Dietmar Gross • Wolfgang Ehlers Peter Wriggers • Jörg Schröder Ralf Müller

Dynamics Formulas and Problems

Engineering Mechanics 3

Dynamics - Formulas and Problems

Dietmar Gross • Wolfgang Ehlers Peter Wriggers • Jörg Schröder Ralf Müller

Dynamics - Formulas and Problems

Engineering Mechanics 3
(2) Springer

Dietmar Gross
Division of Solid Mechanics
TU Darmstadt
Darmstadt
Germany

Jörg Schröder
Institute of Mechanics
Universität Duisburg-Essen
Essen
Germany
Wolfgang Ehlers
Institute of Applied Mechanics
Universität Stuttgart
Stuttgart
Germany
Ralf Müller
Engineering Mechanics
TU Kaiserslautern
Kaiserslautern
Germany
Peter Wriggers
Institute of Continuum Mechanics
Leibniz Universität Hannover
Hannover
Germany

ISBN 978-3-662-53436-6
ISBN 978-3-662-53437-3 (eBook)
DOI 10.1007/978-3-662-53437-3
Library of Congress Control Number: 2016951667
© Springer-Verlag Berlin Heidelberg 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

This $3^{\text {rd }}$ volume of the Formulas and Problems concludes the series to the basic courses in Engineering Mechanics.

Experience shows that the field of Dynamics is particularly difficult for students, because besides the concept of force now additional kinematic quantities occur, which must be brought into relation with each other and with the forces. Therefore, with numerous purely kinematical problems, we tried to deepen the understanding of the relevant geometric quantities and their description in different coordinate systems. Likewise, only by exercises, i.e. by an independent treatment of problems, one can gain experience, which basic principle leads to the solution in the simplest way. Often there are several approaches possible. Therefore we demonstrate this frequently so that the reader can realize the advantages and disadvantages of the alternatives.

As in the $1^{\text {st }}$ and $2^{\text {nd }}$ volume, we deliberately placed the emphasis on the principal way how to to apply the theory and not in numerical results. The correct formulation of the relevant basic equations and their solution is in the beginning much more important than numerical calculations without a deeper understanding of the background.

Experience also shows that it is an illusion to believe that simply reading and trying to comprehend the presented solutions leads to an understanding of the theory. Neither does it improve the problem solving skills. Therefore, we strongly recommend that the reader first tries to solve the problems independently, possibly by using other approaches. Let us emphasize that a collection of formulas and examples is only an additional aid when studying mechanics and it cannot replace a textbook. When the reader is not familiar with one or the other formula or concept, it is necessary to brush up the theory with the help of a textbook; a number of titles can be found in the list of references.

Darmstadt, Stuttgart, Hannover, Essen and Kaiserslautern, Summer 2016
D. Gross
W. Ehlers
P. Wriggers
J. Schröder
R. Müller

Table of Contents

Literature, Notation IX
1 Kinematics of a Point 1
2 Kinetics of a Point Mass 29
3 Dynamics of a System of Point Masses 59
4 Kinematics of Rigid Bodies 77
5 Kinetics of a Rigid Body 99
6 Impact 147
7 Vibrations 169
8 Non-Inertial Reference Frames 195
9 Principles of Mechanics 211
10 Hydrodynamics 227

Literature

Textbooks

Gross, D., Hauger, W., Schröder, J., Wall, W., Govindjee, S., Engineering Mechanics 3, Dynamics, 2nd edition, Springer 2014
Gross, D., Hauger, W., Wriggers, P., Technische Mechanik, vol 4: Hydromechanics, Elements of Avanced Mechanics, Numerical Methods (in German), 9th edition, Springer 2014
Beatty, M.F., Principles of Engineering Mechanics, vol 2: Dynamics, Springer 2005
Beer, F., Johnston, E.R., Cornwell, P., Vector Mechanics for Engineers: Dynamics, 10th edition, McGraw-Hill Education 2012
Hibbeler, R.C., Engineering Mechanics: Dynamics, 14th edition. Pearson 2016
Meriam, J.L., Kraige, L.G., Bolton, J.N., Engineering Mechanics: Dynamics, 8th edition, Wiley 2016
Plesha, M., Costanzo, F., Gray, G., Engineering Mechanics: Dynamics, 2nd edition, McGraw-Hill 2012
Pytel, A., Kiusalaas, J., Engineering Mechanics: Dynamics, 4th edition, Cengage Learning 2016
Shames, I.H., Engineering Mechanics: Dynamics, 4th edition, Pearson 1996

Collection of Problems

Beer, F., Johnston, E.R., Cornwell, P., Vector Mechanics for Engineers: Dynamics, 10th edition, Solution Manual, McGraw-Hill 2012
Nelson, E.W., et al. Engineering Mechanics - Dynamics, 765 fully solved problems, Schaum's Outlines, McGraw-Hill Education 2010
Gray, G.L., Costanzo, F., Plesha, M.E., Solutions Manual, Engineering Mechanics: Dynamics, 1st edition, McGraw-Hill 2009
Hibbeler, R.C., Practice Problems Workbook, Engineering Mechanics: Dynamics, Pearson 2015

Notation

In the problem solutions the following symbols are used:
\uparrow : abbreviation for equation of motion (impulse law) in direction of arrow.
\curvearrowleft A : abbreviation for angular momentum theorem relative to point A with given positive rotation direction.
$\leadsto \quad$ abbreviation for it follows.

Chapter 1
Kinematics of a Point

The position of a point P in space is described by the position vector

$$
\boldsymbol{r}(t)
$$

As P moves, its path is given by $\boldsymbol{r}(t)$.
From the displacement $\mathrm{d} \boldsymbol{r}$ of point P in a neighboring position during time $\mathrm{d} t$ follows its velocity

$$
\boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{~d} t}=\dot{\boldsymbol{r}}
$$

The velocity is always tangent to the path (trajectory). With the arclength s and $|\mathrm{d} \boldsymbol{r}|=\mathrm{d} s$ the speed of P is given by

$$
v=\frac{\mathrm{d} s}{\mathrm{~d} t}=\dot{s}
$$

The change of the velocity vector $\mathrm{d} \boldsymbol{v}(t)$ during time $\mathrm{d} t$ is called acceleration

$$
\boldsymbol{a}=\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{~d} t}=\dot{\boldsymbol{v}}=\ddot{\boldsymbol{r}}
$$

The acceleration generally is not directed tangent to the path (trajectory)!

The vectors $\boldsymbol{r}, \boldsymbol{v}$ and \boldsymbol{a} can be represented in different coordinate systems as follows:
a) Cartesian Coordinates with the unit vectors $\boldsymbol{e}_{x}, \boldsymbol{e}_{y}, \boldsymbol{e}_{z}$:

$$
\begin{aligned}
\boldsymbol{r} & =x \boldsymbol{e}_{x}+y \boldsymbol{e}_{y}+z \boldsymbol{e}_{z}, \\
\boldsymbol{v} & =\dot{x} \boldsymbol{e}_{x}+\dot{y} \boldsymbol{e}_{y}+\dot{z} \boldsymbol{e}_{z}, \\
\boldsymbol{a} & =\ddot{x} \boldsymbol{e}_{x}+\ddot{y} \boldsymbol{e}_{y}+\ddot{z} \boldsymbol{e}_{z} .
\end{aligned}
$$

b) Cylindrical Coordinates with the unit vectors $\boldsymbol{e}_{r}, \boldsymbol{e}_{\varphi}, \boldsymbol{e}_{z}$:

$$
\begin{aligned}
\boldsymbol{r} & =r \boldsymbol{e}_{r}+z \boldsymbol{e}_{z}, \\
\boldsymbol{v} & =\dot{r} \boldsymbol{e}_{r}+r \dot{\varphi} \boldsymbol{e}_{\varphi}+\dot{z} \boldsymbol{e}_{z}, \\
\boldsymbol{a} & =\left(\ddot{r}-r \dot{\varphi}^{2}\right) \boldsymbol{e}_{r}+(r \ddot{\varphi}+2 \dot{r} \dot{\varphi}) \boldsymbol{e}_{\varphi}+\ddot{z} \boldsymbol{e}_{z} .
\end{aligned}
$$

c) Serret-Frenet Frame with the unit vectors $\boldsymbol{e}_{t}, \boldsymbol{e}_{n}, \boldsymbol{e}_{b}$ in tangential, principal normal and binormal direction.

$$
\begin{aligned}
\boldsymbol{v} & =v \boldsymbol{e}_{t} \\
\boldsymbol{a} & =\dot{v} \boldsymbol{e}_{t}+\frac{v^{2}}{\rho} \boldsymbol{e}_{n}
\end{aligned}
$$

Here are:

$$
\begin{array}{ll}
\rho & =\begin{array}{l}
\text { radius of curvature (distance between } P \text { and } \\
\text { center of curvature } C)
\end{array} \\
v=\dot{s}=\frac{\mathrm{d} s}{\mathrm{~d} t}= & \text { speed, } \\
a_{t}=\dot{v}=\frac{\mathrm{d} v}{\mathrm{~d} t}= & \text { tangential acceleration, } \\
a_{n}=\frac{v^{2}}{\rho} \quad=\quad \text { normal acceleration (centripetal acceleration). }
\end{array}
$$

Remarks: The two acceleration components a_{t}, a_{n} are located in the so-called osculating plane. The acceleration vector points always to the 'interior' of the path.

Rectilinear motion

Position $\quad x(t)$,
Velocity $\quad v=\frac{\mathrm{d} x}{\mathrm{~d} t}=\dot{x}$,

Acceleration $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\dot{v}=\ddot{x}$.

Circular motion ($r=$ const $)$
Position

$$
s=r \varphi(t)
$$

Velocity

$$
v=r \dot{\varphi}=r \omega
$$

Tangential acceleration $\quad a_{t}=r \ddot{\varphi}=r \dot{\omega}$,
Centripetal acceleration $\quad a_{n}=\frac{v^{2}}{r}=r \omega^{2}$

with $\omega=\dot{\varphi}=$ angular velocity.

Planar motion in polar coordinates

From the relations for cylindrical coordinates follow for $z=0, \dot{\varphi}=\omega$

$$
\boldsymbol{v}=v_{r} \boldsymbol{e}_{r}+v_{\varphi} \boldsymbol{e}_{\varphi}, \quad \boldsymbol{a}=a_{r} \boldsymbol{e}_{r}+a_{\varphi} \boldsymbol{e}_{\varphi}
$$

with

$$
\begin{array}{ll}
\text { radial velocity } & v_{r}=\dot{r}, \\
\text { circular velocity } & v_{\varphi}=r \omega, \\
\text { radial acceleration } & a_{r}=\ddot{r}-r \omega^{2}, \\
\text { circular acceleration } & a_{\varphi}=r \dot{\omega}+2 \dot{r} \omega .
\end{array}
$$

Remark: In case of a central motion the circular acceleration vanishes From $a_{\varphi}=r \dot{\omega}+2 \dot{r} \omega=\left(r^{2} \omega\right)^{\cdot} / r=0$ then follows the 'Law of Equal Areas' (Kepler's 2nd Law) $r^{2} \omega=$ const .

Kinematic basic problems for a rectilinear motion

At initial time t_{0} the initial position x_{0} and initial velocity v_{0} are assumed to be given.

Given	Sought
$a=0$	$\begin{gathered} v=v_{0}=\text { const }, \quad x=x_{0}+v_{0} t \\ \text { uniform motion } \end{gathered}$
$a=a_{0}=$ const	$\begin{array}{cl} v=v_{0}+a_{0} t, & x=x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2} \\ \text { uniform } & \text { acceleration } \end{array}$
$a=a(t)$	$v=v_{0}+\int_{t_{0}}^{t} a(\bar{t}) \mathrm{d} \bar{t}, \quad x=x_{0}+\int_{t_{0}}^{t} v(\bar{t}) \mathrm{d} \bar{t}$
$a=a(v)$	$t=t_{0}+\int_{v_{0}}^{v} \frac{\mathrm{~d} \bar{v}}{a(\bar{v})}=f(v), \quad x=x_{0}+\int_{t_{0}}^{t} F(\bar{t}) \mathrm{d} \bar{t}$ with the inverse function $v=F(t)$
$a=a(x)$	$v^{2}=v_{0}^{2}+2 \int_{x_{0}}^{x} a(\bar{x}) \mathrm{d} \bar{x}, \quad t=t_{0}+\int_{x_{0}}^{x} \frac{\mathrm{~d} \bar{x}}{v(\bar{x})}=g(x)$ the inverse function of $t=g(x)$ gives $x=G(t)$

Remarks:

- The relations above can also be used for a general motion by replacing x through s and a through the tangential acceleration a_{t}. The normal acceleration then follows from $a_{n}=v^{2} / \rho$.
- If the velocity is given as a function of the position, the acceleration is found from

$$
a=v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{v^{2}}{2}\right) .
$$

Problem 1.1 The minimum distance b between two vehicles shall be as big as the distance which the rear vehicle covers within $t_{s}=2 \mathrm{~s}$ at its constant velocity.
a) Determine the minimum distance x_{p} required for passing.
b) Determine the minimum time t_{p} a car (length $l_{1}=5 \mathrm{~m}$, constant speed $v_{1}=120 \mathrm{~km} / \mathrm{h}$) needs staying on the fast lane for passing a truck (length $l_{2}=15 \mathrm{~m}$, speed $v_{2}=80 \mathrm{~km} / \mathrm{h}$) correctly? Disregard the time for changing the lanes.

Solution

a) For uniform motion the minimum distances follow with $1 \mathrm{~km} / \mathrm{h}=$ $1000 \mathrm{~m} / 3600 \mathrm{~s}$ as

$$
b_{1}=v_{1} t_{s}=\frac{120}{3.6} \cdot 2=\frac{200}{3} \mathrm{~m}, \quad b_{2}=v_{2} t_{s}=\frac{80}{3.6} \cdot 2=\frac{400}{9} \mathrm{~m}
$$

Thus, the required distance for passing is given by

$$
x_{p}=b_{1}+l_{2}+x_{2}+b_{2}+l_{1}
$$

Furthermore, the relations

$$
x_{2}=v_{2} t_{p}, \quad x_{p}=v_{1} t_{p}
$$

hold. Elimination of t_{p} yields

$$
\underline{\underline{x_{p}}}=\frac{b_{1}+b_{2}+l_{1}+l_{2}}{1-\frac{v_{2}}{v_{1}}}=\frac{\frac{200}{3}+\frac{400}{9}+5+15}{1-\frac{80}{120}}=\frac{1180}{3}=\underline{\underline{393,33 \mathrm{~m}}}
$$

b) Thus, the minimum time for passing is

$$
\underline{\underline{t_{p}}}=\frac{x_{p}}{v_{1}}=\frac{1180 \cdot 3,6}{3 \cdot 120}=\underline{\underline{11,8 \mathrm{~s}}} .
$$

P1.2 Problem 1.2 To simulate absence of gravity, vacuum drop-shafts are used. Given is a shaft with a depth of $l=200 \mathrm{~m}$.

Determine the maximum available test time t_{1} and test distance x_{1} during free fall, when the sample after passing the test distance is decelerated with $a_{I I}=-50 g$ to $v=0$?

Solution Because the sample is released from rest $\left(x_{0}=v_{0}=\right.$ 0), during free fall with $a_{I}=$ const $=g$, the velocity and position are

$$
v_{I}=g t, \quad x_{I}=\frac{g}{2} t^{2}
$$

During the deceleration phase with $a_{I I}=-50 g$, velocity and position are given by

$$
\begin{aligned}
& v_{I I}=v_{I I_{0}}-50 g t, \\
& x_{I I}=x_{I I_{0}}+v_{I I_{0}} t-50 g t^{2} / 2
\end{aligned}
$$

It shall be noted that the integration constants $x_{I I_{0}}$ and $v_{I I_{0}}$ have no direct physical meaning.

For $t=t_{2}$ the following conditions must hold:

$$
\begin{aligned}
& v_{I I}\left(t_{2}\right)=0 \quad \leadsto v_{I I_{0}}=50 g t_{2}, \\
& x_{I I}\left(t_{2}\right)=l \quad \leadsto \quad x_{I I_{0}}=l-v_{I I_{0}} t_{2}+\frac{50}{2} g t_{2}^{2}=l-25 g t_{2}^{2} .
\end{aligned}
$$

From the transition conditions

$$
\begin{aligned}
& v_{I}\left(t_{1}\right)=v_{I I}\left(t_{1}\right) \quad \leadsto g t_{1}=50 g\left(t_{2}-t_{1}\right), \\
& x_{I}\left(t_{1}\right)=x_{I I}\left(t_{1}\right) \quad \leadsto \quad \frac{g}{2} t_{1}^{2}=l-\frac{50}{2} g t_{2}^{2}+50 g t_{1} t_{2}-\frac{50}{2} g t_{1}^{2}
\end{aligned}
$$

the test time t_{1} and subsequently x_{1} can be determined:

$$
\begin{aligned}
& \underline{\underline{t_{1}}}=\sqrt{\frac{100 l}{51 g}}=\sqrt{\frac{100 \cdot 200}{51 \cdot 9.81}}=\underline{\underline{6.32 \mathrm{~s}}} \\
& \underline{\underline{x_{1}}}=x_{I}\left(t_{1}\right)=\frac{g}{2} t_{1}^{2}=\frac{g}{2} \frac{100 l}{51 g}=\frac{50}{51} l=\underline{\underline{196 \mathrm{~m}}}
\end{aligned}
$$

Problem 1.3 Between 2 stations an underground covers a distance of 3 km . Given are the starting acceleration $a_{a}=0.2 \mathrm{~m} / \mathrm{s}^{2}$, the braking deceleration $a_{d}=-0.6 \mathrm{~m} / \mathrm{s}^{2}$ and the maximum speed $v^{*}=90 \mathrm{~km} / \mathrm{h}$.

Determine the acceleration distance, the deceleration distance, the distance during uniform motion and the travel time.

Solution From the constant acceleration a_{a} within the starting phase the velocity follows as

$$
v_{a}=a_{a} t
$$

With the given maximum speed we obtain the starting time

$$
t_{a}=\frac{v^{*}}{a_{a}}=\frac{90 \cdot 1000}{3600 \cdot 0.2}=125 \mathrm{~s}
$$

and the acceleration distance

$$
\underline{\underline{s_{a}}}=\frac{1}{2} a_{a} t_{a}^{2}=\frac{1}{2} \cdot 0.2 \cdot 125^{2}=\underline{\underline{1563 \mathrm{~m}}}
$$

During braking with constant deceleration a_{d} the velocity is given by

$$
v_{d}=v^{*}+a_{d} t
$$

Thus, the time t_{d} until stop $\left(v_{d}=0\right)$ is

$$
t_{d}=-\frac{v^{*}}{a_{d}}=-\frac{90 \cdot 1000}{3600 \cdot(-0.6)}=41.67 \mathrm{~s}
$$

and for the associated braking distance follows

$$
\begin{aligned}
\underline{\underline{s_{d}}} & =v^{*} t_{d}+\frac{1}{2} a_{d} t_{d}^{2}=\frac{90 \cdot 1000}{3600} \cdot 41,67-\frac{1}{2} \cdot 0.6 \cdot 41.67^{2} \\
& =1041.75-520.92=\underline{\underline{521 \mathrm{~m}}} .
\end{aligned}
$$

For the phase with constant velocity v^{*} remains a distance of

$$
\underline{\underline{s^{*}}}=3000-s_{a}-s_{d}=\underline{\underline{916 m}}
$$

and an associated time

$$
t^{*}=\frac{s^{*}}{v^{*}}=\frac{916 \cdot 3600}{90 \cdot 1000}=36.64 \mathrm{~s} .
$$

Thus, the total travel time is

$$
\underline{\underline{T}}=t_{a}+t^{*}+t_{d}=203.31 \mathrm{~s}=\underline{\underline{3.39 \mathrm{~min}}} .
$$

P1.4 Problem 1.4 A car driver approaches a traffic light with the speed of $v_{0}=50 \mathrm{~km} / \mathrm{h}$. At a distance of $l=100 \mathrm{~m}$ the lights turn to 'Red'. The 'Red' and 'Yellow' phase takes $t^{*}=10 \mathrm{~s}$. The driver wants passing the traffic lights just when the lights turn back to 'Green'.
a) Determine the necessary constant deceleration a_{0}, when the driver is braking along the entire distance?
b) Determine the velocity v_{1} of the car when arriving at the lights?
c) Draw the diagrams $a(t), v(t)$ and $x(t)$.

Solution For constant acceleration a_{0} we have with $x(t=0)=0$

$$
\begin{aligned}
& v=v_{0}+a_{0} t \\
& x=v_{0} t+a_{0} \frac{t^{2}}{2} .
\end{aligned}
$$

a) The 2 nd equation leads with the condition $x\left(t^{*}\right)=l$ to

$$
\underline{\underline{a_{0}}}=\frac{2}{t^{* 2}}\left(l-v_{0} t^{*}\right)=\frac{2}{10^{2}}\left(100-\frac{50 \cdot 1000}{3600} \cdot 10\right)=\underline{\underline{-0.78} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}
$$

The negative sign indicates that the car decelerates.
b) With the now known deceleration during braking, the 1st equation yields

$$
\begin{aligned}
\underline{\underline{v_{1}}} & =v\left(t^{*}\right)=50 \cdot \frac{1000}{3600}-0.78 \cdot 10 \\
& =6.09 \frac{\mathrm{~m}}{\mathrm{~s}}=\underline{\underline{21.9 \frac{\mathrm{~km}}{\mathrm{~h}}}}
\end{aligned}
$$

c) Integration of the constant acceleration yields a linear velocity plot, a second integration a parabolic path-time diagram.

Problem 1.5 A vehicle moves according to the given speed-time diagram.

Determine the occuring accelerations, the covered distance and draw the diagrams $x(t), a(t), v(x)$ and $a(x)$.

Solution It is advantageous to devide the motion into 3 time sections:

1. Section $0 \leq t_{1} \leq 100$ s (starting with constant acceleration a_{1}): From $v_{1}=a_{1} t_{1}$ follows

$$
\begin{array}{ll}
\underline{a_{1}}=\frac{v_{1}(100)}{100}=\frac{20}{100}=\frac{1}{5} \mathrm{~m} / \mathrm{s}^{2} \\
\underline{\underline{s_{1}}}=x_{1}(100)=\frac{1}{2} \cdot \frac{1}{5}(100)^{2}=\underline{\underline{1000 \mathrm{~m}}}, & x_{1}=\frac{1}{2} a_{1} t_{1}^{2} \\
\underline{\underline{1}}\left(x_{1}\right)=\sqrt{2 a_{1} x_{1}}
\end{array}
$$

2. Section $0 \leq t_{2} \leq 200 \mathrm{~s}$ (uniform motion): From $v_{2}=20 \mathrm{~m} / \mathrm{s}=$ const results

$$
\underline{\underline{a_{2}=0}}, \quad x_{2}=v_{2} t_{2}, \quad \underline{\underline{s_{2}}}=x_{2}(200)=20 \cdot 200=\underline{\underline{4000 \mathrm{~m}}}
$$

3. Section $0 \leq t_{3} \leq 60$ s (braking with constant deceleration a_{3}): With $v_{3}=20 \mathrm{~m} / \mathrm{s}+a_{3} t_{3}$ we obtain

$$
\begin{array}{ll}
\underline{\underline{a_{3}}}=-\frac{20}{60}=\underline{-\frac{1}{3} \mathrm{~m} / \mathrm{s}^{2}}, & x_{3}=20 t_{3}+\frac{1}{2} a_{3} t_{3}^{2} \\
\underline{\underline{s_{3}}}=x_{3}(60)=20 \cdot 60-\frac{1}{2} \cdot \frac{1}{3}(60)^{2}=\underline{\underline{600 \mathrm{~m}}}, & v_{3}=\sqrt{400+2 a_{3} x_{3}}
\end{array}
$$

In total, the vehicle covers the distance

$$
\underline{\underline{s}}=s_{1}+s_{2}+s_{3}=1000+4000+600=\underline{\underline{5600 \mathrm{~m}}}
$$

P1.6 Problem 1.6 Taking air resistance into account, the acceleration of a free falling body can be described approximately by $a(v)=g-\alpha v^{2}$. Here g is the gravity acceleration and α a constant.

Determine the velocity $v(t)$ of the body that is released from rest.
Solution According to the table on page 4 we have for a given $a(v)$

$$
t=t_{0}+\int_{v_{0}}^{v} \frac{\mathrm{~d} \bar{v}}{g-\alpha \bar{v}^{2}}
$$

If the motion starts at $t_{0}=0$ we obtain with the initial condition $v\left(t_{0}\right)=v_{0}=0$

$$
t=\int_{0}^{v} \frac{\mathrm{~d} \bar{v}}{g-\alpha \bar{v}^{2}}=\frac{1}{\alpha} \int_{0}^{v} \frac{\mathrm{~d} \bar{v}}{\left(\sqrt{\frac{g}{\alpha}}-\bar{v}\right)\left(\sqrt{\frac{g}{\alpha}}+\bar{v}\right)}
$$

and after partial fraction decomposition

$$
\begin{aligned}
t & =\frac{1}{\alpha} \frac{1}{2 \sqrt{\frac{g}{\alpha}}} \int_{0}^{v}\left(\frac{1}{\sqrt{\frac{g}{\alpha}}-\bar{v}}+\frac{1}{\sqrt{\frac{g}{\alpha}}+\bar{v}}\right) \mathrm{d} \bar{v} \\
& =\frac{1}{2 \sqrt{g \alpha}}\left[-\ln \left(\sqrt{\frac{g}{\alpha}}-\bar{v}\right)+\ln \left(\sqrt{\frac{g}{\alpha}}+\bar{v}\right)\right]_{0}^{v}=\frac{1}{2 \sqrt{g \alpha}} \ln \frac{\sqrt{\frac{g}{\alpha}}+v}{\sqrt{\frac{g}{\alpha}}-v}
\end{aligned}
$$

Solving for v yields

$$
\mathrm{e}^{2 \sqrt{g \alpha} t}=\frac{\sqrt{\frac{g}{\alpha}}+v}{\sqrt{\frac{g}{\alpha}}-v} \quad \leadsto \quad \begin{aligned}
& v=\sqrt{\frac{g}{\alpha}} \frac{\mathrm{e}^{2 \sqrt{g \alpha} t}-1}{\mathrm{e}^{2 \sqrt{g \alpha}}+1}
\end{aligned} .
$$

With the hyperbolic function $\tanh \varphi=\frac{\mathrm{e}^{\varphi}-\mathrm{e}^{-\varphi}}{\mathrm{e}^{\varphi}+\mathrm{e}^{-\varphi}}=\frac{\mathrm{e}^{2 \varphi}-1}{\mathrm{e}^{2 \varphi}+1}$ the result also can be written as

$$
v=\sqrt{\frac{g}{\alpha}} \tanh \sqrt{g \alpha} t .
$$

From this last representation the limit value

$$
\lim _{t \rightarrow \infty} v(t)=\sqrt{g / \alpha}
$$

can be recognized, i.e. after sufficiently large time the body practically falls with constant speed $(a=0 \leadsto v=\sqrt{g / \alpha})$.

Problem 1.7 On account of the gas expansion, a piston (diameter d) moves in a cylinder. Here, the acceleration a of the piston is proportional to the current gas pressure p, i.e. $a=c_{0} p$, where for the gas pressure Boyle-Mariotte's
 gas law $p V=$ const is valid. The initial state is given by the pressure p_{0}, the piston location l_{0} and the initial velocity $v_{0}=0$.

Determine the velocity v of the piston as a function of its position.
Solution For a piston displacement x we obtain, according to the gas law $p_{0} V_{0}=p V$, the relation

$$
p_{0} \frac{\pi d^{2}}{4} l_{0}=p \frac{\pi d^{2}}{4}\left(l_{0}+x\right),
$$

where the pressure is given by

$$
p=p_{0} \frac{l_{0}}{l_{0}+x}
$$

$\rightarrow l_{0} \longmapsto x$

This leads to the acceleration

$$
a(x)=c_{0} p=c_{0} p_{0} \frac{1}{1+x / l_{0}}=a_{0} \frac{1}{1+x / l_{0}} .
$$

Here $a_{0}=c_{0} p_{0}$ is the initial acceleration at $x=0$. Using the table on page 4 for a given $a(x)$, the velocity is determined by

$$
\begin{aligned}
v^{2}= & v_{0}^{2}+2 \int_{x_{0}}^{x} a(\bar{x}) \mathrm{d} \bar{x}=2 \int_{0}^{x} \frac{a_{0}}{1+\bar{x} / l_{0}} \mathrm{~d} \bar{x}=2 l_{0} a_{0} \ln \left(1+\frac{x}{l_{0}}\right) \\
& \leadsto \quad v=\sqrt{2 l_{0} a_{0} \ln \left(1+\frac{x}{l_{0}}\right)} .
\end{aligned}
$$

Remark: Because the acceleration decreases with increasing x, the velocity increase drops continuously.

P1.8 Problem 1.8 The acceleration of a point P, moving along a straight line, is directed to the point Z and its magnitude is inverse proportional to the distance x.

For $t=0$ the point P has the distance $x_{0}=2 \mathrm{~m}$, the velocity $v_{0}=4 \mathrm{~m} / \mathrm{s}$ and the acceleration $a_{0}=-3 \mathrm{~m} / \mathrm{s}^{2}$.
a) Determine the velocity v_{1} for the distance $x_{1}=3 \mathrm{~m}$.
b) At what distance x_{2} the velocity is zero?

Solution According to the problem description, the acceleration is $a=-c / x$, where c can be determined from the given initial conditions:

$$
c=-a_{0} x_{0}=-(-3) \cdot 2=6(\mathrm{~m} / \mathrm{s})^{2}
$$

Knowing $a(x)$, the velocity is obtained from (see table on page 4)

$$
\begin{aligned}
v^{2}= & v_{0}^{2}+2 \int_{x_{0}}^{x} a(\bar{x}) \mathrm{d} \bar{x}=v_{0}^{2}+2 \int_{x_{0}}^{x}\left(-\frac{c}{\bar{x}} \mathrm{~d} \bar{x}\right)=v_{0}^{2}-2 c \ln \frac{x}{x_{0}} \\
& \leadsto \quad v(x)= \pm \sqrt{v_{0}^{2}-2 c \ln x / x_{0}} .
\end{aligned}
$$

a) Hence, the velocity for $x_{1}=3 \mathrm{~m}$ results as

$$
\underline{\underline{v_{1}}}=(\pm) \sqrt{16-12 \ln \frac{3}{2}}=\underline{\underline{3,34 \frac{\mathrm{~m}}{\mathrm{~s}}}} .
$$

b) The velocity is zero for:

$$
v=0 \leadsto v_{0}^{2}-2 c \ln \frac{x}{x_{0}}=0 \leadsto \underline{\underline{x_{2}=x_{0} \mathrm{e}^{v_{0}^{2} / 2 c}}}=2 \mathrm{e}^{4 / 3}=\underline{\underline{7,59 \mathrm{~m}}} .
$$

Remarks:

- The velocity-position diagram is symmetric with respect to the x-axis.
- The motion can also take place in the domain of negative x. Because of the discontinuity at $x=0$, the equations then must be formulated new, considering the direction change of a.

Problem 1.9 A ball is thrown vertically upwards with an initial velocity $v_{01}=20 \mathrm{~m} / \mathrm{s}$. Two seconds later, a second ball likewise is thrown vertically upwards with $v_{02}=18 \mathrm{~m} / \mathrm{s}$.

Determine the height H where the two balls meet.

Solution We start counting time t when launching the 1st ball. Considering the given initial values, the direction of gravity g and the time difference $\Delta t=2 \mathrm{~s}$, we have

$$
\begin{aligned}
& z_{1}=v_{01} t-\frac{g}{2} t^{2}, \\
& z_{2}=v_{02}(t-\Delta t)-\frac{g}{2}(t-\Delta t)^{2} .
\end{aligned}
$$

From the condition $z_{1}=z_{2}$ for meeting, the meeting time t^{*} is obtained:

$$
\begin{aligned}
& v_{01} t^{*}-\frac{g}{2} t^{* 2}=v_{02}\left(t^{*}-\Delta t\right)-\frac{g}{2}\left(t^{* 2}-2 t^{*} \Delta t+\Delta t^{2}\right) \\
& \leadsto \quad t^{*}=\frac{\Delta t\left(v_{02}+\frac{1}{2} g \Delta t\right)}{v_{02}-v_{01}+g \Delta t}=3.16 \mathrm{~s}
\end{aligned}
$$

Introducing t^{*} into the equation for z_{1} (or z_{2}) yields the height:

$$
\underline{\underline{H}}=z_{1}\left(t^{*}\right)=20 \cdot 3.16-4.9 \cdot 3.16^{2}=\underline{\underline{14.27 \mathrm{~m}}} .
$$

The solution can be illustrated by the position-time diagram:

P1.10 Problem 1.10 From the rim of a cliff, 50 m above the sea level, a ball is thrown vertically upwards with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$.
a) Determine the maximum height the ball reaches above sea level.
b) When the ball impinges on sea surface?
c) Determine the velocity of the ball when impinging on sea surface.

Solution With $a=-g$ and the initial velovity v_{0} we have

$$
\begin{aligned}
& v=\dot{z}=v_{0}-g t \\
& z=v_{0} t-\frac{g}{2} t^{2}
\end{aligned}
$$

a) The rise time T follows from the condition $v(T)=0$:

$$
v_{0}-g T=0 \quad \leadsto T=\frac{v_{0}}{g}
$$

Therefore, the throw height H is given by

$$
H=z(T)=\frac{v_{0}^{2}}{g}-\frac{v_{0}^{2}}{2 g}=\frac{v_{0}^{2}}{2 g}
$$

With $v_{0}=10 \mathrm{~m} / \mathrm{s}$ the maximum height $h_{\max }$ is obtained as

$$
\underline{\underline{h_{\max }}}=h+H=h+\frac{v_{0}^{2}}{2 g}=50+\frac{10^{2}}{2 \cdot 9.81}=\underline{\underline{55.1 \mathrm{~m}}}
$$

b) The time t_{i} until the ball impinges on sea surface is obtained from the condition $z\left(t_{i}\right)=-h$:

$$
-h=v_{0} t_{i}-\frac{g}{2} t_{i}^{2} \quad \leadsto \quad \underline{\underline{t_{i}}}=\frac{1}{g}\left\{v_{0}(-) \sqrt{v_{0}^{2}+2 g h}\right\}=\underline{\underline{4.37 \mathrm{~s}}}
$$

Note: The formally possible minus sign in front of the root is inapplicable. It would lead to a negative time t_{i}.
c) With $t=t_{i}$ the impact velocity follows as

$$
\underline{\underline{v\left(t_{i}\right)}=v_{0}-g t_{i}=10-9.81 \cdot 4.37=} \underline{\underline{-32.87 \frac{\mathrm{~m}}{\mathrm{~s}}}} .
$$

The minus sign indicates that the velocity is downwards directed, i.e. opposite to the chosen coordinate z.

Problem 1.11 The crew of a balloon, that is moving upwards in a cloud with constant speed v_{0}, wants to determine the current hight h_{0} above ground. For this purpose a gauging member is released from the gondola that falls down and explodes when hitting the ground. After time t_{1} the crew hears the detonation.

Determine the height h_{0} for the following data: $v_{0}=5 \mathrm{~m} / \mathrm{s}, g=$ $9.81 \mathrm{~m} / \mathrm{s}^{2}, t_{1}=10 \mathrm{~s}, c=330 \mathrm{~m} / \mathrm{s}$ (speed of sound).

Solution Introducing x downwards from the position where the member is launched $(t=$ 0), the falling time t_{m} until hitting the ground is obtained from

$$
x\left(t_{m}\right)=\frac{1}{2} g t_{m}^{2}-v_{0} t_{m}=h_{0}
$$

as

$$
t_{m}=\frac{v_{0}}{g}\left\{1_{(-)}^{+} \sqrt{1+\frac{2 g h_{0}}{v_{0}^{2}}}\right\}
$$

Only the positive root is meaningful since t_{m} must be positive.

The sound covers the distance $h_{0}+v_{0} t_{1}$ because during time t_{1} the baloon is rising the distance $v_{0} t_{1}$. Therefore the sound requires
 the time

$$
t_{s}=\frac{\text { sound distance }}{\text { sound speed }}=\frac{h_{0}+v_{0} t_{1}}{c}
$$

The total time is given by the sum of falling time and the time of sound:

$$
t_{1}=t_{m}+t_{s}=\frac{v_{0}}{g}\left\{1+\sqrt{1+\frac{2 g h_{0}}{v_{0}^{2}}}\right\}+\frac{h_{0}+v_{0} t_{1}}{c} .
$$

After rearranging and squaring we obtain

$$
\begin{aligned}
\underline{\underline{h_{0}}} & =\frac{c-v_{0}}{g}\left\{g t_{1}+c\left[1(\pm) \sqrt{1+2 \frac{g t_{1}}{c-v_{0}}}\right]\right\} \\
& =\frac{325}{9,81}\left\{98,1+330\left[1-\sqrt{1+2 \frac{98,1}{325}}\right]\right\}=\underline{\underline{338}} .
\end{aligned}
$$

The solution with the positive root leads to a mechanically unreasonable result.

P1.12 Problem 1.12 The two points P_{A} and P_{B} start their motion along a circular path at the same time $t=0$ at A and B, respectively. Point P_{A} moves with the given constant speed v_{0} and point P_{B} starts from rest with a constant angular acceleration $\dot{\omega}_{0}$.
a) Determine $\dot{\omega}_{0}$ such that both points arrive at C at the same time.

b) Calculate the angular velocity of P_{B} when passing A ?
c) Determine the normal acceleration of both points at C.

Solution For P_{A} follows from $v_{A}=\dot{s}_{A}=$ const $=v_{0}$ and by considering the initial condition $s_{A}(0)=0$,

$$
s_{A}=v_{0} t
$$

For P_{B} we obtain from $\dot{\omega}_{B}=\ddot{\varphi}_{B}=$ const $=\dot{\omega}_{0}$ with $\varphi_{B}(0)=0$, $\dot{\varphi}_{B}(0)=0$

$$
\varphi_{B}=\frac{1}{2} \dot{\omega}_{0} t^{2}, \quad \dot{\varphi}_{B}=\omega_{B}=\dot{\omega}_{0} t \quad \leadsto \quad s_{B}=\frac{1}{2} \dot{\omega}_{0} r t^{2}, \quad v_{B}=\dot{\omega}_{0} r t
$$

a) Because both points shall arrive at the same time t_{C} at C, it follows with the different distances $s_{A}\left(t_{C}\right)=\pi r / 2$ and $s_{B}\left(t_{C}\right)=3 \pi r / 2$

$$
\frac{1}{2} \pi r=v_{0} t_{C}, \quad \frac{3}{2} \pi r=\frac{1}{2} \dot{\omega}_{0} r t_{C}^{2} \quad \leadsto \quad t_{C}=\frac{\pi r}{2 v_{0}}, \quad \underline{\underline{\dot{\omega}_{0}=\frac{12 v_{0}^{2}}{\pi r^{2}}}}
$$

b) With the angle π between B and A and the known $\dot{\omega}_{0}$ we can calculate the time t_{A} when P_{B} arrives at A and the respective angular velocity:

$$
t_{A}^{2}=\frac{2 \pi}{\dot{\omega}_{0}}=\frac{\pi^{2} r^{2}}{6 v_{0}^{2}} \leadsto t_{A}=\frac{\pi r}{\sqrt{6} v_{0}} \quad \leadsto \quad \underline{\underline{\omega_{B}\left(t_{A}\right)}}=\dot{\omega}_{0} t_{A}=\underline{\underline{2 \sqrt{6} \frac{v_{0}}{r}}} .
$$

c) The normal accelerations at C are found by using the relation $a_{n}=$ $r \omega^{2}=v^{2} / r$:

$$
\underline{\underline{a_{n A}=\frac{v_{0}^{2}}{r}}}, \quad \underline{\underline{a_{n B}}}=\omega_{B}^{2}\left(t_{C}\right) r=\dot{\omega}_{0}^{2} t_{C}^{2} r=\underline{\underline{36 \frac{v_{0}^{2}}{r}}} .
$$

Problem 1.13 At the fixed point A a point P starts moving along a circular path with radius r. Its motion is described by the relation $s=c t^{2}$.

Determine:
a) the velocity components $v_{x}(t)$ and $v_{y}(t)$,
b) the velocity at point B,

c) the tangential acceleration $a_{t}(s)$ and the normal acceleration $a_{n}(s)$.

Solution From $s=c t^{2}$ the speed follows as

$$
v=\dot{s}=2 c t
$$

a) Because the velocity is always tangential to the path, its cartesian components at an arbitrary point are

$$
v_{x}=-v \sin \varphi, \quad v_{y}=v \cos \varphi
$$

Hence, with

$$
\varphi=\frac{s}{r}=\frac{c t^{2}}{r}
$$

we obtain

$$
\begin{array}{ll}
v_{x}=-2 c t \sin \frac{c t^{2}}{r}
\end{array}, \quad \underline{\underline{v_{y}=2 c t \cos \frac{c t^{2}}{r}} .}
$$

b) In point B we have

$$
\begin{aligned}
& s\left(t_{B}\right)=\frac{\pi r}{2}=c t_{B}^{2} \quad \leadsto \quad t_{B}=\sqrt{\frac{\pi r}{2 c}} \\
& \underline{\underline{v\left(t_{B}\right)}}=2 c t_{B}=2 c \sqrt{\frac{\pi r}{2 c}}=\underline{\underline{\sqrt{2 \pi r c}}}
\end{aligned}
$$

c) From

$$
a_{t}=\dot{v}, \quad a_{n}=\frac{v^{2}}{r}=\frac{4 c^{2} t^{2}}{r}
$$

with $\dot{v}=2 c$ and $c t^{2}=s$, follow the results

$$
\underline{\underline{a_{t}=2 c}}, \quad \underline{\underline{a_{n}=\frac{4 c s}{r}}} .
$$

Remark: While the tangential acceleration remains constant, the normal acceleration increases linearly with s.

P1.14 Problem 1.14 A point M moves along a half circle. The projection of its motion on the diameter $A B$ is an uniform motion with the speed c.

Determine

a) the speed $v(\varphi)$ and the magnitude $a(\varphi)$ of the acceleration,
b) the angle between the acceleration vector and the diameter $A B$.

Solution a) From the condition $v \sin \varphi=c$ follows

$$
\underline{\underline{v(\varphi)}=\frac{c}{\sin \varphi}} .
$$

The acceleraton components a_{t} and a_{n} are determined with $r \dot{\varphi}=v$ as

$$
\begin{aligned}
& a_{t}=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} \varphi} \dot{\varphi}=-\frac{c}{\sin ^{2} \varphi} \cos \varphi \frac{v}{r}=-\frac{c^{2}}{r} \frac{\cos \varphi}{\sin ^{3} \varphi}, \\
& a_{n}=\frac{v^{2}}{r}=\frac{c^{2}}{r \sin ^{2} \varphi} .
\end{aligned}
$$

This finally leads to

$$
\begin{aligned}
\underline{\underline{a}} & =|\boldsymbol{a}|=\sqrt{a_{t}^{2}+a_{n}^{2}}=\frac{c^{2}}{r} \sqrt{\frac{\cos ^{2} \varphi}{\sin ^{6} \varphi}+\frac{1}{\sin ^{4} \varphi}} \\
& =\frac{c^{2}}{r \sin ^{3} \varphi} \sqrt{\cos ^{2} \varphi+\sin ^{2} \varphi}=\frac{c^{2}}{\underline{r \sin ^{3} \varphi}} .
\end{aligned}
$$

b) From the figure can be seen:

$$
\begin{aligned}
\tan \psi & =\tan (\varphi-\alpha)=\frac{a_{t}}{a_{n}}=\frac{-\frac{c^{2}}{r} \frac{\cos \varphi}{\sin ^{3} \varphi}}{\frac{c^{2}}{r \sin ^{2} \varphi}} \\
& =-\cot \varphi=+\tan (\varphi-\pi / 2) \quad \leadsto \quad \alpha=\frac{\pi}{2}
\end{aligned},
$$

i.e. the acceleration vector is perpendicular to $A B$.

Remark: the latter result can also be found without any calculation: if a component of v is constant then there is no acceleration in this direction, i.e. \boldsymbol{a} is perpendicular to the direction of this component.

Problem 1.15 A bike B starts moving at A from rest along a circular path (radius r). It accelerates according to the law $a_{t}(v)=a_{0}(1-\kappa v)$ until the speed v_{C} is reached at C. Here a_{0} is the initial acceleration and κ is a constant.
a) Determine the acceleration time t_{C} and
b) the acceleration distance s_{C}.
c) Calculate the normal acceleration a_{n} at $t=t_{C} / 2$
 for $\kappa=1 /\left(2 v_{C}\right)$.

Solution a) From the given acceleration law $a_{t}(v)=\dot{v}=a_{0}(1-\kappa v)$ follows with the initial velocity $v_{0}=0$ and $t_{0}=0$ (see page 4)

$$
t(v)=\frac{1}{a_{0}} \int_{0}^{v} \frac{\mathrm{~d} \bar{v}}{1-\kappa \bar{v}}=-\frac{1}{a_{0} \kappa} \ln (1-\kappa v)
$$

The acceleration time is determined from the condition $v\left(t_{C}\right)=v_{C}$:

$$
\underline{\underline{t_{C}}}=t\left(v_{C}\right)=\xlongequal{-\frac{1}{a_{0} \kappa} \ln \left(1-\kappa v_{C}\right)}
$$

b) The inverse function of $t(v)$ is given by

$$
\mathrm{e}^{-a_{0} \kappa t}=1-\kappa v \quad \leadsto \quad v(t)=\frac{1}{\kappa}\left(1-\mathrm{e}^{-a_{0} \kappa t}\right)
$$

This leads by integration and by considering the initial condition $s_{0}=$ $s(0)=0$ to

$$
s(t)=\int_{0}^{t} v(\bar{t}) \mathrm{d} \bar{t}=\frac{1}{a_{0} \kappa^{2}}\left(a_{0} \kappa t+\mathrm{e}^{-a_{0} \kappa t}\right)
$$

and thus to the acceleration distance

$$
\underline{\underline{s_{C}}}=s\left(t_{C}\right)=\underline{\underline{\frac{1}{a_{0} \kappa^{2}}\left(-\ln \left(1-\kappa v_{C}\right)+1-\kappa v_{C}\right)}}
$$

c) The normal acceleration within the time span $0 \leq t \leq t_{a}$ is given by

$$
a_{n}=\frac{v^{2}}{r}=\frac{1}{r \kappa^{2}}\left(1-\mathrm{e}^{-a_{0} \kappa t}\right)^{2}
$$

Inserting $t=t_{C} / 2$ and $\kappa=1 / 2 v_{C}$, we obtain

$$
\underline{\underline{a_{n}}}=\frac{4 v_{C}^{2}}{r}\left(1-\left[1-\frac{v_{C}}{2 v_{C}}\right]^{1 / 2}\right)^{2}=\underline{\underline{\frac{4 v_{C}^{2}}{r}}\left(\frac{3}{2}-\sqrt{2}\right)=0.343 \frac{v_{C}^{2}}{r}} .
$$

P1.16 Problem 1.16 A point mass P is released from rest at A on a circular path in a vertical plane. Due to gravity it experiences a tangential acceleration $g \cos \varphi$.

Determine the velocity and the magnitude of acceleration in dependence on the angle φ.

Solution From the tangential acceleration

$$
a_{t}=g \cos \varphi=\dot{v}=a_{t}(\varphi)
$$

follows with $s=R \varphi$ and the initial velocity $v_{0}=0$ (see page 4)

$$
\begin{aligned}
v^{2} & =2 \int_{0}^{\varphi} g \cos \bar{\varphi} R \mathrm{~d} \bar{\varphi}=2 g R \sin \varphi \\
& \leadsto \quad \xlongequal{v=\sqrt{2 g R \sin \varphi}}
\end{aligned}
$$

Hence, the acceleration components are

$$
a_{t}=g \cos \varphi, \quad a_{n}=\frac{v^{2}}{R}=2 g \sin \varphi
$$

Therewith, the magnitude of acceleration is given by

$$
\begin{aligned}
a & =|\boldsymbol{a}|=\sqrt{a_{t}^{2}+a_{n}^{2}}=g \sqrt{\cos ^{2} \varphi+4 \sin ^{2} \varphi} \\
& \leadsto \quad a=g \sqrt{1+3 \sin ^{2} \varphi}
\end{aligned} .
$$

Remarks:

- At A the acceleration components are $a_{t}=g$ and $a_{n}=0$. (Point P has solely a tangential acceleration.)
- At B we have $a_{t}=0$ and $a_{n}=2 g$.
(Pure normal acceleration upwards directed.)
- With the height difference $h=R \sin \varphi$ the velocity can be represented by $v=\sqrt{2 g h}$.

Problem 1.17 A satellite S is moving along a circular path around the earth if its normal acceleration just equals the gravitational acceleration $g R^{2} / r^{2}$ (gravity on earth surface $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, earth radius $R=6370 \mathrm{~km}$).
a) In which distance H above earth surface a satellite is circling that has the speed of
 $25000 \mathrm{~km} / \mathrm{h}$?
b) Determine the required speed of a satellite whose orbit lies 1000 km above earth surface.
c) What time requires a satellite for 1 circle (orbital period) in a height of $H=400 \mathrm{~km}$?
d) Determine the height of a geostationary satellite.

Solution a) From the necessary normal acceleration

$$
a_{n}=v^{2} / r=g R^{2} / r^{2}
$$

follows with the given speed

$$
r=g \frac{R^{2}}{v^{2}} \quad \leadsto \quad \underline{\underline{H}}=r-R=R\left(g \frac{R}{v^{2}}-1\right)=\underline{\underline{1884 \mathrm{~km}}} .
$$

b) From the same equation with a given distance yields

$$
\underline{\underline{v}}=R \sqrt{\frac{g}{r}}=R \sqrt{\frac{g}{R+H}}=\underline{\underline{26457 \mathrm{~km} / \mathrm{h}}} .
$$

c) With the given speed $v=R \sqrt{g / r}$ and the arc length $L=2 \pi r$ of the orbit, the orbital period is obtained:

$$
\underline{\underline{T}}=\frac{L}{v}=2 \pi \frac{r^{3 / 2}}{R \sqrt{g}}=5547 \mathrm{~s}=\underline{\underline{1.54 \mathrm{~h}}} .
$$

d) A geostationary satellite has the same angular velocity as the earth:

$$
\omega_{E}=2 \pi /(24 \mathrm{~h})
$$

Thus, we have

$$
a_{n}=r \omega_{E}^{2}=g\left(\frac{R}{r}\right)^{2} \quad \leadsto \quad r=\left(g \frac{R^{2}}{\omega_{E}^{2}}\right)^{1 / 3}
$$

or numerically evaluted

$$
\begin{aligned}
r & =\left(9.81 \cdot 10^{-3} \cdot(3600)^{2} \frac{(6370)^{2}}{(2 \pi)^{2}} 24^{2}\right)^{1 / 3}=4.22 \cdot 10^{4} \mathrm{~km} \\
& \leadsto \underline{\underline{H}}=r-R \approx \underline{\underline{36000 \mathrm{~km}}}
\end{aligned}
$$

P1.18 Problem 1.18 A point is moving with constant speed v_{0} in a plane along the given path $r(\varphi)=b \mathrm{e}^{\varphi}$ (logarithmic spiral). For $t=0$ the angle is $\varphi=0$.

Determine the angular velocity $\dot{\varphi}$ in dependence on φ and t as well as the radial velocity \dot{r}.

Solution In polar coordinates the speed is represented by

$$
v=\sqrt{\dot{r}^{2}+r^{2} \dot{\varphi}^{2}}
$$

Introducing $v=v_{0}$ and

$$
\dot{r}=\frac{\mathrm{d} r}{\mathrm{~d} \varphi} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=\dot{\varphi} \frac{\mathrm{d} r}{\mathrm{~d} \varphi}=\dot{\varphi} b \mathrm{e}^{\varphi}
$$

we obtain

$$
v_{0}=\sqrt{\dot{\varphi}^{2} b^{2} \mathrm{e}^{2 \varphi}+b^{2} \mathrm{e}^{2 \varphi} \dot{\varphi}^{2}}=\sqrt{2} b \mathrm{e}^{\varphi} \dot{\varphi}
$$

Solving for $\dot{\varphi}$ yields

$$
\underline{\underline{\varphi}=\frac{v_{0}}{\sqrt{2} b} \mathrm{e}^{-\varphi}}
$$

and thus

$$
\dot{\underline{r}}=\dot{\varphi} b \mathrm{e}^{\varphi}=\underline{\underline{v_{0} / \sqrt{2}}=\mathrm{const}} .
$$

To determine the dependence on time we find from

$$
\dot{\varphi}=\frac{\mathrm{d} \varphi}{\mathrm{~d} t}=\frac{v_{0}}{\sqrt{2} b} \mathrm{e}^{-\varphi}
$$

by separation of variables

$$
\mathrm{e}^{\varphi} \mathrm{d} \varphi=\frac{v_{0}}{\sqrt{2} b} \mathrm{~d} t
$$

and integration, taking into account the initial condition $\varphi(t=0)=0$,

$$
\mathrm{e}^{\varphi}-1=\frac{v_{0}}{\sqrt{2} b} t \quad \leadsto \quad \mathrm{e}^{\varphi}=1+\frac{v_{0}}{\sqrt{2} b} t
$$

Introduction into $\dot{\varphi}(\varphi)$ finally yields

$$
\dot{\dot{\varphi}=\frac{v_{0}}{\sqrt{2} b} \frac{1}{1+\frac{v_{0}}{\sqrt{2} b} t}} .
$$

Problem 1.19 A bar rotates about A according to the law $\varphi=\kappa t$. Along the bar a knuckle K slides with prescibed speed $\dot{r}=v_{0}-a t$ and initial conditions $r(0)=0$, $\varphi(0)=0$.
a) Calculate κ and a such that $r_{\max }=l$ is reached at $\varphi^{*}=2 \pi$.
b) Determine the path $r(\varphi)$ of K and
c) the magnitude of velocity and acceleration
 at $\varphi^{* *}=\pi$.

Solution From the given functions and initial conditions we first determine the components of position, velocity and acceleration in polar coordinates:

$$
\begin{array}{lll}
\dot{r}=v_{0}-a t & \sim & r=v_{0} t-a t^{2} / 2, \\
\varphi=\kappa t & \sim \quad \dot{\varphi}=\kappa, & \ddot{\varphi}=0
\end{array}
$$

a) $r_{\max }$ is reached when $\dot{r}=0$, i.e. at time $t^{*}=v_{0} / a$. Thus, the prescribed conditions lead to

$$
\begin{array}{llll}
r\left(t^{*}\right)=l & \leadsto & \frac{v_{0}^{2}}{a}-\frac{v_{0}^{2}}{2 a}=l & \leadsto \\
a=\frac{v_{0}^{2}}{2 l}
\end{array}, . \begin{array}{|cc|}
\overline{\kappa=\pi \frac{v_{0}}{l}}
\end{array} .
$$

b) By eliminating t from $r(t)$ and introducing a and κ we find

$$
\underline{\underline{r(\varphi)}}=v_{0} \frac{\varphi}{\kappa}-a \frac{\varphi^{2}}{2 \kappa^{2}}=\underline{\left.\underline{l\left(\frac{\varphi}{\pi}\right.}-\frac{\varphi^{2}}{4 \pi^{2}}\right)} .
$$

c) The magnitude of velocity and acceleration is obtained from the respective components at $\varphi=\varphi^{* *}=\pi$, i.e. at time $t^{* *}=\pi / \kappa=l / v_{0}$:

$$
\begin{aligned}
v_{r} & =\dot{r}=v_{0}-\frac{v_{0}^{2}}{2 l} \frac{l}{v_{0}}=\frac{v_{0}}{2}, \quad v_{\varphi}=r \dot{\varphi}=\left(v_{0} \frac{l}{v_{0}}-\frac{1}{2} \frac{v_{0}^{2}}{2 l} \frac{l^{2}}{v_{0}^{2}}\right) \pi \frac{v_{0}}{l}=\frac{3 \pi}{4} v_{0}, \\
\underline{\underline{v}} & =\sqrt{v_{r}^{2}+v_{\varphi}^{2}}=\underline{\underline{\sqrt{1 / 4+9 \pi^{2} / 16} v_{0}=2.41 v_{0}}} \\
a_{r} & =\ddot{r}-r \dot{\varphi}^{2}=-\frac{v_{0}^{2}}{2 l}-\frac{3 l}{4} \pi^{2} \frac{v_{0}^{2}}{l^{2}}=-\frac{v_{0}}{l}\left(\frac{1}{2}+\frac{3}{4} \pi^{2}\right)=-7.90 \frac{v_{0}^{2}}{l}, \\
a_{\varphi} & =r \ddot{\varphi}+2 \dot{r} \dot{\varphi}=2 \frac{v_{0}}{2} \pi \frac{v_{0}}{l}=\pi \frac{v_{0}^{2}}{l}, \\
\underline{\underline{a}} & =\sqrt{a_{r}^{2}+a_{\varphi}^{2}}=\underline{\underline{7.90^{2}+\pi^{2}} v_{0}^{2} / l=8.50 v_{0}^{2} / l} .
\end{aligned}
$$

P1.20 Problem 1.20 From the planar motion of a point we know the radial velocity $v_{r}=c_{0}=$ const and the radial acceleration $a_{r}=-a_{0}=$ const.

Determine for the initial conditions $r(t=0)=0$ and $\varphi(t=0)=0$:
a) the angular velocity $\omega(t)$,
b) the path (trajectory) $r(\varphi)$,
c) the circular acceleration $a_{\varphi}(t)$.

Solution a) From $v_{r}=\dot{r}=c_{0}$ follows with $r(t=0)=0$

$$
\ddot{r}=0 \quad \text { and } \quad r=c_{0} t
$$

Therewith, from $a_{r}=\ddot{r}-r \omega^{2}$ we obtain

$$
-a_{0}=-c_{0} t \omega^{2} \quad \leadsto \quad \underline{\bar{\omega}=\sqrt{\frac{a_{0}}{c_{0} t}}} .
$$

b) By integrating $\omega=\dot{\varphi}$ we find with $\varphi(t=0)=0$

$$
\varphi=\int_{0}^{t} \omega \mathrm{~d} \bar{t}=\sqrt{\frac{a_{0}}{c_{0}}} \int_{0}^{t} \frac{\mathrm{~d} \bar{t}}{\sqrt{\bar{t}}}=\sqrt{\frac{a_{0}}{c_{0}}} 2 \sqrt{t} \quad \leadsto \quad t=\frac{\varphi^{2}}{4} \frac{c_{0}}{a_{0}}
$$

Introduction into $r=c_{0} t$ yields the equation for the path trajectory

$$
r(\varphi)=\frac{c_{0}^{2}}{4 a_{0}} \varphi^{2} .
$$

c) The circular acceleration can be determined from

$$
a_{\varphi}=r \ddot{\varphi}+2 \dot{r} \dot{\varphi}
$$

with

$$
\dot{\varphi}=\omega=\sqrt{\frac{a_{0}}{c_{0} t}} \quad \text { and } \quad \ddot{\varphi}=-\frac{1}{2} \sqrt{\frac{a_{0}}{c_{0} t^{3}}}
$$

as

$$
\underline{\underline{a_{\varphi}}}=c_{0} t\left(-\frac{1}{2} \sqrt{\frac{a_{0}}{c_{0} t^{3}}}\right)+2 c_{0} \sqrt{\frac{a_{0}}{c_{0} t}}=\underline{\underline{\frac{3}{2} \sqrt{\frac{a_{0} c_{0}}{t}}} .}
$$

Remark: The circular velocity is given by $v_{\varphi}=r \omega=\sqrt{a_{0} c_{0} t}=c_{0} \varphi / 2$.

Problem 1.21 An obeserver watches the flight of an low flyer P, flying with constant speed v_{0} in a flight altitude h.

Calcuate the angular acceleration $\ddot{\varphi}(\varphi)$ of his head and the radial acceleration \ddot{r}. Sketch both diagrams.

Solution The position of P is given by

$$
s=h \tan \varphi \quad \leadsto \quad \varphi=\arctan \frac{s}{h} \quad r=\sqrt{h^{2}+s^{2}} .
$$

Differentiation, considering $\dot{s}=v=v_{0}=$ const and $\ddot{s}=0$, leads to

$$
\begin{aligned}
& \dot{\varphi}=\frac{1}{1+\left(\frac{s}{h}\right)^{2}} \frac{\dot{s}}{h}=\frac{v_{0} h}{h^{2}+s^{2}}=\frac{v_{0}}{h\left(1+\tan ^{2} \varphi\right)}=\frac{v_{0}}{h} \cos ^{2} \varphi \\
& \ddot{\underline{\varphi}}=\frac{v_{0}}{h} 2 \cos \varphi(-\sin \varphi) \dot{\varphi}=-2\left(\frac{v_{0}}{h}\right)^{2} \sin \varphi \cos ^{3} \varphi \\
& \dot{r}=\frac{2 s \dot{s}}{1 \sqrt{h^{2}+s^{2}}}=\frac{v_{0} \tan \varphi}{\sqrt{1+\tan ^{2} \varphi}}=v_{0} \sin \varphi, \\
& \ddot{\underline{r}}=v_{0} \cos \varphi \dot{\varphi}=\underline{\underline{v_{0}^{2}} \cos ^{3} \varphi} .
\end{aligned}
$$

Remark: The maximum angular acceleration occurs at $\varphi= \pm 30^{\circ}$; its magnitude is $\left|\ddot{\varphi}_{\max }\right|=\frac{3}{8} \sqrt{3}\left(\frac{v_{0}}{h}\right)^{2}$. The maximum radial acceleration occurs at $\varphi=0$. Note: the total acceleration of P is zero!

P1.22 Problem 1.22 A fox F and a rabbit R spot each other and start running at the same time. The rabbit runs with constant speed v_{R} straight to the save warren W, and the fox, to catch the rabbit, with constant speed v_{F} along the curve $r=4 \sqrt{2} a \varphi / \pi$.

Determine the necessary speed v_{R} of the rabbit such that it will not be caught by the
 fox and at what time t_{R} it should arrive at W ?
Hint: $\int \sqrt{1+x^{2}} \mathrm{~d} x=\frac{1}{2}\left[x \sqrt{1+x^{2}}+\ln \left(x+\sqrt{1+x^{2}}\right)\right]$

Solution We first determine the time t_{F} the fox needs to reach W. From the path $r(\varphi)$ follow the velocity components

$$
v_{r}=\dot{r}=\frac{\mathrm{d} r}{\mathrm{~d} \varphi} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=\frac{4 \sqrt{2} a}{\pi} \dot{\varphi}, \quad \quad v_{\varphi}=r \dot{\varphi}=\frac{4 \sqrt{2} a}{\pi} \varphi \dot{\varphi}
$$

Since v_{F} is constant, we obtain

$$
v_{F}=\sqrt{v_{r}^{2}+v_{\varphi}^{2}}=\frac{4 \sqrt{2} a}{\pi} \dot{\varphi} \sqrt{1+\varphi^{2}}=\frac{4 \sqrt{2} a}{\pi} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t} \sqrt{1+\varphi^{2}} .
$$

Now we separate the variables, integrate over the whole path from start $(t=0, \varphi=0)$ until $W\left(t=t_{F}, \varphi=\pi / 4\right)$ and find in this way:

$$
\begin{aligned}
& v_{F} \int_{0}^{t_{F}} \mathrm{~d} \bar{t}=\frac{4 \sqrt{2} a}{\pi} \int_{0}^{\pi / 4} \sqrt{1+\bar{\varphi}^{2}} \mathrm{~d} \bar{\varphi} \leadsto \\
& v_{F} t_{F}=\frac{4 \sqrt{2} a}{2 \pi}\left[\frac{\pi}{4} \sqrt{1+\frac{\pi^{2}}{16}}+\ln \left(\frac{\pi}{4}+\sqrt{1+\frac{\pi^{2}}{16}}\right)\right]=1.548 a \\
& t_{F}=1.548 \frac{a}{v_{F}}
\end{aligned}
$$

The time t_{R} the rabbit needs to arrive at W is calculated from its speed and the distance: $t_{R}=a / v_{R}$. To be not caught by the fox, the rabbit must be earlier at W than the fox, i.e. $t_{R}<t_{F}$. This condition leads to

$$
\begin{aligned}
& \underline{\underline{v_{R}}}>\frac{1}{1.548} v_{F}=\underline{\underline{0.646 v_{F}}} \\
& t_{R}<1.548 \frac{a}{v_{F}}
\end{aligned} .
$$

Problem 1.23 The point A moves in a plane with constant speed v_{0} along the x-axis. In constant distance a the point A is followed by a point B, moving such that its velocity vector always points to A. At time $t=0$ point A is located at the origin of the coordinate system and B is on the y-axis.

a) Determine the path of B and
b) the speed $v_{B}\left(x_{A}\right)$?

Hint:

$$
\int \frac{\mathrm{d} \alpha}{\sin \alpha}=\ln \left(\tan \frac{\alpha}{2}\right), \quad \sin \alpha=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}, \quad \cos \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} .
$$

Solution a) With the known motion of point A

$$
\dot{x}_{A}=v_{0}, \quad x_{A}=v_{0} t
$$

and by using the angle $\varphi(t)$ it firstly follow the position coordinates and the velocity components of B :

$$
\begin{aligned}
x_{B} & =x_{A}-a \cos \varphi \quad y_{B}=a \sin \varphi \\
& =v_{0} t-a \cos \varphi, \\
\dot{x}_{B} & =v_{0}+a \dot{\varphi} \sin \varphi, \quad \dot{y}_{B}=a \dot{\varphi} \cos \varphi
\end{aligned}
$$

The condition that the velocity vector of B always points to A is expressed by

$$
\frac{-\dot{y}_{B}}{\dot{x}_{B}}=\frac{y_{B}}{x_{A}-x_{B}} \quad \leadsto \quad \frac{-a \dot{\varphi} \cos \varphi}{v_{0}+a \dot{\varphi} \sin \varphi}=\frac{a \sin \varphi}{a \cos \varphi} .
$$

Solving for $\dot{\varphi}$ yields step by step

$$
a \dot{\varphi}\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right)=-v_{0} \sin \varphi \leadsto \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=-\frac{v_{0}}{a} \sin \varphi
$$

Separation of variables and integration lead for $\pi / 2 \geq \varphi \geq 0$ to (see hint)

$$
\int \frac{\mathrm{d} \varphi}{\sin \varphi}=-\frac{v_{0}}{a} \int \mathrm{~d} t \quad \leadsto \ln \left(\tan \frac{\varphi}{2}\right)=-\frac{v_{0}}{a} t+C
$$

The integration constant C is determined from the initial condition:

$$
\varphi(0)=\frac{\pi}{2}: \quad \ln 1=0+C \quad \leadsto \quad C=0 .
$$

Therewith, we obtain the dependence of the angle φ on time t and on position x_{A}, respectively (remind: $x_{A}=v_{0} t$):

$$
\tan \frac{\varphi}{2}=\mathrm{e}^{-v_{0} t / a} \quad \text { or } \quad \underline{\underline{\tan \frac{\varphi}{2}}=\mathrm{e}^{-x_{A} / a}} .
$$

By the latter equation, the path of B is uniquely described through x_{A} and the accompanied angle φ.

The parameter representation of the path in cartesian coordinates is obtained by using the formulas of the hint:

$$
\begin{aligned}
& \underline{\underline{x_{B}}=} x_{A}-a \cos \varphi=x_{A}-a \frac{1-\tan ^{2} \frac{\varphi}{2}}{1+\tan ^{2} \frac{\varphi}{2}}=x_{A}-a \frac{1-\mathrm{e}^{-2 x_{A} / a}}{1+\mathrm{e}^{-2 x_{A} / a}} \\
& \underline{\underline{y_{B}}=} a \sin \varphi=a \frac{2 \tan ^{2} \frac{\varphi}{2}}{1+\tan ^{2} \frac{\varphi}{2}}=a \underline{\underline{\frac{2 \mathrm{e}^{-2 x_{A} / a}}{1+\mathrm{e}^{-2 x_{A} / a}}}}
\end{aligned}
$$

b) For the velocity we first have with $\dot{\varphi}=-\frac{v_{0}}{a} \sin \varphi$

$$
\begin{aligned}
v_{B}^{2} & =\dot{x}_{B}^{2}+\dot{y}_{B}^{2}=v_{0}^{2}+2 v_{0} a \dot{\varphi} \sin \varphi+a^{2} \dot{\varphi}^{2} \sin ^{2} \varphi+a^{2} \dot{\varphi}^{2} \cos ^{2} \varphi \\
& =v_{0}^{2}+2 v_{0} a \dot{\varphi} \sin \varphi+a^{2} \dot{\varphi}^{2}=v_{0}^{2}-2 v_{0}^{2} \sin ^{2} \varphi+v_{0}^{2} \sin ^{2} \varphi \\
& =v_{0}^{2}\left(1-\sin ^{2} \varphi\right)=v_{0}^{2} \cos ^{2} \varphi \\
& \leadsto \quad v_{B}=v_{0} \cos \varphi
\end{aligned}
$$

Introducing the result of a) we finally obtain

$$
\underline{\underline{v_{B}\left(x_{A}\right)}}=v_{0} \frac{1-\tan ^{2} \frac{\varphi}{2}}{1+\tan ^{2} \frac{\varphi}{2}}=\underline{v_{0} \frac{1-\mathrm{e}^{-2 x_{A} / a}}{1+\mathrm{e}^{-2 x_{A} / a}}} .
$$

Remarks:

- For the limit case $x_{A} / a \rightarrow \infty$ we obtain $\varphi \rightarrow 0, y_{B} \rightarrow 0$ and $x_{B} \rightarrow x_{A}-a$. The velocity of B then is given by $v_{B} \rightarrow v_{0}$.
- The representation with the angle φ is shorter and more practical than that by cartesian coordinates.
- The results can also be represented by using hyperbolic functions. For example, recasting leads to $v_{B}\left(x_{A}\right)=v_{0} \tanh x_{A} / a$.

Chapter 2
Kinetics of a Point Mass

NEWTON's 2nd Law (law of motion): The motion of a point mass under the action of forces is described by

$$
\frac{\mathrm{d}(m \boldsymbol{v})}{\mathrm{d} t}=\dot{\boldsymbol{p}}=\boldsymbol{F}
$$

with $\boldsymbol{F}=\sum \boldsymbol{F}_{i}$ and the momentum

$$
\boldsymbol{p}=m \boldsymbol{v}
$$

Since the mass is constant, Newton's law can also be expressed as

$$
m \boldsymbol{a}=\boldsymbol{F} \quad \text { mass } \times \text { acceleration }=\text { force }
$$

As an example, this leads for cartesian coordinates to

$$
m a_{x}=\sum F_{x}, \quad m a_{y}=\sum F_{y}, \quad m a_{z}=\sum F_{z}
$$

Remarks:

- Newton's law is valid in this form only in an inertial reference frame ($=$ reference system that is absolutely at rest or in uniform, rectilinear motion, see also chapter 8),
- Bodies with finite dimensions can be regarded as point masses if their dimensions have no influence on the motion.

Impulse Law: Time integration of the law of motion leads to

$$
m \boldsymbol{v}-m \boldsymbol{v}_{0}=\int_{t_{0}}^{t} \boldsymbol{F} \mathrm{~d} \bar{t} \quad \text { bzw. } \quad \boldsymbol{p}-\boldsymbol{p}_{0}=\widehat{\boldsymbol{F}}
$$

where $\widehat{\boldsymbol{F}}=\int_{t_{0}}^{t} \boldsymbol{F} \mathrm{~d} \bar{t}$ is the linear impulse. When no forces are acting $(\boldsymbol{F}=0)$, the linear momentum is conserved:

$$
\boldsymbol{p}=m \boldsymbol{v}=\text { const }
$$

Angular Momentum Theorem: The vector product of Newton's law with the position vector \boldsymbol{r} yields

$$
\frac{\mathrm{d} \boldsymbol{L}^{(0)}}{\mathrm{d} t}=\boldsymbol{M}^{(0)}
$$

where
$\boldsymbol{L}^{(0)}=\boldsymbol{r} \times \boldsymbol{p}=$ angular momentum with respect to the fixed point 0, $\boldsymbol{M}^{(0)}=\boldsymbol{r} \times \boldsymbol{F}=$ moment with respect to the fixed point 0.

If the moment vanishes $\left(\boldsymbol{M}^{(0)}=0\right)$, the angular momentum is conserved:

$$
\boldsymbol{L}^{(0)}=\boldsymbol{r} \times m \boldsymbol{v}=\mathrm{const}
$$

In this case, with

$$
\mathrm{d} \boldsymbol{A}=\frac{1}{2} \boldsymbol{r} \times \mathrm{d} \boldsymbol{r} \quad \leadsto \quad \frac{\mathrm{~d} \boldsymbol{A}}{\mathrm{~d} t}=\frac{1}{2} \boldsymbol{r} \times \boldsymbol{v}
$$

the law of areas (Kepler's 2nd law) is obtained (see page 4):

$$
\dot{A}=\text { const } .
$$

Work-Energy Theorem: Path integration of the law of motion yields

$$
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=\int_{\boldsymbol{r}_{0}}^{\boldsymbol{r}_{1}} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r} \quad \text { or } \quad T_{1}-T_{0}=U
$$

Kinetic Energy : $\quad T=\frac{1}{2} m v^{2}$,
Work of Force $\boldsymbol{F}: \quad U=\int \mathrm{d} U=\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{r}$,

$$
\mathrm{d} U=\boldsymbol{F} \cdot \mathrm{d} \boldsymbol{r}=|\boldsymbol{F}||\mathrm{d} \boldsymbol{r}| \cos \alpha
$$

Remarks: - Forces orthogonal to the path ($\alpha=\pi / 2$), do not execute work.

- For a rotation holds $\mathrm{d} U=\boldsymbol{M} \cdot \mathrm{d} \boldsymbol{\varphi}$.

Conservation-of-Energy Law: If the forces according to

$$
\boldsymbol{F}=-\operatorname{grad} V=-\left(\frac{\partial V}{\partial x} \boldsymbol{e}_{x}+\frac{\partial V}{\partial y} \boldsymbol{e}_{y}+\frac{\partial V}{\partial z} \boldsymbol{e}_{z}\right)
$$

can be derived from a potential V ($\widehat{=}$ conservative forces), the work is path independent, i.e. given by the potential difference:

$$
U=\int_{\boldsymbol{r}_{0}}^{\boldsymbol{r}_{1}} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}=V_{0}-V_{1}
$$

From the Work-Energy Theorem then follows

$$
T_{1}+V_{1}=T_{0}+V_{0}=\text { const }
$$

In words: When the applied forces possess a potential, then the sum of potential energy V and kinetic energy T remains constant during the motion.

Several Potentials

Gravitational Potential $\quad V=m g z$
(near earth's surface)

$\begin{aligned} & \text { Gravitational Potential } \\ & \text { (general) }\end{aligned} \quad V=-G \frac{M m}{r} \quad \wp^{M}$
Gravitational constant $\quad G=6,673 \cdot 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2}$
Potential of a spring $\quad V=\frac{1}{2} k x^{2}$

Power

$$
\begin{aligned}
& P=\frac{\mathrm{d} U}{\mathrm{~d} t}=\boldsymbol{F} \cdot \boldsymbol{v} \quad=\text { Power of a force } \\
& P=\boldsymbol{M} \cdot \frac{\mathrm{d} \boldsymbol{\varphi}}{\mathrm{~d} t}=\boldsymbol{M} \cdot \boldsymbol{\omega}=\text { Power of a moment. }
\end{aligned}
$$

Projectile Motion

Parabolic trajectory of motion:

$$
z=z_{0}-\frac{g}{2}\left(\frac{x-x_{0}}{v_{0} \cos \alpha}\right)^{2}+\left(x-x_{0}\right) \tan \alpha
$$

Maximum height:

$$
h=\frac{1}{2 g}\left(v_{0} \sin \alpha\right)^{2},
$$

Flight time:

$$
t_{d}=\frac{v_{0} \sin \alpha}{g}\left[1+\sqrt{1+\frac{2 g z_{0}}{v_{0}^{2} \sin ^{2} \alpha}}\right]
$$

Flight distance:

$$
d=v_{0}^{2} \frac{\sin \alpha \cos \alpha}{g}\left[1+\sqrt{1+\frac{2 g z_{0}}{v_{0}^{2} \sin ^{2} \alpha}}\right] .
$$

Special case $z_{0}=0$:

$$
t_{d}=\frac{2}{g} v_{0} \sin \alpha, \quad d=\frac{1}{g} v_{0}^{2} \sin 2 \alpha .
$$

Problem 2.1 A box of weight W is pushed downwards a rough inclined plane (kinetic friction coefficient μ) with an initial velocity v_{0}.
a) Determine the velocity in dependence on the distance.
b) At what distance x_{E} the box comes to rest?

Under what circumstances is this possible?
Solution a) The law of motion yields in x - and in y-direction

$$
\begin{array}{rlrl}
\searrow: & & m \ddot{x}=G \sin \alpha-R \\
\nearrow: & & 0 & =N-G \cos \alpha
\end{array}
$$

In conjunction with the friction law $R=\mu N$, the acceleration follows as

$$
\ddot{x}=g(\sin \alpha-\mu \cos \alpha)=a_{0}
$$

Twice integration, taking into account the initial conditions $x(0)=0$, $v(0)=v_{0}$, leads to:

$$
v(t)=\dot{x}=v_{0}+a_{0} t, \quad x(t)=v_{0} t+\frac{1}{2} a_{0} t^{2}
$$

Therewith, by eleminating the time, we obtain

$$
\begin{aligned}
t & =\frac{v-v_{0}}{a_{0}} \leadsto x=v_{0} \frac{v-v_{0}}{a_{0}}+\frac{a_{0}}{2} \frac{v^{2}-2 v v_{0}+v_{0}^{2}}{a_{0}^{2}}=\frac{v^{2}-v_{0}^{2}}{2 a_{0}} \\
& \leadsto v(x)=\sqrt{v_{0}^{2}+2 a_{0} x}
\end{aligned}
$$

b) From the condition $v\left(x_{E}\right)=0$ (rest), the covered distance x_{E} is determined:

$$
0=v_{0}^{2}+2 a_{0} x_{E} \quad \leadsto \quad \underline{\underline{x_{E}=-\frac{v_{0}^{2}}{2 a_{0}}}}
$$

From the condition $x_{E}>0$ follows $a_{0}<0$, i.e. $\mu>\tan \alpha$.
The same results can be found easier by applying the work-energy theorem $T_{1}-T_{0}=U$. It leads with

$$
U=(m g \sin \alpha) x-R x, \quad T_{0}=\frac{1}{2} m v_{0}^{2}, \quad T_{1}=\frac{1}{2} m v^{2}, \quad R=\mu m g \cos \alpha
$$

and by solving for v directly to

$$
\underline{v(x)=\sqrt{v_{0}^{2}+2 g(\sin \alpha-\mu \cos \alpha) x}}
$$

P2.2 Problem 2.2 Two cars, one with and one without ABS, are stopping from the speed $v_{0}=100 \mathrm{~km} / \mathrm{h}$ by full breaking. The first without ABS by blocking the wheels, i.e. sliding ('kinetic friction'), the second with ABS with still rolling wheels (ideal 'limiting static friction' assumed).

Determine for both cars the time t_{B} and the distance s_{B} for stopping if the coefficients of static and kinetic friction between pavement and tire are $\mu_{0}=0.7$ and $\mu=0.45$, respectively.

Solution From the equation of motion of the first car (sliding)

$$
\rightarrow: \quad m \dot{v}=m \ddot{s}=-R, \quad \uparrow: \quad 0=N-m g
$$

and the friction law

$$
R=\mu N
$$

it follows

$$
\dot{v}=-\mu g .
$$

Integration yields with $v(t=0)=v_{0}$ and $s(t=0)=0$

$$
v(t)=v_{0}-\mu g t, \quad s(t)=v_{0} t-\frac{1}{2} \mu g t^{2}
$$

The stopping time and distance are calculated from the condition $v=0$:

$$
t_{B}=\frac{v_{0}}{\mu g}, \quad s_{B}=s\left(t_{B}\right)=\frac{v_{0}^{2}}{\mu g}-\frac{v_{0}^{2}}{2 \mu g}=\frac{v_{0}^{2}}{2 \mu g}
$$

With the given coefficient of kinetic friction, we obtain

$$
\underline{\underline{t_{B}}}=\frac{100}{3.6 \cdot 0.45 \cdot 9.81}=\underline{\underline{6.3 \mathrm{~s}}}, \quad \underline{\underline{s_{B}}}=\frac{100^{2}}{3.6^{2} \cdot 2 \cdot 0.45 \cdot 9.81}=\underline{\underline{87 \mathrm{~m}}}
$$

For the second car the wheels are still rolling under the limit condition of static friction (ABS), i.e. the friction force is now given by

$$
H=H_{0}=\mu_{0} N
$$

This means that in the calculation above only R must replaced by H_{0} and μ by μ_{0}, respectively. Thus, for the car with ABS, we obtain

$$
\underline{\underline{t_{B}}}=6.3 \cdot \frac{0.45}{0.7}=\underline{\underline{4.05 \mathrm{~s}}}, \quad \underline{\underline{s_{B}}}=87 \cdot \frac{0.45}{0.7}=\underline{\underline{56 \mathrm{~m}}} .
$$

Remark: Note that stopping time and distance are inverse proportional to the friction coefficient. Note also that, because of the neglected reaction time, the numbers for t_{B} and s_{B} in reality might be higher!

Problem 2.3 A parachutist (weight W including parachute) has the initial velocity v_{0} imediately after the parachute opens.
a) Determine the velocity v in dependence on t if the air drag is assumed to obey the law $F_{d}=k v^{2}$.
b) What limit speed v_{l} reaches the parachutist?

Solution The law of motion yields

$$
\downarrow: \quad m a=m \ddot{x}=m g-k v^{2}
$$

or

$$
\ddot{x}=\frac{\mathrm{d} v}{\mathrm{~d} t}=g-k_{1} v^{2} \quad \text { with } \quad k_{1}=\frac{k}{m} .
$$

a) Separation of variables and integration leads to

$$
\int_{v_{0}}^{v} \frac{\mathrm{~d} \bar{v}}{g-k_{1} \bar{v}^{2}}=\int_{0}^{t} \mathrm{~d} \bar{t}
$$

where the time t is counted from the opening of the parachute. With the basic integral

$$
\int \frac{\mathrm{d} z}{A-B z^{2}}=\frac{1}{\sqrt{A B}} \operatorname{artanh}(\sqrt{B / A} z)
$$

we obtain

$$
\left[\frac{1}{\sqrt{g k_{1}}} \operatorname{artanh} \sqrt{k_{1} / g} \bar{v}\right]_{v_{0}}^{v}=t
$$

or by solving for $v(t)$

$$
v(t)=\sqrt{\frac{g}{k_{1}}} \tanh \left(\sqrt{g k_{1}} t+\operatorname{artanh} \sqrt{\frac{k_{1}}{g}} v_{0}\right) .
$$

b) For $t \rightarrow \infty$, it follows $(\tanh z \rightarrow 1$ for $z \rightarrow \infty)$

$$
\underline{\underline{v_{l}}}=\sqrt{\frac{g}{k_{1}}}=\underline{\underline{\sqrt{\frac{W}{k}}}}
$$

The same result can be found from the consideration that in the limit case, the acceleration is zero:

$$
a=g-k_{1} v_{l}^{2}=0 \quad \leadsto \quad \underline{\underline{v_{l}}}=\sqrt{\frac{g}{k_{1}}}=\underline{\underline{\sqrt{\frac{W}{k}}}} .
$$

P2.4 Problem 2.4 A computer (weight $W=100$ N) in a packing case is protected against impact by foam plastics (spring stiffness $k=100 \mathrm{~N} / \mathrm{cm})$.

From what height h the case may impinge a hard surface, if the acceleration of the computer shall not be bigger than four times
 the gravity?

Solution During free fall, the case experiences the acceleration g. After impinging the surface, the foam plastics ($\widehat{=}$ linear spring) will be compressed and the computer will be accelerated upwards. Then the motion is described by

$$
\uparrow: m a=-m g+k \delta .
$$

From the condition $a_{\max }=4 g$ follows the
 maximum spring compression

$$
\delta_{\max }=\frac{5 m g}{k}=5 \mathrm{~cm}
$$

Knowing this limit compression, the allowable height of fall can be determined from the conservation of energy law

$$
T_{1}+V_{1}=T_{2}+V_{2}
$$

as follows:
state 1

state 2

$$
T_{1}=0, \quad V_{1}=m g(l+h), \quad T_{2}=0, \quad V_{2}=m g\left(l-\delta_{\max }\right)+\frac{1}{2} k \delta_{\max }^{2}
$$

Introducing these quantities yields

$$
\underline{\underline{h}}=\frac{1}{2} \frac{k}{m g} \delta_{\max }^{2}-\delta_{\max }=\frac{15}{2} \frac{m g}{k}=\underline{\underline{7.5 \mathrm{~cm}}} .
$$

Problem 2.5 On a rough inclined plane (inclination angle α, kinetic friction constant μ), a block (mass m_{1}) is moving which is connected by a rope with a body of mass m_{2}. Pulley and rope are regarded as massless.
a) Determine the accelerations when m_{1} slides upwards and downwards, respectively.

b) What force acts in the rope?

Solution a) We cut the rope and formulate for the 3 parts the basic equations, where we first assume upward sliding:

With the kinematic condition (unextensible rope) $v_{1}=v_{2}$ and consequently $a_{1}=a_{2}=a$, we obtain

$$
\xlongequal{a^{(u)}=a=g \frac{m_{2}-m_{1}(\sin \alpha+\mu \cos \alpha)}{m_{1}+m_{2}}} .
$$

For upward sliding, the acceleration must be positive, $a>0$, and therefore $m_{2}>m_{1}(\sin \alpha+\mu \cos \alpha)$!

For downward sliding, only the direction of R must be changed. Then it follows

$$
\underline{a^{(d)}=a=-g \frac{m_{1}(\sin \alpha-\mu \cos \alpha)-m_{2}}{m_{1}+m_{2}}} .
$$

This case occurs for $a<0$, i.e. for $m_{1}(\sin \alpha-\mu \cos \alpha)>m_{2}$.
b) Independent on the sliding direction, the force in the rope is

$$
S=S_{2}=S_{1}=W_{2}-m_{2} a_{2}=m_{2}(g-a)
$$

Introducing the respective accelerations yields

$$
\xlongequal{S^{(u)}=\frac{m_{1} m_{2} g(1+\sin \alpha+\mu \cos \alpha)}{m_{1}+m_{2}},} \quad \xlongequal{S^{(d)}=\frac{m_{1} m_{2} g(1+\sin \alpha-\mu \cos \alpha)}{m_{1}+m_{2}} .}
$$

P2.6 Problem 2.6 A chain (mass m, length l) lying on an inclined frictionless support starts sliding from the sketched position.
a) Determine the position and velocity as func-
 tions of time.
b) Determine the velocity as function of the position by applying the conservation-of-energy law.

Solution a) Each chain link experiences the same velocity and acceleration. We therefore consider the chain as a single body of mass m which is driven by a force which depends on the length x of the overhanging part. Thus, the equation of motion reads

$$
m \ddot{x}=m \frac{x}{l} g \sin \alpha \quad \leadsto \quad \ddot{x}-\kappa^{2} x=0 .
$$

where $\kappa^{2}=g \sin \alpha / l$. This differential equation has the solution

$$
\begin{aligned}
& x(t)=A \cosh \kappa t+B \sinh \kappa t \\
& \dot{x}=A \kappa \sinh \kappa t+B \kappa \cosh \kappa t
\end{aligned}
$$

The integration constants follow from the initial conditions

$$
\dot{x}(0)=0 \quad \leadsto \quad B=0, \quad x(0)=a \quad \leadsto \quad A=a
$$

what finally leads to

$$
\underline{\underline{x(t)=a \cosh \kappa t}}, \quad \xlongequal{\dot{x}(t)=a \kappa \sinh \kappa t}, \quad \kappa^{2}=g \sin \alpha / l .
$$

Note that this solution is only valid for $a \leq x \leq l$. When the complete chain is on the inclined plane, the driving force remains constant!
b) If we use as reference position for zero potential energy the upper horizontal plane, the energy terms in the initial and in the displaced position are given by

$$
\begin{aligned}
V_{0} & =-\frac{a}{2} \sin \alpha m \frac{a}{l} g, & T_{0}=0, \\
V_{1} & =-\frac{x}{2} \sin \alpha m \frac{x}{l} g, & T_{1}=\frac{1}{2} \dot{x}^{2} m
\end{aligned}
$$

Introducing into $V_{0}+T_{0}=V_{1}+T_{1}$ and solving for \dot{x} leads to

$$
\underline{\underline{x}(x)=\sqrt{\left(x^{2}-a^{2}\right) g \sin \alpha}} .
$$

Again, this solution is only valid for $a \leq x \leq l$.

Problem 2.7 Determine the geometric locus of all points P_{1} that is given by the position of all point masses at time $t=t_{1}$, that are thrown at time $t=0$ with the same initial velocity v_{0} from a point P under different angles α with respect to the horizontal. Assume that all trajectories are located in the same vertical plane and that there is no air drag.

Solution For convenience, the origin of the coordinates is chosen at P. Then it follows from

$$
\uparrow: m \ddot{z}=-m g, \quad \rightarrow: m \ddot{x}=0
$$

with the initial conditions

$$
\begin{aligned}
& x(0)=z(0)=0 \\
& \dot{x}(0)=v_{0} \cos \alpha \\
& \dot{z}(0)=v_{0} \sin \alpha
\end{aligned}
$$

by integration

$$
x=v_{0} t \cos \alpha, \quad z=-\frac{1}{2} g t^{2}+v_{0} t \sin \alpha .
$$

Since the solution is sought at time t_{1} for arbitrary angles, the angle α must be eliminated. Squaring and adding yields

$$
\left.\begin{array}{r}
x_{1}^{2}=\left(v_{0} t_{1}\right)^{2} \cos ^{2} \alpha, \\
\left(z_{1}+\frac{g}{2} t_{1}^{2}\right)^{2}=\left(v_{0} t_{1}\right)^{2} \sin ^{2} \alpha
\end{array}\right\} .
$$

Accordingly, all points P_{1} are located on a circle with the radius $r=v_{0} t_{1}$ and the center C at

$$
z=-\frac{g}{2} t_{1}^{2}
$$

P2.8 Problem 2.8 From the top of a tower, two point masses are thrown with the same initial velocity v_{0} under two different angles α_{1} and α_{2}. It is recognized that both masses impinge the surface at the same location.

Determine the height of the tower.

Solution The parabolic trajectory of motion is given by (see page 20)

$$
z-z_{0}=-\frac{g}{2}\left(\frac{x-x_{0}}{v_{0} \cos \alpha}\right)^{2}+\left(x-x_{0}\right) \tan \alpha
$$

We chose the origin of the coordinates at the top of the tower. Then we have $x_{0}=z_{0}=0$, and the point where the masses impinge the surface has the unknown coordinates $x=l, z=-h$. For both throws holds:

$$
\begin{aligned}
-h & =-\frac{g}{2} \frac{l^{2}}{v_{0}^{2} \cos ^{2} \alpha_{1}}+l \tan \alpha_{1} \\
-h & =-\frac{g}{2} \frac{l^{2}}{v_{0}^{2} \cos ^{2} \alpha_{2}}+l \tan \alpha_{2}
\end{aligned}
$$

Equating both expressions leads for the horizontal distance l to

$$
l=\frac{2 v_{0}^{2}}{g} \frac{1}{\tan \alpha_{1}+\tan \alpha_{2}}
$$

Herewith, from the 1st equation, the height is determined as

$$
\begin{aligned}
\underline{\underline{h}} & =+\frac{g}{2 v_{0}^{2}}\left(\frac{2 v_{0}^{2}}{g}\right)^{2} \frac{1}{\cos ^{2} \alpha_{1}}\left(\frac{1}{\tan \alpha_{1}+\tan \alpha_{2}}\right)^{2}-\frac{2 v_{0}^{2}}{g} \frac{\tan \alpha_{1}}{\tan \alpha_{1}+\tan \alpha_{2}} \\
& =\xlongequal{\frac{2 v_{0}^{2}}{g} \frac{1}{\left(\tan \alpha_{1}+\tan \alpha_{2}\right) \tan \left(\alpha_{1}+\alpha_{2}\right)}} .
\end{aligned}
$$

Remark: For the solution, the following formulas are used:

$$
\begin{aligned}
\frac{1}{\cos ^{2} \alpha_{2}}-\frac{1}{\cos ^{2} \alpha_{1}} & =\tan ^{2} \alpha_{2}-\tan ^{2} \alpha_{1} \\
& =\left(\tan \alpha_{2}-\tan \alpha_{1}\right)\left(\tan \alpha_{2}+\tan \alpha_{1}\right) \\
\frac{\tan \alpha_{1}+\tan \alpha_{2}}{1-\tan \alpha_{1} \tan \alpha_{2}} & =\tan \left(\alpha_{1}+\alpha_{2}\right)
\end{aligned}
$$

Problem 2.9 To rescue shipwrecked persons, a rescue package of mass m is dropped from an airplane, flying with speed $v_{0}=200 \mathrm{~km} / \mathrm{h}$ in a height of $h=150 \mathrm{~m}$.
a) Determine the distance s_{B} from launching the package until it impacts on sea surface.
b) Calculate the impact velocity v_{B}

Assuming a high horizontal velocity component v_{h}, the air drag shall be taken into account by a horizontal drag force $D=\kappa m v_{h}^{2}$ with $\kappa=0.003 \mathrm{~m}^{-1}$.

Solution a) We introduce an appropriate coordinate system and sketch the free body diagram with the acting drag force D and the weight $m g$. With $v_{h}=\dot{x}$, the equations of motion in x - and in z direction read

$$
\leftarrow: m \ddot{x}=-m \kappa \dot{x}^{2}, \quad \uparrow: m \ddot{z}=-m g
$$

Integration yields with the initial conditions

$$
\begin{aligned}
& x(0)=0, z(0)=h, \dot{x}(0)=v_{0}, \dot{z}(0)=0 \\
& \int_{v_{0}}^{\dot{x}} \frac{\mathrm{~d} \dot{\bar{x}}}{\dot{\bar{x}}^{2}}=-\kappa \int_{0}^{t} \mathrm{~d} \bar{t} \quad \dot{x}=\frac{1}{\frac{1}{v_{0}}+\kappa t}, \quad \int_{0}^{x} \frac{x}{\frac{1}{v_{0}}+\kappa \bar{t}} \mathrm{~d} \bar{t} \quad \leadsto \quad x=\frac{1}{c_{0}} \ln \left(1+\kappa v_{0} t\right) \\
& \quad \int_{0}^{t}=\int_{B}^{\prime} \\
& \dot{z}=-g t \quad, \quad z=-\frac{g}{2} t^{2}+h .
\end{aligned}
$$

The impact time t_{B} follows from $z_{B}=0$ as

$$
t_{B}=\sqrt{2 h / g}
$$

and thus, we obtain for the distance

$$
\underline{s_{B}}=x\left(t_{B}\right)=\frac{1}{\kappa} \ln \left(1+\kappa v_{0} \sqrt{2 h / g}\right)=218 \mathrm{~m} .
$$

b) From the velocity components at impact,

$$
\begin{aligned}
\dot{x}\left(t_{B}\right) & =\frac{v_{0}}{1+\kappa v_{0} t_{B}}=104 \mathrm{~km} / \mathrm{h} \\
\dot{z}\left(t_{B}\right) & =-g t_{B}=-54.2 \mathrm{~m} / \mathrm{s}=-195 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

results the velocity as

$$
\underline{\underline{v_{B}}=\sqrt{\dot{x}^{2}\left(t_{B}\right)+\dot{z}^{2}\left(t_{B}\right)}=221 \mathrm{~km} / \mathrm{h}}
$$

P2.10 Problem 2.10 A rocket without an own propulsion is catapulted vertically upwards from earth's surface with an initial velocity v_{0}.
a) Determine the maximum flight hight H by considering the change of gravitation and neglecting drag forces.
b) What magnitude of v_{0} is required when the rocket shall escape from the gravitation field of earth? (Earth's radius $R=6370 \mathrm{~km}$)

Solution a) Since only conservative forces are acting, the conservation-of-energy law

$$
T_{1}+V_{1}=T_{0}+V_{0}
$$

is appropriate as solution method. The gravitational potential $V=$ $-G M m / r$ according to (force on earth's surface $=$ weight $m g$)

$$
m g=-\left.\frac{\mathrm{d} V}{\mathrm{~d} r}\right|_{r=R}=G \frac{M m}{R^{2}} \quad \leadsto \quad G M=g R^{2}
$$

can be written as

$$
V=-m g \frac{R^{2}}{r} .
$$

Thus, the different energies on earth's surface $(r=R)$ and final flight height ($r=R+H$) are

$$
\begin{array}{ll}
T_{0}=\frac{1}{2} m v_{0}^{2}, & V_{0}=-m g R, \\
T_{1}=0, & V_{1}=-m g \frac{R^{2}}{R+H} .
\end{array}
$$

Introduction into the energy conservation law yields

$$
-m g \frac{R^{2}}{R+H}=\frac{1}{2} m v_{0}^{2}-m g R \quad \leadsto \quad \begin{array}{|}
H=R \frac{v_{0}^{2}}{2 g R-v_{0}^{2}}
\end{array}
$$

b) The 'escape velocity' v_{0}^{*} is found from

$$
H \rightarrow \infty \quad \leadsto \quad \underline{\underline{v_{0}^{*}=\sqrt{2 g R}}}=11180 \frac{\mathrm{~m}}{\mathrm{~s}} \approx 40000 \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

Remarks:

- Note that a rocket in real cases is not launched from earth's surface without an own propulsion!
- The required kinetic energy to reach the 'escape velocity' is $T_{0}=$ $m g R$.

Problem 2.11 Which minimum initial velocity v_{0} in position (1) is necessary, such that the body with mass m reaches position (2) if
a) it slides along a frictionless circular path (radius l), b) it is fixed at a rigid massless rod (length l) ?

Solution In both cases the initial velocity v_{0} is connected with v_{2} at position (2) by the energy-conservation law $T_{2}+V_{2}=T_{1}+V_{1}$. Choosing zero potential energy at position (1), we obtain with $V_{1}=0$

$$
\frac{m}{2} v_{2}^{2}+m g\left(l+l \cos 60^{\circ}\right)=\frac{m}{2} v_{0}^{2} \quad \leadsto \quad v_{0}^{2}=v_{2}^{2}+3 g l .
$$

a) The necessary velocity v_{2} is obtained from the condition that the normal force N between the path and the body is non-negative (otherwise the body looses contact with the path). From the law of motion

$$
\nearrow: m a_{n}=N-m g \cos \varphi
$$

with $a_{n}=v^{2} / l$ we obtain at position (2) ($\varphi=\pi$) for the limit case $N=0$:

$$
\frac{m v_{2}^{2}}{l}=m g \quad \leadsto \quad v_{2}^{2}=g l
$$

Hence, it follows

$$
v_{0}^{2}=g l+3 g l \quad \sim \quad v_{0}=2 \sqrt{g l} .
$$

b) The initial velocity for the mass fixed at the rod will take a minimum if it comes to rest in position (2). For $v_{2}=0$, the energy-conservation law directly yields

$$
\underline{v_{0}=\sqrt{3} \sqrt{g l}} .
$$

Remark: In case b) the force S in the rod may get negative. For example, in (2) ($v_{2}=0$) the force is $S=-m g$.

P2.12 Problem 2.12 Determine the velocity $v(\varphi)$ of mass m of a simple pendulum in dependence on the maximum amplidude φ_{0}.

Discuss the result for characteristic angles φ.

Solution Since the velocity shall be determined in dependence on the position, the energy-conservation law is the first choice as solution method. As reference position for the potential energy, we choose the horizontal position $\varphi=\pi / 2$ and find from

$$
T(\varphi)+V(\varphi)=T_{0}+V_{0}
$$

with $v\left(\varphi_{0}\right)=0$, i.e. $T_{0}=0$:

$$
\frac{m}{2} v^{2}-m g l \cos \varphi=0-m g l \cos \varphi_{0} \quad \leadsto \quad \underline{\underline{v= \pm \sqrt{2 g l\left(\cos \varphi-\cos \varphi_{0}\right)}}} .
$$

The same result can be found by integrating the law of motion in tangential direction. From

$$
\nearrow: m a_{t}=m l \ddot{\varphi}=-m g \sin \varphi
$$

with $\ddot{\varphi} \mathrm{d} \varphi=\dot{\varphi} \mathrm{d} \dot{\varphi}$ and the initial condition $\dot{\varphi}\left(\varphi_{0}\right)=0$, we obtain

$$
\int_{\dot{\varphi}}^{0} \dot{\bar{\varphi}} \mathrm{~d} \dot{\bar{\varphi}}=-\frac{g}{l} \int_{\varphi}^{\varphi_{0}} \sin \bar{\varphi} \mathrm{~d} \bar{\varphi} \quad \leadsto \quad-\frac{\dot{\varphi}^{2}}{2}=\frac{g}{l}\left(\cos \varphi_{0}-\cos \varphi\right)
$$

or with $v=l \dot{\varphi}$ again

$$
v^{2}=2 g l\left(\cos \varphi-\cos \varphi_{0}\right) .
$$

The maximum speed occurs for $\cos \varphi=1$, i.e. at $\varphi=0$:

$$
v_{\max }=\sqrt{2 g l\left(1-\cos \varphi_{0}\right)}=\sqrt{2 g l 2 \sin ^{2} \frac{\varphi_{0}}{2}}=2 \sqrt{g l} \sin \frac{\varphi_{0}}{2} .
$$

For a small maximum amplitude φ_{0} also the angle φ remains small, and we obtain by truncated series approximation

$$
\begin{aligned}
& \cos \varphi \approx 1-\varphi^{2} / 2, \quad \sin \left(\varphi_{0} / 2\right) \approx \varphi_{0} / 2 \\
& \leadsto \quad v^{2}=g l\left(\varphi_{0}^{2}-\varphi^{2}\right), \quad v_{\max }=\sqrt{g l} \varphi_{0} .
\end{aligned}
$$

Problem 2.13 In a clamped frictionless pipe
elbow (radius R) glides a sphere (weight $W=m g$) with zero initial velocity downwards from the top.

Determine the support reactions at the clamping in dependence on the position φ of the sphere.
At which φ the reactions take extreme values?

Solution Newton's law yields in components:

$$
\begin{aligned}
& \swarrow: m a_{t}=m g \cos \varphi, \\
& \nwarrow: m a_{n}=N-m g \sin \varphi .
\end{aligned}
$$

With $a_{t}=R \ddot{\varphi}, a_{n}=R \dot{\varphi}^{2}$ and $\ddot{\varphi} \mathrm{d} \varphi=\dot{\varphi} \mathrm{d} \dot{\varphi}$, it follows from the 1st equation by integration

$$
\int_{0}^{\dot{\varphi}} \dot{\bar{\varphi}} \mathrm{d} \dot{\bar{\varphi}}=\int_{0}^{\varphi} \frac{g}{R} \cos \bar{\varphi} \mathrm{~d} \bar{\varphi} \quad \leadsto \quad \frac{\dot{\varphi}^{2}}{2}=\frac{g}{R} \sin \varphi
$$

Therewith, we obtain the normal force from the 2 nd equation as

$$
N(\varphi)=m g \sin \varphi+m R \dot{\varphi}^{2}=3 W \sin \varphi
$$

The equilibrium conditions for the elbow lead to the support reactions:

$$
\begin{aligned}
\uparrow: \underline{\underline{A_{V}}}= & N \sin \varphi=3 W \sin ^{2} \varphi \\
\leftarrow: \underline{\underline{A_{H}}}= & N \cos \varphi=3 W \sin \varphi \cos \varphi \\
= & -\frac{3}{2} W \sin 2 \varphi, \\
& \underline{\underline{2}},
\end{aligned}
$$

The clamping moment M_{A} and the horizontal force A_{H} take their maximum, when the sphere is at $\varphi=\pi / 4$. The vertical force A_{V} is maximal for $\varphi=\pi / 2$:

$$
M_{A \max }=-\frac{3}{2} W R, \quad A_{H \max }=\frac{3}{2} W, \quad A_{V \max }=3 W
$$

P2.14 Problem 2.14 A hockey puck (mass m) in an ideally smooth ice field (no friction) is shot with speed v_{0} into the half-circular part of the boards and slides along the boards. At the end of the curved part, the speed is measured to be $0.6 v_{0}$.

Determine the friction coefficient μ of the boards.

Solution With aid of the free body diagram, we obtain the equations of motion

$$
\swarrow: m a_{t}=-R, \quad \searrow: m a_{n}=N .
$$

Introducing the kinematic relations $a_{t}=\dot{v}$, $a_{n}=v^{2} / r$ and the friction law $R=\mu N$ yields

$$
m \dot{v}=-\mu m \frac{v^{2}}{r}
$$

Separation of variables and integration leads to the velocity $v(t)$:

$$
\int_{v_{0}}^{v} \frac{\mathrm{~d} \bar{v}}{\bar{v}^{2}}=-\int_{0}^{t} \frac{\mu}{r} \mathrm{~d} \bar{t} \quad \leadsto \quad v(t)=\frac{v_{0}}{1+\frac{\mu v_{0}}{r} t}
$$

From repeated integration, the path $s(t)$ is determined:

$$
\int_{0}^{s} \mathrm{~d} \bar{s}=v_{0} \int_{0}^{t} \frac{\mathrm{~d} \bar{t}}{1+\mu \frac{v_{0}}{r} \bar{t}} \quad \leadsto \quad s(t)=\frac{r}{\mu} \ln \left(1+\frac{\mu v_{0}}{r} t\right) .
$$

The time t_{1}, until the speed is reduced to $0.6 v_{0}$, is calculated as

$$
0.6 v_{0}=\frac{v_{0}}{1+\frac{\mu v_{0}}{r} t_{1}} \quad \leadsto \quad t_{1}=\frac{2}{3} \frac{r}{\mu v_{0}}
$$

Thus, we obtain for the corresponding path length at the end of the curved boards

$$
s_{1}=s\left(t_{1}\right)=\frac{r}{\mu} \ln \left(1+\frac{\mu v_{0}}{r} t_{1}\right)=\frac{r}{\mu} \ln \frac{5}{3} .
$$

Equalizing it with the length of the half-circle yields

$$
s_{1}=r \pi \quad \leadsto \quad \underline{\underline{\mu=\frac{\ln (5 / 3)}{\pi}=0.16}}
$$

Problem 2.15 A car (weight $W=m g$) passes a bend (static friction coefficient μ_{0}), whose curvature $1 / \rho$ increases proportional to the covered distance s, i.e. $s=A^{2} / \rho$ (clothoid). At time $t_{0}=0$, the car is at $s_{0}=0$ and has an initial speed v_{0}.

At which speed v, where and when the car 'skids off the bend' if
a) it moves with constant speed,
b) it brakes with constant deceleration a_{0} ?

Given.: $A=35 \mathrm{~m}, \mu_{0}=0.6, a_{0}=g / 4, v_{0}=72 \mathrm{~km} / \mathrm{h}$.

Solution a) For $a_{t}=0$, Newton's law yields with $a_{n}=v_{0}^{2} / \rho$ the friction force

$$
\swarrow: H=H_{n}=m a_{n}=m \frac{v_{0}^{2}}{\rho}
$$

The car leaves its path when the limit friction force is attained:

$$
H=\mu_{0} m g \quad \leadsto \quad m \frac{v_{0}^{2}}{\rho_{1}}=\mu_{0} m g \quad \leadsto \quad \rho_{1}=\frac{v_{0}^{2}}{\mu_{0} g}
$$

This leads with $s=A^{2} / \rho=v_{0} t$ to $\left(v_{1}=v_{0}\right)$

$$
\begin{array}{ll}
s_{1}=\frac{\mu_{0} g A^{2}}{\rho_{1}}=18 \mathrm{~m}, & \underline{t_{1}=\frac{s_{1}}{v_{0}}=0.9 \mathrm{~s}}
\end{array}
$$

b) When the motion is decelerated, an additional force acts in tangential direction. With $a_{t}=-a_{0}$ follows

$$
\begin{aligned}
& \searrow: m a_{t}=-m a_{0}=-H_{t} \\
& \swarrow: \quad m a_{n}=m \frac{v^{2}}{\rho}=H_{n} .
\end{aligned}
$$

Static limit friction is attained for

$$
\begin{gathered}
H=\sqrt{H_{n}^{2}+H_{t}^{2}}=\mu_{0} m g \quad \leadsto \sqrt{\left(\frac{m v^{2}}{\rho_{2}}\right)^{2}+\left(m a_{0}\right)^{2}}=\mu_{0} m g \\
\leadsto \quad \frac{v^{2}}{\rho_{2}}=\sqrt{\mu_{0}^{2} g^{2}-a_{0}^{2}}
\end{gathered}
$$

Thus, with $v=\sqrt{v_{0}^{2}-2 a_{0} s}=v_{0}-a_{0} t$ (constant deceleration) and $s=A^{2} / \rho$, we obtain

$$
\begin{aligned}
& \underline{\underline{s_{2}}}=\frac{v_{0}^{2}}{4 a_{0}}(\pm) \sqrt{\left(\frac{v_{0}^{2}}{4 a_{0}}\right)^{2}-\frac{A^{2}}{2 a_{0}} \sqrt{\mu_{0}^{2} g^{2}-a_{0}^{2}}}=\underline{\underline{22.7 \mathrm{~m}}} \\
& \underline{\underline{v_{2}}}=\sqrt{v_{0}^{2}-2 a_{0} s_{2}}=\underline{\underline{61.2 \mathrm{~km} / \mathrm{h}}, \quad \underline{\underline{t_{2}}}=\frac{v_{0}-v_{2}}{a_{0}}=\underline{\underline{1.22 \mathrm{~s}}}} .
\end{aligned}
$$

P2.16 Problem 2.16 The potential of a free movable point mass m in a horizontal plane is given by $V(x, y)=k\left(x^{2}+y^{2}\right) / 2$.
a) Determine the acting forces and formulate the equations of motion.
b) Determine the path of the point mass in parameter and implicit representation for the initial conditions $x(0)=a, \dot{x}(0)=0$,
 $y(0)=0, \dot{y}(0)=v_{0}$.

Solution a) The forces follow from the derivatives of the potential as

$$
F_{x}=-\frac{\partial V}{\partial x}=-k x, \quad F_{y}=-\frac{\partial V}{\partial y}=-k y
$$

which leads to the equations of motion

$$
\rightarrow: \quad m \ddot{x}=F_{x}=-k x, \quad \uparrow: \quad m \ddot{y}=F_{y}=-k y
$$

or

$$
\underline{\underline{x}+\omega^{2} x=0}, \quad \underline{\underline{y}+\omega^{2} y=0}, \quad \text { where } \quad \omega^{2}=k / m
$$

b) Both differential equations describe free undamped vibrations, whose solutions are given by (cf. chapter 7)

$$
x=A \cos \omega t+B \sin \omega t, \quad y=C \cos \omega t+D \sin \omega t
$$

where A, B, C, D are constants. They are determined by using the initial conditions:

$$
\begin{aligned}
& x(0)=a \quad \leadsto A=a, \quad y(0)=0 \quad \leadsto C=0 \\
& \dot{x}(0)=0 \quad \leadsto B=0, \quad \dot{y}(0)=v_{0} \quad \leadsto D=\frac{v_{0}}{\omega} .
\end{aligned}
$$

Thus, in parameter representation, the path is described by

$$
\underline{\underline{x(t)=a \cos \omega t}}, \quad \underline{\underline{\underline{x}(t)=\frac{v_{0}}{\omega} \sin \omega t} .}
$$

The implicit representation is found by eliminating t through squaring and adding, resulting in

$$
\underline{\left.\underline{\left(\frac{x}{a}\right.}\right)^{2}+\left(\frac{y}{v_{0} / \omega}\right)^{2}=1 .}
$$

Accordingly, the point mass moves counterclockwise along an ellipse with half-axes a and v_{0} / ω.

Problem 2.17 A space vessel shall be lifted from a circular path with radius r_{1} around the earth E (earth's radius R) to a more distant circular orbit of radius r_{2}. The transition is carried out by changing in A and in B suddenly the magnitude of the velocity of the vessel.

Determine the necessary velocity change in A.

Solution According to Kepler's 1st law, the vessel moves between A and B along an ellipse, whose one focus coincides with the earth. Since in A and B only the magnitude of velocity and not its direction shall be changed, the transition ellipse in A and in B must be tangential to the circles. From this condition the ellipse parameters follow as

$$
a=\frac{r_{1}+r_{2}}{2}, \quad e=a-r_{1}=\frac{r_{2}-r_{1}}{2}, \quad b^{2}=a^{2}-e^{2}=r_{1} r_{2}
$$

and the curvature radius at A (vertex of the ellipse) yields

$$
\rho=\frac{b^{2}}{a}=\frac{2 r_{1} r_{2}}{r_{1}+r_{2}}
$$

In A, the gravitational force has the magnitue $F=m g\left(R / r_{1}\right)^{2}$. At this location, the law of motion normal to the circular path (before velocity change) leads to

$$
m \frac{v_{1}^{2}}{r_{1}}=m g\left(\frac{R}{r_{1}}\right)^{2} \quad \leadsto \quad v_{1}=R \sqrt{\frac{g}{r_{1}}}
$$

and normal to the elliptic orbit (after velocity change) to

$$
m \frac{v_{A}^{2}}{\rho}=m g\left(\frac{R}{r_{1}}\right)^{2} \leadsto v_{A}=R \sqrt{\frac{g}{r_{1}}} \sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}}
$$

Thus, the necessary velocity change is given by

$$
\underline{\underline{\Delta v_{A}}}=v_{A}-v_{1}=\underline{\underline{R \sqrt{\frac{g}{r_{1}}}\left\{\sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}}-1\right\}}} .
$$

P2.18 Problem 2.18 A barge K is towed in a channel by a haul engine L. In the towing rope acts a force $S=9 \mathrm{kN}$, which is inclined by an angle $\alpha=28^{\circ}$ with respect to the rail track.

Determine
a) the work for a covered distance $s=3 \mathrm{~km}$,
b) the power for a towing speed $v=9 \mathrm{~km} / \mathrm{h}$.

Solution a) For the work

$$
U=\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{r}=\int|\boldsymbol{F}| \cos \alpha|\mathrm{d} \boldsymbol{r}|
$$

we obtain with $|\boldsymbol{F}|=$ const $=S, \cos \alpha=$ const $=\cos 28^{\circ}$ and $|\mathrm{d} \boldsymbol{r}|=\mathrm{d} s$:

$$
\underline{\underline{U}}=S \cos \alpha s=9 \cdot 0.883 \cdot 3000=23800 \mathrm{kNm}=23800 \mathrm{~kJ}=\underline{\underline{23.8} \mathrm{MJ}} .
$$

b) The power is given by

$$
\underline{\underline{P}}=\boldsymbol{F} \cdot \boldsymbol{v}=S \cos \alpha v=9 \cdot 0.883 \cdot \frac{9}{3.6}=19.9 \mathrm{~kJ} / \mathrm{s}=\underline{\underline{19.9 \mathrm{~kW}}} .
$$

P2.19 Problem 2.19 Determine the necessary work for lifting a body of weight $W=1 \mathrm{~N}$ from erth's surface (earth's radius R) into the distance r_{0} of the moon ($r_{0}=60 R$).

Solution According to the gravitational law, the gravitational force varies inverse to the squared distance from the earth's surface. Thus, the 'weight' in distance r is

$$
F=W\left(\frac{R}{r}\right)^{2}
$$

Therewith, the work follows as

$$
U=W \int_{R}^{60 R}\left(\frac{R}{r}\right)^{2} \mathrm{~d} r=\frac{59}{60} W R
$$

With $R=6370 \mathrm{~km}$ and $W=1 \mathrm{~N}$, we obtain

$$
\underline{\underline{U}}=\frac{59}{60} \cdot 6370 \mathrm{Nkm}=6264 \mathrm{~kJ}=\underline{\underline{6.3 \mathrm{MJ}}} .
$$

Problem 2.20 A motor winch M tows a body of weight $W=m g$ with constant speed v_{0} upwards a rough inclined plane (coefficient of kinetic friction μ).

Determine the necessary electric power P_{A} of the winch if its efficiency η is known.

Solution For uniform motion ($\dot{v}=0$), the force in the rope S follows from the equilibrium conditions

$$
\nearrow: S=W \sin \alpha+R, \quad \nwarrow: \quad N=W \cos \alpha
$$

and the friction law $R=\mu N$ as

$$
S=W(\sin \alpha+\mu \cos \alpha)
$$

Thus, the power generated by the winch is

$$
P=S v_{0}=W(\sin \alpha+\mu \cos \alpha) v_{0}
$$

The power absorbed by the winch having an effienciency η is given by

$$
\underline{\underline{P_{A}}}=\frac{P}{\eta}=\underline{\underline{\frac{W}{\eta}(\sin \alpha+\mu \cos \alpha) v_{0}}}
$$

Problem 2.21 A big container vessel with a drive power of 80000 kW covers in 7 days 4000 nautical miles.

Determine the average drag force F_{d}

Solution Using the conversion 1 nautical mile $=1.852 \mathrm{~km}$ and 1 kW $=1 \mathrm{kNm} / \mathrm{s}$, we obtain from

$$
P=F_{d} v \quad \text { with } \quad v=\frac{4000 \cdot 1852}{7 \cdot 24 \cdot 3600}=12.25 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

the drag force

$$
\underline{\underline{F_{d}}}=\frac{P}{v}=\frac{80000 \mathrm{kNm} / \mathrm{s}}{12.25 \mathrm{~m} / \mathrm{s}}=6531 \mathrm{kN}=\underline{\underline{6.53 \mathrm{MN}}} .
$$

P2.22 Problem 2.22 In a centrifuge of radius r, rotating with constant angular velocity ω_{0}, a body (point mass m) is accelerated by dynamic friction (friction coefficient μ) from its initial angular velocity $\omega(0)=\omega_{0} / 2$ to the final angular velocity ω_{0}.

Determine the required acceleration time t_{r}, the drive torque $M(t)$, the power $P(t)$ and the work U done by the centrifuge.

Solution During acceleration, the point mass rotates with angular velocity $\omega(t)$. With the accelerations $a_{t}=r \dot{\omega}, a_{n}=r \omega^{2}$, the equations of motion are given by

$$
\uparrow: \quad m r \dot{\omega}=R, \quad \leftarrow: \quad m r \omega^{2}=N
$$

Introducing the friction law $R=\mu N$, elimi-
 nating N and using $\omega(0)=\omega_{0} / 2$ leads to

$$
\dot{\omega}=\mu \omega^{2} \quad \leadsto \quad \int \frac{\mathrm{~d} \omega}{\omega^{2}}=\mu \int \mathrm{d} t \quad \leadsto \quad \frac{2}{\omega_{0}}-\frac{1}{\omega}=\mu t .
$$

The acceleration time t_{r} is obtained from the condition $\omega\left(t_{r}\right)=\omega_{0}$:

$$
\frac{2}{\omega_{0}}-\frac{1}{\omega_{0}}=\mu t_{r} \quad \leadsto \quad \underline{\underline{t_{r}}=\frac{1}{\mu \omega_{0}}} .
$$

Since the centrifuge is not accelerated, the driving torque is given by the moment of the friction force R :

$$
\underline{\underline{M(t)}}=r R=m r^{2} \dot{\omega}=\mu m r^{2} \omega^{2}=\underline{\underline{\underline{\left(2-\mu \omega_{0} t\right)^{2}}}} .
$$

Because M and ω_{0} are coaxial, the required power is given by

$$
\underline{\underline{P(t)}}=\boldsymbol{M} \cdot \boldsymbol{\omega}_{0}=M \omega_{0}=\underline{\underline{\frac{\mu m r^{2} \omega_{0}^{3}}{\left(2-\mu \omega_{0} t\right)^{2}}}} .
$$

The total work U done by the centrifuge (strictly speaking, the friction force) is calculated easiest from the difference of kinetic energies:

$$
\underline{\underline{U}}=\frac{1}{2} m v^{2}\left(t_{r}\right)-\frac{1}{2} m v^{2}(0)=\frac{1}{2} m\left(r \omega_{0}\right)^{2}-\frac{1}{2} m\left(r \omega_{0} / 2\right)^{2}=\underline{\underline{\frac{3}{8} m r^{2} \omega_{0}^{2}}}
$$

Problem 2.23 A soccer player kicks the ball from a distance e with a kick-off angle $\alpha=45^{\circ}$ against a vertical wall. The impact at the wall is assumed to be idealelastic.

What initial velocity v_{0} of the ball is necessary if
a) it shall bounce back exactly to the foot of the player,
b) it shall bounce back to the head (height H) of the player?

Solution Since no energy gets lost when the impact against the wall is ideal-elastic, the magnitudes of impact velocity v_{1} and rebound velocity v_{2} must be equal. Then, from the impulse law follows (reflection law)

$$
\uparrow: m v_{2} \cos \beta_{2}-m v_{1} \cos \beta_{1}=0 \quad \leadsto \quad \underline{\beta_{1}=\beta_{2}} . \quad v_{1}
$$

Hence, we can replace the problem of reflection at the wall by a mirroring problem, where we imagine the trajectory being continued through the wall.

a) The 'flight distance' $d=2 e$ follows with $\alpha=45^{\circ}$ and $z_{0}=0$ as (see page 32)

$$
d=2 e=v_{0}^{2} \frac{\sin 2 \alpha}{g} \quad \leadsto \quad \underline{\underline{v_{0}}}=\sqrt{\frac{2 g e}{\sin 2 \alpha}}=\underline{\underline{\sqrt{2 g e}}} .
$$

b) We introduce the coordinates of the kick-off point $x_{0}=z_{0}=0$ and end point $x=2 e, z=H$ into the parabolic trajectory of motion (page 32) and obtain

$$
H=-\frac{g}{2}\left(\frac{2 e}{v_{0} \cos 45^{\circ}}\right)^{2}+2 e \tan 45^{\circ} \quad \leadsto \quad v_{0}=2 e \sqrt{\frac{g}{2 e-H}} .
$$

P2.24 Problem 2.24 A body (mass m) is driven along a rough horizontal path (kinetic friction coefficient μ) by a periodically acting force, such that $v\left(t_{0}\right)=v_{0}$ and $v_{1}=$ $v\left(t_{1}\right)=v_{0} / 2$. During the driving phase Δt, the force profile $F(t)$ is triangular.
a) Determine the period T and the required peak force F_{0} for a given Δt.

b) Calculate the work U done by F during a period T.

Solution a) We consider one period and start counting time at the end of the driving phase. First we apply the impulse law over the full period T. With $R=\mu N=\mu m g=$ const and the given $F(t)$ profile, the linear impulses of the friction force and the driving force are given by

$$
\widehat{R}=\mu m g T, \quad \widehat{F}=\int_{\Delta t} F(t) \mathrm{d} t=F_{0} \Delta t / 2
$$

Thus, with $v(0)=v\left(t_{0}\right)=v_{0}$, the impulse law leads to

$$
\rightarrow: m v_{0}-m v_{0}=0=-\mu m g T+\frac{1}{2} F_{0} \Delta t
$$

In the same way, we obtain with $v\left(t_{0}\right)=v_{0}$ and $v\left(t_{1}\right)=v_{0} / 2$ from the impulse law applied over the driving phase Δt

$$
\rightarrow: \quad m v_{0}-m v_{0} / 2=-\mu m g \Delta t+\frac{1}{2} F_{0} \Delta t
$$

From these two equations for the two unknowns T and F_{0}, it follow

$$
\begin{array}{ll}
T=\Delta t+\frac{v_{0}}{2 \mu g}
\end{array}, \quad \begin{array}{|}
\overline{F_{0}=2 \mu m g\left[1+\frac{v_{0}}{2 \mu m g \Delta t}\right]} .
\end{array}
$$

b) The work U done by $F(t)$ during time T is determined by using the work-energy theorem, i.e. from the difference of kinetic energies at t_{0} and t_{1} :

$$
\underline{\underline{U}}=T\left(t_{0}\right)-T\left(t_{1}\right)=\frac{1}{2} m v_{0}^{2}-\frac{1}{2} m\left(v_{0} / 2\right)^{2}=\underline{\underline{\frac{3}{8}} m v_{0}^{2}} .
$$

Remark: The work of F and of R during T are equal but have opposite signs. This easily allows calculating the covered distance: $l=3 v_{0}^{2} /(8 \mu g)$.

Problem 2.25 A point mass, fixed at a massless thread, rotates along a horizontal circular path. At time $t=0$, the radius is r_{0} and the angular velocity is ω_{0}.
a) Determine $r(t)$ and $\omega(t)$, when the thread is pulled with constant speed u_{0} downwards through the sketched vertical pipe.
b) At what time t_{1} the angular velocity has doubled and how big is the associated radius r_{1} ?
c) Determine for this case the change of kinetic energy ΔT of the point mass.

Solution a) Because there acts no external moment on the point mass with respect to the center of its path, the angular momentum remains conserved:

$$
\boldsymbol{L}=\boldsymbol{r} \times m \boldsymbol{v}=\text { const }
$$

With $\boldsymbol{r} \times \boldsymbol{v}=r v_{\varphi} \boldsymbol{e}_{z}$ and $v_{\varphi}=r \omega$, it follows

$$
L=m r^{2} \omega=m r_{0}^{2} \omega_{0} \quad \leadsto \quad \omega=\omega_{0} \frac{r_{0}^{2}}{r^{2}}
$$

The dependence of $r(t)$ on time is given by the constant thread speed $\dot{r}=-u_{0}$:

$$
\underline{\underline{r(t)}=r_{0}-u_{0} t} .
$$

Inserting into ω leads to

$$
\overline{\omega(t)=\frac{\omega_{0} r_{0}^{2}}{\left(r_{0}-u_{0} t\right)^{2}}}
$$

b) From the condition $\omega\left(t_{1}\right)=2 \omega_{0}$, it follows
$\underline{\underline{t_{1}}=\frac{r_{0}}{u_{0}}\left(1-\frac{1}{2} \sqrt{2}\right)}$ and $\quad \underline{\underline{r_{1}=r_{0}-u_{0} t_{1}=\frac{\sqrt{2}}{2} r_{0}} .}$
c) The energy change is calculated as

$$
\begin{aligned}
\Delta T & =\frac{m}{2}\left(v_{\varphi_{1}}^{2}+u_{0}^{2}\right)-\frac{m}{2}\left(v_{\varphi_{0}}^{2}+u_{0}^{2}\right) \\
& =\frac{m}{2}\left(\frac{\sqrt{2}}{2} r_{0} 2 \omega_{0}\right)^{2}-\frac{m}{2}\left(r_{0} \omega_{0}\right)^{2}=\underline{\underline{\frac{1}{2}} m r_{0}^{2} \omega_{0}^{2}}
\end{aligned}
$$

The kinetic energy has doubled.

P2.26 Problem 2.26 In an upright standing frictionless hollow cylinder (radius R), a little sphere (point mass m) is inserted at point A with a horizontal initial speed v_{0}.
a) What angle α to the horizontal plane has the velocity v_{B} at point B lying in height distance h below A ?
b) What speed v_{0} is necessary such that the sphere impinges on ground at C with an angle of 45° and what magnitude has
 v_{C} in this case?

Solution a) The speed of the sphere in point B follows from the energy conservation law $T_{A}+V_{A}=T_{B}+V_{B}$:

$$
\frac{1}{2} m v_{0}^{2}+m g h=\frac{1}{2} m v_{B}^{2} \quad \leadsto \quad v_{B}=\sqrt{v_{0}^{2}+2 g h} .
$$

Since there acts no external moment with respect to the cylinder axis, the angular momentum (moment of momentum) with respect to this axis is conserved:

$$
L=\text { const } \quad \sim \quad L_{A}=L_{B} .
$$

With $L_{A}=R\left(m v_{0}\right)$ and $L_{B}=R\left(m v_{B} \cos \alpha\right)$, the angle α follows as

$$
\underline{\underline{\cos \alpha}}=\frac{v_{0}}{v_{B}}=\underline{\underline{v_{0}}} .
$$

b) With $\alpha=45^{\circ}$ and $h=H$, we obtain at C

$$
\cos 45^{\circ}=\frac{1}{2} \sqrt{2}=\frac{v_{0}}{\sqrt{v_{0}^{2}+2 g H}}
$$

or after squaring and solving for v_{0}

$$
\underline{v_{0}=\sqrt{2 g H}} .
$$

Thus, after falling the height distance H, the velocity is

$$
\underline{\underline{v_{C}}}=\sqrt{v_{0}^{2}+2 g H}=\sqrt{2 g H+2 g H}=\underline{\underline{2 \sqrt{g H}}} .
$$

Remark: Because on the sphere acts only the weight (vertical) and the normal force from the cylinder wall (normal to the wall) the horizontal velocity component remains unchanged v_{0}.

Problem 2.27 A cosine-shaped arch of a roller coaster is in A and in B
pin-supported. The arch is passed without friction by a car (mass m) that has in point A the initial velocity $v_{0}=\sqrt{g a / 10}$.
Determine the support reactions and the bending moment at C when the car just passes point C. The weight of the arch shall be disregarded.

Solution The velocity of the car at point C follows from the energy conservation law $T_{A}+V_{A}=T_{C}+V_{C}$:

$$
\frac{1}{2} m v_{0}^{2}+m g a=\frac{1}{2} m v_{C}^{2}-m g a \quad \leadsto \quad v_{C}^{2}=v_{0}^{2}+4 g a=\frac{41}{10} g a
$$

The derivatives $y^{\prime}=-(2 \pi a / l) \sin 2 \pi x / l$ and $y^{\prime \prime}=-\left(4 \pi^{2} a / l^{2}\right) \cos 2 \pi x / l$ yield $y^{\prime}(l / 2)=0$ and $y^{\prime \prime}(l / 2)=4 \pi^{2} a / l^{2}$. Hence, the curvature radius ρ of the path at C is given by

$$
\frac{1}{\rho_{C}}=\frac{y^{\prime \prime}(l / 2)}{\left[1+y^{\prime 2}(l / 2)\right]^{3 / 2}}=\frac{4 \pi^{2} a}{l^{2}} .
$$

With the normal acceleration $a_{n}=v^{2} / \rho$, the law of motion allows to determine the force F at C, which acts from the arch onto
 the car:

$$
\uparrow: \quad m \frac{v_{C}^{2}}{\rho_{C}}=F-m g \quad \leadsto \quad F=m g+m \frac{v_{C}^{2}}{\rho_{C}}=m g\left(1+\frac{164 \pi^{2} a^{2}}{10 l^{2}}\right)
$$

Knowing F, the support reactions and the bending moment in C can be calculated:

$$
\overline{\underline{A=B}=\frac{m g}{2}\left(1+\frac{164 \pi^{2} a^{2}}{10 l^{2}}\right)}, \quad \underline{\underline{M_{C}}}=A \frac{l}{2}=\underline{\underline{\frac{m g l}{4}\left(1+\frac{164 \pi^{2} a^{2}}{10 l^{2}}\right)}}
$$

Remark: When the results are evaluated for the data $m=500 \mathrm{~kg}$, $2 a=10 \mathrm{~m}, l=50 \mathrm{~m}$, we obtain $v_{0}=7,97 \mathrm{~km} / \mathrm{h}, v_{C}=51,05 \mathrm{~km} / \mathrm{h}$, $\rho_{C}=12,66 \mathrm{~m}, F=12,84 \mathrm{kN}, A=B=6,42 \mathrm{kN}, M_{C}=160,55 \mathrm{kNm}$.

Chapter 3
Dynamics of a System of Point
Masses
3

System of Point Masses:

The mass m_{i} is subject to the external force \boldsymbol{F}_{i} and the internal forces $\boldsymbol{F}_{i j}=-\boldsymbol{F}_{j i}$. If the distances $r_{i j}$ between the masses remain constant, the system of point masses is rigid.

Law of Motion for the Center of Mass: The center of mass C moves such as a point mass with the same total mass subject to the resultant of all external forces acting on the system:

$$
m \ddot{\boldsymbol{r}}_{c}=\dot{\boldsymbol{p}}_{c}=\sum \boldsymbol{F}_{i}
$$

$$
\begin{aligned}
& m=\sum m_{i} \widehat{=} \text { total mass } \\
& \boldsymbol{p}_{c}=m \dot{\boldsymbol{r}}_{c}=\sum m_{i} \dot{\boldsymbol{r}}_{i}=\sum \boldsymbol{p}_{i} \widehat{=} \text { total linear momentum. }
\end{aligned}
$$

Impulse Law: Time integration of the law of motion yields

$$
m \boldsymbol{v}_{c}-m \boldsymbol{v}_{c 0}=\widehat{\boldsymbol{F}}
$$

with the linear impulse

$$
\widehat{\boldsymbol{F}}=\int_{t_{0}}^{t} \sum \boldsymbol{F}_{i} \mathrm{~d} \tau
$$

Conservation of Linear Momentum: In case that the resultant external force is zero, the linear momentum is conserved:

$$
m \boldsymbol{v}_{c}=\sum m_{i} \boldsymbol{v}_{i}=\mathrm{const}
$$

Angular Momentum Theorem: The time rate of change of the total angular momentum with respect to a fixed point 0 is equal to the resultant moment of all external forces about the same point:

$$
\frac{\mathrm{d} \boldsymbol{L}^{(0)}}{\mathrm{d} t}=\boldsymbol{M}^{(0)}
$$

$$
\begin{aligned}
& \boldsymbol{L}^{(0)}=\sum \boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}=\sum \boldsymbol{L}_{i}^{(0)} \widehat{=} \text { total angular momentum } \\
& \boldsymbol{M}^{(0)}=\sum \boldsymbol{r}_{i} \times \boldsymbol{F}_{i} \widehat{=} \text { total external moment }
\end{aligned}
$$

Special Case: For the rotation of a rigid system of point masses about a fixed axis $a-a$ follows

$$
\Theta_{a} \ddot{\varphi}=M_{a}
$$

$\Theta_{a}=\sum r_{i}^{2} m_{i} \widehat{=}$ mass moment of inertia relative to axis $a-a$,
$r_{i} \widehat{=}$ orthogonal distance between mass m_{i} and axis $a-a$.
Work-Energy Theorem: The change of kinetic energy is equal to the sum of the work $U^{(e)}$ of all external and $U^{(i)}$ of all internal forces:

$$
T-T_{0}=U^{(e)}+U^{(i)}
$$

$$
T=\sum m_{i} v_{i}^{2} / 2 \widehat{=} \text { kinetic energy, }
$$

$$
U^{(e)}=\sum \boldsymbol{F}_{i} \cdot \mathrm{~d} \boldsymbol{r}_{i} \hat{=} \text { work of external forces, }
$$

$$
U^{(i)}=\sum \boldsymbol{F}_{i j} \cdot \mathrm{~d} \boldsymbol{r}_{j i} \widehat{=} \text { work of internal forces. }
$$

For rigid constraints $\left(\mathrm{d} \boldsymbol{r}_{j i}=0\right)$ holds $W^{(i)}=0$.
Conservation of Energy Law: If the external forces can be derived from a potential $V^{(e)}$ and the internal forces from a potential $V^{(i)}$, the work-energy theorem results in the conservation of energy law

$$
T+V^{(i)}+V^{(e)}=T_{0}+V_{0}^{(i)}+V_{0}^{(e)}=\text { const }
$$

Bodies with variable mass: The motion of a body with variable mass (e.g. a rocket) is described by

$$
m(t) \boldsymbol{a}=\boldsymbol{F}+\boldsymbol{T}
$$

where $\quad \boldsymbol{F}=$ external force,

$$
m(t)=\text { time dependent mass, }
$$

$$
\boldsymbol{T}=-\mu \boldsymbol{w}=\text { thrust, where }
$$

$$
\mu=-\dot{m}=\text { rate of mass change (mass flow) }
$$

$$
\boldsymbol{w}=\text { mass flow velocity relative to the body }
$$

P3.1 Problem 3.1 On a frictionless horizontal plane, two wedges of masses m_{1} and m_{2} are placed on top of each other.
The wedges can slide frictionless against each other.

Determine the accelerations of both wedges. Check the result by considering the limit cases $m_{1} \rightarrow \infty$ and $\alpha \rightarrow \pi / 2$.

Solution We separate the two bodies and formulate the equations of motion in x - and in y-direction:
(1) $\leftarrow: \quad m_{1} \ddot{x}_{1}=N_{1} \sin \alpha$,
$\downarrow: \quad m_{1} \ddot{y}_{1}=m_{1} g-N_{2}+N_{1} \cos \alpha$,
(2) $\leftarrow: m_{2} \ddot{x}_{2}=-N_{1} \sin \alpha$,
$\downarrow: \quad m_{2} \ddot{y}_{2}=m_{2} g-N_{1} \cos \alpha$.

Since wedge (1) moves horizontally and at its top side wedge (2) slides downwards, the kinematic relations read

Thus, we have six equations for the six unknowns $\left(\ddot{x}_{1}, \ddot{y}_{1}, \ddot{x}_{2}, \ddot{y}_{2}, N_{1}\right.$, N_{2}). By eliminating N_{1} and N_{2} it follows

$$
\begin{array}{ll}
\ddot{x}_{1}=\frac{\frac{m_{2}}{m_{1}} g \tan \alpha}{1+\left(1+\frac{m_{2}}{m_{1}}\right) \tan ^{2} \alpha}, & \underline{\ddot{y}_{1}=0} \\
\underline{\overline{g \tan \alpha}} \\
\ddot{x}_{2}=-\frac{\left(1+\frac{m_{2}}{m_{1}}\right) g \tan ^{2} \alpha}{1+\left(1+\frac{m_{2}}{m_{1}}\right) \tan ^{2} \alpha}, & \ddot{y}_{2}=\frac{\left(1+\frac{m_{2}}{m_{1}}\right) \tan ^{2} \alpha}{1+(1)} . \\
\hline \bar{\Longrightarrow}
\end{array}
$$

For the two limit cases we obtain:
a) $m_{1} \rightarrow \infty: \quad \ddot{x}_{1} \rightarrow 0 \quad$ and $\quad\left|\ddot{y}_{2} / \ddot{x}_{2}\right| \rightarrow \tan \alpha$ (inclined plane),
b) $\alpha \rightarrow \frac{\pi}{2} \quad: \quad \ddot{x}_{1}=\ddot{x}_{2} \rightarrow 0$ und $\ddot{y}_{2} \rightarrow g \quad$ (free fall).

Remark: Adding the equations of motion in x-direction and time-integration confirms conservation of linear momentum: $m_{1} \ddot{x}_{1}+m_{2} \ddot{x}_{2}=0$ $\leadsto m_{1} \dot{x}_{1}+m_{2} \dot{x}_{2}=C$, i.e. the total linear momentum is constant!

Problem 3.2 The two massless pulleys are connected by a massless inextensible rope. The system is subject to the weights $W_{1}=m_{1} g$ and $W_{2}=m_{2} g$.

Determine the force in the rope, the acceleration of the mass m_{1} and its velocity in dependence of the covered distance.

Solution We first separate the system, draw the free body diagrams including all acting forces and introduce the coordinates x_{1} and x_{2} (counted from an arbitrary initial position). From the equilibrium of moments about the centers of the pulleys follows

$$
S_{1}=S_{2}=S_{3}=S
$$

The equations of motion yield

$$
\text { (1) } \uparrow: m_{1} \ddot{x}_{1}=2 S-m_{1} g, \quad \text { (2) } \downarrow: m_{2} \ddot{x}_{2}=m_{2} g-S \text {. }
$$

When the body (2) moves downwards by x_{2} the body (1) is lifted by $x_{1}=x_{2} / 2$. Therefore, with $\ddot{x}_{1}=\ddot{x}_{2} / 2$ we otain by solving for the unknows

$$
\begin{array}{ll}
\ddot{x}_{1}=g \frac{2 m_{2}-m_{1}}{m_{1}+4 m_{2}}
\end{array}, \quad \begin{aligned}
& S=\frac{3 m_{1} m_{2} g}{m_{1}+4 m_{2}}
\end{aligned} .
$$

The relationship between velocity and covered distance is most easily determined from the energy conservation law $T+V=T_{0}+V_{0}$. With $T_{0}=0, V_{0}=0$ follows

$$
\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+m_{1} g x_{1}-m_{2} g x_{2}=0
$$

or

$$
\begin{gathered}
\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2}\left(2 \dot{x}_{1}\right)^{2}=2 m_{2} g x_{1}-m_{1} g x_{1} \\
\leadsto \quad \xrightarrow{v_{1}\left(x_{1}\right)=\dot{x}_{1}=\sqrt{2 g x_{1} \frac{2 m_{2}-m_{1}}{m_{1}+4 m_{2}}}}
\end{gathered}
$$

Remark: In the special case $2 m_{2}=m_{1}$, we obtain $\ddot{x}_{1} \equiv 0$ and $S=W_{2}$. In this case, the system is in equilibrium!

P3.3 Problem 3.3 A hinged pendulum is modeled as a massless rigid rod with two attached point masses of weights $W_{1}=m_{1} g$ and $W_{2}=m_{2} g$.

Formulate the equation of motion.

Solution We will solve the problem by two different approaches.
1st approach: Because the distance of the masses is constant, the pendulum represents a rigid system of point masses. Therefore, the angular momentum theorem with respect to the fixed hinge A

$$
\Theta_{A} \ddot{\varphi}=M_{A}
$$

can be applied. With

$$
\Theta_{A}=a^{2} m_{1}+(2 a)^{2} m_{2}=a^{2}\left(m_{1}+4 m_{2}\right)
$$

the equation of motion follows as (notice the positive sense of rotation!)

$$
\begin{gathered}
\curvearrowleft A: a^{2}\left(m_{1}+4 m_{2}\right) \ddot{\varphi}=-m_{1} g a \sin \varphi-m_{2} g 2 a \sin \varphi \\
\\
\leadsto \underline{\underline{\ddot{\varphi}+\frac{g}{a} \frac{m_{1}+2 m_{2}}{m_{1}+4 m_{2}} \sin \varphi=0 .}}
\end{gathered}
$$

2nd approach: We start from the conservation of energy law $T+V=$ const, where the zero level for the potential energy is chosen at $\varphi=\pi / 2$ (hinge A):

$$
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-m_{1} g a \cos \varphi-m_{2} g 2 a \cos \varphi=\mathrm{const}
$$

With $v_{1}=a \dot{\varphi}$ and $v_{2}=2 a \dot{\varphi}$ follows

$$
\frac{1}{2}\left(m_{1}+4 m_{2}\right) a^{2} \dot{\varphi}^{2}-a g \cos \varphi\left(m_{1}+2 m_{2}\right)=\mathrm{const}
$$

and differentiation with respect to time leads to

$$
\left(m_{1}+4 m_{2}\right) a^{2} \ddot{\varphi} \dot{\varphi}+a g \sin \varphi\left(m_{1}+2 m_{2}\right) \dot{\varphi}=0
$$

Since $\dot{\varphi}$ is nonzero for all times t, it remains

$$
\ddot{\varphi}+\frac{g}{a} \frac{m_{1}+2 m_{2}}{m_{1}+4 m_{2}} \sin \varphi=0 .
$$

Problem 3.4 The constant acceleration a_{0} of a truck (mass M) is such high that the box (weight $W=m g$) starts to slide on the loading area (coefficients of static and kinetic friction $\left.\mu_{0}, \mu\right)$.
a) Determine the minimum acceleration a_{0}^{*} for the onset of sliding and the corresponding horizontal force F^{*} excerted by the truck to the pavement.
b) Calculate the time T, the box re-
 quires to bounce against the rear wall.

Solution a) As long as the box is not sliding, the equations of motion for truck and box are given by

$$
\begin{aligned}
& \text { (1) } \rightarrow: M a_{0}=F-H, \\
& \text { (2) } \rightarrow: m a_{0}=H,
\end{aligned}
$$

where the static friction force H is limited by $H_{0}=\mu_{0} N=\mu_{0} m g$. Introducing $H=H_{0}$ leads to the limit values of acceleration and force:

$$
\underline{\underline{a_{0}^{*}=\mu_{0} g}}, \quad \underline{\underline{F^{*}=(M+m) \mu_{0} g}}
$$

b) During sliding, the friction force is $R=\mu N=\mu m g$, which for the box leads to the equation of motion

$$
\text { (2) } \rightarrow: m a_{2}=R \quad \leadsto \quad a_{2}=\mu g
$$

Integration of the two constant accelerations $a_{1}=a_{0}$ and a_{2} of truck and box, considering the initial conditions $s_{1}(0)=s_{2}(0)=s_{0}, v_{1}(0)=v_{2}(0)=v_{0}$, yields

$$
\begin{aligned}
& v_{1}=a_{0} t+v_{0}, \quad v_{2}=\mu g t+v_{0} \\
& s_{1}=a_{0} \frac{t^{2}}{2}+v_{0} t+s_{0}, \quad s_{2}=\mu g \frac{t^{2}}{2}+v_{0} t+s_{0}
\end{aligned}
$$

The box bounces at time T against the rear wall, when

$$
\begin{aligned}
\Delta s=s_{1}-s_{2}=l \quad \leadsto \quad\left(a_{0}-\mu g\right) T^{2}=2 l \quad \leadsto \quad T=\sqrt{\frac{2 l}{a_{0}-\mu g}}
\end{aligned}
$$

P3.5 Problem 3.5 A big block (mass M), initially resting on a frictionless ground, starts to move due to a little block of mass m, which is shot with speed v_{0} to its rough upper surface. The kinetic friction coefficient between the two bodies is μ.
a) Determine the time T, that is required, until both bodies move with the common speed v^{*}.
b) Determine the covered distance of
 M, until the common speed is reached.

Solution We separate the two bodies, sketch the free body diagrams and introduce position coordinates. Then, the equations of motion read

$$
\begin{aligned}
(1) \rightarrow: & M \ddot{x}_{1}=R, \\
\text { (2) } \rightarrow: & m \ddot{x}_{2}=-R .
\end{aligned}
$$

Introducing the friction law $R=\mu N=\mu m g$ leads to

$$
\ddot{x}_{1}=\frac{m}{M} \mu g, \quad \ddot{x}_{2}=-\mu g
$$

By integration, considering the initial conditions $\dot{x}_{1}(0)=0, x_{1}(0)=0$, $\dot{x}_{2}(0)=v_{0}, x_{2}(0)=0$, we obtain

$$
\begin{aligned}
& \dot{x}_{1}=\frac{m}{M} \mu g t, \quad x_{1}=\frac{1}{2} \frac{m}{M} \mu g t^{2} \\
& \dot{x}_{2}=v_{0}-\mu g t, \quad x_{2}=v_{0} t-\frac{1}{2} \mu g t^{2} .
\end{aligned}
$$

a) The condition $\dot{x}_{1}(T)=\dot{x}_{2}(T)=v^{*}$ leads to

$$
\frac{m}{M} \mu g T=v_{0}-\mu g T \quad \leadsto \quad T=\frac{v_{0}}{\mu g(1+m / M)}
$$

and

$$
\underline{\underline{v^{*}}}=\dot{x}_{1}(T)=\frac{m}{M} \mu g T=v_{0} \frac{1}{1+M / m} .
$$

b) The covered distance of M is given by

$$
\underline{\underline{x_{1}(T)}}=\frac{1}{2} \frac{m}{M} \mu g T^{2}=\underline{\underline{\frac{1}{2} \frac{v_{0}^{2} m / M}{\mu g(1+m / M)^{2}}}} .
$$

Problem 3.6 In an experiment, a particle of mass m is shot with speed v_{0} against a second resting particle of mass $2 m$ After impact, three particles are observed, where the sketched directions and the following masses and velocities are detected during measurements: $m_{1}=m, v_{1}=2 v_{0}, v_{2}=v_{0} / 2$.

Determine m_{2}, m_{3} and v_{3}.
before impact after impact

Solution The momentum of the particle system is unchanged after impact. Thus, with $\cos 45^{\circ}=\sin 45^{\circ}=\sqrt{2} / 2, \cos 60^{\circ}=1 / 2, \sin 60^{\circ}=$ $\sqrt{3} / 2$ we obtain in components

$$
\begin{aligned}
\uparrow: & m v_{0} & =m_{1} v_{1} \sqrt{2} / 2+m_{2} v_{2} \sqrt{3} / 2-m_{3} v_{3} \sqrt{2} / 2, \\
\rightarrow: & 0 & =m_{1} v_{1} \sqrt{2} / 2-m_{2} v_{2} 1 / 2-m_{3} v_{3} \sqrt{2} / 2 .
\end{aligned}
$$

In conjunction with

$$
m_{1}+m_{2}+m_{3}=3 m
$$

we now have three equations for the three unknows m_{2}, m_{3}, v_{3}. To solve them, it is advantageous to introduce the given quantities:

$$
\begin{aligned}
& m v_{0}=m v_{0} \sqrt{2}+m_{2} v_{0} \sqrt{3} / 4-m_{3} v_{3} \sqrt{2} / 2 \\
& 0=m v_{0} \sqrt{2}-m_{2} v_{0} 1 / 4-m_{3} v_{3} \sqrt{2} / 2 \\
& m_{2}+m_{3}=2 m
\end{aligned}
$$

Subtracting the $2^{\text {nd }}$ from the $1^{\text {st }}$ equation provides directly

$$
m v_{0}=m_{2} v_{0} \frac{1+\sqrt{3}}{4} \leadsto \underline{\underline{m_{2}}=m \frac{4}{1+\sqrt{3}}}=1.464 \mathrm{~m} .
$$

Thus, from the $3^{\text {rd }}$ equation follows

$$
\underline{\underline{m_{3}}}=2 m-m_{2}=m\left(2-\frac{4}{1+\sqrt{3}}\right)=\underline{\underline{\frac{2 \sqrt{3}-2}{1+\sqrt{3}}} m=0.536 m} .
$$

Finally, introducing m_{2}, m_{3} into the $2^{\text {nd }}$ equation yields

$$
\underline{\underline{v_{3}}=v_{0} \frac{m}{m_{3}}\left(2-\frac{1}{2 \sqrt{2}} \frac{m_{2}}{m}\right)=2.765 v_{0} .}
$$

Remark: Note, that the center of mass stays on the y-axis!

P3.7 Problem 3.7 On a frictionless plane, a body with mass m_{1} hits with velocity v a second body at rest (mass m_{2}) and connects to it. Subsequently, the composite body hits via a spring (spring constant k) a third body at rest (mass m_{3}).

a) Determine the speed v of the mass m_{1} such that m_{3} remains at rest, if the plane solely at the location of m_{3} is rough (coefficient of static friction μ_{0}).
b) Determine the speed of m_{3} after collision if the plane at the location of m_{3} is also frictionless.

Solution a) When m_{1} and m_{2} are connecting, the momentum remains conserved. Thus, the velocity \bar{v}_{12} of the composite is given by

$$
\rightarrow: \quad m_{1} v=\left(m_{1}+m_{2}\right) \bar{v}_{12} \quad \leadsto \quad \bar{v}_{12}=\frac{m_{1}}{m_{1}+m_{2}} v .
$$

If m_{3} is at rest, the maximum compression x of the spring is reached, when during collision, the velocity of the composite body has come to zero. Then, energy conservation yields

$$
\frac{1}{2}\left(m_{1}+m_{2}\right) \bar{v}_{12}^{2}=\frac{1}{2} k x^{2} \quad \leadsto \quad x^{2}=\frac{m_{1}+m_{2}}{k} \bar{v}_{12}^{2},
$$

and the horizontal maximum force acting on m_{3} follows as $F_{k}=k x$. In order that m_{3} remains at rest, the equilibrium condition $H=F_{c}$ and the condition fo static friction $H<H_{0}=\mu_{0} m_{3} g$ must be fulfilled. This leads to

$$
k x<\mu_{0} m_{3} g \quad \leadsto \quad \underline{\overline{\underline{m_{1}}} \sqrt{\frac{\mu_{0} m_{3} g}{m_{1}+m_{2}}}}
$$

b) The velocity \bar{v}_{3} of m_{3} after collision with the composite body can be determined from conservation of linear momentum and energy conservation:

$$
\begin{aligned}
\rightarrow:\left(m_{1}+m_{2}\right) \bar{v}_{12} & =\left(m_{1}+m_{2}\right) \overline{\bar{v}}_{12}+m_{3} \bar{v}_{3}, \\
\frac{1}{2}\left(m_{1}+m_{2}\right) \bar{v}_{12}^{2} & =\frac{1}{2}\left(m_{1}+m_{2}\right) \overline{\bar{v}}_{12}^{2}+\frac{1}{2} m_{3} \bar{v}_{3}^{2} .
\end{aligned}
$$

Hence, introducing the already know velocity \bar{v}_{12} of the composite body, we obtain

$$
\underline{\bar{v}_{3}=\frac{2 m_{1}}{m_{1}+m_{2}+m_{3}} v .}
$$

Problem 3.8 Two swimmers (mass $m_{1}=75 \mathrm{~kg}, m_{2}=60 \mathrm{~kg}$) jump into the water from an initially resting rowboat (mass $m_{B}=150 \mathrm{~kg}$), which can ideally glide without any drag. The first swimmer jumps horizontally from the stern with speed $v_{1}=2 \mathrm{~m} / \mathrm{s}$ relative to the boat. Subsequently, the second swimmer jumps in the same direction with speed $v_{2}=3 \mathrm{~m} / \mathrm{s}$ relative to the boat.
a) Determine the velocity of the boat after the jumps.
b) What speed has the boat, after both swimmers jumped simultaneously with the speed $v_{3}=2.5 \mathrm{~m} / \mathrm{s}$?

Solution a) We introduce as positive direction the jump direction. Since the momentum of the system initially is zero, the sum of momenta after the first jump must stay zero. Thus, with the absolute velocities $v_{B_{1}}$ and $v_{B_{1}}+v_{1}$ of the boat and the first jumper, we obtain

$$
\begin{aligned}
\rightarrow: & \left(m_{B}+m_{2}\right) v_{B_{1}}+m_{1}\left(v_{B_{1}}+v_{1}\right)=0 \\
& \leadsto \quad \underline{v_{B_{1}}=-\frac{m_{1}}{m_{B}+m_{1}+m_{2}} v_{1}=-0.52 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

The sign indicates that boat and jumper move in opposite directions. Before the second jump, the boat including second jumper has the momentum $\left(m_{B}+m_{2}\right) v_{B_{1}}$, which is conserved after the jump:

$$
\begin{aligned}
\rightarrow: & \left(m_{B}+m_{2}\right) v_{B_{1}}=m_{B} v_{B_{2}}+m_{2}\left(v_{B_{2}}+v_{2}\right) \\
& \leadsto \quad \xlongequal{v_{B_{2}}=\frac{\left(m_{B}+m_{2}\right) v_{B_{1}}-m_{2} v_{2}}{m_{B}+m_{2}}=-1.38 \mathrm{~m} / \mathrm{s} .}
\end{aligned}
$$

b) If both swimmers jump simultaneously, the situation is analogeous to the first jump, but with changed masses and velocities:

$$
\begin{aligned}
\rightarrow: & m_{B} v_{B_{3}}+\left(m_{1}+m_{2}\right)\left(v_{B_{3}}+v_{3}\right)=0 \\
& \leadsto \quad \underline{v_{B_{3}}=-\frac{m_{1}+m_{2}}{m_{B}+m_{1}+m_{2}} v_{3}=-1.18 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

P3.9 Problem 3.9 A rope without any bending stiffness (mass m, length l), moves freely on a frictionless plane, such that its bend K changes its position continuously (similar as it does at a horsewhip). In the initial state, K is in the middle of the rope; the lower part (1) has the velocity $v_{10}=v_{0}$ and the upper part (2) the velocity $v_{20}=0$.

a) Determine the velocities v_{2} and v_{1} in dependence on the distance u of the ends of the rope.
b) What are the velocities of the parts (1) and (2) at the instant when the bend K passes the end of the rope? Sketch the functions $v_{1}(u)$ and $v_{2}(u)$.
a) Because no external forces are acting, the linear momentum and the total energy at initial state must be conserved. Thus, with the lengths $(l+u) / 2$ and $(l-u) / 2$ of the parts (1) and (2) of the rope, it follows

$$
\begin{array}{lrl}
\text { momentum conservation: } & \frac{m}{2} v_{0} & =\frac{m}{2} \frac{l+u}{l} v_{1}+\frac{m}{2} \frac{l-u}{l} v_{2}, \\
\text { energy conservation: } & \frac{1}{2} \frac{m}{2} v_{0}^{2} & =\frac{1}{2} \frac{m}{2} \frac{l+u}{l} v_{1}^{2}+\frac{1}{2} \frac{m}{2} \frac{l-u}{l} v_{2}^{2}
\end{array}
$$

respectively with $y=u / l$

$$
\begin{align*}
& v_{0}=(1+y) v_{1}+(1-y) v_{2} \tag{a}\\
& v_{0}^{2}=(1+y) v_{1}^{2}+(1-y) v_{2}^{2}
\end{align*}
$$

Solving for v_{2} leads to the quadratic equation

$$
2 y(1-y) v_{2}^{2}-2(1-y) v_{0} v_{2}-y v_{0}^{2}=0
$$

with the solution

$$
v_{2}=\frac{v_{0}}{2 y}\left[1 \pm \sqrt{1+\frac{2 y^{2}}{1-y}}\right]
$$

Introducing this result into (a), yields

$$
v_{1}=\frac{v_{0}}{2 y(1+y)}\left[3 y-1 \mp(1-y) \sqrt{1+\frac{2 y^{2}}{1-y}}\right] .
$$

To find the correct sign in front of the root, we consider the initial state $v_{1}=v_{0}, v_{2}=0$. By determining the limit values for $y \rightarrow 0$ it can be seen that the 'lower' sign leads to the correct initial state. Thus, the solution reads

$$
v_{1}=\frac{v_{0}}{2 y(1+y)}\left[3 y-1+(1-y) \sqrt{1+\frac{2 y^{2}}{1-y}}\right],
$$

$$
\underline{v_{2}=\frac{v_{0}}{2 y}\left[1-\sqrt{1+\frac{2 y^{2}}{1-y}}\right]} .
$$

b) The bend K reaches the end of the rope for $u \rightarrow l$ or for $y \rightarrow 1$, respectively. Determining the limit values leads to the velocities
c) In order to sketch $v_{1}(y)$ and $v_{2}(y)$, it is advisable first to approximate the functions near $y=0$ and $y=1$. By series expansion and neglecting higher order terms, we find

$$
\begin{aligned}
y & \ll 1: & v_{1}(y) \approx v_{0}(1-y / 2), & v_{2}(y) \approx-v_{0} y / 2 \\
(1-y) & \ll 1: & v_{1}(y) \approx \frac{v_{0}}{2}\left(1+\frac{\sqrt{1-y}}{\sqrt{2}}\right), & v_{2}(y) \approx-\frac{v_{0}}{2} \frac{\sqrt{2}}{\sqrt{1-y}}
\end{aligned}
$$

In conjunction with the results from a), b), we obtain the displayed courses of the functions:

Remark: The infinite final velocity of the rope end (2) (supersonic speed) may explain the so-called 'crack of the whipe'.

P3.10 Problem 3.10 A rocket of initial mass m_{0} (including propellant mass m_{T}) is vertically launched at time $t=0$. Assume that the mass flow μ and ejection speed w are constant and that at thrust cut-off the propellant is fully consumed.
a) Determine the velocity $v(t)$ of the rocket, assuming that there is no air drag and the gravity g is constant.
b) What is the velocity at thrust cut-off for $m_{T}=0.8 m_{0}$, thrust duration $t_{T}=2 \mathrm{~min}$ and $w=2000 \mathrm{~m} / \mathrm{s}$?
c) What are the accelerations at lift-off and just before thrust cut-off?

Solution a) The rocket motion is described by

$$
\uparrow: \quad m(t) \frac{\mathrm{d} v}{\mathrm{~d} t}=-m(t) g+T
$$

With

$$
T=\mu w, \quad m(t)=m_{0}-\mu t
$$

follows the acceleration

$$
a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mu w}{m_{0}-\mu t}-g
$$

Integration and considering the initial condition $v(0)=0$ leads to the velocity

$$
v(t)=w \ln \frac{1}{1-\frac{\mu}{m_{0}} t}-g t .
$$

b) The mass at thrust cut-off is $m\left(t_{T}\right)=m_{0}-m_{T}$, resulting in

$$
\mu=\frac{m_{0}-m\left(t_{T}\right)}{t_{T}}=\frac{m_{T}}{t_{T}}
$$

Thus, the velocity at thrust cut-off is given by
$\underline{\underline{v\left(t_{T}\right)}}=w \ln \frac{1}{1-\frac{m_{T}}{m_{0}}}-g t_{T}=2000 \ln \frac{1}{1-0.8}-9.81 \cdot 120=2042 \frac{\mathrm{~m}}{\mathrm{~s}}=\underline{\underline{7350 \frac{\mathrm{~km}}{\mathrm{~h}}} .}$
c) The accelerations at lift-off $(t=0)$ and just before thrust-off $\left(t=t_{T}\right)$ follow as

$$
\begin{aligned}
& \underline{\underline{a(0)}}=\frac{\mu w}{m_{0}}-g=\frac{m_{T} w}{m_{0} t_{T}}-g=\frac{0,8 \cdot 2000}{120}-9.81=3.52 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \underline{\underline{a\left(t_{T}\right)}}=\frac{\mu w}{m_{0}-m_{T}}-g=\frac{m_{T} w}{0.2 m_{0} t_{T}}-g=56.84 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Problem 3.11 At point A of a drum, a rope (length $l_{0}>h$, total mass m_{0}) is attached, the lower part of which initially rests on ground C. At time $t=0$ the drum starts to rotate such that the rope is lifted with constant acceleration a_{0} and reeled. For $t=0$ point A is at $s=0$.
Determine the force H in the rope at the drum inlet B. Assume that the rope hangs vertical at all times.

Solution We first determine the reeled rope length s from the known acceleration and the initial conditions $s(0)=0, \dot{s}(0)=0$:

$$
\ddot{s}=a_{0}, \quad \dot{s}=v=a_{0} t, \quad s=\frac{1}{2} a_{0} t^{2}
$$

In what follows, two cases must be distinguished.
Case a: One part of the rope still rests at the ground $\left(s+h \leq l_{0}\right)$. In this case, the hanging part of the rope is regarded as a body with variable mass, in which at the ground C mass flows in and at B mass flows out. Then, the mass m of the hanging part is

$$
\frac{m_{0}}{l_{0}}=\frac{m}{h} \quad \leadsto \quad m=m_{0} \frac{h}{l_{0}}
$$

and the mass flow follows as

$$
\mu=\frac{\mathrm{d} m}{\mathrm{~d} t}=\frac{\left(\mathrm{d} s / l_{0}\right) m_{0}}{\mathrm{~d} t}=\frac{m_{0}}{l_{0}} v
$$

At the lower end C of the hanging part, the 'ejection velocity' w (there is no mass outflow but a mass inflow!) has the magnitude $w=v$, at the upper end at B it is zero (velocity of the outflowing mass $=$ velocity of the hanging part). Accordingly, there exists only at C a thrust of magnitude

$$
T=\mu w=\frac{m_{0}}{l_{0}} v^{2}=\frac{m_{0}}{l_{0}} a_{0}^{2} t^{2}
$$

which is downwards directed. Hence, the equation of motion reads

$$
\uparrow: m a_{0}=H_{a}-m g-T
$$

It leads, after inserting T and with $v^{2}=2 a_{0} s$, to the force

$$
H_{a}=m_{0} \frac{h}{l_{0}}\left(a_{0}+g+2 a_{0} \frac{s}{h}\right) .
$$

From this result, for $s=0$ and for the limit case $s=l_{0}-h$ (just before the end of the rope lifts-off from ground), we obtain

$$
H_{a}(0)=m_{0} \frac{h}{l_{0}}\left(a_{0}+g\right), \quad H_{a}\left(l_{0}-h\right)=m_{0} \frac{h}{l_{0}}\left(-a_{0}+g+2 a_{0} \frac{l_{0}}{h}\right)
$$

Case b: The rope no longer touches the ground $\left(s+h \geq l_{0}\right)$.
In this case, the mass of the hanging part is

$$
\frac{m_{0}}{l_{0}}=\frac{m}{l_{0}-s} \quad \leadsto \quad m=m_{0} \frac{l_{0}-s}{l_{0}}
$$

Since there is no mass flow at the lower end and the 'ejection velocity' at B is zero, there is no thrust anywhere. The equation of motion now reads

$$
\uparrow: m a_{0}=H_{b}-m g
$$

Thus, the force in the rope follows as

$$
\underline{\underline{H_{b}}=m_{0} \frac{l_{0}-s}{l_{0}}\left(a_{0}+g\right) .}
$$

For the limit case $s=l_{0}-h$ (just after lifting the rope from ground) we obtain

$$
H_{b}\left(l_{0}-h\right)=m_{0} \frac{h}{l_{0}}\left(a_{0}+g\right)
$$

Remark: When comparing the limit cases of \mathbf{a} and \mathbf{b} for $s=l_{0}-h$, it can be recognized that the force in the rope at lift-off experiences a jump of magnitude

$$
\Delta H=H_{a}\left(l_{0}-h\right)-H_{b}\left(l_{0}-h\right)=2 \frac{l_{0}-h}{l_{0}} m_{0} a_{0} .
$$

Problem 3.12 A whipcord (mass m, length l) is pulled at one end with the constant speed v_{0}. Given are the initial conditions $x_{1}(0)=l / 2$, $x_{2}(0)=l / 2$ and $\dot{x}_{1}(0)=v_{0}$, $\dot{x}_{2}(0)=0$.

Determine the required force F in dependence on the distance u of the cord ends.

Solution Considering $\dot{x}_{1}=v_{0}=$ const and $\ddot{x}_{1}=0$, the kinematic relationships between u and x_{1}, x_{2} are given by

$$
u=x_{1}-x_{2}, \quad \dot{u}=\dot{x}_{1}-\dot{x}_{2}=v_{0}-\dot{x}_{2}, \quad \ddot{u}=-\ddot{x}_{2}
$$

and the initial conditions are $u(0)=0$ and $\dot{u}(0)=v_{0}$.
In what follows we consider part (1) and part (2) of the whipcord as bodies with variable mass. Hence, the equations of motion read
(1) :
$0=F-T, \quad(a)$
(2) : $m \frac{l-u}{2 l} \ddot{x}_{2}=T$.

During the time increment $\mathrm{d} t$ the distance between the cord ends increases by $\mathrm{d} u$ where part (2) shortens by $\mathrm{d} u / 2$ and part (1) elongates by $\mathrm{d} u / 2$. Accordingly, for part (2) the mass flow and the relative ejection velocity are $\mu=\dot{u} m / 2 l$ and $w=\dot{x}_{1}-\dot{x}_{2}=\dot{u}$, respectively. Thus, the 'thrust' is given by

$$
T=-\mu w=-\frac{m}{2 l} \dot{u}^{2}
$$

Introducing T into (b) and considering $\ddot{x}_{2}=-\ddot{u}$ yields

$$
(l-u) \ddot{u}=\dot{u}^{2}
$$

and with $\ddot{u}=\dot{u} \mathrm{~d} \dot{u} / \mathrm{d} u$, separation of variables and integration

$$
\frac{\mathrm{d} \dot{u}}{\dot{u}}=\frac{\mathrm{d} u}{l-u} \quad \leadsto \quad \ln \frac{\dot{u}}{\dot{u}(0)}=\ln \frac{l-u(0)}{l-u} \quad \leadsto \quad \dot{u}=v_{0} \frac{l}{l-u}
$$

This leads with (c) and (a) to

$$
F=T=\frac{m v_{0}^{2}}{2 l}\left(\frac{l}{l-u}\right)^{2} .
$$

Chapter 4

Kinematics of Rigid Bodies

The Motion of a Rigid Body can be composed of a Translation and a Rotation.

Spatial Motion

The relations between the positions, the velocities and the accelerations of points A and P of a rigid body are given by

$$
\begin{aligned}
& \boldsymbol{r}_{P}=\boldsymbol{r}_{A}+\boldsymbol{r}_{A P}, \\
& \boldsymbol{v}_{P}=\boldsymbol{v}_{A}+\boldsymbol{\omega} \times \boldsymbol{r}_{A P}, \\
& \boldsymbol{a}_{P}=\boldsymbol{a}_{A}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{A P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{A P}\right)
\end{aligned}
$$

where $\boldsymbol{\omega} \widehat{=}$ angular velocity vector.

Remarks:

- $\boldsymbol{\omega}$ has the direction of the current rotation axis.
- From the equations above follow \boldsymbol{v}_{P} and \boldsymbol{a}_{P} for any arbitrary point P of the body if $\boldsymbol{v}_{A}, \boldsymbol{a}_{A}, \boldsymbol{\omega}$ and $\dot{\boldsymbol{\omega}}$ are known.

Planar Motion

With $\boldsymbol{\omega}=\omega \boldsymbol{e}_{z}=\dot{\varphi} \boldsymbol{e}_{z}, \boldsymbol{r}_{A P}=r \boldsymbol{e}_{r}$ follows

$$
\begin{aligned}
& \boldsymbol{v}_{P}=\boldsymbol{v}_{A}+\boldsymbol{v}_{A P}, \\
& \boldsymbol{a}_{P}=\boldsymbol{a}_{A}+\boldsymbol{a}_{A P}^{t}+\boldsymbol{a}_{A P}^{n},
\end{aligned}
$$

where
$\boldsymbol{v}_{A P}=\boldsymbol{\omega} \times \boldsymbol{r}_{A P}=\omega \boldsymbol{\omega} \boldsymbol{e}_{\varphi}$
$\left(\perp\right.$ to $\left.\boldsymbol{r}_{A P}\right)$
$\boldsymbol{a}_{A P}^{t}=\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{A P}=\dot{\boldsymbol{\omega}} r \boldsymbol{e}_{\varphi}$
$\left(\perp\right.$ to $\left.\boldsymbol{r}_{A P}\right)$

$\boldsymbol{a}_{A P}^{n}=\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{A P}\right)=-\omega^{2} r \boldsymbol{e}_{r}\left(\|\right.$ to $\left.\boldsymbol{r}_{A P}\right)$
'The velocity (acceleration) of point P is equal to the velocity (acceleration) of point A plus the velocity (acceleration) caused by the rotation of P about A^{\prime}.

Velocity and Acceleration Diagram

The graphical representation of the velocities and accelerations of plane kinematic problems and their graphical solution is done by using a velocity and a acceleration diagram. The directions of the velocity and acceleration components are taken from the layout diagram.:
layout diagram velocity diagram acceleration diagram

Instantaneous Center of Rotation

The plane motion of a rigid body having an instantaneous angular velocity ω can be considered at each instant as a pure rotation about the instantaneous center Π (instantaneous center of rotation, instantaneous center of zero velocity):

$$
\begin{aligned}
& v_{A}=\rho_{A} \omega \\
& v_{B}=\rho_{B} \omega
\end{aligned}
$$

The trajectory passed by the instantaneous center of rotation is called centrode.

Rolling Wheel

The locus of the center of rotation is given by:

$$
\begin{gathered}
v_{0}=r \omega \\
v_{A}=2 r \omega
\end{gathered}
$$

P4.1 Problem 4.1 The end point A of a rigid bar moves in a horizontal channel with speed v_{A} and acceleration a_{A}.

Determine the velocity and acceleration of B as well as the angular velocity $\omega=\dot{\varphi}$ and the angular acceleration $\dot{\omega}$ of the bar.

Solution The velocity and acceleration of B are vertically directed. With that information, the velocity diagram can be plotted and from the graph we find by inspection:

$$
\begin{aligned}
& l \omega=\frac{v_{A}}{\cos \varphi} \\
& \leadsto \underline{\underline{\omega}}=\dot{\varphi}=\frac{v_{A}}{\underline{l \cos \varphi}} \\
& \underline{\underline{v_{B}}}=\underline{\underline{v_{A} \tan \varphi}}
\end{aligned}
$$

From the acceleration diagram follow in the same way

$$
\begin{aligned}
l \dot{\omega} & =\frac{a_{A}}{\cos \varphi}+\omega^{2} l \tan \varphi \\
\leadsto & \underline{\underline{\omega}}=\frac{a_{A}}{\underline{l \cos \varphi}+\frac{v_{A}^{2} \sin \varphi}{l^{2} \cos ^{3} \varphi}} \\
\underline{\underline{a_{B}}} & =a_{A} \tan \varphi+\frac{l \omega^{2}}{\cos \varphi} \\
& =\underline{a_{A} \tan \varphi+\frac{v_{A}^{2}}{l \cos ^{3} \varphi}} .
\end{aligned}
$$

The problem can also be solved purely analytically. We introduce an appropriate coordinate system and from the coordinates

$$
\begin{aligned}
x_{A} & =l \sin \varphi \\
y_{B} & =l \cos \varphi
\end{aligned}
$$

one obtains with $\dot{x}_{A}=v_{A}$ and $\ddot{x}_{A}=\dot{v}_{A}=a_{A}$

$$
\begin{aligned}
& \dot{x}_{A}=l \dot{\varphi} \cos \varphi \quad \omega \quad \begin{array}{l}
\omega=\dot{\varphi}=\frac{v_{A}}{l \cos \varphi}
\end{array} \\
& \underline{\underline{\dot{\omega}}=}=\frac{\dot{v}_{A} l \cos \varphi+v_{A} l \dot{\varphi} \sin \varphi}{l^{2} \cos ^{2} \varphi}=\frac{a_{A}}{\underline{\underline{l \cos \varphi}}+\frac{v_{A}^{2} \sin \varphi}{l^{2} \cos ^{3} \varphi}} \\
& \underline{\underline{\dot{y}_{B}}}=v_{B}=-l \dot{\varphi} \sin \varphi=-\underline{\underline{v_{A} \tan \varphi}} \\
& \underline{\underline{\ddot{y}_{B}}}=a_{B}=-\dot{v}_{A} \tan \varphi-v_{A} \frac{\dot{\varphi}}{\cos ^{2} \varphi}=-a_{A} \tan \varphi-\frac{v_{A}^{2}}{l \cos ^{3} \varphi}
\end{aligned}
$$

Note that since y is positive upwards directed, the quantities \dot{y}_{B} and \ddot{y}_{B} have a negative sign.

The velocity v_{B} and the angular velocity ω can also be determined by using the center of instantaneous rotation Π. This point Π is given by the intersection of the perpendiculars to v_{A} and v_{B}, the directions of which are known. In this way we obtain

$$
\begin{aligned}
& v_{A}=\omega l \cos \varphi \\
& \leadsto \underline{\underline{\omega}}=\underline{\underline{v_{A}}} \\
& \underline{\underline{v_{B}}}=\omega l \sin \varphi=\underline{\underline{v_{A} \tan \varphi}}
\end{aligned}
$$

Remark: From the derived relations it can be seen that $\dot{\omega}$ and a_{B} are nonzero even when point A moves at constant speed ($a_{A}=0$).

P4.2 Problem 4.2 At a crank mechanism, the wheel rotates with constant angular velocity ω and point P moves along a vertical straight guide rail.

Determine analytically the velocity and acceleration of P.

Solution We introduce a coordinate sytem and the two auxiliary angles φ and ψ, where $\varphi=\omega t$ and $\dot{\varphi}=\omega=$ const. Then the position, velocity and acceleration of P are given by

$$
\begin{aligned}
& y_{P}=r \cos \varphi+l \cos \psi \\
& \dot{y}_{P}=-r \omega \sin \varphi-l \dot{\psi} \sin \psi \\
& \ddot{y}_{P}=-r \omega^{2} \cos \varphi-l \ddot{\psi} \sin \psi-l \dot{\psi}^{2} \cos \psi
\end{aligned}
$$

The still unknown quantities $\sin \psi, \cos \psi, \dot{\psi}$ and $\ddot{\psi}$ follow from the condition that P moves along a vertical line:

$$
\begin{aligned}
& x_{P}=a=-r \sin \varphi+l \sin \psi \\
& \dot{x}_{P}=0=-r \omega \cos \varphi+l \dot{\psi} \cos \psi \\
& \ddot{x}_{P}=0=r \omega^{2} \sin \varphi+l \ddot{\psi} \cos \psi-l \dot{\psi}^{2} \sin \psi .
\end{aligned}
$$

Solving for the unknowns yields

$$
\begin{aligned}
& \sin \psi=\frac{a}{l}+\frac{r}{l} \sin \varphi, \quad \cos \psi=\sqrt{1-\left(\frac{a}{l}+\frac{r}{l} \sin \varphi\right)^{2}}, \\
& \dot{\psi}=\omega \frac{r}{l} \frac{\cos \varphi}{\cos \psi}, \quad \ddot{\psi}=-\omega^{2} \frac{r}{l} \frac{\sin \varphi}{\cos \psi}+\dot{\psi}^{2} \frac{\sin \psi}{\cos \psi} .
\end{aligned}
$$

Introduction into \dot{y}_{P} and \ddot{y}_{P} finally leads to

$$
\underline{\overline{\dot{y}_{P}}=-r \omega\left\{\sin \varphi+\cos \varphi \frac{\sin \psi}{\cos \psi}\right\}},
$$

$$
\xlongequal[\underline{\ddot{y}_{P}=-r \omega^{2}\left\{\cos \varphi-\sin \varphi \frac{\sin \psi}{\cos \psi}+\frac{r}{l} \frac{\cos ^{2} \varphi}{\cos ^{3} \psi}\right\}} .]{.}
$$

Problem 4.3 The boom with a pulley and a carrying rope is reeled in with speed v by a second horizontal cable. There is no sliding between pulley and carrying rope.

Determine the angular velocities of the boom and the pulley for

Solution Because the motion of the boom is a pure rotation about A, the velocity v_{P} is perpendicular to l, and thus we have

$$
l \dot{\alpha}=v_{P}
$$

and

$$
v_{P}=\sqrt{2} v
$$

Hence, the angular velocity of the boom is

$$
\underline{\dot{\alpha}=\sqrt{2} \frac{v}{l}} .
$$

To determine the angular velocity ω of the pulley we use its instantaneous center of rotation Π. Its location is given by the intersection of the perpendiculars to v_{P} and v_{B}.

Notice: Due to the constraint by the rope, point B can only move in vertical direction.

From

$$
\sqrt{2} r \omega=v_{P}
$$

we obtain

$$
\underline{\underline{\omega}}=\frac{v_{P}}{\sqrt{2} r}=\frac{v}{\underline{\underline{r}}}
$$

P4.4 Problem 4.4 A bar of length l moves in plane. In the displayed position, the velocity \boldsymbol{v}_{A} of point A and the angular velocity ω are known.
a) Determine the magnitude and direction of the velocity of point B.
b) Where on the bar is point C located, whose instantaneous velocity has the x-direction?
c) Identify the location of the instantaneous center of rotation Π.

Given: $v_{A}=3 \mathrm{~m} / \mathrm{s}, \alpha=60^{\circ}, \omega=6 / \mathrm{s}, l=1 / 2 \mathrm{~m}, a=b=1 / 4 \mathrm{~m}$.
Solution a) From the relation $\boldsymbol{v}_{B}=\boldsymbol{v}_{A}+\boldsymbol{\omega} \times \boldsymbol{r}_{A B}$ and

$$
\begin{aligned}
& \boldsymbol{v}_{A}=-v_{A} \cos \alpha \boldsymbol{e}_{x}-v_{A} \sin \alpha \boldsymbol{e}_{y}, \quad \boldsymbol{\omega}=\omega \boldsymbol{e}_{z}, \quad \boldsymbol{r}_{A B}=l \boldsymbol{e}_{x}, \\
& \boldsymbol{v}_{B}=-v_{A} \cos \alpha \boldsymbol{e}_{x}+\left(\omega l-v_{A} \sin \alpha\right) \boldsymbol{e}_{y} \quad \leadsto \quad\left\{\begin{array}{l}
v_{B x}=-1.5 \mathrm{~m} / \mathrm{s} \\
v_{B y}=+0.402 \mathrm{~m} / \mathrm{s}
\end{array}\right.
\end{aligned}
$$

we obtain

$$
\underline{\underline{v_{B}}}=\sqrt{v_{B x}^{2}+v_{B x}^{2}}=\underline{\underline{1.55 \mathrm{~m} / \mathrm{s}}}, \quad \cos \beta=\frac{v_{B x}}{v_{B}} \quad \leadsto \quad \underline{\underline{\beta=165.4^{\circ}}} .
$$

b) The condition $v_{C y}=0$ leads with

$$
\begin{aligned}
\boldsymbol{v}_{C}= & \boldsymbol{v}_{A}+\boldsymbol{\omega} \times \boldsymbol{r}_{A C} \\
= & -v_{A} \cos \alpha \boldsymbol{e}_{x} \\
& +\left(\omega c-v_{A} \sin \alpha\right) \boldsymbol{e}_{y}
\end{aligned}
$$

to

$$
c=\frac{v_{A} \sin \alpha}{\omega}=0.433 \mathrm{~m} .
$$

c) From the condition for the instantaneous center of rotation Π

$$
\boldsymbol{v}_{\Pi}=\boldsymbol{v}_{A}+\boldsymbol{\omega} \times \boldsymbol{r}_{A \Pi}=0 \quad \leadsto \quad \boldsymbol{\omega} \times \boldsymbol{v}_{A}=-\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{A \Pi}\right)=\omega^{2} \boldsymbol{r}_{A \Pi}
$$

follows with $\boldsymbol{r}_{\Pi}=\boldsymbol{r}_{A}+\boldsymbol{r}_{A \Pi}$ the location of Π :

$$
\begin{aligned}
& \boldsymbol{r}_{\Pi}=\boldsymbol{r}_{A}+\frac{1}{\omega^{2}} \boldsymbol{\omega} \times \boldsymbol{v}_{A}=\left(a+\frac{v_{A}}{\omega} \sin \alpha\right) \boldsymbol{e}_{x}+\left(b-\frac{v_{A}}{\omega} \cos \alpha\right) \boldsymbol{e}_{y}, \\
& \leadsto \quad \xlongequal{x_{\Pi}=a+\frac{v_{A}}{\omega} \sin \alpha=0.683 \mathrm{~m}}, \quad \underline{\underline{y_{\Pi}=b-\frac{v_{A}}{\omega} \cos \alpha=0 .}}
\end{aligned}
$$

Problem 4.5 In a gear, the wheel (1) rolls along the fixed circular bearing (2). It is driven by a constant angular velocity Ω.

Determine analytically the magnitudes of velocity and acceleration for a point P of the wheel.

Solution We introduce a coordinate system and consider an initial and a displaced position of the wheel. With the angles α and β, where $\alpha+\beta=\varphi$, it follows for the covered arc length of P

$$
\begin{gathered}
(R+r) \alpha=r(\beta+\alpha) \\
\quad \leadsto \quad R \alpha=r \beta
\end{gathered}
$$

Differentiation leads with $\dot{\alpha}=\Omega$ and $\dot{\beta}=\omega$ to

$$
R \Omega=r \omega \quad \leadsto \quad \omega=\Omega R / r .
$$

The velocity and acceleration components are derived from the position of P :

$$
\begin{array}{ll}
x_{P}=R \cos \alpha+r \cos \beta, & y_{P}=R \sin \alpha-r \sin \beta \\
\dot{x}_{P}=-R \Omega \sin \alpha-r \omega \sin \beta, & \dot{y}_{P}=R \Omega \cos \alpha-r \omega \cos \beta \\
\ddot{x}_{P}=-R \Omega^{2} \cos \alpha-r \omega^{2} \cos \beta, & \ddot{y}_{P}=-R \Omega^{2} \sin \alpha+r \omega^{2} \sin \beta .
\end{array}
$$

Thus, with $R \Omega=r \omega$ and $\alpha+\beta=\varphi$ we obtain

$$
\begin{aligned}
v_{P}^{2}= & \dot{x}_{P}^{2}+\dot{y}_{P}^{2}=R^{2} \Omega^{2}+r^{2} \omega^{2}+2 R \Omega r \omega(\sin \alpha \sin \beta-\cos \alpha \cos \beta) \\
= & 2 R^{2} \Omega^{2}-2 R^{2} \Omega^{2} \cos (\alpha+\beta)=2 R^{2} \Omega^{2}(1-\cos \varphi)=4 R^{2} \Omega^{2} \sin ^{2} \frac{\varphi}{2} \\
& \sim \quad v_{P}=2 R \Omega \sin \frac{\varphi}{2}
\end{aligned},
$$

P4.6 Problem 4.6 An idealized fair ride consists of a base plate and attached gondola crosses, both rotating with constant angular velocities ω_{1} and $\omega_{2}=2 \omega_{1}$, respectively.

Determine the magnitudes of velocity and acceleration of a gondola G.

Solution We first solve the problem by sketching the velocity and acceleration diagrams. This can be done with the aid of the displayed layout diagram. Using the cosine rule, it can be seen

\[

\]

Remark: Because the cosine varies between +1 and -1 , the maximum and minimum acceleration are given by $a_{G \max }=6 l \omega_{1}^{2}$ and $a_{G \min }=$ $2 l \omega_{1}^{2}$, respectively.

The problem can also be solved analytically by considering the components of the position vector and by subsequent differentiation with respect to time. With $\dot{\varphi}_{1}=\omega_{1}$ and $\dot{\varphi}_{2}=\omega_{2}=2 \omega_{1}$ we obtain

$$
\begin{aligned}
& x_{G}=2 l \cos \varphi_{1}+l \cos \varphi_{2} \\
& \dot{x}_{G}=-2 l \dot{\varphi}_{1} \sin \varphi_{1}-l \dot{\varphi}_{2} \sin \varphi_{2}=-2 l \omega_{1} \sin \varphi_{1}-l 2 \omega_{1} \sin \varphi_{2} \\
& \ddot{x}_{G}=-2 l \omega_{1}^{2} \cos \varphi_{1}-l 4 \omega_{1}^{2} \cos \varphi_{2} \\
& y_{G}=2 l \sin \varphi_{1}+l \sin \varphi_{2} \\
& \dot{y}_{G}=2 l \omega_{1} \cos \varphi_{1}+l 2 \omega_{1} \cos \varphi_{2} \\
& \ddot{x}_{G}=-2 l \omega_{1}^{2} \sin \varphi_{1}-l 4 \omega_{1}^{2} \sin \varphi_{2}
\end{aligned}
$$

Using the addition theorem it follows

$$
\begin{aligned}
v_{G}^{2}=\dot{x}_{G}^{2}+\dot{y}_{G}^{2}= & \left(2 l \omega_{1}\right)^{2}+\left(l 2 \omega_{1}\right)^{2}+ \\
& +8 l^{2} \omega_{1}^{2}\left(\sin \varphi_{1} \sin \varphi_{2}+\cos \varphi_{1} \cos \varphi_{2}\right) \\
= & 8 l^{2} \omega_{1}^{2}\left[1+\cos \left(\varphi_{2}-\varphi_{1}\right)\right] \\
\leadsto \quad v_{G}= & 4 l \omega_{1} \cos \frac{\varphi_{2}-\varphi_{1}}{2}
\end{aligned}, \begin{aligned}
&= \\
& a_{G}^{2}=\ddot{x}_{G}^{2}+\ddot{y}_{G}^{2}=\left(2 l \omega_{1}^{2}\right)^{2}+\left(4 l \omega_{1}^{2}\right)+ \\
&+16 l^{2} \omega_{1}^{4}\left(\cos \varphi_{1} \cos \varphi_{2}+\sin \varphi_{1} \sin \varphi_{2}\right) \\
&= 4 l^{2} \omega_{1}^{2}\left[5+4 \cos \left(\varphi_{2}-\varphi_{1}\right)\right] \\
& \leadsto \quad a_{G}= \\
& 2 l \omega_{1}^{2} \sqrt{5+4 \cos \left(\varphi_{2}-\varphi_{1}\right)} .
\end{aligned}
$$

Remark: The instantaneous center of rotation Π of the gondola cross is located on the perpendicular to v_{A}. Because A rotates about 0 its velocity is $v_{A}=2 l \omega_{1}$. Due to the rotation of the gondola cross $\overline{A G}$ with the angular velocity $\omega_{2}=2 \omega_{1}$ about Π at the same time the relation $v_{A}=\rho_{A} \omega_{2}$ is valid. Thus, it follows $\rho_{A}=l$ and therefore

$$
\underline{\underline{v_{G}}}=\omega_{2} \rho_{G}=\underline{\underline{\omega_{2} 2 l \cos \frac{\varphi_{2}-\varphi_{1}}{2}}}
$$

P4.7 Problem 4.7 The crank $D C$ of a crank-rocker mechanism rotates with constant angular velocity ω.

Determine the vertical velocity of point B and the angular velocity $\dot{\psi}$ of the bar $A B$.

Solution From the sketch we obtain the geometric relation

$$
\begin{aligned}
& r \sin \varphi=(l+r \cos \varphi) \tan \psi \\
& \leadsto \tan \psi=\frac{r \sin \varphi}{l+r \cos \varphi} .
\end{aligned}
$$

This leads to

$$
y_{B}=a \sin \psi=a \frac{\tan \psi}{\sqrt{1+\tan ^{2} \psi}}=\operatorname{ar} \frac{\sin \varphi}{\sqrt{l^{2}+r^{2}+2 r l \cos \varphi}}
$$

and for the vertical velocity, using $\dot{\varphi}=\omega$, to

$$
\begin{aligned}
\underline{\underline{\dot{y}_{B}}} & =\operatorname{ar} \frac{\omega \cos \varphi \sqrt{l^{2}+r^{2}+2 r l \cos \varphi}-\frac{\sin \varphi(-2 r l \omega \sin \varphi)}{2 \sqrt{l^{2}+r^{2}+2 r l \cos \varphi}}}{\left(l^{2}+r^{2}+2 r l \cos \varphi\right)} \\
& =\operatorname{ar\omega \frac {(r+l\operatorname {cos}\varphi)(l+r\operatorname {cos}\varphi)}{(l^{2}+r^{2}+2rl\operatorname {cos}\varphi)^{3/2}}} .
\end{aligned}
$$

The angular velocity $\dot{\psi}$ is obtained by differentiating $\tan \psi$ with respect to time:

$$
\begin{aligned}
& \frac{1}{\cos ^{2} \psi} \dot{\psi}=\frac{r \cos \varphi(l+r \cos \varphi)-r \sin \varphi(-r \sin \varphi)}{(l+r \cos \varphi)^{2}} \omega \\
& \quad \leadsto \quad \dot{\psi}=\frac{r(r+l \cos \varphi)}{(l+r \cos \varphi)^{2}} \frac{1}{1+\tan ^{2} \psi} \omega=\frac{r(r+l \cos \varphi)}{\underline{l^{2}+r^{2}+2 r l \cos \varphi}} \omega
\end{aligned}
$$

Problem 4.8 In a part of a freight lift, three wheels are connected by unrolling vertical cables.

Determine the velocities and angular velocities of the wheels (2) and (3) when wheel (1) rotates with a given angular velocity ω_{1}.

Solution Wheel (1) rotates about the fixed point Π_{1}. Therefore, the velocities of points A and B are given by

$$
v_{A}=R \omega_{1}, \quad v_{B}=r \omega_{1}
$$

Since the cables unroll, v_{A} and v_{B} will be transferred unchanged to the wheel (2). Thus, from

$$
v_{A}=v_{2}+r_{2} \omega_{2} \quad \text { and } \quad v_{B}=v_{2}-r_{2} \omega_{2}
$$

follows with $r_{2}=(R-r) / 2$

$$
\begin{aligned}
& \underline{\underline{v_{2}}}=\frac{1}{2}\left(v_{A}+v_{B}\right)=\underline{\underline{\frac{1}{2}}(R+r) \omega_{1}} \\
& \underline{\underline{\omega_{2}}}=\frac{v_{A}-v_{2}}{r_{2}}=\underline{\underline{\omega_{1}}}
\end{aligned}
$$

In the same way we obtain for wheel (3) from

$$
v_{2}=v_{3}+r_{3} \omega_{3}, \quad v_{C}=v_{3}-r_{3} \omega_{3}
$$

with $r_{3}=2 r+r_{2}=(R+3 r) / 4$ and
$v_{C}=-r \omega_{1}$ the results

$$
\begin{aligned}
& \underline{\underline{v_{3}}}=\frac{1}{2}\left(v_{2}+v_{C}\right)=\underline{\underline{\frac{1}{4}(R-r) \omega_{1}}} \\
& \underline{\underline{\omega_{3}}}=\frac{v_{2}-v_{3}}{r_{3}}=\underline{\underline{\omega_{1}}}
\end{aligned}
$$

Remark: The instantaneous centers of rotation Π_{1}, Π_{2} and Π_{3} are located on one and the same straight line.

P4.9 Problem 4.9 Point A of a bar of length l is guided horizonally with the constant velocity v_{0} and slides at B across a post.

Determine the magnitudes of velocity and acceleration of point
 P of the bar.

Solution The angular velocity $\dot{\varphi}$ of the bar is determined from

$$
\cot \varphi=\frac{x}{a}
$$

by time differentiation with $\dot{x}=-v_{0}$ as

$$
-\frac{\dot{\varphi}}{\sin ^{2} \varphi}=\frac{\dot{x}}{a} \quad \leadsto \quad \dot{\varphi}=\frac{v_{0}}{a} \sin ^{2} \varphi .
$$

Second differentiation leads to the angular acceleration

$$
\ddot{\varphi}=\frac{v_{0}}{a} 2 \sin \varphi \cos \varphi \dot{\varphi}=2\left(\frac{v_{0}}{a}\right)^{2} \sin ^{3} \varphi \cos \varphi .
$$

Then, by using the cosine rule, we obtain from the velocity diagram

$$
\begin{aligned}
& v_{P}^{2}=v_{0}^{2}+(l \dot{\varphi})^{2}-2 v_{0} l \dot{\varphi} \cos \left(\frac{\pi}{2}-\varphi\right) \\
\leadsto & \xlongequal{v_{P}=v_{0} \sqrt{1+\left(\frac{l}{a}\right)^{2} \sin ^{4} \varphi-2\left(\frac{l}{a}\right) \sin ^{3} \varphi}}
\end{aligned}
$$

The acceleration diagram yields

$$
\begin{aligned}
\underline{\underline{a_{P}}} & =\sqrt{l^{2} \dot{\varphi}^{4}+l^{2} \ddot{\varphi}^{2}} \\
& =l\left(\frac{v_{0}}{a}\right)^{2} \sqrt{\sin ^{8} \varphi+4 \sin ^{6} \varphi \cos ^{2} \varphi} \\
& ==l\left(\frac{v_{0}}{a}\right)^{2} \sin ^{3} \varphi \sqrt{\sin ^{2} \varphi+4 \cos ^{2} \varphi}
\end{aligned}
$$

Remark: For $\varphi=\pi / 2 \quad$ (point A arrives at the post) follows

$$
v_{P}=v_{0}(l / a-1)=\left.(l-a) \dot{\varphi}\right|_{\pi / 2} .
$$

Problem 4.10 The wheel of a crank drive rotates with constant angular velocity ω.

Determine graphically the velocity and acceleration of the horizontally moving point B for the angle $\alpha=30^{\circ}$.

Solution From the layout diagram the directions of the different velocity and acceleration terms are taken: $v_{A} \perp$ to $r, v_{B A} \perp$ to l, v_{B} horizontal, a_{A} in direction of $r, a_{B A}^{n}$ in direction of l, $a_{B A}^{t} \perp$ to l, a_{B} horizontal. With this knowledge, the velocity and acceleration diagrams can be constructed.

$$
\begin{aligned}
& v_{B A}=0.92 r \omega=l \dot{\varphi} \\
& \leadsto \quad \dot{\varphi}=\frac{0.92 r}{l} \omega=0.31 \omega,
\end{aligned}
$$

velocity diagram

$$
\underline{\underline{v_{B}}=0.81 r \omega} .
$$

scale:

P4.11 Problem 4.11 Point A of the mechanism has in the displayed position the velocity v_{A}.

Determine
a) for the 4 bars the instantaneous centers of rotation,
b) the velocities of points B and C as well as the angular velocities of all 4 bars.
Given: $a=30 \mathrm{~cm}, b=40 \mathrm{~cm}, v_{A}=1 \mathrm{~m} / \mathrm{s}$.

Solution a) The centers Π_{3} (bar 3) and Π_{4} (bar 4) are the hinged supports D and E, respectively. The centers Π_{1} (bar 1) and Π_{2} (bar 2) are given by the intersections of the perpendiculars to v_{A} and $v_{B}\left(v_{B} \perp\right.$ $E B)$ and to v_{B} and v_{C} $\left(v_{C} \perp D C\right)$, respectively (see figure).

$v_{A}=\overline{\Pi_{1} A} \omega_{1}=b \omega_{1}$
$\leadsto \quad \underline{\underline{\omega_{1}=\frac{v_{A}}{b}}}=\frac{1 \mathrm{~m}}{0.4 \mathrm{~ms}}=\underline{\underline{2.5 \mathrm{~s}^{-1}}}$,
$\underline{\underline{v_{B}}}=\overline{\Pi_{1} B} \omega_{1}=\underline{\underline{\sqrt{a^{2}+b^{2}}} \omega_{1}=1.25 \mathrm{~m} / \mathrm{s}}$.
For bar 4 and for bar 2 we obtain

$$
\begin{aligned}
& v_{B}=\overline{\overline{\Pi_{2} B}} \omega_{4}=\sqrt{a^{2}+b^{2}} \omega_{4}, \quad \omega_{4}=\omega_{2} \\
& \leadsto \omega_{2}=\underline{\omega_{2}=\omega_{4}=\omega_{1}=2.5 \mathrm{~s}^{-1}}, \\
& \underline{\underline{v_{C}}}=\overline{\overline{\Pi_{2} C} \omega_{2}=\underline{(a+b) \omega_{2}=} 1.75 \mathrm{~m} / \mathrm{s} .}
\end{aligned}
$$

Finally, the rotation of bar 3 about Π_{3} leads to

$$
v_{C}=\overline{\Pi_{3} C} \omega_{3}=a \omega_{3} \quad \leadsto \quad \xlongequal{\omega_{3}=\frac{v_{C}}{a}=5.83 \mathrm{~s}^{-1}},
$$

Problem 4.12 A toggle lever is driven with the angular velocity ω.

Determine graphically the velocities of the points B, C and D for a certain angle β by using the centers of instaneous rotation.

Given.: $l=30 \mathrm{~cm}, a=40 \mathrm{~cm}, r=15 \mathrm{~cm}$,

$$
b=50 \mathrm{~cm}, \beta=70^{\circ}, \quad \omega=4 \mathrm{~s}^{-1}
$$

Solution The centers of rotation $\Pi_{1}($ bar $C D)$ and Π_{2} (bar $B C$) are given by the intersections of the perpendiculars to $v_{D}=r \omega\left(v_{D} \perp E D\right)$ and $v_{C}\left(v_{C} \perp A C\right)$ and to v_{C} and v_{B}, respectively. This leads in the layout diagram to the depicted representation.

With the chosen scale, we read from the figure

$$
v_{C} \cong 0.9 v_{D}, \quad v_{B} \cong 1.0 v_{D}
$$

and obtain with

$$
\underline{\underline{v_{D}}}=r \omega=\underline{\underline{0.6 \mathrm{~m} / \mathrm{s}}}
$$

the velocities

$$
\underline{\underline{v_{C}} \cong 0.5 \mathrm{~m} / \mathrm{s}}, \quad \underline{\underline{v_{B}} \cong 0.6 \mathrm{~m} / \mathrm{s}}
$$

P4.13 Problem 4.13 A mechanism consists of three pin connected bars which are moved by a rope that is hauled in with constant speed v_{s}.

Determine graphically the velocities of the points B and C for $\varphi=60^{\circ}$.

Solution We first solve the problem in the layout diagram by using the instantaneous center of rotation Π of bar $C B . \Pi$ is given by the intersection of the perpendiculars to $v_{B}\left(v_{B} \perp A B\right)$ and $v_{C}\left(v_{C} \perp C D\right.$, magnitude of v_{C} determinable from $\left.v_{S}\right)$.

From the figure we obtain by inspection:

$$
\underline{\underline{v_{C}} \cong 1.4 v_{S}}, \quad \underline{\underline{v_{B} \cong 5.4 v_{S}}}
$$

The same result can be obtained by using the velocity diagram. Here, the directions of the velocities (e.g. $\left.v_{B C} \perp C B\right)$ are taken from the layout diagram:
$\underline{\underline{v_{C}} \cong 1.4 v_{S}}$,
$\underline{\underline{v_{B} \cong 5.4 v_{S}}}$.

Problem 4.14 At the rolling wheel, a bar is connected by a hinge. The bar slides at B along an inclined plane.

Determine graphically the velocities and accelerations of B and C for the displayed position and the given constant speed v_{0} of the wheel.

Solution From the layout diagram, using the centers of instantaneous rotation Π_{1} (wheel) and Π_{2} (bar), the directions of the velocities and accelerations can be obtained. With that information the velocity diagram is drawn ($v_{A} \perp \overline{\Pi_{1} A}$, $\left.v_{B A} \perp \overline{B A}, v_{B} \perp \overline{\Pi_{2} B}\right)$ and it follows by inspection

$$
\begin{gathered}
\underline{v_{B} \cong 3.6 v_{0}}, \quad \xlongequal{v_{C} \cong 2.1 v_{0}}, \\
v_{B A}=3.5 v_{0} \\
v_{C A}=1.7 v_{0} \leadsto a_{B A}^{n}=\frac{v_{B A}^{2}}{5 r}=2.45 \frac{v_{0}^{2}}{r}, \\
a_{C A}^{n}=\frac{v_{C A}^{2}}{2.5 r}=1.2 \frac{v_{0}^{2}}{r}
\end{gathered}
$$

The acceleration diagram leads with $a_{A}=v_{0}^{2} / r$ and $a_{C A}^{t}=a_{B A}^{t} / 2$ to

$$
\underline{\underline{a_{B}=8.4 \frac{v_{0}^{2}}{r}}},
$$

$$
\underline{\underline{a_{C}=4.7 \frac{v_{0}^{2}}{r}} .}
$$

P4.15 Problem 4.15 From the tire of a car (radius $r=30 \mathrm{~cm}$, speed $v_{0}=$ $108 \mathrm{~km} / \mathrm{h})$ separates a stone at point $P\left(\alpha=30^{\circ}\right)$. Determine
a) the velocity components of the stone at the instant of separation,
b) the maximum flight height and the flying distance of the stone,
c) the minimum distance of a following car with same speed so that it will not be hit by the stone.

The height of the separation point above street level, the air drag and the length of the
 following car can be disregarded.

Solution a) The velocity components are determined by using the center of instantaneous rotation Π. We obtain with $\omega=v_{0} / r, a=$ $2 r \sin \frac{\alpha}{2}, \beta=\pi / 2-\alpha / 2=75^{\circ}$ and the conversion $1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& v=\omega a=2 v_{0} \sin \frac{\alpha}{2}=15.53 \mathrm{~m} / \mathrm{s}, \\
& \underline{v_{x}=v \cos \beta=4.02 \mathrm{~m} / \mathrm{s}} \\
& \underline{\underline{v_{y}=v \sin \beta=v_{0} \sin \alpha}=15 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

b) The flight height h, flight distance d and flight time t_{d} follow from the equations for projectile motion (see page 32)

$$
\begin{aligned}
& \underline{\underline{h}}=v^{2} \sin ^{2} \beta /(2 g)=\underline{v_{0}^{2} \sin ^{2} \alpha /(2 g)=11.47 \mathrm{~m}} \\
& \underline{\underline{d}}=v^{2} \sin 2 \beta / g=4 v_{0}^{2} \sin ^{2} \frac{\alpha}{2} \sin \alpha / g=12.29 \mathrm{~m}
\end{aligned},
$$

c) The minimum distance c follows from the distances covered during the flight time t_{d}. The following car and the stone arrive at the same time at the same position if:

$$
v_{0} t_{w}=c+w, \quad \leadsto \quad \underline{c}=v_{0} t_{w}-w=\underline{\underline{79.45} \mathrm{~m}} .
$$

Problem 4.16 In a gear, the shaft (1) (radius $3 a$) and the ring (2) (radius $6 a)$ rotate with constant angular velocities ω_{1} and ω_{2} about the point 0 . They drive at contact points B and C without slip a stepped shaft (3) (radii a and $2 a$).
a) Determine the magnitude of velocity v_{A} and the acceleration ω_{3} of the shaft (3).
b) Determine the velocity $\boldsymbol{v}_{P}(t)$ and the acceleration $\boldsymbol{a}_{P}(t)$ of point P.

Solution a) The velocities of shaft (1) and ring (2) at the contact points follow from the angular velocities:

$$
v_{C}=3 a \omega_{1}, \quad v_{B}=6 a \omega_{2}
$$

The shaft (3) carries out a plane motion. Accordingly, its velocities at the contact points can be described by

$$
v_{C}=v_{A}-a \omega_{3}, \quad v_{B}=v_{A}+2 a \omega_{3}
$$

Equating the particular velocities leads to

$$
\underline{\underline{v_{A}}=2 a\left(\omega_{1}+\omega_{2}\right)}, \quad \underline{\underline{\omega_{3}=2 \omega_{2}-\omega_{1}}}
$$

b) Point A undergoes a circular motion with the angular velocity

$$
\omega_{A}=v_{A} / 4 a=\left(\omega_{1}+\omega_{2}\right) / 2
$$

If we choose a fixed coordinate system with the origin 0 , the position vector of P is given by

$$
\boldsymbol{r}_{P}=\left[-4 a \sin \omega_{A} t+2 a \cos \omega_{3} t\right] \boldsymbol{e}_{x}+\left[4 a \cos \omega_{A} t+2 a \sin \omega_{3} t\right] \boldsymbol{e}_{y}
$$

From that, the velocity and acceleration are determined by differentiation:
$\underline{\boldsymbol{v}_{P}=\left[-4 a \omega_{A} \cos \omega_{A} t-2 a \omega_{3} \sin \omega_{3} t\right] \boldsymbol{e}_{x}+\left[-4 a \omega_{A} \sin \omega_{A} t+2 a \omega_{3} \cos \omega_{3} t\right] \boldsymbol{e}_{y}}$,
$\underline{\underline{\boldsymbol{a}_{P}}=\left[4 a \omega_{A}^{2} \sin \omega_{A} t-2 a \omega_{3}^{2} \cos \omega_{3} t\right] \boldsymbol{e}_{x}+\left[-4 a \omega_{A}^{2} \cos \omega_{A} t-2 a \omega_{3}^{2} \sin \omega_{3} t\right] \boldsymbol{e}_{y}}$.

Chapter 5
Kinetics of a Rigid Body

Spatial Motion: The motion of a rigid body is described by the Principle of Linear Momentum and the Principle of Angular Momentum.

Principle of Linear Momentum:

$$
\frac{\mathrm{d} \boldsymbol{p}}{\mathrm{~d} t}=\boldsymbol{F} \quad \text { or } \quad m \boldsymbol{a}_{c}=\boldsymbol{F}
$$

where $\quad \boldsymbol{F}=$ sum of external forces, $m=$ total mass of the body, $\boldsymbol{a}_{c}=$ acceleration of the center of mass, $\boldsymbol{p}=m \boldsymbol{v}_{c}=$ linear momentum.

Principle of Angular Momentum:

$$
\frac{\mathrm{d} \boldsymbol{L}^{(0)}}{\mathrm{d} t}=\boldsymbol{M}^{(0)}
$$

where $\boldsymbol{M}^{(0)}=$ sum of external moments with respect to 0 ,
$\boldsymbol{L}^{(0)}=\int \boldsymbol{r}_{0 P} \times \boldsymbol{v} \mathrm{d} m=$ moment of momentum with respect to 0 .

If the reference point 0 is space fixed or the center of mass, the angular momentum can be expressed by

$$
\begin{aligned}
& \boldsymbol{L}^{(0)}=\boldsymbol{\Theta}^{(0)} \cdot \boldsymbol{\omega} \\
& \text { where } \quad \boldsymbol{\omega}=\text { angular velocity, } \\
& \boldsymbol{\Theta}^{0}=\left(\begin{array}{lll}
\Theta_{x} & \Theta_{x y} & \Theta_{x z} \\
\Theta_{y x} & \Theta_{y} & \Theta_{y z} \\
\Theta_{z x} & \Theta_{z y} & \Theta_{z}
\end{array}\right)=\text { inertia tensor }
\end{aligned}
$$

Euler's Equations (Principle of angular momentum with respect to a body-fixed principal-axes system):

$$
\begin{aligned}
& \Theta_{1} \dot{\omega}_{1}-\left(\Theta_{2}-\Theta_{3}\right) \omega_{2} \omega_{3}=M_{1} \\
& \Theta_{2} \dot{\omega}_{2}-\left(\Theta_{3}-\Theta_{1}\right) \omega_{3} \omega_{1}=M_{2} \\
& \Theta_{3} \dot{\omega}_{3}-\left(\Theta_{1}-\Theta_{2}\right) \omega_{1} \omega_{2}=M_{3} \\
& \text { where } \quad \begin{aligned}
1,2,3 & =\text { principal axes, } \\
\Theta_{i} & =\text { principal moments of inertia, } \\
\omega_{i} & =\text { components of angular velocity. }
\end{aligned}
\end{aligned}
$$

Moments of Inertia (see also volume 1, chapter 9)
Axial Moments of Inertia:
$\Theta_{x}=\int\left(y^{2}+z^{2}\right) \mathrm{d} m$,
$\Theta_{y}=\int\left(z^{2}+x^{2}\right) \mathrm{d} m$,
$\Theta_{z}=\int\left(x^{2}+y^{2}\right) \mathrm{d} m$,
$\Theta_{a}=\int r^{2} \mathrm{~d} m=m r_{g}^{2}$,
where $r_{g}=$ radius of gyration.

Parallel-Axis Theorem:

$$
\Theta_{a}=\Theta_{c}+m r_{c}^{2}
$$

Products of Inertia: $\quad \Theta_{x y}=\Theta_{y x}=-\int x y \mathrm{~d} m$,

$$
\begin{aligned}
& \Theta_{y z}=\Theta_{z y} \\
&=-\int y z \mathrm{~d} m \\
& \Theta_{z x}=\Theta_{x z}=-\int z x \mathrm{~d} m
\end{aligned}
$$

Table of some moments of inertia:

slender rod		$\Theta_{c}=\frac{m l^{2}}{12}, \quad \Theta_{A}=\frac{m l^{2}}{3}$
cylinder		$\Theta_{c}=\frac{m r^{2}}{2}, \quad \Theta_{b}=\frac{m}{12}\left(3 r^{2}+l^{2}\right)$
thin disc		$\Theta_{a}=\frac{m r^{2}}{2}, \quad \Theta_{b}=\frac{m r^{2}}{4}$
sphere	\xrightarrow{r}	$\Theta_{c}=\frac{2}{5} m r^{2}$
cuboid		$\Theta_{c}=\frac{m}{12}\left(a^{2}+b^{2}\right)$

Rotation about a Fixed Axis $a-a$:
Angular momentum

$$
L_{a}=\Theta_{a} \omega
$$

Principle of Angular Momentum

$$
\Theta_{a} \dot{\omega}=\sum M_{a} .
$$

Time integration yields

$$
\Theta_{a} \omega-\Theta_{a} \omega_{0}=\int_{t_{0}}^{t} \sum M_{a} \mathrm{~d} \tau=\widehat{M}_{a}
$$

Plane Motion: Principles of linear and angular momentum (equations of motion)

$$
\begin{aligned}
& m \ddot{x}_{c}=\sum F_{x} \\
& m \ddot{y}_{c}=\sum F_{y} \\
& \Theta_{A} \dot{\omega}=\sum M_{A}
\end{aligned}
$$

where $A=$ fixed point or center of mass C. Time integration yields (principles of linear and angular impulse and momentum)

$$
\begin{aligned}
m \dot{x}_{c}-m \dot{x}_{c 0} & =\widehat{F}_{x}, \quad m \dot{y}_{c}-m \dot{y}_{c 0}=\widehat{F}_{y}, \quad \Theta_{A} \omega-\Theta_{A} \omega_{0}=\widehat{M}_{A} \\
\text { where } \quad \widehat{F}_{x} & =\int_{t_{0}}^{t} \sum F_{x} \mathrm{~d} \tau, \quad \widehat{F}_{y}=\int_{t_{0}}^{t} \sum F_{y} \mathrm{~d} \tau, \quad \widehat{M}_{A}=\int_{t_{0}}^{t} \sum M_{A} \mathrm{~d} \tau .
\end{aligned}
$$

Work-Energy Theorem (see also chapter 2):

$$
T-T_{0}=U
$$

Conservation of Energy Law (valid for conservative forces):

$$
T+V=T_{0}+V_{0}=\mathrm{const}
$$

Kinetic Energy (plane motion):

$$
T=\frac{1}{2} m v_{c}^{2}+\frac{1}{2} \Theta_{c} \omega^{2} .
$$

Special case pure Translation:

$$
T=\frac{1}{2} m v_{c}^{2}
$$

$$
\text { Special case Rotation about a fixed axis } a-a: \quad T=\frac{1}{2} \Theta_{a} \omega^{2}
$$

Problem 5.1 A block (mass m) slides downwards an inclined rough plane.

Determine the acceleration. Under what circumstances tilt over is excluded?

Solution As long as the block does not tilt, its motion is pure translation. With $\dot{\omega}=0$, $\ddot{y}_{c}=0$, the equations of motion are given by

$$
\begin{array}{rlrl}
\swarrow: & m \ddot{x}_{c} & =m g \sin \alpha-\mu N, \\
\searrow & : & 0 & =N-m g \cos \alpha, \\
\check{C}: & & 0 & =d N-a \mu N .
\end{array}
$$

Thus, it follows

P5.1

$$
\underline{\underline{\ddot{x}_{c}}=g(\sin \alpha-\mu \cos \alpha)}, \quad d=a \mu .
$$

Tilt over is excluded for

$$
d \leq b \quad \leadsto \quad \underline{\underline{\mu \leq b / a}} .
$$

Problem 5.2 A homogeneous bar is hinged supported at point A of a vehicle and loosely rests at B.

Determine the reaction forces at A and B when the vehicle moves with an acceleration a.

Solution For pure translation with $\ddot{x}_{c}=a$,
 $\ddot{y}_{c}=0$ and $\dot{\omega}=0$, the equations of motion read
$\rightarrow: \quad m a=A_{x}-\frac{1}{2} \sqrt{2} B$,
$\uparrow: \quad 0=A_{y}+\frac{1}{2} \sqrt{2} B-m g$,
$\stackrel{\curvearrowright}{C}: \quad 0=\frac{1}{2} \sqrt{2} l A_{y}-\frac{1}{2} \sqrt{2} l A_{x}-(\sqrt{2} c-l) B$.

This leads to

$$
B=m g\left(1-\frac{a}{g}\right) \frac{l}{2 c}
$$

$$
\overline{\overline{A_{x}}=m g\left[\frac{a}{g}+\sqrt{2}\left(1-\frac{a}{g}\right) \frac{l}{4 c}\right]}, \quad \begin{aligned}
& A_{y}=m g\left[1-\sqrt{2}\left(1-\frac{a}{g}\right) \frac{l}{4 c}\right] .
\end{aligned}
$$

Remarks: - For $a=g$ follows $B=0, \quad A_{x}=A_{y}=m g$.

- For $a>g$ the bar lifts off at B.

P5.3 Problem 5.3 A homogeneous disk (weight $W=m g$) of quadratic parabola shape is fixed in the position α by three pin-supported bars.

Determine the acceleration of the disk and the forces in the bars immediately after the mounting by bar 3 is released.

Solution When the mounting by bar 3 is released, the disk starts to move purely translationally. Therefore, the acceleration is the same for all points of the disk and it can be described by the acceleration of point B which rotates about the support A :

$$
\begin{aligned}
& \boldsymbol{a}=\boldsymbol{a}_{B}=\dot{v} \boldsymbol{e}_{t}+\frac{v^{2}}{\rho_{A}} \boldsymbol{e}_{n} . \\
& \text { nmediately after the constraint is released, } \\
& \text { ne velocity is still zero, i.e., } \\
& v=0 \quad \boldsymbol{a}=\dot{v} \boldsymbol{e}_{t},
\end{aligned}
$$

and the equations of motion read

$$
\begin{array}{ll}
\searrow: & m \dot{v}=m g \sin \alpha \\
\nearrow: & 0=S_{1}+S_{2}-m g \cos \alpha \\
\text { Ґ. } & 0=\frac{3}{5} a S_{1} \cos \alpha+\frac{3}{8} b S_{1} \sin \alpha-\frac{2}{5} a S_{2} \cos \alpha+\frac{3}{8} b S_{2} \sin \alpha .
\end{array}
$$

From these three equations, we obtain
$\underline{\underline{\dot{v}}=g \sin \alpha}$,

$$
\begin{aligned}
& \overline{S_{1}=\frac{m g}{16}\left(8 \cos \alpha-5 \frac{b}{a} \sin \alpha\right)}, \\
& \underline{\underline{S_{2}=\frac{m g}{16}\left(8 \cos \alpha+5 \frac{b}{a} \sin \alpha\right)} .} . . . ~
\end{aligned}
$$

Remark: For $\tan \alpha=8 a / 5 b$ the force in bar 1 is $S_{1}=0$. In this case, the action line of S_{2} passes through C.

Problem 5.4 A car with mass m brakes on a rough road without sliding.

Determine the possible braking decelerations a_{b} when the brakes are effective only to the front wheels or only to the rear wheels. The mass of the wheels shall be disregarded.

Solution When the brakes affect only the front wheels, we obtain with $\ddot{x}_{c}=-a_{b}, \ddot{y}_{c}=0, \dot{\omega}=0$ from

$$
\begin{array}{rlrl}
\rightarrow: & -m a_{b} & =-H_{1} \\
\uparrow: & 0 & =N_{1}+N_{2}-m g \\
\curvearrowleft & & 0 & =l N_{1}-l N_{2}-h H_{1}
\end{array}
$$

the forces

$$
H_{1}=m a_{b}, \quad N_{1}=\frac{1}{2} m\left(g+\frac{h}{l} a_{b}\right), \quad N_{2}=\frac{1}{2} m\left(g-\frac{h}{l} a_{b}\right) .
$$

The conditions that the front wheels do not slide and the rear wheels do not lift off lead to

$$
\begin{array}{ll}
H_{1} \leq \mu_{0} N_{1} & \leadsto \\
a_{b} \leq g \frac{l}{h} \frac{1}{\left[2 l /\left(\mu_{0} h\right)-1\right]}=\kappa_{1} \\
N_{2} \geq 0 & \leadsto \\
a_{b} \leq g \frac{l}{h}=\kappa_{2} .
\end{array}
$$

For $\mu_{0} h / l \leq 1$, we have $\kappa_{1} \leq \kappa_{2}$, i.e. it results $a_{b} \leq \kappa_{1}$, while for $\mu_{0} h / l \geq 1$ follows $a_{b} \leq \kappa_{2}$.

When the brake is effective to the rear wheels, the force H_{1} in the equations of motion must be replaced by H_{2}. The resulting forces N_{1} and N_{2} then remain unchanged and we obtain $H_{2}=m a_{b}$. Thus, from $H_{2} \leq \mu_{0} N_{2}$ and $N_{2} \geq 0$ follows

$$
\underline{\underline{a_{b} \leq g \frac{l}{h} \frac{1}{\left[2 l /\left(\mu_{0} h\right)+1\right]}}=\kappa_{3}, \quad a_{b} \leq g \frac{l}{h}=\kappa_{2} . . . ~ . ~}
$$

Because of $\kappa_{3}<\kappa_{2}$ in this case always $a_{b} \leq \kappa_{3}$ holds.

Remarks:

- The maximum deceleration is for front brakes always greater $\left(\kappa_{1}, \kappa_{2}>\right.$ κ_{3}).
- The case $\mu_{0} h / l \geq 1$ does not occur for an ordinary car under real conditions. Therefore, κ_{2} is non-relevant.

P5.5 Problem 5.5 The mass density of a graded shaft is given by $\rho=\rho_{0}\left(1+\kappa r^{2}\right)$.

Determine the moments of inertia Θ_{x} and Θ_{y}.

$1 \rightarrow l / 2 \rightarrow-l / 2 \rightarrow$

Solution We first consider a thin circular disk element of thickness $\mathrm{d} x$. With the mass

$$
\mathrm{d} m=\rho 2 \pi r \mathrm{~d} r \mathrm{~d} x=2 \pi \rho_{0}\left(r+\kappa r^{3}\right) \mathrm{d} r \mathrm{~d} x
$$

of a chosen ring, we obtain for its mass and its moment of inertia

$$
\begin{aligned}
\mathrm{d} m^{*} & =\int_{0}^{R} \mathrm{~d} m=\frac{\pi}{2} \rho_{0} R^{2} \mathrm{~d} x\left(2+\kappa R^{2}\right), \\
\mathrm{d} \Theta_{x}^{*} & =\int_{0}^{R} r^{2} \mathrm{~d} m=2 \pi \rho_{0} \mathrm{~d} x \int_{0}^{R}\left(r^{3}+\kappa r^{5}\right) \mathrm{d} r \\
& =2 \pi \rho_{0} \mathrm{~d} x\left(\frac{R^{4}}{4}+\kappa \frac{R^{6}}{6}\right)=\frac{\pi}{6} \rho_{0} \mathrm{~d} x R^{4}\left(3+2 \kappa R^{2}\right) .
\end{aligned}
$$

Because of the radial symmetry of the disk, its axial moments of inertia with respect to x, y and z (axes through the center of mass of the disk) are simply related by $\mathrm{d} \Theta_{x}^{*}=\mathrm{d} \Theta_{y}^{*}+\mathrm{d} \Theta_{z}^{*}=2 \mathrm{~d} \Theta_{y}^{*}$, i.e.,

$$
\mathrm{d} \Theta_{y}^{*}=\frac{\pi}{12} \rho_{0} \mathrm{~d} x R^{4}\left(3+2 \kappa R^{2}\right) .
$$

To calculate Θ_{x} and Θ_{y}, we now integrate over the length l, where we use the parallel-axis theorem to obtain Θ_{y} :

$$
\begin{aligned}
\underline{\underline{\Theta_{x}}} & =\int_{-l / 2}^{l / 2} \mathrm{~d} \Theta_{x}^{*}=\frac{\pi}{6} \rho_{0} R^{4}\left(3+2 \kappa R^{2}\right) \int_{-l / 2}^{l / 2} \mathrm{~d} x=\underline{\underline{\frac{\pi}{6}} \rho_{0} l R^{4}\left(3+2 \kappa R^{2}\right)}, \\
\underline{\underline{\Theta_{y}}} & =\int_{-l / 2}^{l / 2}\left(\mathrm{~d} \Theta_{y}^{*}+x^{2} \mathrm{~d} m^{*}\right) \\
& =\frac{\pi}{12} \rho_{0} R^{4}\left(3+2 \kappa R^{2}\right) \int_{-l / 2}^{l / 2} \mathrm{~d} x+\frac{\pi}{2} \rho_{0} R^{2}\left(2+\kappa R^{2}\right) \int_{-l / 2}^{l / 2} x^{2} \mathrm{~d} x \\
& =\underline{\underline{\frac{\pi}{24}} \rho_{0} l R^{2}\left[2 R^{2}\left(3+2 \kappa R^{2}\right)+l^{2}\left(2+\kappa R^{2}\right)\right] .}
\end{aligned}
$$

Remark: For $\kappa=0$ follow with $m=\rho_{0} \pi R^{2} l$ the results of the homogeneous shaft: $\Theta_{x}=m R^{2} / 2, \quad \Theta_{y}=m\left(3 R^{2}+l^{2}\right) / 12$.

Problem 5.6 Determine the moments of inertia Θ_{a} of rings (density ρ) with different circular and half-circular cross sections of radius $c=R / 2$.

Solution The moment of inertia is defined as $\int r^{2} \mathrm{~d} m$. We first choose an appropriate ring-shaped mass element of radius r and thickness $\mathrm{d} r$. From the sketch follows

$$
\begin{aligned}
& \mathrm{d} m=\rho 2 \pi r 2 c \cos \varphi \mathrm{~d} r, \\
& r=R+c \sin \varphi, \\
& \mathrm{~d} r=c \cos \varphi \mathrm{~d} \varphi, \\
& \leadsto \mathrm{~d} m=4 \pi \rho c^{2}(R+c \sin \varphi) \cos ^{2} \varphi \mathrm{~d} \varphi .
\end{aligned}
$$

Depending on the cross section, we must integrate over different domains:

$$
\begin{aligned}
\Theta_{a}= & 4 \pi \rho c^{2} \int_{\varphi_{1}}^{\varphi_{2}}(R+c \sin \varphi)^{3} \cos ^{2} \varphi \mathrm{~d} \varphi \\
= & 4 \pi \rho c^{2} \int_{\varphi_{1}}^{\varphi_{2}}\left[R^{3} \cos ^{2} \varphi+3 R^{2} c \sin \varphi \cos ^{2} \varphi\right. \\
& \left.\quad+3 R c^{2} \sin ^{2} \varphi \cos ^{2} \varphi+c^{3} \sin ^{3} \varphi \cos ^{2} \varphi\right] \mathrm{d} \varphi \\
= & 4 \pi \rho c^{2}\left[R^{3} \frac{1}{4}(2 \varphi+\sin 2 \varphi)-R^{2} c \cos ^{3} \varphi\right. \\
& \left.\quad+3 R c^{2}\left(\frac{1}{8} \varphi-\frac{1}{32} \sin 4 \varphi\right)+c^{3}\left(-\frac{1}{3} \cos ^{3} \varphi+\frac{1}{5} \cos ^{5} \varphi\right)\right]_{\varphi_{1}}^{\varphi_{2}}
\end{aligned}
$$

In case A, we obtain with $\varphi_{1}=-\pi / 2, \varphi_{2}=+\pi / 2, m_{A}=2 \pi^{2} \rho c^{2} R$

$$
\underline{\underline{\Theta_{a}^{A}}}=4 \pi \rho c^{2}\left(\frac{\pi}{2} R^{3}+\frac{3 \pi}{8} R c^{2}\right)=\underline{\left.\underline{m_{A}\left(R^{2}+\frac{3}{4}\right.} c^{2}\right)=1.19 m_{A} R^{2}} .
$$

Case B with $\varphi_{1}=0, \varphi_{2}=+\pi / 2, m_{B}=\pi^{2} \rho c^{2}(R+4 c /(3 \pi))$ (note: $m_{B} \neq m_{A} / 2$!) leads to

$$
\underline{\underline{\Theta_{a}^{B}}}=4 \pi \rho c^{2}\left(\frac{\pi}{4} R^{3}+R^{2} c+\frac{3 \pi}{16} R c^{2}+\frac{2}{15} c^{3}\right)=\underline{\underline{1.52 m_{B} R^{2}}} .
$$

Finally, in case C follows for symmetry reasons $\left(m_{C}=m_{A} / 2\right)$)

$$
\underline{\Theta_{a}^{C}=\Theta^{A} / 2=m_{C}\left(R^{2}+\frac{3}{4} c^{2}\right)=1.19 m_{C} R^{2} .}
$$

P5.7 Problem 5.7 Determine the moments of inertia Θ_{x} and Θ_{y} for a homogeneous cone of mass m.

Solution It is practical to use as mass element the sketched circular disk. With its radius

$$
a=x \frac{R}{H}
$$

and mass

$$
\mathrm{d} m=\rho \pi a^{2} \mathrm{~d} x=\rho \pi \frac{R^{2}}{H^{2}} x^{2} \mathrm{~d} x
$$

its moment of inertia $\mathrm{d} \Theta_{x}$ is given by

$$
\mathrm{d} \Theta_{x}=\frac{1}{2} a^{2} \mathrm{~d} m=\rho \frac{\pi}{2}\left(\frac{R}{H}\right)^{4} x^{4} \mathrm{~d} x
$$

Thus, for the cone follows by integration

$$
\Theta_{x}=\int \mathrm{d} \Theta_{x}=\rho \frac{\pi}{2}\left(\frac{R}{H}\right)^{4} \int_{0}^{H} x^{4} \mathrm{~d} x=\rho \frac{\pi}{10} R^{4} H
$$

The moment of inertia of the circular disk element with respect to the y^{\prime}-axis is given by

$$
\mathrm{d} \Theta_{y^{\prime}}=\frac{1}{4} a^{2} \mathrm{~d} m=\rho \frac{\pi}{4}\left(\frac{R}{H}\right)^{4} x^{4} \mathrm{~d} x .
$$

Therefore, we obtain for the cone by using the parallel-axis theorem

$$
\begin{aligned}
\Theta_{y} & =\int\left[\mathrm{d} \Theta_{y^{\prime}}+x^{2} \mathrm{~d} m\right]=\rho \pi\left(\frac{R}{H}\right)^{2} \int_{0}^{H}\left[\frac{1}{4}\left(\frac{R}{H}\right)^{2} x^{4}+x^{4}\right] \mathrm{d} x \\
& =\rho \frac{\pi}{5} R^{2} H\left(\frac{1}{4} R^{2}+H^{2}\right)
\end{aligned}
$$

Finally, introducing the mass $m=\rho \pi R^{2} H / 3$, the moments of inertia can be written as

$$
\underline{\underline{\Theta_{x}=\frac{3}{10} m R^{2}}, \quad \underline{\underline{\Theta_{y}}=\frac{3}{5} m\left(\frac{1}{4} R^{2}+H^{2}\right)} .}
$$

Problem 5.8 Determine the moments of inertia Θ_{x} and $\Theta_{x y}$ for a homogeneous rectangular thin plate (mass m, thickness $t \ll a, b$).

Solution For the thin plate exists a direct relation between the mass moments of inertia and the area moments of inertia (see vol. 1, chapter $9)$. With $\mathrm{d} m=\rho t \mathrm{~d} A$ and $z \ll x, y$, it is given by

$$
\begin{aligned}
& \Theta_{x}=\int\left(y^{2}+z^{2}\right) \mathrm{d} m \cong \rho t \int y^{2} \mathrm{~d} A=\rho t I_{x} \\
& \Theta_{x y}=-\int x y \mathrm{~d} m=-\rho t \int x y \mathrm{~d} A=\rho t I_{x y}
\end{aligned}
$$

Consequently, also the transformation relations (see vol. 1, chapter 9) can be applied. In this way, we find for the axes x and y which are inclined by $-\varphi$ to the pricipal axes 1 and 2 :

$$
\begin{aligned}
\Theta_{x} & =\frac{\Theta_{1}+\Theta_{2}}{2}+\frac{\Theta_{1}-\Theta_{2}}{2} \cos 2 \varphi \\
\Theta_{x y} & =\frac{\Theta_{1}-\Theta_{2}}{2} \sin 2 \varphi
\end{aligned}
$$

With

$$
\begin{aligned}
& \Theta_{1}=\rho t \frac{a b^{3}}{12}=\frac{m b^{2}}{12}, \quad \Theta_{2}=\frac{m a^{2}}{12} \\
& \cos \varphi=\frac{a}{\sqrt{a^{2}+b^{2}}}, \quad \sin \varphi=\frac{b}{\sqrt{a^{2}+b^{2}}}, \\
& \cos 2 \varphi=2 \cos ^{2} \varphi-1=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}, \quad \sin 2 \varphi=2 \sin \varphi \cos \varphi=\frac{2 a b}{a^{2}+b^{2}},
\end{aligned}
$$

we finally obtain

$$
\begin{aligned}
& \underline{\underline{\Theta_{x}}}=\frac{m\left(a^{2}+b^{2}\right)}{24}+\frac{m\left(b^{2}-a^{2}\right)}{24} \frac{\left(a^{2}-b^{2}\right)}{\left(a^{2}+b^{2}\right)}=\frac{m a^{2} b^{2}}{\underline{\underline{6\left(a^{2}+b^{2}\right)}}} \\
& \underline{\underline{\Theta_{x y}}}=\frac{m\left(b^{2}-a^{2}\right)}{24} \frac{2 a b}{a^{2}+b^{2}}=\underline{\underline{-\frac{m\left(a^{2}-b^{2}\right) a b}{12\left(a^{2}+b^{2}\right)}}}
\end{aligned}
$$

Remark: For $a=b$ follows $\Theta_{x}=m a^{2} / 12$ and $\Theta_{x y}=0$.

P5.9 Problem 5.9 An angled homogeneous bar of weight $W=m g$ is pin-supported at A.

Formulate the equation of motion.

Solution The motion of the system is a pure rotation about the fixed point A due to the moment of the weight. The weight acts at the center of mass C. Its coordinates follow from (see volume 1, chapter 2)

$$
\begin{aligned}
& x_{c}=\frac{\frac{2 m}{3} a}{m}=\frac{2}{3} a \\
& y_{c}=\frac{\frac{m}{3} \frac{a}{2}+\frac{2 m}{3} a}{m}=\frac{5}{6} a \\
& \leadsto \quad l=\sqrt{x_{s}^{2}+y_{s}^{2}}=\frac{\sqrt{29}}{6} a .
\end{aligned}
$$

To describe the motion, it is advantageous to introduce the angle φ, which characterizes the displaced position relative to the equilibrium position (where C is located below A). The principle of angular momentum then reads

$$
\stackrel{\curvearrowright}{A}: \quad \Theta_{A} \ddot{\varphi}=M_{A},
$$

$l \sin \varphi$
where

$$
\begin{aligned}
& \Theta_{A}=\frac{m}{3} \frac{a^{2}}{3}+\left[\frac{(2 a)^{2}}{12}+\left(a^{2}+a^{2}\right) \frac{2}{3} m\right]=\frac{5}{3} m a^{2} \\
& M_{A}=-m g l \sin \varphi=-\frac{\sqrt{29}}{6} m g a \sin \varphi .
\end{aligned}
$$

This leads to the equation of motion

$$
\frac{5}{3} m a^{2} \ddot{\varphi}=-\frac{\sqrt{29}}{6} m g a \sin \varphi \quad \leadsto \underline{\underline{\ddot{\varphi}+\frac{\sqrt{29}}{10} \frac{g}{a} \sin \varphi=0} .}
$$

Remarks: From $\ddot{\varphi}(\varphi)$ the angular velocity $\dot{\varphi}(\varphi)$ can be determined by integration (see page 4). For small displacements $(\varphi \ll 1, \sin \varphi \approx \varphi)$, the equation of motion describes a harmonic vibration (see chapter 7).

Problem 5.10 A circular disk (weight
P5.10 $W=m g$), which rotates with the angular velocity ω_{0} about the vertical axis, is put on a rough horizontal plane (coefficient of kinetic friction μ).

After what time T and after how many turns u the disk comes to rest? Assume that the contact pressure is constant.

Solution The rotation about the fixed axis is described by

$$
\Theta \dot{\omega}=M
$$

Here, the moment M is determined from the friction forces distributed over the circular area. From

$$
\begin{array}{ll}
\mathrm{d} A=r \mathrm{~d} \alpha \mathrm{~d} r, & m=\rho \pi r_{0}^{2} h \\
\mathrm{~d} N=\rho g h \mathrm{~d} A, & \mathrm{~d} R=\mu \mathrm{d} N
\end{array}
$$

follows (the friction moment is directed opposite to the angular velocity)

$$
M=-\int r \mathrm{~d} R=-\mu \rho g h \int_{0}^{r_{0}} \int_{0}^{2 \pi} r^{2} \mathrm{~d} \alpha \mathrm{~d} r=-\frac{2}{3} \mu r_{0} m g
$$

Thus, with $\Theta=m r_{0}^{2} / 2$ and $\dot{\omega}=\ddot{\varphi}$, the equation of motion leads to

$$
\ddot{\varphi}=-\frac{4}{3} \frac{\mu g}{r_{0}} .
$$

Twice integration and considering the initial conditions $\varphi(0)=0$, $\dot{\varphi}(0)=\omega_{0}$ yields

$$
\dot{\varphi}=\omega_{0}-\frac{4}{3} \frac{\mu g}{r_{0}} t, \quad \varphi=\omega_{0} t-\frac{2}{3} \frac{\mu g}{r_{0}} t^{2}
$$

From the condition $\dot{\varphi}(T)=0$, we finally obtain

$$
T=\frac{3}{4} \frac{\omega_{0} r_{0}}{\mu g},
$$

$$
\varphi(T)=\frac{3}{8} \frac{\omega_{0}^{2} r_{0}}{\mu g} \quad \leadsto \quad \underline{\underline{u}}=\frac{\varphi(T)}{2 \pi}=\underline{\underline{\frac{3}{16 \pi}} \frac{\omega_{0}^{2} r_{0}}{\mu g}}
$$

P5.11 Problem 5.11 A flywheel which initially rotates with speed n (rpm) about a fixed axis is brought to standstill in time t_{b} by a constant braking moment M_{b}.

Determine the mass moment of inertia Θ and the number of revolutions u of the flywheel during braking.

Solution During braking, the motion is described by

$$
\Theta \ddot{\varphi}=-M_{b} \quad \leadsto \quad \ddot{\varphi}=-\frac{M_{b}}{\Theta}
$$

(Note that the braking moment acts opposite to the positive direction of rotation.) Twice integration and considering the initial conditions

$$
\dot{\varphi}(0)=\omega_{0}=2 \pi n, \quad \varphi(0)=0
$$

leads to

$$
\begin{aligned}
\dot{\varphi} & =-\frac{M_{B}}{\Theta} t+2 \pi n \\
\varphi & =-\frac{M_{B}}{2 \Theta} t^{2}+2 \pi n t
\end{aligned}
$$

From the condition $\dot{\varphi}\left(t_{b}\right)=0$ (standstill) we obtain

$$
\begin{array}{ll}
0=-\frac{M_{b}}{\Theta} t_{b}+2 \pi n & \leadsto \\
\underline{\underline{\Theta}=\frac{M_{b} t_{b}}{2 \pi n}} \\
\varphi_{b}=\varphi\left(t_{b}\right)=-\frac{M_{b} t_{b}^{2}}{2 \Theta}+2 \pi n t_{b}=\pi n t_{b} & \leadsto \\
\underline{\underline{u}}=\frac{\varphi_{b}}{2 \pi}=\underline{\underline{\frac{1}{2}} n t_{b}} .
\end{array}
$$

The problem can be solved easier by using the principle of angular impulse and momentum and the work-energy theorem. With $\omega\left(t_{b}\right)=0$ and $\omega_{0}=2 \pi n$, they lead to

$$
\begin{aligned}
& \int_{0}^{t_{b}} M \mathrm{~d} \tau=\Theta \omega\left(t_{b}\right)-\Theta \omega_{0}: \quad-M_{b} t_{b}=-\Theta \omega_{0} \leadsto \underline{\underline{\Theta=\frac{M_{b} t_{b}}{2 \pi n}}} \\
& T-T_{0}=W: \quad-\frac{1}{2} \Theta \omega_{0}^{2}=-M_{b} \varphi_{b} \quad \leadsto \quad \underline{\underline{u}}=\frac{\varphi_{b}}{2 \pi}=\underline{\underline{\frac{1}{2}} n t_{b}}
\end{aligned}
$$

Problem 5.12 On a homogeneous cylindrical roll of mass m_{1}, an inextensible rope is wound up, which is connected with a body (2) of weight $W_{2}=m_{2} g$.

Determine the acceleration of body (2) and the force S in the rope when the roll can rotate about A without friction. The mass of the rope can be disregarded.

Solution We separate the roll and body (2) by cutting the rope, choose positive directions of motion and formulate the equation of motion for the roll

$$
\stackrel{\curvearrowright}{A}: \quad \Theta \ddot{\varphi}=r S
$$

and the body (2)

$$
\downarrow: \quad m_{2} \ddot{x}=m_{2} g-S
$$

The 2 equations of motion containing 3 unknowns ($\ddot{x}, \ddot{\varphi}$ and S) must be suplemented by a 3rd equation describing the kinematic constraint. The velocity $r \dot{\varphi}$ of point B of the roll and the velocity \dot{x} of body (2) and the rope, respectively, must be equal:

$$
\dot{x}=r \dot{\varphi} \quad \leadsto \quad \ddot{x}=r \ddot{\varphi} .
$$

This leads with $\Theta=m_{1} r^{2} / 2$ to

$$
\underline{\underline{x}=g \frac{2 m_{2}}{m_{1}+2 m_{2}}}, \quad \underline{\underline{\underline{2}}} .
$$

Remark: In the static case (roll is blocked) the force in the rope is $S_{\mathrm{St}}=m_{2} g$, while in dynamics $S<S_{\mathrm{St}}$ holds.

P5.13 Problem 5.13 Two homogeneous drums (weights $m_{1} g, m_{2} g$), initially rotating with angular velocity ω_{0} in the same direction, are placed on top of each other, such that they slide against each other (coefficient of dynamic friction μ).
After which time t_{R}, the drums roll from one another and what are then their angular velocities?

Solution During sliding the equations of motion read
(1) $\stackrel{\curvearrowleft}{B}: \quad \Theta_{1} \ddot{\varphi}_{1}=-r_{1} R$,
(2) $\stackrel{\curvearrowleft}{A}: \quad \Theta_{2} \ddot{\varphi}_{2}=-r_{2} R$,

$$
\uparrow: \quad 0=N-m_{2} g
$$

With the friction law $R=\mu N$ and $\Theta_{1}=m_{1} r_{1}^{2} / 2$, $\Theta_{2}=m_{2} r_{2}^{2} / 2$ and considering the initial conditions, it follows

$$
\begin{aligned}
& \ddot{\varphi}_{1}=-\frac{2 \mu g}{r_{1}} \frac{m_{2}}{m_{1}} \quad \leadsto \dot{\varphi}_{1}=-\frac{2 \mu g}{r_{1}} \frac{m_{2}}{m_{1}} t+\omega_{0}, \\
& \ddot{\varphi}_{2}=-\frac{2 \mu g}{r_{2}} \quad \leadsto \quad \dot{\varphi_{2}}=-\frac{2 \mu g}{r_{2}} t+\omega_{0} .
\end{aligned}
$$

The drums stop sliding and start rolling from each other when their velocities at the contact point are the same at time $t=t_{R}$:

$$
r_{1} \dot{\varphi}_{1}=-r_{2} \dot{\varphi}_{2}
$$

Note that positive angular velocities of the drums (1) and (2) lead to opposite directed velocities at the contact point! Thus, we obtain

$$
t_{R}=\frac{\omega_{0}\left(r_{1}+r_{2}\right)}{2 \mu g\left(1+\frac{m_{2}}{1}\right)}
$$

and for the angular velocities

$$
\xlongequal{\dot{\varphi}_{1}\left(t_{R}\right)=\omega_{0} \frac{\frac{m_{1}}{m_{2}}-\frac{r_{2}}{r_{1}}}{1+\frac{m_{1}}{m_{2}}},} \quad \xlongequal{\underline{\dot{\varphi}_{2}\left(t_{R}\right)=-\omega_{0} \frac{\frac{r_{1} m_{1}}{r_{2} m_{2}}-1}{1+\frac{m_{1}}{m_{2}}}} .}
$$

Remark: For $m_{1} / m_{2}=r_{2} / r_{1}$ both drums come to standstill.

Problem 5.14 At an elevator, the cable drum (2) is driven by the wheel (1) without slip.

Determine the acceleration a of the elevator (3) (weight $W=m g$) and the cable force S, when the wheel is driven by a constant moment M_{0}. The weight of the cable can be neglected.

Solution We separate the system and obtain for the different parts
(1) $\stackrel{\curvearrowright}{A}: \Theta_{1} \dot{\omega}_{1}=M_{0}-r_{1} H$,
(2) $\stackrel{\curvearrowleft}{B}: \quad \Theta_{2} \dot{\omega}_{2}=r_{2} H-r_{2} S$,
(3) $\uparrow: \quad m a=m \dot{v}=S-m g$.

Since the velocity of point C of the drum (2) and the velocity of the elevator (inextensible cable) as well as the velocities of D and E (no slip) must be equal, the kinematic relations are given by

$$
\begin{aligned}
& r_{2} \omega_{2}=v \quad \leadsto \quad r_{2} \dot{\omega}_{2}=\dot{v}=a \\
& r_{2} \omega_{2}=r_{1} \omega_{1} \quad \leadsto \quad r_{2} \dot{\omega}_{2}=r_{1} \dot{\omega}_{1}
\end{aligned}
$$

Thus, we have 5 equations for the 5 unknowns $\left(\dot{\omega}_{1}, \dot{\omega}_{2}, a, H, S\right)$. Solving for a and S leads to

$$
a=\frac{\frac{M_{0}}{r_{1}}-m g}{m+\frac{\Theta_{1}}{r_{1}^{2}}+\frac{\Theta_{2}}{r_{2}^{2}}}, \quad S=m \frac{\frac{M_{0}}{r_{1}}+\left(\frac{\Theta_{1}}{r_{1}^{2}}+\frac{\Theta_{2}}{r_{2}^{2}}\right) g}{m+\frac{\Theta_{1}}{r_{1}^{2}}+\frac{\Theta_{2}}{r_{2}^{2}}} .
$$

Remark: For $M_{0}=r_{1} m g$ we obtain $a=0$ (statics) and $S=H=m g$.

P5.15 Problem 5.15 A homogeneous drum (weight $W=m g$) rolls downwards a rough inclined plane (coefficient of static friction μ_{0}).

Determine its acceleration a. Under which circumstances pure rolling is possible?

Solution With $\ddot{y}_{c}=0$ and $\ddot{x}_{c}=a$, we obtain from the principle of linear momentum

$$
\begin{array}{lc}
\searrow: & m a=m g \sin \alpha-H \\
\nearrow: & 0=N-m g \cos \alpha
\end{array}
$$

and from the principle of angular momen-
 tum (with respect to the center of mass C)

$$
\stackrel{\curvearrowright}{C}: \quad \Theta_{c} \dot{\omega}=r H .
$$

After introducing $\Theta_{c}=m r^{2} / 2$ and the kinematic constraint (rolling without slip)

$$
r \omega=\dot{x}_{c} \quad \leadsto \quad r \dot{\omega}=\ddot{x}_{c}=a \quad \leadsto \quad \dot{\omega}=\frac{a}{r}
$$

solving for the acceleration yields

$$
a=\frac{2}{3} g \sin \alpha .
$$

The condition for non-slipping at the contact point of drum and plane (pure rolling) is given by

$$
H \leq H_{0}=\mu_{0} N
$$

With

$$
H=m g \sin \alpha-m a=\frac{1}{3} m g \sin \alpha, \quad N=m g \cos \alpha
$$

it leads to

$$
\mu_{0} \geq \frac{1}{3} \tan \alpha .
$$

Problem 5.16 A homogeneous bowling ball
($r=0.11 \mathrm{~m}$) is placed with an initial velocity $v_{0}=7 \mathrm{~m} / \mathrm{s}$ and an angular velocity $\omega_{0}=10 \mathrm{~s}^{-1}$ in a rough bowling alley (kinetic friction coefficient $\mu=0.15$).

Determine the covered distance x_{r} until the ball rolls without slipping and its final speed
 v_{r}.

Solution We draw the free-body diagram and introduce positive directions for distance and angular velocity. After contact, the ball initially is slipping. Thus, the principles of linear and angular momentum yield

$$
\begin{array}{ll}
\rightarrow: & m \ddot{x}=-R \\
\uparrow: & 0=N-m g \quad \leadsto \quad N=m g \\
\curvearrowright & \\
\stackrel{C}{C}: & \Theta_{c} \dot{\omega}=r R .
\end{array}
$$

We now introduce $\Theta_{c}=2 m r^{2} / 5$ and the friction law $R=\mu N=\mu m g$ and subsequently integrate the 1 st and the 2 nd equation. Taking into account the initial conditions $v(t=0)=v_{0}, x(t=0)=0, \omega(t=0)=$ $-\omega_{0}$ leads to

$$
v=\dot{x}=v_{0}-\mu g t, \quad x=v_{0} t-\frac{1}{2} \mu g t^{2}, \quad \omega=\frac{5 \mu g}{2 r} t-\omega_{0}
$$

When the ball is rolling, v and ω are related by

$$
v=r \omega
$$

from which the time t_{r} follows for onset of rolling:

$$
v_{0}-\mu g t_{r}=\frac{5}{2} \mu g t_{r}-\omega_{0} \quad \leadsto \quad t_{r}=\frac{2\left(v_{0}+\omega_{0} r\right)}{7 \mu g}=1.57 \mathrm{~s}
$$

Finally, this leads to

$$
\begin{aligned}
& \underline{\underline{x_{r}}}=x\left(t_{r}\right)=v_{0} t_{r}-\frac{1}{2} \mu g t_{r}^{2}=\underline{\underline{9.17 \mathrm{~m}}} \\
& \underline{\underline{v_{r}}}=v\left(t_{r}\right)=v_{0}-\mu g t_{r}=\underline{\underline{4.69 \mathrm{~m} / \mathrm{s}}}
\end{aligned}
$$

P5.17 Problem 5.17 A cable drum on a rough surface is set into rolling motion (no slipping) by pulling with a force F.

Determine the pulling angles α, for which the acceleration a_{c} takes extreme values.
What are the associated maximum forces, such that no slipping occurs?
Given: $W=m g, \Theta_{c}=3 r_{1}^{2} m, r_{1}=2 r_{2}, \mu_{0}$.

Solution The principles of linear and angular momentum yield

$$
\begin{array}{lrl}
\rightarrow: & m a_{c} & =-F \cos \alpha+H, \\
\uparrow: & 0 & =N-m g+F \sin \alpha, \\
\stackrel{\curvearrowright}{C}: & \Theta_{c} \dot{\omega} & =-r_{1} H+r_{2} F .
\end{array}
$$

In connection with the kinematic condition for rolling,

$$
v_{c}=r_{1} \omega \quad \leadsto \quad \dot{v}_{c}=a_{c}=r_{1} \dot{\omega}
$$

we obtain the acceleration and forces

$$
\begin{aligned}
& a_{c}=-\frac{F}{m} \frac{\cos \alpha-r_{2} / r_{1}}{1+\frac{\Theta_{s}}{r_{1}^{2} m}}=-\frac{F}{8 m}(2 \cos \alpha-1) \\
& H=F \frac{\frac{\Theta_{c} \cos \alpha}{r_{1}^{2} m}+\frac{r_{2}}{r_{1}}}{1+\frac{\Theta_{c}}{r_{1}^{2} m}}=\frac{F}{8}(6 \cos \alpha+1), \quad N=m g-F \sin \alpha
\end{aligned}
$$

The extreme values of a_{c} follow from $\mathrm{d} a_{c} / \mathrm{d} \alpha=0$, i.e. $\sin \alpha=0$, as

$$
\underline{\underline{\alpha_{1}=0}} \sim \underline{\underline{a_{c 1}=-F / 8 m}}, \quad \underline{\underline{\alpha_{2}=\pi}} \sim \underline{\underline{a_{c 2}=3 F / 8 m}} .
$$

The associated maximum forces F_{i} are calculated via the maximum force of static friction:

$$
|H|\left(\alpha_{i}\right)=H_{0}=\mu_{0} N\left(\alpha_{i}\right) \leadsto \underline{\underline{F_{1}=\frac{8}{7} \mu_{0} m g},} \quad \underline{\underline{F_{2}=\frac{8}{5} \mu_{0} m g}}
$$

Remark: For $\alpha_{1}=0$, the drum moves to the left and for $\alpha_{2}=\pi$ to the right.

Problem 5.18 A homogeneous plate of weight $W=m g$ is symmetrically supported.
a) Determine the support reactions at A at motion initiation when the support B suddenly is removed.
b) What distance d must be chosen, such that the vertical force at A does not change in comparison to the static case?

Solution a) Immediately after removing support B the principles of linear and angular momentum (with respect to the fixed point A) yield

$$
\begin{array}{ll}
\rightarrow: & m \ddot{x} c=A_{H} \\
\uparrow: & m \ddot{y}_{c}=A_{V}-m g \\
\curvearrowright & \\
A: & \Theta_{A} \dot{\omega}=d m g
\end{array}
$$

where

$$
\Theta_{A}=\Theta_{c}+m r_{c}^{2}=\frac{m}{12}\left(4 b^{2}+4 h^{2}\right)+m\left(d^{2}+h^{2}\right)=\frac{m}{3}\left(b^{2}+4 h^{2}+3 d^{2}\right) .
$$

Since the center of mass C is purely rotating about A, its acceleration components at initiation of motion $\left(v_{c}=0\right)$ are given by

$$
a_{n}=\frac{v_{C}^{2}}{r_{C}}=0, \quad a_{c}=a_{t}=r_{c} \dot{\omega}
$$

and we obtain with $\sin \alpha=h / r_{c}, \cos \alpha=d / r_{c}$

$$
\ddot{x}_{c}=a_{c} \sin \alpha=h \dot{\omega}, \quad \ddot{y}_{c}=-a_{c} \cos \alpha=-d \dot{\omega} .
$$

Solving for the support reaction leads to

$$
\xlongequal{A_{H}=W \frac{3 d h}{b^{2}+4 h^{2}+3 d^{2}}}, \quad \xlongequal{A_{V}=W \frac{b^{2}+4 h^{2}}{b^{2}+4 h^{2}+3 d^{2}}} .
$$

b) Before removing support B (statics), the vertical force at A is $A_{V}=$ $W / 2$. Thus, from the condition that there is not change, it follows

$$
\frac{W}{2}=W \frac{b^{2}+4 h^{2}}{b^{2}+4 h^{2}+3 d^{2}} \quad \leadsto \quad \begin{gathered}
d=\frac{1}{\sqrt{3}} \sqrt{b^{2}+4 h^{2}}
\end{gathered}
$$

Remark: Because of $d \leq b$, the force A_{V} remains unchanged only for $b \geq \sqrt{2} h$.

P5.19 Problem 5.19 An initially upright bar (weight $W=m g$) starts to move, where it slides without friction along the wall and the base.

Determine the angular velocity $\ddot{\varphi}(\varphi)$.
What forces are acting on the wall and the base?

Solution As long as the bar slides along the wall and the base, the principles of linear and angular momentum (with respect to C) yield

$$
\begin{array}{ll}
\rightarrow: & m \ddot{x}_{c}=B \\
\uparrow: & m \ddot{y}_{c}=A-m g \\
\curvearrowleft & \curvearrowleft \\
C & \Theta_{c} \ddot{\varphi}=A \frac{l}{2} \sin \varphi-B \frac{l}{2} \cos \varphi
\end{array}
$$

where $\Theta_{c}=m l^{2} / 12$.
The kinematic quantities x_{c}, y_{c} and φ are related by

$$
x_{c}=\frac{l}{2} \sin \varphi, \quad y_{c}=\frac{l}{2} \cos \varphi
$$

After differentiation one obtains

$$
\begin{aligned}
\dot{x}_{c} & =\frac{l}{2} \dot{\varphi} \cos \varphi, & \dot{y}_{c} & =-\frac{l}{2} \dot{\varphi} \sin \varphi \\
\ddot{x}_{c} & =\frac{l}{2}\left(\ddot{\varphi} \cos \varphi-\dot{\varphi}^{2} \sin \varphi\right), & \ddot{y}_{c} & =-\frac{l}{2}\left(\ddot{\varphi} \sin \varphi+\dot{\varphi}^{2} \cos \varphi\right) .
\end{aligned}
$$

Thus, we have 5 equations for the 5 unknowns $\left(\ddot{x}_{c}, \ddot{y} c, \ddot{\varphi}, A, B\right)$. Solving for $\ddot{\varphi}$ leads to

$$
\underline{\ddot{\varphi}=\frac{3 g}{2 l} \sin \varphi} .
$$

The forces are determined by

$$
\begin{aligned}
B & =m \ddot{x}_{c}=m \frac{l}{2}\left(\ddot{\varphi} \cos \varphi-\dot{\varphi}^{2} \sin \varphi\right), \\
A & =m g+m \ddot{y}_{c}=m g-m \frac{l}{2}\left(\ddot{\varphi} \sin \varphi+\dot{\varphi}^{2} \cos \varphi\right) .
\end{aligned}
$$

Here $\dot{\varphi}$ is required. We can calculate it from

$$
\ddot{\varphi}=\frac{\mathrm{d} \dot{\varphi}}{\mathrm{~d} \varphi} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=\frac{\mathrm{d} \dot{\varphi}}{\mathrm{~d} \varphi} \dot{\varphi} \quad \leadsto \quad \dot{\varphi} \mathrm{~d} \dot{\varphi}=\ddot{\varphi} \mathrm{d} \varphi
$$

by integration:

$$
\frac{1}{2} \dot{\varphi}^{2}=\int \ddot{\varphi} \mathrm{d} \varphi+C=\frac{3 g}{2 l} \int \sin \varphi \mathrm{~d} \varphi+C=-\frac{3 g}{2 l} \cos \varphi+C
$$

The integration constant C follows from the initial condition $\dot{\varphi}(\varphi=0)=0$ as $C=3 g / 2 l$, which leads to

$$
\dot{\varphi}^{2}=\frac{3 g}{l}(1-\cos \varphi) .
$$

Thus, the froces are given by

$$
\begin{aligned}
& B=\frac{3}{4} W(3 \cos \varphi-2) \sin \varphi, \\
& \hline \hline A=\frac{1}{4} W\left(9 \cos ^{2} \varphi-6 \cos \varphi+1\right) .
\end{aligned}
$$

Remarks:

- The force B is zero for $\varphi_{0}=0$ and $3 \cos \varphi_{1}-2=0 \leadsto \varphi_{1}=48.2^{\circ}$.
- For $\varphi>\varphi_{1}$, the bar would loose contact with the wall at B. Therefore, the results remain valid only if the support in B is such that it can transmit a tension force.
- The force A is zero for $\cos \varphi=\frac{1}{3} \leadsto \varphi \approx 70.5^{\circ}$.

P5.20 Problem 5.20 A homogeneous bar (weight $W=m g$), initially at rest in the sketched position, is released and slides down along a frictionless semi-circular path.
a) What are the velocity and acceleration of the center of mass in dependence on the position of the
 bar?
b) Determine the forces at the contact points.

Solution a) The center of mass C moves along a circular path with radius

$$
l=\sqrt{R^{2}-\frac{R^{2}}{4}}=\frac{\sqrt{3}}{2} R
$$

about 0 . Thus, its velocity and acceleration are uniquely described by $\dot{\varphi}$ and $\ddot{\varphi}$.

Note that $\dot{\varphi}$ and $\ddot{\varphi}$ are identical to the angular velocity and angular acceleration of the bar!
The principle of angular momentum (pure rotation about 0)

$$
\stackrel{\curvearrowleft}{0}: \quad \Theta_{0} \ddot{\varphi}=m g l \cos \varphi
$$

yields with

$$
\Theta_{0}=\frac{m R^{2}}{12}+m l^{2}=\frac{5}{6} m R^{2}
$$

the angular acceleration

$$
\underline{\underline{\varphi}=\frac{3 \sqrt{3}}{5} \frac{g}{R} \cos \varphi} .
$$

From this result, using $\dot{\varphi} \mathrm{d} \dot{\varphi}=\ddot{\varphi} \mathrm{d} \varphi$ and the initial condition $\dot{\varphi}(\varphi=$ $\left.30^{\circ}\right)=0$, the angular velocity is determined by integration:

$$
\begin{gathered}
\frac{1}{2} \dot{\varphi}^{2}=\int_{30^{\circ}}^{\varphi} \ddot{\varphi}(\bar{\varphi}) \mathrm{d} \bar{\varphi}=\frac{3 \sqrt{3}}{5} \frac{g}{R}\left(\sin \varphi-\frac{1}{2}\right) \\
\\
\sim \quad \stackrel{\dot{\varphi}=\sqrt{\frac{3 \sqrt{3}}{5} \frac{g}{R}(2 \sin \varphi-1)}}{ } .
\end{gathered}
$$

b) To determine the forces, we apply the principle of linear momentum in direction of \boldsymbol{e}_{n} and the principle of angular momentum with respect to C :

$$
\begin{aligned}
& \nearrow: m a_{n}=A \cos 30^{\circ}+B \cos 30^{\circ}-m g \sin \varphi, \\
& \stackrel{\curvearrowleft}{C}: \quad \Theta_{c} \ddot{\varphi}=\frac{R}{2} A \cos 30^{\circ}-\frac{R}{2} B \cos 30^{\circ} \text {. }
\end{aligned}
$$

With $a_{n}=l \dot{\varphi}^{2}=\frac{9}{10} g(2 \sin \varphi-1), \quad \Theta_{c}=m R^{2} / 12$ and the already known $\ddot{\varphi}$ we obtain
$\underline{\underline{A=\frac{m g}{10}\left[\frac{\sqrt{3}}{3}(28 \sin \varphi-9)+\cos \varphi\right]},} \underline{\underline{B=\frac{m g}{10}\left[\frac{\sqrt{3}}{3}(28 \sin \varphi-9)-\cos \varphi\right]} .}$

The quantities $\dot{\varphi}$ and $\ddot{\varphi}$ can alternatively be determined from the energy conservation law $T+V=T_{0}+V_{0}$. Choosing the zero level of potential energy at the lowermost point of the circular path and using $v_{c}=l \dot{\varphi}=\sqrt{3} R \dot{\varphi} / 2$, the different energy terms are given by

$$
\begin{aligned}
& T_{0}=0 \\
& V_{0}=m g\left(R-l \sin 30^{\circ}\right)=m g R\left(1-\frac{\sqrt{3}}{4}\right) \\
& T=\frac{1}{2} m v_{S}^{2}+\frac{1}{2} \Theta_{c} \dot{\varphi}^{2}=\frac{5}{12} m R^{2} \dot{\varphi}^{2} \\
& V=m g(R-l \sin \varphi)=m g R\left(1-\frac{\sqrt{3}}{2} \sin \varphi\right)
\end{aligned}
$$

and we obtain

$$
\dot{\varphi}^{2}=\frac{3 \sqrt{3}}{5} \frac{g}{R}(2 \sin \varphi-1) .
$$

Differentiation with respect to time finally leads to

$$
2 \dot{\varphi} \ddot{\varphi}=\frac{3 \sqrt{3}}{5} \frac{g}{R} 2 \dot{\varphi} \cos \varphi \quad \leadsto \quad \underline{\underline{\varphi}=\frac{3 \sqrt{3}}{5} \frac{g}{R} \cos \varphi} .
$$

P5.21 Problem 5.21 The displayed system consists of two homogeneous wheels of mass m that are connected by an inextensible cable with a body of weight $W_{1}=5 \mathrm{mg}$.

Determine the acceleration of the body and the cable forces, when the system freely moves and sliding occurs nowhere. The mass of the
 cable can be disregarded.

Solution We separate the system and write down the equations of motion for the different parts:
(1) $\downarrow: 5 m \dot{v}_{1}=5 m g-S_{1}$,
(2) $\stackrel{\curvearrowright}{A}: \quad \Theta_{2} \dot{\omega}_{2}=r S_{1}-r S_{2}$,
(3) $\nearrow: m \dot{v}_{3}=S_{2}-H-m g \sin 30^{\circ}$,

$$
\stackrel{\curvearrowright}{B}: \quad \Theta_{3} \dot{\omega}_{3}=r H
$$

where

$$
\Theta_{2}=\Theta_{3}=\frac{m r^{2}}{2}
$$

With the kinematic relations (constraint by the cable)

$$
\begin{aligned}
& v_{1}=r \omega_{2}=v_{3}=r \omega_{3} \\
& \leadsto \quad \dot{\omega}_{2}=\frac{\dot{v}_{1}}{r}, \quad \dot{v}_{3}=\dot{v}_{1}, \quad \dot{\omega}_{3}=\frac{\dot{v}_{1}}{r}
\end{aligned}
$$

we have 7 equations for the 7 unknowns $\left(\dot{v}_{1}, \dot{v}_{3}, \dot{\omega}_{2}, \dot{\omega}_{3}, S_{1}, S_{2}, H\right)$. Solving yields for the acceleration

$$
\dot{v}_{1}=\frac{9}{14} g
$$

and for the forces in the cable

$$
\underline{\underline{S_{1}}=\frac{50}{28} m g}, \quad \underline{\underline{S_{2}}=\frac{41}{28} m g} .
$$

Problem 5.22 Two bodies (weights $m_{1} g>m_{2} g$) are connected by a cable which is passed over a wheel (moment of inertia Θ_{0}). The coefficient of kinetic friction between the body and the inclined plane is μ.

Determine the velocity of the bodies in dependence of their position. Assume that they are initially at rest
 and that there is no slip between cable and wheel.

Solution The velocity can be determined easiest by using the workenergy theorem

$$
T-T_{0}=U
$$

With the kinematic relations (constraint by the cable, no slipping)

$$
\begin{aligned}
x_{1} & =x_{2}=r \varphi=x \\
\leadsto \quad \dot{x}_{1} & =\dot{x}_{2}=r \dot{\varphi}=\dot{x}=v
\end{aligned}
$$

the kinetic energies follow as

$$
\begin{aligned}
& E_{k 0}=0 \quad(\text { initial position }=\text { rest }) \\
& E_{k}=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+\frac{1}{2} \Theta_{0} \dot{\varphi}^{2}=\frac{1}{2} m_{1} v^{2}\left(1+\frac{m_{2}}{m_{1}}+\frac{\Theta_{0}}{m_{1} r^{2}}\right) .
\end{aligned}
$$

Using the friction law $R=\mu N=\mu m_{2} g \cos \alpha$, the work of the external forces is given by
$U=m_{1} g x_{1}-R x_{2}-\left(m_{2} g \sin \alpha\right) x_{2}=m_{1} g x\left(1-\mu \frac{m_{2}}{m_{1}} \cos \alpha-\frac{m_{2}}{m_{1}} \sin \alpha\right)$.
Thus, the work-energy theorem leads to

$$
\begin{gathered}
\frac{1}{2} m_{1} v^{2}\left(1+\frac{m_{2}}{m_{1}}+\frac{\Theta_{0}}{m_{1} r^{2}}\right)=m_{1} g x\left(1-\mu \frac{m_{2}}{m_{1}} \cos \alpha-\frac{m_{2}}{m_{1}} \sin \alpha\right) \\
\leadsto \quad v(x)=\sqrt{2 g x} \sqrt{\frac{1-\mu \frac{m_{2}}{m_{1}} \cos \alpha-\frac{m_{2}}{m_{1}} \sin \alpha}{1+\frac{m_{2}}{m_{1}}+\frac{\Theta_{0}}{m_{1} r^{2}}}} . \\
=\overline{=}
\end{gathered}
$$

P5.23 Problem 5.23 The cabin of an elevator (weight $W=m g$) hangs at a cable drum, which is braked by a band brake (kinetic friction coefficient μ).
a) Determine the braking force F_{0}, such that the cabin moves with constant velocity v_{0}.
b) After which distance d, the cabin stops for a braking force $F>F_{0}$?

Solution a) The braking moment M_{B}, acting on the drum, is determined from the equilibrium condition at the lever
$\stackrel{\curvearrowleft}{A}: \quad 0=-2 r_{2} S_{1}+l F \quad \leadsto \quad S_{1}=\frac{F l}{2 r_{2}}$
and the belt friction law $S_{1}=S_{2} \mathrm{e}^{-\mu \pi}$:

$$
M_{B}=r_{2} S_{2}-r_{2} S_{1}=\left(1-e^{-\mu \pi}\right) \frac{F l}{2}
$$

The velocity of the cabin is constant, if the accelerations of the drum and the cabin are zero, i.e., if

$$
\stackrel{\curvearrowleft}{0}: \quad r_{1} S_{3}=M_{B}, \quad S_{3}=m g \quad \leadsto \quad \begin{aligned}
& F_{0}=\frac{2 r_{1} m g}{\left(1-\mathrm{e}^{-\mu \pi}\right) l}
\end{aligned} .
$$

b) Now, we apply the work-energy theorem $T_{1}-T_{0}=U$ between initial state (0) and end state (stop) (1). With the kinematic relations $v_{0}=r_{1} \omega_{0}$ and $d=r_{1} \varphi_{d}$ follows

$$
\begin{aligned}
& E_{k 1}=0, \quad E_{k 0}=\frac{1}{2} m v_{0}^{2}+\frac{1}{2} \Theta_{0} \omega_{0}^{2}=\frac{v_{0}^{2}}{2}\left(m+\frac{\Theta_{0}}{r_{1}^{2}}\right), \\
& W=m g h-\int_{0}^{\varphi_{d}} M_{B} \mathrm{~d} \varphi=m g d-\left(1-\mathrm{e}^{-\mu \pi}\right) \frac{F l d}{2 r_{1}}
\end{aligned}
$$

Thus, from

$$
-\frac{v_{0}^{2}}{2}\left(m+\frac{\Theta_{0}}{r_{1}^{2}}\right)=m g d-\left(1-\mathrm{e}^{-\mu \pi}\right) \frac{F l d}{2 r_{1}},
$$

we obtain by solving for d

$$
d=\frac{v_{0}^{2}\left(m+\Theta_{0} / r_{1}^{2}\right)}{\left(1-\mathrm{e}^{-\mu \pi}\right) F l / 2 r_{1}-m g} .
$$

Problem 5.24 A bowling ball (radius r) has to overcome a hight difference on the return path which consists of two one-eighth circle arcs (radius $R=5 r)$.

What speed v_{0} may the ball have, so that lift-off from the path in the upper sector A is prevented?

Solution We first determine the velocity in sector A from the the energy conservation law

$$
T+V=T_{0}+V_{0} .
$$

With $\Theta_{c}=2 m r^{2} / 5, v=r \omega$ and $h=2 R\left(1-\cos 45^{\circ}\right)=$ $5 r(2-\sqrt{2})$ follow (zero level of potential at depth of D)

$$
\begin{array}{ll}
T_{0}=\frac{1}{2} m v_{0}^{2}+\frac{1}{2} \Theta_{c} \omega_{0}^{2}=\frac{7}{10} m v_{0}^{2}, & T=\frac{7}{10} m v^{2}, \\
V_{0}=m g(R-h+r)=(5 \sqrt{2}-4) m g r, & V=m g 6 r \sin \varphi .
\end{array}
$$

Solving for v leads to

$$
v^{2}=v_{0}^{2}-\frac{60 \sin \varphi+40-50 \sqrt{2}}{7} g r .
$$

In sector A the centripetal acceleration of the center of mass C is $a_{n}=v^{2} / 6 r$. Thus, from the equation of motion

$$
\searrow: \quad m a_{n}=-N+m g \sin \varphi,
$$

we obtain

$$
N(\varphi)=-\frac{m v_{0}^{2}}{6 r}+\frac{m g}{42}(102 \sin \varphi-50 \sqrt{2}+40) .
$$

The minimum force N^{*} in sector A appears at $\varphi=45^{\circ}$. Therefore, so that lift-off at this point is prevented, the following condition must be fulfilled:

$$
N^{*}=N\left(45^{\circ}\right) \geq 0 \quad \leadsto \quad \underline{\underline{v_{0} \leq \sqrt{g r \frac{\sqrt{2}+40}{7}}}=2.43 \sqrt{g r}} .
$$

P5.25 Problem 5.25 A homogeneous bar (weight $W=m g$) is hinge-connected with a body of mass m that can frictionless slide horizontally.
a) Determine the angular velocity $\dot{\varphi}(\varphi)$ of the bar, if it is released from rest from a horizontal position?

b) Determine the equation of motion.

Solution a) The position of the center of mass C^{*} of the total system is calculated as

$$
b=\frac{\frac{1}{2} l m+l m}{2 m}=\frac{3}{4} l .
$$

Since the system is not subjected to external forces in horizontal direction, there is no horizontal displacement of C^{*}. Thus, we have

$$
\begin{array}{ll}
x_{1}=-\frac{1}{4} l \sin \varphi, & \dot{x}_{1}=-\frac{1}{4} l \dot{\varphi} \cos \varphi, \\
x_{c}=\frac{1}{4} l \sin \varphi, & \dot{x} c=\frac{1}{4} l \dot{\varphi} \cos \varphi, \\
y_{c}=\frac{1}{2} l \cos \varphi, & \dot{y} c=-\frac{1}{2} l \dot{\varphi} \sin \varphi .
\end{array}
$$

We now determine the angular acceleration $\dot{\varphi}$ by using the energy conservation law $T+V=T_{0}+V_{0}$. With $\Theta_{c}=m l^{2} / 12$ follow

$$
\begin{aligned}
& V_{0}=0, \quad V=-m g \frac{1}{2} l \cos \varphi, \\
& T_{0}=0, \quad T=\frac{1}{2} m \dot{x}_{1}^{2}+\left[\frac{1}{2} m\left(\dot{x}_{S}^{2}+\dot{y}_{S}^{2}\right)+\frac{1}{2} \Theta_{s} \dot{\varphi}^{2}\right] \\
& =\frac{1}{8} m l^{2} \dot{\varphi}^{2}\left(\frac{1}{4} \cos ^{2} \varphi+\frac{1}{4} \cos ^{2} \varphi+\sin ^{2} \varphi+\frac{1}{3}\right) \\
& =\frac{1}{48} m l^{2} \dot{\varphi}^{2}\left(8-3 \cos ^{2} \varphi\right)
\end{aligned}
$$

and we obtain after substitution

$$
\frac{1}{24} l \dot{\varphi}^{2}\left(8-3 \cos ^{2} \varphi\right)-g \cos \varphi=0 \quad \leadsto \quad \dot{\varphi}=\sqrt{\frac{24 g \cos \varphi}{l\left(8-3 \cos ^{2} \varphi\right)}} .
$$

b) Differentiating the energy conservation law (line above) with respect to time leads to the equation of motion:

$$
\begin{aligned}
& \frac{l}{12} \dot{\varphi} \ddot{\varphi}\left(8-3 \cos ^{2} \varphi\right)+\frac{l}{4} \dot{\varphi}^{3} \cos \varphi \sin \varphi+g \dot{\varphi} \sin \varphi=0 \\
& \quad \leadsto \underline{\ddot{\varphi}\left(8-3 \cos ^{2} \varphi\right)+3 \dot{\varphi}^{2} \cos \varphi \sin \varphi+12 \frac{g}{l} \sin \varphi=0}
\end{aligned}
$$

Problem 5.26 A symmetric disk with a halfcircular boundary rolls without slipping on the flat ground.

Determine the angular velocity in dependence of φ, if the body is released from rest at $\varphi=0$. Calculate its maximum.
Given: $R, c=\kappa R, m, \Theta_{C}=\alpha m R^{2}$

Solution To solve the problem, it is advantageous to apply the energy conservation law. To formulate the energies, we introduce a coordinate system and find

$$
\begin{aligned}
& x_{c}=R \varphi+c \cos \varphi=R(\varphi+\kappa \cos \varphi) \\
& y_{c}=c \sin \varphi=\kappa R \sin \varphi \\
& \dot{x_{c}}=R \dot{\varphi}-c \dot{\varphi} \sin \varphi=R \dot{\varphi}(1-\kappa \sin \varphi) \\
& \dot{y} c=c \dot{\varphi} \cos \varphi=\kappa R \dot{\varphi} \cos \varphi
\end{aligned}
$$

Thus, the energies T_{0}, V_{0} in the initial position and in an arbitrary displaced position are given by

$$
\begin{aligned}
T_{0}= & 0, \quad V_{0}=0 \\
T= & \frac{1}{2} m\left(\dot{x}_{c}^{2}+\dot{y}_{c}^{2}\right)+\frac{1}{2} \Theta_{c} \dot{\varphi}^{2}=\frac{1}{2} m R^{2} \dot{\varphi}^{2}\left(1-2 \kappa \sin \varphi+\kappa^{2} \sin ^{2} \varphi\right. \\
& \left.+\kappa^{2} \cos ^{2} \varphi\right)+\frac{1}{2} \alpha m R^{2} \dot{\varphi}^{2}=\frac{1}{2} m R^{2} \dot{\varphi}^{2}\left(1+\kappa^{2}-2 \kappa \sin \varphi+\alpha\right), \\
V= & -m g y_{c}=-m g R \kappa \sin \varphi,
\end{aligned}
$$

and the energy conservation law $T+V=T_{0}+V_{0}$ leads to

$$
\begin{aligned}
& \frac{1}{2} m R^{2} \dot{\varphi}^{2}\left(1+\kappa^{2}-2 \kappa \sin \varphi+\alpha\right)-m g R \kappa \sin \varphi=0 \\
& \leadsto \quad \stackrel{\dot{\varphi}(\varphi)=\sqrt{\frac{2 g \kappa \sin \varphi}{R\left(1+\kappa^{2}-2 \kappa \sin \varphi+\alpha\right)}}}{\underline{\underline{(1)}}} .
\end{aligned}
$$

The angular velocity takes its maximum at $\varphi=90^{\circ}$ (lowest level of C):

P5.27 Problem 5.27 A homogeneous circular disk (mass m, radius R) contains an excentric circular hole (radius $r=R / 3$). The disk is released from rest from the displayed position.

Determine the angular velocity for the instant, when B reaches its highest position

a) if the base is ideally frictionless,
b) if the disk rolls on the rough base.

Solution The solution is found by using the energy conservation law. For that purpose, we need the position of the center of mass and and the mass moment of inertia. It is useful to determine them by calculating the difference of two circular disks:

$$
\begin{array}{ll}
\text { (1) : } & A_{1}=\pi R^{2}, \quad m_{1}=\frac{R^{2} \pi}{R^{2} \pi-r^{2} \pi} m=\frac{9}{8} m, \quad \Theta_{1}=\frac{1}{2} m_{1} R^{2}, \\
\text { (2) : } & A_{2}=\pi r^{2}, \quad m_{2}=\frac{r^{2} \pi}{R^{2} \pi-r^{2} \pi} m=\frac{1}{8} m, \quad \Theta_{2}=\frac{1}{2} m_{2} r^{2} .
\end{array}
$$

This leads to

$$
\begin{aligned}
x_{c}= & \frac{0 \cdot \pi R^{2}-r \cdot \pi r^{2}}{\pi R^{2}-\pi r^{2}}=-\frac{R}{24}, \quad z_{c}=0 \\
\Theta_{c}= & {\left[\Theta_{1}+m_{1} x_{c}^{2}\right]-\left[\Theta_{2}+m_{2}\left(x_{c}+r\right)^{2}\right] } \\
= & \frac{9}{16} m R^{2}+\frac{9}{8(24)^{2}} m R^{2}-\frac{1}{16 \cdot 9} m R^{2} \\
& -\frac{m}{8}\left(\frac{R}{24}+\frac{R}{3}\right)^{2} \\
= & \frac{311}{576} m R^{2}
\end{aligned}
$$

a) In the initial state, the disk is at rest and, if the zero level of potential energy is chosen at level of A, we have

$$
V_{0}=0, \quad T_{0}=0
$$

Because the base is frictionless, there act no forces in horizontal direction. Therefore,
 the center of mass C experiences no velocity change in this direction, i.e. $\dot{x}_{c}=0$. When B reaches its highest position, C just reaches its lowest position. In vertical direction, the velocities of these points change at that instant their sign, and consequently,
$\dot{z}_{c}=0$ holds. Thus, the energies at that instant are

$$
V_{1}=-m g\left|x_{c}\right|, \quad T_{1}=\frac{1}{2} \Theta_{c} \omega^{2}
$$

and from the energy conservation law

$$
V_{1}+T_{1}=V_{0}+T_{0}
$$

it follows

$$
\frac{1}{2} \Theta_{c} \omega^{2}=m g\left|x_{S}\right| \quad \leadsto \quad \underline{\bar{\omega}= \pm \sqrt{\frac{2 m g\left|x_{c}\right|}{\Theta_{c}}}= \pm \sqrt{\frac{48 g}{311 R}} . . .}
$$

b) At the initial state, we have as before

$$
V_{0}=0, \quad T_{0}=0
$$

When the disk is rolling, the instantaneous center of rotation Π is located at the contact point between disk and base. When the center of mass reaches its lowest position (and B its highest position), its velocity has the horizontal direction and the magnitude $\dot{x}_{S}=\omega\left(R-\left|x_{S}\right|\right)$. Therewith, the energies at this moment are given by

$$
V_{1}=-m g\left|x_{c}\right|, \quad T_{1}=\frac{1}{2} m \dot{x}_{c}^{2}+\frac{1}{2} \Theta_{c} \omega^{2}
$$

and the energy conservation law leads to

$$
\frac{1}{2} \omega^{2}\left[m\left(R-\left|x_{c}\right|\right)^{2}+\Theta_{c}\right]=m g\left|x_{c}\right|
$$

and finally to

$$
\omega= \pm \sqrt{\frac{2 m g\left|x_{c}\right|}{m\left(R-\left|x_{c}\right|\right)^{2}+\Theta_{c}}}= \pm \sqrt{\frac{2 g}{35 R}} .
$$

Remark: The angular velocity in case a) is higher than in case b). The reason for that lies in the fact that the kinetic energy in case b) is split into translational and the rotational parts, while in case a), there exists only a rotational part.

P5.28 Problem 5.28 At a pivoted massless arm, a motor is attached (point mass m_{1}). Its motor shaft is rigidly connected with the center of mass C of a disk (mass m_{2}, moment of inertia Θ_{2}).
a) What are the angular velocities of the arm and the disk, if the motor delivers during the time interval Δt a constant torque M_{0} and the system initially was at rest?
b) Determine the work done by the
 motor.

Solution a) We separate the system to make the internal moment M_{0} visible. The principles of linear and angular impulse and momentum then lead to
(1) $\quad \curvearrowleft: \Theta_{A} \omega_{1}=-\widehat{M}_{0}-l \widehat{F}_{t}$,
(2) $\uparrow: m_{2} v_{c}=\widehat{F}_{t}$,

$$
\stackrel{\curvearrowleft}{C}: \quad \Theta_{2} \omega_{2}=\widehat{M}_{0},
$$

where

$$
\widehat{M}_{0}=\int_{0}^{\Delta t} M_{0} \mathrm{~d} \bar{t}=M_{0} \Delta t, \quad \widehat{F}_{t}=\int_{0}^{\Delta t} F_{t}(\bar{t}) \mathrm{d} \bar{t}, \quad \Theta_{A}=m_{1} l^{2}
$$

With the kinematic relation $v_{c}=l \omega_{1}$ follows by eliminating \widehat{F}_{t}

$$
\begin{array}{ll}
\omega_{1}=-\frac{M_{0} \Delta t}{\left(m_{1}+m_{2}\right) l^{2}}
\end{array}, \quad \xlongequal{\omega_{2}=+\frac{M_{0} \Delta t}{\Theta_{2}}} .
$$

b) The work U done by the motor is determined from the kinetic energy of the system after time Δt :

$$
\underline{\underline{U}}=\frac{1}{2}\left[\left(m_{1}+m_{2}\right) l^{2}\right] \omega_{1}^{2}+\frac{1}{2} \Theta_{2} \omega_{2}^{2}=\underline{\underline{\frac{1}{2}}\left(M_{0} \Delta t\right)^{2}\left[\frac{1}{\left(m_{1}+m_{2}\right) l^{2}}+\frac{1}{\Theta_{2}}\right]} .
$$

Remark: Since no external moment is present, the angular momentum of the total system remains zero:

$$
\Theta_{A} \omega_{1}+m_{2} l^{2} \omega_{1}+\Theta_{2} \omega_{2}=0
$$

Problem 5.29 On a disk (1) (moment of inertia Θ_{1}), which rotates with an angular velocity ω_{1}, a second disk (2) (mass m_{2}, moment of inertia Θ_{2}) rotates with ω_{2} about the shaft B ($=$ center of mass of (2)). When (2) slides down along B and touches (1), both disks rub on each other such that (2) comes to rest relatively to disk (1) after time t_{0}.

Determine the common angular velocity ω_{0} after time t_{0}.

P5.29

Solution We separate the systen and formulate the principles of angular impulse and momentum for (1) (with respect to fixed axis A) and (2) (with respect to its center of mass B):

$$
\begin{array}{lr}
\stackrel{\curvearrowright}{A}: & \left(\Theta_{1}+m_{2} a^{2}\right)\left[\omega_{0}-\omega_{1}\right]=-\widehat{M} \\
\stackrel{\curvearrowright}{B}: & \Theta_{2}\left[\omega_{0}-\left(-\omega_{2}\right)\right]=+\widehat{M}
\end{array}
$$

$$
\widehat{M}=\int_{0}^{t_{0}} M(\bar{t}) \mathrm{d} \bar{t}
$$

Notice that the mass m_{2} of disk (2) is considered in the moment of inertia of (1).
Eliminating \widehat{M} leads to

$$
\underline{\omega_{0}=\frac{\left(\Theta_{1}+m_{2} a^{2}\right) \omega_{1}-\Theta_{2} \omega_{2}}{\Theta_{1}+\Theta_{2}+m_{2} a^{2}}}
$$

The problem can be solved easier by applying the principle of angular momentum to the total system. Because there acts no external moment, conservation of angular momentum about the fixed axis A yields

$$
\stackrel{\curvearrowright}{A}: \quad\left(\Theta_{1}+m_{2} a^{2}\right) \omega_{1}-\Theta_{2} \omega_{2}=\left[\Theta_{1}+\left(\Theta_{2}+m_{2} a^{2}\right)\right] \omega_{0}
$$

i.e. we find the same result as above.

Remark: For $\Theta_{2} \omega_{2}=\left(\Theta_{1}+m_{2} a^{2}\right) \omega_{1}$, the system comes to rest.

P5.30 Problem 5.30 A homogeneous circular disk (weight $W_{1}=m g$) rotates with angular velocity ω_{0} about pin B of an initially resting bar (weight $W_{2}=2 m g, l=2 r$), which is pin-supportet at A.
a) Determine the amplitude φ_{2} of the bar, if the disk is suddenly blocked at the bar.
b) Determine the energy loss due to the blockade.

Solution The angular velocity ω_{1} of the system immediately after blocking is determined from the conservation of angular momentum. With the moments of inertia of the disk and the blocked system

$$
\begin{aligned}
& \Theta_{B}=\frac{1}{2} m r^{2}, \\
& \Theta_{A}=\left(\frac{1}{2} m r^{2}+m l^{2}\right)+M l^{2} / 3=\frac{43}{6} m r^{2},
\end{aligned}
$$

it follows

$$
\Theta_{B} \omega_{0}=\Theta_{A} \omega_{1} \quad \leadsto \quad \omega_{1}=\frac{\Theta_{B}}{\Theta_{A}} \omega_{0}=\frac{3}{43} \omega_{0}
$$

The amplidute φ_{2} of the blocked system is calculated from the energy conservation after blocking: $T_{2}+V_{2}=T_{1}+V_{1}$. Choosing zero potential at the level of A, we obtain

$$
\begin{aligned}
& T_{2}=0 \\
& V_{2}=-m g l \sin \varphi_{2}-M g(l / 2) \sin \varphi_{2} \\
& T_{1}=\frac{1}{2} \Theta_{A} \omega_{1}^{2}=\frac{m r^{2} \omega_{0}^{2}}{4} \frac{3}{43}, \\
& V_{1}=-l m g-l M g / 2=-4 r m g
\end{aligned}
$$

what leads to

$$
\underline{\underline{\sin \varphi_{2}}=1-\frac{3}{688} \frac{r \omega_{0}^{2}}{g}} .
$$

b) The energy loss is determined from the difference ΔT of kinetic energies immediately before and after blocking:

$$
\underline{\underline{\Delta T}}=\frac{\Theta_{B} \omega_{0}^{2}}{2}-\frac{\Theta_{A} \omega_{1}^{2}}{2}=\frac{m r^{2} \omega_{0}^{2}}{4}-\frac{m r^{2} \omega_{0}^{2}}{4} \frac{3}{43}=\underline{\underline{\frac{10}{43} m r^{2} \omega_{0}^{2}}}
$$

Problem 5.31 A yo-yo (weight $m g$, moment of inertia Θ_{A}) moves at time $t=0$ with speed v_{0} and angular velocity ω_{0}.

Determine the velocities v_{1} and ω_{1} at time t_{1} when pulling the string with a force $S(t)=S_{0} t / t_{1}$.

Solution The equations of motion read

$$
\begin{array}{lr}
\downarrow: & m v_{1}-m v_{0}=\widehat{F}_{x}, \\
\curvearrowleft & \Theta_{A} \omega_{1}-\Theta_{A} \omega_{0}=\widehat{M}_{A}
\end{array}
$$

where

$$
\begin{aligned}
& \widehat{F}_{x}=\int_{0}^{t_{1}}[m g-S(\bar{t})] \mathrm{d} \bar{t}=m g t_{1}-\frac{1}{2} S_{0} t_{1} \\
& \widehat{M}_{A}=\int_{0}^{t_{1}} r S(\bar{t}) \mathrm{d} \bar{t}=\frac{1}{2} r S_{0} t_{1}
\end{aligned}
$$

Solving for v_{1} and ω_{1} yields

$$
\underline{\underline{v_{1}=v_{0}+g t_{1}-\frac{S_{0} t_{1}}{2 m}}, \quad \underline{\underline{\omega_{1}}=\omega_{0}+\frac{r S_{0} t_{1}}{2 \Theta_{A}}} .}
$$

Problem 5.32 A homogeneous bar of mass m moves on a horizontal plane purely translationally with the velocity v_{0}.
Determine its angular velocity ω_{1}, when its end suddenly latches into the fixed bearing A.

Solution Initially, the angular momentum of the bar with respect to A is $L_{0}=\frac{l}{2}\left(m v_{0}\right)$. After latching, the angular momentum is $L_{1}=$ $\Theta_{A} \omega_{1}=\frac{1}{3}\left(m l^{2} \omega_{1}\right)$. Since there acts no external moment with respect to A, the angular momentum is conserved:

$$
\frac{1}{3} m l^{2} \omega_{1}=\frac{1}{2} l m v_{0} \quad \leadsto \quad \underline{\underline{\omega_{1}}=\frac{3 v_{0}}{2 l}}
$$

Remark: Latching leads to an energy loss ΔT :

$$
\Delta T=T_{0}-T_{1}=\frac{1}{2} m v_{0}^{2}-\frac{1}{2} \Theta_{A} \omega_{1}^{2}=\frac{1}{8} m v_{0}^{2}=\frac{1}{4} T_{0} .
$$

P5.33 Problem 5.33 Two homogeneous bars of masses m and $2 m$ are attached at a massless shaft which is driven by a torque M_{0}.

Determine the equation of motion and the support reactions at the bearings.

Solution We first determine the axial moment of inertia and products of inertia for the body-fixed system ξ, η, ζ

$$
\begin{aligned}
& \Theta_{\zeta}=\frac{2 m}{3}(2 a)^{2}+\frac{m}{3} a^{2}=3 m a^{2} \\
& \Theta_{\xi \zeta}=-m 2 a \frac{-a}{2}=m a^{2} \\
& \Theta_{\eta \zeta}=0
\end{aligned}
$$

With the external moments

$$
M_{\xi}=2 a B_{\eta}-4 a A_{\eta}, \quad M_{\eta}=4 a A_{\xi}-2 a B_{\xi}, \quad M_{\zeta}=M_{0}
$$

it follows from the priciple of angular momentum with respect to the body-fixed system

$$
\begin{array}{lrrr}
\stackrel{\curvearrowright}{\xi}: & 2 a\left(B_{\eta}-2 A_{\eta}\right)=-\dot{\omega} m a^{2} & \leadsto & B_{\eta}-2 A_{\eta}=-\frac{m a \dot{\omega}}{2}, \\
\stackrel{\curvearrowright}{\eta}: & 2 a\left(2 A_{\xi}-B_{\xi}\right)=\omega^{2} m a^{2} & \leadsto & 2 A_{\xi}-B_{\xi}=\frac{m a \omega^{2}}{2} \\
\curvearrowright{ }_{\zeta}: & M_{0}=3 m a^{2} \dot{\omega} & \leadsto & \underline{\underline{\omega}}=\frac{M_{0}}{\underline{3 m a^{2}}} .
\end{array}
$$

The last equation is the equation of motion of the shaft. To determine the support reactions, the principle of linear momentum must be applied. Since the motion of the mass centers C_{1} and C_{2} is circular, the acceleration components of e.g. C_{1} are given by $\xi_{1} \dot{\omega}$ in η-direction and $-\xi_{1} \omega^{2}$ in ξ-direction. Thus, we obtain in ξ - and in η-direction

$$
-2 m a \omega^{2}+m(a / 2) \omega^{2}=A_{\xi}+B_{\xi}, \quad 2 m a \dot{\omega}-m(a / 2) \dot{\omega}=A_{\eta}+B_{\eta}
$$

and finally

$$
\underline{\underline{A_{\xi}=-\frac{1}{3} m a \omega^{2}}}, \quad \xlongequal{A_{\eta}=\frac{2}{9} \frac{M_{0}}{a}}, \quad \underline{\underline{B_{\xi}=-\frac{5}{6} m a \omega^{2}},} \quad \underline{\underline{B_{\eta}=\frac{5}{18} \frac{M_{0}}{a}} .}
$$

Problem 5.34 A homogeneous plate (mass m) rotates with the constant angular velocity ω about a fixed axis.
a) Calculate the support reactions at A and B.
b) Determine the additional masses m_{1} that must be attached at D and E, such that the support reactions are zero.

Solution a) Because the center of mass is located on the axis of rotation (acceleration of C is zero), the equation of motion reduces to

$$
A_{\xi}+B_{\xi}=0
$$

With $\dot{\omega}=0$ and

$$
\Theta_{\xi \zeta}=-\frac{m}{12} \frac{\left(a^{2}-b^{2}\right) a b}{a^{2}+b^{2}}
$$

(see Problem 5.8), it follows from the principle of moment of momentum $M_{\eta}=\dot{\omega} \Theta_{\eta \zeta}+\omega^{2} \Theta_{\xi \zeta}$ (notice the positive sense of rotation about the η-axis!)

$$
\stackrel{\curvearrowleft}{\eta}: \quad-l A_{\xi}+l B_{\xi}=\omega^{2} \Theta_{\xi \zeta} .
$$

Therewith we obtain

$$
\underline{\underline{A_{\xi}}=-B_{\xi}=-\frac{\omega^{2} \Theta_{\xi \zeta}}{2 l}=\frac{m \omega^{2}}{24 l} \frac{\left(a^{2}-b^{2}\right) a b}{a^{2}+b^{2}}} .
$$

b) Such that A_{ξ} and B_{ξ} are zero, the total product of inertia $\Theta_{\xi \zeta}^{*}$ (including m_{1}) must vanish. Thus, with

$$
\sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}, \quad \cos \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}}
$$

the following condition must be fulfilled:

$$
\begin{aligned}
\Theta_{\xi \zeta}^{*} & =-\frac{m}{12} \frac{\left(a^{2}-b^{2}\right) a b}{a^{2}+b^{2}}+2 m_{1}\left(\frac{b}{2} \sin \alpha\right)\left(\frac{b}{2} \cos \alpha\right)=0 \\
& \leadsto \quad \underline{m_{1}=\frac{m}{6}\left(\frac{a^{2}}{b^{2}}-1\right)} .
\end{aligned}
$$

Remark: The masses m_{1} must be attached at both sides, such that the center of mass remains still located on the axis of rotation.

P5.35 Problem 5.35 A homogeneous circular disk (radius r, mass m) is mounted obliquely (angle α) and with an eccentricity e to a rigid thin shaft. The system rotates with constant angular velocity ω_{0}.
Determine the forces in the bearings.

Solution To fully describe the motion of the rigid body, the principles of linear and angular momentum must be applied. The latter is advantageously formulated with the aid of Euler's equations:

$$
\begin{aligned}
& \Theta_{1} \dot{\omega}_{1}-\left(\Theta_{2}-\Theta_{3}\right) \omega_{2} \omega_{3}=M_{1} \\
& \Theta_{2} \dot{\omega}_{2}-\left(\Theta_{3}-\Theta_{1}\right) \omega_{3} \omega_{1}=M_{2}, \\
& \Theta_{3} \dot{\omega}_{3}-\left(\Theta_{1}-\Theta_{2}\right) \omega_{1} \omega_{2}=M_{3} .
\end{aligned}
$$

With

$$
\omega_{1}=\omega_{0} \cos \alpha, \quad \dot{\omega}_{1}=0, \quad \omega_{2}=-\omega_{0} \sin \alpha, \quad \dot{\omega}_{2}=0, \quad \omega_{3}=\dot{\omega}_{3}=0
$$

and

$$
\Theta_{1}=\frac{m r^{2}}{2}, \quad \Theta_{2}=\Theta_{3}=\frac{m r^{2}}{4}
$$

it follows

$$
M_{1}=0, \quad M_{2}=0, \quad M_{3}=\frac{m r^{2}}{4} \omega_{0}^{2} \sin \alpha \cos \alpha=\frac{m r^{2}}{8} \omega_{0}^{2} \sin 2 \alpha
$$

Here M_{3} is the moment of the external forces about the principal axis 3. Its relation with the forces in the bearings is given by

$$
\overparen{C}: \quad M_{3}=a B-a A \quad \leadsto \quad a B-a A=\frac{m r^{2}}{8} \omega_{0}^{2} \sin 2 \alpha .
$$

Now, we use the principle of linear momentum. Since C moves circularly with constant angular velocity, its acceleration $|a|=e \omega_{0}^{2}$ is directed to the ratation axis. Thus,

$$
\uparrow: \quad m e \omega^{2}=A+B
$$

Solving these two equations leads to

$$
\overline{\underline{A}=\frac{m \omega_{0}^{2}}{16}\left(8 e-\frac{r^{2}}{a} \sin 2 \alpha\right)}, \quad \underline{\underline{B}=\frac{m \omega_{0}^{2}}{16}\left(8 e+\frac{r^{2}}{a} \sin 2 \alpha\right)} .
$$

Problem 5.36 A homogeneous bar (mass m) on a frictionless horizontal base is accelerated by a force F acting at point A in length direction of the bar.

Determine the distribution of the normal force N along the bar.

Solution The acceleration of the bar (in length direction) is $a=F / m$. To calculate the normal force, we first introduce the body-fixed coordinate x and then cut the bar at an arbitrary location x above and/or below the point A. For the lower cut $(x<c)$, the principle of linear momentum yields with $\bar{m}=m x / l$

$$
\underline{\underline{N(x)}}=\bar{m} a=\frac{\bar{m}}{m} F=\underline{\underline{\frac{x}{l}} F} .
$$

For the upper cut $(x>c)$, we obtain

$$
\begin{aligned}
& N(x)+F=\bar{m} a=\frac{\bar{m}}{m} F \\
& \quad \leadsto \quad \xlongequal{N(x)=-F\left(1-\frac{x}{l}\right) .}
\end{aligned}
$$

The normal force is linearly distributed and has a jump of magnitude F at $x=c$. This leads to the below displayed graph of $N(x)$.

P5.37 Problem 5.37 A pin-supported homogeneous beam (mass m, length l) is initially at rest. Starting at time $t=0$ it is subjected to a constant force F, acting perpendicularly to its longitudinal axis.

Determine the stress resultants (M, V, N) in the beam domain $a \leq x \leq l$ at time $t>t_{0}$. Neglect the weight of the beam.

\&

Solution Since the motion of the beam is a pure rotation, its acceleration and velocity are uniquely described by $\ddot{\varphi}$ and $\dot{\varphi}$. The principle of angular momentum with respect to A yields

$$
A: \quad \Theta_{A} \ddot{\varphi}=a F \quad \leadsto \quad \ddot{\varphi}=\frac{a F}{\Theta_{A}}
$$

Integration in conjunction with the initial condition $\dot{\varphi}(0)=0$ leads to the angular velocity

$$
\dot{\varphi}(t)=\frac{a F}{\Theta_{A}} t
$$

Now, we introduce body-fixed coordinates, cut the system at a position $x>a$ and introduce the stress resultants. Here, we first restrict ourselves to the shear force V and the bending moment M. For the free part of the beam the principle of angular momentum with respect to the center of mass \bar{C} and the principle of linear momentum in z-direction yields

$$
\begin{array}{ll}
\stackrel{\curvearrowleft}{C}: & \bar{\Theta}_{\bar{c}} \ddot{\varphi}=-M(x)-V(x) \frac{l-x}{2}, \\
\searrow: & \bar{m} \ddot{z}_{\bar{c}}=-V(x) .
\end{array}
$$

From the kinematics (circular motion) follows the acceleration $\ddot{z}_{\bar{C}}$:

$$
\ddot{z}_{\bar{c}}=-r_{\bar{c}} \ddot{\varphi}=-\frac{l+x}{2} \ddot{\varphi} .
$$

Therewith and with $\bar{m}=\left(1-\frac{x}{l}\right) m$ and $\Theta_{A}=\frac{m l^{2}}{3}$, we obtain the shear force:

$$
\underline{\underline{V(x)}}=\bar{m} \frac{l+x}{2} \ddot{\varphi}=\bar{m} \frac{l+x}{2} \frac{a F}{\Theta_{A}}=\underline{\underline{\frac{3}{2} \frac{a F}{l}\left[1-\left(\frac{x}{l}\right)^{2}\right]}} .
$$

Introducing this result into the 1st equation of motion leads with $\bar{\Theta}_{\bar{c}}=$ $\frac{1}{12} \bar{m}(l-x)^{2}$ to the bending moment

$$
\begin{aligned}
\underline{M(x)} & =-Q \frac{l-x}{2}-\bar{\Theta}_{\bar{c}} \ddot{\varphi} \\
& =-\frac{3}{4} a F\left(1-\frac{x}{l}\right)^{2}\left(1+\frac{x}{l}\right)-\frac{m l^{2}}{12}\left(1-\frac{x}{l}\right)^{3} \frac{a F}{\Theta_{A}} \\
& =-a F\left(1-\frac{x}{l}\right)^{2}\left(1+\frac{1}{2} \frac{x}{l}\right)
\end{aligned}
$$

The normal force N is obtained by using the principle of linear momentum in x-direction:

$$
\nearrow: \quad \bar{m} \ddot{x}_{\bar{c}}=-N(x)
$$

Here, $\ddot{x}_{\bar{c}}=-r_{\bar{c}} \dot{\varphi}^{2}$ is the centripetal acceleration. After introducing the already known quantities, this leads to

$$
\begin{aligned}
\underline{\underline{N(x)}} & =\bar{m} r_{\bar{C}} \dot{\varphi}^{2} \\
& =m\left(1-\frac{x}{l}\right) \frac{x+l}{2}\left(\frac{M_{0}}{\Theta_{A}} t\right)^{2} \\
& =\underline{\underline{\frac{9}{2}} \frac{M_{0}^{2} t^{2}}{m l^{3}}\left[1-\left(\frac{x}{l}\right)^{2}\right]}
\end{aligned}
$$

Contrary to the bending moment and the shear force, the normal force increases with the square of time t.
The graphs of normal force, shear force and bending moment are sketched below for the special case $a=l / 3$.

P5.38 Problem 5.38 A homogeneous beam (mass m, length l) is lifted from a horizontal base by a force $F=4 \mathrm{mg}$.

Determine the stress resultants immediately after lift-off.

Solution Immediately after lift-off, the beam still has a horizontal position. The principles of linear and angular momentum then yield with $\Theta_{c}=m l^{2} / 12$

$$
\begin{array}{ll}
\uparrow: & m \ddot{y}_{c}=F-m g \quad \leadsto \quad \ddot{y}_{c}=3 g, \\
\stackrel{\curvearrowleft}{C}: & \Theta_{c} \ddot{\varphi}=F \frac{l}{12} \quad \leadsto \quad \ddot{\varphi}=\frac{F l}{12 \Theta_{c}}=4 \frac{g}{l} .
\end{array}
$$

We now cut the beam at position x, introduce the stress resultants and consider first a cut left to the point where F applies $\left(x<\frac{7}{12} l\right)$. In this case the principles of linear and angular momentum yield for part (1)

$$
\begin{aligned}
\uparrow: & m_{1} \ddot{y}_{C_{1}}=-m_{1} g-V_{1}, \\
\overbrace{1}: & \Theta_{C_{1}} \ddot{\varphi}=M_{1}-V_{1} \frac{x}{2} .
\end{aligned}
$$

$$
m_{1}(x)=\frac{x}{l} m, \quad \Theta_{C_{1}}=\frac{1}{12} m_{1} x^{2}=\frac{1}{12} \frac{x^{3}}{l} m
$$

and the kinematic relation

$$
\ddot{y}_{C_{1}}=\ddot{y}_{C}-\frac{1}{2}(l-x) \ddot{\varphi}=3 g-\frac{1}{2}(l-x) 4 \frac{g}{l}=g\left(1+2 \frac{x}{l}\right),
$$

we obtain the resultants

$$
\begin{aligned}
\underline{\underline{V_{1}(x)}} & =-m_{1}\left(g+\ddot{y}_{C_{1}}\right)=-2 m g \frac{x}{l}\left(1+\frac{x}{l}\right) \\
\underline{\underline{M_{1}(x)}} & =\frac{x}{2} V_{1}+\Theta_{C_{1}} \ddot{\varphi}=-m g l\left(\frac{x}{l}\right)^{2}\left(1+\frac{x}{l}\right)+\frac{1}{12} \frac{x^{3}}{l} m 4 \frac{g}{l} \\
& =\underline{-\frac{m g l}{3}\left(\frac{x}{l}\right)^{2}\left(3+2 \frac{x}{l}\right)}
\end{aligned}
$$

For a cut right to the point where F applies $\left(x>\frac{7}{12} l\right)$, we obtain in the same way now for part (2)

$$
\begin{aligned}
\uparrow: & m_{2} \ddot{y}_{S_{2}}=-m_{2} g+V_{2} \\
C_{2}: & \Theta_{C_{2}} \ddot{\varphi}=-M_{2}-V_{2} \frac{l-x}{2} .
\end{aligned}
$$

With

$$
\begin{aligned}
& m_{2}=\frac{l-x}{l} m, \quad \Theta_{C_{2}}=\frac{1}{12} m_{2}(l-x)^{2}=\frac{1}{12} \frac{(l-x)^{3}}{l} m, \\
& \ddot{y}_{C_{2}}=\ddot{y}_{C}+\frac{x}{2} \ddot{\varphi}=g\left(3+2 \frac{x}{l}\right)
\end{aligned}
$$

it follows

$$
\begin{aligned}
& \underline{\underline{V_{2}(x)}}=m_{2}\left(g+\ddot{y}_{C_{2}}\right)=\underline{\underline{2 m g\left(1-\frac{x}{l}\right)\left(2+\frac{x}{l}\right)}} \\
& \underline{\underline{M_{2}(x)}}=-\frac{l-x}{2} V_{2}-\Theta_{C_{2}} \ddot{\varphi}=\xlongequal{-\frac{m g l}{3}\left(1-\frac{x}{l}\right)^{2}\left(7+2 \frac{x}{l}\right)}
\end{aligned}
$$

The graphs of $V(x)$ and $M(x)$ are plotted below:

$-0,474 \mathrm{mgl}$

Remarks: - At the point of application of F, the shear for has a jump: $\Delta V=F=4 m g$.

- Also in the dynamic case, the relation $V=\frac{\mathrm{d} M}{\mathrm{~d} x}$ holds. This follows from the principle of angular momentum for a beam element of length $\mathrm{d} x$ by considering that the moment of inertia is small of higher order.
- The acceleration \ddot{y} is positive for all points: $\ddot{y}(x)=$ $\ddot{y}_{C}+(x-l / 2) \ddot{\varphi}=g(1+4 x / l)>0$, i.e., the beam actually completely lifts off from the base.

P5.39 Problem 5.39 A chimney stack of mass m and length l is blown up at the base and falls over.

Assuming a hinged support at the base and a constant mass distribution, determine the stress resultants during the motion. At which point x_{B} and at which angle φ_{B} the maximum transmissible moment $M_{B}=m g h / 100$ is exceeded? Calculate the normal force at this point.

Solution We first determine the angular acceleration $\ddot{\varphi}$ and angular velocity $\dot{\varphi}$ of the chimney. With $\Theta_{A}=m h^{2} / 3$, the principle of angular momentum leads to
$\stackrel{\curvearrowright}{A}: \Theta_{A} \ddot{\varphi}=m g \frac{h}{2} \sin \varphi \leadsto \ddot{\varphi}=\frac{3}{2} \frac{g}{h} \sin \varphi$.

To calculate $\dot{\varphi}$ it is practical to use the energy conservation law:

$$
\frac{h}{2} \sin \varphi
$$

$$
-m g \frac{h}{2}(1-\cos \varphi)+\frac{1}{2} \Theta_{A} \dot{\varphi}^{2}=0 \quad \leadsto \quad \dot{\varphi}^{2}=3 \frac{g}{h}(1-\cos \varphi) .
$$

Now we cut the system, introduce the stress resultants and formulate the equations of motion for the cut part:

$$
\begin{array}{ll}
\nwarrow: & \bar{m} \ddot{y}_{\bar{C}}=V-\bar{m} g \sin \varphi, \\
\nearrow: & \bar{m} \ddot{x}_{\bar{C}}=-N-\bar{m} g \cos \varphi, \\
\overline{\bar{C}}: & \Theta_{\bar{C}} \ddot{\varphi}=M+\frac{1}{2}(h-x) V .
\end{array}
$$

The unknown accelerations $\ddot{x}_{\bar{C}}, \ddot{y}_{\bar{C}}$ therein can be calculated from the known quantities
 $\ddot{\varphi}$ and $\dot{\varphi}^{2}$:

$$
\begin{aligned}
& \ddot{x}_{\bar{C}}=-x_{\bar{C}} \dot{\varphi}^{2}=-\frac{h+x}{2} 3 \frac{g}{h}(1-\cos \varphi)=-\frac{3}{2} g\left(1+\frac{x}{h}\right)(1-\cos \varphi), \\
& \ddot{y}_{\bar{C}}=-x_{\bar{C}} \ddot{\varphi}=-\frac{h+x}{2} \frac{3}{2} \frac{g}{h} \sin \varphi=-\frac{3}{4} g\left(1+\frac{x}{h}\right) \sin \varphi
\end{aligned}
$$

Thus, with

$$
\bar{m}=\frac{h-x}{h} x=\left(1-\frac{x}{h}\right) m, \quad \Theta_{\bar{C}}=\frac{\bar{m}(h-x)^{2}}{12}=\frac{m h^{2}}{12}\left(1-\frac{x}{h}\right)^{3}
$$

we obtain the stress resultants

$$
\begin{aligned}
\underline{\underline{V(x)}} & =\bar{m}\left(\ddot{y}_{\bar{C}}+g \sin \varphi\right)=m g\left(1-\frac{x}{h}\right)\left[-\frac{3}{4}\left(1+\frac{x}{h}\right) \sin \varphi+\sin \varphi\right] \\
& =\xlongequal{\frac{m g}{4} \sin \varphi\left(1-\frac{x}{h}\right)\left(1-3 \frac{x}{h}\right)}
\end{aligned}
$$

$$
\underline{\underline{N(x)}}=-\bar{m}\left(\ddot{x}_{\bar{C}}+g \cos \varphi\right)
$$

$$
=\underline{=-m g\left(1-\frac{x}{h}\right)\left[-\frac{3}{2}\left(1+\frac{x}{h}\right)(1-\cos \varphi)+\cos \varphi\right]}
$$

$$
\begin{aligned}
\underline{\underline{M(x)}} & =\Theta_{\bar{C}} \ddot{\varphi}-\frac{h}{2}\left(1-\frac{x}{h}\right)\left[\bar{m} \ddot{y}_{\bar{C}}+\bar{m} g \sin \varphi\right] \\
& =\frac{m h^{2}}{12}\left(1-\frac{x}{h}\right)^{3} \frac{3}{2} \frac{g}{h} \sin \varphi-\frac{h}{2} m g\left(1-\frac{x}{h}\right)^{2}\left[-\frac{3}{4}\left(1+\frac{x}{h}\right)+1\right] \sin \varphi \\
& =\xlongequal{\frac{m g h}{4} \sin \varphi\left(1-\frac{x}{h}\right)^{2} \frac{x}{h}} .
\end{aligned}
$$

The bending moment has its maximum, where the shear force is zero. From $V=0$ follows

$$
\left(1-\frac{x}{h}\right)\left(1-3 \frac{x}{h}\right)=0 \quad \leadsto \quad \underline{\underline{x_{B}=\frac{h}{3}}}
$$

(The 2nd solution $x=h$ is not of interest because the bending moment is zero at this point). This leads to the maximum bending moment

$$
M_{\max }=M\left(x_{B}\right)=\frac{1}{27} m g h \sin \varphi
$$

From the condition $M_{\max }=M_{B}$ the angle φ_{B} follows:

$$
\frac{m g h}{27} \sin \varphi_{B}=\frac{m g h}{100} \quad \leadsto \quad \sin \varphi_{B}=\frac{27}{100} \quad \leadsto \quad \underline{\underline{\varphi_{B}}=15.66^{\circ}}
$$

Finally, the normal force at x_{B} and at the angle φ_{B} is obtained as

$$
\begin{aligned}
\underline{\overline{N\left(\frac{h}{3}, \varphi_{B}\right)}} & =-\frac{2 m g}{3}\left[-\frac{3}{2} \frac{4}{3}\left(1-\cos \varphi_{B}\right)+\cos \varphi_{B}\right] \\
& =-\frac{2}{3} m g\left(-2+3 \cos \varphi_{B}\right)=\underline{\underline{-0.59 m g}}
\end{aligned}
$$

P5.40 Problem 5.40 A homogeneous arc of mass m rotates with the angular velocity ω and angular acceleration $\dot{\omega}$ about the vertical axis.

Calculate the bending moments and shear forces at location A.

Solution We introduce body fixed coordinates ξ, η, ζ and cut the system at A. Since the center of mass C rotates along a circular path, its acceleration components are

$$
a_{\xi}=-\eta_{s} \dot{\omega}, \quad a_{\eta}=-\eta_{s} \omega^{2} .
$$

Using the density ρ and the cross section as auxiliary quantities its distance η_{c} from the ζ-axis follows as

$$
\eta_{c}=\frac{r(\pi r \rho A)}{2 r \rho A+\pi r \rho A}=\frac{\pi}{2+\pi} r
$$

Therewith, the principle of linear momentum yields the shear forces

$$
\underline{\underline{V_{\xi}}}=m a_{\xi}=\underline{\underline{-m r \dot{\omega}} \frac{\pi}{2+\pi}}, \quad \underline{\underline{V_{\eta}}}=m a_{\eta}=\underline{\underline{-m r \omega^{2}} \frac{\pi}{2+\pi}} .
$$

The bending moments are given by the principle of angular momentum:

$$
M_{\xi}=\dot{\omega} \Theta_{\xi \zeta}-\omega^{2} \Theta_{\eta \zeta}, \quad M_{\eta}=\dot{\omega} \Theta_{\eta \zeta}+\omega^{2} \Theta_{\xi \zeta}
$$

With $\mathrm{d} m=\rho \operatorname{Ar} \mathrm{d} \varphi=m \mathrm{~d} \varphi /(2+\pi)$, we obtain $\Theta_{\xi \zeta}=0$ and

$$
\begin{aligned}
\Theta_{\eta \zeta} & =-\int \eta \zeta \mathrm{d} m=-\frac{m r^{2}}{2+\pi} \int_{0}^{\pi}(1+\cos \varphi)(2+\sin \varphi) \mathrm{d} \varphi \\
& =-\frac{2(1+\pi)}{2+\pi} m r^{2}
\end{aligned}
$$

Thus, it follows

$$
\underline{\underline{M_{\xi}=\frac{2(1+\pi)}{2+\pi} m r^{2} \omega^{2}}, \quad \underline{\underline{M_{\eta}=-\frac{2(1+\pi)}{2+\pi}} m r^{2} \dot{\omega}} .}
$$

Impact: A sudden collision of two bodies leading to a sudden change of their motion is called Impact.

Notation:
$\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \widehat{=} \begin{aligned} & \text { velocities at contact points } \\ & \\ & \\ & v_{1 x}, v_{2 x} \text { before impact, } \\ & \\ & \\ & \\ & \\ & \\ & \text { velocity components } \\ & \text { contact normal before impact, }\end{aligned}$
$\bar{v}_{1 x}, \bar{v}_{2 x} \widehat{=} \begin{aligned} & \text { velocity components } \\ & \\ & \\ & \text { contact normal after impact, }\end{aligned}$
$\widehat{F}_{x}=\int_{0}^{t^{*}} F_{x}(\bar{t}) \mathrm{d} \bar{t} \widehat{=}$ linear impulse.

Assumptions: - The impact duration t^{*} is neglegible small.

- Position changes of the bodies during impact are neglegible small.
- Other forces (e.g. weight) are small compared with the impulsive forces at the contact point and can be neglected during impact.

Impact Hypothesis:

$$
e=-\frac{\bar{v}_{1 x}-\bar{v}_{2 x}}{v_{1 x}-v_{2 x}}=-\frac{\text { relative separation velocity }}{\text { relative approach velocity }}
$$

where $e \widehat{=}$ coefficient of restitution: $0 \leq e \leq 1$
$e=1$: elastic impact (no energy loss),
$e=0: \quad$ plastic impact $\left(\bar{v}_{2 x}=\bar{v}_{1 x}\right.$, no separation of bodies $)$.

Solution of plane impact problems: Application of the principles of linear and angular impulse and momentum to each body (see p.102):

$$
\begin{aligned}
m\left(\bar{v} c_{x}-v_{c x}\right) & =\sum \widehat{F}_{x}, \quad m\left(\bar{v}_{c_{y}}-v_{c_{y}}\right)=\sum \widehat{F}_{y} \\
\Theta_{A}(\bar{\omega}-\omega) & =\sum \widehat{M}_{A}
\end{aligned}
$$

$A \widehat{=}$ fixed point or center of mass C. The equations are complemented by the impact hypothesis and the kinematic relations between the velocities at the contact points and the velocities of the centers of mass and the angular velocities.

Remarks:

- If the bodies are smooth, the direction of linear impulse (due to contact) coincides with that of the contact normal.
- If the bodies are sufficiently rough (no slip during contact), the velocity components in tangential direction at the contact points after impact are equal.

Impact		Remarks
direct	l eccentric impulse always in direction of contact normal $\left(\widehat{F}_{y}=0\right)$.	

Direct central impact:

$$
\begin{aligned}
& \bar{v}_{1}=\frac{m_{1} v_{1}+m_{2} v_{2}-e m_{2}\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}}, \\
& \bar{v}_{2}=\frac{m_{1} v_{1}+m_{2} v_{2}+e m_{1}\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}},
\end{aligned}
$$

$\Delta T=\frac{1-e^{2}}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(v_{1}-v_{2}\right)^{2}=$ energy loss.

P6.1 Problem 6.1 A point mass m_{1}, suspended from a wire, is released from rest at height h_{1} and collides at A with a mass point $m_{2}=2 m_{1}$ which initially is at rest. After impact mass m_{1} swings back to a height of $h_{1} / 2$.

Determine the coefficient of restitution e and the velocity of m_{2} immediately
 after impact.

Solution The velocities of m_{1} and m_{2} immediately before impact are

$$
v_{1}=\sqrt{2 g h_{1}}, \quad v_{2}=0
$$

Thus, denoting the velocities after impact by \bar{v}_{1}, \bar{v}_{2}, the principle of linear impulse yield
(1) $\rightarrow: \quad m_{1}\left(\bar{v}_{1}-v_{1}\right)=-\widehat{F}$,
(2) $\rightarrow: \quad m_{2} \bar{v}_{2}=+\widehat{F}$

Eliminating \widehat{F} and using the impact hypothesis

$$
e=-\frac{\bar{v}_{1}-\bar{v}_{2}}{v_{1}}
$$

leads to

$$
\bar{v}_{1}=v_{1} \frac{m_{1}-e m_{2}}{m_{1}+m_{2}}, \quad \bar{v}_{2}=v_{1}(1+e) \frac{m_{1}}{m_{1}+m_{2}} .
$$

The velocity \bar{v}_{1} can be determined from the energy conservation law for m_{1} after impact:

$$
\frac{1}{2} m_{1} \bar{v}_{1}^{2}=m_{1} g \frac{h_{1}}{2} \quad \leadsto \quad \bar{v}_{1}=\sqrt{g h_{1}}=\frac{v_{1}}{\sqrt{2}}
$$

Thus, from the two equations above we obtain

$$
\xlongequal{e=\frac{m_{1}}{m_{2}}-\frac{m_{1}+m_{2}}{\sqrt{2} m_{2}}},
$$

$$
\xlongequal{\bar{v}_{2}=v_{1} \frac{m_{1}}{m_{2}}\left(1-\frac{1}{\sqrt{2}}\right)} .
$$

Problem 6.2 A ball is dropped from height h_{0} onto a flat surface and bounces back five times (coefficient of restitution $e=0.85$).
a) Determine the height h_{5} the ball reaches after the last impact.
b) Determine the energy loss for each impact.

Solution a) If the positive direction of velocity is chosen upwards, the ball has immediately before the 1st hit the velocity

$$
v_{1}=-\sqrt{2 g h_{0}} .
$$

Denoting the velocity immediately after impact by \bar{v}_{1}, the impact hypothesis leads to

$$
e=-\frac{\bar{v}}{v} \quad \leadsto \quad \bar{v}_{1}=-e v_{1}=e \sqrt{2 g h_{0}} .
$$

From the energy conservation law follows the new height, reached after the first hit:

$$
\frac{1}{2} m \bar{v}_{1}^{2}=m g h_{1} \quad \leadsto \quad h_{1}=\frac{\bar{v}_{1}^{2}}{2 g}=e^{2} h_{0}
$$

In the same way we find for all further hits

$$
h_{i}=e^{2} h_{i-1}
$$

and therefore

$$
\underline{\underline{h_{5}}}=e^{2} h_{4}=e^{4} h_{3}=\ldots=e^{10} h_{0}=\underline{\underline{0.197 h_{0}}} .
$$

b) The energy loss during an impact can be determined from the difference in potential energy calculated from the heights before and after impact. Choosing zero potential at the surface we obtain with $V_{i-1}=m g h_{i-1}$ and $V_{i}=m g h_{i}$ (the kinetic energy is zero when reaching the heights)

$$
\Delta V_{i}=V_{i-1}-V_{i}=m g\left(h_{i-1}-h_{i}\right)=\left(1-e^{2}\right) m g h_{i-1}
$$

Remark: The energy loss can alternatively be determined from the difference in kinetic energies. Note that the energy loss decreases with the number of hits.

P6.3 Problem 6.3 At a quality test, balls (1) fall from height H on a rigid smooth plate (2) which is inclined by $\alpha=20^{\circ}$ against the horizontal.

Which distance d must have a collecting container (3), so that only the balls with a coefficient of restitution $e \geq 0.8$ reach the container?

Solution That balls with $e \geq 0.8$ reach the container, the distance d must exactly be equal to the flight distance of balls with the coefficient of restitution $e=0.8$. The balls (1) hit plate (2) with the velocity

$$
v_{1}=\sqrt{2 g H}
$$

Using the displayed coordinate system ($x \widehat{=}$ contact normal), its components are

$$
\begin{aligned}
& v_{1 x}=-v_{1} \cos \alpha, \\
& v_{1 y}=-v_{1} \sin \alpha .
\end{aligned}
$$

Since the impulse in y-direction is zero (smooth plate), $\bar{v}_{1 y}=v_{1 y}$ holds. The impact hypothesis leads then with $v_{2 x}=\bar{v}_{2 x}=0$ (rigid plate) to

$$
e=-\frac{\bar{v}_{1 x}}{v_{1 x}} \quad \leadsto \quad \bar{v}_{1 x}=-e v_{1 x}=e v_{1} \cos \alpha
$$

Thus, for the limit case $e=0,8$ follows for the angle β

$$
\tan \beta=\frac{\left|\bar{v}_{1 y}\right|}{\left|\bar{v}_{1 x}\right|}=\frac{\left|v_{1 y}\right|}{e v_{1 x}}=\frac{1}{e} \tan \alpha \quad \leadsto \quad \beta=24.46^{\circ}
$$

and for the launching angle γ to the horizontal

$$
\gamma=90^{\circ}-\alpha-\beta=45.54^{\circ}
$$

With the equations for the projectile motion (see page 32) we obtain the flight distance d of balls with $e=0.8$:

$$
\begin{aligned}
\underline{d} & =\frac{1}{g} \bar{v}_{1}^{2} \sin 2 \gamma=\frac{1}{g}\left(\bar{v}_{1 x}^{2}+\bar{v}_{1 y}^{2}\right) \sin 2 \gamma \\
& =2 H\left(e^{2} \cos ^{2} \alpha+\sin ^{2} \alpha\right) \sin 2 \gamma=\underline{\underline{1.364 H}}
\end{aligned}
$$

Problem 6.4 Two old cars (no ABS) move along the highway with same speed v_{0} in a short distance b when a traffic jam gets in sight in distance c. Both cars make a full brake and get sliding, car (1) a shock moment Δt later than car (2).
a) When and where both cars clash? Determine their velocities after the clash (coefficient of restitution e).
b) Does car (2) come to stand ahead of the jam?

Given: $v_{0}=30 \mathrm{~m} / \mathrm{s}(=108 \mathrm{~km} / \mathrm{h}), m_{1}=1.5 \mathrm{~m}$, $m_{2}=m, \Delta t=1 \mathrm{~s}, \mu_{1}=\mu_{2}=1 / 2, e=0,8$,
 $b=25 \mathrm{~m}, c=150 \mathrm{~m}$. Neglect the lengths of the cars.

Solution a) We introduce the coordinate s and start counting time when car (2) slames on brakes. During sliding the acceleration of both cars is the same: $a_{1}=a_{2}=-\mu g$. Considering the initial conditions and the shock delay, the velocities and covered distances are given by

$$
\begin{aligned}
& \quad \begin{array}{l}
v_{2}=v_{0}-\mu g t, \\
v_{1}=v_{0}-\mu g(t-\Delta t), \quad s_{2}=v_{0} t-\frac{1}{2} \mu g t^{2}, \\
\text { The collision time } t^{*} \text { and the associated position and } \\
\text { velocities are found from the condition } s_{1}\left(t^{*}\right)=s_{2}\left(t^{*}\right): \\
\qquad \begin{array}{l}
\underline{t^{*}}=\frac{b+\mu g(\Delta t)^{2} / 2}{\mu g \Delta t}=\underline{\underline{s .6 \mathrm{~s}}}, \\
\underline{\underline{s^{*}}}=s_{2}\left(t^{*}\right)=v_{0} t^{*}-\frac{1}{2} \mu g t^{* 2}=\underline{91.17 \mathrm{~m}}, \\
v_{2}^{*}=v_{2}\left(t^{*}\right)=v_{0}-\mu g t^{*}=2.56 \mathrm{~m} / \mathrm{s},
\end{array} \\
v_{1}^{*}=v_{1}\left(t^{*}\right)=v_{0}-\mu g\left(t^{*}-\Delta t\right)=7.46 \mathrm{~m} / \mathrm{s} .
\end{array}
\end{aligned}
$$

The velocities after collision are calculated by using the formulas on page 149 for central impact:

$$
\begin{aligned}
& \underline{\underline{\bar{v}_{2}}}=\frac{m_{1} v_{1}^{*}+m_{2} v_{2}^{*}+e m_{1}\left(v_{1}^{*}-v_{2}^{*}\right)}{m_{1}+m_{2}}=\underline{\underline{25.4 \mathrm{~m} / \mathrm{s}}} \\
& \underline{\underline{\bar{v}_{1}}}=\frac{m_{1} v_{1}^{*}+m_{2} v_{2}^{*}-e m_{2}\left(v_{1}^{*}-v_{2}^{*}\right)}{m_{1}+m_{2}}=\underline{\underline{14.1 \mathrm{~m} / \mathrm{s}}}
\end{aligned}
$$

b) With \bar{v}_{2}, \bar{v}_{1} and s^{*} the positions for standstill would be

$$
s_{2}^{* *}=s^{*}+\frac{\bar{v}_{2}^{2}}{2 \mu g}=65.8 \mathrm{~m}, \quad s_{1}^{* *}=s^{*}+\frac{\bar{v}_{1}^{2}}{2 \mu g}=20.3 \mathrm{~m}
$$

Because $s_{2}^{* *}>c$, car (2) would crash into the jam.

P6.5 Problem 6.5 A bullet (mass m) with the velocity v hits centrally an initially resting frictionless supported board of mass M. It penetrates the board and has thereafter the velocity \bar{v}.
a) Determine the velocity \bar{w} of the board after the penetrating shot.
b) How much energy is needed for producing the penetration hole?

Given: $M=10 m, \bar{v}=v / 2$.

Solution a) The velocity \bar{w} of the board is determined by using the conservation of linear momentum law with the known bullet speeds v and \bar{v} :

$$
\rightarrow: \quad m v=m \bar{v}+M \bar{w} .
$$

Solving for \bar{w} leads to

$$
\underline{\underline{w}}=\frac{m}{M}(v-\bar{v})=\frac{1}{10} \frac{v}{2}=\underline{\underline{\underline{20}}} .
$$

b) The energy needed for producing the penetration hole is calculated from the energy loss of the system. Since the potential energy does not change, only the kinetic energy before and after penetration must be considered:

$$
T=\frac{1}{2} m v^{2}, \quad \bar{T}=\frac{1}{2} m \bar{v}^{2}+\frac{1}{2} M \bar{w}^{2} .
$$

The difference yields the energy loss

$$
\begin{aligned}
\underline{\underline{\Delta T}} & =T-\bar{T}=\frac{1}{2} m\left(v^{2}-\bar{v}^{2}\right)-\frac{1}{2} M \bar{w}^{2} \\
& =\frac{1}{2} m\left[\left(v^{2}-\bar{v}^{2}\right)-\frac{m}{M}(v-\bar{v})^{2}\right] \\
& =\frac{1}{2} m v^{2}\left[1-\left(\frac{\bar{v}}{v}\right)^{2}-\frac{m}{M}\left(1-\frac{\bar{v}}{v}\right)^{2}\right]=\frac{1}{2} m v^{2}\left[1-\frac{1}{4}-\frac{1}{10} \frac{1}{4}\right] \\
& =\underline{\underline{49}\left(\frac{1}{2} m v^{2}\right)}
\end{aligned}
$$

Problem 6.6 Two cars (point masses m_{1}, m_{2}) collide at an intersection. From a radar measurement the velocity v_{1} before collision and from the sliding track the velocity \bar{v}_{1} and angle γ after collision are known.

Determine the velocities v_{2}, \bar{v}_{2} and the angle β of the 2 nd car by assuming that no energy is absorbed during impact.

Given: $m_{1}=m_{2}=m, v_{1}, \bar{v}_{1}=v_{1} / 3$, $\alpha=45^{\circ}, \gamma=60^{\circ}$.

Solution Before and after collision the cars have the velocities v_{1}, v_{2}, \bar{v}_{1} and \bar{v}_{2}. They are related by the conservation of linear momentum law

$$
\begin{array}{rr}
\rightarrow: & m_{1} v_{1}+m_{2} v_{2} \cos \alpha=m_{1} \bar{v}_{1} \cos \gamma+m_{2} \bar{v}_{2} \cos \beta, \\
\uparrow: & m_{2} v_{2} \sin \alpha=m_{1} \bar{v}_{1} \sin \gamma+m_{2} \bar{v}_{2} \sin \beta,
\end{array}
$$

which, after inserting the given quantities, leads to

$$
\begin{aligned}
v_{1}+v_{2} \sqrt{2} / 2 & =\bar{v}_{1} / 2+\bar{v}_{2} \cos \beta \\
v_{2} \sqrt{2} / 2 & =\bar{v}_{1} \sqrt{3} / 2+\bar{v}_{2} \sin \beta
\end{aligned}
$$

Conservation of energy during impact requires

$$
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} \bar{v}_{1}^{2}+\frac{1}{2} m_{2} \bar{v}_{2}^{2} \quad \leadsto \quad v_{1}^{2}+v_{2}^{2}=\bar{v}_{1}^{2}+\bar{v}_{2}^{2}
$$

Herewith we have three equations for the three unknowns v_{2}, \bar{v}_{2} and β. To solve them, we first eliminate β :

$$
\begin{aligned}
\bar{v}_{2}^{2}= & \bar{v}_{2}^{2}\left(\cos ^{2} \beta+\sin ^{2} \beta\right) \\
= & \left(v_{1}^{2}+v_{2}^{2} / 2+\bar{v}_{1}^{2} / 4+v_{1} v_{2} \sqrt{2}-v_{1} \bar{v}_{1}-v_{2} \bar{v}_{1} \sqrt{2} / 2\right) \\
& +\left(v_{2}^{2} / 2+\bar{v}_{1}^{2} 3 / 4-v_{2} \bar{v}_{1} \sqrt{6} / 2\right) \\
= & v_{1}^{2}+v_{2}^{2}+\bar{v}_{1}^{2}+v_{1} v_{2} \sqrt{2}-v_{1} \bar{v}_{1}-v_{2} \bar{v}_{1}(1+\sqrt{3}) \sqrt{2} / 2
\end{aligned}
$$

Introduction into energy conservation then leads to

$$
\begin{aligned}
& \underline{\underline{v_{2}}}=\frac{\bar{v}_{1}\left(v_{1}-2 \bar{v}_{1}\right)}{v_{1} \sqrt{2}-\bar{v}_{1}(1+\sqrt{3}) \sqrt{2} / 2}=\underline{\underline{0.144 v_{1}}} \\
& \bar{v}_{2}^{2}=v_{1}^{2}+v_{2}^{2}-\bar{v}_{1}^{2} \quad \leadsto \quad \underline{\underline{\bar{v}_{2}=0.953 v_{1}}}
\end{aligned}
$$

and subsequently to

$$
\bar{v}_{2} \sin \beta=v_{2} \sqrt{2} / 2-\bar{v}_{1} \sqrt{3} / 2 \leadsto \sin \beta=-0.196 \leadsto \underline{\underline{\beta=-11.3^{\circ}}} .
$$

P6.7 Problem 6.7 A point mass (mass m_{1}) is shot upwards a rough inclined plane (coefficient of kinetic friction μ) with an initial velocity v_{0}. In point B it hits a resting point mass m_{2}, which after this 1st impact bounces against a spring (stiffness k) at the end of the smooth path $\overline{B C}$.
a) Determine the velocity v_{1} of the point mass m_{1} immediately before the impact.
b) Calculate the coefficient of restitution e if the maximum compression of the spring is f.

Given: $m_{1}=m_{2}=m=0.1 \mathrm{~kg}, g=9.81 \mathrm{~m} / \mathrm{s}, \alpha=30^{\circ}, v_{0}=6 \mathrm{~m} / \mathrm{s}$, $\mu=0.5, k=400 \mathrm{~N} / \mathrm{m}, a=1 \mathrm{~m}$.

Solution a) Application of the work-energy theorem $V_{A}+T_{A}=V_{B}+$ $T_{B}+U_{A B}$ to the mass m_{1} between the points A and B yields with $R=\mu N=\mu m_{1} g \cos \alpha$ and

$$
\begin{aligned}
& V_{A}=0, \quad T_{A}=\frac{1}{2} m_{1} v_{0}^{2}, \quad U_{A B}=-R a=-\mu m_{1} g a \cos \alpha \\
& V_{B}=m_{1} g a \sin \alpha, \quad T_{B}=\frac{1}{2} m_{1} v_{1}^{2}
\end{aligned}
$$

the velocity

$$
\underline{\underline{v_{1}}=\sqrt{v_{0}^{2}-2 g a(\sin \alpha+\mu \cos \alpha)}}=4.21 \mathrm{~m} / \mathrm{s} .
$$

b) The velocity of m_{2} immediately after impact follows with $v_{2}=0$ and $m_{1}=m_{2}$ as

$$
\begin{equation*}
\bar{v}_{2}=\frac{m_{1} v_{1}+m_{2} v_{2}+e m_{1}\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}}=\frac{1+e}{2} v_{1} . \tag{a}
\end{equation*}
$$

Now we apply the energy conservation law $V_{B}+T_{B}=V_{C}+T_{C}$ to m_{2} between the points B and C. With

$$
V_{B}=0, \quad T_{B}=\frac{1}{2} m_{2} \bar{v}_{2}^{2}, \quad V_{C}=m_{2} g a(1-\cos \alpha)+\frac{1}{2} c f^{2}, \quad T_{C}=0
$$

follows

$$
\bar{v}_{2}=\sqrt{\frac{c}{m_{2}} f^{2}+2 g a(1-\cos \alpha)}=3.55 \mathrm{~m} / \mathrm{s}
$$

Introduction into (a) finally leads to

$$
e=2 \frac{\bar{v}_{2}}{v_{1}}-1=2 \frac{3.55}{4.21}-1 \equiv \underline{\underline{0.69}} .
$$

Problem 6.8 A bowling ball (1) hits with speed v_{1} the pin (2). Assume that all surfaces are smooth and that the impact is partially elastic (coefficient of restitution e).

Determine the velocities of pin and ball immediately after impact.
Given: $v_{1}=7 \mathrm{~m} / \mathrm{s}, m_{1}=4.5 \mathrm{~kg}$, $m_{2}=1.5 \mathrm{~kg}, \quad \Theta_{c}=0.013 m_{2} \mathrm{~m}^{2}$, $\alpha=10^{\circ}, c=0.02 \mathrm{~m}, e=0.9$.

Solution The impact is eccentric. Since the surfaces are smooth, the linear impulse \widehat{F} acts in the line of impact and thus, the impulse laws lead to
(1) $\rightarrow: m_{1}\left(\bar{v}_{1}-v_{1}\right)=-\widehat{F} \cos \alpha$,
(2) $\nearrow: \quad m_{2} \bar{v}_{2}=\widehat{F}$,

$$
\stackrel{\curvearrowleft}{C}: \quad \Theta_{c} \bar{\omega}_{2}=c \widehat{F}
$$

Note that the weights can be neglected during impact and that the ball cannot move vertically. Using the impact hypothesis

$$
e=-\frac{\bar{v}_{1 x}^{P}-\bar{v}_{2 x}^{P}}{v_{1 x}^{P}-v_{2 x}^{P}}
$$

and

$$
v_{1 x}^{P}=v_{1} \cos \alpha, \quad v_{2 x}^{P}=0, \quad \bar{v}_{1 x}^{P}=\bar{v}_{1} \cos \alpha, \quad \bar{v}_{2 x}^{P}=\bar{v}_{2}+c \bar{\omega}_{2}
$$

we obtain by solving for \widehat{F}

$$
\widehat{F}=(1+e) \frac{m_{2} v_{1} \cos \alpha}{1+m_{2} / m_{1}+c^{2} m_{2} / \Theta_{c}}=14.41 \mathrm{kgm} / \mathrm{s}^{2}
$$

Thus, the velocities follow as

$$
\underline{\underline{\bar{v}_{1}}}=v_{1}-\frac{\widehat{F}}{m_{1}} \cos \alpha=\underline{\underline{3.8 \mathrm{~m} / \mathrm{s}}}, \quad \underline{\underline{\bar{v}_{2}}}=\frac{\widehat{F}}{m_{2}}=\underline{\underline{9.6 \mathrm{~m} / \mathrm{s}}} .
$$

Note that the pin after impact has an angular velocity:

$$
\bar{\omega}_{2}=c \widehat{F} / \Theta_{c}=13.21 / \mathrm{s}
$$

P6.9 Problem 6.9 A point mass m_{1} impinges with the velocity v_{1} eccentrically a homogeneous bar (mass m_{2}), which initially rests on a smooth plane.

Determine the velocities of the point mass and the bar after an ideal elastic impact. Given.: $m_{2}=2 m_{1}, b=l / 4$.

Solution The principle of impulse an momentum applied to the point mass (1) and the bar (2) yield (with $v_{2 c}=0, \omega_{2}=0$)
(1) $\rightarrow: m_{1}\left(\bar{v}_{1}-v_{1}\right)=-\widehat{F}$,
(2) $\rightarrow: \quad m_{2} \bar{v}_{2 c}=\widehat{F}$,

$$
\stackrel{\curvearrowleft}{C}: \quad \Theta_{c} \bar{\omega}_{2}=b \widehat{F} .
$$

These equations are complemented by the
 impact hypothesis

$$
e=-\frac{\bar{v}_{1}-\bar{v}_{2 B}}{v_{1}}=1
$$

and the kinematic relation

$$
\bar{v}_{2 B}=\bar{v}_{2 C}+b \bar{\omega}_{2} .
$$

Thus, we have five equations for the five unknowns $\left(\bar{v}_{1}, \bar{v}_{2 c}, \bar{v}_{2 B}, \bar{\omega}_{2}\right.$, $\widehat{F})$. With $\Theta_{c}=m_{2} l^{2} / 12$ we obtain

$$
\bar{v}_{1}=v_{1} \frac{\frac{m_{1}}{m_{2}}\left(1+\frac{12 b^{2}}{l^{2}}\right)-1}{\frac{m_{1}}{m_{2}}\left(1+\frac{12 b^{2}}{l^{2}}\right)+1}=-\frac{v_{1}}{15},
$$

$$
\bar{v}_{2 c}=\frac{m_{1}}{m_{2}}\left(v_{1}-\bar{v}_{1}\right)=\frac{8}{15} v_{1}, \quad \underline{\overline{\omega_{2}}=\frac{b}{\Theta_{c}} m_{2} \bar{v}_{2 c}=\frac{8}{5} \frac{v_{1}}{l} .}
$$

Remark: If the impact is purely elastic the impact hypothesis can be replaced by the energy conservation law. In our case it reads

$$
\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2} m_{1} \bar{v}_{1}^{2}+\frac{1}{2} m_{2} \bar{v}_{2 c}^{2}+\frac{1}{2} \Theta_{c} \bar{\omega}_{2}^{2}
$$

Problem 6.10 A homogeneous angleshaped body (mass m, dimensions a, $t \ll a$) slides along a smooth plane and impinges with its edge plastically against an obstacle H.

Calculate the minimum impact speed v, so that the body tilts over.

Solution Since the impact at H is plastic, the edge of the angle does not separate from H. Therefore, tilting can be regarded as a pure rotation about the fixed point H. With the distance $a / 4$ of the center of mass, the moment of angular momentum L_{H} before impact ($=$ mo-
 ment of linear momentum with respect to H) and \bar{L}_{H} after impact are given by

$$
L_{H}=\frac{a}{4}(m v), \quad \bar{L}_{H}=\Theta_{H} \bar{\omega}
$$

where

$$
\Theta_{H}=2\left(\frac{m}{2} \frac{a^{2}}{3}\right)=\frac{m a^{2}}{3}
$$

Since there acts no angular impulse with respect to H (weight can be disregarded during impact), the moment of momentum is conserved:

$$
L_{H}=\bar{L}_{H} \quad \sim \quad \frac{a}{4} m v=\frac{m a^{2}}{3} \bar{\omega} \quad \leadsto \quad \bar{\omega}=\frac{3}{4} \frac{v}{a} .
$$

The body can only tilt over, if the center of mass reaches the highest possible position. The minimum velocity required for that follows from energy conservation, applied to the motion after impact:
$\frac{1}{2} \Theta_{H} \bar{\omega}_{\min }^{2}=m g\left(\sqrt{2} \frac{a}{4}-\frac{a}{4}\right)$

This finally leads to

$$
\underline{v_{\min }=\sqrt{\frac{8}{3}(\sqrt{2}-1) g a}=1.05 \sqrt{g a}} .
$$

P6.11 Problem 6.11 At a hammer mill, the thumb C of the rotating flywheel (moment of inertia Θ_{A}, angular velocity ω_{1}) hits the resting hammer (moment of inertia Θ_{B}) which is pivoted at B.

a) Determine the angular velocities $\bar{\omega}_{1}$ of the flywheel and $\bar{\omega}_{2}$ of the hammer shortly after impact (coefficient of restitution e)
b) Calculate the energy loss for the case $\Theta_{B} / \Theta_{A}=a^{2} / r^{2}$.

Solution a) The principles of angular impulse and momentum for (1) and (2) yield

and the kinematic relations

$$
v_{1 C}=r \omega_{1}, \quad \bar{v}_{1 C}=r \bar{\omega}_{1}, \quad v_{2 C}=0, \quad \bar{v}_{2 C}=a \bar{\omega}_{2}
$$

we obtain

$$
\underline{\overline{\bar{\omega}_{1}=\omega_{1} \frac{1-e \frac{r^{2} \Theta_{B}}{a^{2} \Theta_{A}}}{1+\frac{r^{2} \Theta_{B}}{a^{2} \Theta_{A}}},} \quad \overline{\bar{\omega}_{2}=\omega_{1} \frac{(1+e) \frac{r}{a}}{1+\frac{r^{2} \Theta_{B}}{a^{2} \Theta_{A}}} .} .}
$$

b) The energy loss is calculated from the difference of kinetic energies before and after impact. With $r^{2} \Theta_{B}=a^{2} \Theta_{A}$ follows

$$
\begin{aligned}
\underline{\underline{\Delta T}} & =\frac{1}{2} \Theta_{A} \omega_{1}^{2}-\left[\frac{1}{2} \Theta_{A} \bar{\omega}_{1}^{2}+\frac{1}{2} \Theta_{B} \bar{\omega}_{2}^{2}\right] \\
& =\frac{1}{8} \Theta_{A} \omega_{1}^{2}\left[4-(1-e)^{2}-(1+e)^{2}\right]=\underline{\underline{4}\left(1-e^{2}\right) \Theta_{A} \omega_{1}^{2}} .
\end{aligned}
$$

Remark: In case of an ideal elastic impact $(e=1)$ we would obtain for the given datai $\bar{\omega}_{1}=0$ and $\bar{\omega}_{2}=\omega_{1} r / a$.

Problem 6.12 A springy pivoted hammer (torsional spring constant c_{T}) can rotate in a horizontal plane. It consists of a homogeneous bar of mass m_{2} and the hammer head (point mass m_{3}). The hammer is hit by a ball of mass m_{1}.

Determine the required speed v of the ball so that the hammer for a given coefficient of restitution e just reaches a maximum angle φ_{0}.
Given: $m_{1}=m_{2}=m_{3}=m, a, c_{T}, e=\frac{1}{2}$.

Solution Since the hammer initially is at rest, the angular momentum of the system with respect to the fixed point A before impact is given by the moment of linear momentum $L_{A}=a m_{1} v$. Immediately after impact the hammer (moment of inertia Θ_{A}) has the angular velocity $\bar{\omega}$ and the ball (mass m_{1}) the velocity \bar{v}. Thus, conservation of angular momentum leads to

$$
\stackrel{\curvearrowleft}{A}: \quad a m_{1} v=\Theta_{A} \bar{\omega}+a m_{1} \bar{v} .
$$

With the impact hypothesis

$$
e=\frac{\bar{\omega} a-\bar{v}}{v}
$$

follows

$$
\bar{\omega}=\frac{m_{1}(1+e) a}{\Theta_{A}+m_{1} a^{2}} v \quad \text { where } \quad \Theta_{A}=\frac{m_{2}(4 a)^{2}}{12}+(2 a)^{2} m_{3}=\frac{16}{3} m a^{2}
$$

Immediately after impact (no spring deformation) the energy of the hammer-spring system is solely given by its kinetic energy $\frac{1}{2} \Theta_{A} \bar{\omega}^{2}$. At maximum angle φ_{0} the potential energy is just $\frac{1}{2} c_{T} \varphi_{0}^{2}$ while the kinetic energy is zero. Thus, from the energy conservation law after introducing $\bar{\omega}$ and the given data we obtain the required velocity:

$$
\begin{aligned}
& \frac{1}{2} \Theta_{A} \bar{\omega}^{2}=\frac{1}{2} c_{T} \varphi_{0}^{2} \quad \leadsto \quad \bar{\omega}=\sqrt{\frac{c_{T}}{\Theta_{A}}} \varphi_{0} \\
& \leadsto \quad v \\
& \sim \sqrt{\frac{c_{T}}{\Theta_{A}}} \frac{\Theta_{A}+m_{1} a^{2}}{m_{1}(1+e) a} \varphi_{0}=\frac{19}{18} \sqrt{\frac{3 c_{T}}{m}} \varphi_{0}
\end{aligned}
$$

P6.13 Problem 6.13 A soccer ball (mass m, moment of inertia Θ_{c}) hits with speed v_{0} horizontally the rough post of the goal. The impact (coefficient of restitution e) is central under the angle α to the goal line.
Determine the required spin (angular velocity ω_{0}) such that the ball crosses after impact the goal line if during impact there is no slip (static friction!).

Solution The principles of impulse and momentum, applied to the ball, yield

$$
\begin{aligned}
\nearrow: & m\left(\bar{v}_{x}-v_{0}\right) & =-\widehat{F}, \\
\nwarrow: & m \bar{v}_{y} & =\widehat{H}, \\
\overparen{C}: & \Theta_{c}\left(\bar{\omega}-\omega_{0}\right) & =-r \widehat{H} .
\end{aligned}
$$

With the impact hypothesis (rigid post)

$$
e=-\frac{\bar{v}_{x}}{v_{0}}
$$

and the condition for static friction (velocity of contact point A in y direction is zero after impact)

$$
\bar{v}_{A y}=\bar{v}_{y}-r \bar{\omega}=0
$$

we obtain for \bar{v}_{x} and \bar{v}_{y}

$$
\bar{v}_{x}=-e v_{0}, \quad \bar{v}_{y}=\frac{r \omega_{0}}{1+\frac{r^{2} m}{\Theta_{c}}}
$$

The ball only crosses the goal line if

$$
\bar{v}_{\xi}=\bar{v}_{x} \sin \alpha+\bar{v}_{y} \cos \alpha>0
$$

This leads for the require spin to

$$
\omega_{0}>\frac{e v_{0}}{r}\left(1+\frac{r^{2} m}{\Theta_{c}}\right) \tan \alpha
$$

Problem 6.14 The motion of a homogeneous door (mass m, width b, thickness $t \ll b$) is limited by a stopper B.

In which distance c from the door hinge A the stopper must be fixed, that the impulse \widehat{A} at the hinge is zero during impact?

Solution We assume that before impact the door has the angular velocity ω. Then the principles of impulse and momentum read

$$
\begin{aligned}
& \rightarrow: \quad m\left(\bar{v}_{C_{x}}-v_{C x}\right)=\widehat{A}_{x}-\widehat{B} \\
& \uparrow: \quad m\left(\bar{v}_{C y}-v_{C_{y}}\right)=\widehat{A}_{y}, \\
& \curvearrowleft \quad \Theta_{A}(\bar{\omega}-\omega)=-c \widehat{B},
\end{aligned}
$$

where

$$
v_{c x}=\frac{b}{2} \omega, \quad \bar{v}_{c x}=\frac{b}{2} \bar{\omega}, \quad v_{c y}=\bar{v}_{c_{y}}=0
$$

Using the impact hypothesis

$$
e=-\frac{\bar{v}_{B x}}{v_{B x}}=-\frac{c \bar{\omega}}{c \omega}=-\frac{\bar{\omega}}{\omega}
$$

and solving the equations for the hinge impulses leads to

$$
\widehat{A}_{y}=0, \quad \widehat{A}_{x}=(1+e) \omega\left[\frac{\Theta_{A}}{c}-\frac{m b}{2}\right]
$$

From the condition $\widehat{A}_{x}=0$ with $\Theta_{A}=m b^{2} / 3$ finally follows

$$
\underline{c=\frac{2 \Theta_{A}}{m b}=\frac{2}{3} b} .
$$

P6.15 Problem 6.15 The double pendulum, consisting of two homogeneous bars, is struck horizontally in point D by a linear impulse \widehat{F}.
a) Determine the impulsive forces in A and B, and the state of motion of the lower bar immediately after impact.
b) Under which circumstances the magnitudes of angular velocities after impact are related as $\left|\bar{\omega}_{2}\right|=2\left|\bar{\omega}_{1}\right| ?$

Solution a) We separate the two bars, draw the free-body diagram and formulate the priciples of linear and angular momentum (note that the weights can be neglected during impact):

$$
\begin{aligned}
& \text { (1) } \leftarrow: \quad m_{1} \bar{v}_{1}=\widehat{F}-\widehat{A}-\widehat{B}, \\
& \stackrel{\curvearrowright}{A}: \Theta_{A} \bar{\omega}_{1}=c \widehat{F}-a \widehat{B}, \\
& \text { (2) } \leftarrow: \quad m_{2} \bar{v}_{2}=\widehat{B} \text {, } \\
& \stackrel{\curvearrowright}{C_{2}}: \quad \Theta_{C_{2}} \bar{\omega}_{2}=(b / 2) \widehat{B}
\end{aligned}
$$

where

$$
\Theta_{A}=\frac{1}{3} m_{1} a^{2}, \quad \Theta_{C_{2}}=\frac{1}{12} m_{2} b^{2}
$$

Since the velocities of both bars at point B must be equal after impact, and \bar{v}_{1} and $\bar{\omega}_{1}$ are simply related, the kinematic relations read

$$
a \bar{\omega}_{1}=\bar{v}_{2}+(b / 2) \bar{\omega}_{2}, \quad \bar{v}_{1}=(a / 2) \bar{\omega}_{1} .
$$

Solving these six equations yields

$$
\begin{array}{ll}
\widehat{A}=\left(1-\frac{c}{a} \frac{1}{1+m_{1} / m_{2}}\right) \widehat{F} & \widehat{B}=\frac{c}{a} \frac{\widehat{F}}{1+m_{1} / m_{2}} \\
\hline \hline \bar{v}_{1}=4 \frac{\widehat{B}}{m_{2}}, \quad \bar{\omega}_{1}=4 \frac{\widehat{B}}{a m_{2}}, & \overline{\bar{v}_{2}=\frac{\widehat{B}}{m_{2}}}, \quad \bar{\omega}_{2}=\frac{b / 2}{\Theta_{C_{2}}} \widehat{B}
\end{array}
$$

b) Inserting the quantities into the condition $\left|\bar{\omega}_{2}\right|=2\left|\bar{\omega}_{1}\right|$ leads to

$$
\frac{b / 2}{\Theta_{C_{2}}} \widehat{B}=8 \frac{\widehat{B}}{a m_{2}} \quad \leadsto \quad b a m_{2}=16 \Theta_{C_{2}} \quad \leadsto \quad \underline{\underline{a=\frac{4}{3}} b}
$$

Remark: Note that $\widehat{A}=0$ if c is chosen such that the bracket is zero.

Problem 6.16 A bar (mass m_{1}) hits under the angle $\alpha=45^{\circ}$ with speed v a resting homogeneous quadratic plate of mass m_{2}.
Determine the velocities of the bar and the plate after impact (coefficient of restitution e). Assume that all surfaces are smooth.

Solution If we denote the velocities of bar (1) with v and of the plate (2) with w, the principles of impulse and momentum lead to
(1) $\rightarrow: m_{1}\left(\bar{v}_{C x}-v_{C x}\right)=-\widehat{F}$,

$$
\uparrow: \quad m_{1}\left(\bar{v}_{c_{y}}-v_{C_{y}}\right)=0, \quad \overparen{C}_{1}: \quad \Theta_{1} \bar{\omega}_{1}=\frac{\sqrt{2}}{4} l \widehat{F},
$$

(2) $\rightarrow: m_{2} \bar{w}_{c x}=\widehat{F}, \quad \uparrow: \quad m_{2} \bar{w}_{c y}=0, \quad \overparen{C_{2}}: \quad \Theta_{2} \bar{\omega}_{2}=0$,
where $\Theta_{1}=m_{1} l^{2} / 12$ and $v_{C x}=v_{C_{y}}=v / \sqrt{2}$. Hence, using the impact hypothesis

$$
e=-\frac{\bar{v}_{A x}-\bar{w}_{A x}}{v_{A x}}
$$

where

$$
v_{A x}=\frac{v}{\sqrt{2}}, \quad \bar{v}_{A x}=\bar{v}_{C x}-\frac{\sqrt{2}}{4} l \bar{\omega}_{1}, \quad \bar{w}_{A x}=\bar{w}_{C x}
$$

we obtain

$$
\begin{array}{lll}
\bar{v}_{c x}=\frac{v}{\sqrt{2}} \frac{3+2 \frac{m_{1}}{m_{2}}-2 e}{5+2 \frac{m_{1}}{m_{2}}}, & \underline{\bar{v}_{c y}=\frac{v}{\sqrt{2}}}, & \overline{\bar{\omega}_{1}=\frac{v}{l} \frac{6(1+e)}{5+2 \frac{m_{1}}{m_{2}}}} \\
\overline{\underline{w}} & =\begin{array}{l}
\bar{w}_{c x}=\frac{v}{\sqrt{2}} \frac{2(1+e) \frac{m_{1}}{m_{2}}}{5+2 \frac{m_{1}}{m_{2}}}
\end{array} & \underline{\underline{w_{c y}}=0}
\end{array}, \underline{\overline{\omega_{2}=0}} .
$$

P6.17 Problem 6.17 A homogeneous circular disk slides frictionless along a smooth plane and hits under angle $\alpha=45^{\circ}$ with speed v and angular velocity ω a rough rigid boundary (coefficient of restitution $e=1 / 2$).

Determine the magnitude
 and direction of the velocity after the second impact at the opposite boundary. Assume that the disc does not slide during impact at the contact point.

Solution The first impact is described by the principles of impulse and momentum

$$
\begin{array}{lr}
\rightarrow: & m\left(\bar{v}_{c x}-v_{c x}\right)=-\widehat{H}_{1} \\
\curvearrowleft & \curvearrowleft \quad \Theta_{c}(\bar{\omega}-\omega)=-r \widehat{H}_{1}
\end{array}
$$

the impact hypothesis

$$
e=-\frac{\bar{v}_{A y}}{v_{A y}}=-\frac{\bar{v}_{c_{y}}}{v_{c y}}
$$

and the condition of no sliding at point A

$$
\bar{v}_{A x}=\bar{v}_{c_{x}}+r \bar{\omega}=0 .
$$

From the first two equations follows

$$
\bar{\omega}=\omega-\frac{m r}{\Theta_{c}}\left(v_{C x}-\bar{v}_{C x}\right)
$$

Hence, with $\Theta_{c}=m r^{2} / 2$ and

$$
v_{c x}=v \cos \alpha=\frac{v}{\sqrt{2}}, \quad v_{c_{y}}=-v \sin \alpha=-\frac{v}{\sqrt{2}}
$$

the velocity components are obtained as

$$
\bar{v}_{c_{x}}=-r \bar{\omega}=-\frac{r \omega}{3}+\frac{2}{3} v_{c_{x}}=\frac{1}{3}(\sqrt{2} v-r \omega), \quad \bar{v}_{c_{y}}=-e v_{c_{y}}=\frac{\sqrt{2}}{4} v .
$$

Remarks: - For $\omega>\sqrt{2} v / r$ follows $\bar{v}_{C x}<0$, i.e. after impact the disc moves to the left.

- The impulse \widehat{F}_{1} can be determined from the principle of impulse and momentum in y-direction.

We denote the velocities after the second impact with two dashes. Then the principles of impulse and momentum read

$$
\begin{aligned}
& \rightarrow: \quad m\left(\overline{\bar{v}}_{C x}-\bar{v}_{c x}\right)=-\widehat{H}_{2} \\
& \stackrel{\curvearrowleft}{C}: \quad \Theta_{c}(\overline{\bar{\omega}}-\bar{\omega})=r \widehat{H}_{2} .
\end{aligned}
$$

With the impact hypothesis

$$
e=-\frac{\overline{\bar{v}}_{B y}}{\bar{v}_{B y}}=-\frac{\overline{\bar{v}}_{C_{y}}}{\bar{v}_{C y}}
$$

and the condition of no sliding at B (consider signs!)

$$
\overline{\bar{v}}_{B x}=\overline{\bar{v}}_{C x}-r \overline{\bar{\omega}}=0
$$

follow

$$
\begin{aligned}
& \overline{\bar{v}}_{c x}=r \overline{\bar{\omega}}=\frac{r \bar{\omega}}{3}+\frac{2}{3} \bar{v}_{c x}=\frac{1}{9}(\sqrt{2} v-r \omega) \\
& \overline{\bar{v}}_{S y}=-e \bar{v}_{s y}=-\frac{\sqrt{2}}{8} v
\end{aligned}
$$

Hence, mangnitude and direction of the velocity are given by

$$
\begin{aligned}
& \underline{\overline{\bar{v}}}=\sqrt{\overline{\bar{v}}_{C x}^{2}+\overline{\bar{v}}_{C y}^{2}} \\
& \quad=\sqrt{\sqrt{\left(\frac{2}{81}+\frac{2}{64}\right) v^{2}-\frac{2 \sqrt{2}}{9} v r \omega+\frac{r^{2} \omega^{2}}{81}}} \\
& \underline{\underline{\tan \beta}}=\frac{\left|\overline{\bar{v}}_{C y}\right|}{\overline{\bar{v}}_{C x}}=\underline{\underline{\underline{8\left(\sqrt{2}-\frac{r \omega}{v}\right)}}}
\end{aligned}
$$

Remarks: - For $\omega=0$ we obtain $\overline{\bar{v}}=0.24 v$ and $\tan \beta=9 / 8 \sim \beta=48.4^{\circ}$.

- For $\omega=\sqrt{2} v / r$ the disk rebounds orthogonal at A and therefore also at B.

The following formulas and problems are restricted to vibrations of linear systems with one degree of freedom.

1. Free undamped vibration

The equation of motion (vibration equation)

$$
\ddot{x}+\omega^{2} x=0
$$

has the general solution

$$
x(t)=A \cos \omega t+B \sin \omega t=C \cos (\omega t-\alpha)
$$

where

$$
\begin{array}{ll}
\omega & \widehat{=} \text { circular frequency, } \\
f=\frac{\omega}{2 \pi} & \widehat{=} \text { frequency, } \\
T=\frac{1}{f}=\frac{2 \pi}{\omega} & \widehat{=} \text { period of vibration, } \\
C=\sqrt{A^{2}+B^{2}} & \widehat{=} \text { amplitude, } \\
\alpha=\arctan \frac{B}{A} & \widehat{=} \text { phase angle. }
\end{array}
$$

Remarks:

- The constants A, B, C and α follow from the initial conditions $x(0)=x_{0}, \dot{x}(0)=v_{0}$ as

$$
A=x_{0}, \quad B=\frac{v_{0}}{\omega}, \quad C=\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}, \quad \alpha=\arctan \frac{v_{0}}{x_{0} \omega} .
$$

- A system which is described by the differentiial equation above is also called a harmonic oscillator.
- If the position coordinate is not counted from the equilibrium position, the equation of motion takes the form

$$
\ddot{x}+\omega^{2} x=\omega^{2} x_{s t}
$$

and its solution reads

$$
x(t)=D \cos (\omega t-\psi)+x_{s t} .
$$

Examples of single mass vibration systems

All coordinates are counted from the respective static equilibrium position.

system	diff. equ.	eigenfrequency ω
spring-masssystem	$m \ddot{x}+k x=0$	$\sqrt{\frac{k}{m}}$
simple pendulum (small displacements)	$l \ddot{\varphi}+g \varphi=0$	$\sqrt{\frac{g}{l}}$
	$m \ddot{x}+k x=0$	$\begin{gathered} \sqrt{\frac{k}{m}} \\ \text { with } k=E A / l \end{gathered}$
massless beam with end mass	$m \ddot{x}+k x=0$	$\sqrt{\frac{k}{m}}$ with $k=3 E I / l^{3}$
massless l $G I_{T}$ shaft with Θ end disk	$\Theta \ddot{\psi}+k_{T} \psi=0$	$\begin{gathered} \sqrt{\frac{k_{T}}{\Theta}} \\ \text { with } k_{T}=G I_{T} / l \end{gathered}$

Spring constants

Springs in parallel:

$$
k^{*}=\sum k_{i}
$$

Springs in series:

Spring Compliance: The inverse spring stiffness is called spring compliance (flexibility): $c=1 / k$. The compliance of an elastic system can be determined by loading it by a virtual force "1" at the position of the vibrating mass and calculating the dicplacement δ in direction of the force. Then $c=\delta$ and $k=1 / \delta$.

2. Free damped Vibration

a) Dry (Coulomb) Friction: The solution of the equation of motion

$$
\ddot{x}+\omega^{2} x=\mp \omega^{2} r \quad \text { for } \quad \dot{x} \gtrless 0
$$

is given by $\quad x(t)=C \cos (\omega t-\varphi) \pm r \quad$ für $\quad \dot{x} \gtrless 0$.
Amplitude decrease: $x(\omega t)-x(\omega t+2 \pi)=4 r$.
b) Viscous Damping: The solution of the equation of motion

$$
\ddot{x}+2 \xi \dot{x}+\omega^{2} x=0
$$

reads for
$\underline{\zeta=\xi / \omega<1 \text { (underdamped system): } \quad x(t)=C \mathrm{e}^{-\xi t} \cos \left(\omega_{d} t-\alpha\right)}$

$$
\begin{aligned}
\xi & \widehat{=} \text { damping coefficient, } \\
\zeta=\xi / \omega & \widehat{=} \text { damping ratio } \\
\omega_{d}=\omega \sqrt{1-\zeta^{2}} & \widehat{=} \text { circular frequency of damped vibration, } \\
T_{d}=1 / f_{d}=2 \pi / \omega_{d} & \widehat{=} \text { period. }
\end{aligned}
$$

The amplitude decay is characterized by the logarithmic decrement

$$
\delta=\ln \frac{x(t)}{x\left(t+T_{d}\right)}=\frac{2 \pi \xi}{\omega_{d}}=\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}}
$$

For weak damping $\zeta \ll 1$ follows $\delta \approx 2 \pi \zeta$.
$\underline{\zeta=\xi / \omega=1}$ (critical damping): $\quad x(t)=\left(A_{1}+A_{2} t\right) \mathrm{e}^{-\xi t}$.

$$
\begin{array}{r}
\zeta=\xi / \omega>1 \\
\hline \text { (overdamped system) }: \quad x(t)=\mathrm{e}^{-\xi t}\left(A_{1} \mathrm{e}^{\mu t}+A_{2} \mathrm{e}^{-\mu t}\right) \\
\text { where } \quad \mu=\omega \sqrt{\zeta^{2}-1}
\end{array}
$$

3. Forced vibrations

The equation of motion for harmonically excited vibrations can be written as

$$
\frac{1}{\omega^{2}} \ddot{x}+\frac{2 \zeta}{\omega} \dot{x}+x=E x_{0} \cos \Omega t
$$

where

$$
\begin{aligned}
& \Omega \widehat{=} \text { circular frequency of excitation, } \\
& \eta=\frac{\Omega}{\omega} \widehat{=} \text { frequency ratio, } \\
& \zeta=\frac{\delta}{\omega} \quad \widehat{=} \text { damping ratio, } \\
& E x_{0} \widehat{=} \text { excitation amplitude, } \\
& E= \begin{cases}1 & \text { excitation through a force or via a spring, } \\
2 D \eta & \text { excitation via a damper, } \\
\eta^{2} & \text { excitation through unbalanced rotation. }\end{cases}
\end{aligned}
$$

It has the steady state solution (particular solution)

$$
x=x_{0} V \cos (\Omega t-\varphi) .
$$

Here are
$V=\frac{E}{\sqrt{\left(1-\eta^{2}\right)^{2}+4 \zeta^{2} \eta^{2}}} \widehat{=}$ magnification, frequency response, $\tan \varphi=\frac{2 \zeta \eta}{1-\eta^{2}} \widehat{=}$ phase angle.

Remarks:

- The general solution of the equation of motion is composed of the solution of the homogeneous differential equation (decaying motion, see page 172) and the particular solution.
- For undamped vibrations $(\zeta=0)$ the amplitude tends for $\eta \rightarrow 1$ $(\Omega \rightarrow \omega)$ to infinity (resonance).
- For weakly damped systems $(\zeta \ll 1)$ at resonance $(\eta \approx 1)$ the maximum magnification is: $V_{\max } \approx E / 2 \zeta$.
- An excitation with $\eta<1$ is called subcritical and with $\eta>1$ supercritical.
- The phase angle φ represents the delay of the response x relative to the excitation.

P7.1 Problem 7.1 Two drums support a homogeneous beam of weight $W=$ $m g$. They rotate with different coefficients of kinetic friction μ_{A}, μ_{B} in opposite directions.
Show that the horizontal motion of the beam is a harmonic vibration and determine the natural frequency ω.

Solution We first determine the equilibrium distance a of point C of the beam and the support forces. From the equilibrium conditions and the friction law

$$
\begin{aligned}
& \rightarrow: A_{H}^{e q}=B_{H}^{e q}, \quad \uparrow: A_{V}^{e q}+B_{V}^{e q}=m g, \\
& \curvearrowleft A: \\
& B_{V}^{e q} l=m g a, \\
& A_{H}^{e q}=\mu_{A} A_{V}, \quad B_{H}^{e q}=\mu_{B} B_{V}
\end{aligned}
$$

$\stackrel{-a}{\square} \rightarrow$
follow $a / l=1 /\left(1+\mu_{A} / \mu_{B}\right)$ and

$$
A_{V}^{e q}=\frac{l-a}{l} m g, \quad B_{V}^{e q}=\frac{a}{l} m g
$$

Now we consider an arbitrary displacement x from the equilibrium position.
 The support reactions then are

$$
\begin{aligned}
& A_{V}=\frac{l-(a+x)}{l} m g, \quad B_{V}=\frac{a+x}{l} m g=B_{V}^{e q}+\frac{x}{l} m g \\
& A_{H}=\mu_{A} \frac{l-(a+x)}{l}=A_{H}^{e q}-\mu_{A} \frac{x}{l} m g, \quad B_{H}=B_{H}^{e q}+\mu_{B} \frac{x}{l} m g .
\end{aligned}
$$

Thus, with $A_{H}^{e q}=B_{H}^{e q}$ the equation of motion is given by

$$
\rightarrow: \quad m \ddot{x}=A_{H}-B_{H}=-\left(\mu_{A}+\mu_{B}\right) \frac{x}{l} m g
$$

which leads to the differential equation for harmonic vibrations

$$
\underline{\ddot{x}+\left(\mu_{A}+\mu_{B}\right) \frac{g}{l} x=0 .}
$$

The natural frequency is given by

$$
\omega=\sqrt{\left(\mu_{A}+\mu_{B}\right) \frac{g}{l}} .
$$

Remark: In case of $\mu_{A}=\mu_{B}=\mu$, the result simplyfies to $\omega=\sqrt{2 \mu g / l}$.

Problem 7.2 A small homogeneous disk (mass m, radius r) is attached to a big disk (mass M, radius R). In the positions a) and b), both systems are in the equilibrium position.
Determine the natural frequencies ω for both systems. Assume small rotational amplitudes.

Solution To formulate the equation of motion it is advantageous in both cases to apply the principle of angular momentum.
case a) We obtain

$\stackrel{\curvearrowleft}{A}: \quad \Theta_{A} \ddot{\varphi}=-k_{T} \varphi-m g a \sin \varphi$.
For the assumed small amplitudes $(\varphi \ll 1)$ this equation reduces with $\sin \varphi \approx \varphi$ to the differential equation for harmonic vibrations, which provides the natural frequency:

$$
\ddot{\varphi}+\omega^{2} \varphi=0 \quad \text { with } \quad \omega_{a}^{2}=\frac{k_{T}+m g a}{\Theta_{A}} \quad \leadsto \quad \omega_{a}=\sqrt{\frac{k_{T}+m g a}{\Theta_{A}}} .
$$

case b) Since the torsion spring is in the equilibrium position already stretched by $\varphi^{e q}=m g a / k_{T}$, its moment due to a displacement φ is given by $k_{T}\left(\varphi-\varphi^{e q}\right)$. Thus, we obtain in this case

$$
\stackrel{\curvearrowleft}{A}: \quad \Theta_{A} \ddot{\varphi}=-k_{T}\left(\varphi-\varphi^{e q}\right)-m g a \cos \varphi=-k_{T} \varphi+m g a(1-\cos \varphi),
$$

which for small amplitudes, i.e. $\cos \varphi \approx 1$, reduces to

$$
\ddot{\varphi}+\omega^{2} \varphi=0 \quad \text { with } \quad \omega_{b}^{2}=\frac{k_{T}}{\Theta_{A}} \quad \leadsto \quad \omega_{b}=\sqrt{\frac{k_{T}}{\Theta_{A}}} .
$$

Introducing the moment of inertia

$$
\Theta_{A}=\frac{M R^{2}}{2}+\left[\frac{m r^{2}}{2}+m a^{2}\right]
$$

the natural frequencies can be written as

$$
\xlongequal{\omega_{a}=\sqrt{\frac{2\left(k_{T}+m g a\right)}{M R^{2}+m\left(r^{2}+2 a^{2}\right)}},} \quad \begin{aligned}
& \omega_{b}=\sqrt{\frac{2 k_{T}}{M R^{2}+m\left(r^{2}+2 a^{2}\right)}} .
\end{aligned}
$$

P7.3 Problem 7.3 The system shown consists of a homogeneous disk (mass m, radius r), a block (mass M) and a spring (stiffness k). The mass of the string and of the pulley B can be neglected.

Determine the equation of motion and the period of the vibration. Specify the solution for the case that point A is horizontally displaced by a from equilibrium and then released with zero initial velocity.

Solution We separate the system and introduce coordinates with their origin at the equilibrium position of the system. With this choice, the weights of the disk and the block must not be considered in the free-body diagram. Thus, the equations of motion are given by
(1) $\downarrow: M \ddot{x}=-S_{1}$,
(2) $\rightarrow: m \ddot{x}_{A}=S_{1}+S_{2}-k x_{A}$,

$$
\stackrel{\curvearrowleft}{A}: \quad \Theta_{A} \ddot{\varphi}=r S_{1}-r S_{2} .
$$

If we use the kinematic relations ($\Pi \widehat{=}$ instantaneous center of rotation)

$$
x_{A}=\frac{x}{2}, \quad 2 r \varphi=x \quad \leadsto \quad \ddot{x}_{A}=\frac{\ddot{x}}{2}, \quad \ddot{\varphi}=\frac{\ddot{x}}{2 r}
$$

and introduce the moment of inertia $\Theta_{A}=m r^{2} / 2$ we obtain, by solving for x, the equation of motion

$$
\begin{aligned}
& \ddot{x}+\frac{k}{4 M+\frac{3}{2} m} x=0
\end{aligned} \quad \text { where } \quad \omega=\sqrt{\frac{k}{4 M+\frac{3}{2} m}}
$$

is the natural frequency. It is related with the period of the vibration by

$$
T=\frac{2 \pi}{\omega} \quad \leadsto \quad T=2 \pi \sqrt{\frac{k}{4 M+\frac{3}{2} m}} .
$$

From the general solution $x=A \cos \omega t+B \sin \omega t$ with $x_{A}=x / 2$ and the initial conditions $x_{A}=a, \dot{x}_{A}=0$ follows

$$
x(t)=2 a \cos \omega t .
$$

Problem 7.4 The system shown consists of two clamped beams (negligible masses, bending stiffnesses $E I_{i}$), a spring (spring constant k_{3}) and a block of mass m.

Determine the eigenfrequency ω.

Solution 1. approach: We separate the system and formulate the equation of motion for the block:

$$
\downarrow: \quad m \ddot{x}=-F_{1}-F_{2}-F_{3} .
$$

The forces F_{i} and the displacements w_{i} of the beams and the spring, respectively, are related by (see volume 2, table of elastic
 lines)

$$
w_{1}=\frac{F_{1} l^{3}}{3 E I_{1}}, \quad w_{2}=\frac{F_{2} l^{3}}{3 E I_{2}}, \quad w_{3}=\frac{F_{3}}{k_{3}}
$$

Therefore, from the condition $w_{1}=w_{2}=w_{3}=x$ follows

$$
m \ddot{x}+\left(\frac{3 E I_{1}}{l^{3}}+\frac{3 E I_{2}}{l^{3}}+k_{3}\right) x=0
$$

Hence, we obtain for the eigenfrequency

$$
\underline{\omega^{2}=\frac{1}{m}\left(\frac{3 E I_{1}}{l^{3}}+\frac{3 E I_{2}}{l^{3}}+k_{3}\right) .}
$$

2. approach: Since all spring ends undergo the same displacement x, the springs are in parallel:

With the spring constants

$$
k_{1}=\frac{F_{1}}{x_{1}}=\frac{3 E I_{1}}{l^{3}}, \quad k_{2}=\frac{F_{2}}{x_{2}}=\frac{3 E I_{2}}{l^{3}}
$$

we obtain according to page 171

$$
k^{*}=k_{1}+k_{2}+k_{3}=\frac{3 E I_{1}}{l^{3}}+\frac{3 E I_{2}}{l^{3}}+k_{3}
$$

and therefore

$$
\underline{\omega^{2}=\frac{c^{*}}{m}=\frac{1}{m}\left(\frac{3 E I_{1}}{l^{3}}+\frac{3 E I_{2}}{l^{3}}+k_{3}\right) .}
$$

P7.5 Problem 7.5 The system consists of a hinge supported beam, reinforced by three bars, and of a block of mass m.

Determine the eigenfrequency for vertical vibrations. Assume that the mass of the
 beam and the bars is negligible.

Solution The elastic system of beam and bars can regarded as a system consisting of two springs in parallel, one representing the beam, one representing the bars. To determine the spring constant k_{B} of the beam we subject it by the unit force $F_{B}=1$ at the location of the block. It produces the deflection (see volume 2, chapter 4)

$$
w_{B}=\frac{1 \cdot(2 a)^{3}}{48 E I}
$$

Hence, the spring constant is given by

$$
k_{B}=\frac{1}{w_{B}}=\frac{48 E I}{(2 a)^{3}}=\frac{6 E I}{a^{3}} .
$$

To find the spring constant k_{S} of the
 bar system, we apply a force $F_{S}=1$ at the bar 1. It causes the displacement (see volume 2, chapter 6)

$$
f_{S}=h_{S}=\sum \frac{\bar{S}_{i}^{2} l_{i}}{E A} \quad\left(\bar{S}_{i}=\text { forces in bars, } l_{i}=\text { lengths of bars }\right)
$$

With

$$
\bar{S}_{1}=-1, \quad \bar{S}_{2}=\bar{S}_{3}=\frac{\sqrt{5}}{2}, \quad l_{1}=\frac{a}{2}, \quad l_{2}=l_{3}=\frac{\sqrt{5}}{2} a
$$

we obtain

$$
\begin{aligned}
& f_{S}=\frac{1}{E A}\left[(-1)^{2} \cdot \frac{a}{2}+2 \cdot\left(\frac{\sqrt{5}}{2}\right)^{2} \frac{\sqrt{5}}{2} a\right]=\left(1+\frac{5 \sqrt{5}}{2}\right) \frac{a}{2 E A} \\
& \leadsto \quad k_{S}=\frac{4 E A}{(2+5 \sqrt{5}) a} .
\end{aligned}
$$

From the spring constants of the two springs in parallel follows the constant k^{*} of the equivalent single spring:

$$
k^{*}=k_{B}+k_{S}=\frac{6 E I}{l^{3}}+\frac{E A}{(1+\sqrt{2}) l} .
$$

Thus, the eigenfrequency is given by

$$
\omega=\sqrt{\frac{k^{*}}{m}}=\frac{1}{l} \sqrt{\frac{1}{m l}\left(6 E I+\frac{E A l^{2}}{1+\sqrt{2}}\right)} .
$$

Problem 7.6 For the two systems (1) and (2) the equivalent spring constants for vertical vibrations of the body of mass m shall be determined. The mass of the beams can be neglected.

Solution In system (1) all three springs are directly connected with the vibrating body of mass m and experience the same displacements. Thus, the springs are in parallel:

$$
k^{*}=\sum k_{i}
$$

The spring constants k_{L} and k_{R} of the left and the right beam follow from the end displacement of a cantilever beam (stiffness EI, length l) subjected to a unit force „ 1 "

$$
w=\frac{1 \cdot l^{3}}{3 E I}=k \quad \text { and } \quad c=\frac{1}{k}
$$

as

$$
k_{L}=\frac{1}{c_{L}}=\frac{3 E I}{(2 a)^{3}}, \quad k_{R}=\frac{1}{c_{R}}=\frac{3(2 E I)}{(3 a)^{3}} .
$$

Hence, the stiffness of the equivalent spring is

$$
\underline{\underline{k^{*}}}=k_{L}+k_{R}+k=\frac{43}{72} \frac{E I}{a^{3}}+k=\underline{\underline{\frac{43 E I+72 k a^{3}}{72 a^{3}}}} .
$$

In system (2) both beams are in parallel. Their equivalent spring with constant \bar{k} is in series with the spring with constant k. Thus, the total equivalent constant k^{*} is calculated as follows:
$\bar{k}=k_{L}+k_{R}=\frac{43}{72} \frac{E I}{a^{3}}$,
$\frac{1}{k^{*}}=\frac{1}{\bar{k}}+\frac{1}{k}=\frac{72 a^{3}}{43 E I}+\frac{1}{k}$
$\leadsto \underline{k^{*}}=\frac{43 E I k}{43 E I+72 k a^{3}}=\frac{43 E I}{72 a^{3}+43 \frac{E I}{k}}$.

Remark: The second system has a smaller stiffness and therefore vibrates with a lower frequency.

P7.7 Problem 7.7 A wheel (mass m, moment of inertia Θ_{C}, radius r) rolls without slipping on a flat surface. On its top, the wheel carries a horizontally guided beam (mass M) and moves it without slipping.

Determine the eigenfrequency of the system. Neglect the mass of the guiding roll B.

Solution We separate the system and introduce the coordinates x_{1}, x_{2} and φ, measured from the equilibrium position. Then the equations of motion are
(1) $\rightarrow: \quad m \ddot{x}_{1}=-k_{1} x_{1}-H_{A}+H_{D}$,
$\stackrel{\curvearrowright}{C}: \quad \Theta_{C} \ddot{\varphi}=-r H_{A}-r H_{D}$,
(2) $\rightarrow: \quad M \ddot{x}_{2}=-k_{2} x_{2}+H_{A}$.

With the kinematic relations

$$
x_{1}=r \varphi, \quad x_{2}=2 x_{1} \leadsto \quad \ddot{x}_{1}=r \ddot{\varphi}, \quad \ddot{x}_{2}=2 \ddot{x}_{1}
$$

we now have five equations for the five unknowns $x_{1}, x_{2}, \varphi, H_{A}$ and H_{D}. Solving for $x_{1}(t)$ yields the equation of motion

$$
\ddot{x}_{1}\left(m+4 M+\frac{\Theta_{C}}{r^{2}}\right)+\left(k_{1}+4 k_{2}\right) x_{1}=0
$$

or in standard form

$$
\ddot{x_{1}}+\omega^{2} x_{1}=0
$$

with the eigenfrequency

$$
\omega=\sqrt{\frac{k_{1}+4 k_{2}}{m+4 M+\frac{\Theta_{C}}{r^{2}}}} .
$$

Problem 7.8 For a connecting rod of weight $m g$, the periods T_{a} and T_{b} are measured for the hangings a) and b).

Determine the moment of inertia Θ_{c} and the distance a of the center of mass C.

P7.8

$$
T_{a}^{2}=\frac{(2 \pi)^{2}}{\omega^{2}}=\frac{4 \pi^{2} \Theta_{A}}{m g a} .
$$

Analogous for hanging b) results

$$
T_{b}^{2}=\frac{4 \pi^{2} \Theta_{B}}{m g b}
$$

With the parallel axis theorem

$$
\Theta_{A}=\Theta_{c}+m a^{2}, \quad \Theta_{B}=\Theta_{c}+m b^{2}
$$

and with $a+b=l$ we obtain

$$
\Theta_{c}=\frac{T_{a}^{2} m g a}{4 \pi^{2}}-m a^{2}
$$

and

$$
\overline{a=\frac{T_{b}^{2} g-4 \pi^{2} l}{\left(T_{a}^{2}+T_{b}^{2}\right) g-8 \pi^{2} l} l .}
$$

Remarks:

- A swinging rigid body (here a connecting rod) which cannot be regarded as point mass at a massless cord, is called a compound pendulum or physical pendulum.
- Analogeous to a simple pendulum, the equation of motion of a compound pendulum is often written as

$$
\ddot{\varphi}+\frac{g}{l_{\text {red }}} \varphi=0 \quad \text { with } \quad l_{\text {red }}=\frac{\Theta_{A}}{m a}
$$

where $a=$ distance between pivot A and center C of mass.

P7.9 Problem 7.9 A body (mass m) is pulled by a spring (stiffness k) to a smooth horizontal path. In vertical position the spring is stretched by the distance a and its length in the unstretched state is l.
a) Which condition must be fulfilled by the horizontal displacement, that the vibration about the equilibrium position is harmonic?

b) Determine the period for this case.

Solution a) The equation of motion is given by

$$
\rightarrow: \quad m \ddot{x}=-F_{k} \sin \varphi
$$

with

$$
F_{k}=k \Delta_{k}, \quad \sin \varphi=\frac{x}{\sqrt{(l+a)^{2}+x^{2}}}
$$

and the spring elongation

$$
\Delta_{k}=a+\left[\sqrt{(l+a)^{2}+x^{2}}-(l+a)\right] .
$$

The vibration is harmonic if the equation of motion is of the type $\ddot{x}=-\omega^{2} x$. Consequently, $F_{k} \sin \varphi$ must be linear
 in x ! This is only possible if the term x^{2} in the square roots can be neglected in comparison with $(l+a)^{2}$, i.e. if the condition

$$
x^{2} \ll(l+a)^{2} \quad \leadsto \quad \underline{\underline{|x| \ll l+a}}
$$

is fulfilled. Therefore, the displacement x must always be sufficiently small. In this case, in a first approximation, $\Delta_{k}=a=$ const and $\sin \varphi=x /(l+a)$ hold and the equation of motion is given by

$$
m \ddot{x}+\frac{k a}{l+a} x=0 .
$$

b) We write the equation of motion in its standard form

$$
\ddot{x}+\omega^{2} x=0 \quad \text { with } \quad \omega^{2}=\frac{k}{m} \frac{a}{l+a}
$$

and obtain with $\omega=2 \pi / T$ for the period

$$
\underline{\overline{T=2 \pi} \sqrt{\frac{m(l+a)}{k a}}} .
$$

Problem 7.10 A simple pendulum is connected with a spring (stiffness k) and a dashpot (damping coefficient d).
a) Determine the damping coefficient d such that vibrations are possible. Assume small amplitudes.
b) What damping ratio ζ must be chosen such that the amplitude is reduced to $1 / 100$ of its initial value after 20 full cycles. Calculate the
 corresponding period T_{d}.

Solution a) Assuming small amplitudes, i.e. $\cos \varphi \approx 1, \sin \varphi \approx \varphi$, the equation of motion follows from the principle of angular momentum:

$$
\stackrel{\curvearrowleft}{A}: \quad \Theta_{A} \ddot{\varphi}=-F_{k} a-F_{d} 2 a-m g 2 a \varphi .
$$

Introducing

$$
\Theta_{A}=m(2 a)^{2}, \quad F_{k}=k a \varphi, \quad F_{d}=d 2 a \dot{\varphi}
$$

we obtain

$$
\ddot{\varphi}+\frac{d}{m} \dot{\varphi}+\left(\frac{k}{4 m}+\frac{g}{2 a}\right) \varphi=0 \quad \leadsto \quad \ddot{\varphi}+2 \xi \dot{\varphi}+\omega^{2} \varphi=0
$$

where

$$
\xi=\frac{d}{2 m}, \quad \omega^{2}=\frac{k}{4 m}+\frac{g}{2 a} .
$$

To ensure vibrations, the system must be underdamped, i.e. $\xi<\omega$:

$$
\frac{d}{2 m}<\sqrt{\frac{k}{4 m}+\frac{g}{2 a}} \quad \leadsto \quad \underline{\underline{\underline{2 m}}} .
$$

b) The necessary damping ζ ratio follows with $x_{n+20}=x_{n} / 100$ from the logarithmic decrement (see page 172):
$20 \frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}}=\ln \frac{x_{n}}{x_{n+20}}=\ln 100 \quad \zeta \quad \underline{=}=\sqrt{\frac{1}{\left(\frac{40 \pi}{\ln 100}\right)^{2}+1}}=\underline{\underline{0.037}}$.
This leads to the period

$$
\underline{\underline{T_{d}}}=\frac{2 \pi}{\omega \sqrt{1-\zeta^{2}}} \approx \frac{2 \pi}{\omega}=\underline{\underline{2 \pi \sqrt{\frac{4 a m}{a k+2 g m}}}}
$$

P7.11 Problem 7.11 Determine the eigenfrequency for the displayed system with viscous damping. The mass of the cantilever beam and the bar can be neglected.

Solution We replace the stiffnesses of the beam, the bar and the spring by an equivalent stiffness k^{*}. When the body (mass m) is displaced by x from its equilibrium position, it is loaded by a spring force $F_{k}=k^{*} x$ and a damping force $F_{d}=\mathrm{d} \dot{x}$. Thus, the equation of motion is given by

$$
\downarrow: \quad m \ddot{x}=-F_{k}-F_{d} .
$$

The stiffness of the equivalent spring follows from the spring stiffnesses in parallel of the beam and the bar

$$
k_{12}=k_{1}+k_{2}
$$

where

$$
k_{1}=\frac{3 E I}{l_{1}^{3}}, \quad k_{2}=\frac{E A}{l_{2}}
$$

and the spring stiffnesses in series of the spring k_{12} and the spring k as

$$
\begin{aligned}
& \frac{1}{k^{*}}=\frac{1}{k_{12}}+\frac{1}{k} \leadsto \\
& k^{*}=\frac{k\left(\frac{3 E I}{l_{1}^{3}}+\frac{E A}{l_{2}}\right)}{k+\frac{3 E I}{l_{1}^{3}}+\frac{E A}{l_{2}}} .
\end{aligned}
$$

Hence, we obtain

$$
m \ddot{x}+\mathrm{d} \dot{x}+k^{*} x=0 \quad \leadsto \quad \ddot{x}+2 \xi \dot{x}+\omega^{2} x=0
$$

where

$$
\xi=\frac{\mathrm{d}}{2 m}, \quad \omega^{2}=\frac{k^{*}}{m}
$$

Therefore, the eigenfrequency is given by

$$
\underline{\underline{\omega_{d}}}=\sqrt{\omega^{2}-\delta^{2}}=\underline{\underline{\sqrt{\frac{k^{*}}{m}-\left(\frac{\mathrm{d}}{2 m}\right)^{2}}}}
$$

Problem 7.12 A bar (weight $m g$, length l) which is connected with a spring (spring constant k) vibrates in a viscous fluid about point A. The viscous drag force F_{d} is proportional to the local velocity (proportionality factor α).
a) Derive the equation of motion under the assumption of small amplitudes.
b) Calculate the critical value α^{*}, separating vibrations from a creep motion.

Solution a) An element of length $\mathrm{d} x$ of the bar is subjected to the drag force

$$
\mathrm{d} F_{d}=\alpha v(x) \mathrm{d} x=\alpha x \dot{\varphi} \mathrm{~d} x
$$

Thus, considering small amplitudes $\varphi \ll 1$ $(\sin \varphi \approx \varphi, \cos \varphi \approx 1)$, the principle of angular momentum yields

$$
\AA A: \quad \Theta_{A} \ddot{\varphi}=-m g \frac{l}{2} \varphi-k l^{2} \varphi-\int_{0}^{l} \alpha x^{2} \dot{\varphi} \mathrm{~d} x .
$$

Evaluating the integral and introducing
 $\Theta_{A}=m l^{2} / 3$ leads to the equation of motion

$$
\underline{\ddot{\varphi}+\frac{\alpha l}{m} \dot{\varphi}+\frac{3 k}{m}\left(1+\frac{m g}{2 k l}\right) \varphi=0} \quad \leadsto \quad \ddot{\varphi}+2 \xi \dot{\varphi}+\omega^{2} \varphi=0
$$

where

$$
\xi=\frac{\alpha l}{2 m}, \quad \omega^{2}=\frac{3 k}{m}\left(1+\frac{m g}{2 k l}\right)
$$

b) Damped vibrations are separated from an aperiodic motion by the critical damping

$$
\xi=\omega \quad \text { or } \quad \zeta=1
$$

From this condition follows

$$
\frac{\alpha^{*} l}{2 m}=\sqrt{\frac{3 k}{m}\left(1+\frac{m g}{2 k l}\right)} \quad \leadsto \quad \alpha^{*}=\sqrt{\frac{12 k m}{l^{2}}} \sqrt{1+\frac{m g}{2 k l}}
$$

P7.13 Problem 7.13 Determine for the displayed underdamped system
a) the equation of motion for vibrations around the equilibrium position,
b) the circular frequency for the case $r_{2}=R_{2} / 4, k_{2}=2 k_{1}, m_{2}=4 m_{1}$ and
c) the solution $x_{1}(t)$ for the initial conditions $x_{1}(0)=0, \dot{x}_{1}(0)=v_{0}$.
The rope and rolls can be considered as massless.

Solution a) We introduce all coordinates with their origin at the equilibrium position. Then the weights of the bodies must not be considered. From the kinematic relations at the rolls (1) and (2)

$$
x_{3}=2 x_{1}, \quad \frac{x_{3}}{x_{2}}=\frac{R_{2}}{r_{2}}
$$

it first follows

$$
x_{2}=2 \frac{r_{2}}{R_{2}} x_{1}, \quad \ddot{x}_{2}=2 \frac{r_{2}}{R_{2}} \ddot{x}_{1}
$$

Now we separate the system and formulate the equations of motion for the bodies (mass m_{1}, m_{2}) and the rolls. Since the rolls are massless, the latter are reduced to the equilibrium conditions:

$$
\begin{array}{lll}
m_{1} & \downarrow: & m_{1} \ddot{x}_{1}=-S_{4}-F_{k 1}-F_{d}, \\
m_{2} & \uparrow: & m_{2} \ddot{x}_{2}=S_{1}-F_{k 2}, \\
\text { (1) } & \overbrace{\Pi} & \\
\text { (2) } & R_{1} S_{4}=2 R_{1} S_{2}, \\
\text { (2) } & \curvearrowleft & r_{1} S_{1}=R_{2} S_{2} .
\end{array}
$$

In conjunction with the spring and damper laws

$$
F_{k 1}=k_{1} x_{1}, \quad F_{d}=d \dot{x}_{1}, \quad F_{k 2}=k_{2} x_{2}
$$

we now have 9 equations for the 9 unknowns $x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, S_{4}$, $F_{k 1}, F_{d}$ and $F_{k 2}$. Solving for x_{1} leads to the differential equation

$$
\left[m_{1}+m_{2}\left(2 \frac{r_{2}}{R_{2}}\right)^{2}\right] \ddot{x}_{1}+d \dot{x}_{1}+\left[c_{1}+c_{2}\left(2 \frac{r_{2}}{R_{2}}\right)^{2}\right] x_{1}=0
$$

or in standard form $\ddot{x}_{1}+2 \xi \dot{x}_{1}+\omega^{2} x_{1}=0$ where

$$
2 \xi=\frac{d}{m_{1}+m_{2}\left(2 \frac{r_{2}}{R_{2}}\right)^{2}}, \quad \omega^{2}=\frac{k_{1}+k_{2}\left(2 \frac{r_{2}}{R_{2}}\right)^{2}}{m_{1}+m_{2}\left(2 \frac{r_{2}}{R_{2}}\right)^{2}} .
$$

b) The circular frequency of the underdamped vibration is calculated from $\omega_{d}=\sqrt{\omega^{2}-\xi^{2}}$. For the parameters $r_{2}=R_{2} / 4, k_{2}=2 k_{1}, m_{2}=$ $4 m_{1}$ we obtain

$$
2 \xi=\frac{d}{2 m_{1}} \quad \leadsto \quad \xi^{2}=\frac{d^{2}}{16 m_{1}^{2}}, \quad \omega^{2}=\frac{3 k_{1}}{4 m_{1}}
$$

and it follows

$$
\omega_{d}=\sqrt{\frac{3 k_{1}}{4 m_{1}}-\frac{d^{2}}{16 m_{1}^{2}}} .
$$

c) The general solution for the vibration of an underdamped system reads

$$
x_{1}(t)=\mathrm{e}^{-\xi t}\left(A \cos \omega_{d} t+B \sin \omega_{d} t\right),
$$

from which it follows by differentiation

$$
\dot{x}_{1}(t)=\mathrm{e}^{-\xi t}\left[\left(-A \xi+B \omega_{d}\right) \cos \omega_{d} t-\left(A \omega_{d}+B \xi\right) \sin \omega_{d} t\right]
$$

The initial conditions lead to

$$
\begin{aligned}
& x_{1}(0)=0 \quad \leadsto A=0 \\
& \dot{x}_{1}(0)=v_{0} \quad \leadsto \quad-A \delta+B \omega_{d}=v_{0} \quad \leadsto \quad B=\frac{v_{0}}{\omega_{d}},
\end{aligned}
$$

and we finally obtain

$$
x_{1}(t)=\frac{v_{0}}{\omega_{d}} \mathrm{e}^{-\xi t} \sin \omega_{d} t .
$$

P7.14 Problem 7.14 A car (mass m), simplified modelled by a spring-mass-system, drives with constant horizontal velocity v_{0} through sineshaped periodic bumps (amplitude U_{0}, wave length L).

a) Derive the equation of motion of the car in vertical direction and determine the exciting frequency Ω.
b) Determine the vertical amplitude x_{0} of the car in dependence of the velocity v_{0}.
c) Calculate the critical velocity v_{c} (resonance!).

Solution a) We denote the vertical displacement of the car by x and describe the shape of the bumps by u. Then from Newton's law follows

$$
\uparrow: \quad m \ddot{x}=-k(x-u) .
$$

With the position of the car $s=v_{0} t$ in horizontal direction, the function u is represented as

$$
u=U_{0} \cos \frac{2 \pi s}{L}=U_{0} \cos \frac{2 \pi v_{0} t}{L}=U_{0} \cos \Omega t
$$

and we obtain the equation of motion and the exciting frequency

$$
\underline{\underline{m \ddot{x}+k x=k U_{0} \cos \Omega t}} \quad \text { where } \quad \underline{\underline{\Omega=\frac{2 \pi v_{0}}{L}}} .
$$

b) The steady state solution of the equation of motion is of the type of its right-hand side. Thus, the ansatz $x=x_{0} \cos \Omega t$ leads with $\omega^{2}=k / m$ to the amplitude of the steady state vibrations

$$
x_{0}=\frac{U_{0}}{1-\frac{\Omega^{2}}{\omega^{2}}}=\frac{U_{0}}{1-\frac{4 \pi^{2} v_{0}^{2}}{L^{2}} \frac{m}{k}} .
$$

c) The amplitude x_{0} tends to infinty when Ω approaches ω (resonance):

$$
\Omega^{2}=\omega^{2} \quad \sim \quad \frac{4 \pi^{2} v_{k}^{2}}{L^{2}} \frac{m}{k}=1 \quad \leadsto \quad \xlongequal{v_{k}=\frac{L}{2 \pi} \sqrt{\frac{k}{m}}} .
$$

Problem 7.15 A pressure gauge consists of a piston (1) (mass m_{1}, cross section A), a bar (2) (mass m_{2}), a thin needle (3) (mass m_{3}) and a spring (stiffness k).

a) Determine the eigenfrequency of the system.
b) Calculate the amplitude Q_{0} (small displacements!) of the needle tip in the steady state case if the pressure is given by $p=p_{0} \cos \Omega t$.

Solution a) We separate the system and make all acting forces visible. Then, we have for the parts (1) + (2) and (3)

$$
\begin{array}{lr}
\rightarrow: & \left(m_{1}+m_{2}\right) \ddot{x}=-F-k x+p(t) A \\
\stackrel{\curvearrowright}{B}: & \Theta_{B} \ddot{\varphi}=a F
\end{array}
$$

Hence, with $\Theta_{B}=m_{3} l^{2} / 3$ and the kinematics

$$
x=a \varphi \quad \sim \quad \ddot{x}=a \ddot{\varphi}
$$

follows the equation of motion

$$
\left(m_{1}+m_{2}+\frac{m_{3} l^{2}}{3 a^{2}}\right) \ddot{x}+k x=p_{0} A \cos \Omega t
$$

For the eigenfrequency, we directly obtain from this equation

$$
\omega=\sqrt{\omega \frac{k}{\frac{k}{m_{1}+m_{2}+\frac{m_{3} l^{2}}{3 a^{2}}}}} .
$$

b) The steady state solution is described by an ansatz (of the right hand side type) $x=x_{0} \cos \Omega t$. Substituting into the differential equation yields

$$
x_{0}=\frac{p_{0} A}{k\left(1-\frac{\Omega^{2}}{\omega^{2}}\right)}
$$

With the leverage we obtain for the amplitude of the needle tip

$$
\begin{aligned}
\underline{Q_{0}}=x_{0} \frac{l}{a}= & \underline{\frac{1}{1-\frac{\Omega^{2}}{\omega^{2}}} \frac{p_{0} A}{k} \frac{l}{a}}
\end{aligned}
$$

P7.16 Problem 7.16 A homogeneous wheel of mass m is attached to a spring (spring constant k). The wheel rolls without slipping on a rough surface which moves horizontally according to $u=u_{0} \cos \Omega t$.

a) Derive the differential equations for the vibrations in case (1) and (2).
b) Determine the amplitudes of the steady state vibrations.

Solution a) The equations of motion read in case (1)

$$
\begin{array}{ll}
\rightarrow & m \ddot{x}=-k x+H \\
\stackrel{\curvearrowright}{C}: & \Theta_{C} \ddot{\varphi}=-r H .
\end{array}
$$

With the kinematic relation

$$
x=u+r \varphi \quad \sim \quad \ddot{x}=\ddot{u}+r \ddot{\varphi}=-u_{0} \Omega^{2} \cos \Omega t+r \ddot{\varphi}
$$

and $\Theta_{S}=\frac{1}{2} m r^{2}$ we obtain the differential equation for forced vibrations

$$
\ddot{x}+\frac{2}{3} \frac{k}{m} x=-\frac{1}{3} u_{0} \Omega^{2} \cos \Omega t .
$$

In case (2) the equations of motion are given by

$$
\rightarrow: \quad m \ddot{x}=-k(x-u) x+H, \quad \overparen{C}: \quad \Theta_{C} \ddot{\varphi}=-r H
$$

and the kinematic relation again reads

$$
x=u+r \varphi \quad \leadsto \quad \ddot{x}=\ddot{u}+r \ddot{\varphi}=-u_{0} \Omega^{2} \cos \Omega t+r \ddot{\varphi}
$$

which leads to the differential equation

$$
\ddot{x}+\frac{2}{3} \frac{k}{m} x=\frac{1}{3}\left(2 \frac{k}{m}-\Omega^{2}\right) u_{0} \cos \Omega t
$$

b) The steady state solution is of the type of the right-hand side. Thus, the ansatz $x=x_{0} \cos \Omega t$ leads to the amplitudes
case (1) $\xlongequal{\left|x_{0}\right|=u_{0} \frac{\Omega^{2}}{\left|2 k / m-3 \Omega^{2}\right|}}, \quad$ case (2) $\quad \underline{\underline{\left|x_{0}\right|=u_{0} \frac{\left|2 k / m-\Omega^{2}\right|}{\left|2 k / m-3 \Omega^{2}\right|}} \text {. } . ~ . ~ . ~}$
Note that resonance in both cases occurs for $\Omega^{2}=2 k / 3 m$, but that the amplitudes for $\Omega^{2} \ll 2 k / 3 m$ and for $\Omega^{2} \gg 2 k / 3 m$ are very different.

Problem 7.17 In a soil compactor (housing weight $m g$), the drive (mass M) is resiliently mounted. In the drive two unbalances (each mass $m_{2} / 2$) counter-rotate with constant number n of revolutions per minute.

How must the spring and damper be designed so that the device runs in resonance and the base plate does not lift-off from the ground (small damping ratio!)?

Solution We replace the drive by the displayed model. With the displacement x of the drive from the equilibrium position we obtain for the unbalanced mass
$x_{2}=x+e \cos \Omega t \quad \leadsto \quad \ddot{x}_{2}=\ddot{x}-e \Omega^{2} \cos \Omega t$.
The equations of motion in vertical direction for both masses are given by:

$$
\left(M-m_{2}\right) \ddot{x}=-d \dot{x}-k x+S \cos \Omega t, \quad m_{2} \ddot{x}_{2}=-S \cos \Omega t
$$

Introduction of \ddot{x}_{2} and elimination of S yields

$$
\frac{\ddot{x}}{\omega^{2}}+\frac{2 \xi \dot{x}}{\omega^{2}}+x=x_{0} \eta^{2} \cos \Omega t
$$

where $\omega^{2}=k / M, \quad \xi=\mathrm{d} / 2 M, x_{0}=e m_{2} / M, \eta=\Omega / \omega$. The particular solution (steady state) reads

$$
x=x_{0} V \cos (\Omega t-\varphi), \quad V=\frac{\eta^{2}}{\sqrt{\left(1-\eta^{2}\right)^{2}+4 \zeta^{2} \eta^{2}}}, \quad \zeta=\frac{\xi}{\omega} .
$$

Resonance occurs for small damping ratio ζ at $\eta \approx 1$:

$$
\Omega=\omega \quad \leadsto \quad \frac{\pi n}{30}=\sqrt{\frac{k}{M}} \quad \leadsto \quad k=\left(\frac{\pi n}{30}\right)^{2} M .
$$

Furthermore, in resonance the magnification is $V \approx 1 / 2 \zeta$.
No lift-off occurs, if the following condition at maximum spring displacement $x_{\max }$ (then the damping force is zero!) is fulfilled:

$$
\begin{aligned}
& N=(M+m) g-k x_{\max }=(M+m) g-\frac{k x_{0}}{2 \zeta} \geq 0 . \\
& \text { ence, it follows } \\
& (M+m) g \geq \frac{k x_{0}}{2 \zeta} \leadsto \underline{\frac{k x}{2}+\frac{k x_{0}}{2(M+m) g}} .
\end{aligned}
$$

P7.18 Problem 7.18 A single story frame is modelled by a rigid beam of mass m which is supportet by clamped massless beams (stiffness EI) and damped by a dashpot. Due to an earthquake, the ground moves with a horizontal acceleration $\ddot{u}_{E}=b_{0} \cos \Omega t$ which is known from measurements.

Determine the maximum amplitude of the steady state vibrations by assuming small amplitudes and a weakly damped system.

Solution We separate the system and replace the vertical beams by equivalent springs with the spring constant $k=3 E I / l^{3}$. When the beams are deflected by $x-u_{E}$, the elongation of the diagonal, assuming small amplitudes, is

$$
\Delta=\left(x-u_{E}\right) / \sqrt{2} .
$$

Hence, the spring forces and the damping force can be written as

$$
F_{k}=k\left(x-u_{E}\right), \quad F_{d}=d \dot{\Delta}=d\left(\dot{x}-\dot{u}_{E}\right) / \sqrt{2}
$$

Then, the equation of motion of the horizontal beam is given by

$$
\rightarrow: m \ddot{x}=-\frac{\sqrt{2}}{2} F_{d}-2 F_{k} \quad \leadsto \quad m \ddot{x}+\frac{d}{2}\left(\dot{x}-\dot{u}_{E}\right)+2 k\left(x-u_{E}\right)=0 .
$$

Thus, the relative displacement $y=x-u_{E}$ is described by

$$
m \ddot{y}+\frac{d}{2} \dot{y}+2 k y=m b_{0} \cos \Omega t \quad \leadsto \quad \frac{1}{\omega^{2}} \ddot{y}+\frac{2 \zeta}{\omega} \dot{y}+y=y_{0} \cos \Omega t
$$

where

$$
\omega^{2}=\frac{2 k}{m}, \quad \zeta=\frac{d}{2} \sqrt{\frac{1}{8 k m}}, \quad y_{0}=\frac{m b_{0}}{2 k}
$$

The maximum amplitude A occurs for resonance, i.e. for $\eta=\omega / \Omega \approx 1$. In case of weak damping $(\zeta \ll 1)$ it is given by

$$
\underline{\underline{A}}=y_{0} V_{\max } \approx \frac{y_{0}}{2 \zeta}=\underline{\underline{2 \sqrt{2} \frac{b_{0}}{d} \sqrt{\frac{m^{3}}{4 k}}} . .}
$$

Problem 7.19 A wheel is connected with a rigid frame via a spring and a damper. When the frame experiences a displacement $u=v_{0} t$, the initially $(t=0)$ resting wheel starts rolling without slip.
a) How must the damper be designed so that for free vibrations critical damping occurs? Which form has the equation of motion in this case?
b) Determine the solution for the
 given initial conditions.

Solution a) We count x and φ from the equilibrium position of the wheel at $t=0$. Then the equations of motion

$$
\rightarrow: \quad m \ddot{x}=-d(\dot{x}-\dot{u})-k(x-u)-H, \quad \stackrel{\curvearrowright}{C}: \quad \Theta \ddot{\varphi}=r H
$$

lead with $\dot{u}=v_{0}$ and $x=r \varphi$ by eliminating H and $\ddot{\varphi}$ to the differential equation

$$
\left(m+\frac{\Theta}{r^{2}}\right) \ddot{x}+d \dot{x}+k x=d \dot{u}+k u
$$

It can be written in the standard form

$$
\ddot{x}+2 \xi \dot{x}+\omega^{2} x=2 \xi v_{0}+\omega^{2} v_{0} t
$$

where

$$
2 \xi=\frac{d}{m+\Theta / r^{2}}, \quad \omega^{2}=\frac{k}{m+\Theta / r^{2}} .
$$

The condition for critical damping of free vibrations is given by $\xi / \omega=1$, or $\xi^{2}=\omega^{2}$. This leads for the damping coefficient to

$$
\frac{d^{2}}{4\left(m+\Theta / r^{2}\right)^{2}}=\frac{k}{m+\Theta / r^{2}} \quad \leadsto \quad \underline{\underline{d=2 \sqrt{k\left(m+\Theta / r^{2}\right)}}} .
$$

In this case, the equation of motion takes the following form:

$$
\ddot{\underline{x}+2 \omega \dot{x}+\omega^{2} x=2 \omega v_{0}+\omega^{2} v_{0} t} .
$$

b) The solution of the differential equation is composed of the solution of the homogeneous differential equation ($=$ free vibration at critical
damping)

$$
x_{h}=\left(A_{1}+A_{2} t\right) \mathrm{e}^{-\omega t}
$$

and the particular solution x_{p}. To find the latter one, we choose an ansatz of the type of the right hand side:

$$
x_{p}=a+b t
$$

Introducing it into the differential equation and comparing the coefficients yields $a=0$ and $b=v_{0}$. Thus, the general solution is given by

$$
x(t)=x_{h}+x_{p}=\left(A_{1}+A_{2} t\right) \mathrm{e}^{-\omega t}+v_{0} t .
$$

The constants A_{1} and A_{2} are determined from the initial conditions:

$$
x(0)=0 \quad \leadsto \quad A_{1}=0, \quad \dot{x}(0)=0 \quad \leadsto \quad A_{2}=-v_{0} .
$$

Hence, we obtain the specific solution

$$
\underline{\underline{x(t)}}=-v_{0} t \mathrm{e}^{-\omega t}+v_{0} t=\underline{\underline{v_{0} t\left(1-\mathrm{e}^{-\omega t}\right)}} .
$$

It can be seen that the motion of the wheel exponentially approaches the motion of the frame. For $\omega t \gg 1$ the motion of the frame and the wheel are the same.

Chapter 8
Non-Inertial Reference Frames

Fixed and moving Reference Frame

It is often advantageous to describe the motion of a point P not in reference to a fixed coordinate system (x, y, z) but in reference to a moving system (ξ, η, ζ).

Kinematics of a point for a translating and rotating reference system

$$
\begin{aligned}
& \boldsymbol{v}=\boldsymbol{v}_{f}+\boldsymbol{v}_{r}, \\
& \boldsymbol{a}=\boldsymbol{a}_{f}+\boldsymbol{a}_{c}+\boldsymbol{a}_{r},
\end{aligned}
$$

where
absolute velocity \boldsymbol{v},
absolute acceleration \boldsymbol{a},

fictitious velocity
relative velocity
fictitious acceleration

$$
\boldsymbol{v}_{f}=\dot{\boldsymbol{r}}_{0}+\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}
$$

$$
\boldsymbol{v}_{r}=\boldsymbol{r}_{0 P}^{*}
$$

$$
\boldsymbol{a}_{f}=\ddot{\boldsymbol{r}}_{0}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)
$$

relative acceleration

$$
\boldsymbol{a}_{r}=\boldsymbol{r}_{0 P}^{* *}
$$

Coriolis acceleration $\quad \boldsymbol{a}_{c}=2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}$.
and
()$^{\cdot} \widehat{=}$ time derivative with respect to the fixed system (x, y, z),
()$^{*} \widehat{=}$ time derivative with respect to the moving system (ξ, η, ζ).

Remarks:

- The equations simplify for a pure translation of the reference system $(\boldsymbol{\omega}=0)$.
- The Coriolis acceleration \boldsymbol{a}_{c} is orthogonal to $\boldsymbol{\omega}$ and \boldsymbol{v}_{r}.

Equation of motion in a moving reference system

In addition to the real forces \boldsymbol{F} acting on the point mass, the fictitious force \boldsymbol{F}_{f} and the Coriolis force \boldsymbol{F}_{c} appear in the equation of motion:

$$
m \boldsymbol{a}_{r}=\boldsymbol{F}+\boldsymbol{F}_{f}+\boldsymbol{F}_{c}
$$

where

$$
\begin{aligned}
\boldsymbol{F}_{f} & =-m \boldsymbol{a}_{f}=-m\left[\ddot{\boldsymbol{r}}_{0}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)\right] \\
\boldsymbol{F}_{c} & =-m \boldsymbol{a}_{c}=-2 m \boldsymbol{\omega} \times \boldsymbol{v}_{r}
\end{aligned}
$$

Problem 8.1 Point A of a simple pendulum (mass m, length l) moves with a constant acceleration a_{0} obliquely upwards.

Derive the equation of motion and determine the force in the wire.

Solution We introduce the ξ, η coordinate system that moves translatoric with point A. Then the equations of motion in the moving system read

$$
m \xi^{* *}=F_{\xi}+F_{f \xi}, \quad m \eta^{* *}=F_{\eta}+F_{f \eta}
$$

where, with $a_{f \xi}=a_{0}$, and $a_{f \eta}=0$, the (real) forces and fictitious forces are given by

$$
\begin{aligned}
& F_{\xi}=-S \sin \varphi-m g \sin \alpha, \quad F_{\eta}=-S \cos \varphi+m g \cos \alpha, \\
& F_{f \xi}=-m a_{f \xi}=-m a_{0}, \quad F_{f \eta}=-m a_{f \eta}=0 .
\end{aligned}
$$

The relative accelerations $a_{r \xi}, a_{r \eta}$ follow from the coordinates of the point mass in the moving system through differentiation (note that the time derivatives of φ in the moving and the fixed system are the same: $\varphi^{*}=\dot{\varphi}$)

$$
\begin{aligned}
\xi & =l \sin \varphi, & \eta & =l \cos \varphi, \\
v_{r \xi}=\xi^{*} & =l \dot{\varphi} \cos \varphi, & v_{r \eta}=\eta^{*} & =-l \dot{\varphi} \sin \varphi, \\
a_{r \xi}=\xi^{* *} & =l \ddot{\varphi} \cos \varphi-l \dot{\varphi}^{2} \sin \varphi, & a_{r \eta}=\eta^{* *} & =-l \ddot{\varphi} \sin \varphi-l \dot{\varphi}^{2} \cos \varphi .
\end{aligned}
$$

Introducing them into the equations of motion yields

$$
\begin{aligned}
l \ddot{\varphi} \cos \varphi-l \dot{\varphi}^{2} \sin \varphi & =-S \sin \varphi-m g \sin \alpha-m a_{0}, \\
-l \ddot{\varphi} \sin \varphi-l \dot{\varphi}^{2} \cos \varphi & =-S \cos \varphi+m g \cos \alpha .
\end{aligned}
$$

These are two equations for the unknowns φ and S. Solving for φ and subsequently for S leads to the equation of motion and the force in the wire:

$$
l \ddot{\varphi}+g \sin (\alpha+\varphi)+a_{0} \cos \varphi=0,
$$

$$
\underline{\underline{S}=m\left[l \dot{\varphi}^{2}+g \cos (\alpha+\varphi)-a_{0} \sin \varphi\right]} .
$$

Remark: For $\ddot{\varphi}=0$ the equation of motion reduces to $\tan \varphi_{0}=a_{0} / g \cos \alpha$ $-\tan \alpha$ characterizing the equilibrium position of the pendulum.

P8.2 Problem 8.2 A point P moves on a plate with constant relative velocity v_{r} and initial condition $\varphi(0)=0$ along a circular path. The plate moves rectilinear with the velocity $v=a_{0} t$.

Determine the magnitude of absolute velocity and acceleration of P as functions of angle φ.

Solution We introduce the fixed x, y coordinates and the translatoric moving reference frame ξ, η. In the moving system, introducing $\varphi^{*}=\dot{\varphi}=$ v_{r} / r, the components of the relative velocity and acceleration are

$$
\begin{aligned}
& v_{r \xi}=\xi^{*}=-v_{r} \sin \varphi, \\
& v_{r \eta}=\eta^{*}=v_{r} \cos \varphi, \\
& a_{r \xi}=\xi^{* *}=-v_{r} \varphi^{*} \cos \varphi=-\frac{v_{r}^{2}}{r} \cos \varphi, \\
& a_{r \eta}=\eta^{* *}=-v_{r} \varphi^{*} \sin \varphi=-\frac{v_{r}^{2}}{r} \sin \varphi .
\end{aligned}
$$

The reference frame undergoes a translation in x-direction with velocity $v=a_{0} t$ and acceleration a, where time t on account of $\varphi=\dot{\varphi} t=$ $v_{r} t / r$ can be replaced by φ. Accordingly, the absolute velocity and acceleration are given by

$$
\begin{aligned}
& v_{x}=a_{0} t+v_{r \xi}=a_{0} t-v_{r} \sin \varphi=\frac{a_{0} r}{v_{r}} \varphi-v_{r} \sin \varphi, \\
& v_{y}=v_{r \eta}=v_{r} \cos \varphi \\
& a_{x}=a_{0}+a_{r \xi}=a_{0}-\frac{v_{r}^{2}}{r} \cos \varphi, \\
& a_{y}=a_{r \eta}=-\frac{v_{r}^{2}}{r} \sin \varphi .
\end{aligned}
$$

Thus, the magnitudes of velocity and acceleration follow as

$$
\begin{aligned}
& \underline{\underline{v(\varphi)}}=\sqrt{v_{x}^{2}+v_{y}^{2}}=\underline{\underline{\sqrt{\frac{a_{0}^{2} r^{2}}{v_{r}^{2}} \varphi^{2}-2 a_{0} r \varphi+v_{r}^{2}}}} \\
& \underline{\underline{a(\varphi)}}=\sqrt{a_{x}^{2}+a_{y}^{2}}=\underline{\underline{\sqrt{a_{0}^{2}+\frac{v_{r}^{4}}{r^{2}}-2 a_{0} \frac{v_{r}^{2}}{r} \cos \varphi}}}
\end{aligned}
$$

Problem 8.3 A point P moves on a disk with constant relative velocity v_{r} along a circular path. The disk rotates with constant angular velocity ω about A.

Determine the absolute velocity and the absolute acceleration of P.

Solution We introduce the moving coordinate system ξ, η, ζ with its origin in the center 0 of the disk. Relative to this system, point P undergoes a circular motion. With the relative velocity v_{r} and the magnitude $a_{r}=v_{r}^{2} / r$ of the relative acceleration and its direction (from P to 0) we can write

$$
\begin{aligned}
& \boldsymbol{v}_{r}=v_{r}\left(-\boldsymbol{e}_{\xi} \sin \varphi+\boldsymbol{e}_{\eta} \cos \varphi\right) \\
& \boldsymbol{a}_{r}=-\frac{v_{r}^{2}}{r}\left(\boldsymbol{e}_{\xi} \cos \varphi+\boldsymbol{e}_{\eta} \sin \varphi\right)
\end{aligned}
$$

With

$$
\begin{array}{ll}
\boldsymbol{\omega}=\omega \boldsymbol{e}_{\zeta}, & \dot{\boldsymbol{\omega}}=0, \quad \boldsymbol{r}_{0 P}=\boldsymbol{e}_{\xi} r \cos \varphi+\boldsymbol{e}_{\eta} r \sin \varphi \\
\boldsymbol{r}_{0}=e \boldsymbol{e}_{\eta}, & \dot{\boldsymbol{r}}_{0}=-e \omega \boldsymbol{e}_{\xi} \quad \ddot{\boldsymbol{r}}_{0}=\boldsymbol{a}_{0}=-e \omega^{2} \boldsymbol{e}_{\eta}
\end{array}
$$

we obtain

$$
\begin{aligned}
\boldsymbol{v}_{f} & =\dot{\boldsymbol{r}}_{0}+\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}=-(e+r \omega \sin \varphi) \boldsymbol{e}_{\xi}+r \omega \cos \varphi \boldsymbol{e}_{\eta}, \\
\boldsymbol{a}_{f} & =\boldsymbol{a}_{0}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right) \\
& =-e \omega^{2} \boldsymbol{e}_{\xi}+r \omega^{2}\left[\boldsymbol{e}_{\zeta} \times\left(\boldsymbol{e}_{\zeta} \times \boldsymbol{e}_{\xi} \cos \varphi\right)+\boldsymbol{e}_{\zeta} \times\left(\boldsymbol{e}_{\zeta} \times \boldsymbol{e}_{\eta} \sin \varphi\right)\right] \\
& =-(e+r \cos \varphi) \omega^{2} \boldsymbol{e}_{\xi}-r \omega^{2} \sin \varphi \boldsymbol{e}_{\eta}, \\
\boldsymbol{a}_{c} & =2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}=2 \omega v_{r}\left[\boldsymbol{e}_{\zeta} \times\left(-\mathrm{e}_{\xi} \sin \varphi\right)+\boldsymbol{e}_{\zeta} \times \boldsymbol{e}_{\eta} \cos \varphi\right] \\
& =-2 \omega v_{r}\left(\boldsymbol{e}_{\xi} \cos \varphi+\boldsymbol{e}_{\eta} \sin \varphi\right) .
\end{aligned}
$$

Thus, the absolute velocity and acceleration are found as

$$
\begin{aligned}
\underline{\underline{\boldsymbol{v}}} & =\boldsymbol{v}_{f}+\boldsymbol{v}_{r}=-\left[e+\left(v_{r}+r \omega\right) \sin \varphi\right] \boldsymbol{e}_{\xi}+\left(v_{r}+r \omega\right) \cos \varphi \boldsymbol{e}_{\eta} \\
\underline{\underline{\boldsymbol{a}}} & =\boldsymbol{a}_{f}+\boldsymbol{a}_{r}+\overline{\overline{\boldsymbol{a}_{c}}} \\
& =-\left[e \omega^{2}+\left(r \omega^{2}+\frac{v_{r}^{2}}{r}+2 \omega v_{r}\right) \cos \varphi\right] \boldsymbol{e}_{\xi}-\left[r \omega^{2}+\frac{v_{r}^{2}}{r}+2 \omega v_{r}\right] \sin \varphi \boldsymbol{e}_{\eta} \\
& =-\left[e \omega^{2}+r\left(\omega+\frac{v_{r}}{r}\right)^{2} \cos \varphi\right] \boldsymbol{e}_{\xi}-r\left(\omega+\frac{v_{r}}{r}\right)^{2} \sin \varphi \boldsymbol{e}_{\eta} .
\end{aligned}
$$

P8.4 Problem 8.4 On the rotating earth (radius $R=6370 \mathrm{~km}$) a point P moves with speed $v_{r}=150 \mathrm{~km} / \mathrm{h}$ northwards.

Determine the magnitudes and directions of the fictitious acceleration and Coriolis acceleration at latitude $\varphi=30^{\circ}$.

Solution The earth-fixed system ξ, η, ζ rotates with the angular velocity $\omega=$ $2 \pi /(24 \cdot 3600) \approx 73 \cdot 10^{-6} s^{-1}$ around the ζ axis. If we neglect the motion of the earth around the sun $\left(\ddot{\boldsymbol{r}}_{0}=0\right)$, we obtain with

$$
\begin{aligned}
\boldsymbol{\omega} & =\omega \boldsymbol{e}_{\zeta} \\
\boldsymbol{r}_{0 P} & =R \cos \varphi \boldsymbol{e}_{\eta}+R \sin \varphi \boldsymbol{e}_{\zeta}, \\
\dot{\boldsymbol{\omega}} & =0 \\
\boldsymbol{v}_{r} & =-v_{r} \sin \varphi \boldsymbol{e}_{\eta}+v_{r} \cos \varphi \boldsymbol{e}_{\zeta}
\end{aligned}
$$

for \boldsymbol{a}_{f} and \boldsymbol{a}_{c}

$$
\begin{aligned}
\boldsymbol{a}_{f} & =\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=\omega^{2} R\left[\boldsymbol{e}_{\zeta} \times\left(\boldsymbol{e}_{\zeta} \times \cos \varphi \boldsymbol{e}_{\eta}\right)+\boldsymbol{e}_{\zeta} \times\left(\boldsymbol{e}_{\zeta} \times \sin \varphi \boldsymbol{e}_{\zeta}\right)\right] \\
& =-\omega^{2} R \cos \varphi \boldsymbol{e}_{\eta} \\
\boldsymbol{a}_{c} & =2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}=2 \omega v_{r}\left[\boldsymbol{e}_{\zeta} \times\left(-\sin \varphi \boldsymbol{e}_{\eta}\right)+\boldsymbol{e}_{\zeta} \times\left(\cos \varphi \boldsymbol{e}_{\zeta}\right)\right] \\
& =2 \omega v_{r} \sin \varphi \boldsymbol{e}_{\xi} .
\end{aligned}
$$

Thus, the magnitudes of the accelerations for $\varphi=30^{\circ}$ are

$$
\begin{aligned}
& \underline{a_{f}}=\omega^{2} R \cos \varphi=(73)^{2} \cdot 10^{-12} \cdot 6370 \cdot 10^{3} \cos 30^{\circ}=\underline{\underline{0,029 \mathrm{~m} / \mathrm{s}^{2}}} \\
& \underline{\underline{a_{c}}}=2 \omega v_{r} \sin \varphi=2 \cdot 73 \cdot 10^{-6} \cdot 150 \cdot \frac{1}{3,6} \cdot \sin 30^{\circ}=\underline{\underline{0,003 \mathrm{~m} / \mathrm{s}^{2}}}
\end{aligned}
$$

The fictitious acceleration is perpendicular to the axis of rotation of the earth and the Coriolis acceleration points tangential to the latitude to the west.

Remarks:

- With reference to the moving system, the motion of point P is a pure circular motion.
- The Coriolis acceleration has its maximum at the north pole.

Problem 8.5 Along the upper part of an angled rod which rotates with angular velocity ω, a knuckle (weight $W=m g$) may fritionless slide.

After which time t_{1} the knuckle touches the rod end B if it is released at A with zero relative velocity?

Solution We introduce the rod-fixed rotating reference system ξ, η, ζ and the coordinate s. Then we obtain with

$$
\begin{aligned}
\boldsymbol{\omega} & =\omega \boldsymbol{e}_{\zeta} \\
\boldsymbol{r}_{0 P} & =s \cos \alpha \boldsymbol{e}_{\xi}+s \sin \alpha \boldsymbol{e}_{\zeta} \\
\boldsymbol{v}_{r} & =v_{r} \cos \alpha \boldsymbol{e}_{\xi}+v_{r} \sin \alpha \boldsymbol{e}_{\zeta}
\end{aligned}
$$

and $\dot{\boldsymbol{\omega}}=0, \ddot{\boldsymbol{r}}_{0}=0$ for the fictitious force and Coriolis force:

$$
\begin{aligned}
& \boldsymbol{F}_{f}=-m \boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=m \omega^{2} s \cos \alpha \boldsymbol{e}_{\xi} \\
& \boldsymbol{F}_{c}=-2 m \boldsymbol{\omega} \times \boldsymbol{v}_{r}=-2 m \omega v_{r} \cos \alpha \boldsymbol{e}_{\eta}
\end{aligned}
$$

Thus, the equation of motion in s-direction reads

$$
\begin{aligned}
& \nearrow: \quad m \ddot{s}=-m g \sin \alpha+m \omega^{2} s \cos ^{2} \alpha \\
& \leadsto \quad \ddot{s}-\kappa^{2} s=-g \sin \alpha \quad \text { with } \quad \kappa=\omega \cos \alpha .
\end{aligned}
$$

From the general solution of this differential equation

$$
s(t)=A \cosh \kappa t+B \sinh \kappa t+\frac{g \sin \alpha}{\kappa^{2}}
$$

in conjunction with the initial conditions

$$
\begin{aligned}
& s(t=0)=s_{0} \quad \sim A=s_{0}-\frac{g \sin \alpha}{\kappa^{2}}, \\
& v_{r}(t=0)=\dot{s}(t=0)=0 \quad \sim \quad B=0, \\
& s\left(t_{1}\right)=s_{1} \quad \leadsto s_{1}=A \cosh \kappa t_{1}+\frac{g \sin \alpha}{\kappa^{2}}
\end{aligned}
$$

follows

$$
t_{1}=\frac{1}{\kappa} \operatorname{arcosh}\left(\frac{s_{1}-\frac{g \sin \alpha}{\kappa^{2}}}{s_{0}-\frac{g \sin \alpha}{\kappa^{2}}}\right) .
$$

P8.6 Problem 8.6 The cantilever of a whirlgig moves about the x axis with the time-dependent angle $\vartheta(t)$. At its end a circular disk is fixed which rotates with constant angular velocity ω_{0} about an axis perpendicular to the cantilever.

Determine for point P of the disk the absolute velocity and absolute acceleration by using

a) the cantilever-fixed systems ξ, η, ζ and
b) the disk-fixed systems $\xi^{*}, \eta^{*}, \zeta^{*}$.

Solution The absolute velocity and acceleration are determined from the general relations

$$
\begin{aligned}
& \boldsymbol{v}=\dot{\boldsymbol{r}}_{0}+\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}+\boldsymbol{v}_{r}, \\
& \boldsymbol{a}=\ddot{\boldsymbol{r}}_{0}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)+2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}+\boldsymbol{a}_{r} .
\end{aligned}
$$

a) For the coordinate system ξ, η, ζ with the unit vectors $\boldsymbol{e}_{\xi}, \boldsymbol{e}_{\eta}, \boldsymbol{e}_{\zeta}$ we first have

$$
\boldsymbol{r}_{0}=l \boldsymbol{e}_{\eta}, \quad \boldsymbol{\omega}=\dot{\vartheta} \boldsymbol{e}_{\xi}, \quad \boldsymbol{r}_{0 P}=r \cos \varphi \boldsymbol{e}_{\xi}+r \sin \varphi \boldsymbol{e}_{\eta}
$$

From these relations, by introducing $\left(\dot{\boldsymbol{e}}_{i}=\boldsymbol{\omega} \times \boldsymbol{e}_{i}\right)$

$$
\dot{e}_{\xi}=0, \quad \dot{e}_{\eta}=\dot{\vartheta} \boldsymbol{e}_{\zeta}, \quad \dot{\boldsymbol{e}}_{\zeta}=-\dot{\vartheta} \boldsymbol{e}_{\eta}, \quad \dot{\varphi}=\omega_{0}
$$

we obtain

$$
\dot{\boldsymbol{r}}_{0}=l \dot{\vartheta} \boldsymbol{e}_{\zeta}, \quad \ddot{\boldsymbol{r}}_{0}=l \ddot{\vartheta} \boldsymbol{e}_{\zeta}-l \dot{\vartheta}^{2} \boldsymbol{e}_{\eta}, \quad \dot{\boldsymbol{\omega}}=\ddot{\vartheta} \boldsymbol{e}_{\xi}
$$

With reference to this system, the movement of P is a circular motion with constant angular velocity ω_{0}, i.e. we have

$$
\boldsymbol{v}_{r}=r \omega_{0}\left(-\sin \varphi \boldsymbol{e}_{\xi}+\cos \varphi \boldsymbol{e}_{\eta}\right), \quad \boldsymbol{a}_{r}=-r \omega_{0}^{2}\left(\cos \varphi \boldsymbol{e}_{\xi}+\sin \varphi \boldsymbol{e}_{\eta}\right)
$$

Introducing these relations with

$$
\begin{array}{ll}
\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}=r \dot{\vartheta} \sin \varphi \boldsymbol{e}_{\zeta}, & \dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}=r \ddot{\vartheta} \sin \varphi \boldsymbol{e}_{\zeta} \\
\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=-r \dot{\vartheta}^{2} \sin \varphi \boldsymbol{e}_{\eta}, & \boldsymbol{\omega} \times \boldsymbol{v}_{r}=r \omega_{0} \dot{\vartheta} \cos \varphi \boldsymbol{e}_{\zeta}
\end{array}
$$

finally leads to the results

$$
\underline{\underline{\boldsymbol{v}}=-r \omega_{0} \sin \varphi \boldsymbol{e}_{\xi}+r \omega_{0} \cos \varphi \boldsymbol{e}_{\eta}+(l+r \sin \varphi) \dot{\vartheta} \boldsymbol{e}_{\zeta}},
$$

$$
\begin{aligned}
\boldsymbol{a}= & -r \omega_{0}^{2} \cos \varphi \boldsymbol{e}_{\xi}-\left[(l+r \sin \varphi) \dot{\vartheta}^{2}+r \omega_{0}^{2} \sin \varphi\right] \boldsymbol{e}_{\eta} \\
& +\left[(l+r \sin \varphi) \ddot{\vartheta}+2 r \omega_{0} \dot{\vartheta} \cos \varphi\right] \boldsymbol{e}_{\zeta}
\end{aligned}
$$

b) For the coordinate system $\xi^{*}, \eta^{*}, \zeta^{*}$ from the representations

$$
\begin{array}{ll}
\boldsymbol{r}_{0}=l\left(\sin \varphi \boldsymbol{e}_{\xi}^{*}+\cos \varphi \boldsymbol{e}_{\eta}^{*}\right), \quad \boldsymbol{r}_{0 P}=r \boldsymbol{e}_{\xi}^{*}, \\
\boldsymbol{\omega}=\dot{\vartheta}\left(\cos \varphi \boldsymbol{e}_{\xi}^{*}-\sin \varphi \boldsymbol{e}_{\eta}^{*}\right)+\omega_{0} \boldsymbol{e}_{\zeta}^{*},
\end{array}
$$

with

$$
\begin{array}{ll}
\dot{\boldsymbol{e}}_{\xi}^{*}=\omega_{0} \boldsymbol{e}_{\eta}^{*}+\dot{\vartheta} \sin \varphi \boldsymbol{e}_{\zeta}^{*}, & \\
\dot{\boldsymbol{e}}_{\eta}^{*}=-\omega_{0} \boldsymbol{e}_{\xi}^{*}+\dot{\vartheta} \cos \varphi \boldsymbol{e}_{\zeta}^{*}, \\
\dot{\boldsymbol{e}}_{\zeta}^{*}=-\dot{\vartheta}\left(\sin \varphi \boldsymbol{e}_{\xi}^{*}+\cos \varphi \boldsymbol{e}_{\eta}^{*}\right), & \\
\dot{\varphi}=\omega_{0}
\end{array}
$$

follow the relations

$$
\begin{aligned}
& \dot{\boldsymbol{r}}_{0}=l \dot{\vartheta} \boldsymbol{e}_{\zeta}^{*}, \quad \ddot{\boldsymbol{r}}_{0}=-l \dot{\vartheta}^{2}\left(\sin \varphi \boldsymbol{e}_{\xi}^{*}+\cos \varphi \boldsymbol{e}_{\eta}^{*}\right)+l \ddot{\vartheta} \boldsymbol{e}_{\zeta}^{*}, \\
& \dot{\boldsymbol{\omega}}=\left(\ddot{\vartheta} \cos \varphi-\dot{\vartheta} \omega_{0} \sin \varphi\right) \boldsymbol{e}_{\xi}^{*}-\left(\ddot{\vartheta} \sin \varphi+\dot{\vartheta} \omega_{0} \cos \varphi\right) \boldsymbol{e}_{\eta}^{*} .
\end{aligned}
$$

Since P with reference to the system $\xi^{*}, \eta^{*}, \zeta^{*}$ is at rest, we now have $\boldsymbol{v}_{r}=\boldsymbol{a}_{r}=\mathbf{0}$. With

$$
\begin{aligned}
\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}= & r \omega_{0} \boldsymbol{e}_{\eta}^{*}+r \dot{\vartheta} \sin \varphi \boldsymbol{e}_{\zeta}^{*}, \\
\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}= & r\left(\ddot{\vartheta} \sin \varphi+\dot{\vartheta} \omega_{0} \cos \varphi\right) \boldsymbol{e}_{\zeta}^{*}, \\
\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)= & -r\left(\dot{\omega}_{0}^{2}+\dot{\vartheta}^{2} \sin ^{2} \varphi\right) \boldsymbol{e}_{\xi}^{*}-r \dot{\vartheta}^{2} \sin \varphi \cos \varphi \boldsymbol{e}_{\eta}^{*} \\
& +r \omega_{0} \dot{\vartheta} \cos \varphi \boldsymbol{e}_{\zeta}^{*}
\end{aligned}
$$

we then obtain

$$
\begin{aligned}
\underline{\boldsymbol{v}=} & r \omega_{0} \boldsymbol{e}_{\eta}^{*}+\dot{\vartheta}(l+r \sin \varphi) \boldsymbol{e}_{\zeta}^{*} \\
\boldsymbol{a}= & {\left[r \omega_{0}^{2}-\dot{\vartheta}^{2}(l+r \sin \varphi) \sin \varphi\right] \boldsymbol{e}_{\xi}^{*}-\dot{\vartheta}^{2}(l+r \sin \varphi) \cos \varphi \boldsymbol{e}_{\eta}^{*} } \\
\hline \hline & +\left[\ddot{\vartheta}(l+r \sin \varphi)+2 r \omega_{0} \dot{\vartheta} \cos \varphi\right] \boldsymbol{e}_{\zeta}^{*}
\end{aligned}
$$

Remark: The representations in a) and b) can be transformed into each other using $\boldsymbol{e}_{\xi}=\boldsymbol{e}_{\xi}^{*} \cos \varphi-\boldsymbol{e}_{\eta}^{*} \sin \varphi, \boldsymbol{e}_{\eta}=\boldsymbol{e}_{\xi}^{*} \sin \varphi+\boldsymbol{e}_{\eta}^{*} \cos \varphi$.

P8.7 Problem 8.7 At the lever (1), rotating with constant angular velocity ω about the fixed axis $\overline{A A}$, a cylinder (2) is mounted. The cylinder rotates about the axis $\overline{B B}$ parallel to $\overline{A A}$ with constant angular velocity ω^{*} with respect to the lever. Fixed at the cylinder is a tube where a point P moves with speed $v(t)$ with respect to the cylinder.

Determine the absolute velocity and absolute acceleration of P by using
a) the space fixed system x, y, z,

b) the lever-fixed system ξ, η, ζ,
c) the cylinder-fixed system $\xi^{*}, \eta^{*}, \zeta^{*}$.

Solution a) With the angular velocity $\omega_{2}=\omega+\omega^{*}$ of the cylinder with respect to the space-fixed system and with

$$
\varphi=\omega t, \quad \vartheta=\omega^{*} t, \quad \varphi+\vartheta=\omega_{2} t
$$

the position vector of P in the space-fixed system x, y, z is given by

$$
\begin{aligned}
\boldsymbol{r}_{P} & =(a \cos \varphi+r \cos (\varphi+\vartheta)) \boldsymbol{e}_{x}+(a \sin \varphi+r \sin (\varphi+\vartheta)) \boldsymbol{e}_{y}+(b+s) \boldsymbol{e}_{z} \\
& =\left(a \cos \omega t+r \cos \omega_{2} t\right) \boldsymbol{e}_{x}+\left(a \sin \omega t+r \sin \omega_{2} t\right) \boldsymbol{e}_{y}+(b+s) \boldsymbol{e}_{z}
\end{aligned}
$$

From its derivatives, by considering $\dot{s}=v$, follow
$\underline{\underline{\boldsymbol{v}_{P}}=-\left(a \omega \sin \omega t+r \omega_{2} \sin \omega_{2} t\right) \boldsymbol{e}_{x}+\left(a \omega \cos \omega t+r \omega_{2} \cos \omega_{2} t\right) \boldsymbol{e}_{y}+v \boldsymbol{e}_{z}}$,
$\underline{\underline{\boldsymbol{a}_{P}=-\left(a \omega^{2} \cos \omega t+r \omega_{2}^{2} \cos \omega_{2} t\right) \boldsymbol{e}_{x}-\left(a \omega^{2} \sin \omega t+r \omega_{2}^{2} \sin \omega_{2} t\right) \boldsymbol{e}_{y}+\dot{v} \boldsymbol{e}_{z}} .}$
b) The general relations for \boldsymbol{v}_{P} and \boldsymbol{a}_{P} are given by

$$
\begin{aligned}
\boldsymbol{v}_{P} & =\dot{\boldsymbol{r}}_{0}+\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}+\boldsymbol{v}_{r} \\
\boldsymbol{a}_{P} & =\ddot{\boldsymbol{r}}_{0}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)+2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}+\boldsymbol{a}_{r}
\end{aligned}
$$

For the ξ, η, ζ system we have

$$
\begin{aligned}
& \boldsymbol{\omega}=\omega \boldsymbol{e}_{\zeta}, \quad \dot{\boldsymbol{\omega}}=\mathbf{0}, \quad \boldsymbol{r}_{0}=\dot{\boldsymbol{r}}_{0}=\ddot{\boldsymbol{r}}_{0}=\mathbf{0}, \quad \vartheta=\omega^{*} t \\
& \boldsymbol{r}_{0 P}=\left(a+r \cos \omega^{*} t\right) \boldsymbol{e}_{\xi}+r \sin \omega^{*} t \boldsymbol{e}_{\eta}+(b+s) \boldsymbol{e}_{\zeta}
\end{aligned}
$$

$\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}=\omega\left(a+r \cos \omega^{*} t\right) \boldsymbol{e}_{\eta}-r \omega \sin \omega^{*} t \boldsymbol{e}_{\xi}$,
$\boldsymbol{v}_{r}=-r \omega^{*} \sin \omega^{*} t \boldsymbol{e}_{\xi}+r \omega^{*} \cos \omega^{*} t \boldsymbol{e}_{\eta}+v \boldsymbol{e}_{\zeta}$,
$\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=-\omega^{2}\left(a+r \cos \omega^{*} t\right) \boldsymbol{e}_{\xi}-\omega^{2} r \sin \omega^{*} t \boldsymbol{e}_{\eta}$,
$2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}=-2 r \omega \omega^{*} \sin \omega^{*} t \boldsymbol{e}_{\eta}-2 r \omega \omega^{*} \cos \omega^{*} t \boldsymbol{e}_{\xi}$,
$\boldsymbol{a}_{r}=-r \omega^{* 2} \cos \omega^{*} t \boldsymbol{e}_{\xi}-r \omega^{* 2} \sin \omega^{*} t \boldsymbol{e}_{\eta}+\dot{v} \boldsymbol{e}_{\zeta}$,
and by considering $\omega+\omega^{*}=\omega_{2}$ we obtain
$\underline{\underline{\boldsymbol{v}_{P}}=-r \omega_{2} \sin \omega^{*} t \boldsymbol{e}_{\xi}+\left(a \omega+r \omega_{2} \cos \omega^{*} t\right) \boldsymbol{e}_{\eta}+v \boldsymbol{e}_{\zeta}}$,
$\underline{\underline{\boldsymbol{a}_{P}}=-\left(a \omega^{2}+r \omega_{2}^{2} \cos \omega^{*} t\right) \boldsymbol{e}_{\xi}-r \omega_{2}^{2} \sin \omega^{*} t \boldsymbol{e}_{\eta}+\dot{v} \boldsymbol{e}_{\zeta}}$.
c) For the $\xi^{*}, \eta^{*}, \zeta^{*}$ system we have

$$
\begin{aligned}
& \boldsymbol{\omega}=\omega_{2} \boldsymbol{e}_{\zeta}^{*}, \quad \dot{\boldsymbol{\omega}}=\mathbf{0} \\
& \boldsymbol{r}_{0}=a \cos \omega^{*} t \boldsymbol{e}_{\xi}^{*}-a \sin \omega^{*} t \boldsymbol{e}_{\eta}^{*}+b \boldsymbol{e}_{\zeta}^{*}, \\
& \dot{\boldsymbol{r}}_{0}=-a \omega^{*} \sin \omega^{*} t \boldsymbol{e}_{\xi}^{*}-a \omega^{*} \cos \omega^{*} t \boldsymbol{e}_{\eta}^{*}, \\
& \ddot{\boldsymbol{r}}_{0}=-a \omega^{* 2} \cos \omega^{*} t \boldsymbol{e}_{\xi}^{*}+a \omega^{* 2} \sin \omega^{*} t \boldsymbol{e}_{\eta}^{*}, \\
& \boldsymbol{r}_{0 P}=r \boldsymbol{e}_{\xi}^{*}+s \boldsymbol{e}_{\zeta}^{*}, \\
& \boldsymbol{v}_{r}=v \boldsymbol{e}_{\zeta}^{*} \\
& \boldsymbol{\omega} \times \boldsymbol{r}_{0 P}=r \omega_{2} \boldsymbol{e}_{\eta}^{*} \\
& \boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=-r \omega_{2}^{2} \boldsymbol{e}_{\xi}^{*}, \\
& 2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}=\mathbf{0} .
\end{aligned}
$$

Thus, it follows

$$
\underline{\boldsymbol{v}_{P}=-a \omega^{*} \sin \omega^{*} t \boldsymbol{e}_{\xi}^{*}-\left(a \omega^{*} \cos \omega^{*} t+r \omega_{2}\right) \boldsymbol{e}_{\eta}^{*}+v \boldsymbol{e}_{\zeta}^{*}},
$$

$\underline{\underline{\boldsymbol{a}_{P}}=-\left(a \omega^{* 2} \cos \omega^{*} t+r \omega_{2}^{2}\right) \boldsymbol{e}_{\xi}^{*}+a \omega^{* 2} \sin \omega^{*} t \boldsymbol{e}_{\eta}^{*}+\dot{v} \boldsymbol{e}_{\zeta}^{*}}$.

P8.8 Problem 8.8 In the frictionless channel of a disk, rotating with the angular velocity ω, a slider of mass m is fixed at springs.

Formulate the equation of motion with respect to the moving system ξ, η.
Determine the force exerted from the channel on the slider.

Solution The coordinate system carries out a circular motion about A. With $(\zeta \perp$ to $\xi, \eta)$

$$
\begin{aligned}
& \boldsymbol{\omega}=\omega \boldsymbol{e}_{\zeta}, \quad \dot{\boldsymbol{\omega}}=0, \quad \boldsymbol{r}_{0 P}=\eta \boldsymbol{e}_{\eta} \\
& \ddot{\boldsymbol{r}}_{0}=\boldsymbol{a}_{0}=-h \omega^{2} \boldsymbol{e}_{\xi}, \quad \boldsymbol{v}_{r}=\eta^{\prime} \boldsymbol{e}_{\eta}
\end{aligned}
$$

the fictitious acceleration and Coriolis acceleration are given by

$$
\begin{aligned}
\boldsymbol{a}_{f} & =\boldsymbol{a}_{0}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{0 P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=-h \omega^{2} \boldsymbol{e}_{\xi}+\eta \omega^{2}\left[\boldsymbol{e}_{\zeta} \times\left(\boldsymbol{e}_{\xi} \times \boldsymbol{e}_{\eta}\right)\right] \\
& =-h \omega^{2} \boldsymbol{e}_{\xi}+\eta \omega^{2}\left[\boldsymbol{e}_{\zeta} \times\left(-\boldsymbol{e}_{\xi}\right)\right]=-h \omega^{2} \boldsymbol{e}_{\xi}-\eta \omega^{2} \boldsymbol{e}_{\eta} \\
\boldsymbol{a}_{c} & =2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}=2 \omega \eta^{\prime}\left(\boldsymbol{e}_{\zeta} \times \boldsymbol{e}_{\eta}\right)=-2 \omega \eta^{\prime} \boldsymbol{e}_{\xi}
\end{aligned}
$$

In the equations of motion must be considered in addition to the external forces (spring force $2 c \eta$, channel force N), the fictitious force $\boldsymbol{F}_{f}=-m \boldsymbol{a}_{f}$ and Coriolis force $\boldsymbol{F}_{c}=-m \boldsymbol{a}_{c}$. Thus, with $\xi^{\prime \prime}=0$ we obtain for the equation of motion and the channel force

$$
\begin{aligned}
\nwarrow: m \eta^{\prime \prime}=-2 c \eta+m \eta \omega^{2} & \leadsto & \underline{\underline{\eta^{\prime \prime}+\left(\frac{2 c}{m}-\omega^{2}\right) \eta=0}} \\
\nearrow: & 0=N+m h \omega^{2}+m 2 \omega \eta^{\prime} & \leadsto \underline{\underline{N=-m \omega\left(h \omega+2 \eta^{\prime}\right)} .} .
\end{aligned}
$$

Remark: The equation of motion has the solution (see page 170) $\eta(t)=$ $A \cos \Omega t+B \sin \Omega t$ with the angular frequency $\Omega=\sqrt{2 c / m-\omega^{2}}$. For $\omega^{2}=2 c / m$ the slider rotates with the disk without vibrating.

Problem 8.9 A little sphere (point mass m) oscillates frictionless in a circular channel of a horizontal disk which rotates about an axis through A with constant angular velocity Ω.

Determine the circular frequency ω of the sphere if small amplitudes φ are assumed.

Solution We introduce the rotating ξ, η, ζ-coordinate system with its origin 0 at the center of the disk. Then we can write

$$
\begin{aligned}
& \boldsymbol{\Omega}=\Omega \boldsymbol{e}_{\zeta}, \quad \boldsymbol{a}_{0}=\ddot{\boldsymbol{r}}_{0}=-e \Omega^{2} \boldsymbol{e}_{\xi} \\
& \dot{\boldsymbol{\Omega}}=0, \quad \boldsymbol{r}_{0 P}=a \cos \varphi \boldsymbol{e}_{\xi}+a \sin \varphi \boldsymbol{e}_{\eta} .
\end{aligned}
$$

The relative velocity can be expres-
 sed by the relative angular velocity φ^{*} where $(\cdot)^{*}$ denotes the time derivative relative to the moving system):

$$
v_{r}=a \varphi^{*} \quad \sim \quad \boldsymbol{v}_{r}=-a \varphi^{*} \sin \varphi \boldsymbol{e}_{\xi}+a \varphi^{*} \cos \varphi \boldsymbol{e}_{\eta}
$$

Thus, the fictitious forces \boldsymbol{F}_{f} and \boldsymbol{F}_{c} are

$$
\begin{aligned}
\boldsymbol{F}_{f}= & -m \boldsymbol{a}_{0}-m \boldsymbol{\Omega} \times\left(\boldsymbol{\Omega} \times \boldsymbol{r}_{0 P}\right)=m\left(e \Omega^{2}+a \Omega^{2} \cos \varphi\right) \boldsymbol{e}_{\xi} \\
& +m \Omega^{2} a \sin \varphi \boldsymbol{e}_{\eta} \\
\boldsymbol{F}_{c}= & -2 m \boldsymbol{\Omega} \times \boldsymbol{v}_{r}=2 m \Omega a \varphi^{*}\left(\boldsymbol{e}_{\xi} \cos \varphi+\boldsymbol{e}_{\eta} \sin \varphi\right)
\end{aligned}
$$

With the tangential relative acceleration $a_{r t}=a \varphi^{* *}$, the equation of
motion in tangential direction is obtained as

Assuming small amplitudes $(\sin \varphi \approx \varphi)$, this leads to the equation for harmonic vibrations

$$
\varphi^{* *}+\frac{e \Omega^{2}}{a} \varphi=0
$$

Hence, the circular frequency of the oscillations is

$$
\underline{\underline{\omega}=\sqrt{e / a} \Omega}
$$

P8.10 Problem 8.10 The displayed system rotates about the vertical axis with constant angular velocity ω. The two bodies are connected by an inextensible cable and they can frictionless slide along the parts of the elbow.

Determine the reaction force acting on m_{1} and the path $r(\varphi)$ of m_{1}, if at time $t=0$ the initial conditions are given by $r(0)=r_{0}$ and $r^{*}(0)=0$.

Solution We introduce the rotating elbow-fixed coordinate system ξ, η, ζ and draw the free-body diagrams for both bodies with the external forces, reaction forces and fictitious force and Coriolis force. There is no relative motion of m_{1} in ζ - and in ξ-direction. Thus, the reaction forces follow directly from the respective 'equilibrium conditions' as

$$
\underline{\underline{N_{1}=W_{1}}}, \quad \underline{\underline{N_{2}=F_{c}=2 m \omega r^{*}} .}
$$

The equations of motion

$$
m_{2} \zeta_{2}^{* *}=S-W_{2}, \quad m_{1} r^{* *}=F_{f}-S=m_{1} r \omega^{2}-S
$$

lead with $\zeta_{2}^{* *}=r^{* *}$ (inextensible cable!) to

$$
\left(m_{1}+m_{2}\right) r^{* *}-m_{1} \omega^{2} r=-W_{2}
$$

This inhomogeneous differential equation has the solution

$$
r(t)=r_{h}+r_{p}=A \mathrm{e}^{\lambda t}+B \mathrm{e}^{-\lambda t}+\frac{m_{2} g}{m_{1} \omega^{2}} \quad \text { where } \quad \lambda=\omega \sqrt{\frac{m_{1}}{m_{1}+m_{2}}}
$$

The initial conditions

$$
r^{*}(0)=0 \leadsto A-B=0, \quad r(0)=r_{0} \leadsto r_{0}=A+B+\frac{m_{2} g}{m_{1} \omega^{2}}
$$

lead to $A=B=\frac{1}{2}\left[r_{0}-m_{2} g /\left(m_{1} \omega^{2}\right)\right]$ and herewith, considering $\omega t=\varphi$, we finally obtain the path equation

$$
r(\varphi)=\left(r_{0}-\frac{m_{2} g}{m_{1} \omega^{2}}\right) \cosh \left(\varphi \sqrt{\frac{m_{1}}{m_{1}+m_{2}}}\right)+\frac{m_{2} g}{m_{1} \omega^{2}}
$$

Remark: For $r_{0} m_{1} \omega^{2}=S=m_{2} g$ we have 'equilibrium' $\left(r^{* *}=0\right)$ in this position, which, however, is unstable: for any small diplacement (disturbance) the system starts to move!

Problem 8.11 In the radial channel of a wobbling disk, which rotates with constant angular velocity ω, slides frictionless a knuckle of mass m.

a) Determine the force $K(r)$ that must exerted to the knuckle in channel direction, that it moves according to the law $r(t)=r_{0} \sin \omega t$ (the weight shall be neglected).
b) Determine the lateral contact force $N_{\eta}(r)$ between the knuckle and the channel.

Solution a) We use the rotating reference system ξ, η, ζ and draw the freebody diagram by considering the fictitious force and Coriolis force

$$
\begin{aligned}
& \boldsymbol{F}_{f}=-m \boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{0 P}\right)=m r \omega^{2} \cos \alpha \boldsymbol{e}_{\xi} \\
& \boldsymbol{F}_{c}=-2 m \boldsymbol{\omega} \times \boldsymbol{v}_{r}=-2 m \omega v_{r} \cos \alpha \boldsymbol{e}_{\eta}
\end{aligned}
$$

where $v_{r}=r^{*}=r_{0} \omega \cos \omega t$.
With $a_{r}=-r_{0} \omega^{2} \sin \omega t=-\omega^{2} r$ the equation of motion in channel direction reads

$$
m a_{r}=K+m r \omega^{2} \cos ^{2} \alpha .
$$

It leads to the force K :

$$
\underline{\underline{K(r)}}=m a_{r}-m r \omega^{2} \cos ^{2} \alpha=\underline{\underline{-m \omega^{2} r\left(1+\cos ^{2} \alpha\right)}} .
$$

b) The lateral contact force N_{η} is calculated from the 'equilibrium condition' (no relative acceleration in η-direction)

$$
N_{\eta}=2 m \omega v_{r} \cos \alpha=2 m \omega^{2} r_{0} \cos \alpha \cos \omega t
$$

or with $\cos \omega t=\sqrt{1-\sin ^{2} \omega t}=\sqrt{1-\left(r / r_{0}\right)^{2}}$ as

$$
\underline{\underline{N_{\eta}(r)}=2 m \omega^{2} \cos \alpha \sqrt{r_{0}^{2}-r^{2}}} .
$$

P8.12 Problem 8.12 The arm of an automatic assembly machine starts moving from rest with constant acceleration a_{0} along a straight track. At the same time, the arm begins to rotate with constant angular velocity ω_{0} and the slider P begins to move towards point A with constant relative acceleration a_{r}. The initial positions of the arm and the slider are given by $\varphi_{0}=0$ and s_{0}.

Determine the absolute velocity and
 acceleration of the slider P in dependence of time t.

Solution We use the fixed coordinate system x, y, z, where the x-axis coincides with the track. In addition, we introduce the moving coordinate system ξ, η, ζ, where the ξ-axis rotates with the arm. Then, the general equations for the absolute velocity and acceleration are

$$
\begin{aligned}
& \boldsymbol{v}=\boldsymbol{v}_{A}+\boldsymbol{\omega} \times \boldsymbol{r}_{A P}+\boldsymbol{v}_{r}, \\
& \boldsymbol{a}=\boldsymbol{a}_{A}+\dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{A P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{A P}\right)+2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}+\boldsymbol{a}_{r} .
\end{aligned}
$$

We start counting time t from the beginning of the motion. then, by using the given accelerations, angular velocity and initial conditions, we obtain

$$
\begin{aligned}
& \boldsymbol{a}_{A}=a_{0} \boldsymbol{e}_{x} \quad \leadsto \quad \boldsymbol{v}_{0}=a_{0} t \boldsymbol{e}_{x} \\
& \boldsymbol{\omega}=\omega_{0} \boldsymbol{e}_{\zeta}, \quad \dot{\boldsymbol{\omega}}=0 \\
& \boldsymbol{a}_{r}=-a_{r} \boldsymbol{e}_{\xi} \quad \leadsto \quad \boldsymbol{v}_{r}=-a_{r} t \boldsymbol{e}_{\xi} \quad \leadsto \quad \boldsymbol{r}_{A P}=\left(-\frac{1}{2} a_{r} t^{2}+s_{0}\right) \boldsymbol{e}_{\xi},
\end{aligned}
$$

and

$$
\begin{aligned}
& \boldsymbol{\omega} \times \boldsymbol{r}_{A P}=\omega\left(-\frac{1}{2} a_{r} t^{2}+s_{0}\right) \boldsymbol{e}_{\eta}, \quad 2 \boldsymbol{\omega} \times \boldsymbol{v}_{r}=-2 \omega_{0} a_{r} t \boldsymbol{e}_{\eta}, \\
& \boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{A P}\right)=-\omega_{0}^{2}\left(-\frac{1}{2} a_{r} t^{2}+s_{0}\right) \boldsymbol{e}_{\xi} .
\end{aligned}
$$

Taking into account the relations $\boldsymbol{e}_{x}=\boldsymbol{e}_{\xi} \cos \varphi-\boldsymbol{e}_{\eta} \sin \varphi$, where $\varphi=$ $\omega_{0} t$, we finally obtain

$$
\boldsymbol{v}=\left[a_{0} t \cos \omega_{0} t-a_{r} t\right] \boldsymbol{e}_{\xi}+\left[-a_{0} t \sin \omega_{0} t+\omega_{0}\left(-\frac{1}{2} a_{r} t^{2}+s_{0}\right)\right] \boldsymbol{e}_{\eta},
$$

$$
\underline{\underline{\boldsymbol{a}=\left[a_{0} \cos \omega_{0} t-\omega_{0}^{2}\left(-\frac{1}{2} a_{r} t^{2}+s_{0}\right)-a_{r}\right] \boldsymbol{e}_{\xi}-\left[a_{0} \sin \omega_{0} t+2 \omega_{0} a_{r} t\right] \boldsymbol{e}_{\eta}} .}
$$

Chapter 9
Principles of Mechanics

It is often advantageous to determine the equations of motion not by using Newton's axioms (principles of linear and angular momentum) but by using equivalent laws which are called Principles of Mechanics.

Formal Reduction of Kinetics to Statics

Rewriting Newton's law of the motion for a point mass (or the center of mass of a rigid body) in the form

$$
m \boldsymbol{a}=\sum \boldsymbol{F} \quad \leadsto \quad \sum \boldsymbol{F}-m \boldsymbol{a}=0
$$

and introducing D‘Alembert’s inertial force (pseudo force, fictitious force)

$$
\boldsymbol{F}_{I}=-m \boldsymbol{a}
$$

leads to the 'dynamic equilibrium condition of forces'

$$
\sum \boldsymbol{F}+\boldsymbol{F}_{I}=0
$$

Accordingly, a point mass or the center of mass of a rigid body moves such that the sum of external forces \boldsymbol{F} and the inertial force \boldsymbol{F}_{I} is equal to zero. In case of a plane motion of a rigid body, the pseudo moment $M_{I A}=-\Theta_{A} \dot{\omega}$ must be taken into account in the 'dynamic equilibrium condition of the moments'. Instead of the equations of motion according to page 102 we then obtain the 'equilibrium conditions'

$$
\sum F_{x}-m a_{x}=0, \quad \sum F_{y}-m a_{y}=0, \quad \sum M_{A}-\Theta_{A} \dot{\omega}=0
$$

where $A \widehat{=}$ fixed point or center of mass.
Remarks: - The inertial force (pseudo force) and the pseudo moment are directed opposite to the positive acceleration and angular acceleration, respectively.

- When solving problems, the pseudo forces and pseudo moments must be drawn into the free-body diagram with the respective sign.

d'ALEMBERT's Principle

A system moves such that for a virtual displacement the sum of the works δU of the external forces (moments) and δU_{I} of the pseudo forces (pseudo moments) vanishes at all times:

$$
\delta U+\delta U_{I}=0
$$

Remarks: - Virtual displacements are infinitesimally small, fictitious and kinematically admissible.

- The work done by constraint forces is zero for rigid constraints.
- D‘Alembert’s principle may preferably be applied for systems with several constraints, if the constraint forces shall not be determined.
- In case of statics, the principle reduces to $\delta U=0$ (see volume 1, chapter 7).

LAGRANGE Equations of the 2nd kind

The motion of a system with n degrees of freedom is described by

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}=Q_{j} \quad(j=1, \ldots, n)
$$

$$
\text { where } \begin{aligned}
T & \widehat{=} \text { kinetic energy } \\
q_{j} & \widehat{=} \text { generalized coordinates } \\
\dot{q}_{j} & \widehat{=} \text { generalized velocities } \\
Q_{j} & \widehat{=} \text { generalized forces. }
\end{aligned}
$$

For conservative forces (having a potential) the equations of motion simplify to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0 \quad(j=1, \ldots, n)
$$

$$
\text { where } \begin{aligned}
L=T-V & \widehat{=} \text { Lagrangian, } \\
& V
\end{aligned}
$$

Remarks: - The numbers of generalized coordinates (i.e. equations) and of degrees of freedom are equal.

- Generalized coordinates are linearly independent and may be lengths or angles.
- Generalized forces act in the direction of generalized coordinates and may be e.g. forces or moments.

P9.1 Problem 9.1 Two blocks of weights $W_{1}=m_{1} g$ and $W_{2}=m_{2} g$ are suspended by a rope drum (moment of inertia Θ_{A}). The block of mass m_{1} slides frictionless on an inclined plane.

Determine the angular acceleration of the drum and the force in rope 2 by using dynamic equilibrium conditions.

Solution We separate the system, introduce coordinates x_{1}, x_{2}, φ, describing the motion of the system, and draw the free-body diagram. Since we solve the problem by applying dynamic equilibrium conditions, the inertia forces $m_{i} \ddot{x}_{i}$ and the pseudo moment must be considered; they point in negative coordinate directions. Then, the equilibrium conditions yield
(1) $\nearrow: \quad S_{1}-m_{1} \ddot{x}_{1}-m_{1} g \sin \alpha=0$,
(2) $\downarrow: m_{2} g-m_{2} \ddot{x}_{2}-S_{2}=0$,
(3) $\tilde{A}: \quad-r_{1} S_{1}+r_{2} S_{2}-\Theta_{A} \ddot{\varphi}=0$.

Using the kinematic relations

$$
\begin{aligned}
& x_{1}=r_{1} \varphi \quad \leadsto \quad \ddot{x}_{1}=r_{1} \ddot{\varphi}, \\
& x_{2}=r_{2} \varphi \quad \leadsto \quad \ddot{x}_{2}=r_{2} \ddot{\varphi},
\end{aligned}
$$

we obtain the angular acceleration

$$
\underline{\ddot{\varphi}=\frac{r_{2} m_{2}-r_{1} m_{1} \sin \alpha}{r_{1}^{2} m_{1}+r_{2}^{2} m_{2}+\Theta_{A}} g}
$$

and the force in the rope

$$
\underline{\underline{S_{2}}}=m_{2}\left(g+r_{2} \ddot{\varphi}\right)=\underline{\underline{m_{2} g \frac{r_{1}\left(r_{1}+r_{2} \sin \alpha\right) m_{1}+\Theta_{A}}{r_{1}^{2} m_{1}+r_{2}^{2} m_{2}+\Theta_{A}}}} .
$$

Remark: For $r_{2} m_{2}>r_{1} m_{1} \sin \alpha$ the drum rotates clockwise, for $r_{2} m_{2}<r_{1} m_{1} \sin \alpha$ it rotates counterclockwise. In the special case $r_{2} m_{2}=r_{1} m_{1} \sin \alpha$, the system is in static equilibrium: $\ddot{\varphi}=0$.

Problem 9.2 The displayed pendulum consists of a homogeneous cylinder of mass $m_{1}=2 m$ and a point mass of weight $G=m_{2} g=m g$ which is rigidly fixed by a massless rod. The cylinder rolls without slip on the rough plane.
Formulate the equation of motion.

Solution We choose the reference system x, y in the undisplaced position. The center of mass C lies in the distance

$$
e=\frac{l m_{1}}{m_{1}+m_{2}}=\frac{2}{3} l
$$

from the point mass m_{2}. In the displaced position we draw all external forces, inertial forces and the pseudo moment into the free-body diagram. The 'equilibrium conditions' then read

$$
\begin{array}{ll}
\rightarrow: & -H-\left(m_{1}+m_{2}\right) \ddot{x}_{c}=0, \\
\downarrow: & \left(m_{1}+m_{2}\right) g-N-\left(m_{1}+m_{2}\right) \ddot{y}_{c}=0, \\
\curvearrowleft: & m_{1} g \frac{l}{3} \sin \varphi+H\left(\frac{l}{3} \cos \varphi-r\right)-N \frac{l}{3} \sin \varphi-m_{2} g \frac{2 l}{3} \sin \varphi-\Theta_{c} \ddot{\varphi}=0
\end{array}
$$

where

$$
\Theta_{c}=\left[\frac{m_{1} r^{2}}{2}+m_{1}\left(\frac{l}{3}\right)^{2}\right]+m_{2}\left(\frac{2 l}{3}\right)^{2}=m\left(r^{2}+\frac{2}{3} l^{2}\right) .
$$

For an angle change φ, the center of the cylinder is displaced by $r \varphi$ to the left. Thus, we find for the center of mass

$$
\begin{array}{lll}
x_{c}=-r \varphi+\frac{l}{3} \sin \varphi & \leadsto \ddot{x} c=-r \ddot{\varphi}+\frac{l}{3} \ddot{\varphi} \cos \varphi-\frac{l}{3} \dot{\varphi}^{2} \sin \varphi \\
y_{c}=\frac{l}{3} \cos \varphi & \leadsto \ddot{y} c=-\frac{l}{3} \ddot{\varphi} \sin \varphi-\frac{l}{3} \dot{\varphi}^{2} \cos \varphi
\end{array}
$$

Solving the equations yields

$$
\underline{\underline{\varphi}\left(l^{2}+4 r^{2}-2 l r \cos \varphi\right)+l r \dot{\varphi}^{2} \sin \varphi+g l \sin \varphi=0} .
$$

P9.3 Problem 9.3 A wheel (weight $m_{1} g$, moment of inertia Θ_{A}) and a block (weight $m_{2} g$), both on inclined planes, are connected by a rope. The wheel rolls without slip while the block slips frictionless.

Determine the acceleration of the block applying d'Alembert's principle. Neglect the masses of the rope
 and the pulley.

Solution Since the constraint forces (force in the rope, contact forces) need not to bee determined, it is advantageous to apply d'Alembert's principle. To describe the motion we choose the coordinates x_{i}, φ. In addition to the real forces, the inertial forces $m_{i} \ddot{x}_{i}$ and the pseudo moment $\Theta_{A} \ddot{\varphi}$ (acting opposite to the chosen coordinates) are drawn into the sketch of the system. Then, d'Alembert's principle requires that the virtual work of all forces vanishes:

$$
\delta U+\delta U_{I}=0
$$

This leads to

$$
-m_{1} \ddot{x}_{1} \delta x_{1}-m_{1} g \sin \alpha \delta x_{1}-\Theta_{A} \ddot{\varphi} \delta \varphi+m_{2} g \sin \alpha \delta x_{2}-m_{2} \ddot{x}_{2} \delta x_{2}=0
$$

With the kinematic relations

$$
x_{1}=x_{2}=r \varphi=x \quad \leadsto \quad\left\{\begin{array}{l}
\delta x_{1}=\delta x_{2}=r \delta \varphi=\delta x \\
\ddot{x}_{1}=\ddot{x}_{2}=r \ddot{\varphi}=\ddot{x}
\end{array}\right.
$$

we obtain

$$
\left[-m_{1} \ddot{x}-m_{1} g \sin \alpha-\frac{\Theta_{A}}{r^{2}} \ddot{x}+m_{2} g \sin \alpha-m_{2} \ddot{x}\right] \delta x=0 .
$$

Since $\delta x \neq 0$, the expression in the bracket must vanish. Thus,

$$
\begin{aligned}
& \ddot{x}=\ddot{x}_{2}=g \frac{\left(m_{2}-m_{1}\right) \sin \alpha}{m_{1}+m_{2}+\frac{\Theta_{A}}{r^{2}}} . \\
& \hline \underline{ } .
\end{aligned}
$$

Problem 9.4 Two drums are connected by a rope and carry blocks of weights $m_{1} g$ and $m_{2} g$. Drum (2) is driven by the moment M_{0}.

Determine the acceleration of block (1) using d'Alembert's principle. Neglect the mass of the ropes.

Solution We introduce the inertial forces $m_{i} \ddot{x}_{i}$ and the pseudo moments $\Theta_{A} \ddot{\varphi}_{1}, \Theta_{B} \ddot{\varphi}_{2}$. They act in opposite directions to the chosen positive coordinate directions. Then, d'Alembert's principle requires

$$
\delta U+\delta U_{I}=0
$$

which leads to

$-m_{1}\left(g+\ddot{x}_{1}\right) \delta x_{1}+m_{2}\left(g-\ddot{x}_{2}\right) \delta x_{2}$
$+M_{0} \delta \varphi_{2}-\Theta_{A} \ddot{\varphi}_{1} \delta \varphi_{1}-\Theta_{B} \ddot{\varphi}_{2} \delta \varphi_{2}=0$.
With the kinematic relations

$$
\left.\begin{array}{rlrl}
x_{1} & =r_{1} \varphi_{1} \\
x_{2} & =r_{1} \varphi_{2} \\
r_{2} \varphi_{1} & =r_{1} \varphi_{2}
\end{array}\right\} \leadsto \begin{aligned}
\ddot{\varphi}_{1} & =\frac{\ddot{x}_{1}}{r_{1}}, & \ddot{\varphi}_{2} & =\frac{r_{2}}{r_{1}^{2}} \ddot{x}_{1},
\end{aligned} \quad \ddot{x}_{2}=\frac{r_{2}}{r_{1}} \ddot{x}_{1},
$$

we obtain

$$
\left\{-m_{1}\left(g+\ddot{x}_{1}\right)+m_{2}\left(g-\frac{r_{2}}{r_{1}} \ddot{x}_{1}\right) \frac{r_{2}}{r_{1}}+\frac{r_{2} M_{0}}{r_{1}^{2}}-\frac{\Theta_{A}}{r_{1}^{2}} \ddot{x}_{1}-\frac{r_{2}^{2} \Theta_{B}}{r_{1}^{4}} \ddot{x}_{1}\right\} \delta x_{1}=0 .
$$

Since $\delta x_{2} \neq 0$, the expression in the curly bracket must vanish. Thus, the acceleration of block (1) is

$$
\ddot{x}_{1}=g \frac{1-\frac{m_{2} r_{2}}{m_{1} r_{1}}-\frac{r_{2} M_{0}}{r_{1^{2}} m_{1} g}}{1+\frac{m_{2}}{m_{1}}\left(\frac{r_{2}}{r_{1}}\right)^{2}+\frac{\Theta_{A}}{m_{1} r_{1}^{2}}+\frac{r_{2}^{2} \Theta_{B}}{m_{1} r_{1}^{4}}} .
$$

P9.5 Problem 9.5 The displayed system shows a lever (weight $m_{1} g$, moment of inertia Θ_{D}), pivoted at D. Attached at the lever ends are a turnable wheel (2), rolling along the rigid half-circular cylinder (1), and a counterweight $W_{3}=m_{3} g$.
Determine the eigenfrequency for small displacements φ.

Solution We will derive the equation of motion by applying two different approaches. First we use d'Alembert's principle. For this purpose, in addition to the external forces, all inertial forces and pseudo moments are drawn into the free-body diagram in the displaced position. The virtual work of all forces and moments must vanish (notice, $\sin \varphi \approx \varphi$):

$$
\begin{aligned}
& -\Theta_{D} \ddot{\varphi} \delta \varphi-\Theta_{2} \ddot{\varphi}_{2} \delta \varphi_{2}-m_{2}\left(r_{1}+r_{2}\right)^{2} \ddot{\varphi} \delta \varphi-m_{3} l_{3}^{2} \ddot{\varphi} \delta \varphi \\
& -m_{3} g l_{3} \varphi \delta \varphi+m_{1} g\left(\frac{l}{2}-l_{3}\right) \varphi \delta \varphi+m_{2} g\left(r_{1}+r_{2}\right) \varphi \delta \varphi=0
\end{aligned}
$$

Because the wheel rolls, the kinematic relation reads

$$
r_{2} \varphi_{2}=\left(r_{1}+r_{2}\right) \varphi \quad \leadsto\left\{\begin{array}{l}
\ddot{\varphi}_{2}=\left(1+r_{1} / r_{2}\right) \ddot{\varphi} \\
\delta \varphi_{2}=\left(1+r_{1} / r_{2}\right) \delta \varphi
\end{array}\right.
$$

Introducing these quantities and considering $\delta \varphi \neq 0$, we obtain the equation of motion

$$
\begin{aligned}
& {\left[\Theta_{D}+\Theta_{2}\left(1+\frac{r_{1}}{r_{2}}\right)^{2}+m_{2}\left(r_{1}+r_{2}\right)^{2}+m_{3} l_{3}^{2}\right] \ddot{\varphi}} \\
& \quad+\left[m_{3} l_{3}-m_{1}\left(\frac{l}{2}-l_{3}\right)-m_{2}\left(r_{1}+r_{2}\right)\right] g \varphi=0
\end{aligned}
$$

from which the eigenfrequency is directly found as

$$
\omega=\sqrt{\frac{m_{3} l_{3}-m_{1}\left(\frac{l}{2}-l_{3}\right)-m_{2}\left(r_{1}+r_{2}\right)}{\Theta_{D}+\Theta_{2}\left(1+\frac{r_{1}}{r_{2}}\right)^{2}+m_{2}\left(r_{1}+r_{2}\right)^{2}+m_{3} l_{3}^{2}} g} .
$$

In the second approach we apply the LaGRange equations of the 2nd kind. The system is conservative and, by choosing the zero potential at the level of D, we obtain

$$
\begin{aligned}
V & =m_{1} g\left(\frac{l}{2}-l_{3}\right) \cos \varphi+m_{2} g\left(r_{1}+r_{2}\right) \cos \varphi-m_{3} g l_{3} \cos \varphi \\
T & =\frac{1}{2} \Theta_{D} \dot{\varphi}^{2}+\left[\frac{1}{2} m_{2}\left(r_{1}+r_{2}\right)^{2} \dot{\varphi}^{2}+\frac{1}{2} \Theta_{2} \dot{\varphi}_{2}^{2}\right]+\frac{1}{2} l_{3}^{2} m_{3} \dot{\varphi}^{2} \\
L & =T-V
\end{aligned}
$$

With the kinematic relations

$$
r_{2} \varphi_{2}=\left(r_{1}+r_{2}\right) \varphi \quad \leadsto \quad r_{2} \dot{\varphi}_{2}=\left(r_{1}+r_{2}\right) \dot{\varphi}
$$

follow

$$
\begin{aligned}
\frac{\partial L}{\partial \dot{\varphi}} & =\left[\Theta_{D}+m_{2}\left(r_{1}+r_{2}\right)^{2}+\Theta_{2}\left(1+\frac{r_{1}}{r_{2}}\right)^{2}+m_{3} l_{3}^{2}\right] \dot{\varphi} \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right) & =\left[\Theta_{D}+m_{2}\left(r_{1}+r_{2}\right)^{2}+\Theta_{2}\left(1+\frac{r_{1}}{r_{2}}\right)^{2}+m_{3} l_{3}^{2}\right] \ddot{\varphi} \\
\frac{\partial L}{\partial \varphi} & =\left[m_{1}\left(\frac{l}{2}-l_{3}\right)+m_{2}\left(r_{1}+r_{2}\right)-m_{3} l_{3}\right] g \sin \varphi
\end{aligned}
$$

Thus, from

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)-\frac{\partial L}{\partial \varphi}=0
$$

with $\sin \varphi \approx \varphi$ (small displacements) we obtain the already known result for the equation of motion

$$
\begin{aligned}
& {\left[\Theta_{D}+\Theta_{2}\left(1+\frac{r_{1}}{r_{2}}\right)^{2}+m_{2}\left(r_{1}+r_{2}\right)^{2}+m_{3} l_{3}^{2}\right] \ddot{\varphi}} \\
& \quad+\left[m_{3} l_{3}-m_{1}\left(\frac{l}{2}-l_{3}\right)-m_{2}\left(r_{1}+r_{2}\right)\right] g \varphi=0
\end{aligned}
$$

and accordingly for the eigenfrequency. It can be seen that vibrations are only possible if the nominator in the square root is positive, i.e. if

$$
m_{3} l_{3}>m_{1}\left(\frac{l}{2}-l_{3}\right)+m_{2}\left(r_{1}+r_{2}\right)
$$

Remark: The system has only one degree of freedom; its position can uniquely be described by the generalized coordinate φ.

P9.6 Problem 9.6 A pivoted homogeneous bar (mass m) is held by springs and carries an attached point mass $m / 4$.

Determine the equation of motion for small displacements from the equilibrium position by using:
a) the energy conservation law,
b) d'Alembert's principle,
c) the angular momentum theorem.

Solution The motion of the system is a rotation about point A, which appropriately is described by the rotation angle φ. Thereby, assuming small displacements, each spring experiences a length change $2 l \varphi$.
a) The total energy

$$
E=V+T=2 \frac{1}{2} k(2 l \varphi)^{2}+\frac{1}{2} \Theta_{A} \dot{\varphi}^{2}
$$

of the conservative system must be constant at all times. This leads to

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=0 \quad \leadsto \quad 2 k(2 l \varphi) 2 l \dot{\varphi}+\Theta_{A} \dot{\varphi} \ddot{\varphi}=0 \quad \leadsto \quad \underline{\underline{\Theta_{A} \ddot{\varphi}+8 k l^{2} \varphi=0}}
$$

b) When applying d'Alembert's principle $\delta U+\delta U_{I}=0$, the work of the pseudo moment $\Theta_{A} \ddot{\varphi}$ (opposite to the positive direction of motion) must
 be taken into account:

$$
-\Theta_{A} \ddot{\varphi} \delta \varphi-2 l 2 k(2 l \varphi) \delta \varphi=0 \quad \leadsto \quad \underline{\underline{\Theta_{A} \ddot{\varphi}+8 k l^{2} \varphi=0}} .
$$

c) Application of the angular momentum theorem with respect to the fixed point A directly yields

$$
\begin{aligned}
\AA A: & \Theta_{A} \ddot{\varphi}=-2 l 2 k(2 l \varphi) \\
& \leadsto \underline{\underline{\Theta_{A} \ddot{\varphi}+8 k l^{2} \varphi=0}} .
\end{aligned}
$$

The results are (as expected) in all cases the same. With

$$
\Theta_{A}=\frac{1}{3}\left(\frac{2}{3} m\right)(2 l)^{2}+\frac{1}{3}\left(\frac{1}{3} m\right) l^{2}+\frac{1}{4} m l^{2}=\frac{5}{4} m l^{2}
$$

the equation of motion can also be written as

$$
\ddot{\varphi}+\frac{32 k}{5 m} \varphi=0 .
$$

Problem 9.7 A symmetric disk with a halfcircular boundary rolls without slip on the flat surface.

Derive the equation of motion using the Lagrange formalism.
Given: $R, c=\kappa R, m, \Theta_{C}=\alpha m R^{2}$

Solution The system is conservative and has one degree of freedom. To describe the motion we choose as generalized coordinate the angle φ. Then, with the kinematic relations

$$
\begin{aligned}
& x_{c}=-R \varphi+c \sin \varphi=-R(\varphi-\kappa \sin \varphi) \\
& \dot{x}_{c}=-R \dot{\varphi}+c \dot{\varphi} \cos \varphi=-R \dot{\varphi}(1-\kappa \cos \varphi) \\
& y_{c}=c \cos \varphi=\kappa R \cos \varphi \\
& \dot{y}_{c}=-c \dot{\varphi} \sin \varphi=-\kappa R \dot{\varphi} \sin \varphi
\end{aligned}
$$

we can formulate the energies, the Lagrangean and the required derivatives:

$$
\begin{aligned}
V= & -m g y_{c}=-m g \kappa R \cos \varphi \\
T= & \frac{1}{2} m\left(\dot{x}_{c}^{2}+\dot{y}_{c}^{2}\right)+\frac{1}{2} \Theta_{c} \dot{\varphi}^{2}=\frac{1}{2} m R^{2} \dot{\varphi}^{2}\left[(1-\kappa \cos \varphi)^{2}\right. \\
& \left.+(\kappa \sin \varphi)^{2}+\alpha\right]=\frac{1}{2} m R^{2} \dot{\varphi}^{2}\left(1-2 \kappa \cos \varphi+\kappa^{2}+\alpha\right) \\
L= & T-V=\frac{1}{2} m R\left[R \dot{\varphi}^{2}\left(1-2 \kappa \cos \varphi+\kappa^{2}+\alpha\right)+2 g \kappa \cos \varphi\right] \\
\frac{\partial L}{\partial \dot{\varphi}}= & \frac{1}{2} m R\left[2 R \dot{\varphi}\left(1-2 \kappa \cos \varphi+\kappa^{2}+\alpha\right)\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)= & \frac{1}{2} m R\left[2 R \ddot{\varphi}\left(1-2 \kappa \cos \varphi+\kappa^{2}+\alpha\right)+4 \kappa R \dot{\varphi}^{2} \sin \varphi\right] \\
\frac{\partial L}{\partial \varphi}= & m R\left[\kappa R \dot{\varphi}^{2} \sin \varphi-\kappa g \sin \varphi\right]
\end{aligned}
$$

Substituting these expressions into

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)-\frac{\partial L}{\partial \varphi}=0
$$

yields the equation of motion

$$
\underline{\ddot{\varphi}\left(1-2 \kappa \cos \varphi+\kappa^{2}+\alpha\right)+\kappa \dot{\varphi}^{2} \sin \varphi+\kappa \frac{g}{R} \sin \varphi=0 .}
$$

P9.8 Problem 9.8 A homogeneous bar (mass m, length l) is attached to a thread of length $l / 2$, which is pinned at point A. The mass of the thread is negligible.

Derive the equations of motion using the Lagrange formalism.

Solution The system is conservative and has two degrees of freedom. As generalized coordinates we choose φ_{1} and φ_{2} and assume the zero level of the potential at the height of A. With

$$
\begin{aligned}
& x_{c}=(l / 2)\left(\sin \varphi_{1}+\sin \varphi_{2}\right), \\
& y_{c}=(l / 2)\left(\cos \varphi_{1}+\cos \varphi_{2}\right), \\
& \dot{x}_{c}=(l / 2)\left(\dot{\varphi}_{1} \cos \varphi_{1}+\dot{\varphi}_{2} \cos \varphi_{2}\right), \quad \dot{y}_{c}=(l / 2)\left(\dot{\varphi}_{1} \sin \varphi_{1}-\dot{\varphi}_{2} \sin \varphi_{2}\right)
\end{aligned}
$$

and $\Theta_{C}=m l^{2} / 12$ follow the required energies

$$
\begin{aligned}
V & =-m g \frac{l}{2}\left(\cos \varphi_{1}+\cos \varphi_{2}\right) \\
T & =\frac{1}{2} m\left(\dot{x}_{c}^{2}+\dot{y}_{c}^{2}\right)+\frac{1}{2} \Theta_{C} \dot{\varphi}_{2}^{2} \\
& =\frac{1}{8} m l^{2}\left[\dot{\varphi}_{1}^{2}+\dot{\varphi}_{2}^{2}+2 \dot{\varphi}_{1} \dot{\varphi}_{2} \cos \left(\varphi_{1}+\varphi_{2}\right)\right]+\frac{1}{24} m l^{2} \dot{\varphi}_{2}^{2}
\end{aligned}
$$

for the Lagrangean $L=T-V$. Introducing the derivatives

$$
\begin{aligned}
& \frac{\partial L}{\partial \varphi_{1}}=-\frac{m l^{2}}{4} \dot{\varphi}_{1} \dot{\varphi}_{2} \sin \left(\varphi_{1}+\varphi_{2}\right)-\frac{1}{2} m g l \sin \varphi_{1} \\
& \frac{\partial L}{\partial \varphi_{2}}=-\frac{m l^{2}}{4} \dot{\varphi}_{1} \dot{\varphi}_{2} \sin \left(\varphi_{1}+\varphi_{2}\right)-\frac{1}{2} m g l \sin \varphi_{2} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}_{1}}\right)=\frac{m l^{2}}{4}\left[\ddot{\varphi}_{1}+\ddot{\varphi}_{2} \cos \left(\varphi_{1}+\varphi_{2}\right)-\dot{\varphi}_{2}\left(\dot{\varphi}_{1}+\dot{\varphi}_{2}\right) \sin \left(\varphi_{1}+\varphi_{2}\right)\right] \\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}_{2}}\right)=\frac{m l^{2}}{12}\left[4 \ddot{\varphi}_{2}+3 \ddot{\varphi}_{1} \cos \left(\varphi_{1}+\varphi_{2}\right)-3 \dot{\varphi}_{1}\left(\dot{\varphi}_{1}+\dot{\varphi}_{2}\right) \sin \left(\varphi_{1}+\varphi_{2}\right)\right]
\end{aligned}
$$

into the Lagrange equations

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}_{1}}\right)-\frac{\partial L}{\partial \varphi_{1}}=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}_{2}}\right)-\frac{\partial L}{\partial \varphi_{2}}=0
$$

yields the coupled equations of motion

$$
\ddot{\varphi}_{1}+\ddot{\varphi}_{2} \cos \left(\varphi_{1}+\varphi_{2}\right)-\dot{\varphi}_{2}^{2} \sin \left(\varphi_{1}+\varphi_{2}\right)+2(g / l) \sin \varphi_{1}=0
$$

$$
\underline{\underline{4 \ddot{\varphi}_{2}+3 \ddot{\varphi}_{1} \cos \left(\varphi_{1}+\varphi_{2}\right)-3 \dot{\varphi}_{1}^{2} \sin \left(\varphi_{1}+\varphi_{2}\right)+6(g / l) \sin \varphi_{2}}=0} .
$$

Problem 9.9 A simple pendulum is attached to point 0 of a disk which rotates with constant angular velocity Ω about the vertical axis.

Derive the equation of motion using the Lagrange formalism. Disregard the weight of the point mass.

Solution The system is conservative. Since the weight is neglected $(V=0)$, only the kinetic T energy is needed in the Lagrangean. To describe the motion, we introduce the angle $\psi=\Omega t$, prescribed by the rotating disk, and the angle φ relative to the disk. With

$$
\begin{aligned}
& x=r \cos \psi+l \cos (\psi+\varphi) \\
& y=r \sin \psi+l \sin (\psi+\varphi) \\
& \dot{x}=-r \Omega \sin \psi-l(\Omega+\dot{\varphi}) \sin (\psi+\varphi), \\
& \dot{y}=r \Omega \cos \psi+l(\Omega+\dot{\varphi}) \cos (\psi+\varphi) \\
& \dot{x}^{2}+\dot{y}^{2}=r^{2} \Omega^{2}+l^{2}(\Omega+\dot{\varphi})^{2}+2 r l \Omega(\Omega+\dot{\varphi}) \cos \varphi
\end{aligned}
$$

follows

$$
L=T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m\left[r^{2} \Omega^{2}+l^{2}(\Omega+\dot{\varphi})^{2}+2 r l \Omega(\Omega+\dot{\varphi}) \cos \varphi\right] .
$$

Introducing the derivatives

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{\varphi}}=\frac{m}{2}\left(2 l^{2} \Omega+2 l^{2} \dot{\varphi}+2 r l \Omega \cos \varphi\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)=\frac{m}{2}\left(2 l^{2} \ddot{\varphi}-2 r l \Omega \dot{\varphi} \sin \varphi\right), \quad \frac{\partial L}{\partial \varphi}=-\frac{m}{2} 2 r l \Omega(\Omega+\dot{\varphi}) \sin \varphi
\end{aligned}
$$

into the Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)-\frac{\partial L}{\partial \varphi}=0
$$

leads to the equation of motion

$$
\underline{\underline{\varphi}+\frac{r}{l} \Omega^{2} \sin \varphi=0 .}
$$

Remark: For small angles $(\sin \varphi \approx \varphi)$ this equation describes harmonic vibrations with $\omega=\Omega \sqrt{r / l}$ (see also Problem 8.9).

P9.10 Problem 9.10 A homogeneous bar (length $2 a$, weight $W=m g$) is suspended to the support A, which can move horizontally and is held by a spring (spring constant k).

Find the equations of motion using the Langrange formalism.

Solution The system is conservative and has two degrees of freedom. As generalized coordinates we choose the displacement w and angle φ, both measured from the equilibrium position. With

$$
\begin{aligned}
& x_{C}=w+a \sin \varphi, \quad y_{C}=a \cos \varphi \\
& \dot{x}_{C}=\dot{w}+a \dot{\varphi} \cos \varphi, \quad \dot{y}_{C}=-a \dot{\varphi} \sin \varphi
\end{aligned}
$$

and $\Theta_{C}=m a^{2} / 3$ follow the energies

$$
\begin{aligned}
V & =-m g a \cos \varphi+k w^{2} / 2 \\
T & =(m / 2)\left(x_{C}^{2}+y_{C}^{2}\right)+\left(\Theta_{C} / 2\right) \dot{\varphi}^{2} \\
& =(m / 2)\left(\dot{w}^{2}+a^{2} \dot{\varphi}^{2}+2 a \dot{w} \dot{\varphi} \cos \varphi\right)+\left(m a^{2} / 6\right) \dot{\varphi}^{2} .
\end{aligned}
$$

Herewith, the derivatives of the Lagrangean $L=T-V$ are

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{w}}\right)=m\left(\ddot{w}+a \ddot{\varphi} \cos \varphi-a \dot{\varphi}^{2} \sin \varphi\right), \quad \frac{\partial L}{\partial w}=-k w \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)=m\left(\frac{4}{3} a^{2} \ddot{\varphi}+a \ddot{w} \cos \varphi-a \dot{w} \dot{\varphi} \sin \varphi\right) \\
& \frac{\partial L}{\partial \varphi}=-m(a \dot{w} \dot{\varphi}+a g) \sin \varphi
\end{aligned}
$$

and the Lagrange equations

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{w}}\right)-\frac{\partial L}{\partial w}=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)-\frac{\partial L}{\partial \varphi}=0
$$

yield the coupled equations of motion

$$
\frac{\ddot{w}+a \ddot{\varphi} \cos \varphi-a \dot{\varphi}^{2} \sin \varphi+\frac{k}{m} w=0}{\underline{\underline{4} a \ddot{\varphi}+\ddot{w} \cos \varphi+g \sin \varphi=0}}
$$

Problem 9.11 The double pendulum consists of 4 bars of equal length l and mass m. The spring is unstrained in the vertical position of the hanging bars.
a) Determine the equations of motion by using the Lagrange equations.
b) Linearize the equations for small amplitudes.

P9.11

$$
\begin{array}{ll}
x_{1}=l \sin \alpha, & x_{2}=l\left(\sin \alpha+\frac{1}{2}+\frac{1}{2} \sin \beta\right), \\
\dot{x}_{1}=l \dot{\alpha} \cos \alpha, & \dot{x}_{2}=l\left(\dot{\alpha} \cos \alpha+\frac{1}{2} \dot{\beta} \cos \beta\right), \\
y_{1}=l \cos \alpha, & y_{2}=l\left(\cos \alpha+\frac{1}{2} \cos \beta\right), \\
\dot{y}_{1}=-l \dot{\alpha} \sin \alpha, & \dot{y}_{2}=-l\left(\dot{\alpha} \sin \alpha+\frac{1}{2} \dot{\beta} \sin \beta\right), \\
v_{1}^{2}=\dot{x}_{1}^{2}+\dot{y}_{1}^{2}=l^{2} \dot{\alpha}^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=l^{2} \dot{\alpha}^{2}, \\
v_{2}^{2}=\dot{x}_{2}^{2}+\dot{y}_{2}^{2}=l^{2}\left(\dot{\alpha}^{2} \cos ^{2} \alpha+\dot{\alpha} \dot{\beta} \cos \alpha \cos \beta+\frac{1}{4} \dot{\beta}^{2} \cos ^{2} \beta\right. \\
& \left.\quad+\dot{\alpha}^{2} \sin ^{2} \alpha+\dot{\alpha} \dot{\beta} \sin \alpha \sin \beta+\frac{1}{4} \dot{\beta}^{2} \sin ^{2} \beta\right) \\
= & l^{2}\left[\dot{\alpha}^{2}+\dot{\alpha} \dot{\beta} \cos (\alpha-\beta)+\frac{1}{4} \dot{\beta}^{2}\right] \\
\Delta=\sqrt{(l \sin \alpha+l)^{2}+l^{2} \cos ^{2} \alpha}-l \sqrt{2}=l \sqrt{2}(\sqrt{1+\sin \alpha}-1), \\
\Delta^{2}=2 l^{2}(2+\sin \alpha-2 \sqrt{1+\sin \alpha}) .
\end{array}
$$

Herewith, the potential energy is obtained as

$$
\begin{aligned}
V & =-2 m g \frac{y_{1}}{2}-m g y_{1}-m g y_{2}+\frac{1}{2} k \Delta^{2} \\
& =-m g l\left(3 \cos \alpha+\frac{1}{2} \cos \beta\right)+k l^{2}(2+\sin \alpha-2 \sqrt{1+\sin \alpha}) .
\end{aligned}
$$

When determining the kinetic energy, we consider that the motion of the upper bars is a pure rotation (angular velocity $\dot{\alpha}$) about the pins, the motion of the horizontal bar is a pure translation (velocity v_{1}) and the
motion of the lower bar is a combination of translation (velocity v_{2}) plus rotation (angular velocity $\dot{\beta}$). With the moment of inertia $\Theta_{1}=m l^{2} / 3$ of an upper bar with respect to the pin and the moment of inertia $\Theta_{2}=m l^{2} / 12$ of the lower bar with respect to its center of mass (2), it follows

$$
\begin{aligned}
T & =2 \frac{1}{2} \Theta_{1} \dot{\alpha}^{2}+\frac{1}{2} m v_{1}^{2}+\left(\frac{1}{2} m v_{2}^{2}+\frac{1}{2} \Theta_{2} \dot{\beta}^{2}\right) \\
& =m l^{2}\left[\frac{4}{3} \dot{\alpha}^{2}+\frac{1}{6} \dot{\beta}^{2}+\frac{1}{2} \dot{\alpha} \dot{\beta} \cos (\alpha-\beta)\right] .
\end{aligned}
$$

With $L=T-V$ and the derivatives

$$
\begin{aligned}
& \frac{\partial L}{\partial \alpha}=-\frac{m l^{2}}{2} \dot{\alpha} \dot{\beta} \sin (\alpha-\beta)-3 m g l \sin \alpha-k l^{2} \cos \alpha\left(1-\frac{1}{\sqrt{1+\sin \alpha}}\right) \\
& \frac{\partial L}{\partial \beta}=\frac{m l^{2}}{2} \dot{\alpha} \dot{\beta} \sin (\alpha-\beta)-\frac{1}{2} m g l \sin \beta \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\alpha}}\right)=m l^{2}\left[\frac{8}{3} \ddot{\alpha}+\frac{1}{2} \ddot{\beta} \cos (\alpha-\beta)-\frac{1}{2} \dot{\beta}(\dot{\alpha}-\dot{\beta}) \sin (\alpha-\beta)\right] \\
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\beta}}\right)=m l^{2}\left[\frac{1}{6} \ddot{\beta}+\frac{1}{2} \ddot{\alpha} \cos (\alpha-\beta)-\frac{1}{2} \dot{\alpha}(\dot{\alpha}-\dot{\beta}) \sin (\alpha-\beta)\right]
\end{aligned}
$$

we obtain from the LAGRANGE equations

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\alpha}}\right)-\frac{\partial L}{\partial \alpha}=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\beta}}\right)-\frac{\partial L}{\partial \beta}=0
$$

the equations of motion:
$\underline{\frac{\frac{8}{3}}{3}+\frac{1}{2} \ddot{\beta} \cos (\alpha-\beta)+\frac{1}{2} \dot{\beta}^{2} \sin (\alpha-\beta)+3 \frac{g}{l} \sin \alpha+\frac{k}{m} \cos \alpha\left(1-\frac{1}{\sqrt{1+\sin \alpha}}\right)=0,}$
$\frac{1}{6} \ddot{\beta}+\frac{1}{2} \ddot{\alpha} \cos (\alpha-\beta)-\frac{1}{2} \dot{\alpha}^{2} \sin (\alpha-\beta)+\frac{1}{2} \frac{g}{l} \sin \beta=0$.
b) For small amplitudes $\alpha \ll 1, \beta \ll 1$ and $\dot{\alpha} \ll 1, \dot{\beta} \ll 1$ the following linearizations apply:

$$
\begin{aligned}
& \sin \alpha \approx \alpha, \quad \cos \alpha \approx 1, \quad \sin (\alpha-\beta) \approx(\alpha-\beta), \quad \cos (\alpha-\beta) \approx 1 \\
& \frac{1}{\sqrt{1+\sin \alpha}} \approx \frac{1}{\sqrt{1+\alpha}} \approx 1-\alpha, \quad \dot{\beta}^{2} \sin (\alpha-\beta) \approx 0, \quad \dot{\alpha}^{2} \sin (\alpha-\beta) \approx 0
\end{aligned}
$$

Herewith, the equations of motion simplify to

$$
\xlongequal[\underline{\ddot{\alpha}+\frac{3}{16} \ddot{\beta}+\left(\frac{9 g}{8 l}+\frac{3 k}{8 m}\right) \alpha=0}, \quad \underline{\bar{\beta}+3 \ddot{\alpha}+3 \frac{g}{l} \beta=0 .}]{\underline{\underline{\ddot{\alpha}}} .}
$$

Chapter 10
Hydrodynamics

The velocity field $\boldsymbol{v}(\boldsymbol{x}(t), t)$ describes the motion of a fluid. The vector \boldsymbol{x} assignes to each location in the fluid a velocity \boldsymbol{v} at time t.
The velocity field is stationary for $\partial \boldsymbol{v} / \partial t=0$, otherwise instationary.

Pathline: trajectory that a material point of the fluid (fluid element) follows over a time period. The pathline $\boldsymbol{x}(t)$ yields from the solution of the differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}(t)=\boldsymbol{v}(\boldsymbol{x}(t), t) .
$$

Streamlines: family of curves whose tangents coincide in each point \boldsymbol{x} with the direction of the local velocity vector. The streamline field follows from the differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \boldsymbol{x}(s)=\boldsymbol{v}(\boldsymbol{x}(s), t),
$$

where s is the arclength of the streamline.
Notice: pathlines and streamlines are identical for a stationary velocity field.

Stream Filament Theory: In what follows we restrict ourselves to the stationary motion of an incompressible fluid in a streamtube, where the flow behavior is characterized by the behavior at a median streamline. This one-dimensional theory is described by the following basic equations:

a) Continuity equation

$$
A_{1} v_{1}=A_{2} v_{2} \quad \text { or } \quad Q=A v=\mathrm{const}
$$

where $Q=A v$ is the volume flow.

b) BERNOULLI's theorem

For an inviscid fluid holds

$$
\frac{1}{2} \varrho v^{2}+\varrho g z+p=\mathrm{const} \quad \text { or } \quad \frac{v^{2}}{2 g}+z+\frac{p}{\varrho g}=H=\text { const } .
$$

where
$\varrho v^{2} / 2=$ dynamic pressure (specific kinetic energy),
$\varrho g z=$ geodetic pressure (specific potential energy),
$p=$ static pressure (pressure energy),
$H=$ hydraulic (total) head,
$v^{2} / 2 g=$ velocity head,
$z=$ elevation head,
$p / \varrho g=$ pressure head.
Example: outflow from a reservoir:

$$
\frac{1}{2} \varrho v_{1}^{2}+\varrho g z_{1}+p_{0}=\frac{1}{2} \varrho v_{2}^{2}+\varrho g z_{2}+p_{0} .
$$

In the special case $v_{1}=0(h=$ const $)$ follows TORRICELLI's law (outflow from big fluid tanks).

$$
v_{2}=\sqrt{2 g h}
$$

For viscous fluids (flow with energy losses) the generalized BERNOULLI's theorem

$$
\frac{1}{2} \varrho v_{1}^{2}+\varrho g z_{1}+p_{1}=\frac{1}{2} \varrho v_{2}^{2}+\varrho g z_{2}+p_{2}+\Delta p_{v}
$$

is valid, where
$\Delta p_{v}=\zeta \frac{1}{2} \varrho v_{1}^{2}=$ pressure loss,$\quad \zeta=$ pressure loss coefficient.

$$
\text { c) Balance of Momentum } \begin{array}{ll}
F_{x}=\dot{m}\left(v_{2 x}-v_{1 x}\right) \\
\boldsymbol{F}=\varrho Q\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right) \quad \text { or } \quad & F_{y}=\dot{m}\left(v_{2 y}-v_{1 y}\right) \\
& F_{z}=\dot{m}\left(v_{2 z}-v_{1 z}\right)
\end{array}
$$

where
$\boldsymbol{F}=$ resulting force exerted on the closed fluid volume within the streamtube (control volume),
$\varrho Q=\dot{m}=$ mass flow,
$\varrho Q \boldsymbol{v}_{1}=$ inflowing momentum,
$\varrho Q \boldsymbol{v}_{2}=$ outflowing momentum.

P10.1 Problem 10.1 A flow is described by the plane velocity field

$$
\boldsymbol{v}(\boldsymbol{x}, t)=2 a x \boldsymbol{e}_{x}-2 a y \boldsymbol{e}_{y}
$$

Determine the equation for the streamlines and sketch the profile for the specific streamline through the point A with coordinates $x=0.5 \mathrm{~m} ; y=$ 4 m .

Solution The differential equation for the streamlines reads in components

$$
\frac{\mathrm{d} x}{\mathrm{~d} s}=v_{x}=2 a x, \quad \frac{\mathrm{~d} y}{\mathrm{~d} s}=v_{y}=-2 a y
$$

Dividing the $1^{\text {st }}$ by the $2^{\text {nd }}$ equation yields

$$
\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{v_{x}}{v_{y}}=-\frac{x}{y}
$$

and by separation of variables it follows

$$
\frac{\mathrm{d} x}{x}+\frac{\mathrm{d} y}{y}=0
$$

Integration leads to

$$
\ln x+\ln y=\ln x y=C=: \ln c \quad \leadsto \quad \ln x y=\ln c .
$$

Accordingly, the streamlines are given by the hyperbola

$$
\underline{\underline{y=\frac{c}{x}}} .
$$

For a streamline through point A, the integration constant c is calculated with the given data as

$$
c=0.5 \mathrm{~m} \cdot 4 \mathrm{~m}=2 \mathrm{~m}^{2} .
$$

Having c, the profile of the streamline can be sketched.

Remarks:

- For $x \rightarrow \infty$, the y-component of the velocity vector vanishes: $\boldsymbol{v} \rightarrow 2 a x \boldsymbol{e}_{x}$.
- Because the flow is stationary $(\partial v / \partial t=0)$, the streamlines and the pathlines coincide.

Problem 10.2 A planar flow is described by the velocity field

$$
\boldsymbol{v}(\boldsymbol{x}, t)=a x \boldsymbol{e}_{x}+b \mathrm{e}^{-t} \boldsymbol{e}_{y}
$$

where a and b are given constants.
a) Determine the pathline of the particle, which at time $t=0$ is at point $P=(1,1)$.
b) Determine the streamline, which at time $t=0$ passes the point $P=(1,1)$.

Solution Because the flow is instationary, the pathlines and streamlines do not coincide!
a) The components of the pathline are determined from

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=a x \quad \leadsto \int \frac{\mathrm{~d} x}{x}=\int a \mathrm{~d} t \quad \leadsto \quad \ln \frac{x}{C_{1}}=a t \quad \leadsto \quad x=C_{1} \mathrm{e}^{a t} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=b \mathrm{e}^{-t} \quad \leadsto y=-b \mathrm{e}^{-t}+C_{2}
\end{aligned}
$$

With the initial conditions $x(t=0)=1, y(t=0)=1$, we obtain

$$
\underline{\underline{x(t)}=\mathrm{e}^{a t}}, \quad \underline{\underline{y(t)}=b\left(1-\mathrm{e}^{-t}\right)+1} .
$$

b) For $t=0$, the differential equations of the streamlines are given by

$$
\frac{\mathrm{d} x}{\mathrm{~d} s}=a x, \quad \frac{\mathrm{~d} y}{\mathrm{~d} s}=b \quad \leadsto \quad \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{a}{b} x .
$$

Separation of variables and integration lead to

$$
\frac{b}{a} \int \frac{\mathrm{~d} x}{x}=\int \mathrm{d} y \quad \leadsto \quad y=\frac{b}{a} \ln x+C_{3} .
$$

The boundary condition yields

$$
y(x=1)=1 \quad \sim \quad C_{3}=1,
$$

and thus, it follows

$$
\underline{\underline{y(x)}=\frac{b}{a} \ln x+1 .}
$$

Remark: From the parameter representation of the pathline in a), by eliminating $t\left(t=\frac{1}{a} \ln x\right)$, we can obtain the representation $y(x)=$ $b\left(1-x^{-1 / a}\right)$.

P10.3 Problem 10.3 The velocity field of a planar, instationary flow is described by

$$
\boldsymbol{v}(x, y, t)=a x y \boldsymbol{e}_{x}+b t \boldsymbol{e}_{y}
$$

where a, b are given constants. As initial conditions, $x=x_{0}, y=y_{0}$ at $t=0$ are prescribed.
a) Determine the pathlines and streamlines.
b) Where has a fluid particle been at time $t=0$, which was detected at time $t_{1}=1 \mathrm{~s}$ at point $\left(x_{1}, y_{1}\right)=(1,0) \mathrm{m}$?

Solution a) The pathlines are determined from

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=b t
$$

With $y(t=0)=y_{0}$ the second equation yields

$$
\underline{y(t)=y_{0}+\frac{1}{2} b t^{2}} .
$$

Introducing the result into the first equation, after separation of variables, integration and using $x(t=0)=x_{0}$ we obtain

$$
\frac{\mathrm{d} x}{x}=a\left(y_{0}+\frac{1}{2} b t^{2}\right) \mathrm{d} t \quad \leadsto \quad \underline{\underline{x(t)}=x_{0} \mathrm{e}^{a\left(y_{0} t+b t^{3} / 6\right)}}
$$

The streamlines are calculated from

$$
\frac{\mathrm{d} x}{\mathrm{~d} s}=a x y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} s}=b t
$$

The second equation in conjunction with $y(s=0)=y_{0}$ yields

$$
\underline{\underline{y(s)=b t s+y_{0}}} .
$$

Again, introducing the result into the first equation, applying separation of variables and using $x(s=0)=x_{0}$ leads to

$$
\frac{\mathrm{d} x}{x}=a\left(b t s+y_{0}\right) \mathrm{d} s \quad \leadsto \quad \underline{\underline{x(s)}=x_{0} \mathrm{e}^{a\left(y_{0} s+b t^{2} / 2\right)}}
$$

b) Introducing the conditions $x=x_{1}=1 \mathrm{~m}, y=y_{1}=0$ for $t=1 \mathrm{~s}$ into the pathline yields

$$
\underline{\underline{y_{0}=-b / 2}}, \quad \underline{\underline{x_{0}=\mathrm{e}^{a b / 3}}}
$$

Problem 10.4 From a big reservoir water is taken via a pipe. To increase the mass flow Q, a diffuser is attached at the end of the pipe. Because cavitation danger is to be avoided, the pressure must not drop below $p_{\text {min }}$ at any location of the pipe.
a) Determine the maximum allowable diffuser cross-section $A_{D_{\max }}$.
b) Calculate the temporal mass flow Q for this case.
c) Determine the height h^{*}, the highest point of the pipe can be lifted, if the diffuser is not present.

Solution a) Considering $v_{0}=0$ (big reservoir) and applying BERNOULLI's theorem for the points (0) and (1) as well as for (0) and (2) of a streamline, the corresponding velocities can be determined:

$$
\begin{array}{lll}
\frac{1}{2} \varrho v_{0}^{2}+p_{0}+\varrho g h=\frac{1}{2} \varrho v_{1}^{2}+p_{1}+\varrho g h & \leadsto & v_{1}=\sqrt{\frac{2}{\varrho}\left(p_{0}-p_{1}\right)}, \\
\frac{1}{2} \varrho v_{0}^{2}+p_{0}+\varrho g h=\frac{1}{2} \varrho v_{2}^{2}+p_{0} & \leadsto & v_{2}=\sqrt{2 g h} .
\end{array}
$$

Herewith follows from the continuity equation the cross section of the diffuser:

$$
A_{D} v_{2}=A v_{1} \quad \leadsto \quad A_{D}=A \frac{v_{1}}{v_{2}}=A \sqrt{\frac{p_{0}-p_{1}}{\varrho g h}} .
$$

It is a maximum, when we insert for p_{1} the minimum allowable pressure $p_{\text {min }}$:

$$
\underline{A_{D_{\max }}=A \sqrt{\frac{p_{0}-p_{\min }}{\varrho g h}}} .
$$

b) The temporal mass flow Q in this case is gicen by

$$
\underline{\underline{Q}}=v_{2} A_{D}=\underline{\underline{\sqrt{2 g h}} A_{D_{\max }}}
$$

c) In the same way as in a) we obtain for a streamline between (0) and (1) as well as between (0) and (2) after lifting point (1) to the height h^{*}

$$
p_{0}+\varrho g h=\frac{1}{2} \varrho v_{1}^{2}+p_{\min }+\varrho g h^{*}, \quad v_{2}=\sqrt{2 g h} .
$$

With $A_{D}=A$, the continuity equation yields $v_{1}=v_{2}$. By introducing this and solving for h^{*} we obtain

$$
\xlongequal{h^{*}=\frac{p_{0}-p_{\min }}{\varrho g}} .
$$

P10.5 Problem 10.5 The lower trapezoidal tank (constant depth f) is filled via a pipe (cross section A_{p}) from a big reservoir located above.
a) Determine the maximum height $a=a_{\text {max }}$, the pipe may protrude the fluid level of the reservoir, such that the pressure in the pipe does not drop below p_{D}.
b) When is the height $h(t)=H / 2$ reached in the lower tank?
c) When $h(t)=H / 2$ is reached, the valve of the lower tank is opened. Determine the cross section A_{V} of the valve, such that the fluid level keeps constant.

Solution a) According to Torricelli's law (big reservoir), the velocity at point (3) is given by

$$
v_{3}=\sqrt{2 g H}
$$

Thus, from the continuity equation follows at point (2)

$$
A_{p} v_{2}=A_{p} v_{3} \quad \leadsto \quad v_{2}=v_{3}=\sqrt{2 g H}
$$

Using Bernoulli's theorem for a streamline between the points (1) and (2)

$$
p_{0}+0+0=p_{D}+\varrho g a_{\max }+\frac{1}{2} \varrho v_{2}^{2},
$$

and introducing v_{2}, the maximum height $a_{\max }$ can be determined:

$$
\underline{\underline{a_{\max }}}=\frac{1}{\varrho g}\left[p_{0}-p_{D}-\frac{1}{2} \varrho(2 g H)\right]=\underline{\underline{\frac{p_{0}-p_{D}}{\varrho g}-H} .}
$$

b) The relation between the filling height h and time t follows from the continuity equation between point (3) and point (4)

$$
A_{R} v_{3}=A(h) v_{4}
$$

in conjunction with the rise velocity of the fluid

$$
v_{4}=\frac{\mathrm{d} h}{\mathrm{~d} t}
$$

and the cross section of the tank

$$
A(h)=(e+2 h \tan \alpha) f
$$

as

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{A_{p}}{A(h)} v_{3} .
$$

Separation of variables and integration leads to

$$
\int_{t_{0}=0}^{t} A_{p} \sqrt{2 g H} \mathrm{~d} t=\int_{h_{0}=0}^{h}(e+2 h \tan \alpha) f \mathrm{~d} h
$$

This yields

$$
A_{p} \sqrt{2 g H} t=\left(e h+h^{2} \tan \alpha\right) f
$$

From this result the required time t_{r}, to reach the filling height $H / 2$, is found by introducing $h=H / 2$:

$$
\underline{\underline{t_{r}}=\left(e \frac{H}{2}+\frac{H^{2}}{4} \tan \alpha\right) \frac{f}{A_{R} \sqrt{2 g H}}} .
$$

c) From Bernoulli's theorem, applied between the points (4) and (5),

$$
p_{0}+\varrho g \frac{H}{2}+\frac{1}{2} \varrho v_{4}^{2}=p_{0}+0+\frac{1}{2} \varrho v_{5}^{2},
$$

the velocity at the valve can be calculated. It leads with the requirement of a constant fluid level, i.e. $v_{4}=0$, to

$$
v_{5}=\sqrt{g H}
$$

Finally, using the continuity equation

$$
A_{V} v_{5}=A_{p} v_{3},
$$

the cross section of the valve is obtained as

$$
\underline{\underline{A_{V}}=\sqrt{2} A_{p}} .
$$

P10.6 Problem 10.6 From a big reservoir, an ideal fluid (density ϱ) flows out through a pipe (cross section A_{2}) with a local smooth contraction (cross section A_{1}).
a) Determine the pressure p_{1} in the cross section A_{1}.
b) The pipe will now be spot drilled
 at A_{1}. Calculate h_{2}, such that no fluid leaks from the drilled hole.
c) Now a vertical standpipe is connected to the drilled hole, which dips into a lower fluid tank. Find the necessary cross section ratio A_{2} / A_{1}, such that fluid is sucked from the tank.

Solution a) First, from Torricelli's law follows the outflow velocity at the point (2)

$$
v_{2}=\sqrt{2 g h_{2}}
$$

and from that, using the continuity equation, the velocity in the cross section A_{1} :

$$
\begin{aligned}
A_{1} v_{1} & =A_{2} v_{2} \\
& \leadsto v_{1}=\frac{A_{2}}{A_{1}} v_{2}=\frac{A_{2}}{A_{1}} \sqrt{2 g h_{2}} .
\end{aligned}
$$

Introducing v_{1} into BERNOULLI's theorem for a streamline between the points (0) and (1) yields the pressure p_{1} :

$$
\frac{1}{2} \varrho v_{1}^{2}+0+p_{1}=0+\varrho g h_{1}+p_{0} \quad \leadsto \quad \underline{\underline{p_{1}=p_{0}+\varrho g\left[h_{1}-\left(\frac{A_{2}}{A_{1}}\right)^{2} h_{2}\right]} .}
$$

b) No fluid leaks from the drilled hole, if the pressure p_{1} is below the ambient pressure p_{0} :

$$
\begin{aligned}
p_{1}<p_{0} & \leadsto p_{0}+\varrho g\left[h_{1}-\left(\frac{A_{2}}{A_{1}}\right)^{2} h_{2}\right]<p_{0} \\
& \leadsto h_{1}-\left(\frac{A_{2}}{A_{1}}\right)^{2} h_{2}<0
\end{aligned}
$$

This leads to the condition

$$
h_{2}>\left(\frac{A_{1}}{A_{2}}\right)^{2} h_{1} .
$$

c) With the pressures $p_{4}=p_{1}$ and $p_{3}=p_{0}$ at the locations (4) and (3), we obtain from BERNOULLI's theorem for a streamline between the points (4) and (3)

$$
\frac{1}{2} \varrho v_{4}^{2}+\varrho g h_{3}+p_{1}=0+0+p_{0}
$$

Introducing p_{1} and using the condition $v_{4}^{2}>0$ leads to

$$
\begin{aligned}
& p_{0}-p_{1}-\varrho g h_{3}>0 \\
& \leadsto \quad h_{1}-\left(\frac{A_{2}}{A_{1}}\right)^{2} h_{2}+h_{3}<0
\end{aligned}
$$

and finally to

$$
\underline{\underline{A_{2}}} \overline{A_{1}}>\sqrt{\frac{h_{1}+h_{3}}{h_{2}}} .
$$

Remark: At the location (4) of the standpipe prevails the pressure p_{1} but not the velocity v_{1} !

P10.7 Problem 10.7 A tank is filled by a pump through an opening. At the same time, fluid flows out through a leak at the bottom.
a) Which stationary fluid level H will be reached?
b) Determine for this case the loss of volume flow through the leak.

c) Now the pump is shut down and the inflow is closed. How long does it take until the tank is empty?

Solution a) With the Bernoulli theorem applied between the points (0) and (1) as well as (1) and (2),

$$
\begin{aligned}
& \frac{1}{2} \varrho v_{0}^{2}+p_{0}+\varrho g H \\
& \frac{1}{2} \varrho v_{1}^{2}+p_{1}
\end{aligned}
$$

and the continuity equation

$$
A_{1} v_{1}=A_{2} v_{2}
$$

in conjunction with the stationarity condition $v_{0}=0$, we have three equations for the three unknowns v_{1}, v_{2} and H. Solving the equations yields the velocities

$$
v_{1}=v_{2} \frac{A_{2}}{A_{1}}=\sqrt{\frac{2\left(p_{1}-p_{0}\right) A_{2}^{2}}{\varrho\left(A_{1}^{2}-A_{2}^{2}\right)}}
$$

and the stationary fluid height

$$
H=\frac{p_{1}-p_{0}}{\varrho g} \frac{A_{1}^{2}}{A_{1}^{2}-A_{2}^{2}} .
$$

It can be seen that a stationary state is only possible for $A_{2}<A_{1}$.
b) The loss of volume flow Q_{V} is determined by using the continuity equation

$$
Q_{V}=A_{2} v_{2}=A_{1} v_{1}
$$

Introducing v_{1} and v_{2}, respectively, yields

$$
Q_{V}=A_{1} A_{2} \sqrt{\frac{2\left(p_{1}-p_{0}\right)}{\varrho\left(A_{1}^{2}-A_{2}^{2}\right)}} .
$$

Alternatively, the loss of volume flow can be calculated by using $v_{2}=$ $\sqrt{2 g H}$ (Torricelli) and A_{2}.
c) Due to the leak in the tank, the fluid level changes continuously. For the velocity of level decrease we have

$$
v(z)=-\frac{\mathrm{d} z}{\mathrm{~d} t}
$$

where z is the actual fluid level in the tank. Thus, Bernoulli's theorem for a streamline between a point on the fluid surface and point (2) reads

$$
\frac{1}{2} \varrho v(z)^{2}+p_{0}+\varrho g z=\frac{1}{2} \varrho v_{2}^{2}+p_{0} .
$$

Using the continuity equation

$$
A_{0} v(z)=A_{2} v_{2}
$$

we obtain for the decrease velocity of the fluid surface

$$
v(z)=-\frac{\mathrm{d} z}{\mathrm{~d} t}=\sqrt{\frac{2 g z A_{2}^{2}}{A_{0}^{2}-A_{2}^{2}}}
$$

The time T, required to empty the tank, can be determined by separation of variables and integration:

$$
-\int_{H}^{0} \frac{\mathrm{~d} z}{\sqrt{z}}=\sqrt{\frac{2 g A_{2}^{2}}{A_{0}^{2}-A_{2}^{2}}} \int_{0}^{T} \mathrm{~d} t \quad \leadsto \quad \begin{gathered}
T=2 \sqrt{\frac{A_{0}^{2}-A_{2}^{2}}{2 g A_{2}^{2}}} \sqrt{H}
\end{gathered}
$$

Here, for H, the result from a) can finally be introduced:

$$
T=\frac{\sqrt{2}}{g} \sqrt{\frac{p_{1}-p_{0}}{\rho} \frac{A_{1}^{2}\left(A_{0}^{2}-A_{2}^{2}\right)}{A_{2}^{2}\left(A_{1}^{2}-A_{2}^{2}\right)}} .
$$

P10.8 Problem 10.8 From a big reservoir, fluid flows out through a pipe with a smoothly changing cross section.

Determine the fluid levels z_{1} and z_{2} in the standpipes

Solution The outflow velocity at point (3) follows from Torricelli's law as

$$
v_{3}=\sqrt{2 g H}
$$

The pressures at the locations (1) and (2) with the fluid levels z_{1} and z_{2} in the standpipes are given by

$$
p_{1}=p_{0}+\varrho g z_{1}, \quad p_{2}=p_{0}+\varrho g z_{2}
$$

Thus, applying Bernoulli's theorem for a stremline between the points (1) and (3),

$$
\frac{1}{2} \varrho v_{1}^{2}+0+p_{1}=\frac{1}{2} \varrho v_{3}^{2}+0+p_{0}
$$

and using the continuity equation

$$
A_{1} v_{1}=A_{2} v_{3} \quad \leadsto \quad v_{1}=\frac{A_{2}}{A_{1}} v_{3}
$$

we first obtain

$$
p_{1}=p_{0}+\frac{1}{2} \varrho v_{3}^{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right] .
$$

Introducing $v_{3}=\sqrt{2 g H}$ yields the fluid level in the standpipe:

$$
\underline{\underline{z_{1}}=} \frac{p_{1}-p_{0}}{\rho g}=\underline{\underline{H\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right]} . . . ~}
$$

In the same way, the pressure p_{2} is calculated by applying Bernoulli's theorem for a streamline between (2) and (3),

$$
\frac{1}{2} \varrho v_{2}^{2}+0+p_{2}=\frac{1}{2} \varrho v_{3}^{2}+0+p_{0}
$$

and using the continuity equation $v_{2}=v_{3}$. Thus, it follows for the pressure $p_{2}=p_{0}$ and for the fluid level
$\underline{\underline{z_{2}=0}}$.

Problem 10.9 From the drainpipe of a big reservoir, a water-jet hits a pivoted plate of weight W.
Determine
a) the pressure in the pipe (2)(3) as a function of the coordinate z,
b) the angle φ, the plate is rotated, if the jet flows off in plate direction.

Solution a) The cross section of the drainpipe (2)(3) is given by

$$
A(z)=2\left(A_{2}-A_{3}\right) z / h+A_{3}
$$

The continuity equation for an arbitrary point in the range (2)(3) and the point (3) reads $A(z) v(z)=A_{3} v_{3}$. The velocity at point (3) is $v_{3}=v_{4}=$ $\sqrt{3 g h}$. Thus, the velocity in the range (2)(3) follows as

$$
v(z)=\frac{h A_{3}}{2\left(A_{2}-A_{3}\right) z+h A_{3}} \sqrt{3 g h}
$$

Bernoulli's theorem

$$
\frac{1}{2} \varrho v_{A}^{2}+p_{0}+\frac{3}{2} \varrho g h=\frac{1}{2} \varrho v(z)^{2}+p(z)+\varrho g z
$$

between point (1) and a point in the range (2)(3) leads with $v_{A}=0$ (big reservoir) to the pressure in the drainpipe:

$$
\underline{\underline{p(z)}=p_{0}+\frac{3}{2} \varrho g h\left[1-\frac{h^{2}}{(2 z+h)^{2}}\right]-\varrho g z .}
$$

b) Using the sketched control volume, the momentum balance in the direction of the normal force N exerted to the plate yields

$$
\varrho Q\left(0-v_{4} \cos \varphi\right)=-N
$$

With the volume flow $Q=A_{4} v_{4}$ follows

$$
N=\varrho A_{4} v_{4}^{2} \cos \varphi
$$

Finally, from the equilibrium condition

$$
\stackrel{\curvearrowleft}{B}: \quad N \frac{a}{\cos \varphi}-W \frac{b}{2} \sin \varphi=0
$$

the angle φ is determined: $\quad \underline{\underline{\sin \varphi=\frac{6 \varrho g A_{4} a h}{W b}} .}$

P10.10 Problem 10.10 A trapezoidal tank of rectangular cross section $\left(b_{1} \times b / 2\right)$ is filled by a pump via a pipe. The pump produces a constant volume flow Q and the pipe has the cross section $b^{2} / 10$.
a) Determine the rise velocity of the fluid in the tank.
b) Calculate for $z=h / 2$ the
 resulting force exerted on the pipe.

Solution a) With the varying width

$$
b_{1}(z)=\frac{b}{h}(h-z)
$$

of the trapezoidal tank the fluid surface is given by

$$
A_{1}(z)=b_{1}(z) \frac{b}{2}=\frac{b^{2}}{2 h}(h-z)
$$

Thus, due to the constant volume flow Q, the velocity in (1) follows as

$$
\underline{v_{1}(z)=\frac{Q}{A_{1}(z)}=\frac{2 Q h}{b^{2}(h-z)}} .
$$

b) The force exerted by the fluid on the pipe can be determined from the momentum balance. For this purpose, we first calculate for $z=h / 2$ the pressures and velocities at the points (2) and (3) by using Bernoulli's theorem and the continuity equation.
For point (2) follows from Bernoulli's theorem between (1) and (2)

$$
\frac{1}{2} \varrho v_{1}^{2}+p_{0}+\varrho g \frac{h}{2}=\frac{1}{2} \varrho v_{2}^{2}+p_{2}+0
$$

and from the volume flow

$$
Q=v_{2} A_{2}=v_{2} \frac{b^{2}}{10}
$$

follows the velocity

$$
v_{2}=\frac{10 Q}{b^{2}}
$$

Thus, we obtain for the pressure

$$
p_{2}=p_{0}+\varrho g \frac{h}{2}-\varrho \frac{42 Q^{2}}{b^{4}}
$$

From the continuity equation

$$
Q=v_{3} A_{3}=v_{2} A_{2}
$$

between points (2) and (3) follows

$$
v_{3}=v_{2}=\frac{10 Q}{b^{2}}
$$

Thus, Bernoulli's theorem

$$
\frac{v_{3}^{2}}{2 g}+\frac{p_{3}}{\varrho g}+a=\frac{v_{2}^{2}}{2 g}+\frac{p_{2}}{\varrho g}+0
$$

between points (2) and (3) yields the pressure at point (3) as

$$
p_{3}=p_{0}+\varrho g\left(\frac{h}{2}-a\right)-\varrho \frac{42 Q^{2}}{b^{4}} .
$$

As control volume for the balance of momentum, we now choose the fluid within the pipe. It is loaded by its weight, by the pressure forces at (2) and (3) and by the forces R_{x}, R_{y} exerted from the pipe-wall. The opposite forces are exerted from the fluid to the pipe-wall. Thus, the balance of momentum reads in components

$$
\begin{aligned}
& \rightarrow: \quad \varrho Q\left(v_{2}-0\right)=-p_{2} A_{2}+R_{x} \\
& \uparrow: \quad \varrho Q\left(0-\left(-v_{3}\right)\right)=-p_{3} A_{3}+R_{y}-\varrho g V
\end{aligned}
$$

Introducing the pressures and velocities yields with the fluid volume $V=\pi a b^{2} / 20$ in the pipe the force components exerted on the pipe-wall

$$
R_{x}=\frac{b^{2}}{10}\left(p_{0}+\varrho g \frac{h}{2}\right)+\frac{29}{5} \frac{\varrho Q^{2}}{b^{2}},
$$

$$
\underline{\underline{R_{y}}=\frac{b^{2}}{10}\left(p_{0}+\varrho g \frac{h}{2}-\varrho g a\right)+\frac{29}{5} \frac{\varrho Q^{2}}{b^{2}}+\varrho g \frac{\pi a b^{2}}{20}} .
$$

P10.11 Problem 10.11 In a horizontal plane, a fluid jet hits with the velocity v_{0} a wall under the angle α. The jet depth in vertical direction is constant: $h=$ const.
a) Determine the velocities v_{1} and v_{2} of the two off-flowing jets.
b) Calculate the width b_{1} and b_{2} of the off-flowing jets.

c) Determine the normal force exerted on the wall.

Solution a) The velocities v_{1} and v_{2} can be determined from BERNOULLI's theorem applied to streamlines between the points (0) and (1) and between the points (0) and (2):

$$
\begin{aligned}
& \frac{1}{2} \varrho v_{0}^{2}+p_{0}=\frac{1}{2} \varrho v_{1}^{2}+p_{0} \quad \leadsto \quad \underline{\underline{v_{1}=v_{0}}} \\
& \frac{1}{2} \varrho v_{0}^{2}+p_{0}=\frac{1}{2} \varrho v_{2}^{2}+p_{0} \quad \leadsto \quad \underline{\underline{v_{2}=v_{0}}} .
\end{aligned}
$$

b) From the continuity equation follows with v_{1} and v_{2} the relation between the jet-widths:

$$
v_{0} b_{0} h=v_{1} b_{1} h+v_{2} b_{2} h \quad \leadsto \quad b_{0}=b_{1}+b_{2} .
$$

The balance of momentum in wall direction
$\rightarrow: \varrho Q_{2} v_{2}-\varrho Q_{1} v_{1}-\varrho Q_{0} v_{0} \cos \alpha=0$
yields with $Q_{0}=b_{0} h v_{0}, Q_{1}=b_{1} h v_{1}, Q_{2}=b_{2} h v_{2}$

$$
b_{0} \cos \alpha=b_{2}-b_{1}
$$

This provides the jet-widths

$$
\underline{b_{1}=\frac{1}{2} b_{0}(1-\cos \alpha)}, \quad \underline{\underline{b_{2}}=\frac{1}{2} b_{0}(1+\cos \alpha)} .
$$

c) The normal force exerted on the wall is directly obtained from the balance of momentum perpendicular to the wall:

$$
\uparrow: \varrho Q_{0} v_{0} \sin \alpha=N \quad \leadsto \quad N=\varrho v_{0}^{2} b_{0} h \sin \alpha .
$$

Problem 10.12 A horizontally placed bend of a pressure pipe is held by a concrete block B.

Determine the horizontal and vertical force component exerted from the bend to the concrete block.

Given: $v_{1}, p_{1}, A_{1}, A_{2}, \alpha$

Solution Using the continuity equation, the outflow velocity v_{2} can be determined:

$$
Q=A_{1} v_{1}=A_{2} v_{2} \quad \leadsto \quad v_{2}=\frac{A_{1}}{A_{2}} v_{1}
$$

The pressure at location (2) follows from Bernoulli's theorem applied to a streamline between points (1) and (2):

$$
\frac{1}{2} \varrho v_{1}^{2}+p_{1}=\frac{1}{2} \varrho v_{2}^{2}+p_{2} \quad \leadsto \quad p_{2}=p_{1}+\frac{\varrho}{2} v_{1}^{2}\left[1-\left(\frac{A_{1}}{A_{2}}\right)^{2}\right] .
$$

The fluid within the bend (control volume) is loaded by the forces $R_{x}, \quad R_{y}$ (exerted by the bend-wall) and the pressure forces at (1) and (2). Thus, the balace of momentum $\boldsymbol{F}=\varrho Q\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}\right)$ reads in components

$$
\begin{aligned}
& \rightarrow: \quad \varrho Q\left(v_{2} \cos \alpha-v_{1}\right)=p_{1} A_{1}-p_{2} A_{2} \cos \alpha+R_{x} \\
& \downarrow: \quad \varrho Q\left(v_{2} \sin \alpha-0\right)=\quad-p_{2} A_{2} \sin \alpha+R_{y}
\end{aligned}
$$

This leads to the forces

$$
\begin{aligned}
& R_{x}=A_{1}\left\{\frac{\varrho}{2} v_{1}^{2}\left[-2+\left(\frac{A_{1}}{A_{2}}+\frac{A_{2}}{A_{1}}\right) \cos \alpha\right]-p_{1}\left(1-\frac{A_{2}}{A_{1}} \cos \alpha\right)\right\} \\
& \hline \hline R_{y}=A_{1}\left\{\frac{\varrho}{2} v_{A}^{2}\left(\frac{A_{1}}{A_{2}}+\frac{A_{2}}{A_{1}}\right)+p_{1} \frac{A_{2}}{A_{1}}\right\} \sin \alpha .
\end{aligned}
$$

Because of the equilibrium conditions these forces must be carried by the concrete block.

P10.13 Problem 10.13 A pipeline in a plane splits into two line sections which then again merge. In the line ${ }^{(1)}$, a globe valve G (pressure-loss coefficient ζ_{1}) is built in, while in line (2), a clack valve C (pressureloss coefficient ζ_{2}) is present. The total volume flow throug the pipe system is given by Q.

a) Calculate the volume flows in the pipes (1) and (2).
b) Determine the pressure loss (related to ρg) between inflow and offflow.
Given: $D_{1}=1.4 \mathrm{~m}, D_{2}=0.8 \mathrm{~m}, Q=5.0 \mathrm{~m}^{3} / \mathrm{s}, \zeta_{1}=1.3, \zeta_{2}=0.3$.

Solution a) The generalized Bernoulli's theorem between points (1) and (3) (via pipe (1) and via pipe (2)) yields

$$
\left.\begin{array}{l}
\frac{1}{2} \varrho v_{0}^{2}+p_{0}=\frac{1}{2} \varrho v_{1}^{2}+p_{1}=\frac{1}{2} \varrho v_{3}^{2}+p_{3}+\Delta p_{v_{1}} \\
\frac{1}{2} \varrho v_{0}^{2}+p_{0}=\frac{1}{2} \varrho v_{2}^{2}+p_{2}=\frac{1}{2} \varrho v_{3}^{2}+p_{3}+\Delta p_{v_{2}}
\end{array}\right\} \quad \leadsto \quad \begin{aligned}
& \Delta p_{v_{1}}=\Delta p_{v_{2}}, \\
& \zeta_{1} \frac{v_{1}^{2} \varrho}{2}=\zeta_{2} \frac{v_{2}^{2} \varrho}{2} .
\end{aligned}
$$

With the volume flow $Q=v A=v D^{2} \pi / 4$ follows

$$
\left(\frac{\zeta_{1}}{\zeta_{2}}\right)=\left(\frac{v_{2}}{v_{1}}\right)^{2}=\left(\frac{Q_{2}}{Q_{1}}\right)^{2}\left(\frac{D_{1}}{D_{2}}\right)^{4}
$$

Using the continuity equation $Q=Q_{1}+Q_{2}$ leads to the volume flow in pipe (1):

$$
\underline{\underline{Q_{1}}}=\frac{Q}{1+\sqrt{\frac{\zeta_{1}}{\zeta_{2}}\left(\frac{D_{2}}{D_{1}}\right)^{2}}=\frac{5}{1+\sqrt{\frac{1.3}{0.3}}\left(\frac{0.8}{1.4}\right)^{2}}=\underline{\underline{2.98 \mathrm{~m}^{3} / \mathrm{s}}}}
$$

Thus, the volume flow in pipe (2) is given by

$$
\underline{\underline{Q_{2}}}=Q-Q_{1}=5-2.98=\underline{\underline{2.02 \mathrm{~m}^{3} / \mathrm{s}}} .
$$

b) From the volume flows the flow velocities are determined as

$$
v_{1}=\frac{4 Q_{1}}{D_{1}^{2} \pi}=\frac{4 \cdot 2.98}{1.4^{2} \pi}=1.94 \frac{\mathrm{~m}}{\mathrm{~s}}, \quad v_{2}=\frac{4 Q_{2}}{D_{1}^{2} \pi}=\frac{4 \cdot 2.02}{0.8^{2} \pi}=4.02 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Herewith, the (related) pressure loss can be calculated:

$$
\xlongequal[\underline{\frac{\Delta p_{v_{1}}}{\varrho g}}=\frac{\zeta_{1} v_{1}^{2}}{2 g}=0.25 \mathrm{~m}]{\underline{\underline{0}}}, \quad \underline{\underline{\frac{\Delta p_{v_{2}}}{\varrho g}}=\frac{\zeta_{2} v_{2}^{2}}{2 g}=0.25 \mathrm{~m}} .
$$

