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Preface

Since Sir David Cox’s pioneering work in 1972, the proportional hazards
(PH) model has become the most important model in survival analysis and in
related applications. The success of the Cox model stimulated further studies in
semiparametric and nonparametric theory, counting process models, study designs
in epidemiology, and the development of many other regression models which
could be more flexible or reasonable in data analysis. Flexible semiparametric
regression models are used increasingly often in carcinogenesis studies to relate
lifetime distributions to time-dependent explanatory variables. In addition to clas-
sical regression models such as the Cox PH model and the accelerated failure time
(AFT) model, alternative models like the linear transformation model, the frailty
model, and some varying-effect models are also considered by researchers
(Martinussen and Scheike 2006; Scheike 2006; Dabrowska 2005, 2006;
Bagdonavičius 1978; Zeng and Lin 2007). In this monograph, we discuss some
important parametric models as well as several semiparametric regression models.
Several classical examples are reconsidered and analyzed here, including the
well-known datasets concerning effects of chemotherapy and chemo- plus radio-
therapy on the survival of gastric and lung cancer patients (Stablein and
Koutrouvelis 1985; Piantadosi 1997; Kalbfleisch and Prentice 2002; Klein and
Moeschberger 2003). Following the lines of Scheike (2006), Zeng and Lin (2007),
Wu (2007), Huber et al. (2006), we also give examples to illustrate and compare
possible applications of the Cox model (1972), the Hsieh model (2001), and
Bagdonavicius and Nikulin (2002); Bagdonavičius and Nikulin (2005, 2006)
simple cross-effect (SCE) model. All three of them are particularly useful to analyze
survival data with one crossing point. This monograph offers a short course or
one-semester material for undergraduate or graduate students, for biostatisticians,
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and for scientific researchers who demand applications of survival analysis and
reliability theory in areas such as gerontology, demography, insurance, clinical
trials, medicine, epidemiology, and social sciences.

Bordeaux, France Mikhail Nikulin
Taichung, Taiwan Hong-Dar Isaac Wu
March 2014
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Chapter 1
Introduction: Several Classical Data
Examples for Survival Analysis

The proportional hazards (PH) model was proposed by Sir David Cox just over 40
years ago (Cox 1972). Today, the Cox model is the most important model in sur-
vival analysis, reliability and quality of life research, epidemiology, clinical trials,
and biomedical studies. There have also been tremendous applications of the Cox
model in demography, econometrics, finance, pharmacology, biology, gerontology,
insurance, etc. These have marked the great success of the Cox PH model which
further induced extended studies of competitive survival regression models and the
corresponding development of semiparametric estimation theory, likelihood princi-
ple, counting process modeling and applications.

The developments in reliability and survival analysis have provided the basis and
useful methods to obtain general theory. A patient’s survival depends on his/her age,
sex, fatigue, genetic or physiological damages, the dynamics of body temperature,
body weight (or BMI), some physiological or biochemical indices, and also on the
presence of chronic disease (like cancer, diabetes mellitus, renal disease, cardiac
disease, metabolic syndrome, etc.). In general, these characteristics are coded as the
so-called covariates or explanatory variables; some of them are called degradation
processes. We suppose that the lifespan of an individual is described by covariates.
In this case, the survival (or failure) of a patient is characterized by this covariate
process and by the random moment of its potential failures. The Cox model is an
example which relates the lifetime distributions to a set of covariates by modeling
hazard rate.

The popularity and the success of the Cox model is based on the fact that there
exist simple semiparametric estimation procedures and that the regression parame-
ter in the PH model is easily interpreted as (log-) hazard ratio. The hazard ratios
under different fixed covariates are usually assumed to be constant in time. In prac-
tice, the hazard rates may approach, go away from, or even intersect each other.
In these circumstances, using the conventional Cox PH model to estimate the haz-
ard ratio leads to biased inference. The phenomenon of nonproportionality may be
derived from several aspects: First, some authors have considered the heterogeneity
effect coming from individuals with unobserved frailty so that extra variations may
be present (Hougaard 1984, 1986; Aalen 1988). Second, nonproportionality is part

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
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2 1 Introduction: Several Classical Data Examples …

of the result of the time-varying effect, which could possibly be modeled by the
varying coefficient Cox model (Martinussen and Scheike 2006). Third, the interac-
tion between time and a qualitative covariate gives nonproportionality (O’Quigley
1991). Finally, some observable covariates contribute both to the mean and to the
variance of the lifetime variable or its transformation (Bagdonavičius and Nikulin
1999; Hsieh 2001; Zeng and Lin 2007), and thus produce “nonproportional hazards.”
In the last case, stratification by some variables can eliminate part of the nonpropor-
tionality. However, stratification is not reasonable if a variable is of continuous type
and, in particular, when the sample size is not large. Nevertheless, the Cox model
helps to construct dynamic models well adapted to the study of survival functions
with cross-effect. The PH model is generalized by assuming that at any moment,
the hazard ratio depends on time-varying covariates. Relations with generalized pro-
portional hazards, frailty, linear transformation, Sedyakin and degradation models
and cross-effect models have been considered. Using some new flexible regression
models, in this monograph, we analyze survival data of the Gastrointestinal Tumor
Study Group (Stablein and Koutrouvelis 1985), the Veteran’s Administration lung
cancer trials, the data of Piantadosi (1997) on lung cancer patients, the StanfordHeart
Transplant data, and a dataset concerning the length of hospital stay of rehabilitating
stroke patients.

These data examples illustrate the characteristics of survival data which may
be collected from clinical operation (the Standford Heart Transplant data), hospital
registration system (length of hospital stay for stroke patients), and clinical trials
(gastric cancer data and lung cancer data). In these data, survival estimates using
the Kaplan–Meier method (see Chap.2) are presented when the characteristics of
proportional hazards (see Chap.3) or nonproportional hazards (see Chaps. 5 and 6)
according to different covariate configurations are considered.

1.1 Example 1: The Standford Heart
Transplant (SHT) Data

The SHT data reported in Miller and Halpern (1982) contains 184 patients with the
following variables: survival time, dead/alive status, age and T5 mismatch scores.
Cox andOakes (1984, Chap.8) tabulated another version of the SHTdatawhich com-
prises 249 patients with transplant indicators and waiting times. Here, we consider
the data presented in Miller and Halpern (1982). A complete dataset with 154 obser-
vations is used. We display the Kaplan–Meier (KM) survival estimates for different
age and mismatch score groups. Derivation of the KM estimate and its properties are
discussed in Chap. 2.

For the 154 observed times, 102 failured and 52 “right-censored” (explained in
Chap.2) times, the three quartiles of age are 35.0, 44.5, and 49.0. The younger two

http://dx.doi.org/10.1007/978-3-662-49332-8_2
http://dx.doi.org/10.1007/978-3-662-49332-8_3
http://dx.doi.org/10.1007/978-3-662-49332-8_5
http://dx.doi.org/10.1007/978-3-662-49332-8_6
http://dx.doi.org/10.1007/978-3-662-49332-8_2
http://dx.doi.org/10.1007/978-3-662-49332-8_2


1.1 Example 1: The Standford Heart Transplant (SHT) Data 3

groups (age≤ 35.0 and 35 < age < 45) have no statistical difference in the lifetimes
using the log-rank test (see Chap.3); these two groups are combined. So we divide
the patients into three groups: “age< 45,” “45 ≤age≤ 49,” and “age ≥ 50.” The
survival estimates are shown in Fig. 1.1(a). The mismatch score measures the tis-
sue incompatibility between recipient and donor; it can be viewed as a continuous
random variable. The log-rank test reveals no significant difference in the lifetime
distributions among the four groups formed by the quartiles 0.69, 1.05, and 1.49. We
simply use the median (T5 = 1.05) as the cut-off point and plot the KM estimates
for the two groups (Fig. 1.1b).

These two figures show that the survivals are significantly different in age, but
not in (dichotomized) mismatch score. The group “age ≥ 50” has a sudden drop in
survival at the early stage (time < 100 days). The other two younger groups have
crossings at an early stage and at a time very close to 2000 days. It appears that the
“difference between groups” varieswith time.With a proportional hazards regression
setting (Chap. 3), the effect of age cannot be modeled by a simple univariate variable
age. As indicated by this example, seeking an alternative model is important.

Fig. 1.1 a KM estimates for
different age groups. b KM
estimates for different
mismatch score groups.
Reprinted from Journal of
Statistical Planning and
Inference, 139(12),
H.-D.I. Wu, F. Hsieh,
Heterogeneity and Varying
Effect in Hazards
Regression, pp. 4213–4222,
Copyright 2015, with
permission from Elsevier
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1.2 Example 2: Length of Hospital Stay of Rehabilitating
Stroke Patients in Taiwan

Cerebral vascular disease was among the leading causes of death in Taiwan in recent
decades (crude mortalities, 53.5–78.4 cases per 105 person-years), and rehabilitating
stroke patients often had a long length of hospital stay (LOS). The work of study of
the principal factors affecting LOS is essential for the management of health-care
costs, of after-discharge home care, and of bed occupancy in hospitals of different
levels, etc. Further, LOS is a factor related to short-term prognosis and is also an
indicator of long-term survival of patients. These data offer an example for the case
of non-censoring (see Chap.2); that is, the time of “discharge” from hospital is
treated as an “event time.” The data enrolled 586 patients who experienced their first
hemorrhage/infarct strokes and received in-hospital rehabilitations (Lin et al. 2009).
The baseline data include age, gender, co-morbidity status, and previous history
of stroke and/or severe injury, etc. Modified Barthel index (MBI) and functional
independence measure (FIM) questionnaires were administrated to patients admitted
for rehabilitation. The MBI and FIM are two different scores measuring the severity
of disability and functional dependence/independence level of patients. These two
scores are highly correlated and both indicative of a patient’s discharge. In this
data, 24.6, 60.8, and 14.6%of the patients hadMBI = 0, 0 < MBI ≤ 30, andMBI ≥
35; and 24.4, 48.0, and 27.6% had FIM between [18,28], [29,63] and [64, 125],
respectively.

The KM “survival” estimates for different MBI and FIM groups are displayed in
Fig. 1.2. Different Barthel index groups (upper panel, Fig. 1.2a) and different FIM
groups (lower panel, Fig. 1.2b) both have the proportional hazards relationship. In
Lin et al. (2009), confidence intervals of mean LOS are constructed based on the PH
model assumption.

1.3 Example 3: Gastric Carcinoma Data

When analyzing survival data from clinical trials, cross-effects of survival functions
are sometimes observed. A classical example is the well-known data concerning
effects of chemotherapy (CH) and chemotherapy plus radiotherapy (CH+R) on the
survival times of gastric cancer patients studied by Stablein andKoutrouvelis (1985).
The number of patients is 90. Survival times of chemotherapy (group 0 of size 45)
and chemotherapy plus radiotherapy (group 1 of size 45) patients are as follows (*
denotes right-censored observations). For further details and discussions, see also
Kleinbaum and Klein (2005), Klein and Moeschberger (2003), Bagdonavičius et al.
(2002), Hsieh (2001), Bagdonavičius et al. (2004), and Zeng and Lin (2007).

http://dx.doi.org/10.1007/978-3-662-49332-8_2
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Fig. 1.2 a KM estimates for
different BAR (or MBI)
groups. b KM estimates for
different FIM groups.
Reprinted from Journal of
the Formosan Medical
Association, 108(8), C.-L.
Lin, P.-H. Lin, L.-W. Chou,
S.-J. Lan, N.-H. Meng,
S.-F. Lo, H.-D.I. Wu,
Model-based Prediction of
Length of Stay for
Rehabilitating Stroke
Patients, pp. 653–662,
Copyright 2015, with
permission from Elsevier
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• Chemotherapy: 1 63 105 129 182 216 250 262 301 301 342 354 356 358 380 383
383 388 394 408 460 489 499 523 524 535 562 569 675 676 748 778 786 797 955
968 1000 1245 1271 1420 1551 1694 2363 2754* 2950*;

• Chemotherapy plus Radiotherapy: 17 42 44 48 60 72 74 95 103 108 122 144 167
170 183 185 193 195 197 208 234 235 254 307 315 401 445 464 484 528 542 567
577 580 795 855 1366 1577 2060 2412* 2486* 2796* 2802* 2934* 2988*.

At the beginning of treatment, the mortality of CH+R patients is greater but
at a certain moment the survival functions of CH+R and CH patients intersect,
and later the mortality of CH patients is greater. That is, if patients survive CH+R
therapy during a certain period then later this treatment is more beneficial than the
CH therapy. Doses of CH and R therapy can be different so regression data can be
collected. One will observe (Fig. 1.3) this “cross-effect” phenomena by plotting the
Kaplan–Meier estimators of the survival function for both treatment groups. The
two estimated curves indicate that radiotherapy would initially be detrimental to
a patient’s survival but become beneficial later on. We shall consider models for
analysis of data with cross-effect of survival functions under constant covariates in
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Fig. 1.3 KM estimates for
gastric cancer data
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Chaps. 5 and 6. Moreover, we show in Chap.7 that the conventional log-rank test has
low power in this example. The results will be compared between a class of weighted
log-rank tests and a score test based on a more flexible model.

1.4 Example 4: The Veteran’s Administration
Lung Cancer Trials

We studied the survival data of 137 lung cancer patients given in Kalbfleisch and
Prentice (2002), Bennett (1983), Kleinbaum and Klein (2005), Marubini and Valsec-
chi (1995), and Therneau and Grambsch (2000), concerning the Veteran’s Admin-
istration Lung Cancer Trials. The dataset includes the following variables: survival
time and (right-) censoring status, performance status (Karnofsky rating), cell type
of carcinoma (squamous cell, small cell, adeno, and large cell), treatment indicator,
months from diagnosis, age, and prior therapy. For ease of illustration, we analyze
the influence of performance status (Karnofsky rating: 10–30 completely hospi-
talized, 40–60 partial confinement, 70–90 able to care for self) on the survivals.
The Karnofsky index is often used to measure the general health status (degra-
dation) of a patient (Karnofsky and Burchenal 1949). There are 22 (16.1%), 57
(41.6%), and 58 (42.3%) persons who have the respective Karnofsky ratings (KR):
KR ≤ 30, 30 < KR ≤ 60, andKR > 60.

In our example nine observations were censored, i.e., the proportion of censorings
is 0.0657. This example illustrates a case when the hazard rates under different values
of the covariate do not intersect but the ratios of hazard rates are monotone. That is,
the interrelations among these three groups change over time and the proportionalities
among the three groups are questionable (Fig. 1.4).

http://dx.doi.org/10.1007/978-3-662-49332-8_5
http://dx.doi.org/10.1007/978-3-662-49332-8_6
http://dx.doi.org/10.1007/978-3-662-49332-8_7
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Fig. 1.4 KM estimates for
different Karnofsky indices
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1.5 Example 5: Other Lung Cancer Data from a Clinical
Trial

Piantadosi (1997, Chap.19, pages 483–488) gives the data concerning the survival
times of lung cancer patients. There are 164 patients divided into two groups who
received radiotherapy (sample size 86; Group A) or radiotherapy plus “CAP” (sam-
ple size 78; Group B). Apart from survival time and censoring status, the vari-
ables include: cell type (67 squamous versus 97 non-squamous), performance status
(abbreviated as PS: there are 20 “PS = 1” and 144 “PS = 2”), tumor status (abbre-
viated as TS: there are 19 “TS = 1,” 92 “TS = 2” and 53 “TS = 3”), nodal status
(NS: 15 “NS = 0,” 30 “NS = 1” and 119 “NS = 2”), disease-free survival, indicator
for recurrence, age, race (24 others and 140 whites), weight loss (WL: 142 “WL =
0” and 16 “WL = 1”; 6 missings), and sex (47 females and 117 males). The vari-
able age has quartiles 52.0 (Q1), 58.0 (Q2) and 64.5 (Q3) with sample mean 57.4.
Dichotomizing “age” by a its Q2 leads to nonsignificant difference in the lifetime
distributions (p-value = 0.536, log-rank test). These data exhibit a nonproportional
hazards pattern in treatment, cell type, tumor status, nodal status, weight loss, and

Fig. 1.5 KM estimates for
lung cancer data. Reprinted
from Wiley Books 2nd edn,
S. Piantadosi, Clinical Trials:
A Methodologic Perspective,
p. 125, Copyright 2015, with
permission from Wiley
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the dichotomized age groups. No significant comparison results can be found in all
the above variables using the log-rank test. For illustration, the K–M survival esti-
mates for the two treatments are plotted in Fig. 1.5, in which the K–M estimates
cross at 33 months, and the common survival of these two groups is 0.26. We show
in Chap.7 how this data (K–M survivals) can be fitted by two flexible regression
models, the Hsieh model and the simple cross-effect model. For the disease-free
survivals, proportional hazards assumption seems reasonable and conventional PH
analysis applies.

http://dx.doi.org/10.1007/978-3-662-49332-8_7


Chapter 2
Elements of Survival Analysis

Failures of highly reliable units are rare. In order to obtain a complementary
reliability information, the accelerated life testing (ALT) is used so that higher level
of experimental factors are applied to obtain failures quickly. Alternatively, com-
plementary reliability information can be obtained by measuring some parameters
which characterize the aging, wear or degradation of the product on time.

Statistical inference from ALT is possible if failure time regression models
are well chosen. The regression models relate failure time distributions to internal
and external explanatory variables (covariates, stresses) influencing the reliability.
Before using complexmodels in any analysis, we suggest that theCox’s proportional
hazards (PH) model (Cox 1972 1975; Cox and Oakes 1984) can be tried first to give
simple results.

In case the data suggest that proportionality can be questionable, practitioners
seek to use alternative models. Selection of the candidate model depends on
(i) the deviations between data and the estimated PH model and (ii) the feasibility
and interpretation of the model. We suppose that the following data are available for
reliability characteristics estimation: failure times (possibly censored), explanatory
variables (covariates, stresses), and the values of some observable quantity char-
acterizing the degradation of units. Moreover, the failure rate of a unit is assumed
to depend on covariates, degradation level, and time. For more details about this,
see, for examples, Nelson (1990), Andersen et al. (1993), Klein and Moeschberger
(2003), Aven and Jensen (1999), Meeker and Escobar (1998), Hsieh (2001), Lawless
(2003), Bagdonavičius and Nikulin (2002a), Ceci and Mazliak (2004), Dabrowska
(2005–2007), Martinussen and Scheike (2006), Huber et al. (2006, 2008), Nikulin
and Wu (2006), Zeng and Lin (2007), Lehmann (2004), Kahle and Wendt (2006),
Bagdonavicius et al. (2011), Voinov et al. (2013).

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-49332-8_2
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10 2 Elements of Survival Analysis

2.1 Basic Concepts, Notations, and Classical Models

Let the positive random variable T denotes the failure time of a patient (unit). The
probability of a unit functioning up to time t is given by the survival function or
reliability function S(·):

S(t) = P{T > t}, t > 0. (2.1)

The function F(t) = 1 − S(t) is called the cumulative distribution function (cdf) of
the lifetime T , and f (t) = dF(t)/dt is the probability density when T is continuous.

In reliability and survival analysis, the hazard rate function λ(·) of the lifetime T
is defined as

λ(t) = lim
h→0

1

h
P{t ≤ T < t + h|T ≥ t} = −d[ln S(t)]

dt
, t > 0. (2.2)

The hazard rate specifies the instantaneous rate of mortality or failure at time t. It
follows that λ(t) = f (t)/S(t) and

S(t) = e−Λ(t), (2.3)

where Λ(t) = ∫ t
0 λ(s)ds(t > 0) is the cumulative hazard function of the failure

time T . It is evident from (2.3) thatΛ(·) is an increasing function withΛ(0) = 0 and
Λ(∞) = ∞.

The deterministic function Λ(t) is also called the natural degradation process of
the population. The population disappears when Λ(t) reaches the infinity.

The models discussed in survival analysis and reliability theory are often formu-
lated in terms of cumulative hazard and hazard rate functions. The most common
shapes of hazard rates are monotone, ∪-shaped, or ∩-shaped, See, for example,
Meeker and Escobar (1998). For more details on the use of classical parametric
models, one can refer to Cox and Oakes (1984), Kalbfleisch and Prentice (2002),
Lawless (2003), Bagdonavičius et al. (2011).

Figure2.1 is the plot of two hazard functions of Weibull distributions with differ-
ent parameter conditions producing monotone increasing and monotone decreasing
hazards. The corresponding cumulative hazard and survival functions are plotted
in Figs. 2.2 and 2.3. We illustrate in these figures how the three functions (hazard,
cumulative hazard, and survival) correspond to one another. From a practical point of
view, the application of aWeibull distribution without modification is limited because
a hazard in Fig. 2.1 is quite large when time approaches to 0; see Sect. 5.2 for more
discussions.

http://dx.doi.org/10.1007/978-3-662-49332-8_5
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Fig. 2.1 λx(·)(t) = 2t and
λx0(·)(t) = λ0(t) = 1

2
√

t

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

Fig. 2.2 Λx(·)(t) = t2 and
Λx0(·)(t) = Λ0(t) = √

t

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 2.3 Sx(·)(t) = e−t2 and

Sx0(·)(t) = S0(t) = e−√
t one

can see here the cross-effect
of survival functions

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
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2.2 Classical Parametric Models for Complete Data

Let the positive random variables T1, T2, . . . , Tn be failure times. If the data are
complete (not censored), then there are two possibilities to estimate the distribution
function (or survival function). First, to construct the empirical distribution function

Fn(t) = 1

n

n∑

i=1

1(−∞,t](Ti), t ∈ R1,

based on the observed simple sampleT1, T2, . . . , Tn. In survival analysis it is assumed
that Ti are positive random variables, ETi < ∞ and we can write

Fn(t) = 1

n

n∑

i=1

1(0,t](Ti), t > 0.

It is a nonparametric unbiased estimator for the distribution function F(t),

EFn(t) ≡ F(t), t > 0.

It follows that Sn(t) = 1 − Fn(t) is a nonparametric unbiased estimator for the sur-
vival S(t).

Second, the distribution of Ti can be assumed to belong to a given parametric
class,

{f (t, θ), θ ∈ Θ}.

Then we may estimate the unknown parameter θ by its maximum likelihood estima-
tor θ̂n:

θ̂n = argmaxθ L(θ), θ ∈ Θ,

where

L(θ) =
n∏

i=1

f (Ti, θ), θ ∈ Θ,

is the likelihood function constructed on the basis of complete data T1, T2, . . . , Tn

under the model f (·, θ). Now we have the parametric estimators f (t, θ̂n), F(t, θ̂n)

and S(t, θ̂n) = 1 − F(t, θ̂n) for the density, the distribution and survival functions f,
F and S respectively. Parametric approach is relatively simple and easy to imple-
ment. Statistical analysis of parametric models can be done by a classical manner
(Cox and Oakes 1984; Hjort 1992; Meeker and Escobar 1998). The most frequently
used parametric distributions include: exponential, Gompertz–Makeham, Weibull,
gamma, log-normal, log-logistic, inverse Gaussian, the power Generalized Weibull
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distributions, exponentiatedWeibull families, and hypertabastic distributions, among
others. Here we sketch the simple properties of these distributions.

Example 1. Exponential model.
The most simple parametric lifetime model is the exponential model. The hazard
rate of an exponential lifetime variable T is constant in time:

λ(t) ≡ λ = const > 0,

where λ is called the parameter of intensity of events. The corresponding survival
function of T is

S(t) = S(t; λ) = P{T > t} = e−λt, t > 0, (2.4)

with

ET = 1

λ
, VarT = 1

λ2

and the linear cumulative hazard function

Λ(t) = λt, t > 0.

From (2.4) it follows that for any t and s > 0

P{T > t + s|T > s} = P{T > t} = e−λt . (2.5)

Equation (2.5) explains why it is called no aging or lack of memory, simply because
λ is a constant.

Example 2. Gompertz–Makeham model.
We have the Gompertz–Makeham model if the hazard rate function of the lifetime T
is given by

λ(t) = λ(t;α, β, γ ) = β + αeγ t, t > 0, α > 0, γ > 0, β > 0.

This model is particularly useful in the researches of aging in demography, geron-
tology, pharmacology, and economy.

Example 3. Weibull model.
The Weibull model is commonly used in reliability and biomedical areas when the
survival function of the lifetime T is written as

S(t) = S(t; ν, θ) = e−(t/θ)ν , t > 0, ν > 0, θ > 0,
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with the associated hazard rate function

λ(t) = λ(t; ν, θ) = ν

θν
tν−1.

The parameters θ and ν are named as the scale parameter and shape parameter,
respectively. It follows that λ(·) is monotone increasing if ν > 1, decreasing if
0 < ν < 1, and constant in time if ν = 1. It is evident that this model is more flexible
than the exponential model.

Example 4. Gamma model.
The lifetime T follows the gamma distribution if it has the density function

f (t; p, λ) = λptp−1e−λt

Γ (p)
, t > 0, p > 0, λ > 0,

where Γ (p) = ∫ ∞
0 tp−1e−tdt, the gamma function. The hazard rate of the gamma

model is

λ(t) = λ(t; p, λ) = tp−1e−λt

∫ ∞
t up−1e−λudu

,

where p is the shape parameter. It is monotone increasing for p > 1 and decreasing
for 0 < p < 1.

Example 5. Log-normal model.
The Log-normal (LN) family of distributions LN(μ, σ ) has the survival function

S(t) = S(t;μ, σ) = 1 − Φ

(
ln t − μ

σ

)

, μ ∈ R1, σ > 0, t > 0.

The hazard function of the LN distribution is unimodal and is very popular in mod-
eling fatigue failures in industry.

Example 6. Log-logistic model.
The log-logistic model (LL) is also used often in reliability and survival analysis.
The lifetime T follows the LL distribution if it has the survival function

S(t) = S(t; θ, ν) = 1

1 + (t/θ)ν
, t > 0, θ > 0, ν > 0.

In this case, the hazard rate function is

λ(t) = λ(t; θ, ν) = ν

θν
tν−1

[

1 +
(

t

θ

)ν]−1

, t > 0.
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If ν > 1, the hazard rate function is hump shaped (
⋂
): it increases to its maximum,

and then approaches to 0 monotonically as t → ∞.

Example 7. Inverse Gaussian Model.
The lifetime T of the inverse Gaussian (IG) distribution has the following pdf:

f (t) = f (t; λ,μ) =
√

λ

2t3π
exp

{

−λ(t − μ)2

2tμ2

}

, t > 0, λ > 0, μ > 0.

It is easy to verify that ET = μ and VarT = μ3/λ. The hazard rate function of T
has the

⋂
-shape.

Example 8. The Birnbaum–Saunders model.
The family of Birnbaum–Saunders (BS) distributions, proposed by Birnbaum and
Saunders (1969), is used when the failures are due to crack. This family has two
parameters: shape parameter and scale parameter. Fatigue failure is often due to
repeated applications of a common cyclic stress pattern.

The cumulative distribution function of two-parameter Birnbaum–Saunders dis-
tribution is

F(t) = F(t;α, β) = Φ

[
1

α

{(
t

β

) 1
2

−
(

β

t

) 1
2

}]

, t > 0, α, β > 0,

where α is the shape parameter, β is the scale parameter, and Φ(x) is the cdf of
standard normal distribution function. The probability density function can bewritten
for t > 0 as

f (t) = f (t;α, β) = 1

2
√
2π αβ

{(
β

t

) 1
2

+
(

β

t

) 3
2

}

exp

[

− 1

2α2

(
t

β
+ β

t
− 2

)]

.

The hazard function of this distribution is unimodal and is popular in modeling
fatigue failures in industry. Other unimodal distributions include: log-normal, inverse
Gaussian, log-logistic, power generalized Weibull, exponentiated Weibull, etc.

Desmond (1986) andMeeker and Escobar (1998) have worked on the relationship
between BS distribution and the IG distribution. The hazard functions for both of
BS and IG distributions are very similar. We note that the gamma, log-logistic, log-
normal, inverse Gaussian, and BS distributions are often used for the construction
of the so-called frailty models, parametric AFT, and Cox models. Extensive works
have been done recently on the BS and IG distributions and their applications in the
failure time data analysis of the redundant systems.

Example 9. Power generalized Weibull model.
The power generalized Weibull (PGW) distribution (Bagdonavičius and Nikulin
2002a) has the survival function (of the lifetime T ):
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S(t) = S(t; γ, ν, θ) = exp

{

1 −
[

1 +
(

t

θ

)ν] 1
γ

}

, t > 0, γ > 0, ν > 0, θ > 0.

If γ = 1 we have the conventional Weibull family of distributions. If γ = 1 and
ν = 1, we have the exponential family of distributions. The hazard rate function of
T is

λ(t) = λ(t; γ, ν, θ) = ν

γ θν
tν−1

[

1 +
(

t

θ

)ν] 1
γ
−1

, t > 0.

A significant property of this class of distributions is: all moments of this distribution
are finite. The hazard rate has different shapes for the following parameter conditions:

1. constant (for ν = γ = 1),
2. monotone increasing (for ν > 1, ν > γ and for ν = 1, γ < 1),
3. monotone decreasing (for 0 < ν < 1, ν < γ and for 0 < ν < 1, ν = γ ),
4. unimodal or

⋂
-shaped (for γ > ν > 1), and

5. bathtub- or
⋃
-shaped for 0 < γ < ν < 1.

Note that the last type of shape includes three period: burn in infant mortality (or
simply burn in) period, relatively low failure intensity period, and senility periodwith
progressively increasing risk of failure (which is the periodofaging anddegradation).

Finally, we have a remark on the survival function of this distribution. Suppose
that θ = ν = 1 and let a = 1

γ
> 0. Under these conditions, the survival function

S(t) = SGW (t) is given by

SGW (t) = e1−(1+t)a
, t ≥ 0.

We want to know the behavior of the survival function SGW (t) near t = 0, i.e., when
t ∼ 0.

Note that if t ∼ 0, then

e1−(1+t)a � 2 − (1 + t)a � 1 − at,

from where it follows that if t ∼ 0 then

SGW (t) � 1 − at and FGW (t) � at

under given conditions.

Example 10. Exponentiated Weibull model.
The exponentiated Weibull (EW) family of distributionswere proposed byMudholkar
and Srivastava (1993) and Mudholkar et al. (1995). The EW distribution has the
survival function S(t) and probability density function f (t):
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S(t) = S(t; γ, ν, θ) = 1 −
{

1 − exp

[

−
(

t

θ

)ν]}1/γ

, t > 0, γ > 0, ν > 0, θ > 0.

f (t) = f (t; γ, ν, θ) = ν

γ θ

{

1 − exp

[

−
(

t

θ

)ν]} 1
γ

−1

exp

[

−
(

t

θ

)ν] (
t

θ

)ν−1

.

This model has all properties of the GW model. As claimed by Mudholkar et al.
(1995, Theorem 2.1), the hazard function can be monotone increasing (ν ≥ 1 and
ν/γ ≥ 1), monotone decreasing (ν ≤ 1 and ν/γ ≤ 1), bathtub-shaped (ν > 1 and
ν/γ < 1), and unimodal (ν < 1 and ν/γ > 1).

We also have a small remark on the survival function of the exponentiatedWeibull
distribution, assuming θ = ν = 1 and denoting a = 1

γ
> 0, a 
= 1. Under these

conditions, S(t) = SEW (t) is given by

SEW (t) = 1 − [1 − e−t]a, t ≥ 0.

Note that if t ∼ 0, then
1 − e−t � 1 − (1 − t) � t,

from where it follows that if t ∼ 0 then

SEW (t) � 1 − ta and FEW (t) � ta

under given conditions.

Example 11. Hypertabastic model.
The two-parameter family of Hypertabastic distributions, H(α, β), was recently
proposed by Tabatabai et al. (2007). Because t > 0, this distribution can be used
for different applications in reliability and survival analysis. Tabatabai et al. (2007)
proposed to use this parametric model to construct the baseline function in survival
models. The hazard rate function can be monotone (increasing or decreasing) or
∩-shape, depending on the parameter values. In particular, for ∩-shape hazard, this
distribution is competitive to other distributions such as log-normal, log-logistic,
inverse Gaussian, power generalized Weibull, etc.

Let X be a positive random variables. We say that X follows the hypertabastic
distribution H(α, β) if its cumulative distribution function is

F(t, θ) = 1 − Sech

{
α

β

(
1 − tβ Coth(tβ)

)
}

, t > 0, θ = (α, β)T ∈ R+
∗ × R+

∗ ,

where, Sech(·) and Coth(·) are hyperbolic secant and hyperbolic cotangent, respec-
tively. Its survival function is

S(t, θ) = Sech

{
α

β

(
1 − tβ Coth(tβ)

)
}

, t > 0, θ = (α, β)T ∈ R+
∗ × R+

∗ ,
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Hypertabastic probability density and hazard functions are given by the next
formulas:

f (t, θ) = αtβ−1{tβCsch2(tβ) − Coth(tβ)}Sech{W (t, θ)}Tanh{W (t, θ)},

and
λ(t, θ) = αtβ−1{tβCsch2(tβ) − Coth(tβ)}Tanh{W (t, θ)}.

respectively, where, W (t, θ) = α
β

(
1 − tβ Coth(tβ)

)
.

The hypertabastic hazard function has following interesting properties:

• If 0 < β ≤ 0.25, then its hazard rate is decreasing from ∞ to 0.
• If 0.25 < β ≤ 1, then its hazard rate is unimodal. It increases with time until
reaching its maximum and then decreases.

• If 1 < β ≤ 2, then the hazard rate is increasing with upward concavity until
reaching the inflection point and then continues to increase with downward con-
cavity thereafter.

• If β > 2, its hazard rate is increasing with upward concavity.

The consideration of the different hazard shapes bring out the different biolog-
ical mechanisms of disease progression. This is helpful to clinicians, researches,
and pharmacologists to keep track of the disease status over time, (for details, see
Tabatabai et al. (2007)). In particular, this family is used for analysis of clinical data
in cervical cancer research.

Using the properties of hypertabastic hazard function, we can construct the chi-
squared goodness-of-fit test based on the Nikulin–Rao–Robson statistics Y2

n and on
the properties of the maximum likelihood estimator θ̂n; see, for example, Voinov
et al., (2013). ♣

In survival analysis, semiparametric models are often considered. A model is
called semiparametric if it comprises a parametric part and a nonparametric part. In
practice, when a semiparametric model is considered to be further simplified, often
the nonparametric part (if it involves a baseline survival function S0) is specified to
have a simple parametric distribution such as Weibull, generalized Weibull, gamma,
log-logistic, etc. Parametric models were studied, for examples, by Meeker and
Escobar (1998), Hjort (1992), Lawless (2003), Aven and Jensen (1999), Lehmann
(2004), Kahle and Wendt (2006), etc.

Many parametric distributions can be extended to accommodate regression set-
tings. See the parametric example of Cox model discussed in Chap. 3. However, the
use of parametric models have its limitations. For example, in many cases, Weibull
regression and log-logistic regression models cannot “fit the data” well if the under-
lying hazard is bump-shaped or bathtub-shaped. This can be easily checked by dis-
cretizing some covariates, and the so-called “data fitting” is displayed by comparing
the estimated survivals based on the parametric model(s) and those obtained from
the nonparametric Kaplan–Meier estimates (Nikulin and Wu 2006).

http://dx.doi.org/10.1007/978-3-662-49332-8_3
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If the parametric methods does not give a good solution, people use the power-
ful nonparametric methods to estimate S,Λ, λ and other characteristics, using all
information from the empirical distribution. These methods are well developed since
1970s.

Remark: from parametric distributions to regression
Parametric models can be extended to incorporate covariates information so that
the modeling is more flexible and powerful. Taking the Weibull distribution as an
example, the survival function of the Weibull distribution

S(t) = S(t; ν, θ) = e−(t/θ)ν

has two positive parameters θ and ν. For a set of covariates z = (z1, . . . , zp), z0 = 1,
if these two parameters are further modeled as

1/θ = exp{β ′z} = exp{β0 + β1z1 + · · · + βpzp} and
ν = exp{γ ′z} = exp{γ0 + γ1z1 + · · · + γpzp},

it is a parametric example of Hsieh’s (2001) semiparametric heteroscedastic hazards
regression (HHR) model. Two-sample estimation of the HHR model is discussed in
Hsieh (1996). If γ1 = · · · = γp = 0, the HHR model reduces to the conventional
proportional hazards (PH) model.

Remark : on the cross-effects of survivals
When analyzing reliability and survival data from accelerated trials, cross-effects of
hazard rates are sometimes observed. A classical example is the well-known data of
the Gastrointenstinal Tumor Study Group (Chap. 1, Example 3), concerning effects
of chemotherapy and radiotherapy on the survival times of gastric cancer patients,
(Stablein and Koutrouvelis 1985; Klein and Moeschberger 2003). See also Fleming
et al. (1980) for two datasets with cross-effects phenomena: an ovarian cancer data
and a bile duct cancer data.

If the hazard rates of two populations do not cross, then we can say that the risk of
failure of one population is smaller than that of the second in time interval [0,∞).
In this casse, one population is named uniformly more reliable than the other. Such
hypothesis is sometimes more interesting to verify than the hypothesis of equality of
distributions (the homogeneity hypothesis). If, for example, the hypothesis of equal-
ity is not true for the two populations receiving conventional and new treatments,
then it is possible that the new treatment population has better results only at the
beginning of the process. This suggests some alteration (e.g., changing treatment)
must be made before the crossing of hazard rates.

http://dx.doi.org/10.1007/978-3-662-49332-8_1
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2.3 Censored Data

In medical and epidemiological studies, failure times are typically right censored.
That means a failure time T is observed if T ≤ C, C > 0 is called the censoring time.
Otherwise we only know that T > C. In this book, if only “censored” is used, then
we mean “right censored.” On the contrary, left censoring means that the failure time
T is observed if T ≥ C. There are various types of right-censoring mechanism:

(1) If n “subjects” are censored at a prespecified calender time τ , it is called type I
censoring. In this case, C = τ for all subjects.

(2) If the study is terminated whenever a specified number r (r < n) of failures have
occurred, it is called type II censoring. The time of the rth failure is then defined
as the censoring time C for all subjects.

(3) If the failure times T1, . . . , Tn and the censoring times C1, . . . , Cn are mutually
independent positive random variables, it is called independent random censor-
ing. For example, if several failure modes are possible and interest is focused on
one particular failure mode, then the failure of any other mode can be considered
as a random censoring.

For randomly right-censored data, denote Ti and Ci as the failure and censoring
times of subject i. Let

Xi = Ti ∧ Ci, δi = 1{Ti≤Ci} (i = 1, . . . , n), (2.6)

where a ∧ b = min(a, b) and 1A is an indicator of the event A. The following data
are observed:

(X1, δ1), . . . , (Xn, δn). (2.7)

If δi = 1, it is known that a failure occurs at the time Ti = Xi; if δi = 0, then the
failure occurs after the time Xi; that is, the subject is censored by Ci = Xi. One can
see that the initial sample (T1, . . . , Tn) obtained without censoring is different from
(2.7).

To describe right-censored data in terms of counting processes, let

Ni(t) = 1{Xi≤t,δi=1} = 1{Ti≤t,Ti≤Ci} (2.8)

be the number of failure of the ith person in the interval [0, t], where 1A denotes
the indicator of the event A. It equals to 1 if one failure is observed in this interval;
otherwise it equals to 0. The at-risk process of the ith person is defined as

Yi(t) = 1{Xi≥t}, t ≥ 0. (2.9)

It equals to 1 when the ith person is still under observation at time t−. Furthermore,
let
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N(t) =
n∑

i=1

Ni(t), t ≥ 0,

be the total number of failures observed in the interval [0, t] and

Y(t) =
n∑

i=1

Yi(t), t ≥ 0,

be the number of subjects at risk for failure just prior to themoment t.More precisely,
for any t the value Y(t) gives the number of patients who are at risk for failure during
a small time interval (t − ε, t] for an arbitrarily small positive ε, since any unit that
fails exactly at time t must be both in the risk set at the failure time and known to be
at risk before the failure occurred.

The stochastic processes N and Ni are actually examples of counting processes.
With this setting, the data can be presented in the form

(N1(t), Y1(t), t ≥ 0), . . . , (Nn(t), Yn(t), t ≥ 0). (2.10)

Indeed, the above two ways ((2.7) and (2.10)) of data presentation are equivalent:
If (Xi, δi) are given then (Ni(t), Yi(t)), t ≥ 0, can be found using their definition.
Conversely, Xi is the moment of jump of Yi(t) from 1 to 0. If Ni(t) has a jump at Xi

then Xi = Ti and δi = 1; if Ni(t) = 0 for any t ≥ 0 then Xi = Ci and δi = 0.
The advantage of using data presentation (10) is as follows. The values of

{Ni(s), Yi(s), 0 ≤ s ≤ t; i = 1, . . . , n}

are known as the history of failures and censorings up to time t. The notion of
“history” is formalized by the concept of filtration (Klein and Moeschberger 2003,
Therneau and Grambsch 2000, Huber et al. 2006, Andersen et al. 1993, Fleming and
Harrington 1991).

Let us denote
Ft = σ {Ni(s), Yi(s), 0 ≤ s ≤ t}

as the σ -algebra generated byNi(s) andYi(s), 0 ≤ s ≤ t. HereFt contains all events
related with failure and censoring processes which occur before t. That is,Ft is the
smallest σ -algebra containing all events

{Ni(s) = k, Yi(s) = l}, 0 ≤ s ≤ t; k, l ∈ {0, 1}.

It is clear that Fs ⊂ Ft ⊂ F , for 0 ≤ s ≤ t. The family of σ -algebras F = {Ft,

t ≥ 0} is called the filtration (or history) generated by the data.
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All trajectories of the counting processes Ni and N are right continuous, nonde-
creasing piecewise constants with jumps of size 1. It is easy and essential to show
that they are submartingales with respect to the filtration F.

Remark. In survival analysis and reliability theory, statisticians are working in gen-
eral with left-truncated and right-censored samples:

(X1, D1, δ1, z1), . . . , (Xn, Dn, δn, zn),

where
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci},

with Ti being the failure times, Di the truncation times, and Ci the censoring times.
The at-risk indicator is set as:

Yi(t) = 1{Di<t≤Xi} Y(t) =
n∑

i=1

Yi(t).

If the data are only right-censored then takeDi = 0; if the data are only left-truncated
then take δi = 1. The process N(t) shows for any t > 0 the number of observes
failures in the interval [0, t] and the process Y(t) shows the number of objects which
are “at risk” (under observation and nor failed) just prior to time t. It is supposed
that survival distributions of all n objects given xi are absolutely continuous with the
survival functions Si(t) and the hazard rates λi(t).

It is also supposed that truncation and censoring are noninformative (see
Andersen et al. 1993, Huber et al. 2006, Solev 2009, Turnbull 1976) and the multi-
plicative intensities model is assumed: The compensator of the counting processes
Ni with respect to the history of the observed processes is

∫
Yiλidu.

2.4 Doob–Meyer Decomposition

Suppose that the failure times T1, . . . , Tn are identically distributed and absolutely
continuous; and they are independent of the censoring times C1, . . . , Cn. The unique
compensator of the counting process N(t) with respect to the filtration F is

A(t) =
∫ t

0
Y(u) dΛ(u),

where Λ(t) = ∫ t
0 λ(u) du is the cumulative hazard function of T . It follows that the

process
M(t) = N(t) − A(t), t ≥ 0,
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is the martingale with respect to the filtration F, i.e.,

E{M(t)|Fs} = M(s), for s < t.

This property of martingale M(t) means that the expected value of M(t), given its
history at time s < t, is equal to its value at time s. It implies the so-called Doob–
Meyer decomposition:

N(t) = A(t) + M(t), t > 0, (2.11)

with

EN(t) = E
∫ t

0
Y(u) dΛ(u), (2.12)

where Λ(u) is the cumulative hazard function of T . We may also interpret (2.11) as

observation = model + error.

2.5 Nelson–Aalen Estimator

The equality (2.11) holds even when the function Λ(·) is not continuous. Moreover,
(2.12) implies that an estimator of the cumulative hazard function can be defined by
the method of moments as a solution to the integral equation:

Λ̂(t) =
∫ t

0

dN(u)

Y(u)
=

∑

j:δj=1,Xj≤t

dj

nj
, (2.13)

where

nj = Y(Xj) =
n∑

l=1

1{Xl≥Xj}

is the number of individuals at risk just prior toXj, and dj is the number of tied failures
occurred at Xj. When there are no ties, Λ̂(t) = ∑

j
1
nj
. It is called the Nelson-Aalen

estimator of the cumulative hazard Λ.

2.6 Kaplan–Meier Estimator

The survival function S(t) = exp{−Λ(t)} of Ti, on one hand, can be estimated as
˜S(t) = exp{−Λ̂(t)}. On the other hand, when dj/nj is small,
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˜S(t) = exp{−Λ̂(t)} = exp

⎧
⎨

⎩
−

∑

j:δj=1,Xj≤t

dj

nj

⎫
⎬

⎭
≈

∏

j:δj=1,Xj≤t

(

1 − dj

nj

)

,

which suggests an alternative estimator:

Ŝ(t) =
∏

j:δj=1,Xj≤t

(

1 − dj

nj

)

.

To derive the above formula more exactly, an approach through the product of con-
ditional probabilities can be used. That is, for Ti (or Xi whenever δi = 1),

S(ti) = S(ti)

S(ti−1)
· S(ti−1)

S(ti−2)
. . .

S(t1)

S(t0)
· S(t0),

where ti is the realization of Ti with t0 = 0 and S(t0) = 1. It implies

S(ti) = P{T > ti|T > ti−1}P{T > ti−1|T > ti−2} . . . P{T > t1|T > t0}
=

∏

j:tj<ti,δj=1

(

1 − dj

nj

)

.

By counting process notations, �N(t) = N(t) − N(t−) is the number of failures
occurredprecisely at time t.A conventional form for the survival estimate is expressed
as

Ŝ(t) =
∏

s:s≤t

(

1 − �N(s)

Y(s)

)

. (2.14)

It is the nonparametric Kaplan–Meier estimator for the survivor function S(t). If
there are tied failures and T 0

1 < · · · < T 0
m are the distinct, observed failure times, di

is the number of failures at the moment T 0
i and ni = Y(T 0

i ) is the number of subjects
at risk just prior to T 0

i , then the Kaplan–Meier estimator for S(t) (with tied failures)
is

Ŝ(t) =
∏

i:T 0
i ≤t

(

1 − di

ni

)

(2.15)

with a companion estimator for the cumulative hazard:

Λ̂(t) =
∑

i:T 0
i ≤t

di

ni
.
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The effects of tied observations on statistical inference have been studied by
Breslow (1974). It is also known that the Kaplan–Meier estimator is the nonpara-
metric maximum likelihood estimator of the survival function, taken among all
piecewise-constant survivals with jumps at the observed failure times.

2.7 Covariates or Stresses

In reliability and survival analysis, the survival or longevity depends on individual
characteristics of units/subjects. In general, these characteristics are expressed as a
set of explanatory variables (also called stresses or covariates), which are possibly
time-dependent. When we consider a class of flexible or accelerated life regression
models, the lifetime distributions are then related to the covariates. These models
should be well adapted to work with censored data.

The lifespan of an unit is appropriate to be described in terms of covariates and
some of them are called degradation processes. It is evident that covariates can be
internal and external. We suppose that any explanatory variable is given in terms of
deterministic time function

x(·) = (x1(·), . . . , xm(·))T : [0,∞[→ Rm, x(·) ∈ E,

where E is a set of all possible or admissible stresses and xi(·) are scalar functions.
On any set E of admissible stresses, we may consider a class of survival functions,
{Sx(·)(·), x(·) ∈ E}, which could be very rich and considered as being well adapted
to treat the data

(Xi, δi, x(i)(t), 0 ≤ t ≤ τ), x(i) ∈ E, (i = 1, 2, . . . , n),

to give the interesting answers on questions posed by data about our population, etc.
For any stress x(·) ∈ E, it is important to compare the behavior of population

under the condition x(·) with the one under the so-called ideal, standard or normal
condition x0. The main question is: how to connect Sx(·) with Sx0?

Let z(·) and y(·) be two admissible stresses: z(·), y(·) ∈ E. We want to ask if
the stress z(·) is accelerated with respect to the stress y(·). It is known that z(·) is
accelerated with respect to the stress y(·), if

Sz(·)(t) ≤ Sy(·)(t), ∀ t ≥ 0, Sz(·)(·), Sy(·)(·) ∈ {Sx(·)(·), x(·) ∈ E}.
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2.8 Accelerated Life Models

In reliability theory and in the analysis of clinical trials, an important task is to
quantify the prediction of survival and longevity, and to control or improve the
efficiency of different technology and procedures if covariate information can be
well utilized. In many circumstances, the accelerated life models can be used to link
the lifetimes and the covariates.

The term “accelerated life” is used since the change in the value of stress leads to
the change in life condition of an item (or a patient). As a consequence, the changes
may increase or decrease the risk of failure and hence all evolution processes of the
population go more quickly or more slowly. By this sense, we say that the individual
item or patient experiences an accelerated life.

Note that to construct the accelerated life models, first, we have to determine the
impact covariates, and then to understand by which manner they influence the sur-
vivals. That is to say, the accelerated life models take into account the lifespan and
the conditions of subject simultaneously.

2.9 Step-Stresses

Suppose that n items are observed, and the i-th item is tested under the stress x(i)(·).
Let the failures be independently right censored so we have the following form of
right-censored data with covariates:

(Xi, δi, x(i)(t), 0 ≤ t ≤ τ), (i = 1, 2, . . . , n), (2.16)

where τ is the finite time of the experiment. LetE be the set of all possible (admissible)
stresses. If x(·) ∈ E is constant in time we denote x instead of x(·), and E1 is the set of
all admissible (possible) constant covariates, E1 ⊂ E. The mostly used time-varying
stresses in accelerated trials are the step-stresses. If there are several units placed on
test at an initial low stress and they do not fail at a predetermined time t1, the stress
is then increased. If they still do not fail at a predetermined time t2 > t1, the stress
increased once more, and so on. The step-stresses with k steps have the form:

x(u) =

⎧
⎪⎪⎨

⎪⎪⎩

x1, 0 ≤ u < t1,
x2, t1 ≤ u < t2,
· · · · · ·
xk, tk−1 ≤ u < tk, tk ≤ ∞,

(2.17)

where x1, . . . , xk are from E1. The sets of all possible step-stresses with the form
(2.17) are denoted by Ek, Ek ⊂ E. If k = 2, for example, then E2 is a set of step-
stresses of the form
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Fig. 2.4 Increasing
step-stress for the warm
stand-by unit

x(t) = x11{0≤t<t1} + x21{t1≤t}, x1, x2 ∈ E1. (2.18)

In most cases, an individual’s nature characterizes his/her lifespan. The so-called
characteristic is represented by a covariate value. If a set of covariates are well
chosen, the difference in their values and configurations significantly differentiate
the survivals between the patients (individuals) (Figs. 2.4, 2.5, 2.6 and 2.7).

Remark. On classification of stresses.
In accelerated life testing, the most used types of stresses are (see Nelson 1990):

Fig. 2.5 Stress x = 5 is a constant in time, x ∈ E1, m = 1
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Fig. 2.6 Stress x is an increasing step stress, x ∈ E5, m = 1

Fig. 2.7 Degradation process

1. Constant in time stress.
2. Step-stress: a specimen is subjected to successively higher levels of stress. At

first, it is subjected to a specified constant stress for a specified length of time. If
it does not fail, it is subjected to a higher stress level for a specified time, and so
on.

3. Progressive stress: a specimen undergoes a continuously increasing level of stress.
The most common case—Linearly increasing stress.

4. Cyclic stress.
5. Random stress.
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The most common case is when the stress is unidimensional, for example high
temperature, voltage, but more then one accelerating stresses may be used.

In survival analysis the covariate x is a vector, components of which correspond
to various characteristics influencing lifetime of individuals such as methods of cure
or operation, quantities or types of remedies, environment, interior characteristics as
blood pressure, sex, etc. These factors can be as constant as nonconstant in time.

2.10 Transformation of the Time Under Covariates

It can be expected that the survivals and hazard rate functions depend on the covari-
ates as well as on the data history. If the history of one patient is described by the
deterministic covariate x(·), x(·) ∈ E, and T = Tx(·) is the time-to-failure under the
stress x(·), then the survival and cumulative distribution functions are

Sx(·)(t) = P {T ≥ t | x(s) : 0 ≤ s ≤ t} , t ≥ 0,

and
Fx(·)(t) = P {T < t | x(s) : 0 ≤ s ≤ t} , t ≥ 0, (2.19)

respectively. The hazard rate function under x(·) is

λx(·)(t) = lim
h↓0

1

h
P{Tx(·) ∈ [t, t + h)|Tx(·) ≥ t} = −S′

x(·)(t)
Sx(·)(t)

, t ≥ 0,

and the cumulative hazards function is

Λx(·)(t) =
∫ t

0
λx(·)(u)du = − ln

{
Sx(·)(t)

}
, x(·) ∈ E, t ≥ 0.

From these expressions, one can see the dependence of these functions on the life-
history up to time t. If the explanatory variable is a random process X(t), t > 0, and
TX(·) is the nonnegative failure time under X(·) then we denote by

Sx(·)(t) = P{TX(·) ≥ t|X(s) = x(s), 0 ≤ s ≤ t},

λx(·)(t) = −S′
x(·)(t)

Sx(·)(t)
and Λx(·)(t) = − ln

{
Sx(·)(t)

}

the conditional survival, hazard rate, and cumulative hazard functions, respectively.
The definition of “models” should be understood in terms of these conditional func-
tions.
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The time-to-failure T = Tx(·) could be called the resource of the item; the item
failed since its resource was used. But the notion of resource should not depend on
x(·). Let us consider the Smirnov’s transformation of the time-to-failure T = Tx(·) :

R = Λx(·)(Tx(·)),

where Λx(·)(·) is the cumulative hazard rate of T under stress x(·). It is easy to verify
that under any x(·) the statistic R has the standard exponential distribution with the
survival function SR(·) :

SR(t) = P{R ≥ t} = e−t, t ≥ 0, x(·) ∈ E, (2.20)

inwhich there is no phenomena of aging. StatisticR takes values in the interval [0,∞)

and does not depend on x(·). In a sense, we can say that the standard exponential
distribution plays the same role in survival analysis and reliability as the uniform
distribution on [0, 1] in the theory of probability. We also note that

Tx(·) = t if and only if R = Λx(·)(t).

For all x(·), the moment t for items working under the stress x(·) is equivalent to
the moment Λx(·)(t) for items working in conditions when the time-to-failure has
the standard exponential distribution. So the number Λx(·)(t) ∈ [0,∞) is called the
exponential resource used until the moment t under the stress x(·). The concrete item
which failed at the moment t under the stress x(·) used Λx(·)(t) of the resource until
this moment.

Instead of the exponential resource a statistician can define a resource with any
probability distribution, so we can consider a whole class of resource. Suppose thatG
is the same fixed survival function, strictly decreasing and continuous on [0,∞) and
H = G−1 is the inverse function of G. The survival function of the random variable

RG = f G
x(·)(Tx(·)) = H(Sx(·)(Tx(·))), x(·) ∈ E, (2.21)

is G and does not depend on x(·). The statistic RG is called the G-resource and the
number f G

x(·)(Tx(·)) is called the G-resource used till the moment t.
In the particular case, when G = Sx0 is the survival function under the normal,

standard, or usual stress x0 the moment t under the stress x(·) is equivalent to the

moment f
Sx0

x(·) (t) under the normal stress x0 for all x(·) ∈ E.
Denote λx0(·)(·) the hazards rate function under the so-called standard stress

x0(·). It is the mortality rate under the normal conditions corresponding to a stress
x0(·) ∈ E. We shall use the notations Sx0 and Λx0 for the survival and cumulative
hazards functions of T under x0(·). Often x0 = x0(·) denotes a constant stress.

In order to organize a more informative and efficient comparison for clinical
trials done under different covariates and treatments, for example, one have to con-



2.10 Transformation of the Time Under Covariates 31

sider which model is more suitable to the endpoint analysis. In some situations, the
main interest of clinicians is to translate (or link) the p-values between trials. The
equipercentile equating method (based on equating the p-values) gives a possibil-
ity of making decision about the homogeneity or heterogeneity between groups of
patients, or about the effectiveness of two considered treatments, etc. In survival
analysis, reliability, psychology, and health related quality-of-life researches, this
method provides possibilities of incorporating different covariates and using the so-
called flexible regression models which are suitable for the analysis under dynamic
environments. See, for example, Bagdonavicius (1978), Bagdonavicius and Nikulin
(1994, 1995, 1998), Kolen and Brennan (2004), Martinussen and Scheike (2006).

A test system with time f
Sx0

x(·) (t) under the normal stress x0 = x0(·) is said to be
equivalent to another system with time t under the stress x(·), if the probability that
a unit used under the stress x(·)would survive till the moment t is equal to the proba-
bility that a unit used under the stress x0 would survive till themoment fx(·)(t). That is,

Sx(·)(t) = P{T > t|x(s) : 0 ≤ s ≤ t}
= P{T > fx(·)(t)|x0(s) : 0 ≤ s ≤ fx(·)(t)} = Sx0(fx(·)(t)), (2.22)

in which for any time t and any stress x(·) ∈ E we have

fx(·)(t) = f
Sx0

x(·) (t) = S−1
x0

(
Sx(·)(t)

)
, x(·) ∈ E. (2.23)

The Eqs. (2.22) and (2.23) show that to construct one family (model) {Sx(·), x ∈ E}we
may apply the baseline survival function Sx0 and the transferable (linking) functional
(Fig. 2.8)

fx(·)(·) : E × [0,∞) → [0,∞).

The value fx(·)(t) is called the resource used till the moment t under the stress x(·).

Fig. 2.8 Transfer functional
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In more general case, we suppose that G is an arbitrary survival function on
[0, ∞), such that G−1 = H exists. For any covariate x(·) from E at any moment t,
we may compare the values G(t) and Sx(·)(t) by equating Sx(·) and G as

Sx(·)(t) = G(fx(·)(t)), (2.24)

with fx(·)(0) = 0, and Sx(·)(t) = P{Tx(·) ≥ t}. We obtain the equipercentile equation

fx(·)(t) = f G
x(·)(t) = G−1

(
Sx(·)(t)

) = H
(
Sx(·)(t)

)
, x(·) ∈ E. (2.25)

The functional fx(·)(t) : E × [0,∞) → [0,∞) is called the transfer functional (Bag-
donavicius and Nikulin 1995) or the equipercentile transfer functional (El Fassi et al.
2009).

It is evident that the equipercentile functional is monotone increasing in t for any
fixed x(·), and

fx(·)(t) → ∞, when t → ∞.

The survival function of the statistic

RG = G−1
(
Sx(·)(Tx(·))

) = H
(
Sx(·)(Tx(·))

) = f G
x(·)(Tx(·)) (2.26)

is G and does not depend on x(·). The random variable RG is called the G-resource
(Sx0(·)-resource) or simply the resource, and the number f G

x(·)(t) is called the G-
resource used until time t under the stress x(·). It represents the effect of covariate
on the lifespan. Accelerated life or flexible models can be formulated by the speci-
fication of resource usage, or more exactly in terms of the rate of resource using at
any time t:

∂fx(·)(t)
∂t

, x(·) ∈ E. (2.27)

The models of accelerated life will be formulated in dependence on the way of
resource using. Note that different resource can have different way of using. This is
the cause of considering a whole class of resources. For more about the model con-
struction in accelerated experiments, seeBagdonavičius andNikulin (1995, 2001a, b)

Example (AFT model). Suppose that for a given family {Sx(·), x(·) ∈ E} there exist
a positive survival function G on [0,+∞) having H = G−1 and a positive function
r : E → R1 such that for any x(·) ∈ E

Sx(·)(t) = G

(∫ t

0
r [x(s)] ds

)

, x(·) ∈ E. (2.28)

From (2.26) and (2.28) it follows that the G-resource and the G-resource used till the
moment t under stress x(·) are
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R = RG =
∫ Tx(·)

0
r(x(s))ds and f G

x(·)(t) =
∫ t

0
r(x(s))ds. (2.29)

Taking derivative of f G
x(·)(t) with respect to t, we obtain the AFT model on E in terms

of the G-resource by the next formula:

∂fx(·)(t)
∂t

= r(x(t)), with fx(·)(0) = 0.

That is, the rate of G-resource using at any time t depends only on the value x(t) of
the stress x(·) at this moment t, then this family represents the famous AFT model.
From (2.25) and under the AFT model, any survival function Sx(·) from a considered
family is expressed in terms of the baseline survival function G and r by (2.28).

The AFT model is widely used and studied in accelerated trails. It can be con-
sidered as parametric, semiparametric, or nonparametric. For parametric models
used in accelerated life testing, see Meeker and Escobar (1998), Bagdonavicius and
Nikulin (2001), Bagdonavicius et al. (2002), Mann et al. (1974), etc. In this case,
the function G is taken from some class of distributions as Generalized Weibull,
Weibull, log-normal, log-logistic, etc. Semiparametric analysis of AFT model when
r is parametrized was considered by Bagdonavicius and Nikulin (1998, 2001), Ying
(1993), Shaked and Singpurwalla (1983), etc. Nonparametric estimation when r is
not parametrized was considered by Bagdonavicius and Nikulin (1997, 1998, 2000).

The AFT model is also known as the Additive Accumulation of Damage model,
(AAD), which was proposed by Bagdonavicius (1978). See also Cox and Oakes
(1984).

Bagdonavicius and Nikulin (1994, 1995, 1998, 2001) proposed several classes
of accelerated life models with time-dependent stresses in terms of resource usage
rate (2.27). These models can be practically used if a concrete form of the functional
fx(·)(·) is assumed, that is, if an accelerated life model relating failure time to stress
is given.

Before our elucidation on the Cox PH model in the next section, it is worth not-
ing that conventional survival models (including the proportional hazards model)
do not design the “dynamic” modeling automatically in model formulation. To
some extent, dynamics means that some covariate(s) has different “effect” at dif-
ferent times. This may induce a consideration of varying-coefficient Cox model
(Martinussen and Scheike 2006). On the other hand, “dynamics” may originate from
an intrinsic mechanism; which is modeled through an adequate description on the
“data history.” In epidemiologic studies, however, it is not always possible to capture
all covariates that have dynamic influence; and, it is not possible that one can foresee
which covariate(s) possess a dynamic effect, or a cumulative (or summing) effect. In
such cases, modeling the hazard rates (at time t) through a set of covariates as well
as through the cumulative hazards just before time t (t−) is a natural consideration.
In the sequel, we also discuss several models that have a “dynamic” meaning.



Chapter 3
The Cox Proportional Hazards Model

The proportional hazards (PH) or Cox model holds on E , if the hazard rate has the
form

λx(·)(t) = r{x(t)} λ0(t), x(·) ∈ E, (3.1)

where λ0(·) is an unspecified baseline hazard rate function, and r(·) is a positive
function on E . The function r(·) explains the summing effect of all xi (·) on the
distribution of T . If r is unknown it is a nonparametric model. In most applications
the function r is parameterized in the form

r(x) = exp{βT x},

where β = (β1, . . . , βm)T is the vector of regression parameters. Under this pa-
rameterization we obtain the classical semiparametric Cox model on E with time-
dependent covariables:

λx(·)(t) = eβT x(t)λ0(t), x(·) ∈ E . (3.2)

If λ0(·) is further taken from some parametric family of hazard rates (the Weibull
family, for example), then we have a parametric model. The following example il-
lustrates that the parametric Weibull family fulfills the setting of Cox model with
covariates.

Example: Parametric example of Cox’s model
Consider a class of Weibull distributions indexed by a set of covariates X =
(X1, . . . , X p)

T : let TX be distributed as Weibull with survival function

STX(t) = P{TX ≥ t} = exp(−a∗tb).

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-49332-8_3
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Here the scale parameter a∗ is modeled as exp(β0 + βT X) with

βT X = β1X1 + · · · + βp X p.

Then the cumulative hazard

ΛTX(t) = exp(βT X)(atb)

for a = exp(β0). By this expression, the Weibull family has the structure of Cox PH
model:λ(t; X) = λ0(t) exp(βT X) if the baseline hazardλ0(t) equals toabtb−1 (or the
baseline cumulative hazard Λ0(t) = atb). An example for the analysis of Stanford
Heart Transplant (SHT) data using Weibull regression is presented in Sect. 3.5 to
compare with the estimation of Cox model.

Note that in this example the shape parameter b is a fixed and unknown positive
constant. If it is further modeled as b = exp(γ T X) for a set of parameters γ =
(γ1, . . . , γp)

T , then we have the so-called heteroscedastic hazards regression (HHR)
model proposed by Hsieh (2001). See Sect. 5.4 for further details. ♣

The PH model is mostly applied for analysis of survival data but the statisticians
working in reliability are very cautious to use it, especially for analysis of accelerated
life testing data. It can be explained by the fact that the PH model has one unnatural
property: the conditional probability to fail in a time interval (t, t + s) given that
a unit is functioning at the moment t depends only on the values of the stress (or
covariable) x(·) in that interval but does not depend on the values of the stress until
the moment t :

P(T ≤ t + s | T > t) = 1 − exp

{

−
∫ t+s

t
eβT x(u)dΛ0(u)

}

,

here T is failure time, λ0 is the baseline hazard function which does not depend
on stress. For this reason we can say that PH model has the property of absence of
memory.

The common sense says that if a unit functioned in high stress conditions, it used
a large amount of resource and is “older” than a unit which functioned in mild stress
conditions at the same time t . So the conditional probabilities of failure after the
moment t should be different for those two units. More exactly, the proportional
hazards model suppose that the ratio of resource using at the moment t depends only
on values of covariates at this moment and does not depend on resources used until
this moment.

Let x1 and x2 be two constant stresses, x1, x2 ∈ E1, and x(·) ∈ E2 is a simple
step stress of the form

x(t) =
{

x1, if t < t1
x2, if t ≥ t1,

(3.3)

http://dx.doi.org/10.1007/978-3-662-49332-8_3
http://dx.doi.org/10.1007/978-3-662-49332-8_5
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then for all t ≥ t1
λx(·)(t) = λx2(t).

If x1 is some accelerated stress with respect to the “normal” stress x2, the resource
Λx(·)(t1) used until the moment t1 under the stress x(·) is larger than the resource
used till the moment t1 under the stress x2. Nevertheless, the proportional hazards
model states that the rate of resource using is the same after the moment t1. If, for
example, individuals are aging, it is not very natural. The hazard rate of individuals
who used more of the resource would be higher after the moment t1. So we need a
generalization of the model which includes dependence of the rate of resource using
on the used resource.

Nevertheless, in survival analysis the PHmodel usually works quite well, because
the values of covariates under which estimation of survival is needed are in the range
of covariate values used in experiments. In epidemiologic studies, cumulative effect
of some variable(s) up to moment t can be naturally created in case the data history
is known.

So, using a simple model (which could be not very exact) often is preferable
than using a more complicated model. The case is similar to the classical linear
regression models: the mean of the dependent variable is rarely a linear function
of the independent variables but the linear approximation works reasonably well in
some range of independent variable values.

3.1 Some Properties of the Cox Model on E1

From (3.1), λx (t) = r(x) λ0(t), x ∈ E1, it follows that for any constant in time
stress x ∈ E1 the corresponding survival function Sx has the form :

Sx (t) = Sr(x)
0 (t) = exp{−r(x)Λ0(t)}, x ∈ E1,

where
S0(t) = e−Λ0(t)

and

Λ0(t) =
∫ t

0
λ0(s)ds

are the baseline survival and cumulative hazards functions.
It is evident that

Λ0(t) = − ln S0(t),

and for any x
Λx (t) = − ln Sx (t), x ∈ E1.
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Note that for any x0 ∈ E1 the Cox model implies

λx (t) = ρ(x0, x)λx0(t), Λx (t) = ρ(x0, x)Λx0(t)

and
Sx (t) = Sρ(x0,x)

x0 (t),

where

ρ(x0, x) = r(x)

r(x0)
.

Under thePHmodel on E1, the hazard ratio H R(t, x0, x)betweendifferent covariates
x and x0 is constant over time:

HR(t, x0, x) = ρ(x0, x).

From the definition of the PH model on E , we have

Λx(·)(t) =
∫ t

0
r(x(u))dΛ0(u)

and

Sx(·)(t) = exp

{

−
∫ t

0
r(x(u))dΛ0(u)

}

.

3.1.1 Tampered Failure Time Model

Now we are able to give several important properties of PH model for simple step-
stresses x(·) ∈ E2.

Let x(·) has the form given by (3.3). Then it is easy to show that under PH model
for any x(·) ∈ E2

λx(·)(t) =
{

λx1(t), 0 ≤ t < t1,
λx2(t), t ≥ t1,

=
{

r(x1)λ0(t), 0 ≤ t < t1,
r(x2)λ0(t), t ≥ t1.

From this, for any x0 ∈ E1, we have

λx(·)(t) =
{

ρ(x0, x1)λx0(t), 0 ≤ t < t1
ρ(x0, x2)λx0(t), t ≥ t1.
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Taking x0 = x1 we also have

λx(·)(t) =
{

λx1(t), 0 ≤ t < t1,
ρ(x1, x2)λx1(t), t ≥ t1.

By the same manner,

Sx(·)(t) =
{

Sx1(t), 0 ≤ t < t1,

Sx1(t1)
Sx2 (t)
Sx2 (t1)

, t ≥ t1.

=
⎧
⎨

⎩

Sr(x1)
0 (t), 0 ≤ t < t1,

Sr(x1)
0 (t1)

(
S0(t)
S0(t1)

)r(x2)
, t ≥ t1.

And, for any x0 ∈ E1,

Sx(·)(t) =
⎧
⎨

⎩

Sρ(x0,x1)
x0 (t), 0 ≤ t < t1,

Sρ(x0,x1)
x0 (t1)

(
Sx0 (t)
Sx0 (t1)

)ρ(x0,x2)
, t ≥ t1.

Taking x0 = x1 we then obtain

Sx(·)(t) =
{

Sx1(t), 0 ≤ t < t1,

Sx1(t1)
(

Sx1 (t)
Sx1 (t1)

)ρ(x1,x2)
, t ≥ t1.

The Cox model on E2 for simple step-stresses of the form (3.3) is known as the
tampered failure rate (TFR) model (Bhattacharyya and Stoejoeti 1989); see also
Bagdonavicius et al. (2002).

3.1.2 Model GM

Let us consider the so-called model GM (Generalized Multiplicative) proposed by
Bagdonavicius and Nikulin (1995), which generalizes a little the PH model on E .
We suppose that there exist a positive function r on E and a survival function S0
such that for all x(·) ∈ E

∂ f G
x(·)(t)
∂t

= r [x(t)]∂ f G
0 (t)

∂t

with the initial conditions

f G
x(·)(0) = f G

0 (0) = 0, where f G
0 (t) = H(S0(t)), x(·) ∈ E .
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We call S0 the baseline survival function. The GM model means that the rate of
resource using at the moment t is proportional to some baseline rate. The propor-
tionality constant is a function of the stress applied at t .

Taking any two stresses x(·) and y(·) from E we obtain from the definition of the
Model GM

∂ f G
x(·)(t)
∂t

/
∂ f G

y(·)(t)
∂t

= r [x(t)]/r [y(t)],

in which one can see that the ratio of resources using at the moment t depends only
on the stresses x(t) and y(t). The definition of the model GM implies

Sx(·)(t) = G

(∫ t

0
r [x(τ )]d H(S0(τ ))

)

, x(·) ∈ E .

where H = G−1. Note that if x(t) ≡ x = const , the G M model implies

Sx(·)(t) = G(r(x)H(S0(t))), x ∈ E1.

Consider some submodels of GM with G specified. If the distribution of the
resource RG is exponential,

G(t) = e−t , t ≥ 0,

then under the exponential resource we have

H = G−1, H(p) = −ln(p), 0 < p < 1,

and
H(S0(t)) = −lnS0(t) = Λ0(t),

f G
x(·)(t) = H(Sx(·)(t)) = −lnSx(·)(t) = Λx(·)(t) =

∫ t

0
r(x(s))dΛ0(s), x(·) ∈ E .

In this case we obtain the Cox model since

∂ f G
x(·)(t)
∂t

= λx(·)(t), x(·) ∈ E,

i.e., the rate of resource using is the hazards rate, and in this case the GM model can
be presented by the next way:

λx(·)(t) = r(x(t))λ0(t), x(·) ∈ E .
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It is the PH model of Cox on E, given by (3.1).

If the distribution of the resource is log-logistic,

G(t) = 1

1 + t
, t ≥ 0,

then the GM model can be formulated as

λx(·)(t)
Sx(·)(t)

= r(x(t))
λ0(t)

S0(t)
, x(·) ∈ E .

If the stresses are constant in time then we obtain a simple expression on E1:

1

Sx (t)
− 1 = r(x)

(
1

S0(t)
− 1

)

, x ∈ E1.

It is the analogue of logistic regression model used for the analysis of dichotomous
outcomes when the probability of success depends on some factors. The model given
here is close to the Cox model when t is small. It could be useful in practice when
the constructed Cox model is not in accordance with the data for small t .

We consider the case when the resource is lognormal,

G(t) = Φ(ln t), t ≥ 0,

where Φ is the distribution function of the standard normal law. If covariates are
constant in time then in terms of survival functions the model GM can be written as

Φ−1(Sx (t)) = ln r(x) + Φ−1(S0(t)), x ∈ E1.

It is the famous generalized probit model, see Dabrowska and Doksum (1988).

3.2 Some Simple Examples of Alternatives for the PH
Models

Although the PH model works well in many studies, there exist situations when the
proportional hazards assumption is not feasible; in particular, when the hazards ratio
under different fixed covariates is not constant in time (say, monotone), or when
the survivor functions under different stresses intersect, etc. Here are some simple
models that could be considered as applicable alternatives to the Cox PH model.
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Example 1. Additive Hazard models
The additive hazard (AH) model holds on E if the hazard rate under a covariate x(·)
is given by

λx(·)(t) = λ0(t) + a (x(t)) , x(·) ∈ E .

This model is nonparametric if λ0(·) and a(·) are unknown functions. The AHmodel
also has the absence of memory property as the Cox model, since the value λx(·)(t)
of the hazard rate function λx(·)(·) at the moment t does not depend on the values
x(s) for 0 < s < t . That is, the value of the hazard rate function λx(·)(·) does not
depend on the history.

The AH model looks very simple on E1:

λx(t) = λ0(t) + a(x), x ∈ E1.

The differences of hazard rates for different covariates x, y ∈ E1 does not depend
on the baseline function λ0(·) and t :

λx (t) − λy(t) = a(x) − a(y), x, y ∈ E1.

The function a(·) is often parameterized as

a(x) = βT x, β = (β1, . . . , βm)T .

In this case we have the classical semiparametric AH regression model on E :

λx(·)(t) = λ0(t) + βT x(t), x(·) ∈ E,

which is also known as the McKeague–Sasieni model (1994). Application of this
model is still restrictive because it does not take into account the history represented
by the covariate x(·). For semiparametric analysis of McKeague–Sasieni model, one
can refer to Lin and Ying (1994) and Martinussen and Scheike (2006).

Example 2. Model of Lin and Ying
The PH and AH models are special cases of the so-called additive–multiplicative
hazard (AMH) model on E (Lin and Ying 1996):

λx(·)(t) = βT x(t)λ0(t) + γ T x(t), x(·) ∈ E,

where γ = (γ1, . . . , γm)T . Hereafter, it is called the Lin–Ying model. From this
formula one can see that Lin–Yingmodel also has the property of absence ofmemory.

Example 3. Aalen’s additive risk (AAR) model
A different version of the AH model on E1 was proposed earlier by Aalen (1980).
According to the Aalen’s model on E1
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λx (t) = xT λ0(t), x ∈ E,

where λ0(t) = (λ01(t), . . . , λ0m(t))T is an unknown vector baseline hazard func-
tion, which permits the effects (contribution) of each covariate xi to be functions of
time. Combining the two models (Lin–Ying and AAR) give the well-known partly
parametric additive risk (PPAR) model of McKeague and Sasieni (1994):

λx(t) = yT λ0(t) + βT z, x(·) ∈ E1,

where
λ0(t) = (λ01(t), . . . , λ0p(t))

T , β = (β1, . . . , βq)
T ,

and
y = (x11 , . . . x1p )

T and z = (x21 , . . . , x2q )
T

are p and q dimensional subvectors (p ≤ m, q ≤ m) of the covariate x =
(x1, . . . , xm)T .

In general all models considered here are semiparametric, but one can easily
parameterize these models as what could be done on the PH model.

3.3 Partial Likelihood Estimation

Consider the set of right-censored data:

Ti = min(T ∗
i , Ci ), and δi = 1{T ∗

i ≤Ci }

where T ∗
i and Ci are survival and censoring times, respectively, associated with

the i th individual, and Xi (t) is the time-dependent covariate vector. Let ti be the
realization of Ti . Without loss of generality, we assume t1 < · · · < tn when there are
no ties. The partial likelihood proposed by Cox (1972, 1975) is

L p =
∏

i

{
eβT Xi (ti )

∑
j Y j (ti )eβT X j (ti )

}δi

. (3.4)

Taking partial derivative of log{L p} with respect to β, we have the following score
function:

U (β) =
∑

i

{

Xi (ti ) −
∑

j Y j (ti )X j (ti )eβT X j (ti )

∑
j Y j (ti )eβT X j (ti )

}δi

. (3.5)

Note that, in (3.5), β, U (β), and X (·) are all p-dimensional vectors. Setting U (β) =
0 and using iterative scheme for numerical calculation, we can solve β̂ such that
U (β̂) = 0. For a column vector u, u⊗2 = u · uT . Further define
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S(0)(β, t) = 1

n

∑

i

Yi (t) exp(β
T Xi (t)) (3.6)

S(1)(β, t) = 1

n

∑

i

Yi (t)Xi (t) exp(β
T Xi (t)) (3.7)

S(2)(β, t) = 1

n

∑

i

Yi (t)Xi (t)
⊗2 exp(βT Xi (t)) and (3.8)

V (β, t) = S(2)(β, t)

S(0)(β, t)
−

{
S(1)(β, t)

S(0)(β, t)

}⊗2

. (3.9)

Under suitable regularity conditions (Tsiatis 1981; Andersen et al. 1993), large sam-
ple properties of β̂ can be obtained. In brief, one can show that β̂ is consistent and
asymptotic normal:

β̂ →p β,
√

n(β̂ − β) →d N
(
0,Σ−1

β

)
. (3.10)

The inverse of the asymptotic variance

Σ =
∫ τ

0
v(β, t)s(0)(β, t)λ0(t)dt,

where the integration is taken over the entire observational time interval (0, τ ), and
v(β, t), s(0)(β, t), s(1)(β, t), and s(2)(β, t) are the asymptotic limits of

V (β, t), S(0)(β, t), S(1)(β, t) and S(2)(β, t),

respectively.
Based on the partial likelihood estimation, the PH analysis has the merits of easy

implementation, semiparametric efficient, nice interpretation in hazard ratio, and
readily available packages in various statistical softwares (such as SAS, S-plus, R,
SPSS, etc.)

3.3.1 Breslow Estimator for the Baseline Cumulative Hazard
Function

Once β̂ has been obtained, the baseline cumulative hazard can be estimated by

Λ̂0(t) =
n∑

i=1

∫ t

0

d Ni (u)
∑

j Y j (ti ) exp{β̂T Z j (ti )} .
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It is called the Breslow estimator of Λ0(t) (Breslow 1974). It has been argued that,
profiled on β̂, the estimator Λ̂0(t) is the MLE for the full likelihood L(β,Λ0);
moreover, L p(β) = maxΛ0(·) L(β,Λ0) (Johansen 1983; Andersen et al. 1993).

3.3.2 The Stanford Heart Transplant Data as an Example

For the StanfordHeart Transplant (SHT) data introduced in Example 1 of Chap.1, see
Wu and Hsieh (2009) for more explorations. A complete data with 154 observations
are used here to implement the conventional PH analysis and compared with the
parametricWeibull regressionmentioned previously. One can see from the following
table that relevant parameter estimates are quite close for the two analysis.

Cox model Weibull regression
Variable Parameter (×10−2) (p-value) Parameter (×10−2) (p-value)
Age −12.51(0.0227) −13.34(0.0154)
Age2 0.20(0.0050) 0.22(0.0028)
Mismatch score 13.71(0.4548) 14.79(0.4200)

The above Weibull regression has the baseline estimate ât b̂, â = 0.06119, and
b̂ = 0.5976. Comparison for the baseline cumulative hazards for the two models
(Cox and Weibull) are shown in Fig. 3.1. It exhibits a lower (smaller) estimate for
the baseline cumulative hazard using the Cox regression than the parametric Weibull
regression.

days

0 500 1000 1500 2000 2500 3000

0
2

4
6

8

Weibull

Fig. 3.1 Comparison of baselines: Cox (PH) versus Weibull

http://dx.doi.org/10.1007/978-3-662-49332-8_1
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3.4 Log-Rank Test and Robust Tests for Treatment Effect

3.4.1 Log-Rank Test and Weighted Log-Rank Test

For the ordered failured times t(1) < · · · < t(k), let Z = 1 codes for the treatment
group and Z = 0 for the control group. Assume that there are di failures observed
at t(i), then a 2 × 2 contingency table is formed as

Died Survived Total
Z = 1 d1i Y1i − d1i Y1i
Z = 0 d0i Y0i − d0i Y0i
total di Yi − di Yi

Here Y1i and Y0i are the at-risk number of the group Z = i (i = 1, 0) with
Yi = Y1i + Y0i , and d1i and d0i are, respectively, the number of failures observed
at t(i). Conditional on the marginal totals, the random variable d1i is distributed as a
hypergeometric distribution with mean and variance:

E(d1i ) = di
Y1i

Yi
,

V ar(d1i ) = di
Y1i Y0i (Yi − di )

Y 2
i (Yi − 1)

.

By this setting, a series of “correlated” 2× 2 tables are formed. However, if the data
history satisfies the requirement of increasing σ -algebras (a filtration; Sect. 2.3),
then the martingale central limit theorem can be applied so that

TL R =
{∑k

i=1(d1i − E(d1i ))
}2

∑k
i=1 V ar(d1i )

(3.11)

has asymptotically a χ2
1 distribution. If there are no ties, then di = 1. The log-rank

statistic (Mantel 1966; Peto 1972) can be simplified as

TL R =
{∑k

i=1(d1i − d̄1i )
}2

∑k
i=1 d̄1i (1 − d̄1i )

, (3.12)

where d̄1i = Y1i/Yi is the sample mean of the indicators of treatment group. A class
of predictable weight processesK (t) can be imposed to produce weighted log-rank
tests (Klein and Moeschberger 1997):

http://dx.doi.org/10.1007/978-3-662-49332-8_2
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TL R =
{∑k

i=1 K (t(i))(d1i − E(d1i ))
}2

∑k
i=1 K

2(t(i))V ar(d1i )
. (3.13)

See Sect. 7.3 for more details for the selection of K (t). It is easy practice to derive
the log-rank test as a score test under the proportional hazards model and using the
partial likelihood if there are no covariates and the only explanatory variable is the
treatment indicator.

3.4.2 Robust Inference: Preliminary

The Cox model (Cox 1972) is the most popular model used in survival analysis for
epidemiological data, clinical studies, and many other fields. When there could be
model misspecification, robust inferential procedures should be considered. Model
misspecification involves several aspects: First, some observations do not actually
respond to the covariate in proportional hazards setting. Second, there could be omit-
ted covariates. And, third, variables may have measurement errors. With the general
concern of model misspecification, Lin and Wei (1989) derived the asymptotic dis-
tribution of the maximum partial likelihood estimator (MPLE) with a sandwich vari-
ance estimator, and proposed robust tests for treatment effect possiblywith covariates
adjustment. The procedures suggested in Lin and Wei (1989) are as follows.

Consider a set of random failure times T ∗
1 , . . . , T ∗

n subject to random right cen-
soring times C1, . . . , Cn . We observe Ti = min(T ∗

i , Ci ) and δi = 1(T ∗
i ≤ Ci ); and

Yi (t) = 1{Ti ≥t} is the “at-risk” process. Let the hazard function associated with a set
of treatment/covariates be

λ(t; Z , X) = λ0(t) exp{φZ + β1X1(t) + · · · + βp X p(t)},

where Z is the indicator of treatment. Denote θ = (φ, β1, . . . , βp)
T = (φ, βT )T ,

X̃(t) = (X1(t), . . . , X p(t))T , and X (t) = (Z , X̃(t)T )T . For individual i , λi (t) =
λ(t; Xi (t)), Xi (t) = (Zi , X̃i (t)T )T . Assume that the treatment is assigned by suitable
random allocation so that Z is reasonably independent of X̃(t). Let l(θ) be the partial
likelihood for the “specified” model and further denote

Hθ = −(1/n)∂2l(θ)/∂θ2 =
(

Hφφ Hφβ

Hβφ Hββ

)

,

Jθ = (1/n)
∑

(Ui (θ)Ui (θ)T ) =
(

Jφφ Jφβ

Jβφ Jββ

)

,

where Ui (θ) = ∂li (θ)/∂θ with li being the contribution from the i th observation to
l(θ);

∑
Ui (θ) = Uθ = (Uφ, U T

β )T , Uφ = ∑
Uiφ, Uβ = ∑

Uiβ .

http://dx.doi.org/10.1007/978-3-662-49332-8_7


48 3 The Cox Proportional Hazards Model

As was discussed by Lin and Wei (1989) for “fully parametric” problems, a
possible robust Wald test for H0 : φ = 0 (means “no treatment effect”) is, on one
hand,

TW 1 = nφ̂2{V̂φφ}−1,

with V̂φφ being the (1, 1)th component of H−1
θ Jθ H−1

θ evaluated at θ̂ = (0, β̂0), where
β̂0 is the restricted MPLE under H0 : φ = 0. On the other hand, a robust score test
can be constructed as

TS 1 = U 2
φ(0, β̂0)

∑{Uiφ(0, β̂0) − Hφβ(0, β̂0)H−1
ββ (0, β̂0)Uiβ(0, β̂0)}2

.

3.4.3 Robust Test with Covariates Adjustment

Lin and Wei’s test based on Cox model

We need the following notations:

S(r)(t) = n−1
∑

i

Yi (t)λi (t)Xi (t)
⊗r , s(r)(t) = E S(r)(t),

S(r)(θ, t) = n−1
∑

i

Yi (t) exp{θT Xi (t)}Xi (t)
⊗r , s(r)(θ, t) = E S(r)(θ, t),

where r = 0, 1, 2 and q⊗2 equals qqT for a column vector q. With possible model
misspecification, assume that there exists a θ∗ satisfying

∫
s(1)(t)dt −

∫
s(1)(θ, t)

s(0)(θ, t)
s(0)(t)dt = 0. (3.14)

It was proved by Lin and Wei that the MPLE θ̂ is consistent and asymptotic normal:

√
n(θ̂ − θ∗) → N (0, H−1

θ J ∗
θ H−1

θ ),

where J ∗
θ can be consistently estimated by Ĵ ∗

θ calculated at θ̂ = (0, β̂0):

Ĵ ∗
θ = 1

n

∑

i

δi

⎧
⎨

⎩

{

Xi (t) − S(1)(θ, ti )

S(0)(θ, ti )

}

−
∑

j

δ j Yi (t j )eθT Xi (t j )

nS(0)(θ, t j )

{

Xi (t j ) − S(1)(θ, t j )

S(0)(θ, t j )

}⎫
⎬

⎭

⊗2

≡ 1

n

∑

i

δiW
⊗2

i , (3.15)
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The term in the big brackets, Wi , can be decomposed as (Wiφ,W T
iβ )T . Based on this

property, Lin and Wei proposed another robust score test:

TLW = U 2
φ(0, β̂0)

∑{Wiφ(0, β̂0) − Hφβ(0, β̂0)H−1
ββ (0, β̂0)Wiβ(0, β̂0)}2

. (3.16)

The condition (3.14) can be easily interpreted as follows. For individual i , let the
hazard of the true model be λi (t) and

λ(t; Zi , Xi (t)) = λ0(t) exp{φZi + β1X1i (t) + · · · + βp X pi (t)},

be the hazard of the working model. For ease of further explorations, assume that
under the true model the estimating equation corresponding to the treatment Z can
be expressed as

∑
δi

{

Zi −
∑

j Y j (ti )λ j (ti )Z j
∑

j Y j (ti )λ j (ti )

}

= 0. (3.17)

For the working model, the estimating equation is

∑
δi

{

Zi −
∑

j Y j (ti ) exp(θT X j (ti ))Z j
∑

j Y j (ti ) exp(θT X j (ti ))

}

= 0. (3.18)

Combining (3.17) and (3.18), we have

1

n

∑
δi

1
n

∑
j Y j (ti )λ j (ti )Z j

1
n

∑
j Y j (ti )λ j (ti )

= 1

n

∑
δi

1
n

∑
j Y j (ti ) exp(θT X j (ti ))Z j

1
n

∑
j Y j (ti ) exp(θT X j (ti ))

. (3.19)

According to the arguments of Tsiatis (1981), the left-hand side of (3.19) converges
in probability to

∫
E

⎛

⎝1

n

∑

j

Y j (t)λ j (t)Z j

⎞

⎠ dt;

and the right-hand side converges to

∫ E
[
1
n

∑
j Y j (t)Z j exp{θT X j (t)}

]

E
[
1
n

∑
j Y j (t) exp{θT X j (t)}

] E

⎛

⎝1

n

∑

j

Y j (t)λ j (t)

⎞

⎠ dt.

Or, using the notations in Lin and Wei’s paper (1989, formula (2.1)), (3.19) implies

http://dx.doi.org/10.1007/978-3-662-49332-8_2
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∫
s(1)(t)dt =

∫
s(1)(θ, t)

s(0)(θ, t)
s(0)(t)dt,

which is exactly (3.14).

An Improvement
Evidently, Lin andWei’s robust variance estimate Ĥ−1

θ Ĵ ∗
θ Ĥ−1

θ can be reexpressed as

1

n

∑
Î Fi Î F

T
i ,

where I Fi = H−1
θ Wi is the influence function and Î Fi is the counterpart when the

involved θ is replaced by its consistent estimate (Reid and Crépeau 1985; Heritier
et al. 2009.) For the purpose of robust estimation, Bednarski (1993) and Minder and
Bednarski (1996) proposed an alternative robust procedure based on the following
weighted partial score:

UW (β) =
∑

i

W (ti , Xi (ti ))

{

Xi (ti ) −
∑

j Y j (ti )W (ti , X j (ti ))X j (ti )eβT X j (ti )

∑
j Y j (ti )W (ti , X j (ti ))eβT X j (ti )

}δi

.

The weight functions appeared at two places have different purposes: for that at
the outer sum, it downweights observations with large t exp (βT X); for the two
weights at the numerator and denominator in the curly brackets, they downweight
observations with large βT X (Minder and Bednarski 1996). Three basic weights can
be used: linear, exponential, and quadratic. We denote the resultant robust estimate
as β̂RE . Let β = (φ, γ ) and if the effects of a subset of the covariates are tested,
say, H0 : φ = 0. Then, using the approach of Bednarski (1993) and Minder and
Bednarski (1996), robust Wald test and score test can be constructed from replacing
the partial score involved in the Lin and Wei’s procedure by its counterpart UW (β)

and the consistent estimate β̂RE . For more details, see Sect. 7.3 of Heritier et al.
(2009).

Kong and Slud’s Test
Assuming independence between Z and the covariates X̃(t), Kong and Slud (1997)
showed that Uφ(0, β̂0) is asymptotically distributed as a zero-mean Gaussian distri-
bution with covariance Σ which can be consistently estimated by

Σ̂ = 1

n

∑

i

δi (W
0

i − W̄ 0)2.

http://dx.doi.org/10.1007/978-3-662-49332-8_7
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In the above expression

W 0
i =

{

Zi −
∑

k ZkYk(ti )∑
k Yk(ti )

}

−
∑

j

δ j Yi (t j )eθT Xi (t j )

nS(0)(θ, t j )

{

Zi −
∑

k ZkYk(t j )∑
k Yk(t j ))

}

calculated at θ̂ = (0, β̂0), and W̄ 0 is the sample mean of W 0
i (i = 1, . . . , n). A

χ2-statistic can then be constructed as

TK S = U 2
φ(0, β̂0)

1
n

∑
i δi

(
W 0

i − W̄ 0
)2 . (3.20)



Chapter 4
The AFT, GPH, LT, Frailty,
and GLPH Models

4.1 AFT Model

Under the covariate x(·) the probability Sx(·)(t) characterizes for any fixed t the
summing effect of covariate values in the interval [0, t] on survival. The equality
Λx(·)(t) = − ln Sx(·)(t) implies that the cumulative hazard also characterizes this
summing effect. So it can be supposed that the hazard rate at any moment t is a
function of the covariate value x(t) and the value of the cumulative hazard Λx(·)(t).

The generalized Sedyakin’s (GS) model on E assumed (Sedyakin 1966)

λx(·)(t) = g
(
x(t),Λx(·)(t)

)
, x(·) ∈ E (4.1)

with g completely unknown. This model is too general to do statistical inference.
However, if we use some regression setting with constant covariates, the form of the
function g can be made more concrete.

Let E1 be a set of constant stresses and E2 be a set of simple step-stresses of the
form

x(t) =
{

x1, if t ≤ t1
x2, if t > t1,

,

where x1, x2 ∈ E1. It is interesting to note that in the GS model the survival function
under the simple step-stress is obtained from the survival functions under the constant
stresses by the rule of time-shift.

One can easily show that, if the GS model holds on E2, then the survival function
and the hazard rate under the stress x(·) ∈ E2 satisfy the equations

Sx(·)(t) =
{

Sx1(t), if 0 ≤ t < t1,
Sx2(t − t1 + t∗

1 ), if t ≥ t1,
,

and

λx(·)(t) =
{

λx1(t), if 0 ≤ t < t1,
λx2(t − t1 + t∗

1 ), if t ≥ t1,
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respectively, where the moment t∗
1 is determined by the next equation

Sx1(t1) = Sx2(t
∗
1 ).

From these equations we obtain the Sedyakin’s model according to which

λx(·)(t1 + s) = λx2(t
∗
1 + s), s ≥ 0.

Suppose that under different constant covariates x ∈ E1 the survival functions differ
only in scale:

Sx (t) = S0 (r(x)t) , x ∈ E1, (4.2)

for some positive r on E1. If the GS model holds on a set E, E ⊃ E1, of covariates,
then (2) holds on E1 if and only if the function g has the form g(x, s) = r(x)q(s)
for some positive q (Fig. 4.1).

So, we obtain the following model:

λx(·)(t) = r{x(t)} q{Λx(·)(t)}, x(·) ∈ E . (4.3)

Using the relation between the survival and the cumulative hazard functions, it is
easy to obtain the so-called AFT (accelerated failure time) model on E according to
which the survival function has the form

Sx(·)(t) = S0

(∫ t

0
r(x(u))du

)

, x(·) ∈ E, (4.4)

Fig. 4.1 Cumulative
distribution function under
Sedykin’s principle for
increasing step-stress from
∈ E2
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where the function S0 does not depend on x(·). The function r changes locally with
time, and is often parameterized as:

r(x) = e−βT x ,

where β = (β1, . . . , βm)T is a vector of unknown regression parameters.
Under the parameterized AFT model the survival function is

Sx(·)(t) = S0

(∫ t

0
e−βT x(u)du

)

, x(·) ∈ E, (4.5)

and the hazard rate is

λx(·)(t) = e−βT x(t) λ0

(∫ t

0
e−βT x(u)du

)

, x(·) ∈ E (4.6)

For constant covariates,

Sx (t) = S0
(

e−βT x t
)

, x ∈ E1.

TheAFTmodel on E1 can also be written as a log-linearmodel or linear transforma-
tion (LT) model, since the logarithm of the failure time Tx under constant covariate
x can be written as

ln{Tx } = βT x + ε, x ∈ E1, (4.7)

where the survival function of the random variable ε does not depend on x and
S(t) = S0(ln t).

In the case of lognormal, the distribution of ε is normal and we have the standard
linear regression model. The equality (4.6) implies that if the survival function under
any constant covariate belongs to parametric families such as Weibull, log-logistic,
and lognormal, then the survival function under any other constant covariate also
belongs to that family. The survival functions under any x1, x2 ∈ E1 are related in
the following way:

Sx2(t) = Sx1{ρ(x1, x2)t}, t > 0,

where

ρ(x1, x2) = r(x2)

r(x1)
.

Using the relations between the GS and AFT models we can find the form of the
survival functions for AFT model under simple step-stresses. Indeed, if the AFT
model holds on E2 then the survival function under any stress x(·) ∈ E2 of the form
(3.3) satisfies the equality

http://dx.doi.org/10.1007/978-3-662-49332-8_3
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Sx(·)(t) =
{

Sx1(t), if 0 ≤ t < t1,
Sx2(t − t1 + t∗

1 ), if t ≥ t1,
,

where

t∗
1 = r(x1)

r(x2)
t.

Different from the PHmodel, theAFTmodel ismostly applied in survival analysis
as a parametric model: the function S0 (or the distribution of ε) is taken from some
parametric class of distributions.

In the case of semiparametric estimation the function S0 is assumed to be com-
pletely unknown and in model (4.5) the regression parameters as well as the function
S0 needs to be estimated. The semiparametric AFT model is much less used in
survival analysis than the Cox’s PH model because of complicated estimation pro-
cedures: modified variants of likelihood functions are not differentiable and even
not continuous functions; the limit covariance matrices of the regression parameters
depend on the derivatives of the probability density functions.

The parametric AFT model is used in failure time regression analysis and accel-
erated life testing. Under special experiment plans even nonparametric estimation
procedures are used. In such a case not only the function S0 but also the function r
in the model (4.4) is assumed to be completely unknown.

TheAFTmodel is a good choicewhen the lifetime distribution class is supposed to
be known. Nevertheless, it is as restrictive as the PH model. The assumption that the
survival distributions under different covariate values differ only in scale is a rather
strong assumption. So more sophisticated models are also needed. For more prop-
erties and different biomedical applications about the AFT model, see Meeker and
Escobar (1998), Bagdonavičius and Nikulin (2002b, c), Dabrowska (2005–2006),
and Martinussen and Scheike (2006).

Remark 1. The PH and AFT models are equivalent on E1 if and only if the failure
time distribution is Weibull for all x ∈ E1.

Remark 2. (Changing shape and scale (CHSS) models)
If a natural generalization of the AFT model (4.4) is obtained, different constant
stresses x influence both scale and shape of a survival distribution (Mann et al.
1974):

Sx (t) = S0

{(
t

σ(x)

)ν(x)
}

,

where σ and ν some positive functions on E1. Generalization of this model to
include time-dependent covariates is the changing shape and scale (CHSS) model,
(Bagdonavičius et al. 1999, 2004):
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Sx(·)(t) = S0

(∫ t

0
r{x(u)}uν(x(u))−1du

)

. (4.8)

In this model the variation of stress changes locally not only the scale but also the
shape of distribution.

In terms of the default rate functions the model can be written in the form:

λx(·)(t) = r{x(t)} q(Λx(·)(t)) tν(x(t))−1, (4.9)

where q(u) = λ0(Λ
−1
0 (u)), Λ0(t) = − ln S0(t), λ0(t) = A′

0(t). If ν(x) ≡ 1 then the
model coincides with the AFT model with r(x) = 1/σ(x). The CHSS model is not
in the class of the GPH models (Chap.4) because the third factor at the right of the
formula (4.9) depends not only on t but also on x(t).

The CHSS model is parametric, if S0 is taken from some parametric class of
survival functions and the functions r and ν are parameterized; for example, tak-
ing r(x) = eβT x , ν(x) = eγ x . The model is semiparametric if the function S0 is
considered as unknown and the functions r and ν are parameterized as:

λx(·)(t) = eβT x(t) q(Λx(·)(t)) texp{γ
T x(t)}−1. (4.10)

For various classes of S0 the CHSS model includes cross-effect of survival func-
tions under constant covariates. For example, if the survival distribution under con-
stant covariates is Weibull or log-logistic, there exists cross-effects.

Parametric analysis can be done by using the method of maximum likelihood. If
semiparametric analysis is considered, the estimation procedure is more complicated
because the same problems as in the case of AFT semiparametric model arise: mod-
ified variants of likelihood functions are not differentiable and even not continuous
functions, the limit covariance matrices of the normed regression parameters depend
on the derivatives of the probability density functions.

For more about the PH model and its relations with other models, see Bagdon-
avicius and Nikulin (2002).

4.2 The GPH Models

The AFT and PH models are rather restrictive. Under the PH model, lifetime distri-
butions with constant covariates are from a narrow class of distributions: the ratio
of hazard rates (or simply hazard ratio, abbreviated as “HR”) with respect to any
two different constant covariates is constant over time. Under the AFT model the
covariate changes (locally, if the covariate is not constant) only the scale.

On the other hand, the generalized proportional hazards (GPH) model on E ,
proposed by Bagdonavičius and Nikulin (1995,1997a, b,1999), allows the hazard
ratio associated with two constant covariates to be time-dependent. They include
AFT and PH models as special cases.

http://dx.doi.org/10.1007/978-3-662-49332-8_4
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The survival function Sx(·)(t) (or, equivalently, the cumulative hazard function
Λx(·)(t)) characterizes the summing effect of covariate values in the interval [0, t]
on survival. So it is reasonable to assume that the hazard rate at any moment t is
proportional to a function of the covariate applied at this moment, to a baseline
rate, and to a function of the probability of survival until t (or, equivalently, to the
cumulative hazard at t):

λx(·)(t) = r{x(t)} q{Λx(·)(t)} λ0(t), x(·) ∈ E . (4.11)

We call model (4.11) the generalized proportional hazards (GPH) model, see
Bagdonavičius and Nikulin (1999), Dabrowska (2005–2007), Martinussen and
Scheike (2006). The GPH model includes as special examples the PH model
(q(u) ≡ 1) and the AFT model (λ0(t) ≡ λ0 = const).

Under the GPH model on E the survival functions Sx(·) have the form

Sx(·)(t) = G

{∫ t

0
r(x(τ ))dΛ0(t)

}

, x(·) ∈ E, (4.12)

where

Λ0(t) =
∫ t

0
λ0(u)du, G = H−1, H(u) =

∫ − ln u

0

dv

q(v)
.

We denote by H−1 the function inverse to G.
With regard to (4.11), models with different levels of generality can be obtained by

completely specifying q, parameterizing q, or considering q as unknown. However,
complete specification of q gives rather strict models which are alternatives to the
PH model and the field of their application is relatively limited (Bagdonavičius and
Nikulin 1994). Under constant covariates such models are the linear transformation
(LT) models, proposed by Dabrowska and Doksum (1988). Indeed, if q is specified
and r is parameterized by r(x) = eβT x , then under constant covariables the survival
functions have the form

Sx(·)(t) = G
{

eβT xΛ0(t)
}

, x ∈ E1,

with G specified. This implies that the random variable Tx can be transformed by
the function h(t) = ln{H(S0(t))} to the random variable of the form

h(Tx) = −βT x + ε, x ∈ E1 (4.13)

where ε is a random error with the parameter-free distribution function

Q(u) = 1 − G(eu).

It is the LT model of Dabrowska and Doksum (1988), Dabrowska (2005–2007).
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Examples of the LT models include:

(1) PH model (G is the Weibull survival function, ε has the extreme value distribu-
tion).

(2) Proportional oddsmodel (G is the log-logistic survival function, ε has the logistic
distribution):

1

Sx (t)
− 1 = r(x)

(
1

S0(t)
− 1

)

, x ∈ E1,

see Bennett (1983), Murphy et al. (1997), Yang and Prentice (1999). For more
about semiparametric estimation for LT models, see Dabrowska (2005–2007),
Martinussen and Scheke (2006), Chen et al. (2002), and Bagdonavičius and
Nikulin (1999).

(3) Generalized probit model (G is a lognormal and ε has a normal distribution):

Φ−1 (Sx (t)) = log (r(x)) + Φ−1 (S0(t)) , x ∈ E1,

where Φ is the standard normal cumulative distribution function.

The last two models are alternatives to the PH model. They are widely used for
analysis of dichotomous data when the probability of “success” depending on some
factors is analyzed. If application of the PH model is dubious then it is better to use
a wider GPH model by taking a simple parametric model for the function q.

Let us consider the relationship between the GPH models and the frailty models
(Hougaard 2000) with covariates. For the frailty model, the hazard rate is influenced
not only by the observable covariate x(·)but also by anon-observable positive random
covariate Z , called the frailty variable. Suppose that, given the frailty variable, the
hazard rate is

λx(·)(t |Z = z) = z r(x(t)) λ0(t), x(·) ∈ E .

Then

Sx(·)(t) = E exp{−Z
∫ t

0
r(x(τ )) dΛ0(τ )} = G{

∫ t

0
r(x(τ ))dΛ0(τ )},

where G(s) = Ee−s Z . So the GPH model can be defined by suitably specifying the
distribution of the frailty variable.

4.3 The GPH Models with Monotone Hazard Ratios

The following parameterizations of r and q give submodels of the GPH model with
monotone hazard ratio under constant covariates. Using only one parameter and
power (or exponential) function for the parameterization of q, several important
models were obtained by Bagdonazvicius and Nikulin (1999).
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Suppose that q(0) = 1 (if it is not so, we can include q(0) in λ0, which is
considered as unknown), and taking a power function q(u) = (1 + u)−γ+1 and
r(x) = eβT x , we obtain the first GPH model (GPH1) on E :

λx(·)(t) = eβT x(t){1 + Λx(·)(t)}−γ+1λ0(t), x(·) ∈ E . (4.14)

It coincides with the PH model when γ = 1. The support of the survival function
Sx(·) is [0,∞) when γ ≥ 0 and [0, spx(·)) with finite right ends spx(·), spx(·) < ∞,
when γ < 0. Finite supports are very possible in accelerated life testing: failures
of units at different accelerated stresses are concentrated in intervals with different
finite right limits.

Suppose that at the point t = 0 the hazard ratio H R(t, x1, x2) under constant
covariates x1 and x2 is greater then 1:

HR(0, x1, x2) = r(x2)

r(x1)
= c0 > 1, x1, x2 ∈ E1,

then the hazard ratio H R(t, x1, x2) has the following properties:

(a) if γ > 1, H R decreases from c0 > 1 to c∞ = c
1
γ

0 ∈ (1, c0);
(b) if γ = 1 (PH model), H R is constant;

(c) if 0 ≤ γ < 1, then H R increases from c0 to c∞ = c
1
γ

0 ∈ (c0,∞).
(d) if γ < 0, H R increases from c0 to ∞ and the infinity is attained at

spx2 = Λ−1
0 {−1/(r(x2) · γ )}.

The hazard rates go away from each other quickly when t increases.
The GPH1model is a generalization of the positive stable frailty model. The GPH

model with γ = 1/α > 0 is obtained by taking the frailty variable Z which follows
the positive stable distribution with the density

pZ (z) = − 1

π z
exp{−αz + 1}

∞∑

k=1

(−1)k

k! sin(παk)
Γ (αk + 1)

zαk
, z > 0,

where α is a stable index, 0 < α < 1. For more details, see Bagdonavicius and
Nikulin (2002), Greenwood and Nikulin (1996).

4.4 The Second GPH Model

Under the GPH1 model the support of the survival function is infinite when γ ≥ 0
and finite when γ < 0. The limit is γ = 1. Taking the parameterization q(u) =
(1 + γ u)−1, we obtain the second GPH (GPH2) model on E :
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λx(·)(t) = eβT x(t)(1 + γΛx(·)(t))−1λ0(t), γ ≥ 0, x(·) ∈ E . (4.15)

It also coincides with the PH model when γ = 0. The supports of the survival
functions Sx(·) are [0,∞).

The hazard ratio

H R(t, x1, x2) = λx2(t)/λx1(t), x1, x2 ∈ E1,

has the following properties:

(a) if γ > 0, then HR decreases from c0 > 1 to the value
√

c0 ∈ (1, c0), i.e., the
hazard rates approach each other when t increases;

(b) if γ = 0 (PH model), the HR is constant.

TheGPH2model is equivalent to the inverse Gaussian frailty model. TheGPHmodel
with γ = (4σθ)1/2 > 0 is obtained from taking Z , the frailty variable, to follow the
inverse Gaussian distribution with the density

pZ (z) =
(σ

π

)1/2
e
√
4σθ z−3/2e−θ z−σ/z, z > 0.

See Voinov and Nikulin (1993, 1996) for more details.

4.5 The GLPH Model

Taking the exponential functions q(u) = e−γ u and r(x) = eβT x we have the third
GPH (GPH3) model:

λx(·)(t) = eβT x(t)−γΛx(·)(t) λ0(t), x(·) ∈ E . (4.16)

This model is also known as the GLPH (generalized linear PH) model which coin-
cides with the PH model when γ = 0; (see Bagdonavicus et al. 2000, 2002). The
support of the survival function Sx(·) is [0,∞) when γ ≥ 0, or is [0, spx(·)) with
finite right ends when γ < 0.

Suppose that H R(0, x1, x2) = r(x2)/r(x1) = c0 > 1. The hazard ratio
H R(t, x1, x2), x1, x2 ∈ E1, has the following properties:

(a) if γ > 0, then HR decreases from the value c > 0 to 1; i.e., the hazard rates
approach each other and meet at infinity;

(b) if γ = 0 (PH model), the HR is constant;
(c) if γ < 0, HR increases from c0 > 1 to ∞, and the infinity is attained at

spx2 = Λ−1
0 {−1/(γ r(x2))}. The hazard rates go away from each other quickly

when t increases.
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The GPH3 model is a generalization of the gamma frailty model with explanatory
variables: the GPH model with γ = 1/k > 0 is obtained taking the frailty variable
Z which follows the gamma distribution with the density

pZ (z) = zk−1

θ kΓ (k)
e−z/θ , z > 0.

All the three GPH models are considered as semiparametric; β, γ , and the baseline
function Λ0 are unknown parameters.



Chapter 5
Cross-Effect Models of Survival Functions

In this chapter and Chap.6, we introduce several models which can deal with cross-
effect; including the Hsieh model and the simple cross-effect (SCE) model. Cross-
effect is a common phenomenon that appeared in survival data collected from clinical
trials, epidemiologic studies, and medical fields. A famous example is the data of the
Gastrointestinal Tumor Study Group concerning the effect of chemotherapy versus
radiotherapy on the survival times of gastric cancer patients (Stablein and Koutrou-
velis 1985; see Chap.1). To deal with the cross effect, Hsieh (2001) considered a
quite general non-proportional hazards model and suggested the over identified esti-
mating equation (OEE) approach with sieve approximation to the baseline hazard.
(See Sect. 5.4 for more details.)

In contrast to the Hsieh model, a simple cross-effect (SCE) model was proposed
in Bagdonavičius, Hafdi and Nikulin (2004), Bagdonavičius, Levuliene, Nikulin and
Cheminade (2004), Bagdonavičius and Nikulin (2005). It has the advantage that the
hazard ratio is finite under different covariates at time zero. A natural generalization
of the Nelson–Aalen estimator of the baseline function is considered and efficient
semiparametric estimation based on the likelihood function is proposed. These two
models (Hsieh andSCE) are flexible in that they accommodatemixed type regressors:
dichotomous, polytomous, or continuous covariates.

We analyze the gastric cancer data (Fig. 1.3) and compare the estimates of the two
survivals based on the Hsieh model and the SCE model in Chap.6. See also Hsieh
(2001), Kleinbaum and Klein (2005), Klein andMoeschberger (2003), and Zeng and
Lin (2007). Before the presentation of statistical inferences of the Hsieh and SCE
models, we introduce several alternative models which are also capable of capturing
cross-effect phenomenon: (a) the change-point model; (b) the parametric general-
ized Weibull regression model which considers modeling the shape-parameter by a
regressive component; and (c) the varying-coefficient Cox type regression.

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-49332-8_5
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5.1 Change Point Model

Liang et al. (1990) proposed a change-point model suitable for fitting a Cox-type
model with different hazard-ratio parameters for early and late onset of a disease.

λ(t|X, Z) = λ0(t) exp{βT X + (γ + θ1{t≤τ })Z}, (5.1)

where τ , called the change point, is the parameter ranging from a to b (with a and b
both known). For the set of ordered uncensored times t1 < · · · < tk , they proposed to
test for the cross-effect H0 : θ = 0 versus Ha : θ �= 0 by considering the following
(log-) partial likelihood:

l = log

{
k∏

i=1

exp{βT Xi(ti) + (γ + θ1{ti≤τ })Zi(ti)}∑
j Yj(ti) exp{βT Xj(ti) + (γ + θ1{ti≤τ })Zj(ti)}

}

.

Let φ = (βT , γ )T and define

S(τ ) = ∂l

∂θ
/

{
−∂2l

∂θ2
−

( −∂2l

∂θ∂φ

)T (−∂2l

∂φ2

)−1 ( −∂2l

∂θ∂φ

)} 1
2

,

which is to be evaluated at φ̂ = (β̂T , γ̂ )T under H0 : θ = 0. Then the statistic

M = sup
τ∈[a,b]

S(τ )

can be used to define a possible estimate of τ (denoted τ̂ ) and the asymptotic dis-
tribution of M is derived as being the supremum of a normalized Brownian bridge
process. Conditioning on τ̂ , Liang et al. claimed that simultaneous confidence inter-
val construction can be made based on l.

5.2 Parametric Weibull Regression with Heteroscedastic
Shape Parameter

As illustrated in the parametric example of Coxmodel in Chap. 3, if theWeibull class
has a shape parameter (b) which can be further modeled as b = exp(γ T X), then

Λ(t; X) = {atexp(γ
T X)}eβT X

or
λ(t; X) = ae(β+γ )T X texp(γ

T X)−1.

http://dx.doi.org/10.1007/978-3-662-49332-8_3
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For illustrative purpose, consider the simplest case (i.e., two-sample problem) that
X is univariate and binary: X = 0 or 1. The hazard ratio (HR(t)), which is time
dependent, between the two groups λ(t; X = 1) versus λ(t; X = 0) is

HR(t) = φtσ−1, where σ = eγ , φ = eβ+γ .

The case σ = 1 or γ = 0 corresponds to the proportional-hazards setting; and HR(t)
is increasing or decreasing for σ > 1 (γ > 0) and σ < 1 (γ < 0), respectively. The
cross point of these two hazard functions can be easily solved as

t = exp

(
β + γ

1 − σ

)

.

In this case, it should be noted that the cross point of the corresponding cumulative
hazards is t = exp{β/(1 − σ)}.

A question arises when the heteroscedastic Weibull regression is used: At σ < 1
(γ < 0), HR(t) → ∞ as t → 0. The following small amendment on the cumulative
hazard offers a remedy to the mathematically unpleasant situation:

Λ(t; X) = a{(1 + t)exp(γ
T X) − 1}eβT X .

This gives Λ(t; X) = 0 when t = 0 and

λ(t; X) = ae(β+γ )T X(1 + t)exp(γ
T X)−1.

Again, for the two-sample example,

HR(t) = φ(1 + t)σ−1.

The pattern of HR(t) and the cross point of the hazard rates remain. However, the
cross point of the cumulative hazards satisfies t = exp(β){(1 + t)σ − 1}.

5.3 Cox-Type Model with Varying Coefficients

The proportional hazards model can be extended to modeling cross-effect by incor-
porating varying coefficients:

λ(t; X) = λ0(t) exp{β(t)T X(t)}, (5.2)

where X(t) is a p-dimensional time-dependent covariate and β(t) is the associated
smooth time-varying coefficient.With model (5.2), Murphy and Sen (1991), Murphy
(1993), andMarzec andMarzec (1997) considered sieve approximation to the varying
coefficient(s). Estimation procedures and goodness-of-fit problems were studied in
these works.
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On the other hand, Cai and Sun (2003) and Tian et al. (2005) (TZW) considered
local smoothing technique to construct inferential basis. Using the notations and
terminology of TZW, for a given time t the local log partial likelihood is

L (β, t) = 1

nhn

n∑

i=1

∫ τ

0
K

(
s − t

hn

)
⎧
⎨

⎩
βT Xi(s) − log

⎛

⎝
∑

j

Yj(s)e
βT Xj(s)

⎞

⎠

⎫
⎬

⎭
dNi(s),

(5.3)
where τ is the prespecified maximal observation time; K(·), the kernel function, is
a probability density function symmetric about 0 with mean 0 and support [−1, 1].
By this, only observations lying in the hn-neighborhood of t are included; hn =
O(n−ν), ν > 0. The maximizer of L , denoted β̂(t), needs cautious specification
close to the time boundaries of the study: β̂(t) = β̂(hn) for 0 < t < hn and
β̂(t) = β̂(τ − hn) for τ − hn < t < τ . In brief, for t ∈ [hn, τ − hn], the maximizer
β̂(t) satisfies U (β, t) = 0 where

U (β, t) = 1√
nhn

n∑

i=1

∫ τ

0
K

(
s − t

hn

){

Xi(s) −
∑

j Yj(s)Xj(s)eβT Xj(s)

∑
j Yj(s)eβT Xj(s)

}

dNi(s).

(5.4)
Asymptotic properties of this estimation procedure are studied in Cai and Sun (2003)
and Tian et al. (2005). For more theoretical discussions on the estimation and appli-
cations, see Martinussen and Scheike (2006).

5.4 Hsieh Model

Hsieh (2001) considers explicit modeling of crossing hazards by including a het-
eroscedasticity parameter in the power of the baseline cumulative hazard:

Λ(t; X) = {Λ0(t)}σ exp{βT X}, σ = exp(γ T X), (5.5)

where X is a p-vector and Λ0(·) is an unspecified baseline cumulative hazard. In
terms of hazard function, formula (5.5) is expressed as

λ(t; X) = λ0(t)exp{βT X}σ {Λ0(t)}σ−1. (5.6)

In fact, this heteroscedastic model is originally obtained from the linear transforma-
tionmodel with heteroscedastic errors (Hsieh 2001). Differentmodels corresponding
to different transforms are listed in Hsieh (1995, p. 741).

The heterogeneity effect can be explored by taking one-dimensional case as an
example. The log-hazard ratio (≡log HR(t)) between X1 versus X0 (X1 − X0 = 1) is

log{HR(t)} = (eγ X1 − eγ X0)logΛ0(t) + (β + γ ). (5.7)
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t
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Fig. 5.1 Hsieh model, gamma = 0.2. Reprinted from Statistics and Modelling in Public Health,
H.-D.I. Wu,Statistical Inference forTwo-Sample andRegressionModelswithHeterogeneityEffect:
A Collected-Sample Perspective, pp. 452–465, Copyright 2006, with permission from Springer

If log HR(t) is of concern, (5.7) implies that the effect is time-varying, and it also
depends on the value of X. Figures5.1 and 5.2 illustrate how the log HR depends on t
and on X: Let Xj = −5,−4, . . . , 5, and γ = 0.2 (Fig. 5.1), and 0.5 (Fig. 5.2); β = 1
for both cases. When the heteroscedasticity parameter is small (γ = 0.2, Fig. 5.1),

t
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Fig. 5.2 Hsieh model, gamma = 0.5. Reprinted from Statistics and Modelling in Public Health,
H.-D.I. Wu,Statistical Inference forTwo-Sample andRegressionModelswithHeterogeneityEffect:
A Collected-Sample Perspective, pp. 452–465, Copyright 2006, with permission from Springer
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the log HR(t) looks more like a constant in time for some X and they also coincide
for much of the time t ∈ (0, 2). For larger γ , time-dependence of log HR(t) is more
obvious. Moreover, for fixed t, log HR(t) differs for different X values, revealing
non-ignorable heterogeneity. For both figures, only X = 5 is plotted by a solid line
to present the trend of log(HR)-plot in X (Wu 2006).

5.4.1 Estimating Equation Processes

Denote the intensity process associated with the ith individual by λ(t; Xi), and the
counting process recording the observed failure of individual i up to time t by Ni(t).
Define

SJ(t) = 1

n

∑
Yi(t)Ji(t)exp{βT Xi}σi{Λ0(t)}σi−1

for any predictable J(t); for examples,

S1 = 1

n

∑
Yi(t)exp{βT Xi}σi{Λ0(t)}σi−1

and

SX = 1

n

∑
Yi(t)Xi(t)exp{βT Xi}σi{Λ0(t)}σi−1,

etc. Estimating equations for Λ0(·), β and γ are

M1(t) = Λ0(t) −
∑ ∫ t

0

dNi(u)
∑

Yi(u)exp{βT Xi}σi{Λ0(u)}σi−1
, (5.8)

M2(t) =
∑ ∫ t

0

{

Xi − SX(u;Λ0, θ)

S1(u;Λ0, θ)

}

dNi(u), (5.9)

and

M3(t) =
∑ ∫ t

0

{

Vi − SV (u;Λ0, θ)

S1(u;Λ0, θ)

}

dNi(u), (5.10)

where
σi = exp(γ T Xi) and Vi(t) = Xi(t) exp(γ

T Xi)log{Λ0(t)}.

These estimating equations can be solved with a sieve approximation of the Λ0(·).
In fact, the estimating functions (M2 and M3) can be derived as follows:

According to either (5.5) or (5.6), the full likelihood, LF , with Johansen’s decom-
position (Johansen 1983) is
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LF(β, γ,Λ0) =
∏∫ τ

0

hi(u)dNi(u)

λ0(u)S1(u)
·
∏ ∫ τ

0
λ0(u)S1(u)dNi(u)e− ∫ τ

0 nλ0(u)S1(u)du

The first term in the product is the partial likelihood. Let

lp =
∑

log

{∫ τ

0

hi(u)dNi(u)

λ0(u)S1(u)

}

.

Taking partial derivatives of lp with respect to β and γ leads to M2 and M3.

5.4.2 Sieve Approximation

Let {ti}n
1 be the realizations of {Ti}n

i=1 and 0 = t0 < t1 < t2 < . . . < tn = τ .
For the sieve approximation, we first choose an appropriate subset {τ1, τ2, . . . , τm}
of {ti}n

1, where τj is the terminal point of the jth interval Ij = (τj−1, τj] (τ0 = 0,
τm = tn), such that eachIj contains nearly an equal number of realizations. We take
the following sieve approximation of the baseline cumulative hazard Λ0(t):

Λ0m(t) =
∫ t

0

m∑

1

αi1{τi−1 < u ≤ τi}du. (5.11)

In this approximation, the sieve parameters {αj}m
1 are the average hazards over the

associated time intervals {Ij}m
1 . By substituting Λ0m into Mj(t)(j = 1, 2, 3), the

semiparametric problem is changed into a parametric one.
An algorithm can be used to compute the estimates of β, γ , and {αi}m

1 : in the jth
step iteration,

Λ
(j)
0m(t) =

∑ ∫ t

0

[∑
Yi(u) exp({β(j−1) + γ (j−1)}Xi(u)){Λ(j−1)

0m (u)}σ (j−1)
i −1

]−1
dNi(u),

(5.12)
where

Λ
(j)
0m(t), β(j), γ (j), and σ

(j)
i = exp{γ (j)Xi}

denote the jth step iterated values, j = 0, 1, 2, 3, . . . Initial guess of β and Λ0 (i.e.,

β(0) andΛ
(0)
0m) can be chosen as the estimates of the conventional Cox’s model where

γ (0) = 0.



Chapter 6
The Simple Cross-Effect Model

Let SX(t), λX(t), and ΛX(t) be the survival, hazard rate, and cumulative hazard
functions under a p-dimensional time-dependent covariate X. The generalized pro-
portional hazards (GPH) model proposed by Bagdonavičius and Nikulin (1998a,
1999) holds on a set of explanatory variables E if for all X ∈ E

λX(t) = ψ {X(t), SX(t)} λ0(t). (6.1)

This model implies that for different explanatory variables X1 and X2 the hazard ratio
HR(t) at anymoment t is a function of the valuesX1(t) andX2(t) and the probabilities
of survival up to t. The proportional hazards model (Cox 1972) is a special case of
the GPH model when the function ψ does not depend on SX(t).

In terms of the cumulative hazard, model (6.1) can be written as

λX(t) = u {X(t),ΛX(t)} λ0(t). (6.2)

Different choices of u(·, ·) lead to submodels with HR(t) increasing or decreasing
in time, and cross-effects phenomenon may appear in some cases. We consider here
the cross-effect model (Bagdonavičius et al. 2004)

λX(·)(t) = eβT X(t){1 + ΛX(·)(t)}1−eγ T X(t)
λ0(t), (6.3)

where β and γ are p-dimensional parameters and Λ0 is an unknown baseline cumu-
lative hazard.

If X(t) ≡ X is constant in time, then resolving a differential equation related to
(6.3) and ΛX produces the simple cross-effect (SCE) model:

λX(t) = eβT X
{
1 + e(β+γ )T XΛ0(t)

}e−γ T X−1
λ0(t), (6.4)

where Λ0(t) = ∫ t
0 λ0(u)du is the baseline cumulative hazard.

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-49332-8_6
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With model (6.4), consider the hazard ratio

HR(t, X1, X2) = λX2(t)

λX1(t)
, X1, X2 ∈ E1.

At t = 0 and under constant covariates X1 and X2, assume that HR(t) is greater than
1 and γ T (X2 − X1) > 0. That is,

HR(0, X1, X2) = eβT (X2−X1) = c0 > 1.

Then HR(t) decreases from c0 > 1 to 0, indicating that the hazard rates intersect
once. The survival functions SX1 and SX2 also intersect once in the interval (0,∞).
The hazards ratio (HR(t)) and even the cumulative hazards ratio go to ∞ (or 0)
as t → 0; and these ratios are defined and finite at t = 0. In pursuit of efficient
estimation, this property helps to avoid complexity.

The cross-effect model resembles the extension of the positive stable frailtymodel
(Hougaard 2000) given by Aalen (1992). Indeed, the Hougaard–Aalen model with
cross-effects of hazard rates (Aalen 1994) for constant covariates X has one of the
two following forms:

λX(t) = ηr(X)(1 ± r(X)α−1δηΛ0(t))
−αλ0(t), α, δ, η, r(X) > 0.

If we take the minus sign then the hazard rates λX1(t) and λX2(t) cross once for
constant covariates X1 and X2. An unpleasant property of this model is that the
survival distributions have finite supports which differ for different covariate values.
Estimation procedures are always complicated in such cases. If we take the plus sign
and the hazard rates cross for values α > 1, the supports are [0,∞).

The Hougaard–Aalen model also resembles the cross-effect model in that: if we
replace the constant α by 1 − e−γ T X , the function ηr(X) by eβT X , and ±r(X)α−1δη

by e(β+γ )T X in the Hougaard–Aalen model with cross-effects then we obtain the
cross-effect model with constant covariates (6.4). Note that in model (6.4) the power
e−γ T X −1 can take either sign and the supports of the survival distributions are [0,∞)

for all values of the covariates.
Another difference between the Hougaard–Aalen and the cross-effect models is:

the Hougaard–Aalen model includes crossing hazards but not crossing survivals. For
the Hougaard–Aalen model, the power α is constant and the survival functions SX1(t)
and SX2(t) do not cross. For α �= 1 and r(X2) > r(X1),

SX2(t)

SX1(t)
= exp

{
α

±δ(α − 1)

[
(1 ± r(X2)φ(t))1−α − (1 ± r(X1)φ(t))1−α

]
}

< 1,
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where φ(t) = α−1δηΛ0(t); while if α = 1, then

SX2(t)

SX1(t)
=

(
1 − r(X2)φ(t)

1 − r(X1)φ(t)

)α/δ

< 1.

Suppose that model (6.2) holds on a set E0 of constant explanatory variables. By
solving (6.2) in terms of Λx(t), we have

ΛX(t) = H{X,Λ0(t)}. (6.5)

The Hsieh model takes H(X, s) = r(X)sρ(X) in (6.5) with natural parameterizations
r(X) = eβT X and ρ(X) = eγ T X , leading to the PH model if γ = 0 .

Similar to the Hsieh model, the SCE model also gives cross-effect for the cumu-
lative hazards, not necessarily for the hazards. When the log HR is of concern, the
main differences between these two models are

(I) the Hsieh model assumes that the HR between groups is possibly large when t
approaches 0, the SCE model relaxes this assumption; and

(II) in theHsiehmodel,HR is increasing or decreasing according to the heteroscedas-
ticity γ T X; while the SCE model has more complex situation which depends
on the configurations of β and γ in the model formula. Figures6.1 and 6.2 give

t

X=5
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Fig. 6.1 SCE model, gamma = 0.5. Reprinted from Probability, Statistics and Modelling in Public
Health, H.-D.I. Wu, Statistical Inference for Two-Sample and RegressionModels with Heterogene-
ity Effect: A Collected-Sample Perspective, pp. 452–465, Copyright 2006, with permission from
Springer
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Fig. 6.2 SCE model, gamma = − 0.5. Reprinted from Probability, Statistics and Modelling in
Public Health, H.-D.I. Wu, Statistical Inference for Two-Sample and Regression Models with Het-
erogeneity Effect: A Collected-Sample Perspective, pp. 452–465, Copyright 2006, with permission
from Springer

similar illustrations to Figs. 5.1 and 5.2. When γ is large (0.5 or −0.5), on one
hand, the dependence of log HR on t is evident. On the other hand, for larger γ

the difference of log HR for different X values is more obvious, showing het-
erogeneity effect over the covariate space. For all cases, we have β = 1 and
0 < t < 2.

6.1 Semiparametric Estimation

Consider the GPH model in its general form with a specified parameterization
g(X, s, θ) of the function g via parameters θ and an unknown baseline function
λ0(t),

λX(t) = g{X,Λ0(t), θ} λ0(t). (6.6)

By the same notations as in Chap.2, the partial likelihood function (Andersen et al.
1993)

L(θ) =
n∏

i=1

[∫ ∞

0

g{Xi,Λ0(v), θ}
∑n

j=1 Yj(v)g{Xj,Λ0(v), θ} dNi(v)

]δi

http://dx.doi.org/10.1007/978-3-662-49332-8_5
http://dx.doi.org/10.1007/978-3-662-49332-8_5
http://dx.doi.org/10.1007/978-3-662-49332-8_2
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depends on the unknown cumulative hazard Λ0. The score function for θ is

U(θ) =
n∑

j=1

∫ ∞

0
{w(i)(u,Λ0, θ) − E(u,Λ0, θ)} dNi(u), (6.7)

where

w(i)(t, θ,Λ0) = ∂

∂θ
log{g(Xi,Λ0(v), θ)},

E(v,Λ0, θ) = S(1)(v,Λ0, θ)

S(0)(v,Λ0, θ)
, S(0)(v,Λ0, θ) =

n∑

i=1

Yi(v)g{Xi,Λ0(v), θ}

S(1)(v,Λ0, θ) =
n∑

i=1

Yi(v)
∂

∂θ
g{Xi,Λ0(v), θ}.

The score function depends on the unknown function Λ0, so it is replaced in (6.7)
by Λ̃0 (depending on θ ) which is defined recurrently from

Λ̃0(t, θ) =
∫ t

0

dN(u)

S(0)(u−, Λ̃0, θ)
(6.8)

This estimator is obtained using the martingale property of the difference,

Ni(t) −
∫ t

0
Yi(s)dΛXi(s).

The modified score function is

Ũ(θ) =
n∑

j=1

∫ ∞

0
{w(i)(u, Λ̃0, θ) − E(u, Λ̃0, θ)} dNi(u), (6.9)

and the estimators θ̂ and Λ̂0 of θ andΛ0, respectively, satisfy the system of equations

{∑n
j=1

∫ ∞
0 {w(i)(u, Λ̂0, θ̂ ) − E(u, Λ̂0, θ̂ )} dNi(u) = 0,

Λ̂0(t) = Λ̃0(t, θ̂ ).
(6.10)

Given the consistency of Λ̃0, the asymptotic covariance matrix of
√

n(θ̂ − θ) is
obtained by standard methods using the functional delta method and the central
limit theorem for martingales. For proof of consistency of the estimators given by
Eq. (6.9), seeCeci andMazliak (2004),Dabrowska (2005–2007). Furthermore, under
the current SCE model, the estimator Λ̂0 of the baseline cumulative hazard Λ0
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generalizes the Nelson–Aalen estimator, just as in the case of the PH model the
Breslow estimator generalizes the Nelson–Aalen estimator (Andersen et al. 1993).

For the PH model, g(X, s, θ) = eθT X , the solution of the Eqs. (6.10) is (θ̂ , Λ̂0),
where θ̂ is the semiparametrically efficient estimator of the regression parameters θ ,
and Λ̂0 is the Breslow estimator of Λ0. This suggests that in the case of the SCE
model,

g(X, s, θ) = eβT X
{
1 + e(β+γ )T Xs

}e−γ T X−1

,

the estimator θ̂ also is semiparametrically efficient.
An estimator is semiparametrically efficient if there exists a sequence of para-

metric models such that the limit covariance matrix of semiparametric estimators
coincides with the limit Fisher information matrix of the sequence of parametric esti-
mators corresponding to the specified models. This should hold in our case because
the parametric score functions obtained by the maximum likelihood method and the
semiparametric score function (6.9) are asymptotically equivalent: the parametric
score function for the model (6.6) is

U∗(θ) =
n∑

j=1

∫ ∞

0

∂

∂θ
log λXi(v, θ){dNi(v) − Yi(v)λXi(v, θ)dv}

=
n∑

i=1

∫ ∞

0
w(i)(u,Λ0, θ)[dNi(v) − Yi(v)g{Xi,Λ0(v), θ}dΛ0(v)]. (6.11)

If the function Λ0 in (6.11) is replaced by Λ̃0 then the modified score function (6.9)
is obtained.

Once the parameter estimators are obtained, the estimator of the survival function
under a specific covariate value X = x is

Ŝx(t) = e−Λ̂x(t),

where

Λ̂x(t) =
{
1 + e(β̂+γ̂ )T xΛ̃0(t, θ)

}e−γ̂ T x−1
.

6.2 An Iterative Procedure for Computing the Estimators

Computationally, it is not necessary to solve (6.9) to obtain the estimate θ̂ . Instead,
the general quasi-Newton optimization algorithm can be used to seek the value of θ

which maximizes the modified partial likelihood (MPL) function
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L̃(θ) =
n∏

i=1

[∫ ∞

0

g{xi, Λ̃0(v), θ}
∑n

j=1 Yj(v)g{xj, Λ̃0(v), θ} dNi(v)

]δi

. (6.12)

For fixed θ the estimator Λ̃0 can be found as follows. Let T1 < ... < Tr be the
ordered distinct failure times, r ≤ n, and di be the number of failures at Ti. Then

Λ̃0(0; θ) = 0, Λ̃0(T1; θ) = d1

S(0)(0, Λ̃0, θ)
,

Λ̃0(Tj+1; θ) = Λ̃0(Tj; θ) + dj+1

S(0)(Tj, Λ̃0, θ)
. (j = 1, ..., r − 1) (6.13)

For the SCE model,

S(0)(v,Λ0, θ) =
n∑

i=1

Yi(v) eβT Xi{1 + e(β+γ )T XiΛ0(v)}e−γ T Xi −1,

hence

Λ̃0(T1; θ) = d1∑n
i=1 Yi(T1) eβT Xi

.

The iterative procedure is very simple. We use the initial value θ0 = (β0, γ0), where
β0 is an estimator of β using the PH model, and γ0 = 1. Then the estimator Λ̃(t, θ0)
given by recurrence formula (6.13) and the initial guess θ0 are plugged into the MPL
function (6.12), which we maximize to give θ1. The value of θ1 is then used to obtain
Λ̃(t, θ1) and so on.

6.3 Analysis of Gastric Cancer Data

In this sectionwegive an analysis of the two-sample data of Stablein andKoutrouvelis
(1985). The number of patients is 90. Kaplan–Meier (KM) estimators of survival
functions pertaining to the both treatment groups (Fig. 1.3 in Chap.1) clearly show
a crossing-effect phenomenon. The two estimated curves indicate that radiotherapy
would initially be detrimental to a patient’s survival but becomes beneficial later on.

We use the SCE model to estimate the effect of “treatment” (treated as a single
covariate) on the survival. The modified partial likelihood estimator of θ = (β, γ ) is
(1.894, 1.384). We use 0 to code for chemotherapy and 1 for chemo- plus radiother-
apy. For both groups of patients the graphs of the K–M estimators and the smoothed
Hsieh estimators of the survival functions are presented in Fig. 6.3. Smoothing was
necessary because the Hsieh estimators are step functions with only five steps (if the
number of steps is larger, the estimators of step height may be bad).

http://dx.doi.org/10.1007/978-3-662-49332-8_1
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Fig. 6.3 K–M estimates and
survivals estimated from
Hsieh model. Reprinted from
Biostatistics, 5(3),
V. Bagdonavičius,
M.A. Hafdi, M. Nikulin,
Analysis of Survival Data
with Cross-effects of
Survival Functions, p. 125,
Copyright 2015, with
permission from Oxford
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Fig. 6.4 K–M estimates and
survivals estimated from
SCE model. Reprinted from
Biostatistics, 5(3),
V. Bagdonavičius,
M.A. Hafdi, M. Nikulin,
Analysis of Survival Data
with Cross-effects of
Survival Functions, p. 125,
Copyright 2015, with
permission from Oxford
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The graphs of the K–M estimators and our estimators of the survival functions
are presented in Fig. 6.4. The estimators obtained from all of the data using the
regression model (6.4) and our estimation method give excellent fits to the K–M
estimators obtained from the two subsamples.

Our estimation procedures should be useful for the analysis with continuously
varying covariables, for which the K–M estimators are not applicable.

6.4 Multiple Cross-Effects Model

Another interesting model with cross-effects of survival was proposed by
Bagdonavičius and Nikulin (2005, 2006) called multiple cross-effects (MCE) model:

λx(t) = eβT x
(
1 + γ T xΛ0(t) + δT xΛ2

0(t)
)
λ0(t), x ∈ E1. (6.14)

The regression parameters β, γ , and δ are p-dimensional for this MCE model.
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In case one concerns the “homogeneity effect” (or “no lifetime regression”), we
can see that it takes place if γ = 0 and β = 0 for Hsieh model, γ = 0 and β = 0
for SCE model, and β = δ = γ = 0 for MCE model.

Here we give a brief summary on the properties of the models considered: For the
Hsieh model, the hazard rates and the survival function do not intersect or intersect
once in the interval (0,∞). For the SCE model, the ratio of the hazard rates increase,
decrease, or is constant; the hazard rates and the survival function do not intersect
or intersect once in the interval (0,∞). For the MCE model, the ratio of the hazard
rates increase, decrease, or is constant; the hazard rates and the survival function do
not intersect, intersect once or twice in the interval (0,∞).

Note also that in the case of the GPHmodel the hazard ratio is increasing, decreas-
ing, or constant in time, the hazard functions and the survival functions do not inter-
sect in the interval (0,∞).

Finally, for a generalization of the positive stable frailty model given by Aalen
(1994),

λx(t) = r(x){1 + r(x)μ−1δΛ0(t)}μλ0(t) (x ∈ E1)

with μ > 1, the hazard rates intersect but the survival functions do not intersect.



Chapter 7
Goodness-of-Fit for the Cox Model

Goodness-of-fit problem playes a key role in statistical inference because the validity
of an assumed model ensures the subsequent inferential rationality. As the Cox PH
model,

λ(t; X) = λ0(t) exp(β
T X),

is the most frequently used model in survival analysis, model validation is important
for the applications. There are three aspects concerning tests for model validity:

(1) Omnibus test: to check for the ‘global correctness’ of the model. In hypothesis
testing language, we are testing for H0: (the data obeys) Cox model; against Ha:
(the data obeys) other models, not Cox model.

(2) Proportional hazards test: assuming a wider class (Ha) that contains Cox model
as a special case (H0) and then test for the extra parameter(s).

(3) Homogeneity test: Assuming the Cox model or a wider class as the alternative
hypothesis (Ha) and then test for suitable parameters for the equality of K(≥2)
groups.

The advantage of the PHmodel is its simplicity in interpreting the treatment effect
as an instantaneous relative risk adjusted for explanatory covariates. This simplic-
ity, however, constrains applications of the PH model in analyzing survival data in
some aspects. For example, when the hazards corresponding to different covariate
values cross at some points, using Cox’s model to estimate the relative risk or using
the logrank test to test for group difference may lead to inappropriate conclusions
(Breslow et al. 1984; Stablein andKoutrouvelis 1985; Tubert-Bitter et al. 1994;Hsieh
1996).

In contrast to the PH model, there are methods or models proposed to make
statistical inference with regards to the crossing hazards phenomenon (Stablein and
Koutrouvelis 1985; Moreau et al. 1992). We introduce in Sect. 7.1 several omnibus
tests and in Sects. 7.2 and 7.3 how alternative models can be considered to test
proportional hazards assumption and homogeneity effect. At the end, we note that
more about tests for model validity for censored and truncated data on can see in
Bagdonavicius et al. (2011).

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-49332-8_7
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7.1 Omnibus Tests

Let the partial score process Un(t;β) be obtained by taking partial derivative of
the log partial likelihood process with respect to β (Andersen and Gill 1982), Wei
(1984) introduces a goodness-of-fit approach to the proportional hazards model in
two-sample setting. The processUn(t; β̂), with β replaced by β̂, is shown to converge
weakly to a Brownian bridge W0(·). A natural goodness-of-fit statistic is then the
supremum of |W0(·)| with suitable scaling, and the distribution of sup|W0(·)| has
been well studied.

Here we introduce in more details two famous omnibus tests for the PH model:
the test of Gill and Schumacher (1987) for two-sample problem and Lin’s test for
regression set-up (Lin 1991).

7.1.1 Gill–Schumacher Test

For the considered two samples, let K(t) be a predictable process, τ be a maximal
time of observation, and define

QK =
∫ τ

0
K(t)

{
dN2(t)

Y2(t)
− dN1(t)

Y1(t)

}

.

If θ ≡ λ2(t)/λ1(t) is the hazards ratio (relative risk) of the two groups, then

θ̂K =
∫

K(t)dΛ̂2(t)∫
K(t)dΛ̂1(t)

is a natural estimate of θ specific to the weight function K(t) and

Λ̂j(t) =
∫ t

0
{Yj(u)}−1dNj(u), (j = 1, 2).

Under H0 : λ1(t) = λ2(t), the following two estimates of θ (θ̂K1 and θ̂K2 ), which
corresponds to two weight processes K1 and K2, will be very close to each other
asymptotically. Or, equivalently, QGS = K̂11K̂22 − K̂12K̂21 should be very close to 0

if K̂ij is defined as

K̂ij =
∫

Ki(t)dΛ̂j(t) (i = 1, 2; j = 1, 2).

Gill and Schumacher (1987) proposes the following statistic:

TGS = QGS√
var(QGS)

, (7.1)
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where var(QGS) can be consistently estimated by

K̂21K̂22V̂11 − K̂21K̂12V̂12 − K̂11K̂22V̂21 + K̂11K̂12V̂22

with

V̂ij =
∫

Ki(t)Kj(t)
d{N1(t) + N2(t)}

Y1(t)Y2(t)
.

The remaining question is how to choose K(·). Let us consider the class of Fleming–
Harrington weight function (KFH ) (see Fleming and Harrington 1991 and Harrington
and Fleming 1982):

KFH = {̂S(t)}ρ{1 − Ŝ(t)}γ Y1(t)Y2(t)

Y1(t) + Y2(t)
,

where Ŝ(t) is the Kaplan–Meier estimate of the pooled sample. Possible choice of
(ρ, γ ) configurations are discussed in Klein and Moeschberger (2003, Chap.7) and
Wu (2007).

7.1.2 Lin Test

For a set of independent copies (Ti, δi, Xi(t)) of random samples, let UK(β) be the
partial score function derived from logarithm of partial likelihood when a predictable
weight process K(t) is imposed:

UK(β) =
n∑

i=1

δiK(ti)

{

X(ti) − S(1)(t;β)

S(0)(t;β)

}

,

and β̂K be the solution to UK(β) = 0 for K(t) �= 1. When K(t) = 1, the solution is
denoted as β̂ (which is simply the conventional Cox’s estimator). Note that, under
suitable regularity conditions (Andersen and Gill 1982; Tsiatis 1981), both β̂K and
β̂ are consistent estimates of the true parameter β. Lin (1991) shows that,

√
n(β̂K − β̂) ∼ N(0,ΣK(β)),

where the asymptotic covariance matrix can be consistently estimated by

ΣK(β̂) = C−1
K DK C−1

K − C−1
1 ,

with

CK = 1

n

∑
δiK(ti)V(ti; β̂), DK = 1

n

∑
δiK

2(ti)V(ti; β̂), C1 = 1

n

∑
δiV(ti; β̂),
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and

V(t; β̂) = S(2)(t;β)

S(0)(t;β)
−

(
S(1)(t;β)

S(0)(t;β)

)⊗2

.

Lin’s test is constructed as

TLin = (β̂K − β̂)T
{
ΣK(β̂)

}−1
(β̂K − β̂) ∼ χ2

p , (7.2)

where p = dim(β).

7.2 Test for PH Assumption Within a Wider Class

It is common practice to test a hypothesized model (H0) against a wider class of
alternatives (Ha). In linear regressions, for example, t-test can be viewed as testing
an extra effect (parameter) with nested model structure; the tested model (H0) is
considered as being nested in the alternative model (Ha) so that the effect of the
covariate of main interest is tested. For more than one covariates, the partial F test
is used. In logistic regression and Cox’s regression, parallel practice leads to Wald
test (or score test) with similar spirit of nested model structure. Generally, in survival
analysis, testing the validity of a class of models (say, Cox PH model class) can
be implemented by the same manner. Here the terminology ‘a class of PH models’
refers to any Cox’s models with proportionality for the collected failure time (T∗),
censoring time (C), covariates (X) information and their realizations. Amodel which
does not satisfy the PH model assumption means that the PH model setting is not
fulfilled even with the entire (T∗, C, X) information and data realization history. So,
constructing a wider class of models (Ha) than the PH-class (H0) and testing the
extra parameter(s) (since PH is nested within the wider class; H0 ∈ Ha) is appealing.
The models and tests considered in Quantin et al. (1996), Bagdonavičius and Nikulin
(2011), Wu et al. (2002), and Bagdonavičius et al. (2004), among others, concern
this approach with nested models. These more-general models are useful not only
for constructing goodness-of-fit tests for the PH assumption and for homogeneity
effect, but also for valid estimation and more accurate prediction.

7.2.1 The GPH and SCE Models as Alternative Hypothesis

Thegeneralized proportional hazards (GPH)model and the simple-cross effect (SCE)
model has been introduced and discussed in Chap. 6. Based on the modified partial
likelihood, bothmodels serve as useful extensions of the PHmodel. Nowwe consider
how to construct tests based on the modified score functions for the two models.

http://dx.doi.org/10.1007/978-3-662-49332-8_6


7.2 Test for PH Assumption Within a Wider Class 85

Let Sx(t), λx(t) and Λx(t) be the survival, hazard rate and cumulative hazard
functions under a p-dimensional explanatory variable X. Let us consider twomodels:
Generalized proportional hazards (GPH) model,

λx(t) = eβT x(1 + Λx(t))
−γ+1λ(t) = eβT x(1 + γ eβT xΛ0(t))

1
γ
−1

λ0(t); (7.3)

and Simple cross-effects (SCE) model:

λx(t) = eβT x{1 + Λx(t)}1−eγ T x
λ(t) = eβT x{1 + e(β+γ )T xΛ0(t)}e−γ T x−1 λ0(t). (7.4)

In both models,

Λ0(t) =
∫ t

0
λ0(u)du.

The parameter γ is one-dimensional for the GPH model and p-dimensional for the
SCE model. The PH is a particular case with γ = 1 (GPH) or γ = 0 (SCE).
The homogeneity (no lifetime regression) takes place if γ = 1, β = 0 (GPH) or
γ = 0, β = 0 (SCE). In this chapter, we consider the right-censored regression data:
(X1, δ1, x1), . . . , (Xn, δn, xn), whereXi is the observed failure time or right-censored
time, δi is the censoring indicator, and xi is the covariate(s).

Let us consider tests for checking the adequacy of the PH model

H0 : λx(t) = eβT xλ0(t)

versus the GPH alternative (γ �= 1) or the SCE alternative (γ �= 0 ).
For a specified model (GPH or SCE), let λi = λXi(t) be the hazard function

corresponding to individual i with covariate Xi. The score function is expressed as:

U(θ,Λ0) =
n∑

i=1

∫ τ

0

∂

∂θ
log λi(t, θ){dNi(t) − Yi(t)λi(t, θ)dt}, (7.5)

where θ = (βT , γ T )T is the column vector of parameters of interest. Denote by β̂

the maximum partial likelihood estimator of the regression parameter β under the
PH model and by Λ̂0 the Breslow estimator of the cumulative hazard (see Andersen
et al. 1993):

Λ̂0(t) =
∫ t

0

dN(t)

S(0)(t, β̂)
, S(0)(t, β̂) =

n∑

l=1

Yl(t)e
β̂T xl . (7.6)

In (7.5), replacing the baseline cumulative hazard Λ0 by the Breslow estimator, the
regression parameter β by β̂, the parameter γ by γ = 1 (GPHmodel) or γ = 0 (SCE
model), we obtain p + 1-dimensional and 2p-dimensional statistics, respectively.
The first p components of these statistics are equal to zero. So a one-dimensional
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(GPH alternative) or p-dimensional (SCE alternative) statistic Û is used to obtain
the tests. It has the form

Û =
n∑

i=1

∫ ∞

0
{h(xi, t, β̂) − E∗(t, β̂)}dNi(t),

where
h(xi, t, β̂) = − ln(1 + eβ̂T xiΛ̂0(t))

for the GPH alternative and

h(xi, t, β̂) = −xi ln(1 + eβ̂T xiΛ̂0(t))

for the SCE alternative. Moreover, in the above expression,

E∗(t, β̂) = S(1)∗ (t, β̂)

S(0)(t, β̂)
,

where

S(1)
∗ (t, β̂) = −

n∑

l=1

Yl(t) eβ̂T xl ln(1 + eβ̂T xl Λ̂0(t))

for the GPH alternative; and

S(1)
∗ (t, β̂) = −

n∑

l=1

xlYl(t) eβ̂T xl ln(1 + eβ̂T xl Λ̂0(t))

for the SCE alternative.
It can be shown that (when k = 1 for the GPH alternative and k = p for the SCE

alternative),

T = n−1ÛT D̂−1Û
D→ χ2(k),

where
D̂ = Σ̂∗∗ − Σ̂T

∗ Σ̂−1
0 Σ̂∗,

with

Σ̂∗ = 1

n

∑

i:δi=1

V∗(Xi, β̂), Σ̂∗∗ = 1

n

∑

i:δi=1

V∗∗(Xi, β̂),

and

Σ̂0 = 1

n

∑

i:δi=1

⎧
⎨

⎩
S(2)(Xi; β̂)

S(0)(Xi; β̂)
−

(
S(1)(Xi; β̂)

S(0)(Xi; β̂)

)⊗2
⎫
⎬

⎭
.
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In these expressions,

V∗(u, β̂) = S(2)∗ (u, β̂)

S(0)(u, β̂)
− E(u, β̂)ET

∗ (u, β̂), (7.7)

V∗∗(u, β̂) = S(2)∗∗ (u, β̂)

S(0)(u, β̂)
− E⊗2

∗ (u, β̂). (7.8)

Moreover, for the GPH model,

S(2)
∗ (u, β̂) = −

n∑

l=1

xlYl(t)e
β̂T xl ln(1 + eβ̂T xl Λ̂0(t)),

S(2)
∗∗ (u, β̂) = −

n∑

l=1

Yl(t)e
β̂T xl ln2(1 + eβ̂T xl Λ̂0(t)); (7.9)

for the SCE model,

S(2)
∗ (u, β̂) = −

n∑

l=1

x⊗2
l Yl(t)e

β̂T xl ln(1 + eβ̂T xl Λ̂0(t)),

S(2)
∗∗ (u, β̂) = −

n∑

l=1

x⊗2
l Yl(t)e

β̂T xl ln2(1 + eβ̂T xl Λ̂0(t)). (7.10)

The null hypothesis is rejected with the significance level α if T > χ2
1−α(k).

7.2.2 The Hsieh Model as an Alternative

Consider the Hsieh (2001) model introduced in Sect. 5.4 and use the same notations.
Define a covariation process A(t), which is a matrix with components (Andersen
et al. 1993)

Aij = lim
1

n

∑ ∫
E{dMi(u)}{dMj(u)}du.

Further, let M̂j = Mj(θ̂ , Λ̂0), j = 2, 3; and

Âij = 1

n

∑ ∫
E{dM̂i(u)}{dM̂j(u)}du.

http://dx.doi.org/10.1007/978-3-662-49332-8_5
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Using the estimates (θ̂ , Λ̂0) obtained from some numerical algorithms and treat-
ingM2 andM3 as score functions of β and γ , respectively, the following two statistics
(TW and TS), evaluated at (β, γ ;Λ0) = (β̂, 0; Λ̂0) and t = τ (the maximal observa-
tion time), can be used to test the null hypothesis H0 : γ = 0:

TW = {√nγ̂ }T {Â33 − Â32Â−1
22 Â23}{√nγ̂ }, (7.11)

which is a Wald-type statistic, and

TS = {M3}T {Mγ γ }{M3}, (7.12)

a score-type statistic. In (7.12)

Mγ γ = −{M33 − MT
32M−1

22 M23}−1,

where
M22 = ∂M2/∂β, M23 = ∂M2/∂γ, and M33 = ∂M3/∂γ.

Under H0, both TW and TS have asymptotically a χ2
1 distribution.

7.3 Test for Homogeneity Within a Wider Class:
Two-Sample Problem

Two-sample tests for the hypothesis of the equality of two distributions fromcensored
samples were considered, for examples, by Koziol (1978), Peto and Peto (1972),
Tarone and Ware (1977), Aalen (1992), Kalbfleisch and Prentice (2002), Fleming
and Harrington (1991), and Harrington and Fleming (1982). The classical weighted
logrank tests have unsatisfactory power under the alternative of crossing survival
functions because early differences in favor of one group are negated by late sur-
vival advantage of another group. Stablein and Koutrouvelis (1985), Bagdonavičius
et al. (2004, 2011) considered tests for equality of survival distributions against the
alternative of single crossing of survival functions. Here we consider a test against
general classes of alternatives including the GPH and SCE models.

7.3.1 GPH and SCE Models

Consider the univariate case when X is the only “covariate” and it is dichotomous
(X = 1 denotes the first group and X = 0 the second group), then we have a
two-sample problem. In such a case we use the following notation. Denote by ni the
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sample size of the ith group (i = 1, 2). Denote by T∗
ij andCij the failure and censoring

times for the jth object of the ith group, and set

Tij = min(T∗
ij , Cij), δi = 1{T∗

ij ≤Cij},

Nij(t) = 1{T∗
ij ≤t,δij=1}, Yij(t) = 1{Tij≥t}.

Moreover,

Ni·(t) =
ni∑

j=1

Nij(t), Yi·(t) =
ni∑

j=1

Yij(t),

N(t) = N1·(t) + N2·(t), Y(t) = Y1·(t) + Y2·(t).

The homogeneity hypothesis is

H0 : F1 = F2,

where Fi is the distribution function of the units of the ith group. The alternatives
are GPH with (β, γ ) �= (0, 1) or SCE with (β, γ ) �= (0, 0).

Replacing the cumulative hazard Λ by the Nelson–Aalen estimator

Λ̂(t) =
∫ t

0

dN(t)

Y(t)
,

the parameters β, γ by β = 0, γ = 1 (GPH model), γ = 0 (GPH and SCE models)
in the score function (7.5), we obtain the statistic

Û =
n∑

i=1

∫ ∞

0
h(xi, t){dNi(t) − Yi(t)dΛ̂(t)}

=
∫ ∞

0
ϕ(t)

(
Y2·(t)
Y(t)

dN1·(t) − Y1·(t)
Y(t)

dN2·(t)
)

;

here ϕ(t) = h(1, t) − h(0, t).

(a) For the GPH model:

h(x, t) = (h1(x), h2(x, t)) = (x, − ln(1 + Λ̂(t)), ϕ(t) = (ϕ1(t), ϕ2(t)) = (1, 0).

(b) For the SCE model:

h(x, t) = (h1(x), h2(x, t)) = (x,−x ln(1 + Λ̂(t))),

ϕ(t) = (ϕ1(t), ϕ2(t)) = (1,− ln(1 + Λ̂(t))).
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For both GPH and SCE models, Û = (Û1, Û2). In the case of the GPH model, the
second component Û2 = 0 and so Û = Û1. The statistic Û is one- or two-dimensional
when it is obtained using the GPH or SCE model, respectively.

The jth component Ûj of the statistic Û can be written as:

Ûj =
∫ ∞

0
ϕj(t)

(
Y2·(t)
Y(t)

dN1·(t) − Y1·(t)
Y(t)

dN2·(t)
)

.

Each component is a logrank-type statistic. So in the case of the GPH model we do
not obtain anything new except for the usual logrank statistic. It works well against
the GPH alternative. It is more interesting for the case of the SCE model. To obtain
powerful tests against this alternative, a two-dimensional vector of logrank-type
statistics with specified weights are needed.

The statistics Ûj(t) are local martingales with respect to the history generated
by the data (Andersen et al. 1993) and the limit distribution of the statistic Û is
obtained similarly as the limit distribution of univariate logrank-type statistics using
the martingale central limit theorem and the fact that the predictable covariations are

< Ûj, Ûj′ > (t) =
∫ t

0
ϕj(t)ϕj′(t)

Y1·(t)Y2·(t)
Y(t)

dΛ(t).

The distribution of the statistic Û is approximated by the normal law N(0,Σ) with
the covariance matrix being estimated by Σ̂ =|| σ̂jj′ ||,

σ̂jj′ =
∫ ∞

0
ϕj(t)ϕj′(t)

Y1·(t)Y2·(t)
Y 2(t)

dN(t).

The matrix Σ̂ is 2× 2 when the alternative is the SCE model. Under null hypothesis
the law of the statistic

X2 = ÛT Σ̂−1Û

is approximated by χ2
2 distribution. The null hypothesis is rejected with the sig-

nificance level α if X2 > χ2
1−α(2), where χ2

1−α(2) is the (1 − α)-quantile of χ2
2

distribution.
It should be noted that when X contains a one-dimensional treatment variable

(corresponds to β) and a p-dimensional covariate (corresponds to γ ), then the above
X2 statistic can be adequately amended so that it will have a χ2

p+1 distribution (see
Examples 4 and 5 below).

7.3.2 The Hsieh Model

When non-proportional hazards is present, partial likelihood inference based on the
PH model leads to a biased estimate of the hazard ratio specific to the treatment or
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a covariate (Wu 2004). The weighted logrank tests are capable of dealing with this
case (Gill 1980; Harrington and Fleming 1982; Moreau et al. 1992). In particular,
Fleming and Harrington (1991, Chap.7) presented a class of Gρ,γ -statistic so that
different weights are used to emphasize early-, middle-, or late-stage differences.

Assume the null hypothesis (H0) that the hazards of different groups are equal,
and take the Hsieh model as an alternative (Ha). Let Ni(t) be the counting process
of individual i associated with the intensity

hi(t) = Yi(t)λ0(t)exp{(β + φ)′Xi(t)}{Λ0(t)}exp(φ′Xi(t))−1,

and

SJ(t) = 1

n

∑
Yi(t)Ji(t)exp{(β + φ)′Xi(t)}{Λ0(t)}exp(φ′Xi(t))−1,

for a predictable process J(t), J(t) = 1, X(t), or V(t) where

Vi(t) = Xi(t)exp(γ
T Xi)log{Λ0(t)}.

For amaximal observation time τ , θ = (βT , γ T )T .We have the
√

n-scaled estimating
functions for β and γ :

Eβ = 1√
n

∑ ∫ t

0
{Xi(u) − SX(u;Λ0, θ)

S1(u;Λ0, θ)
}dNi(u), (7.14)

Eγ = 1√
n

∑ ∫ t

0
{Vi(u) − SV (u;Λ0, θ)

S1(u;Λ0, θ)
}dNi(u); (7.15)

along with the piecewise-constant approximation Λ0m(t).
Assuming the Hsieh model in the current problem, the null hypothesis is H0 :

β = γ = 0; and the alternative is Ha : β and γ are both arbitrary and finite. A
score-type test statistic can be constructed as

W = {Eβ, Eγ }I −1{Eβ, Eγ }T , (7.18)

evaluated at (β, γ,Λ0(τ )) = (0, 0, Λ̂0(τ )). The information matrix, I , defined as

I =
(
Iββ Iβγ

Iγβ Iγ γ

)

,

has the components

Iββ = 1

n

∑ ∫ τ

0
{Xi − SX(u;Λ0, θ)

S1(u;Λ0, θ)
}⊗2dNi(u),
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Iγ γ = 1

n

∑ ∫ τ

0
{Vi − SV (u;Λ0, θ)

S1(u;Λ0, θ)
}⊗2dNi(u),

and

Iβγ = Iγβ = 1

n

∑∫ τ

0
{Xi − SX(u;Λ0, θ)

S1(u;Λ0, θ)
}{Vi − SV (u;Λ0, θ)

S1(u;Λ0, θ)
}dNi(u).

The score statisticW is asymptotically distributed as χ2
2p under H0 and p = dim(X).

For the two-sample case studied in Wu (2007), assume that a person stays in
the same group throughout the study. Let Dji be the number of failures in group j
(j = 0, 1) at time ti. Assuming no ties, D1i = 1 if the individual who failed is a
member of group 1 and D1i = 0 otherwise. Further, Y ji is the risk set size of group j
at time ti. Under H0, λ1 = λ0, the estimating functions reduce to

Eβ = 1√
n

∑
(D1i − E1i) and Eγ = 1√

n

∑
Δi(D1i − E1i), (7.19)

whereΔi =logΛ0(ti); and E1i = Y 1i/Y i, Y i = Y 1i +Y 0i, is the probability calculated
at ti when the failed person belongs to group 1. The information matrix has the
elements:

Iββ = 1

n

∑
(D1i − E1i)

2, Iβγ = 1

n

∑
Δi(D1i − E1i)

2, and Iγ γ = 1

n

∑
Δ2

i (D1i − E1i)
2.

(7.20)
In these expressions, Δi can be substituted by Δ̂i = log Λ̂0(ti). Another simpler
choice for estimating Λ0(t) is Λ̃0(ti) = ∑

k≤i{Y k}−1. We denote the proposed W

statistic as WA and W0 when Λ̂0(ti) and Λ̃0(ti) are used, respectively.
The W -statistic in (7.18) is distributed as χ2

2 under H0 because, in two-sample
setting, dim(X) = 1. The performance of W is comparable to a class of weighted
logrank tests Gρ,γ (Fleming and Harrington 1991, Chap.7):

TK = {∑n
1 K (ti)(D1i − E1i)}2∑n
1 K

2(ti)E1i(1 − E1i)
(7.21)

for the choice of weight process:

K (ti) = {̂S(ti−)}ρ{1 − Ŝ(ti−)}γ .

The quantity Ŝ(t−) is the Kaplan–Meier estimate of survival function of the pooled
sample. Here, note that G0,0-statistic corresponds to the “ordinary” logrank statistic
and G1,0 to the Wilcoxon–Peto–Prentice statistic.
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7.3.3 Examples

Example 1 (for Hsieh model): The data analyzed in Stablein and Koutrouvelis
(1985) and Hsieh (2001) concerning gastric cancers, and the data listed in Piantadosi
(1997, Chap.19, pp. 483–488) concerning the survival times of lung cancer patients
are used to illustrate the implementation of the W -statistics, compared with Gρ,γ

statistics. The following table gives the results of the tests. Reprinted from Journal
of Statistical Planning and Inference, 137(2), H.-D.I. Wu, A Partial Score Test for
Difference Among Heterogeneous Populations, pp. 527–537, Copyright 2015, with
permission from Elsevier.

Test G0,0 G1,0 G1,1 G0,1 WA W0
Gastric cancer
Realization 0.222 3.963 0.015 2.071 7.941 10.472
(p-value) (0.637) (0.046) (0.902) (0.150) (0.019) (0.005)

Lung cancer
Realization 1.275 3.177 0.349 0.001 6.394 5.714
(p-value) (0.259) (0.075) (0.555) (0.994) (0.041) (0.057)

Gastric cancer data: There were 90 patients randomized into two groups, each
had 45 individuals receiving chemotherapy and chemo-plus radiotherapy. A cross
point appeared at around 32 months between the two groups (Fig. 1.3.) The p-values
of theG1,1- andG0,1-tests are 0.902 and0.150, respectively. TheG1,0-test and the tests
WA andW0, give significant results of testing for the group difference at the 0.05 nom-
inal level. When the Hsieh model is applied, we have (β̂, γ̂ ) = (0.3251,−0.7933)
with corresponding p-values 0.3267 and 0.0559.

Lung cancer data: There were 164 patients divided into two groups; 86 received
radiotherapy and 78 received radiotherapy plus “CAP”. We observe from Fig. 1.5
that the Kaplan–Meier estimates cross at around 33 months. The performance of
G0,1 (putting weight on the late stage) and G1,1 (putting weight on middle stage)
are both poor at detecting the difference (p-value = 0.994 and 0.555). However,
the G1,0-test has a p-value of 0.075; the W s yield smaller significance probabilities
than the Gρ,γ -statistic does. Under the Hsieh model, (β̂, γ̂ ) = (0.2781,−0.4914)
have p-values 0.181 and 0.085. The WA test is significant with p-value = 0.041;
and W0-test gives a p-value of 0.057. In Figs. 7.1, 7.2 and 7.3, we present the fits
of survival estimates based on Cox’s model (Fig. 7.1), Hsieh model (Fig. 7.2), and
the SCE model (Fig. 7.3). Cox model certainly does not have good fits for this data
due to the cross effect; Hsieh model can capture Group B at the early stage (time <

23 months) and capture Group A at the middle stage (time > 15 months). The SCE
model offers smoother estimates that can fit better for almost the entire graph.

Example 2 (for GPH model): The survival data of 137 lung cancer patients given
in Kalbfleisch and Prentice (2002) shows that the hazard rates under different values
of the covariate (performance status) do not intersect but the ratios of hazard rates

http://dx.doi.org/10.1007/978-3-662-49332-8_1
http://dx.doi.org/10.1007/978-3-662-49332-8_1
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Fig. 7.1 Compare KM and
Cox estimates for lung
cancer data
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Fig. 7.2 Compare KM and
Hsieh estimates for lung
cancer data. Reprinted from
Journal of Statistical
Planning and Inference,
137(2), H.-D.I. Wu, A Partial
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are monotone. So, we apply the test for the Cox model when the alternative is the
GPH model. Nine observations were censored, i.e., the proportion of censorings is
0.0657.

Performance status is determined by the Karnofsky index values: 10–30 com-
pletely hospitalized, 40–60 partial confinement, 70–90 able to care for self. We used
the following models for the analysis:

(a) Continuous covariate per (performance status).
(b) Covariate 1{perf ≤50} (performance status dichotomised).

The goodness-of-fit test for the PH against the GPHmodel was used for these two
cases. The test statistic T equals to 8.156 (case a, p-value = 0.0043) and 8.563 (case
b, p-value = 0.0034), respectively. So the PH model is rejected.

In the case of dichotomous covariable, the estimators of the survival functions
(corresponding to 0 and 1 performance status) obtained from the GPH model are
much closer to the Kaplan–Meier estimates than the estimates obtained from the PH
model (Bagdonavičius et al. 2002).

Example 3 (for SCE): The survival data of 90 gastric cancer patients (Exam-
ple 3, Chap. 1) given in Stablein and Koutrouvelis (1985) concerned the effects of
chemotherapy (sample size of 45; treatment indicator Z = 0) and chemotherapy plus
radiotherapy (sample size of 45; treatment indicator Z = 1) on the survival shows
that the Kaplan–Meier estimators pertaining to the both treatment groups cross once
(Fig. 1.3).We apply the test for the Coxmodel when the alternative is the SCEmodel.
In this example, eight observations were censored (censoring proportion = 0.0889).

The distribution of the test statistic is approximated by the chi-square distribution
with one degree of freedom and its value is T = 13.131 (p-value = 0, 0002). The
proportional hazards hypothesis is strongly rejected.

We applied the SCE model for estimation of the influence of covariates to the
survival. The modified partial likelihood estimator of θ = (β, γ ) is (1.8945, 1.3844).
The estimators of the survival functions cross at about t0 = 28 (months). The resulting
inference indicates that the radiotherapy would first be detrimental to a patient’s
survival but becomes beneficial later on. Unfortunately, only about 20% patients
survived beyond the time t0.

Example 4.To illustrate the application of the proposed test for models with more
than one covariate we begin with right-censored UIS data set given by Hosmer et al.
(2008).

UIS was a 5-year research project comprised two concurrent randomized trials of
residential treatment for drug abuse. The purpose of the study was to compare treat-
ment programs of different planned durations designed to reduce drug abuse and to
prevent high-risk HIV behavior. The UIS sought to determine whether alternative
residential treatment approaches are variable in effectiveness and whether efficacy
depends on planned program duration. The time variable is time to return to drug
use (measured from admission). The individuals who did not return to drug use are
right-censored. We use the model with 10 covariates (which support PH assumption)
given by Hosmer, Lemeshow and May (2008). The covariates are: age (years); Beck
depression score (becktota; 0–54); NDRUGFP1 = ((NDRUGTX + 1)/10)∗∗(−1);

http://dx.doi.org/10.1007/978-3-662-49332-8_1
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Table 7.1 The estimated coefficients

Covariate DF Parameter
estimate

Standard
error

Chi-Square Pr > ChiSq Hazard ratio

AGE 1 −0.04140 0.00991 17.4395 <0.0001 0.959

becktota 1 0.00874 0.00497 3.0968 0.0784 1.009

NDRUGFP1 1 −0.57446 0.12519 21.0567 <0.0001 0.563

NDRUGFP2 1 −0.21458 0.04859 19.5043 <0.0001 0.807

IVHX_3 1 0.22775 0.10856 4.4009 0.0359 1.256

RACE 1 −0.46689 0.13476 12.0039 0.0005 0.627

TREAT 1 −0.24676 0.09434 6.8416 0.0089 0.781

SITE 1 −1.31699 0.53144 6.1412 0.0132 0.268

AGEXSITE 1 0.03240 0.01608 4.0596 0.0439 1.033

RACEXSITE 1 0.85028 0.24776 11.7778 0.0006 2.340

NDRUGFP2 = ((NDRUGTX+1)/10)∗∗(−1)∗log((NDRUGTX+1)/10); drug use
history at admission (IVHX_3; 1—recent, 0—never or previous); race (0—white, 1—
non-white); treatment randomization assignment (treat; 0—short, 1—Long); treat-
ment site (site; 0—A, 1—B); interaction of age and treatment site (agexsite); interac-
tion of race and treatment site (racexsite). The NDRUGTX denotes number of prior
drug treatments (0–40). Due to missing data in covariates, the model is based on 575
of the 628 observations. The estimated coefficients β are given in Table7.1.

The value of the test statistic T is 13.3885, the p-value is 0.2028 (because T is
now distributed as χ2

10). The assumption of Cox model is not rejected. Note that this
example parallels the overall F-test in a conventional multiple linear regression.

Example 5. The data given in Kleinbaum and Klein (2005) are reported from a
study in which two methadone treatment clinics for heroin addicts were compared
to assess the time of patients that remained under methadone treatment. The variable
“time” (in days) is the time until the person dropped out of the clinic or was righted
censored. The covariates are prison—indicates whether the patient had a prison
record (coded as 1) or not (coded as 0); dose—the continuous variable for the patient
maximum methadone dose (mg/day); clinic—indicates which methadone treatment
clinic the patient attended (coded as 1 or 2). The value of test statistic T (∼χ2

3 ) is
13.02 with p-value 0.0046. The assumption of the Coxmodel is rejected. Themethod
based on Schoenfeld (1980) residuals (not reported here) yields the same conclusion.

7.4 Goodness-of-Fit for the Cox Model from Left
Truncated and Right-Censored Data

In this section, we consider general tests based on modified score functions obtained
from left truncated and right-censored data. Let Sz(t), λz(t) andΛz(t) be the survival,
hazard rate, and cumulative hazard functions under a p-dimensional explanatory
variable z. The null hypothesis is the Cox model:
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H0 : λz(t) = eβT z λ0(t);

where λ0(t) is unknown baseline hazard function, the parameter β is p-dimensional.
Let us consider the SCE model introduced in a previous context. The Cox model

is obtained by taking γ = 0. So, the alternative Ha is the model (4) with γ �= 0.
Suppose that survival distributions of all n objects given xi are absolutely continu-

ous with the survival functions Si(t) and the hazard rates λi(t), and the truncation and
censoring are non-informative (see Andersen et al. 1993; Huber et al. 2006; Solev
2009; Turnbull 1976). Assume the multiplicative intensities model, the compensator
of the counting processes Ni with respect to the history of the observed processes is∫

Yiλidu.
In the parametric case with known λ0, the unknown finite-dimensional para-

meter θ = (β, γ ). The parametric maximum likelihood (ML) estimator θ̂ of
the parameter θ satisfies the equation: �̇(θ;Λ) = 0, where the score function
�̇(θ;Λ) = (�̇β(θ;Λ), �̇γ (θ;Λ))T has the following components:

�̇β(θ;Λ0) =
n∑

i=1

∫ ∞

0

(

zi + (e−γ T zi − 1)
zie(β+γ )T ziΛ0(t)

1 + e(β+γ )T ziΛ0(t)

)

× {dNi(t) − Yi(t)e
βT zi{1 + e(β+γ )T ziΛ0(t)}e−γ T zi −1 dΛ0(t)},

�̇γ (θ; Λ0) =
n∑

i=1

∫ ∞

0

(

−zie
−γ T zi ln

[
1 + e(β+γ )T zi Λ0(t)

]
+ (e−γ T zi − 1)

zie(β+γ )T zi Λ0(t)

1 + e(β+γ )T zi Λ0(t)

)

× {dNi(t) − Yi(t)e
βT zi {1 + e(β+γ )T zi Λ0(t)}e−γ T zi −1 dΛ0(t)}.

Let us consider the case of unknown baseline hazard λ0. The idea of test con-
struction is simple. In the expression of �̇(θ;Λ0) the parameter γ is replaced by 0,
the parameter β by its estimator β̂ obtained from maximizing the partial likelihood
function under the Cox model; i.e., β̂ satisfies the equation

˙̃
�(β) =

n∑

i=1

∫ ∞

0
{zi − E(t, β)}dNi(t),

where

E(t, β) = S(1)(t, β)

S(0)(t, β)
, S(0)(t, β) =

n∑

i=1

Yi(t)e
βT zi , S(1)(t, β) =

n∑

i=1

ziYi(t)e
βT zi .

The baseline cumulative intensity Λ0 is replaced by the Breslow estimator (see
Andersen et al. 1993):
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Λ̂0(t) =
∫ t

0

dN(t)

S(0)(t, β̂)
=

n∑

i=1

Yi(t)e
β̂T zi .

Note that

�̇β (β̂, 0; Λ̂0) =
n∑

i=1

∫ ∞
0

zi{dNi(t) − Yi(t)e
β̂T zi dΛ̂0(t)} =

n∑

i=1

∫ ∞
0

{zi − E(t, β̂)}dNi(t),

which equals to 0. We use only the statistic

U = �̇γ (β̂, 0; Λ̂0),

which can be written in the form U = U(∞), where

U(t) = −
n∑

i=1

∫ t

0
zi ln

[
1 + eβ̂T ziΛ̂0(t)

]
{dNi(t) − Yi(t)e

β̂T zi dΛ̂0(t)}

=
n∑

i=1

∫ ∞

0
{h(zi, t, β̂) − E∗(t, β̂)}dNi(t).

Here,

h(zi, t, β̂) = −zi ln(1 + eβ̂T ziΛ̂0(t)), E∗(t, β̂) = S(1)∗ (t, β̂)

S(0)(t, β̂)
, and

S(1)
∗ (t, β̂) = −

n∑

i=1

ziYi(t) eβ̂T zi ln(1 + eβ̂T ziΛ̂0(t)).

The statistic U is p-dimensional. The test is based on this modified score statistic
and its asymptotic distribution.

Theorem 1: Asymptotic distribution of the modified score statistic
Under some regularity conditions, the statistic

T = n−1UT D̂−1U

has an asymptotic χ2
p distribution, where p is the dimension of β and D̂ = Σ̂∗∗(τ )−

Σ̂∗(τ )Σ̂−1
0 (τ )Σ̂T∗ (τ ) is a consistent estimator of the limit covariance matrix of the

random vector n−1/2U.
Thenull hypothesis is rejectedwith the asymptotic significance levelα ifT > χ2

α,p;
where χ2

α,p is the α-critical value of the chi-square distribution with p degrees of
freedom.
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7.4.1 Examples

Example 1. Klein andMoeschberger (2003) analyze the data of death times of elderly
residents (z = 1, male; z = 0, female) of a retirement community.

The number of individuals is 462 (97 males and 365 females). Due to missing
values, 458 of 462 observations were used. The data consists of time (in month)
when member of the community died or left the center and age when individuals
entered the community. The life lengths are left truncated because an individual must
survive to a sufficient age to enter the retirement community; all individuals who died
earlier and would not enter the center are considered left truncated. The estimate of
parameter β is 0.3160.

The value of test statistic T is 1.4399, the p-value is 0.2301. The assumption of
PH model is not rejected. The methods described by Kleinbaum and Klein (2005)
yield the same results: the plots of logarithm of cumulative hazard function looks
reasonably parallel.

Example 2 (continuation of Example 4, Sect.7.3) This example illustrates the
case of left truncated and right-censored data. Suppose that in UIS the subjects are
followed-up after they have completed the treatment program, but the drug free
period (survival time) is defined as beginning at the time the subject entered the
treatment program. In this case, only those subjects who completed the treatment
program are included in the analysis, i.e., data are left truncated. Of the 628 subjects,
546 remained drug free for the duration of their treatment program. Due to missing
data in covariates, the model is based on 504 of the 546 observations. The estimated
coefficients are given in Table7.2.

The value of test statistic T is 12.1233 (∼χ2
10), the p-value is 0.2769. The assump-

tion of the Cox model is not rejected.

Table 7.2 The estimated coefficient of covariates

Covariate Parameter
estimate

Standard error χ2-value Pr > χ2 Hazard ratio

AGE −0.0332 0.0109 9.2714 0.0023 0.967

becktota 0.0045 0.0053 0.7246 0.3946 1.005

NDRUGFP1 −0.5461 0.1427 14.6401 0.0001 0.579

NDRUGFP2 −0.2038 0.0549 13.7995 0.0002 0.816

IVHX_3 0.2151 0.1185 3.2931 0.0696 1.240

RACE −0.4945 0.1424 12.0514 0.0005 0.610

TREAT 0.1396 0.1050 1.7664 0.1838 1.150

SITE −0.9601 0.5559 2.9831 0.0841 0.383

AGEXSITE 0.0398 0.0171 5.4253 0.0198 1.041

RACEXSITE 0.2203 0.2896 0.5788 0.4468 1.246
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Table 7.3 The estimated coefficients

Covariate DF Parameter
estimate

Standard
error

Chi-Square Pr > ChiSq Hazard ratio

SEX 1 0.15246 0.16234 0.8820 0.3477 1.165

CHF 1 0.88820 0.15921 31.1244 <0.0001 2.431

MI ORDER 1 0.42266 0.16237 6.7759 0.0092 1.526

MITYPE 1 −0.07956 0.16424 0.2346 0.6281 0.924

Example 3. This example also illustrates the case of left truncated and right-censored
data. The data given in Hosmer et al (2008) are from The Worcester Heart Attack
Study (WHAS). The main goal of this study is to describe the trend over time in
the incidence and survival rates following hospital admission for acute myocardial
infarction (AMI). The time variable is total length of hospital stay (that is the days
between the date of last follow-up and hospital admission date). The censoring vari-
able is the status of last follow-up (0, alive; 1, dead). The left truncation variable is
the length of hospital stay between hospital discharge and hospital admission. Sub-
jects who died in the hospital are not included in the analysis. The covariates are
sex (0, male; 1, female), left heart failure complications (CHF: 0, no; 1, yes), MI
order (MIORD: 0, first; 1, recurrent), MI type (MITYPE: 1, Q-wave; 0, not Q-wave).
Due to missing data in covariates, the analysis is based on 392 observations. The
estimated coefficients are given in Table7.3.

The value of the test statistic T is 12.66 (∼χ2
4 ), the p-value is 0.0131. The assump-

tion of the Cox model is rejected. The method based on Schoenfeld residuals (not
reported here) yields the same result.



Chapter 8
Remarks on Computations in Parametric
and Semiparametric Estimation

The literature on parametric and nonparametric estimation for models considered in
the previous chapters is enormous. See, for example, Wu et al. (2002), Dabrowska
(2005, 2006), Bagdonavicius and Nikulin (1999, 2002, 2005), Martinussen and
Scheike (2006), Scheike (2006), Zeng and Lin (2007), etc. Methods of estimation
depend on experimental plans, censoring mechanism, covariate types, etc. Here we
only give two general approaches, for parametric and semiparametric cases, which
work well for all models. We have several remarks to help clarify the considered
models.

Remark 1. Additive hazards model and its generalizations
We know that an alternative of the PH model is the additive hazards (AH) model:

λx(·)(t) = λ0(t) + βT x(t),

where β is the vector of regression parameters. If the AH model holds then the
difference of default rates under constant covariates does not depend on t. Like the
PH model, this model has the absence of memory property: the default rate at the
moment t does not depend on the values of the covariate before the moment t.

Usually the AH model is used in the semiparametric form: the parameters β and
the baseline rate λ0 are both unknown.

We know also that both the PH and AH models are included in the additive-
multiplicative hazards (AMH) model (Lin and Ying 1996):

λx(·)(t) = eβT x(t)λ0(t) + γ T x(t).

This model also has the absence of memory property.
A modification of the AH model for constant covariates is the Aalen’s additive

risk (AAR) model (Aalen 1980): the default rate under the covariate x is modeled by
a linear combination of several baseline rates with covariate components as coeffi-
cients:

© The Author(s) 2016
M. Nikulin and H.-D.I. Wu, The Cox Model and Its Applications,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-49332-8_8
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λx(t) = xTα(t).

where α(t) = (λ1(t), . . . , λm(t))T is an unknown vector function.
Both AH and AAR models are included in the partly parametric additive risk

(PPAR) model (McKeague and Sasieni 1994):

λx(t) = xT
1 α(t) + βT x2,

where x1 and x2 are q- and p-dimensional components of the explanatory variable x,
α(t) = (λ1(t), . . . , λq(t))T and β = (β1, . . . , βp)

T are unknown.
Analogously, as in the case of the PH model, the AH model can be generalized

by the generalized additive hazards (GAH) model:

λx(·)(t) = q{Λx(·)(t)}(λ0(t) + βT x(t)),

where the function q is parameterized as in the case of GPH models.
Both the GPH and the GAHmodels can be included into the generalized additive-

multiplicative hazards (GAMH) model (Bagdonavicius and Nikulin 1997):

λx(·)(t) = q{Λx(·)(t)}
(

eβT x(t)λ0(t) + δT x(t)
)

.

In both GAH and GAMH models the function q is parametrized as in the GPH
models: q(u) = (1 + u)−γ+1, (1 + γ u)−1, e−γ u, and the GAH1, GAH2, GAH3 or
GAMH1, GAMH2, GAMH3 models are obtained.

Remark 2. For parametric models, the maximum likelihood (ML) estimation proce-
dure gives the best estimators. For simplicity let us consider only the “right-censored”
data (which is typical in survival analysis):

(X1, δ1, x1(·)), . . . , (Xn, δn, xn(·)), (8.1)

where Xi = min(Ti, Ci), δi = 1{Ti≤Ci} for i = 1, . . . , n,; Ti and Ci are the failure
and censoring times, 1A is the indicator of an event A, and xi(·) is the covariate
corresponding to the ith subject. Equivalently, right-censored data can be presented
in the following form:

(N1(t), Y1(t), x1(t), t ≥ 0), . . . , (Nn(t), Yn(t), xn(·), t ≥ 0), (8.2)

where Ni(t) = 1{Xi≤t,δi=1} is the counting process and Yi(t) = 1{Xi≥t} is the “at-risk”
process for subject i, respectively. Further, for any t > 0,

N(t) =
n∑

i=1

Ni(t) and Y(t) =
n∑

i=1

Yi(t)
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are the number of observed failures in the interval [0, t] and the number of at-risk
subjects just prior to time t. The compensators of the counting processes Ni with
respect to the history of the observed processes are

∫
Yiλidu.

Remark 3. Suppose that the survival distributions of all n subjects given xi(·)
are absolutely continuous with survival functions Si(t, θ) and hazard rates λi(t, θ),
indexed by θ ∈ Θ ⊂ Rs; and that the distributions of Ci and xi(·) do not depend on
θ . The likelihood function for θ is

L(θ) =
n∏

i=1

λ
δi
i (Xi, θ) Si(Xi, θ),

or,

L(θ) =
n∏

i=1

(∫ ∞

0
λi(u, θ) dNi(u)

)δi

exp

{

−
∫ ∞

0
Yi(u)λi(u, θ) du

}

. (8.3)

The ML estimator θ̂ of the parameter θ maximizes the likelihood function. It
satisfies the equation U(θ̂) = 0, where U is the score function:

U(θ) = ∂

∂θ
ln L(θ) =

n∑

i=1

∫ ∞

0

∂

∂θ
log λi(u, θ){dNi(u) − Yi(u)λi(u, θ)}du. (8.4)

The form of the hazards rates λi for the PH, AFT, GPH, AH, AMH, GAH, GAMH
is given by the corresponding formulas in Chaps. 3–7. The parameter θ contains the
regression parameter β, the complementary parameter γ (for some models), and the
baseline hazard λ0 (which could be taken from some parametric family).

Remark 4. For semiparametric estimation, we expose shortly a general approach
proposed by Bagdonavičius and Nikulin (1998, 1999, 2002) based on the modified
partial likelihood when λ0 is unknown. (See also Dabrowska 2005–2007, Marti-
nussen and Scheike 2006.) The martingale property of the difference

Ni(t) −
∫ t

0
Yi(u)λi(u, θ)du (8.5)

implies a “pseudo estimator” (which depends on θ ) of the baseline cumulative hazard
Λ0. Indeed, all the above-considered models can be classified into three groups
depending on the form of λi(t, θ)dt. It is of the form

g(xi(s), Λ0(s), 0 ≤ s ≤ t, θ)dΛ0(t)

for PH, GPH, CE models, dΛ0(fi(t, θ)) for AFT, CHSS models, and

g1(xi(s), Λ0(s), 0 ≤ s ≤ t, θ)dΛ0(t) + g2(xi(s), Λ0(s), 0 ≤ s ≤ t, θ)dt

http://dx.doi.org/10.1007/978-3-662-49332-8_3
http://dx.doi.org/10.1007/978-3-662-49332-8_7
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for AH, AMH, GAH, GAMH models. Estimation for the PH and AFT models with
time-dependent regression coefficients and time-dependent covariates is analogous
to the estimation for the PH and AFT models with constant regression coefficients
and properly chosen time-dependent covariates.

Remark 5. For the first group of models, the martingale property of the difference
(8.5) implies the recurrently defined “estimator”:

Λ̃0(t, θ) =
∫ t

0

dN(u)
∑n

j=1 Yj(u)g(xj(v), Λ̃0(v, θ), 0 ≤ v < u, θ)
.

For the second group,

Λ̃0(t, θ) =
n∑

i=1

∫ t

0

dNi(hi(u, θ))
∑n

l=1 Yl(hl(u, θ))
,

where hi(u, θ) is the function inverse to fi(u, θ) with respect to the first argument.
Note that for PH, GPH1, GPH2, GPH3 models,

g(x(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβT x(t), eβT x(t)

(

1 + γ

∫ t

0
eβT x(u)dΛ0(u)

) 1
γ
−1

,

eβT x(t)

(

1 + 2γ
∫ t

0
eβT x(u)dΛ0(u)

)− 1
2

, eβT x(t)

(

1 + γ

∫ t

0
eβT x(u)dΛ0(u)

)−1

,

respectively. For the CE model

g(x(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβT x(t){1 + Λx(·)(t)}1−eγ T x(t)
,

where the function Λx(·) is defined by the equation

∫ t

0
eβT x(u){1 + Λx(·)(u)}1−eγ T x(u)

dΛ0(u) = Λx(·)(t).

If x is constant in time then for the CE model

g(x,Λ0(s), 0 ≤ s ≤ t, θ) = eβT x{1 + e(β+γ )T xΛ0(t)}e−γ T x−1.

Moreover, for the AFT model,

fi(t, θ) =
∫ t

0
e−βT x(u)du;
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and for the AH, AMH, GAH, and GAMH models,

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = 1, eβT x(t), xT , xT
1

and
g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = βT x(t), βT x(t), 0, βT

2 x(t),

respectively.

Remark 6. For the GAMH1 model:

g1(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = eβT x(t) g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ),

g2(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) = δT x(t) g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ),

where

g(xi(s),Λ0(s), 0 ≤ s ≤ t, θ) =
(

1 + γ

(∫ t

0
eβT x(u)dΛ0(u) + δT

∫ t

0
x(u)du

)) 1
γ

−1

.

Analogous formulas for the GAMH2, GAMH3, GAH1, GAH2, and GAH3 models
can be expressed in a similar manner.

For the PH, GPH, and CE models the weight ∂
∂θ

log λi(u, θ) in (8.4) is a function
of xi(·)(v),Λ0(v), 0 ≤ v ≤ u and θ . So the modified score function is obtained from
replacing Λ0 by a consistent estimator Λ̃0 in the parametric score function (8.4).

In the case of the AFT, AH, AMHmodels, the weight depends not only onΛ0 but
also on λ0 and/or λ′

0. Here λi(u)du does not depend on λ0 and λ′
0. The construction

of the modified likelihood function can be done by different ways. For example, one
can replace Λ0 by Λ̃0, λ0 and λ′

0 by their nonparametric kernel estimators which are
easily obtained from the estimator Λ̃0.

Remark 7. Computation of the modified likelihood estimators is simple for the PH,
GPH, and CE models. It is due to the remarkable fact that these estimators can be
obtained by the partial likelihood function expressed as:

LP(θ) =
n∏

i=1

[∫ ∞

0

g{xi(v),Λ0(v), 0 ≤ v ≤ u, θ}
∑n

j=1 Yj(u)g{xj(v),Λ0(v), 0 ≤ v ≤ u, θ} dNi(u)

]δi

, (8.6)

and suppose at first that Λ0 is known. If Λ0 in the score function is substituted by
Λ̃0, then exactly the same modified score function is obtained as if it has come from
the full likelihood.

In conclusion, it is better to maximize the modified partial likelihood function,
which is simply the partial likelihood function (8.6) except for replacing Λ0 by Λ̃0.
The general quasi-Newton optimization algorithm (such as that given in R language)
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works well for seeking the maximizer of θ . Note that the modified maximum like-
lihood estimators are the values of θ minimizing the distance of the modified score
function from zero. Computational methods for such estimators are also given in Lin
and Geyer (1992), Hsieh (2001), Wu et al. (2002), Wu (2007), Dabrowska (2005,
2006), Martinussen and Scheike (2006).

Remark 8. PH model with time-dependent regression coefficients

Flexible models can be obtained by supposing that the regression coefficients β in
the PH model are time-dependent (see Sect. 5.3):

λx(·)(t) = eβ(t)T x(t)λ0(t), (8.7)

where

βT (t) x(t) =
m∑

i=1

βi(t)xi(t).

If the function βi(·) is increasing or decreasing in time then the effect of the ith
component of the explanatory variable is increasing or decreasing.

Usually the coefficients βi(t) are considered in the form

βi(t) = βi + γigi(t), (i = 1, 2, . . . , m),

where gi(t) are some specified functions such as t, ln t, ln(1 + t), (1 + t)−1, or real-
izations of predictable processes. In such a case the PH model with time-dependent
coefficients can be written in the usual form where the “covariables” contain xi(·)
and xi(·)gi(·). Specifically, let

θ = (θ1, . . . , θ2m)T = (β1, . . . , βm, γ1, . . . , γm)T ,

z(·) = (z1(·), . . . , z2m(·))T = (x1(·), . . . , xm(·), x1(·)g1(·), . . . , xm(·)gm(·))T ,

then

βT (u)x(u) =
m∑

i=1

(βi + γigi(t)) xi(t) = θT z(u).

So the PH model with time-dependent regression coefficients can be written as

λx(·)(t) = eθT z(t)λ0(t).

We have the PH model with time-dependent “covariables” and constant “regression
parameters.” Methods of estimation for the usual PHmodel are still applicable. Note
that the introduced “covariables” have time-dependent components even in the case
when the covariable x is constant over time.

http://dx.doi.org/10.1007/978-3-662-49332-8_5
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An alternative method is to take βi(t) as piecewise constant functions with jumps
as unknown parameters. In this case the PH model is used locally and the ratios of
the default rates under constant covariates are constant at each time interval.



Chapter 9
Cox Model for Degradation and Failure
Time Data

9.1 Aging and Longevity, Failure and Degradation

It is well known that traditionally the failure time data are used for product reliability
estimation or for estimation of survival characteristics. Failures of highly reliable
units are rare andother information should be used in addition to censored failure time
data. One way of obtaining a complementary reliability information is to use higher
levels of experimental factors or covariates (such as temperature, voltage, or pressure)
to increase the number of failures and, hence, to obtain reliability information quickly.
The accelerated life testing (ALT) of biotechnical systems is a simple practical
method for estimation of reliability of new systems without having to wait for the
operating lives of them. It is evident that the extrapolating reliability from ALT
always carries the risk that the accelerating stresses do not properly excite the failure
mechanism which dominates at operating (normal) stresses.

Another way of obtaining this complementary survival information is to measure
some parameters (covariates) which characterize the aging of the system in time. In
longevity analysis of highly reliable complex industrial or biological systems, the
degradation processes provide additional information about the aging, degradation,
and deterioration of systems. From this point of view the degradation data are rich
sources of reliability information and have advantages over failure time data. Degra-
dation is natural response for some tests. With degradation data it is possible to
make useful reliability and statistical inference, even with no failures. Sometimes it
is possible to construct the expert’s estimation of the level of degradation.

Degradation Process

In reliability considerable interests lies in constructing a covariates process Z(·) =
Zr (·) which describes the real process of wear, fatigue, or the usage history
up to time t . Note that he history indicates the level of fatigue, degradation, and
deterioration of a system and may influence on the rate of degradation, the risk of

© The Author(s) 2016
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failure and the reliability of system. Statistical modeling of observed degradation
processes can help understand different real physical, chemical, medical, biological,
physiological, social or economic degradation processes of aging (Fig. 9.1).

Information about real degradation processes help us to construct the degradation
models with which the cumulative damage can be predicted. By the main idea of
degradation models a soft failure is observed if the degradation process reaches a
critical threshold z0. A soft failure caused by degradation occurs when Zr (t) reaches
the value z0. The moment T (0) of soft failure is defined by

T (0) = sup{t : Zr (t) < z0} = inf{t : Zr (t) ≥ z0}.

So it is reasonable to construct the so-called degradation models, based on some
suppositions about the mathematical properties of the degradation process Zr (·),
according to the observed longitudinal data in the experiment. It is evident that both
considered methods may be combined to construct the so-called joint degradation
models. For this it is enough to define a failure of system when its degradation
(internal wear) reaches a critical value or a traumatic event (failure) occurs. The
joint degradation models form the class of models with competing risk, since for any
item we consider two competing causes of failure: degradation, reaching a threshold
(soft failure), and occurrence of a hard or traumatic failure. Let T be the moment
of traumatic failure of a unit. In considered class of models the failure time τ is the
minimum of the moments of traumatic and soft failures,

τ = min(T (0), T ) = T (0) ∧ T .
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These models are also called degradation-threshold-shock models. For such
models the degradation process Zr (t) can be considered as an additional time varying
covariate, which describes the process of wear or the usage history up to time t .

The convex and concave degradation models are interesting to use to study
the growth of tumors. To model the degradation-failure time process, Meeker and
Escobar (1998) andLawless (2003) used general degradation path models, according
to which

Zr (t) = g(t, A).

Here A = (A1, . . . , Al) is a random vector with positive components and g is a
specified continuously differentiable function of t , which increases from 0 to +∞
with t . For example, if l = 1, we have A = A1—a positive random variable; and if

g(t, A) = t/A, A ∈ R1
+,

we have a linear degradation. If l = 2 and

g(t, A) = (t/A1)
A2 ,

we have a convex or concave degradation. It is also assumed that, for each t > 0, the
degradation path

g(s, a), 0 < s ≤ t,

determines in the unique way the value a of the randomvector A. For another example
we consider

Zr (t) =
∫ t

0
eW (s)ds

where W (·) is a random process (say, a Wiener process) with continuous trajectories.
Degradation is modeled by the process Z(t, A), where t is time and A is some

possibly multidimensional random variable. Nelson (1990) andMeeker and Escobar
(1998) introduced linear degradation models to study the increase in a resistance
measurement over time, and the convex and concave degradation models to study
the growth of tumors. Concave degradation models may also be used to describe
degradation of components in electronic circuits in medical equipments. Moreover,
Lawless (2003), Meeker and Escobar (1998), Kahle and Wendt (2006), Lehmann
(2004), Bagdonavicius and Nikulin (2002) described many different applications
and models for accelerated degradation with data involving destructive testings.

Influence of covariates on degradation is also modeled in Meeker and Escobar
(1998), Bagdonavicius and Nikulin (2001, 2002, 2004, 2006), Nikulin et al. (2010)
to estimate survival when the environment is dynamic.

In practice the real degradation process Zr (t) often is not observed, and we have
to estimate it. In this case we have to work with the observed degradation process
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Z(t) different from the real degradation process Zr (t). We suppose that the observed
degradation process

Z(t) = Zr (t)U (t), t > 0,

where

lnU (t) = V (t) = σ W (c(t)),

W is the standard Wiener process independent of A, and c is a specified continuous
increasing function, with c(0) = 0.

For any t > 0 the median of U (t) is 1. This setting permits us to construct a
degradation model with a noise.

9.2 Joint Model

An important class ofmodels based on degradation processes was developed recently
by Wulfsohn and Tsiatis (1997) and Bagdonavičius et al. (2005). Wulfsohn and
Tsiatis considered the so-called joint model for survival and longitudinal data mea-
sured with error, given by

λT (t |A) = λ0(t)e
β(A1+A2t), t > 0, (l = 2),

where A = (A1, A2) follows bivariate normal distribution. On the other hand,
Bagdonavičius and Nikulin (2001, 2002, 2006) proposed the model in terms of
conditional survival function of T given the real degradation process:

ST (t |A) = P{T > t |g(s, A), 0 ≤ s ≤ t}
= exp

{

−
∫ t

0
λ0(s, θ)λ(g(s, A))ds

}

,

where λ is the unknown intensity function and λ0(s, θ) is the hazard function from a
parametric family. The distribution of A is not specified.

This model states that the conditional hazard rate λT (t |A) at the moment t given
the degradation g(s, A), 0 ≤ s ≤ t, has the multiplicative form as in the Cox model:

λT (t |A) = λ0(t, θ)λ(g(t, A)).

If

λ0(t, θ) = (1 + t)θ or λ0(t, θ) = etθ ,
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then θ = 0 corresponds to the case when the hazard rate at any moment t is a
function of degradation level at this moment. One can note that in the second
model the function λ, which characterizes the influence of degradation on the hazard
rate, is nonparametric; whereas in the Wulfsohn and Tsiatis model this function is
parametric.

The degradation models with covariates are well adapted for statistical analysis
of survival or failure data in dynamic environments, and for models the intensity
of traumatic failure is an increasing function of degradation level. It is a powerful
tool that allows us to identify precisely the mechanisms that could cause problems
at operating stresses. The degradation model with covariate is given by Zx(·)(t). It
is used to estimate reliability when the environment is dynamic. The moment of soft
failure caused by the degradation under the covariate x(·) is defined as

T (0)
x(·) = sup{t : Zx(·)(t) < z0}.

Often the covariates cannot be controlled by an experimenter in such a case. For
example, the tire wear rate depends on the quality of roads, temperature, and other
factors. Optimization problem for the covariate value was considered by Ceci and
Mazliak (2004).

Levy process is a common degradation processes. As an example, consider a
gamma process with a change of scale (similar to one of the AFT model):

Zx(·)(t) = σ 2γ

(∫ t

0
eβT x(s)ds

)

, x(·) ∈ E .

Traumatic event occurs as a stochastic Poisson process with a killing rate λ
(
Zx(·)(t),

x(t)
)
. Here γ (t) is a process with independent increments such that

γ (t) ∼ G(1, ν(t)) = G

(

1,
m(t)

σ 2

)

.

That is, for any fixed t > 0, the random variable γ (t) has the gamma distribution
with scale parameter 1 and the shape ν(t) = m(t)/σ 2. The density of γ (t) is

fγ (t)(x) = xν(t)−1

Γ (ν(t))
e−x , x > 0.

In this case Eγ (t) = m(t) and Varγ (t) = σ 2m(t).

The following four cases are remarkable:

(a) when λ(z, x) = λ0, the intensity does not depend on the degradation and covari-
ates;
(b) when λ(z, x) = eβT x , the intensity depends only on covariates via the PH setting;
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(c) when λ(z, x) = λ0 + λ1z, the intensity depends linearly on degradation only;
(d) when λ(z, x) = eβT x (1+λ1z), the intensity depends linearly on degradation and
exponentially on covariates.

The semiparametric analysis of several new degradation and failure time regres-
sion models given in terms of λ(x(t), Zx(·)(t)), with or without covariables, is
described in Bagdonavicus and Nikulin (2006).
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