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Preface
The purpose of this book is to explain application of the finite element method to 
problems in the mechanics of solids. It is intended for practicing engineers who 
use the finite element method for stress analysis and for graduate students in engi-
neering who want to understand the finite element method for their research. It is 
also designed as a textbook for a graduate course in engineering. Application of the 
finite element method is illustrated by using the ANSYS computer program. Step-
by-step instructions for the use of ANSYS Parametric Design Language (APDL) and 
ANSYS Workbench in more than 40 examples are included.

The required background material in the mechanics of solids is provided so that 
the work is self-contained for the knowledgeable reader. A more complete treat-
ment of solid mechanics is provided in the book Continuum Mechanics: Elasticity, 
Plasticity, Viscoelasticity by Ellis H. Dill (CRC Press, 2007). References to that 
book are noted in this book on an applicable page by a footnote (Dill: specific r eferral 
detail).

This book is not intended as a detailed reference book on the use of the ANSYS 
system. However, Chapters 15 and 16 contain detailed steps for the application of 
ANSYS in numerous examples, which will enable the user to become fairly profi-
cient in the use of this software. The new user should begin with one of the tutorials 
provided by ANSYS or with one of the elementary books listed in the bibliogra-
phy in Chapters 15 and 16. This book was written using Version 12.1. However, the 
examples in Chapters 15 and 16 can be executed using either Version 12 or Version 
13. I do not pretend to present a detailed analysis of finite element as implemented 
by ANSYS. I do not have access to their computer coding. I believe that the elements 
they are using are essentially the same as those presented here, although they may 
differ in some details. 

I have attempted to cover only the essentials of the subject and to provide the tools 
necessary for comprehension of the technical literature and the commercial finite 
element programs. I apologize in advance to all of the originators of this material 
who are not referenced. I have long ago forgotten where I learned the theory.

BoCheng Jin helped with the preparation of the manuscript and provided many 
corrections to it. Of course, any remaining errors are mine alone.

ANSYS, ANSYS Workbench, and ANSYS APDL are trademarks of ANSYS, 
Inc. The software was used for examples, and the results cited, by special permission 
from ANSYS, Inc.
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1

1 Finite Element Concepts

1.1 IntroductIon

The finite element method (FEM) has developed along two paths. From the math-
ematical point of view, it is a method of constructing a function that makes the 
potential energy a minimum. From the engineering point of view, it is a method 
of assembling structural elements, which can be separately analyzed, into a global 
equation of equilibrium for the structure. The mathematical point of view makes 
the FEM a special form of the Rayleigh–Ritz method, which has a long history. The 
modern FEM may be said to have begun with Courant in 1943.1 His paper had little 
impact because the method was not practical until the development of digital com-
puters in the 1950s. This approach has now been extensively explored by mathemati-
cians and placed on a sound mathematical basis. Precise studies of error analysis and 
convergence proofs are available.2–5 However, the study of the mathematical founda-
tions, involving Sobolev spaces, is beyond the scope of this book.

The emphasis in this book is on the direct stiffness method in which the unknowns 
are the displacements of particular points, and to a lesser degree on the mixed (U-P) 
method, in which the mean stress is a primary variable. However, Chapter 3 con-
tains the fundamental variational theorems underlying the general mixed and hybrid 
methods that seemed to show great promise but have not achieved prominence in 
practical engineering analysis. The most significant omission is the new meshless 
method of analysis that has been recently developed.6

The analysis of structures by dividing them into elements, such as beams, string-
ers, shear panels, and so forth, which can be separately analyzed, has been devel-
oped over the past hundred years into a standard method of engineering analysis. 
Organization of the calculations using matrix algebra was widely developed, from 
about 1950 onward, as computers became available that made such computational 
methods practical.7 A landmark paper on the application of the direct stiffness for-
mulation to continuum problems was published by Turner, Clough, Martin, and Topp 
in 1956.8 The method was later named “finite element” method by Clough,9 in con-
trast to the finite difference method that was widely used for solution of continuum 
problems at that time.

From the viewpoint of the structural engineer, the analysis of a structure is accom-
plished by writing equations for the assembly of structural elements that describe

 (1) Compatibility or continuity of the deformations
 (2) Equilibrium of the contact forces at joints
 (3) Force–deformation relations for the elements

In the direct stiffness method, from which the FEM evolved, continuity of the dis-
placements (and rotations) is achieved by expressing all of the elements and joint 
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displacements in a single global coordinate system and then equating the displace-
ments where elements are joined. The equilibrium of forces acting on the joints 
is then easily expressed by using the same global coordinate system for the con-
tact forces from the joined structural elements. The force–deformation relation is a 
relation expressing the forces acting on an element as a linear function of the joint 
displacements. The coefficient matrix is called the element stiffness matrix for the 
element. Elimination of the element forces from the equilibrium equations leads to a 
single linear algebraic equation for the external forces in terms of the joint displace-
ments. The coefficient matrix is called the global stiffness matrix.

In this book, the emphasis will be on FEM as a systematic method for construct-
ing a function that makes the potential energy a minimum. However, the concepts 
that have arisen from matrix formulations of structural analysis will also be used. 
For example, the direct addition, or merge, of element stiffness matrices will be an 
important concept.

I will first summarize the direct stiffness method of structural analysis in more 
detail from the viewpoint of the structural engineer.

1.2 dIrect StIffneSS Method

A structure can be modeled as an assembly of elements that are joined at discrete 
points called nodes. For example, a truss consists of axial force elements joined 
at their ends. A frame consists of beam elements. An airplane consists of frames, 
stringers, spars, and shear panels. A mechanical component can be modeled as an 
assembly of solid elements joined at the corners.

We can introduce a global rectangular Cartesian coordinate system for compo-
nents of displacement of the joints and the external forces applied to the joint. The 
term “displacements” includes rotations, which are considered to be “generalized dis-
placements.” All elements connected to a common joint share the displacements of 
that joint. Let us denote the components of joint displacement in the global Cartesian 
coordinate system by D1, D2, D3, etc., and the corresponding components of external 
force by F1, F2, F3, etc. The forces may be either reactions or given external loads. 
The subscripts can be assigned in any order, but each component is given a distinct 
label and the indices range consecutively from 1 to N, with N being the total number 
of components of joint displacements for the structure. We call each displacement 
component Di a degree of freedom (DOF).

For each element, we must establish a relation between the internal forces exerted 
by the joints on the element and the displacements of the joints to which the ele-
ment is attached. This is accomplished by a stress analysis of the element that is 
done before we began to analyze the articulated structure. For example, for a truss 
member in the elastic range, the axial force is proportional to the elongation. For a 
beam element in the elastic range, the joint forces consist of forces and moments that 
are linearly related to the displacements and rotations of the ends of the beam. The 
moments are regarded as “generalized forces.” For an element m, which behaves 
elastically and has only small displacements, the relation between joint displace-
ments and element forces (components in the global Cartesian system) is expressed 
by a linear equation:
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f k D i ji
m

ij
m

j m

j

= ∈∑ , , .I

 

(1.1)

This relation involves only a subset of joint displacements: i is in the index set Im of 
displacements for the member m. The summation implied by the repeated index j is 
over the set Im. The forces fi

m are the components of force exerted by the joint on 
the element, acting in the same direction as the corresponding joint displacement Di, 
and they are numbered by the same index number i. The matrix km with elements 
kij

m is therefore a square matrix called the stiffness matrix of element m. It is always 
a symmetric matrix:

 
k kij

m
ji
m= .

 
(1.2)

The element stiffness relation 1.1 can be written as a matrix equation:

 fm = kmDm, no sum on m. (1.3)

However, the indices (ij) denote the related displacement component and do not fol-
low the standard row–column matrix notation. The element stiffness matrix is a 
symmetric square matrix with the number of columns and rows equal to the number 
of displacement components of the joints attached to member m.

1.2.1 Merging the eleMent StiffneSS MatriceS

We must now set forth the requirement that the forces applied to the joint by the ele-
ments are in equilibrium with the external forces applied to the joint. Resolving the 
external forces into the same components as we used for the joint displacements and 
member forces, we have, for joint n, the relation

 

F f ii i
m

n

m i

= ∈
∈

∑ , .D
M  

(1.4)

The range of m is over the index set Mi of members that share the DOF Di. The range 
of i is over the index set Dn of displacement components for the joint n. Substituting 
the element stiffness relations 1.1 into the joint equilibrium Equations 1.4, we obtain 
the global relation between external force and joint displacement. This operation is 
to be done for all joints to obtain one equation for each DOF, i = 1 to N:
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(1.5)
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The summation on k in the second term is over the set Ci of those DOFs that are con-
nected to the ith DOF by some member, that is, the connectivity of the structure. By 
definition, no two joints share the same Fi or Di, and the total number of such force 
and displacement components is N, that is, i = 1 to N.

The summation on k in the last term can be extended to the full range of 
displacements,

 

F K Di ik k

k

N

=
=

∑
1

,

 

(1.6)

by defining Kik = 0 for those k such that Di and Dk are not connected by any 
member:

 

K
k k

k
ik

ik
m

i

m

i
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∈
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∈
∑ for

for

C

C

M

,

.0
 

(1.7)

Then, in matrix notation, 

 F = KD (1.8)

This summation of the element stiffness matrices is called merging of the matrices 
to form the global stiffness matrix. In the global N × N stiffness matrix K with terms 
Kik, the index i becomes the row number and the index k becomes the column num-
ber of the term.

In Equation 1.7, we are merely adding together all of the terms with common 
indices from each of the element matrices. We can start by setting all of the terms 
in the global stiffness matrix K to zero. We then take any one element and add 
all of the terms from the element stiffness matrix directly into the global stiffness 
matrix at the appropriate location. Then we go to the next element and repeat 
the addition of terms from the element stiffness matrix into the global stiffness 
matrix. This is the process that gave rise to the terminology “merging the stiff-
ness matrices.” It is an efficient numerical method for forming the global stiffness 
matrix. Henceforth, when we indicate a summation of element stiffness matrices, 
the summation will be understood to mean that element stiffness matrices are 
merged.

The external forces F consist of the externally applied loads and reactions and 
the inertial forces. If we approximate the inertial forces by lumping the mass at the 
joints, the inertial force is (–miDi), no sum on i, for each DOF. The general form of 
Equation 1.8 including inertial forces is 

 F MD KD− =  (1.9)

where M is a diagonal matrix with the lumped masses mi on the diagonal.
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1.2.2 augMenting the eleMent StiffneSS Matrix

It is sometimes helpful to visualize geometrically the process of forming the global 
stiffness matrix K from the element stiffness matrices. One can imagine that each 
element stiffness matrix is increased in size to match the global stiffness by inserting 
zero terms for all terms, other than those terms corresponding to the indices i and j 
occurring in the element array kij

m, to obtain an N × N element matrix k̂ij
m. Equation 

1.7 then expresses the ordinary matrix addition:

 

K k= ∑ ˆ ,m

m  

(1.10)

where the summation is over the totality of elements and k̂m is the element matrix 
augmented by zeros. This has several advantages conceptually. One may think of 
each element stiffness matrix as written on a sheet of paper with the terms kij

m entered 
into the row and column of the global array as dictated by indices i and j. The sheets 
of paper are laid on top of one another and the elements are added that lie in the 
same position. However, this is not a good plan for computations because it involves 
manipulating a lot of zeros.

1.2.3 StiffneSS Matrix iS Banded

The geometrical concept of merging the element stiffness matrices is also helpful in 
understanding the banded nature of the global stiffness matrix. If we are forming the 
row of K corresponding to say F1, then the only elements that will contribute terms 
to this row are those attached to the joint having the DOF D1, and the only terms that 
those elements can contribute to K will be those for the columns corresponding to 
the displacements of the other DOFs associated with those elements. Consequently, 
only those terms in that row that are contributed by the elements sharing the DOF D1 
can be nonzero. Beyond a certain column number, all of the remaining terms of the 
row F1 are zero. Thus, the nonzero terms are confined to a band emanating from the 
diagonal elements of K. By numbering the joint displacements judiciously, we can 
minimize the width of this band and confine the nonzero terms to a relatively small 
band around the diagonal of K. 

1.3 the energy Method

The calculations can also be described in terms of the potential energy. The strain 
energy of each element is

 

U
II

m
ij
m

i j
m m m

ji

k D D

mm

= =
∈∈

∑∑ 1
2

( ) ,D k DT

 

(1.11)

where Dm denotes the column matrix of the DOFs for the element m. We will see 
later how this formula for the strain energy is derived from the field equations of 
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linear elasticity. The strain energy of the collection of elements is the sum of the 
stain energy of each one:

 

U U

II

=

=












=

∑

∑∑∑
∈∈

=

m

m

ij
m

i j

jim

ij i j

j

N

k D D

K D D

mm

1

∑∑∑
=i

N

1  

(1.12)

where K is the merge of the element matrices. In matrix notation,

 
U = 1

2
D KDT

 
(1.13)

where the global stiffness matrix K is the result of merging the element stiffness 
matrices km as described above.

In the case of given loads F applied to the joints, the potential of the external 
loads is the negative of the force times the displacement. The potential energy for the 
system is therefore

 
P U= − = −F D D KD F DT T T1

2
.
 

(1.14)

The condition for a minimum of the potential energy is

 

∂
∂

P
Di

= 0
 

(1.15)

where i ranges over all of the (unknown) DOFs. Applying this condition to the total 
potential 1.14 gives the global Equations 1.8 of equilibrium:

 KD = F. (1.16)

The energy method is one that we will exploit for the general formulation.* It offers 
several advantages. First, the calculations are automatic once the element stiffness 
matrices have been determined. Second, approximate solutions are readily formu-
lated by simply deriving an approximate potential energy. Third, the mathematical 
studies of error and convergence often make explicit use of the minimum of the 
potential energy in equilibrium problems.

* Actually, we will use the first derivative which is called the virtual work formula.
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The energy method can be extended to explicitly include the inertial forces by 
introducing the kinetic energy. If the mass is lumped at a node point (joint), the 
kinetic energy associated with Dj is

 
Tj j j jm D D= 1

2
  , ( ).no sum

 
(1.17)

The total kinetic energy of the system is the sum over the number of DOFs:

 

T T= ∑ j

j

.

 

(1.18)

Combining 1.17 and 1.18, we find

 
T = 1

2
 D MDT , (1.19)

where the global mass matrix is the result just a diagonal matrix consisting of the 
individual lumped masses. The equations of motion can be derived from Lagrange’s 
equations

 

d
dt D D Dj j j

∂
∂

∂
∂

∂
∂

T T P


− = − .
 

(1.20)

this leads to the general equations of motion for the discrete system:

 MD KD F + =  (1.21)

This is a set of linear ordinary differential equations that can be solved by standard 
methods. However, because of the banded nature of M and K, special techniques can 
be used to reduce the computational effort.

1.4 truSS exaMple

A truss is a collection of axial force members that are joined at the ends in 
such a way that there is no restraint on the relative rotation of the members at 
the joint. Each member can be considered an element. The joints are the nodes. 
The components of displacement of the joints are the degrees of freedom of the 
structure. 

Let us consider the truss shown in Figure 1.1, which has three elements and four 
nodes numbered as shown. The DOFs are labeled as shown in Figure 1.2. In this 
case, the total number of DOFs is N = 8. The forces exerted on the elements by the 
nodes are shown in Figure 1.3, with positive directions as shown.
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The force–displacement relations for member 1 are

 

f k D k D k D k D

i

i i i i i
1

1
1

1 2
1

2 7
1

7 8
1

8

1 1 1 2

= + + +

∈ =

,

, ( , ,I I 77 8, ),  

(1.22)

or

 

f k Di ij j

j

1 1

1

=
∈

∑
I
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(1.23)
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fIgure 1.1 Truss example.
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fIgure 1.3 Element forces.
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For member 2:

 

f k D ii ij j

j

2 2
2

2

1 2 5 6= ∈ =
∈

∑ , , ( , , , ).
I

I I2

 

(1.24)

For member 3:

 

f k D ii ij j

j

3 3
3

3

1 2 3 4= ∈ =
∈

∑ , , ( , , , ).
I

I I3

 

(1.25)

The forces exerted by the external world and by the elements on the nodes are shown 
in Figure 1.4. The sign convention is that fi

m is in the positive coordinate direction 
on the element and therefore in the negative coordinate direction on the joint. The 
equilibrium of forces for node 1 requires that

 

F f f f f ii i i i i
m= + + = ∈ = =1 2 3

1 11 2 1 2 3, , ( , ), ( , , ).D D M1

mm∈
∑

M1  

(1.26)

The equilibrium of forces for node 2 requires that

 

F f ii i
m

m

= ∈ = =
∈

∑ , , ( ), ( , ).D M D
M

2 2 23 3 4
2  

(1.27)

The equilibrium of forces for node 3 requires that

 

F f ii i
m

m

= ∈ = =
∈

∑ , , ( ), ( , ).D M D
M

3 3 32 5 6
3  

(1.28)

The equilibrium of forces for node 4 requires that
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fIgure 1.4 Forces on nodes.
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F f ii i
m

m

= ∈ = =
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M

4 4 41 7 8
4  

(1.29)

Substitution of the force–displacement relations for the elements provides the force–
displacement relations for the assembled structure. For example,

 

F k D k D k D k D

k D k D k
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(1.30)

Adding the common factors for each DOF (merging the stiffness matrices) gives 
eight force–displacement relations. For the first DOF,

 F1 = K11D1 + K12D2 + K13D3 + K14D4 + K15D5 + K16D6 + K17D7 + K18D8, (1.31)

where

 

K k k k

K k k k
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(1.32)

For the third DOF, occurring at node 2,

 F f k D k D K D k D3 3
3

31
3

1 32
3

2 33
3

3 34
3

4= = + + + . (1.33)

The connectivity sets for the DOFs are
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= ,, , , ), ( , , , ), ( , , , ),2 5 6 1 2 5 6 1 2 7 86 7 8C C C= = = (( , , , ).1 2 7 8  
(1.34)
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In particular, there is no element connecting DOFs 3 and 4 to DOFs 5, 6, 7, and 8. 
Therefore, K35 = K36 = K37 = K38 = 0, and so forth.

We still have to analyze the truss element in order to determine the element stiff-
ness matrices. Each member may be inclined to the x-axis by an angle θ as shown in 
Figure 1.5. For end a, let Xa and Ya be the components of the member force fa. Let Ua 
and Va denote the components of axial displacement Da. A similar notation is used 
at end b.

Let α = cosθ and β = sinθ. Then, Xa = α fa and Ya=β fa. The axial displacement of 
end a is Da = αUa + βVa. A similar notation is used for end b. Using Equations 1.44 
and 1.45, we find the stiffness relation for the element*:
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(1.35)

For the truss shown in Figure 1.1, Equation 1.35 applies to each member with the 
appropriate values of α and β. Remember that angle θ is measured counterclockwise 
from the x-axis in each case. For the case when A and E are the same for all elements, 
the element stiffness matrices are as follows:

 

k1 =

+ + − −
+ + − −
− − + +
− − + +











AE

L8 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






D D D D1 2 7 8

.

 

(1.36)

* ANSYS element LINK1.

Ya, Va

Yb, Vb

Xb, Ub

Xa, Ua

a

b

θ

fIgure 1.5 Truss element.
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(1.38)

Merging the three element stiffness matrices gives the global stiffness matrix:
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(1.39)

The global stiffness matrix has zero determinant so Equation 1.8 does not have a 
unique solution for given loads F. This is to be expected because the unsupported 
structure allows rigid translation and rotation and sometimes collapse as a mecha-
nism. If the supported structure can act as a mechanism, it is said to be kinematically 
unstable.

Using the condition of zero displacement at nodes 2, 3, and 4, we find the equilib-
rium equations for the supported structure:
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(1.40)

The coefficient matrix is called the reduced stiffness matrix.
The joint displacement can now be calculated for given external forces X1 and Y1 

by solving Equation 1.40. For Y1 = 0,

 
U

X L
AE

V
X L
AE1

1
1

16 2397 101835= =. , . .
 

(1.41)

This example may be used as a test problem (Section 15.3).

1.5 axIally loaded rod exaMple

Next, let us consider another simple example that illustrates the ideas of the direct 
stiffness formulation. A straight rod is loaded by a force applied to one end and 
supported at the other end (Figure 1.6). The solution of the static problem is trivial, 
but the matrix formulation may still be useful if additional loads are applied at 
various points along the rod, or if the material properties vary along the rod. 
The problem is not so trivial if the loads vary with time and inertial forces are 
included.

We will formulate approximate equations governing the motion of the rod by 
using a finite element model. To this end, we divide the rod into of a number of ele-
ments. Suppose, for example, we use two elements that are joined at the midpoint of 
the rod (Figure 1.7). One-half of the mass of each element is lumped at the joint at the 
end of the element as a first approximation for the inertial forces. For a more accurate 
solution, one simply increases the number of elements, tending to the exact solution 
as the number of elements tends to infinity.

The axial (x direction) displacement at each point is denoted by Di, i = 1, 2, 3. The 
contact forces on element n are denoted by fi

n, where i takes on the values of the joint 
numbers bounding the element (Figure 1.8). The element properties are approxi-
mated as uniform over each element. This may require a larger number of elements 
for a satisfactory analysis if the properties are varying rapidly.

We can analyze the stress state for each massless element. The equations of linear 
elasticity for the element are

x

L

P A, E, ρ  

fIgure 1.6 Axial force applied to a rod.
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(1.42)

where E is the modulus of elasticity of the material. The solution is 
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(1.43)

The axial force at any point can then be calculated: fa = −σA and fb = +σA, where A 
is the area of the rod. In matrix form, for a generic element,
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(1.44)

where a and b range from 1 to 2 for m = 1, whereas a and b range from 2 to 3 for 
m = 2. The specific values for the elements of the stiffness matrix are
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(1.45)

Thus, the force deformation relation for element 1 is
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(1.46)
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fIgure 1.7 A finite element model of the rod.
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fIgure 1.8 Typical rod element.
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and for element 2,
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(1.47)

with the terms kab
m defined as stated above. Notice that no element index is required 

for the displacement components because they are the displacements of the joint to 
which the element is attached. And the indices on kab

m  match the displacement and 
force components, not the location in the element stiffness matrix.

The equilibrium of forces for the joint j is expressed by

 

F m D fj j j j
m

m

− = ∑ , (no sum on j), (1.48)

where Fj is the external load acting on the joint, mj is the mass that has been lumped 
at the joint, a superposed dot indicates the time derivative, and the summation extends 
over the elements that are connected to the joint j. Substitution of the force–deforma-
tion relations 1.46 and 1.47 into the equilibrium relation 1.48 with l = L/2 leads to the 
global equation of equilibrium, relating the external loads to the joint displacements: 
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(1.49)

Alternatively, using 1.33, 1.14, and 1.20, we obtain once more the governing Equations 
1.49 by the energy method. In matrix notation,

 MD KD F + = . (1.50)

At each joint, either Fj or Dj is given and the equations have to be solved for the other 
quantity. In the particular case shown in Figure 1.6, D3 = 0. There are therefore three 
equations in three unknowns (D1, D2, F3), where F3 is the reaction at the support. It is 
convenient to divide the relations into two sets. First, solve for the unknown displace-
ments corresponding to the given forces:
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Then, solve for the reactions at the joints with zero displacement:
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The zero terms are shown for completeness. If the inertial loads are neglected ( D1 0= , 
D2 0= ), then the solution to Equation 1.51 is
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We will consider methods of solution of the equations later. At this time, we sim-
ply note that the problem is reduced to a set of linear ordinary differential equa-
tions in time, or to a set of linear algebraic equations if the inertial forces are 
neglected.

1.5.1 augMented MatriceS for the rod

To illustrate the augmented element matrices, let us label the rows and columns of 
the global stiffness matrix with the corresponding force and displacement compo-
nents. The augmented stiffness matrix for element 1 is
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(1.54)

The augmented stiffness matrix for element 2 is
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(1.55)

The global stiffness matrix K is the sum of these two augmented matrices in the 
usual sense of matrix addition.
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K k= ∑ ˆ m

m

.

 

(1.56)

However, I emphasize again that this is not a practical method for real engineering 
problems because of the large number of zeros that must be handled.

1.5.2 Merge of eleMent MatriceS for the rod

We will now illustrate the process of forming the global stiffness matrix by merging 
the element matrices:

 

K k= ∑ m

m

.

 

(1.57)

First, construct the global stiffness matrix with all terms equal to zero:
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(1.58)

After merging the stiffness matrix of element 1, the global stiffness matrix is 
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(1.59)

After merging the stiffness matrix of element 2 to this matrix, the final global stiff-
ness matrix is 
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− −
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The symbols Di and Fi are written along side of the columns and rows in order to 
identify the related component of force and displacement. They are only labels to 
assist in the merge process. A computer program will always assume that the third 
row corresponds to F3 for example, without any labels. If we are forming the row of 
K corresponding to say F1, then the only elements that will contribute terms to this 
row are those attached to joint 1, and the only terms that they can contribute will 
be those for the columns corresponding to the displacements of the other end of the 
element. In this simple example, only element number one can contribute to the row 
for F1, and it is connected only to joints 1 and 2, so the only entries will be to the 
columns for D1 and D2, regardless of the number of elements used to model the rod. 
There is no contribution to the term (F1, D3), or any column beyond D3, which are 
therefore zero, even if there were more elements. Starting with the diagonal element 
and counting to the right, there will be only two nonzero elements in each row. This 
is the called the half bandwidth of K.

1.6 force Method

In the preceding formulation, the joint displacements are the fundamental unknowns. 
Before stored-program digital computers became available, it was more common 
to think of the element forces as fundamental unknowns. For any assemblage of 
rods, the resultant axial for each rod was regarded as the fundamental unknown. 
The difference in view point can be made clear by an example. Let us consider, for 
example, the truss shown Figure 1.9. All members have area A and modulus E.

Let D1 and D2 denote the displacements in the direction of the applied forces F1 
and F2. Let εi denote the increment in length of element i. Let Si denote the tensile 
force for element i. The equilibrium relations for the loaded joint are
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or BS = F. (1.61)
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fIgure 1.9 Statically indeterminate truss.
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The geometric relations between extensions of the elements and the joint displace-
ments are
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or ε = AD. (1.62)

The constitutive relations between the extensions of the elements and the axial forces 
are
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or ε = fS (1.63)

where f is the flexibility matrix of the structure.
The theorem of virtual work that we will develop later states that the internal 

work equals the external work, STε = FTD, for every equilibrium system (S, F) and 
every compatible system (ε, D). That is, STAD = STBTD for every S and D. Therefore, 
A = BT, as the explicit example shows. 

In general, there will be s stress parameters and d displacement parameters. The 
matrix B is d × s. If s = d, the equilibrium equations can be solved for S unless the 
det B = 0. If the determinant is zero, the system is kinematically unstable. If d > s, 
then S is overdetermined. This implies the existence of displacement fields with zero 
generalized strains, and the structure is unstable. If d < s, as in the example, the equi-
librium Equations 1.61 have more unknowns Si than equations, and the structure is 
said to be statically indeterminate. The general solution to 1.61 is then of the form

 S = b0F + b1R. (1.64)

The elements of R are s – d = r in number and are called redundant forces. In this 
example, there is one redundant force R1. We can choose the force in member 3 as the 
redundant (or any other member): S3 = R1. Then, we find from 1.61 that
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The coefficient matrices are such that

 Bb0 = 1 (1.66)

and

 Bb1 0= . (1.67)

Since A = BT, we have from 1.62 and 1.67 the compatibility relation

 b1
T 0εε = . (1.68)

Substituting 1.63 into 1.68,

 c0F + c1R = 0 (1.69)

where

 c b fb c b fb0 1 0 1 1 1= =T T, . (1.70)

Therefore,

 R c c F= − −
1
1

0 .  (1.71)

Substituting 1.71 into 1.64 yields the formula for solution by the redundant force 
method:

 S = bF, (1.72)

where

 b b b c c= − −
0 1 1

1
0. (1.73)

There exists standard algorithms for constructing the solution 1.64 of the equi-
librium equations, and the redundant force method is a viable procedure for 
stress analysis provided someone has developed a computer code to automate the 
calculations.

It may be noticed that the stiffness method, which was introduced first, avoided 
altogether the question of redundant forces. The two methods are, however, equiva-
lent for the same structural model. The stiffness formulation can be recovered by 
eliminating S and ε from Equations 1.61 to 1.63:

 KD = F (1.74)
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where

 K = Bf –1BT. (1.75)

This K is the reduced stiffness matrix that one obtains after applying the displace-
ment boundary conditions.

1.7 other Structural coMponentS

1.7.1 Space truSS

In general, elements of the truss may have any spatial orientation with respect to the 
global coordinate system. The axial displacement at each end is then resolved into 
components along the three coordinate axes, so there are 3 DOFs at each end.

If the numbering scheme follows that of Figure 1.10, the DOFs associated with 
node i will be DT = [D3i−2D3i−1D3i] as shown in Figure 1.10. The corresponding ele-
ment and nodal forces are numbered in the same manner: FT = [F3i−2F3i−1F3i]. For 
element m that connects nodes 1 and 2, we have the force–displacement relation:
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, (1.76)

where α, β, and γ are the direction cosines of the rod. An assembly of such elements 
is a three-dimensional truss. Each joint is a node with 3 DOFs.

1.7.2 BeaMS and fraMeS

In general, a rod element may be subject to bending and twist as well as axial defor-
mations and may be called a rod, beam, or beam–column element. We will suppose 

D3i-2
D3i-1

D3i

i

x1
x2

x3
D1

D2

D3

D4

D5

D6

m

1

2

fIgure 1.10 Space truss element.
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here that all loads are applied at the ends of the beam element. There are 6 DOFs 
at each end: 3 components of displacement and 3 components of rotation. The first 
three being components of displacement along the coordinate axes, and the second 
three being rotations about the axes. By elementary mechanics of materials, we can 
establish the relation between the generalized forces on the ends of the rod and the 
generalized displacements of the ends of the rod. An assembly of such elements is a 
three-dimensional space frame. Each joint is a node with 6 DOFs.

We will only formulate the equations governing the lateral displacements of a 
beam limited to bending in a plane. For bending without extension in the plane, the 
only displacement component of significance is the lateral displacement v(x, t). The 
sign convention for beam theory is shown in Figure 1.11.

For small displacements, each beam element is governed by the following equations 
for the rotation α, the curvature κ, the shear force V, and the bending moment M:
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(1.77)

We will consider the case when the loads are applied only at the ends of the element 
(node points) so that p = 0, and the mass is concentrated at the node points (ρ = 0).

The nodal displacements and rotations of the ends of the beam (Figure 1.12) are

 v1 = v(0),  θ1 = α(0),  v2 = v(L),  θ2 = α(L). (1.78)

The general solution of 1.77 is 
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(1.79)
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fIgure 1.11 Beam sign convention.
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Therefore,
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 (1.80)

The ends of the beam element are nodes in the finite element analysis. The sign 
convention for nodal forces is shown in Figure 1.13. The forces and moments on the 
ends of the rod are 

 f1 = –V(0),  m1 = –M(0),  f2 = V(L),  m2 = M(L). (1.81)

Therefore,
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fIgure 1.12 Definition of nodal DOF.
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fIgure 1.13 Generalized forces on a beam element.
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This establishes the element stiffness matrix. Note that this is the exact solu-
tion of the beam equations for the static equilibrium problem neglecting shear 
deformations.

As an example, consider the cantilever beam supported and loaded as shown in 
Figure 1.14.

We will divide the whole beam into two elements of equal length and assume the 
same cross section and material for both. After merging the two stiffness matrices 
we have
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(1.83)

The given load and support conditions are

 v3 = θ3 = 0, F1 = P, M1 = F2 = M2 = 0. (1.84)

The solution of 1.83 for the conditions 1.84 is
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1.7.2.1 general Beam equations
By merging the stiffness matrix (1.44) for axial deformations with the stiffness 
matrix (1.82) for bending, we obtain the stiffness matrix for beam–columns*:

* ANSYS element BEAM3.
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fIgure 1.14 Cantilever beam problem.
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where
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The stiffness matrix (1.86) is expressed in a local coordinate system with the x-axis 
along the beam and lying in the x–y plane. A coordinate transformation can be 
applied for application to any global coordinate system. 

The rod may also be subject to twisting by a torque at the ends. The correspond-
ing stiffness matrix can be merged with Equation 1.86 to obtain the stiffness matrix 
for a general rod element:
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(1.88)

where

 
k

GJ
Lc =

 
(1.89)

is the torsional stiffness. We have used an appropriate change in notation for 1.86 and 
1.88 that is often needed to clearly state the components of force and displacement. 
The fully general case would involve bending about the y-axis as well.* That matrix, 

* ANSYS element BEAM4.
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similar to 1.82, can be merged with 1.88. We have implicitly assumed that the x–y 
axes are the principal axes of the cross section.

1.7.3 plateS and ShellS

Structural elements that have one dimension that is very small compared to the other 
two, such as a sheet of paper or an eggshell, are called a plate if the element is flat 
and a shell if the element is curved. We call these two-dimensional elements. For ele-
ments with four edges, the corners are usually chosen as nodes. At each node there 
are 6 DOFs, as for the general beam element. In order to determine the stiffness 
matrix for such elements, we need the theory of plates and shells. We will consider 
the theory of bending of plates later. Shells are not covered in this book.

1.7.4 two- or three-diMenSional SolidS

Machine parts generally have all dimensions of comparable magnitude. They must 
be treated as three-dimensional bodies. A stress analysis involves the solution of a 
problem in the theory of elasticity, plasticity, or viscoelasticity. A typical finite ele-
ment is brick shaped. Each corner is generally a node and the DOFs at each node are 
the three components of displacement at the node. In the subcase of plane stress or 
plane strain, the analysis involves only a two-dimensional region. The elements are 
then typically taken to be triangles or quadrilaterals with nodes at the corners, and 
2 DOFs at each node. The derivation of the finite element equations, the stiffness 
matrix for the element, merging of the element stiffness matrices, and the solution of 
the finite element equations is the main subject of the remainder of this book. 

1.8 proBleMS

 1. Divide the axially loaded rod shown in Figure 1.15 into two elements of 
equal length with node numbers as shown in Figure 1.16. 
(a) Write the stiffness matrix for each element.
(b) Merge the element stiffness matrices to obtain the global 3 by 3 stiff-

ness matrix for the unconstrained rod.

x

L

P A, E, ρ

fIgure 1.15 Axial force rod.

1 2 3

L/2 L/2

fIgure 1.16 Finite element model.
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 2. Divide the axially loaded rod shown in Figure 1.15 into three elements of 
equal length. 
(a) Write the stiffness matrix for each element showing relevant displace-

ment and force numbers.
(b) Merge the element stiffness matrices to obtain the global 4 by 4 stiff-

ness matrix for the unconstrained rod.
 3. Divide the axially loaded rod (Figure 1.15) into three elements of equal 

length.
(a) Form the global stiffness matrix, the global mass matrix, and the global 

force matrix.
(b) Apply the boundary conditions and determine the reduced set of equa-

tions to be solved for displacements, but do not solve the resulting set of 
equations.

 4. The truss shown in Figure 1.17 has A = 1, L = 1, E = 30 × 106, X1 = 100, 
Y1 = 0. Solve for the nodal displacements using ANSYS and compare with 
the exact solution. (See Section 15.3.)

 5. Consider the bending of a cantilever beam modeled with two elements 
(Figure 1.18).
(a) Determine the global stiffness matrix K by merging the element 

matrices.
(b) Apply the support conditions to determine the reduced stiffness matrix 

K0.
 6. The cantilever beam shown Figure 1.18 has a square cross section, h = 2, 

w = 1, A = 2, I = 2/3, E = 1000, L = 5, P = 1. Solve the following beam bend-
ing problem using ANSYS (see Section 15.4).
(a) Print list of UY at each node.
(b) Submit list of moments at the right end of each element from an Element 

Data Table.

Y1

X1

4L3L

123

2 3 4

1

4L

fIgure 1.17 Truss configuration.
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fIgure 1.18 Bending of a beam.
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(c) Submit list of bending stress at the right end of each element from an 
Element Data Table.

(d) Compare with numerical solution with the exact solution.
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2 Linear Elasticity

2.1 BaSIc equatIonS

In this chapter we will summarize the set of differential equations that govern the 
motion of elastic bodies experiencing small deformations. This set of differential 
equations, together with the boundary and initial conditions, is a well-posed math-
ematical problem that we wish to solve via numerical methods. It is assumed that the 
reader is familiar with the derivation and use of these relations. They are presented 
here in rectangular Cartesian components without derivation. Index notation with 
summation convention is used. English letter indices have the range (1, 2, 3) and 
Greek letter indices have the range (1, 2).

2.1.1 geoMetry of deforMation

We consider a material body that occupies a region V of space with a boundary S. 
A particle of material has coordinates xk = (x,y,z) (before deformation) and experi-
ences a displacement vector with components uk = (u,v,w) that are functions of the 
coordinates xk and time t. Extensions and shears of material fibers are determined by 
the strain tensor, which has components εkm that are related to the components of the 
displacement vector by
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The extension (normal strain) of a material fiber that is initially along the x1 axis 
is ε11. The shear (shear strain) of a pair of fibers that are initially along the x1 and 
x2 axis is γxy = 2ε12. That is, the physical shear is twice the tensor component. Each 
component ui of the displacement vector is a continuous function of the coordinates 
xi and the function is continuously differentiable except possibly at isolated points, 
lines, or surfaces. Any continuous displacement field together with the strain tensor 
determined by Equation 2.1 is called a compatible system.
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2.1.2 Balance of MoMentuM

The state of stress is characterized by the stress tensor with components τkm. The 
components τkm are functions of the coordinates xk and time t. At each time t the 
functions are continuous and differentiable in V except possibly at isolated points, 
lines, or surfaces. The balance of linear momentum is expressed by

 

∂
∂

τ
ρij

j
i ix

b u+ =  .
 

(2.3)

The balance of angular momentum is expressed by

 τij = τji. (2.4)

We will also use the alternate notation:
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(2.5)

Now, consider a closed surface bounding all or part of the material. Let ni denote the 
components of the unit vector normal to the surface and directed toward the exterior 
of the body. The components of the force per unit area Ti exerted on the body at the 
bounding surface by the surrounding material, or by the exterior world, is related to 
the stress tensor at each point on the surface by

 Ti = τijnj. (2.6)

The vector with components Ti is called the stress vector or traction vector. The 
stress vector is continuous across each interior surface. A smooth stress field τij 
together with the surface tractions Ti determined by 2.6 is called an equilibrium 
system.

2.1.3 Virtual work

An alternative statement of the balance of momentum is provided the theorem, or 
principle, of virtual work. This relation can be derived as follows.

Let ui and εij denote any compatible system. Multiplying 2.3 by ui, summing on i, 
and integrating by parts gives

 

Tu A b u u V Vi i i i i ij ijd d d
S V V
∫ ∫ ∫+ − =( ) .ρ τ ε

 

(2.7)
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We have used τij = τji  and Ti = τijnj. Equation 2.7 has a physical interpretation: The 
first term is the work of surface tractions Ti moving through displacements ui and 
the second is the work of the total body forces. The right side expresses the work of the 
internal stresses τij, which are in equilibrium with the surface tractions Ti and the total 
body force. That is, the external work equals internal work for a body in equilibrium. 
Since the functions ui need not be the actual displacements of the material body, they are 
called virtual displacements and Equation 2.7 expresses the theorem of virtual work.

We have just proved that any equilibrium system satisfies relation 2.7 for every 
compatible system. The reverse is also true. Smooth functions τij = τji satisfy the 
equilibrium equations 2.3 if and only if Equation 2.7 of virtual work holds for all 
smooth functions.

2.1.4 conStitutiVe relationS

For any stress analysis problem, we must supply a mathematical characterization of 
the material by specification of the relation between the stress and the strain. The 
classical theories of materials are elasticity, plasticity, and viscoelasticity. We will 
consider the theory of elasticity in this chapter. For elastic materials, the stress and 
strain tensors are related by
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εij

ij
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(2.8)

where

 
A( ) .εε = +1

2
c lijkm ij km ij ijε ε ε

 
(2.9)

The term lij = lji is a function of temperature change and the constants cijkm satisfy the 
following symmetry conditions:

 cijkm = cjikm = cijmk = ckmij. (2.10)

Thus,

 τij = lij + cijkmεkm. (2.11)

For an isotropic material with linear thermal expansion,

 
A( ) ( ) ,εε = + −µε ε

λ
ε β εkm km kk kkT

2
2

 
(2.12)

and 2.11 simplifies to

 τkm = –βTδkm + 2μεkm + λεiiδkm. (2.13)
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That is,

 lij = –βTδij, (2.14)

and

 cijkm = μ(δikδjm + δimδjk) + λδijδkm, (2.15)

where β, μ, and λ are material constants and T is the temperature change. In terms 
of the shear modulus G, the modulus of elasticity E, the Poisson ratio ν, and the 
co efficient of linear thermal expansion α,
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(2.16)

The constitutive relations for an isotropic material are simplified if we introduce the 
deviatoric components of the tensors, which are defined as follows:
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(2.17)

The constitutive relation 2.13 then becomes
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(2.18)

where κ is the bulk modulus,
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(2.19)

The deviatoric components of strain are measures of distortion (γ12 = 2e12 is the 
shear of the x–y fibers), and the first equation in 2.18 is therefore the constitutive 
relation for distortion. The quantity εkk is the volumetric strain, and the second equa-
tion in 2.18 is the constitutive relation for dilatation relating the mean stress τkk/3 to 
the volumetric strain. The two relations in 2.18 are equivalent to the single equation 
2.13. Constitutive relations for small deformations of isotropic materials that are not 
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elastic can be derived by replacing the simple proportionality in 2.18 with more 
complicated relations. We will consider two possibilities later when we study vis-
coelastic materials and the theory of plasticity.

2.1.5 Boundary conditionS and initial conditionS 

Now, consider a closed surface bounding all of the material. Let ni denote the compo-
nents of the unit vector normal to the surface and directed toward the exterior of the body. 
The force per unit area Ti exerted on the body at the surface by the surrounding material, 
or by the exterior world, is related to the stress tensor at a point on the surface by 2.6:

 Ti = τijnj. (2.20)

The external surface of the body consists of two sets of points ST and Su, where the 
stress vector or the displacement vector must be specified:

 T Ti i T= o on S ,  (2.21)

 u ui i u= o on S .  (2.22)

For dynamical problems, one must also specify initial conditions:

 u u ti iand given in at V = 0.  (2.23)

The exact solution to the elasticity problem for a given temperature is a set of func-
tions τij, εij, and ui satisfying the differential equations 2.1, 2.3, and 2.11, the bound-
ary conditions 2.21 and 2.22, and the initial conditions 2.23. 

2.1.6 incoMpreSSiBle MaterialS

If the bulk modulus is very large compared to the shear modulus, a satisfactory 
solution of the elasticity equations can often be obtained by neglecting the volume 
change. The mean stress is then determined by the differential equations and the 
boundary conditions and not by the constitutive relations. The fundamental equa-
tions (no temperature change) are
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(2.24)

There is one additional equation (εkk = 0) and one additional unknown (p).
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2.1.7 plane Strain

There are two very important special cases in which the number of spatial coordi-
nates that need to be considered can be reduced from three to two: plane stress and 
plane strain. For plane strain, εk3 = 0 and all quantities are independent of the x3 
coordinate. Then, from 2.13,

 τ13 = 0, τ23 = 0, τ33 = –βT + λεθθ, (2.25)
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From 2.1,
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From 2.3,

 

∂
∂

+ =
τ

ραβ

β
α αx

b u ,
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since the derivatives with respect to x3 are zero.
Equations 2.26–2.28 are a set of eight equations in eight unknowns (u1, u2, τ11, 

τ22, τ12, ε11, ε22, ε12) that are called the equations of plane strain for an isotropic mate-
rial. Such relations can often be used to adequately characterize the deformations 
of cylindrical bodies with loads and temperature changes that do not vary along the 
length of the cylinder and where the ends of the cylinder are prevented from under-
going axial displacement (ε33 ≡ 0).

The constitutive relations 2.26 can be expressed in the form 2.8 if we redefine A 
and lαβ as follows.
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with

 lαβ = βTδαβ (2.30)

for plane strain.

2.1.8 plane StreSS

For plane stress, τk3 = 0 and all quantities are independent of x3. From 2.13, it follows 
that
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From 2.1,
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From 2.3,
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Equations 2.32–2.34 are, again, a set of eight equations in eight unknowns that are 
called the equations of plane stress for an isotropic material. Such relations can often 
be used to adequately characterize the deformations of thin sheets that are loaded 
only on the edges.

The full equations of elasticity are only approximately satisfied by the plane stress 
assumptions because there is no solution to the geometric relations 2.1 for u3 cor-
responding to the plane stress conditions. The stress and displacement should be 
viewed as the mean value over the thickness of the sheet. This is often referred to as 
generalized plane stress.1

The constitutive relations 2.32 can be expressed in form 2.8 if we redefine A and 
lαβ as follows.
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The equations of plane stress and plane strain have a formal similarity. Keeping μ the 
same, the plane strain equations 2.26 are transformed into the plane stress relations 
2.32 if ν is replaced by ν/(1 + ν) and β by β(1 − 2ν)/(1 − ν). E is defined in each case 
by the values of ν and μ: E = 2μ(1 + ν),

2.1.9 tenSile teSt

Let us consider the case when the body is a (possibly noncircular) cylinder and the 
x1 axis is directed along the axis of the cylinder. At the ends x1 = 0 and x1 = L, there 
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is a uniform normal stress τ11 = p applied. The other surface tractions are zero. The 
material is isotropic and there is no temperature change. The solution to the elasticity 
equations is then
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(2.37)

We will use this as a test for the finite element program.

2.1.10 pure Shear

A rectangular sheet of unit thickness is loaded by uniform shear stress along each 
edge (Figure 2.1). If the origin has zero displacement and the displacement v = 0 at 
point (a, 0), the solution is 
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(2.38)

This can be used as a test problem for the finite element analysis.

2.1.11 pure Bending

A rectangular sheet of unit thickness is loaded by linearly varying normal stress 
along each edge, Figure 2.2. If the origin has zero displacement and the displacement 
v = 0 at point (a, 0), the solution is

bp

p
a

y
x

p

p

fIgure 2.1 Pure shear.



Linear Elasticity 37

 

τ τ

ε ε νε γ

11

11 22 11

2
0

2

= − =

= − = −

p
b

y

p
bE

y

ij, ,

, ,

otherwise

112

2 2

0

2

=

= + − = − + +

,

, .u
pa
bE

y
p

bE
xy v

pa
bE

x
p

bE
x

p
bE

y
ν

 

(2.39)

This can be used as a test problem for the finite element analysis.

2.1.12 Bending and Shearing

Consider the rectangular sheet shown in Figure 2.3. The body force and tempera-
ture change are zero. The top (y = c) and bottom (y = –c) edges are free of load. The 
right end (x = 0) has a shearing load of magnitude P that is parabolically distrib-
uted. The left end (x = L) has a parabolic shear load and a linearly varying normal 
traction:
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fIgure 2.2 Pure bending.

L

2c
σx

τxyτxy
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fIgure 2.3 Bending by shear force.
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An exact solution is readily found by expressing u and v as polynomials in x and 
y. For plane stress,

 

σ

σ

τ

x

y

xy

Pxy

c

P
c

y

c

=

=

= −







3

2

0

3
4

1

3

2

2

,

,

,
 

(2.41)

and
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The constants e, g, and h represent rigid translation and rotation, and have to be 
determined from appropriate support conditions. For the case u(L,0) = 0, v(L,0) = 0, 
u(L,±c) = 0,
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The displacement at the origin is then
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(2.44)

The first term is the displacement according to the elementary beam theory and the 
second is the additional displacement due to the shear that is neglected in the beam 
theory. For plane strain, replace ν by ν/(1 – ν) and E by E/(1 – ν2).

2.1.13 propertieS of SolutionS

Let us consider an equilibrium problem in the theory of elasticity for an isotro-
pic material. The problem consists of determining the displacements, strains, and 
stresses that satisfy the partial differential equations of equilibrium,
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the constitutive relations,

 τkm = 2μεkm + λεiiδkm, (2.46)

the geometric equations,
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(2.47)

the boundary conditions on load,

 
τ ij j i Tn T= o on S ,

 
(2.48)

and the support conditions,

 u ui i u= o on S .  (2.49)

For plane stress or plane strain, there are corresponding equations in two 
dimensions.

Roughly speaking, a unique solution exists if the boundary of the body is smooth, 
the loads and support conditions are smooth, the support conditions prohibit rigid 
body displacements, and the material properties are smoothly distributed. The dis-
placements, strains, and stresses are then continuous and finite throughout the body. 
However, problems for which there is a discontinuity in boundary, load, or support 
conditions are common. In such cases, the solution may have discontinuities or 
singularities.

One example of an isolated singularity is the apparently simple concept of a con-
centrated force. A concentrated force F applied at a point x0 on the external surface 
is mathematically characterized by the requirements:
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for all fields u(x). The stress tensor becomes infinite at such points. Concentrated loads, 
of course, cannot occur in nature, so this is not considered a defect in the theory. 

2.1.14 a plane StreSS exaMple with a Singularity in StreSS

There are also many other apparently innocuous situations in which singularities 
occur. Consider, for instance, the plane stress example shown in Figure 2.4. We will 
use this problem repeatedly as a test problem for the finite element analysis and call 
it the short beam problem. 

The exact solution to this simple-looking problem is unknown. In first approxi-
mation, one may apply the solution 2.41 with P = pa. In this case, shear stress τ12 
on a cross section (y equals constant) varies parabolically with a maximum at the 
midpoint of the cross section: 

 
τ max = 3

2
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(2.52)

The normal stress, which varies linearly on each cross section with a maximum at 
the edge (x = 0, x = a), is given by
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(2.53)

This approximation will certainly not be satisfactory near the support where the 
stress distribution depends strongly on the details of the support condition, nor near 
the top edge where the boundary condition is τ12 = p. In fact, there is a discontinuity 
at each corner.

At the top corners, we have τ12 = p for x = 0+ and y = a, whereas τ12 = 0 for x = 0 and 
y = a–. Therefore, the solution to this problem cannot be continuous at that corner.

At the bottom corners, the effect of the discontinuity in boundary conditions is 
less obvious. Let us consider the situation in the corner x = 0, y = 0, in more detail. 
One boundary condition along the edge y = 0 is u1(x,0) = 0. By 2.47, 

 ε11(x,0) = 0. (2.54)

x

a

a
p

y

fIgure 2.4 Short beam.
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On the other hand, one boundary condition along the edge x = 0 is τ11 = 0. From 
stress strain relation 2.46, we find that
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From 2.54 and 2.55, we find the contradictory statements
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The mathematical consequence of this contradictory requirement is a singularity 
(infinite stress) at the corners where the free and fixed boundaries join. 

The details of such a singularity are revealed by the solution of the problem for 
the infinite quarter plane (x ≥ 0, y ≥ 0) with zero displacements along the edge y = 0 
and zero tractions along the edge x = 0. Using polar coordinates (r,θ), a solution has 
been found to be as follows2:
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(2.58)

The constant α = k + 2. The constants A, B, C, and D are determined by the four 
boundary conditions on the edges θ = 0 and θ = π/2. The solution depends on the 
Poisson ratio. For ν = 0.32, one finds a particular solution with k = –1/4. The displace-
ments are finite at the corner (r = 0) but the stress components are infinite because of 
the negative exponent of r.



42 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

The numerical solutions that we will accomplish by the finite element method 
are approximations of the true solution to the field equations. The infinite stresses 
at a point are of course never found by numerical analysis, which deals only with 
finite real numbers. For each finer element mesh, one simply finds higher and higher 
stresses near the corners.

Another common situation where singularities occur is in the analysis of cracks 
that are modeled as a line or surface across which there is no contact force transmit-
ted. In such problems, there is a singularity at the crack tip. A numerical method that 
introduces only continuous displacement fields cannot reproduce the exact solution. 
It is, however, possible to introduce special elements with built-in singularities in 
order to incorporate the crack tip singularities into the finite element model. This 
matter will be discussed later.

2.2 potentIal energy

Instead of seeking for the solution of the elasticity problem by solving the differential 
equations, we can seek those functions that make an appropriate operator stationary. 
First, let us consider the potential energy defined by
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where ST is the part of the boundary on which the traction vector has the given 
value Tk

0. The strain tensor is defined by the kinematical relations 2.1, which is 
repeated here:

 εkm = u(k,m). (2.60)

The stress tensor is regarded as defined by 2.8, which is repeated here:
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The potential energy is defined for all continuous functions uk with piecewise contin-
uous first derivatives and which satisfy the boundary conditions on displacement:

 u uk k u= o on S .  (2.62)

For each set of functions uk, the integrals over the given region can be evaluated 
for a given material and a numerical value for P obtained. Imagine that this is 
done for all possible admissible functions and the values of P so obtained are 
compared. One would find that the true solution is the one that gives P a minimum 
value.
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To prove this assertion, suppose that vector u denotes the displacement vector 
for which P is a minimum. A necessary condition that P is a minimum is that the 
derivative of P is zero at point u. This condition is equivalent to the requirement that, 
for all vectors u,
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In carrying out this calculation for P defined by 2.59, note that

 A A( ) ( ),u u+ = +α αεε εε  (2.64)

where
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Therefore,
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Then, one obtains from 2.63 the following condition
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Note that 2.67 is identical to the virtual work expression for the compatible system 
(ui ij, ε ) and ui = 0 on Su. Upon integrating the first term by parts, one finds
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Since this relation must hold for arbitrarily selected values of u, each of the expres-
sions in parentheses must be zero in the indicated region. Thus, the condition that 
the first derivative of P is a zero at u, together with 2.2 and 2.3, is equivalent to the 
requirement that the differential equations and boundary conditions 2.45 to 2.49 are 
satisfied.

The procedure used in this section is called the “calculus of variations” in the 
older literature. It developed before the modern concepts of abstract operator and 
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abstract derivative. Calculation of the functional derivation of P is equivalent to cal-
culation of “the first variation of P.”

We have not shown that P is a minimum at the true solution. The preceding 
calculations only show that the first derivative is zero at the true solution and 
vice versa. This is a necessary condition for a minimum, but it is not sufficient. 
Thus far, one can only say that the potential energy is stationary at the true solu-
tion, and it might be a maximum or a minimum or something like a point of 
inflection.

2.2.1 proof of MiniMuM potential energy

We will now prove that the potential energy is indeed a minimum at the true solution 
in the case of isothermal deformations. The proof hinges on the following property 
of the strain energy A. It is easy to see for the isotropic material that A(ε) is non-
negative for every tensor ε since it is the sum of squares of the components of ε. It 
is zero only when all components of the strain tensor are zero. We assume that the 
strain energy always has this property.

Let ui
* be any set of smooth functions that satisfy the displacement boundary 

conditions:

 u ui i u
* .= o on S  (2.69)

Let εij
* be the set of functions derived from ui

* by the strain–displacement equations:

 
εij i ju* * .( , )=

 
(2.70)

Let τ ij
* be the set of functions derived from εij

* by the constitutive relations:

 
τ εij ijkm kmc* * .=

 
(2.71)

These stresses need not satisfy the equilibrium equations or the boundary conditions 
on load. If those relations are satisfied, then the system (u*, ε*, τ*) is the actual solu-
tion. We wish to consider the case when it is not the true solution.

Suppose the actual solution to the given boundary value problem is denoted by u, 
ε, τ. We first note that

 
τ ε ε ε ε ε τ εij ij ijkm km ij kmij km ij km kmc c* * * *= = =

 
(2.72)

because of the symmetry of cijkm. Now, consider the expression
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1
2

1
2

( * )( * ) ( * )( *τ τ ε ε ε ε ε εij ij ij ij ijkm ij ij kmc− − = − − kkm ) ( * )= − >A εε εε 0.
 

(2.73)

Using relations 2.72 and 2.73, it follows that

 

2( * ) * * *( * )τ τ ε τ ε τ ε τ ε ε εij ij ij ij ij ij ij ij ij ij− = − − − − iij ij ij

ij ij ij ij ij ij ij

( *)

* * ( * )( *

τ τ

τ ε τ ε τ τ ε ε

−

= − − − − iij

ij ij ij ij

)

* * .< −τ ε τ ε  

(2.74)

Consequently, using 2.72,

 

1
2

( * * ) ( * ).τ ε τ ε τ ε εij ij ij ij km km km− > −
 

(2.75)

By the virtual work formula,

 

( * ) ( * ) ( * )ε ε τij ij ij i i i

S

i i i

V

V u u T A u u b V− = − + −∫ ∫d d d

F

0 ∫∫ ,

 

(2.76)

since u u ui i i= =* 0 on Su. Integrating expression 2.75 over the body, using 2.76, and 
rearranging the terms, we find
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1
2
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0 d d

F

.

 

(2.77)

Thus, the potential energy of any compatible system is greater than the potential 
energy of the actual solution:

 P(u*) > P(u). (2.78)

That is, the potential energy is a minimum for the actual solution. Among all the 
displacement fields that satisfy the support conditions, the solution for the given load 
condition is the displacement field that makes the potential energy a minimum.

2.3 MatrIx notatIon

We will often use matrix notation instead of the component notation. Each notation 
has certain advantages. In matrix notation, the components of the stress and strain 
tensors will be arranged in a column matrix. For the plane problems,
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(2.79)

For three-dimensional problems,
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(2.80)

Note that this notation is not the usual one for tensor analysis where the components 
of second-order tensors are arranged in a square matrix.

In matrix notation, the constitutive relations for three-dimensional problems and 
plane problems both have the form

 τ = l + Cε, (2.81)

with appropriate definitions of l and C. For three-dimensional problems,
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+
+
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(2.82)

For plane strain,
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+
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(2.83)

For plane stress,



Linear Elasticity 47

 

C =
− −



















= − −
−

E
T

1

1 0
1 0

0 0
1

2

1 2
1

1
1
0

2ν

ν
ν

ν
β

ν
ν

, l
















.
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In practical applications, materials are usually orthotropic at most and data are usu-
ally stated for the inverse of C:ε = C–1τ. For orthotropic materials, C–1 has the form:
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(2.85)

The components of the vectors Ti, bi, and ui are arranged in column matrices in the 
usual manner: the index indicates the row number. The virtual work formula then 
takes the form:

 

u T u bT T Td d dA V V
S V V
∫ ∫ ∫+ = εε ττ .

 

(2.86)

For isothermal deformations, the strain energy becomes

 
A( ) .εε ττ εε= = =1

2
1
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1
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cijkm ij km ij ijε ε τ ε T

 
(2.87)

The potential energy then becomes

 

P
V S

= −








 −∫ ∫1

2
d dT T Tττ εε b u V A

T

( ) .T u0

 

(2.88)

The form for plane problems is analogous.
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2.4 axIally SyMMetrIc deforMatIonS

2.4.1 cylindrical coordinateS

An important special case of the general deformations occurs when the displace-
ments are symmetrical with respect to a line that is generally chosen as the z axis. To 
analyze the axisymmetric deformations, we introduce a cylindrical coordinate sys-
tem (Figure 2.5). The components of the displacement vector, the stress tensor, and 
the strain tensor are represented by components with respect to unit vectors along the 
coordinate lines (Figures 2.5 and 2.6).

The momentum equations 2.3 become
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(2.89)

The strain–displacement relations 2.1 become

z
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fIgure 2.5 Displacements in cylindrical coordinates.
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fIgure 2.6 Stress components in cylindrical coordinates.
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The stress–strain relations for an isotropic material are 2.3 with
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(2.91)

2.4.2 axial SyMMetry

The three-dimensional equations are of limited use in numerical analysis, where we 
will normally use the global Cartesian coordinates. However, when deformations are 
symmetrical about the z axis so that uθ = 0 and all quantities are independent of θ, 
a two-dimensional problem occurs where γθz = 0, γrθ = 0, and all quantities depend 
only on (r,z). The remaining geometric relations from 2.89 are
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The stress–strain relations 2.91 show that τθz = 0, τrθ = 0, and
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The momentum equations 2.89 reduce to
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The axisymmetric equations are usually applied to a circular cylinder with the gen-
erator along the z axis and surface loads and supports symmetrical about the z 
axis.

2.4.3 plane StreSS and plane Strain

The cylindrical coordinates are often useful for the analytical formulation and solu-
tion of plane problems where the region is a cross section of a circular cylinder. 
In this case, τzr = 0, τzθ = 0, and all quantities depend only on (r,θ). The balance of 
momentum 2.89 gives
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The geometric relations 2.90 give
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The stress–strain relations for an isotropic material are 2.83 and 2.84 with
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2.5 proBleMS

 1. For an isotropic material, prove that s e T Bkm km kk kk= = − +µ τ β ε2
1
3

and .

 2. For an isotropic material, prove that ε
ν

τ
ν

τ δ α δkm km ii km kmE E
T= + − +1

.

 3. Determine the substitution for ν that transforms the plane stress equations 
into plane strain equations.

 4. For an isotropic material, (a) calculate the components of the strain tensor 
and the stress tensor for the following set of given displacements for an 
isotropic material:
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E
x u
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 where σ is a constant. (b) Check the equilibrium equations to see if they are 
satisfied for zero body forces. (c) Show the edge tractions on a diagram of 
the body 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ a, 0 ≤ x3 ≤ b.

 5. A rectangular sheet of unit thickness is loaded by uniform shear stress along 
each edge (see Figure 2.1). If the origin has zero displacement and the dis-
placement v = 0 at point (a, 0), the proposed solution is given by 2.38. Check 
the equations of linear elasticity for an isotropic material to see if this pro-
posed solution is correct for zero body forces and zero acceleration.

 6. Consider the plane stress problem diagrammed in Figure 2.2. The origin 
has zero displacement and v = 0 at point (a,0). Check the proposed solution 
2.39 for zero body force and zero inertial force.

 7. The plane stress problem of Figure 2.4 is to be analyzed using only the left 
half (0 ≤ x ≥ a/2) and symmetry/antisymmetry. Determine the boundary 
conditions to be applied to the line x = a/2.

 8. The plane stress problem in Figure 2.3 is to be analyzed using only the 
upper half (0 ≤ y ≥ c) and symmetry/antisymmetry. Determine the boundary 
conditions to be applied to line y = 0.

 9. The plane stress problem of stretching of a sheet with a hole shown in 
Figure 2.7 is to be solved using only the upper right quarter. Determine the 
boundary conditions to be applied to the lines x = 0 and y = 0.

 10. A solid cylinder of radius R and length L is loaded by a uniformly distrib-
uted tensile load on each end: τzz = σ for z = 0 and z = L. Assume for a trial 
solution that the deformations are axisymmetric and uz = c1z and ur = c2r, 
where c1 and c2 are constants. Show that the elasticity equations and bound-
ary conditions on load can be satisfied and determine the required values of 
constants c1 and c2.
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3 Finite Element Method 
for Linear Elasticity

A linear elastic analysis is the basis of most engineering designs. However, exact 
solutions to the differential equations of linear elasticity are known for only the sim-
plest loadings on the simplest configurations. One needs a way to construct solutions 
for any configuration and all load and support conditions. The finite element method 
is well suited for this purpose. We are concerned with a procedure for obtaining an 
accurate numerical solution to the exact equations.

However, the engineer should not forget that the theory of linear elasticity is an 
imperfect model of material behavior. Its usefulness in engineering design is limited 
by the simplicity of the model, and because the exact mathematical solutions of 
boundary value problems are sometimes physically unrealistic. Consequently, the 
effort to obtain extremely accurate numerical solutions may not be worthwhile in 
some cases. The limits on applicability of the model to the physical situation must 
be kept in mind when the solution of the elasticity problem is used in an engineering 
application.

The finite element method was developed in detail in Chapter 1 for naturally artic-
ulated structures. We now investigate the method for two- and three-dimensional 
solids. The fundamental idea is to divide the body into small pieces that we call ele-
ments. The displacement field is then approximated in each element by interpolating 
between the values of the displacement at specific points on the element that we call 
nodes. The displacement field generated in this manner is substituted into the expres-
sion for the potential energy, which then depends only on the nodal displacements. 
The condition that P is a minimum generates a set of linear algebraic equations for 
the nodal displacements.

In the derivation of the theorem of minimum potential energy in Chapter 2, we 
assumed that the displacement field is continuous. We should therefore choose the 
expressions for the displacements within an element in such a way that the global 
displacement field is continuous for any and all nodal displacements. If this is done, 
the elements are said to be conforming. Nonconforming elements may be satisfac-
tory in certain cases, which we will discuss later.

We number the elements consecutively from 1, 2, 3, …, M and also number the 
components of unknown nodal displacement throughout the body consecutively 
from 1, 2, 3, …, N. For three dimensions, N is three times the number of nodes. For 
plane stress or plane strain, N is two times the number of nodes. 

In the following discussion of the finite element method, we will assume that the 
boundary of the body coincides with the boundary of the finite element model. This 
eliminates the geometric error resulting from the approximation for curved bound-
aries by polygonal elements. In practical applications, that is often not the case and 
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there will be a geometric error; but, of course, we suppose that error tends to zero as 
the size of the elements tends to zero.

3.1 fInIte eleMent approxIMatIon

Let us consider one particular element and one component ui of displacement within 
that element. The component ui will depend on the nodal displacements DK for that 
element, but only on the displacements at nodes falling within that element or on its 
boundary, and not on the displacement of a node that does not fall within that ele-
ment. We will only use an interpolation process for which the relation is linear:

 

u N Di iK K

K m

( ) ( ) ,x x=
∈

∑
I  

(3.1)

where Im is the set of nodal displacements for the mth element. In this chapter, we 
will apply the summation convention only to the lower-case indices. The index i has 
the range (1, 2) for the plane problem and the range (1, 2, 3) for the three-dimensional 
problem. The interpolation functions NiK are called shape functions for the element. 
Different shape functions could be used for each element but we will usually use 
the same ones for all elements. Furthermore, each component of displacement will 
depend only on the nodal values of that same component.

The shape functions must be such that a continuous displacement field is gener-
ated that is capable of approximating the true solution with an error that tends to zero 
as the size of each element tends to zero. In particular, we must have the following 
conditions:

 (1) Continuity along element boundaries for arbitrary nodal displacements.
 (2) Shape functions must be able to exactly represent a state of constant strain.
 (3) If ui(xJ) = DM, then
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(3.2)

The second condition will be satisfied if a polynomial is used that contains the con-
stant and linear terms. We will consider the choice of shape functions in more detail 
in subsequent chapters.

Given the shape functions, the strains are calculated by Equation 2.1:
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The stress, calculated by 2.11, has the form
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(3.5)

where

 BijK = cijkmAkmK. (3.6)

The values of cijkm and lij depend on whether the problem is plane stress or plane 
strain or three dimensional. From 2.9, for each element
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Indices K and M range over the index set for the particular element.

3.1.1 potential energy

The elements partition the region V into subregions Vm. Let Sm denote the part, if any, 
of the boundary of the subregion Vm that lies on the exterior surface. We will ini-
tially regard the entire exterior surface as having specified loads. Then, the potential 
energy 2.59 is the sum of the potential energy of each element:
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and
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For plane stress or plane strain, the volume integrals reduce to integrals over the 
two-dimensional region of the element and the bounding surface of the body is a 
curve. Next, substitute expression 3.1 for the displacement field of an element, and 
expression 3.7 for the strain energy, into expression 3.9 for the potential energy of the 
element. This gives
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(3.10)
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where
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Expression 3.8 for the total potential energy of the body is now a summation of the 
corresponding terms in 3.10. All of the coefficients of a particular pair, DI,DJ, I,J = 
1 to N, are added together. If a pair does not appear in 3.10, the coefficient is zero. 
Thus,
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where
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For three dimensions, the range N of (I,J) is from one to three times the number of 
nodes. For the plane problem, the sum is twice the number of nodes. The matrix of 
elements KIJ is called the global stiffness matrix. The matrix with elements FI is 
called the global force matrix. The matrix K has N rows and columns. The matrix F 
has N rows. The total number of displacement components N is called the degree of 
freedom of the unsupported body.

The summation in 3.14 and 3.15 is in the sense of a merge of the element matrices 
as detailed in Chapter 1. Since the range of I and J in 3.10 depends on the element m, 
we can view the merge in two ways.

First, in order to carry out the sum on m, we can extend the summation in 3.10 
to all displacement parameters by defining kIJ

m to be zero for all I and J that are not 
in the set Im. Then the merge of element matrices is a simple addition of all element 
matrices with like indices. This is the method of augmented matrices detailed in 
Chapter 1. Alternatively, we can set KIJ = 0 initially, and then, for each element, we 
add kIJ

m to the KIJ term with matching indices. This is the process of direct merge of 
the element matrices.
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The stiffness matrix for the unsupported structure has a zero determinant since 
the displacements can be determined only to within a rigid translation and rotation.

The components of the force matrix satisfy the identity
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That is, each FI is energy equivalent to a concentrated force corresponding to the 
displacement component DI. Loads satisfying 3.16 are called consistent with the 
energy formulation.

3.1.2 finite eleMent equationS

Expression 3.13 for the potential energy is now a quadratic algebraic form with vari-
ables DI. The condition that P be a minimum is
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Applying this condition yields a set of N linear algebraic equations in N unknowns:
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These equations must be solved numerically for the unknown nodal displacements 
DJ. The displacement, strain, and stress fields for an element can then be calculated 
from 3.1 to 3.5.

Since we have supposed the entire exterior surface to have specified loads and no 
specified displacements, the body can experience rigid translations and rotations. 
The solution to 3.18 for the unsupported structure is therefore not unique (in the 
absence of inertial forces). In fact, the determinant of K will be zero. 

If, instead, the displacement is given over a part Su of the boundary, the func-
tions ui must satisfy those displacement boundary conditions. Therefore, the nodal 
displacements DI must have values that make ui satisfy the conditions on Su, at least 
approximately. If a node falls on a portion of the boundary, the value of a component 
of nodal displacement is known, and the corresponding component of nodal force 
is an unknown reaction. We apply a displacement boundary condition by substitut-
ing the given value of DI in 3.18 and use the corresponding Ith equation to evaluate 
the reaction FI. Therefore, if there are any displacement boundary conditions, the 
number N of unknown degrees of freedom of the supported body will be less than 
three times the number of nodes and the number of equations is similarly reduced. 
If the specified displacements are sufficient to prevent rigid translation and rotation, 
the determinate of K will be nonzero, and a unique solution to 3.18 will exist for the 
unspecified nodal displacements.
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3.1.3 BaSic equationS in Matrix notation

The preceding relations can be written more concisely if the various arrays are 
arranged into matrices. Let us put the displacement components ui in a column 
matrix u. There will be three rows for the three-dimensional bodies and two rows 
for the 2D problems. Let us also put the parameters DK in a column matrix D. Then 
Equation 3.1, which applies to each element, becomes

 u = ND (3.19)

where the shape functions NiK are arranged in a rectangular matrix. The number of 
rows in matrix D is equal to the number of displacement parameters for the element. 
If we use the scheme in 2.79 or 2.80 to arrange the components of the strain tensor 
in a column matrix, then Equation 3.3 becomes

 ε = AD (3.20)

where functions AijK have been arranged in a rectangular matrix. The constitutive 
relations have the form 2.81, which is repeated here:

 τ = l + Cε. (3.21)

Equation 3.5 then becomes

 τ = l + BD (3.22)

where

 B = CA, (3.23)

all expressed as rectangular matrices. The element stiffness matrices in 3.11 are 
rectangular matrices given by 

 

k B Am V

m

= ∫ T d .
V  

(3.24)

The nodal forces contributed by the mth element (3.12) are given by

 

f N T N b Am

m m m

A V V= + −∫ ∫ ∫T T Td d d0

S V V

l .

 

(3.25)

The element matrices km and fm are merged to obtain the global stiffness matrix 
K and global force matrix F, and the final equations to be solved (3.18) can be writ-
ten as
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 KD = F. (3.26)

Matrix D now includes the full list of N unknown displacement parameters for the 
whole body, and force matrix F has an equal number of rows. The global stiffness 
matrix K is a symmetric and banded square matrix with N rows and N columns, 
where N is the number of unknown displacements.

3.1.4 BaSic equationS uSing Virtual work

Instead of using the theorem of minimum potential energy to establish the equilib-
rium equations, one may use the virtual work theorem that is expressed in matrix 
form by 2.86. Applied to the assemble of finite elements, we have

 

u uT T Td d dT bA V V

m
m

M

m

M

m

M

S V V
∫∑ ∫∑ ∫∑

= = =

+ =
1 1 1

m m

εε ττ .

 

(3.27)

Surface Sm is that part of the surface of element m that is a part of the exterior surface 
of the body (if any). 

The shape functions 3.1 used to approximate the actual displacements can also be 
used to generate a compatible displacement field:

 u ND= , (3.28)

where D is the column matrix of nodal displacements of the compatible system, the 
so-called virtual displacements. Virtual displacements are numbered in the same 
manner as the actual nodal displacement. The compatible strains are then deter-
mined by the strain–displacement equations as in 3.3:

 εε = AD. (3.29)

That is, the same coefficient matrix A occurs. Substituting 3.28 and 3.29 into 3.27, 
and merging the element matrices, we have

 

D N T N b D AT T T T Td d dA V V

m
m

M

m

M

S V V
∫∑ ∫∑

= =

+












=
1 1

m m

ττ∫∫∑
=













m

M

1

.

 

(3.30)

Since this relation must hold for every compatible system, it must hold for arbitrary 
D. Therefore, a necessary condition for equilibrium of the finite element approxima-
tion of the stress state is

 

N T N b AT T Td d dA V V

m m m
m

M

m

M

m

M

S V V
∫∑ ∫∑ ∫∑

= = =

+ =
1 1 1

ττ .

 

(3.31)
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Note that this relation is true for any material body, whether elastic or not. It simply 
expresses the balance of the external applied nodal forces and the internal resisting 
nodal forces, F = f, where the external applied nodal forces are

 

F N T N b= +∫∑ ∫∑
= =

T Td dA V

m m
m

M

m

M

S V1 1

,

 

(3.32)

and the internal resisting nodal forces are

 

f A= ∫∑
=

T dττ V
m

M

Vm

.
1

 

(3.33)

This is the virtual work formula for the finite element approximation. Note that f here 
is not the same as fm in Equation 3.25. The summation is in the sense of merge of the 
element matrices. Substituting formula 3.22 for the stress in each element, we find

 

f A B D KD=












=∫∑
=

T dV
m

M

Vm
1

 

(3.34)

for an elastic material. Therefore,

 F = KD, (3.35)

where F is, again, given by merging the element force matrices 3.12 and K is deter-
mined by merging the element stiffness matrices 3.11.

3.1.5 undereStiMate of diSplaceMentS

We will now show that the displacements calculated by the finite element approximation 
to the potential energy are always “smaller” than the actual displacements. In matrix 
notation, the finite element approximation 3.13 to the potential energy becomes

 
P* .= −1

2
D KD D FT T

 
(3.36)

Since KD = F, it follows that, for the solution set, P* is given by

 
P* .= − 1

2
F DT

 
(3.37)

Since the strains are derived from a continuous displacement field by the geomet-
ric relations and the stresses are derived from that strain field by the constitutive 
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equations, the finite element solution is an example of a compatible system provided 
that the displacement boundary conditions are exactly satisfied. The potential energy 
of such a compatible system is greater than the potential energy of the actual solu-
tion, which is a minimum.

Suppose that there is no temperature change so that 2A = τijεij; then, using the 
virtual work formula 2.7, the potential energy (2.59) of the actual solution is

 

P
S V S

( ) ,u = − −∫ ∫ ∫1
2

1
2

0T u A b u V T u Ai i i i i i

T

d d d

 

(3.38)

where S = ST + Su. If the displacement boundary conditions are ui = 0 on Su, then the 
potential energy of the actual solution becomes

 

P
S V

( ) .u = − −∫ ∫1
2

1
2

0T u A b u Vi i i i

T

d d

 

(3.39)

Since the potential of the true solution is a minimum,

 P* > P. (3.40)

Therefore, from 3.37 and 3.39, 

 

F DT o d d< +∫ ∫T u A b u Vi i i i

TS V

.

 

(3.41)

That is, the work FTD of the nodal forces for the calculated displacements is less 
than the work of the given loads. A more precise result is obtained if the applied 
load is a single concentrated force. Suppose, for example, that the only load is a 
concentrated unit force in the x direction at the node n. Then, FI = 0 except for the x 
component at node n, which is equal to 1. Let Un denote the x displacement at node 
n, then 3.41 yields

 Un < u1(Xn), (3.42)

where Xn is the position of node n, that is, the calculated nodal displacement is less 
than the actual displacement at that point.

3.1.6 nondiMenSional equationS

In the numerical examples, we will usually solve the equations using any conve-
nient values for the dimensions, material properties, and loads. The solution for 
any other units can be deduced from the following nondimensional equations of 
elasticity.
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Let p have the units of stress and a have the units of length. Define nondimen-
sional coordinates, displacements, stress, and strain by

 

ˆ , ˆ , ˆ , ˆ , ˆ , ˆ ,x
x

u u T
T== ττ ττ εε εε ==

a
E
pa p

E
p p

t
E

a
t= = = =0 0 0

2ρ
 

(3.43)

where a, p, and E0 are any convenient scale factors for the length scale, load mag-
nitude, and material modulus, respectively. The new variables are then nondimen-
sional. The basic equations of elasticity for zero body force and neglecting inertial 
forces are
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(3.44)

Note that the actual value of Poison’s ratio must be used since it cannot be factored out 
of the equations. In the finite element relations, define nondimensional quantities by
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(3.45)

The finite element relations are then

 

ˆ ˆ ,

ˆ ˆ ˆ,
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=

=

=

∫

ττ == εε

εε

C
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K A CA

KD F

T dV
V

 

(3.46)

Having redefined the variables, we can then drop the ̂  in 3.46. We will use nondimen-
sional quantities in most examples. A problem is solved for any convenient values of 
a, p, E0, and ρ. The actual stress and displacement can then be calculated using 3.43.
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3.1.7 uniaxial StreSS

The three-dimensional body shown in Figure 3.1 has a cross section of area A. All of 
the stress components are zero except τ11 = σ(x). The body force is zero except Ab1 = 
p. The differential equations of linear elasticity 2.1, 2.3, and 2.13 reduce to

 

d
d

d
d

σ
ε

σ
ε

x
p
A E

u
x

+ = = =0, , ,
 

(3.47)

with boundary conditions

 u(0) = 0,    σ(L) = 0. (3.48)

The solution for the case that p is a constant is

 

σ ( ) ,
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x
pL
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x
L

u x
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AE
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= −












1

1
2

2 2 





.

 

(3.49)

The potential energy (2.59) reduces to

 

P( ) .u AE x pu x

L L

= −∫ ∫1
2

2

0 0

ε d d

 

(3.50)

A typical finite element is shown in Figure 3.2.
We choose linear shape functions:

 

u x N x U N x U

N x
x x

l

N x
x x

l

a a b b

a
b

b
a

( ) ( ) ( ) ,

( ) ,

( ) .

= +

= −

= −
 

(3.51)

x,u

p

L

fIgure 3.1 Uniaxial stress.
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Therefore,

 
ε = − 

1
1 1

l
U.

 
(3.52)

The potential energy (3.50) is

 
P( )u = −1

2
U kU U fT T

 
(3.53)

where
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(3.54)

For a one-element model,
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(3.55)

so that
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(3.56)

A two-element model is shown in Figure 3.3. Merging the element stiffness and force 
matrices, we find the global equations:
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(3.57)

Ub
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fIgure 3.2 Axial element.
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1 2 2 3

fIgure 3.3 Two-element model.
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Therefore,
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For element 1,
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For element 2,
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(3.60)

The results are compared with the exact solution in Figures 3.4 and 3.5 for non-

dimensional variables 
2

2

AE

pL
u u

A
pL

S→ →, σ . The displacement is uniformly too 

small. The stress is too large at some points and too small at others. The energy 
measure 3.41 for the two-element model is as follows:
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(3.61)
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fIgure 3.4 Displacement.
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Using 3.49,

 

b u A pu x
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d d∫ ∫= =
0

2 31
3

.

 

(3.62)

That is,

 

F DT d< ∫ b u Ai i

A  

(3.63)

as required by 3.41.
Although minimum energy only ensures that the weighted average displacement 

as measured by 3.63 will be too small, we see from Figure 3.4 that the displacements 
are everywhere less than or equal to the exact solution. As indicated in Figure 3.5, 
the stress components at any point may be less than or greater than the exact solution. 
This is a typical situation.

3.2 general equatIonS for an aSSeMBly of eleMentS

Let us consider a material body that is divided into a number of finite elements that 
are numbered consecutively. The symmetric stress tensor, symmetric strain tensor, 
and the displacement vector within element n are denoted by τ ij

n, εij
n, and ui

n. Within 
that element, these functions as well as the partial derivatives of the displacement 
are continuous and satisfy the equations of equilibrium, the geometric relations, and 
the constitutive relations:
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fIgure 3.5 Stress.
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τ ij

n
j i

nb, + = 0
 
in V n. (3.64)

 
εij

n
ij
nu=  in V n. (3.65)
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εε ττ
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A comma denotes the partial derivative with respect to the indicated coordinate and 
let uij ≡ (ui,j + uj,i)/2.

If a part ST
n  of the boundary ∂V n is an exterior boundary on which tractions are 

specified, then τ ij
n  must satisfy the following boundary conditions:

 
τ ij

n
j
n

i T
nn T= 0 on S , (3.67)

If a part Su
n  of ∂V n is an exterior boundary on which displacements are specified, 

then ui
n  must satisfy the following boundary conditions:

 u ui
n

i u
n= 0 on S . (3.68)

The remaining (interior) part of the boundary of element n is Sn. We assume here for 
simplicity that the parts of the surface are distinct: ∂ = + +V S S Sn

T
n

u
n n . The traction 

vector on the boundary of element n is

 τ ij
n

j
n

i
n n

u
nn T= on andS S . (3.69)

Two contiguous elements share the interior boundary Sn and they must have a com-
mon displacement Ui on that surface:

 u Ui
n

i
n= on S . (3.70)

Also, the stress vectors from the two adjacent elements must balance any tractions 
applied to that surface and we will assume for simplicity that there are none:

 T Ti
n

i
n n+ =+ 0 on S . (3.71)

We will need to use integration by parts within an element where the functions are 
required to be continuous:
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(3.72)

for any smooth function ui
n .



68 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

3.2.1 generalized Variational principle

All differential equations and boundary conditions can be replaced by a single varia-
tional principle. Let us define a function W of the fields u U and Ti

n
ij
n

ij
n

i i
n, , , ,ε τ :
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(3.73)

Note that ui
n

ij
n

ij
n, ,ε τand  are not required to be continuous between elements. Also, 

note that each surface Sn is shared by two elements, so the integral over each Sn 
occurs twice in the summation. The functional W is known as the generalized 
Hu–Washizu functional. We now show that the functions making the first deriva-
tive of W zero will satisfy the basic equations of elasticity 3.64 to 3.71. The con-
dition that the first derivative (first variation) of W is zero is therefore equivalent 
to the differential equations, boundary conditions, and continuity conditions of 
linear elasticity.

To calculate the derivative of W, we replace u U Ti
n
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nU U T T+ + + +, , , and , and then calculate the ordinary derivative 

with respect to the real variable α, evaluated at α = 0. We find
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(3.74)

We now require that DW = 0 for all functions u U Ti
n

ij
n

ij
n

i i
n, , , ,ε τ and . We obtain 3.64 

to 3.70 immediately. Furthermore, for adjacent elements, the integrals over their 
common boundary segment can be combined to obtain
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from which 3.71 follows. Thus, all equations of elasticity are conditions for the van-
ishing of the first derivative of W, and instead of solving those equations directly, 
we could seek functions such that DW = 0. We next consider the special cases 
when the functions u U Ti

n
ij
n

ij
n

i i
n, , , ,ε τ and  are related by one or more of Equations 

3.64 to 3.66.

3.2.2 potential energy

Let the strain tensor be defined by the geometric relations 3.65, let the displacements 
satisfy the displacement boundary conditions 3.68, and let the displacements be con-
tinuous between elements so that 3.70 is satisfied. Then, the general functional 3.73 
reduces to a function of the displacements that is called the potential energy:
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The stress tensor no longer occurs in the functional. It is defined by the constitutive 
relations 3.66 and the stress vector is defined by 3.69. The derivative of the potential 
energy is 
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The condition that DP is zero for all functions u satisfying the displacement bound-
ary conditions implies the equilibrium equations 3.64 and 3.71, and the stress bound-
ary conditions 3.67. This functional is the basis for the displacement method of finite 
element analysis, which we have heretofore followed.

3.2.3 hyBrid diSplaceMent functional

Let the strain tensor be defined by geometric relations 3.65 and let the displacements 
satisfy displacement boundary conditions 3.68, but retain the possibility that the dis-
placements are not continuous between elements. In this case, the general functional 
3.73 reduces to a functional of the displacements u in V n and the displacements 
U and stress vector T on the internal element boundaries Sn:
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The stress tensor does not occur in the functional. It is defined by the constitutive 
relations 3.66. The derivative of the functional is 
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The condition that DWHD is zero for all functions u satisfying the displacement bound-
ary conditions, all U, and all T implies Equations 3.64, 3.67, 3.69, 3.70, and 3.71. This 
functional is the basis for the so-called hybrid displacement methods. It can be used for 
a rational formulation of the finite element method using nonconforming elements.

3.2.4 hyBrid StreSS and coMpleMentary energy

Let the strain tensor be determined by constitutive relations 3.66. Let the stress vec-
tor be defined by 3.69 and require the stress tensor to satisfy the equilibrium equa-
tions 3.64. The general functional reduces to
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(3.80)

Applying formula 3.72 for integrating by parts, we obtain
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Since u occurs only on the boundary, we have replaced it by U. The functional 
is defined only for those stress systems that satisfy the equilibrium equations. 
Before calculating the derivative, we can extend the definition to include all 
smooth functions τij via Lagrangian multipliers ui applied to the subsidiary condi-
tions 3.64:
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The derivative of this functional is
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(3.83)

As the notation suggests, the Lagrangian multipliers are the displacement compo-
nents and vanishing of the derivative is equivalent to Equations 3.65, 3.67, 3.68, 3.70, 
and 3.71. The functional WHS( , )U ττ  is the basis for the hybrid stress method of finite 
element analysis. Shape functions must be selected for the stress tensor that satisfy 
the equations of equilibrium, and shape functions must be specified for the interele-
ment displacements.

If we further restrict the stress tensor to satisfy the stress boundary conditions 
3.67 and the interelement equilibrium conditions 3.71, the function reduces to the 
complementary energy:
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In this case, the stress tensor and the stress vector must satisfy conditions 3.64, 3.67, 
3.69, and 3.71. The strain tensor is defined by 3.66. Vanishing of the derivative of 
C ensures the existence of displacements satisfying 3.65, 3.68, and 3.70, that is, the 
compatibility conditions and support conditions are satisfied. 

3.2.5 Mixed MethodS of analySiS

Let us now modify the general functional by using the constitutive relations 3.66 
to eliminate the strain tensor and also define the stress vector by 3.69. The result is 
called the generalized Hellinger–Reissner function:

 

R B

V

( , , ) ( )u U ττ ττ= − + − 







−

∫∑ τ ij
n

ij
n

i
n

i
n

n

u b u V
n

d

TT u U A T u u A T u Ai
n

i
n

i i
n

i
n

i i i
n

n
u
n

T

−( ) − −( ) −∫ ∫d d d

S S S

0 0

nn

∫





.

 

(3.85)

The derivative of R  is 
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Vanishing of the derivative is equivalent to the remaining equations, 3.64, 3.65, 3.67, 
3.68, 3.70, and 3.71. The functional R  depends on the functions τ and u defined 
within each element and the functions U defined on the boundaries between ele-
ments. The displacement field need not be continuous, nor does the stress field need 
to satisfy the equilibrium equations. If we do require continuous displacement fields 
so that 3.70 is satisfied, the functional reduces to the Reissner function:
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This function is the basis for the so-called mixed methods of finite element analysis 
in which shape functions are specified for both stress and displacement.
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In the displacement method, we described the displacement within each element 
by shape functions and used the potential energy function. In the mixed method, we 
describe both the displacement and the stress in the elements by shape functions, 
and use the Reissner function and choose continuous displacements that satisfy the 
displacement boundary conditions.

Let the displacement in an element be described by shape functions N and dis-
placement parameters D:
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In this section, the summation convention applies to repeated subscripts and sum-
mation is over the appropriate range, a range that is different for each alpha-
bet. The shape functions N must be such that the displacements are continuous 
between elements for all values of the parameters D. This can be accomplished 
by using the same shape functions as for the displacement method. Second, 
let the stress in an element be described by shape functions H and stress param-
eters S:
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The complementary strain energy density B is then
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Substituting into the Reissner functional gives
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Merging the element matrices for all elements that share displacement parameters 
and/or stress parameters, we find in matrix notation that

 
R ( , )S D S B D S fS F S= − −T T T T1

2
.
 

(3.95)

The condition that the first derivative of R be zero implies that the partial derivative 
with respect to each of the algebraic parameters is zero. This provides two sets of 
equations:

 BS = F, (3.96)

and

 BTD = fS. (3.97)

The first is the equilibrium equation. The left-hand side of the second is a formula for 
the generalized strains as derived from the geometry of deformation, and the right-
hand side is a formula for the generalized strains as derived from the constitutive 
relations in terms of the symmetric flexibility matrix f. This leads to the redundant 
force method described in Section 1.6 (Chapter 1).

There will be s stress parameters and d displacement parameters. The matrix B is 
d × s. If s = d, the equilibrium equations can be solved for S unless the det B = 0. If 
the determinant is zero, the system is typically kinematically unstable. If d > s, then 
S is overdetermined and usually no solution exists to the equilibrium equations. This 
implies the existence of displacement fields with zero generalized strains, so-called spu-
rious kinematical modes. In general then, d < s and the equilibrium equations 3.96 have 
more unknowns Sα than equations. The general solution to 3.96 is then of the form

 S = b0F + b1X. (3.98)

The parameters X are s – d = r in number and are called redundant forces. The coef-
ficient matrices are such that

 Bb0 = 1 (3.99)

and

 Bb1 = 0. (3.100)

Multiplying 3.97 by b1
T provides the compatibility condition

 b fS 01
T = . 

(3.101)

Substituting 3.98 into 3.101 yields the basic equations of the redundant force method:
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 S = bF, (3.102)

where
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There exists standard algorithms for construction of solution 3.98 of the equilib-
rium equations, and the mixed method is a perfectly workable procedure for stress 
analysis provided someone has developed a computer code to automate the cal-
culations. The truss example in Section 1.6 is an example of the redundant force 
calculations.

Alternatively, the stiffness formulation can be recovered from Equations 3.96 
and 3.97:

 KD = F (3.104)

where

 K = Bf–1BT. (3.105)

Since the displacements allowed in the Reissner functional are required to satisfy the 
displacement boundary conditions, this K is the reduced stiffness matrix obtained 
after applying the support conditions.

3.3 nearly IncoMpreSSIBle MaterIalS

As the Poisson ratio approaches ½, the material constant λ and the bulk modulus 
become infinite, that is, the volumetric strain approaches zero. The solution to the 
elasticity equations becomes strongly dependent on the Poisson ratio and the finite 
element equations may be poorly conditioned for numerical solution. In such cases, 
a mixed method, which we will now develop, may be necessary.

We first recast the elasticity equations so that they hold in the limit as the Poisson 
ratio approaches ½. The deviatoric stress, deviatoric strain, volumetric strain, and 
mean pressure are defined as follows.
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The constitutive relations for an isotropic material can be expressed as
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where κ is the bulk modulus. These relations are then well behaved as the Poisson 
ratio approaches ½ and κ → ∞.

With displacements and mean pressure as the fundamental unknowns, the equa-
tions of elasticity that have to be solved are 
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(3.109)

The corresponding virtual work formula can be discovered by multiplying Equations 
3.108 by virtual displacements ui and virtual pressure p and integrating over the vol-
ume. After integration by parts, we find
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where

 Ti = njτij (3.111)

is the surface traction vector. Substituting 
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into 3.110, we find

 

2µ ε ε
κ

e e p
p

p V Tu A bij ij i i

A

i− − +

















= +∫d d uu Vi

VV

d∫∫ .

 

(3.113)



Finite Element Method for Linear Elasticity 77

Equation 3.113 is equivalent to the stationary value of the functional
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defined for those displacements that satisfy the displacement boundary conditions. 
The conditions for a zero first derivative are the equilibrium equations, the boundary 
conditions on stress, and the constitutive equation for volume change. Formula 3.114 
could also be derived from the general mixed formula 3.87 by using 3.106. 

The finite element formulations for the displacements are as set forth in 3.1:
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From 3.3,
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Therefore,
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In addition, we need finite element representations for p and p. In general, we use 
different shape functions:

 p H P p H P= =α α α α, . (3.118)

Then, substituting into 3.113 and merging the element matrices, we find

 

K D D K P D

K D P K

KM

M

M K

K

K K

K

M

M

M

11 12

21 22

∑∑ ∑∑

∑∑

+

+ +

β β

β

α

α

α αβ

ββ

β α

α

∑∑ ∑=P P F DK K

K

,

 

(3.119)



78 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

where
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Equation 3.119 must hold identically for all virtual parameters. Therefore,

 K11D + K12P = F, (3.121)

and

 K21D + K22P = 0. (3.122)

3.3.1 nearly incoMpreSSiBle plane Strain

In the case of plane strain, the constitutive relations with mean stress as a separate 
unknown have the form
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The equations to be solved for displacements uα and mean pressure p are
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Multiply Equations 3.123 by virtual displacements uα and virtual pressure p and 
integrating over the area. After integration by parts, we find

 

2µ ε καβ
α

β

α

α
ααe

u

x
p

u

x

p
p A

∂
∂

− ∂
∂

− +
















∫ d
A

== +∫ ∫T u s b u Aα α α αd d
C A

.

 

(3.126)

Other choices of parameters are possible. For example, in place of 3.123 we can write
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where
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The virtual work formula 3.126 can then be put in the form
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where the virtual pressure is taken as β p in order to preserve symmetry of the expres-
sion with respect to the pressure terms.
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4 The Triangle and 
the Tetrahedron

4.1 lInear functIonS over a trIangular regIon

In order to complete the solution of the elasticity problem via the finite element 
method, we need to develop shape functions for some elements. For plane problems, 
it will be convenient to use triangular subregions of the x–y plane. Some tools are 
first collected here. 

In calculations for triangular regions, it is often convenient to use special coordi-
nates called triangular or area coordinates. For the triangular region ABC, shown in 
Figure 4.1, a point P is located by coordinate parameters ζ1, ζ2, and ζ3. Coordinate 
ζ1 is defined by 

 
ζ1 = =length of

length of
area of
area of

PQ
AQ

BPC
BAC

.
 

(4.1)

Therefore, ζ1 = 1 at corner 1 and ζ1 = 0 at corner 2 and corner 3, and varies linearly 
with distance along each side. Similar definitions hold for ζ2 and ζ3. Note that the 
parameters are not independent since

 ζ1 + ζ2 + ζ3 = 1 (4.2)

for all points.
Denote the rectangular Cartesian coordinates of point A by (X1, Y1), B by (X2, Y2), 

and C by (X3, Y3). The triangular coordinates of A are (1,0,0). The equation of side BC 
is ζ1 = 0, and so forth. In general, for the x–y coordinates of any point, one finds
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The inverse transformation is
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The inverse of the matrix Φ is
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and
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(4.8)

The determinant is positive if the nodes are numbered counterclockwise, and a is the 
area of the triangle. The matrix Φ–1 depends only on the geometry of the triangle. 
Once the shape of the triangle is specified, Φ–1 can be calculated. It does not depend 
on the absolute position in space since only the differences in the nodal coordinates 
occur in 4.7.
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Q

fIgure 4.1 Triangular coordinates.
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One major importance of triangular coordinates is the identity
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where m, n, and p are exponents, not indices. This makes integration of polynomials 
over the triangular region an easy task.

Now, consider the general linear function
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The values of f at points A, B, and C are
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(4.11)

Therefore,

 {ci} = Φ–1{fi}. (4.12)

Thus, function 4.10 can be expressed in terms of its values at the corners:

 f(x,y) = [1 x y]Φ–1{fi}. (4.13)

In the area coordinates, by 4.5, 

 f(x,y) = ζ1f1 + ζ2f2 + ζ3f3. (4.14)

Thus, the general linear function f(x,y) is expressed in a very simple way in terms of 
its values at the nodes by using the triangular coordinates.

We automatically achieve the task of constructing a continuous displacement 
field. To show this, let us consider a pair of triangles (Figure 4.2) and a general linear 
function over each one. Along side BC of triangle 1, we have ζ1 = 0 and

A
B

C

D

2

1

fIgure 4.2 Two adjacent triangles.
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 f(0,ζ2,ζ3) = ζ2  f2 + ζ3  f3 = ζ2  f2 + (1 – ζ2)f3. (4.15)

Thus, f(x,y) varies linearly along the edge BC and values of f along the side depends 
only on values of f at the nodes lying on that side. If we consider another linear func-
tion defined in a similar manner over triangle 2 that shares the edge BC with triangle 
1, we again find that f varies linearly from B to C and depends only on values at B and 
C. The two functions must be equal along line BC because both are linear and have 
the same values at B and C. Function f is therefore continuous across the element 
boundary, that is, ζi are shape functions for the three-node triangle.

By dividing any region into a number of such triangles, we can construct a continu-
ous piecewise linear function over the region. Graphically, this function is an assembly 
of inclined planes joined above the edge of the triangles. In the limit, as the size of each 
triangle tends to zero, we can approximate any continuous function over the region as 
closely as we like by such piecewise linear functions. We can therefore use this repre-
sentation to approximate each component of displacement in the plane problem. The 
fundamental unknowns then become the nodal values rather than the entire function. 
Instead of solving for a function, we have only to find a finite number of real numbers.

4.2  trIangular eleMent for plane 
StreSS and plane StraIn

The triangle has three corner nodes (Figure 4.3) with displacement components 
(Ui,Vi). The components u1 and u2 of displacement can be represented within a typi-
cal element by linear function 4.13:
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fIgure 4.3 Triangular element with three nodes.
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Differentiating with respect to x and y gives
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Uk and Vk are the x and y components of displacement of the kth node. From 2.27 
using 4.18 to 4.21 and 4.4, with γ12 = 2ε12,

 ε = AD (4.22)

where
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(4.24)

where ai and bi are given by 4.7.
For an isotropic material with no temperature change, from 2.81,

 τ = Cε, (4.25)

where
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For plane strain,
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For plane stress,
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For the isotropic material in plane stress or plane strain, C has the form
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(4.29)

From 4.22 and 4.25, 

 τ = BD, (4.30)

where

 B = CA. (4.31)

From 3.24, applied to two dimensions, the element stiffness matrix is

 

k B A= ∫ T da
R

.

 

(4.32)

Since A and B are constant, one finds 

 k = aATCA (4.33)

where a is the area of the element. In this case, k is a 6 × 6 matrix:

 

U V
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where
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(4.35)

The element nodal loads also have to be determined for given tractions. For example, 
consider a uniform load along the side 2–3, T1

0 is constant and T2
0 0= . We need to 

evaluate the surface integral in 3.16, which becomes a line integral in two dimen-
sions. In matrix notation,

 

f D T uT T d d d≡ = =∫ ∫ ∫0
0

1
0

1s T u s T u si i

c c c

.

 

(4.36)

This is an identity in D. On side 2–3, ζ1 = 0, ζ2 + ζ3 = 1, and ζ2 = 1 − s/L, where s is 
the distance along side 2–3 from corner 2. Thus, on side 2, ds = −dζ2, where L is the 
length of side 2–3. Therefore,
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(4.37)

Thus, the distributed load is equivalent to forces acting at adjacent nodes 2 and 3, 
each equal to one-half the total load. The other nodal forces are zero.

As we have seen in this section, it is often more convenient to use matrix notation 
in particular cases, rather than the multiple index notation. We will switch back and 
forth according to whichever notation is most convenient at the moment. Some care 
must be taken to distinguish between the index related to a component with respect 
to the basis of the coordinate system from an index that refers to a node number, ele-
ment number, or merely to the position in a matrix array.
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In the notation of 3.19, the shape functions corresponding to 4.16 and 4.17 are
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(4.38)

The geometric factors Aαβk defined by 3.4 can be read off from 4.38 as elements from 
matrix A. The coefficients cαβγδ are elements of matrix C. The coefficients Bαβk are 
elements of matrix B. Elements of matrix k are exactly the kIJ

m of 3.11, except that the 
explicit indication of element number by the index m has been omitted in this section.

4.3 plane quadrIlateral froM four trIangleS

A quadrilateral element is readily formed from four triangles with a common node at 
the centroid of the quadrilateral. The common node can then be eliminated if there 
is no body force.

Consider a typical quadrilateral region subdivided into four triangles as shown in 
Figure 4.4. Node number 5 can be placed at any interior point, but it is usually placed 
at the centroid of the quadrilateral and the coordinates (X5,Y5) are calculated from the 
coordinates of nodes 1–4.

The stiffness matrix for each triangle is given by 4.33. The 10 × 10 stiffness 
matrix of the complete quadrilateral is then formed by merging the element matrices 
as described in Section 4.4. Let us suppose that there are no forces associated with 
node 5. Then, Equation 3.18 for the quadrilateral becomes
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x
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3
4
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5

fIgure 4.4 Four-triangle assembly.
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(4.39)

where FXk and FYk are the node forces, and the stiffness matrix for the quadrilat-
eral has been partitioned into four submatrices. The submatrix k22 is 2 × 2 and so 
forth. The last two equations can be used to solve for the displacements (U5, V5) of 
node 5:
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(4.40)

where the fundamental nodal displacements and nodal forces are
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(4.41)

Next, use 4.40 to eliminate (U5, V5) from the first eight equations of 4.39 to obtain

 KD = F, (4.42)

where

 K k k k k= − −
11 12 22

1
21.  (4.43)

and F is the column matrix of forces acting at nodes 1 to 4. K, an 8 × 8 matrix, is the 
stiffness matrix of the quadrilateral shown in Figure 4.5.

One may now use the quadrilateral as a basic finite element with a stiffness 
matrix given by 4.43. The region is divided into quadrilaterals (and possibly tri-
angles also) and the global stiffness matrix is formed by merging the element 
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matrices. Note that the stress is still approximated as constant within each trian-
gular subregion.

This process of elimination of unloaded internal nodes to obtain a stiffness 
matrix for a patch of elements is called static condensation. The patch of elements 
can then be used as a building block for a finite element model, just as one uses a 
single element.

Static condensation may be used in other ways. For example, shape functions are 
sometimes used in conjunction with parameters that are not interpreted as nodal val-
ues of the displacement. Such nodeless parameters may then be eliminated by static 
condensation to obtain the stiffness matrix for the element.

4.3.1 Square eleMent forMed froM four triangleS 

The nodes and elements are numbered as shown in Figure 4.6. The nodal coor-
dinates for each element to be used in Equation 4.7 are shown in Table 4.1. 
The area of each element is h2/4. The geometric parameters in 4.24 are shown in 
Table 4.2.

For ν = 1/3, μ = 3E/8, from 4.28 the matrix C for plane stress is

 

C =
















µ
3 1 0
1 3 0
0 0 1

.

 

(4.44)

The stiffness matrix for each element is calculated from 4.33:
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fIgure 4.5 Quadrilateral formed from four triangles.
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fIgure 4.6 Square from four triangles.
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(4.46)

taBle 4.1
element geometry

element nodes X1/h X2/h X3/h Y1/h Y2/h Y3/h

1 1–2–5 0 1 1/2 0 0 1/2

2 2–3–5 1 1 1/2 0 1 1/2

3 3–4–5 1 0 1/2 1 1 1/2

4 4–1–5 0 0 1/2 1 0 1/2

taBle 4.2
element parameters

element nodes a1/h a2/h a3/h b1/h b2/h b3/h

1 1–2–5 −1/2 +1/2 0 −1/2 −1/2 +1

2 2–3–5 +1/2 +1/2 −1 −1/2 +1/2 0

3 3–4–5 +1/2 −1/2 0 +1/2 +1/2 −1

4 4–1–5 −1/2 −1/2 +1 +1/2 −1/2 0
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The element matrices are merged to form the global matrix:
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(4.47)

We can eliminate node 5 by static condensation:
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From (4.43), the stiffness matrix for the square is

 

U V U V U V U V1 1 2 2 3 3 4 4

8

11 4 7 0 5 4 1 0
4 11 0 1 4 5 0 7
7 0

K =

− − −
− − −

−
µ

111 4 1 0 5 4
0 1 4 11 0 7 4 5
5 4 1 0 11 4 7 0
4 5 0 7 4 11 0 1
1

− −
− − −

− − −
− − −

00 5 4 7 0 11 4
0 7 4 5 0 1 4 11

− − −
− − −































.

 

(4.50)

This will be compared with the direct generation of the stiffness matrix for the quad-
rilateral in the next chapter.
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4.4 plane StreSS exaMple: Short BeaM

The plane stress problem described in Section 2.1.14, illustrated in Figure 4.7, will 
now be solved by using finite elements that are triangles with constant strain.

The solution of this problem is of the form
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α α
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=
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u
pa

E
u

,

.
 

(4.51)

where Sαβ, uα are the stress tensor and displacement vector for unit side length, unit 
modulus, and unit load p. The following solution will be for these nondimensional 
variables. However, the true value of ν must be used.

Use can be made of the antisymmetrical pattern of deformation. The displace-
ments are such that

 

u x y u x y
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(4.52)

Therefore,
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(4.53)

And
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(4.54)
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fIgure 4.7 Short beam.
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Along the line x = 0, we have the antisymmetry conditions: u2 = 0, τ11 = τ22 = 0. 
Therefore, we only need to consider one-half of the region and use the symmetry 
conditions as boundary conditions. However, in the following example analysis, the 
entire region is retained for illustration.

A typical element layout is shown in Figure 4.8. In general, there are N segments 
per side. The nodes on the bottom edge have zero displacement. The generalized 
forces for nodes on the top edge are (0, 1/N), except for the corner nodes where they 
are 1/2 as much. Other generalized forces are zero. The calculated x displacement of 
corner C is shown in Table 4.2 for ν = 1/3.

The calculated displacement is always too small but increases monotonically to 
the true solution as the number of elements increases. Figure 4.9 shows the calcu-
lated displacement as a function of the number of divisions in this layout.

The stress varies smoothly in the exact solution. However, in the finite element 
model, the strains and therefore the stresses are constant throughout each triangle. 
Some interpolation of the calculated values is therefore necessary. A common 
method of interpreting the finite element analysis is to take the calculated values to 
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fIgure 4.8 Element layout.
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be the stress state at the centroid of the triangle. Figures 4.10 through 4.13 show the 
results for 1600 triangles using that interpretation.

The exact solution to this simple-looking problem is unknown. The stress state 
distant from the top and bottom edges was estimated in Section 2.1.14, Equations 
2.52 and 2.53. Looking at Figure 4.10, one sees very good agreement with this ele-
mentary theory on the interior of the region.

As expected, Figure 4.11 shows that the elementary theory is not satisfactory near 
the support where the stress distribution depends strongly on the details of the sup-
port condition. Figure 4.12 shows that the elementary theory is also not satisfactory 
near the loaded edge, where the stress distribution depends strongly on the details of 
the load distribution.

We have analyzed the situation in the corner x = 0, y = 0, as given by 2.58. We 
expect a singularity (infinite stress) at the corners where the free and fixed boundaries 
join. The effect of the singularity can be seen in Figures 4.11 and 4.13. The infinite 
stresses at those points are, of course, never found via a numerical analysis. For each 
finer element mesh, one simply finds higher and higher stresses near the corners.
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fIgure 4.11 Stress at y = 0.0083.
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4.4.1 extrapolation of the Solution

Let us consider the solution at some fixed point (x0,y0) within an element. The exact 
solution has the power series expansion

 u(x,y) = u(x0,y0) + ux(x0,y0)(x – x0) + uy(x0,y0)(y – y0) + ⋯, (4.55)

where the subscripts denote the partial derivatives. Within the element, we have x – 
x0 ≤ h and y – y0 ≤ h, where h is a characteristic dimension of the element. For the 
exact solution,

 u u h h u u h u h kh O hx y≡ = + + + +( , ) ( ).0 0 0 2 3  (4.56)

The finite element approximation is u, which is obtained by retaining only the linear 
terms in the series representation:

 u u u h u hx y= + +0 0 0 .  (4.57)
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The finite element approximation therefore differs from the exact solution by

 u u kh O h− = +2 3( ).  (4.58)

Let h be a small number and denote the finite element solution for some value h1 by 
u1, and by u2 for h2. Neglecting the higher-order terms,
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(4.59)

Thus,
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(4.60)

This formula can be used to estimate the exact solution from the finite element cal-
culations. From the data in Table 4.3, we have the following estimate for u2 7 372= . , 
u1 7 350= . , and α = 20/25 = 0.8 is 

 
u 

7 372 0 8 7 350

1 0 8
7 41

2

2

. ( . ) .

( . )
.

−
−

= .
 

(4.61)

We will see later from a more detailed finite element solution that the exact answer 
is still larger.

4.5 lInear StraIn trIangleS

We have seen in Section 4.1 how a general linear expression for displacement led 
naturally to a triangular with three corner nodes. The strains in that triangle are con-
stant. Let us now consider a general quadratic expression for displacement. We will 
see that the quadratic expression leads naturally to a six-node triangle.

taBle 4.3
convergence

Segments 
per Side no. of nodes

no. of 
triangles

no. of 
rectangles

corner 
displacement

1 5 4 1 4.444

2 13 16 4 5.785

4 41 64 16 6.735

10 221 400 100 7.223

20 841 1600 400 7.350

25 1301 2500 625 7.372
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Suppose that each component of displacement is represented in the form 

 f(x,y) = c1 + c2x + c3y + c4x2 + c5xy + c6y2. (4.62)

There are six constants that can be expressed in terms of the value of the function at 
six points. We will choose the three corners and the midpoints of the sides of the tri-
angle (Figure 4.14). The constants could then be found by using these six conditions 
to solve for the six constants in terms of the nodal coordinates. However, all of that 
algebra can be avoided by proceeding directly to shape functions determined by trial 
and error. One can easily see that possible quadratic shape functions are as follows:
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(4.63)

These shape functions have the necessary property that Ni = 1 at the ith node and 
zero at all others. Along a side, say 1–4–2, where ζ3 = 0 and ζ2 = 1 − ζ1, we have

 u = ζ1(2ζ1 – 1)U1 + (1 – ζ1)(1 – 2ζ1)U2 + 4ζ1(1 – ζ1)U4. (4.64)

That is, the displacement component is a quadratic function that is uniquely deter-
mined by the value of the displacement at the three nodes. An adjacent element that 
shares those three nodes will therefore have matching displacements along that edge. 
We conclude that the shape functions generate a continuous displacement field that is 
capable of exact representation of constant strain states. Calculation of the stiffness 
matrix is straightforward. Integration over the triangular region is easy because of 
the general formula for integration of polynomials 4.9.

4.6 four-node tetrahedron

The elements used for plane problems can easily be extended to three-dimensional 
regions. The three-node constant strain triangle for two dimensions can be directly 
extended to a four-node tetrahedron (Figure 4.15) for three dimensions by assuming 
a linear expression in (x, y, z) for the three components of displacement. There are 
now four natural coordinates ζi defined by the ratio of distance from the corner to the 
opposite side. The shape functions are Ni = ζi.
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fIgure 4.14 Linear strain triangle.
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4.7 ten-node tetrahedron

The 2D triangle with mid-side nodes becomes the 10-node tetrahedron in three 
dimensions (Figure 4.16).

The shape functions are easily generated:

 nodes 1, 2, 3, 4: Ni = ζi(2ζi – 1)
 nodes 5, 6, 7: N5 = ζ1ζ2, N6 = ζ2ζ3, N7 = ζ3ζ1

 nodes 8.9.10: N8 = ζ1ζ4, N9 = ζ2ζ4, N10 = ζ3ζ4

See ANSYS elements Solid 92 and 187.

4.8 proBleMS

 1. For the example problem shown in Figure 4.8, determine the force matrix 
F for a layout of triangles with N = 3 segments per side. You can label the 
elements and nodes in any convenient way.

 2. Derive the nodal forces for a uniform body force b1 = 1 for a three-node 
triangular element in plane stress. Show your answer on a diagram.

 3. For the triangle element with linearly varying load T1 as shown in Figure 
4.17, determine the element force matrix.

 4. Consider the layout of triangular elements for plane stress with eight ele-
ments and nine nodes as shown in Figure 4.18.

  Mark an X for the terms that may be nonzero and a 0 for the terms that 
must be zero in the first row of the global stiffness matrix.
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fIgure 4.15 The four-node tetrahedron.
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fIgure 4.16 The 10-node tetrahedron.
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 5. Consider the plane stress problem shown in Figure 4.19 with ν = 1/3.
(a) Determine the stiffness matrix for element 2.
(b) Merge that stiffness matrix into the global stiffness matrix.

 6. For the plane stress problem shown in Figure 4.19,
(a) Determine the 10 × 10 global stiffness matrix.
(b) Eliminate node 3 by static condensation to obtain an 8 × 8 stiffness 

matrix for the rectangle.
(c) Solve for the displacements at nodes 4 and 5, when both components of 

displacement at nodes 1 and 2 are zero, and there is a uniformly distrib-
uted horizontal load p on side 4–5.

  Answers:
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K
×

=

− − −

µ

00 2 4 8
8 4 2 0 0 0 8 4

8 0 2 0 0 4 8
8 4 2 0 8 4

8 0 2 4 8
8 4

− − −
− −

− −
− − −

− −
− −88 4

8 4 8
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fIgure 4.18 Eight-element model.
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fIgure 4.17 Linearly varying load.
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 7. Verify that the ANSYS element 182 correctly models the constant strain 
triangle (Figure 4.20) by using ANSYS to determine the first column of 
the element stiffness matrix for the element shown. Use E = 16, ν = 1/3. 
Compare the result with k1 from 4.45. (See Section 15.6.)

 8. Solve problem 6 using the ANSYS program. Submit a list of nodal displace-
ments. Note: To input nodes for a triangle, the third node is entered twice as 
the required fourth node for the Plane182 element. (See Section 15.7.)

 9. Solve the short beam example by ANSYS using the element layout of Figure 
4.8 consisting of all triangles. Determine the horizontal displacement of the 
upper right corner and compare with Table 4.3. (See Section 15.7.)

x21
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h
54

3

4
3

2

1

y

fIgure 4.19 Four-element layout.
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fIgure 4.20 One triangle.
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5 The Quadrilateral and 
the Hexahedron

5.1 four-node plane rectangle

For an arbitrary rectangle (Figure 5.1), choose the x–y axes as shown and number 
the corners as shown. We now wish to approximate a function f(x,y) in this region. If 
the function varies linearly along an edge, it is uniquely determined along that edge 
by its values at the corners and continuity between elements that share those corners 
will be achieved. This will be the case if

 f x y c c x c y c xy x y xy ck( , ) { },= + + + = 



1 2 3 4 1  

(5.1)

since the function is linear on an edge where either x or y is constant. The four coeffi-
cients can be expressed in terms of the four nodal values of the function, fk = f(Xk,Yk), 
where Xk = ±a/2 and Yk = ±b/2 are the coordinates of the kth node:

 {fk} = L{ck} (5.2)

where

 

L =

− − +

+ − −

+ + +

− + −
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2 2 4

1
2 2 4

1
2 2 4
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2 2 4

a b ab

a b ab

a b ab

a b ab





























.

 

(5.3)

The inverse of L is

 

L− =

− + + −

− − + +

+ − + −

1 1
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1 1 1 1
2 2 2 2
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4 4 4
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b b b b
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(5.4)
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Therefore,

 
f x y x y xy f fk k( , ) { } { }= 



 =−1 1L N

 
(5.5)

where
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(5.6)

It is convenient to use the nondimensional coordinates

 
ξ η ξ η= = − ≤ ≤ − ≤ ≤2 2

1 1 1 1
x

a

y

b
, , , .

 
(5.7)

Then,

 

N N

N

1 2

3

1
4

1 1
1
4

1 1

1
4

1 1

≡ − − ≡ + −

≡ + +

( )( ), ( )( ),

( )( )

ξ η ξ η

ξ η ,, ( )( ),N4

1
4

1 1≡ − +ξ η
 

(5.8)

and

 
f x y N f N f N f N f( , ) ( , ) ( , ) ( , ) ( , )= + + + =1 1 2 2 3 3 4 4ξ η ξ η ξ η ξ η NN fk k

k=
∑

1

4

. (5.9)

1
21

34

2

2

2 2 1 1

1ƞ

ξ
b

b

a a

y
x

fIgure 5.1 Four-node element.
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The formulas for Nk can be written concisely as

 
Nk k k= + +1

4
1 1( )( )ξ ξ η η

 
(5.10)

where ξk and ηk are the coordinates of the nodes in the ξ – η system. The functions Nk 
are called shape functions or interpolation functions. They have the property

 Nk(ξm,ηm) = δkm. (5.11)

The functions in 5.10 are known as the serendipity functions because they could 
have been easily found by trial and error. Recall that any functions that satisfy the 
following three requirements may be used as shape functions:

 (1) The shape function for a degree of freedom (DOF) must have the value of 1 
for that DOF and 0 for all others: Nk(ξm,ηm) = δkm.

 (2) The displacement field generated by the shape functions must be continuous 
between elements.

 (3) The representation of displacement within an element must contain the 
lower-order terms of the power series representation for the function so that 
arbitrary constant strain states can be represented.

It does not matter how we discover the functions. We will subsequently generate 
other elements by a judicious choice of the shape functions.

We will need the derivatives of the shape functions:
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(5.12)

Hence,
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∂
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Therefore,
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where
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(5.15)

For a plane region, we approximate u(x,y) and v(x,y) by 5.9:

 

u N U v N Vk k

k

k k

k

= =
= =

∑ ∑
1

4

1

4

, ,

 

(5.16)

where Uk denotes the value of u(x,y) at corner k, whereas Vk denotes the value of 
v(x,y) at corner k. That is,

 u = ND (5.17)

where
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(5.18)

From 2.1, 5.14, and 5.16,
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where
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(5.20)

Equation 5.19 is of the same form as 4.22, but here A is a 3 × 8 matrix since there 
are eight displacement parameters, and the components of A are not constant. From 
3.24, the stiffness matrix for the plane rectangle is

 

k A CA A CA= =∫∫ ∫∫
=−=−

T Td d d dx y
ab

4
1

1

1

1

ξ η
ηξ
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(5.21)



The Quadrilateral and the Hexahedron 107

For an isotropic elastic material,

 

C =
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(5.22)

For plane stress, C
E

C
E

C
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ν
, , . For plane strain, C11 = 

λ + 2μ, C12 = λ, C33 = μ. Substituting 5.20 and 5.22 into 5.21, we find
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(5.23)

From 5.13
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(5.24)

Integrating 5.23 term by term, we obtain

 

U V
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where
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(5.26)

For the case of plane stress with ν = 1/3 and a = b, the stiffness matrix is:

 

U U U U V V V V1 2 3 4 1 2 3 4

24

32 20 16 4 12 0 12 0
20 32 4 16 0

k =

− − −
− −

µ

−−
− − −

− − −
−

12 0 12
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12 0 12 0 322 4 16 20
0 12 0 12 4 32 20 16

12 0 12 0 16 20 32 4
0 12 0 1

− −
− − −

− − −
− 22 20 16 4 32− −































. (5.27)

This can be compared with the stiffness matrix 4.50 derived from four triangles by 
static condensation:

 

U U U U V V V V1 2 3 4 1 2 3 4

24
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For plane strain with ν = 1/3 and a = b, Equation 5.25 gives

 

U U U U V V V V1 2 3 4 1 2 3 4
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6 18 6 18 28 200 8 40































. (5.29)

Equations 5.27 and 5.29 can be compared with the output of ANSYS for the element 
Plane42 excluding the extra DOFs. We will introduce the extra DOF later. Although 
this element is very instructive and valuable for historical reasons, ANSYS is phas-
ing it out. I will continue to refer to it as a synonym for an analysis based on the 
developments of this section and the Wilson–Taylor element.

5.1.1 StreSS calculationS

The stress is given by

 τ = Cε = CAD = BD. (5.30)

Since A is not constant for this element, the stress and strain vary within an element. 
At the centroid ξ = 0 and η = 0, for a = b,

 

A =
− −
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− − − −
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. (5.31)

For plane stress with ν = 1/3,
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(5.32)

Therefore, at the centroid, for plane stress with ν = 1/3,
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− − − −
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(5.33)
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For node 3, ξ = 1 and η = 1. For a = b,

 

A =
−

−
− −

















1
0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 1 1 0 0 0 1 1

a
. (5.34)

Therefore, at node 3, for plane stress with ν = 1/3,

 

B =
− −
− −

− −
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0 0 3 3 0 1 1 0
0 0 1 1 0 3 3 0
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E

a
. (5.35)

For the Plane42 element, by default, ANSYS provides the stress evaluated at the 
nodes in the element listing and the stress at the centroid in the Element Table 
(ETABLE). Stress at the integration points (IPs), which will be defined below, 
is available in the element listing and the nodal stress listing if ERESX = No, 
Solution > Load Step Options > Output Ctrls > Integration Point. The IP stresses 
are then copied to the nodal points, while the element table still has the stress at 
the centroid.

For the Plane182 element, by default, ANSYS provides the stress evaluated at the 
nodes in the element listing. Stress at the IP is available in the element listing and 
the nodal stress listing if ERESX = No; the IP stresses are then copied to the nodal 
points. There is no ETABLE for stress.

The components of stress are generally not continuous across element boundaries, 
so the value at a node may be different for all elements sharing that node. The stress 
at the node as reported by ANSYS is the average of values for all elements sharing 
the node.

5.1.2 plane StreSS exaMple: pure Bending

The support conditions (Figure 5.2) are zero displacement of the origin and v(a,0) = 
0. There is symmetry (S: u = 0, τxy = 0) about the centerline (x = a/2) and antisym-
metry (A: u = 0, τyy = 0) about the x axis, so we need only analyze one-quarter of the 

p

p p

p

b

a

y
x

fIgure 5.2 Pure bending.
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region with zero displacement at the origin (Figure 5.3). The region can be divided 
into square elements by N divisions on an edge to produce N 2 elements and (N + 1)2 
nodes. For a = b = 2, p = 1, E = 1, ν = 0.3, the solution is shown in Table 5.1.

In this case, the actual distribution of displacement is close to that of the shape 
functions so relatively few elements are needed for a close answer. Let us investigate 
the case N = 2, shown in Figure 5.4 in more detail. From 5.14, we see that the stress 
components will vary linearly in y when x is constant. The element output for ele-
ment 2 is τxx = 0.51426 at node 5. The element output for element 4 is τxx = 0.46632 
at node 5. The stress tensor is not continuous between elements and the data have to 
be smoothed in some fashion in order to obtain a reasonable estimate of the stress 
at the element boundary. ANSYS does that by averaging the values from all ele-
ments connected to a node. The reported stress at node 5 is therefore τxx = (0.51426 + 
0.46632)/2 = 0.49029.

b/2

a/2

p

y
x A

S

fIgure 5.3 Bending with symmetry.

taBle 5.1
nodal values

N v(1,0) τxx(1,1)

1 0.44608 0.93627

2 0.48528 0.98985

4 0.49643 1.0039

8 0.49911 1.0041

16 0.49978 1.0026

32 0.49994 1.0014

64 0.49999 1.0007

Exact 0.5 1

2
2

3
1

1

8
3

6 7 4
4

9 5

y
x

fIgure 5.4 A 2 × 2 element layout.



112 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

5.1.3 plane Strain exaMple: Bending with Shear

The exact solution for the plane strain of a rectangular region loaded by parabolic 
shear stress on one end (Figure 5.5) is given in Section 2.1.12. We will now apply the 
finite element method (FEM) using the four-node element to obtain an approximate 
solution for the case c = 2, L = 16, P = 32, E = 8192, ν = 0.3. Symmetry about the x 
axis can be used. The mesh chosen has N divisions along the y axis and M divisions 
along the x axis. A 4 × 8 mesh for the upper half is shown (Figure 5.6). The coordi-
nate axes have been shifted for computational convenience.

The edge y = 0 has ux = 0 by symmetry. To prevent rigid body motion, we will fix 
the origin and set ux = 0 at the upper left corner (x = 0, y = c). The exact solution for 
the vertical displacement at the center of the right edge is

 

u
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y = − + +

−






3 2
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2

2

1

2
1

4
2 1

( ) ( )
( )

ν ν
ν

.

 

(5.36)

Table 5.2 shows the FEM solution obtained from ANSYS using the Plane42 ele-
ment without extra DOF. From 5.36, the exact displacement is 0.9537 for ν = 0.3 and 
0.8037 for ν = 0.499. Note the relatively poor solution for the Poisson ratio near 0.5 
when the bulk modulus is very large compared to the shear modulus.

5.1.4 plane StreSS exaMple: Short BeaM

The same plane stress problem that was analyzed in Section 4.4 using constant strain 
triangles will be analyzed by using the four-node rectangular elements. The strains, 
and therefore the stresses, vary linearly within each element in this case. The finite 
element layout is shown in Figure 5.7. There are N segments per side, N 2 rectangles, 

σx

τxy τxy

2c

L

fIgure 5.5 Plane strain bending with shear.

σ = 96y

y

x

τ = 12 – 3y2 τ = 12 – 3y2

fIgure 5.6 Bending with shear: element layout.
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and (N + 1)2 nodes. The nodes along the bottom have zero displacement and the 
nodes along the top have generalized forces as shown.

The displacement of the corner is listed in Table 5.3 for several mesh sizes, for ν = 
1/3. The stress distribution for the case of 2500 rectangles is presented in Figures 5.8 
through 5.10. The element stress is calculated at the centroid of the element using 5.33.

taBle 5.2
displacements for different poisson ratio

N × M ν uy feM/exact

4 × 8 0.3 0.847 0.888

8 × 32 0.3 0.940 0.986

16 × 64 0.3 0.950 0.996

4 × 8 0.499 0.264 0.328

8 × 32 0.499 0.529 0.658

16 × 64 0.499 0.703 0.875

1/8 1/81/4 1/4 1/4

fIgure 5.7 Short beam: element layout.

taBle 5.3
convergence

Segments per Side no. of nodes no. of rectangles x displacement of the corner

1 4 1 4.667

2 9 4 5.908

4 25 16 6.792

10 121 100 7.240

20 441 400 7.355

46 2,209 2,216 7.409

50 2,601 2,500 7.412

60 3,721 3,600 7.417

70 5,041 4,900 7.421

80 6,561 6,400 7.424

90 8,281 8,100 7.426

100 1,020 10,000 7.428
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fIgure 5.8 Short beam: stress at y = 0.51.
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5.2 IMproveMentS to four-node quadrIlateral

5.2.1 wilSon–taylor quadrilateral

For clarity of presentation and organization in the general discussion of the finite 
element formulation, we have assumed that the DOFs DK are the values of the dis-
placement at some node. However, the calculations made no use of that fact and the 
same equations are obtained even if the displacement parameters have no kinemati-
cal meaning. We will now consider an example of such a generalization.

The shape functions 5.6 are an incomplete quadratic form. Consequently, the 
strains and stresses are represented by incomplete linear forms. For example, ε11 = 
c2 + c4y. The representation of the x dependence is not as complete as that for y. This 
does not give a uniform approximation in the general case. However, in order to 
obtain a complete linear form we would need at least six nodes, and there is no natu-
ral way to choose them. This dilemma can be circumvented by introducing nodeless 
parameters such as the following1:
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(5.37)

The new terms with displacement parameters di are zero at the corners of the rect-
angle so that the interpretation of Ui and Vi as x and y components of the nodal 
displacement is unchanged. The di values are not given any particular geometrical 
interpretation. 

If we expand the representation for u into powers of x and y, we obtain the com-
plete quadratic form:

 u = c1 + c2x + c3y + c4x2 + c5xy + c6y2. (5.38)

Therefore, the strains and stresses will be represented by complete linear forms, for 
example, 

 ε11 = c2 + c4x + c5y. (5.39)

This will give a representation of stress that is not biased toward one particular coor-
dinate. The matrix D of displacement parameters for an element is now

 [U1 U2 U3 U4 V1 V2 V3 V4 d1 d2 d3 d4] = [DT,dT]. (5.40)
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The strains are

 ε = AD + Bd, (5.41)

where A is given by 5.20 for the four-node rectangle and

 

B =
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(5.42)

The potential energy is therefore
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(5.43)

where k11 is the element stiffness matrix for the four-node rectangle and
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(5.44)

The finite element equations for the element are therefore

 

k D k d F

k D k d 0

11 12

21 22

+ =

+ =

,

.  
(5.45)

The element stiffness matrix in 5.43 is a 12 × 12 matrix. In an assembly of elements, 
the parameters di are not shared with any other elements. We have four different 
parameters for each element. The four parameters di can therefore be eliminated for 
each element:

 d k k D= − −
22
1

21 , (5.46)

and

 k k k k k= − −
11 12 22

1
21.  (5.47)
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This process is called static condensation. The result 5.47 is an 8 × 8 element stiff-
ness matrix that may be used in place of the four-node serendipity element. This new 
matrix will give improved displacements and stresses for a given number of rect-
angles. The results for the short beam example are shown in Figure 5.11. The results 
are significantly improved for a small number of elements, and the result appears to 
converge to the same result as for the four-node rectangles.

For a = b and ν = 1/3, the first row is

 

U U U U V V V V

k i

1 2 3 4 1 2 3 4

1 36
54 36 36 18 27 9 27 9[ ] = − − − − 

µ
pplane strain.

p[ ]   k i1 36
44 26 28 10 18 0 18 0= − − − 

µ
llane stress.

 
(5.48)

This agrees with ANSYS element Plane42 with extra DOFs.
If we investigate the displacement field for an assembly of nonrectangular ele-

ments, we find that representation 5.37 does not generate a continuous displacement 
field. Because of the ξ2 and η2 terms, the displacement is not varying linearly along a 
side unless di = 0. This violates the assumptions in the derivation of the finite element 
equations from the potential energy.

Elements that do not generate continuous displacement fields when they are 
assembled are called incompatible or nonconforming. We will see later that this 
particular nonconforming element is acceptable as long as the element is rectan-
gular, or the corresponding isoparametric element is a parallelogram. A modified 
integration scheme has been invented that removes the restriction to parallelograms.2 

D
isp

la
ce

m
en

t

Number of segments
1

8

7

6

5

4
6 11 16 21

without extra DOFs
with extra DOFs

fIgure 5.11 Comparison with extra DOF.
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It is presented in Section 6.3.1. The Wilson–Taylor element is a special case of the 
following enhanced strain element.

5.2.2 enhanced Strain forMulation

A potential energy function for the Wilson–Taylor element can be established by 
regarding the extra strain resulting from the nodeless parameters as an independent 
variable that is not derived from the displacements.3 Let us consider the modified 
potential energy function

 



  P A
V V

( , , ) ( )u ττ εε εε εε= + −( ) − −∫ ∫τ εij ij i i i iV b u V T ud d 0 ddA

TS
∫ ,  (5.49)

where ε is derived from u by the strain–displacement relations and εε is a parameter 
called the enhanced strain tensor. Continuity is required for the displacement u but 
not for the stress τ nor the enhanced strain εε. If εε = 0, 5.49 reduces to the potential 
energy formula. For linear elasticity,

 
A( )εε εε+ = +( ) +( )  

1
2

cijkm ij ij km kmε εε ε , (5.50)

with cijkm = cjikm = cijmk = ckmij. The derivative of P is

 

δ δε ε τ ε ε δτP
V V

= +( ) −  −∫ c V Vijkm km km ij ij ij ij
  d d∫∫

∫ ∫+ +( )  − −c V b u V T uijkm km km ij i i i iε ε εδ δ δ d d
V V

0 ddA

TS
∫ .

 (5.51)

Integrating by parts, subject to the condition that u is as continuous function and 
δu = 0 on Su,

 

D c V Vijkm km km ij ij ij ijP
V V

= +( ) −  −∫ ε ε τ ε ε τδ δ  d d∫∫

∫− +( )( ) +





+

c b u V

n c

ijkm km km j i i

j ijkm km

ε ε

ε

δ , d
V

++( ) − ∫ ε δkm i iT u A

T

0 d
S

.

 

(5.52)
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Thus, DP = 0 is equivalent to

 





ε

τ ε ε

τ

ij

ij ijkm km km

ij j i

c

b

=

= +( )
+ =

0

0

,

,

, ,
 

(5.53)

in V, and

 
n Tj ij iτ = 0

 
(5.54)

on ST. These are the equations of linear elasticity.
We can now apply FEM to formulate a solution procedure. In matrix form, using 

5.51, DP = 0 gives

 

δ

δ

δ

 





εε εε εε ττ

ττ εε

εε εε εε

T

T

T

d

d

C C

C C

+ −  =

=

+ 

∫

∫

V

V

V

V

0

0

,

,

 = +∫ ∫ ∫d d dT TV V A

TV V S

δ δu b u T .

 

(5.55)

We introduce shape functions for the three fields:

 u ND AD S Gd= = =, , , .εε ττ σσ εε ==  (5.56)

Both d and σ are nodeless parameters for each element and are not shared by other 
elements. Matrix A is determined by N through the strain–displacement relations. 
Substituting into 5.55 and merging the element equations, we find from the second 
equation that

 

S G dT d .V
V
∫ = 0

 

(5.57)

Therefore, we will require that the shape functions are such that

 

S GT dV
V
∫ = 0.

 

(5.58)

The first and third equations in 5.55 then reduce to

 k11D + k12d = F, (5.59)
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and

 k21D + k22d = 0, (5.60)

where

 

k A

k k G

k G

11

12 21

22

=

= =

=

∫

∫

∫

T

T T

T

d

d

d

CA

CA

CG

V

V

V

V

V

V

,

,

.

 

(5.61)

The force matrix is the same as for the pure displacement formulation and is not 
affected by the introduction of the enhanced strain. Since the parameters d are not 
shared by elements, they can be eliminated at the element level by static condensation:

 d k k D= − −
22
1

21 ,  (5.62)

to obtain the element stiffness matrix

 k k k k k= − −
11 12 22

1
21.  (5.63)

Wilson–Taylor Element. Let us now treat the plane problem using the four-node 
element with nodeless parameters and treat the nodeless parameters as generating 
the enhanced strain:

 

G =

















ξ

η
ξ η

0 0 0

0 0 0

0 0

.

 

(5.64)

In order to satisfy 5.58, we can chose

 

S =

















1 0 0 0

0 1 0 0

0 0 1 0 0

η
ξ .

 

(5.65)

For plane strain with ν = 1/3,

 

C =
















µ
4 2 0
2 4 0
0 0 1

.

 

(5.66)
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For a square element,

 

k22 3

4 0 0 0
0 4 0 0
0 0 1 0
0 0 0 1

=



















abµ
,

 

(5.67)

and

 

k21 6

0 2 0 2 0 2 0 2
2 0 2 0 2 0 2 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

=

− −
− −
− −

− −

µa



















.

 

(5.68)

Therefore,

 

U V U V U V U V1 1 2 2 3 3 4 4

12 22
1

21 6

1
0 1
1 0 1
0 1 0 1
1 0 1 0

k k k− =

−
−

−
µ

11
0 1 0 1 0 1
1 0 1 0 1 0 1
0 1 0 1 0 1 0 1

−
− −

− −































. (5.69)

Combined with 5.27, we find that the element stiffness matrix for plane strain is

 

U U U U V V V V1 2 3 4 1 2 3 4

24

36
24 36
24 12 36
12 24 24 36
18

k =

−
−

− −µ
−− −

− −
− − − −

− − −

6 18 6 36
6 18 6 8 12 36

18 6 18 6 24 24 36
6 18 6 18 24 −−





























24 12 36

. (5.70)

This is the same as for ANSYS Plane42 element with extra DOF and the ANSYS 
Plane182 element with enhanced strain.
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5.2.3 approxiMate VoluMetric StrainS

We see from Table 5.2 that the solution when the Poisson ration is near 0.5 is poor 
for any mesh. The basic serendipity element is apparently giving too much weight to 
the volume change relative to the distortion because of the large bulk modulus, that 
is, the element is too stiff in volume change. The performance can be improved by 
using a lower-order integration on the volumetric terms. We will explore that option 
in this and the next two sections.

For the plane problem γxz = γyz = 0 and

 

σ

σ

τ

σ

ε

ε

γ

ε

x

y

xy

z

x

y

xy

z





















=




















C


 

(5.71)

where

 

C =

+
+

+





















2 0

2 0

0 0 0

0 2

µ λ λ λ
λ µ λ λ

µ
λ λ µ λ

 

(5.72)

and

 

ε ν
ν

ε ε
z

x y

=
−

−
+( )

0 for plane strain.

1
for plane stresss.









 

(5.73)

The total strains can be expressed in terms of the deviatoric strains and the volumet-
ric strain
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γ

ε
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x
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e
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=
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1
3 0

ε

ε

ε

v

v
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.

 

(5.74)

From 5.19,

 εx = A1U,    εy = A2V,    γxy = A2U + A1V. (5.75)
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For plane strain,

 

ε ε εv x y= + = 













A A U

V
1 2 .

 

(5.76)

Therefore, for plane strain,
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(5.77)

Define

 

A

A A

A A

0 0
A A

( )dil =





















1
3

1 2

1 2

1 2
 

(5.78)

and

 

A

A A

A A

A A

A A

( )dev =

−

−

− −












2
3

1
3

1
3

2
3

1
3

1
3

1 2

1 2

2 1

1 2



















. (5.79)

Thus,

 

ε

ε

γ

ε

x

y

xy

z





















=








 +A U

V
A U

V
( ) ( )dev dil 







. (5.80)

We now approximate the dilatational term by evaluating matrix A(dil) at the centroid 
(ξ = η = 0) of the element. This procedure is known as the B  method.4 Then,
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=








A U

V

 

(5.81)

where

 

A

A A A A

A A A A

A A
=

+ − +

− + +

2
3

1
3

1
3

1
3

1
3

1
3

2
3

1
3

1 1 2 2

1 1 2 2

2 1

 

   

−− + − +





























1
3

1
3

1
3

1
31 1 2 2A A A A   

 

(5.82)

and

 
A A1 2

1
2

1
2

=   =  a bk kξ η, .
 

(5.83)

The element stiffness matrix for plane strain, therefore, is

 

k A CA
k k

k k
= =











∫ T da 11 12

21 22

. (5.84)

Using 5.24,

 

k11

2

24

2

3
2 1

1
3

=

+






+










+ab

a

a

k m k m k m

µ
ξ ξ η η ξ ξ

λ
ξkk m

k m k m
b

ξ

µ
η η ξ ξ

 

+ +




























 2

1
1
3















. (5.85)

For plane strain with a = b and ν = 1/3,

 

k11 36

52 34 38 20
34 52 20 38
38 20 52 34
20 38 34 52

=

− −
− −
− −

− −

µ


















. (5.86)

This is similar to the ANSYS Plane182 element with full integration (K1 = 1) for plane 

strain with a = b and ν = 1/3, which has as the first row 51 33 39 21− −( ).
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5.2.4 reduced integration on the k terM

In this section, we separate the shear modulus from the bulk modulus κ = λ + 2μ/3. 
The elasticity matrix for plane strain 5.22, therefore, takes the form

 C = C1 + C2 (5.87)

with

 

C1 3

4 2 0
2 4 0
0 0 3

=
−

−
















µ

 

(5.88)

and

 

C2

1 1 0
1 1 0
0 0 0

=
















κ . (5.89)

Formula 5.21 for the element stiffness matrix becomes

 

k A C A A C A= +
=−=− =−
∫∫ ∫ab abT T

4 41

1

1

1

1

2

1

1

d d d dξ η ξ η
ηξ ηξ

.
==−
∫

1

1

 

(5.90)

Let us approximate the second term by treating the integrand as constant, equal to its value 
at the centroid (ξ = 0,η = 0) of the element (i.e., use one point numerical integration):

 

k A C A A C A= +
=−=−
∫∫ab

ab
4

0 0 0 01 2

1

1

1

1

T Td dξ η
ηξ

( , ) ( , ).

 

(5.91)

Using 5.20 and 5.24, we find for this case

 

kuu k m
k m

k m
k m
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1
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κ ξ ξ
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=

=
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 .

 

(5.92)
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For a = b and ν = 1/3, 

 

U U U U V V V V

k i

1 2 3 4 1 2 3 4

1 36
52 34 38 20 27 9 27 9[ ] = − − − − 

µ

 

(5.93)

in agreement with 5.86.

5.2.5 reduced integration on the λ terM

In this section, we separate the dependence on μ and λ = 2μν/(1 – 2ν) since λ is large 
for ν near 0.5. For plane strain,

 C = C1 + C2, (5.94)

where

 

C1

2 0 0
0 2 0
0 0 1

=
















µ

 

(5.95)

and

 

C2

1 1 0
1 1 0
0 0 0

=
















λ .

 

(5.96)

Formula 5.21 for the element stiffness matrix then becomes

 

k A C A A C A= +
=−=− =−=
∫∫ ∫ab ab

4 41

1

1

1

1

2

1

1

T Td d d dξ η ξ η
ηξ ηξ −−

∫
1

1

.

 

(5.97)

Let us approximate the second term by treating the integrand as constant, equal to 
its value at the centroid (ξ = 0,η = 0) of the element (i.e., use one-point numerical 
integration):

 

k A C A A C A= +
=−=−
∫∫ab

ab
4

0 0 0 01 2

1

1

1

1

T Td dξ η
ηξ

( , ) ( , ).

 

(5.98)
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Using 5.20, 5.95, and 5.96,
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(5.99)

For a square element with ν = 1/3, λ = 2μ, for plane strain,

 

U U U U V V V V1 2 3 4 1 2 3 4

8

12 8 8 4 6 2 6 2
8 12 4 8 2 6 2 6

k =

− − − −
− − − −
−

µ
88 4 12 8 6 2 6 2
4 8 8 12 2 6 2 6
6 2 6 2 12 4 8 8
2 6 2 6 4 1

− − −
− − − −
− − − −
− − 22 8 8

6 2 6 2 8 8 12 4
2 6 2 6 8 8 4 12

− −
− − − −
− − − −































. (5.100)

This matrix agrees with the enhanced strain matrix 5.70.

5.2.6 uniforM reduced integration

Since the reduced integration of the λ terms results in such significant improvement, 
especially for a Poisson ratio near 0.5, one is tempted to try a reduced integration on 
both integrals. In such a case, formula 5.21 for the element stiffness matrix simplifies to

 

U V

k A CA k k
k k

= =












ab
uu uv

vu vv
( , ) ( , )0 0 0 0T .

 

(5.101)

From 5.14, 5.20, and 5.22, for an isotropic material,
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(5.102)
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For a square element with ν = 1/3, λ = 2μ, for plane stress,

 

U U U U V V V V1 2 3 4 1 2 3 4

2

2 1 1 0
1 2 1 2 0 1 0 1
2 1 2

k =

− − −
− − −
− −

µ

2 1 1 0

11 1 0 1 0
2 1 2 0 1 0 1
0 1 0 2 1 2 1
1 0 1 1 2 1 2

1 0 1 0 2

−
− − −

− − −
− − −

− −

1
1
0

−−
− − −































1 2 1
1 1 2 1 20 1 0

. (5.103)

For plane strain,

 

k =

− − − −
− − − −
− − − −

− −µ
4

5 3 5 3 3 3 1
3 5 3 5 1 3 1 3
5 3 5 3 3 1 3 1

5 3 5 1
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1 3 1 5 3 5 3
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3
1

33 3 5 3 5− −































. (5.104)

A problem arises. The stiffness matrix contains other modes in addition to those for 
rigid body motion. There are five zero eigenvalues of matrix 5.104. Three correspond 
to the rigid body modes. The other two eigenvectors can be expressed by

 

U U U U V V V V1 2 3 4 1 2 3 4

1 1 1 1 0TD = − − 0 0 0

0 0 0 0T

 

=

,

D 1 1 1 1− − .
 

(5.105)

These are the so-called hourglass modes (Figure 5.12). If the element is restrained only 
against rigid motion, the determinant is still zero because of the hourglass modes.

This feature can be remedied by associating a stiffness with the hourglass modes.5 
The hourglass modes are u = ξη and v = ξη. A similar exact solution of the plane 
equations is

 

u
c

xy v
c

b
x y y= = − −







= = =σ σ

α τ σ τ τ, , , ,
2 4

0 0
2

2 2
11 22 12 ,,

 

(5.106)
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where c = E and α = ν for plane stress, c = 4μ(λ + μ)/(λ + 2μ) and α = ν/(1 – ν) for plane 
strain. The nodal displacements are

 
U

ab

cn
n= − −σ

4
1( ) ,

 
(5.107)

which matches the hourglass mode. Since
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(5.108)

we find

 

σ = − −
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∑c

ab
Un
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4

.

 

(5.109)

The nodal forces corresponding to this surface loading from 5.106 and 5.109 are cal-
culated from the virtual work formula for each component of nodal displacement:
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(5.110)

where A is given by 5.20. Therefore,
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(5.111)

U4 = –1

U1 = 1 U2 = –1

U3 = 1 V3 = 1

V2 = –1
V1 = 1

V4 = –1ƞ ƞ

ξ ξ

fIgure 5.12 Hourglass modes.
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for the first hourglass mode. For the second mode,
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. (5.112)

Adding the results for the two modes, we find the associated hourglass stiffness
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− −cb

a12
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. (5.113)

A very small fraction of this stiffness is added to the singular element stiffness 5.103 
to stabilize the hourglass modes without contributing significantly to the calculated 
displacements. ANSYS allows control of this factor by the parameter HGSTF. If the 
entire hourglass correction is added back, the stiffness matrix agrees with matrix 
5.100 obtained by reduced integration on the λ terms. If the element is not rectangu-
lar, the definition of the hourglass modes must be altered.6

5.2.7 exaMple uSing iMproVed eleMentS

The plane strain problem illustrated in Section 5.1.3 is analyzed using a 16 × 64 
mesh using the Plane182 element of ANSYS. The result is shown in Table 5.4. This 
shows considerable improvement over the basic element as shown in Table 5.2 for ν 
near 0.5.

5.3 nuMerIcal IntegratIon

Evaluation of the stiffness matrix involves integration over the region. This can be 
complicated for an arbitrary shape. It is therefore common to use numerical integra-
tion to obtain an approximate evaluation of the area and volume integrals.
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In order to evaluate the integral

 

f x x
a

b

( ) d∫ , (5.114)

we choose several points xi within the interval (a, b) and let f(xk) be denoted by fk 
(Figure 5.13). We can approximate f(x) in terms of the intermediate values fk by some 
convenient curve fitting technique that makes integration easy. Then,

 

f x x W f
a

b

n n

n

N

( ) .d∫ ∑=
=1  

(5.115)

The numerical coefficients Wn have been tabulated in reference works on numerical 
analysis for various choices of points xk and interpolation functions. For multiple 
integrals, proceed by iterated integrals:

 

f x y x y f X y W y

W W f

a

b

c

d

n n

n

N

c

d

n

m

N

m

( , ) ( , )d d d∫∫ ∑∫

∑

=

=

=

=

1

1

(( , ).X Yn m

n

N

=
∑

1  

(5.116)

taBle 5.4
comparison of Integration Methods

element option ν uy feM/exact

Full Integration (B) 0.3 0.951 0.997

Enhanced Strain 0.3 0.952 0.998

Reduced Integration 0.3 0.954 1.000

Full Integration (B) 0.499 0.802 0.998

Enhanced Strain 0.499 0.802 0.998

Reduced Integration 0.499 0.804 1.000

x
a bx1

f1
f2

f3

x2 x3

f(x)

fIgure 5.13 Numerical integration.
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The most commonly used method of numerical integration for finite element applica-
tions is Gauss quadratures. In this method, the points xn and coefficients Wn are cho-
sen so that an exact result is obtained when f(x) is a polynomial equal to 1, x, x2, …, 
x2N−l. This gives 2N conditions with which to determine the 2N quantities Wn and xn. 

For example, consider the case N = 2 and –1 ≤ x ≤ 1:

 

c c x c x c x x W f x W f x1 2 3
2

4
3

1

1

1 1 2 2+ + +( ) ≡ +
−
∫ d ( ) ( ).

 

(5.117)

From which,

 
2

2
31 3 1 1 2 1 3 1

2
4 1

3
2 1 2 2 3 2c c W c c x c x c x W c c x c x+ ≡ + + +( ) + + + 22

4 2
3+( )c x . (5.118)

It follows that

 
W W x x1 2 1 21

1

3

1

3
= = = − = +, , .

 
(5.119)

For any function, we have the approximate formula:

 

f x x W f x W f x f f( ) ( ) ( ) ( . ) ( . ).d
−
∫ = + = − + +
1

1

1 1 2 2 0 577 0 577

 

(5.120)

The factors have been tabulated7 for a large number of choices of N. The results for 
one-, two-, three-, and four-point approximations for a = −1 and b = +1 are shown in 
Table 5.5. Note that the one-point integration is equivalent to taking the integrand as 
a constant equal to its value at the centroid.

taBle 5.5
Weighting factors

N = 1 X1 = 0 W1 = 2

N = 2 X1 = −0.57735027 W1 = 1

X2 = +0.57735027 W2 = 1

N = 3 X1 = −0.77459 W1 = 0.55555

X2 = 0 W2 = 0.88888

X3 = +0.77459 W3 = 0.55555

N = 4 X1 = −0.86113 W1 = 0.34785

X2 = −0.33998 W2 = 0.65214

X3 = +0.33998 W3 = 0.65214

X4 = +0.86113 W4 = 0.34785



The Quadrilateral and the Hexahedron 133

5.4 coordInate tranSforMatIonS

To extend the previous results for rectangles, we need to introduce local coordinates 
for the element that are appropriate to the actual shape of the element. We gather here 
the formulas for transformation from the global rectangular Cartesian coordinates 
to local coordinates.

Consider a plane region covered by a rectangular Cartesian coordinate system 
(x,y) = (x1,x2). Let us introduce a new (curvilinear) coordinate system by expressing 
xα in terms of new parameters (ξ,η) ≡ (ξ1,ξ2) by xα = xα(ξ1,ξ2). We always choose a 
transformation that can be inverted: ξα = ξα(x1, x2). Let

 

∂
∂
x

Jα

β
αβξ

= ,
 

(5.121)

and keep in mind that Jαβ is a function of (ξ,η). Furthermore, let 

 

∂
∂

ξα

β
αβx

J= * .
 

(5.122)

We then have (the summation convention applies to repeated indices):

 

∂
∂

∂
∂

∂
∂

x

x

x

x
α

φ

φ

β

α

β
αβξ

ξ
δ= = .

 
(5.123)

Thus,

 
J Jαφ φβ αβδ* .=

 
(5.124)

In matrix notation

 JJ* = 1. (5.125)

The coordinate transformation is required to be invertible and therefore the determi-
nant of J is nonzero:

 J = det J ≠ 0. (5.126)

Integration over a region of the plane can be expressed in terms of the rectangular 
Cartesian system or the curvilinear coordinate system. For the rectangular Cartesian 
system, da = dxdy. For the curvilinear system, da = Jdξdη. Therefore,

 
f x y x y f a fJ f

R R R R

( , ) ( , ) .d d d d d d d∫∫ ∫∫ ∫∫ ∫∫= = =ξ η ξ η ξ η
 

(5.127)
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If the coordinate transformation maps the region onto the square –1 ≤ ξ ≤ 1, –1 ≤ η ≤ 
1, then integration formula 5.116 can be used:

 

f W W f
R

n

m

N

m n m

n

N

( , ) ( , ).ξ η ξ η ξ ηd d∫∫ ∑∑=
== 11  

(5.128)

5.5 ISoparaMetrIc quadrIlateral

Consider a general plane quadrilateral (Figure 5.14). Let us introduce a coordinate 
transformation such that the equation of the boundary segments has the simple form 
that ξ is constant or η is constant: 

 

x N Xk k

k

α αξ η=
=

∑ ( , ) ,
1

4

 

(5.129)

where (X1k,X2k) ≡ (Xk,Yk) are the (x,y) coordinates of node k. One such coordinate 
transformation is determined by the shape functions 5.10. We have, for example, 
when ξ = +1,

 

x X X

y Y Y

= − + +

= − + +

1
2

1 1
2

1

1
2

1 1
2

1

2 3

2 3

( ) ( ) ,

( ) ( ) ,

η η

η η
 

(5.130)

which is the equation of the line 2–3. We must now find suitable shape functions as for 
the displacements within the quadrilateral. We will represent the components of dis-
placement (u,v) ≡ (u1,v2) in terms of their values (U1k,U2k) ≡ (Uk,Vk) at the four corners:

 

u N Uk

k

kα αξ η=
=

∑
1

4

( , ) .

 

(5.131)

ξ
1

11

1 2

3
3

2
1

44

1

η

η=+1

η=–1

ξ=
–1

ξ=
+1

η
ξ

x

y

fIgure 5.14 General quadrilateral.
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Note that uα and Uαk are components on the (x,y) system, not the (ξ,η) system. In 
matrix form,

 

U U U U U U U U

U V U V U V U V

D D D D

11 21 12 22 13 23 14 24

1 1 2 2 3 3 4 4

1 2 3 44 5 6 7 8

1

2

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

D D D D

u

u

N N N N

N N N N













=












D

 

(5.132)

or

 u = ND. (5.133)

This curvilinear coordinate system is the natural choice that will simplify the 
task of finding suitable shape functions Nk. To achieve a continuous displacement 
field, it is only necessary to have uα varying linearly with distance along an edge, 
and

 Nk(ξm,ηm) = δkm. (5.134)

Let us investigate the shape functions 5.10. Condition 5.134 is satisfied by this choice. 
It remains to be determined if the formula for uα is linear along an edge. Along ξ = 
1, for example,

 

u U U

v V V

= − + +

= − + +

1
2

1
1
2

1

1
2

1
1
2

1

2 3

2 3

( ) ( ) ,

( ) ( ) .

η η

η η
 

(5.135)

We see that u and v do vary linearly along the edge. Similar results hold for the other 
edges. Therefore, this choice of shape functions will generate a continuous displace-
ment field for an assembly of quadrilaterals. When the same functions are used in the 
coordinate transformation 5.129 and the approximation for displacements 5.131, this 
procedure is known as the isoparametric formulation.8

We can now proceed to calculate the corresponding element stiffness matrix. 
From 5.131 and 5.122,

 

u
u

x

u

x
N J Uk k

k

α β
α

β

α

φ

φ

β
φ

φ

φβ αξ
ξ

,
* ,≡ = = ∑∑∂

∂
∂
∂

∂
∂

 

(5.136)
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where the derivatives

 
N

N
k

k
α

αξ
≡ ∂

∂  
(5.137)

are determined from 5.12. From 2.27,
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(5.138)

where

 

A N J N Jk k

k

kαβθ φ φβ θα

φ

φ φα θβδ δ= +∑ ( * * )
,

. (5.139)

In matrix form,

 

U U U U U U U U

U V U V U V U V

D D D D

11 21 12 22 13 23 14 24

1 1 2 2 3 3 4 4

1 2 3 44 5 6 7 8

11

22

12

1111 1121 1112

D D D D

A A Aε

ε

γ



















=
AA A A A A

A A A A A
1122 1113 1123 1114 1124

2211 2221 2212 2222 22213 12223 2214 2224

1211 2111

A A A

A A+
















etc. 

[ ].Dn

 
(5.140)

In matrix notation,

 ε = AD. (5.141)

By 3.23 and 3.24, the stiffness matrix for the element is

 

k A CA= ∫ T da
R

.

 

(5.142)
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We need the Jacobian Jαβ = ∂xα/∂ξβ:
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ξ η η
 

(5.143)

where ξk and ηk are nodal coordinates. Thus, Jαβ is a polynomial, but Jαβ
*  is not, and 

the integration is complicated. Numerical integration is therefore used. The integral 
over the general quadrilateral is accomplished by using the coordinate transforma-
tion to (ξ,η) as in 5.127 and using numerical integration as in 5.128.

 

k f f= =∫∫ ∑∑( , ) ( , )ξ η ξ η ξ ηd d i j i j

ji

W W ,

 

(5.144)

where ξk and ηk are coordinates of the IPs.
The foregoing relations are expressed in the usual matrix form with the follow-

ing correspondence (the numbering is chosen to match the FORTRAN storage 
convention):
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(5.145)

The procedures used in this section to find a stiffness matrix for the quadrilateral as 
soon as one is known for the rectangle, provide a general method that can be used 
for other types of elements: 

 (1) Find the shape functions for the rectangle. 
 (2) Introduce natural coordinates (ξ, η) for the quadrilateral as the inverse of 

the coordinate transformation 5.129. 
 (3) Shape functions for the displacements within the quadrilateral are given by 

5.131.
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 (4) Use the general relations to obtain the stiffness matrix for the quadrilateral 
that involves the integral over the quadrilateral region. 

 (5) Use numerical integration to evaluate the integral.

5.5.1 wilSon–taylor eleMent

For this element, 5.131 is replaced by

 

u N U N dk

k

k a a

a

α α αξ η= +
= =

∑ ∑
1

4

1

4

( , ) ext

 

(5.146)

where

 

N N
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.  

(5.147)

Equation 5.138 is replaced by 
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where
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This expression is simplified by evaluating the Jacobean terms Jαβ
∗  at the centroid. It 

is shown below that the patch test will then be satisfied by the element.

5.5.2 three-node triangle aS a Special caSe of rectangle

The constant strain triangle can be obtained from the four-node quadrilateral as the 
special case when two nodes coincide (Figure 5.15). Collapsing node 4 onto node 1, 
the coordinate transformation 5.129 with X1 = X4 and Y1 = Y4 becomes

 

x X X X
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(5.150)
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This induces shape functions for the triangle:

 
N N N1 2 3
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1 1= −( ) = +( ) −( ) = +( ) +( )ξ ξ η ξ η, , .
 

(5.151)

Note that

 N1 + N2 + N3 = 1. (5.152)

That is, the shape functions satisfy the relation
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Therefore, by 4.4,
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(5.154)

where ζi represents the triangular coordinates. These are the shape functions for the 
constant strain triangle.

5.6 eIght-node quadrIlateral

The shape functions for the four-node rectangle described in Section 5.1 can be 
extended to an eight-note rectangle in which the additional nodes are placed at the 
midpoints of the sides, as in Figure 5.16. The natural coordinates (ξ,η) as defined in 
Section 5.1 will be used here. The formulas for the x and y components of displace-
ments in the element have the form

3

2

1

4

3

2

1

xx

yy

fIgure 5.15 Collapse into a triangle.
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(5.155)

The shape functions for the corners must be modified so that they are zero at the 
side nodes, and additional shape functions must be found for the side nodes. Suitable 
shape functions that can be found by trial and error are as follows.
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(5.156)

One can see by inspection that the shape functions have the property,

 Ni(ξj,ηj) = δij, (5.157)

as required. The continuity between elements now has to be investigated. On the side 
ξ = 1, for example,

 
u U U U= − +( ) + +( ) + −( )1

2
1
2

12
2

2
3

2
6η η η η η .

 
(5.158)

That is, u is a quadratic function. Since a quadratic function is uniquely determined 
by its value at three points, two elements sharing the three nodes on that side will 
have matching displacements along that side. Similar calculations along the other 
sides show that continuity between elements is achieved for these shape functions. If 
one expands the representation for u, the result is of the form

 u = c1 + c2ξ + c3η + c4ξ2 + c5ξη + c6η2 + c7ξ2η + c8η2ξ, (5.159)

where coefficients ci are combinations of the nodal values. That is, the representation 
of u is an incomplete cubic polynomial that utilizes the bold-face terms in Table 5.6.
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fIgure 5.16 Eight-node rectangle.
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The important thing is that all of the linear terms are present so that constant 
strain can be represented exactly. In fact, the displacements are complete in the 
sec ond-order terms, so that the representation for the strains is complete in the linear 
terms. The strains for an element are given by
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Thus,
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(5.163)

Using 2 × 2 numerical integration, the stiffness matrix of the element is

 

k A CA f f= = =∫∫ ∫∫
−− =

T d d da
ab ab

i i

i
4 4

1

1

1

1

1

( , ) ( , )ξ η ξ η ξ η
44

∑
 

(5.164)

where f = ATCA and ( , ) ( , )ξ ηi i = ± ±1 3 1 3/ /  are the coordinates of the IPs. The 
resulting matrix for a = b and ν = 1/3 is

taBle 5.6
polynomial terms

1 ξ ξ2 ξ3

η ξη ξ2η ξ3η
η2 ξη2 ξ2η2 ξ3η
η3 ξη3 ξ2η3 ξ3η3
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where
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(5.168)

This agrees with the matrix for ANSYS element Plane183.
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In order to have a further check on the implementation code, let us evaluate the stress 
matrices for a single element. Let a = 1, b = 1, μ = 1, ν = 1/3, E = 8/3. For plane stress,
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The strains are expressed by 5.160–5.162. At the centroid, ξ = 0, η = 0,
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The stress at the centroid is therefore given by
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At node 3, ξ = 1, η = 1,
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(5.172)

At the IPs, ξ = ±1 3/ , η = ±1 3/ , for U1 = 1 and the remaining DOF zero, the 
stresses are listed in Table 5.7.
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ANSYS does not use formula 5.172 to calculate the nodal stress. Instead, the 
shape functions 5.10 for the four-node quadrilateral are used for each component σ 
of stress,

 

σ ξ ξ η η σ( , )x y k k k

k

= +( ) +( )
=

∑ 1
4

1 3 1 3
1

4

,

 

(5.173)

where ξK and ηK are the coordinates of the IP, and σK is the value of σ at the IP. The 
extrapolated IP stresses are shown in Table 5.8. With ERESX = Yes, the default 
value, the element stresses are extrapolated to the nodes by 5.173. With ERESX = 
No, the IP stresses are copied to the nodal points (ANSYS: Solution > Load Step 
Options > Output Ctrls > Integration Pt).

5.6.1 nodal loadS

The energy equivalent node forces for distributed loads are not so easy to antici-
pate. They are not what one would expect from statics. One must evaluate the 
integrals in 3.12 using the shape functions 5.156. In the case of a load in the x 
direction that is distributed uniformly over the side 2–6–3, one finds that 1/6 of 
the total load acts at the corner nodes and 2/3 of the load acts at the mid-side node 
(Figure 5.17). The nodal forces for a linearly varying load in the x direction are 
shown in Figure 5.18.

taBle 5.8
extrapolated nodal Stress for U1 = 1

node τ11 τ22 τ12

1 −8 −2.6667 −2.6667

2 4 4/3 1/3

3 1 1/3 1/3

4 1 1/3 4/3

taBle 5.7
Integration point Stress

ξ η τ11 τ22 τ12

0.577350269 0.577350269 1.098076211 0.366025404 0.366025404

0.577350269 −0.577350269 1.366025404 0.455341801 −0.122008468

−0.577350269 0.577350269 −0.366025404 −0.122008468 0.455341801

−0.577350269 −0.577350269 −4.098076211 −1.366025404 −1.366025404
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5.6.2 plane StreSS exaMple: pure Bending

In order to test a finite element implementation, we need a nontrivial problem for 
which the exact solution is known. The problem diagrammed in Figure 5.19 has the 
following solution and can be used as a test problem.

 

u x y
pxy

E

v x y
p

E
x y

py

( , ) ,

( , ) ,

,

,

= −

= +( )
= −

=

2

0

2 2

11

22

ν

τ

τ

τ112 0= .  

(5.174)

Since the element displacement field (5.6.5) is complete in second-order terms, a 
one-element model will provide an exact solution if exact integration is used. Two-
point integration also gives an exact result.

5.6.3 plane StreSS exaMple: Bending with Shear

A second example (Figure 5.20) for which the exact solution is known was analyzed 
in Section 5.1.3 using the four-node element. The exact solution 2.41 for plane stress 
or plane strain is 

1 2

34
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8

Actual load FE conforming
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2pb
3

η

ξ

fIgure 5.17 Node forces for a uniform load.

Actual loading FE conforming

p

p

b

pb
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6
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0

fIgure 5.18 Nodal forces for linear load.
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(5.175)

The displacements for plane stress are given in 2.42.
We will now solve this problem using the eight-node element. The finite element 

solution is not exact in this case because of the cubic variation in displacements as 
shown in 2.142. Since there is antisymmetry about the x axis, we only need to con-
sider the upper half of the body and the antisymmetry conditions on the x axis as 
shown in Figure 5.21. Note the change in coordinates between Figures 5.20 and 5.21. 
For c = 1, L = 10, P = 20, the loads are as shown. The antisymmetry conditions require 
that the x displacement and the normal stress vector are zero along the x axis. To pre-
vent rigid body displacement, we can set the y displacement to zero at the origin and 
set the x displacement to zero at the upper left corner. With these support conditions, 
the displacement at the centerline of the free end (x = L, y = 0) is given by 2.44:

 

v L
PL

EI

c

L
( , )

( )
.0

3
1

4 5
2

1 0283
3 2

2
= + +





=ν

 

(5.176)

for E = 10,000, ν = 1/3. Using a 50 (wide) by 10 (high) mesh of 500 eight-node ele-
ments, we obtain a displacement of 1.0243, an error of 0.39%. The calculated nodal 
stress is shown in Figures 5.22 and 5.23. The maximum σx = 291, an error of 3%. The 
maximum τxy = 15.01, an error of 0.07%. The distribution closely follows the exact 
solution 5.175 except near the corner where the particular support condition used 
perturbs the numerical solution.

u(0,y) = 0

v(0,0) = 0

y
x

τ11 = –py

fIgure 5.19 Plane stress bending.

σx

τxy τxy

2c x

y

L

fIgure 5.20 Plane stress bending with shear.
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σ = 300y

y

x

τ = 15 – 15y2 τ = 15 – 15y2

fIgure 5.21 Bending with shear: finite element model.
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fIgure 5.22 Bending with shear: σx at supported end.
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fIgure 5.23 Bending with shear: τxy at supported end.
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The support u(0,c) = 0, which is necessary to prevent rigid rotation of the body, 
has a local effect on the finite element analysis even though it has no effect on the 
exact solution.

5.6.4 plane StreSS exaMple: Short BeaM

Let us consider the example problem shown in Figure 5.24. The representation for 
the four-node rectangle of Section 5.1 is an incomplete quadratic form, and the rep-
resentation for the strains is therefore an incomplete linear form. One would expect 
that significantly better answers would be obtained for the same number of rectan-
gles if one uses the eight-node element that is complete in the linear strain. However, 
there are then more nodes and more computational effort is required to achieve this 
improved result. For this example problem, the corner displacement obtained with 
the eight-node element is shown in Table 5.9.

These results should be compared to those in Table 5.3. The accuracy for a cor-
responding number of nodes is compared in Figure 5.25.

5.6.5 general quadrilateral eleMent

The shape functions 5.156 can be used to generate an eight-node “quadrilateral” 
with curved sides via the isoparametric analysis developed in Section 5.5. The basic 

1/81/8 1/4 1/4 1/4

fIgure 5.24 Plane stress problem: short beam. 

taBle 5.9
results for an eight-node rectangle

Segments 
per Side no. of nodes

no. of 
rectangles

x displacement 
of the corner

1 8 1 6.4508

2 21 4 7.0731

4 65 16 7.3123

5 96 25 7.3447

10 341 100 7.3990

20 1281 400 7.4228
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equations have the same form as in Chapter 15, but with the range of summation for 
the node index being 8 in place of 4.

The natural coordinate system (ξ,η) defined by the inverse of relation 5.155 is 
truly a curved system and numerical integration is a necessity. The order of inte-
gration must be high enough to provide accuracy without being too costly in com-
puting time. Integration of order two in ξ and η, four IPs, is most commonly used: 
ξ = ±1 3/ ,η = ±1 3/ .

The sides of the general element are curved. Consider, for example, the edge 
2–6–3, where ξ = 1. The mapping defined by the shape functions becomes

 

x X X X

y Y

= − − + −( ) + +

= − −

1
2

1 1
1
2

1

1
2

1

2
2

6 3

2

( ) ( ) ,

( )

η η η η η

η η ++ −( ) + +1
1
2

12
6 3η η ηY Y( ) .

 

(5.177)

Since the coordinates of points 2, 3, and 6 can be chosen independently, we see that 
the side 2–6–3 is in general a quadratic curve determined by the coordinates of the 
three nodes. This offers some advantage in fitting curved boundaries with a small 
number of elements, but there is a cost in increased complexity of the model.

5.7 eIght-node Block

The 3D extension of the four-node rectangle is an eight-node brick element (Figure 
5.26). The side lengths and local rectangular Cartesian coordinates are 

 
− ≤ ≤ − ≤ ≤ − ≤ ≤a
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a b
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b c

z
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2 2 2 2 2 2
, , .

 
(5.178)
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fIgure 5.25 Convergence for short beam.
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The serendipity shape functions are

 
Ni i i i= + + +1

8
1 1 1( )( )( )ξ ξ η η ζ ζ .

 
(5.179)

Since there are 3 DOF per node, there are 24 DOF per element. The stiffness matrix 
is 24 × 24. Let

 A = ⌊Ak⌋ = ⌊∂Nk/∂ξ⌋,    B = ⌊Bk⌋ = ⌊∂Nk/∂η⌋,    C = ⌊Ck⌋ = ⌊∂Nk/∂ζ⌋. (5.180)

The components of the strain tensor 2.1 are
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(5.181)

The elastic matrix 2.82 is

 

C =












µ

α β β
β α β
β β α

0 0 0

0 0 0

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
















= −
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=
−

,
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, .α
ν
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β
ν

ν
2 1
1 2

2
1 2

 

(5.182)
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fIgure 5.26 Eight-node solid.
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The stiffness matrix 3.24 is therefore

 

U V W

k

A A A

A=

+ +

µ β

α

αabc
a b c

ab2

1 1
2 11 2 22 2 33

21
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bb c a
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1 1
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A A A

A A A A
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(5.183)

where
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(5.184)

For the case a = b = c = 2, ν = 1/3, α = 4, β = 2, the first column of the element stiff-
ness matrix is
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This agrees with ANSYS element SOLID45 without extra DOFs. Although this ele-
ment is very instructive and valuable for historical reasons, ANSYS is phasing it out. 
I will continue to refer to it as a synonym for an analysis based on the developments 
of this section.

5.8 tWenty-node SolId

The eight-node quadrilateral becomes a 20-node solid (Figure 5.27). The shape 
functions are as follows.
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 (5.186)

This is the basis for the ANSYS element 186.
Many other elements have been developed for both two and three dimensions.9 

Those included here are the most commonly used.

5.9 SIngularIty eleMent

We have seen that singularities in the solution to boundary value problems may 
occur when there are discontinuities in the boundary conditions. The solution for 
stress near the singularity is not very good if we use standard elements. The solution 
can be improved by using elements with the theoretical singularity built into them. 
As an example, let us consider a six-node rectangle for which two of the side nodes 
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117ξ

fIgure 5.27 Twenty-node solid.



The Quadrilateral and the Hexahedron 153

are placed at the quarter point of a side rather than at the midpoint. This will result 
in a singularity in strain at the selected special corner.

We first generate a six-node triangle by collapsing the eight-node rectangle shown 
in Figure 5.16 into a six-node triangle (Figure 5.28). The mapping from the (ξ,η) 
plane onto the (x,y) plane for the rectangle is

 

x N X y N Yi i i i= =∑ ∑
1

8

1

8

, ,

 

(5.187)

where the shape functions are defined by 5.156. Note that the mapping can be used 
even if the side nodes are not at the mid-point of the side. Now, collapse nodes 4 and 
8 onto node 1: X4 = X8 = X1 and Y4 = Y8 = Y1 and renumber the remaining nodes as in 
Figure 5.28. We have
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(5.188)

The formula for y is similar. This induces shape functions for the triangle:

 

N N

N

1 2

3

1
2

1
1
4

1 1 1

1
4

1 1

= − −( ) = +( ) −( ) − −( )

= +( )

ξ ξ ξ η ξ η

ξ

, ,

++( ) + −( ) = −( ) −( )

= +( ) −( )

η ξ η ξ η

ξ η

1
1
2

1 1

1
2

1 1

4
2

5
2

, ,

,

N

N NN6
21

2
1 1= −( ) +( )ξ η .

 (5.189)

l

l

x

2
3hh
44

4

5

3

1
6

y

fIgure 5.28 Singularity triangle.



154 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

For the symmetric geometry shown in Figure 5.28, we find

 
x h y

l= + = +( )( ) , .1 4
4

12 2
ξ η ξ/

 
(5.190)

The lines for which η is constant are radial lines through node 1. The lines for which 
ξ is constant are the lines x is constant. The displacements are

 

u N U N U N U N U N U N U

v N V N V N V

= + + + + +

= + +
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1 1 2 2 3

,

33 4 4 5 5 6 6+ + +N V N V N V .  
(5.191)

Calculation of the displacement gradients shows a 1 / r  singularity, where r is the 
radial distance from node 1. For example, consider the line y = 0, η = 0, and x = r; 
we then find
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Using 5.190, we find the 1/ r  singularity in the displacement gradient:
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(5.193)

Similar results are found for the other derivatives. This element is useful for the 
analysis of structures with crack surfaces.

5.10 MIxed u–p eleMentS

For nearly incompressible materials, we can introduce the mean stress as a separate 
unknown. The appropriate virtual work formulas are 3.113 for three dimensions and 
3.21 or 3.24 for plane strain. Shape functions are required for the displacements and 
for the mean pressure, and they need not be the same functions.

5.10.1 plane Strain

For plane strain, the virtual work formula is 3.126:
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The displacements and pressure are represented by shape functions
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(5.195)

The shape functions for the mean pressure may involve nodal values shared with 
adjacent elements or may be expressed entirely in terms of interior nodes or nodeless 
parameters. In matrix form, N and H are row matrices. Let us define row matrices:
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In matrix form,
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and
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In matrix form, the virtual work formula is
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Substitution of (5.195)–(5.198) gives
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where
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Equating the coefficients of the virtual displacements, we find the fundamental rela-
tions for the element:
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(5.204)

There are now two possible models. If the interpolation for p uses nodes that 
are shared with adjacent elements, the element stiffness matrix defined by 5.204 
must be merged into the global stiffness matrix. The pressure parameters P are 
then determined along with the displacement parameters by solving the global 
equations.

However, if the interpolation for p uses nodeless parameters or internal nodal 
parameters, then the pressure parameters P can be eliminated at the element level by 
static condensation. Partitioning 5.204 gives
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Eliminating P gives

 KD = F, (5.206)

where

 
K K K K K= − −

uu up pp pu
1 .

 
(5.207)

The analysis then proceeds as in the pure displacement model but using the stiffness 
matrix defined by 5.207.

In practice, if the material is nearly incompressible the model is typically too stiff 
and may “lock” unless the interpolation or the integration of the pressure terms is of 
lower order than for the displacement terms. The simplest usable case is the following 
four-node element. The displacements are interpolated using the serendipity functions 
5.10 that are linear in (x,y). The pressure is interpolated by one order lower, that is, by 
a constant pressure in each element. In this case, we have the following results.
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For the rectangular element, the integration can be easily done. We find the stiffness 
matrix K defined by 5.207 to be as follows.
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where each submatrix is 4 × 4 with elements:
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In the case where a = b, ν = 1/3, κ = 8μ/3,
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and
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The first row of K is

 

U U U U V V V V

K i
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 (5.216)

This can be compared with the serendipity element 5.29, which, in this case of plane 
strain, has the first row
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5.10.2 alternatiVe forMulation for plane Strain

The alternative form (3.129) of the virtual work formula for plain strain,
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leads to a slightly different stiffness matrix. From 5.195 and 5.196, we have
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In place of 5.201–5.203, we obtain
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For the serendipity element with constant pressure, the stiffness matrix is again cal-
culated by 5.207. Using 5.208,
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since
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The complete stiffness matrix is the sum of 5.220 and 5.223, and is exactly the same 
as matrix 5.98 for selective reduced integration.

In the case where a = b, ν = 1/3, κ = 8μ/3, the first column of K is

 
[ ] .Ki1 36

54 36 36 18 27 9 27 9T = − − − − 
µ

 
(5.225)
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This agrees with ANSYS element Plane182 mixed U/P method with the Enhanced 
Strain option.

5.10.3 3d eleMentS

The modified virtual work formula 3.110 is
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The displacements are represented by shape functions
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We define row matrices:
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The deviatoric strains and volumetric strain are then
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The virtual strains are
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Substituting into the virtual work formula and equating the coefficients of the virtual 
parameters gives the governing equations:
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where
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As an example, we consider the eight-node brick using the serendipity functions 
for the displacement and a constant pressure in each element. We will use centered 
coordinates:
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The serendipity shape functions for the displacements are
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Therefore,
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Therefore,
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The other factors can be written down by cyclic permutation of (ξ,η,ζ) and (a,b,c). 
For constant pressure in each element, H = [1].

For the case a = b = c = 2, ν = 1/3, κ = 8μ/3, the first column of the element stiff-
ness matrix is
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This can be compared with ANSYS element SOLID185, U–P method, Full 
Integration.
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5.11 proBleMS

 1. Given: The stiffness matrix for a plane stress square element of Figure 5.29 
is given by
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(5.240)

  A plane stress problem is modeled by two elements as shown in Figure 5.30.
  Determine the global stiffness matrix K for the unrestrained body.
  Answer: Stiffness matrix for element 1 with nodes 1–2–5–6:
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fIgure 5.29 Four-node element.
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  Stiffness matrix for element 2 with nodes 2–3–4–5:
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  Global stiffness matrix after merging element 1:
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fIgure 5.30 Two-element model (a).
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  Global stiffness matrix after merging both elements:
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 2. Given: The stiffness matrix for a plane stress square element of Figure 5.29 
is given by Equation 5.240. A plane stress problem is modeled by two ele-
ments as shown in Figure 5.31.

  Determine: (a) the global stiffness matrix K for the unrestrained body; 
(b) the reduced stiffness matrix that must be inverted to obtain the nodal 
displacements if nodes 1, 3, 4, and 6 have zero displacement in the x and y 
directions.

 3. Determine the element nodal forces for a constant traction T2 = p on side 
2–3 of the four-node element (Figure 5.1) by using Equation 3.16.

 4. Determine the global force matrix F for a constant traction T1 = p on the 
side of the plane region if the region is meshed by the four node elements as 
shown in Figure 5.32.
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fIgure 5.31 Two-element model (b).
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 5. Solve the plane stress problem diagrammed in Figure 5.33 for the corner 
displacement using one 4-node square element numbered as shown in 
Figure 5.29 without using ANSYS.

  Answers:
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 6. Use ANSYS to solve the plane stress problem shown in Figure 5.33 for a = 1, 
p = 1, E = 100, ν = 0.3, using 16 equal-size four-node rectangles. Input the 
nodal forces by hand. Submit a list of nodal displacements. (See Section 
15.7.)
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fIgure 5.32 Four-element model.
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fIgure 5.33 Short beam problem.
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 7. Derive the generalized nodal forces for a uniform body force b1 = 1 over a 
four-node rectangular element in plane stress.

 8. Consider the plane stress problem shown in Figure 5.34.
  Given: a = 10, b = 2, p = 1, E = 1, ν = 0.3. The origin has zero displace-

ment and ν = 0 at point (a,0). (a) Solve this problem using ANSYS with 
element Plane182 and square elements of dimension 1/2. (b) Compare the 
displacement UY and the stress SX along line x = 5 with the exact solution 
discussed in Section 2.1.11. (See Section 15.9.)

 9. Solve problem 8 using the eight-node element Plane183. Submit the nodal 
displacements and nodal stress along line x = 5, and compare the result with 
the exact solution.

 10. Given the shape functions for the four-node rectangle (5.10), obtain the 
shape functions for a right triangle by setting X1 = X4, Y1 = Y4, U1 = U4, and 
V1 = V4. Show that these shape functions agree with those for the three-node 
triangle if ξ = 2ζ2 + 2ζ3 – 1 and η = (ζ3 – ζ2)/(ζ3 + ζ2).

 11. Determine the nodal forces for T1 = constant, on the side ξ = 1 of the eight-
node rectangle (Figure 5.16).

 12. Solve the plane strain bending problem (Section 5.1.3) using the Plane183 
element and a 4 × 8 mesh for c = 2, L = 16, i = 8192, ν = 0.3. Compare the 
displacement with that for Plane182 elements (Table 5.2) and with the exact 
result. (See Section 15.10.)

 13. Solve the plane strain bending problem (Section 5.1.3) using the Plane182 
element with the U–P formulation (OPTIONS > K8 = MIXED U/P) and a 

pp

b

pp

a

x
y

fIgure 5.34 Plane stress problem.
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fIgure 5.35 Sheet with a hole.
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4 × 8 mesh for c = 2, L = 16, E = 8192, ν = 0.499. Compare the y displace-
ment with that for Plane42 elements (Table 5.2) and with the exact result.

 14. Solve problem 6 by ANSYS using SURF153 to apply the distributed load. 
(See Section 15.11.)

 15. Show that the displacement along an edge of the eight-node rectangle varies 
quadratically and is therefore uniquely determined by the values at the three 
nodes on the edge. (This ensures continuity between elements by matching 
nodal displacements.)

 16. Determine shape functions for a triangle with mid-side nodes from the 
eight-node quadrilateral by collapsing nodes 1, 4, and 8 together.

 17. A sheet with a central hole (see Figure 5.35) is stretched by a uniform edge 
stress S resulting in a stress concentration at the hole. In nondimensional 
variables: S = 100, a = 20, b = 10, r = 5, E = 1, ν = 0.3. Use ANSYS with 
element Plane182 to investigate the stress concentration (see Section 15.12). 
Use 1/4 of the sheet and symmetry conditions (Figure 5.36).

 18. Solve problem 17 using element Plane183. Plot stress SX along x = 0.

 19. Evaluate A A
A

2 1
T da∫  for the four-node rectangle (Section 5.1).

 20. For the reduced integration on the λ term, evaluate fully the λ part of the 
element stiffness matrix: k2 = abA(0,0)TC2A(0,0).

 21. Calculate all components of the consistent element force matrix for a uni-
formly distributed load p in the x direction on side ξ = 1 of the eight-node 
rectangle.

 22. Determine matrix B for the Wilson–Taylor four-node rectangle (see Section 
5.2.1).
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6 Errors and Convergence 
of Finite Element Solution

6.1 general reMarkS

From the engineer’s viewpoint, the objective in the finite element method is to estab-
lish an approximate solution to the boundary value problem that is sufficiently accu-
rate for engineering design. That is, one hopes that the error can be made reasonably 
small by an analysis using the number of elements that can be handled by the avail-
able computer. From the mathematician’s viewpoint, the objective is to establish a 
numerical procedure that ensures that any prescribed measure of error can be made 
as small as desired by taking enough elements, even if such calculations cannot 
actually be performed, that is, the mathematician seeks proof of convergence. The 
engineer seeks to achieve small error within the available capacity of the computer.

Error in the calculation has several sources. First of these is the simple inaccuracy 
of all real numerical calculations. Each machine is capable of only a finite number of 
digits in the representation of real numbers. Every multiplication or division there-
fore introduces a round-off error. Such errors can be large if the stiffness matrix is 
poorly conditioned. This can happen, for example, when one portion of the body is 
very stiff compared with the remainder. In this case, too many nodes are being used 
to describe what is essentially a rigid motion.

Another source of error is approximation of boundary conditions. The conditions on 
the trial functions for minimizing the potential may be violated because the finite ele-
ment approximation fails to exactly satisfy the boundary condition on displacement at 
every point. The element boundaries may not exactly match the actual boundary. Even 
when the shapes match, the displacements are specified only at the node points and the 
element may be such that the displacement boundary conditions are not exactly satisfied 
at all points between the nodes. This kind of error does not generally prohibit conver-
gence, provided that the boundaries do match in the limit of vanishing element size.

Numerical integration will also introduce an error. It is usually a compensat-
ing error because numerical integration effectively makes the model more flexible. 
Using a number of integration points that are less than that required for an exact inte-
gration over the region can yield a better answer than is obtained by exact integration 
of the energy over the element. Convergence still occurs if this error vanishes with 
decreasing element size.

The error in calculation of the displacement or stress is, of course, greatest where 
those quantities vary most rapidly. For the best results with the same number of elements, 
one should not use a uniform element size. Smaller elements should be used where the 
stress is varying rapidly. As shown in the short beam example in Section 5.1.4, smaller 
elements should be used near the corners. The ideal element distribution is one in which 
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the error in the strain energy of an element is the same for all elements. This can be 
achieved by making a sequence of calculations, beginning with a uniform coarse mesh 
of elements, and placing more elements in regions where high displacement gradients 
are found. In this way, the mesh is adapted to suit the problem. There are, in fact, several 
computer programs that offer adaptive mesh generation. 

Proof of convergence is a complicated mathematical problem in the theory of 
numerical analysis.1 Roughly, convergence will occur if the finite element model 
generates a continuous displacement field (continuity requirement), and the linear 
terms in a power series representation of displacement within an element are present 
(completeness requirement). Convergence to the true solution may occur in other 
cases but this must be separately established.

Theoretical studies of converge only establish that the error in displacements van-
ishes with the element size. The actual magnitude of the error for any finite number 
of elements cannot be established. As a practical matter, the magnitude of the error 
is estimated by doing a series of calculations with increasingly larger numbers of ele-
ments and plotting the results to see if there is an apparent limit. However, care must 
be taken in the interpretation of the stress calculation. Singularities can occur so that 
the calculated stress does not approach a limit, but just becomes larger and larger for 
each element subdivision without a limiting value. We have seen that such a singular-
ity exists in the corner for the short beam as discussed in Section 2.1.14.

Such calculations for the displacement of the short beam example using the trian-
gular element and the four-node rectangle are plotted in Figure 4.9 and Figure 5.25. 
The displacement does appear to be monotonically converging to a definite limit that 
we take to be the true solution. There is no guarantee, however, that the limit will be 
evident with any finite number of elements. We are forced to rely on experience and 
comparison to the exact solution in a few cases where the exact solution is known. In 
practice, one must be satisfied when the incremental improvement in displacement 
is a small fraction of the last calculated value. It is also possible to extrapolate the 
solution as described in Section 4.4.1.

Since the true solution makes the potential energy a minimum, the finite element 
approximation gives a larger potential energy and, in the sense that has been described 
in Section 3.1.5, the calculated displacements are always too small. If the elements are 
chosen appropriately, the numerical solution coincides with the true solution in the limit 
of vanishing element size. In the process of choosing increasing numbers of elements, 
if each successive subdivision includes the previous one as a special case, the poten-
tial energy will become monotonically smaller, and the calculated displacements will 
become monotonically larger, that is, the finite element solution will exhibit monotonic 
convergence from below. This is the situation for the analysis illustrated in Figure 5.25.

In the derivation of the potential energy, it has been assumed that displacement 
components are continuous functions of space variables and the strains derived from 
displacement are continuous, except possibly for a finite number of simple jump dis-
continuities. If the finite element model has this property, the elements are said to be 
conforming or compatible. Nonconforming elements violate the continuity require-
ment at element boundaries. Cases are known where convergence occurs even for a 
nonconforming element, but in other cases the solution does not converge, or con-
verges to a function that is not the true solution.
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Nevertheless, nonconforming elements are sometimes used. In some cases, the 
nonconforming elements are used to obtain a more reasonable approximation to the 
actual state of stress. In other cases, such as for plates and shells, they may be an 
attempt to simplify the formulation when it is difficult to use shape functions for 
conforming elements, or none have been found, or the conforming elements lead to 
numerical difficulties.

Nonconforming elements often yield better answers for a small number of ele-
ments than the more theoretically sound conforming elements. The conforming ele-
ment provides a model of the structure that is always too stiff. The nonconforming 
element provides a means of relaxing the excessive constraints of the conforming 
element and therefore may achieve a better approximation—that is, the nonconform-
ing element introduces a compensating error. Monotonic convergence may be lost as 
a result of relaxing the constraints, and the approximation provided by the noncon-
forming element may sometimes give displacements that are too large.

Caution is necessary in using nonconforming elements. In the literature, some 
elements have been proposed that do not provide convergence, or for which conver-
gence is to the wrong answer, or for which convergence depends on the shape of 
the elements. Nonconforming elements have a place in finite element analysis, but 
one must proceed carefully. Nonconforming elements are most useful for plates and 
shells, where continuity of first derivatives of displacement must be maintained for a 
conforming element, and that requirement leads to complicated formulations.

6.2 eleMent Shape lIMItS

Cubic elements in 3D and square elements or equilateral triangles in 2D generally 
result in equations that are well conditioned. If the element shape is greatly distorted 
from these ideal shapes, numerical difficulties can occur. Consequently, ANSYS 
has built-in checks on element shapes in the array of finite elements.2 Such highly 
distorted elements may occur when the free mapping algorithm is used for meshing. 
They can be avoided by using mapped meshing

A warning will be generated if the element shape appears distorted. After a 
warning, you have the option to proceed with the analysis or to alter the element 
grid. An error message is generated and the calculation aborted if the element is 
so distorted that excessive numerical errors are likely. For 2D elements, ANSYS 
checks the aspect ratio, deviation from parallel sides for quadrilaterals, maximum 
corner angle, and the ratio of the Jacobian within quadrilaterals. Automatically gen-
erated meshes often result in warnings, and one has to decide whether to continue 
the analysis.

6.2.1 aSpect ratio

For a triangle, Figure 6.1, the aspect ratio R for node n is defined by 

 
R

h

an
n

n

=
2

3
,
 

(6.1)
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which has a value of 1 for an equilateral triangle. The aspect ratio for the element is 
the largest of the three possible ratios.

For the quadrilateral element (Figure 6.2), the aspect ratio is the ratio of the sides 
of a rectangle prescribed by the midpoints (A, B, C, D) of the sides:

 
r

X X

Y Y
R r rB A

D C

= −
−

= −, ( , ).max 1

 
(6.2)

Badly distorted elements are shown in Figure 6.3.
Warnings are issue for R > 20 although they may not preclude satisfactory results. 

An error is issued for R > 106 because round-off errors are likely. Round-off errors 
may occur for some computers even for R = 103.

6.2.2 parallel deViation for a quadrilateral

The deviation from parallel opposite sides is measured by the angle between the 
sides (Figure 6.4). The maximum of the two angles is used as the measure of parallel 
deviation. Calculations may be degraded by highly distorted elements having a large 
parallel deviation (Figure 6.5).

ANSYS issues a warning if  θ ≥ 70° for elements without mid-side nodes and if θ ≥ 
100° for elements with mid-side nodes. Error statements are issued for angles greater 
than 150° or 170°, respectively.

an

hn

n

fIgure 6.1 Aspect ratio for a triangle.

D

B

C

A

x

y

fIgure 6.2 Quadrilateral element.

fIgure 6.3 Badly distorted elements.
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6.2.3 large corner angle

Another measure of element distortion is the enclosed angle at a corner (Figure 6.6).
ANSYS issues a warning if the maximum corner angle for a triangle exceeds 

165°, or 155° for a quadrilateral without mid-side nodes, or 165° for a quadrilateral 
with mid-side nodes. An error is issued if the angle exceeds 179.9° in any case.

6.2.4 JacoBian ratio

The determinant J of the Jacobian matrix 5.126 is a measure of the differential area 
in the isoparametric mapping for the quadrilateral,

 dA = Jdξdη, (6.3)

and of the volume for the 3D element. For a square element, J is constant within 
the element. If J varies greatly within an element, the isoparametric mapping may 
become computationally unreliable. ANSYS calculates J at each element corner and 
at the centroid for 8-node quadrilaterals and 20-node brick elements. A warning is 
issued if the ratio of the maximum J to the minimum J for the element exceeds 30, 
and an error if the ratio exceeds 1000.

θ2
θ1

fIgure 6.4 Measure of parallel deviation.

70°

fIgure 6.5 Parallel deviation of 70°.

3

1

θ3

θ4 3

4

2

1

fIgure 6.6 Corner angle for an element.
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6.3 patch teSt

It is generally thought that convergence to the correct answer will occur if every 
patch of elements correctly models a constant strain condition. This is called the 
patch test, and should be applied to any element before using it.3

Consider any collection of contiguous elements, called a patch. Let ui ij ij
c c c, , ,ε τ  

denote the fields of displacement, strain, and stress for a case of constant strain. We 
can calculate the nodal displacements DK

c  for the constant strain field from ui
c by 

substituting the nodal coordinates. 
The nodal forces for the finite element of an analysis can be calculated in two 

ways. First, using the stiffness matrix and the given nodal displacements DK
c , we find 

the corresponding nodal forces:

 F = KDc. (6.4)

Second, we can calculate the nodal forces that correspond to the boundary trac-
tions Ti

c, which are in equilibrium with the stress field τ ij
c. Using the tractions Ti

c, the 
applied nodal forces should be:

 
F T N AK i iK

n
Tn

c c d= ∫∑
S

.
 

(6.5)

If the patch of elements correctly models the state of constant strain, the two calcula-
tions of nodal force must yield the same result: F = Fc.

There are other equivalent forms of the patch test. One can specify the displacements 
only on the edge of the patch and calculate the nodal displacement at interior nodes, 
where F = 0, and see if the interior nodes have displacements matching those gener-
ated by ui

c. Alternatively, one could specify the nodal forces by F = Fc and use the finite 
element equations to calculate D, which is then compared to Dc. This last procedure is 
often easier, since the finite element code is always programmed to accept loads as input. 
Naturally, one has to impose displacement boundary conditions that are sufficient to pre-
vent rigid motion in order to solve the equations when the forces are given.

The patch test can be carried out by actually doing the calculations on the computer, 
or we can investigate the formulation of the problem to predict the result in the following 
way. The finite element equation is derived from the virtual work relation:

 τ εij ij i i i iV T u A b u V

n Tn n

d d d
V S V
∫∑ ∫∑ ∫∑= +0 ,  (6.6)

for every set of virtual nodal displacements DI, with εij and ui generated by the shape 
functions:

 

u N D e A Di iI I ij ijI

II

I= = ∑∑ , .  (6.7)
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For a constant strain field, bi = 0 and T Ti i= c , so the right-hand side of 6.4 is equal to 
F DK K

c∑ . The question now is whether the left-hand side gives that value for the chosen 
finite element model. The left-hand side of 6.6 can be integrated by parts over a region in 
which τ ij ju  is continuous by using the virtual work formula. We wish to include the non-
conforming elements in this analysis and, for them, ui is not continuous across element 
boundaries. Continuity will hold within each element so that, for each element, we have

 
τ ε τij ij i i ij j iV Tu A u V

m m m

d d d
V V V
∫ ∫ ∫= −

∂

, .
 

(6.8)

The integrals over the boundaries of the elements can be divided into the integral 
over the part that lies on the exterior boundary, if any, and the integral over the 
interior element boundary. Integrals over the common interior boundaries Snm of the 
elements n and m can then be combined to obtain the following result

 

τ εij ij

m

i
n

i
n

i
m

i
m

i iV T u T u A Tu A

m Tnm

d d d
V SS
∫∑ ∫∫∑= + + −( ) ττ ij j iu V, ,d

V
∫

 

(6.9)

where we have used ui = 0 on any part Su of the exterior boundary. Given τ τij ij= c 

and T Ti i= c, the last term is zero and the next to the last term is equal to FK K
cδ∑ . 

Therefore, 

 

τ δij ij

m

K K
K

e V F

m

c cd
V
∫∑ ∑= ,

 

(6.10)

and the patch test is satisfied if the first term on the right-hand side is zero. That is,

 

( )T u T u Ai
n

i
n

i
m

i
m

nm

+ =∫∑ d
S

0

 

(6.11)

is a necessary condition for satisfying the patch test.
Let us next investigate this condition for conforming elements:

 u u ui
n

i
m

i nm= = on S . (6.12)

In this case, the integrand of the term is zero if 

 T Ti
n

i
m

nm+ = 0 on S . (6.13)

Since the unit normals to the boundaries of adjacent elements are oppositely directed, 
this is the condition for equilibrium of tractions across element boundaries and is there-
fore satisfied when τ τij ij= c . The conforming elements will therefore pass the patch test.
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We see that 6.11 reduces to the condition for equilibrium of tractions at ele-
ment boundaries if the displacements are continuous across the element bound-
aries. However, this reduction does not occur if the displacements are not continuous 
across the element boundary as is the case for nonconforming elements, and the term 
may not be zero for the constant strain state. We must explicitly evaluate this term.

If every element is given the stress and strain associated with a constant strain field, 
the differential equations of equilibrium and the stress boundary conditions will be satis-
fied, and the tractions Ti are constant for a given plane surface, having the same value for 
every element. Thus, if the element boundaries are plane, the integrals in 6.11 reduce to

 

( ) ( ) .T u T u A T u u Ai
n

i
n

i
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i
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i
n

i
n
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nm nm

+ = −
∑
∫ ∫d d

S  

(6.14)

Hence, the term will be zero if 

 

( )u u Ai
n

i
m

nm

− =∫ d
S

0

 

(6.15)

for every interior element boundary. This integral has to be investigated for a non-
conforming element.

Even if 6.15 is not exactly satisfied, the finite element solution may still converge 
to the correct solution if the integrals tend to zero with the size of the element. Of 
course, the terms must be zero for the actual loading, not just for constant strain. 
However, as the element size tends to zero, the actual state of strain can be approxi-
mated locally by a constant strain. Therefore, the test of a patch of elements in con-
stant strain is thought to be a sufficient test for convergence.

6.3.1 wilSon–taylor quadrilateral

Let us consider, for example, the element discussed in Section 5.2.1—a rectangle 
with four nodeless parameters d.4 If the nodeless parameters are nonzero for an 
isoparametric element, the displacements are not linear along an edge and continuity 
is lost. However, if d is zero in a particular case, then continuity is achieved. For each 
element, d is given by 5.46. Hence, d is zero if 

 
k D B CAD21 0= =∫∫ T dA .

 
(6.16)

For the patch test, the nodal coordinates D are given the values such that AD is a 
matrix of constant strain. Since CAD is then a matrix of constant stress, it can be 
factored outside the integral sign and d will be zero if 

 
B BT Td d dA J∫∫ ∫∫= =ξ η 0.

 
(6.17)
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For the rectangle, matrix B is given by 5.42 and contains only terms that are to the 
first power in ξ or η. Consequently, the integral 6.17 is indeed zero in this case. The 
displacement field is therefore continuous and the patch test will be satisfied. 

If the shape functions are used to generate an isoparametric quadrilateral follow-
ing the methods discussed in Section 5.5 with exact integration, the patch test fails 
unless the element is a parallelogram. However, it is possible to select the method of 
numerical integration so as to make d = 0 for a constant strain field. For the general 
case, 5.37 has the form
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where
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and 
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where
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(6.21)

 

∂
∂

= ∂
∂

=N a N11

1

11

22
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(6.22)

The terms ∂ ∂N aα θξext /  are linear in (ξ,η), as are the terms JJθβ
* . Their product is qua-

dratic and therefore the integral of B over the area of the element may not be zero. 
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For the Wilson–Taylor element, the Jacobean terms JJθβ
*  are evaluated at the cen-

troid and are therefore constant. The components of JB are then homogeneous linear 
functions of (ξ,η). The integral 6.17 will then integrate to zero and the patch test is 
satis fied. This modification is made in integration of all auxiliary matrices (5.44).
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7 Heat Conduction 
in Elastic Solids

7.1 dIfferentIal equatIonS and vIrtual Work

In this chapter, we will only consider small deformations and small temperature changes. 
Let T denote the change in temperature of a material particle from a reference tempera-
ture T0. That is, the absolute temperature of the particle is T + T0. For an elastic material 
with small temperature change, the stress–strain relation in matrix form is*

 

ττ εε ββ

εε ττ αα

ββ αα

= −

= +

=

−

C

C

C

T

T

,

,

.

1

 

(7.1)

α is the matrix of coefficients of linear expansion for the material. For an isotropic 
material αT = α[1 1 1 0 0 0] and β = β[1 1 1 0 0 0], β = (2μ + 3λ)α. The balance of 
energy provides the equation governing heart conduction at a material particle†

 
ρ ρc

T

t
T r T

t

∂
∂

= ∇ ∇ + − ∂
∂

T Tκκ ββ εε
0

 
(7.2)

where c is the specific heat at constant strain, κ is the matrix of thermal conductivi-
ties, ρ is the mass density, and r is the energy supply at the element per unit mass. For 
an isotropic material, κij = κδij. 

The gradient operator ∇ is a column matrix. In rectangular Cartesian coordinates,
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(7.3)

In cylindrical coordinates,

 ∇ = ∂
∂

∂
∂

∂
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T

r r z

1
θ

. (7.4)

* Dill: Section 2.10. Refer to Preface.
† Dill: Equation 2.10.17. Refer to Preface.



182 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

The equivalent virtual work formula is generated by multiplying 7.2 by arbitrary 
functions T  (i.e., a virtual temperature variation δT T= ), integrating over the vol-
ume, and applying integration by parts to obtain

ρcT
T
t

V T T V T T
t

V Tq A
V V V S

∂
∂

+ ∇ ∇ + ∂
∂

= − +∫ ∫ ∫ ∫d d d dT T( ) κκ ββ εε
0 TT r V

V

ρ d∫ ,

 

(7.5)

where 

 q = –nTκ∇T (7.6)

is the heat flux into the body across the surface with outward normal n.
After dividing the volume into finite elements, we introduce shape functions for 

each element:

 u = ND,  ε = AD,  T = ST,  ∇T = BT, (7.7)

where T is the column matrix of nodal temperatures. Using the same shape functions 
to generate the virtual temperature variations yields the finite element form of the 
virtual work:

 C T K T Q C Dtt tt tu
 + = − , (7.8)

where
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(7.12)

In the last equation, the surface integral includes only those segments of the surface 
that lie on the exterior boundary. Boundary conditions may provide nodal values of 
temperature T, or the given surface heat transfer q = qini. If the heat transfer at the 
surface is by convective exchange with a surrounding fluid, then

 q = –h(Tf – T), (7.13)
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where h is the film coefficient and Tf is the temperature of the fluid above the ref-
erence temperature of the element. The surface integral in 7.12 then includes the 
unknown nodal temperatures:
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(7.14)

The matrix Ktc can be added to the matrix Ktt.
The complete heat conduction equations are coupled to the equations for the dis-

placements by the last term in 7.8. The displacement equations are coupled to the 
temperature equations by the thermal stress τ = –βT in 7.1, which contributes inter-
nal nodal forces Fth according to 3.33. The mechanical equations including inertial 
and thermal forces are then

 MD C D K D F F + + = −uu uu th ,  (7.15)

where
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(7.16)

The coupled equations, 7.8 and 7.15, are
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(7.17)

They must be solved simultaneously or by iteration. ANSYS provides elements 
SOLID5, PLANE13, AND SOLID98 for analysis of the transient thermoelastic 
coupled equations.

However, the coupling can often be neglected. Consider, for example, an isotropic 
material with constant κ so that the heat conduction equation (7.2) without radiation 
becomes

 ρ κ µ λ α
ε

c
T

t
T T

t
kk∂

∂
= ∇ − + ∂

∂
2

0 2 3( ) . (7.18)
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Suppose that the body expands freely (τ = 0), the stress–strain relation 7.1 gives εkk = 
3αT, and the heat conduction equation becomes
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(7.19)

The nondimensional factor f is small for engineering materials. For a steel with

 ρ = 8030 kg/m3, c = 503 J/kg °K, 

 α = 17.82 × 10–6/°K, κ = 16.3 J/s m °K, 

 E = 193 GPa, ν = 0.29, T0 = 293°K, 

we find that f = 0.03. Consequently, the coupling of the equations through the strain 
in 7.2 can be neglected. The uncoupled equations can then be solved separately. 

The temperature is first determined by the heat conduction equation:

 C T K T Qtt tt
 + = . (7.20)

The deformations are then subsequently determined by the thermoelastic equations:

 MD C D K D F F + + = −uu uu th. (7.21)

ANSYS provides elements Plane55, Plane 77, Solid70, and Solid90 for the tempera-
ture calculations. The temperatures are saved for later stress analysis by 

 Load Step Options > Solution Printout, 

which creates a file, jobname.rth. After the temperature analysis, the elements are 
switched to matching structural elements Plane 182, Plane 183, Solid185, or Solid186 
for the thermal-stress analysis by the ETCHG command or

 Element Type > Switch Element Type > Thermal to Structural. 

The temperature is read into the displacement formulation by the LDREAD com-
mand or

  Define Loads > Apply > Structural > Temperature > From Thermal Analysis. 
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7.2  exaMple proBleM: one-dIMenSIonal 
tranSIent heat flux

We will consider the uncoupled heat conduction problem with zero radiation supply 
for an isotropic material. From 7.18, the differential equation becomes

 
ρ κc
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t
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∂
∂
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(7.22)

We will use nondimensional variables: 
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(7.23)

Substitution into 7.22 and then dropping the ^, the basic equation of heat conduction 
becomes

 

∂
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= ∇T

t
T2 .

 
(7.24)

Let us consider a problem similar to heating of a poker when you insert it into a 
fire in the fireplace. We will neglect the loss of heat on the sides and free end of the 
poker. We then have one-dimensional heat conduction:
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(7.25)

The initial temperature is taken to be zero on our nondimensional temperature scale, 
and the heated end has a temperature of 1 unit. In constructing a solution, it will be 
convenient to imagine a rod of double the length whose temperature is raised to that 
level on both ends. The middle of the body then has zero heat flux by symmetry. The 
double rod has a nondimensional length of 1: 0 ≤ x ≤ 1. The initial conditions and 
the boundary conditions are therefore
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(7.26)

The steady-state solution is

 T(x,∞) = 1. (7.27)
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The transient part is

 θ(x,t) = T(x,t) – 1. (7.28)

The equations to be solved are
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(7.29)

The solution is easily determined by separation of variables to be
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The temperature at the free end of the original poker (x = 0.5) is 
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(7.31)

For the finite element analysis (see Section 15.30), the rod is represented as a plane 
rectangle of thickness 0.1 and unit length, meshed by 10 four-node thermal elements 
(QUAD 4 node 55). Nominal values of the nondimensional material properties are 
used: κ = 1, ρ = 1, and c = 1. The exponential function decays rapidly and the 
temperature reaches 99% of steady state after the nondimensional time is 0.5. A 
comparison of the exact solution from 7.31 with the numerical solution for ∆t = 0.01 
is shown in Tables 7.1 and 7.2. Note that the temperature is actually ramped up in 
the first numerical step so the theoretical instant step change in temperature is only 
approximated. One could take a very short first step then continue with larger steps.
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7.3 exaMple: holloW cylInder

A hollow cylinder is subjected to a temperature T1 on the inner radius a and a tem-
perature T2 on the outer radius b (Figure 7.1). For a long cylinder, neglecting end 
effects, the temperature distribution is symmetric about the axis of the cylinder and 
depends only on the radius r. The steady-state distribution is found by solving 

 ∇2T = 0 (7.32)

using cylindrical coordinates:
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(7.33)

b

aT2 T1

fIgure 7.1 Heated cylinder.

taBle 7.2 
temperature distribution for t = 0.1

x exact fea

0 1 1

0.1 0.853 0.846

0.2 0.721 0.707

0.3 0.616 0.598

0.4 0.549 0.528

0.5 0.526 0.505

taBle 7.1 
temperature at x = 0.5

time exact fea

0 0 0

0.05 0.228 0.227

0.1 0.526 0.505

0.2 0.823 0.805

0.3 0.934 0.923

0.4 0.975 0.970

0.5 0.991 0.988
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The thermal stress problem (7.1) can then be solved for this temperature distribution. 
The displacement is radial and the stress distribution is symmetric about the axis 
of the cylinder. Assuming a plane strain condition for a long cylinder, one finds
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where
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From
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(7.36)

For a solution of this problem using ANSYS, see Section 15.32.

7.4 proBleMS

 1. Use ANSYS to determine the temperature distribution for a square rod. 
The initial temperature is T = 0. The rod is then heated on both ends to a 
temperature T = 1. The nondimensional length is 1 and the width is 0.1. 
The nondimensional material properties are κ = 1, ρ = 1, and c = 1. The 
temperature rise at the middle is sought. Use the 4-node–55 thermal ele-
ment. Treat the rod as a 2D body with no heat flux on the sides. Use a 1 × 10 
grid. Submit a list of temperature at the middle of the rod at each time and 
a graph of T versus time. See Section 15.30.

 2. Consider a solid cylinder with the axis along the z axis, 0 ≤ z ≤ L. The 
cylinder is subjected to a given temperature T1 on the end z = 0 and has zero 
heat flux q on the other surfaces. The proposed solution to the differential 
equation (7.22) has the form T = f(z,t), where f(0,t) = T0 and ∂f(z,t)/∂z = 0 for 
z = L. Show that all boundary conditions are satisfied by this solution, that 
is, the temperature distribution is axisymmetric.
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 3. An unrestrained cylindrical rod with initial temperature T = 0 is heated on 
one end to a temperature T = 1. The nondimensional radius is 0.1, the non-
dimensional length is 1, and the nondimensional material properties are 
E = 1, ν = 0.3, α = 1, κ = 1, ρ = 1, and c = 1. Heat loss on the exterior is 
neglected.
(a) Determine the temperature distribution (0 ≤ t ≤ 1).
(b) Determine the normal stress along the centerline at t = 0.4.

  Use the four-node thermal element Plane 55 for transient temperature 
calculation. The Plane 182 element is then automatically used for the ther-
mal stress. See Section 15.31.

 4. Solve the problem described in Section 7.3 using the finite element method. 
Determine the maximum value of τθθ and the location, and compare the 
result with the exact solution from 7.34. Use actual dimensions and mate-
rial properties: a = 5 in., T1 = 480°, T2 = 75°F, E = 2.9 × 107 psi, ν = 0.3, 
ρ = 0.284 lb/in.3, α = 6.67 × 10–6/°F, κ = 8.092 × 10–4 BTU/in.2 °F, c = 
0.1036 BTU/lb°F. Use ¼ of the disk with zero circumferential heat flux 
(Figure 7.2). See Section 15.32.
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T1

T2

q 
= 

0

q = 0

fIgure 7.2 Heated disk.
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8 Finite Element Method 
for Plasticity

8.1 theory of plaStIcIty

The theory of plasticity describes the relation between load and deformation for 
many metals at higher stresses. The theory is rate independent: the same strains and 
stresses are obtained if the same loads are applied more rapidly (as long as inertial 
forces are negligible). The role of time in the constitutive equations is merely as a 
convenient bookkeeping parameter, and the occurrence of time derivatives does not 
indicate that such things as creep or relaxation can occur. The following is a sum-
mary of the basic equations.*

The material is initially elastic:

 τ ε ε τ( ) ( ) , ( ) ( ) .t c t t c tkm kmrs rs km kmrs rs= = −1

 (8.1)

For an isotropic material,

 cijkm = μ(δikδjm + δimδjk) + λδijδkm (8.2)

and

 
c

E Eijkm ik jm im jk ij km
− = + + −1 1

2
ν

δ δ δ δ
ν

δ δ( ) .
 

(8.3)

When the stress—or equivalently, the strain—reaches a critical magnitude, the 
material yields and incremental deformations may be inelastic. If the magnitude of 
the stress then decreases, the incremental deformations are elastic. If the magnitude 
of the stress increases, the magnitude of the strain increases with apparently reduced 
moduli in a rate-independent manner. The additional strain,

 
ε ε τP( ) ( ) ( )t t c tij ij ijkm km= − −1

 
(8.4)

is called the plastic strain. Experiments on metals show that the volume change is 
elastic to a high degree of approximation, so that

 εii
P = 0, (8.5)

* Dill: Chapter 4. Refer to Preface.
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and we will consider only this case. Typical criteria for yielding have the form

 f(τ(t),εP(t),β(t),κ(t)) ≤ 0 (8.6)

where the tensor β is called the back stress and the scalar κ is called the hardening 
parameter. Both parameters depend on the history of plastic strain. The yield func-
tion f is normalized so that it is negative before yield, and yield occurs when f = 0. 
For fixed εP, β, and κ, the condition f = 0 defines a surface in stress space, which is 
called the yield surface. Experimental evidence shows that this surface is closed and 
convex, and we will also assume that it is smooth. The tensor

 

η
τij

ij

f= ∂
∂

 
(8.7)

is an outward normal to the yield surface. Suppose the material is at the point of yield so 
that f(t) = 0. An increment of stress inward from the yield surface reduces the magnitude 
of f and so an elastic increment in strain occurs. An increment in stress that is outward 
from the surface expands the yield surface and plastic strains occur. Let us define

 
f̂ ij ij= η τ .

 (8.8)

At yield, f = 0, we have three possibilities: 

 (1) Elastic unloading: f̂ < 0  and therefore εεP = 0. 
 (2) Plastic loading: f̂ > 0 and therefore εεP ≠ 0. 
 (3) A neutral process: f̂ = 0  and εεP = 0. 

For elastic unloading and the neutral process the incremental strain is elastic. 
Typical constitutive relations for the back stress and the hardening have the form

 





ββ == ττ εε ββ

== ττ

( ) ( ( ), ( ), ( ), ( )) ˆ( ),

( ) ( (

t t t t t f t

t k

b P κ

κ tt t t t f t), ( ), ( ), ( )) ˆ( ).εε ββP κ  

(8.9)

The plastic strain increment during plastic loading is determined by

 
ε ηij ij

f

G
P =

ˆ

2  
(8.10)

where G  is a plastic modulus that depends on the history of plastic straining. Using 
8.4, we find for plastic loading that

 
 ε η η τ( ) ( )t c

G
tij ijkm ij km km= +







−1 1
2 .

 
(8.11)



Finite Element Method for Plasticity 193

This equation can be inverted to obtain

 
 τ εij ijkm kmc=

 
(8.12)

where the tangent modulus tensor is

 

c c
g

c c

g G c

ijkm ijkm ijrs rs pq pqkm

ijrs i

= −

= +

1
2

2 2

µ
η η

µ η

,

jj rsη .
 

(8.13)

For an isotropic material,

 

c c
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(8.14)

A commonly used set of specific constitutive relations is the following
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(8.15)

This is called the von Mises yield criterion with isotropic strain hardening, where σ  
is the effective stress, which is also called the von Mises stress, and ε P is the effective 
plastic strain. The tensor s is the deviatoric stress:

 
sij ij kk ij= −τ τ δ

1
3 .

 
(8.16)

In this case,

 
η

σ
η ηij

ij
ij ij

s
= =3

2
3
2

, .and
 

(8.17)

From 8.8,

 
f̂

sij ij= 3
2

τ
σ .

 
(8.18)
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Using 8.10,

 
ε P = f̂

G2
.
 

(8.19)

At yield,

 σ ε= H( )P . (8.20)

Using 8.10, the condition f = 0  for plastic loading gives

 2G H= ′.  (8.21)

From 8.10, for plastic loading

 



ε
τ

ij
ij km kms s

H H
P =

′
9

4 2
. (8.22)

For an isotropic material,

 2μg = H′ + 3μ (8.23)

and

 
c c

s s

H H
ijrs ijrs

ij rs= −
′ +

9

3

2

2

µ

µ( )
.

 
(8.24)

The material is completely characterized by the elastic constants and the one func-
tion H. These can be determined by the tensile test.

8.1.1 tenSile teSt

In this test, τ11 > 0 and the other components of stress are zero. Therefore, σ τ= 11. 

Since the plastic volume change is zero, ε ε ε22 33 11

1
2

P P P= = −  and ε εP P= 11, for loading 

from the virgin state. The yield criterion then becomes τ ε11 11= H( )P . This function 
can be measured as illustrated in Figure 8.1.

For the finite element analysis, one must describe the function H numerically. 
This is usually done via a piecewise linear function. The simplest approximation is 
by one straight line (Figure 8.2). This is called the bilinear model of plasticity. If E 
is the elastic modulus, the slope of the hardening portion of the stress–strain curve is 
some fraction m of E as shown in Figure 8.2. Then,

 H kE Y k
m

m
( ) , .ε εP P= + =

−1
 (8.25)
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The case m = 0 is called perfectly plastic. This model is not very accurate but it does 
provide the essential qualitative features of plastic behavior.

8.1.2 plane StreSS

For practical applications, we often need the specialization of the theory to the plane 
problem. The equations are directly applicable to plane strain by setting εk3 = 0. The 
case of plane stress is more complicated, and will be treated now. For an isotropic 
material, 8.11 becomes
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(8.26)

The condition for plane stress is τk3 = 0. Thus,
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,

s s

H H  
(8.27)

where the Greek indices range over (1, 2). The inverse of this relation can be expressed 
as follows.

Y
EP

1

H
E E

Y

1 1

H

τ11
τ11

Pε11

Pε11

ε11

fIgure 8.1 Tensile test.
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Y

τ11
mE

1

1

fIgure 8.2 Bilinear model.
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(8.28)

This relation holds only for plane stress.

8.1.3 SuMMary of plaSticity

The solution procedure is as follows. Having determined the state of stress and the 
plastic strain up to time t, we determine the current incremental stress–strain relation 
as follows. First, use the yield criterion to test whether the material at each point has 
yielded. If not, use the elastic stress–strain law. If the material at a point has reached 
yield, there are two possibilities depending on whether the future will be loading 
or unloading. If the material has yielded but skm kmτ ≤ 0 , no plastic flow occurs and 
the elastic stress–strain law is still used. If the material has yielded and skm kmτ > 0, 
plastic flow occurs and one must use equation. In matrix form,

  ττ εε= CT ,  (8.29)

The coefficient matrix CT is aptly called the tangent modulus matrix. The elements 
of CT are given by

 CT = C – CP, (8.30)

where C is the usual matrix of elastic coefficients and CP is a reduction due to plastic 
flow.

In the case of isotropic strain hardening and the von Mises yield criterion, a ten-
sile test on the material determines the elastic constants E and ν (and therefore, λ and 
μ), the initial yield stress Y, and the strain hardening function H( )ε P . If the bilinear 
model fits the data satisfactorily, the representation 8.25 can be used.

For general three-dimensional problems, 8.24 gives immediately
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In this case of plane strain, this formula reduces to

 

CP =
′ +
9

3

2

2

11 11 11 22 11 12

22 11 22 22

µ
µ τ( )H

s s s s s s

s s s s s
E

222 12

12 11 12 22 12 12

s

s s s s s s



















.

 

(8.32)

For plane stress, from (8.1.28),
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(8.33)

The plastic modulus CP = 0 if the stress level is below yield. Once yielding occurs, 
CP depends on the history of plastic strain. The constitutive relation determines only 
the rate of change in stress, so one must integrate over the history to obtain the total 
stress. In practice, we only know the direction of the external loads at time t. We may 
not know whether loading or unloading will occur for every point of the body. It is 
often necessary to proceed by trial and error: make an assumption at each point of 
loading or unloading, do the calculations of the incremental stress, and check to see 
if the assumption was correct.

8.2 fInIte eleMent forMulatIon for plaStIcIty

The fundamental problem is to find the displacement field such that the stress deter-
mined by the constitutive relations will satisfy the equations of equilibrium and the 
load conditions at all times. We will proceed step by step to trace the history of 
deformation for a given sequence of loads. We will use matrix notation.

The displacement field within each element is described with the aid of shape 
functions in the same way as for elasticity:

 u = ND. (8.34)

The strain field is still determined by the gradient of displacement so that

 ε = AD. (8.35)

The shape functions N and the geometric matrix A are characteristics of the finite 
element model and are independent of the history of deformation.

The theorem of minimum potential energy does not apply in the theory of plas-
ticity because of the path-dependent nature of the constitutive relations. However, 
the theorem of virtual work does apply since that theorem is independent of the 
constitutive assumption. The governing equations for the rate of displacement are 
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easily found by direct use of the virtual work formula. In matrix notation, with S the 
boundary of V,

 

εε ττT T T dd dV A V
V S V
∫ ∫ ∫= +u T u b .

 

(8.36)

This relation must hold for every compatible system of displacements u and strains 
εε. Compatible systems can be generated by using relations 8.34 and 8.35 where the 
nodal displacements are given arbitrary values: u ND=  and εε = AD. Substituting 
these relations in 8.36 and requiring that the equation holds for arbitrary nodal dis-
placements D gives the following simple balance of forces for the finite element 
model:

 f = F, (8.37)

where

 F N T N b= +∫∑ ∫∑T Td dA V

n n
n nS V

,  (8.38)

and

 

f A= ∫∑ T dττ V

n
n V

.

 

(8.39)

The force matrix F is the matrix of nodal loads (and reactions) at any instant cal-
culated from the surface tractions and body force in the usual manner: The surface 
integral extends over that part of the element that forms the exterior boundary, if 
any. Matrix f is the matrix of resisting nodal forces due to the internal stress state. 
Equation 8.37 merely states that the internal nodal forces balance the external nodal 
forces when the stresses are in equilibrium. The only time-dependent quantities 
in the formulas for f and F are the stress τ, the tractions T and possibly the body 
force b.

8.2.1 fundaMental Solution

The balance of forces (8.37) holds at every instant, but a direct solution is not pos-
sible because we do not have a constitutive relation for the total stress. The constitu-
tive relation for plasticity only determines the rate of stress:

  ττ εε= CT .  (8.40)

It is necessary to proceed step by step in time to trace the history of deformation. 
This is unavoidable whenever we have inelastic or nonlinear material behavior.
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If the displacements and stresses are known at time tn, the solution can be marched 
forward by the approximation

 D(tn+1) = D(tn) + D(tn)dt (8.41)

 ττ ττ ττ( ) ( ) ( ) ,t t t tn n n+ = +1  d  (8.42)

where dt = tn+1 – tn. Therefore, we proceed to develop a solution procedure for deter-
mining the increments. The basic relation governing the increments is just the time 
derivative of the balance of forces (8.37). The value of F is the given time rate of 
loading. The value of f  is found via the time derivative of 8.39 with ττ  given by 8.40 
and εε determined via the time derivative of 8.35 for each element. The result is 
 f K D= T . Thus,

 K DT  = F , (8.43)

where the stiffness matrix is the merge of the element matrices given by

 

K A C AT
T

T d= ∫
V

V .

 

(8.44)

These element stiffness matrices depend on the history of strain through the tangent 
modulus CT. In the case of plane stress or plane strain, the volume integral reduces 
to the integral over the area.

This step-by-step solution can be made as accurate as desired by decreasing the 
step size (up to the limit imposed by the finite element idealization and the numeri-
cal errors). However, each step requires that the stiffness matrix be reformed and the 
equilibrium equations 8.43 must be solved.

In this fundamental procedure, CP is corrected only at the end of each step, and 
the elements that yield in that step will have been assigned a stiffness that is too large 
(or too small for unloading). The error accumulates with each step and the final solu-
tion will have a significant error unless the error in each time step is very small. One 
either has to use a very large number of time steps (very small increment in load) or 
else the solution for each step has to be improved over the accuracy obtained with 
the simple formula, 8.41.

8.2.2 iteration to iMproVe the Solution

The accuracy of each step can be improved, and therefore the need for small steps 
reduced, by iteration within each step. The general idea is an extension of the 
Newton–Raphson method of solution of a nonlinear algebraic equation. For any 
increments in stress and strain, to first order, we have

 dτ = CTdε. (8.45)
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Suppose that some approximation Di to the solution up to a particular time t has been 
found. We now wish to improve the solution by finding improved displacements 
Di+1 = Di + dDi. For the increment dDi in nodal displacements, the strains in an ele-
ment will be changed according to formula 8.35,

 dεi = AdDi, (8.46)

and the stress will be changed by 8.45. Thus,

 d d dT Tττ εεi i i i i= =C C A D , (8.47)

where the tangent modulus is evaluated for the stress τi corresponding to the defor-
mation history up to Di. The internal node forces for the ith iteration are given by 
8.39 using the stress τi. The change in internal node forces for the i and i + 1 approxi-
mations is therefore

 

d d dTf f f Ai i i i V

n

= − =+ ∫∑1 ττ
V

.

 

(8.48)

After calculating the internal nodal forces f i for the ith iteration, we seek a correc-
tion such that the internal node forces f i+1 are equal to the applied loads F. Using 
8.47, we see that the right-hand side of 8.48 is the tangent stiffness matrix times the 
incremental displacements. Thus,

 K D F fTd
i i i= − .  (8.49)

The superscript i means that the term is evaluated for the ith iteration. The right-hand 
side is the unbalanced node force. F is the total applied load at the instant for which 
the iteration is taking place. The internal resisting node forces f i are given by

 

f A
V

i i V

n

= ∫∑ T dττ .

 

(8.50)

The process is started by using the fundamental step-by-step process to generate 
a first approximation D1 for the displacements at time t + dt. Equation 8.49 is then 
solved for dD1 and so forth. The displacement

 Di+1 = Di + dDi (8.51)

is an improved approximation.
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Equation 8.49 describes the fundamental procedure. The stiffness matrix is 
reformed and the equilibrium equations are then solved at each iteration. One may, 
however, approximate KT

i  by the tangent stiffness matrix for some particular time, 
say K KT T

i t= ( ), and keep it fixed throughout the iteration, or it may be corrected 
(updated) only after some fixed number of iterations. The process is a form of the 
modified Newton–Raphson method.

8.3 exaMple: Short BeaM

The plane stress problem examined in Section 2.1.14 and shown in Figure 8.3, will 
be solved for the case of the bilinear material model with the following material 
properties.

 E = 30 × 103 ksi, ν = 1/3, Y = 30 ksi, k = 0.1

The four-node rectangle is used with 50 segments per side. That gives 2500 elements 
and 2601 nodes. In the actual analysis, the symmetry about the mid-plane x = 0.5 
is used so that the actual number of elements is reduced by one-half (see Section 
15.13).

In this problem, the singularity at the built-in corner means that the yield limit 
will be immediately exceeded at the corner for any nonzero load. However, the plas-
tic zone is very localized for small loads. The finite element analysis for any finite 
number of elements gives a finite approximate solution for the maximum stress in 
the corner, and the calculated behavior is elastic until that stress reaches the yield 
point.

After an element reaches the yield stress, one must proceed step by step, or by 
iteration, for the subsequent loading. Up to five iterations were used in each subse-
quent step, as needed to achieve the set error level. The calculated corner displace-
ment is shown in Figure 8.4 for a monotonically increasing load. 

As the load exceeds 5 ksi, increasing softening due to plastic flow can be seen. 
The corner element reaches the yield stress first, then the adjacent elements yield, 
and as the load increases the region of yielding grows outward from the corner. The 

x

a

y a
p

fIgure 8.3 Plane stress: short beam.
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stresses at the integration points nearest the fixed boundary are shown in Figures 8.5 
to 8.7 for the initial yield and two subsequent higher loads. The shoulder in the curve 
for σx occurs at the boundary of the yielded region. Since this material has nonzero 
strain hardening, the stress in the yielded region increases toward the boundary. 
However, the stresses in the yielded region grow more slowly because of the soften-
ing of the yielded material. Very near the corner, the stress increases rapidly as it 
does near the singularity in the elasticity problem.
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fIgure 8.5 Short beam: stress at y = 0.004 for a load of 2.9 ksi.
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8.4 proBleMS

 1. In a tensile test, τ11 = σ and the other stress components are zero. Show this 
for the case of loading of a material with a von Mises yield criterion and 
isotropic strain hardening.

 2. For the bilinear plasticity model (Figure 8.8), show that the hardening law is 
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fIgure 8.7 Short beam: stress at y = 0.004 for a load of 7 ksi.
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H kE Y k

m

m
( ) , .ε εP P= + =

−1  

 3. Solve the plane stress problem shown in Figure 8.9 for an elastic–plastic 
material with von Mises yield and isotropic hardening with a bilinear model 
a = 1, p = 10,000, E = 30 × 106, ν = 1/3, Y = 30,000, ET = 2.727 × 106. Use a 
20 by 20 grid of 400 elements (see Section 15.13). Apply the load in 10 steps 
(0 ≤ t ≤ 1). Then remove the load (1 ≤ t ≤ 2). Submit:
(a) A list of UX at the corner for each time step 0 ≤ t ≤ 2.
(b) A plot of the normal stress along the base at maximum load (t = 1).
(c)  A plot of the residual normal stress along the base after unloading (t = 2).

Note: Be sure to adjust the colors to get a white background on your graphs.
 4. Consider small deformations of a nonlinearly elastic material: τ = f(ε). Derive 

the finite element equations for solution of the small displacement equations 
by the iterative procedure for a general element and shape functions.

 5. Consider small deformations of a material such that τij = aijkmεkm + bijkmrsεkmεrs. 
Derive a solution procedure by the finite element method for a general ele-
ment and shape functions.
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9 Viscoelasticity

9.1 theory of lInear vIScoelaStIcIty

Elastic materials are those for which stress is proportional to strain. A typical exam-
ple of elastic behavior is provided by the ideal spring for which force (stress) is pro-
portional to displacement (strain). The ideal spring can be used to model the general 
behavior of elastic materials in the following manner.

We have seen that an isotropic material is completely characterized by separately 
giving the constitutive law for volumetric strain and for distortion. For a linear elastic 
isotropic material, from 2.18,

 skm = μ2ekm, (9.1)

 

1
3

τ κεkk kk= ,
 

(9.2)

where

 
κ λ µ= + 2

3
.
 

(9.3)

These relations can also be obtained by applying the spring model (Figure 9.1) to 
each mode of deformation. The distortional strain is 2e and the corresponding spring 
constant is μ. The mean stress is τkk/3, the volumetric strain is εkk, and the spring 
constant for dilatation is κ. The two equations can then be combined by using the 
definition of the deviatoric components to obtain the single constitutive relation of 
the linear elastic isotropic material:

 τkm = 2μεkm + λεiiδkm. (9.4)

Viscous fluids, on the other hand, have a part of the stress that is proportional to 
the rate of strain. A typical example of a mechanism exhibiting such behavior is the 
shock absorber or damper mechanism (Figure 9.2), for which force (stress) is propor-
tional to velocity (strain rate).

When the distortion is modeled by a damper, we have in place of 9.1,

 skm km= 2ηe ,  (9.5)

where η is called the shear viscosity.
More complicated mechanical behavior is observed in polymers, metals at 

higher temperatures, and other materials where simultaneous elastic and viscous 
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mechanisms appear in complex ways. Models of such combined viscous and elastic 
behavior can be developed by combining the spring and damper in series or parallel 
(Dill: Chapter 5).

The three-element model shown in Figure 9.3 includes the essential characteris-
tics of the behavior of viscoelastic solids. The stress–strain relation corresponding 
to this model for distortion is found as shown in the following. Equation 9.1 applies 
to each spring element:

 s1 = 2μ1e1, (9.6)

 s2 = 2μ2e2. (9.7)

s

µ 2e

s

fIgure 9.1 Spring model.

s

2e

s

η

fIgure 9.2 Damper model.

2e1

2e2

2e

η

µ1

µ2

s

s

fIgure 9.3 Standard linear solid.



Viscoelasticity 207

Equation 9.5 applies to the damper:

 s e3 32= η .  (9.8)

The elements in parallel have a common strain and the total stress is the sum of that 
on each part:

 e3 = e2, (9.9)

 s2 + s3 = s. (9.10)

The units in series have a common stress and the total strain is the sum of that of 
each part:

 s1 = s, (9.11)

 e1 + e2 = e. (9.12)

The six quantities s1, s2, s3, e1, e2, and e3 are now eliminated from the seven equa-
tions, 9.6–9.12, to obtain one stress–strain relation for distortion:

 
 s s e e+ + = +µ µ

η
µ

µ µ
η

1 2
1

1 22
2

.
 

(9.13)

In addition to the model for distortion, the behavior in dilatation must also be speci-
fied. Dilatation is often adequately modeled as elastic so that 9.2 applies. In this 
case, the complete set of constitutive equations comprises 9.2 and 9.13, which can be 
rewritten as follows:

 τkk = 3κεkk, (9.14)

  s e hkm km km= +2 1µ ,  (9.15)

where hkm is defined by

 
h e skm km km= − +2 1 2 1 2µ µ

η
µ µ

η
.
 

(9.16)

Equations 9.14 and 9.15 yield the following constitutive relation for the three element 
model of distortion with elastic volume change:

   τ µ ε λ ε δkm km ii km kmh= + +2 1 1 ,  (9.17)
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where λ1 = κ – 2μ1/3. The material constants occurring in the constitutive relations 
can be determined by subjecting a rod to a uniaxial stress and measuring both the 
elongation and the lateral contraction. We will show below that 9.17 holds true for 
viscoelastic materials in general, but a general expression for hkm is needed.

A viscoelastic model based on an assembly of springs and dampers leads to a 
constitutive equation in the form of a differential equation such as 9.17. To determine 
the stress at time t for a given history of strain before time t, one must solve the dif-
ferential equation. The order of the differential equation depends on the number of 
spring–damper elements to be used to construct the model, but in all cases one is led 
to a linear differential equation with constant coefficients. The form of the general 
solution to such an equation is known. For an isotropic material, the general form of 
the constitutive relation for a material that is unstrained up to t = 0 is

 

τ µ τ ε τ λ τ ε τ δ τkm km ii km

t

t t t( ) ( ) ( ) ( ) ( ) .= − + −{ }∫ 2
0

  d

 

(9.18)

Note that we are using the letter τ as a dummy variable of integration and not to 
denote stress. The context should make the use clear.

The functions μ(t) and λ(t) are called the relaxation moduli and are determined by 
solving the differential equations provided by the model for a step change in strain at 
t = 0. These functions are given by

 µ( ) e ,t A An
ant

n

N

= + −

=
∑0

1

 (9.19)
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λ κ µ

( ) e ,

( ) ( ) ( ),

t B B

t t t

m
bmt

m

M

= +

= −

−

=
∑0

1

2
3  

(9.20)

the so-called Prony or Dirichlet series. The constants A0, An, an, B0, Bn, and bn depend 
on the stiffness and viscosities of the spring–damper mechanisms. The number of 
exponential terms is equal to the number of dampers. In practice, the relaxation 
moduli are directly measured by experimental means for a particular material and 
the Prony series is numerically fitted to the data.

The constitutive equation 9.18 can be simplified by integration by parts. Note 
that

 

d
d

d
d

d
d

d
dτ

µ τ
µ

τ
µ

µ µ τ( ( ))
( ) ( )

( ) ( )s
s

s

s s

s
s t= = − = − = − −  ,,

 
(9.21)
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where s = t – τ. Note that we are using the letter s as a dummy variable of integration 
and not to denote stress s. Therefore,

 

d
dτ

µ τ ε τ µ τ ε τ µ τ ε τ( ) ( ) ( ) ( ) ( ) ( ).t t t−{ } = − − − 

 
(9.22)

Consequently, integration of 9.18 by parts yields

 

τ µ ε λ ε δ

µ τ ε τ

km km ii km

km

t t t

t

( ) ( ) ( ) ( ) ( )

( ) ( )

= +

+ −

2 0 0

2  dd dτ λ τ ε τ δ τ
0 0

t

ii km

t

t∫ ∫+ −( ) ( ) ,

 

(9.23)

where we have used the initial conditions εkm(0) = 0.
To determine a formula for the incremental stress, let us differentiate 9.23 with 

respect to t. Recall that

 

d
d

d d
t

f t f t t
f t

t

t t

( , ) ( , )
( , )

.τ τ
τ

τ
0 0
∫ ∫= + ∂

∂
 

(9.24)

Thus, the general constitutive equation of an isotropic linearly viscoelastic material is

 
  τ µ ε λ ε δkm km ii km kmt t t h( ) ( ) ( ) ( ) ( ) ,= + +2 0 0  (9.25)

where

 

h t t

t

km km ii km

km

= +

+ −

2 0 0

2







µ ε λ ε δ

µ τ ε τ

( ) ( ) ( ) ( )

( ) ( ) dd dτ λ τ ε τ δ τ
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t

ii km

t

t∫ ∫+ −( ) ( ) .

 

(9.26)

The general equation 9.25 has the same form as 9.17, but hkm is given by 9.26.
One can see from 9.23 that stress is determined by the history of strain. The 

essential computational difference between plasticity and viscoelasticity can be seen 
in the formulas for the rate of change in stress. In plasticity, the tangent modulus 
depends on the history of strain and the direction of the strain increment, but there 
is no memory term hkm. For viscoelasticity, the tangent modulus is constant but there 
is a memory term hkm(t).

From the point of view of the theory of material behavior, a viscoelastic material 
is one for which the stress has a memory of the history of strain, but it is a fading 
memory. Recent strain has a greater effect on current stress than events that occurred 
at an earlier time. The material exhibits creep and relaxation, and the stress required 
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to produce a given deformation history depends on the rate of straining. Plasticity 
theory, on the other hand, is rate independent. The theory of plasticity applies mostly 
to metals, whereas viscoelasticity applies mostly to plastics.

9.1.1 recurrence forMula for hiStory

Let us consider the general constitutive equation of linear viscoelasticity in the form 
9.25. The history term hkm(t) given in 9.26 depends on the entire history of strain. For 
numerical calculations, we can use a numerical integration scheme. A simple scheme 
is diagrammed in Figure 9.4.

Using the illustrated scheme, we have

 

f f t t

t

n n

n

N

( ) ( ) .τ τd
0 1
∫ ∑=

=

∆

 

(9.27)

Applied to 9.26, we have

 

h t t t tkm km N n km n n
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1  

(9.28)

Now, consider the usual case when viscoelastic characteristics are modeled by a 
finite number of springs and dampers so that Equations 9.19 and 9.20 apply:
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(9.29)

ttNtN–1t0 t1

f (tN)

f (t)

ΔtN

fIgure 9.4 Numerical integration scheme.
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Substituting these expressions into 9.28 gives
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(9.30)

where, at time t = tN,
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(9.31)

It follows from 9.31 that αkmp(tN) and βp(tN) may be calculated by the following recur-
rence formulas.
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(9.32)

with

 

α

β

kmp

p

( ) ,

( ) .

0 0

0 0

=

=  

(9.33)

We have seen that the term hkm depends on the strains at all past times. However, 
it can now be seen from 9.30 to 9.33 that hkm can be calculated if the strain at the 
present time and the immediately previous values of αkmp and βp are saved in storage. 
Since the number of dampers M, which are needed to obtain a practical description 
of a material, will be much smaller than the number N of time steps, there is a con-
siderable saving of computer memory for storage of history data.

9.1.2 ViScoelaStic exaMple

The plane strain problem shown in Figure 9.5 will be solved numerically. The con-
stant load is applied suddenly at time t = 0. The three-element model shown in 
Figure 9.3 will be used for distortion and elastic volume change will be used to 
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model the material for this example. The constitutive relation consists of 9.14 and 
9.15, where μ1, μ2, η, and κ have to be assigned numerical values. The exact solution 
can be easily determined. By inspection, one can guess that the following trial solu-
tion may work:

 τ11 = 0,    τ22 ≡ σ,    τ12 = 0,    τ33 ≡ τ(t), (9.34)

where σ is constant and τ is a function of time to be determined. The deviatoric com-
ponents of the stress tensor are therefore

 

s s

s s
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σ τ σ τ

τ σ
 

(9.35)

Since ε33 = 0 for plane strain, the deviatoric components of the strain tensor are:
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(9.36)

1

1
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x

σ

fIgure 9.5 Plane strain example.
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A constant ν = (3κ – 2μ1)/(2μ1 + 6κ) analogous to the Poisson ratio of elasticity can 
be introduced to obtain

 
τ

µ ν
ν

εkk kk= +
−

2 1
1 2

1( )
( )

.
 

(9.37)

Since ε33 = 0, using 9.34, this relation becomes

 ε ε
ν

µ ν
σ τ11 22

1

1 2
2 1
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+

+( )
( )

( ).  (9.38)

Next, set k and m equal to 3 in the constitutive relation 9.15 for distortion, obtaining

 
 s e s e33 1 33
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η
.
 

(9.39)

Using 9.35, 9.36, and 9.38, one finds for σ = 0 that

 τ τ σ+ =A B ,  (9.40)

where

 
A = + + 

1
3

2 1 31 2η
µ ν µ( ) ,

 
(9.41)

 
B = + + 

1
3

1 31 2η
µ ν νµ( ) .

 
(9.42)

The solution of 9.40 is
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B
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A
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(9.43)

Now, return to the relations 9.13, from which
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(9.44)

Using 9.35, 9.36, and 9.38 with σ = 0 , one finds
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The solution of this differential equation is

 
ε ε ε ε

µ µ
µ µ

σ µ η
11 22 11 22

1 2

1 2

20 0
2

− = − + +







 −−( ) ( ) e t / µµ µ

µ µ
σ1 2

1 22
+

.
 

(9.46)

From 9.38 and 9.46,
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(9.47)

The initial values of strain still have to be calculated. The load is applied suddenly, 
with a jump in stress at t = 0, but no jump in the strain of the damper is allowed. For 
the initial jump, 9.17 gives

 τkm(0) = 2μ1εkm(0) + λ1εii(0)δkm, (9.48)

or, with ε33 = 0,

 2μ1εαβ(0) = ταβ(0) – ντγγ(0)δαβ. (9.49)

Using 9.38, one finds

 

2 0

2 0 1

0
1 2
2

1 11

1 22

1

1

µ ε νσ

µ ε ν σ

τ
λ ν

µ

( ) ,

( ) ( ) ,

( )
( )

= −

= −

= −
σσ νσ= .

 

(9.50)

Using these values for the initial conditions, from 9.43,

 

τ
σ

α α ν β( )
( ) e

t t= − − − ,
 

(9.51)

and from 9.47,
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where the nondimensional parameters are
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(9.53)

For the numerical calculations, k = 1 and ν = 0.3 will be used. In this case, Equations 
9.51 and 9.52 reduce to
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σ

1 22 1 8670 60714 0 25 0 00714
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. . e . e . . (9.55)

Table 9.1 shows the exact values of the nondimensional displacement u  from 9.55 
versus the nondimensional time t .

We will use this as a test problem for the finite element program. Note that the 
strain is uniform in space, so one 4-node element will yield an exact solution for the 
spatial distribution, but we must proceed step by step in time because of the creep 
of the material.

9.2 fInIte eleMent forMulatIon for vIScoelaStIcIty

The fundamental equations, 8.37–8.39, resulting from the balance of internal node 
forces with external node forces, as introduced in the formulation for plasticity, are 
true for all materials:

 f (t) = F(t), (9.56)

 

f A
V

= ∫∑ T dττ V

n
n

.

 

(9.57)

taBle 9.1 
exact Solution

t u

0 0.35

1 0.51407

2 0.57314

3 0.59467

4 0.60256

5 0.60545



216 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

F(t) is the matrix of given external node forces and reactions. The only difference in 
the formulation for various different materials is the constitutive relation for stress as 
a function of the history of strain. The constitutive equation (9.25) of a viscoelastic 
material, in matrix form, is

  ττ εε= +C h,  (9.58)

where τ, ε, and h denote column matrices, C is the matrix of instantaneous elasticity, 
and h is the memory term. For the plane problem,
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(9.59)

The coefficient matrix C is the matrix of elastic constants with μ and λ replaced by 
μ(0) and λ(0), respectively. The matrix h is determined from 9.26 in general, or from 
9.16 when the three-element model with elastic volume change is used. In the latter 
case,
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(9.60)

The elastic volume change 9.14 is used to find τ33 in plane strain or ε33 in the case of 
plane stress.

9.2.1 BaSic Step-By-Step Solution Method

From 8.35, 9.57, and 9.58,

  f KD H( ) ( ) ( )t t t= + , (9.61)

where

 

K A CA
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= ∫∑ T dV

n
n

 

(9.62)

is the stiffness matrix for the instantaneous elasticity, and
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is the memory load. The balance of external and internal nodal forces 9.56 leads to 
the equation for D  as follows:

 KD F H ( ) ( ) ( )t t t= − . (9.64)

Note that the stiffness matrix is constant for viscoelastic materials, but the right-
hand side contains the memory load as well as the external nodal forces. We can 
now proceed in a step-by-step manner to construct the solution as a function of 
time. The fundamental procedure is to use the lower-order terms of the power series 
representation to march the solution forward. That is, having determined the solu-
tion up to time tn, so that D(tn ) and τ(tn ) are known, the solution at time tn+1 is deter-
mined by

 D D D( ) ( ) ( ) ,t t t tn n n+ = +1
 ∆  (9.65)

 ττ ττ ττ( ) ( ) ( ) .t t t tn n n+ = +1  ∆  (9.66)

Any finite element code for thermoelastic stress analysis is easily extended to assem-
ble and solve Equation 9.64. Note that K needs be formed and inverted only once. 
Equation 9.64 forms a set of linear ordinary differential equations in time. The solu-
tion procedure can be improved by using the solution methods for dynamical prob-
lems, which will be discussed in the next chapter.

9.2.2 Step-By-Step calculation with load correction

The basic step-by-step method can be improved if we take into account that f(tn ) is 
only approximately equal to F(tn ). The incremental load then consists of the memory 
load and the unbalanced node forces as follows. Having determined the solution up 
to time t, we seek the solution at time t + dt for which
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(9.67)

Writing τ(t + Δt) = τ(t) + Δτ, we have
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(9.68)

Since

 Δτ = CΔε + hΔt (9.69)
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and

 Δε = AΔD, (9.70)

we have

 f(t + Δt) = f(t) + KΔD + ΔH, (9.71)

where

 

∆ ∆H A h= ∫∑ T dt V

n
n V

.

 

(9.72)

We seek a solution for which f (t + Δt) = F(t + Δt). Therefore, 9.71 becomes

 KΔD(t) = F(t + Δt) – f(t) – ΔH(t). (9.73)

The finite element program is used to solve for ΔD and the solution is marched for-
ward as before.

9.2.3 plane Strain exaMple

The example problem, for which the exact solution is given in Section 9.1.2, was 
solved using one 4-node square element. Since the strains are uniform in the exact 
solution, no approximation is introduced by the finite element idealization and one 
element provides an exact representation. The only error here is due to the numerical 
integration in time. The results using the basic step-by-step formula 9.64 are shown 
in Figure 9.6. As the exact solution 9.55 shows, the solution to this particular problem 

∆t = 0.04
∆t = 0.20
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fIgure 9.6 Basic step-by-step solution.
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depends only on the nondimensional time t t= µ η2 / . The numerical results for the 
nondimensional displacement u  are plotted for three step sizes in t . The exact solu-
tion coincides with the results for dt = 0 04.  up to the resolution of the graph.

The necessary size of time step is greatly reduced if we use the step-by-step cal-
culation with the load correction 9.73. The results for ∆t = 0.4 and ∆t = 0.04 agree to 
two significant figures. Typical calculated values are shown in Table 9.2 and plotted 
in Figure 9.7.

9.3 proBleMS

 1. Consider a two element Kelvin–Voigt model for both shear and volume 
change (see Figure 9.8).
(a) Show that s e eij ij ij= +2 2µ η   and 13 τ κε ζεkk kk kk= +  .

taBle 9.2 
Step-by-Step Solution

t u  for ∆t == 0.40 u for ∆t == 0.04

0 3.500 3.500

0.40 4.353 4.362

0.80 4.920 4.932

1.20 5.299 5.311

1.60 5.552 5.563

2.00 5.722 5.731
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fIgure 9.7 Solution with load correction.
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(b)  Show that these equations are equivalent to the single constitutive 

equation τ µε λε δ ηε λ ε δkm km ii km km ii km= + + +2 2  D  where λ µ λ ζ η= − = −b
2
3

2
3

, .D 

λ µ λ ζ η= − = −b
2
3

2
3

, .D

 2. Given the standard linear solid model for distortion (Figure 9.3), determine 
the creep compliance.

  Answer:  
2 1 1 112

12 1 2 2
2

e t

s
t

( )
exp( )= + − −





µ µ µ

µ η/

 3. In matrix form, the constitutive relation for the Kelvin–Voigt material is 
ττ εε εε= +C CD .

  Derive the finite element form of the equilibrium equations for this mate-
rial model.

 4. Determine the creep compliance for the tensile test of a material modeled 
by an elastic volume change and the three-element model in shear.

 5. Analyze the creep test by the finite element method from the given relax-
ation modulus and compare with the results of problem 5. See Section 
15.14.

 6. Solve the example illustrated in Figure 9.5 using ANSYS (see Section 
15.15). Use G(0) = 100, G(∞) = 50, K(0) = K(∞) = 650/3. There is one dash-
pot with G1 = G(0) – G(∞) and a relaxation time of 0.5. The load σ = 1 is 
constant (step) in time. Submit:
(a) A list of UY at the corner for each time step 0 < t ≤ 3.
(b) A plot of UY(t).
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221

10 Dynamic Analyses

10.1 dynaMIcal equatIonS

In this section, we shall formulate finite element equations that include the inertial 
forces that have been neglected up to now. 

10.1.1 luMped MaSS

The most direct way of discovering suitable equations governing motion is to con-
centrate the total mass at node points and apply d’Alembert’s principle. Consider, for 
example, the solution of the plane problem using the rectangular elements (Section 
5.1.4). A typical node arrangement is shown in Figure 10.1. The total mass of the 
material surrounding a node, shown by dashed lines, is treated as a point mass at 
that node. 

Suppose the node spacing is uniformly “a by b” and the mass density of a unit 
slice of material is ρ. At an interior point, the lumped mass is ρab. At a corner the 
lumped mass is 1/4 ρab, and at a side point the lumped mass is 1/2 ρab. The effect of 
inertia is then to exert at each node a force “−mD”. At an interior node, for example, 
the x and y components of inertial force are ( , )− −ρ ρabU abV  . For the entire body, 
the inertial forces have the form

 F MDI = −  ,  (10.1)

where M is a diagonal matrix continuing the list of lumped masses as shown in 
Figure 10.1. The complete equations of motion are then obtained from static formu-
lation by adding these inertial forces to any applied external loads:

 KD F MD= −  ,  (10.2)

where F denotes the matrix of external loads. Recall that rigid translation and rotation 
are allowed by 10.2 if no boundary conditions on displacement have been imposed.

Equation 10.2 has the form of the usual dynamical equations of discrete systems. 
We may think of Equation 10.2 as representing N masses connected by “springs” and 
proceed to solve them in the usual fashion. From that point of view, the finite element 
procedure merely determines the effective spring constants.

In the lumped mass approach, the finite element idealization is not directly con-
nected with the dynamical idealization, other than to indicate an appropriate set of 
points for the lumped masses. The distribution of mass between the nodes, as just 
described, is a rather arbitrary choice, but it has been found to work well in practice 
as long as all mass is accounted for. However, one can proceed in a more rational 
manner, as we shall now present.
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10.1.2 conSiStent MaSS 

The virtual work theorem applies to the dynamic problem if the body force includes 
the inertial force. Writing b for the body force excluding the inertia, we have

 Tu A b u V u u V Vi i i i i i ij ijd d d d
S V V V
∫ ∫ ∫ ∫+ − =ρ τ ε . (10.3)

The ui  are arbitrary continuous functions and εij i ju= ( , ). The shape functions of the 
finite element method are again used to generate the virtual displacement field:

 u ND u ND= =, .  (10.4)

That is, the shape functions N are used to generate the functions u  from arbitrary 
nodal displacements D. Substituting 10.4 into 10.3, which must be identically true 
for all D, introduces a new term in the equilibrium equations—the inertial force:

 F MDI = −   (10.5)

as for the lumped mass model, but we now have a formula for the mass matrix:

 

M N= ∫∑ ρ T dN V
Vn

n

,

 

(10.6)

where M is called the consistent mass.
As an example, consider the rod element of length L, area A, and density ρ. The 

shape functions are

 
N

x x

L
N

x x

L1
2

2
1= − = −

, .
 

(10.7)

a

b

ρab/4

ρab/2ρab

fIgure 10.1 Lumped mass.
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The consistent mass matrix is

 

M =
















 =









∫ ρ

ρN

N
N N A x

AL

x

x

1

2
1 2

1

2

6
2 1
1 2

d .

 

(10.8)

Let us next consider the rectangular element described in Section 5.1. If we order 
the list of nodes by grouping all x components followed by all y components, DT = 
[UT,VT], the shape functions are

 

U V

N
0

0
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= + +
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4

1 1ξ ξ η η)) .

 

(10.9)

Using 10.6, one finds

 

U V

M
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1

0
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(10.10)

where

 

M N N

N N

1

1

1

1
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(10.11)

As a third example, let us consider the triangular element discussed in Section 4.2. 
Again, grouping the nodes by component, the shape functions from 4.16 are

 

N =












ζ ζ ζ

ζ ζ ζ
1 2 3

1 2 3

0 0 0

0 0 0
,

 

(10.12)
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where ζk are the triangular coordinates defined in Section 4.1. From 10.6, using (4.9), 
M again has the form 10.10, but

 

M1 12

2 1 1
1 2 1
1 1 2

=
















ρ
A

,

 

(10.13)

where A is the area of the triangle.
In each case, the consistent mass matrix is not diagonal and the off-diagonal 

terms are rather significant in size. The mass matrices are, however, symmetric and 
positive definite.

For both mass models, the basic equations finite element with the inertial forces 
become

 MD KD F( ) ( ) ( ).t t t+ =  (10.14)

These basic equations, N in number, have the standard form for discrete linear sys-
tems with N degrees of freedom. There are two common approaches taken to solve 
them, either mode superposition or direct integration. Each method will be addressed 
in the following sections.

10.2 natural frequencIeS 

The modes of vibration and the natural frequencies of vibration are first found by 
solving 10.14 for the case of zero external force:

 MD KD 0( ) ( ) .t t+ =  (10.15)

The solutions of 10.15 have the form D(t) = Dnexp(iωnt), with no sum on n. Substituting 
this expression into 10.15 yields the fundamental eigenvalue problem:

 ( ) , ( ).K M D− =ω n n n2 0 no sum on  (10.16)

The stiffness matrix K is symmetric, nonnegative, and banded. The mass matrix M 
is symmetric, positive definite, and banded. If lumped masses are assigned and some 
inertial degree of freedom is neglected, a singular mass matrix may occur, and due 
care should be exercised in dealing with these equations in such cases.

10.2.1 luMped MaSS

The lumped mass approach is convenient since M is then diagonal, and M1/2 is also 
diagonal. In this case, let

 Xn = M1/2Dn, (10.17)

 A = M–1/2KM–1/2. (10.18)
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The eigenvalue problem 10.16 becomes

 ( )A I X− =ω n n
2 0, (10.19)

with A symmetric. This equation is a standard problem in numerical analysis, and 
many effective solution algorithms are available. Once solution vectors Xn are 
known, the mode shapes are calculated by 10.17: Dn = M–1/2Xn.

10.2.2 conSiStent MaSS 

In the general case, when M is not a diagonal matrix but is symmetric positive defi-
nite, we can proceed as follows in order to reduce the eigenvalue problem to the 
standard form. There exists triangular matrices L such that

 M = LLT. (10.20)

The matrix L is easily inverted. There is a standard procedure for calculating L 
known as the Choleski decomposition. Now, define

 A = L–1K(L–1)T, (10.21)

 Xn = LTDn, (10.22)

and the standard eigenvalue problem 10.19 results.

10.3 Mode SuperpoSItIon SolutIon

It is now assumed that the N solutions of 10.16 have been found. The modal vectors 
satisfy the orthogonality conditions (n ≠ m): 

 (Dn)TKDm = 0, (10.23)

 (Dn)TMDm = 0. (10.24)

The solution D(t) of the complete equations 10.15 can be expressed as a linear com-
bination of the mode shapes:

 

D D T q

T q

( ) ( ) [ ]{ ( )},

[ ] [ ], { ( )} { (

t q t t

D t q t

n

n

n

in n

= =

= =

∑
))},  

(10.25)

where T is a square matrix whose columns are the mode shape vectors. Substituting 
10.25 into 10.15, and using 10.23 and 10.24, one finds the set of uncoupled equations:
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(10.26)

where
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=

= =
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(10.27)

The modal equations 10.26 have the solution

 

q
M

P t
M

P tn
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n n

t

n n
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t
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0 0
ω

τ ω τ τ
ω

τ( ) sin ( ) (d )) sin .ω τ τn( ) d

 

(10.28)

If Pn is constant, that is, a step function at t = 0, then

 
q

P

K
tn

n

n
n= −( cos( )).1 ω

 
(10.29)

If Pn is ramped up to a constant value as shown in Figure 10.2, then

 

q t
P

K

t

t

t

t
t tn

n

( )
sin( )
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1 1
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ω
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(10.30)
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ω
ω

ω
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(10.31)

where t t t= − 1 2/ .

t1

P0

Pn(t)

t

fIgure 10.2 Ramped load.
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10.4 exaMple: axIally loaded rod

As an example for which the exact solution can be determined analytically, we con-
sider the uniaxial stress field approximated by an axial load applied to a rod (Figure 
10.3).

10.4.1 exact Solution for axially loaded rod

To understand the finite element solution, it is necessary to understand the relation 
of the discrete model to the continuum model. Let us illustrate this by constructing 
the exact solution for the axial deformation of a rod with a step load on the end. The 
equations of elasticity for uniaxial stress σ and axial displacement u are as follows:

 

∂
∂

= ∂
∂

∂
∂

= =
σ

ρ ε σ ε
x

u

t

u

x
E

2

2
, .

 
(10.32)

The initial conditions are

 u x u x( , ) , ( , ) .0 0 0 0= =  (10.33)

The boundary conditions are

 σ(0,t) = –P/A,    u(L,t) = 0. (10.34)

The basic equations can be combined to obtain one equation for the axial 
displacement:

 
c

u

x

u

t
c

E2
2

2

2

2
2∂

∂
= ∂

∂
=, .

ρ  
(10.35)

This is the classical wave equation. The general solution is

 u(x,t) = f(s),    s = x ± ct. (10.36)

Each such solution is a wave traveling either to the right or to the left. A complete 
solution that satisfies the initial conditions and the boundary conditions can be 
obtained as a linear combination of particular solutions of this type. 

x

L

P A , E , ρ  

fIgure 10.3 Axially loaded rod.
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For 0 ≤ ct ≤ L, in order to satisfy the initial conditions and the boundary condi-
tions, we must take s = x – ct and

 

u x t
P

AE
s x ct

x ct

( , )
, ,

, .
=

− ≤

>









for

for0
 

(10.37)
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for

for0
 

(10.38)

For ct > L, this solution violates the boundary condition at the fixed end. A second 
solution must be added that counteracts the first one in order to satisfy the boundary 
condition at x = L. Then, a third solution is added to correct the boundary condition 
at x = 0, and so forth. 

Let us introduce nondimensional variables:

 
x

x

L
t

ct

L
u

AEu

PL

A

P
= = = =, , , .σ

σ
 

(10.39)

The complete wave solution is shown in Figures 10.4 and 10.5. Figure 10.4 shows 
the displacement at the loaded end and the displacement of the midpoint versus time. 
Figure 10.5 shows the stress and displacement versus x at various times.

When a load is suddenly applied to the end of the rod, it causes a stress wave 
to propagate along the rod. The wave is reflected from the fixed end, doubling the 
magnitude of the stress. The wave is again reflected when it returns to the loaded 
end, reducing the stress to the initial value, and so on. There is no displacement of a 
particle of the rod until the wave reaches it; then the displacement commences and 
can be calculated from the known uniform strain of the portion of the rod that has 

been covered by the wave. The speed of propagation of the wave is c E= /ρ .

.5

1 2 3 4

1.5 3.52.5 4.5

u(0,t )

u(1/2,t )

t = ct/L

t = ct/L

2

1

fIgure 10.4 Exact displacements.
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10.4.2 finite eleMent Model

10.4.2.1 one-element Model
For one-element models with a lumped mass at each end, the finite element equation is

 mD t kD t P t( ) ( ) ( )+ =  (10.40)

where

 
m

AL
k

AE

L

k

m
= = =ρ

ω
2

2, , .
 

(10.41)

For a step load at t = 0,
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fIgure 10.5 Exact stress and displacement.
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For a ramped load (Figure 10.2),

 

D t
P
k

t
t

t
t

t t

D t
P
k

( )
sin( )

, ,

( )
s

= −






≤ ≤

= −

0

1 1
1

0

0

1

ω
ω

iin( )
cos( ) , / , .

ω
ω

ω
t

t
t t t t t t1

1
1 1

2
2

2
/

/







= − ≤
 

(10.43)

10.4.2.2 two-element Model
Let us analyze the motion of the rod by using a finite element model as shown in 
Figure 10.6. Two elements are used with a node at the midpoint of the rod. 

The lumped mass procedure is used. The equations of motion, which were formu-
lated in Chapter 1, are as follows:
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(10.44)

If a load is suddenly applied at node 1, the complete solution can be found by the 
mode superposition method. The displacements of the nodes are 
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(10.45)

where
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(10.46)

Unlike the wave solution, there is an immediate displacement of all nodes. The max-
imum value of D1 is found to be 1.88 PL/AE. That is, the dynamic magnification 
factor is 1.88 for the two-element model of the rod. The magnification will approach 
2 as the number of elements increases.

ρAL/4 ρAL/2

1 2 3

L/2L/2

fIgure 10.6 Two-element model of the rod.
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The solution (10.45) for the two-element model is compared with the exact wave 

solution in Figure 10.7 for 
ρL

E

L

c

2 2

28 8
1= = . The normalized displacement D(t)/D0, 

D
PL

AE0 = , is plotted as a function of nondimensional time t ct L= / . The value D(t)/

D0 = 1 is the static solution.

Figure 10.8 is a plot of D2/(PL/AE) versus t  showing both the two-element finite 
element analysis and the wave solution.
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fIgure 10.7 Exact solution for continuum and two-element model.
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fIgure 10.8 Displacement of node 2 of two-element model.
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The dynamical solution of the continuum model is a wave propagation. There is 
no motion of a particle until the stress wave reaches it. In the absence of damping, 
the wave bounces around forever. Damping causes the waves to die out as the motion 
approaches a steady state.

The finite element model is a discrete system. All nodes are put into motion 
immediately, as if there was an infinite wave speed. The finite element solution will 
approximate the wave solution of the continuum problem in a manner similar to a 
Fourier series representation. We will always obtain a smooth curve from the finite 
element analysis that is a superposition of the available mode shapes. We will not get 
a straight line because we are merely adding together a finite number of cosine func-
tions, and there will always be a waviness in the finite element solution correspond-
ing to the higher-order frequencies that are excited by the applied load.

10.4.3 Mode SuperpoSition for continuuM Model of the rod

The similarity of the finite element solution to the exact solution is more apparent if 
the exact solution is also expressed by mode superposition. We first determine the 
infinity of mode shapes and characteristic frequencies of the continuum model of the 
rod with one end free and the other fixed. The differential equation to be solved is
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(10.47)

The boundary conditions are
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(10.48)

Free vibrations are so-called standing waves of the form

 u(x,t) = U(x)(Acos ωt + Bsin ωt). (10.49)

Substitution of this function into the differential equation yields a solution if 
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The general solution to this differential equation is

 
U x C
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c
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c
( ) cos sin= +ω ω
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(10.51)

The boundary conditions 10.48 require that C = 0 and

 cos
ω L
c = 0 . (10.52)
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This yields the characteristic frequencies:

 
ω

π= n c

L
n

2
, .odd

 
(10.53)

The family of mode shapes is therefore

 
U x

x
cn
n( ) sin= ω

.
 

(10.54)

This exact solution for the natural frequencies 10.53 is compared to the approxi-
mate solution obtained by the finite element analysis using the lumped mass and 
consistent mass in Table 10.1. Convergence toward the first frequency is shown in 

taBle 10.1 
finite element analysis

number of 
elements

exact
2πω1L/c

fea
lumped Mass

fea
consistent Mass

1 0.25 0.22508 0.27566

2 0.25 0.243624 0.256465

0.75 0.588160 0.895931

3 0.25 0.247154 0.252865

0.75 0.675237 0.826993

1.25 0.922391 1.50029

4 0.25 0.248397 0.251609

0.75 0.707374 0.793737

1.25 1.05886 1.44185

1.75 1.24877 2.0804

5 0.25 0.248973 0.251029

0.75 0.722548 0.777971

1.25 1.12540 1.37832

1.75 1.41808 2.06686

2.25 1.57195 2.65843

10 0.25 0.249753 0.250257

0.75 0.743080 0.756957

1.25 1.21812 1.28232

1.75 1.66316 1.83891

2.25 2.06726 2.43830

100 0.25 0.249997 0.250003

0.75 0.749931 0.750069

1.25 1.24968 1.25032

1.75 1.74912 1.75088

2.25 2.24813 2.25187
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Figure 10.9. The lumped mass converges from below and the consistent mass con-
verges from above. The dynamic magnification factor also depends on the number 
of elements.

The deformations resulting from a step load applied to the free end can be repre-
sented by an infinite series using the mode shapes and natural frequencies:
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The modal amplitudes can be determined by using virtual work to express the equi-
librium conditions:
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where u x( )  and ε ( ) ( )x u x x= d /d  are the virtual displacement and strain. Choosing

 

u x
x

cm
m

m

( ) sin= ∑ δ ω

odd  

(10.57)

with arbitrary virtual displacement amplitudes δm, we have the equilibrium 
condition:

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0 1 2 3 4 5 6 7 8 9 10

Fi
rs

t f
re

qu
en

cy
, c

ps

Number of elements

Lumped
Consistent

fIgure 10.9 First Frequency by FEM.
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The sums are on odd integers. Since
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we find
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This relation must hold identically for all δm. Therefore,
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The solution for zero initial conditions is
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The displacement of the free end (x = L) is 
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The maximum occurs when t = 2L/c or ωmt = mπ:
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Since

 

1
82

2

m
n odd

∑ = π

 
(10.65)

we find

 max ( , )u L t
PL

AE
= 2 . (10.66)

That is, the dynamic displacement due to the step load is twice the static value, a 
dynamic magnification factor of 2. However, the series 10.65 converges slowly, so 
the magnification factor computed using any partial number of modes is much less 
than 2 as shown in Table 10.2.

We are able to find the exact solution to the continuum model of the rod (1D), 
but it is generally not possible to do so for 2D or 3D continuum models. The 
wave pattern is so complex that only numerical methods are feasible. In this case, 
the finite element model can provide a satisfactory approximation if properly 
interpreted.

10.5 exaMple: Short BeaM

In Section 5.6.4, the short cantilever beam was analyzed as a plane stress problem 
using rectangular elements. The same layout (see Figure 10.10) will now be used for 
the determination of the lower frequencies and mode shapes.

For N unsupported nodes, there are 2N equations and therefore 2N natural fre-
quencies. These frequencies approximate the lower natural frequencies of the body, 
which has of course infinitely many natural frequencies. Table 10.3 shows the results 
using the consistent mass matrix and the results using the lumped mass matrix 
together with the four-node rectangle (Section 15.17). The values are for ν is 1/3. The 
exact solution is unknown for this example. 

taBle 10.2 
Magnification factor

number of Modes 1 2 3 4

Magnification factor 1.621 1.801 1.866 1.899
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10.6 dynaMIc analySIS WIth daMpIng 

Damping was not included in the preceding analysis, but motions of real bodies are 
always damped. This damping is of little importance over a short time scale, but is 
essential for the analysis of the steady-state response. Damping arises from many 
dissipative processes accompanying the motion, the details of which are often not 
known. Damping is generally modeled by including a damping force proportional to 
velocities. The general equation 10.14 then becomes

 MD VD KD F + + = . (10.67)

The damping matrix V is not generally determined by merging element matrices because 
the details of the damping mechanisms are not known. A typical assumption is*

 

V M K K= + + ∑α β βi i

i  

(10.68)

* The symbol α also occurs in the following formulation of numerical integration. To make it clear 
which alpha is meant, we may write alphad and betad for the damping coefficients.

taBle 10.3 
Short Beam

number of 
elements

lumped Mass lumped Mass consistent Mass consistent Mass

ωω ρρ1
2a E/ ωω ρρ2

2a E/ ωω ρρ1
2a E/ ωω ρρ2

2a E/

1 0.59043 1.35962 0.77648 1.74559

16 0.66181 1.57645 0.67676 1.60033

100 0.65754 1.58141 0.65992 1.58531

256 0.65634 1.58154 0.65728 1.58311

10,000 0.65515 1.58123 0.65515 1.58129

1

1

fIgure 10.10 Lumped mass model.
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where Ki is the part of the stiffness matrix due to material i. This is called Rayleigh 
damping or proportional damping. The coefficients are determined directly by 
experiments that measure the decay in amplitude of free vibrations. Proportional 
damping has some basis in theory, which we will now demonstrate. 

10.6.1 ViScoelaStic daMping

One damping mechanism is the internal dissipation of the material due to inelastic 
behavior. If the viscous loss is small and as there are no jumps in strain when inertia 
is included, the material may be adequately modeled by a two element Kelvin–Voigt 
model for both shearing and volume change:

 s e e= +2 2µ η,  (10.69)

 
1
3

τ κε ζεkk kk kk= +  .  (10.70)

Since skm = τkm – τiiδkm and ekm = εkm – εiiδkm, Equations 10.69 and 10.70 are equivalent 
to the single constitutive equation

 τ µε λε δ ηε λ ε δkm km ii km km ii km= + + +2 2  D ,  (10.71)

where

 
λ κ µ λ ζ η= − = −2

3
2
3

, .D
 

(10.72)

There are four independent material constants: two elasticities and two viscosities. 
In matrix form, 10.71 is

 ττ εε εε= +C CD ,  (10.73)

where C and CD have the same form as in the elasticity problem if we define artificial 
Poisson ratios:

 ν
λ

λ µ
ν

λ
λ η

=
+

=
+2 2 2 2

, .D
D

D

 (10.74)

The global equations of dynamical equilibrium are

 

A F MDT dττ
Vn

V
n

∫∑ = −  ,

 

(10.75)
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where the summation denotes a merge of the element matrices, F is the global matrix 
of external nodal forces, and M is the mass matrix. Using 10.73 and ε = AD, the 
dynamical equilibrium equation 10.75 becomes

 MD VD KD F + + = ,  (10.76)

where

 

K A CA= ∫∑ T dV

n
n V

,

 

(10.77)

 

V A C A= ∫∑ T
D d

Vn

V
n

.

 

(10.78)

The matrix K is the familiar global stiffness matrix. The new matrix V is the matrix 
of damping coefficients, and we see from 10.76 that the effect of the viscoelastic 
material is to introduce Rayleigh damping with the coefficient matrix V into the 
basic equations of motion. In the special case when νD = ν, the matrices C and CD 
are proportional. Let

 
β

η
µ

= .
 

(10.79)

Then CD = βC and

 V = βK. (10.80)

That is, the matrix of damping coefficients is a fraction of the stiffness matrix. 

10.6.2 ViScouS Body force 

If we imagine that there is at each point of the body an internal viscous force resist-
ing the motion, it can be modeled by a body force proportional to the velocity of the 
particle:

 b kui i= −  .  (10.81)

The formula for nodal forces then gives the damping force

 

F N b N u N N
V V V

D
T T Td d d= = − = −










∫∑ ∫∑ ∫∑V k V k V

m m m
m m m




D

 

(10.82)
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after merging the element matrices. That is, the damping coefficient matrix is

 

V N N
V

= ∫∑ k V

m
m

T d .

 

(10.83)

If α = k/ρ, we have

 V = αM, (10.84)

where M is the consistent mass matrix.

10.6.3 analySiS of daMped Motion By Mode SuperpoSition

The complete solution of the damped equations of motion can be constructed by 
superposition of the undamped modes:

 

D D( ) ( )t q tn

n

n= ∑ .

 

(10.85)

Substituting in the equilibrium equations 10.67 and using the orthogonality condi-
tions 10.23 and 10.24, in place of 10.26, we find

 

 q d q q
P

Mn nm m

m

n n
n

n

+ + =∑ ω 2 ,

 

(10.86)

where

 
d

Mnm
n

m n= 1
D VDT .

 
(10.87)

The equations are therefore coupled in general. However, for proportional damping 
V = αM + βK, using the orthogonality conditions, we have

 dnm n nm= +( )α βω δ2 . (10.88)

In this case, the modal equations 10.86 separate:

 

 q q q
P

Mn n n n n n
n

n

n
n

n

+ + =

= +

2

2

2

2

ζ ω ω

ζ
α βω

ω

,

.
 

(10.89)
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The general solution of each equation is that for damped motion of a single degree of 
freedom system. If the initial displacement and initial velocity are zero, for each n,

 

q t
M

P t

t

( ) ( ) sin( )= − −∫1

0
ω

τ ω τ τζωτ

d
de d ,

 

(10.90)

 ω ω ζd = −1 2 . (10.91)

For a step load,

 

q t
P

K
t tt( ) = − +













−1 e cos sind

d
d

ζω ω ζ
ω

ω
ω

 

(10.92)

for each n, which shows exponential decay due to damping.

10.7 nuMerIcal SolutIon of dIfferentIal equatIonS

There are numerous techniques that have been used successfully for the numeri-
cal solution of differential equations. It appears, however, that best results for solid 
mechanics are obtained by using a method that is especially designed for such prob-
lems. We will consider first a scheme that is known under several names: constant 
average acceleration method, trapezoidal rule, or Newmark’s method.

10.7.1 conStant aVerage acceleration

For the purpose of calculating the value of a function f(t) in the interval a ≤ t ≤ b, we 
assume a constant average acceleration:

  
  f t f fb a( ) ( ).= +1

2  
(10.93)

The subscripts indicate the value at that time. Integration of 10.93 with respect to 
time gives 

 
   f t f

t a
f fa b a( )

( )
( ),= + − +

2  
(10.94)

 f t f t a f
t a

f fa a b a( ) ( )
( )

( ).= + − + − +  

2

4
 (10.95)
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Now, put t = b into 10.95, giving

 
  f

h
f f

h
f fb b a a a= − − −4 4

2
( ) .

 
(10.96)

Thus, expressing fb  in terms of values of fa  and fa  and the increment fb – fa over the 
interval of time h = b – a. 

Now we turn to the numerical solution of dynamical equations, step by step in 
time, using these approximations. Suppose the solution is known at time a. The fun-
damental equation applies at time b: 

 MD KD F

b b b+ = .  (10.97)

Equation 10.96 may now be used to eliminate the second derivatives to obtain

 KD Fb b= ,  (10.98)

where

 
K K M= + 4

2h
,
 

(10.99)

 
F F MD MD MDb b a a a

h h
= + + +4 4

2
  ,

 
(10.100)

and h = b – a is the length of the time step. That is, the fundamental equation to be 
solved (10.98) is the same form as in the statical problem but with a modified stiff-
ness matrix and an effective force matrix.

When D D Da a a, ,   are known, Equation 10.98 can be solved for Db. From 10.94 
and 10.94, one then finds new values for velocity and acceleration:

 
  D D D D Db b a a a

h h
= − − −4 4

2
( ) .

 
(10.101)

 
   D D D Db a a b

h= + +
2
( ).

 
(10.102)

The cycle is then repeated in order to march out a solution in finite time steps h.
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10.7.2 general newMark Method

Instead of using the average acceleration, the method can be improved by taking 
some value that better approximates the first integration over the interval. Let us 
consider first, in place of 10.94 and 10.95, the mathematical identities:

 

  f f f t tb a

a

b

= + ∫ ( ) d ,

 

(10.103)

 

f f hf b t f t tb a a

a

b

= + + −∫ ( ) ( ) d .

 

(10.104)

Instead of constant acceleration, we can use the approximate integration formula

 





 f t t W f W f
a

b

a b( ) d∫ = +1 2 .

 

(10.105)

The weighting numbers Wi are determined by requiring that the integration formula 
yield the exact result in case f  is constant; this gives W1 + W2 = h, or in the usual 
notation

 W2 = δh,    W1 = (1 – δ)h. (10.106)

In the same way, we find

 

( ) ( )b t f t t h f h f
a

b

a b− = −






+∫ 



 d
1
2

2 2α α .

 

(10.107)

Therefore, 10.103 and 10.104 give the fundamental approximations

    f hf f hfb b a a= + + −δ ( )1 δ , (10.108)

 
f h f f hf h fb b a a a= + + + −







α α2 21
2

   ,

 
(10.109)
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in place of 10.96. The constant average acceleration formulas are the special case 
when δ = 1/2 and α = 1/4.*

10.7.3 general MethodS

The Newmark scheme is only one way of marching the solution forward in time. A 
great many other systems have been worked out and analyzed. A general form of the 
relations is as follows:

 

f h f L f f f

f hf L f

b b a a a

b b a

= +

= +

α

δ

2
0

1

  

   

( , ),

( ,

,

ffa ),  

(10.110)

where L0 and L1 are linear combinations of the indicated arguments and possibly of 
the values at other prior times, and α and δ are constants. 

10.7.3.1 Implicit Methods in general 
If α and δ are not zero, the system is called implicit because the value at time b is not 
explicitly determined by the state at time a. In this case, we can solve 10.110 for fb as 
was carried out above. Substitution of the result into 10.97 again yields 10.98 with 

 

K K M

F F M D D D

= +

= +

1

1

2

2 0

α

α

h

h
Lb b a a a

,

( , , ). 

 

(10.111)

Solution of 10.98 gives fb, and then 10.110 determines fb  and fb .

10.7.3.2 explicit Methods in general 
If α and δ are zero, the scheme 10.110 is called explicit because the value of the func-
tion at time b is explicitly determined by the state at time a. In this case, we substitute 
10.110 into 10.97 to obtain a formula for the second derivatives:

   D M F K D D Db b a a aL= −−1
0[ ( , , )].  (10.112)

Equations 10.110 with α = 0 determine Db and Db. 

 

  

 

D L D D

D L D D D

b a a

b a a a

=

=

1

0

( , ),

( , , ).  

(10.113)

* ANSYS input δ γ α λ= + = +1

2

1

4
1 2, ( ) , default γ = 0.005.
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Note that the stiffness matrix does not have to be inverted in the explicit method. 
Instead, the mass matrix is inverted. This is a trivial matter when M is diagonal as 
in the lumped mass model. We will not develop the solution by explicit methods in 
this book.

10.7.4 StaBility analySiS of newMark’S Method

Let us consider the free vibration of the 1 degree of freedom system:

 
f f+ =ω 2 0.

 (10.114)

The exact solution is f(t) = Ceiωt. At time b, fb = Ceiωb. At time a, fa = Ceiωa. Thus, fb = 
eiωhfa, h = b – a. We seek a numerical solution of the same character but with pos-
sibly varying amplitude and somewhat different frequency: f t c t i t( ) ( )= e ω . For this 

numerical solution, f
c
c fb

b

a

i h
a= e ω . That is,

 fb = λfa (10.115)

where λ is a complex number. At time b, from 10.114, f fb b+ =ω 2 0. Using 10.109, 
we find

 
f f hf h f h fb a a a b− − − −







+ = 

1
2

02 2 2α α ω .
 

(10.116)

Using 10.114 for t = a to eliminate fa , we have

 

( )1 1
1
2

2 2 2+ = − −












+βαω α ωf h f hfb a a
 .

 

(10.117)

Using 10.114 to eliminate the second derivatives in 10.108, we have

 δ ω δ ωh f f h f fb b a a
2 21+ = − − + ( ) . (10.118)

Equations 10.117 and 10.118 have the form

 Aua = Bub, (10.119)

where

 

u =












f

f
,

 

A =
− −







− −
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1 1

2 2

2

α ω

δ ω

h h

h( )

,

 

B = +











( )1 0
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α ω

δ ω

h

h
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(10.120)
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We seek a solution of the form ub = λua, where λ is a complex number. That is,

 (A – λB)ua = 0. (10.121)

Setting the determinant of the coefficient matrix equal to zero, we find

 

λ δ λ δ

ω

2

2 2

2 1
2

1 1
2

0

1

− − +












+ − −







=

=

k k

k
h

,

++ αω 2 2h
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(10.122)

Values for λ are complex if the discriminate is negative. This leads to

 
δ α

ω
+







− <1
2

4
4

2

2 2h
.

 
(10.123)

Then 

 

λ ρ ρ δθ= = − −












ei k,

/

1 1
2

1 2

.
 

(10.124)

The amplitude of the numerical solution will not grow, and therefore the solution proce-
dure is stable, if ρ ≤ 1 or δ ≥ 1/2. Using 10.123, the solution will be stable for all ω if 

 δ ≥ 1/2, α δ≥ +






1
4

1
2

2

. (10.125)

The constant average acceleration formula, with δ = 1/2 and α = 1/4, satisfies the 
criterion.

10.7.5 conVergence, StaBility, and error

The accuracy of various methods of direct time integration for particular differen-
tial equations has been studied in the mathematical theory of numerical analysis. 
The fundamental questions are convergence, stability, and error of the various 
schemes. Convergence implies that the numerical solution approaches the exact 
solution to the system 10.14 as the step interval h tends to zero. However, this is 
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not of much practical help. We must be able to obtain a sufficiently accurate solu-
tion for some finite value of h. Two difficulties can occur. The numerical solution 
may diverge rapidly from the true solution or oscillate wildly about it. In this case, 
the procedure is said to be unstable. It is generally found that an explicit scheme 
is stable if h does not exceed a limiting size, whereas an implicit scheme is stable 
for all h. 

Second, the calculated result may preserve the essential features of the true 
solution and yet have an error at any particular time that is too large. The error 
has to be reduced by taking smaller time steps. We can see from the mode super-
position solution that the applied load will tend to excite certain particular natural 
frequencies. A step load primarily excites the mode similar to the static solution. 
A variable load may excite higher frequencies. For acceptable error, the time step 
must be small compared to the period of the dominant mode shape that is excited 
by the load. 

In the implicit method, the modified equilibrium equations 10.98 must be solved 
at each step. Implicit methods are typically stable for all values of h. The general 
Newmark method is unconditionally stable for δ ≥ 1/2, α ≥ (δ + 1/2)2/4. The interval 
h is therefore governed only by the need for computational accuracy. If we write*

 
δ γ α γ= + = +1

2
1
4

1 2, ( ) ,
 

(10.126)

then stability requires γ ≥ 0. Good results are obtained for small values such as γ = 
0.005, the default value for ANSYS. Note that the symbol α is not the same as the 
damping factor in 10.68.

The explicit schemes avoid solving the linear algebraic equations altogether. 
Typically, they are stable methods of numerical solution only if the magnitude of 
each time step is limited to some very small value, much less than the smallest 
period of vibration of the finite element model, although this is strongly affected 
by the damping mechanism. The advantage of an explicit method is that the equi-
librium equations do not have to be solved. However, the requirement for a small 
time step may negate that advantage. Generally speaking, explicit methods are 
useful for rapidly varying loads (blast loading or crash analysis) where the time 
step has to be small anyway, or for systems with a small number of degrees of 
freedom.

10.7.6 exaMple: nuMerical integration for axially loaded rod

One may solve Equation 10.44 using Newmark’s method. The accuracy of the 
numerical integration depends on the size of the time steps. The numerical solution 

* By means of Solution > Analyses Type > Sol’n Controls, the value of either γ or α and δ can be 
specified.
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for dt = 1 is compared with the exact solution obtained by the mode superposition 
method in Figure 10.11. 

The two curves will nearly coincide for dt = 0.2. For smaller time steps, conver-
gence is to the exact solution of 10.44. The solution in the numerical procedure is an 
approximation to the finite element solution, not to the wave solution. We can only 
improve on the approximation to the wave equation by taking a larger number of 
elements.

Equation 10.44 was formulated using the lumped mass approximation. For only 
two elements, there is a big difference between the lumped mass model and the 
consistent mass model. The calculated natural frequencies are shown in Table 10.4 

as ω ρL E2 /  rad/s.
The numerical solution for the lumped mass model and the consistent mass model 

are compared in Figure 10.12, which shows the nondimensional displacement D(t)/D0, 

D0 = PL/AE, versus a nondimensional time defined by t t E L= /ρ 2  for ∆t = 0 05. . 

Figure 10.13 shows the solution of the lumped mass model for different step sizes using 
the same parameters.

taBle 10.4 
two-element Model

frequency lumped consistent

1 1.5307 1.6114

2 3.6955 5.6293
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fIgure 10.11 Comparison of mode superposition and numerical analysis.
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10.8 exaMple: analySIS of Short BeaM

Let us again consider the plane stress problem shown in Figure 10.14 and use the 
rectangular elements with lumped mass (Figure 10.10). We will use nondimensional 
values a = 1, b = 1, p = 1, ρ = 1, E = 1, ν = 1/3. The element layout used was a 10 × 10 
grid of 100 elements. The body is initially at rest and a step load p is applied. The 
calculated displacement of the corner without damping, using a time step h = 0.1, is 
plotted in Figure 10.15.
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fIgure 10.12 Lumped mass and consistent mass.
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fIgure 10.13 Lumped mass model.
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We found in Section 5.6.4 that the calculated static displacement of the corner is 
7.42. From Table 10.3, the first natural frequency of the discrete system is 0.66 rad/s 
and the period of vibration is 2π/ω = 9.5 s. For the step load, we expect a deflection 
that is about twice the static solution with a maximum at about 1/2 period. The cal-
culated displacement of the corner versus time is plotted in Figure 10.15 and has the 
expected form. The exact solution is unknown.

An analysis including damping is shown in Figure 10.16 for viscous damping (α = 
0.066) obtained using ANSYS (Newmark method, substep 0.1, 10 × 10 mesh). This 
is 5% of critical damping in mode 1. The result is shown in Figure 10.16 for the 
middle node on the free side. The magnification factor is reduced and the motion 
rapidly decays toward the static solution as expected.
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fIgure 10.14 Short beam.
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fIgure 10.15 Numerical solution for the short beam.
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10.9 proBleMS

 1. Determine the mode shapes and frequencies for the rod shown in Figure 
10.17 using two elements by solving the differential equation. Normalize 
the mode shapes so that Mn = 1.

 2. Determine the mode shapes and frequencies for the rod shown in Figure 
10.17 for two elements by using ANSYS and compare with the solution of 
problem 1. See Section 15.16. Note that ANSYS reports the frequencies 
in cps.

 3. Consider a rod that is loaded at the end x = 0 and fixed at the end x = L (see 
Figure 10.17). Divide the rod into two finite elements by a node at the center 
and use the lumped mass approach. For A = 1, E = 1, ρ = 1.
(a)  Solve by hand for the mode shapes and frequencies. Normalize the 

mode shapes so that the generalized mass is 1 for each mode.
(b)  Solve using ANSYS and compare results. See Section 15.16. Note that 

ANSYS reports frequencies in cps.
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fIgure 10.16 Damped motion.
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fIgure 10.17 Axially loaded rod.
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 4. Consider a rod that is loaded at the end x = 0 and fixed at the end x = L (see 
Figure 10.17). Divide the rod into two finite elements by a node at the center 
and use the lumped mass approach to derive the equations of motion.
(a) Calculate the two natural frequencies of vibration.
(b)  Determine the nodal displacements for the case of a constant load sud-

denly applied to the end x = 0 at time t = 0.
(c)  Compare the finite element solution for the displacement at node 1 

with the wave propagation analysis by plotting the displacement versus 
time.

 5. Given the axially loaded rod shown in Figure 10.17 with A = 1, L = 1, E = 
100, ρ = 2. The load is ramped up as shown in Figure 10.2 with P0 = 3 and 
t1 = 1. Use ANSYS to determine the displacement of the end for 0 ≤ t ≤ 2. 
Use one element with lumped mass and numerical integration. Compare the 
maximum displacement with the exact solution (10.3.8)–(10.3.9).

 6. Use ANSYS to determine the first two mode shapes and natural frequen-
cies for the plane stress problem shown in Figure 10.18 for a = b = 1, E = 
1, ν = 1/3, ρ = 1. Use the four-node Plane 182 element and a 10 × 10 mesh. 
Determine the lowest two frequencies and view the mode shapes. See 
Section 15.17. (A printable list can be obtained via Utility Menu > List > 
Results > Load Step Summary.) Record the x component of displacements 
of nodes on the loaded edge for each mode for use in problem 7.
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fIgure 10.18 Plane stress extension.
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fIgure 10.19 Plane stress bending.
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 7. Use the results of problem 6 to calculate the x displacement of the corner 
for step load p = 10 uniformly distributed over the edge x = 1 using only the 
first two modes.

 8. Given the plane stress problem shown in Figure 10.19 with a = b = 1, E = 
1, ν = 1/3, ρ = 1, p = 1. Solve by ANSYS for a step load by the Newmark 
method 0 < t ≤ 50 using dt = 0.1 including damping with α = 0.066. Use the 
four-node element without extra degree of freedom, and a 10 × 10 mesh. See 
Section 15.8. Submit a graph of UY at the center of the loaded side versus 
time (after adjusting colors to obtain black lines on a white background).

 9. The finite element equations for dynamics with damping are 
MD VD KD F + + = . Determine the modified stiffness matrix K and the 
modified force matrix F  when the Newmark method is used to solve these 
equations.
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11 Linear Elastic Fracture 
Mechanics

11.1 fracture crIterIon

If a crack has developed in a structure, the crack may propagate catastrophically 
when the stress intensity and the crack length combine to reach a critical situation. 
The basic formulation of the continuum theory of initiation of crack propagation will 
now be reviewed.*

Let us first consider an elastic sheet of thickness t with a plane crack of length 
L = 2a through the sheet (Figure 11.1). The sheet is loaded in uniaxial tension S. 
After applying the load, there is a strain energy U stored in the body that depends 
on the magnitude of the load, the material properties, and the geometry of the body. 
In particular, U depends on the crack length L. If, at some load, the crack extends by 
amount dL, there is a release of the stored strain energy:

 
d dU = ∂

∂
U
L

L. (11.1)

At the same time, energy of amount dE is expended to fracture the material and cre-
ate a new free surface dA = 2tdL:

 dE = GdA, (11.2)

where G is the energy of crack growth per unit area. The fundamental assumption is 
that G is a material constant that has to be determined by materials testing. This is 
known as the Griffith hypothesis.

The energy balance for the crack extension requires that strain energy release rate 
must provide the energy needed for crack growth. Therefore, crack initiation can 
only occur if 

 

∂
∂
U

G
L

t= 2 . (11.3)

The theory can be put in a more compact form if we define a so-called stress inten-
sity factor K by 

 
K

E

t L
= ∂

∂
U

 
(11.4)

* For a more complete treatment, see Dill: Chapter 6. Refer to Preface.
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and let

 
K Ec = 2 G .

 
(11.5)

Then the condition for crack propagation becomes

 K = Kc. (11.6)

The critical stress intensity factor Kc is a material property to be determined by 
materials testing.

To determine K, we must perform a stress analysis of the body. The situation near 
the crack tip is certainly not modeled accurately by linear elasticity. The continuum 
model itself is probably not sufficient to describe the material behavior near the crack 
tip. However, a reasonably accurate prediction of strain energy release rate that is 
useful in engineering fracture mechanics results from this model.

Once the elasticity problem has been solved, the stored energy can be calculated. 
The strain energy per unit volume U of the material is such that 

 

τ
ε

µε λ ε ε ε δij
ij

ij ij

U= = + + +∂
∂

2 11 22 33( ) .

 

(11.7)

Therefore,

 

U km km kk mm

mk
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2

2
1
2

µε ε λε ε τ ε .

 

(11.8)

The total stored energy is 

 
U = ∫∫∫ U Vd .

 
(11.9)

Integrating by parts and using the divergence theorem, neglecting the body force and 
the inertial force, we find that 

 
U = ⋅∫∫1

2
T u dA.

 
(11.10)

This equation will be used to calculate the stored energy.

S 2l

x
y

2a 2b

S

fIgure 11.1 Cracked sheet in tension.
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11.1.1 analySiS of Sheet

The sheet is loaded in uniform tension in the y direction. The body is approximately 
in a state of plane stress (τk3 = 0). The complete solution is conveniently divided into 
two parts: the solution with no crack and the solution that removes the stress along 
the crack face. The solution for no crack is uniaxial tension:

 τxx = 0, τyy = S, τxy = 0. (11.11)

This solution leaves a tensile stress τyy = S on each crack face. We therefore need to 
construct a solution for τyy = –S on each crack face (and no other loads) so that the 
combined solution will have zero tractions on the crack face. This second solution is 
known as the crack opening problem. 

The exact solution of the crack opening problem for a body of finite extent 
is unknown, but if the crack is small, the solution for a body of infinite extend is a good 
approximation. This solution is known. The displacement of the crack surface is*

 
u

S

E
a xy = −2 2 2 .

 
(11.12)

The stress vector on the upper crack face is T = Sj. The stored energy is therefore

 

U = −
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d
π

, (11.13)

where the crack length L = 2a. The total stored energy of the sheet is therefore 

 
U U= +0

π L S t

E

2 2

4  
(11.14)

where the first term is the energy for zero crack length. From this expression, we 
find

 K S a= π . (11.15)

The solution for a body of finite dimensions has the form

 K S a= α π ,  (11.16)

where α > 1 is a numerical factor that depends on the actual dimensions. The finite 
element method will be used to determine the factor α.

Crack growth initiates when S and crack length L reach critical levels such that

 K = Kc. (11.17)

* Dill, p. 243. Refer to Preface.
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Tests on fracture of cracked sheets show that the criterion (11.7) works fairly well 
except that the value of Kc depends on the sheet thickness. This might be expected 
since the stress state at the crack tip is less accurately described by plane stress for 
thick sheets and the crack extension is not well modeled by a plane surface. As sheet 
thickness increases, the value of Kc is found to approach a lower limit that is known 
as the fracture toughness in plane strain. Some typical values of the lower limit for 
Kc are shown in Table 11.1.1

11.1.2 fracture ModeS

There are three basic modes of crack opening that correspond to the remote state of 
stress.2

11.1.2.1 Mode I
The preceding analysis of the crack opening problem is applicable to any situation in 
which the stress state remote from the crack is a stress normal to the crack face: τyy = 
S and the other components are zero. This is known as a mode I crack. Let (r, θ) be 
the polar coordinates of a particle from the crack tip (Figure 11.2). Near (r << a) the 
crack tip, the stress and displacement are, to first order, as follows:
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(11.18)

taBle 11.1 
fracture toughness

Material yield Stress Kc (KSI in. )

2024-T651 AL 66 22

7075-T651 AL 72 27

Ti–6AL–4V 124 84

4340 Steel (400°F) 235 50
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where K r yy rI lim= = →( | )2 0 0π τ θ  and κ = (3 – ν)/(1 + ν), 1 + κ = 4/(1 + ν). This is the 
stress intensity factor for a mode I crack. For plane strain, κ = 3 – 4ν and 1 + κ = 
4(1 – ν).

11.1.2.2 Mode II
The case when the stress remote from the crack is τxy = S and the other components 
are zero (a simple shear in the direction of the crack) is called mode II. In this, case 
the stress near the crack tip is
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(11.19)

where K r xy rII lim= = →( | )2 0 0π τ θ . This is the stress intensity factor for a mode II crack.

11.1.2.3 Mode III 
The case when the stress remote from the crack is τyz = S and the other components 
are zero (a shear in the direction normal to the face of the sheet) is called mode III. 
In this case, the stress near the crack tip is
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(11.20)

crack

y

r
xθ

fIgure 11.2 Local coordinates at crack tip.
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where K r yz rIII lim= = →( | )2 0 0π τ θ .
When all three modes are present, if the crack propagates in the plane y = 0, the 

strain energy release rate for unit thickness is

 

d
d

I II IIIU
L

K
E

K
E

K
E

= + + +
2 2 2

1
* *

( )ν
 

(11.21)

where E* = E for plane stress and E* = E/(1 – ν2) for plane strain.

11.2 deterMInatIon of K By fInIte eleMent analySIS

For a complicated geometry or loading, the exact solution to the linear elasticity 
problem cannot be determined by direct means and we must turn to numerical meth-
ods. Once the stress analysis is completed, there are several methods that can be used 
to determine the stress intensity factor.

The oldest method is the direct calculation of the strain energy release rate. 
A stress analysis can be performed for various lengths L of a crack but the same 
external load. For each analysis, the stored energy is readily calculated. A curve 
of U versus L is plotted and the slope of this curve is the strain energy release 
rate. The stress intensity factor K is then determined by the fundamental defini-
tion 11.4. The accuracy of this method is limited since differentiation in order 
to determine the slope magnifies the error in the finite element calculation of 
displacements.

11.2.1 crack opening diSplaceMent Method

Accuracy can be improved by using the finite element method to determine the crack 
opening displacement. This requires a detailed knowledge of displacements near the 
crack tip from the continuum mechanics analysis in advance of the finite element 
analysis. For example, in the case of the center crack in a thin sheet as is analyzed 
above, we have from 11.12 and 11.15 the following formula for displacements on the 
crack surface:
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E a
a xy = −2 2 2

π
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(11.22)

If r is the distance from the crack tip, 
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. (11.23)
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The displacement calculated at a node on the crack face near the crack tip can be 
used to determine uy and the location of the node determines r. Equation 11.23 is 
then used to determine K. The accuracy of this calculation is strongly affected by the 
accuracy of the finite element model near the crack tip. 

An alternative is the following procedure. From 11.18 with θ = π, or 11.23 neglect-
ing r/a, we have (uy ≡ v) for plane stress
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(11.24)

For plane strain
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(11.25)

The situation at the crack tip is a three-dimensional state somewhere between plane 
stress and plane strain, if the continuum model applies at all.

The displacement v normal to the crack is known from the finite element solution 
at the two node points on the crack surface and nearest to the crack tip. Let us desig-
nate them by points 1 and 2: v = v1 at r = r1 and v = v2 at r = r2, r2 > r1. Using a linear 
approximation for v r/  in that region, we find the approximation
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(11.26)

This equation can be used to calculate v r/  and therefore K from the finite element 
analysis.

As an example, the finite element analysis (Section 15.19) will be applied to 
the cracked sheet in tension (Figure 11.1), with a = 2, b = 10, and l = l0. Because 
of the symmetry about the x axis and about the y axis, we only need to analyze 
one-quarter of the sheet, x > 0 and y > 0. The boundary conditions along the edge 
y = 0 are v = 0 and τxy = 0 for x > a, and both τyy = 0 and τxy = 0 on the crack sur-
face 0 < x < a. Along the edge x = 0, the boundary conditions are u = 0 and τyx = 0. 
The nodal layout is shown in Figures 11.3 and 11.4. There are 283 nodes that are 
closely distributed around the singularity with larger elements in regions of lower 
stress. The six-node singular triangle is used at the crack tip and the eight-node 
quadrilateral elsewhere. 

The nodes on the crack surface and the displacements are shown in Table 11.2.
The stress intensity factor using 11.26 with nodes 61 and 59 is K = 2.648. Using 

individual nodes and 11.23, the results for plane stress are shown in Table 11.3. 
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fIgure 11.3 FEA nodes (corners only).
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fIgure 11.4 Nodes near the crack tip (node 1).
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11.3 J-Integral for plane regIonS

Let us consider the line integrals

 

I f n sm km k

c
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(11.27)

around a closed curve c in the x–y plane, n is the outward normal, and
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and

 

∂
∂

=
τ kj

kx
0. (11.30)

For statical equilibrium without body force, we find that

taBle 11.2
crack opening

node R V

62 0.0625 1.0502

61 0.2500 2.0442

60 0.3750

59 0.5000 2.7943

taBle 11.3 
Stress Intensity factor

node K

62 2.653

61 2.646

59 2.647
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For a closed curve containing the region A, applying Gauss’s theorem to 11.27, it 
follows that
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That is, the integrals Im are zero for any closed path c enclosing an area A in which 
the integrand possesses piecewise continuous first derivatives and does not contain 
singularities.

Let the closed curve be regarded as a path between two points (Figure 11.5). For 
the closed curve c = c1 + c2, we have 
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fIgure 11.5 Two paths for integrals.
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Consequently,
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That is, the integrals between two points are independent of the path between the 
points.

For an existing crack in plane stress or plane strain, we can choose the x axis 
parallel to the crack, and chose a path Γ starting and ending on the crack faces and 
enclosing a crack tip (Figure 11.6). The integral J = I1 is called the J-integral:3
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 (11.35)

We will show that J determines the energy release rate and therefore the stress inten-
sity factors.

Recall that the integral is independent of the path. As a special case, we can 
choose the path Γ to be a circle of radius r about the crack tip and evaluate the 
J-integral as r → 0. In the limit, only the singular terms in stress and strain formulas 
for the stress near the crack tip will contribute to the expression for J. After lengthy 
calculations using Mathematica, one finds

crack
y

B

L Γ
x

n

s

fIgure 11.6 J-integral path.



266 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

 
J

K
E

K
E

K
E

= + + +I
2

II III

* *
( )

2 2

1 ν .
 

(11.36)

From 11.21, the J-integral is equal to the strain energy release rate:
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L
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. (11.37)

Numerical calculation of the J-integral from 11.35 requires one to identify a path, 
calculate U, Tk, and ∂uk/∂x along the path, and then integrate over the path. This is 
cumbersome in the context of the finite element analysis, and so a method has been 
devised to replace the line integral by integration over an area.4

Given a path Γ, construct a new path c surrounding it (Figure 11.7). Connect the 
two curves by paths along the crack surface, c+ and c–. For any smooth function 
q(x,y),
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where m is the outward unit normal to A. First, we note that
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Next, the arbitrary function q(x,y) is given the values q = 1on Γ and q = 0 on c1. On 
c+ and c–, fk mk = 0. Finally, on Γ, m = –n. Thus,
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n
m
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m Γ A

fIgure 11.7 Area integral method.
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or
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The integral is evaluated over several element paths around the crack tip: J1 uses the 
first ring of elements (Figure 11.8), J2 uses the second ring, J3 uses the third ring, etc. 
Because of the finite element approximation, the value of J is different for each path. 
The first path for J1 is best discarded since it contains the singularity as a boundary. 
The true value for J is usually estimated as the average of the remaining paths.
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(11.42)

11.4 proBleMS

 1. Determine shape functions for a triangle with mid-side nodes from the 
eight-node quadrilateral by collapsing nodes 1, 4, and 8 together.

 2. Given the shape functions for the four-node rectangle, obtain the shape 
functions for a right triangle by setting X1 = X4, Y1 = Y4, U1 = U4, and V1 = 
V4. Show that these shape functions agree with those for the three-node 
triangle if ξ = 2ζ2 + 2ζ3 – 1 and η = (ζ3 – ζ2)/(ζ3 + ζ2).
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path 1 path 2

8

path 3
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fIgure 11.8 Element paths for J-integral evaluation.
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 3. For the singularity element (Section 5.9), given the shape functions 5.189 

and the mapping 5.187, prove that y
l= +
4

1 2η ξ( )  for the triangular element 

with quarter-point nodes (Figure 5.28).
 4. Use ANSYS to determine the stress intensity factor for a center crack (a = 2) 

in a 20 by 20 sheet assuming plane stress with E = 1, ν = 0.3, by the crack 
opening method. See Section 15.19.

 5. Determine the stress intensity factor for problem 4 using the J-integral 
method. See Section 15.20.
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12 Plates and Shells

A plate is a thin sheet of material of thickness h. We choose a rectangular Cartesian 
coordinate system so that the middle surface of the plate lies in the x–y plane. The 
coordinate z is then normal to the middle surface. Loads acting on the plane of the 
middle surface cause a state of plane stress, and the plate remains a flat sheet. We 
now consider the deformation of thin sheets by loads that act normal to the plane of 
the middle surface and therefore produce bending of the plate. After deformation, 
the plate will no longer be flat. It will be slightly curved. The following analysis is 
limited to small deformations. The transverse displacement is limited to the order 
of magnitude of the plate thickness, and the radius of curvature at any point is large 
compared to the plate thickness.

12.1 geoMetry of deforMatIon

The components of displacement can be represented in a power series in the variable 
z. If the plate is thin enough, we can obtain a satisfactory approximation by retaining 
only the lower-order terms:
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That is,
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The components of the strain tensor are therefore given by
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The in-plane strains for z = 0 are
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The approximate expression 12.2 cannot be used to calculate εzz. 

12.2 equatIonS of equIlIBrIuM

We will first calculate the stress resultants on cross sections of the plate along the 
coordinate lines. 

The sign convention is shown in Figure 12.1. On the cross section normal to 
the x axis, the resultant forces and resultant moments about the axes per unit edge 
length are
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On the cross section normal to the y axis the resultant forces and resultant moments 
about the axes per unit edge length are
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fIgure 12.1 Plate sign convention.
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The condition of equilibrium of an infinitesimal segment dx by dy of the plate evi-
dently requires the stress resultants to satisfy the following differential equations. 
From a summation of forces in the x and y directions, we find
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From a summation of forces in the z direction and a summation of moments about 
the x and y axes, we find 
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(12.10)

The applied loads per unit of plate area are px, py, and pz. The set 12.9 is the inte-
grated equations of the theory of plane stress for in-plane loading of the sheet. The 
system 12.10 is associated with the bending of the plate.

12.3 conStItutIve relatIonS for an elaStIc MaterIal

Since the plate is thin, the stress component τzz is of the order of magnitude of the load-
ing on the exterior surfaces of the sheet and much smaller than the primary stresses 
in bending τxx and τyy. It can be neglected in the stress–strain relations, so that
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From 12.3, 12.5, 12.7, and 12.12, the in-plane stress resultants have the constitutive 
relations:
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From 12.1, 12.6, 12.8, and 12.12, the stress resultants in bending are related to the 
deformations by the following constitutive relations:
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(12.14)

 Qx = Ghγxz,    Qy = Ghγyz. (12.15)

The constitutive relations 12.15 for the shear resultants can be improved as follows. 
The strain energy of the transverse shears is
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If there are no surface tractions, the shear stress is zero for z = ±h/2 and symmetric 
about the middle surface. To first approximation, we presume it to be parabolically 
distributed as for the bending of beams:
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(12.17)

where τ xz xQ h= /  and τ yz yQ h= /  are the average shear stresses. Then, substituting 
these expressions into 12.16, we find
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We now require that the strain energy of the plate be accurately given by expression 
12.16 but using the average shear stress and the strains at z = 0:
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This formula will agree with 12.18 if 
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Therefore, the constitutive relations 12.15 become

 Qx = kGhγxz,    Qx = kGhγxz, (12.21)

where k is a shear correction factor, approximately 5/6. These relations are used in 
place of 12.15.

12.4 vIrtual Work

The complete set of equations for the bending part consists of the geometric relations 
from 12.3 combined with the constitutive relations 12.14 and 12.21,
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and the equilibrium equations 12.10,
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(12.23)

where we drop the bar over the middle surface displacement w so that the bar can be 
used for virtual displacements.

The theorem of virtual work can be obtained by multiplying each equilibrium 
equation by a virtual displacement w and virtual rotations α  and β  and integrating 
over the area of the plate:
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Integrating by parts gives
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(12.25)

The left-hand side is the internal virtual work of the stress resultants and the right-
hand side is the external virtual work of the edge loads.

The virtual work formula shows that α is a rotation in the direction of Mx and β is 
a rotation in the direction of My. The positive directions are shown in Figure 12.1. Let 
θx = ROTX and θy = ROTY denote rotations about the respective axes with positive 
directions determined by the right-hand rule, then 

 

θ β

θ α

x

y

= −

= +

,

.
 

(12.26)



Plates and Shells 275

For matrix notation, we define
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The constitutive relations are then 

 Q = Cs γ (12.29)

 M = Cbκ, (12.30)

where
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The internal virtual work can then be written as
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where the bar indicates the virtual strains and curvatures.
The system of Equations 12.22 and 12.23 is of sixth order so the solution can 

satisfy three boundary conditions on each edge. The appropriate combination can be 
seen from the virtual work formula, 12.25:
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and
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An edge (say x = constant) for which w = 0 and Mx = 0 is said to be “simply sup-
ported.” There are therefore two kinds of simply supported edges: (1) β = 0 when 
the edge is supported by a rigid membrane that can provide the necessary twisting 
moments and (2) Mxy = 0 when the support provides no restraint for rotation about 
the normal.

12.5 fInIte eleMent relatIonS for BendIng

For the reduction to finite element formulation, we need shape functions for the dis-
placement w and the rotations α and β. However, direct implementation with lower- 
order shape functions has been found to introduce excessive stiffening in shear, 
known as shear locking, and the convergence for thin plates is slow or nonexistent. 
Numerous alternatives have been developed. We will present a four-node rectangular 
element that has been shown to work well.1–3

The degrees of freedom are the values of w, α, and β at the four nodes:
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where wi, αi, and βi are the nodal values of the parameters. The serendipity functions 
are used for interpolation of the functions:
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The shape functions are given by 5.10 and their derivatives by 5.13. From 12.28,

 κ = AbD, (12.37)

where Ab is given by 5.20 augmented by zeros for the wi degrees of freedom: 
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The bending part of the virtual work 12.32 is
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Since Cb is just h3/12 times the elasticity matrix for plane stress, the stiffness matrix 
kb is just h3/12 times the stiffness matrix for the four node rectangle, augmented by 
zeros for the w terms: 
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For the square element, with ν = 1/3, from 5.27:
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To avoid excessive influence of the shear term, full integration of the shear term in the 
virtual work formula is not used. Instead, further approximation of the shear strains 
is made as follows. From 12.4 and 12.36, at points A, B, C, and D, in Figure 12.2, 
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fIgure 12.2 Four-node plate element.
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The shear for the element is now interpolated linearly between the two opposite points:
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Combining these formulas, we have the representation for the shears:

 γ = AsD, (12.44)

where
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The same interpolations are used for the virtual displacements. From the virtual 
work formula 12.32, the shear part of the stiffness matrix for the element is given 
by
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For the analysis of shells, the plate bending stiffness must be combined with the 
membrane stiffness that can be derived from the plane stress analysis discussed in 
Chapter 5. We also need to introduce rotation about the z axis as an additional degree 
of freedom that alters the matrices.4

12.6 claSSIcal plate theory

In the limiting case of very thin plates, the shears γyz and γzx are very small and can be 
neglected in the last two equations of 12.4. Thus, for theory of very thin plates,
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Note that the shear strain is not zero, but it is small compared to the rotations. The 
formulas for γxz and γyz express the small difference of much larger quantities. There 
is then no constitutive relation for the shears, which become reactive quantities. This 
results in a reduction in the order of the governing differential equations. Combining 
12.10, 12.14, and 12.54, one obtains the single differential equation

 
∇ =4w

p

D
z ,

 
(12.55)

where

 
∇ = ∂

∂
+ ∂

∂
2

2

2

2

2x y
.
 

(12.56)



Plates and Shells 281

Since 12.55 is a fourth-order partial differential equation, the solution can satisfy 
only two boundary conditions on each edge. The appropriate conditions can be 
found from the virtual work formula. Using 12.54, from 12.25 the virtual work of 
the edge forces is
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On the side where x is constant, ny = 0, nx = 1, ds = dy, the virtual work of the edge 
forces is
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(12.58)

Therefore, the appropriate boundary conditions are
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This classical plate theory (CPT) does not allow separate boundary conditions on 
twisting moment and twisting rotation at a boundary. The combinations Vx and Vy 
are called the effective shear resultants. The last term in 12.58 is interpreted as a 
concentrated force of magnitude Mxy at the corner. A simply supported edge is mod-
eled by zero displacement and zero bending moment. At the corner where two simply 
supported edges meet, there is a concentrated force R = 2Mxy according to the CPT.

12.7 plate BendIng exaMple

Only a few solutions of the system of Equations 12.22 and 12.23 are known. One 
important situation that can be analyzed is the case of a rectangular plate with two 
opposite edges simply supported with zero twisting restraint (simply supported 
type I). To construct a solution for this problem, it is convenient to introduce the fol-
lowing functions.5
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From 12.22 and 12.23,
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From which it follows that
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where we have used k = 5/6. Once Equations 12.62 and 12.64 are solved, the plate 
bending deformations and stress resultants can be calculated.



Plates and Shells 283

As an example, we consider a uniform load p on the rectangular plate with edge 
conditions as shown in Figure 12.3:
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corresponding to the two sets of conditions that may be called simply supported.
The uniform load of magnitude p can be represented by a Fourier sine series in 

the x direction:
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Then, a solution can be constructed by series expansions:
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fIgure 12.3 Plate with mixed boundary conditions.
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(12.68)

Omitting the subscript n, we easily find a solution for each component of the load in 
terms of hyperbolic functions: 
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Because of the symmetry about the x axis, we need to retain only the following 
terms:
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(12.70)

The three constants are determined by the conditions on y = 0. The expressions are 
rather lengthy so I will not reproduce them here. 

This problem was solved for a = b by finite element method (FEM) (Section 
15.26). We only need to use one-quarter of the plate with support conditions as 
shown in Figure 12.4. A uniform 20 × 20 mesh for the one-quarter was used. 
The calculated displacement at the center of the plate for h/a = 0.1, compared 
to the thin-plate approximation (CPT) and the exact solution of the shear the-
ory using 400 terms in the series expansion, is shown in Table 12.1. The sup-
port reaction qx/(pa) on the edge x = 0 is shown in Figure 12.5. The support 
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reaction qy/(pa) on the edge y = 0, compared to the exact solution, is shown in 
Figure 12.6.

The finite element results are for the centroid of the element (y/a = 0.0125) and 
the exact solution is for y = 0. Note there is a large negative Qy force near the cor-
ner. This is the accurate description of the reaction represented by the concentrated 
corner force in the CPT. In addition to the force Qy, the support mechanism at this 
edge must provide a twisting moment Mxy/(pa2) as shown in Figure 12.7. The CPT 

ROTX = 0

ROTY= 0

ROTY = 0

p = 1w = 0
Mxy = 0

w = 0

y
x

fIgure 12.4 One-quarter of a plate with mixed boundary conditions.
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fIgure 12.5 Shear resultant along edge with zero twisting moment.
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resolves this combination of reactions into the effective shear reaction Vy and the 
corner reaction R.

Version 12 of ANSYS recommends the four-node element SHELL181 and the 
eight-node element SHELL281, which allow large deformations, plasticity, and vis-
coelasticity. Older versions of ANSYS offer several plate bending elements (43, 63, 
93, 143). Table 12.2 shows the results using element SHELL181 for h/a =0.1 and a 
20 × 20 mesh over one-quarter of the plate. Values of the stress resultants are at the 
element centroid. Maximum values are shown, except for the negative value of shear 
near the corner on the side with zero twisting rotation. SHELL181a uses the full 
integration option with incompatible modes. SHELL181b uses the reduced integra-
tion option.
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fIgure 12.6 Shear resultant along edge with zero rotation.
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fIgure 12.7 Twisting moment along edge with zero rotation.
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12.8 proBleMS

 1. Derive the virtual work formula 12.25 for bending of plates. Note that 

 

∂
∂

= ∂
∂

=∫ ∫ ∫ ∫f
x

a fn s
f
y

a fn s
A

x

c A

y

c

d d d d,
 

.

 

(12.71)

 2. Use ANSYS, SHELL281, to determine the deflection at the center for a uni-
formly loaded square plate with clamped edges for a = b = 20, h = 1, ν = 0.3, 
D = 100, so that E = 10.92. Use 1/4 of the plate and symmetry conditions. 
Submit element layout, maximum deflection, maximum and minimum val-
ues of moments and shears, and plot of QY for the clamped edge y = 0. See 
Section 15.27.

 3. Solve the plate bending problem shown in Figure 12.8 using a 10 × 10 grid 
over one-quarter of the plate and symmetry conditions. See Section 15.26. 
Use a = b = 10, h = 1, ν = 0.3, D = 1, so that E = 10.92. Submit:
(a) Maximum UZ and the (x,y) location.
(b) Maximum and minimum values of QY and (x,y) location.
(c) Graph of QY along line y = 0.

 4. Use ANSYS to analyze a cylindrical shell roof under gravity loading (Figure 
12.9).
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  The cylindrical shell is loaded by gravity in the y direction. The ends are 
supported by flexible membranes (walls) and the sides are free, E = 3 × 106, 
ν = 0, specific weight = 0.208 lb/in.3, r = 300 in., thickness = 3 in., length 
= 600 in. Do a stress analysis of one-quarter of the shell using double sym-
metry. See Section 15.28.
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13 Large Deformations

13.1 theory of large deforMatIonS

Let us select one known configuration of the body as a reference configuration in 
which the body occupies a known region R of space.* This can be the configuration 
at any time. We will use a single rectangular Cartesian coordinate system. Let Xk 
denote the position of a particle in the reference configuration. In a deformed con-
figuration r(t) at time t, this particle occupies a position xk. The motion relative to the 
fixed reference configuration is described by the mapping:

 xk = xk(X,t). (13.1)

The velocity of a particle is

 
v

x
tk

k= ∂
∂

.
 

(13.2)

The acceleration of a particle is

 
a

v
tk

k= ∂
∂

.
 

(13.3)

The tensor G with components

 
G

x
Xkm

k

m

= ∂
∂  

(13.4)

is called the deformation gradient.† The law of conservation of mass is 

 

ρ
ρ
0 = =G Jij .

 
(13.5)

The balance of momentum applied to an element of the deformed body gives‡

* For a complete treatment of the general theory, see Dill: Chapter 2. Refer to Preface.
† We use here G for gradient in place of the more common F, which is reserved for force.
‡ Throughout this section, the summation convention applies to repeated indices and their range is 

1, 2, 3.
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∂
∂
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b a T Tkm

k
m m km mk+ = =ρ ρ , , (13.6)

where Tij are the components of the true (Cauchy) stress tensor. This formulation is 
not convenient for finite element calculations since the independent variables are the 
unknown coordinates xk of a particle in the unknown deformed position. A change of 
variables leads to the more convenient form of balance of momentum:

 

∂
∂
P

X
b amk

k
m m+ =ρ ρ0 0 ,  (13.7)

where

 
P G T T G Pji ik kj rm ri mi= =−ρ

ρ
ρ

ρ
0

0

1 , .  (13.8)

The new tensor P is usually called the first Piola–Kirchhoff tensor.* Note that the 
derivatives are now with respect to the coordinates of position in the reference con-
figuration, which are known quantities.

13.1.1 Virtual work

If we multiply 13.7 by arbitrary functions ϕm(X), called virtual displacements, and 
integrate over the reference configuration, we have†

 

∂
∂
P
X

b a Vmk

k
m m m+ −







=∫ ρ ρ φ0 o d
R

0.

 

(13.9)

Integration by parts yields

 

P
X

V p A b a Vmk
m

k
m m m m m

∂
∂

= + −∫ ∫ ∫
∂

φ
φ ρ ρ φd d d0 0

R R R

( ) ,  (13.10)

where the vector

 pm = PmkNk (13.11)

is the surface traction per unit area of the reference configuration and N is the unit 
normal to the reference surface. This gives a physical interpretation for the Piola ten-

* P is the transpose of the Piola tensor in my book on continuum mechanics.
† The more usual notation is ϕm = δxm.
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sor P: Pij is the jth component of the traction per unit undeformed area acting on the 
deformed surface that was the ith coordinate surface in the undeformed body.

Equation 13.10 is the virtual work formula for large deformations. The balance 
of momentum is satisfied if and only if this relation holds for all smooth functions 
ϕm(X). In order to complete the theory, we need the specific constitutive relation for 
the material. We will consider here only elastic materials at uniform temperature.

13.1.2 elaStic MaterialS

An elastic material is one for which the stress in the deformed configuration depends 
only on the local deformation in that configuration and not on the history of deforma-
tion. Let the reference configuration be unstressed. The relation between stress and 
deformation must be such that the body remains stress-free in a rigid body motion. 
The general representation of such a relation is 

 
T G f Gij ik km jm= ρ

ρ0

)(C , (13.12)

where

 Cij = GkiGkj (13.13)

is the deformation tensor. Let us introduce the new tensor 

 S P G JG T G P G Sij mi jm ik km jm ki kj ij= = =− − −1 1 1, , (13.14)

which I will call the Kirchhoff tensor.* The constitutive relation then has a simple 
form 

 Sij = f(C)ij . (13.15)

Each function f defines a particular elastic material. We can show from thermo-
dynamic considerations that f is the derivative of the strain energy with respect to 
the strain tensor E:

 2Eij = Cij – δij, (13.16)

and†

 
S

W
E

W
ij

ij ij

= ∂
∂

= ∂
∂

( ) ( )
.

C C
2

C  
(13.17)

* S is what is often called the second Piola–Kirchhoff tensor; see Dill, p. 22. Refer to Preface.
† Since Eij = Eji, the variables are not independent and care must be taken in evaluating the partial 

derivatives; see Dill, p. 321. Refer to Preface.
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In tensor notation,

 
S

E C
= ∂

∂
= ∂

∂
W W

2 . (13.18)

Since C depends on the reference configuration, the form of the constitutive relation 
also depends on the choice of reference configuration.

If the material is isotropic, the strain energy depends only on the principal invari-
ants of C:

 I I I I J1 2 1
2 2

3
22= = − = =tr trC C C, , det . (13.19)

Their derivatives are
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1
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1 C

C
C, , . (13.20)

For an initial state of zero strain, C = 1 and therefore I1 = 3, I2 = 3, and I3 = 1. Let 
J1 = I1 – 3, J2 = I2 – 3, and J3 = I3 – 3. Then, equivalently, W = W(J1,J2,J3) and we can 
represent any material by a power series:

 

W c J J Jnmp
n m p

n m p

=
=

∞

∑ 1 2 3

0, ,

. (13.21)

Since there is a one-to-one correspondence between the principal invariants and the 
principal stretches α i ic= 2, we can also regard the free energy as a function of the 
principal stretches for an isotropic material.

 W = W(α1, α2, α3), (13.22)

where

 W(α1, α2, α3)W = W(α2, α3, α1)W = W(α3, α1, α2). (13.23)

A general formula is alternatively obtained by a power series in the principal 
stretches.1

From 13.18, the principal values of S are given by

 
S

W
c

W
i

i
i

i

= ∂
∂

= ∂
∂

−2 1α
α

( )no sum . (13.24)

Since the principal axes of C and S coincide for an isotropic material, this relation 
completely defines the constitutive relation. The principal stresses are
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T J

W
i i
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−1α
α

, (no sum). (13.25)

Since the sequence of partial derivatives can be exchanged, allowable expressions for 
the stress tensor are restricted by the relation
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α α α αj

i

i i
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j

JT JT
(no sum). (13.26)

To decide whether a specific model accurately characterizes a particular real mate-
rial, one must compare the predictions of the model with results of some laboratory 
tests on the material. The most common test for solids is the tensile test.

Let us consider a tensile test of a square rod. The x1 axis is in the direction of load-
ing. If l is the deformed length and l0 is the original length, the longitudinal stretch 
is α1 = l/l0 and the extension is δ = α1 – 1 = (l – l0)/l0. The extension is also called 
the “normal strain” or “engineering strain.” If a is the deformed width and a0 is the 
original width, the transverse stretch is α2 = α3 = a/a0. The area of the original cross 
section is A a0 0

2= . The area of the cross section of the deformed rod is A = a2. The 
ratio of the areas is therefore A/A0 = α2α3.

The deformation is described by

 x1 = α1X1,  x2 = α2X2,  x3 = α3X3. (13.27)

The nonzero components of the deformation gradient are

 G11 = α1, G22 = α2, G33 = α3. (13.28)

The nonzero components of the deformation tensor are

 C C C11 1
2

22 2
2

33 3
2= = =α α α, , .  (13.29)

The invariants of C are
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(13.30)

If F is the resultant force on the cross section, we have

 
P

F
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T

P
S

P
11 11

11

2 3
11
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1

= = =
o

, , .
α α α  

(13.31)

P11 is called the “nominal stress” or “engineering stress.” T11 is the true stress. 
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Experimental measurements provide P11, α1, α2, and α3 as a function of the exten-
sion δ1. For an isotropic material, the constitutive relations 13.15 have the form

 

S f

S f

S f

11 1 2 3

22 2 3 1

33 3 1 2

= ( )
= ( )
= ( )

α α α

α α α

α α α

, , ,

, , ,

, , ..

 (13.32)

For the tensile test of an isotropic material, α2 = α3 and S22 = S33 = 0. For measured 
values at times tn, n = 1 to N, we have 

 

f t t t S t

f t t

n n n n

n n

α α α

α α

1 2 2 11

2 2

( ), ( ), ( ) ( ),

( ), ( ),

( ) =

αα1 0( ) .tn( ) =  

(13.33)

The adopted constitutive relation must contain sufficient undetermined parameters 
so that relation 13.32 can fit the experimental data with sufficient accuracy. We will 
review some models below.

To separate the distortional strains from the volumetric strains, we will introduce 
as a measure of deformation2

 C C= −J 1 3/ , (13.34)

so that

 C = 1. (13.35)

The corresponding principal stretches are

 α αi iJ= −1 3/ . (13.36)

Note that

 α α α1 2 3 1= . (13.37)

The principal invariants of C and C are related by
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1 3
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,
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.  

(13.38)

We can regard the strain energy as a function of ( , , )I I J1 2  or of ( , , , )α α α1 2 3 J .
For a purely volumetric deformation α1 = α2 = α3 ≡ α, J = α3, so that I I1 2 3= = . 

This suggests the use of the invariants 
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 J I J I J J1 1 2 2 33 3 1= − = − = −, , ,  (13.39)

and expressing

 W W J J J= ( , , )1 2 3 . (13.40)

Examples are given below.
Any relation that applies to large deformations must also apply to small deforma-

tion gradients. From 13.4, we find*

 G = 1 + H (13.41)

where H is the displacement gradient. For small deformations

 H = O( )ε  (13.42)

where ε << 1. The small strain tensor is defined by

 
εε == 1

2
H H+( )T .

 
(13.43)

Up to first order,
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,

 

(13.44)

For the tensile test, αi = 1 + εi, where εi << 1, α εi i
2 1 2 + , etc. The invariants of C 

are approximately

 I1 ≐ 3 + 2tr ε,    I2 ≐ 3 + 4tr ε,    I3 ≐ 1 + 2tr ε. (13.45)

And tr ε = ε1 + ε2 + ε3 is the volumetric strain.

13.1.3 Mooney–riVlin Model of an incoMpreSSiBle Material

In this case, the material is modeled as incompressible, that is, ρ = ρ0 and the mean 
stress is determined by that constraint, rather than a constitutive relation. The 
Mooney–Rivlin relation is most compactly stated directly in terms of the true stress 
tensor. With respect to a stress-free reference configuration,

* We use here the standard matrix notation: for example, G = [Gkm], where k is the row index and m is 
the column index.
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 T p c B c Bij ij ij ij= − + − −δ 2 21 2
1,  (13.46)

where

 Bij = GikGjk, (13.47)

and p is an undetermined parameter that has to be found by solving the boundary 
value problem. The material is isotropic. For the tensile test, 

 B B B11 1
2

22 2
2

33 3
2= = =α α α, , ,  (13.48)

and the other components are zero. Therefore,
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(13.49)

The condition T22 = T33 = 0 shows that α2 = α3 and determines p as a function of the 
stretches. The condition of incompressibility is α1α2α3 = 1. Therefore,

 α α α2 3 1
1 2= = − /

 (13.50)

and the axial stress is

 
T c c11 1 1

2
1
1

2 1
2

12 2= −( ) − −( )− −α α α α . (13.51)

The nominal (Piola) stress, is 

 P T T11 2 3 11 1
1

11= = −α α α . (13.52)

Plots of load (nominal stress) versus extension and (true) stress versus extension 
are shown in Figures 13.1 and 13.2 for c1 = c2. In tension, the stress is nearly 
proportional to the extension, but the proportionality does not hold for large 
compressions.

13.1.4 generalized Mooney–riVlin Model

The Mooney–Rivlin model3,4 can be extended to allow for compressibility of the 
material by using the variables in 13.39 and the formula for the strain energy 13.40 
in the form

 
W aJ bJ J= + +1 2 3

2

2
κ .

 
(13.53)
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From 13.17,

 S = aA1 + bA2 + κ(J – 1)JC–1 (13.54)

where
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(13.55)
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fIgure 13.1 Load extension for tensile test of a Mooney–Rivlin material.
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fIgure 13.2 Stress extension for tensile test of a Mooney–Rivlin material.
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The stress tensor is given by

 
J a b J J aI bIT B B 1= − + − − +







−2 2 1
1
3

2
1
3

21
1 2κ ( ) , (13.56)

where

 B B= −J 2 3/ . (13.57)

If the material is incompressible, J = 1 and the stress–strain relation reduces to the 
incompressible form 13.46.

The principal stresses are

 
JT a I a I Jk k k= −



 − −



 + −−2 1

3
2 1

3
11

2
1 2

2
2α α κ ( ). (13.58)

The volume change is modeled by the simple relation

 
p J≡ = −1

3
1tr ( )T κ . (13.59)

For the tensile test, loading along the x1 axis, α α2 3=  and condition 13.37 gives 

α α2 1
1 2= − / . From 13.58,

 
JT a b1 1

2
1
1

1 1
22 2= −( ) + −( )− −α α α α .

 
(13.60)

Equations 13.59 and 13.60 determine α1 and α2 for a given T1. For a = b = 25 and κ = 
500, the solution is given in Table 13.1.

Figure 13.3 shows the stress–strain curve for the nominal stress, P1/a, versus the 
extension α1 – 1.

taBle 13.1
Mooney–rivlin Model

T1 α1 α2 P1 J αα1

10 1.0364 0.9855 9.713 1.00667 1.03411

20 1.0744 0.9711 18.862 1.01333 1.06973

30 1.1141 0.9568 27.465 1.02000 1.10680

40 1.1554 0.9427 35.545 1.02667 1.14527

50 1.1980 0.9287 43.126 1.03333 1.18502
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For small deformations, one finds

 
ττ == εε εε2 2 2

1
3

2 2( ) ( ) ( )a b a b+ + − +






κ tr 1 . (13.61)

Therefore,

 
2

2
3

( ) ,a b+ = = +µ κ λ µand .  (13.62)

That is, κ is the bulk modulus and μ is the shear modulus as measured for small 
deformations. We can write

 
a c b c= +( ) = −( )1

4
1
4

µ µ, .
 

(13.63)

There is then just one constant c to model the nonlinear behavior. We can fit only one 
data point on a measured nonlinear stress–strain curve. It is also possible to make an 
approximate fit to multiple measured points (see Section 13.2).

13.1.5 polynoMial forMula

The general representation 13.40 can be expanded in a power series. In doing so, we 
attempt to separate the volumetric and distortional strains by assuming a separation 
of the variable J3 from ( , )J J1 2 :
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(13.64)
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fIgure 13.3 Tensile test of Mooney–Rivlin compressible material.
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From 13.18,
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(13.65)

where A1 and A2 are defined by 13.55. For N = 3 and M = 1,
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(13.66)

From 13.14, the true stress is
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(13.67)

where
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For a purely volumetric strain: α1 = α2 = α3 = α, J = α3, J J1 2 0= = . In this case, from 
13.67,

 

1
3

1 2 1

1

tr n Jn
n

n

M

T = − −

=
∑ κ ( ) . (13.69)
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The principal stress and principal stretches are related by
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(13.71)

 α α α1 2 3 1= . (13.72)

where T̂ T= J  is the weighted, or Kirchhoff, stress measure.
In terms of the constants cnm, the case N = 1 is known as the two-element model, 

N = 2 as the five-element model, and N = 3 as the nine-element model. The two-
element model with one volume term is identical to the compressible Mooney–Rivlin 
model (13.53). For the two-element model,

 

1
3

1tr JT = −κ ( )
 

(13.73)

for volumetric strain, and 
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for distortion.

13.1.6 ogden’S function

Using the reduced principal stretches 13.36, a possible polynomial expansion is 
Ogden’s potential:
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where μi, ai, and κk are the experimentally determined material constants. Applying 
this relation to the case of small deformations, we find that the shear modulus 

µ µ=
=∑ ai i

i

N

1
 and κ1 is the bulk modulus. The case a1 = 2 and a2 = –2 leads back to 

the Mooney–Rivlin model. Since α α α1 2 3 1= ,

 I2 1 2 2 3 3 1 1
2

2
2

3
2= + + = + +− − −α α α α α α α α α . (13.77)

Using only the first two terms of the series and one volume term, 13.25 gives
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The small deformation shear modulus μ = μ1 + μ2 and κ1 is the bulk modulus.

13.1.7 Blatz–ko Model

The following constitutive relation for isothermal deformations of an isotropic elas-
tic material was originally devised from experiments on polyurethane foam.5,6 The 
formula for the strain energy is 
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(13.79)

Using 13.20, the stress–strain relations is found to be
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(13.80)

For small deformations, using 13.45 and S ≐ τ, the stress–strain relation is

 τ = 2με + μ(tr ε)1. (13.81)

We see that μ is the shear modulus and the Poisson ratio is ν = 1/4, that is, λ = μ.
To illustrate the behavior of this material, let us consider the tensile test. Using 

13.29, 

 
S I I I Ii i i i= − − +( )− − −µ α α α3
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2
2
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3
3 2 2/ . (13.82)

For a tensile test along the x axis, S2 = S3 = 0, and we find that

 α α α α2 3 2
4

1
1= = −, . (13.83)
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It then follows that

 
S1 1

3 2
1

4= −( )− −µ α α/ .
 (13.84)

The true stress is

 
T11 1

5 21= −( )−µ α / .
 

(13.85)

The nominal stress (Piola tensor) is

 
P11 1

1 2
1
3= −( )− −µ α α/ .

 
(13.86)

Some calculated values are shown in Table 13.2.
The results are plotted in Figure 13.4, where G denotes the shear modulus μ. The 

material is not stable for large stretch: dS11/dα1 = 0 at α1 = 1.48. The model cannot 

taBle 13.2
Blatz–ko tensile test
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fIgure 13.4 Stress vs. stretch for tensile test of Blatz–Ko model.
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apply to a real material for greater stretches, and one can expect computational dif-
ficulties if the Piola (nominal) stress approaches one-half of the shear modulus, or 
any stretch ratio approaches 1.5.

13.1.8 logarithMic Strain MeaSure

The logarithmic strain measure is defined as

 

e V n n= =
=

∑ln( ) ( )ln α i i i

i 1

3

 

(13.87)

where (αi,ni) are the eigenvalues and eigenvectors of the left stretch tensor V = GGT. 
The constitutive relation 

 T = 2μe + λ tr(e)1 (13.88)

satisfies objectivity and describes an isotropic material. For a tensile test with true 
stress T11 = σ and extension α – 1,

 σ/E = ln(α). (13.89)

This relation is linear up to three significant figures for 0 ≤ σ/E < 0.001. The rela-
tion is nearly linear even for much larger extensions (Figure 13.5). This constitutive 
relation is used by ANSYS when the material model is specified as linear elastic 
isotropic and large displacement effects are enabled (NLGEOM ON).
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fIgure 13.5 True stress vs. logarithmic strain.
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13.1.9 yeoh Model

Let us consider the series representation 13.64 but retain only the lower-order terms 
in I1:

 W = a1(I1 – 3) + a2(I1 – 3)2 + a3(I1 – 3)3. (13.90)

An incompressible model with this strain energy function has been found to provide 
fit data on carbon black–filled rubber vulcanizates.7 In this case,

 
T 1 B= − + ∂
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I
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1

.
 

(13.91)

In a simple shearing motion,

 B = 1 + k(e1e2 + e2e1) + k2e1e1. (13.92)

The corresponding shear stress is

 T12 = 2a1k + 4a2k3 + 6a3k5. (13.93)

For small deformations k is the shear strain, so the shear modulus is μ = 2a1. For 
filled rubber, the constant a2 is typically negative and the constant a3 is a small frac-
tion of the shear modulus.

For the tensile test,

 B e e e e e e= + +α α α1
2

1 1 2
2

2 2 3
2

3 3. (13.94)

The principal stresses are
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2α ( ) ( ) . (13.95)

Since α α α2 3 1
1 2= = − /  for the incompressible model, we find from T2 = 0 that
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The Yeoh model can be extended to compressible materials by introducing the 
modified invariant I1 in place of I1 and choosing a model for volumetric strain 
such as
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From 13.18,
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For small deformations J ≐ 1 + tr ε, I1 ≐ 3 + 2tr ε, I1 3 , C–1 ≐ 1 – 2ε,

 
S 1= + −
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(13.99)

Therefore, the shear modulus μ = 2a1 and the bulk modulus κ = 2b1.

13.1.10 fitting conStitutiVe relationS to experiMental data

In practice, we begin with the results of material testing and we have to adjust the 
coefficients in the constitutive model to fit the measured data with adequate accu-
racy. In principle, the polynomial formula 13.21 can fit any experiment, but in prac-
tice we must truncate the series at some point and the determination of the remaining 
coefficients from the experimental data is difficult. ANSYS provides for direct input 
of experimental data and determination of the material parameters of the model to 
fit the data by a linear or nonlinear regression analysis. The minimum experimental 
test data needed to characterize the material are those from a tensile test and a volu-
metric deformation. 

13.1.10.1 volumetric data
The measured data consist of the mean pressure p = –tr T/3 and the ratio J of 
deformed volume to undeformed volume. For example, for the polynomial model, 
from 13.73,

 

p n Jn
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= − − −

=
∑ κ ( ) .1 2 1

1  
(13.100)

The material constants κn are determined by fitting this formula to the measured 
curve of p versus J.

13.1.10.2 tensile test
Suppose the x axis is the loaded direction; for an isotropic material, the coordinate axes 
are principal axes of stress and strain. The true stress is T1. The transverse stretches 
are equal, α2 = α3, and the ratio of deformed volume to initial volume is J = α α1 2

2. The 
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nominal stress P1 is the load divided by the original area, P T J T1 2
2

1 1
1

1= = −α α  and the 
Kirchhoff stress measure is T̂ JT1 1= . One measures α2, α1, and P1. This determines 
the stress–strain curve ˆ ( )T1 1 1versus α − . For example, for the polynomial model, from 
13.70 with T̂2 0=  and α α2 1

1 2= − / ,
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(13.101)

A curve fit to the tensile test data determines the material constants cnm.

13.1.10.3 Biaxial test
A thin sheet is loaded by tension in two orthogonal directions in the plane of the 
sheet: T1 = T2, T3 = 0, α2 = α1. From 13.70–13.72 with α α1

2
3 1= ,

 
T̂ c c1 10 1

2
1

4
01 1

4
1

22 2= −( ) + −( )− − −α α α α . (13.102)

This test can be used in place of the tensile test or in addition to it.
Examples are provided in Sections 15.37 and 15.38. If no volume data are entered, 

ANSYS assumes an incompressible material (except for the Blatz–Ko model). The 
ANSYS program sometimes returns unrealistic values and must be used only as a 
starting point and with caution.

13.2 fInIte eleMentS for large dISplaceMentS

The equilibrium condition is expressed by the virtual work formula 13.10:
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R R R∂
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(13.103)

Integration is over the chosen reference configuration. In this section, the reference 
configuration is the unstressed initial body. We divide that configuration into finite 
elements and generate the variational function ϕ by using the shape functions for the 
elements:

 

φ φi iK K

K

i iK KN D N D= { }   { } =∑ == ,, φφ ND,

 

(13.104)

where D denotes arbitrary (virtual) nodal displacements. The gradients of ϕ are
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or, arranging the gradient in a column matrix using the FORTRAN ordering,
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(13.106)

Since the virtual work formula 13.103 must hold for arbitrary DK, we find the follow-
ing finite element version of the virtual work formula in matrix notation:

 

A P N p N bT T T
0d d dV A V

m m m
m m mR R R

∫∑ ∫∑ ∫∑= +
∂ ∂

ρ , (13.107)

where the components of the Piola tensor P, the surface traction p per unit un deformed 
area, and the body force b per unit mass, are put into column matrices using the 
FORTRAN ordering: P = {Pα}, Pα = Pij, α = i + 3( j – 1).

The right-hand side of 13.107 is the usual matrix of given external nodal F forces 
at any time t. The left-hand side is the matrix of internal nodal forces f due to 
stresses that balance the external forces. Equation 13.107 therefore simply states 
that

 f(t) = F(t), (13.108)

where
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(13.109)

The basic equations for large displacements are nonlinear. In order to solve them, 
one must resort to step-by-step or to iterative procedures. For each step in time, we 
have

 

d d dTf A P= ∫∑ V

m
m R

. (13.110)
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The reference configuration is arbitrary but the Piola tensor depends on the choice 
of reference configuration.

13.2.1 lagrangian forMulation

Let us first suppose that the reference configuration is the initial configuration of 
the body, which is also the unstressed configuration. The reference configuration 
is fixed throughout the calculation. Whatever the actual form of the constitutive 
relation of elasticity, we see from 13.14 and 13.15, that P is a nonlinear function 
of G:

 P G= F ( ). (13.111)

Hence,

 

d d

d d
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T

P C G=

=

,

,P C Gij ijkm km  
(13.112)

where CT is the matrix of derivatives of F with respect to G that we will call the 
tangent modulus matrix: CT = CT(G). Thus, 13.110 becomes
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m
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(13.113)

From 13.4, if dx is the incremental change in position vector,

 
d dG

X
xkm

m
k= ∂

∂
.
 

(13.114)

We can use the finite element shape functions to approximate the incremental posi-
tion vector dx in each element

 

d d

d d

x N D=

=

,

,x N Dk kM M  
(13.115)

where dD is the incremental change in nodal displacements for a step change in time. 
Note that N depends only on X and not on time t since the reference configuration 
is fixed. Then,

 dG = AdD (13.116)

for each element, and formula 13.113 for change in internal nodal forces becomes

 df = KTdD, (13.117)
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where
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(13.118)

is the tangent stiffness matrix formed by merging the tangent stiffness matrix for 
each element. We will prove below that CT is symmetric (C Cijkm kmij

T T= ) so that KT is 
symmetric.

13.2.2 BaSic Step-By-Step analySiS

The solution can now be constructed via step-by-step or iteration procedures. For the 
basic step-by-step procedure,

 f(t + dt) = f(t) + df(t) (13.119)

and we seek the incremental nodal displacement such that

 f(t + dt) = F(t + dt). (13.120)

Using 13.117, 

 KT(t)dD(t) = F(t + dt) – f(t). (13.121)

F is given and f is determined by 13.109. Given the solution up to time t, we calcu-
late the incremental displacement dD(t) and march the solution forward in the usual 
manner:

 D(t + dt) = D(t) + dD(t). (13.122)

This procedure requires a load correction in each step. It is sometimes sufficiently 
accurate to set F(t + dt) = F(t) + dF(t) and f(t) = F(t). Then, the equations to be formed 
and solved simplify to

 KT(t)dD(t) = dF(t) (13.123)

for each step. The steps will, of course, have to be smaller than if 13.121 is used.

13.2.3 iteration procedure

As the basic step-by-step procedure proceeds, there is an increasing error that pro-
duces an imbalance between the internal and external node forces. We can use the 
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fundamental relation 13.117 to determine corrections to the node displacements, and 
therefore to the stresses, which will correct the unbalanced nodal forces. At any fixed 
load F, having some approximation f i for the internal node forces, we seek correc-
tions such that 

 f i + df i = F. (13.124)

Using 13.117, we have

 K D R F fTd
i i i i= ≡ −  (13.125)

where tangent stiffness is constructed from the existing approximation for stress and 
deformation. It can be updated after each iteration or not. From the calculated improve-
ment dDi in nodal displacement, we calculate the improvement in displacement gra-
dient by 13.116, in stress from 13.111, and in internal node forces f by 13.110. This 
process is repeated until the unbalanced node forces Ri = F – f i are sufficiently small.

13.2.4 updated reference configuration

The procedure described above, where the calculations are referred to as a single 
unstressed reference configuration, is called the Lagrangian procedure, or the total 
Lagrangian procedure, in the finite element literature. Note that the external trac-
tions are the loads per unit area of the reference configuration.

It is also possible to change the reference configuration before any step in the cal-
culation. If it is changed to the current configuration, the procedure is known as the 
updated Lagrangian method. If the loads are specified relative to the deformed con-
figuration, the updated Lagrangian method can handle the surface tractions directly, 
whereas the Lagrangian formulation cannot.

The Piola tensor 13.8 depends on the reference configuration. If the reference con-
figuration is changed in the virtual work formulation 13.10, it is necessary to intro-
duce the Piola tensor with respect to that new reference configuration. Let 



Xk  denote 
the coordinates of a material particle in the updated configuration (Table 13.3).

Define the respective deformation gradients by
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(13.126)

taBle 13.3
reference configurations

position density

X ρ0


X


ρ
X ρ



314 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

Note that

 G G Gkm ki im=


o .  (13.127)

The Piola tensor with respect to the updated configuration is 
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1 .
 

(13.128)

Using 13.8, we find that 
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(13.129)

For the step-by-step or iteration analysis, we also need the relation of the increment 
of 


P  to the increment of 


G:

 d d
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From 13.112, 13.127, and 13.129, we find 
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Thus,
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(13.132)

With respect to the updated configuration 


R , the internal resisting nodal forces are
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m
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(13.133)

in place of 13.109. Using 13.130, we have

 d dTf K D=


 (13.134)

in place of 13.117, with
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T d

m

= ∫∑ ( ) V
m R

. (13.135)

The element matrices 


A can be determined from an entirely new element layout for 
each configuration, but in the updated Lagrangian procedure one typically generates 
the new element configuration by using the original element layout with updated 
nodal coordinates. 
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The external nodal forces with respect to the updated configuration are

 

F N p N b= +
∂
∫∑ ∫∑



 

 

T Td d

m m

A V
m mR R

ρ ,

 

(13.136)

and 


p is the traction per unit area of the configuration 


R.
The solution now proceeds using the step-by-step formula or the iteration formula. 

Note, however, that the solution to elasticity problems with large displacements may 
not be unique and a single-step solution may locate an unexpected equilibrium con-
figuration. Thus, it is generally best to trace the solution step by step and use iteration 
within the step to refine the solution. This is especially true if buckling is possible 
in any situation.

13.2.5 exaMple i

Table 13.4 shows the analysis of the tensile test using ANSYS for the incompressible 
Mooney–Rivlin material for the case c1 = c2. The “load” is P11/c1 and the stretch is 
α1. This is a 3D analysis using the element Solid185 for which one-element models 
the tensile test exactly. The total load was applied in 10 steps with program-chosen 
iterations in each step using the default convergence criterion (L2 norm on force with 
a tolerance of 0.001). This resulted in two iterations in step 1 and increased to 20 
iterations in step 10. The results agree with the exact formula 13.52 to five decimal 
places.

13.2.6 exaMple ii

As a second example, let us consider a sheet of rubber that is bonded to a rigid 
support along one side and extended by a uniform tension along the opposite side. 

taBle 13.4
tensile test of Mooney–rivlin Material

P11/c1 by fea α1 P11/c1 by (28.47)

0 1 0

0.4 1.03508 0.40000

0.8 1.07403 0.80000

1.2 1.11746 1.20000

1.6 1.16609 1.60000

2 1.22074 2.00000

2.4 1.28235 2.40000

2.8 1.35190 2.80000

3.2 1.43041 3.20000

3.6 1.51887 3.60000

4.0 1.61803 4.00000
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We can treat the sheet as a plane stress problem. The rubber was analyzed as a 
Mooney–Rivlin Material with c1 = c2 = 0.5 psi and κ–1 = 0.001(ν = 0.499). The sheet 
is a 1-unit square and it is divided into 400 equal square elements that are formed 
from four-node Solid 182 with reduced integration. The total load of P11 = 2.5 psi 
was applied in 10 steps with program chosen iterations in each step using the default 
convergence criterion (L2 norm on force with a tolerance of 0.001). This resulted in 
two iterations in each step. The resulting extension is Ux = 0.873634. The calculated 
load displacement is shown in Figure 13.6. Figure 13.7 shows the deformed shape. 
Note the wavy edge calculated with this rather coarse mesh.

The procedure based on 13.125 is known as the Newton–Raphson procedure. 
Modifications in this procedure abound. For instance, one may use for KT the stiff-
ness matrix for some prior iteration, even the initial matrix for zero load. One may 
also update the stiffness matrix only after several iterations, and so forth.

This iteration for a given load can be applied after each step of the step-by-step 
method in order to improve the accuracy of that step. In the extreme case, it can be 
applied to reach the solution for the total load in one step, since the elasticity solution 
is not history- or path-dependent.
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fIgure 13.6 Stretching of a Mooney–Rivlin sheet.
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fIgure 13.7 Deformed shape in sheet tension of a Mooney–Rivlin material.
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Most frequently, one uses the step-by-step procedure to make the initial approxi-
mation, and then iteration to improve that approximation, before marching forward 
another step. This allows one to take rather large steps and maintain an acceptable 
magnitude of error in the solution.

13.3 Structure of tangent ModuluS

For an elastic material, the dependence of P on G is restricted by the requirement 
that S is derived by the gradient of the strain energy. From 13.8 and 13.12, 

 Pmk = SkiGmi. (13.137)

Therefore,

 
  P S G S Gmk ki mi ki mi= + .  (13.138)

From 13.15 and 13.17,

 

   S
W

C C
C c C c G Gij

ij km
km ijkm km ijks rk rs= ∂

∂ ∂
= =2 2

2

.
 

(13.139)

Therefore,

 c c c cijkm jikm ijmk kmij= = = .  (13.140)

Therefore,

 
  P c G G G S Gmk kips rp mi rs ks mr rs= +2 δ . (13.141)

The tangent modulus in relation 13.112 has the form

  P c Gkm kmrs rs= T . (13.142)

The tangent modulus therefore has the form

 c c ckmrs kmrs kmrs
T = +0 1 ,  (13.143)

where

 c c G Gmkrs kips rp mi
0 2= , (13.144)

 c Smkrs ks mr
1 = δ .  (13.145)

We see that

 c ckmrs rskm
T T= ,  (13.146)
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which proves that the tangent modulus is symmetric.
Substituting 13.143 into 13.118, one finds that the stiffness matrix has the form

 KT = K0 + K1, (13.147)

with an obvious notation. The part K0 of the tangent stiffness matrix is similar to the 
stiffness of the linear theory but corrected for large displacements. The matrix K1 is 
the correction for the direction of components of the internal stress in balancing the 
nodal forces. If the internal stresses are tension, this produces a stress stiffening. If 
the internal stresses are compressive, this correction can actually add to the effective 
external loads to produce additional displacements, and if the current stresses are 
large enough negatively so that

 det(K0 + K1) = 0, (13.148)

and buckling occurs. The solution can then be stepped further only when inertial 
forces are included.

The significance of the terms K0 and K1 is more apparent if the current configura-
tion is chosen as the reference configuration for the next step in the calculations. In 
this case, 



Gkm km= δ  and G Gkm km
0 = . From 13.132, 13.143, and 13.145:

 



 

c G G c G G Sijrk im ks mjrs im ks ms jr= +ρ
ρ

ρ
ρ

δ
0 0

0 .
 

(13.149)

By 13.14, the last term depends only on the current stress*:

 



 

c G G c Tijrk im ks mjrs ik jr= +ρ
ρ

ρ
ρ

δ
0 0

0 .
 

(13.150)

That is, K1 depends on the current stress.
Buckling problems often involve small displacements before buckling occurs. For 

small deformations, Gij ≈ δij and ρ ≈ ρ0, and Equation 13.150 reduces to

 


c c Tijrk ijrk ik jr= + δ , (13.151)

where the first term represents the elasticity coefficients for small strains. This leads 
to formulation of buckling as an eigenvalue problem.†

13.4 StaBIlIty and BucklIng

In the nonlinear theory, some interesting features can occur that do not occur in the 
linear theory. In particular, all of the various kinds of buckling phenomena (bifurca-
tion or snap-through) may be encountered.

* ANSYS activates the first term by NLGEOM ON and the second term by SSTIFF ON.
† ANSYS adds the second term by PRESTRESS ON.
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13.4.1 BeaM–coluMn

A column with one end fixed and the other free has an axial load P as shown in 
Figure 13.8. The cross section is 0.5 in.2, A = 0.25, I = 1/192, L = 100 in., E = 30 × 
106 lb/in.2. The Euler buckling load is Pcr = 0.25π2EI/L2 = 38.553 lb. The column 
is modeled by 10 Beam3 elements of equal length. The buckling load by the FEM 
is 38.553 (see Section 15.23). In a real situation, the system is not perfect and lat-
eral displacement of the column will occur. As the buckling load is approached the 
lateral displacement becomes large, and a large deformation formulation is needed 
to investigate this phenomenon. A small lateral load can be applied to simulate an 
imperfection. Figure 13.9 shows the lateral displacement if the load is ramped up to 
P = 44 lb, exceeding the Euler buckling load (see Section 15.24).

13.5 Snap-through BucklIng

If det KT = 0 or if there is no nearby equilibrium configuration for the next step 
in external load, the basic methods described above will fail. This can happen for 
structures that exhibit the oil-canning or snap-through behavior (Figure 13.10). To 
extend the solution beyond the critical point, one needs to allow the external loads to 
decrease in the next step.

To formulate such a procedure, let us consider the so-called proportional loading: 
F(t) = λ(t)Fm, where λ is a scalar multiplier and Fm is a matrix of reference loads, 

L

P
y EI

fIgure 13.8 Axially loaded column.

0

5

10

15

20

25

30

35

40

45

50

Lateral displacement
20 30 40 50 60100

A
xi

al
 lo

ad
 

fIgure 13.9 Post-buckling of an imperfect column.
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typically the maximum loads to be applied in the analysis. The balance of internal 
and external node forces becomes

 λ(t)Fm = f(t). (13.152)

For a step Δt, we have

 

F f

F f K D

K

( ) ( ),

( ( ) ) ( ) ( ) ,

( )

t t t t

t t t

t

+ = +

+ = +

∆ ∆

∆ ∆

∆

λ λ m T

T DD F f= + −( ( ) ) ( ).λ λt t∆ m  

(13.153)

We now suppose that a solution, λa and Da, has been established for some load-
ing, and seek an extension of the solution to a nearby configuration by the iteration 
scheme

 KTΔDi = (λi + Δλi)Fm – f i. (13.154)

The solution of this relation has the form

 ∆ ∆ ∆Di i i= +λ D Dm , (13.155)

where

 KTDm = Fm, (13.156)

 K D F fT m∆ i i i= −λ . (13.157)
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fIgure 13.10 Snap-through buckling.
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We need a method for determination of Δλi. The arc length method8–10 can be 
used.

A step change in D and λ has length s given by (using nondimensional variables)

 
s D Di

K
i

K
a

K

2 2 2= − + −∑( ) ( )λ λa . (13.158)

This is illustrated in Figure 13.11 for a single degree of freedom system. We 
choose the first step so that s is small and hold s constant for subsequent itera-
tions. This allows the load parameter λ to decrease if necessary while the magni-
tude of displacement increases. The derivative of 13.158 provides the constraint 
relation:

 
( ) ( ) .λ λ λi i

K
i

K
a

K
i

K

D D D− + − =∑a ∆ ∆ 0  (13.159)

Using 13.155, we find

 

∆
∆

λ
λ λ

i
K
i

K
a

K
i

K

i
K
i

K
a

K
m

K

D D D

D D D
=

− −

− + −

∑
∑
( )

( )a

. (13.160)

The increment in displacement can now be calculated from 13.155. The tangent stiff-
ness can be unchanged in each iteration or updated as corrections are made to the 
updated reference configuration.

The finite steps calculated by 13.159 will result in small increases in arc length s 
defined by 13.158 as shown in Figure 13.11. For a single degree of freedom, let

 ti = (Di – Da)e1 + (λi – λa)e2, (13.161)

 ni = ΔDie1 + Δλie2. (13.162)

Da Di

λa

λi
∆Di

∆λi

s

fIgure 13.11 Arc length method.
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The condition ∣ti∣ = s and condition 13.159 are equivalent to the condition ti ∙ ni = 0, 
that ti and ni are orthogonal. Each iteration to ti+1 = ti + ni will therefore increase the 
arc length slightly to a = ∣ti+1∣:

 a2 = s2 + (Δλi)2 + (ΔDi)2. (13.163)

A simple correction can be made to preserve the arc length.11 The vector

 
r ti ia s

a
= − − +1

 
(13.164)

is the correction needed to preserve the arc length. From the geometry of the right 
triangle in Figure 13.11, we find

 
t r t ti i i ia s

a
a s s

a
⋅ = − − ⋅ = − −+1

2( )
. (13.165)

The corrected step mi = ni + ri is not orthogonal to ti. Let

 
R

a s s
a

i i i i i= ⋅ = ⋅ = − −
t m t r

( ) 2

. (13.166)

The corrected increments Δλi and ΔDi are given by

 mi = ΔDie1 + Δλie2. (13.167)

Using 13.155 and inserting into 13.166, we find the formula for the corrected load step:

 
∆

∆
λ

λ λ
i

i i
a

i

i i
a m

R D D D

D D D
= − −

− + −
( )

( )
.

a

 (13.168)

The modified procedure for multiple degrees of freedom is as follows:

 1. ∆
∆

λ
λ λ

i
K
i

K
a

K
i

K

i
K
i

K
a

K
m

K

D D D

D D D
=

− −

− + −

∑
∑
( )

( )a

 (causes growth in arc length)

 2. ∆ ∆ ∆D D Di i
m

i= +λ

 3. a s Di i2 2 2
2

= + +( )∆ ∆λ  (increased arc length)

 4. R
a s s

a
i = − −( ) 2

 (correction factor)

 5. ∆
∆

λ
λ λ

i

i
K
i

K
a

K
i

K

i
K
i

K
a

K
m

K

R D D D

D D D
=

− −

− + −

∑
∑

( )

( )a

 (correction to load factor)

 6. ∆ ∆ ∆Di i
m

i= +λ D D  (using corrected load factor)
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13.5.1 Shallow arch

The procedure will be illustrated by application to a shallow arch formed by two 
axial-force members (Figure 13.12).

Each member has an area A, a modulus E, and an axial tensile force P. The only 
degree of freedom is the downward displacement D of the joint. Because of the 
symmetry, we only need to consider the left half of the structure. The internal nodal 
resisting force is 

 
f P

V D
L

= −( )
.
 

(13.169)

The constitutive relation for the member is 

 
P P L P C L C

P
L

= = = ∂
∂

( ), ,d d . (13.170)

The deformed length L is related to the displacement by

 L2 = H2 + (V – D)2, (13.171)

so that

 
d dL

V D
L

D= − −
. (13.172)

Therefore,

 dF = KdD, (13.173)

where

 
K C

V D

L

P
L

V D

L
= − + − −





( ) ( )2

2

2

2
1 . (13.174)

If P is a sufficiently large negative (compression) number, the stiffness goes to zero 
and the arch buckles.

F

V
HH

fIgure 13.12 Shallow arch.
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If the rise V is small compared to the length, the extension of the rod is small so 
the specific constitution relation used is not significant. The simplest example is

 
P

AE
L

L L= −
0

0( ),
 

(13.175)

where A is the area, E is the modulus of elasticity, and L0 is the initial length. 
Numerical calculations were made for H = 50, V = 1, and AE = 107. The steps in the 
calculation are listed in Section 15.25. The calculated and exact relations agree and 
are as shown in Figure 13.10. Of course, the portion of the curve with negative slope 
is statically unstable and if the load is applied as a ramp function, a jump to the right 
branch will occur dynamically and inertial forces must be included if one is to track 
the actual deformations.

The maximum and minimum points on the graph are points where dF = 0 and 
therefore K = 0. From 13.174, using 13.171 and 13.175 to eliminate P and (V – D), we 
find L/H = (L0/H)1/3. Then, from 13.171,

 D V H L H= − ( / ) ,2 1  (13.176)

from which the corresponding value of F can be calculated.

13.6 proBleMS

 1. For the tensile test, x1 = α1X1, x2 = α2X2, x3 = α3X3. If the total axial load is 

F and T11 is the true axial stress, prove that P11 = α2α3T11 and S
P

11
11

1

=
α

.

 2. Determine the relation between the axial load and the extension of the rod 
in a tensile test if the material is a Mooney–Rivlin material with c1 = c2.

 3. Consider the tensile test of a Blatz–Ko foam.

(a) Show that 
1

11 1
1 2

1
3

µ
α αP = −− −/  and 

1
111 1

5 2

µ
αT = − − / .

(b) Given the initial length = 1 and P11 = 40, calculate T11. Determine the 
displacement of the other end if the end X1 = 0 is fixed.

 4. Given: a Blatz–Ko material with μ = 100. Consider a tensile test of a cube 
of side length 1 unit, subjected to a force of 40 units normal to the edges x = 
constant.
(a) Use ANSYS to determine the stretches and the true stress (see Section 

15.22). Note that you only need one element since the displacements 
are uniform over the element. Use the Solid 185 element. Use t =1 and 
a step size of 0.1.

(b) Compare the solution by ANSYS to the exact formula.
 5. Consider stretching of a nonlinear elastic sheet (Figure 13.13) with a = b = 1, 

p = 100, a Blatz–Ko material (μ = 200). Use a four-node plane stress ele-
ment (Plane182). Use the upper half of the sheet and symmetry conditions. 
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Note that p = 100 is a given load per unit reference area and not a pressure 
per unit deformed area. Submit:
(a) A list of load p versus u(0,1)
(b) A graph of load p versus u(0,1) (see Section 15.21)

 6. Given a steel column (E = 30 × 106 psi, ν = 0.3), of length 10 in., with a 
square cross section 1 × 1 in. (A = 1, I = 1/12). One end is fixed and the other 
is free (Figure 13.14).
(a) Determine the buckling load by ANSYS using 10 Beam3 elements 

(Section 15.23).
(b) Compare that result with the theoretical buckling load.

 7. Using ANSYS, determine the buckling load for the column in problem 6 if 
it is a pin-ended column.

 8. Consider an axially loaded column with one end fixed and the other free. 
The cross section is 0.5 in.2 and the length is 100 in. The material is steel 
with E = 30 × 106 psi and Poisson ratio of 0.3.
(a) Use ANSYS to determine the Euler buckling load (Answer: Pcr = 

38.553 lb).
(b) Use ANSYS to determine the post buckled shape for loading of P = 44 

lb. Apply a small lateral force to instigate lateral displacement. (See 
Section 15.24.)

 9. Use ANSYS to determine the equilibrium configurations for the linkage of 
Figure 13.12 with H = 50, V = 1, F = 75. For each member, A = 1, E = 10 × 
107. (See Section 15.25.)

p
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y

a

fIgure 13.13 Stretching of a sheet.

L

P y

x

fIgure 13.14 Column compression.
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14 Constraints and Contact

14.1 applIcatIon of conStraIntS

We often encounter situations in which the degrees of freedom D are not indepen-
dent or they are limited in range. This is often expressible as a constraint of the form 
of n linear equations:

 CD – Q = 0, (14.1)

where matrices C and Q are constant. For example, consider the axially loaded rod 
in which one element is modeled as a rigid body (Figure 14.1). This condition can be 
applied as a constraint on the nodal displacements:

 u1 – u2 = 0. (14.2)

The constraints could be applied directly to the assembled finite element equations 
to reduce the number of independent variables. However, it is more convenient to 
incorporate the constraints 14.1 indirectly in order to provide for the general situa-
tion. There are two commonly used methods to do this: Lagrange multipliers and the 
penalty method.

14.1.1 lagrange MultiplierS

In the Lagrange multiplier method, the potential energy of the unconstrained struc-
ture with a nonrigid element is modified to include the constraints. For constraints 
of the form 14.1, set

 d = CD – Q. (14.3)

The potential energy of the unconstrained structure is

 
Π0

1
2

= −D KD D FT T .
 

(14.4)

This includes the members that are to be constrained. That is, member 1–2 in Figure 
14.1 is to be included as an elastic element.

The potential energy is augmented by

 Πc = λTd. (14.5)

The matrix λ is a diagonal matrix of parameters λi, which are additional independent 
variables called Lagrange multipliers.
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The modified potential energy is then

 

Π Π Π= +

= − +

0

1
2

c

T T TD KD D F dλλ .
 

(14.6)

The condition that the potential energy be stationary becomes
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(14.7)

leading to the set of equations

 

KD C F

CD Q 0

+

− =

Tλλ == ,

.  

(14.8)

They can be combined into the single modified finite element equation:

 

K C
C 0

D F
Q

T



















 =











λλ
.

 

(14.9)

The coefficient matrix is still symmetric but it is singular because of the zeros on 
the diagonal. However, if Gaussian elimination is used to solve the equations, the 
diagonal fills in and a solution can be constructed in the usual manner. Formally, 
since the inverse of the stiffness matrix for the supported structure is invertible, with 
A defined by

 A = CK–1CT, (14.10)

we have

 

λλ

λλ))

= −

= −

− −

−

A CK F Q

D K F C

1 1

1

( ),

( T .  

(14.11)

P 1 rigid 2 AE AE3

L L L

fIgure 14.1 Constrained rod.



Constraints and Contact 329

In the example shown in Figure 14.1, ignoring the constraints, and assigning the 
same AE to element 1–2,
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(14.12)

The rigid constraint of member 1–2 is expressed by 

 C Q 0= −  =1 1 0 , .  (14.13)

The modified finite element equations 14.8 are therefore
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(14.14)

The solution by Gaussian elimination is
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(14.15)

Note that the Lagrange multiplier can be interpreted as the reactive force due to the 
imposed constraint. This is also evident from the potential energy expression 14.6, 
where the term λTd can be regarded as the potential for the “forces” λ, or from the 
virtual work expression 14.7 by the term λTδd.

14.1.2 perturBed lagrangian Method

The zero diagonal element in the Lagrange multiplier method can be removed by the 
perturbed Lagrangian method. In this method, the potential (14.5) for the constraint 
is altered as follows.
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Then,

 
δ δ δ δ δΠ == − + − +   −[ ] [ ] [ [ ] [ ] [D KD F CD Q D CT T T Tλλ]] λλ λλ]]1

κ
TT λλ.

 
(14.17)

For the example shown in Figure 14.1, when the last term is merged into 14.14 we 
have
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(14.18)

The last equation can now be used to eliminate the Lagrange multiplier,

 λ = κ(u2 – u1), (14.19)

and the remaining equations are
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(14.20)

The solution is

 

u
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u u u u
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, , .κ
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(14.21)

For infinite κ, the exact result is obtained. For κ = k × (10)3, we obtain an approximate 
solution:

 u1 = 0.9994995 u2 (14.22)

The zero on the diagonal has been removed, but the solution is now only 
approximate.
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14.1.3 penalty functionS

In this method, the addition to the potential energy is

 
Πp

T= 1
2

d dαα ,
 

(14.23)

where α is a diagonal matrix of constants αi called penalty numbers. The modified 
potential energy is
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The condition that the potential energy is stationary becomes
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Therefore,

 [K + CT αC]D = [F + CT αQ]. (14.26)

The solution of this equation for very large α provides an approximate solution to the 
constrained finite element equations.

For the example presented in Figure 14.1, we have
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(14.27)

The penalized equations 14.26 become
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The solution is
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(14.29)

If α → ∞, u1 → u2. Naturally, we have to choose finite values of α for machine cal-

culations. For α = k(10)3, u u
P
k1 2 0 00999− = . .

Note that the contribution of member 1–2 to the stiffness matrix of the uncon-
strained structure is
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(14.30)

The contribution of the penalty terms to the global stiffness matrix is
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(14.31)

We see that the penalty method is equivalent to inserting a spring of stiffness α 
between the constrained nodes.

Comparing the two methods, we can see that the number of equations to be solved 
is increased by the number of Lagrange multipliers, but the solution is exact (to the 
degree of accuracy of the equation solver); however, the solver must be able to handle 
zero diagonal elements. In the penalty method, the number of equations to be solved 
is not changed, but the stiffness matrix is modified and the solution is approximate. 
The process of solving the equations involves the small difference of large numbers 
so that the equations may become poorly conditioned for very large penalty numbers 
and this limits the achievable accuracy.

14.1.4 augMented lagrangian Method

It is sometimes convenient to combine the penalty method with the Lagrange multipliers 
to obtain the augmented Lagrangian method. The modified potential energy is 
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Combining 14.14 and 14.28, we obtain the following equations for the example 
(Figure 14.1):
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(14.33)

The solution is

 
λ = = = =P u u u

P
k

, .1 2 32 2
 

(14.34)

In this example, there is no advantage. The penalty number α drops out and the exact 
solution is obtained.

14.2 contact proBleMS

Problems involving the contact between two bodies, such as an automobile tire upon the 
pavement or the bearing of a bolt against the bolt hole, are far more complicated than the 
single body problems so far considered. The actual contact surface is usually not known 
in advance, and the boundary conditions on this unknown surface involve tractions and 
displacements that are not known in advance. Consequently, the contact problem is gov-
erned by a system of inequalities and one must proceed in a step-by-step or an iterative 
manner. The formulation will again make use of the Lagrange multiplier method and the 
penalty method. In this chapter, we will only introduce the basic concepts of the analysis. 
ANSYS provides the option of a pure penalty method, a pure Lagrangian method, the 
augmented Lagrangian method, or the Lagrangian multiplier on the contact normal and 
the penalty factor on the frictional direction.

14.2.1 exaMple: a truSS contactS a rigid foundation

This class of problems is illustrated by the deformation of the truss (Figure 14.2) that 
comes into contact with a rigid foundation when the load is large enough.

The constraint condition is

 g – V ≥ 0. (14.35)

We will analyze the case when the member stiffness AE/L is 25 for member 1 and 50 
for member 2. The finite element equation for the supported structure is
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334 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

with

 

K = −
−
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(14.37)

Before contact with the rigid foundation,
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(14.38)

Figure 14.3 shows the nodal forces before contact. After contact at U = Uc and V = g, 
with increasing loads, the node may stick or it may slide on the foundation. The foun-
dation provides a force p resisting penetration and a force f resisting sliding (Figure 
14.4). The equilibrium equations are
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(14.39)
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fIgure 14.2 Truss and foundation.

27U – 12V

–12U + 48V

Fy

Fx

fIgure 14.3 Equilibrium before contact.
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For the stick condition, U = Uc so that p and f are determined by the equilibrium 
equations for given loads that are large enough to maintain contact. The load and 
displacement at contact depends on the load path. We will consider two examples.

14.2.1.1 load Fy > 0 Is applied with Fx = 0
Contact (V = g) occurs for

 
F

g
Fy = ≡128

3 c
 

(14.40)

at

 
U g U= ≡4

9 c.
 

(14.41)

If Fx = 0 after contact, any additional load in the y direction is transmitted directly 
to the foundation without deformation of the structure. Figure 14.5 shows the nodal 
forces in this case: Fy > Fc and Fx = 0. The foundation exerts a reaction force p = 
Fy – Fc and f = 0. If Fy = Fc after contact, a load in the x direction cannot increase 
the V displacement. The structure may stick to the target (no additional U displace-
ment); or, if Fx is large enough, it may slip along the support (U > 0). The foundation 
may resist the slip (U displacement) by friction between the structure and the rigid 
foundation, and then a formula for f is required. We will only consider the so-called 
Coulomb friction: f = μp. Figure 14.6 shows the nodal forces for Fy = Fc and Fx > 0 
for slip with no friction. The nodal forces for slip including a friction force f = μp are 
shown in Figure 14.7. In this case, Fx = (27 + 12μ)(U – Uc).

27U – 12g

–12U + 48g

f 
pFy

Fx

fIgure 14.4 Equilibrium after contact.

128
3

3

g

g128p = Fy –Fy

fIgure 14.5 After contact Fy > Fc.
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14.2.1.2 loads are ramped up together: Fx = 27α, Fy = 12.8α
Contact occurs for
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(14.42)

After contact, the node may stick without further deformation and additional loads 
are reacted by the foundation. Or the node may slip along the foundation. If the loads 
are increased in the same ratio with no resistance to slip ( f = 0), the equilibrium 
equations 14.39 give
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(14.43)

If there is a resistance to slip for which f = μp, the equilibrium equations 14.39 yield
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(14.44)

We will now formulate the problem using Lagrange multipliers and penalty func-
tions to impose the constraint.

–12U + 48g

27U – 12g

 p = 12(U – Uc) = 4
9

Fx

Fc Fx

fIgure 14.6 Slip without friction.

–12U + 48g

27U – 12g

p = 12(U – Uc)

Fx

Fc

pf = µ

fIgure 14.7 Slip with friction force.
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14.2.2 lagrange Multiplier, no friction force

After contact, the constraint on the normal displacement is

 gn = g – V = 0 (14.45)

and the addition to the potential energy of the unconstrained structure is 

 Πc = λngn = λ(g – V). (14.46)

The first variation provides the additions to the virtual work:

 δΠc = δλ(g – V) + λ(–δV). (14.47)

The modified finite element relation 14.36 is therefore
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(14.48)

The equations are to be solved subject to the condition

 λ(g – V) = 0. (14.49)

That is, for g – V < 0 we have λ = 0, and for g – V = 0 we have to find λ by solving the 
matrix equation. Before contact, given Fx = 0 and Fy > 0, the solution is
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as in 14.38. At initial contact,
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as in 14.40 and 14.41. If the loads are ramped up, Fx = 27α, Fy = 12.8α, after contact 
V = g and we have
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This agrees exactly with 14.43 and shows λ = p. Initial contact occurs at λ = 0, which 
leads to the result 14.42. The solution for this case is set forth in Section 15.32.

14.2.2.1 Stick condition
Given Fx = 0 and Fy > Fc, the solution is
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(14.53)

Comparing this result with Figure 14.5, we identify the Lagrange multiplier as the 
reaction force of the foundation on the structure: λ = –p.

14.2.2.2 Slip condition

Given Fx > 0 and F gy = 128
3

, the solution is
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(14.54)

as shown in Figure 14.6. The Lagrange multiplier provides the reaction force pre-
venting penetration of the support during slip: λ = –p.

14.2.3 lagrange Multiplier, with friction

The amount of slip is

 
g U U U gt c c= − =, .

4
9  

(14.55)

The addition to the potential energy is

 Πc = λngn + λtgt (14.56)
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and the addition to the virtual work formula is
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The modified finite element equation is
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(14.58)

14.2.3.1 Stick condition

For U = Uc, V = g, F gy = 128
3

, Fx > 0, the solution is 
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(14.59)

The Lagrange multiplier λt is therefore the reaction of the support to prevent slip.

14.2.3.2 Slip condition
The normal reaction on the structure from the support is p = –λn. The Lagrange 
multiplier λt is the friction force exerted by the foundation on the structure, f = λt. 
Assuming Coulomb friction, f = μp = –μλn. The virtual work of the two reaction 
forces is
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in place of 14.57. The finite element equations become
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Note that the modified stiffness matrix is not symmetric. For V = g, F gy = 128
3

, Fx > 
0, U > Uc, the solution is
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(14.62)

That is, the applied force Fx is balanced by the internal nodal force 27(U – Uc) plus 
the resistance due to friction μ(12)(U – Uc) as shown in Figure 14.7.

14.2.4 penalty Method 

In the penalty method, the potential energy is modified by adding the potential 
energy of “springs” with extensions gn and gt:
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with first variation
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The penalty factor ε can be different for each factor, but here it is chosen to be the 
same for both. Merging the terms from 14.64 into the finite element equation 14.36, 
the finite element equation becomes
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The solution is
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Note that the constraint is not applied directly. The displacements are calculated for 
each load case, and the constraint will appear in the solution (approximately).
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14.2.4.1 Stick condition
For the load case Fx = 0 and Fy > Fc, choosing ε = 1000, the solution is
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Naturally, because of round-off error the first terms will not be returned exactly by 
the computer. We see that constraint V = g and contact point U = Uc are only approxi-
mated. There is some penetration of the target, as shown by the second term. The 
value of ε is arbitrary but must be large enough so that the penetration is negligible.

14.2.4.2 Slip condition
If there is a resistance to slip due to Coulomb friction, the virtual work expression 
14.64 must be altered to express the work of the friction force f = μp = –μεgn:
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Merging with the equation for the unconstrained structure, we have
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Note that the modified stiffness is not symmetric because of the friction force. The 
solution for ε = (10)4 and μ = 0.5 is
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The exact solution from 14.38 is
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14.3 fInIte eleMent analySIS

The contact problem is complicated because the topology of the system changes upon 
contact. The equilibrium equations before contact, for example, 14.38, are the stan-
dard finite element equations. The equilibrium equations after contact, for example, 
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14.39, are completely different and contain new unknowns. One must specify “stick” 
or “slip” conditions and a constitutive relation for the slip reaction f.

The solution procedure is necessarily incremental. After each load step, one must 
determine whether the bodies are in contact. A procedure must be devised to calcu-
late the gap from information available in the finite element analysis. In the general 
case of two- or three-dimensional bodies, multiple nodes can come into contact with 
the finite elements forming the boundary of the target. Furthermore, after contact 
a node may continue in contact or it may move away, thereby creating a new gap. 
Because each load step is finite, initial contact occurs as a penetration of one body 
into another. Iteration is the necessary factor within the load step to reduce the pen-
etration to an allowable magnitude. ANSYS treats the problem of calculating the 
contact of surfaces by overlaying on the given bodies, a pair of contact surfaces 
that interact with each other to prevent penetration and to allow calculation of the 
required pressures. One surface is regarded as the target and the other as the contact-
ing surface. The contact pair must cover the potential contact region.

14.3.1 exaMple: contact of a cylinder with a rigid plane

Let us consider a long elastic cylinder compressed between two rigid clamps (Figure 
14.8). The body is analyzed as a plane strain, which will apply to a long cylinder 
except near the ends.

The solution to this problem is known.1 The half-contact width b is given by
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The displacement of a rigid clamp is
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fIgure 14.8 Compressed cylinder.
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This problem can be analyzed using ANSYS. The steps are given in Section 15.33 
for R = 0.5 in., E = 500 lb/in. (rubber), ν = 0.499. A given displacement d = 0.05 in. 
is applied and the reactive force F is calculated. The results are compared to the 
analytical formulas 14.72 to 14.74 in Table 14.1.

14.3.2 hertz contact proBleM

As an example, let us consider the contact between two long cylinders pressed 
together by opposing forces (Figure 14.9). We suppose that the displacements are 
small so that linear elasticity applies. As they are pressed together, the cylinders 
flatten over the deformed area (Figure 14.10). The deformed position has a contact 
surface of width 2b. An analytical solution to the plane strain equations is known for 
b ≪ R and assuming that the contact surface is approximately plane:2
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taBle 14.1
cylinder contacting a plane

for d = 0.5 theory fea

F 25.51 25.00

B 0.1562 0.13 < b < 0.17

p(0) 104 105

F

F

R1

R2

fIgure 14.9 Contact of two cylinders.
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F is the force per unit length. The contact pressure between the two cylinders is
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(14.76)

where x is measured from the center of the contact line. Note that this is inherently 
a nonlinear problem even for small deformations. Both b and p are nonlinear func-
tions of F. 

For contact with a plane, set R2 = ∞. If the plane is rigid (i.e., a very much higher 
modulus), set E2 = ∞ to obtain
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(14.77)

We will construct a finite element solution under the following assumptions. The 
deformed cylinder is shown in Figure 14.11. If the applied force is distributed in 
exactly the same manner, the diameter AB remains plane. According to the principle 
of St. Venant, any other distribution of load will produce only local effects near the 

F

F

R1

R2

2b

fIgure 14.10 Contact surface.

A B

F

p

fIgure 14.11 Contact pressure.
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load. We will therefore assume that AB remains straight. We will then have double 
symmetry and can restrict the analysis to one-quarter of each sphere as shown in 
Figure 14.12. It is also easier to specify a displacement of line AB rather than force 
F. The magnitude of the force is then a reaction. If the displacement is not specified, 
there is no initial constraint on translation in the y direction. Consequently, the initial 
stiffness matrix for each cylinder has zero determinant because of the possible rigid 
body motion.

If the force is to be specified instead of the displacement, the analysis can proceed 
in two steps: (1) apply a very small displacement to create contact and (2) apply load 
F to the assembly.

ANSYS treats the problem of calculating the contact of surfaces by overlaying on 
the given bodies a pair of contact surfaces that interact with each other to prevent 
penetration and allow calculation of the required pressures. One surface is regarded 
as the target and the other as the contacting surface. The contact pair must cover the 
potential contact region (Figure 14.13).
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fIgure14.12 Reduction by symmetry.
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fIgure 14.13 Contact pair model.
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A possible calculation is given in Section 15.34 for R1 = 10 mm, R2 = 13 mm, E1 = 
E2 = 30,000 N/mm2, ν1 = ν2 = 0.25. The calculated values are F = 628 N/mm, p = 731 
N/mm2, 0.419 < b < 0.558. Given F, the expected values for p and b from 14.75 and 
14.76 are b = 0.532 and p = 752, respectively.

14.4 dynaMIc IMpact

Typical crash problems involve dynamic impact and rebound of two objects. These 
problems are difficult and very computationally intense. We will demonstrate the 
computation by a simple example: An elastic rod moving a given velocity impacts a 
rigid wall (Figure 14.14). The rod is made of steel: A = 1 in.2, E = 2.92 × 107 lb/in.2, 
ρ = 0.73 × 10–3 lbf-s2/in.4. The rod (link element) approaches the wall with initial 
velocity V = 200 in./s2 from a gap of 0.01 in.

The exact solution is shown in Figure 14.15. The shock wave created from impact 
travels as a compression wave through the rod. During this time, the rod remains in 
contact with the rigid wall. The compression wave is then reflected as a dilatational 
wave upon reaching the free end of the rod and travels back to the contact surface. 
The rod gets separated from the rigid wall once the dilatational wave reaches the 
contact surface. The analysis uses node to surface contact, contact element 175, tar-
get element 169, using the default augmented Lagrangian method with increased 
contact stiffness FKN. The calculated result is shown in Figure 14.16. The steps in 
the analysis are listed in Section 15.36.
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fIgure 14.14 Rod impacting wall.
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fIgure 14.15 Exact solution for impact.
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14.5 proBleMS

 1. Use ANSYS to determine the forces at initial contact and the final displace-
ments for the contact of the truss (Figure 14.2) with a rigid foundation by 
the Lagrange multiplier method. Member 1: A = 0.1 lb/in., E = 12,500 lb/in. 
Member 2: A = 0.2 lb/in., E = 12,500 lb/in. L = 10 lb/in., g = 0.3 lb/in. There 
is no resistance to slip after contact. The loads are ramped up to Fx = 27 and 
Fy = 12.8. (See Section 15.33.)

 2. Use ANSYS to analyze the compression of a rubber gasket modeled as a 
long rubber cylinder between rigid plates (Figure 14.17). The cylinder is 
analyzed as a plane strain problem, where R = 0.5 in., E = 500 lb/in.2, ν = 
0.499. Since the material is nearly incompressible, use the mixed (U–P) 
formulation. Because of the double symmetry, only ¼ of the cylinder is 
needed. The plane y = 0 is assumed to remain plane and the nodal displace-
ments UY on the plane are coupled. A vertical displacement, d = .05 in. of 
the plane is imposed. Determine the required force F, the contact region b, 
and the maximum contact pressure p. (See Section 15.34.)
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fIgure 14.16 Calculated impact displacement.
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fIgure 14.17 Compression of a rubber gasket.
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 3. Use ANSYS to solve the Hertz contact problem (Figure 14.9). The contact 
between the two long cylinders is analyzed by assuming double symmetry, 
Figure 14.13, for R1 = 10 mm, R2 = 13 mm, E1 = E2 = 30,000 N/mm2, ν1 = 
ν2 = 0.25. The angle defining the potential contact region is α1 = α2 = 8°. 
Apply d = 0.1 and determine the total force, the maximum contact pressure, 
and the contact region. (See Section 15.35.)
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15 ANSYS APDL Examples

15.1 anSyS InStructIonS

The instructions and examples in this chapter pertain are for version 12.1 but they 
are compatible with version 13. One can expect some changes with each new ver-
sion. In the following instructions, C means click with the left mouse button and T 
means type in data, ® means ENTER. Click SAVE_DB frequently so that you can 
RESUM_DB if you make some unrecoverable error. Other examples of solutions 
using ANSYS are provided online by the HELP > ANSYS TUTORIALS button on 
the top toolbar.

Start the ANSYS program at your workstation. The procedure will depend on the 
installation on your computer system, but will be something like:

START > PROGRAMS > ANSYS 12.1 > ANSYS 

A graphics window will appear as shown on the next page. A second window labeled 
ANSYS Output Window also appears and provides feedback throughout the analy-
sis. It may be hidden behind the graphics window.

Actions by ANSYS are specified by specially formatted Commands as described 
in the Commands Reference Manual. These commands can be input from a file, 
typed on the command line above the graphics window, or by using the Graphics 
User Interface (GUI). The GUI makes it possible to select the required action by 
clicking on a menu item and entering the required data. Most items are adequately 
explained in the menus without reference to the help manuals. The general procedure 
in a stress analysis problem is as follows.

Preprocessor. The preprocessor module is used to create the geometric figure that 
is to be analyzed, and to mesh that body with prescribed element types and mate-
rial properties. The elements are automatically merged to formulate the global stiff-
ness matrix. Geometric models can also be imported from those created with CAD 
software such as CATIA, Parasolid, Pro/ENGINEER, SAT/ACIS, NX, SolidWorks, 
AutoCAD, Mechanical Desktop, and Solid Designer. The import procedure is 
explained in the Connection User’s Guide.

Solution. The solution module is used to apply loads and support conditions, and 
then solve the finite element equations directly, or by iteration, or step by step in time.

Postprocessors. A postprocessor module is used to display selected results from 
the solution to the finite element equations such as the components of the stress ten-
sor within an element or the components of displacement of the nodes. ANSYS pro-
vides two postprocessors. The General Postprocessor is used to examine the spatial 
solution at each step of the calculation. The Time History Postprocessor is used to 
display the time history of a variable such as the displacement of a node as a func-
tion of time. The results can be provided in text form or as a graph. Everything that 
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appears in the graphics window can be printed, and everything that is presented as 
a list can be printed. 

The computer program only works with numbers. It is up to the user to input the 
numbers in a consistent system of units. You can use any system you like. Units are 
mostly not mentioned in the examples in this chapter. The examples may be regarded 
as dealing with a nondimensional formulation.

The ANSYS software has evolved from the work of John Swanson, who established 
Swanson Analysis Systems in 1970. In those days, one had to use punched cards to 
communicate with the computer. So the input for what became the ANSYS system was 
a list of instructions that contained the needed information for formulated and execut-
ing the finite element analysis—in effect, a special computer language that continues to 
underlay the formulation of problems by the computer mouse and the GUI. When you 
set up a problem today using the GUI, you are really generating a list of those special 
statements called commands. A list of commands can be seen in the Log file for each 
job, and ANSYS retains the option of input of the list of commands from a file or typ-
ing each command on the Command Line of the GUI. In order to really understand the 
actions within ANSYS, one must understand the ANSYS Commands.

The classic ANSYS program has been renamed to Mechanical APDL (ANSYS 
Parametric Design Language) application within the Workbench environment. 
Extensive and detailed manuals are also accessed by the HELP menu: HELP > 
HELP TOPICS > CONTENTS provides a list of document sets that are available. 
Click on MECHANICAL APDL to see a list of manuals pertaining to mechanical 
analysis and a brief description of each manual. The list is alphabetical and not in 
the order that one would normally use the manual. Of particular interest are the fol-
lowing manuals.

Basic Analysis Guide. This manual describes general tasks that apply to any type 
of analysis, including applying loads to a model, obtaining a solution, and using the 
ANSYS program’s graphics capabilities to review results.

Theory Reference for the Mechanical APDL and Mechanical Applications. This 
manual provides the theoretical basis for calculations in the ANSYS program, such 
as elements, solvers and results formulations, material models, and analysis meth-
ods. By understanding the underlying theory, you can make better use of ANSYS 
capabilities while being aware of assumptions and limitations.

Element Reference. This manual describes all ANSYS elements in numerical 
order. It is the primary reference for the correct element type, input and output infor-
mation, and comprehensive descriptions for every option for an element. It includes 
a pictorial catalog of the characteristics of each ANSYS element.

Command Reference. This manual describes all ANSYS commands in alphabeti-
cal order. It is the definitive reference for correct command usage, associated GUI 
menu paths, product applicability, and usage notes.

Structural Analysis Guide. This reference guide describes how to perform the 
following structural analyses: static, modal, harmonic, transient, spectrum, buck-
ling, nonlinear, material curve fitting, gasket joint simulation, fracture, composite, 
fatigue, p method, beams, and shells.

Modeling and Meshing Guide. This reference manual explains how to build a 
finite element model and mesh it.
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There are various commands to control the meshing. The major difference is 
between “mapped mesh” and “free mesh.” A mapped mesh is restricted in terms 
of the element shape and the pattern of the mesh by selected commands. A free 
mesh has no restrictions in terms of element shapes or the pattern of mesh: these are 
selected by the internal meshing algorithm. However, there are commands available 
to place restrictions on the meshing pattern even for the free mesh.

15.1.1 anSyS file naMeS

The Basic Guide, Chapter 18, File Management and Files, contains a list (Table 18.1) 
of temporary files written using the ANSYS program. Some may remain if ANSYS is 
terminated abnormally but have no accessible useful information. Table 18.2 lists the file 
extensions (  jobname.xxx) of permanent files written by ANSYS. You may have to delete 
them manually from your directory. Following are some of the files that may occur.

The following files are ASCII text files and can be read with a word processor.

jobname.log: (log file) Every command is copied into this file. It can be used as 
input to repeat the sequence of commands when ANSYS is restarted.

jobname.out: (output file) This is a text file that contains all ANSYS responses 
to input via the GUI. It also records warnings and error messages and some 
results. Some of this information is also in the Output Window.

jobname.err: (error file) This is a text file containing warning and error 
messages.

jobname.BCS: This is a text file with performance information.
jobname.stat: This is a text file containing the status of an ANSYS batch run.
jobname.grph: (graphics file) This is an ASCII file in special format.

The following files are not text files and cannot be accessed directly. They are 
used by the ANSYS program.

jobname.db: (database file) This file contains all of the input data and some 
results. It is binary file and cannot be accessed except by the ANSYS 
program.

jobname.dbb: This is a binary file containing a copy of the database file cre-
ated when a nonlinear analysis terminates abnormally.

jobname.esav: This is a binary file with element saved data created by a non-
linear analysis.

jobname.full: This is a binary file containing the assembled global stiffness 
and mass matrices.

jobname.mntr: A binary file of modal data used for a restart of a mode super-
position or transient analysis.

jobname.rst: (structural analysis results) This is a binary file.
jobname.rth: (thermal analysis results) This is a binary file.
jobname.emat: (element matrices) This is a binary file.
jobname.ldhi: A binary file of load case data.
jobname.rdb: A binary file used for a multiframe restart.
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15.1.2 graphic window controlS

15.1.2.1 graphics Window logo
If the ANSYS logo gets in the way, it can be removed:

PlotCtrls > Window Controls > Window Options 
set LOGO = Txt in Legend

15.1.2.2 display of Model
To change the background to white background and gray elements:

PlotCtrls > Style > Colors
select Reverse Video
PlotCtrls > Numbering >
Node Numbers ON
/NUM set to Numbers Only

To change to white elements with a black outline

PlotCtrls > Style > Colors
Picked Entity Colors
Clab set to WHITE
Lab set to Elements
OK
Pick All
Plot Ctrls > Numbering
/NUM = Numbers and Colors

15.1.2.3 display of deformed and undeformed Shape White on White

Plot Ctrls >Style > Colors
check Reverse Video
PlotCtrls > Numbering >
Elem/Attrib = Element numbers
/NUM = Colors and Numbers
PlotCtrls > Style > Colors
Entity Colors
Color Assignment = User Specified
Select Elements
Select User Specified Color = WHITE
Set Entity Range = All (in first box)

15.1.2.4 adjusting graph colors

PLOT CTRLS > STYLE > COLORS > GRAPH COLORS
Select colors for curve number 1, etc.
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15.1.2.5 printing from Windows version of anSyS

Method 1: Printing is reverse video (gray elements on a black background print 
as gray elements on a white background)
C PRINTER LOGO (select printer)
C OK (capture to printer)

Method 2: Printing is reverse video
PLOT CTRLS > CAPTURE IMAGE
FILE > PRINT (select printer)
C PRINT

Method 3: Printing is reverse video
PLOT CTRLS > HARD COPY > TO PRINTER (select printer)
C PRINT

Method 4: Maximum flexibility
PLOT CTRLS > HARD COPY > TO FILE

This brings up a menu where you can select a file name, file type (e.g., JPEG) and 
options including reverse video. The file is saved in your directory.

Print the file from your directory, not from ANSYS.

15.1.2.6 Some useful notes
To get white elements and black numbers on a white background for a report, you can 
create black elements and white numbers on a black background and then use print 
method 1 or method 2.

Sometimes one needs to find get node number at a particular location. There is a 
way to do this without scrolling through a long list of nodes. ANSYS has a function 
that maps coordinates to node numbers:

C UTILITY MENU > PARAMETERS > SCALAR PARAMETERS

 nodenum = node(x,y,z)  [enter in selection box with actual coordi-
nate values x,y,z]

 C ACCEPT  [under items, the value of nodenum appears]

You can enter either the node number or the parameter “nodenum” on the picking 
menu.

Sometimes one would like to capture a snapshot of the current screen for a report. 
You can press the “Print Screen” button next to the right of the F12 key and then 
open WORD and paste the picture into a document.

15.2 anSyS eleMentS Surf153, Surf154

ANSYS does not provide for direct input of tangential loads to solid elements. One 
has to make use of their surface effect elements: SURF153 for 2D problems and 
SURF154 for 3D problems. These elements have a variety of other uses including 
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modeling of surface tension. A description of them can be found in the Theory 
Reference manual. They can be viewed as a thin skin glued to the solid body that 
adds terms into the force stiffness and mass matrices.

SURF 153 is laid on the edge of the plane figure and is therefore a line element 
with the shape functions for a line element. SURF 154 is laid on the surface of a 
3D element and is therefore a 2D element with the shape functions used for plane 
elements.

ANSYS calculates and merges the stiffness and force matrices derived from the 
following formulas.

 
K N N= ∫k Af T d ,

 
(15.1)

where kf is intended to represent the stiffness of an elastic support and is input as the 
parameter EFS in the Real Constants menu (default is zero).

 
M NN NN= +∫ ∫ρ t A A Ah

T
d

Td d ,
 

(15.2)

where ρ is the surface element density and is input as a material property set, th is 
the thickness of the surface element input in the Real Constants menu (default zero), 
and Ad provides added surface mass, input as ADMSUA in the Real Constants menu 
(default zero).

 
F N p= ∫ T dA.

 
(15.3)

The “pressure” load p is directed in the local (x,y,z) directions according to the value 
of the parameter LKEY on the pressure load menu. LKEY = 2 denotes a load along 
x-axis, LKEY = 3 denotes load along y-axis, and LKEY = 1 denotes a load along 
z-axis (normal). Refer to the manual for other options for the load and for a damping 
matrix.

15.3 truSS exaMple

In this example, the nodes and elements are created by direct input of coordinates 
and node numbers.

For the truss shown in Figure 15.1, given A = 1, L = 1, E = 1, FX1 = 1, FY1 = 0, we 
will calculate the displacements of node 1.

a. Set job name and preferences.
Login and start ANSYS APDL [wait for graphics window]
C FILE > CHANGE JOBNAME [top menu bar]
T a job name [in place of “file”]
Select NEW LOG Yes
OK
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C PREFERENCES
C STRUCTURAL
C OK

b. Select element and input real constants.
C PREPROCESSOR > ELEMENT TYPE > ADD > ADD
C LINK > 3D finit str 180 [this is the truss element]
C OK
C CLOSE
C REAL CONSTANTS > ADD > ADD
C OK
T 1 [for the Area]
C OK
C CLOSE

c. Input material properties.
C MATERIAL PROPERTIES > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1 [for EX, the modulus of elasticity]
T 0.3  [for PRXY, the Poisson ratio, not actually 

used for a truss element]
C OK
C MATERIAL > EXIT [from materials window]

d. Create nodes and elements.
C MODELING > CREATE > NODES > IN ACTIVE CS
Enter NODE = 1, x,y,z = 0,0,0 [coordinates of node 1]
C APPLY
T 2 −3 4 0 [coordinates of node 2]
C APPLY
T 3 0 4 0 [coordinates of node 3]
C APPLY
T 4 4 4 0 [coordinates of node 4]
C OK [see 4 nodes]
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fIgure 15.1 Truss.
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C LIST > NODES [on top menu bar]
C OK
C FILE > CLOSE [if nodes are correct]
C CREATE > ELEMENTS
AUTO NUMBERED > THRU NODES [picking menu appears]
C on nodes 1 and 4  [element 1]
C APPLY [in picking window]
C on nodes 1 and 3 [element 2]
C APPLY
C on nodes 1 and 2 [element 3]
C OK [see three elements]
C LIST > ELEMENTS > NODES + [top menu bar]
ATTRIBUTES
C FILE > CLOSE [if elements are correct]

e. Input loads and supports.
C LOADS > DEFINE LOADS > APPLY > STRUCTURAL
C FORCE > ON NODES
C on node 1
C OK [in picking window]
Select LAB = FX  [should already be selected]
Enter VALUE = 1
C OK [see load vector]
C STRUCTURAL DISPLACEMENT > ON NODES
C on nodes 2,3,4
C OK
C ALL DOF
Enter VALUE = 0
C OK [see supports]

f. Solve equations.
C SOLUTION > SOLVE > CURRENT LS
CLOSE status window
C OK in solve window
CLOSE “solution is done” window

g. Examine results.
C GENERAL POST PROCESSOR
C LIST RESULTS > NODAL SOLUTION > DOF SOLUTION > X-COMP 

DISPL
C OK  [see UX = 6.2397; this file can be printed for the record]
C CLOSE
C LIST RESULTS > NODAL SOLUTION > DOF SOLUTION > Y-COMP 

DISPL
C OK  [see UY = 0.10183; this file can be printed for the record]
C FILE > CLOSE
C LIST RESULTS > REACTION SOLU [ALL ITEMS selected]
C OK  [see list of reactions at nodes 2,3,4; this file can be printed 

for the record]
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C FILE > CLOSE
C QUIT [middle menu bar]
C OK

15.4 BeaM BendIng

In this example, the element data table is used to extract the element stress.
Consider a cantilever beam with an end load (Figure 15.2). The beam has a rect-

angular cross section: h = 2, w = 1, A = 2, I = 2/3, E = 1000, L = 5, P = 1. Use two ele-
ments as shown in Figure 15.2 to calculate the displacements, moments, and bending 
stress.

a. Activate ANSYS and set preferences. [default job name is “file”]
See example 15.3.

b. Choose elements and materials.
C PREPROCESSOR
enter ET,1,BEAM3 on command line [BEAM3 Element]
enter KEYOPT,1,6,1 on command line [of data on member forces

and moments]
enter R,1,2,2/3,2 on command line for Area, IZZ, and h
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
Enter 1000 for EX parameter
C in NPRXY box
Enter 0.3 for PRXY parameter   [the Poisson ratio is actually not 

used]
C OK
C MATERIAL > EXIT

c. Create keypoints at the ends and connect them by a line.
C PLOT CTRLS > NUMBERING
C box after Node numbers to turn them ON
Select Element Numbers from the ELEM/ATTRIB numbering menu
C OK
C PREPROCESSOR > MODELING > CREATE > KEYPOINTS > IN 

ACTIVE CS
Enter POINT 1 at 0,0,0

P

1 EI 2 EI 3

LL

fIgure 15.2 Bending of a beam.
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C APPLY
Enter POINT 2 at 10,0,0
C OK
C PREPROCESSOR > MODELING > CREATE > LINES > LINES
C STRAIGHT LINE
C on keypoints
C OK in picking menu

d. Mesh the line.
C PREPROCESSOR > MESHING
C SIZE CONTROLS
C MANUAL SIZE
C GLOBAL > SIZE
Set NDIV = 2
C OK
C MESH
C LINES
Pick line
C OK [see line with two elements and three nodes]

e. Apply support conditions and loads.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C DISPLACEMENT > ON NODES
C node 2 [right end]
C OK
C ALL DOF
C on box for VALUES
T 0 for the value of the displacements and rotation
OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C FORCE/MOMENT
C ON NODES
C node 1 [left end]
C OK
Select FY [for LAB]
C on VALUE box
T value for FY = 1
C OK [force shown on the node]

f. Set solution parameters and sole equations.
C UNABRIDGED MENU
C SOLUTION > LOAD STEP OPTIONS > OUTPUT CONTROLS
C SOLUTION PRINT OUT  [to store data on element 

forces]
C ALL ITEMS [from Item Menu]
C LAST SUBSTEP
C OK
C SOLUTION > SOLVE > CURRENT LS
C FILE > CLOSE status window
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C OK in solve window
C CLOSE solution window  [Solution is done]

g. View results.
C GENERAL POSTPROCESSOR
C LIST RESULTS
C NODAL SOLUTION
C DOF SOLUTION
Select Y-COMP of Displacement
C OK   [see list of node displacements: 

UY = 0.5 at node 1]
C FILE > CLOSE
C LIST RESULTS
C NODAL SOLUTION
C DOF SOLUTION
Select Z-COMP of rotation
C OK  [see list of rotations at each 

node: −0.075 at node 1]
C FILE > CLOSE
C GENERAL POSTPROCESSOR
C ELEMENT TABLE
C DEFINE TABLE
C ADD
Enter user label = M
Select ITEM = BY SEQ NO [scroll down to find this choice]
Select SMISC
Enter SMISC, 12   [this is a code number for 

moment at the right end of the 
element]

C OK  [see the element reference man-
ual for the codes for BEAM3]

C CLOSE
C GENERAL POSTPROCESSOR > LIST RESULTS
C ELEM TABLE DATA
Select M
C OK  [see M = 5 for element 1 and M = 10 

for element 2]
C FILE > CLOSE
C GENERAL POSTPROCESSOR > ELEMENT TABLE > DEFINE 

TABLE
C ADD
Enter user label = S
Select ITEM = BY SEQ NO [scroll down to find this choice]
Select LS
Enter LS,6  [this is a code number for bend-

ing stress at the right end of the 
element]
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C OK
C CLOSE
C GENERAL POSTPROCESSOR > LIST RESULTS
C ELEM DATA TABLE [deselect M]
Select S
C OK  [see S = 15 for element 2]
C FILE > CLOSE
C QUIT
C OK

15.5 BeaM WIth a dIStrIButed load

In this example, a nonuniform pressure load is introduced.
A cantilever beam with a linearly varying load (Figure 15.3) and a rectangular 

cross section has the following dimensions: h = 1, w = 1, A = 1, I = 1/12, E = 30 × 
106, L = 10, p = 1. We are to calculate the displacements. One element gives the exact 

solution: UY = = × −11
120

11
30

10
4

4pL

EI
 downward at the end.

a. Activate ANSYS and set preferences.
See example 15.3.

b. Choose elements and materials.
C PREPROCESSOR
enter ET,1,BEAM3 on command line [BEAM3 Element]
enter R,1,1,1/12,1 on command line for Area, IZZ, and h
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
Enter 30e6 for EX parameter 
C in NPRXY box
Enter 0.3 for PRXY parameter   [the Poisson ratio is actually not used]
C OK
C MATERIAL > EXIT

c. Create nodes and elements.
C PREPROCESSOR > MODELING > CREATE > NODES > IN ACTIVE CS
Enter POINT 1 at 0,0,0

p

LEI

fIgure 15.3 Bending of a beam with distributed load.
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C APPLY
Enter POINT 2 at 10,0,0
C OK
C PREPROCESSOR > MODELING > CREATE > ELEMENTS
C AUTO-NUMBERED > THRU NODES
C on node 1 then node 2 [beam element: I = 1, J = 2]
C OK in picking menu

d. Apply support conditions and loads.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C DISPLACEMENT > ON NODES
C node 1  [left end, or Type 1 in box on pick-

ing menu]
C OK
C ALL DOF
C on box for VALUES
T 0  [for the value of the displacements and rotation]
OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C PRESSURE > ON BEAMS
C on beam element [or Type 1 in box on picking menu]
C OK [load menu appears]
Enter LKEY = 1, VALI = 0,  [load varies linearly from node I to 
VALJ = 1 node J]
C OK  [representative force shown on the 

element]
e. Solve the equations.

C SOLUTION > SOLVE > CURRENT LS
C CLOSE status window
C OK in solve window
C CLOSE solution window [solution is done]

f. Extract results.
C GENERAL POSTPROCESSOR
C LIST RESULTS
C NODAL SOLUTION
C DOF SOLUTION
Select Y-COMP of Displacement
C OK  [see list of node displacements: 

UY = −0.36667 × 10−3 at node 2]
C FILE > CLOSE
C QUIT
C OK

15.6 one trIangle

In this example, nodes are created by specifying coordinates and elements are cre-
ated by picking nodes.
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The analysis is to check the element stiffness matrix for a plane stress triangle 
(Figure 15.4) as generated by the Plane 182 element. In nondimensional units, E = 
16, ν = 1/3, μ = 6.

a. Activate ANSYS and set preferences.
See example 15.3.

b. Select element and material properties.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID 
C 4 NODE 182  [the triangle is a special case of 

this element]
C OK
C CLOSE 
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 16 for EX parameter
C in PRXY box
T 1/3 for PRXY parameter   [ANSYS converts this to five sig-

nificant figures]
C OK [μ = 6]
C MATERIAL > EXIT

c. Create nodes and elements.
C PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
C OK
C PREPROCESSOR > MODELING > CREATE > NODES > IN ACTIVE 

CS
T node = 1, x = 0, y = 0
C APPLY
T node = 2, x = 1, y = 0
C APPLY
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fIgure 15.4 Plane stress triangle.



ANSYS APDL Examples 363

T node = 3, x = 0.5, y = 0.5
C OK 
C PREPROCESSOR > MODELING > CREATE > ELEMENT > 
C AUTO NUMBERED > THRU NODES
C nodes 1,2,3  [specifying only three nodes implies 

a triangle]
C OK

d. Apply boundary conditions.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
C DISPLACEMENT > ON NODES
C nodes 2 and 3
C APPLY
C ALL DOF if it is not selected already
C on box for VALUES
T 0 for the value of the displacement components
C APPLY
C node 1
APPLY
C UY [deselect ALL DOF]
C APPLY
C node 1
OK
C UY  [to deselect UY]
C UX
C on VALUE box
T value for UX of 1
C OK
C LIST > LOADS > DOF CONSTRAINTS [Utility menu at top]
C ON ALL LINES  [check boundary 

conditions]
C FILE > CLOSE

e. Solve for displacements and stresses.
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
C OK in Solve window 
C YES in warning window  [ANSYS suggests reduced 

integration]
C CLOSE on information window [solution is done]

f. Display results.
C GENERAL POST PROC > LIST RESULTS > REACTION SOLU
C OK to get a list of nodal forces that [this can be compared 

comprise column one of the stiffness with column 1 of k1, 
matrix. Equation 4.45] 

C FILE > CLOSE
C QUIT
C OK
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15.7 plane StreSS exaMple uSIng trIangleS

This example illustrates the use of the COPY command to create nodes and elements 
and the box method in the picking menu.

The given problem is the short beam (Figure 15.5). The solution for the corner 
displacement is tabulated in Table 4.3. In nondimensional units: a = 1, p = 1, E = 1, 
ν = 1/3.

a. Activate ANSYS and set preferences.
See example 15.3.

b. Choose element and material.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID 
C 4 NODE 182 [PLANE182 element]
C OK   [the constant strain triangle is a special case 

this element]
C CLOSE 
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1 for EX parameter [nondimensional parameters]
C in PRXY box
T 1/3 for PRXY parameter  [PR is Poisson ratio]
C OK
C MATERIAL > EXIT

c. Create nodes and elements.
C PREPROCESSOR > MODELING > CREATE
C NODES > IN ACTIVE CS
T 1 0 0 0  [for Node,X,Y,Z]
C APPLY

1/8 1/81/4 1/4 1/4

C

fIgure 15.5 Short beam, 64 triangles.
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T 2 0.25 0 0  [for Node,X,Y,Z]
C APPLY
T 11 0.25 0.25 0  [for Node,X,Y,Z]
C APPLY
T 10 0 0.25 0  [for Node,X,Y,Z]
C APPLY
T 6 0.125 0.125 0   [note the numbering, chosen for the copy 

command]
C OK
C PREPROCESSOR > MODELING > CREATE
C ELEMENTS > AUTO NUMBERED > THRU NODES
C nodes 1 then 2 then 6 [specifying three nodes implies a triangle]
APPLY
C nodes 2 then 11 then 6
APPLY
C nodes 11 then 10 then 6
APPLY
C nodes 10 then 1 then 6
OK
C PREPROCESSOR > MODELING > COPY
C ELEMENTS > AUTO NUMBERED
C PICK ALL
T 4 for ITIME [leave NINC = 1]
T 0.25 for DX [creating bottom row of elements]
C OK
C PREPROCESSOR > MODELING > COPY
C ELEMENTS > AUTO NUMBERED
C PICK ALL
T 4 for ITIME
T 9 for NINC
T 0 for DX
T 0.25 for DY
C OK   [creating columns of 

elements]
C PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
C OK

d. Apply boundary conditions.
C PREPROCESSOR > LOADS > DEFINE LOADS > APPLY
C STRUCTURAL > DISPLACEMENT > ON NODES
C BOX [on picking menu]
DRAW A BOX AROUND THE BOTTOM NODES BY CLICK AND 

DRAG
C OK
C ALL DOF  [if it is not selected already]
C on box for VALUES
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T 0 for the value of the displacement components
C OK  [supports shown on the bot-

tom edge]
C FORCE > ON NODES
C upper right and upper left corner nodes
C APPLY
C FX if it is not already selected
C on VALUE box
T value for FX of 1/8
C APPLY
C all intermediate nodes along the top  [38, 39, 40]
C OK
T value for FX of 1/4 
C OK [forces shown on the nodes]

e. Solve for displacements and stresses.
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
C OK in Solve window
C YES TO CONTINUE SOLUTION  [ANSYS rightly warns 

against triangles]
C CLOSE on information window  [solution is done]

f. Display results.
C GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK and see deformed shape
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C DOF SOLUTION
C X-COMPONENT OF DISPLACEMENT
C OK to get a list of nodal displacements  [UX = 6.7341 at node 41]
C FILE > CLOSE [this list can be printed]

15.8 cantIlever BeaM Modeled aS plane StreSS

This example introduces the function editor for application of nonuniform loading 
and the Query tool for investigating the stress distribution.

This beam of Example 15.5 is analyzed as a plane stress problem as shown in 
Figure 15.6.

The body has a unit depth and L = 10, h = 1, w = 1, p = 1, E = 30 × 106, ν = 0.27. It 
is modeled as a plane stress problem. The solution by elementary beam theory, which 

L

p

h

fIgure 15.6 Cantilever beam as plane stress.
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neglects shear deformations, is a tip displacement with value 11pL4/120 EI = 0.367 × 
10–3 and a maximum bending stress of Mc/I = 2pL2/wh2 = 200.

a. LOGIN and launch ANSYS.
See example 15.3.

b. Define elements and materials.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID 
Select 8 NODE 183 [PLANE183 element]
C OK [plane stress is the default]
C CLOSE 
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 30e6 for EX parameter
C in PRXY box
T 0.27 for PRXY parameter  [PR is Poisson ratio]
C OK
C MATERIAL > EXIT

c. Create geometric figure.
C PREPROCESSOR > MODELING > CREATE
C AREAS > RECTANGLE > BY DIMENSIONS
T 0 10 0 1 for X1,X2,Y1,Y2
C OK and the region appears

d. Mesh figure.
C PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
C OK
C PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL  [mesh using default size]

  [2 high by 15 wide mesh appears 
with node numbers]

e. Define load distribution function.
C PARAMETERS > FUNCTIONS > [on top utility menu]
 DEFINE/EDIT
C 0.1*
Select X in the drop menu currently [Result = 0.1*{X}]
 showing TIME
C GRAPH  [click INV if GRAPH is not a cur-

rent label in the gray buttons]
Enter X-Axis Range: 0 to 10
C GRAPH [see graph of function]
C CLOSE Plot Information window  [may be behind graphics window]
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C FILE > SAVE [in Function Editor window]
Enter File name PSR [saved as PSR.func]
C SAVE
C FILE > CLOSE
C PARAMETERS > FUNCTIONS > READ FROM FILE
Enter PSR.func
C OPEN
Enter Table parameter name = PRESS
C OK
C PLOT > ELEMENTS

f. Apply boundary conditions.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C DISPLACEMENT > ON LINES
C left edge of the model
C OK
C ALL DOF if it is not selected already
C on box for VALUES
T 0 for the value of the displacement components
C OK [supports shown on the left edge]
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
C PRESSURE > ON LINES
C top line [Y = 1]
C OK
Select EXISTING TABLE from SFL menu
OK
Select PRESS
OK   [arrow appears to indicated pressure load]

g. Solve finite element equations.
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
C OK in Solve window 
C FILE > CLOSE on information window  [solution is done]

h. Display results.
C GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF
C OK and see deformed shape
C PLOT > ELEMENTS
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C DOF SOLUTION
C Y-COMPONENT
C OK to get a list of nodal displacements   [UX = −0.36893 × 10−3 at 

node 34]
C FILE > CLOSE
C GENERAL POST PROC > QUERY RESULTS > SUBGRID SOLU
C STRESS
C X-DIRECTION
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C OK
C node 36  [maximum bending 

stress = 202.57]
C OK  [not accurate with this few 

elements]

15.9 plane StreSS: pure BendIng

In this example, the use of symmetry and antisymmetry to apply boundary condi-
tions is introduced.

The problem diagrammed in Figure 15.7. One-quarter of the body is analyzed 
using symmetry conditions. In nondimensional units: a = 2, b = 2, p = 1, E = 1, ν = 
0.3. To prevent rigid displacement we set u(0,0) = v(0,0) = 0. An approximate solution 
is obtained by using a four-node element as described in Section 5.1.2.

a. Activate ANSYS and set the job name and preferences.
See example 15.3.

b. Choose element and material.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID
C 4 NODE 182  [Plane182 

element]
C OK
C CLOSE
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1 for EX parameter
C in PRXY box
T 0.3 for PRXY parameter
C OK
C MATERIAL > EXIT

p

y
x A

S b/2

a/2

fIgure 15.7 Plane stress: pure bending.
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c. Create geometric figure.
C PREPROCESSOR > MODELING > CREATE
C AREAS > RECTANGLE > BY DIMENSIONS
T 0 1 0 1 for X1,X2,Y1,Y2
C OK and the region appears

d. Mesh figure.
C PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
C ELEMENT NUMBERS from Elem pull-down menu
C NUMBERS ONLY from /NUM pull-down menu
C OK
C PREPROCESSOR > MESHING > SIZE CONTROLS
C MANUAL SIZE > LINES > PICKED LINES
Pick top and bottom
C APPLY
C box for NDIV
T 2 in NDIV box to mesh with 2 divisions per side
C APPLY
Pick left and right ends
C OK
T 2 in NDIV box to mesh with 2 divisions per side
C OK
C PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL   [2 × 2 grid of 

square elements]
e. Define load distribution functions.

C PARAMETERS > FUNCTIONS > DEFINE/EDIT   [on top utility 
menu]

C 1*
Select Y in the drop menu currently [Result = 1*{Y}]
showing TIME
C FILE > SAVE  [in Function Editor 

window]
Enter File name: SIGX [saved as SIGX.func]
C SAVE
C FILE > CLOSE
C PARAMETERS > FUNCTIONS > READ FROM FILE
Select SIGX.func
C OPEN
Enter Table parameter name = SIGX
C OK

f. Apply boundary conditions.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C DISPLACEMENT > ON NODES
C on node at the origin
C OK
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Select ALL DOF  [UX = 0 and UY = 0 at the 
origin]

C on box for VALUES
T 0 for the value of the displacement components
C OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
C SYMMETRY B.C. > ON LINES
C RIGHT EDGE
C OK
C ANTISYMM B.C. > ON LINES
C BOTTOM EDGE
C OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
PRESSURE > ON LINES
C on the left edge
C OK
Select EXISTING TABLE from SFE drop down menu
C OK [check that SIGX is selected]
C OK   [pressure equals a compres-

sive stress]
  [you can check on the loads by 

LIST > LOADS > SURFACE 
> ON ALL LINES]

g. Get solution.
C SOLUTION > SOLVE > CURRENT LS
C FILE > CLOSE status window
C OK in Solve window 
C CLOSE on information window  [solution is done]

h. Display results.
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C STRESS
C X-COMPONENT
C OK  [SX = −0.98985 at node 4, SX = −0.49029 

at node 5]
C FILE > CLOSE
C QUIT
C OK

15.10 plane StraIn BendIng exaMple

The SURF element is introduced for application of shear loads. A change in material 
properties without repeating the entire analysis is also demonstrated.

This example is a solution of the problem described in Section 5.1.3. The com-
plete structure is shown in Figure 15.8, but the analysis uses only the upper half and 
antisymmetry on the line y = 0. In nondimensional terms: c = 2, L = 16, P = 32, E = 
8192, ν = 0.3.
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a. Activate ANSYS and set jobname and preferences.
See example 15.3.

b. Choose elements and materials.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID 
C 4 NODE 182 [Plane182 element]
C OK
C OPTIONS
C PLANE STRAIN on the K3 drop down menu
C OK
C ADD
C SURFACE EFFECT 
2D SURF 153 should be selected
OK
SELECT SURF153
C OPTIONS
FOR K4 SELECT EXCLUDE MIDSIDE NODES
C OK
C CLOSE 
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
CC STRUCTURAL
CC LINEAR
CC ELASTIC
CC ISOTROPIC
T 8192 for EX parameter
C in PRXY box
T 0.3 for PRXY parameter 
C OK
C MATERIAL > EXIT

c. Create geometry.
C PREPROCESSOR > MODELING > CREATE
C AREAS > RECTANGLE > BY DIMENSIONS
T 0 16 0 2 for X1,X2,Y1,Y2
C OK and the region appears

τxy

τxy

L

c

c
x

y

σx

fIgure 15.8 Plane strain bending example.
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d. Mesh figure.
C PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
Select ELEMENT NUMBERS
Select NUMBERS ONLY
C OK
C PREPROCESSOR > MESHING > SIZE CONTROLS
C MANUAL SIZE > LINES > PICKED LINES
Pick top and bottom
C APPLY
C box for NDIV
T 8 in NDIV box to mesh with 8 divisions per side
C APPLY
Pick left and right ends
C OK
T 4 in NDIV box to mesh with 4 divisions per side
C OK
PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL  [creates 4 × 8 mesh]
MODELING > CREATE > ELEMENTS > ELEM ATTRIBUTES
Select TYPE = 2 SURF 153
C OK
SURF/CONTACT > SURF TO SURF
C OK (Tlab = Top surface)
C BOX [on picking menu]
Draw box around nodes on RIGHT edge by holding down mouse button 

and dragging
C APPLY
C OK
C BOX
Draw box around nodes on LEFT edge by holding down the mouse button 

and dragging
C OK
LIST > ELEMENTS > NODES
Check the I and J nodes of new elements of type 2   [down on the 

right and up on 
the left]

CLOSE
e. Define load distribution functions.

PARAMETERS > FUNCTIONS > DEFINE/EDIT   [on top utility 
menu]

C 96*
Select Y in the drop menu currently showing TIME [Result = 96*{Y}]
FILE > SAVE  [in Function 

Editor window]
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Enter File name: MOMENT  [saved as 
MOMENT.func]

SAVE
FILE > CLOSE
PARAMETERS > FUNCTIONS > READ FROM FILE
Select MOMENT.func
OPEN
Enter Table parameter name = MOMENT
OK
PARAMETERS > FUNCTIONS > DEFINE/EDIT   [on top utility menu]
C − 12 + 3 * [note minus sign]
Select Y in the drop menu currently showing TIME
C *
Again, select Y in the drop menu  [Result = 

>12+3*{Y}*{Y}]]
C FILE > SAVE  [in Function 

Editor window]
Enter File name = SHEAR  [saved as SHEAR.

func]
C SAVE
C FILE > CLOSE
C PARAMETERS > FUNCTIONS > READ FROM FILE
Select SHEAR.func
C OPEN
Enter Table parameter name = shear
C OK

f. Apply boundary conditions.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C DISPLACEMENT > ON LINES
C bottom edge of the model
C OK
Select UX
C on box for VALUES
T 0 for the value of the displacement components
C OK
C DISPLACEMENT > ON NODES
Pick node in lower left corner
C APPLY
Select UY
T value = 0
C APPLY
Pick node in upper left corner
C OK
Select UX [deselect UY]
C OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
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C PRESSURE > ON ELEMENTS
C BOX (on picking menu)
Draw a box around the surface elements on the right edge
C OK
SET LKEY = 2  [tangential load on the element]
Select EXISTING TABLE from SFE drop down menu
C OK
Select SHEAR
C OK [no indication of loading]
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C PRESSURE > ON ELEMENTS
C BOX (on picking menu)
Draw a box around the surface elements on the left edge
C OK
SET LKEY = 2 [tangential load on the element]
Select EXISTING TABLE from SFE drop down menu
C OK
Select SHEAR
C OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C PRESSURE > ON ELEMENTS
C BOX (on picking menu)
Draw a box around the surface elements on the left edge
C OK
SET LKEY = 1  [pressure load on the element]
Select EXISTING TABLE from SFL drop down menu
C OK
Select MOMENT
C OK 

  [you can check on the 
loads by LIST > LOADS 
> SURFACE > ON 
ELEMENTS]

g. Get solution.
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
C OK in Solve window 
C CLOSE on information window  [solution is done]

h. Display results.
C GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C OK and check deformed shape
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C DOF SOLUTION
C Y-COMPONENT
C OK to get a list of nodal displacements   [UY = 0.85774 at lower 

right corner]
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C FILE > CLOSE
i. Change Poisson ratio and repeat analysis.

C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C MATERIAL MODEL NUMBER 1 [in the left column]
C LINEAR ISOTROPIC
Change PRXY to 0.499 [very large bulk modulus]
OK
MATERIAL > EXIT
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
C OK in Solve window 
C CLOSE on information window [solution is done]
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C DOF SOLUTION
C Y-COMPONENT
C OK to get a list of nodal displacements   [UY = 0.74183 at the lower 

right corner]
C CLOSE
C QUIT

15.11 plane StreSS exaMple: Short BeaM

Antisymmetry is used to implement boundary conditions in this example.
This is a solution of the example presented in Section 5.1.4 and shown in Figure 15.9. 

Nondimensional parameters are used: a = 1, p = 1, E = 1, ν = 0.3. One-half of the body 
and symmetry conditions are used. A 4 × 8 mesh of four-node square elements is used.

a. Activate ANSYS and set preferences.
See example 15.3.

b. Choose elements and materials.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID 
C 4 node 182 

y

x

a

ap

fIgure 15.9 Plane stress example: short beam.
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C OK
C ADD
C SURFACE EFFECT 
2D SURF 153 should be selected
OK
SELECT SURF153
C OPTIONS
FOR K4 SELECT EXCLUDE MIDSIDE NODES
C OK
C CLOSE 
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1 for EX parameter
C in PRXY box
T 0.3 for PRXY parameter 
C OK
C MATERIAL > EXIT

c. Create geometry.
C PREPROCESSOR > MODELING > CREATE
C AREAS > RECTANGLE > BY DIMENSIONS
T 0 0.5 0 1 for X1,X2,Y1,Y2
C OK and the region appears

d. Mesh figure.
C PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
C OK
C PREPROCESSOR > MESHING > SIZE CONTROLS
C MANUAL SIZE > GLOBAL > SIZE
C box for NDIV
T 0.125 in SIZE box to control element size
C OK
PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL  [4 × 8 square mesh appears with 

node numbers]
C PREPROCESSOR > MODELING > CREATE > ELEMENTS
C ELEMENT ATTRIBUTES
Select 2 SURF 153 on TYPE menu
OK
C SURF / CONTACT > SURF TO SURF
C OK [accept TLAB = TopSurface]
C BOX on picking menu
Use cursor to draw a box around the top edge
C OK in picking menu
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e. Apply boundary conditions.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C DISPLACEMENT > ON LINES
C bottom edge of the model
C OK
C ALL DOF if it is not selected already
C on box for VALUES
T 0 for the value of the displacement components
C OK  [supports shown on the bottom 

edge]
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
C ANTI-SYMM > ON LINES
C left edge of the model
C OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
C PRESSURE > ON ELEMENTS
C BOX in picking menu
C draw around top edge 
C OK
Enter LKEY = 2
Enter VALUE = 1
C OK [close Warning window]

f. Solve for displacements and stresses.
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
C OK in Solve window
C CLOSE on information window [solution is done]

g. Display results.
C GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK and see deformed shape
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C DOF SOLUTION
C X-COMPONENT
C OK to get a list of nodal displacements   [UX = 7.1207 at node 6]
C CLOSE
C GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
C STRESS
C Y-COMPONENT
C OK to get a list of stress components   [SY = −7.3741 at node 2]

extrapolated to each node 
C CLOSE  [remember that there is 

actually a singularity at 
node 2]

C QUIT
C OK
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15.12 Sheet WIth a hole

Use of the Boolean operator to subtract areas, use of the Mesh Tool, and Refinement 
of the Mesh are introduced.

A sheet with a central hole (Figure 15.10) is stretched by a uniform edge stress S 
resulting in a stress concentration at the hole. In nondimensional variables: S = 100, 
a = 20, b = 10, r = 5, E = 1, ν = 0.3.

15.12.1 Solution procedure

a. Activate ANSYS, change job name, and set preferences to structural.
See example 15.3.

b. Choose element and material.
C PREPROCESSOR > ELEMENT TYPE > ADD
C ADD in the new window
C SOLID 
C 4 node 182 
C OK
C CLOSE 
C PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1 for EX parameter
C in PRXY box
T 0.3 for PRXY parameter 
C OK
C MATERIAL > EXIT

c. Create the body by first creating a rectangle then subtracting the circu-
lar area.
C PREPROCESSOR > MODELING > CREATE
C AREAS > RECTANGLE > BY 2 CORNERS

2a

y

x
r

S2b

fIgure 15.10 Sheet with a hole.
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Enter WP X = 0, WP Y = 0   [this establishes the origin of the 
working plane]

Enter Width = 20, Height = 10   [dimensions of the rectangle]
C OK and the rectangular region appears
C PREPROCESSOR > MODELING > CREATE
C AREAS > CIRCLE > SOLID CIRCLE
Enter WP X = 0, WP Y = 0  [center of the circular area]
Enter Radius = 5
C OK  [circular area appears]
C PLOT CTRLS > NUMBERING  [top line menu]
C AREA NUMBERING [rectangle is A1, circle is A2]
C OK
C PREPROCESSOR > MODELING > OPERATE > BOOLEANS 
C SUBTRACT > AREAS
PICK RECTANGULAR AREA
C OK
PICK CIRCLULAR AREA
C OK [body appears as area A3]

d. Mesh the body.
C PREPROCESSOR >  [mesh tool menu appears]

MESHING > MESH TOOL
Select Smart Size [note: slider sets at 6 by default]
C MESH  [near the bottom of mesh tool 

menu]
C Pick All [coarse mesh appears]
C REFINE   [Refine at Elements selected]
Pick elements along the arc of the circle
OK [level 1 selected]
OK [refined mesh appears]

e. Apply boundary conditions.
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT
C SYMMETRY > ON LINES
C bottom edge and the left edge of the model 
C OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
C PRESSURE > ON LINES
C RIGHT EDGE 
C OK
C on VALUE box
T −100 for the value  [negative pressure is 

tension]
C OK

f. Solve for displacements and stresses.
C SOLUTION > SOLVE > CURRENT LS
C CLOSE information window
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C OK in Solve window 
SELECT Yes in warning window, if any.
C CLOSE on information window  [solution is done]

g. Display results.
C GENERAL POST PROC > QUERY RESULTS > SUBGRID 

SOLUTION
Select Stress SX
OK
Pick points where you want the stress displayed   [SX = 434 at top of 

circle]
OK    [i.e., the stress con-

centration = 4.34]
PLOT > REPLOT (erases results)
Repeat for any other desired results.
C QUIT
C OK

15.13 plaStIcIty exaMple

Inelastic materials, plotting of results on a graph, the contour plot, and the Time 
History Post-processor are introduced. We begin to omit the C for familiar 
commands.

This problem is a solution of the short beam problem (Figure 15.11) for an elastic–
plastic material using a von Mises–type yield function and isotropic strain hardening 
with a bilinear stress–strain model. In lb-inch units: a = 1, p = 10,000, E = 30 × 106, 
ν = 0.3, Y = 30,000, ET = 2.727 × 106, Ep = 3 × 106. The load is applied in 10 steps 
(0 ≤ t ≤ 1) and the elastic–plastic state is displayed. Then the load is removed (1 ≤ t ≤ 2) 
and the residual stress is evaluated. Symmetry is not used.

a. Activate ANSYS and set job name and analysis type.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD

y

p
a

a

x

fIgure 15.11 Short beam: plasticity.
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SOLID
QUAD 4node 182
APPLY
SURFACE EFFECT > 2D STRUCTURAL 153
OK
C SURF 153
OPTIONS
FOR K4 SELECT EXCLUDE MIDSIDE NODES
OK
CLOSE
PREPROCESSOR > MATERIAL PROP > MATERIAL MODELS
STRUCTURAL
NONLINEAR
INELASTIC
RATE INDEPENDENT
ISOTROPIC HARDENING PLASTICITY
MISES PLASTICITY
BILINEAR  [request for elastic properties 

appears]
OK
Enter 30e6 for EX parameter
Enter 0.3 for PRXY parameter
OK
Enter 30000 for the Yield Strs
Enter 2.727e6 for the Tang Mod
OK
MATERIAL > EXIT
PLOT on the top menu
DATA TABLES
OK  [plots stress–strain diagram]

c. Create geometry.
PREPROCESSOR > MODELING > CREATE
AREAS > RECTANGLE > BY DIMENSIONS
Enter 0 1 0 1 for X1,X2,Y1,Y2
OK and the region appears

d. Mesh body.
PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MESHING > MESHTOOL
SMART SIZE
Set slider to 4  [produces a 17 × 17 element mesh]
MESH [at the bottom of mesh tool menu] 
PICK ALL [the coarse mesh appears]
C REFINE at Elements on mesh tool   [it may be hidden behind graphics 

window]
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Pick a fan of elements at the lower two corners 4-3-2-1 pattern
OK
OK (accept level 1)   [a refined mesh of 523 quad ele-

ments appears]
CLOSE MESH TOOL
MODELING > CREATE > ELEMENTS > ELEM ATTRIBUTES
SET TYPE = 2 SURF 153
OK
MODELING > CREATE > ELEMENTS > SURF/CONTACT > SURF TO 

SURF
OK   [Tlab = Top 

surface]
C BOX  [on picking 

menu]
Draw box around the top nodes by holding down the mouse button and drag 

left to right
OK
PLOT CTRLS > NUMBERING [top line menu]
NODE NUMBERS OFF
SET ELEM/ATTRIB TO ELEMENT NUMBERS  [to see the new 

elements]
SELECT NUMBERS ONLY
OK   [new elements 

524–540]
  [Zoom in if 

desired by PLOT 
CTRLS > PAN 
ZOOM ROTATE 
or Icons on right]

LIST > ELEMENTS > NODES
Check that the new elements are type 2
FILE > CLOSE
PLOT CTRLS > NUMBERING 
SET ELEMENT NUMBERING TO NO NUMBERING 
OK

e. Apply boundary conditions.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL >
DISPLACEMENT > ON LINES
C bottom edge of the model
OK
ALL DOF 
C on box for VALUES
T 0 for the value of the displacement components
OK [supports shown on the bottom edge]
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL >
PRESSURE > ON ELEMENTS
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C BOX  [on picking menu]
Draw a box around the surface elements on top edge
OK
SET LKEY = 2  [tangential load on the element]
SET VALUE = 10000   [magnitude of the distributed load along the 

element]
OK  [close warning]

f. Solve for displacements and stresses for the first load step.
 The total load is specified, then reached by ramping up in small time steps 

to reach the full load at TIME = 1. Results are saved after each time step.
SOLUTION >  [if set to Abridged Menu]

UNABRIDGED MENU
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME AND 

SUBSTPS
Enter 10 as number  [load ramped is default]

of substeps
OK
SOLUTION > SOLVE >  [note time at end of step = 1]

CURRENT LS
CLOSE on information window
OK in solve window   [convergence information is displayed as 

solution is marched out]
CLOSE on information window when solution is done

g. Remove the load and solve for the residual stress after elastic 
unloading.
UTILITY MENU > PLOT > ELEMENTS
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL >
PRESSURE > ON ELEMENTS
C BOX [on picking menu]
Draw a box around the surface elements
OK
SET LKEY = 2 
SET VALUE = 0 
OK 
SOLUTION > SOLVE >  [note time at end of step = 2]

CURRENT LS
CLOSE information window
OK in solve window
CLOSE information window when solution is done

h. Display results: list displacements of selected nodes after each time 
step.
GENERAL POST PROC > READ RESULTS > BY TIME/FREQ
Time = 1 [end of loading cycle]
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OK
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
OK and see deformed shape
UTILITY MENU > PLOT > ELEMENTS
GENERAL POST PROC > QUERY RESULTS > SUBGRID SOLUTION
STRESS SY
OK   [picking menu appears]
Pick a node to see the value of SY  [SY = 69,601 at lower-left corner]
OK
PLOT RESULTS > CONTOUR PLOT > NODAL SOLUTION
STRESS > von Mises stress
OK  [note yielded region of S > 30,000]
UTILITY MENU > PLOT > ELEMENTS
TIME HIST POSTPROC  [close information window FILE > 

CLOSE]
DEFINE VARIABLES  [note that variable 1 is TIME, 

which is a magnitude of load]
ADD  [click on the background to see the 

body]
Select Nodal DOF Result
OK
Pick upper right corner node (node 3)
OK
Enter name: U3
Select Translation UX
OK  [variable 2 is UX at node 3]
Close  [you may have to move windows to 

see the Defined Variables window]
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 2
OK   [list UX at corner for each time step]
CLOSE

i. Plot stress distribution along a selected path after loading.
Utility Menu > PLOT > ELEMENTS
GENERAL POSTPROC > PATH OPERATIONS > 
DEFINE PATH > ON WORKING PLANE
OK
Pick nodes at lower left then  [zoom in as needed]

right corners

OK
Enter path name: Base
enter nDiv = 50 [number of data points]
OK
FILE > CLOSE
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GENERAL POSTPROC > PATH OPERATIONS > MAP ONTO PATH
Enter label: SYP [this is Sy after plastic loading]
Select Stress
Select Y-direction SY
OK
GENERAL POSTPROC > PATH OPERATIONS > PLOT PATH ITEM > 
ON GRAPH
Select SYP
OK [graph appears, graph param-

eters can be adjusted with PLOT 
CTRLS menu]

PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter y-axis label: Stress Sy
Select y-axis range: specified
Enter −70000, +70000
Enter Number of y-axis divisions: 10
OK
PLOT > REPLOT

j. Plot stress distribution along the base after unloading.
UTILITY MENU > PLOT > ELEMENTS
GENERAL POST PROC > READ RESULTS > LAST SET
GENERAL POST PROC > QUERY RESULTS > SUBGRID SOLUTION
STRESS SY
OK [picking menu appears]
Pick a node to see the value of SY [SY = 34,584 at node 2]
OK
GENERAL POSTPROC > PATH OPERATIONS > MAP ONTO PATH
Enter label: SYR [this is the residual SY after 

unloading]
Select Stress
Select Y-direction SY
OK
GENERAL POSTPROC > PATH OPERATIONS > PLOT PATH ITEM > 
ON GRAPH
Select SYR
OK [this is the residual stress after 

unloading]
GENERAL POSTPROC > PATH OPERATIONS > ADD
Enter LabR = SYE [SY for elastic unload]
Enter FACT1 = 1
Select Lab1 = SYP
Enter FACT2 = −1
Select Lab2 = SYR
OK [SYE = SYP − SYR] 
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GENERAL POSTPROC > PATH OPERATIONS > PLOT PATH ITEM > 
ON GRAPH
Select SYP, SYR, and SYE
OK

15.14 vIScoelaStIcIty creep teSt

Viscoelastic materials are introduced. A step load is approximated by a very short 
time step. The Restart command is used to extend the solution.

This is a solution of the creep test for the standard linear solid model in shear with 
elastic volume change (Equation 9.17). The model for shear is as shown in Figure 
15.12. In nondimensional units: μ1 = μ2 = η = 100. G(0) = 100, G(∞) = 0.5, G1 = 50, 
τ1 = 0.5. The volume change is elastic with bulk modulus κ = 650/3. Thus, E0 = 260, 
ν0 = 0.3. One element in plane stress provides the exact spatial distribution since the 
strain and stress are uniform.

a. Activate ANSYS and set analysis type.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
Structural Solid
C 8 node 183  [this is element Plane183]
OK   [plane stress is the default]
CLOSE
PREPROCESSOR > MATERIAL PROP > MATERIAL MODELS
STRUCTURAL 
LINEAR > ELASTIC > ISOTROPIC
EX = 260  [E(0)]

μ1

μ2

s

2e

2e1

2e2

s

η

fIgure 15.12 Viscoelastic model for shear.
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PRXY = 0.3  [NU(0)]
OK
NONLINEAR
VISCOELASTIC
PRONY
SHEAR RESPONSE
a1 = 0.5  [ANSYS alpha 1]
t1 = 0.5  [ANSYS tau 1]
OK  [volumetric response is elastic]
MATERIAL > EXIT

c. Create geometry.
PREPROCESSOR > MODELING > CREATE
AREAS > RECTANGLE > BY DIMENSIONS
T 0 1 0 1 for X1,X2,Y1,Y2
C OK and the region appears

d. Mesh figure.
PLOT CTRLS > NUMBERING  [top line menu]
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MESHING > SIZE CONTROLS
MANUAL SIZE > GLOBAL > SIZE
C box for NDIV
T 1 in NDIV box to mesh with one 8-node element 
  [one element provides the exact solution for this problem]
OK
PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL  [element appears with corner node numbers]
LIST > NODES  [if you want to see a list of all 8 nodes]
OK
CLOSE

e. Apply boundary conditions.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
DISPLACEMENT > ON LINES
C bottom edge of the model
OK
Select UY
Enter 0 for the value of the displacement component
OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 
DISPLACEMENT > ON NODES
C bottom left corner of the model
OK
Select UX
Enter 0 for the value of the displacement component
OK [close warning window]
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SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > PRESSURE 
> ON LINES

C upper edge of the model
OK
Enter Load PRES value −1   [negative pressure is tension]
OK

f. Solve for displacements and stresses.
 The total load is specified then applied in one step. Results are saved after 

each time step. First, we apply the load in very small time step to approxi-
mate a step load for this creep problem.
SOLUTION > UNABRIDGED MENU
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME-TIME 

STEP
Time at end of load step: enter .0001
Time step size: enter .0001
Select STEPPED
OK
SOLUTION > SOLV CURRENT LS
CLOSE information window
C OK in solve window
CLOSE information window when solution is done
GENERAL POSTPROC > READ RESULTS > LAST SET
LIST RESULTS > NODAL SOLUTION
Select DOF solution
Select Y-COMPONENT
OK [Check to see if UY = 0.38463 × 10−2 at top
 nodes]
CLOSE

g. Next, we march out the solution maintaining the current loads 
constant.
SOLUTION > ANALYSIS TYPE > RESTART
Load Step Number: 1
Sub Step Number: 1
OK
CLOSE information window
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS 

FILE
Item to be controlled: select “nodal DOF solu”
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME-TIME 

STEP
Time at end of load step: enter 5.0
Time step size: enter 0.1
Select STEPPED
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DELTIM minimum = 0.01
DELTIM maximum = 0.1
OK
SOLUTION > SOLV CURRENT LS
OK  [close warning]
 [convergence information is displayed as solution is marched out]
CLOSE information window when solution is done

h. Display results: list displacements of selected nodes after each time 
step.
GENERAL POST PROC > READ RESULTS > LAST SET
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK and see deformed shape
TIME HIST POSTPROC [close information window]
DEFINE VARIABLES  [new window appears showing variable 1 is 

the time]
Add
Select Nodal DOF Result
OK
Pick corner node 6 [move window to see model]
OK
Enter name: DISP
Select Translation UY [variable 2 is UY]
OK
Close information window
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 2
OK   [list UY at corner for each time step, UY = 

0.0060546 at t = 5]
FILE > PRINT [if desired]
CLOSE

i. Plot results: plot the displacement at each time.
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: TIME
Enter y-axis label: DISP
SELECT: SPECIFIED Y-RANGE
ENTER Y-RANGE OF 0 TO 0.01
OK
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable: enter 1 [time on x-axis]
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 2 [displacement on y-axis]
OK
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15.15 vIScoelaStIcIty exaMple

This is a solution of the plane strain problem solved in Section 9.1.2 that is diagrammed 
in Figure 15.13. Material properties are as in Section 15.14, and the constant load is 
σ = 1. In nondimensional units: μ1 = μ2 = η =100. G(0) = 100, G(∞) = 0.5, G1 = 50, 
τ1 = 0.5. The volume change is elastic with bulk modulus κ = 650/3. Thus, E0 = 260, 
ν0 = 0.3. Support conditions are added to prevent rigid displacement without con-
stricting the model.

a. Activate ANSYS and set analysis type.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
Structural Solid
C 8 node 183 [this is element Plane183]
OK
OPTIONS
Select K3 = plane strain
OK
CLOSE
PREPROCESSOR > MATERIAL PROP > MATERIAL MODELS
STRUCTURAL 
LINEAR > ELASTIC > ISOTROPIC
EX = 260 [E(0)]
PRXY = 0.3 [NU(0)]
OK
NONLINEAR
VISCOELASTIC

1

1

y

x

σ

fIgure 15.13 Viscoelastic: plane strain.
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PRONY
SHEAR RESPONSE
a1 = 0.5  [ANSYS alpha 1]
t1 = 0.5  [ANSYS tau 1]
OK [volumetric response is elastic]
MATERIAL > EXIT

c. Create geometry.
PREPROCESSOR > MODELING > CREATE
AREAS > RECTANGLE > BY DIMENSIONS
T 0 1 0 1 for X1,X2,Y1,Y2
C OK and the region appears

d. Mesh body.
PLOT CTRLS > NUMBERING [top line menu]
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MESHING > SIZE CONTROLS
MANUAL SIZE > GLOBAL > SIZE
C box for NDIV
T 1 in NDIV box to mesh with one 8-node element
 [one element provides the exact solution for this problem]
OK
PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL (element appears with corner node numbers)
LIST > NODES   [if you want to see a list of all eight 

nodes]
OK
CLOSE

e. Apply boundary conditions.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
DISPLACEMENT > ON LINES
C bottom edge of the model
OK
Select UY
Enter 0 for the value of the displacement component
OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 
DISPLACEMENT > ON NODES
C bottom left corner of the model
OK
Select UX
Enter 0 for the value of the displacement component
OK [close warning window]
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > PRESSURE > 

ON LINES
C upper edge of the model
OK
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Enter Load PRES value −1 [negative pressure is tension]
OK

f. First, we apply the load in very small time step to approximate a step 
load for this creep problem.
SOLUTION > UNABRIDGED MENU
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME-TIME 

STEP
Time at end of load step: enter .0001
Time step size: enter .0001
Select STEPPED
OK
SOLUTION > SOLV CURRENT LS
CLOSE information window
C OK in solve window
CLOSE information window when solution is done
GENERAL POSTPROC > READ RESULTS > LAST SET
LIST RESULTS > NODAL SOLUTION
Select DOF solution
Select Y-COMPONENT
OK  [Check to see if UY = 0.35 × 10−2 at top 

nodes]
CLOSE

g. Next, we march out the solution maintaining the current loads 
constant.
SOLUTION > ANALYSIS TYPE > RESTART
Load Step Number: 1
Sub Step Number: 1
OK
CLOSE information window
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS 

FILE
Item to be controlled: select “nodal DOF solu”
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME-TIME 

STEP
Time at end of load step: enter 5.0
Time step size: enter 0.1
Select STEPPED
DELTIM minimum = .01
DELTIM maximum = 0.1
OK
SOLUTION > SOLV CURRENT LS
OK   [close warning; convergence information is 

displayed as solution is marched out]
CLOSE information window when solution is done
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h. Display results: list displacements of selected nodes after each time 
step.
GENERAL POST PROC > READ RESULTS > LAST SET
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK and see deformed shape
TIME HIST POSTPROC [close information window]
DEFINE VARIABLES  [new window appears showing variable 1 is 

the time]
Add
Select Nodal DOF Result
OK
Pick corner node 6 [move window to see model]
OK
Enter name: DISP
Select Translation UY [variable 2 is UY]
OK
Close information window
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 2
OK   [list UY at corner for each time step, 

UY = 0.0060546 at t = 5]
FILE > PRINT [if desired]
CLOSE

i. Plot results: plot the displacement at each time.
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: TIME
Enter y-axis label: DISP
SELECT: SPECIFIED Y-RANGE
ENTER Y > RANGE OF 0 TO 0.01
OK
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable: enter 1  [time on x-axis]
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 2 [displacement on y-axis]
OK

15.16 Mode ShapeS and frequencIeS of a rod

In this example, the determination of natural frequencies and mode shapes for the 
finite element model is introduced.

This is the solution to the problem analyzed in Section 10.4.2. The rod is mod-
eled by two elements using lumped mass (Figure 15.14). The natural frequencies and 
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mode shapes for axial displacement are determined. In nondimensional units: A = 1, 
E = 1, ρ = 1, L = 1.

a. Activate ANSYS with structural preference.
See example 15.3.

b. Choose elements and material.
 Use LINK1 element, enter the area in the Real Constants menu. 

Linear, elastic, isotropic material model with E = 1, NUXY is not used. 
Density = 1. 
PREPROCESSOR > ELEMENT TYPE > ADD > ADD
C 3D finit str 180
OK
CLOSE
REAL CONSTANTS > ADD > ADD
OK
Enter AREA = 1
OK
CLOSE
MATERIAL PROPERTIES > MATERIAL MODELS
STRUCTURAL
LINEAR
ELASTIC
ISOTROPIC
Enter EX = 1
Enter PRXY = 0.3  [Poisson ratio, not used]
OK
DENSITY
Enter 1
OK
MATERIAL > EXIT

c. Create nodes and elements.
MODELING > CREATE > NODES > IN ACTIVE CS
Enter NODE = 1, x,y,z = 0,0,0
APPLY
Enter 2 0.5 0 0
APPLY
Enter 3 1 0 0
OK

0.50.5

1 2 31 2x

fIgure 15.14 Axial deformation of a rod.
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ELEMENTS > AUTO NUMBERED > THRU NODES
C on nodes 1 then 2 
APPLY
C on nodes 2 then 3
OK

d. Apply loads and support conditions.
SOLUTION > DEFINE LOADS > APPLY 
STRUCTURAL > DISPLACEMENT > ON NODES
SELECT NODE 1 AND NODE 2
APPLY
SET UY = 0
APPLY
SELECT NODE 3
OK
SET ALL DOF = 0
OK

e. Specify analysis type and options and solve.
SOLUTION > ANALYSIS TYPE > NEW ANALYSIS
C MODAL
OK
SOLUTION > ANALYSIS TYPE > ANALYSIS OPTIONS
Enter 2 for No. of nodes to be extracted
Enter 2 for No. of modes to expand
Set LUMPM = YES  [to use lumped mass]
OK (Lanczos options window appears)
OK to accept defaults   [note: modes normalized to the mass 

matrix]
SOLUTION > SOLVE > CURRENT LS
CLOSE (in Stat window)
OK (To begin solution)
CLOSE (solution is done)

f. List natural frequencies and mode shapes.
GENERAL POSTPROC > RESULTS SUMMARY
(list of natural frequencies in CPS appears)
CLOSE window
GENERAL POSTPROC > READ RESULTS > FIRST SET
LIST RESULTS > NODAL SOLUTION > DOF SOLUTION
SELECT X COMPONENT
OK  [see displacements for mode 1]
CLOSE
GENERAL POSTPROC > READ RESULTS > NEXT SET
LIST RESULTS > NODAL SOLUTION > DOF SOLUTION
SELECT X COMPONENT
OK  [see displacements for mode 2]
CLOSE



ANSYS APDL Examples 397

15.17 Mode ShapeS and frequencIeS of a Short BeaM

Animation of mode shapes is introduced in this example.
This is the plane stress problem shown in Figure 15.15 and discussed in Section 

10.5. In nondimensional units, a = 1, b = 1, E = 1, ν = 1/3, ρ = 1. A 10 × 10 grid of 
100 elements is used, together with a consistent mass model, to calculate the mode 
shapes and natural frequencies in cycles per second.

a. Activate ANSYS structural.
See example 15.3.

b. Choose element and material, create figure and mesh the body, apply 
support conditions.

 Use Plane 182 element, mesh the body with NDIV = 10, and specify mate-
rial properties including the density and apply support conditions.

c. Specify analysis type and options and solve.
SOLUTION > ANALYSIS TYPE > NEW ANALYSIS
C MODAL
OK
SOLUTION > ANALYSIS TYPE > ANALYSIS OPTIONS
Enter 10 for No. of nodes to be extracted
Enter 10 for No. of modes to expand
OK (Lanczos options window appears)
OK to accept defaults
SOLUTION > SOLVE > CURRENT LS
CLOSE (in Stat window)
OK (To begin solution)
CLOSE (solution is done)

d. List natural frequencies.
GENERAL POSTPROC > RESULTS SUMMARY
(list of natural frequencies in CPS appears)
CLOSE window

e. View the mode shapes.
GENERAL POSTPROC > READ RESULTS > FIRST SET
PLOTCTRLS > ANIMATE > MODE SHAPE

b

a

x

y

fIgure 15.15 Plane stress: vibrations.
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OK  [see animated first mode shape = first bending mode]
C Stop   [in animation controller window, which may be hidden 

behind the graphics window] 
Close
GENERAL POSTPROC > READ RESULTS > NEXT SET
PLOTCTRLS > ANIMATE > MODE SHAPE
OK  [see animated second mode shape = extension mode]
Stop   [animation controller]
Close
[you can continue to view other modes: third is second bending mode, 

fourth is a breathing mode, etc.]

15.18 tranSIent analySIS of Short BeaM

Transient dynamic motion is analyzed by Newmark’s method in this example.
This is the solution of the example problem discussed in Section 10.8 for tran-

sient dynamical motion due to a step load. The body is shown in Figure 15.16. In 
nondimensional units, a = 1, b = 1, E = 1, ν = 1/3, ρ = 1, p = 1. Note that if the SURF 
element is used to apply the shear load, the density of the materials of the SURF ele-
ment must be specified as zero.

a. Activate ANSYS with structural preference.
See example 15.3.

b. Choose element and material, create figure and mesh the body, apply 
load and support conditions. 

 Use the Plane182 element, mesh the body with NDIV = 10, specify material 
properties including the density, and apply support and load conditions as 
for the static problem (Section 15.11).

c. Specify analysis type and options and solve.
SOLUTION > UNABRIDGED MENU
SOLUTION > ANALYSIS TYPE > NEW ANALYSIS
C transient

a

y
b

x

p

fIgure 15.16 Short beam: transient motion.
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OK   [the options box appears]
OK  [i.e., use Full]
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > 
DB/RESULTS FILE   [unabridged menu]
Item to be controlled: select “nodal DOF solu”
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME/TIME 

STEP
Time at end of load step: enter 10
Time step size: enter 0.1
Select STEPPED [i.e., load is ramped up in first step]
OK
C SOLUTION > SOLV CURRENT LS
C CLOSE on information window
C OK in solve window
C CLOSE on information window when solution is done

d. List results.
TIME HIST POSTPROC 
Close information window
DEFINE VARIABLES
ADD
Select Nodal DOF Result
OK
Pick corner node
OK
Enter name: DISPLACEMENT
Select Translation Component UY
OK
Close
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 2
OK
CLOSE

e. Plot results.
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: TIME
Enter y-axis label: DISPLACEMENT
Select: specified x-range
Enter x-range of 0 to 10
Select: specified y-range
Enter y-range of 0 to 15
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 2
OK
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15.19  StreSS IntenSIty factor By crack 
openIng dISplaceMent

The special crack tip element is used with automatic calculation of the stress inten-
sity factor.

A cracked sheet is loaded in tension (Figure 11.1). Because of double symmetry, 
we can use one-quarter for the analysis with symmetry conditions on the edges x = 0 
and y = 0 as shown in Figure 15.17. The stress intensity factor will be determined by 
the crack opening method. In nondimensional units: E = 1, ν = 0.3, S = 1.

a. Activate ANSYS and set job name and preferences.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
C ADD
C SOLID
C QUAD 8node 183
C OK
C OPTIONS
Plane stress should be selected
C OK
C CLOSE 
C PREPROCESSOR > MATERIAL PROP > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1.0 for EX parameter
C in PRXY box
T 0.3 for PRXY parameter
C OK
C MATERIAL > EXIT

U
X

 =
 0

crack UY = 0

82

fr
ee 10

S

fIgure 15.17 Cracked sheet.
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c. Establish geometry and mesh the object.
 The upper right quarter of the cracked sheet is used. The origin as a 

KEYPOINT is placed at the crack tip by using two rectangles and then 
combining them into one material body. The origin must be at the crack 
tip.
C PREPROCESSOR > MODELING > CREATE > AREAS >
C RECTANGLE > BY DIMENSIONS
T −2 0 0 10 for X1,X2,Y1,Y2 [note the minus sign]
C APPLY and the first rectangle appears
T 0 8 0 10 for X1,X2,Y1,Y2
C OK and the second rectangle appears  [this ensures a keypoint at 

the origin]
PLOT CTRLS > NUMBERING
C box after Keypoint Numbers to turn them ON
C box after Line Numbers to turn them ON
C box after Area Numbers to turn them ON
C box after Node numbers to turn them ON
C OK (see all features numbered)
C PREPROCESSOR > MODELING > OPERATE > BOOLEANS > ADD 

> AREAS
C PICK ALL   [this combines the two areas 

into one area A3]
C PREPROCESSOR > MESHING > SIZE CONTROLS
C CONCENTRATE KPs > CREATE
PICK crack tip at the origin
C OK (menu appears)
Enter .25 for radius of first row of elements
Enter 1 for ratio of second row to first
Enter 6 for no. of elements around circum.
Select SKEWED 1/4 PT from menu for KCTIP
C OK
C PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL  [close warning message]

d. Apply boundary conditions and solve for displacements and stresses.
PLOT > LINES
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT > 
ON LINES
C bottom right edge of the model (L9)
C APPLY
C UY
Enter 0 for the value of the displacement components
C APPLY
C left edge of the model (L4)
C OK
C UX
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Enter 0 for the value of the displacement components (Symmetry Condition)
C OK
C SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

PRESSURE > ON LINES
C top edge of both of the original two elements (L3 and L10)
C OK
Enter −1 for Load Pressure value  [negative for tension]
C OK 
C SOLUTION > SOLV CURRENT LS
C CLOSE on information window
C OK in SOLVE window
C YES in warning window
CLOSE on information that solution is complete

e. Display results and calculate stress intensity factor.
 The active origin must be at the crack tip and a path of three nodes for cal-

culation of K must be defined.
C GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C OK and see deformed shape
C UTILITY MENU > PLOT CTRLS > PAN,ZOOM,ROTATE 
Use circle and arrows to zoom in on crack tip region
C GENERAL POSTPROC > PATH OPERATIONS > DEFINE PATH > 

BY NODES
PICK crack tip and next two nodes on the crack surface (1, 61, 59) 
C OK
Enter CRACK for path name.
C OK
C CLOSE list
C GENERAL POST PROC > NODAL CALCS > STRESS INT FACTR
Select PLANE STRESS from the menu for KPLAN
Select HALF-SYMM B.C. from the menu for KCSYM
C OK produces listing showing KI = 2.6478
CLOSE

15.20 StreSS IntenSIty factor By J-Integral

The Select command and use of the Command Line for typed commands are 
introduced.

A cracked sheet is loaded in tension (Figure 11.1). Because of double symmetry, we 
can use one-quarter for the analysis with symmetry conditions on the edges x = 0 and 
y = 0 as shown in Figure 15.17. The stress intensity factor will be determined by the 
J-integral method. In nondimensional units: E = 1, ν = 0.3, S = 1. The GUI is not available 
for the J-integral. The commands must be entered manually on the Command Line.

a. Activate ANSYS and set job name and preferences.
See example 15.3.

b. Establish element type and material properties.
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PREPROCESSOR > ELEMENT TYPE > ADD
C ADD
C SOLID
C QUAD 8node 183
C OK
C CLOSE 
C PREPROCESSOR > MATERIAL PROP > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1.0 for EX parameter
C in PRXY box
T 0.3 for PRXY parameter
C OK
C MATERIAL > EXIT

c. Establish geometry and mesh the object.
 The upper right quarter of the cracked sheet is used. The origin as a KEYPOINT 

is placed at the crack tip by using two rectangles and then combining them into 
one material body. The origin must be at the crack tip.
C PREPROCESSOR > MODELING > CREATE > AREAS >
RECTANGLE > BY DIMENSIONS
T −2 0 for X1,X2 and 0 10 for Y1,Y2  [note the minus sign]
C APPLY and the first rectangle appears
T 0 8 for X1,X2 and 0 10 for Y1,Y2 
C OK and the second rectangle appears
C PLOT CTRLS > NUMBERING
C box after Keypoint Numbers to turn them ON
C box after Line Numbers to turn them ON
C box after Area Numbers to turn them ON
C box after Node numbers to turn them ON
C OK (see all features numbered)
C PREPROCESSOR > MODELING > OPERATE > BOOLEANS > 

ADD > AREAS
C PICK ALL (this combines the two areas into one area A3)
C PREPROCESSOR > MESHING > SIZE CONTROLS
C CONCENTRATE KPs > CREATE
PICK crack tip at the origin
C OK (menu appears)
Enter .25 for radius of first row of elements
Enter 1 for ratio of second row to first
Enter 6 for no. of elements around circum.
Select SKEWED 1/4 PT from menu for KCTIP
OK
C PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL  [close warning message]
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d. Apply boundary conditions.
C PLOT > LINES
C LOADS > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT >
ON LINES
C bottom right edge of the model (L9)
C APPLY
C UY
Enter 0 for the value of the displacement components
C APPLY
C left edge of the model (L4)
C OK
C UX
OK
C APPLY > STRUCTURAL > PRESSURE > ON LINES
C top edge of both of the original two elements (L3 and L10)
C OK
Enter −1 for Load Pressure value   [negative for tension]
C OK

e. Create J-integral parameters.
C PLOT > ELEMENTS [Utility menu]
C SECLECT > ENTITIES [nodes by num/pick selected]
C OK
Pick node at origin  [zoom in to be sure you pick the 

origin]
C OK
C SELECT > COMP/ASSEMBLY > CREATE COMPONENT
Enter CRACK1 for Cname
C OK
C SELECT > EVERYTHING
[type the following commands on the command line followed by ENTER]
OUTRES,CINT,ALL  [output J-integral results]
CINT,NEW,1  [new contour integral with ID = 1]
CINT,NAME,CRACK1 [node for path 1]
CINT,NCON,3  [do for three contours]
CINT,SYMM,ON [symmetric about crack line]
CINT,NORM,0,2 [crack normal is y-axis]
CINT,LIST  [lists parameters in Output 

Window]
f. Solve equations.

C SOLUTION > SOLV CURRENT LS
C CLOSE on information window
C OK in SOLVE window
C YES in warning window 
C CLOSE on information window that solution is complete
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g. Calculate the stress intensity factor by the J-integral.
GENERAL POSTPROCESSOR
Type PRCINT,1   [on the command line followed by 

ENTER]
The value of the J-integral for three paths is displayed:

 J1 = 7.0266, J2 = 6.9961, J3 = 6.9896. 

The average of J2 and J3 is 6.9928, giving KI = =6 9928 2 644. . .

15.21 StretchIng of a nonlInear elaStIc Sheet

The analysis of elastic materials with large strains is introduced.
This is a solution of stretching of a sheet (Figure 15.18) of a Blatz–Ko material 

(μ = 200) using a four-node plane stress element (Plane182). We will use the upper 
half of the sheet and symmetry conditions. Note that p = 100 is a given load per unit 
reference area and not a pressure per unit deformed area.

a. Activate ANSYS and set job name and analysis type to structural.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
HYPERELASTIC
2D 4 NODE 182 [this is PLANE182 element]
OK
CLOSE
PREPROCESSOR > MATERIAL PROP > MATERIAL MODEL
STRUCTURAL
NONLINEAR
ELASTIC

b
y

a p

x

fIgure 15.18 Stretching of a thin sheet.
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HYPERELASTIC
BLATZ–KO (FOAM)
Set mu = 200  [this is the shear modulus, the only 

parameter in the Blatz–Ko model]
OK
MATERIAL > EXIT

c. Create geometry.
PREPROCESSOR > MODELING > CREATE
AREAS > RECTANGLE > BY DIMENSIONS
T 0 1 0 0.5 for X1,X2,Y1,Y2
OK and the region appears 1 unit wide by 0.5 unit high

d. Mesh the body.
PLOT CTRLS > NUMBERING
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MESHING > SIZE CONTROLS
MANUAL SIZE > GLOBAL > SIZE
C box for SIZE
T 0.05 in SIZE box to get elements with side 0.05 unit
OK
PREPROCESSOR > MESHING > MESH > AREAS > FREE
C PICK ALL   [20 × 10 mesh appears, node 2 at the 

lower right corner]
e. Apply boundary conditions.

SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 
DISPLACEMENT >

ON LINES
PICK BOTTOM EDGE
APPLY
SELECT UY
C on box for VALUES
T 0 for the value of the displacement components
APPLY
PICK LEFT EDGE
OK
SELECT ALL DOF
T 0 for the value of the displacement components
OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > FORCE 

> ON NODES
PICK CORNER NODES ON THE RIGHT SIDE
APPLY
SET FX = 2.5  [corner nodes have half the load]
APPLY
BOX THE REMAINING NODES ON THE RIGHT SIDE
OK
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SET FX = 5 
OK  [Close Warning]

f. Solve for displacements and stresses.
 The total load is specified, then reached by ramping up in small time steps. 

Results are saved after each time step.
SOLUTION > UNABRIDGED MENU
SOLUTION > ANALYSIS TYPE > ANALYSIS OPTIONS 
Set NLGEOM ON [this is for K0]
Set Stress Stiff ON (SSTIF at [this is for K1]

the bottom)
OK
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS 

FILE
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME/TIME 

STEP
Time at end of load step: enter 1
Time step size: enter 0.1
Select RAMPED
Automatic time step: ON
Minimum time step: enter 0.05
Maximum time step: enter 0.1
OK
SOLUTION > SOLV > CURRENT LS
CLOSE information window
OK in solve window
(Convergence information is displayed as solution is marched out.)
CLOSE information window when solution is done

g. Display results: list displacements of selected nodes after each time 
step.
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
DEF & UNDEF
OK and see deformed shape
GENERAL POST PROC > LIST RESULTS
NODAL SOLUTION
DOF SOLUTION > X-Component
OK  [you should have UX = 0.4339 at 

node 2]
CLOSE
GENERAL POST PROC > LIST RESULTS
NODAL SOLUTION
STRESS > X-COMPONENT
OK  [you should have SX = 120.19 at 

node 2; this is the true stress T11]
CLOSE
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TIME HIST POSTPROC 
Close window
DEFINE VARIABLES
Add
Select Nodal DOF Result
OK
T 2 in the box for “list of items”  [this is another way of picking the 

node]
OK
Enter name: UX
Select Translation UX
OK
CLOSE
TIME HIST POSTPROC > MATH OPERATIONS > MULTIPLY
IR = 3  [new variable]
FACTA = 100
IA = 1  [time]
NAME = LOAD [LOAD is 100 × TIME]
OK
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 3
For 2nd variable to list: enter 2
OK   [list LOAD and UX for each time step]
CLOSE

h. Plot results: plot the displacement at each time.
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable: enter 2
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 3
OK
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: UX
Enter y-axis label: LOAD
SELECT: SPECIFIED Y-RANGE
ENTER Y-RANGE OF 0 TO 110
ENTER NDIV Y-AXIS = 11
OK
Utility Menu: PLOT > REPLOT
The graph can be printed after adjusting colors.

15.22 nonlInear elaStIcIty: tenSIle teSt

This is a solution of a tensile test of a unit cube (Figure 15.19) of the Blatz–Ko mate-
rial (μ = 100) using one 8-node brick and the updated Lagrangian method. One 
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element is an exact model of the tensile test. The axial load is ramped up to P11 = 40. 
Minimum supports are imposed to prevent rigid displacement.

a. Activate ANSYS and set analysis type to structural.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
HYPERELASTIC
C 3D 8 NODE 185 [this is SOLID185 element]
OK
CLOSE
PREPROCESSOR > MATERIAL PROP > MATERIAL MODEL
STRUCTURAL
NONLINEAR
ELASTIC
HYPERELASTIC
BLATZ–KO (FOAM)
Set mu = 100   [this is the shear modulus, the only parameter in the 

Blatz–Ko model]
OK
MATERIAL > EXIT

c. Create figure.
PREPROCESSOR > MODELING > CREATE > VOLUMES > BLOCK
BY DIMENSIONS
T 0 1 0 1 0 1 for X1,X2,Y1,Y2, Z1,Z2
C OK and the region appears showing the x–y plane

d. Mesh body.
PLOT CTRLS > NUMBERING
C box after Node numbers to turn them ON
C OK
PREPROCESSOR > MESHING > MESH TOOL
C SIZE CONTROLS: GLOBL > SET
C box for NDIV
T 1 in NDIV box [one element is exact for the uniform extension]
C OK

10
3

10

10
10

4
65

UX = UY = UZ = 0 x2
z

y

7
UX = UZ = 0 1

UX = UY = 0

8
UX = 0

fIgure 15.19 3D Tensile test.



410 The Finite Element Method for Mechanics of Solids with ANSYS Applications 

C SHAPE: HEX [this forces a brick instead of the default tetrahedron]
C MESH
C PICK ALL [node numbers appear]
C CLOSE  [Mesh Tool]

e. Apply boundary conditions. 
 First, rotate the element so that you can see the base (x = 0) with nodes 1-2-

5-8. This can be done in the dynamic model mode, which is interactive: on 
the right-hand side is a menu with 3D pictures of a block. Click on the but-
ton at the end of the list that shows two elements (Dynamic Model Mode). 
The cursor changes to a rotation symbol. Hold down the right mouse button 
to rotate the element interactively until you can see the face 1-2-5-8.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT > 
ON NODES
C on node 2 (at the origin)
APPLY
C ALL DOF
C on box for VALUES
T 0 for the value of the displacement components
APPLY
REPEAT THIS PROCESS TO SET UX AND UZ TO ZERO AT NODE 1
REPEAT THIS PROCESS TO SET UX AND UY TO ZERO AT NODE 5
REPEAT THIS PROCESS TO SET UX TO ZERO AT NODE 8
[This prevents rigid body motion and keeps the base in the Y–Z plane, but 

allows contraction.]
ROTATE THE ELEMENT so that you can see the face x = 1 with nodes 

3-4-6-7
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > FORCE 

> ON NODES
C ON EACH NODE 3-4-6-7
OK
SELECT FX
T 10 for the VALUE of FX  [this fixes the maximum load P11 = 40]
C OK

f. Solve finite element equations.
SOLUTION > UNABRIDGED MENU
SOLUTION > ANALYSIS TYPE > ANALYSIS OPTIONS
Set NLGEOM ON [this is for K0]
Set Stress Stiff ON (SSTIF at the bottom)  [this is for K1]
OK
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS 

FILE
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME/TIME 

STEP
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Time at end of load step: enter 1
Time step size: enter 0.1
Select RAMPED
Automatic time step: ON
Minimum time step: enter 0.05
Maximum time step: enter 0.1
OK
SOLUTION > SOLV CURRENT LS
CLOSE information window
OK in solve window
(Convergence information is displayed as solution is marched out.)
CLOSE information window when solution is done

g. Display results: list displacements of selected nodes after each time step.
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
DEF & UNDEF 
OK and see deformed shape
GENERAL POST PROC > LIST RESULTS
NODAL SOLUTION
DOF SOLUTION > X-Component
OK [you should have UX = 0.27104 at node 4]
CLOSE
GENERAL POST PROC > LIST RESULTS
NODAL SOLUTION
STRESS > X-COMPONENT
OK   [you should have SX = 45.096; this 

is the true stress T11]
CLOSE
TIME HIST POSTPROC 
CLOSE window
DEFINE VARIABLES
ADD
Select Nodal DOF Result
OK
T 4 in the box for “list of items”  [this is another way of picking the 

node]
OK
Enter name: UX
Select Translation UX
OK
ADD
ELEMENT RESULTS
OK
T 1 for the list of items  [this is the element number]
OK
T 4 for the list of items   [this is the node number for stress 

output]
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OK
Enter name SX 
Select Stress Component SX
OK 
CLOSE    [variable 2 is UX and variable 3 is 

SX] 
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 3
For 2nd variable to list: enter 2
OK    [lists SX and UX for each time 

step]
CLOSE

h. Plot results: plot the displacement at each time.
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable: enter 2
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 3
OK
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: UX
Enter y-axis label: SX
SELECT: SPECIFIED Y-RANGE
ENTER Y-RANGE OF 0 TO 50
SELECT: SPECIFIED X-RANGE
ENTER Y-RANGE OF 0 TO 0.3
OK
Utility Menu: PLOT > REPLOT
This graph can be printed for a report after adjusting colors 

15.23 coluMn BucklIng

This example introduces the FILL command to generate intermediate nodes, the 
COPY ELEMENT command to proliferate elements, and the PRESTRESS com-
mand to save the pre-buckling stress.

A column with one end fixed and the other free has an axial load P as shown in 
Figure 15.20. The cross section is 0.5 in.2: A = 0.25, I = 1/192, L = 100 in., E = 30 × 
106 lb/in.2 The value of the buckling load is to be calculated. Ten elements of equal 
length are used.

L

PEIy

fIgure 15.20 Column buckling.
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a. Activate ANSYS and set preferences.
See example 15.3.

b. Choose elements and materials.
PREPROCESSOR
enter ET,1,BEAM3 on command line   [BEAM3 Element]
enter R,1,0.25,1/192,0.5 on command line for A, IZZ, and h
PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
STRUCTURAL
LINEAR
ELASTIC
ISOTROPIC
Enter 30e6 for EX parameter 
C in NPRXY box
Enter 0.3 for PRXY parameter   [PR, denoting Poisson ratio, is actu-

ally not used]
OK
MATERIAL > EXIT

c. Create nodes by filling a line and create elements by copying a first 
element.
PLOT CTRLS > NUMBERING 
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MODELING > CREATE > NODES > IN ACTIVE 

CS
Enter Node 1 at 0,0,0
APPLY
Enter node 11 at 0, 100, 0
OK
PREPROCESSOR > MODELING > CREATE > NODES > FILL 

BETWEEN NODES
C on node 1 then 11
OK
OK in fill window
PREPROCESSOR > MODELING > CREATE > ELEMENTS
AUTONUMBERED > THRU NODES
C on node 1 then 2
OK
PREPROCESSOR > MODELING > COPY > ELEMENTS > 

AUTONUMBERED
C Pick All
Set ITIME = 10 total copies
OK   [a line divided into 10 elements 

should appear]
d. First, solve for the stress due to a nominal applied load.

SOLUTION > UNABRIDGED MENU
SOLUTION > ANALYSIS TYPE 
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ANALYSIS OPTIONS > PRESTRESS ON  [near the bottom] 
OK   [this saves the stress state for the 

eigenvalue calculation]
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
DISPLACEMENT > ON NODES
C node 1
OK
C ALL DOF 
C on box for VALUES
T 0 for the value of the displacements and rotation
OK 
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
FORCE > ON NODES
C node 11
OK
C FY 
C on VALUE box
T value for FY = −1  [negative for compressive force]
OK  [force shown on the node]
SOLUTION > SOLVE > CURRENT LS
CLOSE information window   [check: Prestress Effects Calculated 

is YES]
C OK in solve window
CLOSE information window  [solution is done]

e. Solve for the multiple of the applied load that produces a zero determi-
nant for the total stiffness matrix.
SOLUTION > ANALYSIS TYPE > NEW ANALYSIS
Select EIGEN BUCKLING
OK [Close Warning If Any]
SOLUTION > ANALYSIS OPTIONS
Enter 1 mode to be extracted  [NMODE]
OK in options window
SOLUTION > SOLVE > CURRENT LS
CLOSE information window
OK in solve window
CLOSE information window

f. Display results.
GENERAL POST PROCESSOR > RESULTS SUMMARY
[TIME/FREQ is the factor multiplying the nominal load to get the buckling 

load, 38.553]
CLOSE
C GENERAL POST PROC > READ RESULTS > FIRST SET
PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK and see buckled mode shape
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15.24 coluMn poSt-BucklIng 

A column with one end fixed and the other free has an axial load P as shown in Figure 
15.20. The cross section is 0.5 in.2: A = 0.25, I = 1/192, L = 100 in., E = 30 × 106 lb/in.2 
The value of the buckling load has been calculated as Pcr = 38.553 lb. The post-buckling 
displacement is to be determined if the load is increased to P = 44. The column is placed 
so that the top is 1 in. out of alignment in order to simulate an imperfection.

a. Activate ANSYS, change job name and set preferences.
See example 15.3.

b. Choose elements and materials.
See section 15.23.

c. Create nodes by filling a line and create elements by copying a first 
element.
PLOT CTRLS > NUMBERING 
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MODELING > CREATE > NODES > IN ACTIVE 

CS
Enter Node 1 at 0,0,0
APPLY
Enter node 11 at 1, 100, 0 [note x = 1 off-set]
OK
FILL BETWEEN NODES
C on node 1 then 11
OK
OK in fill window
PREPROCESSOR > MODELING > CREATE > ELEMENTS
AUTONUMBERED > THRU NODES
C on nodes 1 then 2
OK
PREPROCESSOR > MODELING > COPY > ELEMENTS > 

AUTONUMBERED
C Pick All
Set ITIME = 10 total copies
OK

d. Apply boundary conditions.
PREPROCESSOR > LOADS > DEFINE LOADS > APPLY > 

STRUCTURAL 
DISPLACEMENT > ON NODES
C node 1
OK
C ALL DOF 
C on box for VALUES
T 0 for the value of the displacements and rotation
OK 
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SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
FORCE > ON NODES
Select NODE 11
OK
Select FY 
C on VALUE box
T value for FY = −44  [negative for compressive force]
OK  [force shown on the node]

e. Set solution parameters and solve equations.
SOLUTION > UNABRIDGED MENU
ANALYSIS TYPE > ANALYSIS OPTIONS
Set NLGEOM = ON
Set SSTIFF = ON  [drop menu near the bottom]
OK
LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS FILE > EVERY 

SUBSTEP
OK
TIME/FREQUENC > TIME & SUBSTEPS 
TIME = 1
NSUBST = 100
MAXIMUM NO. OF SUBSTEPS = 100
MINIMUM NO. OF SUBSTEPS = 100
OK
SOLVE > CURRENT LS  [convergence information displayed]
CLOSE information window
OK
CLOSE information window   [solution is done]

f. Display results.
PLOT RESULTS > DEFORMED SHAPE
OK and see post-buckled shape
TIMEHIST PROSTPRO   [CLOSE WINDOW]
DEFINE VARIABLES > ADD [nodal DOF selected]
OK
C NODE 11
OK
NAME = UX  [translation UX selected]
OK [UX is variable 2]
ADD
REACTION FORCES
OK
C NODE 1
OK
NAME = FY
STRUCTURAL FORCE FY
OK [variable 3 is FY]
CLOSE
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SETTINGS > GRAPH
XVAR = SINGLE VARIABLE
SINGLE VARIABLE = 2 [plot UX on x-axis]
OK
GRAPH VARIABLES
NVAR1 = 3  [plot FY on y-axis]
OK
PLOT CTRLS > STYLE > COLORS 
C REVERSE VIDEO
PLOT CTRLS > STYLE > COLORS > GRAPH COLORS
For Graph Curve Number 1 Select Black From Drop Down Menu
OK 
PLOT CTRLS > HARD COPY [if desired]
[Choose parameters and either print or save]

15.25 Snap-through

This analysis uses the arc-length method to determine intermediate (unstable) equi-
librium configurations. Use of the Solution Control menu is introduced.

Under sufficient load, the linkage shown in Figure 15.21 will snap through to 
another equilibrium position. The exact analysis is discussed in Section 32.1. The 
initial dimensions are H = 50, V = 1. The area of the linkage rods is A = 1 and the 
modulus is E = 10 × 106. The maximum load is F = 75. One-half of the mechanism 
is used by symmetry and the system is turned upside down so that the displacements 
are upward (positive y-direction).

a. Activate ANSYS and set analysis type.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
C ADD
C LINK
C 3D finit str 180 (Link element)
OK
CLOSE
PREPROCESSOR > REAL CONSTANTS > ADD
C ADD
C OK

F

HH
V

fIgure 15.21 Linkage snap-through.
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C in the AREA box
T 1.0 for area
C OK
C CLOSE
PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL
C LINEAR
C ELASTIC
C ISOTROPIC
T 1e7 for EX parameter
OK (PRXY is not used)
MATERIAL > EXIT

c. Create a line and mesh it as one element.
PREPROCESSOR > MODELING > CREATE > KEYPOINTS > IN 

ACTIVE CS
NPT = 1
X,Y = 0,0
C APPLY
NPT = 2
X,Y = 50, −1
OK
PREPROCESSOR > MODELING > CREATE > LINES > LINES > 

STRAIGHT LINE
PICK KP1
PICK KP2
OK
PLOT CTRLS > NUMBERING   [top line menu]
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MESHING > SIZE CONTROLS
MANUAL SIZE > GLOBAL > SIZE
C box for NDIV
T 1 in NDIV box to mesh with one truss element
OK
PREPROCESSOR > MESHING > MESH > LINES
C PICK ALL   [element appears with node and element 

numbers]
d. Apply boundary conditions.

SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
DISPLACEMENT > ON NODES
PICK NODE 1
OK
C ALL DOF
C on box for VALUES
T 0 for the value of the displacement component
OK
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SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 
 DISPLACEMENT > ON NODES
PICK NODE 2
OK
Select UX   [be sure that only UX is highlighted]
T 0 for the value of the displacement component   [symmetry 

condition]
OK 
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > FORCE 

> ON NODES
PICK NODE 2
OK
SELECT FY
VALUE = 75  [this will be the maximum load]
OK

e. Solve for displacements and stresses.
 The total load is specified and applied in one step. Results are saved after 

each substep.
SOLUTION > ANALYSIS TYPE > SOL’N CONTROLS > BASIC
Select Analysis Option: Large Displacement Static [NLGEOM ON]
Number of Substeps selected
Enter Number of substeps = 50
Select Frequency: Write Every Substep
C ADVANCED NONLINEAR
C Activate Arc-Length Method
T Max Multiplier = +1
T Min Multiplier = −1
OK
SOLUTION > SOLVE > CURRENT LS
CLOSE blue information window
C OK in information window   [“time” is actually the 

load multiplier]
CLOSE information window when solution is done

f. Display results: list displacements of selected nodes after each time 
step.
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK and see deformed shape
TIME HIST POSTPROC    [close information 

window]
DEFINE VARIABLES   [variable 1 labeled 

time is actually the 
load multiplier]

Add 
Select Nodal DOF Result
OK
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Pick node 2    [move window to see 
model]

OK
Enter name: DISPLACEMENT
Select Translation UY  [variable 2 is set to 

UY]
OK
Close information window
TIME HIST POSTPROC > LIST VARIABLES  [Time = Load 

Multiplier]
For NVAR2 enter 2   [displacement]
OK
CLOSE

g. Plot results: plot the displacement at each time.
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: DISPLACEMENT
Enter y-axis label: LOAD FACTOR
SELECT SPECIFIED X-RANGE
ENTER X-RANGE OF 0 TO 2.5
SELECT: SPECIFIED Y-RANGE
ENTER Y-RANGE OF −1 TO +1
OK
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable: enter 2   [displacement on x-axis]
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 1   [load multiplier on y-axis]
OK

15.26 plate BendIng exaMple

The Element Table is used to extract the moments and shears.
This example is a solution of bending of a square plate by a uniform load. Two 

opposite sides are simply supported with zero twisting moment and the other two 
opposite sides are simply supported with zero twisting rotation. One-quarter of 
the plate is modeled with symmetry conditions (Figure 15.22). In nondimensional 
units: a = b = 10, h = 1, ν = 0.3, D = 1, so that E = 10.92. This is a thick plate since 
a/h = 10.

a. Activate ANSYS and set job name and analysis type structural.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
SHELL
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Plastic 4 node 43   [SHELL43 element]
OK
CLOSE
C REAL CONSTANTS > ADD
C ADD
C OK
ENTER 1 for TK(I) [thickness]
OK
CLOSE
MATERIAL PROP > MATERIAL MODELS
STRUCTURAL 
LINEAR
ELASTIC
ISOTROPIC
Enter 10.92 for EX parameter  [E = 12(1 – ν2)]
Enter 0.3 for PRXY parameter 
OK
MATERIAL > EXIT    [menu in upper left corner of 

window]
c. Create rectangle.

MODELING > CREATE
AREAS > RECTANGLE > BY DIMENSIONS
Enter 0 5 0 5 for X1,X2,Y1,Y2   [a = b = 10]
OK and the region appears

d. Mesh region.
MESHING > SIZE CNTRLS > MANUAL SIZE > GLOBAL > SIZE
Enter NDIV = 10
OK
MESHING > MESH > AREAS > FREE
C PICK ALL 

e. Apply boundary conditions.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL >
 DISPLACEMENT > ON LINES

ROTX = 0

p = 1
y

x
ROTY = 0
w = 0

Mxy = 0
w = 0

RO
T

Y 
= 

0

5

5

fIgure 15.22 One-quarter of plate with symmetry.
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C bottom AND left edge of the model
APPLY
C UZ 
C on box for VALUES
T 0 for the value of the displacement components
APPLY 
C bottom AND right edge of the model
APPLY
C ROTY 
APPLY
C top edge
OK
C ROTX
OK
DEFINE LOADS > APPLY > STRUCTURAL > PRESSURE > ON 

AREAS
C PICK ALL
Enter VALUE = 1 [default LKEY = 1]
C OK  [uniform load in positive z-direction]

f. Solve for displacements and stresses.
SOLVE > CURRENT LS
OK
CLOSE
CLOSE

g. Display results: list displacements of selected nodes after each time 
step.
PLOT CTRLS > NUMBERING
C NODE numbers ON
Select Elem/Attrib numbering = Element Numbers
Select /NUM = Numbers only
OK
GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
DOF SOLUTION > Z-COMPONENT OF DISPLACEMENT 
OK  [w = 44.379 at the center]
CLOSE
ELEMENT TABLE > DEFINE TABLE > ADD
Enter Lab = MX
C item by sequence number
Enter for SMISC, 4
APPLY
Repeat for MY 5, MXY 6, QX 7. and QY 8
OK
CLOSE
LIST ELEM TABLE
SELECT MX, MY, MXY, QX, QY
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OK    [see list of stress resultants at center of 
each element]

h. Graph results.
PATH OPERATIONS > DEFINE PATH > BY NODES
Pick nodes along the base Y = 0 from the left to the center
OK
Enter BASE for the name
OK
CLOSE
MAP ONTO PATH
Enter LAB = QY
C Elem Table Item
Enter for ETAB, QY
OK   [ANSYS extrapolates to the boundary]
PLOT PATH ITEM>ON GRAPH
Select QY
OK
PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
C Y-axis range specified
Enter YMIN, YMAX as −5 to + 5
OK
PLOT > REPLOT 

15.27 claMped plate

This is a solution of bending of a square plate by a uniform load. The edges of the 
plate are clamped (all DOFs are zero). The lateral load is uniformly distributed. 
Symmetry is not used. In nondimensional units: a = b = 20, h = 1, ν = 0.3, D = 100, 
so that E = 1092. This is a thick plate since a/h = 20.

a. Activate ANSYS and set job name and analysis type structural.
See Example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
SHELL
Elastic 8 node 281   [SHELL281 element]
OK
CLOSE
C REAL CONSTANTS > ADD
C ADD
C OK
ENTER 1 for TK(I)  [thickness]
OK
CLOSE
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MATERIAL PROP > MATERIAL MODELS
STRUCTURAL 
LINEAR
ELASTIC
ISOTROPIC 
Enter 1092 for EX parameter  [D = 100]
Enter 0.3 for PRXY parameter 
OK
MATERIAL > EXIT 

c. Create rectangle.
MODELING > CREATE
AREAS > RECTANGLE > BY DIMENSIONS
Enter 0 20 0 20 for X1,X2,Y1,Y2   [a = b = 20]
OK and the region appears

d. Mesh region.
MESHING > SIZE CNTRLS > MANUAL SIZE > GLOBAL > SIZE
Enter NDIV = 20
OK
MESHING > MESH > AREAS > FREE
C PICK ALL 

e. Apply boundary conditions.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL >
 DISPLACEMENT > ON LINES
C all four edges 
OK
C ALL DOF
C on box for VALUES
T 0 for the value of the displacement components
OK
DEFINE LOADS > APPLY > STRUCTURAL > PRESSURE > ON 

AREAS
C PICK ALL
Enter VALUE = 1 [default LKEY = 1]
C OK [uniform load in the positive z-direction]

f. Solve for displacements and stresses.
SOLVE > CURRENT LS
OK
CLOSE
CLOSE

g. View results.
GENERASL POSTPROC
QUERY RESULTS
SUBGRID SOLU
DOF SOLUTION > UZ
Pick center node
OK  [see 2.1236, thin plate theory = 2.016]
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15.28 gravIty load on a cylIndrIcal Shell

In this example, the command Select > Entities is used to select a set of noses. The 
use of stored parameters instead of directly entered data, cylindrical coordinates as 
the active coordinate system, and mapped meshing are introduced.

The cylindrical shell (Figure 15.23) is loaded by gravity in the y-direction. The 
curved shell is approximated by flat plate elements. The ends are supported by flex-
ible membranes and the sides are free. E = 3 × 106 lb/in.2, ν = 0, and the specific 
weight is 0.208 pci, r = 300 in., thickness = 3 in., length = 600 in. Double symmetry 
will be used.

a. Activate ANSYS and set analysis type.
FILE > CHANGE JOBNAME
T a job name   [this is the internal job name, e.g., Shell]
OK
FILE > CHANGE TITLE
T a project name   [this is the name on reports, e.g., Shell Roof]
OK
PREFERENCES
C box before structural
OK

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
C ADD
C SHELL
C Elastic 4 node 181  [Shell181]
OK

L

z

x

v = 0
u = 0

v = 0
u = 0

free

sym
sym

free

y y

x

r

40°

fIgure 15.23 Cylindrical shell.
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CLOSE
PREPROCESSOR > REAL CONSTANTS > ADD
C ADD
C OK
TK(I) = 3 
C OK
C CLOSE
PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
STRUCTURAL
LINEAR
ELASTIC
ISOTROPIC
EX = 3e6 
NUXY = 0.
OK 
DENSITY
DENS = .208
OK 
MATERIAL > EXIT

c. Enter the value of some parameters for later use.
 The name of the parameter and its value or a formula is entered into the 

selection box.
UTILITY MENU > PARAMETRS > SCALAR PARAMETER
Enter r = 300
ACCEPT
Enter z = 300  [length of one-half of shell]
ACCEPT
CLOSE

d. Change to cylindrical coordinates and create the surface.
 We are analyzing one-quarter of the shell and using symmetry conditions.

UTILITY MENU > WORK PLANE > CHANGE ACTIVE CS >
 GLOBAL CYLINDRICAL  [cylindrical coordinates X → r, Y →

 θ (in deg.)]
PREPROCESSOR > MODELING > CREATE > KEYPOINTS > IN 

ACTIVE CS
NPT = 1
X,Y,Z = r,50,0  [the values of parameter r will be used]
C APPLY
NPT = 2
X,Y,Z = r,90,0
C APPLY
NPT = 3
X,Y,Z = r,90,z
C APPLY
NPT = 4
X,Y,Z = r,50,z
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OK
C ISOMETRIC VIEW [top icon on the right side menu]
PREPROCESSOR > MODELING > CREATE 
AREAS > ARBITRARY > THROUGH KPs
PICK KP1
PICK KP2
PICK KP3
PICK KP4
OK   [area appears: this is a curved sur-

face in cylindrical coordinates]
e. Mesh the surface.

PREPROCESSOR > MESHING > SIZE CONTROLS
MANUAL SIZE > GLOBAL > SIZE
C box for NDIV
T 20 in NDIV box 
OK
PREPROCESSOR > MESHING > MESH > AREAS
MAPPED > 3 OR 4 SIDED
C PICK ALL  [20 × 20 mesh appears]

f. Apply boundary conditions using symmetry conditions.
C TOP VIEW  [right side menu]
UTILITY MENU > SELECT > ENTITIES
OK    [to select nodes, picking menu 

appears]
C BOX 
Select nodes by drawing a box around the nodes on the left edge (global 

X = 0) with mouse 
OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT
SYMMETRY B.C. > ON NODES   [menu appears]
Norml = Y-axis [actually θ = 90° plane]
KCN = 1  [global cylindrical coordinate 

system]
OK   [support symbols appear]
UTILITY MENU > SELECT > ENTITIES
OK 
C BOX 
Select nodes by drawing a box around the nodes on the bottom edge 

(Z = 300) 
OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT
SYMMETRY B.C. > ON NODES 
Norml = Z-axis 
KCN = 1 
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OK
UTILITY MENU > SELECT >  [i.e., unselect the special set]

EVERYTHING
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL > 

DISPLACEMENT
ON NODES
C BOX and select nodes on the top edge Z = 0
OK
Select UX, UY [membrane support]
Value = 0
OK
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL
INERTIA > GRAVITY > GLOBAL
ACELY = 1  [acceleration of gravity in global 

y-direction, load is –ρg, in negative 
y-direction or down]

OK
PLOT CTRLS > NUMBERING > NODE NUMBERS ON
ELEM = ELEMENT NUMBERS 
/NUM = NUMBERS ONLY 
OK
PLOT ELEMENTS  [note element nearest center (400) 

and its nodes]
LIST > ELEMENTS > NODES   [note I J K L nodes for the center 

element, the local x-axis goes from 
I toward J, and the local y-axis goes 
from J toward K]

CLOSE
g. Solve for displacement and stress resultants.

SOLUTION > SOLVE > CURRENT LS
OK
CLOSE information windows

h. Display results.
GENERAL POSTPROC > QUERY RESULTS > SUBGRID SOLUTION
DOF SOLUTION > UY [global Y = up]
C node at center of shell (X = 0, Z = 300)
OK 
GENERAL POSTPROC > ELEMENT TABLE > DEFINE TABLE
ADD
Enter LAB =N11
Select “By sequence number”
Enter SMISC,1
APPLY
Repeat for N22, 2; N12, 3; M11, 4; M22, 5; M12, 6; Q1, 7; Q2, 8.
OK
CLOSE
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GENERAL POSTPROC > ELEMENT TABLE > LIST ELEM TABLE
Select N11, N22, N12, M11, M22, M12Y, Q1, Q2  [values are at the 

centroid]
OK
CLOSE

i. Plot results.
GENERAL POSTPROC > PATH OPERATIONS > DEFINE PATH > BY 

NODES
Select node 22 (z = 300, θ = 90) and then node 42 (z = 300, θ = 50).
OK
Enter path name Z = 300
OK
CLOSE
GENERAL POSTPROC > PATH OPERATIONS > MAP ONTO PATH
Enter LAB = UY [vertical displacement]
Select UY
OK
GENERAL POSTPROC > PATH OPERATIONS > PLOT PATH ITEM > 

ON GRAPH
Select UY
OK [UY vs. arc length from the top]

15.29 plate BucklIng

A simply supported plate is loaded along one edge by in-plane loads (Figure 15.24). 
The buckling load is calculated. Use zero rotation about the normal to the edge for 
the simply supported condition. Use a = b = 100, E = 30 × 106, ν = 0.3. Use a 20 × 20 
mesh of Shell 281 elements. Use a nominal load of p = 1000 and calculate the load 
factor for buckling.

a. Activate ANSYS and set preferences.
See example 15.3.

a ROTX = 0
UZ = 0

ROTY = 0
UZ = 0

ROTY = 0
UZ = 0

ROTX = 0
UZ = 0

y
b

p

x

fIgure 15.24 Plate buckling.
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b. Choose elements and materials.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD in the new window
SHELL
Select 8 NODE 281 
OK
CLOSE 
PREPROCESSOR > REAL CONSTANTS > ADD
ADD
OK
Enter Thickness TK(I) = 1
OK
CLOSE
PREPROCESSOR > MATERIAL PROPS > MATERIAL MODELS
STRUCTURAL
LINEAR
ELASTIC
ISOTROPIC
Enter 30e6 for EX parameter 
C in PRXY box
Enter 0.3 for PRXY parameter  [the Poisson ratio]
OK
MATERIAL > EXIT

c. Create rectangle.
PREPROCESSOR > MODELING > CREATE > AREAS
RECTANGLE > BY DIMENSIONS
ENTER 0 100 0 100 for X1 X2 Y1 Y2
OK

d. Mesh region.
MESHING > SIZE CNTRLS > MANUAL SIZE > GLOBAL > SIZE
Enter NDIV = 20
OK
MESH > AREAS > FREE
PICK ALL

e. Apply a nominal applied load before buckling.
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
DISPLACEMENT > ON LINES
C all four edges
APPLY
C UZ 
C on box for VALUES
T 0 for the value.
APPLY  [this is the lateral displacement]
C left and right edges
APPLY
C ROTX [twisting moment restrained]
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APPLY
C top and bottom edges
APPLY
C ROTY [twisting moment restrained]
OK
DISPLACEMENT > ON NODES
C ORIGIN
APPLY
C UX AND UY [prevents rigid translation]
APPLY [close warning]
C LOWER RIGHT CORNER [y = 0, x = 20]
APPLY
SELECT UY ONLY (deselect UX) [prevents rigid rotation]
OK 
SOLUTION > DEFINE LOADS > APPLY > STRUCTURAL 
PRESSURE > ON LINES
C LEFT AND RIGHT EDGES
OK
C on VALUE box
T value = 1000 
OK  [close warning]

f. Solve equations and save stress resultants.
SOLUTION > UNABRIDGED MENU
ANALYSIS TYPE > ANALYSIS OPTIONS 
PRESTRESS ON  [drop menu near the bottom] 
OK  [this saves the stress state for the eigenvalue calculation]
SOLUTION > SOLVE > CURRENT LS
CLOSE information window [check: Prestress Effects Calculated is YES]
C OK in solve window
CLOSE information window [solution is done]

g. Solve for the multiple of the applied load that produces a zero determi-
nant for the total stiffness matrix.
SOLUTION > ANALYSIS TYPE > NEW ANALYSIS
Select EIGEN BUCKLING
OK [close warning]
SOLUTION > ANALYSIS OPTIONS
Enter 1 mode to be calculated (NMODE)
OK in options window
SOLUTION > SOLVE > CURRENT LS
CLOSE information window
OK in solve window
CLOSE information window 

h. Display results.
GENERAL POST PROCESSOR > RESULTS SUMMARY
 [TIME/FREQ is the factor multiplying the nominal load to get the 

buckling load, 10.84]
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CLOSE
C GENERAL POST PROC > READ RESULTS > FIRST SET
C GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
C DEF & UNDEF 
C OK 
Rotate around the x-axis to see buckled mode shape using the Pan–Zoom–

Rotate tool or the icons on the right side.

15.30 heated rectangular rod

A square rod with initial temperature T = 0 is heated on both ends to a temperature 
T = 1. The nondimensional length is 1 and the nondimensional material properties 
are κ = 1, ρ = 1, and c = 1. The temperature rise at the middle is sought. The four-node 
thermal element Plane55 is used.

a. Activate ANSYS and set preferences.
FILE > CHANGE JOBNAME
Enter job30 as job name
New Log = YES
OK
PREFERENCES
THERMAL
OK

b. Choose element and material.
PREPROCESSOR
ELEMENT TYPE > ADD
ADD
THERMAL SOLID > QUAD 4NODE 55 [plane55 element]
OK
CLOSE
MATERIAL PROPS > TEMPERATURE UNITS
Select CELSIUS
OK
MATERIAL PROPS > MATERIAL MODELS
THERMAL
CONDUCTIVITY > ISOTROPIC
Enter KXX = 1 [nondimensional parameters]
OK
SPECIFIC HEAT
Enter C = 1
OK
DENSITY
Enter DENS = 1
OK
MATERIAL > EXIT
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c. Create geometry.
MODELING > CREATE > AREAS > RECTANGLE > BY 

DIMENSIONS
Enter X1 = 0, X2 = 1, Y1 = 0, Y2 = 0.1
OK

d. Mesh region.
MESHING > SIZE CNTRLS > MANUAL SIZE > GLOBAL > SIZE
Enter SIZE = 0.05
OK
MESH > AREAS > FREE
PICK ALL [2 × 20 grid of elements]

e. Apply boundary and initial conditions.
LOADS > DEFINE LOADS > SETTINGS > UNIFORM TEMP
Enter TUNIF = 0 [initial condition]
OK
APPLY > THERMAL > TEMPERATURE > ON LINES
Pick the LINES at X = 0 and X = 1 [right and left ends]
OK
Select TEMP and enter VALUE = 1
OK
HEAT FLUX > ON LINES
Select lines Y = 0, and Y = 0.1 [top and bottom]
OK
Enter VALI = 0
OK

f. Solve for temperature history.
SOLUTION
ANALYSIS TYPE > NEW ANALYSIS
Select TRANSIENT
OK
OK [to accept FULL]
LOAD STEP OPTS
OUTPUT CTRLS > DB/RESULTS FILE
Select EVERY SUBSTEP
OK
TIME/FREQUENCY > TIME AND SUBSTPS
Enter TIME = 0.5 
NSUBST = 50  [small steps to approximate the 

exponential]
Select STEPPED  [ANSYS actually ramps load up in 

the first step]
MAX STEPS = 50
MIN STEPS = 50
OK
SOLVE > CURRENT LS
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Close information window
OK in solve window
Close done window

g. Contour plot of temperature.
GENERAL POSTPROCOR > READ RESULTS > BY TIME/FREQ
Enter TIME = 0.1
OK
PLOT RESULTS > CONTOUR PLOT > NODAL SOLU 
DOF SOLUTION > NODAL TEMPERATURE
OK [note that the temperature varies only lengthwise]

h. View temperature history.
PLOT ELEMENTS
TIMEHIST POSTPRO
Close variable information window
DEFINE VARIABLES
ADD
OK [for Nodal DOF result]
PICK NODE AT X = 0.5 [the middle]
OK
Enter NAME = T
OK  [note that variable 2 is temp T at selected node]
CLOSE window
LIST VARIABLES
Enter NVAR1 = 2
OK  [temperature at each time is listed]
Close window
GRAPH VARIABLES
Enter NVAR1 = 2
OK [graph of T vs. time appears]

15.31 heated cylIndrIcal rod

An unrestrained cylindrical rod with initial temperature T = 0 is heated on one end 
to a temperature T = 1. The nondimensional radius is 0.1, the nondimensional length 
is 1, and the nondimensional material properties are E = 1, ν = 0.3, α = 1, κ = 1, ρ = 
1, and c = 1. Heat loss on the exterior is neglected. The temperature distribution and 
the deformations are axisymmetric. The four-node thermal element Plane 55 is used 
for the temperature calculation and the Plane 182 element is then automatically used 
for the thermal stress.

a. Activate ANSYS and set preferences.
FILE > CHANGE JOBNAME
Enter job31 as the job name
Select New Log = YES
OK
PREFERENCES
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STRUCTURAL
THERMAL
OK

b. Choose thermal element and thermal properties.
PREPROCESSOR
ELEMENT TYPE > ADD
ADD
THERMAL SOLID  [QUAD 4NODE 55 selected]
OK
OPTIONS
K3 = AXISYMMETRIC   [X becomes radial (r), Y become longitudi-

nal (z)]
OK
CLOSE
MATERIAL PROPS > TEMPERATURE UNITS
Select CELSIUS
OK
MATERIAL PROPS > MATERIAL MODELS
THERMAL  
CONDUCTIVITY > ISOTROPIC
Enter KXX = 1  [nondimensional parameters]
OK
SPECIFIC HEAT
Enter C = 1
OK
DENSITY
Enter DENS = 1
OK
MATERIAL > EXIT

c. Create geometry.
MODELING > CREATE > AREAS > RECTANGLE > BY DIMENSIONS
Enter X1 = 0, X2 = 0.1, Y1 = 0, Y2 = 1
OK

d. Mesh region.
MESHING > SIZE CNTRLS > MANUAL SIZE > GLOBAL > SIZE
Enter SIZE = 0.02
OK
MESH > AREAS > FREE
PICK ALL [5 × 50 grid of elements]

e. Apply boundary and initial conditions.
LOADS > DEFINE LOADS > SETTINGS > UNIFORM TEMP
Enter TUNIF = 0 [initial condition]
OK
APPLY > THERMAL > TEMPERATURE > ON LINES
Pick the LINE at Y = 0   [bottom end]
OK
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Select TEMP and enter VALUE = 1
OK
HEAT FLUX > ON LINES  [side and other end]
Pick line X = 0.1 and Y = 1
OK
Enter VALI = 0
OK

f. Solve for temperature distribution.
SOLUTION
ANALYSIS TYPE > NEW ANALYSIS
TRANSIENT
OK
OK   [to accept FULL]
LOAD STEP OPTS
OUTPUT CTRLS > DB/RESULTS FILE
Select EVERY SUBSTEP
OK
SOLUTION PRINTOUT  [this saves nodal temperatures in 

file job31.rth]
Select EVERY SUBSTEP 
OK
TIME/FREQUENCY > TIME AND SUBSTPS
Enter TIME = 1, NSUBST = 50 
Select STEPPED   [ANSYS actually ramps load up in 

the first step]
OK
SOLVE > CURRENT LS
Close information window
OK in solve window
Close done window

g. View temperature history.
TIMEHIST POSTPRO
Close variable information window
DEFINE VARIABLES
ADD
OK [for Nodal DOF result]
PICK NODE AT X = 0, Y = 1  [i.e., the end point on the centerline 

of the cylinder]
OK
Enter NAME = T
OK [note that variable 2 is temp T at selected node]
CLOSE window
LIST VARIABLES
Enter NVAR1 = 2
OK   [T = 0.848 at t = 1]
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Close window  [for the real temperature, multiply 
by the actual applied temperature 
T0]

GRAPH VARIABLES
Enter NVAR1 = 2
OK [graph of T vs. time appears]

 [real time = (ρcL2/κ)t]
h. Element and properties for the thermal stress analysis.

PLOT ELEMENTS [Utility menu]
PREPROCESSOR
ELEMENT TYPE > SWITCH ELEM TYPE
Select THERMAL TO STRUCTURAL
OK [ANSYS changes the element type to PLANE 182]
CLOSE warning
ELEMENT TYPE > EDIT [see element type PLANE182]
OPTIONS
K3 = AXISYMMETRIC
OK
CLOSE
MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL > LINEAR ELASTIC > ISOTROPIC
Enter EX = 1
Enter PRXY = 0.3
OK
THERMAL EXPANSION > SECANT COEFFICIENT > ISOTROPIC
Enter ALPX = 1
OK
MATERIAL > EXIT

i. Boundary conditions and temperature distribution for thermal stress 
analysis.
DEFINE LOADS > APPLY > STRUCTURAL > DISPLACEMENT > ON 

NODES
Select Node at X = 0, Y = 1
APPLY
Set ALL DOF = 0 [prevent rigid translation]
APPLY [Close Warning]
Select Node at X = 0, Y = 0
OK  
Set UX = 0 [deselect ALL DOF]
OK [prevent rigid rotation]
DEFINE LOADS > APPLY > STRUCTURAL > TEMPERATURE 
FROM THERM ANALY
Enter Time-point = 0.4
Enter Fname = job31.rth [read saved temperature data]
OK
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j. Solve for thermal stress.
SOLUTION
ANALYSIS TYPE > NEW ANALYSIS 
STATIC 
OK
SOLVE > CURRENT LS
Close Status window
OK solve window
Close solution done

k. View Results.
GENERAL POSTPROC
PLOT RESULTS > CONTOUR PLOT > NODAL SOLUTION
STRESS > Y-COMPONENT  [thermal stress]
OK
LIST RESULTS > NODAL SOLUTION > STRESS > Y-COMPONENT
OK   [for the real stress, multiply by EαT0]
CLOSE

15.32 heated dISk

An unrestrained hollow cylinder rod with an internal radius of 5 in. and an outer 
radius of 10 in. is heated to a steady state. The temperature on the inner radius is 
480°F and 75°F on the outer radius. Material properties: E = 2.9 × 107 lb/in., ν = 0.3, 
ρ = 0.284 lbm/in.3, α = 6.67 × 10–6 1/°F, κ = 8.092 10–4 BTU/s. in. °F, c = 0.1036 BTU/
lbm. °F. Temperature distribution and thermal stress are to be determined. The four-
node thermal element Plane 55 is used for the temperature calculation and the Plane 
182 element is then automatically used to calculate the thermal stress. For a very 
long or very short cylinder, this problem is one-dimensional, but a ¼ cross section is 
maintained for clarity (Figure 15.25). The body is analyzed as a plane strain.

a. Activate ANSYS and set preferences.
FILE > CHANGE JOBNAME
Enter job32 as job name
Select NEW LOG = YES
OK
PREFERENCES

a

b

q = 0

q 
= 

0 T2

T1

fIgure 15.25 Heated disk.
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STRUCTURAL
THERMAL
OK

b. Choose thermal element and thermal properties.
PREPROCESSOR
ELEMENT TYPE > ADD
ADD
THERMAL SOLID [QUAD 4NODE 55 selected]
OK
CLOSE
MATERIAL PROPS > TEMPERATURE UNITS
Select FAHRENHEIT
OK
MATERIAL PROPS > MATERIAL MODELS
THERMAL
CONDUCTIVITY > ISOTROPIC
Enter KXX = 8.092e – 4
OK
SPECIFIC HEAT
Enter C = 0.1036
OK
DENSITY
Enter DENS = 0.284
OK
MATERIAL > EXIT

c. Create geometry.
MODELING > CREATE > KEYPOINTS > IN ACTIVE CS
Enter 1 at 5, 0
APPLY
Enter 2 at 10, 0
APPLY
Enter 3 at 0, 10
APPLY
Enter 4 at 0, 5
OK
WORKPLANE > CHANGE ACTIVE CS > TO GLOBAL 

CYLINDRICAL
CREATE > LINES > LINES > IN ACTIVE CS
Pick KP 1 then 2
Pick KP 1 then 4 [arc in cylindrical system]
Pick KP 2 then 3 [arc in cylindrical system]
Pick KP3 then 4
OK
CREATE > AREAS > ARBITRARY > BY LINES
Pick the lines sequentially
OK
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d. Mesh region.
MESHING > SIZE CNTRLS > MANUAL > LINES > ALL 

LINES
Enter NDIV = 20
OK
MESH > AREAS > FREE
PICK ALL [uniform 20 × 20 mesh]

e. Apply boundary conditions on temperature.
LOADS > DEFINE LOADS > APPLY > THERMAL > TEMPERATURE > 

ON LINES
Pick the inner arc 
APPLY
Select TEMP and enter VALUE = 480
APPLY
Pick the outer arc 
OK
Enter VALUE = 75
OK
APPLY > THERMAL > HEAT FLUX > ON LINES
Pick the lines X = 0 and Y = 0
OK
VALUI = 0
OK

f. Solve for temperature distribution and save results.
SOLUTION [steady-state is the default]
LOAD STEP OPTS
OUTPUT CTRLS
SOLU PRINTOUT  [this saves nodal temperatures in file job32.

rth]
Select LAST SUBSTEP 
OK
SOLVE > CURRENT LS 
Close information window
OK in solve window
Close done window

g. View temperature distribution.
GENERAL POSTPROC > PLOT RESULTS
CONTOUR PLOT > NODAL SOLU
DOF SOLUTION > NODAL TEMPERATURE
OK    [Contour plot shows axisymmetric 

temperature]
h. Change element for stress analysis.

PLOT ELEMENTS [Utility menu]
PREPROCESSOR
ELEMENT TYPE > SWITCH ELEM TYPE
Select THERMAL TO STRUCTURAL
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OK    [ANSYS changes the element type to 
PLANE 182]

CLOSE warning
ELEMENT TYPE > EDIT > OPTIONS
K3 = PLANE STRAIN
OK
CLOSE

i. Mechanical properties.
MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL > LINEAR > ELASTIC > ISOTROPIC
Enter EX = 2.9e7
Enter PRXY = 0.3
OK
THERMAL EXPANSION > SECANT COEFFICIENT > ISOTROPIC
Enter ALPX = 6.67e−6
MATERIAL > EXIT

j. Mechanical boundary conditions and thermal load.
SOLUTION 
DEFINE LOADS > APPLY > STRUCTURAL > DISPLACEMENT > ON 

LINES
Select Line Y = 0
APPLY
Set UY = 0  [symmetry]
APPLY  [Close Warning]
Select Line X = 0
OK
Set UX = 0  [symmetry]
OK
DEFINE LOADS > APPLY > STRUCTURAL > TEMPERATURE 
FROM THERM ANALY
Enter Time-point = 1
Enter Fname = job32.rth [read saved temperature data]
OK

k. Solve for thermal stress.
SOLVE > CURRENT LS
Close Status window
OK solve window
Close solution done

l. View results.
GENERAL POSTPROC
QUERY RESULTS > SUBGRID SOLU
STRESS > SX
OK
Pick node at X = 0, Y = 5 τθθ = –70,678 lb/in.2

Pick node at X = 0, Y = 10 τθθ = 45,236 lb/in.2

OK
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15.33 truSS contactIng a rIgId foundatIon

The truss is forced into contact with a rigid foundation (Figure 15.26) with L = 10, 
g = 0.3. Member 1 has A = 0.1 and E = 12,500. Member 2 has A = 0.2 and E = 12,500. 
There is no resistance to slip after contact. The loads are ramped up to Fx = 27 and 
Fy = 12.8. Equation 14.28 shows that the simultaneous loading causes contact at 
Fx = 13.94, Fy = 6.61, U = 0.6495. This is a node to surface contact. Use Contact 
Element 175, Target Element 169, and the Lagrange multiplier method with default 
parameters.

a. Activate ANSYS and select preferences.
See example 15.3.

b. Set up parameters.
PARAMETERS > SCALAR PARAMETERS >
G = 0.3 [gap size]
ACCEPT
MU = 0 [friction factor]
ACCEPT
CLOSE

c. Element types, real constants, material properties.
PREPROCESSOR
ELEMENT TYPE
ADD
ADD
LINK > 3D finit str 180 
OK
ADD
CONTACT > 2D TARGET 169
OK
ADD
PT-TO-SURF 175
OK
Select TYPE 3 CONTA175

3L 3L

4L

g
Fx ,U Fy ,V

12

fIgure 15.26 Truss contact problem.
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OPTIONS
K2 = LAGRANGE METHOD
OK
CLOSE
REAL CONSTANTS > ADD
ADD
CONTA175
OK
OK   [accept defaults]
ADD
LINK1
OK
AREA = 0.1  [set 2]
OK
ADD
LINK1
OK
AREA = 0.2  [set 3]
OK
CLOSE
MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL > LINEAR > ELASTIC > ISOTROPIC
EX = 12500  [material 1]
PRXY = 0.3  [not used]
OK
C FRICTION COEFFICIENT
MU = 0
OK
MATERIAL > EXIT

d. Create nodes and elements.
MODELING > CREATE 
NODES > IN ACTIVE CS
NODE = 1
X,Y,Z = 0,0,0
APPLY
NODE = 2
X,Y,Z = 30,40,0
APPLY
NODE = 3
X,Y,Z = −30,40,0
OK
ELEMENTS > ELEM ATTRIBUTES
TYPE = LINK1
MAT = 1
REAL = 2
OK
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AUTO/NUMBERED > THRU NODES
PICK 1 AND 2
OK
ELEMENTS > ELEM ATTRIBUTES
TYPE = LINK1
MAT = 1
REAL = 3
OK
AUTO/NUMBERED > THRU NODES
PICK 1 AND 3
OK
ELEMENTS > ELEM ATTRIBUTES
TYPE = CONTA175
MAT = 1
REAL = 1
OK
SURF / CONTACT
NODE TO SURF
OK
PICK NODE 1
OK
MODELING > CREATE 
KEYPOINTS > IN ACTIVE CS
NPT = 10
X,Y,Z = +30,−g,0
APPLY
NPT = 11
X,Y,Z = −30,−g,0
OK
LINES > LINES > IN ACTIVE CS
PICK 10 THEN 11 IN THAT ORDER  [so that the normal will have 

the proper direction]
OK
MESHING > MESH ATTRIBUTES > DEFAULT ATTRIBS
TYPE = TARGET169
REAL = 1
OK
MESH > LINES
PICK LINE
OK  [a target not overlaid is rigid]

e. Apply boundary conditions.
LOADS > DEFINE LOADS > APPLY 
STRUCTURAL > DISPLACEMENT > ON NODES
PICK NODES 2 AND 3
OK
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ALL DOF
VALUE = 0
OK
FORCE/MOMENT > ON NODES
PICK NODE 1
OK
APPLY
LAB = FX
VALUE = −27   [i.e., to the left]
APPLY
PICK NODE 1
OK
LAB = FY
VALUE = −12.8   [i.e., downward]
OK

f. Solve for displacements.
SOLUTION
UNABRIDGED MENU
LOAD STEP OPTS
OUTPUT CONTROLS > DB RESULTS FILE
SELECT EVERY SUBSTEP
OK
TIME/FREQUENCY > TIME AND SUBSTEPS
TIME = 1
NSUBST = 50
MINIMUM NO. = 50
MAXIMUM NO. = 50
OK
SOLVE > CURRENT LS
CLOSE INFO WINDOW
OK IN SOLVE WINDOW  [see graph of convergence]
CLOSE SOLUTION IS DONE WINDOW

g. View results.
GENERAL POSTPROC
READ RESULTS
LAST SET
PLOT RESULTS > DEFORMED SHAPE
DEF + UNDEFORMED  [displacement is magnified so that
OK  the node appears to penetrate the 

surface]
LIST RESULTS > NODAL SOLUTION
CONTACT > STATUS
OK [STAT = 2 indicates contact]
CONTACT > PENETRATION   [PENE = 0.0000, i.e., no 

penetration]
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CONTACT > PRESSURE [PRES = 12.000]
CLOSE
LIST RESULTS > NODAL SOLUTION
DOF SOLUTION > X-COMPONENT OF DISPLACEMENT
OK [UX = −1.1333]
CLOSE
LIST RESULTS > NODAL SOLUTION
DOF SOLUTION > Y-COMPONENT OF DISPLACEMENT
OK [UY = −0.3, i.e., gap closed]
CLOSE

h. View time history.
TIME HIST POSTPROC 
CLOSE INFO WINDOW
DEFINE VARIABLES > ADD > NODAL DOF RESULT
OK
PICK NODE 1
OK
NAME = UX
OK [variable 2 is UX]
ADD > NODAL DOF RESULT
OK
PICK NODE 1
OK
NAME = UY
SELECT UY
OK [variable 3 is UY]
CLOSE
LIST VARIABLES
NVAR1 = 2
NVAR2 = 3
OK  [note contact UY = −0.3, 0.629 ≤ UX ≤ −0.653 at 

≤0.52 of total load]
CLOSE

15.34  coMpreSSIon of a ruBBer cylInder 
BetWeen rIgId plateS

Coupling of nodes is introduced and subregions are used to control meshing.
A long rubber cylinder is compressed between rigid plates (Figures 15.27 and 

15.28). The cylinder is analyzed as a plane strain problem with R = 0.5 in., E = 500 
lb/in.2 (rubber), ν = 0.499. Since the material is nearly incompressible, the mixed 
(U–P) formulation is used. Because of the double symmetry, only ¼ of the cylinder 
is modeled. The plane y = 0 is assumed to remain plane and the nodal displacements 
UY on the plane are coupled. A vertical displacement, d = 0.05 in. of the plane is 
imposed. The required force F and the contact region b are calculated. The expected 
results are given in Section 14.3.1.
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a. Activate ANSYS and set analysis type to structural.
See example 15.3.

b. Establish element type and material properties.
PREPROCESSOR > ELEMENT TYPE > ADD
C ADD
C SOLID > 4 NODE 182 
OK
OPTIONS
SET K3 TO PLANE STRAIN
SET K6 TO MIXED U/P
OK
ADD
CONTACT > 2D TARGET 169 [surface-to-surface contact pair]
OK
ADD
2 ND SURF 171
OK
C TYPE 3 CONTA 171
OPTIONS [accept defaults]
OK
CLOSE  [Real Constants > add > add > CONTA171

 could be used here to adjust contact parameters]
PREPROCESSOR > MATERIAL PROP > MATERIAL MODEL
C STRUCTURAL > LINEAR > ELASTIC > ISOTOPIC

F

F

2Rx
y

fIgure 15.27 Compressed cylinder.

KP 1

KP 2

U
X

 =
 0

3

7

y

x 6

5

4

UY = – 0.05

fIgure 15.28 Subregions for one-quarter.
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EX = 500  [PSI]
PRXY = 0.499
OK
MATERIAL > EXIT

c. Create lower right quarter of the cylinder and divide it into areas to 
control meshing.
PARAMETERS > SCALAR PARAMETERS  [Utility menu]
C SELECTION BOX
R = 0.5
ACCEPT
CLOSE
WORK PLANE > CHANGE ACTIVE CS TO > GLOBAL 

CYLINDRICAL MODELING > CREATE > KEYPOINTS > IN 
ACTIVE CS

NPT = 1, X = 0, Y = 0
APPLY
Repeat for keypoints at
2, R, −90
3, R, 0
4, 0.5*R, −90  [some interior points to control meshing]
5, 0.6*R, −45
6, 0.5*R, 0
7, R, −45
OK
MODELING > CREATE > LINES > LINES > IN ACTIVE COORD
PICK 2 AND 7  [cylindrical system for curved lines}
PICK 7 AND 3
OK
WORK PLANE > CHANGE ACTIVE CS TO > GLOBAL CARTESIAN
 MODELING > CREATE > AREAS > ARBITRARY > THROUGH 

KPs
Pick 2, 7, 5, 4
APPLY
Pick 7, 3, 6, 5
APPLY
Pick 4, 5, 6, 1
OK

d. Mesh cylinder.
MESHING > MESH TOOL > MESH  [accept default mesh size]
C PICK ALL  [10 elements along the arc]
REFINE   [on mesh tool]
C PICK ALL
OK  [accept default = level 1]
CLOSE mesh tool [20 elements long the arc]

e. Create the rigid base as a straight line tangent to the cylinder.
MODELING > CREATE > KEYPOINTS > IN ACTIVE CS
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NPT = 10, X = +2 * R, Y = −R
APPLY
NPT = 11, X = −2 * R, Y = −R
OK
MODELING > CREATE > LINES > LINES > IN ACTIVE COORD
Pick KP 10 then 11  [must pick in this order to get correct 

normal]
OK

f. Mesh rigid base.
MESHING > MESH ATTRIBUTES > DEFAULT ATTRIBS
TYPE = TARGE169
OK
PLOT > LINES
MESH > LINES  
PICK the rigid base [defaults to one element]
OK

g. Overlay contact elements on the surface of the cylinder.
MODELING > CREATE > ELEMENTS > ELEM ATTRIBUTES
TYPE = CONTA171
OK
SURF / CONTACT > SURF TO SURF
OK  [accept top surface]
Pick about 10 nodes along the arc surface of the cylinder up from the 

bottom
OK   [note outward normal to the elements on the 

curved edge as required]
h. Restrict the nodes on the plane of symmetry (Y = 0) to a common UY.

PREPROCESSOR > COUPLING > COUPLE DOFs
Pick nodes along the plane y = 0 by box  [along the top]
OK
NSET = 1
LAB = UY  [makes the UY component the same]
OK

i. Apply boundary conditions.
LOADS > DEFINE LOADS > APPLY > STRUCTURAL > 
 DISPLACEMENT > ON NODES
PICK nodes along center line (x = 0) by box
OK
UX = 0  [symmetry condition]
OK
DEFINE LOADS > APPLY > STRUCTURAL > DISPLACEMENT > ON 

NODES
PICK top right corner node (27) on symmetry line y = 0
OK 
UY = −0.05   [note negative sign]
OK
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j. Solve problem step by step.
SOLUTION > ANALYSIS TYPE > SOL’N CONTROLS 
Time at end of load step = 1
Number of substeps = 10
OK
SOLUTION > SOLVE > CURRENT LS
CLOSE information window
OK in solve window
(Convergence information is displayed as solution is marched out.)
 CLOSE information window when solution is done

k. Display results.
PLOT CTRLS > STYLE > DISPLACEMENT SCALING 
Select 1.0  [no magnification]
OK
PLOT CTRLS > NUMBERING
Node Numbers = ON  [zoom in as required]
GENERAL POST PROC > READ RESULTS > LAST SET
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
OK and see deformed shape   [apparent contact by nodes 1-3-4-5]
GENERAL POST PROC > LIST RESULTS 
REACTION SOLUTION > FY
OK
Record FY at node 27  [FY = −12.507]
CLOSE
GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
CONTACT > CONTACT STATUS
OK   [status = 2 for nodes 1-3-4-5 indicates 

contact]
   [status = 1 for node 6 indicates near contact]
CONTACT > CONTACT  [p = 104.67 at node 1]

PRESSURE
CLOSE 
LIST > NODES [Utility menu]
OK
Record X coordinates for nodes 5 and 6  [X5 = 0.12751, X6 = 

0.16705]
CLOSE
GENERAL POST PROC > LIST RESULTS > NODAL SOLUTION
DOF SOLUTION > X COMPONENT
OK
Record UX5 and UX6  [UX5 = 0.00291, UX6 = 0.00629]
   [deformed X-position of node 5 is X5 + UX5 = 

0.13042]
   [deformed X-position of node 6 is X6 + UX6 = 

0.17334]
CLOSE  [contact boundary at 0.13 < x < 0.17]
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15.35 hertz contact proBleM

Use of local coordinate systems is introduced. A contact pair is created using the 
Contact Wizard of the ANSYS Contact Manager.

The contact between two long cylinders is analyzed by assuming double sym-
metry (Figure 15.29). The following sample instructions are for R1 = 10 mm, R2 = 
13 mm, ν1 = ν2 = 0.25, E1 = E2 = 30,000 N/mm2. The angle defining the potential 
contact region is α1 = α2 = 8°. Apply a displacement d = 0.1 and determine the total 
force, the maximum contact pressure, and the contact region. The theory is dis-
cussed in Section 14.3.2.

a. Activate ANSYS and set preferences.
See example 15.3.

b. Element types, real constants, material properties.
PREPROCESSOR
ELEMENT TYPE
ADD
ADD
SOLID
4 NODE 182  [PLANE 182 element]
OK
OPTIONS
Set K3 to PLANE STRAIN
OK
CLOSE
MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL > LINEAR > ELASTIC > ISOTROPIC

Contact surface

Target surface

xuy = 0

ux = 0

uy = d

α2

α1

y

E2
ν2
R2

E1
ν1

Rt

fIgure 15.29 Contact between cylinders.
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EX = 30000
PRXY = 0.25
OK
MATERIAL > EXIT

c. Create the target (large cylinder) and mesh it. 
WORKPLANE [Utility menu]
CHANGE ACTIVE CS TO > GLOBAL CYLINDRICAL
MODELING > CREATE 
KEYPOINTS > IN ACTIVE CS [for large cylinder]
NPT = 1
X,Y,Z = 0,0,0
APPLY
NPT = 2
X,Y,Z = 13,0,0
APPLY
NPT = 3
X,Y,Z = 13,82,0
APPLY
NPT = 4
X,Y,Z = 13,90,0
APPLY
NPT = 5
X,Y,Z = 11,90,0
OK
LINES > LINES > IN ACTIVE CS
PICK 1 AND 5
PICK 1 AND 2
PICK 2 AND 3 [circular arc]
PICK 3 AND 4
PICK 4 AND 5
OK
WORKPLANE > LOCAL COORDINATE SYSTEMS
CREATE LOCAL CS > AT SPECIFIED LOC
PICK KP 4  (X,Y,Z) = 0,13,0
OK
KCS = CYLINDRICAL
OK  [local cylindrical coordinate system 

11 at KP 4]
LINES > IN ACTIVE CS
PICK 3 AND 5  [csys 11 necessary to get concave arc]
OK
WORKPLANE  [Utility menu]
CHANGE ACTIVE CS TO > GLOBAL CYLINDRICAL
AREAS > ARBITRARY > THROUGH KPs
PICK 1,2,3,5
APPLY
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PICK 5, 3, 4
OK
MESHING > MESH TOOL
SIZE CONTROLS GLOBL SET
NDIV = 10
OK
MESH [in Mesh tool]
PICK ALL
CLOSE  [mesh tool]
PLOT CTRLS > NUMBERING > NODE NUMBERS ON
OK

d. Create small cylinder and mesh it.
WORKPLANE > CHANGE ACTIVE CS TO > GLOBAL CARTESIAN
WORKPLANE > LOCAL COORDINATE SYSTEMS
CREATE LOCAL CS > AT SPECIFIED LOC
Enter coordinates 0, 23, 0 [center of small cyl]
OK
KCN = 12  [new active CS]
THXY = −90  [rotate X-axis downward]
OK 
MODELING > CREATE 
KEYPOINTS > IN ACTIVE CS [for small cylinder]
NPT = 11
X,Y,Z = 0,0,0
APPLY
NPT = 12
X,Y,Z = 10,0,0
APPLY
NPT = 13
X,Y,Z = 10,8,0
APPLY
NPT = 14
X,Y,Z = 10,90,0
APPLY
NPT = 15
X,Y,Z = 8,0,0
OK
LINES > LINES > IN ACTIVE CS
Enter 12,13 [on picking menu]
APPLY
Enter 13,14 [circular arc]
APPLY
Enter 14,11
APPLY
Enter 11,15
APPLY
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Enter 15,12
OK
WORKPLANE > CHANGE ACTIVE CS TO > SPECIFIED COORD SYS
KCN = 11
OK
LINES > IN ACTIVE CS
Enter 13,15  [csys 11 necessary to get 

arc concave]
OK
WORKPLANE > CHANGE ACTIVE CS TO > SPECIFIED COORD SYS
KCN = 12  [back to local coords for 

small cyl]
OK
AREAS > ARBITRARY > THROUGH KPs
Enter 12,13,15
APPLY
Enter 15,13,14,11
OK
MESHING > MESH TOOL
SIZE CONTROLS GLOBL SET
NDIV = 10
OK
MESH 
PICK AREAS 3 AND 4 [small cylinder]
OK   [zoom in and note nodes on 

target surface: 202 to 212]
CLOSE [mesh tool]

e. Create contact surfaces.
PLOT CTRLS > NUMBERING
LINE NUMBERS ON
PLOT > LINES
ZOOM IN ON CONTACT REGION
MODELING > CREATE > CONTACT PAIR [contact manager]
WIZARD (LEFT MOST ICON)  [lines and flexibility 

selected]
PICK TARGET
SELECT CONTACT LINE ON [L4]

LOWER CYLINDER
OK
NEXT  [lines and surface-to-

surface selected]
PICK CONTACT
SELECT CONTACT LINE ON UPPER  [L7]

CYLINDER
OK
NEXT
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CREATE  [note: normals outward 
from each cylinder]

FINISH  [note description of con-
tact pair]

CLOSE CONTACT MANAGER  [C on X] 
f. Apply supports.

WORKPLANE > CHANGE ACTIVE CS TO > GLOBAL CARTESIAN
ZOOM TO FIT [logo on right]
COUPLING/CEQN > COUPLE DOFs
PICK NODES ON TOP EDGE BY BOX [of small cylinder]
OK
NSET = 1
LAB = UY
OK
PLOT LINES
LOADS > DEFINE LOADS > APPLY > STRUCTURAL 
DISPLACEMENT > ON LINES
PICK BOTTOM LINE (Y = 0)
APPLY
UY 
VALUE = 0
APPLY
PICK FOUR VERTICAL LINES (X = 0)
OK
UX
VALUE = 0
OK

g. Apply displacement on upper plane.
PLOT > ELEMENTS
LOADS > DEFINE LOADS > APPLY > STRUCTURAL > 
 DISPLACEMENT > ON NODES
PICK UPPER RIGHT CORNER  [node 293]
OK
UY
VALUE = −0.1 [note the minus sign]
OK
SOLUTION
UNABRIDGED MENU
LOAD STEP OPTS
TIME/FREQUENCY > TIME AND SUBSTEPS
TIME = 1
NSUBST = 10
OK

h. Solve for displacement and stress.
SOLUTION > SOLVE > CURRENT LS
CLOSE INFO WINDOW
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OK 
CLOSE solution is done

i. View results.
PLOT CTRLS > STYLE > DISPLACEMENT SCALING
Select 1.0
OK
GENERAL POSTPROC
PLOT RESULTS > DEFORMED SHAPE
OK
PLOT CTRLS > NODE NUMERS ON
Zoom in to see contact nodes: last one is 206 or 207
LIST RESULTS > REACTION SOLUTION
OK [FY = −314 at node 293]
CLOSE
LIST RESULTS > NODAL SOLUTION 
CONTACT > STATUS  [STAT = 2 indicates contact at 

node 206]
OK  [STAT = 1.5 indicates near con-

tact at node 207]
Note pressure at center node [731 at node 202]
Note furthest node in contact [node 206]
Note location of next node [node 207]
LIST NODES 
OK
Note x-coordinate of last contact node  [0.41876 at node 206]
Note x-coordinate of next node [0.55822 at node 207]
CLOSE
LIST RESULTS > NODAL SOLUTION
DOF SOLUTION > X COMPONENT
OK
Record UX5 and UX6   [UX206 = −0.00534, UX207 = 

−0.00589]
   [deformed X-position of node 

206 is X + UX = 0.41342]
    [deformed X-position of node 

207 is X + UX = 0.55233]
CLOSE   [contact boundary at 0.413 < x < 

0.552]

15.36 elaStIc rod IMpactIng a rIgId Wall

This example demonstrates the use of the Solution Controls menu for transient analy-
sis. The analysis uses node to surface contact, contact element 175, target element 
169, using the default Augmented Lagrangian method with increased contact stiff-
ness FKN. The rod (Figure 15.30) is made of steel: A = 1 in.2, E = 2.92 × 107 lb/in.2, 
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ρ = 0.73 × 10–3 lbf-s2/in.4 The rod (Link element) approaches the wall with initial 
velocity V = 200 in./s2 from a gap of 0.01 in. 

a. Activate ANSYS and set preferences.
See example 15.3.

b. Element types, real constants, material properties.
PREPROCESSOR
ELEMENT TYPE
ADD
ADD
LINK > 2D SPAR 1 
OK
ADD
CONTACT > 2D TARGET 169
OK
ADD
PT-TO-SURF 175
OK
Select TYPE 3 CONTA175
OPTIONS
OK  [accept augmented Lagrangian method]
CLOSE
REAL CONSTANTS > ADD
ADD
LINK180
OK
AREA = 1 [set 1]
OK
ADD
CONTA175
OK [set 2]
FKN = 10 [increase contact stiffness to reduce penetration]
OK
CLOSE
MATERIAL PROPS > MATERIAL MODELS
C STRUCTURAL > LINEAR > ELASTIC > ISOTROPIC
EX = 2.92E7

Rigid
wall 

0.0110

V

A, E, ρ

fIgure 15.30 Rod impacts wall.
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PRXY = 0.3 [not used]
OK
C DENSITY
DENS = 0.73e−3
OK
MATERIAL > EXIT
PARAMETERS > SCALAR PARAMETERS 
G = 0.01 [gap size]
ACCEPT
CLOSE

c. Create line and mesh it.
MODELING > CREATE 
KEYPOINTS > IN ACTIVE CS
NPT = 1
X,Y,Z = −10−G,0,0 [end of the rod]
APPLY
NPT = 2
X,Y,Z = −G,0,0 [end of the rod]
OK
MODELING > CREATE > LINES > LINES > IN ACTIVE CS
Pick KP1 AND KP2
OK
MESHING > SIZE CNTRLS > MANUAL SIZE > GLOBAL > 

SIZE
NDIV = 20 
OK
MESH > LINES
PICK ALL
PLOT CTRLS > WINDOW CONTROLS > WINDOW OPTIONS
/TRIAD = AT BOTTOM LEFT
OK [moves axis symbols out of the way]

d. Add contact elements.
MODELING > CREATE > ELEMENTS
ELEM ATTRIBUTES
TYPE = CONTA175
REAL = 2
OK
SURF / CONTACT
NODE TO SURF
OK
PICK NODE ON RIGHT END (2)
OK
MODELING > CREATE > KEYPOINTS > IN ACTIVE CS
NPT = 10
X,Y,Z = 0,2,0
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APPLY
NPT = 11
X,Y,Z = 0,−2,0
OK
LINES > LINES > IN ACTIVE CS
PICK 10 THEN 11 IN THAT ORDER [to get the correct normal]
OK
MESHING > MESH ATTRIBUTES > DEFAULT ATTRIBS
TYPE = TARGET169
OK REAL = 2 selected]
MESH > LINES
PICK LINE FROM KP10 TO KP11
OK

e. Apply boundary and initial conditions.
LOADS > DEFINE LOADS > APPLY 

STRUCTURAL > DISPLACEMENT > ON NODES
PICK NODES ON THE ROD BY A BOX
OK
UY
VALUE = 0
OK
APPLY > INITIAL CONDIT’N > DEFINE
PICK NODES ON ROD BY BOX
OK
Lab = UX
VALUE2 = 200 [initial velocity]
OK

f. Solve for displacements.
SOLUTION
ANALYSIS TYPE > NEW ANALYSIS > TRANSIENT
OK
LUMPM = YES
OK
SOL’N CONTROLS  [Small Displacement Transient 

selected]
Time at end of loadstep = 2e−4
Number of substeps = 100
Max no. of substeps = 100
Min no. of substeps = 100
Write Items to Results File = All Solution Items
Frequency = Write Every Substep
OK
SOLVE > CURRENT LS
CLOSE INFO WINDOW
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OK IN SOLVE WINDOW
CLOSE SOLUTION IS DONE WINDOW

g. View history of displacement.
TIME HIST POSTPROC 
CLOSE INFO WINDOW
DEFINE VARIABLES > ADD > NODAL DOF RESULT
OK
PICK RIGHT END NODE 2
OK
NAME = U
OK [variable 2 is UX at node 2]
CLOSE
GRAPH VARIABLES
NVAR1 = 2
OK [print if desired]

15.37  curve fIt for nonlInear elaStIcIty 
uSIng Blatz–ko Model

The ANSYS curve fit for hyperelastic materials is used to interpret test data.
The problem is an analysis of a tensile test (unit cube) using “test data” and the 

ANSYS Curve Fit to determine the constant in the Blatz–Ko material model. One 
eight-node brick is used with unit side lengths since one element is an exact model of 
the tensile test (Figure 15.31).

The experimental data for a tensile test must be entered manually or placed in 
a text file. The first column must be the extension (α1 – 1) and the second column, 
separated by a space or comma, must be the nominal stress (P11). In the following 
example, the file BK.txt has a content that was calculated using the Blata–Ko model 
with μ = 100 as follows:

0 0
0.1 20.22
0.2 33.42
0.3 42.19

10
3

10

10
10

4
65

UX = UY = UZ = 0 x2
z

y

7
UX = UZ = 0 1

UX = UY = 0

8
UX = 0

fIgure 15.31 3D tensile test: fixed load.
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The axial load is ramped up to P11 = 40. Minimum supports are imposed to prevent 
rigid displacement.

a. Activate ANSYS and set analysis type to structural.
See example 15.3.

b. Establish element type, material properties, and mesh the object.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
HYPERELASTIC
3D 8 NODE 185   [this is SOLID185 element]
OK
CLOSE
PREPROCESSOR > MATERIAL PROP > MATERIAL MODEL
STRUCTURAL
NONLINEAR
ELASTIC
HYPERELASTIC
CURVE FITTING  [define material behavior window]
READ FROM FILE  [directory listing]
C BK.txt  [file containing tensile test data]
OPEN  [data are read in]
NEXT
CURVE FITS
HYPERELASTIC
BLATZ–KO (FOAM)
SOLVE [returns μ = 100.01]
OK  [curve fit done]
PLOT  [stress–strain curve]
SAVE AND CLOSE  [material constant for the model]
MATERIAL > EXIT
PREPROCESSOR > MODELING > CREATE > VOLUMES
BLOCK > BY DIMENSIONS
T 0 1, 0 1, 0 1 for X1, X2, Y1, Y2, Z1, Z2
C OK and the region appears showing the x–y plane
PLOT CTRLS > NUMBERING
C box after Node numbers to turn them ON
OK
PREPROCESSOR > MESHING > MESH TOOL
C SIZE CONTROLS: GLOBAL > SET
C box for NDIV
T 1 in NDIV box   [one element is exact for the uniform 

extension]
OK
C SHAPE: HEX   [this forces a brick instead of the default 

tetrahedron]
MESH
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PICK ALL  (node numbers appear)
CLOSE  (Mesh Tool)

c. Apply boundary conditions.
 First, rotate the element so that you can see the base (x = 0) with nodes 1-2-

5-8. This can be done in the dynamic model mode, which is inter active: on 
the right-hand side is a menu with 3D pictures of a block. Click on the but-
ton at the end of the list that shows two elements (Dynamic Model Mode). 
The cursor changes to a rotation symbol. Hold down the right mouse button 
to rotate the element interactively until you can see the face 1-2-5-8.
LOADS > DEFINE LOADS > APPLY > STRUCTURAL 
DISPLACEMENT > ON NODES
C on node 2 (at the origin)
APPLY
ALL DOF
C on box for VALUES
T 0 for the value of the displacement components
APPLY
REPEAT THIS PROCESS TO SET UX AND UZ TO ZERO AT NODE 1
REPEAT THIS PROCESS TO SET UX AND UY TO ZERO AT NODE 5
REPEAT THIS PROCESS TO SET UX TO ZERO AT NODE 8
[This prevents rigid body motion and keeps the base in the Y−Z plane, but 

allows contraction.]
ROTATE THE ELEMENT so that you can see the face x = 1 with nodes 

3-4-6-7
DEFINE LOADS > APPLY > STRUCTURAL > FORCE > ON NODES
C ON EACH NODE 3-4-6-7 
OK
T 10 for the value of FX  [P11 = 40]
OK

d. Solve for displacements and stresses.
 The total load is specified, then reached by ramping up in small time steps. 

Results are saved after each time step.
SOLUTION > UNABRIDGED MENU
ANALYSIS TYPE > ANALYSIS OPTIONS 
Set NLGEOM ON  [this is for K0]
Set Stress Stiff ON (SSTIF at the bottom)   [this is for K1]
OK
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS 

FILE
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME/TIME 

STEP
Time at end of load step: enter 1
Time step size: enter 0.1
Select RAMPED
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Automatic time stepping: ON
Minimum time step size: enter 0.05
Maximum time step size: enter 0.1
OK
SOLUTION > SOLV CURRENT LS
CLOSE information window
C OK in solve window
(Convergence information is displayed as solution is marched out.)
CLOSE information window when solution is done

e. Display results: List displacements of selected nodes after each time step.
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
DEF & UNDEF 
OK and see deformed shape
GENERAL POST PROC > LIST RESULTS
NODAL SOLUTION
DOF SOLUTION > X-Component of displacement
OK   [you should have UX = 0.271 at 

node 4]
CLOSE
ELEMENT SOLUTION
STRESS > X-COMPONENT OF STRESS
OK   [you should have SX = 45.1; this is 

the true stress T11]
CLOSE
TIME HIST POSTPROC
Close window
DEFINE VARIABLES
ADD
Select Nodal DOF Result
OK
T 4 in the box for “list of items”   [this is another way of picking the 

node]
OK
Enter name: UX
Select Translation UX
OK 
TIME HIST POSTPROC > DEFINE VARIABLES
ADD
ELEMENT RESULTS
OK
T 1 for the list of items   (this is the element number)
OK
T 4 for the list of items    (this is the node number for stress 

output)
OK
Enter name SX 
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Select STRESS > X-DIRECTION SX
OK 
CLOSE   (variable 2 is UX and variable 3 is SX)
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 3
For 2nd variable to list: enter 2
OK (Lists SX and UX for each time step)
CLOSE

f. Plot results: plot the displacement at each time.
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable No.: enter 2  [UX on x-axis]
OK
TIME HIST POSTPROC > GRAPH VARIABLES
For 1st variable, enter 3  [SX on y-axis]
OK
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: UX
Enter y-axis label: SX
SELECT: SPECIFIED X-RANGE
ENTER X-RANGE OF 0 TO 0.3
OK
Utility Menu: PLOT > REPLOT
This graph can be printed for a report after adjusting colors 

15.38  curve fIt for nonlInear elaStIcIty 
uSIng polynoMIal Model

This is an analysis of a tensile test (unit cube) using test data and the ANSYS Curve 
Fit to determine the constants in the first-order polynomial model. One 8-node brick 
is used with unit side lengths since one element is an exact model of the tensile test 
(Figure 15.32).

The experimental data for a tensile test must be entered manually or placed in 
a text file. The first column must be the extension (α1 – 1) and the second column, 
separated by a space or comma, must be the nominal stress (P11). In the following 
example, the file Uni.txt has content

30

UX = UY = UZ = 0 x
z

y

UX = UZ = 0

UX = UY = 0

UX = 0

fIgure 15.32 3D tensile test: fixed stress.
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0 0
0.0341 9.71
0.0697 18.86
0.1068 27.46
0.1453 35.55
0.1850 43.13

These data are taken from Table 13.1.
Experimental data for volumetric strain must list the volume ratio (J) in the first 

column and the mean pressure (p) in the second column. If no volumetric strain 
data are entered, the model is assumed to be incompressible. The file Vol.txt has the 
content

0.98 10
0.96 20
0.94 30

which is the exact values for κ = 500 or d = 0.004.
The axial stress is ramped up to T11 = 30. Minimum supports are imposed to pre-

vent rigid displacement.

a. Activate ANSYS and set analysis type to structural.
See example 15.3.

b. Establish element type.
PREPROCESSOR > ELEMENT TYPE > ADD
ADD
HYPERELASTIC
C 3D 8 NODE 185  [this is SOLID185 element]
OK
CLOSE

c. Material properties by a curve fit.
PREPROCESSOR > MATERIAL PROP > MATERIAL MODEL
STRUCTURAL
NONLINEAR
ELASTIC
HYPERELASTIC
CURVE FITTING  [define material behavior window]
READ FROM FILE  [directory listing]
C Uni.txt  [file containing tensile test data]
OPEN  [data are read in]
NEXT [table for biaxial data appears]
NEXT
OK  [no biaxial data warning]
NEXT  [table for shear data appears]
OK  [no shear data]
NEXT  [table for simple shear data appears]
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OK  [no data for simple shear]
NEXT  [table for volumetric test data appears]
READ FROM FILE
C Vol.TXT  [file containing volumetric data]
OPEN
NEXT
HYPERELASTIC
POLYNOMIAL
C 1st ORDER
SOLVE [returns C10 = 21.9, C01 = 28.1, d = 0.004]
OK [curve fit done]
PLOT [stress–strain curves]
SAVE AND CLOSE [material constants for the model]
MATERIAL > EXIT

d. Create geometry.
PREPROCESSOR > MODELING > CREATE > VOLUMES > BLOCK > 

BY DIMENSIONS
T 0 1, 0 1, 0 1 for X1,X2,Y1,Y2, Z1,Z2
C OK and the region appears showing the x–y plane
PLOT CTRLS > NUMBERING
C box after Node numbers to turn them ON
OK

e. Mesh as one element.
PREPROCESSOR > MESHING > MESH TOOL
SIZE CONTROLS > GLOBAL > SET
C box for NDIV
T 1 in NDIV box   [one element is exact for the uniform extension]
OK
SHAPE: HEX   [this forces a brick instead of the default tetrahedron]
MESH
PICK ALL   (node numbers appear)
CLOSE   (Mesh Tool)

f. Apply boundary conditions. 
 First, rotate the element so that you can see the base (x = 0) with nodes 

1-2-5-8. This can be done in the dynamic model mode, which is interac-
tive: on the right-hand side is a menu with 3D pictures of a block. Click 
on the button at the end of the list that shows two elements (Dynamic 
Model Mode). The cursor changes to a rotation symbol. Hold down the 
right mouse button to rotate the element interactively until you can see 
the face 1-2-5-8.
LOADS > DEFINE LOADS > APPLY > STRUCTURAL
DISPLACEMENT > ON NODES
C on node 2 (at the origin)
APPLY
C ALL DOF
C on box for VALUES
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T 0 for the value of the displacement components
C APPLY
REPEAT THIS PROCESS TO SET UX AND UZ TO ZERO AT NODE 1
REPEAT THIS PROCESS TO SET UX AND UY TO ZERO AT NODE 5
REPEAT THIS PROCESS TO SET UX TO ZERO AT NODE 8
[This prevents rigid body motion and keeps the base in the Y–Z plane, but 

allows contraction.]
ROTATE THE ELEMENT so that you can see the face x = 1 with nodes 

3-4-6-7
DEFINE LOADS > APPLY > STRUCTURAL > PRESSURE > ON 

AREAS
C ON THE FACE 3-4-6-7 
OK
T −30 for the value   [T11 = 30, negative pressure]
C OK  [close warning window]

g. Solve for displacements and stresses.
 The total load is specified, then reached by ramping up in small time steps. 

Results are saved after each time step.
SOLUTION > UNABRIDGED MENU
ANALYSIS TYPE > ANALYSIS OPTIONS
Set NLGEOM ON [this is for K0]
Set Stress Stiff ON (SSTIF at the bottom)  [this is for K1]
OK
SOLUTION > LOAD STEP OPTS > OUTPUT CTRLS > DB/RESULTS 

FILE
File write frequency: select “every substep”
OK
SOLUTION > LOAD STEP OPTS > TIME/FREQUENC > TIME/TIME 

STEP
Time at end of load step: enter 1
Time step size: enter 0.1
Select RAMPED
Automatic time stepping: ON
Minimum time step size: enter 0.05
Maximum time step size: enter 0.1
OK
SOLUTION > SOLV CURRENT LS
CLOSE information window
C OK in solve window
(Convergence information is displayed as solution is marched out.)
CLOSE information window when solution is done

h. Display results: List displacements of selected nodes after each time step.
GENERAL POST PROC > PLOT RESULTS > DEFORMED SHAPE
DEF & UNDEF 
OK and see deformed shape
GENERAL POST PROC > LIST RESULTS
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NODAL SOLUTION
DOF SOLUTION > X-Component of displacement
OK   [you should have UX = 

0.1149 at node 4]
CLOSE
ELEMENT SOLUTION
STRESS > X-COMPONENT OF STRESS
OK   [you should have SX = 30.00; 

this is the true stress T11]
CLOSE
TIME HIST POSTPROC 
Close window
DEFINE VARIABLES
ADD
Select Nodal DOF Result
OK
T 4 in the box for “list   [this is another way of picking the node]

of items”
OK
Enter name: UX
Select Translation UX
OK 
TIME HIST POSTPROC > DEFINE VARIABLES
ADD
ELEMENT RESULTS
OK
T 1 for the list of items  (this is the element number)
OK
T 4 for the list of items  (this is the node number for stress output)
OK
Enter name SX
Select STRESS > X-DIRECTION SX
OK 
CLOSE  (variable 2 is UX and variable 3 is SX) 
TIME HIST POSTPROC > LIST VARIABLES
For 1st variable to list: enter 3
For 2nd variable to list: enter 2
OK (Lists SX and UX for each time step)
CLOSE

i. Plot results: plot the displacement at each time.
TIME HIST POSTPROC > SETTINGS > GRAPH
x-Axis variable: select Single Variable
Single variable no.: enter 2 [UX on x-axis]
OK
TIME HIST POSTPROC > GRAPH VARIABLES
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For 1st variable, enter 3 [SX on y-axis]
OK
Utility Menu: PLOT CTRLS > STYLE > GRAPHS > MODIFY AXES
Enter x-axis label: UX
Enter y-axis label: SX
SELECT: SPECIFIED Y-RANGE
ENTER Y-RANGE OF 0 TO 50
SELECT: SPECIFIED X-RANGE
ENTER X-RANGE OF 0 TO 0.2
OK
Utility Menu: PLOT > REPLOT
This graph can be printed for a report after adjusting colors 
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16 ANSYS Workbench

This book is mainly about understanding the foundations of finite element analysis. But 
the ultimate goal is, of course, to apply the finite element method (FEM) to real material 
bodies. This means application to complex geometries. Workbench provides the means.

Workbench is a fully developed Computer Aided Engineering package. The exam-
ples in Chapter 15 use the original ANSYS program that has been renamed ANSYS 
APDL. The tools for constructing the geometry of the material body using APDL 
are somewhat rudimentary. For complicated figures, you can use a CAD program to 
draw the figure and then import the geometry to ANSYS. Workbench eliminates that 
step. It has all of the tools of a CAD program and will automatically interface with 
the finite element analysis.

Workbench is especially useful for analyses that involve interaction of solid mechanics, 
heat transfer, fluid mechanics, and electrodynamics of materials, so called multiphysics 
problems. However, we will only consider here solid mechanics and heat conduction.

Product demonstrations, animated tutorials, and training materials are provided 
by ANSYS for existing customers through the Customer Portal: http://www1.ansys 
.com/customer/. This is a good place to start, but the instructions are not very detailed. 
New users should utilize one of the sources listed in the appended bibliography.

16.1 tWo- and three-dIMenSIonal geoMetry

The basic mouse operations are as follows. The left mouse button is used to click a 
single selection; click and hold to sweep for a continuous selection, or combine with 
the control key for multiple selection. The middle button is used for a rotation by 
click and hold, or a scroll wheel can be used to zoom in or out. The right mouse but-
ton is clicked to obtain a context menu, or used to click and drag for a box zoom.

The program is initiated by

 Start > All Programs > Ansys 12.1 > Workbench

After awhile the Workbench window appears with menu bars along the top, a graphics 
window (project schematic window) on the right, and a toolbox menu on the left. 

 Click on the + Sign to Expand the Component System Menu
 Double Click Component Systems > Geometry

This introduces into the project schematic window a schedule of tasks. In this case, 
the only task is to create a geometric figure.

 Double Click on the Geometry task (not the Geometry heading)
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This starts the software package called the Design Modeler within which the 2D or 
3D body can be constructed. A menu appears in which one must select the units to 
be used for the drawing. Select the units and click OK. Then click Sketching in the 
lower left menu box to get the Sketching toolbox menu with submenus for Draw, 
Modify, Dimensions, Constraints, and Settings. Each menu has icons and names that 
are more or less self-explanatory. Their use will be demonstrated in the following 
examples. The most commonly used Draw Tools are the Line Tool for straight lines, 
and the Polyline Tool for open or closed polygonal figures. Click on a point for each 
apex, but do not drag out the line by holding down the mouse button. A rough figure 
is sketched with the Draw Tools without concern for the dimensions.

The Constraints Toolbox contains tools for restricting Symmetry of figures, iden-
tifying Parallel Lines, lines of Equal Length, and so forth. Certain constraints are 
automatic: An H will appear if the line is horizontal; a V will appear if a line is verti-
cal; a C will appear if the selected point falls on an existing line; a P will appear if a 
selected point is coincident with an existing point; etc.

The Dimensions Toolbox is used to impose the desired dimensions on the figure. 
The figure is drawn approximately. Next, one typically picks a line or a point for the 
origin of a dimension and then another point for the end of the dimension, then a 
point for the location of the dimension line. The value of the dimension is entered 
in the Detail Box, and the size of the figure is automatically adjusted. The Modify 
Toolbox can be used to insert fillets at corners, trim away extra construction lines, 
extend the drawing by Replicate of parts, and so forth.

A three-dimensional drawing is typically constructed by Extrude, Revolve, or 
Sweep of a 2D sketch. For plane stress, plane strain, plate, or shell analysis, it is nec-
essary to first associate a surface with the 2D sketch of the body.

16.2 StreSS analySIS

In the startup toolbox, the Analysis Systems menu contains a list of tasks that can 
be executed using Workbench. If one double clicks on Static Structural (ANSYS), 
for example, a menu of subtasks to be performed appears in the Project Schematic 
(Graphics) window:

 Static Structural (ANSYS)
 Engineering Data
 Geometry
 Model
 Setup
 Solution
 Results

The Engineering Data task includes the selection of a material.
If a geometric figure has been previously constructed, this task is opened first and 

then associated with the stress analysis by dragging the geometry to the Geometry 
task. A double click on Model starts the Mechanical task in which the finite element 
analysis is formulated. The desired output is set up in the Solution task.
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The choice of element type and the mesh layout can be automatically generated 
by using default parameters of Workbench. The element type used and other solution 
information is available by clicking the

 Solution > Solution Information box  

after completing the solution phase.
The element types used are as follows:

 Plane Stress, Plane Strain, Axisymmetric: Plane 182, Plane 183.
 3D Solid Bodies: Solid95, Solid186, Solid92 (tetrahedral), Solid187
  (tetrahedral).
 Plates and Shells: Shell181.
 Beam and Column: Beam188.

The default mesh can be changed in a number of ways with available menus. 
Workbench will also do the work of improving the mesh for you by automatically 
refining the mesh in regions of high strain and repeating the analysis until a conver-
gence criterion is satisfied.

16.3 Short BeaM exaMple

A thin rectangular sheet is to be analyzed as a plane stress problem (Figure 16.1): 
a = 100 mm, b = 100 mm, t = 1 mm.

16.3.1 Short BeaM geoMetry

In preparation for the analysis, we will sketch the region and create a 2D model.

START > ALL PROGRAMS > ANSYS 12.1 > [wait for window]
 WORKBENCH
C COMPONENT SYSTEMS  [on the + sign to 

expand the menu]

p

x

b
y

a

fIgure 16.1 Short beam.
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CC GEOMETRY [start Project A]
CC GEOMETRY [on the ? mark, to start Design 

Modeler]
Select UNITS = MILLIMETER
C OK
C SKETCHING [left side below tree outline]
C LOOK AT FACE PLANE [right most logo on menu bar]
C DRAW to get menu [in sketching toolbox, if 

needed]
C RECTANGLE
Click on the origin and the approximate 

location of the upper right corner
C DIMENSIONS [to get menu, General is 

selected]
C top edge and location for dimension
C left edge and location for dimension
Enter dimensions in the Details View [100 for each then ENTER]
C CONCEPT > SURFACES FROM 
SKETCH

[top menu bar]

EXPAND XYPLANE [click on the + next to x–y 
plane in the tree]

C SKETCH1
C APPLY for base object [first click yellow region if 

necessary]
Enter THICKNESS = 1
C GENERATE [body is then shaded]
C ZOOM TO FIT [logo bar]
C FILE > CLOSE DESIGN MODELER [project schematic is visible]
C FILE > SAVE [choose a file name, e.g., 

sheet]
T sheet
C SAVE [project saved as sheet.wbpj]
C FILE > EXIT

16.3.2 Short BeaM, Static loading

A thin rectangular sheet is to be analyzed as a linear elastic plane stress problem 
(Figure 16.1): a = 100 mm, b = 100 mm, t = 1 mm, p = 1 MPa. The material is struc-
tural steel: E = 2 × 105 MPa, ν = 0.3. These are the default values in Workbench. The 
geometry has been stored in a file with name “sheet.”

a. Start Workbench and retrieve stored geometry file.
START > ALL PROGRAMS > ANSYS 12.1 > [wait for window]
WORKBENCH
FILE > OPEN
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C sheet [or the file name from 16.3.1]
C OPEN [the geometry appears as project A]
RC GEOMETRY
C PROPERTIES [if a short menu appears close prop-

erties and repeat this step]
Set ANALYSIS TYPE = 2D [on pull down menu]
CLOSE PROPERTIES 
WINDOW

[X in upper right corner]

CC STATIC STRUCTURAL [appears as project B]
C GEOMETRY(A) and DRAG 

onto GEOMETRY(B)
[a link appears]

b. Apply loads and supports for 2D analysis.

CC MODEL [mechanical starts]
C UNITS [choose mm,kg,N]
C STATIC STRUCTURAL [project tree]
C SUPPORTS > FIXED SUPPORT [menu bar for Supports]
C EDGE SELECTION LOGO [logo bar]
C LEFT EDGE
C APPLY [details menu, tag appears]
C LOADS > FORCE [menu bar for Loads]
C RIGHT EDGE [for uniformly distributed load]
C APPLY [details menu, tag appears]
C DEFINE BY
C COMPONENTS [vector drop menu]
C Y-COMPONENT [drop menu]
ENTER 100® [F = pat = 106 × 10–1 × 10–3 N = 

100 N]
C STATIC STRUCTURAL in Tree 

to see loads and supports

c. Specify the desired output and solve using the default mesh.

C SOLUTION [in tree outline]
C DEFORMATION > DIRECTIONAL [menu bar for Displacement]
C ORIENTATION [details menu]
Select Y AXIS on details menu [drop down menu]
C SOLVE [contour plot appears of UY]
C PROBE [menu bar]
[zoom in as necessary]
C upper right corner [Note maximum UY = 

0.00369 mm]
C EDGES > SHOW ELEMENTS [logo bar, to see FE grid]
C SOLUTION INFORMATION in tree [to see info on element type 

and nodes]
C FILE > CLOSE MECHANICAL
C FILE > EXIT
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16.3.3 Short BeaM, tranSient analySiS

A thin rectangular sheet is to be analyzed as a linear elastic plane stress problem 
(Figure 16.1): a = 100 mm, b = 100 mm, t = 1 mm, p = 1 MPa. The material is struc-
tural steel: E = 2 × 105 MPa, ν = 0.3, ρ = 7850 kg/m3. The load is applied as a step 
load. The geometry has been stored in a file with name “sheet.”

a. Start Workbench and retrieve geometry.
START > ALL PROGRAMS > [wait for window]
ANSYS 12.1 > WORKBENCH
C FILE > OPEN
C sheet  [file with saved geometry]
C OPEN

b. Start transient structural analysis project.
CC TRANSIENT STRUCTURAL  [analysis systems toolbox]
Drag Geometry A to Geometry box of 
 Transient Structural schematic B [a link line appears]

c. Specify 2D analysis.
RC GEOMETRY [for new project]
C PROPERTIES
Set ANALYSIS TYPE = 2D [on pull down menu]
CLOSE PROPERTIES WINDOW [X in upper right corner]

d. Specify material properties.
CC ENGINEERING DATA
C STRUCTURAL STEEL  [if properties not displayed]
C VIEW > PROPERTIES if not displayed [top menu bar]

 [Note that the density, 
modulus, and Poisson ratio 
have the desired values]

C RETURN TO PROJECT  [menu bar]
e. Add support and load conditions.

CC MODEL [mechanical starts]
C UNITS [choose mm,kg,N]
C TRANSIENT [project tree]
C SUPPORTS > FIXED SUPPORT [menu bar]
C EDGE SELECTION LOGO [menu bar]
C LEFT EDGE
C APPLY [details menu, tag appears]
C LOADS > FORCE [menu bar]
C RIGHT EDGE
C APPLY [details menu, tag appears]
C DEFINE BY
C COMPONENTS [vector drop menu]
C Y COMPONENT
ENTER 100®  [F = pat = 106 × 10–1 × 

10–3 N]
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f. Time and time steps.
C ANALYSIS SETTINGS [outline tree]
Enter STEP END TIME = 0.0002  [half period from fre-

quency analysis]
C DEFINE BY
C SUBSTEPS [on drop menu]
Enter INITIAL SUBSTEPS = 100®
Enter MINIMUM SUBSTEPS = 100®
Enter MAXIMUM SUBSTEPS = 100®

g. Specify output to save and solve equations.
C SOLUTION [in tree outline]
C DEFORMATION > DIRECTIONAL  [menu bar for 

Displacement]
C ORIENTATION
Select Y AXIS on drop menu
C SOLVE  [contour map of UY 

displayed]
C GRAPH in comments window to see time history of max UY.
 Note maximum UY = 7.0082 × 10−3 at t = 1.04 × 10−4.
C ANIMATION ARROW to see motion
C ANIMATION STOP
Click SOLUTION INFORMATION for data on elements and damping
C FILE > CLOSE MECHANICAL
C FILE > EXIT

16.4 fIlleted Bar exaMple

The filleted bar shown in Figure 16.2 is loaded in tension. The material is structural 
steel. The analysis is plane stress. The maximum stress is to be determined.

a. Sketch the region.
START > ALL PROGRAMS > ANSYS 12.1 >  [wait for window]
 WORKBENCH
CC STATIC STRUCTURAL
RC GEOMETRY
C NEW GEOMETRY
Select UNITS = MILLIMETER

50,000 N
50 mm

15 mm

100 mm100 mm

10
0 

m
m

y

x

fIgure 16.2 Filleted bar.
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C OK
C SKETCHING [left side below tree outline]
C LOOK AT FACE PLANE [right most logo on menu bar]
C DRAW to get menu [sketching toolbox]
C POLYLINE
Click on approximate location of each of the eight corners of the object 

(before fillets) in sequence. Do not click on the starting point again. Be 
sure that an H appears for horizontal lines and a V for vertical lines.

RC after the last corner to get a menu and then select
C CLOSED END
C CONSTRAINTS [sketching toolbox]
C EQUAL LENGTH
C PAIRS OF LINES that are required 
 to have equal length  [repeat these two steps for 

each pair, two pairs of hori-
zontal lines and one pair of 
vertical lines]

C SYMMETRY [constraint menu]
C X-AXIS [axis of symmetry]
C a top and bottom pair of lines
C DIMENSIONS to get menu [general is default]
C on a line and the location for the [for each dimension]
 dimension
ENTER dimensions in details menu
C ZOOM TO FIT LOGO [if necessary]
C DISPLAY [dimensions menu]
C to deselect NAME and VALUE is [to display actual values]
 selected automatically
C MODIFY [sketching toolbox]
C FILLET
Enter Radius = 15®
C pairs of lines to create a fillets [C edge filter if necessary]
C DIMENSIONS > RADIUS
C on a fillet and drag dimension line [shows R = 15]
 normal to the fillet

b. Create a surface body.
C CONCEPT > SURFACES [detail window appears]
FROM SKETCH
Enter THICKNESS = 10®
EXPAND XY PLANE  [click on the + next to x–y 

plane in the tree]
C SKETCH1
C BASE OBJECT NOT SELECTED [Apply option appears]
C APPLY [Base Object = 1 sketch]
C GENERATE  [lightning logo—body is then 

shaded]
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C FILE > CLOSE DESIGN MODELER  [project schematic is visible]
RC GEOMETRY [wait]
C PROPERTIES
Set ANALYSIS TYPE = 2D [on details menu]
CLOSE PROPERTIES WINDOW

c. Apply loads and supports.
CC MODEL [wait for Mechanical to
   start]
C UNITS
C mm,kg,N
RC STATIC STRUCTURAL
C INSERT
C FRICTIONLESS SUPPORT
C EDGE SELECTION LOGO
C LEFT EDGE
C APPLY [details menu, tag appears]
RC STATIC STRUCTURAL
C INSERT
C FORCE  [for uniformly distributed 

load]
C DEFINE BY [details menu]
C COMPONENTS [vector drop menu]
C X-COMPONENT to select it
Enter MAGNITUDE = 50000®
C RIGHT EDGE
C Yellow area by GEOMETRY in details window if necessary
C APPLY [tag appears]
C STATIC STRUCTURAL in Tree to see 
 loads and supports  [Rigid motion constraints 

will be automatically 
added]

d. Specify the desired output.
RC SOLUTION [in tree outline]
C INSERT
C STRESS > MAXIMUM PRINCIPAL

e. Mesh the body.
C MESH in the tree outline to highlight it
C MESH CONTROL > SIZING
C on body
C APPLY on geometry detail
C ELEMENT SIZE
Enter 10® [in place of “default”]
C MESH CONTROL > METHOD [menu bar]
C ANYWHERE ON THE BODY
C APPLY on geometry detail [geometry = 1 body]
C METHOD [details menu]
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Select TRIANGLES from drop menu  [tree shows “All 
Triangles Method”]

RC ALL TRIANGLES METHOD [in tree]
C GENERATE MESH
C MESH [too see mesh]
EXPAND SATISTICS to see the number of elements

f. Solve and view results.
C SOLVE  [lightning logo on 

menu bar]
[Note warning that rigid motion has been prevented by weak springs]
C MAXIMUM PRINCIPAL STRESS  [in solve tree to see 

contour plot]
[Note maximum is σ1 = 147 MPa on fillet]
[Use BOX ZOOM to expand the region of high stress and Probe if desired]
FILE > CLOSE MECHANICAL
FILE > EXIT

16.5 Sheet WIth a hole

A sheet with a central hole (Figure 16.3) is stretched by a uniform edge stress S 
resulting in a stress concentration at the hole. Symmetry is used so that only the 
upper-right quadrant is retained. This demonstrates automatic mesh refinement to 
improve result. In any convenient system of units: S = 100, a = 20, b = 10, r = 5, 
structural steel. The stress concentration is sought.

a. Sketch the region.
START > ALL PROGRAMS > ANSYS 12.1 > [wait for window]
WORKBENCH
CC STATIC STRUCTURAL
CC GEOMETRY  [to start Design 

Modeler]
Select UNITS = MILLIMETER [or your choice]
C OK

Sx
r

y

2a

2b

fIgure 16.3 Sheet with a hole.
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C SKETCHING  [left side below tree outline]
C LOOK AT FACE PLANE  [right most logo on menu 

bar]
C DRAW to get menu [sketching toolbox]
C RECTANGLE
Click on the origin and the approximate location of the upper right corner
C CIRCLE
C the origin and the approximate location of a point on the circle
C DIMENSIONS  [to get menu, General is 

selected]
C top edge and location for dimension
C right edge and location for dimension
C RADIUS
C on circle and location for dimension
Enter dimensions in the Details View
C MODIFY
C TRIM > IGNORE AXIS
Click on each line segment (circle and 
two enclosed line segments) to trim away  [we now have the upper-

right quadrant sketched]
b. Create a surface body.

C CONCEPT > SURFACES FROM [detail window appears]
SKETCH
Enter THICKNESS = 1® [arbitrary choice (area = 10)]
EXPAND XYPLANE  [click on the + next to x–y 

plane in the tree]
C SKETCH1
C APPLY  [first click yellow region if 

necessary]
C GENERATE [body is then shaded]
C FILE > CLOSE DESIGN MODELER  [project schematic is visible]
RC GEOMETRY [WAIT]
C PROPERTIES
Set ANALYSIS TYPE = 2D [on pull down menu]
CLOSE PROPERTIES WINDOW [X in upper right corner]

c. Apply loads and supports.
CC MODEL  [Wait for the model to 

appear]]
C UNITS  [choose mm,kg,N, or your 

choice]
C STATIC STRUCTURAL
C SUPPORTS > FRICTIONLESS [menu bar]
 SUPPORT
C EDGE SELECTION LOGO [menu bar]
C LEFT EDGE
C APPLY [tag appears]
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C SUPPORTS > FRICTIONLESS SUPPORT [menu bar]
C BOTTOM EDGE
C APPLY [tag appears]
C LOADS > PRESSURE [menu bar]
C RIGHT EDGE
C APPLY [tag appears]
Enter MAGNITUDE = −1® [SX = +1]
C STATIC STRUCTURAL in Tree to see loads and supports

d. Specify the desired output and solve using the default mesh.
C SOLUTION [in tree outline]
C STRESS > NORMAL  [X-direction is 

default]
C SOLVE
C NORMAL STRESS  [in solution tree to 

see contour plot]
C EDGES > SHOW ELEMENTS [menu bar]
 [note the relatively coarse grid in the region of high stress and the maxi-

mum value of the stress]
e. Automatically refine the mesh to improve the solution.

RC NORMAL STRESS
C INSERT > CONVERGENCE
C SOLUTION
SET MAX REFINEMENT LOOP TO 5
C CONVERGENCE
ENTER ALLOWABLE CHANGE = 1®  [1% improvement in 

answer is sought]
C SOLVE  [solution is repeated 

with a new mesh up 
to five times]

 [mesh statistics and 
new max stress is 
displayed]

C NORMAL STRESS  [to see refined ele-
ments and better value 
of maximum stress] 
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While the finite element method (FEM) has become the standard technique used to solve
static and dynamic problems associated with structures and machines, ANSYS software
has developed into the engineer’s software of choice to model and numerically solve
those problems.
An invaluable tool to help engineers master and optimize analysis, The Finite Element
Method for Mechanics of Solids with ANSYS Applications explains the foundations of FEM
in detail, enabling engineers to use it properly to analyze stress and interpret the output
of a finite element computer program such as ANSYS.
Illustrating presented theory with a wealth of practical examples, this book covers topics
including

• Essential background on solid mechanics (including small- and large-deformation
elasticity, plasticity, viscoelasticity) and mathematics

• Advanced finite element theory and associated fundamentals, with examples
• Use of ANSYS to derive solutions for problems that deal with vibration, wave

propagation, fracture mechanics, plates and shells, and contact

Totally self-contained, this text presents step-by-step instructions on how to use ANSYS
Parametric Design Language (APDL) and the ANSYS Workbench to solve problems
involving static/dynamic structural analysis (both linear and nonlinear) and heat transfer,
among other areas. It will quickly become a welcome addition to any engineering library,
equally useful to students and experienced engineers.

Mechanical Engineering

ELLIS H. DILL


	Front Cover
	Contents
	Preface
	Author
	1. Finite Element Concepts
	2. Linear Elasticity
	3. Finite Element Method for Linear Elasticity
	4. The Triangle and the Tetrahedron
	5. The Quadrilateral and the Hexahedron
	6. Errors and Convergence of Finite Element Solution
	7. Heat Conduction in Elastic Solids
	8. Finite Element Method for Plasticity
	9. Viscoelasticity
	10. Dynamic Analyses
	11. Linear Elastic Fracture Mechanics
	12. Plates and Shells
	13. Large Deformations
	14. Constraints and Contact
	15. ANSYS APDL Examples
	16. ANSYS Workbench
	Back Cover

