
Characterizations 
of Univariate 
Continuous 
Distributions

Mohammad Ahsanullah

Atlantis Studies in Probability and Statistics 
Series Editor: C. P. Tsokos



Atlantis Studies in Probability and Statistics

Volume 7

Series editor

Chris P. Tsokos, Tampa, USA



Aims and scope of the series

The series ‘Atlantis Studies in Probability and Statistics’ publishes studies of high
quality throughout the areas of probability and statistics that have the potential to
make a significant impact on the advancement in these fields. Emphasis is given to
broad interdisciplinary areas at the following three levels:

(I) Advanced undergraduate textbooks, i.e., aimed at the 3rd and 4th years of
undergraduate study, in probability, statistics, biostatistics, business statis-
tics, engineering statistics, operations research, etc.;

(II) Graduate-level books, and research monographs in the above areas, plus
Bayesian, nonparametric, survival analysis, reliability analysis, etc.;

(III) Full Conference Proceedings, as well as selected topics from Conference
Proceedings, covering frontier areas of the field, together with invited
monographs in special areas.

All proposals submitted in this series will be reviewed by the Editor-in-Chief, in
consultation with Editorial Board members and other expert reviewers.

For more information on this series and our other book series, please visit our
website at: www.atlantis-press.com/Publications/books

AMSTERDAM—PARIS—BEIJING
ATLANTIS PRESS
Atlantis Press
29, avenue Laumière
75019 Paris, France

More information about this series at http://www.atlantis-press.com



Mohammad Ahsanullah

Characterizations
of Univariate Continuous
Distributions



Mohammad Ahsanullah
Department of Management Sciences
Rider University
Lawrenceville, NJ
USA

ISSN 1879-6893 ISSN 1879-6907 (electronic)
Atlantis Studies in Probability and Statistics
ISBN 978-94-6239-138-3 ISBN 978-94-6239-139-0 (eBook)
DOI 10.2991/978-94-6239-139-0

Library of Congress Control Number: 2017934309

© Atlantis Press and the author(s) 2017
This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any
means, electronic or mechanical, including photocopying, recording or any information storage and
retrieval system known or to be invented, without prior permission from the Publisher.

Printed on acid-free paper



To my grand children, Zakir, Samil, Amil
and Julian.



Preface

Characterization of distributions plays an important role in statistical science. Using
the basic properties of data, characterizations provide the type of distributions of
that data set. Significant findings in this area have been published over the last
several decades, and this book serves to be an extensive compilation of many
important characterizations of univariate continuous distributions. Chapter 1 pre-
sents basic properties common to all univariate continuous distributions, while
Chap. 2 discusses the properties of some select important distributions. Chapter 3
discusses ways to use independent copies of random variables to characterize
distributions. Chapters 4–6 characterize distributions using order statistics, record
values, and generalized order statistics, respectively.

I would like to thank Prof. Chris Tsokos for his encouragement to publish a book
on characterization of distributions and Zeger Karssen of Atlantis Press for his
support of this publication. I would also like to thank my wife Masuda for all her
support. Finally, I would like to thank Rider University for a summer grant and a
sabbatical leave that provided resources for me to complete this book.

Lawrenceville, NJ, USA Mohammad Ahsanullah
December 2016
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Chapter 1
Introduction

In this chapter some basic materials will be presented which will be used in the
book. We will restrict ourselves to continuous univariate probability distributions.

1.1 Distribution of Univariate Continuous Distribution

Let X be an absolutely continuous random variable with cumulative distribution
function (cdf) F(x) and probability density function (pdf) f(x). We define

F xð Þ=PðX≤ xÞ for all x, −∞< x<∞ and f xð Þ= d
dx FðxÞ. F(x) has the

following properties

(i) 0 ≤ F(x) ≤ 1

lim
x→ −∞

FðxÞ=0 and lim
x→∞

FðxÞ=1

(ii) F(x) is non decreasing
(iii) F(x) is right continuous, F(x) = F(x + 0) for all x.

1.2 Moment Generating and Characteristic Functions

The moment generating function MX(t) of the random variable X with pdf fX(x) is
defined as

MX tð Þ =
Z ∞

−∞
etxfXðxÞdx, −∞< t<∞

provided the integral converge absolutely. MX(0) always exists and equal to 1.

© Atlantis Press and the author(s) 2017
M. Ahsanullah, Characterizations of Univariate Continuous Distributions,
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The characteristic function φXðtÞ of a random variable with pdf f(x) always exits
and it is given by

φXðtÞ=
Z ∞

−∞
eitxfXðxÞdx, −∞< t<∞.

The characteristic function has the following properties:

(i) A characteristic function is uniformly continuous on the entire real line,
(ii) It is non vanishing around zero and φXð0Þ=1,
(iii) It is bounded, φXðtÞj j≤ 1,
(iv) It is Hermitian,

φXð− tÞ=φXðtÞ,

(v) If a random variable has kth moment, then φXðtÞ is k times differentiable on
the entire real line,

(vi) If the characteristic function φXðtÞ of a random variable X has k-th derivative
at t = 0, then the random variable X has all moments up to k if k is even and
k − 1 if k is odd.

A necessary and sufficient condition for two random variables X1 and X2 to have
identical cdf is that their characteristic functions be identical.

There is a one to one correspondence between the cumulative distribution
function and characteristic function.

Theorem 1.2.1 If characteristic function φX (t) is integrable, then FX(x) is abso-
lutely continuous, and X has the probability density function fX(x) that is given by

fXðxÞ= 1
2π

Z ∞

−∞
e− itxφXðtÞdt

1.3 Some Reliability Properties

Hazard Rate
The hazard rate (r(t)) of a positive random variable random variable with

F(0) = 0 is defined as follows.

rðtÞ= f ðtÞ
FðtÞ , FðtÞ=1−FðtÞ, provided F xð Þ is not zero.

By integrating both sides of the above equation, we obtain

FðxÞ= expð−
Z x

0
rðtÞdtÞ.
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.
An alternative representation is

1− F xð Þ= e−RðxÞ. R xð Þ= − ln 1−F xð Þð Þ.

We will say that the random variable X belongs to class C1 if the hazard rate is
monotonically increasing or decreasing.

New Better (Worse) Than Used (NBU(NWU))
A cumulative distribution function F(x) is NBU(NWU) if

Fðx+ yÞ≤ ð≥ ÞFðxÞFðyÞ, for x≥ 0, y≥ 0.

We will say the random variable X whose cdf F(x) belongs to the class C2 if it is
NBU or NWU.

Memoryless Property
Suppose the random variable X has the property

P(X > t + s|X > t) = P(X > s) for all s, t ≥ 0, then we say that X has memory
less property.

The exponential distribution with F(x) = 1 − e− ðx− μÞ ̸σ for σ >0, −∞< x<
μ<∞. is the only continuous distribution that has this memoryless property.

1.4 Cauchy Functional Equations

We will consider the following three Cauchy functional equations for a non zero
continuous function g(x).

ðiÞ g x+ yð Þ=g xð Þ+g yð Þ, x≥ 0, y≥ 0

ðiiÞ g xyð Þ=g xð Þ+g yð Þ, x≥ 0, y≥ 0

ðiiiÞ g xyð Þ=g xð Þg yð Þ, x≥ 0, y≥ 0

We will take the solutions as of the functional equations as g xð Þ= ecx,
g xð Þ= clnðxÞ and g xð Þ= xc, where c is a constant respectively. For details about the
solutions see Aczel (1966).

1.3 Some Reliability Properties 3



1.5 Order Statistics

Let X1, X2,…,Xn be independent and identically distributed (i.i.d.) absolutely
continuous random variables. Suppose that F(x) be their cumulative distribution
function (cdf) and f(x) be the their probability density function (pdf). Let X1,n ≤
X2,n ≤ ⋅ ⋅ ⋅ ≤ Xn,n be the corresponding order statistics. We denote Fk,n(x) and
fk,n(x) as the cdf and pdf respectively of Xk,n, k = 1,2,…,n. We can write

fk, n xð Þ= n!
ðk− 1Þ!ðn− kÞ! F xð Þð Þk− 1 1−F xð Þð Þn− kf xð Þ,

The joint probability density function of order statistics X1,n, X2,n,…,Xn,n has the
form

f1, 2, ..., n, n x1, x2, . . . , xnð Þ= n! ∏
n

k=1
f xkð Þ, −∞< x1 < x2 <⋯< xn <∞

and

= 0, otherwise

There are some simple formulae for pdf ’s of the maximum (Xn,n) and the
minimum (X1,n) of the n random variables._

The pdfs of the smallest and largest order statistics are given respectively as

f1, nðxÞ= nð1−FðxÞÞn− 1f ðxÞ

and

fn, nðxÞ= nðFðxÞÞn− 1f ðxÞ

The joint pdf f1,n,n (x, y) of X1,n and Xn.n is given by

f1, n x, yð Þ= nðn− 1ÞðF yð Þ−F xð ÞÞn− 2 f xð Þf yð Þ,

−∞< x< y<∞.

Example 1.5.1. Exponential distribution.

Suppose that X1, X2,…,Xn are n i.i.d. random variables with cdf F(x) as

F xð Þ=1− e− x , x≥ 0

The pdfs f1,n(x) of X1,n and fn.n (x) are respectively

4 1 Introduction



f1, nðxÞ= ne− nx, x≥ 0.

and

fn, nðxÞ= nð1− e− xÞn− 1e− x, x≥ 0.

It can be seen that nX1,n has the exponential distribution.,

1.6 Record Values

Chandler (1952) introduced the record values, record times and inter record times.
Suppose that X1, X2,... be a sequence of independent and identically distributed
random variables with cumulative distribution function F(x). Let Yn = max (min)
{X1, X2,…,Xn} for n ≥ 2. We say Xj is an upper (lower) record value of {Xn,
n ≥ 1}, if Yj > (<)Yj-1, j > 2. By definition X1 is an upper as well as a lower
record value. One can transform the upper records to lower records by replacing the
original sequence of {Xj} by {−Xj, j ≥ 1} or (if P(Xi > 0) = 1 for all i) by {1/Xi,
i ≥ 1}; the lower record values of this sequence will correspond to the upper
record values of the original sequence.

The indices at which the upper record values occur are given by the record times
{U(n)}, n > 0, where U(n) = min{j|j > U(n − 1), Xj > XU(n-1), n > 1} and U(1) = 1.
The record times of the sequence {Xn n ≥ 1} are the same as those for the sequence
{F(Xn), n ≥ 1}. Since F(X) has an uniform distribution, it follows that the distri-
bution of U(n), n ≥ 1 does not depend on F. We will denote L(n) as the indices
where the lower record values occur. By our assumption U(1) = L(1) = 1. The
distribution of L (n) also does not depend on F.

Many properties of the upper record value sequence can be expressed in terms of
the function R(x), where R xð Þ= − lnFðxÞ, 0 <F ̄ðxÞ<1 andF ̄ðxÞ=1−FðxÞ. Here
‘ln’ is used for the natural logarithm. If we define Fn(x) as the cdf of XU(n) for
n ≥ 1, then we have

F1 xð Þ=P½XU 1ð Þ ≤ x�= F xð Þ ð1:6:1Þ

F2 xð Þ=P½XU 2ð Þ ≤ x �
=
Z x

−∞

Z y

−∞
∑
∞

i=1
ðFðuÞÞi− 1 dFðuÞ dFðyÞ

=
Z x

−∞

Z y

−∞

dFðuÞ
1−FðuÞ dFðyÞ

=
Z x

−∞
RðyÞ dFðyÞ

ð1:6:2Þ

1.5 Order Statistics 5



If F(x) has a density f(x), then the probability density function (pdf) of XU(2) is

f2 xð Þ=R xð Þ f xð Þ ð1:6:3Þ

The cdf F3 (x) of XU(3) is given by

F3 xð Þ=PðXU 3ð Þ ≤ xÞ
=
Z x

−∞

Z y

−∞
∑
∞

i=0
ðFðuÞÞi RðuÞ dFðuÞ dFðyÞ

=
Z x

−∞

Z y

−∞

RðuÞ
1−FðuÞ dFðuÞ dFðyÞ

=
Z x

−∞

ðRðuÞÞ2
2!

dFðuÞ.

ð1:6:4Þ

The pdf f3(x) of XU(3) is

f3 xð Þ= ðRðxÞÞ2
2!

fðxÞ, −∞< x<∞ ð1:6:5Þ

It can similarly be shown that the cdf Fn(x) of XU(n) is

Fn xð Þ=PðXU nð Þ ≤ xÞ

=
Zx
− ∞

fðunÞdun
Zun
−∞

fðun− 1Þ
1−Fðun− 1Þ dun− 1.

Zu2
−∞

fðu1Þ
1− Fðu1Þ du1.

=
Z x

−∞

Rn− 1ðuÞ
ðn− 1Þ! dFðuÞ, −∞< x<∞

ð1:6:6Þ

This can be expressed as

Fn̄ xð Þ =
Z RðxÞ

−∞

un − 1

ðn− 1Þ! e
− u du, −∞< x<∞,

Fn̄ðxÞ=1−FnðxÞ

=F ̄ðxÞ ∑
n − 1

j = 0

ðRðxÞÞ j
j!

= e−RðxÞ ∑
n− 1

j=0

ðRðxÞÞ j
j!

The corresponding pdf fn(x) of XU(n) is

6 1 Introduction



fn xð Þ= Rn− 1ðxÞ
ðn− 1Þ! fðxÞ, −∞< x<∞. ð1:6:7Þ

.
The joint pdf f(x1, x2,…, xn) of the n record values XU(1), XU(2),…, XU(n)) is

given by

f x1, x2, . . . , xnÞ
� �

= r x1ð Þr x2ð Þ . . . .r xn− 1ð Þf xnð Þ ð1:6:8Þ

for −∞< x1 < x2 <⋯< xn <∞
where r xð Þ= f ðxÞ

1−FðxÞ .
The function r(x) is known as hazard rate.
The joint pdf of XU(i) and XU(j) is

f xi, xj
� �

=
ðRðxiÞÞi− 1

ði− 1Þ! rðxiÞ ðRðxjÞ−RðxiÞÞj− i− 1

ðj− i− 1Þ! f ðxjÞ, 1≤ i < j≤ n, ð1:6:9Þ

for −∞< xi < xj <∞.
Suppose we use the transformation Y1 = R(XU(i)) and Y2 = R(XU(i))/R(XU(j)),

i < j, then it can be shown that the pdf f2
*(y) of Y2 is as follows:

f*2 yð Þ= ΓðjÞ
ΓðiÞ

1
Γðj− iÞ y

i− 1ð1− yÞj− i− 1 0 < y< 1 ð1:6:10Þ

Thus Y2 is distributed as Beta distribution with parameters i and j (i.e.
B(i, j − i)). The mean and variance of Y2 are

E Y2ð Þ= i
j and Var Y2ð Þ= ij

ðj+1Þ j2.
If we use the transformation Vi = R(XU(i)), then the joint pdf of Vi, i = 1,2,…,n, is

f ðv1, v2, . . . , vnÞ= e− vn , 0 < v1 < v2 <⋯< vn <∞. ð1:6:11Þ

The joint distribution of Vm and Vr, r > m, is

f ðvm, vrÞ= 1
ΓðmÞ ⋅

ðvr − vmÞr −m− 1

Γðr − mÞ ⋅ e− vr 0< vm < vr <∞

=0, otherwise.

EðVl
kÞ=

Z ∞

0
tl

1
ΓðkÞ t

k− 1 e− t dt=
Γðk+ lÞ
ΓðkÞ :

Thus E(Vk) = k and Var (Vk) = k. The conditional pdf of

1.6 Record Values 7



XU jð Þ XU ið Þ =xi if ðxj
�� �� XU ið Þ =xiÞ= f ijðxi, xjÞ

f iðxiÞ

=
ðRðxjÞ−RðxiÞÞj− i− 1

ðj− i− 1Þ!
fðxjÞ

1−FðxiÞ

ð1:6:12Þ

for −∞< xi < xj <∞.
For j = i + 1

f xi+ 1jXU ið Þ =xi
� �

=
fðxi+1Þ
1−FðxiÞ ð1:6:13Þ

for −∞< xi < xi+1 <∞.
The marginal pdf of the nth lower record value can be derived by using the same

procedure as that of the nth upper record value. Let
H(u) = −ln F(u), 0 < F(u) < 1 and hðuÞ= − d

du HðuÞ, then

PðXL nð Þ ≤ xÞ=
Z x

−∞

fHðuÞgn − 1

ðn− 1Þ! dFðuÞ ð1:6:14Þ

and the corresponding the pdf f(n) can be written as

f nð Þ xð Þ= ðHðxÞÞn − 1

ðn − 1Þ! fðxÞ ð1:6:15Þ

.
The joint pdf of XL(1), XL(2),…, XL(m) can be written as

fð1Þ, ð2Þ, ..., ðmÞðx1, x2 , . . . , xmÞ= hðx1Þ hðx2Þ . . . hðxm− 1Þ fðxmÞ
−∞< xm < xm − 1 <⋯< x1 <∞

=0, otherwise

ð1:6:16Þ

The joint pdf of XL(r) and XL(s) is

f rð Þ, sð Þ x, yð Þ= ðHðxÞÞr− 1

ðr− 1Þ!
½HðyÞ−HðxÞ�s− r− 1

ðs− r− 1Þ! hðxÞ fðyÞ

for s > r and −∞ < y < x < ∞
ð1:6:17Þ

Using the transformations U = H(y) and W = H(x)/H(y) it can be shown easily
that W is distributed as B(r, s-r).

Proceeding as in the case of upper record values, we can obtain the conditional
pdfs of the lower record values.
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Example 1.6.1 Let us consider the exponential distribution with pdf f(x) as

f(x) = e− x, 0≤ x<∞

and the cumulative distribution function (cdf) F(x) as

F xð Þ=1− e− x, 0≤ x<∞

Then R(x) = x and

fn xð Þ= xn − 1

ΓðnÞ e− x, x≥ 0

= 0, otherwise.

The joint pdf of XU(m) and XU(n), n > m is

fm, n x, yð Þ= xm− 1

ΓðmÞΓðn−mÞ ðy− xÞn−m− 1 e− y,

for 0≤ x< y<∞,

= 0, otherwise.

The conditional pdf of XU(n) | XU(m) = x) is

f yjXU mð Þ =x
� �

=
ðy− xÞn−m− 1

Γðn−mÞ e− ðy− xÞ

0≤ x< y<∞
=0, otherwise

Thus the conditional distribution of XU(n) − XU(m) given XU(m) is the same as
the unconditional distribution of XU(n-m) for n > m.

Example 1.6.2 Suppose that the random variable X has the Gumbel distribution with
pdf f xð Þ= e− x e− e− x

, −∞< x<∞. Let F(n) and f(n) be the cdf and pdf of XL(n). It is
easy to see that

F nð Þ xð Þ=
Z x

−∞

e− nu

ΓðnÞ e− e− u
du

and f nð Þ xð Þ= e− n x

ΓðnÞ e− e− x
, −∞< x<∞.

Let f(m,n)(x, y) be the joint pdf of XL(m) and XL(n), m < n. Using (1.6.17) we get
for the Gumbel distribution
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f m, nð Þ x, yð Þ= e− y − e− xð Þn−m− 1

Γ n−mð Þ
e−mx

Γ mð Þ e
− ye− e− y,

−∞< y< x<∞

Thus the conditional pdf f(n|m)(y|x) of XL(n)| XL(m) = x is given by

f njmð Þ yjxð Þ= ðe− y − e− xÞn− m − 1

Γðn−mÞ e− ye− ðe− y − e− xÞ .

For simplicity we will denote X(m) and X(m) respectively for XU(m) and XL(m).

1.7 Generalized Order Statistics

Kamps (1995) introduced the generalized order statistics. The order statistics,
record values and sequential order statistics are special cases of this generalized
order statistics Suppose X(1, n, m, k),…, X(n, n, m, k), (k ≥ 1, m is a real
number), are n generalized order statistics. Then their joint pdf f1,…,n(x1,…,xn) can
be written as

f1, ..., n x1, . . . , xnð Þ=k ∏
n− 1

j=1
γj ∏

n− 1

i=1
ð1−FðxiÞÞmf ðxiÞð1−FðxnÞÞk− 1f ðxnÞ,

for F− 1 ð0Þ <x1 <⋯<xn < F− 1ð1Þ.
= 0, otherwise,

ð1:7:1Þ

where γj = k + (n − j)(m + 1) and f xð Þ= dFðxÞ
dx .

If m = 0 and k = 1, then X(r, n, m, k) reduces to the ordinary rth order statistic
and (1.7.1) is the joint pdf of the n order statistics X1,n ≤ ⋅ ⋅ ⋅ ≤ Xn,n. If k = 1 and
m = −1, then (1.7.1) is the joint pdf of the first n upper record values of the
independent and identically distributed random variables with cdf F(x) and the
corresponding probability density function f(x). Let Fr,n,m,k (x) and fr,m,n,k (x) be
the cdf and pdf of X(r, n, m, k).

Fr, n, m, k xð Þ= IαðxÞðr, γr
m+1

Þ, if m> − 1 ð1:7:2Þ

and

Fr, n, m, k xð Þ=ΓβðxÞðrÞ, if m = − 1, ð1:7:3Þ
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where

α xð Þ=1− ðFðxÞÞm+1 ,FðxÞ=1−FðxÞ

β xð Þ= − k lnFðxÞÞ,

and

ΓxðrÞ=
Z x

0

1
ΓðrÞ u

r− 1e− udu

Proof For m > −1, from (21.1)

Fr, n,m, k ðx) =
Z x

F − 1ð0Þ

cr
ðr− 1Þ! ð1− F(u))k+ ðn− rÞðm+1Þ− 1 gr− 1

m ðF(u)) f(u) du

Using the relation

Bðr, γr
m+1Þ= ΓðrÞðm+1Þr

cr
and substituting t=1− ðF ̄ðxÞÞm+1., we get on simplifi-

cation

Fr, n, m, k ðx) = 1
Bðr, γr

m+1Þ
Z 1− ðF ̄ðxÞÞm+1

0
ð1− uÞÞγr − 1 ð1− uÞr− 1du

= IαðxÞðr, γr
m+1

Þ.

For m = −1

Fr, n, m, k ðx) =
Z x

F − 1ð0Þ

kr

ðr− 1Þ! ð1−F(u))k− 1 ð− lnð1−FðuÞÞr− 1 f(u)du

=
Z − k lnF ̄ðxÞ

0

1
ðr− 1Þ! tr− 1e− tdt

=ΓβðxÞðrÞ, βðxÞ= − k lnFðxÞ

Fr, n,m, kðr, λr
m+1

Þ−Fr, n,m, kðr+1,
λr+1

m+1
Þ= 1

γr+1

FðxÞ
f ðxÞ fr+1, n,m, k

fðx, θÞ= σ − 1expð− σ − 1xÞ, for x > 0, σ >0,

= 0, otherwise.
ð1:7:4Þ
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1.8 Lower Generalized Order Statistics (Lgos)

Suppose X* 1, n,m, kð Þ,X* 2, n,m, kð Þ, . . . ,X* n, n,m, kð Þ are n lower generalized
order statistics from an absolutely continuous cumulative distribution function
(cdf) F xð Þ with the corresponding probability density function (pdf) f(x). Their joint
pdf f *12...n x1, x2, . . . , xnð Þ is given by

f *12...n x1, x2, . . . , xnð Þ= k Π
n− 1

j=1
γj Π

n− 1

i=1
F xið Þð Þm F xnð Þð Þk− 1f xð Þ

for F
− 1

1ð Þ≥ x1 ≥ x2 ≥⋯≥ F
− 1

0ð Þ,m≥ − 1,

γr = k+ n− rð Þ m+1ð Þ, r=1, 2, . . . , n− 1, k≥ 1 and n is a positive integer.
The marginal pdf of the rth lower generalized order (lgos) statistics is

f *r, n,m, k xð Þ= cr− 1

Γ rð Þ ðFðxÞÞ
γr − 1 gmðFðxÞÞð Þ r− 1f xð Þ, ð1:7:5Þ

where

cr− 1 = Π
r

i=1
γi,

gm xð Þ= 1
m+1

1− xm+1� �
, form≠ − 1

= − 1n x, form= − 1.

Since lim
m→ − 1

gm xð Þ= − 1n x, we will take gm xð Þ= 1
m+1 1− xm+1ð Þ for all m with

g− 1ðxÞ= − 1nx. For m=0, k=1, X* r, n,m, kð Þ reduces to the order statistics
Xn− r+1, n from the sample X1, X2, …,Xn, while m= − 1, X* r, n,m, kð Þ reduces to
the rth lower k-record value.

If F(x) is absolutely continuous, then

F*̄
r, n,m, k xð Þ=1−F*

r, n,m, kðxÞ= Iα xð Þ r,
γr

m+1

� �
, if m> − 1,

=ΓβðxÞ rð Þ, if m= − 1,

where

α xð Þ=1− F xð Þð Þm+1, Ix p, qð Þ= 1
B p, qð Þ

Z x

0

up− 1 1− uð Þq− 1du, x≤ 1
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βðxÞ= − k 1n FðxÞ, Γx rð Þ= 1
ΓðrÞ
Rx
0
ur− 1e− udu. and B p, qð Þ= ΓðpÞΓðqÞ

Γðp+ qÞ .

Proof For m> − 1,

1−F*
r, n,m, kðxÞ=

cr− 1

Γ rð Þ
Z∞
x

F uð Þð Þγr− 1 gm FðuÞð Þð Þr− 1f uð Þdu

=
cr− 1

Γ rð Þ
Z∞
x

F uð Þð Þγr − 1
1− F uð Þð Þm+1

m+1

" #r− 1

f uð Þdu

=
cr− 1

ΓðrÞ
1

m+1ð Þr
Z1− FðxÞð Þm+1

0

tr− 1 1− tð Þðγr+1 ̸ðm+1ÞÞ− 1dt

= Iα xð Þ r,
γr

m+1

� �

For m= − 1, γj = k, j=1, 2, . . . , n

1−F*
r, n,m, k xð Þ=

Z∞
x

kr

Γ rð Þ F uð Þð Þk− 1 − 1nFðuÞð Þr− 1f uð Þdu

=
Z− k lnFðxÞ

0

tr− 1e− t

Γ rð Þ dt

=Γβ xð Þ rð Þ, β xð Þ= − k lnF xð Þ.

Example 1.7.1 Suppose that X is an absolutely continuous random variable with
cdf F(X) with pdf f(x).

For m> − 1

γr+1 F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ
� �

=
FðxÞ
f ðxÞ f

*
r+1, n,m, kðxÞ

and for m= − 1

k F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ
� �

=
FðxÞ
f ðxÞ f

*
r+1, n,m, kðxÞ

Proof: For m> − 1
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F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ= IαðxÞ r,
γr

m+1

� �
− IαðxÞ r+1,

γr+1

m+1

� �

= IαðxÞ r,
γr

m+1

� �
− IαðxÞ r+1,

γr
m+1

− 1
� �

We know that

Ixða, bÞ− Ixða+1, b− 1Þ= Γða+ bÞ
Γða+1ÞΓðbÞ x

að1− bÞb− 1

Thus

F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ=
Γðr+ γr

m+1Þ
Γðr+1ÞΓð γr

m+1Þ
1− FðxÞð Þm+1
� �

r FðxÞm+1
� � γr

m+1− 1

=
γ1 . . . .γr
Γðr+1Þ

1− ðFðxÞÞm+1

m+1

 !r

FðxÞð Þγr +1

=
FðxÞ

γr+1f ðxÞ
f *r+1, n,m, kðxÞ.

Thus

γr+1 F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ
� �

= f *r+1, n,m, kðxÞ
FðxÞ
f ðxÞ

For m= − 1,

F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ=Γβ xð Þ rð Þ−ΓβðxÞðr+1Þ, β xð Þ= − k lnF xð Þ
= βðxÞð Þre− βðxÞ 1

Γðr+1Þ

=
FðxÞð Þ

Γðr+1Þ
k

− k lnFðxÞð Þr

Thus

k F*
r+1, n,m, kðxÞ−F*

r, n,m, kðxÞ
	 


=
FðxÞ
f ðxÞ f

*
r+1, n,m, kðxÞ.
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1.9 Some Useful Functions

Beta function B(m, n)

B m, nð Þ= ∫
1

0
xm− 1ð1− xÞn− 1 dx, m>0, n> 0.

Incomplete Beta function Bx m, nð Þ

Bx m, nð Þ= ∫
x

0
um− 1ð1− uÞn− 1du

Gamma function Γ nð Þ

B m, nð Þ= ΓðmÞΓðnÞ
Γðm+ nÞ =B n,mð Þ.

Γ nð Þ= ∫
∞

0
xn− 1e− xdx, n > 0.

If n is an integer, then Γ nð Þ= n− 1ð Þ!
Incomplete gamma function γ n, xð Þ

γ n, xð Þ= ∫
x

0
un− 1e− udu

Psi(Digamma) function ψðnÞ

ψðnÞ= d
dz

ln Γ nð Þ.

ψ 1ð Þ= − γ, The Euler’s constant.
γ =0.577216
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Chapter 2
Some Continuous Distributions

In this chapter several basic properties of some useful univariate distributions will
be discussed. These properties will be useful for our characterization problems.

2.1 Beta Distribution

A random variable X is said to have a BE(m, n) distribution if its pdf fm, n(x) is of
the following form.

fm ⋅ nðXÞ= 1
B m, nð Þ x

m− 1ð1− xÞn− 1, 0 < x< 1,m>0, n > 0. ð2:1:1Þ

Mean = m
m+ n and variance = mn

ðm+ nÞ2ðm+ n+1Þ.

The moment generating function Mm, n(t) is
Mm, n(t) = F(m, m + n, t), where

F a, b, xð Þ=1+
a
b
x+

aða+1Þ
bðb+1Þ

x2

2!
+⋯

The characteristic function ϕm.nðtÞ=F m,m+n, itð Þ
The pdfs of BE(3, 3), BE(4, 6) and BE(4, 9) are given in Fig. 2.1.
If m = 1/2 and n = 1/2, then BE(1/2, 1.2) is the arcsine distribution.
If X is distributed as BE(m, n), then 1-x is distributed as BE(n, m).
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2.2 Cauchy Distribution

A random variable X is said to have a Cauchy ðCAðμ, σÞÞ distribution with location
parameter μ and scale parameter σ if the pdf ðfcðx, μ, σÞ) is of the following form.

fcðx, μ, σÞ= 1

πσð1+ x− μ
σ

� �2Þ , −∞< x< μ<∞, σ >0. ð2:1:2Þ

The Fig. 2.2 gives the pdfs of CA(0, 1), CA(0, 2) and CA(0, 5).
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Fig. 2.1 BE(3, 3) Black, BE(4, 6) Red and BE(6, 9) Green
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Fig. 2.2 CA(0, 1) Black, CA(0, 2) Red and CA(0, 5) Green
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The mean of CAðμ, σÞ does not exist. The median and the mode are equal to µ.
The cdf Fcðx, μ, σÞ is

Fcðx, μ, σÞ= 1
2
+ tan− 1ðx− μ

σ
Þ ð2:1:3Þ

If X1, X2,…, Xn are n independent CAðμ, σÞ, then Sn = X1 + X2 + ⋅ ⋅ ⋅ +Xn is
distributed as CAðnμ, nσÞ..

If X1 and X2 are distributed as normal with mean = 0 and variance = 1, the X/Y
is distributed as CA(0, 1).

If X is CA(0, 1), then 2X ̸ð1−X2Þ is distributed as CA(0, 1).
The pdf fgcðx, μ, σÞ of generalized Cauchy ðGCAðμ, σÞÞ is given by

fgcðx, μ, σÞ= ΓðnÞ
σ
p
πΓðn− 1

2Þ
1

ð1+ x− μ
σ

� �2Þn , n≥ 1, −∞< μ< x<∞, σ >0. ð2:1:4Þ

For n = 1, the mean does not exist.
For n > 1, the mean = µ, the median = µ and the odd moments are zero.
For n > 1,

EðXmÞ = Γðm+1
2 ÞΓðn− m+1

2 Þ
Γð1mÞΓðn− 1

mÞ
for m even,m< 2n− 1,m>1.

2.3 Chi-Squared Distribution

A random variable X is said to have a Chi-squared ðCHðμ, σ, nÞÞ distribution with
location parameter μ and scale parameter σ if the pdf ðfchðx, μ, σ, nÞÞ is of the
following form.

fchðx, μ, σ, nÞ= 1
2n ̸2Γðn2Þ

ðx− μ

σ
Þn2− 1e− ðx− μ

2σ Þ, n > 1, −∞< μ< x<∞, σ >0.

The parameter n is known as degrees of freedom.
For n > 1, Mean = μ+ nσ, and variance=2nσ2.
The moment generating function MCH (t) is

MCHðtÞ= eμtð1− 2σtÞ− n ̸2, t <
1
2σ

.

The Fig. 2.3 gives the pdfs of The CH(0, 1, 4), CH(0, 1, 10) and CH(0, 1, 20).
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If Xi, i = 1, 2, …, n are n independent CH(0, 1, ni). i = 1, 2, …, n, random
variables then Sk = X1 + X2 + ⋅ ⋅ ⋅ +Xk, then Sk is distributed as CH(0, 1, m),
where m = n1 + n2 + ⋅ ⋅ ⋅ +nK. If X is standard normal (N(0, 1)), then X2 is
distributed as CH(0, 1, 1).

2.4 Exponential Distribution

A random variable X is said to have a exponential ðEðμ, σÞÞ distribution with
location parameter μ and scale parameter σ if the pdf ðfeðx, μ, σÞÞ is of the following
form.

feðx, μ, σÞ= 1
σ
e− ðx− μ

σ Þ, −∞< μ< x<∞.

The exponential distribution E(0, 1) is known as standard exponential.
The Fig. 2.4 gives the pdfs of E(0, 1), E(0, 2) and E(0, 5).
The cdf Feðx, μ, σÞ is given by

Fe x, μ, σð Þ=1− e− ðx− μ
σ Þ, −∞< μ< x<∞.
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Fig. 2.3 The CH(0, 1, 4)-Black, CH(0, 1, 10)-red and CH(0, 1, 20)-green
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The moment generating function Mex(t)

MexðtÞ= ð1− σtÞ− 1e− μt

Mean = μ+ σ and Variance = σ2.
If Xi, i = 1, 2, …, n are i.i.d. exponential with F(x) = 1 − e− x ̸σ , x≥ 0, σ >0,
and S(n) = X1 + X2 + …+ Xn, then pdf fS(n) (x) of S(n) is

fSðnÞðxÞ= 1
σ
e− x ̸σ ðx ̸σÞn− 1

ΓðnÞ , x≥ 0, σ >0.

This is a gamma distribution with parameters n and σ.
If X1 and X2 are independent exponential random variables with scale param-

eters σ1 and σ2, then P X1 <X2ð Þ= σ2
σ1 + σ2

.
If Xi, i = 1, 2, …, n are n independent exponential random variable with

F(x) = 1− e− x ̸σ , x≥ 0, σ >0. Let m(n) = min {X1, …, Xn} and
M(n) = max{X1, …, Xn}, F(m) be the cdf of m(n) and F(M) be the cdf of M(n),

then

1−FðmÞ xð Þ=P X1 > x, X2 > x, . . .Xn > xð Þ
= e− nx ̸σ

FðMÞðxÞ=P X1 < x.X2 < x, . . . , Xn < xð Þ= ð1− e− x ̸σÞn.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

PD
F

Fig. 2.4 E(0, 1) Black, E(0, 2) Red and E(0, 5) Green
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Memoryless Property. P(X > s+t|X > t) P(X > s).

P X> s+ tjX> tð Þ= PðX > s+ t,X > t
PðX > tÞ Þ

=
e− ðs+ t− 2μÞ ̸σ

e− ðt− μÞ ̸σ

= e− ðs− μÞ ̸σ

=PðX > sÞ

2.5 F-Distribution

A random variable X is said to have F distribution F(m, n) with numerator degree of
degrees of freedom m and numerator degrees of freedom n if its pdf fF (x, m, n) is
given by

fF x,m, nð Þ= Γðm+ n
2 ÞðmnÞ

m
2xðm− 2Þ ̸2

Γðm2ÞΓðn2Þð1+ mx
n Þðm+ nÞ ̸2 , x > 0,m > 0, n> 0.

The cdf FF(x, m, m) is given by

FF x, m, nð Þ= I mx
m+ n

ðm
2
,
n
2
Þ,

where = Ixða, bÞ=
R x
0 u

a− 1ð1− uÞb− 1du is the incomplete beta function.
The Fig. 2.5 gives the pdfs of F(5, 5), F(10, 1)) and F(10, 20).

Mean = n
n− 2, n > 2 and variance = 2n2ðm+ n− 2Þ

mðm− 2Þ2ðn− 4Þ, n > 4.

The characteristic functionϕF m ⋅ nð Þ = Γðm+ nÞ
2

Γ n
2ð Þ Uð

m
2 , 1−

n
2 , −

m
n itÞ, whereU(a, b, x)

is the confluent hypergeometric function of the second kind.
If U1 and U2 are independently distributed as chi-squared distribution with m

and n degrees of freedom, then X = (n/m) (U1/U2) is distributed as F with cdf FF
(m, n).

If X is distributed as Beta (m/2, n/2), then nX
mð1−XÞ is distributed as F with cdf FF

(m, n).
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2.6 Gamma Distribution

A random variable X is said to have gamma distribution GA ða, bÞ if its pdf
fgaða, b, xÞ is of the following form.

fgaða, b, xÞ= 1
ΓðaÞba x

a− 1e− x ̸b, x≥ 0, a>0, b>0.

Mean = ab and variance = ab2.
The Fig. 2.6 give the pdfs of GA(2, 1), GA(5, 1) and GA(10, 1).
The moment generating function M(t) is

MðtÞ= ð1− btÞ− a, t < 1 ̸b.

The characteristic function ϕga tð Þis ϕga tð Þ= ð1− ibtÞ− a.
If a = 1, b = 1 then we GA(1, 1) is an exponential distribution and if a is a

positive integer, then GA(a, b) is an Erlang distribution.
If b = 1, then we call GA ða, bÞ as the standard gamma distribution.
If X1 and X2 are independent gamma random variables then the random vari-

ables X1 + X2 and X1
X1 +X2

are mutually independent.
If X1, X2, .., Xn are n independently distributed as GA(a, b), then S(n) =

X1 + X2 + ⋅ ⋅ ⋅ +Xn is distributed as GA(na, b).
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Fig. 2.5 F(5, 5) Black, F(10, 10) Red and F(10, 20) Green
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2.7 Gumbel Distribution

A random variable X is said to have Gumbel ðGUðμ, σÞÞ distribution with location
parameter µ and scale parameter σ if its pdf, fig ðx, μ, σÞ is of the following form

fguðx, μ, σÞ= 1
σ
e−

x− μ
σ e− e−

x− μ
σ , −∞< μ< x<∞, σ >0.

Gumbel distribution is also known as Type I extreme (maximum) value distri-
bution. The cdf Fguðx, μ, σÞ is of the following form

Fguðx, μ, σÞ= e− e−
x− μ
σ , −∞< μ< x<∞, σ >0.

Mean = μ+ γσ, where γ is Euler’s constant.
Median = μ− lnðln2Þσ.
Variance = π2σ2

6 .
The Fig. 2.7 gives the pdfs of GU(0, 1/2), GU(0, 1) and GU(0, 2).
If X is distributed as E(0, 1), then μ− σlnX is distributed as GUðμ, σÞÞ.
If X is distributed as GU(0, 1), then Y = e−X is distributed as E(0, 1).
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Fig. 2.6 GA(2, 1) Black, GA(5, 1) Red and GA(10, 1) Green
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2.8 Inverse Gaussian (Wald) Distribution

A random variable X is said to have Inverse Gaussian ðIGðμ, σÞÞ distribution with
parameters µ and λ if its pdf

figðx, μ, λÞ is of the following form

figðx, μ, λÞ= ð λ

2λx3
Þ12e− λ

2x
x− μ
μ Þ2ð Þ, 0 < μ< x<∞, λ>0.

Mean = μ and variance = μ3

λ .
The Fig. 2.8 gives the pdfs of IG(1, 10), IG(1, 2) ans IG(1, 3).
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Fig. 2.7 GU(0, 1/2) Black, GU(0, 1) Red and GU(0, 2) Green
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Fig. 2.8 IG(1, 1) Black, IG(1, 2) Red and IG(1, 3) Green
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If X is distributed as IG ðμ, λÞ then αX is distributed as IG ðαμ. αλÞ.
If X is distributed as IGv ð1, λÞ, then X is known as Wald distribution.

2.9 Laplace Distribution

A random variable X is said to have Laplace ðLPðμ, σÞÞ distribution with location
parameters µ and scale parameter λ if its pdf

flpðx, μ, λÞ is of the following form

flpðx, μ, λÞ= 1
2σ

e−
x− μ
σj j,∞< x< μ<∞, σ >0.

Mean= μ and variance = 2σ2.
The Fig. 2.9 gives the pdfs of LP(0, 1), LP(0, 2) and LP(0, 3.5).
The moment generating function is Mlp(t) is

MlpðtÞ= eμt

1− σ2t2
.
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Fig. 2.9 LP(0, 1) Black, LP(0, 2) Red and LP(0, 3.5) Green
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The characteristic function ϕlp tð Þ is

ϕlp tð Þ= eiμt

1+ σ2t2
.

If X and Y are independent E(0, 1), then X-Y is LP(0, 1).
If X is LP ðμ, σÞ, then kX is LP ðkμ, kσÞ.
If X is LP(0, 1), then |X| is E(0, 1).

2.10 Logistic Distribution

A random variable X is said to have Logistic ðLGðμ, σÞÞ distribution with location
parameters µ and scale parameter λ if its pdf

flgðx, μ, σÞ is of the following form

flgðx, μ, σÞ= 1
σ

e−
x− μ
σ

ð1+ e−
x− μ
σ Þ2 , −∞< μ< x<∞, σ >0.

Mean = µ and variance = π2σ2

3 .
Moment generating function Mlg (t) is

MlgðtÞ= eμtΓ 1+ σtð ÞΓ 1− σtð Þ, t< 1
σ
.
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Fig. 2.10 LG(0, 1/2) Black, LG(0, 1) Red and LG(0, 2) Green
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The characteristic function ϕlg tð Þis

ϕlg tð Þ= eiμtΓ 1+ iσtð ÞΓ 1− iσtð Þ.

The Fig. 2.10 gives the pdfs of LG(0, 1/2), LG(0, 1) and LB(0, 2).
Let Xi,, i = 1, 2, …, n are independent and identically distributed as LP(0, 1),

then Y = X1X2…Xn is distributed as LG(0, 1).
If X and Y are independent GU ðμ, σÞ, then X − Y is LG(0, 1).
If X is LG(ðμ, σÞ then kX is LG μk, kσð Þ.
If X and Y are independent and E(0, 1), then μ− σ lnðXYÞ is LG ðμ, σÞ.

2.11 Lognormal Distribution

A random variable X is said to have Lognormal ðLNðμ, σÞÞ distribution with
location parameters µ and scale parameter σ if its pdf

flnðx, μ, σÞ is of the following form

flnðx, μ, σÞ= 1
xσ
pð2πÞ e

− 1
2ðlnðx− μÞ

σ Þ2 , x>0, > 0, μ>0, σ >0.

Mean = eμ+
σ2
2

Variance = ðeσ2 − 1Þe2μ+ σ2 .
Moment generating function Mln tð Þ is

MlnðtÞ= ∑∞
n=0

tn

n!
enμ+

n2σ2
2 .

The characteristic function ϕln tð Þis

ϕlnðtÞ= ∑∞
n=0

ðitÞn
n!

enμ+
n2σ2
2

The Fig. 2.11 gives the pdfs of LN(0, 1/2), LN(0, 1) and LN(0, 2).
If X is distributed as normal with location parameter μ and scale parameter

σ, then eX is distributed as LN ðμ, σÞ.
If X is distributed as LN ðμ, σÞ, then ln X is distributed as normal with location

parameter μ and scale parameter σ.
If Xi, i = 1, 2, …, n are independent and identically distributed as LN

ðμ, σÞ, then Y = X1X2…Xn is distributed as LN ðnμ, σpnÞ.
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2.12 Normal Distribution

A random variable X is said to have normal ðNðμ, σÞÞ distribution with location
parameters µ and scale parameter σ if its pdf

fnðx, μ, σÞ is of the following form

fnðx, μ, σÞ= 1

σ
ffiffiffiffiffi
2π

p e−
1
2

x− μ
σð Þ2 , −∞< μ< x<∞, σ >0.

Mean= μ and variance= σ2.

Themoment generating functionMn tð Þis

Mn tð Þ= eμt+
σ2 t2
2 .

The characteristic function ϕn tð Þ is

ϕn tð Þ= eiμt−
σ2 t2
2 .

The Fig. 2.12 gives the pdfs of N(0, 1/2), N(0, 1) and N(0, 2).
If Xi is N ðμi, σiÞ, i = 1, 2, …, n and Xi’s are independent, then for any αi, i = 1,

2, …, n, ∑n
i=1 αiXi is N(∑n

i=1 αiμI,
pð∑n

i=1 α
2
i σ

2
i ÞÞ.

If X is normal and X = X1 + X2, where X1 and X2 are independent, then both
X1 and X2 are normal.
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Fig. 2.11 LN(0, 1/2) Black, LN(0, 1) Red and LN(0, 2) Green
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2.13 Pareto Distribution

A random variable X is said to have Pareto (PA(α, β)) distribution with parameters
α and β if its pdf fpa(x, α, β) is of the following form

fpaðx, α, βÞ= βαβ

xβ+1 , x> α>0, β>0.

Mean= αβ
β− 1 , β>1 and variance = α2β

ðβ− 1Þ2ðβ− 2Þ . β>2.

The characteristic function ϕpaðtÞ is given by

ϕpaðtÞ= βð− iαtÞβΓð− β, − iαtÞ.

The Fig. 2.13 gives the pdfs of PA(1, 1/2), PA(1, 1) and PA(1, 20).
If X1, X2, …, Xn are n independent PA(α, β), then

2β lnð∏n
i=1 Xi

αn Þ is distributed as CH(0, 1, n).

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

PDF

Fig. 2.12 N(0, 0.5) Black, N(0, 1) Red and N(0, 2) Green
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2.14 Power Function Distribution

A random variable X is said to have power function (Po(α, β, δ)) if its pdf fpo(α, β, δ)
is of the following form

fpoðα, β, δÞ= δ

β− α
ðx− α

β− α
Þδ− 1, −∞< α< x< β<∞, δ>0

Mean = α+ δ
δ+1 β− αð Þ and variance = δðβ− αÞ2

ðδ+1Þ2ðδ+2Þ.

The Fig. 2.14 gives the pdfs of Po(0, 1, 3), Po(0, 1, 4) and Po(0, 1, 4).
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Fig. 2.13 PA(0, 1/2) Black, PA(1, 1) Red and PA(1, 2) Green
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Fig. 2.14 Po(0, 1, 3) black, Po(0, 1, 4) red and Po(0, 1, 4) green
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If δ=1, then PO α, β, 1ð Þ becomes a uniform (U(α, β)) with pdf fun(x, α, β) as

Funðx, α, βÞ= 1
β− α

, −∞< α< β<∞.

2.15 Rayleigh Distribution

A random variable X is said to have Rayleigh (RA(µ, σ)) with location parameter μ
and scale parameter σ if its pdf fra(x, µ, σ) is of the following form

fra x, μ, σð Þ= x− μ

σ2
e−

1
2ðx− μ

σ Þ2 , −∞< μ< x<∞, σ >0.

Mean = μ+ σ
ffiffi
π
2

p
and variance = 4− π

2 σ2;
Moment generating function Mra(t) is

Mrat = eμtð1+ σte−
σ2t2

2

ffiffiffi
π

2

r
ðerfð σtffiffiffi

2
p Þ+1ÞÞ

The Fig. 2.15 gives the pdfs of RA(0, 1/2), RA(0, 1) and RA(0, 2).
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Fig. 2.15 RA(0, 1/2) Black, RA (0, 1) Red and RA(0, 2) Green
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2.16 Student’s t-Distribution

A random variable X is said to have Students t-distribution ST(n)) with n degrees of
freedom, if its pdf fst (x, n) is as follows.

fst x, nð Þ= 1ffiffiffi
n

p 1
Bðn ̸2, 1 ̸2Þ ð1+

x2

n
Þ− ðn+1Þ ̸2, −∞< t<∞, n≥ 1.

Mean = 0 if n > 1 and is not defined for n = 1.
Variance = n

n− 2 , n>2.
The Fig. 2.16 gives the pdf of ST(!), ST(4) and ST(16) (Fig. 2.16).

2.17 Weibull Distribution

A random variable is said to have Weibull WB(x, µ, σ, δ) with location parameter µ,
scale parameter σ and shape parameter δ if its pdf fWb(x, μ, σ, δ) is of the following
form.

fWbðx, μ, σ, δÞ= δ

σ
ðx− μ

σ
Þδ− 1e− ðx− μ

σ Þδ , −∞< μ< x<∞, σ >0, δ>0.

Mean = μ+Γð1+ 1
δÞ and variance = σ2ððΓ1+ 2

δÞ− ðΓð1+ 1
δÞÞ2Þ.
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Fig. 2.16 ST(1) Black, ST(4) Red and ST(16) Green
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The Fig. 2.17 gives the pdfs of B(0, 1, 1), WB(0, 1, 3) and B(0, 1, 4).
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Fig. 2.17 WB(0, 1, 1) Black, WB(0, 1, 3) red and WB(0, 1, 4) green
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Chapter 3
Characterizations of Distributions
by Independent Copies

In this chapter some characterizations of distributions by the distributional prop-
erties based on independent copies of random variables will be presented.

Suppose we have n (≥ 1) independent copies, X1, X2, …, Xn, of the random
variable X. Polya (1920) gave the following characterization theorem of the normal
distribution.

3.1 Characterization of Normal Distribution

Theorem 3.1 If X1 and X2 are independent and identically distributed (i.i.d)
random variables with finite variance, then ðX1 +X2Þ ̸

ffiffiffi
2

p
has the same distribution

as X1 if and only if X1 is normal Nð0, σÞ.
Proof It is easy to see that E(X1) = 0 = E(X2). Let ϕðtÞ and ϕ1ðtÞ be the char-
acteristic functions of X1 and ðX1 +X2Þ ̸

ffiffiffi
2

p
respectively.

If X1 and X2 are normal. Then

ϕ1 tð Þ=Eðe
it X1 +X2ð Þffiffi

2
p Þ= ðe− 1

2ð tffiffi
2

p Þ2σ2Þ2 = e−
t2σ2
2 .

Thus ðX1 +X2Þ ̸
ffiffiffi
2

p
is normal.

Suppose that ðX1 +X2Þ ̸
ffiffiffi
2

p
has the same distribution as X1, then

ϕ tð Þ=ϕ1 tð Þ=Eðe
it X1 +X2ð Þffiffi

2
p Þ= ðϕð tffiffiffi

2
p ÞÞ2.
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Thus

ϕðt
ffiffiffi
2

p� �
= ðϕðtÞÞ2,

and

ϕð2tð Þ=ϕð
ffiffiffi
2

p
ðt

ffiffiffi
2

p
ÞÞ= ðϕðt

ffiffiffi
2

p
ÞÞ2 = ðϕ tð ÞÞ22

By induction it can be shown that

ϕ tð2k
2Þ

� �
= ðϕðtÞÞ2k for all k = 0, 1, 2, . . .

Let us find a t0 such that ϕðt0Þ≠ 0. We can find such a t0 since ϕðtÞ is continuous
and ϕ 0ð Þ=1. Let

ϕ t0ð Þ= e− σ2 for σ >0, We have

ϕ t02− k
2Þ

� �
= e− σ22− k

, k = 0, 1, 2, . . . . . .

Thus
ϕ1 tð Þ= e− t2σ2 for all t.
The theorem is proved.

Laha and Lukacs (1960) proved that for Xi, i = 1, 2,…, n independent and iden-
tically distributed random variables if the distributions of ∑n

i=1 Xi andX1 are
identical, then the distribution of Xi, i = 1, 2,…n, is normal.

The following theorem was proved by Cramer (1936).

Theorem 3.2 Suppose X1 and X2 are two independent random variables and
Z = X1 + X2. If Z is normally distributed, then X1 and X2 are normally distributed.

To prove the theorem, we need the following two lemmas.

Lemma 3.1 (Hadamad Factorial Theorem) Suppose g(t) is an entire function with
zeros β1, β2, . . . βp. and does not vanish at the origin, then we can write

g tð Þ = m tð ÞenðtÞ, wherem tð Þ is the canonical product formed with zeros of
β1, β2, . . . and n(t) is a polynomial of degree not exceeding p.

Lemma 3.2 If enðtÞ, where n(t) is a polynomial, is a characteristic function, then
the degree of n(t) can not exceed 2.

Proof of Theorem 3.3 The necessary part is easy to prove. We will proof here the
sufficiency part. We will assume that mean of Z is zero and variance is σ2. Let
ϕðtÞ,ϕ1ðtÞ and ϕ2ðtÞ be the characteristic functions of Z, X1 and X2 respectively.
We can write

ϕ tð Þ= e−
1
2σ

2t2 and ϕ tð Þ is an entire function without zero.
Since ϕ tð Þ=ϕ1ðtÞ ϕ2ðtÞ, we can write ϕ1ðtÞ= epðtÞ, where p(t) is a polynomial

and p(t) must be of degree less than or equal to 2. Let p tð Þ= a0 + a1t + a2t2,
Assume E X1ð Þ= μ1 and variance = σ21. Since ϕ1 0ð Þ=1 and jϕ1 tð Þj ≤ 1, we must
have a0 = 0 and a2 as negative. Hence p tð Þ= iμ1t− σ21t

2
+ thus X1 is distributed as

normal Similarly, it can be proved that the distribution of X2 is normal.
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Remark 3.1 If Z is distributed as normal then we can write
Z = X1 + X2 + ⋅ ⋅ ⋅ + Xn, where X1, X2, …, Xn, is normally distributed.

Remark 3.2 Suppose X1, X2,…, Xn are n independent and identically distributed
random variables with mean = 0 and variance = 1. Let Sn = X1ffiffi

n
p + X2ffiffi

n
p +⋯+ Xnffiffi

n
p .,

By Central Limit Theorem we know that Sn → N(0,1). But by the Cramer’s
theorem if Sn is normal, then all the Xi’s are normal.

The following characterization theorem of the normal distribution was inde-
pendently proved by Darmois (1953) and Skitovich (1953).

Theorem 3.3 Let X1, X2,…, Xn be independent random variables. Suppose
L1 = a1X1 + a2X2 + ⋅ ⋅ ⋅ + anXn and
L2 = b1X1 + b2X2 + ⋅ ⋅ ⋅ + bnXn

If L1 and L2 are independent, then for each index i (i = 1, 2,…, n) for which ai
bi ≠ 0, Xi is normal.

For an interesting proof of the theorem see Linnik (1964, p. 97).
Heyde (1969) proved that if the conditional distribution of L1jL2 is symmetric

then the Xi’s are normally distributed. Kagan et al. (1973) showed that for n ≥ 3 if
X1, X2,…, Xn are independent and identically distributed (i.i.d.) with E(Xi) = 0,
i = 1, 2,…, n, and if EðX X1 −X ̄,X2 −X ̄, . . . ,Xn −X ̄

�� Þ=0, where X ̄= ∑x
i=1 Xi, then

Xi’s (i = 1, 2,…, n) are normally distributed. Rao (1967) showed that if X1, X2,…,
Xn are independent and identically distributed, E(Xi) = 0 and E X2

i

� �
<∞, then if

EðX ̄jXi −X ̄Þ=0, for any i = 1, 2,…, n, n > 3, then Xi’s are normally distributed. It
can be shown that for n = 2, the above result is not true (See Ahsanullah et al.
2014). Kagan and Zinger (1971) proved the normality of the X’s under the fol-
lowing conditions.

EjXij2 <∞, i=1, 2, . . . , n

and

EðLk− 1
i jL2Þ=0, k=1, 2, . . . , n

Kagan and Wesolowski (2000) extended the Darmois-Skitovitch theorem for a
class of dependent variables.

The following theorem gives a characterization of the normal distribution using
the distributional relation of the linear function with chi-squared distribution.

Theorem 3.4 Suppose X1, X2,…, Xn are n independent and identically distributed
symmetric around zero random variables. Let L = a1X1 + a2 X2 + ⋅ ⋅ ⋅ + anXn . If
L2 is distributed as CH(0,1,1), then X’s are normally distributed.

Proof If is well known (see Ahsanullah 1987a, b) if Z2 is distributed as CH(01,1)
and g(t) is the characteristic function of Z, then
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2e−
t2
2 = g tð Þ+g − tð Þ. ð3:1:1Þ

Further if Z is symmetric around zero, then e−
t2
2 = g tð Þ.

Let ϕðtÞ be the characteristic function of Xi’s, then

e−
t2
2 = ∏n

i=1 ϕðaitÞ.

It is known (see Zinger and Linnik (1964) that if for positive numbers α1, α2,…,
αn and ϕi tð Þ, i=1, 2, . . . , n are characteristic function,

ðϕ1ðtÞÞα1ðϕ2ðtÞÞα2 ……..ðϕnðtÞÞαn = e−
t2
2 , for |t| < t0, t0 > 0 and t0 is real, then

ϕi tð Þ, i=1, 2, . . . , n are characteristic functions of the normal distribution. Thus
Xi’s, i = 1, 2,…, n are normally distributed.

Remark 3.3 If a1 = a2 =⋯= an = 1ffiffi
n

p , then from Theorem 3.3 it follows that if X1,

X2,…, Xn are n independent, identically and symmetric around zero random vari-
ables, then if nðX ̄Þ2 is distributed as CH(0,1,1) where X ̄= 1 ̸nð Þ X1 +X2 +⋯+Xnð Þ,
then the Xi’s, i = 1, 2,…, n are normally distributed.

The following theorem is by Ahsanullah and Hamedani (1988).

Theorem 3.5 Suppose X1 and X2+ are i.i.d. and symmetric (about zero) random
variables and let Z = min(X1, X2). If Z2 is distributed as CH(0,1,1), then X1 and X2

are normally distributed.

Proof Let ϕðtÞ be the characteristic function of Z, F(x) be the cdf of X1 and f(x) is
the pdf of X.

We have

ϕðtÞ=2
Z ∞

−∞
eitxð1−F xð ÞÞf xð Þdx

ϕ tð Þ+ϕ − tð Þ=4½
Z ∞

0
cos txð Þð1−F xð ÞÞf xð Þdx+

Z ∞

0
cos txð ÞF xð ÞÞf xð Þdx

=4
Z ∞

0
cos txð Þf xð Þdx

=2½ ∫
∞

−∞
cos txð Þf xð Þdx� by symmetry of X.

= 2ϕ1ðtÞ, whereϕ1 tð Þ is the characteristic function of X1.

Since Z2 is distributed as ch(0,1,1), we have

ϕ tð Þ+ϕ − tð Þ=2e−
t2
2 . Thus ϕ1 tð Þ= e−

t2
2 and X1 and X2 are normally distributed.
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Remark 3.4 It is easy to see that Z = min (X1, X2) in Theorem 3.4 can be replaced
by the max(X1, X2).

The following two theorems does not use the symmetry condition on X’s.

Theorem 3.6 Let X1 and X2 be independent and identically distributed random
variables. Suppose U = aX1 + bX2 with 0 < a, b < 1 and a2 + b2 = 1. If U2 and X2

1
are distributed as CH(0,1,1), then X1 and X2 are normally distributed.

Proof Let ϕ1 tð Þ and ϕðtÞ be the characteristic functions of U and X1 respectively.
We have

2e−
t2
2 =ϕ1 tð Þ+ϕ1 − tð Þ
=ϕðatÞϕðbtÞ+ϕð− atÞϕð− btÞ

ð3:1:2Þ

Also

2e−
t2
2 =ϕ tð Þ+ϕð− tÞ. We can write

ϕ atð Þ+ϕð− atÞ=2e−
ðatÞ2
2

and

ϕ btð Þ+ϕð− btÞ=2e−
ðbtÞ2
2

Multiplying the above two equations, we obtain

ðϕ atð Þ+ϕ − atð ÞÞðϕ btð Þ+ϕð− btÞÞ=4e−
t2
2 .

4e−
t2
2 = ϕ atð Þ+ϕ − atð Þð Þ ϕ btð Þ+ϕ − btð Þð Þ
= ϕ atð Þϕ btð Þð Þ+ ϕ atð Þϕ − btð Þð Þ

+ ϕ − atð Þϕ btð Þð Þ+ ϕ − atð Þϕ − btð Þð Þ
=2e−

t2
2 +ϕ atð Þϕ − btð Þ+ϕ − atð Þϕ btð Þ.

Thus

ϕ atð Þϕ − btð Þ+ϕ − atð Þϕ btð Þ=2e−
t2
2 . ð3:1:3Þ

We have

ðϕ atð Þ−ϕ − atð ÞÞ ϕ btð Þ−ϕ − btð Þð Þ
=ϕ atð Þϕ btð Þ+ϕ − atð Þϕ − btð Þ
− ðϕ atð Þϕ − btð Þ+ϕ − atð Þϕ btð ÞÞ=0
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Thus ϕ tð Þ=ϕ − tð Þ and ϕ atð Þϕ btð Þ= e−
t2
2 .

Hence the result follows from Cramer’s theorem.

Theorem 3.7 Suppose X1 and X2 are independent and identically distributed
random variables. Let Z1 = aX1 + a2X2 and Z2 = b1X1 + b2X2, −1 < a1, a2 < 1,
−1 < b1, b2 < 1, 1 = a21 + a22 = b21 + b22 and a1b2 + a2b1 = 0. If Z2

1 and Z
2
2 are dis-

tributed as CH(01,1), then both X1 and X2 are normally distributed.

Proof Let ϕ1 tð Þ and ϕ2ðtÞ be the characteristic functions of Z1 and Z2 respectively.
We have

2e−
ðatÞ2
2 =ϕ1 tð Þ+ϕ1 − tð Þ=ϕ2 tð Þ+ϕ2 − tð Þ.

Now if ϕðtÞ be the characteristic function of X1, then

ϕ a1tð Þϕ a2tð Þ+ϕ − a1tð Þϕ − a2tð Þ=2e−
t2
2 ð3:1:4Þ

and

ϕ b1tð Þϕ b2tð Þ+ϕ − b1tð Þϕ − b2tð Þ=2e−
t2
2 ð3:1:5Þ

Substituting b1 = − a1b2
a2
.

In the above equation, we obtain

ϕ −
a1b2
a2

t
� 	

ϕ b2tð Þ+ϕ
a1b2
a2

t
� 	

ϕ − b2tð Þ=2e−
t2
2 .

Let b2
a2
t = t1, then we obtain.

In the above equation, we obtain

ϕ − a1t1ð Þϕða2t1Þ+ϕ a1t1ð Þϕ − a2t1ð Þ=2e
−

a2
2
t2
1

2b2
2 ð3:1:6Þ

Now 1= a22 + a21 = a22ð1+ a21
a22
Þ= a22 1 + b21

b22

� �
= a22

b22
.

From (3.1.6), we obtain

ϕ − a1tð Þϕða2tÞ+ϕ a1tð Þϕ − a2tð Þ=2e−
t2
2 ð3:1:7Þ

Now

ðϕ a1tð Þ−ϕ − a1tð ÞÞðϕ a2tð Þ−ϕ − a2tð ÞÞ
=ϕ a1tð Þϕ a2tð Þ+ϕ − a1tð Þϕ − a2tð Þ
= − ðϕ a1tð Þϕ − a2tð Þ+ϕ − a1tð Þϕ a2tð ÞÞ− 0.
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Thus ϕ tð Þ=ϕ − tð Þ for all t, −∞< t<∞.
We have

ϕ a1tð Þϕ a2tð Þ= e−
t2
2

And by Cramer’s theorem it follows that both X1 and X2 are normally
distributed.

The following theorem has lots of application in statistics.

Theorem 3.8 Suppose X1, X2,…, Xn are n independent and identically distributed

random variables with E(Xi) = 0 and E(X2
i Þ=1. Then the mean X ̄ðX = 1

n∑
n
i=1 XiÞ

and the variance S2ð= ∑n
i=1 Xi −X ̄ð Þ2Þ are independent if and only if the distri-

bution of the X’s is N(0,1).

Proof Suppose the pdf f(x) of X1 as follows.

f xð Þ= 1ffiffiffiffiffiffiffiffiffið2πÞp e−
1
2
x2, −∞< x<∞.

The joint pdf of X1, X2,…, Xn can be written as

fðx1, x2, . . . , xnÞ= 1ffiffiffiffiffi
2π

p
� 	n

e− ∑n
i=1 x

2
i

Let us use the following transformation

Y1 =X ̄

Y2 =X2 −X ̄

. . . . . . . . . . . . . . .

Yn =Xn −X ̄

The jacobian of the transformation is n.
Further

∑
n

i=1
X2
i = ðX1 −XÞ2 + ∑

n

i=2
ðYi −XÞ2 + nX

= ð∑n
i=2 ðY2 −XÞÞ2 + ∑n

i=2 ðYi −XÞ2 + nY2
1

We can write the joint pdf of the Yi’ as

fðy1, y2, . . . , ynÞ= 1ffiffiffiffiffi
2π

p
� 	n

e
1
2ðð∑n

i=2 ðy2 − xÞÞ2e∑
n
i=2 ðyi − xÞ2eny

2
1 .
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Thus X ̄= Y1ð Þ and S2ð= ∑n
i=1 Xi −X ̄ð Þ2Þ are independent.

Suppose ϕ1ðtÞ and ϕ2 tð Þ be the charateristic functions of X ̄ and S2 respectively.
Let ϕ t1, t2ð Þ be the joint characteristic function of X ̄ and S2.
We can write

ϕ t1, t2ð Þ=
Z ∞

−∞

Z ∞

−∞
. . .

Z ∞

−∞
eit1x+ it2s2 f x1ð Þf x2ð Þ . . . f xnð Þdx1dx2 . . . dxn,

ϕ1ðt1Þ=ϕ t1, 0ð Þ=
Z ∞

−∞

Z ∞

−∞
. . .

Z ∞

−∞
eit1xf x1ð Þf x2ð Þ . . . f xnð Þdx1dx2 . . . dxn

and

ϕ2 t2ð Þ=ϕð0, t2Þ=
Z ∞

−∞

Z ∞

−∞
. . .

Z ∞

−∞
eit2s

2
f x1ð Þf x2ð Þ . . . f xnð Þdx1dx2 . . . dxn.

Since X ̄ and S2 are independent, we must have

ϕ t1, t2ð Þ=ϕ t1, 0ð Þϕ 0, t2ð Þ ð3:1:8Þ

Writing X = 1
n∑

n
i=1 Xi, we can write

ϕ1ðt1Þ= ∏
n

k=1

Z ∞

−∞

Z ∞

−∞
. . .

Z ∞

−∞
eit1

1
n∑

n
i= 1 xiÞf x1ð Þf x2ð Þ . . . f xnð Þdx1dx2 . . . dxn

= ðϕ t1
n

� �
Þn,

where ϕ(.) is the characteristic function of X1

d
dt2

ϕ t1, t2ð Þð Þjt2 = 0 =
Z ∞

−∞

Z ∞

−∞
. . .

Z ∞

−∞
is2eit1xf x1ð Þf x2ð Þ . . . f xnð Þdx1dx2 . . . dxn,

= iðϕ t1
n

� �
ÞnðEðs2ÞÞ, sinceX ̄ and S2are independent.

= ðn− 1Þiðϕ t1
n

� �
Þn

Substituting S2 = n− 1
n ∑n

i=1 X
2
i − 1

n∑
x
i≠ j=1 XiXj and using

ϕ′ tð Þ= i
Z ∞

−∞
eitxf ðxÞdx,ϕ′′ tð Þ= −

Z ∞

−∞
x2eitxf ðxÞdx

and
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Z ∞

−∞

Z ∞

−∞
. . .

Z ∞

−∞
is2eitxf x1ð Þf x2ð Þ . . . f xnð Þdxadx2 . . . dxn

= − iðn− 1ÞΦ′′ðt1
n
ÞððΦ t1

n

� �
Þn− 1Þ− iðn− 1ÞΦ′ðt1

n
ÞððΦ t1

n

� �
Þn− 2Þ,

we obtain

ϕ′′ tð Þðϕ tð ÞÞn− 1 − ðϕ′ tð ÞÞ2ðϕ tð ÞÞn− 2 = − ðϕ tð ÞÞn ð3:1:9Þ

On simplification, we have

ϕ′′ðtÞ
ϕ tð Þ −

ðϕ′ tð ÞÞ2
ðϕ tð ÞÞ2 = − 1

We can write the above equation as

d2

dt2
lnϕ tð Þ= − 1 ð3:1:10Þ

Using the condition E(Xi) = 0 and E(x2) = 1, we will have

ϕ tð Þ= e−
t2
2 , −∞< t<∞.

Thus the distribution of the Xi’s is N(0,1).
It is known that if X1 and X2 are independently distributed as Nð0, 1Þ, then X ̸Y

is distributed as CA(0,1). The converse is not true. For the following Theorem that
we need some additional condition to characterize the normality of X1 and X2.

Theorem 3.9 Let X1 and X2 be independent and identical distributed absolutely
continuous random variables with cdff FðxÞ and pdf f xð Þ. Let Z =minðX1,X2Þ. If Z2

and V = X1
X2

are distributed as CAð0, 1Þ, then X1 and X2 are distributed as Nð0, 1Þ,
Proof Since X1

X2
is distributed as CAð0, 1Þ we have

Z ∞

−∞
f uvð Þf vð Þvdv= 1

πð1+ u2Þ, −∞< μ<∞. ð3:1:11Þ

Or

Z ∞

0
f uvð Þf vð Þ+ f − uvð Þf − vð Þð Þvdv= 1

πð1+ u2Þ ð3:1:12Þ

Now letting u → 1 and u → −1, we obtain
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Z ∞

0
ðf vð ÞÞ2 + ðf − vð ÞÞ2
h i

vdv=
1
2π

ð3:1:13Þ

and

2
Z ∞

0
f vð Þf − vð Þ= 1

2π
ð3:1:14Þ

Using (3.1.13) and (3.1.14) we obtain

Z ∞

0
½f vð Þ− f − vð Þ�2vdv− 0 ð3:1:15Þ

Thus the distribution of X1 and X2 is symmetric and hence their distribution is N
(0,1).

3.2 Characterization of Levy Distribution

Theorem 3.10 Let X1, X2 and X3 be independent and identically distributed
absolutely continuous random variable with cumulative distribution function F(x)
and probability density function f(x). We assume F(0) = 0 and F(x) > 0 for all
x > 0 Then X1 and (X2 + X3)/4 are identically distributed if and only if F(x) has the
Levy distribution with pdf f(x) as

f xð Þ=
ffiffiffiffiffiffiffiffi
ð σ
2π
Þ

q
e− σ

2x

x3 ̸2, x>0, σ >0.

Proof Suppose the random variable X1 has the pdf f xð Þ= ffiffiffiffiffiffiffið σ
2πÞ

p
e−

σ
2x

x3 ̸2 , x>0, σ >0.
Then the characteristic function ϕ tð Þ is

ϕðtÞ=
Z ∞

0
eitx

ffiffiffiffiffiffiffiffi
ð σ
2π
Þ

q
e− σ

2x

x3 ̸2dx= e−
ffiffiffiffiffiffiffiffiffi
− 2iσt

p
.

The characteristic function of (X2 + X3)/4 is

e−
ffiffiffiffiffiffiffiffiffiffiffi
− iσt ̸2

p
.e−

ffiffiffiffiffiffiffiffiffiffiffi
− iσt ̸2

p
= e−

ffiffiffiffiffiffiffiffiffi
− 2iσt

p
.

Thus X1 and (X2 + X3)/4 are identically distributed.
Suppose that X1 and (X2 + X3)/4 are identically distributed. Let φðtÞ be their

characteristic function, then

φðtÞ= ðφðt ̸22ÞÞ2 =⋯= ðφðt ̸22nÞÞ2n , n=1, 2, . . .
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Taking logarithm of both sides of the equation, we obtain

ðlnφðtÞÞ2 = 22nðlnφðt ̸22nÞÞ2

Let ΨðtÞ= ðlnφðtÞÞ2, then

ΨðtÞ=22n Ψðt ̸22nÞn=1, 2, . . .

The solution of the above equation is
ΨðtÞ= ct, where c is a constant.
Hence

φðtÞ= e−
ffiffiffi
ct

p

Using the condition
ϕð− tÞ=ϕðtÞ, where
ϕðtÞ is the complex conjugate of ϕðtÞ, we can take c = −2i σ, where i2 = − 1

and σ >0 as a constant.

3.3 Characterization of Wald Distribution

The following theorem (Ahsanullah and Kirmani 1984) gives a characterization of
the Wald distribution.

Theorem 3.11 Let X be an absolutely continuous nom-negative random variable
with pdf f(x). Suppose that xf xð Þ= x− 2f ðx− 1Þ and X − 1 and X+ λ− 1Z, where λ>0
are identically distributed where Z is distributed as CH(0,1,1). Then X has the Wald
distribution.

Proof Let ϕ1 and ϕ be the characteristic functions of !/X and X respectively. Then
we have

ϕ1 tð Þ=E eitX
− 1

� �
=

Z ∞

0
eitx

− 1
f xð Þdx

=
Z ∞

0
eityy− 2f y− 1� �

dy

=
Z ∞

0
eityyf yð Þdy

=
1
i
ϕ′ðtÞ

ϕ1 tð Þ= charateristic function of X + λ− 1Z =ϕðtÞð1− 2itλ− 1Þ− 1 ̸2.
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Now

1
i
ϕ′ tð Þ=ϕðtÞð1− 2itλ− 1Þ− 1 ̸2

and hence ϕ tð Þ=expðλð1− 1− 2itλ− 1� �1
2ÞÞ which is the characteristic function of

the Wald distribution with pdf f(x) as

f xð Þ= ð λ

2πx3
Þ1 ̸2expð− λðx− 1Þ2ð2xÞ− 1Þ, x > 0, λ>0.

3.4 Characterization of Exponential Distribution

Kakosyan et al. (1984) conjectured that the identical distribution of
p∑M

j=1 Xj andMX1,M where P M=kð Þ= pð1− pÞk− 1, 0 < p<1, k=1, 2, . . . char-
acterizes the exponential distribution. The following is a generalization of the
conjecture due to Ahsanullah (1988a–c).

Theorem 3.12 Let X be independent and identically distributed non-negative
random variables with cdf F(x) and pdf f(x). We assume M as an integer values
random variables with P(M = k) = pð1− pÞk− 1, 0 < p<1, k=1, 2, . . . Then the
following two properties are equivalent.

(a) X’s have exponential distribution with F xð Þ=1− e− λx, x ≥ 0,

(b) p ∑
M

j=1
Xj d Dr, n, where Dr,n = (n − r + 1) (Xr,n−Xr−1,n). 1 < r ≤ n, n

2, X0,n = 0, if E(X) is finite, Xi ∈C1 and lim
x→ 0

F ̄ðxÞ
x = λ,

Proof Let r ≥ 2.
Let φ1ðtÞ and φ2 tð Þ be the characteristic functions of p∑M

j=1 Xj and Dr,n

respectively

φ1 tð Þ=Eeitp∑
m
j=1 Xj

= ∑m
k =1 pð1− pÞkðφðptÞk , whereφðtÞ is the characteristic function of theX′s.

= pφðptÞð1− qφðptÞÞ− 1, q = 1− p.

ð3:3:1Þ
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If F xð Þ=1− e− λx, then φðtÞ= λ
λ− it and φ1(t) =φðtÞ = 1

1− λit

φ2 tð Þ=
Z ∞

0

Z ∞

0

n!eitv

r− 2ð Þ! n− rð Þ! F uð Þð Þr− 2ð1−F u+
v

n− r+1

� 	
Þn− rf ðuÞf ðu+ v

n− r+1
Þdudv

= 1+ it
n!

r− 2ð Þ! n− r+1ð Þ!
Z ∞

0
eitv F uð Þð Þr− 2 1−F u+

v
n− r+1

� 	� 	n− r

f ðuÞf ðvÞdudvv

Substituting f xð Þ= λe− λx and F xð Þ=1− e− λx, we obtain φ1 tð Þ=φ2ðtÞ. Thus
að Þ ⇒ bð Þ.
We now proof bð Þ ⇒ að Þ.
Since φ1 tð Þ=φ2ðtÞ, we get on simplification for r≥ 2,

φ ptð Þ− 1
1− qφ ptð Þ

1
it
=

n!
r− 2ð Þ! n− r+1ð Þ!

Z ∞

0

Z ∞

0
eitv F vð Þð Þr− 2 1−F u+

v
n− r+1

� 	� 	n− r+1

f ðuÞf ðvÞdudv

ð3:3:2Þ

Taking limits of both sides of (3.3.2) as t goes to 0, we have

φ′ð0Þ
i

=
n!

r− 2ð Þ! n− r+1ð Þ!
Z ∞

0

Z ∞

0
f ðuÞ F vð Þð Þr − 2 1−F u+

v
n− r+1

� 	� 	n− r+1

f ðvÞdudv

ð3:3:3Þ

Writing φ′ð0Þ
i =

R∞
0 1−F vð Þð Þdv, we obtain from (3.3.3)

Z ∞

0

Z ∞

0
f uð Þ F vð Þð Þr− 2 1−F vð Þð Þn− r+1Hðu, vÞf ðvÞdudv ð3:3:4Þ

where H u, vð Þ= ð1−Fðu+ v
n− r +1Þ

1−F uð Þ Þn− r+1 − 1− F vð Þð Þ.
If X belongs to the class c1, = then it is proved (see Ahsanullah 1988a–c) that H

(o,v) = o for all v ≥ 0.

Thus for all v > 0, ð1−Fð v
n− r+1

Þn− r+1Þ= 1− F vð Þð Þ ð3:3:5Þ

Since lim
→ 0

FðxÞ
x = λ, λ>0 it follows from (3.3.5) that

F xð Þ=1− e− λx, λ>0 and x ≥ 0.
The proof of the theorem for r = 1 is similar.
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3.5 Characterization of Symmetric Distribution

Theorm 3.13 The following theorem gives a characterization of the symmetric
distribution’

Behboodian (1989) conjectured that if X1, X2 and X3 are independent and if
X1 + mX2 − (1 + m)X3 for some m. 0 < m ≤ 1 is symmetric about Θ, then X’s are
symmetric about θ.

The following theorem gives a partial answer to the question.
Suppose X1, X2 and X3 are independent and identically distributed random

variable with cdf F(x), pdf f(x) and ϕðtÞ is the characteristic function of X1 such that
ϕðtÞ≠ 0 for any t, −∞< t<∞, the random variable Y = X1 +m X2 – (1 + m) X3 is
symmetric around θ if and only if X’s are symmetric around θ

Proof We can write

Y=X1 − θ+mðX2 − θÞ− 1+mð ÞðX3 − θÞ.

Thus if X’s are symmetric about θ, then Y is symmetric about θ.
Let φ1ðtÞ and φ2ðtÞ be the characteristic functions of Y and X’s.
We can write

φ1 tð Þ=φ2ðtÞφ2ðmtÞφ2ð− 1+mð ÞtÞ.

Since Y is symmetric about θ, wemust haveφ1 tð Þ=φ1 − tð Þ,
i.e.

φ2ðtÞφ2ðmtÞφ2ð− 1+mð ÞtÞ=φ2ð− tÞφ2ð−mtÞφ2ð 1+mð ÞtÞ.

Using h tð Þ= φ2ðtÞ
φ2ð− tÞ, we obtain

h tð Þh mtð Þ=h 1+mð Þtð Þ.
Substitutingg tð Þ= ln h tð Þ, we obtain
g tð Þ+g mtð Þ=g 1+mð Þtð Þ

ð3:4:1Þ

The solution of the Eq. (3.4.1) is
g(t) = ct, where c is a constant.
Thus

φ2ðtÞ
φ2ð− tÞ =h tð Þ= eg tð Þ = e2ct

and

φ2ðtÞ= e2ctφ2ð− tÞ
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Since φ2ðtÞj j= φ2 − tð Þj j, we must have c= iθ where i =
ffiffiffiffiffiffiffiffi
− 1

p
and θ is any real

number. We can write

φ2ðtÞe− iθt =φ2ð− tÞeiθt.

Thus X’s are symmetric about θ.

3.6 Charactetrization of Logistic Disribution

Theorem 3.14 Suppose that the random variable X is continuous and symmetric
about 0, the X has the logistic distribution with F xð Þ= 1

1+ e− λx, λ>0 and x ≥ 0 if
and only

P = x<XjX<xð Þ=1− e− λx, λ>0 and x ≥ 0.

Proof We have P = x<XjX<xð Þ= 2F xð Þ− 1
FðxÞ , if F xð Þ= 1

1+ e− λx Then

Pð=x<Xj 2F xð Þ− 1
FðxÞ X<xÞ= 2F xð Þ− 1

FðxÞ =1− e− λx.

Suppose
2F xð Þ− 1

FðxÞ =1− e− λx.Then F xð Þ=1− e− λx. ð3:5:1Þ

3.7 Characterization of Distributions by Truncated
Statistics

We will use the following two lemmas to characterize some distributions by
truncated distributions.

Lemma 3.1 Suppose the random variable X is absolutely continuous with cdf F(x)
and pdf f(x). Let

a= inf xjF xð Þ>0f g, β= sup xjF xð Þ<1f g, hðxÞ is a continuous of x for α < x< β.

We assume E(h(x)) exists. If E h Xð ÞjX ≤ xð Þ= gðxÞ f ðxÞ
FðxÞ, where g(x) is a differ-

ential function for all x, α < x < β and
R x
α
h uð Þ− g′ðuÞ

gðuÞ du is finite for all a< x< β, then

f xð Þ= ce
R x
α
h uð Þ− g′ðuÞ

gðuÞ du, where c is determined by the condition
R β
α f xð Þdx=1.
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Proof

Wehave g xð Þ=
R x
α h uð Þf uð Þdu

f ðxÞ and
Z x

α
h uð Þf uð Þdu= g xð Þf xð Þ. ð3:6:1Þ

Differentiating both sides of the above equation with respect to x, we obtain

f ′ðxÞ
f ðxÞ =

h xð Þ− g′ðxÞ
gðxÞ ð3:6:2Þ

On integrating the above, we obtain

f xð Þ= ce
Z x

α
uf uð Þdu ð3:6:3Þ

where c is determined by the condition
R β
α f xð Þdx=1.

Lemma 3.2 Suppose the random variable X is absolutely continuous with cdf F(x)
and pdf f(x). Let

α= inf xjF xð Þ>0f g, β= sup xjF xð Þ<1f g,mðxÞ is a continuous function of x for
α < x<β.

We assume E(m(x)) exists. If E m Xð ÞjX ≥ xð Þ= nðxÞ f ðxÞ
1−FðxÞ, where g(x) is a dif-

ferential function for all x, α< β and
R β
α

m uð Þ+ n0ðuÞ
gðuÞ du is finite for all α< x< β, then

f xð Þ= ce−
R x

α

m uð Þ− n′ðuÞ
nðuÞ du, where c is determined by the condition

R β
α f xð Þdx=1.

Proof We have n xð Þ=
R β

z
m uð Þf uð Þdu
f ðxÞ and

Z β

x
m uð Þf uð Þdu= n xð Þf xð Þ. ð3:6:4Þ

Differentiating both sides of the above equation with respect to x, we obtain
−m xð Þf xð Þ= n xð Þf ′ xð Þ+ n′ xð Þf xð Þ. On simplification

f ′ðxÞ
f ðxÞ = −

m xð Þ+ n′ðxÞ
nðxÞ ð3:6:5Þ

On integrating the above, we obtain

f xð Þ= ce−
R x

α

m uð Þ+ n′ðuÞ
nðuÞ du ð3:6:6Þ

where c is determined by the condition
R β
α f xð Þdx=1.
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3.7.1 Characterization of Semi Circular Distribution

The following theorem characterized semi-circular distribution using the right
truncation of the random variable X. A random variable X has the standard
semi-circular distribution if the pdf F(x) of X is as follows:

f xð Þ= 2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x2,

p
− 1< x<1. ð3:5:7Þ

Theorem 3.15 Suppose that IXI is an absolutely continuous random variable with
cdf Fð Þx and pdff xð Þ.

We assume F − 1ð Þ=0,F xð Þ>0 for x> − 1 and F 1ð Þ=1. Then

E XjX ≥ xð Þ= g xð Þ f xð Þ
F xð Þ . x> − 1, where g xð Þ= x2 − 1

3 if and only if

f xð Þ= 2
n

ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p
, − 1< x<1.

Proof If f(x) =
We have

f xð Þ= 2
π

ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p
then g xð Þ=

R x

− 1
u
ffiffiffiffiffiffiffiffiffi
1− u2

p
ffiffiffiffiffiffiffiffi
1= x2

p du= x2 − 1
3

Suppose g xð Þ= x2 − 1
3 , then g′ xð Þ= 2x

3
By Lemma 3.1,

f ðxÞ
fxðxÞ =

x− g′ðxÞ
gðxÞ =

− x
1− x2

ð3:6:8Þ

On integrating the above equations, we obtain f xð Þ− c
ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p
, where c is a

constant.
Using the condition

R 1
= 1 f xð Þ=1,

we obtain

f xð Þ= 2
π

ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p
, − 1< x<1.

If h(x) and g(x) satisfy the conditions given in the Lemma 3.1 then knowing h(x)
and g(x), we can use Lemma 3.1 to characterize various distributions.

3.7.2 Characterization of Lindley Distribution

We use Lemma 3.2 to characterize Lindley distribution.
A random variable X is said to have Lindley distribution if the pdf f(x) is of the

following form:
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f xð Þ= β2

1 + β
1+ xð Þe− βx, x≥ 0, β>0. ð3:6:9Þ

Theorem 3.16 Suppose that the random variable X has an absolutely continuous
with cdf F(x) and pdf f(x). We assume that F 0ð Þ=0,F xð Þ>0 for all x > 0 and E

(Xn) exists for some fixed n > 0. Then E XnjX ≥ xð Þ= gðxÞ f ðxÞ
1−FðxÞ , where

g xð Þ= ∑n+1
k=0 ckx

k

1+ x , c0 =
n!ðn+1+ βÞ

βn+1 , ck +1 =
β

k+1, k=0, 1, 2, . . . , n− 1, cn+1 = 1
β, if

and only if f xð Þ= β2

1 + β 1+ xð Þe− βx, x≥ 0, β>0.

Proof If f xð Þ= β2

1 + β ð1+ xÞe− βx, then

g xð Þ=
R∞
x unf uð Þdu
1−FðxÞ

R∞
x unð1+ uÞeβudu
ð1+ xÞe− βx =

∑n+1
k=0 ckx

k

1+ x
.

Suppose h xð Þ= xn and g xð Þ= ∑n+1
k= 0 ckx

k

1+ x .
We have

β ∑
n+1

k=0
ckxk − ∑

n+1

k=0
kckxk− 1 = δcn+1xn+1 + ½βcn − n+1ð Þxn�

+ ∑
n− 1

k=0
ðβck − ðk+1Þck +1Þxk

= xnð1+ xÞ

Thus

hðxÞ
gðxÞ =

xnð1+ xÞ
∑n+1

k=0 ckxk
= β−

∑n+1
k=0 kckx

k− 1

∑n+1
k=0 ckxk

.

Since 1ng xð Þ= − 1n 1+ xð Þ+1nð∑n+1
k=0 ckx

kÞ.
Now

g′ðxÞ
gðxÞ =

1
1+ x

+
∑n+1

k =0 kckx
k− 1

∑n+1
k=0 ckxk

= −
1

1+ x
+ β−

hðxÞ
gðxÞ .

Thus

h xð Þ+ g xð Þ
g xð Þ = −

1
1+ x

+ β
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By Lemma 3.2

f ′ðxÞ
f ðxÞ = −

h xð Þ+ g′ xð Þ
g xð Þ − ðβ− 1

1+ x
Þ ð3:6:10Þ

On integrating the above equation with respect to x, we obtain
f xð Þ= c 1+ xð Þe− βx, where c is a constant. Using the condition

R∞
0 f xð Þdx=1,

we obtain

f xð Þ= β2

1 + δ
1+ xð Þe− βx, x≥ 0, β>0.

3.7.3 Characterization of Rayleigh Distribution

Theorem 3.17 Suppose the random variable X has an absolutely continuous cdf
F(x) and pdf f(x). We assume F(0) = o and F(x) > 0 for all x >. If EðX2nÞð Þ is finite
for any n > 0, then X has a Rayleigh distribution with F xð Þ=1− e− cx2 , c>0, x≥ 0
if and only if

EðX2njX > tÞ= ∑n
k=0

nðkÞ
ck t

2ðn− kÞ, where nðiÞ =n n− 1ð Þ . . . n− i + 1ð Þ
Proof of this theorem can be established following the proof of Theorem 3.16.

There is a similar characterization using truncated odd moments. For details of
this and some other characterization of Rayleigh distribution, see Ahsanullah and
Shakil (2011a, b).
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Chapter 4
Characterizations of Univariate
Distributions by Order Statistics

In this chapter several characterizations of univariate continuous distributions based
on order statistics will be presented.

4.1 Characterizations of Student’s t Distribution

We will consider the random variable X has an absolutely continuous distribution
with cdf as F(x) and pdf f(x). Suppose α(F) = inf {x|F(x) > 0} and e(F) = sup {x|F
(x) < 1}.

Let fST(x, n) be the pdf of Student’s t distribution with n degrees of freedom (ST
(n)). We have

fST x, nð Þ= 1p
n

1
B n

2 ,
1
2

� � 1+
x2

n

� �− ðn+1Þ ̸2

, −∞< x<∞, n≥ 1. ð4:1:1Þ

The Student’s t distribution with 2 degrees of freedom has the pdf fST(x, 2) where

fST x, 2ð Þ= 1

2
ffiffiffi
2

p 1+
x2

2

� �− 3
2

, −∞< x<∞. ð4:1:2Þ

The corresponding cdf FST(x, 2) is

FST x, 2ð Þ= 1
2

1+
xpð2+ x2Þ

� �
, −∞< x<∞. ð4:1:3Þ

© Atlantis Press and the author(s) 2017
M. Ahsanullah, Characterizations of Univariate Continuous Distributions,
Atlantis Studies in Probability and Statistics 7,
DOI 10.2991/978-94-6239-139-0_4

55



It can be seen that

FðxÞð1−F xð ÞÞ3 ̸2 = cf xð Þ,where c=2− 3 ̸2 ð4:1:4Þ

Let Wn = (X1,n +Xn,n)/2 and Mn = X(n+1)/2,n for odd n.
It can be shown that

E X1, 3jM3 =xð Þ=
∫ x

−∞
1

2
p
2 1 + u2

2

	 
− 3 ̸2
du

1
2 1 + xffiffiffiffiffiffiffiffi

2+ x2
p

n o
=

− 2
x+

pð2+ x2Þ

ð4:1:5Þ

and

E X2, 3 M3 = xjð Þ=
∫ ∞
x

1
2
p
2 1 + u2

2

	 
− 3 ̸2
du

1
2 1− xffiffiffiffiffiffiffiffi

2+ x2
p

n o
=

2ffiffiffiffiffiffiffiffiffiffiffiffi
2+ x2

p
− x

ð4:1:6Þ

Thus

E W3jM3 =xð Þ=x ð4:1:7Þ

The relation shown in (4.1.7) is a characterizing property of the Student’s t
distribution of 2 degrees of freedom.

We have the following theorem due to Nevzorov et al. (2003).

Theorem 4.1 Let X1, X2, X3 be independent and identically distributed random
variables with cdf F(x) and pdf f(x). We assume E(X1) exists

The regression function φ xð Þ=E W3jM3 =xð Þ=x, α(F) < x<e(F),
If and only cdf of X1 is of the following form

FST x, 2ð Þ= 1
2

1+
xffiffiffiffiffiffiffiffiffiffiffiffi

2+ x2
p

� �
, −∞< x<∞. ð4:1:8Þ

Proof The proof of “if” condition is given in (4.1.7). We will give here the proof
that φ xð Þ= x implies that the cdf of X is as given in (4.1.8). We know (see Nagaraja
and Nevzorov 1997) that

E X1jXk, n = xð Þ= x
n
+

k− 1
n

E XjX ≤ xð Þ+ n− k
n

EðX≥ xÞ, 1≤ k≤ n.
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Thus we have

E X1jM3 =xð Þ= x
3
+

1
3
E XjX ≤ xð Þ+ 1

3
EðX ≥ xÞ.

=
1
3
fx+ 1

F xð Þ
Z x

−∞
uf uð Þdu+ 1

1−F xð Þ
Z ∞

x
uf uð Þdu

We have limx→∞ xFðxÞ= limx→∞ x 1−F xð Þð Þ=0.
We have

1
F xð Þ

Z x

−∞
uf uð Þdou= x−

1
F xð Þ

Z x

−∞
F uð Þdu

and

1
1−F xð Þ

Z ∞

x
uf uð Þdu=x+

1
1−FðxÞ

Z ∞

x
ð1−F uð Þdu

Thus E X1jX1, 3 = xð Þ=x− 1
FðxÞ
R x
−∞ F uð Þdu+ 1

1−FðxÞ
R∞
x 1−F uð Þð Þdu

and

x=ϕ xð Þ=EðW3jM3 = xÞ=E
1
2
ðX1, 3 +X2.3ÞjM3 = x

� �
2x=Eð3x ̄− xjM3 = xÞ.
x = Eðx ̄jM3 = xÞE X1jM3 =xð Þ= E X1jX1, 3 = xð Þ.

We have

F xð Þ
Z ∞

x
1−F uð Þð Þdu− 1−F xð Þð Þ

Z x

−∞
F uð Þdu=0 ð4:1:9Þ

We can write (4.9) as

d
dx

Z x

−∞
F uð Þdu

Z ∞

x
1−F uð Þð Þdu

� �
=0

i.e.

Z x

−∞
F uð Þdu

Z ∞

x
1−F uð Þð Þdu= c ð4:1:10Þ

where c is a constant.
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We rewrite (4.1.10) as

Z ∞

x
1−F uð Þð Þdu c

∫ x
−∞ F uð Þdu

Differentiating the above equation with respect to x, we obtain

I− F xð Þ= cF xð Þ
∫ x

−∞ F uð Þdu
 �2 ,
which is equivalent to

Z x

−∞
F uð Þdu= cF xð Þ

1−F xð Þ
� �1 ̸2

Differentiating the above equation with respect to x, we obtain

FðxÞð1−F xð Þf g3 ̸2 = cf xð Þ, c>0 ð4:1:11Þ

This is the equation we have seen in (4.4).
Nevzorov et al. (2003) showed that the unique solution of the above equation is

the Student’s t-distribution with 2 degrees of freedom. The cdf F(x) with location
parameter µ and σ is

F xð Þ= 1
2

1+
x− μ

p
σ2 + x− μð Þ�2
n o

2
4

3
5, −∞< μ< x<∞, σ >0.

Let Q(x) be the quantile function of a random variable X with cdf F(x) i.e. F(Q
(x)) = x for 0 < x < 1. Akhundov et al. (2004) proved that for 0< λ<1, the
relation

E λX1.3 + 1− λð ÞX3, 3jX2.3 = xð Þ= x

characterizes a family of probability distributions with quantile function

QλðxÞ= cðx− λÞ
λ * ð1− λÞð1− xÞλx1− λ

+ d

where 0< c<∞ and −∞< d<∞. We will call this family as Q family.
The Student’s t distribution with 2 degrees of freedom belongs to the Q family

with the quantile function
Q1 ̸2ðxÞ=

21 ̸2ðx− 1 ̸2Þ
x1 ̸2ð1− xÞ1 ̸2
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Yanev and Ahsanullah (2012) characterized Student’s t distribution with more
than 2 degrees of freedom They proved that a random variable X belongs to the Q
family if E jXjð Þ<∞, and for some k, 2 ≤ k ≤ n − 1, 0 < λ<1 and

λE
1

k− 1
∑
k− 1

j=1
Xj, njXk, n

 !
+ ð1− λÞE 1

n− k
∑
x

j= k+1
Xj, njXk, n = x

 !
= x.

For k = 2 this is the result of Akhundov et al. (2004).

4.2 Characterizations of Distributions by Conditional
Expectations (Finite Sample)

We assume that E(X) exists. We consider that E(Xj,n|Xi,.n = x) = ax + b, j > i.
Fisz (1958) considered the characterization of exponential distribution by consid-
ering j = 2, i = 1 and a = 1. Roger (1963) characterized the exponential distri-
bution by considering j = i +1 and a = 1. Ferguson (1963) characterized the
following distributions with j = i + 1.

(i) Exponential distribution with a = 1
(ii) Pareto distribution with a > 1
(iii) Power function distribution with a < 1.

Gupta and Ahsanullah (2004a, b) proved the following theorem.

Theorem 4.2 Under some mild conditions on ψ xð Þ and g(x) the relation

EðψðXi+ s, nÞjXi, n = xÞ= gðxÞ ð4:2:1Þ

uniquely determines the distribution F(x).
The relation (4.2.1) for s = 1 will lead to the equation

rðxÞ= g′ðxÞ
ðn− iÞðgðxÞ−ψðxÞÞ ð4:2:2Þ

Here r(x) = f(x)/(1 − F(x)), the hazard rate of X. If

ψ xð Þ= x and g(x) = ax + b, then we obtain from (4.2.2)

rðxÞ= a
ðn− iÞðða− 1Þx+ bÞ ð4:2:3Þ
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From (4.2.3) we have

(i) a = 1, then r(x) = constant and X has the exponential distribution with
FðxÞ=1− e− λðx− μÞ, x≥ μ,
λ= 1

bðn− iÞ and x≥ μ.

(ii) a > 1, then X will have the Pareto distribution

with FðxÞ=1− x+ b
a− 1

� �− a
ða− 1Þðn− iÞ, x≥ 1− b

a− 1
(iii) a < 1, then X will have power function distribution with

FðxÞ=1− b
1− a − x
� � a

ð1− aÞðn− iÞ, b
1− a − 1≤ x≤ b

1− a .

Wesolowski and Ahsanullah (2001) gave the following generalization Fergu-
son’s (1963) result.

Theorem 4.3 Suppose that X is an absolutely continuous random variables with
cumulative distribution function F(x) and probability distribution function f(x). If
EðXk+2.nÞ<∞, 1 ≤ k ≤ n − 2, then E(Xk+2,n|Xk,n = x) = ax + b if and only if

(i) a > 1, F xð Þ=1− μ+ δ
x+ δ

� �θ
, x ≥ μ, θ > 1

where µ is a real number, δ= b ̸ða− 1Þ and

θ=
að2n− 2k− 1Þ+ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 + 4aðn− kÞðn− k− 1Þp
2ða− 1Þðn− kÞðn− k− 1Þ

ðiiÞ a=1, FðxÞ=1− e− λðx− μÞ, x≥ μ,

b=
ð2n− 3k− kÞ!

λðn− kÞðn− k− 1Þ!
(iii) a < 1, FðxÞ=1− ðν− x

ν− μÞθ, μ≤ x≤ ν , ν= b
1− a and

θ=
að2n− 2k− 1Þ+ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 + 4aðn− kÞðn− k− 1Þp
2ð1− aÞðn− kÞðn− k− 1Þ .

Dembińska and Wesolowski (1998) gave the following general result.

Theorem 4.4 Suppose that X is an absolutely continuous random variables with
cumulative distribution function F(x) and probability distribution function f(x). If
EðXk+ r, nÞ<∞, 1 ≤ k ≤ n − r, r ≥ 1, then E(Xk+r,n|Xk, n = x) = ax + b iff

(i) a > 1, F xð Þ=1− μ+ δ
x+ δ

� �θ
, x≥ μ, θ>1
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where µ is a real number,

a=
θðn− kÞ!
ðn− k− rÞ! ∑

r − 1

m=0

1
m!ðr− 1−mÞ!

ð− 1Þm
θðn− k − − r +1+mÞ½θðn− k − − r +1+mÞ+1Þ�

b= δ
θðn− kÞ!
ðn− k− rÞ! ∑

r − 1

m=0

1
m!ðr− 1−mÞ!

ð− 1Þm
θðn− k− − r+1+mÞ½θðn− k− − r+1+mÞ+1�

(ii) a < 1, F xð Þ=1− ðν− x
ν− μÞθ, μ ≤ x ≤ ν,

b= ν
θðn− kÞ!
ðn− k− rÞ! ∑

r − 1

m=0

1
m!ðr− 1−mÞ!

ð− 1Þm
θðn− k − − r +1+mÞ½θðn− k − − r +1+mÞ− 1�

(iii) a=1,FðxÞ=1− e− λðx− μÞ, x≥ μ,

b=
ðn− kÞ!

λðn− k− rÞ!

∑
r− 1

m=0

1
m!ðr− 1−mÞ!

ð− 1Þm
ðn− k− − r+1+mÞ½ðn− k− r+1+mÞ2

4.3 Characterizations of Distributions by Conditional
Expectations (Extended Sample)

Consider the extended sample case. Suppose in addition to n sample, we take
another m observations from the same distribution. We order the m + n observa-
tions. The combined order statistics is, X 1,m+n ≤ X 2,m+n < … < Xm+n,m+n. We
assume F(x) is the cdf of the observations.

Ahsanullah and Nevzorov (1999) proved the following theorem

Theorem 4.5 If E(X1,n|X1,+n = x) = x + m(x), then

(i) then F(x) is exponential with F(x) = 1 − exp(−x), x > 0 and m xð Þ= m
n m+ nð Þ

(ii) then F(x) is Pareto with tF xð Þ=1− ðx− 1Þ− ∂, x > 1, ∂>0 and

m xð Þ= mðx− 1Þ
ðm+ nÞðm∂+1Þ

(iii) then F(x) is Power function with F xð Þ=1− ð1− xÞ∂, 0 < x<1, ∂>0
and m xð Þ= mð1− xÞ

ðm+ nÞðm∂+1Þ .
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4.4 Characterizations Using Spacings

Ahsanullah (1977) gave the following characterization of the exponential distri-
bution based on the equality of the distribution of X and standardized spacings of
the order statistics.

Theorem 4.6 Let be a non-negative random variable having an absolutely con-
tinuous cdf F(x) that is strictly increasing on ð0,∞Þ. Then the following statements
are equivalent.

(a) X has an exponential distribution with F xð Þ=1− e− λx, λ>0 and, x ≥ 0.
(b) For some i and n, 1 ≤ i < n, the statistics (n − i) (X i+1,n – Xi,n) and X are

identically distributed and X belongs to class C2.

Proof It is known (see Galambos 1975a, b) that að Þ ⇒ ðbÞ. We will prove here
ðbÞ ⇒ ðaÞ.

We can write the pdf fZ(z) of Z = (n − i) (X i+1,n – Xi,n) as

f ðzÞZ =
n!

ði− 1Þ!ðn− iÞ!
Z ∞

0
ðFðuÞÞi− 1ð1−Fðu+ d

n− i
ÞÞn− i− 1f ðuÞf ðu+ z

n− i
Þdu.

Using the assumption fZ(z) = f(z), where f(z) is the pdf of x, and writingR∞
0 *FðuÞi− 1ð1−FðuÞÞn− if ðuÞdu=Bði, ðn− i+1Þ= ði− 1Þ!ðn− iÞ!

n! , we obtain

0=
Z ∞

0
ðFðuÞÞi− 1gðu, zÞf ðuÞdu, for all z≥ 0 ð4:4:1Þ

where g u, zð Þ= f ðzÞð1−FðuÞÞn− i − ð1−Fðu+ zðn− iÞ− 1Þn− i− 1f ðu+ zðn− iÞ− 1Þ.
Integrating (4.15) with respect z from 0 to z1, we obtain

0=
Z ∞

0
ðFðuÞÞi− 1ð1−FðuÞÞn− iGðu, zÞf ðuÞdu, for all z1 ≥ 0, ð4:4:2Þ

where

G u, z1ð Þ= ð1−Fðu+ z1ðn− iÞ− 1ÞÞ ̸ð1−FðuÞÞÞn− i − ð1−Fðz1Þ

If F is NBU, then for any integer k > 0, 1−Fðx ̸kÞÞ≥ ð1−FðuÞÞ1 ̸k , so G(0,
z1) ≥ 0. Thus if (4.16) holds, then G(0, z1) = 0. Similarly if F is NWU, then G(0,
z1) ≤ 0 and hence for (4.16) to be true, we must have G(0, z1) = 0. Writing G(0,
z1) in terms of F, we obtain

ð1−Fðz1ðn− iÞ− 1ÞÞÞn− i = ð1−Fðz1Þ ð4:4:3Þ
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The solution of the above equation (see Aczel 1966) with the boundary condi-
tions F(0) = 0, F(x) > 0 for all x and Fð∞Þ=1 is FðxÞ=1− e− λx, λ>0 and x≥ 0.

The following theorem (Ahsanullah 1976) gives a characterization of expo-
nential distribution based on the equality of two standardized spacings.

Theorem 4.7 Let X be a non-negative random variable with an absolutely con-
tinuous cumulative distribution function F(x) that is strictly increasing in ½0,∞Þ
and having probability density function f(x). Then the following two conditions are
identical.

(a) F(x) has an exponential distribution with FðxÞ=1− e− λx, x≥ 0
(b) for some i, j and 0 ≤ i < j < n the statistics Dj,n and Di.n are identically

distributed and F belongs to the class C2.

Proof We have already seen að Þ ⇒ ðbÞ. We will give here the proof of bð Þ ⇒ að Þ
The conditional pdf of Dj,n given Xi,n = x is given by

fDi, nðdjXi, nÞ= k
R∞
0 ðFðxÞ−Fðx+ sÞÞðFðxÞÞ− ðn− i− 1Þ

ðFðx+ s+ d
n− jÞ ̸ðFðxÞÞ− 1Þn− j− 1

f ðx+ sÞ
FðxÞ

f ðx+ s+ d
n− jÞ

FðxÞ ds

ð4:4:4Þ

where k = ðn− iÞ!
ðj− i− 1Þ!ððn− jÞ!.

Integrating the above equation with respect to d from d to ∞, we obtain

FDj, nðdjXi, n = xÞ= k
R∞
0 ðFðxÞ−Fðx+ sÞÞðFðxÞÞ− ði− i− 1Þ

ðFðx+ s+ d
n− jÞ ̸ðFðxÞÞ− 1Þn− j− 1

f ðx+ sÞ
FðxÞ ds

The conditional probability density function fi.n of Di,n given Xi,n = x is given
by

fDi+1, nðdjXi, n = xÞ= ðn− iÞ

	
F ̄
	
d+

x
n− r



n− i− 1

ðF ̄ðxÞÞn− i

f
	
u+

x
n− i



F ̄ðxÞ

The corresponding cdf FDi+1, n is giving by

1 − F Di+ 1, n =
ðFðd+ x

n− i
ÞÞn− i

ðFðxÞÞn− i

Using the relations
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1
k =

R∞
0 ðFðx+ sÞ

F ̄ðxÞ Þn− jðFðxÞ−Fðx+ sÞ
FðxÞ Þj− i− 1f ðx+ sÞ

FðxÞ ds and the equality of the distri-

bution of Di,n and Dj,n given Xi,n, we obtain

Z ∞

0
ðFðx+ sÞ

FðxÞ Þn− jðFðxÞ−Fðx+ sÞ
FðxÞ Þj− i− 1Gðx, d, sÞf ðx+ sÞ

FðxÞ ds=0 ð4:4:5Þ

where

Gðx, d, sÞ= ðFðx+ d
n− iÞ

FðxÞ Þn− i − ðFðx+ s+ d
n− jÞ

Fðx+ sÞ Þn− j. ð4:4:6Þ

Differentiating (4.4.5) with respect to s, we obtain

∂

∂s
Gðx, s, dÞ= ðFðx+ s+ d

n− jÞ
Fðx+ sÞ Þn− jðrðx+ s+ d

n− i
Þ− rðx+ sÞÞ ð4:4:7Þ

(i) If F has IHR, then G(x, s, d) is increasing with s. Thus (4.19) to be true, we
must have G(x, 0, d) = 0

If F has IFR, then lnF is concave and

lnðFðx+ d
nn− i

Þ ≥ j− i
n− i

lnðFðxÞÞ+ n− j
n− i

lnðFðx+ d
n− j

ÞÞ

i.e.

ðFðx+ d
nn− i

ÞÞn− i ≥ ðFðxÞÞj− iðFðx+ d
n− j

ÞÞn− j.

Thus G(x, 0, d) ≥ 0. Thus (4.19) to be true we must have G(x, 0, d) = 0 for all
d and any given x.

(ii) If F has DHR, then similarly we get G(x, 0, d) = 0. Taking x = o, we obtain
from G(x, 0, d) as

ðFð d
n− i

Þn− i = ðFð d
n− j

ÞÞn− j ð4:4:8Þ

for all d ≥ 0 and some i, j, n with 1 ≤ i< j< n.
Using φ dð Þ= lnðFðdÞÞ we obtain
(n − i) φ d

n− i

� �
= ðn− jÞφð d

n− jÞ
Putting d

n− i = t, we obtain
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φðtÞ= n− j
n− i

φðn− i
n− j

tÞ ð4:4:9Þ

The non zero solution of (4.4.9) is

φðxÞ= x. for all x > 0 ð4:4:10Þ

for all x ≥ 0.
Using the boundary conditions F(x) = 0 and Fð∞Þ=1, we obtain

FðxÞ=1− e− λx, x≥ 0, λ>0. ð4:4:11Þ

for all x ≥ 0 and λ>0.

4.5 Characterizations of Symmetric Distribution Using
Order Statistics

The following theorem is due to Ahsanullah (1992a, b).

Theorem 4.8 Suppose X1, X2,…, Xn (n ≥ 2) are independent and identically
distributed continuous random variable with cdf F(x) and pdf f(x). If X2

1, n andX
2
n, n

are identically distributed for some fixed n, the X’s are distributed symmetrically
about zero.

Proof A random variable X has a symmetric about zero if F(−x) = 1 − F(x) for all
x or equivalently if the pdf f(x) exists, then f(−x) = f(x) for all x.

The pdf fn.n of Xn,n is

fn, n xð Þ= n F xð Þð Þn− 1f ðxÞ

and the pdf f1,n (x) is

f1, n xð Þ= n 1−F xð Þð Þn− 1f ðxÞ.

PðX2
n, n ≤ u2Þ=Pð− u<Xn.n < uÞ= ðF uð ÞÞn − ðF − uð ÞÞn

P X1, n ≤ u2
� �

=P X1, n ≥ − uð Þ− Pð X1, n ≥ uÞ
= ð1−F − uð ÞÞn − ð1−F uð ÞÞn
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Since PðX2
n, n ≤ u2Þ=PðX2

1, n ≤ u2Þ for all u, we must have

ðF uð ÞÞn − ðF − uð ÞÞn = = ð1−F − uð ÞÞn − ð1−F uð ÞÞn for all u.

We can write

ðF uð ÞÞn − ð1−F − uð ÞÞn = = ðF − uð ÞÞn − ð1−F uð ÞÞn for all u. and some n ≥ 2.

Thus
F(u) = 1 − F(-u) for all u.
Hence the result.

4.6 Characterization of Exponential Distribution Using
Conditional Expectation of Mean

The following theorem gives a characterization of the exponential distribution by
the condition expectation of X ̄jX1.n.

Theorem 4.9 Suppose X1, X2,…, Xn are independent and identically distributed
random variables with cdf F(x) and pdf f(x). we assume E(X1) exists. Then
EðX ̄jX1, n = yÞ= y+ c, where c is a constant if and only if

F xð Þ=1− e− λðx− μÞ, λ>0, −∞< μ< x<∞., λ=
n− 1
nc

.

Proof

E XijX1, n = yð Þ= y
n
+

n− 1
n

R∞
y xf ðxÞdx
1−FðyÞ .

If F xð Þ= =1− e− λðx− μÞ, then

E XijX1, n = yð Þ= y
n
+

n− 1
n

R∞
y λxe− λðx− μÞdx

e− λðy− μÞ .

=
y
n
+

n− 1
n

ðy+ 1
λ
Þ

=y+ c, c =
n− 1
nλ

.

Thus

EðX ̄jX1, n = yÞ=EðXijX1.n = yÞ= y+ c.
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Suppose

EðX ̄jX1, n = yÞ= y+ c.

Since EðX ̄jX1, n = yÞ=EðXijX1.n = yÞ, we must have

E XijX1, n = yð Þ = y
n
+

n− 1
n

R∞
y xf ðxÞdx
1−FðyÞ =y+ c.

Thus

R∞
y xf ðxÞdx
1−FðyÞ = y+ c1.c1 =

n
n− 1

c ð4:6:1Þ

From (4.6.1), we obtain

Z ∞

y
xf ðxÞdx= yð1−FðyÞÞ+ c1ð1−FðyÞÞ ð4:6:2Þ

Differentiating both sides of (4.6.2) with respect to y, we obtain −yf(y) = 1 − F
(y) −yf(y) − c1f(y), i.e.

f ðyÞ
1−FðyÞ =

1
c1

Thus X has the exponential distribution.

4.7 Characterizations of Power Function Distribution
by Ratios of Order Statistics

Ahsanullah (1989) gave some characterizations of the power function and uniform
distributions based on the spacings of the order statistics. For proving the results the
following restriction on the cdf F(x) were used.

We say that cdf F(x) is “super additive” if F(X + y) ≤ F(x) + F(y), x, y ≥ 0.
and F(x) is sub additive if F(x + y) ≤ F(x) + F(y). We will say that F(x) belongs
to the class C0 if F(x) is either Supper additive or sub additive.

Is it a characteristic property of the uniform distribution on [0, 1] that X and X1,n/
X2,n are identically distributed. The answer is no. In fact identical distribution of X
and X1,n/X2,n characterizes a family of distributions of which the uniform distri-
bution is a member. We have the following theorem.
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Theorem 4.10 Let X be a positive and bounded random variable having an
absolutely continuous distribution function F(x). We assume without any loss of
generality inf{x|F(x) > 0} = 0, F(x) > 0 for 0 < x < 1 and F(1) = 1. Then the
following two statements are equivalent.

(i) If the cdf F(x) of X is F xð Þ= xα 0 ≤ x ≤ 1, α ≥ 1, then X1,n/X2,n and X are
identically distributed.

(ii) If for some fixed n ≥ 2, X1.n|X2,n and X are identically distributed and F
belongs to class C0, then the cdf F(x) of X is F xð Þ= xα 0 ≤ x ≤ 1, α ≥ 1.

(iii) Proof. The statement (i) can easily be verified. We proof here the statement
(ii). Let U1 = X1,n/X2,n. The pdf fU1ðuÞ of U1 is given by

fU1ðuÞ=
Z 1

0
nðn− 1Þð1−FðvÞÞn− 2f ðuvÞvf ðvÞdv, 0≤ u≤ 1.

The corresponding cdf FU1ðuÞ is

FU1ðuÞ=
Z 1

0
nðn− 1Þð1−FðvÞÞn− 2FðuvÞf ðvÞdv, 0≤ u≤ 1.

Substituting F xð Þ= xα it follows that

FU1ðuÞ= xα, 0≤ x≤ 1, α≥ 1.

Suppose that X1.n|X2,n and X are identically distributed. Then we have

Z 1

0
nðn− 1Þð1−FðvÞÞn− 2f ðuvÞvf ðvÞdv= f uð Þ

Integrating both sides of the equation, with respect u from 0 to u0. We obtain

Z 1

0
nðn− 1Þð1−FðvÞÞn− 2Fðu0vÞf ðvÞdv. =Fðu0Þ ð4:7:1Þ

Writing 1
nðn− 1Þ =

R 1
0 ð1−FðvÞÞn− 2FðvÞf ðuÞdu and substituting in (4.7.1), we

obtain

Z 1

0
nðn− 1Þð1−FðvÞÞn− 2Fðu0vÞGðu0, vÞf ðvÞdv. = 0 ð4:7:2Þ

where Gðu0vÞ=Fðu0vÞ−Fðu0ÞFðvÞ.
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If F(x) is supper additive, then G(u0 v) ≤ 0 for all u0 and V. Thus (4.7.2) to be
true, we must have

Fðu0vÞ=Fðu0ÞFðvÞ ð4:7:3Þ

The solution of the Eq. (4.7.3) with boundary condition F(0) = 0 and F(1) = 1
is F xð Þ= xα, 0 ≤ x ≤ 1, α ≥ 1.

Similarly if F(x) is sub additive, then we will obtain the Eq. (4.7.3). Hence
F xð Þ= xα, 0 ≤ x ≤ 1, α ≥ 1.

If X is distributed as U(0, 10), then for all k, 1 ≤ k ≤ n, Uk,n = Xk+1,n − Xk,n

with Un,n = 1 − Xn,n and U0,n = X1,n are identically distributed as U(0, 1). Huang
et al. proved that if F(x) belongs to the class C3, then identical distribution of Uk,n

and U0,n characterize the uniform, U(0, 1) distribution. Is the uniform distribution
by (U(0, 1)) the only distribution having the property Ui,n and Uj,n 1 ≤ < j ≤ n
are identically distributed?

As an answer to this question we have the following theoremwith some restriction
on the pdf f(x). We say F (x) belongs to the class C4 if the corresponding pdf f(x)
satisfies the either f(x1) ≥ f(x2) or f(x1) ≤ f(x2) for all x1 and x2 with x1 > x2.

Theorem 4.11 Let X be a positive and bounded random variable having an
absolutely continuous distribution function F(x). We assume without any loss of
generality sup{x|F(x) > 0} = 0, F(x) > 0 for 0 < x < 1 and F(1) = 1. Then if Ui,n

and Ui+1,n, 0 ≤ i < n, i≠ n− 1ð Þ ̸2 for odd are identically distributed and F
belongs to the class C4, then F(x) = x, 0 ≤ x ≤ 1.

For proof see Ahsanullah (1989).

4.8 Characterization of Uniform Distribution Using Range

The following theorem give a characterization of the uniform (U(0, 1)) distribution
using identical distribution of the (Xn,n − X1,n) and Xn−1,n.

Theorem 4.12 Suppose the random variable X is a bounded absolutely continuous
random with cdf F(x) and pdf f(x). Let Inf{x|F(x) > 0) = 0, F(x) > 0 for x 0 < x
1 and F(x) = 1, Then the following two statements are equivalent.

(i) X is distributed as U[0, 1].
(ii) Xn,n − X1,n and Xn−1,n are identically distributed and F belongs to the class C4.

Proof The pdf f1,n(v) of V = Xn,n − X1,n is given as

fV vð Þ=
Z 1− v

0
n n− 1ð Þð F u+ vð Þ−FðuÞð Þn− 2f u+ vð Þf uð Þdu, 0 < v< 1, n≥ 2.
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Substituting F(x) = x and f(x) = 1, we obtain

fV vð Þ=
Z 1− v

0
nðn− 1Þvn− 2du

=n n− 1ð Þ 1− vð Þvn− 2, 0≤ v≤ 1.

We will prove now (ii) implies (i).
The cdf FV(v) of V is

FV vð Þ= n
Z 1− v

0
ðFðu+ vÞ−FðuÞÞn− 1f ðuÞdu+1−Fð1− vÞ

The cdf fn−1,n (x) is

Fn− 1, n xð Þ= nðFðxÞÞn− 1 − ðn− 1ÞðFðxÞÞn

Using F(x)s symmetric, we have F(x) = F(1 − x). Using the symmetric property
and the equality of FV(v) and

Fn−1,n (v), we obtain on simplification

Z ∞

0
f ðuÞgðu, vÞdu=0., ð4:8:1Þ

where g u, vð Þ= ðFðu+ vÞ−FðuÞÞn− 1 − ðFðuÞÞn− 1

If F(x) I supper additive, then g(u, v) ≤ 0 and (4.8.1) to be true, we must have g
(u, v) = 0 for all v, 0 ≤ v ≤ 1 and almost all u, 0 ≤ u ≤ 1. Now g(u, v) = 0
implies

F u+ vð Þ=F uð Þ+F vð Þ ð4:8:2Þ

The only continuous solution of (4.8.2) with the boundary conditions F(0) = 0
and F(1) =1 is

F xð Þ= x, 0≤ x≤ 1. ð4:8:3Þ

If F(x) is sub additive, then similarly we get the equation (4.8.2) and hence we
obtain the solution (4.8.3).
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4.9 Characterization by Truncated Order Statistics

It can be shown easily that if F(0) = 0, F(x) > 0 for all x, 0 < x ≤ b, F(b) = 1,
then for 2 ≤ i ≤ n.

EðXα
i, njXi− 1 = tÞ= tα +

∫ b
t αx

α− 1ð1−F xð ÞÞn− i+1dx

ð1−F tð ÞÞn− i+1

Using above conditional expectation we have the following theorem.

Theorem 4.13 Let X: Ω→ ða, bÞ, a ≥ 0 be an absolutely continuous random
variable with cdf F(x) and limx→ b xαð1−FðxÞÞ=0 for α > 0. We assume g(x, i, n)
is a differentiable function with

R∞
a

αxα− 1

gðx, i, nÞdx=∞. Then

EðXα
i, njXi− 1.n = tÞ= tα + gðt, i, nÞ, a≤ t≤ b

Implies

F xð Þ=1−
gða, i, nÞ
gðx, i, nÞ
� � 1

n− i+1

e−
R x

a
αtα− 1

ðn− i+1Þgðt, i, nÞdt

Suppose α=1, a=0, b=∞ and g(t.i.n) = 1
n− i+1 , then

F xð Þ=1− e− x, x≥ 0.

Recently Ahsanullah and Anis (2016) proved the following theorem.

Theorem 4.14 Let Xn, n = 1, 2,…, n, be n independent and identically distributed
random variables with absolutely continuous cdf F(x) with F(0) = 0 and F(x) > 0
for all x > 0. Let X1,n < X2,n < …<Xn,n be the corresponding order statistics. If F
belongs to class C1, then the following two statements are equivalent:

(a) F xð Þ=1− e− λx, x > 0 , λ>0,
(b) Xn,n − X1,n and Xn−1, n−1 are identically distributed and F(x) belongs to class

C1.
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Chapter 5
Characterizations of Distributions
by Record Values

In this chapter, we will discuss the characterizations of univariate continuous dis-
tributions by record values.

5.1 Characterizations Using Conditional Expectations

Suppose {Xi, i = 1, 2, …} be a sequence of independent and identically distributed
random variables with cdf F(x) and pdf f(x). We assume E(Xi) exists. Let X(n),
n ≥ 1 be the corresponding upper records. We have the following theorem for the
determination of F(x) based on the conditional expectation.

Theorem 5.1.1 The condition

EðψðXðk+ sÞjXðkÞ= zÞ=gðzÞ

where k, s ≥ 1 and ψðxÞ is a continuous function, determines the distribution F(x)
uniquely.

Proof

EðψðXðk+ sÞjXðkÞ= zÞ=
Z ∞

z

ψðxÞðRðxÞ−RðzÞÞs− 1

F ̄ðzÞ f ðxÞdx ð5:1:1Þ

where R(x) = -ln F ̄ðxÞ.
Case s = 1
Using the Eq. (5.1.1), we obtain

Z ∞

z
ψðxÞf ðxÞdx= gðzÞF ̄ðzÞ ð5:1:2Þ
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Differentiating both sides of (5.1.2) with respect to z and simplifying, we obtain

rðzÞ= f ðzÞ
F ̄ðzÞ =

g′ðzÞ
gðzÞ−ψðzÞ ð5:1:3Þ

where r(z) is the failure rate of the function. Hence the result.If ψðxÞ= x and g
(x) = ax + b, a, b ≥ 0, then

rðxÞ= a
ða− 1Þx+ b

ð5:1:4Þ

If a≠ 1, then FðxÞ− 1− ðða− 1Þx+ bÞ− a
a− 1 , which is the power function dis-

tribution for a < 1 and the Pareto distribution with a > 1. For a = 1, (5.1.4) will
give exponential distribution. Nagaraja (1977) gave the following characterization
theorem.

Theorem 5.1.2 Let F be a continuous cumulative distribution function. If for some
constants, a and b,

E X nð Þ j X n− 1ð Þ = xð Þ = ax + b, then except for a change of location and
scale,

(i) F(x) = 1 − (−x)θ, −1 < x < 0, if 0 < a < 1
(ii) F(x) = 1 − e−x, x ≥ 0, if a = 1
(iii) F(x) = 1 − xθ, x > 1 if a > 1,

where θ = a/(1 − a). Here a > 0.

Proof of Theorem 5.1.1 for s = 2

In this case, we obtain

Z ∞

z
ψðxÞðRðxÞ−RðzÞf ðxÞdx= gðzÞF ̄ðzÞ ð5:1:5Þ

Differentiating both sides of the above equation with respect to z, we obtain

−
Z ∞

z
ψðxÞf ðzÞdx= g′ðzÞ ðF

̄ðzÞÞ2
f ðzÞ − gðzÞF ̄ðzÞ ð5:1:6Þ

Differentiating both sides of (5.1.6) with respect to z and using the relation
f ′ðzÞ
f ðzÞ =

r′ðzÞ
rðzÞ − rðzÞ we obtain on simplification

g′ðzÞ r
′ðzÞ
rðzÞ +2g′ðzÞrðzÞ= g′′ðzÞ+ ðrðzÞÞ2ðgðzÞ−ψðzÞÞ ð5:1:7Þ

Thus r′ðzÞ is expressed in terms of r(z) and known functions. The solution of r(x)
is unique (for details see Gupta and Ahsanullah 2004a, b).
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Putting ψðxÞ= x and g(x) = ax + b, we obtain from (5.1.7)

a
r′ðzÞ
rðzÞ +2arðzÞ= ðrðzÞÞ2ðða− 1Þa+ bÞ ð5:1:8Þ

The solution of (5.1.8) is

rðxÞ= a+
ffiffiffi
a

p
ða− 1Þ x + b

.

Thus X will have (i) exponentially distributed if a = 1, (ii) power function
distribution if a < 1 and (iii) Pareto distribution if a > 1.

Ahsanullah and Wesolowski (1998) extended the result Theorem 5.1.2 for
non-adjacent record values. Their result is given in the following theorem.

Theorem 5.1.3 If E(X(n + 2) | X(n)) = a X(n) + b. n ≥ 1.
where a and b are constants, then if:

(a) a = 1 then Xi has the exponential distribution,
(b) a < 1, then XI has the power function distribution
(c) a > 1 XI has the Pareto distribution

Proof of Theorem 5.1.1 for s > 2

In this case, the problem becomes more complicated because of the nature of the
resulting differential equation.

Lopez-Blazquez and Moreno-Rebollo (1997) also gave characterizations of
distributions by using the following linear property

EðXðkÞjXðk+ sÞ= zÞ= az+ b. s.k > 1.

Raqab (2002) considered this problem for non-adjacent record values under
some stringent smoothness assumptions on the distribution function Fð.Þ. Dem-
binska and Wesolowski (2000) characterized the distribution by means of the
relation

EðXðs+ kÞj XðkÞ= zÞ= a z+ bj , for k.s≥ 1.

They used a result of Rao and Shanbhag (1994) which deals with the solution of
extended version of integrated Cauchy functional equation. It can be pointed out
earlier that Rao and Shanbhag’s result is applicable only when the conditional
expectation is a linear function.

Bairamov et al. (2005) gave the following characterization,

Theorem 5.1.4 Let X be an absolutely continuous random variable with cdf F(x)
with F(0) = 0 and F(x) > 0 for all x > 0 and pdf f(x), then
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(a) For 1 ⩽ k ⩽ n – 1,

EððXðnÞjXðn− kÞ= xÞ,Xðn+1Þ= yÞ= u+ kv
k+1

, 0 < u< v<∞

If and only if

FðxÞ=1− eλx, x≥ 0, λ>0,

(b) for 2 ⩽ k ⩽ n-1,

EððXðnÞjXðn− k+1Þ= xÞ,Xðn+2Þ= yÞ =
2u+ ðk− 1Þv

k+1
, 0 < u< v<∞

If and only if

FðxÞ=1− e= λx, x≥ 0, λ>0, Yanev et al. (2007) extended these results for
general cases of nonadjacent record values. Under the conditions of Theorem 5.1.4.,
Akhundov and Nevzorov (200&) proved that

E
Xð2Þ Xð3Þ+ . . . +XðnÞ

n− 1
jXð1Þ= u,Xðn+1Þ= v

� �
=

u+ v
2

characterizes the exponential distribution under mild condition on F(x).

5.2 Characterization by Independence Property

Tata (1969) presented a characterization of the exponential distribution by the
independence of the random variables X(1) and X(2) − X(1), The result is given in
the following theorem.

Theorem 5.2.1 Let {Xn, n ≥ 1} be an i.i.d. sequence of non-negative continuous
random variables with cdf F(x) and pdf f(x). We assume F(0) = 0 and F(x) > 0 for
all x > 0. Then for Xn to have the cdf, FðxÞ=1− e− x ̸σ , x≥ 0, σ >0, it is necessary
and sufficient that X(2) − X(1) and X(1) are independent.

Proof The necessary condition is easy to establish, we give here the proof of the
sufficiency condition. The property of the independence of X(2) -X(1) and X(1) will
lead to the functional equation

F ̄ð0ÞF ̄ðx+ yÞ=F ̄ðxÞF ̄ðyÞ, 0 < x, y<∞ ð5:2:1Þ

The continuous solution of this functional equation with the boundary conditions
F(0) = 0 and F(∞) = 1, is
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F ̄ðxÞ= e− xσ − 1
, x > 0, σ>0.

The following generalization theorem was given by Ahsanullah (1979)

Theorem 5.2.2 Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with
common distribution function F which is absolutely continuous with pdf f. Assume
that F(0) = 0 and F(x) > 0 for all x > 0. Then Xn to have the
cdf,FðxÞ=1− e− x ̸σ , x≥ 0, σ >0, it is necessary and sufficient that X(n) – X(n − 1)
and X(n − 1) are independent.

Proof It is easy to establish that if Xn has the cdf, FðxÞ=1− e− x ̸σ , x≥ 0, σ >0,
then X(n) –X(n-1) and X(n − 1) are independent. Suppose that X(n + 1) − X(n)
and X(n), n ≥ 1, are independent. Now the joint pdf f(z, u) of Z = X(n − 1) − X
(n) and U = X(n)1 can be written as

fðz, uÞ= ½RðuÞ�n− 1

ΓðnÞ rðuÞf ðu+ zÞ, 0 < u, z <∞.

= 0, otherwise.

ð5:2:2Þ

But the pdf fn (u) of X(n) can be written as

Fn− 1ðuÞ= ½RðuÞ�n− 1

ΓðnÞ f ðuÞ, 0 < u<∞,

= 0, otherwise.

ð5:2:3Þ

Since Z and U are independent, we get from (5.2.2) and (5.2.3)

f ðu+ zÞ
F ̄ðuÞ = gðzÞ, ð5:2:4Þ

where g(z) is the pdf of u. Integrating (5.2.4) with respect z from 0 to z1, we obtain
on simplification

F ̄ðuÞ−F ̄ðu+ z1Þ=F ̄ðuÞGðz1Þ. ð5:2:5Þ

Since Gðz1Þ=
R z1
0 gðzÞ dz. Now u → 0+ and using the boundary condition

F ̄ð0Þ=1, we see that G(z1) = F(z1). Hence, we get from (8.25)

F ̄ðu+ z1Þ=F ̄ðuÞF ̄ðz1Þ. ð5:2:6Þ

The only continuous solution of (5.2.6) with the boundary condition F(0) = 0, is

F ̄ðxÞ= e− σ − 1x, x≥ 0 ð5:2:7Þ
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where σ is an arbitrary positive real number.
The following theorem (Theorem 5.2.3) is a generalization of the Theorem 5.2.2.

Theorem 5.2.3 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is absolutely continuous and F(0) = 0 and F
(x) < 1 for all x > 0. Then Xn has the cdf FðxÞ=1− e− σ x, x≥ 0, σ >0, it is nec-
essary and sufficient that X(n) –X(m) and X(m) are independent.

Proof The necessary condition is easy to establish. To proof the sufficient condi-
tion, we need the following lemma.

Lemma 5.2.1 Let F(x) be a continuous distribution function and F ̄ðxÞ > 0, for all
x > 0. Suppose that F ̄ðu+ vÞðF ̄ðvÞÞ− 1 = exp{-q(u, v)} and h(u, v) = {q(u, v)}r

exp{-q(u, v)} ∂

∂u q(u, v), for r ≥ 0. Further if h(u,v) ≠ 0, and ∂

∂u qðu, vÞ≠ 0 for any
positive u and v. If h(u,v) is independent of v, then q(u,v) is a function of u only.

Proof: of the sufficiency of Theorem 5.2.4.
The conditional pdf of Z = X(n) − X(m) given V(m) = x is

f zjXðmÞ=xð Þ= 1
Γðn−mÞ Rðz+ xÞ−RðxÞ½ �n−m− 1f ðz+ xÞ

F ̄ðxÞ , 0 < z<∞, 0 < x<∞.

Since Z and X(m) are independent, we will have for all z > 0,

ðRðz+ xÞ−RðxÞÞn−m− 1 f ðz+ xÞ
F ̄ðxÞ ð5:2:8Þ

as independent of x. Now let

Rðz+ xÞ−RðxÞ= − ln
F ̄ðz+ xÞ
F ̄ðxÞ = qðz, xÞ, say.

Writing (8.1.9) in terms of q(z, x), we get

qðz, xÞ½ �n−m− 1expf− qðz, xÞg ∂

∂z
qðz, xÞ, ð5:2:9Þ

as independent of x. Hence by the lemma 5.1.1, we have

− ln F ̄ðz+ xÞðF ̄ðxÞÞ− 1
n o

= qðz+ xÞ= cðzÞ, ð5:2:10Þ

where c(z) is a function of z only. Thus
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F ̄ðz+ xÞðF ̄ðxÞÞ− 1 = c1ðzÞ, ð5:2:11Þ

and c1(z) is a function of z only.
The relation (5.2.11) is true for all z ≥ 0 and any arbitrary fixed positive

number x. The continuous solution of (5.2.11) with the boundary conditions,
F ̄ð0Þ=1 and F ̄ð∞Þ=0 is

F ̄ðxÞ= expð− x σ − 1Þ, ð5:2:12Þ

for x ≥ 0 and any arbitrary positive real number σ. The assumption of absolute
continuity of F(x) in the Theorem can be replaced by the continuity of F(x).

Chang (2007) gave an interesting characterization of the Pareto distribution.
Unfortunately, the statement and the proof of the theorem were wrong. Here we will
give a correct statement and proof of his theorem.

Theorem 5.2.4 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is continuous and F(1) = 0 and F(x) < 1 for
all x > 1. Then Xn has the cdf FðxÞ=1− x− θ, x≥ 1, θ>0, it is necessary and

sufficient that XðnÞ
Xðn+1Þ−XðnÞ and X(m), n ≥ 1 are independent.

Proof If FðxÞ=1− x− θ, x≥ 1, θ>0, then the joint pdf fn,n+1(x, y) of X(n) and X
(n + 1) is

fn, n+1ðx, yÞ= 1
ΓðnÞ

θn+1ðln xÞn− 1

xyθ+1 , 1 < x< y<∞, θ>0.

Using the transformation, U = X(n) and V= XðnÞ
Xðn+1Þ−XðnÞ . The joint pdf fUV

(u, v) can be written as

fU,Vðw, vÞ= 1
ΓðnÞ

θn+1ðln uÞn− 1

uθ+3

v
1+ v

� �θ+1

, 1 < u, v<∞, θ>0. ð5:2:13Þ

Thus, U and V are independent.

The proof of sufficiency.
The joint pdf of W and V can be written as

fW ,Vðu, vÞ= ðRðuÞÞn− 1

ΓðnÞ rðuÞf 1+ v
v

u
� �

u
V2 , 1 < u, v<∞, ð5:2:14Þ

where R(x) = −ln(1 − F(x)), rðxÞ= d
dx RðxÞ.
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We have the pdf fU(u) of U as

fUðuÞ= ðRðuÞÞn− 1

ΓðnÞ f ðuÞ. Since U and V are independent, we must have the pdf fV(v)

of V as

fV ðvÞ= f
1+ v
v

u
� �

w
V2

1
1−FðuÞ , 0 < v<∞, . ð5:2:15Þ

Integrating he above pdf from v0 to ∞, we obtain

1−Fðv0Þ=
1−F 1+ v0

v0
u

� �
1−FðuÞ ð5:2:16Þ

Since F(v0) is independent of U, we must have

1−F 1+ v0
v0

u
� �

1−FðuÞ =Gðv0Þ ð5:2:17Þ

where G(v0) is independent of u

Letting u → 1, we obtain Gðv0Þ=1−F 1+ v0
v0

� �
.

We can rewrite (5.2.17) as

1−F
1+ v0
v0

u
� �

= 1−F
1+ v0
v0

� �
ð1−FðuÞ

� �
ð5:2:18Þ

FðxÞ=1− xβ. Since F(1) = 0 and FðFð∞Þ=0, we must have
FðxÞ=1− x− θ, x≥ 1 and θ>0. ð5:2:19Þ

The following theorem is a generalization of Theorem 5.2.4.

Theorem 5.2.4 Let {Xn, n ≥ 1} be independent and identically distributed with
common distribution function F which is continuous and F(1) = 0 and F(x) < 1 for
all x > 0. Then Xn has the cdf, FðxÞ=1− x− θ, x≥ 1, θ>0, it is necessary and

sufficient that XðmÞ
XðnÞ−XðmÞ , 1 ≤ m < n and X(m) are independent.

Proof The joint pdf fm,n (x,y) of X(m) and X(n),n > m, is

fm, nðx, yÞ= ðRðxÞÞm− 1

ΓðmÞ
ðRðyÞ−RðxÞÞn−m− 1

Γðn−mÞ rðxÞf ðyÞ, ð5:2:20Þ
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We have FðxÞ=1− x− θ, RðxÞ= θ ln x, rðxÞ= θ
x , thus we obtain

fm, nðx, yÞ= ðθ ln xÞm− 1

ΓðmÞ
ðln y− ln xÞn−m− 1

Γðn−mÞ
1

xyθ+1 . ð5:2:21Þ

where 1≤ x< y<∞, θ>0.
Using the transformation U = X(m) and V= XðmÞ

XðnÞ−XðmÞ , we obtain the pdf fU,V
(u,v) of U and V as

fU,V ðu, vÞ= θnðln uÞn− 1

ΓðnÞ
ln 1+ v

v

� �� �n−m− 1

Γðn−mÞ
vθ− 1

uθ+1ð1+ vÞθ+1

Thus X(m) and XðmÞ
XðnÞ−XðmÞ are independent.

Proof of sufficiency

Using U = X(m) and V= XðmÞ
XðnÞ−XðmÞ , we can obtain the pdf fU,V of U and V from

(5.2.20) as

fU,Vðu, vÞ= ðRuÞm− 1

ΓðmÞ
R uð1+ vÞ

v

� �
−RðuÞ

� �n−m− 1

Γðn−mÞ rðuÞf uð1+ vÞ
v

� �
, ð5:2:22Þ

We can write the conditional pdf fV|U(v|u) of V|U as

fV jUV ðvjuÞ=
R uð1+ vÞ

v

� �
−RðuÞ

� �n−m− 1

Γðn−mÞ
uf uð1+ vÞ

v

� �
,

v2F ̄ðuÞ , 1 < u<∞, oÞ< v<∞.

ð5:2:23Þ

Using the relation R(x) = -ln F ̄ðxÞ, we obtain from (5.2.23) that

fV jUvjuÞ=
− ln

F ̄ uð1+ vÞ
vð Þ

F ̄ðuÞ

� �� �n−m− 1

Γðn−mÞ
d
dv

F ̄ uð1+ vÞ
v

� �
F ̄ðuÞ

0
@

1
A, 1 < u<∞, 0 < v<∞.

ð5:2:24Þ

Since V and U are independent, we must have
F ̄ uð1+ vÞ

vð Þ
F ̄ðuÞ independent of U.

Let

F ̄ uð1+ vÞ
v

� �
F ̄ðuÞ =GðvÞ,

5.2 Characterization by Independence Property 81



Letting u→ 1, we obtain

F ̄
uð1+ vÞ

v

� �
=F ̄ðuÞF ̄ 1+ vÞ

v

� �
, ð5:2:25Þ

For all u, 1 < u < ∞ and all v, 0 < v < ∞.
The continuous solution of (5.2.25) with the boundary condition F(1) = 0 and F

(∞) = 1 is

FðxÞ=1− x− θ, x≥ 1 and θ>0.

5.3 Characterizations Based on Identical Distribution

Theorem 5.3.1 Let Xn, n ≥ 1 be a sequence of i.i.d. random variables which has
absolutely continuous distribution function F with pdf f and F(0) = 0. Assume that
F(x) < 1 for all x > 0. If Xn belongs to the class C1 and In-1,n = X(n) − X(n − 1),
n > 1, has an identical distribution with Xk, k ≥ 1, then Xk has the cdf F(x) =
1− e− σx, x≥ 0, σ >0.

Proof The if condition is easy to establish. We will proof here the only if condition.
By the assumption of the identical distribution of In-1,n and Xk, we must have

Z ∞

0
RðuÞ½ �n− 1 rðuÞ

ΓðnÞ f ðu+ zÞdu= f ðzÞ , for all z > o. ð5:3:1Þ
Substituting

Z ∞

0
RðuÞ½ �n− 1f ðuÞdu=ΓðnÞ, ð5:3:2Þ

we have

Z ∞

0
RðuÞ½ �n− 1rðuÞf ðu+ zÞdu= f ðzÞ

Z ∞

0
½RðuÞ�n− 1f ðuÞ du, z > 0. ð5:3:3Þ

Thus

Z ∞

0
RðuÞ½ �n− 1f ðuÞ f ðu+ zÞðF ̄ðuÞÞ− 1 − f ðzÞ

h i
du=0, z > 0. ð5:3:4Þ

Integrating the above expression with respect to z from z1 to ∞, we get from
(5.3.5)

82 5 Characterizations of Distributions by Record Values



Z ∞

0
½RðuÞ�n− 1f ðuÞ F ̄ðu+ z1ÞðF ̄ðuÞÞ− 1 −F ̄ðz1Þ

h i
du=0, z1 > 0. ð5:3:5Þ

If F(x) is NBU, then (5.3.5) is true if

F ̄ðu+ z1ÞðF ̄ðuÞÞ− 1 =F ̄ðz1Þ, z1 > 0. ð5:3:6Þ

The only continuous solution of (5.3.6) with the boundary conditions F ̄ð0Þ=1
and F ̄ð∞Þ=0 is F ̄ðxÞ= e− σx, where σ is an arbitrary real positive number. Simi-
larly, if F is NWU then (5.3.6) is true if (5.3.5) is satisfied and Xk has the cdf
F(x) = 1− e− σx x≥ 0, σ >0. k ≥ 1.

Theorem 5.3.2 Let Xn, n ≥ 1 be a sequence of independent and identically dis-
tributed non-negative random variables with absolutely continuous distribution
function F(x) with f(x) as the corresponding density function. If F ∈ C2 and for

some fixed n, m, 1 ≤ m < n < ∞, Im, n =
d
Xðn−mÞ, then Xk has the cdf

FðxÞ=1− e− σx, x≥ 0, σ >0., k ≥ 1.

Proof The pdfs f1(x) of X(n-m) and f2(x) of Im,n (= Rn - Rm) can be written as

f1ðxÞ= 1
Γðn−mÞ ½RðxÞ�

n−m− 1f ðxÞ, for 0< x<∞, ð5:3:7Þ

and

f2ðxÞ=
Z ∞

0

½RðuÞ�m− 1

ΓðmÞ
½Rðx+ uÞ−RðxÞ�n−m− 1

Γðn−mÞ rðuÞf ðu+ xÞdu, 0 < x<∞.

ð5:3:8Þ
Integrating (5.3.7) and (5.3.8) with respect to x from 0 to x0, we get

F1ðx0Þ=1− g1ðx0Þ, ð5:3:9Þ

where

g1ðx0Þ= ∑
n−m

j=1

½Rðx0Þ�j− 1

ΓðjÞ e−RðxoÞ,

and

F2ðxoÞ=1− g2ðxo, uÞ, ð5:3:10Þ

where
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g2ðx0, uÞ= ∑
n−m

j=1

Rðu+ x0Þ−RðuÞ½ �j− 1

ΓðjÞ exp − Rðu+ x0Þ−RðuÞð Þf g.

Now equating (5.3.9) and (5.3.10), we get

Z ∞

0

RðyÞ½ �m− 1

ΓðmÞ f ðuÞ g2ðu, x0Þ− g1ðx0Þ½ �du=0, x0 > 0. ð5:3:11Þ

Now g2(x0, 0) = g1(0) and

0=
½RðuÞ−RðuÞ�n−m− 1

Γðn−mÞ expf− ðRðu+ x0Þ−RðuÞg½rðx0Þ− rðu+ x0Þ�.

Thus if F ∈ C2, then (5.3.15) is true if

rðu+ x0Þ= rðuÞ ð5:3:12Þ

for almost all u and any fixed x0 ≥ 0. Hence Xk has the cdf F(x) = 1− e− σx,
x≥ 0, σ >0. k ≥ 1. Here σ is an arbitrary positive real number. Substituting

m = n-1, we get In-1,n =
d

X1 as a characteristic property of the exponential
distribution.

Theorem 5.3.3 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed non-negative random variables with absolutely continuous distribution
function F(x) and the corresponding density function f(x). If F belongs to C2 and for
some m, m > 1, X(n) and X(n − 1) + U are identically distributed, where U is
independent of X(n) and X(n − 1) is distributed as Xn’s, then Xk has the cdf
FðxÞ=1− e− σx, x≥ 0, σ >0, k ≥ 1.

Proof The pdf fm (x) of Rm, m ≥ 1, can be written as

fmðyÞ= ½RðyÞ�m
Γðm+1Þ f ðyÞ, 0 < y<∞,

=
d
dy

−F ̄ðyÞ
Z y

0

½RðxÞ�m− 1

ΓðmÞ rðxÞdx+
Z y

0

½RðxÞ�m
ΓðmÞ f ðxÞdx

 !
,

The pdf f2 (y) of X(n − 1) + U can be written as

f2ðyÞ=
Z y

0

RðxÞ½ �m− 1

ΓðmÞ f ðy− xÞf ðxÞdy

=
d
dy

−
½RðxÞ�m− 1

ΓðmÞ F ̄ðy− xÞf ðxÞdx+
Z y

0

½RðxÞ�m− 1

ΓðmÞ f ðxÞdx
 !

.

Equating (8.3.9) and (8.3.12), we get on simplification

84 5 Characterizations of Distributions by Record Values



Z y

0

½RðxÞ�m− 1

Γðm− 1Þ f ðxÞH1ðx, yÞdx=0, ð5:3:13Þ

where H1ðx, yÞ=F ̄ðy− xÞ−F ̄ðyÞðF ̄ðxÞÞ− 1, 0 < x< y<∞. Since F ∈ C1, therefore
for (8.2.13) to be true, we must have

H1ðx, yÞ=0, ð5:3:14Þ

for almost all x, 0 < x < y < ∞.
This implies that

F ̄ðy− xÞF ̄ðxÞ=F ̄ðyÞ, ð5:3:15Þ

for almost all x, 0 < x < y < ∞. The only continuous solution of (5.3.15) with the
boundary conditions Fð0Þ=1, and Fð∞Þ=0, is

FðxÞ= e− x σ − 1
, ð5:3:16Þ

where σ is an arbitrary positive number.

Theorem 5.3.4 Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed non-negative random variables with absolutely continuous distribution
function F(x) and the corresponding probability We assume F(0) = 0 and F(x) > 0
for all x > 0 density function f(x). Then the following two conditions are equivalent.

(a) X’s has an exponential distribution with FðxÞ=1− e− θx, x ≥ 0, θ>0.

(b) XðnÞ=d Xðn− 2Þ+W
where w has the pdf fW(w) as fW(w) = θ2we− θw

Γð2Þ , w ≥ 0, θ > 0.

For proof, see Ahsanullah and Aliev (2008).

Theorem 5.3.5 Let X1, X2, …, Xm,… be independent and identically distributed
random variables with probability density function f(x), x ≥ 0 and m is an integer
valued random variable independent of X’s and P m = kð Þ = pð1 − pÞk− 1,
k = 1, 2, . . . , and 0 < p < 1. Then the following two properties are equivalent:

(a) X’s are distributed as E(0, σ), where σ is a positive real number

(b) p ∑
m

j=1
Xj =

d
In− 1, n, for some fixed n, n ≥ 2, Xj ∈ C2 and E(Xj) < ∞.

Proof It is easy to verify (a) ⇒ (b). We will prove here that (b) ⇒ (a). Let ϕ1

(t) be the characteristic function of In-1,n then
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ϕ1ðtÞ=
Z ∞

0

Z ∞

0

1
ΓðnÞ e

i t x½RðuÞ�n− 1rðuÞf ðu+ xÞdu dx

=1+ it
Z ∞

0

Z ∞

0

1
ΓðnÞ e

i t x½RðuÞ�n− 1rðuÞF ̄ðu+ xÞdu dx
ð5:3:17Þ

The characteristic function ϕ2ðtÞ of p ∑
m

j=1
Xj can be written as

Φ2ðtÞ=E e
i t p ∑

m

j=1
Xj

 !

= ∑
∞

k=1
½Φðt pÞ�kpð1− pÞk− 1,

= pðΦðtpÞÞ ð1− qΦðptÞÞ− 1, q = 1− p,

ð5:3:18Þ

where Φ(t) is the characteristic function of X’s.
Equating (5.3.17) and (5.3.18), we get on simplification

ΦðptÞ− 1
1− qΦðptÞ

1
it
=
Z ∞

0

Z ∞

0

1
ΓðnÞ e

i t x½RðuÞ�n− 1rðuÞF ̄ðu+ xÞdu dx ð5:3:19Þ

Now taking limit of both sides of (5.3.19) as t goes to zero, we have

Φ′ð0Þ
i

=
Z ∞

0

Z ∞

0

1
ΓðnÞ ½RðuÞ�

n− 1rðuÞF ̄ðu+ xÞdudx. ð5:3:20Þ

ΓðnÞΦ
0 ð0Þ
i

=EðxÞ=
Z ∞

0
ðRðuÞÞn− 1f ðuÞdu

Z ∞

o
ðFðxÞÞdx

Thus Z ∞

0
ðRðuÞÞn− 1f ðuÞ½ðFðxÞ− Fðu+ xÞ

FðuÞ Þdudx=0

Since X’s belong to C1, we must have

F ̄ðu+ xÞ=F ̄ðxÞF ̄ðuÞ, ð5:3:21Þ

for almost all x, u, 0 < u, x < ∞. The only continuous solution of (5.2.21) with the
boundary condition F ̄ð0Þ=1 and F ̄ð∞Þ=0, is

F ̄ðxÞ= expð− xσ − 1Þ, x≥ 0, ð5:3:22Þ

where σ is an arbitrary positive real number.
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It is known that (see Ahsanullah and Holland (1994), p. 475) for Gumbel
distribution

XðmÞ* d X − ðW1 +
W2

2
+ . . . +

Wm− 1

m− 1
+ ,m>1

where XðnÞ* is the nth lower record from the Gumbel distribution, W0 = 0 and W1,
W2, …,Wm-1 are independently distributed as exponential with F(w) = 1 − e−w,
w > 0. X* (1) = X. Thus S(m) = m (X*ðm− 1Þ−X*ðmÞ, m = 2, …, are identically
distributed as exponential. Similarly if we consider the upper records from the distri-
bution, FðxÞ= e− ex , −∞< x<∞, then for any m≥ 1, Sm =mðXðmÞ−Xðm+1ÞÞ,
m=2, . . . ., where X(m) is the upper record, are identically distributed as exponential
distribution. It can be shown that for one fixedm, S(m) or Sm distributed as exponential
does not characterize the Gumbel distribution.

Arnold and Villasenor (1997) raised the question suppose that S1 and 2S2 are i.i.
d. exponential with unit mean, can we consider that Xj’s are (possibly translated)
Gumbel variables? Here, we will prove that for a fixed m > 1, the condition
X*ðn− 1Þ=X*ðnÞ+ W

n− 1 where W is distributed as exponential distribution with
mean unity characterizes the Gumbel distribution.

Theorem 5.3.4 Let {Xj, j = 1, …,} be a sequence of independent and identically
distributed random variables with absolutely continuous (with respect to Lebesgue
measure) distribution function F(x). Then the following two statements are
identical.

(a) F(x) = e− e− x
, −∞< x<∞,

(b) For a fixed m ≥ 1, the condition X*ðmÞ=X*ðm+1Þ+ W
m where W is dis-

tributed as exponential with mean unity.

Proof It is enough to show that (b) ⇒ (a). Suppose that for a fixed m > 1,

XðmÞ=d Xðm− 1Þ+ W
m , then

FðmÞðxÞ=
Z x

−∞
PðW ≤mðx− yÞfðm+1Þ ðyÞdy

=
Z x

−∞
½1− e−mðx− yÞ�fðm+1ÞðyÞdy

=Fðm+1ÞðxÞ −
Z x

−∞
e−mðx− yÞfðm+1ÞðyÞdy.

ð5:3:23Þ

Thus

emx½Fðm+1ÞðxÞ−FðmÞðxÞ�=
Z x

−∞
emyfðm+1ÞðyÞdy ð5:3:24Þ
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Using the relation

emx
FðxÞ½HðxÞ�m
Γðm+1Þ = eHðxÞ ∑

m

j=0

½HðxÞ� j
m!

,

we obtain

emx
FðxÞðHðxÞÞm
Γðm+1Þ =

Z x

−∞
emyfðm+1ÞðyÞdy ð5:3:25Þ

Taking the derivatives of both sides of (5.3.25), we obtain

d
dx

emx
ðHðxÞÞm
Γðm+1ÞFðxÞ

	 

= emxfðm+1ÞðxÞ ð5:3:26Þ

This implies that

d
dx

emx
HmðxÞ

Γðm+1Þ
	 


FðxÞ=0. ð5:3:27Þ

Thus

d
dx

emx
ðHðxÞÞm
Γðm+1Þ

	 

=0. ð5:3:28Þ

Hence

HðxÞ=c e− x, −∞<x<∞

Thus

FðxÞ= e− c e− x
, ∞<x<∞. ð5:3:29Þ

Since F(x) is a distribution function we must have c as positive. Assuming F
(0) = e−1, we obtain

FðxÞ= e− e− x
, −∞< x<∞. ð5:3:30Þ

Ahsanullah and Malov (2004) proved the following characterization theorem.

Theorem 5.3.5 Let X1, X2, …, be a sequence of independent and identically dis-

tributed r.v.’s with distribution function F(x). If XðmÞ=d Xðm− 2Þ+
W1
m− 2 +

W2
m− 1 , m>2, for twice differrentiable F(x), where W1 and W2 are indepen-

dent as exponential distribution with unit mean then FðxÞ=1− e− ex , −∞ < x < ∞.
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Chapter 6
Characterizations of Distributions
by Generalized Order Statistics

In this chapter characterizations of distributions based on generalized order statistics

will be considered.

6.1 Characterizations by Conditional Expectations

We have seen that for a continuous random variable X if

E(Xr+s,n|Xr,n = x) = ax + b, 1 ≤ r < n, 1 ≤ s ≤ n − s

or

E(R(r + s)|R(s) = x) = ax + b, r, s ≥ 1. Then if

(1) a = 1, then X has the exponential distribution.

(2) a > 1, then X has the Pareto distribution,

(3) a < 1, then X has the power function distribution.

These results are special cases of the following theorem.

Theorem 6.1 Suppose that X(r, n, m, k), r = 1, 2,. . . , n are n generalized order sta-
tistics from an absolutely continuous cdf F(x) and pdf f(x). We assume F(0) = 0,
F(x) > 0 for all x > 0 and E(X(r, n, m, k)), 1≤ r < n is finite.

For

1 ≤ r < s ≤ n, if E(X(s, n,m, k)|X(r, n,m, k),= x) = ax + b, then
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90 6 Characterizations of Distributions by Generalized Order Statistics

(1) a = 1, F(x) is exponential
(2) a > 1, F(x) is Pareto
(3) a < 1, F(x) is power function.

To prove the theorem, we need the following Lemma (for details, see Rao and
Shanbag 1994).

Lemma 6.1 Consider the integral equation ∫R+
H(x + y)𝜇(dy) = H(x) + c, x ∈ R+,

where c is a real constant, 𝜇 is a non-arithmetric 𝜎 finite measure on R+such that
𝜇({0}) < 1 and H: R+ ⟷ R+ is a Borel measureable either non-decreasing or non-
increasing function that is not identically equal to a constant. Then there is a 𝛾 in
R+ such that ∫R+

exp(𝛾x)𝜇(dx) = 1 and H has the form

H(x) = 𝜆 + 𝛼(1 − exp(𝛾x)), if 𝛾 ≠ 0
= 𝜆 + 𝛽x, if 𝛾 = 0

where 𝜆, 𝛼, 𝛽 are constants. If c = 0, then 𝜆 − −𝛼 and 𝛽 = 0.

Proof of Theorem 6.1 We can write (see Kamps and Cramer 2001)

E(X(s, n,m, k)|X(r, n,m, k),= x) =
∫

∞

x

cs−1
cr−1

y
s∑

i=r+1
a(r)
(i) (s)

(
̄F(y)
̄F(x)

)
𝛾i f (y)
1 − F(x)

dy,

(6.1.1)

where a(r)
(i) (s) = Πs

j=r+1,j≠i
1

𝛾j−𝛾i
, r + 1 < i ≤ s.𝛾j ≠ 𝛾i.

Now we have

∫

∞

x

cs−1
cr−1

y
s∑

i=r+1
a(r)
(i) (s)

(
̄F(y)
̄F(x)

)
𝛾i f (y)
̄F(x)

dy = ax + b (6.1.2)

Substituting t =
̄F(y)
̄F(x)

i.e.y = ( ̄F−1(t( ̄F(x)) and ̄F(x) = w, we obtain from (6.1.2)

∫

∞

x

cs−1
cr−1

y
s∑

i=r+1
a(r)
(i) (s)t

𝛾i−1( ̄F)−1(tw)dt = a( ̄F)−1(w) + b

i.e.

∫

∞

x

cs−1
a cr−1

s∑

i=r+1
a(r)
(i) (s)t

𝛾i−1( ̄F)−1(tw)dt = ( ̄F)−1(w) + b
a

(6.1.3)

Putting t = e−u
and w = e−w

, we have from (6.1.3)

∫

∞

x

cs−1
a cr−1

s∑

i=r+1
a(r)
(i) (s)t

𝛾i−1( ̄F)−1(e−(u+v))e−u𝛾i du = ( ̄F)−1(e−v) + b
a
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We can write

cs−1
a cr−1

s∑

i=r+1
a(r)
(i) (s)e

−u𝛾i du = 𝜇(d𝜇)

Here 𝜇 is a finite measure and we can find a 𝜂 such that

cs−1
a cr−1

s∑

i=r+1
a(r)
(i) (s)∫

∞

0
e−x(𝛾r−𝜂)dx = 1

i,e.

cs−1
a cr−1

s∑

i=r+1
a(r)
(i) (s)

1
𝛾r − 𝜂

= 1 (6.1.4)

Further ∫
∞

x
cs−1
cr−1

∑s
i=r+1 a(r)

(i) (s)
(

̄F(x)
̄F(y)

)
𝛾i f (x)

1−F(y)
dy = 1

i.e.

cs−1
cr−1

s∑

i=r+1
a(r)
(i) (s)

1
𝛾r

= 1 (6.1.5)

It is obvious that

1. a = 1, iff 𝜂 = 0,
2. a > 1 iff 𝜂 > 1,
3. a < 1 iff 𝜂 < 1.

Consider the three cases:

If a = 1, then ̄F−1(e−x) = 𝛾 + 𝛽x
Hence

̄F(x) = e−(
x−𝛾
𝛽

) = e−𝜆(x−𝛾), x > 𝛾 and 𝜆 = 1
𝛽

.

Hence the random variable X has the exponential distribution.

If a > 1, then 𝜂 > 0, and

̄F(x) =
(

−𝛼
x − 𝛼 − 𝛾

)1∕𝜂

=
(
𝛾 − (𝛼 + 𝛾)
x − (𝛼 + 𝛾)

)

=
(
𝜇 + 𝛿

x + 𝛿

)

⋅ x > 𝛿 = 𝛼 + 𝛾, 𝜇 = 𝛾.

The random variable X has the Pareto distribution.

If a < 1, then 𝜂 < 0, and

̄F(x) =
(
𝛼 + 𝛾 − x

𝛼

)−1∕𝜂
=
(
𝛼 + 𝛾 − x
𝛼 + 𝛾 − 𝛾

)−1∕𝜂

=
(
𝜈 − x
𝜐 − 𝜇

)
𝜃

⋅ 𝜇 < x < 𝜈, 𝜇 = 𝛾, 𝜈 = 𝛼 + 𝛾 and 𝜃 − −1
𝜂

.

Thus X has the power function distribution.
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Theorem 6.2 Suppose that X(r, n, m, k), r = 1, 2,. . . , n are n generalized order statis-
tics from an absolutely continuous cdf F(x) and pdf f(x). We assume F(0) = 0, F(x)> 0
for all x> 0 and E(X(r, n, m, k)), 1≤ r < n is finite. Let g(x) be a continuous such
that lim

x→0
g(x) = 1 and lim

x→∞
g(x) =0, then and if 1≤ r < n, if

E(X(r + 1, n,m, k)) ≥ x|X(r, n,m, k) = t) = (g(x − t))𝛾r+1
, then F(x) = 1 − e−𝜆x

, x ≥ 0, 𝜆 > 0.

Proof We have

E(X(r + 1, n,m, k)) ≥ x|X(r, n,m, k) = t) =
(
1 − F(x)
1 − F(t)

)
𝛾r+1

.

Thus (
1 − F(x)
1 − F(t)

)
𝛾r+1

= (g(x − t))𝛾r+1

The proofs of the following two theorems are similar.

Theorem 6.3 Suppose that X(r, n, m, k), r = 1, 2,. . . , n are n generalized order statis-
tics from an absolutely continuous cdf F(x) and pdf f(x). We assume F(1) = 0, F(x)> 0
for all x> 1 and E(X(r, n, m, k)), 1≤ r < n is finite. Let g(x) be a continuous function
such that lim

x→1
g(x) = 1 and lim

x→∞
g(x) = 0, then if 1≤ r < n, and

E(X(r + 1, n,m, k)) ≥ x|X(r, n,m, k) = t) =
(

g
( x

t

))
𝛾r+1

, then F(x) = 1 − x𝜆, x ≥ 0, 𝜆 < 0.

Theorem 6.4 Suppose that X(r, n, m, k), r = 1, 2,. . . , n are n generalized order sta-
tistics from an absolutely continuous cdf F(x) and pdf f(x). We assume F(1) = 0,
F(x) > 0 for all x > 0 and E(X(r, n, m, k)), 1≤ r < n is finite. Let g(x) be a con-
tinuous such that lim

x→0
g(x) = 1 and lim

x→1
g(x) = 0, then if 1≤ r < n, if

E(X(r + 1, n,m, k)) ≥ x|X(r, n,m, k) = t) =
(

g
( 1 − x
1 − t

))
𝛾r+1

, then F(x) = 1 − (1 − x)𝜆, 0 ≤ x ≤ 1, 𝜆 > 0.

Theorem 6.5 Let Xj, j = 1, 2,… , n be i.i.d random variables on (a, b) with an
absolutely continuous cfd F, pdf f and lim

x→b
s(x)(1 − F(x))𝛾r+1 = 0 where s(x) is a dif-

ferentiable function on (a, b). Let X(r, n, k), r = 1, 2,. . . , n be the first n gos from F
and let h(x) be a positive differentiable function on (a, b) such that lim

x→b
h(x)e∫

x
a

g′(t)
h(t) dt =

∞. Then for m ≥ −1,E(s(X(r + 1, n,m.k)|X(r, n,m, k) = t) = s(t) + h(t), a < t < b if

and only if F(x) = 1 −
((

h(x)
h(a)

)

e∫
x

a
g′(t)
h(t) dt

)− 1
𝛾r+1

.



6.1 Characterizations by Conditional Expectations 93

Proof It is easy to proof the if condition. We will prove here the only if condition.

We have

E(s(X(r + 1, n,m.k))|X(, n,m, k) = t) =
∫

b

t
s(x)𝛾r+1

(
1 − F(x)
1 − F(t)

)
𝛾r+1−1 ( f (x)

1 − F(t)

)

Thus

∫

b

t
s(x)𝛾r+1

(
1 − F(x)
1 − F(t)

)
𝛾r+1−1 ( f (x)

1 − F(t)

)

= s(t) + h(t) (6.1.6)

Differentiating both sides of (6.1.6) and simplifying, we obtain

f (t)
1 − F(t)

= 1
𝛾r+1

[
s′(t)
h(t)

+ h′(t)
h(t)

]

(6.1.7)

Integrating both sides of (6.1.8) from a to x, we obtain

− ln(1 − F(x)) = 1
𝛾r+1

(

∫

x

a

s′(t)
h(t)

dt + ln h(x)
h(a)

)

Thus

F(x) = 1 −
((

h(x)
h(a)

)

e∫
x

a
g′(t)
h(t) dt

)− 1
𝛾r+1

.

The next theorem gives a characterization based on the conditional expectation

of X(r, n, m, k) given X(r+1, n, m, k).

Theorem 6.6 Let Xj, j = 1, 2,… , n be i.i.d random variables on (a, b) with an
absolutely continuous cdf F, pdf f and lim

x→b
s(x)(1 − (1 − F(x))m+1)r = 0 where s(x)

is a differentiable function on (a, b). Let X(r, n, k), r = 1, 2,. . . , n be the first n
gos from F and let h(x) be a positive differentiable function on (a, b) such that
lim
x→b

h(x)e∫
x

a
g′(t)
h(t) dt = ∞. Then for m > −1,E(s(X(r, n,m.k)|X(r+, n,m, k) = t) = s(t) −

h(t), a < t < b if and only if F(x) = 1 −

(

1 −
((

h(x)
h(b)

)

e∫
b

x
g′(t)
h(t) dt

)−1
) 1

m+1.

.

Proof The if condition is easy to prove. We will give here a proof of the only if

condition.

We have

E(s(r, n,m, k)|X(r + 1, n,m, k) = t) =
∫

t

a
s(x)r(1 − F(x))r( 1 − (1 − F(x))m+1

m + 1
)r−1( 1 − (1 − F(t))m+1

m + 1
)−r

xf (x)dx.
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Thus

∫

t

a
s(x)r(1 − F(x))r

(
1 − (1 − F(x))m+1

m + 1

)r−1 ( 1 − (1 − F(t))m+1

m + 1

)−r

xf (x)dx− = s(t) − h(t), a < t < b

(6.1.8)

Differentiating both sides of (6.1.8) and solemnifying, we obtain

(m + 1)(1 − F(t))m

1 − (1 − F(t))m+1 = 1
r

[
s′(t)
h(t)

− h′(t)
h(t)

]

(6.1.9)

Integrating both sides of (6.1.9) with respect to t from x to b, we obtain

F(x) = 1 −

(

1 −
((

h(x)
h(b)

)

e∫
b

x
g′(t)
h(t) dt

)−1
) 1

m+1

.

Theorem 6.7 Let Xj, j = 1, 2,… , n be i.i.d random variables on (a, b) with an
absolutely continuous cfd F, pdf f and lim

x→b
s(x)(1 − F(x))𝛾r+1 = 0 where s(x) is a dif-

ferentiable function on (a, b). Let X(r, n, k), r = 1, 2,. . . , n be the first n gos from F
and let h(x) be a positive differentiable function on (a, b) such that lim

x→b
h(x)e∫

x
a

g′(t)
h(t) dt =

∞. Then for m≥ −1,E(s(X(r + 1, n,m.k)|X(r, n,m, k) = t) = s(t) + h(t), a < t < b if

and only if F(x) = 1 −
((

h(x)
h(a)

)

e∫
x

a
g′(t)
h(t) dt

)− 1
𝛾r+1

.

Proof It is easy to proof the if condition. We will prove here the only if condition.

We have

E(s(X(r + 1, n,m.k)|X(, n,m, k) = t) =
∫

b

t
s(x)𝛾r+1

(
1 − F(x)
1 − F(t)

)
𝛾r+1−1 ( f (x)

1 − F(t)

)

Thus

∫

b

t
s(x)𝛾r+1

(
1 − F(x)
1 − F(t)

)
𝛾r+1−1 ( f (x)

1 − F(t)

)

= s(t) + h(t) (6.1.10)

Differentiating both sides of (6.1.10) and simplifying, we obtain

f (t)
1 − F(t)

= 1
𝛾r+1

[
s′(t)
h(t)

+ h′(t)
h(t)

]

(6.1.11)

Integrating both sides of (6.1.11) from a to x, we obtain

− ln(1 − F(x)) = 1
𝛾r+1

(

∫

x

a

s′(t)
h(t)

dt + ln h(x)
h(a)

)
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Thus

F(x) = 1 −
((

h(x)
h(a)

)

e∫
x

a
g′(t)
h(t) dt

)− 1
𝛾r+1

.

6.2 Characterizations by Equality of Expectations
of Normalized Spacings

We define the normalized spacings as D(1, n,m, k) = 𝛾1X(1, n,m, k) D(r, n,m, k) =
𝛾r(X(r, n,m, k) − X(r − 1, n,m, k)), 2 ≤ r ≤ n. Kamp and Gather (1997) gave the fol-

lowing characterization theorems.

Theorem 6.8 Let F(x) be absolutely continuous cdf with pdf f(x) with F(0) = 0 and
suppose that F(x) is strictly increasing in (0,∞), and F belongs to C1, Then F(x)1 −
e−𝜆x

, 𝜆 > 0 and x≥ 0, if and only if there exist integers r, s and n, 1≤ r < s ≤ n,
such E(D(r, n,m, k)) = E(D(s, n,m, k)).

Theorem 6.9 Let F(x) be absolutely continuous cdf with pdf f(x) with F(0) = 0 and
suppose that F(x) is strictly increasing in (0,∞), and F belongs to C2, Then F(x)
1 − e−𝜆x

, 𝜆 > 0 and x≥ 0, if and only if there exist integers r, s and n, 1≤ r < s ≤ n,
such E(X(r + 1, n,m, k)) − E(X(r, n,m, k)) = E(X(1, n − r,m, k))

Remark 6.3 Without further assumption, the equation

E(X(r + 1, n,m, k)) − E(X(r, n,m, k)) = E(X(1, n − r,m, k)) for just one pair (r,n), 1 ≤ r ≤ n − 1

does not characterize the exponential distribution. For example the distribution

F(x) = 1 − (1 + cxd)−1∕(m+1)
, c > .x ∈ (0,∞),m > −1
c < 0, x ∈

(
0, (−1∕c))1,d

)
m < −1

and d =
𝛾1
𝛾2
.

6.3 Characterizations by Equality of Distributions

Here a characterization using lower generalized order statistics will be presented.

Theorem 6.10 Let X be an absolutely continuous bounded random variable with
cdf F(x) and pdf f(x). We assume without any loss of geberality F(0) = 0 ⋅F(x)> 0,
0 <x< 1 and F(x) = 1 for all x≥ 1. Then the following two statements are equivalent:

(a) X is uniformly distributed as uniform on [0, 1],
(b) X∗(r+1, n, m, k))

d
=X∗(r,n,m,k)Wr+1,
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where Wr+1 is independent of X∗(r+1, n, m, k) and the pdf of fr+1(w) of Wr+1 is as
follows: fr+1(w) = 𝛾r+1w𝛾r+1−1

, 0 ≤ w ≤ 1.

Proof (a)⟶ (b). Let Y = X
∗
(r, n, m, k)Wr+1. The cdf FY (y) of Y ias as follows:

FY (x) = F∗
r,n,m,k(x) + ∫

1

x

( x
u

)
𝛾r+1

f ∗r,n,m,k(u)du

Differentiating both sides of the above equation with respect to x, we obtain

fY (x) = f ∗r,n,m,k(x) − f ∗r,n,m,k(x) + ∫

1

x

𝛾r+1

x

( x
u

)
𝛾r+1

f ∗r,n,m,k(u)du

i.e.

fY (x)
x𝛾r+1−1

=
∫

1

x
𝛾r+1

(1
u

)
𝛾r+1

f ∗r,n,m,k(u)du (6.3.1)

Differentiating both sides of (6.3.1) with respect to x, we obtain

f ′Y (x)
x𝛾r+1−1

−
fY (x)
x𝛾r+1

(𝛾r+1 − 1) = −𝛾r+1

(1
x

)
𝛾r+1

f ∗r,n,m,k(x)

On simplification we obtain from above,

f ′Y (x) −
𝛾r+1 − 1

x
fY (x) = −cr

x𝛾r−1

Γ(r)x

[
1 − xm+1

m + 1

]r−1

Multiplying by x
−(𝛾r+1−1) and we obtain

d
dx

(fY (x)x
−(𝛾r+1−1) ) = −cr

xm

Γ(r)x

[
1 − xm+1

m + 1

]r−1

.

Thus

fY (x)x
−(𝛾r+1−1) = c −

∫
cr

xm

Γ(r)x

[
1 − xm+1

m + 1

]r−1

dx

= c +
cr

Γ(r + 1)

[
1 − xm+1

m + 1

]r

Thus for uniform distribution.

fY (x) = cx
𝛾r+1−1 +

crx𝛾r+1−1

Γ(r + 1)

[
1 − xm+1

m + 1

]r

Since FY (0) = 0 and Fy(1) = 1, we must have c = 0 and
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fY (x) =
crx𝛾r+1−1

Γ(r + 1)

[
1 − xm+1

m + 1

]r

Thus Y = X
∗(r + 1, n,m, k).

Prove of (b) → (a).

F∗r+1,n,m,k (x) = P(X∗(r, n,m, k)Wr+1 ≤ x)

=
∫

1

0
F∗

r,n,m,k(
x
u
)u𝛾r+1−1du

= x𝛾r+1 + 𝛾r+1
∫

1

x
F∗

r,n,m,k

( x
u

)

u𝛾r+1−1du

Substituting t =
x
u

in the above integral, we obtain

F∗r+1,n,m,k (x) = x𝛾r+1 + 𝛾r+1x𝛾r+1
∫

1

x
F∗

r,n,m,k(t)
(1

t

)
𝛾r+1+1

dt (6.3.2)

Differentiating both sides of (6.3.2) with respect to x, we obtain

f∗r+1,n,m,k (x) = 𝛾r+1x𝛾r+1−1 − 𝛾r+1x𝛾r+1 f ∗r,n,m,k(x)
(1

x

)
𝛾r+1+1

+ (𝛾r+1)2x𝛾r+1−1
∫

1

x
F∗

r,n,m,k(t)
(1

t

)
𝛾r+1+1

dt (6.3.3)

Using (6.3.2), we will have from (6.3.3)

f∗r+1,n,m,k (x) =
f (x)
F(x)

f∗r+1,n,m,k (x)x−1

Thus
f (x)
F(x)

= 1
x

(6.3.4)

Integrating both sides of (6.3.4) and using the boundary conditions F(0) = 0 and

F(1) = 1, we get (a).
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