a mapping for u and v as functions of x and y: 
  ( , ), ( , )u u x y v v x y  (1.105) 
Substitution of (mapping (1.105) into (1.104) and taking the partial differentiation 
with respect to x and y gives 

  0u v
x u x v x

 (1.106) 

  0u v
y u y v y

 (1.107) 

In deriving (1.106) to (1.107), we have applied the chain rule for partial 
differentiation given in (1.49). Equations (1.106) and (1.107) can be rewritten as a 
homogeneous system in matrix form as 

 
0

 
0

u v
x x u
u v
y y v

 (1.108) 

If the partial differentiations of  with respect to u and v exist, the determinant of 
the square matrix in (1.108) must be zero. The determinant is called Jacobian and 
is defined as: 

 det x y x y

u v
u v v vx xJ u v v u

v v x y x x
x y

 (1.109) 

If (1.104) exists, it means that u can be expressed in terms of v (or vice versa).  
That is, u and v are not independent. In a slightly different way of saying this, if J = 
0, / u and / v are nonzero.  Then, consequently (1.104) exists. Conversely, if 
J  0, / u and / v are zeros.  Then, u and v are independent, and consequently 
the mapping given by (1.105) exists. Therefore, for a mapping to exist, we must 
have its Jacobian defined in (1.109) not equal to zero. 
 We now return to (1.103) and see why the Jacobian is involved. Referring to 
Figure 1.8, we consider a small diagonal element dr as 
 1 2r e ex y ,   1 2r e ed dx dy  (1.110) 



  Mathematical Preliminaries   21 

 

x 

y 
rd

r

r d

1e

2e

r d

x 

y 
rd

r dx

dy

1e

2e

Now consider a mapping: 
 ( , ), ( , )x x y y  (1.111) 
Therefore, (1.110) becomes 

 1 2( , ) ( , )r e ex y ,   r rrd d d  (1.112) 

The two vectors on the right hand side of (1.112) are physically shown in Figure 
1.8 as the components of dr in the -  plane. They can be determined using the 
first equation of (1.110) as 

 1 2 1 2,r re e e ex y x y  (1.113) 

The small rectangular element with diagonal dr in the x-y plane in Figure 1.8 is  
 1 1 3( ) ( )A e e ed dx dx dxdy  (1.114) 
whereas the area of the curvilinear element with diagonal dr in the -  plane is 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
Figure 1.8 The mapping of a small vector dr  

 

 
1 2 1 2

3 3

( ) ( )

( )

r rA e e e e

e e

x y x yd d d d d

x y y x d d J d d
 (1.115) 

These areas must be equal before and after the mapping, thus we have 
demonstrated the validity of (1.103). 
 Although formula (1.103) was given in nearly all textbooks on engineering 
mathematics (e.g., Kreyszig, 1979; Wylie, 1975), its proof is seldom given.   
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1.6 COMPLEX VARIABLES AND EULER’S FORMULA  

The analysis of complex variables is an important area in applied mathematics. It is 
not possible to review such a huge topic in a chapter, let alone a subsection like 
this. Nevertheless, for later analysis we need to review some essential ideas here. 
 The idea of introducing imaginary number can date back to 1545, when 
Italian mathematician Gerolamo Cardano considered the solution of the cubic 
equation. All real numbers can be considered as special cases of complex numbers. 
Setting the imaginary part of any complex numbers to zero, we get real numbers. 
When both the real and imaginary parts of a complex number are replaced by 
changing variables, we have a complex variable 
 z x iy ,   1i  (1.116) 
where x = Re(z) and y = Im(z) are the real and imaginary parts of z. When a 
function depends on the complex variable z, we have a complex function 
 ( ) ( , ) ( , )f z u x y iv x y  (1.117) 
The summation, subtraction, and multiplication of complex numbers are similar to 
that for real numbers. The major difference of the arithmetic for complex numbers 
from that for real number lies in division:  

 1 1 1 1 1 2 2 1 2 1 2 1 2 1 2
2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

( )( )
( )( )

z x iy x iy x iy x x y y y x x yi
z x iy x iy x iy x y x y

 (1.118) 

In obtaining the result of (1.118), we have used the identity i2 = 1. The conjugate 
of a complex number z is defined as: 
 z x iy  (1.119) 
We can easily show the following identities 
 2 2Re( )z z x z ,  2 2 Im( )z z iy i z  (1.120) 

 2 2 2 2 2 2( )( )z zz x iy x iy x i y x y  (1.121) 
The z  is called the modulus of a complex number. 
 The polar form of a complex number is defined in Figure 1.9, and is given as 
  cos sin iz r ir re  (1.122) 
 

 
Figure 1.9 Polar form of a complex number  
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z x iy
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siny r
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where r =  z  and  is the argument of the complex number. Equation (1.122) is 
known as Euler formula. By applying the Euler polar form, we immediately obtain 
DeMoivre’s Formula 
 (cos sin )n n in nz r e r n i n  (1.123) 
Let us consider the special case that  =  in (1.122), we obtain 
 cos sin 1ie i  (1.124) 
Rearranging (1.124) gives the well-known Euler’s formula 
 1 0ie  (1.125) 
Many mathematicians and scientists called this the most beautiful formula in 
mathematics. It links five fundamental constants in mathematics: the base of natural 
logarithms (or Euler’s number), imaginary constant, ratio of circumference to 
diameter of a circle pi, one, and zero; otherwise, these constants are seemingly 
unrelated. Nobel prize laureate in physics, Richard Feynman, called this the most 
remarkable formula in mathematics (in the cover page of Nahin, 2006). Among 
these five constants,  and e are the most fundamental and appear in all branches of 
mathematics and engineering applications. Appendix F compiles some important 
formulas for , whereas the definition for e is given next. 
__________________________________________________________________ 
Example 1.4 Let us consider the origin of the base of natural logarithms e. If a sum 
of money P is deposited at a bank, and the bank offered an annual interest rate of r, 
thus, at the end of one year, we gain an interest of Pr or the total return sum S as 
  (1 )S P r  (1.126) 
Then, what happens if we take out the money from the bank at the end of one-half 
year and redeposit it into the bank with the new initial sum.  Mathematically, the 
return sum at the end of one year becomes 

 2 [ (1 )](1 ) (1 )
2 2 2
r r rS P P  (1.127) 

This formula is actually the compound interest formula that we should have learned 
in high school. Clearly, the sum given in (1.127) is more than that of (1.126). If 
after each 1/n year, we take out the money and redeposit it again, when we do this n 
times in a year, we ultimately get 

 [ (1 )...](1 ) (1 )nr r rS P P
n n n

 (1.128) 

One may ask the ultimate question, what would be the largest gain in a year, if we 
decrease the deposit period to an infinitely small period and redeposit again and 
again. Thus, mathematically, we have the sum at the end of one year as  

  lim (1 )n r
n

rS P Pe
n

 (1.129) 

The last of (1.129) gives the definition of e, and this gives birth to natural 
logarithms.  Clearly, we have 

 1 lim (1 ) 2.71828...n
n

e
n

 (1.130) 

The origin of e is from the deposit and interest problem, yet we will see that it is of 
central importance to mathematics as well as to the solution of differential 
equations. 
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_________________________________________________________________ 
 
The amazing properties of Euler’s formula do not stop at (1.125). Let us consider 
another example of (1.122). 
__________________________________________________________________ 
Example 1.5 What is i to the power i? 
 
Solution: Consider the special case that  = /2 + 2n  in (1.122); we find 

 ( /2 2 ) cos( 2 ) sin( 2 )
2 2

i ne n i n i  (1.131) 

Then, let us consider the amazing form of i to the power i 
 ( /2 2 ) ( /2 2 )  i i i n ni e e  (1.132) 
Surprisingly, i to the power i is actually real.  There are infinite answers to it, the 
“simplest” one being e /2 or 0.207879576...  Some authors also called this the 
principal value among the infinite solutions. This amazing result was obtained by 
Euler in 1746. It has been reported unofficially that some mathematics departments 
will ask this question at the interview of potential candidates for their bachelor 
degree program. In the problem section at the end of the chapter, we will consider 
more amazing formulas resulting from (1.122). 
_________________________________________________________________ 

1.7  ANALYTIC FUNCTION 

Let us now consider the differentiation of a complex variable. In analogy to the 
definition given for a real variable, we can define 

 
0

( ) ( ) ( )( ) lim
z

df z f z z f zf z
dz z

 (1.133) 

If this derivative exists, we call this complex function analytic. Actually, it is just 
the complex counterpart of a real function being differentiable. Therefore, let us 
reiterate that, in essence, analytic is just another word for differentiable in the 
complex variable context. We have learned that a function must be smooth for it 
being differentiable (or left hand limit equals right hand limit shown in (1.10)) and, 
similarly, we also have certain conditions that a complex function needs to satisfy 
in order to be analytic. This required condition is called the Cauchy-Riemann 
relations and is considered next. 

1.7.1 Cauchy-Riemann Relations   

Let us assume that a complex function can be written in terms of a real part 
function and a complex part function as given in (1.117). Then, the complex and its 
incremental change due to the change of z are 

 
( ) ( , ) ( , ),

( ) ( , ) ( , )
f z u x y iv x y

f z z u x x y y iv x x y y
 (1.134) 

Substitution of (1.134) into (1.133) yields 
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0

0

( ) ( )( ) lim

( , ) ( , ) [ ( , ) ( , )]lim

z

z

f z z f zf z
z

u x x y y u x y i v x x y y v x y
x i y

 (1.135) 

Since z = x + i y, we have two independent paths of taking the limit. First, we 
can take y   0, then x  0: 

 0

( , ) ( , ) [ ( , ) ( , )]( ) lim
x

u x x y u x y i v x x y v x yf z
x

u vi
x x

 (1.136) 

Secondly, we can take x  0, then y  0.  

 
0

( , ) ( , ) [ ( , ) ( , )]( ) lim

1
y

u x y y u x y i v x y y v x yf z
i y

u v v ui
i y y y y

 (1.137) 

The resulting limits by following these paths must be the same if the differentiation 
is unique.  Equating the real and imaginary parts of (1.136) and (1.137) gives a pair 
of equations: 

 ,u v v u
x y x y

 (1.138) 

These are the Cauchy-Riemann relations.  
__________________________________________________________________ 
Example 1.6 Check whether the following complex function is analytic: 
 2 ( )f z z  (1.139) 
Solution: Expansion of the square term gives 
 2 2 2( ) ( ) 2f z x iy x ixy y u iy  (1.140) 
Thus, u and v are 
 2 2 , 2u x y v xy  (1.141) 
Substitution of (1.141) into (1.138) gives 

 2 , 2u v v ux y
x y x y

 (1.142) 

Thus, (1.139) is analytic or the differentiation of (1.139) exists. 
_________________________________________________________________ 
 
Example 1.7 Check whether the following complex function is analytic: 
 2 ( )f z z  (1.143) 
Solution: Expansion of (1.143) gives 
 2 2 2( ) ( ) 2f z x iy x ixy y u iy  (1.144) 
Comparing the real and imaginary parts, we obtain  
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 2 2 , 2u x y v xy  (1.145) 
Substitution of (1.145) into (1.138) gives 

 2 , 2 , 2 , 2u v v ux x y y
x y x y

 (1.146) 

Thus, (1.143) is not analytic. 
_________________________________________________________________ 
 
Without going into details, we simply claim here that all functions involving only z 
are analytic, whereas any function containing the conjugate of z is not analytic. In 
addition, if u and v depends on Im(z) or Re(z), we can show that its resulting f is 
not analytic (see Problem 1.11).   

1.7.2 Liouville Theorem   

Suppose that for all z in the entire complex plane: (i) f(z) is analytic and (ii) f(z) is 
bounded (i.e., f(z)  < M for some constant M).  Then, f(z) must be a constant. In 
layman’s language, we can rephrase this as “if f(z) is analytic and bounded 
everywhere, f(z) is a constant.” This theorem was actually derived by Cauchy in 
1844. The term “Liouville theorem” was coined by Borchardt in 1880, who learned 
about this theorem in one of Liouville’s lectures in 1847 and unfortunately named it 
after Liouville.  Some mathematicians called it the Cauchy-Liouville theorem. 
There are 16 concepts and theorems associated with Cauchy’s name, and this is the 
most among mathematicians (see biography at the back of this book).  

1.7.3 Cauchy-Goursat Theorem  

We now review the most important formula for complex variable the Cauchy 
integral formula. First, let us consider an associated result called Green’s lemma or 
Green’s theorem in the plane. Figure 1.10(a) shows a plane domain R with 
boundary C.  
 Green’s lemma can be stated as 

  ( ) ( )
C

R

Q P dxdy Pdx Qdy
x y

)
C

Pdx Qdy((  (1.147) 

To prove this, we first consider the left hand side of (1.147). As shown in Figure 
1.10, the lowest point of the curve C is y1, whereas the highest point of C is y2 and 
the arcs 123 and 143 are single value functions represented by g1(y) and g2(y).  The 
first term on the left of (1.147) can be reduced to   
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Figure 1.10 A plane region and its boundary  
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 (1.148) 

Similarly, the second term can be simplified as 

 

2 2 2

1 1 1

1 2

2 1

( )
2 1

( )

2 1

( ) [ ( )] [ ( )]

[ ( )] [ ( )]

x f x x

x f x x
R

x x

x x C

P Pdxdy dxdy P f x P f x dx
y y

P f x dx P f x dx Pdx
C

Pdx

 (1.149) 

Combining (1.148) and (1.149) gives (1.147). 
 Now consider the closed contour integration of an analytic function 
 ( ) ( )( ) ( ) ( )

C C C C
f z dz u iv dx idy udx vdy i vdx udy)

C C C C
vdx udy((

C C CC C
f z dz u iv dx idy udx vdy iu iv dx idy udx vdy i( ) ( )( ) ( )) ( )( ) ( )( )( ) ( )( )( ) ( ))( ) ( )( )( ) ( )( )( ) ( )  (1.150) 

Application of Green’s lemma given in (1.147) to (1.150) yields 

 ( )
C R R

v u u vf z dz dxdy i dxdy
x y x yC RC R

f z dz( )  (1.151) 

By virtue of the Cauchy-Riemann relation, we arrive at the well-known Cauchy 
integral theorem as: 
 ( ) 0

C
f z dz 0

C
f z dz( ))  (1.152) 

which is true when f'(z) is continuous. Figure 1.10(b) shows the modification of the 
proof to a multi-connected region. We first construct a cross-cut (dotted line in 
Figure 1.10(b)) such that the domain becomes simply connected as Figure 1.10(a). 
The closed contour integral of an analytic function becomes 
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1 3 2 4

( ) 0
C C C C

f z dz
1 3 2 4C C C C1 3 2 43 2

f z d( ))
C CC3 233 2

 (1.153) 

However, line integrals for curves C3 and C4 are the negative of each other.  That is, 
we have 
 

3 4

( ) ( )
C C

f z dz f z dz  (1.154) 

Thus, (1.152) is reduced to 
 

1 2

( ) ( ) 0
C C C

f z dz f z dz
1 2

0
C C C1 2

f ( )( )f d( )( )( )
C C1 2

f z dz( )  (1.155) 

where contour C is interpreted as a complete boundary of R, consisting of C1 and 
C2, traversed in the sense that an observer walking on the boundary always has the 
region R on his left. As shown by Spiegel (1964), this proof had been extended by 
Goursat to the general situation that no Cauchy-Riemann relation is needed (i.e., 
the condition that f'(z) is continuous is relaxed). This is the Cauchy-Goursat 
theorem. 

1.7.4 Cauchy Integral Formula  

If f(z) is analytic within and on the boundary C of a simply connected region R 
whose boundary C is sectionally smooth and if z0 is any point in the interior of R, 
then 

 0
0

1 ( )( )
2 C

f z dzf z
i z z0

f z dz( )(
z zC

 (1.156) 

where C is integrated in positive sense. 
 To prove this Cauchy integral formula, we note first that f(z)/(z-z0) is analytic 
everywhere in R except at point z0. Thus, similar to Figure 1.10, we can construct a 
circle centered at z0 with radius  (see Figure 1.11). Then, a cross-cut can be made 
to make it simply connected. Eventually, following the argument used in the last 
section or applying the Cauchy-Goursat theorem given in the last section, we obtain 
 

 
Figure 1.11 An analytic region for f(z) containing a point z0  
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0 0

( ) ( )
C

f z dz f z dz
z z z z0 0C

f z dz f z dz( ) ( )(
z z z z0 zC

f z dz( ))
z z0z

 (1.157) 

with   0. Note also that we have set both C and  contours counter-clockwise, 
which is different from that of Figure 1.10(b). On the circular contour , the 
following change of variable can be applied 
 0 ,i iz z e dz i e d  (1.158) 
The right hand side of (1.157) becomes 

 

2 2
0

000 00
2

0 0
0

( )( ) lim ( )

( ) 2 ( )

i i
i

i
f z e e idf z dz f z e id

z z e

f z id if z

2

00

ff d( )
z z

2

00

ff z dz( )
z z

ff

 (1.159) 

Substitution of (1.159) into (1.157), we obtain the Cauchy integral formula 

 0
0

1 ( )( )
2 C

f z dzf z
i z z0

f z dz( )(
z zC

 (1.160) 

The proof is now completed.  
 Equation (1.156) is actually the zero order of the more general Cauchy 
Integral formula, which is given by 

 ( )
0 1

0

! ( )( )
2

n
nC
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Mathematical induction will be used to prove this general formula. The zero order 
of (1.161) has just been proved. Next, suppose that (1.161) is valid for n = k that 
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Taking differentiation of (1.162) one more time, we obtain 
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The square bracket term inside the integration sign can be simplified as 
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Then, we can apply binomial theorem discussed in Section 1.2 to get  
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Back substitution of (1.165) into (1.163) we have  
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Finally, we have 
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Therefore, (1.161) is also true for n = k+1 if it is true for n = k. The proof is 
completed. 
 The Cauchy integral formula is remarkable because it shows that if a complex 
function f(z) is known on the simple closed curve C, then the value of the function 
and all its derivatives can be found at all points inside C. It also implied that if a 
function has a first derivative (i.e., analytic) in a region R, all its higher derivatives 
exist in R. This is a major difference between a complex variable and real variable. 

1.7.5 Residue Theorem  

Finally, we will review the most powerful technique in complex variables the 
residue theorem. Let us first consider the Laurent theorem about a singular point a 
(i.e., the function is not analytic at point a). If f(z) is analytic inside and on the 
boundary of the ring-shaped region R bounded by two concentric circles C1 and C2 
with center at a and respective radii r1 and r2, then for all z in R 
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where 
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The negative power terms of (z a) are the principal part, from which the singularity 
comes, and the positive power terms of (z a) are the analytic parts of the 
expansion. If the principal parts have infinite terms, the point a is an essential 
singularity. Note also that Taylor series expansion contains only positive power, 
and hence it is only a special case of the Laurent expansion.   
 We will not provide a rigorous proof of the Laurent theorem, but we only 
sketch the main ideas. Applying the Cauchy integral formula given in the last 
section, we can write 
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Figure 1.12  Annular region around a point a   
 
First, we can expand 1/(w z) as 
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We have applied Taylor series expansion in obtaining the result in (1.171). 
Similarly, we can also expand 1/(w z) as 
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Substitution of (1.171) into the first term on the right of (1.170) gives 
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where  
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with k = 1,2,...n 1. Substitution of (1.172) into the second term on the right of 
(1.170) gives 

 
2

1 2
2

1 ( ) ...
2 ( ) ( )

n
nnC

aa af w dw V
i w z z a z a z a2

( ) a(( dw a
w z z2C2

( )f ( dw
z zz z

 (1.175) 
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with k = 1,2,...n. As n  , both Un and Vn can be shown approaching zero 
provided the value of the line integral Cf(z)dz is bounded (Spiegel, 1964). This 
completes the proof.  
 We are now ready to consider the residue theorem. Let f(z) be single valued 
and analytic inside and on a circle C except at the point z = a, which is chosen as 
the center of C (i.e., a is a singular point or so-called a pole).  We now consider the 
closed line integral of f(z) which is given in (1.168) in Laurent series: 
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We drop all positive power terms because all positive power terms are analytic and 
by the Cauchy-Goursat theorem, the closed contour integral must be zero. The 
remaining job is to evaluate the negative powers. Use the result of the Cauchy-
Goursat theorem again or refer to (1.157); we have 
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where the contour  is given in Figure 1.11. When n = 1, we can again adopt  the 
change of variables given in (1.158) and obtain 
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For n > 1, we use the same change of variables given in (1.158) and obtain 
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Substitution of (1.179) and (1.180) into (1.177) gives 

 1
1

( ) 2
( )n nC C

n

dzf z dz a ia
z a 1

1 ( )nC C
1n

dz ia2
( )n

dz
n

C
na nf z dz( ))  (1.181) 

where a 1 is called the residue of f(z) at z = a.  
 Thus, we can find the residue as 
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When z = a is a singularity of order k, we find the residue by the following formula  
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The formula can readily be verified by the Cauchy integral formula. Let us consider 
that a function f(z) has a pole of order m at z = a, then we can write it as 
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where F(z) is analytic inside and on C, and f(a)  0.  Then by Cauchy’s integral 
formula given in (1.161): 
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Combining (1.185) and (1.181) gives (1.183) and this completes the proof. If there 
is more than one singular point within contour C as shown in Figure 1.13, we have 
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The residue theorem will be used later in Section 1.7.7.  
 

 
Figure 1.13 Annular region around points a, b, and c.   

1.7.6 Branch Point and Branch Cut 

One major problem with complex analysis is the multi-value properties of complex 
functions around a certain point, which is called a branch point. Let us consider the 
function that 
 1/nw z ,  iz e  (1.187) 
 
where n is a positive integer. Use the polar form given in the second equation of 
(1.187) we have 
 1/ /n i nw e  (1.188) 
If we go around the origin starting from Point A in Figure 1.14, following a 
complete counterclockwise circuit, we have 
  1/ ( 2 )/ 1/ / 2 /n i n n i n i nw e e e  (1.189) 
which is different from (1.188). Thus, we end up with a different value for the same 
Point A. However, if we go around the origin n times, we should obtain the same 
value of w as in (1.188). We can describe one branch of the multi-valued function 
z1/n for 0   < 2  as long as we do not exceed 2 , and similarly we can find the 
other branches of the solution for larger values of . Grouping all the answers, we 
obtain n branches of solution 
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c C
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Figure 1.14 A function of w = z1/n   

 
 0 2 , 2 4 ,..., (4 2) 4z z n z n  (1.190) 
Each branch is single valued, but to keep the function single valued, we must set up 
an artificial barrier that joins the origin and infinity. This artificial barrier is called 
a branch line or a branch cut, and this barrier should not be crossed for each branch 
of solutions. For this case, the origin, for which a multi-valued function appears 
when we go around this point a complete circuit, is called a branch point. As 
illustrated in Figure 1.14, we have chosen the branch cut along the positive x-axis, 
but actually any other branch cut connecting the origin and infinity along any 
orientation can be selected. 

1.7.7 Titchmarsh’s Contour Integral 

In this section, we consider the following integral: 
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To get this result, we will first generalize the integral in (1.191) to a complex 
variable with the contour integral shown in Figure 1.15: 
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The contour shown in Figure 1.15 was proposed by Titchmarsh. The contour 
ABCDEGHJA is a closed integral containing the pole or singular point at z = 1. 
 On the numerator, zp 1 is a multi-valued function, as we discussed in the last 
section. That is, when we make a circuit going around the origin, the argument will 
increase by an amount of 2  such that the value of zp 1 changes its value.  Thus, the 
branch point is at z = 0. By using the residue theorem, the residue of the integral in 
(1.192) is 
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On the left hand side of (1.192), we can divide the contour path given in Figure 
1.15 into 
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We have substituted (1.193) into (1.192) to get the last of (1.194). The contours 
given in (1.194) can be written as 
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in which we have used dz=iRi d  and z = xe2 i along GH (i.e.,  = 2  along GH). 
Note that the Titchmarsh contour excludes the branch point and a branch cut is 
formed along the positive x-axis. As long as the pole z = 1 is kept within the 
closed contour ABCDEGHJA, we can deform the closed contour arbitrarily such 
that the integral remains the same. Consequently, we can let r  0 and R   such 
that 
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Thus, (1.194) becomes  
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Or equivalently, we have 

 
Figure 1.15 Titchmarsh contour for integral given in (1.194)   
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Rearranging (1.199), we get 
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Finally, we complete the proof for (1.191). This formula will be used later relating 
to the discussion of the gamma function in Chapter 4.  

1.8  FRULLANI-CAUCHY INTEGRAL  

The following integral was first mentioned in a letter by Italian mathematician 
Frullani in 1821 and was later published in 1828  
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This so-called Frullani’s integral is, however, exact for the case that f( ) vanishes. 
Cauchy in 1823 and again in 1827 provided the following exact form as: 
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provided that the derivative of f(x) is continuous and the integral converges. The 
integral given in (1.202) is commonly known as the Frullani-Cauchy integral. In a 
sense, the Frullani integral given in (1.201) is correct only for the special case that 
f( ) = 0. We will see in Section 1.10 that there is a more general integral than 
(1.202) called Ramanujan’s integral theorem. 
 Consider a special case that f(x) = e x and a = 1, we have an integral 
representation of ln(x): 

 
0

 ln
xe e d x  (1.203) 

This result could be employed later to derive the integral representation of the 
digamma function in Chapter 4. 

1.9 RAMANUJAN MASTER THEOREM 

The Ramanujan master theorem is considered in this section and this result could  
be useful to derive the integral representation for the digamma function. Although 
nearly all mathematicians should have heard of the legendary story of Ramanujan 
and the re-discovery of his lost notebook by George Andrews in 1976 in one of the 
boxes left behind by G.N. Watson. The coverage of Ramanujan’s discovery in 
mathematics textbooks, especially in engineering mathematics, is non-existent. In 
this section, we will show how his so-called master theorem leads to down-to-earth 
results that we have used regularly in engineering mathematics. Ramanujan was a 
self-taught Indian mathematical genius, and his story started with his 
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correspondence with Hardy. Upon invitation of Professor G.H. Hardy of 
Cambridge University, Ramanujan spent five years in England before he returned 
to India in 1919. Unfortunately, he passed away in 1920 at the age of thirty-two 
(Kanigel, 1991).  Ramanujan’s brief biography is given at the end of this book. 
Ramanujan also published a number of formulas for generating accurate results for 

. Some of these amazing formulas are reported in Appendix F. 
 Ramanujan considered the following improper integral (Berndt, 1985): 
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 ( )nI x F x dx  (1.204) 

where n is not necessarily an integer. Ramanujan asserted that this integral I can be 
evaluated if F(x) is assumed to be expandable in the Maclaurin series. In particular, 
it is assumed that 
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where (k) is the coefficient of the Maclaurin series expansion of F(x). Then, 
Ramanujan found that  
 ( ) ( )I n n  (1.206) 
where (x) is the gamma function (Abramowitz and Stegun, 1964). Conversely, if 
the integral is known, the coefficients of the Maclaurin series can be found. This 
was called Ramanujan’s master theorem by Berndt (1985). The proof of this 
theorem involves our knowledge of the gamma function and Laplace transform, 
and this knowledge is yet to be covered in this chapter. Thus, it will not be given 
here but is reported in Appendix C1. Readers can refer to the proof in the 
Appendix after we introduce the gamma function and Laplace transform in later 
chapters. Ramanujan’s master theorem was reported in the first quarterly report of 
Ramanujan submitted to Presidence College in Madras, which admitted Ramanujan 
upon the recommendation of Hardy. It was published before Ramanujan’s 5-year 
visit to England.  

1.10  RAMANUJAN INTEGRAL THEOREM 

A natural consequence of Ramanujan’s master theorem is Ramanujan’s integral 
theorem, which can be obtained for the limiting case of n  0 in (1.204). In 
particular, Ramanujan’s integral theorem states that  
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provided that f(0) = g(0) and f( ) = g( ) with a, b > 0. In addition, functions u and 
v are defined as the coefficients of the Maclaurin series of functions f and g as: 
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This is a power extension of Frullani’s integral theorem given in (1.201).  The 
proof of (1.207) is given in Appendix C2. For the special case that f = g, we have 
the last term in (1.207) vanishing and giving 
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which is the Frullani-Cauchy integral given in (1.202). Thus, Frullani-Cauchy’s 
integral is a special case of Ramanujan’s integral theorem. Ramanujan’s integral 
theorem is a highly original and powerful result. Here is an example. 
_________________________________________________________________ 
 
Example 1.8 Prove the following infinite integration formula of the Bessel function 
by Weber (see p. 391 Watson, 1944) by using Ramanujan’s master theorem: 
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 (1.210) 

Solution: By using the definition of the Bessel function (Watson, 1944), the left 
hand side can be written as: 
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By applying a change of variable t = y  to (1.211), we obtain: 
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In order to apply Ramanujan’s master theorem, we set  =1/2 and obtain  
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where 
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Ramanujan’s master theorem gives  
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This completes the proof of the Weber infinite integral for the Bessel function. 
_________________________________________________________________ 
 

1.11  CIRCULAR FUNCTIONS 

Trigonometric functions are also known as circular functions.  As we all learned in 
high school, sine, cosine, and tangent are ratios of the sides of a right angle 
triangle. In this chapter, we will look at sine and cosine from the viewpoint of 



  Mathematical Preliminaries   39 

 

differential equations.  More specifically, let us consider the first differential 
equation of this book:    

 
2

2
2 0d y y

dx
 (1.216) 

Let us assume that the solution of y(x) can be expressed in exponent function with 
an unknown constant : 
  ( ) xy x e  (1.217) 
Substitution of (1.217) in (1.216), we get the so-called characteristics equation for 
the differential equation: 
 2 2 ( ) 0xe  (1.218) 
The roots for  are 
  i  (1.219) 
Thus, the solution for y(x) becomes 
 1 1 ( ) i x i xy x C e C e  (1.220) 
Note that the constant C1 is complex and since (1.216) is real, we have y(x) real. 
Recalling that a complex number adding to its complex conjugate is real, we must 
set the unknown constant for the second term as the complex conjugate of C1. 
Applying the Euler formula, we have 
  cos sini xe x i x ,   cos sini xe x i x  (1.221) 
Substitution of (1.221) into (1.220) leads to the standard solution form for (1.216): 
 1 2 ( ) cos siny x D x D x  (1.222) 
The validity of (1.222) can be shown easily by substituting (1.222) into (1.216). 
The unknown constants D1 and D2 need to be determined by appropriate boundary 
conditions of y(x). The reader should bear in mind the solution form of (1.222) 
because we will encounter this differential equation many more times in this book. 
Sine and cosine are the only functions for which their second derivatives are equal 
to the negative values of themselves. 

1.12 HYPERBOLIC FUNCTIONS  

Hyperbolic functions appear naturally in our daily lives. The shape of a hanging 
chain, a spider web, or a hanging power line (catenary problem solved by 
Huygens), optimum shapes of arches (like the Gateway Arch at St. Louis, Missouri, 
USA or the largest vault Taq-i Kisra in Iraq), and the optimum shape of a soap 
sheet between two rings (catenoid problem solved by Euler). Apparently, it links 
naturally to the deformed shape of a flexible body under gravity. It also appears 
naturally in the solutions of waves in solids, the motion of falling objects with air 
resistance, and the solution of the temperature distribution in cooling solids. Its 
importance in physics, engineering, and applied mathematics should not be 
undermined. They are also regarded as the most commonly encountered elementary 
functions, probably only second to circular functions (e.g., sine, cosine etc.). Even 
the “M” logo of McDonald’s is also a double-inverted catenary. By definition, 
hyperbolic functions are defined as  
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 sinh 1 1 cosh tanh , csch , sech , coth
cosh sinh cosh sinh

x xx x x x
x x x x

 (1.224) 

The close resemblance of circular and hyperbolic functions is obvious. These 
functions were first defined by J.H. Lambert, who proved the irrationality of  and 
was known to contribute to map projection and stereonet projection related to his 
works on cosmology. A brief biography is given at the end of this book. It is 
straightforward to show that  
  sinh( ) sinh , cosh( ) coshx x x x  (1.225) 

 2 2 2 2 2 2 cosh sinh 1, 1 tanh sech , coth csch 1x x x x x x  (1.226) 
  sinh( ) sinh cosh cosh sinhx y x y x y  (1.227) 
  cosh( ) cosh cosh sinh sinhx y x y x y  (1.228) 
These will be left as exercises for the readers.  
 Physically, the argument of the circular functions equals twice the gray area 
of the unit circle on the left of Figure 1.16, whereas the argument of the hyperbolic 
functions equals twice the gray area on the right of Figure 1.16. The curves of the 
circle and hyperbola are given respectively by: 
  2 2 2 2 1, 1x y x y  (1.229) 
The gray area of the unit circle is clearly proportional to  or 

 2 (1)
2 2

A  (1.230) 

The proof for the argument of the hyperbolic functions is less obvious. We can 
rewrite the gray area as the difference of OPB and sector APB. The area of 
triangle OPB is clearly 

 1 cosh sinh
2OPBA  (1.231) 

The area of the curved sector can be integrated as 

 
cosh cosh 2

1 1
 1ABPA ydx x dx  (1.232) 

We can make a change of variables x = cosh u and obtain 

 2 2

0 0
 cosh 1sinh sinhABPA u udu udu  (1.233) 

By virtue of the definition of (1.223), we have 

 

2 2
2

0 0 0

2 cosh 2 1 ( ) ( ) ( )
2 4 2

1 sinh 2 ,
4 2

u u u u

ABP
e e e e uA du du du

 (1.234) 

by noting from (1.231) that  

 2 21 1 1 1 cosh sinh ( )( ) ( ) sinh 2
2 8 8 4OPBA e e e e e e (1.235) 
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Figure 1.16  Physical meaning of the argument of circular and hyperbolic functions    

 

This can also be obtained from (1.227). 
 Therefore, we finally have 

 1 
2OPB APBA A  (1.236) 

Again, the gray area equals half of the argument. 
 We here only report some of the commonly used formulas of differentiation 
of hyperbolic functions without proof: 

  sinh cosh , cosh sinhd dx x x x
dx dx

 (1.237) 

 2 2 tanh sech , coth cschd dx x x x
dx dx

 (1.238) 

  sech sech tanh , csch csch cothd dx x x x x x
dx dx

 (1.239) 

 1 1
2 2

1 1 sinh , cosh
1 1

d dx x
dx dxx x

 (1.240) 

where the plus sign is for cosh 1x  > 0 and minus when cosh 1x  < 0. In addition, we 
have 

 1 1
2 2

1 1 tanh , 1 coth , 1
1 1

d dx x x x
dx dxx x

 (1.241) 

 1 1
2 2

1 1 csch , sech
1 1

d dx x
dx dxx x x x

1  (1.242) 

where the minus sign is for sech 1x  > 0 and plus when sech 1x  < 0. Some useful 
formulas of integration are 

2 2 1x y 2 2 1x y

cos

sin

sinh

cosh
O

P

A B
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1
2 2

1
2 2

1 2 2

2 2
1 2 2

 sinh

cosh

1 tanh    if u
     

1 coth    if u

du u C
aa u

du u C
au a

u C a
du a a

ua u C a
a a

 (1.243) 

 

1
2 2

1
2 2

1sech 0

1csch 0

du u C u a
a au a u

du u C u
a au u a

       

      
 (1.244) 

The series expansions of sinhx and coshx are 

 
3 5 2 4

 sinh ..., cosh 1 ...
3! 5! 2! 4!
x x x xx x x  (1.245) 

These series expansions can be obtained by Taylor series expansions, which will be 
considered in Section 1.13.2. 
 Equation (1.237) suggests that the general solutions of the following second 
order ordinary differential equation are sinh and cosh functions:  

 
2

2
2 0d y y

dx
 (1.246) 

Let us assume that the solution of y(x) can be expressed in an exponential function 
with an unknown constant : 
  ( ) xy x e  (1.247) 
Substitution of (1.247) in (1.246) gives the so-called characteristics equation for 
the differential equation: 
 2 2 ( ) 0xe  (1.248) 
The roots for  are 
   (1.249) 
Thus, the solution for y(x) becomes 
 1 2 ( ) x xy x C e C e  (1.250) 
Note from (1.223) that  
  cosh sinhxe x x ,   cosh sinhxe x x  (1.251) 
Substitution of (1.251) into (1.250) leads to the standard solution form of (1.246): 
 1 2 ( ) sinh coshy x D x D x  (1.252) 
The unknown constants D1 and D2 need to be determined by appropriate boundary 
conditions of y(x). This is the second most commonly encountered ODE in this 
book. Readers should familiar themselves with this differential equation. 
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1.13 SERIES EXPANSIONS  

In various areas of applied mathematics, functions are often expanded around 
certain points and their behaviors are considered around these selected points. 
Asymptotic expansion and perturbation are typical examples of series expansion 
(see Chapter 12). In this section, we will consider series expansion for some well-
behaved functions. 

1.13.1 Darboux’s Formula 

We first consider the most general series expansion of a function, the so-called 
Darboux’s formula. According to Whittaker and Watson (1927), this formula was 
derived by Darboux in 1876, who was an expert in applying differential geometry 
to differential equations (see biography). Darboux’s formula relies on the following 
identity of the differentiation of a product of a power series of (z a) of order m, a 
polynomial (t) of degree n, and an analytic function f(t) at all points from a to z 

 
( ) ( )

1
( ) 1 ( 1)

 ( 1) ( ) ( ) [ ( )]

( ) ( ) [ ( )] ( 1) ( ) ( ) [ ( )]

n
m m n m m

m
n n n n

d z a t f a t z a
dt

z a t f a t z a z a t f a t z a

 (1.253) 

where the superscript bracket “(m)”  indicates m-th differentiation of the function. 
This identity is remarkable in the sense that the differentiation of a series of n-terms 
will result in only two terms on the right hand side. To demonstrate the validity of 
(1.253), let us consider n = 1 such that the left hand side is 

 
2

 ( ) ( ) [ ( )]

( ) ( ) [ ( )] ( ) ( ) [ ( )]

d z a t f a t z a
dt

z a t f a t z a z a t f a t z a
 (1.254) 

The right hand side of (1.253) is  
 2 ( ) ( ) [ ( )] ( ) ( ) [ ( )]RHS z a t f a t z a z a t f a t z a  (1.255) 
Thus, the validity for n = 1 is demonstrated. For n = 2, the left hand side of (1.253) 
is 

 

2

2

2 3 (3)

3 (3)

 ( ) ( ) [ ( )] ( ) ( ) [ ( )

( ) ( ) [ ( )] ( ) ( ) [ ( )]

( ) ( ) [ ( )] ( ) ( ) [ ( )]

( ) ( ) [ ( )] ( ) ( ) [ ( )]

d z a t f a t z a z a t f a t z a
dt

z a t f a t z a z a t f a t z a

z a t f a t z a z a t f a t z a

z a t f a t z a z a t f a t z a

 (1.256) 

Note that the middle two terms cancel out one and another, and thus only two terms 
were left and they are equal to the right hand side of (1.253). Thus, the validity of 
(1.253) for n = 2 is demonstrated. This procedure can be easily extended to n = k; 
we have the left hand side of (1.253) as 
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( 1) 2 ( 2)

1 1 (1) ( 1)

( )

( ) 2 ( 1) (2)

2 (

 { ( ) ( ) [ ( )] ( ) ( ) [ ( )] ...

( 1) ( ) ( ) [ ( )]

( 1) ( ) ( ) [ ( )]}

( ) ( ) [ ( )] ( ) ( ) [ ( )]

( )

k k

k k k

k k k

k k

d z a t f a t z a z a t f a t z a
dt

z a t f a t z a

z a t f a t z a

z a t f a t z a z a t f a t z a

z a 1) 3 ( 2) (3)

1 1 (2) ( 1)

1 (1) ( )

(1) ( ) 1 ( 1)

( ) [ ( )] ( ) ( ) [ ( )] ...

( 1) ( ) ( ) [ ( )]

( 1) ( ) ( ) [ ( )]

( 1) ( ) ( ) [ ( )] ( 1) ( ) ( ) [ ( )]

(

k k

k k k

k k k

k k k k k k

t f a t z a z a t f a t z a

z a t f a t z a

z a t f a t z a

z a t f a t z a z a t f a t z a

z ( ) 1 ( 1)) ( ) [ ( )] ( 1) ( ) ( ) [ ( )]k k k ka t f a t z a z a t f a t z a

 

  (1.257) 
Note that all intermediate terms will cancel one another except for the first and the 
last terms. The last of (1.257) is the right hand side of (1.253). Thus, the validity 
for n = k is demonstrated. 
  We now rearrange (1.253) to get 

 

( )

( ) ( )

1
1 ( 1)

 ( ) ( ) [ ( )]

( 1) ( ) ( ) [ ( )]

( 1) ( ) ( ) [ ( )]

n

n
m m n m m

m
n n n

z a t f a t z a

d z a t f a t z a
dt

z a t f a t z a

 (1.258) 

Recall that (t) is a polynomial of degree n, and we have  
 ( ) ( ) ( ) (0)n nt c  (1.259) 
where c is a constant. Note that  

  ( ) [ ( )] [ ( )]dz a f a t z a f a t z a
dt

 (1.260) 

We then integrate (1.258) from 0 to 1 to get  
 

1 1( ) ( ) ( )

0 0
1

11 ( 1)

0

 (0) [ ( )] ( 1) ( ) ( ) [ ( )]

( 1) ( ) ( ) [ ( )]

n
n m m n m m

m

n n n

d df a t z a dt z a t f a t z a dt
dt dt

z a t f a t z a dt

 
  (1.261) 
The first integral on the right hand side of (1.261) can be evaluated by reversing the 
order of integration and summation such that 
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1 ( ) ( )

0
1

1 ( ) ( ) ( ) ( )

1

 ( 1) ( ) ( ) [ ( )]

( 1) ( ) { (1) ( ) (0) ( )}

n
m m n m m

m
n

m m n m m n m m

m

d z a t f a t z a dt
dt

z a f z f a

 (1.262) 

Substitution of (1.262) into the first integral on the right hand side of (1.261) and 
reversing of the order of integration and summation gives 

( ) 1 ( ) ( ) ( ) ( )

1
11 ( 1)

0

 (0){ ( ) ( )} ( 1) ( ) { (1) ( ) (0) ( )}

( 1) ( ) ( ) [ ( )]

n
n m m n m m n m m

m

n n n

f z f a z a f z f a

z a t f a t z a dt

 

  (1.263) 
This is Darboux’s formula of the series expansion of function f(z). 

1.13.2 Taylor Series Expansion  

Two different proofs for Taylor series expansion formula are given here. 
  
Proof 1 
 We now consider a special case of Darboux’s formula given in the last 
section that (t) = (t 1)n. Consequently, we have  

  

(1) 1

(2) 2

( ) ( )

 ( ) ( 1) ,

( ) ( 1)( 1) ,

( ) (0) !

n

n

n n

t n t

t n n t

t n

 (1.264) 

 

( )

( )

( )

 ( ) ...( 1)( 1) ,
!(0) ( 1)...( 1)( 1) ( 1) ,
!

(1) 0

n m m

n m m m

n m

t n m t
nn n m
m

 (1.265) 

Substitution of (1.264) and (1.265) into (1.263) results in 

 

1 ( )

1
11 ( 1)

0

! !{ ( ) ( )} ( 1) ( ) ( 1) ( )
!

( 1) ( ) ( ) [ ( )]

n
m m m m

m

n n n

nn f z f a z a f a
m

z a t f a t z a dt

 (1.266) 

Rearranging (1.266) gives 

 

( )

1
1 1 ( 1)

0

( ) ( ) ( ) ( )
!

( 1) ( ) ( ) [ ( )]
!

n m
m

m
n n

n

f af z f a z a
m

z a t f a t z a dt
n

 (1.267) 
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Now consider the case that (t) is an infinite series or n  .  Since f is an analytic 
function, all its higher derivatives exist such that f (n+1)[a+t(z a)] is finite.  The term 
( 1)n(z a)n+1 is an oscillating function and remains finite compared to n  . 
Thus, the last term will approach zero as n  . We finally obtain 

 
( )

1

( ) ( ) ( ) ( )
!

m
m

m

f af z f a z a
m

 (1.268) 

This is the Taylor series expansion which was derived by Brook Taylor in 1715, 
which is a special case of Darboux’s formula of function expansion. Note that the 
last integral in (1.267) actually gives the error in the Taylor series expansion if a 
finite number of terms is used. 
 
Proof 2 
 We can also prove the Taylor series expansion formula by starting with 
Cauchy’s integral formula. Recall from Section 1.7.4 that any analytic function f(z) 
can be written as  

 1 ( )( )
2 C

f df z
i z

f d( )
z
d( )

C
 (1.269) 

where C is integrated in the positive sense. We recognize that (1.269) can first be 
rearranged as  

 0 0

0
1

0 0 0 00

1 ( ) 1 ( )( )
2 2 ( ) ( )

( ) ( )1 ( ) 1
2 ( )[1 ( ) / ( )] 2 ( )

C C

n

nC C
n

f d f df z
i z i z z z

z z f df d
i z z z z i z

0 02 ( ) ( )0 0

f d f d( ) 1 ( )( ) 1
) ()0

f d) 1 ( )1) 1 (
2 (2 (2 (22 (2222 ) ((

f (( ) 1)
2222

0
1

0 0 0 00

(( ) 1
( )0

n

nC
n

z z f d0 ) ( ))0
n( )( )

i
d( ))

0 0 0( )[1 ( ) / ( )] 20 0 00( )[1 ( ) / ( )] 20 0 000( )[1 ( ) / ( )] 20 0 000 (
( ) 1

( ) ( ) / ( )
f (

i
( )

( )[1 ( ) / ( )] 2)[1 ( ) / ( i( )[1 ( ) / ( )] 2( )[1 ( ) / ( )] 2)[1 ( ) / ()[1 ( ) / (0 0 000)[1 ( ) / (

(1.270) 

In obtaining (1.270), we have applied the following expansion 

 2

0

1 1 ...
1

n

n

t t t
t

 (1.271) 

This expansion can be obtained as a special case of the binomial theorem by setting 
n = 1 in (1.4). We now interchange the order of summation and integral to obtain 

 
( )

0
0 01

00 0

( )1 ( )( ) ( ) ( )
2 !( )

n
n n

nC
n n

f zf df z z z z z
i nz

( d)f d( )d)

000000000
((((( d) (1

(( d)( )( d)
1111111

 (1.272) 

The last of (1.272) is obtained by employing the general Cauchy’s integral formula 
given in (1.167). This completes another proof of Taylor series expansion formula. 

1.13.3 Maclaurin Series Expansion 

When we set a = 0 in (1.268), we obtain the so-called Maclaurin series expansion: 

 
( )

1

(0) ( ) (0)
!

m
m

m

ff z f z
m

 (1.273) 

This formula was actually derived by Stirling in 1717 but was published by 
Maclaurin in 1742. 
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2C

1r

2r

a

z

1.13.4 Laurent’s Series Expansion  

One main assumption is that we have tacitly assumed the Taylor or Maclaurin 
series expansions are analytic, and only the positive power of the expansion exists. 
A very important theorem was published in 1843 by Laurent who considered that 
the point of expansion a is not analytic and in such case, by virtue of (1.168) or 
Cauchy’s integral formula, we can expand a function f as  

 
0 1

 ( ) ( )
( )

n n
n n

n n

a
f z a z a

z a
 (1.274) 

where 

 
1 2

1 1
1 ( ) 1 ( ),

2 2( ) ( )n nn nC C

f w f wa dw a dw
i iw a w a1

1
( ) 1 ( )

( ) ( )2
n( )

( ) 1 (( ) 1 (dw a dw1
( ) 1 ( )f ((

(2 (21111 (22
1

( ) 1( dw a,1 n,f ( ) 1(
1 2221111111 21 dw a  (1.275) 

The contours C1 and C2 are given in Figure 1.17. This theorem was actually 
contained in a paper by Weierstrass in 1841, but it was not published until 1894. 
The proof of this theorem has already been given in Section 1.7.5. If the principal 
part (second summation in (1.274)) of the Laurent’s series is zero, Taylor series 
expansion is recovered.   

1.13.5 Lagrange’s Theorem  

In the previous section, we have seen that functions can be expanded in a power 
series, either by Laurent’s series or by Taylor series. A more general theorem was 
derived by Lagrange in 1770, which deals with the expansion of a function in terms 
of another function. Let both f(z) and (z) be analytic functions and expansions can 
be done about a point a as: 

 
1

1
1

( ) ( ) [ ( ){ ( )} ]
!

n n
n

n
n

t df f a f a a
n da

 (1.276) 

where  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.17 The function f is analytic within the annular ring between r1 and r2  considered in 

Laurent’s series expansion   
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 ( )a t  (1.277) 
A special form of (1.276) is 

 
1

1
1

[{ ( )} ]
!

n n
n

n
n

t da a
n da

 (1.278) 

The proof of this theorem can be found in Whittaker and Watson (1927) and will 
not be given here. 

1.13.6 Mittag-Leffler Expansion  

Some functions can be expanded in rational functions by applying the residue 
theorem. Such expansion is known as Mittag-Leffler’s expansion, which was 
derived by Swedish mathematician G. Mittag-Leffler in 1880. Although Mittag-
Leffler is not particularly famous among applied mathematicians and engineers, it 
is probably because of Mittag-Leffler that we do not have a Nobel Prize in 
mathematics today. This story is given in the biography section at the back of this 
book.  
 Let us consider the following identity: 

 1 1
( )

x
z x z z z x

 (1.279) 

which can be shown in a straightforward manner. Next consider a function f(z) 
containing singular points at a1, a2, ... with corresponding residues b1, b2, ... and 
choose a sequence of circles Cm of radius Rm with center at the origin, such that it 
does not pass through the poles and f(z) is bounded on the circle cm.  Multiplying 
(1.279) with f(z) and considering the contour integral along  cm, we obtain 

 1 ( ) 1 ( ) ( )
2 2 2 ( )

m m mc c c

f z dz f z dz x f z dz
i z x i z i z z x

 (1.280) 

Applying the residue theorem to the left hand side and to the first term on the right, 
we obtain 

 
1 1

( )( ) (0)
2 ( )

m

m m
r r

r rr r c

b b x f z dzf x f
a x a i z z x

 (1.281) 

in which we have assumed that there is no singularity at z = 0 for f(z). Now 
consider the limit that m  ; we have 

 
1

1 1 ( )( ) (0) { } lim
2 ( )

m

n mn nn c

x f z dzf x f b
x a a i z z x

 (1.282) 

Noting that f(z) is analytic (i.e., f(z) is finite as Rm  ) and x is finite, we have 

 ( ) 1( ) 0,
( )

m
mc

f z dz O as m
z z x R

 (1.283) 

where O(1/Rm) implies that (1.283) is of the order of 1/Rm. Therefore for a function 
with infinite poles, we have 



  Mathematical Preliminaries   49 

 

 
1

1 1( ) (0) { }n
n nn

f x f b
x a a

 (1.284) 

This is the so-called Mittag-Leffler expansion in terms of rational functions, which 
was derived by Mittag-Leffler in 1884. 
 
 _________________________________________________________________ 
 
Example 1.9 Show the validity of the following expansion by using Mittag-
Leffler’s expansion: 

 1 1 1 cosec ( 1)n

n

z
z z n n

 (1.285) 

Solution: Let us consider f(z) as  

 1 ( ) cosecf z z
z

 (1.286) 

By noting that cosec z =1/sin z, we have infinite poles at z = n  for n = 1,2,3,... For 
this function we can consider a circular contour on which z =(n+1/2)  . The 
residue at singularity z = 0 is 

 0 1 0 0 0

1 1 sin lim{ ( )} = lim{ ( )} = lim{ }
sin sinz z z

z zb a zf z z
z z z

 (1.287) 

The last limit of (1.287) is the indeterminate form of 0/0, and thus we can apply 
L’Hôpital’s rule to get 

 0 0 0

( sin ) 1 cos lim = lim 0
cos(sin )z z

d z z zdzb
d zz
dz

 (1.288) 

Again by applying L’Hôpital’s rule, the residue at singularities z = n   with n = 
1,2,3,... can be evaluated as 

 
sin sin ( )(1 cos ) lim ( ) = lim

sin sin cos

( 1)

n z n z n

n

z z z z z n zb z n
z z z z z  (1.289) 

Substitution of (1.288) and (1.289) into (1.284) and by noting that f(0) = 0 gives 

 1 1 1 cosec ( 1)n

n

z
z z n n

 (1.290) 

This form can be rewritten in a slightly different form by grouping the n and +n 
terms as 

 2 2 2
1 1 1 1 2 2 

( )( ) ( )
z z

z n n z n n z n z n z n
 (1.291) 

By virtue of (1.291), the first few terms of (1.290) can be written as 

 2 2 2 2 2 2
1 1 1 1 cosec 2 ...

4 9
z z

z z z z
 (1.292) 
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This formula agrees with that given by Spiegel (1964). 
_________________________________________________________________ 
 
Following a similar procedure, one can show the validity of the following 
expansions using Mittag-Leffler’s expansion (Spiegel, 1964): 

 2 2 2 2 2 2
1 3 5 sec ...

( / 2) (3 / 2) (5 / 2)
z

z z z
 (1.293) 

 2 2 2 2 2 2
1 1 1 tan 2 ...

( / 2) (3 / 2) (5 / 2)
z z

z z z
 (1.294) 

 2 2 2 2 2 2
1 1 1 1 cot 2 ...

4 9
z z

z z z z
 (1.295) 

 2 2 2 2 2 2
1 1 1 1 csch 2 ...

4 9
z z

z z z z
 (1.296) 

 2 2 2 2 2 2
1 3 5 sech ...

( / 2) (3 / 2) (5 / 2)
z

z z z
 (1.297) 

 2 2 2 2 2 2
1 1 1 tanh 2 ...

( / 2) (3 / 2) (5 / 2)
z z

z z z
 (1.298) 

 2 2 2 2 2 2
1 1 1 1 coth 2 ...

4 9
z z

z z z z
 (1.299) 
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( )( )m n

a b
ab m a n b

 (1.300) 

1.13.7 Borel’s Theorem 

In this section, we introduce Borel’s theorem. If a function (z) is expandable in an 
infinite series as 

 
0

 ( )
!

n
n

n

a z
z

n
, (1.301) 

which is called Borel’s function, then the following integral can be evaluated as 

 
0

0

 ( ) ( )t n
n

n

f z e zt dt a z  (1.302) 

This is Borel’s theorem, which can be proved easily by reversing the order of 
integration and summation and by observing the definition of the gamma function.  
In particular, we can substitute (1.301) into (1.302) and reverse the order of 
integration and summation: 
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 (1.303) 

where (z) is Euler’s gamma function and is defined as 

 
0

( 1) t nn e t dt  (1.304) 

Note that for n being an integer, we have (n+1) = n!. In view of the importance of 
the gamma function in applied mathematical analysis, the properties of the gamma 
function will be discussed in more detail in Chapter 4. This completes the proof of 
Borel’s theorem. Comparison of Borel’s theorem and Ramanujan’s master theorem 
given in Section 1.9 shows that there is a close resemblance between these two 
theorems. The idea behind their proofs is exactly the same. 

1.14 FUNCTIONS AS INFINITE PRODUCT 

In this section, we will employ Mittag-Leffler’s expansion formula to expand 
certain types of functions as infinite products. Let us consider that a function f(z) 
has simple zeros at points a1, a2, ..., and in addition 
 lim nn

a  (1.305) 

Other than this, f(z) is assumed to be analytic for all values of z. Thus, f (z) must 
also be analytic. Consequently, f (z)/ f(z) can have singularities at the points a1, a2, 
....  Use Taylor series expansion for f(z) such that 

 
2( )

( ) ( ) ( ) ( ) ...
2

r
r r r

z a
f z z a f a f a  (1.306) 

Note that we have used f(ar) = 0 in obtaining (1.306). Then, the differentiation of 
(1.306) gives 
 ( ) ( ) ( ) ( ) ...r r rf z f a z a f a  (1.307) 
Then, we have 

 { ( ) ( ) ( ) ...}( ) .
( )( ) ( ){ ( ) ( ) ...}

2

r r r

r
r r r

f a z a f af z
z af z z a f a f a

 (1.308) 

The residue for the pole z = ar can be evaluated as 

 1
{ ( ) ( ) ( ) ...}

lim ( ) 1
( )( ){ ( ) ( ) ...}

2
r

r r r
rz a r

r r r

f a z a f aa z a
z az a f a f a

 (1.309) 

Let f(0)  0; we can apply Mittag-Leffler’s expansion to f (z)/ f(z) 

 
1

( ) (0) 1 1{ }
( ) (0) n nn

f z f
f z f z a a

 (1.310) 

We can integrate both sides with respect to z as 
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 1
1

1 ( ) (0)ln ( ) {ln( ) }
( ) (0) n

nn

df z f zdz f z z z a C
f z dz f a

 (1.311) 

This can be inverted as  

 1

(0) (0){ln( ) }
(0) /(0)

1

( ) ( )
n

nn n

f z fz z a zf a z af
n

n

f z Ce Ce z a e  (1.312) 

where the product function is defined as 

 1 2 3 4
1

m

n m
n

a a a a a a  (1.313) 

Equation (1.312) can further be simplified by grouping constant terms as 

 
(0) (0)

/ /(0) (0)

1 1 1

( ) (1 ) {(1 ) }n n

f fz z
z a z af f

n
n nn n n

z zf z C a e e Ce e
a a

 (1.314) 

Note that f(0) = C , and thus (1.314) can be  

 
(0)

/(0)

1

( ) (0) {(1 ) }n

f z
z af

nn

zf z f e e
a

 (1.315) 

This formula was reported in Section 7.5 of Whittaker and Watson (1927) and is a 
direct consequence of Mittag-Leffler’s expansion formula. 
 
_________________________________________________________________ 
 
Example 1.10 Show the validity of the following expansion: 

 
1

sin (1 ) (1 )
z z

n n

n

z z ze e
z n n

 (1.316) 

Solution: Let us consider f(z) = sinz/z, and the zeros of f(z) are z = n . Thus, the 
limits are 

 
0 0 0

sin cos lim ( ) lim lim 1
1z z z

z zf z
z

 (1.317) 

 2 20 0 0 0

sin cos sin cos sin lim ( ) lim( ) lim( ) lim 0
2z z z z

z z z z z zf z
zz z

 (1.318) 

Grouping terms for z = n  and z = +n , we obtain from (1.315) 

 1

2 2

2 2

sin (1 ) (1 )

(1 )(1 )
4

z z
n n

n

z z ze e
z n n

z z
 (1.319) 

This completes the proof. 
_________________________________________________________________ 
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1.15 VECTOR CALCULUS 

The vector calculus considered here can be considered as a special case of tensor 
calculus, which was developed by Ricci and Levi-Civita and motivated by a paper 
by Riemann in 1854 on Riemann geometry. Subsequent development on tensor 
calculus was made by Weyl, Eddington, and Schouten. Other main contributors of 
vector analysis include Gibbs, Heaviside, Föppl, Wilson, and many others (e.g., 
Crowe, 1993).  
 Let us consider vector calculus using the example of a moving particle in 
space. The position vector of the particle is a function of time t and is represented 
by 
  1 1 2 2 3 3( ) ( ) ( ) ( )r e e et x t x t x t  (1.320) 
The time derivative of this position vector is the velocity vector v 

  31 2
1 2 3

rv e e e
dxdx dxd

dt dt dt dt
  (1.321) 

If a particle moves along a curve C and the arc length along curve C is s, that is, r = 
r (s), we can use chain rule to rewrite the velocity vector as 

  r rv rd d ds ds
dt ds dt dt

 (1.322) 

where r' is the unit vector along the curve C of the moving particle and ds/dt = v is 
the speed of the particle along the curve. Let us call the unit vector along v as T. 
The acceleration of the particle is 

  
2 2

2 2
2 2( ) ( ) ( )v T Na T T Td d ds d ds d s ds d s

dt dt dt ds dt dtdt dt
 (1.323) 

The direction of vector T is parallel to velocity v as suggested by (1.323) and N is a 
unit vector perpendicular to T or v as shown in Figure 1.18. The last of (1.323) can 
be proved as  

  
0 0

1lim limT T
s s

d
ds s s

 (1.324) 

where  is the radius of curvature. The change of T can only be in the direction of 
the magnitude of a unit vector fixed as unity. Thus, T =  is the radius of the 
circle shown in Figure 1.18 is fixed at 1. Equation (1.323) can be rewritten as  

  
2

a T Ndv v
dt

 (1.325) 

Therefore, there are two components of acceleration, one along the tangential 
direction and the other along the direction perpendicular to tangential direction. The 
second term is clearly the centrifugal force of circular motion (French, 1971). 

1.15.1 Gradient 

More generally, let us consider a scalar function  = (x1, x2, x3), which is a 
function of position,  such that the total differential of it is 
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C

1 2 3 1( , , )x x x C

C

T

  1 2 3
1 2 3

d dx dx dx
x x x

 (1.326) 

This is a scalar, but the structural form of (1.326) suggests that it can be viewed as 
the dot product of two vectors as: 

  1 2 3 1 1 2 2 3 3
1 2 3

( ) ( )r e e e e e ed d dx dx dx
x x x

    (1.327) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.18 The change in the direction of the unit vector along the moving path C  

  
where ei (i = 1,2,3) are the base vectors of a particular coordinate system for which we 
want to consider the changes of the function  with respect to the variables xi. In 
(1.327), we have used the vector differential operator that is expressed as . It is 
commonly called “del” or “nabla” and in Cartesian coordinates it can be written as 

  1 2 3
1 2 3

grad e e e
x x x

    (1.328) 

In physics, it is sometimes referred to as the Hamilton operator as this symbol was 
introduced by Sir Hamilton (we will talk about his Hamilton’s Principle in Section 
14.5). His brief biography is given at the back of this book. The term  is also 
termed the gradient of a scalar function . Physically, the gradient of a scalar can be 
interpreted as the normal to the surface defined by (x1, x2, x3 ) = C1, as shown in 
Figure 1.19. It is also the direction of the greatest rate of change of the function . 
By considering the change of  along the path C, we can rewrite (1.327) as 
 
 
 
 
 
 
 
 
 
 

Figure 1.19  Physical meaning of the gradient of a scalar function  
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  r Td d
ds ds

 (1.329) 

Thus, d /ds is the value of  projected along the direction of T. If the direction of 
T is along a direction perpendicular to the normal of the surface (x1, x2, x3) = C1, 
we have d /ds = 0.  

1.15.2 Divergence  

Since  is a vector operator, its operation on a vector can be expressed through 
either a dot product or a cross product. Indeed, the dot product of  on a vector 
function v is called divergence (a term introduced by Heaviside) or div of v as: 

  31 2

1 2 3
div v v

vv v
x x x

 (1.330) 

The physical meaning of divergence is best understood in terms of fluid flow. For 
example, a control volume shown in Figure 1.20 for a flowing fluid can be used to 
derive the condition of continuity. The outflow subtracts the inflow along the x2 
direction and gives: 

   2 2
2 2 1 3 2 1 3 1 2 3

2 2

( ) ( )
[ ]

v vv dx dx dx v dx dx dx dx dx
x x

 (1.331) 

Similarly, the net outflow along the x1 and x3 directions are 

  31
1 2 3 1 2 3

1 3

( )( )
,

vv dx dx dx dx dx dx
x x

 (1.332) 

The net outflow per unit volume from all three independent directions is 

  31 2 (
1 2 3

( )( ) ( )
)v

vv v
x x x t

 (1.333) 

Physically, the left hand side is the amount of “diverging” fluid from the control 
volume and the left hand side is the change of density to accommodate such 
changes. By now, the physical meaning of so-called divergence is clear. If density 
of the fluid does not change, we have zero divergence or  
  0v  (1.334) 
Similarly, we can also consider the divergence of electric or magnetic flux through 
a control volume.  

1.15.3 Curl 

The cross product between  and a vector function v can be expressed as the so-
called curl or rot as 
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1 2 3
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v v e e e
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x x x x x x x x x
v v v

 

   (1.335) 
Physically, the curl of a rotating fluid is related to the circulation or the strength of 
a vortex. If the curl of v is zero, the flow is irrotational (i.e., no vortex can be 
formed).   

1.15.4 Physical Meaning of Gradient, Divergence and Curl   

Alternatively, we can also consider the integral form of the definitions of gradient, 
divergence, and curl as: 

  
0

1lim S
V

V

d
V

S
V

dSSd  (1.336) 

  
0

1limv v S
V

V

d
V

v S
V

dSSv  (1.337) 

  
0

1[ ( )] limv r n v r
S

d
S

v rdrv  (1.338) 

The surface dS is the surface pointing outwardly from the volume V. The point of 
evaluation for  and v is within the interior of the small volume V. The 
integration in (1.336) to (1.338) is carried out over a closed surface or around a 
closed path as indicated by a small circle through the integral sign. The integral 
definition of divergence given in (1.337) provides another physical meaning that 
divergence is a measure of the strength of sources or sinks within the element V.  
  The integral form of the divergence can be interpreted from Figure 1.20 again 
by defining the flow (or flux) through a control volume V 
  ( )v S

S

d  (1.339) 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.20 Interpretation of divergence through the fluid flow problem 
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However, by (1.333) the total flow per unit volume through the element is 

  31 2 (
1 2 3

( )( ) ( )
)v

vv v
x x x

 (1.340) 

Balancing the flow per unit volume, we have  

  (
0

1lim ( ) )v S v
V

V

d
V

( ) ()) (

V

d  (1.341) 

For constant density, (1.341) is the same as (1.334).   
 The physical meaning of (1.338) can be interpreted through Figure 1.21. Let 
us consider a rotating fluid element ABCD as shown in Figure 1.21. The tangential 
velocities on the sides of the element are shown. If the fluid element ABCD is 
rotating, a resultant peripheral velocity exists around the element counter-
clockwise. However, the center of rotation is not known; it has been proposed that 
rotation be expressed in terms of the sum of the products of circulating velocity and 
distance around the contour. This sum is called “circulation”  and is defined: 
  v rdv rdr  (1.342) 

Taking the integration counter-clockwise as positive, we can evaluate the closed 
contour integral as the summation 

  

2 1
1 1 2 1 2 1 2 1 2 2

1 2

2 1
1 2 3 3

1 2

( ) ( )

( ) ( ) ( )v S

ABCD
v v

v dx v dx dx v dx dx v dx
x x

v v
dx dx d

x x

 (1.343) 

This expression is true for the configuration shown in Figure 1.21 (i.e., for a 
constant value of x3), but it can be readily extended to the cases of more general 
non-planar and non-rectangular contour. The circulation can be generalized to 
  ( ) ( ) ( ) ( )v S v n v nd dS S( )( )( )( )( )  (1.344) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.21 The circulation for a rotating fluid ABCD 
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Note that since  is a scalar and thus independent of the actual directions of the 
velocity and normal vector, therefore it is also independent of the choice of  the 
coordinate system. Equating (1.344) and (1.342), we obtain 

  
0

1( ) limv n v r
S

d
S

v rdr  (1.345) 

This completes the proof for (1.338). 

1.15.5 Vector Identities  

A number of identities of vector calculus will be found useful and are reported 
here.  
 The two most important formulas in vector calculus are probably 
  ( ) 0  (1.346) 
  ( ) 0A  (1.347) 
Because of these identities, we can see later that any vector can be represented by 
an irrotational part and a solenoidal part. This is Helmholtz’s representation 
theorem or Helmholtz’s decomposition theorem for vectors as discussed by Chau 
(2013) and will be presented in Section 1.16. If the curl of a vector vanishes or 
mathematically  
  A 0 , (1.348) 
it is called irrotational and it has an important consequence on fluid mechanics. 
There will be no effect of viscosity. If the divergence of a vector vanishes or 
mathematically  
  0A , (1.349) 
it is called solenoidal (a term that came from electromagnetism on wire coil) or 
divergence-free. More discussions on this will be given in the next section.  
 Some basic formulas of the time differentiation of vectors are 

  ( ) A BA B B + Ad d d
dt dt dt

 (1.350) 

  ( ) A BA B B + Ad d d
dt dt dt

 (1.351) 

  ( ) A B CABC BC + A C + ABd d d d
dt dt dt dt

 (1.352) 

There are many important and useful identities related to the properties of gradient, 
curl, and divergence, and some identities in Cartesian coordinates are  
  ( ) 0  (1.353) 
  ( ) ( )A A A  (1.354) 
  (( ) ( )A B A) B A B  (1.355) 
  ( )A A A  (1.356) 

  2  (1.357) 

  2 2( ) (  (1.358) 
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  2 2( ) ( )A A  (1.359) 

  2 2( ) ( )A A  (1.360) 
  ( ) ( ) ( )A B A B B A+ A B + B A  (1.361) 

  2( ) (A A) A  (1.362) 
  ( )  (1.363) 

  2( / ) ( ) /  (1.364) 

  1( )n nn  (1.365) 

  2 2 2( ) 2( ) ( )  (1.366) 

  2( )  (1.367) 

  2 2( ) 2 2)) 2A r A+ r A  (1.368) 

  2 2( ) 2r r  (1.369) 
  ) ( )r r) ( ) r)r) (  (1.370) 
where ,  are scalar functions of position x, A, B are vector functions of  position 
x, and r is the position vector. There are also a number of important integral 
identities in vector calculus and some of them are 
  0dS 0dSdd  (1.371) 

  S
V V

dV dS
V

dSSd  (1.372) 

  2( ) S
V V

dV dS
V

dSS  (1.373) 

  2 2( ) ( ) S
V V

dV d)
V

d( )(( )))(  (1.374) 

  A A S
V V

dV d  (1.375) 

  ( )A S A r
S C

d d  (1.376) 

Green’s first and second identities are given by (1.373) and (1.374), which will be 
discussed again in Chapter 8, whereas Gauss’s divergence theorem and the Kelvin-
Stoke’s theorem are given in (1.375) and (1.376).  They will be discussed in 
Sections 1.17 and 1.18. 

1.16 HELMHOLTZ REPRESENTATION THEOREM  

The Helmholtz representation theorem for any vector is a natural consequence of 
(1.346) and (1.347). Mathematically, it can be stated as (Chau, 2013) 
  v A  (1.377) 
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The first term on the right hand side of (1.377) is called the irrotational field of a 
vector, whereas the second of the right hand side of (1.377) is called the solenoidal 
field of a vector. The function  is called the scalar potential of a vector, whereas 
the vector function A is called the vector potential of a vector. In fluid mechanics, 

A is called the vorticity of A, whereas  is called the gradient field describing 
the irrotational fluid. Whenever a vector can be represented by the first term of 
(1.377) only, the field is called conservative (such as a gravitational or electrostatic 
field). 
 By identity (1.346), the first term is evidently irrotational, and by identity 
(1.347) the second term is evidently solenoidal because 
  ( ) 0 ,  ( ) 0A  (1.378) 
Rearranging (1.377), we have 
  v A  (1.379) 
Taking the divergence of (1.379) gives 
  ( ) ( ) 0v A  (1.380) 
Thus, we can express the divergence of v as 
  2v =  (1.381) 
Similarly, rearranging (1.377), we have 
  v A  (1.382) 
Taking the curl of (1.382) gives 
  ( ) ( ) 0v A  (1.383) 
Consequently, the following identity is obtained for the curl of vector v 
  2(v A A) A  (1.384) 
The last of (1.384) is a result of the application of identity (1.362). As discussed by 
Chau (2013), we have the freedom of setting one constraint for the four unknown 
potentials (one scalar potential and three components of a vector potential). When 

A decreases with distance r more rapidly than 1/r, the term ( A) vanishes. 
Thus, without loss of generality we have 
  2v A  (1.385) 
In conclusion, the divergence of v is expressible in a scalar potential and the curl is 
expressible in a vector potential (see (1.377) and (1.378)). 

1.17 GAUSS DIVERGENCE THEOREM 

The Gauss divergence theorem can be visualized by using the integral form of 
divergence given in (1.337). In particular, consider a finite volume V in Figure 1.22 
being subdivided into a number of smaller volumes, and its finite closed surface S is 
subdivided into a number of smaller closed surfaces. By applying (1.337) to each of 
the small closed surfaces we have 

  (
0

1) ( lim ( ) ) ( )v v S v n
i Vi iV V Vi

dV d dS
V

)
Vi

dS( ) n( )(( )(
VVVV

( d( ) )( ) )( ) )) ))( ) ))( ) ))( ) ))  (1.386) 

This is the so-called Gauss divergence theorem and it transforms the volume integral 
to the surface integral or vice versa. This equation also applies to the case where v is 
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V 
S

n 
dS 

an  n-th order tensor (e.g., see Segel, 1987). The mathematical proof for the 
divergence theorem can be found in standard textbooks for engineering mathematics 
(Kreyszig, 1979), which somewhat differs from the current approach using a physical 
argument. 
 In electrostatics, the electric field intensity E is related to the charge density  as  
  0( ) /E r  (1.387) 
where 0 is the electric permittivity of free space. Applying the Gauss divergence 
theorem, we have 

  
0 0

1 )E n (r
V V

QdS dV
0

1

V V00

1E ndS 11

0
 (1.388) 

This is the Gauss law of electrostatics and it states that the total flux of electric field 
intensity coming out across a closed surface is proportional to the total charge Q 
enclosed by the closed surface S.   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.22 The domain for the divergence theorem 

1.18 KELVIN-STOKES THEOREM 

Let S be a smooth surface bounded by a simple closed curve C, which does not 
intersect itself as shown in Figure 1.23. Similar to the argument used in deriving the 
Gauss divergence theorem, we can subdivide a closed loop C into a number of 
smaller closed loops Ci and the surface S into a number of small surfaces Si. By 
applying the integral form of the curl given in (1.338) we have  

  
0

1[ ( )] ( lim )v r n v r v r
Si iiS C Ci

dS d d
S

r
C CiCC

dv rv)dd ))))))  (1.389) 

This is the so-called Kelvin-Stokes theorem. 
 In electromagnetism, Ampere’s law relates the magnetic induction B to the 
current density J by 
  0B J  (1.390) 
where 0 is the permeability of the free space. Applying the Kelvin-Stokes’ 
theorem, we have 
  0 0B r JI r I

C C

d d 0r I0
C C

dJI rrr 0JI rrrJI rJI0B rrdrr 000r 00  (1.391) 
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This states that magnetic induction is proportional to the total current passing 
through the surface enclosed by C. 
 As discussed by Chau (2013), Lord Kelvin played a fundamental role in its 
development, so it is also known as the Kelvin Stokes theorem (see biography of 
G.G. Stokes).  
 

Figure 1.23 The domain for the Stokes theorem 

1.19 VECTORS AND TENSORS  

Certain quantities, like temperature and pressure, are independent of direction and 
are known as scalars. Displacement, velocity, acceleration, and force are quantities 
that depend on direction, and they are called vectors. The term vector was coined 
by Hamilton in the nineteenth century. In the three-dimensional domain, a vector 
has three physical components, as shown in Figure 1.24. For example, a vector v 
can be expressed as a sum of three quantities and each one is the projected value 
along certain directions and these directions are indicated by their base vectors ei (i 
= 1,2,3). In particular, v can be expressed as  

  
3

1 1 2 2 3 3
1

v e e e e ei i i i
i

v v v v v  (1.392) 

  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.24 A vector in Cartesian coordinates 
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where vi is also called the indicial notation or index notation of a vector. The 
physical component of the vector is denoted as vi; physically, it is the length of the 
vector v projected along the i-th coordinate of the system. In the last part of (1.392), 
the summation sign  is usually neglected; thus, repeated indices imply summation 
automatically. This is usually referred to as the Einstein convention for summation. 
The index i becomes a dummy index (i.e., it can be replaced arbitrarily by j, k, etc.), 
and it is no longer a free index (i.e., i cannot be set to 1, 2, or 3 arbitrarily). Instead 
of using physical components, vectors can be denoted by the symbolic or Gibbs 
notation (i.e., v). 
 Certain quantities like stress and strain depend on two directions; first the 
direction of the surface where stress and strain are measured, and second the 
direction of the stress and strain acting on this surface. For example, stress can be 
represented by 

  
3 3

1 1

e e e eij i j ij i j
i j

 (1.393) 

where the indicial form is written in terms of Cartesian coordinates. Again, the 
Einstein convention is used in the last of (1.393). Or more explicitly, we have 

  11 1 1 22 2 2 33 3 3 13 1 3 31 3 1 12 1 2

21 2 1 23 2 3 32 3 2

e e e e e e e e e e e e
e e e e e e

 (1.394) 

The symbolic form σ is most general and is independent of any coordinate system, 
whereas the indicial form σij is the physical component corresponding to a particular 
Cartesian coordinate system. Therefore, second order tensors can be written in 
terms of two vectors side-by-side called dyads, such as e1e3. Note that dyads are in 
general not commutative, i.e., e1e3  e3e1. This dyadic form was proposed by Gibbs 
in the 1880s. Gibbs was the first USA PhD graduate in engineering in 1863 from 
Yale. There are also tensors of order higher than second. For example, a typical 
fourth order tensor is the stiffness tensor  

  
3 3 3 3

1 1 1 1

C e e e e e e e eijkl i j k l ijkl i j k l
i j k l

C C  (1.395) 

In explicit terms, there are 81 terms (= 3 3 3 3), but we are not going to write 
them out here. The scalar can be considered as a zero-th order tensor, a vector is a 
first order tensor, stress is a second order tensor, and so on. In other words, all 
physical quantities can be considered as tensors. This is like saying that all numbers 
are complex numbers, since real numbers are just complex numbers with zero 
imaginary parts. The tensor is a very powerful concept and its analysis allows very 
tedious steps to be simplified. 
 To see the power of tensor analysis, let us note that the dot product between 
two base vectors can be expressed as 

  
1
0

e ei j ij
i j
i j

 (1.396) 

where i, j = 1, 2, 3; and ij is called the Kronecker delta function. Therefore, if we 
write 
  1 1 2 2 3 3 1 1 2 2 3 3 = + +  ,      = + +u u u v v vu e e e v e e e , (1.397) 
the dot product between u and v is clearly 
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  • 1 1 2 2 3 3( ) ( )u  v i i j j i j ij i iu u u u u v u v u v u v   e e  (1.398) 
Again, Einstein’s notation for summing over all possible i and j is implied. The use 
of the Kronecker delta function suggests that 
  i j ij i i j ju u u v u v  (1.399) 
If i  j, we must have zero values.  Thus, we must substitute i into j or j into i, 
otherwise this quantity is zero. In addition, there is no free index (index only 
appears once) on both sides of (1.399) because both i and j appear twice or are 
repeated (recall from the Einstein convention that a repeated index means 
summation).  The rule of this simple “substitution” allows a very efficient and 
effective way to carry out a dot product using tensor analysis. 
 Another important operation between tensors is the double dot product 
between two tensors. Hooke’s law will be used to demonstrate the double dot 
product, and it can be expressed as  
  = C :  (1.400) 
Using the symbolic form, we have  

  
( ) ( ) ( )( ):  = : = 

 =
ijkl i j k l mn m n ijkl mn i j k m l n

ijkl mn km ln i j ijkl kl i j

C C

C C

C e e e e e e e e e e e e

e e e e
 (1.401) 

Note that the result is a second order tensor with a pair of base vectors for each 
component. Note that any index in a tensor equation cannot be reused, and the 
index only appears once or twice and cannot be more than two. Mathematically, 
fourth order tensor can be considered as a mapping function between two second 
order tensors.   
 Equation (1.401) can also be written using the component form (instead of 
dyadic or polyadic forms) as 
  ij ijkl klC  (1.402) 
The cross product between base vectors can also be conducted using algebra of a 
symbolic operation similar to the Kronecker delta in the dot product. In particular, 
cross products between any combinations of two base vectors are: 

     1 2 3 2 3 1 3 1 2 1 1 2 2

2 1 3 3 2 1 1 3 2 3 3

, , , 0, 0,
, , , 0

e e e e e e e e e e e e e
e e e e e e e e e e e

 (1.403) 

By applying (1.403), the cross product between two vectors is 

  1 1 2 2 3 3 1 1 2 2 3 3

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

( ) ( )
( ) ( ) ( )

u v e e e e e e
e e e

u u u v v v
u v u v u v u v u v u v
 + + + +

 (1.404) 

The cross product is sometimes easier to remember using the following expansion 
of determinant: 

  
1 2 3

1 2 3 2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

1 2 3

( ) ( ) ( )
e e e

u v e e eu u u u v u v u v u v u v u v
v v v

 (1.405) 

Now, we attempt to generalize the cross product analysis using algebra. Consider 
the special case of (1.405) that 
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1 2 3 3

1 2 121 1 122 2 123 3 12 12 3
1

1 0 0
0 1 0

e e e
e e e e e e e ek k k k

k

e e e e e  (1.406) 

where eijk (in general, i, j, k = 1,2,3) is a symbol to represent the different 
components of the cross product for base vectors. This was introduced by Levi-
Civita and thus is known as the Levi-Civita symbol or permutation symbol. Since 
the cross product of two vectors must itself be a vector with three components, 
clearly, we obtain from (1.406) 
  121 122 1230, 0, 1e e e  (1.407) 
Consider another special case of (1.405) that 

  
1 2 3 3

3 2 321 1 322 2 323 3 32 32 1
1

0 0 1
0 1 0

e e e
e e e e e e e ek k k k

k

e e e e e  (1.408) 

Similarly, we must have the following values for the permutation symbols as 
  321 322 3231, 0, 0e e e  (1.409) 
Let us consider another example of (1.405)  

  
1 2 3 3

3 3 331 1 332 2 333 3 33 33
1

0 0 1 0
0 0 1

e e e
e e e e e e ek k k k

k

e e e e e  (1.410) 

Comparison of components on (1.410) gives 
  331 332 3330, 0, 0e e e  (1.411) 
Repeating this procedure for the rest of the combination of cross product between 
base vectors, we get 

  
231 232 233 311 312 313

111 112 113 221 222 223

211 212 213 131 132 133

1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0,

e e e e e e
e e e e e e
e e e e e e

 (1.412) 

By now, we have obtained all 27 components of the permutation symbols. We 
observe that 
   123 231 312 1e e e ,   132 213 321 1e e e  (1.413) 
Note that only nonzero values for eijk with indices i  j  k, whereas all other 
components with repeated indices are zeros. We can summarize the values of the 
permutation tensor in a cyclic sequence shown in Figure 1.25. The magnitude of eijk 
is either 1, +1, or 0, which is determined by the following rules: (1) eijk equals 0 if 
any two indices are equal; (2) eijk equals +1 when i, j, k are 1, 2, 3 or an even 
permutation of 1, 2, 3; and (3) eijk equals 1 when i, j, k are 3, 2, 1, or an odd 
permutation of 1, 2, 3. As shown in Figure 1.25, if the different subscripts follow an 
even or clockwise permutation, we have the values being 1; whereas for anti-
clockwise or odd permutation, we have the values being 1. We also find that 
moving subscripts in a cyclic order (say the first subscript is moved to the last while 
all other indices shift forward) yields the same value. However, if the positions of 
any two indices are reversed, we will have the original value being multiplied by 



66   Theory of Differential Equations in Engineering and Mechanics    

 

Odd 

Even 

1 3 

2 

1. This permutation tensor was proposed by Italian mathematician Levi-Civita.   In 
summary, we have  
 

   Figure 1.25 The odd and even permutations for 1, 2, and 3 in the Levi-Civita symbol 
 
  ijk jki kij jik kji ikje e e e e e  (1.414) 
By now, we can rewrite the cross product of any two base vectors as 
     e e e ei j kij k ijk ke e  (1.415) 
This formula can now be applied to the cross product of any two vectors 
     w u v e e ei i j j i j kij ku v u v e  (1.416) 
In terms of tensor notation, the physical components wi can be given by 
  i ijk j kw e u v  (1.417) 
In addition, the permutation tensor also finds application to the calculation of the 
determinant in tensor form: 
  1 2 3det ij i j kijk     eA A A A  (1.418) 
More amazing formulas for eijk are given Problems 1.37-1.41. 

1.20 e-  IDENTITY 

The following e-  identity has been found extremely useful in tensor analysis: 
  ijk irs jr ks js kr  e e  (1.419) 
There is more than one way to prove this formula. The straightforward but tedious 
way is to exhaust all possibilities of j, k, r, and s. Instead, here we will present a less 
obvious approach.  
 First, we will establish the following identity of the delta function and 
determinant 

  
mp mq ms

pqs mnr np nq ns

rp rq rs

  e e  (1.420) 

 Consider the determinant of Aij to be given as 

    
11 12 13

21 22 23

32 3331

det
A A A

A  A A A
A A A

 (1.421) 



  Mathematical Preliminaries   67 

 

When we interchange any two rows or any two columns of the determinant, the sign 
of the determinant changes sign. That is, 

    
21 22 23 12 11 13

11 12 13 22 21 23

32 33 31 3331 32

det
A A A A A A

  AA A A A A A
A AA A A A

 (1.422) 

For an arbitrary number of row changes, we can write it as 

    
1 2 3

1 2 3

2 31

det
m m m

n n n mnr

r rr

A A A
 e A A A A

A A A
 (1.423) 

Similarly, for an arbitrary number of column changes, we can write it as 

      
1 1 1

2 2 2

3 33

det
p q s

p q s pqs

q sp

A A A
 e A A A A

A A A
 (1.424) 

Thus, for an arbitrary number of row and column change sequences, we can 
combine  

  det
mp mq ms

np nq ns pqs mnr

rp rq rs

A A A
  Ae eA A A

A A A

 (1.425) 

Take the special case that Aij = ij, and detA = 1; we have (1.420). Next, (1.420) can 
be expanded as  

  
( ) ( )
( )

pqs mnr mp nq rs ns rq mq np rs ns rp

ms np rq nq rp

 e e
 

 (1.426) 

Now we can set s  = r in (1.426) to get 

  

( ) ( )
( )

3 3
( )

pqs mns mp nq ss ns sq mq np ss ns sp

ms np sq nq sp

mp nq mp nq mq np mq np mq np nq mp

mp nq mq np

 e e
 

 (1.427) 

Thus, the e-  identity is established. 

1.21 TENSOR ANALYSIS IN CARTESIAN COORDINATES 

The formulas of expressing the dot product by the delta function, of expressing the 
cross product by permutation tensor, and of e-  identity are useful tools for tensor 
analysis. We will demonstrate the validity of (1.362) as follows: 

  ,( ) ( ) ( ) ( ) k
j k k j k ijk k j i

j j

A
A e A

x x
A e e e e e  (1.428) 

 , , ,( ) ( ) ( ) ( )n ijk k j i n i ijk k jn mni ijk k jn m
n

e A e A e e A
x

A e e e e e  (1.429) 
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e  
e  ez 

  

Now, we apply the e-  identity 

  
, ,

, ,

, ,

( ) ( )

( )

( )

mni ijk k jn m mj nk mk nj k jn m

mj nk k jn mk nj k jn m

n mn m nn m

e e A A

A A

A A

A e e

e

e

 (1.430) 

On the right hand side, we have  

  , , , ,( ) ( ) ( )j k k j k k j jk k j k k n n
j

A A A A A
x

A e e e e  (1.431) 

  ,
,( n n

j n nm m
j

A
A

x
A) e e  (1.432) 

  2
, ,( ) ( )j k m m jk m jk m m jj m

j k
A A A

x x
A e e e e e  (1.433) 

Summing (1.433) from (1.432), we have the right hand side of (1.362) equal to  
 2

, , , ,( ( ) ( )n nm m m jj m n nm m nn mA A A AA) A e e e A  (1.434) 
The last of (1.434) is obtained by using the result of (1.430). Note also that the order 
of partial differentiations is interchangeable, that is, 
 , ,n nm n mnA A  (1.435) 
Similarly, other vector identities given in (1.353) to (1.370) can also be proved similar 
to the above tensor analysis. 

1.22 TENSOR ANALYSIS IN CYLINDRICAL COORDINATES 

Tensor analysis in polar cylindrical coordinates is more complicated than those in 
Cartesian coordinates. The main reason is that the base vector is no longer fixed in 
the space. Any position vector r in a Cartesian coordinate system can be written in 
terms of a cylindrical coordinate system ( , , z) as shown in Figure 1.26: 
  1 1 2 2 3 3 1 2 3cos sinr e e e e e ex x x z + +   + +  (1.436) 

 
Figure 1.26 Cylindrical coordinates 

 
The new set of base vectors in cylindrical coordinates is defined by 
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  1 re
α qh

  =   (1.437) 

where  

  
2 2 2

31 2 r xx x
 = h

q q qq
 (1.438) 

and qα equals , , or z. In particular, we have for cylindrical coordinates 

  
2 2 2

2 231 2 cos sin 1 r xx x = h  (1.439) 

  
2 2 2

2 2 2 231 2 cos sin r xx x = h  (1.440) 

  
22 2

31 2 1 r
z

xx x = h
z z z z

 (1.441) 

Thus, substitution of (1.439) to (1.441) into (1.437) gives 

 
1

1 1cos sin sin cos

1
z

r r
e e e e e e

e e
z

= = +  ,  = = +  
h h

  = =
zh

2 1 2

3
r

 (1.442) 

It is obvious that we must have the following identities: 

  1(cos sin ) sin cos
e

ee e e e+  = +2 1 2 =   (1.443) 

  1( sin cos ) (cos sin )
e

ee e e e r+ = +  1 2 2 =   (1.444) 

while all other derivatives of the base vectors vanish. For example, the displacement 
gradient tensor can be formulated in dyadic notation as 

 

( )( )

1 1(

1 ( )

u e e e e ee

e e e e e e e e e e

e e e e e e e e

z z z

z z
z z z z

z
z z

u u u
r z

u u uu uu + )
z z

u u uu u
z r r

 = + + + +

= + + + +

+ + +

 (1.445) 

In obtaining the above equation, we have already used the coordinate variation of the 
base vectors obtained in (1.443) and (1.444). For example, the derivative taken with 
respect to  is  
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( ) ( ) ( )+ + z z z z

z
z

z
z

u u u u u u

u u u u u

u u u u u

e e e e e ee e e e

e e
e e ee e e e e

e e e ee e e e e e

(1.446) 

This result explains why two extra terms appear in the bracket terms on the right hand 
side of (1.445), and they are the results of the direction change of base vectors with 
respect to the change in variable . Clearly, u is a second order tensor since every 
component is accomplished by two base vectors. This result can readily be used to 
obtain the strain tensor, which is defined as 

  1 ( )
2

ε = +u u  (1.447) 

where u  = ( u)T or the transpose of u. Substitution of (1.445) into (1.447) yields 
the following physical components in cylindrical coordinates 

  1z
zz

u u uu= ,    = ,    = +
z

 (1.448) 

 

1 1 1 1( ) ( )
2 2
1 ( )
2

z
z

z
z

u u u uu
= + ,   = + ,ε ε

z
u u

= +ε
z

 (1.449) 

These equations are the same as those obtained by Timoshenko and Goodier (1982), 
starting from the kinematics of compatibility in deformations. Thus, the tensor 
equation (1.447) provides a concise and elegant form for the strain-displacement 
relation, and, more importantly, it is independent of any coordinate system. 
 Similarly, the following identities in cylindrical coordinates can be obtained: 

  1 1u zu u uu
z

 (1.450) 

  1 1( ) ( ) ( )u e e ez z
z

u u u u uu u
+

z z
 = +  (1.451) 

  
2 2 2

2
2 2 2 2

1 1f f f ff  = f  = + + +
z

 (1.452) 

 2 2 22
2 2 2 2

2 2( ) ( )u e e ez z
u u u u

  u u u  (1.453) 

The three components of the equilibrium equations, σ = 0, can be written explicitly 
as 

  1 0z  
+ +  +  =

z
 (1.454) 
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  1 1( ) 0zzz
z + +  =  (1.455) 

  1 2 0z + + +   = 
z

 (1.456) 

These equations are the same as those obtained by Timoshenko and Goodier (1982) 
by considering force equilibriums along -, -, and z-directions for an infinitesimally 
small element. However, the present approach is more efficient and systematic in 
obtaining the component form of the equilibrium equations in terms of stresses. 

1.23 TENSOR ANALYSIS IN SPHERICAL COORDINATES 

The development of this section follows closely the discussion in the previous 
section. Any position vector r in a Cartesian coordinate system can be written in 
terms of a polar spherical coordinate system (r,  , ) as shown in Figure 1.27: 
 1 1 2 2 3 3 1 2 3sin cos sin sin cosr e e e e e e = x x x  = θ θ + θ  (1.457) 
For spherical coordinates, qα equals either , , or . Thus,  

  

2 2 2
31 2

2 2 2 2 2sin cos sin sin cos 1

 r xx x = h
 (1.458) 

  

2 2 2
31 2

2 2 2 2 2 2sin sin sin cos sin

 r xx x = h
 (1.459) 

  

22 2
31 2

2 2 2 2 2 2 2 2cos cos cos sin sin

 r xx x = h
 (1.460) 

Substitution of (1.458) to (1.460) into (1.437) results in the following base vectors  

  
1 2 3

1 2 3

1 2

(sin cos ) (sin sin ) cos

(cos cos ) (cos cos ) sin
sin cos

e e e e

e e e e
e e e

 (1.461) 

The variation of base vectors along coordinate directions is more complicated than 
that for cylindrical coordinates; in particular, the following nonzero terms are 
obtained: 

 
cos  ,

sin cos , sin

e e e
e e e

e e
e e e

  ,      ,       

    
 (1.462) 
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Figure 1.27 Spherical coordinates 
 

while all other derivatives of the base vectors vanish. The differential operator in 
spherical polar coordinates is 

  1 1
sinθe e e  (1.463) 

Without showing the details here, we quote the following physical components for the 
strain-displacement by specializing (1.447) to the spherical coordinates: 

 1 1cot
sin

u u u uu u
 =  + + ,     =  ,    =  +   ,

θ
 (1.464) 

 1 1 1 1( ) ( )
2 2 sin

u u u uu u
 =   +     ,        +  , 

θ  θ
 (1.465) 

  1 1 1( cot )
2 sin

u uu
  =    + θ   

 θ θ
 (1.466) 

Again these results are the same as those obtained by considering the kinematics of 
compatibility in deformations considered in Timoshenko and Goodier (1982). 
 The following identities can be obtained in polar coordinates as 

  •
2 1 1( cot )

sin
u

u uu
   u u  (1.467) 

 

1 1 1( cot ) ( )
sin sin

1( )

u
u u u uu

  u

uu u

e e

e

 (1.468) 

  
2

22
2 2 2 22

1 1 1( ) (sin )
sin sin

f f ff     (1.469) 
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22
2 2 2 2

2
2 2 22

2
2 2 22

2 2cot 2 2( )
sin

2 2cot( )
sin sin

2 2cot( )
sin sin sin

u e

e

e

u uu
  u u

u uu
u

u u u
u

 (1.470) 

In spherical coordinates, the three components of the equilibrium equations, σ = 0, 
can be written explicitly as 

 1 1 1 (2 cot ) 0
sin

  
 

 (1.471) 

  1 1 1 [3 ( )cot ] 0
sin

  
 

 (1.472) 

  1 1 1 (3 2 cot ) 0
sin

  
 

 (1.473) 

Readers are advised to work out the details in obtaining these equations. 

1.24 SUMMARY AND FURTHER READING 

In this chapter, we have summarized a number of important theorems and formulas 
that will be useful for our later determination of the solution of differential equations 
in engineering and mechanics. Due to the space limitation, we only sketch their proofs 
and demonstrate their applications through examples. For elementary mathematical 
analysis, we recommend the books by Hardy (1944) and Tranter (1957). For more 
discussions on classical methods and analyses, we refer readers to the advanced 
textbook by Whittaker and Watson (1927). Stories of two Nobel Prize winners should 
be mentioned here. Lars Onsager, 1968 Nobel Prize winner in chemistry, worked out 
all “difficult problems” in Whittaker and Watson (1927) when he was a teenager, and 
this laid down the mathematical skill for his latter achievements. In 1933, Onsager was 
awarded the Sterling and Gibbs Fellow at Yale University, but an embarrassing 
situation occurred, when it was discovered that he had never received a PhD. His 
colleagues advised him to try for a Yale PhD, and Onsager wrote a thesis on Solutions 
of the Mathieu Equation of Period 4  and certain related functions. Nobody in the 
chemistry and physics could understand it and it was sent to Prof. E. Hille of 
Mathematics Department, who was an expert in the area. Prof. Hille was so impressed 
that he suggested to Prof. Hill (head of Chemistry Department) that the Mathematics 
Department at Yale would be happy to recommend him for PhD. Not wishing to be 
upstaged, the Chemistry Department awarded Onsager a PhD in Chemistry. Mathieu 
equation was covered in Chapter 19 of Whittaker and Watson (1927).  The second 
story is on Subrahmanyan Chandrasekhar (1983 Nobel Prize winner in physics). 
During his 1930 voyage to England, Chandrasekhar derived his celebrated 
“Chrandrasekhar limit” for white dwarf stars, and studied Whittaker and Watson 
(1927) seriously on board. The mastery of this “old” book is not easy but clearly 
would be helpful in understanding more advanced methods of mathematical analyses. 



74   Theory of Differential Equations in Engineering and Mechanics    

 

Spiegel (1963) summarized a lot of essential results in calculus. For the analysis of 
complex variables, Spiegel (1964) covered a lot of classical results in a concise 
manner, and it is a good reference book to start with. Other references on complex 
variables include Watson (1914), Silverman (1974), Copson (1935), and Forsyth 
(1893). For results related to Ramanujan’s master theorem, Ramanujan’s Lost 
Notebooks by Berndt (1985, 1989) are the authorities. For the discussion on tensor 
analysis, we refer to Segel (1987), Wong (1991), and Chau (2013).  

1.25   PROBLEMS 

Problem 1.1 Use the binomial theorem to find the following sum of binomial 
coefficients: 
 1 2 11 ... 1r n

n n n nS C C C C  (1.474) 
Ans: S = 2n 
 
Problem 1.2 Find the following sum 
 1 2 1 1

1 1 ... ( 1) ( 1)n n n
n n nS C C C  (1.475) 

Ans: S1 = 0 
 
Problem 1.3 Use integration by parts to prove the formula 

 
22

10

(2 1)!!
2

n x
n

nx e dx  (1.476) 

where n is an integer and (2 1)!! 1 3 5 (2 1)n n .  
 
Problem 1.4 Prove the formula 

 
22 1

0

!
2

n x nx e dx  (1.477) 

where n is an integer. 
 
Problem 1.5 Show that the Jacobian for the change of variables given in Section 
1.4.6 is indeed r. 
 
Problem 1.6 Find the value of the following number: 
 i i  (1.478) 
Ans: Infinite answers and the principal one is 4.810477381… 
 
Problem 1.7 Show that  

 1/ 1/cos , sin ,
2 2

e e e ei i
i

 (1.479) 

Problem 1.8 Find the value of the following number: 
 cosi ii  (1.480) 
Ans: Infinite answers and the principal one is 0.08858... 
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Problem 1.9 Find the value of the following number: 
 sin ii  (1.481) 
Ans: Infinite answers and the principal one is 0.15787...  
Problem 1.10 Find the roots of  
 3 1  (1.482) 
Ans: 1, ( 1 3) / 2i , and ( 1 3) / 2i  
 
Problem 1.11 Check whether the following complex function is analytic: 
 1 2( ) [Re( )] [Im( )]f z F z iF z  (1.483) 
Ans: No  
Problem 1.12 Show the following identities: 
 cosh( ) cos , sinh( ) siniy y iy i y  (1.484) 
 
Problem 1.13 Show that: 
 ln ( 2 ){cos[ ln ( 2 )] sin[ ln ( 2 )]}mz e m i m (1.485) 
where  
 , (cos sin )i z i  (1.486) 
and m is an integer. 
 
Problem 1.14 Use the result of Problem 1.13 to show that: 
 2cos(ln )cosh[2 ( )] 2 sin(ln )sinh[2 ( )]i ix x x n m i x n m  (1.487) 
where x is real and m and n are integers. 
 
Problem 1.15 Show that the modulus of the result in Problem 1.14 is 
 1/22{cos(2ln ) cosh[4 ( )]}i ix x x n m  (1.488) 

where x is real and m and n are integers. 
 
Problem 1.16 Find the real part of  

 
2ln(1 ) (4 1) /8 1Re{ } cos{ (4 1) ln 2}

4
i ki e k  (1.489) 

where k is an integer. 
 
Problem 1.17 Find the value of  

 12 ln
1

ii
i

 (1.490) 

Ans: There are infinite solutions, and the simplest one of it is  
 Note that this is the definition of  given by Wronski! No wonder he is interested 
in metaphysics (see biography section)! 
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Problem 1.18 Show by chain rule that if  = (u) and u = u(x1, x2, x3), the gradient 
of  is 

 d u
du

 (1.491) 

Problem 1.19 If A is any vector function, show that 

 
2

2)A AA Ad d d
dt dt dt

 (1.492) 

Problem 1.20 Find the time derivative of  

 
2

2( )d d
dt dt
A AA  (1.493) 

Ans: 
3

3
A AA d d

dt dt
 

 
Problem 1.21 Show the validity of the formula  
 2 2( ) ( )  (1.494) 
 
Problem 1.22 Show the validity of the formula  

 1( ) ( ) ( )
2

v v v v v v  (1.495) 

  
Problem 1.23 Evaluate the divergence and curl of the position vector r  
 ,r r  (1.496) 
Ans: 0 and 3 
 
Problem 1.24 Show that  

 2 1( ) 0
r

 (1.497) 

Hint: Chau (2013) called 1/r the granddaddy of all solutions of Laplace equations. 
 
Problem 1.25 Find the value of n such that   
 2 0nr  (1.498) 
Hint: More than 1 answer 
 
Problem 1.26 For spherical coordinates, prove the following identities 

 ( )e e e e e e    (1.499) 

 ( )e e e e e e   (1.500) 
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 ( )e e e e   (1.501) 

 ( ) ( )sine e e e e e   (1.502) 

 ( ) sin cose e e e e e   (1.503) 

 ( ) sin ( sin cos )e e e e e e e   (1.504) 

 ( ) ( )cose e e e e e   (1.505) 

 ( ) ( )sin cose e e e e e e e  (1.506) 

Problem 1.27 For cylindrical coordinates, prove the following identity 

  

2 2 2
• 2 2 2

2 22

2 2 2

2 2 2

2

1 1 1( ) ( )

1 1 1 1( )

1 1( )

u e

e

e

z

z

z
z

u u u u u u    
z

u u uu
z

u u u u
z z z z

 (1.507) 

Problem 1.28 For spherical coordinates, prove the following identity  

  

2 2
• 2 2 2

2

2 2

2 2

2 2 2 2 2 2

2

2 2

22 1 1 cot( ) (

cot 1 1 )
sin sin

1 2 1 cot(
sin

1 cot )
sin sin

1(
s

u e

e

e

u u u u u u
    

u u
u

u u u u u

u u

2 2

2 2

2

2 2 22

2 1
in sin sin

cot 1 )
sin sin

u u u

uu

(1.508) 

Problem 1.29 For cylindrical coordinates, prove the following identity  
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2 2 2 2

2 2 2 2

2 2 22

2 2 2 2

2 22 2

2 2 2

1 1 1( ) ( )

1 1 1 1( )

1 1 1 1( )

u e

e

e

z

z

z z z
z
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Problem 1.30 For spherical coordinates, prove the following identity 
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Problem 1.31 Show the validity of the following equations 
  1 ln 2 /4 2Re[(1 ) ] cos(ln 2 / 4 2 )i ni e n  (1.511) 

  1 ln 2 /4 2Im[(1 ) ] sin(ln 2 / 4 2 )i ni e n  (1.512) 
Problem 1.32 Find the value of  
  (2 2 ) / 2i i  (1.513) 
Ans: 0.769238901... 
 
Problem 1.33 Find the value of  
  sin( 1) i  (1.514) 

Ans: sinh(1)e  
 
Problem 1.34 Prove the following identity  
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 (1.515) 

Problem 1.35 Prove the following identity  

  sin 2cos cos3 ... cos(2 1)
2sin

nn  (1.516) 

Hint:  Use Euler’s formula and note the following identity: 
  2 2 2 1 2 2 2 3 2 2 2 2 1( )( ... )n n n n n n nx y x y x x y x y xy y  (1.517) 
 
Problem 1.36 Solve for z in the following equation 
  cos( ) 2z  (1.518) 

Ans: ln(2 3)z i  
Hint: cos( ) coshix x  
 
Problem 1.37 Show the following tensor identity for the permutation tensor: 
 2mjk njk mne e  (1.519) 

Hint:  Use the -e identity. 
 
Problem 1.38 Show the following tensor identity for the permutation tensor: 
 kmj kln npq ml jpq jl mpqe e e e e  (1.520) 

Hint:  Use the -e identity. 
 
Problem 1.39 Show the following tensor identity for the permutation tensor: 
 kmj kln npm jple e e e  (1.521) 

Hint:  Use the -e identity. 
 
Problem 1.40 Show the following tensor identity for the permutation tensor: 
 mjk kln npq qim ij pl jl pie e e e  (1.522) 

Hint:  Use the -e identity. 
 
Problem 1.41 Show the following vector identity: 
 mjk kln npq qim ij pl jl pie e e e  (1.523) 

Hint:  Use the -e identity. 
 
Problem 1.42 Show the following vector identity: 
 ( ) ( ) ( ) [ ( ) ( ) ]  u v u v v u v u u v  (1.524) 
 
Problem 1.43 Show the following vector identity: 
 



80   Theory of Differential Equations in Engineering and Mechanics    

 

 ( ) ( ) ( ) ( ) ( )u v v u u v v u u v  (1.525) 
 
Problem 1.44 Show the following infinite product for the sine function: 

 
2 2 2

2 2 2 2 2sin (1 )(1 )(1 )
2 3

x x xx x  (1.526) 

 
Hint: Recall from Taylor series expansion that 

 
3 5 7

sin ...
3! 5! 7!
x x xx x  (1.527) 

Can you factorize the infinite polynomials as products of their infinite roots? Note 
also that this result agrees with formula (1.316) given in Example 1.10, but in this 
problem, without using Mittag-Leffler’s expansion formula.  
 
Problem 1.45 Following the similar idea used in Problem 1.44, show the following 
infinite product for the cosine function: 

 
2 2 2

2 2 2 2 2
4 4 4cos (1 )(1 )(1 )

3 5
x x xx  (1.528) 

 
Hint: Recall from Taylor series expansion that 

 
2 4 6

cos 1 ...
2! 4! 6!
x x xx  (1.529) 

Can you factorize the infinite polynomials as a product of their infinite roots?  
 
Problem 1.46 This problem considers the Basel problem. Following Problem 1.44, 
we can rewrite (1.526) and (1.527) as 

  
2 2 2

2 2 2 2 2
sin (1 )(1 )(1 )

2 3
x x x x

x
 (1.530) 

 
2 4 6sin 1 ...

3! 5! 7!
x x x x

x
 (1.531) 

 
(i) Show that the coefficient for the x2 term on the right hand side of (1.530) is 

 2 2 2 2 2 2 2
1

1 1 1 1 1( ...)
2 3 n n

 (1.532) 

(ii) Compare this coefficient for the x2 term on the right hand side of (1.531) and 
prove that  

 
2

2 2 2 2 2
1

1 1 1 1 1 ...
61 2 3n n n2n

1
2  (1.533) 

The quest for the exact sum of (1.533) was first posed by Mengoli in 1644 and 
again by Jacob Bernoulli in 1689 to the boarder mathematical community. This is 
known as the Basel problem because of its association with the Bernoulli family 
who lived in Basel, Switzerland. This result was first obtained by Euler in 1734 at 



  Mathematical Preliminaries   81 

 

the age of twenty-eight. The closed form sum in the last part of (1.533) brought 
Euler instant fame in the mathematical world. This result also led to his later 
analysis of the Euler-Riemann zeta function and the well-known Riemann 
hypothesis (see Problem 4.56 in Chapter 4). 
 
Problem 1.47 Show the following series expansion of sine integral Si(x) defined as 
(Abramowitz and Stegun, 1964): 

 
2 1

0

sin ( 1)( )
(2 1)(2 1)!

n n

n

x xSi x dx
x n n

 (1.534) 

Hint: Recall (1.531). 
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   CHAPTER TWO 
 

Introduction to Differential Equations  

2.1 INTRODUCTION 

Most of the textbooks on the history of mathematics either did not cover or only 
briefly mention the discovery of calculus, let alone the historical development of 
differential equations. In terms of the coverage of the development of differential 
equations, the three-volume series by Kline (1972) Mathematical Thought from 
Ancient to Modern Times are the best. In addition to mathematical thought, a lot of 
mathematical details were covered. The application background of differential 
equations was also covered in detail.  
 The origin of differential equations naturally arises from the study of calculus, 
discovered independently by British physicist and mathematician Newton and 
German mathematician and diplomat Leibniz. The dispute on the priority of the 
discovery of calculus between Newton and Leibniz is briefly covered in the 
biography section. Our present usage of symbols and terminology owes mainly to 
Leibniz. Leibniz also discovered the method of separation of variables and the 
general theory of homogeneous type for first order ordinary differential equations 
(ODEs). Through correspondence between Leibniz and the Bernoulli brothers, 
many problems of differential equations were solved. The brachistochrone problem 
occupies a central place in the development of differential equations, and it was 
solved by Jacob and Johann Bernoulli, Newton, Leibniz, and L’Hôpital. Daniel 
Bernoulli, son of Johann Bernoulli, derived partial differential equations for fluid 
mechanics, whereas Leonhard Euler, a student of Johann Bernoulli, derived and 
applied differential equations for mechanics analysis. The method of  integrating 
factors for ODEs was also discovered by Euler, and he was responsible for the first 
systematic solution technique for solving differential equations. Lagrange, an 
Italian-born French mathematician, contributed significantly to the development of 
theory for the solutions of differential equations, particular for the particular 
solution for nonhomogeneous ODEs and first order partial differential equations 
(PDEs). Laplace used differential equations to model the motions of celestial 
bodies, and the Laplace equation is one of the most important second order PDEs. 
Considering the vibrations of strings, D’Alembert considered the first solution of 
wave equations, another important second order PDE. Many others made important 
contributions to differential equations, including Riccati, Clairaut, Fourier, Airy, 
Jacobi, Poisson, Bessel, Legendre, Hermite, Hankel, Monge, Charpit, Cauchy, 
Pfaff, Gauss, Goursat, Ampere, Green, Helmholtz, Riemann, Tricomi, Courant, 
Robin, Dirichlet, Fredholm, Fuchs, Liouville, Sturm, Painlevé, and many others. 
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2.2 TOTAL AND PARTIAL DERIVATIVES  

If a function u(x) depends on only one variable, the change of the function with 
respect to the change on the variable is denoted as 

 du
dx

 (2.1) 

This notation was proposed by Leibniz and “d” for differentiation or derivative. 
However, when a function depends on more than one variables, say u(x1, x2, ..., xn), 
as discussed in Chapter 1, the change in function u with respect to the change of 
only one variable is called partial differentiation. Our current adopted notation for 
partial differentiation was proposed by Legendre as the “partial d” or “ ” (Cajori, 
1993)   

  1 2( , ,..., )n

i

u x x x
x

 (2.2) 

where i = 1,2,…,n and x1, ..., xn are called independent variables. Since “ ” also 
symbolizes a rounded d, it is sometimes pronounced as “round d” or simply 
“round.”  

2.3 ORDER OF DIFFERENTIAL EQUATIONS  

The unknown function u is also called the dependent variable. In general, a 
differential equation for an unknown u can be written symbolically as: 

 
1 21

1 1 2

( , , , , , , , , ) 0
n

m

n mm m
n n

u u uF x x u
x x x x x

, , , , , , ,
m

n
u, ,,

x
u u, ,, ,
x xx x 1 2m m1x xx x1 2

)
nm

nxxx
 (2.3) 

where m1, m2, ..., mn are integers. This is clearly a partial differential equation or 
PDE. The order of the differential equation is determined by the highest derivative 
term. For example, the order of the equation given in (2.3) is 
 1 2 nm m m mnm  (2.4) 
For the case of single variable x, (2.3) can be simplified to: 

 1( , , , , ) 0
m

m

du d uF x u
dx dx

, )m

d um

dx
 (2.5) 

Clearly, the order of the differential equation is m.  

2.4 NONLINEAR VERSUS LINEAR 

When a differential equation is linear, all terms of the unknown or its derivatives in 
the differential equations can only appear linearly. For example, the following is a 
linear ODE of u 

 
1

1 1( ) ( ) ( )
n n

nn n

d u d ua x a x u f x
dx dx n ( )n ( )( )  (2.6) 

This ODE is linear no matter how nonlinear the functions a1,..., an depend on the 
variable x.  Whether the differential equation is linear or nonlinear, it all depends 
on the nonlinearity of u and has nothing to do with the coefficient functions a1,..., 
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an, which are not functions of the unknown u.  All terms of u or its derivatives 
appear in (2.6) in their first order or first degree. In general, if a differential 
equation is not linear, it is nonlinear. However, in more advanced books dealing 
with nonlinear differential equations, there are two kinds of nonlinearity: (i) quasi-
linear differential equations, in which nonlinearity of u appears in the coefficient 
functions in a1,..., an in (2.6); and (ii) nonlinear equations in which nonlinearity 
occurs in the highest order derivative term (Kevorkian and Cole, 1981). Clearly, 
the first kind of nonlinearity is called quasi-linear because its solution technique is 
simpler than those for the second type of nonlinearity. 
 For example, the following second order partial differential equation is quasi-
linear because there is no nonlinearity in its highest derivative (second order):  

 

2 2

11 1 2 12 1 22
1 2 1 2 1 21

2

22 1 2 1 22
1 2 1 22

( , , , , ) ( , , , , )

( , , , , ) ( , , , )

u u u u u uA x x u A x x u
x x x x x xx

u u u u uA x x u F x x u
x x x xx

 (2.7) 

For first order partial differential equations, the following form is quasi-linear 

 1 1 2 2 1 2 1 2
1 2

( , , ) ( , , ) ( , , )u uA x x u A x x u B x x u
x x

 (2.8) 

Most of the established methods of solutions for differential equations are for linear 
ODEs or PDEs. Indeed, most of the differential equations to be discussed in this 
book are linear. Although some methods for solving nonlinear differential 
equations approximately have been developed (such as the perturbation method to 
be discussed in Chapter 12), in general, there are no well-accepted methods to deal 
with nonlinear differential equations. Quite often we have to rely on numerical 
methods to get approximate solutions for nonlinear differential equations. Exact 
solutions for nonlinear ODEs or PDEs exist only for certain special forms of simple 
nonlinear equations. Certain types of nonlinear ODEs can be transformed to linear 
ODEs and are solvable in known functions. The most notable examples are the first 
order Riccati equation and the Bernoulli equation. In considering a problem posed 
by Picard for second order nonlinear ODEs, Painlevé in 1900 identified six 
equation types that can be transformed to linear ODEs and can be solved 
analytically. Their solutions are called Painlevé transcendents and these equations 
contain only movable singularities as poles (or the so-called Painlevé property) (see 
Section 4.14). It was discovered that Painlevé equations arise as reductions of 
soliton equations, which are solvable by the inverse scattering technique (IST) 
(Ablowitz and Clarkson, 1991). See more details in Chapter 4. Painlevé was a 
student of Flex Klein, and served as French Prime Minister twice (see biography 
section). Therefore, our ability of classifying whether a differential equation is 
linear or nonlinear is crucial before we even try to look for a solution.  
 One major problem in solving nonlinear PDEs or ODEs is that nonlinear 
differential equations may have more than one solution at some points of the 
independent variables. That is, there is no guarantee of having a unique solution at 
a certain domain of the problem. Typical examples include buckling of a long bar 
under compression (mathematically it was called Euler’s buckling because of his 
contribution to this problem), necking of a long steel bar under tension, and 
barrelling of a short soil specimen under confined compression.  All these physical 
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phenomena of a uniquely and homogeneously deforming material yielding 
suddenly to a non-uniformly deforming pattern can be modeled mathematically as 
bifurcation problems of nonlinear differential equations. If the specimen continues 
to deform uniformly, the solution is called the equilibrium state. If the specimen 
deforms into a non-uniform state, the solution is called a bifurcated state or a 
bifurcation (since a unique solution bifurcates into two or more solutions at that 
point). When such non-unique solutions exist, the point in the domain is called a 
bifurcation point. If there is more than one solution in the solution domain, there is 
a related issue of which of these bifurcated solutions or the equilibrium state is 
stable (or it would appear in nature). The issue of dynamic stability needs to be 
considered mathematically (see the chapter on nonlinear buckling in volume two of 
this book series). This problem of bifurcation can occur repeatedly, that is, the 
bifurcated state can further bifurcate into a secondary bifurcation, and then to a 
tertiary bifurcation, and so on. When repeated bifurcation occurs, it is called a 
cascading bifurcation. It is believed that the onset of such complicated cascading 
bifurcations will lead to a “nearly” unpredictable solution or chaotic behavior of 
the solutions (or simply called chaos). In 1975, a Los Alamos scientist, Mitchell 
Feigenbaum, when solving a differential equation using the difference equation, 
discovered that period doubling of a nonlinear iterative solution has a universal 
pattern for a large class of nonlinear equations when chaotic solutions occur (the 
so-called Feigenbaum number of 4.6692 for predicting the occurrence of period 
doubling). This discovery leads to the new hope and belief that the so-called chaos 
is actually predictable, as opposed to the original definition of chaos. This view 
was popularized by James Gleick (1988) by his book Chaos: Making of a New 
Science. Unfortunately, not much progress has been made so far.  
 In the present book, we mainly deal with linear differential equations. But 
some simple nonlinear differential equations will be covered whenever exact 
solutions for them can be found. 

2.5 PDE VERSUS ODE 

The main difference between ordinary differential equations (ODEs) and partial 
differential equations (PDEs) lies on the number of independent variables. If an 
unknown u depends on only one variable, the resulting differential equation is an 
ODE, otherwise, it is a PDE. The method of solution for ODEs is more well 
established (which will be covered in the next few chapters) whereas PDEs are 
often converted to ODEs using the method of separation of variables. For example, 
we can use separation of variables to convert the following PDE called the Laplace 
equation into an ODE: 

  
2 2

2 2 0u u
x y

 (2.9) 

In particular, we assume 
 ( , ) ( ) ( )u x y X x Y y  (2.10) 
Substitution of (2.10) into (2.9) yields 
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2 2 2 2

2 2 2 2

( ) ( ) ( ) ( )( ) ( ) 0XY XY d X x d Y yY y X x
x y dx dy

 (2.11) 

Note that the round  is replaced by d since X is only a function of x, whereas Y is 
only a function of y. Rearranging (2.11) gives 

 
2 2

2 2

1 ( ) 1 ( )
( ) ( )

d X x d Y y
X x Y ydx dy

 (2.12) 

where X and Y are clearly nonzero (otherwise, there is no solution for u). Since the 
first term is only a function x whereas the second term is only a function of y, both 
of these terms must be constant. Thus,  must also be a constant. Whether  is 
positive or negative, it depends on the boundary condition. Later discussions in 
Chapters 7 and 9 on separation of variables will further tackle this issue. 
Nevertheless, (2.12) actually gives both the governing equations (ODEs) for 
functions X and Y: 

 
2

2 0d X X
dx

 (2.13) 

 
2

2 0d Y Y
dy

 (2.14) 

From our discussion in Sections 1.11 and 1.12, one should immediately realize that 
the general solutions for (2.13) and (2.14) are respectively  
 1 2sinh coshX C x C x  (2.15) 

 3 4sin cosY C y C y  (2.16) 
where the unknown constants need to be determined by boundary conditions. For 
certain given boundary conditions,  need to prescribe as negative (or  = ), 
and thus the general solutions for X and Y will be reversed: 
  1 2sinh coshY C y C y  (2.17) 

 3 4sin cosX C x C x  (2.18) 
For this particular example, we see that solving one PDE (i.e., (2.9)) is equivalent 
to solving two ODEs (i.e., (2.15) and (2.16)) if separation of variables is 
applicable. Unfortunately, as we will demonstrate in a later chapter, separation of 
variables does not work for all PDEs. 

2.6 NONHOMOGENEOUS VERSUS HOMOGENEOUS  

Recall from equation (2.6) that there is a term f(x) on the right hand side which is 
independent of the unknown function u. Whenever such term exists, the differential 
equation is called nonhomogeneous and f(x) is called the nonhomogeneous term. 
For example, we can rewrite (2.6) as 

 
1

1 1( ) ( ) ( ) 0
n n

nn n

d u d ua x a x u g x
dx dx n ( )(n ( )( )( )(  (2.19) 

Clearly, this is the same as (2.6) if we realize that f = g. Thus, the 
nonhomogeneous term can be on the left or on the right; it will not change the fact 
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that it is nonhomogeneous. As will be seen in the next chapter, the general solution 
of nonhomogeneous differential equations must be the sum of the solution of the 
corresponding homogeneous equation (i.e., by setting f in (2.6) or g in (2.19) to 
zero) and the particular solution satisfying the nonhomogeneous equation. 
Mathematically, we have 
 ( ) ( ) ( )h pu x u x u x  (2.20) 
In other words, if the differential equation is nonhomogeneous, we have to solve 
the problem twice.  Therefore, it is important to classify the type of differential 
equation before trying to solve for its solution. 
 
__________________________________________________________________ 
Example 2.1 Classify the following differential equations   

 2 1dy x
dx

 (2.21) 

Solution: This is a linear first order nonhomogeneous ODE. The term 2x+1 makes 
it nonhomogeneous. The highest derivative term is first order. There is only one 
variable, so it is an ordinary differential equation. Note that this first order ODE can 
be integrated directly as 
 2(2 1)y x dx C x x C  (2.22) 
This is called a separable ODE and will be further discussed in Section 3.2.1. 
__________________________________________________________________ 
 
__________________________________________________________________ 
Example 2.2 Classify the following differential equation 
 2( ) 5 0y x dy ydx  (2.23) 
Solution: First of all, we can divide the whole equation by dx to get 

 2( ) 5 0dyy x y
dx

 (2.24) 

The coefficient for dy/dx is a function of y, thus it is a nonlinear differential 
equations, or more precisely, quasi-linear. It is a homogeneous first order ordinary 
differential equation because there is no term in the equation that is independent of 
y.  
__________________________________________________________________ 
 
__________________________________________________________________ 
Example 2.3 Classify the following differential equation 

 
32

2
2 0 d y dyt y y

dtdt
 (2.25) 

Solution: There are both first and second derivative terms, but the highest order 
derivative term always controls.  Thus, it is of second order. The differential 
equation is nonlinear because of the nonlinearly in the second term, but is 
homogeneous as all terms are functions of the unknown y. There is only one 
variable and “d” is used instead of “ ,” so it is an ODE.  
__________________________________________________________________ 
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__________________________________________________________________ 
Example 2.4 Classify the following differential equation 

 
4 2

4 25 3 sin  d x d x x t
dt dt

 (2.26) 

Solution: Again the highest derivative term controls, and thus it is a fourth order 
ODE, not second order. In contrast to the last example, here x is the unknown, not 
the independent variable (t is the independent variable). The term sint on the right is 
independent of the unknown x and thus is the nonhomogeneous term.  Thus, it is a 
nonhomogeneous ODE. All x and its derivative terms appear linearly, and thus it is 
a linear ODE. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 2.5 Classify the following differential equation 

 
2 2

2 2 0u u x y uz
x y

 (2.27) 

Solution: The highest derivative is of second order. This is clearly a PDE as u is a 
function of x, y, and z. All terms involving u and its derivatives are linear, and thus 
it is a linear PDE. The term x+y is independent of the unknown u and thus it is a 
nonhomogeneous term. Therefore, (2.27) is a linear nonhomogeneous PDE of 
second order.  
__________________________________________________________________ 

2.7 SOME SIGNIFCIANT NONLINEAR PDES  

In reality, nearly all real systems are nonlinear in nature. It just happens that most 
of these physically real systems are well behaved and can be modeled adequately 
by a linear model most of the time, except at certain given parameters that satisfy 
the bifurcation condition. Many significant physical phenomena cannot be 
explained by a linear model. In this section, we will list some of them. 
 The pendulum equation is one of the first nonlinear differential equations that 
attracted the attention of applied mathematicians. The horizontal force equilibrium 
for the mass m shown in Figure 2.1 is 

 
2

2 sin 0T
d xm F
dt

 (2.28) 

where  is the angular rotation and is measured in radians. For small-amplitude 
oscillations, the vertical acceleration of the mass can be neglected. For such case, 
the tension in the spring can be related to the weight of the pendulum 
 cosTF mg  (2.29) 
where g is the gravitational constant (9.81 m/s2). For a small value of , we can 
further assume the following approximations: 
 sin , cos 1, Tx L L F mg  (2.30) 
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L

2

2

d xm
dt

TF

mg

where L is the length of the pendulum shown in Figure 2.1. Substitution of (2.29) 
and (2.30) into (2.28) yields the following differential equation for the angular 
rotation of the pendulum  

 
2

2 sin 0d g
Ldt

 (2.31) 

If the amplitude of pendulum motion is small, we can approximate sin   . As 
expected, the linearized equation becomes 

 
2

2
2 0d

dt
 (2.32) 

where 2 = g/L. This is the governing equation for sine and cosine as we discussed 
in Section 1.11, and thus we have 
 1 2sin cosC t C t  (2.33) 
Physically,  is the natural circular frequency of the swinging motion. It is also 
clear that there is no damping built into the model given in (2.28). In reality, there 
is always air resistance or internal friction in the pendulum against the swinging 
motion. Nevertheless, neglecting air resistance and assuming small amplitude of 
pendulum motion, we have the natural period of oscillations as 

  2 LT
g

 (2.34) 

There are at least two major significances associated with this simple result of 
pendulum motion. In the eighteenth century, Newton used the observed changes in 
the period of oscillation of a pendulum at various places on the earth’s surface and 
deduced that the gravitational constant is not a constant. He further deduced that 
the earth bulges at the equator. This period of oscillation is an intrinsic property of 
the earth. For example, the period of oscillations of the same pendulum on Mars 
would be different because of the difference in the gravitation field on Mars.  
 On the other hand, the strength of gravity on any planet clearly relates to the 
total mass of the planet which, in turn, depends on the size of the planet. Because 
of this, it has been proposed that the “standard length” on earth should be related to 
the size or gravity of the earth. It was proposed that the standard length meter can 
be defined as the length L of a pendulum that gives a fundamental period of 2 
seconds. Thus, rearranging,  
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Pendulum problem 



 Introduction to Differential Equations   91 

 

 

 2 22( ) 9.821( ) 0.995075344
2 2
TL g m  (2.35) 

However, the currently adopted definition of a meter is taken as one ten-millionth 
of the distance between the equator and the pole.  

 2 1 2 6366000 1( ) ( ) 0.999968941
4 10000000 4 10000000

RL m  (2.36) 

where R is the radius of the Earth. 
__________________________________________________________________ 
Example 2.6 Solve the nonlinear pendulum equation given in (2.28) with the 
boundary condition that the maximum angular rotation equals  when d /dt = 0. 
 
Solution: The first and also the most crucial step is to recognize the first integral 
(or integrate the equation once) to get 

 21 ( ) cos
2

d g C
dt L

 (2.37) 

where C is an arbitrary constant. If we differentiate (2.37) once, we have 

 
2 2

2 2( ) sin ( ) ( sin ) 0d d g d d d g
dt L dt dt Ldt dt

 (2.38) 

Since d /dt cannot be zero (otherwise there will be no oscillation), we must have 

 
2

2 sin 0d g
Ldt

 (2.39) 

This is precisely (2.28). Next, we can impose the boundary condition to (2.37) to 
find C as 

 cosgC
L

 (2.40) 

Substitution of (2.40) into (2.37) and rearranging the resulting equation gives 

  2 (cos cos )d g
dt L

 (2.41) 

Clearly, all functions of  can be put on one side to yield (this is so-called separable 
and will be discussed in the next chapter) 

 
2 (cos cos )
L ddt
g

 (2.42) 

The following change of variables is then assumed 

 2 2cos 1 2 sin , sin
2

k k  (2.43) 

Recall the double angle formula for cosine; we have 

 21 cos 2sin ( )
2

 (2.44) 

Using this formula, we have  
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2 2

2 2

2

cos cos 2 cos ,

sin 2 sin 1 sin ,

sin 4 sin cos

k

k k

d k d

 (2.45) 

Substitution of (2.45) into (2.42) leads to 

 
2 21 sin

L ddt
g k

 (2.46) 

For  = 0, (2.43) shows that cos  =1 and thus  = 0. If the angle rotation increases 
to 0, 0 can be evaluated from 

 
2

2 0 0
0 2 2

1 cos sin ( / 2)
sin

2k k
 (2.47) 

Therefore, we have 

 1 0
0

sin( / 2)
sin [ ]

k
 (2.48) 

Integrating (2.46) from 0 to  0, we have 

 0

00 2 2
( , )

1 sin

L d Lt F k
g gk

 (2.49) 

where F( ,k) is the elliptic integral of the first kind with k < 1 (Abramowitz and 
Stegun, 1964). This integral cannot be evaluated in terms of any known functions, 
and thus, a numerical table of this integral has been evaluated. The elliptic integral 
appears naturally in many problems in engineering and science, including the 
elliptic motions of celestial bodies. This function was studied extensively by A. 
Legendre. To find the period of pendulum oscillations, we note that when  = , 
the angular velocity is d /dt = 0 and thus  = /2.  Consequently, the period T 
becomes 

 
/2

0 2 2
4 4 ( / 2, ) 4 ( )

1 sin

L d L LT F k K k
g g gk

 (2.50) 

where K(k) is the complete elliptic integral of the first kind (Abramowitz and 
Stegun, 1964).  
 For the general solution of rotation at any time, we have 

 
0 2 21 sin

L dt
g k

 (2.51) 

Finally, the angular rotation can be evaluated from (2.51) by adopting Jacobi’s 
elliptic functions, which was proposed independently by C.G.J. Jacobi and N.H. 
Abel in 1827. In particular, we can write 

 
0 2 21 sin

du
k

 (2.52) 

We can solve for  from (2.52) and denote its solution symbolically as 
 sn( , ) sin , cn( , ) cosu k u k  (2.53) 
where sn is called the Jacobi elliptic sine and cn is called the Jacobi elliptic cosine 
(Abramowitz and Stegun, 1964). In a sense, you can consider the Jacobi elliptic 
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functions are the solution of the integral (2.52) with given u and k. Elliptic integral 
and Jacobi’s elliptic functions are among the very first functions specially defined 
to solve nonlinear differential equations. They are considered as “special functions” 
(versus the standard functions of circular and hyperbolic functions) and the essential 
results for studying nonlinear differential equations. Applying (2.52) and (2.53) to 
(2.51), we obtain 

 1sin sn( , ) sin( )
2

gt k
L k

 (2.54) 

The last of (2.54) is a consequence of using the first equation of (2.43). Finally, we 
have the exact solution for the rotation  as 

 1( ) 2sin sn( , ) , sin( )
2

gt k t k k
L

 (2.55) 

This is one of the very first nonlinear differential equation for which an exact 
solution can be found. But, in general, this is not possible for most nonlinear 
differential equations. 
 More mathematical properties of the Jacobi elliptic function can be found in 
Appendix D.  
 __________________________________________________________________ 
 
Another nonlinear differential equation used to model the oscillations of current in 
an electric circuit connected to a tunnel diode with nonlinear damping is called the 
van der Pol equation, which was named after Dutch electrical engineer Balthasar 
van der Pol (1889–1959).  Mathematically, the van der Pol equation reads as  

 
2

2
2 (1 ) 0d y dyy y

dtdt
 (2.56) 

Although the nonlinear damping term is only of second order and looks innocent, 
but it leads to chaotic behavior of the oscillations.  
 In gas dynamics and traffic flow, a one-dimensional model called Burgers’ 
equation is found useful 

  
2

2

u u uu
t x x

 (2.57) 

This equation was studied by Burgers in 1948. We will see later that this is just a 
special case of the Navier-Stokes equation for fluid flows (see Section 2.8.2).  
__________________________________________________________________ 
Example 2.7 Show that Burgers equation can be transformed into a linear diffusion 
equation of a function  by the Cole-Hopf transformation defined by 

 2 x
xu  (2.58) 

Solution: The first and the most crucial step is to rewrite (2.57) into a form of 
conservation law: 

 21( ) 0
2t x xu u u  (2.59) 

Independently, Hopf in 1950 and Cole in 1951 introduced the following system 
 xu  (2.60) 
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 21
2t xu u  (2.61) 

It is straightforward to show that (2.60) and (2.61) is equivalent to (2.59). Next, 
they introduced the following function  
 2 ln  (2.62) 
Differentiation of (2.62) with respect to both x and t gives respectively 

 2 , 2x t
x tu  (2.63) 

Differentiating u once with respect to x gives 

 22 ( )xx x
x xxu   (2.64) 

Substitution of the first equation of (2.63) and (2.64) into (2.61) gives 

 

2 2 2 2 2

2

1 12 ( ) 4 ( )
2 2

2 2

xx x x
t xx x

xx t

 (2.65) 

Recognizing the second of (2.63), we get the last of (2.65). Thus, the last two of 
(2.65) can be reduced to 
 xx t  (2.66) 
This is the linear diffusion equation, which will be discussed later in Chapter 9. This 
leads to a much deeper question: What kind of nonlinear PDE can be transformed into 
a linear PDE? As discussed in Section 2.4, Painlevé equations provide a partial 
answer for the case of the second order ODEs (see Section 4.14). 
__________________________________________________________________ 
 
Another important nonlinear PDE is the KdV equation: 

 
3

3
u u uu
t xx

 (2.67) 

Korteweg and his PhD student de Vries studied the solitary wave observed in 
Scotland by civil engineer, John Scott Russell (1808 1882), using this nonlinear 
equation. The two terms on the right hand side of (2.67) are competing terms; the 
dispersion term tries to diffuse out the wave amplitude while the nonlinear 
convective term tries to build amplitude nonlinearly. When there is a delicate 
balance between these two terms, the amplitude of such a wave will not decay with 
propagation and it is called a soliton. Scientists believe that the “giant red” eye on 
Jupiter is a soliton, rogue or freak wave observed in oceans is a soliton, and a cloud 
system called “morning glory” in Australia is also a soliton. A soliton is not a 
phenomenon restricted to waves in fluids, and it has been observed in many 
different disciplines of science and engineering. For example, Alan Hodgkin won 
the Nobel Prize in medicine in 1963 when he found that the nerve pulse in squid 
behaves as a soliton. This equation can be solved by a new analytic technique for 
nonlinear differential equations called the inverse scattering technique (IST). In a 
sense, the IST is similar to the Fourier transform technique for linear differential 
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equations, and is a major advance in solving soliton problems (Ablowitz and 
Clarkson, 1991). It is also related to Painlevé equations. 
 Another differential equation closely related to KdV is the Boussinesq 
equation: 

  
2 2 4 2 2

2 2 4 2

( )3 0u u u u
t x x x

 (2.68) 

It was named after French physicist and mathematician J. Boussinesq (1842 1929). 
The first two terms form a “typical” 1-D wave equation, the third term is the fourth 
order dispersive term, and the last term is the nonlinear term. In a sense, this 
closely resembles the KdV equation, with the third and fourth terms competing one 
against another. Again, soliton type solutions can be obtained for the Boussinesq 
equation. However, it should be noted that there are many different versions of the 
so-called Boussinesq equation in the literature, although somewhat similar to 
(2.68). 
 The Duffing equation is a nonlinear differential equation that models 
nonlinear oscillations of a pendulum subjected to friction and driven by a period 
force: 

 
2

3
2 0y y y

t
 (2.69) 

George Duffing (1861 1944) published a small book on this equation in 1918 and 
it has been investigated by many others since then. The period of oscillations not 
only depends on , but also on the amplitude of the motion.  
 The sine-Gordon equation was studied by Walter Gordon (1893 1939) and is 
another equation closely related to the soliton:  

 
2 2

2 2 sin 0u u u
t y

 (2.70) 

This equation can again be solved by using the IST. 
 A nonlinear differential equation called the Thomas-Fermi equation, named 
after British physicist L.H. Thomas and 1938 Nobel Prize recipient E. Fermi, was 
formulated in modeling the distribution of electrons in a heavy atom. This theory 
was proposed independently by Thomas and Fermi in 1927. The Thomas-Fermi 
reads (Davis, 1962) 

 
2

3/2
2

1d y y
dx x

 (2.71) 

This equation is of fundamental importance in quantum mechanics, and has been 
studied and improved by many famous physicists. The unknown y is proportional to 
the potential energy of an atom (the sum of electrostatic and chemical potentials) or 
equivalently proportional to 2/3 of the power of the electron density, and the variable 
x is a normalized distance from the center of an atom. This equation is for a neutral 
atom with spherical symmetry in electron density. 
__________________________________________________________________ 
Example 2.7 Give an approximate solution for the Thomas-Fermi equation with the 
following boundary conditions: 
 (0) 1, ( ) 0, as  y y x x  (2.72) 
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Solution: The following approximate solution was proposed by A. Sommerfeld in 
1932 (see Davis, 1962). We will mention Sommerfeld again in later chapters and 
his legendary story of being nominated 81 times for the Nobel Prize (see Appendix 
B). First, the following change of variables for (2.71) is applied 

 1, wx y
t t

 (2.73) 

Thus, we have 

 2

1dx dt
t

 (2.74) 

 2

1dy dw w dt dwt w
dx t dx dx dtt

 (2.75) 

The last of (2.75) is a result of the substitution of (2.74). Differentiating (2.75) one 
more time with respect to x, we get 

 

2 2

2

2 2
2 3 2 3

2 2

d y dt dw d w dwt
dx dx dxdt dxdx
dw d w dw d wt t t t
dt dtdt dt

 (2.76) 

The right hand side of (2.71) becomes 

 
3/2

3/2 1/2 3/2
3/2

1wy x t w
tt

 (2.77) 

Equating (2.76) and (2.77), we obtain a governing equation for w 

 
2

4 3/2
2

d wt w
dt

 (2.78) 

The boundary conditions given by (2.72) become 
 , as  w t t, st t, as  ,    (0) 0w  (2.79) 
The degree of nonlinearity of (2.78) is actually similar to that of (2.71). First of all, 
Thomas in 1927 recognized that the following is a particular solution of (2.78) 
 4

1 144w t  (2.80) 
Differentiating (2.80) twice leads to 

 
2

2
2 1728d w t

dt
 (2.81) 

On the other hand, substitution of (2.80) into the right hand side of (2.78) results in 
 3/2 3/2 4(3/2) 3 6 6(144) 12 1728w t t t  (2.82) 
Evidently, (2.78) is satisfied by (2.80). In addition, the second boundary condition 
is satisfied. However, the first boundary condition remains to be satisfied. We must 
modify the solution given in (2.80). We assume the following form 
  1(1 )w w t  (2.83) 
Substitution of (2.83) into the left hand side of (2.78) yields 

  

22
4 4 3 21 1

12 2

6 6 6

(1 ) 2 ( 1)

1728 (1 ) 1152 144 ( 1)

d w dwd wt t t t w t
dtdt dt

t t t t
 (2.84) 
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This can be further simplified to 

 

2
4 6

2

6

6

2 11728 1 ( 1)
3 12

2 11728 1 [1 ( 1)]
3 12

11728 1 (3 )(4 )
12

d wt t t t t
dt

t t

t t

 (2.85) 

Substitution of (2.83) into the right hand side of (2.78) leads to 

 

3/2 3/2 3/2 3/2 4(3/2) 3/2
1

6 2 2

(1 ) (144) (1 )
3 31728 1 ...
2 8

w w t t t

t t t
 (2.86) 

The last expansion of (2.86) is a result of Binomial series expansion (see Section 
1.2 of Chapter 1).  Clearly, (2.85) cannot be set equal to (2.86). However, when t  
0, higher order terms of t on the right hand side of (2.86) can be neglected. Thus, 
we can get an approximation as 

 1 3(3 )(4 )
12 2

 (2.87) 

Or equivalently, we have 
 2 7 6 0  (2.88) 
The two roots of this quadratic equation are  

 1 2
7 73 7 730.772, 7.772

2 2
 (2.89) 

We obtain an approximation of (2.78) if these values of  are chosen. But yet we 
have not satisfied the first boundary condition given in (2.79). Note also that we 
have not arrived at any value for . We further extend the approximation to a more 
general form (compare (2.83)) 
 1(1 )nw w t  (2.90) 
We seek to choose  and n properly such that the first boundary condition can be 
satisfied. Substitution of (2.80) into (2.90) into gives 
 3

1(1 ) [144 (1 ) ]n nw w t t t t  (2.91) 
For t  , we need to satisfy the first equation of (2.79) so that it results in 

 3 3 1144 (1 ) 144 (1 ) ~ 1n n n nt t t t
t

 (2.92) 

For large t, we can set 
 3 0, 144 1nn  (2.93) 
The first equation of (2.93) will ensure that (2.92) is proportional to t0 (i.e., 
independent of t), and the second of (2.93) will ensure the magnitude of (2.92) is 
one as t  . Recall from (2.88) that 
 2 2

1 2 1 2 1 27 6 ( )( ) ( )  (2.94) 
Thus, we must have  
 1 2 6  (2.95) 
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We can set  

 2
1 1/

1

3 1, ,
2 144 nn  (2.96) 

where 1 and  2 have been obtained from (2.89). Substitution of (2.80) and (2.96) 
into (2.90) results in 

 1 2

1

/24
/3

1144 {1 }
144

w t t  (2.97) 

We can now back substitute (2.97) into (2.73)  

 1 1 1 2

1

/2 /3 /2
3 /3 3 3

144 1 1 144 144{1 ( ) } {1 ( ) }
144

y
xx x x

 (2.98) 

This can be written as  

 1 2/3 /2
1 1( ){1 [ ( )] }y y x y x ,           1 3

144( )y x
x

 (2.99) 

As a double check, we see that as x  0 we have y1   and thus 
 1 2 1 2/3 /2 /6 1

1 1 1 1 1 1( ){1 [ ( )] } ( )[ ( )] ( )[ ( )] 1y y x y x y x y x y x y x  (2.100) 
Therefore, the first boundary condition in (2.72) is satisfied. 
__________________________________________________________________ 
 The solution given in Example 2.7 is found in reasonably good agreement 
with numerical integration of (2.71). We can see from this example that one needs 
extraordinary mathematical skill and insight to find an approximation to the 
nonlinear differential equation. Unlike the pendulum problem, no exact solution is 
found. In addition, such ingenious solution is only an approximation, and the 
solution procedure is not straightforward and cannot be generalized easily to other 
nonlinear differential equations. Because of this difficulty, the method of solution 
for nonlinear equations is less developed.  
 

2.8 SYSTEMS OF DIFFERENTIAL EQUATIONS  

In this section, we will report a number of systems of differential equations that we 
commonly encounter in engineering and mechanics. They include Maxwell’s 
equations, Navier-Stokes equation, and equations of motion of waves in solids. 

2.8.1 Maxwell Equations  

For electrodynamics, the magnetic field vector B and electric field vector E are 
coupled through the set of Maxwell equations: 

 
, 0,

, ( )J +
t t

 (2.101) 

where  is the permittivity of the material,  is the permeability of the material,  is 
the charge density, and J is the electric current. The first, second, third, and fourth 
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equations of (2.101) are the Gauss law for electricity (relation between electric 
field and electric charge), the Gauss law for magnetism (non-existence of magnetic 
charge), the Faraday law (electric field induced by changing magnetic flux) and the 
Ampere law (magnetic field induced from electric current). This set of Maxwell 
equations unified all magnetic and electric effect in terms of electrodynamics. Note 
also that the Maxwell equations can be expressed in integral forms. However, we 
will not pursue such possibility in the present book, as our focus here is on the 
study of differential equations. 
 For the special case of a vacuum with no electric charge (  = 0) and no 
electric current (J = 0), electromagnetic waves can be specialized as: 

 
2

0, 0,
1,

t tc
 (2.102) 

where 

 2

0 0

1c  (2.103) 

Here c is the speed of light in a vacuum and 0 and 0 are the permeability and 
permittivity in a vacuum. 
 Taking the curl of the third of (2.102), we have 

 

2 2( ) ( )
( )

t

 (2.104) 

where we have used the Gauss law of electricity that the divergence of E is zero. 
Take the time derivative of the fourth of (2.102) yields 

 
2

2 2
1( )

t c t
 (2.105) 

Combining (2.104) and (2.105) gives 

 
2

2
2 2

1
c t

 (2.106) 

This is a vector wave equation for the electric field E. Similarly, taking the curl of 
the fourth equation of (2.102) gives 

 

2 2

2

( ) ( )
1 ( )

tc

 (2.107) 

On the other hand, the time derivative of the third of (2.102) gives 

 
2

2( )
t t

 (2.108) 

Combining (2.107) and (2.108) results in another vector wave equation for B 

 
2

2
2 2

1
c t

 (2.109) 

In conclusion, for the case of a vacuum, both the electric field and magnetic field 
propagate as waves, called electromagnetic waves, and their speed of propagation 
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is the speed of light in vacuum (c  2.99792458 108m/s). In addition, if the electric 
and magnetic fields are independent of time, we have 
 2 20, 0  (2.110) 
That is, electrostatics is governed by the Laplace equation. This also suggests the 
existence of an electric potential and a magnetic potential. Since the electric and 
magnetic fields do not change with time, physically the Laplace equation models 
the equilibrium problem of an electric field.  
 Without going into the details, we report that for the case of a non-vacuum 
with charge and current, we can express B and E in terms of a vector potential and 
a scalar potential as 

 ,A A
t

 (2.111) 

The resulting governing equations for A and  are 

 
2

2
2
AA J

t
 (2.112) 

 
2

2
2t

, (2.113) 

provided that the following condition, called the Lorenz gauge, is assumed 

 A =
t

 (2.114) 

This Lorenz gauge is only one choice of the gauge freedoms and it is not unique. 
The Lorenz gauge is named after Danish mathematician L.V. Lorenz (1829-1891). 
Note that (2.112) and (2.113) are nonhomogeneous vector and scalar wave 
equations. Therefore, nonhomogeneous wave equations occupy a central place in 
the solution of electrodynamics or Maxwell equations. However, the 
nonhomogeneous wave equation is not covered in most textbooks on differential 
equations. We will discuss it in Section 9.3 and the solution is given in (9.207). 
 Another choice of gauge is the so-called Coulomb gauge (Zangwill, 2013) 
which is 
 0A  (2.115) 
It is named after French physicist Charles-Augustin de Coulomb (1736 1806), who 
made contributions on electrostatic force and friction. The resulting governing 
equations for A and  become 

 
2

2
2 ( )AA J

tt
 (2.116) 

 2  (2.117) 

This gauge choice is popular because we can solve the Poisson equation for   
given in (2.117) before solving (2.116). 
 In a later chapter in the second book of this series, we will discuss these 
gauge theories and the mathematical theory of Maxwell equations in more detail. 
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2.8.2 Navier-Stokes Equations 
 
In deriving the Navier-Stokes equations, we need to use the concept of a control 
volume versus a point mass considered for rigid body dynamics. The idea of 
control volume is depicted in Figure 2.2. In classical mechanics, the dynamics of a 
rigid body is referred as the Lagrangian formulation in which the displacement 
vector is referred to as a fixed point in a rigid body. We say that the displacement 
vector is formulated in Lagrangian coordinates. For fluid mechanics problems, if 
control volume is used, the displacement vector is referred to as a fixed point in 
space (i.e., does not follow a fluid particle).  We say that the displacement vector is 
formulated in Eulerian coordinates because the control volume formulation was 
first proposed by Euler.  
 First of all, we assume that there exists a flow field described by the flow 
velocity field u, which is a function of a three-dimensional position (x, y, z) and 
time t. Let us consider the total differential of u with respect to its dependent 
variables, 

 u u u uud dt dx dy dz
t x y z

 (2.118) 

Dividing the whole expression by dt, we have the acceleration of the flow 
 

 u u u u u u u u ua D dx dy dz u v w
Dt t x dt y dt z dt t x y z

 (2.119) 

where the physical components of the velocity u are denoted as u, v, and w.  Note 
that instead of d we have employed the notation D. The differential operator D/Dt 
is called the material time derivative or the advective time derivative in contrast to 
the ordinary time derivative d/dt. In terms of tensor notation, (2119) reads as: 

 u ua u uD
Dt t

 (2.120) 

 
 
 
 
 
 
 
 
 

 
  

Figure 2.2 Particle and control volume descriptions of a fluid flow 
 
where the first term is a result of unsteady flow and the second term is the acceleration 
induced by fluid flowing in and out of the control volume. Physically, the acceleration 
calculated in (2.119) is experienced by somebody who moves locally with the fluid in 
the control volume. Since the second term is resulting from fluid flowing in and out, it 
is normally called the convective term. The main nonlinearity in Navier-Stokes 

Control volume 

Flow streamlines 

Fluid particle 

Path 
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equations actually comes from this term. Alternatively, the material time derivative 
can also be expressed as  

 
2

( )
2
uu u ua u u u uD

Dt t t
 (2.121) 

This result is illustrated in the following example. 
 

__________________________________________________________________ 
Example 2.8 Prove the following vector identity: 

 21 ( )
2

u u u + u u  (2.122) 

Solution: To simplify the notation, let us rewrite the magnitude of u as 
 1/2( )k ku u uu u u  (2.123) 
In terms of the Cartesian tensor, the left hand side of (2.122) is 

 

2
2

,1/2

1 1 1 2
2 2 2

1 1 [ ]
2 ( )

u e e

e e e

i i
i i

k k k
i k k k i k k i i

i i ik k

u uu
x x

u u u
u u u u u u

x x xu u

 (2.124) 

On the other hand, we have (recall tensor analysis in Section 1.19 of Chapter 1) 
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e
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u u u u

 (2.125) 

and 

 , ,( ) ( )u u e e e e e ei i j k k ij i k k i k i k k n k n
j j

u u u u u u u u
x x

 (2.126) 

Thus, adding (2.125) and (2.126) we have 
 , , , ,( ) ( )u u+ u u e ek k n k n k k n k n k k n nu u u u u u u u  (2.127) 
Comparison of (2.124) and (2.127) yields the required result given in (2.122). This 
completes the proof. 
__________________________________________________________________ 
 
With the proved identity given in (2.122), the last convective term given in (2.121) 
is obtained.   
 We now consider the continuity of fluid within any control volume. The mass 
flux through the closed surface of the control volume adding to the change of mass 
with time must be zero: 

 0u
V V

d dV
tV Vt

d
t

u dd  (2.128) 

By applying the Gauss theorem to the first integral we have 

 ( ) ( ) ] 0u u
V V V

dV dV dV
t t

 (2.129) 
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Since the choice of control volume is arbitrary, we must require the integrand itself 
to vanish or 

 ( ) 0u
t

 (2.130) 

This is called the continuity condition of fluid flow. Note that this continuity 
equation is true for all fluids, whether viscous or not. If the density of the fluid does 
not change with time, we have 
 0u  (2.131) 
This is called the incompressibility of fluid. When this assumption is valid, the fluid 
flow is called incompressible flow. We will see that incompressible flow also leads 
to the Laplace equation, indicating the existence of a potential (see Section 9.7 for 
details). Therefore, incompressible flow is also called potential flow. 
 We will now look at force equilibrium in fluid flow. The force acting on a 
control volume of fluid can be considered as the divergence of a stress tensor: 

 ( )u u u
t

 (2.132) 

Physically, the change of stress along spatial coordinates (the right hand side of 
(2.132)) leads to the unbalancing of force on the control volume and this force will 
lead to acceleration of the control volume (the left hand side of (1.132)). For fluids, 
the stress tensor can be subdivided into two contributions, a pressure term and a 
viscous stress term, as 
 I +p  (2.133) 
where I is the unit second order tensor, p is the fluid pressure at a fixed point, and 

' is called the viscous stress tensor. In terms of dyadic notation, the unit tensor is 
 I e eij i j  (2.134) 
The viscous stress models the irreversible “viscous” transfer of momentum whereas 
the pressure term is for reversible transfer of momentum. Viscosity also leads to 
dissipation of energy through a frictional type of heat loss, and this is why it is 
irreversible. 
 Naturally, the stress within the fluid depends on how fast the fluid is flowing. 
A good first order of approximation is that the viscous stress tensor is proportional 
to the gradient of the velocity vector (Landau and Lifshitz, 1987): 

 2[( ) ( )] ( )
3

u u I u I uT  (2.135) 

where  and  are the coefficients of viscosity and second viscosity. At first look, 
the viscosity term looks odd and there is a common factor overlapping with the 
second viscosity term. The choice of the first term actually reflects that the viscosity 
is only related to the deviatoric terms (or non-axial terms) and physically viscous 
irreversible transfer of momentum only relates to the rate of shear deformation and 
is independent of the rate of volumetric change. To see this, we can take the trace of 
(2.135) such that 

 , , , ,
2( ) [2 ] 3
3k k kk j j kk j j j jtr u u u u  (2.136) 

This clearly reflects that the viscosity  relates to the rate of shearing deformation 
only. We can rearrange (2.135) rewriting the viscous stress as 



104  Theory of Differential Equations in Engineering and Mechanics 

  [( ) ] ( )u u I uT  (2.137) 
where 

   2
3

 (2.138) 

Physically, both  and  must be positive or 
   0, 0  (2.139) 
The first inequality of (2.139) reflects the fact that dissipation leads to a decrease in 
mechanical energy (instead of increase); whereas the second term of (2.139) reflects 
the fact that irreversible processes of internal friction lead to increase in entropy, a 
term in thermodynamics associated with the change from less probable state to a 
more probable state. The value of  reflects how fast or slow the relaxation time is 
to restore equilibrium. Normally, the order of magnitude of viscosity and second 
viscosity are comparable (i.e.,   ). Under certain circumstances, we may have   
>>  and in such case there will be a change of volume and in turn a change in 
density. Although we normally assume  is a constant, in reality  reflects the rate 
of compression versus the relaxation time. For example, for sound waves in fluids, 

 should depend on frequency (how fast the compression and tension are applied). 
When this happens, the waves in fluid are called dispersive.  
 Substitution of (2.134) and (2.133) into (1.132) leads to 

 2( ) [( ) ( )] [ ( )]
3

u u u + u u I u uTp
t

 (2.140) 

This is the most general Navier-Stokes equation for viscous fluids. This can be 
rewritten in a more compact form by noting the following identity: 
 ( ) [ ( )] [ ( )]u u uT  (2.141) 
This is proved in the following example. 
__________________________________________________________________ 
Example 2.9 Prove the following vector identity: 
 ( ) [ ( )] [ ( )]u u uT  (2.142) 

Solution: Let us consider the first term on right hand side of (2.142) 

 
, , ,

, , ,

[ ( )] ( ) ( ) ( )

( )( ) ( ) ( )

( ) [ ( )]

u e e e

e e e

u u

ijk k j i nmi ijk k j m n inm ijk k j m n

nj mk nk mj k j m n m n m n n m m n

T

e u e e u e e u

u u u  (2.143) 

Rearranging (2.143) gives 
 ( ) [ ( )] [ ( )]u u uT  (2.144) 
This completes the proof. 
__________________________________________________________________ 
 
With the identity given in (2.141) in hand, the last two terms of (2.140) can be 
rewritten as 



 Introduction to Differential Equations   105 

 

   

2[( ) ( )] [ ( )]
3

2[ ( )] [ ( )] [ ( )] ( )] [ ( )]
3

2[ ( )] 2 [ ( )] {( )( )}
3

u u I u u

u u u u u

u u u

T

 (2.145) 

Finally, combining (2.145) and (2.140) we have another form of Navier-Stokes 
equations 

2( ) [ ( )] 2 [ ( )] {( )( )}
3

u u u + u u up
t

 (2.146) 

Note, however, that this equation differs from (3.48) of Hughes and Brighton 
(1967) and from (1.33) of Hughes and Gaylord (1964). There are clear typos in 
both of them. To the best of our knowledge, this correct form has not been reported 
in the literature. 
 In general, both  and  can be functions of pressure and temperature. If both 

 and  are independent of pressure and temperature, we have 

 2 1( ) ( ) ( )
3

u u u + u up
t

 (2.147) 

For incompressible flow, by virtue of (2.131) we have 

 2( )u u u + up
t

 (2.148) 

Let us reiterate that all nonlinearity of the Navier-Stokes equation comes from the 
convective term. In fact, the KdV equation, Burgers equation, and Boussinesq 
equation are special cases of Navier-Stokes equations. For example, for 1-D flow 
with no pressure gradient applied, we can replace u by u and  

 
2 2

2 2

u u u uu
t x x x

 (2.149) 

where 

  (2.150) 

is the kinematic viscosity (  is also known as dynamic viscosity). Evidently, (2.150) 
is the Burgers equation given in (2.57). At 20 C, the values of  for water and air 
are 0.010 and 0.150 cm2/sec. Thus, water is 15 times more viscous than air, and this 
is the reason why it is so hard to swim fast in water.  
  In closing, we should mention that the Clay Mathematics Institute offered US 
$1 million for anyone making “substantial process toward a mathematical theory 
which will unlock the secrets hidden in the Navier-Stokes equations.” Indeed, this 
nonlinear differential equation leads to all phenomena that we observe in fluids 
every day, including waves behind our boats, and turbulent currents following a 
modern flight jet. For example, there is no satisfactory theory for turbulent flow yet 
and much remains to be done mathematically on Navier-Stokes equations.  
 



106  Theory of Differential Equations in Engineering and Mechanics 

S

iV

FdV

iS n i n σi dS

V

2.8.3 Elastodynamics 

Following the discussion by Chau (2013), for dynamics problem for solids, we 
consider the force equilibrium of a solid of volume V as 

   uF nV S VdV dS dV
t t

 (2.151) 

where F, , u, n and  are the body force vector, stress tensor, displacement vector, 
normal vector pointing outside the volume, and density of the solid (see Figure 2.3).  
 Applying the Gauss theorem to the second term on the left of (2.151), we have 

 
2

2
( + )  = uF

V V
dV dV

t
+ ))d  (2.152) 

Since the body is taken arbitrarily, we must have 

 
2

2

uF
t

FF  (2.153) 

For isotropic elastic solids, Hooke’s law only involves two independent moduli  
and , which are called the Lamé constants. In tensor notation, it is 
 ( ) 2I tr  (2.154) 
For small deformation and small strain, the strain-displacement relation is defined 
(Chau, 2013) 
 1

2 [ ( ) ]u u T= +  (2.155) 
Substitution of (2.155) into (2.154) gives 
 ( ) [ ( ) ]I u u u T +  (2.156) 
Then, substitution of (2.156) into (2.153) yields 

  
2

2
( ) [ ( ) ] uu u u FT+

t
 (2.157) 

Note that  
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 2.3 Force equilibrium of a solid of volume V and surface S 
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 , , ,( ) ( ) ( ) ( )u e e e e ei j j k ij j i k j j j ji i
i k k

u u u u
x x x

 (2.158) 

 , ,

, , ,

( ) ( ) ( ) ( )u e e e e e e e e

e e e

T T T
i j j k j i i j k j i j i

i k k

kj j ik i j ij i j ji i

u u u
x x x

u u u
 (2.159) 

Therefore, we can group these terms in (2.157) as 

 
2

2
( ) ( ) uu u F

t
 (2.160) 

This is the equation of motion for an elastic isotropic solid. By virtue of vector 
identity (1.362) of Chapter 1, we can rewrite (2.160) as 

  
2

2
( 2 ) ( )+ uu u F

t
 (2.161) 

Expressed in terms of compressional and shear wave speeds, (2.161) becomes 

 
2

2 2
2

1( )+ uu u Fd sc c
t

 (2.162) 

where 

 2 ,d sc c  (2.163) 

Let us consider the divergence of (2.162) as 

 
2

2 2
2

1 ( )( )+ uu Fdc
t

 (2.164) 

This is a nonhomogeneous wave equation for dilatation u. In obtaining (2.164), 
we have used the vector identity given in (1.347) setting A = u as  
 ( ) 0A  (2.165) 
As discussed in Chapter 1, all vectors can be decomposed into an irrotational term 
and a solenoid term according to Helmholtz theorem (see Section 1.16 of Chapter 
1). Let us decompose the displacement vector as: 
 u  (2.166) 
Taking the divergence of u gives 
 2 2( )u  (2.167) 
Substitution of (2.167) into (2.164) yields 

 
2

2 2 2
2

1[ ]= Fdc
t

 (2.168) 

This is a nonhomogeneous differential equation for the potential . Physically, 
(2.167) shows that 2  is the dilatation. Therefore, (2.168) is also called the 
dilatation wave equation, and it governs the motion of the so-called P-waves. 
 On the other hand, if we take the curl of (2.162), we arrive at 

 
2

2 2
2

1( ) [ ( )]+ uu u Fd sc c
t

 (2.169) 
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The first term vanishes by virtue of vector identity (1.347) while the second term 
can be expanded by using (1.362) as  
 2 2[ ( )] ( )]u u u u( ) ( )( )]( )( )]( )]  (2.170) 
The last result follows from (1.347) or (2.165). Substitution of (2.170) into (2.169) 
gives 

 
2

2 2
2

1=uu Fsc
t

( )  (2.171) 

This is a nonhomogeneous vector wave equation for the rotation tensor u/2. 
Taking the curl of (2.166) we obtain 

 
2

2

)u 2))
 (2.172) 

In terms of vector potential, (2.172) can be written as 

 
2

2 2 2
2

1[ ]= Fsc
t

 (2.173) 

This is a nonhomogeneous vector differential equation for the vector potential .  
 If there is no body force, we have 

 
2

2 2
2dc h

t
 (2.174) 

 
2

2 2
2

Hsc
t

 (2.175) 

where h and H are arbitrary harmonic functions. However, they are normally 
neglected. That is,  

 
2

2 2
2dc

t
,   

2
2 2

2sc
t

 (2.176) 

In summary, in terms of dilatation and rotation tensors the elastodynamics 
problems are governed by the following nonhomogeneous wave equations: 

 
2

2 2
2

( ) 1( ) uu Fdc
t

 (2.177) 

 
2

2 2
2

1=uu Fsc
t

( )  (2.178) 

Physically, the wave equations given in (2.177) and (2.178) closely resemble the 
scalar and vector wave equations given in (2.112) and (2.113) as Maxwell 
equations. Therefore, elastodynamics and electrodynamics are mathematically the 
same problems. The mathematical technique for one problem is applicable to the 
other. To the best of our knowledge, this resemblance has not been mentioned in 
any textbook on differential equations. The solution of the nonhomogeneous wave 
equation is discussed in Section 9.3 and is given in (9.207). 

2.8.4 Three-Dimensional Elasticity 

Let us look at the special case that the displacement field is independent of time.  
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 2( ) ( ) 0u u F  (2.179) 
If the Helmholtz theorem is used, we can specialize (2.168) and (2.173) 

 2 2 4 1
2

F  (2.180) 

 2 2 4 1 F  (2.181) 

These are nonhomogeneous scalar and vector biharmonic equations for  and .  
 It is also possible to introduce a single vector potential called the Galerkin 
vector G 
 22(1 )u G G  (2.182) 
Taking the Laplacian of (2.182) gives 
 2 2 2 22(1 ) )u G G  (2.183) 
Similarly, we consider the gradient of the divergence of u as 

 

2

2 2

2

(2(1 ) ) )
= 2(1 ) ( ) ( )
= (1 2 ) ( )

u G G
G G
G

 (2.184) 

Substitution of (2.183) and (2.184) into (2.179) yields 
 2 2 2 2( )(1 2 ) ( ) 2 (1 ) ) 0G G G F  (2.185) 
Simplification of (2.185) results in 
 2 2 2[ 2 ( )] ( ) 2 (1 ) 0G G F  (2.186) 
However, from the result of elasticity, we know that Poisson’s ratio  can be 
related to Lamé constants as (Chau, 2013) 

 2  (2.187) 

Substitution (2.187) into (2.186) gives 

 2 2 4 1
2 (1 )

G = G F  (2.188) 

This is a nonhomogeneous biharmonic equation for vector potential G. For the 
special case of zero body force, we have biharmonic equations 
  4 0G  (2.189) 
Thus, we see that the biharmonic equation is of fundamental importance for three-
dimensional elasticity. Yet, most textbooks on differential equations for engineers 
and scientists do not cover the biharmonic equation. Further discussions of the 
biharmonic equation will be given in Sections 7.9, 8.13.4 and 14.12. 

2.9 SUMMARY AND FURTHER READING 

Although the main focus of this book is to discuss the mathematical techniques in 
solving differential equations and their applications in engineering and mechanics, 
it is essential that we should know what kind of information is available even 
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before we attempt to solve them. We should be familiar with handbooks on 
differential equations. A good start is to refer to the handbook by Zwillinger 
(1997), which summarizes different procedures for different types of differential 
equations with examples. There are also a lot of useful and handy comments on 
different techniques. For the most comprehensive and up-to-date handbooks on 
differential equations, we recommend the series of handbooks by Polyanin (2001), 
Polyanin and Zaitsev (2002, 2003), and Polyanin et al. (2002). For integral 
equations, which are closely related to differential equations and the focus of 
Chapter 12, one should consult the handbook of Polyanin and Manzhirov (2008). 
However, there is not much discussion on the method of analyses, but instead only 
the final solution is given if they are available. It is a good idea to check the 
handbooks of Polyanin (2001), Polyanin and Zaitsev (2002, 2003), and Polyanin et 
al. (2002) for your differential equation at hand before even thinking about solving 
it by yourself.  
 Regarding textbooks on differential equations, there are hundreds of available 
textbooks on differential equations but most of them were written by 
mathematicians, not much by engineers. A number of very good books are 
recommended here, but it should be warned that some of them are not easy to read. 
The series of books by Forsyth (1890, 1893, 1900, 1902, 1906, 1918, 1956) remain 
classic although there are some obsolete topics.  Some topics in these references 
are not readily comprehensible. Other good books include Airy (1873), Craig 
(1889), Bateman (1918, 1944), Whittaker and Watson (1927), Sommerfeld (1949), 
Erdelyi (1953), Ayres (1952), Ince (1956), Myint-U (1987), Myint-U and Debnath 
(1987), Zill (1993), Zachmanoglou and Thoe (1986), and Zill and Cullen (2005). 
 For the history of differential equations, the three volume book series by 
Kline (1972) is a must read. Struik (1987) also provides some useful information 
about differential equations.  
 A number of handbooks of mathematical functions should be available if you 
want to learn differential equation seriously. The number one handbook is 
Abramowitz and Stegun (1964), and Olver et al. (2010) is considered an updated 
version of Abramowitz and Stegun (1964). In terms of handbooks on integration, 
we recommend Gradshteyn and Ryzhik (1980). A handy handbook by Spiegel 
(1964) provides a quick reference. 

2.10   PROBLEMS 

Problem 2.1 Consider a fluid with uniform rotation with angular velocity ; the 
velocity field v is defined as 
 v r  (2.190) 
Show that such a uniform rotational field will not produce any viscous stress '. 
That is, there will no energy loss for such uniform rotation. This result is somehow 
consistent with Kelvin’s theorem on the conservation of circulation. Actually, 
conservation of circulation in fluids was first established by Helmholtz in 1858 for 
incompressible flows, but was extended to compressible flows by Kelvin in 1869. 
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Problem 2.2 Classify the following system of differential equations for plate 
buckling 

 

2 2 2
4 2

2 2

2 2 2 2 2 2
4

2 2 2 2

[( ) ]

( 2 )

w w wF Eh
x y x y

F w F w F wD w p
x y x yy x x y

 (2.191) 

where w is the deflection of the plate and F is the Airy stress function for the stress 
in the plate. This is called the von Karman-Foppl equation. It models the buckling 
of plates and was proposed by von Karman and Foppl independently in 1910 and 
1907 respectively. 
 
Problem 2.3 Classify the following system of differential equations for shallow 
shell buckling 

 
2 2 2 4

8 4 0 0 0
2 2 2 4( 2 ) 0xx xy yy
w w w Eh ww N N N

x yx y R x
 (2.192) 

where the initial stress state in the shells is denoted by a superscript “0.” This is the 
linearized Donnell equation for shallow shells proposed by Donnell in 1934.  
 
Problem 2.4 Classify the following differential equation for cylindrical shell with 
nonuniform wall thickness shallow shell buckling 

 
2 2 2 2

3 0
2 2 2 2 3

1 12(1 ) 12(1 )( ) 1w
xd d wx w

x xdx dx a E
 (2.193) 

Where the thickness is h = x and a is the radius of the shell. The depth of the 
water is defined as d x0 and d is the height of the cylindrical tank. This theory was 
derived by Reissner in 1908. 
 
Problem 2.5 Classify the following differential equation for a circular ice plate 
supported on water (Nevel, 1959): 

 2 2 qw w
k

 (2.194) 

Its solution was given by Wyman (1950) in terms of Kelvin’s functions, which will 
be discussed in Section 4.9. This problem relates to landing of aircraft on ice sheets 
(Assur, 1959). 
 
Problem 2.6 Classify the following differential equation for vibrations of circular 
plate: 

 
2

4 2

1 1 1{ [ ( )]} 0u ur r
r r r r r r b t

 (2.195) 

where b is a constant. The axisymmetric boundary value problem was considered 
comprehensively by Reid (1962) for simply supported, fixed support and free 
support. 
 
Problem 2.7 Classify the following differential equation for the bending theory of 
cylindrical shells (Timoshenko and Woinowsky-Krieger, 1959): 
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2 4

2 2 2 2
2 4

(1 ) 0FF
c

 (2.196) 

where F is Vlasov’s stress function,  is a normalized distance measured from the 
center,  is Poisson’s ratio, and c is defined as: 

 
2

2
212

hc
a

 (2.197) 

The thickness of the shell is h and the radius of the cylindrical shell is a.  
 
Problem 2.8 Classify the following Monge-Ampere equation, which is a 
differential equation encountered in differential geometry, gas dynamics, and 
meteorology: 
 2( ) ( , )f  (2.198) 
 
Problem 2.9 Classify the following differential equation for shells with surface of 
revolution under axisymmetric bending (the unknown U is related to shear force 
and the variable is ): 

 
2

4 4
2

1

( ) 0, EhLL U U
D r

 (2.199) 

 
22

2 2 2 1
2 2

1 1 1 2 11

cot(..) 1 (..)(..) [ ( ) cot ] (..)
r r r rd d dL

r d r r d r rr d
 (2.200) 

where E = Young’s modulus,  = Poisson’s ratio, h = thickness, D [= Eh3/(1 2)], 
and r1 and r2 are parameters controlling the shape of the shells.  
 
Problem 2.10 Classify the following differential equation for a mode III dynamic 
crack branching problem: 

 
2 2

2 2

1coth 0
4

W W Ws W
ss

 (2.201) 

 



 
 

CHAPTER THREE 
 

Ordinary Differential Equations  

3.1 INTRODUCTION 

The techniques for solving ordinary differential equations (ODEs) are of 
fundamental importance in the theory of differential equations. Most of the 
techniques to be discussed in this chapter were developed by founders of 
differential equations, including Leibniz, Euler, and Bernoulli. The mastery of 
these techniques is essential for our later chapters in solving partial differential 
equations (PDEs). In later chapters, we will see that a PDE is normally converted 
to a number of ODEs by assuming a technique called “separation of variables.” For 
the two-dimensional case, separation of variables leads to two ODEs; and for the 
three-dimensional case, separation of variables leads to three ODEs. Thus, solving 
PDE becomes solving ODEs. Therefore, the solution of ODEs is of fundamental 
importance in solving PDEs. 
 For first order ODEs, the topics to be covered in the present chapter include 
separable equations, homogeneous type equations, exact ODEs, integrable 
condition, integrating factors, the Stokes method for homogeneous type, the Jacobi 
method, the Euler method, standard linear form, the Bernoulli equation, the Riccati 
equation, integration by differentiation, the Clairaut equation, singular solution, the 
Lagrange equation, factorization of nonlinear form, and Taylor series expansion. 
For second order ODEs with constant coefficients, the solution methods for a 
differential equation (DE) with non-zero nonhomogeneous terms include 
undetermined coefficients, variations of parameters, and operator factors. 
 For second order ODE with non-constant coefficients, we discuss the Euler 
equation, Laplace type equation, Liouville problem, Mainardi approach for 
Liouville problem, and finally the Liouville transformation. Both homogeneous and 
nonhomogeneous forms are considered. Another general transformation (differing 
from Liouville transformation) and its associated concept of invariants of ODEs are 
discussed.  
 For higher order ODEs, we consider the Euler equation of order n, adjoint 
differential equation of an n-th order ODE, Sarrus method, rule of transformation, 
and homogeneous equation. For nonhomogeneous equations, we have extended the 
method of undetermined coefficients and variation of parameters to n-th order 
ODEs. The technique of reduction of an n-th order ODE to a lower order ODE is 
discussed. The exact condition for an n-th order ODE is presented. The idea of 
factorization of ODEs is presented. A symbolic method for solving 
nonhomogeneous ODEs is discussed. The special technique of removal of the 
second highest derivative is also covered in the context of the n-th order ODE. The 
general idea of reduction of order for autonomous n-th order ODEs is summarized.  
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3.2 FIRST ORDER ODE 

The most general form of first order ordinary differential equation (ODE) is  

 ( , , ) 0dyF y x
dx

  (3.1) 

Assuming that dy/dx can be solved from (3.1), we may express the first order ODE 
as  

 1( , )dy F x y
dx

 (3.2) 

Note however that, in general, (3.2) may not be obtainable by solving (3.1).  

3.2.1 Separable ODE 

If the function on the right hand side of (3.2) can be separated as a product of two 
functions, one is a function of x only and the other is a function of y only, we get 

 ( ) ( )dy f x y
dx

 (3.3) 

Thus, we can put all functions of y on the left hand side with dy and all other 
functions on the right hand side with dx as:  

 ( )
( )
dy f x dx

y
 (3.4) 

Integration can be carried out independently on both sides of (3.4): 

 ( )
( )
dy f x dx c

y
 (3.5) 

Therefore, the solution of the differential equation is obtained by integration only. 
Alternatively, we can rewrite first order ODE as 
 ( , ) ( , ) 0M x y dx N x y dy  (3.6) 
The condition of being separable implies M being a function of x only and N being 
a function of y only. That is, we have 
 ( ) ( )M x dx N y dy  (3.7) 
Thus, the solution of the first order ODE can be obtained by integrating on both 
sides separately as: 

 ( ) ( )M x dx N y dy C  (3.8) 

In other words, the first order ODE can be solved by integration alone if it is 
separable. Thus, a separable first order ODE can be considered as the simplest type 
of first order ODE.  
__________________________________________________________________ 
Example 3.1 Find the general solution of the following first order ODE 

 2 2 1dy x y
dx

 (3.9) 

Solution: The given ODE is clearly separable and can be rewritten as 
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 2
2 1
dy x dx

y
 (3.10) 

The integration on the left hand side can be conducted by using the change of 
variables as 
 2tan , secy dy d  (3.11) 
Recalling the trigonometric identity that 
 2 2tan 1 sec  (3.12) 
we find 

 

2

2 2

1

sec
1 tan 1

tan

dy d d
y

y

 (3.13) 

Consequently, the solution can be expressed as 

 1 31tan
3

y x C  (3.14) 

Alternatively, y can be written as: 

 31tan( )
3

y x C  (3.15) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 3.2 Find the general solution of the following first order ODE 

 
2

21
dy x
dx y

 (3.16) 

Solution: This ODE is clearly separable and can be arranged as: 
 2 21 y dy x dx  (3.17) 

Integrating on both sides, we have the solution as 

 
2 3

3 3
x yy C  (3.18) 

__________________________________________________________________ 
 
 Note that the solution of the first order ODE has only one unknown constant, 
and it must be used to fit the boundary value prescribed for the ODE. Let us 
assume that  

 1 2( ) ( )
( ), ( )

dH x dH yM x N y
dx dy

 (3.19) 

Substitution of (3.19) into (3.8) gives: 
 1 2( ) ( )H x H y C  (3.20) 
Now suppose that we know the value of y = y0 for x = x0 as: 
 0 0( )y x y  (3.21) 
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Application of this boundary condition into (3.20) gives the following value of C as 
 1 0 2 0( ) ( )H x H y C  (3.22) 
Back substitution of this value of constant into (3.20) gives  
 1 2 1 0 2 0( ) ( ) ( ) ( ) 0H x H y H x H y  (3.23) 
Note that now the solution contains no unknown constant. This solution can also be 
expressed in terms of the original given function M and N by noting that  

 1 1 0
0

( ) ( ) ( )
x

x
H x H x M d  (3.24) 

 2 2 0
0

( ) ( ) ( )
y

y
H y H y N d  (3.25) 

Therefore, the final solution can also be written as 

 
0 0

( ) ( ) 0
x y

x y
M d N d  (3.26) 

Note again that the boundary condition given in (3.21) has been used in prescribing 
the lower limit of the integration. 
__________________________________________________________________ 
Example 3.3 Find the general solution of the following first order ODE 

 
23 4 2 , (0) 1
2( 1)

dy x x y
dx y

 (3.27) 

Solution: This equation is separable and can be integrated with respect to y on the 
left hand side and with respect to x on the right hand side as: 
 22( 1) (3 4 2)y dy x x dx  (3.28) 
Integration on both sides gives 
 2 3 22 2 2y y x x x C  (3.29) 
Applying the boundary condition at x = 0 we have  
 2 3 2( 1) 2( 1) 0 2 0 2 0 C  (3.30) 
This gives the unknown constant C   
 3C  (3.31) 
Substitution of (3.31) into (3.29) results in the final solution  
  2 3 22 2 2 3y y x x x  (3.32) 
This is a quadratic equation in y and its solution is  

 
2 4

2
B B ACy

A
 (3.33) 

where A, B and C are coefficients of the quadratic equation. However, we have to be 
very careful in picking the final solution. It can be shown that the solution is (instead 
of taking the positive sign in front of the square root): 

 3 21 2 2 4y x x x  (3.34) 
To check this, we have to back-substitute (3.34) into the boundary condition: 
 (0) 1 2 1y  (3.35) 
If we take the positive sign, we can see that the boundary condition is not satisfied: 
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 (0) 1 2 3 1y  (3.36) 
The process of taking the square root creates an extra solution that does not satisfy 
the boundary condition. Therefore, we have to be extra careful when we deal with 
the square root of the quadratic equations. 
__________________________________________________________________ 

3.2.2 Homogeneous Equation 

We now consider a special form of first order ODE that can be readily transformed 
into a separable form and thus can be solved easily in principle (provided that we 
know how to conduct the subsequent integration). This type of ODE is called the 
homogeneous type. However, we must emphasize that this homogeneous type first 
order ODE should be not confused with the so-called homogeneous ODE in the 
classification discussed in Chapter 2, in which all terms in the differential equation 
involve the unknown of the equation. 
 The functional form on the right hand side of (3.2) is only a function of y/x. 
That is, whenever x and y appear, their appearance must be in the form of y/x. In other 
words, we have 

 ( )dy yg
dx x

 (3.37) 

where g can be any arbitrary function of y/x. To solve (3.37), we apply the following 
change of variables: 

 ,yu or y ux
x

  (3.38) 

Differentiation of the second of (3.38) gives 

 ( )dy dux u g u
dx dx

 (3.39)  

The last two terms of (3.39) can be rearranged as: 

 ( )du g u u
dx x

 (3.40) 

This is clearly separable and can be integrated as: 

 ln
( )
du x C

g u u
 (3.41) 

This provides the implicit solution of the differential equation. If integration can be 
carried out explicitly, we can obtain the solution in closed form by substituting this 
result into (3.38). This depends on the given function g(u). 
__________________________________________________________________ 
Example 3.4 Find the general solution of the following first order ODE 

 2 ( 0)dyx xy y x
dx

 (3.42) 

Solution: This is a linear first order ODE of homogeneous type  
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 2dy y y
dx x x

 (3.43) 

Adopting the following change of variables 

 yu
x

, (3.44) 

we obtain  

 2dy dux u u u
dx dx

 (3.45) 

Comparison of the last equation of (3.45) gives  

 
2
du dx

xu
 (3.46) 

Integrating both sides independently, we find 
 lnu x c  (3.47) 
Thus, u becomes 
 2[ln ]u x c  (3.48) 
Finally, back-substitution of (3.48) into (3.44) gives the solution as 
 2[ln ]y x x c  (3.49) 
__________________________________________________________________ 
 
For the case that M and N are given as 
 0Mdx Ndy  (3.50) 

 ( ), ( )n ny yM x N x
x x

 (3.51) 

we have  

 ( ) ( ) 0y ydx dy
x x

 (3.52) 

This is obviously a homogeneous type and we use the following change of 
variables 
 ,y vx dy vdx xdv  (3.53) 
The first order ODE becomes  
 ( ) ( )( ) 0v dx v vdx xdv  (3.54) 
Grouping the differential terms gives 
 { ( ) ( )} ( ) 0v v v dx v xdv  (3.55) 

 ( ) 0
( ) ( )

dx v dv
x v v v

 (3.56) 

 ( )exp{ }
( ) ( )

v dvx C
v v v

 (3.57) 

Back-substitution of the definition of v after integration gives the final solution. 
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3.2.3 Rational Polynomials  

Another form of the first order ODE, which is closely related to the homogeneous 
type first order ODE, is given as: 

 1 1 1

2 2 2

a x b y cdy
dx a x b y c

 (3.58) 

Both the denominator and numerator are given as a linear function of x and y. 
There are three possible scenarios associated with (3.58).  
 
Case 1: The simplest scenario is that the constant terms in both numerator and 
denominator are zero:  
 1 2 0c c  (3.59) 
Dividing all terms in the denominator and numerator by x, we obtain a homogenous 
type of ODE as: 

 
1 1

1 1

2 2
2 2

( )

ya ba x b ydy yx g
ydx a x b y xa b
x

 (3.60) 

As discussed in the last section, we make the standard change of variables given in 
(3.38) to make this ODE separable as: 

 ( )dy dux u g u
dx dx

 (3.61) 

 
2

1 1 2 2

2 2

( )( )
( )

a b a u b udu g u u
dx x a b u x

 (3.62) 

Therefore, we can integrate it as 

 2 2
2

1 1 2 2

( )
ln

( )
a b u du dx x C

xa b a u b u
 (3.63) 

where C is an integration constant. 
 There are three possible forms of the integration of (3.63), depending on the 
values of a1, b1, a2, and b2. To integrate it, let us first note that the following 
integration formulas will be useful to integrate (3.63) (Formulas 14.66, 14.265, and 
14.266 of Spiegel, 1968): 

    

1 2

2 2

2
2

2
2

2 2

2 2tan 4
4 4

2 4
2

1 2 4ln 4
4 2 4

ax b b ac
ac b ac b

dx b ac
ax bax bx c

ax b b ac b ac
b ac ax b b ac

 (3.64) 

 2
2 2

1 ln( )
2 2

xdx b dxax bx c
a aax bx c ax bx c

 (3.65) 

Applying these integration formulas, for (a2  b1 )2+4 a1 b2 > 0, we have 
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2
2 2 1 1

2
2 2 1 2 1 1 22 1

2 2
2 1 1 2 2 2 1 2 1 1 2

1ln ln[ ( ) ( ) ]
2

2 ( / ) ( ) ( ) 4
ln

2 ( ) 4 2 ( / ) ( ) ( ) 4

y yx C b a b a
x x

b y x a b a b a ba b

a b a b b y x a b a b a b

 (3.66) 

For (a2  b1 )2+4 a1 b2 = 0, we have 

 2 1 2 1

2 2 1 2

ln ln[( ) ]
2 ( / ) 2

a b a byx C
b y x a b x b

 (3.67) 

For (a2  b1 )2+4 a1 b2 < 0, we have 

 

2
2 2 1 1

12 1 2 2 1

2 2
2 1 1 2 2 1 1 2

1ln ln[ ( ) ( ) ]
2

2 ( / ) ( )
tan

( ) 4 ( ) 4

y yx C b a b a
x x

a b b y x a b

a b a b a b a b

 (3.68) 

 
Case 2: The second scenario corresponds to the case that the following determinant 
formed by the coefficients of x and y in the numerator and denominator equals zero.  
That is,  

 1 2

1 2
0

a a
b b

 (3.69) 

Alternatively, this can be expressed as: 
 1 2 2 1 0a b a b  (3.70) 
Thus, a1 and b1 can be expressed in term of a2 and b2 as: 

 1 1

2 2

a b k
a b

 (3.71) 

where k is a constant. Substitution of (3.71) into (3.58) gives 

 1 1 1 2 2 1
2 2

2 2 2 2 2 2

( )
( )

a x b y c k a x b y cdy f a x b y
dx a x b y c a x b y c

 (3.72) 

Note the fact that x and y only appear as a functional form of u defined as 
 2 2u a x b y  (3.73) 
Naturally, we can adopt u as the change of variables. Differentiation of (3.73) gives 

 2 2 2 2 ( )du dya b a b f u
dx dx

 (3.74) 

This renders (3.74) separable and it can be integrated as:   

 
2 2 ( )

du x C
a b f u

 (3.75) 

This can be integrated easily to get: 

 2 2 1 2 2 2 1
2 2 2 2

2 2 2 2 2 2

( )1 ln[ ]
b c k c a c b ca x b y a x b y x C

a b k a b k a b k
 (3.76) 
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Case 3: The third and last scenario is for the case that the following determinant 
formed by the coefficients a1, b1, a2, and b2 is nonzero.  That is,  

 1 2
1 2

1 2
0 0 and 0

a a
c c

b b
 (3.77) 

To make this ODE homogeneous, we can use a change of variables to remove the 
constants c1 and c2, such that the mathematical form of (3.60) can be recovered. To 
find the change of variables, we first formulate a system of two equations of straight 
lines by setting the numerator and denominator of (3.58) to zero: 

 1 1 1

2 2 2

0
0

a x b y c
a x b y c

 (3.78) 

Let the solution of this system be x =  and y = . A set of new variables can be 
defined as 

 
X x
Y y

 (3.79) 

Alternatively, this can be rewritten as: 

 
x X
y Y

 (3.80) 

Substitution of (3.80) into the numerator and denominator of (3.58) yields 

 
1 1 1 1 1 1

1 1 1 1 1

1 1

( ) ( )
( )

a x b y c a X b Y c
a X b Y a b c
a X b Y

 (3.81) 

 
2 2 2 2 2 2

2 2 2 2 2

2 2

( ) ( )
( )

a x b y c a X b Y c
a X b Y a b c
a X b Y

 (3.82) 

Therefore, (3.58) can be reduced to a homogeneous form in terms of the new 
variables X and Y as: 

 1 1

2 2

a X bYdY
dX a X b Y

 (3.83) 

Obviously, the solution given in (3.66) to (3.68) remains valid for (3.83) if the 
following substitutions are made: 
   , .x x y y  (3.84) 
 
__________________________________________________________________ 
Example 3.5 Find the general solution of the following first order ODE 

 1
3

dy x y
dx x y

 (3.85) 

Solution: The determinant of the factor of (3.77) is clearly non-zero. This 
corresponds to Case 3 discussed above. 
 By setting the numerator and denominator to zeros, we have 
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1 0
3 0

x y
x y

 (3.86) 

Addition and subtraction between these equations give the following solutions 
 1, 2,x y  (3.87) 
That is, we can set the shift of coordinates using 
 1, 2  (3.88) 
The new variables X and Y can be defined as 
 1, 2X x Y y  (3.89) 
Substitution of (3.89) into (3.85) gives 

 
11

3 1

Y
dY dy x y X Y X

YdX dx x y X Y
X

 (3.90) 

This is clearly a homogeneous form and we can assume the standard change of 
variable as  

 Yu
X

 (3.91) 

With this change of variable, (3.91) is converted to the following separable form: 

 
21

1
du uX
dX u

 (3.92) 

Putting all terms containing u on the left and grouping all terms containing X to the 
right, we have 

 2

(1 )
1

u du dX
Xu

 (3.93) 

Integrating both sides, we obtain 

 1 21tan ln(1 ) ln
2

u u X c  (3.94) 

Back substitution of (3.91) into (3.94) gives  

 1 1 2 2 2tan tan ( ) ln[ (1 ) ] ln[ ( ) ]Yu u X c X Y c
X

 (3.95) 

Finally, substitution of (3.89) into (3.95) yields the solution in the original unknown 
and variable y and x: 

 1 2 22tan ( ) ln ( 1) ( 2)
1

y x y c
x

 (3.96) 

This is the final solution in implicit form and we would not attempt to solve for y 
explicitly. 
__________________________________________________________________ 

3.2.4 Integrable Condition 

For non-separable first order ODEs, it is very tempting to integrate with respect to x 
while treating y as constant and similarly for integration with respect to y. Whether we 
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can do that is the subject of this section. Euler showed that only certain forms of first 
order ODEs could be integrated directly on both sides even though the equation is not 
separable.   
 Consider the total differential of a function u and by definition we have 

 ( , ) u udu x y dx dy
x y

 (3.97) 

Suppose that u equals a constant: 
 ( , )u x y c  (3.98) 
Thus, we arrive at the following differential form of an ODE: 

 ( , ) ( , )( , ) 0u x y u x ydu x y dx dy
x y

 (3.99) 

Recasting this into a standard form of ODE using M and N gives 

 ( , ) ( , ) ( , ) ( , ) 0u x y u x ydx dy M x y dx N x y dy
x y

 (3.100) 

This equation reveals that if the differential form given in the second of (3.100) is 
integrable, there must exist a function u such that 

 ( , ), ( , )u uM x y N x y
x y

 (3.101) 

Differentiation of M with respect to y gives 

 
2M u

y y x
 (3.102) 

On the other hand, differentiation of N with respect to x gives 

 
2N u

x x y
 (3.103) 

Recalling the fact that the order of differentiation can be reversed, we must require 

 
2 2u u

y x x y
 (3.104) 

Thus, the integrable condition is obtained: 

 ( , ) ( , )M x y N x y
y x

 (3.105) 

If and only if (3.105) is satisfied by functions M and N of a given ODE, we can 
integrate the equation using the following procedure. We can start with the 
definition for M that (alternatively we can start with that of N): 

 ( , )u M x y
x

 (3.106) 

Integrating with respect to x by treating the variable y in M as constant, we get 
 ( , ) ( , ) ( )u x y M x y dx y  (3.107) 

Note that we have to add an arbitrary function of y in the process (instead of a 
constant) because of the definition of partial differentiation. Next, differentiation of 
u just obtained in (3.107) with respect to y leads to  
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 ( )( , )u d yM x y dx N
y y dy

 (3.108) 

The last of (3.108) is obtained by virtue of the definition of N. Rearranging (3.108) 
gives an equation for finding the arbitrary function : 

 ( ) ( , )d y N M x y dx
dy y

 (3.109) 

Integrating both sides with respect to y, we get 

 ( ) ( , )y N M x y dx dy
y

 (3.110) 

Note that we can treat x in the bracket of (3.110) as constant. Finally, back 
substitution of (3.110) into (3.107) gives  

 ( , ) ( , ) [ ( , ) ]u x y M x y dx N M x y dx dy c
y

 (3.111) 

We should emphasize that the whole procedure works because we start with u(x,y) 
= c Therefore, it is of utmost importance to set u to a constant as the last of 
(3.111). Otherwise, we still do not obtain any solution, but just define a function u. 
Most students will make this careless mistake when they first learn this method. 
__________________________________________________________________ 
Example 3.6 Find the general solution of the following first order ODE 
 ( ) ( 2sin ) 0xe y dx x y dy  (3.112) 
Solution: Identifying M and N, we have 
 ( , ) , ( , ) 2sinxM x y e y N x y x y  (3.113) 
It is straightforward to see that the integrable condition in (3.105) is satisfied: 

 ( , ) ( , )1M x y N x y
y x

 (3.114) 

We can integrate directly by assuming the existence of a function u as 

 ,xu e y
x

 (3.115) 

 2sin ,u x y
y

 (3.116) 

Integration of (3.115) with respect to x gives 
 ( , ) ( ) ( ) ( )x xu x y e y dx y e yx y  (3.117) 

Note that we have treated y as a constant during the integration as: 
 ( , ) xM x y dx e xy  (3.118) 

Differentiating with respect to x and equating it to N, we find 

 ( )( , ) 2sinu d yM x y dx N x y
y y dy

 (3.119) 

Taking partial differentiation of (3.118) gives 
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 ( , )M x y dx x
y

 (3.120) 

Finally, we obtain  a differential equation for  from (3.119) 

 ( ) 2sind yx x y
dy

 (3.121) 

Canceling the function x on both sides, we obtain 

 ( ) 2sind y y
dy

 (3.122) 

We want to emphasize that if the function of x in (3.121) does not cancel out on 
both sides, we must have made a careless mistake. Finally, integration of (3.122) 
gives 
 ( ) 2cos ,y y  (3.123) 
Putting  into (3.117), we obtain the required function u 
 ( , ) ( ) 2cosx xu x y e yx y e yx y  (3.124) 
As remarked earlier, the most important step is to set u to a constant to get the final 
solution: 
 2cosxe yx y c  (3.125) 
__________________________________________________________________ 

3.2.5 Integrating Factor 

If the integrable condition is not satisfied, we can make it integrable by multiplying 
an integrating factor. This was first discovered by Euler. To illustrate the idea, we 
can recast the left hand side of the ODE as 

 1 {( )( ) ( )( )}
2

dx dy dx dyMdx Ndy Mx Ny Mx Ny
x y x y

 (3.126) 

The validity of this identity can be demonstrated by expanding the right hand side. 
Note also that we have an exact integral for both brackets on the right hand side as 

  ln( ), ln( )dx dy dx dy xd xy d
x y x y y

 (3.127) 

Both of these are exact integrals, thus, providing a simple way to determine the 
integrating factor. However, this method is not covered in most of the textbooks on 
differential equations. 
   We now look at a few special cases of (3.126). 

3.2.5.1 Case 1: Mx+Ny=0 

For this case, we can rearrange the differential equation (3.126) as 

 1 ln( )
( ) 2
Mdx Ndy xd
Mx Ny y

 (3.128) 

Since the right hand side is an exact integral, the integrating factor for such case is thus 
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 1
Mx Ny

 (3.129) 

This is also an integrating factor for the following special forms of M and N: 
 1 2( ) , ( )M F xy y N F xy x  (3.130) 
To prove this, we can rearrange this equation as   

 
1 2

1 2

1 { ln( ) ln( )}
( ) 2

( ) ( )1 { ln( ) ln( )}
2 ( ) ( )

Mdx Ndy Mx Ny xd xy d
Mx Ny Mx Ny y

F xy F xy xd xy d
F xy F xy y

 (3.131) 

We see the first term on the right of (3.131) is a function of xy only, and thus the 
right hand side is again an exact integral. This completes the proof.  

3.2.5.2 Case 2: Mx Ny=0 

For this case, to find the integrating factor we can rearrange (3.126) as   

 1 ln( )
2

Mdx Ndy d xy
Mx Ny

 (3.132) 

Since the right hand side is an exact integral, the integrating factor for this case is 

 1
Mx Ny

 (3.133) 

3.2.5.3 Case 3: Mx+Ny 0 & Mx Ny 0 

When both of these groups are not zeros, the integrating factor is  

 1
Mx Ny

 (3.134) 

If Mdx+Ndy = 0 is homogeneous, the integrating factor is  

 1
Mx Ny

 (3.135) 

Also recall that if the differential equation can be expressed as F1(xy)ydx + 
F2(xy)xdy = 0, we have shown that the integrating factor is given by (3.135). 
 

3.2.5.4 Stokes Method for Homogeneous Equation 

If M and N are homogeneous functions of x and y of the degree n, we have  
 ( ), ( ), /n nM x v N x v v y x  (3.136) 
Subsequently, the differential equation can be written as 

 
1

( ) ( )

{ ( ) ( )} ( )

n n

n n

Mdx Ndy x v dx x v dy

x v v v dx x v dv
 (3.137) 
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Case 1: ( ) ( ) 0v v v  (or Mx+Ny = 0) 
 
For this case, we have 
 1 ( )nMdx Ndy x v dv  (3.138) 

 1 ( )n
Mdx Ndy v dv

x
 (3.139) 

The right hand side is an exact integral, and thus the left hand side is also exact. 
Consequently, the integrating factor for case 1 is 

 1
1
nx

 (3.140) 

 
Case 2: ( ) ( ) 0v v v  (or Mx+Ny  0) 
 
Using (3.137), we have 

 1
( )

( ) ( ){ ( ) ( )}n
Mdx Ndy dx v dv

x v v vx v v v
 (3.141) 

Both terms on the right are exact differentials and, in turn, the right hand side is 
also exact 

 ( )
( ) ( )

Mdx Ndy dx v dv
Mx Ny x v v v

 (3.142) 

Thus, the integrating factor is 

 1
Mx Ny

 (3.143) 

This result obtained by Stokes is more general than the solution discussed in the 
previous section. 
 Note, however, that in Section 3.2.2 we have shown that (3.136) is 
homogeneous. Therefore, we can actually solve it without finding the integrating 
factor. 

3.2.5.5 Differential Equation for Integrating factor 

We now consider the general case of finding an integrating factor .  If a first order 
ODE is not exact, we can make it exact by multiplying a function called the 
integrating factor: 
 ( , ) ( , ) 0M x y dx N x y dy  (3.144) 
This is actually the definition of an integrating factor. Since (3.144) becomes exact 
after multiplying by , we must have the exact condition being satisfied: 

 ( , ) ( , ) ( , ) ( , )x y M x y x y N x y
y x

 (3.145) 

Differentiation and rearrangement of (3.145) gives 

 ( )M NN M
x y y x

 (3.146) 
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This is a first order PDE and is very difficult to solve for arbitrary functions M and 
N. The commonly adopted approach is to make certain assumptions regarding the 
functional form of the integrating factor, and check whether the assumed functional 
form is valid. In a sense, it is a trial and error approach. In particular, we assume 
the integrating factor can be expressed in terms of , which is a function of x and y: 
 ( , ) ( ), ( , )x y x y  (3.147) 
Substituting (3.417) into (3.146) gives 

 ( )d d M NN M
d x d y y x

 (3.148) 

Rearranging (3.148), we obtain  

 
( )M N

d y x d
N M

x y

 (3.149) 

We now observe that if the function on the right of (3.149) is a function of  only, 
we can immediately integrate both sides and result in the integrating factor. If this 
is the case, we can first rewrite it as 

 
( )

( )

M N
d y x d d

N M
x y

 (3.150) 

Integration leads to the following result for  

 
( )

( )
, ( )

d

M N
y xe

N M
x y

 (3.151) 

Note that we did not add an integration constant in (3.151) because we can always 
multiply an integrating factor by a constant to get another integrating factor. In fact, 
there are infinite integrating factors for the same ODE. However, if  is not a 
function of , we cannot solve it this way. If  = x, we have to check whether the 
following function is expressible in x only 

 
( )M N

y x
N

 (3.152) 

If  = y, we have to check whether the following function is expressible in y only 

 
( )M N

y x
M

 (3.153) 

There are, however, infinite possibilities for the structural form of . Therefore, this 
method should be our last resort when all other methods fail to apply. The 
following example illustrates another choice of . 
__________________________________________________________________ 
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Example 3.7 Find the integrating factor for the following first order ODE 

 
26(3 ) ( 3 ) 0x yx dx dy

y y x
 (3.154) 

Solution: We can identify  

 
26(3 ), ( 3 )x yM x N

y y x
 (3.155) 

It is straightforward to see that it is not exact. 

 2 2
6 2 3M N x y

y x yy x
 (3.156) 

To find the integrating factor, we assume 
 ( , ) ( )x y xy  (3.157) 
That is, we have  = xy.  We have   

 

2 2
2

2 2

6 6( 3 ) (3 ) 2 3

6( 2 3 )

x y y xN M y x x x
x y y x y x y

x yxy
yy x

 (3.158) 

Differentiating (3.160) with respect to y gives 

 
( )

1 1( )

M N
y x

xyN M
x y

 (3.159) 

Substitution of (3.158) into (3.151) gives  

 
1

ln
d

e e xy  (3.160) 
The original ODE becomes exact by using (3.157) as 
 2 3 2(3 6 ) ( 3 ) 0Mdx Ndx x y x dx x y dy  (3.161) 
Applying the technique discussed in Section 3.2.4, we have 

 23 6u M x y x
x

 (3.162) 

Integrating with respect to x, we find 
 3 23 ( )u x y x y  (3.163) 
Differentiating (3.163) with respect to y gives 

 3 2 33 ( )u N x y x y
y

 (3.164) 

This leads to a first order ODE for the unknown function : 

 2( ) 3d y y
dy

 (3.165) 

Integrating and substituting the result back into (3.163), we obtain the final solution 
as 
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 3 2 33u x y x y C  (3.166) 
__________________________________________________________________ 

3.2.5.6 Integrating Factors by Inspection 

Certain first order ODEs allow one to guess the corresponding integrating factor. 
Here are some examples. A particular example is that a first order ODE contains 
the following group: 
 xdy ydx  (3.167) 
The following Table 3.1 gives six possible integrating factors for (3.167) that we 
can use. 
 

Table 3.1 System of integrating factors by inspection 
 
Integrating 
factors 

Total differential Applicable ODE form 

2
1
x

 2 ( )xdy ydx yd
xx

 
( ) 0xdy ydx f x dx  

2
1
y

 2 ( )xdy ydx xd
yy

 
( ) 0xdy ydx f y dy  

1
xy

 [ln( )]xdy ydx yd
yx x

 
( )( ) 0xdy ydx f xy xdy ydx  

2 2
1

x y
 1

2 2 [tan ( )]xdy ydx yd
xy x

 
2 2( )( ) 0xdy ydx f x y xdy ydx  

2 2
1

x y
 2 2

1 [ln( )]
2

xdy ydx x yd
x yx y

 
2 2( )( ) 0xdy ydx f x y xdy ydx  

 
 
The validity of the second column of Table 3.1 can be established easily, and this 
will be left for readers to show (see Problem 3.36). The following examples 
illustrate this method of inspection.  
__________________________________________________________________ 
Example 3.8 Find the integrating factor for the following first order ODE 
 2 2( ) 0y xy dx x dy  (3.168) 
 
Solution: First, we rearrange the ODE as 
 2 ( ) 0y dx x ydx xdy  (3.169) 
The functional form in (3.167) appears. Thus, we find that the integrating factor is 
1/(xy2), and using this we have 

 2 0dx ydx xdy
x y

 (3.170) 
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Using the result in the second row of Table 3.1, we have 

 ( ) 0dx xd
x y

 (3.171) 

Thus, the solution of the ODE given in (3.168) is 

 ln xx C
y

 (3.172) 

where C is an arbitrary constant. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 3.9 Find the integrating factor for the following first order ODE 
 ( ) ( ) 0x y dx x y dy  (3.173) 
 
Solution: First, we rearrange the ODE as 
 ( ) 0xdx ydy ydx xdy  (3.174) 
The structural group given in (3.167) again appears. By inspection, we go for the 
fourth row of Table 3.1 and the integrating factor is 1/(x2+y2), and using this we 
have 

 
2 2

2 2 2 2

1 ( ) 0
2

d x y ydx xdy
x y x y

 (3.175) 

Integration gives the solution of the ODE as 

 2 2 11 ln( ) tan ( )
2

yx y C
x

 (3.176) 

where C is an arbitrary constant. 
_________________________________________________________________ 

3.2.6 Standard Linearized Form 

The most general first order “linear” ODE can be written as 

 ( ) ( )dy p x y Q x
dx

 (3.177) 

If we set Q(x) = 0, (3.177) can instantly be integrated since it becomes separable. 
The solution is: 

 
( )p x dx

y ce  (3.178) 
To solve (3.177), we can set the constant as a function of x in (3.178). This idea 
originated from Euler and is called variation of parameters. Thus, we assume the 
solution form (3.177) as    

 
( )

( )
p x dx

y c x e  (3.179) 
Differentiation of (3.179) gives  

 
( ) ( ) ( )( ) ( )( ) ( ) ( )

p x dx p x dx p x dxdy dc x dc xe c x p x e e p x y
dx dx dx

 (3.180) 
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Substitution of (3.180) into (3.177) leads to a differential equation for c(x) 

 
( )( ) ( )

p x dxdc x Q x e
dx

 (3.181) 

This can be readily integrated to give  

 
( )

( ) ( )
p x dx

c x Q x e dx C  (3.182) 

Substitution of (3.182) into (3.179) gives the final solution as 

 
( ) ( )

( ( ) )
p x dx p x dx

y e Q x e dx C  (3.183) 

We will see in a later section that many first order ODEs can be converted to the 
standard linearized form given in (3.177). 
  Another approach in solving (3.177) is integrating factor approach discussed 
in Section 3.2.6.  In particular, we can multiply (3.177) by : 

 ( ) ( ) ( ) ( ) ( )dyx x p x y x Q x
dx

 (3.184) 

Next, we note the following identity: 

 d y dy dy
dx dx dx

 (3.185) 

Comparison of the left hand side of (3.184) with (3.185) gives the following 
condition, if the equation is exact: 

 ( ) ( )d x p x
dx

 (3.186) 

This is clearly separable, and we have the integrating factor as 

 
( )p x dx

e  (3.187) 
Returning to (3.184) and using the integrating factor obtained in (3.189), it can be 
simplified as 

 d y Q
dx

 (3.188) 

Integration of (3.188) with respect to x gives 
 y Qdx c  (3.189) 

This gives the final solution: 

 
( ) ( )1 [ ] [ ]

p x dx p x dx
y Qdx c e Qe dx c  (3.190) 

This is, of course, the same as (3.183). Once we can convert any first order ODE to 
the standard form in (3.177), we can solve the ODE. Note again that there is one 
unknown constant in the solution of first order ODEs before we imposed any 
boundary condition. 

3.2.7 Bernoulli Equation 

We now consider a nonlinear first order ODE of the form: 
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 ( ) ( ) ndy p x y Q x y
dx

 (3.191) 

This nonlinear ODE was first considered by Jacob Bernoulli and for this equation, 
the following change of variable can be proposed: 
 1 nz y  (3.192) 
Differentiation of (3.192) with respect to x gives 

 (1 ) ndz dyn y
dx dx

 (3.193) 

Substitution of (3.193) into (3.191) gives the following ODE for z 

 (1 ) ( ) (1 ) ( )dz n P x z n Q x
dx

 (3.194) 

This becomes the standard linear first order ODE that we have discussed in the last 
section. Thus, we know how to solve it. We now illustrate the technique in the next 
example. 
__________________________________________________________________ 
Example 3.10 Find the general solution of the following first order ODE 

 
2

2 2
dy y x
dx x y

 (3.195) 

Solution: This is the Bernoulli equation with the following identifications: 
 21,n z y  (3.196) 
Using this change of variables suggested in (3.196), we obtain 

 2dz dyy
dx dx

 (3.197) 

Substitution of (3.196) and (3.197) into (3.195) gives 

 21dz z x
dx x

 (3.198) 

In the context of the standard linearized ODE, we have 

 21( ) , ( )p x Q x x
x

 (3.199) 

It can be solved as in Section 3.2.6 to give  

 
1 1

2 31( )
2

dx dx
x xz e x e dx c cx x  (3.200) 

Back substitution of the second of (3.196) into (3.200) gives the final solution for y 
as: 

 2 31
2

y cx x  (3.201) 

Note that (3.200) is not our final solution since z does not appear in our original 
equation. Thus, we must use the second equation of (3.196) to convert z to y. 
StudentsThis final step that students normally forget. 
__________________________________________________________________ 
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3.2.8 Riccati Equation 

As summarized by Watson (1944), the Riccati equation first appeared in a paper of 
John Bernoulli in 1694, who however never received the credit that he deserved. 
Riccati’s paper on the same differential equation was published in 1724. The 
generalized Riccati equation is given as  

 2
1 2 3( ) ( ) ( )dy q t q t y q t y

dt
 (3.202) 

This Riccati equation is not easy to solve, in general. Euler in 1763 found that the 
general solution can be determined if one of the particular solution y1 is known and 
can be written as  

 1
1( ) ( )
( )

y t y t
v t

 (3.203) 

Substitution of (3.203) into the left hand side of (3.202) gives 

 21
1 2 1 3 12 2

1 1dydy dv dvLHS q q y q y
dt dt dt dtv v

 (3.204) 

On the other hand, substituting the following value of y2  

 2 2 1
1 2

12
y

y y
v v

 (3.205) 

into the right hand side of (3.202) gives 

 2 1
1 2 1 3 1 2

21 1( ) ( )
ydyRHS q q y q y

dt v v v
 (3.206) 

Equating (3.204) and (3.206), we obtain  

 2 3 1 3( 2 )dv q q y v q
dt

 (3.207) 

This is in the form of the most general first order ODE discussed in Section 3.2.6 
and, therefore, can be integrated exactly. 
__________________________________________________________________ 
Example 3.11 Find the general solution of the following first order ODE 

 22 1 1dy y y
dt t t t

 (3.208) 

Solution: We can easily show that a particular solution of this Riccati equation is  
 1 1y  (3.209) 
We apply the following change of variables recommended by Euler 

 11y
v

 (3.210) 

Differentiation of (3.210) and substitution of the result into (3.208) gives 

 2 3 1 3
3 1( 2 ) ( )dv q q y v q v

dt t t
 (3.211) 

This converts the Riccati equation given in (3.208) into the standard linearized 
form discussed in Section 3.2.6. Thus, it can be solved using the standard 
approach.  
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__________________________________________________________________ 
 
In the years between 1697 and 1704, John Bernoulli found a change of variables to 
transform the Riccati equation into a linear second order ODE. In particular, we 
first rewrite the generalized Riccati equation as 

 2 0dy y y
dx

 (3.212) 

The following change of variables was communicated to Leibniz by John Bernoulli: 

 1 du uy
u dx u

 (3.213) 

Differentiating (3.213) with respect to x, we see that 

 2 2
( )uu u u uy
u

 (3.214) 

Substitution of (3.214) into (3.212) leads to the following linear second order ODE: 

 ( ) 0u u u  (3.215) 

Therefore, the nonlinear first order Riccati equation becomes a linear second order 
ODE. Actually, only certain types of nonlinear ODEs can be converted to linear 
ODEs. The Riccati equation is one of these special types of nonlinear ODEs. As 
shown in Section 4.14 in Chapter 4, a nonlinear ODE that has poles as its only 
movable singularities can be converted to a linear ODE. Although, in general, this 
linear second order ODE is easier to solve than the nonlinear ODE, its solution may 
not be easy to obtain. In the next example, we will consider a special form of the 
Riccati equation that can be solved readily. 
__________________________________________________________________ 
Example 3.12 Find the general solution of the following first order ODE 

 21dy y y
dt t

 (3.216) 

Solution: First, we can rewrite it as  

 2 1 0dy y y
dt t

 (3.217) 

Use the change of variables suggested by John Bernoulli 

 uy
u

 (3.218) 

Substitution of (3.218) into (3.217) gives 

 1 0u u u
t

 (3.219) 

This is a standard linear second order ODE, which is called the Bessel function of 
zero order. The solution is the Bessel function of the first kind and of the second 
kind of zero order (J0 and Y0):  
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 0 0( ) ( )u AJ t BY t  (3.220) 
More detailed discussions of Bessel functions will be given in Chapter 4. In fact, 
there is a close relation between the Riccati equation and the Bessel equation as 
discussed by Watson (1944). 
__________________________________________________________________ 
 
We now consider a special form of the Riccati equation that allows an exact 
solution to be found. In particular, we start from the original equation considered 
by Riccati as 

 2 mdu bu cx
dx

 (3.221) 

Use a change of variables of 

 yu
x

 (3.222) 

Differentiation of (3.222) gives 

 2
1du dy y

dx x dx x
 (3.223) 

Substitution of (3.223) into (3.221) results in  

 2 2mdyx y by cx
dx

 (3.224) 

This can be generalized to the following form 

 2 ndyx ay by cx
dx

 (3.225) 

This form is, however, a special form of (3.202) or (3.212).  
 In the following discussion, we will consider a special case of n = 2a, which 
allows an exact solution to be obtained. In particular, we now consider 

 2 2adyx ay by cx
dx

 (3.226) 

A change of variables can be proposed as 
 ay x v  (3.227) 
With this change of variables, it is straightforward to find 

 1a ady dvax v x
dx dx

 (3.228) 

Substitution of (3.228) into (3.226) arrives at the following separable ODE: 

 1 2a dvx bv c
dx

 (3.229) 

Note that the linear order term is removed by this change of variables, and it 
becomes separable: 

 2 1( / ) a
dv dx

b c b v x
 (3.230) 

If b and c are of equal signs, we can use a partial fraction to find 
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2

1 1
( / ) ( / )( / )

1 1 1{ }
2 / /

c b v c b v c b v

b
c c b v c b v

 (3.231) 

Therefore, integration on both sides gives 

 1/21 / 1( ) ln{ }
2 /

ab c b v x C
b c ac b v

 (3.232) 

Rearranging this equation yields  

 
2/

/

abcx
ac b v Ce

c b v
 (3.233) 

Solving for v, we obtain 

 

2

2

1

1

abcx
a

abcx
a

c Cev
b

Ce

 (3.234) 

Finally, substitution of (3.234) into (3.227) gives the final solution of the particular 
form of Riccati equation given in (3.226) as: 

 

2exp( ) 1

21 exp( )

a

a
a

bcxCc ay x
b bcxC

a

 (3.235) 

As expected, we only have one unknown constant. 
 For the case that b and c are of unequal signs, we can integrate (3.230) in 
terms of a tangent function by introducing the following change of variables 
 / tanv c b  (3.236) 
That is, we have 

 
1/2 2

2 2 1/2
( / ) sec

( / ) ( / )(1 tan ) ( / )
dv c b d d

b c b v b c b b c b
 (3.237) 

Therefore, integration of both sides (3.237) and (3.230) gives  

 1/2
1

( / )
ax C

ab c b
 (3.238) 

Therefore, integration of both sides results in  

 1 1tan { } { }
/

av cb x C
b ac b

 (3.239) 

Rearranging (3.239) and substituting (3.227) into the result, we obtain the final 
solution as 

 
1/2( )/ tan{ }

a
a bc xy c bx C

a
 (3.240) 
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Another specific form of Riccati equation encountered in viscous incompressible 
flows will be considered in Problem 3.14.  
__________________________________________________________________ 
Example 3.13 A special form of Riccati equation was found equivalent to the 
following Ramanujan differential equation: 

 2 21 1 1( ), ( ), ( ),
12 3 2

dP dQ dRq P Q q PQ R q PR Q
dq dq dq

 (3.241) 

This system relates to number theory studied by Ramanujan. As shown in Hill et al. 
(2007), this is equivalent to solving the following system after applying an 
appropriate change of variables:  

 2 21( 1) ( 2 1)
6

dvu v uv
du

 (3.242) 

 2 2

( 1) 2
3 ( 1) 1

dw w uv
du v u u

 (3.243) 

Once v is obtained by solving (3.242), then w can be determined by solving (3.243).  
 Our focus is to solve the Riccati equation given in (3.242). 
 
Solution: To solve (3.242), we apply the change of variables proposed by Bernoulli 
in (3.213): 

 
26( 1)( ) u dXv u
X du

 (3.244) 

Differentiation of (3.244) gives 

 
2 2 2

2
2 2

12 6( 1) 6( 1)( )dv u dX u dX u d X
du X du du XX du

 (3.245) 

Substitution of (3.245) into (3.242) gives 

 
2

2 2 2
2

7( 1) ( 1) 0
3 36

d X u dX Xu u
dudu

 (3.246) 

We now apply another round of change of variables 

 2 1/2( 1)
uw

u
 (3.247) 

Using this change of variables, we obtain 

 2 3/2

1
( 1)

dX dX
du dwu

 (3.248) 

 
2 2

2 2 5/2 2 3 2

3 1
( 1) ( 1)

d X u dX d X
dwdu u u dw

 (3.249) 

Substitution of (3.248) and (3.249) into (3.246) arrives at 

 
2

2
2

2( 1) 0
3 36

d X dX Xw w
dwdw

 (3.250) 

Finally, we impose the following shift of variables: 
 ( 1) / 2w  (3.251) 
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In terms of this new variable, we have 

 
2

2

1 2(1 ) ( ) 0
3 3 36

d X dX X
dd

 (3.252) 

This equation is a special form of hypergeometric equation, which was first 
discovered by Gauss as: 

 
2

2(1 ) { ( 1) } 0d y dyx x c a b x aby
dxdx

 (3.253) 

The solution of (3.253) can be written as 
 1( , ; ; ) ( 1, 1;2 ; )cy AF a b c x Bx F a c b c c x  (3.254) 
where F is the hypergeometric series defined as: 

 2( 1)1 ...
1 1 2 ( 1)
a b a a by x x

c c c
 (3.255) 

Detailed discussion of this hypergeometric series will be given in Chapter 4. 
Comparison of (3.252) and (3.253) gives the solution as: 

 2/31 1 1 1 1 5( , ; ; ) ( , ; ; )
6 6 3 2 2 3

X AF B F  (3.256) 

Back substitution into the original unknown and variables gives the final solution 
as: 

 2 1/2 2 1/2

3 1( )
2( 1) 2( 1)

uv
u u

 (3.257) 

where 
2/3 1/3

2/3

1 1 1 1 1 5 2 1 1 5( , ; ; ) ( , ; ; ) ( , ; ; )
6 6 3 2 2 3 3 2 2 3( )

1 1 1 1 1 5( , ; ; ) ( , ; ; )
6 6 3 2 2 3

F C F C F

F C F
 (3.258) 

where the superimposed prime means differentiation with respect to . Therefore, a 
certain form of Riccati equation can be expressed in terms of hypergeometric 
series. Another particular form of Riccati equation that can be solved in terms of 
hypergeometric series is given in Problem 4.26 of Chapter 4. 
__________________________________________________________________ 

3.2.9 Jacobi Method 

Jacobi considered the following first order ODE: 
    ( )( ) ( ) ( ) 0A A x A y xdy ydx B B x B y dy C C x C y dx  (3.259) 
More specifically, Jacobi showed that (3.259) can be converted to the Riccati 
equation.  Allow the following change of variables 
     ,x y  (3.260) 
Substitution of these into the differential equation given in (3.259) gives 

      
[ ( ) ( )][( ) ( ) ]

[ ( ) ( )] [ ( ) ( )] 0
A A A d d

B B B d C C C d
 (3.261) 
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This ODE can be reduced to a form 
 ( )( ) ( ) ( ) 0a a d d b b d c c d  (3.262) 
provided that 
 [ ] [ ] 0A A A B B B  (3.263) 
 [ ] [ ] 0A A A C C C  (3.264) 
 ,a A a A  (3.265) 
 2 ,b B A A A b B A  (3.266) 
 , 2c C A c C A A A  (3.267) 
Equations (3.263) and (3.264) require 

 C C C B B BA A A  (3.268) 

In a sense,  is like a characteristics value and depends on the given differential 
equation. These can be rearranged as 

 
0

( ) 0
( ) 0

A A A
B B B
C C C

 (3.269) 

Elimination of both  and  gives 

 
( )( )( ) ( ) ( )

( ) 0
A B C B C A A C B

A B C A B C A BC
 (3.270) 

This is a third order equation for  and a closed form root is in general not 
possible. The value of  needs to be evaluated numerically. Then,  and  can be 
determined accordingly by back substitution of  into (3.269). Obviously, (3.262) 
can be simplified by using the following change of variables 

 v  (3.271) 

 2 ,d ddv d vd dv  (3.272) 

Substitution of (3.271) and (3.272) into (3.262) gives 

 2[( ) ( )] ( ) ( ) 0dc c v v b b v b b v a a v
dv

 (3.273) 

This is the Riccati equation and its solution technique has been discussed in the 
previous section. Therefore, ODE of the form given in (3.259) can be converted to 
the Riccati equation as demonstrated by Jacobi. 

3.2.10 Integration by Differentiation 

In this section, we will introduce a concept that sounds contradictory at first sight. 
Actually, there are certain types of differential equations that can be solved by 
differentiation. Yes, we carry integration by differentiation. Consider a general 
form of first order ODE 
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 ( , ), dyy F x p p
dx

 (3.274) 

This type of ODE can be solved by differentiation. Differentiation of (3.274) gives 

 ( , ) ( , )dy F x p F x p dp
dx x p dx

 (3.275) 

Substitution of (3.275) into (3.274) leads to 

 ( , , )dpp x p
dx

 (3.276) 

If we can integrate (3.276) once, we can get 
 ( )p f x c  (3.277) 
Back substitution of (3.277) into the original ODE, we get symbolically 
 1( , , ) 0G x y c  (3.278) 
Of course, in reality the workability of this technique depends on whether we can 
integrate (3.276).  
 Another form of first order ODE that can be solved by integration by 
differentiation is 

 ( , ), dyx F y p p
dx

 (3.279) 

Differentiation of (3.279) with respect to y gives  

 ( , ) ( , )y p
dx dpF y p F y p
dy dy

 (3.280) 

This equation can be rewritten as  

  1 ( , , )dpf y p
p dy

 (3.281) 

In general, we can integrate (3.281) to obtain 
 ( )p g y c  (3.282) 
Back substitution of (3.282) into the original ODE, we obtain the solution as 
 2 ( , , ) 0G x y c  (3.283) 
 A special form of the above forms of first order ODE is that both x and y 
appear linearly in the functional form of 
    ( ) ( ) ( )x p y p p  (3.284) 
Rewriting (3.284), we have 

    1 1
( ) ( ) ( ) ( )
( ) ( )
p py x x p p
p p

 (3.285) 

Alternatively, we can also rewrite (3.285) as 

    2 2
( ) ( ) ( ) ( )
( ) ( )

p px y y p p
p p

 (3.286) 

Differentiation of (3.285) gives 

    1 1 1( ) { ( ) ( )} dpp p x p p
dx

 (3.287) 
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Rearrangement of (3.287) leads to 

    1 1 1{ ( )} ( ) ( )dxp p x p p
dp

 (3.288) 

Dividing through by the bracket term gives 

    1 1

1 1

( ) ( )
( ) ( )

p pdx x
dp p p p p

 (3.289) 

This is the most general linear first order differential equation that we have 
considered earlier in Section 3.2.6. Thus, the solution can be solved in terms of 
integration and expressed symbolically as: 
    ( )x g p  (3.290) 
Suppose that we can invert this equation to give: 
    2 ( )p g x  (3.291) 
Substitution of this into the original differential equation (3.284) gives the final 
solution. 
__________________________________________________________________ 
Example 3.14 Find the general solution of the following first order ODE 
 2x yp ap  (3.292) 
Solution: Method 1: Differentiating this equation with respect to x gives 

 21 2dp dpp y ap
dx dx

 (3.293) 

However, the original ODE can be used to find: 

 
2ap xy
p

 (3.294) 

Substitution of (3.294) into (3.293) gives 

 
2

21 ( ) 2ap x dp dpp ap
p dx dx

 (3.295) 

Inverting this equation, we obtain a general linear ODE for unknown x: 

 2 2(1 ) 1
dx x ap
dp p p p

 (3.296) 

Integration of this equation gives 

 2

2
[ ln{ 1 }]

1

px c a p p
p

 (3.297) 

The original differential equation can also be used to give the value of p: 

 
2 4

2
y y ax

p
a

 (3.298) 

The final solution is obtained by substituting (3.298) into (3.292). 
 Method 2: Differentiating this equation with respect to y gives 

 2dx dp dpp y ap
dy dy dy

 (3.299) 
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This is a general linear ODE for unknown y with variable p. The solution of this is 

 2 2

2

1 [ 1 ln{ 1 }]
1

y c ap p a p p
p

 (3.300) 

Again, the final solution is obtained by substituting (3.298) into (3.300). 
__________________________________________________________________ 

3.2.11 Clairaut Equation 

The Clairaut equation is a special case of (3.284) that can be solved using 
integration by differentiation. In particular, the Clairaut equation is recovered as a 
special case if we set 
    ( ) 1, ( ) , ( ) ( )p p p p f p  (3.301) 
That is, the Clairaut equation is  

 ( )dy dyy x f
dx dx

 (3.302) 

Differentiation of (3.302) with respect to x gives 

 
2 2

2 2( )dy dy d y dy d yx f
dx dx dxdx dx

 (3.303) 

This can be factorized as 

 
2

2[ ( )] 0dy d yx f
dx dx

 (3.304) 

Therefore, this solution can be found by setting either factor in (3.304) to zero: 

 
2

2 0, [ ( )] 0d y dyor x f
dxdx

 (3.305) 

Taking the first equation in (3.305), we have 

 dy C
dx

 (3.306) 

However, we should not integrate this again to get y because this will lead to 
another unknown constant. Instead, we should substitute (3.306) into (3.302) 
directly to get 
 ( ) ( )y x Cx f C  (3.307) 
As expected, we only have one unknown constant C. The solution of the second of 
(3.305) does not lead to a solution of the original differential equation, but instead 
yields a so-called singular solution, which actually gives the envelope of the family 
of parametric solutions given in (3.307): 

 ( )dyx f
dx

 (3.308) 

More discussion on this singular solution is next. 
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3.2.12 Singular Solution 

Recall from the last section that there are two solutions for the Clairaut equation 
because of differentiation. However, one of them is called a singular solution and is 
not the actual solution of the Clairaut equation, but instead it gives the envelope of 
the actual solutions with a different constant C. The singular solution had been 
studied extensively and theoretically by many mathematicians, including Leibniz in 
1694, Taylor in 1715, Clairaut in 1734, Euler in 1756, Laplace, De Morgan, 
Lagrange, and Cauchy in 1772. It is known that exact differential equation does not 
admit a singular solution. The singular solution only appears in nonlinear first order 
ODEs, just like the Clairaut equation discussed in the last section. We will briefly 
summarize its determination here. 
 Not all first order ODEs will have a singular solution. If a first order ODE is 
given as 
 ( , , ) 0x y p , (3.309) 
there is no singular solution if the equation is linear in p. If the solution of the 
differential equation is 
 ( , , ) 0f x y c , (3.310) 
the partial derivative of this with respect to x is 

 0f f y
x y x

 (3.311) 

A technique is called c-discriminant (Forsyth, 1956) if it assumes that c is a 
function of x such that: 

 0f f y f dc
x y x c dx

 (3.312) 

To convert back to the (3.311), we need to set 

 0f dc
c dx

 (3.313) 

This requires  

 0f
c

 (3.314) 

This and the solution (3.310) together provide a system to determine the singular 
solution by eliminating c from:   

 ( , , ) 0, 0ff x y c
c

 (3.315) 

However, this topic does not have obvious applications in science and engineering, 
becomes obsolete, and is not covered in most textbooks in engineering 
mathematics. Our coverage of it will end here. 
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3.2.13 Lagrange  Equation  

A slight extension of the Clairaut equation is called the Lagrange equation. It can 
be expressed in the following general form (Zwillinger, 1997; Piaggio, 1920; 
Forsyth, 1956) 

 ( ) ( ), dyy xf p p p
dx

 (3.316) 

Note that if f(p) = p, the Clairaut equation is recovered as a special case. 
Differentiation of the Lagrange equation yields 

 ( ) [ ( ) ( )] dpp f p xf p p
dx

 (3.317) 

This remains a nonlinear first order ODE. However, if we reverse the roles of x and 
p and we arrive at a linear ODE for x with p being the variable: 

 ( ) ( )
( ) ( )

dx f p px
dp f p p p f p

 (3.318) 

The solution of this can be found exactly. Let the solution be expressed 
symbolically in the following form: 
 ( , , ) 0F x p c  (3.319) 
We can solve for p and substitute this solution of p into (3.316) to obtain the final 
solution. 

3.2.14 Factorization of Nonlinear Form 

Let us consider a nonlinear first order ODE in the form  

 1 2
1 2( ) ( ) ( ) ... 0n n n

n
dy dy dyP P P
dx dx dx

 (3.320) 

where Pk (k = 1,2,...,n) are, in general, functions of x and y. Suppose that (3.320) 
can be factorized as: 

 1 2( )( ) ( ) 0n
dy dy dyp p p
dx dx dx

p(dy(((
dx

((  (3.321) 

where pk (k = 1,2,...,n) are functions of x and y. The solution can be considered as  

 1 2( ) 0, ( ) 0, , ( ) 0n
dy dy dyp p p
dx dx dx

, (
dx

, (dy((((  (3.322) 

Let the corresponding solutions of these first order ODEs be: 
 1 1 2 2( , ) 0, ( , ) 0, , ( , ) 0n nu x y c u x y c u x y c(n, (n (((  (3.323) 
The solution of (3.320) can be formed as a product of any two or more of these 
solutions, for example 
 1 2[ ( , ) ][ ( , ) ] [ ( , ) ] 0nu x y c u x y c u x y cn y[ ( ,( ,n[ ([ ([ ((  (3.324) 
A number of examples are used to illustrate this technique. 
__________________________________________________________________ 
Example 3.15 Find the general solution of the following first order nonlinear ODE 
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 2 2 2( ) 0dy a y
dx

 (3.325) 

Solution: Factorization of (3.325) gives 

 ( )( ) 0dy dyay ay
dx dx

 (3.326) 

Setting both of these brackets to zero results in 2 equations: 
 1 2ln 0, ln 0y ax c y ax c  (3.327) 
The solution is then given as 
 (ln )(ln ) 0y ax c y ax c  (3.328) 
or 
 ( )( ) 0ax axy ce y ce  (3.329) 
Note again that we have set the constants equal in both equations of (3.327). 
Readers are advised to check the validity of this solution. 
__________________________________________________________________ 
 
To visualize the power of factorization, let us consider the following nonlinear 
ODE of the first order with non-constant coefficients:   

 2 2( ) 3 2 0dy dyx x
dx dx

 (3.330) 

It is straightforward to show that it is equivalent to 

 ( 2 )( ) 0dy dyx x
dx dx

 (3.331) 

By setting the first factor to zero, we have 

 ( 2 ) 0dy x
dx

 (3.332) 

This is a separable first order ODE and can be readily integrated to give 
 2

1y x c  (3.333) 
Similarly, setting the second factor to zero results in the following solution 

 
2

22
xy c  (3.334) 

The final solution is    

 
2

2( )( ) 0
2
xy x c y c  (3.335) 

Since the ODE is of first order, we only need one unknown constant c. 
__________________________________________________________________ 
Example 3.16 Find the general solution of the following nonlinear first order ODE 

 2 2( ) 4dy x
dx

 (3.336) 

Solution: Factorization gives   

 ( 2 )( 2 ) 0dy dyx x
dx dx

 (3.337) 
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The solutions for the first and second factors are respectively  
 2

1y x c ,    2
2y x c  (3.338) 

The final solution is then 
 2 2( )( ) 0y x c y x c      (3.339) 
Or equivalently, we have  
 2 4( ) 0y c x      (3.340) 
 __________________________________________________________________ 

3.2.15 Solution by Taylor Series Expansion 

If a boundary condition is given, we can find an approximation of the solution by 
Taylor series expansion. First, we can rewrite a first order ODE as 

 1( , )dy M f x y
dx N

 (3.341) 

Taking differentiation with respect to x, we find  

 
2

1 1 1 1
1 22 ( , )

f f f fd y dy f f x y
x y dx x ydx

 (3.342) 

 
3

2 2 2 2
1 33 ( , )

f f f fd y dy f f x y
x y dx x ydx

 (3.343) 

 1 1 1 1
1 ( , )

n
n n n n

nn
f f f fd y dy f f x y

x y dx x ydx
 (3.344) 

Using Taylor series expansion about a point x0, we get 

 
2

0
0 1 0 0 0 2 0 0

( )
( , )( ) ( , ) ...

2!
x x

y y f x y x x f x y  (3.345) 

Suppose that the boundary condition is given as 
 0 0( 0)y x y c  (3.346) 
An approximation of the solution is 

 
2

1 2( ) (0, ) (0, ) ...
2!
xy x c f c x f c  (3.347) 

When the number of terms goes to infinity, the solution approaches an exact 
solution. In reality, depending on the explicit form of f1, the process of 
differentiation may lead to very tedious calculation. Nevertheless, this approach can 
give a fast first order approximation of the result.  

3.3 SECOND ORDER ODE 

In this section, we consider second order ODEs. The most general case can be 
expressed as 
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2

2 ( , , )d y dyf t y
dtdt

 (3.348) 

If we assume the second order ODE is linear, we can express it as 
 ( ) ( ) ( )y p t y q t y g t  (3.349) 
Because of the nonhomogeneous term g, we must write the solution as a sum of two 
solutions. That is, the homogeneous solution plus the particular solution: 
 ( ) ( ) ( )h py t y t y t  (3.350) 
The proof of this is deferred to Section 3.3.2. The procedure of finding the 
particular solution will be discussed in Sections 3.3.3 and 3.3.4.  
 For the case of a homogeneous differential equation, suppose that we can find 
the homogeneous solution as: 
 1 1 2 2( ) ( )y C y x C y x  (3.351) 
Whether a boundary value problem can be solved, we have to study the so-called 
Wronskian. In particular, let us assume that the boundary conditions are given as: 
 0 0 0 *( ) , ( )y t y y t y  (3.352) 
Substitution of (3.351) into (3.352) gives  

 1 1 0 2 2 0 0

1 1 0 2 2 0 *

( ) ( )
( ) ( )

C y t C y t y
C y t C y t y

 (3.353) 

This system provides two equations for two unknowns, and using Cramer’s rule we 
can solve for the unknown constants: 

 

0 2 0 1 0 0

2 0 1 0
1 2

( ) ( )
* ( ) ( ) *

,

y y t y t y
y y t y t y

c c
W W

 (3.354) 

where W is called the Wronskian and is defined as: 

 1 0 2 0
1 0 2 0 1 0 2 0

1 0 2 0

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
y t y t

W y t y t y t y t
y t y t

 (3.355) 

For the system to be solvable, we must require that the Wronskian is non-zero. That 
is, 
 1 2 0, 0W y y t  (3.356) 

3.3.1 ODE with Constant Coefficients 

Let us consider the simplest case of constant coefficients without a 
nonhomogeneous term. That is, p and q in (3.349) are both constants: 
 0y py qy  (3.357) 
For constant coefficients, it can be proved that the solution must be in the form of 
an exponential function as: 
 rxy e  (3.358) 
Substitution of (3.358) into (3.357) gives the following equation: 
 2 0r pr q . (3.359) 
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Since our assumed solution should not be zero (if it is zero, the solution becomes a 
trivial solution), (3.359) must be zero. This is also the characteristic equation of the 
ODE given in (3.357). There are two roots of this quadratic equation: 

 
2

2
1,2

4
, 4

2
p p q

r p q  (3.360) 

These characteristic roots can be real, repeated, or complex, depending on the 
values of . The three scenarios are: 
 
Case 1: 0  
 
For this case, we have two distinct real roots: 

 
2 2

1 2
4 4

,
2 2

p p q p p q
r r  (3.361) 

The corresponding independent solutions are: 
 1 2

1 2,r x r xy e y e  (3.362) 
The general solutions are then linear combinations of these solutions  
 1 2

1 2
r x r x

hy C e C e  (3.363) 
The unknown constants need to satisfy the corresponding boundary condition (but 
this will be done after we obtain the particular solution first). 
 
Case 2: 0  
 
In this case, since  = 0 we must have two roots that are the same. Thus, the 
repeated roots are 

 1 2 2
pr r  (3.364) 

The first solution is obvious, while the second independent solution cannot be the 
same as the first one. To find the second one, we use Euler’s approach of variation 
of parameter (i.e., replacing the constant by a function of x). Or equivalently, we 
can use the well-known theorem (Forsyth, 1956) that the second independent 
solution must be in the form of an unknown function multiplying the first known 
solution. In either case, we have two independent solutions as: 
 1 1

1 2, ( )r x r xy e y u x e  (3.365) 
To find the function u, we note that the differentiations of y2 are: 
 1

2 1( ) r xy u r u e  (3.366) 

 2 1
2 1 1( 2 ) r xy u r r u u e  (3.367) 

Substitution of these results into (3.357) gives 
 2

1 1 1(2 ) ( ) 0u r p u r pr q u u  (3.368) 
Both bracket terms are zeros, and we end up with the last term in (3.368). Thus, we 
have 
 u Cx  (3.369) 
With the second independent solution, we can now have two independent solutions as: 
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 1
1 2( ) r x

hy C C x e  (3.370) 
Although the present analysis is for second order only, a similar result is also 
obtained for the case of a higher order ODE with roots of higher multiplicity. 
 
Case 3: 0  
 
Finally, for  < 0 the two roots are complex conjugate pairs. Thus, the 
characteristic roots are: 

 2
1,2 , 4

2
pr p q  (3.371) 

Thus, expressing the real and imaginary parts of it as  and  we get 
 1 2, , ,r i r i  (3.372) 
The two independent solutions are 
 ( ) ( )

1 2,i x i xy e y e  (3.373) 
However, (3.357) is real but the solutions given in (3.373) are complex. We can 
take the real part and the imaginary part as the solutions: 

 3 1 2 4 1 2
1 1( ) cos , ( ) sin
2 2

x xy y y xe y y y xe
i

 (3.374) 

Finally, the homogeneous solutions are 
 1 2( cos sin )x

hy e C x C x  (3.375) 
We will illustrate the solution in the following examples. 
__________________________________________________________________ 
Example 3.17 Find the general solution of the following second order ODE 
 2 3 0y y y  (3.376) 
 
Solution: For an ODE with constant coefficients, we can assume the solution as an 
exponential function as: 
 rxy e  (3.377) 
Substitution of (3.377) into (3.376) gives the following characteristic equation 
 2 2 3 0r r  (3.378) 
Two real distinct roots are found, and we have Case 1. The two distinct roots are 
 1 21, 3r r  (3.379) 
Finally, the general solution is 
 3

1 2
x xy C e C e  (3.380) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 3.18 Find the general solution of the following second order ODE with 
given initial condition 

 
2

2 2 0d s ds s
dtdt

 (3.381) 

 0 04, 2t ts s  (3.382) 
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Solution: Again, an exponential solution is expected: 
 rts e  (3.383) 
The corresponding characteristic equation is 
 2 2 1 0r r  (3.384) 
It is straightforward to see that the roots are equal: 
 1 2 1,r r  (3.385) 
Thus, the corresponding solution is 
 1 2( ) ts C C t e  (3.386) 
Differentiating this with respect to t, we obtain 
 2 1 2( )t ts C e C C t e  (3.387) 
Applying the two initial conditions, we get two equations for two unknowns: 
 0 1 0 2 14 , 2t ts C s C C  (3.388) 
The unknown constants are solved as 
 1 24, 2C C  (3.389) 
Finally, the solution is 
 (4 2 ) ts t e  (3.390) 
__________________________________________________________________ 
__________________________________________________________________ 
Example 3.19 Find the general solution of the following second order ODE 
 2 5 0y y y  (3.391) 
 
Solution: Finally, this example illustrates the case of a complex conjugate pair of 
roots. Assuming exponential function 
 rxy e , (3.392) 
we get the following characteristic equation 
 2 2 5 0,r r  (3.393) 
The corresponding pair of complex conjugate roots is 
 1,2 1 2 ,r i  (3.394) 
The general solution becomes   
 1 2( cos 2 sin 2 )xy e C x C x  (3.395) 
 __________________________________________________________________ 

3.3.2 Nonhomogeneous ODE 

It was discovered by Lagrange that the general solution of a nonhomogeneous ODE 
consists of two parts, namely the homogeneous solution (solution of the differential 
equation without the nonhomogeneous term) plus a particular solution of the 
nonhomogeneous ODE. Mathematically speaking, for a linear second ODE,  
 ( ) ( ) ( )y P x y Q x y f x  (3.396) 
the general solution is 
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 ( ) ( ) ( )h py x y x y x  (3.397) 
where yh and yp are the homogeneous solutions that satisfy (3.396) with f(x) = 0 
and the particular solution satisfies (3.396) with nonzero f(x). To show this, we first 
substitute (3.397) into the left hand side of (3.396) as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ] [ ( ) ( ) ]

( ) 0 ( )

h p h p h p

p p p h h h

y P x y Q x y y y P x y y Q x y y

y P x y Q x y y P x y Q x y

f x f x

(3.398) 

The final result is obtained by observing that the term containing yp equals f(x) and 
the term containing yp equals zero. 
 Therefore, it is of utmost importance that classification in terms of 
homogeneous or nonhomogeneous is made properly otherwise, the solution is 
automatically incorrect.  
 In the next two sections, we will discuss the method of undetermined 
coefficient and the method of variation of parameters in obtaining the particular 
solution. 

3.3.3 Undetermined Coefficient 

For the following discussions, we will restrict to the cases of constant coefficient, 
that is 
 ( )y py qy f x  (3.399) 
where p and q are constants. Consider the case that the nonhomogeneous term is a 
product of polynomials and an exponential function  
 ( ) ( )x

mf x e P x  (3.400) 
where Pm is defined as 
 1

0 1( ) ...m m
m nP x a x a x a  (3.401) 

Since the exponential function cannot be altered or killed by differentiation, we 
must assume that the particular solution must also be proportional to the same 
exponential function. Thus, we assume the particular solution as: 
 ( ) xy Q x e  (3.402) 
Differentiation of this assumed solution form gives 
 x xy Q e Qe  (3.403) 

 22x x xy Q e Q e Qe  (3.404) 
Substitution of (3.403) and (3.404) into (3.399) leads to 
 2( ) (2 ) ( ) ( ) ( ) ( )mQ x p Q x p q Q x P x  (3.405) 
If we look closely, we discover that the bracket terms in (3.405) are the 
characteristic equation of the homogeneous ODE. Thus, it becomes very important 
for us to check whether the exponential power  of the nonhomogeneous term is 
the same as the characteristic roots of the homogeneous solution given in (3.359).  
 
Case 1:  is not a characteristic root  
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For this case, none of the bracket terms in (3.405) vanishes or: 
 2 0, 2 0p q p  (3.406) 
Thus, the highest power term of Q on the right hand side of (3.405) must be the 
same as polynomials Pm: 
 ( ) ( )mQ x Q x  (3.407) 
More specifically, we expect the particular solution is  
 ( ) x

p my Q x e  (3.408) 
where Qm is  
 1

0 1( ) ...m m
m nQ x b x b x b  (3.409) 

Substitution of (3.409) into (3.399) gives 

 
2 1

0 2 0 1
2 1 1

0 1 0 1

[ ( 1) ... 2 ] (2 )[ ... ]

( )[ ... ] ...

m m
m m

m m m m
m m

m m b x b p mb x b

p q b x b x b a x a x a
 (3.410) 

Matching coefficients for different powers of x, we find m equations in ascending 
order as: 

 

2
0 0

2
0 1 1

2
2 1

( )

(2 ) ( )

2 (2 ) ( )m m m m

p q b a

p mb p q b a

b p b p q b a

 (3.411) 

Once this system of equations is solved, we obtain the particular solution. 
Therefore, Case 1 is purely a matter of matching terms on both sides. 
 
Case 2:  is  a simple characteristic root  
 
If the exponential power  matches the characteristic roots of the homogeneous 
differential equation (3.360), we have 
 2 0, 2 0p q p  (3.412) 
Thus, (3.405) is reduced to  
 ( ) (2 ) ( ) ( )mQ x p Q x P x  (3.413) 
The highest order term of the power series on the left is Q’ (i.e., the first derivative 
of Q) which must have power of order m in order to match the highest order term 
on the right hand side. This suggests that we should choose Q as 
 ( ) ( )mQ x xQ x  (3.414) 
Consequently, for Case 2 (simple root matching) we have the assumed particular 
solution in the following form: 
 ( ) x

p my xQ x e  (3.415) 

Case 3:  is a double characteristic root  
 
Finally, for Case 3, power  matches with the double or repeated characteristic 
roots of the homogeneous equation, and we have 
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 2 0, 2 0p q p  (3.416) 
Thus, (3.405) is simplified to 
 ( ) ( )mQ x P x  (3.417) 
Similar to the earlier discussion given in Case 2, we have to raise the power of the 
polynomials by two in order to match the highest power on both sides of (3.413): 
 2( ) ( )mQ x x Q x  (3.418) 
Therefore, we expect the particular solution to be expressed as: 
 2 ( ) x

p my x Q x e  (3.419) 
In summary, we can combine all three different scenarios into a simple formula: 
 ( )k x

p my x e Q x  (3.420) 
where k equals zero, one, or two for the case of no match of the root (zero 
matching), match a simple root (one matching), or match the double root (two 
matching). Let us illustrate again by example.  
__________________________________________________________________ 
Example 3.20 Find the particular solution for the special case of a polynomial Pm = 
A  
 xy py qy Ae  (3.421) 
Solution: The nonhomogeneous term is simply an exponential constant and thus the 
polynomial is of order zero: 
 2( ) (2 ) ( ) ( ) ( ) ( )mQ x p Q x p q Q x P x A  (3.422) 
 
Case 1:  is a not characteristic root  
 
For this simple case, we have a constant term for our polynomials Qm 
 0Q c  (3.423) 
Obviously, we have 
 ( ) ( ) 0Q x Q x  (3.424) 
Balancing terms on both sides, we have  
 2 2

0( ) ( )p q Q p q c A  (3.425) 
Then, we have the unknown c0 as: 

 0 2( )
Ac
p q

 (3.426) 

Finally, the particular solution is  

 2
x

p
Ay e
p q

 (3.427) 

Since A is given in (3.421), there is no unknown constant in (3.427). 
 
Case 2:  is a simple characteristic root  
 
For this case, we have 
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 2 0, 2 0p q p  (3.428) 
Thus, for k = 1 we have to raise the order by one:  
 1Q c x  (3.429) 
Differentiation gives 
 1( ) 0, ( )Q x Q x c  (3.430) 
Finally, we can match all terms on both sides to get  
 1( ) (2 ) ( ) (2 )Q x p Q x p c A  (3.431) 
This gives the constant as: 

 1 2
Ac

p
 (3.432) 

The final particular solution becomes: 

 
2

x
p

Ay xe
p

 (3.433) 

 
Case 3:  is a double characteristic root  
 
Finally, if  matches the double characteristic root of the homogeneous ODE, we 
have 
 2 0, 2 0p q p  (3.434) 
For k = 2, we have to raise the order by two: 
 2

2Q c x  (3.435) 
The ODE (3.422) reduces to  
 22Q c A  (3.436) 
The unknown constant is   

 2 2
Ac  (3.437) 

The final particular solution becomes: 

 2

2
x

p
Ay x e  (3.438) 

In summary, we have the following solution depending on :   

 

2

2

 is not characteristic root

 is a simple characteristic root
2

 is a double characteristic root
2

x

x
p

x

A e
p q

Ay xe
p

A x e

 (3.439) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 3.21 Find the general solution for the following nonhomogeneous second 
order ODE   
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 '' 2 ' 3 3 1y y y x  (3.440) 
Solution: Note that the nonhomogeneous term is only a first order power series. We 
have to solve for the characteristic root of the corresponding ODE (i.e., setting the 
right hand side zero): 
 '' 2 ' 3 0y y y  (3.441) 
Assuming the exponential solution form leads to the following characteristic 
equation: 
 2 2 3 0r r  (3.442) 
Two distinct real roots are obtained: 
 1 21, 3r r  (3.443) 
This is Case 1, and we can assume the particular solution as: 
 0 1py b x b  (3.444) 
Substitution of (3.444) into (3.441) yields  
 0 0 13 2 3 3 1b x b b x  (3.445) 
Comparing terms on both sides, we obtain 

 0 1
11,
3

b b  (3.446) 

The particular solution is 

 1
3py x  (3.447) 

The general solution is then the sum of homogeneous solution and the particular 
solution: 

 3
1 2

1
3

x xy C e C e x  (3.448) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 3.22 Find the general solution of the following second order 
nonhomogeneous ODE  
 23 2 xy y y xe  (3.449) 
Solution: Let us consider the homogeneous equation of (3.449): 
 3 2 0y y y  (3.450) 
Since the coefficients of this differential equation are constant, the solution is of 
exponential form.   Substitution of a solution form of erx leads to  
 2 3 2 0r r  (3.451) 
The roots of this characteristic equation are 
 1 21 , 2r r  (3.452) 
Thus, the general solution of the homogeneous equation is 
 2

1 2
x xy C e C e  (3.453) 

The nonhomogeneous term of (3.449) is a first order polynomial and thus, a 
polynomial of the same order as 
 ( )mQ x Ax B  (3.454) 
However, we have  = r2 thus we have to assume  
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 2( ) x
py x Ax B e  (3.455) 

Substitution of this into (3.449) gives 
 2 2Ax B A x  (3.456) 
Matching coefficients on both sides gives 

 1 , 1
2

A B  (3.457) 

Finally, the general solution is obtained  

 2 2
1 2

1( 1)
2

x x xy C e C e x x e  (3.458) 

__________________________________________________________________ 
 
Let us now consider that the nonhomogeneous term is a product of polynomials, an 
exponential function, and a circular function: 
 ( ) [ cos sin ]x

l mf x e P x P x  (3.459) 
One simple way to deal with the cosine and sine terms is to replace them by 
exponential functions using Euler’s formula discussed in Chapter 1: 

 ( ) [ ]
2 2

i x i x i x i x
x

l m
e e e ef x e P P

i
 (3.460) 

Grouping similar terms we can rewrite (3.460) as 

 
( ) ( )

( ) ( )

( ) ( ) ( )
2 2 2 2
( ) ( )

i x i xl m l m

i x i x

P P P P
f x e e

i i
P x e P x e

 (3.461) 

Allowing for complex constants for the polynomials, we get a particular solution 
for the first term on the right of (3.461) 
 ( ) ( )

1( ) ,i x k i x
my py qy P x e y x Q e  (3.462) 

Similarly, for the second term on the right hand side of (3.461) we have 
 ( ) ( )

2( ) ,i x k i x
my py qy P x e y x Q e  (3.463) 

Finally, we can combine these particular solutions to get the particular solution for 
(3.459)  

 
(1) (2)

[ ]

[ ( )cos ( )sin ],

k x i x i x
p m m

k x
m m

y x e Q e Q e

x e R x x R x x
 (3.464) 

__________________________________________________________________ 
Example 3.23 Find the general solution for the following nonhomogeneous ODE  
 4siny y x  (3.465) 
 
Solution: Solving for the homogeneous case of (3.465) we obtain the following 
characteristic equation and its corresponding roots: 
 2 1, i  (3.466) 
The homogeneous solution is  
 1 2cos siny C x C x  (3.467) 
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Using the approach just discussed, we can first rewrite (3.465) as the imaginary 
part of the following ODE: 
 4 ixy y e  (3.468) 
Thus, the nonhomogeneous term matches the characteristic roots (i.e., i). We have 
to raise the order of power by one: 
 ix

py Axe  (3.469) 
Differentiation of (3.469) gives 
 ix ix

py Ae Axie  (3.470) 

 2 ix ix
py iAe Axe  (3.471) 

Substitution of these results into (3.468) results in 
 2 4Ai  (3.472) 
This can be solved to give 
 2A i  (3.473) 
Finally, our particular solution for (3.468) is 
 2 2 sin (2 cos )ix

py ixe x x x x i  (3.474) 
Comparing (4.465) and (4.468), we find that taking the imaginary part of the right 
hand side of (3.468) gives the right hand side of (4.465). Thus, to get the particular 
solution of (4.465) we also take the imaginary part of (3.474): 
 2 cospy x x  (3.475) 
Adding the particular solution to the homogeneous solution gives the final solution 
as 
 1 2cos sin 2 cosy C x C x x x  (3.476) 
__________________________________________________________________ 
 
The undetermined coefficient approach discussed here can be considered as a lucky 
guess method. For any nonhomogeneous terms other than those considered in this 
section, we cannot assume the proper form of the particular solution. In the next 
section, we will discuss a much more powerful technique the method of variation 
of parameters.   

3.3.4 Variation of Parameters 

For first order ODEs, we have already learned the method of variation of 
parameters by Euler. The same technique was used by Lagrange to derive the 
particular solution of a second order ODE. In particular, consider the following 
second order ODE with non-constant coefficients: 
 ( ) ( ) ( )y p t y q t y g t  (3.477) 
Assume that we can solve for the homogeneous equation of (3.477) 
 1 1 2 2( ) ( )y C y t C y t  (3.478) 
Using the idea of variation of parameters, Lagrange assumed that the particular 
solution for (3.478) could be expressed as:  
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 1 1 2 2( ) ( ) ( ) ( ) ( )y t u t y t u t y t  (3.479) 
Differentiation of (3.479) gives 
 1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t u t y t u t y t u t y t u t y t  (3.480) 
Lagrange observed that there are two unknown functions that need to be found in 
(3.479). That means we need two conditions for two unknowns. He then decided to 
choose the first condition before he continued to get the second derivative. In 
particular, we set the following condition: 
 1 1 2 2( ) ( ) ( ) ( ) 0u t y t u t y t  (3.481) 
In doing so, we have reduced (3.480) to 
 1 1 2 2( ) ( ) ( ) ( ) ( )y t u t y t u t y t  (3.482) 
Differentiation of (3.482) one more time leads to 
 1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t u t y t u t y t u t y t u t y t  (3.483) 
Substitution of (3.482) and (3.483) into (3.481) gives 
 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2( ) ( )u y u y u y u y p u y u y q u y u y g  (3.484) 
Grouping terms, we get 

 1 1 1 1 2 2 2 2 1 1 2 2

1 1 2 2

[ ] [ ]u y py qy u y py qy u y u y
u y u y g

 (3.485) 

Note that the square bracket terms in (3.485) are zeros because both y1 and y2 are 
the solutions of a homogeneous equation. Thus, we have two equations for two 
unknowns: 
 1 1 2 2 1 1 2 2, 0u y u y g u y u y  (3.486) 
Using Cramer’s rule, we find the solutions as: 

 2 1
1 2

1 2 1 2

( ) ( ) ( ) ( )
( ) , ( )

, ( ) , ( )
y t g t y t g tu t u t

W y y t W y y t
 (3.487) 

where W is the Wronskian. Integrating both with respect to t, we find 

 2 1
1 2

1 2 1 2

( ) ( ) ( ) ( )
( ) , ( )

, ( ) , ( )
y t g t y t g tu t dt u t dt

W y y t W y y t
 (3.488) 

Back substitution of these results into (3.479) gives 

 2 1
1 2

1 2 1 2

( ) ( ) ( ) ( )
( ) ( ) ( )

, ( ) , ( )p
y t g t y t g ty t y t dt y t dt

W y y t W y y t
 (3.489) 

Finally adding this to the homogeneous solution, we obtain 
 1 1 2 2( ) ( ) ( )py C y x C y x y t  (3.490) 
Note that this formula obtained by Lagrange is much more general than the 
undetermined coefficient method discussed in the last section because it is 
applicable to ODEs with non-constant coefficients. In addition, it is valid for all 
functions g as long as we can find the integration. However, first of all we must 
have the homogeneous solutions of the ODE (i.e., y1 and y2). Even for linear ODEs, 
the homogeneous solution may not be easy to find for the case of non-constant 
coefficients. Secondly, even if a homogeneous solution is available, integration 
given in (3.488) is no easy task. Very likely, a closed form solution is not possible, 
and we may have to use numerical technique to conduct the integration. 
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3.3.5 Operator Factors 

The following method of factorization of differential operators was considered by 
Cayley in 1886 and reported in Ince (1956). Let us consider a second order ODE in 
the following form: 

 
2

2 2 ( ) ( ) 0dy dyp x q x y
dxdx

 (3.491) 

Next, we assume that it can be factorized in the following form: 

 2 1[ ( )][ ( )] 0d dx x y
dx dx

 (3.492) 

This equation can be rewritten as 

 
2

1 2 1 2 12{ ( ) ( )} 0d d y
dxdx

 (3.493) 

Note that the expansion of the differential operators in (3.492) to the form (3.493) 
involves differentiation and thus cannot be treated as simple expansion of algebraic 
factors. If (3.493) and (3.491) are the same, we must have the following identities 
 1 2 1 2 12 ,p q  (3.494) 
However, we can only say that one of the solutions of (3.491) is 

 1[ ( )] 0d x y
dx

 (3.495) 

Since it is in a separable form, one of the solutions of (3.491) is 

 
( )1 x dx

y Ce . (3.496) 
We consider a special case that (3.491) can also be factorized as  

 1 2[ ( )][ ( )] 0d dx x y
dx dx

 (3.497) 

In other words, we are looking for the condition that this factorization is 
commutative. Similarly, (3.497) can be expanded to get  

 
2

1 2 1 2 22{ ( ) ( )} 0d d y
dxdx

 (3.498) 

Thus, we must have 
 1 2 1 1 2 2q  (3.499) 
Equality of (3.474) and (3.499) can only be realized by setting 
 1 2  (3.500) 
This implies that the factorized function can only differ by a constant: 
 1 2 A  (3.501) 
Thus, we can factorize the second order ODE as 

 1 1[ ( )][ ( ) ] ( ) 0d dx x A y P A Py
dx dx

 (3.502) 

where the differential operator P is defined as 



 Ordinary Differential Equations   161 

 

 1 1[ ( )] ( )d dyPy x y x y
dx dx

 (3.503) 

That is, the factorization is commutative 

 1 1 1 1[ ( )][ ( ) ] [ ( ) ][ ( )] 0d d d dx x A y x A x y
dx dx dx dx

 (3.504) 

For such cases, the final solution is 

 
( ) ( )1 1

1 2
x dx x dx Ax

y C e C e  (3.505) 
Let us consider a special case that allows the factorization to be commutative 

 
2

2 2
2 2 ( ) [ ( ) ( ) ] 0dy dyp x p x p x a y

dxdx
 (3.506) 

It is straightforward to show that it can be factorized as: 

 [ ( ) ][ ( ) ] 0d dp x a p x a y
dx dx

 (3.507) 

The corresponding solution becomes 

 
[ ( ) ] [ ( ) ]

1 2
p x a dx p x a dx

y C e C e  (3.508) 
__________________________________________________________________ 
Example 3.24 Find the solution of the following ODE by factorization 

 
2

2 4
2 2 [ 2 1] 0dy dyx x x y

dxdx
 (3.509) 

Solution: Recall (3.506) that  

 
2

2 2
2 2 ( ) [ ( ) ( ) ] 0dy dyp x p x p x a y

dxdx
 (3.510) 

Comparison of (3.510) and (3.509) gives 
 2( ) , 1p x x a  (3.511) 
Thus, the ODE can be factorized as 

 2 2 2 2[ 1][ 1] [ 1][ 1] 0d d d dx x y x x y
dx dx dx dx

 (3.512) 

The two independent solutions can be obtained by solving the following ODEs: 

 2 2
1 2[ 1] 0, [ 1] 0,d dx y x y

dx dx
 (3.513) 

Finally, the solution is 

 
2 2

1 1 2exp[ (1 )] exp[ (1 )]
3 3
x xy C x C x  (3.514) 

 __________________________________________________________________ 

3.3.6 Reduction to First Order  

Second order ODEs can be reduced to first order by using various means. If the 
right hand side is only a function of x: 
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2

2 ( )d y f x
d x

, (3.515) 

we can just integrate it once. This is the simplest type of second order ODE. If the 
unknown y does not appear explicitly on the right hand side as: 

 
2

2 ( , )d y d yf x
d xd x

, (3.516) 

the following change of variable can be applied: 

 d( )
d

yp x
x

 (3.517) 

Then, the resulting ODE becomes first order and p becomes the new unknown: 

 ( , )d p f x p
d x

 (3.518) 

Clearly, it will not work if y appears explicitly. Another widely encountered situation 
is that the variable does not appear in the ODE as: 

 
2

2 ( , )d y d yf y
d xd x

 (3.519) 

For such cases, we can still use the change of variables given in (3.517) but we 
observe that we can convert differentiation with respect to x to become differentiation 
with respect to y as: 

 
2

2 ( , )d y dp dp dy dpp f y p
dx dy dx dydx

 (3.520) 

The last equation of (3.520) is an ODE with p being the unknown and y being the 
variable. This type of differential equation is called the autonomous type because its 
coefficients do not change with x. Higher order autonomous ODE will be discussed in 
Section 3.5.14. 
__________________________________________________________________ 
Example 3.25 This example considers the escape velocity of a rocket of mass m 
firing from Earth’s surface 

 
2

2 2
d h G M mm
dt h

 (3.521) 

 00
d,

0dt
hh R v

tt
 (3.522) 

where h is the elevation of the rocket measured from the center of the Earth, G is 
the universal gravitational constant, and M is the mass of the Earth. 
 
Solution: Note that (3.521) is autonomous or the time variable does not appear 
explicitly in the ODE. We observe that  

 
2

2 ( )d h dv dh dvv
dh dt dhdt

 (3.523) 

where v is the velocity. Substitution of (3.523) into (3.521) gives 
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 2

d
d

v GMv
h h

 (3.524) 

We have effectively reduced the equation to first order and clearly, it is separable 

 2d dGMv v h
h

 (3.525) 

Integration of both sides gives the following relation between v and h: 

 21
2

GMv C
h

 (3.526) 

Substitution of the initial condition given in (3.522) gives 

 2
0

1
2

GMC v
R

 (3.527) 

With this constant, we can rewrite the solution in (3.526) as 

 2 2
0

1 1 1 1
2 2

v v G M
h R

 (3.528) 

If the rocket is going to escape from the gravitational pull of the Earth, we will 
have a nonzero v even at h  : 

 2 2
0

1 1 1lim
2 2h

v v G M
R

 (3.529) 

This is equivalent of requiring the initial velocity to satisfy the following condition 

 0
2G Mv

R
 (3.530) 

At the surface of the earth, the gravitational pull equals the weight of the rocket: 

 2
2 ( 9.81m s )G M m m g g

R
 (3.531) 

Thus, GM can be found in terms of R and h as 
 2GM R g  (3.532) 
Finally, substitution of (3.532) into (3.530) gives 

 5 3
0 2 2 63 10 9.81 11.2 10 (m s)v R g  (3.533) 

The escape velocity is about 11.2 km/s, which is a very fast initial velocity and is 
difficult to achieve. In reality, the rocket will gradually accelerate from launch. 
 __________________________________________________________________ 

3.4 SECOND ORDER ODE WITH NONCONSTANT COEFFICIENTS 

In general, a second order ODE with non-constant coefficients is not easy to solve. 
We will see that when the Bessel equation is considered in Chapter 4. In this 
section, we will consider the condition that an ODE with non-constant coefficients 
can be transformed into one with constant coefficients. One of the most classical 
examples is the so-called Euler equation. 
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3.4.1 Euler Equation 

The Euler equation can be considered as the simplest type of ODE with non-
constant coefficients. The coefficient is in a power of x and its order is exactly the 
same as the order of differential terms as: 
 2 ( )x y px y q y f x  (3.534) 
Euler discovered that the following change of variables 
 e or lntx x t  (3.535) 
can be used to convert it to an ODE with constant coefficients. Differentiation of 
the second equation of (3.535) gives 
 dx xdt  (3.536) 
In particular, we can apply the chain rule to get 

 1dy dy dt dy
dx dt dx x dt

 (3.537) 

Similarly, we can find the second derivative as 

 

2

2 2

2

2 2 2

1 1 1 1( ) ( ) ( ) ( )

1 1( ) ( )

d y d dy d dy dy d dy
dx x dt x dx dt dt x xdt dtdx x

dy d y
dtx x dt

 (3.538) 

Substitution of (3.537) and (3.538) into (3.534) leads to 

 
2

2 ( 1) ( )td y dyp qy f e
dtdt

 (3.539) 

This is a second order ODE with a constant coefficient, which has been considered 
in Section 3.3.3. Thus, we know how to solve it. 

3.4.2 Transformation to Constant Coefficient   

In this section, we will consider the condition that an ODE with non-constant can 
be transformed into one with constant coefficients. Let us consider the following 
ODE 

 
2

2( ) ( ) ( ) ( )d u dua x b x c x u f x
dxdx

 (3.540) 

Consider a change of variables as: 
 ( )t x  (3.541) 
Differentiation of u with respect to the new variable defined in (3.541) results in 

 ( )du du dt dux
dx dt dx dt

 (3.542) 

 
2 2

2
2 2( ) [ ( )]d u du d ux x

dtdx dt
 (3.543) 

Substitution of (3.542) and (3.543) into (3.540) gives 
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2

2
2( ) ( )d u dua a b cu f

dtdt
 (3.544) 

We now impose the following conditions for : 
 2( ) , ( )a c a b c  (3.545) 
where  and  are constants. Thus, all coefficients become constant: 

 
2

2
d u du fu

dt cdt
 (3.546) 

Substitution of the first equation of (3.545) into the second equation of (3.545) 
leads to 

 ( )d c ca b c
dx a a

 (3.547) 

This gives the condition that a, b, and c need to satisfy if it can be converted to a 
constant coefficient ODE. This can be further simplified to a more compact form 

 
2

2

3

( 2 ) 4
dc daa c bc
dx dx

ac
 (3.548) 

Note that the right hand side is a constant. If (3.548) is satisfied, the first equation 
of (3.545) gives the required change of variables: 

 , orc c dx
a a

 (3.549) 

__________________________________________________________________ 
Example 3.26 Let us consider the classic non-constant ODE of Euler type as an 
example: 

 
2

2
2 ( )d u dupx qx ru f x

dxdx
 (3.550) 

Solve the Euler type ODE using the result of this section. 
 
Solution: Thus, from (3.540) we have 
 2 , ,a px b qx c r  (3.551) 
Substitution of these values into (3.549) gives 

 1 r
x p

 (3.552) 

It is natural to choose 

 p
r

 (3.553) 

The change of variables becomes 
 ln x t , or  tx e  (3.554) 
This of course agrees with Euler’s approach of solving this equation. Substitution 
of (3.554) into (3.548) gives 
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 q p
r

 (3.555) 

Finally, using (3.553) and (3.555) in (3.546) we have the following constant 
coefficient ODE 

 
2

2 ( )d u du rfp q p ru
dt cdt

 (3.556) 

This can be solved by assuming the standard exponential form. Thus, we can see 
that you do not need to be Euler to figure out the appropriate change of variables 
for Euler’s equation. The systematic approach presented in this section shows you 
how to propose the proper change of variables. 
 __________________________________________________________________ 

3.4.3 Laplace Type 

The following ODE is known as the Laplace type and was considered by Weiler in 
1856, Schlomilch in 1879, Pochhammer in 1891, and Bolza in 1893. In particular, 
Laplace’s type equation is 

 
2

2( ) ( ) ( ) 0d y dya lx b mx c nx y
dxdx

 (3.557) 

For non-zero l, we can let  
 a lx  (3.558) 
It is straightforward to show that (3.557) can be written as: 

 
2

2
22( ) ( ) 0d y h dy qf r y

dd
 (3.559) 

For l = 0, (3.557) can be rewritten as: 

 
2

2 2( ) (2 ) 0d y dyh fx qx r y
dxdx

 (3.560) 

Both of these can be considered as special cases of the following more general ODE: 

 
2

2 2
22( ) ( ) 0d y h dy p qf r y

x dx xdx x
 (3.561) 

 
2

2
2 2( ) ( 2 ) 0d y dyh fx px qx r y

dxdx
 (3.562) 

Note that we have added extra terms in the last bracket terms in (3.561) and (3.562). 
We will focus our discussion for these two ODEs given in (3.561) and (3.562), since 
the Laplace type ODE is only a special case of them (i.e., p = 0). We first examine a 
particular change of variables as: 
 ,x y e  (3.563) 
We can see that  

 
2 2

2 2 2
1 1,dy dy d dy d y d y

dx d dx d dx d
 (3.564) 
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 { ( ) }dy de
d d

 (3.565) 

 
2 2

2
2 2 2

2 ( 1){ 2( ) [ ] }d y d de
dd d

 (3.566) 

Substitution of (3.564) to (3.566) into (3.561) gives 

 
2

2 2
' ' 2 '2( ') ( ') 0d h d p qf r

dd
 (3.567) 

where 

 
2 2' , ' , ' 2 ,

' ( 1) 2 , '
h h f f r r f
p h p q f h q

 (3.568) 

It can be shown that there are invariants for some combinations of these constants 
such that: 
 2 2' ' 'p h h p h h A  (3.569) 
    ' ' ' ( )q h f q hf B  (3.570) 

    2 2 2 2' ' ( )r f r f C  (3.571) 
These can be proved directly by using the definitions given in (3.568). We can also 
define another invariant as: 
    2/I C B  (3.572) 
Now, we want to remove the first order derivative term by setting h' = f ' = 0 and 
this implies 
 ,h f  (3.573) 
Thus, we propose the change of variables (compare (3.563)) 
 ( )h fzy z e v z  (3.574) 
From (3.569) to (3.571), we have the special cases of 
 'p A  (3.575) 
    'q B  (3.576) 

    2'r C  (3.577) 
Therefore, with these special values, we have the following normalized form of  

 
2

2
2 2

2( ) 0d v A B C v
zdz z

 (3.578) 

There are a number of scenarios for the invariants (with  =1/B in (3.563)): 
 
Case I: B  0, C  0  

 
2

2 2
2( ) 0d v A I v
zdz z

 (3.579) 

Case II: B  0, C = 0 

 
2

2 2
2( ) 0d v A v
zdz z

 (3.580) 

Case III: B = 0, C  0  
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2

2 2( ) 0d v A I v
dz z

 (3.581) 

Case IV: B = 0, C= 0 

 
2

2 2 0d v A v
dz z

 (3.582) 

where  
 2 2 2, , , /A p h h B q hf C r f I C B  (3.583) 
Note that a special form of (3.578) is the Whittaker equation (Whittaker and Watson, 
1927: Abramowitz and Stegun, 1964): 

 
2 2

2 2
1 1/ 4{ } 0
4

d W k m W
zdz z

 (3.584) 

To recover the Laplace type ODE given in (3.557) as a special form given in (3.578), 
we can make the following definitions: 

 2 2 3 32 , 2 , 0, 2 ,bl ma m cl na nh f p q r
l l l l

 (3.585) 

 To reduce (3.567) to (3.559), we can choose  according to the following equation: 
 ' ( 1) 2 0p h p  (3.586) 
A special form of second order ODE of (3.561) is called the Bessel equation, which is 
one of the most important second order ODEs in physics and engineering, namely 

 
2 2

2 2
1 (1 ) 0d y dy n y
x dxdx x

 (3.587) 

which is obtained by setting 
 22 1, 0, , 0, 1h f p n q r  (3.588) 
Thus, for the Bessel equation, we can find  by (3.586) as 
 2 2 0n  (3.589) 
Thus, making use of the following change of variables (see (3.574)) 
 ny x z  (3.590) 
we have the derivatives as  

 1n ndy dznx z x
dx dx

 (3.591) 

 
2 2

2 1
2 2( 1) 2n n nd y dz d zn n x z nx x

dxdx dx
 (3.592) 

With these derivatives ready, it is easy to show that the Bessel equation given in 
(3.587) can be written as 

 
2

2
2 1( ) 0d z n dz z

x dxdx
 (3.593) 

This provides another mathematical form of the Bessel equation and is also known as 
Weiler’s canonical form of Laplace type ODE. Thus, the Bessel equation is a special 
form of (3.561). In conclusion, (3.561) can be converted to one of the canonical forms 
given in (3.579) to (3.582).  
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 Similarly, we can also convert (3.562) to three canonical forms. In doing so, we 
observe that the following change of variables can be used 
 x  (3.594) 

 
1 2
2y e  (3.595) 

Differentiation of y with respect to x can be changed to differentiation with respect to 
 by the chain rule: 

 
2 2

2 2 2
1 1,dy dy d dy d y d y

dx d dx d dx d
 (3.596) 

 
1 2
2 {( ) }dy de

d d
 (3.597) 

 
1 22 2

22
2 2{[( ) ] 2( ) }d y d de

dd d
 (3.598) 

With these results, (3.562) is transformed to 

 
2

2
2 2( ' ' ) ( ' 2 ' ') 0d dh f p q r

dd
 (3.599) 

 

2

2 2 4

2 3

2 2 2

'

'

' 2

' ( ) ( )

' ( 2 ) 2 ( )

h h f

f f

p f p

q h f f p q

r p q h f

 (3.600) 

Similar to the former case, there exist invariants for these coefficients. In particular, 
we can easily show that 
 2 4 2 4' ' ' ( )P p f p f P  (3.601) 

 3' ' ' ' ( )Q q h f P Q  (3.602) 

 2 2 2' ' ' ' [ 2 ]R r h f R P Q  (3.603) 

 2 2 2' 2 ' ' [ 2 ]P Q R Px Qx R  (3.604) 

 '2 6 2 6' ' ' ( )S P R Q PR Q S  (3.605) 
To remove the first derivative term, we set the following special case of (3.599) 
 ' 0, ' 0h f  (3.606) 
For this case, it is observed that 
 ' 'P p ,  ' 'Q q ,  ' 'R r  (3.607) 
Consequently, the mathematical structure of (3.599) is reduced to 

 
2

2
2 ( ' 2 ' ') 0d P Q R

d
 (3.608) 

Now we can use the following change of variables to simplify (3.608): 
 z  (3.609) 
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The result is 

 
2

4 2 3 2 2
2 [ ' 2 ( ' ') ( ' 2 ' ')] 0d P z P Q z P Q R

dz
 (3.610) 

Comparing (3.608) and (3.610), we see that the invariant forms given in (3.601) to 
(3.603) reappear. 
 
Case I: P  0,  
For this case, we can choose  = Q'/P', 4 = 1/P' such that 

 
2

2
2 [ ] 0d z I

dz
 (3.611) 

where 

 
2

3
'
'

SI
P

 (3.612) 

This equation can be converted to a confluent hypergeometric equation, but the 
details will be given later in this section. 
 
Case II: P'= 0, S  0,  
By choosing  = R'/(2Q'), 3 = 1/(6Q'), we get 

 
2

2
1 0
3

d z
dz

 (3.613) 

This equation is known as the Scherk-Lobatto equation. However, by assuming a 
change of variables of  
 1/33z x  (3.614) 
we have the Airy equation as a result: 

 
2

2 0d x
dx

 (3.615) 

The solution of it is the Airy functions of the first and second kinds (Stegun and 
Abramowitz, 1964): 
 1 2( ) ( )C Ai x C Bi x  (3.616) 
 
Case III: P'= 0, S' = 0,  
In this case, we assume 2 = 1/R' such that 

 
2

2 0d
dz

 (3.617) 

This is the well-known harmonic equation with solution 
 1 2sin cosC x C x  (3.618) 
 
Case IV: P'= 0, S' = 0, R'= 0 
This is the simplest case, and thus we have 
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2

2 0d
dz

 (3.619) 

Thus, the solution is 
 Az B  (3.620) 
We can see that (3.561) and (3.562) are very general. The special cases of them 
include the Whittaker equation in (3.584), the Bessel equation in (3.587), and the 
Airy equation in (3.615).  

3.4.4 Solution as Confluent Hypergeometric Functions 

In this section, we show that the Laplace type ODE is equivalent to the confluent 
hypergeometric equation, which is a special case of the hypergeometric equation. 
The consideration of the solutions of these functions will be postponed to Chapter 
4 (see Section 4.12) on series solution. 
 We now return to (3.557) and will show that it can always be transformed 
into the following equation, called the confluent hypergeometric or Kummer 
equation (Abramowitz and Stegun, 1964):  

 
2

2 ( ) 0d u dus s u
dsds

 (3.621) 

Its solutions can be expressed as Kummer’s function and are given as 
 1

1 2( , ; ) ( 1,2 ; )u C s s C s  (3.622) 
where the Humbert’s symbol ( , ;s) is defined by 

 
1

( )
( , ; ) 1

( ) !

k
k

kk

s
s

k
 (3.623) 

and the following Pochhammer symbol has been used: 
 0( ) ( 1) ( 1), ( ) 1k k(((((  (3.624) 
It was defined by Pochhammer in 1890. The detailed discussion of such solution will 
be presented in Chapter 4 on series solutions. 
 
Case 1: l  0, m  0   
 
Let us assume a change of variables: 
 xy e , (3.625) 
then (3.557) can be written as 

 
2

2 2
2( ) [2 (2 )] [ ( )] 0d da lx a b x l m a b c x l m n

dxdx
 

  (3.626) 
We can use the following equation to determine   
 2 0l m n  (3.627) 
Thus, (3.626) can be expressed as 
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2

2( ) ( ) 0d da lx h kx j
dxdx

 (3.628) 

where 
 22 , 2 ,h a b k l m j a b c  (3.629) 
Adopting another change of variables 
 a lx  (3.630) 
we can convert (3.628) to 

 
2

2 2 2 2( ) 0d lh ak k d j
dd l l l

 (3.631) 

We can further choose  as 

 
2

2 ( ) 0d d
dd

 (3.632) 

where 

 ,ak lh j
k k

 (3.633) 

If there are equal roots for  
 2 0l m n  (3.634) 
we have the root as: 
 2l m  (3.635) 
 Equation (3.626) can be simplified as 

 
2

2( ) 0d da lx h k
dxdx

 (3.636) 

Adopting a change of variables of  
 2a lx  (3.637) 
gives 

 
2

d l d
dx d

 (3.638) 

 
2 2 2

2 2 2 2
1( )

4
d l d d

ddx d
 (3.639) 

Substitution of (3.638) and (3.639) into (3.636) gives 

 
2

2 2
2 4( 1) 0d h d k
l dd l

 (3.640) 

To reduce this equation further, we use another change of variables 

 
1
2e u  (3.641) 

Equation (3.640) can then be written as 

 
2

2 2
2 1 4 1( 1 ) [ ( ) ] 0

2 4
d u h du h k u

l d ld l
 (3.642) 

We now make the identifications for the parameters of this change of variables: 
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 216 0,k l s  (3.643) 
Hence, (3.642) becomes 

 
2

2
2 1( 1 ) [ ] 0

2
d u h du hs s u

l ds lds
 (3.644) 

This can be recast as  

 
2

2 ( ) 0d u dus s u
dsds

 (3.645) 

where 

 2 11,
2

h h
l l

 (3.646) 

This is clearly the confluent hypergeometric equation given in (3.621). 
 
Case 2: l= 0, m  0   
 
For this case, we introduce a change of variables 

 
nx
my e , (3.647) 

then (3.557) can be written as 

 
2

2 ( ) 0d dh kx g
dxdx

 (3.648) 

where 

 
2

22 , ,b n m c bn nh k g
a m a a am m

 (3.649) 

Then, we assume another change of variables: 
 2h kx k  (3.650) 
Hence, (3.648) becomes 

 
2

2
1( ) 0
2

d d
dd

 (3.651) 

where 

 
2

2 32 2 2 2
g c bn an
k m m m

 (3.652) 

Finally, let  = s, and we obtain 

 
2

2
1( ) 0
2

d ds s
dsds

 (3.653) 

By identifying that  = 1/2 and  = , it is clear that it is a special form of the 
confluent hypergeometric equation given in (3.621).  
 
Case 3: l= 0, m = 0   
   
For this case, the following change of variables can be used: 
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 2
bx
ay e , (3.654) 

then (3.557) can be written as 

 
2

2 ( ) 0d h kx
dx

 (3.655) 

where 

 
2

2 ,
4

c b nh k
a aa

 (3.656) 

It can further be converted to a simpler form by  
 2/3h kx  (3.657) 
The resulting equation becomes 

 
2

2
1 0
3

d d
dd

 (3.658) 

where 

 
3

3
4
9k

 (3.659) 

We further let 
 e u  (3.660) 
Consequently, (3.658) can be transformed to 

 
2

2
2

1 1(2 ) [( ) ] 0
3 3

d u du u
dd

 (3.661) 

To recover the mathematical form of the confluent hypergeometric equation, we can 
select the following parameters in the change of variables: 
  22 1, 0  (3.662) 
Consequently, we obtain the following special form of the confluent hypergeometric 
equation: 

 
2

2
1 1( ) 0
3 6

d u du u
dd

 (3.663) 

Therefore, we conclude that the Laplace type of second order ODE given in 
(3.557) can always be transformed into a confluent hypergeometric equation, and 
thus can always be solved in terms of Kummer’s functions. 

3.4.5 Liouville Problem 

The following nonlinear second order ODE was considered by Liouville: 

 
2

2
2 ( ) ( )( ) 0d y dy dyf x F y

dx dxdx
 (3.664) 

To solve this equation, we first drop the nonlinear term to get 
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2

2 ( ) 0d y dyf x
dxdx

 (3.665) 

This can be rewritten as 

 , ( ) 0dy dpp f x p
dx dx

 (3.666) 

It is separable and the solution is 

 
( )f x dxdyp ce

dx
 (3.667) 

Now, we follow a similar idea of variation of parameters introduced by Euler:  

 
( )

( )
f x dxdy c y e

dx
 (3.668) 

Note, however, that Euler’s variation of parameters assumes C as a function of x 
instead of y. Differentiation of (3.668) gives 

 

2 ( )
2

2

1[ ( )] { ( )}

1 ( ) ( )

f x dxd y dc dy dy dc dycf x e cf x
dy dx c dx dy dxdx
dc dy dyf x

c dy dx dx

 (3.669) 

Substitution of (3.669) into (3.664) gives 

 2 21 ( ) ( ) ( ) ( )( ) 0dc dy dy dy dyf x f x F y
c dy dx dx dx dx

 (3.670) 

The cancellation of the middle terms leads to 

 2 1( ) { ( )} 0dy dc F y
dx c dy

 (3.671) 

Since dy/dx  0, we have 

 ( )dc F y dy
c

 (3.672) 

The unknown function can be evaluated as 

 
( )F y d y

c Ae  (3.673) 
Back substitution of (3.673) into (3.668) gives 

 
( ) ( )F y dy f x dxdy Ae e

dx
 (3.674) 

This first order ODE is separable and the result is 

 
( ) ( )F y dy f x dx

e dy A e dx B  (3.675) 

This is the solution of the Liouville problem. 
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3.4.6 Mainardi Approach for Liouville Problem 

Mainardi provides a different approach to solve the Liouville problem. In 
particular, we can divide through the (3.664) by dy/dx as  

 
2

2
1 ( ) ( )( ) 0d y dyf x F y
dy dxdx
dx

 (3.676) 

Note that the first and last terms in (3.676) can be rewritten as:  

 
2

2
1{ln( )}d dy d y
dydx dx dx
dx

 (3.677) 

 { ( ) } { ( ) } ( )( )d d dy dyF y dy F y dy F y
dx dy dx dx

 (3.678) 

In view of (3.677) and (3.678), we find (3.676) becoming  

 {ln( )} { ( ) } ( )d dy d F y dy f x
dx dx dx

 (3.679) 

Integration of (3.679) with respect to x gives   

 ln( ) ( ) ( )dy F y dy f x dx C
dx

 (3.680) 

This can be expressed as 

 
( ) ( )F y dy f x dxdy Ce e

dx
 (3.681) 

Equation (3.681) is separable and can be integrated as 

 
( )

( )

f x dx

F y dy

dy Ce dx
e

 (3.682) 

 
( ) ( )F y dy f x dx

e dy C e dx C  (3.683) 

This solution is exactly the same as that given in Section 3.4.5. 

3.4.7 Liouville Transformation 

Consider a second order ODE with non-constant coefficients 
 ( ) ( ) 0y p x y q x y  (3.684) 
According to Piaggio (1920), the first order derivative term can be removed from 
(3.684) by using the following change of variables 

 
0

1( ) ( ) exp{ ( ) }
2

x
y x W x p d  (3.685) 

 
0 0

1 ( ) 1( ) ( )exp{ ( ) } ( )exp{ ( ) }
2 2 2

x xW xy x W x p d p x p d  (3.686) 
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 0 0

2

0 0

1 1( ) ( ) exp{ ( ) } ( ) ( ) exp{ ( ) }
2 2

1 1 1 1( ) ( )exp{ ( ) } ( ) ( ) exp{ ( ) }
4 2 2 2

x x

x x

y x W x p d W x p x p d

p x W x p d W x p x p d
 

  (3.687) 
Substitution of these results into (3.684) gives 

 21 1( ) ( ) ( ) 0, ( )
4 2

W x Q x W x Q x q p p  (3.688) 

where  

 
2

2
( )( ) d W xW x

dx
 (3.689) 

 
The term Q(x) is called the invariant of the second order ODE. That is, if the 
invariants of two different ODEs are the same, these ODEs are actually equivalent 
(see Problem 3.25). Further discussion of the invariant will be given in Section 
3.4.8. The ODE given in (3.688) is the intermediate form or so-called normal form 
of these different ODEs. Note that the invariant of the adjoint problem of an ODE is 
the same as the original invariant (see Problem 3.29). The existence of invariants in 
ODEs was discovered by Laguerre. This invariant allows transformation between 
ODEs. In 1873, Lie group transformation was used in studying whether an ODE 
can be integrated. All hodograph transformation, Legendre transformation, and 
Riccati transformation can be derived from Lie Group method. This topic is, 
however, out of the scope of the present study.  
 We further note that (3.688) can be simplified by using Liouville 
transformation or the Liouville-Green transformation 
 ( ) ( ), ( )W x xw t t t x( ),( ),( ),( )( )( )( )( )  (3.690) 
where 

 dxx
dt
dxx
dt

 (3.691) 

 1( )dw dw W W x
dt dt x

1(( )1dw d xW Ww ( )1dw d
dt dt x

WW( )
x

)W W)
x

W)  (3.692) 

 
2

2
1 1( ) ( ) ( )dw d d dw W W x W xx W x

dt dt dtdt x x

2d 2

2 ( ) ( ) ( )(d1 1) ( )1 1dww 2 ( () ( )( )) ( )( )( )1 1dw
dt dt dt2 ( ) ( )2 (2 ( ) ( )( )( )w d 2

((w d ((
x xdtdt

) ( )) ( )( )) ( )
dtdt

) () ( )  (3.693) 

It is straightforward to prove that 

 1( ) ( )d dx x
dt dtx

( )d ((
t

)
dt

)
x dt

 (3.694) 

Thus, (3.693) can be simplified as  

 
2

2
1( )dw W W xx

dt x

2

2
1(( )1d xxW Ww 2 (( )1d

dt x2 ( WW2 ( )
x

)W W)
x

W)  (3.695) 

Substitution of (3.690) and (3.688) into (3.695) gives 
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2

2
2

1( ) ( )dw x w x Q x w
dt x

2
21( ) ( )21dw x w x Q x w2 ( ) ( )21d

dt x2 (2 (x ( )
x

))
x

)  (3.696) 

Finally, the differential equation becomes 
 ( ) 0w x w( )( )w ( )  (3.697) 
where 

 
2

2
2

1( ) ( ) ( )dx x Q x x
dt x

2
2 1( ) ( )2

2
1d( )( )2

dt x2 (2( )(2

x
)

x
 (3.698) 

The second term on the right hand side of (3.698) can be rewritten in terms of the 
Schwarzian derivative. That is 

 3/2
1 1( )

2
d x
dt x x

x
3/2)

2x x2
 (3.699) 

 
2 2

2 5/2 3/2
1 3 1( )

4 2
d x x
dt x x x

2x x2 12

5/2 3/2) 5/25/2x x x5/5/4 25/25/2  (3.700) 

 
2 2

2 2
1 3 1 1( ) ( ) ,

4 2 2
d x xx x t

xdt x x

2 1( ) 12 12 1 ( )(2 (d 2 1( 1x 2 (
dt x2 2

))(2 22 (2) (2 xx x4
((

x
)))

x
))  (3.701) 

where the Schwarzian derivative is defined as  

 23, ( )
2

x xx t
x x

23 ( )x x3 (3 ( )
2x x2

( )  (3.702) 

The term “Schwarzian derivative” was coined by A. Cayley in honor of Schwarz. 
However, this derivative had been studied implicitly by Lagrange and Jacobi, and 
explicitly by Kummer. Whether the resultant differential equation is easier to solve 
depends on the function Q(x).    
 Further discussion on Liouville transformation can be found in Temme (1996) 
and Zwillinger (1997). 

3.4.8 Transformation and Invariants of ODE  

To consider the invariants of ODEs, we will consider general transformation. 
Consider again a general second order ODE with non-constant coefficients as: 

 
2

2( ) ( ) ( ) ( ) ( )d u duL u a x b x c x u f x
dxdx

 (3.703) 

We assume that the unknown function u can be considered as a product of two 
functions with one of them at our disposal: 
 ( ) ( )u z x w x  (3.704) 
Differentiation of (3.704) and substitution of its result into (3.703) results in 

 
2 2

2 2(2 ) ( ) ( )d z dw dz d w dwaw a bw a b cw z f x
dx dx dxdx dx

 (3.705) 

 
Case 1: 
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The function w is at our disposal, and we select w that 

 
2

2 0d w dwa b cw
dxdx

 (3.706) 

Note, however, that this is precisely the homogeneous equation of (3.703). Thus, w 
is the homogeneous solution of (3.703). But, in general, the determination of w(x) 
may not be a straightforward task. In a sense, (3.704) can be interpreted as a 
variation of parameters. With (3.706), (3.705) can be written as 

 
2

2
2 ( )( )d z dw b dz f x
w dx a dx awdx

 (3.707) 

Naturally, we assume a change of variable as  

 dz
dx

 (3.708) 

This reduces (3.707) to a first order ODE 

 2 ( )( )d dw b f x
dx w dx a aw

 (3.709) 

The homogeneous solution of this ODE (i.e., solution of (3.709) with f  = 0) is 

 2
1 b dx

a
h C e

w
 (3.710) 

Application of variation of parameters leads to the following solution form: 

 2
1( )

b dx
aC x e

w
 (3.711) 

Substitution of (3.711) into (3.709) gives a differential equation of C(x) 

 
b dx
adC fw e

dx a
 (3.712) 

Thus, we have  

 1

b dx
afwC e dx C

a
 (3.713) 

Thus, the solution for  is  

 12
1 [ ]

b bdx dx
a adz fwe e dx C

dx aw
 (3.714) 

Finally, integration of (3.714) gives 

 1 22
1 ( ) ( )[ ( ) ]

( )( ) ( ) x

f wz g d C dx C
aw x g x

 (3.715) 

where g(x) = e (b/a)dx. Again, the determination of w(x) may not be a straightforward 
task.  
 
Case 2: 
 
Instead of removing the linear order term of z, but rather the first derivative term in 
(3.705), we have 
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 2 0dwa bw
dx

 (3.716) 

That is, we have 

 
2

dw bw
dx a

 (3.717) 

 
2 2

2 2 2
1 ( )
2 2

d w w db wb bw da
a dx dxdx a a

 (3.718) 

Substitution of (3.717) and (3.716) into (3.705) gives 

 
2

2
d z fIz

awdx
 (3.719) 

where 

 
2

2 2
1

24 2
c b db b daI
a a dx dxa a

 (3.720) 

We find that if we assume u = zv instead of u = zw, we arrive at exactly the same 
equation as (3.720) except for v instead of w:  

 
2

2
d z fIz

avdx
 (3.721) 

where the value of I is the same as that given in (3.720). For different ODE of the 
form: 

 
2

2' ' ' ( )d z dza b c z g x
dxdx

 (3.722) 

If it can be transformed to the form (3.720) by u = zv: 

 
2

2 'd z gI z
avdx

 (3.723) 

we must have 

 
2

2' , ' 2 , 'dv d v dva av b a bv c a b cv
dx dxdx

 (3.724) 

where  is a function of x only. Thus, we have 

   
2 2

2 2 2 2
' ' 1 ' ' ' 1'
' 2 ' 24 ' 2 ' 4 2

c b db b da c b db b daI I
a a dx dx a a dx dxa a a a

 (3.725) 

Therefore, I is called an invariant.  
 
Case 3: 
 
Finally, we consider a self-adjoint second order ODE: 

 ( ) ( )d dup qu F x
dx dx

 (3.726) 

Thus, we have 

 
2

2 ( )d u dp dup qu F x
dx dxdx

 (3.727) 
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To put this into the standard form, we can let 

 , , , ( )dpa p b c q f F x
dx

 (3.728) 

The first two equations of (3.728) give a differential equation for  

 ( )d ab
dx

 (3.729) 

This can be recast as 

 ( )b d adx
a a

 (3.730) 

Integration gives 

 1 b dx
ae

a
 (3.731) 

To remove the middle term in (3.727), we can assume a new variable as 

  dxt
p

 (3.732) 

Then,  

 1du du dt du
dx dt dx p dt

 (3.733) 

 
2

2
1( ) ( )d du d du d up

dx dx dx dt p dt
 (3.734) 

We deduce from (3.734) that (3.726) becomes 

 
2

2
d u pqu pF
dt

 (3.735) 

where pq can be rewritten as 

 
2 b dx

acpq e
a

 (3.736) 

This resulted from (3.728) and (3.731).  

3.5 HIGHER ORDER ODE   

The general form of linear ODE of order n can be given as  

 
1

1 11( ) ( ) ( )
n n

n nn n
d y d y dyL y p t p t p t y g t

dtdt dt n 11(1(((1(1(  (3.737) 

The corresponding boundary conditions are   
 ( 1)( 1)

0 0 0 0 0 0, , , nny t y y t y y t y( 1)y( 1)y( )  (3.738) 
Without going into mathematical proof, we simply recall that we have learned that 
there are two independent solutions for second order ODE. Actually, this 
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observation is also true for any order. Thus, the general solution for the 
homogeneous form of (3.737) can be expressed as 
 1 1 2 2( ) ( ) ( ) ( )n ny t c y t c y t c y t(n ny (n n  (3.739) 
To show the validity of this solution, we can substitute (3.739) into the homogeneous 
form of (3.737) to give 

 

1
1 1 1

1 1 1 11

1
2 2 2

2 1 1 21

1

1 11

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ]

...

[ ( ) ( ) ( ) ] 0

n n

n nn n

n n

n nn n

n n
n n n

n n n nn n

d y d y dyc p t p t p t y
dtdt dt

d y d y dyc p t p t p t y
dtdt dt

d y d y dy
c p t p t p t y

dtdt dt

n 111(11

n 111(11

n 1(1(1((1((1(

 (3.740) 

Each square bracket is zero since y1, y2, .... and yn are solutions of the homogeneous 
equation. 
 Note again that a second order ODE possesses two unknown constants. 
Analogously, there must be n unknown constants for an n-th order ODE, as shown in 
(3.740). Consequently, for an n-th order ODE being well-posed we must need n 
properly prescribed boundary conditions (see (3.738)). Otherwise, the differential 
equation is not solvable. 
 The next question is whether the boundary conditions are given properly, or 
whether the unknown constants can be determined uniquely by the prescribed 
boundary conditions. The idea of the Wronskian for second order ODEs can be 
readily adapted to n-th ODEs. Application of (3.739) into (3.738) gives a system of 
equations as: 

 

1 1 0 0 0

1 1 0 0 0

( 1) ( 1)( 1)
1 0 01 0

( ) ( )
( ) ( )

( ) ( )

n n

n n

n nn
n n

c y t c y t y
c y t c y t y

c y t c y t y

(((
((((

(

 (3.741) 

Clearly, for the system to have a unique solution, we must have the Wronskian be 
nonzero: 

 

1 0 2 0 0

1 0 2 0 0
1 2 0

( 1) ( 1) ( 1)
0 0 01 2

( ) ( ) ( )
( ) ( ) ( )

, , , 0

( ) ( ) ( )

n

n
n

n n n
n

y t y t y t
y t y t y t

W y y y t

y t y t y t

((
(((

0, 0 0

( 1)( 1)( 1)

 (3.742) 

We first consider the homogeneous ODE that 
 ( ) ( 1)

1 1 0n n
n ny P y P y P yn 1P 1P y11  (3.743) 

As before, we seek an exponential function as the solution for the case of constant 
coefficients: 
 rxy e  (3.744) 
Substitution of (3.744) into (3.743) gives the following characteristic equation: 
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 1
1 1 0n n

n nr Pr P r Pn 1PP r11  (3.745) 
It is a mathematical theorem by Gauss established in 1799 that an n-th order 
polynomial has n roots, and thus (3.745) allows a factorization as  
 1 2( ) ( )( ) ( ) 0nZ r r r r r r r( )n(( )( )(  (3.746) 
Suppose that all the roots are real and that the first k roots are equal. Thus, we have 
the following factorization: 
 1 1 2( ) ( ) ( )( ) ( ) 0k

k k nZ r r r r r r r r r )n((( )( )((  (3.747) 
We also said that the real root r1 is of order k. The k independent solutions 
corresponding to the repeated root of order k can be expressed as:  
 1

0 1 1( ) ( )k rx
ky x C C x C x e111  (3.748) 

The proof for the case of the third order root will be given in the following 
example. For the case with complex conjugate roots (i.e., r =   i ) of order k, we 
have the k independent solutions as: 

 
1

0 1 1
1

0 1 1

( ) [( )cos

( )sin ]

k
k

k x
k

y x C C x C x x

D D x D x x e
111

111

 (3.749) 

For the case of a simple root, we have the solution form as 
 1

1( ) r xy x C e  (3.750) 
The general solution can be expressed as (derived by D’Alembert)  
 1 1 2 2 ( )n ny C y C y C y Y xn nC yn nCC yn n  (3.751) 
__________________________________________________________________ 
Example 3.27 Show that for the case of a triple root, the 3rd order ODE and its 
general solution are 
 0y py qy sy  (3.752) 

 2
1 2 3( ) rty C C t C t e  (3.753) 

where r is the root of the following characteristic equation 
 3 2 0r pr qr s  (3.754) 
 
Solution: For the case of constant coefficients, we seek an exponential solution in 
the form: 
 ( ) rty t e  (3.755) 
Thus, we have 
 3 2( ) 0rtr pr qr s e  (3.756) 
Since ert cannot be zero (otherwise we have the trivial solution), we arrive at the 
characteristic equation for r. For the case of triple roots, we mean that the 
characteristic equation can be factorized as  
 3 2 3

0( ) 0r pr qr s r r  (3.757) 
On the other hand, we expand the last term in (3.757) as 
 3 2 2 3

0 0 03 3 0r r r r r r  (3.758) 
Comparison of (3.757) and (3.758) yields the following values of p, q, and s as: 
 2 3

0 0 03 , 3 ,p r q r s r  (3.759) 
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Therefore, the first obvious solution is 
 0r ty e  (3.760) 
To find the other independent solutions for the case of triple roots, similar to the 
double root case, we seek a solution in the form: 
 ( ) rty u t e  (3.761) 
where r satisfies (3.757). Differentiation of (3.761) gives 
 2 3( 3 3 ) rty u ru r u r u e  (3.762) 

 2( 2 ) rty u ru r u e  (3.763) 

 ( ) rty u ru e  (3.764) 
Substitution of (3.762) into (3.764) into (3.752) gives 
 2 3 2(3 ) (3 2 ) ( ) 0u r p u r pr q u r pr qr s u  (3.765) 
Substitution of (3.757) into (3.765) gives 
 2 3

0 0 03( ) 3( ) ( ) 0u r r u r r u r r u  (3.766) 
Therefore, all terms become zero except the first terms, and we have, after 
integrating it three times: 
 2

1 2 3( ) ( )u t C C t C t  (3.767) 
Combining (3.767) and (3.761), we obtain the required result  
 2

1 2 3( ) rty C C t C t e  (3.768) 
__________________________________________________________________ 

3.5.1 Euler Equation of Order n  

The definition of the Euler equation for second order given in Section 3.4.1 can 
easily be extended to a higher order. In particular, the Euler equation for the n-th 
order is 

 
1

1
1 11 ... ( )

n n
n n

n nn n
d y d y dyx a x a x a y f x

dxdx dx
 (3.769) 

Note that the coefficient of each derivative term is a power function x and its 
degree equals the order of differentiation of the same term. Again, we can adopt the 
following change of variables: 
 e , ( ) ( )tx y x Y t  (3.770) 
Taking the total differential, we find 

 1,t dtdx e dt
dx x

 (3.771) 

Then, applying chain rule of differentiation, we have the first derivative of y as  

 1dy dY dt dY
dx dt dx x dt

 (3.772) 

Similarly, we can apply the chain rule of differentiation one more time to get 
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2 2

2 2 2

2

2 2 2 2

1 1 1( )

1 1 1 ( 1)

d y d dY d Y dt dY
dx x dt x dx dtdx dt x

d Y dY d d Y
dt dt dtx dt x x

 (3.773) 

Note that the last of (3.773) rearranges the differentiation in a factorized fashion.  
This step is very important, and this will become obvious when we continue the 
process of differentiation. In particular, applying the chain rule of differentiation 
for the third time gives 

 

3 3 2 2

3 3 3 3 2 3 3 2

3

1 3 2 1 { 3 2}

1 ( 1)( 2)

d y d Y d Y dY d d d Y
dt dt dtdx x dt x dt x x dt

d d d Y
dt dt dtx

 (3.774) 

More importantly, we observe that the result can be factorized in an orderly 
fashion. To double check, we consider the fourth order differentiation of y and the 
result is  

 

4 4 3 2

4 4 4 4 3 4 2 4

4

1 6 11 6

1 ( 1)( 2)( 3)

d y d Y d Y d Y dY
dtdx x dt x dt x dt x

d d d d Y
dt dt dt dtx

 (3.775) 

Therefore, it becomes obvious that the change of variable for higher differentiation 
can be expressed in a compact form. In fact, one can show that for the k-th 
derivative term, we have 

 1 ( 1)...( 1)
k

k k
d y d d d k Y

dt dt dtdx x
 (3.776) 

Using the general formula in (3.776), the original ODE becomes 

 
1

1

( 1)...( 1) ( 1)...( 2)

... ( )n n

d d d d d dn Y a n Y
dt dt dt dt dt dt

dYa a Y F t
dt

 (3.777) 

It is obvious that this is an n-th order ODE with constant coefficients. Thus, the 
solution must be expressed as an exponential function and the corresponding 
characteristics equation is 
 1 1( 1)...( 1) ( 1)...( 2) ... 0n nr r r n a r r r n a r a  (3.778) 
It is obvious that this is an n-th order ODE with constant coefficients.  
__________________________________________________________________ 
Example 3.28 Show that the following generalized Euler equation can also be 
solved by using Euler’s method. This is also known as Lagrange problem. 

 
1

1
1 11( ) ( ) ... ( ) 0

n n
n n

n nn n
d y d y dyax b A ax b A ax b A y

dxdx dx
 (3.779) 

Solution: Using Euler’s approach, we can assume 
 tax b e ,  tadx e dt  (3.780) 
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Then, the first and second order derivative terms can be rewritten as  

 d
d t

y a dy
x dte

 (3.781) 

 

2 2 2

2 2

2 2

2 2

d ( ) ( )
d

( )

t t
t t t

t

y a d a dy a dy d ye e
dt dt dtx e e e dt

a d y dy
dte dt

 (3.782) 

Note that all derivatives of y with respect to t appear linearly on the right hand side 
of (3.781) and (3.782). To show that this statement is true for all higher derivatives, 
we use mathematical induction. From (3.781), the statement is true for the case of 
first order, and we assume that it is true for the k-th order: 

 d
d

k k

kk kt

y a P
x e

 (3.783) 

where Pk is a linear function of derivative of y. That is, 

 
2

2( , ,..., )
k

k k k

dy d y d yP P
dt dt dt

 (3.784) 

with all derivatives, appears linearly. Differentiation of (3.783) once with respect to 
x gives 

 

1

1

1

1 1

1( 1) ( 1)

d ( )
d

{ }

( )

k k

kk t kt

k
kt kt k

kt

k k
k

k kk t k t

y a d a P
dtx e e

dPa ke P e
dte

dPa aP P
dte e

 (3.785) 

It is clear that Pk+1 is a linear function of y's derivatives. This completes the proof. 
 Generalizing Euler’s analysis for (3.779) gives 
 1 2

1 2( ) ( ) ... ( ) nrr r
ny C ax b C ax b C ax b  (3.786) 

where ri (i =1,2,3,...,n) are the characteristic roots of  
 1 1( 1)...( 1) ( 1)...( 2) ... 0n nr r r n A r r r n A r A  (3.787) 
If there is a multiple root of order m, the solution becomes 

 
1

2

1
0 1 1

1

( ) { ln( ) ... [ln( )] }

( ) ... ( ) n m

r m
m

rr
m n

y ax b C C ax b C ax b

C ax b C ax b
 (3.788) 

__________________________________________________________________ 

3.5.2 Adjoint ODE   

One general way to solve an n-th order ODE is to consider its adjoint ODE. 
Physically, the adjoint ODE is the governing equation of the integrating factor of 
the origin problem. A particularly important special case is that when the adjoint 
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problem is the same as the original problem (differential equation as well as 
boundary conditions), it is called self-adjoint. 
 Consider the following n-th order linear ODE 

 
1

0 1 11( ) ( ) ( ) ( ) ( ) 0
n n

n nn n
d u d u duL u p x p x p x p x u

dxdx dx n 11(1((((1(1  (3.789) 

First, we note the product rule of differentiation that 

 d dV dUUV U V
dx dx dx

 (3.790) 

Rewrite differentiation as a power in bracket form, we have 

 (1) (1)dVU UV UV
dx

 (3.791) 

We are going to see that this formula can be generalized to higher order easily.   
Consider the following identity 

(1) (1) (2) (1) (1) (1) (1) (2) (2) (2)d U V UV U V U V U V UV U V UV
dx

 (3.792) 

Note that all immediate terms canceled successively. This can be rewritten as 
(3.790) 

  (2) (1) (1) (2)dVU U V UV UV
dx

 (3.793) 

Following the same procedure, it is straightforward to see that 

  (3) (2) (1) (1) (2) (3)dVU U V U V UV UV
dx

 (3.794) 

In fact, we have the following general form for any order k 
( ) ( 1) ( 2) (1) ( 3) (2) ( 1) ( 1) ( )... ( 1) ( 1)k k k k k k k kdVU U V U V U V UV UV

dx
  (3.795) 
Now, we consider the following function: 

  
1

0 1 11( ) ( ) ( ) ( ) ( )
n n

n nn n
d u d u duvL u vp x vp x vp x vp x u

dxdx dx n 11(1((((1(1  (3.796) 

Applying (3.795) to each term on the right of (3.796), we find 

  

( 1) ( 2) 1 ( 1)
0 0 0 0

0

( ) ( ) ... ( 1) ( )

( )
( 1)

n
n n n n

n

n
n

n

d u dvp x u p v u p v u p v
dxdx

d p v
u

dx

 (3.797) 

  

1
( 2) ( 3) 2 ( 2)

1 1 1 11

1
1 1

1

( ) ( ) ... ( 1) ( )

( )
( 1)

n
n n n n

n

n
n

n

d u dvp x u p v u p v u p v
dxdx

d p v
u

dx

(3.798) 

  
22

2
2 2 22 2

( )
( ) ( ) n

n n n
d p vd u dvp x u p v u p v u

dxdx dx
 (3.799) 
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  1
1 1

( )
( ) n

n n
d p vdu dvp x up v u

dx dx dx
 (3.800) 

  n nvp u up v  (3.801) 
Substitution of (3.797) to (3.801) into (3.796) gives 

  

( 1) ( 2) 1 ( 1)
0 0 0

( 2) ( 3) 2 ( 2)
1 1 1

2 2

1

( ) ( ) ... ( 1) ( )

( ) ... ( 1) ( )

...

( )

( )

n n n n

n n n n

n n

n

dvL u u p v u p v u p v
dx
d u p v u p v u p v
dx

d u p v u p v
dx
d up v uL v
dx

 (3.802) 

where the adjoint operator is defined as  

 
1

10 11
1

( ) ( )( )
( ) ( 1) ( 1)

n n
n n n

nn n
d p v d p vd p vL v p v

dxdx dx dx
( n  (3.803) 

Equation (3.802) can further be simplified to the following form: 

  ( ) ( ) ( , )dvL u uL v P u v
dx

 (3.804) 

where P(u,v) can be identified from (3.802) as the summation of all terms under the 
differentiation sign d/dx. If we want to solve the original ODE such that u satisfies 
(3.789) and v satisfies the adjoint ODE 
 ( ) 0L v , (3.805) 
then, the left hand side of (3.804) equals zero, and we have 

  ( , ) 0d P u v
dx

 (3.806) 

Integration of (3.806) yields  
  ( , )P u v c  (3.807) 
If we can solve the adjoint ODE given in (3.805), we will have n independent 
solutions. Substitution of each of these solutions into (3.807) results in n algebraic 
equations for n unknown u, u', u'', ..., and u(n 1) as: 
  1 1 2 2( , ) , ( , ) , ..., ( , )n nP u v c P u v c P u v c  (3.808) 
If we solve for u, the solution can be expressed in terms of n unknown constants as: 
  1 2 1 2( , ,..., ; , , ..., )n nu u v v v c c c  (3.809) 
An important particular case is that the associated adjoint ODE is the same as the 
original ODE. Most of the important ODEs found in physics, science, and 
mechanics are of the adjoint type. Mathematically, the self-adjoint ODE is defined 
as 
  ( ) ( )L u L u  (3.810) 
Note that the adjoint of the adjoint of an ODE is the original ODE. 
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__________________________________________________________________ 
Example 3.29 This example considers a second order ODE with circular functions 
as its coefficients 

 
2

2sin 2cos (sin ) 0d u dux x x u
dxdx

 (3.811) 

Solution: This is a linear first order homogeneous ODE. For n = 2, (3.789) and 
(3.805) become   

 
2

0 1 22( ) ( ) ( ) ( ) 0d u duL u p x p x p x u
dxdx

 (3.812) 

 
2

0 1
22

( ) ( )
( ) 0

d p v d p vL v p v
dxdx

 (3.813) 

The adjoint ODE given in (3.813) can be written explicitly as  
 0 0 1 0 1 2( ) (2 ) ( ) 0L v p v p p v p p p v  (3.814) 
Comparison of (3.813) and (3.814) gives 
 0 1 2( ) sin , ( ) 2cos , ( ) sinp x x p x x p x x  (3.815) 
Substitution of (3.815) into (3.814) gives 
 (sin ) (2sin ) 0x v x v  (3.816) 
This can be further simplified as  
 2 0v v  (3.817) 
The general solution of (3.817) is 
 1 2sin 2 cos 2v C x C x  (3.818) 
For the second order ODE, the function P can be defined as: 

 ( ) ( ) { ( , )} 0dvL u uL v P u v
dx

 (3.819) 

 0 0 1( , ) ( )P u v u p v u p v up v c  (3.820) 
The two independent functions are 
 1 2sin sin 2 , cos cos 2v x x v x x  (3.821) 
The simultaneous equations given in (3.808) are 

 1 0 1 0 1 1 1

1

( , ) ( )
sin sin (cos sin sin cos )

P u v u p v u p v up v
u x x u x x x x C

 (3.822) 

 2 0 2 0 2 1 2

2

( , ) ( )
sin cos (cos cos sin sin )

P u v u p v u p v up v
u x x u x x x x C

 (3.823) 

That is, we have two equations for two unknowns, and the solution for u is  

 1 2
1 cos( 2 ) sin( 2 )

2 sin
u C x C x

x
 (3.824) 

Note that if the adjoint ODE cannot be solved, the present approach does not work. 
Therefore, obviously only very special kinds of ODEs can be solved using this 
approach. 
__________________________________________________________________ 
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3.5.3 Sarrus Method 

The Sarrus method allows one to reduce the order of a second order ODE to 
become a first order ODE. Let us illustrate the method by using a particular 
example: 

 
2

3 2 2
23 2 ( ) ( 2 ) 0dy dy dy d yy x y x y

dx dx dx dx
 (3.825) 

Note in (3.825) that the highest order differential (i.e., d2y/dx2) must be of the first 
degree (i.e., linear in power) because it is resulted from differentiation. It is a 
necessary condition that it can be integrated once by exact differential. If the 
highest order in the ODE does not appear linearly, the Sarrus method is 
inapplicable. Let us assume that the following exact differential exists 

 
2

3 2 2
2{ 3 2 ( ) ( 2 ) }dy dy dy d ydU y x y x y dx

dx dx dx dx
 (3.826) 

As usual, let us rewrite the first derivative as  

 dy p
dx

 (3.827) 

 
3 2 2

3 2 2

{ 3 2 ( 2 ) }

( 3 2 ) ( 2 )

dpdU y xp yp x y p dx
dx

y xp yp dx x y p dp
 (3.828) 

Let us assume that  
 2 2

1 ( 2 )dU x y p dp  (3.829) 
Integrating once gives 

 2 2 2 2 2 2
1 ( )dy dyU x p y p x y

dx dx
 (3.830) 

Now take the total differential of U1 again, but this time with respect to dx. 

 
2

3 2 2
1 2{2 2 ( ) ( 2 ) }dy dy dy d ydU x y x y dx

dx dx dx dx
 (3.831) 

Subtraction of (3.831) from (3.828) gives 

 1 ( )dydU dU y x dx
dx

 (3.832) 

The first derivative term of dy/dx only appears once on the right hand side, and this 
is a consequence of an exact differential. The left hand side is clearly exact. 
Integrating once more, we have 
 1U U xy  (3.833) 
Thus,  

 2 2 2
1 ( )dy dyU U xy x y xy

dx dx
 (3.834) 

Note that dU = 0 is our differential equation and this implies that U = C. Therefore, 
we have the first integral of the second ODE as 

 2 2 2( )dy dyx y xy C
dx dx

 (3.835) 
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Unfortunately, this equation is clearly not exact and we cannot proceed using the 
Sarrus method. Therefore, the Sarrus method is not a very general method. That is, 
once the resulting equation is not linear in its highest order, we cannot reapply the 
Sarrus method again. 

3.5.4 Rule of Transformation 

We showed earlier that sometimes it is easier to solve a differential equation if the 
roles of variable and dependent function are reversed. This idea will reappear in 
our later discussion of PDEs (e.g., hodograph transformation discussed in Section 
6.15 and in Section 7.7.2).  
 
Interchange of variable: The interchange of variables is defined as 

 1
/

dy
dx dx dy

 (3.836) 

With this transformation, we have the second derivative as: 

 

2

2

2 2 2

2 2 3

1 1( ) ( ) ( )
/ ( / )

1 1 /
( / )( / ) ( / )

d y d dy d dy dy d
dx dx dy dx dx dy dx dy dx dydx

d x d x dy
dx dydx dy dy dx dy

 (3.837) 

Similarly, the third derivative can be evaluated similarly as 

 

3 2 2 2

3 2 3

3 3 2 2 2

3 4

3 3 2 2 2

5

/( ) { }
( / )

/ 3( / ) 1{ }( )
/( / ) ( / )

( / )( / ) 3( / )
( / )

d y d d y d d x dy dy
dx dy dxdx dx dx dy

d x dy d x dy
dx dydx dy dx dy

d x dy dx dy d x dy
dx dy

 (3.838) 

Higher derivatives can also be derived accordingly. Let us consider an example. 
 
__________________________________________________________________ 
Example 3.30 Solve the following third order nonlinear ODE by interchange of 
variables 

 
2 3 2

2 2
2 3 23( ) ( ) 0d y dy d y d y dy

dx dxdx dx dx
 (3.839) 

Solution: Application of the formulas given in (3.836) to (3.839) gives 
2 2 3 3 2 2 2

2
3 5

2 2

3 2

/ 1 ( / )( / ) 3( / )3{ }
/( / ) ( / )

/ 1 0
( / ) ( / )

d x dy d x dy dx dy d x dy
dx dydx dy dx dy

d x dy
dx dy dx dy

 (3.840) 
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This is a linear first order nonhomogeneous ODE.  
2 2 3 2 2

2 2
3 3 5 2 6 2 5

/ 1 1 13{ } 3( ) 0
( / ) ( / ) ( / ) ( / )
d x dy d x d x d x
dx dy dy dx dy dy dx dy dy dx dy

 (3.841) 

The first and third terms cancel out and the equation is simplified to  

 
3 2

3 2 0d x d x
dy dy

 (3.842) 

To solve (3.842), we can assume a reduction of order by 

 
2

2
d xz
dy

 (3.843) 

This technique of reduction of order will be discussed in more detail in Section 
3.5.8. Using (3.843), (3.842) becomes 

 0dz z
dy

 (3.844) 

Integrating this by using separation of variables, we have 

 
2

02
yd xz C e

dy
 (3.845) 

Thus, the final solution is 
 0 1 2

yx C e C y C  (3.846) 
 __________________________________________________________________ 
 
Change of dependent variable: Consider y a function of x or y(x), and we propose 
to change the unknown from y to z: 
 ( )y z  (3.847) 
Applying the chain rule, we find the first, second, and third derivatives as 

 ( )dy dy dz dzz
dx dz dx dx

 (3.848) 

 
2 2 2

2
2 2 2( ) ( ) ( ) ( )( ) ( )d y d dy d dz d z dz d zz z z z

dx dx dx dx dxdx dx dx
 (3.849) 

 

3 2

3 2

2 2 3
3

2 2 3

2 3
3

2 3

( )

( )( ) 2 ( )( ) ( ) ( )

( )( ) 3 ( )( ) ( )

d y d d y
dxdx dx

dz dz d z d z dz d zz z z z
dx dx dxdx dx dx
dz dz d z d zz z z
dx dx dx dx

 (3.850) 

Higher derivatives can be found by following a similar procedure. The dependent 
variable is changed from y to z. The most difficult part is the identification of an 
appropriate function (z). The application of this change of dependent variable is 
considered through the following example. 
__________________________________________________________________ 
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Example 3.31 Solve the following second order nonlinear ODE by changing the 
dependent variable 

 
2

2 2 2
2(1 ) (2 1)( ) 3 (1 ) 0d y dy dyy y x y

dx dxdx
 (3.851) 

Solution: We consider the following change of variable 
 tany z  (3.852) 
Note that 

 2secdy dzz
dx dx

,   2 21 tan secz z  (3.853) 

 
2 2

2 2 2
2 22sec tan ( ) secd y dz d zz z z

dxdx dx
 (3.854) 

Substitutions of (3.853) and (3.854) into (3.851) gives 

 
2

2
2 ( ) 3 0d z dz dzx

dx dxdx
 (3.855) 

The use of reduction of order gives 

 2 3 0d x
dx

 (3.856) 

where 

 dz
dx

 (3.857) 

This is the Bernoulli equation and can be solved analytically as discussed in Section 
3.2.7. 
 __________________________________________________________________ 
 
Change of independent variable: Consider y as a function of x or y(x), and we 
propose to change the unknown from x to z: 
 ( )x z  (3.858) 
The first, second, and third derivatives can be evaluated as 

 1
( )

dy dy dz dy
dx dz dx dx z

 (3.859) 

 

2

2

2

2 2 2

2

2 2 3

1 1( ) { }
( ) /

1 / ( )
( ){ ( )} { ( )}

1 ( )
{ ( )} { ( )}

d y d dy d dy
dx dx dz dz z dx dzdx
d y dy dz z

zdz z z

d y z dy
dzz dz z

 (3.860) 
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3 2 2

3 2 2 2 3

3 2 2

3 3 4 2 5

1 ( ) 1( ) { }
/{ ( )} { ( )}

1 ( ) ( ) ( ) 3{ ( )}3
{ ( )} { ( )} { ( )}

d y d d y d d y z dy
dx dz dz dx dzdx dx z dz z

d y z d y z z z dy
dzz dz z dz z

 (3.861) 

Again, the most difficult part is finding an appropriate function (z). The following 
example illustrates this method. 
__________________________________________________________________ 
Example 3.32 Consider the second order ODE  

    
2

2 2 2 0
1 1

d y x dy y
dxdx x x

 (3.862) 

Solve this differential equation by using the following change of variables 
    cosx z  (3.863) 
 
Solution: The derivative can be evaluated using the chain rule as: 

    cosecdy dy dz dyz
dx dz dx dz

 (3.864) 

    

2

2

2
2 2

2

1( ) ( cosec )
( / )

cosec cot cosec

d y d dy d dyz
dx dx dz dz dx dzdx

dy d yz z z
dz dz

 (3.865) 

Note also that  

    2 2 2
cos cos cosec cot

1 1 cos sin
x z z z z
x z z

 (3.866) 

Substitution of (3.864) to (3.866) into (3.862) yields 

    
2

2 0d y y
dx

 (3.867) 

This is a harmonic equation and the solution is  
    cos siny A z B z  (3.868) 
Thus, the final solution is 

    21y Ax B x  (3.869) 
 __________________________________________________________________ 

3.5.5 Homogeneous Equation 

We have learned that certain kinds of first order ODEs are called homogeneous and 
they can be solved by a standard change of variables to make it becoming 
separable. The idea of homogeneous can be extended to consider higher order 
ODEs. The following discussion follows from Bateman (1918).  
 In this approach, we assign a number system to each quantity of a differential 
equation as: 



 Ordinary Differential Equations   195 

 

 
Table 3.2 Number system used in the homogeneous system 

 
Variables x y y' y'' y''' 

 
x2 y2 y'2 

Weights m n n m n 2m n 3m 
 

2m 2n 2(n m) 

 
The differential equation is called “homogeneous” if the sum of the numbers for 
each term in the differential system is the same when m and n are chosen properly. 
Sometimes, a differential equation is homogeneous for all values of m and n, but 
more often, there is only one value of the ratio n/m for which the differential 
equation is homogeneous. The ratio n/m is called the grade of the equation, denoted 
by p.  
 Consider the following differential equation as an example: 

    
2

2 2 2 2
2( ) 0dy d yx x y y

dx dx
 (3.870) 

According to the weighting system given in Table 3.2, the sum of the number of the 
first term is 2m+2n 2m = 2n, that for the second term is 2m+n+(n 2m) = 2n and 
that for the last one is simply 2n. Thus, the sum of the numbers for each term is the 
same regardless of the values of m and n. Consider another example that 

     
2

4 3 2
2 ( 6 ) 5 0d y dyx x xy y

dxdx
 (3.871) 

The middle term actually consists of two different sums of the numbers. The sum of 
the number of the first term is 4m+n 2m = 2m+n, that of the second term is 
3m+n m = 2m+n, that of the third terms is m+n+n m = 2n, and that of the fourth 
term is 2n. Thus, for the differential equation to be homogeneous, we require that 
      2 2 , or 2m n n m n  (3.872) 
Therefore, the grade of the equation is two (i.e., p =2). 
 When m  0, the following change of variables can be applied for all values 
of m and n: 

      1,p pdyy x x
dx

 (3.873) 

where  and  are the new independent variable and the new unknown. 
Differentiating the first of (3.873) gives 

      1p pdy dpx x
dx dx

 (3.874) 

The last of (3.874) can be obtained by putting the second definition of (3.873) into 
the left hand side of (3.874). This results in 

      1 ( )d p
dx x

 (3.875) 

Note from the chain rule and (3.875) that 

      1 ( )d d d dp
dx d dx x d

 (3.876) 



196   Theory of Differential Equations in Engineering and Mechanics 

Differentiating the second equation of (3.873) gives 

      
2

2 1
2 ( 1) p pd y dp x x

dxdx
 (3.877) 

Combining (3.877) and (3.876) gives 

      
2

2
2 [( 1) ( ) ]pd y dx p p

ddx
 (3.878) 

Differentiation of (3.878) with respect to x one more time gives 

      

3
3

3

2

( 2) [( 1) ( ) ]

{( 1) ( ) ( ) ( )}

p

p

d y dp x p p
ddx

d d d d d dx p p p
dx dx dx d dx d

 (3.879) 

Substitution of (3.876) into (3.879) leads to 

      

3
3

3

2
2 2

2

{( 1)( 2) ( 3)( )

( )( ) ( ) }

pd y dx p p p p
ddx

d dp p
d d

 (3.880) 

Similarly, higher order derivatives can be found. In general, the derivatives on the 
right of these equations are one order lower than those on the left before 
transformation.  Thus, substituting these results into the original differential equation, 
the order of the original differential equation will be reduced one order after the 
change of variables.  
 If the original equation is homogeneous for all values of m and n, it must have 
the form 

      
2 3

2 3
2 3, , , ... 0dy d y d yF y x x x

dx dx dx
 (3.881) 

Note that (3.870) is another example of this form. If such a differential equation is 
linear, it is clearly of Euler type. If the equation is second order, transformation of 
(3.873) will convert it to first order and it is solvable by the technique of first order 
homogeneous type. If the equation is of third order, it would be converted into 
second order of grade 1 (i.e., p = n/m = 1). For the case that m = 0, we can use a 
substitution of 

       
udx

y e  (3.882) 
The method will be illustrated in the next example. 
________________________________________________________________ 
Example 3.33 Consider the second order ODE  

    
2

2 2 2 2
2 ( )d y dyx y x y

dxdx
 (3.883) 

Solution: As shown earlier in (3.870), the equation is homogeneous as the total 
weights of all terms are 2n and thus it is homogeneous for all values of m and n. 
Substitution of (3.878) and (3.873) into (3.883) gives 
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     2 2 2 2 2 2 2 2( ) [( 1) ( ) ] ( )p p p pdx x x p p x x x
d

 (3.884) 

Simplification leads to 

     ( )d
d p

 (3.885) 

Since (3.885) is homogeneous for all values of m and n, we can set p = 1 for 
simplicity.  Integration of (3.885) gives 
     1(ln )C  (3.886) 
Back substitution of the definition given in (3.873) gives 

      1[ln( ) ]dy y y C
dx x x

 (3.887) 

As expected, it is the homogeneous type of first order ODE. Thus, we can use the 
standard change of variables as 

      y u
x

 (3.888) 

Using this change of variables and integrating, we obtain the final result as: 
      1 2C C xy xe  (3.889) 
 __________________________________________________________________ 

3.5.6 Undetermined Coefficient for Nonhomogeneous ODE   

The method of undetermined coefficients discussed for second order ODEs can be 
easily extended to the case of higher order ODEs. All earlier discussions given in 
Section 3.3.3 remain valid here. That is, by examining the mathematical form of the 
nonhomogeneous term, we can propose a particular solution form that can provide 
terms that can match those given in the nonhomogeneous terms, one by one. For 
example, a nonhomogeneous term in polynomials must be matched by assuming 
the solution in polynomials. We will proceed by considering the specific examples:   
 
__________________________________________________________________ 
Example 3.34 Consider a third order ODE with the nonhomogeneous term given in 
an exponential function as 
 3 3 4 ty y y y e  (3.890) 
Solution: Note that this is a linear ODE with constant coefficients. Thus, we should 
try for an exponential solution as for the homogeneous ODE (i.e., ignoring the term 
on the right hand side of (3.890) as  
 ( ) rty t e  (3.891) 
Substitution of (3.891) into (3.890) gives the following characteristic equation: 
 3 23 3 1 0r r r  (3.892) 
Recalling the binomial theorem, we recognize that it can be factorized as 
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 31 0r  (3.893) 

Thus, the solution can be expressed as  
 2

1 2 3( ) t t t
hy t c e c te c t e  (3.894) 

Since the nonhomogeneous term on the right hand side of (3.890) matches the triple 
root of the homogeneous ODE, we need to add t3 to the trial particular function as 
 3( ) t

py t At e  (3.895) 
Differentiation of (3.895) gives 
 2 33 t t

py At e At e  (3.896) 

 2 36 6t t t
py Ate At e At e  (3.897) 

 2 36 18 9t t t t
py Ae Ate At e At e  (3.898) 

Substitution of these results into (3.890) gives 
 6 4t tAe e  (3.899) 
Thus, the unknown constant is  

 2
3

A  (3.900) 

Finally, the particular solution becomes 

 32
3

t
py t e  (3.901) 

Adding the homogeneous solution and the particular solution, we obtain 

 2 3
1 2 3

2( )
3

t t t ty t c e c te c t e t e  (3.902) 

 __________________________________________________________________ 
__________________________________________________________________ 
Example 3.35 Consider a fourth order ODE with nonhomogeneous terms given in 
terms of a circular function as 
 (4) 2 3sin 5cosy y y t t  (3.903) 
Solution: The homogeneous solution is considered by seeking 
 ( ) rty t e  (3.904) 
The corresponding characteristic equation is 
 4 2 2 22 1 1 1 0r r r r  (3.905) 

The roots of r are i and i and both are double roots. The homogeneous solution is 
 1 2 3 4( ) cos sin cos sinhy t c t c t c t t c t t  (3.906) 
As expected, there are four unknown constants. For the particular solution, we 
observe that the nonhomogeneous terms do match the characteristic roots and thus 
we seek a particular solution in the form 
 2( ) ( sin cos )Y t t A t B t  (3.907) 
Differentiation of (3.907) gives 
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 2 2(4 2 )cos (2 4 )sinY At B Bt t A Bt At t  (3.908) 

 2 2( 12 8 )cos ( 12 8 )sinY B At Bt t A Bt At t  (3.909) 
Substitution of (3.908) and (3.909) into (3.903) gives 
 8 sin 8 cos 3sin 5cosA t B t t t  (3.910) 
Matching the coefficients of sine and cosine on both sides gives two equations for A 
and B and their solutions are: 
 3 / 8, 5 / 8A B  (3.911) 
Therefore, the particular solution is 

 2 23 5( ) sin cos
8 8

Y t t t t t  (3.912) 

Summation of the homogeneous solution and particular solution leads to  

 2 2
1 2 3 4

( ) ( ) ( )
3 5cos sin cos sin sin cos
8 8

hy t y t Y t

c t c t c t t c t t t t t t
 (3.913) 

 __________________________________________________________________ 

3.5.7 Variation of Parameters  

The idea of variation of parameters was introduced by Euler but its application to 
higher order ODEs was done by Lagrange. In particular, we consider the following 
linear n-th order ODE with a nonhomogeneous term: 
 ( ) ( 1)

1 1( ) ( ) ( ) ( )n n
n ny p t y p t y p t y g tn 11(1(((1(1  (3.914) 

Let us assume that the homogeneous solution is known: 
 1 1 2 2( ) ( ) ( ) ( )h n ny t c y t c y t c y tn n ((n n  (3.915) 
Using variation of parameters, we assume the particular solution for (3.914) as  
 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )p n ny t u t y t u t y t u t y t( )n ( )( )n ( )  (3.916) 
Differentiation of (3.914) gives  
 1 1 2 2 1 1 2 2( )p n n n ny t u y u y u y u y u y u yn n n n1 1 2 2 u yn1 1 2 21u y u y u yu y u y u y1 1 2 21 1 21 11 1 2 21  (3.917) 
Following our proof of the second order, Lagrange set the following group to zero: 
 1 1 2 2 0n nu y u y u yn nun

g g
nu yn  (3.918) 

This is the first equation governing the first derivative of the unknown functions ui. 
Differentiation of (3.917) with condition (3.918) gives 
 1 1 2 2 1 1 2 2p n n n ny u y u y u y u y u y u yn n n n1 1 2 2 u ynn1 1 2 21u y u y u yu y u y u y1 1 2 21 1 21 11 1 2 21 1 21 1  (3.919) 
We again set the first bracket term on the right hand side of (3.885) to zero 
 1 1 2 2 0n nu y u y u yn nun nu yn  (3.920) 
This is the second equation governing the first derivative of the unknown functions 
ui. We can repeat this differentiation procedure. In summary, up to differentiation 
of n 1 times we have the following relations:  
 ( 1) ( 1) ( 1)

1 21 2
0, 1, , 2k k k

n n
u y u y u y k n( 1) 2(

n n
u y k n1) 0, 1, ,1, ,(

n
(u yu y( 1) 0, 1, ,(

n  (3.921) 
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 ( )( ) ( )
1 1 , 0,1, , 1kk k

p n ny u y u y k n( ) 1(
n n k n) , 0,1, ,0,1, ,(
n nnu y( ) , 0,1, ,0,1, ,(
n nn  (3.922) 

For the n-th differentiation, we have 
 ( 1) ( )( ) ( 1) ( )

1 11 1
n nn n n

p n n n ny u y u y u y u y( ) ( )( )( ()(
n n n n11 u ynn11

( )( )(u y u y( )(( ( )
1 11 11  (3.923) 

Substitution of (3.922) and (3.923) into (3.914) gives  

 

( 1) ( )( 1) ( )
1 11 1

( 1) ( 1)
1 1 1

1 1 1 1 1

( )

( ) ( ) ( )

n nn n
n n n n

n n
n n

n n n n n n

u y u y u y u y

p t u y u y

p t u y u y p t u y u y g t

( ) ( )( )
1
( ()(

n n11 u ynn11
( )( )(u y u yu y u y( ) ( )

1 11 11

( 1)
n nu yn

( 1)
nu yn

( ) ( )n n n n n1 1 g( ) () n n1 111 11( )( )( ) 1 111 1

 (3.924) 

Grouping all terms of ui, we get 

 
( ) ( 1) ( ) ( 1)

1 1 1 2 1 21 1 2 2

( 1)( ) ( 1) ( 1)
1 1 1... ( )

n n n n
n n

nn n n
n n n n n n n

u y p y p y u y p y p y

u y p y p y u y u y g t

( ) ( 1)
22 2

( ) () (
n2 21 2 11 p y1 2 111 2 1

( ) () (( ) ( 1)( ) () (( )p y u y p yp y u y p y( ) ( )( )( )
1 2 11 2 11 2 11 2 111 2 11 21 2 111

( ) ( 1)( 1)
1 (1)((1) ((

n n n n1 1 g((1)(
n nn1 11 1

(1)( 1)( 1)1)(( 1)( ( 1)( )
1 1

(( )
1 1

( 1)
(3.925) 

Since yk (k = 1,2,…,n) are the homogeneous solutions of (3.914), we must have all 
the bracket terms in (3.925) identically zero, except for the last one on the left hand 
side of (3.925). This provides the last equation for the first derivative of ui as: 
 ( 1) ( 1)

1 1
n n

n nu y u y g(
n nu yn n

(u y(
n n  (3.926) 

In summary, we have n equations for n unknowns: 

 

1 1

1 1

( 1) ( 1)
1 1

0
0

n n

n n

n n
n n

u y u y
u y u y

u y u y g

n nun nu yn

n nun nu yn

(
n nu yn n

(u y(
n n

 (3.927) 

The system can be expressed in matrix form: 

 
1 1

( 1) ( 1)
1

... 0

...
1...

n

n n
n n

y y u
g

y y u

g...  (3.928) 

The solution for each unknown can be solved by Cramer’s rule as: 

 1
( ) ( )

( ) , where ( ) ( , , )( )
( )

k
k n

g t W t
u t W t W y y t

W t
 , )( )n, )()(n,  (3.929) 

Integration of (3.929) gives the unknown functions defined in (3.916)  

 
0

( ) ( )
( ) , 1, ,

( )

t
k

k
t

g s W s
u t ds k n

W s
,n,  (3.930) 

Finally, the particular solution is obtained as 

 
01

( ) ( )
( ) ( )

( )

n t
k

p k
t

k

g s W s
y t ds y t

W s
 (3.931) 

The homogeneous solution (3.915) can be added to this particular solution to obtain 
the general solution for (3.914).   
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__________________________________________________________________ 
Example 3.36 Consider the following third order ODE with its homogeneous 
solutions given: 

 
1 2 3

( ),

( ) , ( ) , ( )t t t

y y y y g t

y t e y t te y t e
 (3.932) 

Solution: We now apply Lagrange’s variation of parameters technique. For the 
present case n = 3, we have the particular solution as: 

 
0

3

1

( ) ( )
( ) ( )

( )

t
k

p k
t

k

g s W s
y t ds y t

W s
 (3.933) 

Recall the definition of the Wronskian   

 

1 0 2 0 0

1 0 2 0 0
1 2 0

( 1) ( 1) ( 1)
0 0 01 2

( ) ( ) ( )
( ) ( ) ( )

, , , 0

( ) ( ) ( )

n

n
n

n n n
n

y t y t y t
y t y t y t

W y y y t

y t y t y t

(((
((

0, 0 0

( 1)( 1)( 1)

 (3.934) 

Substitution of the homogeneous solutions into (3.934) gives 

 ( ) 1 4

2

t t t

t t t t

t t t

e te e

W t e t e e e

e t e e

 (3.935) 

Replacing the first column by (0,0,1) we have 

 1

0

( ) 0 1 2 1

1 2

t t

t t

t t

te e

W t t e e t

t e e

 (3.936) 

Similarly, we can find W2 and W3 as  

 2

0

( ) 0 2

1

t t

t t

t t

e e

W t e e

e e

 (3.937) 

 2
3

0

( ) 1 0

2 1

t t

t t t

t t

e te

W t e t e e

e t e

 (3.938) 

Substitution of these results into (3.933) gives 
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0

0 0 0

0

3

1

2

( )

( ) ( )
( ) ( )

( )
( ) 2 1 ( )2 ( )

4 4 4
1 1 2( ) ( )
4

t k
p kt

k

st t tt t t
s s st t t

t t s t s

t

g s W s
y t ds y t

W s
g s s g s g s ee ds te ds e ds

e e e

e t s e g s ds

 (3.939) 

The final solution given in (3.939) is a function of g and integration can be 
conducted once this nonhomogeneous term is given. 
__________________________________________________________________ 

3.5.8 Reduction to Lower Order 

We now consider a special form of n-th order ODE that all derivatives of order 
lower than k do not appear in the ODE. Mathematically, we have 
 
 ( ) ( 1) ( )( , , , , ) 0k k nF t x x x( ), )( )((,  (3.940) 
where x is the unknown function and t is the variable. Naturally, this suggests a 
change of variables that the lowest order derivative term is the new unknown as: 
 ( )kx y  (3.941) 
It is clear that now the new differential equation is of order n k and appears as 
 ' ( )( , , , , ) 0n kF t y y y( ) )( )y,  (3.942) 
Suppose that the solution of this k-th ODE can be solved, and the solution is 
written symbolically as: 
 1( , , , )n ky t c c, )n k,  (3.943) 
Then, back substitution of (3.394) into (3.941) gives a k-th order ODE: 
 ( )

1( , , , )k
n kx t c c, )n k,  (3.944) 

Note, however, that now the right hand side is only a function of t. Therefore, it can be 
solved by integrating the right hand side k times as: 
 1( , , , )nx t c c, )n,  (3.945) 
The following example will illustrate its usefulness. 
__________________________________________________________________ 
Example 3.37 Solve the following fifth order ODE: 

 
5 4

5 4
1 0d x d x
tdt dt

 (3.946) 

Solution: This is a linear first order nonhomogeneous ODE.  

 
4

4
d x y
dt

 (3.947) 

 1 0dy y
dt t

 (3.948) 
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This can be integrated readily to get 
 y ct  (3.949) 
Back substitution of the definition of y gives 

 
4

4
d x ct
dt

 (3.950) 

Finally, integration of (3.950) yields the solution   
 5 3 2

1 2 3 4 5x c t c t c t c t c  (3.951) 
 __________________________________________________________________ 
__________________________________________________________________ 
Example 3.38 Solve the following nonlinear ODE 

 
2

2
2 ( ) 0d x dxx

dtdt
 (3.952) 

Solution: We can reduce the order by assuming 

 dx y
dt

 (3.953) 

Substitution of (3.953) into (3.952) gives 

 ( ) 0dyx y y
dx

 (3.954) 

There are two solutions for y and they are  

 0, dy yy
dx x

 (3.955) 

The solution of the second equation of (3.955) is  
 1y c x  (3.956) 
Back substitution of (3.953) into (3.956) yields 

 1
dx c x
dt

 (3.957) 

Integration gives the final solution as  
 1

2
c tx c e  (3.958) 

 __________________________________________________________________ 
 
Another type of reduction of order for an n-th ODE will be considered in Section 
3.5.14 for the case of autonomous differential equations (i.e., variable does not 
appear explicitly in the ODE). 

3.5.9 Exact Condition  

Consider the most general form of linear ODE of order n  
 ( ) ( 1)

0 1( ) ( ) ... ( ) ( )n n
np x y p x y p x y f x  (3.959) 

The adjoint of this n-th order ODE is 
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1

10 11
1

( ) ( )( )
( 1) ( 1) ... 0

n n
n n n

nn n
d p v d p vd p v

p v
dxdx dx

 (3.960) 

This adjoint problem has been discussed in Section 3.5.2. The adjoint ODE actually is 
the governing equation for the integrating factor v. Thus, if an n-th order ODE is exact 
we must have v = 1, and with this information we have the following condition for the 
coefficients to satisfy 

 
1

10 11
1( 1) ( 1) ... 0

n n
n n n

nn n
d p dpd p p

dxdx dx
 (3.961) 

This is the condition for an n-th order ODE to be exact.  

3.5.10 Factorization of ODE  

The factorization technique considered here closely relates to the symbolic methods 
reported in some textbooks on differential equations. This symbolic technique was 
developed by Boole 1859 and Lobatto in 1837. Consider an n-th order ODE with 
constant coefficients   

 
1 2

1 21 2( ... ) ( )
n n n

nn n n
d d dA A A u f x
dx dx dx

 (3.962) 

For the homogeneous case, assuming an exponential function, we arrive at a 
characteristic equation 
 1 2

1 2 ... 0n n n
nr A r A r A  (3.963) 

We can factorize (3.962) as 

 1 1( )( ) ( ) ( )n
d d da a a u f x
dx dx dx n( n

d((
dx

((  (3.964) 

where ai = 1,2,..., n are the roots of (3.963). The homogeneous solution is 
 1 2

1 2 ... a xa x a x n
nu C e C e C e  (3.965) 

To consider the particular solution, we first consider the case with only one 
differential operator: 

 ( ) ( )d a u f x
dx

 (3.966) 

This is the most general linear form of first order ODE discussed in Section 3.2.6, and 
its solution is 

 ax axu e e fdx  (3.967) 

This can be solved symbolically as the inverse of the differential operator 

 1( ) ax axdu a f e e fdx
dx

 (3.968) 

For the homogeneous case that f = 0, we can define 

 1( ) 0 axdu a Ce
dx

 (3.969) 
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For the cases of two factorized operators, we considered the following second order 
ODE 

 
2

2 ( )d u dua b abu f
dxdx

 (3.970) 

This can be factorized easily as  

 ( )( ) ( )d da b u f x
dx dx

 (3.971) 

The solution of u can be given symbolically as  

 1 1 1( ) ( ) {( )( )}d d d du b a f a b f
dx dx dx dx

 (3.972) 

To solve this, in principle, we can apply (3.967) successively to (3.972). 
Alternatively, a symbolic approach based on rational function decomposition was 
developed by Gregory. That is, the solution can be written such that the inverse 
process can be applied to each term of (3.964) one-by-one: 

 

1
1 2

1 1 1
1 1 2 2

{( )( ) ( )}

( ) ( ) ... ( )

n

n n

d d du a a a f
dx dx dx

d d dN a N a N a f
dx dx dx

n
d((
dx

((
 (3.973) 

where Ni (i = 1,2,..., n) can be found by algebraic means of partial fraction. If r roots 
are equal to a and the rest are distinct, we have 

 

1
1

1
1 2

1 1 1
1 1

{( ) ( ) ( )}

{ ( ) ( ) ...

( ) ( ) ... ( ) }

r
r n

r r

r r r n n

d d du a a a f
dx dx dx

d dN a N a
dx dx
d d dN a N a N a f
dx dx dx

n
d(((
dx

((

 (3.974) 

For the case of repeated roots, by applying (3.967) r times we have  

 ( ) r ax axd a f e e f dx dx
dx

axe f dx dxax  (3.975) 

Using (3.971) and (3.972) as an illustration, we assume u = emx and this leads to the 
following considerations: 

 1 2 1 2( ) ( )1
( )( ) ( ) ( ) ( )( )

N N m b N m a N
m a m b m a m b m a m b

 (3.976) 

Equating the constant and m order term, we have 
 1 2 1 20, 1N N bN aN  (3.977) 
The solutions of this set of equations are 

 1 2
1 1,N N

a b a b
 (3.978) 

To see the validity of this algebraic approach, we can consider the actual 
differential operator: 
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 1 1 1
1 2{( )( )} ( ) ( )d d d da b f N a f N b f

dx dx dx dx
 (3.979) 

Applying the original differential operator on both sides of (3.979), the left hand 
side is f and the right hand side becomes  

    

1 1
1 2

1 2 1 1 2 2

1 2 1 2

( )( )( ) ( )( )( )

( ) ( )

( ) ( )

d d d d d dRHS N a b a f N a b b f
dx dx dx dx dx dx
d d df dfN b f N a f N N bf N N af
dx dx dx dx

dfN N N b N a f
dx

 (3.980) 

To get back the original nonhomogeneous function, we must set 
 1 2 1 20, 1N N bN aN  (3.981) 
These are precisely what we got in the partial fraction analysis for (3.977). This is the 
reason why we can replace the inverse differential operator by algebraic analysis. 
 Return to our second order derivative problem given in (3.971) 

 

1 1 11{( )( )} {( ) ( ) }

1 { }
ax bxax bx

d d d du a b f a f b f
dx dx a b dx dx

e e fdx e e fdx
a b

 (3.982) 

This completes the procedure of symbolic analysis for the factorized form. 
__________________________________________________________________ 
Example 3.39 Find the particular solution of the following fourth order differential 
equation using the factorization and symbolic technique 

 
4 3 2

4 3 24 3 4 4 ( )d y d y d y dy y f x
dxdx dx dx

 (3.983) 

Solution: The characteristic equation of (3.983) is 
 4 3 24 3 4 4 0m m m m  (3.984) 
This can be factorized as 
 2( 2) ( 1)( 1) 0m m m  (3.985) 
According to (3.964), the differential equation can be factorized as  

 2( 2) ( 1)( 1) ( )dy dy dy y f x
dx dx dx

 (3.986) 

Applying symbolic analysis, we have 

 
1

2( 2) ( 1)( 1) ( )dy dy dyy f x
dx dx dx

 (3.987) 

The associated algebraic analysis using partial fractions is 

 2 2
1 4 11 1 1

2( 1) 18( 1)( 2) ( 1)( 1) 9( 2)
m

m mm m m m
 (3.988) 

Therefore, the final solution is given as  
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 2 21 1 1(4 11)
9 2 18

x x x x x xdy e e f dxdx e e fdx e e fdx
dx

 (3.989) 

 __________________________________________________________________ 
 
For the case of non-constant coefficients, the symbolic analysis can be extended to the 
case of an arbitrary differential operator instead of d/dx. In particular, we can write 
 1 2

1 2( ... ) ( )n n n
nA A A u f x  (3.990) 

where the operator  satisfies the following rules: 

 
( ) ( ),
( ) ( ) ( ),

( ) ( )m n m n

au a u
u v u v

u u

 (3.991) 

Then, the solution can be expressed as 
 1 2 1

1 2( ... ) ( )n n n
nu A A A f x  (3.992) 

Using symbolic method, the solution can be rewritten as 
 1 1 1

1 1 2 2 1( ) ( ) ... ( )nu N a f N a f N a f  (3.993) 
This method is demonstrated in the following example. 
_________________________________________________________________ 
Example 3.40 Solve the following second order ODE with non-constant 
coefficients by factorization: 

 
2

2
2 (2 1) ( 1) 0d u dux x x u

dxdx
 (3.994) 

Solution: Let us define the operator  as: 

 ( ) , ( 1) ( )du duu x u u x u u
dx dx

 (3.995) 

We now consider that  

 2
2

2

( 1)( ) ( )( )

(2 1) ( )

d duu u u
dx dx

d u du u
dxdx

 (3.996) 

Therefore, we recognize that if  = x, we recover (3.994). Therefore, we have 
 1 1( 1) 0 0u  (3.997) 
The corresponding equations are 

 ( 1) ( 1) 0dyy x y
dx

,  ( ) 0dzz xz
dx

 (3.998) 

The solution is  

 
2 2( 1) /2 /2

1 2
x xu C e C e  (3.999) 

 __________________________________________________________________ 
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3.5.11 Symbolic Method for Nonhomogeneous ODE 

This idea of using the algebraic symbolic method to differential calculus can be 
traced back to the time of Leibniz when he discovered the analogy between his n-th 
differentiation formula for two functions and the binomial theorem (see Eq. (1.27)). 
Subsequently, in 1774 Lagrange also found an algebraic analogy between Taylor 
series expansion and an exponential function of differential operator: 

 
0

( ) , ( ) ( 1)
!

dn n h
dx

n
n

h d uu x h h u e u
n dx

 (3.1000) 

Cauchy reported the symbolic calculus by Brisson in 1821 and 1823 (both papers 
have been lost). Then, symbolic methods branched into the British school (with G. 
Boole, Gregory, de Morgan, Carmichael, etc.) and the French school (with 
Arbogast, Francais, Cauchy, Laplace, etc.).  The application of symbolic algebra to 
differential equations with variable coefficients was made by Boole in 1844, and the 
approach was summarized in a book by Carmichael in 1855.  
 In particular, differentiation can be defined as: 

 
2 3

2 3
2 3, , , ,

n
n

n
d d d dD D D D
dx dx dx dx

, nnD,
d

D  (3.1001) 

The use of the symbol D gives this method another name, the so-called “D-operator 
method.” Using this notation, we observe that  
 2 2, , ,ax ax ax ax n n axDe ae D e a e D a e, D, nDnD  (3.1002) 
Let us define a general differential operator as:  

 
1

0 1 1( ) ( ... )

( )

ax n n ax
n n

ax

F D e p D p D p D p e

e F a
 (3.1003) 

Therefore, differentiation of eax with respect to x is done by setting D in F to a. 
Next, we consider the differentiation of another functional form: 
 ( ) ( ) ( )ax ax axD e V D e V e D V  (3.1004) 
where V is a function of x. Similarly, higher derivatives can be evaluated as 
 2 2 2( ) ( ) 2 ( ) ( ) ( )ax ax ax axD e V D e V D e D V e D V  (3.1005) 

 3 3 2 2 3( ) ( ) 3 ( ) ( ) 3 ( ) ( ) ( )ax ax ax ax axD e V D e V D e D V D e D V e D V  
  (3.1006) 
More generally, we can use the Leibniz formula in (1.27) as: 

   
1 2 21( ) ( ) ( ) ( ) ( 1) ( ) ( )

2
... ( )

n ax n ax n ax n ax

ax n

D e V D e V nD e D V n n D e D V

e D V
 (3.1007) 

Carrying out the differentiation with respect to the exponential function, we find 
1 2 2

1 2 2

1( ) ( ) ( 1) ( ) ... ( )
2

1( ( 1) ... )
2

n ax n ax n ax n ax ax n

ax n n n n

D e V a e V na e D V n n a e D V e D V

e a na D n n a D D V
 

  (3.1008) 
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Therefore, we have 
 ( ) ( )n ax ax nD e V e D a V  (3.1009) 
The exponential function appears to shift the differential operator from D to D+a. 
The result just obtained in (3.1009) can be used in the following differential 
operator: 

      

1
0 1 1

1
0 1 1

( )( ) ( ... )

{ ( ) ( ) ... ( ) }

( )

ax n n ax
n n

ax n n
n n

ax

F D e V p D p D p D p e V

e p D a p D a p D a p V

e F D a V

 (3.1010) 

This analysis can be extended to other functions as (the readers are encouraged to 
verify these themselves): 
       2 2( )cos ( )cosF D ax F a ax  (3.1011) 

       2 2( )sin ( )sinF D ax F a ax  (3.1012) 

       2 2 2( ) { } ( )ax ax axD a e V e D a a V e D V  (3.1013) 
Consider a special form of (3.1010) as 

       

( ) ( ){ } ( ) ( ) { }
( ) ! ( ) !

( )[ { }]
( ) !

( )[ ]
( )

ax p ax p
p p

ax p
p

ax
ax

e x e xD a D D D a
a p a p

e xD D
a p

eD e
a

 (3.1014) 

Note that we have used (3.1010) in getting (3.1014). We now introduce the 
strangest notation of this symbolic approach. In particular, it is obvious that 
       1Dx  (3.1015) 
We introduce the algebraic form of writing its inverse as 

       1 (1)x
D

 (3.1016) 

Recall that D is a differential operator, but not a coefficient. However, using the 
symbolic approach, we just divide through by the operator D as we would do for 
algebra. Similarly, we can extend the idea to the following form 

       !{ } 1
! !

p
p x pD

p p
 (3.1017) 

Thus, algebraically we can write: 

       1 (1)
!

p

p
x
p D

 (3.1018) 

Let us now proceed to consider the symbolic method in solving a nonhomogeneous 
ODE as 
       ( ) ( )F D y f x  (3.1019) 
We now propose to write the particular solution of (3.1019) as 
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       1 ( )
( )

y f x
F D

 (3.1020) 

Note that we have treated the operator D as if it were an ordinary algebraic quantity. 
In this approach, we will follow all plausible algebraic operations and then check 
the final result by differentiation.  
 
Case (i) For f(x) =eax, (3.1003) suggests that  

       1 1
( ) ( )

ax axe e
F D F a

 (3.1021) 

We can verify this by differentiating (3.1021) as 

       1 ( )( ){ }
( ) ( )

ax
ax axe F aF D e e

F a F a
 (3.1022) 

This confirms our usage of symbolic algebra for solving (3.1019).  
 
Case (ii) For f(x) =eax and F(D) = (D a)p (D), the symbolic method suggests that 

       

1 1 1 1{ } { }
( ) ( ) ( )( ) ( ) ( ) ( )

{ }
( ) !

ax ax
ax ax

p p p

ax p

e ee e
F D a aD a D D a D

e x
a p

 (3.1023) 

In obtaining the last of (3.1023), we have taken 1/D as integration as defined in 
(3.1018). To verify this result, we can differentiate the result by using (3.1017): 

       ( ) ( ){ }
( ) !

ax p
p axe xD a D e

a p
 (3.1024) 

Thus, the result is verified. We will illustrate the method by the following examples. 
________________________________________________________________ 
Example 3.41 Solve the following second order ODE  
 2 2( 3) 50 xD y e  (3.1025) 
Solution: The particular solution is 

 2 2 2
2 2

1 150 50 2
( 3) (2 3)

x x x
py e e e

D
 (3.1026) 

The last of (3.1026) is suggested by the result of (3.1021). It is easy to verify the 
validity of (3.1026). Adding the homogeneous solution gives 
 3 2( ) 2x xy A Bx e e  (3.1027) 
 __________________________________________________________________ 
________________________________________________________________ 
Example 3.42 Solve the following second order ODE  
 2 2( 2) 50 xD y e  (3.1028) 
Solution: The particular solution is 
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 2
2

1 50
( 2)

x
py e

D
 (3.1029) 

For this case, we cannot apply (3.1021) or directly substitute D = 2 because it will 
lead to infinity. Instead, we can apply (3.1013) and (3.1018) to get  

 2 2 2 2 2 2
2 2

1 1 150 50 50 ( ) 25
2( 2)

x x x x
py e e e x x e

D D
 (3.1030) 

It is easy to verify the validity of (3.1030). Adding the homogeneous solution gives 
 2 2 2( ) 25x xy A Bx e x e  (3.1031) 
For this case, the nonhomogeneous term matches the repeated root of the 
homogeneous ODE. Thus, similar to the method of undetermined coefficients that 
we discussed earlier, special treatment is needed in obtaining our particular 
solution in (3.1030). 
__________________________________________________________________ 
________________________________________________________________ 
Example 3.43 Find the general solution of the following second order ODE  
 2( 3 2) cos 2D D y x  (3.1032) 
Solution: Using the symbolic method and employing (3.1011), we have 

       2
1 1 1cos 2 cos 2 cos 2

( 4 3 2) (3 2)( 3 2)py x x x
D DD D

 (3.1033) 

Note that we can only substitute the value of D2 but not D (see (3.1011)). Next, 
(3.1033) can be simplified as 

 

2
3 2 3 2cos 2 cos 2

( 9 4 4)(9 4)
1 (3 cos 2 2cos 2 )
40

1 (3sin 2 cos 2 )
20

p
D Dy x x
D

D x x

x x

 (3.1034) 

Note that we can employ (3.1011) again in (3.1034). 
__________________________________________________________________ 
__________________________________________________________________ 
Example 3.44 Find the particular solution of the following third order ODE  
 3 2( 6 11 6) 2sin 3D D D y x  (3.1035) 
Solution: Using the symbolic method and employing (3.1012), we have 

       
3 2

1 22sin 3 sin 3
( 9 54 11 6)( 6 11 6)

1 sin 3
( 24)

py x x
D DD D D

x
D

 (3.1036) 

Again, note that we can only substitute the value of D2 but not D. Thus, we proceed 
like the last example to get 
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2
1 24sin 3 sin 3

( 24) ( 576)
24 1sin 3 (3cos3 24sin 3 )

9 576 585
1 (cos3 8sin 3 )

195

p
Dy x x

D D
D x x x

x x

 (3.1037) 

__________________________________________________________________ 
 
If the nonhomogeneous term is given as a power of x, we should expand the 
“inverted” differential operator as: 
 ( ) mF D y x  (3.1038) 

 2
0 1 2

1 ( ...)
( )

m m
py x a a D a D x

F D
 (3.1039) 

 
Let us illustrate this with examples. 
__________________________________________________________________ 
Example 3.45 Solve the following third order ODE by the symbolic method 
 2 2( 4)D y x  (3.1040) 
Solution: Using the symbolic method and employing (3.1039), we have 

       

2 2 2 4 2
2 2

2

1 1 1 1 1 1(1 ...)
14 4 4 16( 4) (1 )
4

1 1( )
4 2

py x x D D x
D D

x

 (3.1041) 

Therefore, the general solution becomes 

 21 1cos 2 sin 2 ( )
4 2h py y y A x B x x  (3.1042) 

We can see that a higher order of the Taylor series expansion is not needed since 
the nonhomogeneous term is only up to second degree in power. For power series 
of higher order, we need to retain more terms in the series expansion of the 
differential operator D. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 3.46 Solve the following third order ODE by the symbolic method 
 2 3( 4 3)D D y x  (3.1043) 
Solution: Using the symbolic method and employing (3.973), we have 
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3 3
2

2 3 4
2 3 4 3

3 2

1 1 1 1( )
2 1 3( 4 3)

1 1{(1 ...) (1 ...)}
2 3 3 9 27 81
1 4 26 80
3 3 9 27

py x x
D DD D

D D D DD D D D x

x x x

 (3.1044) 

Therefore, the general solution becomes 

 3 3 21 4 26 80
3 3 9 27

x x
h py y y Ae Be x x x  (3.1045) 

As illustrated, more terms are needed in Taylor series expansion for this example. 
__________________________________________________________________ 
 
The symbolic method introduced here is also known as the “inverse differential 
operator,” which is more efficient for finding a particular solution. If the order of a 
differential equation is higher than third order, the traditional technique of 
undetermined coefficients becomes tedious, whereas the symbolic method becomes 
very effective. Table 3.3 compiles some typical formulas for the symbolic method, 
and the differential operator F(D) in Table 3.3 is defined in (3.1010). 
 

Table 3.3 Some formulas of symbolic method 
 

No. ODE g Remark 
1 ( ) axF D g e  1

( )
axg e

F a
 (3.1021) 

2 ( ) ( )axF D g e Q x  1 ( )
( )

axg e Q x
F D a

 (3.1013) 

3 ( ) ( )F D a g Q x  ( )ax axg e e Q x dx  (3.967) 

4 2( ) cosF D g ax  
2

1 cos
( )

g ax
F a

 (3.1011) 

5 2( ) sinF D g ax  
2

1 sin
( )

g ax
F a

 (3.1012) 

6 2 2( ) cosF D a g ax  sin
2

x axg
a

  

7 2 2( ) sinF D a g ax  cos
2

x axg
a

 
 

8 ( ) ( )nF D a g Q x  ( )ax axg e e Q x dx dxdxaxe Q x dx dxdx( )ax   
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3.5.12 Removal of the Second Highest Derivative 

A linear n-th order ODE can be written as  
 ( ) ( 1)

1 1( ) ... ( ) ( ) ( )n n
n ny a x y a x y a x y f x  (3.1046) 

Let y be expressed as a product of two functions 
 0( ) ( ) ( )y x y x u x  (3.1047) 
Applying the Leibniz rule of differentiation, we have 
 0 0y y u y u  (3.1048) 

 0 0 02y y u y u y u  (3.1049) 

 ( 2) ( 2) ( 3)
0 0( 2) ...n n ny y u n y u  (3.1050) 

 ( 1) ( 1) ( 2)
0 0( 1) ...n n ny y u n y u  (3.1051) 

 ( ) ( ) ( 1) ( 2)
0 0 0

( 1) ...
2

n n n nn ny y u ny u y u  (3.1052) 

Substitution of (3.1047) to (3.1052) into (3.1046) and collection of all terms up to 
u(n 2) gives  

   ( ) ( 1) ( 2)
0 0 1 0 0 1 0 2 0

( 1)( ) [ ( 1) ] ... ( )
2

n n nn ny u ny a y u y n a y a y u f x  

  (3.1053) 
To remove the second term of (3.1053), we must set its coefficient to zero 

 0 1

0

y a
y n

 (3.1054) 

This is separable and it can be rewritten as 

 0 1

0

dy a dx
y n

 (3.1055) 

 0 1
1ln exp[ ]y a dx c
n

 (3.1056) 

 0 1
1exp[ ]y C a dx
n

 (3.1057) 

Therefore, the second highest derivative term can be removed by using the 
following transformation 

 1
1( )exp[ ( ) ]y u x a x dx
n

 (3.1058) 

__________________________________________________________________ 
Example 3.47 Solve the following non-constant coefficient ODE by removing the 
second highest derivative term 

 
2

2 2
22 [1 ] 0

(1 3 )
dy dy y

dxdx x
 (3.1059) 

Solution: We see that for this particular ODE 
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 1 2a  (3.1060) 
Thus, we have the following transformation  
 xy ue  (3.1061) 
The derivative terms of (3.1061) are 
 ( ) xy u u e  (3.1062) 

 ( 2 ") xy u u u e  (3.1063) 
Substitution of (3.1061) and (3.1063) into (3.1059) gives a simplified ODE  

 2
2" 0

(1 3 )
u u

x
 (3.1064) 

This equation can actually be considered as an extended Euler equation (see 
Example 3.28). The following change of variables can be assumed 
  1 3 , ln(1 3 )tx e or t x  (3.1065) 
Thus, we have 

 3 3 , ( ) ( )
1 3 t

dt u x U t
dx x e

 (3.1066) 

 3
t

du dU dt dUu
dx dt dx dte

 (3.1067) 

 

2 2

2 2

2

2 2

3 3 3 3{ } { }

1 9 9

t t t t

t

d u d dU dt dU d Uu
dt dt dx dtdx e e e e dt
d U dU

dte dt

 (3.1068) 

Finally, the differential equation is converted to an ODE with constant coefficients  

 
2

29 9 2 0d U dU U
dtdt

 (3.1069) 

Following the standard procedure of assuming that an exponential solution leads to 
the characteristic equation 
 29 9 2 0  (3.1070) 

 1 2( )( ) 0
3 3

, (3.1071) 

the solution of U is 
 /3 2 /3t tU Ae Be  (3.1072) 
Substitution of this result into the definition of change of variables given in 
(3.1065) and (3.1061) gives the final solution 
 1/3 2/3[ (1 3 ) (1 3 ) ]u A x B x  (3.1073) 

 1/3 2/3[ (1 3 ) (1 3 ) ] xy A x B x e  (3.1074) 
 __________________________________________________________________ 
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3.5.13 Particular Forms 

In this section, we will summarize some particular forms of higher order ODEs that 
can be solved easily. The simplest ODE of order n is 

 ( )
n

n
d y f x
dx

 (3.1075) 

This ODE can be solved by applying direct integration n times as: 

 1 2

1 2
1 2

( )

...

n n n

n n
n

y f x dx dx dx dx

c x c x c

1 2n n nf x dx dx dx dx1 2( )n n nn)
 (3.1076) 

Another simple form of an n-th ODE is 

 ( )
n

n
d y f y
dx

 (3.1077) 

The integration of this differential equation is less obvious. Direct integration can 
only be applied for the case n=1, 2. For n = 1, we have 

 ( )dy f y
dx

 (3.1078) 

This is a special form of separable ODE, and thus the solution can be determined as 

 
( )
dyx C

f y
 (3.1079) 

For the case of n = 2, the ODE given (3.1077) becomes 

 
2

2 ( )d y f y
dx

 (3.1080) 

Multiplying both sides by 2(dy/dx), we have 

 
2

22 2 ( )dy d y dyf y
dx dxdx

 (3.1081) 

Note that the left hand side can be recognized as  

 
2

2
22 ( ) 2 ( )dy d y d dy dyf y

dx dx dx dxdx
 (3.1082) 

This technique actually closely relates to the evaluation of energy in physical 
problems. It is a very powerful mathematical technique and will be used again in 
later chapters. Thus, we can integrate the last one as 

 2
1 1( ) 2 ( ) ( )dy f y dy C y C

dx
 (3.1083) 

The first derivative becomes 

 1( )dy y C
dx

 (3.1084) 

Integrating one more time, we have 

 2
1( )

dyx C
y C

 (3.1085) 
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3.5.14 Autonomous n-th Order ODE  

In this essay, the n-th order ODE is independent of the variable x or more 
specifically x does not appear in the ODE except in the derivative terms. That is, 

 ( , ,..., ) 0
n

n
dy d yF y
dx dx

 (3.1086) 

Since none of the coefficients change with x, we call such an ODE autonomous. 
The functional form is independent of x. We can apply a standard change of 
variables as 

 dy p
dx

 (3.1087) 

Differentiation of (3.1087) gives 

 
2

2
d y dp dp dy dpp

dx dy dx dydx
 (3.1088) 

 
3 2 2

2 2
3 2 2( ) ( ) ( )d y d d y d dp dy d p dpp p p

dx dy dy dx dydx dx dy
 (3.1089) 

 

4 3 2
2 2

4 3 2

3 2
3 3 2

3 2

( ) [ ( ) ]

( ) 4 ( )

d y d d y d d p dpp p p
dx dy dydx dx dy

d p dp dp d pp p p
dy dydy dy

 (3.1090) 

       

5 4 3 2
3 3 2

5 4 3 2

4 3 2 2
4 3 2 2 3 2 4

4 3 2 2

( ) [ ( ) 4 ( ) ]

7 11 ( ) 4 ( ) ( )

d y d d y d d p dp dp d pp p p p
dx dy dy dydx dx dy dy

d p dp d p dp d p d p dpp p p p p
dy dy dydy dy dy dy

 

  (3.1091) 
All higher derivatives can be evaluated using a similar procedure. However, it does 
not appear to have a general form for dny/dxn.   However, it is clear that 

 
1

1( , ,..., )
n n

n n
d y dp d pf p

dydx dy
 (3.1092) 

Therefore, the original ODE becomes symbolically   

 
1

1( , , ,..., ) 0
n

n
dp d pF y p
dy dy

 (3.1093) 

The original unknown y now becomes a variable, and its first derivative p becomes 
the new unknown. Now the variable y appears explicitly in the differential 
equation. Therefore, the procedure used in (3.1087) can no longer be used. In 
addition, even when the original ODE (3.1092) is linear, a change of variable given 
in (3.1087) will make it highly nonlinear. Therefore, this technique is more useful 
if the highest order is second, and in such case, the resulting nonlinear first order 
ODE is more likely to be solved. 
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3.6 SUMMARY AND FURTHER READING  

The methods for solving ODEs have occupied the minds of great mathematicians in 
the last three hundred years. Many of the techniques covered in the chapter were 
developed by Bernoulli, Euler, Fourier, Kirchhoff, Lagrange, D’Alembert, Jacobi, 
Laplace, Poisson, Legendre, Helmholtz, Gauss, Kummer, Clairaut, Riccati, Bessel, 
Boole, Hankel, Fuchs, Cauchy, Riemann, Picard, Frobenius, Stokes, Liouville, 
Monge, Ampere, Darboux, Goursat, Bateman, Airy, Sarrus, Kelvin, Forsyth, and 
many others. Yet, there remain many unsolved ODEs, especially nonlinear ODEs 
or ODEs with non-constant coefficients. Many naive looking ODEs require the 
application of substantial mathematical skills and insights to obtain their solutions. 
In this chapter, we only summarize some of the most notable techniques in 
obtaining the solutions of ODE. These skills are essential before we discuss the 
solution techniques for partial differential equation (PDEs). Very often, when we 
solve a PDE, we convert the PDE into a number of ODEs (such as the separation of 
variables). There are a number of handbooks on differential equations. The most 
comprehensive and newest ones are a series of handbooks by Polyanin and co-
authors (Polyanin, 2001, Polyanin and Zaitsev, 2002 and 2003). The handbook by 
Zwillinger (1997) covers a number of different techniques and provides insights in 
solving different ODEs as well as PDEs. We suggest that readers identify and 
classify the ODE at hand. It is advisable to look it up in a handbook before trying 
to solve the differential equations by other techniques (such as a series solution 
technique to be covered in Chapter 4).  It is quite common that an exotic 
differential equation can easily be transformed into one that has been solved, if 
appropriate change of variables is applied. Indeed, in this chapter we have 
repeatedly demonstrated the power of change of variables. 
 Many techniques covered in this chapter are not covered in most modern 
textbooks on differential equations. We have referred extensively to more classic 
textbooks on differential equations, such as Boole (1865), Forysth (1890, 1900, 
1902, 1906, 1956), Goursat (1917), Bateman (1918), Piaggio (1920), Ince (1956), 
Sommerfeld (1949), Erdelyi (1951), and Sneddon (1957). We recommend that 
readers refer to these books for more classical techniques in solving ODEs. 

3.7 PROBLEMS  

Problem 3.1 Find the solution of the following first order ODE 

 2 2( ) 0y x y dx xdy  (3.1094) 

Ans:  

 2 2 2{ }x c y x y  (3.1095) 
 
Problem 3.2 Find the solution of the following nonlinear first order ODE 

 2 2 2( )dy a y
dx

 (3.1096) 

Hint: Use factorization. 
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Ans:  

 2 1 2( ) (sin ) 0yx c
a

 (3.1097) 

Problem 3.3 Find the solution of the following second order ODE 

 
2

2 2
2 2 ( 2) 0d y dyx x x y

dxdx
 (3.1098) 

 
Hint: Use removal of the second highest derivative. 
Ans:  
 cos siny Ax x Bx x  (3.1099) 
 
Problem 3.4 Find the solution of the following second order ODE 

 
2

2 2
2 2 0

(1 )
d y dy y

x dxdx x
 (3.1100) 

Hint: Use removal of the second highest derivative. 
Ans:  

 
21 (1 )

(1 )
xy A B

x x x
 (3.1101) 

 
Problem 3.5 Find the integrating factor of the following first order ODE 
 1 2( ) ( ) 0F xy ydx F xy xdy  (3.1102) 
Ans:  

 
1 2

1
{ ( ) ( )}xy F xy F xy

 (3.1103) 

 
Problem 3.6 Use the integrating factor to solve the following first order ODE 
 2 2 2 2( 1) ( 1) 0x y ydx x y xdy  (3.1104) 
Ans:  

 2 21 ln( )
2

xx y c
y

 (3.1105) 

Problem 3.7 Use the integrating factor to solve the following first order ODE 
 3 2 2 3(2 ) (2 ) 0x y y dx x y x dy  (3.1106) 
Ans:  

 2 2 1x y c
xy

 (3.1107) 

Problem 3.8 Find the integrating factor of the following first order ODE 

 2
1( sec ) 0y xdx dy
y x y

 (3.1108) 

Ans:  
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 cos( )y
x

 (3.1109) 

Problem 3.9 Find the general solution of the following n-th order ODE with the n-
th repeated root, r0: 
 ( )

3 2 1 0... 0n
np y p y p y p y p y  (3.1110) 

Ans:  
 01

0 1( ... ) r tn
ny C C t C t e  (3.1111) 

where r satisfies the following characteristic equation 
 1

1 1 0 0... ( ) 0n n n
n np r p r p r p r r  (3.1112) 

 
Problem 3.10 By differentiating the solution obtained in Example 3.15, show that 
it is indeed the solution of the given ODE. 
 
Problem 3.11 In solving a particular form of Navier-Stoke Equation for the case of 
viscous incompressible fluid flow, one arrives at the following form of Riccati 
equation in polar form (Sedov, 1993) 

 21 cot 0
2

d
d

 (3.1113) 

Show that by applying the following change of variables 

 2 du
u d

 (3.1114) 

we can convert (3.1113) into the following second order ODE: 

 
2

2 cot 0d u du
dd

 (3.1115) 

 
Problem 3.12 Show that we can apply the following change of variables  

 du v
d

 (3.1116) 

to solve (3.1115) obtained in Problem 3.11 and thus obtain the solution for . 
 
Ans:  

 2sin
cosA

 (3.1117) 

where A is an unknown constant. 
 
Problem 3.13 Repeat the solution procedure for solving (3.1115) by using another 
change of variables  

 2cos ( )
2

 (3.1118) 

Ans:  

 2sin
cosA

 (3.1119) 
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where A is an unknown constant. 
 
Problem 3.14 Show that the solution for the following particular form of Riccati 
equation encountered in viscous compressible flow 

 2 21 1( )sin sin cos cos2 1
2 2

d
d

 (3.1120) 

is 

 0[cot coth( )]
2

 (3.1121) 

Hint: See Chapter 3 of Sedov (1993). 
 
Problem 3.15 Solve the following nonlinear first order ODE by differentiation: 

 21 ( ) ( )dy dyy f x y
dx dx

 (3.1122) 

(i) In particular, first consider that  

 dyx y a
dx

,      21 ( )dyy b
dx

 (3.1123) 

Show that differentiation of both of these with respect to x leads to the following 
ODE: 

 
2

2
21 ( ) 0dy d yy

dx dx
 (3.1124) 

(ii) Next, show that differentiation of (3.1122) also leads to (3.1124). 
 
(iii) Finally, show that the solution of (3.1122) is 
 22 2( ) ( )y a x f a  (3.1125) 
where a is defined in (3.1123). 
 
Problem 3.16 Find the differential equation for the singular solution of (3.1122). 
 
Ans:  

 
2

( ) 0
1 ( )

dy
dydx f x y
dxdy

dx

 (3.1126) 

 
Problem 3.17 Find the solution of the following ODE 

 dy dxy x m
dx dy

 (3.1127) 

Ans:  

 my cx
c

 (3.1128) 

Problem 3.18 Find the solution of the following ODE 
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2 3 2

2
2 3 21 ( )d y d y d ya

dx dx dx
 (3.1129) 

Hint: Assume the following change of variables: 

 
2

2
d y z
dx

 (3.1130) 

Ans:  

 2
1 2( ) 1x cy dxdx c x c

a
 (3.1131) 

 
Problem 3.19 Find the solution of the following ODE 

 
4 2

2
4 2

d y d ya
dx dx

 (3.1132) 

Ans:  
 / /

1 2 3 4
x a x ay c e c e c x c  (3.1133) 

 
 
Problem 3.20 Find the solution of the following ODE 
 0xy xyye dx xe dy  (3.1134) 
Ans:  
 xye c  (3.1135) 
 
Problem 3.21 Find the solution of the following ODE 
 2( 2 ) ( ) 0y yx xy e dx y x xe dy  (3.1136) 
Ans:  
 2 2 22 2 yx y x y xe c  (3.1137) 
 
Problem 3.22 Apply the Liouville transformation discussed in Section 3.4.7 to the 
following second order ODE: 

 
2

1/2
2 1/2 2

1 1 ( 8) 0
4

d y dy x x y
dxdx x x

 (3.1138) 

 (i) Use the following transformation 

 1/2
1exp{ }
2

dxy W
x

 (3.1139) 

Show that the governing equation for v is 

 
2

2 2
2 0d W W

dx x
 (3.1140) 

 (ii) Apply a change of variables x = et, and show that the answer of (3.1138) is 

 1/2 2 2
1exp( ){ }

C
y x C x

x
 (3.1141) 
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Problem 3.23 Apply Liouville transformation discussed in Section 3.4.7 to the 
following second order ODE: 

 
2

2
2(1 ) (1 3 ) 0d z dzx x kz

dxdx
 (3.1142) 

Find the governing equation for W defined in (3.685).  
Ans:  

 
2

2 2 2
(1 )(1 3 ) 0

4(1 )
d W x x W
dx x

 (3.1143) 

 
Problem 3.24 Apply Liouville transformation discussed in Section 3.4.7 to the 
following second order ODE: 

 
2

2
2(1 ) (1 ) ( 1) 0d dx x k

dxdx
 (3.1144) 

Find the governing equation for W defined in (3.685).  
Ans:  

 
2

2 2 2
(1 )(1 3 ) 0

4(1 )
d W x x W
dx x

 (3.1145) 

 
Problem 3.25 Consider two different ODEs as: 

 
2

2 ( ) ( ) 0d z dzP x Q x z
dxdx

 (3.1146) 

 
2

1 12 ( ) ( ) 0d dP x Q x
dxdx

 (3.1147) 

(i) By observing the results from Problems 3.23 and 3.24, show that if the invariant 
I is the same for different ODEs, these ODEs are equivalent. More specifically, 
show that the invariants for them are the same if  

 2 21
1 1

1 1 1 1
2 4 2 4

dP dPI Q P Q P
dx dx

 (3.1148) 

 (ii) Prove the following relation between z and : 

 1
1exp{ ( )
2

z P P dx  (3.1149) 

 
Problem 3.26 Show that z in Problem 3.23 and  in Problem 3.24 are related by 
 (1 )z x  (3.1150) 
Hint: Use the result of Problem 3.25. 
 
Problem 3.27 It will be shown in Chapter 4 that the Bessel equation is 

 
2 2

2 2
1 (1 ) 0d z dz n z
x dxdx x

 (3.1151) 

Its solutions are the Bessel function of the first and second kinds: 
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 ( ) ( )n nz AJ x BY x  (3.1152) 
Find the solution of the following ODE in terms of Bessel functions 

 
2 2 2

2 2 2
1(1 ) 0

4 4
d y dy n y

dxdx x x
 (3.1153) 

Hint: Use the result of Problem 3.25. 
 
Ans:  

 1/2( ) [ ( ) ( )]n nx
xy AJ x BY x

e
 (3.1154) 

 
Problem 3.28 It has been shown that 

 
2

2 ( ) ( ) 0d y dyP x Q x y
dxdx

 (3.1155) 

can be converted to 

 
2

2 ( ) 0d v I x v
dx

 (3.1156) 

where I is defined in (3.1148). If the solutions of this second order ODE are v1 and 
v2, and their ratio is s = v1/v2, show that 

 23 ( ) { , } 2
2

s s s x I
s s

 (3.1157) 

where {s,x} is the Schwarzian derivative, which is defined in (3.702).  
 
Problem 3.29 Show that the invariant I of the adjoint ODE of  

 
2

2 ( ) ( ) 0d y dyP x Q x y
dxdx

 (3.1158) 

is the same as the invariant of the original ODE. 
 
Problem 3.30 Use the symbolic method to find the particular solution of the 
following linear ODE 
 2 2[ ( ) ( )] cos sinD D D y P ax Q ax  (3.1159) 
where  and  are arbitrary linear differential operators. 
 
Ans:  

 
2 2

2 2 2 2 2
( )( cos sin ) ( )( sin cos )

{ ( )} { ( )}p
a P ax Q ax a a P ax Q axy

a a a
 (3.1160) 

 
Problem 3.31 Find the integrating factor by inspection and solve the following 
ODE 
 2 2( ) 2 0x y dx xydy  (3.1161) 
Ans:  
 2 2x y Cx  (3.1162) 
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Problem 3.32 Find the integrating factor by inspection and solve the following 
ODE 
 2 2( ) 2 0x y dx xydy  (3.1163) 
Ans:  

 
2

ln yx C
x

 (3.1164) 

 
Problem 3.33 Find the integrating factor by inspection and solve the following 
ODE 
 2 2( )xdy ydx x y dx  (3.1165) 
Ans:  

 1tan ( )y x C
x

 (3.1166) 

 
Problem 3.34 Find the integrating factor by inspection and solve the following 
ODE 

 
2 2

xdy ydx xdy
x y

 (3.1167) 

Ans:  

 1sin ( )y y C
x

 (3.1168) 

 
Problem 3.35 Solve the following ODE 
 0xdx ydy ydx xdy  (3.1169) 
Hint: Use polar form. 
Ans:  

 2 2 1ln tan ( )yx y C
x

 (3.1170) 

 
Problem 3.36 Show the validity of column 2 in Table 3.1. 
 
Problem 3.37 Show that (3.300) is the solution of (3.3299). 
 
Problem 3.38 Employ the technique discussed in Section 3.5.14 to solve  

 
2

2 2
2 ( ) 0d y dy dyy y

dx dxdx
 (3.1171) 

 
Ans:  

 1
2

1

C xy C e
y C

 (3.1172) 
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Problem 3.39 Solve the following ODE  
 1 2( ) ( ) 0yf xy dx xf xy dy  (3.1173) 
Ans:  

 2

1 2

( )
ln 0,

[ ( ) ( )]
f v dv

x C v xy
v f v f v

 (3.1174) 

 
Problem 3.40 It was reported in Example 3.13 that Ramanujan’s differential 
equations given in (3.241) can be converted to (3.242) and (3.243). This problem 
provides the detail of the derivation. 
 
(i) Applying the following change of variables 
 yq e , (3.1175) 
show that (3.241) can be rewritten as 

 2 21 1 1( ), ( ), ( )
12 3 2

dP dQ dRP Q PQ R PR Q
dy dy dy

 (3.1176) 

(ii) Apply the following stretching transformation 
 2 3

1 1 1 1, , ,y e y P e P Q e Q R e R , (3.1177) 
show that (3.1176) can further be reduced to 

      2 21 1 1
1 1 1 1 1 1 1 1

1 1 1

1 1 1( ), ( ), ( )
12 3 2

dP dQ dRP Q PQ R PR Q
dy dy dy

 (3.1178) 

Comparing (3.1176) and (3.1178), we see that the ODEs are invariants under the 
stretching transformation given in (3.1177). This information allows us to apply a 
scaling transformation to be considered next. 
 
(iii) Apply the following scaling transformation 

 
1/2

1/2
13/2 , ,R Qu v w y Q

PQ
, (3.1179) 

derive the following system of ODEs for u,v, and w: 

 2 2
1 1 1

1 1 1

1( 1), ( 2 1), {1 ( )}
2 12 6

du w dv w dv wy u y v uv y w u
dy dy dy v

 

  (3.1180) 
(iv) Finally, prove the following ODEs given in (3.242) and (3.243) 

 2 21( 1) ( 2 1)
6

dvu v uv
du

 (3.1181) 

 2 2

( 1) 2
3 ( 1) 1

dw w uv
du v u u

 (3.1182) 



 
 
 

CHAPTER FOUR 
 

Series Solutions of Second Order ODEs 
 

4.1 INTRODUCTION 

Series solutions for second order ODEs with non-constant coefficients occupy an 
essential place in the development of the solution techniques for differential 
equations. Physically, many phenomena in sciences and engineering can be 
modeled by second order ODEs. The difficult part of solving many second order 
ODEs relates to the existence of regular singular points and irregular singular 
points in these ODEs. Fuchs, in 1866 and 1868, initiated study of the regular and 
irregular singular points of linear second order differential equations with non-
constant coefficients. This problem had been considered by a number of 
mathematicians including Hermite, Jordan, Hadamard, Darboux, Poincare, 
Frobenius, Goursat, Thomé, and Painlevé. For example, the Bessel equation, which 
was found useful in modeling many physical phenomena, has a regular singular 
point at the origin of the variable. A technique called the Frobenius series has been 
found useful in solving it. Many special functions were defined as the solutions for 
these second order ODEs with non-constant coefficients.  The solutions for the 
Bessel equation are called Bessel functions of the first and second kinds. In this 
chapter, we will consider some classical differential equations that fall into this 
category, including the Bessel equation, modified Bessel equation, Legendre 
equation, associated Legendre equation, hypergeometric equation, and generalized 
hypergeometric equation. 
 Before we devote ourselves to the series solutions, a thorough introduction to 
the gamma function will be given, which is essential for the later part of the chapter 
in obtaining solutions of these important differential equations.  

4.2 GAMMA FUNCTION 

The birth of the gamma function is related to the factorial function, which is 
defined as 

 ! ( 1) 3 2 1n n n 3 2 13 22  (4.1) 
In addition, it is defined that 

 0! 1  (4.2) 
We will see why we have such a strange definition for the zero factorial shortly. 
The gamma function was proposed by Euler. In 1729, at the age of 22, Euler wrote 
a letter to Christian Goldbach (1690-1764), a German living in Moscow, to 
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describe the idea of extending the factorial function to the non-integer case. Euler 
proposed (Davis, 1959) 

 
12 1 3 2 4 3 !( 1)... lim !

1 1 2 2 3 3 ( 1)( 2) ( 1 )

n n n n

m

m m n
n n n n n n m(( 1( 1( 11( 1

   

  (4.3) 
A proof of (4.3) will be given in Section 4.2.2. This definition leads to an amazing 
formula of  in terms of infinite product (see Problem 4.55). The motivation for 
studying (4.3) is that am is true not only for integer m but also for the non-integer 
case, and Euler said to the extreme, that the factorial function defined in (4.1) can 
also allow the non-integer case. For example, 2! = 2 and 3! = 6, Euler expected that 
2.5! would be somewhere between 2 and 6. If we take the first four terms of the 
infinite product given in (4.3), we have 2.5!  2.3828.... As expected, it is between 
2 and 6. Euler later proposed the gamma function in terms of an infinite integral, 
which will be discussed in the next section. The analysis of gamma functions is by 
no means simple but occupies a central place in mathematical analysis, and its 
properties have been investigated by many great mathematicians, including Euler, 
Legendre, Gauss, Weierstrass, Dirichlet, Binet, Hankel, Stirling, Pochhammer, and 
Hadamard. It also forms the basis for studying many functions of series solutions, 
like Bessel functions and hypergeometric functions.  
 In the next few sections, we will summarize some essential properties of the 
gamma function. We will see that the gamma function becomes infinity at zero and 
negative integers. To remedy this, French mathematician Hadamard proposed an 
alternative factorial function, which will be discussed in Section 4.3. 

4.2.1 Euler’s Integral Definition   

Instead of using (4.3), Euler discovered that the following integral did give the 
required definition of the factorial for the case of integer z = n, with n being an 
integer:  

 1

0
( ) z tz t e dt  (4.4) 

A plot of this gamma function is given in Figure 4.1. First, we rewrite (4.4) in terms 
of argument n+1 and apply integration by parts as: 

 1
0 00 0

( 1) ( )n t n t n t n tn t e dt t e n t e dt t e n n  (4.5) 

Note that the upper limit of the first term on the right hand side is in a form of / , 
whereas the lower limit is 0. Then, L’Hôpital’s rule can be applied repeatedly to 
reduce the numerator to a constant and thus the upper limit is also zero: 

 
1

0

!lim 0 lim lim 0
n n

n t
t t tt t t

t nt nt e
e e e

 (4.6) 

In short, we have a recursive formula:  
   ( 1) ( )n n n  (4.7) 

Applying (4.7) repeatedly, we finally get the factorial definition: 
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   ( 1) ( 1)( 2)...1 (1) !n n n n n  (4.8) 
The last part of (4.8) resulted from the fact that (1) =1, which will be shown in the 
following example.  
 

( )x

x

 
Figure 4.1. Plots of gamma function 

__________________________________________________________________ 
Example 4.1 Using Euler’s definition for the gamma function given in (4.4), show 
that 0! = 1.   
 
Solution: Set n = 0 into the following relation between the gamma function and the 
factorial function for the case of integer argument: 

   ( 1) !n n  (4.9) 
Thus, we have  

   (1) 0! (4.10) 
Using Euler’s integral definition, we obtain  

 
00

(1) (0 1) 1t te dt e  (4.11) 

Substitution of (4.11) into (4.10) yields   
   0! 1  (4.12) 

This provides the definition 0! = 1 that we reported earlier. This is a definition 
given to high school students without proof, and now we see why it is so. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 4.2 Find the value of (1/2)  
 
Solution: By substituting z =1/2 in (4.4), we have 



230  Theory of Differential Equations in Engineering and Mechanics 

   1/2

0

1( )
2

tt e dt  (4.13) 

Application of the following change of variables 
 2 , 2t y dt ydy  (4.14) 
gives 
 

   

2 2

2

0 0

1 1( ) 2 2
2

y y

y

e ydy e dy
y

e dy
 (4.15) 

This is the Laplace or Gauss integral that we encountered and proved in Chapter 1. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 4.3 The original integral definition of Euler in 1729 is actually given as   

 
1 1

0

1( ) (ln )zz dy
y

 (4.16) 

Show that this definition is equivalent to that given in (4.4). 
 
Solution: Apply the following change of variables, 

   ln(1/ ),t y  or ty e  (4.17) 
Taking the total differential on both sides, we have  

 1 , or tdt dy dy e dt
y

 (4.18) 

Noting from (4.17) that y = 1 for t = 0 and y = 0 for t  , we can rewrite the integral 
given in (4.16) as 

   
0 1 1

0
( ) z t t zz t e dt e t dt  (4.19) 

This is the same as (4.4) given above. 
__________________________________________________________________ 

4.2.2 Euler’s Factorial Form  

We now show that the gamma function can be expressed in terms of a factorial 
function, which was introduced by Euler in 1729 and has been cited early in (4.3). 
First, we rewrite the integral (4.4) by using the definition of the exponential 
function defined in Example 1.2 in Chapter 1:  

   1 1

0 0
( ) lim lim (1 )

n nz t z n
n n

tz t e dt t dt
n

 (4.20) 

We now apply the following change of variables  
   t n  (4.21) 

Substitution of (4.21) into (4.20) gives 
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1 11 1 1

0 0
( ) lim (1 ) lim (1 )z z n z z n

n n
z n nd n d  (4.22) 

Integration by parts reduces the integral to 

   

1
1 1

0
0

1 1

0

(1 ) 1( ) lim [ (1 ) ( )]

lim [ (1 ) ]

z n
z z n

n

z z n
n

z n n d
z z

nn d
z

 (4.23) 

Comparison of (4.22) and (4.23) gives a recursive formula as 

   
1 11 1

0 0
(1 ) (1 )z n z nnd d

z
 (4.24) 

Repeating the process of integration by parts or applying (4.24) repeatedly, we 
obtain another form of the gamma function  

  

1 1 2

0

1 1

0

( 1)( ) lim [ (1 ) ]
( 1)

( 1)( 2)...1lim [ (1 ) ]
( 1)( 2)...( 1)

!lim[ ]
( 1)( 2)...( )

z z n
n

z z n n n
n

z

n

n nz n d
z z

n n nn d
z z z z n

n n
z z z z n

 (4.25) 

In obtaining the last result in (4.25), we have used the following obvious result:  

   
1 1

0

1z n d
z n

 (4.26) 

The result given in (4.25) provides another definition of the gamma function in 
terms of a limit of the factorial function. The result given in (4.25) is the same as 
(4.3) as n  . This result will be used in the next section as an immediate step to 
show Weierstrass’s product definition. 

4.2.3 Weierstrass’s Product Definition 

Euler also proposed another form of the gamma function in terms of infinite 
products as: 

    /

1

1 (1 )
( )

z z n

n

zze e
z n

 (4.27) 

where   0.5772157 is the Euler constant. This definition was proposed by Euler 
in 1729 in his original letter to Goldbach, but many of the properties of this product 
definition were considered by Weierstrass. Indeed, Weierstrass preferred this 
definition to Euler’s integral definition given in (4.4). In the literature, it was 
referred as Weierstrass’s canonical form of definition (e.g., Whittaker and Watson, 
1927). 
 To show that this definition is the same as the integral definition of Euler 
given in (4.4), we first recall the definition of Euler’s constant: 
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1

1lim ln 0.5772157
m

m
k

m
k

 (4.28) 

A review of the Euler constant is given in Appendix E at the back of this book. Let 
us rewrite the infinite product as a limit 

     /

1

1 1lim (1 ) lim
( ) ( )

n
z z k

n n nk

zze e
z k z

 (4.29) 

Rearranging this equation results in 

    1
ln

1 / ln 1

1 1

( ) (1 ) (1 )

n

k

z n nz n
k z k z n

n
k k

z zz z e e e
k k

 (4.30) 

The last part of this result is obtained by recognizing the following identity 

    /

11

exp( ) exp( ... ) exp( )exp( ) exp( )
1 2 1 2

n
z k

k

n

e

k

z z z z z z z
k n n

   

  (4.31) 
In this equation, it is important to recognize that the exponential function of a sum 
equals the product of the individual exponential functions.   
 To further simplify (4.30), we want to establish another identity 

    

1

ln [ln 2 ln1] [ln 3 ln 2] ... [ln ln( 1)] [ln( 1) ln ] ln( )
1

1ln1 ln ln ln( ) ln( )
1

n

k

nn n n n n
n

k nn n
k n

   

  (4.32) 
Substitution of (4.32) into (4.30) gives 

 

1

1ln(1 ) ln( )
1 1

1

1

1 1

1

( ) (1 )

1( ) (1 ) (1 )
1

(1 )( ) ( )
1

2 3 ... ( 1) !( )
1 ( 1)( 2)...( )1 2 ...

!
( 1)( 2)...( )

n

k

n nz z
k n

n
k

n n
z z

k k
n z

z
z

k
z z z z

z
z z z

z

zz z e
k

n z
n k k

n k k
n k zk

n n n n
n z z z nn

n n
z z z n

 (4.33) 

Substitution of (4.33) into (4.29) gives  

     !( ) lim[ ( )] lim[ ]
( 1)( 2)...( )

z

nn n

n nz z
z z z z n

 (4.34) 
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This is obviously the same as (4.25) obtained in the last section. Consequently, the 
equivalence of (4.27) and (4.4) is established through the immediate result of the 
factorial form derived in (4.25). 

4.2.4 Reflection Formula 

An important result of the gamma function is called the reflection formula and it is 
given as: 

 (1 ) ( )
sin

z z
z

 (4.35) 

This formula is sometimes known as the complement formula. It is a very powerful 
identity but its proof is not simple. 
 To prove (4.35), we start the left side as 

   1 (1 ) 1 ( ) 1

0 0 0 0
( ) (1 ) z t z s t s z zz z t e dt s e ds e s t dsdt  (4.36) 

In writing (4.36), we recognize that both t and s are dummy variables of the definite 
integral of the gamma function. Now apply a change of variables of 

   , tu s t v
s

 (4.37) 

Using the second equation of (4.37), we can rewrite u as 

 (1 ),
1

uu s v or s
v

 (4.38) 

Subsequently, t becomes   

   
1
uvt sv

v
 (4.39) 

Now s and t are completely in terms of u and v. The physical or geometrical 
interpretation of (4.37) can be depicted in Figure 4.2. Every radial line corresponds 
to a specific value of v, with v = 0 for horizontal (i.e., t = 0) and v   for vertical 
(i.e., s = 0). The new variable u is the length measured along the radial lines for 
various values of v. Therefore, for v = 0 we have u = s and v   we have u = t. In 
summary, we find  

   ,
1 1

u uvs t sv
v v

 (4.40) 

For the double integration in (4.36), we need to consider the Jacobian of the 
mapping [see (1.109) of Chapter 1]: 
 

   ( , )
( , )
t sdtds dudv
u v

 (4.41) 

By using (4.38) and (4.39), we obtain the Jacobian as    
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s

t

s u

.v constt u

0v

v Increasing v 

 2 2

3 2

( , )
( , )

( ) 1( )
1 1 1(1 ) (1 )

1 [ (1 ) ]
(1 ) (1 )

t t
t s t s t su v

s su v u v v u
u v
v u u vu

v v vv v
uuv u v uv

v v

 (4.42) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Mapping from s-t space to u-v space 
 
Substitution of (4.42) into (4.41) leads to  

 2
( , )
( , ) (1 )
t s udtds dudv dudv
u v v

 (4.43) 

In addition, it is straightforward to see that every point in the quarter plane s-t is 
uniquely defined by u and v. In particular, the ranges of these variables are 

 
: 0 , : 0 ,

: 0 , / : 0
s t
u s t v t s

 (4.44) 

The ranges of the new variables are 0 < u <  and 0 < v < . Finally, (4.36) can be 
expressed as 
 

   1
20 0

1( ) (1 ) ( )
(1 )

u z v uz z e v dudv
u v

 (4.45) 

Expressing in terms of the new variables, using (4.43), we have (4.45) becoming 
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1
1

0 0 0 0
1

0

( ) (1 )
1 1

1 sin

z
u z u

z

dudv v dvz z e v e du
v v

v dv
v z

 (4.46) 

The last result of (4.46) is a result of Titchmarsh’s contour integral derived in 
Section 1.7.7 in Chapter 1. The above proof was outlined in Lebedev (1972) 
without giving detail. A simpler proof by Euler of (4.35) is given in Problem 4.58 
using infinite product form of sine function. This formula is also found useful in 
evaluating certain Mellin transform (see Problem 11.6 in Chapter 11). The 
reflection formula is closely related to the singularity of the gamma function. Note 
from the reflection formula that there are poles at z = 0, 1, 2, ... The poles 
coincide with all the zeros of the periodic sine function (with a period of 2). For 
example, from the recursive formula given in (4.7) we have 

   (1 )( ) zz
z

 (4.47) 

For z = 0, we have 

   (1)(0)
0

 (4.48) 

Thus, (z) is singular at z = 0. We can extend this idea further for z = n 

   2

(1 ) 1 1( ) ( 2)
( ) ( 1)

( 1) ( 1)( 2) (0)
( 1) !

n

nn n
n n n

n
n n n

 (4.49) 

The last result is a consequence of repeated applications of the recursive formula 
given in (4.7). From this, we can observe that there is a simple pole at z = 0, 1, 2, 
... For complex z, the residue at the pole z = 0 is: 
 

0 00
Res ( ) lim ( ) lim ( 1) (1) 1

z zz
z z z z  (4.50) 

The residue of the negative integer is 

 

0 0

0

0

Res ( ) lim ( ) ( ) lim ( ) lim ( 1)

lim ( )
( )( 1) ( 1)

( 1) ( 1)lim ( )
! !

z nz n

n n

z z n z n n
n

n n

n n

1)((
 (4.51) 

Alternatively, we can investigate the singularity of the gamma function as 
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11 1 1

0 0 1

11 1

1 0
0

1

1
0

( )

( 1)
!

( 1) 1
!

t z t z t z

n
t z n z

n
n

t z

n

z e t dt e t dt e t dt

e t dt t dt
n

e t dt
n z n

 (4.52) 

In obtaining (4.52), we have substituted the power series of the exponential 
function inside the integration. The residue is clearly the same as that found in 
(4.51). The first integral is analytic or finite whereas the second summation 
contains all the poles at n = 0, 1, 2,... This is called the Mittag-Leffler expansion 
of the gamma function and is also known as Prym’s decomposition. Mittag-Leffler 
played a crucial role in the final decision of “not” including mathematics in the 
Nobel Prize. This story is reported in the bibliography section. This singularity of 
the gamma function leads to the search for other factorial functions that contain no 
singularity. One such choice is called the Hadamard factorial function and will be 
examined in more detail in Section 4.3. 

4.2.5 Recurrence Formula 

The recurrence formula is given by  
   ( 1) ( )z z z  (4.53) 

This is essentially the same as (4.7) for integer argument. This can be proved easily 
by integration by parts and L’Hôpital’s rule.  

   

1
00 0

1

0

( 1)

( 1)lim 0

( )

z t z t z t

z m
z t

tt

z t e dt t e z t e dt

z z t z t e dt
e

z z

0
z mt 0  (4.54) 

We have applied L’Hôpital’s rule m times with m > z. When z = n is an integer, we 
have the factorial function (n+1)=n! as shown in Example 4.1. This is the most 
basic property and explains why the gamma function is an extension of the factorial 
function to the non-integer case. 

4.2.6 Legendre Duplication Formula 

The following duplication formula was derived by Legendre 

 2 1/21 1(2 ) 2 ( ) ( )
22

zz z z  (4.55) 

To prove this, we consider the following term contained in the right hand side of 
(4.55): 



 Series Solution of Second Order ODEs   237 

 

 

2 1 2 1 1 1/2

0 0

2 1 ( ) 1 1/2

0 0

12 ( ) ( ) 2
2

2

z z t z s z

z s t z z

I z z e t dt e s ds

e t s dtds
 (4.56) 

Applying a change of variables as 
 ,s t  (4.57) 
and taking the differential on both sides, we obtain  

 1 1,
2 2

d ds d dt
s t

 (4.58) 

With these new variables, the double integration becomes 

 

2 2

2 2

2 1 ( ) 2 2 2 1

0 0

2 1 ( ) 2 1

0 0

2 4

2 ( )

z z z

z z

I e d d

e d d
 (4.59) 

On the other hand, we can independently apply another change of variables as 
 ,t s  (4.60) 
Following a similar procedure, it is straightforward to see that 

 

2 2

2 2

2 1 ( ) 2 2 2 1

0 0

2 1 ( ) 2 1

0 0

2 4

2 ( )

z z z

z z

I e d d

e d d
 (4.61) 

Addition of these two independent results given in (4.59) and (4.61) leads to 

 
2 22 1 ( ) 2 1

0 0
2 2 ( ) ( )z zI e d d  (4.62) 

Because the integrand is symmetric with respect to both  and , we have the 
integration as symmetric with respect to  =  as shown in Figure 4.3. In particular, 
we can express the double integral for the first quadrant (i.e., 0 <  <  and 0 <  < 

) as twice the shaded area I2 shown in Figure 4.3 (i.e., 0 <  < , and 0 <  < ): 

 

2 2

2 2

( ) 2 1

0 0

( ) 2 1
2

0 0

2 (2 ) ( )

4 (2 ) ( ) 4

z

z

I e d d

e d d I
 (4.63) 

Note that I, which is symmetric with respect to   and , can be expressed in terms 
of I2, which is shown in Figure 4.3. Apply another change of variables 
 2 2 , 2u v  (4.64) 
Thus, we find that  
 2( )u v  (4.65) 
Inversely, we can rewrite (4.65) as   
 u v  (4.66) 
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2I

The domain integration can be expressed in terms of the Jacobian of the mapping 
function as   

 ( , )
( , )

u vdudv d d  (4.67) 

Or, inversely, it can be expressed as 

 1
( , )
( , )

d d dudv
u v

 (4.68) 

Substitution of (4.64) into (4.67) gives 

 
2 22 2( , ) 4( )

2 2( , )

4( )( ) 4

u u
u v

v v

u v u v

 (4.69) 

The domain of integration for  
 : 0 , : 0 ,  (4.70) 
is converted to: 
 : 0 , : 0u v  (4.71) 
Thus, the integral I becomes  

 

2 1

0 0

2 1

0 0

( )
2 1

0 0

4
4

( )

u z

u z

u v
z v

dudvI e v u v
u v u v

dudve v
u v

e d u vv e dv
u v

 (4.72) 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.3 The domain of symmetry and the physical domain for I2 

 
Clearly, a change of variables for the inner integral can be used: 
 2 , ( ) 2u v w d u v wdw  (4.73) 



 Series Solution of Second Order ODEs   239 

 

The inner integral is thus integrable as  

 

2

2

( )

0 0

0

( ) 2

2

u v w

w

e d u v e wdw
wu v

e dw

 (4.74) 

The last result is obtained by using the Laplace or Gauss integral considered in 
Chapter 1. With the result obtained in (4.74), the remaining integration in (4.72) is 
precisely (2z). Finally, we have derived. 

 2 1 1(2 ) 2 ( ) ( )
2

zz z z  (4.75) 

Dividing through by 1/2, we finally obtain the duplication formula obtained by 
Legendre. A more general multiplication formula was derived by Gauss 

    (1 )/2 1/2 1 2 1( ) (2 ) ( ) ( ) ( ) ( )n nz nnz n z z z z
n n n

 (4.76) 

For n = 2, the Legendre duplication formula is recovered. The proof of this 
formula is more advanced as it involves the Stirling formula to be discussed in 
Section 4.2.8, and thus the proof of the Gauss multiplication formula will be 
postponed until Problem 4.28. 
__________________________________________________________________ 
Example 4.4 Prove the following identity   

 1

1( ) ( )
2 2 2(1 )

2x

x xx
x  (4.77) 

Solution: Set z = x/2 in Legendre’s duplication formula given in (4.55) to get  

 11 1( ) 2 ( ) ( ) (1 )
2 2 2

x x xx x x x  (4.78) 

Rearranging (4.78), we obtain 

 1
1(1 ) ( ) ( )

2 2 22x
x x xx  (4.79) 

This is the required result. This result will be used later in deriving the recursive 
formula of Hadamard factorial function in Section 4.3.  
__________________________________________________________________ 

4.2.7 Digamma or Psi Function 

Literally, digamma function means differentiation of the gamma function. It is 
defined as the differentiation of logarithm of gamma function, instead of the 
gamma function itself: 

 ( )( ) ln ( )
( )

d zz z
dz z

 (4.80) 

A plot of the digamma function is given in Figure 4.4. Because the normal symbol 
for the digamma function is the Greek letter psi or , it is also sometimes called the 
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( )x

x

psi function. The digamma function is a special function in its own right. There are 
a lot properties associated with the digamma function. It will be shown in Section 
4.6.2 on the Bessel equation that the digamma function appears naturally in the 
definition of the Bessel function of the second kind or Y (z).  
 Some essential properties of the digamma function are reported here. First, 
the recurrence formula of the digamma function is 

 1( 1) ( )z z
z

 (4.81) 

This can be proved easily based on the recurrence formula of the gamma function: 
 (1 ) ( )z z z  (4.82) 
Differentiation of (4.82) with respect to z gives 
 (1 ) ( ) ( )z z z z  (4.83) 
where '(1+z) means the differentiation of (1+z) with respect to the argument (i.e., 
1+z in this case). Dividing the whole expression by (1+z), we get 

 (1 ) ( ) ( )
(1 ) (1 ) (1 )

z z z z
z z z

 (4.84) 

Recalling that (1+z) = z (z), we can further simplify (4.84) as  

 (1 ) 1 ( )
(1 ) ( )

z z
z z z

 (4.85) 

By virtue of the definition given in (4.80), we immediately obtain 

 1( 1) ( )z z
z

 (4.86) 

This completes the proof.  

Figure 4.4 Plots of digamma function 
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 Another important identity is the duplication formula of the digamma 
function (Formula 6.3.8 of Abramowitz and Stegun, 1964) 

 1 1 1(2 ) ( ) ( ) ln 2
2 2 2

z z z  (4.87) 

To prove (4.87), we start with the Legendre duplication formula: 

 2 1/21 1(2 ) 2 ( ) ( )
22

zz z z  (4.88) 

Differentiation of (4.88) with respect to z gives 

 

2 1/2

2 1/2 2 1/2

1 12 (2 ) {(ln 2)2 ( ) ( )
22

1 12 ( ) ( ) 2 ( ) ( )}
2 2

z

z z

z z z

z z z z
 (4.89) 

Dividing through the whole expression by (2z) and recalling the duplication 
formula in (4.88) again, we obtain 

 
2 1/2

2 1/2
(2 ) 2 2 ( ) ( 1/ 2)2 {2ln 2 }
(2 ) ( ) ( 1/ 2)2 2

z

z
z z z
z z z

 (4.90) 

Using the definition of the digamma function, we finally get  
 2 (2 ) 2ln 2 ( ) ( 1/ 2)z z z  (4.91) 
This completes the proof of (4.87). 
 The reflection formula of the digamma function is (Formula 8.365.8 of 
Gradshteyn and Ryzhik, 1980; (1.3.4) of Lebedev, 1972) 
 (1 ) ( ) cotz z z  (4.92) 
To prove this reflection formula, we start with the reflection formula of the gamma 
function (see (4.35)) 

 ( ) (1 )
sin

z z
z

 (4.93) 

Differentiation of both sides with respect to z gives 

 2 cot{ ( ) (1 )} ( ) (1 ) ( ) (1 )
sin

d zz z z z z z
dz z

 (4.94) 

The last of (4.94) can be rearranged to get 

 2(1 ) ( ) cot( ) (1 )
(1 ) ( ) sin

z z zz z
z z z

 (4.95) 

Reapplying the reflection formula in (4.93) to the left hand side, we obtain 

 2 cot(1 ) ( )
sin sin

zz z
z z

 (4.96) 

Canceling the common factor on both sides, we arrive at 
 (1 ) ( ) cotz z z  (4.97) 
This of course agrees with (4.92). 
 Some special formulas for the digamma function are given here without 
proof: 
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0

ln ( ) ( )
z

z d  (4.98) 

Dirichlet formula  

 
0

1 1( )
(1 )

x
zz e dx

xx
 (4.99) 

Gauss formula  

 
0

( )
1

x xz

x
e ez dx
x e

 (4.100) 

 
1

1 1( )
( )k

z z
z k z k

 (4.101) 

 
0

1( ) ( 1)
( 1)( )k

z z
k z k

 (4.102) 

 
1

1 2( ) 2ln 2
2 2 1

n

k

n
k

 (4.103) 

 (1)  (4.104) 
Another important formula of the digamma function  will be given in (4.301) and 
will be proved there. 
__________________________________________________________________ 
Example 4.5 Prove the following identity   

 1 1( ) ( ) tan
2 2

z z z  (4.105) 

Solution: We start with the following identity for the gamma function (see proof in 
Problem 4.1): 

   1 1( ) ( )
2 2 cos

z z
z

 (4.106) 

Taking the natural logarithm of (4.106) gives 

 1 1ln ( ) ln ( ) ln ln cos
2 2

z z z  (4.107) 

Differentiation with respect to z gives 

 1 1( ) ( ) tan
2 2

z z z  (4.108) 

Rearranging this gives the identity given in (4.105). 
__________________________________________________________________ 

4.2.8 Stirling Formula 

For a large argument, asymptotic expansion of the gamma function was derived by 
Stirling in 1730, which is given by  
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 1/2! 2 n nn n e2 nn2  (4.109) 
for n  . To derive this formula, we recall for x > 0 that 

   
0

( 1) x tx t e dt  (4.110) 

We can introduce a new variable as 
   ,t sx dt xds  (4.111) 

Substitution of (4.111) into (4.110) gives 

   

1

0 0

1 ( ln ) 1

0 0

( 1) ( )

exp[ ( ( )]

x sx x x sx

x x s s x

x sx e xds x s e ds

x e ds x x s ds
 (4.112) 

where 
   ( ) lns s s  (4.113) 

We can examine the asymptotic behavior of the integral for large values of x (i.e., x 
 ) by a method similar to the Laplace method for the case of real (s). This 

method is closely related to the so-called Riemann method of steepest descents (or 
Debye’s Saddle point method) if (s) is complex, or the Stoke’s and Kelvin’s method 
of stationary phase if (s) is purely imaginary (Erdelyi, 1956).  More details on these 
methods can be found  in Bleistein and Handelsman (1986) and Chapter 12.  
 First, we need to find the maximum or critical point of the function (s) by 
considering: 

   1( ) 1 0s
s

 (4.114) 

We now consider a Taylor series expansion of (s) around the critical point s = 1 (the 
solution of s in (4.114)) as 

   

2

2 3

1( ) (1) ( 1) (1) ( 1) (1) ...
2

1 11 ( 1) ( 1) ...
2 3

s s s

s s
 (4.115) 

Note that 
   (1) 0, (1) 1 0  (4.116) 

and this confirms that the critical point is indeed a maximum. Now we apply another 
round of change of variables to (4.112) as: 

   1,u s du ds  (4.117) 
2 2

1 1

1 1
( 1) exp[ ( 1 ...)] exp( )

2 2
x x xu xux x x du x e du  (4.118) 

Since we are expanding (s) about s = 1 or u  0, all higher order terms can be 
neglected as a first approximation. In addition, we are interested in the asymptotic 
case that x  , and the main contribution to the integration comes from the region 
around the maximum value of function (s) around s = 1.  Let us consider another 
change of variables: 

 
2

2 2 2,
2

xu yy du dy dy
xu x

 (4.119) 
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Thus, the integral in (4.118) becomes: 

 
2

2

1 /2

2exp( ) exp( )
2 x

xu du y dy
x

 (4.120) 

This integral can readily be integrated if we recall from Abramowitz and Stegun 
(1964) that an error function can be defined as 

 22 exp( ) 1 ( ), ( ) ( )
z

t dt erf z erf z erf z  (4.121) 

Finally, we have 

 
2

1
exp( ) {1 ( )}

2 2 2
xu xdu erf

x
 (4.122) 

Substitution of (4.122) into (4.118) gives   

 1/2( 1) {1 ( / 2)}
2

x xx x e erf x  (4.123) 

As x  , an error function can be approximated by (Abramowitz and Stegun, 
1964) 

 2

0

2 2( ) exp( ) 1
2

erf t dt  (4.124) 

In obtaining (4.124), we have used the Laplace or Gauss integral discussed in 
Chapter 1. Finally, we obtain the following approximation 

 1/2( 1) 2 x xx x e  (4.125) 
When x = n, we arrive at the Stirling formula given in (4.109). In fact, the Stirling 
formula can also be proved using the Laplace method but the proof is quite lengthy 
and will not be presented here. 
 If more terms are retained in the Taylor series expansion given in (4.115), 
more terms in the asymptotic expansion can be obtained as : 

  

1/2
2 3 4

5 6 7

1 1 139 571( 1) 2 {1
12 288 51840 2488320

163879 5246819 534703531 ...}
209018880 75246796800 902961561600

z zz z e
z z z z

z z z

 (4.126) 

This eight-term series was obtained by Stirling in 1730. Another completely 
different form of asymptotic expansion of the gamma function was obtained by the 
Indian prodigy Ramanujan 

   3 26 1! ( ) 8 4
30

nnn n n n
e

 (4.127) 

This is completely different the from Stirling formula given in (4.126). However, if 
we retain only the first term inside the square root of (4.127), we obtain precisely 
the first term of (4.126) or (4.109). The biography of Ramanujan is given at the 
back of this book. 
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4.2.9 Important Formulas  

To conclude our introduction to Euler’s gamma function, some important identities 
of the gamma function are reported here without proof: 

   1 2 2( ) ( )
3 3 3

 (4.128) 

   ( ) ( 1)( 1)
( ) ( 1)

nz z n
z n z

 (4.129) 

   ( ) ( 1)( 1)
( ) ( 1)

nz n z
z z n

 (4.130) 

   1( ) 2.6789385347...
3

 (4.131) 

   1

0
( ) z z ptz p t e dt  (4.132) 

   
1

1 1lim (1 )
( )

n

zn
k

zz
z kn

 (4.133) 

Euler’s interpolation formula 

   ( )lim 1
( )zn

n z
n n

 (4.134) 

Wendel limit 

   ( )lim 1
( )

b a
n

x ax
x b

 (4.135) 

Legendre formula 

   
11

0

1( )
1

ztz dt
t

 (4.136) 

Binet’s first formula 

   
0

1 1 1 1ln ( ) ( ) ln ln 2 ( )
2 21

xt

t
ex x x x dt

t te
 (4.137) 

Binet’s second formula 

   
1

20

1 tan ( / )ln ( ) ( ) ln ln 2 2
2 1t

t xx x x x dt
e

 (4.138) 

Mittag-Leffler expansion (this has been proved in (4.52)) 

   1

1
0

( 1)( )
!( )

n
t z

n

z e t dt
n n z

 (4.139) 

In recent years, some physical problems involve the study of complex arguments of 
the gamma function. However, I am not aware of its application in engineering and 
mechanics yet. Nevertheless, as a general introduction, some cases of complex 
argument are reported here without proof (in fact, their proofs are straightforward). 
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 If the argument of the gamma function is complex, we have the following 
identities 

   (1 ) ( )iy iy iy  (4.140) 

   ( ) ( )
sinh

iy iy
y y

 (4.141) 

   1 1( ) ( )
2 2 cosh

iy iy
y

 (4.142) 

   (1 ) (1 )
sinh

yiy iy
y

 (4.143) 

   1Re{ln ( )} ln( )
2 sinh

iy
y y

 (4.144) 

See Problems 4.20, 4.21, and 4.24 for two more formulas for the gamma function 
with a complex argument. There are also special functions which are closely related 
to the gamma function, including the incomplete gamma function (e.g., Lebedev, 
1972), multiple gamma function, Barnes G-function (or double gamma function), 
and beta function. But these are outside the scope of the present book. Thus, the 
studies of the gamma function are by no means simple. 

4.3 HADAMARD FACTORIAL FUNCTION 

One major problem with the definition of the gamma function by Euler is that it 
possesses an infinite number of singularities at n = 0, 1, 2, 3, ...  In fact, there is 
more than one way to define the factorial function that coincides with the factorial 
for the limiting case of the integer. An interesting choice was proposed in 1894 by 
French mathematician J. Hadamard (Davis, 1959) and the following definition of 
the Hadamard factorial function was reported in Question 46 of Chapter 12 of 
Whittaker and Watson (1927) (without mentioning the name of Hadamard):    

 ( ) ( )dU dVH x V U
dx dx

 (4.145) 

where U and V are defined as:    

 
/2 /22 2( ) , ( )

1(1 ) ( )
2 2 2

x x
U x V x

x x
 (4.146) 

To the best of my knowledge, Hadamard’s factorial function H(x) has not been 
covered in any textbook. Some of the identities to be covered in this section are 
new and have not been published before. 
  First, we will show the following recursive formula of the Hadamard factorial 
function 

 1( 1) ( )
(1 )

H x xH x
x

 (4.147) 

Note the definition of the digamma function and the following result  
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 /2 /212 ( ln 2)2
2

x xd
dx

 (4.148) 

We obtain 

 
/22 [ln 2 (1 )]

22 (1 )
2

xdU x
xdx

 (4.149) 

 
/22 1[ln 2 ( )]

1 2 22 ( )
2 2

xdV x
xdx

 (4.150) 

Substitution of (4.149) and (4.150) into (4.145) results in 

 2 1( ) [ (1 ) ( )]
1 2 2 22 (1 ) ( )

2 2 2

x x xH x
x x

 (4.151) 

Replacing x by x+1, we obtain 

 

12 1 1 1( 1) [ (1 ) ( )]
1 1 1 2 2 22 (1 ) ( )

2 2 2
2 1[ ( ) ( )]

1 2 2 2( ) ( )
2 2 2

x

x

x xH x
x x

x x
x x

 (4.152) 

On the other hand,  

 

12 1( ) [ (1 ) ( )]
1 2 2 22 (1 ) ( )

2 2 2
2 2 1[ ( ) ( )]
1 2 2 2( ) ( )

2 2 2

x

x

x xxH x
x x

x x
x x x

 (4.153) 

We have used the following identities in arriving at the last equation of (4.153) 

 2(1 ) ( ), (1 ) ( )
2 2 2 2 2
x x x x x

x
 (4.154) 

Next, we consider 
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1 2 2 1 1( ) [ ( ) ( )]
1(1 ) 2 2 2 (1 )( ) ( )

2 2 2
1 2 1 1[ ( ) ( )]

1(1 ) 2 2 2 (1 )( ) ( )
2 2 2

2 1[ ( ) ( )]
1 2 2 2( ) ( )

2 2 2
( 1)

x

x

x

x xxH x
x xx x x

x x
x xx x

x x
x x

H x

 

  (4.155) 
In obtaining the second line of (4.155), we have applied the result of Example 4.4. 
This is the required result. 
 Consider the special case that x  n and (4.155) becomes 

 1( 1) ( )
(1 )

H n nH n
n

 (4.156) 

For integer n ( = 1,2,...), the gamma function (1 n) is unbounded or  

 1 0, 1,2,3,...
(1 )

k
k

 (4.157) 

Therefore, for positive integers we must have 
 ( 1) ( ) ( 1) 1 (1) ( 1)H n nH n n n H n1 (1)1 (1)1 (1)  (4.158) 

where H(1) = 1 (see result of Problem 4.29). Clearly, the Hadamard factorial 
function is another choice that extends the factorial function to the case of the non-
integer argument.  
 One major problem of Euler’s gamma function is that the gamma function 
becomes unbounded at zero and all negative integers. We will examine whether the 
Hadamard factorial function will be finite-valued. Note first that the Hadamard 
factorial function given in (4.151) can be rewritten as 

 

1(1 ) ( )2 2 2 2( )
1 12 (1 ) ( ) (1 ) ( )

2 2 2 2 2 2

x
x x

H x
x x x x  (4.159) 

The only problems clearly arises from gamma and digamma functions. We know 
that both gamma and digamma functions are finite except at 0, 1, 2, ... (all 
negative integers).  Thus, we only need to investigate the behavior of H(x) at those 
arguments where  and  becomes unbounded. 
 Note that  

 1 1( ) , ( ) , 1,3,5,7,...
2 2 2 2

x x x  (4.160) 

 (1 ) , (1 ) , 2,4,6,8,...
2 2
x x x  (4.161) 

Therefore, we only need to study the behavior of the following terms: 
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 1

1( )1 2 2( ) , for 1,3,5,7,...
12 2 ( )
2 2

x
x x

x  (4.162) 

and  

 2

(1 )
2(1 ) , for 2,4,6,8,...

2 (1 )
2

x
x x

x  (4.163) 

Both 1 and 2 have the indeterminate form of /  as x approaches odd and even 
integers respectively, but we will show that both of them have a finite limit as x 
approaches an integer. Consider the reflection formula for the gamma function 
given in (4.35) with z = x/2+1/2; we have 

 1 1( ) [1 ( )]
12 2 2 2 ( )sin
2 2

x x
x x

 (4.164) 

Similarly, using the reflection formula for the digamma function given in (4.92) 
with z = x/2+1/2, we obtain 

 1 1 1( ) [1 ( )] ( ) cot
2 2 2 2 2 2

x x x x  (4.165) 

Substitution of (4.164) and (4.165) into (4.162) yields 

 
1

1 1( ) ( )sin1 12 2 2 2( ) [ ( ) cot ]
12 2 2 2( )
2 2

1 1 1 1( ) ( )sin cos ( )
2 2 2 2 2 2

x x xx x x
x

x x xx x

 (4.166) 

For odd integers, we have the following limiting value 

 2 1
12 1 2 1

1( )
2 2lim ( ) lim ( 1) (1 )
1( )
2 2

m
x m x m

x

x m
x  (4.167) 

This is finite for all m = 0,1,2,... Similarly, we find 

 
2

(1 ) 12(1 ) ( ) cot sin ( )
2 2 2(1 )

2
1 ( )sin ( ) cos ( )

2 2 2

x
x x xx x

x

x x xx x

 (4.168) 
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 2
22 2

(1 )
2lim (1 ) lim ( 1) ( ) ( )

2 (1 )
2

m
x m x m

x
x m m

x  (4.169) 

Thus, the Hadamard factorial function is finite for all values of x.  More 
specifically, the Hadamard factorial function of the integer argument becomes  

 

2 1

2

2 (1 )( ) , 2 1
12 ( )
2

2 ( ) , 2
2 (1/ 2 )

m

n

mH x x m
m

n x n
n

 (4.170) 

where m = 0,1,2,... and n = 1,2,... It can be shown that the Hadamard factorial 
function can also be defined in the following form (Davis, 1959): 

 

1( )1 2( ) ln
(1 ) (1 )

2

x
dH x

xx dx
 (4.171) 

To prove this, consider the differentiation term on the right of (4.171) as 

 

1( ) 12ln ln ( ) ln (1 )
2 2(1 )

2
1 1( ) (1 )
2 2 2

x
d d x x

xdx dx

x x

 (4.172) 

By noting that 
 (1 ) ( )x x x  (4.173) 

we have 

 

1( )1 1 12ln ( ) (1 )
(1 ) 2 ( ) 2 2(1 )

2

x
d x x

xx dx x x
 (4.174) 

Next, we observe that for z = x/2, the Legendre duplication formula given in 
(4.35) becomes 

 1/21 1( ) 2 ( ) ( )
2 2 22

x x xx  (4.175) 

Substitution of (4.175) into (4.174) yields the RHS of (4.174) as 

 2 1( ) (1 )
1 2 2( ) ( )

2 2 2

x x xRHS
x xx

 (4.176) 

On the other hand, Legendre’s duplication formula gives 
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 (1 ) ( )
2 2 2
x x x  (4.177) 

Using this result,  

 2 1(1 ) ( ) ( )
1 2 22 (1 ) ( )

2 2 2

x x xRHS H x
x x

. (4.178) 

This proves (4.171), which is given in both Whittaker and Watson (1927) and 
Davis (1959). 
 The intermediate result of (4.174) gives a slightly different definition for the 
Hadamard factorial function 

 1 1( ) ( ) (1 )
2 ( ) 2 2

x xH x
x x

 (4.179) 

Therefore, H(x) can be defined equivalently by (4.151), (4.159), (4.171), and 
(4.179).  

4.3.1 Recurrence Formula 

The recurrence formula for the Hadamard factorial function can be found in Alzer 
(2009): 

 1( 1) ( )
(1 )

H x xH x
x

 (4.180) 

This recurrence formula has been proved in the last section (see (4.147)). We have 
used this result to see why it leads to the factorial function type for the integer 
argument (see (4.158)). 

4.3.2 Reflection Formula 

Before we consider the reflection formula for the Hadamard factorial function, we 
first report the following Luschny formula for the Hadamard gamma function 
(Luschny, 2006; Alzer, 2009) 

 sin 1( ) ( ) 1 [ ( ) ( )]
2 2 2 2

x x xH x x  (4.181) 

The proof of this identity is given in the next example. 
__________________________________________________________________ 
Example 4.6 Prove the Luschny formula for the Hadamard gamma function    

 sin 1( ) ( ) 1 [ ( ) ( )]
2 2 2 2

x x xH x x  (4.182) 

Solution: First, the reflection formula for the gamma function can be written as  

 sin 1
( ) (1 )

x
x x

 (4.183) 

Substitution of (4.183) into the right hand side of (4.182) gives 



252  Theory of Differential Equations in Engineering and Mechanics 

 1 1( ) 1 [ ( ) ( )]
2 ( ) (1 ) 2 2 2

x xRHS x
x x

 (4.184) 

The reflection formula for the digamma function gives 

 ( ) (1 )
2 2 tan( / 2)
x x

x
 (4.185) 

Recall from the result of Problem 4.2 that 

 1 1( ) ( ) tan
2 2

z z z  (4.186) 

Putting z = x/2 into (4.186) gives 

 1 1( ) ( ) tan( )
2 2 2 2 2

x x x  (4.187) 

Subtracting (4.187) from (1.185) gives 

 2

1 1 1( ) ( ) (1 ) ( ) tan( )
2 2 2 2 2 2 2tan( )

2
1(1 ) ( ) 1 tan ( )

2 2 2 2tan( )
2

1 2(1 ) ( )
2 2 2 sin

x x x x x
x

x x x
x

x x
x

 (4.188) 

Putting this result into (4.184), we obtain 

 

1 1( ) [ (1 ) ( )]
2 (1 ) 2 2 2 (1 )sin

1 1[ (1 ) ( )] ( )
2 (1 ) 2 2 2

x xRHS x
x x x

x x H x
x

 (4.189) 

By virtue of the reflection formula of the gamma function given in (4.93), we get 
the final result of (4.182).  
__________________________________________________________________ 
 
We now return to consider the reflection formula. First, we rewrite the Luschny 
formula as    
 ( ) ( ) ( )H x x P x  (4.190) 

 sin 1( ) 1 ( ) , ( ) [ ( ) ( )]
2 2 2 2

x x x xP x g x g x  (4.191) 

Next, we consider the Hadamard function using (4.171)    

 

1 1( ) ( )1 12 2(1 ) ln ln
1 1(1 1 ) ( )(1 ) ( )

2 2 2

x x
d dH x

x xx dx x dx
 (4.192) 
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Multiplying (4.190) and (4.192), we have 

 

1( ) ( )1 2 2( ) (1 ) ln ln
1( ) (1 ) ( ) (1 )
2 2 2

sin 1 1[ (1 ) ( )][ ( ) ( )]
4 2 2 2 2 2

x x
d dH x H x

x xx x dx dx

x x x x x

 (4.193) 

The final expression of (4.193) results from differentiation as well as using the 
reflection formula (4.35) for the gamma function. We note that 

(1 ) 1 1 1 (1 ) 1(1 ) [ ( ) ( )] [ (1 ) ( )]
2 2 2 2 2 2 2

x x x x x xg x  (4.194) 

Now, it is clear that the right hand side of (4.193) can be expressed in term of g(x) 
defined in (4.191) as 

 sin( ) (1 ) ( ) (1 )
(1 )

xH x H x g x g x
x x

 (4.195) 

We call this the reflection formula for the Hadamard factorial function; it is a new 
formula for the Hadamard function that has not been reported before. This formula 
bears similarity with the reflection formula of Euler’s gamma function given in 
(4.35).   

4.4 HARMONIC EQUATION 

With our basic knowledge of the gamma function and factorial function, we return 
to series solution of second order ODEs. First, we consider the following second 
order ODE 
 ( ) ( ) 0y x y x y  (4.196) 
where (x) and (x) are analytic functions of x and thus can be expanded in a 
Taylor series expansion. That is, they are single-valued and possess derivatives of 
all orders.  Thus, the solution of y exists in series form around a regular point a 

 
0

( )r
r

r

y c x a  (4.197) 

The term “regular point” was coined by German mathematician Thomé, who was a 
student of Weierstrass, in 1873. We will start the series solution technique for the 
simplest case, that is, the harmonic equation with the solution being sine and 
cosine. We have introduced the following differential equation (called the 
harmonic equation) in Chapter 1: 

 
2

2 0d y y
dx

 (4.198) 

We seek a series solution for (4.198) as 

 
0

r
r

r

y c x  (4.199) 
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 2

0

( 1) r
r

r

y r r c x  (4.200) 

The harmonic equation (4.198) requires 

 2

0 0

( 1) 0r r
r r

r r

r r c x c x  (4.201) 

The index of the infinite series is then shifted by r = k 2 and consequently (4.201) 
becomes 

 2
2 0

( 2)( 1) 0k k
k k

k k

k k c x c x  (4.202) 

However, the first two terms of the first series are evidently zero, so (4.202) can be 
simplified as 
  2( 2)( 1) 0k kk k c c  (4.203) 
Thus,  

 2 ( 2)( 1)
k

k
c

c
k k

 (4.204) 

Considering the even terms (i.e., k+2 = 2m), the recurrence formula becomes 

 2 2
2 (2 1)(2 )

m
m

c
c

m m
 (4.205) 

We can reapply the recurrence formula (4.205) to the coefficient c2m 2 on the right 
of (4.205) to get 

 
2

2 4
2

( 1)
(2 1)(2 3)(2 )(2 2)

m
m

c
c

m m m m
 (4.206) 

Repeat the application of the recurrence formula (4.205) m times and the following 
formula is obtained 

 0
2

( 1)
(2 )!

m

m
c

c
m

 (4.207) 

For odd terms in the series solution, we set k+2 = 2m+1 in (4.205) 

 2 1
2 1 (2 1)(2 )

m
m

c
c

m m
 (4.208) 

Similarly, reapplying (4.208) m times, we get 

 1
2 1

( 1)
(2 1)!

m

m
cc

m
 (4.209) 

Back substitution of these coefficients into the series solution, we get 
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2 2 10 1

0 0
2 4 3 5

0 1

0 1

( 1) ( 1)
(2 )! (2 1)!

1 ... ...
2! 4! 3! 5!

cos sin

m m
m m

r r

c cy x x
m m

x x x xc c x

c x c x

 (4.210) 

This result, of course, agrees with the conclusion that we got in Chapter 1 that the 
general solution for the harmonic equation is sine and cosine. 

4.5 FUCHSIAN ODE WITH REGULAR SINGULAR POINTS 

Before we consider the Bessel equation, let us consider the series solution of a 
more general second order ordinary differential equation 
 2( ) ( ) ( ) ( ) 0x a y x a x y x y  (4.211) 
where (x) and (x) are analytic functions of x and thus can be expanded in a 
Taylor series expansion. Rearranging (4.211), we get 

 2
( ) ( ) 0

( ) ( )
x xy y y

x a x a
 (4.212) 

This type of differential equation is called a Fuchsian type ODE. Clearly, this 
differential equation is singular at x = a. However, if the singularity does not 
concur with (4.212), the technique discussed in this chapter does not apply. The 
point x = a is called a regular singular point, and this term was coined by Thomé in 
1873, as remarked earlier. For such equations, a standard procedure of series 
solution exists, which is called the Frobenius series.  
 By the assumption of (x) and (x) being analytic, we can expand them in 

 
0 0

( ) ( ) , ( ) ( )r r
r r

r r

x p x a x q x a  (4.213) 

And the series solution is assumed in the following form with an extra index  as 

 
0

( ) ( ) r
r

r

y x c x a  (4.214) 

This is called the Frobenius series. This extra index  allows us to satisfy the 
governing equation, and thus it depends on the type of ODE.  

   0 0 0

0 0

( )( 1)( ) ( ) ( )( )

( ) ( ) 0

r s r
r s r

r s r

s r
s r

s r

c r r x a p x a c r x a

q x a c x a

 (4.215) 

Collecting the coefficient for (x a)  and we find the indicial equation: 
 2

0 0( 1) 0p q  (4.216) 
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if c0  0. Clearly, there are two roots for the index , namely 1 and 2. The term 
indicial equation was coined by Cayley. Collecting the coefficients for (x a) +r 
leads to 

 
0

( )( 1) [ ( ) ] 0r s s r s
s

c r r p r s q c  (4.217) 

Grouping the first term in the infinite sum with the first term of (4.217), we obtain  

     0 0
1

[( )( 1) ( ) ] [ ( 1) ] 0r s s r s
s

c r r p r q p r q c  (4.218) 

This recurrence formula allows us to determine the coefficient cr.  
 In general, there are two independent solutions for the second order ODE 
(4.212) 

 1
1

0

( ) ( ) r
r

r

y x c x a  (4.219) 

 2*
2

0

( ) ( ) r
r

r

y x c x a  (4.220) 

where cr is obtained from (4.218) with  = 1 and cr* is obtained from (4.218) with 
 = 2 with c0  0 and c0

*  0. However, special consideration is needed when the 
roots for  are not distinct or when their difference equals an integer.  In summary, 
there are three scenarios depending on the roots of .  
 
Case 1: 1 2 1 20, and integer  
 

 1 2*
1 2

0 0

( ) ( ) , ( ) ( )r r
r r

r r

y x c x a y x c x a  (4.221) 

with c0  0 and c0
*  0. 

 
Case 2: 1 2  

 1
1

0

( ) ( ) r
r

r

y x c x a  (4.222) 

 1
12 1

1

( ) ln( ) ( ) ( )r
r

r

y x y x a x a b x a  (4.223) 

Case 3: 2 1 n (n = integer)  

 1
1

0

( ) ( ) r
r

r

y x c x a  (4.224) 

 2
2 1

0

( ) ln( ) ( ) ( )r
n r

r

y x g y x a x a b x a  (4.225) 

where gn is the coefficient of xn of the expansion of the following term 
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1

2 01
exp ( )

{ ( )}

n xx p u du
y x a

 (4.226) 

The proof of this result was outlined in Section 10.15 of Copson (1935) and will be 
proved in detail here. Note that a similar result was given in Sneddon (1956) but 
there are various typos and the results are given without proof.  
 If 1 2 = n and n is an integer or zero, then for n  0, we have case 3, 
otherwise it is case 2. Therefore, cases 3 and 2 can be considered simultaneously. It 
is a well-known theorem in differential equations that if a solution of an n-th order 
differential equation is known, we can depress the order of the differential equation 
to n 1 (e.g., Forsyth, 1956). Using this idea, we first rewrite (4.212) as 
 ( ) ( ) 0y p x y q x y  (4.227) 
Then, we define a new unknown v as: 
 1( ) ( )y y x v x  (4.228) 
where y1(x) is the known solution for exponent 1 and the purpose is to find the 
unknown function v(x). Then, we have 

 1 1
dy y v y v
dx

 (4.229) 

 
2

1 1 12 2d y y v y v y v
dx

 (4.230) 

Substitution of these results into (4.227) gives 
 1 1 1 1 1 1( ) (2 ) 0y py qy v y v y py v  (4.231) 
The first term in the bracket is clearly zero since y1(x) is the solution of (4.227). 
Thus, we have 

 1

1
( 2 ) 0

yv p v
y

 (4.232) 

Clearly, from Section 3.5.8 we can let 
 u v  (4.233) 
such that 

 1

1
( 2 ) 0

yu p u
y

 (4.234) 

This first order ODE can be solved exactly because it is separable: 

 1

1
( 2 ) 0

ydu p dx
u y

 (4.235) 

 1
1

1
ln ( 2 )

yu p dx C
y

 (4.236) 

The final solution is 

 1

1
exp[ ( 2 ) ]

yu B p dx
y

 (4.237) 

Let us simplify the integrand as  
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1

1 1

1 1

1

2

( 2 ) 2

2ln

1ln{ }

y yp dx pdx dx
y y

pdx y

pdx
y

 (4.238) 

Back substituting of (4.237) and (4.238) into (4.233) and conducting integration 
with respect to the argument, we obtain  

 2
1

1( ) exp[ ]
{ ( )}

x

v x A B p d d
y

 (4.239) 

Substitution of (4.239) into (4.228) yields the second solution  

 1 2
1

1( ) ( ) exp[ ]
{ ( )}

x

y x y x p d d
y

 (4.240) 

In obtaining the above solution, we have dropped the integration constants.  
 To further simplify this solution, we recall the characteristic equation from 
(4.216) 
 2

0 0( 1) 0p q  (4.241) 
We now consider the special case that 2 = 1 n into (4.241) gives 
 2

1 0 1 0( ) ( 1)( ) 0n p n q  (4.242) 
But, we have from (4.241) that 
 2

0 1 0 1( 1)q p  (4.243) 
Substitution of (4.243) into (4.242) gives 
 0 11 2p n  (4.244) 
Let us consider the Frobenius series for the first solution and recall the Laurent’s 
series expansion of p(x):  
 1

1 0 1( ...)y x a a x  (4.245) 

 0
1 2

0

( ) , ( ) ...r
r

r

p
xp x p x p x p p x

x
 (4.246) 

By virtue of (4.245) and (4.246), the integrand of (4.240) becomes 

 
1

1

1

2
1

1
1 22 2

0 1

2 1

1 22 2
0 1

1 exp[ ]
{ ( )}

2 11 exp{ [ ...] }
{ ...}

exp{ln } exp{ ( ...) }
{ ...}

x

x
n

x

I p x dx
y x

n p p x dx
xx a a x

x p p x dx
x a a x

 (4.247) 

Therefore, the integrand can be simplified as   
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1

1
1 22

0 1
exp{ ( ...) } ( )

{ ...}

n
n

x

xI p p x dx x g x
a a x

 (4.248) 

We have  

 2
0

1(0)g
a

 (4.249) 

For a0  0, g(x) must be regular and thus g(x) allows a Taylor series expansion as: 

 
0

( ) m
m

m

g x g x  (4.250) 

Thus, we have 

 

1 1
1 1

0 0

1
1 1

1
0 1

( ) ( ) ( )

1( ) { }

n m m n
m m

m mx x
n

m n m n
m n m

m m nx

y x y x x g x dx y x g x dx

y x g x g g x dx
x

 (4.251) 

This can be integrated readily as: 

 
1

1
0 1

( ) ( ){ ln }
n m n m n

m m
n

m m n

g x g x
y x y x g x

m n m n
 (4.252) 

When n = 0 (i.e., case 2), we have  

 1
1

0 1

( ) ( ) ln
m

k m
o k

k m

g x
y x g y x x x a x

m
 (4.253) 

Let i = m 1; we have 

 
1

1 1

1 0 01 1

m i i
m i i

m i i

g x g x g x
x

m i i
 (4.254) 

Thus, the two summations can be combined as one 

 1 1
1

0

( ) ( ) ln m
o m

m

y x g y x x x b x  (4.255) 

Since g0 = g(0)  0 as given in (4.249), we can divide (4.255) through by g0: 

 1
2 1

1

( ) ( ) ln m
m

m

y x y x x x b x  (4.256) 

When n  0, we have  

 1 1 2

0 0, 0 0

m n
nk j jm

k j j
k m m n j j

g x
x a x x c x x c x

m n
 (4.257) 

With this, the final solution is of the form: 

 2
1

0

( ) ( ) ln m
n m

m

y x g y x x x c x  (4.258) 
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where gn may be zero and therefore, we cannot scale it like (4.256). This completes 
the proof for the case of a = 0 in (4.221) to (4.226), and this analysis can be easily 
extended to the case of nonzero a.  

4.6 BESSEL EQUATION  

We will now consider the following Bessel equation   
 2 2 2 0x y xy x y  (4.259) 

where  is called the order of the Bessel equation. Clearly, it falls into our class of 
ODEs with a regular singular point at x = 0. The zero order Bessel equation was 
first considered and solved by Daniel Bernoulli in 1733 when he considered the 
problem of vibrations of chains. The first order Bessel equation was derived by 
Bernoulli when he extended chain vibrations to non-uniform sections.  Euler, in 
1739, considered a chain with a weight proportional to xn and arrived at the Bessel 
function of general order. In 1764, Euler also found that the Bessel function is 
related to vibrations of a stretched membrane. Note that the Bessel function with an 
imaginary argument will lead to a modified Bessel function and it will be 
considered in Section 4.6.4.   
 Another popular form of the Bessel equation is 

  
2 2

2 2
1 1 0

d Z dZ
Z

dd
 (4.260) 

The subscript  is used to highlight the fact that the solution is a function of .  

4.6.1 Frobenius Series for Non-Integer Order 

A solution in terms of the Frobenius series is sought 

 2
0 1 2

0

( ... ...)r k
r k

r

Z a a a a a  (4.261) 

Differentiation of this series solution once and twice leads respectively to 

 
2 2

0 1 2

1 1
1 2

1 ( ... ...)

( 2 ... ...)

k
k

k
k

dZ
a a a a

d

a a ka
 (4.262) 

 

2
2 2

0 1 22

1 1
1 2

2
2 3

( 1) ( ... ...)

2 ( 2 ... ...)

(2 6 ... ( 1) ...)

k
k

k
k

k
k

d Z
a a a a

d

a a ka

a a k k a

 (4.263) 

 
2

2 2 2
0 1 22 ( ... ...)k

kZ a a a a  (4.264) 



 Series Solution of Second Order ODEs   261 

 

Substituting these into (4.260) and collecting the coefficients for 2 gives the 
following indicial equation for  
 2

0[ ( 1) ] 0a  (4.265) 
For nonzero a0, two roots for the indices in the Frobenius series are obtained  
  (4.266) 
Equating the coefficients for +k 2 on both sides of the equation gives 
 2

2[ ( 1) 2 ( 1) ] 0k kk k k k a a  (4.267) 
Using the indicial value  =   obtained in (4.266) gives the recurrence formula for 
the coefficient 
 2(2 ) 0k kk k a a  (4.268) 
In view of (4.266), it can be simplified as  

 2

(2 )
k

k
a

a
k k

 (4.269) 

For even k (i.e., k = 2m), the coefficient of the series solution becomes 
2 2 2 2 2 4

2

2
2 4

4

0
2

( 1)1
2 (2 2 ) 4 ( ) 4 ( ) (2 2)(2 2 2)

( 1)
( 1)( )( 1)2

( 1)
!( )( 1) ( 1)2

m m m
m

m

m

m

a a a
a

m m m m m m m m

a
m m m m

a
m m m ( 1)((

 (4.270) 

The initial constants a0 and a1 are arbitrary constants, and thus without loss of 
generality can be set to  

 0 1
1 1[ ], 0

( 1)2
a a  (4.271) 

 2 2 12
( 1) 1 , 0

! ( 1)2

m

m mma a
m m

 (4.272) 

With these coefficients, the series solution becomes  

 2

0

( 1) ( ) ( )
! ( 1) 2

m
m

m

Z J
m m

 (4.273) 

This gives the solution as J ( ), the Bessel function of the first kind of order , 
which is plotted in Figure 4.5. In principle, we can also retain odd order terms 
instead of even order terms, but the resulting function is not the Bessel function. 
For the second solution, we can simply make the substitution of   =  

 2

0

( 1)( ) ( )
! ( 1) 2

m
m

m

J
m m

 (4.274) 

Therefore, the general solution of the Bessel equation is 
 ( ) ( )Z AJ BJ  (4.275) 
provided that   integer. However, this solution is rather limited and is normally 
not used because  is an integer for many physical problems.  
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0 ( )J x

1( )J x

2 ( )J x
3( )J x

x

4.6.2 Bessel Function of Second Kind for Integer Order  

The Bessel function of the negative order reported in the last section breaks down 
when the order is an integer, and thus (4.275) is not the most general solution. 
 To illustrate the problem, we see that the recurrence equation becomes for  
= n 
 2

2( 2 ) 0k kk kn a a  (4.276) 
Since we have assumed that k is even (or k = 2m, where m = 1,2,3,...), (4.276) can 
be written as 
  2

2(4 4 ) 0k km mn a a  (4.277) 
The solution is for k being an infinite series (or m = 1,2,..., ). Therefore, no matter 
what is the given order in the ODE, m will match n sooner or later. The recurrence 
formula of the series solution breaks down when m = n.  
 

 
Figure 4.5 Bessel functions of the first kind 

  
In fact, for the case of integer order (i.e.,  = n), J n is not independent of Jn. In 
particular, they satisfy the following identity 
 ( ) ( 1) ( )n

n nJ J  (4.278) 
To prove this, we first note that the gamma function in the Bessel function becomes 
a factorial function for the case of integers. That is, 

 2 2

0 0

( 1) ( 1)( ) ( ) ( )
! ( 1) 2 !( )! 2

m m
m n m n

n
m m

J
m n m m n m

 (4.279) 

Similarly, the Bessel function of negative order is 
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 2

0

( 1)( ) ( )
! ( 1) 2

m
m n

n
m

J
m m n

 (4.280) 

No matter what the initial value of the integer n is, we encounter the unbounded 
cases of the gamma function when m < n. More specially, we have 

 1 1( ) 0,
( 1)nJ m n
m n

111
(

 (4.281) 

Effectively, we can drop all terms with m < n since they are zeros. The solution 
(4.280) becomes 

 2( 1)( ) ( )
! ( 1) 2

m
m n

n
m n

J
m m n

 (4.282) 

Since the series is infinite, we can shift back the lower index of summation to zero 
by setting k = m n: 

 

2 2

0 0

2

0

( 1) ( 1)( ) ( ) ( 1) ( )
( )! ( 1) 2 ( )! ! 2

( 1)( 1) ( ) ( 1) ( )
( )! ! 2

k n k
k n n k n

n
k k

m
n m n n

n
m

J
k n k k n k

J
m n m

 (4.283) 

This is (4.278) given above. 
 Our main job is now to search for an independent solution for the Bessel 
function for the case of integer order. There is no unique choice in this process. 
Recall that even the choice of J  is not unique (we have selected a particular value 
of a0 such that the definition of Bessel function becomes more compact). The 
following definition by Weber and Schlafli is widely accepted (Watson, 1944): 

 
( )cos ( )

( ) lim
sinn n

J J
Y  (4.284) 

where Yn is called the Bessel function of the second kind of order n. When the 
integer limit is taken, both numerator and denominator approach zero. Since the 
limit is of the form 0/0, L’Hôpital’s rule can be applied to (4.284) to arrive at 

 

( ) ( )cos sin ( )
( ) lim

cosn n

J JJ
Y  (4.285) 

Note that  
 cos ( 1) , sin 0nn n  (4.286) 
In view of these limiting values, (4.285) becomes 

 1( ) ( )1( ) lim{ ( 1) }n
n n

J J
Y  (4.287) 

Note that we have applied the limit partially for sine and cosine functions only. Our 
next step is to find the derivative of J  with respect to the order . In particular, the 
power is first rewritten as: 

 
22 ln( /2) (2 )ln( /2)( )

2
mm me e  (4.288) 
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Then, the differentiation can be evaluated as 

 

(2 )ln( /2)

0

2

0

( ) 1( 1)
! ( 1)

( 1)( ) ln / 2 ( 1) ( / 2)
! ( 1)

m m

m

m m

m

J
e

m m

mJ
m m

 (4.289) 

Similarly, we have 

 2

0

( ) ( 1)( ) ln / 2 ( 1) ( / 2)
! ( 1)

m m

m

J mJ
m m

 (4.290) 

Now, we can take the limiting case as   n 

 2

0

( ) ( 1)[ ] ( ) ln / 2 ( 1) ( / 2)
! ( 1)

m m n
n n

m

J n mJ
m n m

 (4.291) 

Both  and  are finite and it is clear that for the positive order no special 
treatment is needed. For the negative order, we have 

 

1
2

0

2

( ) ( 1)[ ] ( ) ln / 2 ( 1) [ ] ( / 2)
! ( 1)

( 1)( 1) [ ] ( / 2)
! ( 1)

n
m m n

n n n
m

m m n
n

m n

J mJ
m m

m
m m

  

  (4.292) 
Both the gamma function and the digamma function in (4.292) approach infinity 
for m < n. Thus, a special treatment is needed for the first sum on the right hand 
side of (4.292). Our objective is to evaluate the ratio of them given in the square 
bracket. Applying the reflection formulas for both digamma and gamma functions, 
we have 
 ( 1) [1 ( )] ( ) cot[ ( )]m m m m  (4.293) 

 1( 1) (1 ( ))
sin ( ) ( )

m m
m m

 (4.294) 

Dividing (4.293) by (4.294) gives 

 

( 1) 1[ ] [ ( ) cot[ ( )]]sin ( ) ( )
( 1)

( )sin ( ) ( ) cos ( ) ( )

m m m m m
m

m m m m m
   

  (4.295) 
Note that  
 sin ( ) 0n m  (4.296) 

 ( 1)[ ] ( )cos( ) ( 1) ( 1)!
( 1)

n m
n

m n m n m n m
m

 (4.297) 

Therefore, the limit between digamma and gamma functions exists and is finite for 
the first summation term on the right of (4.292). In addition, we want to shift the 
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summation index of the last term in (4.292) back to starting from 0, instead of n. In 
particular, we can shift the index of summation by assuming m = n+k: 

 

2

2

0

2

0

2

0

( 1)( 1) [ ] ( )
! ( 1) 2

1 ( 1)( 1) ( 1) ]( )
( )! ( 1) 2

1 ( 1)( 1) ( 1) ]( )
( )! ( 1) 2

( 1)( 1) ( 1) ( )
!( )! 2

m m n

m n n

n k k n

k

n m m n

m

n m m n

m

m
m m

k
n k k

m
n m m

m
m n m

 (4.298) 

Back substitution of these results into (4.292) we have 
1

1 2

0

2

0

( ) ( 1)![ ] ( 1) ( ) ln / 2 ( 1) ( / 2)
!

( 1)( 1) ( 1) ( / 2)
!( )!

n
n n m n

n n
m

n m m n

m

J n mJ
m

m
m n m

 (4.299) 

Finally, the second solution for the Bessel equation is obtained by substituting 
(4.299) and (4.291) into (4.287) 

 

1
2

0
2

0

2 1 ( 1)!( ) ( ) ln / 2 ( / 2)
!

1 ( / 2)( 1) { ( 1) ( 1)}
!( )!

n
m n

n n
m

m n
m

m

n mY J
m

n m m
m n m

 (4.300) 

Instead of expressing in terms of digamma functions, whose evaluation requires 
computer programs or numerical tables, we can express the digamma function in 
finite series as 

 
1

1( 1)
m

k

m
k

 (4.301) 

To see the validity of this equation, we start with Weierstrass’s canonical form 
given in (4.27) 

 /

1

1 (1 )
( )

z z n

n

zze e
z n

 (4.302) 

Inversion of (4.302) gives the following form of the gamma function 

 
/

1

1( )
(1 )z z n

n

z
zze e
n

 (4.303) 

Taking the logarithm of the gamma function given in (4.303), we obtain 
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/

1 1

ln ( ) ln ln[(1 ) ] ln [ln(1 ) ]z n

n n

z z zz z z e z z
n n n

 (4.304) 

Differentiation of (4.304) gives 

 
1

( ) 1 1 1ln ( ) ( ) [ ]
( ) n

d zz z
dz z z n z n

 (4.305) 

Next, we want to evaluate the special value of (1) 

 1 0 1

0 0

1 1 1 1(1) 1 [ ] [ ]
1 1

1 1
1 1

n n n

n k

n n n n

n k

 (4.306) 

Note that we have shifted the index of summation using n = k+1 for the last sum. 
Finally, we recall the recurrence formula: 

 

1

1 1 1 1 1( 1) ( ) ( 1) ... 1 (1)
1 1

1n

k

n n n
n n n n n

k

 (4.307) 

To obtain the final line in (4.307), we have substituted the result obtained in 
(4.306). This gives the required series expansion for the digamma function given in 
(4.301). 
 Finally, with substitution of (4.307) into (4.300) we get the commonly seen 
definition of the Bessel function of the second kind or Yn as 

 

1
2

0, 0

2

0 1 1

1 ( 1)!( ) ( / 2)
!

2 ( / 2) 1 1 1( 1) [ln( ) ( )]
!( )! 2 2

n
m n

n
m n

n m mm n
m

m k k

n mY
m

m n m k k

 (4.308) 

where the Euler or Euler-Mascheroni constant  is defined as 

 
1

1lim ln 0.5772157
m

m
k

m
k

 (4.309) 

More discussion of Euler constant is given in Appendix E. It was Mascheroni who 
extended Euler’s 16 digit calculation of  to 32 digits in 1790 (although wrong) and 
gave it the symbol “gamma”. Figure 4.6 plots the Bessel function of the second 
kind. Finally, we obtain the general solution, which is valid for both integer and 
non-integer order 
 ( ) ( )Z AJ BY  (4.310) 
The Bessel function is considered one of the most commonly encountered functions 
other than circular and hyperbolic functions. It appears naturally in many branches 
of science and engineering. As summarized by Watson (1944), it is intimately 
related to the Riccati equation. The most comprehensive authority of the Bessel 
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0 ( )Y x
1( )Y x

2 ( )Y x
3( )Y x

x

function remains the classic book by Watson (1944). Some people regarded it as 
the best mathematics book of all time. A brief biography of Watson is given in the 
back of this book. 
 To end this section, we record the first few terms in the series form of the 
Bessel functions as: 

 2 4 6
0 2 2 2

1 1 1 1 1 1( ) 1 ( ) ( ) ( ) ...
2 2 2(1!) (2!) (2!)

J x x x x  (4.311) 

 

2 4 6

0 2 2 2 2 2 2

2 4 6

( ) 1 ...
2 2 4 2 4 6

1 ...
4 64 2304

x x xJ x

x x x
 (4.312) 

 2 4 6
1

1 1 1 1 1 1 1( ) [1 ( ) ( ) ( ) ...]
2 1!2! 2 2!3! 2 3!4! 2

J x x x x x  (4.313) 

 2 2 4
2

1 1 1 1 1( ) ( ) [1 ( ) ( ) ...]
2 1!3! 2 2!4! 2

J x x x  (4.314) 

 
 

 
 

Figure 4.6 Bessel functions of the second kind Yn 
 

 
0 0

2 4 6

2 2 2 2 2 2

2( ) [ln( ) ] ( )
2

2 1 1 1[ (1 ) (1 ) ...]
2 2 32 2 4 2 4 6

xY x J x

x x x
 (4.315) 
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4.6.3 Circular Functions and Bessel Functions of Half Order 

The Bessel function of half order can be expressed in terms of circular functions. 
Let us consider the case that  = 1/2: 

 
2 1/2

1/2
2 1/20

( 1)( )
32 ! ( )
2

m m

mm

xJ x
m m

 (4.316) 

The gamma function can be evaluated as 

 

1

3 1 1 1 1 1( ) ( ) ( ) ( )( ) ( )
2 2 2 2 2 2

1 1 1 1 (2 1)(2 1) 3 1( )( ) ( )
2 2 2 2 2m

m m m m m m

m mm m 3 131 1( )1 11
2 2

((( )1 11
 (4.317) 

Substitution of (4.317) into (4.316) gives 

 

2 1/2 1

1/2 2 1/2
0

2 1

0
2 1

0
2 1

0

( 1) 2( )
2 !1 3 5 (2 1)

2 ( 1)
2 !1 3 5 (2 1)

2 ( 1)
(2 4 6 2 )[1 3 5 (2 1)]

2 ( 1) 2 sin
(2 1)!

m m m

m
m

m m

m
m

m m

m
m m

m

xJ x
m m

x
x m m

x
x m m

x x
x m x

(2 1)(2(2(2

(2 1)(2(2(2

2 )[1 3 5 (2 1)]2 )[1 3 5 (2)[1 3 5 (22 )[1 3 5 (22 )[1 3 5 (2)[1 3 5 (23

 (4.318) 

Let us consider the case that  = 1/2 

 
2 1/2

1/2
2 1/20

( 1)( )
12 ! ( )
2

m m

mm

xJ x
m m

 (4.319) 

The gamma function can be evaluated as 

 

1 1 1 1 3 3( ) ( ) ( ) ( )( ) ( )
2 2 2 2 2 2

1 3 3 1 1 (2 1)(2 3) 3 1( )( ) ( )
2 2 2 2 2 2m

m m m m m m

m mm m 3 133 1 1(3 1 1
2 2 2

((3 1 1
 (4.320) 

Substitution of (4.320) into (4.319) gives 
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2 1/2

1/2
0

2

0
2

0
2

0

( 1) ( / 2) 2( )
!1 3 5 (2 1)

2 ( 1)
2 (1 3 5 )[1 3 5 (2 1)]

2 ( 1)
(2 4 6 2 )[1 3 5 (2 1)]

2 ( 1) 2 cos
(2 )!

m m m

m
m m

m
m

m m

m
m m

m

xJ x
m m

x
x m m

x
x m m

x x
x m x

(2 1)(2(2

)[1 3 5 (2 1)])[1 3 5 (2)[1 3 5 (2)[1 3 5 (2)[1 3 5 (2)[1 3 5 (23

2 )[1 3 5 (2 1)]2 )[1 3 5 (2)[1 3 5 (22 )[1 3 5 (2)[1 3 5 (23

 (4.321) 

Therefore, the sine is related to J1/2 and the cosine is related to J 1/2. The following 
example provides another proof of the functional form of the two identities. 
__________________________________________________________________ 
Example 4.7 Show that the solution of the following Bessel equation  

   2 2 1( ) 0
4

x y xy x y  (4.322) 

can be expressed as 

   1 1cos siny A x B x
x x

 (4.323) 

 
Solution: Assume the following change of variables 

   1 ( )y w x
x

 (4.324) 

Differentiation of y can be expressed in terms of w as 

   3/21 1( )
2

y x w x w
x

 (4.325) 

   5/2 3/23 1
4

y x w x w w
x

 (4.326) 

Substitution of (4.326) and (4.325) into (4.322) results in 
   0w w  (4.327) 

The general solution is of course sine and cosine 
   cos sinw A x B x  (4.328) 

Thus, we have  

   1 1cos siny A x B x
x x

 (4.329) 

On the other hand, the solution of (4.322) is Bessel functions of the order 1/2: 
   1 1/2 2 1/2( ) ( )y C J x C J x  (4.330) 

This agrees with the results obtained in (4.318) and (4.321). 
__________________________________________________________________ 
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4.6.4 Modified Bessel Function 

When the argument of a Bessel function becomes purely imaginary, we can make 
the following substitution: i  or i . The Bessel equation becomes the 
so-called modified Bessel equation 

 
2 2

2 2
1 1 0

d Z dZ
Z

dd
 (4.331) 

Its solution is evidently ( )J i . Since (4.331) is a homogeneous differential 
equation, any constant multiplying the Bessel function of the imaginary argument is 
also a solution of the modified Bessel function. Thus, we can define its solution as: 

 
( ) ( ), ( arg / 2)

( ), ( / 2 arg )

I i J i

i J i
 (4.332) 

This is called the modified Bessel function of the first kind, and it was defined by 
Basset in 1889. Substitution of i  into the series definition of the Bessel 
function gives 

 
2

0

( / 2)( )
! ( 1)

m

m

I
m m

 (4.333) 

which is plotted in Figure 4.7. Thus, the general solution can be expressed as: 
 ( ) ( ) ( )Z AI BI  (4.334) 
For the case of negative integer order, similar to the case of the Bessel function of 
integer order, these two solutions are no longer independent. In fact, we can show 
that 
 ( ) ( )n nI I  (4.335) 
where n is an integer.  
 To show this, we first note that 

 
2 2

0 0

( / 2) ( / 2)( )
! ( 1) !( )!

m n m n

n
m m

I
m n m m n m

 (4.336) 

The modified Bessel function of negative order becomes 

 
2

0

( / 2)( )
! ( 1)

m n

n
m

I
m m n

 (4.337) 

As we have shown before, the gamma function (k) becomes infinite for k = 0, 1, 
2, ... Thus, all terms with m  n vanish in the summation, or we have 

 
2( / 2)( )

! ( 1)

m n

n
m n

I
m m n

 (4.338) 

Now, we can make the following change of summation index: 
 k m n  (4.339) 
Then, (4.488) can be rewritten as 
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0 ( )I x

1( )I x

2 ( )I x

3( )I x

x

 
2 2

0 0

( / 2) ( / 2)( ) ( )
( )! ( 1) ( )! !

k n k n

n n
k k

I I
k n k k n k

 (4.340) 

This completes the proof. 
 For integer order, we therefore need to define another independent solution. 
The following second independent solution is called the modified Bessel function 
of the second kind (Abramowitz and Stegun, 1964): 

 ( ) ( )
( )

2 sin
I I

K  (4.341) 

which was defined by MacDonald in 1899 and therefore it is also known as the 
MacDonald function. For integer  = n, the definition of Kn was proposed by Basset 
in 1889. The modified Bessel function of the second kind is plotted in Figure 4.8. 
Applying L’Hôpital’s rule to (4.341) we obtain 

 ( ) ( )( 1)( ) { }
2

n

n n
I J

K  (4.342) 

Following a similar step in obtaining Yn we have 

 

(2 )ln( /2)

0

2

0

( ) 1
! ( 1)

1 ( 1)( ) ln / 2 ( / 2)
! ( 1)

m

m

m

m

I
e

m m

mI
m m

 (4.343) 

Similarly, we have 

 2

0

( ) 1 ( 1)( ) ln / 2 ( / 2)
! ( 1)

m

m

I mI
m m

 (4.344) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.7 Modified Bessel functions of the first kind In 
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0( )K x

1( )K x

2( )K x

3( )K x

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Modified Bessel functions of the second kind Kn 
 
Now, we can take the limiting case as   n 

 2

0

( ) ( 1)[ ] ( ) ln / 2 ( / 2)
!( )!

m n
n n

m

I n mI
m n m

 (4.345) 

It is clear that for the positive order no special treatment is needed, as the right 
hand side of (4.345) is finite. For the negative order, we have 

 

1
2

0

2

( ) 1 ( 1)[ ] ( ) ln / 2 [ ] ( / 2)
! ( 1)

1 ( 1)[ ] ( / 2)
! ( 1)

n
m n

n n n
m

m n
n

m n

I mI
m m

m
m m

  

  (4.346) 
Our next objective is to find the limit in the square bracket in the first summation 
term in (4.346). Both the gamma function and the digamma function in (4.346) 
approach infinity for m < n. Thus, we have an indeterminate form of / . By 
applying the reflection formula of gamma and digamma functions, we have: 

( 1) 1[ ] { ( ) cot[ ( )]}sin ( ) ( )
( 1)

( )sin ( ) ( ) cos ( ) ( )

( 1) ( 1)!

n n

n
n m

m m m m m
m

m m m m m

n m

   

  (4.347) 
Similar to the calculation for (4.298), we have 
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1 ( 1) 1 ( 1)[ ] ( ) ]( )
! ( 1) 2 ( )! ( 1) 2

( 1) ( )
!( )! 2

m n k n

m n kn

m n

m
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m m n k k

m
m n m

 (4.348) 

Back substitution of these results into (4.346) yields 
1

2

0

2

0

( ) ( 1)![ ] ( ) ln / 2 ( 1) ( / 2)
!

( 1) ( / 2)
!( )!

n
n m m n

n n
m

m n

m

I n mI
m

m
m n m

 (4.349) 

The second solution is called the modified Bessel equation of the second kind 

 

1
1 2

0
2

0

1 ( 1)!( ) ( 1) ( ) ln / 2 ( 1) ( / 2)
2 !

( 1) ( / 2) { ( 1) ( 1)}
2 !( )!

n
n m m n

n n
m

n m n

m

n mK I
m

n m m
m n m

 (4.350) 

Finally, by using the series expansion for digamma given in (4.301) we obtain   

 

1
2

0, 0

2
1

0 1 1

1 ( 1)!( ) ( 1) ( / 2)
2 !

( / 2) 1 1 1( 1) [ln( ) ( )]
!( )! 2 2

n
m m n

n
m n

n m mm n
n

m k k

n mK
m

m n m k k

 (4.351) 

where Euler’s constant  (  0.5772157). 
 Thus, the general solution of (4.331) is 
 ( ) ( ) ( )Z AI BK  (4.352) 
To summarize, we simply report the first few terms of the modified Bessel functions 
as 

 2 4 6
0 2 2 2

1 1 1 1 1 1( ) 1 ( ) ( ) ( ) ...
2 2 2(1!) (2!) (2!)

I x x x x  (4.353) 

 2 4 6
1

1 1 1 1 1 1 1( ) [1 ( ) ( ) ( ) ...]
2 1!2! 2 2!3! 2 3!4! 2

I x x x x x  (4.354) 

 
0 0

2 4 6
2 2 2

( ) (ln ) ( )
2

1 1 1 1 1 1 1( ) (1 ) ( ) ( ) ...
2 2 2 2(1!) (2!) (3!)

xK x I x

x x x
 (4.355) 
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2
1 1

4 6

1 1 1 1 1 1( ) (ln ) ( ) [ (1 ) ( )
2 2 2 2 2 1!2! 2

1 1 1 1 1 1 1 1 1 1 1(1 ) ( ) (1 ) ( ) ...]
2 2 3 2!3! 2 2 3 2 4 3!4! 2

x xK x I x x
x

x x
 (4.356) 

 We have shown that Bessel functions of half integer order can be related to 
circular functions (i.e., sine and cosine). We will consider the half integer order of 
modified functions here.  

 
2 1/2 2 1

1/2
0 0

( / 2) 2 ( / 2)( )
! ( 1/ 2 1) ! ( 3 / 2)

m m

m m

I
m m m m

 (4.357) 

By using (4.317), the gamma function in (4.357) can be rewritten as: 

 

2 1

1

1

! ( 3 / 2)2

2 (2 1)(2 1)(2 3) 1[2 ( 1) 2 1]
2

[2 (2 2) 4 2][(2 1)(2 1) 3 1 ]

(2 1)!

m
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m
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m m

m m mm m

m m m m
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 (4.358) 

Therefore, (4.357) can be written as 

 
2 1 3 5

1/2
0

2 2 2( ) { ...} sinh
(2 1)! 3! 5!

m

m

I
m

 (4.359) 

Similarly, the modified Bessel function of 1/2 can be considered following the 
same procedure: 

 
2 1/2 2

1/2
0 0

( / 2) 2 ( / 2)( )
! ( 1/ 2 1) ! ( 1/ 2)

m m

m m

I
m m m m

 (4.360) 

By using (4.320), the gamma function in (4.360) can be rewritten as: 

 

2! ( 1/ 2)2
1 3 5 3 1 1[2 ( 1) 2 1][( )( )(2 ) ( )]2
2 2 2 2 2 2

[2 (2 2) 4 2][(2 1)(2 3) 3 1 ]
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m

m m

m m

m m m m m

m m m m
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 (4.361) 

Therefore, (4.360) can be written as 

 
2 2 4

1/2
0

2 2 2( ) {1 ...} cosh
(2 )! 2! 4!

m

m

I
m

 (4.362) 

In summary, the modified Bessel function of half integer order can be expressed in 
terms of hyperbolic functions. In the next section, we will consider the integral 
representation of the Bessel function. 
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4.6.5 Helmholtz Equation and Integral Representation 

To consider the integral representation of the Bessel function of the first kind, we 
start from the 2-D wave equation  

  
2 2 2

2 2 2
1 0w w w
cx y t

 (4.363) 

We seek a periodic waves or harmonic waves of the form 
  ( , ) i tw u x y e  (4.364) 
Substitution of (4.364) into (4.363) gives the following Helmholtz equation 

  
2 2

2
2 2 0u u k u

x y
 (4.365) 

where  

  
2

2k
c

 (4.366) 

We seek a solution of the form 
  ( )i ax byu Ae  (4.367) 
Substitution of (4.367) into (4.365) gives 
  2 2 2a b k  (4.368) 
Thus, it is natural to assume a new parameter  such that 
  cos , sina k b k  (4.369) 
This suggests a change of variables in polar form: 
  cos , sinx r y r  (4.370) 
Combining these, we obtain the following solution form of (4.367) 
  (cos cos sin sin ) cos( )ikr ikru Ae Ae  (4.371) 
For the special case of  = , we have the case of a plane wave propagating in the 
direction of  =   (or in the form of a one-dimensional wave). The change of 
variables given in (4.370) results in 

 

2 2 1/2
2 2 1/2

2
1

2 2 2

( ) cos sin
( )

/ sin costan
1 ( / )

r x rr x y
x yx y

φ y x y φ φ (y / x  
x r y ry x x y

,   ,   

),  , 
 (4.372) 

Application of (4.372) and the chain rule of partial differentiation leads to  

  sincosu r u u u u
x x r x r r

 (4.373) 

Similarly, we also have  

  cossinu u u
y r r

 (4.374) 

Application of (4.373) twice, we have 
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2

2

2 2 2
2 2

2 2 2 2

( )

sin sin sincos cos ] [cos ]

1 1 1 1cos sin ( ) 2sin cos ( )

u u
x xx

u u u u
r r r r r r

u u u u u
r r rr r r

 

= [  (4.375) 

Similarly, application of (4.374) twice leads to 
2

2

2 2 2
2 2

2 2 2 2

( )

cos cos cossin sin ] [sin ]

1 1 1 1sin cos ( ) 2sin cos ( )

u u
y yy

u u u u
r r r r r r

u u u u u
r r rr r r

 

= [  (4.376) 

Finally, combining (4.375) and (4.376), we obtain the polar form of the Helmholtz 
equation 

  
2 2 2 2

2 2
2 2 2 2 2

1 1 0u u u u uk u k u
r rx y r r

 (4.377) 

Applying another round of change of variables of  = kr, we have 

  
2 2

2 2 2
1 1 0u u u u  (4.378) 

Next, we seek an angular dependence of the form: 
  ( ) in

nu Z e  (4.379) 
Substitution of (4.379) into (4.378) gives  

  
2 2

2 2
1 (1 ) 0d u du n u

dd
 (4.380) 

This is of course the Bessel equation that we discussed earlier. If the boundedness 
of the solution of origin is enforced, the solution of u can only be written as: 
  ( ) in

nu AJ e  (4.381) 
Now we can rewrite (4.371) by assuming  
  in

nA C e  (4.382) 
and integrate the solution from  to  as 

  cos( )i in
nu C e e d  (4.383) 

Physically, this corresponds to a bundle of waves with directions varying from  = 
 to  = .  

 We apply the following change of variables: 
  w  (4.384) 
to give 

  1

0

coswin i w inw
n

w
u C e e e dw  (4.385) 
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where  
  0 1,w w  (4.386) 
With this change of variables, the angular dependence of  appears explicitly in 
(4.385) and it closely resembles the exact solution that we got from (4.381). The 
only problem is that the limit of integration cannot be dependent on the angular 
variable . Thus, we must remove the  dependence from w0 and w1. This is 
probably the most crucial step in this analysis. This can only be achieved if we 
allow both  and  to tend to infinity. Or, we have 
  0 1,w w  (4.387) 
Thus, the issue becomes the study of the convergence of the integral given in 
(4.385) as  and   . Since physically the wave will decay to zero at infinity, we 
must have a converging solution. In other words, we need to make u remain finite 
as w  . This can be done if we allow w to be a complex number. That is, 
  w p iq  (4.388) 
We note that  

  
cos cos( ) cos cos( ) sin sin( )

cos cosh sin sinh
w p iq p iq p iq

p q i p q
 (4.389) 

In obtaining the above equation, we have used the following identities 
  cos( ) cosh , sin( ) sinhiq q iq i q  (4.390) 
These identities can be obtained readily by noting Euler’s formula that 
  cos sin , cos sini ie i e i  (4.391) 
Allowing  be purely imaginary (or  =i ), we get  
  cos( ) sin( ), cos( ) sin( )e i i i e i i i  (4.392) 
Adding these equations gives 

  cos( ) sin( ) cos( ) sin( )cosh cos( )
2 2

e e i i i i i i i  (4.393) 

Similarly, subtracting them gives 

  cos( ) sin( ) cos( ) sin( )sinh sin( )
2 2

e e i i i i i i i i  (4.394) 

Thus, for real  in (4.385) we must have 
  Re( cos ) sin sinh 0i w p q  (4.395) 
Referring to the complex plane shown in Figure 4.9, we are searching a path along 
which (4.385) will converge to zero as w  .   
 For the upper w-plane, we have q > 0 and we need  
  sin 0, 0p p  (4.396) 
For the lower w-plane, we have q < 0 and we need  
  sin 0, 0p p  (4.397) 
For p >  and p < , we can also establish the converging zone according. The 
regions for which the passage for w0 and w1 being infinity is permissible are shaded 
in Figure 4.9. For the case that  is complex, the regions shown in Figure 4.9 only 
shift horizontally, but we will not consider this possibility here (e.g., see 
Sommerfeld, 1949).  
 We now consider the special case that  
  0 1,w a i w b i  (4.398) 
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where 
  0, 2a b  (4.399) 
Let us take the constant cn in (4.385) as 

  /21
2

in
nC e  (4.400) 

Comparison of (4.381) and (4.385) yields the following result 

  cos ( /2)1( )
2

i w in w
n

W
J e e dw  (4.401) 

where W is the rectangular contour ABCD shown in Figure 4.9 such that 
   i i  (4.402) 
Note that this contour integral over a complex path W has a great advantage over 
the real representation in that it is not limited to only integral values of n but 
remains valid for arbitrary values of n. Consider the path BC and use a change of 
variables of 
  / 2w  (4.403) 
This  axis is shown in Figure 4.9. Thus, we have 

   cos cos( / 2) cos cos( / 2) sin sin( / 2)
sin

w  (4.404) 

With this change of variables, the integration path BC of /2 < w < 3 /2 is 
mapped to becoming   <  < . The integral in (4.401) along path BC becomes 

  ( sin )1( )
2

i n
n BCJ e d  (4.405) 

For the path AB, we use a change of variables of 
  i  (4.406) 
Thus, we have 

  
sin sin( ) sin cos( ) sin( )cos

sin( )
i i i

i
 (4.407) 

For points A and B, we have 
  : ( ); : ( 0)A i B  (4.408) 
The integral in (4.401) along path AB becomes 

  

0 ( ) sin( ) sin( )

0

( sinh )

0

( )
2 2

2

in i i i in n i i
n AB

in n

i iJ e d e e d

i e e d
 (4.409) 

For the path CD, we use another change of variables of 
  i  (4.410) 
Thus, we have 

   
sin sin( ) sin cos( ) sin( )cos

sinh
i i i

i
 (4.411) 

For points D and C, we have 
  : ( ); : ( 0)D i C  (4.412) 
The integral in (4.401) along path CD becomes 
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q

2
3
2

0

a i b i

p

A

B C

D

0

axi

  ( ) sinh ( sinh )

0 0
( )

2 2
in i in n

n CD
i iJ e d e e d  (4.413) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Permissible regions in the complex plane for contours giving converging integral 
(Sommerfeld’s contour) 

 
Adding all these results gives the following integral representation of the Bessel 
function of the first kind: 

cos ( /2)

( sinh )

0

( sinh )

0

(

0

1( ) ( ) ( ) ( )
2
1 sin[cos( sin ) sin( sin )]

2
1 sincos( sin )

2
1 sincos( sin )

i w in w
n n n nAB BC CDW

n

n

n

J e e dw J J J

nn i n d e d

nn d e d

nn d e sinh )

0
d

   

   (4.414) 
where n may not be an integer. The imaginary part of (4.414) vanishes because the 
sine function is an odd function from  to  and the limit of the cosine term is 
rewritten from  to  to 0 to  by recognizing the even properties of the cosine 
function. This is Schlafli’s generalized Bessel integral obtained in 1873 (Watson, 
1944). However, the current proof follows from that of Sommerfeld (1949) instead 
of from Watson (1944). Other integral representations were reported by Watson 
(1944).  
 For the case of integer order n, we have sin(n ) = 0 and thus  



280  Theory of Differential Equations in Engineering and Mechanics 

  
0

1( ) cos( sin )nJ n d  (4.415) 

This is the well-known integral representation of the Bessel function of the first 
kind.  
 Let us demonstrate the power of this integral representation. For the Bessel 
function of negative order of integer n, we have from (4.415)  

0 0

0

0

0

1 1( ) cos( sin ) cos[ ( ) sin( )]

1 cos[ sin ]

1 cos[ sin ]cos( ) sin[ sin ]sin( )

1( 1) cos[ sin ]

( 1) ( )

n

n

n
n

J n d n d

n n d

n n n n d

n d

J

 (4.416) 

This, of course, agrees with our earlier result that the Bessel function of the first 
kind of negative integer order is dependent on that of the positive integer order 
given in (4.278).  
 This type of integral representation was found important in the investigation 
of light diffraction problems and this is also the prime objective of Sommerfeld 
when he studied these integrals. Sommerfeld published in 1894 an important paper 
on diffraction of light by a screen that improved on the results from Fresnel, 
Kirchhoff, and Poincare on short wavelength limits. His results were confirmed by 
experiments for large and small diffraction angles. This piece of work brought 
considerable fame to Sommerfeld. In wave propagation problems, Sommerfeld’s 
radiation condition is of profound importance.  
 We will say a little more about the legendary story of Prof. Arnold 
Sommerfeld here. According to Crawford (2001), Sommerfeld was the king of 
Nobel Prize nominations and had been nominated to receive the Nobel Prize for a 
record of 81 times over a span of 34 years from 1917 to 1950. On average, he 
received 2.38 nominations per year in the 34 years. Clearly, he should receive a 
Guinness World Record certificate for this. On April 26 1951, Sommerfeld was run 
over by a car when he was playing with his grandkids. Unfortunately, he never 
received the prize. Ironically, he himself had made two nominations, one to 
Einstein and one to Planck, and both of them of course received the Nobel Prize. 
Even more ironically, he had taught 7 PhD or post-doctoral students, who 
eventually received the Nobel Prize. These recipients include W. Heisenberg 
(physics, 1932), H. Bethe (physics, 1967), W. Pauli (physics, 1945), P. Debye 
(chemistry, 1936), L. Pauling (chemistry, 1954), M. von Laue (physics, 1914) and 
I.I. Rabi (physics, 1944). It was reported that Einstein once told Sommerfeld: 
“What I especially admire about you is that you have, as it were, pounded out of 
the soil such a large number of young talents.”  
 His series of textbooks, Theoretical Lectures on Physics, made significant 
impacts on the new generation of scientists and on the development of physics. His 
books include: Mechanics (Theoretical Lectures on Physics Vol. 1), Mechanics of 
Deformable Bodies (Theoretical Lectures on Physics Vol. 2), Electrodynamics 



 Series Solution of Second Order ODEs   281 

 

(Theoretical Lectures on Physics Vol. 3), Optics (Theoretical Lectures on Physics 
Vol. 4), Mathematical Theory of Diffraction, Differential Equations in Physics 
(Vol. 6), Atomic Structures and Spectral Lines, and The Theory of Top Volume III. 

4.7 LOMMEL DIFFERENTIAL EQUATION 

The Lommel differential equation is a special type of nonhomogeneous Bessel 
function: 
 2 2 2 1x y xy x y x  (4.417) 

The solutions of this equation are the Lommel functions 

 ,
0 0

( ) ( ) ( ) ( ) ( )
2

x x
s x Y x s J s ds J x s Y s ds  (4.418) 

 
1

, ,

12 ( )
2( ) ( ) ( ) cos[ ( ) / 2] ( )

( )
2

S x s x J x Y x  (4.419) 

There are other types of nonhomogeneous Bessel equations, including the Anger 
differential equation and the Weber differential equation. Details can be found in 
Abramowitz and Stegun (1964). Lommel did research on meteorology, light and 
physical optics. He was the PhD advisor of J. Stark, Nobel Prize winner in physics 
in 1919.    

4.8 HANKEL FUNCTION 

We have given the solutions of the Bessel equation as J  and Y . Actually, the 
general solutions to the Bessel function can also appear in different forms. For 
example, N. Nielsen in 1902 defined the following functions, which are now known 
as Hankel functions of the first and second kinds or Bessel functions of the third 
kind, 
 (1) (2)( ) ( ) ( ), ( ) ( ) ( )H x J x iY x H x J x iY x  (4.420) 
The symbol H was chosen by Nielsen to honor the contribution of Hankel on the 
integral representation and asymptotic expansions of Bessel functions.   
 Recall from (4.284) that 

 
( )cos ( )

( )
sin

J J
Y  (4.421) 

Substitution of (4.421) into the first equation of (4.420) gives 
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(1) ( ) cos ( )
( ) ( ) [ ]

sin
( )sin [ ( )cos ( )]

sin
( ) ( )(cos sin )

{ }
sin

( ) ( )
sin

i

J x J x
H x J x i

J x i J x J x

J x J x i
i

J x e J x
i

 (4.422) 

Similarly, the second equation of (4.420) can be expressed as  

 (2) ( ) ( )
( )

sin

iJ x e J x
H x

i
 (4.423) 

Inverting these two equations, we can also express the Bessel function of the first 
kind in terms of the Hankel functions as 

 
(1) (2) (1) (2)( ) ( ) ( ) ( )

( ) , ( )
2 2

i iH x H x e H x e H x
J x J x  (4.424) 

A slightly different form of these formulas can be obtained by recognizing the 
following identity: 
 2 ( /2) 2i ie e i  (4.425) 
 
Using this identity, we have 

 
2 2

(1) (2)[ ( ) ( )] [ ( ) ( )]
( ) , ( )

sin sin
i J x i J x i J x i J x

H x H x  (4.426) 

 
Analogously, relations between Hankel functions and Bessel functions closely 
resemble the relation between exponential functions and sine and cosine functions 
as illustrated in Table 4.1. 
 The analogy is more vivid if we consider the asymptotic expansion of Bessel 
and Hankel functions: 

  2 2( ) cos( ), ( ) sin( )
2 4 2 4

J x x Y x x
x x

 (4.427) 

(1) (2)2 2( ) exp( ), ( ) exp[ ( )]
2 4 2 4

H x x H x x
x x

 (4.428) 

With this analogy in mind, it is not difficult to visualize the importance of Hankel 
functions. In fact, for physical problems of wave propagation, the role of 
exponential functions and circular functions in Cartesian coordinates is actually 
reflected by Hankel and Bessel functions in polar cylindrical coordinates. 
Therefore, Hankel functions are commonly encountered in wave propagation 
problems (see Section 9.2.3 in Chapter 9). 
 Since Bessel functions of imaginary argument can be expressed as modified 
Bessel functions, clearly we can do the same for Hankel functions of imaginary 
argument. In particular, by substituting x by ix into the first equation of (4.426), we 
have  
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Table 4.1. Analogy between circular functions and Bessel functions  

 
Function type Analogy between functions 

Exponential function Hankel functions 
1 ixe  (1) ( )H x  
2 ixe  (2) ( )H x  
3 cos x  ( )J x  
4 sin x  ( )vY x  
5 cos sinxe x i x  (1) ( ) ( )H J x iY x  
6 cos sinixe x i x  (1) ( ) ( )H J x iY x  

 

 (1) 2( ) [ ( ) ( )]
sin

iH ix J ix i J ix  (4.429) 

For arg / 2x , recall that the definition of a modified Bessel function is 
 ( ) ( ), ( ) ( ),I x i J ix I x i J ix  (4.430) 
Substitution of (4.430) into (4.429) yields 

 

1 (1 )
(1)

(1 ) (1 )

( ) [ ( ) ( )] [ ( ) ( )]
sin sin

[ ( ) ( )]2 2 ( )
2 sin

i iH ix I x I x I x I x

I x I x
i i K x

 (4.431) 

The last result immediately follows from the definition of the modified Bessel of 
the second kind given in (4.341). Inversely, we can substitute x by ix into the left 
hand side of (4.431) to give 

 (1) (1 )2( ) ( ), ( / 2 arg )H x i K ix x  (4.432) 

 Following the same procedure, it is straightforward to show that for the case 
of / 2 arg x , we have 

 (2) 1 1[ ( ) ( )]2 2( ) ( )
2 sin

I x I x
H ix i i K x  (4.433) 

Again, substitution of x by ix into the left hand side of (4.433) results in 

 (2) 12( ) ( ), ( arg / 2)H x i K ix x  (4.434) 

This provides relations between Hankel functions and modified Bessel functions of 
imaginary argument. 

4.9 KELVIN FUNCTIONS  

A kind of special function closely related to the Bessel function is called the Kelvin 
functions. They were proposed by Lord Kelvin in 1889 when he considered certain 
electrical problems. Actually, Kelvin functions not only appear in electrical 
problems that Kelvin encountered, they also emerged naturally in the bending of a 
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cylindrical shell, in the problems of circular plates on elastic foundations, and in 
symmetrical bending of shallow spherical shells. The Kelvin equation of order  is 
 2 2 2" ( ) 0x y xy ix y  (4.435) 
The general solutions of this equation can be written as special forms of Bessel or 
modified Bessel functions: 
 1 2( ) ( )y C J i ix C Y i ix  (4.436) 

 1 2( ) ( )y C I ix C K ix  (4.437) 
However, these modified Bessel functions are complex and the real and imaginary 
parts of these functions are called Kelvin functions, which are defined as: 
 3 /4( ) ( ) ( ) ber ( ) bei ( )iJ xe J i ix i I ix x i x  (4.438) 

 /2 /4( ) ( ) ker ( ) kei ( )i ie K xe i K ix x i x  (4.439) 
Note that these Kelvin functions are real. For the case of zero orders, we have  
 0 ( ) ber( ) bei( )I ix x i x  (4.440) 

 0 ( ) ker( ) kei( )K ix x i x  (4.441) 
It is customary not to write the subscript “0” for the case of zero order, because 
only the zero order was actually proposed by Kelvin in 1889. Kelvin proposed the 
name of ber(x) and bei(x) because they closely resemble the roles of circular 
functions cos(x) and sin(x). Actually ker(x) and kei(x) were defined by Russell in 
1909 while all higher order Kelvin functions were proposed by Whitehead in 1911 
(Watson, 1944). With the Kelvin functions, the solution of (4.435) becomes 
 [ber ( ) bei ( )] [ker ( ) kei ( )]y A x i x B x i x  (4.442) 
Kelvin functions ber (x) and bei (x) are plotted in Figures 4.10 and 4.11 
respectively. For the case of moving loads on a circular ice plate on water, the 
following equation is encountered (Wyman, 1950; Nevel, 1959; Assur, 1959): 

 
2 2

2 2
2 2

1 1( )( ) 0d d d di i
r dr r drdr dr

 (4.443) 

where 

 1/4( )wr r
D

 (4.444) 

and w is the unit weight of water and D is the bending stiffness of the plate. The 
solution of (4.443) is 
 1 2 3 4ber( ) bei( ) ker( ) kei( )c r c r c r c r  (4.445) 
A similar equation is also obtained for the case of bending of spherical shallow 
shells (see Timoshenko and Woinowsky-Krieger, 1959). 
 Equation (4.443) is not normally named in the literature, and we call it the 
Kelvin equation, as its solutions are Kelvin functions. The role of the Kelvin 
equation versus the biharmonic equation is similar to the role of the Helmholtz 
equation versus the Laplace equation. This is illustrated in Table 4.2. We can see 
that there is a close resemblance of the Laplace and Helmholtz equations versus the 
biharmonic and Kelvin equations.  
 In series form, Kelvin functions of the first kind are defined as 
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Ber( )x

1Ber ( )x 2Ber ( )x

3Ber ( )x

x

Bei( )x

1Bei ( )x

3Bei ( )x

2Bei ( )x

x

 
4 8

2 2
( / 2) ( / 2)ber( ) 1 ...

2! 4!
x xx  (4.446) 

 
6 10

2
2 2

( / 2) ( / 2)bei( ) ( ) ...
2 3! 5!
x x xx  (4.447) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 Kelvin function ber   
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.11 Kelvin function bei   
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Table 4.2. Analogy between Laplace and biharmonic equations  
 

Function type Analogy between Laplace and Biharmonic equations 
Laplace type equations Biharmonic type equations 

Basic equation 2 0  (Laplace) 2 2 0 (biharmonic) 
Additional term 2 0  (Helmholtz) 2 2 0  (Kelvin) 

Polar form 
solution 

1 0 1 0( ) ( )C J r C Y r  1 2

3 4

ber( ) bei( )
ker( ) kei( )

C r C r
C r C r

 

 

 
2

0

( / 2) (3 2 )ber ( ) cos
! ( 1) 4

k

k

x kx
k k

 (4.448) 

 
2

0

( / 2) (3 2 )bei ( ) sin
! ( 1) 4

k

k

x kx
k k

 (4.449) 

Kelvin functions of the second kind can be expressed in series form as: 

 
4

2
0

( 1) ( / 2)ker( ) ln( / 2)ber( ) bei( ) (2 1)
4 [(2 )!]

m m

m

xx x x x m
m

 (4.450) 

 
4 2

2
0

( 1) ( / 2)kei( ) ln( / 2)bei( ) ber( ) (2 2)
4 [(2 1)!]

m m

m

xx x x x m
m

 (4.451) 

 
1 2

0
2

0

ker ( ) ln( / 2)ber ( ) bei ( )
4

1 ( 1)!( / 2) (3 2 )cos
2 ! 4

1 ( / 2) (3 2 ){ ( 1) ( 1)}cos
2 ( )! ! 4

n n n

n k n

k
n k

k

x x x x

n k x n k
k

x n kk n k
n k k

 (4.452) 

 
1 2

0
2

0

kei ( ) {ln( / 2) }bei ( ) ber ( )
4

1 ( 1)!( / 2) (3 2 )sin
2 ! 4

1 ( / 2) (3 2 ){ ( 1) ( 1)}sin
2 ( )! ! 4

n n n

n k n

k
n k

k

x x x x

n k x n k
k

x n kk n k
n k k

 (4.453) 

where the digamma function has been defined (4.307) as 

 
1

1( 1)
n

k

n
k

 (4.454) 

We can use the Kelvin equation to derive the formula for the second differentiation 
of the Kelvin function. For example, the zero order of (4.435) is 
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 2 2" 0x y xy ix y  (4.455) 
One of its solution is 
 ber( ) bei( )y x i x  (4.456) 
Substitution of (4.456) into (4.455) gives 
 2 2 2 2ber ( ) ber ( ) bei( ) [ bei ( ) bei ( ) ber( )] 0x x x x x x i x x x x x x  (4.457) 
Setting the real part and imaginary part of (4.457) to zeros gives 

 1ber ( ) ber ( ) bei( )x x x
x

 (4.458) 

 1bei ( ) ber( ) bei ( )x x x
x

 (4.459) 

Another solution of (4.455) is 
 ker( ) kei( )y x i x  (4.460) 
Following a similar procedure in getting (4.458) and (4.459), we obtain 

 1ker ( ) ker ( ) kei( )x x x
x

 (4.461) 

 1kei ( ) ker( ) kei ( )x x x
x

 (4.462) 

Differentiating (4.459) once more gives 

 2
1 1bei ( ) ber ( ) bei ( ) bei ( )x x x x

xx
 (4.463) 

Substitution of (4.459) into (4.463) gives 

 2
2 1bei ( ) ber ( ) bei ( ) ber( )x x x x

xx
 (4.464) 

Similarly, we have the following identities for other Kelvin functions 

 2
2 1ber ( ) bei ( ) ber ( ) bei( )x x x x

xx
 (4.465) 

 2
2 1ker ( ) kei ( ) ker ( ) kei( )x x x x

xx
 (4.466) 

 2
2 1kei ( ) ker ( ) kei ( ) ker( )x x x x

xx
 (4.467) 

Next, we will consider some simple formulas of integrals involving Kelvin 
functions. More specifically, we differentiate the following term: 

 
[ bei ( )] bei ( ) bei ( )

1bei ( ) [ber( ) bei ( )] ber( )

d x x x x x
dx

x x x x x x
x

 (4.468) 

Integrating both side, we have 
 ber( ) bei ( )x x dx x x  (4.469) 

Similarly, one can easily obtain the following formulas 
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 bei( ) ber ( )x x dx x x  (4.470) 

 ker( ) kei ( )x x dx x x  (4.471) 

 kei( ) ker ( )x x dx x x  (4.472) 

Note also the following recurrence relations for differentiation (Abramowitz and 
Stegun, 1964) 

 1 1
1ber ( ) [ber ( ) bei ( )]
2

x x x  (4.473) 

 1 1
1bei ( ) [ ber ( ) bei ( )]
2

x x x  (4.474) 

 1 1
1ker ( ) [ker ( ) kei ( )]
2

x x x  (4.475) 

 1 1
1kei ( ) [ ker ( ) kei ( )]
2

x x x  (4.476) 

Expansion for the cross product can be found in Abramowitz and Stegun (1964): 

 
2 2

2 2 2

0

1 ( / 4)ber + bei ( / 2)
( 1) ( 2 1) !

k

k

xx
k k k

 (4.477) 

For the special case of  = 0, we have (p. 82 of Watson, 1944) 

 
4 8 12 16

2 2
2 2

( / 2) ( / 2) ( / 2) ( / 2)ber (x) + bei ( ) 1 ...
2! 4 4! 6 6! 8 9!

x x x xx  (4.478) 

More extensive formulas about Kelvin functions can be found in Abramowitz and 
Stegun (1964). 
 In closing, we report the following limiting values of Kelvin functions at zero 
argument: 

 
1 1 1 1

ber(0) = 1, bei(0) = 0, ker(0) , kei(0) = / 4, 
ber (0) = 0, bei (0) = 0, ker (0) , kei (0)  

 (4.479) 

In predicting the onset of diffuse mode bifurcations of thick-walled hollow 
cylinders of geomaterials, Chau and Choi (1998) found that the evaluations of 
Bessel functions of the first and second kinds of complex arguments are necessary. 
However, Fortran subroutine for such calculations is not readily available in 
standard textbooks (e.g., Press at el., 1992). To check the accuracy of their Fortran 
subroutine, it was found that numerical tables of Kelvin functions given in 
Abramowitz and Stegun (1964) could be used.   

4.10 LEGENDRE EQUATION  

The Legendre equation is resulted from the spherical form of the Helmholtz 
equation. The solution of the Legendre equation is called the Legendre polynomials 
and it is closely related to spherical harmonics, which is the basic eigenfunction 
expansion of spherical coordinates. Legendre polynomials were first proposed by 
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Legendre in 1785 when he expand Newton’s gravitational potential in series 
expansion. Laplace in 1782 also studied them in relation to the gravitational field 
due to a spherical planet. But, later mathematicians, like Jacobi, Dirichlet and 
Heine agreed that credit should go to Legendre. First, we recall the Helmholtz 
equation in spherical coordinates 
 2 2 0k  (4.480) 
In terms of spherical coordinates, we can write the Helmholtz equation as 

 
2

2 2
2 2 2 2 2

1 1 1( ) (sin ) 0
sin sin

r k
r rr r r

 (4.481) 

Let us assume the following separation of variables  
 ( , , ) ( ) ( ) ( )r R r  (4.482) 
Substitution of (4.482) into (4.481) gives 

    
2 2

2 2 2 2 2
2

sin sin 1( ) (sin ) sind dR d d dr k r m
R dr dr d d d

 (4.483) 

Then we have 

     
2

2
2 0d m

d
 (4.484) 

The solution of (4.484) is of course  
  cos sinA m B m  (4.485) 
Rearranging (4.483) we can rewrite  

     
2

2 2 2 2
2

1 1(sin ) ( )
sin sin

d d m d dRr k r
d d R dr dr

 (4.486) 

Thus, the theta-dependent function can be expressed as 

     
2

2
2

1 (sin ) ( ) 0
sin sin

d d m
d d

 (4.487) 

Applying the following change of variables, 
     cos , ( ) ( )x P x  (4.488) 
we get 

 
2

2 2
2[(1 ) ] ( ) 0

1
d dP mx P
dx dx x

 (4.489) 

Further simplification of this equation by assuming 2 = n(n+1) leads to 

 
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

1
d P dP mx x n n P

dxdx x
 (4.490) 

This is the associated Legendre equation. For the special case of m = 0 (i.e.,  is 
independent of ), we have the following Legendre equation: 

 
2

2
2(1 ) 2 ( 1) 0d P dPx x n n P

dxdx
 (4.491) 

We see that the Legendre equation results from the separation of variables of the 
Helmholtz equation. 
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4.10.1 Series Solution 

Let us consider the solution in terms of infinite series as: 

 
0

m
m

m

P a x  (4.492) 

Differentiation of this proposed form gives 

 
2

1 2
2

1 2

, ( 1)m m
m m

m m

dP d Pma x m m a x
dx dx

 (4.493) 

Substitution of (4.492) and (4.493) into (4.491) gives 

 2 2 1

2 1 0

(1 ) ( 1) 2 ( 1) 0m m m
m m m

m m m

x m m a x x ma x n n a x  (4.494) 

Multiplying the non-constant coefficients into the series gives 

 2

2 2 1 0

( 1) ( 1) 2 ( 1) 0m m m m
m m m m

m m m m

m m a x m m a x ma x n n a x    

  (4.495) 
As the summation is for infinite terms, we can always shift the summation to start 
from m = 0.  More specifically, we can assume k = m+2 in the first sum and write 
the series as: 

2
0 2 1 0

( 2)( 1) ( 1) 2 ( 1) 0m m m m
m m m m

m m m m

m m a x m m a x ma x n n a x    

  (4.496) 
Writing out the first few terms explicitly, we have 

       
2 3 1 0 1

2
2

2 6 2 ( 1) ( 1)

[( 2)( 1) ( 1) 2 ( 1) ] 0m
m m m m

m

a a x a x n n a n n a x

m m a m m a ma n n a x
 (4.497) 

Thus, setting the coefficients of the zero, first, and general m-order terms to zero, 
we obtain 
        2 02 ( 1) 0a n n a  (4.498) 
        3 1 16 2 ( 1) 0a a n n a  (4.499) 
        2( 2)( 1) [ ( 1) 2 ( 1)] 0m mm m a m m m n n a  (4.500) 
These three equations give 

        2 0
( 1)

2
n na a  (4.501) 

        3 1
( 2)( 1)

6
n na a  (4.502) 

        2
( )( 1)

( 2)( 1)m m
m n m na a

m m
 (4.503) 

Therefore, for m = 2 we have 
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       4 2 0
(2 )(2 1) (2 )(2 1) ( 1)

12 4!
n n n n n na a a  (4.504) 

For m = 3, we have 

       5 3 1
(3 )(4 ) (3 )(4 )( 1)( 2)

20 5!
n n n n n na a a  (4.505) 

Using (4.503) to (4.505), we can express all terms using only two constants: 
       0 1 1 2( )P x a y a y  (4.506) 
where 

       2 4
1

( 1) ( 2) ( 1)( 3)1 ...
2! 4!

n n n n n ny x x  (4.507) 

       3 5
2

( 1)( 2) ( 3)( 1)( 2)( 4) ...
3! 5!

n n n n n ny x x x  (4.508) 

This provides the general solution for the Legendre equation. From (4.500), if n is 
an integer, we have am+2 = 0, for m = n, n+2, .... That is, the series becomes finite 
and is of order n (for both even and odd). We can work backward to express all 
terms in terms of an. In particular, we first rewrite (4.500) as: 

       2
( 2)( 1) , 2

( )( 1)m m
m ma a m n

n m m n
 (4.509) 

Letting m =n 2 in (4.509) gives 

       2
( 1)

2(2 1)n n
n na a

n
 (4.510) 

Applying this expression twice, we get 

       2
4 2

( 2)( 3) ( 1)( 2)( 3)( 1)
4(2 3) 2 4 (2 1)(2 3)n n n

n n n n n na a a
n n n

 (4.511) 

Application of the recursive formula m times results in 

       2
( 1)( 2)( 3) ( 2 1)( 1)

2 4 2 (2 1)(2 3) (2 2 1)
m

n m n
n n n n n ma a

m n n n m
 (4.512) 

With this recursive formula in mind, the function P(x) becomes 
       2 4

2 4 0( ) ...n n n
n n nP x a x a x a x a  (4.513) 

for n even and  
       2 4

2 4 1( ) ...n n n
n n nP x a x a x a x a x  (4.514) 

for n odd. These expressions can be rewritten as a single expression: 

       2

0

( 1)( 2)( 3) ( 2 1)( ) ( 1)
2 4 2 (2 1)(2 3) (2 2 1)

M
m n m

n
m

n n n n n mP x a x
m n n n m

 (4.515) 

where 

       
/ 2, even

( 1) / 2, odd
M n n

n n
 (4.516) 

To further simplify this form, we first derive the following identities: 
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( 1)( 2) ( 2 1)
( 2 )( 2 1) 3 2 1( 1)( 2) ( 2 1)

( 2 ) 3 2 1
!

( 2 )!

n n n n m
n m n mn n n n m

n m
n

n m

 (4.517) 

       2 4 2 2 !mm m  (4.518) 

       

(2 1)(2 3) (2 2 1)
2 (2 1)(2 2)(2 3) (2 2 1) (2 2 )!

2 (2 2)((2 4) (2 2 2) (2 2 )!
(2 )!

2 ( 1)( 2) ( 1)(2 2 )!
(2 )! ( )!

( )!2 (2 2 )! ( 1)( 2) ( 1)
(2 )!( )!

2

m

m

m

n n n m
n n n n n m n m

n n n n m n m
n

n n n n m n m
n n m

n mn m n n n n m
n n m
(2 2 )! !n m n

 (4.519) 

Substitution of (4.517) (4.519) into (4.515) arrives at 

       

2

0
2

2

0

( 1) !2 (2 2 )! !( )
( 2 )!2 !(2 )!( )!

( 1) ( !) (2 2 )!
!( 2 )!( )!(2 )!

M m m
n m

n m
m
M m

n m
n

m

n n m nP x a x
n m m n n m

n n ma x
m n m n m n

 (4.520) 

Since an is an arbitrary constant, we can choose any value for it. For the following 
choice 

        2
(2 )!

2 ( !)n n
na
n

, (4.521) 

we can express the solution as  

       2

0

( 1) (2 2 )!( )
2 !( )!( 2 )!

M m
n m

n n
m

n mP x x
m n m n m

 (4.522) 

This is the Legendre polynomial for the case of integer n. The Legendre 
polynomial given by (4.522) is finite for all values of 1  x  1. For n being a non-
integer, we have Pn(x)   as x  1. The first few terms of the Legendre 
polynomials are: 
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1( )P x

2( )P x3( )P x

4( )P x
5( )P x

x

       

0

1

2
2

3
3

4 2
4

( ) 1,
( ) ,

1( ) (3 1),
2
1( ) (5 3 ),
2
1( ) (35 30 3)
8

P x
P x x

P x x

P x x x

P x x x

 (4.523) 

The first five Legendre polynomials (except zero order) are plotted in Figure 4.12. 
Since (4.491) is a linear second order ODE, we need to find another independent 
solution in additional to the Legendre polynomials obtained in (4.522). To do so, 
let us assume the other independent solution in the form: 
       ( ) ( )nP A x P x  (4.524) 
where A(x) is the unknown function to be found. Again, (4.524) results from a 
standard theorem stated in Forsyth (1956). Substitution of (4.524) into (4.191) 
leads to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Legendre polynomials of the first kind Pn 
 
   2(1 )( 2 ) 2 ( ) ( 1) 0n n n n n nx AP A P A P x AP A P n n AP  (4.525) 
This can be regrouped as  
  2 2{(1 ) 2 ( 1) } (1 )(2 ) 2 0n n n n n nA x P xP n n P x A P A P xA P  (4.526) 
The first term is evidently zero as the Legendre polynomial is the solution of 
(4.491), and thus we are left with 

 2
22 0

1
n

n

P A x
P A x

 (4.527) 

This can be rewritten by assuming u = A’ 
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 2
22 0
1

n

n

dP du xdx
P u x

 (4.528) 

Integrating term by term, we have 
 2 2

1ln ln ln(1 )nP u x C  (4.529) 
This can be written as 

 2 2(1 ) n

dA Cu
dx x P

 (4.530) 

Thus, integration leads to the result for A and the final solution results in Legendre 
polynomials of the second kind: 

 2 20
( )

(1 )

x
n n

n

dxQ x P
x P

 (4.531) 

As examples, we demonstrate the first few terms of the Legendre polynomials of 
the second kind. For P0(x) = 1, the Legendre polynomials of the second kind of 
zero order are 

 
0 20 0

1 1 1( ) ( )
2 1 11

1 1 1[ln(1 ) ln(1 )] ln( )
2 2 1

x xdxQ x dx
x xx

xx x
x

 (4.532) 

For P1(x) = x, the Legendre polynomials of the second kind of first order are 

 
1 2 2 2 2

1 1( ) ( )
(1 ) 1

1ln( ) 1
2 1

x x

dxQ x x x dx
x x x x

x x
x

 (4.533) 

More generally, Legendre polynomials of the second kind can be evaluated as 
(Abramowitz and Stegun, 1964) 

 
1

1

1
1

1 1 1( ) ( ) ln( ) ( ) ( ) 1
2 1

1 1 1( ) ln( ) ( ) ( ) 1
2 1

n

n n m n m
m

n

n m n m
m

xQ x P x P x P x x
x m

xP x P x P x x
x m

 (4.534) 

where P m(x) = 0. Thus, we have 

 2
2 2 0

3 1 1 3( ) ( ) ( ) (3 1) ln( )
2 4 1 2

xQ x P x Q x x x x
x

 (4.535) 

 2 3 2
3 3 0

5 2 1 1 5 2( ) ( ) ( ) (5 3 ) ln( )
2 3 4 1 2 3

xQ x P x Q x x x x x
x

 (4.536) 

Thus, the general solution of (4.491) becomes 
 ( ) ( ) ( )n nP x AP x BQ x  (4.537) 
Note, however, that Qn(1)  and for solid spheres containing the poles (i.e.,  
=0,  or x = 1 at poles) we normally require B = 0 based on physical grounds.  
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4.10.2 Rodrigues Formula 

Actually, Legendre polynomials can also be generated by using the Rodrigues 
formula: 

       21( ) ( 1)
2 !

n
n

n n n
dP x x

n dx
 (4.538) 

The formula was discovered by Rodrigues in 1816, and rediscovered by Ivory in 
1824 and Jacobi in 1827. The current name was given by Heine in 1878 in his 
book. To prove this identity, we can start with the binominal theorem for the 
function under the differentiation sign: 

       2 2 2 2 2

0 0

( 1) !( 1) ( 1)
!( )!

n nm
n n m n m n m

m
m m

nx x C x
m n m

 (4.539) 

Substitution of (4.539) into the left hand side of (4.538) yields 
 

       2 2 2

0

1 1 ( 1) !( 1)
!( )!2 ! 2 !

nn m n
n n m

n n n n
m

d n dx x
m n mn dx n dx

 (4.540) 

The differentiation term on the right hand side is zero if 2n 2m < n and thus we 
must have n < 2m or n/2 < m for even n and (n 1)/2 < m for odd n. Note also that 

       !( 1)( 2) ( 1)
( )!

n
p p n p n

n
d px p p p p n x x

p ndx
 (4.541) 

Thus, differentiation of (4.540) becomes 

 2 2 2(2 2 )!
( 2 )!

n
n m n m

n
d n mx x

n mdx
       (4.542) 

Back substitution of (4.542) into (4.540) gives 

       2 2

0

1 ( 1) (2 2 )!( 1) ( )
2 ! 2 !( )!( 2 )!

Mn m
n n m

nn n n
m

d n mx x P x
n dx m n m n m

 (4.543) 

where M is defined in (4.516). This completes the proof of the Rodrigues formula.  
Legendre polynomials are of fundamental importance in the analysis of spherical 
coordinates, and are the marrow of spherical harmonics. They also provide the 
basis of eigenfunctions for spheres.  

4.11 ASSOCIATED LEGENDRE EQUATION 

For the case that m  0 in (4.490), it is the associated Legendre equation: 

 
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

1
d W dW mx x n n W

dxdx x
 (4.544) 

Let us start from the Legendre function (i.e., m= 0) that  

 
2

2
2(1 ) 2 ( 1) 0d V dVx x n n V

dxdx
 (4.545) 

Differentiating this equation m times, we have 
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2

2
2[(1 ) ] (2 ) ( 1) 0

m m m

m m m
d d V d dV d Vx x n n

dxdx dx dx dx
 (4.546) 

Recalling the Leibniz rule for differentiation, we have 

 
0 0

( ) !
( )! !

m mm r m r r m r
m
rm r m r r m r

r r

d uv d u d v m d u d vC
m r rdx dx dx dx dx

 (4.547) 

Only a finite number of terms remain in (4.546) by recognizing u and v as 

 
2

2
2(1 ), d Vu x v

dx
 (4.548) 

Thus, we have 

 
2 2 1

2 2
2 2 1

( 1)[(1 ) ] (1 ) 2 2
1! 2!

m m m m

m m m m
d d V d V m d V m m d Vx x x
dx dx dx dx dx

 (4.549) 

 
1

1(2 ) 2 2
1!

m m m

m m m
d dV d V m d Vx x

dxdx dx dx
 (4.550) 

Finally, we have 

 
2

2
2(1 ) 2 ( 1) [ ( 1) ( 1)] 0d U dUx x m n n m m U

dxdx
 (4.551) 

where 

 ( )mm
n

m m
d P xd VU

dx dx
 (4.552) 

The last part of (4.552) is obtained by recognizing that the solution of (4.545) is the 
Legendre polynomial. 
 Let us now introduce the following change of variables 
 2 /2(1 )mW x U  (4.553) 
Thus, the derivative terms of (4.552) can be expressed as: 

 2 /2 1 2(1 ) (1 )mdU dWmx x W x
dx dx

 (4.554) 

2
2 /2 2 2 2 2 /2 1

2

2
2 /2

2

(1 ) [(1 ) ( 2) ] 2 (1 )

(1 )

m m

m

d U dWmx x W x m x mx x
dxdx

d Wx
dx

 (4.555) 

Substitution of (4.554) and (4.555) into (4.551) gives 

 
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

1
d W dW mx x n n W

dxdx x
 (4.556) 

This is precisely our associated Legendre equation. Thus, finally we have the 
solution of (4.556) as the associated Legendre polynomial: 

 2 /2 2 /2 ( )
( ) (1 ) (1 )

m
m m m n

n m
d P x

P x W x U x
dx

 (4.557) 

This associated Legendre function of the first kind is also known as Ferrers 
functions, proposed by British mathematician Norman Ferrers (Olver, 2012). 
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Clearly, the zero order associated polynomials (i.e., m = 0) become the Legendre 
polynomials. It is straightforward to see that this procedure is equally applicable to 
the associated Legendre function of the second kind, and thus we have  

 2 /2 2 /2 ( )
( ) (1 ) (1 )

m
m m m n
n m

d Q x
Q x W x U x

dx
 (4.558) 

Combining these two solutions, we have the general solution for the associated 
Legendre equation as 
 ( ) ( ) ( )m m

n nW x AP x BQ x  (4.559) 
Similar to the observations for Legendre polynomials, for solid spheres containing 
the poles (i.e.,  =0,  or x = 1 at poles) the associated Legendre function of the 
second kind becomes infinite. Thus, for such problems we normally require B = 0 
based on physical grounds.  
 

4.12 HYPERGEOMETRIC FUNCTION   

The hypergeometric series or functions had been studied by mathematicians before 
its governing equation was known (or called the hypergeometric equation). It has 
been considered by Wallis, Euler, Gauss, Kummer, and Riemann. Its application is 
related to the analyses of a weightless cable containing point masses, of particle 
physics, and of fluctuation in electric circuit. The term hypergeometric series was 
coined by J.F. Pfaff (1765 1825), who was the advisor of Gauss. Unlike Bessel 
functions, the hypergeometric function is one of the topics of special functions that 
has been commonly left out in the syllabus of engineering mathematics. In the 
bending theory of a shell having a surface of revolution subjected to axisymmetric 
loadings, the hypergeometric equation and function appear naturally (e.g., Chapter 
16 of Timoshenko and Woinowsky-Krieger, 1959).  However, such topics are not 
normally covered even in graduate courses in "the theory of plates and shells" 
because the hypergeometric function is considered too complicated for graduate 
students or even for engineering professors. In fact, if we do not go too deep into 
the mathematical theory of hypergeometric function, it is not so formidable. In this 
section, we will illustrate that it is just another series solution with three parameters 
and one variable. If one tries to find the analytic solution of a complicated integral 
using the software Mathematica, it is very likely that Mathematica’s solution will 
involve the hypergeometric function. Therefore, one should be familiar with this 
special function.      

4.12.1 Frobenius Series Solution 

The following hypergeometric equation was discovered by Gauss:  
 (1 ) [ ( 1) ] 0z z y z y y  (4.560) 
where , , and  are parameters of the equation. Near z = 0, let us seek a solution 
in terms of the Frobenius series 
 2

0 1 2( ... ...)k
ky z a a z a z a z  (4.561) 



298  Theory of Differential Equations in Engineering and Mechanics 

Thus, we have 
 1 1 1

0 1 2( 1) ( 2) ... ( ) ...k
ky a z a z a z k a z  (4.562) 

 
2 1

0 1 2
2

( 1) ( 1) ( 2)( 1)

... ( )( 1) ...k
k

y a z a z a z

k k a z
 (4.563) 

Substitution of these into (4.560) results in 

 

2 1
0 1 2

2

1 1
0 1 2

1

1 2
0 1 2

(1 )[ ( 1) ( 1) ( 2)( 1)

... ( )( 1) ...]

[ ( 1) ]{ ( 1) ( 2)

... ( ) ...}

( ... ...) 0

k
k

k
k

k
k

z z a z a z a z

k k a z

z a z a z a z

k a z

a z a z a z a z

 (4.564) 

Collecting the coefficients for z 1, we have 
 ( 1 ) 0  (4.565) 
There are two solutions for the index  
 0, 1  (4.566) 
Collecting the coefficients for z +k, we have 

 1[( 1)( ) ( 1)]
[( )( 1) ( 1)( ) ]

k

k

k k k a
k k k a

 (4.567) 

For the case of  = 0, the recursive formula for the coefficients is 

 1
( )( )
( 1)( )k k

k ka a
k k

 (4.568) 

We further set a0 = 1, and the first solution is Gauss hypergeometric series 

 2
1

( 1) ( 1)( , , , ) 1 ...
1 1 2 ( 1)

y y F z z z  (4.569) 

where F( , , ,z) is called the hypergeometric series or hypergeometric function, 
and the first three arguments indicate the indices of the ODE and the last one is the 
variable. This hypergeometric function can be defined in a more compact form: 

 
0

( ) ( )
( , , , )

( ) !
kk k

kk

F z z
k

 (4.570) 

where the Pochhammer symbol is defined as 

 ( )( ) ( 1) ( 1)
( )k

kk  (4.571) 

It was proposed by Prussian mathematician Pochhammer, and its name was coined 
by Appell in 1880. Thus, we can define the hypergeometric series in terms of the 
gamma function  

 
0

( ) ( ) ( )( , , , )
( ) ( ) ( ) !

k

k

k k zF z
k k

 (4.572) 

For the second root of   in (4.566),  = 1 , we have 
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 1
2 ( 1, 1,2 , )y y z F z  (4.573) 

Therefore, the general solution of the hypergeometric equation is 
 1( , , , ) ( 1, 1,2 , )y AF z Bz F z  (4.574) 
This solution is only valid for  
 1 1, ( ) 1z  (4.575) 
Note that the differentiation of the hypergeometric series is 

 ( , , , ) ( 1, 1, 1, )d F z F z
dz

 (4.576) 

To show this, can find that 

 2( 1)( 1) ( 1)( 2)( 1)( 2)( 1, 1, 1, ) 1 ...
1 1 2 ( 1)( 2)

F z z z    

  (4.577) 

2

( 1) ( 1)( 1, 1, 1, )
( 1)

( 1)( 2) ( 1)( 2) ...
1 2 ( 1)( 2)

F z z

z
 (4.578) 

The function on the right hand side is precisely the derivative of the 
hypergeometric series. This completes the proof.  

4.12.2 Confluent Hypergeometric Function 

A related function is called the confluent hypergeometric function or Kummer 
function, which is defined as: 

 
0

( )( 1)( , , ) 1 ...
1! ( 1) 2! ( ) !

n
n

nn

M
n

 (4.579) 

which was introduced by Kummer in 1837. It can be obtained as a special case of 
the hypergeometric function that  
  , 0,z z  (4.580) 
Using the following change of variables 

 z  (4.581) 

we have 

 
2 2

2
2 2,dy dy d y d y

dz d dz d
 (4.582) 

Substitution of these into (4.560) gives 

  
2

2
2(1 ) [ ( 1) ] 0d y dy y

dd
 (4.583) 

This can further be simplified as  
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2

2( ) [ ( 1) ] 0d y dy y
dd

 (4.584) 

Finally, we can take the limit    and we obtain the following confluent 
hypergeometric equation or Kummer’s equation 

 
2

2 ( ) 0d y dy y
dd

 (4.585) 

The second independent solution of this second ODE was introduced by Tricomi in 
1947 

1(1 ) ( 1)( , , ) ( , , ) ( 1,2 , )
( 1) ( )

M M  (4.586) 

which is also known as the Tricomi function. The hypergeometric series also gives 
the solution of Riemann’s P-equation or the Papperitz equation (see chapter 10 of 
Whittaker and Watson, 1927). 
 The appearance of the solution form in (4.574) is not unique. If the range of z 
is not constrained by (4.575), the solution of the hypergeometric equation will 
appear in different forms. The next section will present the classification of 
solutions proposed by Kummer. 

4.12.3 Kummer’s Classification of Hypergeometric Series  

Actually, there are three singular points at z = 0, 1,  for the hypergeometric 
equation. The solution near singular points z = 1, and z   will appear 
differently. Near each of the three singular points, there are always two linearly 
independent solutions. There are many different ways to express these solutions. 
The following Kummer classification is presented by Goursat in his thesis and was 
translated to English in Chapter 7 of Craig’s (1889) book. For the solution near the 
point z = 0, we have two characteristic roots (as given in the last section), and the 
situation is the same for indicial equations at the other two singular points. The 
indicial equations at z= 1 and z =  are respectively: 
 ( ) 0  (4.587) 
 ( 1) ( 1) 0r r r  (4.588) 
Similar to (4.565), these equations are also quadratic and thus there exist two 
solutions. This is summarized in Table 4.3 below.  To show the validity of (4.588), 
we introduce the following change of variables 

 1z
u

 (4.589) 

Table 4.3. Roots of the indicial equation near different singular points 
 

Singular point Roots of indicial equation 
0 1 = 0 2 = 1  
1 1 = 0 2 =  

 r1 =  r 2 =  
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Note that the singular point z   is mapped to u = 0. The derivatives of the new 
variables are: 

 2dy dy du dyu
dz du dz du

 (4.590) 

 
2 2

2 3 4
2 2( ) 2d y d dy du dy d yu u u

du du dz dudz du
 (4.591) 

Substitution of these derivatives into the hypergeometric equation (4.560) gives 

 
2

2
2( 1) [( 1) ( 2) ] 0d y dyu u u u y

dudu
 (4.592) 

Thus, a power series in u about u = 0 corresponds to the singular point z  . 
Near u = 0, let us seek a solution in terms of the Frobenius series 
 2

0 1 2( ... ...)r k
ky u a a u a u a u  (4.593) 

Thus, we have 
 1 1 1

0 1 2( 1) ( 2) ... ( ) ...r r r k r
ky ra u r a u r a u r k a u  (4.594) 

 
2 1

0 1 2
2

( 1) ( 1) ( 2)( 1)

... ( )( 1) ...

r r r

k r
k

y r r a u r r a u r r a u

r k r k a u
 (4.595) 

Substitution of these into (4.592) yields 

 

2 2 1
0 1 2

2

1 1
0 1 2

1

1 2
0 1 2

( 1)[ ( 1) ( 1) ( 2)( 1)

... ( )( 1) ...]

[( 1) ( 2) ]{ ( 1) ( 2)

... ( ) ...}

( ... ...) 0

r r r

k r
k

r r r

k r
k

r r r r k
k

u u r r a u r r a u r r a u

r k k r a u

u u ra u r a u r a u

r k a u

a u a u a u a u

 (4.596) 

Collecting the coefficient of the ur term, we obtain for nonzero a0 
 ( 1) ( 1) 0r r r  (4.597) 
This is precisely (4.588). The two roots are r = , . For the case of r = , we have 

 1
( )(1 )

( 1) ( 1) ( 1)( 1)k k
k ka a

k k k k
 (4.598) 

To show the validity of (4.587), we introduce the following change of variables 
 1z u  (4.599) 
Note that the singular point z = 1 is mapped to u = 0. The hypergeometric equation 
becomes 

 
2

2(1 ) [( 1 ) ( 1)] 0d y dyu u u y
dudu

 (4.600) 

Near u = 0, let us seek a solution in terms of the Frobenius series 
 2

0 1 2( ... ...)k
ky u a a u a u a u  (4.601) 

Thus, we have 
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 1 1 1
0 1 2( 1) ( 2) ... ( ) ...k

ky a u a u a u k a u  (4.602) 

 
2 1

0 1 2
2

( 1) ( 1) ( 2)( 1)

... ( )( 1) ...k
k

y a u a u a u

k k a u
 (4.603) 

Substitution of these into (4.600) leads to 

 

2 1
0 1 2

2

1 1
0 1 2

1

1 2
0 1 2

(1 )[ ( 1) ( 1) ( 2)( 1)

... ( )( 1) ...]

[( 1) ( 1)]{ ( 1) ( 2)

... ( ) ...}

( ... ...) 0

k
k

k
k

k
k

u u a u a u a u

k k a u

u a u a u a u

k a u

a u a u a u a u

(4.604) 

Collecting the coefficients of the ur term, we obtain for nonzero a0 
 ( ) 0  (4.605) 
This is (4.587). The two roots are  = 0 and . For the case of  = 0, we have 

 1
( )

( 1)( 1)k k
k ka a

k k
 (4.606) 

In general, the solution forms near the singular points can be expressed in the 
solutions summarized in Table 4.4. 
 

Table 4.4. General solution of hypergeometric functions near different singular points 
 

Singular point General solution form of Frobenius series 
0 1 2

1 1 2 2y C z U C z U  
1 1 2

1 1 2 2(1 ) (1 )y C z V C z V  
 1 2

1 1 2 2
r ry C z W C z W  

 
Therefore, there are six types of solution forms, and they are U1, U2, V1, V2, W1, 
and W2, which, we have the following functional forms 
   1 2 1 2, ( ), ( )U U U z U z  (4.607) 
   1 2 1 2, ( 1), ( 1)V V V z V z  (4.608) 
   1 2 1 2, (1/ ), (1/ )W W W z W z  (4.609) 
They can be expressed in terms of hypergeometric functions. The hypergeometric 
equation can be rewritten in different forms, depending on whether the solution is 
being sought near z = 0, 1 or . There are six different ways of transforming an 
ODE to the standard form by the following transformation: 

   au bx
cu d

 (4.610) 

Mapping of this form is also called bilinear transformation. More specifically, we 
can transform the differential equation to different forms by using the mapping 
shown in Table 4.5. 
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Table 4.5. Six mappings that can rewrite the differential equations in different forms near 3 
singular points 

 
Mapping Value of u 

z = 0 z = 1 z =  
z u  0 1  

/ ( 1)z u u  0  1 
1z u  1 0  
( 1) /z u u  1  0 
1/ (1 )z u   0 1 
1/z u   1 0 

 
 The third and sixth mappings have been applied earlier to obtain the 
hypergeometric equations near the singular at x   and x = 1. For the solution 
near each singular point, we can express the solution as: 
   (1 ) ( )y z z f z  (4.611) 
where f(z) is the hypergeometric function of certain parameters. Since there are two 
roots for both  and , four ways of expressing the solution exist. Each solution of 
these different forms can be represented by six different forms (see (4.407) to 
(4.409)). According to this system, we have 24 solution forms. This is called 
Kummer’s 24 solutions for hypergeometric equations. The results are summarized 
in Table 4.6 for the solutions near the singular point z = 0, in Table 4.7 for the 
solutions near the singular point z = 1, and in Table 4.8 for the solutions near the 
singular point z  .   
 The first four Kummer solutions given in Table 4.6 are equivalent whereas 
the fifth to eighth are equal. That is why they were grouped into solutions y1 and y2. 
Near the point z = 0, the general solution of the hypergeometric equation is 
   1 2( ) ( )y Ay z By z  (4.612) 
Altogether we have six groups of solutions with four each as shown in Tables 
4.6 4.8. Thus, a total of 24 solutions can be obtained.  
 Near the point z = 1, the general solution of the hypergeometric equation is 
   3 4( ) ( )y Ay z By z  (4.613) 
Near the point z  , the general solution of the hypergeometric equation is 
   5 6( ) ( )y Ay z By z  (4.614) 
It can be shown that all solutions of y3, y4, y5, and y6  are dependent functions of y1  
and y2 (Craig, 1889).  

4.12.4 Hypergeometric Series versus Other Functions 

The hypergeometric series is considered as one of the most general functions that 
can embrace many functions, which can be expressed in terms of infinite series 
with rational coefficients, as its special case. Here are some examples: 
   ( , , , ) (1 )nF n x x  (4.615) 
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   lim (1, ,1, / ) x
n

F n x n e  (4.616) 

 (1, , , ) 1/ (1 )F x x  (4.617) 

 ln(1 )(1,1,2, ) zF z
z

 (4.618) 

   2
,
lim ( , ,1/ 2, / (4 )) cosh

n m
F m n z mn z  (4.619) 

     2

,

sinhlim ( , ,3 / 2, / (4 ))
n m

zF m n z mn
z

 (4.620) 

   2

,

sinlim ( , ,3 / 2, / (4 ))
n m

zF m n z mn
z

 (4.621) 

 
 

Table 4.6. General solution of hypergeometric functions near z = 0 
 
Number Solution Type region 
1 ( , , , )F z  1y  0z  
2 (1 ) ( , , , )z F z  
3 (1 ) ( , , , / ( 1))z F z z  
4 (1 ) ( , , , / ( 1))z F z z  
5 1 ( 1, 1,2 , )z F z  2y  0z  

6 1 (1 ) (1 ,1 ,2 , )z z F z  
7 1 1(1 ) ( 1,1 ,2 , / ( 1))z z F z z  
8 1 1(1 ) ( 1,1 ,2 , / ( 1))z z F z z  
 

 
Table 4.7. General solution of hypergeometric functions near z = 1 

 
Number Solution Type region 
1 ( , , 1,1 )F z  3y  1z  
2 1 ( 1, 1, 1,1 )z F z  
3 ( , 1, 1,( 1) / )z F z z  
4 ( , 1, 1,( 1) / )z F z z  
5 (1 ) ( , , 1,1 )z F z  4y  1z  
6 1(1 ) (1 ,1 , 1,1 )z z F z  
7 (1 ) (1 , , 1,(1 ) / )z z F z z  
8 (1 ) (1 , , 1,(1 ) / )z z F z z  
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Table 4.8. General solution of hypergeometric functions near z    
 
Number Solution Type region 
1 ( , 1, 1,1/ )z F z  5y  z  

2 (1 1/ ) (1 , , 1,1/ )z z F z  
3 (1 1/ ) ( , , 1,1/ (1 ))z z F z  
4 1(1 1/ ) ( 1,1 , 1,1/ (1 ))z z F z  
5 ( , 1, 1,1/ )z F z  6y  z  

6 (1 1/ ) (1 , , 1,1/ )z z F z  
7 (1 1/ ) ( , , 1,1/ (1 ))z z F z  
8 1(1 1/ ) ( 1,1 , 1,1/ (1 ))z z F z  
 
   2

,
lim ( , ,1/ 2, / (4 )) cos

n m
F m n z mn z  (4.622) 

 ( , 1,1, (1 ) / 2) ( )nF n n x P x  (4.623) 

   2 /2
( )!2 !( , 1, 1, (1 ) / 2) ( )

( )!(1 )

m
m

nm
n m mF m n m n m x P x

n m x
 (4.624) 

   ( , ,1/ 2, (1 ) / 2) ( )nF n n x T x  (4.625) 

   
2

( )
( 1, 1,3 / 2, (1 ) / 2)

1
nU x

F n n x
x

 (4.626) 

where Tn(x) and Un(x) are Chebyshev polynomials of the first and second kinds 
(Abramowitz and Stegun, 1964).  

4.13 GENERALIZED HYPERGEOMETRIC EQUATION 

A related function is called the generalized hypergeometric function and is defined 
as 

   1 2
1 2 1 2

1 20

( ) ( ) ( )
( , ,... ; , ,... ; )

( ) ( ) ( ) !

r
r r m r

m n m n
r r n rr

x
F x

r
 (4.627) 

which satisfies the following generalized hypergeometric equation: 

  1 1{ ( 1) ( 1) ( ) ( )} 0n m
d d d d dx x x x x x y
dx dx dx dx dx

)} 0m
d d d )}
dx dx dxn 1) (1) (1( 1) ( ) (( 1) ( ) (1) ( ) ( )})}( 1) ( ) (1) ( ) (1) ( ) (( 1) ( ) (1) (1  (4.628) 

This ODE can be recast into product form as 

   
1 1

( 1) ( ) ( ) 0
n m

j j
j j

D D x D y x  (4.629) 

where the differential operator D is the Euler derivative and is defined as: 
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 dD x
dx

 (4.630) 

Note the following special property of this operator  

 ( )n n ndDx x x nx
dx

 (4.631) 

We now assume a power series for y in (4.629) 

   
0

( ) k
k

k

y x c x  (4.632) 

Substitution of (4.632) into (4.629) we have 

   1
0 1 1

( 1) ( ) 0
n m

k
j k j k

k j j

k k c k c x  (4.633) 

Thus, the recursive formula for the two successive constant coefficients is 

   1
1

1

( )

( 1)

m

j
j

k kn

j
j

k

c c
k k

 (4.634) 

This recursive formula made it possible to formulate the series solution without 
much difficulty. Reapplying this recursive formula n times, we have 

 1 1 1
0

1 1 1

( ) ( 1 ) (1 )

( 1) 1 ( 1) ( 2)...

m m m

j j j
j j j

k n n n

j j j
j j j

k k

c c
k k k k

(1((1(1(1(1

111 ((((
 (4.635) 

Reshuffling the terms and setting c0 = 1, we have the very compact form of ck in 
terms of the Pochhammer symbol as 

 1

1

( )

! ( )

m

i k
i

k n

i k
j

c
k

 (4.636) 

Finally, substitution of (4.636) into (4.632) leads to 

 
1 1 2

1 20 0

1

1 2 1 2

( )
( ) ( ) ( )

( )
( ) ( ) ( ) !

! ( )

( , ,... ; , ,... ; )

m

i k r
ki r r m r

n
r r n rk r

i k
j

m n m n

x
y x x

r
k

F x

 (4.637) 
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The compact notation given in (4.637) was introduced by Pochhammer in 1890 
whereas the notation of mFn with one subscript before and one after F was 
introduced by Barnes in 1907. This verifies that the solution of ODE (4.628) is 
indeed the generalized hypergeometric function given in (4.627).   
 For the special case of m = 2 and n = 1, we have the hypergeometric function 

   
1 2 1 2 1

2 1 1 2 1
1 1 2 10 0

1 2 1

( ) ( ) ( ) ( ) ( )
( , ; ; )

( ) ! ( ) ( ) ( ) !

( , , , )

r r
r r

rr r

x r r x
F x

r r r

F x

(4.638) 

For the special case of m = 1 and n = 1, we have the confluent hypergeometric 
function or Kummer’s function M( , , ) being recovered 

   
1 1 1

1 1 1 1
1 1 10 0

1 1

( ) ( ) ( )
( ; ; )

( ) ! ( ) ( ) !

( , , )

r r
r

rr r

x r x
F x

r r r

M x

 (4.639) 

There are also a number of important functions that can be expressed in terms of 
the generalized hypergeometric function 

   1 1
2( 1/ 2,2 1,2 ) ( ) ! ( )n ix

nF n n ix n e J x
x

 (4.640) 

   
2

2
1 1

!( ,1/ 2, ) ( 1) ( )
(2 )! n

n nF n x H x
n

 (4.641) 

   
2 1

2
1 1

!( ,3 / 2, ) ( 1) ( )
2(2 1)! n

n nF n x H x
n

 (4.642) 

where Hn(x) is the Hermite polynomial (Abramowitz and Stegun, 1964). Note there 
is symmetry between  and  for 2F1 that we obtain 

   2 1 1 2
0

( ) ( )
( , , , ) ( , , , )

( ) !

r
r r

rr

xF x F x
r

 (4.643) 

4.14 MOVABLE SINGULARITIES AND PAINLEVE EQUATIONS  

In Section 3.2.8, we have seen that the Riccati equation can be converted to a linear 
ODE. Fuchs realized that the Riccati equation only has movable poles. Whenever a 
nonlinear ODE that has a pole as its only movable singularity, we say that this type 
of ODE is the Painlevé type. More importantly, it was found that only this kind of 
nonlinear ODE with movable singularities can be transformed to a linear ODE, just 
like the Riccati equation. By definition, a singularity is called a movable singularity 
if its location depends on the initial conditions of the ODE. That is, the location of 
the singularity is not fixed solely by the coefficients of the ODE.  
 To illustrate the idea of the movable simple pole, we consider the following 
ODE: 
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   2
0 0, ( 0)dw w w z w

dz
 (4.644) 

It can be shown that the solution of (4.644) is 

   
0

1w
z z

 (4.645) 

We see that the location of the singularity is at z0, which is a function of the boundary 
condition w0 and is not fixed by the ODE alone.  
 The Painlevé type of nonlinear ODEs are known to be linearized and perhaps 
can be solved exactly. Indeed, Painlevé conducted an extensive analysis on what 
kind of second order nonlinear ODEs can be convertible to linear ODEs, like the 
Riccati equation. In particular, Painlevé investigated the following second order 
ODE: 

   
2

2 ( , , )d w dwF w z
dzdz

 (4.646) 

He examined the second order ODE of this form that only has poles as moving 
singularities. He found a total of fifty ODEs, and all of them can be reduced to (a) 
linear ODEs, (b) Riccati equations, (c) equations satisfied by elliptic functions, and 
(d) six "new" equations. Painlevé discovered that these six equations are not 
reducible to "known" differential equations. These are called Painlevé 
transcendents: 

PI:   
2

2
2 6d w w z

dz
 (4.647) 

PII:   
2

3
2 2d w w zw a

dz
 (4.648) 

PIII:   
2 2 2

3
2

( ) ( )d w w w aw b dcw
w z z wdz

 (4.649) 

PIV:   
2 2 3

2 2
2

( ) 3 4 2( )
2 2

d w w w bzw z a w
w wdz

 (4.650) 

PV:   
2 2

2
2 2

1 1 ( 1) ( 1)( )( ) ( )
2 1 1

d w w w b cw dw ww aw
w w z w z wdz z

 (4.651) 

PVI:   

2
2

2

2 2 2 2 2

1 1 1 1 1 1 1( )( ) ( )
2 1 1

( 1)( 2) ( 1) ( 1)[ ]
( 1) ( 1) ( )

d w w w
w w w z z z w zdz

w w w bz c z dz za
z z w w w z

 (4.652) 

where w'= dw/dz and a, b, c, and d are constants. These equations have been shown 
to be convertible to linear integral equations. But such transformations involve 
complicated complex analysis and are out of the scope of this chapter. Recent 
research shows that some very important nonlinear PDE can be reduced to Painlevé 
transcendents. They include the KdV equation, Sine-Gordon equation, and 
Boussinesq equation, and these are all soliton types of equations. If any PDE can 
be reduced to Painlevé transcendents, we say that it satisfies the Painlevé property. 
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More importantly, they can be solved by using “inverse scattering transform” and 
their solutions are of the soliton type (Ablowitz and Clarkson, 1991). 

4.15 SUMMARY AND FURTHER READING 

The series solution method is a major topic in the theory of ODE. The fact that a 
solution of a second ODE can be expressed in terms of an infinite series allows the 
evaluation of the solutions. Many so-called "special" functions are actually a 
particular type of series solution of ODE, including the Bessel functions, modified 
Bessel functions, Kelvin functions, Legendre polynomials, associated Legendre 
polynomials, hypergeometric functions, confluent hypergeometric functions, and 
general hypergeometric functions discussed here. The study of ODEs with regular 
singular points leads to the investigation of the Fuchsian type ODE. Among these 
special functions, the general hypergeometric function appears to be the most 
general and powerful, and it covers nearly all of the special functions as its special 
case. If you try to do complicated integration by a symbolic manipulation program 
such as Maple and Mathematica, it is very likely that you could get an analytic 
result in terms of some sorts of general hypergeometric functions.  This is one of 
the major reasons that it should be covered in a chapter on series solutions. More 
discussion on hypergeometric functions can be found in Craig (1889), Bateman 
(1918), Piaggio (1920), Copson (1935), Poole (1936), Erdelyi (1953), Spiegel 
(1968), Lebedev et al. (1965), and Lebedev (1972). 
 The investigation of special functions probably started with Bernoulli and 
Euler in 1700s. They include elliptic integrals and Bessel functions. We have given 
an introduction on elliptic integrals in Chapter 2 when we discussed the pendulum 
problem. Further information on Jacobi’s elliptic integral is also given in Appendix 
A. Euler introduced gamma functions as a non-integer continuation of factorial and 
studied elliptic integrals related to pendulums, and Bessel functions related to 
vibrations of circular drums. Nearly all of his investigations are driven by everyday 
applications. Related to celestial mechanics and potential theory, Legendre 
polynomials emerged. There are also other special functions in terms of 
polynomials, such as Hermite polynomials, Laguerre polynomials, Chebyshev 
polynomials, and Jacobi polynomials. Because of the orthogonal properties of these 
polynomials, they are important as the basis of eigenfunction expansion (see 
Chapter 10). Some of them relate to the theory of probabilities, quantum mechanics 
and wave scattering theory.  
 One of the best coverages of special functions remains the classic book by 
Erdelyi (1953) (i.e., the Higher Transcendental Functions of the Bateman 
manuscript project). Other textbooks on special functions include Sneddon (1961), 
Lebedev (1972), and Bell (1968). For Bessel functions, the number one authority is 
still the classic book by Watson (1944). Serious readers should consult these 
books. The number one reference book on special functions is Abramowitz and 
Stegun (1964) and its updated version by Olver et al. (2010). It was reported by 
Biosvert and Lozier (2001) that Abramowitz and Stegun (1964) was cited more 
than 2000 times in 2009 alone by journal articles. In view of the importance of the 
use of special functions in engineering and industry, the National Institute of 
Standards and Technology (NIST) also published an online version called the 
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Digital Library of Mathematical Functions, which provides a link to software for 
evaluating many of the known special functions (http://dlmf.nist.gov/software/). 
The handbook of Gradshteyn and Ryzhik (1980) also compiled many results of 
integrations related to special functions.  

4.16 PROBLEMS 

Problem 4.1 Prove the following reflection formula for the gamma function 

   1 1( ) ( )
2 2 cos

z z
z

 (4.653) 

Hint: Use appropriate substitution of the argument into the original reflection 
formula. 
 
Problem 4.2 Prove the following reflection formula for the digamma function 

 1 1( ) ( ) tan
2 2

z z z  (4.654) 

Hint: Use the result of Problem 4.1. 
 
Problem 4.3 Prove the following identity for the gamma function 

 1 3 2( ) ( )
4 4 ( 1)nn n  (4.655) 

where n is an integer.  
Hint: Use the reflection formula. 
 
Problem 4.4 Prove the following identity for the digamma function 

 1 3 1 tan( ) ( ) ( )
4 4 1 tan

xx x
x

 (4.656) 

where n is an integer. 
Hint: Use the reflection formula. 
 
Problem 4.5 Show that  

 3 1( ) ( )
4 4

n n  (4.657) 

where n is an integer. 
 
Problem 4.6 Show that  

 ( 1) ( 1) ( )
( )
z z z z n
z n

( )((  (4.658) 

where n is an integer. 
 
Problem 4.7 Show that  

 
1( ) 2
2

 (4.659) 
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Hint: Use the recurrence formula. 
 
Problem 4.8 Show that  

 5 8( )
2 15

 (4.660) 

Hint: Use the recurrence formula. 
 
 
Problem 4.9 Show that  

 3( ) 2 ln 2 2
2

 (4.661) 

Hint: Use the recurrence formula. 
 
Problem 4.10 Show that  

 1( ) 2 ln 2
2

 (4.662) 

Hint: Use the recurrence formula. 
 
Problem 4.11 Show that  

 
8

3
6

1

640( ) ( )
3 3 3n

n  (4.663) 

Hint: Use the multiplication formula of Gauss with m = 3. 
 
Problem 4.12 Prove the following identity for the n-th derivative of the digamma 
function  

 ( ) ( )
1

( 1) !( 1) ( )
n

n n
n

nz z
z

 (4.664) 

Hint: Use the recurrence formula. 
 
Problem 4.13 Prove the following identity for the gamma function  

 
1

1 (1 1/ )( )
(1 / )

z

n

nz
z z n

 (4.665) 

Hint: Try to show that the right hand side equals the factorial definition given in 
Section 4.2.2. 
 
Problem 4.14 Prove the following identity for the gamma function  

 ( ) ( )
sin

z z
z z

 (4.666) 

 
Problem 4.15 Prove the following identity 

 1( )
12 2 ( )cos( )
2 2 2

x
x x

 (4.667) 
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Hint: Use the reflection formula for the gamma function. 
 
Problem 4.16 Show that U and V defined in (4.146) can be expressed as 

 
/2 /22 2 1sin( ) ( ), cos( ) ( )

2 2 2 2 2

x xx x x xU V  (4.668) 

Hint: Use the reflection formula for the gamma function and the result of Problem 
4.15. 
  
Problem 4.17 Use the results obtained in Section 4.3 to prove the following 
formulas for the integer argument of the Hadamard factorial function: 

 
2 2 12 ( ) 2 ( 1)(2 ) , (2 1) ,

1 12 2( ) ( )
2 2

m mm mH m H m
m m

 (4.669) 

where m = 1,2,3,... 
 
Problem 4.18 Prove the following formula of the Hadamard factorial function: 

 2
( ) sin ( ) (1 )( ) ( ) [ ]

(1 )
P x x g x g xH x H x

x x xx
 (4.670) 

where P(x) and g(x) were defined in (4.191).  
 
Problem 4.19 Prove the following formula: 
 (1 ) (1 ) ( ) ( ) 1x x g x g x  (4.671) 
where g(x) were defined in (4.191).  
 
Problem 4.20 Prove the following formula: 

   1 3 2( ) ( )
4 4 cosh sinh

iy iy
y i y

 (4.672) 

 
Problem 4.21 Prove the following asymptotic formula as y    

   1 1 1Re[ln ( )] ln(2 ) ln
2 2 2

iy y y
2
11 ln(2 )1
2

( ))  (4.673) 

 
Problem 4.22 Prove the following formula  

   2
1 (2 )!( )
2 2 !m

mm
m

 (4.674) 

Hint: Use the Legendre duplication formula.  
 
Problem 4.23 Prove the following formula  

   1 (2 1)!!( )
2 2m

mm  (4.675) 

where 
   (2 1)!! 1 3 5 (2 3)(2 1)m m m(2 3(2 3(2 3  (4.676) 
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Problem 4.24 Prove the following formulas  

   
0

sin( ln ) ( ) ( )
2

t yy t e dt iy iy  (4.677) 

   
0

sinh( ln ) ( ) ( )
2

t yy t e dt y y  (4.678) 

Problem 4.25 Use the definition of the Pochhammer symbol to show that 
(i) 

   ( ) ( )!/ !rn n r n  (4.679) 
(ii) 

   (1) !r r  (4.680) 
Problem 4.26 Show that the following hypergeometric equation can be converted 
to a Riccati type equation 

   
2

2( 1) [ ( 1) ] 0d w dwt t t w
dxdt

 (4.681) 

by 

   0
( , , )

t
S d

w e  (4.682) 
Ans:  

   2 ( 1) 0
( 1) ( 1)

dS tS S
dt t t t t

 (4.683) 

Problem 4.27 Prove that the error function discussed in Section 4.2.8 can be 
expressed as: 

    2

0

2( ) exp( )
z

erf z t dt  (4.684) 

 Problem 4.28 Prove the Gauss multiplication formula given in (4.76): 

    (1 )/2 1/2 1 2 1( ) (2 ) ( ) ( ) ( ) ( )n nz nnz n z z z z
n n n

 (4.685) 

 (i) First show that this is equal to 

    
1

(1 )/2 1/2

0

( ) (2 ) ( )
n

n nz

k

knz n z
n

 (4.686) 

(ii) Use the recursive formula given in (4.53) and Euler’s factorial form (4.25) to 
show that 

    
/ 1!( ) lim

1 1

z k n

m

k m mz
k k kn z z z m
n n n

k
n

z
n

 (4.687) 

(iii) Use the Stirling formula given in (4.109) to show that 

    
/ 1/22 ( / )( ) lim

m z k n

m

k mn e mz
n nz k nz k n nz k n mnnz kknz k

 (4.688) 

(iv) Take the product function of (4.686) from k = 0 to n 1, and change the index 
by replacing mn with n to show 
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1 1/2 1/2

0

( 2 ) ( / )( ) lim
nn m nz nz

m
k

k m e m nz
n nz k nz k n nz k n mnnz kknz k

 (4.689) 

(v) Reapply the Stirling formula given in (4.109) and Euler’s factorial form given 
in (4.25) to show 

    
1

( 1)/2 1/2

0

( ) (2 ) ( )
n

n nz

k

kz n nz
n

 (4.690) 

(vi) Finally, prove (4.685) by using (4.690). 
 
Problem 4.29 Using (4.167) and (4.159) to show that 
    (1) 1H  (4.691) 
 
Problem 4.30 Solve the following ODE by assuming a change of variable of z = x2 

    
2 2

2
2 2

1 4( ) 0d u du x u
x dxdx x

 (4.692) 

Ans:  
    2 2( ) ( )u AJ x BY x  (4.693) 
 
Problem 4.31 Solve the following ODE by assuming a change of variable of z = 
x1/2 

    
2 2

2
1 1 (1 ) 0

4
d u du u

x dx x xdx
 (4.694) 

Ans:  
    ( ) ( )u AJ x BY x  (4.695) 
 
Problem 4.32 Solve the following ODE by assuming a change of variable of z = 

x  

    
2 2 2

1 2
2 2

1 [( ) ] 0d u du x u
x dxdx x

 (4.696) 

Ans:  
    ( ) ( )u AJ x BY x  (4.697) 
 
Problem 4.33 Solve the following ODE by assuming two change of variables:  
(i) Z = x /2u  
(ii)   = x1/2 

    
2

2
1 1 0

4
d u du u

x dx xdx
 (4.698) 

Ans:  
    /2[ ( ) ( )]u x AJ x BY x  (4.699) 
 
Problem 4.34 Solve the following ODE by assuming two change of variables:  
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(i) Z = x u  
(ii)   = x  

    
2

1 2
2 2

2 2 1 ( 2 )[( ) ] 0d u du x u
x dxdx x

 (4.700) 

Ans:  
    [ ( ) ( )]u x AJ x BY x  (4.701) 
 
Problem 4.35 Solve the following ODE by assuming two change of variables: 
(i) Z xu   
(ii)  y = x 

    
2 2

2
2 2

4 1( ) 0
4

d u u
dx x

 (4.702) 

Ans:  
    [ ( ) ( )]u x AJ x BY x  (4.703) 
 
Problem 4.36 Solve the following ODE by assuming two change of variables:  
(i) Z = x u  
(ii)   = x  

    
2 2 2 2

1 2
2 2

1 2 [( ) ] 0d u du x u
x dxdx x

 (4.704) 

Ans:  
    [ ( ) ( )]u x AJ x BY x  (4.705) 
 
Problem 4.37 Solve the following ODE by assuming two change of variables: 
(i) Z xu   
(ii)  y = x1/2 

    
2 2 2

2 2
1( ) 0

4 4
d u u

xdx x
 (4.706) 

Ans:  
    [ ( ) ( )]u x AJ x BY x  (4.707) 
 
Problem 4.38 Solve the following ODE by assuming two change of variables: 
(i) Z xu   
(ii)  y = x  

    
2

1 2
2 ( ) 0d u x u

dx
 (4.708) 

Ans:  
    1/(2 ) 1/(2 )[ ( ) ( )]u x AJ x BY x  (4.709) 
 
Problem 4.39 Solve the following ODE by assuming the following change of 
variables: xy e   
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2

2 2 2
2 ( ) 0xd u e u

dx
 (4.710) 

Ans:  
    ( ) ( )x xu AJ e BY e  (4.711) 
 
 
Problem 4.40 Solve the following Airy equation in terms of modified Bessel 
functions of the first and second kinds by assuming two change of variables: 
(i) Z xu   
(ii) 3/2(2 / 3)x  

    
2

2 0d u xu
dx

 (4.712) 

Ans:  

    3/2 3/2
1/3 1/3

2 2[ ( ) ( )]
3 3

u x AI x BK x  (4.713) 

Problem 4.41 Solve the following equation by assuming two change of variables: 
(i) Z xu   
(ii) 3/2(2 / 3)x  

    
2

2 0d u xu
dx

 (4.714) 

Ans:  

    3/2 3/2
1/3 1/3

2 2[ ( ) ( )]
3 3

u x AJ x BY x  (4.715) 

Problem 4.42 Solve the following equation by assuming two change of variables: 
(i) Z xu   
(ii) 3/4(4 / 3)x  

    
2

2 0d u u
dx x

 (4.716) 

Ans:  

    3/4 3/4
2/3 2/3

4 4[ ( ) ( )]
3 3

u x AJ x BY x  (4.717) 

 
Problem 4.43 Solve the following equation by assuming two change of variables: 
(i) Z xu   
(ii) 3/4(4 / 3)x  

    
2

2 0d u u
dx x

 (4.718) 

Ans:  

    3/4 3/4
2/3 2/3

4 4[ ( ) ( )]
3 3

u x AI x BK x  (4.719) 

Problem 4.44 Solve the following equation  
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2 2/ 2

2 4 0
xd u e u

dx x
 (4.720) 

Ans:  
    1/ 1/[ ( ) ( )]x xu x AJ e BY e  (4.721) 
 
Problem 4.45 Solve the following equation by assuming a change of 
variables: sec ( )u x Z x  

    
2 2

2 2
1 tan( 2 tan ) ( ) 0d u du xx u
x dx xdx x

 (4.722) 

Ans:  
    sec [ ( ) ( )]u x AJ x BY x  (4.723) 
 
Problem 4.46 Solve the following equation by assuming a change of 
variables: csc ( )u x Z x  

    
2 2

2 2
1 cot( 2cot ) ( ) 0d u du xx u
x dx xdx x

 (4.724) 

Ans:  
    csc [ ( ) ( )]u x AJ x BY x  (4.725) 
 
Problem 4.47 Solve the following equation  

    

2

2

2

( ) ( ) ( ) ( ) ( )[ (2 1) 2 ] {[ (2 1)
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )2 ] [ ( )] } 0
( ) ( ) ( )

d u g x g x f x du g x g x
g x g x f x dx g x g xdx

f x f x f x g x u
f x f x f x

 (4.726) 

Ans:  
    ( )[ ( )] [ ( ( )) ( ( ))]u f x g x AJ g x BY g x  (4.727) 
 
Problem 4.48 Solve the following equation  

    

2
2 2

2

2 2 2

( ) 3 ( ) 1 ( ) 3 ( ) 1 ( ){ [ ] [ ]
( ) 4 ( ) 2 ( ) 4 ( ) 2 ( )

1 ( )[ ( ) ][ ] } 0
4 ( )

d u f x du f x f x g x g x
f x dx f x f x g x g xdx

g xg x u
g x

 (4.728) 

Ans:  

    ( ) ( ) [ ( ( )) ( ( ))]
( )

f x g xu AJ g x BY g x
g x

 (4.729) 

 
Problem 4.49 Solve the following equation  

    
2

2 2 2 2
2

1 ( ) 3 ( ) 1 ( ){ [ ] [ ( ) ][ ] } 0
2 ( ) 4 ( ) 4 ( )

d u f x f x f xf x u
f x f x f xdx

 (4.730) 

Ans:  
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    ( ) [ ( ( )) ( ( ))]
( )

f xu AJ f x BY f x
f x

 (4.731) 

 
Problem 4.50 Solve the following 2nd order ODE with non-constant coefficients  

    
2

2 2 2 2
2

( ) ( ) ( )[ (2 1) ] [ ( )][ ] 0
( ) ( ) ( )

d u f x f x du f xf x u
f x f x dx f xdx

 (4.732) 

Ans:  
    [ ( )] [ ( ( )) ( ( ))]u f x AJ f x BY f x  (4.733) 
 
Problem 4.51 Solve the following 4-th order ODE  

    
4 3 2 2 2 2 2

4 3 2 2 3 4
2 2 1 2 1 ( 4)[ 1] 0d u d u d u du u
x dxdx dx x dx x x

 (4.734) 

Ans:  
    ( ) ( ) ( ) ( )u AJ x BY x CI x DK x  (4.735) 
 
Problem 4.52 Find the general solution of the following Airy equation in terms of 

Bessel functions: 

    
2

2
2 0d u x u

dx
 (4.736) 

Hint: By assuming  

    3/22( )
3

u xZ x  (4.737) 

Ans:  

    3/2 3/2
1/3 1/3

2 2{ ( ) ( )}
3 3

u x AJ x BY x  (4.738) 

Problem 4.53 Prove the validity of (4.465) to (4.467). 
 
Problem 4.54 Prove the validity of (4.470) to (4.472). 
 
Problem 4.55 Prove the validity of the following identity: 

    2 2 4 4 6 6 8 8( )( )( )( )
2 1 3 3 5 5 7 7 9

 (4.739) 

Hint: Refer to (4.3) and choose a proper value of n.  
 
Problem 4.56 Prove the validity of the following identity: 

    
1

1 1( ) { }
1n

x
n n x

 (4.740) 

 
Problem 4.57 Prove the validity of the following identity: 
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1

0

1( )
( ) 1

x

u
ux du

x e
 (4.741) 

where (x) is the Euler-Riemann zeta function defined as 

    
1

1( ) x
n

x
n

 (4.742) 

Hints: Apply the change of variables t = nu to the definition of gamma function 
given in (4.4) and sum n from 1 to , the reverse order of integration and 
summation, and finally sum the infinite series inside the integral by geometric 
series. For real x, (4.742) was studied by Euler in 1737 and was extended to 
complex x by Riemann in 1857. Note that this Euler-Riemann zeta function is 
of fundamental significance to prime number distribution and is linked to the 
celebrated problem of the Riemann hypothesis (e.g., see Havil, 2003; 
Sabbagh, 2003). In short, the hypothesis links to the distribution of primes 
(e.g., 2,3,5,7,11,13,17,…, 15,485,863, … are primes) for large integers to the 
tnontrivial roots of the Euler-Riemann zeta function of the complex argument. 
The Clay Mathematics Institute set US$ 1 million as the reward for proving 
or disproving this Riemann hypothesis as one of the Millennium Problems. 

 
Problem 4.58 Rederive the following reflection formula (i.e., (4.35)) by answering 

the following sub-problems: 

 (1 ) ( )
sin

z z
z

 (4.743) 

 (i) Apply the recurrence formula of the gamma function (4.53) and the Weierstrass 
canonical form of the gamma function (4.302) to prove the following identity 

 
2

2
1

1 1 (1 )
( ) ( ) n

zz
z z n

 (4.744) 

(ii) Expand sinx in terms of infinite series, observe the infinite roots of sinx being 
n , and show that 

 
2 2 2 2

2 2 2 2 2
1

sin (1 )(1 )(1 ).. (1 )
4 9 n

x x x x x
x n

 (4.745) 

 
(iii) Combine the results in parts (i) and (ii) to derive (4.743).   
 
Note: This proof was given by Euler in 1739 and was reported in Whittaker and 

Watson (1927). This proof is simpler than that given in Section 4.2.4. 
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   CHAPTER FIVE 
 

Systems of First Order Differential 
Equations  

5.1 INTRODUCTION  

In this chapter, we consider a system of coupled first order ODEs. This is a relatively 
modern topic, which evolves into the present form with the invention and 
popularization of the computer and the extensive use of numerical analysis after the 
Second World War in the 1940s. For example, it is not covered in the classic 
textbooks of Forsyth in the early twentieth century. Most of the modern computer 
software for solving ODEs, especially nonlinear ODEs, are formulated as a system of 
first order ODE. It is because all systems of differential equations, regardless of the 
order and size, can be recast in the standard form of a system of first order ODEs. It 
turns out that the solution of such systems involves solving the matrix eigenvalue 
problem. This chapter mainly deals with the linear system of ODEs for which analytic 
solutions can be obtained. For nonlinear ODEs, a more advanced perturbation method 
for studying the stability of the evolving systems of ODEs focuses mainly on the first 
order ODE system.   
  In particular, we will show that all ODE systems can be recast into the 
following standard form: 

 

1 1 1 2

2 2 1 2

1 2

( , , , )
( , , , )

( , , , )

n

n

n n n

x F t x x x
x F t x x x

x F t x x x

)n

)n

)n

  (5.1) 

where xi (i = 1,2,...,n) are the unknown functions and t is the variable. If the functional 
form of Fi is nonlinear, numerical analysis is normally used. For example, the Runge-
Kutta method can be used to integrate this nonlinear system and its discussion will be 
given in Chapter 15. However, nonlinear systems of ODEs may have more than one 
solution at certain values of the variable t. That is, no unique solution can be 
guaranteed for a nonlinear system. The solutions may sometimes evolve in an 
unpredictable chaotic manner.  
 This branch of mathematics has evolved into a major branch of applied 
mathematics, such as the theory of catastrophes, application of topologies, and chaos 
theory in solving nonlinear ODEs. In 1961, MIT meteorologist Edward Lorenz 
studied the chaotic behavior of the convective weather system and found that there is 
a strange attractor for chaotic solutions of the nonlinear ODE system. The shape of 
the strange attractor of Lorenz closely resembles a butterfly. The term "butterfly 
effect" emerges and becomes a fashionable term. It suggests the notion that a butterfly 
flipping its wings will induce small uncertainties in the initial condition that make 
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error cascades upward through a chain of turbulent features in a nonlinear system. It is 
“exaggerated” that storm systems on the other side of the globe months later are a 
consequence of this butterfly effect. The bottom line is that a small error in the initial 
condition can make a nonlinear system totally unpredictable. This contradicts the so-
called "Laplace hypothesis" that the world is predictable if all physical laws and initial 
conditions are known. In 1966, Thom proposed a theory of catastrophe that includes 
the study of the geometry and topology of chaos structures. He believed that 
complicated chaotic structure at singularities (such as the butterfly-shaped Lorenz 
attractor) can be unfolded using studies of differentiable manifolds. Terms like cusp, 
bifurcation, and jump were introduced. In 1975, a Los Alamos based scientist, 
Mitchell Feigenbaum, made a major breakthrough in modern nonlinear analysis. He 
studied Robert May’s “period-doubling” of biology populations. May discovered that 
chaotic solutions emerge through a series of bifurcations, and at each bifurcation point 
the period doubles and one cycle splits into two cycles, and at the next bifurcation 
from two cycles to four cycles, and so on. This splitting makes a fascinating pattern. 
Feigenbaum discovered that the splitting appears to come at a faster and faster rate, 
but there is a scaling that the rate of splitting is a constant. To his amazement, no 
matter how different the nonlinear system that he started with, he arrived at the same 
or a “universal” convergence rate. The number is approximately 4.669201609103 and 
now this number is called the Feigenbaum number. More importantly, he discovered 
an order within the so-called chaos. This sheds light on the hope that there is order 
within chaos. In other words, chaotic solution is predictable, and it is just our limited 
knowledge or ignorance of patterns in the so-called chaos. This also leads to the 
revitalization of scaling studies of fractal dimension, the Julia set and the Mandelbrot 
set. Unfortunately, there has not been another major breakthrough since Feigenbaum's 
discovery. 
 Returning to linear systems of ODEs in this chapter, we will show how 
systems of ODE of arbitrary order and with an arbitrary number of unknowns are 
transformed into a system of first order ODEs. We will also summarize the 
uncoupling of ODEs for multiple unknowns involving higher derivatives originated 
by Jacobi and Chrystal. The determinacy of ODE systems and its relation to the 
number of arbitrary constants in the solution are considered. The solution of ODE 
system with constant coefficients will be presented in the context of a matrix 
eigenvalue problem. The solution form is classified into the cases of distinct 
eigenvalue, repeated eigenvalues for Hermitian and non-Hermitian matrices, and 
complex conjugate pairs of eigenvalues. 
 Systems of differential equations have been formulated by Euler, D’Alembert, 
Lagrange, and Laplace. The development of the matrix method for solving a system 
of first order ODEs can trace back to the time of Laplace, Lagrange and Cauchy, 
when they considered the eigenvalue problems and formulating problem in celestial 
mechanics. They were also concerned with the stability of the solution of 
differential equations. Lagrange successfully dealt with the case of repeated 
eigenvalues, but it was Laplace who recognized the importance of the symmetric 
matrix on eigenvalues. However, Laplace, Lagrange, and Cauchy were not aware of 
the relation between eigenvalue problems and solving systems of first order ODE. 
It was J.C.F. Sturm, a student of Fourier and co-founder of the Sturm-Liouville 
problem, who pointed out to Cauchy in 1828 that the eigenvalue problem is related 
to solving the system of first order ODEs. Later contributors to the development of 
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1k 2k
1x 2x

1c 2c

the matrix method for systems of ODEs include Cayley, Weierstrass, Dirichlet, 
Jordan, and Frobenius, among others. As summarized by Hawkins (1975a-b, 1977), 
the development of matrix theory is, in fact, closely related to the solution of 
systems of first order ODEs. 

5.2 REDUCTION OF N-TH ORDER ODE TO SYSTEM OF EQUATIONS 

 
Consider an n-th order ODE given symbolically as 
 ( ) ( 1), , , , ,n ny F t y y y y( 1)(y,  (5.2) 

This ODE can be recast as a system of n ODEs. In particular, we make the following 
identifications: 
  
 ( 1)

1 2 3, , , , n
nx y x y x y x ynx y, nx  (5.3) 

where the new unknowns are the original unknown y and its higher derivatives up to 
order n 1. Therefore, one unknown is split into n unknowns, and the first n 1 
definitions in (5.3) actually also provide the first n 1 ODEs of the system:  
 

 

1 2

2 3

1

1 2( , , , )
n n

n n

x x
x x

x x
x F t x x x )n

 (5.4) 

Thus, (5.4) is the equivalent n ODE system for the single n-th order ODE given in 
(5.2). 
 Let us consider a practical problem of two oscillators connected through a 
string and a dashpot (or a mechanical damper) given in Figure 5.1. 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Two connected movable masses as a system of oscillators 
 

 
Newton's second law of force equilibrium can be applied to formulate the equations 
of motion for the two masses. In this formulation, we will neglect the frictions (both 
static and kinematic or dynamic) between the base of the mass and the horizontal 
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ground that the two masses rest on. The damping forces are assumed proportional 
to the velocity of the damper. We have the following equations of motion: 

 

2
1 2 1 1

1 2 2 1 1 1 2 1 12

1 2
1 2 1 2 2 1 2 2 1

2
2 2 1

2 2 2 1 2 22

1 2
2 1 2 2 2 2 2

( )
( ) ( )

( ) ( ) ( )

( )
( ) ( )

( )

d x d x x dx
m k x x k x c c F t

dt dtdt
dx dx

k k x k x c c c F t
dt dt

d x d x xm k x x c F t
dtdt

dx dx
k x k x c c F t

dt dt

 (5.5) 

Similar to our earlier discussion, we can redefine the unknown as:  

 1 1y x ,   1
2

dx
y

dt
 (5.6) 

 3 2y x ,   2
4

dx
y

dt
 (5.7) 

Using these definitions, (5.4) and (5.5) can be recast as a system of first order 
ODEs 

1 2

2 1 2 1 2 3 1 2 2 2 4 1
1

3 4

4 2 1 2 3 2 2 2 4 2
2

1 ( ) ( ) ( )

1 ( )

y y

y k k y k y c c y c y F t
m

y y

y k y k y c y c y F t
m

 (5.8) 

 Putting (5.8) in matrix form, we have 

1 1
1 2 1 2 2 2

1 1 1 12 2 1

3 3

4 4 2
2 2 2 2

2 2 1 1

0 1 0 0
01 1 1 1( ) ( )
( )
00 0 0 1
( )1 1 1 1

y y
k k c c k c

m m m my y F td
y ydt
y y F tk c k c

m m m m

 (5.9) 

Symbolically, the first order ODE can be written in matrix form as 
 y Ay F  (5.10) 
Therefore, it is clear that all coupled ODEs can be expressed as a system of first 
order ODEs. This is particularly important if the ODE is nonlinear and an exact 
solution cannot be found. Nowadays, nearly all computer software for numerical 
analyses deals exclusively with systems of first order ODEs (e.g., Press et al., 
1992). One of the most popular methods is the fourth order Rung-Kutta method, 
which will be discussed in more detail in Chapter 15. 
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5.3 ANALYTIC SOLUTION BY ELIMINATION 

To illustrate the idea of solving a system of equations by elimination, we consider the 
case of two linear coupled ODEs as: 

 11 12 1

21 22 2

( )

( )

F D x F D y f

F D x F D y f
 (5.11) 

where Fij are differential operators defined as: 
 1

11 0 1( ... )k k
kF D x a D a D a x  (5.12) 

 1
12 0 1( ... )k k

kF D y b D b D b y  (5.13) 
Similarly, F21 and F22 can be defined. We will restrict our discussions to ODEs with 
constant coefficients, but we will not restrict ourselves to first order, which is the 
focus for the rest of this chapter. Differentiation with respect to t is denoted 
symbolically by D as: 

 
k

k
k

d yD y
dt

 (5.14) 

To eliminate x from (5.11), we can first take differential operator F11 on  the second 
equation of (5.11) and take differential operator F21 on the first of (5.11). Then, the 
difference of these two resulting equations gives: 
 21 12 11 22 21 1 11 2( )F F F F y F f F f  (5.15) 
Similarly, we can also eliminate y to give 
 21 12 11 22 22 1 12 2( )F F F F x F f F f  (5.16) 
where 

 11 12
21 12 11 22

21 22
( ) 0

F F
F F F F

F F
 (5.17) 

This determinant is called the operational determinant (Edwards and Penney, 2005), 
the characteristic determinant (Ince, 1956), or simply the determinant of the system 
(Tenenbaum and Pollard, 1963). If the determinant on (5.17) is zero, the system may 
have either no solution or infinite solutions. Thus, (5.11) can be uncoupled to give 
two ODE for x and y separately. Note that the operators on the left of (5.15) and 
(5.16) are the same. Both of them are nonhomogeneous linear ODEs and thus can be 
solved by the technique covered in an earlier chapter.  
 However, the resulting uncoupled ODE is of higher order, and thus the 
elimination process induces a number of unnecessary and undesirable arbitrary 
constants. They need to be eliminated by substituting these solutions back into the 
original ODE system. In other words, the uncoupled ODE is not equivalent to the 
original system. The following examples illustrate this problem. 
__________________________________________________________________ 
Example 5.1 A system of two second order ODEs is given as 

 

2 2

2 2

2 2

2 2

( 2) 2sin 2

( 2) 0

d d yx t
dt dt
d d yx
dt dt

 (5.18) 



326  Theory of Differential Equations in Engineering and Mechanics 

Find the solution of the system. 
 
Solution: Adding these two ODEs gives 

 
2

2 sin 2d x t
dt

 (5.19) 

Integrating twice, we obtain 

 1 2
1 sin 2
2

x t A t A  (5.20) 

Substitution of (5.20) into the first equation of (5.18) gives 

 
2

1 22 2 2d y A t A
dt

 (5.21) 

Direct integration on both sides yields the solution of y 

 3 2
1 2 1 2

1
3

y A t A t B t B  (5.22) 

Since both x and y are second order in the system of (5.18), it is expected that there 
should be four unknown constants. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 5.2 A system of two second order ODEs is given as 

 

2 2

2 2

2 2

2 2

( 2) 2sin 2

( 2) 0

d d yx t
dt dt
d d yx
dt dt

 (5.23) 

Find the solution of the system. 
 
Solution: Subtracting these two ODEs gives 

 1 sin 2
2

x t  (5.24) 

Substitution of this result into (5.23) leads to  

 
2

2 0d y
dt

 (5.25) 

Substitution of (5.25) into the first equation of (5.23) gives 
 1 2y B t B  (5.26) 
Thus, there are only two unknown constants. Thus, the corresponding boundary 
conditions must be given as 

 0 1 0, ,dyy y y t t
dt

 (5.27) 

Note in this case that we only have two unknown constants instead of four as 
obtained in Example 5.1. We will discuss this peculiar result in the next section.  
__________________________________________________________________ 
__________________________________________________________________ 
Example 5.3 A system of two second order ODEs is given as 
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2 2

2 2

2 2

2 2

( 2) ( 4) 4sin 2

( 2) 0

d dx y t
dt dt
d d yx
dt dt

 (5.28) 

Find the solution of the system. 
 
Solution: Subtracting these two ODEs gives 
 sin 2x y t  (5.29) 
Differentiation of (5.29) leads to  

 
2

2
( ) 2sin 2d x y t
dt

 (5.30) 

Substitution of (5.30) into the second equation of (5.28) gives 
 sin 2x t  (5.31) 
Consequently, we must have 
 0y  (5.32) 
We have just obtained another peculiar result that there is no arbitrary unknown 
constant in the solution. Or, we cannot impose any initial condition. Again, we will 
discuss this in the next section. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 5.4 A system of two second order ODEs is given as 

 

2 2

2 2

2 2

2 2

( 1) ( ) 2sin

( ) 0

d d dx y t
dtdt dt

d d d yx
dtdt dt

 (5.33) 

Find the solution of the system. 
 
Solution: Subtracting the first of (5.33) from the second of (5.33) gives 

 ( 1) 2sind dyx t
dt dt

 (5.34) 

Differentiation of (5.34) with respect to t gives  

 
2 2

2 2( ) 2cosd d d yx t
dtdt dt

 (5.35) 

This ODE is however inconsistent with the second equation of (5.33). Thus, this 
inconsistency leads to no solution. 
__________________________________________________________________ 
 
__________________________________________________________________ 
Example 5.5 A system of three equations is  
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2

2( 2 3) ( 1) 0

(3 1) 3 1

2 2 4

d d d dzx y
dt dt dtdt

d dy dzx
dt dt dt

x y z

 (5.36) 

Find the solution of the system. 
 
Solution: Differentiation of the last equation of (5.36) results in 

 2 2dz dx dy
dt dt dt

 (5.37) 

Substitution of (5.37) into the first two of (5.36) leads to a system of ODEs for x 
and y only: 

 

2

2( 3) ( 1) 0

( 1) 1

d dx y
dtdt

d dyx
dt dt

 (5.38) 

Elimination of y from (5.38) gives 

 
3 2

3 2( 1) 1d d d x
dtdt dt

 (5.39) 

Assuming an exponent solution for the homogeneous ODE of (5.39), we obtain 
 3 2 2( 1) ( 1)( 1) 0  (5.40) 
Thus, the homogeneous solution is 
 1 2 3cos sint

hx C e C t C t  (5.41) 
It is straightforward to see that the particular solution for (5.39) is 
 1px  (5.42) 
Therefore, we have 
 1 2 31 cos sintx C e C t C t  (5.43) 
Substitution of this result into the second equation of (5.38) leads to 

 

3 2 3 2 1

( 1) 1

( )cos ( )sin 2 t

dy d x
dt dt

C C t C C t C e
 (5.44) 

Integration of (5.44) gives 
 3 2 3 2 1 4( )sin ( )cos 2 ty C C t C C t C e C  (5.45) 
Substitution of these solutions of x and y into the first equation of (5.38) leads to  
 4 3C  (5.46) 
Finally, substitution of (5.43) and (5.45) into the third equation of (5.36) gives the 
solution of z 
 2 3 12 sin 2 cos 2 tz C t C t C e  (5.47) 
This gives the complete solution for the system of ODEs given in (5.36) and note 
that there are only three unknown constants. 
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__________________________________________________________________ 
 
 It can be seen from Example 5.5 that one of the constants needs to be fixed by 
the original ODE. Instead of back substitution into the original system, we can also 
make the transformed ODE system equivalent to the original one by using a multiplier 
system during the elimination procedure (Ince, 1956). As remarked by Ince (1956), 
this topic was first considered by Jacobi in 1865 and was refined by Chrystal in 1895.   
 Let us consider two systems of coupled ODEs of n unknowns yi (i =1,...,n) 
 1 1 2 2( ) ... ( ) ( ) 0r r r rn n rU F D y F D y F D y f t  (5.48) 

 1 1 2 2( ) ... ( ) ( ) 0r r r rn n rV G D y G D y G D y g t  (5.49) 
where r =1,2,...,n and Fij and Gij are polynomials in terms of differential operator D 
and with constant coefficients. For the case of constant coefficient polynomials of D, 
it is straightforward to see that these operators are commutative, associative, and 
distributive (Tenenbaum and Pollard, 1963), but the proofs of them will not be 
covered here.  
 Now, we are looking for the condition that these two ODE systems are 
equivalent (i.e., the solutions of (5.49) are also solution of (5.48) and vice versa).  If 
every solution of U satisfies V, we have 

 
1 11 1 1

1 1

...
...

...

n n

n n nn n

V T D U T D U

V T D U T D U
 (5.50) 

where Tij are polynomial operators. It is clear that if U satisfies (5.48), V defined in 
(5.50) would also satisfy (5.49).  If (5.50) is written in matrix form, we must have 

 
1 11 1 1

1

...

...
n

n n nn n

V T T U

V T T U
...  (5.51) 

 
11 1

1

...

... 0
n

n nn

T T

T T
... 0...  (5.52) 

The determinant is nonzero since all V are independent. Ince (1956) called Tij the 
multiplier system. If every solution of V satisfies U, we also have, by the theory of the 
determinant (Ince, 1956), 

 
1 11 1 1

1 1

...
...

...

n n

n n nn n

U D V D V

U D V D V
 (5.53) 

where 

 
11 1

1

...
1 ... 0

...

n

n nn

... 0...  (5.54) 
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In fact, (5.53) can be regarded as the inversion of the system of ODEs given in (5.51). 
If V satisfies (5.49), we have 
 1 0,..., 0nU U  (5.55) 
Thus, if  is a constant, every solution of V = 0 satisfies U = 0.  In other words,  
defined in (5.54) cannot be a function of D. This is the condition in which (5.48) and 
(5.49) are equivalent. 
 A natural question would be how to find the multiplier system. The first row of 
it is naturally chosen by our aim of eliminating one of the unknowns of the system. 
The other rows must be found in such a way that the resulting determinant (5.52) will 
become a constant. We will illustrate more specifically the elimination process for the 
first two equations of (5.48). Written explicitly, these equations are  
 1 11 1 12 2 1 1( ) ... ( ) ( ) 0n nU F D y F D y F D y f t  (5.56) 

 2 21 1 22 2 2 2( ) ... ( ) ( ) 0n nU F D y F D y F D y f t  (5.57) 
Let us assume that y1 can be eliminated from (5.56) and (5.57) to get 
 1 2 0LU MU  (5.58) 

 1 2 0L U M U  (5.59) 
In matrix form, this equivalent pair of ODEs becomes 

 1

2

0
0

L M U
UL M

 (5.60) 

Since both U1 and U2 are identical zero, we have the determinant of the operator 
coefficient being nonzero: 
 constantLM ML  (5.61) 
Assume further that there is a common polynomial factor  between F11 and F21 such 
that 
 11 21( ) , ( ) ,F D F D  (5.62) 
Clearly, to eliminate y1 we should let 
 ,L M  (5.63) 
where L and M are relatively prime with respect to D. Equation (5.61) provides a 
condition to find the last two operators of the multiplier system L* and M*, which 
were called adjoint operators (Golomb and Shanks, 1965). However, it can easily be 
confused with the adjoint ODE and we will not use such terminology in this book. 
 We now illustrate this technique of the multiplier system.  
__________________________________________________________________ 
Example 5.6 Use the method of the multiplier system to solve the following ODE 
system 

 

2
1 2 3

1 2 3

1 2 3

( 1) ( 1) 0
( 1) ( 1) 0

0

D y D y D y
D y Dy D y

y y Dy
 (5.64) 

Solution: To eliminate y2 from the second and third equations of (5.64), we can sum 
the result of multiplying 1 to the second equation of (5.64) and the result of applying 
D to the third equation of (5.64). That is, we have L = 1 and M = 0. The associated 
multiplier system can be found by inspection as: 
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1

* * 1 1
L M D

L M D
 (5.65) 

It is straightforward to show that its determinant is 1 (although any constant will do, 
we have chosen to use 1), and thus (5.61) is satisfied. Thus, we have found L* and M* 
in (5.65) by inspection. The resulting ODE becomes 

 

2
1 2 3

2
1 3

2
2 3

( 1) ( 1) 0

( 1) 0

( 2 1) 0

D y D y D y

y D D y

y D D y

 (5.66) 

To eliminate y1 from the first and second equations of (5.64), we can use another 
multiplier system: 

 
1 1
1

D
D

 (5.67) 

The first row of (5.67) is the pairs of operators need in eliminating y1 and the second 
row is the corresponding operators to make the determinant of (5.67) being 1 (see 
(5.61)) and it is obtained by inspection. The new system of ODEs becomes 

 

2 3 2
1 2 3

2 3
2 3

2
2 3

( 1) 0

( ) 0

( 2 1) 0

y D y D D y

D y D D y

y D D y

 (5.68) 

Finally, we eliminate y2 from the second and third equations of (5.68) by using the 
following multiplier system: 

 2

0 1

1 D
 (5.69) 

Eventually, we have 

 

2 3 2
1 2 3

2
2 3

4 3 2
3

( 1) 0

( 2 1) 0

( 3 ) 0

y D y D D y

y D D y

D D D D y

 (5.70) 

The last of (5.70) is uncoupled and can be solved by exponential function (i.e., y3 = 
e t). The corresponding characteristics equation for y3 is 
 4 3 23 0  (5.71) 
Without going through the details, one can show that it can be factorized as 
 ( 1)( 1 2)( 1 2) 0  (5.72) 
The general solution can be expressed as  
 (1 2) (1 2)

3 1 2 3 4
t t ty C C e C e C e  (5.73) 

Substitution of (5.73) into the rest of (5.70) yields 
 (1 2) (1 2)

2 1 3 4(3 2) (3 2)t ty C C e C e  (5.74) 

 (1 2) (1 2)
1 1 2 3 42(5 3 2) 2(5 3 2)t t ty C C e C e C e  (5.75) 

This completes the full solution. 
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__________________________________________________________________ 
 
To understand the scenarios that we have observed from Examples 5.1 5.6, we will 
consider the determinacy of system of ODEs in the next section. 

5.4 DETERMINACY OF SYSTEM OF EQUATIONS  

Let us consider the following system of ODEs symbolically: 

 
1 1 1 1

2 2 2 2

3 3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

P D x Q D y R D z F
P D x Q D y R D z F
P D x Q D y R D z F

 (5.76) 

where Pi, Qi and Ri are differential operators. This system of coupled ODEs can be 
written in matrix form as: 

 
1 1 1 1

2 2 2 2

3 3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

P D Q D R D x F
P D Q D R D y F
P D Q D R D z F

 (5.77) 

 ( )A D x F  or ( )DA x F  (5.78) 
Let the determinant of the matrix of differential operators be (D) = det A(D) , 
where D is defined in (5.14). The system of ODEs is determinate (i.e., solution can be 
found) if  (D)  0 and the system is indeterminate if (D) = 0. The degree in D of 
the determinant (D) indicates the number of arbitrary unknown constants involved in 
the solution. Therefore, it is necessary to check the determinacy of the system before 
attempting to solve it. 
 Let us check the determinacy of each of the examples considered in the last 
section. The (D) of Example 5.1 is 

 
2 2

4
2 2

2
( ) 2

2

D D
D D

D D
 (5.79) 

Thus, (D)  0 and this system is determinate. The degree of D is four and we have 
four unknown constants. This agrees with the result in Example 5.1. The determinant 
for the system given in Example 5.2 is  

 
2 2

2
2 2

2
( ) 4

2

D D
D D

D D
 (5.80) 

Hence, it is determinate and there are two unknown constants, and it is what we found 
in Example 5.2. The determinacy of the system given in Example 5.3 can be 
determined as: 

 
2 2

2 2

2 4
( ) 8

2

D D
D

D D
 (5.81) 

Thus, there is no unknown constant like we found in Example 5.3. For Example 5.4, 
we have (D) 
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2 2

2 2

1
( ) 0

D D D
D

D D D
 (5.82) 

Therefore, it is indeterminate and no solution can be found. Finally, the determinacy 
of the system in Example 5.5 is 

 

2

3 2
2 3 1

( ) 3 1 3 1
2 2 1

D D D D
D D D D D D D  (5.83) 

There are three unknown constants for the system of ODEs, and this agrees with our 
results. Therefore, it is advisable to check the determinacy of the system before we 
actually solve it. 
 Finally, the characteristics determinant of Example 5.6 becomes 

 

2

4 3 2
1 1

( ) 1 1 3
1 1

D D D
D D D D D D D D

D
 (5.84) 

This suggests four unknown constants and this agrees with the result of Example 5.6.   

5.5 REVIEW ON MATRIX  

It will be shown that the solution of the system of first order ODEs involves solving 
the eigenvalue problem in a matrix. Some fundamental matrix results will be 
summarized here. Consider an m n matrix A 

 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

1na11n1n

2na

mna

A  (5.85) 

The matrix is sometimes denoted as A = (aij). The transpose of it is AT = (aji) or more 
explicitly: 

 

11 21 1

12 22 2

1 2

m

mT

n n mn

a a a
a a a

a a a

1a 1m1

2ma

mna

A  (5.86) 

That is, the first column becomes the first row of the transpose matrix and similarly 
for other rows. A zero matrix is defined as 0 =(0) or all entries in the matrix are zeros.  
If two matrices are the same, all elements must be identical: 
 , ij ija bA B  (5.87) 
Matrix addition is defined as: 
 , ( ) ( )ij ij ijc a bA B C  (5.88) 
Scalar multiplication is defined as: 
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 ( )A ijk ka  (5.89) 
Matrix multiplication is defined as AB = C, or 

 
1

n

ij ik kj
k

c a b  (5.90) 

where matrix A is m n, matrix B is n r, and the resulting matrix C is m r. In other 
words, the i-th row multiplying the j-th column yields the element of cij. In general, 
matrix multiplication is not commutative, that is AB  BA. In addition, we may also 
have AB = 0 even though A  0 and B  0. 
__________________________________________________________________ 
Example 5.7 Show that the multiplication of the following matrices is not 
commutative: 

 
1 2 1 3

,
3 4 2 4

A B  (5.91) 

Solution: Applying the rule of matrix multiplication given in (5.91), we get 

 
1 2 1 3 1 1 2 2 1 3 2 4 5 11
3 4 2 4 3 1 4 2 3 3 4 4 11 25

AB  (5.92) 

On the other hand,  

 
1 3 1 2 1 1 3 3 1 2 3 4 10 14
2 4 3 4 2 1 4 3 2 2 4 4 14 20

BA  (5.93) 

From this example, it is clear that matrix multiplication is, in general, not 
commutative. 
__________________________________________________________________ 
 
 A unit matrix can be defined as: 

 

1 0 0
0 1 0

0 0 1

0
000

11

I  (5.94) 

In addition, it is straightforward to illustrate that for any square matrix A 
 IA AI A  (5.95) 
Then, the inverse of a matrix A can be defined as  
 1 1AA A A I  (5.96) 
The inverse exists as long as the determinant of A is nonzero. We also have 
 1 1( )A A  (5.97) 
The dot product between vectors can be expressed in terms of matrix multiplication of 
a row vector (or an n 1 matrix) with a column matrix (or a 1 n matrix) as: 

 
1

x y
n

T
i i

i

x y  (5.98) 

More generally, if the elements in the vectors are complex, we can define an inner 
product (which is an extension of the dot product to the complex case): 
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1

x y x y
n

T
i i

i

, x y  (5.99) 

which is in essence the same as the dot product except for taking the complex 
conjugate of vector y. The dot product of a vector and itself forms the square of the 
length of the vector. If the dot product or inner product of two vectors (real or 
complex) equals zero, these vectors are called orthogonal. The word "orthogonal" is 
equivalent to the term perpendicular the case of 2-D or 3-D vectors (i.e., vector with 2 
or 3 elements). The adjective perpendicular is not very meaningful, if we go beyond 
3-D cases. This is because perpendicularity is normally visualized in a geometric 
sense that cannot be applied to a 4-D or higher dimensional space. 
 As a side story, we should also mention that when the great mathematician 
Hilbert tried solving eigenvalue problems of integral equations in 1901, he 
inaugurated the study of spectrum theory (i.e., the spectrum of eigenvalues and 
eigenfunctions of integral equations). Hilbert also showed that differential equations 
could be converted to integral equations. His studies prompted other mathematicians, 
like Schmidt, Riesz, Volterra, Fischer, Lebesgue, Frechet, and Banach, to introduce 
and develop the concept of the more abstract analysis of functional space or vector 
space. Actually, the inner product defined in (5.99) is one of the major tools used in 
functional analysis. It has been shown that the differential operator needs a different 
definition of inner product such that the resulting eigenfunctions (in terms of vector) 
are orthogonal. Nowadays, the Hilbert space and Banach space concepts become very 
important in numerical analysis of complex differential equations. However, these 
topics are considered abstract for most engineers and are out of the scope of the 
present book.  

5.5.1 Hermitian Matrix  

For real matrices, if A = AT, it is called symmetric. For matrices with complex 
elements, if  
 A AT  (5.100) 
it is called self-adjoint. The bar over matrix A indicates that all elements in the matrix 
are replaced by their complex conjugates. Self-adjoint matrices are also known as 
Hermitian matrices, named after French mathematician Hermite. In particular, if a 
matrix is Hermitian, all eigenvalues of the matrix are real and all eigenvectors are 
independent. For Hermitian matrices with an eigenvalue of algebraic multiplicity m, it 
is possible to choose m mutually orthogonal eigenvectors. This is important in the 
sense that the solution form in terms of eigenvectors may depend on whether  A is 
Hermitian. This will be discussed shortly in this chapter. 
 There is also a close resemblance between the eigenvalue problem of the 
Hermitian matrix and the eigenfunction expansion of a homogeneous boundary value 
problem of ODEs. In fact, if an ODE is self-adjoint (note that this terminology is the 
same as the one used in (5.100) for matrix), the eigenvalues of the boundary value 
problem are also real and all corresponding eigenfunctions are orthogonal.     
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5.5.2 Eigenvalue Problem 

The eigenvalue of a matrix is of profound importance as its applications include the 
calculation of vibration frequency of mechanical systems or solids, of principal 
stresses in solids, and of dynamic stability of systems. The prefix eigen- is adopted 
from the German “eigen” for “self.” Matrix multiplication can be considered as a 
function evaluation or mapping. For example, if a matrix A is multiplied by a 
vector x and the result is another vector y: 
 Ax y  (5.101) 
It is a linear function transformation between vector spaces. The eigenvalue 
problem is related to a transformation such that a vector x is mapped to itself 
except for a scalar multiple , which is called the eigenvalue of the matrix. That is, 
 Ax x  (5.102) 
It turns out that it is, in general, not possible to find such a system except for some 
particular values of . The number of the eigenvalue depends on the dimension of 
the matrix A. Rearranging (5.102) we have 
 ( ) 0Ax x A I x  (5.103) 
If vector x is not zero, the determinant of the matrix in the bracket must be zero 
 det( ) 0A I  (5.104) 
The solution of this algebraic equation gives the required so-called eigenvalue  of 
the matrix A. The corresponding vector x is called the eigenvector. 
__________________________________________________________________ 
Example 5.8 Find the eigenvalue and vector of the following matrix: 

 
3 1
4 2

A  (5.105) 

Solution: The eigenvalue of this matrix A can be evaluated as: 

 
2

3 1 1 0 3 1
det det det

4 2 0 1 4 2

2 2 1

A I
 (5.106) 

It is straightforward to see that a 2 2 matrix leads to an algebraic equation of 
second order. Thus, we have two eigenvalues as  
 2, 1  (5.107) 
For  = 2, applying (5.103) we have 

 1

2

3 2 1 0
4 2 2 0

x
x

 (5.108) 

This matrix equation implies  
 1 2x x  (5.109) 
 
Thus, the eigenvector for  = 2 is 

 2(1)

2

1 1
1 1

x
x

c
x

 (5.110) 
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where c is an arbitrary constant. In the last part of (5.106), we have set c = 1 to get 
the eigenvector, but .other values of c can also be used. 
 For  = 1, the eigenvector can be calculated as 

 1 1

2 2

3 1 1 0 4 1 0
4 2 1 0 4 1 0

x x
x x

 (5.111) 

This implies that  
 2 14x x  (5.112) 
This gives 

 1(2)

1

1 1
4 4 4

x
x

c
x

 (5.113) 

Again, we have set c = 1 to get the last eigenvector. Clearly, the eigenvector is not 
unique. 
__________________________________________________________________ 

5.5.3 Differentiation of Matrix 

More generally, the elements of a matrix can be a function of the variable: 

 

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )

n

n

m m mn

a t a t a t
a t a t a t

t

a t a t a t

( )1 ((11 ( )1n ( )1

((2 (2n (2 (

((mn ((

A  (5.114) 

Therefore, sometimes it is desirable to consider the calculus on matrices or vectors. 
Some essential formulas are reported here: 

 , ( ) ( )A A
b bij

ij
a a

dad t dt a t dt
dt dt

 (5.115) 

For a constant matrix C and a constant c, we have this differentiation rule   

 
CA AC

d d
dt dt

 (5.116) 

 
A Ad c dc

dt dt
 (5.117) 

Similarly, we have the following distributive rules of differentiation: 

 
A B A Bd d d
dt dt dt

 (5.118) 

 
AB A BB A

d d d
dt dt dt

 (5.119) 

5.6 HOMOGENEOUS SYSTEM WITH CONSTANT COEFFICIENTS  

A system of n linear first order ODEs can be expressed as:  
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1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n

n n

n n n nn n n

x a t x a t x a t x f t
x a t x a t x a t x f t

x a t x a t x a t x f t

1n11 ( )( )11

2n2 ( )2 ( )22

nn ( )nn ( )(( )( )

 (5.120) 

where f is the nonhomogeneous term. This system can be expressed in matrix form 
as 

 X = AX + Fd
dt

    or X = AX + F  (5.121) 

where  

 

1 11 12 1 1

2 21 22 2 2

1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

( ) ( ) ( ) ( ) ( )

X A F

n

n

n n n nn n

x t a t a t a t f t
x t a t a t a t f t

x t a t a t a t f t

( )(111n111

(2n2 ((22 (
A FA, ,A FA, ,, ,A F, ,

(nn (nn ((((

 (5.122) 

If F = 0, the system is homogeneous. If matrix A  A(t), the system is called 
autonomous. The initial condition of this system can be given as 

 

1 0 1

2 0 2

0

0

( )
( )

( )

0X X

n n

x t r
x t r

t

x t r

0X0X00X  (5.123) 

If A and F are continuous in an interval containing point t0, the initial value 
problem has a unique solution in this interval. For a n n matrix A and F = 0, there 
exists n independent solution vectors Xi (i = 1,2,...,n) and the general solution for 
(5.121) with F = 0 is given by 
 1 21 2 nX = X X Xnc c c nXn  (5.124) 
where c1, ..., cn are arbitrary constants. The specific form of Xi will be discussed 
later. Note that there are n unknown constants in the general solution. This set of 
independent solution vectors forms a fundamental set of solutions of the system. 
 Similar to our discussion on ODEs, we can use the Wronskian to check their 
independence: 

 

11 12 1

21 22 2

1 2

, , det1 2 nX X X

n

n

n n nn

x t x t x t
x t x t x t

W

x t x t x t

1nx t1n1n1n

t2nx t2n t

n

nnx tnnx t

 (5.125) 

where 
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11 12 1

21 22 2

1 2

1 2 nX X X

n

n

n n nn

x t x t x t
x t x t x t

x t x t x t

22XXXX2222222222 XXnn  (5.126) 

If these solutions are independent, the Wronskian must be nonzero, or W(X1, X2, 
…., Xn)  0.  

__________________________________________________________________ 
Example 5.9 Check whether the following system 

 
3

5 3

dx x y
dt
dy x y
dt

 (5.127) 

has the following two independent solutions  

 
2 6

2 6
2 6

1 3 3
,

1 55
1 2X X

t t
t t

t t

e e
e e

e e
 (5.128) 

 
Solution: First , we rewrite the system in matrix form as 

 
1 3
5 3

X AX X ,  X
x
y

 (5.129) 

Differentiation of the first solution in (5.128) gives 

 
2

2

2

2
1X

t

t

e

e
 (5.130) 

On the other hand, we have 

 
2 2

2 2

1 3 2
5 3 2

1AX
t t

t t

e e

e e
 (5.131) 

Comparison of (5.130) and (5.131) shows that the first vector given in (5.128) is 
indeed a solution of the system. 
 Similarly, the differentiation of the second vector in (5.128) is 

 
6

6

18

30
2X

t

t

e

e
 (5.132) 

The right hand side of the ODE system is 

 
6 6

6 6

1 3 3 18
5 3 5 30

2AX
t t

t t

e e

e e
 (5.133) 

This again shows the validity of the second solution vector in (5.128). To check the 
independence, we can form the Wronskian as 
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2 6

2 6 4
2 6

3 1 3
, 8 0

1 55
1 2X X

t t
t t t

t t

e e
W e e

e e
 (5.134) 

Therefore, the independence of these solutions is demonstrated. Thus, they do form 
the fundamental solution set. 
__________________________________________________________________ 
 
Now let us consider the special case of an ODE system with a constant coefficient 
and no nonhomogeneous term F in (5.121).  We seek a solution of exponential 
form 

 

1 1

22
X = = K

t

t

t t

t nn

k e k
kk e

e e

kk e

KKe Kt K=  (5.135) 

Differentiation of (5.135) results in 

 

1

2
X = K

t

t

t

t
n

k e

k e
e

k e

K  (5.136) 

Substitution of (5.135) and (5.136) into (5.121) gives 
 K AKt te e  (5.137) 
Since the solution should be true for all values of variable t, we can cancel the 
exponential function on both sides of (5.137). Putting all terms on the left, we 
obtain an eigenvalue problem as: 
 ( ) 0A I K  (5.138) 
Since K is not zero, we must require 
 det( ) 0A I  (5.139) 
Thus, solving a system of ODEs reduces to solving the matrix eigenvalue problem. 
The general solution form depends on what kind of roots we get for the eigenvalue. 
We will consider all scenarios one by one. 

5.6.1 Case 1: Distinct Eigenvalues  

If all eigenvalues are real and distinct, the general solution is 
 31 2

1 2 31 2 3 nX = K K K K nt tt t
nc e c e c e c eKKKK  (5.140) 

where vector K is the corresponding eigenvector for the eigenvalue . This is the 
simplest scenario. 
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5.6.2 Case 2: Repeated Eigenvalues 

If one of the eigenvalue m has a multiplicity of m whilst all other eigenvalues are 
distinct and real, the solution can be expressed in two different forms depending on 
whether A is Hermitian.  
 
Case 2.1: If A is Hermitian, we would be able to find m independent eigenvectors 
for the same eigenvalue. The general solution is 
 1

1 1 1...1 nX = K K K Km m m nt t t t
m m m m nc e c e c e c enKKn nKKKK  (5.141) 

where vectors Ki (i = 1,2,...,m) are the independent eigenvectors corresponding to 
repeated eigenvalue m.  
 
Case 2.2: If A is not Hermitian, the general solution is 
 1

1 1 2 1 1...a, a,2 a, nX = X X X K Km nt t
m m m m nc c c c e c eKKKKKK  (5.142) 

where solution vectors for the repeated eigenvalues are 

 

1 2

...

( 1)! ( 2)!

a,1 a,1

a,2 a,1 a,2

a,m a,1 a,2 a,m

X = K

X = K K

X = K K K

a

a a

a a a

t

t t

m mt t t

e

t e e

t te e e
m m a,mKKa mKKKK

 (5.143) 

The vectors K are calculated by 

 

0

...

a,1

a,2 a,1

a,m a,m 1

A I K

A I K K

A I K K

a

a

a

 (5.144) 

If we have two or more repeated eigenvalues for the matrix A, we have to add more 
solutions for the repeated eigenvalues similar to that given in (5.142).   
 
Proof: The proof of this formula will be sketched here. For any p =1,2,...,m, we 
have the solution as 

 
1 2

( 1)! ( 2)!a, a,1 a,2 a,X = K K Ka a a
p pt t t

p p
t te e e
p p

KK pa,aKK paKK  (5.145) 

Differentiation of (5.145) gives 

 

1 2

3

1

( )
( 1)! ( 2)!

( )
( 3)!

( ) ( )
1!

a,p a,1 a,1 a,2

a,2 a,3

a,p-2 a,p-1 a,p-1 a,p

X = K K K

K K

K K K K

a a

a

a a

p pt t
a a

p t
a

t t
a a

t te e
p p

t e
p

t e e( a,((

 

  (5.146) 
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Substitution of (5.145) and (5.146) into the ODE system gives 

 
, ,

1 2
( ) [( ) ] ... 0

( 1)! ( 2)!a,1 a,2 a,1

AX X

A K A K Ka a

a p a p

p pt t
a a

t te e
p p

I I
 (5.147) 

The function of t is in general nonzero, and therefore, their coefficients must be 
zero: 

 

0

...

a,1

a,2 a,1

a,m a,m-1

A I K

A I K K

A I K K

a

a

a

 (5.148) 

which is (5.144). This completes the proof.  

5.6.3 Case 3: Complex Eigenvalues 

If there is a pair of complex eigenvalues, the two complex eigenvalues must be in 
conjugate form. Let us assume they are  
 1 2,i i  (5.149) 
And their corresponding eigenvalues are  
 1 1 2 2 1 2,i iK B B K B B  (5.150) 
The general solution is 
 3

1 2 3 3 ...a nX = X X K K nt t
b nc c c e c e  (5.151) 

where  

 
cos sin ,

cos sin
a 1 2

b 2 1

X B B

X B B

t

t

t t e

t t e
 (5.152) 

If there is more than one pair of complex conjugate eigenvalues, we can add 
another pair of eigenvectors accordingly. 
 
Proof: Let a pair of complex eigenvalues of the real matrix A be 1 = +i  and 2 = 

i , and further assume that the eigenvector for  1 is: 
 1 1 2iK B B  (5.153) 
By definition, we must have K1 satisfy 
 1 1 1AK K  (5.154) 
Taking the complex conjugate of (5.154), we obtain 
 1 1 1AK K  (5.155) 
However, A is real and the complex conjugate of 1 is 2 and (5.155) becomes 
 1 2 1AK K  (5.156) 
By definition again, we must have the eigenvector of 2 satisfy 
 2 2 2AK K  (5.157) 
Comparison of (5.156) and (5.157) shows that 
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 2 1 1 2iK K B B  (5.158) 
Thus, the general solution due to the complex conjugate pair is: 

 

( ) ( )( ) ( )

( )(cos sin ) ( )(cos sin )

( ) ( cos sin ) ( ) ( sin cos )

1 2 1 2

1 2 1 2

1 2 1 2

B B B B

B B B B

B B B B

i t i t
a b
t t

a b
t t

a b a b

c i e c i e

c e i t i t c e i t i t

c c e t t i c c e t t

X

(5.159) 

Since we start with a real ODE system, we should expect the solution to be real. 
This can be done easily by choosing cb as a complex conjugate of ca. Thus, we can 
express the solution as 
    1 2( cos sin ) ( sin cos )1 2 1 2B B B Bt tc e t t c e t tX  (5.160) 
where c1 and c2 are real constants. This completes the proof of (1.151). 
 
__________________________________________________________________ 
Example 5.10 Find the general solution of the following system of ODEs 

 
2 3

2

dx x y
dt
dy x y
dt

 (5.161) 

 
Solution: The matrix form of the system is 

 
2 3
2 1

X AX X ,  X
x
y

 (5.162) 

The eigenvalue of the system is 

 22 3
det( ) 3 4 ( 1)( 4) 0

2 1
A I =  (5.163) 

The eigenvalues are  = 1 and 4. We have two distinct real roots for the 
eigenvalues, and this corresponds to case 1 discussed in Section 5.6.1. For  = 1, 
the eigenvector can be calculated as 

 1
1

2

3 3
( ) 0

2 2
A I K =

k
k

 (5.164) 

Both of these equations lead to 
 1 2 0=k k  (5.165) 
By choosing k1 = 1, we have k2 = 1 and the eigenvector becomes 

 
1
11K  (5.166) 

Note that (5.166) is clearly not the only choice. In fact, any combination of k1 and 
k2 that satisfies (5.165) will give an appropriate eigenvector. The corresponding 
solution vector is 

 
1
11 1X K t te e  (5.167) 

For  = 4, the eigenvector can be determined from the following system 
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 1
2

2

2 3
( ) 0

2 3
A I K =

k
k

 (5.168) 

This provides a relation between the two components of the eigenvector: 
 1 22 3 0=k k  (5.169) 
Choosing k1 = 3, we have k2 = 2 and obtain the eigenvector as 

 
3
22K  (5.170) 

The solution vector is 

  4 43
22 2X K t te e  (5.171) 

Finally, adding these solutions with two unknown constants gives 

 4
1 2 1 2

1 3
1 21 2X X X t tc c c e c e  (5.172) 

In a later section, we will discuss the behavior of this solution as t  .  
__________________________________________________________________ 
__________________________________________________________________ 
Example 5.11 Find the general solution of the following system of ODEs 

 

4

5

3

dx x y z
dt
dy x y z
dt
dz y z
dt

 (5.173) 

Solution: Putting the system in matrix form yields 
 

 
4 1 1

1 5 1
0 1 3

X AX X ,  X
x
y
z

 (5.174) 

The eigenvalue of the system can be determined from 
 det 3 4 5 0A I  (5.175) 
The eigenvalues are  = 3, 4, and 5. We have three distinct real roots for the 
eigenvalues, and this again corresponds to case 1 of Section 5.6.1. For  = 3, the 
eigenvector can be calculated as 

 
1

2

3

1 1 1 0
( ) 1 8 1 0

0 1 0 0
1A I K

k
k
k

 (5.176) 

The third row of the system gives k2 = 0. The first row gives 
 1 3 0=k k  (5.177) 
Therefore, we can set the eigenvector as 
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1
0
1

1K  (5.178) 

For  = 4, the eigenvector can be calculated as 

 
1

2 2

3

0 1 1 0
( ) 1 9 1 0

0 1 1 0
A I K

k
k
k

 (5.179) 

The first and third rows of the system give 
 2 3 0=k k  (5.180) 
The second gives 
 1 2 39 0=k k k  (5.181) 
Setting k3 = 1, we have k2 = 1. Substituting these values into (5.181) gives k1 = 10 
and the eigenvector becomes 

 2

10
1

1
K  (5.182) 

For  = 5, the eigenvector can be calculated as 

 
1

3 2

3

9 1 1 0
( ) 1 0 1 0

0 1 8 0
A I K

k
k
k

 (5.183) 

The second row of this system gives  
 1 3 0=k k  (5.184) 
The third row of this system gives  
 2 38 0=k k  (5.185) 
Taking k1 = k3 = 1 into (5.185) gives k2 = 8, and thus yields 

 3

1
8
1

K  (5.186) 

Combining all these eigenvectors, we finally obtain the general solution as 

 3 4 5
1 2 3

1 10 1
0 1 8
1 1 1

t t tX c e c e c e  (5.187) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 5.12 Find the general solution of the following system of ODEs 
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1 2 2
2 1 2

2 2 1
X AX X  (5.188) 

Solution: Solving the eigenvalue problem gives 
 2det 1 5A I  (5.189) 
The eigenvalues are  = 1, 1 and 5. Since A is Hermitian (or symmetric), this is 
Case 2.1 with a repeated eigenvalue. We should be able to obtain two independent 
eigenvectors for the repeated root for  = 1.      
 For  = 1, the eigenvector can be calculated as 

 
1 1

2 2

3 3

2 2 2 0
( ) 2 2 2 0

2 2 2 0
A I

k k
k k
k k

 (5.190) 

This system implies 
 1 2 3 0k k k  (5.191) 
There are three unknowns in (5.191) and two different solutions can be found from 
it. In particular, for the first solution, we set k1 = 0 and k2 = 1, then (5.191) gives k3 
= 1. Alternatively, we set k1 = 1 and k2 = 0, then (5.191) gives k3 = 1. Thus, we 
have 

 1 2

0 1
1 , 0
1 1

K K  (5.192) 

To check the independence of these two vectors, we require 
 1 1 2 2 0c cK K  (5.193) 
be satisfied only for c1 = c2 = 0. Substitution of (5.192) into (5.193) gives 

 1 2

0 1 0
1 0 0
1 1 0

c c  (5.194) 

The first equation of it implies c2 = 0, the second implies c1 = 0, and the third 
requires c2 = c1. Thus, our random choice of picking two eigenvectors by (5.191) 
does arrive at the independent eigenvectors for the same repeated eigenvalue. In 
fact, setting k1 = 0 and k2 = 1 and vice versa to find the independent eigenvectors is 
one of the best choices. There are many different forms of these independent 
vectors K and the solutions may appear differently, depending on the choices for k1 
and k2. However, one can show that when initial conditions are imposed, all of 
them will lead to the same solution (e.g., see Problem 5.15). The forms obtained in 
(5.192) are among the most efficient forms in satisfying the initial conditions. 
 For  = 5, the eigenvector can be calculated as 

 
1 1

2 2

3 3

4 2 2 0
( ) 2 4 2 0

2 2 4 0
A I

k k
k k
k k

 (5.195) 
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The first row adding 2 multiplying the second row gives 
 2 3 0k k  (5.196) 
The first row adding 2 multiplying the third row arrives at the same equation. We 
can set k3 = 1 and k2 = 1. The first row finally yields k1 = 1 and, thus, the 
eigenvector becomes 

 
1
1

1
K  (5.197) 

The general solution becomes 

 5
1 2 3

0 1 1
1 0 1
1 1 1

X t t tc e c e c e  (5.198) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 5.13 Find the general solution of the following system of ODEs 

 
2 1 6
0 2 5
0 0 2

X AX X  (5.199) 

Solution: Solving the eigenvalue problem gives 
 3det (2 )A I  (5.200) 
The eigenvalues are  = 2, 2, and 2. Since A is non-Hermitian (or unsymmetrical), 
this is Case 2.2 with an eigenvalue with multiplicity of m being 3. Let us illustrate 
how to find the eigenvectors.  
 With  = 2, the matrix equation becomes 

 
1 1

2 2

3 3

0 1 6 0
( 2 ) 0 0 5 0

0 0 0 0
A I

k k
k k
k k

 (5.201) 

This system implies 
 3 2 35 0, 6 0k k k  (5.202) 
This yields both k2 = k3 = 0, and subsequently we have 

 ,1

1
0
0

aK  (5.203) 

Recall from the second equation of (5.144) that 
 ( 2 ) a,2 a,1A I K K  (5.204) 
Substitution of (5.203) into (5.204) results in 



348  Theory of Differential Equations in Engineering and Mechanics 

 
1

2

3

0 1 6 1
0 0 5 0
0 0 0 0

k
k
k

 (5.205) 

This system gives 
 3 2 3 15 0, 6 1, 0k k k k  (5.206) 
The corresponding vector is 

 
0
1
0

a,2K  (5.207) 

Similar to (5.204) we can continue the calculation using 
 ( 2 ) a,3 a,2A I K K  (5.208) 
Using (5.207) in (5.208), we arrive at 

 
1

2

3

0 1 6 0
0 0 5 1
0 0 0 0

k
k
k

 (5.209) 

This is equivalent to  
 3 2 35 1, 6 0k k k  (5.210) 
With these constraints, we can choose 

 
0

6 / 5
1/ 5

a,3K  (5.211) 

Recall (5.142) that the general solution can be expressed as:  
22 2 2 2 2 2

1 2 3( ) ( )
2a,1 a,1 a,2 a,1 a,2 a,3X K K K K K Kt t t t t ttc e c te e c e te e  (5.212) 

The general solution is therefore:  

22 2 2 2 2 2
1 2 3

1 1 0 1 0 0
0 0 1 0 1 6 / 5

2
0 0 0 0 0 1/ 5

X t t t t t ttc e c te e c e te e  

  (5.213) 
Note that the matrix A is unsymmetrical and thus we could not find 3 linearly 
independent eigenvectors. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 5.14 Find the general solution of the following system of ODEs 

 
2 8
1 2

X AX X  (5.214) 

Solution: Solving the eigenvalue problem gives 
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 22 8
det( ) 4 0

1 2
A I =  (5.215) 

The eigenvalues are  = 2i, and 2i. For  = 2i, the eigenvector can be evaluated 
as: 

 1

2

2 2 8 0
( )

1 2 2 0
A I K =

ki
ki

 (5.216) 

The second equation of (5.216) requires  
 1 22(1 ) 0k i k  (5.217) 
Let k2 = 1; we have k1 = 2+2i. Thus, the corresponding eigenvector is 

  
2 2

11K
i

 (5.218) 

Actually, it is straightforward to show that (5.217) is equivalent to the first equation 
of (5.216). To see this, we can multiply (5.217) by 2 (1 i) to get 
 1 2 1 22(1 ) 4(1 )(1 ) (2 2 ) 8 0i k i i k i k k  (5.219) 
Thus, we arrive at the first equation of (5.216). Recall that the eigenvector is 
defined as: 
 1 21 iK B B  (5.220) 
Comparison of (5.218) and (5.220) gives 

 1 2
2 2

,
1 0

B B  (5.221) 

Recalling (5.151) that 
 cos sin , cos sina 1 2 b 2 1X B B X B Bt tt t e t t e  (5.222) 
Finally, the general solution is obtained by combining (5.221) and (5.222) 

 1 2
2 2 2 2

cos 2 sin 2 cos 2 sin 2
1 0 0 1

X c t t c t t  (5.223) 

__________________________________________________________________ 

5.7 NONHOMOGENEOUS SYSTEM WITH CONSTANT COEFFICIENT 

So far, we have only considered the special case of the homogeneous ODE system. 
If F is nonzero, the general solution comprises two parts, just as the case of the    n-
th order ODE: 

  
1 2

c p

1 2 n p

X = X + X

= X X X + Xnc c c nXn
 (5.224) 

where the complementary solution or homogeneous solution is denoted by Xc and 
the particular solution for the nonhomogeneous equation can be denoted by Xp.  
 Written explicitly, the complementary solution can be expressed as 
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11 12 1

21 22 2
1 2

1 2

1 11 2 12 1

1 21 2 22 2

1 1 2 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ... ( )
( ) ( ) ... ( )

( ) ( ) ... ( )

X =

n

n
c n

n n nn

n n

n n

n n n nn

x t x t x t
x t x t x t

c c c

x t x t x t

c x t c x t c x t
c x t c x t c x t

c x t c x t c x t

     
     
       
     
     
     

  
  



  


 
 
 
 
  

 (5.225) 

 Before we continue to consider the particular solution, we note that the 
complementary solution can be written in terms a fundamental matrix defined as: 

  

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

Φ

n

n

n n nn

x t x t x t
x t x t x t

t

x t x t x t

 
 
 
 
 
 

 (5.226) 

which is formed by combining the complementary solutions. The first column of  
is formed by the first vector solution and so on. More specifically, we can see that 

 

 

11 12 1 1

21 22 2 2

1 2

1 11 2 12 1

1 21 2 22 2

1 1 2 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ... ( )
( ) ( ) ... ( )

( ) ( ) ... ( )

X Φ C =

n

n
c

n n nn n

n n

n n

n n n nn

x t x t x t c
x t x t x t c

t

x t x t x t c

c x t c x t c x t
c x t c x t c x t

c x t c x t c x t

   
   

             
  

    

   








 (5.227) 

which is clearly equivalent to (5.225). 

5.7.1 Undetermined Coefficients  

The method of undetermined coefficients establishes a number of rules of how to 
assume the particular solution. Table 5.1 summarizes some simple rules for 
assuming a proper particular solution for various forms of nonhomogeneous terms. 
These terms involve a constant vector, polynomials of variables with a constant 
vector, an exponential function with a constant vector, a sine or cosine function 
with a constant vector, or finite terms or products of these functions. For other 
functions, there are no rules for guessing particular solutions, and we have to use 
the method of variation of parameters, which will be discussed in the next section.  
Note that the last four rows in Table 5.1 are for the cases of nonhomogeneous terms 
matching with the homogeneous solution.    
 
 

K32626_6.125.9.25.indd   1 14/08/17   11:34 am
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Table 5.1.  Table for the method of undetermined coefficients 
 

root F(t)  ( )pX t   

 C A 
 ntC  1 0...n

nt tA A A  
 cos , sinbt btC C  cos sinbt btA B  
 n att eC  1 0( ... )at n

ne t tA A A  
 cos , sinat ate bt e btC C  ( cos sin )ate bt btA B  

 cos , sinn nt bt t btC C  1 0

1 0

cos ( ... )

sin ( ... )

n
n

n
n

bt t t

bt t t

A A A

B B B
 

i  cos , sint tC C  1 2 1 2( )cos ( ) sint t t tA A B B  
 C te  ( ) tt eA B  
 n tt eC  1 1 0 0[( ) ... ( ) ( )]t n

n ne t t t t tA B A + B A B
 

i  cos , sint te t e tC C  1 2 1 2[( )cos ( )sin ]te t t t tA + A B + B  
 
To illustrate this method, some examples are considered. 
__________________________________________________________________ 
Example 5.15 Find the general solution of the following system of ODEs 

 
5 3 2 1

5 7

=

=

t

t

dx x y e
dt
dy x y e t
dt

 (5.228) 

Solution: First, we need to solve for the complimentary solution of the 
homogeneous system: 
 =c cX AX  (5.229) 
where 

 
5 3
1 1

A  (5.230) 

The eigenvalues of the system are easily determined as 

 25 3
det 6 8 ( 2)( 4) 0

1 1
A I  (5.231) 

Without going into detail, it is straightforward to obtain the following 
complimentary solution: 

 2 4
1 2

1 3
1 1cX t tc e c e  (5.232) 

The nonhomogeneous term can be written as: 

 
2 1 1 0 2

7 5 15 7
F

t
t

t

e
t t e

e t
 (5.233) 
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Clearly, there is no match of the homogeneous solution and according to the 
guidelines given in Table 5.1, we can assume the particular solution as 

 3 1 2 31 2

31 2 1 2 3
pX

t
t

t

a a a t a ea a
t t e

bb b b b t b e
 (5.234) 

Substitution of this particular solution into the original system gives 

   2 3 1 1 2 2 3 3

2 3 1 1 2 2 3 3

5 3 (5 3 ) (5 3 ) 2 1

( ) ( ) 5 7

t t t

t t t

a a e a b a b t a b e e

b b e a b a b t a b e e t
 (5.235) 

By matching the coefficients on both sides of the first equation of (5.235) gives 
 1 2 1 2 2 3 35 3 1, 5 3 0, 6 3 2a a b a b a b  (5.236) 
The second equation of (5.235) leads to 
 1 1 2 2 2 3 37, 5, 2 1a b b a b a b  (5.237) 
The solution for this system of equations gives 
 1 1 2 2 3 3

35 89 15 25 7 4, , , , ,
32 32 8 8 15 15

a b a b a b  (5.238) 

Finally, the solution of the system becomes 

 2 4
1 2

35 15 7
1 3 32 8 15
1 1 89 25 4

1532 8

X t t tc e c e t e  (5.239) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 5.16 Find the general solution of the following system of ODEs 

 
1 1 8

, ,
1 1 3

X = AX + F A F  (5.240) 

Solution: The eigenvalues of the system are easily determined as 

 21 1
det (1 ) 1 ( 2) 0

1 1
A I  (5.241) 

The eigenvalues are  = 0, 2 and the corresponding homogeneous solution is 

  2
1 2

1 1
1 1cX tc c e  (5.242) 

The nonhomogeneous vector F is a constant vector, which matches the solution 
corresponding to  = 0 (see the first vector on the right hand side of (5.242)). 
Therefore, we seek the particular solution in the following form 

 1 2

1 2
pX

a a
t t

b b
 (5.243) 

Substitution of (5.243) into (5.240) gives 

 2 1 1 2 2

2 1 1 2 2

8
3

a a b a b
t

b a b a b
 (5.244) 

This equation leads to 
 2 1 1 2 1 1 2 28, 3, 0a a b b a b a b  (5.245) 
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Subtraction of the second equation from the first equation gives 
 2 2 11a b  (5.246) 
Solving this and the last equation of (5.245) simultaneously, we obtain  
 2

11
2

a  (5.247) 

    2
11
2

b  (5.248) 

Back substitution of (5.247) and (5.248) into (5.245) gives 
    1 1

5
2

a b  (5.249) 

Choosing a1 = 0 (this is chosen for the sake of simplicity), we have 

 1
5
2

b  (5.250) 

In summary, we have the following constants  
 1 1 2 2

5 11 110, , ,
2 2 2

a b a b  (5.251) 

Finally, the solution of the system becomes 

 2
1 2

1101 1 2
51 1 11
2 2

X tc c e t  (5.252) 

Note again that this solution form is not unique, depending on what we assume for 
a1. However, there is a unique solution if initial conditions are prescribed.  
__________________________________________________________________ 
 
If the given nonhomogeneous terms do not match those given in Table 5.1, we have 
no choice but to use the method of variation of parameters, which will be discussed 
next.  

5.7.2 Variation of Parameters  

The general solution has two parts, a complimentary solution with a constant vector 
C and a particular solution in terms of integration: 
 1X =Φ C Φ Φ Ft t t t dt  (5.253) 

where  is the fundamental matrix defined in (5.226) and reported here again as 

 

11 12 1 1

21 22 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )

,

( ) ( ) ( )

Φ = C

n

n

n n nn n

x t x t x t c
x t x t x t c

t

x t x t x t c

(
( )1 ( )1111n1

( )( )222 ( )(22 ( )(
C, C, C

( )nn ( )( )( )( )( )

 (5.254) 

For the case that initial values are given 
 0 0X = Xt , (5.255) 
the general solution becomes 
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0

1 1
0 0X =Φ Φ X Φ Φ F

t

t
t t t t d  (5.256) 

 To prove these results, we first recall from (5.227) that the homogeneous 
solution can be written as 
 X =Φc t t C  (5.257) 
This gives the first term in (5.253). The method of variation of parameters assumes 
that the particular solution of the system can be written as 
 X =Φ Up t t t  (5.258) 
where U is an unknown vector function. Differentiating (5.258) gives 
 X =Φ U +Φ Up t t t t  (5.259) 
Substitution of (5.259) into (5.121) leads to 
 Φ U +Φ U AΦ U Ft t t t t t t  (5.260) 
Since the fundamental matrix   is formed by the homogeneous solution, we have 
 Φ AΦt t  (5.261) 
In view of (5.261), (5.260) becomes 
 Φ U Ft t t  (5.262) 
Multiplying both sides by the inverse of the fundamental matrix, we find 
  1U Φ Ft t t  (5.263) 
Thus, U can be found by integrating both sides with respect to t and this result leads 
to 
 1X =Φ U Φ Φ Fp t t t t t t dt  (5.264) 

Summation of (5.257) and (5.264) gives the final required result. 
 For initial value problems with given condition  
 0 0X = Xt , (5.265) 
the integration of the general solution can be revised as 

 
0

1X =Φ C Φ Φ F
t

t
t t t d  (5.266) 

Substitution of the initial condition yields 
 0 0 0X =Φ C Xt t  (5.267) 
Multiplying the inverse of the fundamental matrix gives 
 1

0 0C Φ Xt  (5.268) 

Back substitution of this constant vector into the solution finally gives 

 
0

1 1
0 0X =Φ Φ X Φ Φ F

t

t
t t t t d  (5.269) 

This completes the proof of (5.256).  
__________________________________________________________________ 
Example 5.17 Find the general solution of the following system of ODEs by 
variation of parameters 
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33 1 1

, , , (0)
2 4 0

X = AX + F A F t

t

e
X  (5.270) 

Solution: The eigenvalues of the system are easily determined as 

 23 1
det 7 10 ( 5)( 2) 0

2 4
A I  (5.271) 

The eigenvalues are  = 2, 5 and the corresponding homogeneous solution is 

  2 5
1 2

1 1
1 2cX t tt c e c e  (5.272) 

The fundamental matrix can then be formulated as  

 
2 5

2 52
Φ

t t

t t

e e
t

e e
 (5.273) 

The inverse of the fundamental matrix is 

 
2 25 5

1
2 2 5 5

2 1
21 3 3

1 1det( ( ))
3 3

Φ
Φ

t tt t

t t t t

e ee e
t

t e e e e
 (5.274) 

This inverse can be used to evaluate 

  
2 2 2

1

5 5 5 4

2 1 1233 3 3
1 1 1
3 3 3

Φ F
t t t t

tt t t t

e e te et
t t

ee e te e
 (5.275) 

Finally, the particular solution is obtained as 

 

1

22 5

2 5 5 4

6 271 1(2 )
3 5 50 4

1 3 21 12 ( )
3 5 50 2

X Φ Φ Fp

t t tt t

t t t t t

t t t t dt

te e dt t ee e

e e te e dt t e

 (5.276) 

The final solution becomes 

      2 5
1 2

6 27 1
1 1 5 50 4
1 2 3 21 1

5 50 2

X X X
t

t t
c p

t

t e
t t t c e c e

t e
 (5.277) 

Finally, we apply the initial condition to (5.277) to get 

    1 2 1 2

27 291
1 1 1 1 150 4 100
0 1 2 1 221 1 2

50 2 25

c c c c  (5.278) 

The solution for the constants is 

    1 2
121 137,
200 200

c c  (5.279) 

The final solution becomes 
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       2 5
6 27 1

1 1121 137 5 50 4
1 2 3 21 1200 200

5 50 2

X
t

t t

t

t e
t e e

t e
 (5.280) 

Note that there is no unknown constant in this solution because the initial 
conditions have been satisfied.  
__________________________________________________________________ 

5.8 SYSTEM OF NONLINEAR ODE 

So far, we have assumed that the system of first order ODEs is linear. Now we can 
extend our consideration to the more general case of a nonlinear system: 

       1 2( , , ), ( , , )dydx f t x y f t x y
dt dt

 (5.281) 

where f1 and f2 are generally a nonlinear function of the unknown functions x and y. 
It is straightforward to extend the system to equations with order higher than 
second. For equilibrium solutions not changing with time, we must have  

       0, 0dydx
dt dt

 (5.282) 

Thus, the equilibrium solution can be found by solving: 
       1 2( , , ) 0, ( , , ) 0e e e ef t x y f t x y  (5.283) 
Note, however, that (5.283) may not be easily solved to get the closed form 
equilibrium solution, depending on the given functions f1 and f2.  

5.9 STABILITY OF AUTONOMOUS SYSTEM 

The stability of an autonomous system was considered mainly by Poincare in 1881 
and Lyapunov in 1892.  If f1 and f2 in (5.283) are independent of t, the coupled 
system is called autonomous because its functions on the right hand side of (5.281) 
are independent of time (or are not affected by time variation and thus lead to the 
term autonomous). We can first rewrite the system of ODEs about the equilibrium 
solutions as: 
       ,e ex x y y  (5.284) 
The magnitude of these variables indicates how far the current solution is from the 
equilibrium solution. Thus, as t   if both  and   0, the solution is clearly 
stable. The system of ODEs in the perturbation solution (in the sense that it is 
perturbed from the equilibrium solution) is  

       1 2( , ), ( , )d dF F
dt dt

 (5.285) 

The stability of the solution of this system around an equilibrium solution can be 
examined by investigating the eigenvalue of the linearized system of (5.285). First, 
we can linearize (5.285) by expanding the functions on the right of (5.285) in 
polynomials of  and . Dropping all higher order terms other than linear, we have 
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       11 12 21 22,d da a a a
dt dt

 (5.286) 

where aij are constants. This is precisely the system of first order ODEs that we 
have discussed so far. Let us consider the eigenvalue of the system as: 

       

11 12

21 22
2

11 22 11 22 12 21
2

det( )

( )

0

A I =
a a

a a

a a a a a a

p q

 (5.287) 

The eigenvalues are: 

       
2

1,2
4

2 2
p p q p  (5.288) 

As we have shown previously, the general solution of the perturbation around the 
equilibrium solution is  
       1 2

21X K Kt te e  (5.289) 
Let us now consider the possible long-term behavior of the perturbation solution. If 

1 and 2 are real, the solution either increases indefinitely with time or decays with 
time, depending on whether the eigenvalue is positive or negative. If 1 and 2 are a 
complex conjugate pair, the solution increases or decays depending totally on 
whether the real part of the eigenvalue is positive or negative. The imaginary part 
of the eigenvalue clearly will only lead to oscillating solutions of sine and cosine 
(recall Euler's formula). 
 A number of scenarios are possible. The following terminology of the 
stability of ODEs was introduced by Henri Poincare in 1881: 
 
(i) If q > 0 and p < 0, the roots are either complex conjugates with negative real 
parts, or both real and negative. The solution is "asymptotically" stable, in the sense 
that the analysis of stability is valid if the domain being considered is so close to 
the equilibrium point that the effects of all nonlinear terms can be neglected. 
Therefore, such analysis is called linear stability analysis. If  = 0, the eigenvalue is 
repeated and both of them are negative. Such an equilibrium point is called a stable 
proper or stable improper node, depending on whether the equal eigenvalue system 
has two or one independent eigenvectors (recalling from the fact that A is either a 
Hermitian matrix or non-Hermitian). If   > 0, it is an asymptotically stable node. 
If   < 0, the eigenvalues are complex conjugate pairs and it is an asymptotically 
stable spiral point. It is called spiral because of the oscillations accompanying with 
the decay.  
 
(ii) If q > 0 and p > 0 with  > 0, both the roots are positive. The equilibrium point 
is called an unstable node. If   = 0, it is called an unstable proper or unstable 
improper node, depending on whether there are two or one independent 
eigenvectors (Hermitian or non-Hermitian A).  If   < 0, the equilibrium point is an 
unstable spiral point.  
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(iii) If q > 0 and p = 0, then the roots are purely imaginary. The solution will 
neither increase nor decay. In fact, the solution is a sine or cosine function and it is 
a purely oscillating function. The equilibrium point is called a stable centre. 
 
(iv) If q < 0, then the roots are real, and we must have  > 0. If p > 0, both 
eigenvalues are real with one of them positive. If p < 0, both eigenvalues are real 
with one positive and one negative root. In either case, the behavior of the 
equilibrium point is the same and is called an unstable saddle point. It is called a 
saddle point in the sense that if the initial condition is given such that a solution is 
precisely in the direction of the eigenvector of the negative root, the solution will 
decay to zero. If any initial condition leads to a slight deviation from the direction 
of this eigenvector of the negative eigenvalue, then the solution is unstable. The 
situation is similar to walking on the ridge leading to a saddle of a mountain. Any 
step slightly deviated from the ridge will lead to falling down the cliff (unstable) 
and you will never travel safely to the saddle (stable). 
 These scenarios are summarized in Figure 5.2 in the p-q space. 

 
 
 

Figure 5.2 Stability classifications for 2-unknown-system 
 
Table 5.2 summarizes the type of stability for an equilibrium point for the case of 
two unknowns. This system is proposed by Poincare in 1881. A system of three 
equations and three unknowns can be classified using a similar idea, but the 
classification is more complicated and difficult to present in graphical form like 
Figure 5.2. Reyn (1964) presented a systematic classification of the three 
differential equation systems. It has been successfully applied to analyzing 
landslides by Chau (1995, 1999b) using bifurcation theory on creeping slopes 
obeying a two-state variable friction law. 
 

2 4 0p q

2 4 0p q

2 4 0p q

Unstable, saddle point 

Unstable node Asymp. stable 
node 

Asymp. stable 
spiral point 

stable center 

Unstable spiral 
point q 

p 

Proper or 
improper node 
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Table 5.2.  Stability classification for 2-D autonomous system 
 

q p  Stability type of the equilibrium point 
> 0 < 0 = 0 Stable proper or improper node 

  > 0  Asymptotically stable node 
  < 0  Asymptotically stable spiral point 

> 0 > 0 = 0 Stable proper or improper node 
  > 0 Unstable proper or improper node 
  < 0  Unstable spiral point 

> 0 = 0 < 0 Stable center 
< 0   > 0 Unstable saddle point 

__________________________________________________________________ 
Example 5.18 Consider the stability of the following system 

 
2 3

2

dx x y
dt
dy x y
dt

 (5.290) 

 
Solution: This solution is given in Example 5.10 as 

 4
1 2 1 2

1 3
1 21 2X X X t tc c c e c e  (5.291) 

For this case, we have  
 11 22 11 22 12 21( ) 3, 2 6 4p a a q a a a a  (5.292) 
This is an unstable saddle point. The behavior of the solution is depicted in Figure 
5.3.  
   

 
Figure 5.3 Stability at the equilibrium point for Example 5.17 

2X

1X

1 20, 0c c

1 20, 0c c

1 20, 0c c

1 20, 0c c

1 20, 0c c

1 20, 0c c
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If the initial condition of the system is such that it locates along the direction of the 
first eigenvector (1, 1), the solution is stable. As shown in Figure 5.3, the solution 
returns to the origin. However, if the initial condition does not locate exactly along 
this direction, the solution is unstable. Figure 5.3 shows that as t   the solution 
goes to infinity along the direction of the second eigenvector of (3, 2). Note the 
exponential function for the first eigenvector is an exponentially decaying function 
whereas the exponential function for the second eigenvector is an exponentially 
increasing function.  This is like a saddle at a mountain ridge. You will not fall 
down the cliff only if you walk along the edge of the saddle. Therefore, Poincare 
termed this an unstable saddle point. 
__________________________________________________________________ 

5.10 SUMMARY AND FURTHER READING 

This chapter discusses the solution technique for solving a system of first order 
ODE. It is important since all systems of ODEs, no matter the order and the number 
of coupled ODEs, can always be converted into a system of first order ODEs. For 
nonlinear systems, when we apply a numerical technique (such as the fourth order 
Runge-Kutta method discussed in Chapter 15) to solve the system of  ODEs, it is 
always advisable to rewrite it as a system of first order ODE. 
 First, we demonstrate the technique of elimination for solving a system of 
ODEs analytically. The concept of a multiplier system for elimination of unknowns 
in a system of equations is introduced. The determinacy of a system of equations is 
also discussed, and using this technique, we can identify whether the solution is 
possible for a system of higher order ODEs. For a linear system of first order 
ODEs, we review the Hermitian matrix (which has a profound effect on the solution 
form of the system) and the eigenvalue problem. It is shown that a system of first 
order ODEs with constant coefficients can always be converted to solving an 
eigenvalue problem of a matrix. Four scenarios of the solutions are discussed. They 
are real distinct eigenvalues, repeated eigenvalues for Hermitian and non-Hermitian 
matrices, and complex conjugate eigenvalues. All solution forms are proved 
analytically before examples are presented for each scenario. For a 
nonhomogeneous system of first order ODEs, we present both the undetermined 
coefficient method and the method of variation of parameters. Linear stability of an 
autonomous system is briefly discussed. 
 For those readers who are interested in the historical development of matrix 
theory and its relation to solving differential equations, we highly recommend the 
review paper by Hawkins (1975a,b; 1977) on matrix theory. 

5.11 PROBLEMS 

Problem 5.1 Solve the following system of 1st order ODEs 

 d
dt
X = AX  (5.293) 

where  
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3 18 2

, (0)
2 9 1

A = X  (5.294) 

Ans: 

 3 32 3
2

1 1
t te teX  (5.295) 

 
Problem 5.2 Solve the following system of 1st order ODEs 

 d
dt
X = AX  (5.296) 

where  

 
1 3
5 3

A =  (5.297) 

Ans: Note the solution is not unique if we do not normalize the eigenvectors 

 2 6
1 2

1 3
1 5

t tc e c eX  (5.298) 

 
Problem 5.3 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.299) 

where  

 
1 3 1

, (0)
3 5 2

A = X  (5.300) 

Ans:  

 2 21 1
3

2 1
t te teX  (5.301) 

Problem 5.4 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.302) 

where  

 
4 1
5 2

A =  (5.303) 

Ans:  

 3 3
1 2

1 0 0 1
cos 2 sin 2 cos 2 sin 2

1 2 2 1
t tc t t e c t t eX  (5.304) 

 
Problem 5.5 Solve the following system of 1st order ODEs  
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1 2
2 1

1 2
1 2

2 5 4

3 4 2

dx dx x x
dt dt

dx dx x x
dt dt

=

=
 (5.305) 

Ans:  

 1 2
3 1
1 1

t tc e c eX  (5.306) 

 
Problem 5.6 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.307) 

where  

 
2 1

1 2
A =  (5.308) 

Ans:  

 3
1 2

1 1
1 1

t tc e c eX  (5.309) 

 
Problem 5.7 Solve the following system of 1st order ODEs by variation of 
parameters   

 d
dt
X = AX F  (5.310) 

where  

 
2 1 2,

1 2 3

te
t

A = F  (5.311) 

Ans:  

 3
1 2

1 1 1 1 1 41 1
1 1 1 1 2 52 3

t t t tc e c e e te tX  (5.312) 

 
Problem 5.8 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.313) 

where  

 
3 1 1

, (0)
16 5 1

A = X  (5.314) 

Ans:  

 
1 1

3
1 4

t te teX  (5.315) 
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Problem 5.9 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.316) 

where  

 
1 2 1

, (0)
3 4 0

A = X  (5.317) 

Ans:  

 21 2
3

1 3
t te eX  (5.318) 

 
Problem 5.10 Solve the following system of 1st order ODEs 

 d
dt
X = AX  (5.319) 

where  

 
3 18 1

, (0)
2 9 2

A = X  (5.320) 

Ans:  

 3 31 3
10

2 1
t te teX  (5.321) 

 
Problem 5.11 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.322) 

where  

 
1 3 1

, (0)
3 5 2

A = X  (5.323) 

Ans:  

 2 21 1
3

2 1
t te teX  (5.324) 

 
Problem 5.12 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.325) 

where  

 
3 18 2

, (0)
2 9 1

A = X  (5.326) 

Ans:  

 3 32 3
2

1 1
t te teX  (5.327) 
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Gravity

Coriolis force

Actual current

Geostrophic current

 
Problem 5.13 Solve the following system of 1st order ODEs  

 d
dt
X = AX  (5.328) 

where  

 
3 1 1

, (0)
4 2 1

A = X  (5.329) 

Ans:  

 21
1

teX  (5.330) 

 
Problem 5.14 For the weather system on Earth, air current may flow parallel to a 
contour of equal pressure (called isobars). This happens when the Coriolis force 
(force due to Earth’s rotation) and pressure force balance each other. In geophysics, 
this is called geotrophic flow (see Figure 5.4). The following 2-D coupling system 
(a special form of Navier-Stokes equation) for velocity along North-South and 
East-West directions (v and u) can be used to model it:  

 

2

2

2

2 ( *)

d u v
dz
d v u u
dz

 (5.331) 

 where u and v are the flow speed in horizontal directions. The other parameters , 
, and u* are the Coriolis constant, kinematic viscosity of air, and uniform flow 

velocity of u far from earth’s surface (all are assumed as constants). 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Illustration of geotrophic flow  
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(i) Assume the following solution form:  
 * exp( ), exp( )u u A z v B z  (5.332) 
Find the characteristic equation of  and solve for . 
 
(ii) Redefine the variables as: 

 

1

2

3

4

*,
/ ,

,
/

x u u
x du dz
x v
x dv dz

 (5.333) 

(iii) Formulate the problem as a system of first order ODEs and find the matrix A  

 

1

2

3

4

,

x
x
x
x

X = AX X  (5.334) 

(iv) Find the solution of the system. 
 
Ans: 

 

0 1 0 0

0 0 0

0 0 0 1

0 0 0

A  (5.335) 

 1,2 3,4(1 ), (1 )
2 2

i i  (5.336) 

 1 2 3 4a b c dc c c cX X X X X  (5.337) 

 2cos sin
2 2

t
t t ea 1 2X B B  (5.338) 

 2
2 1cos sin

2 2

t

b t t eX B B  (5.339) 

 2cos sin
2 2

t

c t t e1 2X D D  (5.340) 

 2
2 1cos sin

2 2

t

d t t eX D D  (5.341) 
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1 2 1 2

1 0 1 0

/ (2 ) / (2 ) / (2 ) / (2 )
, ,

0 1 0 1

/ (2 ) / (2 ) / (2 ) / (2 )

B B , D D

  (5.342) 
 
Problem 5.15 Reconsider Example 5.16: 

 
1 1 8

, ,
1 1 3

X = AX + F A F  (5.343) 

(i) By choosing a1 = a in (5.249) (where a is an arbitrary constant), show that the 
solution is 

 2
1 2

11
1 1 2

51 1 11
2 2

t
a

c c e t
a

X  (5.344) 

(ii) Show that this result is indeed a particular solution. 
 
(iii) Now consider the following initial condition, find the solution using either 
(5.252) or (5.344):  

 
1

(0)
2

X  (5.345) 

(iv) Show that both solutions given in (5.252) and (5.344) give the same answer. 
 
Ans:  

 23 1 111 1 1
7 1 114 4 2

te tX  (5.346) 

 



 
 

CHAPTER SIX 
 

First Order Partial Differential Equations 
(PDEs)  

 

6.1 INTRODUCTION 

Nearly all textbooks on partial differential equations will cover second order PDEs, 
like the wave equation, diffusion equation, and potential or Laplace equation. 
However, the discussion of first order PDEs is normally not covered in elementary 
textbooks on PDE. It is considered as a more advanced topic. The method of 
solution is quite different from that for second order and the general solution for 
first order PDEs will include an arbitrary function of some characteristics line.  
 Although we discuss in this chapter the first order PDE before discussing the 
second order PDE, historically the second order PDE was investigated before the 
first order. Bernoulli, Euler, D’Alembert and others considered the physical 
problem related to dynamics of rigid bodies, vibrations of membranes, and wave 
phenomena. These are second order PDE. The solution of first order PDEs was 
considered mainly by Lagrange, Clairaut, D’Alembert, Monge, Charpit, Jacobi, and 
others.  
 We will first discuss the geometric interpretation of the solution of linear first 
order PDEs. The Lagrange method for solving linear first order PDEs is then 
introduced. For the case of nonlinear first order PDEs, the Lagrange-Charpit 
method and Jacobi’s method will be discussed, and the geometric interpretation of 
the solution of nonlinear first order PDEs in terms of Monge cones will also be 
covered. In the process, the idea of characteristics equations, a term introduced by 
Cauchy in 1819, and curves will be introduced. The concept of characteristics will 
be used again for second order PDEs of hyperbolic types (or wave types) in 
Chapter 7.  

6.2 FIRST ORDER PDE 

A nonlinear first order PDE can symbolically be written as 

 ( , , , , ) 0z zF x y z
x y

  (6.1) 

The existence of the solution of a nonlinear PDE cannot be guaranteed. If the first 
order PDE is linear, we can express it explicitly as 

 ( , ) ( , ) ( , )z zP x y Q x y R x y
x y

 (6.2) 
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where z is the unknown and x and y are the variables. A general feature of the 
solution of a first order PDE is that it normally involves arbitrariness in the 
solution. For example, consider the following first order PDE 

 0z za
x y

 (6.3) 

Now introduce a change of variable that 
 ( ),z u u ax y  (6.4) 
where  is an arbitrary function. Differentiating (6.4) gives 

 ( ) ( ), ( ) ( )z u z uu a u a a u a u
x x y y

 (6.5) 

Substitution of (6.5) into (6.3) shows that it is identically satisfied by (6.4). Thus, 
the general solution includes an arbitrary function . In fact, we will see in later 
sections that u is called the characteristics of the PDE.  

6.3 HYPERBOLIC EQUATION 

Physically, the first order PDE appears naturally in the modeling of the wave 
phenomenon. In the next chapter, we will see that the governing equation for a 1-D 
wave can be expressed as: 

 
2 2

2
2 2 0u uc

t x
 (6.6) 

Following the idea of factorization that we discussed in Chapter 3 for ODEs, we 
can factorize (6.6) as: 

 
2 2

2
2 2 ( )( )u uc c c u

t x t xt x
 (6.7) 

Since c is a constant, the factorization in (6.7) is commutative. Therefore, the 
solution is the sum of the solutions of the following two first order PDE: 

 ( ) 0, ( ) 0c u c u
t x t x

 (6.8) 

Referring to the discussion on (6.3) above, we can easily see that the solutions of 
(6.8) are 
  ( ), ( )u x ct u x ct  (6.9) 
Thus, the solution of (6.6) can be formed by adding the solutions of (6.8) as: 
 ( ) ( )u x ct x ct  (6.10) 
The validity of this solution can be demonstrated by substituting (6.10) into (6.6). 
Let us consider the physical meaning of (6.8) more closely. For stationary waves, 
the wave undulation does not change with time or we have mathematically 

 0u
t

 (6.11) 

If a wave is not stationary, the simplest type of wave equation is formed by adding 
an additional term as: 
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 0u uc
t x

 (6.12) 

where c is the wave speed of the propagating disturbance. Note that (6.12) is the 
simplest type of transport equation and it is also known as the kinematic wave 
equation. We have seen that the solution of (6.12) appears as  
 ( )u x ct  (6.13) 
Let us take a Galilean transform such that 
 ( , ) ( , ) ( , )u t x v t v t x ct  (6.14) 
Taking differentiation of (6.14) using the chain rule yields 

 u v v v vc
t t t t

,   u v
x

 (6.15) 

Substitution of (6.15) into (6.12) yields 

 0u u vc
t x t

 (6.16) 

In other words, we must have v = v( ). That is, if we travel along with the 
propagating wave at speed c, we  see an unchanging shape of the waveform. 
Physically, the signals travel along the characteristics of  = x ct. This forms the 
basis of the method of characteristics. Mathematically, all these wave equations are 
called hyperbolic, which will be explained in detail in Chapter 7.  

6.3.1. Transport with Decay 

For real waves, there must be damping. Mathematically, we can add an addition 
term as 

 0u uc au
t x

 (6.17) 

Applying the change of variables given in (6.14), we have 

 0v av
t

 (6.18) 

This is a separable PDE, and (6.18) can be integrated to get 
  0ln ( )v at C  (6.19) 
Thus, the solution is obtained as: 
 ( , ) ( ) atv t f e  (6.20) 
 
 
 
 
 

 
 

Figure 6.1 Decaying traveling waves of 1st order hyperbolic PDE 
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Expressed in terms of the original variables, we have a decay wave along the 
characteristics as 
 ( , ) ( ) atu t x f x ct e  (6.21) 
This solution is illustrated in Figure 6.1. 

6.3.2. Non-Uniform Transport 

If the wave speed is not uniform, we can model the hyperbolic wave as 

 ( ) 0u uc x
t x

 (6.22) 

Let us consider a function h such that 
 ( ) ( , ( ))h t u t x t  (6.23) 
Taking the total differential with respect to t using the chain rule gives 

 ( ) ( , ( )) ( , ( ))dh t u u dxt x t t x t
dt t x dt

 (6.24) 

The speed of the propagating wave is defined 

 ( ) ( ( ))dx t c x t
dt

 (6.25) 

Substitution of (6.25) into (6.24) and in view of (6.22), we have 

 ( ) 0dh t
dt

 (6.26) 

Therefore, a solution of (6.22) is given by 
 ( ) const.h t  (6.27) 
along a characteristics curve. We can also determine the characteristics as 

 
( )
dx dt

c x
 (6.28) 

Integrating both sides gives 

 ( )
( )
dxx t k

c x
 (6.29) 

where k is a constant. The characteristics is thus 
 ( )x t k  (6.30) 
The final solution is then obtained as 
 ( , ) ( ( ) )u t x v x t  (6.31) 

6.3.3. Nonlinear Transport and Shock Waves 

We have seen in the last section that if the wave speed is a function of position, we 
can express the solution in a characteristics curve. If the wave speed depends on the 
unknown magnitude u, the first order PDE becomes nonlinear. The simplest case is 
c = u (Whitham, 1974): 
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 0u uu
t x

 (6.32) 

This equation is called the Poisson-Riemann equation is found useful in modeling 
the shock wave phenomenon, including traffic flow and flood waves in rivers. For 
the case of traffic flow, u is the traffic density. Since the wave speed equals the 
wave magnitude, a larger wave travels faster than a smaller wave. Thus, a larger 
wave behind a smaller one will eventually catch up and pass the smaller wave. 
Following a similar procedure in the last section, we seek a solution 
 ( ) ( , ( ))h t u t x t  (6.33) 
Taking the total differential with respect to t using the chain rule gives 

 ( ) ( , ( )) ( , ( )) 0dh t u u dx u ut x t t x t u
dt t x dt t x

 (6.34) 

Thus, we again have h = constant along a characteristics.  

 dx c u
dt

 (6.35) 

We can integrate (6.35) as 
 x ut k  (6.36) 
Thus, the general solution of the Poisson-Riemann equation is 
  ( ) ( )u f f x ut  (6.37) 
We are going to see that this solution for shock waves will break down at a certain 
time. Let us consider that 

 ( ) ( ) ( )(1 )u uf f f t
x x x x

 (6.38) 

Note that the derivative u/  x appears on both sides of (6.38). Solving for it gives 

 ( )
1 ( )

u f
x tf

 (6.39) 

We can see that  

 1, *
( )

u as t t
x f

 (6.40) 

If the initial data of the wave profile is such that f'( ) < 0, we will have a breaking 
wave as shown in Figure 6.2. Physically, the wave breaks down (breaking wave) as u 
becomes a multi-valued solution of x for t > t*. This is a major characteristics of a 
shock wave.  

 
Figure 6.2 Evolution and breaking down of a shock wave 

u
x

( ) 0f
Multi-valued solution 

*t t *t t *t t xxx
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Actually, the Poisson-Riemann equation can be interpreted in terms of a generalized 
conservation law: 

 0T X
t x

 (6.41) 

where T = T(t,u,x) is a conserved density and X(t,u,x) is the flux through a control 
volume. We can see that if we take a particular case 

 21,
2

T u X u  (6.42) 

we have 

 21( ) 0
2

u u uu u
t x t x

 (6.43) 

We recover the Poisson-Riemann equation. Thus, the shock dynamics can be 
interpreted as the mass conservation law in integral form: 

 
2 2 2 2

11 1 1

x x x x
xx x x

d T XTdx dx dx X
dt t x

 (6.44) 

Graphically, we can interpret this conservation law as shown in Figure 6.3. 

 
 

Figure 6.3 Physical law of conservation of mass 
 
The value of u across the breaking wave can be estimated as 

 ( , )
a x ct

u t x
b x ct

 (6.45) 

where 

 
2

a bc  (6.46) 

This is called the Rankine-Hugoniot condition. 
 We have seen from this section that a first order PDE relates directly to the 
applications of shock waves, which is important in traffic and flood wave 
modelling in engineering and mechanics. 

6.4 AIRY’S METHOD FOR HYPERBOLIC EQUATION  

In this section, a method presented in Airy (1873) for analyzing a nonhomogeneous 
hyperbolic equation will be discussed. In particular, we consider a first order PDE 
of the following form 

u
x

*t t *t t xx x

Equal area rule uuu a

b
atbt ct
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 ( , )z za x y
x y

 (6.47) 

Airy proposed the following change of variables 
 ,u ax y v ex fy  (6.48) 
in which e and f are unknown constants. If af  e, we can invert (6.48) as 

 ,fu v eu avx y
af e af e

 (6.49) 

Applying the chain rule we have 

 z z u z v z za e
x u x v x u v

 (6.50) 

 z z u z v z zf
y u y v y u v

 (6.51) 

Substitution of (6.50) and (6.51) into (6.47) gives 

 ( ) ( , ) ( , )z fu v eu ave af x y
v af e af e

 (6.52) 

Integrating (6.52) with respect to v we have 

 1( ) ( , )
v

fu v eu avz u dv
e af af e af e

 (6.53) 

where u = ax+y, which as we have seen in Section 6.2 is the characteristics. When 
the integration is conducted for v, we can treat u as constant. 
 Let us consider a more specific function : 
 p qx y  (6.54) 
where p and q are constants. Substitution of (6.54) into (6.53) leads to 

 1
1( ) ( ) ( )

( )
p q

p q v
z u fu v eu av dv

af e
 (6.55) 

We can apply integration by parts to (6.55) as 

 

1
1

1 1
1

1( ) ( ) ( )
( 1)( )

( ) ( )
( 1)( )

p q
p q

p q
p q v

z u fu v eu av
p e af

aq fu v eu av dv
p e af

 (6.56) 

Repeat this process of integration by parts q times, and note the following result 

 1 1 1

( ) ( ) ( )

( ) ( )
1 1

p q p q

v v
p q p q p q

fu v dv fu v d fu v

fu v af e x
p q p q

 (6.57) 

we arrive at 



374   Theory of Differential Equations in Engineering and Mechanics 

 

1 2 1

2
3 2

1

1( )
1 ( 1)( 2)

( 1) ( 1) 2...
( 1)( 2)( 3) ( 1) ( )

! !
( 1 )!

p q p q

q
p q p q

q
p q

aqz u x y x y
p p p

a q q a q qx y x
p p p p p q

a q p x
p q

2 p qx2 p2
( )( )p q(((

 (6.58) 

More importantly, we find that the solution is independent of e and f. 
 

6.5 GEOMETRIC INTERPRETATION OF LINEAR PDE 

The geometric interpretation was discovered by Monge in the 1770s and published 
much later in 1785. Geometrically, we first note that two different three-
dimensional surfaces can be expressed in terms of two potential F and G as:  

 x y z
G G GG
x y z

e e e  (6.59) 

 x y z
F F FF
x y z

e e e  (6.60) 

Figure 6.4 illustrates that F is the normal of a spherical surface S1 whereas  G is 
the normal to a conical surface S2. The vector E can be interpreted as the tangent of 
the intersecting curve ,  

 
( )

( ) ( )

x

y z

F G F GF G
y z z y

G F F G F G F G
x z x z x y y x

e

e e
 (6.61) 

The tangent of the intersecting curve is 
 x y zd dx dy dze e e  (6.62) 

Note that the coefficient of (6.61) can be expressed in terms of a Jacobian as  

 ( , )
( , )
F G F G F G
y z y z z y

 (6.63) 

Since E and d  are parallel, the components of these two vectors must be 
proportional: 

 
( , ) ( , ) ( , )
( , ) ( , ) ( , )

dx dy dz
F G F G F G
y z z x x y

 (6.64) 

In a more compact form, we replace these Jacobians by P, Q, and R as 

 
( , , ) ( , , ) ( , , )

dx dy dz
P x y z Q x y z R x y z

 (6.65) 
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F
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x

y
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E

d

z

We will discuss in more detail in the next section on solving these equations, which 
are also known as characteristics, and the final solution of its corresponding PDE.  
 We will now consider the relation between (6.65) and the solution of the first 
order PDE. Using the definition in (6.66), we have the vector E  
 x y zP Q RE e e e  (6.66) 
These components are the coefficients of the first order PDE given in (6.2).  Note 
that the vector E will be parallel to a curve  which is an intersection of two 
surfaces denoting of their normal vectors G and F. The direction of the three-
dimensional curve is shown in Figure 6.1 as d . Therefore, the solution of any first 
order PDE can be interpreted as an intersection curve of two 3-D surfaces.  
 Clearly, (6.65) can be rearranged to give two characteristic equations  

 ( , , ) ( , , ),
( , , ) ( , , )

dy Q x y z dz R x y z
dx P x y z dx P x y z

 (6.67) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 Geometric interpretation of the solution of 1st order PDE 
 

 
This equation actually provides the idea of Cauchy’s method of characteristics for 
wave equations that will be discussed in a later chapter. Solving these first order 
ODEs in (6.67), which are called characteristics equations, gives the following 
characteristic lines: 
 1 1( , , )u x y z c  (6.68) 
 2 2( , , )u x y z c  (6.69) 
Equations (6.68) and (6.69) are the characteristics of the solution of the PDE. 
Physically, if the PDE reflects the wave phenomenon, these characteristics lines are 
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the propagating directions of waves; in the theory of light, these are rays. The 
solution of the original PDE will be discussed in a later section. Taking the total 
differential of (6.68) gives 

 1 1 1
1 0

u u u
du dx dy dz

x y z
 (6.70) 

If a first order PDE is given in the following form: 

 1 1 1( , , ) ( , , ) ( , , ) 0
u u uP x y z Q x y z R x y z
x y z

, (6.71) 

we see that the following subsidiary equation (parallelism between E and d ) of 
(6.71) is 

 1

( , , ) ( , , ) ( , , ) 0
dudx dy dz

P x y z Q x y z R x y z
 (6.72) 

This is, of course, the same as (6.65). We will see in Section 6.7 that (6.72) is actually 
the subsidiary equation for the characteristics of the first order PDE.    

6.6 CAUCHY-KOVALEVSKAYA THEOREM   

In 1842, Cauchy published a series of papers concerning the existence of a PDE 
solution. For the case of first order PDE, consider the following PDE:  

 1 1 1 0
u u uP Q R
x y z

 (6.73) 

Assuming that the solution curve is known to pass through the following initial 
point 
 0 0 0 0 0 0( ), ( ), ( )x x s y y s z z s  (6.74) 
with all x0, y0, and z0 being analytic functions of a parameter s (i.e., differentiable 
for real variables). Cauchy showed that the solution of the PDE with the initial data 
exists: 
 1 1 2( , , , , ) 0u x y z c c  (6.75) 
The two constants in (6.75) indicate the fact that the final solution depends on both 
of the characteristics lines given in (6.68) and (6.69). The existence theorem was 
also investigated independently and improved by Sophie Kovalevskaya, who was a 
student of Weierstrass, in 1874. Darboux also considered the same problem in 
1875. The work of Cauchy seems not to be known to Kovalevskaya and Darboux.  
In fact, in the paper by Kovalevskaya she cited both Briot and Bouquet but both of 
them refer to the work by Cauchy though without giving a precise citation of 
Cauchy. The proof by Cauchy and Kovalevskaya was later improved by Goursat in 
1898 by using analytic functions. However, in the literature, the existence theorem 
is normally referred to as the Cauchy-Kovalevskaya existence theorem. 
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6.7 LAGRANGE’S METHOD FOR LINEAR FIRST ORDER PDE 

The solution of first order PDEs was derived by Lagrange in 1772. Let us generalize 
the first order PDE to n-dimensional space (n variables). In particular, consider a 
first order PDE with n variables: 

 1
1 2

...n n
n

z z zP P P R
x x x

 (6.76) 

Taking the total differential of z, we obtain:  

 1 2
1 2

... n
n

z z zdx dx dx dz
x x x

 (6.77) 

If (6.76) and (6.77) are equivalent, we must have the following subsidiary equation 
(parallel between E and d  discussed in Section 6.5) for characteristics 

 1 2

1 2
... n

n

dxdx dx dz
P P P R

 (6.78) 

where  is a constant. The term characteristics was introduced by Cauchy. The 
solution of the characteristics given in (6.78) is also a solution to (6.76). This 
equivalence was known to Euler.  
  The solutions of the characteristics defined in (6.78) can be expressed 
symbolically as 

 

1 1 2 1

2 1 2 2

1 2

( , ,..., , )
( , ,..., , )

( , ,..., , )

n

n

n n n

u x x x z a
u x x x z a

u x x x z a

 (6.79) 

According to Lagrange, the general solution of (6.76) is given as 
 1 2( , ,..., ) 0nu u u  (6.80) 
where  is an arbitrary function. This result was obtained in 1785 by Lagrange. Let 
us consider the proof for the case of two independent variables here. The proof for 
more than two variables follows similarly. In particular, consider the differential 
equation and its subsidiary equation as 

 1 2
1 2

z zP P R
x x

,     1 2

1 2

dx dx dz
P P R

 (6.81) 

The characteristics by solving the second of (6.81) are expressed symbolically as: 
 1 1 2 1 2 1 2 2( , , ) , ( , , )u x x z c u x x z c  (6.82) 
Taking the total differential of (6.82) gives 

 1 1 1
1 1 2

1 2
0

u u udu dx dx dz
x x z

 (6.83) 

 2 2 2
2 1 2

1 2
0

u u udu dx dx dz
x x z

 (6.84) 

Using the results of Section 6.5, (6.83) and (6.84) correspond to two first order 
PDEs as  
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 1 1 1
1 2

1 2
0

u u u
P P R

x x z
 (6.85) 

 2 2 2
1 2

1 2
0

u u u
P P R

x x z
 (6.86) 

These two equations can be put in a matrix form as 

 

1 1 1

1 2 1

22 2 2

1 2

u u uRx x P z
Pu u uR

x x z

 (6.87) 

The solution of P1 is 

 

1 2 2 1 1 2

2 2 2
1

1 2 1 2 1 2

1 2 2 1 1 2

( , )
( , )

( , )
( , )

u u u u u uR R R
z x z x z xP

u u u u u u
x x x x x x

 (6.88) 

Rearranging (6.88), we obtain  

 1

1 2 2 1 1 2 1 2

2 2 1 2 2 1

P R
u u u u u u u u
z x z x x x x x

 (6.89) 

Similarly, the solution of P2 leads to 

 2

1 2 1 2

1 1 2

( , ) ( , )
( , ) ( , )

P R
u u u u
x z x x

 (6.90) 

Characteristic equations relating R, P1, and P2 are 

 2 1

1 2 1 2 1 2

1 1 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

P PR
u u u u u u
x z x x z x

 (6.91) 

We now return to the following characteristics  
 1 1 2 2( , , )u x x z c  (6.92) 
 2 1 2 2( , , )u x x z c  (6.93) 
Consider an arbitrary function containing u1 and u2 
 1 2( , ) 0u u  (6.94) 
Taking differentiation of (6.94) with respect to x1 and x2, we find 

 1 2

1 1 2 1
0

u u
u x u x

,   1 2

1 2 2 2
0

u u
u x u x

 (6.95) 

Differentiate (6.92) and (6.93) with respect to x1 

 1 1 1 2 2 2

1 1 1 1 1 1
,

u u u u u uz z
x x z x x x z x

    (6.96) 

Substitution of (6.96) into the first equation of (6.95) gives 
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 1 1 2 2

1 1 1 2 1 1
( ) ( ) 0

u u u uz z
u x z x u x z x

   (6.97) 

Similarly, the second equation of (6.95) can be rewritten as  

 1 1 2 2

1 2 2 2 2 2
( ) ( ) 0

u u u uz z
u x z x u x z x

   (6.98) 

These two equations can be put in a matrix form as 

 

1 1 2 2

1 1 1 1 1

1 1 2 2

22 2 2 2

0
0

u u u uz z
x z x x z x u
u u u uz z

ux z x x z x

 (6.99) 

For a nonzero solution for the derivatives of , we require the determinant of the 
matrix being zero: 

    1 1 2 2 2 2 1 1

1 1 2 2 1 1 2 2
( )( ) ( )( ) 0

u u u u u u u uz z z z
x z x x z x x z x x z x

 (6.100) 

Expanding the multiplication and simplifying the results gives  

 

1 2 1 2 1 2 2 1

1 2 2 1 1 2 2

2 1 1 2

2 1 1

[ ]

[ ] 0

u u u u u u u uz
x x x x x z x z x

u u u uz
x z x z x

 (6.101) 

Using the definition of the Jacobian, we can simplify (6.101) to 

 1 2 1 2 1 2

1 2 1 2 2 1

( , ) ( , ) ( , )
0

( , ) ( , ) ( , )
u u u u u uz z
x x x z x x x z

 (6.102) 

Substitution of the results in (6.91) yields the following first order PDE 

 1 2
1 2

0z zR P P
x x

 (6.103) 

This is the PDE given in (6.81) and, thus, the solution of (6.103) is given by (6.94). 
The proof can be extended to the case of n variables to show the validity of (6.80). 

6.8 LAGRANGE MULTIPLIER 

In this section, we will solve the subsidiary equation given in (6.78) to get the 
characteristics. It is not always straightforward to solve these characteristics 
equations. Very often, the method of the Lagrange multiplier can be used to 
simplify the problem. In particular, for the case of n variables, we have the 
subsidiary equation as: 

 1 1 2 2 11 2

1 2 1 1 2 2 1

...
...

...
n n n n

n n n n

dx dx dx dx dzdx dx dz
P P P R P P P R

 (6.104) 
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The last part of (6.104) is the result of the method of the Lagrange multiplier and 
1, 2,..., n+1 are the Lagrange multipliers and are arbitrary functions of the n 

variables. 
 To prove the last part of (6.104), we first notice that dxi = Pi or  

 1 1 1 1 2 2 2 2

1 1

, ,...,
,n n n n n n

dx P dx P
dx P dz R

 (6.105) 

Substitution of (6.105) into the last of (6.104) gives  
1 1 2 2 1 1 1 2 2 1

1 1 2 2 1 1 1 2 2 1

1 1 2 2 1

1 1 2 2 1

... ...
... ...

( ... )
...

n n n n n n

n n n n n n

n n n

n n n

dx dx dx dz P P P R
P P P R P P P R

P P P R
P P P R

 (6.106) 

This completes the proof. The role of 1, 2,..., n+1 is like that of integrating 
factors. If we can find appropriate multipliers such that   
 1 1 2 2 1... 0n n nP P P R , (6.107) 
from (6.106), it also implies  
 1 1 2 2 1... 0n n ndx dx dx dz  (6.108) 
Thus, the solution can in principle be found 
 1 2( , ,..., , )nu x x x z a  (6.109) 
This method of the Lagrange multiplier will be illustrated in the following example. 
__________________________________________________________________ 
Example 6.1 Find the solution for the following first order PDE 

 0z zy x
x y

 (6.110) 

 
Solution: The subsidiary equation of (6.110) is 

 
0

dx dy dz
y x

 (6.111) 

The last part of (6.111) implies  
 0dz  (6.112) 
Integration gives  
 1 2u z a  (6.113) 
The first two parts of (6.111) give  
 0xdx ydy  (6.114) 
Integration of (6.114) results in 
 2 2

2 1u x y a  (6.115) 
By (6.80), the solution can be expressed as 
 2 2( , ) 0x y z  (6.116) 
This solution can be rewritten as 
 2 2( )z f x y  (6.117) 
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As expected, the general solution involves an arbitrary function f.  
__________________________________________________________________ 
__________________________________________________________________ 
Example 6.2 Find the solution for the following first order PDE 

 2 2 2( ) 2 0z zx y xy z
x y

 (6.118) 

 
Solution: The subsidiary equation of (6.118) is 

 2 2 22
dx dy dz

xyx y z
 (6.119) 

Using the Lagrange multiplier method given in (6.104), we have  

 2 2 2 2 2 2 2
( ) ( )

2 2 ( ) ( )
dx dy dx dy dz d x y d x y

x xy y x xy y z x y x y
 (6.120) 

The last equation in (6.120) can be expressed as 

 1 1( ) ( )d d
z x y

 (6.121) 

 1 1( ) ( )d d
z x y

 (6.122) 

Integration gives the following characteristics 

 1 1
1 1u a
z x y

 (6.123) 

 2 2
1 1u a
z x y

 (6.124) 

Therefore, the general solution can be expressed as 

 1 1 1 1( , ) 0
z x y z x y

 (6.125) 

where  is an arbitrary function. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 6.3 Find the solution for the following first order PDE with boundary 
condition 

 2 0u u u
x y z

,   (6.126) 

 , 1u yz x  (6.127) 
 
Solution: The subsidiary equation of (6.126) is 

 
1 1 2 0
dx dy dz du  (6.128) 

This gives characteristics equations as:  
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 1, , 0
2

dx dy dx dz du  (6.129) 

It is straightforward to see that the corresponding characteristics lines are: 
 1 1 2 2 3 3, 2 ,u x y a u x z a u u a  (6.130) 
The solution can be expressed in terms of these characteristics as  
 1 2 3( , , ) 0u u u  (6.131) 
Alternatively, we can express u3 in terms of the other characteristics as 
 ( ,2 )u x y x z  (6.132) 
Substituting the boundary condition given in (6.127) 
 ( 1) (1 ,2 )u x yz y z  (6.133) 
Putting x = 1 into (6.130), we get 
 11 y a  (6.134) 
 22 z a  (6.135) 
 3yz a  (6.136) 
We can solve for y and z in terms of constants a1 and a2 as: 
 11y a  (6.137) 
 22z a  (6.138) 
 1 2 3(1 )(2 )u yz a a a  (6.139) 
We can now substitute the value of a1 and a2 from (6.130) into (6.131) to get the 
general solution  
 (1 )(2 2 )u x y x z  (6.140) 
As a final check, when x = 1, we have u = yz from (6.140). 
__________________________________________________________________ 

6.9 PFAFFIAN EQUATIONS   

Recall from Chapter 3 that first order ODEs can be expressed in differential form as: 
 0Mdx Ndy  (6.141) 
We note that first order PDEs can also be expressed in a similar fashion. This is called 
Pfaffian: 
 0Pdx Qdy Rdz  (6.142) 
which is named after Pfaff, who was the supervisor of the renowned mathematician 
Gauss.  

6.10 EAXCT EQUATIONS   

For the three-dimensional case, the first order PDE in Pfaffian form is  
 0Pdx Qdy Rdz  (6.143) 
This PDE can be interpreted as a dot product of the following two vectors: 



 First Order PDEs   383 

 

 ( , , ), ( , , )P Q R d dx dy dzE d d((  (6.144) 
Therefore, (6.143) is equivalent to  
 0dE 0dd  (6.145) 
If the vector E can be expressed in terms of a potential function U 
 UE , (6.146) 
the PDE given in (6.145) can be rewritten as: 
 0U d 0dd  (6.147) 
Or equivalently, we can express it as 

 0U U Udx dy dz
x y z

 (6.148) 

This is clearly a total differential of a function U given by   
 ( , , )U x y z c  (6.149) 
where c is a constant. Thus, this is the solution the Pfaffian differential equation. 
Therefore, the existence of a potential U defined in (6.146) is the condition of the 
Pfaffian being exact. An equation of this type is first considered by Clairaut in 1739. 

6.11 INTEGRABILITY OF PFAFFIAN  

If the Pfaffian differential equation is not exact, we can assume the existence of an 
integrating factor  such that 
 0Pdx Qdy Rdz  (6.150) 
Note that this idea is exactly the same as that discussed for first order ODE. In vector 
form, we require that (compare with (6.146)): 
 UE  (6.151) 
The governing equations for this integrating factor are 

 
2 ( ) ( )U P Q
y x y x

 (6.152) 

 
2 ( ) ( )U Q R
y z z y

 (6.153) 

 
2 ( ) ( )U R P
z x x z

 (6.154) 

This is an extension of the condition for an integrating factor for first order ODEs 
discussed in Chapter 3. Expanding (6.152) to (6.154) gives 

 ( )P Q Q P
y x x y

 (6.155) 

 ( )Q R R Q
z y y z

 (6.156) 

 ( )R P P R
x z z x

 (6.157) 
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We can add the results of (6.155) multiplied by R, (6.156) multiplied by P, and 
(6.157) multiplied by Q to yield 

 ( ) ( ) ( ) 0P Q Q R R PR P Q
y x z y x z

 (6.158) 

This condition, if expressed in terms of the vector E, can be written as 
 ( ) 0E E  (6.159) 
This is the condition of the Pfaffian differential equation being integrable. This 
condition (6.159) was derived by Clairaut in 1740 and by D’Alembert in 1744. 
Once (6.158) is satisfied, we can solve the problem using one of the following 
procedures. Note that the following procedure can only apply for the case where 
the Pfaffian is integrable.  
 
Method 1: 
 
Because the Pfaffian is integrable, we must have a function U such that 
 dU Pdx Qdy Rdz  (6.160) 
This implies that 

 , ,U U UP Q R
x y z

 (6.161) 

Integrating (6.160) we have 
 ( , , )U x y z C  (6.162) 
where C is a constant. Therefore, the solution of the Pfaffian is a one-parameter curve. 
 
Method 2: 
 
First, (6.143) can be rearranged as: 

  P Q z zdz dx dy dx dy
R R x y

 (6.163) 

Comparison of the terms in (6.163) gives 

 1( , , )z P P x y z
x R

 (6.164) 

 1( , , )z Q Q x y z
y R

 (6.165) 

Thus, we can integrate (6.164) with respect to x by holding y constant. We have 
 ( , ; ( ))z x y C y  (6.166) 
where C(y) is an arbitrary function that we add in the process of integration. Back 
substitution of (6.166) into (6.165) gives an ODE for C(y). After its determination, 
(6.166) becomes the complete solution. Note that this procedure is similar to Section 
3.2.4 for integrable ODEs. 
 
Method 3: 
 

Step 1: Hold z = constant or set dz = 0; 



 First Order PDEs   385 

 

Step 2: integrate with respect to x and y and add an arbitrary function of f(z); 
Step 3: differentiate the result obtained in Step 2 with respect to all variables; and 
Step 4: compare the result in Step 3 with the original PDE to identify f(z) in Step 

2. 
 
Note that these methods are somewhat similar. These procedures are illustrated in the 
following example. 
__________________________________________________________________ 
Example 6.4 Find the solution for the following PDE in Pfaffian form  
 3 2 0yzdx xzdy xydz  (6.167) 
 
Solution: The functions P, Q, and R can be identified as  
 3 , 2 ,P yz Q xz R xy  (6.168) 
Taking partial differentiation of these functions gives   

 3 , 2 , 2 , , , 3P Q Q R R Pz z x x y y
y x z y x z

 (6.169) 

Substitution of (6.169) into the integrability condition (6.158) gives 

 
( ) ( ) ( )

(3 2 ) 3 (2 ) 2 ( 3 ) 0

P Q Q R R PR P Q
y x z y x z

xy z z yz x x xz y y
 (6.170) 

Thus, (6.167) is integrable.  
 
Method 1: 
 
Dividing through (6.167) by xyz, we get 

 3 2 1 0dx dy dz
x y z

. (6.171) 

Integrating (6.171), we arrive at 
 3ln 2ln lnx y z c  (6.172) 
Combining these terms, we have 
 3 2ln( )x y z c  (6.173) 
Taking the exponential function on both sides, we find 
 3 2x y z C  (6.174) 
This is the solution of the Pfaffian given in (6.167) 
 
Method 2: 
 
It is straightforward to identify that 

 1
3( , , )z P zP x y z

x R x
 (6.175) 

 1
2( , , )z Q zQ x y z

y R y
 (6.176) 
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Integrating (6.175), we obtain 
 3ln ln ( )z x C y  (6.177) 
Thus, we have 
 3 ( )zx C y  (6.178) 
Substitution of (6.178) into (6.176) gives 

 2dC C
dy y

 (6.179) 

Integrating both sides, we find C as 

 1
2( )

CC y
y

 (6.180) 

Finally, substitution of (6.180) into (6.178) gives the solution as 
 3 2

1x y z C  (6.181) 
As expected, this is the same as (6.174). 
 
Method 3: 
 
Step 1: We can set  
 0dz , or  1z a  (6.182) 
By doing so, (6.167) is reduced to 
 3 2 0ydx xdy  (6.183) 
Step 2: Integrate (6.183) as  

 2 3dy dx
y x

 (6.184) 

This can be integrated exactly as 
 2ln 3ln ln ( )y x f z  (6.185) 
We have put the arbitrary function of z in a compact form: 

 2
3

1 ( )y f z
x

 (6.186) 

Step 3: We can now differentiate (6.186) as 
 2 2 33 2x y dx yx dy f dz  (6.187) 
Step 4: Comparison of (6.187) with the original PDE (6.167) yields f 

 
3 2x y ff
z z

 (6.188) 

 0ln lnf z C  (6.189) 

 1f C
z

 (6.190) 

Finally, we find 
 3 2x y z C  (6.191) 
Again, all different procedures lead to the same answer. 
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__________________________________________________________________ 
__________________________________________________________________ 
Example 6.5 A complex function is defined by two functions u(x,y) and v(x,y) as: 
 ( , ) ( , ) ( )w u x y iv x y f z  (6.192) 
where f is an arbitrary function and  
 z x iy  (6.193) 
Show that  

 ,u v u v
y x x y

 (6.194) 

 
Solution: This problem actually provides a different proof of the Cauchy-Riemann 
equations, by solving first order PDEs. The main focus is to show that we must 
have z = x+iy, as the characteristics for this case. Consider the following 
derivatives: 

 ( )w dw z dwf z
x dz x dz

 (6.195) 

 ( )w dw z dwif z i
y dz y dz

 (6.196) 

Comparison of (6.195) and (6.196) gives 

 1( ) w wf z
x i y

 (6.197) 

The last part of (6.197) actually provides a first order PDE: 

 1 0w w w wi
x i y x y

 (6.198) 

Using the Lagrange method, we have the subsidiary equation as: 

 
1 0
dx dy dw

i
 (6.199) 

The characteristics equation can be solved as 
 0idx dy  (6.200) 
By multiplying i, we have 
 0dx idy  (6.201) 
After integration we get 
 1 1u x iy c  (6.202) 
The other characteristics are clearly 
 2 20,dw or u w c  (6.203) 
 ( , ) 0w x iy  (6.204) 
Therefore, we can write it as 
 ( )w f x iy  (6.205) 
This completes the first proof. 
 Secondly, we can rearrange (6.198) as 
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 ( ) ( )w w u iv u ivi i
x y x y

 (6.206) 

Expanding (6.206), we obtain 

 u v u vi i
x x y y

 (6.207) 

Equating the real and imaginary parts of (6.207), we have 

 ,u v u v
y x x y

 (6.208) 

This proves the Cauchy-Riemann equations. 
__________________________________________________________________ 
 

6.12 LAGRANGE-CHARPIT METHOD FOR NONLINEAR PDE   

We are going to discuss a general technique called the Lagrange-Charpit method, 
Lagrange method, or Charpit method. There is a heated dispute on who discovered 
this technique. There is not much historical coverage of this method in any 
textbook. Some writers called this the Lagrange method as Charpit never published 
this method before he passed away and the original manuscript was reportedly 
“lost.” The idea for this method was published in 1779 by Lagrange. It is clear that 
you should have heard about the name of Lagrange quite often (either from this 
book or from elsewhere) while Charpit is not well known and we don’t even know 
when we was born. A vivid example of this view is given by Kline (1972): 
 

Lacroix said in 1798 that Charpit had submitted a paper in 1784 (which was not 
published) in which he reduced first order partial differential equations to system of 
ordinary differential equations. Jacobi found Lacroix’s statement striking and expressed 
the wish that Charpit’s work be published. But this was never done and we do not know 
whether Lacroix’s statement is correct. Actualy Lagrange had done the full job and 
Charpit could have added nothing (p.535, Volume 2, Kline, 1972). 

   
We do not agree with Kline on this, and Kline (1972) did not have a chance of 
reading the historical paper by Grattan-Guinness and Engelsman (1982), which will 
be summarized in a later paragraph. 
 Some authors called it the Charpit method (e.g., Sneddon, 1957) as there are 
records that Charpit presented this method in front of French Royal Academy of 
Sciences on June 30, 1784 shortly before Charpit passed away on December 28, 
1784, although there was no published record of his work before Saltykow (1930, 
1937) formally published it in 1930 for Charpit. However, the paper by Saltykow 
was not cited in textbooks, such as the one by Sneddon.  
 We follow the view that Lagrange laid down the fundamental ideas of this 
technique in 1779 and Charpit provided the actual details in 1784 and we prefer to 
call it the Lagrange-Charpit method (e.g., Delgado, 1997). Forsyth (1888) claimed 
that this method is partially due to Lagrange and partially due to Charpit, although 
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Forsyth called it Charpit’s method. But again no detailed citation was given by 
Forsyth.  
 As remarked in the last paragraph, the history of this method is not covered in 
any textbook even though different names have been adopted by different authors. 
The best coverage was given by Grattan-Guinness and Engelsman (1982), and we 
reported its history briefly here. It was reported that Charpit had helped the course 
given by Monge, who also gave him private lectures in solid geometry. Charpit was 
clearly influenced by Lagrange. Paul Charpit was a “young” mathematician when 
he presented this method to the French Academy of Sciences on June 30 1874. 
Monge, Bossut, Condorcet, Cousin, Laplace, Vandermore, and de Borda were 
presented. At that time, Lagrange was still in Berlin. It was supposed that Laplace 
and Condorcet were nominated as reporters for Charpit’s presentation, but such 
report was never found. Presumably Laplace kept the original manuscript of 
Charpit until he passed it to Lagrange in June 1793. In September 1793, Lagrange 
sent it to Arbogast, who made a copy for himself and sent the original to Lacroix, 
who made another copy of the manuscript. Lacroix mentioned Charpit’s method in 
his book and publications in 1798, 1802, and 1814. When Jacobi asked in 1841 for 
the publication of Charpit’s paper, it was reported lost for the first time. 
Apparently, Jacobi misunderstood Lacroix and claimed that it was lost. And since 
then, most authors simply quoted from Jacobi that Charpit’s manuscript was lost. 
As remarked by Grattan-Guinness and Engelsman (1982), the extant manuscript of 
Charpit actually survived and has been archived at the Biblioteca Medicea-
Laurenziana, Florence (Arbogast’s copy) and at the Archives of the Academie des 
Sciences, Paris (both Arbogast’s and Lacroix’s copy). Thus, Jacobi’s claim of a 
“lost” manuscript is not correct. In 1928, H. Villat found Lacroix’s copy at the 
Archives of the Academie des Sciences and made a photocopy and sent it to N. 
Saltykow in Belgrade, who published it in Saltykow (1930, 1937). Although the 
paper of Saltykow (1930, 1937) was published in French, it is clear from the 
mathematical equations that the paper of Charpit did contain all the major steps of 
the present known Lagrange-Charpit method. Therefore, Kline’s (1972) assertion is 
inaccurate.  
 Let us consider the following nonlinear first order PDE 

 ( , , , , ) 0z zF x y z
x y

 (6.209) 

Next, we define 

 ,z zp q
x y

 (6.210) 

The nonlinear PDE given in (6.209) can now be written as 
 ( , , , , ) 0F x y z p q  (6.211) 
We seek a solution in the form: 
 ( , , , , )U x y z p q a  (6.212) 
Mathematically, we can treat (6.211) and (6.212) as two equations for p and q:  
 ( , , , ), ( , , , )p x y z a q x y z a  (6.213) 
This is the most fundamental idea of this method. Once p and q are solved, we  can 
back substitute them into the total differential such that it is integrable: 
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 ( , , , ) ( , , , )z zdz dx dy p x y z a dx q x y z a dy
x y

 (6.214) 

Then, we can integrate (6.214) to give a solution for the original PDE given in 
(6.209).  
 First, using the technique for linear PDEs, for (6.214) we can identify the 
vector E as 
 ( , , ) ( , , 1)P Q R p qE  (6.215) 
Then, the integrability of the Pfaffian equation (6.158) becomes 

 
( ) ( ) ( )

0

P Q Q R R PR P Q
y x z y x z
q p p qp q
z z y x

 (6.216) 

Next, we will find the first derivatives involved in (6.216). To find them, we take 
the total differential of F and U with respect to x gives 

 0dF F F p F q
dx x p x q x

 (6.217) 

 0dU U U p U q
dx x p x q x

 (6.218) 

These equations can be put in matrix form as 

 p q x x

x xp q

F F p F
q UU U

 (6.219) 

or, 
 A p f  (6.220) 
The inverse of the matrix A is 

 1 1
det

q q

p p

U F
A

U FA
 (6.221) 

The determinant of A is 

 ( , )det 0
( , ) p q q p
F UA F U F U
p q

 (6.222) 

Therefore, we have  

 1
( , )
( , )

q x q xx

x p x p x

U F F Up
F Uq U F F U
p q

 (6.223) 

Thus, we have 

 ( , ) ( , ) ( , ) ( , )/ , /
( , ) ( , ) ( , ) ( , )x x
F U F U F U F Up q
x q p q x p p q

 (6.224) 

Similarly, we can differentiate F and U with respect to y and z to obtain 
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( , ) ( , ) ( , ) ( , )/ , / ,
( , ) ( , ) ( , ) ( , )

( , ) ( , )/
( , ) ( , )

y z

z

F U F U F U F Up p
y q p q z q p q

F U F Uq
z p p q

 (6.225) 

Now, we can substitute these results into (6.216) to give 

 ( , ) ( , ) ( , ) ( , ) 0
( , ) ( , ) ( , ) ( , )
F U F U F U F Up q
z p z q y q x p

 (6.226) 

Equivalently, (6.226) can be expressed explicitly as  
   ( ) ( ) 0z p p z z q q z y q q y x p p xp F U F U q F U F U F U F U F U F U  (6.227) 
We can re-shuttle this equation by recalling that U  actually is our unknown 

   ( ) ( ) ( ) 0p q q p x z y z
U U U U UF F qF pF F pF F qF
x y z p q

 (6.228) 

This is a first order PDE with five variables and the Lagrange method discussed in 
Section 6.7 can be used to write down the the subsidiary equation 

    
( ) ( )p q q p x z y z

dx dy dz dp dq
F F qF pF F pF F qF

 (6.229) 

This is the main result of the Lagrange-Charpit method. From this equation, we can 
derive  
    ( , , , , )U x y z p q a  (6.230) 
as long as  

    ( , ) 0
( , )
F U
p q

 (6.231) 

The characteristics equation can be set to dt where t is a parameter: 

    
( ) ( )p q q p x z y z

dx dy dz dp dq dt
F F qF pF F pF F qF

 (6.232) 

Therefore, the nonlinear PDE is transformed to a system of five coupled ODEs: 

    , ,p q q p
dx dy dzF F qF pF
dt dt dt

 (6.233) 

 ( ), ( )x z y z
dp dqF pF F qF
dt dt

 (6.234) 

We now illustrate how to apply the Lagrange-Charpit method. 
 
__________________________________________________________________ 
Example 6.6 Solve the following nonlinear PDE   

 2 2( ) ( )z zx y z
x y

 (6.235) 

Solution: This PDE can be recast as 
 2 2 0F p x q y z  (6.236) 
Differentiation of (6.236) gives 
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 2 22 , 2 , , , 1p q x y zF px F qy F p F q F  (6.237) 
The subsidiary equation becomes 

 2 22 2 (1 ) (1 )2 2
dx dy dz dp dq
px qy p p q qp x q y

 (6.238) 

Using the method of the Lagrange multiplier, we have 

 
2 2

3 2 3 2
2 2

2 2 ( ) 2 2 ( )
p dx pxdp q dy qydq

p x px p p q y qy q q
 (6.239) 

This can be simplified to  

 
2 2

2 2
( ) ( )d p x d q y
p x q y

 (6.240) 

Integration of both sides gives 
 2 2p x aq y  (6.241) 
On the other hand, we can rewrite (6.236) 
 2 2p x z q y  (6.242) 
Equating (6.241) and (6.242) gives 

 
1/2

(1 )
zq

y a
 (6.243) 

Substitution of (6.243) into (6.241) gives 

 
1/2

(1 )
zap

x a
 (6.244) 

Finally, from (6.214) we have 

 
1/2 1/2

(1 ) (1 )
za zdz dx dy

x a y a
 (6.245) 

Rearranging (6.245) leads to 

 
1/21/2 1/2(1 ) 1a adz dx dy

z x y
 (6.246) 

Finally, integration of (6.246) gives the solution as 

 1/2 1/2 1/2(1 ) ( )a z ax y b  (6.247) 

__________________________________________________________________ 
 
Example 6.6 shows that the analysis may not be straightforward if we do not 
recognize the appropriate multiplier for the subsidiary equation. Let us consider 
some special cases of nonlinear first order PDEs that can be solved easily by using 
the Lagrange-Charpit method. 
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6.12.1 Type I (only p and q) 

Consider the case that, the PDE only involves p and q as 
   ( , ) 0F p q  (6.248) 
The subsidiary equation can be simplified to 

  
0 0p q q p

dx dy dz dp dq
F F qF pF

 (6.249) 

For such cases, we have 
   0,dp p a  (6.250) 
Substitution of (6.250) into (6.248) gives 
   ( , ) 0f a q  (6.251) 
If we can solve for q, we have  
   ( )q Q a  (6.252) 
This is consistent with the last part of (6.249) 
   0dq  (6.253) 
In addition, (6.248) is a first order PDE, and we expect only one unknown constant 
instead of two. This is precisely what we get in (6.252). Now we can integrate to 
get z as 

    1, ( )zp a z ax f y
x

 (6.254) 

Similarly, we can integrate (6.252) to give 

    2( ), ( ) ( )zq Q a z Q a y f x
y

 (6.255) 

Comparison of (6.254) and (6.255) gives 
    2 1( ) , ( ) ( )f x ax C f y Q a y C  (6.256) 
Finally, the function z is 
    ( )z ax Q a y C  (6.257) 
 
__________________________________________________________________ 
Example 6.7 Solve the following nonlinear PDE   

 ( )( ) 1z z
x y

 (6.258) 

Solution: Note that this is Type I, and it can be rewritten in terms of p and q as: 
 1pq  (6.259) 
Employing (6.249) of the Lagrange-Charpit method, from dp = 0 we have 
 p a  (6.260) 
Substitution of (6.260) into (6.259) gives 

 1 ( )q Q a
a

 (6.261) 

Integrating both (6.260) and (6.261), we have 
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 yz ax C
a

 (6.262) 

Alternatively, we can rewrite it as 
 2

1a x y az C  (6.263) 
where C1 is an arbitrary constant. 
__________________________________________________________________ 

6.12.2 Type II (only z, p and q) 

For type II, the functional form of the PDE is 
 ( , , ) 0F z p q  (6.264) 
The subsidiary equation of the Lagrange-Charpit method is simplified to 

 
p q q p z z

dx dy dz dp dq
F F qF pF pF qF

 (6.265) 

The last part of (6.265) gives 

 dp dq
p q

 (6.266) 

Integrating this, we obtain 
 p aq  (6.267) 
where a is a constant. Substitution of (6.267) into (6.264) gives 
 ( , , ) 0F z aq q  (6.268) 
Suppose that we can solve for q such that 
 ( , )q Q z a  (6.269) 
Finally, p becomes 
 ( , )p aQ z a  (6.270) 
With known p and q, we can integrate (6.214). 
__________________________________________________________________ 
Example 6.8 Solve the following nonlinear PDE   

 2 2( ) ( )z z z
x y

 (6.271) 

Solution: Note that this is Type II, and it can be rewritten as: 
 2 2( , , ) 0F z p q p q z  (6.272) 
Thus, we can use (6.267) as 
 p aq  (6.273) 
With (6.273), the PDE given in (6.271) becomes 
 2 2 2a q q z  (6.274) 
Solving for q we have 

  1/2
2( )

1
zq

a
 (6.275) 

Substitution of (6.275) into (6.273) gives 
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 1/2
2( )

1
zp a

a
 (6.276) 

With these values of p and q, (6.214) becomes 

  1/2 1/2
2 2( ) ( )

1 1
z zdz a dx dy

a a
 (6.277) 

Rewriting (6.277) gives 

 1/2 2 1/2 2 1/2
1 1

( 1) ( 1)
adz dx dy

z a a
 (6.278) 

Integrating both sides gives 

 1/2
2 1/2 2 1/22

( 1) ( 1)
ax yz C

a a
 (6.279) 

Finally, we have the final solution as 

 
2

2 1/2 2 1/2
1
4 ( 1) ( 1)

ax yz C
a a

 (6.280) 

__________________________________________________________________ 

6.12.3 Type III (Separable) 

If the nonlinear PDE can be separated such that x and p only appear on the left 
whereas y and q only appear on the right, we have the Type III situation: 
 ( , ) ( , )F x p G y q  (6.281) 
For such case, the subsidiary equation of the Lagrange-Charpit method becomes 

 
p q p q x y

dx dy dz dp dq
F G pF qG F G

 (6.282) 

The first and fourth equations of (6.282) can be grouped to form an ODE as 

 0x

p

Fdp
dx F

 (6.283) 

which can be solved for p as a function of x because F is only a function of x and p 
(see (6.281)). In Pfaffian form, it is 
 0p xF dp F dx  (6.284) 
This is a total differential of F = constant. Clearly, the solution is  
 ( , )F x p a  (6.285) 
where a is a constant. Thus, (6.281) also leads to 
 ( , )G y q a  (6.286) 
Thus, in principle, we can find p and q from (6.285) and (6.286) and eventually 
integrate (6.214).  
 Alternatively, we can also group the second and last equation of (6.282) to 
give 
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  0y

q

Gdq
dy G

 (6.287) 

Then, following the same logic we can find the solution for q since (6.287) is a total 
differential of G = constant. Thus, we can solve both p and q from the following 
equations 
 ( , )G y q a ,   ( , )F x p a  (6.288) 
The next example illustrates this case. 
__________________________________________________________________ 
Example 6.9 Solve the following nonlinear PDE   

 2 2 2( ) (1 ) ( )z zy x x
x y

 (6.289) 

Solution: Note that this is Type III because it can be written as 

 
2 2

2
(1 )p x q

yx
 (6.290) 

Because the given function G is much simpler than F, we can revise the procedure 
slightly as 
 0q yG dq G dy  (6.291) 
Using (6.290), we have 

 2
1 ,q y

qG G
y y

 (6.292) 

Thus, we have 

 dq dy
q y

 (6.293) 

The solution is 
 q ay  (6.294) 
where a is a constant. Substitution of (6.294) into (6.290) gives 

  
2

2
2

(1 )( , ) xF x p p a
x

 (6.295) 

Solving for p we have 

 
1/2

2 1/2(1 )
a xp

x
 (6.296) 

Substitution of (6.296) and (6.294) into (6.214) gives 

 
1/2

2 1/2(1 )
a xdxdz pdx qdy aydy

x
 (6.297) 

Integration gives 

 2 21
2
az a x y b  (6.298) 

__________________________________________________________________ 
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6.12.4 Type IV  (Clairaut Type) 

The type IV first order PDE can be considered as a generalization of the Clairaut 
equation of first order ODEs discussed in Chapter 3: 

   ( , )z z z zz x y f
x y x y

 (6.299) 

Thus, the functional form F can be cast as 
   ( , ) 0F xp yq f p q z  (6.300) 
Thus, we have 
   1, , , ,z x y p p q qF F p F q F x f F y f  (6.301) 
The subsidiary equation of the Lagrange-Charpit method becomes 

 
0 0p q q p

dx dy dz dp dq
x f y f qy px qf pf

 (6.302) 

Clearly, similar to the Clairaut equation discussed in Chapter 3, we have 
 ,p a q b  (6.303) 
Thus, the solution is (6.196) with the values of p and q given in (6.200) as: 
   ( , )z ax by f a b  (6.304) 
__________________________________________________________________ 
Example 6.10 Solve the following nonlinear PDE   

 2( ) { } 2z z z zz x y
x y x y

 (6.305) 

Solution: Note that this is Type IV or Clairaut type  

 2
2

( )
z xp yq

p q
 (6.306) 

Thus, from the last two equations of (6.302) we have 
 ,p a q b  (6.307) 
The general solution is 

 2
2

( )
z ax by

a b
 (6.308) 

__________________________________________________________________ 

6.12.5 Singular Solution 

Similar to the discussion in Section 3.2.12, the singular solution can also be found 
accordingly. Consider again the following first order nonlinear PDE 
 ( , , , , ) 0F x y z p q  (6.309) 
where p and q have been defined in (6.210). Let the general solution of it be 
 ( , , , , ) 0V x y z a b  (6.310) 
Since the solution for z is a function of x and y, we can differentiate (6.310) as 
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 0V V z V V p
x z x x z

 (6.311) 

 0V V z V V q
y z y y z

 (6.312) 

Similar to the c-discriminate method discussed in Section 3.2.12, we allow a and b 
to be functions of x and y. Then, the differentiation of (6.310) leads to 

 0V V V a V bp
x z a x b x

 (6.313) 

 0V V V a V bq
y z a y b y

 (6.314) 

Substitution of (6.311) and (6.312) into (6.313) and (6.314) gives 

 0V a V b
a x b x

 (6.315) 

 0V a V b
a y b y

 (6.316) 

These two equations can be put in a matrix form as 

 
0
0

a b V
x x a
a b V
y y b

 (6.317) 

In general, we can now use (6.310), (6.313), and (6.314) to eliminate a and b. 
There are three possible scenarios: 
 
(i) For singular solutions, we require  

 0, 0V V V
a b

.  (6.318) 

Note that (6.313) and (6.314) are automatically satisfied by the first equation of 
(6.318). 
 
(ii) To get back the general solution, we require 

 0a b a b
x x y y

  (6.319) 

(iii) For the third scenario, we have 

 0, 0V V
a b

  (6.320) 

From (6.317), we immediately see that the following Jacobian is zero: 

 ( , ) 0
( , )
a bJ
x y

  (6.321) 
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Thus, the variables a and b are not independent. We must have a = a(b) or 
inversely we have 
 ( )b w a   (6.322) 
where w is an arbitrary function. Differentiating (6.310) with respect to a and 
rewriting (6.310) in terms of (6.322), we have the following system of equations: 

 0V V w
a b a

 (6.323) 

 ( , , , , ( )) 0V x y z a w a  (6.324) 
Elimination of a from (6.323) and (6.324), we again obtain the general solution. 
 
__________________________________________________________________ 
Example 6.11 Find the general solution as well as the singular solution of the 
following Clairaut equation: 

 0z z z zz x y
x y x y

 (6.325) 

Solution: Expressing this in terms of p and q, we have 
 z xp yq pq  (6.326) 
The subsidiary equation of the Lagrange-Charpit method for the Type IV case is 

 
0 0p q q p

dx dy dz dp dq
x f y f qy px qf pf

 (6.327) 

From the last two parts of (6.327), we have  
 ,p a q b  (6.328) 
The general solution becomes 
   ( , , , , ) 0V x y z a b z ax by ab  (6.329) 
Applying (6.318) gives 

 0V x b
a

 (6.330) 

 0V y a
b

 (6.331) 

Using (6.330) and (6.331) to eliminate a and b from (6.329), we have the singular 
solution as  
  z xy  (6.332) 
__________________________________________________________________ 

6.13 GEOMETRIC INTERPRETATION OF NONLINEAR PDE  

The geometric interpretation of a nonlinear PDE was given by Monge. Let us 
consider the linear form of PDE first 

   0z zdz dx dy pdx qdy
x y

 (6.333) 
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x y

z

Monge cones of 
possible normals  

Note that d  is parallel to E, and the normal vector to the increasing curve E = (P, 
Q, R) is the directional vector of the intersecting surfaces can be expressed: 
   ( , , 1)p qN  (6.334) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Geometric interpretation of the solution of nonlinear 1st order PDE 
The normal direction of the vector E is 

   
2 2

1 ( , , 1)
1

p q
p q

Nn
N

 (6.335) 

More importantly, we see that the direction is an unique function of p and q. 
However, for a nonlinear PDE, there is no one-to-one correspondence between p 
and q. To illustrate this, we consider a special case that nonlinearity in p can be 
expressed as polynomials: 
   1

1 1( , , , , ) ... 0n n
n nF x y z p q a p a p a p bq c  (6.336) 

Clearly, we have more than one pair of p and q that satisfies F = 0. In other words, 
we do not have a unique direction n for the intersecting curves. The direction of the 
curve is now non-unique and Monge interpreted the possible direction of the curve 
forming by a cone, called the Monge cone. The idea is showed in Figure 6.5. 

6.14 JACOBI’S METHOD 

We saw in the last section that the Lagrange-Charpit method is for two variables x 
and y. This technique, however, cannot be extended to first order PDEs of more 
than two independent variables. The technique discussed in this section was 
proposed by Jacobi in 1836. Jacobi’s method can be applied to 3 or more variables. 
Therefore, it is more general than the Lagrange-Charpit method. However, for 
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Jacobi’s method to be applicable, the unknown z cannot appear in the nonlinear 
PDE explicitly.  
 Let us consider the case of a first order PDE with three variables: 
   1 2 3 1 2 3( , , , , , ) 0F x x x p p p  (6.337) 
where z is the unknown and its derivatives are defined by 

   1 2 3
1 2 3

, ,z z zp p p
x x x

 (6.338) 

The main idea of Jacobi’s method is to find two PDE involving two unknown 
constants: 
   1 1 2 3 1 2 3 1( , , , , , )F x x x p p p a  (6.339) 
   2 1 2 3 1 2 3 2( , , , , , )F x x x p p p a  (6.340) 
In this way, we have now three equations to solve for p1, p2, and p3. This idea is 
clearly a natural extension of the Lagrange-Charpit method. 
 The total differential of the unknown z is 
   1 1 2 2 3 3dz p dx p dx p dx  (6.341) 
The integrable conditions of this equation are 

   
2

2 1

1 1 2 2

p pz
x x x x

 (6.342) 

   
2

3 1

1 1 3 3

p pz
x x x x

 (6.343) 

   
2

32

3 3 2 2

pp z
x x x x

 (6.344) 

Note that p1, p2, and p3 are functions of the variables only. We can now take the 
total differential of F and F1 with respective to x1 : 

   31 2

1 1 1 2 1 3 1
0

pp pF F F F
x p x p x p x

 (6.345) 

   31 1 1 1 2 1

1 1 1 2 1 3 1
0

pF F p F p F
x p x p x p x

 (6.346) 

The subtraction of the result of multiplying (6.346) by F/ p1 from the result of 
multiplying (6.345) by F1/ p1 yields 

   31 1 2 1

1 1 2 1 1 3 1 1

( , ) ( , ) ( , )
0

( , ) ( , ) ( , )
pF F F F p F F

x p p p x p p x
 (6.347) 

where the Jacobian is 

   1 1 1

1 1 1 1 1 1

( , )
( , )
F F F FF F
x p x p p x

 (6.348) 

Similarly, we can differentiate F and F1 with respect to x2 and x3 to get 

   31 1 1 1

2 2 1 2 2 3 2 2

( , ) ( , ) ( , )
0

( , ) ( , ) ( , )
pF F F F p F F

x p p p x p p x
 (6.349) 
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   1 1 1 1 2

3 3 1 3 3 2 3 3

( , ) ( , ) ( , )
0

( , ) ( , ) ( , )
F F F F p F F p
x p p p x p p x

 (6.350) 

Adding (6.347), (6.349) and (6.350) leads to 

   1 1 1

1 1 2 2 3 3

( , ) ( , ) ( , )
0

( , ) ( , ) ( , )
F F F F F F
x p x p x p

 (6.351) 

The result (6.351) is a consequence of applying the following identities: 

   1 2 1 1 1 1

2 1 1 1 2 2 2 1 2 1 1 2

( , ) ( , ) ( , ) ( , )
{ } 0

( , ) ( , ) ( , ) ( , )
F F p F F p F F F Fz
p p x p p x x x p p p p

 (6.352) 

Note that the last equation is the result of reversing the order of the two variables of 
a Jacobian leading to the negative value of the same Jacobian (see definition in 
(6.348)). Similarly, we also have 

    31 1 1 1 1

3 1 1 1 3 3 3 1 3 1 1 3

( , ) ( , ) ( , ) ( , )
{ } 0

( , ) ( , ) ( , ) ( , )
pF F F F p F F F Fz

p p x p p x x x p p p p
 (6.353) 

    31 1 2 1 1

3 2 2 2 3 3 3 2 3 2 2 3

( , ) ( , ) ( , ) ( , )
{ } 0

( , ) ( , ) ( , ) ( , )
pF F F F p F F F Fz

p p x p p x x x p p p p
(6.354) 

Rewriting (6.351) explicitly, we get 

   1 1 1 1 1 1

1 1 1 1 2 2 2 2 3 3 3 3
0

F F F F F FF F F F F F
x p p x x p p x x p p x

 (6.355) 

This equation can be rewritten symbolically: 
   1[ , ] 0F F  (6.356) 
This is actually the compatibility of the two PDEs F = 0 and F1 = 0 (see Problem 4 
of Section 2.9, Sneddon, 1956). Similarly, we can also obtain: 
   2[ , ] 0F F  (6.357) 
   1 2[ , ] 0F F  (6.358) 
Note that F = 0 is given while F1 = 0 is not. Thus, we can view (6.356) as a first 
order PDE for F1. Its solution can be found readily using the Lagrange-Charpit 
method discussed in Section 6.12. The subsidiary equation of (6.355) using the 
Lagrange-Charpit method is 

   3 31 1 2 2

1 1 2 2 3 3

dp dxdp dx dp dx
F F F F F F
x p x p x p

 (6.359) 

From the characteristics equations of (6.359), we can find F1 = a1 and F2 = a2. 
However, after we obtain these solutions, we need to check whether they are 
compatible using 

   
3

1 2 1 2
1 2

1

[ , ] ( )
r r r rr

F F F FF F
x p p x

 (6.360) 

By now, we have three equations for p1, p2, and p3:  
   1 1 2 20, ,F F a F a  (6.361) 
This completes Jacobi’s method, which will be illustrated in the following example. 
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__________________________________________________________________ 
Example 6.12 Solve the following nonlinear PDE using Jacobi’s method  

 2 2
1 3 3

1 2 2 3
2 3 ( ) 0z z z zx x x

x x x x
 (6.362) 

Solution: Expressing this in terms of pi (i = 1,2,3), we have 
 2 2

1 1 3 2 3 2 32 3 0p x x p x p p  (6.363) 
The subsidiary equation is  

   3 31 1 2 2
2 2

1 3 1 3 1 1 2 33 2 3 22 2 0 2 63 2
dx dpdx dp dx dp

x x p x p x p xx p p p
 (6.364) 

The first two parts of (6.364) give 

   1 1

1 1

dx dp
x p

 (6.365) 

The solution of (6.365) is 
 1 1 1 1F p x a  (6.366) 
The fourth part of the characteristics equation (6.364) gives 
 2 2 2F p a  (6.367) 
Their compatibility can be checked as 
 1 2 1 1[ , ] 0 0 0 1 0 0 0 0 0 0 0F F p x  (6.368) 
Thus, we can use (6.363), (6. 366), and (6.367) to find 

 
2

1 3 2 31
1 2 2 3 2

1 2

2 3
, ,

a x a xap p a p
x a

 (6.369) 

The solution can now be integrated from the total differential 

 
2

1 3 2 31
1 2 2 32

1 2

2 3
( )

a x a xadz dx a dx dx
x a

 (6.370) 

Integration of (6.370) gives the final solution as 

 2 3
1 1 2 2 1 3 2 3 32

2

1ln ( )z a x a x a x a x a
a

 (6.371) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 6.13 Solve the following nonlinear PDE using Jacobi’s method  

 2
2 3

2 3 1
( )( ) 0z z zx x z

x x x
 (6.372) 

Solution: We can rewrite (6.372) as 
 2

2 3 2 3 1( )( ) 0x x p p zp  (6.373) 
In (6.373), the unknown z appears explicitly, and we cannot apply Jacobi’s method 
directly. Let us assume the following relation 
 1 2 3( , , , ) 0u x x x z  (6.374) 
Note that (2.374) is clearly a solution of (6.373) because it relates the unknown z 
with the variables. We further assume that z is a new variable: 
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 4 1 1
4 1

1 1 4

4

,

u
x x Pzz x p

ux x P
x

 (6.375) 

Similarly, we have 

 32
2 3

4 4
,

PPp p
P P

 (6.376) 

The derivatives of the new unknown u are 

 1 2 3 4
1 2 3 4

, , ,u u u uP P P P
x x x x

 (6.377) 

With the new unknown u and its derivatives defined in (6.377), we can rewrite the 
PDE symbolically as 
 1 2 3 4 1 2 3 4( , , , , , , , ) 0F x x x x P P P P  (6.378) 
The original PDE now becomes 
 2

2 3 2 3 4 1 4( )( ) 0x x P P x P P  (6.379) 
Jacobi’s method can now be applied to give a subsidiary equation: 

31 1 2 2
2

4 4 2 3 2 3 2 3 2 32 3

3 4 4
2

4 1 1 42 3

0 2( )( ) 2( )( )( )

( )

dxdx dP dx dP
x P x x P P x x P PP P

dP dx dP
x P P PP P

 (6.380) 

These characteristics equations can be solved to give 
   1 1 1 2 2 3 2 3 4 4 3, ,F P a F P P a F x P a  (6.381) 
It is straightforward to show that 
 1 2 1 3 3 2[ , ] [ , ] [ , ] 0F F F F F F  (6.382) 
We can now find the derivatives from (6.379) and (6.381) to give 

 3 1 3
1 1 4 2 2 3 2 2

4 2 3
, , 2 ,

a a a
P a P P a P P a

x x x
 (6.383) 

Thus, we can find u as: 

 3 1 3
1 1 4 2 2 3 2 3

4 2 3

1 ( ) 2 ( )
2

a a a
du a dx dx a dx dx dx dx

x x x
 (6.384) 

The solution can obtain by integration as 

 1 1 3 4 2 2 3 1 3 2 3 4
1ln ( ) ( )
2

u a x a x a x x a a x x a  (6.385) 

Finally, the solution of (6.373) can be found by making the following identifications: 

 1 2 4
4 1 2 3

3 3 3

10, , , ,
2

a a au x z A A A
a a a

 (6.386) 

The solution is 
 1 1 2 2 3 1 2 3 3ln ( ) ( ) 0z A x A x x A x x A  (6.387) 
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__________________________________________________________________ 

6.15 HODOGRAPH TRANSFORMATION  

We will see in Chapter 7 that for fluid mechanics problems, Molenbroek in 1890 
and Chaplygin in 1902 applied Legendre transform to rewrite the unknowns as x 
and y, and the variables as the velocity components. This technique is, in general, 
called a hodograph transformation. We will show in this section that such 
transformation can convert a system of nonlinear first order PDEs to a linear one if 
the variables do not appear explicitly in the differential equations. 
 In particular, we consider the following system of PDEs: 

 1 1 1 1( , ) ( , ) ( , ) ( , ) 0u u v vA u v B u v C u v D u v
t x t x

 (6.388) 

 2 2 2 2( , ) ( , ) ( , ) ( , ) 0u u v vA u v B u v C u v D u v
t x t x

 (6.389) 

We can use the hodograph transformation as 
 ( , ), ( , )x x u v t t u v  (6.390) 
where 

 ( , ) 0
( , )
u v
x y

 (6.391) 

We can use the transformation as 

 , , ,
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

x t x t
u u v vv v u u

x t x t x t x tt x t x
u v u v u v u v

 (6.392) 

Substitution of (6.392) into (6.388) and (6.389) gives the following linear system 
of first order PDEs as 

 1 1 1 1( , ) ( , ) ( , ) ( , ) 0x t x tA u v B u v C u v D u v
v v u u

 (6.393) 

 2 2 2 2( , ) ( , ) ( , ) ( , ) 0x t x tA u v B u v C u v D u v
v v u u

 (6.394) 

Since the unknowns are x and t, (6.393) and (6.394) are linear PDE. 

6.16 SUMMARY AND FURTHER READING 

Most textbooks on differential equations do not cover the solution technique for first 
order PDEs. However, we have illustrated that first order PDEs actually appears 
naturally as transport, kinematic wave, or shock wave equations in engineering and 
mechanics. Airy’s method of solving nonhomogeneous hyperbolic equations is 
introduced. Geometric interpretation of the solution of linear first order PDE by 
Monge is discussed. For linear PDEs, we discuss the method of Lagrange, including 
the technique of the Lagrange multiplier, Pfaffian equations, exact equations, and 
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integrability of Pfaffian. For nonlinear PDE, we cover Lagrange-Charpit method and 
Jacobi’s method. Various special cases of the Lagrange-Charpit method are discussed 
and illustrated. Geometric interpretation of nonlinear PDEs is also discussed. 
 For further reading, we recommend the books by Lopez (2000) and Snedden 
(1957).  

6.17   PROBLEMS  

Problem 6.1 Solve the following PDE 

   2z za xy
x y

 (6.395) 

Ans: 2 2 2 3 3 4 4
2

1( ) {6 4 }
12

z ax y a x y a x y a x
a

 

 
Problem 6.2 Show also that the solution of Problem 6.1 can be expressed as 

   3 4
2

1( ) { 4 }
12

z ax y axy y
a

 (6.396) 

 
Problem 6.3 Solve the following PDE 

   x yz za e
x y

 (6.397) 

Ans: 1( )
( )

x yz ax y e
a

 

Problem 6.4 Find the solution of   

   0u u ux y z
x y z

 (6.398) 

Ans: ( , )y xu f
z y

 

 
Problem 6.5 Find the solution of   

   z zxz yz x
x y

 (6.399) 

Ans: 2 2 ( )yz x f
x

 

 
Problem 6.6 Find the solution of   

   ( 3 ) 0z zx y y
x y

 (6.400) 
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Ans: 23( )
2

z f xy y  

 
Problem 6.7 Find the solution of   

   0z zy x
x y

 (6.401) 

Ans: 2 2( )z f x y  
 
Problem 6.8 Find the solution of   

   z zy x x y
x y

 (6.402) 

Ans: 2 2( )z y x f x y  
 
Problem 6.9 Find the solution of   

   2 2 2( ) 2 0z zx y xy z
x y

 (6.403) 

Ans: 1 1 1 1( , ) 0
z x y z x y

 

 
Problem 6.10 Find the solution of   

   2 2 0z zx xy y
x y

 (6.404) 

Ans: 3( ,3 ) 0xy xyz y  
 
Problem 6.11 Find the solution of   

   ( ) ( ) ( )(2 2 )z zx x y y x y x y x y z
x y

 (6.405) 

Ans: [ , ( )( )] 0xy x y x y z  
 
Problem 6.12 Find the solution of   

   2 ( 2 )z zy xy x z y
x y

 (6.406) 

Ans: 
2

2 21 ( )xz f x y
y y

 

 
Problem 6.13 Find the solution of   
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   2 2 2 2 2 2( 3 ) (3 ) 2 ( )z zx x y y x y z y x
x y

 (6.407) 

Ans: 
2 2

( , ) 0xy x y
z z

 

 
Problem 6.14 Find the solution of the following PDE 

   2 ( 3) (2 ) (2 3)z zy z x z y x
x y

 (6.408) 

passing through the curve 
 2 20, 2z x y x  (6.409) 

Ans: 2 2 22 4x y x z z  
 
Problem 6.15 Find the solution of the following PDE 

   2(2 1) ( 2 ) 2( )z zxy z x x yz
x y

 (6.410) 

passing through the curve 
 1, 0x y  (6.411) 

Ans: 2 2 1x y z xz y  
 
Problem 6.16 Find the solution of   

   2( ) ( ) 0z zyz
x y

 (6.412) 

Ans: 2 2 22z ax a y b  
 
Problem 6.17 Find the solution of   

   ( )( )z z z z
x y x y

 (6.413) 

 Ans: 
1

ayz ax b
a

 

 
Problem 6.18 Find the solution of   

   ( )( )z z z zz
x y x y

 (6.414) 

 Ans: 2 2( 1)( )yz a x b
a

 

 
Problem 6.19 Find the solution of   
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   2 2 2 2 2 2 2 2( ) ( ) ( ) ( )z z zx y x x y
x y y

 (6.415) 

Ans: 2 2 3/2 2 2 1/21 ( ) ( )
3

z x a y a b  

 
Problem 6.20 Find the solution of   

   22 ( ) 2 ( ) ( )( ) 0z z z zxz x xy
x y x y

 (6.416) 

Ans: 2( )z ay b x a  
 
Problem 6.21 Two PDEs are given as: 

   2 2
2 3

1 2 3
( ) ( )( ) 0z z zF x x

x x x
 (6.417) 

   1 2
1 2

( ) 0z zF x
x x

 (6.418) 

(i) Check the compatibility of these two PDEs. 
(ii) Use Jacobi’s method to find F2 = a. 
(iii) Finally, find the solution for z. 

 Ans: (ii) F2 = p1 = a; (iii) 1 2
3

1( ln )z a x x b
x

 

 
Problem 6.22 Solve the following PDE by Jacobi’s method 

   2 2
1 2

1 2
( ) ( )z zx x z

x x
 (6.419) 

Ans:
1/2 1/2 1/2

1 22( ) 2( ) 2{( ) }c ax bx a b z  
 
Problem 6.23 Find the solution of the following PDE 

   2 2

1 2
( ) ( ) 0z z

x x
 (6.420) 

Ans: z ax ay b  
 
Problem 6.24 Find the solution of the following PDE 

   2 3 3 2( ) ( ) 0z zy x
x y

 (6.421) 

Ans: 1/3 2 1/2 21 1
2 2

z a x a y b  

 
Problem 6.25 Find the solution of the following PDE 
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   ( )( ) 0z zz
x y

 (6.422) 

Ans: 1/2 1/2 21 ( )
4

z a x a y b  

 
Problem 6.26 Find the solution of the following PDE 

   2 2( )z zz x y y x
x y

 (6.423) 

Ans: 2 2 2( , ) 0xy z x y  
 
Problem 6.27 Find the solution of the following PDE 

   ( ) ( ) ( )z zx y z y z x z x y
x y

 (6.424) 

Ans: ( , ) 0x y z xyz  
 
Problem 6.28 Find the solution of the following PDE 

   2 2 2 2 2[( ) ( ) ]z zz x y
x y

 (6.425) 

Ans:    
2

2 2 2
2

ln( )
2
a x x az x x a y y a b

y y a
  

 
Problem 6.29 Find the solution of the following PDE 

   2( ) ( ) 1z zxz y yz x z
x y

 (6.426) 

Ans:    (( )(1 ), ( )(1 )) 0x y z x y z   
 



  CHAPTER SEVEN 
 

Higher Order Partial Differential 
Equations (PDEs) 

7.1 INTRODUCTION 

We have considered the theory for first order PDEs in the last chapter. It seems 
logical to discuss first order PDEs before we discuss higher order in the present 
chapter. However, historically, investigation of partial differential equations starts 
with second order, as many physical problems, like wave propagation, heat 
diffusion, and incompressible and irrotational flow, have to be modelled by second 
order PDEs.  They include the work of Bernoulli, Euler, D’Alembert, Laplace and 
many others. Because of its importance in physical applications, most of the 
available results for PDEs are developed for second order. A separation chapter 
(Chapter 9) will be devoted solely to the discussion of second order PDE, including 
wave, diffusion, and potential equations. We will consider the classification of 
second order PDEs in detail here, leading to the hyperbolic type, parabolic type, 
and elliptic type. We will show that the canonical forms of second order PDEs with 
constant coefficients can always convert to nonhomogeneous Klein-Gordon 
equations, nonhomogeneous diffusion equation and nonhomogeneous Helmholtz 
equations. The solution techniques for these equations are covered in some detail.   
 As reviewed by Selvadurai (2000a,b), nearly all existing textbooks on PDEs 
are restricted to the coverage of second order PDEs. For example, such PDE 
textbooks include some of the most popular textbooks on PDEs: Airy (1873), 
Bateman (1944), Carrier and Pearson (1976), Gustafson (1999), Evans et al. 
(2000), Gu (1989), John (1981), Heinbockel (2003), Myint-U (1987), Myint-U and 
Debnath (1987), Sneddon (1957), Petrovsky (1991), Sommerfeld (1949), Tricomi 
(1923), Drabek and Holubova (2007), Trim (1990), Farlow (1982), Zachmanoglou 
and Thoe (1986), Zill (1993), Zauderer (1989), and Zill and Cullen (2005). In 
reality, many phenomena need to be modeled by PDE of order higher than two, 
including the biharmonic equation, Onsager equation, Benjamin-Bonna-Mahony 
equation, Boussinesq equation, KdV equation, regularized long wave equation, and 
Hirota equation.  
 In view of the importance of the biharmonic equation in elasticity and in fluid 
flows, Selvadurai (2000b) considered the solution of the biharmonic equation in 
detail, whereas higher order PDEs with constant coefficients were considered in 
Chapters 31 and 32 of Ayres (1952).  
 Motivated by this shortcoming in most books, we present the biharmonic 
equation in detail, including a solution of the biharmonic equation expressed in the 
form of an integral equation similar to that of Poisson for potential theory. 
However, Green’s function method for the biharmonic equation is deferred to 
Chapter 8 while the variational method for the biharmonic equation is covered in 
Chapter 14. 
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 Another main difference of the present chapter from most of the pre-existing 
textbooks on PDEs is our discussion of the factorization technique for solving 
homogeneous higher order PDEs, and symbolic methods for solving 
nonhomogeneous PDEs of higher order. For second order PDEs with non-constant 
coefficients, we discuss Monge’s method, and the Monge-Ampere method. These 
methods were not covered in most textbooks on PDEs, except Sneddon (1957) and 
Ayres (1952).  

7.2 CLASSIFICATION OF SECOND ORDER PDE 

There is something special about the second order PDE. For the case of two 
variables, all linear differential equations can be classified into three types of 
differential equations. Let us consider the following most general form of second 
order linear PDE: 

 
2 2 2

2 2 0u u u u uA B C D E Fu G
x y x yx y

 (7.1) 

We apply a general change of variables as 
 ( , ) ( , )u x y u  (7.2) 
Inversely, the new variables can be expressed in x and y as 
 ( , ), ( , )x y x y  (7.3) 
The mapping is arbitrary and the only requirement is having a nonzero Jacobian: 

 0x y

x y
J

x y y x
 (7.4) 

The first derivatives of u with respect to x and y are  

 u u u
x x x

 (7.5) 

 u u u
y y y

 (7.6) 

The second derivatives can be obtained by further differentiating (7.5) with respect 
to x as  

2 2 2

2 2 2[ ] ( ) ( )u u u u u u u
x x x x x x xx x x

 (7.7) 

It is important to note that the differentiation of the bracket term on the right hand 
side of (7.7) is conducted using the chain rule similar to that for (7.5). Finally, we 
get 

2 2 2 2 2 2
2 2

2 2 2 2 2( ) 2 ( )u u u u u u
x x x xx x x

 (7.8) 

Similarly, the other two second derivatives can be obtained as 
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2 2 2 2 2 2

2 2( )u u u u u u
x y x y x y x y x y x y x y

 

  (7.9) 

 
2 2 2 2 2 2

2 2
2 2 2 2 2( ) 2 ( )u u u u u u

y y y yy y y
 (7.10) 

Finally, substitution of (7.5), (7.6), and (7.8) to (7.10) into (7.1) gives 

 
2 2 2

2 2
u u u u uA B C D E Fu G  (7.11) 

 2 2( ) ( )A A B C
x x y y

 (7.12) 

 2 ( ) 2B A B C
x x x y x y y y

 (7.13) 

 2 2( ) ( )C A B C
x x y y

 (7.14) 

 
2 2 2

2 2D A B C D E
x y x yx y

 (7.15) 

 
2 2 2

2 2E A B C D E
x y x yx y

 (7.16) 

 ( ( , ), ( , ))F F x y  (7.17) 

 ( ( , ), ( , ))G G x y  (7.18) 
The mathematical form of (7.11) looks more complicated than (7.1). One may ask 
why we want to apply a more complicated change of variables to result in the 
system given in (7.11) to (7.18). However, the general mapping given in (7.11) 
allows us to search for a simpler form of second order PDE. 
 A major property of this transformation is that  

 
2

2
2
44 B ACB AC

J
 (7.19) 

where J is the Jacobian of the mapping function defined in (7.4). The validity of 
(7.19) is proved as Problems 7.2 to 7.4 at the end of this chapter. That is, the sign 
of B2 4AC in (7.18) will remain the same after any valid coordinate transformation 
with nonzero J.  If it is positive, it is always positive. If it is negative, it is always 
negative. If it is zero, it is always zero. Its sign is thus an invariant. In fact, this 
property allows us to classify the PDE using the sign of (7.19). This idea is first 
explored by Laplace and later refined by Bois-Reymond. We will next consider the 
idea of characteristics and its relation to the sign of (7.19). 
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1( , )x y C 2( , )x y C

2

1

x

y

7.2.1 Physical Meaning of Characteristics 

In particular, observing the mathematical similarity of (7.12) and (7.14), we look 
for the possibility of setting 
 0, 0A C  (7.20) 
The mathematical structure for both (7.12) and (7.14) is the same. Thus, they will 
be considered together here. In particular, we are looking for a solution that 
satisfies the following first order PDE: 

 2 2( ) ( ) 0z z z zA B C
x x y y

 (7.21) 

There are two solutions for (7.21). Let us denote its solutions as 
 1 2( , ) , ( , )z x y C z x y C  (7.22) 
These curves are illustrated in Figure 7.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 Solutions are propagating along two curves, which are called characteristics 
 
Taking the total differential of (7.22) gives 

 0d dx dy
x y

 (7.23) 

 0d dx dy
x y

 (7.24) 

Thus, the slopes of these can be found as 

 1
/
/

dy x
dx y

 (7.25) 
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 2
/
/

dy x
dx y

 (7.26) 

These slopes 1 and 2 are depicted in Figure 7.1. Along these curves, the original 
PDE becomes an ODE, and these curves are known as characteristics curves. If 
these curves exist, the solutions are propagating along these characteristics. Note, 
however, whether these characteristics exist or not, depends on the given 
coefficients A, B, and C given in the original PDE given in (7.1). On the other 
hand, we can see that (7.21) is actually a quadratic equation for the ratio of the 
partial derivative of  or  with respect to x to that with respect to y. In particular, 
we have  

 2( / ) ( / ) 0A B C
x y x y

 (7.27) 

  2( / ) ( / ) 0A B C
x y x y

 (7.28) 

The two solutions of them are the same. Without loss of generality, we can pick the 
root of dy/dx for the two characteristics as: 

 
2

1
/ 4
/ 2

dy x B B AC
dx y A

 (7.29) 

 
2

2
/ 4
/ 2

dy x B B AC
dx y A

 (7.30) 

Clearly, the slopes of these characteristics are functions of A, B, and C.  

7.2.2 Sommerfeld’s Interpretation of Characteristics 

A closer look at the solutions given in (7.29) and (7.30) reveals a more in-depth 
physical meaning of the characteristics. The following interpretation was given by 
Monge in 1770 and summarized in the book by Sommerfeld (1949). Let us recast 
the second order PDE in (7.1) as 

 
2 2 2

2 2 ( , , , , )u u u u uA B C u x y
x y x yx y

 (7.31) 

Next, we can rewrite (7.31) as: 
 Ar Bs Ct  (7.32) 
where 

 
2 2 2

2 2, ,u u ur s t
x yx y

 (7.33) 

By adopting the notation that we used for the first order ODE introduced in the last 
chapter, we have 

 ,u up q
x y

 (7.34) 

Taking the total differential of both p and q, we get 
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2 2

2( )u u udp d dx dy rdx sdy
x x yx

 (7.35) 

 
2 2

2( )u u udq d dx dy sdx tdy
y x y y

 (7.36) 

We now group (7.32), (7.35), and (7.36) in matrix form as 

 0
0

A B C r
dx dy s dp

dx dy t dq
 (7.37) 

We rewrite this symbolically as 
 A t  (7.38) 
For a certain problem, if , dp, and dq are given on some curve, we can find r, s, 
and t if and only if the determinant of matrix A is nonzero. The determinant is 
obtained from (7.37) as: 
 2 2det ( ) ( )A A dy Bdxdy C dx  (7.39) 
Now, we observe that the slopes given in (7.29) and (7.30) satisfy the following 
equation 
 2 2( ) ( ) 0A dy Bdxdy C dx  (7.40) 
which is precisely the determinant of the system given in (7.37). In other words, we 
cannot solve for r, s, and t if , dp, and dq are given on the characteristics. This 
situation is illustrated in Figure 7.2. Given data cannot be prescribed on any line 
that parallels characteristics, otherwise the problem cannot be solved. The root of 
(7.40) is  

 
2 4

2
dy B B AC
dx A

2B2 4  (7.41) 

which is precisely (7.29) and (7.30). Thus,  = 0 implies characteristics exists.  
 When   0, r, s, and t are nonzero, we can find their derivatives as: 

 
3 3 3

3 2 3, ,x x y y
u u ur s r t

x x y y
 (7.42) 

Thus, differentiation of (7.32), (7.35), and (7.36) with respect to x gives 
 x x x xAr Bs Ct  (7.43) 
 x xdr r dx s dy  (7.44) 
 x xds s dx t dy  (7.45) 
Note that we have used the following identities in arriving at these results 

 
3

2, , y x
p q ur s s t
x x x y

 (7.46) 

Again, we can put (7.43) to (7.45) into matrix form as 
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p, q are known on  

( , )x y const

( , )x y const

y

x

 0
0

x x

x

x

A B C r
dx dy s dr

dx dy t ds
 (7.47) 

Note that the matrix of coefficients is the same as that for (7.37). It means that we 
can solve for higher derivatives of u. This process of taking higher derivatives 
leads to the same coefficient matrix again and again. Therefore, if   0, all higher 
derivatives of u can be found. In other words, u can be expanded in Taylor series 
expansion at any points. Thus, the function u must be analytic, smooth, and 
continuous. Therefore, there is no jump or no wave-like signal from the solution of 
u if    0. On the contrary, if  = 0 (and this results from assuming the validity of 
(7.20)), the solution is not continuous or representing a wave signal. Note that the 
arrival of the wave signal is an abrupt and discontinuous phenomenon. 
Consequently, we see that characteristics represent wave types of solutions. For 
differential equations with propagating solutions (or hyperbolic type), 
mathematicians use the term “characteristics” whereas physicists use the term 
“waves” for the same physical phenomenon. In fact, there is a Le Roux-Delassus 
Theorem in 1895 stating that any singular surface of a solution of a linear 
differential equation must be characteristics (Hadamard, 1923). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2 Discontinuous solutions or wave solution along characteristics. Curve  with initial 
derivatives data cannot be parallel to characteristics  

 
Any second order PDE can now be classified according to how many roots exist for 
the characteristics, which only depends on the value of A, B, and C. Let us recall 
our terminology for second order hyperbola, parabolic, and hyperbolic curves. In 
particular, we have 
 2 2 0Ax Bxy Cy Dx Ey F  (7.48) 
This equation for a curve is classified as a hyperbola, parabola, or ellipse according 
to: 
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circle 
ellipse 

parabola 

hyperbola 

 2
0

4 0
0

hyperbola
B AC parabola

ellipse
 (7.49) 

These curves are also known as conic sections. As illustrated in Figure 7.3, they all 
result from cutting a section of a cone.  
 Recognizing the similarity of the mathematical structure between (7.1) and 
(7.48), Bois-Reymond in 1839 proposed the following classification of second 
order PDEs: 

 

2

2

2

4 0 : elliptic

Classification 4 0 : parabolic

4 0 : hyperbolic

  

B AC

B AC

B AC

 (7.50) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3 Hyperbola, parabola and ellipse as conic sections 
 
Note that the hyperbolic type of second order PDE was first proposed by Laplace. 
It was subsequently extended to the classification summarized in (7.50) by Bois-
Reymond. Note that the hyperbolic case corresponds to the existence of two 
characteristics or the existence of wave-type solutions. The parabolic case 
corresponds to the existence of one characteristics or physically corresponds to a 
diffusion type of phenomenon. Finally, the elliptic type corresponds to no 
characteristics or physically corresponds to an equilibrium type of phenomenon. 
More discussions on the physical meaning of this classification will be given later. 
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7.2.3 Hyperbolic PDE 

Recalling that for the hyperbolic type, we have the validity of (7.20), thus (7.11) is 
reduced to 

 
2u u uB D E Fu G  (7.51) 

This can be rewritten as 

 
2u u ud e fu g  (7.52) 

which is the first canonical form of the hyperbolic type of PDE, and where 

 , , ,D E F Gd e f g
B B B B

 (7.53) 

For the hyperbolic type of PDE, there exists another canonical form. To see this, 
we can introduce a change of variables as 
 ,s t s t  (7.54) 
This can be inverted to give 

 1 1( ), ( )
2 2

s t  (7.55) 

The first derivative of u becomes 

 1 ( )
2

u u s u t u u
s t s t

 (7.56) 

 1 ( )
2

u u s u t u u
s t s t

 (7.57) 

Subsequently, we have the second derivative as 

 
2 2 2

2 2
1 1( ) ( ) ( )
2 4

u u u s u u t u u
s s t t s t s t

 (7.58) 

Substitution of (7.58) into (7.52) leads to 

 
2 2

1 1 1 12 2
u u u ud e f u g

s ts t
 (7.59) 

where 
 1 1 1 12( ), 2( ), 4 , 4d d e e d e f f g g  (7.60) 
Equation (7.58) is called the second canonical form of hyperbolic type of PDE, 
which is mathematically equivalent to (7.52).  
 Let us recall the one-dimensional wave equation as: 

 2
2 2 0

2 2
c

t x
 (7.61) 

Introduce the following change of variables 

 xs
c

 (7.62) 

and we get 
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 2
2 2

2 2
c

x s
 (7.63) 

Thus, the second order derivative terms in (7.59) agree with those in the one-
dimensional wave equation. In Section 7.3, we will discuss further simplification of 
the canonical form of the hyperbolic type PDE. 
 Note that for the cases of constant coefficients we can show that the 
characteristics are straight lines. In particular, for a special case of constant A, B, 
and C, we find the characteristics as 

 
2

1
4

2
B B ACy x C

A
,   

2

2
4

2
B B ACy x C

A
    (7.64) 

For such case, we can show that the coefficients in (7.52) can be found as 

 

2

2 2

2

2 2

2 2

2 2

2 [ 4 ] ,
2[2 (4 1) ]

2 [ 4 ] ,
2[2 (4 1) ]

,
2 (4 1)

2 (4 1)

AE D B B ACd
AC A B

AE D B B ACe
AC A B

AFf
AC A B

AGg
AC A B

 (7.65) 

__________________________________________________________________ 
Example 7.1 Classify the following second order PDE. If it is hyperbolic, find the 
two characteristics and the canonical form of the PDE. 
 4 0xx yy xu u u  (7.66) 
 
Solution: Comparing (7.66) to the standard form (7.1), we have 
 1, 0, 4, 1, 0, 0A B C D E F  (7.67) 
Thus, we find 

 2 4 4 0B AC  (7.68) 
Therefore, by the Bois-Reymond classification (7.66) is classified as hyperbolic 
type of PDE. The corresponding characteristics are 

 
2

1
/ 4 2
/ 2

dy x B B AC
dx y A

 (7.69) 

 
2

2
/ 4 2
/ 2

dy x B B AC
dx y A

 (7.70) 

Integration of these two ODEs for y gives two equations 
 12y x C  (7.71) 
 22y x C  (7.72) 
In view of (7.22), we find the two characteristics as 
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 12y x C  (7.73) 
 22y x C  (7.74) 
Thus, we have 

 2, 1, 2, 1
x y x y

 (7.75) 

Substitution of (7.75) into (7.13) to (7.18) yields 
 16, 2, 2, 0B D E A C F  (7.76) 
Finally, the canonical form becomes 

 
2 1 ( )

8
u u u  (7.77) 

__________________________________________________________________ 

7.2.4 Parabolic PDE 

For the parabolic type, we have only one characteristics. Let us set 
 0, 0A C  (7.78) 
Actually, for this case we must have  
 0B  (7.79) 
To see this, we consider 

 
2

2 2( ) ( ) 0A A B C A C
x x y y x y

 (7.80) 

In obtaining the last of (7.80), we have used the following identity  
 2B AC  (7.81) 
which is a natural consequence of the parabolic condition of 
 2 4 0B AC  (7.82) 
Note that (7.82) resulted from (7.29) and (7.30) if there is only one root for . Now 
let us consider  

 

2 ( ) 2

2 0

B A B C
x x x y x y y y

A C A C
x y x y

 (7.83) 

This first bracket is zero from (7.80), and thus the second bracket must not be zero. 
Thus, we see 

 
2

2 2( ) ( ) 0C A B C A C
x x y y x y

 (7.84) 

This is exactly the second bracket in (7.83) and therefore is not zero. This, of 
course, agrees with our expectation in (7.78) because there is only one 
characteristics.  Recall from (7.80) that A = 0 is equivalent to  
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 1
/
/ 22

dy x C B B
dx y AA A A

 (7.85) 

Thus, for constant coefficients the characteristics is 

 12
By x C
A

 (7.86) 

To find the canonical form, we need to have the other variable . There is not 
much discussion on this in the literature. In fact, we can choose any , which is not 
parallel to . Because of this, the canonical form for the parabolic case is not 
unique. 
 Anyhow, the canonical form of the parabolic type is given symbolically as 

 
2

1 1 1 12
u u ud e f u g  (7.87) 

where 

 1 1 1 1, ,D E F Gd e f g
C C C C

 (7.88) 

If A, B, and C are constants and thus (7.86) is valid, we have 

 12
By x C
A

,   2x C  (7.89) 

The second of (7.89) is chosen arbitrarily (any line not parallel to  = C1) as long as  
the Jacobian of the mapping is not zero. For this case, we have J = 1. For this 
particular choice, we have 

 1 1 1 12
2 , , ,

2
AE DB D F Gd e f g

A A AA
 (7.90) 

The most common parabolic type of second order PDE is a heat or diffusion 
equation: 

 
2

2t x
 (7.91) 

Again, the constant  can be easily absorbed into x to yield  (compare (7.62)). We 
will further simplify the canonical form in Section 7.3. 

7.2.5 Elliptic PDE 

For the elliptic case, we have 
 2 4 0 : ellipticB AC  (7.92) 
This implies that the characteristics are complex (i.e., no real solution). Let us write 
the characteristics as 
 1 i  (7.93) 
 2 i  (7.94) 
Using (7.93) as the characteristics, we have 

 2 2( ) ( ) ( ) ( )( ) ( ) 0i i i iA B C
x x y y

 (7.95) 
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Note that 

 2 2 2( )( ) ( ) 2 ( )i i
x x x x x

 (7.96) 

 2 2 2( )( ) ( ) 2 ( )i i
y y y y y

 (7.97) 

 ( ) ( ) ( )i i i
x y x y x y y x x y

 (7.98) 

Substitution of (7.96) to (7.98) into (7.95) gives 
 ( ) 0A C iB  (7.99) 
This implies  
 0, 0A C B  (7.100) 
Similarly, we can also use (7.94) into (7.95). It is straightforward to show that this 
also leads to (7.99) (see Problem 7.1).  
 The canonical form becomes 

 
2 2

2 2
u u u ud e fu g  (7.101) 

where 

 , , ,D E F Gd e f g
A A A A

 (7.102) 

We will now work out the details of (7.12) to (7.18) for the case of complex 
characteristics to find the explicit forms for (7.102). In particular, we first let the 
characteristics given in (7.93) be 
 i  (7.103) 
Then, substitution of (7.103) into the first equation of (7.100) gives 
 2 2 2 2( ) ( ) ( ) 0x x x y y x y yA B C  (7.104) 
Substitution of (7.103) into the second equation of (7.100) gives 
 2 ( ) 2 0x x x y y x y yA B C  (7.105) 
Differentiation of (7.103) gives 
 ,x x x y y yi i  (7.106) 

By employing the results given in (7.106), we find  
 2 2 22x x x x xi  (7.107) 

 2 2 22y y y y yi  (7.108) 

 ( )( ) ( )y x y y x x y x y x x y x yi i i  (7.109) 

Adding (7.104) and i times (7.105) and using (7.107) to (7.109), we obtain  
 2 2 0x x y yA B C  (7.110) 
which is of course equal to (7.95). More importantly, the solution of (7.110) is 
simply the solution of a quadratic equation, and is given as 
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24

2
x x x

y y y

i B i AC B
i A

 (7.111) 

Rearranging (7.111) gives 

 

2

2 2

4( )( )
2

4 4
2 2 2 2

x x y y

y y
y y

B i AC Bi i
A

B BAC B i AC B
A A A A

(7.112) 

Comparing the real and imaginary parts of (7.112) results in 

 2 24 , 4
2 2 2 2

y y
x y x y

B BAC B AC B
A A A A

 (7.113) 

The second equation of (7.113) can be used to solve for y and its result can be 
substituted into the first equation of (7.113) to give 

 
2 2

2 2
,

4 4

x y y x
y x

A B C B

AC B AC B
 (7.114) 

These equations are called Beltrami equations. Clearly, we can eliminate  from 
(7.113) to get a second order PDE for . However, the resulting equation is not 
easy to solve. If A, B, C, D, E, and F are constants, we can actually assume a linear 
dependence of  and  in terms of x and y (Kevorkian, 1990)  
 ,x y x y  (7.115) 
Comparison of the mathematical form of (7.64) and (7.86) with (7.115) shows that 
these characteristics are all straight lines for the case of constant coefficients. Using 
(7.115), we find 
 (2 ) 2y x xA B A Bxx xx ) 2x A B) 2A) 2  (7.116) 
Comparing (7.116) and the first of (7.114), we obtain  

 
2 2

,
4 4

A BA B
AC B AC B

AA A BBB  (7.117) 

Alternatively, we can also find 
 2 2x y xA B B AyyA xxxB B A2  (7.118) 
For simplicity, we choose 
 0, 1 (7.119) 
Thus, we have 
 2 ,Bx Ay xxBx 2Bx A2Bx 2Ay,Ay  (7.120) 
With this particular change of variables, we have 
 , 2 , 1, 0x y x yB A, 1,x, 1,1A 1yy,B,,BB  (7.121) 
Consequently, we have 
 2 2 2 22 4x x y yA A B C B A BBA A C AAB A BBA222B A BBA22 2 A A C2C2A A C24  (7.122) 

 2 2
x x y yC A B C A  (7.123) 
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2

22
4

xx xy yy x y
DB AED A B C D E DB AE

AC B

DBB AB A2B A2AEAE  (7.124) 

 xx xy yy x yE A B C D E D  (7.125) 

 F F  (7.126) 
Finally, we obtain 

 
2

2 0
4

DB AE D Fu u u u u
A AA AC B

 (7.127) 

Therefore, comparison of (7.127) with (7.101) gives 

 
2

2 , , ,
4

DB AE D F Gd e f g
A A AA AC B

 (7.128) 

A number of special cases of (7.101) will be considered. If the last four terms on 
the right hand side of (7.101) are zero, we have the Laplace equation. If d, e, and f 
are zeros and g is a function of  and  , we arrive at Poisson’s equation. If only f is 
nonzero, we have the Helmholtz equation. Thus, the Laplace, Poisson, and 
Helmholtz equations are all elliptic type. Elliptic PDE are mainly for equilibrium 
type problems. 

7.3 CANONICAL FORMS OF SECOND ORDER PDE 

The canonical forms given in (7.51), (7.86), and (7.101) are the normal canonical 
form given in the literature. In this section, we will show that they can further be 
simplified. The following further reduction of canonical forms is adopted from the 
idea mentioned in a footnote on p.105 of Hadamard (1923). 

7.3.1 Hyperbolic PDE 

Recall the canonical form given in (7.59):  

 
2 2

1 1 1 12 2
u u u ud e f u g

s ts t
 (7.129) 

Now introduce a change of variables:  
 ( , ) ( , )s tu s t e s t  (7.130) 
Differentiation of (7.130) gives 
 ( )s t

s su e  (7.131) 

 ( )s t
t tu e  (7.132) 

 2( 2 )s t
ss ss su e  (7.133) 

 2( 2 )s t
tt tt tu e  (7.134) 

Substitution of (7.131) to (7.134) into (7.129) leads to 
 2 2 ( )

1 1 1 1 1 1(2 ) ( 2 ) ( ) s t
ss tt s td e d e f g e  

  (7.135) 
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Since  and  are arbitrary constants at our deposal, we can remove the two first 
order derivative terms by setting 
 1 1/ 2, / 2d e  (7.136) 
Thus, the governing equation for  becomes 

 1 1

2 2
( )/21 1

1 1
( )

[ ]
4

d s e t
ss tt

e d
f g e  (7.137) 

The idea of assuming the mathematical form of (7.130) to remove the first order 
derivative terms has been mentioned on page 105 of Hadamard (1923). Therefore, 
all hyperbolic second order PDEs with constant coefficients can be transformed to 
a nonhomogeneous Klein-Gordon equation, which is first derived by Klein in 1927 
and Gordon in 1926 for the relativistic motion of charged particles in the 
electromagnetic field. This major and important conclusion has not been mentioned 
explicitly in any textbook on differential equations.     

7.3.2 Parabolic PDE 

Let us start with (7.87) that 

 
2

1 1 1 12
u u ud e f u g  (7.138) 

Consider a change of variables as 
 ( , ) ( , )u e  (7.139) 
Differentiation of (7.139) gives 
 u e e  (7.140) 

 u e e  (7.141) 

 22u e e e  (7.142) 
Substitution of (7.140) to (7.142) into (7.138) gives 
 2

1 1 1 1 1 1( 2 ) ( )e d d e f g e  (7.143) 
Since  and  are arbitrary constants at our deposal, we can remove the second and 
fourth terms on the left of (7.143): 

 
2
1 1

1
1

41 ,
2 4

e fe
d

 (7.144) 

Thus, we can use the following transformation  

 

2( 4 )11 1
2 4 1( , ) ( , )

e fe
du e  (7.145) 

such that the we have converted the mathematical problem into the solution of the 
following differential equation 

 
2

1 12 d g e  (7.146) 
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This is a nonhomogeneous diffusion equation. Therefore, we can see that all 
parabolic type PDEs with constant coefficients can be converted to a diffusion 
equation with a nonhomogeneous term. 

7.3.3 Elliptic PDE 

In Section 7.2.5, the canonical form for the elliptic type PDE is obtained as: 

 
2 2

2 2 0u u u ud e fu g  (7.147) 

Adopting the same transformation used in the last two sections, we have 
 ( )/2( , ) ( , )u e  (7.148) 
Differentiation of (7.148) gives 

 ( )/2 1( )
2

u e  (7.149) 

 ( )/2 1( )
2

u e  (7.150) 

 ( )/2 21( )
4

u e  (7.151) 

 ( )/2 21( )
4

u e  (7.152) 

Substitution of (7.148) to (7.152) into (7.147) gives 

 2 2 ( )/2

( ) ( )

1 1[ ( ) ( ) ]
4 2

d e

d e f ge
 (7.153) 

We can remove the first derivative terms by setting 
 ,e d  (7.154) 
Consequently, we obtain 

 
2 2

( )/2( )
4

d ef ge  (7.155) 

This is a nonhomogeneous Helmholtz equation.  
 We conclude here that, for linear second order PDEs of two independent 
variables with constant coefficients, hyperbolic, parabolic and elliptic type PDEs 
can be converted to solving the canonical forms of the nonhomogeneous Klein-
Gordon equation, nonhomogeneous diffusion equation, and nonhomogeneous 
Helmholtz equation, respectively. To our best knowledge, this observation for 
canonical forms of hyperbolic, parabolic, and elliptic type PDEs has not been 
reported in any book on differential equations or mathematical physics.  
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7.4 SOLUTIONS OF CANONICAL FORMS OF SECOND ORDER PDE  

As we have seen, there are three types of second order PDE. They are hyperbolic, 
parabolic, and elliptic. In the last section, we have demonstrated that all second 
order PDEs with constant coefficients eventually can be converted into three types 
of differential equations, namely the Klein-Gordon equation, diffusion equation and 
Helmholtz equation, all with nonhomogeneous terms. Clearly, the importance of 
these PDEs has not been noticed previously. We will briefly show here that all of 
these PDEs can be solved by using a technique called separation of variables. More 
discussion on the separation of variables will be given in Chapter 9. 

7.4.1 Nonhomogeneous Klein-Gordon Equation 

The Klein-Gordon equation is a dispersive wave equation, which was proposed 
independently by Oskar Klein in 1927 and Walter Gordon 1926 for modelling 
motion of a spinless charged particle in the electromagnetic field. In mechanics, the 
Klein-Gordon equation appears naturally in modelling the wave motion of a 
vibrating rope resting on a Winkler type foundation. Traditionally, the Klein-
Gordon equation without a nonhomogeneous term can be expressed as: 

 2
2

1
xx ttc

 (7.156) 

Let us assume the following separation of variables 
 ( ) ( )X x T t  (7.157) 
Substitution of (7.157) into (7.156) leads to 

 2
2

1X T XT XT
c

2T XT2T  (7.158) 

By dividing through by XT, this equation can be simplified to  

 2 2
2

1X T
X Tc

2T 22  (7.159) 

Since X is only a function of x whereas T is only a function of t, the only possibility 
is that the left hand side and the right hand side are both constant. Note that we 
have assumed a negative value for this constant in the last term of (7.159). 
 The two ODEs resulting from (7.159) are 
 2 0X X  (7.160) 
 2 2 2( ) 0T c T2 (T c2 (c2 (  (7.161) 
The solutions of these equations are 
 sin cosX A x B x  (7.162) 
 sin cosT C t D t  (7.163) 
where 

 2 2c  (7.164) 
Thus, the general solution becomes 
 ( sin cos )( sin cos )A x B x C t D t  (7.165) 
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The value of  must be determined by the boundary condition. The following 
example illustrates the procedure in obtaining the eigenvalue .  
 
__________________________________________________________________ 
Example 7.2 Solve the following Klein-Gordon equation with appropriate 
boundary conditions: 

 2
2

1 , 0 , 0xx tt x L t
c

 (7.166) 

 (0, ) ( , ) 0, 0t L t t  (7.167) 
 0( ,0) 0, ( ,0) , 0tx x v x L  (7.168) 
 
Solution:  The boundary condition can be expressed as 
 (0, ) (0) ( ) 0, 0t X T t t  (7.169) 
 ( , ) ( ) ( ) 0, 0L t X L T t t  (7.170) 
whereas the first initial condition is 
 ( ,0) ( ) (0) 0, 0x X x T x L  (7.171) 
Thus, we must have 
 (0) ( ) 0, 0X X L t  (7.172) 
 (0) 0, 0T x L  (7.173) 
Note that the boundary conditions are homogeneous and thus correspond to an 
eigenvalue problem of differential equations for X. Substitution of (7.162) into the 
first part of (7.172) leads to 
 (0) 0, 0X B t  (7.174) 
Substitution of (7.162) into the second part of (7.172) leads to 
 ( ) sin 0, 0X L A L t  (7.175) 
Since A cannot be zero (otherwise the solution is identically zero), we must have 
the eigenvalue equation as 
 , 1,2,3,...L n n  (7.176) 
Although there are infinite eigenvalues, the boundary condition cannot be satisfied 
by arbitrary values of the separation constant. This is precisely the property of the 
eigenvalue problem. Thus, the eigenvalues and their eigenfunctions are 

 , 1, 2,3,...n
n n
L

 (7.177) 

 ( ) sin sinn n
n xX x A x A

L
 (7.178) 

Note that if we choose a positive separation constant in (7.159), the fundamental 
solution for X is sinh and cosh. Consequently, the second part of (1.172) cannot be 
satisfied. Thus, hyperbolic sine and cosine cannot be used as the basis of 
eigenfunction expansion. This is the reason why we cannot take positive value in 
(7.159) for the separation constant 2.  
 For the initial condition, substitution of (7.163) into the first of (7.173) gives 
 (0) 0T D  (7.179) 
The fundamental solution becomes 
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1

( , ) sin sinn n n
n

x t c x t  (7.180) 

where 

 2 2
n nc  (7.181) 

Differentiation of (7.180) gives 

 
1

( , ) sin cost n n n n
n

x t c x t  (7.182) 

Substitution of (7.182) into (7.168) leads to 

 0
1

( ,0) sint n n n
n

x v c x  (7.183) 

Multiplying both sides by a sine function and integrating from 0 to L, we have 

 0
0 0

1

sin sin sin
L L

n n
n

m x m x n xv dx c dx
L L L

 (7.184) 

Note the following results, we have 

 1

0

1sin [( 1) 1]
L mm x dx

L m
 (7.185) 

 
0

0,
sin sin

/ 2,
L m nm x n x dx

L m nL L
 (7.186) 

Thus, substitution of (7.185) and (7.186) into (7.184) gives 

 102
[( 1) 1]n

n
n

v
c

n L
 (7.187) 

Finally, we get the solution as 

 10

1

2
( , ) [( 1) 1]sin sinn

n n
nn

v
x t x t

n L
 (7.188) 

where 

 2 2
n nc ,      , 1, 2,3,...n

n n
L

 (7.189) 

__________________________________________________________________ 
 
Once the solution for the homogeneous Klein-Gordon equation is obtained, the 
nonhomogeneous case can be solved either by the method of undetermined 
coefficients or by the method of variation of parameters discussed in earlier 
chapters. Alternatively, for the nonhomogeneous Klein-Gordon equation, we can 
also solve the problem by Green’s function method, which will be discussed in 
Chapter 8. Let us consider the following nonhomogeneous Klein-Gordon problem: 

 2
2

1 ( , ), 0 , 0xx tt f x t x L t
c

 (7.190) 

 1 2(0, ) ( ), ( , ) ( ), 0t g t L t g t t  (7.191) 
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 0 1( ,0) ( ), ( ,0) ( ), 0tx f x x f x x L  (7.192) 
We will not go through the details of analysis, but the solution can be found using 
Green’s function method as (Section 4.1.3-4 of Polyanin, 2002) 

      

0 1
0 0

0 0

2 2
1 0 2

0 0

( , ) ( ) ( , , ) ( ) ( , , )

( , ) ( , , )

( )[ ( , , )] ( )[ ( , , )]

L L

t L

t t
L

x t f G x t d f G x t d
t

f G x t d d

G Gc g x t d c g x t d

 (7.193) 

where 

 
2 2

2 2
1

sin[ ]2( , , ) sin( )sin( ) n
n n

n n

ct
G x t x

L c
 (7.194) 

 n
n
L

 (7.195) 

Green’s function is denoted as G(x, ,t) for the Helmholtz equation in a finite 
domain. It was derived by Sommerfeld in 1912. For another domain and another 
boundary or initial conditions, the reader can refer to the handbook by Polyanin 
(2001).  

7.4.2 Nonhomogeneous Diffusion Equation 

Let consider the following nonhomogeneous diffusion equation  
 2 ( , ), 0 , 0t xxu u f x t x L t  (7.196) 
subject to the following initial and boundary conditions: 
 (0, ) 0, ( , ) 0, 0u t u L t t  (7.197) 
 ( ,0) ( ), 0u x x x L  (7.198) 
First, let us consider the eigenvalue problem of the homogeneous form of (7.196) 
(i.e., f = 0):  
 2 , 0 , 0xx tu u x L t  (7.199) 
 (0, ) 0, ( , ) 0, 0u t u L t t  (7.200) 
 ( ,0) ( ), 0u x x x L  (7.201) 
Assuming a separation of variables, we have: 
 ( ) ( )u X x T t  (7.202) 
Substitution of (7.202) into (7.199) leads to 
 2 X T X T  (7.203) 
By dividing through by XT, this equation can be simplified as  

 2
2

1X T
X T

 (7.204) 

Since X is only a function of x, whereas T is only a function of t, the only 
possibility is that the left hand side and the right hand side are both constant. Note 
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again that we have assumed a negative value of this constant in the last term of 
(7.159). 
 In the following discussion, we will only focus on the discussion of X. In 
particular, we have from (7.204) 
 2 0X X  (7.205) 
The solutions of these equations are 
 sin cosX A x B x  (7.206) 
The value of  must be determined by the boundary condition. Substitution of 
(7.206) into (7.200) leads to 
 (0) ( ) 0X X L  (7.207) 
Substitution of (7.206) into the first part of (7.207) gives 
 0B  (7.208) 
The second part of (7.207) leads to 
 sin 0L  (7.209) 
That is, we require 
 L n  (7.210) 
Thus, there are infinite discrete eigenvalues given by 
 / , 1,2,3,n n L n  (7.211) 
The eigenfunction that corresponds to this eigenvalue is 
  ( ) sin , 1,2,3,n nX x x n  (7.212) 
Thus, we have found eigenvalues and its eigenfunction expansion.  
 We now return to the nonhomogeneous problem given in (7.190) to (7.192). 
In particular, we assume the following eigenfunction expansions: 

 
1

( , ) ( )sinn n
n

u x t T t x  (7.213) 

 
1

( , ) ( )sinn n
n

f x t f t x  (7.214) 

 
1

( ) sinn n
n

x c x  (7.215) 

where Tn is to be determined and  

 
0

2( ) ( , )sin /
L

nf t f x t n x L dx
L

 (7.216) 

 
0

2 ( )sin /
L

nc x n x L dx
L

 (7.217) 

As we will discuss in Chapter 10, all functions can be expanded in an infinite series 
of the eigenfunctions (in this case sine function). More detailed discussions on 
eigenfunction expansion are given in Chapter 10. 
 Substitution of (7.213) and (7.14) into (7.196) gives 

 2 2

1

[ ]sin / 0n
n n n

n

dT
T f n x L

dt
 (7.218) 
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In view of the governing equation for X given in (7.205), we can rewrite (7.218) as 

 2 2n
n n n

dT
k T f

dt
 (7.219) 

Substitution of (7.213) and (7.215) into (7.198) gives 
 (0)n nT c  (7.220) 
Multiplying (7.219) by the integrating factor, we have  

 
2 2 2 2

{ }k t k tn n
n n

d T e f e
dt

 (7.221) 

Integration of (7.221) gives   

 
2 2 2 2

0
(0)

tk t k sn n
n n nT e T f e ds  (7.222) 

Using the initial condition (7.220), we obtain 

 
2 2 2 2 ( )

0

tk t k s tn n
n n nT c e f e ds  (7.223) 

Substitution of (7.223) into (7.213) gives the final solution for the 
nonhomogeneous diffusion equation given in (7.196) with boundary conditions 
(7.197) and (7.198) as 

    
2 2 2 2( )

0
1 1

( , ) sin( ) sin( )
tk t k s tn n

n n
n n

n x n xu x t c e f e ds
L L

 (7.224) 

where n is given in (7.210). 

7.4.3 Nonhomogeneous Helmholtz Equation 

The Helmholtz equation is also known as the reduced wave equation. To see why 
this is so, let us consider a two-dimensional wave equation as 

 2
1

xx yy ttc
 (7.225) 

Physically, this PDE models the vibrations of a rectangular membrane with no 
bending. Let us now consider a harmonic wave type of solution in the form: 
 ( , ) i tx y e  (7.226) 
where  is the circular frequency of the wave. Substitution of (7.226) into (7.225) 
gives 

 
2

2 0xx yy c
 (7.227) 

This can be rewritten as the standard form of the Helmholtz equation: 
 2 0xx yy k  (7.228) 
This is the reason why it is referred to as the reduced wave equation. To solve 
(7.228), we can introduce the following separation of variables  
 ( ) ( )X x Y y  (7.229) 
Substitution of (7.229) into (7.228) yields 
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 2 0X Y k
X Y

 (7.230) 

Similar to the argument used in the previous sections, we can rewrite (7.230) as 

 2 2 2 2 2
1 2 1 2, ,X Y k

X Y
 (7.231) 

Thus, we have two ODEs as: 
 2

1 0X X  (7.232) 

 2
2 0Y Y  (7.233) 

The general solutions of these equations are: 
 1 1sin cosX A x B x  (7.234) 
 2 2sin cosY A y B y  (7.235) 
Clearly, this set of solutions resembles vibrations of a membrane with a fixed 
boundary on the circumference of a rectangular membrane. However, if there is no 
physical meaning attached to a PDE, we may set the related differential equations 
as 

 2 2 2 2 2
1 2 1 2, ,X Y k

X Y
 (7.236) 

In this case, we may have the solutions as 
 1 1sin cosX A x B x  (7.237) 
 2 2sinh coshY A y B y  (7.238) 
This solution is valid provided that the third equation of (7.236) is satisfied. 
However, (7.238) cannot model vibration-type solutions for a membrane. Whether 
the solution set given in (7.235) or (7.238) is valid, it depends on the condition to 
be imposed on the boundary. 
  
__________________________________________________________________ 
Example 7.3 Consider the waveguide problem of a rectangular hollow tube of a 
conductor. The problem can be mathematically prescribed as a three-dimensional 
Helmholtz equation with appropriate boundary conditions: 
 2 0, 0 , 0xx yy zz k x a y b  (7.239) 

 (0, ) 0, ( , ) 0y a y  (7.240) 
 ( ,0) 0, ( , ) 0x x b  (7.241) 
 
with k being positive. The boundary value problem is illustrated in Figure 7.4. The 
wave modes are normally referred as TM (transverse magnetic) or TE (transverse 
electric).  
 
Solution:  Using separation of variables, we can assume 
 ( , , ) ( ) ( ) ( )x y z X x Y y Z z  (7.242) 
Substitution of (7.242) into (7.239) leads to 

 2 2 2
1 2 3, ,X Y Z

X Y Z
 (7.243) 
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x

y

z
a

b 2 2 0k

conductor 

Thus, the general solution for X is 
  1 1sin cosX A x B x  (7.244) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4 Problem of rectangular waveguide 
 
 
The first condition of (7.240) leads to 
 10,B a n  (7.245) 
Thus, the eigenvalue becomes 

  1
n
a

 (7.246) 

Similarly, we can find the eigenvalue for 2 as: 

 2
m
b

 (7.247) 

The solution for  becomes 

 3( , , ) sin( )sin( ) i zn x m yx y z e
a b

 (7.248) 

and 

 2 2 2 2
3( ) ( )n m k

a b
 (7.249) 

We can rewrite (7.249) as 

 2 2 2
3 mn cmnk k  (7.250) 

where 

 2 2( ) ( )cmn
n mk
a b

 (7.251) 

This is called the cut-off frequency of the waveguide and it is clearly discrete. 
Physically, for the case of electromagnetic waves, the value of k is given by: 
 2 2k  (7.252) 
where  and  are called the permeability and permittivity of the free space, and  
is the circular frequency of the electromagnetic waves. For small values of wave 
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frequency, it clear from (7.250) that mn is purely imaginary. For this small 
frequency, (7.248) shows that the solution decays exponentially with z. That is, 
waves with low frequency attenuate quickly along the waveguides and therefore are 
cutoff. The phenomenon is caused by the fact that the rectangular tube is of finite 
size and only waves of certain discrete frequencies can propagate along it. More 
discussion of electromagnetic waves is presented in Volume 2 of this book series.    
__________________________________________________________________ 
 
Let us now consider the following nonhomogeneous Helmholtz equation with 
prescribed boundary condition: 
 ( , )xx yy f x y  (7.253) 

 1 2(0, ) ( ), ( , ) ( )y f y a y f y  (7.254) 
 3 4( ,0) ( ), ( , ) ( )x f x x b f x  (7.255) 
This problem can be solved by using Green’s function method, which will be 
considered in Chapter 8. However, we will simply quote the following solution 
from Section 7.3.2-15 of Polyanin and Zaitsev (2002): 

 

0 0

1 0 2
0 0

3 0 4
0 0

( , ) ( , ) ( , , , )

( )[ ( , , , )] ( )[ ( , , , )]

( )[ ( , , , )] ( )[ ( , , , )]

a b

b b
a

a a
b

x y f G x y d d

G Gf x y d f x y d

G Gf x y d f x y d

 (7.256) 

where 

 2 2
1 1

sin( )sin( )sin( )sin( )4( , , , ) n m n m

n mn m

p x q y p q
G x y

ab p q
 (7.257) 

 2 2,n m
n mp q
b b

 (7.258) 

For other domain or boundary conditions, we refer to Polyanin and Zaitsev (2002). 
 We now consider the Helmholtz equation in polar form. In cylindrical 
coordinates, the Helmholtz equation can be expressed as 

 
2 2 2

2
2 2 2 2

1 1 0u u u u k u
r rr r z

 (7.259) 

Using the separation of variables, we have 
 ( ) ( ) ( )u R r Z z  (7.260) 
Substitution of (7.260) into (7.259) gives 

 
2 2 2

2
2 2 2 2

1 1 1 1 1[ ] 0d R dR d d Z k
R r dr Zdr r d dz

 (7.261) 

This leads to the following ODEs as: 

 
2

2
2

1 d m
d

 (7.262) 
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2

2 2
2

1 d Z k
Z dz

 (7.263) 

 
2 2

2
2 2

1 1[ ] 0d R dR m
R r drdr r

 (7.264) 

Note that (7.264) is a Bessel equation. The solution of , Z, and R are 
 cos sinA m B m  (7.265) 

 2 2 2 2cosh[ ] sinh[ ]Z C k z D k z  (7.266) 
 ( ) ( )m mR EJ r FY r  (7.267) 
In view of the physical requirement of , we must have the periodicity of   
 ( 2 ) ( )  (7.268) 
Consequently, m must be an integer.  
 For the special case that  = 0, we have u being independent of z, and (7.259) 
becomes 

  
2 2

2
2 2 2

1 1 0u u u k u
r rr r

 (7.269) 

Introduction of a separation of variables gives 
 ( ) ( )u H r T  (7.270) 
Substitution of (7.270) into (7.269) gives 

 
2 2

2
2 2 2

1 1 1 1[ ] 0d H dH d T k
H r dr Tdr r d

 (7.271) 

This leads to 

 
2

2
2

1 0d T m
T d

 (7.272) 

 
2 2

2
2 2

1 ( ) 0d H dH mk H
r drdr r

 (7.273) 

Again, we have the solution of T being 
 cos sinT A m B m  (7.274) 
where m is an integer. Equation (7.273) is of Euler type and using the standard 
change of variable of Euler type yields 
 ( ) ( )m mH CJ kr DY kr  (7.275) 
 In spherical coordinates, the Helmholtz equation can be expressed as 

 
2 2

2
2 2 2

1 1 1( ) [ (sin ) ] 0
sinsin

u uru k u
r r r

 (7.276) 

Again using the separation of variables, we have 
 ( ) ( ) ( )u R r P  (7.277) 
Substitution of (7.277) into (7.276) gives 

 
2 2

2
2 2 2 2

1 1 1 1 1 1 1( ) [ (sin ) ] 0
sin sin

d d dP drR k
R r P d ddr r d

 (7.278) 

The governing equations become 
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2

2
2

1 d m
d

 (7.279) 

 
2

2
1 (sin ) ( ) 0

sin sin
d dP m P

d d
 (7.280) 

 
2

2
2 2

1 1[ ( )] 0d rR k
R r dr r

 (7.281) 

where  is a separation constant. The solution for  is 
 cos sinA m B m  (7.282) 
The solution of P can be recognized by using the following change of variables: 
 cosx  (7.283) 
Using this change of variables, (7.280) can be transformed to 

 
2

2
2[(1 ) ] ( ) 0

1
d dP mx P
dx dx x

 (7.284) 

This can be shown as equivalent to 

 
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

1
d P dP mx x l l P

dxdx x
 (7.285) 

where we have set 
 ( 1)l l  (7.286) 
Equation (7.285) is the associated Legendre equation and the solution is 
 ( ) (cos ) (cos )m m

l lP CP DQ  (7.287) 
Finally, to find the solution of R in (7.281) we first rewrite it as 

 
2

2 2
2 (1 ) 0d R dR R

dd
 (7.288) 

where 
 kr  (7.289) 
We can introduce another change of variables as 

 1R S  (7.290) 

Differentiation of (7.290) gives 

 1 1
2

dR S dS
d d

 (7.291) 

 
2 2

2 5/2 3/2 2
3 1 1
4

d R S dS d S
dd d

 (7.292) 

Substitution of these results into (7.288) gives 

 
2

2 2
1 1/ 4(1 ) 0d S dS S

dd
 (7.293) 

This is precisely the Bessel equation and consequently the solution for R is 
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 1/4 1/4
1( ) [ ( ) ( )]R r EJ rk FY rk
rk

 (7.294) 

Substitution of (7.282), (7.287) and (7.294) into (7.277) gives the final solution in 
spherical polar coordinates. More discussion of this spherical Helmholtz equation 
will be given in Chapter 9 (Section 9.4). In particular, a new function called the 
spherical Bessel function can be defined to simplify the solution form given in 
(7.294).  

7.5 ADJOINT OF SECOND ORDER PDE 

In an earlier chapter, we have discussed the adjoint differential equation of an 
ODE, and demonstrated that the adjoint equation is actually the governing equation 
for the integrating factor of the original ODE. In this section, we will extend this 
idea of the adjoint equation to second order PDEs. The result discussed in this 
section was first derived by De Bois-Reymond in 1889 and was also derived by 
Darboux in 1915. Recall from our earlier discussion that solving the adjoint 
problem of an ODE may be as difficult as solving the original ODE. Nevertheless, 
it is an important concept in solving higher order partial differential equations, but 
this is normally not covered in most textbooks on differential equations. We will, 
however, see the importance of adjoint PDEs in Green’s function in Chapter 8. Let 
us consider a general form of linear second order PDE as 

 
2 2 2

2 2( ) 0u u u u uL u A B C D E Fu
x y x yx y

 (7.295) 

We now consider the product of another function v, which is the solution of the 
adjoint problem, with function L(u) defined in (7.295) as: 

 
2 2 2

2 2( ) u u u u uvL u Av Bv Cv Dv Ev Fuv
x y x yx y

 (7.296) 

We first note the following identities: 

 
2 2

2 2
( ) ( )u Av u AvAv u Av u

x x xx x
 (7.297) 

 
2 2 ( ) ( ) ( ) ( ) ( )u Bv u Bv u BvBv u Bv u Bv u

x y x y x y y x y x x y
 

  (7.298) 

 
2 2

2 2
( ) ( )u Cv u CvCv u Cv u

y y yy y
 (7.299) 

 ( ) ( )uDv u Dv Duv
x x x

 (7.300) 

 ( ) ( )uEv u Ev Euv
y y y

 (7.301) 

Using the identity in (7.301), we note that (7.298) can be written as: 
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2 2 ( ) 1 ( ) ( )

2
u Bv u Bv u BvBv u Bv u Bv u

x y x y x y y y x x
 

  (7.302) 
Substitution of (7.297) to (7.302) into (7.296), we get 

  ( ) ( )X YvL u uM v
x y

 (7.303) 

where 

 
2 2 2

2 2( ) Av Bv Cv Dv EvM v Fv
x y x yx y

 (7.304) 

 1 ( )
2

u Av u vBX Av u vB u Duv
x x y y

 (7.305) 

 1 ( )
2

u Cv u vBY Cv u vB u Euv
y y x x

 (7.306) 

The functions X and Y given in (7.305) and (7.306) can further be rewritten as 

 1 1( ) ( ) ( )
2 2

u v u v A BX A v u B v u D uv
x x y y x y

 (7.307) 

 1 1( ) ( ) ( )
2 2

u v u v C BY B v u C v u E uv
x x y y y x

 (7.308) 

Equation (7.303) can be recast as 

 ( ) ( ) X YvL u uM v
x y

 (7.309) 

This identity is sometimes referred to as the Lagrange identity. The adjoint of L(u) 
is M(v).  
 To find the condition of the self-adjoint PDE, we first expand M(v) as: 

 

2 2 2

2 2( )

1 1( ) ( )
2 2
1 12 ( ) 2 ( )
2 2

v v v v vM v A B C D E Fv
x y x yx y

A B C Bv D v E
x x y y y x
v A B v C BD E
x x y y y x

 (7.310) 

Therefore, the self-adjoint condition for linear second order PDEs are: 

 1
2

A B D
x y

 (7.311) 

 1
2

C B E
y x

 (7.312) 

Many physical based second order PDEs are self-adjoint. Actually, the self-adjoint 
system occupies an essential role in the development of physical sciences and 
mechanics. The identity given in (7.309) can be used to form a generalized form of 
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Green’s theorem of any linear second order PDE. However, such consideration will 
be deferred to the Chapter 8 on Green’s function method. 
 This formulation can be easily generalized to the case of m variables as 
(Hadamard, 1923): 

 
2

, 1 1

( ) 0
m m

ik i
i ki k i

u uL u A B Cu
x x x

 (7.313) 

with  
 ik kiA A  (7.314) 
The associated adjoint PDE becomes 

 
2

, 1 1

( ) ( ) ( ) 0
m m

ik i
i ki k i

M v A v B v Cu
x x x

 (7.315) 

The corresponding Lagrange identity is 

 1 2

1 2
( ) ( ) ... m

m

XX XvL u uM v
x x x

 (7.316) 

where 

 
1 1 1

( , ) ( )
m m m

ik
i ik ik i

k k kk k k

Au vX u v vA uA uv B
x x x

 (7.317) 

To see the validity of these equations, we can set m = 2 to recover equations 
(7.303) to (7.308) as a special case. Readers are advised to check this by 
themselves.  

7.6 SELF-ADJOINT CONDITION FOR SYSTEM OF SECOND ORDER 
PDE 

In this section, we are going to extend the idea of finding adjoint PDEs to the case 
of a system of coupled second order PDEs. To the best of our knowledge, this topic 
has not been covered in any textbooks on differential equations. Let us consider a 
system of PDEs as: 
 11 12( ) ( ) 0L u L v  (7.318) 
 21 22( ) ( ) 0L u L v  (7.319) 
where the differential operator Lij can be defined as analogous to the second order 
PDE considered in the last section as: 

 
2 2 2

2 2( ) 2ij ij ij ij ij ij ij
u u u u uL u A B C D E F u

x y x yx y
 (7.320) 

with i, j = 1,2. From the result of the last section, we have the adjoint of (7.320) as 

 
2 2 2

2 2( ) ( ) 2 ( ) ( ) ( ) ( )ij ij ij ij ij ij ijM v A v vB vC vD vE F v
x y x yx y

 

  (7.321) 
Multiplying (7.318) by u and multiplying (7.319) by v, and adding the results of 
these, we obtain 
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 11 12 21 22( ) ( ) ( ) ( ) 0uL u uL v vL u vL v  (7.322) 
To consider the left hand side of (7.322), we first note the following identities, 
which can be obtained as special cases of (7.309) in the last section: 

 1 1
11 11

( , ) ( , )
( ) ( )

X u u Y u u
uL u uM u

x y
 (7.323) 

 2 2
12 12

( , ) ( , )
( ) ( )

X v u Y v uuL v vM u
x y

 (7.324) 

 3 3
21 21

( , ) ( , )
( ) ( )

X u v Y u v
vL u uM v

x y
 (7.325) 

 4 4
22 22

( , ) ( , )
( ) ( )

X v v Y v vvL v vM v
x y

 (7.326) 

where 

 211 11
1 11( , ) ( )

A BX u u D u
x y

 (7.327) 

 211 11
1 11( , ) ( )

C BY u u E u
y x

 (7.328) 

12 12
2 12 12 12( , ) ( ) ( ) ( )

A Bv u v uX u v A u v B u v D uv
x x y y x y

 (7.329) 

12 12
2 12 12 12( , ) ( ) ( ) ( )

C Bv u v uY u v B u v C u v E uv
x x y y y x

 (7.330) 

21 21
3 21 21 21( , ) ( ) ( ) ( )

A Bu v u vX u v A v u B v u D uv
x x y y x y

 (7.331) 

21 21
3 21 21 21( , ) ( ) ( ) ( )

C Bu v u vY u v B v u C v u E uv
x x y y y x

 (7.332) 

  222 22
4 22( , ) ( )

A BX v v D v
x y

 (7.333) 

 222 22
4 22( , ) ( )

C B
Y v v E v

y x
 (7.334) 

Adding (7.323) to (7.326) gives 

        

11 11 12 12 21 21

1 1 2 2
22 22

3 3 4 4

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( , ) ( , ) ( , )

( ) ( )

( , ) ( , ) ( , ) ( , )

uL u uM u uL v vM u vL u uM v
X u u Y u u X u v Y u vvL v vM v

x y x y
X u v Y u v X v v Y v v

x y x y

 (7.335) 

Equation (7.335) can be rewritten as 
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11 11 12 21

21 12 22 22

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

u L u M u L v M v
P Qv L u M u L v M v
x y

 (7.336) 

where 
         1 2 3 4( , ) ( , ) ( , ) ( , )P X u u X u v X u v X v v  (7.337) 
         1 2 3 4( , ) ( , ) ( , ) ( , )Q Y u u Y u v Y u v Y v v  (7.338) 
Equation (7.336) can be considered as a generalization of the Lagrange identity for 
the case of a coupled system of PDEs. The system of PDEs is called self-adjoint if  

         0P Q
x y

 (7.339) 

Therefore, if the left hand side of (7.336) is zero, the system of PDEs is self-
adjoint. Thus, we will examine the condition that the left hand side of (7.336) is 
zero. 
 Similar to the procedure in arriving at the adjoint operator given in (7.310), 
we can easily verify that 

 
( ) ( ) ( ) ( )

2 ( ) 2 ( )

ij ij ij ij
ij ij ij ij

ij ij ij ij
ij ij

A B C B
M v L v v D v E

x x y y y x
A B C Bv vD E

x x y y y x

 (7.340) 

Substitution of (7.340) into the left hand side of (7.336) yields 

       

11 11 11 11
11 11

2 211 11 11 11
11 11

21 21 21 21
12 21 21 21

21 21
21

2 ( ) 2 ( )

( ) ( )

( ) ( ) 2 ( ) 2 ( )

(

A B B Cu uLHS u D u E
x x y y x y

A B B Cu D u E
x x y y x y

A B B Cv vuL v uL v u D u E
x x y y x y

A Bvu D
x x y

21 21
21

12 12 12 12
21 12 12 12

12 12 12 12
12 12

22 22 22 22
22 22

2

) ( )

( ) ( ) 2 ( ) 2 ( )

( ) ( )

2 ( ) 2 ( )

B Cvu E
y x y

A B B Cu uvL u vL u v D v E
x x y y x y

A B B Cvu D vu E
x x y y x y

A B B Cv vv D v E
x x y y x y

v 222 22 22 22
22 22( ) ( )

A B B CD v E
x x y y x y

 

  (7.341) 
We will now consider the conditions that (7.341) becomes zero. First, we see that if 
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 12 21 12 21 12 21, ,A A B B C C  (7.342) 
we have 

      12 21 12 21 12 21 12 21( ) ( ) ( ) ( ) ( )v vuL v uL v u D D u E E uv F F
x y

 (7.343) 

      21 11 12 21 12 21 12 21( ) ( ) ( ) ( ) ( )u uvL u vL u v D D v E E uv F F
x y

 (7.344) 

In addition, we find that many terms in (7.341) vanish if  

       11 11 11 11
11 11,

A B B CD E
x y x y

 (7.345) 

       22 22 22 22
22 22,

A B B CD E
x y x y

 (7.346) 

Substitution of (7.342) to (7.346) into (7.341) gives 

       

12 21 12 21 12 21 12 21

21 21 21 21
21 21

12 12 12 12
12 12

( ) ( ) ( ) ( )

2 ( ) 2 ( )

2 ( ) 2 ( )

v v u uu D D u E E v D D v E E
x y x y

A B B Cv vu D u E
x x y y x y

A B B Cu uv D v E
x x y y x y

 

  (7.347) 
Finally, we observe that  in (7.347) is identically zero if 

        21 21
21 122( )

B C E E
x y

 (7.348) 

        12 12
12 212( )

A B D D
x y

 (7.349) 

The conditions of (7.318) and (7.319) being self-adjoint can be summarized as 
 , ,ij ji ij ji ij jiA A B B C C  (7.350) 

           1( ) ( )
2

ij ij
ij ji

A B
D D

x y
 (7.351) 

     1( ) ( )
2

ij ij
ij ji

B C
E E

x y
 (7.352) 

Note that self-adjoint conditions which are similar to (7.350) to (7.352) were 
obtained by Kuzmin (1963) when he considered the variational principle for 
electrodynamics fields. However, there is apparently a mistake in Kuzmin (1963), 
and there is no derivation given in Kuzmin (1963). Nevertheless, such analysis is 
related to Green’s identity and the formulation of functionals. 
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7.7 MIXED TYPE PDE 

In some situations, the behavior of the solution of a PDE may depend on the 
dependent variables of the problem. The most well-known mixed type PDE is 
probably the Tricomi equation.  

     
2 2

2 2 0u ux
x y

 (7.353) 

According to the procedure of classification given in Section 7.2.2, we have 
     2 4 4B AC x  (7.354) 
Therefore, we have (7.353) being hyperbolic with x > 0, parabolic for x = 0, and 
elliptic for x < 0. This is called a mixed type of second order PDE. The origin of 
this equation comes from transonic flow in 2-D gas dynamics. This equation 
occupies an important place in the development of supersonic flows from transonic 
flow in the area of rocket science in the beginning of the twentieth century. We will 
sketch the origin of this equation briefly in the following section. We will first 
review two-dimensional steady gas flow in the next section.  

7.7.1 Two-Dimensional Steady Gas Flows 

For two-dimensional steady potential flows of a gas, the Euler equation of motion 
for a compressible fluid is 

     1( ) p g
t
v v v  (7.355) 

where g is the gravitational constant, p is the pressure, and v is the velocity field. 
This is a special case of Navier-Stokes equation for fluid mechanics. For steady 
flow with negligible gravity effect, we have 

     1( ) pv v  (7.356) 

To express (7.356) in incremental form, we have 

     dpvdv  (7.357) 

On the other hand, sound wave speed in gas is defined as: 

     pc  (7.358) 

Thus, density can be related to pressure as 
     2c p  (7.359) 
We note that (7.359) can be expressed in incremental form as: 
     2dp c d  (7.360) 
Rearranging (7.357) gives 

     dp v
dv

 (7.361) 

Substitution of (7.360) into (7.361) results in 
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     2
d v
dv c

 (7.362) 

The total differential of the mass flux density along a streamline is  
     ( )d v dv vd  (7.363) 
It is equivalent to 

     
2 2

2 2
( ) (1 )d v d v vv
dv dv c c

 (7.364) 

Note that for supersonic flow, we have the flow speed faster than the sound speed 
c, we have d( v)/dv < 0 or mass flux density as a decreasing function of velocity; 
whereas, for the subsonic flow the mass flux density is an increasing function of v.  
 From continuity, we have 

     
( )( )

0yx vv
x x

 (7.365) 

By introducing a velocity potential , we have 

     x yd dx dy v dx v dy
x y

 (7.366) 

7.7.2 Hodograph Transformation 

The formulation expressed in velocity is not easy to solve, Molenbroek in 1890 and 
Chaplygin in 1902 applied the Legendre transform to rewrite the unknowns of the 
gas flow equation (7.366) as x and y, and the variables as the velocity components. 
More discussion of the application of the Legendre transform can be found in 
Appendix C of Chau (2013). The velocity plane is known as a hodograph plane 
versus the physical plane of x-y. This approach is known as the hodograph method 
which has been discussed in Section 6.15 for the context of first order PDEs. In 
particular, we observe that (7.366) can be written as 
     ( ) ( )x x y yd d xv xdv d yv ydv  (7.367) 
Thus, we can introduce a new function  such that  
     x yxv yv  (7.368) 
The total differential of (7.368) gives 
     x y x yd d xdv ydv v dx v dy  (7.369) 
Substitution of (7.366) into (7.369) gives 
     x yd xdv ydv  (7.370) 
Therefore, we now have the unknown function being given in terms of the velocity 
as 
     ( , )x yv v  (7.371) 
The total differential of (7.371) is 

     x y x y
x y

d dv dv xdv ydv
v v

 (7.372) 

Consequently, we have 
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     ,
x y

x y
v v

 (7.373) 

The variables of vx and vy can be rewritten in polar form as: 
     cos , sinx yv v v v  (7.374) 
Clearly, we have  

     2 2 2 , tan y
x y

x

v
v v v

v
 (7.375) 

With these new variables, applying the chain rule to (7.373) we have 

     sincos
x x x

vx
v v v v v v

 (7.376) 

     cossin
y y y

vy
v v v v v v

 (7.377) 

By virtue of (7.376) and (7.377), the last two terms in (7.368) can be found as 

    

sin cos(cos ) cos (sin ) sinx yxv yv v v
v v v v

v
v

(7.378) 

Substitution of (7.378) into (7.368) gives 

     v
v

 (7.379) 

7.7.3 Chaplygin’s Equation 

We now observe that the continuity equation can be expressed in terms of 
Jacobians as 

     
( , ) ( )( , ) ( )

0
( , ) ( , )

y yx xv x vv y v
x y x y x y

 (7.380) 

Note that 

     
( , ) ( )

( , )

x x

x x

v v
x yv y v
y yx y x
x y

 (7.381) 

     
( , ) ( )

( , )

y y

y y

v v
v x vx y
x y yx x

x y

 (7.382) 

We can multiply (7.380) by (x,y)/ (v, ) and in view of (7.374) to get 
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( , )( , ) ( , ) ( , ) ( cos , ) ( sin , ) 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
yx v xv y x y x y v y v x

x y v x y v v v
 (7.383) 

The first term on the right hand side of (7.383) can be evaluated as 

    

cos cos
( cos , ) cos sin

( , )

v v
v y v y yv v

y yv v v
v

 (7.384) 

Differentiation of (7.377) gives 

     
2 2

2 2
cos cossiny

v v vv v
 (7.385) 

     
2 2

2
sin coscos siny

v v v v
 (7.386) 

Similarly, the second term on the right of (7.383) can be evaluated as 

    

sin sin
( sin , ) sin cos

( , )

v v
v x v x xv v

x xv v v
v

 (7.387) 

Differentiation of (7.376) gives 

     
2 2

2 2
sin sincosx

v v vv v
 (7.388) 

     
2 2

2
cos sinsin cosx

v v v v
 (7.389) 

Finally, combining (7.384) to (7.389) with (7.383) leads to 

     
2 2

2 2
( ) 1[ ] 0v v

v v v v
 (7.390) 

Substitution of (7.364) into (7.390) yields Chaplygin’s equation: 

     
2 2 2

2 2 2 2 0
1 /

v v
vv c v

 (7.391) 

This is a linear PDE, and is a good approximation of transonic flow (i.e., 0.8  
Mach number < 1.0). For this range, the speed v is about 965 km/hour to about 
1236 km/hour. Thus, for steady state the nonlinear PDE of the Euler equation of 
motion and the continuity equation are now converted to a linear PDE through the 
use of the hodograph transformation. Once the solution of  is solved in terms of v 
and , (7.373) and (7.374) can be used to give the final solutions as: 
     ( , , ), ( , , )x x v y y v  (7.392) 
Note that the validity of the Chaplygin equation given in (7.391) relies on the 
requirement of non-zero Jacobian of the following change of variables: 

     
2 2 2

2 2
2 2 2

( , ) 1 [( ) ( ) ]
( , ) 1 /
x y vJ v
v v v v c v

 (7.393) 
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It is clear from (7.393) that the Jacobian can become zero if v > c (or in the 
supersonic region). Once the Jacobian is zero, continuous flow throughout the 
region is impossible and shock waves must occur in the supersonic region. This is 
the reason that the supersonic airplane Concord is always accompanied by an 
unpleasant shock wave. In addition, the sound speed is, in general, a function of 
velocity or c = c(v).  

7.7.4 Tricomi’s Equation 

We now look at an approximation of the Chaplygin equation given in (7.391) when 
the flow is transonic (i.e., v  c). In particular, the first derivative term is much 
smaller than the other two terms in (7.391): 

     
2 2

2 2 2( )
1 /

vv
v v c v21

v2v
2 /2 /

 (7.394) 

Thus, we have the approximation for (7.391) as 

     
2 2 2

2 2 2 2 0
1 /

v
v c v

 (7.395) 

At the transition from subsonic to supersonic, we passed through the transition or 
the so-called transonic flow. We have v  c = c*, then 

     
2 2 22
* * *

2 2
* *(1 / )(1 / ) 2(1 / ) 2 (1 / )1 /

c c cv
v c v c v c v cv c

 (7.396) 

The last part of (7.396) is the consequence of the following approximation near the 
transition from subsonic to supersonic: 

     *
*

1 ( 1)v v
c c

 (7.397) 

To prove (7.397) near the transition point v  c = c*, the value of c c* can first be 
expanded using the first term in Taylor series expansion as: 

     * * *( )( )v c
dcc c v c
dv

 (7.398) 

This expansion can be rewritten as: 

     * *( )[1 ( ) ]v c
dcc v c v
dv

 (7.399) 

Since the sound speed is a function of density or c = c( ), we can express it using 
the chain rule as: 

      dc dc d dc
dv d dv c d

 (7.400) 

The last part of (7.400) is a result of the following special form of (7.362) near the 
transition point: 

 d
dv c

 (7.401) 

Substitution of (7.400) into (7.399) gives 
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     *
* * *

( )( )[1 ] ( ) ( )
c vdc d cc v c v c v

c d c d
 (7.402) 

where 

     
2

3 4
* * 2

1 ( ) ( ) 1 ( )
2 s

d c d c Vc c
c d dp p

 (7.403) 

In obtaining the second part of (7.403), we have used (7.360). The last part of 
(7.403) can be found by considering the following relation for sound speed (see 
(7.358)): 

     pc  (7.404) 

The definition of the sound wave can be written in terms of volume per unit mass V 
instead of density . More specifically, its increment is related d  to  

     2
1( ) dVd d
V V

 (7.405) 

Substitution of (7.405) into (7.404) gives 

 1

( ) ( )

Vc
V V
p p

 (7.406) 

Differentiation of (7.406) with respect to p gives 

 
2 2 2

2 3 5
2 23/2

( ) ( ) 1 1( ) ( )
2 2( )

d c d c c V Vc c
Vd dp p p
p

 (7.407) 

This particular form applies to the case of constant entropy. Using (7.407), the 
second part of (7.403) can be obtained without difficulty. Combining (7.396), 
(7.395), and (7.403) gives 

     
22 2
*

2 2
* *

0
2 (1 / )

c
v c v

 (7.408) 

Introduction of the following change of variables 

     1/3 *
*

*
(2 ) ( )

v c
c

 (7.409) 

gives 

     
2/32 2

*
2 2 2

*

(2 )
v c

 (7.410) 

Substitution of (7.410) into (7.408) gives the Tricomi equation: 

 
2 2

2 2 0  (7.411) 

Therefore, the Tricomi equation is an approximation of the Chaplygin equation 
when the speed is very close to the supersonic speed. The general solution of the 
Tricomi equation is considered next. 
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7.7.5 Solution of Tricomi’s Equation 

Using the classification for second order ODEs, we have for (7.411) 
 2 4 4 0B AC  (7.412) 
for supersonic flow (i.e., v> c*). Therefore, the Tricomi equation is of hyperbolic 
type. The characteristics are 

 
2/ 4

/ 2
d B B AC
d A

 (7.413) 

 
2/ 4

/ 2
d B B AC
d A

 (7.414) 

Integrating both of these, we get the two characteristics as 

 3/2
1

2
3

C  (7.415) 

 3/2
2

2
3

C  (7.416) 

Instead of reducing it to the canonical form, we observe that the Tricomi equation 
remains unchanged if we make the following substitution: 
 2 2 3 3,a a  (7.417) 
This suggests that we can make the following change of variables: 

 
3

2
2

4( ), 1
9

k f  (7.418) 

Differentiation of (7.418) with respect to  gives 

 2 1 22 ( ) ( )k kk f f  (7.419) 

Application of the chain rule to (7.418) gives 

 
3

3
8 2 (1 )
9

 (7.420) 

Substitution of (7.420) into (7.419) gives 

 2 12 [ ( ) (1 ) ( )]k kf f  (7.421) 

Differentiation of (7.421) one more time gives 

     
2

2 1 2
2 2 (2 1) ( ) (1 )[8 6] ( ) 4(1 ) ( )k k k f k f f  (7.422) 

We now turn to the first term in (7.411). In particular, differentiation of (7.418) 
with respect to  gives 

 
2

2 2
2

4( ) ( )
3

k kf f  (7.423) 

Application of the chain rule to (7.43) gives 
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2

2
4 3 (1 )
3

 (7.424) 

Differentiating (7.424) one more time and using (7.418), we find 

 
2

2 2
2

8{ ( ) 4(1 ) ( )}
3

k f f  (7.425) 

Substitution of (7.422) and (7.425) into (7.411) gives 

 5 3 1(1 ) ( ) [ 2 ( 2 )] ( ) ( ) ( ) 0
6 2 2

f k k f k k f  (7.426) 

Recall the hypergeometric equation from (4.560) of Chapter 4 that 
 (1 ) ( ) [ ( 1) ] ( ) ( ) 0f f f  (7.427) 
Thus, comparison of (7.426) and (7.427) gives 

 1 5, , 2
2 6

k k k  (7.428) 

Therefore, according to Chapter 4 the solution of (7.426) can be expressed in terms 
of hypergeometric functions, and using (7.418), the final solution of the Tricomi 
equation given in (7.411) is 

 

3
2

2

13 32
6

2 2

1 5 4{ ( , , 2 ;1 )
2 6 9

4 1 2 7 4(1 ) ( , , 2 ;1 )}
6 3 69 9

k

k

AF k k k

B F k k k

 (7.429) 

Note from Chapter 4 that we can use the bilinear transformation given in (4.610) to 
convert the solution given in (7.429) into five other different forms. In particular, 
we can use (4.599) to transform the solution to the form (see Table 4.4 second row 
for singular point near  = 1)   
 1 2

1 1 2 2(1 ) (1 )y C V C V  (7.430) 
We further pick solution Numbers 1 and 5 in Table 4.7 to get 

 

3
2

2

3

2/3 2

1 2 4{ ( , , ; )
2 3 9

5 1 4 4( , , ; )}
6 3 3 9

k AF k k

B F k k
 (7.431) 

This result is obtained by noting that 

 1/3 1/3
2/3

4(1 ) (1 ) ( )
9

 (7.432) 

Following Landau and Lifshitz (1987), we give one more different form of (7.429) 
by using the following transformation: 

 1
1 u

 (7.433) 

which is for the solution near the singular point of    (see Chapter 4). For this 
case, we can pick solution Numbers 3 and 7 from Table 4.8 as 
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2

2/3 3

1 1 9{ ( , , ; )
3 2 4

1 5 3 9( , , ; )}
2 6 2 4

k AF k k

B F k k
 (7.434) 

This is obtained by noting the following: 

 
2 3

3 2
9 4( 1) ( ) ( )

94

k
k

k  (7.435) 

 
3 31/21/2
2 3/2 2

4 4( 1) ( ) ( ) ( )
99

kkk
k  (7.436) 

More importantly, we see from (7.431) that  can be expanded in integral powers 
of  near  = 0, and (7.434) shows that  can be expanded in integral powers of  
near  = 0. That is, the lines  = 0 and  = 0 are not singular lines because power 
expansion of infinite order exists. Equation (7.429) shows that the characteristics 
are singular lines if 2k+1/6 is not an integer, and the factor (9 2 4 3)2k+1/6 in 
(7.429) has branch points; whilst if 2k+1/6 is an integer, the solution is degenerate 
for 2k+1/6 = 0 and as shown in Chapter 4 that a second independent solution has 
logarithmic singularity (see cases 2 and 3 of Section 4.5). For more discussion of 
the solution near the lines   = 0 and  = 0, the readers are referred to Section 118 
of Landau and Lifshitz (1987). Physically, this means that a continuous finite 
solution for the solution ceases to exist on the characteristics when the gas is 
moving supersonically. This singular solution suggests that a shock wave with 
jumps exists in a supersonic gas flow. Therefore, the study of the Tricomi equation 
is of fundamental importance in investigating supersonic flows around an object. 
Equivalently, to rephrase the same phenomenon in a reverse order, the Tricomi 
equation is of utmost importance in studying supersonic flight of aircraft (e.g., 
Mach number larger than 1). This is consistent with the so-called Le Roux-
Delassus theorem that any singular surface of a solution of a linear differential 
equation must be characteristics. Thus, the jump character of the characteristics 
indicates shock waves.     
 Actually, the solution of the Tricomi equation can also be expressed in 
Fourier expansion as: 
 ( ) iu e  (7.437) 
Substitution of (7.437) into (7.411) leads to 
 2 0u u  (7.438) 
This is an Airy equation and can be solved in terms of Bessel functions. By 
following the transformation proposed in Problem 4.52 in Chapter 4, we have 

 3/2 3/2
1/3 1/3

2 2{ ( ) ( )}
3 3

ie AJ BY  (7.439) 

As a final note, Landau and Lifshitz (1987) was first translated to English from 
Russian in 1958. Landau obtained a Nobel Prize in physics in 1962 for his work on 
liquid helium, whereas Lifshitz was a student of Landau and recipient of Landau 
Prize, USSR State Prize, Lomonosov Prize, and Lenin Prize. Fluid Mechanics by 
Landau and Lifshitz (1987) is volume six of the ten-volume book series Course of 
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Theoretical Physics by Landau and Lifshitz. This famous book series has been 
translated into six different languages (some individual volumes to more than 10 
languages).  

7.8 RIEMANN’S INTEGRAL FOR HYPERBOLIC PDE  

For the hyperbolic equation, the following problem is known as the Goursat 
problem: 

 
2

( , , , , )u u uF x y u
x y x y

 (7.440) 

where 0 < x, y < 1, and the boundary conditions are 
 (0, ) ( ), ( ,1) ( ), (1) (0)u y y u x x  (7.441) 
This problem is also known as the Darboux problem. There is a related problem 
called the Cauchy problem that also involves the first derivative of u: 

 ( ( ), ( )) ( ), ( )u dx u dyu x t y t t t
x dt y dt

 (7.442) 

Note that the boundary conditions are given in terms of a parameter t. We will not 
consider the so-called Cauchy problem here in detail. Note also that there are many 
different usages of the term “Cauchy problem” in the literature. In general, the term 
Cauchy problem is reserved for hyperbolic PDEs (or wave type solutions), instead 
of elliptic PDEs (or equilibrium type solutions). In particular, the so-called Cauchy 
problem is normally defined for an initial value problem not for a boundary value 
problem. 
 In this section, we discuss a method derived by Riemann in 1860 for two-
dimensional space. This work by Riemann was not known until du Bois-Reymond 
noticed its importance in 1864 and was subsequently publicized by Darboux (this is 
the reason that the Goursat problem was sometimes referred as Darboux problem). 
We consider a special case of Goursat problem given in (7.440): 

 
2

( ) ( , )u u uF u A B Cu f x y
x y x y

 (7.443) 

This problem is clearly a linear form of the Goursat problem given in (7.440). The 
triangular domain of the problem is given in Figure 7.5. Boundary values of u and v 
and their first derivatives are given on the curve S, which is not a characteristics of 
the hyperbolic problem. The characteristics are assumed to be given as x = constant 
and y = constant. Riemann’s method was originally proposed for gas dynamics and 
only a particular form of (7.443) was considered. The general form given in (7.443) 
was actually considered by Hadamard.  
 The associated adjoint problem is  

 
2

( ) ( ) ( ) 0vG v Av Bv Cv
x y x y

 (7.444) 

where v is not only a function of x, y but also a function of the position of a (i.e., x0, 
y0) 
 0 0( , ; , )v v x y x y  (7.445) 
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( ) u u uvF u v Av Bv Cvu
x y x y

 (7.446) 

 
2

( ) ( ) ( ) 0v u uuG v u u Av u Bv Cuv
x y x y

 (7.447) 

Subtracting (7.447) from (7.446), we find 

 
2 2

( ) ( ) ( ) ( )u vvF u uG v v u Auv Buv
x y x y x y

 (7.448) 

The right hand side of (7.448) can be rearranged as  

 2 2

1 1{ ( ) } { ( ) }
2 2

( ) ( )

P Q u v u vv u Auv v u Buv
x y x y y y x x

u vv u Auv Buv
x y x y x y

 (7.449) 

where   

 1 ( )
2

u vP v u Auv
y y

 (7.450) 

 1 ( )
2

u vQ v u Buv
x x

 (7.451) 

Equating (7.448) and (7.449) and integrating over the domain shown in Figure 7.5, 
we have 

 [ ( ) ( )] [ ] ( )
S

P QvF u uG v dxdy dxdy Pdy Qdx
x y

)
S

Pdy Qd((  (7.452) 

The line integral going anti-clockwise as shown in Figure 7.5 is taken as positive. 
Substituting (7.444) and (7.443) into (7.452), we get 
 ( ) ( ) ( )

a a
vfdxdy Pdy Qdx Pdy Qdx Pdy Qdx  (7.453) 
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Since the boundary values of  have been given, we only need to consider the line 
integrals along a  and a as: 

 

1( ) [ ( ) ( )]
2

1 1( ) ( ) ( )
2 2

a a a

a
a

vPdy Qdx Qdx uv u Bv dx
x x

vuv uv u Bv dx
x

 (7.454) 

 

1( ) [ ( ) ( )]
2

1 1( ) ( ) ( )
2 2

a a a

a
a

vPdy Qdx Pdy uv u Av dy
y y

vuv uv u Av dx
x

 (7.455) 

where the subscripts , , a indicate the evaluation of the function at these points. 
Note that the direction cosines between the unit normal n and the characteristic 
lines a  and a are both negative one. Now the boundary condition of the adjoint 
problem given in (7.444) can be chosen such that 

 
2

( ) ( ) ( ) 0vG v Av Bv Cv
x y x y

 (7.456) 

 0 onvBv a
x

 (7.457) 

 0 onvAv a
y

 (7.458) 

Note that the last term in (7.454) and (7.455) becomes zero by such a choice for 
function v. The adjoint problem is introduced that (7.452) is valid. As we will see 
from the next chapter (7.452) is actually a generalized form of Green’s theorem 
(the original Green’s theorem is only for Laplace equation as in (8.37) given in 
Chapter 8). Equivalently, we have 

 
2

( ) ( ) ( ) 0vG v Av Bv Cv
x y x y

 (7.459) 

 
0

0
( , )

0 0 0 0( , ; , ) on
x

x
B y d

v x y x y e y y  (7.460) 

 
0

0
( , )

0 0 0 0( , ; , ) on
y

y
A x d

v x y x y e x x  (7.461) 
 0 0 0 0( ) ( , ; , ) 1v a v x y x y  (7.462) 
This function v is thus called Riemann’s function. Substitution of (7.454) and 
(7.455) into (7.453) gives 

 1 1( ) ( ) ( ) ( )
2 2

u a uv uv vfdxdy Pdy Qdx  (7.463) 

This is the solution obtained by Riemann for the hyperbolic problem as long as the 
boundary data were not given on characteristics (i.e., S is not a characteristics). 
Note that Riemann’s function is not symmetric with respect to x, y and x0, y0:  
 0 0 0 0( , ; , ) ( , ; , )v x y x y v x y x y  (7.464) 
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The equality in (7.464) only holds for the self-adjoint problem, but the original 
problem is not symmetric for general functions A and B.   
 This technique of using the Riemann function to solve the original hyperbolic 
PDE is called the Riemann method. The hyperbolic equation does not admit 
isolated singularities, and every singularity is continued along the characteristics. 
The key idea of Riemann’s method is to reduce the BVP along the curved S to the 
BVP along two characteristics.  

7.9 BIHARMONIC EQUATION 

The biharmonic equation was found important in engineering applications. The 
biharmonic equation was obtained in the theory of thin plate bending, two-
dimensional elastic stress analysis using Airy’s stress function, two-dimensional 
highly viscous flow, and three-dimensional stress analysis of elastic solids. The 
analogy between plate bending and low Reynolds number viscous flow was noticed 
by Rayleigh in 1893, Sommerfeld in 1904, and Lamb in 1906. The development of 
theories for solving the biharmonic equation indeed closely relates to the analyses 
of Airy’s stress function and plate bending. In 1892, Russian engineer Krylov 
visited Paris and posed the problem of the biharmonic equation to Hermite, and he 
related this problem to his son-in-law, Picard, another famous French 
mathematician. Consequently, the problem of solving the biharmonic equation in a 
rectangular domain was posed in Prix Vaillant in 1907 with prize money of 4000 
francs. The initial judge panel included Poincare, Picard, and Painlevé and they 
wrote reports on the 12 submissions. The reports were then submitted to an 
authority commission including, Jordan, Appell, Humbert, Levy, Darboux, and 
Boussinesq. There were 4 winners who shared the prize money, and they are J. 
Hadamard, A. Korn, G Lauricella and T. Boggio. As a side note, W. Ritz (a student 
of David Hilbert) also submitted his paper but was “reported” missing and was not 
eventually awarded. It turns out that Ritz’s analysis using a variational formulation 
related to plate bending was most influential for later development (see Chapter 
14). It eventually becomes the focus of Krylov, who is the initiator of such analysis. 
Nevertheless, the biharmonic equation is clearly one of the most important PDEs 
higher than second order. 
 There are many famous mathematicians contributing to the development of 
theories for solving the biharmonic equation, including famous names like Airy, 
Maxwell, Clebsch, Ritz, Kirchhoff, Papkovich, Poisson, Sophie Germain, Love, 
Koialovich, Krylov, Navier, Boussinesq, Rayleigh, Sommerfeld, Galerkin, Dougall, 
Filon, Muskhelishvili, Levy, Michell, Pickett, and Timoshenko. Readers are 
referred to the excellent and comprehensive review article by Meleshko (2003) on 
the biharmonic equation. 
 The biharmonic equation can be expressed as a repeated application of the 
Laplacian operator as: 
 2 2( )( ) 0 u u2)( ) 22  (7.465) 
In 3-D Cartesian coordinates, it can be expressed as 

 
2 2 2 2 2 2

4
2 2 2 2 2 2( )( ) 0u u uu

x y z x y z
 (7.466) 
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More explicitly, it can be expressed as 

 
4 4 4 2 2 2

4
4 4 4 2 2 2 2 2 22 2 2 0u u u u u uu

x y z x y x z z y
 (7.467) 

In 2-D Cartesian coordinates, it is reduced to 

   
2 2 2 2 4 4 4

2 2 4
1 1 1 2 2 2 2 4 2 2 4( )( ) 2 0u u uu u u

x y x y x x y y
 (7.468) 

In cylindrical polar coordinates, we have 
 cos , sin ,x r y r z z  (7.469) 
The corresponding biharmonic equation becomes 

   
2 2 2 2 2 2

4
2 2 2 2 2 2 2 2

1 1 1 1( )( ) 0u u
r r r rr r z r r z

 (7.470) 

where 

    2 2r x y  (7.471) 
In spherical polar coordinates, we have 
 sin cos , sin sin , cosx R y R z R  (7.472) 
The biharmonic equation becomes 

    

2 2 2
4

2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2

2 1 cot 1( )
sin

2 1 cot 1( ) 0
sin

u
R RR R R R

u
R RR R R R

 (7.473) 

where 

    2 2 2R x y z  (7.474) 

7.9.1 Plane Elastic Stress Analysis for Solids 

For two-dimensional solids under plane stress or plane strain conditions, the stress 
analysis can be formulated in Airy’s stress function  as: 

 4 212( )
1

  = V  (7.475) 

where V is the potential of body force and  is defined as 

 
3 , plane stress
1

= 3 4 , plane strain
 (7.476) 

The proof of (7.475) can be found in Chau (2013) and will not be reported here. 
This is a nonhomogeneous biharmonic equation. In Cartesian coordinates, the 
stress components are defined in terms of  

 
2 2 2

2 2, , ,xx yy xy  V   V   
y xy x

 (7.477) 
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In polar coordinates, the stress components are defined in terms of  

 
2

2   V
r

, 1( )r   
r r

,   
2

2 2
1 1

rr  V
r r r

 (7.478) 

If body force is negligible, we recover the biharmonic equation 
  4 0  =  (7.479) 
The main difficulty encountered in solving Airy’s stress function appears in 
satisfying the boundary condition. 

7.9.2 Three-Dimensional Elastic Stress Analysis for Solids 

For three-dimensional stress analysis in elastic solids, there are various 
formulations that can be used. They are classified into stress formulation and 
displacement formulation. The stress formulations include a Beltrami stress 
function, Maxwell stress function, and Morera stress function, while the 
displacement formulation includes Helmholtz decomposition, Lame strain potential 
for incompressible solids, the Galerkin vector, Love displacement potential for a 
cylindrical body, and Papkovitch-Neuber displacement potential (Chau, 2013). 
Among the displacement formulation, Helmholtz decomposition leads to one scalar 
biharmonic and one vector biharmonic equation as: 

 4 0 ,  4 0  (7.480) 
where the divergence of the vector  is zero (i.e.,  = 0). The displacement 
vector can be found as 

 u  (7.481) 
Alternatively, displacement of elastic solids can also be expressed in terms of a 
single vector called the Galerkin vector G. The governing equation for it is also a 
vector biharmonic equation 

 4 0G  (7.482) 
For this case, the displacement vector is 

 22(1 )u G G  (7.483) 
For problems with axial symmetry, only one component of the Galerkin vector is 
needed, and it is known as Love’s displacement potential. In particular, we have 

 4 0zG  (7.484) 
The displacement vector becomes 

 
2 22

2
2

1(1 2 ) z z
z z r

G GG
r z r zz

u e e e  (7.485) 

Thus, it can be seen that the biharmonic equation is closely related to three-
dimensional stress analysis. The proofs for these formulations can be found in 
Chapter 4 of Chau (2013). 
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7.9.3 Bending of Thin Plates 

The development of the theory for thin plate bending has a long history. Many 
great mathematicians were involved in its development, like Lagrange, Sophie 
Germain, Navier, Poisson, Kirchhoff, and Levy. The deflection of a thin plate is 
governed by the following nonhomogeneous biharmonic equation: 

 2 2 4
1 1 1

( , )p x yw w
D

 (7.486) 

where the 2-D Laplacian is defined in (7.468) and p is the distributed loading on 
the plate. The plate constant is defined as 

 
3

212(1 )
EhD  (7.487) 

where h is the thickness of the plate, E is the Young’s modulus, and  is Poisson’s 
ratio. In polar form, plate bending deflection is given by 

    
2 2 2 2

4
1 2 2 2 2 2 2

1 1 1 1( )( ) pw w
r r r r Dr r r r

 (7.488) 

Bending of a thin plate finds applications in ship, aircraft, and building design. The 
proof of (7.488) can be found in the standard reference book by Timoshenko and 
Woinowsky-Krieger (1959). 

7.9.4 Two-Dimensional Viscous Flow with Low Reynolds Number 

When flow velocity is small in a highly viscous incompressible flow, Lamb (1932) 
showed that the stream function satisfies the biharmonic equation if the viscous 
effect is much larger than the inertia effect (see p. 607 of Lamb, 1932). This is also 
known as Stokes flow in the literature. In particular, the stream function  satisfies 
the biharmonic equation: 
    4

1 0  (7.489) 
where  is defined in terms of the velocity components u and v as 

    ,v u
x y

 (7.490) 

We sketch briefly the proof of (7.489) here. First, let us recall from (2.121) the 
material derivative as 

 
2

( )
2

D
Dt t

uu u u u  (7.491) 

This can be rewritten as: 

 21 2
2

D
Dt t

u u u u  (7.492) 

where  is the vorticity of the flow and defined as: 

 
1
2

u  (7.493) 
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Physically, it is the angular velocity of the fluid element that would rotate if it were 
suddenly solidified. If the motion of the fluid is driven by an external force F and a 
pressure difference, the equation of motion becomes 

 1D p
Dt

u F  (7.494) 

where p and  are the fluid pressure and fluid density respectively. Combining 
(7.492) and (7.494) gives 

 21 12 0
2

p
t
u u u F  (7.495) 

Assuming the existence of an external force potential, we can rewrite F as 
 VF  (7.496) 
Next, we assume the flow is incompressible (  = constant), or 

 21 12 ( ) 0
2

V p
t
u u u  (7.497) 

If the viscosity in fluid is nonzero, the fluid pressure is no longer normal to the 
surface. Thus, we can add viscosity effect as 

 21 12 ( ) 2 0
2

V p
t
u u u  (7.498) 

where  is the kinematic viscosity and is defined as the coefficient of viscosity  
divided by the density  as  

  (7.499) 

Next, we recall a vector identity that 
 2 ( ) 2u u  (7.500) 
The proof of this identity will be left as an exercise for readers (see Problem 7.12). 
Incompressibility also implies the trace of velocity is zero, or the first term on the 
right of (7.500) is zero. Substitution of (7.500) into (7.498) gives 

 2 21 12 ( ) 0
2

V p
t
u u u u  (7.501) 

Now consider a special case that 
 ( , ,0), (0,0, )u vu  (7.502) 
Then, (7.501) gives two equations 

 22 0u v u
t x

 (7.503) 

 22 0v u v
t y

 (7.504) 

where  can be identified easily from (7.498). It is not given here as we will 
eliminate it. Elimination of  from (7.503) and (7.504) gives 

 2
1u v

t x y
 (7.505) 

In obtaining (7.505) we have used the definition of  given in (7.493) to get 
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 1 ( )
2

v u
x y

 (7.506) 

Finally, we now introduce a stream function defined as 

 ,u v
y x

 (7.507) 

We note that this stream function automatically satisfies the incompressibility: 

 
2 2

0u v
x y x y y x

u  (7.508) 

Substitution of (7.507) into (7.506) gives 

 2
1

1
2

 (7.509) 

Finally, combining (7.505), (7.507), and (7.509) gives 

 2 2 4
1 1 1( )

t x y y x
 (7.510) 

This is a nonlinear PDE and not easy to solve. However, for slow moving fluid 
(such that  is small) with high viscosity , the terms on the left hand side of 
(7.510) are negligible compared to that on the right, and we finally obtain a 
biharmonic equation 
 4

1 0  (7.511) 

7.9.5 Uniqueness of the Solution of Biharmonic Equation 

In this section, we will consider the uniqueness of the solution of the following 
two-dimensional biharmonic equation with boundary conditions 

 
4 4 4

4
1 4 2 2 42 0u u uu

x x y y
 (7.512) 

 ( ), ( )uu g s h s
n

 (7.513) 

where s is the tangential coordinate along the boundary  of the two-dimensional 
domain. The following uniqueness proof was presented by Hua (2009, 2012). 
Suppose that u1 and u2 are two distinct solutions of the systems (7.512) and 
(7.513). We define a new function: 
 2 1v u u  (7.514) 
Taking the biharmonic operator to (7.514) gives 
 4 4 4

2 1 0v u u  (7.515) 
The corresponding boundary conditions for v can be found as 
 2 1 ( ) ( ) 0v u u g s g s  (7.516) 

 2 1 ( ) ( ) 0
u uv h s h s

n n n
 (7.517) 



 Higher Order PDEs  463 

 

Now, we recall Green’s theorem (or called Green’s second identity) for the 
Laplacian operator: 

 2 2( ) ( )d dS
n n

 (7.518) 

The proof of this theorem will be given in the next chapter (see (8.37)). Let us 
make the following identification for  and : 
 2,v v  (7.519) 
With this identification, (7.518) becomes 

 2 2 2 2 2 2( ) [ ( )]vv v v v d v v v dS
n n

 (7.520) 

The second term on the left hand side is identically zero, and both terms on the 
right hand side are zeros in view of (7.516) and (7.517). Thus, we have 
 2 2( ) 0v d  (7.521) 

Therefore, we must have 
 2 0v  (7.522) 
with  

 0, 0vv
n

 (7.523) 

From the extremal principle to be derived in Section 9.7.7 of Chapter 9 for the 
Laplace equation, the maximum and minimum of v can only appear on the 
boundary. Thus, we must have v be identically zero. Then, (7.514) leads to   
 2 1u u  (7.524) 
This contradicts with our assumption that they are distinct solutions. Thus, the 
solution of biharmonic equation with boundary condition (7.497) must be unique.   
 Note the special case of g = h = 0, the same result was derived by Fugdele 
(1981) (see Footnote 1 on p. 450 of Fugdele, 1981).   

7.9.6 Biharmonic Functions and Almansi Theorems  

For the two-dimensional polar form, the general solution can be expressed as 
(Chau, 2013; Meleshko, 2003): 
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 (7.525) 

For two-dimensional Cartesian coordinates, the general solution of the biharmonic 
equation can be expressed in two analytic functions  and  (Chau, 2013): 
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 ( , ) Re[ ( ) ( )]x y  z z z  (7.526) 
where the complex variable z is defined as  
 z x iy  (7.527) 
 Alternatively, Chau (2013) mentioned two Almansi theorems in generating 
biharmonic functions in terms of harmonic functions. As discussed by Chau (2013) 
in Sections 4.5 4.7 in his book, there are infinite numbers of harmonic functions 
(i.e., solution of Laplace equation), and, thus, there are also infinite biharmonic 
functions. According to Meleshko (2003), Boussinesq actually derived the so-
called Almansi theorem independently in 1885 before Almansi did in 1896. 
However, the Boussinesq name was not associated with these theorems. The proofs 
of Almansi theorems were given in Fung (1965).  In this section, we will provide a 
simpler version of proofs given by Hua (2009, 2012). 
 The first Almansi theorem states that the following function is biharmonic  
 1 2u xu u  (7.528) 
where u1 and u2 are both harmonic. To prove this theorem, let us assume that u is 
biharmonic and u2 is harmonic, and we want to show the following  
 2

1 0u  (7.529) 
Since u2 is assumed as harmonic, from (7.528) we must have  
 2

1( ) 0u xu  (7.530) 
Equivalently, it can be expressed as 

 
2 2

2 2 1 1 1 1
1 2 2( ) 2 ( ) 2

u u u uu xu x
x xx y

 (7.531) 

In obtaining the last part of (7.531), we have employed the fact that u1 is harmonic. 
First, we observe that a solution of (7.531) is 

 
0

* 2
1

1( , ) ( , )
2

x

x
u x y u y d  (7.532) 

The validity of this solution can be proved by using Leibniz’s rule of differentiation 
under the integral sign. Let us take the Laplacian of (7.531); we get 

 
*

2 2 2 2 *1
1

1 0
2

uu u
x x

 (7.533) 

In getting the last part of (7.533), we observe that u is biharmonic. This leads to the 
fact that  
 2 *

1 ( )u v y  (7.534) 
Clearly, we can define another solution of u1 as: 

 
**

2 ** 1
1 2 ( )

u
u v y

y
 (7.535) 

Then, we can select u1 as: 
 ** *

1 1 1u u u  (7.536) 
Then, it is obvious that 
 2 2 ** 2 *

1 1 1 ( ) ( ) 0u u u v y v y  (7.537) 
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This completes the proof.  
 The second Almansi theorem states that the following function is biharmonic  
 2 2

0 1 2( )u r r u u  (7.538) 
where u1 and u2 are both harmonic. For u is biharmonic and u2 is harmonic, we 
want to prove that u1 is also harmonic. To prove this, we first recall the identity 
(Eq. (1.43) of Chau, 2013): 

  

2 2 2

2 2

( ) 2( ) ( )

2{ }
x x y y

 (7.539) 

Taking the Laplacian of (7.538) and applying (7.539), we have 

  

2 2 2 2 2 2 2
0 1 2 0 1

2 2
2 2 2 2 2 2 1 1

0 1 1 0

1 1
1

[( ) ] [( ) ]

( ) ( ) 2{ }

4 4( )

u r r u u r r u

u ur rr r u u r r
x x y y

u uu x y
x y

 (7.540) 

In obtaining (7.540), we have noted the following identity: 
  2 2 4r  (7.541) 
Taking the Laplacian of (7.540), we get 

  2 2 2 2 21 1
14 4[ ( ) ( )] 0

u uu u x y
x y

 (7.542) 

It is straightforward to show that 

  
2

2 21 1
12( ) 2 ( )

u ux x u
x xx

 (7.543) 

  
2

2 21 1
12( ) 2 ( )

u uy y u
y yy

 (7.544) 

Substitution of (7.543) and (7.544) into (7.542) 

  2 2
1 112 4( ) 0u x y u

x y
 (7.545) 

Thus, we finally get 
  2

1 0u  (7.546) 
This completes the proof. 

7.9.7 Solution of Circular Domain 

For the two-dimensional unit circular domain, the biharmonic equation becomes 

    
2 2 2 2

4
2 2 2 2 2 2

1 1 1 1( )( ) 0u u
r r r rr r r r

 (7.547) 

subjected to the following boundary conditions: 
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    1
1

( ), ( )r
r

uu g h
r

 (7.548) 

Recall from the second Almansi theorem that the biharmonic function can be 
expressed in terms of harmonic functions u1 and u2 as  
 2

1 2( 1)u r u u  (7.549) 
Applying boundary conditions (7.548) to (7.549) gives 

    2
2 1 11

1
( ), [2 ] ( )rr

r

uuu g u h
r r

 (7.550) 

For a unit circular domain, the harmonic function subject to the boundary condition 
given in the first equation of (7.550), there is a well-known Poisson integral 
formula for the Laplace equation (details of this formula will be discussed in 
Section 9.7.6 of Chapter 9): 

     
2

2 2
1 (1 ) ( )( , )

2 1 2 cos( )
r gu r d

r r
 (7.551) 

The most important step is to show that the following function is harmonic 

     2 22 2
1(2 ) ( ) 0

u u
u r r

r r
 (7.552) 

To show the validity of (7.552), we have 

     
2 32

2 2 2
2 2 3( ) 2

u u ur r
rr r r

 (7.553) 

     
2

2 2 2
2

1 1( )
u u ur

r r r r r r
 (7.554) 

     
22

2 2
2 2 2

1 1( ) ( )
u ur
r r rr

 (7.555) 

Combining (7.553) to (7.555), we get the Laplacian of the second term in (7.552) as 

     
2 3 2

2 2 2 2 2 2
2 3 2

1 1( ) 3 ( )
u u u u ur r
r r r r rr r

 (7.556) 

Next, we find that 

     
3 2 2 2

2 2 2 2 2 2
2 3 2 2 2

1 1 2( ) ( ) 0
u u u u ur u r

r r r r r rr r
 (7.557) 

It is because u2 is a harmonic function. Therefore, we have 

     
3 2 2 2

2 2 2 2 2
3 2 2 2

1 1 2( )
u u u u ur

r r r r rr r
 (7.558) 

Substitution of this result into (7.556) gives 

     
2 2

2 22 2 2 2
22 2 2

1 1( ) 2( ) 2 0
u u u ur u
r r rr r

 (7.559) 

This completes the proof of (7.552). Then, we can apply the Poisson integral formula 
for the Laplacian again: 
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2

2
(1 )

1 2 cos( )
r

r r

2 2
[1 cos( )]

[1 2 cos( )]
r

r r

21 2 cos( )r r

     
2

2
1 2

1 (1 ) ( )2
2 1 2 cos( )

u r hu r d
r r r

 (7.560) 

Differentiation of (7.551) with respect to r gives 

     
2

2
2

1 (1 )cos( ) 22 ( )
2 1 2 cos( )

u r r g d
r r r

 (7.561) 

Substitution of (7.561) into (7.560) gives 

  
2 2

1 2 2
(1 )cos( ) 2 1 (1 ) ( )( )

2 41 2 cos( ) 1 2 cos( )
r r r r hu g d d

r r r r
 

  (7.562) 
Finally, substitution of (7.551) and (7.562) into (7.549) gives 

  
2 2

2 2 2
( 1) 1 ( ) [1 cos( )] ( ){ }

2 2 1 2 cos( ) [1 2 cos( )]
r h r gu d d

r r r r
 

  (7.563) 
Note that this formula was derived in Hua (2009). The kernel functions in Hua’s 
integral are illustrated in Figure 7.6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.6 Kernel function for Hua’s integral 

 
 This shows that the solution at any point inside the circular domain are functions 
of the weighted average of the boundary values h( ) and g( ). Actually, this four-
volume series by Hua was originally published in 1962 (Volumes 1 and 2), 1978 
(Volume 3) and 1981 (Volume 4). The 2009 edition was a reprint celebrating the 
100th anniversary of Professor Hua Loo-Keng’s birthday. This 2009 edition has been 
translated into English (Hua, 2012). The same result given in (7.563) has been re-
derived by Dong et al. (2005) using the result of Zheng and Zheng (2000). Neither of 
them cited the book by Hua (earlier versions), and their derivations are more 
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complicated than the analysis given here. It can be seen that Hua’s recognition of the 
validity and usefulness of (7.538) simplifies the analysis tremendously. As a side note, 
we should mention that Hua Loo-Keng is the most influential mathematician of 
modern China. He did not have a formal education, and he is an excellent self-learner. 
A full biography is given at the end of this book. 

7.10 SECOND ORDER PDE WITH NON-CONSTANT COEFFICIENTS   

The main contributor for general nonlinear second order PDEs is Gaspard Monge. 
For PDEs of second and higher order, we normally use the following notations for the 
first and second derivatives: 

   
2 2 2

2 2, , , ,z z z z zr s t p q
x y x yx y

 (7.564) 

Some second order PDEs can be integrated immediately by inspection. Here are 
some examples. For the case of two variables, a general PDE of the second order 
can be expressed as: 
   ( , , , , , , , ) 0F x y z r s t p q  (7.565) 
This PDE is in general nonlinear and very difficult to solve. In the following 
sections, we will consider some particular forms for which analytic methods can be 
used to find the solution.  
 First, we will look at some linear PDEs that can be solved by inspection. The 
most general linear form is given by 
   Rr Ss Tt Pp Qq Zz F  (7.566) 
where the coefficients R, S, T, P, Q, Z, and F are only a function of variables x and 
y. There are four types of second order PDEs that can be solved easily. 

7.10.1 Type I (Direct Integration) 

In Type I, if only one second-order derivative term appears in our PDE, the 
problem can be solved by direct integration. In particular, the Type I PDE is 

   
2

12 ( , )z Fr F x y
Rx

 (7.567) 

   
2

2 ( , )z Fs F x y
x y S

 (7.568) 

   
2

32 ( , )z Ft F x y
Ty

 (7.569) 
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7.10.2 Type II (ODE of p or q) 

If there is only one second order derivative term together with one first derivative 
term (either p or q) such that it becomes an ODE in either p or q. In particular, the 
Type II PDE appears as 

   ( , )pRr Pp R Pp F x y
x

 (7.570) 

   ( , )pSs Pp S Pp F x y
y

 (7.571) 

   ( , )qSs Qq S Qq F x y
y

 (7.572) 

   ( , )qTt Qq T Qq F x y
y

 (7.573) 

Note that all of these become a first order ODE for either p or q.  

7.10.3 Type III (First Order PDE) 

Certain special cases of (7.566) can be expressed as a first order PDE for either p 
or q. They are 

   ( , )p pRr Ss Pp R S Pp F x y
x y

 (7.574) 

   ( , )q qSs Tt Qq S T Pp Qq F x y
x y

 (7.575) 

Both of these are linear first order PDEs. The Lagrange method discussed in 
Section 6.7 of Chapter 6 can be used to solve them. 

7.10.4 Type IV (Second Order ODE) 

Certain special cases of (7.566) can be expressed as a second order PDE for either 
p or q. They are 

   
2

2 ( , )z zRr Pp Zz R P Zz F x y
xx

 (7.576) 

   
2

2 ( , )z zTt Qq Zz T Q Zz F x y
yy

 (7.577) 

These are second order ODEs for z. 
 
__________________________________________________________________ 
Example 7.4 Consider the solution of the following PDE: 

   
2

2 2z x y
x y

 (7.578) 
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Solution:  Integrating with respect to x, we get 

   2 2 ( )z x xy y
y

 (7.579) 

Integrating (7.579) with respect to y, we find 
   2 2 ( ) ( )z x y xy y dy x  (7.580) 

Since both  and  are arbitrary functions, we can rewrite it as 
 2 2 ( ) ( )z x y xy f x F y  (7.581) 
__________________________________________________________________ 
__________________________________________________________________ 
Example 7.5 Consider the solution of the following PDE: 

   
2

2 2 0z zx
xx

 (7.582) 

 
Solution:  By using the definition of p given in (7.564), we have 

   2 0px p
x

 (7.583) 

This can be rearranged as 

   2p x
p x

 (7.584) 

Integration gives 

   2
( )f yp
x

 (7.585) 

where f is an arbitrary function of y. Using the definition of p in (7.564), we get 

   2
1 ( )z p f y

x x
 (7.586) 

Integrating (7.586) with respect to x, we find 

   1 ( ) ( )z f y F y
x

 (7.587) 

__________________________________________________________________ 

7.11 MONGE AND MONGE-AMPERE METHODS  

Recall from (7.565) that the following general second order PDE is considered: 
   ( , , , , , , , ) 0F x y z r s t p q  (7.588) 
We will consider a general method in this section, called Monge’s method for the 
case of quasi-linear. The extension of this method, called the Monge-Ampere 
method, will also be considered for the case of nonlinear.  
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7.11.1 Some Examples 

Let us consider the following particular problem, and then we will generalize the 
observation to the so-called Monge method. In particular, a first order PDE is given 
as 

 22 2 ( )z zx y px qy x y
x y

 (7.589) 

Differentiation of (7.589) with respect to x, we have 

 22 2 2 ( )p qx p y xy x y
x x

 (7.590) 

Using the definition given in (7.564), we can write (7.590) as 
 22 2 2 ( )rx p sy xy x y  (7.591) 
Differentiation of (7.589) with respect to y, we have 
 2 22 ( )sx ty q x x y  (7.592) 
Eliminating the arbitrary function from (7.591) and (7.592), we get 
 (2 )2 (2 2 )sx ty q y x rx p sy  (7.593) 
Rearranging (7.593), we obtain 
 2 22 5 2 2( ) 0rx xys y t px qy  (7.594) 
In explicit form, (7.574) is  

 
2 2 2

2 2
2 22 5 2 2( ) 0z z z z zx xy y x y

x y x yx y
 (7.595) 

Note that this is a linear second order PDE in r, s, and t. Inversely, we can consider 
(7.589) as a partial integral of PDE in (7.593). However, we can show that this is 
not the only partial integral of (7.595). In fact, applying the procedure in getting 
(7.595) to the following first order PDE, we find the same (7.595): 
   22 ( )px qy xy  (7.596) 
That is, two different first order PDEs lead to the same second order PDE. This is 
what Monge observed and this is the basis of formulating Monge’s method.  
 For a second example, we consider a nonlinear first order PDE 
   2 (2 )p q x y  (7.597) 
Differentiation with respect to x and y respectively gives 
   2 2 (2 )pr s x y  (7.598) 
   2 (2 )ps t x y  (7.599) 
Eliminating the arbitrary function , we find 
   2 (4 1) 2 0pr p s t  (7.600) 
This is a linear PDE in r, s, and t. In explicit form, it is  

   
2 2 2

2 22 (4 1) 2 0z z z z z
x x x yx y

 (7.601) 

 Finally, we consider the following example 
   ( )y p x q  (7.602) 
Differentiation with respect to x and y, respectively, gives 
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   (1 ) ( )r s x q  (7.603) 
   1 ( )s t x q  (7.604) 
Eliminating the arbitrary function , we find 
   22 ( ) 1s rt s  (7.605) 
Note that the terms in the bracket are nonlinear in r, s, and t. This is equivalent to: 

   
2 2 2 2

2
2 22 [ ( ) ] 1z z z z

x y x yx y
 (7.606)  

7.11.2 Generalized Form 

Guided by examples in the previous section, we will consider the more general 
form in this section. More specifically, two first integrals of the second order PDE 
given in (7.588) are assumed as: 
   ( , , , , )u u x y z p q  (7.607) 
   ( , , , , )v v x y z p q  (7.608) 
In general, we can write intermediate integral of (7.588) 
   ( )u v  (7.609) 
That is, if both (7.607) and (7.608) correspond to the same second order PDE, u 
and v must relate to each other. Taking the total differential of (7.609), we find 

   
( ){ }

u u u u udx dy dz dp dq
x y z p q

v v v v vv dx dy dz dp dq
x y z p q

 (7.610) 

Dividing through dx and dy respectively, we find 

   ( ){ }u u u u v v v vp r s v p r s
x z p q x z p q

 (7.611) 

   ( ){ }u u u u v v v vq s t v q s t
y z p q y z p q

 (7.612) 

Eliminating the unknown function , we get 
   2( )Rr Ss Tt U rt s V  (7.613) 
where R, S, T, U, and V are all functions of x, y, z, p and q: 

   ( , ) ( , )
( , ) ( , )
u v u vR q
p z p y

,   ( , ) ( , )
( , ) ( , )
u v u vT p
x q z q

 (7.614) 

   ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )
u v u v u v u vS p q
x p z p q z q y

 (7.615) 

   ( , )
( , )
u vU
p q

,   ( , ) ( , ) ( , )
( , ) ( , ) ( , )
u v u v u vV p q
y z z x y x

 (7.616) 
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Note that (7.613) is a nonlinear second order PDE because of the bracket term. 
However, if u and v are not functions of p and q, U will be zero and in turn (7.613) 
is reduced to a linear PDE (or quasi-linear PDE). This special case is the focus of 
Monge’s method. 

7.11.3 Monge’s Method 

We first consider the case that U is zero, and thus the PDE becomes 
 Rr Ss Tt V  (7.617) 
The following method was proposed by Monge in 1784. Let us take the total 
differential of p and q as: 

 p pdp dx dy rdx sdy
x y

 (7.618) 

 q qdq dx dy sdx tdy
x y

 (7.619) 

Substitution of (7.618) and (7.619) into (7.617) gives 

 ( ) ( ) 0dp sdy dq sdxR Ss T V
dx dy

 (7.620) 

This can be rewritten as 
 2 2( ) 0Rdpdy Tdqdx Vdxdy s Rdy Sdydx Tdx  (7.621) 
Now we set the first three terms and the bracket term in (7.621) to zero separately. 
This can be rewritten as 
 0Rdpdy Tdqdx Vdxdy  (7.622) 

 2 2
1 1 2 2( )( ) 0Rdy Sdydx Tdx A dy B dx A dy B dx  (7.623) 

These are the intermediate integrals of (7.617) and are known as Monge’s equations. 
Note that we can always factorize (7.623) as shown in the second part of (7.623).  
 Then, this leads to two systems, namely  
 1 1 0, 0A dy B dx Rdpdy Tdqdx Vdxdy  (7.624) 
 2 2 0, 0A dy B dx Rdpdy Tdqdx Vdxdy  (7.625) 
If these equations can be integrated, we have the intermediate integrals. We may have 
either one or two intermediate integrals, depending on whether both of them are 
integrable. The solution that satisfies (7.624) or (7.625) is also a solution of (7.617), 
but a solution of (7.617) may not satisfy (7.624) or (7.625).  
 
__________________________________________________________________ 
Example 7.6 Consider the solution of the following PDE: 

   
2 2 2

2 2
2 22 5 2 2( ) 0z z z z zx xy y x y

x y x yx y
 (7.626) 

 
Solution:  In simplified form, (7.626) can be written as 
   2 22 5 2 2( ) 0x r xys y t px qy  (7.627) 
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Using the result of (7.622) and (7.623), we have 
 2 2 2 22 5 2 0x dy xydydx y dx  (7.628) 

 2 22 2 2( ) 0x dpdy y dqdx px qy dxdy  (7.629) 
Factorizing (7.628), we have 
 ( 2 )(2 ) 0xdy ydx xdy ydx  (7.630) 
Setting the first factor in (7.630) to zero, we get 
 2 0xdy ydx  (7.631) 
Integration of (7.631) gives 
 2

1u x y a  (7.632) 
Dividing (7.629) by xdy and noting (7.631), we get 
 2 2 0xdp ydq pdx qdy  (7.633) 
This can be integrated as 
 2 2u px yq b  (7.634) 
These two characteristics give the solution as 
 22 ( )px yq x y  (7.635) 
Similarly, setting the second factor of (7.630) to zero, we find 
 2xy c  (7.636) 
Following a similar procedure, we get 
 22 ( )px qy xy  (7.637) 
Solving for p and q from (7.635) and (7.637), we get 

 2 21 {2 ( ) ( )}
3

p x y xy
x

 (7.638) 

 2 21 { ( ) 2 ( )}
3

q x y xy
y

 (7.639) 

By definition, we can integrate z by its total differential 

    

2 2 2 2

2 2

1 1{2 ( ) ( )} { ( ) 2 ( )}
3 3

1 2 1 2( )( ) ( )( )
3 3

dz pdx qdy x y xy dx x y xy dy
x y

dx dy dx dyx y xy
x y x y

 (7.640) 

Integrating both sides, we get 

     2 2 2 21 1( ) ln( ) ( ) ln( )
3 3

z x y d x y xy d xy  (7.641) 

Therefore, a solution of (7.626) is 
     2 2( ) ( )z f x y F xy  (7.642) 
However, this is only one of the possible solutions of (7.626), but not the most 
general solution. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 7.7 Consider the solution of the following PDE: 
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2 2 2

2
2 22 6z z z zy y y

x y xx y
 (7.643) 

 
Solution:  In simplified form, (7.643) can be written as 
   2 2 6y r ys t p y  (7.644) 
Using the result of (7.622) and (7.623), the two intermediate integrals are 
 2 2 22 0y dy ydydx dx  (7.645) 

 2 ( 6 ) 0y dpdy dqdx p y dxdy  (7.646) 
Factorizing (7.645), we obtain 
 2( ) 0ydy dx  (7.647) 
Integration of (7.647) gives 
 22x y a  (7.648) 
Dividing (7.646) by ydy and noting (7.647), we get 
 ( 6 ) 0ydp dq p y dy  (7.649) 
Integration of (7.649) results in 
 23py q y c  (7.650) 
These two characteristics give the solution as 
 2 23 (2 )py q y x y  (7.651) 
In explicit form, we can express (7.651) 

 2 23 (2 )z zy y x y
x y

 (7.652) 

Applying the Lagrange method discussed in Section 6.7, we find the following 
subsidiary equation 

 2 21 3 (2 )
dx dy dz
y y x y

 (7.653) 

The first two parts of (7.653) give the first characteristics as 
 2

1 2u x y a  (7.654) 
In view of (7.654), the last two of (7.653) gives the second characteristics as  
 2[ 3 ( )] 0dz y a dy  (7.655) 
Integration of (7.655) gives the second characteristics and back substitution of the 
value of a from (7.654) leads to 
 3 2

2 (2 )u z y y x y b  (7.656) 
Thus, the solution for (7.643) is 
 3 2 2{ (2 ),2 } 0z y y x y x y  (7.657) 
Finally, the solution in (7.657) can be given in explicit form 
     3 2 2(2 ) (2 )z y y x y f x y  (7.658) 
__________________________________________________________________ 
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7.11.4 Monge-Ampere Method 

Monge’s method, discussed in the last section, was extended to the nonlinear form 
given in (7.613) by Ampere in 1814. In particular, we consider the following PDE 
   2( )Rr Ss Tt U rt s V  (7.659) 
Recall from (7.618) and (7.619) that r and t can be found as 

 dp sdyr
dx

 (7.660) 

 dq sdxt
dy

 (7.661) 

Substitution of (7.660) and (7.661) into (7.659) gives 

   2{( )( ) }dp sdy dq sdx dp sdy dq sdxR Ss T U s V
dx dy dx dy

 (7.662) 

Expanding (7.662), we get 

   
2 2[ ( )]
[ ] 0

s Rdy Sdxdy Tdx U dxdp dydq
Rdydp Tdxdq Udpdq Vdxdy

 (7.663) 

Setting both the bracket terms to zero, we obtain 
   2 2 ( ) 0Rdy Sdxdy Tdx U dxdp dydq  (7.664) 
   0Rdydp Tdxdq Udpdq Vdxdy  (7.665) 
We now assume the existence of a function  = (x,y,z,p,q) such that the following 
group can be factorized: 

2 2

2 2

[ ( )]
( )( )

( )
0

Rdy Sdxdy Tdx U dxdp dydq Rdydp Tdxdq Udpdq Vdxdy
ady bdx cdp dy dx dq

a dy a b dxdy b dx c dxdp a dydq c dydp b dxdq c dqdp

  (7.666) 
This is the most important step in the Monge-Ampere method. Equating coefficients 
of all differential terms on both sides of (7.666), we find 

 
, , , ,

, ,
R a S V a b T b c U a

c R b T c U
  (7.667) 

We can choose the solution for the unknown coefficients as: 

 , , , , 1,Ta R b U c U
U

  (7.668) 

Substitution of (7.668) into the second equation of (7.667) gives a governing 
equation for : 

 2 TRU S V
U

  (7.669) 

Rewriting (7.669), we find a quadratic equation for  
 2 2 0U SU TR UV   (7.670) 
There are two distinct roots for : 
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 1 2,   (7.671) 
Finally, we can factorize (7.666) as 
 1 1( )( ) 0Udy Tdx Udp Rdy Udx Udq  (7.672) 
 2 2( )( ) 0Udy Tdx Udp Rdy Udx Udq  (7.673) 
By setting the bracket terms to zero in turn, we obtain four combinations. However, 
two of them give unacceptable results. In particular, the first and second systems 
are 
 1 2( ) 0, ( ) 0Rdy Udx Udq Rdy Udx Udq  (7.674) 
 1 2( ) 0, ( ) 0Udy Tdx Udp Udy Tdx Udp  (7.675) 
Both of these lead to 1 = 2, which is not acceptable. Finally, we have the 
following two systems of equations: 
 1 2( ) 0, ( ) 0Rdy Udx Udq Udy Tdx Udp  (7.676) 
 1 2( ) 0, ( ) 0Udy Tdx Udp Rdy Udx Udq  (7.677) 
If any of these two systems can be integrated, we have two equations for p and q.  
The solutions of them can be used to give the exact differential of z: 
 dz pdx qdy  (7.678) 
We will illustrate this method in the following example. Thus, the failure or success 
of the Monge-Ampere method depends on whether we can solve for p and q from 
(7.676) and (7.677). 
__________________________________________________________________ 
Example 7.8 Consider the solution of the following PDE:  

   
2 2 2 2

2
2 22 [ ( ) ] 1z z z z

x y x yx y
 (7.679) 

 
Solution:  In simplified form, (7.679) is written as 
   22 ( ) 1s rt s  (7.680) 
This is the nonlinear PDE type given (7.659) considered by Ampere. Thus, we 
have 
   0, 2, 1R T S U V  (7.681) 
Therefore, the characteristic equation for  given in (7.670) becomes  
 2 2 1 0   (7.682) 
Both roots are 1, and the corresponding system is 
 0, 0dy dp dx dq  (7.683) 
Integration gives the characteristics as 
 1 2,u y p a u x q b  (7.684) 
Therefore, the intermediate integral is 
 ( )y p f x q  (7.685) 
Note that an arbitrary function is involved in (7.685). The Monge-Ampere method 
does not lead to the general solution but instead yields a particular solution. 
Therefore, without loss of generality we can set 
 x q a  (7.686) 
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With (7.686), (7.685) gives 
 ( )y p f a b  (7.687) 
By making this assumption, we can solve for p and q as: 
 ,p y b q x a  (7.688) 
Substitution of (7.688) into (7.678) yields 
 ( ) ( )dz pdx qdy y b dx x a dy  (7.689) 
A particular solution is 
 z xy bx ay c  (7.690) 
Another particular solution can be obtained by assuming a linear functional form 
for (7.685) 
 ( )y p m x q n  (7.691) 
Thus, we have 

 z zp mq m y n mx
x y

 (7.692) 

Adopting the Lagrange method discussed in Section 6.7, the subsidiary equation is 

 
1
dx dy dz

m y n mx
 (7.693) 

The first pair gives the following characteristics 
 1u y mx a  (7.694) 
The second pair of (7.693) gives 

 
1 2
dx dz dz

y n mx a n mx
 (7.695) 

Integrating both sides we get 
 2

2 ( )u z a n x mx b  (7.696) 
Therefore, another particular solution is 
 ( )z nx xy y mx  (7.697) 
This solution is slightly more general, but the bottom line is that this is still a 
particular solution. Thus, the Monge-Ampere method will lead to a “particular” 
solution only. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 7.9 Consider the solution of the following PDE:  

   
2 2 2 2 2 2

2
2 2 2 23 [ ( ) ] 1z z z z z z

x y x yx y x y
 (7.698) 

 
Solution:  In simplified form, (7.698) is written as 
   23 ( ) 1r s t rt s  (7.699) 
This is of the nonlinear PDE type given in (7.659) considered by Ampere. Thus, we 
have 
   1, 3, 1R T S U V  (7.700) 
Therefore, the characteristic equation for  given in (7.670) becomes 
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 22 3 1 0   (7.701) 
The two roots of  are 1 and  1/2. From (7.676) and (7.677), we have two 
systems as: 

 10, 0
2

dy dx dp dy dx dq  (7.702) 

 1 0, 0
2

dy dx dp dy dx dq  (7.703) 

Integration of (7.702) and (7.703) gives two intermediate integrals as 

 1( )
2

p x y f y x q  (7.704) 

 1 ( )
2

p x y g y x q  (7.705) 

where f and g are arbitrary functions. Next, let us assume 

 1 ,
2

q x y q x y  (7.706) 

where  and  are not constants. Using (7.706), we can rewrite (7.704) and (7.705) 
as 

 1( ), ( )
2

p x y f p x y g  (7.707) 

Solving for x, y, p and q from (7.706) and (7.707), we get 
 2( ), 2[ ( ) ( )]x y g f  (7.708) 
 ( ),p y x f q x y  (7.709) 
Then, the total differential of z is expressed as 

 
[ ( )] ( )

( )( ) ( )
dz pdx qdy y x f dx x y dy

y x dx dy f dx dy
 (7.710) 

Note from (7.708) that 
 2( ), 2[ ( ) ( ) ]dx d d dy g d f d  (7.711) 
Substitution of (7.711) into (7.710) gives 

      21 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( )
2

dz d x y f d f d g d f d  (7.712) 

Integration gives  

       

2

2

2

1 ( ) 2 ( ) 2 ( ) 4 ( )
2
1 ( ) ( ) 2 ( ) 2 ( ) 2 ( )
2
1 ( ) ( ) ( ) ( ) 2 ( )
2

z x y f d g d f

x y g g d

x y

 (7.713) 

where the arbitrary functions  and  are defined as 
       ( ) 2 ( ) , ( ) 2 ( )f d g d  (7.714) 

The final solution is summarized as 
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       21 ( ) ( ) ( ) ( ) 2 ( )
2

z x y  (7.715) 

 2( ), 2[ ( ) ( )]x y g f  (7.716) 
In this solution,  and  are considered as parameters. Once they are given, x and y 
can be evaluated and, subsequently, z can be determined by (7.715). There are two 
arbitrary functions involved in this parametric solution, and this is the general 
solution. 
__________________________________________________________________ 

7.12 FACTORIZATION OF PDE WITH CONSTANT COEFFICIENTS  

The method considered here can be viewed as a generalization of Section 3.5.10 
for ODEs. We now consider a special form of PDE with constant coefficients: 
   1 2 2

1 2( ... ) ( , )n n n n
nD a D D a D D a D z f x y  (7.717) 

where the differentiation with respect to x and y are written symbolically 

   ,D D
x y

 (7.718) 

We first consider the homogeneous case 
   1 2 2

1 2( ... ) 0n n n n
nD a D D a D D a D z  (7.719) 

Let us consider the simplest case 
   ( ) 0D mD z  (7.720) 
More explicitly, it can be written as 

 0z zm
x y

 (7.721) 

Using the Lagrange method discussed in Section 6.7, the auxiliary equation of this 
first order PDE is 

 
1 0
dx dy dz

m
 (7.722) 

Integrating (7.722) gives two characteristics 
 1u z a  (7.723) 
 2u mx y b  (7.724) 
Therefore, the general solution is 
 ( )z F mx y  (7.725) 
This suggests that the solution of (7.719) can be expressed in the following form 
 1 1 2 2( ) ( ) ... ( )n nz F y m x F y m x F y m x  (7.726) 
where mi (i = 1,2,3,...,n) are the roots of 
 1 2

1 2 ... 0n n n
nm a m a m a  (7.727) 

For the case of equal roots, we can consider the problem as 
   2( ) ( )( ) 0D mD z D mD D mD z  (7.728) 
Thus, we can rewrite (7.728) as a system of equations as 
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   ( ) , ( ) 0D mD z u D mD u  (7.729) 
From the result in (7.725), we have 
 ( )u F y mx  (7.730) 
The first equation of (7.729) becomes 
 ( )p mq F y mx  (7.731) 
The Lagrange method gives an auxiliary equation as 

 
1 ( )
dx dy dz

m F y mx
 (7.732) 

The first two parts of (7.732) give 
 1u y mx a  (7.733) 
The second and third parts of (7.732) result in 
 ( ) 0dz F a dx  (7.734) 
Integration gives 
 2 ( )u z xF y mx b  (7.735) 
Thus, the general solution is 
 { ( ), } 0z xF y mx y mx  (7.736) 
Therefore, equivalently the solution is 
 1( ) ( )z xF y mx F y mx  (7.737) 
This procedure can be generalized to give the solution of the following PDE 
   1( ) ( ) ( ) 0n

kD mD D m D D m D z( k((((  (7.738) 
The general solution is 

 
1 2

1 1

1 1

( ) ( ) ... ( )
( ) ... ( )

n n
n

k k

z x F y mx x F y mx F y mx
H y m x H y m x

 (7.739) 

Note that in this technique the order of differentiation for each term must be of the 
same order. 
__________________________________________________________________ 
Example 7.10 Consider the solution of the following PDE: 

   
3 3 3

3 2 23 2 0z z z
x x y x y

 (7.740) 

 
Solution:  In factorized form, we have 
   3 2 2( 3 2 ) 0D D D DD z  (7.741) 
The associated algebraic equation for m is 
 3 23 2 0m m m  (7.742) 
which can be factorized as  
 ( 2)( 1) 0m m m  (7.743) 
Using (7.739), we have the solution  
 1 2 3( ) ( ) ( 2 )z F y F y x F y x  (7.744) 
__________________________________________________________________ 
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__________________________________________________________________ 
Example 7.11 Consider the solution of the following PDE: 

   
2 2 2

2 22 5 2 0z z z
x yx y

 (7.745) 

 
Solution:  In factorized form, we have 
   2 2(2 5 2 ) 0D DD D z  (7.746) 
The associated algebraic equation for m is 
 22 5 2 0m m  (7.747) 
which can be factorized as  
 (2 1)( 2) 0m m  (7.748) 
Using (7.739), we obtain the solution as 

 1 2
1( ) ( 2 )
2

z F y x F y x  (7.749) 

This solution can also be found by the classification discussed in an earlier section, 
and two characteristics can be found. The canonical form can be solved. 
Apparently, the present technique is more efficient.  
__________________________________________________________________ 

7.13 PARTICULAR SOLUTION BY SYMBOLIC METHOD 

The symbolic method for determining a particular solution of an ODE has been 
discussed in Section 3.5.11. In this section, this method is applied to consider a 
particular solution of a PDE. Consider a nonhomogeneous PDE of the form 
 ( , ) ( , )F D D z f x y  (7.750) 
Using the symbolic method, we get the particular solution as: 

 1 ( , )
( , )pz f x y

F D D
 (7.751) 

Following the procedure discussed in Section 3.5.11, the symbolic method involves 
factorization, finding partial fractions, and expanding functions in infinite series. 
 The following example illustrates this method. 
 
__________________________________________________________________ 
Example 7.12 Consider the solution of the following PDE: 

   
2 2 2

2
2 26 9 12 36z z z x xy

x yx y
 (7.752) 

 
Solution:  In factorized form, we have 
   2 2 2( 6 9 ) 12 36D DD D z x xy  (7.753) 
The homogeneous PDE becomes 
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   2 2( 6 9 ) 0D DD D z  (7.754) 
The associated characteristic equation is 
 2 26 9 ( 3) 0m m m  (7.755) 
The homogeneous solution becomes 
 1 2( 3 ) ( 3 )hz F y x xF y x  (7.756) 
The particular solution can be expressed as  

   

2
2 2

2
2

2

1 (12 36 )
( 6 9 )
1 1 (12 36 )

3(1 )

pz x xy
D DD D

x xy
DD
D

 (7.757) 

Treating the differential operators as algebraic quantities, we can expand it using 
Taylor series as: 

 2

2

1 1 6 27( ) ...
3(1 )

D D
D DD

D

 (7.758) 

Substitution of (7.758) into (7.757) gives 

   

2 2
2

2
2 3

4 3 4 4 3

1 (1 6 27( ) ..)(12 36 )

1 1(12 36 ) 6 36 ...

6 9 10 6

p
D Dz x xy
D DD

x xy x
D D
x x y x x x y

 (7.759) 

The general solution now becomes 
 4 3

1 2( 3 ) ( 3 ) 10 6hz F y x xF y x x x y  (7.760) 
__________________________________________________________________ 
 
Let us now consider a more general form of the symbolic method. Consider the 
following linear order PDE: 

 ( ) ( , )z zD mD z m p mq f x y
x y

 (7.761) 

Using the Lagrange method in Section 6.7, we have 

 
1 ( , )
dx dy dz

m f x y
 (7.762) 

The first two parts of (7.762) give 
 mdx dy  (7.763) 
The corresponding characteristics is 
 1u y mx c  (7.764) 
Then, the first and third parts of (7.762) can be combined to give 
 ( , )dz f x c mx dx  (7.765) 
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where we have used the first characteristics (7.764) to replace y by x. Integration 
gives 
 ( , )z f x c mx dx  (7.766) 

Therefore, symbolically we can write the particular solution as 

 1 ( , ) ( , )pz f x y f x c mx dx
D mD

 (7.767) 

Let us illustrate by example. 
__________________________________________________________________ 
Example 7.13 Consider the solution of the following PDE: 

   ( 2 )( ) ( 1) xz y e
x y x y

 (7.768) 

 
Solution:  In factorized form, we have 
   2 2( 2 )( ) ( 2 ) ( 1) xD D D D z D DD D z y e  (7.769) 
The homogeneous PDE becomes 
   2 2( 2 ) 0D DD D z  (7.770) 
The associated characteristic equation is 
 2 2 ( 2)( 1) 0m m m m  (7.771) 
The homogeneous solution becomes 
 1 2( 2 ) ( )hz F y x F y x  (7.772) 
Define a function u in (7.769) such that it becomes  
   ( 2 ) ( 1) xD D u y e  (7.773) 
The first characteristics of (7.769) is 
   1 2u y x c  (7.774) 
The particular solution can be found by first considering  

   ( , 2 ) ( 2 1) ( 2 1) ( 1)x x xu f x c x dx c x e dx c x e y e  (7.775) 

By virtue of (7.767), we get 

   1 ( 1) ( 1)
( 2 )

x xu y e y e
D D

 (7.776) 

Substitution of (7.776) into (7.769) gives 
   ( ) ( 1) xD D z u y e   
The first characteristics is 
   2 1u y x c  (7.777) 
Thus, taking the inverse of the first fractional operator in (7.777) 

   1 ( 1)
( )

xz y e
D D

 (7.778) 

Using (7.777), we have 
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   1 1
1 ( 1) ( 1) ( )

( )
x x x x

pz y e c x e dx c x e ye
D D

 (7.779) 

The general solution now becomes 
 1 2( 2 ) ( ) x

hz F y x F y x ye  (7.780) 
__________________________________________________________________ 
 
Let us now examine another form of nonhomogeneous PDE 
   ( )( ) ( , )D mD a D nD b z f x y  (7.781) 
Let us consider the homogeneous case first. In particular, we first consider the 
simple case: 
   ( ) 0D mD a z p mq az  (7.782) 
The Lagrange method gives an auxiliary condition of  

 
1
dx dy dz

m az
 (7.783) 

The first two parts of (7.783) give 
 1u y mx a  (7.784) 
The first and third parts of (7.783) give 

 dzadx
z

 (7.785) 

Integrating this on both sides, we find 
 2

axu ze b  (7.786) 
Thus, the general solution is 
 ( , ) 0axze y mx  (7.787) 
Equivalently, we can solve for z as 
 ( )axz e y mx  (7.788) 
Extending this analysis to a more general form of homogeneous PDE, we find: 
   ( )( ) 0D mD a D nD b z  (7.789) 

 ( ) ( )ax bxz e f y mx e F y nx  (7.790) 
This is only true if a and b are constants (recall the factorization of ODEs discussed 
in Chapter 3). Let us illustrate the method with the following example. 
__________________________________________________________________ 
Example 7.14 Consider the solution of the following PDE: 

   ( 1)( 2 3) 4 3 6z x y
x y x y

 (7.791) 

 
Solution:  In factorized form, we have 
   ( 1)( 2 3) 4 3 6D D D D z x y  (7.792) 
According to (7.789) and (7.790), the homogeneous solution is 
 3( ) ( 2 )x x

hz e f y x e F y x  (7.793) 
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The particular solution of (7.792) can be considered as 

 1 (4 3 6 )
( 1)( 2 3)pz x y
D D D D

 (7.794) 

The inverse operator can first be expanded in series form: 

 

1 11 1 1{1 ( )} {1 ( 2 )}
3 3( 1)( 2 3)
1 1{1 ( ) ...}{1 ( 2 ) ...}
3 3
1 1{1 (4 5 ) ...}
3 3

D D D D
D D D D

D D D D

D D

 (7.795) 

Substitution of (7.795) into (7.794) gives 

 

1 1{1 (4 5 ) ...}(4 3 6 )
3 3
1{4 3 6 4 10}
3
6 2

pz D D x y

x y

x y

 (7.796) 

Finally, combining the homogeneous solution and particular solution gives the 
general solution 
 3( ) ( 2 ) 6 2x x x

hz e f y x e F y x ye x y  (7.797) 

7.14 SUMMARY AND FURTHER READING 

In this chapter, we started with the classification of second order PDEs, leading to 
three different types of differential equations. They are hyperbolic, parabolic, and 
elliptic. The canonical forms of the three types are considered. It was shown that 
for any linear second order PDE with constant coefficients, we could always 
convert it to three types of second order PDE: they are the nonhomogeneous Klein-
Gordon equation (for hyperbolic type), the nonhomogeneous diffusion equation 
(for parabolic type), and the nonhomogeneous Helmholtz equation (for elliptic 
type). The solutions of these PDEs are then investigated briefly. Adjoint and self-
adjoint general second order PDEs are considered. The mixed type of PDE is 
discussed in the context of two-dimensional steady gas flows. By hodograph 
transform, ideal gas flows is converted to Chaplygin’s equation and the Tricomi 
equation. The solution of the Tricomi equation is considered for the sake of 
completeness. Riemann’s integral of hyperbolic PDEs is also discussed. Further 
discussions of the mixed type PDE are available in Smirnov (1978), Landau and 
Lifshitz (1987), and Tricomi (1923). In view of its importance in mechanics and 
elasticity, the biharmonic equation is considered in detail. Four mechanics 
problems leading to the biharmonic equation are defined and derived: they are 
plane elastic problems, three-dimensional elasticity, bending of thin elastic plates, 
and two-dimensional viscous flow with low Reynolds number. Uniqueness of 
solution of the biharmonic equation is demonstrated. The biharmonic functions are 
considered through the use of Almansi theorems. The biharmonic solution for the 
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circular domain is considered in detail, using an integral formula that can be 
considered as an extension of the Poisson integral for potential theory. This 
solution was first obtained by Hua (2012). The solution technique for second order 
PDEs with non-constant coefficients is considered, including the Monge and 
Monge-Ampere methods. Finally, we discuss the factorization technique for higher 
order (higher than two) PDEs. Finally, we discuss the symbolic method for solving 
PDEs with constant coefficients.      
 The mathematical analysis of PDEs of second order has been covered in all 
textbooks on PDEs, but PDEs of higher than second order have been relatively 
untouched in most textbooks on PDE. The only exceptions are the coverage of 
biharmonic equations by Selvadurai (2000b) and by Ayres (1952). In this chapter, 
we cover the biharmonic equation in more detail and we also discuss the technique 
of factorization for solving higher order PDEs and the symbolic method for higher 
order PDEs of constant coefficients.  

7.15 PROBLEMS  

Problem 7.1 The validity of (7.99) can be established from the following equation: 

  2 2( ) ( ) ( ) ( )( ) ( ) 0i i i iA B C
x x y y

 (7.798) 

Show the details.  
Problem 7.2 Show that  

2 2 2 2 2 2 2

2 2 2 2 2

4 ( ) ( ) 4 ( ) ( ) 4 [ ]

[( ) ( ) 2( )( )( )( ) ( ) ( ) ]

4 ( )( )[ ] 8

B A C AB
x x y y x x y x x y

B
x y x y y x x y

BC AC
y y y x x y y x x y

 (7.799) 

 
Problem 7.3 Show that  

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2

4 4 ( ) ( ) 4 ( ) ( ) 4

4 [( ) ( ) ] 4 [( ) ( ) ( ) ( ) ]

4 [( ) ( ) ]

AC A C B
x x y y y x x y

AB AC
x y x x x y y x x y

BC
y y x y y x

 

  (7.800) 
 
Problem 7.4 From the results of Problems 7.2 and 7.3, show that  
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2 2 2 2 2 2

2 2 2 2

2 2

4 [( ) ( ) 2( )( )( )( ) ( ) ( ) ]

4 [( ) ( ) 2( )( )( )( ) ( ) ( ) ]

( 4 )

B AC B
x y x y y x x y

AC
x y x y y x x y

B AC J

 (7.801) 

Thus, the validity of (7.19) is established. 
 
Problem 7.5 Classify the following second order PDE: 

 
2 2 2

2 2
2 22 0u u ux xy y

x yx y
 (7.802) 

Also, find the canonical form of this differential equation. 

Ans: Parabolic, 
2

2 0u  

 
Problem 7.6 Classify the following second order PDE: 

 
2 2

2 0u u ux y
x y xx

 (7.803) 

Also, find the canonical form of this differential equation. 

Ans: For y > 0, hyperbolic, 
2

0u  

 
Problem 7.7 Generalize the self-adjoint conditions given Section 7.6 to the three-
dimensional case (i.e., three variables). In particular, the linear differential operator 
becomes 

 

2 2 2 2 2

2 2 2

2

( ) 2 2

2 0

ij ij ij ij ij ij

ij ij ij ij ij

u u u u uL u A B C D E
x y x zx y z

u u u uF G H K Q u
y z x y z

 (7.804) 

 
Ans:  
 , ,ij ji ij ji ij jiA A B B C C  (7.805) 

 , ,ij ji ij ji ij jiD D E E F F  (7.806) 

           1 ( )
2

ij ji ji
ij ji

A D E
G G

x y z
 (7.807) 

           1 ( )
2

ij ji ji
ij ji

D B F
H H

x y z
 (7.808) 
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           1 ( )
2

ij ji ji
ij ji

E F C
K K

x y z
 (7.809) 

 
Problem 7.8 Find the solution of the following second order PDE: 

 
2

0W W  (7.810) 

Ans:  
           0 0( , ) (2 ) (2 )W AJ BY  (7.811) 

 
Hint: Apply a change of variables of  and then 2z . 
 
Problem 7.9 Find the Riemann function v for the following PDE  

 
2

( , )
4

u C u f x y
x y

 (7.812) 

Ans:  
 0 0 0( , ) ( ( )( ))v x y J C x x y y  (7.813) 
Hint: See Problem 7.8. 
 
Problem 7.10 Show that the Riemann function for the case of A = B = C = 0 in 
(7.443) is  
 ( , ) 1v x y  (7.814) 
 
Problem 7.11 Consider the following second order PDE, which is a gas dynamic 
problem considered by Riemann: 

 
2

2
2( ) 0

( )
v a v v av

x y x y x y x y
 (7.815) 

(i) Consider the following change of variables 

 ( )( )( ) ( ),
( )( )

a x yv F z z
x y x y

 (7.816) 

Show that 

 ( ) [ ( ) ( )]av a zF z F z
x x y x y x

 (7.817) 

 ( ) [ ( ) ( )]av a zF z F z
y x y x y y

 (7.818) 

 

2

2

2

( 1)( ) [ ( ) ( ) ( )
( )

( ) ( )]

av a a a z zF z F z
y x x y x y x yx y

z z zF z F z
y x x y

 (7.819) 
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(ii) Show that (7.815) can be reduced to 

 
2

2
( 1)( ) ( ) ( ) 0

( )
z z z a aF z F z F z
x y y x x y

 (7.820) 

(iii) Prove the following identities: 

 2
1 ( 1)

( )
z z z z
x y x y

 (7.821) 

 
2

2
2 1

( )
z z

y x x y
 (7.822) 

(iv) Show that F satisfies the following equation 
 ( 1) ( ) (1 2 ) ( ) ( 1) ( ) 0z z F z z F z a a F z  (7.823) 
(v) Find the solution for v  
 
Ans:  

           ( )( )( ) [ 1, ,1, ]
( )( )

a x yv F a a
x y x y

 (7.824) 

Problem 7.12 Prove the following vector identity that we use in Section 7.9.4: 
 2 ( ) 2u u  (7.825) 
 
Problem 7.13 Prove that the biharmonic equation in Cartesian coordinates cannot 
be solved by using separation of variables. 
 
Problem 7.14 It is given that  
 4 0w  (7.826) 
Consider a circular two-dimensional domain such that w = w(r, ). Now define a 
new function w* as: 

 2 1*( , ) ( , )w r r w
r

 (7.827) 

Prove that w* also satisfies biharmonic equation (7.826). 
 
Hint:  
(i) Assume a change of variable of r' = 1/r and ' = . 
(ii) Assume next that w = w*(r', ')/r2. 
(iii) Use the second Almansi theorem to express w*.  
(iv) This result can be found in Eq. (13) of Duffy (1961). 
 
Problem 7.15 It is given that u satisfies the following diffusion equation 

 
2

2

u u
t x

 (7.828) 

Consider a function v defined in terms of u(x, t) as: 
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2

41 1( , ) ( , )
x

t xv x t e u
t tt

 (7.829) 

Prove that v also satisfies the diffusion equation (7.828). 
 
Hint: This is Problem 498 of Gelca and Andreescu (2007) as a training problem 
for the William Lowell Putnam Mathematical Competition for college students in 
North America. 
 
Problem 7.16 Find a second order PDE that has a first or intermediate integral of 
the following form: 
 2 23 (2 )py q y x y  (7.830) 
Ans:  

           
2 2 2

2
2 22 3 3 0z z z z zy y y

x y x yx y
 (7.831) 

Problem 7.17 Find the solution of the following second order PDE by direct 
integration 

 
2 z x y

x y
 (7.832) 

Ans:  

 2 2
1 2

1 1 ( ) ( )
2 2

z x y y x x y  (7.833) 

 
Problem 7.18 Find the solution of the following second order PDE by direct 
integration 

 
2 z x y

x y
 (7.834) 

Ans:  

 2 2
1 2

1 1 ( ) ( )
2 2

z x y y x x y  (7.835) 

 
Problem 7.19 Find the solution of the following nonhomogeneous diffusion 
equation 
 2 ( )sin( ), 0 1, 0t xxu u f x t x t  (7.836) 
subject to the following initial and boundary conditions: 
 (0, ) 0, (1, ) 0, 0u t u t t  (7.837) 
 ( ,0) 0, 0 1u x x  (7.838) 
Ans:  

     
2 22 2

4 4
1

sin cos
( , ) { } sin( )

1

tn
n

n
nn

t e t
u x t f n x  (7.839) 
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1

0
2 ( )sinnf f x n x dx  (7.840) 

 , 1, 2,3,n n n  (7.841) 
 
Problem 7.20 Extend Hua’s formula derived in (7.563) to the case of a circular 
domain with radius r0: 

   

2 2 2
0

2 2
0 0 0

0
2 2 2

0 0

( ) 1 ( ){
2 2 2 cos( )

[ cos( )] ( )
}

[ 2 cos( )]

r r hu d
r r r rr
r r g

d
r r rr

 (7.842) 

 
Problem 7.21 Derive the following mean value theorem for biharmonic problems: 

   01(0, ) ( ) ( )
2 4

r
u g d h d  (7.843) 

 
Hint: Compare the mean value theorem given in Chapter 9 for harmonic problems.  
 



 
  CHAPTER EIGHT 
 

Green’s Function Method 

8.1 INTRODUCTION 

In 1828, self-taught genius George Green, at the age of thirty-five, published An 
Essay on the Application of Mathematical Analysis to the Theories of Electricity 
and Magnetism (Green, 1828). It is amazing that Green derived this result and 
published it as a book at his own expense before he received any formal education. 
The report was sent to 51 subscribers of the Nottingham Subscription Library. To 
be exact, he had only attended one year of primary school at the age of nine before 
this discovery. Green is probably the best self-learner in the history of mathematics 
and physics.  
 Green’s work remained relatively unknown until Lord Kelvin in 1845, four 
years after George Green’s death, rediscovered it. He recognized its importance 
and helped to publish Green’s essay in Crelle’s Journal. Poincare summarized our 
knowledge of Green’s functions near the turn of the twentieth century. In 1946, P. 
M. Morse and H. Feshbach published their classnotes as Methods of Theoretical 
Physics. They laid out the four main properties that a Green’s function must 
possess. Morse and Feshbach showed that “Green’s function is the point source 
solution [to a boundary-value problem] satisfying appropriate boundary 
conditions.” Thus, Green’s function could be found by simply solving the 
differential equation subject to a Dirac delta function with homogeneous boundary 
conditions. With this understanding, the powerful techniques of eigenvalue 
expansions (e.g., Chapter 10) and integral transform methods (e.g., Chapter 11) 
could be used in a straightforward manner to find Green’s functions. Green’s 
function method is especially useful in solving nonhomogeneous differential 
equations. It always provides the basis of integral equations and consequently the 
boundary element method (Brebbia et al., 1983). 
  Shortly after the publication of Green’s monograph, German mathematician 
Carl Gottfried Neumann (1832–1925) developed the concept of Green’s function 
as it applies to the two-dimensional (in contrast to three-dimensional) potential 
equation. He defined the two-dimensional Green’s function, showed that it 
possesses the property of reciprocity, and found that it behaves as ln(r) as r → ∞. 
A. Harnack gave the Green’s function for a circle and rectangle. All of these 
authors used eigenfunction expansions in obtaining the Green’s function, which 
becomes one of the fundamental techniques in constructing a Green’s function. 
Later on, John Dougall (1867–1960) derived three-dimensional Green’s functions 
in cylindrical and spherical coordinates. Subsequently, Green’s functions for many 
different differential equations were derived. For example, the Feynman diagram 
for elementary particle interactions actually describes the interaction between 
particles by Green’s function. Nobel Prize laureate Julian Schwinger confessed that 
it was Green’s function method led him to the Nobel Prize in physics. He shared 
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the Nobel Prize with Tomonaga and Feynman in 1965 in quantum electrodynamics 
(Beiser, 2003). 

8.2 POTENTIALS 

Whenever a vector field can be determined by the vector derivative of a scalar 
function, we say that potentials exist. In nature, many phenomena can be modelled 
and expressed in terms of potentials, such as gravitational field, electric field, 
incompressible flow, etc.  
 Mathematically, a velocity field v is expressed as   
 v  (8.1) 
where  is the scalar potential. From the divergence theorem of Gauss, the volume 
integral can be converted to the surface integral as  
 d dSv v n  (8.2) 

Substitution of (8.1) into (8.2) gives  
 2 d dSn  (8.3) 

If the velocity field v represents fluid flow and it is incompressible (i.e., v = 0), 
we have 
 2 0  (8.4) 
which is the Laplace equation. Therefore, for any problem that can be modelled by 
the Laplace equation, there must exist potentials. 

8.3 GREEN’S FUNCTION FOR LAPLACE EQUATION  

The Laplace equation is one of the most fundamental second order partial 
differential equations because of its repeated appearance in the modelling of 
physical problems, including electrostatics, incompressible fluid flow, gravitational 
theory, and membrane deflection. In Cartesian coordinates, it is given as 

 
2 2 2

2
2 2 2 0u u uu

x y z
 (8.5) 

To consider the three-dimensional Green’s function, it is more convenient to 
consider the Laplace equation in spherical problems 

 
2

2 2
2 2 2 2 2

1 1 1( ) (sin ) 0
sin sin

u u uu r
r rr r r

 (8.6) 

For the case of a point source or Green’s function in an infinite domain, the 
solution must be symmetric with respect to the origin, and thus the solution is 
independent of  and . For this case, we write the problem as 
 2

0 0( ) ( )G r r r r  (8.7) 
where  is the Dirac delta function, which is infinite at r = r0 and otherwise zero: 
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 0 0

0

( ) 0r r r r
r r

 (8.8) 

In addition, we have that 
 0( ) 1dr r  (8.9) 

where  is any volume integral embracing the source point r0. If the source is not 
included in , the integral will be identically zero. This Dirac delta function is 
named in honor of electrical engineer and physicist, Paul Dirac, who received the 
Nobel Prize in physics for his major contribution to quantum mechanics. The idea 
of using the Dirac delta function actually occurred much earlier than its usage in 
quantum mechanics by Dirac. For example, it can be used to prescribe point force 
in the case of beam bending subject to a concentrated force. However, its 
successful application to quantum mechanics leads to the development of a 
completely new theory by mathematicians. To validate the mathematical analysis 
involving the Dirac delta function, the theory of distribution of Schwarz and 
Gelfand or the so-called generalized theory, was proposed. According to the 
generalized theory, the Dirac delta function is defined using the process of 
integration. An introduction on Dirac delta and the associated distribution theory 
will be given in a later section.  
 Note that strictly speaking, Green’s function should be defined in (8.7) by 
using the adjoint differential operator of (8.5). But for the case of the Laplace 
equation, it is self-adjoint. Therefore, (8.5) and (8.7) are valid only for the case of 
the self-adjoint problem (Greenberg, 1971). 
 More generally, if a Green’s function is formulated in a finite volume, we can 
express it into two parts: 
 0 1G G G  (8.10) 
The first part, G0, is called the fundamental solution with a singularity at the source 
point r = r0 for an infinite domain (this is actually a particular solution of the PDE), 
whereas the second part is the homogeneous solution or satisfies the following 
homogeneous form with given a boundary condition (Greenberg, 1971): 
 2

1 0G  (8.11) 
This two-part Green function will be illustrated again in Section 8.6.   
 For functions independent of  and , (8.6) is reduced to 

  2 0
2

1 ( ) 0
dGd r

dr drr
 (8.12) 

except at point r = r0. Integrating (8.12) once, we find 

 0 1
2

dG C
dr r

 (8.13) 

Integration of (8.13) gives 

 1
0 2

CG C
r

 (8.14) 

For the case of a point source at the origin, the solution G0 should decay to zero as 
r   (recalling that the fundamental solution is for the infinite domain), and this 
gives  
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0

0r
0

 2 0C  (8.15) 
To find the first constant, we have to consider the volume integration embracing 
the source point r0 as shown in Figure 8.1. An arbitrary small spherical domain 
containing the source point is denoted by 0 and the corresponding boundary is 0. 
Then, we apply the Gauss theorem to get 

 

2 0
0

2 21
0 0

1

( ) sin

4 1

G
G d dS

r
C

r d d
r r

C

 (8.16) 

The last part of (8.16) results from (8.9). Therefore, we have 

 1
1

4
C  (8.17) 

Finally, the fundamental solution is 

 0
1

4
G

r
 (8.18) 

However, in the literature related to electrostatic problems, a negative sign is used 
on the right hand side of (8.7). That is, (8.7) and its fundamental solution are 
normally given as  
 2

0 0( ) ( )G r r r r  (8.19) 

 0
1

4
G

r
 (8.20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1 A 3-D body containing the singular point that a point source r0 is applied    
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The fundamental solution given in (8.18) or (8.20) is finite everywhere except at 
the origin (i.e., r  0). This is the three-dimensional Green’s function for the 
Laplace equation for an infinite domain. Actually, Chau (2013) showed that this 
harmonic solution (i.e., solution of Laplace equation) is the granddaddy of many 
other harmonic functions, and is of profound importance in solving elasticity 
problems using Papkovitch-Neuber displacement potentials (or the so-called P-N 
potentials). 
 For the two-dimensional Green’s function, it is convenient to consider the 
cylindrical coordinates of the Laplace equation  

 
2

2
02 2

1 1( ) ( )u uu r
r r r r

r r  (8.21) 

For this case, we write the solution as 
 ( )u g r  (8.22) 
The governing equation of Green’s function given in (8.21) becomes 

 
2

2
1 ( )d g dg r
r drdr

 (8.23) 

As discussed in an earlier chapter, we can introduce a change of variables to reduce 
the order of the ODE as 

 dg Z
dr

 (8.24) 

Then, (8.23) becomes 

 1 0dZ Z
dr r

 (8.25) 

This is a separable first order ODE. Rearranging and integrating, we get 

  1CZ
r

 (8.26) 

Thus, combining (8.24) and (8.26), we obtain 
 1 2lng C r C  (8.27) 
Following the procedure for the 3-D Green’s function for the infinite domain, we 
take an area integration of a circle containing the source point. That is,  

 

2

2
1 2

0

1

( ln )

2 1

ggd dS
r

C r C rd
r

C

 (8.28) 

We have set C2 = 0 in (8.8) for simplicity. Thus, we have the fundamental solution 
as 

 1 ln
2

g r  (8.29) 

where r  0. This is the two-dimensional Green’s function for the Laplace equation. 
Again, in electrostatic literatures it is sometimes given as: 
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2

2
02 2

1 1( ) ( )u uu r
r r r r

r r  (8.30) 

 1 1 1ln ln( )
2 2

g r
r

 (8.31) 

 For higher dimensions (i.e., m > 2), the infinite Green’s function can be 
expressed as (Zachmanoglou and Thoe, 1986): 

 2
1 1

2 (3 )!m mG
m r

 (8.32) 

If we ignore the constant term, this agrees with the result given in Zachmanoglou-
Thoe (1986). For m = 3, we recover the three-dimensional space Green’s function 
given in (8.20). 

8.4 GREEN’S IDENTITIES 

Green’s identities were derived in 1828 by George Green, in his attempt to provide 
a general mathematical theory for solving electricity and magnetism problems. It is 
amazing that Green derived this result and published it as a book at his own 
expense before he received any formal education. To be exact, he had only 
attended one year of primary school at the age of nine before this discovery. Green 
is probably the best self-learner in the history of mathematics and physics. Let us 
start with the divergence theorem of Gauss of the following function: 

 [ ]P Q R x y zd P Q R dS
x y z n n n

 (8.33) 

where P, Q, and R are some arbitrary functions of space within the body of  with 
boundary  as shown in Figure 8.2. The unit normal is denoted as n.  
 We now assume particular forms of P, Q, and R, which are expressed in terms 
of two functions u and v: 

  , ,v v vP u Q u R u
x y z

 (8.34) 

Differentiation of (8.34) gives 

 
2

2
P u v vu
x x x x

 (8.35) 

 
2

2
Q u v vu
y y y y

 (8.36) 

 
2

2
R u v vu
z z z z

 (8.37) 

Substitution of (8.35) to (8.37) into (8.33) gives 

 2 ( )u v u v u v vu vd d u dS
x x y y z z n

 (8.38) 

This is called Green’s first identity. 
 Now, we can redefine P, Q, and R in (8.34) by reversing u and v: 
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dn

ds

  , ,u u uP v Q v R v
x y z

 (8.39) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2 A body with domain  and boundary  showing the unit normal   
 
Following the same procedure, we have 

 2 ( )u v u v u v uv ud d v dS
x x y y z z n

 (8.40) 

Taking the difference of (8.38) and (8.40) gives  

 2 2( ) ( )v uu v v u d u v dS
n n

 (8.41) 

This is Green’s second identity, also known as Green’s theorem. This equation 
relates u, v, 2u, and 2v inside the body to u, v, u/ n, and v/ n on the surface of 
the body. This Green’s identity is physically related to the uniqueness of the 
solution to the Laplace equation, the conservation of mass, and the Maxwell-
Rayleigh reciprocity law. It lays the mathematical foundation for Green’s function 
method and the boundary integral method. Therefore, it is a very important 
mathematical theorem. Note that the differential operators on the left hand side of 
(8.41) are Laplacian. In fact, a similar identity can also be formulated for a more 
general differential equation. This will be done in later sections. 
 We now consider a special case that  

 
2 2 2

0 0 0

1 1

( ) ( ) ( )
v

r x x y y z z
 (8.42) 

where the observation point M0 (x0, y0, z0) and the distance r are shown in Figure 
8.3. Note from the last section that we have actually set v as the three-dimensional 
Green’s function for the Laplace equation. This is the idea behind Green’s function 
method. Substitution of (8.42) into (8.41) gives 

 2 21 1 1 1[ ( ) ] [ ( ) ]uu u d u dS
r r n r r n

 (8.43) 



500  Theory of Differential Equations in Engineering and Mechanics 

A small sphere of radius  around point M0 has been excluded from the integration 
whereas an extra surface integral of the sphere is added to the surface integral. Note 
that once the point M0 has been excluded in the integration, we have 

 2 21( ) 0, 0u
r

 (8.44) 

everywhere within the domain . Therefore, (8.43) is reduced to 

 1 1 1 1[ ( ) ] [ ( ) ] 0u uu dS u dS
n r r n n r r n

 (8.45) 

On the spherical surface , we have 

 2 2
1 1 1 1( ) ( )

n r r r r
 (8.46) 

Therefore, we can simplify the surface integral as  

 2
1 1( ) 4u dS udS u

n r
 (8.47) 

 
where the superimposed bar indicates the average value of u on the spherical 
surface . On the other hand, on the spherical surface we have 

 1 1 4u u udS dS
r n n n

 (8.48) 

Back substitution of these results into (8.45) leads to 

 1 1[ ( ) ] 4 4 0u uu dS u
n r r n n

 (8.49) 

We now take the limit   0: 
 00

lim 4 4 ( )u u M  (8.50) 

 
0

lim 4 0u
n

 (8.51) 

In view of these results, (8.49) can be rewritten as: 

 0
1 1 1( ) [ ( ) ]

4
uu M u dS

n r r n
 (8.52) 

This is Green’s third identity. In potential theory, the solution in (8.52) can be 
considered as the summation of two potentials on the boundary. In particular, the 
solution due to the so-called double layer potential is defined as: 

 0
1 1( ) [ ( )]

4
u M dS

n r
 (8.53) 

where  is the double layer potential (given value of u on the surface). 
Alternatively, the solution due to the single layer potential is defined as: 

 0
1 1( ) [ ]

4
u M dS

r
 (8.54) 

where   is the single layer potential given on the boundary (as the normal 
derivative of u). The methods of single- and double-layer potentials are apparently 
due to Gustave Robin in his PhD thesis on potential theory. We will mention Robin 
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n

M

0M

( , , )x y z
0 0 0( , , )x y z

n
r

again in Chapter 9 when we discuss the Robin problem in potential theory. For the 
case that u is not a harmonic function, (8.52) can be modified as  

 2
0

1 1 1 1 1( ) [ ( ) ]
4 4

uu M u dS ud
n r r n r

 (8.55) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.3 The integration domain for Green’s third identity 
 

 From (8.55), if we know u and u/ n on the boundary, we can find the value 
of u anywhere within the body. However, in reality, we could not impose both of 
them on the same surface. This is similar to the fact that you cannot independently 
impose both moment and rotation at a hinged support of a beam at the same time. 
Once moment is applied, the beam will rotate according, depending on the bending 
stiffness of the beam, and vice versa.  
 The following example shows the reason why (8.53) and (8.54) are called 
double and single layer potentials (which was proposed by Robin) and what their 
relation is. 
__________________________________________________________________ 
Example 8.1 It is given that a harmonic function for a single layer potential  can 
be evaluated by the following surface integral 

 0
1 1( ) [ ]

4
u M dS

r
 (8.56) 

where 
 2 0u  (8.57) 
Consider two layers of single potentials distributed on two surfaces, which are 
separated by a distance h. One has strength  whereas the other has strength , 
such that the limit of h  0 and    are taken such that h  , which is 
uniform on the whole surface. Show that the solution is given by 

 0
1 1( ) [ ( )]

4
u M dS

n r
 (8.58) 
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0
lim lim [ ]
h

h

source 

image 

h

( )

( ')

Dipole layer/double layer 

h

( )

( ')

n

Solution: The two single layers are the source and image as shown in Figure 8.4, 
and they can be related as: 
 ( ) ( ) ( ') ( ')dS dS  (8.59) 
Thus, the solution for the two single layers can be superimposed as 

 

0
1 1 1 1( ) [ ( )] ( ) [ ( ')] ( ')

4 ( , ) 4 ( ', )
1 1 1( )[ ] ( )

4 ( , ) ( ', )

1 1 1 1( ) ( , ') [ ] ( )
4 ( , ') ( , ) ( ', )

u M dS dS
r x r x

dS
r x r x

h dS
h r x r x

 (8.60) 

We consider the limit that h  0 and    is taken such that h  . Note that 
the bracket term can be replaced by 

 1 1 1 1[ ] [ ]
( , ') ( , ) ( ', ) ( ) ( , )h r x r x n r x

 (8.61) 

Substitution of (8.61) into (8.60) gives 

 0
1 1( ) ( ) [ ] ( )

4 ( ) ( , )
u M dS

n r x
 (8.62) 

This is exactly the integral equation for double layer potentials given in (8.58), and 
 is known as the surface density or dipole of the source and its image. 

__________________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.4 Double layer potential as a superposition of two single layer potentials 

8.5 BOUNDARY INTEGRAL FOR HARMONIC FUNCTIONS 

Green’s third identity given in (8.52) is only valid when the observation point M0 is 
not on the surface. If the observation point is on the boundary, special 
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consideration needs to be made. Figure 8.5 illustrates the limiting process of an 
interior point M0 moving in the direction of unit normal n to the boundary . First, 
the surface is divided into two parts, one is the total surface excluding a circular 
disk containing the boundary singular point, and the other one is the circular disk 
containing the singular point. In view of this, the volume integral remains zero 
because and both u and 1/r are harmonic functions, and the singularity point is not 
inside the domain. Only the surface integral given in (8.52) needs to be evaluated 
and can be rewritten as  

 
0

1 1 1 1lim{ [ ( ) ] [ ( ) ] } 0u uu dS u dS
n r r n n r r n

 (8.63) 

Note that the circular disk is tangent to the surface and there is a unique tangent in 
the process of approaching the boundary. The first integral on the right of (8.63) 
over the domain  is analytic and regular, and thus 

 
0

1 1 1 1lim [ ( ) ] [ ( ) ]u uu dS u dS
n r r n n r r n

 (8.64) 

The second integral on the left of (8.63) can be evaluated as 

 
0 0 0

1 1 1 1lim [ ( ) ] lim ( ) limu uu dS u dS dS
n r r n n r r n

 (8.65) 

The second integral on the right of (8.65) can be determined as 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8.5 The observation point M0 approaching the boundary  
 

 2

0 0 0 0

1 1 1lim lim lim lim 0u u u udS dS
r n n n n

 (8.66) 

The last part of (8.66) is zero provided that the double layer potentials prescribed 
on the surface are bounded. 
 The first integral on the right of (8.65) can be determined as 

 
0 0

1 1 1lim ( ) lim{ [ ( ) ( )] ( ) ( ) ( ) }o ou dS u M u M dS u M dS
n r n r n r

 

  (8.67) 
The second integral on the right hand side of (8.67) can be evaluated as 

n

S

A
A

0M (3-D surface) 

n

r

dn

dr

0M

0MS

Section A-A 
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 2 20 0 0

1 1lim ( ) ( ) ( ) lim 2o o
rI u M dS u M d

n r nr
 (8.68) 

Referring to Figure 8.5, we find that  

 sinr
n r

 (8.69) 

In addition, we apply the following change of variables from  to r: 

 2 2r ,  or  d rdr  (8.70) 
The integral in (8.68) becomes 

 
2 2

2 2 2 20 0

1 1 12 ( ) lim 2 ( ) lim { }o oI u M dr u M
r

 (8.71) 

However, we can take the limit   0 (M0 approaching the boundary ) much 
faster than   0, such that   

 
0

lim 0  (8.72) 

Finally, we get 
 2 2 ( )oI u M  (8.73) 
By following a similar procedure, the first integral on the right hand side of (8.67) 
can be evaluated as 

 
2 2

1 0

20

1lim [ ( ) ( )] ( )

12 lim [ ( ) ( )]

o

o

I u M u M dS
n r

u M u M dr
r

 (8.74) 

Now, we impose the Holder condition on the single layer potential (e.g., 
Muskhelishvili, 1975): 
 ( ) ( )ou M u M Ar  (8.75) 
where A and 0 <   1 are positive constants. Substitution of the equality of (8.75) 
into (8.74) gives 

 

2 2
2

1 0

2 2 ( 1)/2 1

0

2
1 ( 1)/2 1

20

2 lim

2 lim {( ) }
1

2 lim( ) {(1 ) ( ) }
1

0

I A r dr

A

A

 (8.76) 

as    0 (M0 approaching the boundary) and   0 with /   0. 
 Substitution of these results into (8.63) gives the following boundary integral 
equation 

 1 1 1 ( )( ) [ ( ) ( ) ]
2o

u Mu M u M dS
n r r n

 (8.77) 
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where M0 is on the boundary and M is the source point for the surface integral. 
Note that (8.77) and (8.52) can be combined to give a single integral equation.  
 

 1 1 1( ) [ ( ) ]
4b o

uu M u dS
n r r n

 (8.78) 

where  

 
0

0

1 in
1 on
2

b

M

M
 (8.79) 

As discussed by Kellogg (1929), as long as the double layer potential is continuous 
and the single layer potential satisfies the Holder condition, the boundary value of 
u can be evaluated from a boundary integral.  
 The boundary integral shown in (8.78) also forms the basis of the boundary 
element method (Brebbia et al., 1983). 

8.6 GREEN’S FUNCTION METHOD FOR LAPLACE EQUATION 

In the Green theorem given in (8.41), if both u and v are harmonic functions, we 
have 

 ( ) 0v uu v dS
n n

 (8.80) 

Adding (8.80) to (8.52), we obtain 

 
0 0

0
1 1( ) [ ( )] ( ) ]

4 4MM MM

v uu M u v dS
n n r r n

 (8.81) 

If we impose the following boundary condition when we determine v: 

 
0

1
4 MM

v
r

 , (8.82) 

we can simplify (8.81) as 

 
0

0
1( ) ( )

4 MM
u M u v dS

n r
 (8.83) 

Let us now define the function inside the bracket as 

 
0

0
1( , )

4 MM
G M M v

r
 (8.84) 

Then,  

 0( ) Gu M u dS
n

 (8.85) 

This function G is called Green’s function.  
 On the other hand, if the boundary condition is given such that 
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0

1( )
4 MM

v
n n r

 , (8.86) 

for this boundary condition, (8.81) can be simplified to 

 0( ) uu M G dS
n

 (8.87) 

For this example, we can see that Green’s function appears naturally and the 
structural form of Green’s function depends only on the differential equation. 
 Note that this structural form of the two-part Green’s function in (8.84) was 
mentioned in (8.10) in Section 8.3. Physically, these two parts of Green’s function 
appears naturally. For example, for the case of the electrostatic problem for a finite 
domain V, the fundamental problem can be recast as: 

 2
0

0

1 ( )G r r  (8.88) 

where 0 is the permittivity in a vacuum as discussed in (2.103) in Chapter 2. If this 
problem is recast into an infinite space: 

 2
0

0

1 [ ( ) ( ) ]G r r  (8.89) 

where  is the delta function on the boundary of domain V (i.e., only nonzero on 
the boundary), the second term on the right of (8.89) is physically the felt electric 
potential on the boundary induced by the point source at location r = r0 (i.e., 
induced by the first term on the right of (8.89) at the boundary of V). Thus, Green’s 
function can be recast into two parts: 
 0 1G G G  (8.90) 
where these two parts satisfy 

 2
0 0

0

1 ( )G r r  (8.91) 

 2
1

0

1 ( )G  (8.92) 

Physically, the first part G0 is Green’s function in an infinite space (or called the 
fundamental solution) and the second part of Green’s function in this case is the 
electric potential induced by the felt potential on the finite boundary of domain V.  
 Thus, Green’s function for the finite body is 

 1
0

1 ln
2

G r G  (8.93) 

The exact form of G1 depends on the geometry of the boundary as well as the 
boundary conditions. 

8.7 GENERAL GREEN’S THEOREM FOR SECOND ORDER PDE  

For the hyperbolic equation, the following generalized Green’s theorem was 
derived by Riemann in 1860 in two-dimensional space. This work by Riemann was 
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not known until du Bois-Reymond noticed it in 1864 and was subsequently 
publicized by Darboux. Actually, similar results were also obtained by Kirchhoff in 
1895 and Volterra. In particular, the following hyperbolic differential operator is 
considered: 

 
2

( ) u u uF u A B Cu
x y x y

 (8.94) 

The adjoint differential operator of F is derived in Section 7.5 as  

 
2

( ) ( ) ( )vG v Av Bv Cv
x y x y

 (8.95) 

From the result of Section 7.5, we have the following identity 

 ( ) ( ) P QvF u uG v
x y

 (8.96) 

where 

 1 ( )
2

u vP v u Auv
y y

 (8.97) 

 1 ( )
2

u vQ v u Buv
x x

 (8.98) 

Integrating (8.96) over the two-dimensional domain, we have 

 [ ( ) ( )] [ ] ( )P QvF u uG v dxdy dxdy Pdy Qdx
x y

 (8.99) 

This is generalization of Green’s second identity for differential operators other 
than the Laplacian given in (8.41). 
 More generally, this Green’s theorem has been extended to any linear general 
second order differential operator with m variables by Hadamard with the 
following differential operators: 

 
2

, 1 1

( )
m m

ik i
i k ii k i

u uF u A B Cu
x x x

 (8.100) 

The corresponding adjoint operator of F is 

 
2

, 1 1

( ) ( ) ( )
m m

ik i
i k ii k i

G v A v B v Cv
x x x

 (8.101) 

The starting identity for Green’s theorem becomes 

 1

1
( ) ( ) ... m

m

PPvF u uG v
x x

 (8.102) 

where 

 
1 1 1

( )
m m m

ik
i ik ik i

k k kk k k

Au vP vA uA uv B
x x x

 (8.103) 

For this operator, the generalized Green’s theorem becomes 
  1 1 1 1[ ( ) ( )] ( ... )n nvF u uG v dV P P P dS  (8.104) 

where dV and the directional cosine are defined as: 
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 1 1 mdV dx dx dxmdx  (8.105) 
 cos( , )i in x  (8.106) 
The hypersurface of the m-dimensional space is denoted by dS. In addition, i is the 
cosine of the angle between the normal to the surface and the xi axis. 

8.8 GREEN’S THEOREM FOR BIHARMONIC OPERATOR 

More generally, Stakgold (1968) showed that the general Green’s theorem can be 
formulated in terms of an n-th order differential equation: 
 ( ) 0L u  (8.107) 
The associated adjoint problem is  
 * ( ) 0L u  (8.108) 
In fact, the adjoint problem is defined by the following generalized Lagrange 
identity: 
 ( ) *( ) ( , )vL u uL v u vJ  (8.109) 
where vector J is a bilinear function of u and v involving derivatives of up to order 
n 1. The formula given in (8.109) is known as the Lagrange identity. It was 
discussed in Chapter 3 for the case of ODEs. In this case, (8.109) is reduced to 

 ( ) *( ) ( , )dvL u uL v J u v
dx

 (8.110) 

The general form of Green’s theorem for (8.109) is 

 [ ( ) *( )]vL u uL v dV dSn J  (8.111) 

For the biharmonic operator, it can be shown that the adjoint operator is also a 
biharmonic operator (Stakgold, 1968). Equation (5.76) of Stakgold (1968) gives 
the following result for Green’s theorem for the biharmonic operator as 

   4 4 2 2 2 2[ ] ( )u vv u u v dV v u u v v u dS
n n n n

 (8.112) 

This result was first obtained by Mathieu in 1869 and rederived by Koialovich in 
1903.  
 Green’s theorem in (8.112) can be proved easily by starting from Green’s 
second identity given in (8.41). First, we make the following substitution: 
 2 ,v u  (8.113) 
Substitution of (8.109) into Green’s second identity (8.41) gives 

 
2

4 2 2 2( ) ( )d dS
n n

 (8.114) 

Secondly, we make the following substitution into (8.41): 
 2,v u  (8.115) 

 
2

2 2 4 2( ) ( )d dS
n n

 (8.116) 

Adding (8.114) and (8.116), we get 
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2 2

4 4 2 2( ) ( )d dS
n n n n

(8.117) 

This is identical to (8.192) if we make the following identifications: 
   ,v u  (8.118) 
This completes the proof of (8.112). 
 Now we can use (8.117) to formulate the solution of the biharmonic equation 
in terms of Green’s function. Consider a nonhomogeneous biharmonic equation as: 

   4 ( )u f x ,   0, onuu
n

 (8.119) 

To solve this problem, we consider the following Green’s function defined by 

 4
0( )G x x ,   0, onGG

n
 (8.120) 

We can now make the following identifications for  and  in (8.117) 
   ,G u  (8.121) 
Then, we have 

  
2 2

4 4 2 2( ) ( )u u G GG u u G d G G u u dS
n n n n

(8.122) 

Substitution of the results from (8.119) and (8.120) into (8.122), we have all the 
boundary terms on the right of (8.122) zero and obtain 
   ( ) ( , ) ( )u G f dx x  (8.123) 

where G( , x) is the response at point  due to a force term applied at x. This seems 
strange and confusing. For the present case of the biharmonic operator, it is self-
adjoint and we have the reciprocity of 
   ( , ) ( , )G Gx x  (8.124) 
More discussion on this will be given in a later section. 
 If the boundary conditions are nonhomogeneous, the problem cannot be 
solved by using (8.123). This scenario is considered next using the boundary 
integral equation approach.   

8.9 INTEGRAL EQUATION FOR BIHARMONIC PROBLEMS 

The boundary integral equation for the two-dimensional biharmonic equation was 
derived by Christiansen and Hougaard in 1978 for the case of a circular domain. 
The formulation was extended to the general domain by Fuglede (1981). Weber et 
al. (2012) gave a slightly different derivation of Fuglede’s result. In particular, 
Fuglede considered the following biharmonic Dirichlet problem with domain Ω 
and boundary S: 
 4 0 inu  (8.125) 

 0 1, onuu f f
n

 (8.126) 
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Before we formulate the solution in terms of a pair of integral equations, the 
following fundamental functions for biharmonic and harmonic operators are 
defined: 
 4 inG  (8.127) 

 2 ing  (8.128) 
For two-dimensional cases, we find 

 1 1ln( )
2

g
r

 (8.129) 

 21 1ln( )
8

G r
r

 (8.130) 

The proof of these expressions will be deferred to a later section. In addition, these 
two fundamental functions can be related by: 

 2 1
2

G g  (8.131) 

To show this, we can substitute (8.130) into the left hand side of (8.131) as 

 

2 2

2 2

1 1 1{ ( ln )}
8

1 1(2 ln )
8
1 1 1ln( )

2 2

G r r
r r r r

r r
r r r

r

 (8.132) 

In view of (8.129), the validity of (8.131) is established.  
 Now, we recall Green’s theorem from (8.41) with the following substitution u 
= g to give 

 2 2( ) ( )v gg v v g d g v dS
n n

 (8.133) 

Note that we have rewritten the integral in two-dimensional space. Substitution of 
(8.128) into (8.133) and the use of the integral property of the Dirac delta function 
gives 

 2 ( )b
v gv g vd g v dS
n n

( )+x  (8.134) 

where αb has been defined in (8.79) and equals ½ when x is on the boundary or 1 
when x is inside the domain Ω. In obtaining the first term, we have applied the 
following integral property of the Dirac delta function: 
 0 0( ) ( ) ( )f d fr r r r  (8.135) 

More discussion of this integral property of the Dirac delta function will be 
discussed in a later section. Note that (8.134) is the first integral equation for the 
biharmonic operator.  
 Next, we make the following substitution into Green’s theorem: 
  2,u G v u  (8.136) 
For the two-dimensional domain, we obtain 
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2

4 2 2 2( ) ( )u GG u u G d G u dS
n n

 (8.137) 

If u is a biharmonic function (i.e., satisfying (8.125)), (8.137) is reduced to 

 
2

2 2 2( )u Gu Gd G u dS
n n

 (8.138) 

Substitution of (8.131) into (8.138) gives 

 
2

2 2 21( ) ( )
2

u Gg u d ud G u dS
n n

 (8.139) 

Using (8.134) to rewrite the first term on the left of (8.139) (i.e., use u instead of v 
in (8.134)), we get 

      
2

2 21 ( )
2b

u g u Gu ud g u G u dS
n n n n

( )x  (8.140) 

The fundamental solution for harmonic operator g can be rewritten in terms of the 
biharmonic fundamental function G by using (8.131) as: 

    

2 2
2 2 21 ( )

2
1

2

b
u G u Gu ud G u G u dS
n n n n

udS
n

( )x
(8.141) 

Finally, we can apply the following Gauss theorem to the second term on the left: 
       d dSv v n  (8.142) 

Thus, we have 

       2 ( ) ( ) uud u d u dS dS
n

n  (8.143) 

With this result, (8.141) is simplified to 

    
2 2

2 2( )b
u G u Gu G u G u dS
n n n n

( )x  (8.144) 

We can now specify (8.144) on the boundary and substitute the given boundary 
condition from (8.126) to get 

    
2 2

2 2
0 1 0

1 ( )
2

G u Gf f G f G u dS
n n n

( )x  (8.145) 

We now substitute the following identification for v in (8.134): 
    2v u  (8.146) 
 where u is a biharmonic function. Then, (8.134) becomes 

  
2

2 4 2( )+b
u gu g ud g u dS

n n
 (8.147) 

The second term on the left of (8.147) vanishes identically as a consequence of the 
biharmonic function. Thus, on the boundary we get  

 
2

2 21 ( )
2

u gu g u dS
n n

 (8.148) 
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Equations (8.145) and (8.148) provide a pair of integral equations on the boundary 
but the unknown is not u, but is instead 

 
2

2 and uu
n

 (8.149) 

Making the following identifications, we have two unknowns defined as 

 
2

2 and uu v w
n

 (8.150) 

The pair of coupled systems for v and w becomes 

    
2

2
0 1 0

1 ( )
2

( ) G Gf f G f Gw v dS
n n

x  (8.151) 

 1 ( )
2

gv gw v dS
n

 (8.152) 

where f0, f1, are given on the boundary by (8.126), and g and G are the fundamental 
solutions for the Laplace and biharmonic equations respectively, and have been 
given in (8.129) and (8.130). Numerical evaluation of this pair of integrals is 
discussed in Weber et al. (2012) using the boundary element method in 
applications to smooth data in computer graphics. 
 It has been shown by Payne and Weinberger that the nonhomogeneous 
biharmonic Dirichlet problem can be transformed to the homogeneous one 
discussed in this section defined in (8.125) and (8.126). In particular, a 
nonhomogeneous Dirichlet problem can be formulated as: 
 4 inv F  (8.153) 

 , onvv f g
n

 (8.154) 

We can decompose the unknown v as 
 1 2v u u  (8.155) 
The formulation for u1 and u2 are Problems 1 and 2: 
 
Problem 1: 
 4

1 inu F  (8.156) 

 1
1 0, 0 on

u
u

n
 (8.157) 

Problem 2: 
 4

2 0 inu  (8.158) 

 2
2 , on

u
u f g

n
 (8.159) 

Problem 1 can be solved by using Green’s function method as 

 2
1

1 ln
8

u Fr rdS  (8.160) 

Problem 2 is the homogeneous problem defined in (8.125) and (8.126). Thus, the 
solution u2 can be obtained by solving the pair of integral equations given in 
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(8.151) and (8.152). Thus, substitution of the solution of u2 and the solution in 
(8.160) into (8.155) gives the final solution for the nonhomogeneous problem. 
 Thus, the pair of integral equations approach discussed in this section can 
also be applied to the nonhomogeneous biharmonic problem. 

8.10 DIRAC DELTA FUNCTION 

For simplicity, we first recast the definition of a Dirac delta function defined in 
(8.8) and (8.9) for the one-dimensional case: 

 
( ) 0 0

0
x x

x
 (8.161) 

 ( ) 1x dx  (8.162) 

This can be considered as a special case of the one given in (8.8) and (8.9). 
Another basic definition of the delta function is the shifting property of the Dirac 
delta function: 

 ( ) ( ) (0)f x x dx f  (8.163) 

This Dirac delta function is named in honor of electrical engineer and physicist, 
Paul Dirac, who received the Nobel Prize in physics for his major contribution to 
quantum mechanics. The idea of using the Dirac delta function was actually much 
earlier than its usage in quantum mechanics by Dirac. For example, it can be used 
to prescribe point force in the case of beam bending subject to a concentrated 
force. Physically, in the domain of mechanics, the delta function defined above is a 
point force or called a concentrated point.  
 According to our normal understanding in mathematics, there is no function 
that is nonzero only at one point and yet still has a finite integral as defined in 
(8.162). To justify the rigorous meaning and the use of the Dirac delta function, 
mathematicians developed a new theory for the delta function defined above. This 
theory is called the theory of distribution or the so-called generalized theory. The 
main contributors of this new mathematical theory include Bochner in 1932, 
Sobelev in 1936, Schwarz in 1940, Mikusinski in 1948, Temple in 1953, Lighthill 
in 1958, and Zemanian in 1965. It was Schwarz who put this theory on a firm 
foundation, and was awarded the inaugural Fields Medal in 1950 because of his 
contribution to distribution theory. He linked the distribution theory of the Dirac 
delta to the Fourier transform and such analysis was found very fruitful in solving 
partial differential equations. Schwartz’s student Hormander was also awarded the 
Fields Medal in 1962 on related work. Some regard the Fields Medal as equivalent 
to the Noble Prize in physics (although their award criteria are quite different). In 
this sense, the importance of the Dirac delta function and the associated theory of 
distribution should not be overlooked in the development of mathematics.  
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8.11 DISTRIBUTION THEORY  

The Dirac delta function is not a regular smooth continuous function that we are 
familiar with. However, its physical significance in physics and engineering leads 
to mathematicians attempting to rationalize its usage. It is a very powerful 
mathematical tool to model the point charge in electromagnetism or quantum 
mechanics, point mass in gravitational theory, point forces in mechanics, and point 
sources in heat conduction problems. A whole new branch of mathematics called 
distribution theory or theory of generalized function is introduced. The distribution 
theory is rather theoretical for most engineers and scientists. We will only discuss 
the basic concept of distribution theory in this section. The study of the Dirac 
function is also known as the study of generalized functions (in contrast to the 
regular functions that we have learned). A new set of rules on its manipulation are 
defined rigorously for this strangely behaving Dirac delta function. As mentioned 
in the last section, major contributors to its development include Bochner, Sobolev, 
Schwartz, Zemanian, Mikusinski, and Temple. 
 In the following subsections, the properties of the Dirac delta function in the 
sense of distribution will be summarized, and the concept of using generalized 
functions (called -sequence functions) to model the Dirac delta function is 
discussed. 

8.11.1 Properties of Dirac Delta Function 

According to the theory of distribution, the Dirac delta function is not treated as a 
pointwise function, but instead it is defined in terms of how it operates or integrates 
with other well-behaved functions. The integration given in (8.163) is first 
rewritten as: 

 ( ) ( ) ( ), ( ) (0)f x x dx f x x f  (8.164) 

where integration is replaced by < , > and is called functional. The function f(x) is 
now called a testing function. The function f(x) needs to be infinitely differentiable 
and converge to zero at . We will replace the Dirac function by a distribution 

(x) such that 

 ( ), ( ) ( ) ( )f x x f x x dx  (8.165) 

According to the rules of integration, we have the following properties in the sense of 
distribution: 
(i) 
 , , ,f g f g  (8.166) 
where  and  are constants. For a regular function h(x), we have 
(ii) 
 , ,h f hf  (8.167) 
(iii) 
 ( ), ( ) ( ), ( )x a f x x f x a  (8.168) 
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(iv) 

 1( ), ( ) ( ), ( )xax f x x f
a a

 (8.169) 

(v) 
 '( ), ( ) ( ), '( )x f x x f x  (8.170) 
Properties (iii) and (iv) can be proved by change of variables. Note that Property 
(v) can be proved by integration by parts. The proofs of these identities will be left 
as an exercise for readers.  
 Some amazing properties of the delta function can be established by using 
these integral definitions of distribution theory by identifying the distribution  as 
Dirac delta function .  
__________________________________________________________________ 
Example 8.2 Find the value of the following function in the sense of distributions: 
 ( ) ( )h x x  (8.171) 
where h(x) is a regular function. 
 
Solution: Let us consider the functional of this function with a testing function f(x) 
as: 
 , , (0) (0)h f hf h f  (8.172) 
The last result in (8.172) is a result of applying (8.167) and (8.164). On the other 
hand, we observe that 

 
(0) (0) (0) ,

(0) ,
h f h f

h f
 (8.173) 

By comparing (8.172) and (8.173), we obtain the following amazing result in the 
sense of distribution 
 ( ) ( ) (0) ( )h x x h x  (8.174) 
Note that this result is true for all testing functions f(x).  
 Let us look at the special case of h(x) = x; we have in the sense of distribution 
 ( ) 0 ( ) 0x x x  (8.175) 
This is an amazing result that comes from distribution theory.  
__________________________________________________________________ 
  
Using Property (iii) given in (8.168), we have 

 ( ) ( ) ( ), ( ) ( ), ( ) ( )x a f x dx x a f x x f x a f a  (8.176) 

This is the shifting property of the delta function that we reported in (8.163). Using 
Property (iv) given in (8.169) 
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( )H x a

xa

1

 

1 1( ) ( ) ( ), ( ) ( ), ( ) (0)

1 ( ), ( )

1 ( ), ( )

xax f x dx ax f x x f f
a a a

x f x
a

x f x
a

 (8.177) 

Thus, we have the scaling property of the Dirac delta function in the sense of 
distribution 

 1( ) ( )ax x
a

 (8.178) 

Using Property (v) given in (8.170), we have in the sense of distribution 

 ( ) ( ) '( ), ( ) ( ), '( ) '(0)d x f x dx x f x x f x f
dx

 (8.179) 

This expression can be generalized to a higher order derivative of the Dirac delta  

 ( )( ) ( ) ( 1) (0)
n

n n
n

d x f x dx f
dx

 (8.180) 

Let us define another function called the Heaviside step function as: 

 
( ) 1 0

0 0
H x x

x
 (8.181) 

This step function is illustrated in Figure 8.6. Using distribution theory, we can 
establish a relation between this Heaviside delta function and the Dirac delta 
function.  
 We start with the functional of the Heaviside step function and a testing 
function 

 
0

( ) ( ) , ( )H x f x dx H f f x dx  (8.182) 

The functional of the derivative of the Heaviside step function is 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6 Heaviside step function 
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( )f x

x1a
2a 3a

( )g x

( )g x

( )f x

 0

0

( ) ( ) ', '( )

( ) (0) ,

dH x f x dx H f f x dx
dx

f x f f
 (8.183) 

Comparing the first and the last terms of (8.183), we find the following identity in 
the sense of distribution 

  ( ) ( )dH x x
dx

 (8.184) 

Inversely, we can rewrite it as 

 ( ) ( )
x

H x d  (8.185) 

Using ordinary analysis, the derivative of a step function does not exist, but using 
the theory of distribution, its derivative is defined in (8.184). This property actually 
allows us to define the derivative of a discontinuous function by using Dirac delta 
function.  
 In particular, considering a piecewise continuous function containing a 
number of jumps, we can denote this discontinuous function f(x) as depicted in 
Figure 8.7. We can define a continuous and piecewise differentiable function g(x) 
in terms of f(x) and a series of Heaviside step functions: 

 
1

( ) ( ) ( )
k

j j
j

g x f x f H x a  (8.186) 

where the jump is defined as 
 ( ) ( )j j jf f a f a  (8.187) 
 
The function g is actually the dotted curve shown in Figure 8.7. We have assumed 
in (8.186) that there are k discontinuous points. By ignoring these jumps at a1, 
a2, ... an, we define the derivatives of function f as 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Figure 8.7 A discontinuous function in terms of Heaviside step function 

 
 ( )[ '], [ ''], [ '''],...,[ ]nf f f f  (8.188) 
The function g(x) defined in (8.186) is a function whose derivative g' coincides 
with its distributional derivative. Note, however, that [f'] is in general different 
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from the distributional derivative of function f. Let us now consider the 
differentiation of g in the sense of distributions as:  

 
1

'( ) '( ) ( )
k

j j
j

g x f x f x a  (8.189) 

But, since g is continuous, we must have g' = [f'] and thus from (8.189) we have 

 
1

'( ) '( ) ( )
k

j j
j

f x f x f x a  (8.190) 

Thus, each jump in the f multiplying delta function contributes to the distributional 
derivative of f as shown in (8.190).  
 We can also find a higher derivative of f with a similar procedure, and we 
have the distributional derivatives as 

 (0)

1

'( ) '( ) ( )
k

j
j

f x f x f x  (8.191) 

 (1) (0)

1

''( ) ''( ) [ ( ) '( )]
k

j j
j

f x f x f x f x  (8.192) 

 
( 1) (0)( ) ( ) ( 1)

1

( ) ( ) ] ( ) ... ( )]
m

k
m m m

j j
j

f x f x f x f x  (8.193) 

Our discussion of the theory of distribution stops here. 

8.11.2 Delta Function as Sequence of Functions 

There is no function in a regular sense that satisfies the definition of (8.164) to 
(8.170). However, there are perfectly regular functions which get as close to the 
Dirac delta function as one like.  Thus, we can define the Dirac delta function as a 
sequence of these functions. Let us consider a sequence of infinitely differentiable 
functions defined as fn  

 lim ( ) ( ) (0)nn
f x g x dx g  (8.194) 

The Dirac delta function is considered as the limit of a sequence of functions. 
These functions are normally referred to as generalized functions. Using the sense 
of distribution, we define 

 ( ) ( ) lim ( ) ( ) (0)nn
x g x dx f x g x dx g  (8.195) 

However, this definition is not equal to pointwise equivalence. In other words, we 
do not assume that the sequence function is equal to the delta function directly. 
That is,  
 ( ) lim ( )nn

x f x  (8.196) 

Instead, we need the integration, or in a distributional sense, to enforce the 
closeness of this sequence function to the delta function (see (8.195)).  
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60n

120n

200n

 Here are some examples of sequence functions: 
 
(i) First -sequence 

 2 2
1( )

1n
nf x

n x
 (8.197) 

This function is illustrated in Figure 8.8, and, as expected, it approaches the shape 
of the Dirac delta function as n increases. Substitution of (8.197) into (8.195) gives 

 

2 2

2

2

1 1

( )lim ( ) ( ) lim
1

1 ( / )lim
1

1 (0)
1

(0) [tan ( ) tan ( )]

(0)

nn n

n

n g xf x g x dx dx
n x

g n d

g d

g

g

 (8.198) 

where we have applied a change of variables of  = nx. However, the calculation in 
(8.198) is not strictly valid as   0. This is because we do not have the behavior 
of a delta function, although it decays to zero as   . To fix the non-uniformity 
problem, we can integrate the left side of (8.198) as: 

  2 2 2 2 2 2
( ) (0) ( ) (0)

1 1 1
n g x n g n g x gdx dx dx

n x n x n x
 (8.199) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 8.8 The first -sequence 
 
The first term on the right of (8.199) has been evaluated in the second part of 
(8.198). Thus, we have 
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2 2 2 2

2 2 2 2

2 2

( ) ( ) (0)(0)
1 1

( ) (0) ( ) (0)(0) {
1 1

( ) (0) }
1

(0)

n g x n g x gdx g dx
n x n x

n g x g g x gg dx dx
n x n x

g x g dx
n x

g I I I

 (8.200) 

The integrals for the tails that approach negative and positive infinity are denoted 
as I   and I  respectively. If the value of g(x) g(0) is bounded such that 
      ( ) (0)g x g M , (8.201) 
then, we can establish the inequality 

      
2 2

1

1
1

2 [ tan ( )]
2

nI I M dx
n x

M n
 (8.202) 

Let us consider the limiting case that 
      0, ,n n  (8.203) 
Note that this can be achieved easily by setting  

      1
n

 (8.204) 

This is clearly not the only choice for  that satisfies (8.203). Thus, both I   and I  
approach zero as long as g(x) is bounded near x = 0. Finally, the integral around the 
origin can be evaluated using the mean value theorem: 

      
2 2 2 2

1

( ) (0) [ ( ) (0)]
1 1

2[ ( ) (0)] tan ( )

n g x g n dxI dx g g
n x n x

g g n
 (8.205) 

where . Since n   , and  0, we have I   0. Therefore, we have 

      2 2
( )lim (0)

1n

n g x dx g
n x

 (8.206) 

In addition, if we set g(x) = 1, we see that the requirement of (8.162) is also 
fulfilled: 

      1 1
2 2

1 1lim [tan ( ) tan ( )] 1
1n

n dx
n x

 (8.207) 

 
 
 (ii) Second -sequence 

 
2 2

( ) n x
n

nf x e  (8.208) 
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60n

120n

200n

60n

120n

200n

This is a bell-shaped function and is shown in Figure 8.9. We can see that this 
function approaches the Dirac delta function much faster than that given in (8.197). 
We will skip the details of proving (8.162) and (8.163). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.9 The second -sequence 
 
(iii) Third -sequence 

 
2

2
1 sin( )n

nxf x
n x

 (8.209) 

This -sequence is shown in Figure 8.9 for different values of n.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 8.10 The third -sequence 
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(iv) Fourth -sequence 

 sin( )n
nxf x
x

 (8.210) 

So far, all sequences discussed are non-negative. This function is illustrated in 
Figure 8.11 for various values of n, and, clearly, this sequence converges much 
slower than the first -sequence. 
 As shown in Figure 8.11, this is a weak -sequence for the Dirac delta 
function, but this sequence is very important since it is related to the Fourier 
transform of the Dirac delta function. The Fourier transform is defined as (see 
Section 11.2.2 in Chapter 11) 

      1ˆ ( ) ( )
2

ikxf k f x e dx  (8.211) 

      1 ˆ( ) ( )
2

ikxf x f k e dk  (8.212) 

We now formally substitute the Dirac delta function into f. That is,  
      ( ) ( )f x x  (8.213) 
By virtue of (8.211) and (8.212), we have 

      1 1ˆ( , ) ( )
2 2

ikx ikk x e dx e  (8.214) 

Back substitution of this into (8.212), we have 

      
( )

1 1( )
2 2

1
2

ik ikx

ik x

x e e dk

e dk
 (8.215) 

For the case of  = 0, we obtain an integral representation (or more precisely the 
Fourier transform) of the Dirac delta function 

      1( )
2

ikxx e dk  (8.216) 

Finally, we can rewrite (8.216) as 

      

1 1( ) lim lim (cos sin )
2 2

1 sinlim sin lim
2

R Rikx
R RR R

R
RR R

x e dk kx i kx dk

Rxkx
x x

 (8.217) 

If we take R as a large integer, we obtain the second -sequence given in (8.210). 
This -sequence actually gives the formal proof of the Fourier transform. In 
particular, if we multiply (8.213) by f( ) and integrate with respect to  from minus 
infinity to plus infinity, we have 

     ( )1( ) ( ) ( ) ( )
2

ik xf x x f d e f dkd  (8.218) 

We can reverse the order of integration and rewrite the last integral in (8.209) as 
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60n

120n

200n

     1 1 1 ˆ( ) [ ( ) ] ( )
2 2 2

ikx ik ikxf x e e f d dk e F k dk  (8.219) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 8.11 The fourth -sequence  
 
This actually gives the formal representation of the Fourier transform. Thus, an 
appropriate form of the -sequence within the framework of the distribution theory 
can be used to derive the Fourier transform. In principle, other transforms can be 
recovered if proper -sequence representation is used.  
 In the next paragraph, we will see that Fourier series expansion can also be 
linked to the Dirac delta function if an appropriate form of -sequence is assumed.  
 
(iv) Fifth -sequence 

 

1sin( )
2( ) lim ,

2 sin
2

0

n

n x
x x

x

x

 (8.220) 

The interval for x has been limited to from  to  such that (8.162) will be 
satisfied. This -sequence is essentially the same as that given in the fourth -
sequence. To see this, we can rewrite (8.220) as 

  

1sin( )
2( ) lim[ ][ ]

2sin
2

n

n x xx
xx

 (8.221) 

We can see that for large n, the first square bracket term on the right of (8.221) is 
essentially the same as the fourth -sequence given in (8.210). The second square 
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bracket term approaches 1 as x  0. Indeed, when we plot (8.221) using the same 
scale as in Figure 8.11, we essentially get the same plot (although the actual values 
are slightly different) and, thus, this plot will not be given. 
 Next, we use the following identity 

 

1sin( ) 12
22 sin

2

n
ikx

k n

n x
e

x  (8.222) 

The left hand side of (8.222) was known as the Dirichlet kernel having a period of 
2 . To show the validity of (8.222), we first write the summation on the right as 

 
0

0

1
n n

ikx ikx ikx

k n k n k

e e e  (8.223) 

We now apply the following change of index j = k for the first sum on the right of 
(8.223). Then, we get 

 
0 0

1
n n n

ikx ikx ikx

k n k k

S e e e  (8.224) 

More explicitly, we can express it as 

 
2

2

1 {1 ...

1 ... }

ix i x inx

ix i x inx

S e e e

e e e
 (8.225) 

It is clear that both of them are geometric series. That is, we can apply the 
following formula for the sum of geometric series 

 2 1 (1 )...
1

n
n a ra ar ar ar

r
 (8.226) 

Application of (8.226) to both the series in (8.225) gives 

 

( 1) ( 1)1 11
1 1

cos( 1) cos
1 cos

i n x i n x

ix ix
e eS

e e
n x nx

x

 (8.227) 

Note the following trigonometric identities 

 1 ( ) ( )cos cos sin sin
2 2 2

A B B AA B  (8.228) 

 21 cos 2 2sinA A  (8.229) 
Substitution of (8.228) and (8.229) into (8.227) results in 

 

1sin( )
2

sin
2

n x
S

x  (8.230) 

Using (8.230) into (8.225), we finally get (8.222). This completes the proof.  
 Application of (8.222) to (8.220) gives another important form of the Dirac 
delta function: 
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( )1( ) ,

2

0

ik x

k

x e x

x

 (8.231) 

This indicates that there are infinite Dirac delta functions along the x-axis, and we 
must limit our consideration to 1 delta function only. We now multiply (8.231) by 
f( ) and integrate from  to  to get 

   1( ) ( ) ( ) ( ) ,
2

ikx ik

k

f x x f d e f e d x  (8.232) 

This formula can be recast as: 

    1( ) ,
2

ikx
k

k

f x C e x  (8.233) 

where 

    ( ) ik
kC f e d  (8.234) 

Therefore, we have shown that Fourier series expansion of an arbitrary function 
f(x) can be proved using a special representation of the -sequence within the 
framework of the theory of distribution. More -sequences are given in Section 
15.2.5 in Chapter 15. 
 In short, we have shown Schwartz’s result that the theory of distribution of 
Dirac delta functions can be linked to both the Fourier series and Fourier transform. 
Without going into deep discussion, we mention that in solving PDEs, the Fourier 
series expansion technique is applicable to problems with a finite domain and 
PDEs with eigenvalues in the form of a discrete spectrum (like the buckling load of 
a column and their multiples for higher modes of buckling); whereas the Fourier 
transform technique is applicable to problems with an infinite domain and PDEs 
with eigenvalues in the form of a continuous spectrum (like wave propagation in a 
half-space). More discussions will be given in Chapter 10. 

8.12 GREEN’S FUNCTION METHOD FOR PDE 

Let us now consider Green’s function method for a nonhomogeneous linear ODE 
of second order defined as: 

 
2

2 1 02( ) ( )d u duL u a a a u f x
dxdx

 (8.235) 

where a < x < b with boundary conditions: 
 1 11 12 11 12( ) ( ) ( ) ( ) ( ) 0B u u a u a u b u b  (8.236) 
 2 21 22 21 22( ) ( ) ( ) ( ) ( ) 0B u u a u a u b u b  (8.237) 
We define Green’s function of the operator L with homogeneous boundary 
conditions as the solution of  
 ( ) ( )L G x ,  1 2( ) 0, ( ) 0.B G B G  (8.238) 
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The adjoint Green’s function of the adjoint operator L* with homogeneous 
boundary conditions is the solution of  
 *( ) ( )L H x ,   (8.239) 

 * *
1 2( ) 0, ( ) 0,B H B H  (8.240) 

where 

 
2 2

2 2 1 2 1 12
0

( )
*( ) ( 1) (2 ) ( )

k
k k

k
k

d a u d u duL u a a a a a a u
dxdx dx

 (8.241) 
 *

1 11 12 11 12( ) ( ) ( ) ( ) ( ) 0B u u a u a u b u b  (8.242) 

 *
2 21 22 21 22( ) ( ) ( ) ( ) ( ) 0B u u a u a u b u b  (8.243) 

This adjoint operator has been derived in an earlier chapter.  We can multiply 
(8.238) by H(x, ) and (8.241) by G(x, ), subtract, and integrate from x = a to x = b 
to get 

 
[ ( ) *( )] ( , ) ( ) ( , ) ( )

( , ) ( , ) ( , )

b b b

a a a
b
a

HL G GL H dx H x x dx G x x dx

H G J G H
   (8.244) 

where a < ,  < b and  
 2 1 2( , ) { ( ) ( ) }b b

aaJ u v a vu uv a a uv   (8.245) 

Thus, in explicit form we get 

 2

1 2

( , ) ( , ) { [ ( , ) ( , ) ( , ) ( , )]

( ) ( , ) ( , )}b
a

H G a H x G x G x H x

a a G x H x
  (8.246) 

This is the relation between the two Green’s functions of the operator L and adjoint 
operator L*. In obtaining the above result, we have employed the well-known 
Green’s formula given in (8.111). Depending on the boundary conditions of the 
original problem given in (8.236 and (8.237), we normally pick the boundary 
condition of the adjoint problem given in (8.242) and (8.243) such that (8.245) is 
identically zero. The following example demonstrates how to do it. 
__________________________________________________________________ 
Example 8.3 It was given that the boundary conditions in (8.233) and (8.234) are  
 1( ) ( ) 0B u u a  (8.247) 
 2 ( ) ( ) 0B u u b  (8.248) 
Find the adjoint boundary conditions in (8.242) and (8.243) such that (8.245) is 
identically zero. What would be the relation between two Green’s functions of the 
operator L and adjoint operator L*? 
 
Solution: With (8.247) and (8.248), (8.245) becomes 
 1 2 2 2( , ) {[ ( ) ( )] ( ) ( ) ( )} ( ) ( ) ( ) ( )b

aJ u v a b a b v b a b v b u b a a v a u a   (8.249) 
To set this to zero, we have 
 *

1 ( ) ( ) 0B v v a  (8.250) 
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 * 1 2
2

2

( ) ( )
( ) ( ) [ ] ( ) 0

( )
a b a b

B v v b v b
a b

 (8.251) 

Thus, we have 
 ( , ) ( , )H G   (8.252) 
For the special case that the system is self-adjoint, we can further have 
 ( , ) ( , )G G   (8.253) 
The reversibility of the source point and the observation point of Green’s function 
is called the Maxwell-Rayleigh reciprocity law. In mechanics, the self-adjoint PDE 
implies existence of an energy function or energy conserves. The principle of 
virtual work only applies to the case that the corresponding PDE is self-adjoint. 
Most PDEs arising from classical mechanics and physics are for problems with the 
existence of an energy function and potential, and thus, the associated PDEs are 
mostly self-adjoint. For example, if we formulate problems with frictional forces, 
the resulting PDE is expected to be non-self-adjoint. Most of the existing books on 
Green’s function only cover the case of self-adjoint, but without mentioning that 
their results are only valid for self-adjoint PDEs. 
__________________________________________________________________ 
 
Now we return to seeking the solution of (8.235) using Green’s function method. 
Let us consider a more general problem with nonhomogeneous boundary 
conditions 
 ( ) ( )L u f x ,  1 2( ) , ( )B u B u  (8.254) 
where  and  are constants. Now multiplying (8.254) by H(x, ) and (8.241) by 
u(x), subtracting and integrating from x = a to x = b, we obtain 

  [ ( ) *( )] ( ) ( , ) ( ) ( )
b b b

a a a
HL u uL H dx f x H x dx u x x dx  (8.255) 

Applying integration by parts or Green’s formula, we obtain 
 

 ( ) ( ) ( , ) ( , )
b b

aa
u f x H x dx J u H  (8.256) 

Let us rename the variables; we get 

 ( ) ( ) ( , ) ( ( ), ( , ) )
b b

aa
u x f H x d J u H x  (8.257) 

This is the formula for evaluating the solution of (8.254) using Green’s function 
method.  
 Now we can consider the special case that  =  = 0, and in view of the 
proper choice of adjoint boundary condition (see Example 8.3), we will have   
 ( ( ), ( , ) ) 0b

aJ u x H x  (8.258) 
For this particular case, we also have the validity of (8.252). Thus, for the 
homogeneous boundary condition, (8.257) can be simplified to 

 ( ) ( ) ( , )
b

a
u x f G x d  (8.259) 

This explains the strange appearance of Green’s function method that the Green’s 
function in the integrand has the source point x and observation point . being 
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x

1P

( )q x

x
( )u x

L

reversed whilst on the left hand side, x is the observation point. Only for the special 
case of the self-adjoint PDE, we have in view of (8.253) 

 ( ) ( ) ( , )
b

a
u x f G x d  (8.260) 

which is given in most textbooks without mentioning the importance of the adjoint 
operator. 
__________________________________________________________________ 
Example 8.4 Consider the case of a simply supported beam subject to a non-
uniform distributed load q(x) as depicted in Figure 8.12. The problem is formulated 
as 

 
2 2

2 2( ) ( )d d uEI q x
dx dx

 (8.261) 

where u is the deflection of the beam, and E and I are the Young’s modulus and 
moment of inertia of the bean section. The boundary conditions are 

 
2 2

2 2
0

( ) ( ) 0, (0) 0, ( ) 0
x x L

d u d uu a u L M EI M L EI
dx dx

 (8.262) 

Find the solution in terms of Green’s function method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 8.12 Green’s function method for beam bending  
 
Solution: For the case of a prismatic beam (i.e., beam with uniform cross-section), 
we can consider the beam deflection at point x subject to a unit point force applied 
at . Mathematically, this is the formulation for Green’s function 

 
4

4 ( )d uEI P x
dx

 (8.263) 

As shown in Figure 8.12, we have set the applied force at unity (i.e., P = 1). 
Balancing the unit on both sides of (8.263), we find that the dimension of the Dirac 
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delta function is 1/length. Similarly, one can find that Dirac delta functions in 2-D 
and 3-D are of dimensions 1/length2 and 1/length3. By integrating (8.263), we have 
the following results 

 
3

13 ( )d uEI H x C
dx

 (8.264) 

 
2

1 22 ( ) ( )d uEI x H x C x C
dx

 (8.265) 

 
2

2
1 2 3

1 ( ) ( )
2 2

du xEI x H x C C x C
dx

 (8.266) 

 
3 2

3
1 2 3 4

1 ( ) ( )
6 6 2

x xEIu x H x C C C x C  (8.267) 

Applying the first two boundary conditions at x = 0 given in (8.262), we have 
 2 4 0C C  (8.268) 
Using the boundary conditions at x = L given in (8.262), we get 

 
3

3
1 3

1 ( ) 0
6 6

LL C C L  (8.269) 

 1( ) 0L C L  (8.270) 
The solutions of these equations are 

 3 ( )(2 )
6

C L L
L

 (8.271) 

 1
( )LC

L
 (8.272) 

Therefore, Green’s function for deflection is 

     3 2 21( , ) ( , ) [( ) ( ) ( 2 ) ]
6u

LG x u x x H x x L x
EI L

 (8.273) 

Similarly, we can get Green’s function for moment as 

 ( )( , ) ( , ) ( ) ( )M
LG x M x x H x x

L
 (8.274) 

Different forms of Gu and GM can be found in Problems 8.2 and 8.3. The beam 
deflection and moment can be expressed in terms of Green’s functions as 

 
0

( ) ( , ) ( )
L

uu x G x q d  (8.275) 

 
0

( ) ( , ) ( )
L

MM x G x q d  (8.276) 

In structural mechanics, Green’s function for the moment given in (8.274) is also 
known as the influence line. 
__________________________________________________________________ 
  
 



530  Theory of Differential Equations in Engineering and Mechanics 

8.13 SOME RESULTS ON GREEN’S FUNCTIONS  

In this chapter, we have discussed Green’s function method mainly related to the 
Laplace equation and biharmonic equation. In this section, we will summarize some 
of the other commonly used Green’s functions or fundamental solutions. The proofs 
of some of these Green’s functions are out of the scope of the present chapter.  

8.13.1 Helmholtz Equation 

The Helmholtz equation is known as the reduced wave equation, and it results from 
the harmonic wave equation.  
 2 2 ( )G k G x  (8.277) 
with k2 > 0. The fundamental solution for 1-D, 2-D, and 3-D are respectively: 

 1( )
2

ikieG
k

x

x  (8.278) 

 (1)
2 0( ) ( )

4
iG H kx x  (8.279) 

 3 ( )
4

ikeG
x

x
x

 (8.280) 

where in (8.279) Green’s function is expressed in terms of the Hankel function of 
the first kind of order zero. Note that the fundamental solution is of the wave type.  

8.13.2 Diffusion Equation 

For a diffusion equation subjected an initial pulse, the problem can be formulated as 

 2 2u a u
t

,   0 ( )tu x  (8.281) 

The fundamental solution in 1-D is  

 

2

2 2
1 ( )( , ; , ) exp{ },

4 4 ( )
0

xu x t t
a t a t

t
 (8.282) 

Similarly, for the 2-D case we have 

 

2 2

2 2
1 ( ) ( )( , , ; , , ) exp{ },

4 4 ( )
0

x yu x y t t
a t a t

t
 (8.283) 

Physically, the diffusion equation relates to problems of heat conduction, 
consolidation of soils, and diffusion of pollutants.  
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8.13.3 Wave Equation 

The wave equation subject to an initial velocity pulse is formulated as 

 2 2
00

0
, 0, ( )t

t

u ua u u
t t

x x  (8.284) 

Physically, it is a velocity pulse. For a one-dimensional wave equation 

 
1( , ; , ) ( )

2
0 ( )

u x t x a t
a

x a t
 (8.285) 

For a two-dimensional wave equation 

 2 2 2

1( , ; , )
2
0

u x t r at
a a t r

r at
 (8.286) 

where 

 2 2( ) ( )r x y  (8.287) 
For three-dimensional wave equation 

 ( )( , , ; , , , )
4
r atu x y z t

ar
 (8.288) 

where 

 2 2 2( ) ( ) ( )r x y z  (8.289) 

8.13.4 Biharmonic Equation  

For a two-dimensional biharmonic equation, Green’s function can be obtained by 
solving the following PDE 
 2 2

0( )G x x  (8.290) 
The corresponding 2-D Green’s solution for the biharmonic equation is  

 
2 2 2

2 2( ){ln 1} {ln 1}
8 8
r x yG r x y  (8.291) 

This Green’s function can be obtained by direct integration. Let us define 
 2G  (8.292) 
Thus, (8.290) becomes 
 2

0( )x x  (8.293) 
This is, however, precisely the Green’s function problem for the Laplace equation and 
its solution for the 2-D case is known  

 1 ln
2

r  (8.294) 

Rewrite (8.292) in polar form (due to axisymmetry), and we get 
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 1 ( )r G
r r r

 (8.295) 

Substituting (8.294) into (8.295), rearranging and integrating, we find 

 
2 2

1 ln
2
1 1[ ln ]

4 2

Gr r r dr
r

r r r a
 (8.296) 

The last part of (8.296) can easily be obtained by integration by parts. Thus, we have 

 1 1[ ln ]
4 2

G ar r r
r r

 (8.297) 

Integration of (8.297) gives 

 
2

(ln 1) ln
8
rG r a r b  (8.298) 

The unknown constants can be found from the boundary conditions. If we set a = b = 
0, we have (8.291). The fundamental solution is the singular part of (8.298), and thus 
the fundamental solution G0 is normally given as: 

 
2

0 ln
8
rG r  (8.299) 

For the three-dimensional biharmonic equation, Green’s function can be obtained by 
solving the following PDE 
 2 2

0( )G x x  (8.300) 
Using the same idea of the 2-D case, we can employ the fundamental solution of the  
3-D Laplace equation as 

 2
2

1 1( )
4

Gr
r r rr

 (8.301) 

This equation can be readily integrated to get 

 
8
r aG b

r
 (8.302) 

Setting a = b = 0, we have the fundamental solution for the 3-D biharmonic 
equation as 

 
8
rG  (8.303) 

8.13.5 Multi-Harmonic Equation   

For n-dimensional space, the fundamental function for the multi-harmonic equation is 
obtained from the following equation 
 2

0( ) ( )m
mG x x  (8.304) 

 
2

1
2

2

ln , 2 ( even)m n
m

m n

G C r r m n n

C r
 (8.305) 
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where m is an integer. Note that m = 1 corresponds to the harmonic fundamental 
solution whereas m = 2 corresponds to the biharmonic fundamental solution, and so 
on. For physical applications, we are mainly concerned with 2-D and 3-D cases. For 
such cases, the constants in (8.302) can be found explicitly and, more specifically, the 
fundamental function of an m-harmonic equation is 

 

2 2
2

2 3

1 1 ln , 2 ( 2)
8 2 [( 1)!]
1 1 ( 3)

4 (2 2)!

m
m m

m

G r r m n n
m

r n
m

 (8.306) 

The validity of (8.302) can be proved by starting from the fundamental solution of the 
Laplace equation.  
 
Two-dimensional case 
For the 2-D case, the biharmonic Green’s function is the solution of the following 
problem (i.e., m = 2)  
 4 2

2 1 0( )G G x x  (8.307) 
where 
 2

1 2G G  (8.308) 
The second part of (8.307) is the Green’s function problem for the Laplace equation, 
and has been solved previously. Thus, we have 

 1
1 ln

2
G r  (8.309) 

Back substitution of (8.309) into (8.308) gives  

 2 2
2

1 1( ) ln
2

G
G r r

r r r
 (8.310) 

This was solved in the previous section (see Section (8.299)) and the fundamental 
solution is (i.e., only retaining the singular term) 

 2
2

1 ln
8

G r r  (8.311) 

Following a similar procedure, for m = 3 we have 
 6 4 2 4

3 3 2 0( )G G G x x  (8.312) 
The last two terms represent the biharmonic Green’s function and the solution is 
given in (8.311). Thus, the tri-harmonic Green’s function problem becomes 
 2

3 2G G  (8.313) 
More explicitly, it can be expressed as 

 231 1( ) ln
8

G
r r r

r r r
 (8.314) 

Integrating once, we obtain 

 
3

3 1 1(ln )
8 4 4

G r ar
r r

 (8.315) 

Integrating one more time, we get 
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 4
3

1 1(ln ) ln
128 2

G r r a r b  (8.316) 

Thus, the fundamental solution is 

 4
3

1 ln
128

G r r  (8.317) 

By employing the same procedure, it is straightforward to show that the multi-
harmonic Green’s problem with m = 4 is reduced to solving the following equation: 

 441 1( ) ln
128

G
r r r

r r r
 (8.318) 

The fundamental solution of G4 is found equal to 

 6
4

1 ln
4608

G r r  (8.319) 

By observation, we can generalize the coefficient in the multi-harmonic function as 

 2 2
2

1 1 ln , 2 2
8 2 [( 1)!]

m
m mG r r m

m
 (8.320) 

This is the formula given in (8.306). 
 
Three-dimensional case 
For the 3-D case, we can follow a similar procedure. In particular, 
 4 2

2 1 0( )G G x x  (8.321) 
where 
 2

1 2G G  (8.322) 
The second part of (8.321) is the Green’s function problem for the Laplace equation, 
and it has been solved previously for the three-dimensional case. Recall from (8.20) 
that  

 1
1

4
G

r
 (8.323) 

Back substitution of (8.323) into (8.321) gives  

 2 2 2
2 2

1 1( )
4

G
G r

r r rr
 (8.324) 

This was solved in the last section and the fundamental solution is given in (8.303) as 

 2 8
rG  (8.325) 

Following a similar procedure, for m = 3 we have 
 6 4 2 4

3 3 2 0( )G G G x x  (8.326) 
The last two terms represent the biharmonic Green’s function and the solution is 
given in (8.325). Thus, the problem for the tri-harmonic Green’s function problem 
becomes 
 2

3 2G G  (8.327) 
More explicitly, it can be expressed as 
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 2 3
2

1 ( )
8

G rr
r rr

 (8.328) 

Integrating once, we obtain 

 
2

3
232

G r a
r r

 (8.329) 

Integrating one more time, we get 

 
3

3 96
r aG b

r
 (8.330) 

Thus, the fundamental solution is 

 
3

3 96
rG  (8.331) 

By employing the same procedure, it is straightforward to show that the multi-
harmonic Green’s problem with m = 4 is reduced to solving the following equation: 

 
3

2 4
2

1 ( )
96

G rr
r rr

 (8.332) 

Integration on both sides gives G4 as 

 
5

4 2880
rG  (8.333) 

By inspection, we find that  

 2 31 1
4 (2 2)!

m
mG r

m
 (8.334) 

This completes the proof of (8.306). 

8.14 SUMMARY AND FURTHER READING 

In this chapter, the powerful technique called Green’s function method was discussed. 
The method was founded by George Green when he considered the solution of 
problems of electricity and magnetism.  The method was founded on the validity of 
Green’s first, second, and third identities, which were originally derived for the 
Laplace equation that governs the problems of electricity and magnetism. Green’s 
second identity is also known as Green’s theorem, whereas Green’s third identity is 
actually the formula for Green’s function method. We extend the discussion of 
Green’s theorem to the biharmonic equation, in view of its importance in mechanics. 
The most general Green’s theorem for second order linear PDEs was also derived. 
The evolution of the boundary integral equation from Green’s function method is 
discussed in view of its importance in numerical analysis. The boundary integral 
equation for the biharmonic equation was also considered and it turns out that two 
coupled integral equations need to be solved. In view of the role of the Dirac delta 
function in the derivation of Green’s function, the definition of the Dirac delta 
function and its justification using the theory of distribution is introduced. The Dirac 
delta function approximated by generalized functions called the -sequence is 
discussed. It was demonstrated that both Fourier series expansion and the Fourier 
transform were intimately linked to the theory of distribution if appropriate forms of 
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the -sequence were chosen. Green’s function method for general second order PDEs, 
which are not self-adjoint, is discussed. Finally, a number of Green’s functions for 
commonly encountered PDEs were summarized. They include Helmholtz, diffusion, 
wave, biharmonic, and multi-harmonic equations.   
 The present chapter differs from most of the existing textbooks on differential 
equations in that detail of the Green’s function method for biharmonic equations is 
discussed. The presentation on multi-harmonic equation is also original and cannot be 
found in any textbook on Green’s function method (e.g., Duffy, 2001).    
 Green’s function method is one of the most powerful mathematical techniques 
in solving PDEs and a short chapter like this can cover the main concepts and ideas of 
this method. An excellent and elementary introduction to Green’s function method is 
given by Greenberg (1971). The book series by Stakgold (1967, 1968, 1979) also 
provided a comprehensive discussion of Green’s function method and are also highly 
recommended. A handbook on Green’s function is given by Butkovskiy (1982), 
whereas a compilation of exact solutions in terms of Green’s function can be found in 
Polyanin and Zaitsev (2002). More colorful stories written on George Green can be 
found in Cannell and Lord (1993).   

8.15 PROBLEMS 

Problem 8.1 Show the following identity: 

 
cos[( 1) ]sin

2 2cos cos 2 ... cos
sin

2

x nxn
x x nx

x  (8.335) 

Hint: Use the result related to the fifth -sequence. 
 
Problem 8.2 Show that the Green’s function of deflection given in (8.273) for a 
simply supported beam subject to unit point load can be recast into the following 
forms: 

 

2 2

2 2

( )( , ) [2 ( ) ( ) ( ) ] (0 )
6

( ) [2 ( ) ( ) ( ) ] ( )
6

u
L xG x L L x L L x x

EIL
L x L L x L x L x L

EIL

 (8.336) 

 
Problem 8.3 Show that the Green’s function of moment given in (8.274) for a 
simply supported beam subject to unit point load can be recast into the following 
forms: 

 

( )( , ) (0 )

( ) ( )

M
L xG x x

L
L x x L

L

 (8.337) 

 
Problem 8.4 For the beam bending problem discussed in Example 8.4, show that 
Green’s function of moment is continuous at x =  and there is a unit discontinuity 
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x

1P

( )q x

x
( )u x

L

of the derivative of the GM with respect to x at x = . More specially, show the 
following: 

 ( , ) 0MG x  (8.338) 

 ( , )
1MG x

x
 (8.339) 

 
Problem 8.5 Discuss the physical meaning of the results obtained in Problem 8.4.   
 
Hint: What is the physical meaning of the derivative of moment? What changes 
suddenly within the beam across the unit point force?   
 
Problem 8.6 Consider the case of a fixed end (or built-in support) supported beam 
subject to non-uniform distributed load q(x) as depicted in Figure 8.13. The 
problem is formulated as 

 
2 2

2 2( ) ( )d d uEI q x
dx dx

 (8.340) 

where u is the deflection of the beam, and E and I are the Young’s modulus and 
moment of inertia of the bean section. The boundary conditions for fixed end 
support are 

 
0

( ) ( ) 0, 0, 0
x x L

du duu a u L
dx dx

 (8.341) 

Find the Green’s function method of the problem. 
 
Ans:  

 
2

3 2
2

1 3( ) 2( , ) [( ) ( ) ( ) ]
6 3u

L LG x x H x x x
EI LL

 (8.342) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 Figure 8.13 Green’s function method for built-in beam bending  
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Problem 8.7 Define a possible form of Dirac delta function as: 

 
0 0

( ) 1/ 0
0

t
t t

t
 (8.343) 

Show that  

 ( ) 1x dx  (8.344) 

 
0

lim ( ) ( ) (0)f x x dx f  (8.345) 

Thus, it is a potential candidate for the Dirac delta function. 
 
Problem 8.8 Derive the following result for G4 for the 2-D case (multi-harmonic 
Green’s function with m = 4): 

 6 6
4

1 1ln ln
4608 13824

G r r r a r b  (8.346) 

Thus, the validity of (8.319) can be demonstrated. 
 
Problem 8.9 Show the following identity using the theory of distribution 
 ( ) 0nx x  (8.347) 
 



   CHAPTER NINE 
 

Wave, Diffusion and Potential Equations  

9.1 INTRODUCTION 

Arguably, wave, diffusion and potential equations are the three most fundamental and 
important second order PDEs in engineering, science, and mathematical physics. 
They are the standard topics covered in nearly all textbooks on partial differential 
equations and mathematical physics. They are the PDEs that have been studied most 
extensively since the discovery of calculus. The main contributors in the studies of 
these equations include Bernoulli, Euler, D’Alembert, Huygens, Lagrange, Fourier, 
Laplace, Riemann, Hilbert, Poisson, Cauchy, Hadamard, and Sommerfeld, to name a 
few. In Chapter 7, we have demonstrated that there are three general types of second 
order PDEs, namely hyperbolic, parabolic, and elliptic types. The most commonly 
encountered type of hyperbolic, parabolic, and elliptic PDEs are wave, diffusion and 
Laplace equations.  
 The wave phenomenon has long been recognized as one of the most distinct and 
fundamental features observable in nature. When we throw a stone into a calm pond, 
a series of circular waves of water will radiate from the impact. This propagating 
wave seems to suggest that pockets of water particles are moving outward. In fact, 
energy is propagating along these waves, instead of water particles. Water molecules 
are simply oscillating around its equilibrium positions. This is a phenomenon of 
propagating energy. Wave phenomena influencing our daily lives include sound, 
light, other electromagnetic waves, earthquakes, and water waves. The direction of 
such wave signals is associated with characteristics. When a whip is lashed, a one-
dimensional wave is generated. Similarly, vibrations of violin strings can be modelled 
as one-dimensional waves. Energy propagation in solids is considered as stress waves. 
As shown by Chau (2013), both shear stress waves and compressional stress waves 
result in classic three-dimensional elastodynamic equations. In Chapter 2, we have 
demonstrated that both Maxwell equations for electrodynamics and elastodynamics 
can be converted to nonhomogeneous wave equations. Therefore, the study of wave 
equations is of fundamental importance, especially nonhomogeneous wave equations.  
 Heat conduction has been considered since the time of Newton (Newton’s 
cooling law) and Fourier (Fourier law of heat conduction). This phenomenon can be 
modelled as a diffusion equation. Subsidence of ground due to settlement is caused by 
consolidation of clay. When loading is applied to a fully saturated clay, the small 
value of permeability of clay does not allow the water to be squeezed out 
immediately. The pore water pressure will increase to balance this externally applied 
load. This excess pore water pressure (excess compared to the long term value) will, 
however, induce seepage through the clay. It is a very slow process of squeezing 
water out of the soil skeleton and at the same time the decreased pore water pressure 
will be converted to effective stress (portion of the total stress taken up by the soil 
skeleton interactions). This results in the diffusion of water and thus the phenomenon 
is governed by the diffusion equation.  
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 Many physical problems are governed by the Laplace equation. These include 
the incompressible potential flow of fluid, electrostatic problems, gravitational 
attraction of bodies, steady state temperature distribution, twisting of elastic bars, and 
membrane deflection (such soap film). The solution of the Laplace equation is also 
known as the harmonic function. It is also known as potential theory as it is related to 
the problems of gravitational potential. For the two-dimensional case, it also closely 
relates to the analytic function in the complex variable technique. 

9.2 WAVE EQUATIONS 

Mathematically, the linear wave phenomenon can be modelled by the following wave 
equation 

 
2

2 2
2a

t
 (9.1) 

where  is a wave potential function, 2 is the Laplacian operator, and a is the 
wave speed of the propagating energy. For the case of waves in solids, readers can 
refer to Section 9.4 of Chau (2013). For the special case that the function  is 
independent of time, (9.1) reduces to the Laplace equation. In fact, the resulting 
Laplace equation governs the equilibrium problem of steady distribution of the 
potential subject to certain boundary conditions. Mathematically, as we have 
discussed in Chapter 7, (9.1) is a hyperbolic type of PDE. There exists a pair of 
curves called characteristics, along which there is a discontinuous solution 
propagating. The wave type phenomenon is the easiest to visualize in nature, 
compared to the equilibrium type of elliptic PDE and the diffusion type of 
parabolic PDE discussed in Chapter 7.   
 The next section will discuss the simplest case of 1-D waves. 

9.2.1 D’Alembert Solution for 1-D Waves 

The one-dimensional wave equation is one of the first differential equations ever 
formulated in modelling physical phenomena. For the case of a vibrating spring of 
a violin shown in Figure 9.1, the deflection of the spring is governed by   

 
2 2

2
2 2
u ua

x t
 (9.2) 

where  

 2 Ta  (9.3) 

The tension in the vibrating spring is T and  is the mass per unit length of the 
spring.  
 Figure 9.2 shows the vertical and horizontal components of the spring tension 
T.  Horizontal force equilibrium leads to 
 ( , ) cos( ) ( , ) cos( ) 0T x x t T x t  (9.4) 
Similarly, vertical force equilibrium leads to the following equation of motion: 
 ( , )sin( ) ( , )sin( ) ( , )ttT x x t T x t xu x t  (9.5) 
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( , )u x t

x

x L0x

where x  is the center of mass of the spring element shown in Figure 9.2. As shown 
in Figure 9.2, we can denote the vertical component of spring tension as V, and 
(9.5) can be simplified as: 

 

 

 
 

 
 
 

Figure 9.1 Vibrating violin string as 1-D wave phenomenon  
 

 ( , ) ( , ) ( , )tt
V x x t V x t u x t

x
 (9.6) 

Using the fundamental definition of differentiation, we get 
 ( , ) ( , )x ttV x t u x t  (9.7) 
The vertical force component can be related to the horizontal force component by 
 ( , ) ( ) tan ( ) ( , )xV x t H t H t u x t  (9.8) 
To obtain the last part of (9.8), we have set the slope of the spring equal to the 
derivative of u taken with respect to x.  
 Substitution of (9.8) into (9.7) gives 
 ( )x x ttHu u  (9.9) 
Finally, for small deflection (it is normally the case), we have cos   1 as   0: 
 ( ) cosH t T T  (9.10) 
Using (9.10), we can further simplify (9.9) as 

 
2 2

2 2
2 2 , /u ua a T

x t
 (9.11) 

This completes the proof for the one-dimensional wave equation given in (9.2). 
 
 

 

 

Figure 9.2 Force equilibrium in a vibrating spring of violin 
 

T
sinV T

cosH T x x xx( , )T x t

( , )T x x t
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__________________________________________________________________ 
Example 9.1 Consider the solution of the following finite spring of length L fixed 
at two supports and subject to an initial deflection f(x): 

 

2 , 0 , 0
(0, ) 0, ( , ) 0, 0
( ,0) ( ), ( ,0) 0, 0

xx tt

t

a u u x L t
u t u L t t
u x f x u x x L

 (9.12) 

 
Solution: Using separation of variables, we have 
 ( , ) ( ) ( )u x t X x T t  (9.13) 
Substitution of (9.13) into (9.12) gives 
 2a X T X T  (9.14) 
This can be rearranged as 

 2
1X T

X Ta
 (9.15) 

This leads to two ODEs 
 0X X  (9.16) 

 2 0T a T  (9.17) 
Thus, the boundary and initial conditions become 
 ( ,0) ( ) (0) 0, 0 (0) 0tu x X x T x L T  (9.18) 
 (0, ) (0) ( ) 0, ( , ) ( ) ( ) 0, 0u t X T t u L t X L T t t  (9.19) 
The governing equation for X can be summarized as 
 0, (0) ( ) 0X X X X L  (9.20) 
The general solution of (9.20) is   
 1 2cos sinX c x c x  (9.21) 
The boundary condition in (9.20) leads to 
 1(0) 0 0X c  (9.22) 
Substitution of (9.21) into the second boundary condition of (9.20) yields the 
eigenvalue equation 
 sin 0L  (9.23) 
The eigenvalues are 
 2 2 2/ , 1,2,3,n n L n  (9.24) 
The quantities n = n a /L, for n = 1, 2, …, are the natural frequencies of the string, 
that is, the frequencies at which the string will freely vibrate. The vibration mode is  
 ( ) sin /nX x n x L  (9.25) 

The solution of T is  
 1 2( ) cos / sin /T t k n at L k n at L  (9.26) 

 1 2( ) / { sin / cos / }T t n a L k n at L k n at L  (9.27) 

Boundary condition (9.18) will lead to  
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 2 0k  (9.28) 
The fundamental solution becomes  
 ( , ) sin / cos / , 1,2,3, ,nu x t n x L n at L n ,  (9.29) 

The general solution becomes  

 
1 1

( , ) ( , ) sin / cos /n n n
n n

u x t c u x t c n x L n at L  (9.30) 

 
1

( ,0) ( ) sin /n
n

u x f x c n x L  (9.31) 

Multiplying both sides by the sine function and integrating from 0 to L, we have (in 
view of the orthogonal properties of the resulting sine integral given in (7.186)):  

 
0

2 ( )sin /
L

nc f x n x L dx
L

 (9.32) 

Thus, the final solution is  

 
1

( , ) sin / cos /n
n

u x t c n x L n at L  (9.33) 

The constant cn for the sine Fourier expansion of the initial deflected shape f(x) can 
be carried out explicitly once the function is given. This completes the solution of 
the 1-D wave phenomenon of violin string vibrations.  
__________________________________________________________________ 
 
We now introduce the classical solution proposed by D’Alembert for 1-D wave 
problems. This solution is beautiful and is a triumph in the history of solutions of 
the wave equation.  
 Let us rewrite the solution given in Example 9.1 by defining the following 
function: 

 
1

( ) sin /n
n

h x c n x L  (9.34) 

Next, we consider the expansion of this function with two special arguments:  

1

( ) sin / cos / cos / sin /n
n

h x at c n x L n at L n x L n at L  (9.35) 

1

( ) sin / cos / cos / sin /n
n

h x at c n x L n at L n x L n at L  (9.36) 

These expressions are the results of direct application of the following sum rule for 
the sine function: 
 sin( ) sin cos cos sinA B A B A B  (9.37) 
Adding (9.35) and (9.36) gives exactly twice (9.33), the solution that we obtained 
by solving the initial boundary value problem of Example 9.1. More precisely, we 
can write 
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 1

( , ) sin / cos /

( ) ( ) 2

n
n

u x t c n x L n a t L

h x at h x at

 (9.38) 

Physically the first h function is an outgoing wave or a right going wave and the 
second h is an incoming wave or a left going wave. The argument in the h function 
can be considered as the “characteristics” of the propagating solutions as we 
introduced in Chapter 7.  
 Naturally, one may ask whether all solutions of one-dimensional wave 
problems can be written as superposition of two waves. The answer is yes, and this 
general result is D’Alembert’s seminal result. Let us consider the general 1-D wave 
equation as 

 
2 2

2
2 2
u ua

t x
 (9.39) 

Introduce the following pair of change of variables: 
 ,x at x at  (9.40) 
Using the chain rule for partial differentiation, we get 

 u u u u u
x x x

 (9.41) 

 
2

2
u u u uu

x xx
 (9.42) 

 
2 2 2 2

2 2 22u u u u
x

 (9.43) 

Thus, we have 

 
2 2 2 2

2 2 2 2
2 2 22u u u ua a a a

x
 (9.44) 

   u u u u ua a
t t t

 (9.45) 

 

2

2

2 2 2
2

2 2

 

( 2 )

u u u uu a a
x xt

u u ua
 (9.46) 

Substitution of (9.44) and (9.46) into (9.39) leads to 

 
2

 0u  (9.47) 

Integration once with respect to  gives 

  ( )u f  (9.48) 

Integration one more time with respect to  gives 
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 2

1 2

 ( , ) ( )d ( )

( ) ( )

u x t f f

f x at f x at
 (9.49) 

In the derivation of (9.49), we have not specified any initial and boundary 
condition, and thus this result is general and can be applied to any initial boundary 
problem of a one-dimensional wave. More importantly, the solution in (9.49) is 
expressed in terms of an arbitrary function of the two arguments (or the two 
characteristics for this hyperbolic equation).  
 We will consider the case of an infinite spring subject to certain initial 
conditions using the solution in (9.49). More specifically, we consider an infinite 
spring subject to initial deflection and velocity: 
 0 | ( ),tu x x  (9.50) 

 
0

 ( ),
t

u x x
t

 (9.51) 

Adopting the general solution form (9.49), we get 

 1 2 1 2 ( , ) ( ) ( )u x at x atx t f x at f x at af af
t t t

 (9.52) 

Applying the initial conditions (9.50) and (9.51) (i.e., at t = 0) to (9.49) and (9.52), 
we obtain two equations: 
 1 2 ( ) ( ) ( )f x f x x  (9.53) 
 1 2 ( ) ( ) ( )af x af x x  (9.54) 
Integration of (9.54) gives 

 1 2
0

1 ( ) ( ) ( )d
x

f x f x C
a

 (9.55) 

Equations (9.53) and (9.55) provide a system of two equations for two unknown 
functions, and the solutions of it are: 

 1
0

1 1 ( ) ( ) ( )d
2 2 2

x Cf x x
a

 (9.56) 

 2
0

1 1 ( ) ( ) ( )d
2 2 2

x Cf x x
a

 (9.57) 

Back substitution of these results into (9.49) leads to  

 1 1 ( , ) [ ( ) ( )] ( )d
2 2

x at

x at
u x t x at x at

a
 (9.58) 

This is the renowned solution by D’Alembert. For the case of zero initial velocity, 
Figure 9.3 illustrates the right going solution or outgoing solution. Because in the 
formulation of the wave equation we have not incorporated any damping term, the 
initial deflected shape will be preserved during the propagation. Similarly, the left 
going solution or incoming solution is illustrated in Figure 9.4. 
 More generally, once an infinitely long spring is initially deflected, waves 
will be generated to both left and right as illustrated in Figure 9.5 at three different 
times. In this illustration, the disturbance was imposed at t = t0; as time increases, 
this initial disturbance generated a left and a right going wave. The wave is 
propagating at a speed of a.  
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u1=f1(x) 
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u1=f1(x at0) 
(t=t0) 
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 Figure 9.3 Right going solution of 1-D wave equation 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4 Left going solution of 1-D wave equation 
 
 
 
 
 
 

 
 

 
 

 
Figure 9.5 Both left and right going solutions of an infinitely long spring 

9.2.2 Domain of Dependence and Influence Zone 

Recall in the general solution of a 1-D wave that there are two characteristics and 
one corresponds to a left-going wave and the other the right-going wave. In the 
time-space, there are certain forbidden regions that the wave solutions cannot travel 
to. This is a consequence of causality. 
 Figure 9.6 illustrates the domain of dependence. Consider that at a point P in 
space-time, the wave signals that the point P received can only come from the 
influence of the space-time triangle of ABP. To see the mathematical details of this, 
we consider the following example of the nonhomogeneous wave problem. 

u 

x 

u2=f2(x) 
(t=0) 

u2=f2(x at0) 
(t=t0) 

x1 x2 x1+at0 x2+at0 
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Figure 9.6 Domain of dependence 

__________________________________________________________________ 
Example 9.2 Consider the solution of the following 1-D nonhomogeneous wave 
problem (with external forcing term given) with prescribed initial deflection and 
velocity: 

 
2 ( , ), 0

( ,0) ( ), ( ,0) ( )
tt xx

t

u a u f x t t
u x x u x x

 (9.59) 

 
Solution: The problem can be solved by using superposition. First, we recognize 
that the original problem can be decomposed into two sub-problems: 
 
Problem I 

 
2 0, 0

( ,0) ( ), ( ,0) ( )
tt xx

t

u a u t
u x x u x x

 (9.60) 

    
Problem II 

 
2 ( , ), 0

( ,0) 0, ( ,0) 0
tt xx

t

u a u f x t t
u x u x

 (9.61) 

 
Problem I has actually been solved by using the D’Alembert solution discussed in 
the last section as: 

  1 1 ( , ) [ ( ) ( )] ( )d
2 2

x at

x at
u x t x at x at

a
 (9.62) 

For Problem II, we can use the classification approach in Chapter 7 that  
 2 1, 0,A B C a  (9.63) 
Thus, we have 
 2 2 4 4 0B AC a  (9.64) 
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This system is of course the hyperbolic or wave type. The two characteristics are 

 
2 24 4 ,

2 2
dx B B AC dx B B ACa a
dt A dt A

 (9.65) 

The corresponding characteristics can be obtained by integrating the ODE as 
 1 2 ,x at C x at C  (9.66) 
Then, we get 

  1, , 1,a a
x t x t

 (9.67) 

Thus,  

 
2

2 ( ) 2

4

B A B C
x x x y x y y y

a

 (9.68) 

Therefore the canonical form of the wave equation becomes 

 2
1 ( , )

4
u f

a
 (9.69) 

Note that we have used the same symbols for u and f even though we have changed 
the variables. Integration of (9.69) with respect to  gives 

 2
1 ( , ) ( )

4
u f d g

a
 (9.70) 

The lower limit for the integral is obtained by virtue of the fact that at t = 0, we 
have  =   (see (9.66)). In addition, we note that  

 1u u t u x u u
t x a t x

 (9.71) 

At zero time, we have 

 ( ,0) 0, (0) 0u ux
t x

 (9.72) 

The first is the second initial condition of Problem II given in (9.61) and the second 
is a direct consequence of the first initial condition in (9.61) (i.e., the initial data is 
identically zero for all x as is its derivative with respect to x). Thus, from (9.71) we 
must have  

 ( , ) 0u  (9.73) 

Using this information, we find that (9.70) becomes 
 ( ) 0g  (9.74) 

 2
1 ( , )

4
u f d

a
 (9.75) 

Note that we absorb the negative by reversing the limits of integration. Integration 
of (9.70) one more time with respect to  yields 

 2
1 ( , )

4
u f d d

a
 (9.76) 

Note that the integration is for  > , thus we have  
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A B

C

( , )

 ,     (9.77) 
The domain of integration can be illustrated in Figure 9.7. The domain of 
integration can be written as: 

 2
1 ( , )

4
u f d d

a
 (9.78) 

where  is the triangular domain shown in Figure 9.7.  
 We map the variables back to the physical domain as: 
 ,x ct x ct  (9.79) 

 2
1 ( , )

4 xt
u f x t J dx dt

a
 (9.80) 

where the domain of integration shown in Figure 9.8 can be mapped to another 
triangular domain shown in Figure 9.8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.7 Domain of integration for (9.76) 

 
The horizontal line AB in Figure 9.7 can be mapped as 
 , ( )x x a t t  (9.81) 
That is, in the physical domain, AB becomes an inclined line shown in Figure 9.8. 
Similarly, the vertical line BC can be mapped as an inclined line in the physical 
domain: 
 , ( )x x a t t  (9.82) 
Finally, the inclined line AC becomes a horizontal line in Figure 9.8 as: 
 , 0t  (9.83) 
In addition, the Jacobian for the mapping is  

 
1

2
1

ax tJ a
a

x t

 (9.84) 
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xt

( )x x a t t
( )x x a t t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.8 Domain of integration for (9.80) 

 
Substitution of (9.81) and (9.84) into (9.80) yields 

 1 ( , )
2 xt

u f x t dx dt
a

 (9.85) 

Finally, we can combine the solutions of Problems I and II as 

 

1 1 ( , ) [ ( ) ( )] ( )d
2 2
1 ( , )

2

x at

x at

xt

u x t x at x at
a

f x t dx dt
a

 (9.86) 

This completes the solution. The solution of 3-D nonhomogeneous wave equation 
will be considered in Section9.3. 
__________________________________________________________________ 
  
The domain of integration found in Figure 9.8 is exactly the domain of dependence 
shown in Figure 9.6. 
 The region of influence is shown in Figure 9.9 for the case of initial 
deflection and velocity prescribed at x = x0 and t = 0.  
 Figure 9.9 shows the space-time event horizon for the one-dimensional case. 
That is, we could not receive any signal from a point source as long as the chosen 
point in space-time is outside the wedging zone in Figure 9.9. The domain of 
dependence and region of influence can be considered as a consequence of 
causality. This is a distinct feature of the wave type solution. Figure 9.10 is the 
cone of the event horizon including both past and future cones.  
 In Chapter 15, we will see that this causality of the wave also provides a 
stability criterion on the numerical integration of wave equations (i.e., the Courant-
Friedrichs-Lewy criterion or CFL criterion in (15.2.7)). 
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9.2.3 Two-Dimensional Waves 

For the case of radially symmetric spherical waves (i.e., waves in unbounded 
solids), the wave equation is 

. 
2 2

2 2 2
1 1

r ra t r
 (9.87) 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 9.9 Domain of influence for a source point 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9.10 Cone of event horizon (past and future) 
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For the case of radially symmetric spherical waves (i.e., waves in unbounded 
solids), the wave equation is 

. 
2 2

2 2 2
1 1

r ra t r
 (9.88) 

Consider a time harmonic wave as 
 ( ) i tr e  (9.89) 

 
2 2

2 2
1 0d d
r drdr a

 (9.90) 

This is the Bessel equation of zero order. For the wave phenomenon, it is 
customary to express its solution in Hankel functions instead of the Bessel function 
as 
 (1) (2)

1 10 0( ) ( ) ( )r c H kr c H kr  (9.91) 
where the Hankel functions can be expressed in terms of Bessel functions of the 
first and second kinds as (see Section 4.8): 
 (1)

0 0 0( ) ( ) ( )H kr J kr iY kr  (9.92) 

 (2)
0 0 0( ) ( ) ( )H kr J kr iY kr  (9.93) 

 k
a

 (9.94) 

See also the discussion related to Table 4.1 in Chapter 4 on the role of Hankel 
function in wave phenomenon. Now, consider the asymptotic form of the Hankel 
functions for r  as discussed in Chapter 4: 

 (1)
0

2( ) exp[ ( / 4)]H kr i kr
kr

e22 ex2
kr

 (9.95) 

 (2)
0

2( ) exp[ ( / 4)]H kr i kr
kr

e2 ex2
kr

 (9.96) 

Substitution of (9.94) and (9.95) into (9.90) gives 

 1 2
2( ) { exp[ ( )] exp[ ( )]}

4 4
r c i kr c i kr

kr
 (9.97) 

The first and second terms on the right reflect contracting wave and expanding 
waves respectively. For the time harmonic solution of (9.87), we have 
 (1) (2)

1 10 0( , ) ( ) ( )i tt r e c H kr c H kr  (9.98) 

This solution can be expressed in terms of integrals by noting the following integral 
representation of Hankel functions as (p.180 of Watson, 1944): 

 (1)
0 0

2( ) exp{ cosh }H kr ikr d
i

 (9.99) 

 (2)
0 0

2( ) exp{ cosh }H kr ikr d
i

 (9.100) 

Substitution of these results into (9.97) gives 



 Wave, Diffusion and Potential Equations 553 

 

1 2
0 0

2 2( , ) exp{ cosh } exp{ cosh }t r c i t ikr d c i t ikr d
i i

 (9.101) 

The general solution of the arbitrary time function can be founded by summing 
different time harmonics as: 

 0

0

( , ) exp{ ( cosh )} ( )

exp{ ( cosh )} ( )

rt r i t f d d
a
ri t g d d
a

 (9.102) 

Therefore, this solution suggests that the general solution can be expressed as 
arbitrary functions of the form (Copson, 1975): 

      
0 0

( , ) ( cosh ) ( cosh )r rt r F t d G t d
a a

 (9.103) 

The validity of this solution can be verified by direct substitution of (9.102) into 
(9.87). The main feature of this solution is that for large time t the integral in 
(9.101) does not drop to zero. In other words, there are tails to the disturbance. The 
physical meaning of this will be discussed in a later section. Another solution for 
two-dimensional wave in a finite domain in integral terms will be given in a later 
section (or the so-called Poisson integral). 

9.2.4 Three-Dimensional Waves  

So far, we have considered the solution for both one-dimensional and two-
dimensional wave equations. In this section, we will consider the solution of a 
three-dimensional wave problem defined as: 

 
2 2 2 2

2 2 2 2 2
1 u u u u
a t x y z

 (9.104) 

 0
0

( , , ), ( , , )t
t

uu x y z x y z
t

 (9.105) 

The solution is found expressed as: 

 1( , , , )
4 at atS S

u t x y z dS dS
a t at at

 (9.106) 

where Sat is the surface of a sphere with origin at (x, y, z) and radius at and dS 
denotes the surface integral over the sphere (see Figure 9.11). This formula is 
known as Poisson’s mean value formula, and is also known as Kirchhoff’s formula. 
The proof of (9.105) will be considered in Section 9.2.6. Physically, it means that 
the solution at the point  (x, y, z) and time t only depends on the average value of 
the prescribed data on the surface of a sphere of radius at, and is independent of the 
value of the initial data within the sphere. As time t increases, once the spherical 
surface passes the initial disturbance zone, the spherical integral given in (9.105) 
will drop to zero. Thus, there is a sharp tail. This is referred to as the Huygens 
principle, which will be discussed further in Section 9.2.8. Actually, Poisson’s 
formula can also be expressed as the mean value of the initial data on the sphere of 
integral as:  
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x

radius at

r

tS
u dS

( , , , )u x y z t

dS

 1( , , , ) [ ( )] ( )u t x y z at at at at
a t

 (9.107) 

where the superimposed bar denotes the average value taken over the spherical 
surface of radius at. In spherical coordinates, the mean value of  over the sphere 
with center at (x, y, z) and radius of at can be evaluated as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.11 Poisson’s mean value solution for 3-D wave 

 

 

2

2 2 0 0

2 2

1( , , ; ) ( sin cos , sin sin ,
4

cos ) sin

x y z t x at y at
a t

z at a t d d
 (9.108) 

The average of  can be defined similarly.  The validity of this solution is shown in 
later sections.   

9.2.5 Three-Dimensional Symmetric Waves   

In this section, we will first consider the solution for spherically symmetric cases. 
More specifically, we have the prescribed values in (9.104) as: 
 ( ), ( )r r  (9.109) 
Consequently, we must have the solution of u being: 
 ( , )u u r t  (9.110) 
For this case, the wave equation becomes 

 
2 2

2 2 2
1 2u u u

r ra t r
 (9.111) 

It is straightforward to show that (9.110) can be written as: 

 
2 2

2
2 2

( ) ( )ru rua
t r

 (9.112) 
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Accordingly, the initial conditions can be recast as 

 0
0

( )( ) ( ), ( )t
t

ruru r r r r
t

 (9.113) 

In addition, we clearly have an additional condition that 
 

0( ) 0rru  (9.114) 
This problem is mathematically equivalent to the one-dimensional wave problem 
for a vibrating string discussed earlier. Therefore, the D’Alembert solution 
discussed in the previous section can be applied directly as: 

 

( ) ( ) ( ) ( ) 1( , ) ( ) , 0
2 2

( ) ( ) ( ) ( ) 1 ( ) , 0
2 2

r at

r at
at r

at r

r at r at r at r atu r t d r at
r ar

r at r at at r at r d r at
r ar

 

  (9.115) 
This solution will be used again in the next section, when we discuss the general 
solution for a non-symmetric three-dimensional wave. 

9.2.6 Poisson or Kirchhoff Formula for Three-Dimensional Waves   

Let us define the surface average of the solution as 

 2
1( , ) ( , , , )

4 S
u r t u t dS

r
 (9.116) 

where the integral over dS is for variables ( , , ). In spherical polar form defined 
in Fig. 1.27, we can rewrite it as: 

 
1

1( , ) ( sin cos , sin sin , cos , )
4 S

u r t u x r y r z r t d  (9.117) 

where the surface integral is conducted over a unit sphere such that 
 2dS r d  (9.118) 
Clearly, the value of u at the center of the sphere can be found by taking the 
following limit: 
 

0
lim ( , ) ( , , , )
r

u r t u x y z t  (9.119) 

Differentiation of both sides of (9.116) gives 

 1

1
2

1 ( sin cos sin sin cos )
4

1 ( sin cos sin sin cos )
4

S

S

u u u u d
r

u u u dS
r

 (9.120) 

Applying Gauss’s theorem to (9.119), we obtain 

 

2 2 2
2

2 2 2 2 2

2

2 2 2

1 1( )
4 4

1
4

B B

B

u u u u dV udV
r r r

udV
a r t

 (9.121) 
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The last line of (9.120) results from the wave equation. The volume integral can be 
rewritten as  

 
2 2

2 2
2 2 0

4
at

r

B S

u ua r dV udS d
r t t

 (9.122) 

Differentiation of (9.121) gives 

 
2

2 2
2(4 )

atS

ua r udS
r r t

 (9.123) 

This expression can be rearranged as 

 
2 2

2 2
2 2 2 2

1 1( )
4 atS

u ua r udS
r rr r t t

 (9.124) 

The following identities can be proved easily  

 
2 2

2 2
( ) 2ru u ur

rr r
 (9.125) 

 
2

2 2
2( ) 2u u ur r r

r r r r
 (9.126) 

By using (9.124) and (9.125), we finally obtain 

 
2 2

2
2 2

( ) ( )ru rua
t r

 (9.127) 

The boundary conditions (9.104) can be rewritten accordingly 

 0 0
0

( )( ) , , ( ) 0t r
t

ruru r r ru
t

 (9.128) 

where 

 2
1( , ) ( , , , )

4 atS
r t t dS

r
 (9.129) 

 2
1( , ) ( , , , )

4 atS
r t t dS

r
 (9.130) 

The last boundary condition in (9.127) is added similarly to the argument in the last 
section. 

 

( ) ( ) ( ) ( ) 1( , ) ( ) , 0
2 2

( ) ( ) ( ) ( ) 1 ( ) , 0
2 2

r at

r at
at r

at r

r at r at r at r atu r t d r at
r ar

r at r at at r at r d r at
r ar

 

  (9.131) 
Considering the limit of r  0, by virtue of (9.118) we have 

 0 0

0

( ) ( ) ( ) ( )( , , , ) lim ( , ) lim
2

1lim ( )
2

r r
at r

r at r

r at r at at r at ru x y z t u r t
r

d
ar

 (9.132) 
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It is clear that both the first and second terms on the right of (9.131) are of the form 
0/0. Application of L’Hôpital’s rule results in 

0

( ) ( ) ( ) ( ) 1lim ( ) ( ) [ ( )]
2r

r at r at at r at r at at at at at
r a t

 (9.133) 

Applying L’Hôpital’s rule and Leibniz’s rule of differentiation on the integral given 
in (9.131), we find the second term as 

 
0

1 1lim ( ) [ ( )]
2

at r

r at r
d at at

ar a
 (9.134) 

Substitution of (9.132) and (9.133) into (9.131) gives 

 1 1( , , , ) [ ( )] [ ( )]u x y z t at at at at
a t a

 (9.135) 

Finally, in view of (9.128) and (9.129) we have 

 1( , , , )
4 at atS S

u t x y z dS dS
a t at at

 (9.136) 

This completes the proof of Poisson’s formula or Kirchhoff’s formula. 
 In spherical coordinates, Poisson’s formula can be expressed as 

 

2

0 0
2

0 0

( , , , ) [ ( , , )sin ]
4

( , , )sin
4

tu r t x atl y atm z atn d d
t
t x atl y atm z atn d d

 (9.137) 

where 
 2 2 2sin cos , sin sin , cos , 1l m n l m n  (9.138) 

9.2.7 Hadamard’s Method of Descent for 2-D Wave  

For two-dimensional wave problems, an integral solution similar to (9.135) can 
also be established by specifying it to the two-dimensional case. This method is 
normally referred as Hadamard’s method of descent. First, the two-dimensional 
wave problem can be summarized as 

 
2 2 2

2 2 2 2
1 u u u
a t x y

 (9.139) 

 0
0

( , ), ( , )t
t

uu x y x y
t

 (9.140) 

Since the surface integral is no longer a function of z, the incremental area dS can 
be projected to d  as shown in Figure 9.12. The contribution from the upper 
hemisphere to the projected circular surface is the same as that from the lower 
hemisphere. Thus, we have 

 22
cos

dS d d  (9.141) 

As shown in Figure 9.12, the cosine function can be determined as: 
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dS

d

dS

cosd dS
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2 2 2( ) ( ) ( )at x y

2 2( ) ( )x y

 
2 2 2 2( ) ( )

cos
a t x y

at
 (9.142) 

 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 9.12 Spherical surface projected to circular 
 
Using these results, we get from (9.135) 

 1 2 2( , , , )
4 cos cosat at

u t x y z d d
a t at at

 (9.143) 

Substitution of (9.141) into (9.142) gives 
  

 
2 2 2 2

2 2 2 2

1 ( , )( , , , ) [
2 ( ) ( )

( , ) ]
( ) ( )

at

at

u t x y z d d
a t a t x y

d d
a t x y

 (9.144) 

This is the two-dimensional Poisson formula. In polar form, this formula can be 
written as 

 

2

2 2 20 0

2

2 2 20 0

1 ( cos , sin )( , , , ) [ ]
2

1 ( cos , sin )
2

at

at

x yu t x y z d d
a t a t
x y d d

a a t

 (9.145) 

Note that the integration given in (9.143) and (9.144) are evaluated for the whole 
circular region instead of the spherical surface. This difference in the 2-D and 3-D 
Poisson formulas makes a big difference physically, which will be discussed next.  
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( , , )x y z
1at

2at

9.2.8 Huygen Principle  

For the three-dimensional wave solution given by Poisson’s formula, Figure 9.13 
shows a particular situation that the initial disturbances  and  are only given in 
domain .  
 
(i) Case I:  
 1at at  (9.146) 
For this case, the wave signal from  has not arrived the center of the sphere. 
Therefore the solution given by Poisson’s formula gives a zero solution because the 
spherical surface has no initial values of  and . 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.13 Interpretation of Poisson’s formula 
 
   
 (ii) Case II:  
 2 1at at at  (9.147) 
Once t = t1, the first wave signal arrives sharply. Within this time period, the 
intersection between the spherical surface of integration and the initial disturbance 
leads to a nonzero solution.   
 
(iii) Case III:  
 2at at  (9.148) 
Once t > t2, there is no intersection between the spherical surface of integration and 
the initial disturbance. Thus, the solution drops sharply to zero and there is no 
ripple once the wave energy has passed. That is, there is a sharp trailing edge of the 
wave solution. This is known as the Huygens principle. This Huygens principle 
actually does not apply to the two-dimensional wave solution. 
 
For two-dimensional waves, the solution given in (9.144) shows that the solution is 
a circular area integration. Thus, we have only two scenarios. 
 
(i) Case I: 
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3-D space 

2-D space 

u

u

atat R at R

r

r

Sharp trailing edge 

No sharp trailing edge 

 1at at  (9.149) 
There is no wave signal overlapping the circular domain of integration, and thus the 
solution is zero. 
 
(ii) Case II: 
 1at at  (9.150) 
The integration in (9.144) is conducted on the whole circular area instead of on the 
spherical surface in the three-dimensional case in (9.135). Therefore, there is 
always a tail of the solution in the two-dimensional case. Hence, the Huygens 
principle does not apply to the two-dimensional case. 
 
 

 
 
 
 

 
 

 
 
 

 
 

Figure 9.14 Wave solution in 2-D and 3-D space according to 2-D and 3-D Poisson’s formula 
 
The existence of tails in the two-dimensional solution can also be seen in (9.102). 
In particular, the solution expressed in terms of an infinite integration is never zero 
even though the region of disturbance is passed. Huygens principle has a significant 
impact in our daily lives. Luckily, we live in a three-dimensional world, in which 
we can hear a clear voice without infinite echoes and ripples when someone speaks 
to you. The sound wave in three-dimensional space dies off instantly after it 
simulates our ears. Imagine that an animal living in a two-dimensional world will 
never be able to hear a clear voice. There are always infinite echoes flying around 
in the two-dimensional flatland world. Sound sources initiated at different times 
will all mix up. The surface waves of the sea can be viewed as a two-dimensional 
domain, and you never see a perfectly calm sea surface. 
 More generally, the Huygens principle is true only for odd dimensions (e.g., 
3,5,7,..., except for 1-D) and is false for all even dimensions (e.g., 2,4,6,...).  

9.2.9 n-Dimensional Waves 

In this section, we will extend the analysis of waves in n-dimensional space. In 
particular, the wave equation reads as 
 

1 1 2 2

2 ( ... )
n nx x x x x x tta  (9.151) 

This distance in n-dimensional space can be defined as 
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 2 2 2 2
1 2

1

...
n

n i i k k
i

r x x x x x x x  (9.152) 

Let us consider the case of symmetric radial waves such that  = (r,t) (i.e., there is 
no angular dependence of the wave function . 
 Differentiation of r with respect to any arbitrary variable xi gives  

 2 2 2 1/2
1 2 2 2 2 1/2

1 2

1 1( ... ) 2
2 ( ... )

i
n i

i i n

xr x x x x
x x rx x x

 (9.153) 

Using tensor notation and the chain rule, we have the following identities  

 11, ... 1 ... 1i i
ij ii nn

j i

x x
n

x x
 (9.154) 

 i

i i

xr
x r x r r

 (9.155) 

 
2

i i
i

i

x xr rx r
x r r

 (9.156) 

Using these identities, the Laplacian in n-dimensional becomes 

 

2

2

2

2

2

1 1( ) ( ) ( )

1 1( )

1

i i
i

i i i i i

x x rx
x x x r r x r r r r r x

n
r r r rr

n
r rr

 (9.157) 

Consequently, the n-dimensional wave equation for radial waves becomes 

 
2 2

1
2 2 2

1 1 [ ]nn r
r r r ra t r

 (9.158) 

This n-dimensional wave is also known as the Euler-Poisson-Darboux equation. Now, 
we look at some special cases: 
Special case: n = 1 

 
2 2

2 2 2
1
a t r

 (9.159) 

The solution obtained from the method of characteristics is 
 ( ) ( )f r at g r at  (9.160) 
Special case: n = 3 

 
2 2

2 2 2
1 2

r ra t r
 (9.161) 

It is straightforward to prove that it can be written as (compare Section 9.2.5) 

 
2 2

2 2 2
1 ( ) ( )r r
a t r

 (9.162) 

Again, the solution obtained from the method of characteristics is 
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 1 1( ) ( )f r at g r at
r r

 (9.163) 

The first term on the right of (9.162) is an expanding wave whereas the second term 
on the right of (9.163) is a contracting wave. Therefore 3-D wave decay is 

 1
r

 (9.164) 

Special case: n = 2 

 
2 2

2 2 2
1 1

r ra t r
 (9.165) 

This is the most difficult part, compared to the cases of 1-D and 3-D. The solution has 
been found in terms of Hankel functions in (9.90).  
 To give insight to the 2-D wave, we consider an approximate solution for the 2-
D wave.  In particular, we first consider the following identity 

 

2

2

2

3/2 2

2

3/2 2

2

3/2 2

2

3/2 2 2

1 ( ) 1 1
2

1 1 1 1 1( )
2 2 2 2

1 1
4

1 1( )
4

1 1( )
4

r r
r rr r r r

r
r rr r r r r

r
rr r r r

r
r rr r r

r
r r a t

 (9.166) 

Using this identity, the 2-D wave can be expressed as 

 
2 2

2 2 2 3/2
1 ( ) ( )

4
r r

a t r r
 (9.167) 

This cannot be solved easily as in the 1-D or 3-D case. However, for r  , we 
have 

 
2 2

2 2 2
1 ( ) ( )r r
a t r

 (9.168) 

 1 1( ) ( )f r at g r at
r r

 (9.169) 

Therefore, asymptotically the two-dimensional wave will behave as 

 1
r

 (9.170) 

This result of course agrees with the asymptotic solution for the two-dimensional 
waves given in Section 9.2.3 (see (9.96)). 
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9.2.10 Wavefront Condition 

In this section, we will consider the wavefront condition. Recall a wave equation of 
the following form: 

 
2

2 2
2
u a u

t
 (9.171) 

Consider the case of harmonic waves such that 
 i tu e  (9.172) 
Substitution of (9.171) into (9.170) leads to the following Helmholtz equation: 
 2 2 0k  (9.173) 
where 

 k
a

 (9.174) 

Next, we look for a plane wave solution of the form: 
 ( ) ie k xx  (9.175) 
Combining (9.171) and (9.174) gives the solution form as 
 ( , ) i i tu t e k xx  (9.176) 
Since the wave type of the solution consists of a jump across the wavefront and at 
the wavefront the solution u is a constant, thus we have the following condition on 
the wavefront: 
 1t Ck x  (9.177) 
where C1 is a constant. 
 On the other hand, the wavefront can also be expressed generally as 
 ( , ) 0F tx  (9.178) 
Taking the total differential of (9.177), we get 

 ( , ) 0FdF t F d dt
t

x x  (9.179) 

Since there is no change of F along the wavefront, the kinetics compatibility 
condition gives 

 0d FF
dt t
x  (9.180) 

The gradient of the wavefront surface F is normal to the surface, or mathematically 
it requires 
 F F n  (9.181) 
where n is the unit normal to the wavefront F as shown in Figure 9.15. The velocity 
of the wavefront is defined as 

 d
dt
xv  (9.182) 

The normal propagating speed of the wavefront surface is 
 
 nv n v  (9.183) 
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n v

( , ) 0F tx

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.15 Moving wavefront with unit normal n  
 
Substitution of (9.180), (9.181), and (9.182) into (9.179) gives 

 0n
FF
t

v  (9.184) 

Comparison of (9.176) and (9.178) gives the wave number and frequency as 

 F kk ,  F
t

 (9.185) 

From (9.183) and (9.184), the normal component of the moving wavefront is then 

 /n
F F a
t k

v  (9.186) 

Therefore, the wavefront is moving at the wave speed of the differential equation. 

9.3 NONHOMOGENEOUS WAVE EQUATION 

We now consider the case of the nonhomogeneous wave equation. We have 
demonstrated in Chapter 2 that the nonhomogeneous wave equation appears 
naturally in the solution of the Maxwell equation as well as in the dynamic problem 
of elastic solids subject to body force. 
 The problem can be posed as: 

 
2

2 2
2 ( , , , )u a u f x y z t

t
 (9.187) 

 0
0

( , , ), ( , , )t
t

uu x y z x y z
t

 (9.188) 

By the principle of superposition, the problem can be decomposed into two 
associated problems. 
 
Problem I: 

 
2

2 2
2
u a u

t
 (9.189) 
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 0
0

( , , ), ( , , )t
t

uu x y z x y z
t

 (9.190) 

Problem II: 

 
2

2 2
2 ( , , , )u a u f x y z t

t
 (9.191) 

 0
0

0, 0t
t

uu
t

 (9.192) 

 
The solution of Problem I has been given by Poisson’s formula in Section 9.2.6.  
 The solution of Problem II can be found again by Poisson’s formula if a 
proper change of variables is introduced. In particular, we use the Duhamel integral 
as: 

 
0

( , , , ) ( , , , ; )
t

u x y z t w x y z t d  (9.193) 

Application of the Leibniz rule of differentiation gives 

  
0

( , , , ; ) ( , , ,0; )
tu w x y z t d w x y z t

t t
 (9.194) 

This can be simplified by setting an initial condition for w as: 
 ( , , ,0; ) 0w x y z t  (9.195) 
Differentiation of (9.193) again gives 

 
2 2

2 20
( , , , ; ) ( , , ,0; )

tu w wx y z t d x y z t
tt t

 (9.196) 

Taking the Laplacian of (9.192), we get 

 2 2

0
( , , , )

t
u x y z t wd  (9.197) 

Substitution of (9.195) and (9.196) into (9.190) results in 

 
2

2 2
20

( ) 0
t w a w d

t
, 

0
0

t

w
t

 (9.198) 

Therefore, the governing equation for w becomes 

 
2

2 2
2
w a w

t
 (9.199) 

 0
0

0, ( , , , )t
t

ww f x y z t
t

 (9.200) 

The solution of w is clearly a special case of Poisson’s formula that we considered 
in Section 9.2.6. Thus, the solution for w is readily obtained by using Poisson’s 
formula as: 

 
( )

2
1 ( , , , )( , , , ; )

4 a tS

fw x y z t dS
ta

 (9.201) 

Substitution of (9.200) into (9.192) results in the solution of Problem II as: 
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( )

2 0

1 ( , , , )( , , , )
4 a t

t

S

fu x y z t d dS
ta

 (9.202) 

Finally, the solution of the problem is obtained by combining (9.135) and (9.201) 
as 

 

( )
2 0

1 ( , , ) ( , , )( , , , )
4

1 ( , , , )
4

at at

a t

S S

t

S

u t x y z dS dS
a t at at

fd dS
ta

 (9.203) 

The solution resulting from the nonhomogeneous term can be rewritten slightly by 
introducing the following change of variables: 

 ( ), dRR a t d
a

 (9.204) 

The solution of Problem II becomes 

 

0

2

2 0

2

1 ( , , , / ) 1( , , , ) ( )
/4

1 ( , , , / )
4

1 ( , , , / )
4

R

R

R

II

at S

at

S

B

f t R au x y z t dS dR
R a aa

f t R a dSdR
Ra

f t R a dV
Ra

 (9.205) 

This solution can be regarded a retarded potential (e.g., Jackson, 1999). To see 
this, we recall the solution of Poisson’s equation in terms of the so-called 
Boussinesq potential. In mathematical terms, the Poisson equation is given as 
 2 ( ) ( )u r r  (9.206) 
The solution of this equation can be expressed as 

 1 ( )( )
4

u dV
R
rr  (9.207) 

where 1/R is the Boussinesq potential or Newtonian potential. Comparison of 
(9.204) and (9.206) shows that the solution in the wave equation is indeed a 
solution resulting from a potential but at a reduced time t R/a instead of at time t. 
If there is a time dependent solution at a point P(r) denoted by u(r, t) at time t, this 
solution at time t can only be dependent on a signal from an earlier time. The time 
required to arrive at point P(r) is R/a (recall that a is the wave speed in (9.186)).  
 Finally, the solution given in (9.202) can be expressed in terms of the 
retarded potential as 
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1 ( , , ) ( , , )( , , , )
4

1 ( , , , / )
4

at at

R

S S

B

u t x y z dS dS
a t at at

f t R a dV
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 (9.208) 
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9.4 HELMHOLTZ EQUATION 

In this section, we will consider the solution of the Helmholtz equation in spherical 
coordinates. According to classification discussed in Section 7.2.2, the Helmholtz 
equation is of the elliptic type. But as we discussed in an earlier chapter, Helmholtz 
is also known as the reduced wave equation. The Helmholtz equation is somewhat 
between the wave equation and the Laplace equation. In general, the Helmholtz 
equation can be expressed as 
 2 2 0u k u  (9.209) 
More specifically, in spherical coordinates we have 

 
2

2 2
2 2 2 22

1 1 1( ) (sin ) 0
sin sin

u u ur  k u
r rr r r

 (9.210) 

Applying the following change of variables, we obtain 
 ( ) ( ) ( )u R r  (9.211) 
Substitution of (9.210) into (9.209) gives 

  
2

2 2
2 2 2 22

1 ( ) (sin ) 0
sin sin

d du R d d Rr  k R
dr dr d dr r r

 (9.212) 

This equation can be rearranged as 
2

2 2 2 2 2 2
2

1 1 1[ ( ) (sin )]sin sin
sin

d dR d d dr r k  
R dr dr d d d

 

  (9.213) 
where  is a separation constant. The last part of (9.212) can be expressed as 

 
2

2
2 0d  

d
 (9.214) 

The solution of  is  
 cos sinA B  (9.215) 
There must be periodicity in  and this leads to  = m (m = 0,1,2,3,...). The first 
equation of (9.212) can be rearranged as 

 
2

2 2 2
2

1 1[ ( ) (sin ) ( 1)
sinsin

d dR d dr r k
R dr dr d d

 (9.216) 

where the separation constant is written as ( +1). Equation (9.215) leads to two 
ODEs: 

 2 2 2( ) [ ( 1)] 0d dRr r k R
dr dr

 (9.217) 

 
2

2
1 (sin ) [ ( 1) ] 0

sin sin
d d m

d d
 (9.218) 

For the differential equation of , we can introduce a change of variables 
 cosx  (9.219) 
Using the chain rule of differentiation, we get 

 21d d dx dx
d dx d dx

 (9.220) 
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With this result, we can rewrite (9.217) as 

 
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

1
d d mx x

dxdx x
 (9.221) 

The general solution is the Associated Legendre functions: 
 (cos ) (cos )m mEP FQ  (9.222) 
For solid spheres, we must have boundedness at  = 0 and  and this leads to F = 0 
and  = n (where n = 0,1,2,3...).  
 Equation (9.216) can be reduced to a standard ODE by using the following 
substitution: 
 1/2R r V  (9.223) 

 
2

2 2 2
2

1[ ( 1) ] 0
4

d V dVr r r k n n V
drdr

 (9.224) 

This can further be rewritten as: 

 
2

2 2 2 2
2 [ ( 1/ 2) ] 0d V dVr r r k n V

drdr
 (9.225) 

This is the Bessel equation and the solution for v is 
 1/2 1/2( ) ( )n nV CJ kr DY kr  (9.226) 
Finally, combining all these results the general solution for Helmholtz equation in 
spherical coordinates is: 
      1/2

1/2 1/2cos sin ( ) ( ) (cos )m
n n nu r A m B m CJ kr DY kr P  (9.227) 

This can be shown to be the same as the one given in Section 7.4.3 of Chapter 7. 
Actually, the Bessel function together with r 1/2 can be written as new functions 
called the spherical Bessel functions (Abramowitz and Stegun, 1964): 

       1/2( ) ( )
2n nj kr J kr

kr
 (9.228) 

       1/2( ) ( )
2n ny kr Y kr

kr
 (9.229) 

which are called spherical Bessel functions of the first kind and second kind, 
respectively. In terms of these new functions, the solution of (9.209) can be 
expressed as: 
 cos sin ( ) ( ) (cos )m

n n nu A m B m C j kr Dy kr P  (9.230) 

9.5 TELEGRAPH EQUATION  

In this section, the telegraph equation is considered. First, starting from the 
Maxwell equations, we derive the telegraph equation. The hyperbolic equation is 
then transformed to the canonical form before a proper change of variables is 
applied. Eventually, it is shown that the solution can be expressed in terms of the 
Bessel function. 
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9.5.1 Formulation 

Recall from Chapter 2 that the Maxwell equations can be written as: 

 
, 0,

, ( )J +
t t

 (9.231) 

where B and E are the magnetic field vector and electric field vector. In addition,  
is the permittivity of the material,  is the permeability of the material, and  is the 
charge density. Let us introduce a constitutive relation for the conduction part of 
the electric current J: 
 J  (9.232) 
where  is the electric conductivity. Note that  = 0 for perfect dielectric. For the 
case of no electric charge , we can rewrite the Maxwell equation as: 

 
0, 0,

, ( )
t t

+
 (9.233) 

On the right hand side of the fourth equation of (9.232), the general current density 
comprises two terms, the first being the conduction current density and the second 
being the displacement current density. Maxwell was the first to realize this 
decomposition.     
 Taking the curl of the third equation of (9.230) and taking the time derivative 
of the fourth equation of (9.230), we obtain 

 
2

2, ( )
t t t t

+  (9.234) 

Recall from (1.362) of Chapter 1 the following vector identity: 
 2( ) (E E) E  (9.235) 
Equating the two equations in (9.233) and applying the first equation of (9.232) 
and (9.234), we find  

 
2

2
2 tt

E  (9.236) 

This is Maxwell’s equation for the electric intensity vector E. Note that for a good 
conductor (   0), we have 

 2

t
E  (9.237) 

The Maxwell equation becomes a three-dimensional heat equation. For perfect 
dielectric (   0), we have 

 
2

2 2
2 c

t
E  (9.238) 

where c is the light speed. Thus, the Maxwell equation reduces to a three-
dimensional wave equation. 
 For the case of one-dimensional space, we have 
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2 2

2 2 tt x
 (9.239) 

where E becomes the scalar electric field for the 1-D case. This can be used to 
model the telegraph problem. 

9.5.2 Solution 

To solve (9.238), we first remove the first order derivative term by assuming 
 ( , ) ( , ) tx t W x t e  (9.240) 
Differentiation of (9.239) gives 

 t tE W e e W
t t

 (9.241) 

 
2 2

2
2 2 2t t tE W We e e W

tt t
 (9.242) 

 
2 2

2 2
tE W e

x x
 (9.243) 

Substitution of (9.240) to (9.242) into (9.238) leads to 

 
2 2

2 2 ( 2 ) ( )W W W W
tt x

 (9.244) 

To remove the first derivative term, we set 

 
2

 (9.245) 

Substitution of this value of  into (9.243) gives 

 
2 2

2
2 2

1 ( )
2

W W W
t x

 (9.246) 

To put this into the standard hyperbolic form, we can absorb 1/( ) of the first term 
on the right to give 

 
2 2

2
2 2 ( )

2
W W W
t s

 (9.247) 

where 
 s x  (9.248) 
Applying the standard change of variables for the hyperbolic equation, we 
introduce 
 ,s t s t  (9.249) 
Or, equivalently, we can write 

 
1 1( ), ( )
2 2

s t  (9.250) 

Using this change of variables, we get  
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2 2 2 2

2 2 22W W W W
t

 (9.251) 

 
2 2 2 2

2 2 22W W W W
s

 (9.252) 

Therefore, the canonical form (9.245) becomes 

 
2

2( ) 0
4

W W  (9.253) 

One major observation that we can make on (9.252) is that the differential equation 
is symmetric with respect to the two variables  and . This observation suggests 
the following single variable 
 0 0( )( )  (9.254) 
where 
 0 0 0 0 0 0,x t x t  (9.255) 
with x0 and t0  are the initial point and time that telegraph signals were sent. In terms 
of this new variable, we have  

 
2

2 0d W dW cW
dd

 (9.256) 

where 

 
2

4
c  (9.257) 

This is a second order ODE with a non-constant coefficient. It can be transformed 
into a Bessel equation by introducing 
 4c  (9.258) 
Differentiation of (9.257) gives 

 d c
d

 (9.259) 

Using the chain rule, we get 

 dW c dW
d d

 (9.260) 

 
2 2

2 2
1

2
d W c dW c d W

dd d
 (9.261) 

Substitution of (9.259) and (9.260) into (9.255) gives 

 
2

2 2
2 0d W dW W

dd
 (9.262) 

This is the Bessel equation of zero order. The electric field must be finite at the 
starting point. Thus, the solution becomes 

 2 2 2
0 0 0{ [ ( ) ( ) ]}

2
t

E AJ x x t t e  (9.263) 
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This is the solution for the telegraph equation. 

9.6 DIFFUSION EQUATION  

As discussed in Chapter 7, second order PDEs can be classified into hyperbolic, 
elliptic and parabolic. It has been shown in Chapter 7 that all parabolic PDE types 
can be converted to nonhomogeneous diffusion equations. The solution for the 
nonhomogeneous diffusion equation has been considered in Section 7.4.2. In this 
section, we focus on the homogeneous diffusion equation. 

9.6.1 Heat Conduction 

Consider the heat conduction problem of a 1-D bar of length L modelled by the 
diffusion equation:  

 
2

2
2 , 0 , 0u u x L t

tx
 (9.264) 

where u is the temperature field in the bar and 2 is the coefficient of diffusion. In 
fact, this is one of the very first PDEs considered by scientists and mathematicians. 
We will derive this equation from the fundamental principle of heat conduction, or 
the so-called Fourier’s law of heat conduction. According to the Fourier law of heat 
conduction, the heat flow at any cross section can be estimated by the temperature 
gradient at the section:   

 
0

( , ) ( , )( , ) lim
x

u x x t u x t uH x t A A
x x

 (9.265) 

where  is the coefficient of thermal conductivity and the negative sign indicates 
the decreasing nature of temperature along the direction of diffusion. The 
temperature change in this incremental element can be estimated as  

 1 Q t Q tu
s m s A x

 (9.266) 

where s is the specific heat of the material,  is the density of the bar, A is the 
cross-section area of the bar, m is the mass of this segment of cross-section, and 

t is the change in time. As illustrated in Figure 9.16, the net heat flow rate Q is 
related to H as: 

( , ) ( , ) ( , ) ( , ) ( )x x
uQ H x t H x x t Au x x t Au x t A x

x x
 (9.267) 

 
 
 
 
 
 
 
 

Figure 9.16 Fourier law of heat conduction   
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Substitution of (9.266) into (9.265) gives 

 ( )u us A A
t x x

 (9.268) 

In fact, the formulation of this relates to the well-known Sturm-Liouville problem 
of eigenfunction expansion (see discussion in the next chapter on eigenfunction 
expansion). If the bar is prismatic or uniform in cross-section, we find 

 
2

2
2

u u
t x

 (9.269) 

where the thermal diffusivity is defined as  

 2

s
 (9.270) 

This completes the proof of the diffusion equation. In fact, diffusion of pollutants 
or chemicals in fluids can also be modelled by a similar equation: 

 2 2u u
t

 (9.271) 

where the spatial derivative term is replaced by the Laplacian operator. 
 Let us assume the following separation of variables 
 ( ) ( )u X x T t  (9.272) 
Substitution of (9.271) into (9.268) leads to 
 2 X T X T  (9.273) 
By dividing through by XT, this equation can be simplified as  

 2
2

1X T
X T

 (9.274) 

Since X is only a function of x whereas T is only a function of t, the only possibility 
is that the left hand side and the right hand side are both constant. Note that we 
have assumed a negative value of this constant in the last part of (9.273). This 
choice is very important, and it is required by physical consideration of the 
problem. For initial boundary value problems with some initial non-uniform 
distribution of temperature along x and with conducting ends, we expect the 
temperature field is a function of time. More importantly, it must decay within 
time, and this fact leads to the choice of negative sign in (9.273).  
 The two ODEs that result from (9.268) are 
 2 0X X  (9.275) 
 2 2 0T T  (9.276) 
The solutions of these equations are readily obtained as: 
 sin cosX A x B x  (9.277) 

 
2 2tT ce  (9.278) 

It is now clear that the negative sign chosen in (9.273) indeed results in a decaying 
temperature field for the case of an imposing initial temperature field in a 
conducting bar. Thus, the general solution becomes 

 
2 2

( sin cos ) tA x B x e  (9.279) 
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The value of  must be determined by boundary condition. The following example 
illustrates the procedure for obtaining the eigenvalue of . For more comprehensive 
coverage of heat conduction problems, we refer to the classic book by Carslaw and 
Jaeger (1959).  
_________________________________________________________________ 
Example 9.3 Solve the following diffusion equation with prescribed boundary 
conditions: 
 2 , 0 , 0xx tu u x L t  (9.280) 
 (0, ) 0, ( , ) 0, 0u t u L t t  (9.281) 
 ( ,0) ( ), 0u x f x x L  (9.282) 
 
Solution:  Using the separation of variables given in (9.271), we have the 
formulation for X as  
 2 0X X  (9.283) 
 (0) ( ) 0, 0X X L t  (9.284) 
Substitution of (9.276) into the first equation of (9.280) gives 
 0B  (9.285) 
The second equation of (9.280) leads to 
 sin 0L  (9.286) 
That is, we require 
 L n  (9.287) 
Thus, there are infinite discrete eigenvalues  
 2 2 2/ , 1,2,3,n n L n  (9.288) 
The eigenfunction that corresponds to this eigenvalue is 
  ( ) sin / , 1,2,3,nX x n x L n  (9.289) 

Substitution of this eigenvalue into (9.277) gives 

 
2( / )n L t

n nT k e  (9.290) 
The fundamental solution is  

 
2( / )( , ) sin / , 1,2,3, ,n L t

nu x t e n x L n ,  (9.291) 

The general solution that can be used to fit any boundary condition can be 
expressed as: 

 
2( / )

1 1

( , ) ( , ) sin /n L t
n n n

n n

u x t c u x t c e n x L  (9.292) 

Application of the initial condition given in (9.281) results in 

 
1

( ,0) ( ) sin /n
n

u x f x c n x L  (9.293) 

Multiplying both sides of (9.292) by the sine function of argument m x/L and 
integrating it from 0 to L gives: 
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0 0

1

( )sin / sin / sin /
L L

n
n

f x m x L dx c m x L n x L dx  (9.294) 

Recall the following orthogonal property of circular functions (e.g., See Section 
10.5 for proof): 

 
0

0,
sin sin

/ 2,
L m nm x n x dx

L m nL L
 (9.295) 

In view of (9.294), we have 

 
0

2 ( )sin /
L

nc f x n x L dx
L

 (9.296) 

Combining (9.295) and (9.291) gives the final solution of the problem. 
_________________________________________________________________ 

9.6.2 Terzaghi 1-D Consolidation Theory  

In the 1-D consolidation theory in soil mechanics, Terzaghi derived the following 
diffusion equation: 

 
2

2 , 0 2 , 0e e
v

u u
c z d t

t z
 (9.297) 

where ue is the excess pore water pressure in the soil as a function of depth z and 
time t. The coefficient of consolidation cv is defined as: 

 v
w v

kc
m

 (9.298) 

where k, mv, and w are the coefficient of permeability in Darcy’s law (which has a 
similar physical meaning as the Fourier’s law in heat conduction), coefficient of 
volume compressibility, and unit weight of water. The excess pore water pressure is 
defined as the difference between the pore water pressure in the soil and the long 
term steady state pore water pressure at the same point (typically hydrostatic 
pressure): 
 ( , ) ( , )eu u x t u x  (9.299) 
The consolidation theory describes the process of driving water from the clay due 
to the non-zero excess pore water pressure. We now look at its derivation.  
 The flow velocity through the soil element shown in Figure 9.17 is governed 
by Darcy’s law as: 

 e
z z

w

uh kv ki k
z z

 (9.300) 

where k is the coefficient of permeability and is a function of soil type, iz is the 
hydraulic gradient in the z direction and is defined as total head loss per flow 
distance, and h is the total head in the soil (total energy measured in length). This  
is because the total head change is due to the change in pore water only. The 
continuity condition is 

 zv dVdxdydz
z dt

 (9.301) 
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Combining (9.299) and (9.300) we obtain 

 
2

2
e

v
w

uk dVdxdydz m dxdydz
dt tz

 (9.302) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.17 1-D consolidation theory of soil due to Terzaghi   
 
where mv is the coefficient of volume compressibility (a parameter indicating the 
compressibility of soil in the unit of inverse of stress). However, the increase of the 
effective stress ’ is due to the decrease in the excess pore pressure. In other 
words, the loading taken up temporarily by pore water pressure is transferred to the 
soil skeleton in terms of effective stress increment. Thus, we have 

 eu
t t

 (9.303) 

Consequently, substitution of (9.302) into (9.301) gives 

 
2

2
e e

w v

u uk
t m z

 (9.304) 

This is evidently equivalent to (9.296). 
 In an oedometer test in a soil laboratory, once a loading is suddenly applied 
to the clay of thickness 2d, an excess pore water pressure ui will build up at time 
zero. In this kind of test, porous stone is put at the bottom and the top of the clay so 
that drained conditions are created at the boundaries. Mathematically, the initial 
and boundary conditions are given as: 
 ( ,0) ( ), 0 2e iu z u z z d  (9.305) 
 (0, ) 0, (2 , ) 0, 0e eu t u d t t  (9.306) 
We see that the solution for head conduction obtained in the last section equally 
applies here with the following identifications: 
  2( , ) ( , ), 2 , , , ( ) ( )e v iu x t u z t L d c x z f x u z  (9.307) 
In addition, if we assume the initial excess pore water pressure is constant, we have 
 

2d dz
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u e

m d
 (9.308) 

where the time factor Tv is defined as  

 2
v

v
c t

T
d

 (9.309) 

In obtaining (9.308), we have used the following identity: 

 

2

0
sin 1 cos

2
2, odd
0, even

d n z dx n
d

n
n

 (2.310) 

This solution is found very useful in devising the root time method as well as the 
logarithmic time method in estimating the coefficient of consolidation cv defined in 
(9.297) in the laboratory.   

9.6.3 Living Underground 

One of the main reasons to live underground is that rock and soil can act as a 
thermal insulator for underground structures. Due to seasonal changes of 
temperature, the ground surface is subject to periodic heating and cooling. The 
problem can be formulated as heat diffusion for temperature field u as: 
 t zzu u  (9.311) 
 ( ,0) cosu t a t  (9.312) 
The circular frequency for a yearly cycle is 

 7 12 2.0 10
365.5 24 60 60

s  (9.313) 

The temperature field must decay with the depth as  
 ( , ) 0,u t z z  (9.314) 
To solve the problem efficiently, we can rewrite the boundary condition as 
 ( ,0) , lim ( , ) 0i t

z
u t ae u t z  (9.315) 

We seek a solution in the form: 
 ( , ) ( ) i tu t z v z e  (9.316) 
Substitution of (9.315) into (9.310) gives the following ODE for v  
 0v i v  (9.317) 
 (0) , lim ( ) 0

z
v a v z . (9.318) 

The two independent solutions are 
 / /

1 1( ) i z i zv z C e C e . (9.319) 
We note by Euler’s formula that 

 2
i

i e ,  (9.320) 
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Underground structure 

( ,0)u t

t

Z

z

thus, we have 

 4 1cos sin (1 )
4 4 2

i
i e i i . (9.321) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.18 Temperature variations in underground structure due to seasonal temperature 
change on the ground surface 

 
Substitution of (9.320) into (9.318) gives 
 /(2 ) (1 ) /(2 ) (1 )

1 1( ) i z i zv z C e C e   (9.322) 
Applying the boundary and decay conditions to (9.321) gives 
 /(2 ) (1 )( ) i zv z ae   (9.323) 
Back substitution of (9.322) into (9.315) gives 
 /(2 ) ( /(2 ) )( , ) z i t zu t z ae e   (9.324) 
For the boundary condition given in (9.311), we can take the real part of the 
solution given in (9.323) to give 
 /(2 )( , ) cos[ / (2 ) ]zu t z ae t z   (9.325) 
where the phase lag is 
 / (2 )z   (9.326) 
For the case that the phase lag is an integer multiple of , the temperature at the 
ground will be completely out of phase with that of the point of consideration. The 
first out-of-phase nodal point underneath the ground is at the depth 
 2 /Z   (9.327) 
For soil underneath the ground, a typical value of heat conduction is  
 6 210 /m s   (9.328) 
Substitution of (9.327) and (9.312) into (9.326) gives 
 9.9Z m   (9.329) 
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and at this depth the surface value will decay by a factor of  
 0.043214e   (9.330) 
In Hong Kong, the maximum temperature is about 34 C and the lowest temperature 
is about 7 C (or a  13.5 C). This gives a maximum temperature variation of about 
1.167 C at a depth of 9.9 m. In conclusion, we find that at a depth of about 10 m 
below the ground, the seasonal year-round temperature variation is from 19.9 C to 
21.1 C. This makes the underground structure ideal for human usage in terms of 
the roughly constant temperature environment. It also provides an ideal condition 
for storage of goods and supplies. In fact, rock caverns and subsurface structures 
have been used for thousands of years in countries near the Arctic Circle, like 
Finland and Sweden. This provides a scientific judgment for using underground 
structures.     

9.7 LAPLACE EQUATION 

The Laplace equation is one of the very first second order PDEs studied 
extensively by mathematicians. Distribution of electrostatic potential, streamline 
and potential function of incompressible potential flow of fluid, deflection of 
membranes, and torsion of prismatic bars are phenomena governed by the Laplace 
equation. It was named after French mathematician Laplace. It is defined as     
 2 0u   (9.331) 
where the Laplacian differential operator in 2-D and 3-D Cartesian coordinates are 
defined as: 

 
2 2 2 2 2

2 2
2 2 2 2 2,u u u u uu u

x y x y z
  (9.332) 

Let us derive the Laplace equation from the seepage problem from a soil mechanics 
point of view here. In particular, consider an incompressible potential flow in 2-D 
space as shown in Figure 9.19. The net inflow to the element is   
 x zv dydz v dxdy   (9.333) 
The net outflow from the element is   

 ( ) ( )x z
x z

v v
v dx dydz v dz dxdy

x z
  (9.334) 

Subtracting the outflow from the inflow, we have 

 0x zv v
x z

  (9.335) 

More generally, we can recast this continuity equation as 
 0v   (9.336) 
Using Darcy’s law, we have 

 x x x x
hv k i k
x x z

  (9.337) 

 z z z z
hv k i k
z z x

  (9.338) 
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where the coefficient of permeability along the x and z directions are defined as kx 
and kz, and hydraulic gradients along the x and z directions are ix and iz. Darcy’s 
law has been discussed in the last section when we discussed Terzaghi’s theory of 
1-D soil consolidation. There are two additional functions that we define in (9.336) 
and (9.337). The first one is the potential function , and the second one is the 
stream function . If we assume isotropic flow (i.e., the coefficients of permeability 
along the x- and z-directions are the same), we can integrate both (9.336) and 
(9.337) to get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.19 Continuity of fluid flow 
 
 ( , ) ( , )x z kh x z C   (9.339) 
We can see that the contour plot of the potential function  is similar to that of total 
head or total energy. In seepage theory, they are referred as the equi-potential lines 
of the flow. If we substitute the definition of  given in (9.336) and (9.337) into 
(9.334), we obtain 

 
2 2

2 2 0
x z

  (9.340) 

Therefore, the flow potential function satisfies the Laplace equation. If the flow is 
irrotational, we have 
 0v   (9.341) 
This implies that there is no vorticity in the fluid and physically also implies there 
is no viscosity effect in the fluid. For the present 2-D case shown in Figure 9.19, we 
have the irrotational condition as: 

 0xz vv
x z

  (9.342) 

If we substitute the definition of  given in (9.336) and (9.337) into (9.341), we 
obtain 

 
2 2

2 2 0
x z

  (9.343) 

zv
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v
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This is again the Laplace equation. Thus, both the potential function and stream 
function satisfy the Laplace equation. Physically the stream function indicates the 
flow line in the fluid. To see this, we can take the total differential of the function 
equal to a constant value, i.e.,  = c: 

 0z xd dx dz v dx v dz
x z

  (9.344) 

The direction of this stream function plot is 

 
1

z

x

vdz
dx v

  (9.345) 

This shows that the slope of the plots of  = c always equals the flow direction, 
regardless of the value of c. On the other hand, to study of the slope of plots of  = 
c we can consider the total differential of  = c: 

 0x zd dx dz v dx v dz
x z

  (9.346) 

Rearranging this equation gives 

 
1

x

z

vdz
dx v

  (9.347) 

For two straight lines intercepting at a point, the angle of interception can be 
calculated as 

 2 1

1 2
tan

1
m m

m m
  (9.348) 

where m1 and m2 are the slopes of the two lines. If the two lines are perpendicular, 
we have  = /2 or 

  1
2

1m
m

  (9.349) 

Comparing the slope of stream function given in (9.344) and slope of the potential 
function given in (9.346), and in view of the result given in (9.348), we can 
conclude that plots of the potential function and stream function are always 
perpendicular. 
 Referring to Figure 9.20, we can also see that the value between different plots 
of stream function equal to the flow rate between these streamlines: 

2 2 2 2

1 1 1 1

2 1( ) ( )s z xq v dn v dx v dz dx dz d
x z

 (9.350) 

Considering the flow continuity between the two flowlines in element ABCD given 
in Figure 9.20, we have 

 sq v n n
s

 (9.351) 

The last part of (9.350) is a consequence of the definition of  given in (9.336) and 
(9.337). In particular, we can replace x or z in these equations by s and 
subsequently vx or vz by vs. Replacing the incremental change in (9.350) by 
differentiation, we have 
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n s

 (9.352) 

This relation between  and  gives the final condition for the potential function 
and stream function. Based upon them, the flownet technique can be developed. 
The details are, however, out of the scope of the present section. 
 

 

 

 

 
 
 
 
 
 

Figure 9.20 Flownet form by potential function and stream function in potential flow problems 

9.7.1 Dirichlet Problem 

This problem has been considered by many others (like Poisson, Green, and Gauss) 
long before German mathematician Dirichlet did. But because of Dirichlet’s 
contribution to the analysis of the problem, it was named after him. Dirichlet was a 
German mathematician, who was born to a French family in Germany. 
Mathematically, it is formulated as  
 2 0u   (9.353) 
 0 ,u u on S   (9.354) 
where S denotes the surface of the domain of the problem. It is also referred to as 
the first boundary value problem in potential theory. For vibrations of a string, it 
gives a fixed end condition. For equilibrium problems of soap film, the Dirichlet 
problem is like a closed wire loop with prescribed deflection of the soap film. This 
problem has been studied by many well-known mathematicians, including 
Poincare, Lyapunov, Gauss, Lord Kelvin, Weierstrass, Neumann, Wiener, 
Lebesgue, and Kellogg regarding its uniqueness and existence of the solution for 
different domains. In finite element formulation using calculus of variations, the 
Dirichlet boundary condition is normally referred to as the essential boundary 
condition (see Chapters 13 and 14). We will see in Section 9.7.8 that uniqueness of 
the solution of the Dirichlet problem can be guaranteed.  
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9.7.2 Neumann Problem 

Instead of imposing the unknown solution on the boundary as shown in (9.353), the 
Neumann problem prescribed the normal derivative of the unknown on the 
boundary. This formulation was named after German mathematician Carl Neumann 
(don’t confuse with Nobel Prize winner von Neumann): 
  2 0u   (9.355) 

 ,u g on S
n

  (9.356) 

It is also referred to as the second boundary value problem in potential theory. For 
example, for electrostatic problems with an insulating boundary, the Neumann 
problem is formulated. For acoustic problems, the Neumann boundary with g = 0 
corresponds to a solid wall. For vibrations of string, the Neumann boundary 
condition corresponds to a “freely rotating end.” For a nonhomogeneous Laplace 
equation or Poisson equation, we cannot arbitrarily impose the function g. There is 
a compatibility condition that g must satisfy. For the fluid flow problems, if there is 
an internal source (nonhomogeneous term in the PDE), then the outflow condition 
on the boundary (modelled by the Neumann boundary condition in (9.355)) must 
satisfy the continuity of the flow (i.e., fluid that comes in from the source must go 
out from the boundary). For the case of electrostatic problems, if there are internal 
charges (i.e., nonhomogeneous terms in the PDE), the net electric flux felt on the 
boundary as a whole must reflect the effect of the internal charges. For the case of 
heat flow, if there is an internal heat source, the total heat flux passing the boundary 
must equal that of the internal sources for conservation of energy. In finite element 
formulation using calculus of variations, the Neumann boundary condition 
corresponds to the natural boundary condition (see Chapters 13 and 14). 
 We will see in Section 9.7.8 that there is an integrability condition of the 
Neumann problem. 

9.7.3 Robin Problem 

Other than the Dirichlet or Neumann boundary condition, a more general type of 
boundary condition has been proposed. It is known as the Robin boundary 
condition or Robin problem. Many authors also simply refer to it as the third 
boundary condition (the first and second ones are referred to as Dirichlet and 
Neumann problems). Mathematically, it is formulated as  
  2 0u   (9.357) 

 ,uau b f on S
n

  (9.358) 

Note that the boundary condition involves both the unknown u and its normal 
derivative. For the special case a = 0, we recover the Neumann problem; and for 
the special case b = 0, we recover the Dirichlet problem. For a partially absorbing 
boundary, the Robin type of boundary condition can be used. For heat conduction 
problems, the Robin boundary condition corresponds to the heat conduction rate at 
the boundary being proportional to the temperature there. The problem is named 
after Gustave Robin, whose PhD advisor is the eminent mathematician Emil Picard 
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and his thesis committees consisted of Hermite and Darboux. However, according 
to Gustafson and Abe (1998a,b), Robin never used this type of boundary condition 
himself. Nevertheless, they thought that it was related to his PhD thesis on potential 
theory. In potential theory, both the single- and double-layer potential methods for 
solving boundary value problems in electrostatics are attributed to Robin. 
Gustafson and Abe (1998a) speculated that it was Bergman in 1948 who called the 
third boundary condition Robin’s boundary condition. But, it seems to be a mistake 
made by Bergman. 
 The solution form of the Laplace equation depends on the coordinate system 
that we employ. In general, we can use separation of variables to solve the Laplace 
equation. However, it is natural to ask whether the Laplace equation can always be 
solved by separation of variables. So far, it is known that the Laplace equation is 
separable in the following thirteen coordinate systems only: Cartesian, circular 
cylindrical, spherical, oblate spheroidal, prolate spheroidal, elliptic cylindrical, 
conical, paraboloidal, parabolic, parabolic cylindrical, ellipsoidal, bispherical, and 
toroidal. For most mechanics and engineering problems, Cartesian, circular 
cylindrical, and spherical coordinates are, however, found sufficient.    
 In particular, in Cartesian coordinate the general solutions are expressible in 
the product of circular functions and hyperbolic functions, in cylindrical 
coordinates the general solutions are expressible in the product of circular 
functions and Bessel functions, and in spherical coordinates the general solutions 
are expressible in the product of circular functions and Legendre polynomials. 
They are considered separately next. 

9.7.4 Spherical Coordinate 

In spherical coordinates, the Laplace equation can be expressed as (Chau, 2013): 

 
2

2 2
2 2 2 22

1 1 1( ) (sin ) 0
sin sin

u u uu r  
r rr r r

 (9.359) 

Applying the following separation of variables, we obtain 
 ( ) ( ) ( )u R r  (9.360) 
Similar to the discussion for the Helmholtz equation, this separation of variables 
leads to 

 
2

2 2 2
2

1 1 1[ ( ) (sin )]sin
sin

d dR d d dr  
R dr dr d d d

 (9.361) 

where  is a separation constant. The last part of (9.360) can be expressed as 

 
2

2
2 0d  

d
 (9.362) 

There must be periodicity in  leading to  = m (m = 0,1,2,3,...). The solution of  
is  
 cos sinA m B m  (9.363) 
The first part of (9.360) can be rearranged as 
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2

2
2

1 1( ) (sin ) ( 1)
sinsin

d dR d dr n n
R dr dr d d

 (9.364) 

where the separation constant is written as n (n+1) with n = 1,2,3... The reason for 
n being an integer has been given in Section 9.4 for the Helmholtz equation. 
Equation (9.214) leads to two ODEs, and the first one is: 

 
2

2
1 (sin ) [ ( 1) ] 0

sin sin
d d mn n

d d
 (9.365) 

For the differential equation of , we can introduce a change of variables of x = 
cos  and subsequently obtain the Associated Legendre equation: 

 
2 2

2
2 2(1 ) 2 [ ( 1) ] 0

1
d d mx x n n

dxdx x
 (9.366) 

The general solution is the Associated Legendre functions: 
 (cos )m

nEP  (9.367) 
Note that we have only retained the Associated Legendre polynomials of the first 
kind in (9.366) due to the boundedness of u at  = 0 and  (see Section 9.4). The 
second ODE resulting from (9.256) is  

 
2

2
2 2 ( 1) 0d R dRr r n n R

drdr
 (9.368) 

This ODE is of Euler type. Thus, we can use the standard technique for solving the 
Euler type equation and the solution is 
 1n nR Cr Dr  (9.369) 
If the domain includes the origin of the spherical coordinate, we must have D = 0 
due to boundedness. Finally, the general solution for solid spheres can be expressed 
as: 
 (cos ){ cos sin }n m

nu r P A m B m  (9.370) 
For the case of rotational symmetry, the general solution can be reduced to: 
 (cos )n

n nR A r P  (9.371) 
where Pn is Legendre polynomials of the first kind. 

9.7.5 Cylindrical Coordinate 

In cylindrical coordinate, the Laplace equation can be written as: 

 
2 2 2 2 2 2

2
2 2 2 2 2 2 2

1 1 0u u u u u u uu
r rx y z r r z

  (9.372) 

To prove this, we can use the following change of variables 

 2 2 2cos , sin , , tan yx r y r r x y
x

  (9.373) 

Applying the chain rule of partial differentiation we have 

 sincosu u r u u u
x r x x r r

  (9.374) 
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 cossinu u r u u u
y r y y r r

  (9.375) 

Reapplying the chain rule of partial differentiation again to (9.373) and (9.374), we 
obtain 

2 2 2 2 2 2
2

2 2 2 2 2
2sin cos sin sin 2sin coscosu u u u u u

r r r rx r r r
 

  (9.376) 
2 2 2 2 2 2

2
2 2 2 2 2

2sin cos cos cos 2sin cossinu u u u u u
r r r ry r r r

 

  (9.377) 
Adding (9.375) and (9.376), we finally get 

 
2 2 2

2
2 2 2 2

1 1 0u u u uu
r rr r z

  (9.378) 

By separation of variables, the solution can be assumed as: 
 ( ) ( ) ( )u R r Z z   (9.379) 
Substitution of (9.378) into (9.377) gives 

 
2 2 2

2
2 2 2 2

1 1 1 1 1( )d R dR d d Z
R r dr Zdr r d dz

  (9.380) 

where  is a constant of separation of variables. We introduce an additional 
constant as:  

 
2

2
2

1 d
d

  (9.381) 

where  is also a constant of separation of variables. Consequently, we have the 
following ODEs: 

 
2

2
2 0d

d
  (9.382) 

 
2

2
2 0d Z Z

dz
  (9.383) 

 
2 2

2
2 2

1 ( ) 0d R dR R
r drdr r

  (9.384) 

Note that the periodicity of  requires that  = m (i.e., m = 1,2,3,...). 
 The corresponding solutions for these ODEs are 
 cos sinA m B m   (9.385) 
 cosh sinhZ C z D z   (9.386) 
 ( ) ( )m mR EJ r FY r   (9.387) 
where  is another constant of separation of variables, and Jm and Ym are Bessel 
functions of the first and second kinds. Finally, the solution becomes 
     { cos sin }{ cosh sinh }{ ( ) ( )}m mu A m B m C z D z EJ r FY r   (9.388) 
In axisymmetric solid cylinder problems, we must set F to zero because Ym   as 
r  0. Thus, the solution becomes 
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   0 ( ){ cosh sinh }u J r C z D z   (9.389) 
The value of  needs to be determined by boundary conditions. For the case of 
homogeneous boundary condition, the problem becomes eigenvalue problem and  
becomes eigenvalue, which will be discrete but infinite in number. 

9.7.6 Poisson Integral  

In this section, we consider the case of a two-dimensional unit circular disk. The 
two-dimensional Laplace equation is 

 
2 2

2
2 2 2

1 1 0u u uu
r rr r

  (9.390) 

The boundary condition, condition of periodicity, and boundedness condition are 
respectively 
 (1, ) ( )u h   (9.391) 
 ( , 2 ) ( , )u r u r   (9.392) 
 

0
lim ( , ) finite
r

u r   (9.393) 

Again, application of separation of variables leads to 
 ( ) ( )u v r w   (9.394) 
Substitution of (9.393) into (9.389) results in 

 2
1 1" " 0v w v w vw
r r

  (9.395) 

Grouping functions of r and  onto different sides of (9.394) gives 

 
2

2" ' "r v rv w
v w

  (9.396) 

where  is a constant of separation of variables. This gives two ODEs: 

 
2

2 2
2 0d v dvr r v

drdr
  (9.397) 

 
2

2
2 0d w w

d
  (9.398) 

The solution of (9.397) is 
 cos sinw A B   (9.399) 
The condition of periodicity requires that 
 , 0,1,2,3,...n n   (9.400) 
which is the eigenvalue of the problem. Using this value of , (9.399) can be 
written as 

 
2

2 2
2 0d v dvr r n v

drdr
  (9.401) 

This is again recognized as the Euler type of ODE, and thus the solution becomes 
 n nv Cr Dr   (9.402) 
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However, at the center (r  0) v needs to be bounded as required by (9.392), and 
we have D = 0. For the special case that n = 0, we have 

 
2

2
2 0d v dvr r

drdr
  (9.403) 

For this special case, we can let  

 ( ) dvt r
dr

  (9.404) 

 0dtr t
dr

  (9.405) 

This is a separable first order ODE and direct integration gives 
 1 2lnt C r C   (9.406) 
However, due to boundedness we have to set C1  = 0. Finally, the solution can be 
expressed as: 

 0

1

( , ) ( cos sin )
2

n n
n n

n

a
u r a r n b r n   (9.407) 

Application of (9.390) gives 

 0

1

(1, ) ( cos sin ) ( )
2 n n

n

a
u a n b n h   (9.408) 

This is exactly the Fourier series expansion of h( ) and thus we have 

 1 ( )cosna h n d   (9.409) 

 1 ( )sinnb h n d   (9.410) 

Thus, (9.406) can be written as 

 1

1 cos( , ) ( ) ( ( )cos
2

sin ( )sin )

n

n
n

r nu r h d h n d

r n h n d

  (9.411) 

This can be further simplified as 

 
1

1 1( , ) ( ){ (cos cos sin sin )}
2

n

n

u r h r n n n n d   (9.412) 

Using the sum rule of cosine functions, (9.304) is reduced to 

 
1

1 1( , ) ( )[ cos ( )]
2

n

n

u r h r n d   (9.413) 

The bracket term in (9.412) can be summed exactly and this was done by Poisson. 
More specifically, the bracket term is 

 
1 1

1 1cos ( ) Re( )
2 2

n n

n n

r n z   (9.414) 
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where 
 { } [cos ( ) sin ( )]n n nz re r n i n   (9.415) 
Since we are considering a unit disk, we have  
 1z   (9.416) 
Applying Taylor series expansion, we find 

 2 3

1

(1 ...)
1

n

n

z z z z z z
z

  (9.417) 

With this summation formula, (9.413) is rewritten 

    
1

2

2 2

1 1 1cos ( ) Re( ) Re[ ]
2 2 1 2(1 )

(1 )(1 )(1 )Re[ ]
2 1 2 1

n

n

z zr n
z z

zz z

z z

  (9.418) 

Note that 
    2 2 2 2 21 [1 cos( )] sin ( ) 1 2 cos( )z r r r r   (9.419) 

    2 2z r   (9.420) 
Back substitution of these values into (9.413) and (9.412) gives 

    
2

2
1 1( , ) ( )[ ]

2 1 2 cos( )
ru r h d

r r
  (9.421) 

This is called the Poisson integral formula, and is a solution of the Dirichlet type of 
boundary value problem. This formula shows that the solution at any interior point 
is a weighted average of its boundary potentials. The weighting function is given in 
the square bracket of (9.420). In fact, for r  1  (with   0), the Poisson kernel 
behaves like a Dirac delta function (see Section 8.11) of ( ) as r  1 . Jesse 
Douglas’s celebrated paper in proving the existence of the minimal surface of soap 
film in the Plateau problem was based on the Poisson integral given in (9.420) (he 
was awarded the Fields medal because of this theory).   
 The physical meaning of this weighting function can be understood better by 
referring to Figures 9.21 and 9.22.  
 The denominator and numerator of the weighting functions are shown in 
Figure 9.21. In particular, the square root of the denominator of the weighting 
function is actually the distance between the observation point (r, ) and the 
boundary point at (1, ). The square root of the numerator of the weighting function 
is also shown in the figure as the vertical height of the right angle triangle with the 
horizontal side being r and the hypotenuse being 1. If we consider the boundary 
potential at point B1 with   , the denominator approaches its minimum. 
Consequently, the weighting function approaches its maximum. That is, the 
boundary point with the closest distance to (r, ) has the biggest effect on the 
solution. Conversely, for boundary point B2, the distance between the observation 
and boundary point is the farthest or the weighting function is the smallest. Figure 
9.22 illustrates the angular variation of the denominator and the weighting function 
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1r

( , )r

21 2 cos( )r r

1B

21 r

2B

(1, ) ( )u h

21 2 cos( )r r

2

2
1

1 2 cos( )
r

r r
Weighting function = 

versus  for  = 3 /4 and r = 0.6. It is clear that the minimum value of the 
denominator and the maximum weighting function occur at   = 3 /4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9.21 The weighting function for boundary potentials in Poisson integral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.22 The denominator and weighting function versus  for  =3 /4 and r = 0.6 
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9.7.7 Extremal Principle  

Physically, (9.420) has a very significant implication. Considering the solution at 
the center of the disk (r = 0) we have 

    1(0, ) ( )
2

u h d   (9.422) 

This shows that the value at the center of the disk is the average value of u on the 
boundary of the disk. For any non-constant function u, there cannot be a local 
maximum or a local minimum at any interior point of the unit circle. Physically, 
when a membrane is under equilibrium (Laplace equation is the governing equation 
for this kind of steady equilibrium type of problems), there cannot be any internal 
bump in the membrane. For problems of thermal equilibrium, the Poisson integral 
formula implies that a body can achieve its maximum and minimum temperature on 
the boundary of the domain only. Conversely, if a body contains a local maximum 
or minimum in its internal temperature, it could not be in thermal equilibrium. 
Although we interpret this extremal principle from the solution for a unit circular 
disk, it actually applies to equilibrium problems of domains other than circular 
shapes. Alternatively, for problems governed by the Laplace equation, conformal 
mapping can be applied to any non-circular domain (e.g., Section 3.13 of Chau, 
2013) and to map it to a unit circle. In this way, we can also apply the extremal 
principle to other domains. In the next section, we will show a different approach in 
proving the extremal principle. 

9.7.8 Properties of Harmonic Functions 

In this section, we recall some of our observations for harmonic functions: 
 
(i) Integrability of the Neumann problem: 
 
Recall the definition of the Neumann problem given in Section 9.7.2. Note that for 
a harmonic u and setting v = 1 in Green’s second identity (see (8.41)), we have 

    0u dS
n

  (9.423) 

Since the Laplace equation is for steady equilibrium problems, (9.422) implies that 
the fluid flow in and out of a control volume is the same in the case of potential 
flow, and the heat flow in and out of a volume is the same in the case of heat 
conduction. For a Neumann problem defined as: 

    2 0, ( , , )uu f x y z
n

,  (9.424) 

substitution of (9.423) into (9.422) gives the integrability of the Neumann problem 
as 
 ( , , ) 0f x y z dS   (9.425) 

 
(ii) Mean Value Theorem 
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Let us recall the integral formula from (8.52) and specify on the surface a a small 
sphere of radius a embracing the point M0 as: 

 0
1 1 1( ) [ ( ) ]

4 a

uu M u dS
n r r n

 (9.426) 

With the integrability given in (i), we have 

 1 1 0
a a

u udS dS
r n a n

 (9.427) 

where a is the radius of a small sphere around the point M0. On the other hand, note 
that 

 2
1 1 1( ) ( )

a a
n r r r a

 (9.428) 

Substitution of (9.426) and (9.427) into (9.425) leads to 

 0 2
1( )

4 a

u M udS
a

 (9.429) 

This result shows that the value of u at point M0 equals the mean value of u on the 
surface of the sphere embracing the point. This is the mean value theorem for 
harmonic functions. 
 
(iii) Extremal Principle 
 
We can further use the mean value theorem to show the extreme principle. Suppose 
that u reaches a maximum value at a point M1 inside the domain. Then, it must be 
larger than the average value on the surface of a sphere with an arbitrary radius R 
with point M1 as the center, because there must be some point within less than the 
maximum value at M1. That is,  

 12
1 ( )

4 RS
udS u M

R
 (9.430) 

However, the mean value theorem in (ii) shows that we must have 

 12
1 ( )

4 RS
udS u M

R
 (9.431) 

This is in contradiction with (9.429).  Therefore, we cannot have a maximum inside 
the domain. In other words, we can only have the maximum value on the boundary 
of the domain. Following a similar procedure, we can also show that the minimum 
can only occur on the boundary.  
 
(iv) Uniqueness of the Dirichlet problem 
 
Recall the definition of the Dirichlet problem defined in Section 9.7.1. Assume 
both u1 and u2 are solutions and they are distinct for the following Dirichlet 
boundary value problem for the Laplace equation: 
    2 0, ( , , )u u f x y z   (9.432) 
Consider the function defined as 
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2 2

2 20, 0u u
x y 2 2

2 20, 0u u
x y

No local extremum 

    1 2v u u   (9.433) 
Since both u1 and u2 are solutions of the Laplace equation, substitution of (9.432) 
into (9.431) shows that v is also a harmonic function and v is identically zero on the 
boundary. The maximum principle in (iii) shows instantly that the only possibility 
is that v is zero. Thus, u1 and u2 must be equal or the solution of the Dirichlet 
problem must be unique. 

9.8 PHYSICAL IMPLICATION OF LAPLACE EQUATION (SADDLE) 

Recall the Laplace equation for two-dimensional space 

    
2 2

2
2 2 0u uu

x y
  (9.434) 

Since the sum of two second-derivative terms is zero, one must be negative while 
the other one must be positive. Figure 9.23 shows that a circular domain in which 
both of the second derivatives in (9.433) are positive and both are negative, 
respectively. It is clear that there is a local minimum if both derivatives are 
positive, and there is a local maximum if both derivatives are negative. Therefore, 
as equilibrium solution in the forms shown in Figure 9.23 cannot satisfy the 
Laplace equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.23 The distribution of u for both derivatives are positive and negative respectively 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.24 The illustration of a saddle plot for u satisfying the Laplace equation 
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( , ) 0u x b

0

( , ) ( )u a y f y(0, ) 0u y

( ,0) 0u x a

b

2 2
2

2 2 0u uu
x y

  
Physically, for potential theory there is no maximum or minimum within the 
domain, or as expected from the extremal principle (see property (iii) in the last 
section) that maximum and minimum value can only appear on the boundary. 
Figure 9.24 illustrates a typical saddle plot of u satisfying the Laplace equation. 
The shape of the saddle also resembles a piece of potato chip. Note there is no 
maximum or minimum within the saddle in the circular domain. 

9.9 LAPLACE EQUATION IN RECTANGULAR DOMAIN 

9.9.1 Prescribed Function along y-axis    

In this section, we consider the boundary value problem of a rectangular domain 
governed by the Laplace equation. In particular, consider the case that a non-zero 
boundary condition is imposed on the side at  x = a only (see Figure 9.25)  

 

2 2
2

2 2 0, 0 , 0

( ,0) 0, ( , ) 0, 0
(0, ) 0, ( , ) ( ), 0

u uu x a y b
x y

u x u x b x a
u y u a y f y y b

  (9.435) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.25 Laplace equation for a rectangular domain with prescribed function on vertical side 

x = a 
 
This can be considered as a Dirichlet problem. Before we continue to solve this 
problem, it is instructive to note that for 2-D Cartesian coordinates our solution 
along the x- and y-axis will be either circular functions or hyperbolic functions (see 
below). It is well known from Fourier’s work related to heat conduction that any 
arbitrary function can be expanded in a Fourier series expansion in terms of sine 
and cosine, but never be expandable in hyperbolic sine and hyperbolic cosine. For 
the problem given in (9.434), in order to satisfy the boundary condition we clearly 
need to expand the given function f in the y-direction in the sine or cosine. Thus, it 
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is obvious that the fundamental solution in the y-axis must be sine and cosine, not 
hyperbolic functions. 
 Let us now consider the separation of variables: 
 ( , ) ( ) ( )u x y X x Y y   (9.436) 
Substitution of (9.435) into the Laplace equation given in (9.434) gives 
    0X Y X Y   (9.437) 
Dividing through (9.436) by XY, we get 

   X Y
X Y

  (9.438) 

Since we have assumed X is only a function, whereas Y is only a function of y, we 
must set both functions of x and y to a constant. We have picked a positive constant 

, and we will see that this leads to our desired functions of sine and cosine for Y. 
In particular, we have two ODEs resulting from (9.437): 
 0X X   (9.439) 
 0Y Y   (9.440) 
The homogeneous boundary conditions given in (9.434) leads to the corresponding 
boundary conditions for functions X and Y as 

    
(0, ) (0) ( ) 0, 0 (0) 0,
( ,0) ( ) (0) 0, 0 (0) 0,
( , ) ( ) ( ) 0, 0 ( ) 0.

u y X Y y y b X
u x X x Y x a Y
u x b X x Y b x a Y b

  (9.441) 

Note that we need not consider the nonhomogeneous boundary condition given in 
(9.434) at this moment. The governing equation and boundary conditions for 
function Y are 
  0, (0) 0, ( ) 0Y Y Y Y b   (9.442) 
As expected, the solution for Y is 
 1 2sin cosY c y c y   (9.443) 
The first boundary condition given in (9.441) leads to  
 2(0) 0Y c   (9.444) 
The second boundary condition given in (9.441) leads to  
 1( ) sin 0Y b c b   (9.445) 
Since we cannot set c1 to zero, we must have the sine function be zero and this 
leads to 
 b n   (9.446) 
This is the eigenvalue of the homogeneous boundary value problem. Thus, the 
eigenvalues and eigenfunctions are 
 2 2 2/ , ( ) sin / , 1,2,3,n nn b Y y n y b n   (9.447) 
For the function X, we have  
 0, (0) 0X X X   (9.448) 
The solution of (9.447) is expressible in terms of hyperbolic functions: 
 1 2( ) cosh / sinh /X x k n x b k n x b   (9.449) 
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Note that we have already substituted the eigenvalues of  found in (9.446) into 
(9.448). The boundary condition given in (9.447) requires k1 to be zero. Thus, we 
have   
 2( ) sinh /X x k n x b   (9.450) 
We now combine solutions in (9.446) and (9.449) to get the fundamental solution 
 ( , ) sinh / sin / , 1,2,3, ,nu x y n x b n y b n ,   (9.451) 
The general solution of the problem is the sum of all these eigenfunctions with 
unknown constants: 

 
1 1

( , ) ( , ) sinh / sin /n n n
n n

u x y c u x y c n x b n y b   (9.452) 

We are now ready to consider the nonhomogeneous boundary condition given in 
(9.434). More specifically, setting x = a in (9.451) gives 

 
1

( , ) ( ) sinh / sin /n
n

u a y f y c n a b n y b   (9.453) 

Multiplying both sides by sin(m y/b) and integrating from 0 to b, we get 

0 0
1

( )sin / sinh / sin / sin /
b b

n
n

f y m y b dy c n a b m y b n y b dy   

  (9.454) 
In view of the orthogonality for the sine given in (9.294), we have 

 2

0 0
( )sin / sinh sin / sinh

2

b b
n n

m a m a bf y n y b dy c n y b dy c
b b

  

  (9.455) 
Finally, we find the unknown constant cn in terms of the given function f on the 
boundary as: 

 
1

0

2 sinh ( )sin /
b

n
n ac f y n y b dy

b b
  (9.456) 

The final solution is  

 
0

1

( )sin
2( , ) sinh sin

sinh

b

n

nf d
n x n ybu x y

n ab b b
b

  (9.457) 

We know that the hyperbolic sine goes to infinity as n approaches infinity. For 
large n, we have the following ratio: 

 
/

( )/
/

sinh /
sinh /

n x b
n a x b

n a b

n x b e e
n a b e

  (9.458) 

We can see that the sum converges very fast as long as (a x) is not too small. 
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( , ) ( )u x b g x

0

( , ) 0u a y(0, ) 0u y

( ,0) 0u x a

b

2 2
2

2 2 0u uu
x y

9.9.2 Prescribed Function along x-axis    

In this section, we consider the boundary value problem of a rectangular domain 
governed by the Laplace equation  with  the non-zero boundary condition being on 
side  y = b (see Figure 9.26):  

 

2 2
2

2 2 0, 0 , 0

( ,0) 0, ( , ) ( ), 0
(0, ) 0, ( , ) 0, 0

u uu x a y b
x y

u x u x b g x x a
u y u a y y b

  (9.459) 

Recall from our discussion in the last section that we need to expand the given 
function g(x) in the Fourier series expansion of sine or cosine, we have to expand X 
as sine or cosine functions.  
  Following the analysis in the last section, we assume separation of variables 
as: 
 ( , ) ( ) ( )u x y X x Y y   (9.460) 
Substitution of (9.459) into the Laplace equation given in (9.458) gives 
    0X Y X Y   (9.461) 
Dividing through (9.460) by XY, we get 

   X Y
X Y

  (9.462) 

 

 

 

 

Figure 9.26 Laplace equation for a rectangular domain with a prescribed function on the 
horizontal side 

 
Note that we have to use  instead of +  as the constant of separation of variables 
for the present problem. Consequently, the PDE results in two ODEs: 
 0X X   (9.463) 
 0Y Y   (9.464) 
The homogeneous boundary conditions given in (9.458) leads to the corresponding 
boundary conditions for functions X and Y as 
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(0, ) (0) ( ) 0, 0 (0) 0,
( , ) ( ) ( ) 0, 0 ( ) 0,
( ,0) ( ) (0) 0, 0 (0) 0.

u y X Y y y b X
u a y X a Y y x a X a
u x X x Y x a Y

  (9.465) 

The governing equation and boundary conditions for function Y are 
  " 0, (0) 0, ( ) 0X X X X a   (9.466) 
As expected, the solution for X is 
 1 2sin cosX c x c x   (9.467) 
The choice of taking the negative side (9.461) is important because it results in sine 
and cosine functions as the solutions of X. Only with these solutions, can we satisfy 
the nonhomogeneous boundary condition imposed on y = b. The first boundary 
condition given in (9.465) leads to  
 2(0) 0X c   (9.468) 
The second boundary condition given in (9.465) leads to  
 1( ) sin 0X a c a   (9.469) 
Since we cannot set c1 to zero, we must have the sine function be zero and this 
leads to 
 a n   (9.470) 
This is the eigenvalue of the homogeneous boundary value problem. Thus, the 
eigenvalues and eigenfunctions are 
 2 2 2/ , ( ) sin / , 1,2,3,n nn a X x n x a n   (9.471) 
For the function Y, we have  
 " 0, (0) 0Y Y Y   (9.472) 
The solution of (9.471) is expressible in terms of hyperbolic functions: 
 1 2( ) cosh / sinh /Y y k n y a k n y a   (9.473) 
Note that we have already substituted the eigenvalues of  found in (9.470) into 
(9.472). The boundary condition given in (9.471) requires k1 to be zero. Thus, we 
have   
 2( ) sinh /Y y k n y a   (9.474) 
We now combine solutions in (9.470) and (9.473) to get the fundamental solution 
 ( , ) sinh / sin / , 1,2,3, ,nu x y n y a n x a n ,   (9.475) 
The general solution of the problem is the sum of all these eigenfunctions with 
unknown constants: 

 
1 1

( , ) ( , ) sinh / sin /n n n
n n

u x y c u x y c n y a n x a   (9.476) 

We are now ready to satisfy the nonhomogeneous boundary condition given in 
(9.458). More specifically, setting x = 0 in (9.475) gives 

 
1

( , ) ( ) sinh / sin /n
n

u x b g x c n b a n x a   (9.477) 

Multiplying both sides by sin(m x/a) and integrating x from 0 to a, we get 
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0 0
1

( )sin / sinh / sin / sin /
a a

n
n

g x m x a dx c n b a m x a n x a dx   

  (9.478) 
In view of the orthogonality for the sine given in (9.294), we have 

 2

0 0
( )sin / sinh sin / sinh

2

a a
n n

m b m b ag x n x a dx c n x a dx c
a a

  

  (9.479) 
Finally, we find the unknown constant in the solution in terms of the given function 
f on the boundary as: 

 
1

0

2 sinh ( )sin /
a

n
n bc g x n x a dx

a a
  (9.480) 

The final solution is  

 0

1

( )sin
2( , ) sinh sin

sinh

a

n

ng d
n y n xau x y

n ba a a
a

  (9.481) 

We note that the analyses in the last and the present sections are similar.  

9.9.3 Prescribed Functions on All Four Sides    

In this section, we consider the more general boundary value problem of a 
rectangular domain governed by the Laplace equation with non-zero boundary 
conditions on all four sides (see Figure 9.27):  

 

2 2
2

2 2

1 2

1 2

0, 0 , 0

( ,0) ( ), ( , ) ( ), 0
(0, ) ( ), ( , ) ( ), 0

u uu x a y b
x y

u x g x u x b g x x a
u y f y u a y f y y b

  (9.482) 

Since the Laplace equation is a linear PDE, this problem can be solved by the 
method of superposition. As illustrated in Figure 9.28, we can break down the 
problem into four sub-problems, and each one of them has only one non-zero 
boundary condition. Mathematically, the four sub-problems are defined as: 
 
Problem P1: 

 

2 2
2 1 1

1 2 2

1 1

1 1 1

0, 0 , 0

( ,0) 0, ( , ) 0, 0
(0, ) ( ), ( , ) 0, 0

u u
u x a y b

x y
u x u x b x a
u y f y u a y y b

  (9.483) 
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2( , ) ( )u x b g x

0

2( , ) ( )u a y f y1(0, ) ( )u y f y

1( ,0) ( )u x g x a

b

2 0u

 
2 ( )g x

0

2 ( )f y1( )f y

1( )g x a

b

2 0u
 

0

01( )f y

a

b

2 0u
 

0

2 ( )f y

a

b

2 0u

 

0 1( )g x a

b

2 0u
 

2 ( )g x

0 a

b

2 0u

Original P0 Problem P1 

0

0 0

0

0

Problem P2 

Problem P3 Problem P4 

0

0 0 0 0

0

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.27 Laplace equation for a rectangular domain with nonzero conditions on all four sides 
 
 

 

 
 
 
 
 
 
 
 
 

 
Figure 9.28 Method of superposition in solving Problem P0 given in Figure 9.27 

 
Problem P2: 
 

 

2 2
2 2 2

2 2 2

2 2

2 2 2

0, 0 , 0

( ,0) 0, ( , ) 0, 0
(0, ) 0, ( , ) ( ), 0

u u
u x a y b

x y
u x u x b x a
u y u a y f y y b

  (9.484) 

Problem P3: 
 

 

2 2
2 3 3

3 2 2

3 1 3

3 3

0, 0 , 0

( ,0) ( ), ( , ) 0, 0
(0, ) 0, ( , ) 0, 0

u u
u x a y b

x y
u x g x u x b x a
u y u a y y b

  (9.485) 
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Problem P4: 

 

2 2
2 4 4

4 2 2

4 4 2

4 4

0, 0 , 0

( ,0) 0, ( , ) ( ), 0
(0, ) 0, ( , ) 0, 0

u u
u x a y b

x y
u x u x b g x x a
u y u a y y b

  (9.486) 

 
The solution of the original problem is the superposition of each of the solutions of 
the four sub-problems: 
 1 2 3 4u u u u u   (9.487) 
Problem P1 is solved in Problem 9.7 in Section 9.11, Problem P2 is considered in 
Section 9.9.1, Problem P3 is given in Problem 9.9 in Section 9.11, and Problem P4 
is solved in Section 9.9.2. Therefore, by the method of superposition, the solution 
is obtained in (9.486). 

9.10 SUMMARY AND FURTHER READING 

This chapter considers the most important types of second order PDEs. Nearly all 
textbooks on PDEs focus on the discussion of three second order PDEs. They are 
the wave, diffusion, and potential (Laplace) equations. The solution of these 
equations is the main focus of the present chapter. Inevitably, there is a slight 
overlap between the present chapter and Sections 7.2 to 7.4. The role of 
characteristics in wave type or hyperbolic PDEs has been discussed in detail in 
Chapter 7 and is not repeated in the present chapter.   
 For wave equations, we discuss the classic solution of D’Alembert for the   1-
D wave, the consequence of characteristics in terms of the domain of dependence 
and of influence zone. We then continue to discuss the 2-D wave and the 3-D wave, 
and the 3-D symmetric wave. The classical formula of Kirchhoff or Poisson for 3-
D wave is discussed and its degeneration to 2-D by Hadamard’s method of descent 
is summarized. The consequence and implication of the Huygen principle is also 
discussed. The case of n-dimensional waves is discussed in detail. The jump 
condition at the wavefront is also presented. In view of its importance in solving 
the Maxwell equation and elastodynamics problems (see Chapter 2), the solution 
method for nonhomogeneous waves is discussed. Related to the wave phenomenon, 
we also discuss the Helmholtz equation and telegraph equation.  
 For the diffusion equation, we focus on the solution of the homogeneous 
diffusion equation in the present chapter, as the nonhomogeneous diffusion 
equation has been presented in Chapter 7. The one-dimensional heat conduction 
equation and 1-D consolidation equation are derived and solved. The heat 
conduction problems in underground structures subject to ground seasonal 
temperature variations are considered. The one-dimensional consolidation problem 
is also found expressible as a diffusion equation. 
 For the Laplace equation, the Dirichlet, Neumann, and Robin problems are 
defined and discussed. The Laplace equation is solved in both spherical and 
cylindrical coordinates, in terms of Legendre polynomials and Bessel functions, 
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respectively. The classic result of the Poisson integral is considered together with 
the extremal principle. Some consequences of the extremal principle are discussed 
together with other properties of the harmonic functions, including the integrability 
of the Neumann problem, the uniqueness of the Dirichlet problem, and the mean 
value theorem. Graphical presentation of these consequences is demonstrated in 
Section 9.8. Finally, the boundary value problems of potential theory for the 
rectangular domain are considered using superpositions.  
 Nearly all textbooks on PDEs cover all wave, diffusion, and Laplace 
equations. The reader can refer any of these textbooks for further reading.   
 
 

9.11   PROBLEMS 

Problem 9.1. Derive the following Poisson integral formula for the problem of a 
circular disk of radius R governed by the Laplace equation. Mathematically, we 
have 

 
2 2

2
2 2 2

1 1 0, 0u u uu r R
r rr r

  (9.488) 

 ( , ) ( )u R h   (9.489) 
 ( , 2 ) ( , )u r u r   (9.490) 
 

0
lim ( , ) finite
r

u r   (9.491) 

Ans:  

    
2 2

2 2
1( , ) ( )[ ]

2 2 cos( )
R ru r h d

R r rR
  (9.492) 

 
Problem 9.2. Find the solution of the following problem of a Laplace equation of a 
unit disk: 

 
2 2

2
2 2 2

1 1 0, 0 1u u uu r
r rr r

  (9.493) 

 (1, ) cosu A   (9.494) 
Ans:  
    ( , ) cosu r Ar   (9.495) 
 
Problem 9.3. Employing the procedure used in deriving the telegraph equation, 
derive the following equation for magnetic intensity H: 

 
2

2
2 tt

 (9.496) 

where H is defined as  
 B H  (9.497) 
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Problem 9.4. In the 2-D potential flow problem derived in Section 9.7 for the 
Laplace equation, derive the following relation between the potential function and 
stream function: 

 
s n

 (9.498) 

 
Hint: Ask yourself what these values are physically! 
 
Problem 9.5. Rederive (9.351) by the following steps: 
 
(i)  Prove the identity 

 2 2cos sins s s
x z v v v

s x s z s
 (9.499) 

where  is the angle between the x-axis and the stream line  = constant. 
(ii) Prove the identity 

 2sin ( sin ) coss s s
x z v v v

n x n z n
 (9.500) 

 
(iii) Use the results of parts (i) and (ii) to prove (9.351). 
  
Problem 9.6. Use separation of variables to find the solution of the following 
diffusion problem: 

 
2

2
2
u u

tx
 (9.501) 

 (0, ) 0, ( , ) ( , ) 0, ( ,0) ( ), 0xu t u L t u L t u x f x x L  (9.502) 
 
Ans: 

 
2

1

( , ) sintn
n n

n

u x t c e x  (9.503) 

 
0

2 ( )sin
L

n nc f x x dx
L

 (9.504) 

where n satisfies the following eigenvalue equation: 
 tan n nL  (9.505) 
 
Problem 9.7. Use separation of variables to find the solution of the following 
Laplace equation for the rectangular domain shown in Figure 9.29: 

 

2 2

2 2 0, 0 , 0

( ,0) 0, ( , ) 0, 0
(0, ) ( ), ( , ) 0, 0

u u x a y b
x y

u x u x b x a
u y f y u a y y b

 (9.506) 
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( , ) 0u x b

0

( , ) 0u a y(0, ) ( )u y f y

( ,0) 0u x a

b

2 0u

 

( , ) 0yu x b

0

( , ) ( )xu a y f y(0, ) 0xu y

( ,0) 0yu x a

b

2 0u

 
 
 
 

 
 
 

 
 

 
 

 
Figure 9.29 Laplace equation for a rectangular domain with nonzero boundary on x = 0 

 
Ans: 

 
1

( , ) sin( )[sinh( ) tanh( )cosh( )]n
n

n y n x n a n xu x y c
b b b b

 (9.507) 

 
0

2 ( )sin
tanh( )

b
n

n yc f y dy
n a bb

b

 (9.508) 

 
Problem 9.8. Use separation of variables to find the solution of the following 
Neumann problem of the Laplace equation for the rectangular domain shown in 
Figure 9.30: 

 

2 2

2 2 0, 0 , 0

( ,0) 0, ( , ) 0, 0

(0, ) 0, ( , ) ( ), 0
y y

x x

u u x a y b
x y

u x u x b x a

u y u a y f y y b

 (9.509) 

Show that  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 9.30 Neumann problem of the Laplace equation for a rectangular domain  
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( , ) 0u x b

0

( , ) 0u a y(0, ) 0u y

( ,0) ( )u x g x a

b

2 0u

 (i) the solution is 

 0
1

( , ) cosh( )cos( )n
n

n x n yu x y c c
b b

 (9.510) 

where c0 is an arbitrary constant and  

 
0

2 / ( ) ( ) cos , 1,2,...
sinh( )

b
n

n n yc f y dy n
n a b

b

 (9.511) 

(ii) the necessary condition for the problem being solvable is  

 
0

( ) 0
b

f y dy  (9.512) 

Hint: Physically, this condition corresponds to net influx equals net outflux. 
 
Problem 9.9 Use separation of variables to find the solution of the following 
Laplace equation for rectangular domain shown in Figure 9.31: 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
Figure 9.31 Laplace equation for a rectangular domain with prescribed function on y = 0 

  

 

2 2

2 2 0, 0 , 0

( ,0) ( ), ( , ) 0, 0
(0, ) 0, ( , ) 0, 0

u u x a y b
x y

u x g x u x b x a
u y u a y y b

 (9.513) 

 
Ans: 

 
1

( , ) sin( )[sinh( ) tanh( )cosh( )]n
n

n x n y n b n yu x y c
a a a a

 (9.514) 

 
0

2 ( )sin
tanh( )

a
n

n xc g x dx
n b aa

a

 (9.515) 
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Problem 9.10 Use separation of variables to find the solution of the following 
one-dimensional wave equation subject to initial velocity: 

 

2 , 0 , 0
(0, ) 0, ( , ) 0, 0
( ,0) 0, ( ,0) ( ), 0

xx tt

t

a u u x L t
u t u L t t
u x u x g x x L

 (9.516) 

 
Ans: 

 
1

( , ) sin / sin /n
n

u x t c n x L n at L  (9.517) 

 
0

2 ( )sin /
L

nc g x n x L dx
n a

 (9.518) 

 
Problem 9.11 Use the method of superposition to solve the following one-
dimensional wave equation subject to both initial deflection and initial velocity: 

 

2 , 0 , 0
(0, ) 0, ( , ) 0, 0
( ,0) ( ), ( ,0) ( ), 0

xx tt

t

a u u x L t
u t u L t t
u x f x u x g x x L

 (9.519) 

 
Ans: 

 
1

( , ) [ sin / cos / ]sin /n n
n

u x t c n at L d n at L n x L  (9.520) 

 
0

2 ( )sin /
L

nc g x n x L dx
n a

 (9.521) 

 
0

2 ( )sin /
L

nd f x n x L dx
L

 (9.522) 

 
Problem 9.12 Use separation of variables to find the solution of the following 
Laplace equation for the rectangular domain shown in Figure 9.32: 

 

2 2

2 2 0, 0 , 0

( ,0) , ( , ) , 0
(0, ) 0, ( , ) , 0

u u x a y b
x y

u x u x b Ax x a
u y u a y By y b

 (9.523) 

(i) Find the solution. 
 
(ii) Find the compatibility condition in terms of A and B such that the boundary 

condition is continuous  
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( , )u x b Ax

0

( , )u a y By(0, ) 0u y

( ,0) 0u x a

b

2 0u

 
 

 
 

 
 

 
 

 
 

 
 

Figure 9.32 Laplace equation for a rectangular domain with prescribed functions on y = b and x 
= a 

 
Ans: 
  

 

1

1

1

1

2 ( 1)( , ) sin( )sinh( )
sinh( )

2 ( 1) sin( )sinh( )
sinh( )

n

n

n

n

A n x n yu x y
n b a an

a
B n y n x

n a b bn
b

 (9.524) 

 Aa Bb  (9.525) 
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CHAPTER TEN 
 

Eigenfunction Expansions 

10.1 INTRODUCTION  

Eigenfunction expansion is a classical and a very powerful mathematical technique 
in solving certain types of boundary value problems of finite domain. When we talk 
about eigenvalues, we normally refer to the eigenvalue of a square matrix. 
However, in the context of the analysis of differential equations with certain 
homogeneous boundary conditions, we find that solutions exist only for certain 
values of the parameter embedded in the ODE. These certain values can be 
interpreted as eigenvalues and are determined from the particular set of boundary 
conditions, and play a similar role as the “normal” eigenvalues for a matrix. The 
corresponding solution form for each eigenvalue is called an eigenfunction, which 
is very much similar to the role of an eigenvector in the case of matrix analysis. In 
matrix analysis the number of eigenvalues depends on the rank of the matrix (e.g., a 
j j matrix has j eigenvalues). Unlike the matrix analysis, the number of eigenvalues 
in homogeneous boundary value problems is typically infinite. In the case of beam 
vibrations, each eigenvalue is a natural vibration frequency of the beam and each 
vibration mode is an eigenfunction (e.g., with different number of nodes for the 
case of beam vibrations). When the same mathematical system is subject to 
external excitations (external in the sense that the excitations are independent of the 
response of the system), the general solution can be expressed as a summation of 
these eigenfunctions with a different contribution from each of these 
eigenfunctions. In the case of the dynamics of beam vibrations, a beam starts to 
vibrate when it is subject to continuous time-dependent forces (forcing or 
nonhomogeneous term). It turns out that the time-dependent vibrations can always 
be expressed in terms of a summation of the fundamental vibration modes, 
independent of the nature of the forcing terms. The contribution from each mode is 
determined from the eigenfunction expansion of the arbitrary forcing term in terms 
of the vibration modes. 
 This mathematical technique of eigenfunction expansion was normally 
associated with the name of Joseph Fourier (or Fourier series expansion). However, 
the first appearance of expanding a function in terms of an infinite sine series was 
given by Leonhard Euler in 1744 (twenty-four years before Fourier was born) when 
Euler wrote a letter to a friend. The formula that we are going to discuss in 
expressing an arbitrary function in terms of Fourier sine and cosine series was 
actually first proposed by Daniel Bernoulli and completed by Leonhard Euler as 
early as 1777. However, it is appropriate at this juncture to mention that there was 
actually a dispute on the correctness of such infinite expansion between Daniel 
Bernoulli and Leonhard Euler. This all starts with the investigation of the vibration 
of a violin string, which was posed by Johann Bernoulli in 1728, and solved by 
Jean D’Alembert and Leonhard Euler. But it was the solution posed by Daniel 
Bernoulli that led to the conclusion that any arbitrary function can be expressed as 
an infinite sum of sine functions. Both Euler and D’Alembert argued that it is 
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impossible to do this, and the conclusion would not be right. However, to his 
credit, Bernoulli stood by his conclusion. Ironically, it was Euler who completed 
the correct analysis for Bernoulli in determining the coefficient of the expansion in 
1777. In 1807 (twenty-five years after the death of Daniel Bernoulli), Fourier 
presented an astonishing paper at the Academy of Science in Paris asserting that an 
arbitrary function can be expressed in such an infinite series. Fourier specifically 
stated that any even function can be expressed as a sum of infinite terms of even 
functions of sine, and any odd function can also be expressed as a sum of infinite 
odd functions of cosine. Fourier analysis was based on his analysis of the heat 
equation, which he was most famous for (the heat diffusion law is also known as 
the Fourier law of heat conduction). Masters at the time, like Lagrange, simply 
thought that Fourier’s claim was impossible. Resistance to his theory is so great 
that his paper was never published. His work on this eventually appeared in his 
book in 1822. The admirers of Fourier’s work include Lord Kelvin, and his first 
paper at the age of fifteen was on Fourier series.  The rest is history, and nowadays 
Fourier series expansion is accepted universally in the domains of mathematics, 
engineering and science. Therefore, do not feel embarrassed if you cannot 
understand this eigenfunction series expansion when you first learn it. Clearly, you 
are not alone and this topic is far from obvious.  
 Another well-known problem in expanding discontinuous functions in infinite 
series is that there are always wiggles around the point of sharp discontinuity. And 
these wiggles never go away no matter how many terms that we add in the infinite 
series. The following story is adopted from Nahin (2006). In 1898, a letter to the 
journal Nature was submitted by Albert Michelson, a recipient of the Nobel Prize 
in physics in 1907, and he disputed that the Fourier series expansion is not valid at 
the point of discontinuity because of this overshooting and undershooting. The 
well-known British geophysicist A.E.H. Love replied a week later, arguing that 
there was a mistake in Michelson’s reasoning and the series that Michelson 
considered does not even converge. A few weeks later, Michelson replied in a short 
note stating that he was not convinced. In the same issue, J.W. Gibbs joined in by 
criticizing Michelson’s reasoning. There was no reply from Michelson. A few 
months later, Gibbs published the most famous Nature letter that is cited in many 
textbooks. Without giving any details, Gibbs simply stated that the actual 
magnitude at the jump is overshot by 8.9% at one end estimated by the following 
formula: 

 
0

sin 0.089
2

u du
u

0.089  (10.1) 

Remarkably, this overshooting percentage is a constant and does not improve by 
adding more terms. It was Maxime Bocher in his 1906 paper on the behavior of 
Fourier series at the discontinuity who coined this overshooting “Gibbs 
phenomenon.” This term has been used ever since. The most interesting part of this 
story is that the result obtained by Gibbs in 1899 (given in (10.1)) was actually 
been published by a British mathematician Henry Wilbraham in 1848 (fifty-one 
years before Gibbs). The only difference is that Gibbs’s paper contained no details 
while Wilbraham gave details of derivation.     
 We have covered enough history about eigenfunction expansions. In the next 
section, we start with the existence of the eigenvalue and eigenfunction for certain 
boundary value problems.  
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10.2 BOUNDARY VALUE PROBLEMS  

In this section, we restrict our discussion to second order ODEs, but the same idea 
can be extended to the discussion of higher order PDEs. We have seen in an earlier 
chapter that a PDE can be converted to a number of ODEs through the use of 
separation of variables. Let us consider the following ODE subject to three 
different types of initial or boundary conditions: 
 0 0 0 0( ) ( ) ( ), ( ) , ( )y p t y q t y g t y t y y t y  (10.2) 
 0 1( ) ( ) ( ), ( ) , ( )y p x y q x y g x y y y y  (10.3) 
 ( ) ( ) 0, ( ) 0, ( ) 0y p x y q x y y y  (10.4) 
Although these boundary value or initial value problems have the same ODE 
structure, they are largely different problems. The mathematical techniques 
involved in solving them are vastly different. Note that for this second order ODE 
we need two conditions to fix the two unknown constants in the general solution, 
thus there two conditions to be satisfied in each of the problems defined in (10.2) to 
(10.4).  Equation (10.2) is an initial value problem and the two initial conditions 
are given at the same point t = t0. A typical example of this mathematical system 
arises from dynamic problems of mechanical oscillators, and y(t) can be interpreted 
as the magnitude of the oscillations. The initial displacement and velocity were 
imposed at t = t0. This type of problem can be solved readily by Laplace transform. 
Equation (10.3) is a boundary value problem with nonhomogeneous terms. The 
third type is the homogeneous boundary value problem, and is the main focus of 
the present chapter. 

10.3 TWO-POINT BOUNDARY VALUE PROBLEMS  

In general, the determination of the solution for (10.4) is not an easy business, 
depending on the exact forms of functions p(x) and q(x). For example, the general 
form (10.4) also embraces the Bessel equation as a special case, and thus finding 
the general solution may not be straightforward as shown in Chapter 4. In this 
section, we will consider the simplest case of (10.4) with p = 0 and q = 2.  The 
solution form for this special case is easily obtained in terms of sine and cosine 
functions. However, the ideas discussed in the subsequent sections can also be 
applied to the more complicated case of (10.4). 
 We now illustrate the idea of the existence of eigenvalues and their associated 
eigenfunctions in the following examples.  
__________________________________________________________________ 
Example 10.1 Consider the solution of the following two-point boundary value 
problem: 
 2 0, (0) 0, ( ) 0y y y y  (10.5) 
 
Solution: The general solution of the ODE is  
 1 2cos 2 sin 2y c x c x  (10.6) 
To find the unknown constants, we have 
 1(0) 0y c  (10.7) 



612   Theory of Differential Equations in Engineering and Mechanics 

 2( ) sin 2 0y c  (10.8) 
Since sin( 2 )  0, we must have both constants as zero. Thus, the only solution is 
the trivial solution y = 0. 
_________________________________________________________________ 
__________________________________________________________________ 
Example 10.2 Consider the solution of the following two-point boundary value 
problem: 
 0, (0) 0, ( ) 0y y y y  (10.9) 
 
Solution: The general solution of the ODE is  
 1 2cos siny c x c x  (10.10) 
To find the unknown constants, we have 
 1(0) 0y c  (10.11) 
 1 2( ) 0 0y c c  (10.12) 
Both these end-point conditions lead to the same result that c1 = 0. Thus, the 
solution is 
 2 siny c x  (10.13) 
where c2 is arbitrary. Therefore, there are infinitely many nontrivial solutions. 
__________________________________________________________________ 
 
We see that the ODEs in Examples 10.1 and 10.2 are the same except for the 
coefficient in front of the second term on the left hand side. However, the solutions 
are very different.  
 We now consider a much more general form of ODE: 
 2 0, (0) 0, ( ) 0y y y y  (10.14) 
where  > 0 is an arbitrary constant. We have seen that this equation has infinitely 
many solutions if 2 = 1 and has no non-trivial solution if 2 = 2. Thus, 2 = 1 can 
be interpreted as an eigenvalue of the ODE. To see whether there are other 
eigenvalues, we consider the general solution of (10.14) 
 1 2cos siny c x c x  (10.15) 
The first boundary condition leads to c1 = 0. The second boundary condition results 
in 
 sin 0  (10.16) 
Thus, there are infinite eigenvalues:  = 1, 2, 3, 4,... and the corresponding 
eigenfunctions are 
 sin , sin 2 , sin 3 , sin 4 ,x x x x  (10.17) 
We have considered the simplest type of boundary conditions or the so-called 
Dirichlet type. In general, the boundary conditions can be specified as Neumann, 
Dirichlet, or Robin type, and they will be discussed in the next section.   
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10.4 NEUMANN, DIRICHLET AND ROBIN PROBLEMS 

We have seen from the last section that homogeneous boundary conditions may 
lead to an eigenvalue problem, and the particular form of the eigenvalue is a 
function of the boundary conditions. For the present harmonic equation, the 
Dirichlet type boundary value problem is given as: 
 2 0, 0y y x L  (10.18) 
 (0) ( ) 0y y L  (10.19) 
The Neumann type boundary value problem is given as: 
 2 0, 0y y x L  (10.20) 
 (0) ( ) 0y y L  (10.21) 
The Robin type boundary value problem is defined as: 
 2 0, 0y y x L  (10.22) 
 1 1 0, 0l y h y x  (10.23) 
 2 2 0,l y h y x L  (10.24) 
For h1 = h2 = 1 and l1 = l2 = 0 in the Robin type boundary value problem, we 
recover the Dirichlet type boundary value problem. For h1 = h2 = 0 and l1 = l2 = 1 in 
the Robin type boundary value problem, the Neumann type boundary is recovered. 
For each boundary, we can impose either of a Dirichlet, Neumann, or Robin type of 
boundary condition, and, thus, we have 3 by 3 or 9 combinations of boundary 
conditions. The general solution is 
 cos siny A x B x  (10.25) 
We now consider the eigenvalue and the corresponding eigenfunction for each of 
the nine cases. The boundary conditions for each case are given as: 
 
Case 1:  
 (0) ( ) 0y y L  (10.26) 
Case 2:  
 (0) ( ) 0y y L  (10.27) 
Case 3:  
 (0) ( ) 0y y L  (10.28) 
Case 4:  
 (0) ( ) 0y y L  (10.29) 
Case 5:  
 1 1(0) (0) ( ) 0l y h y y L  (10.30) 
Case 6:  
 1 1(0) (0) ( ) 0l y h y y L  (10.31) 
Case 7:  
 2 2(0) ( ) ( ) 0y l y L h y L  (10.32) 
Case 8:  
 2 2(0) ( ) ( ) 0y l y L h y L  (10.33) 
Case 9:  
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 y

L
2
L

tan L1

1

h
l

2L
3
2L

5
2L

 1 1 2 2(0) (0) 0, ( ) ( ) 0l y h y l y L h y L  (10.34) 
The results are summarized in Table 10.1. The eigenvalues for Cases 5 9 need to 
be solved numerically. Figures 10.1 to 10.3 show the evaluation of the eigenvalues 
for Cases 5, 6, and 9 respectively (open circles in the graphs). 
 
Table 10.1 Eigenvalues and eigenfunctions for 9 different combinations of boundary conditions. 

 
Case BC: 0x  BC: x L  Eigenvalue equation Eigenfunction 
1 1 10, 1l h  2 20, 1l h  

sin 0, n
nL
L

 
sin n x  

2 1 11, 0l h  2 21, 0l h  
sin 0, n

nL
L

 
cos n x  

3 1 10, 1l h  2 21, 0l h  2 1cos 0, ( )
2n

nL
L

 
sin n x  

4 1 11, 0l h  2 20, 1l h  2 1cos 0, ( )
2n

nL
L

 
cos n x  

5 1 1, 0l h  2 21, 0l h  1

1
tan

hL
l

 
cos ( )

cos
n

n

L x
L

 

6 1 1, 0l h  2 20, 1l h  1

1
cot

hL
l

 
sin ( )

sin
n

n

L x
L

 

7 1 11, 0l h  2 2, 0l h  2

2
tan

hL
l

 
cos n x  

8 1 10, 1l h  2 2, 0l h  2

2
cot

hL
l

 
sin n x  

9 1 1, 0l h  2 2, 0l h  1 1 2 2
2

1 2 1 2

( / / )
tan

/
h l h lL

h h l l
 

1

1

cos

sin

n

n
n

x
h

x
l

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.1 Evaluation of eigenvalues for Case 5 
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Figure 10.2 Evaluation of eigenvalues for Case 6 

 

 

 

 

 

Figure 10.3 Evaluation of eigenvalues for Case 9 
 
Cases 7 and 8 are essentially the same as those given in Figures 10.1 and 10.2 (only 
replacing h1 by h2). 

10.5 FOURIER SERIES 

In this section, we consider the Fourier series expansion of an arbitrary function 
f(x). We assert that the following Fourier expansion exists: 
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 0

1

( ) cos sin
2 m m

m

a m x m xf x a b
L L

 (10.35) 

where L < x < L. The main objective is to find the unknown coefficients as a 
function of f(x). First of all, we recall the so-called orthogonality of sine and cosine 
functions. In particular, we find that 

 
0, ,

cos cos
, ;

L

L

m nm x n xdx
L m nL L

 (10.36) 

 cos sin 0, all , ; 
L

L

m x n xdx m n
L L

 (10.37) 

 
0, ,

sin sin
, .

L

L

m nm x n xdx
L m nL L

 (10.38) 

That is, the sine function of order m in the argument is orthogonal (in the sense of 
integration) to the sine function with order n in the argument. The same is also 
observed for the cosine function. Sine and cosine are orthogonal regardless of the 
value of n and m.  
 Note that the definition of orthogonality given in (10.36) to (10.38) is also 
known as the inner product between two functions in the theory of functional 
analysis, also called linear operator theory. Functional analysis was a branch of 
rather “abstract” mathematics developed in the late nineteenth century that studies 
the general properties of the product of certain operators acting on a class of 
functions. Such linear operators may embrace the studies of integral equations, 
functional in the sense of the calculus of variations or the differential operator and 
its inversion. We will see in a later section that the definition of orthogonality 
between eigenfunctions (or inner product) will change from one ODE to another 
ODE (e.g., see (10.91)). 
 The validity of these formulas can be verified as: 

1 ( ) ( )cos cos {cos[ ] cos[ ]}
2

1 sin[( ) / ] sin[( ) / ]{ }
2 ( ) ( )

0

L L

L L
L

L

m x n x m n x m n xdx dx
L L L L

L m n x L m n x L
m n m n

 (10.39) 

In the first step, we have applied the following trigonometry identity: 

 1cos cos [cos( ) cos( )]
2

A B A B A B  (10.40) 

When n = m, we have the special case 

2 1 1 sin(2 / )(cos ) {1 cos(2 / )} { }
2 2 2 /

LL L

L L L

m x m x Ldx m x L dx x
L m x L

L

 (10.41) 

In obtaining the result in (10.41), we used the following double angle identity for the 
cosine: 
 2 2 2 2cos 2 cos sin 1 2sin 2cos 1A A A A A  (10.42) 
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Combining (10.39) and (10.41), we have the validity of (10.36). To prove (10.37), we 
have 

1 ( ) ( )sin cos {sin[ ] sin[ ]}
2

1 cos[( ) / ] cos[( ) / ]{ }
2 ( ) ( )
1 cos[( ) ] cos[ ( ) ]{
2 ( )

cos[( ) ] cos[ ( ) ]}
( )

0

L L

L L
L

L

m x n x m n x m n xdx dx
L L L L

L m n x L m n x L
m n m n

L m n m n
m n

m n m n
m n

 

  (10.43) 
This demonstrates the validity of (10.37). Finally, orthogonality of the sine can be 
proved as: 

1 ( ) ( )sin sin {cos[ ] cos[ ]}
2

1 sin[( ) / ] sin[( ) / ]{ }
2 ( ) ( )

0

L L

L L
L

L

m x n x m n x m n xdx dx
L L L L

L m n x L m n x L
m n m n

 (10.44) 

In obtaining (10.44), we used the trigonometry identity 
 cos( ) cos( ) 2sin sinA B A B A B  (10.45) 
Finally, for the case of m = n and in view of (10.42), we have the special case 

2 1 1 sin(2 / )(sin ) {1 cos(2 / )} { }
2 2 2 /

L
L L

L L
L

m x m x Ldx m x L dx x
L m x L

L

 (10.46) 

Therefore, (10.44) and (10.46) gives the identity (10.38). With these orthogonal 
properties for the sine and cosine, we can multiply both sides of (10.35) by 
cos(n x/L) and sin(n x/L) separately, and integrate with respect to x from L to L 
to find an and bn respectively. In particular, the coefficients an (n = 1, 2, …) can be 
found as follows: 

0

1

1

( )cos cos cos cos
2

sin cos

L L L
m

L L L
m

L
m

L
m

an x n x m x n xf x dx dx a dx
L L L L

m x n xb dx
L L

 (10.47) 

In view of (10.36) to (10.38), only the second term on the left of (10.47) is 
nonzero. Therefore, we have 

 2( ) cos cos
L L

n n
L L

n x n xf x dx a dx La
L L

 (10.48) 

Rearranging (10.48), we obtain the coefficient for the cosine term 
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x

y

6 4 2 2 4 6

 1 ( )cos , 1,2,
L

n
L

n xa f x dx n
L L

 (10.49) 

To find the constant coefficient a0, we can integrate both sides of (10.35) to yield 

 0
0

1 1

( ) cos sin
2

L L L L
m m

L L L L
m m

a m x m xf x dx dx a dx b dx La
L L

 

  (10.50) 
Thus, combining (10.49) and (10.50) we find 

 1 ( )cos , 0,1,2,
L

n
L

n xa f x dx n
L L

 (10.51) 

Similarly, we multiply both sides of (10.35) by sin(n x/L), integrate with respect to 
x from L to L, and apply the orthogonal property to get 

 1 ( )sin , 1,2,
L

n
L

n xb f x dx n
L L

 (10.52) 

The detailed steps of getting (10.52) are left for readers to fill in. The next example 
illustrates the procedure of Fourier series expansion. 
__________________________________________________________________ 
Example 10.3 Find the Fourier series expansion for the following non-smooth 
periodic function: 

 
, 2 0

( ) , ( 4) ( )
, 0 2

x x
f x f x f x

x x
 (10.53) 

This function is shown in Figure 10.4. 
 
 
 

 
 
 

 
 

Figure 10.4 Periodic triangular function 
 
Solution: The constant coefficient can be obtained by integrating from 2 to 2 as 

 
0 2

0
2 0

1 1 1 1 2
2 2

a x dx x dx  (10.54) 

To find the unknown constants am, we can substitute (10.53) into (10.51) to get 
20 2

2 0

1 1 8 / ( ) , oddcos cos
2 2 2 2 0, even,m

m x m x m ma x dx x dx
m

 (10.55) 

Summarizing this result, we have 

 
2

0
8 / ( ) , odd2,

0, even.m
m ma a

m
 (10.56) 
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1m

3,5m

Since f(x) is a symmetric function, we do not need to calculate bn. Therefore, the 
periodic triangular function can be written as 

 

0

1

2 2 2

2 2
1,3,5,...

2 2
1

( ) cos sin
2

8 1 3 1 51 cos cos cos
2 2 23 5

8 cos( / 2)1

8 cos(2 1) / 21
(2 1)

m m
m

m

n

a m x m xf x a b
L L

x x x

m x
m

n x
n

 (10.57) 

Figure 10.5 plots the 1-term, 3-term, and 5-term Fourier series expansions. The 
sharpness at the corner increases with more terms. The solutions for 3-term and 5-
term expansions are indistinguishable in Figure 10.5. 
 
 

Figure 10.5 Fourier representation of triangular function 
__________________________________________________________________ 

10.6 STURM-LIOUVILLE PROBLEM  

In Sections 10.3 and 10.4, we have focused our discussion on the harmonic 
equation with the solution being the sine and cosine. The main observations 
discussed in previous sections also apply to a wider class of general differential 
equations. In 1836 and 1837, Sturm and Liouville in a series of papers considered 
the eigenvalue problems of a more general class of differential equation that 
includes many important differential equations in physics and mechanics as special 
cases. They showed that for such a system the eigenvalues are all real, the 
eigenfunctions of two distinct eigenvalues are orthogonal in the sense of integration 
or the inner product if a proper weighting function is included in the definition, and 
there are infinitely many eigenvalues. The Sturm-Liouville boundary value problem 
is self-adjoint and this property leads to real eigenvalues. It also bears a close 
resemblance between the so-called Hermitian matrix (or symmetric matrix for the 
case of a real matrix) and the Sturm-Liouville problem. In particular, both of them 
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have real eigenvalues. The eigenvectors of the Hermitian matrix and eigenfunctions 
of the Sturm-Liouville boundary value problem are guaranteed orthogonal. The 
main difference is that the Hermitian matrix has a finite number of eigenvalues but 
the Sturm-Liouville boundary value problem has an infinite number of eigenvalues. 
Although most physical problems lead to self-adjoint PDEs or ODEs like the 
Sturm-Liouville problem, there are also non-conservative systems that result in 
non-self-adjoint PDEs or ODEs. That will be covered briefly in Section 10.10. 
 In particular, the Sturm-Liouville problem is formulated as:  

 [ ( ) ] ( ) ( ) [ ] ( ) 0, 0 1d dyp x q x y r x y L y r x y x
dx dx

 (10.58) 

 1 2(0) (0) 0y y  (10.59) 
 1 2(1) (1) 0y y  (10.60) 
where p(x) > 0 and r(x) > 0 and p, dp/dx, q and r are continuous. All p(x), q(x), 
r(x), 1, 2, 1, and 2 are real. Physically, r(x) can be thought of as coming from 
separation of variables in the original associated PDE problems. The eigenvalue of 
the problem is denoted by . The linear differential operator L is defined in 
(10.58). The boundary conditions are separated or unmixed. That is, one boundary 
condition on one end point only. When we set p(x) = r(x) = 1 and q(x) = 0, the 
eigenvalue problem considered in Section 10.4 is recovered as a special case. 
 
There are four main properties of this boundary value problem: 
 
(i) All of the eigenvalues n and eigenfunctions n of this problem are real. 
 
(ii) If 1(x) and 2(x) are two eigenfunctions corresponding to the eigenvalues 1 

and 2, respectively, and if 1  2, then  

 
1

1 2
0

( ) ( ) ( ) 0x x r x dx  (10.61) 

That is, 1(x) and 2(x) are orthogonal with respect to the weighting function 
r(x). The integral defined in (10.61) actually provides a new definition for the 
inner product with r(x) being the weighting function in the integrand. 

 
 (iii) All eigenvalues of the Sturm-Liouville problem are all simple and each 

eigenvalue has its own linearly independent eigenfunction. There are infinite 
eigenvalues:  

 1 2 3 , limn nnn n,
nn , limli n, limn , lim  (10.62) 

(iv) The eigenfunctions are complete (i.e., they can be used for eigenfunction 
expansion of arbitrary functions). 
 
The first two properties will be proved next. However, we will first consider the 
Lagrange identity in the next section. 
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10.6.1 Lagrange Identity 

Because the Lagrange identity is central to the Sturm-Liouville problem, it is 
considered next. We start by considering an integral of operator L defined in 
(10.58) on a function u multiplying by another function v over the domain: 

 
1 1

0 0
[ ] [ ( ) ]L u vdx pu v quv dx  (10.63) 

Applying integration by parts to the first term on the right of (10.63), we get  

 
1 11

0
0 0

( ) [ ( )] ( )pu vdx v pu pu v dx  (10.64) 

Next, reapplying integration by parts to the last term of (10.64), we find 

 
1 11

0
0 0

[ ] ( )pv du v pu pv udx  (10.65) 

Substituting these results into (10.63), we obtain  
1 11 1

0 00 0

11

0 0

[ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ]

( ) ( ) ( ) ( ) ( ) [ ]

L u vdx p x u x v x p x u x v x pv u quv dx

p x u x v x u x v x uL v dx
 (10.66) 

The last term on the right can be moved to the other side to get 

 
1 1

00
[ ] [ ] ( ) ( ) ( ) ( ) ( )L u v uL v dx p x u x v x u x v x  (10.67) 

This identity just obtained in (10.67) is known as the Lagrange identity. This 
identity closely resembles Green’s theorem: 

 2 2( ) ( )
V S

v uu v v u dV u v dS
n n

 (10.68) 

which has been discussed in Chapter 8. Now suppose that both u and v satisfy the 
boundary condition given in (10.59) and (10.60). That is, we have 
 1 2 1 2(0) (0) 0, (1) (1) 0v v v v  (10.69) 
 1 2 1 2(0) (0) 0, (1) (1) 0u u u u  (10.70) 
Rearranging (10.69) and (10.70), we can rewrite the first derivative term on the two 
boundaries as  

 1 1

2 2
(1) (1), (1) (1)v v u u  (10.71) 

 1 1

2 2
(0) (0), (0) (0)v v u u  (10.72) 

Substitution of (10.71) and (10.72) into the right hand side of (10.67) gives 

 

1

0

1 1

2 2

( ) ( ) ( ) ( ) ( )

(1) (1) (1) (1) (1) (0) (0) (0) (0) (0)

(1) (1) (1) (1) (1) (0) (0) (0) (0) (0) 0

p x u x v x u x v x

p u v u v p u v u v

p u v u v p u v u v

 (10.73) 
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It is interesting to note that right hand side of (10.67) is identically zero regardless 
of the values of 1, 2, 1, and 2. Therefore, for the Sturm-Liouville problem 
defined in (10.58) to (10.60) the following form of the Lagrange identity applies: 

 
1

0
[ ] [ ] 0L u v uL v dx  (10.74) 

The Lagrange identity can be rewritten in another slightly different form: 
 ( [ ], ) ( , [ ]) 0L u v u L v  (10.75) 
where the bracket is the inner product and defined as  

 
1

0
( , )u v uvdx  (10.76) 

This definition of the inner space is the fundamental tool in functional analysis. The 
complex conjugate is denoted by a superimposed bar. However, for the present 
Sturm-Liouville problem both u and v are real.  

10.6.2 Real Eigenvalues  

We are going to prove the eigenvalues and eigenfunctions are real by contradiction 
(i.e., property (i) in Section 10.6). Suppose that the eigenvalue  and its 
eigenfunction (x) are complex as: 
 , ( ) ( ) ( )u iv x U x iV x  (10.77) 
where u, v, U, and V are real. Substituting the eigenfunction (x) into the 
Lagrange’s identity in (10.74), we have 
 [ ], , [ ] 0L L  (10.78) 
Using (10.58), we can write (10.78) as 
 , , 0r r  (10.79) 

 
1 1

0 0
( ) ( ) ( ) ( ) ( ) ( )x x r x dx x x r x dx  (10.80) 

Since r(x) is real, we have 

 
1

0
( ) ( ) ( ) 0x x r x dx  (10.81) 

 
1 2 2

0
( ) ( ) ( ) 0U x V x r x dx  (10.82) 

The integral in (10.82) is real positive, so we must have 
 2 Im( ) 0  (10.83) 
Therefore,  must be real. Consequently, the corresponding eigenfunction is also 
real, but the details of the proof will not be discussed here.  

10.6.3 Orthogonal Property of Eigenfunctions 

Assume that there are two different eigenvalues  1 and 2 with corresponding 
eigenfunctions 1(x) and 2(x). Obviously, they satisfy  
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 1 1 1[ ]L r  (10.84) 
 2 2 2[ ]L r  (10.85) 
Let u and v be  1(x) and 2(x), and (10.74) becomes 
 1 2 1 2[ ], , [ ] 0L L  (10.86) 
Using the definition in (10.75) and substituting (10.84) and (10.85) into (10.86), 
we get 

 
1 1

1 1 2 2 2 1
0 0

( ) ( ) ( ) ( ) ( ) ( )x x r x dx x x r x dx  (10.87) 

Since both 1, 2, r(x), 1(x) and 2(x) are real, we can simplify (10.87) as 

 
1

1 2 1 2
0

( ) ( ) ( ) 0x x r x dx  (10.88) 

As  1  2, then we must have the following orthogonal identity satisfied. 

 
1

1 2
0

( ) ( ) ( ) 0x x r x dx  (10.89) 

We are going to see that a lot of important differential equations can be recovered 
as special cases of the Sturm-Liouville problem. Thus, once we can identify r(x) 
from the differential equation, we can find the orthogonal identity in the form of the 
integral given in (10.88). Thus, different ODEs require different definition of an 
inner product and a different orthogonal property. Problem 10.5 shows that the 
Bessel equation is a special case of the Sturm-Liouville problem with r(x) = x and, 
thus, Problem 10.6 demonstrates that the orthogonal property of the Bessel function 
is given in (10.281) of Problem 10.6.    
 It is often convenient to multiply the eigenfunction by a constant such that the 
following normalization condition is satisfied: 

 
1 2

0
( ) ( ) 1, 1,2,n x r x dx n  (10.90) 

Thus, in view of (10.88) and (10.89), the orthogonality relation can be rewritten as 

 
1

0
( ) ( ) ( )m n mnx x r x dx  (10.91) 

This normalization process is also known as Gram-Schmidt normalization.  
__________________________________________________________________ 
Example 10.4 Find the normalized orthogonal eigenfunctions of the following 
problem by Gram-Schmidt normalization 
 0, (0) 0, (1) 0y y y y  (10.92) 
 
Solution: We have considered this problem before. The weight function is r(x) = 1. 
The eigenvalues and eigenfunctions are 
 2 2 , ( ) sinn nn y x n x  (10.93) 
To find the orthonormal eigenfunctions, we choose kn so that  

 
1 2

0
( sin ) 1, 1,2,nk n x dx n  (10.94) 

This can be integrated to get 
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x

( ,0) ( )u x f x

0x x L

 
1 12 2 2 2

0 0
1 sin / 2 1 cos2 / 2,n n nk n xdx k n x dx k  (10.95) 

Therefore, the orthonormal eigenfunctions are 
 ( ) 2 sin , 1,2,n x n x n ,  (10.96) 
__________________________________________________________________ 

10.6.4 Heat Conduction Problem 

Although so far in this chapter we have been focused on the two-point boundary 
value problems for ODEs, actually the discussion here is motivated by its 
applications to problems governed by PDEs. In this section, we will demonstrate 
this by considering the heat conduction problem. Consider the one-dimensional 
heat conduction problem of a rod of finite length L subject an initial temperature 
distribution and to an isothermal boundary at the two end points, as shown in 
Figure 10.6. 
 
 
 
 

 
 
 
 
 

Figure 10.6 A one-dimensional conducting rod subject to initial nonhomogeneous temperature 
 
The heat conduction problem along a rod is governed by a one-dimensional 
diffusion equation: 
 2 , 0 , 0xx tu u x L t  (10.97) 
where 2 is the thermal diffusivity and it depends on the material of the rod. The 
isothermal boundary condition is given as: 
 (0, ) 0, ( , ) 0, 0u t u L t t  (10.98) 
The initial condition of the temperature on the rod is prescribed as 
 ( ,0) ( ), 0u x f x x L  (10.99) 
Note that u should be interpreted as the temperature subtracting the constant 
temperature at the boundaries, such that the boundary condition becomes 
homogeneous.  The following separation of variables is assumed: 
 ( , ) ( ) ( )u x t X x T t  (10.100) 
Substitution of (10.100) into (10.97) gives 
 2

xx tX T XT  (10.101) 
This equation can be rearranged as 
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 2
xx tX T

X T
 (10.102) 

Note that the minus sign chosen in the separation of variable constant is added to 
ensure the time dependence of the temperature to decay with time. This leads to 
two ODEs as 
 20, 0xx tX X T T  (10.103) 
The boundary condition becomes 
 (0, ) (0) ( ) 0, ( , ) ( ) ( ) 0, 0u t X T t u L t X L T t t  (10.104) 
The initial condition needs to be applied after the fundamental solution for both x 
and t dependences are obtained. We can see that the x-dependent problem becomes  
 0, (0) ( ) 0xxX X X X L  (10.105) 
This is precisely the problem that we consider in Section 10.4 and is a special case 
of the Sturm-Liouville problem. 
 We have only demonstrated that the special case of the harmonic oscillator 
equation of the Sturm-Liouville problem can result from the heat equation. 
Actually, other forms of Sturm-Liouville problems can also result from wave 
equation, Laplace equation, and other PDEs after the application of separation of 
variables.   

10.6.5 Integrating Factors  

In this section, we demonstrate that a general second order ODE can be converted 
to the Sturm-Liouville type problem by multiplying an integrating factor.  
 ( ) ( ) ( ) 0P x y Q x y R x y  (10.106) 
Suppose that there exists an integrating factor (x) such that after multiplying it by 
(10.106) we have the following structural form: 

 [ ] 0d dyP Ry
dx dx

 (10.107) 

This can be expanded as 
 ( ) 0Py P P y R y  (10.108) 
Comparing (10.106) with (10.108), we obtain 
 ( )P Q P  (10.109) 
 This can be rearranged to give 

 Q P
P P

 (10.110) 

Integrating and rearranging, we get 

 
0

1 ( )( ) exp[
( ) ( )

x

x

Q sx ds
P x P s

 (10.111) 

where x0 is the initial boundary (x0 = 0 for the Sturm-Liouville problem).  Now, we 
can use this result to convert the following ODE to a Sturm-Liouville problem: 
 ( ) ( ) [ ( ) ( )] 0P x y Q x y S x R x y  (10.112) 
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 [ ] 0d dyP Sy Ry
dx dx

 (10.113) 

Thus, we have 
 , ,p P q S r R  (10.114) 
where  

 
0

1 ( )( ) exp[
( ) ( )

x

x

Q sx ds
P x P s

 (10.115) 

A slightly different approach in obtaining this integrating factor is given in Problem 
10.2. This illustrates a way to convert a second order operator to look like a Sturm-
Liouville type problem. More precisely, we have made the operator formally self-
adjoint but this change of variables does not help in changing the boundary 
conditions. In other words, the formally self-adjoint operators may not lead to self-
adjoint problems.   

10.6.6 Eigenfunction Expansion 

Let 1, 2, …, n,… be the normalized eigenfunctions for the Sturm-Liouville 
problem, and let f and f ' be piecewise continuous on 0  x 1. The eigenfunction 
expansion becomes 

 
1

( ) ( )n n
n

f x c x  (10.116) 

 
1

0
( ) ( ) ( )n nc f x x r x dx  (10.117) 

To show this, we can multiply (10.116) by r(x) m(x) and integrate over the domain; 
we have 

       
1 1

0 0
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )m n m n n mn
n n

f x x r x dx c f x x x r x dx c  (10.118) 

Hence, we have 

 
1

0
( ) ( ) ( )m mc f x x r x dx  (10.119) 

This completes the proof of the eigenfunction expansion for the Sturm-Liouville 
problem. 

10.7 EXAMPLES OF STURM-LIOUVILLE PROBLEMS 

In this section, we list a number of important second order ODEs in physics and 
mechanics. All of these equations are special forms of the Sturm-Liouville 
problem. Thus, all the mathematical structures of eigenvalues and eigenfunctions 
listed in Section 10.6 apply equally to all of the following ODEs. The generality of 
this problem is the main reason why the Sturm-Liouville problem has received 
considerable attention in the past.  
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Legendre equation: 

 
2

2
2(1 ) 2 ( 1) 0d u dux x n n u

dxdx
 (10.120)  

Associated Legendre equation: 

 
2 2

2
2 2(1 ) 2 ( 1) 0

1
d u du mx x n n u u

dxdx x
 (10.121) 

Bessel equation: 

 
2

2 2 2
2 ( ) 0d u dux x x n u

dxdx
 (10.122) 

Harmonic oscillator: 

 
2

2
2 0d u u

dx
 (10.123) 

Schrodinger equation for the 1-D harmonic oscillator: 

 
2

2
2

d x E
dx

 (10.124) 

Laguerre equation: 

 
2

2 (1 ) 0d u dux x u
dxdx

 (10.125) 

Associated Laguerre equation: 

 
2

2 ( 1 ) ( ) 0d u dux k x k u
dxdx

 (10.126) 

Hypergeometric equation: 

 
2

2(1 ) [ ( 1) ] 0d u dux x c a b x abu
dxdx

 (10.127) 

Chebyshev equation: 

 
2

2 2
2(1 ) 0d u dux x n u

dxdx
 (10.128) 

Hermite equation: 

 
2

2 2 2 0d u dux u
dxdx

 (10.129) 

The proofs for some of them are set as problems at the end of the chapter.  

10.8 NONHOMOGENEOUS BVP  

10.8.1 Nonhomogeneous Differential Equation  

Let us consider the following nonhomogeneous problem: 
 [ ( ) ] ( ) ( ) ( ) ( )L p x q x r x x f x  (10.130) 
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 1 2(0) (0) 0y y  (10.131) 
 1 2(1) (1) 0y y  (10.132) 
Note that we have considered this problem before in Section 10.6 if f(x) = 0. We 
first consider the eigenvalue problem of the corresponding homogeneous problem: 
 ( ) ( )L y r x y x  (10.133) 
Note that  is, in general, different from  given in the corresponding 
nonhomogeneous equation. Let the eigenvalues and eigenfunctions for the 
following be found and they are 
 , ( ), 1,2,..., ,n n x n n n  (10.134) 
Let us expand the solution  of the nonhomogeneous problem: 

 
1

0
1

( ) ( ), ( ) ( ) ( )n n n n
n

x b x b x x r x dx  (10.135) 

To find the coefficient bn, we need to satisfy the governing equation given in 
(10.130). Thus, we have 

 
1

( ) ( ) ( ) ( ) ( ) ( )n n n
n

L x b r x x r x x f x  (10.136) 

Since the eigenfunctions automatically satisfy the boundary conditions given in 
(10.131) and (10.132), we do not need to consider them here. Clearly, we want to 
expand the nonhomogeneous function f(x) in terms of the eigenfunctions of the 
homogeneous problem as: 

 
1

( ) ( )
( ) n n

n

f x c x
r x

 (10.137) 

Note that we are expanding f(x) scaled with respect to r(x). Using the formula 
derived in Section 10.6.6, we obtain 

 
1 1

0 0

( ) ( ) ( ) ( ) ( )
( )n n n

f xc x r x dx f x x dx
r x

 (10.138) 

Since we assume that the eigenvalue problem can be solved and f(x) is given in the 
problem, thus (10.138) can be evaluated to give cn. Substitution of (10.137) and 
(10.138) into (10.136) gives 

 
1 1 1

( ) ( ) ( ) ( ) ( ) ( )n n n n n n n
n n n

b r x x r x b x r x c x  (10.139) 

Putting all terms on the same side, we get 

 
1

( ) ( ) 0n n n n
n

r x b c x  (10.140) 

Since both r(x) and n(x) are not zero, we must have 

 n
n

n

c
b  (10.141) 

Now, we have the solution as 
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1

( ) ( )n
n

nn

c
x x  (10.142) 

This solution is valid only for n  .  
 If n =  and cn  0, there is no solution for the problem since there is no bn  
that can satisfy (10.140). However, if n =  and cn = 0, then bn is arbitrary and 
there are infinite solutions with an arbitrary constant (non-unique solution).  Note 
that cn = 0 also implies from (10.138) that 

  
1

0
( ) ( ) 0nf x x dx  (10.143) 

Therefore, this will happen if and only if f is orthogonal to the eigenfunctions. 
 
__________________________________________________________________ 
Example 10.5 Find the solution of the following nonhomogeneous problem with 
homogeneous boundary conditions using eigenfunction expansion: 
 3 , (0) 0, (1) (1) 0y y x y y y  (10.144) 
 
Solution: First, we consider the associated homogeneous problem: 
 0, (0) 0, (1) (1) 0y y y y y  (10.145) 
The Sturm-Liouville problem has been considered in Section 10.4 (Case 8) and the 
orthonormal eigenfunctions have been given in Problem 10.11: 

 1cot n
n

 (10.146) 

 2 1/2

2 sin
( ) , 1,2,

(1 cos )
n

n
n

x
x n  (10.147) 

Using these results in (10.139) and (10.142), we have 

 
1

0
1

( ) ( ), ( )n
n n n

nn

c
y x x c x x dx  (10.148) 

Integrating the second equation of (10.148) by integration by parts, we find 

 
2

2 2 sin
, 1,2,

1 cos
n

n
n n

c n  (10.149) 

Finally, the answer is written as 

 
2

1

sin
( ) 4 sin

3 1 cos
n

n
n n n n

y x x  (10.150) 

This completes the solution. 
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10.8.2 Nonhomogeneous Initial Value Problem  

In the last section, we considered the case of a nonhomogeneous differential equation.  
Now we return to the initial value problem of heat conduction given in (10.97) to 
(10.99). We consider the general case of the Sturm-Liouville problem: 

 ( ) [ ( ) ] ( ) , 0 1, 0u ur x p x q x u x t
t x x

 (10.151) 

 1 2(0, ) (0, ) 0uu t t
x

 (10.152) 

 1 2(1, ) (1, ) 0uu t t
x

 (10.153) 

 ( ,0) ( ), 0 1u x f x x  (10.154) 
This is a generalized heat conduction with variable material property p(x) in the 
presence of heat source q(x). Heat equation is recovered if p(x) = 2 and q(x) =0 and 
r(x) =1 (see (10.97) to (10.99)). Use the normally presumed separation of variables   
 ( , ) ( ) ( )u x t X x T t  (10.155) 
Substitution of (10.155) into (10.151) gives 

 ( ) [ ( ) ] ( )t
d dXr x XT p x T q x XT
dx dx

 (10.156) 

This equation can be rearranged as 

 1 { [ ( ) ] ( ) }
( )

tTd dXp x q x X
r x X dx dx T

 (10.157) 

where  is the constant of separation of variables. Thus, we have the following 
ODEs 

 [ ( ) ] ( ) ( )d dXp x q x X r x X
dx dx

 (10.158) 

 0tT T  (10.159) 
The boundary condition becomes 
 1 2(0) (0) 0X X  (10.160) 
 1 2(1) (1) 0X X  (10.161) 
We have already shown that there are infinite eigenvalues and orthogonal 
eigenfunctions. For the initial value problem given in the second equation of 
(10.159), the solution is 
 ( ) tT t Ce  (10.162) 
The basic eigenfunction becomes 

 
1

( , ) ( ) tn
n n

n

u x t c x e  (10.163) 

where the eigenvalues and eigenfunctions are 
 , ( ), 1,2,..., ,n n x n n n  (10.164) 
The initial condition requires 
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1

( ,0) ( ) ( )n n
n

u x c x f x  (10.165) 

We now expand the initial temperature distribution by eigenfunction expansion 

 
1

0
( ) ( ) ( )n nc r x x f x dx  (10.166) 

  
The final solution is 

 
1

0
1

( , ) ( ) ( ) ( ) ( )tn
n n

n

u x t x e r f d  (10.167) 

10.9 SINGULAR STURM-LIOUVILLE PROBLEM 

So far, we have assumed that the problem is regular. We have also quoted in 
Section 10.7 that the Bessel equation is considered as a special case of the Sturm-
Liouville problem. However, the Bessel equation is not regular at the origin (i.e., 
singular at the origin).  We will demonstrate the singular Sturm-Liouville problem 
using the Bessel equation. Physically, this problem arises from the vibrations of an 
elastic membrane (e.g., Figure 10.7, which is generated by the software 
“Mathematica”). If we restrict vibrations to be axisymmetric, such a problem can 
be formulated as 

 
2 2

2
2 2

1( ) , 0 1, 0u u ua r t
r rr t

 (10.168) 

 (1, ) 0, 0u t t  (10.169) 
 ( ,0) ( ), 0 1u r f r r  (10.170) 

 ( ,0) 0, 0 1u r r
t

 (10.171) 

At r = 0, the boundary condition needs not be u(0,t)  = 0 (this will lead to a zero 
solution). For this singular Sturm-Liouville problem, we need to modify the 
boundary condition at the singular point (in this case, it is r =  0). The boundedness 
condition at the origin can be formulated as: 
 , bounded, as 0u u r  (10.172) 
That is, the membrane is supported at the circular edge and is subject to an initial 
deflection with zero initial velocity. Let us assume the following separation of 
variables: 
 ( , ) ( ) ( )u r t R r T t  (10.173) 
Application of (10.172) into (10.168) gives  

 2
2

(1/ )R r R T
R a T

 (10.174) 

This results in two ODEs 
 2 2 2 0r R rR r R  (10.175) 
 2 2 0T a T  (10.176) 
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The general solutions for (10.176) are 
 1 2sin cosT k at k at  (10.177) 

 

 

 

 
Figure 10.7 A typical vibration mode of circular membrane support at the circular edge 

 
Introducing a change of variables  = r, we can convert (10.175) to 

 
2

2 2
2 0d R dR R

dxd
 (10.178) 

As mentioned in Section 10.7, this is a Sturm-Liouville problem. The solution of 
this Bessel function of zero order is 
 1 0 2 0( ) ( ) ( )R r c J r c Y r  (10.179) 
The solution must be bounded as r  0, and this leads to c2 = 0. The boundary 
condition (10.169) gives 
 0 ( ) 0nJ  (10.180) 
There are infinite roots for (10.180) and the general solution of the problem 
becomes 

 0
1

( , ) ( )[ sin cos ]n n n n n
n

u r t J r k at c at  (10.181) 

The initial condition given in (10.171) gives 
 0nk  (10.182) 
The initial condition prescribed in (10.170) requires 

 0
1

( ,0) ( ) ( )n n
n

u r f r c J r  (10.183) 

To find the unknown constant cn, we multiply (10.183) by rJ0( mr) and integrate 
from 0 to 1 to get 

 

1
0

0
1 2

0
0

( ) ( )
, 1, 2,...

[ ( )]

n
n

n

rf r J r dr
c n

r J r dr
 (10.184) 

Note that we have employed the orthogonal relation given in (10.281). Substitution 
of (10.184) into (10.181) with (10.182) gives the final solution as 
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1
0

0
01 21 0

0

( ) ( )
( , ) ( ) cos ]

[ ( )]

n
n n

n n

rf r J r dr
u r t J r at

r J r dr
 (10.185) 

10.10 EIGENFUNCTION EXPANSION FOR NON-SELF-ADJOINT DE 

So far in this chapter, we have implicitly assumed that the PDE or ODE is self-
adjoint. In fact, the Sturm-Liouville problem is self-adjoint. In this section, we 
consider the eigenfunction expansion of the following non-self-adjoint ODE: 
 [ ] 0, . .L u u BC  (10.186) 
Let the eigenvalue and eigenfunction for this system be 
 ,n nu  (10.187) 
Let the adjoint problem of (10.186) be 
 *[ ] 0, . .L v v B C  (10.188) 
The corresponding eigenvalue and eigenfunction for the adjoint problem are 
(Stakgold, 1979) 
 ,n n nv  (10.189) 
Note that for differential operators, it can be shown that the eigenvalue of the 
original problem and the eigenvalue of the adjoint problem are related by the first 
equation of (10.189) (see p.357 of Stakgold, 1979) 
 For a non-self-adjoint operator, we have 
 *L L  (10.190) 
Note, however, that L* = L is called formally self-adjoint, but it may not imply that 
the problem is self-adjoint. In particular, a formally self-adjoint problem may not 
be self-adjoint if the boundary conditions are not set properly. 
 Let u be the eigenfunction of the eigenvalue problem given in (10.187) and 
we apply the Lagrange identity as 
 ([ ] , ) ( ,[ * ] )L u v u L v  (10.191) 
Thus, in view of (10.186) we have 
 ([ ] , ) ( ,[ * ] ) 0L u v u L v  (10.192) 
For the solvability of any nonhomogeneous problem, for a particular value of  we 
have either a solution for 
 [ * ] ( )L v g x  (10.193) 
or  
 [ * ] 0L v  (10.194) 
has an eigenfunction and  is the eigenvalue.  
 To prove (10.194), we now suppose that   is not an eigenvalue so that 
 [ * ] 0L v  (10.195) 
for any v. Then, (10.193) always has a solution for any arbitrary g. This, in turn, 
requires the solvability condition for any function g being satisfied:  
 ( , ) 0u g  (10.196) 
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This is clearly impossible unless u is identically zero. For example, g is any 
function and thus we can as well substitute g = u into (10.196) to give 
 2( , ) 0u u u  (10.197) 
Using the terminology of vector space, we have the double vertical bar being the 
norm of the function u. Thus, u is identically zero. This means that our assumption 
is false and thus  = is the eigenvalue and (10.194) must be satisfied.  
 If the boundary conditions of the adjoint problem L* in (10.188) is chosen 
properly, the following Lagrange identity remains valid: 
 ( , ) ( * , ) 0n m n mv Lu L v u  (10.198) 
Now if we subtract the scalar product of (10.188) with um from the scalar product 
of (10.186) with vn, we find 
  ( , ) ( * , ) ( )( , ) 0n m n m m n n mv Lu L v u v u  (10.199) 
Therefore, if  
 m n  (10.200) 
 ( , ) 0n mv u  (10.201) 
That is, we have established the orthogonal relation between the eigenfunction of L 
and the eigenfunction of L*. This is referred to as the biorthogonal relation and this 
differs from the orthogonal relation between eigenfunctions of the same set of L or 
L* (e.g., p.201 of Friedman, 1956). This is the main difference between self-adjoint 
ODEs and non-self-adjoint ODEs. 
 Now, we assume that a function g(x) is Lebesgue square integrable: 

 
1 2

0
( )g x dx  (10.202) 

Then, we can expand g in the eigenfunctions of problem (10.186): 

 
1

( ) ( )n n
n

g x a u x  (10.203) 

Multiplying both sides of (10.203) by vm(x) and integrating over the domain gives 

.  
1

( , ) ( , ) ( , )m n m n m m m
n

v g a v u a v u  (10.204) 

The last term of (10.203) is obtained in view of the biorthogonal relation derived in 
(10.201). Thus, we have 

.  
( , )
( , )

m
m

m m

v g
a

v u
 (10.205) 

Finally, we get the eigenfunction for g(x)  

 
1

( , )
( ) ( )

( , )
n

n
n nn

v g
g x u x

v u
 (10.206) 

For the special case of a self-adjoint problem, the eigenfunction expansion 
simplifies to  

 
1

( , )
( ) ( )

( , )
n

n
n nn

u g
g x u x

u u
 (10.207) 
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__________________________________________________________________ 
Example 10.6 Find the eigenfunction expansion for f(x) in the following problem: 
 ( ), (0) 0, (0) (1)u u f x u u u  (10.208) 
 
Solution: Note that the second boundary condition mixes the two end points. This 
mixed boundary condition will lead to a non-self-adjoint problem. The 
homogeneous problem is  
 0, (0) 0, (0) (1)u u u u u  (10.209) 
The general solution is 
 sin cosu c x d x  (10.210) 
The first boundary condition leads to d = 0. The second boundary condition leads 
to  
 sinn n  (10.211) 
Apparently, there is only one root 0 = 0 with a corresponding eigenfunction of u0 
= x. However, we are going to see that this mixed boundary value problem is not 
self-adjoint, and thus there is no guarantee for the eigenvalue being real.  Let us 
consider the adjoint problem: 

   

1 11
0

0 0
1
0

( , ) [ ]

[ ] ( , )

Lu v u vdx u v uv uv dx

u v uv u Lv
 (10.212) 

Again the superimposed bar denotes the complex conjugate. Therefore, we find 
that L* = L. Thus, the operator is formally self-adjoint. The boundary terms in 
(10.212) is 

  
1
0[ ] (1) (1) (1) (1) (0) (0) (0) (0)

(1) (1) (1)[ (0) (1)]
u v uv u v u v u v u v

u v u v v
 (10.213) 

The last line of (10.213) is obtained by using the boundary conditions in (10.209). 
To set the result in (10.213) to zero, we require 
 (1) 0, (0) (1) 0v v v  (10.214) 
Thus, the adjoint problem is 
 0, (1) 0, (0) (1) 0v v v v v  (10.215) 
Since the boundary conditions are not the same as the original problem, it is not 
self-adjoint although the operator is formally self-adjoint. In view of the second 
boundary conditions given in (20.215), we see that the solution of the first equation 
of (10.215) can be written as 
 sin (1 )v c x  (10.216) 
Substitution of (10.216) into the second boundary condition in (20.215) results in 
the following eigenvalue equation 
 sinn n  (10.217) 
which is identical to (10.211). Recall from (10.189) that the eigenvalues of the 
original operator of its adjoint operator are related by 
 n n  (10.218) 
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For 0 = 0, we can show that the corresponding eigenfunction is v0 = 1 x. For n > 
0, the eigenfunction of (10.215) becomes 
 sin (1 )n nv c x  (10.219) 
Since the problem is not self-adjoint, we shall also look for complex eigenvalues. 
To do that, let us assume 
 i  (10.220) 
Substitution of (10.220) into (10.211) gives 
 sin sin( ) sin cosh cos sinhi i  (10.221) 
Thus, we have 
 sin cosh , cos sinh  (10.222) 
Let us look for asymptotic behavior of the complex eigenvalues for large  (since 
we want to see whether there are infinite roots). Suppose   ; from the first of  
(10.222) we also have   . The second equation of (10.222) gives 

 0, cos 0
sinh

 (10.223) 

Therefore, we can set  as: 

 2
1(2 )
2 mm  (10.224) 

such that cos   0, and 2m is a small number. Substitution of this result into the 
first equation of (10.222) gives 

 

2 2

2 2

1 1(2 ) sin[(2 ) ]cosh
2 2

1 1[sin(2 ) cos sin cos(2 ) ]cosh
2 2

cosh

m m

m m

m m

m m  (10.225) 

 For large  and , we have the approximation 

 1cosh (2 )
2

m  (10.226) 

This can further be simplified as  

 1 1 1cosh ( ) (2 )
2 2 2

e e e m  (10.227) 

The last part of (10.227) is from (10.226).  This can be solved for  as: 
 ln[(4 1) ]m  (10.228) 
The plus and minus signs result from the fact that the cosh is an even function. To 
find an approximation for , we note that (10.220) can be rewritten in the form of 
Euler’s formula as 

 2 2 {cos sin }i i  (10.229) 
where 

 1tan ( )  (10.230) 

The following approximation is made: 
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2 2 2 2 1/2
2

2
2

1{[(2 ) ] {ln[(4 1) ]} }
2

1 1(2 ) {1 ... ( )}
2 2

m

m

m m

m O
 (10.231) 

where 

 ln[(4 1) ]
1(2 )
2

m

m
 (10.232) 

In arriving at (10.231), we have assumed that 2m <<  and it is obvious that  < 1. 
Similarly, we approximate cos  as 

 

2

2 2 2
2

2
2

1(2 )
2cos

1 1(2 ) {1 ... ( )}
2 2

11 ... ( )
2

m

m

m

m

m O

O

 (10.233) 

We now back-substitute (10.231) and (10.233) into (10.229) to get the following 
approximation: 

 

2 2

2 2

4

cos
1 1 1(2 ) {1 ...}{1 ...}
2 2 2
1 1(2 ) {1 ...}
2 4

m

m

 (10.234) 

Plugging in the definition of (10.232) into (10.234), we find 

 
4

3
1 {ln[(4 1) ]}(2 ) 2 ...
2 {(4 1) }

mm
m

 (10.235) 

Substitution of (10.235) into (10.229) gives 

 
4

3
1 {ln[(4 1) ]}(2 ) 2 ... ln[(4 1) ]
2 {(4 1) }

mm i m
m

 (10.236) 

Note that this result does not agree with the result given on p. 204 of Friedman 
(1956). The powers 3 and 4 in the second term on the right are missing in Friedman 
(1956). Strictly speaking, this result is good for large values of m. Nevertheless, 
this approximation is illustrated in Figure 10.8. 
For these eigenfunctions, we can check the bi-orthogonality as: 

 

1

0
1

0

( , ) sin( )sin[ (1 )]

sin( )sin[ (1 )]

n m n m

n m

u v x x dx

x x dx
 (10.237) 

Note the following trigonometry identity: 

 1sin sin [cos( ) cos( )]
2

A B A B A B  (10.238) 
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Re{ }

Im{ }

Using this (10.238), we get 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.8 The complex roots of (10.236) for non-self-adjoint problem are plotted 
 

    

1

0
1

0

1( , ) {cos[ (1 )] cos[ (1 )]}
2

sin[ ] sin[ ]1
2

sin sin sin sin1
2

n m n m n m

n m m n m m

n m n m

n m n m

n m n m

u v x x x x dx

x x x x
 (10.239) 

In view of the eigenvalue equation (10.217), we can simplify (10.239) as 

     1( , ) 0
2

n m n m
n m

n m n m
u v  (10.240) 

When n = m, we can redo the integration to get 

     
1 cos

( , )
2

n
n nu v  (10.241) 

For the case n = m = 0, we have 

     
1

0

1(1 )
6

x x dx  (10.242) 

Applying (10.206), we can write the expansion as 

 0
1

( ) sinn n
n

f x a a x  (10.243) 

where 

 
1

0
0

6 ( )(1 )a f x x dx  (10.244) 
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1

0

2 ( )sin (1 )
1 cosn n

n
a f x x dx  (10.245) 

As we have seen from this example, the most difficult part of the analysis is not 
getting the eigenfunction expansions for the function f(x) for non-self-adjoint 
problems but finding the complex eigenvalues and corresponding eigenfunctions in 
the first place. 
__________________________________________________________________ 
 
Another problem associated with non-self-adjoint eigenfunction expansion is that 
sometimes the eigenfunctions that we find may not be complete. As a consequence, 
we need an extra function (but not the actual eigenfunctions) to make it complete. 
Such eigenfunctions are known as “generalized eigenfunctions” (see Friedman, 
1956). If such generalized functions exist, we must add them. Otherwise, the 
answer is not correct. Therefore, we have to be more careful in dealing with non-
self-adjoint problems. That is, eigenvalues may be complex and generalized 
eigenfunctions may be necessary in ensuring completeness. In the next example, we 
will illustrate the existence of “generalized eigenfunctions.” 
__________________________________________________________________ 
Example 10.7 Find the eigenfunction expansion for f(x) in the following problem: 
 ( ), (0) 0, (0) (1)u u f x u u u  (10.246) 
 
Solution: The associated eigenvalue problem is  
 0, (0) 0, (0) (1)u u u u u  (10.247) 
The second boundary condition in (10.247) is mixed, including both boundary 
points in a single condition. The adjoint problem of (10.247) is found to be 
 0, (0) 0, (0) (1)v v v v v  (10.248) 
Therefore, the problem is not self-adjoint. The solution for (10.247) is 
 cos sinu A x B x  (10.249) 
The first boundary condition leads to A = 0, and the second boundary condition in 
(10.247) leads to the following eigenvalue equation: 
 cos  (10.250) 
The only possible solution is 
 cos 1  (10.251) 
Note that for this case  is not zero. Therefore, we have 
 (2 1)n  (10.252) 
Thus, the eigenvalues and eigenfunctions become 
 2 2(2 1) , 0,1,2,...n n n  (10.253) 
 sin(2 1) , 0,1,2,..nu n x n  (10.254) 
Luckily, the eigenvalues are all real (unlike the last example of the non-self-adjoint 
problem). For the adjoint problem, we also have the eigenvalue being 
 2 2(2 1) , 0,1,2,...n n n n  (10.255) 
The corresponding eigenfunctions are  
 cos[(2 1) (1 )], 0,1,2,..nu n x n  (10.256) 
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The biorthogonal condition for these two eigenfunctions is 

 
1

0
( , ) sin[(2 1) ]cos[(2 1) (1 )]n nu v n x n x dx  (10.257) 

Using the sum rule for the cosine function, we find 

 
cos[(2 1) (1 )] cos(2 1) cos(2 1) sin(2 1) sin(2 1)

cos(2 1)
n x n n x n n x

n x
 

  (10.258) 
Substitution of (10.258) into (10.257) gives 

  

1

0
1

0
1

0

( , ) sin[(2 1) ]cos[(2 1) ]

1 sin[(4 2) ]
2

1 cos[(4 2) ] 0
2 (4 2)

n nu v n x n x dx

n x dx

n x
n

 (10.259) 

Thus, we have demonstrated that the bi-orthogonal relation is satisfied. Apparently, 
the eigenfunction expansion for f(x) is 

 
1

( , )
( ) sin[(2 1) ]

( , )
n

n nn

v f
f x n x

v u
 (10.260) 

But, this result is wrong because the eigenfunction is only for all the odd terms in 
the sine series and it is an incomplete expansion. The correct eigenfunction for this 
case should be: 

 
1

( ) [ sin cos (1 )]n n n n
n

f x a x b x x  (10.261) 

where 

 
1

0
4 ( )(1 )sin (1 )n na f x x x dx  (10.262) 

 
1

0
4 ( )cos (1 )n nb f x x dx  (10.263) 

 (2 1)n n  (10.264) 
Note that this is no longer a Fourier sine series expansion. Without going into detail 
in obtaining this, we should simply say that we need an additional function for 
completeness. The function in this case is 
 cosn nu x xn coscosu xcosn cos  (10.265) 
This function satisfies the boundary conditions, but, however, does not satisfy the 
original eigenvalue problem. That is, 
 ( ) 2 sin 0n n n nL u xn 22222  (10.266) 
Instead, it satisfies the following ODE 
 2( ) 0n nL u 0n  (10.267) 
This is also equivalent to solving the following problem 
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 ( )n n nL u un nu unnun  (10.268) 
Actually, (10.267) or (10.268) provides the definition of the generalized 
eigenfunctions. In a sense, this formulation is similar to Case 2.2 of Chapter 5 for a 
system of first order ODEs when the matrix is non-Hermitian. Recall the similarity 
between the properties of eigenvalues of a Hermitian matrix and the properties of 
eigenvalues of self-adjoint ODEs.  
 The main purpose of this example is to illustrate that generalized 
eigenfunctions may be needed for non-self-adjoint problems. Eigenfunction 
expansion for a non-self-adjoint problem is by no means straightforward and is 
very difficult. Their detailed discussion is, however, out of the scope of the present 
chapter. 

10.11 SUMMARY AND FURTHER READING  

In this chapter, we have summarized the essential ideas of eigenfunction 
expansions. We started with two point boundary value problems. Dirichlet, 
Neumann, and Robin problems are presented in the context of heat conduction. 
Fourier series expansion is introduced before we considered the general Sturm-
Liouville problem, including derivation of the Lagrange identity, proof of the 
realness of eigenvalues, and the orthogonal property of eigenfunctions. We also 
summarized the list of classical equations that the eigenvalue problem can be 
studied under the framework of Sturm-Liouville problem. The use of eigenfunction 
expansion in solving the nonhomogeneous boundary value problem is 
demonstrated. A singular Sturm-Liouville problem is demonstrated by considering 
the vibration problems of circular membrane. Finally, the more advanced topic of 
eigenfunction expansion for non-self-adjoint ODEs is considered. 
 There are many good references for eigenfunction expansions, including 
Stakgold (1979) and Friedman (1956). The interested reader can consult these and 
other references. 

10.12      PROBLEMS 

 
Problem 10.1 A linear second order ODE is given by: 

 
2

0 1 2 32( ) ( ) [ ( ) ( )] 0d u dua x a x a x a x u
dxdx

 (10.269) 

Show that it can be as a Sturm-Liouville problem if the following is satisfied: 

 0
1

( )
( )

da x
a x

dx
 (10.270) 

We can ignore the boundary condition for this problem. 
 
Problem 10.2 A linear second order ODE is given as: 
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2

0 1 2 32( ) ( ) [ ( ) ( )] 0d u dua x a x a x a x u
dxdx

 (10.271) 

(i) Compare this equation with the Sturm-Liouville problem and show that 

 
0 1 2 3

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

p x p x q x r x I x
a x a x a x a x

 (10.272) 

(ii) Take the first two terms from the result obtained in (i) to show that 

 1

0 0

( )1( ) exp[ ]
( ) ( )

a xI x dx
a x a x

 (10.273) 

(iii) Show that p, q, and r in the Sturm-Liouville problem are  

 1
2 3

0

( )
( ) exp[ ], ( ) ( ) ( ), ( ) ( ) ( )

( )
a xp x dx q x I x a x r x a x I x
a x

 (10.274) 

Therefore, (10.271) can be converted to the Sturm-Liouville problem of 
multiplying I(x) obtained in Part (ii) if a1(x)  a'0(x). 
 
Problem 10.3 Use the result of Problem 10.2 to convert the following ODE to a 
Sturm-Liouville problem: 

 
2

2 0d y dyx y
dxdx

 (10.275) 

Ans:  

 
2 2

2 2( ) 0
x xd dye e y

dx dx
 (10.276) 

 
Problem 10.4 Use the result of Problem 10.2 to convert the following ODE to a 
Sturm-Liouville problem: 

 
2

2 0d y dy y
dxdx

 (10.277) 

Ans:  

 ( ) 0x xd dye e y
dx dx

 (10.278) 

 
Problem 10.5 Show that the Bessel equation given below can be converted to a 
Sturm-Liouville problem: 

 
2

2 2 2
2 ( ) 0d y dyx x x y

dxdx
 (10.279) 

Ans:  

 
2

( ) ( ) 0d dyx x y
dx dx x

 (10.280) 

 
Problem 10.6 Show that the Bessel functions satisfy the following orthogonal 
relation: 
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0

( ) ( ) 0,
a

n mxJ x J x dx n m
a a

 (10.281) 

where J ( nx/a) satisfy (10.132).  
Hint: Use the result of the Sturm-Liouville problem.  
 
Problem 10.7 Show that the Laguerre equation can be converted to the Sturm-
Liouville problem: 

 
2

2 (1 ) 0d y dyx x y
dxdx

 (10.282) 

Ans:  

 ( ) 0x xd dyxe e y
dx dx

 (10.283) 

 
Problem 10.8 The Legendre equation is defined as  

 
2

2
2(1 ) 2 ( 1) 0d y dyx x n n y

dxdx
 (10.284) 

Recast the Legendre equation in the form of the Sturm-Liouville problem. Find the 
eigenvalue  of the corresponding Sturm-Liouville problem. 
Ans:  

 2[(1 ) ) ( 1) 0d dyx n n y
dx dx

 (10.285) 

 
Problem 10.9 Suppose that the boundary conditions given in (10.59) and (10.60) 
are replaced by the following periodic boundary conditions 
 (0) (1), (0) (1), (0) (1)p p y y y y  (10.286) 
Show that the following special form of the Lagrange identity remains valid 

 
1

0
[ ] [ ] 0L u v uL v dx  (10.287) 

 
Problem 10.10 Show that the following special form of the Lagrange identity 
remains valid 

 
1

0
[ ] [ ] 0L u v uL v dx  (10.288) 

for the following singular boundary conditions: 
(i)  (0) 0, (0) (1) 0p y y  (10.289) 
(ii)  (1) 0, (0) (1) 0p y y  (10.290) 
(iii)  (0) ( ) 0p p a  (10.291) 
 
Problem 10.11 Find the orthonormal eigenfunctions of the following problem 
 0, (0) 0, (1) (1) 0y y y y y  (10.292) 
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Ans: 

 2 1/2

2 sin
( ) , 1,2,

(1 cos )
n

n
n

x
x n  (10.293) 



CHAPTER ELEVEN 
 

Integral and Integro-Differential 
Equations  

 

11.1 INTRODUCTION  

In the first part of this chapter, we will summarize the idea of integral transforms 
versus eigenfunction expansion that we discussed in the last chapter. Various types of 
integral transforms will be introduced, including the Fourier transform, Hankel 
transform, Mellin transform, Hilbert transform, and Laplace transform. When integral 
transforms are applied to ordinary differential equations, ODEs will become algebraic 
equations that can be solved readily most of the time. If integral transforms are 
applied to partial differential equations of two variables, the PDE will become an 
ODE. The resulting ODE is, of course, much easier to solve than the original PDE. 
For PDEs with n variables, each time an integral transform is applied, the resulting 
PDE will only involve n 1 variables. Therefore, when an integral transform is applied 
repeatedly, the PDE will eventually become an algebraic equation. However, due to 
space limitations we only cover the basics of integral transform and its introduction is 
primarily for setting the scene for the more difficult problems of integral equations 
and of integro-differential equations.  
 The second part deals with problems that need to be modeled by integral 
equations (governing equations involving integral of the unknown) and integro-
differential equations (governing equations consisting of both differentiation and 
integrations of the unknown function). The word “integral equation” was coined by 
Du Bois-Reymond. Integral equations that we discuss include the Abel integral 
equation, Hilbert integral equation, Fredholm integral equation, and Volterra integral 
equation. Integro-differential equations will be considered using the Laplace 
transform. 
 Historically, the integral of the Laplace transform type and of the Mellin 
transform type was first considered by Laplace 1782. The Fourier transform was 
developed by Fourier in 1811 when the theory of heat conduction was considered. 
Formulating the mechanics problem of a sliding bead along a frictional wire, Abel 
formulated the Abel type of integral in 1823. In particular, Abel considered the 
tautochrone problem that for a given slide time what would be the shape of the wire, 
in contrast to the brachistochrone problem of the Bernoulli brothers. The Fredholm 
type of integral equation was first considered by Liouville in 1837 and 1838 based on 
the idea of successive substitutions of Neumann. However, the work of Neumann was 
not published until 1870. In 1890, French mathematician Picard formulated the 
successive approximation in a more general and a widely applicable form. In more 
recent literatures, the method of successive approximation has been mostly associated 
with Picard, instead of associated with Liouville and Neumann. This procedure was 
reconsidered by Volterra in 1896 and 1897 to solve the so-called Volterra integral 
equations. Volterra recognized that integral equations could be interpreted as a 
limiting form of a system of n linear algebraic equations for n unknowns as n  . 
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The eigenvalue problem of integral equations was considered by Poincare in 1896. In 
1900 and 1903, Fredholm solved the more difficult problem of Fredholm integral 
equations and of asymmetric kernel functions in the integral. Following up the idea of 
Volterra, Fredholm again divided the interval into n equal parts and used linear 
algebraic equations to consider when the solution of a nonhomogeneous integral 
equation exists. He had been able to solve the Fredholm integral equation in terms of 
a determinant of the kernel K and the so-called first minor of the kernel K. This leads 
to a very general theorem called the Fredholm alternative theorem, which is also 
applicable to differential equations. Hilbert wrote a series of six papers from 1904 to 
1910, and made major progress in the analysis and showed that the solution can be 
expressed in orthogonal eigenfunctions of the eigenvalue of kernel K. The analysis 
somewhat resemblances Fourier’s eigenfunction expansion. This is called the Hilbert-
Schmidt theorem of integral equations, as Schmidt in 1907 extended Hilbert’s work to 
non-symmetric kernels. This eigenfunction expansion for an integral leads to the 
concept of the abstract functional analysis and functional space (like the Hilbert 
space). Hilbert was able to show that the Fredholm integral equation is equivalent to 
the solution of differential equation. The eigenvalue problem of ODEs is also 
equivalent to the eigenvalue problem of an integral equation considered by Poincare 
and Fredholm. The major concept of the spectrum theory of the eigenvalue of the 
differential equation was also formulated. In particular, when an eigenvalue of an 
ODE with associated boundary conditions is in the form of a discrete spectrum, the 
eigenfunction expansion should be used to obtain the solution. However, when there 
is a continuous spectrum of eigenvalues for the associated problem, typically for the 
infinite domain, the problem has to be solved by integral transform.  

11.2 INTEGRAL TRANSFORMS 

There exists different techniques of integral transforms, which are motivated by 
solving different types of linear differential equations. Eigenfunction expansion 
discussed in the last chapter is suitable for solving problems of finite domains, for 
which eigenvalues and eigenfunctions can be found, but they are useless in solving 
problems involving the infinite domain. For finite domains, the eigenvalues are 
discrete even though there are an infinite number of them; however, for the infinite 
domain, eigenvalues are continuous. We said that there is a continuous spectrum of 
eigenvalues. For problems with a spectrum of eigenvalues, we need to apply an 
integral transform instead of applying eigenfunction expansions.  
 In fact, the integral transform technique is developed for solving linear 
differential equations. We will discuss briefly the most commonly encountered 
integral transforms, including the Fourier transform, Hankel transform, Mellin 
transform, Hilbert transform, and Laplace transform. All of them can be cast into the 
following general transform and its inversion as: 

 ( ) ( , ) ( ) ,F s K s t f t dt  (11.1) 

 
1

1

( ) ( , ) ( ) ,f t H s t F s ds  (11.2) 
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Different kernel functions K(s,t) lead to different types of integral transforms. The 
limits of integration also vary depending on the type of transform.   

11.2.1 Laplace Transform  

One of the most popular integral transforms is the Laplace transform, which is 
applicable to problems in the semi-infinite domain. It can be shown that the Fourier 
transform to be presented next is equivalent to the Laplace transform for the 
infinite domain (Sneddon, 1951). The Laplace transform was originally proposed 
by Euler and developed to the present form by Laplace. It had been known as 
operational calculus and its application in engineering is mainly publicized by 
Oliver Heaviside in the 1980s. The kernel of the Laplace transform is 
 ( , ) stK s t e  (11.3) 
The resulting integral transform is 

 
0

( ) [ ( )] ( ) ,stF s L f t e f t dt  (11.4) 

 1 1( ) [ ( )] ( )
2

c i st

c i
f x L F s e F s ds

i
 (11.5) 

Its application has been mainly for the time variable in differential equations. A 
brief summary of the Laplace transform can be found in the appendix of Chau 
(2013) and in Spiegel (1965). Since the solutions of linear differential equations 
with constant coefficients are based on the exponential function, the Laplace 
transform is particularly useful for such differential equations.  
 In view of its importance in application to differential equations, we will 
discuss the Laplace transform in more detail. Formula (11.5) is called Bromwich’s 
contour integral for the inversion of the Laplace transform. This formula is now the 
standard form of the inverse of the Laplace transform.  Bromwich learned 
Heaviside’s operational calculus (i.e., the Laplace transform of today) and derived 
this important result. Bromwich died at the age of 44 and his result was unnoticed 
until J.R. Carson and H. Jeffrey made it well known. 
 Suppose that we want to evaluate the following integral (i.e., definition of 
Laplace transform):  

 
0

( ) [ ( )] ( ) ,stF s L f t e f t dt  (11.6) 

 To solve for f(t) in (11.6) or to derive (11.5), we can consider the following 
complex Fourier transform: 

 1( ) [ ( ) ]
2

cx i x i t cte f x e e e f t dt d  (11.7) 

The transform will be discussed more in the next section. If we impose the 
condition that 
 ( ) 0, for 0,f x x  (11.8) 
using (11.8), we have (11.23) becoming  
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0

1( ) [ ( ) ]
2

cx i x i t cte f x e e e f t dt d  (11.9) 

Now, c is an arbitrary constant and we want to choose its value such that c will give 
the limit of convergence of the solution or c will be larger than the real part of all 
singularities of the function F(s). Mathematically, we want to choose c such that the 
following integral exists: 

 
0

( )cte f t dt  (11.10) 

Multiplying (11.9) by ecx, we get 

 ( ) ( )

0

1( ) [ ( ) ]
2

c i x c i tf x e e f t dt d  (11.11) 

Now we can apply the following change of variables: 
  s c i ,  or   ds id  (11.12) 
The limits of the outer integral will be shifted by 
 , ; ,s c i s c i  (11.13) 
With this change of variables, (11.11) can be rewritten as 

 
0

1 1( ) [ ( ) ] ( )
2 2

c i c isx st sx

c i c i
f x e e f t dt ds e F s ds

i i
 (11.14) 

This is the Bromwich contour integral, and the proof is completed. 
 We will look at a number of special cases. 
__________________________________________________________________ 
Example 11.1 Find the Laplace transform of a constant C. 
 
Solution: The Laplace transform of a constant is 

 
0

stL C Ce dt  (11.15) 

This can be solved easily by direct integration 

 
0

0

, 0

st

st

L C C e dt

Ce C s
s s

 (11.16) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 11.2 Find the Laplace transform of  

 
0

at st atL e e e dt  (11.17) 

 
Solution: This can be solved directly by integration: 
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( )

0
0

1 ,

s a t
at st at eL e e e dt

s a

s a
s a

 (11.18) 

Thus, the formula can be obtained in a straightforward manner. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 11.3 Find the Laplace transform of the cosine 

 
0

cos( ) cos( )stL at e at dt  (11.19) 

 
Solution: We have already seen from Example 11.2 that an exponential function 
can be integrated readily. We can first express the cosine function by Euler’s 
formula as 

 0

2 2

( ) 1 1 1[cos( )]
2 2

iat iat
ste eL at e dt

s ia s ia
s

s a

 (11.20) 

Note that the order of s is higher in the denominator than in the numerator, and this 
observation also applies to the former two examples. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 11.4 Find the Laplace transform of the sine 

 
0

( ) sin( ) sinstF s L at e atdt  (11.21) 

 
Solution: Although we have shown in Example 11.3 that the Laplace transform of 
the cosine can be evaluated using an exponential function via Euler’s formula. In 
general, we can also use this technique for (11.21), but we will proceed following 
integration by parts here  

 
0 0

0

( ) ( cos ) / cos

1 cos

st st

st

sF s e at a e at
a

s e at
a a

 (11.22) 

Reapplying integration by parts again, we have 

 
0 0

2

2

1( ) ( sin ) / sin

1 ( )

st sts sF s e at a e at
a a a

s F s
a a

 (11.23) 
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We observe that the unknown appears on the right hand side as well. We can put all 
unknowns on the left hand side to obtain 

 2 2( ) , 0aF s s
s a

 (11.24) 

This is the required formula. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 11.5 Find the Laplace transform of the Heaviside step function: 

 
0,

( )
1,

t c
H t c

t c
 (11.25) 

This is the Heaviside step function. 
 
Solution: Substitution of (11.25) into (11.6) gives 

 
0

( ) ( )st st

c
L H t c e H t c dt e dt  (11.26) 

This can be integrated directly as 

 1( )
cs

st st

c c

eL H t c e dt e
s s

 (11.27) 

__________________________________________________________________ 
 
One of the main applications of the Laplace transform is to solve ODEs. Similar to 
the Fourier transform, the Laplace transform can convert differentiation to an 
algebraic equation. In particular, we can find the following transform of 
differentiation of a function: 

 0 0

0

( ) ( )

0 (0) ( )

|st st

st

dfL f t e f t se dt
dt

f s f t e dt
 (11.28) 

Therefore, we get 

 ( ) ( ) (0)df tL sF s f
dt

 (11.29) 

The process of integration by parts can be repeated to get 

 
2

2
2
( ) ( ) (0) '(0)d f tL s F s sf f

dt
 (11.30) 

 
3

3 2
3
( ) ( ) (0) '(0) ''(0)d f tL s F s s f sf f

dt
 (11.31) 

 1 2 ( 1)( ) ( ) (0) '(0) ... (0)
n

n n n n
n

d f tL s F s s f s f f
dt

 (11.32) 
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Using these formulas, we can easily convert linear ODEs to algebraic equations. 
Without going into detail, we also record the following formulas: 

 ( )( )( ) ( 1) ( 1) ( )
n

n n n n
n

d F sL t f t F s
ds

 (11.33) 

 ( ) ( )
s

f tL F u du
t

 (11.34) 

These formulas can convert ODEs with non-constant coefficients to ODEs with 
constant coefficients. 
 Before we apply to these formulas to solve ODEs, we note that 

 1 2 1 2
0 0

1 2

( ) ( ) ( ) ( )

( ) ( )

   

 

st stL c f t c g t c e f t dt c e g t dt

c L f t c L g t
 (11.35) 

This is the property of a linear operator. Similarly, we can also show that the 
inverse Laplace transform is also a linear operator. If we define F(s) as a sum of a 
number of transformed functions: 
 1 2( ) ( ) ( ) ( )nF s F s F s F s( )n ( , (11.36) 
we have 
 1 1 1

1( ) ( ) ( ) ( )nf t L F s L F s L F s11 . (11.37) 
There is also a shifting property of the Laplace transform: 

 ( )

0 0
( ) ( ) ( ) ( )ct st ct s c tL e f t e e f t dt e f t dt F s c . (11.38) 

where 
 ( ) ( )L f t F s . (11.39) 
We now consider a very powerful theorem called the convolution theorem. Consider 
the following inversion of the Laplace transform:  

 

0

( )

0

0

1 1( ) ( ) ( ) ( )
2 2

1( ) ( )
2

( ) ( )

i ist st s

i i

i s t

i

e F s G s ds e F s g e d ds
i i

g F s e dsd
i

g f t d

 (11.40) 

In obtaining (11.40), we have reversed the order of integration. Therefore, we have 

 1

0
{ ( ) ( )} ( ) ( )L F s G s g f t d  (11.41) 

This is the convolution theorem and its application is demonstrated below. 
__________________________________________________________________ 
Example 11.6 Find the inverse Laplace transform of the following function in the 
transformed space: 

 2 2 2( )
( )

aH s
s s a

 (11.42) 
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Solution: We can interpret F and G as 

 2 2 2
1( ) , ( ) aF s G s
s s a

 (11.43) 

To find the inversion, we first note that 

 1
00 0

1[ ]n n st n st n stL t t e dt t e nt e dt
s

 (11.44) 

By applying L’Hôpital’s rule repeatedly, the boundary term for t   is found to 
be identically zero: 

 
1 !lim[ ] lim lim 0

n n

st st n stt t t

t nt n
e se s e

lim
stt

limlilim  (11.45) 

Thus, we have  

 1

0 0

n n st n stnL t t e dt t e dt
s

 (11.46) 

Repeating the integration by parts n times, we obtain 

 10 0

! !n n st st
n n

n nL t t e dt e dt
s s

 (11.47) 

Applying of formula (11.47), we have 

 1
2

1!{ }L t
s

 (11.48) 

In view of this result and the result of Example 11.4, we can apply the convolution 
theorem to get 

1 1 1
2 2 2 2 0

1{ ( )} {( ) } { ( ) ( )} ( )sin( )
( )

taL H s L L F s G s t a d
s s s a

 (11.49) 

This is the required inverse of H(s) in terms of integral. 
__________________________________________________________________ 
__________________________________________________________________ 
Example 11.7 Solve the following ODE with prescribed initial conditions: 
 sin 2 , 0 2, 0 1y y t y y  (11.50) 
 
Solution: Applying the Laplace transform to both sides of the ODE, we have 

 
2

2{ } { } {sin 2 }d yL L y L t
dt

 (11.51) 

Using the results from (11.24) and (11.32), we get 
 2 2{ } (0) (0) { } {sin 2 } 2 / ( 4)s L y sy y L y L t s  (11.52) 

Letting L{y} = Y(s) and grouping terms, we get 
 2 21 ( ) (0) (0) 2 / ( 4)s Y s sy y s  (11.53) 

Substitution of the boundary conditions gives 
 2 21 ( ) 2 1 2 / ( 4)s Y s s s  (11.54) 

Solving for Y we find 
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3 2

2 2
2 8 6( )
( 1)( 4)
s s sY s
s s

 (11.55) 

Applying a partial fraction, we can divide the right hand side of (11.55) as 

 
3 2

2 2 2 2
2 8 6( )
( 1)( 4) 1 4
s s s As B Cs DY s
s s s s

 (11.56) 

Balancing terms of the numerators on both sides of (11.56), we have 

 
3 2 2 2

3 2

2 8 6 4 1

( ) ( ) (4 ) (4 )

s s s As B s Cs D s

A C s B D s A C s B D
 (11.57) 

Solving for the constants, we get 
 2, 5 / 3, 0, 2 / 3A B C D  (11.58) 
Thus, we have 

 2 2 2
2 5 / 3 2 / 3( )

1 1 4
sY s

s s s
 (11.59) 

Taking the inverse of the Laplace transform, we find 

 1 1 1 1
2 2 2
2 5 / 3 2 / 3{ ( )} { } { } { }

1 1 4
sL Y s L L L

s s s
 (11.60) 

Applying the results from Examples 11.3 and 11.4, we obtain the final result 

 5 1( ) 2cos sin sin 2
3 3

y t t t t  (11.61) 

__________________________________________________________________ 

11.2.2 Fourier Transform 

The Fourier transform is one of the most important integral transform techniques. It 
can be used to solve linear differential equations in Cartesian coordinates, and has 
been widely used in many engineering problems. For example, FFT (Fast Fourier 
Transform) is a standard technique in analyzing vibration data. There is a close 
relation between Fourier series expansion and Fourier transform. Mathematically, 
for differential equations defined for finite domain eigenvalues and eigenfunctions 
can be found and used to solve boundary value problems for such finite domain. 
These eigenvalues are discrete and not continuous. Fourier series expansion is the 
most fundamental series expansion (see Chapter 10). For the infinite domain, the 
spectrum of eigenvalues is continuous, and integral transform needs to be used. 
Fourier transform is the most important transform technique for Cartesian 
coordinates.  
 The kernel for the Fourier transform is 
 ( , ) istK s t e  (11.62) 
For this kernel, the pair of Fourier and inverse Fourier transforms are 

 1( ) [ ( )] ( ) ,
2

istF s f t e f t dt  (11.63) 
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 1 1( ) [ ( )] ( ) ,
2

istf t F s e F s ds  (11.64) 

Be cautious that there are many slightly different definitions adopted in the 
literature, mainly regarding the constant (2 )1/2.  Here are the most popular 
definitions of Fourier transform: 

 1( ) [ ( )] ( ) ,i stF s f t e f t dt  (11.65) 

where  and  are 
 2 , 1  (11.66) 
 1, 2  (11.67) 
 1, 1 (11.68) 
There are six popular choices, and we are using  = (2 )1/2 and  = 1. Look at the 
definition of the Fourier transform carefully before using any table of transforms 
prepared in textbooks or derived by others. For real functions, we can take the real 
part and imaginary part of the above transform to give the following Fourier cosine 
and sine transforms: 

 
0

2( ) [ ( )] cos( ) ( ) ,cF f x x f x dx  (11.69) 

 1

0

2( ) [ ( )] cos( ) ( )cf x F x F d  (11.70) 

 
0

2( ) [ ( )] sin( ) ( ) ,sF f x x f x dx  (11.71) 

 1

0

2( ) [ ( )] sin( ) ( )sf x F x F d  (11.72) 

They are useful in solving one-dimensional wave problems in a semi-infinite line 
subject to different boundary conditions. More detailed discussions on these 
transforms are found in Sneddon (1951), who reported their applications to solve 
vibration problems, heat conduction problems, hydrodynamic problems, nuclear 
physics, and elastic stress of 2-D or axisymmetric solids. For a table of Fourier 
transforms, readers should consult Erdelyi (1953) (i.e., Bateman Manuscript 
Project).  
 Here we will only demonstrate the technique in solving a simple PDE 
problem. Figure 11.1 shows a half-plane with a prescribed function f(x) on the 
surface on y = 0. 
 Mathematically, the problem is defined as: 

 
2 2

2
2 2( , ) 0, 0 ,u uu x y y x

x y
 (11.73) 

with boundary conditions 

 2 2( ,0) ( ), 0, asu x f x u r x y  (11.74) 
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( )f x

x

y

2 ( , ) 0u x y

The surface function f(x) and its derivative f’(x) must approach zero as r  . 
Multiplying the Laplace equation given in (11.73) by eisx and integrating with 
respect to x from  to  (or equivalently taking the Fourier transform), we get 

 
2 2 2 2 2 2

2 2 2 2 2 2
( , )[ ] [ ] [ ] [ ] [ ] 0u u u d u d U s yu

x y x dy x dy
 (11.75) 

The first term can be found by integration by parts as: 

 

2 2

2 2

2 2

[ ] [ ]

[ ] ( ) ( )

isx isx isx

isx isx

u u u ue dx e is e dx
x xx x

is ue is ue dx is U
 (11.76) 

All boundary terms vanish in view of the boundedness of the solution and its 
derivative at infinity given in (11.74). Thus, the PDE becomes an ODE as: 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.1 A half-plane satisfying the Laplace equation with a prescribed function f(x) on the 

surface 
 

 
2

2
2

( , ) 0d U s ys U
dy

 (11.77) 

Applying the Fourier transform to the boundary condition gives 
 { ( ,0)} ( ,0) { ( )} ( )u x U s f x F s  (11.78) 
The solution of (11.77) is 
 s y s yU Ae Be  (11.79) 
The boundary condition requires A = 0, and thus we have 
 s yU Be  (11.80) 
Enforcing the boundary condition given in (11.78), we obtain 
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 ( ) s yU F s e  (11.81) 
To find the solution, we are going to see that the Fourier transform of an integral 
can result in a very powerful theorem called the convolution theorem or Faltung 
theorem (such theorems also exist for other transforms discussed in this chapter): 

 1{ * ( )} { ( ) ( ) } ( ) ( )
2

isxf g x f x u g u du f x u g u du e dx  

  (11.82) 
Here the asterisk represents the integral involving the two functions. We then apply 
the following change of variables: 
  ,v x w w u  (11.83) 
It is straightforward to see that the Jacobian is 1, thus we have 

     

( )1{ * ( )} ( ) ( )
2
1 ( ) ( ) 2 ( ) ( )
2

is v w

isv isw

f g x f v g w e du dx

f v e dv g w e dw F s G s
 (11.84) 

Therefore, we get 
 1* ( ) 2 { ( ) ( )}f g x F s G s  (11.85) 
Using this idea, we can identify G(s) from (11.81). The remaining job is to find the 
following inversion: 

 

01

0

0( ) ( )

0

2 2

1{ } { }
2

1 1 1 1
2 2

2 ( )

s y isx sy isx sy

s y ix s y ix

e e e ds e e ds

e e
y ix y ix y ix y ix

y
y x

 (11.86) 

Using (11.85) and (11.86), we can express the inversion of (11.81) as 

 

1
2 2

2 2

1 2( , ) { ( ) } ( ) ( )
2

( )

s y yu x y F s e f x d
y

y f x d
y

 (11.87) 

Therefore, the problem is solved in terms of the given function f. In conclusion, we 
also find the following formulas as by-products: 

 [ ] ( ) ( )
n

n
n

d u is U s
dx

 (11.88) 

 1 1[ ( ) ( )] ( ) ( )
2

F s G s f x u g u du  (11.89) 
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 1
2 2

2{ } ( )s y ye
y x

 (11.90) 

The first one is the main reason, and it is the reason why we can convert 
differentiation to algebraic manipulation and thus solve PDEs. The second one is 
called the convolution theorem and is a very powerful technique. For the given 
example, we have yet provided the exact form of the given function f, but we have 
found a general formula for the result in terms of its integral. If the given function f 
is so complicated that we cannot integrate analytically, we can always integrate the 
resulting integral numerically. We can also generalize (without proof) here that the 
Fourier transform is applicable to PDEs formulated in the Cartesian coordinate 
system, and the variable of the problem is of infinite extent (see the range of x:  
< x < ). Therefore, the Fourier transform is suitable for solving linear PDEs with 
a domain of half-plane, half-space, full-plane, or half-space and formulated in 
Cartesian coordinates.  

11.2.3 Hankel Transform 

For potential problems that can be formulated in cylindrical coordinates, the 
Hankel transform can be applied to convey the radial dependency to algebraic 
equations. The kernel in the Hankel transform can be expressed as: 
 ( , ) ( )K s t J st t  (11.91) 
With this kernel, the resulting Hankel transform and its inversion are 

 
0

( ) [ ( )] ( ) ( ) ,F H f x xf x J x dx  (11.92) 

 1

0
( ) [ ( )] ( ) ( )F x H F F J x d  (11.93) 

Many problems in cylindrical coordinates can be solved by Hankel transform. It 
can be shown that the Hankel transform of order zero (  = 0) is equivalent to a 
double Fourier transform for axisymmetric problems in Cartesian coordinates. 
 Let us consider the application of Hankel transform to the following PDE 
(e.g., Section 4.9.2 of Chau, 2013): 

 
2 2 2

2 2 2
1( ) 0, 0m

m r
r rr r z

 (11.94) 

where m is an integer.  
 This is the Laplace equation in cylindrical coordinates for m-harmonics in 
circumferential coordinates (i.e., ) (see Figure 11.2). In particular, the Hankel 
transform pair of m are defined as: 

 
0

( , ) ( , ) ( )m m mz r r z J r dr  (11.95) 

 
0

( , ) ( , ) ( )m m mr z z J r d  (11.96) 

Substituting (11.96) into (11.94), that is, we have 
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r

z

2 0

cosm m

 
2 2 2

2 2 2 0

1( ) ( , ) ( ) 0m m
m z J r d

r rr r z
 (11.97) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.2 Cylindrical coordinates  
 
Reversing the order of differentiation and integration, we obtain 

 

2 2

2 20

2

20

( ) ( ) ( )1( ) ( , )

( , )
( ) 0

m m m
m

m
m

d J r dJ r m J r
z d

r drdr r
d z

J r d
dz

 (11.98) 

Recall that the governing equation of Jm(r ) is 

 
2 2

2
2 2
( ) ( )1 ( ) ( ) 0m m

m
d J r dJ r m J r

r drdr r
 (11.99) 

Substitution of (11.99) into (11.98) yields 

 
2

2
20

( , )
[ ( , )] ( ) 0m

m m
d z

z J r d
dz

 (11.100) 

Therefore, the bracket within the integral must be zero 

 
2

2
2
( , )

( , ) 0m
m

d z
z

dz
 (11.101) 

The solution of this ODE is easily obtained as: 
 ( , ) z z

m m mz A e B e  (11.102) 
Finally, we have the solution of the PDE in (11.90) is 

  
0

( , ) [ ] ( )z z
m m m mr z A e B e J r d  (11.103) 

The constants, of course, need to be fixed by boundary conditions. In this example, 
we are content to get the general solution for (11.94). We observe that the Hankel 
transform is applied to the Laplace equation in cylindrical coordinates of infinite 
extent. In fact, one of the main differences between eigenfunction expansion 
discussed in Chapter 10 and integral transform is that eigenfunction expansion is 
used for the finite domain whereas integral transform is applicable to the infinite 
domain. In Muki’s formulism for elastic solids in cylindrical coordinates is based 
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on the Hankel transform (e.g., Chau, 2013). In fact, many physical problems in 
cylindrical coordinates are expressible in Bessel functions via Hankel transform. 

11.2.4 Mellin Transform  

For the two-dimensional elastic and potential problem in the shape of a wedge 
formulated in cylindrical coordinates, the so-called Mellin transform is found 
useful. It also finds applications in finding the sum of infinite series, the asymptotic 
value of an integral involving a large parameter, signal analysis, and imaging 
technique. Much of the results in the book of Bleistein and Handelsman on 
asymptotic analysis of integrals is in fact based on the Mellin transform. More 
detailed discussions on asymptotic analysis of integrals will be discussed in 
Chapter 12, but we will avoid the use of the Mellin transform in Chapter 12. In 
probability theory, the Mellin transform is an important tool in studying the 
distributions of products of two random variables. In particular, the Mellin 
transform of the product of two independent random variables equals the product 
of the Mellin transforms of the two variables. The Mellin transform is closely 
related to the two-sided Laplace transform.  
 The so-called Mellin transform has been considered by Laplace and used by 
Riemann in his study of the zeta function. It was, however, Mellin who provided a 
systematic formation of the transform and its application to solve ODEs and to 
estimate the value of integrals. Thus, the Mellin transform is named after Finnish 
mathematician Hjalmar Mellin, who was a student of Mittag-Leffler and 
Weierstrass. The kernel for the Mellin transform is 
  1( , ) sK s t t  (11.104) 
The Mellin transform and its inversion are defined as: 

 1

0
( ) [ ( )] ( ) ,sF s M f x x f x dx  (11.105) 

 1 1( ) [ ( )] ( )
2

c i s

c i
f x M F s x F s ds

i
 (11.106) 

where c is a constant that it lies on the right of all singularities of the kernel 
function. With a proper change of variables, the Mellin transform can be converted 
to a two-sided Laplace transform. In particular, a two-sided Laplace transform can 
be written as: 

   [ ( )] ( ) stL g t g t e dt  (11.107) 

Let us consider the following change of variables: 

   1ln ,t x dt dx
x

 (11.108) 

Applying (11.108) to (11.107), we get 

   
0 1 1

0
[ ( )] ( ) ( ) { ( )}s sL g t f x x dx f x x dx M f x  (11.109) 

where we have defined 
   ( ln ) ( )g x f x  (11.110) 
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Thus, we have the following identity: 
   { ( ln )} { ( )} ( )L g x M f x F s  (11.111) 
Let us recall the inverse Laplace transform as 

   1( ) { ( )}
2

c i st

c i
g t L g t e ds

i
 (11.112) 

Applying (11.108) in (11.112), we find 

   ln1( ln ) { ( ln )}
2

c i s x

c i
g x L g x e ds

i
 (11.113) 

Substitution of (11.110) and (11.111) into (11.113) gives 

   1( ) { ( )}
2

c i s

c i
f x M f x x ds

i
 (11.114) 

This gives the inversion of the Mellin transform in (11.106).  
 There is a Parseval formula for the Mellin transform. To see this, let us 
assume the existence of two Mellin transforms of two functions as: 
   [ ( )] ( ), [ ( )] ( )M f x F s M g x G s  (11.115) 
We now consider the following Mellin transform: 

   

1

0

1

0

1

0

[ ( ) ( )] ( ) ( )

1 ( ) ( )
2
1 ( ) ( )

2
1 ( ) ( )

2

s

c is z

c i
c i s z

c i
c i

c i

M f x g x f x g x x dx

x g x F z x dz dx
i

F z dz g x x dx
i

F z G s z dz
i

 (11.116) 

 
Substituting s = 1, we get Parseval’s formula: 

   
0

1( ) ( ) ( ) (1 )
2

c i

c i
f x g x dx F z G z dz

i
 (11.117) 

__________________________________________________________________ 
Example 11.8 Consider the Mellin transform of the function 
 ( ) ptf t e  (11.118) 
 
Solution: The Mellin transform of f(t) is 

 1

0
[ ( )] pt sM f t e t dt  (11.119) 

This can be converted to Euler’s gamma function by using the following change of 
variables 
 ,pt d pdt  (11.120) 
Using this new variable we have  

 1

0

1 ( )[ ( )] s
s s

sM f t e d
p p

 (11.121) 
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( , ) ( )u r f r

x2 0u

( , ) ( )u r f r

2 02u

( , )r

__________________________________________________________________ 
 
One major application of the Mellin transform is of course to solve differential 
equations. Thus, we consider the following formula for taking the Mellin transform 
of the derivative of function f: 

 ( )[ ] ( 1) ( ) ( )
k

k k
kk

d f tM t s F s
dt

 (11.122) 

where (s)k is the Pochhammer’s symbol defined in Chapter 4 as: 
 ( ) ( 1) ( 1)ks s s s k(((((  (11.123) 
To derive this formula, we can apply integration by parts to the following 

 

1

0

1 ( 1) 2 ( 1)
0 0

( ) ( )[ ]

{ ( ) ( 1) ( ) }

k k
k k s

k k

k s k k s k

d f t d f tM t t t dt
dt dt

t f t k s t f t dt
 

  (11.124) 
We can drop the boundary terms if f 1/t  and 0 < Re(s) < .  Repeating the 
integration by parts k times, we obtain 

 
1

0

( )[ ] ( 1) ( 1)( ) ( )

( 1) ( ) ( )

k
k k s

k

k
k

d f tM t k s k s s t f t dt
dt

s F s

0

1st 11s

0  (11.125) 

This completes the proof. 
__________________________________________________________________ 
Example 11.9 Find the solution of the following problem of a wedge governed by 
the potential theory (see Figure 11.3): 

 
2 2

2
2 2 2

1 1 0u u uu
r rr r

 (11.126) 

 ( , ) ( )u r f r  (11.127) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.3 Wedge domain of potential theory 
 
Solution: We are expecting  
 0, ( , ) boundedr u r  (11.128) 
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 1, ( , ) , 0r u r
r
1

r
,1 ,  (11.129) 

We can first rewrite the Laplacian as  

 
2 2

2
2 2 0u u ur r

rr
 (11.130) 

Applying the Mellin transform to (11.130), we get 

 
2 2

1 2
2 20

( ) 0s u u ur r r dr
rr

 (11.131) 

Substitution of (11.122) into (11.131) gives 

 
2

2( 1) 0d Us s U sU
d

 (11.132) 

Simplification of (11.132) gives 

 
2

2
2 0d U s U

d
 (11.133) 

The general solution is 
 ( , ) ( )cos( ) ( )sin( )U s A s s B s s  (11.134) 
Boundary condition (11.127) leads to 
 ( , ) ( )U s F s  (11.135) 
Substitution of (11.134) into (11.135) leads to 
 ( , ) ( )cos( ) ( )sin( ) ( )U s A s s B s s F s  (11.136) 
 ( , ) ( )cos( ) ( )sin( ) ( )U s A s s B s s F s  (11.137) 
Solving A and B we get 

 ( )( ) , ( ) 0
cos( )

F sA s B s
s

 (11.138) 

Therefore, we have 

 ( )cos( )( , )
cos( )

F s sU s
s

 (11.139) 

Finally, we get 

 1 ( )cos( )( , )
2 cos( )

c i s

c i

F s su r r ds
i s

 (11.140) 

__________________________________________________________________ 

11.2.5 Hilbert Transform   

The Hilbert transform was proposed in 1905 by Hilbert in considering a problem 
posed by Riemann. Subsequently, it was developed by Weyl, Schur, and Riesz. The 
kernel for the Hilbert transform is 

 1 1( , )K s t
s t

 (11.141) 
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 ( )( ) [ ( )] ,
( )
f xF f x dx
x

H  (11.142) 

 1 ( )( ) [ ( )]
( )
Ff x F d

x
H  (11.143) 

where the integral is singular at x =  and in the above formulas we have taken the 
Cauchy principal value as: 

 
0

( ) ( ) ( )lim[ ]
( ) ( ) ( )
f x f x f xdx dx dx
x x x

 (11.144) 

The term Hilbert transform was coined by Hardy in 1909. As shown in Mura 
(1987), Weertman (1996) and Chau (2013), the two-dimensional dislocation pile-
up in elastic bodies can be formulated as Hilbert transform. As demonstrated in 
Broberg (1999) and Chau (2013), the two-dimensional crack problem can also be 
solved using the Hilbert transform in terms of dislocation pile-up. Its application is 
also found in Muskhelishvili’s (1975) formalist for solving two-dimensional elastic 
problems using complex variables. If the limits of the integral are finite numbers, 
we have the finite Hilbert transform (Tricomi, 1957):   

 
1

1

( )( ) [ ( )] ,
( )
f xF f y dx
x

F  (11.145) 

 
211
2 21

1 1 ( )( ) [ ( )]
( )1 1

F Cf x F d
xx x

F  (11.146) 

The proof of this result is found in Tricomi (1957). This transform arises from the 
analysis of an airfoil using aerodynamics (Tricomi, 1957), analysis of electronics 
(Nahin, 2006), and in the analysis of reflected SV waves (Ben-Menahem and 
Singh, 2000). 

11.2.6 Other Transforms 

The more popular types of integral transforms have been summarized in earlier 
sections. In order to provide a more comprehensive summary of the integral 
transform, a summary of eleven other integral transforms is given below. 
 
(i) Hartley transform 

 1( ) [ ( )] (cos sin ) ( )
2

F h f x x x f x dx  (11.147) 

 1 1( ) [ ( )] (cos sin ) ( )
2

f x h F x x F d  (11.148) 

This was proposed by Hartley in 1942 as an alternative to the Fourier transform. It 
deals with real functions exclusively, compared to the traditional Fourier transform 
using complex functions. 
 
(ii) K-transform 
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0

( ) [ ( )] ( ) ( )F K f x K x x f x dx  (11.149) 

 1 1( ) [ ( )] ( ) ( )
c i

c i
f x K F I x x F d

i
 (11.150) 

where K  and I  are the modified Bessel functions. Table of K-transform can be 
found in Erdelyi (1954). 
 
(iii) Kontorovich-Lebedev transform 

 
0

( )
( ) [ ( )] ( )i

L
K x

F K f x f x dx
x

 (11.151) 

 1
2 0

2( ) [ ( )] sin( ) ( ) ( )L if x K F K x F d  (11.152) 

where Ki  is the modified Bessel function of the second kind of imaginary order. 
This was proposed by Kontorovich and Lebedev in 1938 for solving diffraction 
problems, and further detail can be found in Lebedev et al. (1965). 
  
(iv) Mehler-Fock transform 

 1/2
0

( ) [ ( )] sinh (cosh ) ( )m
F iF M f x xP x f x dx  (11.153) 

 1
1/2

0
( ) [ ( )] tanh( ) (cosh ) ( )m

F if x M F P x F d  (11.154) 

where the kernel is the associated Legendre polynomial of the first kind of 
imaginary order. This was proposed by Mehler in 1881 and its basic theorems were 
proved by Fock in 1943. Detail can be found in Nasim (1984) and Sneddon (1972).  
  
(v) Weber-Orr transform 

 ( ) [ ( )] [ ( ) ( ) ( ) ( )] ( )O
a

F W f x x J x Y a Y x J a f x dx  (11.155) 

  1
2 20

( ) ( ) ( ) ( )
( ) [ ( )] ( )

( ) ( )O
J x Y a Y x J a

f x W F x F d
J a Y a

 (11.156) 

This was proposed by Weber in 1873 for considering problems of infinite regions 
outside a circular cylindrical hole. A similar result was re-discovered by Orr in 
1909, and thus it is also referred to as the Weber-Orr integral transform (e.g., 
Olesiak, 1990). Rigorous justification for the method was done by Watson in 1944 
and Titchmarsh in 1922.  
 
 (vi) Associated Weber transform 

      
0

( ) [ ( )] [ ( ) ( ) ( ) ( )] ( )F W f x J x Y a Y x J a xf x dx  (11.157) 

      1
2 20

( ) ( ) ( ) ( )
( ) [ ( )] ( )

( ) ( )

J x Y a Y x J a
f x W F F d

J a Y a
 (11.158) 
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The term of associated Weber transform was apparently coined by Krajewski and 
Olesiak in 1982 (Nasim, 1989). It has been found useful in thermoelastic problems 
of an infinite domain containing a circular cylindrical hole (Olesiak, 1990). 
 
 (vii) Weierstrass transform 

 
2( ) /41( ) [ ( )] ( )

4
xF W f x e f x dx  (11.159) 

 
21 ( ) /41( ) [ ( )] ( )

4
x if x W F e F i d  (11.160) 

This transform was also known as Gauss transform, Gauss-Weierstrass transform, 
or Hille transform. It is related to heat or diffusion problem.  
 
(viii) Y-transform 

 1/2

0
( ) [ ( )] ( ) ( ) ( )F y f x x f x Y x dx  (11.161) 

 1 1/2

0
( ) [ ( )] ( ) ( ) ( )f x y F x F x dH  (11.162) 

where H  is the Struve function, which is a particular solution of a 
nonhomogeneous Bessel equation. It is useful for solving problems with singular 
behavior at the axis of symmetry. This is closely related to Hankel transform. 
 
(ix) H-transform 

 1/2

0
( ) [ ( )] ( ) ( ) ( )F f x x f x x dxHH  (11.163) 

 1 1/2

0
( ) [ ( )] ( ) ( ) ( )f x F x F Y x dH  (11.164) 

The Y- and H-transforms are complementary pairs of integral transforms. 
 
(x) R-transform 

 
0

2( ) [ ( )] ( ){ cos( ) sin( )}F f x f x x h x dxR  (11.165) 

 1
2 20

2 cos( ) sin( )( ) [ ( )] ( ){ }x h xf x F F d
h

R  (11.166) 

This is for heat conduction problems with a boundary as 

 (0, , ) (0, , ) ( , )f y z hf y z y z
x

 (11.167) 

where h is the parameter prescribed in the boundary condition. 
 
(xi) Abel transform 

 
2 2

( )( ) [ ( )] 2 f x xF A f x dx
x

 (11.168) 
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(0, ) 0u y

x

y

( ,0) ( )u x f x

2 2R x y

( , ) 0u x y

 1
2 2

1 1( ) [ ( )]
x

dFf x A F d
dx

 (11.169) 

The Abel integral transform is useful for axially or spherically symmetry problems. 

11.2.7 Governing Equation of Kernel Functions  

In this section, we will illustrate how to derive the proper integral transform for a 
differential equation.  In particular, consider the following second order PDE for a 
semi-finite quarter space and boundary conditions as: 

 
2 2

2 2( ) ( ) ( ) 0, 0 ,u u ua x b x c x u x y
xx y

 (11.170) 

 (0, ) 0, ( ,0) ( )u y u x f x  (11.171) 

 2 2 , ( , ) 0R x y u x y  (11.172) 
The problem is illustrated in Figure 11.4. Multiplying (11.170) by a kernel function 
K(x, ) and integrating the result from 0 to  with respect to x, we have 

2 2

2 20
( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) 0u u uK x a x K x b x K x c x u K x dx

xx y
 

  (11.173) 

 

 

 

 

 
 

Figure 11.4 Domain of the PDE defined in (11.45)    
 
At this moment, the kernel function is the unknown of the problem. We are going 
to find what condition needs to be satisfied by K(x, ). Using integration by parts, 
the first term (11.173) can be integrated as 
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 (11.174) 

We can impose an additional constraint on the boundary conditions for K as: 

    (0, ) (0) 0, ( , ) 0uK a
x

 (11.175) 

With these constraints, we have (11.174) becoming 

      
2 2

2 20 0
( , ) ( ) [ ( , ) ( )]uK x a x dx u K x a x dx

x x
 (11.176) 

Similarly, we have the other terms being 

      
00 0

0

( , ) ( ) ( , ) ( ) [ ( , ) ( )]

[ ( , ) ( )]

uK x b x dx K x b x u u K x b x dx
x x

u K x b x dx
x

 (11.177) 

      
2 2

2 20 0
( , ) ( , )uK x dx K x udx

y y
 (11.178) 

Now we define the integral transform as 

      
0

( , ) ( , ) ( , )U y K x u x y dx  (11.179) 

In view of the decay condition as y  , we can assume U has the following form: 
      ( , ) ( ) yU y F e  (11.180) 
Substitution of (11.180) into the boundary condition given in the second equation 
of (11.171) leads to the following identity 

      
0

( ) ( , ) ( )F K x f x dx  (11.181) 

The differential equation given in (11.170) becomes 

    
2

2
20

[ ( , ) ( )] [ ( , ) ( )] ( , )[ ( ) ] 0uu K x a x K x b x K x c x dx
xx

 (11.182) 

Since u cannot be identically zero for all u, we must have 

     
2

2
2 [ ( , ) ( )] [ ( , ) ( )] [ ( ) ] ( , ) 0K x a x K x b x c x K x

xx
 (11.183) 
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Therefore, we have arrived at a differential equation for the kernel function K(x, ). 
Depending on the exact mathematical form of functions a(x), b(x) and c(x), this 
non-constant coefficient PDE is in general not easy to solve. 
 
__________________________________________________________________ 
Example 11.10 For the special case of a(x) = 1, and b(x) = c(x) = 0, find the kernel 
function K(x, ). 
 
Solution: For this special case, we have the governing equation for K(x, ) as: 

     
2

2
2 ( , ) ( , ) 0K x K x

x
 (11.184) 

The solution is clearly  
     1 2( , ) sin( ) cos( )K x A x A x  (11.185) 
Substitution of (11.185) into (11.175) yields 
     1( , ) sin( )K x A x  (11.186) 
The proper integral transform for this problem is therefore 

      
0

( , ) sin( ) ( , )U y x u x y dx  (11.187) 

Therefore, the Fourier sine transform can be used to solve the following Laplace 
equation: 

 
2 2

2 2 0, 0 ,u u x y
x y

 (11.188) 

11.3 ABEL INTEGRAL EQUATION 

 The Abel integral equation is formulated as  

        
2 20

( ) 1 ( )d t dt f
dt t

  (11.189) 

where  is the unknown to be determined. This integral is known as the Abel 
integral. The solution of it is well known and is given as 

        
2 20

2 ( )( )
sd f ds

ds s
  (11.190) 

This equation appears naturally in crack problems (e.g., Chapter 5 of Mura, 1987). 
This integral was first considered by Abel in 1923 when he studied a mass sliding 
along a frictionless curved vertical plane under the influence of gravity such that 
the arrival time at the lowest point is independent of its starting point on this curve. 
The solution is called a tautochrone curve, as in Greek tauto has the same meaning 
as iso- or equal and chrone is time. The tautochrone curve is also the 
brachistochrone (shortest time in Greek) curve. That is also the curve that takes the 
shortest time to travel to the lowest point. It is this problem that leads to the latter 
development of calculus of variations by Euler and Lagrange. 



 Integral and Integro-Differential Equations   669 

 

 In particular, Figure 11.5 shows the tautochrone problem of a sliding bead 
along a frictionless wire.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.5 Tautochrone problem of a frictionless sliding mass along a curve with the same 
arrival time independent of the starting point 

 
Using conservation of energy, we have 

        210 ( )
2

dsmgv mgy m
dt

  (11.191) 

Rearranging (11.191), we get 

        2 ( )ds g v y
dt

  (11.192) 

In obtaining (11.192), we have taken the negative sign in front of the square root in 
view of the fact that s shown in Figure 11.5 is a decreasing function of t. Integrating 
both sides, we have 

        
0

0 02 ( ) 2 ( )

T v

v

ds dsT dt
g v y g v y

  (11.193) 

Clearly, the sliding distance s is an unknown function of the shape of the unknown 
curve, and we assume   
         ( )ds F y dy   (11.194) 
where F(y) is an unknown function to be determined such that the arrival time T is 
a constant. Thus, we have  

        
0

1 ( )
2 ( )

v F y dyT
g v y

  (11.195) 

This is the Abel type of integral equation. Niels Henrik Abel was a Norwegian 
mathematician and was born in 1802 and passed away at the age of 26. Abel had 
shown that it is impossible to solve the quintic equation (5th order algebraic 
equation) in radical forms. He also discovered elliptic function, which was 
subsequently improved by Jacobi and is now called the Jacobi elliptic function (see 
Chapter 1 and Appendix D ). Independent of Galois, he also developed the group 
theory. He lived in poverty for his whole life, and passed away just two days short 
of receiving the good news from his friend Crelle (editor of Crelle’s journal) that he 
was appointed professor at University of Berlin. The renowned French 

s

( , )P u v

( , )Q x y

y

x
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mathematician Charles Hermite (the discoverer of Hermite polynomials) remarked 
on Abel’s six years of works as “Abel left mathematicians enough to keep them 
busy for five hundred years.” Another renowned French mathematician Adrien-
Marie Legendre (the discoverer of Legendre polynomials) commented, “What a 
head the young Norwegian has!” 
  We now go to back to the technical side of (11.189) and (11.190). To prove 
the validity of (11.190), we consider the following generalized Abel integral 
equation: 

        ( ) ( )
[ ( ) ( )]

x

a

g t dt f x
h x h t

  (11.196) 

where 
        0 1, a x b   (11.197) 
In addition, we consider the case that h(t) is strictly monotonically increasing and 
its first derivative is not zero for all t between a and b. Note that h(t) = t2 in 
(11.189).  
 To start the proof, we consider the following related integral: 

        1
( ) ( )( )

[ ( ) ( )]

x

a

h u f u duI x
h x h u

  (11.198) 

Substitution of (11.196) into (11.198) results in 

        
1

1

( ) ( )( )
[ ( ) ( )] [ ( ) ( )]

( )( )
[ ( ) ( )] [ ( ) ( )]

x u

a a

x x

a t

h u g t dtI x du
h x h u h u h t

h u dug t dt
h x h u h u h t

  (11.199) 

The last line of (11.199) is the result of reversing the order of integration. In 
addition, the upper limit for variable t has been set to x (instead of using u). 
 Applying the following change of variables, we get 
        2 1( ) , ( ), ( )h u h x h t   (11.200) 

       
2

( )

1 1( ) 2 1

1
2 1

( )
[ ( ) ( )] [ ( ) ( )] ( ) ( )

( ) ( )

x h x

t h t

h u ddu
h x h u h u h t

d
  (11.201) 

This integral cannot be found in most handbooks on tables of integrations, 
including Gradshteyn and Ryzhik (1980). However, the integration given in 
(11.201) can be evaluated through an integral covered in Chapter 1 and it is also 
reported on p. 118 of Whittaker and Watson (1927), In particular, we recall the 
following result from Chapter 1: 

        
1

1
0 1 sin( )

x dxI
x

  (11.202) 

Let us apply a change of variables with the new variable being y as: 

        z yx
y

  (11.203) 
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Then, the differential of x is 

        2( )
zdx dy

y
  (11.204) 

Noting that x = 0 gives y = z, and x =  gives y = , we can convert (11.202) to 

        1 1 sin( )( ) ( )

z dyI
z y y

  (11.205) 

 
This is precisely the integral we got in (11.201). Therefore, substitution of this 
result into (11.201) and (11.199) gives 

        1
( ) ( )( ) ( )

sin( ) [ ( ) ( )]

x x

a a

h u f u duI x g t dt
h x h u

  (11.206) 

Differentiating (11.206) with respect to x and using the Leibniz rule of 
differentiation on integral, we get 

        1
sin( ) ( ) ( )( )

[ ( ) ( )]

x

a

d h u f u dug x
dx h x h u

  (11.207) 

This is the solution of (11.196) and in addition we now make the following 
identifications: 
        2( ) , ( ) ( ), 1/ 2, , 0h u u g x a   (11.208) 
We finally obtain 

        
2 20

2 ( )( ) d f d
d

  (11.209) 

Integrating on both sides gives 

        
2 20

2 ( )( ) f d   (11.210) 

This completes the proof of (11.190).  

11.4 FREDHOLM INTEGRAL EQUATION 

The linear Fredholm integral equation of the first kind is defined as 

      ( ) ( , ) ( )
b

a
f x K x s s ds  (11.211) 

where  is the unknown in this equation. The linear Fredholm integral equation of 
the second kind is defined as 

  ( ) ( ) ( , ) ( )
b

a
x f x K x s s ds  (11.212) 

where f is a given continuous function,  is the unknown in this equation, and  is a 
parameter of the equation. More generally, if the unknown  does not appear in the 
integrand linearly, we have the nonlinear Fredholm integral equation of the second 
kind as 
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 ( ) ( ) [ , , ( )]
b

a
x f x K x s s ds  (11.213) 

11.4.1 Solution of the Fredholm Integral Equation of the Second Kind 

The following Fredholm formula gives the solution of (11.212)   

 ( ) ( ) ( , ; ) ( )
( )

x f x D x y f y dy
D

 (11.214) 

where the D( ) and D(x, y; ) are defined as 
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 (11.215) 
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m
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x
D x y K d d d

ym
 (11.216) 

The integrands in (11.215) and (11.216) are defined in the form of determinants 
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 (11.217) 
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 (11.218) 

Although the formula given in (11.214) is exact, the calculation of the determinant, 
evaluation of the integration, and the sum of the infinite series are very tedious 
procedures.  
 To derive Fredholm’s formula, we first divide the limit of the integral as n 
equal intervals: 
 1 2, , 2 ,..., na x a x a x a n b  (11.219) 
Then, we use the fundamental principle of integration by expressing (11.213) in the 
form of an infinite sum: 

 
1

( ) ( ) ( , ) ( )
n

n j n j
j

x f x K x x x  (11.220) 

This solution form is supposed to be valid for all x within the interval from a to b. 
Thus, we can substitute each xi defined in (11.219) into (11.220) to obtain a system 
of n equations: 
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( , ) ( ) ( ) ( ), 1,2,..., ,
n

i j n j n i i
j

K x x x x f x i n  (11.221) 

This is a system of n nonhomogeneous equations for n unknowns n(xi), where i = 
1,2,...,n. The solution of this system is unique if the determinant of coefficients in 
(11.221) is not zero. We denote the determinant of (11.221) as: 

           

1 1 1 2 1
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 (11.222) 

Next, we observe that from the theory of determinant expansion, the determinant of 
the following matrix   
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 (11.223) 

can be expanded as (see p.88 of Aitken, 1944) 

 

1 1 1 2 1

1 1 1 2 2 1 2 2 2

1
2 1 2 21 1 2 1 2

1 2

, , ,...,

...

...1 1 1det 1 ...
1! 2! ! ... ... ... ...

...

n

n

r

n

n n n n

r r r r r r
n n n

r r r r r r r r r r
n r r

r r r rr r r r r r

r r r r r r

a a a
a a a a a

S a
a a n

a a a

 

  (11.224) 
We should mention a story of Alexander Aitken here. Alexander Aitken was a New 
Zealand born mathematician, who possessed extraordinary memory. He was a PhD 
student of E.T. Whittaker at Edinburgh University, but was awarded a D.Sc. 
instead because of his outstanding thesis on data smoothing. He was known as one 
of the greatest mental calculators, and he could multiply two nine-digit numbers in 
his head in 30 seconds, and render fractions to 26 decimal places in under five 
seconds. Aitken made significant contributions to statistics and econometrics. 
 The formal proof of (11.224) will not be discussed here, however, for cases 
of n = 2 and 3 the author is advised to check its validity (see Problems 11.8 and 
11.9 set at the end of the chapter). Thus, we can write the determinant in (11.222) 
as  
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1 1 1 2

1 1
2 1 2 21 1 2

1 1 1 2 1

2 1 2 2 2

1 2

2
2

, ,

( , ) ( , )
( ) 1 ( , )

( , ) ( , )2!

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )( )...
! ... ... ... ...

( , ) ( , ) ... ( ,

n

n

n n n

n n
r r r r

n r r
r r r rr r r

r r r r r r

n
r r r r r rn

r r r r r

K x x K x x
D K x x

K x x K x x

K x x K x x K x x

K x x K x x K x x
n

K x x K x x K x
1 2, ,...,

)
n

n

n

r r r

rx

 

  (11.225) 
Now, we take the limit of   0 and n  , and replace the summation by 
integration. This turns (11.225) into 

2
1 1 1 2

1 1 1 1 2
2 1 2 2

1 1 1 2 1

2 1 2 2 2
1

1 2

( , ) ( , )
( ) 1 ( , )

( , ) ( , )2!

( , ) ( , ) ... ( , )
( , ) ( , ) ... ( , )( )... ... ... ...

... ... ... ...!
( , ) ( , ) ... ( , )

b b b

a a a

n
n b b n

n
a a

n n n n

K K
D K d d d

K K

K K K
K K K

d d
n

K K K

 

  (11.226) 
where D( ) is also known as the Fredholm determinant of the kernel K. Using 
Cramer’s rule, we can solve for (11.221) as: 

     1 1 2 2( ) ( , ) ( ) ( , ) ... ( ) ( , )
( )

( )
n n n n n

n

f x D x x f x D x x f x D x x
x

D
 (11.227) 

where Dn(x , x ) is the cofactor of the determinant Dn( ) for the term K(x ,  x ). It is 
defined as: 

        

1

1 1 11

2

2 2 2 2

1 2

2

1

, ,...,

( , ) ( , )
( , ) { ( , )

( , ) ( , )

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )( )...
( 1)! ... ... ... ...

( , ) ( , ) ... ( , )

n

n

n

n n n n

n
r

n
r r rr

r r

n
r r r r r

r r r

r r r r r

K x x K x x
D x x K x x

K x x K x x

K x x K x x K x x

K x x K x x K x x
n

K x x K x x K x x

}
n

 

  
  (11.228) 
Take the limiting form of    0 and n   such that 1D(x , x ) is redefined as: 
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12
1

1 1 1

1 23

1 1 1 1 2 1 2

2 2 1 2 2

( , ) ( , )
( , ; ) ( , )

( , ) ( , )

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ...

2!
( , ) ( , ) ( , )

b

a

b b

a a

K x x K x
D x x K x x d

K x K

K x x K x K x
K x K K d d
K x K K

 (11.229) 

For D( )  0, Fredholm inferred that the solution of (11.212) is 

 1( ) ( ) ( , ; ) ( )
( )

b

a
x f x D x f d

D
 (11.230) 

This is Fredholm’s celebrated formula, and it is a breakthrough in the analysis of 
the Fredholm type of integral equation. This is an elegant formula but the actual 
calculation of the determinant and integration may be tedious. Although 
Fredholm’s approach is kind of intuitive, its formal justification was considered by 
Hilbert in 1904 and subsequently led to the development of functional analysis, 
which will be discussed further in a later section.  
 
__________________________________________________________________ 
Example 11.11 Solve the following Fredholm integral of the second kind: 

     
1

0
( ) ( )x x xy y dy  (11.231) 

 
Solution: For this special case, we have 

     
1 2

0

1( ) 1 1 , ( , ; )
3

D d D x y xy  (11.232) 

Note for this case that only the first term in (11.229) is nonzero. The solution is 
clearly  

     
1 2

0

3 3( )
3 3

xx x xy dy  (11.233) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 11.12 Solve the following Fredholm integral of the second kind. 

     
1 2

0
( ) ( ) ( )x x xy y y dy  (11.234) 

 
Solution: For this special case, the determinants are: 

     22 1( ) 1
3 72

D  (11.235) 

     2 2 2 21 1 1 1( , ; ) ( ) ( )
2 3 3 4

D x y xy y xy xy y y  (11.236) 

The solution is clearly  

     2
2

18 24( ) ( )
72 48

x xx x  (11.237) 

__________________________________________________________________ 
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11.4.2 Solution of the Fredholm Integral Equation of the First Kind 

Note from (11.214) that we must have D( )  0. For the case D( ) = 0, suppose 
that its roots are called eigenvalues and denoted as: 
 1 2, ,..., ,n n  (11.238) 
It corresponds to the following eigenvalue problem: 

 ( ) ( , ) ( )
b

j j j
a

x K x d  (11.239) 

where j (j = 1,2,...,n) is the eigenfunction. This so-called eigenvalue problem 
defined in (11.239) can be considered as a generalization of the traditional 
eigenvalue problem for a matrix. This eigenfunction has been normalized as: 

 2{ ( )} 1
b

j
a

d  (11.240) 

It can be shown that these eigenfunctions are orthogonal in the sense that 

 ( ) ( )
b

i j ij
a

x d  (11.241) 

Note that (11.241) is actually the homogeneous form of the original Fredholm 
equation given in (11.212). We will see in a later section that (11.241) is actually 
the inner product defined for the Hilbert space.  
 With this eigenfunction, we are now ready to establish the solution of the 
following Fredholm integral equation of the first kind: 

      ( ) ( , ) ( )
b

a
f x K x s s ds  (11.242) 

The solution can be established using the so-called Hilbert-Schmidt theorem. In 
essence, this theorem asserts that both f(x) and (x) can be expanded in a Fourier 
series expansion in the eigenfunction j: 

      
1

( ) ( )n n
n

f x a x  (11.243) 

      
1

( ) ( )n n
n

x b x  (11.244) 

Multiplying both sides of (11.243) by m(x) and integrating from a to b gives 

      
1

( ) ( ) ( ) ( )
b b

m n m n m
a a

n

f x x dx a x x dx a  (11.245) 

The last part of (11.245) is a consequence of the orthogonal property of the 
eigenfunctions given in (11.241). Thus, we have 

      ( ) ( )
b

m m
a

a f x x dx  (11.246) 

Substitution of (11.244) and (11.243) into (11.242) gives 

       
1 1

( ) ( , ) ( )
b

n n n n
a

n n

a x b K x s s ds  (11.247) 

In view of (11.239), we have 
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       ( , ) ( ) ( , ) ( )
b b

n n n n n
a a

a K x d b K x s s ds  (11.248) 

This gives 
       n n nb a  (11.249) 
Therefore, the solution of the Fredholm integral equation of the first kind is 

      
1

( ) ( )n n n
n

x a x  (11.250) 

This solution is analogous to the eigenfunction expansion discussed in Chapter 10.  

11.5 FREDHOLM ALTERNATIVE THEOREM 

There is a major by-product of Fredholm’s formula discussed in Section 11.4.1. 
We recall that the solution is valid only if D( )  0. For the case D( ) = 0, it is an 
eigenvalue problem of the following problem: 

 ( ) ( , ) ( )
b

a
u x K x u d  (11.251) 

This is actually the homogeneous equation of (11.212). If the kernel function is a 
square integrable function: 

 2( , )
b b

a a
K x d dx , (11.252) 

the following theorem can be established.  
 In particular, for D( )  0 there will be no solution for the eigenvalue 
(11.251). For D( ) = 0, we have an infinite number of roots called eigenvalues: 
 1 2, ,..., ,n n  (11.253) 
This  is also called the characteristics of kernel K(x, ) and the set of roots of D( ) 
= 0 is called the spectrum of kernel K(x, ). The solutions of (11.251) 
corresponding to the eigenvalues i are called eigenfunctions or characteristic 
functions: 
 1 2, ,..., ,nu u u u n  (11.254) 
The general solution of (11.251) is 
 1 1 2 2( ) ( ) ( ) ... ( ),n nu x c u x c u x c u x n  (11.255) 
Fredholm defined an associated integral equation as: 

 ( ) ( , ) ( )
b

a
u x K x u d  (11.256) 

Note that this is also the adjoint problem of the original integral (11.251). 
Corresponding to the eigenvalues given in (11.230), the characteristic functions of 
the adjoint equation in (11.256) are 
 1 2( ), ( ),..., ( )nx x x  (11.257) 
Then, the condition of having the solution of the nonhomogeneous form of 
Fredholm integral equation given in (11.242) is: 

 ( ) ( ) 0
b

i
a

x f x dx  (11.258) 
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This is called the Fredholm alternative theorem, and if it is satisfied, the Fredholm 
equation in (11.242) is solvable. This is related to the existence of a solution of a 
nonhomogeneous equation, and thus it is a very important and powerful theorem in 
the theory of integral equations. In fact, the Fredholm alternative theorem can also 
be applied to investigate the existence of nonhomogeneous ODEs (e.g., Boyce and 
DiPrima, 2010).  

11.6 ADJOINT INTEGRAL EQUATION  

Let us formally define the adjoint integral equation. Let us consider an integral 
equation defined symbolically as: 
 ( ) [ ( )]g x I f x  (11.259) 
where I is an integral operator. For example, the linear integral operator can be 
defined: 

 ( ) ( , ) ( )
b

a
g x K x f d  (11.260) 

The corresponding adjoint problem is defined as: 

 [ ( )] ( , ) ( )
b

a
I f x K x f d  (11.261) 

The adjoint problem has to be studied by employing the following definition of the 
inner product defined by Hilbert as: 

 1 2 1 2[ , ] ( ) ( )
b

a
f f f f d  (11.262) 

Note that the concept of the inner product is an important ingredient of the 
functional space concept. Of course, the inner product defined by Hilbert is for the 
so-called Hilbert space (or Hilbert functional space). In fact, the functional analysis 
or sometimes referred to as abstract space analysis in the last hundred years was 
initiated by Hilbert’s studies related to the Fredholm integral equation. More 
discussions on this are presented in a later section. 
 Then, the adjoint integral operator of an integral operator I is defined by 
 1 2 1 2[ ( ), ] [ , ( )]I f f f I f  (11.263) 
where the superimposed bar indicates the adjoint integral operator. For a self-
adjoint integral equation, we require: 
 1 2 1 2[ ( ), ] [ , ( )]I f f f I f  (11.264) 
with zero boundary terms. This leads to  

 1 2 1 2( , ) ( ) ( ) ( , ) ( ) ( )
b b b b

a a a a
K x f f x d dx K x f x f d dx  (11.265) 

Consequently, the conditions of the self-adjoint integral equation leads to 
 ( , ) ( , )K x K x  (11.266) 
Similar to the self-adjoint differential equation, the corresponding eigenvalue of the 
self-adjoint integral equation has real eigenvalue i and eigenfunctions i. In 
addition, the eigenfunctions are orthogonal.  
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11.7 VOLTERRA INTEGRAL EQUATION 

11.7.1 Volterra Integral Equations of the First and Second Kinds 

In this section, we will consider a special case of the Fredholm equation. If the 
upper limit is not the constant b, instead the upper limit becomes x. We have the 
linear Volterra integral equation of the first kind 

 ( ) ( , ) ( )
x

a
f x K x s y s ds  (11.267) 

Similarly, the linear Volterra integral equation of the second kind is defined as 

 ( ) ( ) ( , ) ( )
x

a
y x f x K x s y s ds  (11.268) 

More generally, the nonlinear Volterra integral equation of the second kind can be 
defined as 

 ( ) ( ) [ , , ( )]
x

a
y x f x K x s y s ds  (11.269) 

We observe that the only difference between Fredholm and Volterra integral 
equations is the upper limit. In particular, if the kernel function in (11.245) or 
(11.212) is defined as 

 
( , ) 0,

0, ,
K x s s x

x s
 (11.270) 

when (11.270) is substituted into (11.211) and (11.212), (11.267) and (11.268) are 
recovered as a special case. It is illustrated in Figure 11.5.  
 Despite the similarity between the Fredholm integral equation and the 
Volterra integral equation, there is a major difference between them. In particular, 
if f and K in (11.267) and (11.268) are continuous, there is a unique solution for the 
linear nonhomogeneous Volterra integral equation of the second kind. However, 
for a linear nonhomogeneous Fredholm integral equation of the second kind to 
have a unique solution, the Fredholm alternative theorem must be satisfied.  

11.7.2 Liouville-Neumann or Picard Successive Approximation 

Historically, Volterra’s solution of the linear Volterra-type integral equation of the 
second kind was obtained in 1896 and 1897, and, thus, preceded Fredholm’s 
solution. Let us consider the solution scheme by Volterra, which was obtained by 
the idea of successive iteration (p. 1057 of Kline, 1972). In particular, Volterra 
assumed that the solution can be expressed as an infinite sum as: 

 
1

( ) ( ) ( )p
p

y x f x f x  (11.271) 

where every term in the infinite series is an integral defined as: 
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sba x

( , ) ( )K x s u s

Fredholm 
Volterra 

 

1

2 1

1

( ) ( , ) ( )

( ) ( , ) ( )

...

( ) ( , ) ( )

x

a
x

a

x
n n

a

f x K x y f y dy

f x K x y f y dy

f x K x y f y dy

 (11.272) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11.6 Domain of integrand of Fredholm and Volterra type integrals    

 
The first integral depends on the given function f, whereas the second integral 
depends on the result of the first integral, and so on. Stakgold (1967) called this 
infinite series given in (11.271) the Neumann series, which was used by Neumann 
for many years before it was published in 1877. The first publication of using this 
kind of series was by Liouville in 1832 and 1837. Therefore, some researchers 
called it the Liouville-Neumann series. The same idea was published again in 1890 
by Picard and he established the formulation in a general and widely applicable 
form (Tricomi, 1957). Therefore, it was also called the Picard process of 
successive approximation. Apparently, the most popular adopted name is Picard’s 
method of successive approximation.  
 Now, substitution of (11.272) into (11.271) and then the result into the right 
hand side of (11.268) gives 

 ( ) ( ) ( , ) ( )
x

a
y x f x R x s f s ds  (11.273) 

where R(x,s) is called the resolvent kernel (versus the kernel K(x,s)) and is defined 
as 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ...
b b b

a a a
R x s K x s K x r K r s dr K x r K r w K w s drdw  

  (11.274) 
This result can also be recast into a slightly different form: 
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1

( ) ( ) ( , ) ( )
x

j
a

j

y x f x K x s f s ds  (11.275) 

where 
 1( , ) ( , )K x s K x s  (11.276) 

 1( , ) ( , ) ( , )
x

j j
a

K x s K x v K v s dv  (11.277) 

In order for this solution to be valid, we must require that the kernel function K(x,s) 
be bounded.  
 If the kernel function is of convolution form (i.e., K(x,s) = K(x s)), the linear 
Volterra integral equation can be solved by using the Laplace transform. This will 
be discussed in Section 11.7.5 and illustrated in Example 11.16.  
 
__________________________________________________________________ 
Example 11.13 Solve the following integral equation by Picard’s iterative method: 

     
0

( ) 1 ( ) ( ) , (0) 1
t

y t t x y s ds y  (11.278) 

 
Solution: We can start with the boundary condition as the first approximation 
     0 (0) 1y y  (11.279) 
Then, the second approximation is 

     2
1

0

11 ( ) 1
2

t
y t s ds t  (11.280) 

The third approximation is 

     

2
2 1

0 0

2 3

0 0

11 ( ) ( ) 1 ( )(1 )
2

1 11 (1 ) ( )
2 2

t t

t t

y t s y s ds t s s ds

t s ds s s ds
 (11.281) 

Carrying out the integration, we find 

     2 4
2

1 11
2 24

y t t  (11.282) 

If we continue the process, we find 

     2 31 11 ... cos
2! 4!

y t t t  (11.283) 

This is also the exact solution.  
________________________________________________________________ 

11.7.3 Solution of Volterra Integral Equation of the First Kind 

For the solution of the linear Volterra integral equation of the first kind, we find 
that we can actually convert it to the Volterra integral of the second kind such that 
the above iterative solution scheme proposed by Volterra applies. In particular, 
rewrite the linear Volterra integral equation of the first kind as 
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 ( ) ( , ) ( )
x

a
g x H x s y s ds  (11.284) 

Differentiation of both sides with respect to x and application of the Leibniz rule of 
differentiation on integral gives 

 ( , )( ) ( , ) ( ) ( )
x

a

H x sg x H x x y x y s ds
x

 (11.285) 

If the kernel H(x,x) is not zero, we can rearrange the equation as 

 ( ) 1 ( , )( ) ( )
( , ) ( , )

x

a

g x H x sy x y s ds
H x x H x x x

 (11.286) 

This is, in fact, the Volterra integral equation of the second kind if we make the 
following identifications: 

 ( ) 1 ( , )( ) , ( , )
( , ) ( , )

g x H x sf x K x s
H x x H x x x

 (11.287) 

Thus, we know how to solve it. 
__________________________________________________________________ 
Example 11.14 Solve the following Fredholm integral equation 

     
0

( ) ( ) ( )
x x yx e y dy f x  (11.288) 

 
Solution: Using (11.275), for this special case we have the first kernel K1(x, ) as: 
     ( , ) x y x yK x y e e e  (11.289) 
The second kernel given in (11.277) is  

     2 ( , ) ( )
x xx z z y x y x y

y y
K x y e e dz e dz e x y  (11.290) 

Substitution of (11.290) into (11.277) yields 

    
2

3
( )( , ) ( ) ( )

2

x xx z z y x y x y

y y

x yK x y e e z y dz e z y dz e  (11.291) 

Substitution of (11.291) into (11.277) again gives 

 
3

2 2
4

1 1 ( )( , ) ( ) ( )
2 2 3!

x xx z z y x y x y

y y

x yK x y e e z y dz e z y dz e  (11.292) 

Obviously, we can generalize the observation from (11.289) to (11.292) to  

 1
( )( , ) ( 0,1,2,...)

!

n
x y

n
x yK x y e n

n
 (11.293) 

Substitution of (11.293) into (11.274) gives   

    (1 )( )
1

0 0

( )( , ; ) ( , )
!

n n
n x y x y

n
n n

x yR x y K x y e e
n

 (11.294) 

Using this result, we finally get 

 (1 )( )

0
( ) ( ) ( )

x x yx f x e f y dy  (11.295) 

________________________________________________________________ 
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Two particular forms of kernels are of particular interest because of their physical 
significance and because of the easiness of solving these particular cases. They are 
the separable kernel (or called Pincherle-Goursat kernel) and the convolution type 
kernel.   

11.7.4 Volterra Integral Equation with Separable Kernel 

The kernel of the Volterra integral equation is called separable if the following 
equation is satisfied: 
 ( , ) ( ) ( )K t s p t q s  (11.296) 
Substitution of (11.296) into the Volterra integral equation of the second kind 
given in (11.268) leads to 

 ( ) ( ) ( ) ( ) ( )
x

a
y x f x p x q s y s ds   (11.297) 

This can be rewritten as 
 ( ) ( ) ( ) ( )y x f x p x Y x  (11.298) 
where 

 ( ) ( ) ( )
x

a
Y x q s y s ds   (11.299) 

Now, we can differentiate (11.299) with respect to x to give 

 ( ) ( ) ( )dY x q x y x
dx

  (11.300) 

Substitution of (11.298) into (11.300) leads to the following first order ODE for 
Y(x): 

 ( ) ( ) ( ) ( ) ( ) ( )dY x q x f x q x p x Y x
dx

  (11.301) 

This is the general linear form of the first order ODE and can be solved readily. We 
will illustrate this solution method in the following example. 
__________________________________________________________________ 
Example 11.15 Solve the following Volterra integral equation of the second kind 
with separable kernel: 

     
0

( ) 2 ( )
t

y t t ts y s ds  (11.302) 

 
Solution: Let us define: 

     
0

( ) ( )
t

Y t s y s ds  (11.303) 

Substitution of (11.303) into (11.302) gives 
     ( ) 2 ( )y t t tY t  (11.304) 
Differentiation of (11.304) with respect to t gives 
     ( ) 2 ( )Y t t y t tY t  (11.305) 
The solution of the corresponding homogeneous ODE of (11.305) is 
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2

( ) t
hY t Ce  (11.306) 

Using the procedure of variation of parameters, we seek    
     

2
( ) ( ) tY t C x e  (11.307) 

Substitution of (11.307) into (11.305) gives an equation for C and the solution of 
(11.305) is 

     
2 2

1
1( ) (1 )
2

t tY t e C e  (11.308) 

From the definition of (11.302), we have 
     (0) 0Y  (11.309) 
Using this boundary condition for Y, we obtain 

     
21( ) (1 )

2
tY t e  (11.310) 

Finally, back substitution of this Y into (11.303) gives the solution of (11.302): 
     

2
( ) ty t te  (11.311) 

__________________________________________________________________ 
 
 More generally, Tricomi (1957) called the following separable kernel as the 
Pincherle-Goursat kernel  

 
1

( , ) ( ) ( )
n

k k
k

K x y X x Y y  (11.312) 

It was shown that for this case the solution of the Volterra integral equation can be 
converted to solving a system of linear algebraic equations. The details are found in 
Tricomi (1957). 

11.7.5  Volterra Integral Equation of Convolution Type 

The second special form of the Volterra integral equation of the second kind that 
can be solved easily is the convolution type kernel. That is, 
 ( , ) ( )K t s K t s  (11.313) 
The argument in the kernel only appears as the difference between t and s. For such 
cases, the Laplace transform can be used to solve the integral equation. In 
particular, we have  

 ( ) ( ) ( ) ( )
x

a
y x f x K x s u s ds   (11.314) 

If the Laplace transforms of two functions f1 and f2 exist, we have 
 1 1 2 2( ) { ( )}, ( ) { ( )}F s L f x F s L f x   (11.315) 
The convolution product is defined as: 

 1 2 2 1 1 2
0

( )( ) ( )( ) ( ) ( )
x

f f x f f x f x t f t dt  (11.316) 

By the convolution theorem for the Laplace transform, we have 
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 1 2 1 2 1 2
0

{( )( )} { ( ) ( ) } ( ) ( )
x

L f f x L f x t f t dt F s F s  (11.317) 

It is clear that the integral in (11.314) is of the convolution type, thus (11.317) can 
be applied to (11.314). We will illustrate this method by the following example. 
 
__________________________________________________________________ 
Example 11.16 Solve the following integral equation of convolution type by using 
the Laplace transform: 

     
0

( ) 1 2 cos( ) ( )
t

y t t u y u du  (11.318) 

 
Solution: Applying the Laplace transform and convolution theorem, we get 

     
0

{ ( )} {1} 2 { cos( ) ( ) } {1} 2 {cos } { ( )}
t

L y t L L t u y u du L L t L y t (11.319) 

Using the table of Laplace transforms, we obtain 

     2
1( ) 2( ) ( )

1
sY s Y s

s s
 (11.320) 

Solving for Y(s), we obtain 

     
2

2
1( )

( 1)
sY s

s s
 (11.321) 

Application of partial fraction gives 

     2
1 2( )

( 1)
Y s

s s
 (11.322) 

Taking the inverse Laplace transform, we obtain 

     
1 1 1

2
1 2( ) { ( )} { } { }

( 1)

1 2 t

y t L Y s L L
s s

te

 (11.323) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 11.17 Solve the following integral equation of convolution type using the 
Laplace transform: 

     
0

( )t y u du t
t u

 (11.324) 

 
Solution: Applying the Laplace transform and convolution theorem, we get 

     
0

( ){ } { }
t y uL du L t

t u
 (11.325) 

Noting that  

     3/2 3/2 1/2
(3 / 2) 1{ } , { }

2
L t L

s s t s
, (11.326) 

substitution of (11.326) into (11.325) gives 
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     1/2 3/2
1{ ( )} { } ( )

2
L y t L Y s

t s s
 (11.327) 

Thus, we have 

     1( )
2

Y s
s

 (11.328) 

Note that the following inversion formulas for the Laplace transform 

     1 11 1{ } 1, ( ) { ( )}
(1)

L y t L Y s
s

 (11.329) 

Taking the inverse Laplace transform of (11.328), we obtain 

     1( )
2

y t  (11.330) 

__________________________________________________________________ 

11.8 FUNCTIONAL ANALYSIS AND VECTOR SPACE  

In this section, we continue to discuss the work of Volterra, Fredholm, and Hilbert 
and its subsequent development into functional analysis. The term functional 
analysis was coined by Levy. We recall from the previous section that in our 
discussion on the Fredholm alternative theorem we needed to introduce the concept 
of the inner product (in terms of integration), adjoint integral equation, the 
orthogonality between the nonhomogeneous terms and the eigenfunctions of the 
adjoint problem. In fact, the inner product and orthogonal properties are the main 
assumptions in the analysis of Hilbert, and functions that satisfy such conditions 
(plus some more standard operational requirements of the inner product, definition 
of norm, and convergence requirements) are said to form the Hilbert space. Such 
functional analysis mainly deals with the existence of the solution (similar to the 
role of the Fredholm alternative theorem) and is also referred to as abstract space 
analysis. Some of the major contributors to such development include Volterra, 
Hilbert, Riesz, Schmidt, Gelfand, Wiener, Fischer, Frechet, and Banach. There are 
many functional spaces being proposed, and the more notable ones include Hilbert 
space, Banach space, Schwartz space, Sobolev space, and Holder space. For 
example, the so-called Banach space does not have the orthogonal requirement 
between functions and is less strict compared with Hilbert space. In mechanics, it 
was discovered that Hilbert spaces are applicable to the analysis of quantum 
mechanics. In this context, the eigenvalues are the quantum energy levels. The 
work of Hilbert is also related to the concept of the discrete and continuous 
spectrum of the eigenvalues. It turns out that the Hilbert integral equation is a 
singular type of integral equation, and for such case the eigenvalue becomes 
continuous (at least within some interval).  

11.9 INTEGRAL EQUATION VERSUS DIFFERENTIAL EQUATION  

In 1904 and 1905, Hilbert showed that the eigenvalues and eigenfunctions of the 
following Sturm-Liouville problem 
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 [ ( ) ] ( ) 0d dup x q x u u
dx dx

 (11.331) 

subject to the boundary conditions 
 ( ) 0, ( ) 0u a u b  (11.332) 
are also the eigenvalues and eigenfunctions of the following integral equation: 

   
0

( ) ( , ) ( ) 0
x

x G x d  (11.333) 

The kernel function G(x, ) is the Green’s function of the following ODE: 

 [ ( ) ] ( ) 0d dup x q x u
dx dx

 (11.334) 

The derivative of this Green’s function G(x, )/ x has a jump of 1/p( ). In other 
words, an integral equation is a way of solving ordinary or partial differential 
equations.  
  To further investigate the relation between an ODE and an integral equation, 
we consider the following first order initial value problem: 

 ( ) ( ) ( )du a t u t b t
dt

 (11.335) 

 subject to initial condition 
 0(0)u u  (11.336) 
We note that (11.335) can be obtained by differentiating the following Volterra 
integral equation of the second kind: 

 
0

( ) ( ) ( , ) ( )
t

u t g t K t s u s ds  (11.337) 

where  

 0
0

( ) ( ) , ( , ) ( )
t

g t u b s ds K t s a s  (11.338) 

For this particular case, the kernel K is independent of t.  
 Secondly, we consider the following initial value problem model by second 
order ODE: 

 
2

2 ( ) ( ) ( )d u a t u t b t
dt

 (11.339) 

subject to initial conditions: 
 0 0(0) , (0)u u u v  (11.340) 
This equation can be obtained by differentiating the following Volterra integral of 
the second kind twice: 

 
0

( ) ( ) ( , ) ( )
t

u t g t K t s u s ds  (11.341) 

where  

 0 0
0

( ) ( ) ( ) , ( , ) ( ) ( )
t

g t u v t t s b s ds K t s t s a s  (11.342) 

Therefore, the second order ODE with non-constant coefficients given in (11.339) 
can be solved by considering the Volterra integral equation of the second kind in 
(11.341).  
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 However, if we start by differentiating a general form of Volterra integral 
equation of the second kind given in (11.341), we have 

 
0

( ) ( ) ( , )( , ) ( ) ( )
tdu t dg t K t sK t t u t u s ds

dt dt t
 (11.343) 

This is not an ODE, but instead it is a Volterra integro-differential equation (which 
will be discussed in more detail in a later section). Therefore, an ODE can be 
converted to a Volterra integral equation, whereas a Volterra integral equation of 
the second kind with arbitrary kernel K may not correspond to any ODE. 
 Consider the following n-th order ODE with initial conditions 

 
1

1 1( ) ... ( ) ( )
n n

nn n
d u d ua x a x u F x
dx dx

 (11.344) 

 ( 1)
0 1 1(0) , (0) ,..., (0)n

nu c u c u c  (11.345) 
This is equivalent to the following linear Volterra integral equations of second order: 

 
0

( ) ( ) ( , ) ( )
x

x f x K x y y dy  (11.346) 

where  
1

1 1 1 2 2 1 1 0( ) ( ) ( ) ( ) ( ) ... [ ... ] ( )
( 1)!

n

n n n n n
xf x F x c a x c x c a x c c x c a x
n

  (11.347) 

 
1

1

( )( , ) ( )
( 1)!

n m

m
m

x yK x y a x
m

 (11.348) 

Consider the following boundary value problem modelled by an ODE: 

 
2

2 ( ) ( ) ( )d w dwC x D x w F x
dxdx

 (11.349) 

 ( ) , ( )w a w b  (11.350) 
This is equivalent to the following Fredholm integral equation of the second kind 
(Zwillinger, 1997): 

 ( ) ( ) ( , ) ( )
b

a
w x h x H x w d  (11.351) 

 

( ) ( ) ( ) [ ( ) ( ) ]

[ ( ) ( )( ( ) ( ))],
( , )

[ ( ) ( )( ( ) ( ))],

x b

a a

x ah x x F d b F d
b a

x b C a C D x
b aH x
x a C b C D x
b a

 (11.352) 

Therefore, the boundary value problem can be expressed as a Fredholm integral 
equation of the second kind. 
   For multi-variable function u, we can also have the following combined or 
mixed Volterra-Fredholm integral equation of the second kind (Zwillinger, 1997): 
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0

( , ) ( , ) ( , , , ) ( , )
t b

a
u t x g t x K t s x u s d ds  (11.353) 

In contrast to the Fredholm integral equation, this mixed Volterra-Fredholm 
integral equation has a unique solution, and it can be expressed in a resolvent 
kernel as 

 
0

( , ) ( , ) ( , , , ) ( , )
t b

a
u t x g t x R t s x g s d ds  (11.354) 

__________________________________________________________________ 
Example 11.18 Find an equivalent differential equation for the following integral 
equation: 

     
0

( ) 5cos ( ) ( )
t

y t t t u y u du  (11.355) 

 
Solution: Differentiation of (11.355) with respect to t once and twice gives 

     
0

( ) 5sin ( )
t

y t t y u du  (11.356) 

     ( ) 5cos ( )y t t y t  (11.357) 
Rearrangement of (11.357) gives 
     ( ) ( ) 5cosy t y t t  (11.358) 
We can substitute t = 0 into (11.355) and (11.356), and we find the following initial 
conditions for the ODE found in (11.340): 
     (0) 5, (0) 0y y  (11.359) 
__________________________________________________________________ 

11.10 INTEGRO-DIFFERENTIAL EQUATION 

Many physical problems need to be modelled by integro-differential equation, such 
as airfoil studies, temperature variation in melted glass under heat conduction and 
heat radiation, Boltzman’s model of the distribution of particles of an ideal gas in 
an enclosure, probability of a customer’s waiting time in a queue, probability of 
brightness of a star being reduced by clouds of interstellar dust, and the theory of 
atomic scattering. Literally, it means that the unknown of the problem appears in 
derivative form as well as inside an integral in the same equation. For the case of 
one variable, a rather general form of integro-differential equation is written 
symbolically as 

 ( ) ( 1) ( )( ) ( , ( ), ,... , [ , , ( ),..., ( )] )
bn n m

a
y x f x y x y y K x s y s y s ds  (11.360) 

For n   m, (11.360) has a unique solution. The boundary conditions for (11.360) 
are 
 ( ) ( ) , 0,1,..., 1k

ky a y k n  (11.361) 
A number of more notable integro-differential equations are reported here. Integro-
differential equations may also appear in a pair of coupled systems. For example, 
the growth of two conflicting populations can be modelled by the following 
Volterra nonlinear integro-differential equation  
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 1
0

( ) ( )
tdx ax bxy x K t s y s ds

dt
 (11.362) 

 2
0

( ) ( )
tdy x xy y K t s x s ds

dt
 (11.363) 

This is a prey-predator model proposed by Volterra, taking into account heredity 
factors. The integro-differential equation of Abel is given as 

 
0

[ , , ( ), ( )] ( )
( )

x F x y y y dy f x
x y

 (11.364) 

The Darboux-Picard integro-differential equation is 

 0
0 0

( , ) ( ) ( ) ( , , , , )
x y

x yz x y x y z f u v z z z dudv  (11.365) 

Relating to airfoil analysis, Prandtl’s circulation equation is given by 

 
1

1

1 1( ) ( ) ( )dycy x d f x
x d

 (11.366) 

where the integral is taken as a Cauchy principal value. For radioactive transfer, we 
have the following partial integro-differential equation: 

 
2 1

1

( , ) 1 ( , ) 1( , ) ( , ) 0
2

r r r r d
r r

 (11.367) 

For modeling multi-electron atoms, the following Thomas-Fermi equation has been 
proposed: 

 3/2 1/2

0
( )

xdu B u t t dt
dx

 (11.368) 

We now quote the two most popular integro-differential equations, namely the 
Volterra type and Fredholm type of integro-differential equations. Mathematically, 
they are written as 

 ( ) ( ) ( ) ( , ) ( )
xn

a
u x f x K x t u t dt  (11.369) 

 ( ) ( ) ( ) ( , ) ( )
bn

a
u x f x K x t u t dt  (11.370) 

Sometimes, the Volterra and Fredholm integral equations may appear 
simultaneously in a single equation as the linear Volterra-Fredholm integro-
differential equation: 

 ( )
1 1 2 2

0
( ) ( ) ( , ) ( ) ( , ) ( )

x bn

a
u x f x K x t u t dt K x t u t dt  (11.371) 

They may also appear as a combined form in a mixed Volterra-Fredholm integro-
differential equation as: 

 ( )

0
( ) ( ) ( , ) ( )

x bn

a
u x f x K r t u t dtdr  (11.372) 

There are various techniques that we can use to solve for their solutions, such as the 
variational iterative method, Laplace transform technique, wavelet method, Taylor 
series method, Adomian decomposition method, modified Adomian decomposition 
method, and direct computation method. For details, we refer readers to the 
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excellent coverage by Wazwaz (2011) and more recent publications on this topic. 
Since the linear integro-differential equation is a special case of the nonlinear 
integro-differential equations, in the next section we will demonstrate two 
techniques via nonlinear Volterra and Fredholm integro-differential equations. 
More specifically, they are the Adomian decomposition technique for the nonlinear 
Volterra integro-differential equation and the direct computation technique for the 
nonlinear Fredholm integro-differential equation.  

11.10.1 Nonlinear Volterra Integro-Differential Equation 

If the unknown function does not appear linearly inside the integral of (11.369), it 
becomes a nonlinear Volterra integro-differential equation and is expressed as: 

 ( ) ( ) ( ) ( , ) ( ( ))
xn

a
u x f x K x t F u t dt  (11.373) 

Although there are various techniques that can give approximations to (11.373), we 
will only cover two of them, namely the Adomian decomposition method and the 
modified Adomian decomposition method. This method was discovered by George 
Adomian who was a professor at the University of Georgia and had published a 
number of books on this decomposition method. 

11.10.1.1 Adomian Decomposition Method 

We now introduce a method called the Adomian decomposition method. We can, 
in general, integrate both sides n times with respect to x to get 

 1 1{ ( )} { ( , ) ( ( )) }
x

a
u L f x L K x t F u t dt  (11.374) 

If n = 1 and a = 0 (this choice is only for the sake of simplicity), we have 

 1

0
( ) { ( , ) ( ( )) }

x
u g x L K x t F u t dt  (11.375) 

where 

 
0

( ) ( )
x

g x f t dt  (11.376) 

Next, we assume that the solution u can be decomposed in an infinite series  

 
0

( ) ( )n
n

u x u x  (11.377) 

In addition, the nonlinear integrand can be decomposed into an infinite series of 
Adomian polynomials as 

 
0

( ) ( , ) ( ( )) k
k

G u K x t F u t A  (11.378) 

where Ak are the Adomian polynomials and are defined as 

 
0 0

1 [ ( )]
!

kk
i

k ik
i

dA G u
k d

 (11.379) 
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Substitution of (11.378) and (11.379) into (11.375) gives 

 1

0
1 0

( ) ( ) { ( ) }
x

n k
n k

u x g x L A s ds  (11.380) 

Comparing each term from both sides starting with the zero order term with the 
first term on the right hand side: 
 0 ( ) ( )u x g x  (11.381) 

 1
1

0
( ) ( ) , 0

x
n nu x L A t dt n  (11.382) 

The explicit forms of these Adomian polynomials are 

    

0 0

1 1 0

2
2 2 0 1 0

3
3 3 0 1 2 0 1 0

2 2 4 ( )
4 4 0 2 1 3 0 1 2 0 1 0

( )
( )

1( ) ( )
2

1( ) ( ) ( )
3!

1 1 1( ) ( ) ( ) ( ) ( )
2! 3! 4!

iv

A G u
A u G u

A u G u u G u

A u G u u u G u u G u

A u G u u u u G u u u G u u G u

 (11.383) 

To see the physical meaning of these Adomian polynomials, we can substitute 
(11.383) into (11.378) to give 

 

0 1 2 3

0 1 2 3 0

2 2
1 1 2 1 3 2 0

3 2 2
1 1 2 1 3 1 2 3 0

2
0 0 0 0 0

( ) ...
( ) ( ...) ( ) ...

1 ( 2 2 ...) ( ) ...
2!
1 ( 3 3 6 ...) ( ) ...
3!

1( ) ( ) ( ) ( ) ( ) ...
2!

G u A A A A
G u u u u G u

u u u u u u G u

u u u u u u u u G u

G u u u G u u u G u

 (11.384) 

We see that Adomian polynomials are a Taylor series expansion about a function 
u0 instead of the traditional Taylor series expansion about a point. 
 Before we consider some examples, it is instructive to consider some 
nonlinear functional forms of G(u): 
 
Case 1:  G(u) = u2  

    

2
0 0 0

1 1 0 0 1

2 2
2 2 0 1 0 0 1 1

3
3 3 0 1 2 0 1 0 0 3 1 2

( )
( ) 2

1( ) ( ) 2
2

1( ) ( ) ( ) 2 2
3!

A G u u
A u G u u u

A u G u u G u u u u

A u G u u u G u u G u u u u u

 (11.385) 
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Case 2:  G(u) = u3  

    

3
0 0

2
1 0 1

2 2
2 0 2 0 1

2 3
3 0 3 0 1 2 1

3

3 3

3 6

A u

A u u

A u u u u

A u u u u u u

  (11.386) 

 
Case 3:  G(u) = u4  

    

4
0 0

3
1 0 1

3 2 2
2 0 2 0 1

3 3 2
3 0 3 1 0 0 1 2

4

4 6

4 4 12

A u

A u u

A u u u u

A u u u u u u u

  (11.387) 

 
Case 4:  G(u) = sin u  

    

0 0

1 1 0

2
2 2 0 1 0

3
3 3 0 1 2 0 1 0

sin
cos

1cos sin
2!

1cos sin cos
3!

A u
A u u

A u u u u

A u u u u u u u

 (11.388) 

 
Case 5:  G(u) = cos u  

    

0 0

1 1 0

2
2 2 0 1 0

3
3 3 0 1 2 0 1 0

cos
sin

1sin cos
2!

1sin cos sin
3!

A u
A u u

A u u u u

A u u u u u u u

 (11.389) 

 
Case 6:  G(u) = 0ue   

    

0

0

0

0

0

1 1

2
2 2 1

3
3 3 1 2 1

1( )
2!

1( )
3!

u

u

u

u

A e

A u e

A u u e

A u u u u e

  (11.390) 

__________________________________________________________________ 
Example 11.19 Solve the following nonlinear integro-differential equation by 
Adomian decomposition method 
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     2

0
1 ( ) , (0) 0

xdu u t dt u
dx

 (11.391) 

 
Solution: Integration on both sides and in view of (11.378) gives 

     1

0
0

{ ( ) }
x

n
n

u x L A t dt  (11.392) 

Substitution of (11.377) into (11.392) gives 

     1

0
1 0

( ) { ( ) }
x

n n
n n

u x x L A t dt  (11.393) 

Thus, we have 
     0 ( ) ( )u x g x x  (11.394) 
Application of (11.385) and (11.394) for the first term 

 
4

2 2
1 0 0

0 0 0 0 0 0
( ) ( ) ( )

12

x s x s x s xu x A t dtds u t dtds t dtds  (11.395) 

Similarly, for higher order terms we have 

 
7

5
2 1

0 0 0 0

1( ) ( )
6 252

x s x s xu x A t dtds t dtds  (11.396) 

 
10

8
3 2

0 0 0 0

5( ) ( )
336 6048

x s x s xu x A t dtds t dtds  (11.397) 

 
13

11
4 3

0 0 0 0

1( ) ( )
1008 157248

x s x s xu x A t dtds t dtds  (11.398) 

Thus, we have an approximation as 

     
4 7 10 13

...
12 252 6048 157248
x x x xu x  (11.399) 

__________________________________________________________________ 
 
Clearly, the Adomian decomposition technique can also be used to solve nonlinear 
Volterra integral equations. This is illustrated in the next example. 
__________________________________________________________________ 
Example 11.20 Solve the following nonlinear Volterra integral equation by 
Adomian decomposition method 

     2

0
( ) , (0) 0

x
u x u t dt u  (11.400) 

 
Solution: Using the Adomian decomposition method to (11.400), we obtain 

     
0

1 0

( ) ( )
x

n n
n n

u x x A t dt  (11.401) 

Comparison term by term on both sides gives 
     0 ( )u x x  (11.402) 
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 1
0

( ) ( ) , 0
x

k ku x A t dt k  (11.403) 

Direct integration of (11.403) term by term gives 

 2 3
1 0

0

1( ) ( )
3

x
u x u t dt x  (11.404) 

 5
2 0 1

0

2( ) 2
15

x
u x u u dt x  (11.405) 

 2 7
3 0 2 1

0

17( ) [2 ]
315

x
u x u u u dt x  (11.406) 

Therefore, the Adomian decomposition method gives the following approximation: 

     
3

5 72 17 ...
3 15 315
xu x x x  (11.407) 

In fact, the exact solution for this case can be shown to be  

     
3

5 72 17( ) tan ...
3 15 315
xu x x x x x  (11.408) 

Thus, the Adomian composition does converge to the exact solution. 
__________________________________________________________________ 

11.10.1.2 Modified Adomian Decomposition Method 

For certain nonlinear integro-differential equations with the nonhomogeneous term 
consisting of a series of terms, a modified Adomian decomposition method was 
proposed by Wazwaz (2011). Under certain restrictions, we may arrive at an exact 
solution due to a so-called noise term phenomenon. 
 In particular, we will illustrate this using the following nonlinear integral 
equation: 

     1 2
0

( ) ( ) ( ) ( , ) ( ( ))
x

u x f x f x K x t F u t dt  (11.409) 

Using the Adomian decomposition method, we have 

     1 2
0

0 0

( ) ( ) ( ) ( , ) ( )
x

n n
n n

u x f x f x K x t A t dt  (11.410) 

Thus, we have 
     0 1( ) ( )u x f x  (11.411) 

     1 2 0
0

( ) ( ) ( , ) ( )
x

u x f x K x t A t dt  (11.412) 

     1
0

( ) ( , ) ( ) , 1
x

k ku x K x t A t dt k  (11.413) 

We will illustrate this in the next example. 
__________________________________________________________________ 
Example 11.21 Solve the following nonlinear integral equation by modified 
Adomian decomposition method 
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     2 3 4 2

0

1 3( ) 1 3 ( ) ( )
2 4

x
u x x x x x x t u t dt  (11.414) 

 
Solution: Using the modified Adomian decomposition method by Wazwaz (2011), 
we can split the nonhomogeneous term into 

     2 3 4
1 2

1 3( ) 1 3 , ( )
2 4

f x x x f x x x  (11.415) 

Thus, we have 

     2
0 1

1( ) ( ) 1 3
2

u x f x x x  (11.416) 

     

3 4
1 0

0

3 4 2
0

0

3( ) ( ) ( )
4
3 ( ) ( )
4

x

x

u x x x x t A t dt

x x x t u t dt
 (11.417) 

Substitution of the result in (11.416) into (11.417) gives 

     

3 4 2 3 4
1

0

2 3 4 5

0

2 4 5 6

3 1( ) (1 6 8 3 )
4 4

1( 6 8 3 )
4

1 1 3 1
2 12 20 120

x

x

u x x x x t t t t dt

t t t t t dt

x x x x

 (11.418) 

Adding the first two terms, we have 

      2 2 4 5 6
0 1

1 1 1 3 1( ) ( ) ( ) 1 3
2 2 12 20 120

u x u x u x x x x x x x  (11.419) 

We see that the last term of u0 cancels the first term in u1, and these are called noise 
terms. Wazwaz (2011) discovered that when these noise terms appear, the exact 
solution may be the first two terms of u0. However, we must check this by 
substituting it into the original integral equation.  
 In particular, we assume that u is 1+3x and, thus, we have 
       2 2 2( ) (1 3 ) 1 6 9u x x x x  (11.420) 

       
2

2 3 4

0

3( )(1 6 9 )
2 4

x xx t t t dt x x  (11.421) 

Using these results, we find that (11.414) is satisfied exactly. This is called the 
noise term phenomenon.  
__________________________________________________________________ 
 
We want to emphasize that only certain types of integral equations will contain 
noise terms and will lead to the exact solution. We see that the exact solution must 
be contained in the first nonhomogeneous term f1(x). Even if there are noise terms 
in the first two terms in the solution series, it does not automatically lead to the 
exact solution. It is necessary to show that the non-canceled terms of u0(x) indeed 
satisfied the original equation. If it is not the exact solution, we have to continue 
our normal calculation for the remaining Adomian polynomials. In general, it has 
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been found that the Adomian decomposition method converges faster than the 
Picard iterative method. It can be used to solve either linear or nonlinear, and either 
an integro-differential equation or integral equation. So, it is highly recommended 
for solving Volterra type integral equations or Volterra integro-differential 
equations.  

11.10.2 Nonlinear Fredholm Integro-Differential Equation 

In this section, we consider another commonly encountered nonlinear Fredholm 
integro-differential equation: 

          ( ) ( )( ) ( ) ( , ) ( ( )) , (0) , 0 1
bn k

k
a

u x f x K x t F u t dt u b k n  (11.422) 

We will only consider the case that the kernel K(x,t) is separable or a P-G 
(Pincherle-Goursat) kernel. That is, the kernel is written as: 

 
1

( , ) ( ) ( )
n

k k
k

K x t g x h t  (11.423) 

Substitution of (11.423) into (11.422) gives 

      

( )
1 1 2 2

1 1 2 2

( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ( )) ...

( ) ( ) ( ( ))

( ) ( ) ( ) ... ( )

b bn

a a
b

n n
a

n n

u x f x g x h t F u t dt g x h t F u t dt

g x h t F u t dt

f x g x g x g x

 (11.424) 

where 

       ( ) ( ( )) , 1
b

k k
a

h t F u t dt k n  (11.425) 

We can integrate both sides of (11.424) n times to get 

             
2 1 ( 1)

1
1 1 2 2

1 1( ) (0) (0) (0) ... (0)
2! ( 1)!

{ ( ) ( ) ( ) ... ( )}

n n

n n

u x u xu x u x u
n

L f x g x g x g x
 (11.426) 

where L 1 is the n-fold integral operator. When (11.426) is substituted into 
(11.425), we will have n equations for all the constants k (k = 1,2,...,n).  
 This procedure is called the direct computation method by Wazwaz (2011), 
and it is illustrated in the next example. 
__________________________________________________________________ 
Example 11.22 Solve the following nonlinear Fredholm integro-differential 
equation by the direct computation method: 

     
2

2

0
cos ( ) , (0) 0

4
du x x xtu t dt u
dx

 (11.427) 

 
Solution: Clearly, the kernel K is separable and thus we have 
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2

cos ( )
4

du x x
dx

 (11.428) 

where 

     2

0
( )tu t dt  (11.429) 

Integrating (11.428) with respect to x and applying the boundary condition given in 
(11.427) leads to 

     
2

2sin ( )
2 8

u x x  (11.430) 

Back substitution of (11.430) into (11.429) gives an equation for . The two 
solutions for  are: 

     
2 8 3

6
96 576 96,

4 4
 (11.431) 

There two corresponding solutions for u(x), and they are 

     2
3 5 6

12 72 12( ) sin , sin ( )u x x x x  (11.432) 

Since the integro-differential is nonlinear, we can have more than one solution. 
__________________________________________________________________ 

11.11 SUMMARY AND FURTHER READING  

In this chapter, we review the concept of the integral transform, including the 
Laplace transform, Fourier transform, Hankel transform, Mellin transform, and 
Hilbert transform. It was shown that for different equations we need a different 
integral transform technique. The Abel integral equation is discussed with its 
connection to the tautochrone problem in mechanics. Fredholm integral equations 
of the first and second kinds are presented, and Fredholm’s solution is summarized. 
We also discuss the adjoint integral equation and its role in the Fredholm 
alternative theorem. The application of the Fredholm alternative theorem to 
investigate the existence of a particular solution for a nonhomogeneous integral 
equation is discussed. Volterra integral equations of the first and second kinds are 
summarized and the classical solution using the Liouville-Neumann series or Picard 
successive approximation method is presented. Two special kinds of Volterra 
integral equations are considered: separable type (that can be solved by direct 
computation) and convolution type (that can be solved by using the Laplace 
transform). The relation between the existence of a solution of the integral equation 
and functional analysis is discussed. We also discuss how to convert a differential 
equation into an integral equation, or vice versa. Finally, both linear and nonlinear 
integro-differential equations are discussed. Nonlinear Volterra integro-differential 
equations are solved using the Adomian decomposition technique, whereas 
nonlinear Fredholm integro-differential equations are solved by using the direct 
computation method for the case of separable kernels. 
 The best textbook on integral transform is Sneddon (1972). An introduction 
to integral equations can be found in Davis (1962) and Tricomi (1957). For 
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compilation of the solutions of integral equations, we refer to the comprehensive 
handbook by Polyanin and Manzhirov (2008). For more comprehensive coverage 
of integro-differential equations, we highly recommend the book by Wazwaz 
(2011). There are other types of solution techniques for solving integro-differential 
equations that are not covered in the current chapter. They include the variational 
iterative method, wavelet-Galerkin method, Taylor series method, and least square 
method. In the current chapter, for the case of the nonlinear Volterra integro-
differential, we cover the Adomian decomposition method and its modified version 
proposed by Wazwaz (2011), and for the case of nonlinear Fredholm integro-
differential we present the direct computation method if the kernel is separable.    

 11.12   PROBLEMS  

Problem 11.1 Consider the following double Fourier transform for three-
dimensional space: 

 ( )1( , , ) ( , , )
2

i x yu x y z U z e d d  (11.433) 

 ( )1( , , ) ( , , )
2

i x yU z u x y z e dxdy  (11.434) 

Applying this double Fourier transform to a three-dimensional PDE, we can 
convert simultaneously the differentiation with respect to x and y to algebraic forms 
in  and  respectively. Prove the Faltung theorem or convolution theorem for this 
double Fourier transform: 

 

( )1 ( , , ) ( , , )
2

1 ( , , ) ( , , )
2

i x yF z G z e d d

f u v z g x u y v z dudv
 (11.435) 

where F is the double Fourier transform of f: 

 ( )1( , , ) ( , , )
2

i x yF z f x y z e dxdy  (11.436) 

The function G relates to g in a similar manner. 
 
Problem 11.2 Solve the following half-space problem satisfying the Laplace 
equation by using the Fourier transform for both x and y axes (see Figure 11.7) 

 
2 2 2

2
2 2 2( , , ) 0, 0 , ,u u uu x y z z x y

x y z
 (11.437) 

with boundary conditions 

 2 2 2( , ,0) ( , ), 0, asu x y f x y u r x y z  (11.438) 
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x

y

z

( , )f x y

Ans:  

 
2 2 ( )1( , , ) ( , )

2
z i x yu x y z F e e d d  (11.439) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.7 Half-space subject to boundary condition    
 
Problem 11.3 Show that the following double Fourier transform can be converted 
to the Hankel transform of zero order: 

 1 1 2 2( )2 2
1 2 1 2 1 2

1( , ) ( )
2

i x xF f x x e dx dx  (11.440) 

That is,  

 0
0

1( ) ( ) ( )
2

F rf r J r dr  (11.441) 

where 

 2 2 2 2
1 2 1 2, r x x  (11.442) 

Hints: 
(i) Use the following change of variables 
 1 2 1 2cos , sin cos , sinx r x r  (11.443) 
(ii) Show that the area integral can be converted as (use Jacobian): 
 1 2dx dx rdrd  (11.444) 
(iii) Show that the following equality 
 1 1 2 2 cos( )x x r  (11.445) 
(iv) Show the following identity: 

 
2 cos( )

1 2
0 0

1( , ) ( )
2

i rF rf r e d dr  (11.446) 

(v) Because of the periodicity of 2  for , we must have: 
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( ) 1, 1/ 2

0, 1/ 2

t t

t

t

 
2 2cos( ) cos

0 0

i r i re d e d  (11.447) 

(vi) Note that the integral representation of the Bessel function of zero order is: 

 
2 cos

0
0

1( )
2

i rJ r e d  (11.448) 

 
Problem 11.4 Consider the Fourier transform of the following function 

 ( ), 0( )
0, 0

xte t tf t
t

 (11.449) 

Show that the result is 

 
0

[ ( )] ( ) { ( )}ptf t e t dt L t  (11.450) 

where p = x+is. Note that this is a Laplace transform of (t). Thus, this problem 
relates the Fourier transform to the Laplace transform.  
 
Problem 11.5 Find the Fourier transform of the following rectangular function 

 
1, 1/ 2

( )
0, 1/ 2

t
t

t
 (11.451) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.8 Rectangular function     
Ans:  

 1 sin( / 2)( )
/ 22
sF s

s
 (11.452) 

 
Problem 11.6 Consider the Mellin transform of the following function 

 1( )
1

f t
t

 (11.453) 

Hint: 
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(i) Use a change of variables of 

 11
1

t
x

 (11.454) 

to show that 

 
1 1

0
[ ( )] (1 ) s sM f t x x dt  (11.455) 

(ii) Note that the beta function is defined as 

 
1 1 1

0
( , ) (1 ) y xB x y t t dt  (11.456) 

and can be expressed in terms gamma function as (Lebedev, 1972): 

 ( ) ( )( , )
( )
x yB x y
x y

 (11.457) 

(iii) Recall from Chapter 4 that  

 ( ) (1 )
sin

s s
s

 (11.458) 

Ans:  

 1[ ]
1 sin

M
t s

 (11.459) 

 
Problem 11.7 Consider the Mellin transform of the following function 
 0( ) ( ) zf t H t t t  (11.460) 
Ans:  

 0[ ( )]
z st

M f t
z s

 (11.461) 

 
Problem 11.8 Show the validity of (11.224) for the case of n = 2. In particular,  
show the following 
 

(i)  11 12
11 22 11 22 21 12

21 22

1
1 ( )

1
a a

a a a a a a
a a

 (11.462) 

(ii) 11 12 22 21

21 22 12 11

a a a a
a a a a

 (11.463) 

(iii) Use the above results to show that 

 1 1 1 2

1 1
2 1 2 21 1 2

2
11 12

21 22 ,

1 11
1 2!

r r r r
r r

r r r rr r r

a aa a
a

a a a a
 (11.464) 
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Problem 11.9 Show the validity of (11.224) for the case of n = 3. In particular,  
show the following 
 

(i)    

11 12 13

21 22 23 11 22 33 11 22 21 12

31 32 33

11 33 13 31 22 33 23 32

11 22 33 12 23 31 13 21 32

13 31 22 33 21 12 11 23 32

1
1 1 ( )

1
( ) ( )

a a a
a a a a a a a a a a
a a a

a a a a a a a a
a a a a a a a a a
a a a a a a a a a

 (11.465) 

(ii) 

11 12 13 11 13 12 22 21 23

21 22 23 31 33 32 12 11 13

31 32 33 21 23 22 32 31 33

22 23 21 33 31 32 33 32 31

32 33 31 13 11 12 23 22 21

12 13 11 23 21 22 13 12 11

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

 (11.466) 

(iii) Use the above results to show that 

1 1 1 2 1 3
1 1 1 2

1 1 2 1 2 2 2 3
2 1 2 21 1 2 1 2 3

3 1 3 2 3 3

11 12 13 3 3 3

21 22 23
, , ,

31 32 33

1
1 11 1
2! 3!

1

r r r r r r
r r r r

r r r r r r r r
r r r rr r r r r r

r r r r r r

a a aa a a a a
a a a a a a a

a a
a a a a a a

  (11.467) 
 
Problem 11.10 Solve the following integral equation by Laplace transform: 

     
0

( ) 2 cos( ) ( )
t

y t t t u y u du  (11.468) 

Ans: 
     ( ) 2 2( 1) ty t t t e  (11.469) 
 
Problem 11.11 Solve the following Abel integral equation by Laplace transform: 

     2

0

( ) 1
t y u du t t

t u
 (11.470) 

Ans: 

     
1/2

2( ) {3 6 8 }
3

ty t t t  (11.471) 

 
Problem 11.12 Solve the following Abel integral equation by Laplace transform: 
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    2
1/30

( )
( )

t y u du t t
t u

 (11.472) 

Hint: Using the following identity 

     ( ) (1 )
sin

p p
p

, (11.473) 

show that 

     2 2( )
3 (1/ 3) 3

 (11.474) 

Ans: 

     
1/33 3( ) {3 2}

4
ty t t  (11.475) 

 
Problem 11.13 Find the differential equation that is equivalent to the following 
integral equation 

     2 2

0
( ) 3 4 3 ( ) ( )

t
y t t t t u y u du  (11.476) 

Ans: 
     ( ) 6 ( ) 0, (0) 4, (0) 3, (0) 2y t y t y y y  (11.477) 
 
Problem 11.14 Find the differential equation that is equivalent to the following 
integral equation 

     2

0
( ) ( 4 2) ( ) 0

t
y t t t ut u y u du  (11.478) 

Ans: 
    (3 2) ( 10) 3 0, (0) 0, (0) 0, (0) 0y t y t y y y y y  (11.479) 
 
Problem 11.15 Solve the following integro-differential equation by Laplace 
transform: 

     
0

cos( ) ( ) , (0) 1
tdy t u y u du y

dx
 (11.480) 

Ans: 

     21( ) 1
2

y t t  (11.481) 

 
Problem 11.16 Solve the following integro-differential equation by Laplace 
transform: 

     3

0
( ) ( ) 24 , (0) 0

t
y u y t u du t y  (11.482) 

Ans: 
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     3/216( )y t t  (11.483) 

Problem 11.17 Solve the following nonlinear integro-differential equation by the 
Adomian decomposition method and collect seven terms in the series  

     2

0
1 ( ) , (0) 0

xdu u t dt u
dx

 (11.484) 

Ans: 

  
4 7 10 13 16 1979 1177 ...

12 252 6048 157248 264176640 135522616320
x x x x x xu x  (11.485) 

 
Problem 11.18 Solve the following nonlinear integro-differential equation by the 
direct computation method  

     
2 1 2

0

1 ( ) , (0) 1
2

xdu ee x xu t dt u
dx

 (11.486) 

Ans: 
     2( ) , (30 10 )x xu x e e e x  (11.487) 
 
Problem 11.19 Prove the validity of (11.385) to (7.390). 
 
Problem 11.20 Solve the following ODE with non-constant coefficient by the 
Laplace transform: 

     
2

2 9 0, (0) 3, (0) 0d y dyt ty y y
dtdt

 (11.488) 

 
Hint: Refer to (11.33) and note the following result 

     1
0 2 2

1( ) { }J at L
s a

 (11.489) 

where J0 is the Bessel function of the first kind of zero order defined in Chapter 4.  
 
Ans: 
     0( ) 3 (3 )y t J t  (11.490) 
 
Problem 11.21 Solve the following ODE by the Laplace transform: 
     23 2 4 , (0) 3, (0) 5ty y y e y y  (11.491) 
 
Ans: 
     2 2( ) 7 4 4t t ty t e e te  (11.492) 
 
Problem 11.22 Apply Mellin transform to solve the following wedge problem: 
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( , ) ( )u r H R r

x2 0u2 02u

( , )r

R

 
2 2

2
2 2 2

1 1 0u u uu
r rr r

 (11.493) 

 ( , ) ( )u r H R r  (11.494) 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.9 Wedge domain of potential theory subject to finite uniform boundary conditions  
 
Ans: 

     1 cos( )( , )
2 cos( )

sc i s

c i

R su r r ds
i s s

 (11.495) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
CHAPTER TWELVE   

 

Asymptotic Expansion and Perturbation  
 

12.1 INTRODUCTION 

In this chapter, we will discuss asymptotic expansion and perturbation analysis. 
Although these two methods can be studied independently, they are related. In fact, 
asymptotic series lays the fundamentals for perturbation analysis. The method of 
asymptotic expansion has been studied since the time of Euler, and, in fact, it is one 
of major weapons of Euler. However, asymptotic series are non-convergent, and 
thus caution must be taken in using them. Nevertheless, many famous results of 
Euler were, in fact, obtained by manipulating non-convergent asymptotic series. 
Although Euler never found any problems in his analysis with non-convergent 
series, Pringsheim did find counter-examples that non-convergent series led to 
erroneous conclusions.  
 The works of Abel and Cauchy on non-convergent series led to the banishing 
of the non-convergent series by mathematicians for more than 25 years. It is the 
works by Poincaré in 1886 and Stieltjes in 1886 that refreshed the interest in 
divergent series and founded the development of asymptotic series analysis. It turns 
out that solutions expressed in terms of asymptotic series are accurate and useful if 
a finite number of terms are used, but its accuracy deteriorates as “too many” terms 
are used (because of its eventual non-convergent nature). The term “asymptotic 
series” was coined by Poincaré whereas it was called “semi-convergent series” by 
Stieltjes and “convergently beginning series” by Emde. Many mathematicians had 
studied asymptotic series, including Cesaro, Borel, Le Roy, Mellin, Mittag-Leffler, 
Van Vleck, Barnes, Hardy and Littlewood. A number of studies considered 
transforming asymptotic expansions into convergent series, including Airey, van 
der Corput, Miller, van Wijngaarden and Watson. Note that Poincaré’s theory of 
asymptotic series considered both summability of divergent series and the 
asymptotic solution of differential equations. These asymptotic solutions are useful 
in calculating planetary positions. In fact, perturbation methods using asymptotic 
series were motivated by its application in celestial mechanics. The perturbation 
theory is related to the three-body problem, which considered the perturbations of 
the motion of two bodies being influenced by the existence of a much smaller third 
body. An exact solution could not be found and series solutions of finite terms were 
formulated to obtain an approximation. The main contributors to the three-body 
problem were Euler, Clairaut, Lagrange and Laplace.     
 In considering Prandtl’s boundary layer in viscous fluids, Friedrichs in 1941 
matched the inner and outer solutions of the boundary layer. Friedrichs was a 
student of Courant and a post-doc of von Karman. This “matched asymptotic 
expansion” was popularized by the books of van Dyke in 1964 and Cole in 1968. 
The method of multiple scales was introduced by Swedish astronomer Lindstedt in 
1883 and by Poincaré in 1886 for solving problems with more than one intrinsic 
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time scale. The method of perturbation is particularly useful in obtaining accurate 
approximate solutions for nonlinear differential equations. Such approximate 
solutions provide insight into the physics and mechanics of the problem, which 
computer generated simulations cannot produce. Sometimes, it also happens that a 
different approximate solution expressed in convergent series actually converges to 
the true value much slower than a divergent asymptotic solution (as long as we are 
not too greedy on the number of terms in the divergent series) (e.g., Bleistein and 
Handelsman, 1986). 

12.2 ASYMPTOTIC EXPANSION 

12.2.1 Order Symbols 

We first introduce the so-called order symbols or Bachmann-Landau symbols, 
which were introduced by Bachmann in 1894 and popularized by Landau in 1909. 
In particular, the “big oh” and “small oh” are defined as 
 ( ), ( )f O g o  (12.1) 
where f and g satisfy the following equations respectively 

 
0 0

( ) ( )lim finite, lim 0
( ) ( )

f g  (12.2) 

where 0 is typically a small parameter larger than zero. For example, if  = 2 and 
0 = 0, we have 

 2( )f O ,  then 20
lim f k  (12.3) 

where k is a constant, and we have 

 2( )g o ,  then 20
lim 0g  (12.4) 

In other words, f contains a leading order term of 2 and g contains a leading order 
term of 3 or higher.  

12.2.2 Asymptotic Series 

Among all divergent series, a particular type is known as the asymptotic series. 
Despite the fact that this series diverges, the value of the functions can be 
calculated with a high degree of accuracy if we take the sum of a suitable number 
of terms of such series. The asymptotic series have many properties that are 
analogous to those of the convergent series. The asymptotic expansion of a 
function is denoted as  

 
0

( ) n
n

n

f z A znA znn  (12.5) 

for z  . Let us consider a particular function, which closely resembles 
exponential integral (Abramowitz and Stegun, 1964): 
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 ( )
t

z

z

ef z ze dt
t

 (12.6) 

We will now derive an asymptotic series for (12.6). Applying integration by parts, 
we get 

 
2

2

( ) { ( 1) }

1

t t t
z z

z z
z

t
z

z

de e ef z ze ze dt
t t t

eze dt
t

 (12.7) 

 We can apply integration by parts another time to (12.7) to get 

 2
3

1!( ) 1 ( 1) 2!
t

z

z

ef z ze dt
z t

 (12.8) 

Integration by parts again yields 

 3
2 4

1! 2!( ) 1 ( 1) 3!
t

z

z

ef z ze dt
z z t

 (12.9) 

Finally, repeating the process of integration by parts gives 

 
1

2 3 1 1
1! 2! 3! ( 1) ( 1)!( ) 1 ... ( 1) !

n t
n z

n nz

n ef z n ze dt
z z z z t

 (12.10) 

The last term is the error of the expansion for the first n terms. This series diverges 
for all values of z, and appears useless. However, we are going to show that it does 
give an accuracy solution if a finite number of terms are used. It was given that an 
exact convergent series of f(z) is 

 
2 2 2

( ) ( ln ...)
2 2! 3 3! 4 4!

z z z zf z ze z z  (12.11) 

where  is Euler’s constant, which is discussed in Appendix E. Numerical results of 
the sum of these series for z = 10 are compiled in Table 12.1. We see that the sum 
of the first 9 terms for f(10) in the asymptotic series given in (12.10) is 0.9158192 
and for the first 10 terms is 0.91545632. In fact, the exact value of f(10) is between 
these values. The divergent series actually converges for the first 10 terms before it 
diverges (see the result of 40 terms or more in Table 12.1). We need only 6 terms 
to achieve 3-decimal accuracy. A more accurate calculation shows that the sum is 
about 0.915633339264773. We also evaluate the sum of the exact convergent 
series given in (12.11), and these results are also compiled in Table 12.1 for 
comparison. If we take the first 9 terms, the result is totally out of order. We need 
40 terms to achieve 3-decimal accuracy. This series does converge but it converges 
very slowly compared to the asymptotic series. Therefore, we have illustrated that 
for a large value of z (in this case we use z = 10) the asymptotic series is practically 
much better than the exact series. This is the reason why the asymptotic series, even 
though it diverges, has been found very useful in getting approximate solutions. 
This observation is also true for approximate solution of differential equations in 
terms of asymptotic series. 
 In general, the following properties of asymptotic series should be noted: 
1. Operations of addition, substitution, multiplication and rising to a power can 

be performed on asymptotic series just as on absolutely convergent series. 
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2. One asymptotic series can be divided by another asymptotic series provided 
that A0 in (12.5) is not zero. The series obtained as a result of division will also 
be asymptotic. 

3. An asymptotic series can be integrated term by term, and the resultant series 
will also be asymptotic. In contrast, differentiation of an asymptotic series is, 
in general, not permissible. 

4. A single asymptotic expansion can represent more than one function. On the 
other hand, a given function can be expanded in an asymptotic series in only 
one manner. 

 
Table 12.1 Comparison of convergence asymptotic divergent series and convergent series of f (10) 
 

 f(10) 

Term Asymptotic divergent  series   Exact convergent series 

1 1.000000000 1568328.251 
2 0.900000000 3938288.198 
3 0.920000000 8298637.243 
4 0.914000000 14645597.96 
5 0.916400000 22065178.37 
6 0.915200000 28922010.97 
7 0.915920000 33511282.09 
8 0.915416000 34775132.2 
9 0.915819200 32668239.94 

10 0.915456320 28030794.99 
11 0.915819200 22133696.69 
12 0.915420032 16186401.12 
40 16252520.109560400 0.915620319 
41 65339008.215229400 0.915636379 
42 269186257.916409000 0.915632646 
43 1135819859.836470000 0.915633494 
44 4905706446.500910000 0.915633306 
45 21677009301.383600000 0.915633346 
46 97945211564.096600000 0.915633338 
47 452317004417.112000000 0.915633339 

 
When two functions are asymptotically equivalent,  
 ( ) ( )f g( )g(  (12.12) 
we mean that as   0 we have 
 ( ) ( ){1 (1)}f g o  (12.13) 
For example, we have 
 2 ,x x x,, x,  (12.14) 
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 3 , 0,,,,  (12.15) 

 2sinh ,xx e x,x x,  (12.16) 
We normally express an asymptotic sequence as 
 2

0 1 2( ) ( ) ( ) ( ) ..., 0f x f x f x f x0f0 ( )(0  (12.17) 
Whenever an asymptotic series in the form of (12.17) exists, the perturbation 
method for regular expansion can be used. In general, there are other forms of 
asymptotic sequences n for the perturbation of a function. Here are some examples 
of asymptotic sequences: 
 0 0{ ( )} ( ) ,n

n x x x x x  (12.18) 

 1{ ( )} ,n nx x
x

 (12.19) 

 1
1{ ( )} , ,

n
n n nx x

x
 (12.20) 

12.3 REGULAR PERTURBATION METHOD FOR ODE 

In this section, we consider the perturbation method for ODE. In general, three 
main steps are involved in the perturbation method: 
1. Identify a small parameter  in the original problem. 
2. Assume an expression for the solution in the form of a perturbation series and 

find the differential equation for each order of approximation of the 
perturbation series with appropriate boundary conditions. 

3. The solution of the differential equation for each order is solved accordingly. 
4. The final answer to the original ODE can be found by substituting the solution 

of each order into the assumed perturbation series. 
 
To illustrate the idea, we consider the following ODE 
 2 0y y y  (12.21) 
where  is a small parameter of the ODE. We seek the following regular 
perturbation series 
 2

0 1 2( ) ( ) ( ) ...y y x y x y x0 ( )y0 ( )  (12.22) 
Substitution of (12.22) into (12.21) yields: 

      
2 2

0 1 2 0 1 2
2

0 1 2

[ ( ) ( ) ( ) ...] 2 [ ( ) ( ) ( ) ...]

[ ( ) ( ) ( ) ...] 0

y x y x y x y x y x y x

y x y x y x 0
 (12.23) 

By collecting coefficients of different orders of , we have 
       0 0(1) : ( ) ( ) 0O y x y x  (12.24) 

       1 1 0( ) : ( ) ( ) 2 ( )O y x y x y x  (12.25) 

       
2

2 2 1( ) : ( ) ( ) 2 ( )O y x y x y x  (12.26) 
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Earth 

0v

R R

x

       1( ) : ( ) ( ) 2 ( )n
n n nO y x y x y x  (12.27) 

This set of ODEs for each level of approximation illustrates that the ODE is the 
same except that the first order does not have the nonhomogeneous term whereas 
all other nonhomogeneous terms depend on the solution of the previous solution 
(e.g., the ODE for yn depends on yn 1 for  n  1). Thus, we have to solve the 
solution order by order. 
 The ODE given in (12.21) is of course linear. In general, for nonlinear ODEs 
the situation is much more difficult. For differential equations arising from 
practical problems, the solution normally behaves well at most points of the 
domain, except at isolated singular points (such as the singularity at the origin in 
the Bessel equation). However, solutions of nonlinear differential equations possess 
a richer spectrum of singular behaviors. For linear ODEs, the singularities are fixed 
by the coefficient functions of the ODE and are independent of the choice of the 
initial or boundary conditions. They are called fixed singularities. For nonlinear 
ODEs, in addition to fixed singularities, there are also singularities that move 
around as the initial or boundary conditions vary. These are called movable 
singularities (compare Section 4.14). This makes asymptotic analysis very difficult 
for nonlinear ODEs. 
 The perturbation method for nonlinear ODEs is illustrated by the projectile 
problem considered in the next section.  

12.3.1 Projectile Problem 

In this section, we illustrate the perturbation method by considering the nonlinear 
problem of a projectile. Assume that a projectile is shooting up from the surface of 
the Earth, as shown in Figure 12.1. Using Newton’s second law, we obtain the 
equation of motion of the projectile as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.1 Projectile problem on surface of the Earth 

 
2

2 2( )
d x GmMm
dt R x

 (12.28) 
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for t > 0, where G is the universal gravitational constant, m is the mass of the 
projectile, R and M are the radius and mass of the Earth, and x is the position of the 
projectile measured from the surface of the Earth. The initial conditions are 

 0
(0)(0) 0, dxx v

dt
 (12.29) 

We note that at the ground surface the weight of the projectile can be expressed as: 

 2
GmMmg

R
 (12.30) 

Therefore, the mass of the earth M and universal gravitational constant G can be 
replaced by  
 2GM gR  (12.31) 
Substitution of (12.31) into (12.28) leads to the following differential equation 

 
2 2

2 2( )
d x gR
dt R x

 (12.32) 

For most applications, we have x << R, and (12.32) leads to the usual 
approximation of  

 
2

0
2

d x
g

dt
 (12.33) 

where x0 is used to denote the fact that the solution of (12.33) only leads to the first 
approximation of x. We recover the gravitational constant of 9.81 m/s2 on the 
surface of the Earth, but for an intercontinental missile or rocket projectile, the 
vertical distance x becomes not negligible compared to Earth’s radius R. The initial 
conditions (12.29) can be used as 

 0
0 0

0
(0) 0,

t

dx
x v

dt
 (12.34) 

Integrating (12.33) once and twice, we get 

 0dx
gt a

dt
 (12.35) 

 2
0

1
2

x gt at b  (12.36) 

By using the boundary condition given in (12.34), the unknown constants can be 
found as a = v0 and b = 0 and the final solution is 

 2
0 0

1
2

x gt v t  (12.37) 

The maximum height that the projectile reaches can be found by setting the upward 
velocity to zero in (12.35) and substituting the result in (12.37) as 

 
2
0

0 2
v

x
g

 (12.38) 

We now return to the nonlinear ODE given in (12.32). We first normalize the ODE 
by using the following normalized parameters: 
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 2
0 0

( ) ( ), ( )
c c

t gt x t x t gy
t v x v

 (12.39) 

where tc and xc are chosen such that the initial condition can be simplified. 
Substitution of (12.39) into (12.32) gives 

 
2

2 2
1

(1 )
d y
d y

 (12.40) 

where the small parameter  is defined as 

 
2
0cx v

R Rg
 (12.41) 

For the radius of the Earth being 6300 km, we have 

 
2

8 2 2 20
01.618 10 ( / )

v
v s m

Rg
 (12.42) 

If the initial velocity v0  7.86 km/s, we have   1. This is extremely difficult to 
achieve technically, so we can assume  is a small parameter. Thus, we seek the 
following asymptotic series 
 0 1( ) ( ) ...y y y0 ( )y0 ( ))  (12.43) 
where  > 0 is a parameter to be determined. Substitution of (12.43) into (12.40) 
gives 

 0 1 2
0 1

0

1( ) ( ) ...
{1 [ ( ) ( ) ..]}
1 2 ( ) ...

y y
y y

y
 (12.44) 

To balance the term of  on both sides, we must have  = 1. The initial conditions 
given in (12.34) lead to 

 0
(0)(0) 0, (0) (0) 1c c

c c c

t txy y x v
x x x

 (12.45) 

For the tc and xc defined in (12.39), we arrive at the simple form of the second 
condition given in (12.45). Collecting the constant and linear order term of , we 
get  

       0

0 0

(1) : ( ) 1,

(0) 0, (0) 1

O y

y y
 (12.46) 

       1 0

1 1

( ) : ( ) 2 ( ),

(0) 0, (0) 0

O y y

y y
 (12.47) 

The first order solution can be integrated directly from (12.46) as: 

       2
0

1( )
2

y a b  (12.48) 

Using the initial conditions, we have 

       2
0

1( ) (1 )
2 2

y  (12.49) 

Substitution of (12.49) into (12.47) and integration gives 
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       4 3
1

1 1( )
12 3

y a b  (12.50) 

Using the initial conditions given in (12.47), we get 

       3
1

1 1( ) (1 )
3 4

y  (12.51) 

Finally, we obtain a two-term asymptotic solution as 

       31 1 1( ) (1 ) (1 ) ...
2 3 4

y ( 1(1 1
2

(1(1  (12.52) 

The first term in (12.52) is the approximation for the case of a uniform 
gravitational field. This solution is only valid for 
       0 h  (12.53) 
where h is the time for the projectile to come back to the surface of the Earth. 

12.3.2 Projectile Problem with Air Resistance 

In this section, we extend the projectile problem to include the effect of air 
resistance approximately. The equation of motion of the projectile becomes: 

 
2 2

2 2 ( )( )
d x gR k dx

R x dtdt R x
 (12.54) 

Using the same normalized time and distance defined in (12.39), we have 

 
2

2 2
1

(1 )(1 )
d y dy

y dd y
 (12.55) 

where 

 0kv
gR

 (12.56) 

The definition of  given in (12.42) suggests that  is a function of . However, to 
simplify our analysis, we assume that  is a constant. The following asymptotic 
series is assumed 
 0 1( ) ( ) ...y y y0 ( )y0 ( ))  (12.57) 
Substitution of (12.57) into (12.55) gives 

 
0 1 2

0 1

0 1
0 1

1( ) ( ) ...
{1 [ ( ) ( ) ...]}

[ ( ) ( ) ...]
1 [ ( ) ( ) ...]

y y
y y

y y
y y

 (12.58) 

Using Taylor series expansion, we have 
 0 1 0 0 0 0 1( ) ( ) ... (1 ) (2 ) ...y y y y y y y  (12.59) 
The corresponding initial conditions become 
 0 1(0) (0) (0) ... 0y y y  (12.60) 

 0 1(0) (0) (0) ... 1y y y  (12.61) 
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Collecting the constant and linear order terms of , we get  

       0 0

0 0

(1) : 1,

(0) 0, (0) 1

O y y

y y
 (12.62) 

       1 1 0 0

1 1

( ) : (2 ),

(0) 0, (0) 0

O y y y y

y y
 (12.63) 

For the first order solution, we assume an exponential solution form for the 
homogeneous form as 
       0 ( ) r

hy e  (12.64) 
The corresponding characteristics equation of the homogeneous form of (12.62) 
becomes 
       ( ) 0r r  (12.65) 
The homogeneous solution becomes 
       0hy A Be  (12.66) 
Since the constant is a homogeneous solution (i.e., matching a single characteristic 
root), we assume the following particular solution form (see Section 3.3.3)  
       0 ( )py C  (12.67) 
Substitution of (12.67) into the original ODE in (12.62) gives the particular 
solution and combining the homogeneous solution with the particular solution gives  

       0
1y A Be  (12.68) 

Substitution of (12.68) into the initial conditions given in (12.62) leads to 

       1 1(1 )A B  (12.69) 

Finally, we have the first order of approximation as 

       0
1 1 1(1 ) 1y e  (12.70) 

Substitution of (12.70) into the right hand side of (12.63) gives 

    
2

2
1 1 2

1 1 (1 ) (1 ) (1 )(1 )y y e e e  (12.71) 

The homogeneous solution is again 
       1hy C De  (12.72) 
Using the method of undetermined coefficient, we assume the particular solution as 
       2 2 2

1py E F e Ge H I e  (12.73) 
Differentiation of (12.73) gives 
       2 2

1 (2 ) 2 2py E Fe I F e Ge H I e  (12.74) 
The second derivative of (12.73) gives 
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 2 2 2 2 2
1 2( ) ( 4 ) 4 2py I F e F I e Ge H I e  

  (12.75) 
Combining (12.74) and (12.75) gives 

2 2
1 1 (2 ) 2 2 2 2p py y I F e I e H E Ge H  

  (12.76) 
Equating (12.71) and (12.76) gives 

 2
2

2

1 1 (1 )2 (1 ); 2 ;

(1 ) (1 ) 12 , 2 ; 2

H E I F

I G H
 (12.77) 

This provides a system of 5 equations for 5 unknowns, and the solution of the 
system gives 

 3
2E  (12.78) 

 
2

3
1F  (12.79) 

 
2

4
(1 )

2
G  (12.80) 

 2
1

2
H  (12.81) 

 2
1
2

I  (12.82) 

Finally, the general solution is 

   
2 2

2 2 2
1 3 3 4 2 2

2 1 (1 ) 1 1
2 2 2

y C De e e e  

  (12.83) 
Substitution of these into the initial conditions leads to 

    
2

4
(1 )

2
C D  (12.84) 

    2E F D G  (12.85) 
Solving for C and D, we have 

    
2

4
7 4

2
C  (12.86) 

    4
4 3D  (12.87) 

Finally, we obtain the following second order solution 
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2 2 2
2

1 4 4 3 3 4

2 2
2 2

7 4 4 3 2 1 (1 )
2 2

1 1
2 2

y e e e

e
  (12.88) 

Combining (12.70) and (12.88), we obtain the approximation 

     

2

4 4 3

2 2
2 2 2 2

3 4 2 2

1 1 1 7 4 4 3 2{ (1 )[1 ] } {
2

1 (1 ) 1 1 } ( )
2 2 2

y e e

e e e O

1{ (11{ (1
  (12.89) 

This solution appears quite different from the case of no air resistance obtained in 
(12.52). It is not obvious that for   0 we can recover (12.52). To show this, for 
the case that the air resistance is small (i.e.,  0), we can expand the exponential 
functions as a Taylor series expansion as: 

      
2 3 4( ) ( ) ( )1 ...

2 6 24
e   (12.90) 

      
2 3 4

2 4( ) 8( ) 16( )1 2 ...
2 6 24

e   (12.91) 

Substitution of (12.90) into (12.70), we get 

       
2

2 2
0 (1 ) ( )

2
y O  (12.92) 

On the other hand, substituting (12.90) and (12.91) into (12.88) and collecting 
terms of the same order, we find that coefficients for each order are: 

     
2 2

4 4 4
7 4 4 3 (1 )(1) : 0

2 2
O   (12.93) 

     
2 2

3 3 3 3
4 3 2 1 (1 )( ) : 0O   (12.94) 

     
2 2

2
2 2 2 2 2

4 3 1 (1 ) 1 1( ) : 0
2 2 2

O   (12.95) 

     
2 2

3 4 3 1 2(1 ) 1 1( ) : (2 )
6 2 3 2 6

O   (12.96) 

     
2 2

4 24 3 1 (1 ) 1 1( ) : (2 7 4 )
24 6 3 4 24

O   (12.97) 

Using these results, (12.88) finally becomes 

 3 2 4 5 5
1

1 1(2 ) (2 7 4 ) ( )
6 24

y O   (12.98) 

Finally, for   0 and   0, we have the following asymptotic series solution: 

 
2

3 2 41(1 ) {(2 ) (2 7 4 ) } ...
2 6 4

y
2

(1
2

(
2

(1(1(1(1   (12.99) 
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0y

0 1y y

0 1( ) ( )y y

( )y

In this asymptotic form, we can set  = 0 to recover the solution obtained in the last 
section for no air resistance. 
 To illustrate the effect of a non-uniform gravitational field and the effect of 
air resistance, Figure 12.2 plots the projectile flying height versus normalized time 
for y0,  y0+ y1, and y0( )+ y1( ) (with  = 0.1 and  =0.1). We can see that the 
nonlinear effect due to  increases the maximum reached height and flight time 
(dotted line), whereas the effect due to air resistance reduces the flying height as 
well as the flight time (dashed line). This example precisely illustrates that 
asymptotic solutions can provide qualitative behavior of certain parameters in the 
problem that numerical simulations cannot provide.     

 

 
Figure 12.2 Effects of non-uniform gravitational field and air resistance on projectile maximum 

reached height and flight time for  = 0.1 and  = 0.1 

12.4 METHOD OF MATCHED ASYMPTOTIC EXPANSIONS (MMAE) 

In the last section, we have introduced the idea for regular perturbation analysis. 
However, it was discovered that for some problems the regular perturbation method 
breaks down. For such problems, there is typically a rapid change of the solution at 
one of the boundaries. This development is strongly associated with fluid 
mechanics. Prandtl in 1905 developed the theory of boundary layer for fluid 
mechanics. It was discovered that no matter how small the viscosity, there exists a 
narrow layer of fluid near the surface of a solid. The fluid within the boundary 
layer is different from the flow around the body, such that there is a rapid change of 
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the fluid field from the outer field to the inner boundary layer. The idea of a 
boundary layer for fluid mechanics was so influential that Prandtl was nominated 
for a Nobel Prize in physics (see Appendix B). It was Friedrichs in 1941 who fully 
developed the boundary layer problem systematically. In this technique, an 
asymptotic expansion is developed for the inner layer whereas another asymptotic 
expansion is developed for the outer region. The two different expansions are 
matched at the boundary region where both asymptotic expansions are valid. If a 
single expansion is used, the solution is found to be singular at the boundary point. 
Therefore, different names have been used for this perturbation technique, 
including the singular perturbation method (a term coined by Friedrichs and 
Wasow in 1946), boundary layer analysis (apparently motivated by Prandtl’s 
work), or method of matched asymptotic expansions (MMAE) (a term coined by 
van Dyke in 1964). Note that van Dyke was a PhD student of Lagerstrom at 
Caltech, and Wasow was a PhD student of Friedrichs at New York University. This 
method is powerful but is not straightforward, and we will only illustrate the idea of 
MMAE in this section. The complication that the inner and outer expansions are 
expressed in terms of different variables indeed suggests the more sophisticated 
multiple scale procedure (which will be introduced briefly in the next section). Full 
discussions of MMAE are found in more technical books on the subject by Holmes 
(1995), Bender and Orszag (1978), Lin and Segal (1988), Kevorkian and Cole 
(1981), and O’Malley (2014). Application of MMAE to shear crack in elastic 
diffusive solids was done by Rudnicki (1991).   
 Let us consider a simple problem of 

   0du u
dx

,   (0) 1u  (12.100) 

where  0. This is a linear first order ODE, and the solution can be found as 
   /( , ) xu x e  (12.101) 

Figure 12.3 plots the solution given in (12.101) as a function of various values of . 
Note that a small parameter  multiplies the higher derivative term in the 
differential equation in (12.100). This is actually a common feature for all 
problems that contain a boundary layer. 
 For a fixed x  0, we have the following limit as   0 

   
0

lim ( , ) 0u x  (12.102) 

For a fixed   0, we have the following limit as x  0  
   

0
lim ( , ) 1
x

u x  (12.103) 

As demonstrated in Figure 12.3, for small  the solution of u  0 suddenly changes 
to u = 1 as x  0. Thus, we find that 

   
0 0 0 0

lim lim ( , ) lim lim ( , )
x x

u x u x  (12.104) 

Therefore, x = 0 is considered a singular point of u for small . There is a very 
narrow boundary of solution near the singular point at x = 0. This suggests the use 
of the term “singular perturbation method,” but we will stick to the name of 
MMAE in this section. The existence of a narrow boundary suggests the use of 
“boundary layer analysis.”   
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Figure 12.3 Illustration of boundary layer type solution in (12.101) for  = 0.05, 0.2, 0.6 and 1 
 
 We will summarize the procedure of MMAE as follows: 
 
(i) Outer expansion 
 
We assume that an asymptotic expansion outside the boundary layer can be 
established as 

   
0

( , ) ( ) ( , )n n
n

u x u x f x  (12.105) 

as   0. This solution is not uniformly valid in x as    0, and it is definitely not 
valid at x = 0.  
 
(ii) Stretching transformation 
 
We want to stretch out the neighborhood of the singular point. In particular, we 
assume a new variable for the boundary layer near the singular point: 

   
( )
x   (12.106) 

where the scaling parameter  is subject to the following condition as   0: 
   (0) 0   (12.107) 

In the problem above, we have  =  or  = x/ . We can see that the solution given 
in (12.101) is uniformly valid in  as   0. There are two main properties for this 
stretching coordinate : 

   0, , 0x   (12.108) 
   0, 0, for allx   (12.109) 

In other words, we want to stretch the boundary layer to infinity. 
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x
( )Ix( )Ox

Inner expansion 

Outer expansion 

Overlap interval 

 
(iii) Inner expansion 
 
The inner expansion for the solution is expressed as 

   ( , ) ( ( ), ) ( , )u x u U   (12.110) 
We assume the solution in the boundary layer can be expressed in another 
asymptotic sequence as: 

   
0

( , ) ( ) ( , )n n
n

U U g   (12.111) 

This solution is valid within the boundary layer but is not uniformly valid outside 
the boundary layer. 
 
(iv) The overlap interval 
 
Next, we assume that there is an overlap interval of the inner and outer expansions. 
That is, the overlap interval is defined as 

   ( ) ( )O Ix x x   (12.112) 
In particular, we have assumed that 

(i)   ( ) ( ), 0O Ix x   (12.113) 
(ii)   ( ), ( ) 0, 0O Ix x   (12.114) 

(iii)   
( ) ( )

, , 0
( ) ( )

O Ix x
  (12.115) 

The existence of such an overlap interval cannot be proved analytically. Its 
existence depends on the problem itself. The presumed existence of the overlap 
interval is also known as Kaplun’s hypothesis. Kaplun was a polish-born PhD 
student of Lagerstrom at Caltech in 1950s.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.4 Overlap interval for the inner and outer expansions 
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(v) The matching condition 
 
To match the two expansions, we expand the outer expansion in (12.105) in terms 
of the inner variable and the inner asymptotic sequences: 

   
0

( , ) ( ( )) ( ( ), )n n
n

u u f  (12.116) 

More precisely, we expand it as 

   
0

( , ) ( ) ( , )n n
n

u u gn n( ) () (n n( )( )n ( )  (12.117) 

Within the overlap interval, we expect that the difference of the inner and outer 
expansions approaches zero as   0 and   . This leads to the following 
matching conditions: 

   lim[ ( ) ( )] 0, 0,1,2,...n nu U n( )n n((( ) n( )))  (12.118) 

This condition should not depend on the choice of the scaling parameter ( ). 
 
(vi) The composite expansion 
 
To find a composite expansion valid for both inner and outer layers, we can add 
(12.105) and (12.111) and subtract (12.117): 

  
0

( , ) ( ) ( , ) [ ( ) ( )] ( , )
( ) ( ) ( )n n n n n

n

x x xu x u x f x U u gx( )]( )]( )]( )]( )]( )]x( )]( )]
( )(( )( )( )

( )]  (12.119) 

The result in (12.119) is the sum of the two expansions subtracting the overlapping 
term within the common interval. We will illustrate this procedure by the following 
example.  
__________________________________________________________________ 
Example 12.1 Use MMAE to find an asymptotic composite expansion which is 
uniformly valid throughout the interval as  0: 

   2 0, 0 1y y y x  (12.120) 
   (0) 0, (1) 1, 0 1y y 1  (12.121) 

where   0. Assume that a boundary layer of the solution locates at x = 0. 
 
Solution: Again, the highest derivative term is multiplied by a small parameter . 
Therefore, we expect a boundary layer, and we assume the boundary layer is at x = 
0. To find the outer expansion, we assume that 

   0y  (12.122) 
Thus, the outer solution can be determined by solving the following ODE 

   2 0, (1) 1O O Oy y y  (12.123) 
Since this is the outer solution, we should not expect the boundary condition to be 
satisfied at x = 0. Instead, we only need to enforce the boundary condition at x = 1. 
The solution for the first order ODE given in (12.123) can be found easily as: 

   
1 (1 )
2( )

x
Oy x e  (12.124) 
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A stretching transformation is assumed as: 

   
( )
x  (12.125) 

Substituting this change of variables into (12.120), we get 

   
2

2 2
2 0d Y dY Y

dd
 (12.126) 

If the stretching is appropriate, we expect that the coefficient for all three terms are 
comparable. In particular, we want to balance any pair of the following 
coefficients: 

   2
2, , 1 (12.127) 

The first coefficient must be used in the pair balance since the highest derivative 
always controls the main behavior of the solution. Pairing the first and third terms 
of (12.127), we get  = 1/2. As   0, the second coefficient goes to infinity. 
Therefore, this choice is not correct. Pairing the first and second terms of (12.127), 
we get  = , and the third coefficient is 1. Thus, we must have  = . Using this 
information, (12.126) becomes 

   
2

2 2 0d Y dY Y
dd

 (12.128) 

Thus, the inner expansion can be found by 

   
2

2 2 0, (0) 0I I
I

d y dy y
dd

 (12.129) 

This ODE can be solved easily to get 
   2( ) (1 )Iy C e  (12.130) 

To do the matching, we assume the intermediate region as   
   [ ( )]x O  (12.131) 

where  satisfies the following conditions: 

   
0 0

lim , lim 0  (12.132) 

We introduce a new variable  in the intermediate region such that: 

   ,x  (12.133) 

As   0, the matching condition for a fixed  is 
   /( ) ( )O Ixy x y  (12.134) 

Substitution of (12.124) and (12.130) into (12.134) gives 

   
21 (1 )

2 (1 ) , 0,e C e C  (12.135) 
Therefore, we get  

   1/2C e  (12.136) 
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With the constant found in (12.136), we have the inner expansion in (12.130) 
becoming: 

   1/2 2( ) (1 )Iy e e  (12.137) 
Finally, the composite expansion can be found as 

   0

21 (1 ) 1/2 1/22

( ) ( ) ( ) lim ( )

(1 )

C O I O

xx

xy x y x y y

e e e e

 (12.138) 

After simplification, we get the final expansion as 
   1/2 /2 2 /( ) ( )x x

Cy x e e e  (12.139) 
Actually, the exact solution for this case can be obtained as 

   
1 2

1 2
( )

m x m x

m m
e ey x
e e

 (12.140) 

where 

   1,2
1 1m  (12.141) 

Figure 12.5 compares the results of MMAE with the exact solution for the case of  
= 0.05. The inner solution is accurate near the boundary at x = 0, whereas the outer 
solution is good outside the boundary layer. The composite expansion and the exact 
solution are basically indistinguishable from one and other. This example illustrates 
that when the coefficient of the highest derivative term is multiplied by a small 
parameter (in this case ), there exists a boundary layer and MMAE can be used to 
provide a composite expansion which is accurate for the whole domain (in the case 
0 < x < 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.5 Comparison of MMAE solution with exact solution for  = 0.05 

Composite expansion 

1/2e
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12.5 MULTIPLE SCALE PERTURBATION 

In this section, we will consider the cases that a single small scale in asymptotic 
perturbation analysis is not enough to give an accurate approximation. In such 
cases, multiple scales are needed in the perturbation analysis. This situation arises 
in singular perturbation problems discussed in the last section. The multiple-scale 
perturbation analysis constructs uniformly valid approximations to the solutions of 
perturbation problems, both for small as well as large values of the independent 
variables. This is done by introducing fast-scale and slow-scale variables (can be 
multiple scales) and treating them as independent. In fact, both MMAE and multi-
scale perturbation can be used to solve singular perturbation problems.  
 The two-time scales analysis was originated from the Poincaré-Lindstedt 
method of solving the nonlinear Duffing equation related to three-body problem in 
astronomy. The idea of multi-scale analysis was originated by Lindstedt in 1883 
and studied in detail by Poincaré in 1889. In 1889, Poincaré won the King Oscar II 
Prize, which was set up to celebrate the king’s 60th birthday, for his work on the 
three-body problem. There was an error in his prize submission and the corrected 
version was published in 1890. The judging panels consisted of Mittag-Leffler, 
Hermite, and Weierstrass. According to O’Malley (2014), this multi-scale method 
has been repeatedly rediscovered by many mathematicians and scientists in 
different disciplines (including physics, engineering and applied mathematics), 
using different names. Full details are found in O’Malley (2014) who compiled a 
lot of results in a reader-friendly manner, and is highly recommended. Half-
jokingly, Nayfeh (1973) claimed in his celebrated book on perturbation analysis 
that “the method of multiple scales is so popular that it is being rediscovered just 
about every 6 months.” In view of the importance of such analysis, Mittag-Leffler 
tried to get a Nobel Prize for Poincaré from their initiation in 1901, but he was 
never successful. The father of Chinese rocket science, H.S. Tsien, called the multi-
scale perturbation analysis the PLK-method (in honoring the contributions from 
Poincaré, Lighthill, and Kuo). Sir James Lighthill used the technique to study gas 
dynamics in 1949 while Kuo studied incompressible air flow over a thin plate in 
1953 by combining both boundary layer and multi-scale analysis. Tsien was a 
student of von Karman at Caltech, but he got interested in the multi-scale analysis 
through his interactions with Erdelyi at Caltech, H.Y. Kuo at Cornell, and C.C. Lin 
at MIT (both Kuo and Lin were students of von Karman). Tsien was under house 
arrest for 5 years in California in 1950 before he returned to China and became the 
father of rocket science in China. Nayfeh (1973) called it the derivative expansion 
method. Nayfeh was a PhD student of van Dyke at Stanford University. In their 
studies of nonlinear interactions of wave trains, D. J. Benney and his MIT students 
(Newel, Ablowitz, Haberman, Lange, and Luke) independently developed the 
multi-scale methods and it was referred to as the method of slow variations by 
Haberman. Many of his students became experts in soliton theory and professors in 
applied mathematics. Professor Benney was born in New Zealand (N.Z.) and got 
his PhD under C.C. Lin at MIT and remained there for the rest of his career. He 
was a hilarious and devoted teacher at classroom and an excellent mentor for his 
PhD student supervision. He was recognized as an extremely modest and humble 
person. There is a lovely story about his character. When Benney was a student, he 
used to work as a gardener at N.Z. Government House during summer holidays. 
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The Governor General, Sir Freyberg, sometimes would walk around in the garden 
and talked to Benney about tomatoes, etc. In the meantime, Benney was nominated 
for a prestigious scholarship and Freyberg was one of the judge panel members. On 
the day of the interview, Benney worked at the Government House garden in the 
morning as usual before he went for the interview in the afternoon. When the 
interview started, Freyberg asked: “Haven’t I met you? You look familiar!” Benney 
however never revealed in the interview that he was his gardener! 
 In this section, we will consider a case that the exact solution can be found 
and we will demonstrate that the regular perturbation of a single scale fails. Then, 
we will extend the perturbation analysis to multiple scale analysis. Let us consider 
multiple scale perturbation through the following example: 
    2 0, (0) 0, (0) 1u u u u u  (12.142) 
Mathematically, this is the same as the dynamic equation of a lump mass oscillator 
subject to initial velocity, but the damping term is very small as   0.  
 By regular perturbation, we assume the following asymptotic expansion for u: 

    2
0 1 2

1( , ) ( ) ( ) ( ) ...
2

u t u t u t u t  (12.143) 

To get the first order approximation, we can substitute (12.143) into (12.142) and 
set  = 0 to form the ODE for the constant order: 

    0 0 0 00, (0) 0, (0) 1u u u u  (12.144) 
Mathematically, this is the same as the dynamic equation of a lump mass oscillator 
subject to initial velocity, but the damping term is very small as   0. The exact 
solution can be found easily as: 

    0 ( ) sinu t t  (12.145) 
For the first order of , we substitute (12.143) into (12.142), and differentiate the 
result with respect to  to get 

    1 12 2 0, (0) 0, (0) 0u u u u u u10, 1u 2 2 0,2 0, 12 2 0 (0)2 0 (0)0, (0)12 22 22 2 0 (0)  (12.146) 
where  

    uu uu  (12.147) 

More explicitly, we get 
      1 2 0 1 1 2 1 2[ ...] 2[ ...] 2 [ ...] [ ...] 0u u u u u u u u  (12.148) 
Setting  = 0, we obtain 

    1 1 02u u u  (12.149) 
The solution can be found as 

    1( ) sinu t t t  (12.150) 
Adding the first two terms, we finally get the asymptotic expansion as 

    ( ) sin ( sin )u t t t t  (12.151) 
We see that for t  , (12.151) gives u  . This is not only unphysical but also 
incorrect. The exact solution of (12.142) can be found easily as: 

    
2

2

sin 1( , )
1

te tu t  (12.152) 
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This exact solution predicts u  0 for t  . Therefore, the result of the regular 
perturbation method is not uniformly valid as t  . The exponential function 
contains a time scale of 

    t  (12.153) 
The time scale in the sine function is 

    21 t t  (12.154) 
Strictly speaking, we can expand the sine function as 

    2 2 2 3/2 3sin 1 1 (1 ) ...t t t  (12.155) 
More generally, we can have infinite time scales. For the time being, we are content 
with the two time scales given in (12.153) and (12.154). The slow time scale is 
given by  whereas the fast time scale is given by t. The asymptotic expansion 
becomes: 

    0 1 2 21( , ) ( , ) ( , ) ( , ) ...
2

u t u t u t u t  (12.156) 

The asymptotic series now includes functions of both time scales t and . Note that 
the superscript of ui (where i = 1,2,3,...) denotes the number in the asymptotic 
sequence. In contrast to a single time scale, the subscript is reserved for denoting 
differentiation. By the chain rule, we have 

    du u u u u
dt t t t

 (12.157) 

Using this chain rule, we get 

    
2

0 0 1 1 2 2( , ) [ ] [ ] ...
2t t t

duu t u u u u u u
dt

 (12.158)

2
0 0 1 1 0 0 2 2 1 1( , ) [ ] [ 2 2 ] ...

2tt t tt t t tt t tu t u u u u u u u u u u   

  (12.159) 
Substituting (12.156) and (12.159) into (12.142) and setting  = 0, we find 

 0 0 0 00, (0,0) 0, (0,0) 1tt tu u u u  (12.160)  
The solution for (12.160) is 

 0 ( )cos ( )sinu A t B t  (12.161)  
Note that A and B are not constants but functions of the slow time scale . The 
boundary conditions in (12.160) become 

 0 0(0,0) (0) 0, (0,0) (0) 1tu A u B  (12.162)  
To find the functions A and B, we have to go to a higher order to find conditions 
that they satisfy. Substituting (12.156) and (12.159) into (12.142), differentiating 
the result with respect to , and setting  = 0, we get 

 1 1 0 02[ ]tt t tu u u u  (12.163)  

 1 1 0(0) (0,0) 0, (0) (0,0) (0,0) 0tu u u u u1 1(0) (0,0) 0, (0) (0,0)1 11
tu(0) (0,0) 0, (0) (0,0)(0,0) 0, (0) (0,0)(0,0) 0, (0) (0,0)1 11(0,0) 0, (0) (0,0)(0,0) 0, (0) (0,0)(0,0) 0, (0) (0,0)  (12.164)  

Substitution of (12.161) into (12.163) gives 
 1 1 2[ ]sin 2[ ]costtu u A A t B B t  (12.165)  
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The two bracket terms are known as “wanted” secular terms and we need to remove 
them. We learned from the undetermined coefficient method for solving 
nonhomogeneous ODE that the particular solution will contain the following terms: 

 1 sin , cosu t t t t  (12.166)  
No matter how small is , the solution eventually becomes unbounded as t  . 
Lin and Segal (1988) called them resonant terms. These secular terms appear in the 
analysis at each power of . In fact, this boundedness requirement from the next 
order of problem forms the heart of multiple scale methods. 
 Thus, we get two additional conditions for solving A and B: 

 0, 0A A B B  (12.167)  
The general solutions for (12.167) are 

 0 0( ) , ( )A e B e  (12.168)  
Imposing boundary conditions in (12.162), we obtain 

 ( ) 0, ( )A B e  (12.169)  
Finally, we get the first order expansion as 

 0 ( ) sintu u O e t0 (u O0 (O(  (12.170)  
We now see that this asymptotic expansion indeed decays to zero as t  . Figure 
12.6 plots the results of single and multiple scale perturbations given in (12.151) 
and (12.170) versus the analytical solution given in (12.152). We have used a 
relatively large value of  = 0.2 in Figure 12.6 because for small values of  the 
multiple-scale plot and exact solution essentially overlap. The single scale 
expansion oscillates with a much larger magnitude and extends beyond the range of 
our plotting area for large x.  

 
Figure 12.6 Single-scale and multiple-scale expansions with exact solution for  = 0.2 
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12.6 LIOUVILLE-GREEN OR WKB EXPANSION 

In quantum mechanics, the WKB method was developed in 1926 and was named 
after Wentzel, Kramers, and Brillouin, who studied the solution of the Schrodinger 
equation. Some authors also referred to it as the WKBJ method (J stands for 
Jefferys). However, in mathematics the method and the idea can trace back to the 
celestial analysis by Carlini in 1817, and was also referred to as the method of 
Liouville and Green, both of whom published the method in 1837. Therefore, it is 
known as the L-G approximation. The WKB method can be applied to a singular 
perturbation problem (i.e., a small parameter multiplying the highest derivative 
term), but the problem must be linear. Review of the WKB method in solid 
mechanics is given by Steele (1976). In this sense, although WKB is easier than 
both MMAE and a multiple scales method, it is less powerful than either one of 
them. 
 Let us consider the following linear ODE 

 2 ( ) 0y q x y  (12.171)  
In order to get an approximation for the problem, we see that if q is a constant, we 
can solve the problem instantly as: 

 ( )
x xq q

y x Ae Be  (12.172)  
This solution is the main idea behind the WKB method. It was assumed that an 
exponential function provides a good approximation to equation (12.171). To allow 
a more flexible form of exponential functions that can handle the non-constant 
function q(x) in (12.171), the following form is assumed in the WKB method: 

 ( )/
0 1( ) { ( ) ( ) ...}xy x e y x y x{( )( )/ {( )/ {( )/  (12.173)  

The exponential form in (12.173) constitutes the main assumption in the WKB 
method, and it focuses on the fast variation of the function (as   0 the 
exponential function is the dominant term). In addition, the WKB method can be 
considered as a special case of multiple scale perturbation. 
 Differentiation of (12.173) gives 

 

/ /
0 1 0 1

/
0 0 1

{ ...} { ...}

...

y e y y e y y

e y y y
 (12.174)  

 

/
0 0 1

/
0 0 0 1 1

2
/ 2

0 0 0 12

...

...

( ) 1 2 ( ) ...

y e y y y

e y y y y y

e y y y y

 (12.175)  

Substitution of  (12.174) and (12.175) into (12.171) gives 
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2
2 2

0 0 0 12

0 1

( ) 1 2 ( ) ...

( ){ ...} 0

y y y y

q x y y

 (12.176)  

In order to balance the order of the equations, we must have α = 1. Collecting the 
coefficients of different order and setting all of them to zero (in order to satisfy the 
ODE), we get the constant order term 
O(1): 2( ) ( )q x  (12.177)  
This is called the eikonal equation, and it is related to the studies of nonlinear 
waves and optics. The solution can be expressed as 

 ( ) ( )
x

x q s ds  (12.178)  

The linear order term of  is 
 O( ): 2

0 0 1 12 ( )y y y qy  (12.179)  
This is called the transport equation. Using the result of (12.177), we have 
 0 02 0y y  (12.180)  
This can be rearranged as 

 0

0 2 2
dy ddx
y

 (12.181)  

Integrating both sides we find the solution as 

 0
Cy  (12.182)  

where C is a constant. Substitution of (12.182) and (12.178) into (12.173) gives 

 /
1( ) { ...}Cy x e y{ C{///  (12.183)  

Since there are two values of  from (12.178), we obtain the following WKB 
approximation 

 
1 1( ) ( )1/4( ) ( ) { }

x x
q s ds q s ds

y x q x Ae Be1/4( ) 1/4( )( 1/4  (12.184)  
 
__________________________________________________________________ 
Example 12.2 Use the WKB method to find the approximation of the following 
ODE with non-constant coefficient 

   2 2 0xy e y  (12.185)  
   (0) , (1)y a y b  (12.186)  

 
Solution: We see that 

   2( ) xq x e  (12.187) 
Thus, we find 

   ( ) xq x ie  (12.188) 

   1/4 1/4 /2 /4 /2( ) ( 1) x i xq x e e e  (12.189) 
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Substitution of (12.187) and (12.188) into (12.184) gives 
 /4 /2( ) { }

x xi x i e i ey x e e Ae Bei /4/4/4//4/4/4  (12.190)  
where  = 1/ . Note, however, that we start with an ODE with real variables and 
real parameters, thus our approximation must be real. Thus, A and B must be 
complex constant and conjugate to each other. Using this information, we can 
recast the approximation in (12.190) as 

 /2( ) { cos( ) sin( )}x x xy x e C e D e/2x/2{/2{{/ {/2  (12.191)  
where C and D are now real constants. Substitution of (12.191) into the boundary 
conditions given in (12.186) gives 

 (0) cos siny C D a  (12.192)  

 1/2(1) { cos( ) sin( )}y e C e D e b  (12.193)  
This provides two equations for two unknowns. The solutions of the system can be 
found as 

 
1/2sin( ) sin

sin ( 1)
a e beC

e
 (12.194)  

 
1/2 cos cos( )

sin ( 1)
be a eD

e
 (12.195)  

With these constants, the WKB approximation can be expressed as 

 
1/2

/2 sin ( 1) sin ( )( ) { }
sin ( 1)

x x
x be e a e ey x e

e
/2{/2x be  (12.196)  

__________________________________________________________________ 

12.7 LAPLACE METHOD 

One of the main applications of asymptotic analysis is to estimate the value of an 
integral for certain particular limit of the parameters (i.e., one of the parameters 
approaches infinity). Since many problems of differential equations can be solved 
by integral transforms, as introduced in the last chapter, the final solutions of 
differential equations are often expressed in terms of some definite integral because 
an inverse transform (often expressed in the form of integration) cannot be obtained 
analytically in most cases. Very often numerical evaluations of these integrals are 
needed. Asymptotic analysis provides the dominant behavior when one of the 
parameters in the integrand is large. 

12.7.1 Erdelyi’s Derivation 

 
We first consider the following integral, known as the Laplace integral: 

   ( )( ) ( ) xh tf x g t e dt  (12.197) 
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where x approaches infinity and h(t) is real. Note for the special case that  = 0,  
 , and h(t) = t, (12.197) is in fact the definition of the Laplace transform. If 

h(t)  has a number of maxima, we can always break up the integral in a finite 
number of integrals in a way that h(t) reaches its maximum at one of the end-points 
and at no other points. For the case that the maximum is at t =  and x  , it can 
be shown by the Laplace method that the function on the left of (12.197) can be 
expressed as: 

   
1/2

( )( ) ( )
2 "( )

xhf x g e
xh2 "(2 "(2 "(

 (12.198) 

where  is the maximum point of the function h(t) such that 
   ( ) 0, ( ) 0h h  (12.199) 

Equation (12.199) illustrates that the main contribution from the integrand to the 
integration is from the maximum point of function h(t).  
 To prove (12.198), Laplace introduced the following change of variables 

   2( ) ( )h h t u  (12.200) 
Thus, we have from (12.200) that 

   2
( )

ududt
h t

 (12.201) 

The lower limit for u becomes 
   , 0t u  (12.202) 

Note that the main contribution of the integrand is from the neighborhood of the 
maximum point t =  because we have h'(t) < 0 for the range 

   , 0t  (12.203) 
Therefore, the integral can be approximated by replacing the upper limit  by +   

   1/2, [ ( ) ( )]t u h h U  (12.204) 
That is, we have 

   ( ) 2

0

( )( ) ( ) 2 {exp [ ( ) ]}
'( )

Uxh t g tf x g t e dt u x h u du
h t

g t((  (12.205) 

For x , the following term changes very fast with u: 
   

2[ ( ) ]x h ue  (12.206) 
whereas, as  0, g(t) does not change rapidly. Thus, we can set 

   ( ) ( )g t g  (12.207) 
In addition, the following limit needs to be considered  

   

'( )
'( )2lim lim lim

'( ) ''( ) 2 ''( )t t t

h t
u h tu

h t h t uh t
 (12.208) 

At the limit t  , we have the form 0/0. Applying L’Hôpital’s rule, we obtain the 
second part of (12.208). Amazingly, note that the left hand side appears on the 
right of (12.208). The whole success of this method comes from this beautiful 
result. We can rearrange (12.208) as 
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   2 1lim[ ] lim[ ]
'( ) 2 ''( )t t

u
h t h t

 (12.209) 

Thus, we find the following limit 

   1/21lim[ ] [ ]
'( ) 2 ''( )t

u
h t h

 (12.210) 

Substitution of (12.207) and (12.210) into (12.205) gives  

   

1/2 2

0

1/2 ( ) 2

0

2( ) [ ] ( ) exp[ ( )]
''( )
2[ ] ( ) exp( )

''( )

U

Uxh

f x g xu xh du
h

g e xu du
h

 (12.211) 

If the only maximum is at , we can well extend U to infinity and note the 
following Laplace integral: 

   2

0

1exp( )
2

xu du
x

 (12.212) 

With this result, (12.211) becomes 

   
1/2

( ) ( )exp{ ( )}
2 "( )

f x g xh
xh"(2 "(2

 (12.213) 

This is the required result. 

12.7.2 Bleistein-Handelsman Derivation 

 A slightly different proof of the Laplace method was given by Bleistein and 
Handelsman (1986). In particular, the following form of integral is considered 
(Bleistein and Handelsman, 1986) 

   ( )( ) ( )
b t

a
I f t e dt  (12.214) 

where  is real and approaches infinity and again both (t) and f(t) are real. Note 
that (12.214) is essentially the same as (12.197) except that a minus sign has been 
included explicitly in defining the index of the exponential function. Thus, we 
search for the minimum (t), instead of the maximum as we did in the last section. 
Suppose that a minimum can be found such that  

   0 0( ) 0, ( ) 0t t  (12.215) 
In addition, we assume that the function f(t) exists at the minimum point t = t0. 
Similar to the argument used in the last section, we expect that the main 
contribution from the integrand comes from the minimum point t0. Thus, we define 
the following integral around this point as 

   
0

0 0

0

( ) [ ( ) ( )]
0 ( ) ( )

tt t t

t
e I f t e dt  (12.216) 

where  is a small number. We expect the following limit holds 
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   0 ( )
lim 1

( )
I
I

 (12.217) 

That is, when   , the integral defined in (12.216) approaches the original 
integral (12.214). To justify this assertion, Figure 12.4 shows that the area under 
the exponential function in (12.216) mainly comes from the neighborhood of t0 for 
large . This justifies the limit given in (12.217).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12.7 The behavior of the exponential function in (12.11) around the critical point t0 
 
Using Taylor series expansion and assuming that f(t) is not a highly oscillating 
function near t0, we have 

   
2

0 0 0
0

0

( )( )( ) 2
0 0( ) ( ) ...

t t t tt

t
e I f t e dt  (12.218) 

Now, we can apply a change of variables  

   0 0 0( )( ), ( )
2 2

t t t d t dt  (12.219) 

Applying (12.219) and (12.217), we find the following approximation: 

   
0

0

0

( )( ) 22
0

( )0 2

2( ) ( ) exp{ } ...
( )

tt

t
I e f t d

t
 (12.220) 

As seen in Figure 12.7, we can extend this integration from  to  without 
changing the integration (as long as   ): 

0exp{ [ ( ) ( )]}t t

t
0t

large

small
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   0( ) 2
0

0

2( ) ( ) exp{ } ...
( )

tI e f t d
t

 (12.221) 

The integration in (12.221) can be carried out exactly by (see Chapter 1): 

   2exp{ }d  (12.222) 

Finally, we get  

   0 0
0

2( ) exp{ ( )} ( )
( )

I t f t
t

 (12.223) 

This result is essentially the same as (12.213), which is for the case where the 
critical point is on the limit of integration, whereas (12.223) is for the critical point 
within the upper and lower limits. Therefore, they differ by a factor of 2. Bleistein 
and Handelsman (1986) also derived the accuracy, or more precisely found the 
order of error of (12.223): 

   0
0 0 3/2

0

exp{ ( )}2( ) exp{ ( )} ( ) ( )
( )

t
I t f t O

t
 (12.224) 

We refer the reader to the details of the analysis leading to this result in Chapter 5 
of Bleistein and Handelsman (1986). 

12.7.3 Generalized Formula 

The previous result presented in (12.213) and (12.223) makes two major 
assumptions that pose limitations on the result in (12.213) or (12.223). Let us recap 
here. Consider a Laplace integral of the following form: 

   ( )( ) ( )
b h t

a
I g t e dt  (12.225) 

for   . In the last section, the two major assumptions are made: 
   ( ) 0g a ,   ( ) 0h a  (12.226) 

where a is the maximum boundary point. We will generalize this result to the cases 
that  

   ( 1) ( 1)( ) ( ) ... ( ) 0, ( ) 0m mg a g a g a g a  (12.227) 

   ( 1) ( 1)( ) ( ) ... ( ) 0, ( ) 0n nh a h a h a h a  (12.228) 
where m and n are integers. To do this, let us assume a much more general form of 
functions g and h, and then specialize them to (12.227) and (12.228). In particular, 
we assume for   , the asymptotic forms of g(t) and h(t) as 

   ( ) ( ) , 1g t A t a( )(( )  (12.229) 

   ( ) ( ) ( )h t h a B t a( )( )( )  (12.230) 
Substitution of (12.229) and (12.230) into (12.225) gives 

   ( ) ( )( ) ( )h a B t a

a
I Ae t a e dt  (12.231) 
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Using previous arguments, we can extend the upper limit to infinity. Applying a 
change of variables of s = t a, we obtain 

   ( )

0
( ) h a BsI Ae s e ds  (12.232) 

Let a new variable u such that 
   u Bs  (12.233) 

Then, we have 

   1 , ( )udu Bs ds s
B

 (12.234) 

Using (12.234), we can rewrite the integral in (12.232)  

   ( )
10

( ) ( )h a uu duI Ae e
B Bs

 (12.235) 

Using (12.234) and rearranging (12.235) we have 

          

( )
( 1)/ 1

( 1)/ 0

( )

( 1)/

( )
( )

1( )
( )

h a
u

h a

AeI u e du
B

Ae
B

 (12.236) 

where  is Euler’s gamma function. If  and  are integers and the coefficients A 
and B are those from Taylor series expansions, we have 
          ,m n  (12.237) 

          
( ) ( )( ) ( ),

! !

m ng a h aA B
m n

 (12.238) 

This special case agrees with the conditions imposed in (12.227) and (12.228). 
Thus, we have the asymptotic value for the integral (12.225) subject to the 
condition of (12.227) and (12.228):  

          
( ) ( )

( 1)/
( ) ( 1)/

! ( ) 1( ) [ ] ( )
!( )

m h a
m n

n m n
n g a e mI

m nh a n
 (12.239) 

If m = 0 (i.e., function g(t) is regular at t = a), we have the special case: 

          
( )

1/
( ) 1/

! ( ) 1( ) [ ] ( )
( )

h a
n

n n
n g a eI

nh a n
 (12.240) 

If m = 0 and n = 1, we have the special case: 

          
( )( )( )

( )

h ag a eI
h a

 (12.241) 

If m = 0 and n = 2, we have the special case: 

          ( ) ( )exp{ ( )}
2 ( )

I g a h a
h a

 (12.242) 

Of course, (12.242) is the same as (12.198) that we obtained in the last section. 
Therefore, (12.239) is a very general result.  
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__________________________________________________________________ 
Example 12.3 Find the asymptotic form of Legendre polynomials for large order, 
which is defined in integral form as follow: 

     2

0

1( ) ( 1cos )n
nP z z z d  (12.243) 

for z > 1 and n  . 
 
Solution: We look for the asymptotic behavior of the Legendre function for a fixed 
z (> 1) and for n  . First, we note the following formula: 
     ln tt e  (12.244) 
Using this idea, we can recast (12.243) in the required form: 

     
2ln( 1cos )

0

1( ) n z z
nP z e d  (12.245) 

Comparing (12.245) and (12.225), we have 

   2( ) 1, ( ) ln ( ), ( ) 1 cosg h q q z z  (12.246) 
Clearly, the maximum occurs at  = 0 because of the cosine function. The 
differentiation of q gives 

   2( ) 1sinq z  (12.247) 
For 0 <  < , we have q'( ) < 0 and, thus, we do have a maximum and the 
maximum is at the lower limit of integration. We now expand the cosine function 
about   = 0: 

   
2

cos 1 ...
2

 (12.248) 

Substitution of (12.248) into (12.245) leads to 

     
2 2ln[ 1(1 /2)]

0

1( ) n z z
nP z e d  (12.249) 

To proceed further, we employ the following mathematical trick  

     
2 2

2
20

1 1( ) exp{ ln[( 1)(1 )]}
2( 1)

n
zP z n z z d

z z
 (12.250) 

Then, we have 

     

2 2
2

20

2 2 2

20

1 1( ) exp [ln( 1) ln(1 )]
2( 1)

exp{ ln( 1)} 1exp ln(1 )
2( 1)

n
zP z n z z d

z z

n z z zn d
z z

(12.251) 

Note the following series expansion 
     ln(1 ) ~ ...x x  (12.252) 
Then, (12.251) becomes 
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2 2 2

20

exp{ ln( 1)} 1( ) exp{ }
2( 1)

n
n z z n zP z d

z z
 (12.253) 

Then, we can apply the following change of variables 

    
2

2 2
2

1

2( 1)

n zu
z z

 (12.254) 

After change of variables, we get 

 
2 2 1/2

2
2 1/4 0

( 1) ( 1) 2( ) exp{ }
( 1)

n

n
z z z zP z u du

nz
 (12.255) 

Note that we have shifted the upper limit to infinity as the main contribution is from 
the lower limit. From (1.102) of Chapter 1, we get 

 
2 1/2

2 1/4
1 ( 1)( )

2 ( 1)

n

n
z zP z

n z
 (12.256) 

__________________________________________________________________ 
__________________________________________________________________ 
Example 12.4 Find the asymptotic form of the following integral 

     2

0
( )

xt
tI x e dt  (12.257) 

for x  . 
 
Solution: For this case, we let 

     2( ) ( )xh t t
t

 (12.258) 

We look for the minimum of h(t) which will have maximum contribution to the 
integral. Then, we can set 

     3
2( ) 1 0xh t
t

 (12.259) 

Thus, we have the minimum point at 
     1/3(2 )t x  (12.260) 
Guided by this observation, we let 

     1/3(2 )
ts

x
 (12.261) 

Substitution of (12.261) into (12.257) leads to 

     
1/3 21/3 (2 ) [ 1/(2 )]

0
( ) (2 ) x s sI x x e ds  (12.262) 

This change of variables allows us to convert the integral in (12.257) to the 
standard Laplace type integral as x  . Comparing (12.262) with (12.214), we 
identify that 

     2
1( )

2
s s

s
 (12.263) 



740   Theory of Differential Equations in Engineering and Mechanics 

We can easily find that 

     3 4
1 3 3( ) 1 , (1) 0, (1) , ( ) , (1) 3

2
s h s

s s
 (12.264) 

The minimum is at s = 1. Expanding  in Taylor series expansion about s = 1, we 
have 

     
23 3( 1)( ) ...

2 2
ss  (12.265) 

Using the result in (12.224), we get 

   1/3 1/3
1/3

3( ) ~ 2(2 ) exp{ (2 ) }
2 6(2 )

I x x x
x

 (12.266) 

Note that we have added an extra 2 because the minimum point (s = 1) is not at the 
lower limit of integration of s = 0. Simplifying (12.266), we get 

   1/6 1/32 3( ) ~ (2 ) exp{ (2 ) }
3 2

I x x x  (12.267) 

__________________________________________________________________ 

12.7.4 Laplace Type Integrals in Higher Dimensions 

So far, we have restricted our discussion to integrals with one variable. In this 
section, we will consider a multiple integral of functions depending on multi-
variables. In general, consider the case of n variables: 

   1 2( , ,..., )
1 2 1( ) ... ( , ,..., ) nf x x x

n nI x x x e dx dxndx  (12.268) 

To find the critical point or minimum point for the above integral, we set 
   ( ) 0f a  (12.269) 

More explicitly, we have 

   
1

( ) ( ) 0
n

f f
x x

(f
x
ff (
xx

a a  (12.270) 

where 
   1( ,..., )na aa  (12.271) 

The critical point or stationary point a is said to be non-degenerate if the Hessian 
matrix is nonzero and, in particular, larger than zero for the present case of the 
minimum point:  

   
2

det ( ) det 0
i j

f
x x

H a  (12.272) 

Assuming that  is regular at point a and applying Taylor series expansion for the 
vector form, we get 

    1
1[ ( ,..., ) ( ) ( )]
2

1 2( ) ( , ,..., ) ...
T

nf a a
nI a a a e d

x a H x a
x  (12.273) 

Introducing a new vector y = x a, we obtain 
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    ( ) 2( ) ( ) ...
T

fI e e d
y Hyaa y  (12.274) 

According to a well-known theorem in matrix algebra, since the Hessian is real and 
symmetric (see definition in (12.272)) we can also decompose it as (see p. 288 of 
Lipschutz, 1987) 

    TP DP H  (12.275) 
where P is the orthogonal matrix and its column is composed of eigenvectors of the 
Hessian matrix. Equation (12.275) is known as the spectral decomposition of 
Hessian matrix H. Because of the orthogonal properties of eigenvectors, D is a 
diagonal matrix with eigenvalues of H as the diagonal terms: 

    
1 0 0

0 0 n

D  (12.276) 

Thus, (12.274) can be expressed as 

    ( ) 2( ) ( ) ...
T

fI e e d
z Dzaa z  (12.277) 

where 
    z Py  (12.278) 

Equation (12.278) is also known as the shearing transformation. In obtaining 
(12.180), we note that since the matrix P is composed of unit eigenvectors, we must 
have the determinant of P be unity or: 

    det det 1i

j

y
J

z
P  (12.279) 

Note also that 
    2 2

1 1 ...T
n nz zz Dz  (12.280) 

Thus, we have 

    
2 2

1 1( ) 2 2
1( ) ( ) ... n nz zf

nI e e dz e dzaa  (12.281) 

For each integral in (12.281), we can apply the result from the last section and 
obtain  

    ( ) /2

1

2 1( ) ( ) ( )f n

n
I e

n

aa  (12.282) 

Note that the determinant of the Hessian equals the product of the eigenvalues or 
(see definition in (12.276)): 

    
1

det det
n

i
i

D H  (12.283) 

Substitution of (12.283) into (12.282) results in 

    ( ) /22 1( ) ( ) ( )
det

f nI e aa
H

 (12.284) 
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This result agrees with Equation (5.15) on p. 498 of Wong (2001). However, the 
present proof is somewhat simpler and does not need to introduce the Morse lemma 
in bifurcation theory.  

12.8 STEEPEST DESCENT OF RIEMANN 

The Laplace method that we discussed in the last section is for real functions h and 
g. When both of these functions are complex and analytic, the asymptotic analysis 
is called the method of steepest descent and was originated by Riemann and further 
developed by Debye. This original work by Riemann was never formally 
published. It was only published posthumously in 1876, and it is among the 
unpublished notes found in his house (or nachlass) that was subsequently included 
in his collected works. The method was first published by Debye in 1902 and he 
applied it to find an integral representation of Bessel functions for a large argument 
or order. In Debye’s (1909) paper, he did mention its appearance in Riemann’s 
Collected Works. Riemann is one of the most influential German mathematicians 
and he studied number theory, differential geometry, and complex analysis. His 
work on the complex zeta function related to prime numbers led to the unsolved 
Riemann hypothesis (see Problem 4.56 of Chapter 4 and Sabbagh, 2003), and his 
Riemann geometry is the basis for Einstein’s theory of relativity. The Riemann 
hypothesis is probably the most well-known unsolved mathematics problem after 
the celebrated proof of Fermat’s Last Theorem by Andrew Wiles (Singh, 1997). 
Debye is a Dutch physicist and was a student of Sommerfeld, and he studied the 
specific heat of solids (Debye model), ionic solutions (Debye potential and Debye-
Hückel method), and he received the Nobel Prize in chemistry in 1936. In fact, 
Debye’s undergraduate degree was in electrical engineering and his PhD was in 
physics under the supervision of Sommerfeld. Debye had been nominated for a 
Nobel Prize in physics as well. Friedrich Hund, his colleague at the University of 
Leipzig, described him as “clever but lazy” as he could often spot Debye watering 
roses in the institute garden when he should have been working. Debye responded 
that he had a certain tendency to take things easy. It was speculated that many great 
ideas behind his over 200 publications (one led to the Nobel Prize) were 
germinated in this outdoor garden. The steepest descent method is also known as 
the saddle point method. The method of steepest descent belongs to a special 
theory of contour integration. This idea of steepest descent has also been used in 
optimization problems with success, but such consideration is out of the scope of 
the present book.  

12.8.1 Direction of Steepest Descent 

When h(z) and g(z) are complex functions of a complex variable z, the integral in 
(12.225) is of Fourier type (compare the integral in the Fourier transform given in 
Section 11.2.2): 

   ( )( ) ( ) w z

C
I g z e dz  (12.285) 
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where z = x+iy is a complex variable and integration is carried out along a certain 
contour C. The saddle point of the exponential function is found by setting 

   
0

( ) 0z zw z  (12.286) 

If the first (n 1)-th derivatives of w are also zeros, we call the saddle point is of 
order n. Mathematically, it is defined by: 

  
0 0 0 0

( 1) ( )( ) ( ) ... ( ) 0, ( ) 0n n
z z z z z z z z

w z w z w z w z  (12.287) 

If n = 2, the saddle is called a simple saddle point. If we plot the exponential 
function in (12.285) on the complex plane (with axes being x = Re[z] and y = 
Im[z]), the function will appear as mountains with valleys, cols, and saddles 
between them. The exponential function in (12.285) can be written as: 

   ( ) Re[ ( )] Im[ ( )] ( , ) ( , )w z w z i w z u x y i v x ye e e e e  (12.288) 
The contour lines and constant phase lines of such a plot are represented 
respectively by: 

   1 2( , ) Re[ ( )] , ( , ) Im[ ( )]u x y w z C v x y w z C  (12.289) 
where C1 and C2 are constants (see Fig 12.8). Note that the imaginary part in 
(12.288) will lead to oscillation in the functions but does not contribute to the 
integral, while the real part contributes mainly to the integration. The constant 
phase lines also represent the steepest descent or ascend paths. Physically, it is 
because the changes in the real part of the function is fastest (or the steepest 
descent or ascend along the contour) if the imaginary part is a constant. 
Mathematically, the change in w can be expressed as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12.8 Contour lines and constant phase lines 

Saddle point 

u

v

A 

D 

A 

constu
constv
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   2 2 2w u v  (12.290) 
Along the lines of constant phase, we have v = 0 or 

   0Im[ ( )] Im[ ( )]w z w z  (12.291) 
 
Then, the change of u is maximal when (12.291) is satisfied. The method of 
steepest descent aims to deform the contour path of integration passing through the 
saddle point z0 such that it coincides with the steepest path as far as possible (i.e., a 
path that (12.291) is satisfied). If (12.291) is satisfied, the integrand would not 
oscillate rapidly on the steepest descent path. Then, an approximate value of the 
integral will be determined from the integrand in the neighborhood of the saddle 
point.  
 Alternatively, the equivalence between the constant phase lines and steepest 
descent path can be proved by using directional or vector differentiation.  The 
gradients of the functions u and v are 

    ,x y x y
u u v vu v
x y x y

e e e e  (12.292) 

The gradient u is perpendicular to the contour lines of u =  const. (dashed lines in 
Figure 12.8) and indicates the direction of maximum changes of u whereas v is 
perpendicular to the constant phase lines of v =  const. (solid arrow lines). 
Emerging from the saddle point, the deepest descent line is denoted by D and the 
steepest ascent line is denoted by A. Since w is an analytic function, u and v must 
satisfy the Cauchy-Riemann equations as (recall from Section 1.7.1): 

   ,u v u v
x y y x

 (12.293) 

These two equations can be combined to give 

   0u v u v
x x y y

 (12.294) 

In tensor notation, (12.294) is 
     0u v  (12.295) 

This shows that the contour lines and constant phase lines are perpendicular. This 
also gives another proof that the constant phase lines are the steepest descent path 
(corresponding to the maximum change of u).  
 Differentiating the first equation of (12.293) with respect to x and the second 
equation of (12.293) with respect to y and adding these two, we get 

   
2 2

2
2 2 0u u u

x y
 (12.296) 

Similarly, we can repeat this procedure with a reverse of the order of differentiation 
with respect to y and x for the first and second equations of (12.293) to yield 

     
2 2

2
2 2 0v v v

x y
 (12.297) 

Thus, as expected, both u and v are harmonic functions. From the maximum 
principle of potential theory from Chapter 9 (e.g., Sections 9.7.7 and 9.8), there is 
no maximum or minimum of u within the domain, except on the boundary. The 
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same conclusion can also be made in view of the maximum modulus principle of 
complex variable theory (e.g., p.146 of Silverman, 1974).  
 We now consider the direction of the steepest descent path at the saddle 
point. Using the information on the derivative of w, we can express the change of 
function w at the saddle point as: 

   0 0 0
1( ) ( ) {1 ( )}
!

n
n

n
d ww w z w z z z O z z

n dz
 (12.298) 

Using Euler’s formula to write the terms in (12.298) in polar form, we get 

   0,
n

i i
n

d w ae z z e
dz

 (12.299) 

Clearly, we are looking for  along the steepest descent path. Substitution of 
(12.299) into (12.298) yields 

   {1 ( )}
!

i
n inaew e O

n
 (12.300) 

This can be rearranged as 

    
( )

{1 ( )} [cos( ) sin( )]
! !

i n

n
w ae aO n i n

n n
 (12.301) 

Along the steepest descent path, we must have (12.291) satisfied or (12.301) must 
be real and, in addition, w < 0. Thus, we have to set 

    (2 1) , 0,1,..., 1n p p n  (12.302) 
Therefore, the directions for the steepest descent path are 

    (2 1) , 0,1,..., 1p p n
n n

 (12.303) 

Along the steepest ascent path, we must have w > 0 instead, and this leads to 
    2 , 0,1,..., 1n p p n  (12.304) 

The corresponding  are 

    2 , 0,1,..., 1p p n
n n

 (12.305) 

The direction for constant u (the divide between hills and valleys) is given by 

    1( ) , 0,1,..., 2 1
2

n p p n  (12.306) 

The directions  for the separation lines between hills and valleys are 

    1( ) , 0,1,..., 2 1
2

p p n
n n

 (12.307) 

The most important type of saddle point is for n = 2. The values of  for special 
cases are: 

    Descent:  3,
2 2 2 2

 (12.308) 

    Ascent:  ,
2 2

 (12.309) 
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`

0 0( , )u u x y

( , )u u x y

A
D

A
D

   Constant u:  3 5 7, , ,
2 4 2 4 2 4 2 4

 (12.310) 

The simple saddle for n = 2 is illustrated in Figure 12.9. 
 A more detailed view of the directions of steepest descent and ascent are 
depicted in Figure 12.10. The steepest descent path is labeled as D and those for 
steepest ascent are labeled as A. The projections of hills, valleys and the horizontal 
plane cutting the saddle point are defined as: 

    hills:  0 0( , ) ( , )u x y u x y  (12.311) 
    valleys:  0 0( , ) ( , )u x y u x y  (12.312) 
    plane:  0 0( , ) ( , )u x y u x y  (12.313) 

Physically, along the steepest ascent (A in Figure 12.10) the real part of w(z) will 
diverge to infinity as the contour passes the saddle point (except for very special 
case). It means that the integral will diverge. Therefore, we must consider the 
steepest descent path indicated by D in Figure 12.10. 

12.8.2 Steepest Descent of Regular Saddle Point 

We now return to the asymptotic expansion of (12.285). We first rewrite it as 

   0 0( ) exp{ ( )} ( )exp{ ( ) ( )}
C

I w z g z w z w z dz  (12.314) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.9 A simple saddle with n = 2 
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The exponential function in the integrand is exactly the change of the function w(z) 
and thus is related to the steepest descent. Since the contour C is supposed to pass 
through the saddle point such that we have 

   0( ) 0w z , (12.315) 
hence, the Taylor series expansion for w(z) about the saddle point is   

   
0

2
2

0 02
1( ) ( ) ( ) ...
2!

z z

d ww z w z z z
dz

 (12.316) 

Substitution of (12.316) into (12.314) gives 

  2
0 0 0( ) exp{ ( )} ( )exp{ ( )( ) }

2C
I w z g z w z z z dz  (12.317) 

We now follow the Euler form given in (12.299), then (12.317) can be expressed as 

    2
0( ) exp{ ( )} ( )exp{ [cos( 2 ) sin( 2 )}

2C

aI w z g z i dz  (12.318) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.10 Orientations of steepest descent and ascent for saddle point with n = 2 
 
Applying the idea of steepest descent for contour C, we deform it to from  to  
or from 0 to . The choice on the limits of integration depends on the nature of 
w(z). More discussion on this choice of contour to real integration will be given 
later in this section. As discussed earlier in the section, we can set  

    (2 1) , 0,1,..., 1n p p n  (12.319) 
such that the imaginary term in (12.318) will be zero (i.e., constant phase lines). 
Thus, we have for the case of n = 2 
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     2
0( ) exp{ ( )} ( )exp{ }

2
aI w z g z dz  (12.320) 

From the second equation of (12.299), we have 
    idz e d  (12.321) 

Substitution of (12.321) into (12.320) gives 

     2
0 0( ) exp{ ( )} ( ) exp{ }

2
i aI w z g z e d  (12.322) 

In obtaining (12.322), we have assumed g(z) is a well-behaved function near the 
saddle point. Note that integration of the complex function is now converted to 
integration of the real variable. The integral is known as the Gauss or Laplace 
integral and can be evaluated as (see (1.102) of Chapter 1): 

     2 2exp{ }
2
a d

a
 (12.323) 

Substitution of (12.323) into (12.322) gives 

     0 0
2( ) exp{ ( )} ( ) iI w z g z e

a
 (12.324) 

From the first of (12.299), we find 
    0( )a w z  (12.325) 

Substitution of (12.325) and (12.319) into (12.324) leads to the final result: 

     0 0
0

2( ) ( )exp{ ( ) [(2 1) ]}
( )

I g z w z i p
w z n n

 (12.326) 

This result differs from equation (7.2.10) of Bleistein and Handelsman (1986) by a 
factor of two. Their result is based on the result in Chapter 4 of their book. 
However, if we look at equation (4.4.24) of Bleistein and Handelsman (1986), the 
formulation is for integration limits from 0 to . Therefore, if we divide our result 
by 2, we recover the result of Bleistein and Handelsman (1986). The derivation of 
the results of Bleistein and Handelsman (1986) is done through the consideration of 
the Mellin transform and involves a triple summation. The current approach is 
much simpler. As a final remark, we should emphasize that if the contour can be 
deformed to the following real limits   

     
0

... ...
C

dz d , (12.327) 

we should use half of (12.326). If the contour can be deformed to the following real 
limits  

     ... ...
C

dz d , (12.328) 

we should use (12.326).  
 In summary, the method of steepest descent can be divided into 5 steps: 
(i) Identify all critical points, including saddle points. 
(ii) Determine the path of the steepest descent from these critical points. 
(iii) Justify the deformation of the original contour C onto one or more of the paths 
of steepest descent found in (ii). 
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(iv) Determine the asymptotic expansion of the integrals on the deformed contour 
such that the complex integral becomes a real Laplace type integral. 
(v) Sum the asymptotic expansions to give an approximation for the integral.    
 Among these, Step (iii) is the most difficult, and the process of deforming the 
contour is a consequence of the Cauchy integral theorem.  

12.8.3 Steepest Descent of Higher Order Saddle Point 

The previous result presented in (12.326) makes two major assumptions that pose a 
limitation on the result in (12.326). Let us recap here. Recasting the Laplace 
integral slightly, we have: 

   ( ) ( ) exp{ ( )}
b

a
I g t w t dt  (12.329) 

In the last section, the two major assumptions are: 
   0( ) regularg t ,   0( ) 0w z  (12.330) 

First we generalize the second condition in (12.330), and suppose now that the 
saddle point is not a simple saddle and the function w satisfies: 

   ( 1) ( )
0 0 0 0( ) ( ) ... ( ) 0, ( ) 0n nw z w z w z w z  (12.331) 

where n is an integer (can be both even and odd). The analysis given in Section 
12.8.2 can easily be modified. In particular, we recall from (12.299) that: 

   ( )
0 0( ) ,n i iw z ae z z e  (12.332) 

In addition, the integral (12.329) can be rewritten as 

   0 0( ) exp{ ( )} ( )exp{ [ ( ) ( )]}
b

a
I w z g z w z w z dz  (12.333) 

Taylor series expansion gives 

   

( )
( )0

0 0
( )

( ) ( ) ( ) ...
! !

[cos( ) sin( )]
!

n n
n i n

n

w z aw z w z z z e
n n

a n i n
n

 (12.334) 

By requiring that the imaginary part of (12.334) is a constant, we have 

    (2 1) , 0,1,..., 1k k n
n n

 (12.335) 

In view of (12.335), we have 

   0( ) ( )
!

naw z w z
n

 (12.336) 

Substitution of (12.336) into (12.333) gives 

  0 0
0

( ) exp{ ( )}exp( ) ( ) exp{ }
!

naI w z i g z d
n

 (12.337) 

where g(z) is an analytic function at z = z0. If n is not an integer, the integral is not 
an even function. Thus, we cannot in general extend the limits of the integral to  
to . Now consider a change of variables: 
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   1/( )
!

na
n

 (12.338) 

With this change of variables, (12.337) can be written as 

  1/
0 0

0

!( ) exp{ ( ) } ( )( ) exp{ }n nnI w z i g z d
a

 (12.339) 

Finally, the integral in (12.339) can be evaluated in terms of the gamma function 
through the following change of variables: 

   1,n ns ds n d  (12.340) 
Using this change of variables, the integral in (12.339) becomes 

 
1 1

0 0

1 1 1exp{ } ( )n s n
GI d e d

n n n
 (12.341) 

The last result is obtained by noting the definition of the gamma function given in 
Chapter 4. Back substitution of (12.341) into (12.339) gives 

     1/0
0( )

0

( ) ! 1( ) ( ) ( )exp{ ( ) [(2 1) ]}
( )

n
n

g z nI w z i k
n n n nw z

 (12.342) 

This result agrees with the result given by Bleistein and Handelsman (1986).  
 Similarly, we can also generalize the first condition in (12.330) that g is not a 
regular function at z = z0: 

   ( 1) ( )
0 0 0 0( ) ( ) ... ( ) 0, ( ) 0m mg z g z g z g z ,    (12.343) 

For this case, we expand g(z) in a Taylor series expansion as (since all lower 
derivatives vanish at z = z0)  

   
( ) ( )

0 0
0 0

( ) ( )
( ) ( ) ( ) ... [ ]

! !

m m
m m img z g z

g z g z z z e
m m

,    (12.344) 

Substituting (12.344) into (12.333) and in view of (12.343) and (12.344), we can 
express (12.333) as 

  
( )

0
0

0

( )
( ) [ ] exp{ ( )} exp{ }

! !

m n
im mg z aI e w z d

m n
 (12.345) 

To determine the integral, we can apply the change of variables proposed in 
(12.338) to simplify the integral in (12.345) to 

  ( 1)/

0 0

!exp{ } ( ) exp{ }
!

n
m m n m na nd d

n a
 (12.346) 

Introducing another round of change of variables  = s1/n, we get 

  ( 1)/ ( 1)/ 1

0 0

! 1exp{ } ( ) exp{ }
!

n
m m n m na nd s s ds

n a n
 (12.347) 

The last integral in (12.347) is again recognized as the gamma function. Thus, we 
finally get 

1( )
0

0( )
0

( )1 ! 1( ) [ ]( ) ( )exp{ ( ) ( 1)[(2 1) ]}
! ( )

mm
n

n

g z n mI w z i m k
n m n n nw z

  (12.348) 
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This result again agrees with that given by Bleistein and Handelsman (1986), but 
the present proof is much simpler that theirs. 

12.9 STATIONARY PHASE OF STOKES-KELVIN 

According to the discussion by Watson (1944), the method of stationary phase was 
first published explicitly by Kelvin in 1887 when he considered the asymptotic 
value of the following integral with a large argument, which was related to two-
dimensional waves in water (Kelvin, 1887): 

   
0

1 cos[ { ( )}]
2

u m x tf m dm  (12.349) 

However, Watson (1944) also discovered that the same idea had been used by 
Cauchy in 1815, Stokes in 1856, and Riemann in 1876. Nevertheless, in most 
literatures this method was attributed to either Stokes or Kelvin.  
 In particular, the following integral was considered: 

   ( ) ( ) exp{ ( )}I x g t ixh t dt  (12.350) 

where x  . Note that the Laplace method deals with a real function in the 
exponential function, the method of steepest descent considers a complex function 
in the exponential function, whereas in the present case, the method of stationary 
phase treats a purely imaginary function in the exponential function. Actually, the 
method of analysis closely resembles that used in the method of steepest descent. It 
is well known from Euler’s formula that   
   exp{ ( )} cos[ ( )] sin[ ( )]ixh t xh t i xh t  (12.351) 
When x  , this is a highly oscillating function. In mechanics and physics, such 
functions are mostly related to wave phenomena, and xh(t) is actually the phase of the 
wave motion. The integral is essentially zero as the integrand is rapidly oscillatory 
such that the contributions from adjacent sub-intervals nearly cancel one another, 
except at the point where the function is stationary (i.e., h’(t) = 0).  Kelvin asserted 
that the main contribution is from the end points and stationary points, but the 
contribution from the stationary point is more important than those from the end 
points. In other words, we are looking at the point where the phase of the wave 
motion is stationary. This suggests the name “method of stationary phase.”  

12.9.1 Erdelyi’s Derivation 

Assume that the stationary point is at t =  such that 
   ( ) 0, ( ) 0,h h    (12.352) 
Since the contribution is from the neighborhood of the stationary point, we have 

   ( ) ( ) exp{ ( )}I x g t ixh t dt    (12.353) 

where  is a small positive number. Following the procedure discussed in the Laplace 
method, we can apply the following change of variables: 
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   2 2( ) ( ) ,
( )

uduh t h u dt
h t

   (12.354) 

Thus, the integral in (12.353) becomes 

   
1/2

1/2

[ ( ) ( )] 2

[ ( ) ( )]

2( ) ( ) exp{ [ ( ) ]}
( )

h h

h h

uI x g t ix h u du
h t

   (12.355) 

We now consider the following limit as t    

   2 ( ) 0lim
( ) 0t

u t
h t

   (12.356) 

Since the limit is of the form of 0/0, we can apply L’Hôpital’s rule to get 

   2 ( ) 2 ( ) 2 ( )lim lim lim
( ) ( ) ( ) 2t t t

u t u t h t
h t h t h t u

  . (12.357) 

We note that the limit that we want to find on the left hand side appears as an inverse 
on the right hand side. Thus, we can rearrange the result as  

   1/22 ( ) 2lim[ ]
( ) ( )t

u t
h t h

   (12.358) 

Using this result, we can rewrite (12.355) as 

   
1/2

22( ) ( )exp{ ( )} exp{ }
( )

I x g ixh ixu du
h

   (12.359) 

To evaluate the integral in (12.359), we make the following change of variables  

   
1/2

/4iu e
x

   (12.360) 

where the positive sign is for h”( ) > 0 and the negative sign is for h”( ) < 0. 
Effectively, we rotate the angle or we convert the oscillating exponential function to 
become a decaying function as 

     
1/2 /4

1/2 1
1/2 0

2( ) ( )exp{ ( )} exp{ }
( )

ieI x g ixh d
h x

   (12.361) 

The last integral becomes a gamma function and thus we have 

      
1/2

2 1( ) ( )exp{ ( ) } ( )
( ) 4 2

iI x g ixh
xh

   (12.362) 

Finally, we can use the well-known result for the gamma function that (see Example 
4.2 in Chapter 4) 

      1( )
2

   (12.363) 

Consequently, we have the asymptotic result as 

      
1/2

2( ) ( )exp{ ( ) }
( ) 4

iI x g ixh
xh

   (12.364) 

This result of course agrees with that of Erdelyi (1956), who only considered the 
positive sign. Note however that there is a typo in equation (6.1.5) on p. 220 of 
Bleistein and Handelsman (1986). 
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__________________________________________________________________ 
Example 12.5 Consider the leading order term of the following integral form of the 
Bessel function defined by: 

     
0

1( ) cos( sin )nJ nt t dt  (12.365) 

where .  
 
Solution: We first note from Euler’s formula that 

     1cos ( )
2

i ie e  (12.366) 

Using (12.366), we have 

    0 0

1 2

1( ) exp( )exp( sin ) exp( )exp( sin )
2
1 { ( ) ( )}

2

n

n n

J int i t dt int i t dt

J J
 (12.367) 

We recognize that both integrals are of the type of (12.350). For the first integral, 
we find 
     ( ) sin , ( ) cos , ( ) sinh t t h t t h t t  (12.368) 
The stationary point is at t = /2, and thus 
     ( / 2) 1, ( / 2) 0, ( / 2) 1h h h  (12.369) 
Employing the formula derived in (12.364), we get 

     1
2( ) exp{ }exp( ) exp( )

2 4n
n iJ i i  (12.370) 

Similarly, for the second integral we can follow the same procedure in deriving 

     2
2( ) exp{ }exp( ) exp( )

2 4n
n iJ i i  (12.371) 

Substitution of (12.370) and (12.371) into (12.367), we find 

     2( ) cos( )
2 4n

nJ  (12.372) 

This can be found in 9.2.1 of Abramowitz and Stegun (1964).  
__________________________________________________________________ 

12.9.2 Stationary Phase of Higher Order 

This section follows closely the presentation by Bender and Orszag (1978). Let us 
recast the problem as 

   ( ) ( ) exp{ ( )}
b

a
I x f t ix t dt  (12.373) 

as x  . Without loss of generality, we can assume the higher order saddle point is 
at the boundary point t = a defined by: 
   ( 1) ( )( ) ... ( ) 0 ( ) 0p pa a a    (12.374) 
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First, we can decompose (12.373) into two integrals: 

   1 2( ) ( ) exp{ ( )} ( )exp{ ( )} ( ) ( )
a b

a a
I x f t ix t dt f t ix t dt I x I x  (12.375) 

We are going to show that the order of magnitude of these two integrals is not the 
same as x  . The leading order term is from the first integral as the second one 
decays much faster than the first for large x. Let us apply integration by parts to the 
second part of (12.375) as: 

    
2

1( ) ( )exp{ ( )} ( ) {exp[ ( )]}
( )

1 1 exp[ ( )] ( )( )exp[ ( )]
( ) ( )

b b

a a

bb
a a

I x f t ix t dt f t d ix t
ix t

ix t df tf t ix t dt
ix t ix t dt

 (12.376) 

If there is no stationary point within the limit of integrations, the integrals in (12.376) 
decays as 1/x, and so does the second integral in (12.375).  
 To evaluate the first integral in (12.376), we use Taylor series expansion for 

(t) as 

     ( ) ( )( ) ( ) ( ) ...
!

p
p t at a a

p
 (12.377) 

 
Thus, if f (t) is a regular function, we get 

    ( )
1( ) ( )exp{ ( )} exp{ ( )( ) }

!

a p p

a

ixI x f a ix a a t a dt
p

( )exp(  (12.378) 

The following change of variables is adopted 
    s t a  (12.379) 
Then, with    (12.379) is simplified to 

    ( )
1

0
( ) ( )exp{ ( )} exp{ ( ) }

!
p pixI x f a ix a a s ds

p
( )exp(  (12.380) 

To evaluate the integral, we apply the following change of variables  

 

1/

2
( )

!
( )

p
i

p
p

p us e
x a

   (12.381) 

where the plus sign is used if (p)(a) > 0 and the minus sign is used if (p)(a) < 0. 
Employing this change of variables, (12.380) becomes 

   

1/

1/ 1
1 ( ) 0

! 1( ) ( ) exp{ [ ( ) ]} exp{ }
2( )

p

p
p

pI x f a i x a u u du
p px a

!p!!p
( )( )( )x

 (12.382) 

In obtaining this, we set upper limit   . The integral is again the gamma function, 
and thus we finally arrive at the following result: 

 

1/

1 ( )

! 1( ) ( ) exp{ [ ( ) ]} ( )
2( )

p

p

p pI x f a i x a
p px a

!p!!
( )( )( )x

 (12.383) 
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Since p is an integer larger than 1, this integral decays as 1/x1/p, and it is much slower 
than 1/x compared to the second integral in (12.375). Therefore, the result is  
 1/

( )

! 1( ) ( )exp{ [ ( ) ]}[ ] ( )
2 ( )

p
p

p pI x f a i x a
p px a

( )exp(  (12.384) 

This result agrees with Equation (6.5.12) on p.279 of Bender and Orszag (1978). 
__________________________________________________________________ 
Example 12.6 Consider the leading order term of the following Bessel function 
with both the argument and order approaching infinity: 

     
0

1( ) cos( sin )nJ n nt n t dt  (12.385) 

where n .  
 
Solution: For this case, the phase function is identified as 
     ( ) sint t t  (12.386) 
Therefore, we have  
     ( ) cos 1, ( ) sin , ( ) cost t t t t t  (12.387) 
The stationary point is at t = 0. Substituting the stationary point into (12.387) we 
get  
     (0) 0, ( ) 0, ( ) 1t t  (12.388) 
Therefore, we have p = 3 for this case. Employing the formula derived in (12.384), 
we obtain 

     /6 1/31 1 6 1( ) Re{ ( ) ( )}
3 3

i
nJ n e

n
{

3
1 11 1Re{1 1  (12.389) 

Finally, taking the real part we get 

     2/3 1/6 1/31 1( ) 2 3 ( )
3nJ n n1 2/31 2/32 32/31 2/32/32/3  (12.390) 

This result was first obtained by Cauchy in 1854, and this was also obtained by 
Nicholson in 1909, Rayleigh in 1910, and Watson in 1918 (Watson, 1918). 
__________________________________________________________________ 

12.9.3 Stationary Phase of Higher Dimensions 

So far, our results are for the one-dimensional case. We can extend our analysis to 
multi-dimensional integral as: 
   1 1 1( ) ... ( ,..., )exp{ ( ,..., )}n n nI x x i f x x dx dxndxn  (12.391) 

The derivation of the result is similar to that employed in Section 12.7.4. In 
particular, the stationary point can be determined as 

   ( ) 0f a  (12.392) 
This is equivalent to 

  
1

( ) ( ) 0
n

f f
x x

(f
x
ff (
xx

a a  (12.393) 

where 
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   1( ,..., )na aa  (12.394) 
As discussed before, the determinant of the Hessian matrix is larger than zero: 

   
2

det ( ) det 0
i j

f
x x

H a  (12.395) 

Expanding f(x) above a, we get 

    1
1[ ( ,..., ) ( ) ( )]
2

1 2( ) ( , ,..., ) ...
T

ni f a a
nI a a a e d

x a H x a
x  (12.396) 

Denoting y = x a, we obtain 

    ( ) 2( ) ( ) ...
Ti

i fI e e d
y Hyaa y  (12.397) 

We can decompose the Hessian matrix as (see p. 288 of Lipschutz, 1987) 
    TP DP H  (12.398) 

where P is the orthogonal matrix and its column is composed of eigenvectors of the 
Hessian matrix. Consequently, D is a diagonal matrix with eigenvalues of H as the 
diagonal terms: 

    
1 0 0

0 0 n

D  (12.399) 

Thus, (12.177) can be expressed as 

    ( ) 2( ) ( ) ...
Ti

i fI e e d
z Dzaa z  (12.400) 

where 
    z Py  (12.401) 

The matrix P is composed of unit eigenvectors as: 

    det det 1i

j

y
J

z
P  (12.402) 

It is straightforward to see that 
    2 2

1 1 ...T
n nz zz Dz  (12.403) 

Substitution of (12.403) into (12.400) gives 

    
2 2

1 1( ) 2 2
1( ) ( ) ... n n

i iz zi f
nI e e dz e dzaa  (12.404) 

We now recall the previous result obtained in Section 12.9.1 that 

   2 1/2 1/24 4
0 1 1

1 1 1 1exp{ } ( ) ( ) ( )
2 2 2 2

i i

ii u du e e    (12.405) 

The plus or minus sign depends on whether the eigenvalue i defined as the 
diagonal terms in (12.399) is positive or negative. In view of the symmetric 
property of the integral, (12.405) can be rewritten as 
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   2 1/2 4

1

2 1exp{ } ( )
2

i

ii u du e    (12.406) 

where i = 1,2,...,n. Substitution of this result into (12.404) gives 

    1
sgn

4( ) /2

1

2 1( ) ( ) ( )

n

j
j

i

i f n

n
I e e

n

aa  (12.407) 

Recall that the determinant of the Hessian equals the product of the eigenvalues: 

    
1

det det
n

i
i

D H  (12.408) 

Substitution of (12.408) into (12.407) gives 

    /2

1

2 1( ) ( )( ) exp{ ( ) sgn }
4det

n
n

j
j

iI i fa a
H

 (12.409) 

If the stationary point is at the boundary, the value of the integral will be half  

    /2

1

1 2 1( ) ( )( ) exp{ ( ) sgn }
2 4det

n
n

j
j

iI i fa a
H

 (12.410) 

This result agrees with Equation (2.32) on p. 487 of Wong (2001), but the present 
derivation is much simpler than that of Wong (2001). 

12.10 NAVIER-STOKES EQUATIONS FOR SURFACE WAVES  

As derived in Chapter 2, the most general form of incompressible fluid flow can be 
modelled by the following Navier-Stokes equation  

 21 p
t
u u u u  (12.411) 

Continuity of the fluid for a 2-D, incompressible, inviscid flow with no capillary is 

 0u w
x z

 (12.412) 

The equation of motion along the x-axis is 

 1u u u pu w
t x z x

 (12.413) 

The equation of motion along the z-axis is 

 1w w w pu w g
t x z z

 (12.414) 

As shown in Figure 12.11, there are two sets of boundary conditions, one at the free 
surface and one at the bottom. The dynamic condition on the free water surface is 
 0,p z  (12.415) 
Another surface condition is the kinematic condition on the water surface 
 



758   Theory of Differential Equations in Engineering and Mechanics 

( , )z x t

( ) 0w h

 ,u w z
t x

 (12.416) 

whilst the kinematic condition at the sea bottom is 
 0,w z h  (12.417) 
 
 
 
 
 
 
 
 

Figure 12.11 Boundary condition for shallow water waves 
 
Because of the incompressibility given in (12.412), we can introduce a velocity 
potential  

 ,u w
x z

 (12.418) 

In terms of the velocity potential, the continuity condition in (12.412) can be 
expressed as a Laplace equation 

 
2 2

2
2 2 0, 0

x z
 (12.419) 

Equations of motion along the x- and z- axes given in (12.413) and (12.414) can be 
rewritten in terms of velocity potential as: 

 2 21 1( ) [( ) ( ) ]
2

p
x t x x z x

 (12.420) 

 2 21 1( ) [( ) ( ) ]
2

pg
z t z x z z

 (12.421) 

The boundary conditions become 
 0,p z  (12.422) 

 , ( , )z x t
t x x z

 (12.423) 

And the kinematic condition at the sea bottom is 

 0, z h
z

 (12.424) 

Integrating (12.420) once, we obtain 

 2 21( ) [( ) ( ) ] 0
2

p gz
t x z

 (12.425) 

We now specify (12.425) on the free surface (z = ) to get 

 2 21( ) [( ) ( ) ] 0, ( , )
2

g z x t
t x z

 (12.426) 
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Finally, the equations to be solved are (12.419), (12.423), (12.424) and (12.426).   

12.11 PERTURBATION FOR NAVIER-STOKES EQUATION 

Note that the governing equation for the velocity potential is nonlinear and, in 
addition, the shape of the free surface, which is one of the boundaries, is unknown. 
This nonlinear problem can be handled by the perturbation method discussed in 
this chapter. In particular, we assume that motion in the water is small. Without 
wave motion, the surface of the water is flat, and with wave motions, the water 
surface becomes uneven. Thus, the small motion also means that the vertical 
displacement of the free surface is small. This assumption normally breaks down 
when a wave motion is plunging onto a sloping bottom along the coastline. It can 
be shown that momentum change due to surface undulation with wavelength L is 
proportional to the wave steepness defined by  = H/L where H is twice the 
amplitude of the wave function on the free surface, as illustrated in Figure 12.12. 
For small amplitude wave motions, we have  being small.   

12.11.1 Shallow Water Waves 

For small amplitude waves with small  (say <1/7), we assume that the wave 
motion is small and thus we have 
 2 3

1 2 3 ...  (12.427) 

 2 3
1 2 3 ...  (12.428) 

 2 3
0 1 2 3 ...p p p p p  (12.429) 

where  = H/L is the wave steepness (the nonlinear parameter of the problem). Note 
that we have finite water pressure p even for the case of no wave motions. 
Therefore, only the first order terms of the surface undulation  and wave function 

 is proportional to , not p.   
 
(i) Equation of continuity 
 
Substitution of (12.427) into the equation of continuity (12.419) gives 

 

 
2 2 2 2

2 21 2 1 2
2 2 2 2... ... 0

x x z z
 (12.430) 

Thus, we have the following governing equations for the first few approximations 
as 

 
2 2

1 1
2 2( ) : 0O

x z
 (12.431) 

 
2 2

2 2 2
2 2( ) : 0O

x z
 (12.432) 
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( , )z x t

( ) 0w h

H=2a H
L

/ 2L 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 12.12 Boundary condition for shallow water waves 

 

 
2 2

3 3 3
2 2( ) : 0O

x z
 (12.433) 

 
(ii) Dynamic condition on free surface  
 
The free surface condition given in (12.426) is expanded around z = 0 with respect 
to  

     

2 2 3
2 2

0 0 0 02

2 2
2 2 2 2

2
0 0

1( ) ( ) ( ) ... [( ) ( ) ]
2! 2

1 1[( ) ( ) ] [( ) ( ) ]
2 2! 2

... 0

z z z z

z z

t t z x zt z

z x z x zz

g

 (12.434) 

All these terms can be expanded in a series of   as: 

 2 3 31 2 ...
t t t t

 (12.435) 

 

2 22
2 21 2

1 2

2 2 2
2 3 3 41 1 2

1 2 1

( ) ( ...)[ ...]

( )

t z t z t z

O
t z t z t z

 (12.436) 

 
32 3 3

2 41
12 2( ) ( )

2 2
O

t z t z
 (12.437) 
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2 2 2 2 2 21 2 1 2

2
2 2 3 41 1 1 2 1 2

1 1[( ) ( ) ] [( ...) ( ...) ]
2 2

[( ) ( ) ] [( )( ) ( )( )]
2

x z x x z z

O
x z x x z z

 

  (12.438) 
2 2

2 2
2

2 2
2 1 1 1 1

1 2 2

2 2
3 41 1 1 1

1 2

1 [( ) ( ) ]
2

( ...){( ...)( ...) ( ...)( ...)}

[ ] ( )

z x z x z x z z

x z x z z

O
x z x z z

 (12.439) 

Substituting of these results into (12.434) and collecting the first and second order 
terms, we have 

 1
1( ) : 0O g

t
 (12.440) 

 
2

2 2 22 1 1 1
2 1

1( ) : [( ) ( ) ]
2

O g
t t z x z

 (12.441) 

Note from (12.441) that the second approximation depends on the solution of the 
first approximation.  
 
(iii) Kinetic condition on water surface 
 
We expand the kinetic condition given (12.423) around z = 0 to get 

 
2 2 3 2 2 3

2 2 3[ ...] ...
2! 2!t x x z x zx z z z

 

  (12.442) 

 

2
2 2 21 2 1 2 1 1 2

1

2
2 21 2 1

1 2

... [ ( ) ...] ...

[ ...] ...

t t x x x z x x

z z z

 

  (12.443) 
The first and second order approximations are: 

 1 1( ) : 0O
t z

 (12.444) 

 
2

2 2 2 1 1 1
1 2( ) :O

t z x x z
 (12.445) 
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(iv) Kinetic condition on sea bottom 
 
The boundary conditions given in (12.424) for the first two approximations are 

 1( ) : 0O
z

 (12.446) 

 2 2( ) : 0O
z

 (12.447) 

We now summarize the formulation for the first order approximation 

 
2 2

1 1
2 2 0

x z
 (12.448) 

 1 1 1
1 0, 0, 0g z

t t z
 (12.449) 

 1 0, z h
z

 (12.450) 

The governing equation for the first approximation is a Laplace equation. The two 
conditions given in (12.449) can be combined by elimination. Thus, the surface 
boundary condition becomes 

 
2

1 1
2 , 0g z

zt
 (12.451) 

The problem of the second order approximation is summarized as 

 
2 2

2 2
2 2 0

x z
 (12.452) 

 
2

2 22 1 1 1
2 1

1 [( ) ( ) ], 0
2

g z
t t z x z

 (12.453) 

 
2

2 2 1 1 1
1 2 , 0z

t z x x z
 (12.454) 

 2 0, z h
z

 (12.455) 

Again, nonhomogeneous terms on the right of (12.453) and (12.454) depend on the 
solution of the first approximation.  

12.11.2 Airy Surface Waves 

The first order of approximation for a surface water wave is called an Airy surface 
wave. We adopt a separation of variables as 
 ( , , ) ( ) ( ) ( )x z t X x Z z T t  (12.456) 
Substitution of (12.456) into (12.448) gives 

 
2 2

2 2
d X d ZZT XT
dx dz

 (12.457) 

This can be rearranged as 
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2 2

2
2 2

1 1d X d Z k
X Zdx dz

 (12.458) 

where k is the constant of separation of variables. This leads to two ODEs, one for 
X and one for Z: 

 
2 2

2 2
2 20, 0d X d Zk X k Z

dx dz
 (12.459) 

The solutions for the first and second equations of (12.459) are respectively 
 1 2sin cosX A kx A kx  (12.460) 
 1 2sinh coshZ B kz B kz  (12.461) 
There is no governing equation for T(t), but we look for a periodic solution with 
respect to time 
 1 2sin cosT C t C t  (12.462) 
Combining the time and space variables, we obtain 
    1 2 1 2( , , ) [ sinh cosh ]{ sin( ) cos( )}x z t B kz B kz C kx t C kx t  (12.463) 
which is a forward moving wave. Note for simplicity that we have dropped the 
subscript “1” in the wave potential. Similarly, the backward moving wave is 
    1 2 1 2( , , ) [ sinh cosh ]{ sin( ) cos( )}x z t B kz B kz C kx t C kx t  (12.464) 
Without loss of generality, we look for a particular solution form 
 1 2( , , ) [ cosh sinh ]cos( )x z t D kz D kz kx t  (12.465) 
The bottom boundary condition requires: 

 1 2( ) [ sinh cosh ]cos( ) 0z h k D kh D kh kx t
z

 (12.466) 

This leads to  
 2 1 tanhD D kh  (12.467) 
Using this result in (12.465) and differentiating with respect to time and z, we get 

 
2

2
12 [cosh tanh sinh ]cos( )D kz kh kz kx t

t
 (12.468) 

 1[sinh tanh cosh ]cos( )g gkD kz kh kz kx t
z

 (12.469) 

Substitution of (12.468) and (12.469) into the following surface condition 

 
2

1 1
2 g

zt
 (12.470) 

gives the dispersion equation for frequency  
 2 tanhgk kh  (12.471) 
This dispersive relation relates the wave frequency  with the wave number k. 
Whenever  is a function of k, the wave is called a dispersive wave. The main 
characteristic of a dispersive wave is that the wave amplitude decreases with 
propagation. Now, we can let 

 1

cosh
D

A
kh

 (12.472) 
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In addition, we note the following sum formula for the hyperbolic cosine 
 cosh( ) cosh cosh sinh sinhx y x y x y  (12.473) 
Then, (12.465) can be rewritten in a compact form as: 
 cosh[ ( )]cos( )A k z h kx t  (12.474) 
Differentiation with respect to time gives 

 cosh[ ( )]sin( )A k z h kx t
t

 (12.475) 

The unknown constant A must depend on the wave amplitude a. Let us assume the 
surface undulation as 
 sin( )a kx t  (12.476) 
To find A in terms of a, we can substitute (12.476) and (12.474) into the (12.440) 
or 

 0g
t

 (12.477) 

Thus, we have 
 cosh sin( ) sin( )A kh kx t ga kx t  (12.478) 
Solving for A, we get 

 1 1
cosh sinh

ga aA
kh k kh

 (12.479) 

The second part of (12.479) results from the dispersive relation derived in 
(12.471). Thus, we obtain the flow potential as 

 

cosh[ ( )] cos( )
sinh

cosh[ ( )] cos( )
cosh

a k z h kx t
k kh

ga k z h kx t
kh

 (12.480) 

The time dependent function can be expressed as  

 cos( ) cos[ ( )] cos[ ( )]kx t k x t k x ct
k

 (12.481) 

where the phase speed c is defined as 

 c
k

 (12.482) 

Finally, the velocity components can be obtained as 

 cosh[ ( )] sin( )
sinh

k z hu a kx t
x kh

 (12.483) 

 sinh[ ( )] cos( )
sinh

k z hw a kx t
z kh

 (12.484) 

The trajectories of water particles can be evaluated by using a Lagrangian 
formulation.  Assume that the initial position of the water particle is at (x0, z0) and 
the position of the same point at time t is (x = x0+ x, z = z0+ z). The change of the 
position can be approximated as 
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0
0 0 0 0

0 0
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0 0
0 0, , , ,0 0 0 0

( )
( , , ) ( , , )

( , , ) ...

( , , ) ( ) ( ) ...
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E E
E

x z t x z t

t t
E E

E E E
x z t x z t

d x x
u x z t u x x z z t

dt
u uu x z t x z
x z

u uu x z t u dt w dt
x z

(12.485) 

 

0
0 0 0 0

0 0
, , , ,0 0 0 0

( )
( , , ) ( , , )

( , , ) ...

L E

E E
E

x z t x z t

d z z
w x z t w x x z z t

dt
w ww x z t x z
x z

 (12.486) 

 
where the subscripts “E” and “L” denote Eulerian and Lagrangian velocities. Using 
the (12.485) and (12.486) as the first terms in (12.483) and (12.484), we get 

 0 0
0

( ) cosh[ ( )]
sin( )

sinh
d x x k z h

a kx t
dt kh

 (12.487) 

 0 0
0

( ) sinh[ ( )]
cos( )

sinh
d z z k z h

a kx t
dt kh

 (12.488) 

Integrating with respect to time, we have 

 0
0 0

cosh[ ( )]
cos( )

sinh
k z h

x x a kx t
kh

 (12.489) 

 0
0 0

sinh[ ( )]
sin( )

sinh
k z h

z z a kx t
kh

 (12.490) 

These two components can be combined to get the following elliptic trajectory of 
particle motions: 
 
 

 
 

 
 

 
 
 
 
 
 
 
 

 
Figure 12.13 Elliptic trajectories motion for the first approximation 



766   Theory of Differential Equations in Engineering and Mechanics 

 2 20 0

0 0
{ } { } 1

cosh[ ( )] sinh[ ( )]
sinh sinh

x x z z
k z h k z ha a

kh kh

 (12.491) 

This elliptic trajectory is illustrated in Figure 12.13. This is the Airy wave. Note 
however that if the nonlinear effect is included in the wave analysis, the motion of 
the water particle is no longer a closed circuit. That is, the water particle is being 
drifted forward in each cycle.  

12.11.3 Shallow and Deep Water Limits  

We will now consider the limiting cases of Airy’s wave that were first considered 
by George Green (recall Green’s theorem in Chapter 8). We first recall some 
relations for wave characteristics. The wave speed is defined as  
 Lc

k T
 (12.492) 

where T is the period of the surface wave. The wave frequency relates to the wave 
period as 

 2
T

 (12.493) 

The wave number is defined by  
 2k

L
 (12.494) 

Using these and (12.471), we write the phase speed in terms of the wave number, 
gravitational constant g, and depth of water h as   

 

2
2

2 tanh

2 2tanh( ) tanh( )
2 2

gc kh
kk

gL h gcT h
L L

 (12.495) 

The phase speed given in (12.495) can be put in a normalized form as: 

 1 tanh( )c kh
khgh

 (12.496) 

In other words, if the wavelength and water depth are known, the wave speed can 
be estimated. The wavelength can be expressed as 

 
2 2tanh( )

2
gT hL cT

L
 (12.497) 

We now consider two particular limits.  
 
(i) Deep water limit 
 
When the water depth is much deeper than the wave length, we have 
 /h L  (12.498) 
For this deep water limit, we have 
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 tanh 1kh  (12.499) 
By virtue of (12.492) and (12.496), we have the following relation for a deep water 
wave: 

 
2

21.56
2
gTL T  (12.500) 

where the unit of wavelength is in meters while the period is in seconds. The wave 
relates to the period as 

 1.56
2
gTc T  (12.501) 

where the wave speed is in m/s and the period is in seconds. The normalized speed 
can be specified from (12.496) as 

 1c
gh kh

 (12.502) 

 
(ii) Shallow water limit: 
 
When the wavelength is much larger than the depth, we have 
 / 0h L  (12.503) 
Using the first term of Taylor series expansion for hyperbolic tangent, we find 

 2 2 2tanh( )h h h
L L cT

 (12.504) 

Substitution of (12.504) into (12.495) gives 

 2
2
gT h ghc

cT c
 (12.505) 

 Rearranging (12.505) we find the classical result of water speed for a shallow 
water wave: 
 c gh  (12.506) 
The water length L depends on the period T as 
 L ghT  (12.507) 
 We now consider a scenario for a large submarine earthquake and apply the 
shallow wave approximation to calculate the wave speed of a tsunami wave. When 
a large shallow submarine earthquake of magnitude 7.5 or higher occurs in deep 
sea (on the order of 8000 m), large sea bottom movements occurs. Water will be 
displaced upward or downward, and a so-called tsunami (literally means harbor 
wave in Japanese) will be generated. Because the size of the rupture surface for a 
large destructive earthquake is on the order of 200 km or more, the wavelength of 
such an initial disturbance is also on the order of 200 km. Using these data, 
(12.507) shows that the period of such an initial wave form is in the order of 12 
minutes. In addition, we have h/L  0.04 such that the shallow water wave 
assumption is valid.    
    The wave speed of such a tsunami wave can be estimated by (12.506) as 
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c
gh

c gh Shallow water limit 

deep water limit 

/c g k

tanhgc kh
k

kh

 
3

9.81 8000 280 /
60 60280 / 1008 /

10

c m s

km hr km hr
 (12.508) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.14 Phase speed for small amplitude wave, shallow water wave, and deep water wave 
 
The tsunami wave travels in deep sea as fast as a jet airplane. However, the wave 
speed decreases rapidly when a tsunami wave comes close to the continental shelf, 
and at the same time the amplitude also increases. When such a tsunami wave 
comes ashore, the amplitude of the wave will increase rapidly and our small 
amplitude wave assumption will break down. Therefore, many scientists and 
geophysicists claimed after the 2004 South Asian tsunami that a tsunami  
propagating to shore at the speed of jet airplane is totally incorrect and is 
misleading. 
 For shallow water waves, h decreases and the wave speed decreases as (gh). 
As illustrated in Figure 12.15, the wave crest line always turns roughly parallel to 
the coastline. This is the reason why we seem to see waves are coming toward the 
coastline no matter where you go along a beach. 

12.12 SUMMARY AND FURTHER READING  

Using asymptotic and perturbation methods, especially singular perturbation, in 
solving ODEs or PDEs is not a straightforward business. This method is normally 
covered in graduate courses in the area of applied mathematics. It is a topic still 
undergoing fundamental developments. The perturbation method was developed to 
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shore 

Wave crest 

bathymetry 

solve nonlinear ODEs containing a physically small parameter, and the technique 
turns one nonlinear ODE into an infinite system of linear ODEs by expanding the 
unknown function in asymptotic series in the small parameter of the problem. 
Normally one or two term expansions will give very accurate and meaningful 
results. In view of the asymptotic nature of the technique, more terms do not 
necessarily give a more accurate result. Very often, even powerful numerical 
methods will also break down when it is applied to solve highly nonlinear 
problems, unless you have an idea of how the solution is going to behave and under 
what circumstances the solution may change rapidly. For example, solutions of 
nonlinear systems are often unpredictable near singular points or bifurcation points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.15 Turning of wave toward the coastline as predicted by (12.506)                                                              
 
 In a chapter of this size, we can only introduce the basic ideas of this 
advanced technique that can provide approximate but insightful results for highly 
nonlinear problems, which are otherwise unsolvable. Our discussion only targets 
elementary and introductory levels. In particular, asymptotic expansions and their 
application in the regular perturbation method in solving ODEs are discussed. 
Singular perturbation methods are discussed briefly, and they include the method of 
matched asymptotic expansion (or boundary layer analysis), multiple scale analysis, 
and WKB approximation. The application of asymptotic expansion in evaluating 
integrals with a large parameter is discussed in light of the Laplace method, 
Riemann (or Debye) method of steepest descent (or saddle point method), and the 
method of stationary phase of Kelvin and Stokes. We conclude the chapter by 
looking at how to apply the perturbation method to convert the Navier-Stokes 
equation of fluid flows into a linear solvable problem. The Airy water wave and 
shallow water wave are considered as an example. 
 There are a lot of good and advanced books in asymptotic and perturbation 
methods. They include Kevorkian and Cole (1981), Nayfeh (1973), van Dyke 
(1975), Bender and Orszag (1978), Lagerstrom (1988), Lin and Segel (1988), 
Holmes (1995), and O’Malley (2014). Holmes (1995) and O’Malley (2014) are 
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particularly useful references in terms of the historical development of the method, 
and both of them contain a lot of examples. The scope and coverage of Bender and 
Orszag (1978) are very comprehensive and provide detailed discussion on many 
issues that you may likely encounter in applying the perturbation method. The book 
by van Dyke (1975) aims at solving fluid mechanics problems. Nayfeh (1973) 
probably provides the most comprehensive references of the applications of 
perturbation methods in engineering, science, and applied mathematics. Most of 
these books are not targeted at the undergraduate level and readers may find it 
difficult to read. At the introductory level, Lin and Segel (1988) provided the best 
insights and is very easy to read for beginners.  
 For asymptotic analysis of integrals, we refer to Erdelyi (1956), Olver (1997), 
Bleistein and Handelsman (1986), and Wong (2001). These books target graduate 
students and researchers and thus are not easy to read. We also highly recommend 
the book by Bender and Orszag (1978) on this topic as well. Their presentation is 
probably more appealing to undergraduates and engineers, but at the same time are 
very comprehensive. 
 In the area of structural instability, the perturbation method has also been 
applied to the buckling of beams, plates, and shells (e.g., Reiss, 1969, 1977, 1980a-
b, 1982, 1984, Reiss and Matkowsky, 1971). 

12.13   PROBLEMS 

Problem 12.1 Repeat the analysis in Example 12.1 but with boundary layer at x = 
1. Redefine the variable in the boundary layer as: 

 1
( )

x  (12.509) 

Find the inner expansion, outer expansion, and the composite expansion. 
 
Ans:  
 2 2(1 )/( ) 0, ( ) ( 1) 1, ~ x

O I Cy x y C e y e  (12.510) 
 
Problem 12.2 Prove the following Stirling asymptotic formula for Euler’s gamma 
function: 
 ( 1) 2 k kk kk e  (12.511) 
for k   , where the gamma function is defined by 

 
0

( 1) t kk e t dt  (12.512) 

Answer the following questions one by one: 
 (i) Show that 

  ln

0
( 1) t k tk e dt  (12.513) 

(ii) Use a change of variable t = ks to show that 
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  [ ln ]

0
( 1) k k s sk kk e ds  (12.514) 

(iii) Use the Laplace method to prove that for k   
  ( 1) 2 k kk kk e  (12.515) 
 
Problem 12.3 Consider the asymptotic form of the following double integral 

 
2 2( )( ) ( , )k x xy yI k e x y dxdy  (12.516) 

for k    and  is a regular function for all values of x and y. 
 
(i) Find the stationary point of the function  
 2 2( , )f x y x xy y  (12.517) 
(ii) Apply the following change of variables to the integral 

 ,
2
yu x v y  (12.518) 

(iii) Show that the Jacobian of the change of variables in (ii) is 1. 
(iv) Show that the asymptotic form of the integral given in (12.516) is 

 4( ) (0,0)
3

I k
k

 (12.519) 

Hint: Use the definition of the gamma function. 
 
Problem 12.4 Reconsider the asymptotic form of Problem 12.2 using the formula 
given in (12.284). Show that the answer is the same as that given in (12.519). 
 
Problem 12.5 Find the asymptotic form of the following integral by the Laplace 
method: 

 
2sinh

0
( ) x tI x e dt  (12.520) 

Ans: 

 1( )
2

I x
x

1
2 x

 (12.521) 

 
Problem 12.6 Find the asymptotic form of the following integral representation of 
modified Bessel function: 

 cosh

0
( ) cosh( )x tK x e t dt  (12.522) 

Ans: 

 ( )
2

xK x e
x2

xe
x

 (12.523) 
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Problem 12.7 Extend the result for the Laplace method to include the fourth order 
derivative term of  and the second order derivative term of f for the following 
integral 

 ( )( ) ( ) x tI x f t e dt  (12.524) 

where 
 ( ) 0, ( ) 0, ( ) 0c c f c  (12.525) 
Hint: See Section 6.4 of Bender and Orszag (1978) for the details of derivation of the 
result. 
 
Ans: 

 

(4)
( )

2

2

2 3

2 1 ( ) ( ) ( )( ) ( )
( ) 2 ( ) 8[ ( )]

( ) ( ) 5 ( )[ ( )]
2[ ( )] 24[ ( )]

x c f c f c cI x e f c
x c x c c

f c c f c c
c c

22
x
2

((((
 (12.526) 

 
Problem 12.8 Repeat the analysis in Problem 12.5 with the result derived in 
Problem 12.7. Find a two-term asymptotic expansion in the series. 
 
Ans:  

 1 1( ) (1 )
2 4

I x
x x

1 (11
2

(  (12.527) 

 
Problem 12.9 Assume the following two-scale perturbation expansions for a 
function u: 

    0 1 2 21( , ) ( , ) ( , ) ( , ) ...
2

u t u t u t u t  (12.528) 

where  
    t  (12.529) 

Show the validity of the following differentiation formulas: 

    0 0 1 1 2 21( , ) [ ] [ ] ...
2t t t

duu t u u u u u
dt

 (12.530)   

 0 1 0 1 0 2 21( , ) [ 2 ] [2 ] ...
2tt tt t t ttu t u u u u u u  (12.531)  

0 0 1 1 0 2 21( , ) [3 ] [3 3 ] ...
2ttt tt ttt tt t tttu t u u u u u u  (12.532) 

( ) 0 0 1 0 1 2 21( , ) [4 ] [6 4 ] ...
2

iv
tttt ttt tttt tt ttt ttttu t u u u u u u  (12.533) 

 



 
 

CHAPTER THIRTEEN 
 

Calculus of Variations  
 

13.1 INTRODUCTION  

One of the main applications of the calculus of variations is related to the 
variational formulation in mechanics problems, which is the topic to be covered in 
the next chapter (i.e., Chapter 14). In traditional mechanics, the governing equation 
of a mechanics problem can be formulated via two independent paths: (i) 
Newtonian mechanics formulation by considering the equation of motion or force 
equilibrium for an small free body cut out from the original body; and (ii) 
variational formulation that requires the minimization of energy or some functional 
(in the form of integral). The calculus of variations provides the backbone for the 
second approach. The origin of the calculus of variations can be traced back to the 
time of Bernoulli and Euler. Its formal development was, however, mainly done by 
Euler and Lagrange. Seeking a functional (a function of admissible functions in 
integral form) that is stationary, Euler in 1736 and Lagrange in 1755 derived 
independently that a second order PDE called the Euler-Lagrange equation of the 
functional. The resulting governing equation of the problem is known as the Euler-
Lagrange equation. A special case of it is known as the Beltrami identity if the 
integrand function inside the integral of the functional is independent of the 
independent variable of the problem. The term calculus of variations was 
introduced by Euler. 
 The application of the calculus of variations is mainly used in searching an 
optimum solution of problems. For example, these problems include what is the 
shortest  distance between two points in space, what is the shape of the strongest 
column (proposed by Lagrange in 1773), what is the shape of the column strongest 
against torsion (St. Venant problem solved by George Polya in 1948), what is the 
shape of a drum of minimized tone for a given area (Rayleigh conjecture solved by 
Courant, Faber, and Krahn in 1920s), what is the shortest curve between two points 
on a curved surface (geodesics problem first considered Euler in 1755), what is the 
shape of a simply connected electric capacitor that maximizes capacity (solved by 
Poincare and Szego), what is the shape of a soap film form between two metal 
circular rings (catenoid problem), what is the profile of a wire for a frictionless 
sliding bead giving the shortest travel time (brachistochrone problem posed by 
Johann Bernoulli), what is the least-perimeter of a soap bubble enclosing a given 
volume of air (solved by Schwarz in 1884 as sphere bubble), what solid with 3-D 
shape minimizes heat loss (Polya’s cat curling problem), what is the shape of a 
rocket nose that minimizes the air resistance in supersonic flight (Newton's minimal 
resistance problem), and what is the shape of a closed curve of fixed length giving 
the greatest enclosed area on a surface (isoperimetric problem or Dido problem).  
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 The geodesic problem is of great importance in surveying, navigation on the 
surface of the earth, signals traveling on earth’s surface, and defining maritime 
boundaries. The term “geodesic line” was coined by Laplace in 1799. If the earth’s 
surface is approximated by a sphere, the shortest distance between two points is an 
arc of a great circle (Euler in 1755). For the more realistic ellipsoidal earth, the 
problem is more complicated and has been considered by many famous 
mathematicians and scientists, including Newton in 1687, Clairaut in 1735, 
Legendre in 1806, Oriani in 1806, Bessel in 1825, Gauss in 1828, and Poincare in 
1905. 
 In the 19th century, Weierstrass realized that there could be subtle problems 
involved as the Euler-Lagrange equation is the necessary but not sufficient 
condition, and thus some of the solution is not the minimum or maximum. The 
study of the existence of an extremal value of functionals results in the so-called 
direct method of the calculus of variation. The main contributors are Weierstrass, 
Schwarz, Poincare, and Hilbert and their works are based on functional analysis 
and topology. This topic is, however, out of the scope of the present study. 
 In this chapter, we will discuss the calculus of variations and the associated 
Euler-Lagrange equation for the case of a single variable and the case of multi-
independent and dependent variables. The idea of the Lagrange multiplier will also 
be discussed.  
 For example, the brachistochrone problem, catenoid problem, Dido’s problem 
of isoperimeter, and geodesics will be considered as illustrations in the present 
chapter. Among these problems, we should mention the problem of isoperimetry 
(i.e., solving a problem of isoperimeter like the Dido problem) in particular. In the 
19th century, Belgian physicist J. Plateau experimented with soap film and 
conjectured that every nice closed wire loop bounds a soap film or minimal surface. 
This is referred to as the Plateau problem in the literature. This conjecture was 
subsequently proved by J. Douglas in 1931, who was awarded the Fields Medal on 
this achievement (Douglas, 1931). Another Fields Medal recipient, Enrico 
Bombieri, received the medal because of work on higher dimensional minimal 
surfaces. Thus, calculus is an important topic in mathematics. 

13.2 FUNCTIONAL 

A functional I is defined in terms of a function F, which is in turn a function of 
another function y and its derivatives: 

 ( ) [ , , ]
b

a
I y F x y x y x dx  (13.1) 

where x is the variable of the function y. The objective of the calculus of variation 
is to find what admissible functions y(x) will lead to a maximum or a minimum 
value of the functional I or so-called stationary. Physically, I can be an arc-length 
that we want to minimize, an energy function of a problem, the shortest time of 
travel, the maximum or minimum area, etc.  More generally, the functional may 
also involve higher derivative terms, or involve more dependent variables. Such 
situations will be considered in later sections.  
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13.3 ANALOGOUS TO CALCULUS 

There is close resemblance between differential calculus and the calculus of 
variations. In particular, differential calculus always involves the determination of 
the point x0 of a single variable function f(x) within a bounded domain such that the 
function f will achieve a maximum or minimum value. Mathematically, to find the 
maximum or minimum, we are seeking the solution of  

 
0

0
x x

df
dx

 (13.2) 

To ensure that the point x0 with vanishing derivative is a maximum, we need to 
impose an additional condition of  

 
0

2

2 0
x x

d f
dx

 (13.3) 

Similarly, the condition for a minimum is 

 
0

2

2 0
x x

d f
dx

 (13.4) 

In the calculus of variations, we are looking for a permissible function y(x) such 
that the following integral I that we called “functional” attains an extremal value 
(either a maximum or a minimum) 

 ( ) [ , , ]
b

a
I F x y x y x dx  (13.5) 

where 
 ( ) ( ) ( )y x y x x  (13.6) 
 ( ) ( ) ( )y x y x x  (13.7) 
In a sense, the functional can be considered as the function of a function. The 
admissible function is (x) which will vanish at the end points as shown in Figure 
13.1. The necessary condition for the extremal to occur is that  

 
0

( ) 0dI
d

 (13.8) 

Note that there is a close resemblance between (13.2) and (13.8). Figure 13.1 
illustrates the similarity between calculus and the calculus of variations. 

13.4 EULER-LAGRANGE EQUATION 

If (13.8) is satisfied, we also said that the functional I is stationary. Using the chain 
rule and noting (13.6) and (13.7), we get 

 
b

a

dI F y F y dx
d y y

 (13.9) 

Differentiation of (13.5) and (13.6) with respect to  gives 
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( )I y

0

0dI
d

 ,y y  (13.10) 

Substitution of (13.10) into (13.9) results in 

 
b

a

dI F F dx
d y y

 (13.11) 

Applying the condition (13.8) gives 

 
0

0
b

a

dI F F dx
d y y

 (13.12) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13.1 Differential calculus versus the calculus of variations 
 
 
 
 
 
 
 
 
 
      

Figure 13.2 Variations of a functional 
 
Applying integration by parts to the second term on the right hand side of (13.12), 
we find 

 
0
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a
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dI F d F Fdx
d y dx y y

 (13.13) 
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However, we have imposed that the admissible function vanishes at the end points, 
and this yields 
 ( ) ( ) 0a b  (13.14) 
This gives a differential equation for F as 

 [ ] 0F d F
y dx y

 (13.15) 

For simplicity, we will drop the bar in all y in (13.15) in subsequent presentation. 
This equation is called the Euler-Lagrange equation, Euler equation, or Lagrange 
equation. The more popular choice is the Euler-Lagrange equation. This equation 
can be recast in a more explicit form by noting 

 df f f dy f dy f f fy y
dx x y dx y dx x y y

 (13.16) 

Substituting f = F/ y in (13.15), we find another form for the Euler-Lagrange 
equation as 

 
2 2 2

2 0F F F Fy y
y y x y yy

 (13.17) 

This is an alternate form for the Euler-Lagrange equation given in (13.15), which 
may not be easy to solve. We should note that the Euler-Lagrange equation is only 
the necessary condition for the functional being stationary, but it is not the 
sufficient condition. Therefore, if we get more than one solution, we have to check 
whether it indeed gives the required stationary state and whether it is a maximum or 
a minimum, or even a saddle point. 
 It is also possible to rewrite the Euler-Lagrange equation in yet another form, 
in addition to (13.15) and (13.17). In particular, we note that 

 ( ) ( )d F d F Fy y y
dx y dx y y

 (13.18) 

Next, we can subtract (13.18) from (13.16) (with f being replaced by F) to get 

 ( ) ( )dF d F F F d Fy y y
dx dx y x y dx y

 (13.19) 

This can be rearranged as 

 { } [ ( )]d F F F d FF y y
dx y x y dx y

 (13.20) 

However, the bracket term on the right of (13.20) is exactly zero in view of the 
Euler-Lagrange equation obtained in (13.15). Therefore, we end up with the 
following form of Euler-Lagrange equation: 

 { } 0d F FF y
dx y x

 (13.21) 

This is equivalent to (13.15) and (13.17). 
 A special form of the Euler-Lagrange equation is called the Beltrami identity, 
which is equivalent to the Euler-Lagrange equation for the case that F is not an 
explicit function of x. In particular, we have 
 ( , )F F y y  (13.22) 



778   Theory of Differential Equations in Engineering and Mechanics 

Consider the second term on the right hand side of (13.15) by using the chain rule, 
keeping in mind that F does not depend on x 

 
2 2

2[ ]d F F Fy y
dx y y y y

 (13.23) 

Substitution of (13.23) into (13.15) gives the special form of the Euler-Lagrange 
equation 

 
2 2

2
F F Fy y
y y y y

 (13.24) 

Note that this is exactly the same as (13.17) if we drop the third term in terms of the 
x derivative. Finally, to prove Beltrami’s identity, we consider the following 
function: 

 FH y F
y

 (13.25) 

Differentiation of (13.25) with respect to x using the chain rule gives 

 

2 2
2

2

2 2

2

( ) ( )

( ) 0

dH F F F F Fy y y y y y
dx y y y y yy

F F Fy y y
y y yy

 (13.26) 

The last identity of (13.26) is a consequence of (13.24). Thus, we must have 

 F y F C
y

 (13.27) 

where C is an arbitrary constant. This is called the Beltrami identity. Note that the 
Beltrami identity can also be recovered by setting the last term in the alternative 
form of the Euler-Lagrange equation given in (13.21) to zero [i.e., F  F(x) or F = 
F(y, y') given in (13.22)]. 

13.5 DEGENERATE CASES OF EULER-LAGRANGE EQUATIONS 

In this section, we consider some special degenerate cases of the Euler-Lagrange 
equation. 
 
Case (i) ( , )F F y y   
 
This is exactly the case of the Beltrami identity and we have 

 F y F C
y

 (13.28) 

where C is an arbitrary constant.  
 
 Case (ii) ( , )F F x y   
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From (13.15), we have the first term zero being zero and the Euler-Lagrange 
equation is reduced to 

 [ ] 0d F
dx y

 (13.29) 

Integrating (13.29), we get the following form 

 F C
y

 (13.30) 

where C is a constant. Integrating one more time, we obtain 
 ( )F Cy f x  (13.31) 
 
Case (iii) ( )F F y   
 
For this case, (13.17) gives 

 
2

2 0Fy
y

 (13.32) 

In general, the second derivative of F with respect to y ' is not zero, and thus we 
have 

 
2

2 0d y
dx

 (13.33) 

Or, we have y being a straight line as 
 1 2y C x C  (13.34) 
where C1 and C2 are constants. 
 
Case (iv) ( , )F F x y   
 
For this case, the second term on the left of (13.15) is zero, and thus we obtain 

 0F
y

 (13.35) 

Finally, we must have the special case of  
 ( )F F x  (13.36) 

13.6 FUNCTIONAL OF SEVERAL VARIABLES 

When there is more than one dependent variable, the functional may be formulated 
as 

 ( , , ; , )
b

a
I F x y z y z dx  (13.37) 

The corresponding Euler-Lagrange equations are 

 ( ) 0F d F
y dx y

 (13.38) 
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 ( ) 0F d F
z dx z

 (13.39) 

When there is more than one independent variable, the functional may be 
formulated as 

 ( , , , , )x y
R

I F x y u u u dxdy  (13.40) 

The corresponding Euler-Lagrange equations are 

 ( ) ( ) 0
x y

F F F
u x u y u

 (13.41) 

For a functional containing derivative of higher than first order, we have 

 
1

0

( , , , )
x

x
I F x y y y dx  (13.42) 

The corresponding Euler-Lagrange equations are 

 
2

2( ) ( ) 0F d F d F
y dx y ydx

 (13.43) 

For the cases of several dependent and independent variables, the functional may 
be formulated as 

 ( , , , , , , , )x y x y
R

I F x y u u u v v v dxdy  (13.44) 

The corresponding Euler-Lagrange equations are 

 ( ) ( ) 0
x y

F F F
u x u y u

 (13.45) 

 ( ) ( ) 0
x y

F F F
v x v y v

 (13.46) 

It is not difficult to extend these Euler-Lagrange equations to more variables and 
higher derivatives. 
 A number of examples will be considered next. 

13.7 CATENOID 

When a soap film is formed between two circular metal rings, the optimum shape 
of the soap film can be expressed in terms of hyperbolic cosine functions. This 
particular problem is called catenoid. It was first considered by Euler. The actual 
shape of the catenoid is shown in Figure 13.3. 
 By symmetry, we put the origin of the coordinate system at the mid-section of 
the soap film, as shown in Figure 13.3. The surface area of the ring (shown as 
dotted lines in Figure 13.3) at a distance x from the origin can be formulated as: 
 2dA yds  (13.47) 
Along this unknown curve, the length increment of the curve ds between the two 
rings can be evaluated as: 
 2 2 2( ) ( ) ( )ds dx dy  (13.48) 
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dsy

x

This formula can be recast as: 

 21 ( )ds dy
dx dx

 (13.49) 

Substitution of (13.49) into (13.47) and integration of dx from 0 to a gives 

 2

0
2 1

a
A y y dx  (13.50) 

where 2a is the distance between the two steel rings. In the calculus of variations, 
we are searching for an optimum function that gives a stationary functional. In the 
problem of a catenoid, we are looking for a function of the shape of the soap film 
such that the area of the soap film formed between the rings is a minimum. Thus, 
mathematically we expect the functional to be   

 2

0
1

a
I y y dx  (13.51) 

 

 

 

 

 
Figure 13.3 Mathematical formulation of the catenoid (photo on the right is reproduced from 

soapbubble.dk with permission) 
 
Comparing to (13.5), we obtain 

 2( , , ) 1F x y y y y  (13.52) 
Differentiation of (13.52) respect to both y and y' gives: 

 
21

F yy
y y

 (13.53) 

 21F y
y

 (13.54) 

Then, using (13.15) the Euler-Lagrange equation becomes 

 2
2

1 [ ] 0
1

d yyy
dx y

 (13.55) 
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Recall from (13.53) that  

 ( , )F f y y
y

 (13.56) 

Using the chain rule of differentiation, we get 

 ( ) ( ) ( )d F F dy F dy
dx y y y dx y y dx

 (13.57) 

Substitution of (13.53) into (13.57) gives 

 
2

2
( )

1

F dy y
y y dx y

 (13.58) 

 2 3/2( )
(1 )

F dy yy
y y dx y

 (13.59) 

Substitution of (13.58), (13.59), and (13.53) into (13.55) yields 

 21 0
1

yy
y

 (13.60) 

This is equivalent to the following nonlinear second order ODE: 
 21 0y yy  (13.61) 
In an earlier chapter, we have introduced the method of reduction of order of 
differentiation. In particular, we introduced 
  y p  (13.62) 
The differentiation of (13.62) gives 

 dp dp dy dpy p
dx dy dx dy

 (13.63) 

Thus, (13.61) can be reduced to a first order ODE as 

 21 0dpp yp
dy

 (13.64) 

This first order ODE is clearly separable, and can be rearranged as: 

 21
pdp dy

yp
 (13.65) 

It is straightforward to see that  

 
2

2
1 (1 )
2 1

d p dy
yp

 (13.66) 

This can be integrated immediately to give 

 2
2 1c p y  (13.67) 

Recalling the definition of p from (13.62), we get 

 2
2 1 ( )dyc y

dx
 (13.68) 

Rearranging (13.68) gives 
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y
x

z v

u

b

 2

2
( ) 1dy y

dx c
 (13.69) 

This can be integrated as 

 1
2

2
( ) 1

dy dx c
y

c

 (13.70) 

It is clear that we can introduce the following change of variables: 
 2 2cosh , sinhy c dy c d  (13.71) 
This change of variables is an obvious choice by noting the following identity of 
hyperbolic functions: 
 2 2cosh 1 sinh  (13.72) 
Substitution of (13.71) and (13.72) into (13.70) gives 

 1

2 2

cx
c c

 (13.73) 

Combining (13.71) and (13.73) gives 

 1
2

2 2
cosh( )

cxy c
c c

 (13.74) 

As expected, we have two unknown constants for second order ODEs given 
(13.61). Let the boundary conditions for the soap film be given as 

 (0)(0) , 0dyy b
dx

 (13.75) 

Substitution of (13.74) into the boundary conditions given in (13.75) gives 
 2 1, 0c b c  (13.76) 
Finally, we have 

 cosh( )xy b
b

 (13.77) 

We have just obtained the sectional profile of a catenoid of the soap film shown in 
Figure 13.3.  
 
 
 
 
 
 
 
 
 
 

 
Figure 13.4 Coordinate system for a 3-D surface of the catenoid given in (13.78) (13.80) 
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y

x

2a

For a three-dimensional shape, we can recast the solution as: 

 cosh cosvx b u
b

 (13.78) 

 cosh sinvy b u
b

 (13.79) 

 z v  (13.80) 
where x, y, z, u and v are defined in Figure 13.4. For this case, intuition does not 
work: the minimum soap film is in the shape of revolution of hyperbolic cosine, 
instead of a cylindrical surface. 

13.8 BRACHISTOCHRONE 

The brachistochrone was first formulated by Galileo in 1638, but he was unable to 
solve the problem. This problem was considered one of the founding problems in 
the calculus of variations. This problem was originally posed as a challenge to 
other mathematicians by Johann Bernoulli in 1696. The word “brachistochrone” is 
from Greek, and literally means “the least time.” The problem was solved 
independently by the Bernoulli brothers, Leibniz, and Newton. This problem 
investigates the optimum shape of a frictionless wire along which a bead will slide 
down with the shortest time, as shown in Figure 13.5. This problem was studied by 
Galileo Galilei in 1638 but he mistakenly got the answer as a quarter of a circle. As 
a side note, his last name is actually Galilei although most people just called him 
Galileo because it is how he referred to himself. 
  
 
 
 
 
 
 
 
 
 

Figure 13.5 Brachistochrone problem of a frictionless sliding bead 
 
Since the sliding is frictionless, the energy of the bead must conserve. In particular, 
the kinetic energy gained in the sliding must come from the drop of potential 
energy from points P to Q: 

 21
2

mv mgy  (13.81) 

Thus, the velocity can be evaluated as 
 2v gy  (13.82) 
From (13.49) in the last section, we have 
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 21ds dxv y
dt dt

 (13.83) 

Combining (13.82) and (13.83), we get 

 
21

2
y

dt dx
gy

 (13.84) 

The sliding time for the bead can be evaluated by integrating (13.84) as 

 
21

2
y

T dx
gy

 (13.85) 

Now we are searching for an optimum profile y(x) such that the functional T (in this 
case is the time of travel) being the minimum. Clearly, this is another problem that 
can be solved by using the calculus of variations. In particular, the integrand 
function F can be identified as: 

 
21

( , )
2

y
F y y

gy
 (13.86) 

Recalling the Euler-Lagrange equation, we have 

 [ ] 0F d F
y dx y

 (13.87) 

In particular, using (13.86) we have 

 
211

22
yF

y ygy
 (13.88) 

 2 2

2 3/22 2

( ) ( ) ( )

1 1
2 2 (1 )2 1 1

d F F dy F dy
dx y y y dx y y dx

y y y
gy gy yy y y

 (13.89) 

Using (13.88) and (13.89) in (13.87), we have 

 2 2
2

22 (1 ) 0
1

yyy y y
y

 (13.90) 

Equation (13.90) can be simplified as 
 22 1 0yy y  (13.91) 
Similar to the catenoid problem, we can reduce the order of the ODE by using 
 y p  (13.92) 
In view of (13.92), we can reduce (13.91) to a first order ODE as 

 22 1 0dpyp p
dy

 (13.93) 

This is a separable ODE and can be integrated readily to give 
 2ln ln(1 ) lny p c  (13.94) 
Taking the exponential function, we find 
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x

y
( , 2 )a a

2 aax

a
y

( sin )x a
(1 cos )y a

 2
1[1 ]y y c  (13.95) 

This can be rearranged as  

 1c ydy
dx y

 (13.96) 

To integrate (13.96), we introduce 
 2

1 1sin , 2 sin cosy c dy c d  (13.97) 
Finally, (13.96) is reduced to  

 
2

1
2

1

cos
cot

sin
cdy

dx c
 (13.98) 

Combining (13.97) and (13.98), we have 
 2

12 sinc d dx  (13.99) 
This can be integrated readily as 

 1
2(2 sin 2 )

2
cx c  (13.100) 

At point P, the initial condition of the sliding bead can be formulated as: 
 0, 0, 0, 0x t y  (13.101) 
Thus, we have c2 = 0. To simplify the presentation, we define  
 2  (13.102) 
Then, the solutions of x and y in terms of  are 

 1 ( sin )
2
cx  (13.103) 

 1 (1 cos )
2
cy  (13.104) 

Finally, at Point Q shown in Fig. 13.5, we have the condition 
 , 2y a  (13.105) 
The final profile of the brachistochrone can be expressed in a single parameter  as 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.6 The locus of a cycloid 
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 ( sin )x a  (13.106) 
 (1 cos )y a  (13.107) 
The profile of this parametric curve is also known as a cycloid. Physically, it is also 
the locus of a point on a rolling wheel, as illustrated in Figure 13.6. Note however 
from Figure 13.5 that the y-axis of the brachistochrone is going downward. Thus, the 
solution of the brachistochrone is actually an inverted cycloid. 

13.9 TAUTOCHRONE 

Although the tautochrone problem is not a problem that needs to be solved by using 
the calculus of variations, it should be considered together with the brachistochrone 
problem. In particular, Huygens in 1673 discovered that no matter where we start to 
slide the bead along the cycloid, it always takes the same amount of time for the 
bead to slide from the starting point to the bottom. This is indeed an amazing result. 
To show this, we differentiate both (13.103) and (13.104) to give 

 (1 cos )dx a
d

 (13.108) 

 sindy a
d

 (13.109) 

Using these results, we find the increment of the curve of the cycloid as 

 
2 2 2 2 2

2

( ) ( ) [(1 2cos cos ) sin ]

2 (1 cos )

dx dy a
d d

a
 (13.110) 

Recalling from (13.83), we have 

 2dsv gy
dt

 (13.111) 

The travel time can then be written 

 
2 2 2(1 cos )

2 2 2 (1 cos )
dx dy a dds adt d

ggy gy ga
 (13.112) 

Since the vertical drop from the top of the cycloid to the bottom is 2a, as shown in 
Figure 13.5, we have the initial and final conditions from (13.94) as 
 0, 0, 0t y  (13.113) 
 1, 2 ,t T y a  (13.114) 
Thus, (13.112) leads to the travel time from the top of the cycloid to the bottom 

 1
0

a aT d
g g

 (13.115) 

Next, we are considering the drop of the bead from any initial height, which is 
measured y0 from the top of the cycloid as shown in Figure 13.7. The coordinate of 
the sliding motion is given by 
 0 0(1 cos )y a  (13.116) 
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The velocity is accordingly revised as 

 02 ( )dsv g y y
dt

 (13.117) 

Note from (13.117) that we must have y > y0 and at the starting point we have y = 
y0 or v = 0. Combining (13.116) and (13.117) yields 

 
0 0

2
00

2(1 cos ) 1 cos
cos cos2 (cos cos )

a aT d d
gga

 (13.118) 

Using the following identities for cos   

 2 20
0

1 coscos cos 2[cos ( ) cos ( )], sin
2 2 2 2

 (13.119) 

we can convert (13.118) to 

 
0

2 2 2
0

sin( / 2)

cos ( / 2) cos ( / 2)

aT d
g

 (13.120) 

To evaluate this integration, we introduce the following change of variables 

 
0 0

cos( / 2) sin( / 2),
cos( / 2) 2cos( / 2)

u du d  (13.121) 

The travel time is reduced to 

 
1

2 20

12
1

aT du
g u

 (13.122) 

Finally, we can introduce another change of variables as 
 sinu  (13.123) 
Equation (13.112) is reduced to  

 
/2

2
0

2 a aT d
g g

 (13.124) 

This is precisely equal to (13.115). Therefore, we have established the validity of 
the tautochrone, which means “equal time” in Greek, with “tauto” for same and 
“chrone” for time. Figure 13.7 illustrates that although different beads are starting 
from various y, they all arrive the bottom at the same time.   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13.7 Illustration of the tautochrone problem at t = 0 and t = t1 
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( , )x y

Isoperimetric 

13.10 LAGRANGE MULTIPLIER 

Sometimes we have to minimize a functional subject to certain constraints. This 
problem can also be considered by the calculus of variations by using the Lagrange 
multiplier. This technique was proposed by Lagrange in 1788. In particular, we 
want to consider the stationary value of the following functional: 

 ( , , )
b

a
I F t z z dt)z dt)  (13.125) 

which is subjected to a constraint that 

 ( , , )
b

a
G t z z dt C)z dt C)  (13.126) 

where C is a constant. The superimposed “dot” implies a derivative taken with 
respect to t. We can formulate the functional in terms of  which is defined as: 

 1 [ ( , , ) ( , , )] ( , , )
b b

a a
I F t z z G t z z dt t z z dt( , , )

b

a
t z z dt( , , )( , ,) ( , , )]

a
d) ( , , )]) ( , , )]) ( , , )], ,, ,  (13.127) 

where  is called the Lagrange multiplier and  is now the new Lagrangian. 
Following the same procedure of deriving the Euler-Lagrange equation shown in 
Section 13.4, we have 

 [ ] 0d
z dt z

] 0
z

]  (13.128) 

We will apply the Lagrange multiplier technique to the isoperimetric problem in the 
next section. 

13.11 DIDO’S PROBLEM (ISOPERIMETER) 

According to legend, Dido arrived in Tunisia in 814 BC with her entourage after a 
power struggle with her brother at Tyre in Lebanon. She requested a piece of land 
and founded the city of Carthage. The land given to her could only be enclosed by 
a bull’s hide, so she smartly cut the hide into long thin strips and used it to embrace 
a circular piece of land. Dido eventually became the first queen of Carthage. 
Therefore, the optimum shape of a closed curve that can enclose the greatest area is 
a circle. 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 13.8 Dido’s problem of greatest covered area 
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Therefore, the problem of Dido is to find the greatest area being enclosed by a 
closed curve of a fixed length. Recall from (13.48) that the length of the curve can 
be written as: 
 2 2 2( ) ( ) ( )ds dx dy  (13.129) 
Writing the increment along the curve ds in terms of a time parameter t: 

 2 2ds x y dt2 2x y dt2 2x2  (13.130) 
where the superimposed dot implies differentiation with respect to t. Thus, the 
length of the perimeter can be expressed as 

 2 2L x y dt pxxx2 2x y dt p2 2x y dty dt2 2  (13.131) 

where p is a fixed constant. To express the area covered by the closed curve, we 
recall Green’s theorem that 

 ( ) ( )
D D

g ffdx gdy dxdy
x y

 (13.132) 

Taking the following values of f and g 

 ,
2 2
y xf g  (13.133) 

we have (13.132) becoming 

 1 ( )
2

D D

xdy ydx dxdy  (13.134) 

Making a closed curve, we arrive at the following enclosed area 

 1 ( )
2

A xy yx dtxy(( y yx dt)  (13.135) 

The functional in (13.135) and the constraint (13.131) can be combined using the 
Lagrange multiplier as 

  2 21( , , , , ) { ( ) }
2

I t x x y y dt xy yx x y dt2y dt2 }2

2
1t x x( , ,, ,t(( , ,
2

{ ( )) 21 21{ ( ) 21{ ( ) 2, , ), , )), , ),  (13.136) 

Therefore, for the present case of two dependent variables, we have the Euler-
Lagrange equations as 

 [ ] 0d
x dt x

] 0
x

]  (13.137) 

 [ ] 0d
y dt y

] 0
y

]  (13.138) 

Using the definition of Lagrangian  defined in (13.136), we find 

 
2 2

1 1,
2 2

xy y
x xx y

x yyy
2

y
x 2

,
xx y

,
2 2

,
2 2

,
x2 2x y

 (13.139) 

 
2 2

1 1,
2 2

yx x
y xx y

yyyy x
y

xx
2y 2

,,
xx y

,,
2 2

,
x2 2

 (13.140) 
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Substitution of (13.139) and (13.140) into (13.137) and (13.138) leads to the 
following Euler-Lagrange equations 

 
2 2

1 1[ ] 0
2 2

d xy y
dt x y

1] 1]] 0
22 2

y]
22 2

]
2 2x y

] y  (13.141) 

 
2 2

1 1[ ] 0
2 2

d yx x
dt x y

1] 1]] 0]
22 2

]
2 2

]
x y

]  (13.142) 

Integrating with respect to t, we immediately obtain 

 
2 2

xy b
x y

x bx
2 2

b
2 2x y

 (13.143) 

 
2 2

yx a
x y

y ayy
2 2

a
x y

 (13.144) 

These two equations can be combined to give 
 2 2 2( ) ( )x a y b  (13.145) 
This is an equation of a circle with radius  at center (a,b) and thus physically the 
Lagrange multiplier is the radius. Using the constraint in (13.131), we have the 
Lagrange multiplier and the enclosed area being  

 
2

,
2 4
p pA  (13.146) 

As expected by Dido, the optimum shape is indeed a circle. 

13.12 GEODESICS  

In this section, we will present the formulation for finding the geodesics, or the 
shortest curve between two given points on a given surface. Mathematically, the 
equation of the three-dimensional surface can be expressed as: 
 ( , , ) 0G x y z  (13.147) 
Introducing a time parameter t, the arc length between any two points a and b can 
be evaluated as 

 2 2 2( , , )
b b

a a
I f x y z dt x y z dt

b
y, ,, ,, ,, ,

aa

2 2 2b

a
x y z dt2 2 2x yy2 22

a
z dt) dt) dt)  (13.148) 

where 

 , ,dx dy dzx y z
dt dt dt
dx dyx y z, ,y
dt dt

yy, ,y zy dz
dt

zzz  (13.149) 

The arc must be on the surface G = 0, thus we can impose a relation between the 
velocities of the variables. First, we can rewrite 
 ( ( ), ( ))z g x t y t  (13.150) 
Differentiation of z in (13.150) gives 
 x yz g x g yyg yyxz gxg xx gx  (13.151) 
Taking a second derivative of (13.151) with respect to x gives 
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 ( )x y xx xy
z g x g y g x g y
x x

(z ( )y xx xyg yy xx xyy xx)) g xg x) xx)  (13.152) 

On the other hand, we observe that from the chain rule 

 ( )x xx xy
d g g x g y
dt xyg yxyx  (13.153) 

Comparison of (13.152) and (13.153) gives the following identity 

 ( )x
z d g
x dt

(z d  (13.154) 

If we follow the same procedure in obtaining (13.152) to (13.154) but taking 
differentiation with respect to y, we get the following identity 

 ( )y
z d g
y dt

(z d  (13.155) 

Let us now rewrite our functional by eliminating the time derivative of z in (13.148) 

 2 2 2( , , , ) ( )
b b

x y
a a

I F x x y y dt x y g x g y dt2 2 2b
x y

a
x y g x g y dtx2 2 2( )(2 2

x y(((2 22

a
y y, , ), , ), , ), , )  (13.156) 

Referring to Section 13.6, the corresponding Euler-Lagrange equations for a two-
variable system are 

 ( ) 0F d F
x dt x

) 0
x

)  (13.157) 

 ( ) 0F d F
y dt y

) 0
y

)  (13.158) 

The first term on the left of (13.157) can be evaluated as 

 ( ) ( )x y xx xy
F f fg x g y g x g y
x z x z

( )f) ff) () ()(
z

(f (( xgxz x zx z
)xx xy yxx xy) ())

z
) () () () ()yyy )

zzy  (13.159) 

In view of (13.151), (13.159) can be simplified to 

 ( )x y
F f f zg x g y
x z x z x

f z) f zf z)) z
x

((f (( xgxz x z xx z x
) f

x
)))y yy z xz xy  (13.160) 

In parallel to this development, we can repeat the procedure for the first term of 
(13.158), and we eventually obtain 

 ( )x y
F f f zg x g y
y z y z y

f z) f zf z)) z
z y z y

((f (( xgxz y z yy z y
) f

y
)))y yy z yz yy  (13.161) 

For the second term of (13.157), we have 

 x
F f f z f f g
x x z x x z

f fz f ff fff f f f gf f
x x zx z

ff
x

f g
z

f
z x x zx x z

ff  (13.162) 

The last part of (13.162) is obtained in view of (13.151). Taking the time derivative 
of (13.162), we arrive at 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

x x x

x

d F d f d f d f d f f dg g g
dt x dt x dt z dt x dt z z dt

d f d f f zg
dt x dt z z x

) ( ) ()) ( ) (( ) (( )( ) () ( ) ( ) ( )) ( ) ( )( )) ( ) ( )) () ( ) ( )( )
x dt x dt zx dt z

) ( ) ( )x((
z dtzz

) ( ) ( )) ( ) ( )) ( ) ( )) ( ) ( )) ( ) ( )) ( ) ( )) ( ) ( )( ) ( )) ( ) ( )
z dt x dt zx dt zx xxgx xx) ( ) ( )

z) () () () (
x dt zz

) ( x)g
z xx)gx)g

z z xz x
) xg

z

 (13.163) 
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The last line of (13.163) results from the substitution of (13.154). Finally, (13.160) 
and (13.163) can be substituted into the first Euler-Lagrange equation given in 
(13.157) to give 

 ( ) ( ) 0x
d f d fg
dt x dt z

)))
x dt

) xg ) 0
z

)  (13.164) 

On the other hand, we can deal with the second term of (13.158) in a similar 
manner; we get   

 ( ) ( ) ( ) y
d F d f d f f zg
dt y dt y dt z z y

z) ( ) ()
y y

) ( ) (( ) (( ) ( )) (
y dt y dt zy dt z

) ( ) (( )) ( y
fg
z yygyg
z yz yyg)g

z
)g))g

z
)g  (13.165) 

Finally, combining (13.161) and (13.165) into the second Euler-Lagrange equation 
given in (13.158), we obtain 

 ( ) ( ) 0y
d f d fg
dt y dt zy

)))
y dt

) yg ) 0
z

)  (13.166) 

Now, we apply the most crucial step in our analysis in which we set 

 ( ) ( ) z
d f t G
dt z

) ( )G)
z

(  (13.167) 

where G = 0 has been defined as our surface of consideration in (13.147) and (t) 
plays the role of the Lagrange multiplier (we will show this in a short while). We 
note from definition (13.147) that 
 0x y zG dx G dy G dz  (13.168) 
which can be rewritten as 

 0x y z x z x
dy dzG G G G G g
dx dx

 (13.169) 

Note that dy/dx = 0 since x and y are two independent variables. Or equivalently, 
we have 

 x
x

z

G
g

G
 (13.170) 

In similar fashion, we can also have 

 y
y

z

G
g

G
 (13.171) 

Employing (13.170), (13.171) and (13.167) in the special form of Euler-Lagrange 
equations (13.164) and (13.166), we finally get 

 ( ) ( ) x
d f t G
dt x

) ( )G)
x

(  (13.172) 

 ( ) ( ) y
d f t G
dt y

) ( )G)
y

(  (13.173) 

By eliminating  from (13.167), (13.172) and (13.173), we have 

 
( )( ) ( )

( )
x y z

d fd f d f
dt ydt x dt zt

G G G

() () (()
y dt

(y) () (()
x

) dt )
z  (13.174) 
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Finally, recalling our arc length problem defined in (13.148), we can simplify 
(13.172) to   

 2 2 2
x y z

f x xf f y yf f z zf
G f G f G f
x xfxff f y yf ff f y yf f zfzz  (13.175) 

This is the final governing equation for our geodesic problem. 
__________________________________________________________________ 
Example 13.1 Re-derive (13.174) by combining the Lagrange multiplier method 
discussed in Section 13.10 in conjunction with the functional of several variables 
discussed in Section 13.6. 
 
Solution: The functional with constraint can be formulated by combining (13.147) 
and (13.148) as: 

 
{ ( , , ) ( ) ( ( ), ( ), ( ))}

( , , , , , )

b

a
b

a

I f x y z t G x t y t z t dt

x x y y z z dt

, ,, ,, , ))) (()

x y y z z, , , ,, , , , z dt)
 (13.176) 

where (t) is the Lagrange multiplier. 
 Applying the Euler-Lagrange equation for three variables, we have 

 [ ] 0d
x dt x

] 0
x

]  (13.177) 

 [ ] 0d
y dt y

] 0
y

]  (13.178) 

 [ ] 0d
z dt z

] 0
z

]  (13.179) 

Substitution of  defined in (13.176) into (13.177) to (13.179) yields 

 [ ] 0G d f
x dt x

] 0
x

]  (13.180) 

 [ ] 0G d f
x dt y

] 0
y

]  (13.181) 

 [ ] 0G d f
x dt z

] 0
z

]  (13.182) 

Thus, we have 

 
( )( ) ( )

( )
x y z

d fd f d f
dt ydt x dt zt

G G G

() () (()
y dt

(y) () (()
x

) dt )
z  (13.183) 

This completes the proof. Therefore, we see that the physical meaning of (t) 
introduced in (13.167) actually plays the role of Lagrange multiplier. It links the 
original functional with the constraint of the problem to form the new functional for 
minimization. Note thar the Lagrange multiplier method is much simpler than the 
intuitive step employed in (13.167). 
__________________________________________________________________ 
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__________________________________________________________________ 
Example 13.2 Find the shortest curve between two points A and B on a plane. The 
arc length is defined as 

 
2 2

1 1

2( ) 1
x x

x x
I F y dx y dx  (13.184) 

The problem is shown in Figure 13.9. 
 
 
 
 
 
 
 
 
 
 

Figure 13.9 Shortest curve between points A and B on a plane 
 
 
Solution: For this problem, the Lagrangian is identified as 

 2( ) 1F y y  (13.185) 
Thus, we have 

 
2

0,
1

F F y
y y y

 (13.186) 

The Euler-Lagrange equation requires 

 
2

[ ] 0
1

d y
dx y

 (13.187) 

Integration of (13.187) gives 

 
21

y c
y

 (13.188) 

Rearranging (13.188), we obtain 

 21y c y  (13.189) 
Squaring both sides and solving for y', we get 

 
2

21
cy

c
 (13.190) 

This can be integrated immediately to give 

 
2

2 221
cy x c mx c

c
 (13.191) 

This is an equation of a straight line. Therefore, the shortest distance between two 
points is a straight line joining them, as expected. 
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 However, if we want to minimize the surface area formed by the revolution of 
a curve between two points A and B shown in Figure 13.9, one is tempted to 
speculate that it must be a revolution of the straight line obtained here. Sometimes, 
we have to set aside our intuition and to rely on mathematics. In fact, we find that 
the answer is not a straight line but a hyperbolic cosine. This is the catenoid 
problem that we discussed in Section 13.7, and the minimal area of revolution is 
not formed by a straight line.  
__________________________________________________________________ 
 
 _________________________________________________________________ 
Example 13.3 Consider the shortest curve between two points A and B on a sphere 
defined by: 
 2 2 2 2( , , ) 0G x y z x y z r  (13.192) 
where r is the radius of the sphere shown in Figure 13.10. This problem is also 
known as the Columbus problem because it is related to the shortest path in 
navigation on a voyage.   
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13.10 Shortest curve between points A and B on a sphere 

 
 
Solution: Differentiating (13.192), we obtain 
 2 , 2 , 2x y zG x G y G z  (13.193) 
Subsequently, (13.175) is reduced to 

 2 2 22 2 2
f x xf f y yf f z zf

xf yf zf
x xfxff f y yf ff f y yf f zfzz  (13.194) 

Rearranging terms in (13.194), we get 

 f yx xy yz zy
f yx xy yz zy

g
f yx xy yxy yyx xyxy yz zyyz

x xy yzxy yz
y yy y y

z zyz
y  (13.195) 

Note that  

 ( )d yx xy yx yx yx xy yx xy
dt

)x xy yyx yx yx xy yx xyyx yx yx xy yxyx yx xy yxyx y  (13.196) 
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 ( )d yz zy yz zy
dt

yyz zy y)y yyyz zyyz zyz zy  (13.197) 

In view of these identities, (13.195) can be integrated as 
 ln( ) ln( )yx xy yz zy C) l (x xy yz zy C) ln() ln() ln( )z zy C))  (13.198) 

Taking an exponential function on both sides, we get 
 1( )yx xy C yz zy(1x xy C y1(xy Cxy 1( )y  (13.199) 

This can be further rearranged as 

 1

1

x C z y
x C z y

1x C z1 yz yy  (13.200) 

Or equivalently it can be written as 

 1

1

( )d x C z dy
x C z y

 (13.201) 

We can integrate both sides one more time to get 
 1ln( ) ln *x C z y C  (13.202) 

Thus, the geodesics must be on the following plane 
 1 2x C z C y  (13.203) 

This is an equation for a plane passing through the origin. Thus, the geodesics must 
be on the intersection between the sphere and the plane through the origin as shown 
in Figure 13.11. This result was first obtained by Euler in 1755. This is the reason 
why the shortest path of flight from Hong Kong to Los Angeles is not flying over 
the Pacific Ocean via Hawaii but instead flying over Alaska.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.11 Great circle as the shortest curve between points A and B on a sphere 
__________________________________________________________________ 
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__________________________________________________________________ 
Example 13.4 Find the shortest curve between two points A and B on the surface of 
a circular cylinder of radius a. The cylindrical coordinate is (r,  z).   
 
Solution: The curve length on the surface of a circular cylinder is  
 2 2 2 2( ) ( ) ( ) ( )ds dr rd dz  (13.204) 
On the surface of the cylinder, we have r = a. Thus, we have dr = 0, and (13.204) 
becomes 

 2 2 2( ) ( )ds dza
d d

 (13.205) 

Using (13.205), we have the curve path  

 2 2( )dzds a d
d

 (13.206) 

The curve length between two points A (a, 1, z1) and B (a, 2, z2) is 

 
2

1

2 2( )dzs a d
d

 (13.207) 

Clearly, we want to minimize the functional s for the shortest curve. Thus, we 
identify that 

 2 2( ) ( )dzF a F z
d

 (13.208) 

Note that F is independent of z and , and thus we have case (iii) in Section 13.5 or 
the Euler-Lagrange equation becomes 

 
2

2 0d z
d

 (13.209) 

Or, the shortest curve is  
 1 2 ,z C C r a  (13.210) 
This is the equation of a circular helix. The problem and its solution in terms of the 
helix are illustrated in Figure 3.12. Problem 13.14 gives the formulas for z and s.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.12 Shortest curve between points A and B on a circular cylinder 
_________________________________________________________________ 
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13.13 CATENARY AS A SAGGING ROPE 

When a rope or chain is hanging between two supports, nature chooses the shape of 
the hanging rope by allowing its center of gravity at its lowest possible position. 
The shape is called catenary. The functional I in this case is the y-coordinate of the 
center of gravity together with the constraint G of the length of the hanging rope: 

 

2

1

2

1

2

2

1
[ ( )]

1

x

x
x

x

y y dx
I y x

y dx
 (13.211) 

 
2

1

2[ ( )] 1
x

x
G y x y dx L  (13.212) 

Note that the numerator is essentially the same as that of (13.52) of the catenoid 
problem. The denominator becomes a constant by virtue of the constraint given in 
(13.212). Thus, we are minimizing the numerator of (13.211) and the constraint in 
(13.212) by the Lagrange multiplier, and we have 

 2 2{ 1 1 }
b

a
I y y y dx  (13.213) 

In other words, we have 

 2 2 21 1 ( ) 1y y y y y  (13.214) 
which is not a function x. This corresponds to Case (i) in Section 13.5 and thus the 
Euler-Lagrange equation given in (13.28) becomes  

 1y k
y

 (13.215) 

Substitution of (13.214) into (13.215) gives 

 2
12

( ) 1 ( )
1

yy y y y k
y

 (13.216) 

Rearranging (13.216) gives 

 2
1( ) 1y k y  (13.217) 

The following change of variables is introduced: 

 sinhdyy t
dx

 (13.218) 

Using (13.218), (13.217) becomes 
 1( ) coshy k t  (13.219) 
Combining (13.218) and (13.219), we have 

 1
1

sinh
sinh

k tdtdydx k dt
y t

 (13.220) 

Integration of (13.220) gives 
  1 2x k t k  (13.221) 
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Therefore, back substitution of (13.221) into (13.219) yields the hyperbolic cosine 
function as the catenary: 

 2
1

1
( ) cosh( )

x k
y k

k
 (13.222) 

For the values of k1, k2, and , we have to satisfy the boundary condition of the 
hanging rope.  
 Alternatively, (13.222) can be obtained using a mechanics approach. In 
particular, Figure 13.13 shows a particular case of a hanging rope with two 
supports at different elevations and the mass per length of the rope is assumed as  
(kg/m) and the horizontal component of the tension in the rope is T0. For this case, 
k1, k2, and  in (13.222) can also be determined with the boundary conditions given 
in Figure 13.13.    
. 
 
 
 
 

 
 
 

Figure 13.13 Boundary conditions of a hanging rope 
 
A small rope of length ds can be cut out as a free body and the forces applied on this 
segment are shown in Figure 13.14. The vertical and horizontal force equilibriums 
give 
 ( )sin( ) sinT dT d T ds  (13.223) 
 ( )cos( ) cosT dT d T  (13.224) 
By neglecting the higher order terms, we have 
 ( sin ) , ( cos ) 0d T ds d T  (13.225) 
The second equation of (13.225) gives  
 0 cosT T  (13.226) 
Physically, (13.226) shows that the horizontal component of the tension in the rope 
is a constant because there is no net horizontal force applied on this rope element. 
Then, substitution of (13.226) into the first of (13.225) gives 

 0( tan )d T
ds

 (13.227) 

Note that the slope is defined as 

 tan dy
dx

 (13.228) 

Thus, we can rewrite (13.227) as 
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0
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 (13.229) 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
Figure 13.14 Shortest curve between points A and B on a circular cylinder 

 
This can be integrated with respect to s leading to 

 
0

dy s C
dx T

 (13.230) 

On the other hand, we can apply the chain rule to get 

 
0

( ) [( )]d dy d dy dx
ds dx dx dx ds T

 (13.231) 

This can be rearranged to give  

 
2

2
0

d y ds
T dxdx

 (13.232) 

In view of the following identity,  

 21 ( )ds dy
dx dx

 (13.233) 

we can rewrite (13.232) as 

 
2

2
2

0
1 ( )d y dy

T dxdx
 (13.234) 

Since the differential equation does not depend on y and x, we can apply the 
standard rule of reduction of order as: 

 dyp
dx

 (13.235) 

Substitution of (13.235) into (13.234) results in 
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2 01

dp dx
Tp

 (13.236) 

Integration on both sides gives 

 1

0
sinh p x C

T
 (13.237) 

Alternatively, this can be rewritten as 

 
0

sinh( )dy p x C
dx T

 (13.238) 

The zero slope condition at the origin shown in Figure 13.13 gives C = 0. 
Integration with respect to x instantly gives 

 0

0
cosh( )

T xy K
T

 (13.239) 

The zero slope displacement at the origin shown in Figure 13.13 gives K = T0/ . 
Finally, we get 

 0

0
[cosh( ) 1]

T xy
T

 (13.240) 

Comparison of (13.240) with (13.222) gives 

 0
1 2, 0

T
k k  (13.241) 

in (13.222). We can see that the Lagrange multiplier plays the role of normalized 
length in terms of rope tension divided by mass per length. 
 The catenary appears naturally in nature in the form of a hanging spider web, 
of hanging rope, and of hanging chain. We have seen that it also forms the catenoid 
of soap film spreading over two rings. Many man-made structures were inspired by 
the catenary. The most vivid example is the inverted catenary of the Gateway Arch 
built in St. Louis, Missouri, USA. It stands 192 m above ground level. The vault at 
the Casa Mila, Barcelona, Spain and vault at Ctesiphon, Iraq are also inverted 
catenaries. The vault of Ctesiphon stands 37 m above ground level and is believed 
to be the tallest vault in a structure in the world. As a side note, the trademark of 
McDonald’s is also made of two inverted catenaries. 

13.14 NEWTON’S PROBLEM OF LEAST RESISTANCE 

13.14.1 Introduction 

In 1685, Newton included in his celebrated Principia the problem of minimum 
resistance on a solid of revolution moving in a rare gas modeled as non-viscous 
flow, regarding the optimum shape of the solid of revolution (Newton, 1685). 
Tacitly, Newton assumed that the section of the solid must be of convex shape and 
the body must be axisymmetric. The gas flow is assumed so rare and dispersed that 
resistance of the gas flow on the solid can be considered as particle impact. Thus, 
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gas flow is assumed as corpuscular flow. There are also no interactions between 
these globally evenly distributed-particles. The assumption of convexity of the 
solid surface ensures that there is only a single impact of these particles on the 
body. Newton claimed that this problem might be useful in ship design. One main 
problem is that there is no proof of Newton’s optimum shape reported in Principia. 
This problem was considered by Huygens and David Gregory. The rigorous proof 
of Newton’s solution was given in 1902 by Kneser. Nevertheless, it is commonly 
believed that Newton’s problem is one of the first problems of its type that 
prompted the development of the calculus of variations (isoperimetric problems are 
other examples of such problems).  
 It turns out that, instead of its use in ship design, as originally proposed by 
Newton, Newton’s formulation was found applicable to bodies traveling at high 
supersonic speed in air, such as missiles. In particular, the so-called Newton’s 
cosine-square law for resistance (which will be discussed later in this section) was 
coincidentally obtained for the pressure coefficient when Riemann’s shock wave 
conditions are taken into consideration. Thus, Newton’s model was found 
applicable to supersonic flow.  

13.14.2 Newton’s Sine-Square or Cosine-Square Law of Resistance 

Newton formulated the impact-induced resistance on a solid with a spherical 
surface in terms of the resistance of the normal impact on a flat surface. It turns out 
that the formulation is general for any curved surface of revolution (Goldstine, 
1980). In particular, Figure 13.15 shows the impact force on a flat cylindrical 
surface as well as on a curved surface of revolution. The resistance on normal 
impact is assumed as f. The projection of the force f along the inclination of the line 
drawn from the center of the projectile is f cos .  A second projection of this 
inclined force on the curved surface of the projectile is 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13.15 Illustration of the Newton’s cosine-square law 

 
 2 2cos sinf f ff f cof co  (13.242) 
Physically, this is the force of impact on the curved surface along the flow 
direction. This is normally referred to as the sine-square law or cosine-square 
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resistance law of Newton. Note that the force component normal to the flow 
direction is  
 cos sinf f  (13.243) 
However, by symmetry this force perpendicular to the flow will be cancelled out. 
Therefore, the net resistance force on a segment of the curved surface is 
 2cosdF f dsF f co  (13.244) 
Therefore, the total resistance force on the curved surface is 

 
2 22 3

1 1
2 cos 2 cos

y s

y s
R f y dy f y ds  (13.245) 

From Figure 13.15, we see that 

 cos dy
ds

 (13.246) 

Consequently, (13.245) can be expressed as  

 
2 2

1
2 ( )

y

y

dyR f y dy
ds

 (13.247) 

Note that the curved segment is given by 
 2 2 2( ) ( ) ( )ds dx dy  (13.248) 
This can be rewritten as 

 2

2

1( )
1 ( )

dy
dxds
dy

 (13.249) 

Substitution of (13.249) into (13.247) gives 

 
2

21
2

1 ( )

y

y

yR f dy
dx
dy

 (13.250) 

By noting 

 dydy dx y dx
dx

 (13.251) 

we can recast (13.250) as 

 
32

2
1

2
1

x

x

yyR f dx
y

 (13.252) 

Another form of (13.250) can be formulated by assuming a parameter t such that 
 ( ), ( )x x t y y t  (13.253) 
With this parametric form, we have 

 , ,dx dy dx xdx dt xdt dy dt ydt
dt dt dy y

,dy dx xxdt dy dt ydt, dy
dt dy y

,y y,xdt dy dt ydtdt x
yy

 (13.254) 

Substitution of (13.254) into (13.252) gives 

 
32

2 2
1

2
t

t

yyR f dt
x y

3y dty
2 2 dt2 2x y

dt  (13.255) 
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Note that all (13.250), (13.252) and (13.255) are equivalent and all of them have 
been adopted in the literature. The next question is to minimize the resistance R, 
and we are going to see that finding its solution is not straightforward.  

13.14.3 Newton’s Resistance Law for Supersonic Flow on Solid 

Although Newton was thinking about ship design when he proposed the impact 
theory discussed in the last section, it was subsequently found applicable to 
consider the minimal drag on bodies of revolution at high supersonic speed when a 
shock wave was formed on the surface of the bodies as shown in Figure 13.16. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.16 Resistance on supersonic flow 
 
According to Eggers et al. (1953), the pressure coefficient is defined in terms of  
as: 

 22sinp
p pC

q
 (13.256) 

where p and q are the static and dynamic pressure and subscript “ ” implies values 
at infinity or far from the body of revolution.  The angle  is the angle in the 
meridian plane between the free stream and the tangent to the body surface. When 
the curvature of the body is small in the stream direction, the hypersonic layer will 
be thin. Subsequently, (13.256) can also be used to estimate the pressure 
coefficient, and thus the pressure drag, on the surface of the body. This formula is 
generally acceptable for the case that the hypersonic similarity parameter K is 
greater than one: 

 1dK M
l

 (13.257) 

where d and l are the diameter and length of the body, and M  is the Mach number 
at far field. When the pressure coefficient over the body is known, by neglecting 
the base drag at the far end, the pressure drag of a body can be integrated as:   

 
2 /2

0 0
2 2

4

d l
D

p p
C q d

D q C ydy q C yy dx  (13.258) 

To simplify the presentation, we can also define a drag parameter as 
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02

l
D p

DI C yy dx
q

 (13.259) 

Substitution of (13.256) into (13.259) gives 

 2

0
2 sin

l
DI yy dx  (13.260) 

To find sin , we note from Figure 13.16 that 

 2 2 2( ) ( ) ( ) , sin dyds dx dy
ds

 (13.261) 

Combining these results, we get 

 
2

2
2

22

( )
sin

11 ( )

dy
ydx

dy y
dx

 (13.262) 

Substitution of (13.262) into (13.260) gives  

 
3

20

2
1

l
D

yyI dx
y

 (13.263) 

This is of the exact mathematical form of Newton’s law of resistance that we found 
in (13.252). Thus, Newton’s law of resistance is found applicable to hypersonic 
flow, and thus it is useful for missile shape design. 

13.14.4 Eggers et al. (1953) Parameter Solution 

Eggers et al. (1953) proposed that the drag parameter be modified to allow for any 
finite region of flat nose of radius y1 and of infinite slope at the front. Thus,  
(13.263) can be modified as 

 
3

2
1 20

2
1

l
D

yyI y dx
y

 (13.264) 

Eggers et al. (1953) proposed to consider three different cases of constraint 
conditions. We will, however, restrict our discussion to the case of a given length 
and base diameter (case (a) in their report). In particular, we have 

 
3

2
2

1
yyF

y
 (13.265) 

Since the Lagrangian is not a function of variable x, the Euler-Lagrange equation is 
reduced to the Beltrami identity as: 

 1
Fy F C
y

 (13.266) 

Differentiation of (13.265) gives 
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 (13.267) 

Substitution of (13.267) into (13.266) leads to 

 
3

12 2
4

(1 )
yy C
y

 (13.268) 

Note that we have allowed a non-pointed tip at the nose (such that y(0) = y1), and 
the end points y1 of the minimizing curve are not fixed yet. Thus, we have to 
impose another condition at the terminal points. Following from Courant and 
Hilbert, Eggers at al. (1953) imposed the following condition at y = y1:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.17 The enlargement of the nose condition of the body of revolution 
 

 
2

2
2 21

1

1( ) 2 0
(1 )y y

y y

F d yy y
y dy y

 (13.269) 

Thus, we find 
 1(0) 1y y  (13.270) 
The system of (13.268) and (13.270) can be solved in parametric form. In 
particular, we can rewrite (12.268) as 

 
2 2

1
3

(1 )
4

C yy
y

 (13.271) 

Let us rewrite the first derivative of y as p 

 
2 2

1
3

(1 ) ,
4

C p dyy p y
dxp

 (13.272) 

Taking the total differential on both sides, we find 
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2 2
1

2 2

2 2
1

4

(1 ) 3(1 ){4 }
4

(1 )( 3)
4

C p pdy dp
p p

C p p dp
p

 (13.273) 

Substitution of (13.273) into the second equation of (13.272) gives 

 
2 2

1
5

1 (1 )( 3)
4

C p pdx dy dp
p p

 (13.274) 

Integration of both sides leads to 

 

2 2
1

25

1
23 5

1
22 4

(1 )( 3)
4

1 2 3( )
4

1 3(ln )
4 4

C p px dp C
p

C
dp C

p p p
C

p C
p p

 (13.275) 

In summary, we have the coordinates of the curved surface in parametric form in 
terms of the derivative p as: 

  
2 2

1 1
22 4 3

1 3 (1 )(ln ) ,
4 44

C C px p C y
p p p

 (13.276) 

From the boundary condition at x = 0, we have 
 1(0) , (0) 1y y p  (13.277) 
Using these boundary conditions, we have 

 1
1 1 2

7, ( )
4 4
yC y C  (13.278) 

Substitution of (13.278) into (13.276) finally yields 

 
2 2

1 1
2 4 3

1 3 7 (1 )(ln ),
4 4 44
y y px p y

p p p
 (13.279) 

By referring to (13.270), we can start with p = 1 for x = 0. Figure 13.17 suggests 
that we should decrease p (less than 1) as both x and y increase. 
 In order to give a plot of the curved surface on the meridian plane, we plot on 
Figure 13.18 the profile that gives the minimal resistance based on Newton’s 
impact theory for least resistance for the case of l/d = 3. In addition, in Figure 
13.18, we also plot the following profile of a 3/4 power law: 

 3/4( )
2
d xy

l
 (13.280) 

Numerical results show that the solution given by the least resistance of (13.279) 
(solid line) is virtually the same as that of (13.280) (dashed line). We will 
demonstrate in the next section that (13.280) is indeed an approximate solution of 
the minimal resistance problem. 
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Figure 13.18 Profile of the surface with minimal resistance and of 3/4 power law for l/d = 3 
 

13.14.5 Approximation by 3/4 Power Law 

Let us consider the following approximation of (13.263) that y ' is small compared 
to unity (i.e., y ' << 1)  

 
3

3
20 0

2 2
1

l l
D

yyI dx yy dx
y


 
   (13.281) 

That is, we will only minimize the numerator of (13.263). For such approximation, 
we have 
 3F yy  (13.282) 
Using this F, we get 

 23F yy
y
 


,   3F y
y

 


 (13.283) 

Differentiation of the first term with respect to x gives 

 23 3 6d F d yy y yy y
dx y dx

      


 (13.284) 

Substitution of (13.283) and (13.284) into the Euler-Lagrange equation given in 
(13.15) gives 

 32( 3 ) 0F d F y yy y
y dx y

        
 

 (13.285) 

To further integrate (13.285), we multiply it by y' to get 

K32626_6.125.9.25.indd   2 14/08/17   11:34 am
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 4 2 33 ( ) 0dy yy y yy
dx

 (13.286) 

Integration gives 
 3 3

1yy C  (13.287) 
This can be rewritten as 

 11/3
1dy C

dx y
 (13.288) 

Integration one more time yields 
 3/4

3 4( )y C x C  (13.289) 
The boundary condition can be written as 
 (0) 0, ( ) / 2y y l d  (13.290) 
These boundary conditions give the conditions as: 

 
4/3

3 4
( / 2) , 0dC C

l
 (13.291) 

Finally, we get 

 3/4( )
2
d xy

l
 (13.292) 

This gives the approximation given in (13.280) and this gives an excellent 
approximation for the optimum shape with minimal resistance, as shown in Figure 
13.18. As reported by Eggers et al. (1953), experiments conducted in the 
supersonic wind tunnel at Ames Aeronautical Laboratory for objects satisfying the 
power law with n = 1 (cone), 3/4, 1/2, 1/4, and an Ogive (an object with a roundly 
tapered end as shown in Figure 13.19) show that the shape with n = 3/4 indeed 
gives the minimal resistance. The experiments were conducted for Mach numbers 
ranging from 2.73 to 6.28. Figure 13.19 shows the experimental results obtained by 
Eggers et al. (1953). Thus, Newton’s impact theory for minimal resistance is 
verified for a body of revolution in supersonic flow.   

13.15 SUMMARY AND FURTHER READING 

The calculus of variations is a classical mathematical topic in applied mathematics 
and engineering. The historical development of the calculus of variations has been 
reported in excellent detail by Bliss (1925, 1930) and by Goldstine (1980). The 
book by Goldstine (1980) covered many technical details of its development. 
Readers are referred to them for more discussion of the calculus of variations. 
There are many good books on the calculus of variations, including Forsyth (1960), 
Goldstine (1980), and Weinstock (1974), just to name a few. Simmons and Krantz 
(2007) provided a very good elementary introduction to the calculus of variations. 
The history of isoperimetric problems was covered by Fraser (1992).  
 In the 1990s, Newton’s minimal resistance problems were revisited by many 
researchers for the cases in which the body of revolution is non-symmetric and 
concave, which allow multiple impacts of the particles. However, this new analysis 
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depends heavily on differential geometry which is out of the scope of the present 
chapter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.19 Pressure foredrag CD for various shapes of solid of revolution (adopted from 
Eggers et al., 1953). 

13.16   PROBLEMS 

Problem 13.1 Find the function y(x) that minimizes the following functional: 

 2 2( ( )) ( )
b

a
I y x y y dx  (13.293) 

Ans:  
 1 1( ) sin cosy x C x C x  (13.294) 
 
Problem 13.2 Find the function y(x) that minimizes the following functional: 

 2 2( ( )) ( )
b

a
I y x x y y dx  (13.295) 

Ans:  
 1 0 1 0( ) ( ) ( )y x C J x C Y x  (13.296) 
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Problem 13.3 Hamilton’s principle is the most general fundamental principle for 
analyzing rigid-body mechanics. It can be formulated using the calculus of 
variations. More specifically, there are n generalized coordinates in the Lagrangian 
defined in the functional: 

 1 1( ( )) ( , ( ),..., ( ), ( ),..., ( ))
b

n n
a

I y t L t q t q t q t q t dtn1q t q t dt( ),..., ( ))( ),..., (1 n1( ),...,),...1  (13.297) 

where 
 1 1( , ( ),..., ( ), ( ),..., ( ))n nL t q t q t q t q t T Vn1( ) ( ))t T( ),..., ( ))( ),..., (1 n1( ),...,),...1 TT  (13.298) 
The kinetic energy and potential energy of the system of n generalized coordinates 
are normally referred to as T and V. Find 
(i) The Euler-Lagrange equation  
(ii) The Euler-Lagrange equation for the case that L is not a function of time 
(iii) Consider the special case of the Lagrangian that T is quadratic in generalized 
velocity and V is a function of generalized coordinates only 

 1
1 1

( ,..., )
n n

ij n i j
i j

T a q q q qi jq qi  (13.299) 

 1( ,..., )nV V q q  (13.300) 
Show that the constant in the Beltrami equation in (ii) is the negative sign of the total 
energy. 
 
Ans: 

(i) [ ] 0, 1,2,...,
i i

L d L i n
q dt q

] 0,
iq
] 0   (13.301) 

(ii) 
1

n

i
ii

LL q C
qi
Lq Ci
L
q
LLLqi
i

C
q

C
q

 (13.302) 

(iii) ( )C T V  (13.303) 
 
Problem 13.4 Find the Euler-Lagrange equation for a particle in a conservative 
force field (e.g., gravitational field) by considering the minimum of the functional 

 2 2 2
1 2 3 1 2 3

1( ( )) { ( ) ( , , )}
2

b

a
I y x mx mx mx V x x x dt1 2 3 1

2 2 22 2 2 ) ( ,) (2 2 2
1 2 3 112 3 1))2 2 22
1 2 322  (13.304) 

Ans:  

 ( )d m V
dt

) V)r  where i ixr e  (13.305) 

 
Problem 13.5 Find the Euler-Lagrange equation for the following functional 

 2 21( ( )) ( )
2 x yI y x u u dxdy  (13.306) 

Ans: 
 2 0u  (13.307) 
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Problem 13.6 Reconsider the shortest curve on the sphere by using polar 
coordinates: 
 sin cos , sin sin , cosx R y R z R  (13.308) 
(i) Show that the corresponding functional in polar form is 

 2 2 1/2( ( )) [1 sin ( ) ]dI y x R d
d

 (13.309) 

(ii) Show that the shortest curve is on a great circle. 
 
Problem 13.7 Find the Euler-Lagrange equation for the following functional for 
beam bending 

 
2

2
20

( ( )) [ ( ) ]
2

L EI d wI w x qw dx
dx

 (13.310) 

Ans:  

 
4

4 ( )d wEI q x
dx

 (13.311) 

 
Problem 13.8 Find the Euler-Lagrange equation for the following functional for a 
circular plate bending under axisymmetric loading q(r) and fixed at the edges: 

 
2 2

2 2
2 20

1 2( ( )) [ ( ) ( ) 2 ]
a d w dw dw d w qI w x D r rw dr

r dr dr Ddr dr
 (13.312) 

Ans:  

 
4 3 2

4 3 2 2
1 12d w d w d w dw qrr
r dr Ddr dr dr r

 (13.313) 

 
Problem 13.9 Find the geodesics on a right circular cone of semi-vertical angle  
(see Figure 13.20).  It is given that the differential of an arc ds on a right circular 
cone is given by 
 2 2 2 2( ) ( ) ( ) ( sin )ds dr rd r d  (13.314) 
If the vertex of the cone is at the origin and the z-axis is the axis of the cone, the 
polar equation of the cone is 
  (13.315) 
The functional is the arc length defined by 

 
2 2 2 2

1
( ) sindrs r d
d

 (13.316) 

 
Ans: 

 1
2cos( sin )

sin
C

C
r

 (13.317) 
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Shortest curve 
On cone surface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.20 Shortest curve on cone between two points 
 
 
Problem 13.10 In the text, we have considered the catenoid problem, a case of 
minimal surface for soap film. The catenoid problem is actually a one-dimensional 
problem because of the surface of revolution (see (13.47)). In this problem, we will 
consider the problem of minimal surface of soap film formed in a closed wire loop 
defined by z = u(x,y). In particular, the functional of minimal surface is 

 2 21 x y
D

I u u dxdy  (13.318) 

Find the following: 
 
(i) Referring to (13.41) for a two-variable case, show that the Euler-Lagrange 
equation can be written as 

 ( ) ( ) 0yx uu
x F x F

 (13.319) 

where F is defined as 

 2 21 x yF u u  (13.320) 

(ii) Show that if the first derivative of u is small, the Euler-Lagrange equation 
becomes the Laplace equation (i.e., membrane equilibrium of small deflection is 
governed by the Laplace equation). 
 
(iii) Show that the Euler-Lagrange equation for the minimal surface can also be 
written as: 
 2 2(1 ) (1 ) 2 0y xx x yy x y xyu u u u u u u  (13.321) 

(Note that this PDE is extremely difficult to solve.) 
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Problem 13.11 Continued from Problem 13.10, if the domain D is given by a 
rectangle of size a and b. Show that a helicoid defined by  

 1( , ) tan ( )yu x y
x

 (13.322) 

is a solution for the minimal surface in a rectangular domain. 
 
Problem 13.12 Fermat’s principle of least time is a powerful tool in studying 
geometric optics. The least time can be formulated as functional and the path of 
light can be solved by using the resulting Euler-Lagrange equation. Figure 13.21 
shows the formation of a mirage in desert areas. The travel time by light path is 

 1 1 ( )dlT dt ndl f y dl
v c c

 (13.323) 

where v is the velocity of light in air and c is the speed of light in a vacuum and n is 
the index of refraction. In desert areas, the ground surface is much hotter than the 
air above the ground. The refraction index approximately increases with height, as 
shown in Figure 13.21. This is the mirage phenomenon that occurs in desert areas. 
The functional in terms of the path of travel can be set as 

 2( ) 1I f y x dy  (13.324) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.21 Mirage formation and the path of the light with least travel time 
 
(i) Show that Euler-Lagrange equation leads to 

 
2 2( )

dx C
dy f y C

 (13.325) 

(ii) Show the solution for y is  

 0
0

0

1 cosh[ ( )]
nCy x x

n C
 (13.326) 

where x0 is, as shown in Figure 13.17, the center of symmetry.  
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(iii) Find the unknown constant in terms of y0 and show that the final solution is 

 0 0

0

( 1) ( )1 cosh[ ]
1

y x x
y

y
 (13.327) 

 (iv) Show that for small  we can approximate the hyperbolic solution given in 
(13.327) as a parabola: 

 
2

0
0

0

( )
2( 1)

x x
y y

y
 (13.328) 

 
Problem 13.13 Find the Euler-Lagrange equations for the following functional: 

 
1 [ ( , , , , ) ( , , , , )]

( , , , , )

b

a
b

a

I F t x x y y G t x x y y dt

t x x y y dt

x y y G t x x y y dt, , ) ( , , , , )], , ) ( , , , ,, , ), ,

x y y dt, , ), ,
 (13.329) 

Ans: 

 ( ) 0d
x dt x

) 0
x

)  (13.330) 

 ( ) 0d
y dt y

) 0
y

)  (13.331) 

 
Problem 13.14 Continue the calculation of Example 13.4. 
 
(i) Find the equation of the shortest path joining points A and B; 
(ii) Find the distance s between points A and B. 
 
Ans: 

 2 1 2 1 1 2

2 1 2 1
( )

z z z zz  (13.332) 

 2 2 2
2 1 2 1( ) ( )s a z z  (13.333) 

 



 
 

CHAPTER FOURTEEN 
 

Variational and Related Methods  
 

14.1 INTRODUCTION  

The idea of using the variational principle (or the minimum energy hypothesis) can 
be traced back to Archimedes, Aristotle, and Galileo. Variational methods have 
been developed since the time of the development of the calculus of variations. The 
calculus of variations developed mainly by Euler and Lagrange aims to maximize 
or minimize some functionals, such as Dido’s problem of maximizing area, 
brachistochrone (path of quickest descent), tautochrone (optimum curve for sliding 
bead on wire), geodesics (shortest path on surface), and catenoid problems 
(minimum area of revolution of soap films). The reason why nature chooses to 
minimize or maximize certain quantities has puzzled the greatest philosophers, 
scientists, and mathematicians. In view of this, Fermat formulated his principle of 
least time for optics, Maupertuis formulated the principle of least action, and 
Hamilton formulated his principle (the path of any motion minimizes the integral of 
the difference between kinetic and potential energies over interval of time). In 1760 
and 1761, Lagrange developed the principle of virtual work and the Lagrange 
multiplier in the context of variational mechanics. The principle of least action had 
been discussed by Euler in 1744 for the case of column buckling, and by Leibniz in 
1705, although credit is normally given to Maupertuis. All these principles can be 
considered as some kind of variational principle. Hamilton’s principle is 
considered the most general of all, linking all phenomena in mechanics, optics, 
gravitation, electricity and magnetism, and quantum mechanics by a single integral 
(Kline, 1959). The development of the functional includes Legendre’s work on 
distinguishing maxima and minima, and Jacobi’s and Weierstrass’s work on 
existence of extrema in a functional.   
 Our discussion in this chapter focuses on minimization or maximization of 
functionals and their relation and application to solving problems of differential 
equations. In the last century, variational methods have been associated with the 
formulation of differential equations for physical phenomena, and associated with 
approximation methods such as the finite element method. In solid mechanics, the 
Veubeke-Hu-Washizu (VHW) principle and Hellinger-Reissner (HR) principle are 
of fundamental importance in finite element formulation. Both of these are 
important variational principles in solid mechanics. The VHW variational principle 
was apparently formulated independently by Veubeke in 1951, by Hu in 1955, and 
by Washizu in 1955. Although both Veubeke and Washizu were visitors at MIT 
(Massachusetts Institute of Technology) in 1952, they never cited one another. The 
HR variational principle was studied by Hellinger in 1914 and by Reissner in 1950. 
The HR variational principle can be considered as a special case of the VHW 
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principle. Interestingly, Reissner was a professor at MIT when both Veubeke and 
Washizu were visiting. The starting functional normally possesses the physical 
meaning of some kind of energies. Alternatively, numerical methods can also be 
formulated in terms of integrals with the kernel being the product of the differential 
equation and some weighting functions, which is somewhat arbitrary as long as 
they are admissible kinetically. This method is known as the weighted residue 
method, which is closely related to the variational principle. The most notable 
weighted residue methods is the Galerkin method, whereas the most notable 
variational methods is the Rayleigh-Ritz method. Incidentally, both Galerkin and 
Ritz aimed to provide approximate solutions of problems of plate bending in 1915 
and 1908 respectively. Both beam and plate bending problems will be considered 
as examples. 
 This chapter introduces the fundamental concepts and ideas of the variational 
principle and its associated methods. More references will be given in the summary 
section for more serious readers. 

14.2 VIRTUAL WORK PRINCIPLE 

The idea of virtual work can date back to the time of Bernoulli, and it is based on 
the conservation of energy. Implicitly, work done by frictional forces or other 
irreversible processes are neglected. Let us consider the equilibrium of a body V 
and the corresponding prescribed boundary conditions (S = S  +Su): 
 0, in Vf  (14.1) 
 , on , , on uS Sn = T u = u  (14.2) 
where , f, T and n are stress tensor, body force vector, traction vector, and unit 
normal vector to the surface of the body S. The superimposed bar are used to 
denote those given traction and displacement on the corresponding boundaries. The 
traction and displacement boundaries are denoted by S   and Su respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.1 A deformation body with volume V and with boundaries S   and Su  
 

uS

S

V
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For two unrelated states of a deformable body, one is an arbitrary admissible stress 
 that satisfies equilibrium in V and traction  boundary conditions on S , and the 

other is an arbitrary admissible displacement u* that satisfies a compatibility 
condition in V and displacement boundary conditions on Su. Note that the asterisk 
for the displacement field is used to emphasize that the stress (without asterisk) and 
displacement fields (with asterisk) are unrelated. These two states are unrelated and 
not necessary real (this is the reason why we call them virtual in the first place). We 
said that virtual work is done, if the admissible stress state has undergone an 
unrelated admissible displacement state. In this sense the work done is not 
necessarily real (or virtual). The external virtual work done by an external force 
(body force f and applied traction and displacement) on the body undergoing an 
admissible displacement field u is 
 * *

u

e
V S S

dV dS dSf u T u T u  (14.3) 

The internal virtual work is the work done by the admissible stress, which is in 
equilibrium with the external applied force and traction, on the unrelated associated 
strain (i.e., resulting from u*): 
 *i

V

dV  (14.4) 

The principle of virtual work says that the external virtual work must be equal to 
the internal virtual work when the equilibrated forces and stresses undergo 
unrelated but consistent displacement and strain: 
 * * *

uV V S S

dV dV dS dSf u T u T u  (14.5) 

If the body is rigid, the internal virtual work will be zero. In the process of analysis, 
we never impose any constitutive response of the deformable body, and thus, the 
principle is valid regardless of the material behavior. The principle can also be 
applied to consider the case of large deformation as long as the appropriate stresses 
are used in the energy calculation in (14.5). The principle can also be extended to 
dynamic problems, if the inertia force is interpreted as body forces in (14.5). For 
the case of a dynamic system of rigid bodies, it is equivalent to the Lagrange-
D’Alembert principle for dynamics.   
 In applying (14.5), we may impose equilibrium of the “real” stresses and 
forces that are in equilibrium on a consistent virtual displacement and strain in the 
formulation. This will lead to a special case called the principle of virtual 
displacement, which will be discussed next. On the other hand, we may impose a 
consistent real displacement and strain on self-equilibrated virtual stresses and 
forces in the virtual work equation. This will lead to a special case called the 
principle of virtual traction. The principle of virtual work occupies a major place 
in the area of structural analysis, solid mechanics, and finite element analysis. 

14.3 VIRTUAL DISPLACEMENT PRINCIPLE  

If we impose self-equilibrated “real” stresses and forces on consistent virtual 
displacement and strain in (14.5), we have 
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 * , *u u  (14.6) 
This virtual displacement must be zero on the displacement boundary Su. Applying 
this notation and constraint on the virtual displacement, we get 
 

V V S

dV dV dSf u T u  (14.7) 

This is called the principle of virtual displacement. When the body is elastic, (14.7) 
is related to Castigliano’s first theorem. In other words, if a body is in equilibrium, 
the total virtual work done is zero. In structural mechanics, the principle of virtual 
displacement is normally used to find the real force or stress of a body.  

14.4 VIRTUAL TRACTION PRINCIPLE  

If we impose consistent “real” displacement and strain on equilibrated virtual 
stresses and forces in the virtual work principle, we have 
 , , f f  (14.8) 
The virtual force is zero on the traction boundary S . 
 * *

uV V S

dV dV dS: f u T u  (14.9) 

This will lead to a special case called the principle of virtual traction. This is also 
called the principle of complementary virtual work. When the body is elastic, 
(14.9) is related to Castigliano’s second theorem. The principle of virtual force is 
normally used to find the real displacement of a body.  
 The principle of virtual work will be illustrated by example in a later section. 

14.5 HAMILTON’S PRINCIPLE 

As we remarked in the introduction, the Hamilton principle is very general in the 
sense that it unifies optics, mechanics, electricity, and magnetism by a single 
minimum principle. The following integral is defined in terms of kinetic energy T 
and potential energy V as: 

 
1

0

( )
t

t
I T V dt  (14.10) 

The principle states that I is at minimum for the path traversed by an object during 
its motion (including the path of light or other electromagnetic waves!) from time t0 
to time t1. For deformable solid, it can be rewritten as: 

 
1

0

( ( ) )
t

ij
t

H U T W dt  (14.11) 

where W is the work done by external forces and U is the strain energy density. For 
static problems, the total potential energy for a deformable body can be defined as 
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 { ( ) }p ij i i i i
V S

U f u dV T u dS  (14.12) 

On the other hand, the total complementary energy for a deforming body is defined 
as 
 { ( )

u

c c ij i i
V S

U dV T u dS  (14.13) 

For solving equilibrium problems, we need to minimize the total potential energy 
or maximize the total complementary energy. These two functionals in terms of 
energies given in (14.12) and (1.13) are the basis for the variational principle in 
formulating differential equations of physical or mechanics problems. Hamilton’s 
principle will lead to an equation of motions whereas either total potential energy 
or total complementary energy will lead to equations of equilibrium. As 
demonstrated in Figure 2.10 of Chau (2013), these two energy functions are 
complementary to one another in the following sense: 
 c p ij ij  (14.14) 
 When (14.12) or (14.13) is used in numerical analyses, such as the Rayleigh-
Ritz method, Galerkin method, or finite element method, it is well known that both 
of them have their limitations. In particular, methods based on minimum total 
potential energy use displacement as the unknown and are more accurate for 
displacement prediction but less accurate for stress prediction (as they were 
calculated based on the numerically obtained displacement); whereas those based 
on maximum total complementary energy use stress as the unknown and are 
accurate for stress prediction but less accurate for displacement prediction. Trefftz 
in 1926 demonstrated that the upper bound of torsional rigidity could be found by 
using minimum potential energy, whereas the lower bound of torsional rigidity can 
be found by using maximum complementary energy. A similar idea was proposed 
by Prager and Synge in 1947 for determining the upper and lower bounds of elastic 
modulus by using the functional space concept. This method has been used 
successfully for finding the Young’s modulus for both cylindrical and rectangular 
specimens of arbitrary shape under compression with end constraints (Chau, 1997, 
1999a). In general, the minimum total potential energy formulation will lead to a 
lower bound for the displacement prediction (i.e., the numerical model appears to 
be stiffer than the actual system), whereas the maximum total complementary 
energy formulation will lead to an upper bound for the displacement prediction 
(i.e., the numerical model appears to be softer than the actual system). This general 
observation is illustrated in Figure 14.2 using the beam problem as an example. 
 In finite element methods, the first one is normally referred as the 
displacement method whereas the second one is normally referred as the force 
method. In view of these limitations for both formulations, more general variational 
principles have been proposed. They are normally referred to as mixed variational 
principles because both displacements and stresses are unknowns of the problems. 
In the next two sections, we will consider two generalized (or mixed) variational 
principles; they are the Veubeke-Hu-Washizu (VHW) principle and the Hellinger-
Reissner (HR) principle, which are more powerful in numerical analysis. These 
principles are the basis for such mixed or hybrid finite element methods.  
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 However, the finite element method is a topic that cannot be covered in the 
present or later chapter. We will only briefly summarize the idea of the variational 
principle and give a simple example of the case of incompressible flow in Chapter 
15.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.2 Illustration of the upper and lower displacements by force and displacement methods 

14.6 VEUBEKE-HU-WASHIZU PRINCIPLE  

In this section, we will consider a general variational principle called the Veubeke-
Hu-Washizu principle. It is formulated for elastic bodies and aims for numerical 
methods, such as the finite element method. Let us consider the mathematical 
formulation for an elastic body V as: 
 , 0, inij j if V  (14.15) 

 , ,
1 ( ), in
2ij i j j iu u V  (14.16) 

 , or , inij ijkl kl ij ijkl kla b V  (14.17) 
The first of these is an equilibrium equation, the second is a strain-displacement 
relation, and the third one is a constitutive law (or Hooke’s law). The boundary 
conditions are: 
 , oni i uu u S  (14.18) 
 , oni ij j iT n T S  (14.19) 
The first of these is called an essential boundary condition (i.e., displacement 
boundary condition), and the second is called a natural boundary condition (i.e., 
traction boundary condition). The Veubeke-Hu-Washizu principle can be 
expressed as  
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, ,

1{ ( ) [ ( )]}
2

( )
u

VHW ij i i ij ij i j j i
V

i i i i i
S S

U f u u u dV

T u dS T u u dS
 (14.20) 

where independent functions subject to variations are ij, ij and ui and, that is, 
there are 15 unknowns (note that both stress and strain are symmetric). In terms of 
the finite element method, stress, strain, and displacement are also independent. 
That is, we have relaxed the relations given in (14.15) to (14.18). Since both stress 
and displacement are unknowns, they are called the mixed variational principle.  
 Comparing the VHW variational principle in (14.20) with the total potential 
energy in (14.12), we observe that there are two extra terms appearing in (14.20). 
The principle can be interpreted in the following form   

 
, ,

1{ ( ) [ ( )]}
2

( )
u

VHW ij i i ij ij i j j i
V

i i i i i
S S

U f u u u dV

T u dS p u u dS
 (14.21) 

where both ij and pi are Lagrange multipliers and they are 
 ,ij ij i ip T  (14.22) 
We can see that by adding these two constraints we are actually relaxing the strain-
displacement relation and essential boundary condition. We allow the flexibility 
that the approximation is sought such that all (14.15) to (14.19) are satisfied 
approximately in a global sense (integrating over the whole body and whole 
boundary). By applying the Gauss theorem, we note that 

 

, , , ,

,

1{ ( )}
2

u

u

ij i j j i ij i j ij j i ij j i
V V V S S

ij j i i i
V S S

u u dV u dV u dV n u dS

u dV T u dS
(14.23) 

Substitution of (14.23) into (14.20) gives 
 ,{ ( ) ( ) } ( )

u

VHW ij ij ij ij j i i i i i i i
V S S

U f u dV T T u dS T u dS  

  (14.24) 
From (14.24), we see that the equilibrium equation will not be satisfied 
automatically by our approximate solution. 
 The variational principle requires the functional of the VHW formulation to 
be stationary or 
 0VHW  (14.25) 
where  denotes the variation. Taking variations of (14.20), we get 
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, ,

, ,

( ) 1{ [ ( )] }
2

1{ ( ) }
2

[( ) ]
u

ij
VHW ij i i ij i j j i ij

ijV

ij i j j i ij ij i i
V S

i i j ij ij j i
S

U
f u u u dV

u u dV T u dS

u u n n u dS

 (14.26) 

By applying the Gauss theorem, we have 
 , ,

u

ij i j ij j i ij j i
V V S S

u dV u dV n u dS  (14.27) 

Using this result, we can rewrite (14.26) as 

, , ,
1{ ) ( ) [ ( ) ] }
2

( ) ( )
u

VHW ij ij ij j i i i j j i ij ij
ijV

i i i i i j ij
S S

U f u u u dV

T T u dS u u n dS
 (14.28) 

In view of (14.25), we have the following Euler equations and boundary 
conditions: 

 , inij
ij

U V  (14.29) 

 , 0, inij j if V  (14.30) 

 , ,
1 ( ), in
2ij i j j iu u V  (14.31) 

 , oni ij j iT n T S  (14.32) 

 , oni i uu u S  (14.33) 
Therefore, we do not assume any of these five equations are satisfied in the VHW 
variational principle. 
 In the next section, we will consider another mixed variational principle. 

14.7 HELLINGER-REISSNER PRINCIPLE  

Another variational principle in close relation to the VHW variational principle is 
called the Hellinger-Reissner (HR) principle. The functional of the HR principle is 

, ,
1{ ( ) ( ) } ( )
2

u

HR c ij ij i j j i i i i i i i i
V S S

U u u f u dV T u dS T u u dS  (14.34) 

where the independent functions subject to variations are ij, ui and Ti. Again the 
equation can be interpreted as total complementary energy by adding two 
constraints as: 
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, ,
1{ ( ) ( ) } ( )
2

u

HR c ij ij i j j i i i i i i i i
V S S

U u u f u dV T u dS p u u dS  (14.35) 

where the Lagrange multipliers are defined as 
 ,ij ij i ip T  (14.36) 
If we set ij = 0 and pi = 0, we recover the total complementary energy given in 
(14.13). Using the Gauss theorem, we obtain another form of the HR functional: 
 ,{ ( ) ( ) } ( )

u

HR c ij ij j i i i i i i i
V S S

U f u dV T T u dS T u dS  (14.37) 

Let us consider the corresponding Euler equation by taking the variations of (14.37): 
  0HR  (14.38) 
The variation of (14.38) is 

 
, ,{ ( ) }

[ ( )
u

c
HR ij i ij j ij j i i

ijV

i j ij ij j i i i ij j
S S

U
u f u dV

u n n T u dS u n dS
 (14.39) 

By applying the Gauss theorem, we have 
 , ,

u

i ij j i j ij i ij j
V V S S

u dV u dV u n dS  (14.40) 

Substitution of (14.40) into (14.39) gives 

 
, ,{( ) ( ) }

( ) ( )
u

c
HR i j ij ij j i i

ijV

ij j i i i i j ij
S S

U
u f u dV

n T u dS u u n dS
 (14.41) 

Since the variations can be arbitrary, we require the following equation be satisfied: 

 , inij
ij

U V  (14.42) 

 , 0, inij j if V  (14.43) 

 , oni ij j iT n T S  (14.44) 

 , oni i uu u S  (14.45) 
We see that there is one less equation compared to the case of the VHW variational 
principle discussed in the previous section. In this sense, we can see that VHW is 
more general.  
 We can substitute (14.14) into (14.34) and get the following identity: 
 HR VHWH  (14.46) 
Therefore, the HR variational principle is consistent with the VHW variational 
principle. However, they are not the same since we need to impose one more 
condition (14.14) to link them. 
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14.8 RAYLEIGH-RITZ METHOD 

In this section, we introduce a method developed by Rayleigh in 1877 and by Ritz 
in 1908. In this approach, a finite number of approximations are assumed: 

 0
1

n

r r
r

u u a u  (14.47) 

 0
1

n

r r
r

v v b v  (14.48) 

 0
1

n

r r
r

w w c w  (14.49) 

Note that we have used the physical components u, v, and w to represent tensor 
notation u1, u2 and u3.  However, these approximations must be selected in such a 
way that the essential boundary condition is satisfied identically by choosing 
 0 0 0, , , on uu u v v w w S  (14.50) 
 0, 0, 0, ( 1,2,..., ) onr r r uu v w r n S  (14.51) 
Note, however, we do not need to satisfy the traction boundary condition imposed 
by (14.19).  Substitution of this approximation into (14.12) and let us express the 
total potential energy in terms of the unknown constants ar, br, and cr. Next we can 
set the variation to zero as 
 0p  (14.52) 
We use this condition to seek for the optimum values of the constants ar, br, and cr 
(r = 1,2,...,n). Therefore, the variables in the formulation are those constants given 
in (14.47) to (14.49). Thus, (14.52) implies 

 0, 0, 0p p p

r r ra b c
 (14.53) 

We can see that we have exactly 3n equations from (14.53) for the 3n unknowns. 
Solving for theses constants, we find the approximations assumed in (14.47) to 
(14.49). This procedure is called the Rayleigh-Ritz method. Note that the Rayleigh-
Ritz approach is only an approximate method. Alternatively, we can also substitute 
(14.47) to (14.49) into the virtual work principle with virtual displacements as 

 
1

n

r r
r

u a u ,   
1

n

r r
r

v b v , 
1

n

r r
r

w c w  (14.54) 

Equation (14.7) leads to the following 3n equations: 

 ( ) ( ) 0xyxx zx
r x r x x r

V S
L f u dV T T u dS

x y z
 (14.55) 

 ( ) ( ) 0xy yy yz
r y r y y r

V S
M f v dV T T v dS

x y z
 (14.56) 

 ( ) ( ) 0yzzx zz
r z r z z r

V S
N f w dV T T w dS

x y z
 (14.57) 
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where the stresses are 

 0

1

2 { }
1 2

n
vr

xx r
r

u uG a
x x

 (14.58) 

 0

1

2 { }
1 2

n
vr

yy r
r

v vG b
y y

 (14.59) 

 0

1

2 { }
1 2

n
vr

zz r
r

w wG c
z z

 (14.60) 

 0 0 0

1

{ }
n

r r r
v r r r

r

u v w u v wa b c
x y z x y z

 (14.61) 

 0 0

1

{ ( )}
n

r r
xy r r

r

u v u vG a b
y x y x

 (14.62) 

 0 0

1

{ ( )}
n

r r
yz r r

r

v w v wG b c
z y z y

 (14.63) 

 0 0

1

{ ( )}
n

r r
xz r r

r

w u w uG c a
x z x z

 (14.64) 

The 3n equations from (14.53) are found to be identical to (14.55) to (14.57). Thus, 
the Rayleigh-Ritz method is equivalent to the virtual work formulation.  
 
__________________________________________________________________ 
Example 14.1 Find the system of equations for the coefficients ar for the following 
Rayleigh-Ritz approximation 

 1 0
1

sin
n

n k
k

x l x k xy y y a
l l l

 (14.65) 

for the functional: 

 2 2

0
[ ] [ ( ) 2 ]

l
I y p y qy fy dx  (14.66) 

with boundary conditions: 
 0 1(0) , ( )y y y l y  (14.67) 
 
Solution: Note that the assumed yn given in (14.65) automatically satisfies the 
essential boundary condition given in (14.67). Substitution of (14.65) into the 
functional (14.66) gives 
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20
1 1

01 1
02 20

1
22 2 2 2

20 0 11 1
02 2 2 2 20

0 12

[ ] [ cos cos sin sin ]

2 [ ( )cos ( )sin

( )sin ] [ ( 2 ) (

( )2 ) 2

n n l
n k h

k h
n l

k
k

l

kh k x h x k x h xI y a a p q dx
l l l ll

y ky k xyk x l x k xa p q y
l l l ll l

y y yy x yk x l xf dx p q y
l l l l l l

x l x y y
l

1
0( )]

xy l xf y dx
l l

 (14.68) 

The unknown coefficients can be found by the following conditions: 

 
1 2

0, 0, , 0
n

I I I
a a a

, I
a

,  (14.69) 

Thus, we have 
 

2

20
1

01 1
02 20

1

0 [ cos cos sin sin ]

[ ( ) cos ( )sin

sin ]

n l
h

h
n l

h

kh k x h x k x h xa p q dx
l l l ll

y hy h xyh x l x h xp q y
l l l ll l

h xf dx
l

 (14.70) 

where k = 1,2,3,...,n. Once the functions p and q are given, integrations can be 
conducted and the unknown  constants can be determined analytically. 
__________________________________________________________________ 

14.9 WEIGHTED RESIDUE METHOD  

Consider a differential equation given in a symbolic form as: 
 ( )L u f  (14.71) 
We normally cannot satisfy the equation pointwise (if we can, we actually have the 
analytic solution). The weighted residue method is an approximate technique that 
requires the differential equation be satisfied in a global sense. That is, the integral 
of this differential equation multiplying by an arbitrary weighting function is zero. 
Mathematically, it is  
 [ ( ) ] 0i

V

L u f dV  (14.72) 

where i is the weighting function and the approximate function is assumed in 
series form similar to that in the Rayleigh-Ritz method 

 0
1

n

r r
r

u a  (14.73) 
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We are searching for some approximate functions that satisfy (14.72). More 
discussions of the weighted residue method in the context of finite difference will 
be given in Chapter 15. For examples, the following cases are of particular interest. 

14.9.1 Least Square Method  

The least square method of Gauss is recovered if the weighting function equals the 
error function  
 [ ( )]i iL u f  (14.74) 
where the approximation of the unknown has been defined in (14.73). This least 
square of the error concept has been found very powerful in fitting data to a straight 
line (or so-called linear regression). 

14.9.2 Point Collocation Method  

The point collocation method is recovered if the weighting function equals the 
Dirac delta function  
 ( )i ix x  (14.75) 
The point collocation method is a standard procedure in solving boundary integral 
equations (e.g., Ho and Chau, 1999).   

14.9.3 Petrov-Galerkin Method  

The weighted residue method is also known as the Petrov-Galerkin method if the 
weighting function does not equal the fundamental function i  defined in (14.73) 
 i i  (14.76) 
The method is more general than the Galerkin method.   

14.9.4 Galerkin Method  

The Galerkin method is recovered if the weighting function equals the fundamental 
function used in (14.73): 
 i i  (14.77) 
The Galerkin method is a powerful method because it can be shown that it  
originates from the principle of virtual work. It will be further discussed in the next 
section. 

14.10 GALERKIN METHOD  

In this section, we will discuss the Galerkin method in more details. Let us consider 
the two-dimensional cases such that an approximation for u can be expressed as  
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1

( , ) ( , )
n

i i
i

u x y c x y  (14.78) 

where the unknown constants ci are to be determined. Note that i needs to satisfy 
both essential and natural boundary conditions (or displacement and traction 
boundary conditions in the case of solid mechanics). For the case of f = 0, 
substitution of (14.78) into (14.72) gives 

 
1

( ( , )) ( ( , )) ( , ) 0
n

i i i i
iV V

L u x y dV L c x y x y dxdy  (14.79) 

If we pick the approximate function defined in (14.78) as the weighting function, 
we have 

  
1

( ( , )) ( , ) 0
n

i i i
iV

L c x y x y dxdy  (14.80) 

This is called the Galerkin method and it can be shown that it is the same as the 
principle of virtual displacements. For second order PDEs, it can be applied to 
elliptic, hyperbolic, and parabolic types. In the Rayleigh-Ritz method, we need the 
functional of the problem, however we do not need that in the Galerkin method. All 
we need is the differential equation of the problem. Strictly speaking, the Galerkin 
method is not a variational method since we do not need a functional. For physical 
problems in which the energy function exists, Galerkin is similar to the Rayleigh-
Ritz method except for the choice of the approximate functions in (14.78). The 
trying functions in the Rayleigh-Ritz method need only to satisfy the essential (or 
displacement) boundary condition, but not the natural (or traction) boundary 
condition; whereas the trying functions in the Galerkin method needs to satisfy both 
essential and natural boundary conditions. This is the main limitation of the 
Galerkin method. 
__________________________________________________________________ 
Example 14.2 Reconsider the minimization problem given in Example 14.1 and 
derive the Galerkin method for it: 

 2 2

0
[ ] [ ( ) 2 ]

l
I y p y qy fy dx  (14.81) 

with boundary conditions: 
 0 1(0) , ( )y y y l y  (14.82) 
Use the following approximation: 

 1 0 1 1 2 2 ... ...n n
x l xy y y a w a w a w
l l

 (14.83) 

 
Solution: Substitution of (14.83) into (14.81) and differentiation the functional with 
respect to the unknown constants ai (i = 1,2,...) gives 

 
0

2 [( ) ] 0
l

n n n
n

I py w qyw fw dx
a

 (14.84) 

Note that this is the same as the procedure of the Rayleigh-Ritz method. In 
obtaining (14.84), we have used the following identities: 
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 n
n

y w
a

,   n
n

y w
a

 (14.85) 

The first term in (14.84) can be evaluated by integration by parts as: 

  00 0 0
( ) ( ) ( ) ( )

l l ll
n n n npy w dx py d w py w py w dx  (14.86) 

To remove the boundary terms, we must impose 
 (0) ( ) 0n nw w l  (14.87) 
Thus, (14.84) becomes  

 
0
[ ( ) ] 0

l
npy qy f w dx  (14.88) 

This is precisely the Galerkin method for the following differential equation: 
 ( ) 0py qy fy  (14.89) 
Through this example, we show that the Rayleigh-Ritz method and the Galerkin 
method is equivalent if the boundary conditions given in (14.82) are identically 
satisfied.  
__________________________________________________________________ 
 
We have shown that for the particular functional given in (14.81), the Raleigh-Ritz 
method and Galerkin method are equivalent if the boundary conditions given in 
(14.82) are identically satisfied. In fact, we can formulate this observation more 
generally. Putting in a general term, we consider the following boundary value 
problem of a differential equation: 
 [ ] 0L u  (14.90) 
subject to the following boundary conditions: 
 ( )u a  (14.91) 
 [ ]B u  (14.92) 
where L and B are given differential operators. The Galerkin method can be cast as: 
 0 1 1 2 2 ...u u a w a w  (14.93) 
such that 
 0 ( )u a  (14.94) 
 0[ ]B u  (14.95) 
 ( ) 0nw a  (14.96) 
 [ ] 0nB w  (14.97) 
The coefficients for ai , i = 1,2,3,...  can be determined from: 

 [ ] 0n
V

L u w dV  (14.98) 

where V is the domain of the differential equation being defined. 
 The Galerkin method can also be shown as equivalent to the principle of 
virtual work. In particular, for the more general functional for the two-dimensional 
case the functional can be cast as: 

 [ ] [ , , , , ,..., , ,..., ,...]x xx y yy xy
V

I u F x y u u u u u u dxdy  (14.99) 
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P Pll

x ( )w x

Using the calculus of variations, we can obtain the first variation symbolically as 

 [ ] 0
V

I L u u dxdy  (14.100) 

Note that (14.98) is equivalent to the principle of virtual work. We see that if u is 
replaced by the fundamental function wn, the Galerkin method is therefore 
consistent with the principle of virtual work. It is a direct method for finding the 
stationary value of the functional (14.99). However, we do not need a functional of 
the problem in the Galerkin formulation and we only need the Euler differential 
equation of the functional. Therefore, it is more general than the Rayleigh-Ritz 
method and is applicable to problems in which a functional does not exist. We will 
further illustrate this idea using the following example. 
_________________________________________________________________ 
Example 14.3 Solve the following cantilever beam problem shown in Figure 14.3 
using the principle of virtual displacement together with the Galerkin method. 
 The boundary conditions at x = 0 are 
 (0) 0, (0) 0,w w  (14.101) 
You can assume the Euler-Bernoulli beam theory and the following two term trial  
functions: 
 2 3

1 2w a x a x  (14.102) 
 
 
 
 
 
 
 
 
 

Figure 14.3 A cantilever beam subject to two concentrated forces  
 
Solution: Note that by choosing (14.102), both of the boundary conditions given 
(14.101) are satisfied. In a sense, both essential and natural boundary conditions are 
satisfied, and thus it is a feasible choice for the trying functions of the Galerkin 
method. It is also the reason why we need a trying function of a power cube. In 
addition, we cannot add a linear term of x in (14.102), if we do, the second 
boundary condition of (14.101) will not be satisfied.  
 The bending moment corresponding to the deflection given in (14.102) is 
(Timoshenko, 1956) 
 1 2(2 6 )M EIw EI a a x  (14.103) 
The bending stress induced by this moment is (Timoshenko, 1956) 

 ( )
x

M x z
I

 (14.104) 

The nonzero internal virtual work is 

 I x x
V

W dxdydz  (14.105) 
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2l

x
( )w x (2 )w l

( )q x

M

, ( )z w x

Using Euler-Bernoulli beam theory, we have the bending strain proportional to z 
measured from the neutral surface (mid-surface) of the beam: 
 ( )x z x  (14.106) 
where (x) is an unknown function to be determined. Substitution of (14.106) and 
(14.104) into (14.105) gives: 

    
2 22

0 0

1( ) ( )
l l

I
V

A

MzW z dxdydz z dydz M dx M dx
I I

 (14.107) 

Figure 14.4 shows the more general case of external virtual work due to distributed 
load, concentrated load, and concentrated moment. The external virtual work due to 
virtual deflection w is 

     
2

0
( ) (2 ) [ (2 )]

l
E zW q x wdx P w l M w l  (14.108) 

where the minus sign in front of the moment and rotation product term indicate that 
the convention of moment is opposite to the positive slope.  
 For the present case shown in Figure 14.3, we have 
     ( ) (2 )EW P w l P w l  (14.109) 
Using the principle of virtual displacement, we balance the internal and external 
virtual work to give 
 

     
2

0
( ) (2 )

l
M dx P w l P w l  (14.110) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.4 The general case of a beam subject to distributed load, point load, and concentrated 

moment  
 
Taking the virtual displacement of (14.102), we obtain 
 2 3

1 2w a x a x  (14.111) 
Using Hooke’s law to relate (14.104) and (14.106), we get 

 
2

2
d wM EI EI
dx

 (14.112) 

Thus, we have 
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2

2
d w
dx

 (14.113) 

Substitution of (14.111) into (14.113) gives 

 
2

1 22 2 6d w a a x
dx

 (14.114) 

Substituting (14.111) and (14.114) into (14.110) gives 

 
2 22 3

1 2
0 0

( 2 5 ) ( 6 9 ) 0
l l
Mdx Pl a Mxdx Pl a  (14.115) 

This implies the following two equations to be satisfied: 

 
2 2

0
2 5 0

l
Mdx Pl  (14.116) 

 
2 3

0
6 9 0

l
Mxdx Pl  (14.117) 

Substitution of (14.103) into (14.116) and (14.117) and integration of the resulting 
equations gives 

 1 28 24 5 Pla a l
EI

 (14.118) 

 1 224 96 9 Pla a l
EI

 (14.119) 

Solving for the unknown constants, we find 

 1 2
11 1,
8 4

Pl Pla a
EI EI

 (14.120) 

From (14.102), we have the approximation as: 

 2 311 1( )
8 4

Pl Plw x x x
EI EI

( ) 1( )
8

w x( )  (14.121) 

Substitution of (14.121) into (14.103) gives 

 1( ) (11 6 )
4

M x l x P( ) (
4
1M ( ) (1 (  (14.122) 

For the present problem, it can be solved exactly by taking the moment by cutting a 
free body of the beam, and the resulting moment can be plugged into (14.103) to 
solve for the deflection. The final exact solutions for the deflection and bending 
moment are found as: 

 
( ) (3 2 ) , 0

(2 ) , 2
M x l x P x l

l x P l x l
 (14.123) 

 

2 3

3 2 3
2

3 1( ) , 0
2 3

( ), 2
6 2 6

Pl Plw x x x x l
EI EI

Pl x l x llx l x l
EI

 (14.124) 

The details of this evaluation will be left as an exercise for readers. The 
comparison of the results of the Galerkin method and the exact solution is given in 
Figure 14.5. 
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Figure 14.5 The deflection of a cantilever beam subject to two point forces shown in Figure 14.3. 

The solid and dotted lines are the exact solution and the Galerkin approximation 
 
The comparison of the exact solution given in (14.123) with the Galerkin 
approximation given in (14.122) is plotted in Figure 14.6. It can be seen that the 
approximation for deflection shown in Figure 14.5 is much better than that of the 
bending moment as shown in Figure 14.6. Actually, this illustrates a very general 
observation that the virtual displacement method (the present case) gives a more 
accurate approximation for the deflection in (14.121), whereas the virtual force 
method will give a better approximation for moment. In the present case, the 
bending moment is evaluated as the second derivative of deflection given in 
(14.121), and this indirect evaluation always gives a less accurate prediction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.6 The comparison of bending moment of a cantilever beam subject to two point forces 

shown in Figure 14.3 
  
In the present example, we consider a fixed end cantilever beam subject to 
concentrated loads that can be solved quite easily because we want to compare the 
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x

y 2

0 2(1 )yT
b

2a

2b

approximation of the Galerkin method with the exact solution. More generally, for 
more complicated mechanics problems where an exact solution is not possible, an 
approximation like the Galerkin method will be found very useful to provide the 
first order approximation and gives insight into the solution of the problem.  
__________________________________________________________________ 
_________________________________________________________________ 
Example 14.4 Consider the two-dimensional stress analysis shown in Figure 14.7. 
Find the stress state in the plate by the Galerkin method.  
 
 
 
 
 
 
 
 
 

Figure 14.7 Rectangular plate subject to parabolic pulling from two ends  
 
Solution: As shown in Chau (2013), this kind of plane stress problem can be solved 
by using Airy’s stress function: 

 
2 2 2

2 2, ,xx yy xy y xy x
 (14.125) 

The stress function satisfies the biharmonic equation 

 
4 4 4

4 2 2 42 0
y y x x

 (14.126) 

The boundary conditions can be prescribed as: 

 
2 2 2

02 2(1 ), 0,yT x a
y xy b

 (14.127) 

 
2 2

2 0, 0, y b
y xx

 (14.128) 

We choose the following fundamental function: 

 
2

2 2 2 2 2 2 2 2 2
0 1 2 32

1 1(1 ) ( ) ( ) ( ...)
2 6

yT y x a y b a a x a y
b

 (14.129) 

Differentiating (14.129) with respect to x and y, we have 

 

2
2 2 2 2 2 2 2 2

0 1 2 32

2 2 2 2 2 2 2 2 2 2 2 2
3 3

(1 ) 4( ) (3 )( ...)

2 ( ) ( ) 16 ( )( )

yy
yT y x a y b a a x a y
b

a x a y b a y y b x a
 (14.130) 

 
2 2 2 2 2 2

1 2 3

2 2 2 2 2 2 2 2 2 2
2 3

16 ( )( )( ...)

8 ( ) ( ) 8 ( )( )
xy xy x a y b a a x a y

xya x a y b xya x a y b
 (14.131) 
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2 2 2 2 2 2 2

1 2 3
2 2 2 2 2 2 2 2 2 2 2 2

2 2

4(3 )( ) ( ...)

16 ( )( ) 2 ( ) ( )
xx x a y b a a x a y

x a x a y b a x a y b
 (14.132) 

It is obvious that all boundary conditions given in (14.127) and (14.128) are 
satisfied identically. It is a matter of art, however, to identify the feasible form of 
the fundamental solution given in (12.129). Using (14.100), we have 

 4( ) 0
a b

a b
dxdy  (14.133) 

The variation of the fundamental function is 
 2 2 2 2 2 2 2 2

1 2 3( ) ( ) ( ...)x a y b a a x a y  (14.134) 
To further simplify the problem, we only retain a1. Substitution of (14.130) to 
(14.132) into (14.133) gives 

2 2 2 2 2 2 2 2 2 0
1 1 1 2

2 2 2 2 2 2

2
{24( ) 32(3 )(3 ) 24( ) }

( ) ( ) 0

a b

a b

T
y b a x a y b a x a a

b
x a y b dxdy

 (14.135) 

Therefore, conducting integration, we have 

 2 4 2 2 4
1 0

64 256 64/{ ( )}
7 49 7

a T b b a b a  (14.136) 

This gives the approximate stress field: 

 
2

2 2 2 2 2
0 12(1 ) 4( ) (3 )xx

yT x a y b a
b

 (14.137) 

 2 2 2 2 2
14( ) (3 )yy y b x a a  (14.138) 

 2 2 2 2
116( )( )xy x a y b xya  (14.139) 

For the special case of a square plate a = b, we have 

 0
1 60.04253

T
a

b
 (14.140) 

__________________________________________________________________ 

14.11 KANTOROVICH’S METHOD  

In this section, we introduce a method closely related to the Galerkin method by  
considering the more complicated problems of plate bending. Consider the case of a 
rectangular plate subject to two-dimensional bending, as shown in Figure 14.8. The 
plate has fixed supports on y = b, and is free on x= a. The governing equation of 
the problem is found to be a nonhomogeneous biharmonic equation (Timoshenko 
and Woinowsky-Krieger, 1959): 

 
4 4 4

2 2 4
4 2 2 4

( , )2u u u q x yu u
Dx y x y

 (14.141) 

where D is 
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y

x

a a

b

b

( , )q x y

 
3

212(1 )
EhD  (14.142) 

The boundary conditions are 

 0, 0, onuu y b
y

 (14.143) 

We assume the following fundamental function: 
 1 1 2 2( ) ( ) ( ) ( ) ... ( ) ( )n nu y f x y f x y f x  (14.144) 
For the special case that the loading is symmetric with respect to y, we have u being 
an even function of y. One such function is 
 2 2 2 2 2( ) ( ) k

k y y b y  (14.145) 
As a first approximation, we consider the following term: 
 2 2 2( , ) ( ) ( )u x y y b f xu x y y( , ) (, ) ((  (14.146) 
where f is an unknown function to be determined. Note that this method is not exactly 
the Galerkin method since we have not specified the boundary conditions on x = a. 
The function f will be determined analytically. Thus, the current method is a semi-
Galerkin method. This method was first proposed in Kantorovich and Krylov (1964) 
and was called Kantorovich’s method by Reiss (1965).   
  
 
 
 
 
 
 
 
 
 
 
 

Figure 14.8 Rectangular plate with two free edges and two fixed support edges 
 
To proceed with the first approximation, we have 
 2 2 2

1( ) ( )y y b  (14.147) 
Using the Galerkin method, we have 

 4
1( ) ( ) 0

b

b

qu y dy
D 1
q y1(1)) (q
D

)) () (111  (14.148) 

Substitution of (14.147) and (14.146) into (14.148) gives 

     2 2 2 2 2 ( ) 2 2 2[24 2(12 4 ) ( ) ]( ) 0
b IV

b

qf y b f y b f y b dy
D

 (14.149) 

Integration gives the following results: 

      2 2 2 512824( )
5

b

b
y b dy b  (14.150) 



 Variational and Related Methods   839 

 

      2 2 2 2 2 75128(3 )( )
105

b

b
y b y b dy b  (14.151) 

      2 2 4 9256( )
315

b

b
y b dy b  (14.152) 

Substitution of (14.150) to (14.152) into (14.149) gives 

      9 ( ) 7 5
1

256 512 128 ( )
315 105 5

IVb f b f b f p x  (14.153) 

where 

      2 2 2
1

( , )( ) ( )
b

b

q x yq x y b dy
D

 (14.154) 

For the homogeneous case, we have the exponential form for f as: 
      xf e  (14.155) 
The characteristic equation of the homogeneous form of (14.153) is   

      4 4 2 2256 512 128 0
315 105 5

b b  (14.156) 

The roots of  in (14.156) are: 

      1,2,3,4
1 ( ), 2.075, 1.143i
b

 (14.157) 

The general solution becomes 

      
1 2

1 2

( ) cosh( )cos( ) cosh( )sin( )

sinh( )sin( ) sinh( )cos( ) ( )p

x x x xf x A A
b b b b
x x x xB B f x
b b b b

 (14.158) 

For the special case of uniform distributed load, we have 

      2 2 2
1

16( ) ( )
15

b

b

q qq x y b dy
D D

 (14.159) 

The particular solution becomes 

      5 5128 16
5 15p

qb f b
D

 (14.160) 

Thus, we have 

      1
24p

qf
D

 (14.161) 

For the case of a symmetric boundary condition on x = +a and x = a, we must 
have u(x,y) and f(x) an even function of x. Thus, (14.158) is reduced to 

      1( ) cosh( )cos( ) sinh( )sin( )
24

x x x x qf x A B
b b b b D

 (14.162) 

We further suppose that for the case of fixed end supports on x = a, we have 
      ( ) ( ) 0f a f a  (14.163) 
Substitution of (14.162) into (14.163) gives 

      1cosh( )cos( ) sinh( )sin( ) 0
24

a a a a qA B
b b b b D

 (14.164) 
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[ sinh( )cos( ) cosh( )sin( )]

[ cosh( )sin( ) sinh( )cos( )] 0

a a a aA
b b b b b b

a a a aB
b b b b b b

 (14.165) 

This provides two equations for two unknowns A and B and the solutions are 

      1 2

0 0

1 1,
24 24

q qA B
D D

 (14.166) 

where 
      0 sinh cosh sin cos  (14.167) 
      1 ( cosh sin sinh cos )  (14.168) 
      2 sinh cos cosh sin  (14.169) 

      a
b

 (14.170) 

For an infinitely long plate, we have a   and   , we have 

 2 2 21( , ) ( )
24

qu x y y b
D2

u x y( , )
2

 (14.171) 

This equals the exact solution. For a square plate  =1 and  = 0.3, we have the 
solution at the center as 

 
4

4
3

1 (2 )(0,0) 0.479 0.01362
24

q q bu b
D Eh

(0,0) 0u(0,0) 00  (14.172) 

The exact solution for this case of a square plate is 

 
4

max 3
(2 )0.0138 q bu
Eh

 (14.173) 

Thus, the approximation differs only by 1.3% from the exact solution. Referring to 
Timoshenko and Woinowsky-Krieger (1959), we can also find the maximum 
bending stress in the plate accordingly (p. 42 of Timoshenko and Woinowsky-
Krieger, 1959)  

 max max2 2

66
( ) , ( ) yx

x y
MM

h h
 (14.174) 

The bending moment can be found from deflection as 

 
2 2 2 2

2 2 2 2( ), ( )x y
u u u uM D M D

x y y x
 (14.175) 

Using these expressions, we find 

  
2 2

max max2 2
(2 ) (2 )( ) 0.140 , ( ) 0.138x y

q b q b
h h

 (14.176) 

The exact solution for the bending moment is 

 
2

max max 2
(2 )( ) ( ) 0.137x y

q b
h

 (14.177) 

Thus, the error of bending moment by the semi-Galerkin method (or Kantorovich 
method) is about 1~2%. 
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14.12 FUNCTIONAL FOR BIHARMONIC EQUATION 

As remarked in the introduction, both the Rayleigh-Ritz and Galerkin methods were 
originally motivated by plate bending problems. In this section, we will consider the 
following functional form for the plate bending problem: 

 

2 2 2
2 2 2

2 2[( ) 2(1 ){ ( ) } 2 ]

2 ( ) 2 ( )

A

u u uU u fu dxdy
x yx x

up s uds m s ds
n

 (14.178) 

where distributed load q divided by D is denoted by f (= q/D), point force on the 
boundary by p, and concentrated moment on the boundary by m. Physically, the 
functional is the total energy minus the external work done as: 
 1 2( )

A
U dV dU U  (14.179) 

where 

 
2 2 2

2 2
1 ( 2 )
2 x y xy

u u udV M M M dxdy
y xx y

 (14.180) 

 1dU u qdxdy  (14.181) 

 2 2 ( ) 2 ( ) uU p s uds m s ds
n

 (14.182) 

Substitution of the following definitions of bending and twisting moments into 
(14.180) and the result into (14.179) gives (14.178): 

 
2 2 2 2

2 2 2 2( ), ( )x y
u u u uM D M D

x y y x
 (14.183) 

 
2

(1 )xy
uM D

x y
 (14.184) 

The calculus of variations requires 

 
0

( ) 0dU u
d

 (14.185) 

That is, we have to substitute  
 u u  (14.186) 
into (14.178) and differentiate it with respect to . More specifically, we find 

  
2 2 2 2 2 2 2 2 2

2 2 2 2

( ( )) [( ) 2 ( ) ]

2 2 ( )

d du u u
d d

u
 (14.187) 

      

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( ) ( ){ } {( )( )}

( ) 2

d u u d u u
d dx x x x y y

u u
y x x y x y

 (14.188) 
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2 2 2 2 2
2 2 2 2

2 2 2
2

( )[ ] {( ) 2 ( )( ) ( ) }

2( )( ) 2 ( )

d u d u u
d x y d x y x y x y x y

u
x y x y x y

 (14.189) 

Setting  = 0 into (14.187) to (14.189) and substituting the results into (14.178) 
gives 

        

2 2 2 2 2 2
2 2

2 2 2 2[2 2(1 )( 2 ) 2 ]

2 ( ) 2 ( ) 0

A

u u uu f dxdy
x y x yx y y x

p s ds m s ds
n

 

  (14.190) 
This equation can be further be simplified using the following identity 

         

2 2 2 2 2
2 2 2 2

2 2 2

2 2 2 2 2 2 2
2

2 2 2

2 2 2 2
2 2

2 2

2 2 2 2 2

2

( )

[ ( ) ( )]

[ ( ) ( )] [

u uu u u
x x y yy x x

u u u uu
x x y yy x y

u u u u
x x y yx y

u u u
x x y y x

2

2 ]u
y

 (14.191) 

Applying (14.191), we have 

        

2 2 2 2

2 2 2 2 2 2

2 2

[ ( ) ( )]

[ ( ) ( )] [ ]

A A

A A

u dxdy u u dxdy
x x y y

u u u udxdy dxdy
x x y y x y

 (14.192) 

The first and second terms on the right hand side of (14.192) can be reduced to 

        2 2 2[ ( ) ( )] ( )
A

u u dxdy u dy dx
x x y y x y

 (14.193) 

        
2 2 2 2

[ ( ) ( )] ( )
A

u u u udxdy dy dx
x x y y x y

 (14.194) 

Using these results, we finally get 

       
2

2 2 4 2

A A

uu dxdy udxdy u ds ds
n n

 (14.195) 

In addition, it is straightforward to show that 
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2 2 2 2 2 2

1 2 2 2 2

2 2 2 2

2 2

( 2 )

[ ( ) ( )]

A

A

u u uI dxdy
x y x yx y y x

u u u u dxdy
x x y x y y y y x xy x

 (14.196) 

where (14.196) is the second term in the first integral of (14.190). It can further be 
reduced to 

        
2 2 2 2

1 2 2[( ) ( ) ]n n
u u u uI x y ds

x y x y y y x xy x
 (14.197) 

Note also that by the chain rule we have 

         s n
s n x x

x s x n x s n
 (14.198) 

         s n
s n y y

y s y n y s n
 (14.199) 

The directional cosines are given as: 
         cos( , ), cos( , )s sx s x y s y  (14.200) 
         cos( , ), cos( , )n nx n x y n y  (14.201) 
Substitution of (14.198) and (14.199) into (14.197) gives 

         

2 2 2
2 2

1 2 2

2 2 2

2 2

( 2 )

[ ( ) ]

n n n n

s n s n s n s n

u u uI x y x y ds
y x ny x

u u uy y x x x y y x ds
y x sx y

 (14.202) 

Applying integration by parts to the last term, we have 

         

2 2 2

2 2

2 2 2

2 2

[ ( ) ]

[ ( ) ]

s n s n s n s n

s n s n s n s n

u u uy y x x x y y x ds
y x sx y

u u uy y x x x y y x ds
s y xx y

 (14.203) 

Using (14.195), (14.202), and (14.203), we obtain the following formula for 
(14.190): 

        4[ ] [ ( ) ( )] [ ( ) ( )]
A

qu dxdy M u m s ds P u p s ds
D n

 (14.204) 

where 

        
2 2 2

2 2 2
2 2( ) (1 )( 2 )n n n n
u u uM u u x y x y

y xy x
 (14.205) 

     
2 2 2

2
2 2( ) (1 ) [ ( ) ]s n s n s n s n
u u uP u u y y x x x y y x

n s y xx y
 (14.206) 

Therefore, the Euler equation of the problem is 
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         4 qu
D

 (14.207) 

and the boundary condition on  
         ( ) ( ) 0M u m s  (14.208) 
         ( ) ( ) 0P u p s  (14.209) 
We can see that the variational method provides a systematic approach to derive the 
governing equation of plate bending given in (14.207). For the case of a built-in or 
fixed support, we have boundary conditions as 

         0, 0, onuu
n

 (14.210) 

Employing the Galerkin method, we have 

         
1

n

k k
k

u a  (14.211) 

In the context of numerical analysis, the so-called strong form requires 

         
1

( , ) ( , )
n

k k
k

u x y a x y  (14.212) 

where  is the error control. This is a rather strong point-wise requirement. The 
weak form, however, relaxes this requirement to 

         
1

[ ( , ) ( , )]
n

k k
A

k

u x y a x y dxdy  (14.213) 

The required accuracy is satisfied in a global sense in the weak form. According to 
the previous section, the Galerkin method requires: 

         4[ ] 0n s
A

qu dxdy
D

 (14.214) 

where s = 1,2,..., n and 

         
1

( , ) ( , )
n

n k k
k

u x y a x y  (14.215) 

14.13 VIBRATIONS OF CIRCULAR PLATES  

For simplicity, let us consider the axisymmetric natural vibrations of circular plates 
with built-in edges (see Figure 14.9). In this case, we have 

         
2 2

4
2 2

1 1( )( ) 0d d d u duu u u
r dr r drdr dr

 (14.216) 

where  is the square of the normalized vibration frequency: 

         
2 2

2
12(1 )

Eh
 (14.217) 

where  is the circular frequency of vibrations and  is the density of the plate. 
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a

Built-in edges 

 
 
 
 
 
 
 
 
 
 

Figure 14.9 Axisymmetric vibrations of circular plates of radius a with built-in edges 
 
The built-in edge requires  

         0r a
r a

uu
r

 (14.218) 

The following fundamental solutions can be shown to satisfy the built-in conditions: 

         
1 1 2 2

2 2 2
2 3 1

1 22 2 2

( ) ( ) ... ( )

(1 ) (1 ) ... (1 )

n n n

n
n

u a r a r a r

r r ra a a
a a a

 (14.219) 

Substitution of (14.219) into the following Galerkin method gives: 

         4( ) 0n n s
A

u u dr  (14.220) 

Taking the first two terms in (14.219) we have 

         
4 4

1 2
192 144( ) ( ) 0

9 5 9 6
a aa a  (14.221) 

         
4 4

1 2
144 96( ) ( ) 0

9 6 5 7
a aa a  (14.222) 

The characteristic equation becomes 

         4 2 49792( ) 193536 0
5

a a  (14.223) 

The smallest root of (14.223) is 

     4
104.4

a
 (14.224) 

With this value of , we find 
     1 20.455 1.4 0a a  (14.225) 
The approximation of the deflection in (14.219) is 

         
2 2

2 3
2 1 2 2[(1 ) 0.325(1 ) ]r ru a

a a
 (14.226) 
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14.14   SUMMARY 

In this chapter, we have presented an overview of variational methods. Because of 
its relation with the Galerkin method, the related principles of virtual work, virtual 
displacement, and virtual traction are introduced. The more general Hamilton 
principle, Veubeke-Hu-Washizu principle, and Hellinger-Reissner principle are 
reviewed in view of their fundamental importance in numerical analysis, such as the 
finite element method. Approximate techniques related to the variational principle 
are introduced in Sections 14.8 14.10, including the Rayleigh-Ritz method, 
weighted residue method, and Galerkin method. A semi-Galerkin type method 
known as Kantorovich’s method, a term coined by Reiss (1965), is introduced using 
plate bending problems as an example in Section 14.11. In essence, for problems 
governed by partial differential equations, the Galerkin method is used to 
approximate one of the variables whereas the other one is solved analytically. 
Therefore, it is a semi-Galerkin type or semi-analytic technique. Functional 
formulation for plate bending is considered in Section 14.12 before the vibrations 
of circular plates are considered. 
 There are a number of good books on the variational method, including Mura 
and Koya (1992), Washizu (1982), Kantorovich and Krylov (1964), Reiss (1965), 
and Reddy (2002). There are also more specialized methods similar to the Galerkin 
method, such as the Trefftz method. In this method, the approximate solution is 
selected such that the governing equation is exactly satisfied and the boundary 
conditions are satisfied approximately in a variational sense. However, it is not easy 
to find the approximation that satisfies the governing equation, and thus the Trefftz 
method is not discussed in the present chapter.  

14.15   PROBLEMS 

Problem 14.1 Consider the two-dimensional stress analysis shown in Figure 14.7. 
Find the stress state in the plate by the Galerkin method using the following 
approximation of Airy’s stress function:  

 
2

2 2 2 2 2 2 2 2 2
0 1 2 32

1 1(1 ) ( ) ( ) ( ...)
2 6

yT y x a y b a a x a y
b

 (14.227) 

(i) Show that the constants a1, a2, and a3 are governed by 

 
2 4 4 2 6

2 2 0
1 2 32 4 4 2 6 4 2

64 256 64 64 64 64 64( ) ( ) ( )
7 49 7 77 49 49 77

Tb b b b ba a a a a
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  (14.228) 

 
4 2 4 2 6

2 2 0
1 2 34 2 4 2 6 4 2

64 64 192 256 192 64 64( ) ( ) ( )
11 7 143 77 7 77 77
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  (14.229) 
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2 2 0
1 2 34 4 2 4 6 4 2

64 64 64 64 192 256 192( ) ( ) ( )
7 11 77 77 7 77 143

Tb b b b ba a a a a
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  (14.230) 
(ii) For the case of square plates, show that 
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1 2 36 80.04040 , 0.01174
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a a a
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 (14.231) 

Problem 14.2 Find the deflection of the cantilever beam problem shown in Figure 
14.10 using the principle of virtual displacement together with the Galerkin method. 
 
 
 
 
 
 
 

Figure 14.10 A cantilever beam subject to a concentrated force at the free end  
 
Ans:  

 2 31( )
6

Pl Pw x x x
EI EI

 (14.232) 

 
Problem 14.3 Find the deflection of the cantilever beam problem shown in Figure 
14.11 using the principle of virtual displacement together with the Galerkin method. 
 
 
 
 
 
 
 

Figure 14.11 A cantilever beam subject to a concentrated moment  
Ans:  

 2( )
2
Mw x x
EI

 (14.233) 

 
Problem 14.4 Find the deflection of the cantilever beam problem shown in Figure 
14.12 using the principle of virtual displacement together with Galerkin method. 
 
Ans:  

 2 31 5( ) (19 4 )
8 12

Pw x Pl M x x
EI EI

 (14.234) 

 
 
 
 
 

 
 

 
Figure 14.12 A cantilever beam subject to two concentrated forces and a concentrated moment 
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Problem 14.5 Show that the functional of the following Sturm-Liouville problem: 

 [ ( ) ] ( ) ( ) 0d dyp x q x y r x y
dx dx

 (14.235) 

 ( ) 0, ( ) 0y a y b  (14.236) 
is 

 2 2 2[ ( ) ( ) ( ) ]
b

a

dyJ a p q x y r x y dx
dx

 (14.237) 

Hint: Find Euler’s equation of this function. 
 
Problem 14.6 Show that the functional of the Laplace equation: 
 2 0  (14.238) 
is 

 2 21 [( ) ) ]
2

J dxdy
x y

 (14.239) 

Hint: Find Euler’s equation of this function. 
 
Problem 14.7 Following the procedure used in Section 14.12 for plate bending, 
show that for functional: 

 
2

2
20 0

[ ] ( )
2

l lEI d yI y dx q ydx
dx

 (14.240) 

we have, by substituting y = u+ , 

 
0

( ) 0dI u
d

 (14.241) 

The stationary value of the functional requires 

 
2 2

2 20 0
( )( ) 0

l ld u dEI dx q dx
dx dx

 (14.242) 

 
Problem 14.8 Show that Euler’s equation for the function given in (14.243) is the 
Euler-Bernoulli beam theory: 

 
4

4 ( ) 0d yEI q x
dx

 (14.243) 

 
Problem 14.9 Consider the case of a simply supported beam subject to a uniform 
distributed load shown in Figure 14.13. The essential boundary conditions are 
 (0) ( ) 0u u l  (14.244) 
whereas the natural boundary conditions are 
 (0) ( ) 0u u l  (14.245) 
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l

x ( )w x

0( )q x q

Use the Rayleigh-Ritz method by adopting the following approximation: 
 1 1 2 2( ) ( ) ( )u x c x c x  (14.246) 
where 
 2

1 2( ) ( ), ( ) ( ).x x l x x x l x  (14.247) 
Note that the approximation given in (14.247) only satisfies the essential boundary 
condition. Find the Rayleigh-Ritz approximation.  
 
 
 
 
 
 

Ans: 

 
4 2

0
2( ) ( )

24
q l x xu x

EI l l
 (14.248) 

 
Problem 14.10 Find Euler’s equation of the following functional for membrane 
deflection: 

 2 21[ ] [ {( ) ( ) } ]
2A

u uI u T f u dxdy
x y

 (14.249) 

where T is the tension in the membrane and f is the applied load on the membrane. 
The boundary condition is 
 0, onu  (14.250) 
 
Ans: 

 
2 2

2 2( ) 0u uT f
x y

 (14.251) 

 
Problem 14.11 Further simplify (14.205) and (14.206) by referring to the following 
diagram: 
 
(i) Referring to Figure 14.14, show that 
 cos( , ), cos( , )n s x n s yx y n n x y x n n y  (14.252) 

(ii) Show that (14.205) and (14.206) can further be simplified to 

 
2 2 2 2 2

2 2
2 2 2 2( ) ( ) ( ) 2(1 )x y x y
u u u u uM u n n n n

y xx y y x
 (14.253) 

 
Figure 14.13 A simply-supported beam subject to uniform distributed load 
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(1 )( ) ]
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u u u uP u u n n n n
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 (14.254) 

 
 
 
 
 
 
 
         
 
 
 

Figure 14.14 The relation between directional cosines between normal and tangent 
 
Problem 14.12 Show that along a straight edge along x = a the boundary conditions 
given in (14.208) and (14.209) become 

 
2 2 3 3

2 2 3 20, (2 ) 0u u u um p
x y x x y

 (14.255) 

 



 
 

CHAPTER FIFTEEN  
 

Finite Difference and Numerical Methods  

15.1 INTRODUCTION 

The origin of the finite difference method (FDM) probably traces back to the time 
of Leibniz and Euler (e.g., Euler’s method in 1768), and subsequently evolved into 
different techniques (e.g., Runge-Kutta method). The FDM became more 
established after 1928 after the Courant-Friedrichs-Lewy (CFL) stability condition 
was derived for hyperbolic type partial differential equations (Courant et al. 1928). 
Its day-to-day application, of course, starts with the popularization of computers, 
especially personal computers. Although for solid mechanics and structural analysis 
the emergence of the finite element method in 1960 took over the role of finite 
difference in numerical analysis, in the area of fluid mechanics, the finite difference 
method remains a popular choice. 
 There are many different kinds of finite difference schemes. In general, it can 
be classified into explicit and implicit finite difference schemes. For differential 
equations in time variables, the explicit methods naturally suggest that the unknown 
function of the next time step can be expressed explicitly in terms of the numerical 
results of the previous time steps, whereas in the implicit methods the unknown 
function of the next time step cannot be expressed explicitly in terms of the 
numerical results of the previous time steps. In structural dynamics, the most 
popular methods of finite difference for second order differential equations are the 
Wilson  method and the Newmark  method (Bathe, 1982). These methods will 
be discussed in Section 15.3. Multi-step methods, such as the Adams-Bashforth 
method and Adams-Moulton method, and the predictor-corrector method, use more 
than just the time step before the current step, but the solutions from the last few 
time steps. Polynomials of different orders are used to fit the first derivative in the 
differential equations. The predictor-corrector method combines the explicit 
together with the implicit method.  
 A major topic in numerical integration for time dependent nonlinear systems 
is the Newton-Raphson method. For searching roots in nonlinear equations, the 
Newton-Raphson method has been proposed. For structural dynamics problems, 
the stiffness matrix of the numerical model needed to be evaluation at each iteration 
step within a time step of integration. Therefore, it is computationally very 
demanding, especially for a large system (i.e., stiffness matrix of very large size). 
There are various modified versions of the Newton-Raphson method. If we use the 
initial stiffness of the model in all time steps as well as in iteration steps, this 
method is called the initial stress method. Clearly, this scheme will not converge 
very fast or may not converge at all. The modified Newton-Raphson method takes 
the stiffness matrix from the last time step during the whole process of iterations 
within a time step. Yet, the convergence may not converge fast enough for some 
highly nonlinear problems. Therefore, it has been proposed that the stiffness matrix 
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should be updated once the convergence is not up to expectation within the 
iterative steps within a time step. This leads to the so-called quasi-Newton and 
BFGS methods.  If the stiffness matrix is formulated between the starting point of 
each iteration process and the current iterative point, the method is called fixed-
point iteration or the secant method. For mechanics problems, the control 
algorithms for nonlinear problems are very important. They are displacement, load, 
and arc-length controls, and pros and cons of these algorithms will be discussed.  
 In the final sections, we will illustrate the application of the finite difference 
method as well as the finite element method to the incompressible potential flow 
problems. 

15.2 FINITE DIFFERENCE FOR FIRST ORDER ODE  

Let us consider the following first order ODE in this section: 

 ( , )dy f t y
dt

 (15.1) 

More generally, we can extend this first ODE to a system of n coupled first order 
ODEs as: 

 ( ) ( )d t
dt
yC k y f  (15.2) 

where C is a matrix of size n n and y and f are n 1 vectors. The linearized form of 
(15.2) can be written as 

 ( )d t
dt
yC Ky f  (15.3) 

All kinds of finite difference schemes can be formulated by starting with Taylor 
series expansion: 

2 2 3 3

1 2 3( ) ( ) ( ) ...
2! 3!

n n n

n n n
t t t t t t

dy t d y t d yy t y t t y t t
dt dt dt

 (15.4) 

In the following subsections, we will apply the general mean value theorem (see 
Article 150 of Hardy, 1944) to (15.4) in arriving at different types of finite 
difference schemes. 
 
15.2.1 Forward Difference (Euler) Method 

If we evaluate the second derivative at an appropriate point, say tn+ 1 t, all higher 
derivative terms in the Taylor series expansion can be dropped 

 
1

2 2

1 2( ) ( ) ( )
2

n n

n n n
t t t t t

dy t d yy t y t t y t t
dt dt

 (15.5) 

where 0  1  1. This is called the general mean value theorem or Taylor theorem 
(e.g., Article 150 of Hardy, 1944). To simplify the following presentations, we 
should adopt the following notation: 
 1 1( )n ny t y  (15.6) 
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With this notation, (15.5) can be rearranged as: 

 
1

2
1

22
n n

n n

t t t t t

y ydy t d y
dt t dt

 (15.7) 

If we drop the last term, we get the following forward difference approximation or 
the Euler’s finite difference scheme as: 

 1

n

n n

t t

y ydy
dt t

 (15.8) 

Comparing (15.7) and (15.8), it is clear that the error is proportional to t. We say 
that this error is of the order t or known as the order of the error O( t) (e.g., 
Erdelyi, 1956; Bleistein and Handelsman, 1986).   
 Substitution of (15.8) into (15.1) yields 
 1 1( ) ( , )n n n n n ny y t t f t y  (15.9) 
Therefore, once we know yn and tn, we can find yn+1 from (15.9).  Since the 
unknown is on the left hand side only, it is an explicit finite difference scheme. 
Similarly, we can substitute (15.8) into (15.3) to get 

 1 ( )n n nt t
C Cy K y f  (15.10) 

When C is a diagonal matrix (i.e., all off-diagonal terms are zeros), the unknown 
vector yn+1 can be expressed explicitly as: 

 1
1 {( ) }n n nt

t
Cy C K y f  (15.11) 

However, when C is non-diagonal, (15.10) is not explicit but implicit. That is, we 
need to solve the matrix equation to find yn+1. 

15.2.2 Backward Difference (Euler) Method  

Alternatively, we can evaluate the function at a previous step n 1 or substitute tn  
for tn in (15.5) to get 

 
2

2 2

1 2( ) ( ) ( )
2

n n

n n n
t t t t t

dy t d yy t y t t y t t
dt dt

 (15.12) 

where  0  2  1. By rearranging (15.12), we obtain the first derivative term as   

  
2

2
1

22
n n

n n

t t t t t

y ydy t d y
dt t dt

 (15.13) 

Therefore, by dropping the second term on the right of (15.13), we have the 
backward difference scheme as 

 1

n

n n

t t

y ydy
dt t

 (15.14) 

It is clear from (15.13) and (15.14) that the error is again of O( t) which is the same 
as that of Euler’s forward difference scheme.  



854   Theory of Differential Equations in Engineering and Mechanics 

 Substitution of (15.14) into (15.1) yields 
 1 1 1 1( ) ( , )n n n n n ny y t t f t y  (15.15) 
Therefore, once we know yn and tn, we can find yn+1 from (15.15).  Unless the 
function f is given as a simple function such that yn+1 can be solved explicitly from 
(15.15), the backward difference scheme is an implicit method.  Similarly, we can 
substitute (15.14) into (15.3) to get 

 1 1( ) n n nt t
C CK y y f  (15.16) 

Even when C is a diagonal matrix (i.e., all off-diagonal terms are zeros), it is 
unlikely that K will be diagonal.  If this is the case, the original problem (15.3) is 
totally uncoupled.  That is, each component of vector y can be determined 
separately. Therefore, the backward difference scheme is implicit. 

15.2.3 Central Difference (Crank-Nicholson) Method 

The idea of applying the general mean value theorem can be extended to consider 
higher order derivative terms in (15.4).  In particular, we can apply the general 
mean value theorem to the third derivative as: 

 
3

2 2 3 3

1 2 32 6
n n n

n n
t t t t t t t

dy t d y t d yy y t
dt dt dt

 (15.17) 

 
4

2 2 3 3

1 2 32 6
n n n

n n
t t t t t t t

dy t d y t d yy y t
dt dt dt

 (15.18) 

for some   0   3  1 and  0  4  1. Subtracting (15.18) from (15.17) we have 

 
4

4

3 3 3

1 1 3 32
6

n n
n

n n
t t t t t t t t

dy t d y d yy y t
dt dt dt

 (15.19) 

Dropping the higher order term, we obtain the central difference scheme for the 
first derivative as  

 1 1

2
n

n n

t t

y ydy
dt t

 (15.20) 

When we apply this central difference scheme to the heat conduction problem, it is 
also known as the Crank-Nicholson method (Zienkiewicz, 1977). The first 
derivative in (15.20) is expressed in terms of the solution at time tn+ t and tn t, 
and thus it is natural to approximate the right hand side of (15.1) as 

 1 1 1 1( , ) ( , )
( , )

2
n n n nf t y f t y

f t y  (15.21) 

By using (15.21), the finite difference will remain a two-level scheme. 
 By applying (15.20) and (15.21) to (15.1), we have 

 1 1 1 1 1 1 1 1
1 ( ) ( , ) ( , )
2n n n n n n n ny y t t f t y f t y  (15.22) 
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Since  yn+1 appears implicitly on the right of (15.22), it is an implicit method.  
 Following a similar two-level scheme for y and f, we have 

 1 1
1 ( )
2 n ny y y ,  1 1

1 ( )
2 n nf f f  (15.23) 

Thus, substitution of (15.23) and (15.20) into (15.3) results in 

  1 1 1 1
1( ) ( ) ( )

2 2 2 2 2n n n nt t
C K C Ky + y f f  (15.24) 

Following the remarks made earlier, (15.24) is clearly an implicit finite difference 
scheme.  
 The central difference scheme can sometimes appear in a slightly different 
form.  For example, we can expand the Taylor series expansion using half time step 

t/2 as: 

 
3

2 2 3 3

1/2 2 3
/2

2 8 48
n n n

n n
t t t t t t t

t dy t d y t d yy y
dt dt dt

 (15.25) 

 
4

2 2 3 3

1/2 2 3
/2

2 8 48
n n n

n n
t t t t t t t

t dy t d y t d yy y
dt dt dt

 (15.26) 

The difference between (15.25) and (15.26) is 

 
4

4

3 3 3

1/2 1/2 3 3
/2 /2

48
n n

n

n n
t t t t t t t t

dy t d y d yy y t
dt dt dt

 (15.27) 

Now, the first derivative of y becomes 

 1/2 1/2

n

n n

t t

y ydy
dt t

 (15.28) 

Using a two-level scheme similar to (15.21), we find that (15.1) can be evaluated in 
a slightly different form  

 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1 ( ) ( , ) ( , )
2n n n n n n n ny y t t f t y f t y  (15.29) 

Similarly, the central difference scheme for (15.3) becomes 

  1/2 1/2 1/2 1/2
1( ) ( ) ( )

2 2 2n n n nt t
C K C Ky + y f f  (15.30) 

Alternatively, we can also shift half of the time step to rewrite (15.30) as 

 1 1
1( ) ( ) ( )

2 2 2n n n nt t
C K C Ky + y f f  (15.31) 

This is the Crank-Nicholson (or central difference) scheme given in Zienkiewicz 
and Morgan (1983).  
 The interpretation of these three finite difference schemes can be seen in Fig. 
15.1.  The actual slope BD at time tn can be represented by slope AB in the 
backward finite difference scheme, by slope BC in the forward finite difference 
scheme, and by AC in the central finite difference scheme. 
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Figure 15.1 Interpretation of the first derivative using the forward, central, and 
backward finite difference schemes 

15.2.4 Weighted Residue Approach for Finite Difference Scheme 

As shown by Zienkiewicz and Morgan (1983), all of the forward, central, and 
backward finite difference schemes can be recovered as a special case of a more 
general formulation using the weighted residue approach, which has been 
introduced in Section 14.9.  
 In particular, we can adopt a time discretization using linear shape functions 
as shown in Fig. 15.2. In particular, the unknown function y can be approximated 
by 
 

 
 

Figure 15.2 Time discretization using nodal values with interpolation function 
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If we define the time element n between times tn and tn+1, the approximation for the 
unknown function y can be rewritten as 
 1 1

n n
n n n nN Nn nn

nN n
n N n

ny y = y y  (15.33) 
where 
 1n

nN T , 1
n
nN T  (15.34) 

 n

n

t t
T

t
,  1n n nt t t  (15.35) 

By formulating the weighted residue of the approximation of (15.3) when (15.32) is 
substituted into it, we have 

 
0

( ) 0n
d t W dt
dt

( )( )( )( )( ))( )yC K y f ,   (15.36) 

for n = 0,1,2,... , and Wn is called the weighting function. Applying different forms 
of the weighting function will result in different kinds of numerical methods. For 
the case that Wn is only nonzero within the n element, (15.36) can be simplified to 

 
1

( ) 0
n

n

a
n

a

d t W dt
dt

( )( )( )( )( ))( )yC K y f . (15.37) 

In view of (15.34), the time derivative of (15.33) becomes 

 1n n

n n

d
dt t t

nny yy = . (15.38) 

Substitution of (15.33) and (15.38) into (15.37) and change of variables from t to T 
leads to 

 

1 1 1 1
1

0 0 0 0

1

0

(1 )

( )

n n n n n n
n n

n n n

W dT W TdT W dT W T dT
t t

t T t W dT

C CK y K y

f

   

  (15.39) 
Equation (15.39) can be simplified as  

 1 (1n n n n n
n nt t n

C CK y )K y f    (15.40) 

where 

 
1 1

0 0
/n n nW TdT W dT ,   

1 1

0 0
( ) /n n n n nt T t W dT W dT

1
n

0
(

1
(((f f  (15.41) 

If the applied force f is smooth, we can also approximate the forcing term by node 
values by using the same interpolation or shape function given in (15.33) as 
 1 1( ) ( ) ( )n n

n n n n n nt T t N T N T( nf f f  (15.42) 
Thus, we can approximate (15.3) as  

 1 1(1 (1 )n n n n n n n n
n nt t 1n n n

C CK y )K y f f    (15.43) 
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15.2.5 Dirac Delta Function and Point Collocation Method 

The simplest type of weighted residue formulation is obtained by using the Dirac 
delta function for the weighting function. This method has been mentioned in 
Section 14.9.2. of Chapter 14. This type of numerical technique is also known as 
the point collocation method (e.g., Section 2.2.1 of Zienkiewicz and Morgan, 1983; 
Section 1.4.1 of Brebbia et al., 1983). For example, the point collocation method 
has been found useful in investigating stress concentration due to rivet loading in a 
finite strip (see Ho and Chau, 1999).  
 That is, we can assume 
 ( )nW T    (15.44) 
where the Dirac delta function  can be defined as 
 

 
0

0
( ) 1lim

T

T
T

T
T

 (15.45) 

We will summarize some properties of the Dirac delta function here without 
discussing the distribution theory as we did in Section 8.11. This function tends to 
infinity at T = , but however its integral over the entire domain is finite and 
defined by  

 
0

( ) 1T dt  (15.46)  

The following sifting property of the Dirac delta function is most useful for our 
discussion in this chapter: 

 
0

( ) ( ) ( )h T T dT h  (15.47)  

where  > 0 (named by van der Pol). Before we continue to consider (15.43) by 
using the Dirac function given in (15.44), an informal discussion of Dirac delta will 
be informative. 
 This delta function was motivated by its application in quantum mechanics 
and was proposed by Dirac to deal with jump properties of physical quantities 
(Dirac, 1947). Dirac shared the 1933 Nobel Prize in physics with Schrödinger. In 
civil engineering and mechanics, they include impulsive force, concentrated force 
(in contrast to distributed force), concentrated moment in beams and structures, 
heat source and dipole in heat conduction, fluid sources (such as point sink or point 
source as in Chau, 1996 and Kanok-Nukulchai and Chau, 1990 in fluid-infiltrated 
solids) or fluid dipole (see Rudnicki, 1986; Chau, 2013), point charges, dipoles, 
and surface layers in electrostatics. However, if we restrict to our basic assumptions 
on the existence of continuous, smooth, differentiable functions, the Dirac delta 
function is certainly not qualified to even be called a “function” in the normal 
mathematical sense. Dirac was aware of its limitation and called it an “improper 
function,” and he recommended its use in mathematical analysis provided that no 
inconsistency would follow from its usage. That is, once the solution of a physical 
problem is solved by adopting the Dirac delta function, it should be subject to 
classical mathematical analysis to show rigorously that it does satisfy all the 
conditions posed in the original formulation of the problem. Strictly speaking, all 
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procedures or formulas derived for differentiable functions cannot be applied to 
deal with the Dirac delta function unless we can generalize the concept of function 
to include “strange” functions like the Dirac function. Because of this reason, a 
whole new area of mathematics appeared and it is now called “generalized 
functions” or “theory of distribution” (Chapter 9 of Sneddon, 1972; Chapter 2 of 
Stakgold, 1979). This is a classic example of how mathematical development is 
motivated by physical problems. 
 The subject of generalized functions or theory of distribution was first 
considered by Bochner in 1932 and Sobolev in 1936, but it was the work of 
Schwartz in the 1940s that put the generalized functions on a firm foundation. Later 
contributors include Gelfand and Shilov (1964) and Zemanian (1965).  
 The idea of the theory of distribution has been covered in Section 8.11 and is 
briefly summarized here. First, a so-called “support” (or range) around the Dirac 
function was defined. Then, some very smooth testing functions with rapid descent 
were defined such that they are differentiable within the support. At the same time, 
these testing functions are required to be absolutely integrable over the domain of 
the variable. Outside the support, these testing functions would vanish identically. 
The functional space of these admissible testing functions is called the Schwartz 
space. Rules of mathematical operations are formally defined in this Schwartz 
space. In general, many distributed forms of the Dirac delta functions can be found 
and each mathematical form also consists of infinite sequences of such testing 
functions (Sneddon, 1972). Although these admissible testing functions in 
Schwartz space are very smooth, their functional (i.e., testing function that satisfies 
the finite integration requirement) can describe the “wild” nature of the Dirac delta 
function.  
 Here we list some admissible choices for the Dirac delta functions using 
Schwartz’s theory of distribution (Stakgold, 1979): 

 2 2
0

( ) lim
( )t

tx
t x

 (15.48)  
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 (15.50)  

 
2

2
sin( ) lim
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Rxx
Rx

 (15.51)  

 
2 /4
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0

( ) lim
(4 )

x t

n
t

ex
t

 (15.52)  

Note that some of these delta sequences have been introduced in Chapter 8 in a 
slightly different manner (see (8.197), (8.208) and (8.209)). If t is closer to 0+ or R 
is closer to , the steeper these functions are and the more they resemble the actual 
delta function. Stakgold (1979) showed that these functions can be put into a 
general form as a theorem: 
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 1( ) ( )n
xf x f  (15.53)  

where   > 0 and {f (x)} is a delta family as   0 provided that f is a nonnegative 
locally integrable function satisfying 

 ( ) 1f x dx  (15.54)  

Or equivalently, by setting k = 1/  we have 
 ( ) ( )n

kS x k f kx  (15.55)  
where {Sk (x)} is a delta sequence k   .  Thus, we have 
 

0
( ) lim ( )x f x ,  ( ) lim ( )kk

x S x  (15.56)  

Another type of Dirac delta sequence is (Stakgold, 1979) 

 sin( ) lim
R

Rxx
x

 (15.57)  
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( ) 2 1 2 cos

0
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r
r r  (15.59)  

 

1 sin( 1/ 2)lim ,
12( ) 2 sin( )
2

0

k
imx

k
m k

k xe x
x x

x

 (15.60)  

Note that (15.57) and (15.60) have been covered in Section 8.11.2; whereas, 
(15.59) appears in the Poisson integral in potential theory (see Section 9.7.6). 
__________________________________________________________________ 
Example 15.1 Construct a delta function sequence for the following function: 

 2 2( ) yg x
y x

 (15.61)  

where x is the variable and y is a parameter. 
 
Solutions:  
Let us make the following observation of this function. We note that when x = 0,  

 1( )g x
y

 (15.62)  

We note that when y  0,  
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 2( ) yg x
x2
y

x
 (15.63) 

Figure 15.3 plots g(x) versus x for three different values of y. As shown, the smaller 
is y the steeper is the function.  As expected, the Dirac delta function type is 
expected as y  0.   

Figure 15.3 Dirac delta function like testing functions 
 
Note that  

 1
2 2

1 tandx x
y yy x

 (15.64)  

1 1

1
2 2

1 1

1 [tan ( ) tan ( )] 0
1 tan ( )

1 [tan ( ) tan ( )] 0

y
y ydx x

y yy x y
y y

 (15.65)  

 2 2
dx

yy x
 (15.66)  

Thus, we can define a testing function as 

 
2

2 2 2 2 2
1 1 1( )

( ) ( ) [1 ( / ) ]

y y
f x

y yy x y x x y
 (15.67)  

such that (15.54) is satisfied identically. The last part of (15.67) is clearly in the 
structural form of (15.53) and (15.56), as remarked by Stakgold (1979).  Therefore, 
we have the delta function as 

 20 0

1 1( ) lim ( ) lim
[1 ( / ) ]y y

x f x
y x y

 (15.68)  

Thus, we also have 

1y
0.5y

0.1y

x

( )g x
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 2 20 0
lim lim ( ) ( ) sgn( ) ( )
y y

y yg x x y x
yx y

 (15.69)  

where sgn (x) is defined as the sign of x 

 
1 0

sgn( )
1 0

x
x

x
 (15.70)  

It should be noted that this sign function is also a kind of generalized function 
similar to that of the Dirac delta function (Sneddon, 1972). 
__________________________________________________________________  
 
 Substitution of (15.44) into (15.43) yields 

 1 1(1 (1 )n n n n
n nt t 1n n

C CK y )K y f f    (15.71) 

When we specify  = 0, we obtain the forward (Euler) difference scheme 

  1 ( )n n n
n nt t

C Cy K y f  (15.72) 

This is the same as that given in (15.10). When we specify  = 1/2, we obtain the 
central (Crank-Nicholson) difference scheme 

 1 1
1( ) ( ) ( )

2 2 2n n n n
n nt t

C K C Ky + y f f  (15.73) 

This is the same as that given in (15.31). When we specify  = 1, we obtain the 
backward (Euler) difference scheme 

 1 1( ) n n n
n nt t

C CK y y f  (15.74) 

This is the same as that given in (15.6). Thus, all finite difference schemes can be 
interpreted as the weighted residue method with the appropriate delta function as 
the weighting function.  

15.2.6 Stability Condition of 2-Level Scheme 

Let us consider the case without the forcing function (i.e., f = 0) in (15.71).  

 1 (1 0n n
n nt t

C CK y )K y    (15.75) 

To consider the stability of the 2-level finite difference scheme, we first consider 
the eigenvalue of the original ODE given in (15.3) by seeking a solution of the 
form 
 tey  (15.76) 
Thus, we have 
 ( ) 0C K  (15.77) 
For physical problems, the matrices C and K are normally positive definite. In other 
words, we have for any nonzero vector x 
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 0Tx Cx ,  0Tx Kx  (15.78) 
For such cases, there are infinite distinct eigenvalues and all of them are negative 
and real. The eigenvalue problem becomes 
 det( ) 0C K  (15.79) 
Let the eigenvalues and eigenvectors of (15.79) be m and m(m =1,2,...,M). Using 
the concept of modal decomposition, we can express the nodal unknown in terms 
of the eigenvectors as: 

  
1

M
n

n m m
m

yy = ,  1
1

1

M
n

n m m
m

yy =  (15.80) 

where M is the dimension of the unknown vector y. This model analysis closely 
resembles the eigenfunction expansion discussed in Chapter 10. 
 Substitution of (15.80) into (15.75) gives 

 1 1 1(1 0n n
m m m m

n n
y y

t t
I IC K )C K    (15.81) 

Note, however, that the eigenvector m satisfies  
 m m m 0C K  (15.82) 
Rewriting (15.82) in another form, we obtain 
  1

m m mC K  (15.83) 
Substitution of (15.83) into (15.81) results in 

 11 1( ) [ (1 ) ]n n
m m m m m m

n n
y y

t t
 (15.84) 

Therefore, the coefficient of the n+1 mode can be expressed in terms of that of the n 
mode as: 

 1

1 (1 )
[ ]

1( )

m
n nn
m m

m
n

t
y y

t

 (15.85) 

To ensure a converged solution for the finite difference solution given in (15.80), we 
must have 
 1n n

m my y  (15.86) 

for m = 1,2, ..., M. Therefore, we require that 

 
1/ (1 )

1 [ ] 1
1/

n m

n m

t
t

 (15.87) 

as the condition of stability.  However, if we want to converge monotonically to the 
true solution, the modal participation factor has the same sign at each time level n 
and (15.85) yields 

 
1 1/ (1 )

[ ] 0
1/

n
m n m
n

n mm

y t
ty

 (15.88) 



864   Theory of Differential Equations in Engineering and Mechanics 

If (15.88) is not satisfied, the solution will be oscillating around the true solution. 
Therefore, the 2-level finite difference scheme will be stable and free of oscillation 
if  

 
1/ (1 )

0 [ ] 1
1/

n m

n m

t
t

 (15.89) 

Recall that we use different  for different finite difference schemes. Thus, for 
difference methods with a fixed , (15.89) imposes the corresponding maximum 
time step that can be used such that numerical instability can be avoided. 
__________________________________________________________________ 
Example 15.2 Use the finite difference method to consider the special case of a 
single ODE with initial condition of y = 0 at t = 0, and determine time step to 
ensure numerical stability: 

 0dyk y
dt

 (15.90)  

Solutions:  
The eigenvalue equation of (15.79) becomes  
 det( ) 0k  (15.91) 
That is, the eigenvalue is = /k.   Thus, (15.84) is simplified to    

 1
1 1( ) [ (1 ) ] 0n n

n n
y y

t k t k
 (15.92) 

The stability condition (15.87) becomes 

 
1/ (1 ) /

1 1
1/ /

n

n

t k
t k

 (15.93) 

Since /k > 0 and 0    1, the second inequality of (15.93) is automatically 
satisfied. The first inequality of (15.93) can be simplified to  
 (1 2 ) 2nt k  (15.94) 
Therefore, the finite difference method is unconditionally stable if 
 1 / 2  (15.95) 
Since  =1 for the backward Euler difference method and  =1/2 for the central 
(Crank-Nicholson) method, these schemes are unconditionally stable. If 1/2 >   0, 
we have conditional stability if the time step satisfies the following condition  

 2
(1 2 )n

kt  (15.96) 

The numerical solution will be stable and free from oscillation if  

 
1/ (1 ) /

0
1/ /

n

n

t k
t k

 (15.97) 

This condition can be simplified to  
 (1 ) / 1nt k  (15.98) 
Therefore, the forward (Euler) difference scheme may not converge if a “big” time 
step is used. The regions of stability are illustrated in Figure 15.4. 
__________________________________________________________________ 
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Figure 15.4 Regions of stability and no oscillations 

15.2.7 Courant-Friedrichs-Lewy Condition 

The propagation of mechanical disturbances in solids is of profound importance in 
many disciplines including physical sciences and engineering. In these kinds of 
problems, the loading or disturbance is applied at such a “fast” rate that the effect 
of inertia cannot be ignored. These loadings are normally described as suddenly 
applied.  
 Numerical integration of the wave signal cannot violate the causality of the 
arrival of wave signals. In particular, in Chapter 9 we saw that the method of 
characteristics leads to the concept of the domain of dependence. This concept 
leads to the so-called CFL condition (or Courant-Friedrichs-Lewy condition) 
discussed in this section.  
 Let us consider the simplest wave equation: 
 2

tt xxu c u  (15.99) 
with initial conditions: 
 ( ,0) ( ), ( ,0) ( )tu x f x u x g x  (15.100) 
Introduce a new notation for the solution at time t = tn and x = xj as: 
 , ( , )n j n jv u t x  (15.101) 
where 
 ,n jt n t x j x  (15.102) 
Using the second order centered difference scheme, the wave equation can be 
approximated as 

 1, , 1, , 1 , , 12
2 2

2 2

( ) ( )
n j n j n j n j n j n ju u u u u u

c
t x

 (15.103) 
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: .C x ct const : .C x ct const

.xx t const
t

.xx t const
t

We can rearrange this to give 

 2 2
1, , , 1 , 1 1,2[1 ( ) ] ( ) ( )n j n j n j n j n j

c t c tu u u u u
x x

 (15.104) 

Therefore, (15.104) suggests that un+1,j depends on un,j+k where k = 0, 1 and un 1,j. 
Then, reapplying (15.104) to the solution at time step n 1, we have that un+1,j 
depends on un 1,,j+k where k = 0, 1, 2. Further reapplying (15.104) again, we have 
that un+1,j depends on un 1,,j+k where k = 0, 1, 2, 3. Eventually, we can trace back 
all the way down to the initial time n = 0, such that un+1,j depends on 
 0,{ , 0, 1, 2,..., }j ku k n  (15.105) 
In other words, the solution depends on a certain domain of the initial data. These 
initial data are known as the numerical domain of dependence. As shown in 
Chapter 9, the characteristics of (15.99) are the two curves: 
 : iC x ct x  (15.106) 
 : iC x ct x  (15.107) 
where xi is any point on the initial curve defined in (15.105). Figure 15.5 shows 
two choices of the initial numerical domain of dependence. The numerical domain 
of dependence on the left includes the characteristics (dashed lines), whereas the 
numerical domain of dependence on the right does not include the characteristics. 
Thus, the left one may converge to the actual solution whereas the one on the right 
can never converge to the exact solution because parts of the initial data have not 
been employed in the numerical integration. This can be summarized as: 

 : 1tStable c
x

 (15.108) 

 : 1tUnstable c
x

 (15.109) 

 
 
 
 
 
 
 
 
 
 

Figure 15.5 The importance of including the domain of dependence 
 
This is called the Courant-Friedrichs-Lewy criterion for the stability of numerical 
integration for the hyperbolic type of PDE. Therefore, this criterion only applies to 
wave type propagation of information. Once the spatial discretization is selected, 
the time step must satisfy the following inequality: 

 : xStable t
c

 (15.110) 



 Finite Difference and Numerical Methods   867 

 

15.2.8 von Neumann Test 

The von Neumann test can be used to determine whether a finite difference scheme 
is stable (i.e., converges to the exact solution) or unstable (i.e., does not converge 
to the exact solution).  
 Let us consider the following diffusion equation: 
 t v xxu c u  (15.111) 
Applying the following finite difference to the derivative terms, we have 

 1 [ ( , ) ( , )]tu u x t k u x t
k

 (15.112) 

 2
1 [ ( , ) 2 ( , ) ( , )]xxu u x h t u x t u x h t
h

 (15.113) 

To simplify the notation, we introduce 
 , ( , )m nu u m x n t  (15.114) 
Then, (15.112) and (15.113) becomes 

 , 1 ,
1 [ ]t m n m nu u u
t

 (15.115) 

 1, , 1,2
1 [ 2 ]

( )xx m n m n m nu u u u
x

 (15.116) 

Thus, we can substitute these results into the diffusion equation given in (15.111) 
and rearrange this result as 

 , 1 , 1, , 1,2 ( 2 )
( )

v
m n m n m n m n m n

c t
u u u u u

x
 (15.117) 

We now seek an exponential solution as 
 ,

im in
m nu e e  (15.118) 

Substitution of (15.118) into (15.117) gives 

     ( 1) ( 1) ( 1)
2 ( 2 )

( )
im i n im in i m in im in i m invc t

e e e e e e e e e e
x

 (15.119) 

Thus,  and  resemble spatial and temporal variables. This can be simplified to  

      2 21 [ 2 ] 1 2(1 cos )
( ) ( )

i i iv vc t c t
e e e

x x
 (15.120) 

This can further be rewritten as 

      2
2

4
1 sin ( )

2( )
i vc t

e
x

 (15.121) 

Note further that 
      [Re( ) Im( )] Re( ) Im( )i i ie e e  (15.122) 
For a large time variable , we have 
      Im( )Im( ) 0 0, ase  (15.123) 
Equivalently, we also have 
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      1 stableie  (15.124) 

This is because the solution will converge to zero as suggested by (15.118). 
Imposing condition (15.124) onto (15.121) we obtain  

      2
2 2

4 4
sin ( ) 2

2( ) ( )
v vc t c t
x x

 (15.125) 

Thus, the von Neumann test gives the condition 

 2
1
2( )

vc t
x

 (15.126) 

Consequently, the von Neumann test leads to the stability condition of 

 
2( )

2 v

xt
c

 (15.127) 

If the time step is not set according to (15.127), the numerical scheme will not 
converge to the exact solution.  
 Note, however, that a numerical scheme being stable does not necessarily 
imply that the answer must be accurate. If the time step is taken to be too small, the 
round-off error may accumulate in the large number of operations. It is because all 
computers can only retain a finite number of digits in each numerical calculation. If 
the number of steps becomes unnecessary large, the error from round-off 
accumulation may eventually degrade a “good” numerical scheme. Similar to the 
asymptotic series expansion, we should not be too greedy on the accuracy. For this 
reason, modern numerical codes normally allow the time step to vary depending on 
the error control scheme such that a larger time step is used whenever possible and 
a very small step size only where necessary. 

15.3 FINITE DIFFERENCE FOR SECOND ORDER ODE 

We now consider the second order ODE, which repeatedly appears in dynamics 
formulation using force equilibrium of mechanical systems. In particular, consider 
the following linear system of ODEs: 

 
2

2 ( )d d t
dtdt

a aM + C Ka f  (15.128) 

For the time variable, we can discretize using a trial function in time as: 

 
1

( )m
m

m

N tm Na a a  (15.129) 

where Nm has to be at least of degree two. Figure 15.6 shows a three-node quadratic 
element in time. 
 As illustrated in Figure 15.6, an approximation for a depends on the value of 
three time nodes as: 
 2 2 1 2 2

2 2 1 2 2
n n n n n n

n n nN N N22n N2
na a a +a  (15.130) 

where the approximation functions are 
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nt nt
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n
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n
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n
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 2
2 2 1 2 2

(1 ) (1 ), 1 ,
2 2

n n n
n n n

T T T TN N T N  (15.131) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.6 Discretization of time in nodes and elements 
 
with  

 2 1n

n

t t
T

t
 (15.132) 

As shown in Figure 15.6, we have 
 2 2 2 1 2 1 2n n n n nt t t t t  (15.133) 
It is straightforward to see that at time t2n  
 2 2 1 2 21, 1, 0, 0n n n

n n nT N N N ; (15.134) 
at time t2n+1  
 2 2 1 2 20, 0, 1, 0n n n

n n nT N N N ; (15.135) 
and at time t2n+2  
 2 2 1 2 21, 0, 0, 1n n n

n n nT N N N . (15.136) 
Note that the differentiation of the trial functions given in (15.131) leads to 

 2 2 1 2 2

1 1
22 2, ,

n n n
n n n

n n n

T TdN dN dNT
dt t dt t dt t

 (15.137) 

 
2 2 2

2 2 1 2 2
2 2 2 2 2 2

1 2 1, ,
n n n
n n n

n n n

d N d N d N
dt t dt t dt t

 (15.138) 

Using these approximations, we have 

 
2

2 2 1 2 2
2 2 2 2

1 2 1( )n n n

n n n

d
dt t t t

aM M a a a  (15.139) 
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 2 2 1 2 2

1 1
22 2( )n n n

n n n

T Td T
dt t t t
aC C a a a  (15.140) 

 2 2 2 1 2 2(1 ) (1 )( (1 ) )
2 2

n n nT T T TTKa K a a a  (15.141) 

Using the weighted residual approach, we have 

  
2

20
[ ( )] 0n

d d t W dt
dtdt

a aM + C Ka f  (15.142) 

With the time discretization shown in Figure 15.6, we can break down the time 
integration into segments: 

 
2 2

2

2

2[ ( )] 0, 0,1,2,...
n

n

t
n

t

d d t W dt n
dtdt

a aM + C Ka f  (15.143) 

In view of (15.139) to (15.141) and the definition of (15.132), the integration in 
(15.143) leads to the consideration of the following integrations: 

 
2 2
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1

1

1( )
2

n
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t
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t
T W dt t W dT  (15.144) 
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1

(1 )
2

n

n

t
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T T W dt t W dT  (15.145) 
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 (15.146) 
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 (15.147) 
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 (15.148) 
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T W dt T W dt

t W dT
 (15.149) 

where 

 

1

1
1

1

1( )
2 n

n

T W dT

W dT
 (15.150) 



 Finite Difference and Numerical Methods   871 

 

 

1

1
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1
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T T W dT

W dT
 (15.151) 

Substitution of these results into (15.143) gives 

 

2 2 2

2 1 2

2 2 2

( )
1[ 2 (1 2 ) ( 2 ) ]
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1[ (1 ) ( ) ]
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n
n n
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n n

n n
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 (15.152) 

where 

 

1
2 1

1
1

1

( )n n nn

n

t T t W dT

W dT

f
f  (15.153) 

Note that the actual value of  and  depend on the weighting function that we used 
in (15.142) and (15.143). The formulation given in (15.152) is related to the 
Newmark method, which will be introduced in a later section. If we used the same 
interpolation function for the forcing term, we would have 
 2 2 1 2 2

2 2 1 2 2
n n n n n n n

n n nN N Nf f f +f  (15.154) 
It is straightforward to see that 

 2 2 2 1 21 1( 2 ) ( )
2 2

n n n nf f f + f  (15.155) 

In the next two sections, we will introduce the two most popular methods in 
structural dynamics, namely the Wilson  method and Newmark  method.  

15.3.1 Wilson  Method 

The Wilson  method is an extension of the linear acceleration method. According 
to Figure 15.7, the acceleration at a time t+   can be expressed by linear 
extrapolation as: 

 ( )t t t t t

t
( )t t t t t

t
t tt tt tt t(((t (t (U U U U  (15.156) 

where   1. The Wilson  method is an implicit method because the stiffness 
matrix K has to be evaluated at the unknown displacement Ut+ t. This method is 
unconditionally stable for    1.37, but in actual numerical calculation,  = 1.4 is 
normally used. The idea of the Wilson  method is to allow a bigger time step but 
at the same time the numerical scheme remains stable. The acceleration is assumed 
to be linear from t to t+ t. When  = 1, it reduces to the linear acceleration 
scheme. 
 Integration of (15.156) gives the velocity as well as the displacement as: 
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Figure 15.7 Sketch showing the Wilson  method 
 
Substitution of  = t into (15.157) and (15.158) gives  

 ( )
2

t t t t t t tt ( )
2

t t ttt tt t t t(t ((t t (t t (U U U U U  (15.159) 

 
2( ) ( 2 )

6
t t t t t t ttt

2( ) ( 2 )
6

t t22t )(( )t t( ) (( ) (t ( ) (( ) (t tt ( ) ((U U + U U U  (15.160) 

Solving for the velocity and acceleration in terms of the displacement at t = t+ t, 
we obtain 

 2 2
6 6( ) 2t t t t t t t

tt2 2
6 6( ) 2t t6) 26t

t
(6t (2

6t 6 (( ))U U U U U  (15.161) 

 3 ( ) 2
2

t t t t t t tt
t

3 ( ) 2
2

t t t t t t t) 2 t
t

(t (33t tt tt t3 (( ) 2)U U U U U  (15.162) 

The equilibrium is considered at time t+ t as: 

 
t tt t t t t tt t t tt t tt tt tMU + CU KU f  (15.163) 

Since the acceleration is assumed to be linear, the force vector must also be linear 
as 
 ( )t t t t t tf f f f  (15.164) 
Substitution of (15.161) and (15.162) into (15.163) gives an equation for 
displacement Ut+ t. This solution can then be substituted into (15.161) and 
(15.162) to obtain the acceleration and velocity.  
 Before we consider the Newmark  method in the next section, we first set   
= 1 in (15.160) and obtain the special case of linear acceleration: 
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 21 1( )( )
6 3

t t t t t t tt t 21 1( )( )
6 3

t11t ( )(1t 1(1 )(t 1t ( )()((t (1(U U + U U U  (15.165) 

15.3.2 Newmark  Method 

The Newmark  method can be formulated by starting from Taylor series 
expansion: 

 
2 3( ) ( ) ...

1! 2! 3!
t t t t t tt t t2 3( ) )2

...
2! 3!

t t t( ) ( )t ( ) () (( )2( ) (2
t ( ) ()( ) ( )t t t( ) ( )U U + U U U  (15.166) 

For small t, we can estimate the rate of acceleration as 

 
t t t

t

t

t t t
t

tU UU  (15.167) 

Substitution of (15.167) into (15.166) gives 

 2 1 1 1( ) {( } ...
2 6 6

t t t t t t tt t 1 1 1( ) {( } ...
2 6 6

t( 2 1 1 1t t t2 1 1 1( ) {(2 1 1 1) {( }}) {((t (t ( ) {() {(2 1 1 1t (U U + U )U U  (15.168) 

Note that we have only retained the third order term in the Taylor series expansion. 
The idea of the Newmark  method is to modify the factor 1/6 in (15.168) to  
such that all higher order terms in Taylor series expansion can be neglected. In 
particular, we have the Newmark  method as 

 2 1( ) {( }
2

t t t t t t tt t 1( ) {( }
2

t( 2 1t t t2 1( ) {(2 1) {() {((t (t ( ) {(2 1t (U U + U )U U  (15.169) 

Similarly, we can also use Taylor series expansion for the velocity as 

  
2( ) ...

2!
t t t t ttt

2( ) ...
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t t t t t( )t ( )t t tt ( )tU U + U U  (15.170) 

Again for small t, we can substitute the rate of acceleration given in (15.167) into 
(15.170) as 

 ( ) [ ]...
2!

t t t t t t ttt ( ) [ ]...
2!

t t t tt (t t t ( ) t)( ) [t t ( ) [tt tt ( ) [U U + U U U  (15.171) 

This can be rewritten as 

 1 1{(1 } ...
2 2

t t t t t tt 1 1{(1 } ...
2 2

t t t t t tt 1 1t t tt t 1 1{( 1 1{(1 }}{(1t tt {(1 1 1U U + )U U  (15.172) 

Using the same idea, we can replace 1/2 by  such that all higher order terms can be 
dropped: 
 {(1 }t t t t t tt{(1 }t t t t t ttt t t tt t {(1{(1t {(1tt {(1U U + )U U  (15.173) 
Newmark originally proposed to use  = 1/4 and  = 1/2. Consider the special case 
that 
 1/ 6, 1/ 2 . (15.174) 
Substitution of these values into (15.166) gives 

 2 1 1( ) { }
3 6

t t t t t t tt t 1 1( ) { }
3 6

t( 2 1 1t t t2 1 1( ) {2 1 1) {) {(t (t ( ) {2 1t (U U + U U U  (15.175) 
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Note that (15.175) is exactly the same as (15.165) obtained in the last section, 
which is for linear acceleration. Thus, the special case given in (15.174) for the 
Newmark  method gives the linear acceleration method. Note also that for  = 0, 
it can be seen from (15.169) that the Newmark  method becomes an explicit 
scheme.   
 Thus, in conclusion, the Wilson  method with  = 1 is equivalent to the 
Newmark  method with  = 1/6, and  = 1/2. In addition, both the Wilson and 
Newmark methods are exact if the acceleration in the problem is constant (this is 
clearly not true for the case of seismic loads). We should note that the Wilson   
method and the Newmark  method are the most popular finite difference methods 
in time integration in the area of structural dynamics. All dynamic finite element 
programs include the options of using either of these methods.  
 Prof. Wilson was a professor at University of California at Berkeley and 
made significant contributions to nonlinear analyses of structures under seismic 
loadings, whereas Prof. Newmark was a professor at University of Illinois at 
Urbana Champaign and made significant contributions to seismic analysis of 
structures. In geotechnical engineering, Newmark chart was developed to estimate 
the vertical stress increment under arbitrary surface loading and Newmark sliding 
block model was developed to investigate seismic slope stability.       

15.3.3 Stability Condition of 3-Level Scheme 

We now return to study the stability condition of the 3-level scheme discussed in 
Section 15.3. In particular, a special form of (15.128) with no damping and no 
forcing term is considered 

 
2

2 0d
dt

aM + Ka  (15.176) 

The corresponding numerical scheme given in (15.152) is simplified to 

 

2 1 2 2 2 1 2 1
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2

n n
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n
n

t t

t

I M K a I M K a

I M K a
 (15.177) 

We first return to the original system and consider the natural frequency of 
vibrations of the system. That is, we seek for a solution of the form: 
 cos( )ta  (15.178) 
Substitution of (15.178) into (15.176) leads to 
 2( ) 0M + K  (15.179) 
It is clear that if the mass matrix M is invertible, we can rewrite (15.179) as 
 1 2( ) 0M K I  (15.180) 
This is the well-known eigenvalue problem. For nonzero vector , we require 
 1 2det( ) 0M K I  (15.181) 
If the size of the matrices M and K is M M, the solution can be expressed as: 
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1

cos( )
M

m m m
m

ta  (15.182) 

where the eigenvector is normalized as 
 1T

m mM  (15.183) 

 0,T
l m m lM  (15.184) 

 0,T
l m m lK  (15.185) 

We can express the numerical approximation vector a2n as:   

 2 2

1

M
n n

m m
m

ya  (15.186) 

Substitution of (15.186) into (15.177) gives 

 

2 2 2 2 2 2 2 1

2 2 2

1(1 ) [ 2 ( 2 ) ]
2

1[1 ( ) ] 0
2

n n
n m m n m m

n
n m n

t y t y

t y
 (15.187) 

For numerical calculations, we can further define: 
 2 2n n

my A  (15.188) 
Using this particular form, (15.187) is reduced to 

2 2 2 2 2 2 21 1(1 ) [ 2 ( 2 ) ] [1 ( ) ] 0
2 2n m n m n mt t t  (15.189) 

There are two roots for , namely 1 and 2. We can see that  is in general 
complex. If 1 and 2 are complex and the modulus is less than 1, we have stability 
criteria as 
Stable: 1, 1,2i i  (15.190) 

Stable and undamped: 1, 1,2i i  (15.191) 

Stable and artificially damped: 1, 1,2i i  (15.192) 
The roots of  can be expressed as: 

 
2(2 ) (2 ) 4(1 )

2
g g h

 (15.193) 

where 

 
2 2 2 2

2 2 2 2

1 1( ) ( )
2 2,

(1 ) (1 )

m n m n

m n m n

t t
g h

t t
 (15.194) 

Using these definitions, we find 

 
2 2 2 2

2 2 2 2

1 12 ( 2 ) 1 ( )
2 22 , 1
(1 ) (1 )

m n m n

m n m n

t t
g h

t t
 (15.195) 

It is straightforward to see that 
 1 h  (15.196) 
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Substitution of (15.196) into (15.190) to (15.192) leads to 
 1 0h  (15.197) 
This leads to 

 1 1, 0
2 2

 (15.198) 

It is clear that Newmark’s original proposal of  = 1/4 and  = 1/2 will lead to an 
unconditional stable solution. The linear acceleration method is also unconditional 
stable. 

15.4 MULTI-STEP METHOD 

So far, our discussion has been focused on the numerical scheme that the current 
time step depends only on the solution of the last time step. This is known as the 
one-step method. It is natural to ask whether we can estimate the solution at the 
current time step as a function of previous time steps (i.e., more than just the last 
time step). This technique is referred as the multi-step method. Consider a first 
order ODE as 

 0 0( , ), ( )dy f t y y t y
dt

 (15.199) 

Assume that an approximation of y is given as: 
 ( ) ( )y t t  (15.200) 
The numerical solution can be written as: 

 
1

1( ) ( ) ( )
n

n

t
n n

t
t t t dt  (15.201) 

15.4.1 Adams-Bashforth Method 

The Adams-Bashforth method assumes a polynomial form of  in (15.201) and 
carries the explicit integration on the right hand side of (15.201). For example, if a 
second order function is assumed for , we have 
 1( ) ( )P t t At B  (15.202) 
First, we can evaluate the constants A and B by considering the equations at two 
points (tn, yn) and (tn 1, yn 1): 
 ( , )n n n nAt B f t y f  (15.203) 
 1 1 1 1( , )n n n nAt B f t y f  (15.204) 
This provides a system of two equations for two unknowns and the solutions are 

 1 1

1

n n n n

n n

f f f f
A

t t h
 (15.205) 

 1 1n n n nf t f t
B

h
 (15.206) 

where h is the time step. Thus, substitution of (15.205) and (15.206) into (15.202) 
gives 
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t t t t t t

f f

h f hf

 (15.207) 

Substitution of this result into (15.201) gives the following second order Adams-
Bashforth finite difference scheme: 

    1 1
3 1
2 2n n n n
hy y f hf  (15.208) 

This is an explicit scheme as the unknown only appears on the left hand side and no 
iteration is needed. The truncation error is proportional to h3. If we use only the 
constant term in (15.202) and follow the same procedure, we will arrive at Euler’s 
forward difference method that we discussed in Section 15.2.1. Following a similar 
idea, we can extend the analysis to higher orders. For example, if we employ the 
results of previous steps to fit an approximation of third order,  
    3 2

3( )P t At Bt Ct D  (15.209) 
we have the following fourth order Adams-Bashforth formula 

    1 1 2 3(55 59 37 9 )
24n n n n n n
hy y f f f f  (15.210) 

Again, this is an explicit numerical scheme.  

15.4.2 Adams-Moulton Method 

There is another variation of such derivation and it leads to the Adams-Moulton 
scheme. The only difference is that instead of using the previous solution in fitting 
the power law for the differential form, one may use the unknown solution in fitting 
the power law. More specifically, for the second order case we have 
 1( ) ( )P t t t  (15.211) 
First, we can evaluate the constants by considering the equations at the current 
point (tn, yn) and the unknown point (tn+1, yn+1): 
 ( , )n n n nt f t y f  (15.212) 
 1 1 1 1( , )n n n nt f t y f  (15.213) 
Thus, solving we have 

 1n nf f
h

 (15.214) 

 1 1n n n nf t f t
h

 (15.215) 

Following exactly the same procedure, we obtain the second order Adams-Moulton 
formula: 
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    1 1 1 1
1 1 ( , )
2 2n n n n n ny y hf hf t y  (15.216) 

This formulation is an implicit finite difference scheme as the unknown also 
appears on the right hand side of (15.216). If we take simply the constant term in 
(15.211), we arrive at Euler’s backward method. This idea can easily be extended 
to the case of higher orders (such as the one given in (15.209)), and we can obtain 
the fourth order Adams-Moulton formula 

    1 1 1 2(9 19 5 )
24n n n n n n
hy y f f f f  (15.217) 

Again, this is an implicit numerical scheme. Moulton was an American astronomer 
who derived this formula during World War I when he worked on the ballistics 
trajectories for the US Army. Moulton also published a number of books related to 
astronomy, including celestial mechanics (Moulton, 1914). 
 Since the implicit method is more complicated (and iterations is needed), one 
may ask why it is being proposed and used in the first place. It turns out that some 
differentiation equations are stiff, in a way that a much smaller step size is needed 
for stability than for the accuracy requirement. For such problems, the backward or 
implicit scheme is found stable independent of the time step whereas the time step 
in the explicit method must be constrained to arrive at a stable solution (e.g., 
compare Example 15.2). 

15.4.3 Predictor-Corrector Method 

A popular method is to combine the explicit method and the implicit method. In 
particular, we approximate   by polynomials passing through several previous 
points and possibly also passing through the current point tn+1. The evaluation of 
the integral in (15.201), in general, leads to the following form: 
    1 0 1 1 2 1 3 2( ...)n n n n n ny y h f f f f  (15.218) 
If 0 is zero, we have the explicit method; otherwise, we have the implicit method. 
To solve (15.218), we can use either functional iteration or Newton’s method. For 
the iteration, we have to make an initial guess for yn+1 and substitute it into the right 
hand side of (15.218) to get an updated value of yn+1. If the change of the updated 
value is too large, we can repeat the iteration process. To get an initial guess, we 
can use the explicit method, such as the Adams-Bashforth method. This is the 
predictor step. It is essentially an extrapolation of previous data points. Once we 
have the predicted value, we can use it to interpolate the derivative term to get a 
corrected result. This is the corrector step. The comparison of the predicted and 
corrected values provides information on the local truncation error and this can 
lead to error control and to adjusting step size. 
 More specifically, a popular predictor-corrector method is the Adams-
Bashforth-Moulton scheme. For example, we can use the third order Adams-
Bashforth as the predictor equation: 

    1 1 2(23 16 5 )
12n n n n n
hy y f f f  (15.219) 

Once the prediction for yn+1 is made, we can use the following third order Adams-
Moulton method as the corrector equation: 
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    1 1 1(5 8 )
12n n n n n
hy y f f f  (15.220) 

Note that with the help of the predictor equation in (15.219) the formula given in 
(15.220) is actually an explicit scheme. This is the beauty of this method. That is, 
we don’t have to solve the nonlinear implicit equation. If the predicted and 
corrected solutions differ too much, we can repeat the iteration process using 
(15.220). If after a number of iterations the accuracy is still not up to our 
expectation, we may consider reducing the step size instead of continuing our 
iteration process. Note, however, that this predictor-corrector scheme is essentially 
an explicit scheme and, thus, the strong stability property of the implicit methods is 
lost and should be used for stiff ODEs. 

15.4.4 Backward Differentiation Formula 

An alternative to the Adams type of numerical scheme is to assume a polynomial 
for the unknown y instead as for y  in the Adams approach. In particular, we 
assume in the backward differentiation formula: 
 1( ) ( )P t t t  (15.221) 
First, we can evaluate the constants by considering the equations at the current 
point (tn, yn) and the unknown point (tn+1, yn+1): 
 n nt y  (15.222) 
 1 1n nt y  (15.223) 
Thus, solving we have 

 1n ny y
h

 (15.224) 

However, since we have 
 1 1 1( ) ( , )n nP t f t y , (15.225) 
combining (15.225) and (12.224), we obtain 
 1 1 1 1( , )n n n n n ny y hf t y y hf  (15.226) 
This is an implicit method, and equals (15.15) or the Euler backward difference 
method. This method can be extended easily to higher order polynomials. In 
particular, the fourth order backward differentiation formula is 

    1 1 2 3 1 1
1 48 36 16 3 12 ( , )
25n n n n n n ny y y y y hf t y  (15.227) 

This method has been found useful in solving stiff ODEs. 
__________________________________________________________________ 
Example 15.3 Consider the solution of the following “stiff” ODE by using Euler’s 
forward and backward schemes, and the fourth order backward differentiation 
formula: 

 dy cy
dt

 (15.228)  

where c is a very large number. 
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Solutions:  Using Euler’s forward difference scheme, we have 
 1 (1 )n n n n n ny y hf y chy y ch  (15.229)  
If the absolute value of (1 ch) is larger than 1, the finite difference will not be 
unstable in the sense that y   as n  . In other words, for a stable solution we 
need to control the time step h as 

 2h
c

 (15.230)  

For example, if c = 10000, we need to have a time step of less than 0.0002 just for 
the stability of the solution.  
 If we apply (15.226) or the Euler backward difference scheme, we get 
 1 1n n ny y chy  (15.231) 
Solving for yn+1, we obtain 

 1 1
n

n
y

y
ch

 (15.232) 

We can see that no matter how large c is, the implicit scheme is stable for all time 
steps of h. 
 Using the fourth order backward differentiation scheme, we get   

    1 1 2 3
1 48 36 16 3

25(1 12 )n n n n ny y y y y
ch

 (15.233) 

Again, we see that (15.233) is unconditional stable. Therefore, the implicit 
backward differentiation formula is a good choice for solving stiff ODEs. 
__________________________________________________________________  

15.5 RUNGE-KUTTA METHOD 

People often save the best for the last. We now discuss one of the most popular and 
successful finite difference schemes, which is known as the Runge-Kutta method. It 
was originally proposed by Runge in 1895 and was extended to solve systems of 
equations in 1901 by Kutta. Runge was well known for his work on spectroscopy 
and Kutta was famous for his airfoil theory. 
 The idea behind the Runge-Kutta method is to increase the order of accuracy 
without reducing the time step. In particular, we consider the following first order 
ODE: 

    ( , ( ))dy f t y t
dx

 (15.234) 

The Taylor series expansion of the solution at time step n+1 about that at time step 
n is: 

    
2 3 2 4 3

1 2 3( ) ( ) ( ) ...
1! 2! 3! 4!n n n n n n
h h df h d f h d fy y f

dt dt dt
 (15.235) 

where the time step is 
    1n nh t t  (15.236) 
The idea of the second order Runge-Kutta method is to look for the constants a and 
b in the following formula: 
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    3
1 1 1[ ( , ) ( , )] ( )n n n n n ny y h af t y bf t k O h  (15.237) 

where 
    1 ( , )n n n nk y h f t y  (15.238) 
We want to find the values of a and b such that the accuracy of the finite difference 
scheme is of accuracy O(h3) instead of just O(h2). In a sense, we are using the slope 
of y  at both initial point (tn, yn) and final point (tn+1, yn+1) in (15.237); and we want 
to adjust their corresponding weightings such that the accuracy would be one order 
higher. Note that for a = 0 and b = 1 we recover the Euler backward difference 
scheme and for a = 1 and b = 0 we recover the Euler forward difference scheme. 
Physically, kn1 is the first estimation of the solution of yn+1 using the Euler forward 
difference scheme. In essence, (15.237) is an explicit scheme. 
 Note by definition that the slope at the end point is   

    1 1( , ) ( , ) ( )n n n n n n n
dff t k f t h y hf f h
dt

 (15.239) 

Substitution of (15.239) into (15.237) gives 

    

3
1

2 3

[ ( , ) ( ) ] ( )

( ) ( ) ( )

n n n n n n

n n n

dfy y h af t y bf bh O h
dt

dfy h a b f bh O h
dt

 (15.240) 

Comparison of (15.240) with the Taylor series expansion (15.235) leads to 

    1
2

a b  (15.241) 

Finally, we obtain the second order Runge-Kutta method 

    3
1 1 1

1 1[ ( , ) ( , )] ( )
2 2n n n n n ny y h f t y f t k O h  (15.242) 

This is also known as the trapezoidal rule. We note that we can raise the order 
accuracy of the finite difference scheme by an order of magnitude, if we are willing 
to evaluate the slope (i.e., the right hand side of (15.234)) twice. 
 This idea can be extended to higher orders; fourth order Runge-Kutta method 
is by far most popular and defined by the following approximation: 
    5

1 1/2 1 1/2 2 1 3[ ( , ) ( , ) ( , ) ( , )] ( )n n n n n n n n n ny y h af t y bf t k cf t k df t k O h  
  (15.243) 
where 
    1 ( , )n n n nk y h f t y  (15.244) 
    2 1/2 1( , )n n n nk y h f t k  (15.245) 
    3 1/2 2( , )n n n nk y h f t k  (15.246) 
In general, for m-th order Runge-Kutta method, we have 

    
1

( ) 1/2 ( 1)

( ) 1 ( 1)

( , )
( , ), 2

( , )

n n n n

n p n n n p

n m n n n m

k y h f t y
k y h f t k p m

k y h f t k

 (15.247) 

Following the same idea, we can expand the slopes in (15.243) as 
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       1/2 1( , ) ( , ) ( )
2 2 2n n n n n n n
h h h dff t k f t y f f

dt
 (15.248) 

       
1/2 2 1/2 1( , ) { , ( , )}

2 2

[ ( )]
2 2

n n n n n n

n n n

h hf t k f t y f t k

h d h dff f
dt dt

 (15.249) 

       
1 3 1/2 2( , ) ( , ( , ))

( { [ ( )]})
2 2

n n n n n n

n n n n

f t k f t h y hf t k
d h d h dff h f f
dt dt dt

 (15.250) 

Substitution of (15.248) to (15.250) into (15.243) leads to 

    
1

5

[ { ( ) } { [ ( )] }
2 2 2

{ ( { [ ( )]}) }] ( )
2 2

n n n n n n n n

n n n n

h df h d h dfy y h af b f c f f
dt dt dt

d h d h dfd f h f f O h
dt dt dt

 

  (15.251) 
This can be rewritten as 

    

2
1

2 3
3 4 5

2 3

{ } ( ) { }
2 2

( ) { } ( ) { } ( )
4 2 4

n n n n

n n

df b cy y h a b c d f h d
dt

d f c d d f dh h O h
dt dt

 (15.252) 

Comparison of (15.251) with the Taylor series expansion in (15.235) gives four 
equations for four unknowns: 
    1a b c d  (15.253) 

    1
2 2 2!
b c d  (15.254) 

    1
4 2 3!
c d  (15.255) 

    1
4 4!
d  (15.256) 

This system of equations can be solved easily and the solutions are 

    1 1,
6 3

a d b c  (15.257) 

Finally, we obtain the popular fourth order Runge-Kutta method: 

    5
1 1/2 1 1/2 2 1 3[ ( , ) 2 ( , ) 2 ( , ) ( , )] ( )

6n n n n n n n n n n
hy y f t y f t k f t k f t k O h  

  (15.258) 
This is called the fourth order in the sense that the order of error is O(h5). 
Physically, the first slope in the bracket term on the right of (15.258) is the slope 
evaluated at the initial point, the second term is the first approximation of the slope 
evaluated at the mid-point, the third term is the second approximation of the slope 
evaluated at the mid-point, and finally the fourth term is the slope evaluated at the 
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end point.  There is also a clear symmetry in the coefficients of a, b, c and d. Thus, 
we keep the time step as h, but the order of error becomes O(h5) instead of O(h2). 
The price to pay is that we have to evaluate the right hand side of (15.234) four 
times.   
 Without going into the details, we quote the following Runge-Kutta formulas 
for different orders. The third order Runge-Kutta formula is 

    4
1 1/2 1 1 2[ ( , ) ( , ) ( , )] ( )

3n n n n n n n n
hy y f t y f t k f t k O h  (15.259) 

The fifth order Runge-Kutta formula is 

    1 1/2 1 1/2 2

6
1/2 3 1 4

[ ( , ) 5 ( , ) 5 ( , )
15

3 ( , ) ( , )] ( )

n n n n n n n n

n n n n

hy y f t y f t k f t k

f t k f t k O h
 (15.260) 

The sixth order Runge-Kutta formula is 

    1 1/2 1 1/2 2

7
1/2 3 1/2 4 1 5

[ ( , ) 15 ( , ) 15 ( , )
45

9 ( , ) 4 ( , ) ( , )] ( )

n n n n n n n n

n n n n n n

hy y f t y f t k f t k

f t k f t k f t k O h
 (15.261) 

For the proof of these formulas, we refer to the problems at the back of the chapter. 
We note that there is no more symmetry in the coefficients for scheme beyond the 
fourth order. 
 Let us consider the general k-th order Runge-Kutta method as: 

        
1 1 2 1/2 1 3 1/2 2

1
1 1/2 ( 2) 1 ( 1)

[ ( , ) ( , ) ( , ) ...

( , ) ( , )] ( )
n n n n n n n n

k
n n n n n n n n

y y h a f t y a f t k a f t k

a f t k a f t k O h
 (15.262) 

Following the procedure in obtaining (15.253) to (15.256), it can be shown that the 
coefficients in (15.262) satisfy the following system of k equations for the k 
unknowns: 
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 (15.263) 

The last equation gives the constant an instantly. The second to last equation gives 
an 1, and so on. The solution of these equations can be compiled as: 
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22

!

n

na
n

 (15.264) 

         
2

1
2 2

( 1)!

n

n na a
n

 (15.265) 

         
1

1 1
2 2 ... , 2 2, 3

!

k

k n n ka a a a k n n
k

 (15.266) 

         1 1 21 ...n na a a a  (15.267) 
Using (15.264) and (15.265), we can first find the last two coefficients, then use 
(15.266) to find the other coefficients. The last coefficient must be found by 
(15.267) as suggested by the first equation of (15.263). Although we give the 
solution scheme for generating the higher order Runge-Kutta method in (15.264) to 
(15.267), the Runge-Kutta higher than 4th order is seldom used because a higher 
order scheme does not necessarily give a more accurate result (Press et al., 1992).   
 The Runge-Kutta method (especially the fourth order method) has been used 
extensively by researchers. Although it may not be the most efficient numerical 
scheme, it is very stable and reliable especially when those with an adaptive step 
size algorithm are incorporated in the numerical code. For example, for the same 
accuracy the predictor-corrector technique may be more efficient. The fifth order 
Runge-Kutta formula can be embedded in the algorithm to estimate the plausible 
error at a certain step for the fourth order Runge-Kutta method. The step size can 
then be lengthened or shortened according to the estimated error. Section 16.2 of 
Press et al. (1992) gives a more detailed discussion of this error control algorithm. 
In short, for fourth order Runge-Kutta method the error estimate  can be 
determined by comparing the fourth order prediction (say yn+1 in (15.260)) with the 
fifth order Runge-Kutta method (say y*n+1) as: 
         5

1 1*n ny y h  (15.268) 
Since we are using the fourth order method, we are expecting the error is 
proportional to h5. Suppose that the error estimate at the current step with step size 
h1 is 1 and the required error is 0 with a corresponding projected step size h0. 
Then, we must have 

         50 0

1 1
( ) ( )

h
h

 (15.269) 

If the current estimated error is smaller than the requirement, we can have 1/ 0 < 
1. Thus, we can extrapolate to increase the step size to: 

         1/50
0 1

1
( )h h  (15.270) 

If the estimated error is larger than the requirement, we have 1/ 0 > 1. We can use 
the same formula given in (15.270) to reduce the step size. However, due to the 
inherit uncertainty in the error estimations, Press et al. (1992) proposed a more 
conservative approach. In particular, it was proposed that a larger exponent index 
is used (say 1/4 instead of 1/5) for the case of reducing the step size. In summary, 
we have (Press et al., 1992): 
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1/50
0 1 0 1

1

1/40
1 0 1

1

( ) ,

( ) ,

h h

h
 (15.271) 

This approach is also equivalent to assuming that the error is actually proportional 
to h4 (more conservative thinking). 
 In solving the highly nonlinear landslide model based on state- and velocity-
dependent friction law, Chau (1995, 1996b) found that the fourth order Runge-
Kutta method with adaptive step size algorithm recommended by Press et al. 
(1992) was very reliable. 

15.6 NEWTON-RAPHSON AND RELATED METHODS 

In this section, we consider the Newton-Raphson iteration method for the nonlinear 
problem. This method was developed by Isaac Newton in 1671 but it was not 
published until 1736, while essentially the same method was published by Joseph 
Raphson in 1690. The currently adopted version of the Newton-Raphson method is 
actually due to Raphson, which is simpler than Newton’s version. The method was 
originally developed for searching the roots of an equation. In addition, some 
related methods are also introduced, namely the initial stress method, modified 
Newton-Raphson method, and quasi-Newton or BFGS method. 

15.6.1 Newton-Raphson Method 

Let us illustrate the idea by considering the following second order ODE, which is 
obtained for nonlinear undamped structural dynamic problems: 

 
2

2 ( ) ( )d t
dt

0UM f U R  (15.272) 

where U is the displacement vector for the dynamic system, M is the mass matrix, f 
is the restoring force vector, and R is the external applied force vector on the 
system. Clearly, the nonlinearity in (15.272) comes from the nonlinear restoring 
force f. For simplicity, we focus on the static problem and assume that we have the 
following solution at time t 

 ( ) ( ) ( )
tt t t 0F U f U R  (15.273) 

where Ut denotes the actual solution at any time. Considering the Taylor series 
expansion of F at Ut+ t about an approximation after i 1 iteration, we have  

 
1

1 1
( )( ) ( ) [ ] ...

t t
i

t
t t t t t t t

i i
U

F UF U F U U U
U

 (15.274) 

Assuming the external force R is not a function of displacement U, we have 
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      ( 1)
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 (15.275) 

Note that the superscript indicates the current time whereas the subscript denotes 
the iteration number within the time step. The right hand side of (15.275) is the 
unbalanced force at the current iteration (in general not zero) and this term must be 
calculated exactly. The tangent stiffness matrix is denoted by [ f/ U], which is 
evaluated based on the displacement at the new time step and from the last iteration 
step i 1. If we use K as the tangent stiffness matrix, we can write (15.275) as 

      
( 1)

( ) ( 1) ( ) ( 1)
t t
i

t t t t t t
i i i i

U

f U K U f R
U

 (15.276) 

This system is used to solve for the displacement increment, and with this the 
updated displacement after the  i-th iteration is calculated as 
      ( ) ( 1) ( )

t t t t
i i iU U U  (15.277) 

This iteration process starts with the stiffness matrix, restoring force vector, and 
displacement vector of the last time step as follows: 
      (0)

t t tK K  (15.278) 

      (0)
t t tf f  (15.279) 

      (0)
t t tU U  (15.280) 

Equations (15.276) and (15.277) constitute the Newton-Raphson method, and it is 
illustrated in Figure 15.8. We can see from (15.276) that the tangent stiffness 
matrix needs to be updated and solved (or inverted) at each iteration. For large 
systems and highly nonlinear problems, it is the most time consuming process for 
the method. 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

Figure 15.8 Illustration of the Newton-Raphson method 
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15.6.2 Initial Stress Method 

In view of the computationally demanding effort in the Newton-Raphson method, 
several variations of the Newton-Raphson method have been proposed. The 
simplest and fastest one is to use the stiffness matrix of the system before the 
loading is applied. That is, we replace (15.276) by 
      0

( ) ( 1)
t t t t

i iK U f R  (15.281) 
This is known as the initial stress method. If the system of equations results from 
the finite element method (FEM), it is the linearized response about the initial 
configuration of the FEM model. For highly nonlinear problems, the convergence 
of the method is slow and sometimes the solution may even diverge. 

15.6.3 Modified Newton-Raphson Method 

The modified Newton-Raphson method lies somewhere between the initial stress 
method and the full iteration method of Newton-Raphson and is called modified 
Newton-Raphson. It uses the tangent stiffness matrix from the last time step 
throughout the iteration process: 
      ( ) ( 1) ( 1)

t t t t t
i i iRK U f R  (15.282) 

The modified Newton-Raphson method is less computationally demanding but then 
converges slower than the Newton-Raphson method. Physically, (15.282) gives the 
displacement vector increment at the i-th iteration to balance the difference 
between the internal restoring force vector and the external applied force vector at 
the (i 1)-th iteration. The modified Newton-Raphson method is illustrated in 
Figure 15.9. As expected, the modified Newton-Raphson method converges much 
slower than those in Figure 15.8, but, however, we do not need to solve the tangent 
stiffness at every iteration step. Thus, the modified Newton-Raphson is, in general, 
faster than the full Newton-Raphson method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15.9 Illustration of the modified Newton-Raphson method 
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15.6.4 Quasi-Newton and BFGS Method 

The shortcoming of the modified Newton-Raphson method leads further to the 
development that we should update the tangent stiffness as required by the accuracy 
as well as the degree of nonlinearity of the problems. This variation is called the 
quasi-Newton method. In this method, the tangent stiffness is updated according to 
whether a certain error control condition is satisfied. For example, the following 
criterion is used for the so-called BFGS method: 

 ( ) ( )
( )

( ) ( 1) ( )
[ ]

T
i i

i CT t t
i i i

c
K

 (15.283) 

where  
 ( ) ( ) ( 1)

T t t t t
i i iU U  (15.284) 

 ( ) ( 1) ( )i i iR R  (15.285) 
Whenever the condition number defined in (15.283) is larger than the prescribed 
number c (or (15.283) is violated), an update of the tangent stiffness is performed. 
This BFGS method is illustrated in Figure 15.10. 
 Therefore, in a sense this is an error-driven scheme for updating the tangent 
stiffness. This particular version of the quasi-Newton method is known as the 
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, which was developed 
independently by Broyden, Fletcher, Goldfarb, and Shanno all in 1970 (see Press et 
al., 1992). It is believed that the quasi-Newton method is most efficient, and is also 
widely used in hill-climbing types of unconstrained optimization problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.10 Illustration of the BFGS or quasi-Newton method 

15.6.5 Secant or Fixed Point Iteration Method 

There is another variation the called fixed point iteration or secant method. The 
stiffness is formed between the fixed initial point and the current point, and thus is 
a secant stiffness. The unbalanced force vector can be formulated: 
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 (15.286) 

This secant method is illustrated in Figure 15.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.11 Illustration of the secant or fixed point method 
  
 All Newton-Raphson type methods may or may not converge to the actual 
solution, depending on whether the function has a quadratic Taylor expansion near 
the solution point and on how far the initial point of iteration is from the true 
solution. In general, there is no single nonlinear algorithm that can guarantee 
convergence for every nonlinear problem. In particular, Figure 15.12 shows some 
situations in which at least one of the above nonlinear iterative methods breaks 
down. 

15.6.6 Convergence Criteria 

Regarding the convergence criteria for the iterations of the Newton-Raphson type 
methods, we can have at least three different approaches.  
 
(i) Displacement error control 
 
The increment of displacement after the current iteration step can be compared to 
the current value of the displacement. If the contribution in the displacement 
increment is less than a prescribed error, iteration can be stopped. The current 
value of displacement is regarded as the solution for the current time step. For 
example, we have 

      
( ) 2

( ) 2

i
Dt t
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U

U
 (15.287) 
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(a) Newton-Raphson breaks down 

(b) Modified Newton-Raphson breaks down 

(c) Secant method breaks down 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.12 Pitfall of some softening behavior of a nonlinear system 
 
where the norm of the displacement vector is defined as 

      
1/2

2
2

1

n

i
i

UU  (15.288) 

This definition is also known as the Euclidean norm. The dimension of the vector is 
denoted by n in (15.288). However, we should not be too greedy about this choice 
and its value should also depend on the current time step that we are using. As 
illustrated in Figure 15.13, it shows the case of a stiffening system and for such 
stiffening, the response displacement convergence criterion will fail. In view of this 
limitation, load error control is introduced. 
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Figure 15.13 Stiffening behavior of a nonlinear system 
 
(ii) Load error control 

 
When a nonlinear system becomes excessively stiff with the increase of the 
displacement, displacement increment will be small but the magnitude or norm of 
the unbalanced force vector can remain large. It is sometimes more meaningful to 
control the error in the unbalanced force: 

      
( ) 2

2

t t t t
i

Lt t t

f R

f R
 (15.289) 

This load convergence criterion is not effective for the case in which a very soft 
response of the nonlinear system becomes apparent with the progressive 
displacement. A typical value of L = 0.0001 can normally be prescribed; for 
example, a truss undergoing a large deformation due to elastic-plastic behavior of 
the material. In this case, we should use the displacement control convergence 
criterion. Figure 15.14 shows such a case of a softening system and for which the 
load convergence criterion will fail.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15.14 Softening behavior of a nonlinear system 
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(iii) Energy error control 
 

For highly nonlinear and complicated models of composite structures, it is 
sometimes difficult to pre-determine whether the structure is getting softer and 
stiffer under loading. Therefore, the third convergence criterion based on energy 
change in the system due to the unbalanced force at each iteration can be used as an 
error control criterion. It is because energy change is involved both displacement 
increment and unbalanced force:  

      ( ) ( )

(1)

( )

( )

t t t t t t
i i

Et t t t t

U f R

U f R
 (15.290) 

where E is a prescribed error.  

15.7 CONTROL ALGORITHMS FOR NONLINEAR ODE 

The static nonlinear system considered in (15.273) is first rewritten in the following 
form: 
 ( ) ( ) 0f U R f U R  (15.291) 
where  is the load parameter. Tacitly, we have assumed that the loading is of the 
proportional type. That is, the ratio between different loading components of R for 
each degree of freedom of the displacement vector U is constant, and this is the 
reason why we can extract a common loading parameter  in (15.291). We can also 
rewrite this vector equation in scalar form as: 

 ( ) 0, ( ) 0
T

T or fR f U U
R R

 (15.292) 

The load control algorithm can be unified with the displacement control algorithm 
in the following constraint: 

 0 2 0 2 2
1

1

( ) ( )
n

i i
k k k n

k

U U c  (15.293) 

where i is a controlling parameter for each component of displacement or loading, 
and c is the size of the loading control. Clearly the unit of i (where i = 1,2,..., n) 
differs from that of  n+1. The superscript for U denotes the degree of freedom and 
the subscript denotes the loading step number. A number of special cases are 
considered next. 

15.7.1 Displacement Control 

For the special case j = 1 and all other i = 0 (i  j), we may select the most 
dominant displacement Uj as the controlling parameter (typically at the degree of 
freedom subjected to the largest external load):  
 0i

j jU U c  (15.294) 
Displacement control may fail for the case of a very stiff system, and this is 
illustrated in Figure 15.15. 
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Figure 15.15 Stiff system in which displacement control fails and arc-length control may also fail 

15.7.2 Load Control 

For the special case n+1 = 1 and all other i = 0 (i  n+1), we select the loading 
step as the nonlinear parameter in searching for the next equilibrium solution. 
Mathematically, it can be expressed as: 
 0i c  (15.295) 
This type of loading control parameter is the most commonly employed approach 
in numerical analysis. Figure 15.16 illustrates the case of snap through buckling of 
cylindrical shells in which load control fails. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.16 Snap through buckling problem in which load control fails 

15.7.3 Arc-Length Control 

If we set all i = 1 (where i = 1,2,...,n+1), we have the arc-length control algorithm. 
We select the loading step as the nonlinear parameter in searching for the next 
equilibrium solution. Mathematically, it can be expressed as: 

 0 2 0 2 2

1

( ) ( )
n

i i
k k

k

U U c  (15.296) 
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Figure 15.15 shows that if c is too large, the arc-length control may also fail. In 
short, there is no single algorithm that works for all nonlinear problems, if the 
loading step is not controlled properly. 

5.8 FINITE ELEMENT METHOD FOR LAPLACE EQUATION 

The finite element method (FEM) is a numerical technique for finding approximate 
solutions to boundary value problems. It uses either the weighted residue method 
(e.g., Galerkin method) or the variational methods via the use of the calculus of 
variations (e.g., Rayleigh-Ritz method) to minimize an error function (in the case of 
the weighted residue approach) or a functional (energy in the case of variational 
approach) in a global sense and produces a stable solution. FEM divides the origin 
domain into many small finite sub-domains, named finite elements, to approximate 
a larger domain. The origin of FEM is not so straightforward. As summarized by 
Oden (1990), it probably dates back to the time of Hrennikoff in 1941 and Courant 
in 1943. However, this idea was not further pursued then since computers were still 
largely unavailable in 1940s. Decades later, the term “finite element method” was 
coined by the renowned structural and earthquake engineer Ray Clough in 1960 
when he was involved in the design of the wings of the Boeing 747 airplane 
(Clough, 1980). The first finite element book was The Finite Element Method in 
Structural and Continuum Mechanics by O.C. Zienkiewicz in 1967.  
 In this section, we will illustrate the main concepts of FEM using the Laplace 
equation. In particular, for potential flow around a circular cylinder shown in 
Figure 15.17, we can formulate the problem as: 
 2 0  (15.297) 
 , on ( 1,2,3)i iS i  (15.298) 

 4 5, on ; , onn nq S q S
n n

 (15.299) 

where  is the stream function. As shown in Figure 15.17, the surface of the 
circular cylinder is impermeable, and both the upper and lower boundaries are also 
impermeable. 
 In view of symmetry with respect to both vertical and horizontal axes, we can 
consider a quarter of the domain. This quarter domain is further discretized into 
elements (in this case triangular elements). Within each element, we assume there 
is a fixed and assumed variations of the streamline function  between the nodal 
values of the element: 

 
3

1 1 2 2 3 3
1

( , ) ( , ) ( , ) ( , )i i
i

x y N N x y N x y N x y  (15.300) 

where Ni (i = 1,2,3) are called shape functions. The nodal values of i are the 
unknowns. At node 1, we have N1 = 1 whereas the others’ shape functions are zero, 
similar to other shape functions. Without going into detail, it was found that 

 1 2 3 3 2 2 3 3 2
1( , ) [( ) ( ) ( ) ]

2
N x y x y x y y y x x x y  (15.301) 
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Figure 15.17 Finite element model for potential flow around a cylinder in a channel  
 

 2 3 1 1 3 3 1 1 3
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 3 1 2 2 1 1 2 2 1
1( , ) [( ) ( ) ( ) ]

2
N x y x y x y y y x x x y  (15.303) 

where  is the area of the triangular element and (xi, yi) are the coordinates of the i 
node in the element. Physically, this shape function can be interpreted as: 

 023 013 012
1 2 3

123 123 123
( , ) , ( , ) , ( , )N x y N x y N x y  (15.304) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.18 Interpretation of shape functions in a triangular element 
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where the area of triangle ijk is denoted as ijk (see Figure 15.18). By adopting the 
Galerkin method, we have 
 2 0iN dA  (15.305) 

Applying integration by parts, we can rewrite it as: 

 { }i i
n i

N N
dA q N dS

x x y y
 (15.306) 

where 

 
3

1

j
j

j

N
x x

 (15.307) 

For the triangular element, the above integration can be carried analytically but for 
other more complicated element shapes, numerical integration should be used (like 
the Gauss quadrature integration). If there are a total of n nodes and m elements in 
the whole domain, we can assemble the element in a matrix form: 
 ij j iK q  (15.308) 

The boundary conditions given in (15.298) and (15.299) have to be applied to 
(15.308).  The matrix equation can be solved for the nodal unknowns of j. 
 The total error associated with FEM modelling can be expressed as: 
 c b p IError E E E E  (15.309) 
where Ec is the continuity error, Eb is boundary error, Ep is the interpolation error, 
and EI is the integration error. The first three errors are caused by discretization. 
The continuity error depends on the highest derivative in the formulation and can 
be removed if the shape function used in the element is raised. The boundary errors 
can be reduced if the number of elements is increased and if the size of the 
elements is reduced. The interpolation error is reduced if the element size is 
reduced and the order of the interpolation function is increased. 

5.9 FINITE DIFFERENCE METHOD FOR LAPLACE EQUATION 

In this section, we will illustrate how to apply FDM to PDEs, and again the Laplace 
equation is selected for the sake of simplicity. In particular, for potential flow 
around a circular cylinder shown in Figure 15.17, we can formulate the problem as: 

 
2 2

2
2 2 0

x y
 (15.310) 

where  is the stream function. As shown in Figure 15.19, the domain of the 
quarter problem of the potential flow around a circular cylinder can be expressed in 
a finite difference scheme. The following notation is adopted to express the 
streamline function at different grid points: 
 , 0 0( , )i j x i x y j y  (15.311) 
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where x and y are the grid sizes along the x-direction and y-direction 
respectively. 
 Using the finite difference scheme, differentiation of the streamline with 
respect to x can be approximated as 

 1, ,
( , ) ( , ) 1 ( )i j i j
x x y x y

x x x
 (15.312) 

Similarly, differentiation of the streamline with respect to y can be expressed as 

 , 1 ,
( , ) ( , ) 1 ( )i j i j
x y y x y

y y y
 (15.313) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.19 Grid network used in the finite difference scheme 
 
Repeat the same procedure once more, and the second derivative can be 
approximated as: 
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1, , 1,2
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1 ( 2 )i j i j i j
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x

 (15.314) 

Similarly, the second derivative taken with respect to y can be approximated as: 

 
2

, 1 , , 12 2
1 ( 2 )i j i j i jy y

 (15.315) 

For further simplification, we can set the grid size in both directions as equal: 
 y x  (15.316) 
Substitution of (15.314) and (15.315) into the Laplace equation and utilization of 
(15.316) leads to   
 , 1 , , 1 1, , 1,2 2 0i j i j i j i j i j i j  (15.317) 
Solving for i,j we get 
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 , , 1 , 1 1, 1,
1 ( )
4i j i j i j i j i j  (15.318) 

As illustrated in Figure 15.19, the value of i,j depends on the neighboring points. 
Once the boundary values of  are known on the essential boundaries, we can use 
(15.318) to generate the rest. For the natural boundary conditions, we can use either 
forward difference or backward difference schemes, depending on the location of 
the natural boundaries. For example, for problems shown in Figure 15.17 and 
15.19, the inflow boundary on the left boundary is  

 1, ,
1 ( )i j i j xq

n x x
 (15.319) 

whereas the inflow boundary on the right boundary is 

 , 1,
1 ( )i j i j xq

n x x
 (15.320) 

15.10 SUMMARY AND FURTHER READING 

Numerical methods employed in solving ODEs and PDEs are under rapid 
expansion in the last few decades. Many restrictions of the finite difference method 
and finite element method have been removed in these new methods. A number of 
them are summarized briefly here, namely, the finite volume method (FVM), 
smooth particle hydrodynamics (SPH), and the material point method (MPM). Full 
discussions of them are out of the scope of the present chapter. 
 A numerical technique called the material point method (MPM) is 
particularly useful in modelling large deformation problems, such as landslides, 
runouts, or dynamic fragmentations. This formulation uses a dual description of the 
media by using Lagrangian material points and a Eulerian numerical mesh. The 
MPM is an extension of the particle-in-cell method (a method developed in Los 
Alamos National Laboratory in 1957) in computational fluid dynamics to 
computational solid dynamics, and is a finite element method (FEM)-based particle 
method. It is primarily used for multiphase simulations, because of the ease of 
detecting contact without inter-penetration. It can also be used as an alternative to 
dynamic FEM methods in simulating large material deformations, because there is 
no re-meshing required by the MPM.  It was originally proposed by Sulsky et al. 
(1995).  
 The smoothed particle hydrodynamics (SPH) method belongs to mesh-free 
techniques that have been widely adopted in many areas of mechanics. Smoothed 
particle hydrodynamics (SPH) is a computational method used mainly for 
simulating fluid flows. It was developed by Gingold and Monaghan (1977) and 
Lucy (1977) initially for astrophysical problems. It is a mesh-free Lagrangian 
method in which the coordinates move with the fluid, and the resolution of the 
method can easily be adjusted with respect to variables such as density. This 
technique can handle very large deformations and is more suitable for post-failure 
analysis in the case of solid mechanics.  
 In recent years, the finite volume method (FVM) has become a popular 
numerical method used in fluid mechanics. “Finite volume” refers to the small 
volume surrounding each node point on a mesh, resulting from discretization of the 
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body. In the finite volume method, a partial differential equation is converted 
to surface integrals. These integrals are then evaluated as fluxes at the surfaces of 
each finite volume. Because the flux entering a given volume is identical to that 
leaving the adjacent volume, these methods are conservative. FVM is best for 
solving conservation law in integral form and can solve for discontinuous solutions. 
The most fundamental hyperbolic wave problem with a jump discontinuity is called 
the Riemann problem (Le Veque, 2002). In fact, most of the current finite volume 
methods make use of the Riemann problem as the building block, and therefore 
FVM literally uses the Riemann solver. Most of the FVM solution schemes used 
nowadays are of the Godunov type (Le Veque, 2002). Another advantage of the 
finite volume method is that it is easily formulated to allow for unstructured 
meshes. 

15.11  PROBLEMS 

Problem 15.1  Consider the following third order Runge-Kutta method: 
    4

1 1/2 1 1 2[ ( , ) ( , ) ( , )] ( )n n n n n n n ny y h af t y bf t k cf t k O h  (15.321) 
where kn1 and kn2 have been defined in (15.244) and (15.245).  
 
(i) Show that the coefficients satisfy the following system of equations: 
    1a b c  (15.322) 

    1
2 1 2!
b c  (15.323) 

    1
2 3!
c  (15.324) 

(ii) Show the validity of (15.259). 
 
Problem 15.2  Consider the following fifth order Runge-Kutta method: 

    1 1/2 1 1/2 2
6

1/2 3 1 4

[ ( , ) ( , ) ( , )

( , ) ( , )] ( )
n n n n n n n n

n n n n

y y h af t y bf t k cf t k

df t k ef t k O h
 (15.325) 

 
(i) Show that the coefficients satisfy the following system of equations: 
    1a b c d e  (15.326) 

    1
2 2 2 2!
b c d e  (15.327) 

    2 2 1
1
3!2 2 2

c d e  (15.328) 

    3 2
1
4!2 2

d e  (15.329) 

    3
1
5!2

e  (15.330) 

(ii) Show the validity of (15.260). 
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Problem 15.3  Consider the following sixth order Runge-Kutta method: 

    1 1/2 1 1/2 2
7

1/2 3 1/2 4 1 5

[ ( , ) ( , ) ( , )

( , ) ( , ) ( , )]] ( )
n n n n n n n n

n n n n n n

y y h af t y bf t k cf t k

df t k ef t k gf t k O h
 (15.331) 

 
(i) Show that the coefficients satisfy the following system of equations: 
    1a b c d e g  (15.332) 

    1
2 2 2 2 2!
b c d e g  (15.333) 

    2 2 2 1
1
3!2 2 2 2

c d e g  (15.334) 

    3 3 2
1
4!2 2 2

d e g  (15.335) 

    4 3
1
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     4
1
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g  (15.337) 

 (ii) Show the validity of (15.261). 
 
Problem 15.4  Derive the formulas governing the coefficients in the k-th Runge-
Kutta method given in (15.263). 
 
Problem 15.5  In view of (15.263), show the validity of formulas given in (15.264) 
to (15.267). 
 
 
Problem 15.6  Prove the following seventh order Runge-Kutta method: 

  1 1/2 1 1/2 2

8
1/2 3 1/2 4 1/2 5 1 6

[2 ( , ) 77 ( , ) 133 ( , )
315

63 ( , ) 28 ( , ) 10 ( , ) 2 ( , )] ( )

n n n n n n n n

n n n n n n n n

hy y f t y f t k f t k

f t k f t k f t k f t k O h
  (15.338) 
 
Problem 15.7  Prove the following fifth order Adams-Bashforth formula:  

  1 1 2 3 4[1901 2774 2616 1274 251 ]
720n n n n n n n
hy y f f f f f  (15.339) 

 
Problem 15.8  Prove the following fifth order Adams-Moulton formula:  

  1 1 1 2 3[251 646 264 106 19 ]
720n n n n n n n
hy y f f f f f  (15.340) 

 
 
 



 
   APPENDICES  
 

 
 

Appendix A: Greek Letters 
 
For mathematical and engineering analysis, Greek alphabets are normally adopted 
as mathematical symbols or scientific symbols. Engineering and science students 
who do not know how to pronounce Greek letters will have trouble communicating 
with others. It is of paramount importance to recognize and to pronounce Greek 
letters. Here we compile a list for easy reference by readers. There are a total of 24 
letters in Greek and they are summarized below: 
 

Table A.1 Table of Greek letters 
 

Number Capital lower Pronoun. Number Capital lower Pronoun. 
1 A  Alpha 13   Nu 
2 B  Beta 14   Xi 
3   Gamma 15   Omicron 
4   Delta 16   Pi 
5   Epsilon 17   Rho 
6   Zeta 18   Sigma 
7   Eta 19   Tau 
8   Theta 20   Upsilon 
9   Iota 21   Phi 
10   Kappa 22   Chi 
11   Lambda 23   Psi 
12   Mu 24   Omega  
  
Note that the partial differentiation sign  (pronounced as “round”) is not a Greek 
letter. 



902   Theory of Differential Equations in Engineering and Mechanics 

Appendix B: Nobel Prize and 
Mathematicians 

 
Alfred Bernhard Nobel (1833 1896) was a Swedish chemist and engineer. He 
invented dynamite in 1867, gelignite in 1875, and ballistite (a kind of smokeless 
gunpowder) in 1887. When Nobel passed away in 1896, he left all of his 
considerable fortune to a foundation that funds five Nobel Prizes annually in the 
areas of physics, physiology or medicine, chemistry, literature, and contributions to 
peace.  The first prizes were awarded in 1901, five years after the death of Nobel. 
The award also comes with cash of about 1 million US dollars for each prize. It is, 
however, not the cash prize but the instant fame that makes the Nobel winners a 
household name and an iconic figure of his or her generation. Even today, it is safe 
to claim that it remains the highest recognition and reward that can be earned by a 
“scientist.” In view of the important role of mathematics in the development of 
scientific and technological breakthroughs, many people, mathematicians and 
scientists alike, question why there is no “mathematics” category of the Nobel 
Prize. The renowned Fields Medal in mathematics is awarded to a young 
mathematician once every 4 years, but is no match for the Nobel Prize.  A more 
recent establishment of the Shaw Prize, named after the Hong Kong-based movie 
tycoon Mr. Shaw, does include a category of “mathematical science.” Clearly, this 
reflects the views of scientists and mathematicians on this issue.  
 However, there is an unconfirmed rumor about why Nobel did not choose to 
award his prize in “mathematics.” When Alfred Nobel set up his Nobel Prize, 
mathematics was one of the potential subject areas to be awarded. However, when 
he knew that Mittag-Leffler was a potential candidate for the prize in mathematics, 
Nobel crossed out mathematics and no such prize has ever been awarded. This 
negative impact by Mittag-Leffler on mathematics is definitely more far-reaching 
than his mathematical contributions.  
 Nevertheless, some mathematicians have been nominated to receive Nobel 
Prizes and they also have played an important role in promoting the success of 
Nobel Prizes. Ironically, it was S. Arrhenius and G. Mittag-Leffler (the Swedish 
mathematician that Nobel disliked) who helped to mobilize large numbers of 
scientists from various nations participating in the nomination process. Arrhenius 
received the Nobel Prize in chemistry in 1903, and, of course, Mittag-Leffler never 
received the prize as a mathematician. In 1974, the Nobel foundation and 
associated institutions agreed to open their archives for historical research on 
materials at least 50 years old. Crawford (1985, 1998, 2001) is among the 
forerunner on the analysis of the selection process of Nobel Prizes.  
 According to the released data, the renowned French engineer,  
mathematician, and physicist Henri Poincare (pioneer in stability analysis of 
differential equations) was nominated 34 times in 1910. In fact, Poincare received a 
total of 51 nominations in 1904 1912 before he passed away in 1913. Poincare 
himself had made 10 nominations and four nominations were successful (including 
Lorentz in Physics 1902, Becquerel in Physics 1903, Lippmann in Physics 1908, 
and Curie in Chemistry 1911). Mittag-Leffler made 6 nominations with one 
successful case (Lorentz in Physics 1902). The famous German mathematician 



 Appendices   903 

 

David Hilbert was nominated 6 times between 1929 to 1933. He also nominated 
the successful winner Peter Debye (Chemistry in 1936), and, incidentally, Debye 
received 47 nominations in both Physics and Chemistry. More importantly, being a 
student of Sommerfeld, Debye made a major contribution in 1912 to the 
mathematical development of the integral representation of the Bessel function of 
the first kind of large order using the saddle point method (see Watson, 1944) when 
he considered the vibrations of large spheres.   
 We should note the story of Sommerfeld (supervisor of Debye) before 
continuing our discussion of the other mathematicians and their role in the Nobel 
Prize. Sommerfeld was nominated a record 81 times for the Nobel Prize within a 
period of 34 years before he was run down by a car in 1951, and he never received 
it. Otto Stern also shared the honor with the highest number of nominations of 81, 
but Stern was awarded the Nobel Prize in 1943 for demonstrating the wavelike 
properties of elementary particles. Ironically, he himself had made two successful 
nominations, one to Albert Einstein (Physics in 1921) and one to Max Planck 
(Physics in 1918). Even ironically, four of his PhD students did receive Nobel 
Prizes (Heisenberg in 1932 (PhD in 1923); Bethe in 1967 (PhD in 1928); Pauli in 
1945 (PhD in 1921); and Debye in 1936 (PhD in 1908)). Three of his other 
postgraduate and post-doctoral students also received Nobel Prizes (including L. 
Pauling in Chemistry in 1954 and in Peace in 1962, I.I. Rabi in 1944, and M.T. von 
Laue in 1914). Sommerfeld had published a six-volume series of classic textbooks, 
and one is Partial Differential Equations in Physics. This is a very good book on 
PDEs even by today’s standard. One of his mathematical contributions is 
Sommerfeld’s wave radiation condition in wave equation analysis. Sommerfeld was 
also a pioneer in the mathematical theory of diffraction of waves. 
 Another famous French mathematician Jacques Hadamard made 32 
nominations and his successful nominees include Einstein, Perrin, Richardson, 
Yukawa, and Blackett. French mathematician Emile Borel (a pioneer in game 
theory and a main contributor on the theory of real variables) also made 6 
nominations and Nobel laureate Perrin is among them (Physics in 1926). Recall in 
Chapter 11 on Volterra’s integral and integro-differential equations, the renowned 
Italian mathematician V. Volterra also made 9 nominations (1 in chemistry and 8 in 
physics).  
 There is also a long list of renowned mathematicians and mechanicians, most 
of their names are mentioned in this book, who made nominations or had been 
nominated. They include G. Darboux (Darboux’s formula in series expansion in 
Chapter 1), O. Heaviside (Heaviside step function throughout the text), Lord 
Kelvin (method of stationary phase in Chapter 12), I. Fredholm (Fredholm integral 
equation in Chapter 11), O. Backlund (Backlund transform in soliton),  P. Painlevé 
(differential equation with movable poles), T. Levi-Civita (permutation tensor in 
Chapter 1), P. Levy (solution on plate bending), A.E.H. Love (Love’s wave in half-
space), G.I. Taylor (main contributor in stability of fluid), P.M. Morse (author of 
the classic book on Method of Theoretical Physics), van der Pol (van der Pol 
nonlinear oscillator), L. Fuchs (Fuchsian singular differential equation in Chapter 
4), H. Bateman (Bateman’s manuscript project), L. Prandtl (boundary layer in 
fluids in Chapter 12), J. Boussinesq (shallow wave equation), and L. Boltzmann 
(kinetic gas theory). Among them, Prandtl received 4 nominations in 1928 and 
1937 because of his boundary layer theory in fluids, and G.I. Taylor was nominated 
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in 1937 by H. Jeffreys (geophysicist and author of the book The Earth) and in 1945 
by Sir N.F. Mott (Nobel Prize in physics 1977). A master among mechanicians, 
Lord Kelvin was actually one of the eleven people being nominated to receive the 
Nobel Prize in physics in 1901 (the first year Nobel Prizes were awarded). The first 
recipient in physics in 1901 was Wilhelm Conrad Rontgen (for his discovery of X-
ray) and in that year Rontgen actually nominated Lord Kelvin to get the Nobel 
Prize! Recall from Chapter 12 that Kelvin was the main inventor of the method of 
stationary phase and from Chapter 1 that Kelvin was the founder of the Kelvin-
Stokes theorem. We can see that many Nobel Prize nominees and winners could be 
considered as applied mathematicians themselves and made significant 
contributions to the development of various branches of applied mathematics, 
especially related to the analysis of differential equations.  
 In Crawford’s mind, there are certainly many well-deserved winners who 
ended up as losers. Among others, they include Arnold Sommerfeld, Henri 
Poincare, Oliver Heaviside, Ludwig Boltzmann, and Vilhelm Bjerknes (father of 
modern meteorology and proposed the theory of polar front or jet stream in weather 
systems).   
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Appendix C: Proof of Ramanujan’s Master 
and Integral Theorems 

C.1 RAMANUJAN’S MASTER THEOREM  

To prove Ramanujan’s Master Theorem, let us first recall the following definition 
of gamma function (x) proposed by Euler 

 1

0
( ) t xx e t dt  (C.1) 

Next, consider the Laplace transform of a power series: 

 
0

{ }n st nt e t dtL  (C.2) 

Applying the change of variables of st = z, we obtain 

 1 10 0 0

1 ( 1){ } ( )n z n z n st n
n n

z dz nt e e z dz e t dt
s s s s

L  (C.3) 

The last equation in (C.3) can be rewritten as 

 1

0

( ) st n
n
n e t dt

s
 (C.4) 

Applying another change of variable of s = rk gives: 

 1

0

( ) kr t n
kn
n e t dt

r
 (C.5) 

Multiplying both sides by the k-th derivative of a function f(x) evaluated at zero 
divided by k factorial as: 
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 (C.6) 

Consider an infinite sum on both sides with respect to the index k 
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 (C.7) 

The exponential function inside the integral is now expanded in Taylor series as 

 
2 2 3 3

0

( )exp( ) 1 ...
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k
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 (C.8) 

Substitute (C.8) into (C.7) and reverse the order of integration and summation to 
yield 
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 (C.9) 

We now further reverse the order of summation within the integral on the left hand 
side of (C.7) 
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( )

1 1

0 0
0 0 0

( ) (0) ( ) ( )
! ! !

m k m
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x f xLHS r x dx x f r dx
m k m

 (C.10) 

The last part of (C.10) follows from the Maclaurin series expansion the function 
f(x) as: 
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f xf x
k

 (C.11) 

Equation (C.11) can also be applied to the right hand side of (C.9) to get 
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Finally, we can rewrite using the following identifications: 
 ( ) ( ),kf r k  (C.13) 
we have 
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 (C.14) 

This completes the proof of Ramanujan’s Master Theorem. This is a clever and 
original technique employed by Ramanujan. The main success of the proof rests on 
the expansion of the exponential function, the reverse of the order of integral and 
summation, and the reverse of the order of different summations.  

C.2 RAMANUJAN’S INTEGRAL THEOREM  

In this appendix, we consider Ramanujan’s integral theorem, which is a 
generalization of the Frullani-Cauchy integral theorem reported in Section 1.8. This 
integral theorem is expressed as: 

 
0 0

{ ( ) ( )} ( ){ (0) ( )} ln( ) ln[ ]
( ) s

f ax g bx b d v sdx f f
x a ds u s

 (C.15) 

provided that f(0) = g(0) and f( ) = g( ) with a, b > 0. In addition, functions u and 
v are defined as the coefficients of the Borel theorem of functions f and g as: 
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( )( )( ) ( )
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k
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u k xf x f
k

,   
0
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!

k

k
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 (C.16) 

For the special case that f = g, we have the last term in (C.15) vanishing and giving 

  
0

{ ( ) ( )} { (0) ( )}ln( )f ax f bx bdx f f
x a

 (C.17) 

which is the Frullani-Cauchy integral given in (1.202). Thus, the Frullani-Cauchy 
integral is recovered as a special case of Ramanujan’s integral theorem. 
 To prove (C.15), we consider the following integral  
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where we have applied (C.16) to get 
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In other words, we have 
   1( ) ( ) kk u k a ,   2 ( ) ( ) kk v k b  (C.21) 
Clearly, substitution of (C.19) and (C.20) into the first line of (C.18) and 
application of Ramanujan’s Master Theorem given in (C.14) results in the second 
line of (C.18). Using of the definition of 1 and 2  given in (C.19) and (C.20) gives 
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 (C.22) 

Now, we consider the limit of n  0 for In given in (C.21) as: 

 0 0

0 0

( ) ( )lim lim

( ) ( ) ( ) ( )lim lim

n n

nn n
n n n n

n nn n

a u n b v nI
n

b u n a v n b u n a v n
na b n

 (C.23) 

In obtaining (C.23), we have taken the following limits  
 0 0

0 0
lim ( 1) (1) 0! 1, lim 1n n
n n

n a b a b  (C.24) 

Note that u(0) = v(0) because f(0) = g(0). Application of L’Hôpital’s rule to the last 
part of (C.23) leads to 
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Finally, Ramanujan found a more compact form for the last two terms in the last 
part of (C.25) by noting 
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Taking the limit s  0, we have 

 
0

( ) (0) (0) 1ln[ ] [ (0) (0)]
( ) (0) (0) (0)s

d v s v u v u
ds u s v u u

 (C.27) 
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To visualize the last part of (C.27), we have used the following identity 
 (0) ( ) (0)f f u ,  (0) ( ) (0)g g v  (C.28) 
Since, we require f(0) = g(0) and f( ) = g( ) thus we must have 
 (0) (0)u v    (C.29) 
Combining (C.27) and (C.28) gives 
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Finally, substitution of (C.30) into the last line of (C.25), we have Ramanujan’s 
integral theorem. 
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Appendix D: Jacobi Elliptic Functions 

D.1 JACOBI ELLIPTIC FUNCTIONS  

Jacobi elliptic functions are related to the solution of the following integral when u 
and k are given: 

 
2 20

( , )
1 sin

du F k
k

 (D.1) 

where F( , k) is the elliptic integral of the first kind. If the evaluation of the 
amplitude  of the integral can be done, we write its solution as: 

 2 2sn( , ) sin , cn( , ) cos , dn( , ) 1 sinu k u k u k k  (D.2) 

 sn( , )tn( , ) tan , am( , ) ,
cn( , )

u ku k u k
u k

 (D.3) 

It can be seen that sn, cn, and tn closely resemble the circular functions sine, cosine 
and tangent. The amplitude function of the integral is denoted by am(u,k) or .  For 
a fixed value of k, the Jacobi elliptic sine, cosine, and tangent functions can be 
simplified as: 
 sn( , ) sn( ), cn( , ) cn( ), tn( , ) tn( ), dn( , ) dn( )u k u u k u u k u u k u  (D.4) 
Abramowitz and Stegun (1964) also defined additional types of Jacobi elliptic 
functions, namely, 
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u uu u u
u u u
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u u u

u uu u u
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 (D.5) 

The values of the integral u can be evaluated by using inverse functions that closely 
resemble arcsine, arccosine, etc. 

  
1 1 1

1 1

= sn (sin , ) cn (cos , ), tn (tan , ),

dn ( , ), am ( , ),

u k u k u k

u k u k
 (D.6) 

For example, the inverse elliptic function can be evaluated as 

 1 1 3sn ( , ) (30 \ 60 ) 0.54222911
2 2

F \ 60 ) 0.54\ 60 )  (D.7) 

where F( , ) is the elliptic integral of the first kind expressed in terms of the 
parameter  instead of k as  
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( \ )
1 sin sin

dF  (D.8) 

The numerical value in (D.7) was looked up from Table 17.5 of Abramowitz and 
Stegun (1964).  
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D.2 IDENTITIES OF JACOBI ELLIPTIC FUNCTIONS  

 Some special values of Jacobi elliptic functions are: 
 sn(0) 0, cn(0) 1, dn(0) 1, am(0) 0  (D.9) 

 
sn( ,0) sin , cn( ,0) cos , dn( ,0) 1,
sn( ,1) tanh , cn( ,1) dn( ,1) sec h ,

u u u u u
u u u u u

 (D.10) 

A number of identities can be proved easily 
 2 2 2 2sn cn sin cos 1u u  (D.11) 
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 sn( ) snu u  (D.14) 
 cn( ) cnu u  (D.15) 
 dn( ) dnu u  (D.16) 
 am( ) amu u  (D.17) 
Jacobi elliptic functions are doubly periodic functions 
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Thus, K and iK' are called real and imaginary quarter-periods.  
  We will illustrate a simple case of periodicity by considering  
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For the second integral on the right of (D.23), we can apply the following change 
of variables 
    (D.24) 
Thus, we have  
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2 2 2 2 2 2/2 /2 01 sin 1 sin 1 sin
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For the last integral on the right of (D.23), the following change of variables is 
applied 
    (D.26) 
Thus, the final integral becomes  

    
2 2 2 201 sin 1 sin

d d u
k k

 (D.27) 

Substitution of (D.25) and (D.27) into (D.23) gives 
 2v K u  (D.28) 
By applying the Jacobi elliptic function to solve for the amplitude of the first 
integral of (D.23) gives 
 sn( ) sn(2 ) sin( ) sin sn( )v K u u  (D.29) 
Therefore, comparing the second and the fifth terms gives the required periodicity 
 sn(2 ) sn( )K u u  (D.30) 

D.3 DIFFERENTIATION OF JACOBI ELLIPTIC FUNCTIONS  

 Some formulas of differentiation for Jacobi elliptic functions are 

 sn cn dnd u u u
du

 (D.31) 

 cn sn dnd u u u
du

 (D.32) 

 2dn sn cnd u k u u
du

 (D.33) 
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 am dnd u u
du

 (D.37) 

To see the validity of these formulas, we first consider the differentiation of u with 
respect to  

 
2 2 2 20

1 1
dn1 sin 1 sin

du d d
d d uk k

 (D.38) 

In obtaining the above result, we have applied the Leibniz rule for differentiating 
integrals. Recalling that sn u = sin , we have 

 sn sin cos cn dnd d du u u
du du du

 (D.39) 
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We have used (D.38) to obtain the last part of (D.39). Thus, the identity given in 
(D.31) is established. Similarly, we note that cn u = cos  and thus 

 cn cos sin sn dnd d du u u
du du du

 (D.40) 

This is identical to (D.32). 
Note from (D.2) that dn u = (1 k2sin2 )1/2, and we have 
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This proved (D.33). For the second derivative, we differentiate (D.31) one more 
time with respect to u to get 

  
2
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 (D.42) 

Substitution of (D.32) and (D.33) into (D.42) results in 
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By virtue of (D.11) and (D.12), all Jacobi elliptic functions in the right hand side of 
(D.43) can be expressed in terms of a Jacobi elliptic sine function as: 
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To prove (D.35), we differentiate (D.32) one more time with respect to u to get 
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Substitution of (D.31) and (D.33) into (D.45) results in 
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Utilizing (D.11) and (D.12), (D.46) becomes 
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This establishes the formula given in (D.35). Differentiation of (D.33) with respect 
to u gives 
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In proving this formula, we have employed (D.12), (D.13), (D.31) and (D.32) in 
(D.48). Finally, the proof of (D.37) is more straightforward by noting that am u =  

 am = dnd du u
du du

 (D.49) 

D.4 INTEGRATION OF JACOBI ELLIPTIC FUNCTIONS  

Integration of Jacobi elliptic functions is less straightforward. Here are some 
formulas of integration: 

 1sn ln(dn cn )u du u k u
k

 (D.50) 

 11cn cos (dn )u du u
k

 (D.51) 

 1dn sin (sn )u du u  (D.52) 
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u udu
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 (D.53) 

 1 1 dn 'snln( )
cn ' cn

u k udu
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 (D.54) 

 11 1 cncos ( )
dn ' dn

udu
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 (D.55) 
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 (D.56) 

 sn 1 dn 'ln( )
cn ' cn

u u kdu
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 dn 1+snln( )
cn cn

u udu
u u

 (D.58) 

where k' = (1 k2)1/2. These formulas can be proved easily by directly differentiating 
both sides with respect to u. For example, (D.50) can be proved as 

 2

1 1sn sn ( )[ dn cn ]
dn cn

1 1( )[ sn cn sn dn ]
dn cn
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d d du du u u k u
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Similarly, all other formulas can be checked. 
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D.5 OTHER PROPERTIES OF JACOBI ELLIPTIC FUNCTIONS  

Maclaurin series expansion can be used to expand the Jacobi elliptic functions in a 
power series as 

 2 3 2 4 51 1sn( , ) (1 ) (1 14 ) ...
3! 5!

u k u k u k k u  (D.60) 

 2 2 4 2 4 61 1 1cn( , ) 1 (1 4 ) (1 44 16 ) ...
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u k u k u k k u  (D.61) 

 2 2 2 2 4 2 2 4 61 1 1dn( , ) 1 (4 ) (16 44 ) ...
2! 4! 6!

u k k u k k u k k k u  (D.62) 

The sum rules for Jacobi elliptic functions are also somewhat similar to those for 
circular functions 

  2 2 2
sn cn dn cn sn dnsn( )

1 sn sn
u v v u v uu v

k u v
 (D.63) 

 2 2 2
cn cn sn sn dn dncn( )

1 sn sn
u v u v u vu v

k u v
s ssn snsn snsn  (D.64) 

 
2

2 2 2
dn dn sn sn cn cndn( )

1 sn sn
u v k u v u vu v

k u v
s s2k2sn snsn2

 (D.65) 

 tn dn tn dntn( )
1 tn tn dn dn

u v v uu v
u v u vtn tn dtn dtn

 (D.66) 

Davis (1962) provided a sizable introduction to elliptic integrals and Jacobi elliptic 
functions and their applications in nonlinear differential equations. One can refer to 
Abramowitz and Stegun (1964) and Olver et al. (2010) for comprehensive 
coverage of the properties of Jacobi elliptic functions.  
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Appendix E: Euler’s Constant 
 
The birth of Euler’s constant is related to the infinite series of  

 
1

1lim
m

m
k k

 (E.1) 

It was known to Euler and other mathematicians that this infinite series does not 
converge. For example, we find numerically that 

 
20 220 20220

1 1 1

1 1 13.60, 5.98, 10.49
i i ik k k

 (E.2) 

Although the initial convergence looks promising, but it never converges 

 
1

1

i k
 (E.3) 

Thus, people were not interested in it, except Euler. It turns out that the difference 
between this infinite series and ln m when m   is finite  

 
1

1lim ln 0.5772157
m

m
k

m
k

 (E.4) 

This finite value constant appears naturally in many mathematical analyses and thus 
becomes a very important mathematical constant. To start with, let us consider the 
area under a hyperbolic curve shown in Figure E.1: 

2 3 4 5
2 3

1 1
ln(1 ) 1 ... ...

1 2 3 4 5

x xdt x x x xx t t t dt x
t

 (E.5) 

Euler was an expert in playing around with infinite series (although at his time the 
convergence test for infinite series did not exist). He substituted x = 1/n and 
expanded the left hand side using Taylor series expansion as 

 2 3 4
1 1 1 1 1ln(1 ) ...

2 3 4n n n n n
 (E.6) 

This can be rearranged as 

 2 3 4
1 1 1 1 1ln( ) ...

2 3 4
n

n n n n n
 (E.7) 

Taking different values of n, we have 

 1 1 11 ln(2) ...
2 3 4

 (E.8) 

 1 3 1 1 1ln( ) ...
2 2 8 24 64

 (E.9) 

 1 4 1 1 1ln( ) ...
3 3 18 81 324

 (E.10) 

Summing all the left hand sides of (E.8) to (E.10), we have 
 
 



916   Theory of Differential Equations in Engineering and Mechanics 

1 x

1 1

x dt
t

 
 
 
 
 
 
 
 
 
 
 

Figure E.1 Area under a hyperbola 
 

 
2

1

3 4

1 3 4 1 1 1 1 1[ln 2 ln ln ... ln( )] [1 ... ]
2 3 2 4 9

1 1 1 1 1 1 1 1[1 ... ] [1 ... ] ...
3 8 27 4 16 81

i

n
k n n

n n

 (E.11) 

The first sum in the square bracket on the right of (E.11) can be simplified as 

 

3 4 1[ln 2 ln ln ... ln( )]
2 3

ln 2 ln 3 ln 2 ln 4 ln 3 ... ln( 1) ln
ln( 1)

n
n

n n
n

 (E.12) 

All the other terms on the right of (E.12) do converge and can be summed to 
approximately 0.5772157. Thus, we have the following approximation 

 
1

1 ln( 1) 0.5772157
i

n
k

 (E.13) 

For large n, we have the approximation  
 lim ln( 1) lim ln

n n
n n  (E.14) 

Using this condition, we finally arrive at Euler’s constant 

 
1

1lim ln 0.577215664901532860606512...
m

m
k

m
k

 (E.15) 

There are many amazing properties of , and here are some of them: 

 
1 2

0 0 0
ln ln(ln ) 4 lnx xe xdx x dx e x xdx  (E.16) 

1/1

0 0 0

1 1 1( ) ( ) ( )
11

x x x x
x

x
e e e edx e dx dx

x x x xe
 (E.17) 

 
1

0 0

1 1 1 1 11 ( ) ( )
1 ln 1

xe dx dx
x x x x x

 (E.18) 
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2

20

2 1( )
1

xe dx
x x

 (E.19) 

 
4 2

0

4 ( )x xe e dx
x

 (E.20) 

 
1 1

1 1lim ( )
n

x n
x i n x

 (E.21) 

 
1

1 1 1 cos[ ...]
2 2! 4 4! 6 6!

x dx
x

 (E.22) 

 
2

0

2 ( )x xe e dx
x

 (E.23) 

 
4

0

4 ( )
3

x xe e dx
x

 (E.24) 

 
2 1

( ) 1 1( 1) , ( ) ...
1 2

m m
m m

m n

m m n
m

 (E.25) 

 
Ramanujan derived some amazing formulas for  

 

3 1
2

3
12 3 1
2

3 3 3 3

3 3 3

1ln 2 2
(3 ) 3

2 1 1 1ln 2 4
3 3 6 6 9 9 12 12
1 1 16 ... ...

15 15 18 18 39 39

n

nn
k

n
k k

 (E.26) 

 
1 (3/2)

0
1

1

2
1

1
(1 )(1 )

k

k

x
x dx

x x x
 (E.27) 
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 y
1

x dx

Appendix F:  
 
It has been known for thousands of year that the circumference of a circle depends 
on the diameter of the same circle. The ratio between them is known to be a 
constant and is normally denoted by the Greek alphabet , which was originally 
proposed by Euler.  
 The symbol  is defined as: 

 circumference
diameter

 (D.1) 

Mathematically,  can be evaluated as the area of a unit circle 

 
1 1 2

0 0
4 4 1ydx x dx  (F.2) 

where x and y are defined in Figure F.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F.1 Area of a quarter of a circle 
 
Alternatively, we can also define  as  

 
1 11

2 00

14 4 tan
1

dx x
x

 (F.3) 

By employing Euler’s formula, Fagnano defined  as: 

 
/214ln

1

ii
i

 (F.4) 

This can be shown easily by observing that 
 /4 /41 2 , 1 2i ii e i e  (F.5) 
It turns out that it is transcendental, or it is not the solution of any algebraic 
equation (proved by Lindemann in 1882). It is also an irrational number, or it could 
not be written as the ratio of two integers (proved by Lambert and Legendre in 
1700s). In other words, there are infinite decimal digits for . This is one of the 
most fundamental constant of mathematics. 
 Mathematicians had struggled in the last few thousand years to give the most 
“accurate” result for this . In 2009,  had been computed to 2.7 trillion decimal 
digits. In fact, the speed of a supercomputer is normally gauged by measuring the 
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time that it takes to calculate the trillion digits of  (this apparently was advocated 
by John von Neumann).  
 For practical purposes, these most “accurate” ’s normally do not have much 
significance. For example, the approximation by Zu proposed in 462 AD: 

 355
113

 (F.6) 

This gives 3.14159292... compared to the more accurate result 3.14159265... If you 
draw a circle 10 km in diameter, this approximation gives a circumference of the 
circle of less than 4 mm. Thus, a 6-digit accuracy appears to be good enough for 
most engineering applications. It is, however, of fundamental importance and of 
theoretical interest to summarize some commonly used formulas and some less 
commonly known formulas of . 
 It has been known for thousands of years that a first approximation in rational 
form is  

 22
7

  (F.7) 

This number and 3.14 are the  values that all primary school students are asked to 
remember. This approximation gives only 0.04% error. If you draw a circle of 10 
km in diameter, this approximation gives a circumference of the circle of about 3 
m. In 825, Archimedes gave the result as 

 223 22
71 7

  (F.8) 

In fact, the number 355/113 is the most accurate fraction approximating  for a 
denominator of less than 16,586. To see this, if there is fraction more accurate than 
355/113, we must have 

 355 2 0.00000026677
113

q
p

 (F.9) 

This can be rewritten as 

 1 355 113 2 0.00000026677
113

p q
p

 (F.10) 

Since 355p 113q must be an integer larger than 1, we must have a less restrictive 
inequality: 

 1 16586
(113 2 0.00000026677)

p  (F.11) 

Thus, this completes the proof. Other commonly adopted fractions for  include: 

 

333 754 7303.141509..., 3.14166..., 3.14655...,
106 240 232
195,882 211,8693.141602..., 3.14159253...
62,351 67,440

  (F.12) 

 Historically, the number of significant digits was improved by cutting a circle 
geometrically into more segments. One such geometrically obtained formula is by 
Viète in 1615 (published posthumously): 
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1R

1/ 2

2

/ 2
A

B

C

O Z

1

/ 2

A

C

/ 2

E

/ 2

D

x
O

 
2 2 22 2 2 2 ...

2 2 2
  (F.13) 

This formula is of theoretical significance, since it is the first formula that extends 
to infinity. We outline the proof of the Viète’s formula briefly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F.2 Viète scheme for calculating the circumference of a circle 
 
Consider the case that  = /4 in Figure F.2; we have 



 Appendices   921 

 

 1 2cos( )
4 22

  (F.14) 

Next, we can use the sum rule for the cosine function as 

 2cos( ) cos( ) 2cos ( ) 1
4 8 8 8

  (F.15) 

Solving (F.15) and noting the result of (F.14) gives 

 2
1 cos( ) 2 24cos ( )

8 2 4
  (F.16) 

Therefore, we have 

 2 2cos( )
8 2

  (F.17) 

The process of taking half of the angle again leads to  

 2cos( ) cos( ) 2cos ( ) 1
8 16 16 16

  (F.18) 

Thus, the solution of it and in view of (F.17) gives 

 
2 2 2

cos( )
16 2

  (F.19) 

Clearly, we can repeat the process of halving the angle to infinitely small angles. 
This is the basis for Viète’s formula going to infinity. For example, we can easily 
see that 

 
2 2 2 2 2 2

cos( )
128 2

  (F.20) 

 Or more generally, we can express the general form as: 

 
2 2 2 2 2 ... 2

cos( )
4 2k

  (F.21) 

In (F.21), there is a k square root sign on the right hand side. When k  , we will 
have an infinitely long square root term on the right. 
 Our main task is now to link the above identity of the cosine function to the 
circular arcs AC and AE shown in Figure F.2. First, we recall that 

 sec( ) 2 sec
4

  (F.22) 

From right angle triangle OAB, the length of AB is  

 1cos
sec

AB R   (F.23) 

From right angle triangle OAZ, we see that AZ equals   

 2 21 1 2 secAZ   (F.24) 
Thus, AB equals   
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 2
2 2

AZAB   (F.25) 

Considering triangle ABC and assuming that BAC = /2 (this will be verified as 
true), we have 

 1sec sec sec
2 2 2

AC AB   (F.26) 

Noting (F.17) and (F.22) that 

 2sec 2, sec
2 2 2

  (F.27) 

Substitution of (F.27) into (F.26) gives 

 2 1 2 2 2 1 2 2
2 22 2 2 2 2 2

AC   (F.28) 

Let us now use the Pythagoras theorem (independent of the assumption that angle 
BAC is /2) as 

 
2

2 2 2 ( 2 1) 4 2 2 2 2
4 2 2

AC AB BC   (F.29) 

This result is consistent with (F.26) which is a result of the assumption that BAC 
= /2. Thus, we have proved that BAC is indeed /2. This also proves the validity 
of (F.26). 
 However, taking the first approximation that arc AC equals straight line AC, 
we have the circumference as 

 2 8 8 2 2AC   (F.30) 
Inverting this formula, we have 

 2 1 2 2 1 2 2 2 2 2( ) ( )
2 2 222 2 2 2 2 2 2 2

  (F.31) 

This is clearly the first two terms in the Viète’s formula given in (F.13).  
 Now, let us take the next approximation shown in the lower figure in Figure 
F.2. Now, let us first apply the Pythagoras theorem that 

 

2 2 2 2 2 2sin ( ) (1 ) sin ( ) [1 cos( )]
2 2 2

2 2cos( ) 2 2 2
2

AE AD DE x
  (F.32) 

In obtaining the last result of (F.32), we have employed the result of (F.17). 
Finally, we want to show that it can be expressed as:  

 12 2 2 sec sec( )sec( )
4 2 4

AE   (F.33) 

In view of (F.19). the right hand side of (F.33) is 
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1 1 2 2 2sec sec( )sec( )
4 2 4 4 2 2 2 2 2 2

2 2 22 1 1
2 2 2 2 2 2 2 2 2

2 2 22
2 2 2 2 2

2 2 2

RHS

  (F.34) 

Therefore, it equals the left hand side of (F.33). One half of the circumference is 
approximately given as: 

 4 sec sec( )sec( )
2 2 4

AC   (F.35) 

In view of (F.34), inversion of (F.35) gives 

 
2 2 22 2 2cos cos( )cos( )

2 4 2 2 2
  (F.36) 

When we repeat the halving procedure infinitely, we have Viète’s formula: 

 
2 2 22 2 2 2 ...

2 2 2
  (F.37) 

Viète’s formula can actually be obtained by setting A = /2 in the following 
formula for the infinite product of cosines (discovered by Euler): 

 sin

cos cos cos ...
2 4 8

AA
A A A

  (F.38) 

But such technique is tedious and the best that can be done was only up to 40 digits 
in 1630 by Grienberger.  Beyond this, calculus and infinite series are needed.  
 A particularly useful formula in calculating  involves the arctangent. In 
particular, using calculus and Taylor series expansion it was found that 

 
3 5 7

1tan ( ) ...
3 5 7
x x xx x   (F.39) 

Setting x = 1 in (F.39), Leibniz obtained the following result in 1673 

 1 1 1 1tan (1) 1 ...
4 3 5 7

  (F.40) 

With this value of the arctangent, John Machin in 1706 proposed a more refined 
formula that involves two arctangent functions: 

 1 11 14 tan ( ) tan ( )
4 5 239

  (F.41) 

Using it, Machin obtained 101 digits of . Euler in 1755 followed the same line of 
analysis and obtained 205 digits of . Gauss proposed another form as: 
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 1 1 11 1 13tan ( ) tan ( ) tan ( )
4 4 20 1985

  (F.42) 

Although these kinds of formulas are more complicated, they converge faster. The 
human record on the digits of  was obtained by Levi Smith in 1949 with 1121 
digits. This is the end of human computation of digits of , but it also marks the 
emergence of computer calculation of . Actually, there are an infinite number of 
formulas similar to (F.41) and (F.42). To see how to generate them, we follow 
Casper Wessel’s (a Danish surveyor) approach of using complex numbers. Let us 
start with a simple example as: 
 (2 )(3 ) 5 5i i i   (F.43) 
Rewriting it in terms of the polar form we have 
 ( )1 2 1 2

1 2 1 2
i i i ir e r e r r e re   (F.44) 

However, from the original complex numbers in (F.43), we have 

 1 1 1
1 1

1 1tan ( ), tan ( ), tan (1)
2 3 4

  (F.45) 

Equation (F.44) instantly gives another simple formula of the type of (F.41) and 
(F.42) as: 

 1 11 1tan ( ) tan ( )
4 2 3

  (F.46) 

 This analysis can be extended to more general cases  
 2 2( 1 )(2 1 ) 2 2 1 (2 2 1)n in n i n n i n n   (F.47) 
Using the same line of argument, we get 

 1 1 1tan ( ) tan ( )
4 1 2 1

n
n n

  (F.48) 

Alternatively, we find 

 2 2 2 2

( 2 1 )[2 2 1 (2 1)]

2 2 (2 1) (2 1) [2 2 (2 1) (2 1) ]

n k in n k i k

n n k k i n n k k
  (F.49) 

Thus, we have 

 1 1 2 1tan ( ) tan ( )
4 2 1 2 2 1

n k
n k n k

  (F.50) 

When k = 0 and n = 1, (F.46) is recovered. Clearly, (F.50) is true for any integer of 
n and k, therefore we have an infinite number of formulas of this type. 
 Other similar forms are 
 2 2[4 10 1 (4 10 1)][4 10 ] (4 10 ) 1 [(4 10 ) 1]n n n n ni i i   (F.51) 
The corresponding arctangent formula is 

 1 14 10 1 1tan ( ) tan ( )
4 4 10 1 4 10

n

n n   (F.52) 

A more elaborate formula involves the power of a complex number, for example 
 4(5 ) ( 239 ) 114244 114244i i i   (F.53) 
The author is encouraged to show the validity of the above formula. This gives  
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 1 11 14 tan ( ) tan ( )
4 5 239

  (F.54) 

This is the Machin formula that we noted in (F.41). This kind of formula may not 
be easily obtained but there are an infinite number of them as illustrated in (F.50) 
and (F.52). The convergence of each formula varies from one to another. We report 
here some of the more well-known formulas from Euler, Gauss, and others: 

 1 11 12 tan ( ) tan ( )
4 3 7

  (F.55) 

 1 11 35tan ( ) 2 tan ( )
4 3 79

  (F.56) 

 1 1 11 1 1tan ( ) tan ( ) tan ( )
4 2 5 8

  (F.57) 

 1 1 11 1 14 tan ( ) tan ( ) tan ( )
4 5 70 99

  (F.58) 

 1 1 11 1 14 tan ( ) 2 tan ( ) tan ( )
4 5 408 1393

  (F.59) 

 1 1 11 1 16 tan ( ) 2 tan ( ) tan ( )
4 8 57 239

  (F.60) 

 1 1 11 1 112 tan ( ) 8 tan ( ) 5 tan ( )
4 18 57 239

  (F.61) 

 1 1 11 1 14 tan ( ) tan ( ) tan ( )
4 5 240 57361

  (F.62) 

 1 1 1 1 11 1 1 1 5tan ( ) tan ( ) tan ( ) tan ( ) tan ( )
4 4 5 12 13 27

  (F.63) 

The steps to prove the identities involving three arctangent functions are somewhat 
similar, although it is more tedious. For example, to prove (F.62) we can consider 

 
4(5 ) (240 )(57361 ) (476 480 )(240 )(57361 )

6580568644(1 )
i i i i i i

i
  (F.64) 

Thus, the identity of (F.62) is established by using the polar form of the complex 
numbers on both sides. 
 
Other formulas for the evaluation of  include: 
 
John Wallis: 

 2 4 4 6
4 3 3 5 5

  (F.65) 

Lord Brouncker: 
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 2 1
91 252 492

2 ...

  (F.66) 

Al-Kashi: 

 2 3 4 5 6 7 8 9
16 59 28 1 34 51 46 14 502 6
60 60 60 60 60 60 60 60 60

  (F.67) 

Takano: 

 1 1 1 11 1 1 148tan ( ) 128tan ( ) 20 tan ( ) 48tan ( )
49 57 239 110443

  (F.68) 

Gregory-Leibniz:  

 1 1 1 1 11 ...
4 3 5 7 9 11

  (F.69) 

Euler:  

 3 5 7 3 5 7
1 1 1 1 1 1 1 1... ...

4 2 33 2 5 2 7 2 3 3 5 3 7 3
  (F.70) 

Simon Plouffe:  

 
0

1 4 2 1 1( )
8 1 8 4 8 5 8 616n

n n n n n
  (F.71) 

It would be incomplete in any discussion of  without mentioning the amazing 
formulas by the Indian mathematics genius Ramanujan. Some of them are the 
results from the analyses of the elliptic integral and modular equation. Here is one 
of his amazing formulas: 

 4 4
0

1 2 2 (4 )!(1103 26390 )
9801 ( !) 396 n

n

n n
n

  (F.72) 

The first term in this series already gives 7 digits of  

 9801 3.14159273..
2206 2

  (7 digits) (F.73) 

We can add eight correct digits with each additional term in the summation. This 
convergent rate is amazing. He also gave other very simple but peculiar forms of 
approximations of , which are largely different from other approximations. Here 
are some of them (Ramanujan, 1910): 

 3 ln(640320) 3.141592654...
163

  (15 digits) (F.74) 

 3 ln(5280) 3.141592653...
67

  (9 digits) (F.75) 

 
2

3

0

1 42 5( )
1616

n
n

n
n

C n   (F.76) 
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2

24 199 3.141592652..
22

 (9 digits) (F.77) 

 4
2143 3.141592653..
22

 (9 digits) (F.78) 

 12 (2 5)(3 13)ln{ }
130 2

  (F.79) 

 24 10 11 2 10 7 2ln{ }
4 4142

  (F.80) 

 12 ln{(2 2 10)(3 10)}
190

  (F.81) 

 1/41(97.5 ) 3.14159273..
11

  (7 digits) (F.82) 

 63 17 15 5( ) 3.14159265380...
25 7 15 5

  (11 digits) (F.83) 

 355 0.0003(1 ) 3.141592744...
113 3533

  (7 digits) (F.84) 

 1 1( )
0.1125395392 2

  (7 digits) (F.85) 

 2 6 2 10 2 2
1 1103 27493 1 1 3 53883 1 3 1 3 5 7( )( ) ( )( ) ...

2 2 42 2 99 99 4 99 4 8
   (F.86) 

 12 1ln{ (3 5)(2 2)[(5 2 10) 61 20 10 ]}
4310

(22 digits)  

  (F.87) 

3 64 5 29 9 3 6 5 3 6ln{( ) (5 29 11 6)[ ( ) ( )] }
4 4522 2

  (31 digits) 

   (F.88) 
An improved version of Ramanujan’s formula given in (F.76) is known as the 
David-Gregory-Chudnovsky formula 

 3 3 3/2
0

1 ( 1) (6 )!(13591409 545140134 )12
(3 !)( !) 640320

n

n
n

n n
n n

  (F.89) 

This improved result will lead to 14 correct digits just by the first term. In 1998, 
this formula was used to calculate 1 billion decimals. 
 There are also some very peculiar observations about . Here are the first 38 
digits of  
 3.1415926535897932384626433832795028841...   (F.90) 
Amazingly, this number appears to have intimate relation with prime (i.e., an 
integer that cannot be written in terms of multiples of integers of other than 1 and 
itself). We see that the first digit is 3, which is a prime. The first two digits are 31, 
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which is also a prime. The first six digits are 314159 which is also a prime. More 
amazingly, the first 38 digits of  is also prime. That is, the following are primes: 

 

3
31
314159
31415926535897932384626433832795028841

  (F.91) 

More interestingly, it was discovered that the reverse of the first three primes are 
also primes: 

 
3
13
951413

  (F.92) 

But, it has been checked up to the first 432 digits of  and no more primes were 
found. It is still not known whether there is another prime for more digits of . In 
addition, 314159 is a very peculiar prime. The complement number of this prime 
(each digit of the number is replaced by the difference of it with 10) is 796951, 
which is also a prime. If this prime is chopped into 3 two-digit numbers as 31, 41, 
and 59, we obtain another three primes. They are, by the way, twin primes. That is, 
29 and 31 are twin primes, 41 and 43 are twin primes, and finally 59 and 61 are 
also twin primes. The sum of them, i.e., 31+41+59 = 131, is also a prime, and the 
sum of the cube of them, i.e., 313+413+593 = 304091, is also a prime. In 
conclusion, 314159 is a very peculiar prime and is the first 6 digits of . 
 There are too many coincidences between prime and . There may exist a 
more in-depth relation between them, and it remains to be discovered.  
 
Problem F.1 Prove Euler’s formula given in (F.38) 

 sin

cos cos cos ...
2 4 8

AA
A A A

  (F.93) 

Hints: The following formulas are useful 

 sin 2sin cos
2 2
A AA   (F.94) 

 
sin

2lim 1

2

n

n
n

A

A   (F.95) 

Problem  F.2 Use the result of Problem F.1 to show the validity (F.13):  

 
2 2 22 2 2 2 ...

2 2 2
  (F.96) 

 
Problem  F.3 Prove that  

 1 1 1tan ( ) tan ( ) tan
1
a ba b

ab
  (F.97) 
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Problem  F.4 Use the result of Problem F.3 to show that  

 1 1 1
2

1 1tan ( ) tan ( ) tan ( )
1

q
p q pp pq

  (F.98) 

Problem  F.5 Use the result of Problem F.4 to show that  

 1 11 1tan ( ) tan ( )
4 2 3

  (F.99) 

Problem  F.6 Use the following formula  

 1 1 1tan ( ) tan ( ) tan
1
a ba b

ab
  (F.100) 

to show that 

 1 11 99tan ( ) tan ( )
4 100 101

  (F.101) 

Problem  F.7 Prove that  

 1 1 1
2

1 1 1tan ( ) tan ( ) tan
( 1) /b a b b b a

  (F.102) 

and subsequently show that 

 1 11 49tan ( ) tan ( )
4 99 50

  (F.103) 

Problem  F.8 Use Wessel’s complex number approach to show that  

 1 1tan ( ) tan ( )
4 2

n k
n k n k

  (F.104) 

and subsequently show that 

 1 11 3tan ( ) tan ( )
4 4 5

 . (F.105) 
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SELECTED BIOGRAPHIES  

 
Knowing the biographies of mathematicians and scientists is essential for readers to 
appreciate the significance of these mathematical theories. Many of these 
mathematical techniques in solving the associated differential equations have great 
influence on the technological development of our daily lives. Biographies of a 
number of mathematicians, scientists, and engineers whose works are covered or 
mentioned in this book are included here. It is sometimes difficult to distinguish 
applied mathematicians from scientists and engineers, especially theoretical 
scientists. The main references for this section are Jenkins-Jones (1996), Struik 
(1987), James (2002), Kline (1972), and Millar et al. (2002). This section will 
hopefully form a mini-Who’s Who in differential equations, and their applications 
to mechanics and engineering. 
 
Abel, N.H. (1802 1829) was a Norwegian mathematician who made major 
contributions to elliptic functions, integral equations, infinite series, binomial 
theorem, and group theory. He provided the first stringent proof of the binominal 
theorem. He revolutionized elliptic integrals. He discovered Abelian functions. He 
proved that no algebraic solution of the general fifth degree (quintic) equation 
exists, but ironically Gauss threw his proof away unread when Abel sent it to him. 
Abel was extremely poor throughout his life, and was unrecognized. In 1825, he 
visited France and Germany but was largely ignored  by mathematicians like Gauss 
and Cauchy, except Leopold Crelle. He died at age 26 due to tuberculosis. Two 
days after his death, a letter arrived from Crelle offering him a professorship at 
Berlin.   
 
Adams, J.C. (1819 1892) was a British mathematician and astronomer. His most 
famous achievement was his prediction of the existence of Neptune using 
"perturbation theory" while he was still an undergraduate student, but his prediction 
was not followed up by G.B. Airy. He was the Lowndean Professor at University of 
Cambridge and a recipient of the Gold Medal of the Royal Astronomical Society in 
1866. He was also a foreign honorary member of the American Academy of Arts 
and Sciences. He was supposed to be knighted by Queen Victoria but declined. The 
Adams-Moulton formula in the finite difference method in Chapter 15 is named 
after him. 
  
Airy, G.B. (1801 1892) was a British mathematician, astronomer, and 
geophysicist. A special function called the Airy function was the result of a kind of 
water wave.  In 2-D elasticity, the Airy stress function has been of great importance 
to the analysis of 2-D elasticity problems. He considered the bending of beams and 
published in 1862 the use of the stress function on a rectangular beam, but failed to 
consider the compatibility condition. He was also involved in laying the 
transatlantic telegraph cable, and the construction of the clock of Big Ben. Airy 
was, however, better known for serving as the Astronomer Royal for 46 years and 
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for measuring Greenwich mean time by stars crossing the meridian observed 
through his telescope. Airy was arrogant and perhaps best known for his failure to 
exploit Adam’s prediction of a new planet, Neptune. While still an undergraduate, 
Adam sent his prediction to Airy, but Airy was skeptical. He asked Adams for 
clarification but did not receive a complete reply from Adams. Nine months later 
Le Verrier of France made the same prediction, which led to the discovery of 
Neptune. 
 
Bateman, H. (1882 1946) was an English mathematician and moved to USA in 
1910 and took up his permanent position at the California Institute of Technology 
(Caltech) in 1917. He published his textbook Differential Equations in 1915, and 
Partial Differential Equations in Mathematical Physics in 1932. He was elected to 
the National Academy of Sciences in 1930 and to the Royal Society of London in 
1928. When he passed away in 1946, a huge number of drafts of manuscripts on 
special functions and mathematical tables for integral transforms were left behind 
at Caltech, and Erdelyi was recruited to form a team to finish his classical works of 
“Bateman Manuscript Project.” These are significant textbooks on differential 
equations and engineering mathematics. 
 
Beltrami, E. (1835 1900) was an Italian mathematician who made notable 
contributions to differential geometry, non-Euclidean geometry, and mathematical 
physics. He developed the singular decomposition theory for matrices. We have 
mentioned Beltrami equations in Chapter 7 when we talked about the canonical 
form of elliptic PDEs.  
 
Bernoulli, Daniel (1700 1782) was a Swiss mathematician and physicist.  He was 
one of the main pioneers of differential equations through interactions with Euler. It 
was Bernoulli who found Euler a job at St. Petersburg. The Bernoulli equation in 
fluid mechanics was named after him and is the main principle that the airplane 
wing was based upon. 
     
Bernoulli, Jacob (1655 1705) was a Swiss mathematician and a brother of Johann 
Bernoulli. He studied theology first and then shifted to mathematics and astronomy. 
He was one of the main contributors to calculus, differential equations, and the 
calculus of variations. The Bernoulli equation in first order ODEs was named after 
him. He was initially a tutor of his younger brother Johann (who was major in 
medicine), but soon their rivalry turned sour. When he considered the isochrone 
problem (originally posed by Galileo), or the curve of constant descent along which 
a particle will descend under gravity from any point to the bottom in exactly the 
same time, he used the term integral for the first time. He also discovered the 
Bernoulli numbers in probability and logarithmic spirals (such a spiral even 
appeared on his gravestone).     
 
Bernoulli, Johann (1667 1748) was a Swiss mathematician and was one of the 
many prominent mathematicians in the Bernoulli family. He is known as John 
Bernoulli. He studied medicine at Basel University. He was one of the main 
contributors to differential equations and educated the youth Euler. He also solved 
the isochrone problem independent of Jacob. He and his brother Jacob are among 
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the first mathematicians using calculus to solve real problems. He was also the 
discoverer of the L’Hôpital’s rule.     
 
Bessel, F.W. (1784 1846) was a German astronomer and mathematician. He was 
the first to measure a star’s distance by parallax. He studied the perturbation of 
planetary and stellar motions and he developed a mathematical function, now 
called the Bessel function. This function had wide applications in many other areas 
of mechanics. The Hankel transform for cylindrical coordinates is based on the 
Bessel function. Bessel made fundamental contributions to positional astronomy, 
geodesy, and calculating the sizes of stars, galaxies, and clusters of galaxies. Based 
on the irregularities of Uranus’s orbit, he predicted the existence of Neptune in 
1840, but died a few months before its discovery. 
 
Cauchy, A.L. (1789 1857) was a French civil engineer, mathematician, and 
mechanician who founded complex analysis and contour integration (on which the 
inverse Laplace transform is based). He also made major contributions in 
continuum mechanics and elasticity. He published 7 books and over 700 papers, on 
such topics as calculus, definite integrals, limits, probability, convergence of 
infinite series, mechanics, astronomy, geometry, wave modulation, and complex 
functions. There are 16 concepts and theorems named after him, the most of any 
mathematician. The story is told that when Cauchy presented his theory of 
convergence of series, Laplace rushed home and checked those series that he used 
in his books on celestial mechanics (luckily they all converged). He was a devoted 
teacher, was the most careful in citing other people’s works, and candidly admitted 
errors in his publications. He is also a founder of the matrix method for systems of 
first order ODEs.  
 
Cayley, A. (1821 1895) was a British mathematician who knew many languages, 
including Greek, French, German, and Italian. He worked as a lawyer for 14 years. 
He developed matrix algebra, algebraic invariants, and n-dimensional geometry. He 
was a recipient of the Royal medal and Copley medal of the Royal Society. He 
finished his undergraduate course by winning the place of Senior Wrangler and the 
first Smith’s Prize. He is among the most prolific researchers. A total of 967 papers 
were assembled in his 14 volumes of collected works published by Cambridge 
University Press. He worked in nearly all areas of mathematics. His hobbies 
include novel reading, painting, architecture, traveling, and hiking. He wrote many 
papers in French and was totally at home with German and Italian. He was popular 
among continental mathematicians. For example, Hermite compared him to Cauchy 
and others even compared him to Euler. There are also criticisms of him. Tait 
remarked "Is it not a pity that such an outstanding man puts his abilities to such 
entirely useless questions?" and when G.H. Hardy was asked whether he thought 
Cayley was a great mathematician, he just glared. Indeed, it is not too difficult to 
spot careless typos in his collected works with careful reading. Quality and quantity 
are not always compatible. The factorization of the ODEs discussed in Section 
3.5.10 was introduced by Cayley. 
 
Charpit, P. (?? 1784) was a “young” French mathematician who died in 1784.  
His birth year is not known. The so-called Lagrange-Charpit method for nonlinear 



934  Theory of Differential Equations in Engineering and Mechanics 

1st order PDEs (also referred to as the “Lagrange method” or “Charpit method” in 
the literature) was named after him. Paul Charpit was a nephew of Laplace, and had 
assisted in a course of Monge. There is a dispute in recent literatures as to whether 
Charpit contributed anything to the so-called Lagrange-Charpit method (e.g., Kline, 
1972, p 535). Charpit submitted a paper to the French Academy of Sciences in 
1784, the year of his death. The work was never published. His work was first 
reported and publicized by Sylvestre-Francois Lacroix in 1814 (Johnson, 2010). 
Kline (1972) reported that when Jacobi learned about the method from Lacroix, he 
expressed the wish that Charpit’s work be published. Kline (1972) further claimed 
that it was never done. Kline (1972) further questioned the reliability of Lacroix’s 
claim in his book, and he inferred that “Lagrange had done the full job and Charpit 
would have added nothing.” In fact, the assertion by Kline is not accurate.  Grattan-
Guinness and Engelsman (1982) did find the original manuscript of Charpit that 
Lacroix got at the Archives of the Academie des Sciences, Paris. A copy owned by 
Charpit’s friend Arbogast was also found at the Biblioteca Medicea-Lauenziana, 
Florence. According to Grattan-Guinness and Engelsman (1982), Charpit presented 
his paper on June 30, 1784, but died on December 28, 1784. When Charpit read his 
paper to the Academie des Sciences, Monge, Bossut, Condorcet, Cousin, Laplace, 
Vandermonde, and de Borda were present. The original paper was in Laplace’s 
hands for 9 years before he passed it to Lagrange on June 13, 1793. In September 
1973, Lagrange sent the text to Arbogast, who made a copy (which ended up at 
Florence’s library mentioned above). Then, Arbogast sent the original paper to 
Lacroix (which ended up at Paris’s Archives of the Academie des Sciences 
mentioned above).  When H. Villat sorted documents in the Archives of the 
Academie des Sciences in 1928, he unearthed Lacroix’s copy of Charpit’s paper.  
He made a photocopy and sent it to N. Saltykow in Belgrade, who published the 
main content of Charpit’s paper in French in two separate papers (Saltykow, 1930, 
1937). The content of these papers did contain the main equations that we today 
call the Lagrange-Charpit method. Therefore, we disagree with Kline’s (1972) 
verdict that Charpit would have added nothing to the method.  
   
Clairaut, A.C. (1713 1765) was a French mathematician, astronomer, and 
geophysicist. He was a prodigy, published his first paper at the age of twelve, read 
in front of Academie of France at fourteen, and published his first book at eighteen 
in 1731. He found the exact condition for 1st order ODEs. The Clairaut equation 
was named after him, and in the process he found his singular solution of 
differential equation. His second book in 1743 was on the equilibrium of fluids and 
the attraction of ellipsoids of revolution. In the book, Clairaut’s theorem was 
applied to find Earth's ellipticity based on surface measurement of gravity. His 
third book in 1752 was on the three-body problem in astronomy. He calculated the 
path of Halley’s comet as affected by the perturbation of the planets. He was 
elected to fellow of the Royal Society at the age of twenty-four.   
  
Courant, R. (1888 1972) was one of the most influential applied mathematicians 
of our time, and was a student of Hilbert and Klein.  He helped Hilbert to search 
literature and write lectures. As a result, he co-authored with Hilbert the book 
Methods of Mathematical Physics. It is a classic for both applied mathematicians 
and physicists (in fact Hilbert’s contribution to the writing of this book is limited). 
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His charisma made him an educational leader. The CFL stability criterion of the 
finite difference method for solving PDEs was named after him, Friedrichs, and 
Lewy. According to J.T. Oden (1987), Courant was also one of the founders of the 
present-day finite element method. He left Germany and joined New York 
University and pretty much single-handedly founded the Courant Institute of 
Mathematical Sciences in 1936. He recruited K.O. Friedrichs and J.J. Stoker, 
making “Courant Institute” the home of the next generation of applied 
mathematicians in the United States. He was a member of the National Academy of 
Sciences of USA.   
 
D’Alembert, J.L.R. (1717 1783) was a French mathematician, mechanician, 
physicist, philosopher, and music theorist. He studied law and medicine before he  
shifted to mathematics and mechanics. He worked on dynamics, celestial 
mechanics, and partial differential equation. The D’Alembert principle in dynamics 
was named after him. He was one of the founders of the three-body problem, 
together with Clairaut, Euler, Lagrange, and Laplace. The D’Alembert solution for 
1-D wave equations was named after him. He was the illegitimate son of writer 
Tencin and artillery officer Destouches, and was left on the steps of the Saint-Jean-
le-Rond de Paris Church. His first name Jean-le-Rond came from the name of the 
church. He was put in an orphanage and was later adopted by the wife of a glazier. 
D’Alembert’s education was secretly supported by his father Destouches, who left 
a modest sum to support him when D’Alembert was only nine. He was elected to 
the Academie des Sciences in 1741, and he was the co-editor (with Denis Diderot) 
of 17 volumes of an encyclopedia. In his later years, he helped launch the careers 
of Lagrange and Laplace. He was the first man proposing the idea of 4-dimensional 
time-space. 
 
Darboux, G. (1842 1917) was a French mathematician. He made several 
important contributions to geometry and linear differential equation. His results on 
differential geometry of surfaces were compiled in four volumes of collected works 
from 1887 to 1896. In Darboux’s hand, differential geometry became connected 
with ordinary differential equations, partial differential equations, and mechanics. 
His influence in France was compared to that of Klein in Germany. He was a 
biographer of Henri Poincaré and edited the Selected Works of Joseph Fourier. In 
1884, he was elected to Academie des Sciences, elected as a fellow of the Royal 
Society in 1902, and received the Sylvester Medal in 1916. 
 
Debye, P.J.W. (1884 1966) was a Dutch-American physicist, physical chemist, 
and applied mathematician, and Nobel laureate in Chemistry (1936). His degree 
was in electrical engineering and he got his PhD following theoretical physicist 
Arnold Sommerfeld, who later claimed that his most important discovery was Peter 
Debye. In 1909, Debye obtained a new integral representation of the Bessel 
function of large order using the method of steepest descent of Riemann. He 
developed the theory for dipole moment to charge distribution in asymmetric 
molecules in 1912 (the units of molecular dipole moments are termed “Debyes” in 
honor of him). He derived the Planck radiation formula using a method which 
Plank agreed was simpler than his own. In 1913, he extended Bohr’s atomic 
structure, introducing elliptical orbits. In 1914 1915, he and Paul Scherrer 
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calculated the effect of temperature on X-ray diffraction of crystalline solids (the 
Debye-Waller factor). He and his assistant developed the Debye-Huckel equation 
to model the conductivity of an electrolyte solution in 1923. He also developed a 
theory to explain the Compton effect, the shifting of the frequency of X-rays when 
they interact with electrons. After serving as professor at the University of Zurich 
(succeeding Einstein in 1911), Utrecht, Gottingen, ETH Zurich, Leipzig, and 
finally Berlin (succeeding Einstein in 1934), Debye moved to Cornell University in 
1940 for good just before the Nazi invasion of the Netherlands (we will come back 
to this later). He was awarded the Rumford medal in 1930, the Lorentz medal in 
1935, the Nobel Prize in 1936, the Franklin medal in 1937, the Max Plank medal in 
1950, the Priestley medal in 1963, and the National Medal of Science in 1965. 
Actually, Debye was nominated 47 times to receive the Nobel Prize, both in 
Physics and Chemistry. Two of these nominations were made by the great 
mathematician David Hilbert. Debye’s name was never mentioned in Struik (1987) 
and Kline (1972), Jenkins-Jones (1996) listed him as physicist, and Millar et al. 
(2002) listed him as chemical-physicist.  In Chapter 13, we mentioned the saddle 
point method by Debye. He is also known for the Debye potential in solving 
Maxwell equations for spherical waves. Therefore, Debye should at least be 
identified as an applied mathematician, as we did here. According to Beiser (2003), 
Heisenberg, a colleague of Debye for a time, thought him lazy (“I frequently see 
him walking around his garden and watering roses even during duty hours of the 
Institute”), but Debye published nearly 250 papers and received the Nobel Prize in 
chemistry in 1936. 
 Forty years after death, a Dutch book written by Rispens accused Einstein of 
actively trying to prevent Debye from being appointed in the United States and 
further accused Debye of being a Nazi activist, and stirred an international debate 
(leading to the 2007 NIOD report and the 2008 Terlow report). This initially 
resulted in the “Debye Institute” at University of Utrecht being renamed in 2006 
but the name was reinstated in 2008 after the 2008 Terlow report, but otherwise the 
claims by Rispens were mainly dismissed.   In 2010, a publication by Reiding 
asserted that Debye may have been an MI6 spy because of Debye’s close friend 
Rosbaud being a well-documented spy, and because of Debye’s timely departure to 
the United States on January 16, 1940, coinciding with the planned German 
invasion of the Netherlands a day later. 
 
Dirichlet, J.P.G.L. (1805 1859) was a German mathematician who made 
contributions to partial differential equations and number theory. He proved 
Fermat’s last theorem for the case of n = 5, an exceptional feat for a 20-year-old 
without a degree. He read the result at the French Academy of Sciences, and that 
brought him immediate fame. This put him in close contact with Fourier and 
Poisson. They later introduced him to German explorer and scientist Alexander von 
Humboldt who secured a recommendation from Gauss for Dirichlet and helped to 
secure a teaching position for Dirichlet at the University of Breslau. However, he 
failed to pass the doctoral dissertation submitted to the University of Bonn because 
of his poor Latin. But because of his work on the last Fermat theorem, the 
university bypassed the problem by awarding him an honorary doctorate in 1827. 
He became the youngest member of the Prussian Academy of Sciences at age 27 in 
1832. His Dirichlet theorem proves the existence of an infinite number of primes.  
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He was a friend of Gauss and Jacobi. He succeeded Gauss’s chair at Gottingen in 
1855. His students at Gottingen included R. Dedekind, B. Riemann, and M. Cantor. 
He found the sufficient conditions for Fourier series to converge in 1829. The 
Dirichlet boundary value problem in PDEs was named after him. His PhD students 
included L. Kronecker and R. Lipschitz. His collected work was edited by 
Kronecker and L. Fuchs, initiated by the Academy of Berlin. He was a foreign 
member of Royal Society and French Academy of Sciences.   
 
Du Bois-Reymond, P. (1831 1889) was a German mathematician who worked on 
mathematical physics, including the Sturm-Liouville theory, integral equations, 
variational calculus, and Fourier series. He coined the terms elliptic, parabolic, and 
hyperbolic for the classification of the 2nd order PDEs. 
 
Erdelyi, A. (1908 1977) was a Hungarian-born British mathematician who was a 
leading expert on special functions, especially hypergeometric functions. He got a 
degree in electrical engineering from Czechoslovakia. He got a DSc in 1940 and 
joined the University of Edinburgh with the help of E.T. Whittaker.  In 1946, 
Whittaker recommended Erdelyi to the California Institute of Technology to take 
up the task of publishing Harry Bateman’s manuscripts: the Bateman manuscript 
project.  He was elected fellow of the Royal Society of Edinburgh in 1945, and 
fellow of the Royal Society in 1975.  
 
Euler, L. (1707 1783) was a Swiss mathematician, physicist, and astronomer. He 
is recognized as the greatest mathematician genius of all time. He wrote almost 900 
papers, memoirs, books, and other works, and is one of the most prolific 
mathematicians ever. He made seminal contributions to differential equations. In 
terms of mechanics, he contributed to the principle of superposition, the principle 
of virtual work, the free-body and section principle, tidal theory, and the Laplace 
equation in potential flow. His investigation of the seven-bridge problem of 
Konigsberg marked the beginning of graph theory. Euler made major contributions 
to all areas in mathematics, engineering, and science, including calculus, 
differential equations, analytic and differential geometry of curves and surfaces, 
number theory, infinite series (such as Euler’s constant in infinite series), calculus 
of variations, optics, acoustics, light, and hydrodynamics. It was estimated that 
three-quarters of analytical mechanics consists of Euler’s contributions. He also 
contributed to the design of telescopes, microscopes, and ships. His solution of the 
three-body problem of Earth, Moon, and Sun improved navigational tables. He 
developed much of classical perturbation theory. In geometry, the beautiful Euler 
formula for polyhedron relates numbers of vertices, edges, and faces. Euler’s 
formula of e i+1 = 0 is considered by many to be the most famous and beautiful 
formula in mathematics. In structural mechanics, Euler’s buckling formula for 
columns remains a classical result today. He investigated the base of the natural 
logarithm e (Euler’s number). The Eulerian formulation for large deformations is 
named in honor of him. Most of our modern mathematical notations are those of 
Euler. After Euler lost one of his eyes in Russia, he said “now I have less 
distraction and can focus more.” Euler had a prodigious memory and could perform 
complex calculations in his head when he became blind in his old age. 
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Forsyth, A.R. (1858 1942) was a Scottish mathematician who worked on theory 
of functions and differential equations. He was elected a fellow of the Royal 
Society in 1886 and awarded the Royal medal in 1897. He was forced to resign his 
chair at the University of Liverpool as a result of his adultery with the wife of 
physicist Boys. His only student was E.T. Whittaker, whose biography is also 
covered in this section. His most important contribution to differential equations 
was his 6 volumes of Theory of Differential Equations. 
 
Fourier, J.B.J. (1768 1830) was a French mathematician and physicist. The 
Fourier series, Fourier transform, and Fourier law of heat conduction were named 
in his honor. He accompanied Napoleon on his Egyptian expedition. His name is 
inscribed on the Eiffel Tower. He also contributed to dimensional analysis, and the 
heat equation or diffusion equation in 2nd order PDEs. He was the first in 
discovering the greenhouse effect of the Earth’s atmosphere. He attended Ecole 
Normale in Paris and was taught by Lagrange, Laplace, and Monge. His advisor 
was J.L. Lagrange and his students included G. Dirichlet. He was elected to the 
Academie des Sciences in 1817. 
 
Fredholm, E.I. (1866 1927) was a Swedish mathematician who contributed to 
integral equations and the theory of Hilbert space. His teacher was Mittag-Leffler. 
The Fredholm integrals of the first and second kinds are named in honor of him. 
His Fredholm Alternative Theorem considered the existence of a solution to the 
nonhomogeneous differential as well as integral equations, and is a very important 
theorem in differential equations. 
 
Friedrichs, K.O. (1901 1982) was a German American mathematician. When he 
taught at Technische Hochschule, he fell in love with a young Jewish student, 
Nellie Bruell. With the anti-Semitic rules under Hitler’s regime, they managed to 
emigrate separately to New York City where they married. In New York, he joined 
his former teacher Courant, and became the co-founder of the Courant Institute at 
New York University. He received the National Medal of Science in 1977. He 
worked on partial differential equations, the finite difference method, differential 
operators in Hilbert space, and nonlinear buckling of plates. The CFL criteria for 
numerical stability in time step in finite difference is named after him, Courant, and 
Levy. He formalized the boundary layer analysis proposed by L. Prandtl to become 
the method of matched asymptotic expansion.  
 
Frobenius, F.G. (1848 1917) was a German mathematician who made 
contributions to differential equations, elliptic functions, number theory, and group 
theory. He gave the first proof of the Cayley-Hamilton theorem. His teachers 
include Kronecker, Kummer, and Weierstrass. He succeeded Kronecker at Berlin 
in 1891 upon the recommendation of Weierstrass. He was elected to the Prussian 
Academy of Sciences. 
 
Frullani, G. (1795 1834) was an Italian mathematician. He was a professor at the 
University of Pisa.  He worked on definite integrals and trigonometric functions in 
series and in integrals. The Frullani integral discussed in Section 1.8 was named 
after him.  
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Fuchs, L. (1833 1902) was a German mathematician who worked on differential 
equations. He was a student of Weierstrass and a contemporary of Riemann. His 
works resulted in a Fuchsian theory of linear ODEs. He mainly considered 
solutions of linear differential equations with singular points, which include the 
hypergeometric equation as a special case. His work was a great influence on Henri 
Poincaré. The term adjoint of differential equation was coined by Fuchs in 1873. 
 
Galerkin, B.G. (1871 1945) was a Russian/Soviet structural engineer, 
mathematician, elastician, and engineer who made significant contributions to 
numerical methods for solving differential equations and to the theory of three-
dimensional elasticity by extending Love’s potential to 3-D cases. He grew up in a 
poor family and went to work in the Russian Court as a calligrapher at the age of 
12. In his college years, he had to work as a private tutor and draftsman to support 
himself. His involvement in political activities when he worked as a railway 
engineer resulted in a 1.5-year jail sentence. It was the turning point in his life. He 
lost interest in politics and devoted himself to science and engineering. He wrote 
his first paper (130 pages) while in prison. In 1915, Galerkin published a paper on 
the approximate solution of differential equations applied to plate bending 
problems. This method is now known as the Galerkin method. This method forms 
the basis of the finite element method. He was a member of the Academy of 
Sciences (USSR). 
 
Gauss, C.F. (1777 1855) was a German mathematician considered by many to be 
one of the greatest of all mathematicians. He contributed to all areas of 
mathematics, especially number theory, statistics, and topology. In statistics, 
normal distribution is called Gaussian distribution. Gauss also originated the 
method of least squares for best fit curves among data points. In science, Gauss 
made contributions in geodesy, electric telegraph, crystallography, optics, 
mechanics, electricity, magnetism, and capillarity. His book on arithmetic is the 
basis of modern number theory. The Gauss theorem, introduced in Chapter 1, is of 
great importance in mechanics.  
 
Goursat, E. (1850 1936) was a French mathematician who contributed to 
complex analysis, differential equations, and hypergeometric series. The proof of 
the Cauchy theorem was extended by Goursat to the general situation that no 
Riemann-Cauchy relation is needed (Spiegel, 1964). It was therefore also known as 
the Cauchy-Goursat theorem (see Chapter 1). His doctoral thesis advisor was 
Gaston Darboux.  
 
Green, G. (1793 1841) was a British mathematical physicist who introduced 
Green’s theorem and Green’s function method for partial differential equations. 
The entire Chapter 8 discussed Green’s function method. These methods had huge 
impacts in applied mathematics and mechanics. His work on potential theory ran 
parallel to that of Gauss. Green’s story is remarkable in that he was almost entirely 
self-taught; he only had one year of formal education at the age of eight. The son of 
a baker, he worked his childhood years in a bakery, except for one year of formal 
schooling at Robert Goodacre Academy. He published his famous Green’s theorem 
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in “An Essay on the Application of Mathematical Analysis to the Theories of 
Electricity and Magnetism” at his own expense at the age of 35 in 1828. This work 
was considered by some to be one of the most significant mathematical works of all 
time. The way that he acquired his mathematical skill remains a mystery. He was 
encouraged by Sir Bromhead to enroll as an undergraduate at Cambridge 
University at the age of 40. He died before his work were discovered and 
publicized by Lord Kelvin (see biography of Lord Kelvin). His works were further 
developed by James Maxwell to formulate the electromagnetic theory. To 
commemorate the 200th anniversary of his birth in 1993, a plaque bearing Green’s 
name was placed in Westminster Abbey near Isaac Newton’s grave. Similar honors 
have been given to Michael Faraday, William Thomson (Lord Kelvin), and James 
Clerk Maxwell.  
 
Hadamard, J. (1865 1963) was a French mathematician who founded the area 
functional analysis. Hadamard was one of the most influential mathematicians of his 
time. He published over 300 papers containing novel and highly creative works. He 
made contributions to logic, complex analytic functions, number theory, geodesics, 
and hydrodynamics. He proved the prime number theorem (proposed by Gauss and 
Riemann) independently with Poussin that the number of prime numbers less than x 
approach x/lnx as x  . This remains perhaps the most important result in number 
theory. He published a book on psychology of mathematical minds and initiated the 
concept of “well posed” in differential equations. He was an acclaimed and inspiring 
lecturer. Hadamard’s method of descent for 2-D waves is discussed in Section 9.2.7. 
 
Hamilton, Sir W.R. (1805 1865) was an Irish physicist and mathematician who 
made major contributions to optics, mechanics and quaternions (an extension of the 
complex number to higher dimensions). His Hamilton principle is covered in Chapter 
14. In classical mechanics, the Hamiltonian is named after him. He was a fellow of the 
Royal Society of Edinburgh.  
 
Hankel, H. (1839 1873) was a German mathematician who made significant 
contributions to complex and hypercomplex numbers, and the theory of function. The 
Hankel functions provided a solution to the Bessel equation. The Hankel transform 
used in Chapter 11 bears his name. He originated the “measure” theory of point 
sets which are useful in probability, cybernetics, and electronic. 
 
Helmholtz, H. von (1821 1894) was a German physicist, mathematician, and 
physiologist. He discovered the law of conservation of energy, developed a theory 
on the nature of harmony and musical sound (he was a skillful musician), and 
invented the ophthalmoscope for viewing the human retina. Boltzmann was one of 
his students. Helmholtz was considered the most versatile scientist of his century. 
He has been called the last scholar whose work covered science, physiology, and 
the arts. Helmholtz believed that his diversified interests helped him adopt novel 
ideas in research. Together with Kirchhoff, he was one of the main contributors to 
mathematical physics in Germany in the 19th century. His work on Riemann’s 
quadratic measures led to the Lie Helmholtz space problem which is important to 
Einstein’s relativity, group theory, and physiology (Struik, 1987). Helmholtz’s 
equation (a reduced wave equation) is discussed in Chapters 7 and 9. 
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Hilbert, D. (1862 1943) was a German mathematician who worked on geometry, 
logic, and functional analysis for differential and integral equations (see Chapter 
11). Hilbert space was named after him, and is important in the spectral theory of 
self-adjoint linear differential operators (like in quantum mechanics). The Einstein-
Hilbert action for the field theory of gravitation was named after him. He also 
coauthored the famous textbook on mathematical physics with Courant. At 
Gottingen, one of his students was H. Weyl and one of his assistants was J. von 
Neumann. He listed 23 unsolved problems at the International Congress of 
Mathematics in Paris in 1900. He was a foreign member of the Royal Society. 
 
Hua, Loo-Keng, (1910 1985) was a Chinese mathematician who made important 
contributions to number theory. After three years of middle school, Hua attended 
the Chinese Vocational College in Shanghai but could not graduate due to the lack 
of funding. In 1927, he returned home in Jintan (Jiangsu Province) to help his 
father’s store and studied mathematics by himself. In 1929, Hua suffered from 
typhoid fever, resulting a partially paralyzed left leg. Hua did not receive a formal 
university education, although he was awarded several honorary doctorates (from 
the University of Nancy, the Chinese University of Hong Kong, and the University 
of Illinois). After reading his early paper, Prof. Xiong Qinglai invited Hua to study 
mathematics at Tsinghua University. Despite the lack of formal qualification, Hua 
was exceptionally hired by Tsinghua, initially at Library and eventually rose to the 
rank of lecturer because of his research papers. In 1935 36, Hua attended classes 
by visiting French mathematician Jacques Hadamard and American mathematician 
Norbert Wiener. It was reported that he was the only one who could follow through 
to the end of the lecture series. Wiener was impressed and mentioned Hua to G.I. 
Hardy at Cambridge. Hardy invited Hua to Cambridge to visit (probably 
envisioned another Ramanujan from China) for 2 years. Hua quickly established his 
name in the area of number theory. In 1938, in view of the full outbreak of the 
Sino-Japan war, Hua decided to return to Tsinghua, where Hua was hired as a full 
professor despite not having any degree. Due to Japanese occupation, Hua 
followed Tsinghua’s retreat to Yunnan. Despite the hardship of poverty, enemy 
bombing, and academic isolation, Hua continued to produce important 
mathematical papers. After the war, Hua visited Ivan Vinogradov in the Soviet 
Union for three months and then the Institute of Advanced Study at Princeton 
University in the United States. In the spring of 1948, Hua accepted the 
appointment of full professor at the University of Illinois at Urban-Champaign. In 
October 1949, he gave up his comfortable life in the United States and returned 
China with his wife and kids. Gradually, Hua moved from pure mathematics to 
applied mathematics, including linear programming, operation research, and 
multidimensional numerical integration. He was involved in solving all practical 
problems that new China faced using mathematics. His Chinese book An 
Introduction to Higher Mathematics was translated into English in 2009, with an 
excellent introduction to differential equations. He was elected a foreign associate 
of the National Academy of Sciences in 1982. Chapter 7 reported his solution for a 
circular domain governed by the biharmonic equation. 
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Huygens, C. (1629 1695) was a prominent Dutch mathematician and scientist. He 
made notable contributions to astronomy, physics, and probability. His father was a 
diplomat and was a friend of G. Galilei, M. Mersenne, and R. Descartes. Huygens 
was educated at home until the age of 16. He studied the rings of Saturn and 
discovered its moon, Titan. He invented the pendulum clock. The Huygens or 
Huygens-Fresnel principle in wave propagation was named after him. In 1646, he 
demonstrated that a catenary is not a parabola. Huygens was the first to derive the 
period of an ideal pendulum. In 1659, he derived the centripetal force of circular 
motions. He tutored the young diplomat Gottfried Leibniz in mathematics from 
1673. In 1673, Huygens found the curve down which a mass will slide under the 
influence of gravity in the same amount of time, regardless of its starting point; he 
solved this so-called tautochrone problem by geometric method. In 1675, Huygens 
patented a pocket watch. He was elected to the Royal Society in 1663. The 
Huygens principle for a 3-D wave is discussed in Chapter 9. 
 
Ince, E.L. (1891 1941) was a British mathematician who worked on differential 
equations with periodic coefficients, such as the Mathieu equation and Lame 
equation. He also introduced the Ince equation, which is a generalization of the 
Mathieu equation. He received the Smith Prize in 1918 and the Makdougall 
Brisbane Prize in 1938 1940. His famous book Ordinary Differential Equations in 
1956 remains a classic today. 
 
Jacobi, C.G.J. (1804 1851) was a German mathematician who made fundamental 
contributions to elliptic functions, dynamics, differential equations, and number 
theory. Jacobi elliptic functions formed the solution of the pendulum problem 
(Chapter 2 and Appendix D). In mapping, we check the existence of a nonzero 
Jacobian, which was named in his honor (see Chapters 1 and 6). For first order 
ODEs, we have discussed the Jacobi method in Chapter 3. For 1st order PDEs, 
there is the Jacobi method (see Chapter 6). In celestial mechanics, Jacobi’s integral 
gave the first integral of the three-body problem (Moulton, 1914). 
 
Kelvin, Lord (Thomson, William) (1824 1907) was an Irish mathematician, 
physicist, and mechanician. Kelvin is probably best known for his introduction of 
the absolute temperature scale Kelvin. As a young man, he discovered Green’s 
work, then little known, and publicized it. Since then, Green’s method has become 
a powerful tool in mathematical physics. His work on the conservation of energy 
led to the second law of thermodynamics. He was an unusual scientist with 
unparalleled enthusiasm, energy, and talent. He invented the tide gauge, an 
improved compass, and a simpler method for fixing a ship’s position at sea. He 
investigated many different areas of science. He published 661 papers and many 
books and was the author of several patents. He coined the term “turbulence” in 
fluid mechanics. The Kelvin solution in elasticity remains one of the most 
fundamental contributions to applied mechanics. For his role in the Kelvin-Stokes 
theorem, see the biography of G.G. Stokes (see also Chapter 1). His stationary 
phase method with Stokes is discussed in Chapter 12. He directed the first 
successful project for a transatlantic cable telegraph, which became operational in 
1866, and brought him considerable wealth. The Cambridge Dictionary of 
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Scientists says he was “probably the first scientist to become wealthy through 
science” (Millar et al., 2002).  
 
Kirchhoff, G.R. (1824 1887) was a German physicist and a pioneer in 
spectroscopy. He also made major contributions to plate theory and elasticity. An 
early accident made him a wheelchair user but did not alter his cheerful character 
or hinder his scientific curiosity. He formulated Kirchhoff’s law for electrical 
networks. Kirchhoff and his lifelong friend and colleague Bunsen established 
spectroscopy as an analytical technique in chemical analysis. Using spectroscopy, 
they discovered the elements cesium and rubidium, and were able to analyze the 
chemical element present in the Sun’s atmosphere (see, however, the biography of 
Stokes for his role in the development of spectroscopy). The spectrometer, 
telescope, and microscope are the most dominant scientific instruments of our time. 
Kirchhoff’s formula for 3-D waves is discussed in Chapter 9.  
 
Kline, M. (1908 1992) was a physicist and applied mathematician who studied the 
history of mathematics and philosophy on physical sciences. He graduated from 
New York University (NYU) and continued to teach at NYU as an instructor. In 
1946 1966, he was the director of the division for electromagnetic research at the 
Courant Institute of Mathematical Sciences. He made significant contributions to 
mathematics teaching and was an advocator of changes. He published more than 12 
books and mathematics and sciences. His 3-volume series, Mathematical Thought 
from Ancient to Modern Times, is probably the best book on the historical 
development of differential and integral equations. 
 
Kovalevskaya, S. (1850 1891) was probably one of the most influential female 
mathematicians in the 19th century. She was the mathematical protégé of 
Weierstrass and Mittag-Leffler. She was also a novelist. But she died in her prime 
at the age of 40. She was known for her ability and originality. The Cauchy-
Kovalevskaya theorem mentioned in Chapter 6 was published at the age of 25. She 
obtained the prestigious Bordin prize on her mathematical theory on the dynamics 
of top (now known as Kovalevskaya top). She was promoted to full professor at 
Hogskola because of her originally, charm, and mathematical knowledge. She was 
particularly popular among her students. 
 
Lagrange, J.L. (1736 1813) was an Italian mathematician. He is one of the most 
influential mathematicians on differential equations, in addition to his major 
contributions in number theory and algebra. Lagrange almost single-handedly 
developed the major part of the methods for solving first order PDEs (see Chapter 
6). The calculus of variations presented in Chapter 13 was also mainly formulated 
by Lagrange, including the use of the Lagrange multiplier method. We also 
discussed the Lagrange identity in Chapters 7 and 10 when we discussed the adjoint 
ODE problem. He also made major contributions to celestial mechanics, winning 
him prizes of the French Academy of Sciences many times. In classical mechanics, 
the Lagrangian formulation is the standard (although Hamiltonian may be more 
powerful for non-classical mechanics, like quantum mechanics). He was elected a 
fellow of the Royal Society of London, Royal Society of Edinburgh, foreign 
member of the Swedish Academy of Sciences, and member of the Berlin Academy. 
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Lambert, J.H. (1728 1777) was a Swiss mathematician, physicist, philosopher, 
and astronomer. He is best known for proving the irrationality of . After he left 
school, he had been working as an assistant to his father (a tailor), a clerk, a private 
tutor, and a secretary to an editor. In 1758, he published first book on optics and 
cosmology, and this allowed him to start an academic career. After a few posts, he 
was invited to a position at the Prussian Academy of Sciences in Berlin. Lambert 
was the first to introduce hyperbolic functions. Lambert also derived a theorem on 
conic sections to make the calculations of the orbit of comets much simpler. He 
also derived hyperbolic triangles for a concave surface. Lambert was the first 
mathematician to consider the general properties of map projection. For analyzing 
3-D planes on a plane surface, Lambert invented the azimuthal equal-area 
projection and the equal-area stereonet, which finds application in rock slope 
stability analysis.  
 
Laplace, P.-S. (1749 1827) was a French mathematician, astronomer, and 
mathematical physicist. The story has often been told of how D’Alembert gave him 
difficult mathematical problems to test his ability, and found that Laplace was able 
to solve them overnight. Much impressed, D’Alembert helped secure Laplace a 
teaching job at the École Militaire in Paris. He is one of the founders of probability, 
and he made his name in celestial mechanics by publishing a five-volume survey of 
celestial mechanics. He theorized that the solar system originated from a cloud of 
gas (called the nebular hypothesis). Laplace developed the concept of potential and 
the study of the Laplace equation. He was from a poor family, but he was appointed 
minister and later senator by Napoleon. The Laplace transform that bears his name 
is of fundamental importance for solving differential equations. Many considered 
Laplace as the most illustrious scientist of France’s golden age, and one of the most 
influential scientists of all time. Our current unit of length, the meter, was proposed 
by Laplace in 1790. Laplace is considered only second to Newton in scientific 
talent. He was known for his arrogance, and he frequently neglected to 
acknowledge the sources of his results. He was notorious for overusing the term “it 
is obvious” in mathematical derivations when it was far from obvious (James, 
2002). 
 
Legendre, A.M. (1752 1833) was a French mathematician who contributed to 
number theory, celestial mechanics, and elliptical functions. In celestial mechanics, 
he derived the Legendre equations and the Legendre polynomials (see Chapter 4). 
As shown in Chapter 9, it is closely related to the Laplace equation in spherical 
coordinates.  
 
Leibniz, G.W. (1646 1716) was a German mathematician, philosopher, and 
diplomat. His Bachelor and Master degrees are both in philosophy, and he had a 
doctoral degree in law.  He could write articles in Latin, French, and German. He 
assisted redrafting of the legal code for electorate for the Elector of Mainz, and was 
involved in politics in proposing an Egyptian plan for German-speaking Europe to 
diverge France’s attention from them to Egypt. In Paris, he met Dutch physicist and 
mathematician Christiaan Huygens and Irish chemist Robert Boyle, and began a 
program of self-study with Huygens as his mentor. Eventually, Leibniz developed 
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differential and integral calculus independently of Newton, and his notations in 
calculus have been adopted today. He also contributed to the development of 
mechanical calculators and refined the binary number system for later development 
of the digital computer. When he visited the Royal Society, he demonstrated his 
calculating machine carrying all four arithmetical operations and finding square 
roots, and the Society quickly made him a foreign member. Leibniz was the first to 
see that the coefficients of a system of linear equations could be arranged into an 
array or matrix. His integral sign  represents an elongated S, from the Latin word 
summa and d representing differentiate or Latin differentia. Product and quotient 
rules of differentiation are due to Leibniz. The Leibniz rule for differentiation of 
integrals is named after him. In dynamics, he favored the conservation of energy 
instead of the conservation of momentum used by Newton. He also envisioned a 
universal language for all humans.   
  
L’Hôpital, G.F.A. (1661 1704) was a French mathematician. The first calculus 
textbook was written by L’Hôpital in 1696.  The so-called L’Hôpital’s rule in 
taking the limit of the indeterminate form of 0/0 and /  appeared in his book, but 
actually was discovered by Johann Bernoulli. He was elected to the French 
Academy of Sciences in 1693.  
 
Liouville, J. (1809 1882) was a French mathematician who made contributions to 
number theory, complex analysis, differential geometry and topography, linear 
differential equations, mathematical physics, and astronomy. His teachers at Ecole 
Polytechnique included A.M. Ampere. Liouville theorem in complex analysis is in 
honor of him. In mathematical physics, Sturm-Liouville problem resulted from 
collaboration with C.F. Sturm; it studied the eigenfunction expansions of self-
adjoint type boundary value problems and found important application in physics. 
In Hamiltonian dynamics, the Liouville-Arnold theorem was named in honor of 
him. He proved the existence of transcendental numbers. According to Mittag-
Leffler, Liouville’s greatest grief was meeting Abel, but failed to realize his 
mathematical talent. He was the first to recognize the importance of the 
unpublished works of Galois.    
 
Mittag-Leffler, G. (1846 1927) is regarded as the father of Swedish mathematics; 
he spent altogether 3 years in France and Germany. He became friends of Hermite, 
Poincaré, and Weierstrass. He considered himself as a disciple of Weierstrass, 
particularly following his power-series approach to function theory. The Mittag-
Leffler expansion of trigonometrical functions was reported in Chapter 1. He also 
found a job for the extremely talented Sonya Kovalevskaya at Hogskola (see 
biography of Kovalevskaya). He was a member of King Oscar II’s circle (the king 
himself was a mathematician) and was an international celebrity, although he was 
not so popular among outsiders. When Alfred Nobel set up his Nobel Prize, 
mathematics was one of the potential subject areas to be awarded. However, when 
he knew that Mittag-Leffler was a potential candidate for the prize in mathematics, 
Nobel crossed out mathematics and no such prize has ever been awarded. This 
negative impact by Mittag-Leffler on mathematics is definitely more far-reaching 
than his mathematical contributions. 
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Monge, G. (1746 1818) was a French mathematician and the father of descriptive 
geometry (the mathematical basis for technical drawing) and of differential 
geometry. He was involved in the reform of the French education system during the 
French Revolution, helping to found Ecole Polytechnique.  He devised a graphical 
method to optimize the defensive arrangement of fortification. He joined 
Napoleon’s expedition to Egypt. His name was inscribed on the base of the Eiffel 
Tower. His method in solving second order partial differential equations was 
reported in Chapter 7. 
 
Moulton, F.R. (1872 1952) was an American astronomer. He was a professor at 
the University of Chicago. He proposed that small satellites in the orbit around 
Jupiter were actually gravitationally captured planetesimals (small bodies that 
formed planets). This theory has become well accepted among astronomers. The 
Adams-Moulton method discussed in Chapter 15 for solving differential equation 
was named after him. 
 
Painlevé, P. (1863 1933) was a French mathematician and politician. Painlevé is 
best known for his studies of those nonlinear ODEs that can be transformed to 
linear ODEs or the so-called Painlevé transcendents. He was a student of Flex 
Klein. He served as French Prime Minister twice.  
  
Pfaff, J.F. (1765 1825) was a German mathematician who worked on series, 
integral calculus, and partial differential equations. The Pfaffian of 1st order PDEs 
was named after him. He was the PhD supervisor of C.F. Gauss, and also a teacher 
of A. Mobius.   
 
Picard, C.E. (1856 1941) was a French mathematician who made contributions to 
analytic functions and linear differential equations, including the Picard successive 
approximation for solving first order ODEs, and Painlevé transcendents for ODEs. 
He also worked on theories of telegraphy and elasticity. Charles Hermite was his 
father in law. 
 
Poincaré, H. (1854 1912) was a renowned French mathematician, mining 
engineer and theoretical physicist. He was a mining engineer by training, but got 
his PhD in mathematics under Charles Hermit. His thesis is on differential 
equations. Henri Poincaré, a pioneer in stability analysis of differential equations, 
was nominated to receive the Nobel Prize 34 times in 1910. In fact, Poincaré 
received a total of 51 nominations in 1904-1912 before he passed away in 1913, 
but he never received it.  His Poincaré conjecture was one of the ten millennium 
problems of the Clay Mathematics Society. It was eventually “solved” by 
Perelman, but it was bigger news when he declined both the Fields medal and the 
Millennium Prize from the Clay Mathematics Institute. The New Yorker’s article 
stirs the controversy of Perelman with former Fields medalist S.T. Yau.  
 
Poisson, S.D. (1781 1840) was a French mathematician and physicist who made 
contributions to probability theory, elasticity, electricity, magnetism, heat, and 
sound. In probability, we have the Poisson distribution (the basis for modern 
hazard analysis) and in elasticity we have the Poisson ratio. In complex analysis, he 
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was the first to carry out path or contour integration of complex functions (called 
contour integration). The solutions of 2-D and 3-D wave equations are expressible 
in Poisson’s integral (Chapter 9).  The nonhomogeneous Laplace equation is also 
called Poisson’s equation. 
 
Ramanujan, S. (1887 1920) was an Indian mathematician who made significant 
contributions to mathematical analysis, number theory, infinite series, and 
continued fractions. He received no formal training in mathematics but 
rediscovered known theorems and produced new ones. He was working as a clerk 
when he conducted his mathematical research. He was a prodigy discovered by 
G.H. Hardy, and Hardy compared Ramanujan with Jacobi or Euler. After 
Ramanujan sent some of his theorems to G.H. Hardy, Ramanujan was invited to 
work with him at Cambridge. He compiled a total of 3900 identities and equations, 
and many of them are highly original and unconventional, including the Ramanujan 
prime, and Ramanujan theta function. He became a fellow of the Royal Society and 
died at the age of 32. His 87 pages of lost notebook was rediscovered by George 
Andrews in 1976. The number 1729 was called the Ramanujan-Hardy number: 
Once Hardy took a taxi to visit Ramanujan in hospital, and found the cab number 
of 1729 rather dull and believed it was an omen. But when he told Ramanujan 
about this, Ramanujan told him that it is a very interesting number which is the 
smallest number that can be expressed as sum of two cubes in two different ways 
(i.e. 1729=13+123 = 93+103) (Kanigel, 1991).  One of Ramanujan’s formulas has 
been adopted to generate a huge amount of digits of , and it became one way to 
test the speed of supercomputers. Ramanujan’s Master Theorem was introduced in 
Chapter 1 and Appendix C. Some of his amazing formulas on  were reported in 
Appendix F. The 2015 British biographical film The Man Who Knew Infinity was 
based on his biography written by Kanigel (1991).   
  
Rayleigh, Lord (Strutt, J.W.) (1842 1919) was a British mathematician and 
physicist and Nobel Prize winner for his work on gas density and on argon. 
Rayleigh made major contributions to sound, light, surface waves, and electricity. 
He wrote his classic book Theory of Sound partly on a boathouse on the Nile. He 
inherited the title Lord Rayleigh from his father, and succeeded Maxwell at 
Cambridge. Rayleigh explained the blue color of sky from the scattering of light by 
dust particles in the air. His enthusiasm on precise measurement led him to the 
standardization of electrical units in 1884: the ohm, ampere, and volt. The 
inconsistency of the Rayleigh-Jeans equation (published by Rayleigh in 1900), 
which describes the distribution of wavelengths in black-body radiation, led Planck 
to the formulation of quantum theory. In numerical analysis, the Rayleigh-Ritz 
method discussed in Chapter 14 is a powerful approximate method that bears his 
name.  
  
Riemann, G.F.B. (1826 1866) was a German mathematician, who originated 
Riemann geometry, which was used by Einstein in the theory of general relativity. 
He also made breakthroughs in conceptual understanding of the theory of 
functions, vector analysis, differential geometry, and topology. He was a student of 
Gauss. In complex variable theory, he developed the concept of the Riemann 
surface which separates multi-connected surfaces by branch cuts. The differentiable 
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condition for complex variables is now known as the Cauchy-Riemann relation. He 
defined the Riemann zeta function and formulated a Riemann hypothesis of this 
function. It remains one of the most important unsolved problems of number theory 
and analysis. The Clay Mathematical Institute of Cambridge offered US $1 million 
for its proof (Sabbagh, 2003). Riemann died at the age of 39 because of 
tuberculosis.  
 
Robin, G. (1855 1897) was a French mathematician whose method on single- and 
double-layer potentials boundary value problems of electrostatics is an important 
technique in potential theory (see Section 8.4 of Chapter 8). In short, the Dirichlet 
and Neumann boundary value problems were reduced to integral equations for 
electric densities and to power series expansions of potentials. The single-layer 
potentials were also known as Robin-Steklov potentials (Steklov was a student of 
Russian mathematician A. Lyapunov and Robin was a student of the well-known 
French mathematician Picard). The criterion for uniform convergence of his series 
is called the Robin principle. The Robin constant is associated with the logarithmic 
electric capacitor. His name has been associated with the third type of boundary 
value problem of potential theory (as the Robin boundary condition or Robin 
Problem), but Gustafson and Abe (1998a,b) concluded that Robin had actually 
never used or studied such a boundary condition (see Chapter 9). He was a 
recipient of the Francoeur Prize and Poncelet Prize.     
 
Sommerfeld, A.J.W. (1868 1951) was a German theoretical physicist who was a 
pioneer of quantum theory. He was nominated a record of 81 times for the Nobel 
Prize within a period of 34 years before his death, but he never received it. Very 
likely, this record will not be broken easily in the near future. Ironically, he made 
two nominations, one of Albert Einstein (Nobel laureate in 1921) and one of Max 
Planck (Nobel laureate in 1918), and thus, in a sense, his nominations had a 100% 
success rate. In addition, he served as PhD supervisor for more Nobel Prize 
winners in physics than any other supervisor before or since. His PhD students 
getting Nobel Prizes include W. Heisenberg in 1932 (PhD in 1923), H. Bethe in 
1967 (PhD in 1928), W. Pauli in 1945 (PhD in 1921), and P. Debye in 1936 (PhD 
in 1908). His other postgraduate and post-doctoral students getting Nobel Prizes 
include L. Pauling in Chemistry in 1954 and in Peace in 1962, I.I. Rabi in 1944, 
and M.T. von Laue in 1914. Many of his other students became famous in their 
own right. His professors include German mathematicians Lindemann, Hurwitz, 
and Hilbert, and after graduation Sommerfeld was an assistant of Felix Klein and 
wrote up his lecture notes for the reading room. This resulted in a six-volume series 
of classical textbooks of Lectures on Theoretical Physics, including Mechanics, 
Mechanics for Deformable Bodies, Electrodynamics, Optics, Mathematical Theory 
of Diffraction, and Partial Differential Equations in Physics. They are all 
influential and all have been translated into English. Albert Einstein also admired 
Sommerfeld for nurturing a large number of young talents. Sommerfeld was one of 
the pioneers of quantum theory. He was elected to the Royal Society of London, 
US National Academy of Sciences, Indian Academy of Sciences, and USSR 
Academy of Sciences. Example 2.7 in Chapter 2 presents Sommerfeld’s solution 
for the Thomas-Fermi equation.  
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Stokes, G.G. (1819 1903) was an Irish mathematician and physicist who made 
fundamental contributions to fluid dynamics. The most general governing equations 
for fluid dynamics are called the Navier-Stokes equations. Stokes described the 
phenomenon of fluorescence in 1852. His Stokes law for a sphere settling in a fluid 
also bears his name. He was the first to explain the fundamentals of spectroscopy. 
However, the Stokes theorem discussed in Chapter 1 was in fact discovered by Lord 
Kelvin and communicated to Stokes in 1850, and Stokes set the theorem as a question 
for the 1854 Smith’s prize examination, which led to the theorem bearing his name. 
Therefore, some mathematicians called it the Kelvin-Stokes theorem. Stokes served 
as president of the Royal Society. 
 
Sturm, J.C.F. (1803 1855) was a French mathematician and best known for the 
Sturm-Liouville problem discussed in Chapter 10. He pointed out the relevance of 
eigenvalue analysis for systems of first order ODEs to Cauchy in 1828 (see Chapter 
5). Related to his works on stability of ODEs, Sturm’s theorem is a basic result of 
finding and counting real roots of polynomials. He was a foreign member of the 
Royal Society of London. 
 
Taylor, B. (1685 1731) was an English mathematician who is known for his Taylor 
series expansion. He was elected fellow of the Royal Society in 1712. However, he 
failed to express his ideas fully and clearly.  His Taylor series expansion was found 
important by Lagrange only in 1772. 
 
Titchmarsh, E.T. (1899 1963) was an English mathematician. He was a student 
of Hardy and succeeded his position at Oxford in 1931. He contributed on the 
entire function of complex variables, integral equations, Riemann zeta function, 
eigenfunction expansions of differential equations, and Fourier series. He was 
elected fellow of the Royal Society in 1931 and received the Sylvester Medal in 
1955. He also received the De Morgan Medal and the Berwick Prize from London 
Mathematical Society. The Titchmarsh contour integral is discussed in Chapter 1.   
 
Tricomi, F.G. (1897 1978) was an Italian mathematician famous for his studies of 
mixed type partial differential equations. His book on the mixed type second order 
partial differential equations in 1923 was translated to Russian, then from Russian 
to Chinese. He also authored Integral Equations. He spent two years at Caltech to 
work on the Bateman Manuscript Project with Erdelyi, Magnus, and Oberhettinger. 
He was the president of the Turin Academy of Sciences. The Tricomi equation is 
discussed in Section 7.7. 
 
Volterra, V. (1860 1940) was an Italian mathematician who contributed to 
functional theory, nonlinear integro-differential equations, biological and 
population growth, and dislocation theory. Volterra integral equations were named 
after him. His contribution to dislocation was introduced in Chapter 2. During 
World War I, he was involved in designing armaments, and he was also the first to 
propose the use of helium to replace hydrogen in airships. 
 
Watson, G.N. (1886 1965) was an English mathematician who was an expert in  
the application of complex variables to the theory of special functions, especially 
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Bessel functions. He co-authored, with his supervisor E.T. Whittaker, the 2nd 
edition of A Course of Modern Analysis (1915). His book Treatise on the Theory of 
Bessel Functions in 1922 is a classic even using today’s standard. In 1918, he 
proved Watson’s lemma, which has applications on the asymptotic behavior of 
exponential integrals. Convergence of certain infinite series can be improved by his 
Watson’s transform.  Ramanujan’s lost notebook was in his hands before it was 
rediscovered by George E. Andrews in 1976 from Watons’s left-behind boxes at 
Wren Library at Cambridge. He was elected fellow of the Royal Society and 
received the Sylvester Medal from the Society.  
 
Weierstrass, K.T.W. (1815 1897) was a German mathematician who is often 
cited as the father of modern analysis. He studied law, economics, and finance at 
University of Bonn but dropped out because of its conflict with his hope to study 
mathematics. He then moved to the University of Munster to study mathematics. 
He formally laid down the rigorous foundation of calculus and clarified the 
concepts of uniform convergence, derivative, and continuity. He also paved the 
way for the modern study of the calculus of variations. The Weierstrass elliptic 
functions were named after him. This contribution to the gamma function was 
reported in Chapter 4.  
 
Whittaker, E.T. (1873 1956) was an English mathematician who contributed to 
applied mathematics, mathematical physics, and the theory of special functions. 
The Whittaker function in the theory of confluent hypergeometric functions (or 
Kummer functions) was named after him. He also derived Bessel functions in terms 
of integrals of Legendre functions. He married the daughter of the minister of the 
Presbyterian Church. His co-authored book A Course of Modern Analysis with his 
student G.N. Watson (Whittaker and Watson, 1927) is a classic text on 
transcendental complex functions. He also worked on the history of physics and 
celestial mechanics. As a historian of science, he wrote A History of the Theories of 
Aether and Electricity in 1910, which was revised and expanded to be two books in 
1951 and 1953. In this book, he attributed the discovery of special relativity more 
to Henri Poincaré and Lorentz, and less to Einstein. He also attributed the formula 
E=mc2 to Poincaré. Whittaker’s view on this appears not in the main stream. In 
Bodanis’s (2000) biography on E=mc2,  he did mention that Henri Poincaré made a 
presentation at the St. Louis World Fair entitled “theory of relativity” and came 
close to giving the famous formula which Einstein got a year later. Whittaker wrote 
The Calculus of Observations: A Treatise on Numerical Mathematics in 1924 and 
Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an 
Introduction to the Problem of Three Bodies in 1937. He received the Copley 
Medal and Sylvester Medal from the Society. The Whittaker equation is discussed 
in (3.584) in Chapter 3. 
 
Wronski, J.M.H. (1776 1853) was a Polish mathematician. The Wronskian 
repeatedly used in Chapter 3 was named after him by Thomas Muir in 1882.  He 
was also a metaphysician and proposed to build a machine that could predict the 
future. 
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