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Preface

This book grew out of a desire on the part of both authors to formally record in one
volume some of their research on ranking methods. My own interest was sparked by
a problem emanating from the School of Nursing at the University of Ottawa. It was
desired to test if patients who were mobile differed from those who were not with
respect to how they ranked certain sets of situations. The early research dealing with
the one sample problem was conducted at the Technion where I spent a sabbatical
and worked together with my friends and colleagues Paul Cabilio and Paul Feigin.
It subsequently led to a series of papers written principally with Paul Cabilio which
formed the basis of inference for ranking data. Other contributions were made by
graduate students and various collaborators. It is our pleasure to thank Xin Gao from
York University who generously permitted us to include the work on interaction and
who shared his/her computer packages.

I am grateful to my teachers who have inspired me during both my undergraduate
and graduate studies. Specifically I would like to thank Miklos Csorgo and Michael
Stevens who taught me probability and statistics at McGill University and who
instilled in me an interest to pursue the subjects. Herbert Robbins at Columbia Uni-
versity and Michael Woodroofe at the University of Michigan served as wonderful
role models throughout my doctoral studies. They demonstrated convincingly that
it is possible to combine depth of meaning and elegance in statistics.

It is a pleasure to thank my wife Helen and my family for their continued support
and understanding during the preparation of this book. To my parents who have
inspired me to pursue an academic career I owe a great deal.

Ottawa, ON, Canada Mayer Alvo

I am particularly grateful to Kin Lam and Richard Cowan for their teaching and
guidance in my graduate years at The University of Hong Kong. Without their
encouragement and support in analyzing contract bridge tournament data, my works
on modeling ranking data and this book would not have gotten started. I would
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like to thank all my former graduate students in ranking data research, in particular
Dorcas Lo, Wai-ming Wan, and Paul Lee. The second part of this book is based
on our joint work on modeling of ranking data. A special thank you to Qinglong
Li, Yuming Zhang, and Yiming Li for their outstanding assistance in writing R
programs.

I thank God almighty for his/her support in all my endeavors; I especially owe
thanks to my family, especially my wife Bonnie and our two lovely sons, for their
continued support and understanding throughout the work. Sincere gratefulness
goes to my beloved parents.

Hong Kong, China Philip L.H. Yu

Both authors are grateful to the publishers/ journals for allowing us to quote
freely from our published papers. We are very happy to thank the staff at Springer
for their patience and professionalism throughout the preparation of this book. In
particular many thanks to Donna Chernyk for guiding us so well along the way
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Chapter 1
Introduction

This book was motivated by a desire to make available in a single volume many of
the results on ranking methods developed by the authors and their collaborators that
have appeared in the literature over a period of several years. In many instances, the
presentations have a geometric flavor to them. As well there is a concerted effort to
introduce real applications in order to exhibit the wide scope of ranking methods.
Our hope is that the book will serve as a starting point and encourage students and
researchers to make more use of nonparametric ranking methods. The statistical
analysis of ranking data forms the main objective in this book.

Ranking data commonly arise from situations where it is desired to rank a
set of individuals or objects in accordance with some criterion. Such data may
be observed directly or it may come from a ranking of a set of assigned scores.
Alternatively, ranking data may arise when transforming continuous or discrete data
in a nonparametric analysis. Examples of ranking data may be found in politics
(Inglehart 1977; Barnes and Kaase 1979; Croon 1989; Vermunt 2004; Moors and
Vermunt 2007), voting and elections (Diaconis 1988; Koop and Poirier 1994;
Kamishima and Akaho 2006; Stern 1993; Murphy and Martin 2003; Gormley
and Murphy 2008; Skrondal and Rabe-Hesketh 2003), market research (Dittrich
et al. 2000; Beggs et al. 1981; Chapman and Staelin (1982)), food preference
(Kamishima and Akaho 2006; Nombekela et al. (1993); Vigneau et al. 1999),
psychology (Regenwetter et al. 2007; Decarlo and Luthar 2000; Riketta and Vonjahr
1999; Maydeu-Olivares and Bockenholt 2005; Bockenholt 2001), health economics
(Salomon 2003; Krabbe et al. 2007; McCabe et al. 2006; Craig et al. 2009;
Ratcliffe et al. 2006, 2009), medical treatments (Plumb et al. 2009), types of sushi
(Kamishima and Akaho 2006), place of living (Duncan and Brody 1982), choice
of occupations (Goldberg 1975; Yu and Chan 2001), and even horse racing (Stern
1990b; Benter 1994; Henery 1981).

In some cases, incomplete ranking data are observed, particularly when assessing
an object is time consuming or takes much effort. Instead of ranking all objects,
each individual may be asked to rank the top q objects only for q � t , called top
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complete
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triple
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subset ranking
(m = subset size)

q = 1 q = 2
q = t

m = t m = 3 m = 2

Fig. 1.1 Classification of rankings of t objects

q partial rankings. More generally, individuals are presented with a subset of the t
objects and rank the objects in the subset only, called subset rankings. Figure 1.1
shows the classification of rankings.

The analysis presented in this book follows two main themes. Beginning with an
introduction to exploratory data analysis for ranking data in Chap. 2, we consider
in the first part the inferential side of ranking methods. In Chap. 3, we define a
distance-based notion of correlation between two complete rankings of the same set
of objects. This notion plays an important role in developing tests of trend and of
independence in the data. For example, we may test for monotone trends in river
pH. Using the concept of compatibility introduced by Alvo and Cabilio (1992),
we extend the notion of correlation to the case where some objects are unranked.
As a consequence, this serves to widen the range of applicability and we may then
test for trends in river pH when some monthly data are missing either randomly or
by design. Correlation can also be defined for ranking data on a circle. Such data
arise when one is interested in wind direction from an atmospheric site. In Chaps. 4
and 5, we make use of the average pairwise correlation among a set of rankings
in order to test for randomness in complete and incomplete block designs. We
exploit the notion of population diversity in order to develop tests of hypothesis
that two or more groups come from the same population. Tests for interaction
are discussed next. In Chap. 6, we develop a general theory of hypothesis testing
and obtain generalizations of the Wilcoxon test of location for several populations.
As well, we develop tests under umbrella alternatives applicable for dose response
data that exhibit an increasing trend until it reaches a peak and a decreasing trend
thereafter. The contents of Chaps. 2–7 are applicable to nonparametric analysis in
general. We have not however attempted to provide a comprehensive treatment
of nonparametric analysis. For more traditional texts which deal with such topics
as analysis of variance in general, goodness-of-fit statistics, and regression and
multivariate analysis, we refer the reader to Gibbons and Chakraborti (2011) and
Higgins (2004) among others. Our goal instead has been to present a different
approach for looking at a variety of inference problems using ranking methods.
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The second main theme in the book deals with probability and statistical
modeling for ranking data. Models can be categorized into four classes: (i) order
statistics models (or random utility models), (ii) paired comparison models,
(iii) distance-based models, and (iv) multistage models. Typical examples for
(i) and (ii) include the Luce model (Luce 1959). They are reviewed in Chap. 8.
Unlike the probability models which assume a homogeneous population of judges,
predictive models assume that the judges’ preferences are heterogeneous and then
attempt to identify covariates that affect the judges’ preferences or even to predict
the ranking to be assigned by a new judge based on his/her socioeconomic variables.
A popular example is the rank-ordered logit model (Chapman and Staelin 1982;
Beggs et al. 1981; Hausman and Ruud 1987). In some situations, judges’ rank-order
preferences are derived by a number of common latent factors or form groups of
different preferences. Multivariate normal order statistics models and factor analysis
are considered in Chap. 9. We introduce decision tree models for ranking data in
Chap. 10 in order to delve deeper into the judgment process. These models provide
nonparametric methodology for prediction and classification problems. Based on the
methodology of testing for agreement introduced in Chap. 4, a further refinement
in building decision trees is introduced by considering the test for intergroup
concordance at every split during the tree-growing stage. We come full circle in
Chap. 11 where we consider extensions of distance-based models. Chapters 10–11
provide a substantial amount of detail and aim to present the researcher with an
accurate picture of what is involved in attempting to apply the tools for analyzing
ranking data.

The two themes in the book are complementary to one another. The work on
inference can be used in a confirmatory analysis whereas the work on modeling
would be appropriate in the non-null situation. We illustrate this difference using a
small ranking data from C. Sutton’s dissertation. In a survey conducted in Florida,
Sutton asked a group of female elderly retired people aged 70–79 “with which
sex do you prefer to spend your leisure?” Each elderly ranked the three choices:
A: male(s), B: female(s), and C: both sexes, assigning rank 1 to the most desired
choice, rank 2 to the next most desired choice, and rank 3 to the least desired choice.
The ranking responses provided by 14 white females and 13 black females are listed
in Table A.1 of Appendix A.2. The last row indicates that six white females and six
black females preferred the response “C: both sexes” the most and the response “A:
Males” the least and hence assigned rank 1 to C, rank 2 to B, and rank 3 to A.

To answer the question: is there a difference between the groups of females,
we may use the tools of inference discussed in Chap. 4. However, if we wish to
determine specifically where the differences lie, we would resort to the tools of
modeling.

To cite another example, the English premier league (EPL) is a famous profes-
sional league for association soccer clubs in the UK. The so-called “Big Four”
soccer clubs which are Arsenal, Chelsea, Liverpool, and Manchester United have
dominated the top four spots since the 1996–1997 season. Wikipedia documented
the results of the “Big Four” since the start of the Premier League in the 1992–1993
season. The rankings of these four EPL teams from the 1992–1993 season to the
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2012–2013 season are listed in Table A.2 of Appendix A.3. The first row of the
data means that there is one season that Arsenal ranked at the top of EPL, Chelsea
the second, Manchester United the third, and Liverpool the fourth. We may test the
hypothesis that the rankings observed are random. On the other hand, through the
use of modeling, we may try to determine how the rankings cluster.

The notation in the book is as follows. For a set of t objects, labeled 1; : : : ; t , a
ranking � is a permutation of the integers 1; : : : ; t , where �.i/ denotes the rank given
to object i . Primes denote the transpose of either a vector or a matrix. In all cases,
smaller ranks will be assigned to the more preferred objects. This is convenient for
example when looking at the top q objects. We write �.2/ D 3 to mean that object
2 has rank equal to 3. The inverse of the ranking function (sometimes referred as
ordering) ��1.i/ is defined as the object whose rank is i . The anti-rank of the ranking
� is defined as Q�.i/ D .tC1/��.i/. For example suppose t D 5, ��1.3/ D 4means
that object 4 ranks third and Q�.1/ D 3 means that object 1 ranks second .D 5 � 3/.

The book is written at the level of a research monograph aimed at a senior
undergraduate or graduate student interested in using statistical methods to analyze
ranking data. Such methods are by their nature nonparametric and consequently
require no underlying assumptions on the distributions of the observed scores.
It may also serve as a textbook for a course emphasizing statistical methods related
to ranking data. In some cases we provide proofs of theorems while in others,
we refer the reader to the original papers. The procedures are often illustrated by
application to real data sets. At the end of each chapter we have a brief set of notes
that provide further references. As a companion to the book, a web site is provided
which will include some data sets and R programs to conduct some of the procedures
described in the book.

Statistical
Methods for

Ranking Data

Exploratory
Analysis

Chapter 2

Correlation
Analysis

Chapter 3

Tests for
Randomness,

Agreement and
Interaction

Chapters 4 & 5

General Theory
Chapter 6

Tests for
Ordered

Alternatives
Chapter 7

Probability
Models

Chapter 8

Probit and
Factor Models

Chapter 9

Decision
Tree Models
Chapter 10

Extensions
of Distance-

Based Models
Chapter 11

Fig. 1.2 Schematic summary of the book
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Chapters 2 and 3 are the starting points for all users. Readers interested in the
foundations for inference could then proceed to Chaps. 4–7 where the emphasis is
on a variety of tests of hypotheses including tests of randomness, trend, and those
for ordered alternatives. As well, tests in connection with block designs provide
researchers with methods for developing further tests involving more complex
designs. On the other hand, readers more inclined to concentrate on modeling could
proceed to Chaps. 8–11. Following a general introduction to ranking models, the
reader is presented with applications involving the probit model as well as various
decision tree models. A companion set of R programs located in

http://web.hku.hk/�plhyu/StatMethRank/

enables the user to perform the analyses described in the book (Fig. 1.2).



Chapter 2
Exploratory Analysis of Ranking Data

2.1 Descriptive Statistics

Descriptive statistics present an overall picture of ranking data. Not only do they
provide a summary of the ranking data, but they are also often suggestive of the
appropriate direction to analyze the data. Therefore, it is suggested that researchers
consider descriptive analysis prior to any sophisticated data analysis.

We begin with a single measure of the popularity of an object. It is natural to use
the mean rank attributed to an object to represent the central tendency of the ranks.
The mean rank m D .m1; : : : ; mt/

0 is defined as the t-dimensional vector in which
the i th entry equals

mi D
t ŠX

jD1
nj �j .i/=n;

where �j , j D 1; 2; : : : ; t Š represents all possible rankings of the t objects, nj is the
observed frequency of ranking j , n D Pt

jD1 nj , and �j .i/ is the rank score given
to object i in ranking j .

Apart from the mean ranks, the pairwise frequencies, that is, the frequency with
which object i is more preferred (i.e., ranked higher with a smaller rank score)
than object j , for every possible C t

2 object pairs .i; j /, are also often used. These
pairwise frequencies can be summarized in a matrix called a pair matrix P in which
the .a; b/th entry equals

Pab D
t ŠX

jD1
nj I.�j .a/ < �j .b//;

© Springer Science+Business Media New York 2014
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where I.�/ is the indicator function. Note that Pab=n represents the empirical
probability that object a is more preferred than object. In addition to mean ranks
and pairwise frequencies, one can look more deeply into ranking data by studying
the so-called “marginal” distribution of the objects. A marginal matrix, specifically
for this use, is the t � t matrix M in which the .a; b/th entry equals

Mab D
t ŠX

jD1
nj I Œ�j .a/ D b�:

Note that Mab is the frequency of object a being ranked bth. Marden (1995) called
it a marginal matrix because the ath row gives the observed marginal distribution of
the ranks assigned to object a and the bth column gives the marginal distribution of
objects given the rank b.

Example 2.1. The function destat in the R package pmr computes three types
of descriptive statistics of a ranking data set, namely mean ranks, pairs, and
marginals. Here, we will use Sutton’s Leisure Time data (Table A.1) for illustration.
The data set leisure.black in the pmr package contains the rank-order
preference of spending leisure time with (1: male; 2: female; 3: both sexes) by
13 black women. By using the R code destat(leisure.black), the function
destat produces the following mean rank vector, pair matrix, and marginal matrix
(Fig. 2.1):

From the above descriptive statistics, we can see that the object “3: both sexes”
is clearly most preferred by the black females, and there is no strong preference
between the other two objects.

Fig. 2.1 Sutton’s leisure time data: descriptive statistics
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2.2 Visualizing Ranking Data

Visualization techniques for ranking data have drawn the attention of many
researchers. Some of them are basically adopted from classical graphical methods
for quantitative data while some are tailor-made for ranking data only. In this
section, we will briefly review various graphical visualization methods and discuss
the similarities and differences among them. Essentially, when a graphical method
is developed for displaying ranking data, we would like this method to help answer
the following questions:

1. What is the typical ranking of the t objects (the general preference)?
2. To what extent is there an agreement among the judges (the dispersion)?
3. Are there any outliers among the judges and/or the objects?
4. What are the similarity and dissimilarity among the objects?

Note that when the size of the ranking data is large (e.g., t � 8 or n � 100), it is
practically impossible to reveal the abovementioned pattern and characteristics by
merely looking at the raw data or by using some simple descriptive statistics such
as the means and standard deviations of the ranks. In this section, we will focus
on several major visualization methods—permutation polytopes, multidimensional
scaling (MDS) and unfolding (MDU), and multidimensional preference analysis
(MDPREF). For other visualization methods, see the monograph by Marden (1995).

2.2.1 Permutation Polytope

To display a set of rankings, it is not advisable to use traditional graphical methods
such as histograms and bar graphs because the elements of P , the set of all possible
permutations of the t objects, do not have a natural linear ordering.

Geometrically, rankings of t objects can be represented as points in R
t�1. The

set of all t Š rankings can then form a convex hull of t Š points in R
t�1 known as a

permutation polytope. The idea of using a permutation polytope to visualize ranking
data was first proposed by Schulman (1979) and was considered later by McCullagh
(1993a). Thompson (1993a,b) initiated the use of permutation polytopes to display
the frequencies of a set of rankings in analogy with histograms for continuous data.

For complete ranking data, frequencies can be plotted on the vertices of a
permutation polytope. Based on this polytope, Thompson found that the two most
popular metrics for measuring distance between two rankings are the Kendall and
Spearman distances which provide natural geometric interpretations of the rankings.
More specifically, she showed that the minimum number of edges that must be
traversed to get from one vertex of the permutation polytope to another reflects the
Kendall distance between the two rankings labeled by the two vertices, whereas
the Euclidean distance between any two vertices is proportional to the Spearman
distance between the two rankings corresponding to the two vertices.
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Fig. 2.2 A hexagon displaying the leisure time data set (a) White females (b) Black females

Example 2.2. Note that a ranking of t objects can be represented as a data point
located in Euclidean space R

t�1. Therefore, only rankings of three or four objects
can be represented in a two-dimensional or three-dimensional graph without losing
any information. For instance, ranking data with three objects can be displayed on
a hexagon, in which each vertex represents a ranking and each edge connects two
rankings a Kendall tau distance of 1 apart. To plot the leisure preferences given
by black and white females in Sutton’s Leisure Time data, we can make use of
the rankplot function in the pmr package to produce the hexagons as shown
in Fig. 2.2. Note that the area of the circle in each vertex is proportional to the
frequency of the corresponding ranking. With a quick glance, we can see that the
two rankings (2, 3, 1) and (3, 2, 1) have the largest frequencies for black females,
indicating that many black females preferred to spend their leisure with “both sexes”
the most while most of white females did not prefer to spend time with “male(s).”

Example 2.3. Consider the case of rankings of four objects. The 24(=4!) vertices
form a permutation polytope in three dimensions called a truncated octahedron
(Thompson 1993b). For illustration, a truncated octahedron of the four-object
ranking data big4yr (the relative ranking of four teams in the English Premier
League (EPL), namely Arsenal (1), Chelsea (2), Liverpool (3), and Manchester
United (4), from 1992–1993 season to 2012–2013 season) is plotted in Fig. 2.3.

It has eight hexagonal faces and six square faces. Each face has its interpretation.
Four of the hexagons refer to the rankings where a particular object is ranked first,
the other four refer to the rankings where a particular object is ranked last, and the
six square faces refer to the rankings where two particular objects are ranked among
the top two. The hexagon face with Manchester United (4) ranked first implying that
Manchester United was the best team in the EPL over many seasons.

In contrast to a complete ranking, a partial ranking is represented by a permuta-
tion of t nondistinct numbers. For example, the top 2 partial ranking (2, �, �, 1)
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Fig. 2.3 A truncated octahedron displaying the rankings of the Big Four EPL teams

can be represented by (2, 3.5, 3.5, 1). Therefore, the permutation polytope is not
applicable to represent partial rankings. To tackle this problem, Thompson (1993a)
defined a generalized permutation polytope as the convex hull of points in P whose
coordinates are permutations of t nondistinct numbers. The frequencies of a set of
partial rankings can be plotted in a natural way on the vertices of a generalized
permutation polytope. Similar to permutation polytopes, generalized permutation
polytopes induce a new and very reasonable extension of Kendall and Spearman
distances for top q partially ranked data.

Owing to the fact that the generalized permutation polytope on which the
frequencies are displayed is inscribed in a sphere in a .t � 1/-dimensional subspace
of P , it is difficult to visualize all the points on a polytope in a high-dimensional
space for t � 5. Thompson (1993a) proposed an approach to explore high-
dimensional polytopes by examining the three-dimensional faces and portions of the
four-dimensional faces. However, because drawing permutation polytopes is fairly
difficult, this visualization method is not so commonly used.

2.2.2 Multidimensional Scaling and Unfolding

Multidimensional scaling is a collection of graphical methods for representing
data which are in the form of similarities, dissimilarities, or other measures of
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“closeness” between each pair of objects. Unless the data are already in that form a
transformation on the raw data is required in order to obtain all pairs of objects in
their (dis)similarity measurements. See Tables 1.1 and 1.2 of Cox and Cox (2001)
for various transformations to calculate (dis)similarity measures for quantitative and
binary data. The basic idea behind MDS is to search for a low-dimensional space,
usually Euclidean, in which each object is represented by a point in the space, such
that the distances between the points in the space “match” as well as possible with
the original (dis)similarities. Applications of MDS can be found in fields such as
behavioral science, marketing, and ecology.

The starting point consists of an n � n nonnegative symmetric matrix � D .ıij /

of dissimilarities among n observations (e.g., products, people, or species) such that
ıij indicates the perceived dissimilarity between observations i and j . The goal of
MDS is, given �, to find n points fx1; � � � ; xng in a low-dimensional space such that
the distances between the points approximate the given dissimilarities:

ıij �
q
.xi � xj /0.xi � xj /:

Various approaches have been developed to determine the low-dimensional
points x0

i s. One typical approach is to formulate MDS as an optimization problem,
where the n points fx1; � � � ; xng are found by minimizing some loss function,
commonly called stress, for instance,

max
x1;��� ;xn

X

i<j

.ıij � dij /2;

where dij D p
.xi � xj /0.xi � xj /:

In the context of ranking data, Kidwell et al. (2008) suggested computing the
dissimilarity between any two complete or partial rankings on t objects by Kendall
distance proposed by Alvo and Cabilio (1995a) (see Chap. 3 for more details) and
then applied MDS to find an embedding of a data set of n rankings assigned by n
judges in a two- or three-dimensional Euclidean space.

Example 2.4. Consider a movie rating data set containing 72,979 possibly incom-
plete and tied rankings of 55 movies made by 5,625 raters who visited the web site
MovieLens (Resnick et al. 1994) in 2000. We calculate the distance matrix by using
a normalized version of the Kendall distance:

d� D d�
orig �m�

M � �m� (2.1)

where d�
orig is the Kendall distance, andM � andm� are the maximum and minimum

values of the Kendall distance as defined later in Lemma 3.5.
Applying two-dimensional MDS to the distance matrix, we obtain a scatterplot

of 5,625 points for the movie raters. However, the points are too densely clustered
that the scatterplot is ineffective to visualize the patterns of the ranking data. Kernel
smoothing is therefore used to produce a heat map for better identification of
different clusters of movie raters (Fig. 2.4).
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Fig. 2.4 MDS scatterplot and heat map for the movie rating data

The movie-viewing population initially appears to be a single large cluster.
A closer look identifies a dichotomy within the cluster where preferences vary from
the left to the right. The right half of the cluster appears to appreciate action films
with sci-fi elements—the Star Wars series and The Matrix. In the left half, the
upper part mainly consists of people interested in romance, Casablanca and The
Graduate, while the people in the lower part enjoy serious drama movies more—
Seven Samurai and To Kill a Mockingbird.

Among the MDS techniques, the unfolding technique, formulated by Coombs
(1950), is a typical variant designed for representing ranking data. Unlike the
abovementioned MDS that only visualizes a set of judge points in a low-dimensional
Euclidean space, the unfolding technique attempts to visualize a set of points in a
low Euclidean space with both judges and objects being represented by the points in
the same space. The points are sought so that the ranked order of the distances from
a judge point to the object points matches as “close” as possible with the ranking
assigned by the judge.

Mathematically, suppose that the j th judge is represented by the point xj D
.xj1; � � � ; xjd /0 in R

d (j D 1; � � � ; n) and the i th object is represented by the point
yi D .yi1; � � � ; yid /0 in the same space (i D 1; � � � ; t). Assume that the degree of
preference of the i th object given by the j th judge is measured by the Euclidean
distance, dij , between xj and yi , where

dij D
q
.yi � xj /0.yi � xj /: (2.2)

The smaller the value of dij , the more preferable for the j th judge is the i th object.
The problem of multidimensional unfolding (MDU) is to find xj ’s and yi ’s such

that the distances dij ’s match as much as possible with the ranks of objects given by
the judges. In other words, this can be viewed as MDS for a rectangular dissimilarity
matrix � whose .i; j / entry represents the rank of object i assigned by judge j .
Various methods are available to tackle this problem. See Chap. 8 of Cox and Cox
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(2001) and Chaps. 14–16 of Borg and Groenen (2005) for detailed explanations on
these methods.

Example 2.5. When d D 1, we have the so-called unidimensional unfolding for
which objects and judges are represented by points on a straight line. For example,
suppose there are two judges J1 and J2 who ranked the four objects A, B, C, and D
and their rankings are

First Second Third Fourth

Judge J1 A B C D

Judge J2 C D B A

Then the unfolding result for this example is represented by the top line in
Fig. 2.5. From the figure, we can see that for both judges, the distances from judge
point (J1 or J2) to the four object points have the same ranking as his/her original
ranking of the objects. It is interesting to note that when the line is folded from one
side to the other side at any judge point, the judge’s rankings can be observed and
hence the name unfolding is termed. For instance, the folded line in Fig. 2.5 reveals
that judge J1 prefers A the most, B the second, C the third, and D the least.

However, the ranking of the distances from a judge’s point to all the objects and
the judge’s ranking cannot guarantee to be perfectly matched for every judge. For
example, it is impossible to place a point for judge J3 who ranked the objects as
DABC in Fig. 2.5.

A widely used approach of solving MDS problems is called SMACOF (Scaling
by MAjorizing a COmplicated Function) which minimizes stress by means of
majorization. de Leeuw and Mair (2009) extended the basic SMACOF theory to
cover more types of data structures including MDU and they developed the smacof
package in R.

Example 2.6. Consider the Big Four data (Table A.2) in which the seasonal
rankings of four EPL teams, Arsenal, Chelsea, Liverpool, and Manchester United,
from the 1992–1993 season to 2012–2013 season. Applying SMACOF to this 4�21
matrix, we obtain the unfolding solution in Fig. 2.6.

In Fig. 2.6, the configuration plot shows the coordinates of the Big Four teams
and the seasons jointly. We can see that the Big Four teams are specially located
at four distinct configurations with Manchester United located at the center and

A B C DJ1 J2

A

B C DJ1 J2

Fig. 2.5 Unidimensional unfolding
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Fig. 2.6 Joint configuration plot and Shepard diagram for the Big Four data

surrounded by the seasons. This is reasonable since out of 21 seasons, Manchester
United ranked first in 15 seasons. Examining the configurations of teams and
seasons, most of the seasons in the 1990s are on the right of the graph where
Liverpool and Arsenal are located, and the seasons in the recent years are on the
left and Chelsea and Manchester United are the nearest teams. This indicates that
Chelsea had its increasing ability over Liverpool and Arsenal in the recent decade.

The Shepard diagram in Fig. 2.6 shows a scatterplot of the reconstructed dis-
tances obtained from the SMACOF solution against the original dissimilarities (i.e.,
ranks) and an isotonic regression fitted to the points in the graph. If all reconstructed
distances lie on the fitted line, then the dissimilarities would be perfectly reproduced
by the MDS solution. From Fig. 2.6, the Shepard diagram shows some lack of fit,
particularly for ranks 2 and 3 in a few seasons.

2.2.3 Multidimensional Preference Analysis

Similar to MDU, MDPREF (Carroll 1972) displays the relationship between judges
and their respective perceptions on objects by reducing the dimensionality of the
data, while retaining their main features as much as possible. Instead of using points
as in the unfolding technique, each judge is now represented by a vector in a low-
dimensional space while each object is represented by a point in the same space.
The vectors and points are so chosen that the projections of the object points onto
the judge vector indicate the rankings of the judge as closely as possible.

More specifically, let y .j / D .yj1; � � � ; yjt /0, j D 1; � � � ; n be a t � 1 vector of
anti-ranks for t objects given by judge j . Also, let Y D Œy .1/ � � � y .n/�0 be a collection
of the rankings given by n judges. Notice that

yj i D t C 1 � ıij ; i D 1; � � � ; t; j D 1; � � � ; n;
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where ıij is the dissimilarity (rank) measure used in the MDU in the previous
section. Since each row of Y is just a particular permutation of the integers
1; 2; � � � ; t , the mean of the ranks in any row equals tC1

2
. For the sake of convenience,

each row of Y is centered by tC1
2

, resulting in a new matrix, Y c :

Y c D Y � t C 1

2
1n1

0
t

where 1m is a m � 1 vector with all entries being 1.
The problem of MDPREF is to factorize Y c as

Y c D GH 0; (2.3)

where G and H are n � d and t � d matrices, respectively. By comparing entries
on both sides of (2.3), we obtain

yij � t C 1

2
D g0

ihj ;

where g i and hj are the rows of G and H , respectively, and we have a geometric
representation of Y c in terms of d -dimensional vectors.

Suppose the rectangular matrix Y c has rank r(� min .n; t � 1/). A natural
approach to determine G and H is to use the singular value decomposition:

Y c D PƒQ0;

where P is an n � r orthogonal matrix of rank r , Q is an t � r orthogonal matrix
of rank r , ƒ D diag.�1; �2; � � � ; �r /, and �1 � �2 � � � � � �r > 0 are the
positive eigenvalues of Y c . Here, P;Q;ƒ can also be obtained using the spectral
decomposition, since Y cY

0
c D Pƒ2P 0 and Y 0

cY c D Qƒ2Q0.
Using only the d (� r) largest eigenvalues, Y c can be approximated by

OY c D PdƒdQ0
d ; (2.4)

where Pd ;Qd denote the matrices consisting of the first d columns of P and
Q, respectively, and ƒd D diag.�1; �2; � � � ; �d /. In fact, it was shown by many
researchers that the approximation is the least squares solution of the problem of
minimizing

t raceŒ.Y c � X/.Y c � X/0� D
nX

iD1

tX

jD1
.yij � t C 1

2
� xij /2

among all n � t matrices X of rank d or less.
A d -dimensional MDPREF solution includes the following steps: (a) label object

i in R
d by a point represented by the i th row of Qd , and (b) label judge j on the

same graph represented by the j th row of Pdƒd , by an arrow drawn from the origin
on the graph. To give a better graphical display, the length of the judge vectors can be
scaled to fit the position of the objects. It is not difficult to see that the perpendicular
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projection of all t object points onto a judge vector will closely approximate the
ranking of the t objects by that judge if the current MDPREF solution fits the data
well. Otherwise, we may look for a higher-dimension solution.

Example 2.7. Let us revisit the data on ranking the Big Four EPL teams (Table A.2).
Applying MDPREF to this Big Four data gives the two-dimensional MDPREF
solution as shown in Fig. 2.7.

> mdpref(big4yr,rank.vector=T)

$item
[,1] [,2]

[1,] -0.1208 1.0514
[2,] -1.3187 -1.9222
[3,] -1.1504 1.2467
[4,] 2.5898 -0.3759

$ranking
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 3 4 2 1 1 0.83970 0.5716
[2,] 2 4 3 1 1 1.00136 0.5254
[3,] 4 3 2 1 1 0.65162 -0.1316
[4,] 3 4 2 1 1 0.83970 0.5716
[5,] 2 4 3 1 1 1.00136 0.5254
[6,] 1 4 3 2 1 0.57576 0.8630
[7,] 2 3 4 1 1 0.97494 -0.2240
[8,] 2 4 3 1 1 1.00136 0.5254
[9,] 2 4 3 1 1 1.00136 0.5254

[10,] 1 4 2 3 1 -0.01150 1.2467
[11,] 2 3 4 1 1 0.97494 -0.2240
[12,] 1 2 4 3 1 -0.06435 -0.2521
[13,] 2 1 4 3 1 -0.25244 -0.9554
[14,] 4 1 3 2 1 0.01150 -1.2467
[15,] 4 2 3 1 1 0.62519 -0.8810
[16,] 3 2 4 1 1 0.78685 -0.9272
[17,] 4 3 2 1 1 0.65162 -0.1316
[18,] 3 1 4 2 1 0.17317 -1.2929
[19,] 3 2 4 1 1 0.78685 -0.9272
[20,] 2 3 4 1 1 0.97494 -0.2240
[21,] 3 2 4 1 1 0.78685 -0.9272

$explain
[1] 0.7232
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Fig. 2.7 The two-dimensional MDPREF solution for the Big Four data

The coordinates of the objects and season rankings and the proportion of variance
explained by the first two dimensions are stored in the values $item, $ranking,
and $explain, respectively. It can be seen that two dimensions can explain about
72.32 % of the total variance. Figure 2.7 shows the two-dimensional MDPREF
solution. The first dimension can be interpreted as the overall preference of the
four teams. Manchester United performed best, whereas Liverpool and Chelsea
performed poorly. The second dimension represents the contrast between Chelsea
and the two teams, Liverpool and Arsenal. Examining their rankings in Table A.2,
we see that Chelsea had its increasing performance over Liverpool and Arsenal in
the recent decade.

Note that the season vectors point to the direction of the best performing
team. For example, the ranking (3, 2, 4, 1) was observed in three seasons
in 2008, 2011, and 2013, meaning that Manchester United ranked first, then
Chelsea second, Arsenal third, and finally Liverpool the last. They all have the
same season vector pointing to .0:79;�0:93/. By projecting the four team points
to the season vector in Fig. 2.7, we obtain correctly the ordering Manchester
United>Chelsea>Arsenal>Liverpool.
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2.2.4 Comparison of the Methods

So far, we have described three methods of visualizing ranking data. Each method
has its distinct features. Permutation polytopes provide the frequency distribution
of the observed rankings. Unfolding and MDPREF attempt to reveal relationships
among the judges and the objects such as clustering of objects and unusual judges.

Note that permutation polytopes do not make any assumptions while unfolding
and MDPREF assume that the ranking assigned by each judge can be represented
in terms of the ordering of distances and projections, respectively.

Despite their features and assumptions, each of them has their own weaknesses.
Permutation polytopes become difficult to interpret for large numbers of objects,
say more than 5. Unfolding and MDPREF rely on the validity of assumptions
made in each method which may not be true in general. Nevertheless, unfolding
and MDPREF can often provide a very informative graph which gives a spatial
representation of objects and judges and from which the between-object and
between-judge relationships could then be identified (see Cohen and Mallows 1980).

2.3 Tests for Randomness on Ranking of a Set of Objects

When we say that selecting a ranking of t objects is completely random, we mean all
possible rankings of t objects have the same probability (i.e., a uniform distribution)
of being selected. In that case, the expected frequencies of each ranking of t objects
in a data set of size n should be n=tŠ, and the standard chi-square goodness-of-fit test
can be applied to test for uniformity. However, it is not always applicable when t Š is
too large as compared to n, because we may encounter the problem of observed
frequencies on some rankings being less than 5. If such a case occurs, Marden
(1995) suggested using mean ranks, pairs, or marginals (see Sect. 2.1), instead of
ranking proportions, to test for randomness.

Under the null hypothesis H0 of randomness, the expected mean ranks, pairs,
and marginals should be .t C 1/=2 , 0:5n, and n=t , respectively. UnderH0, the test
statistics based on the sample mean ranks, pairs, and marginals are

Mean rank:
12n

t.t C 1/

tX

jD1
.mj � t C 1

2
/2

Pairs: 12n

8
<

:

tX

a>b

.Pab � 0:5/2 � 1

t C 1

tX

jD1
.mj � t C 1

2
/2

9
=

;

Marginals: n.t C 1/

tX

a>b

.Mab � 1

t
/2
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which follow a �2 distribution with degrees of freedom t � 1,
�
t
2

�
, and .t � 1/2,

respectively.

Example 2.8. To assess for randomness for Sutton’s Leisure Time data based on the
mean ranks, the following R code could be used:

> data(leisure.black)
> de1<-destat(leisure.black)
> mean<-rep(2,3)
> chi<-12*13*sum((de1$mean.rank - mean)^2)/3/4
> chi

[1] 11.69

> dchisq(chi,2)

[1] 0.001445

The value of the test statistic is 11.69 which has a p-value of 0.0014. This
indicates that black females had uneven preference on the three choices.

Example 2.9. The above �2 tests can also be extended to evaluate the agreement or
diversity between two populations of judges who ranked the same set of objects. We
may test for the agreement of leisure time preferences between black females and
white females based on the marginals. The R code used is given as follows:

> de1 <- destat(leisure.black)
> data(leisure.white)
> de2 <- destat(leisure.white)
> chisq.test(cbind(as.vector(de1$mar),

as.vector(de2$mar)))

Pearson’s Chi-squared test

data: cbind(as.vector(de1$mar), as.vector(de2$mar))
X-squared = 27.22, df = 8, p-value = 0.0006479

The value of the test statistic is 27.22 which has a p-value of 0.00065. It is evident
that black and white females did not agree on their preference with which sex they
prefer to spend their leisure time. Note that the marginal matrix has only .t�1/2 D 4

df and hence the proper degrees of freedom of the chi-square test here should be 4.
However, this will make p-value even smaller and hence this does not affect our
conclusion.
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Chapter Notes

Alvo and Ertas (1992) extended MDPREF to visualize rankings obtained from more
than one population. Yu and Chan (2001) and Leung (2003) developed a probabilis-
tic extension of MDPREF and MDU, respectively, so that statistical inference on
model parameters can be made. Other graphical representation techniques include
Ye and McCullagh (1993), Han and Huh (1995), Baba (1986), and Hirst and Naes
(1994). For examining agreement or diversity among three or more populations
of judges, see Chap. 4 and Marden (1995) for some distance-based methods and
MANOVA-like methods.



Chapter 3
Correlation Analysis of Paired Ranking Data

3.1 Notion of Distance Between Two Rankings

A ranking represents the order of preference one has with respect to a set of t objects.
If we label the objects by the integers 1 to t , a ranking can then be thought of
as a permutation of the integers .1; 2; : : : ; t/. We may denote such a permutation
by � D .�.1/; �.2/; : : : ; �.t//0 which may also be conceptualized as a point in
t-dimensional space. It is natural to measure the spread between two individual
permutations �; � by means of a distance function. There are several examples of
distance functions that have been proposed in the literature. Here are a few:

Spearman

dS.�; �/ D 1

2

tX

iD1
.�.i/ � �.i//2 : (3.1)

Kendall

dK.�; �/ D
X

i<j

f1 � sgn .�.j / � �.i// sgn .�.j / � �.i//g ; (3.2)

where sgn.x/ is either 1 or �1 depending on whether x > 0 or x < 0:
Hamming

dH .�; �/ D t �
tX

iD1

tX

jD1
I .�.i/ D j / I .�.i/ D j / (3.3)

where I.:/ is the indicator function taking values 1 or 0 depending on whether the
statement in brackets holds or not.

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5__3
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Spearman Footrule

dF .�; �/ D
tX

iD1
j�.i/ � �.i/j: (3.4)

The Spearman measure is not a proper “distance” in that it does not obey the
triangular inequality property. We shall nonetheless refer to it as a distance function
in this book. It is based upon squared Euclidean distance whereas the Footrule is
based on the absolute deviations. The Kendall distance counts the number of “dis-
cordant” pairs whereas the Hamming distance counts the number of “mismatches.”
The Hamming distance has found uses in coding theory. These distances have the
property of being invariant under any permutation relabeling of the objects. That is,
for any permutations �; �; �;

d .�; �/ D d .� ı �; � ı �/

where � ı � .i/ D � .� .i// : This property is known as right invariance. Let
	 D �

d
�
�i ; �j

��
denote the matrix of all pairwise distances. If d is right invariant,

then it follows that there exists a constant c > 0 for which

	1 D .ctŠ/1

where 1 D .1; 1; : : : ; 1/0 is of dimension t Š. Hence, c is equal to the average
distance. It is straightforward to show that for the Spearman and Kendall distances

cS D t.t2 � 1/

12
; cK D t.t � 1/

2
:

Turning attention to the Hamming distance, we note that if e D .1; 2; : : : ; t/0,
then

†�dH .�; e/ D †�t �†�†i†j I .� .i/ D j / I .e .i/ D j:/

D t .t Š/ � t Š

and hence cH D .t � 1/.

Example 3.1. Suppose that t D 3 and that the complete rankings are denoted by

�1 D .1; 2; 3/0 ; �2 D .1; 3; 2/0 ; �3 D .2; 1; 3/0 ; �4 D .2; 3; 1/0 ; �5 D .3; 1; 2/0 ;
�6 D .3; 2; 1/0 :

Using the above order of the permutations, we may write the matrix	 of pairwise
Spearman, Kendall, Hamming, and Footrule distances respectively as
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	S D

0
BBBBBBB@

0 1 1 3 3 4

1 0 3 1 4 3

1 3 0 4 1 3

3 1 4 0 3 1

3 4 1 3 0 1

4 3 3 1 1 0

1
CCCCCCCA

	K D

0
BBBBBBB@

0 2 2 4 4 6

2 0 4 2 6 4

2 4 0 6 2 4

4 2 6 0 4 2

4 6 2 4 0 2

6 4 4 2 2 0

1
CCCCCCCA

	H D

0

BBBBBBB@

0 2 2 3 3 2

2 0 3 2 2 3

2 3 0 2 2 3

3 2 2 0 3 2

3 2 2 3 0 2

2 3 3 2 2 0

1

CCCCCCCA

	F D

0

BBBBBBB@

0 2 2 4 4 4

2 0 4 2 4 4

2 4 0 4 2 4

4 2 4 0 4 2

4 4 2 4 0 2

4 4 4 2 2 0

1

CCCCCCCA

These distances may alternatively be written in terms of a similarity function in
the form

d.�; �/ D c � A.�; �/; (3.5)

Spearman:

AS D AS .�; �/ D
tX

iD1

�
�.i/ � t C 1

2

��
�.i/� t C 1

2

�
: (3.6)

Kendall:

AK D AK.�; �/ D
X

i<j

sgn .�.j / � �.i// sgn .�.j / � �.i// : (3.7)
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Hamming:

AH .�; �/ D
tX

iD1

tX

jD1
I

�
Œ�.i/ D j � � 1

t

�
I

�
Œ�.i/ D j � � 1

t

�
: (3.8)

Footrule:

AF .�; �/ D
tX

iD1

tX

jD1
I

�
Œ�.i/ � j � � j

t

�
I

�
Œ�.i/ � j � � j

t

�
:

The similarity measures may be also interpreted geometrically as inner products
which sets the groundwork for defining correlation in the next section.

3.2 Correlation Between Two Rankings

The notion of correlation occurs frequently in statistics. For example, in regression
analysis, one is interested in the correlation between two variables such as height
and weight. Similarly, in nonparametric statistics, we shall be interested in the
correlation between two rankings. Let P be the space of all possible permutations of
the integers 1; 2; : : : ; t . We may define the correlation between two rankings�; � as

˛ .�; �/ D 1 � 2d .�; �/

M
(3.9)

whereM is the maximum value of the distance d .�; �/ taken over all possible pairs
�; � in P (Diaconis and Graham 1977). In the case of the Spearman and Kendall
distance, the maximum values occur when

�
�.i/ � t C 1

2

�
D �

�
�.i/� t C 1

2

�
for all i;

whereas the minimum occurs when
�
�.i/ � t C 1

2

�
D
�
�.i/� t C 1

2

�

This is a consequence of the rearrangement inequality given as a lemma below.

Lemma 3.1. Let a1; : : : ; at and b1; : : : ; bt be real numbers, not necessarily positive
with

a1 � : : : � at ; b1 � : : : � bt
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and let � be a permutation of the integers 1; : : : ; t . Then

a1bt C : : :C atb1 � a1b�.1/ C : : :C atb�.t/ � a1b1 C : : :C atbt :

Proof. The proof follows by induction on t: ut
It can be shown that for the Spearman and Kendall distances, the maximum is

equal to twice the mean,

MS D 2cS ;MK D 2cK: (3.10)

In view of (3.10) we have

˛S .�; �/ D AS

cS
; ˛K .�; �/ D AK

cK
: (3.11)

Example 3.2 (Lehmann 1975, p. 298). Consider the test scores in Language and
Arithmetic for a group of 9 students as shown in Table 3.1. The right-invariance
property shared by the Spearman and Kendall distances enables us to rewrite the
table in a more convenient fashion with one of the rankings in natural order as in
Table 3.2. The Spearman and Kendall correlations are respectively 0:683 and 0:500.
Here cS D 60; cK D 36.

The correlation coefficients based on these distances are of the multiplicative
type (Kendall and Gibbons 1990); that is, there exists a function g such that

˛ .�; �/ D k�k�
X

i

X

j

g .� .i/ ; � .j // g .� .i/ ; � .j // (3.12)

Table 3.1 Language and Arithmetic scores

Student 1 2 3 4 5 6 7 8 9

Language 50 23 28 34 14 54 46 52 53

Arithmetic 38 28 14 26 18 40 23 30 27

Language ranks 6 2 3 4 1 9 5 7 8

Arithmetic ranks 8 6 1 4 2 9 3 7 5

Table 3.2 Language and Arithmetic scores rearranged

Student 5 2 3 4 7 1 8 9 6

Language 14 23 28 34 46 50 52 53 54

Arithmetic 18 28 14 26 23 38 30 27 40

Language ranks 1 2 3 4 5 6 7 8 9

Arithmetic ranks 2 6 1 4 3 8 7 5 9
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where k�; k� are normalizing constants. The constants may be different depending
on whether the coefficient is of type a or b. A type a correlation is used above. For
Spearman and Kendall, the functions are, respectively,

gS .� .i/ ; � .j // D .� .i/ � � .j //

gK .� .i/ ; � .j // D sgn Œ� .i/ � � .j /� :

For a type b correlation, the constants are given by

k� D
q
†i†j Œg .� .i/ ; � .j //�

2:

We shall make use of a type b correlation when defining angular correlations in
Sect. 3.6.

For a multiplicative index, it can be shown that the correlation matrix is
necessarily positive semidefinite (Quade 1972). Setting

Q D
�
J � 2

M
	

�
(3.13)

where J D 110 and M
2

D c; this implies that there exists a matrix T for which

Q D 1

c

�
T0T

�
: (3.14)

It follows that the distance matrix for both Spearman and Kendall can be
expressed as

	 D cJ � T0T: (3.15)

From the form of the Spearman and Kendall similarity measures (3.12), it can be
seen that the matrices T are respectively

TS D .tS .�1/ ; : : : ; tS .�tŠ//
0 (3.16)

where

tS .�/ D
�
� .1/� t C 1

2
; : : : ; � .t/ � t C 1

2

�0

is the centered rank vector and

TK D .tK .�1/ ; : : : ; tK .�tŠ//
0 (3.17)
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is of dimension
�
t
2

��t Šwhere the qth element for q D .i � 1/ �t � i
2

�C.j � i/ ; 1 �
i < j � t ,

.tK .�//q D sgn Œ� .j / � � .i/� :

For Hamming, we may write the t2-dimensional vector where the .i; j /th
element is

.tH .�//ij D
�
I Œ� .i/ D j � � 1

t

�

for 1 � i; j � t:

For the Footrule we have the t2-dimensional vector where the qth element for
q D .i � 1/ t C j; 1 � i < j � t

.tF .�//q D
�
I Œ� .i/ � j � � j

t

�
:

Example 3.3. Suppose that t D 3. Then, placing the rankings in the natural order
of Example 3.1, we have that

TS D
0

@
�1 �1 0 0 1 1

0 1 �1 1 �1 0

1 0 1 �1 0 �1

1

A

and

TK D
0

@
1 1 �1 1 �1 �1
1 1 1 �1 �1 �1
1 �1 1 �1 1 �1

1

A :

The notion of correlation is particularly useful in problems wherein one wishes
to test for the independence of two variables as in Example 3.2 or for the existence
of long-term monotone trend in the pH of a river. We will postpone a discussion of
these important topics later in this chapter where it will be addressed in the general
context of incomplete rankings.

3.3 Incomplete Rankings and the Notion of Compatibility

A judge may rank a complete set of candidates in accordance with some criterion.
On occasion, however, data may be missing either at random or by design. For
example, one or more candidates may not be ranked. In another example, the pH
data on a lake may not be available for certain months in a year, thereby making it
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impossible to test for a long-term trend using traditional nonparametric rank-based
statistics. The option to ignore the missing data is unsatisfactory because it distorts
the time scale. As we shall see later on, this option is always suboptimal when
testing for trend. We address the topic in this section by first introducing the notion
of compatibility.

Notation. Incomplete ranks will be denoted by “�” and corresponding incomplete
rankings will be written with an upper script “*”.

For example, the ranking �� D .2;�; 3; 4; 1/0 indicates that object 2 is unranked
among the five objects presented.

Definition 3.1. The complete ranking � of t objects is said to be compatible with
an incomplete ranking �� of a subset of k of these objects, 2 � k � t; if the relative
ranking of every pair of objects ranked in �� coincides with their relative ranking
in �.

An incomplete ranking gives rise to a class of order preserving complete
rankings. Denoting by C .��/ the set of complete permutations compatible with
�� D .2;�; 3; 4; 1/0, we have that

C
�
��
� D ˚

.2; 5; 3; 4; 1/0 ; .2; 4; 3; 5; 1/0 ; .2; 3; 4; 5; 1/0 ; .3; 2; 4; 5; 1/0 ; .3; 1; 4; 5; 2/0
�
:

The total number of complete rankings of t objects compatible with an incom-
plete ranking of a subset of k objects is given by t Š=kŠ. This follows from the fact
that there are

�
t
k

�
ways of choosing k integers for the ranked objects, one way

in placing them to preserve the order and then .t � k/Š ways of rearranging the
remaining integers. The product is thus

a D �
t
k

�
.t � k/Š D t Š=kŠ (3.18)

The notion of compatibility establishes a connection between an incomplete
ranking and the class of complete rankings from which the incomplete ranking
could have arisen. It seems natural as a result to extend the notion of distance to
incomplete rankings by referring to the corresponding compatibility classes.

Definition 3.2. The distance d� .��; ��/ between two incomplete rankings�� and
�� is defined to be the average of all values of the distances d.�i ; j / taken over all
pairs of complete rankings �i ; j compatible with �� and ��, respectively.

Example 3.4. Suppose that t D 3; k D 2: In that case, the possible incomplete
rankings are denoted by

��
11 D .1; 2;�/0 ; ��

12 D .2; 1;�/0 ; ��
21 D .1;�; 2/0 ; ��

22 D .2;�; 1/0 ;
��
31 D .�; 1; 2/0 ; ��

32 D .�; 2; 1/0
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We may associate with every incomplete ranking a (t Š x 1/ compatibility vector,
also denoted by C.��/, whose i th component is 1 or 0 according to whether �i
is compatible with ��: A summary can be provided by a compatibility matrix as
follows.

C D

�1
�2
�3

�4
�5
�6

��
11 �

�
12 �

�
21 �

�
22 �

�
31 �

�
32

1 0 1 0 1 0

1 0 1 0 0 1

0 1 1 0 1 0

1 0 0 1 0 1

0 1 0 1 1 0

0 1 0 1 0 1

Consequently, the matrix of average pairwise Spearman distances for the incom-
plete rankings is given by the product C 0

S	CS=a
2 where a D t Š= kŠ D 3 and

C 0
S	CS D

��
11 �

�
12 �

�
21 �

�
22 �

�
31 �

�
32

��
11 10 26 14 22 22 14

��
12 26 10 22 14 14 22

��
21 14 22 10 26 14 22

��
22 22 14 26 10 22 14

��
31 22 14 14 22 10 26

��
32 14 22 22 14 26 10

We note from this example that the distance of an incomplete ranking to itself is 10
and not 0. In extending the notion of correlation to incomplete rankings, it will be
necessary to take this into account.

For the Spearman and Kendall distances, we may re-express the distance
d�.��; ��/ as

d����; ��� D 1

a2

�
C
�
����0	

�
C
�
���� (3.19)

D 1

a2

�
C
�
����0 �cJ � T0T

� �
C
�
���� (3.20)

D c � A����; ���

where

A����; ��� D 1

a2

�
C
�
����0 T0T

�
C
�
���� :

The latter may be viewed as the average of the A.�i ; �j / taken over all complete
rankings �i ; �j compatible with �� and ��, respectively.
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3.4 Correlation for Incomplete Rankings

At this point it is useful to derive an expression for an incomplete ranking ��
given knowledge of its compatibility class C.��/ : We shall assume that each
complete ranking has the same probability of being selected, i.e., they are uniformly
distributed over the t Š permutations of .1; 2; : : : ; t/.

Lemma 3.2. The conditional distribution of the rank � .i/ given the compatibility
class C .��/ generated by �� is given by

P
˚
� .i/ D j jC ����� D

�
j�1

�� .i/�1
��

t�j
k��� .i/

��
t

k

��1
ı .i/C1

t
.1�ı .i//

where ı .i/ is either 1 or 0 depending on whether the object i is or is not ranked in
the incomplete ranking. Here �� .i/ � j � .t � k/ C �� .i/, if object i is ranked
whereas 1 � j � t; if object i is not ranked.

Proof. If an object i is ranked in an incomplete ranking �� of k objects, then the
number of complete rankings compatible with �� which assign rank j to object i is

�
j � 1

�� .i/ � 1
��

t � j

k � �� .i/

�
.t � k/Š

This consists of the number of ways of picking a set of .�� .i/� 1/ from the
first .j � 1/ integers and a set of .k � �� .i// from the last .t � j / integers while
allowing all possible permutations of the .t � k/ integers not picked. On the other
hand, if object i is not ranked in �� then the number of such complete compatible
rankings is given by

�
t � 1
k

�
.t � k � 1/Š

the number of ways of picking k from the t � 1 integers not equal to j and allowing
all possible permutations of the remaining .t � k � 1/ integers. Dividing these by
t Š
kŠ

the number of complete rankings compatible with �� gives the result. ut
In the next lemma, we show that it is possible to compute the value of a

score function corresponding to an incomplete ranking from knowledge of the
compatibility class. To this end, we make use of the conditional distribution of
a complete ranking given its compatibility class and the fact that the conditional
expectation of the score function corresponds to its projection onto that class. We
apply this approach to compute the form of score functions for both the Spearman
and Kendall distances.
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Lemma 3.3. Suppose that we select a complete ranking� at random from the class
of compatible rankings C .��/. Suppose that object s is ranked. Then (a)

E

	�
�.s/ � t C 1

2

�
j C.��/



D t C 1

k C 1

�
��.s/� k C 1

2

�
; (3.21)

and (b) for any pair of objects i < j;

E
�
sgn .�.j / � �.i// j C.��/

� D a.i; j /; (3.22)

where

a.i; j / D

8
ˆ̂̂
<

ˆ̂̂
:

sgn.��.j / � ��.i// if both objects i and j are ranked

1 � 2��.i/

.kC1/ if only object i is ranked
2��.j /

.kC1/ � 1 if only object j is ranked

0 otherwise

(3.23)

Proof. To prove (a), recall the identity

t�kClX

jDl

�
j�1
l�1

� �
t�j
k�l
�

D �
t
l

�
: (3.24)

Consequently, we have that

E

	�
�.s/� t C 1

2

�
j C.��/



D

t�kC��.s/X

jD��.s/

�
j � t C 1

2

� 
j � 1

�� .s/� 1

! 
t � j

k � �� .s/

!. 
t

l

!

D t C 1

k C 1

�
��.s/� k C 1

2

�
:

For the proof of (b), let

ı .s; j / D
(
1 if judge j ranks object s

0 otherwise

and define

$j .s/ D ��
j .s/ ı .s; j /C

�
k C 1

2

�
.1 � ı .s; j // (3.25)

so that the incomplete ranking takes value kC1
2

when an object is unranked. Note
that for any complete ranking,

� .j / D t C 1

2
C 1

2

tX

iD1
sgn .�.j / � �.i// : (3.26)
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It is clear that if objects i and j are both ranked, then a.i; j / is as stated. Suppose
now only object j is ranked. The adjusted score becomes on using (3.21)

E
�
� .j / j C.��/

� D t C 1

2
C 1

2
E

"
tX

iD1
sgn .�.j / � �.i// j C.��/

#

t C 1

k C 1
�� .j / D t C 1

2
C 1

2

kX

iD1
sgn

�
��.j / � ��.i/

�C .t � k/
2

a.i; j /

D t C 1

2
C
�
�� .j / � k C 1

2

�
C .t � k/

2
a.i; j /:

Hence, a .i; j / D
�
2��.j /

kC1 � 1
�
: The case where only object i is ranked is dealt

with similarly. ut
In describing visualization techniques for incomplete ranking data, Kidwell et al.

(2008) have noted the efficiency for computing the Kendall scores in (3.23). Next,
we proceed to find the maximum and minimum distances when only k objects are
ranked among the incomplete rankings.

Lemma 3.4. (a) For the Spearman distance,

m�
S D cS � .t C 1/2

12

k .k � 1/
.k C 1/

;M �
S D cS C .t C 1/2

12

k .k � 1/

.k C 1/

where cS D t.t2�1/
12

.
(b) For the Kendall distance,

m�
K D cK � .2t C k C 3/

6

k .k � 1/
.k C 1/

;M �
K D cK C .2t C k C 3/

6

k .k � 1/

.k C 1/

where cK D t .t�1/
2

. It follows that the correlation between the incomplete
rankings ��

1 ; �
�
2 can be defined to be

˛
�
��
1 ; �

�
2

� D 1 �
2
h
d�
K

�
��
i ; �

�
j

�
�m�

i

M � �m� : (3.27)

Proof. The right-hand side of (3.21) provides a general expression for an incomplete
ranking. It follows that the Spearman distance between two incomplete rankings
with the same number of ranked objects is

d�
S

�
��
i ; �

�
j

�
D t.t C 1/.2t C 1/

6
�
�
t C 1

k C 1

�2 tX

sD1
$i .s/$j .s/
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and in the Kendall case, the distance may be written as

d�
K

�
��
i ; �

�
j

�
D t.t � 1/

2
�
X

q1<q2

ai .q1; q2/ aj .q1; q2/

where ai .q1; q2/is defined as in (3.23) and $i .s/ is given in 3.25. An application
of the Cauchy–Schwarz inequality indicates that the upper bound of the Spearman

distance occurs when TSC
�
��
i

� D �TSC
�
��
j

�
whereas the lower bound is

achieved when TSC
�
��
i

� D TSC
�
��
j

�
. If we let ��

j be the inverted ranking, that

is,��
j .s/ D kC1���

i .s/when object s is ranked by i , then$j .s/ D kC1�$i .s/

and TSC
�
��
i

� D �TSC
�
��
j

�
. Furthermore, for the Kendall scores, aj .q1; q2/ D

�ai .q1; q2/ and thus TKC
�
��
i

� D �TKC
�
��
j

�
. A straightforward calculation

of these distances using the incomplete ranking .1; 2; : : : ; k;�;�; : : : ;�/0 and its
inversion yields the minimum and maximum for each distance. ut

We quote without proof a result in Alvo and Cabilio (1995a) which allows for
different numbers of observations missing at random.

Lemma 3.5. For fixed k1 � k2 suppose the pattern of missing observations is
randomly selected from the set of all possible patterns. Then, for the Spearman and
Kendall cases, the minimum and maximum values of the distance are of the form

m� D c � 
 .i/ ; M � D c C 
 .i/

where the 
 .i/ are given as


S .1/ D .t C 1/2 .k1 � 1/ .3k2 � k1/

24 .k2 C 1/
; k1 odd


S .2/ D .t C 1/2 k1 .k1 .3k2 � k1/� 2/

24 .k1 C 1/ .k2 C 1/
; k1 even


K .1/ D .k1 � 1/ .t .3k2 � k1/C k2 .k1 C 3//

6 .k2 C 1/
; k1 odd


K .2/ D k1
�
3k1k2 .t C 1/� �

k21 C 2
�
.t � k2/� 3 .k2 C 1/

�

6 .k1 C 1/ .k2 C 1/
; k1 even

Consider now two independent rankings of length k1; k2, respectively, with 2 �
k1 � k2 � t: It follows from (3.6) and Lemma 3.3 that

A�

S .�
�; ��/ D E ŒAS .�; �/ j C.��/;C.��/� (3.28)

D .t C 1/
2

.k1 C 1/ .k2 C 1/

tX

sD1

�
�� .s/� k2 C 1

2

��
�� .s/� k1 C 1

2

�
ı .s; ��/ ı .s; ��/

D .t C 1/
2

.k1 C 1/ .k2 C 1/

k�X

iD1

�
oi � k2 C 1

2

��
�� .oi /� k1 C 1

2

�
(3.29)
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Table 3.3 Language and arithmetic scores revisited

Student 1 2 3 4 5 6 7 8 9

Arithmetic (2) 14 18 23 26 27 30 40 – –

Language (1) 28 14 46 – 53 – 54 50 –

Ranking (2) 1 2 3 4 5 6 7 – –

Ranking (1) 2 1 3 – 5 – 6 4 –

where k� is the number of objects ranked in ranking 1 among the k2 objects ranked
in ranking 2 and oi is the label of the i th object ranked in ranking 1. Here, ı .s; ��/
takes value 1 if object s is ranked by �� and value 0 otherwise. Note that

oi D i C li ;

where li D number of objects unranked in ranking 1 which are to the left of the
object being ranked. Similarly from (3.7) we have that

A�
K.�

�; ��/ D E
�AK.�; �/ j C.��/; C.��/

�
(3.30)

D
X

i<j

a1 .i; j / a2 .i; j / : (3.31)

Example 3.5. Consider the test scores in Language (ranking 1) and Arithmetic
(ranking 2) of a group of nine students in Table 3.3. The original data was altered
by removing certain values, with the remaining observations reordered and ranked
as follows.

Here t D 9; k1 D 6; k2 D 7; k� D 5; o1 D 1; o2 D 2; o3 D 3; o4 D 5; o5 D 7;

o6 D 8; and l1 D l2 D l3 D 0; l4 D 1; l5 D l6 D 2: Further,

�� .o1/ D 2; �� .o2/ D 1; �� .o3/ D 3; �� .o4/ D 5; �� .o5/ D 6; �� .o6/ D 4:

Hence A�
S D 33:9286 and A�

K D 4.

3.4.1 Asymptotic Normality of the Spearman and Kendall Test
Statistics

The main objective of this section is to demonstrate the asymptotic normality of
the similarity measures due to Spearman and Kendall in the case of incomplete
rankings. Specifically, we shall be concerned with the asymptotic distributions of
both A�

S ,A�
K under each of two possible null hypotheses H1 and H2: For both

hypotheses we assume that k1; k2, the number of ranked observations, are fixed and
the rankings for which we have (possibly) incomplete data are uniformly distributed
over the t Š permutations of .1; 2; : : : ; t/.
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• Under hypothesisH1, we assume that the pattern of missing observations is fixed,
so that all inference in this case is conditional on such a pattern.

• Under H2, we assume that the patterns of missing observations are randomly
selected from the set of all possible patterns. The latter situation would arise in
practice if unranked objects occur by chance. An example would be testing for
trend in water quality data when the historical data is incomplete.

We begin with the definition of a linear rank statistic.

Definition 3.3. Let fa .i/g and fc .i/g be two sets of constants. A statistic of the
form

S D †NiD1c .i/ a .Ri /

where R D .R1; : : : ; RN / is a vector of ranks is called a linear rank statistic. The
constants a .i/ are called scores whereas the c .i/ are called regression coefficients.

Many test statistics are of this form. For example, suppose that we have a
random sample of n observations from a population and N-n from another. We are
interested in testing the null hypothesis that the two populations are the same against
the alternative that they differ only in location. Rank all N observations together.
The Wilcoxon statistic then considers only the ranks of one of the populations by
choosing

c .i/ D
(
0 i D 1; : : : ; n

1 i D nC 1; : : : ; N:

Lemma 3.6. Suppose that R is uniformly distributed over the set of permutations
in P . Then

(i) for i D 1; : : : ; N; E.Ri / D NC1
2
; Var .Ri / D .N2�1/

12
and for i ¤ j;

Cov
�
Ri;Rj

� D �NC1
12

and
(ii)

ES D N Nc Na

and

Var S D 1

N � 1
† .c .i/ � Nc/2 † .a .i/ � Na/2

where Na and Nc represent the corresponding means.

Proof. The proof of this lemma is given in (Hájek and Sidak 1967). ut
The following theorem states that under certain conditions, linear rank statis-

tics are asymptotically normally distributed. We shall consider square integrable
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functions � defined on .0; 1/ which have the property that they can be written as the
difference of two nondecreasing functions and satisfy

0 <

ˆ 1

0

�
� .u/� N��2 du < 1

where N� D ´ 1
0
� .u/ du:

Theorem 3.1. Suppose that R is uniformly distributed over the set of permutations
in P . Let the score function be given by a .i/ D �

�
i
N

�
where � ./ is a square

integrable score function. Then S is asymptotically normally distributed asN ! 1
with mean N Nc Na and variance

Var S D 1

N � 1
†NiD1 .c .i/ � Nc/2 †NiD1 .a .i/� Na/2

provided

PN
iD1 .c .i/ � Nc/2

max1�i�N .c .i/ � Nc/2 ! 1:

Proof. The proof of this important result is given in (Hájek and Sidak 1967). ut
We may now apply Theorem 3.1 to obtain the asymptotic normality of the

Spearman test statistic in the case of incomplete rankings under Hypothesis 1
wherein the pattern of missing data is fixed. Set

�2S D 1

12

"
.t C 1/2

.k2 C 1/

#2 k1X

iD1

�
o�
i � o1

�2
; (3.32)

where

o�
i D

8
<

:

oi if 1 � i � k�

k2C1
2

if k� C 1 � i � k1

(3.33)

and o1 D
�Pk1

iD1 o�
i

�
=k1: Also set o� D

�Pk�

iD1 oi
�
=k�:

Theorem 3.2. Assume that k� ! 1 (and hence k1 ! 1; k2 ! 1; t ! 1) with
k�=t ! � > 0; where � is a finite constant. Then, under H1; whereby the pattern
of missing data is fixed, A�

S given in (3.28) is asymptotically normal with mean 0
and variance �2S :

Proof. The proof hinges on the fact that A�
S is a linear rank statistic. In fact
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A�
S D .t C 1/2

.k1 C 1/ .k2 C 1/

k1X

iD1

�
o�
i � k2 C 1

2

��
�� .oi /� k1 C 1

2

�

D .t C 1/2

.k1 C 1/ .k2 C 1/

k1X

iD1

�
o�
i � o1

� �
�� .oi /

�
:

The normality follows provided

Pk1
iD1

�
o�
i � o1

�2

max
�
o�
i � o1

�2 ! 1:

Now

†
k1
iD1

�
o�
i � No1

�2 D †k
�

iD1
�
o�
i � No1

�2 Ck� � No��No1
�2 C �

k1 � k��
�
k2 C 1

2
� No1

�2

� k� �k�2 � 1
�
=12:

Further,
�
o�
i � No1

�2 � .t � 1/2, so that the result follows on letting k� ! 1 with
k�=t ! �. ut

The exact variance of A�
S under H1, which is recommended in applications of

Theorem 3.2, is related to �2S by

Var.A�
S / D k1

k1 C 1
�2S

(Lehmann 1975 (A. 49) p. 334). That is, the asymptotic variance given in the
theorem is essentially the actual variance of A�

S . In any application, the calculation
of the variance of A�

S is a straightforward computation. Next, we consider the
asymptotic distribution of A�

S and A�
K when the pattern of missing observations

is random.

Theorem 3.3. Let k1 ! 1 (and hence k2 ! 1; t ! 1/ with k1=t ! � > 0;

where � is a finite constant. Then, underH2; whereby the pattern of missing data is
random, A�

S is asymptotically normal with mean 0 and variance

Var
�A�

S

� D .t C 1/4

144 .t � 1/
�1�2; (3.34)

with

�i D ki .ki � 1/
.ki C 1/

; i D 1; 2:
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Proof. Define U D .U1;U2; : : : ; Ut / as the random vector uniformly distributed
over the permutations of .1; 2; : : : ; k1;

k1C1
2
; : : : ; k1C1

2
/: In this case, the extended

Spearman distance may be written as

d�
S D t.t C 1/.2t C 1/

6
� A�

S (3.35)

D .t C 1/2

.k1 C 1/ .k2 C 1/

2

4
k2X

iD1
iUi C k2 C 1

2

tX

iDk2C1
Ui

3

5 : (3.36)

The result follows from the combinatorial central limit theorem of Hoeffding (see
Appendix B.1) applied to the quantity within square brackets above. ut
Theorem 3.4. A�

K is asymptotically equivalent to A�
S under both hypotheses

H1 and H2. Hence, A�
K is asymptotically normal with mean 0 and variance�

16
t2

�
Var

�A�
S

�
.

Proof. We know from (Hájek and Sidak 1967) that for the complete case

E

�
AK � 4

t
AS

�2
D .t � 1/ .t � 2/

18

and that, moreover,

12AS

t .t C 1/
p
t � 1

) N .0; 1/ as t ! 1:

Consequently, we have

6AKp
2t .t � 1/ .2t C 5/

) N .0; 1/ :

From Jensen’s inequality

E

�
A�
K � 4

t
A�
S

�2
D E

�
E2

��
AK � 4

t
AS

�
jC.��/; C.��/

��

� E

 
E

�
AK � 4

t
AS

�2
jC.��/; C.��/

!
D O

�
t2
�

and consequently the asymptotic normality of A�
S will imply the asymptotic

normality of A�
K: ut

Example 3.6. We return to Example 3.2 wherein we wish to test the hypothesis
of independence against the alternative of a positive correlation. For the complete
data, the value of AS is 41, and from the tables, under the randomness hypothesis,
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P.AS � 41/ D 0:0252; whereas the use of the asymptotic result gives a p-value
of 1 � ˆ.1:9328/ D 0:0266, where ˆ is the cumulative distribution function of a
standard normal. For the data in Example 3.5, the value of A�

S for the reduced data
is calculated to be 33.9286. An application of the theorem yields that under H1, the
p-value is P

�A�
S � 33:9286

� D 0:0178. On the other hand, if all observations with
missing values are deleted, we obtain a reduced value of AS D 9 with t D 5, and
from the tables P.AS � 9/ D 0:0417:

3.4.2 Asymptotic Efficiency

We now turn to the question of the efficiency which is further discussed in
Appendix B.4. Let X1;X2; : : : ; Xt be independent random variables whose joint
density under the alternative is described by

qd D
tY

iD1
f0 .xi � di/

where f0 is a known density having finite Fisher information I .f0/ and d D
.d1; d2; : : : ; dt / is an arbitrary vector. In the notation of our tests, k2 D t; and write
k1 D k, the actual number of Xi ’s observed. Recalling that oi is the label of the i th
object ranked, the Spearman test which deletes all missing observations is based on
the Spearman correlation of the reduced sample of k pairs, and the test statistic may
be written as

ARS D .t C 1/

kX

iD1

�
i � k C 1

2

��
�� .oi /
t C 1

�
:

Since k D k1 D k� and consequently oi D o�
i ; the statistic A�

S may be written as

A�
S D .t C 1/

.k C 1/

kX

iD1

�
oi � t C 1

2

��
�� .oi /� k C 1

2

�
:

Hence,

A�
S D .t C 1/

.k C 1/

(
ARS C

kX

iD1

�
�� .oi /� k C 1

2

�
.oi � i/

)
:

The weight .oi � i/ represents the number of time points to the left of oi for which
there are no observations. Similarly,

A�
K D ARK C 4

k C 1

kX

iD1

�
�� .oi / � k C 1

2

�
.oi � i/
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where

ARK D
kX

i<j

sgn
�
�� �oj

�� �� .oi /
�
:

Set d�
i D doi and d D Pt

iD1 di=t: Under the alternative qd , provided

max
1�i�t

�
di � d

�2 ! 0 and I .f0/
tX

iD1

�
di � d

�2 ! b2; 0 < b2 < 1;

both ARS and A�
S are asymptotically normal with means and variances given

respectively by
�
�R; �

2
RS

�
and

�
�S; �

2
S

�
, where

�RS D .t C 1/

kX

iD1

�
i � k C 1

2

��
d�
i � d

�ˆ 1

0

u � .u; f0/ du

�S D .t C 1/2

.k C 1/

kX

iD1
.oi � o/

�
d�
i � d

�ˆ 1

0

u � .u; f0/ du:

�2RS D .t C 1/2

12

kX

iD1

�
i � k C 1

2

�2
; �2S D .t C 1/4

12 .k C 1/2

kX

iD1
.oi � o/2 :

Here � .u; f / D
h
f

0
�
F �1 .u/

�i
=
�
f
�
F �1 .u/

��
; 0 < u < 1; and F is the

cumulative distribution of f .
Shifting now to the efficiencies, it is seen that the asymptotic efficiencies as

k ! 1, for ARS and A�
S are respectively given by

eRS D lim

hPk
iD1

�
i � kC1

2

� �
d�
i � d

�i2

Pk
iD1

�
i � kC1

2

�2Pt
iD1

�
di � d

�2Q1

eS D lim

hPk
iD1 .oi � o/

�
d�
i � d

�i2

Pk
iD1 .oi � o/2

Pt
iD1

�
di � d

�2Q1;

where Q1 is a positive function of f0 and the limit is taken as t ! 1; k ! 1;

with k=t ! � > 0. The asymptotic relative efficiency of A�
S relative to ARS is then

given by the ratio eS=eRS (Appendix B.4).
Now consider the case where d�

i D oi ; Nd D No; i D 1; : : : ; k and the remaining
di are arbitrary, a situation which includes alternatives of the form EXi D ˇ0 C
ˇi; ˇ > 0: It can be shown that irrespective of the density f0; the asymptotic relative
efficiency of A�

S relative to ARS is given by

ARE
�A�

S ; ARS
� D lim

k!1R .k; ok/ ;
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where okD .o1; : : : ; ok/ and

R .k; ok/ D
Pk

iD1
�
i � kC1

2

�2Pk
iD1 .oi � o/2

hPk
iD1

�
i � kC1

2

�
.oi � o/

i2 � 1:

Note that R .k; ok/ > 1 unless the oi ’s are equally spaced.
In order to illustrate the magnitude of this efficiency, suppose for example that

t D 19; k D 7; o1 D 1; o2 D 2; o3 D 3; o4 D 10; o5 D 17; o6 D 18; o7 D 19;

then the ratio of the efficacies of A�
S to ARS is 1:086. On the other hand, if o1 D 1;

o2 D 8; o3 D 9; o4 D 10; o5 D 11; o6 D 12; o7 D 19, then that ratio is 1:176.

3.5 Tied Rankings and the Notion of Compatibility

The notion of compatibility may also be extended to deal with tied rankings. As an
example, suppose that objects 1 and 2 are equally preferred whereas object 3 is
least preferred. Such a ranking would be compatible with the rankings .1; 2; 3/ and
.2; 1; 3/ in that both are plausible. The average of the rankings in the compatibility
class, which as we shall see results from the use of the Spearman distance, will then
be the ranking

1

2
Œ.1; 2; 3/C .2; 1; 3/� D .1:5; 1:5; 3/

to be presented in this case. It is seen that the notion of compatibility serves to
justify the use of the midrank when ties exist. Formally we can define tied orderings
as follows.

Definition 3.4. A tied ordering of t objects is a partition into e sets, 1 � e � t ,
each containing di objects, d1Cd2 C : : :Cde D t , so that the di objects in each set
share the rank i ,1 � i � e. Such a tie pattern is denoted by ı D .d1; d2; : : : ; de/.
The ranking denoted by �ı D .�ı .1/ ; : : : ; �ı .t// resulting from such an ordering
is a tied ranking and is one of t Š

d1Šd2Š:::de Š
possible permutations.

Associated with every tied ranking we may define a t Š � ( t Š
d1Šd2Š:::de Š

) matrix
of compatibility Dı . Yu et al. (2002) considered the problem of testing for
independence between two random variables when the tie patterns and the pattern
of missing observations are fixed. Specifically, let �� be an incomplete ranking of
k1 out of t objects with tie pattern ı1 D .d11; : : : ; d1e1/. Similarly, let �� be an
incomplete ranking of k2 out of t objects with tie pattern ı2 D .d21; : : : ; d2e2 /. The
Spearman similarity measure between two incomplete rankings ��; �� is defined
to be

A�
S D .t C 1/2

.k1 C 1/ .k2 C 1/

tX

jD1
ı .j /

	
�� .j / � k1 C 1

2


 	
�� .j / � k2 C 1

2




where ı .j / D 1 if both rankings of object j are not missing and 0 otherwise.
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Table 3.4 Data from the public opinion survey

Education level
Response
1 2 3 4 5 Missing Subtotal

Primary or below 2 35 23 7 3 33 103

Secondary 2 72 129 37 6 53 299

Matriculated 0 9 9 7 0 3 28

Tertiary, nondegree 1 9 6 6 0 5 27

Tertiary, degree 0 22 28 7 6 6 69

Missing 0 2 3 0 0 1 6

Subtotal 5 149 198 64 15 101 532

Theorem 3.5. Let k� be the number of objects ranked in ranking 1 among the k2
objects ranked in ranking 2. Let 2 � k1 � k2 � t . Assume that

(i) k� ! 1, (and hence k1 ! 1; k2 ! 1; t ! 1) with k�=t ! � > 0:

(ii) max
jD1;��� ;e1

g1j
k�

is bounded away from 1.

(iii) max
jD1;��� ;e2

g2j
k�

is bounded away from 1.

Then, under the null hypothesis of independence whereby the pattern of ties and
missing data is fixed, A�

S is asymptotically normal with mean 0 and exact variance

Var
�
A�
S

� D
"

.t C 1/2 k1

.k1 C 1/ .k2 C 1/

#2 Pk1
jD1

�
o�
j � No

�2

12

8
<

:1 �
Pe1

jD1
�
g31j � g1j

�

k31 � k1

9
=

; :

Proof. See Yu et al. (2002). ut
Example 3.7. In a public opinion survey held in 1999 in Hong Kong, it was of
interest to determine whether the education level of the respondents is related to
the level of dissatisfaction of the Policy Address of the Chief Executive of the
Hong Kong Special Administrative Region. The response is an ordinal variable
having seven options as follows: (1), very satisfied; (2), satisfied; (3), neutral;
(4), unsatisfied; (5), very unsatisfied; (6), not sure; and (7), refuse to answer.
Options (6) and (7) were combined and listed as “missing.” Table 3.4 displays the
frequencies of the respondents listed by option and by education level.

It is noted that about 19.9 % of the respondents did not respond either to one
or to both questions. Moreover, since the education levels are grouped into a few
categories, the problem of ties cannot be ignored. One alternative approach for
analyzing this data is as a contingency table. In that case, however, the ordering
among the education levels and separately among the responses would not be taken
into account. The results of the analysis shown in Table 3.5 reveal that at the
5 % significance level, the test based on the reduced sample (which discards all
observations with at least one missing variable) cannot reject the hypothesis of
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Table 3.5 Results of the analyses

Test Statistic Standardized statistic p-value

Reduced sample 494,132.0 1.9075 0.0564

Complete sample 786,633.2 1.9690 0.0490

Table 3.6 Wind direction in degrees

6 a.m. 356 97 211 262 343 292 157 302 324 85 324

Noon 119 162 221 259 270 29 97 292 40 313 94

6 a.m. 85 324 340 157 238 254 146 232 122 329

Noon 45 47 108 221 248 270 45 23 270 119

Data replaced by their ranks

6 a.m. 21 3 8 12 20 13 6:5 14 16 1:5 16

Noon 10:5 12 13:5 16 18 2 8 20 3 21 7

6 a.m. 1:5 16 19 6:5 10 11 5 9 4 18

Noon 4:5 6 9 13:5 15 18 4:5 1 18 10:5

independence whereas the one based on the complete sample can. Since the test
statistic is positive, this implies that there is a positive association between education
level and level of dissatisfaction. More highly educated respondents tend to be less
satisfied with the Policy Address. The analysis by means of a contingency table
whereby the missing categories for education and response were dropped leads to a
chi-square statistic with a value of 35.2161 on 16 degrees of freedom and a p-value
of 0.0037.

3.6 Angular Correlations

There has been a great deal of interest in directional statistics in the literature.
Consider the following example on wind directions whereby we are interested in
testing for independence between the 6 a.m. and the noon readings. The data shown
in Table 3.6 can be viewed as points on the unit circle and cannot be dealt with by
simply computing the usual rank correlation. The reason is that the larger ranks are
close to the smaller ranks. Hence, for example, for the noon readings, angle 23 is
closer to angle 313 than to angle 248. Yet, the ranks imply an opposite interpretation.
In the table, tied ranks were replaced by their midranks.

Example 3.8 (Johnson and Wehrly 1977). Wind directions were recorded at 6 a.m.
and at 12 noon on each day at a weather station for 21 consecutive days. It is desired
to test for independence. Tied rankings were replaced by their midranks (Table 3.6).

Excellent review articles along with additional references are given by Mardia
(1975, 1976) and Jupp and Mardia (1989). Typically, data is provided in the form
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of directions either in two- or three-dimensional space or as rotations in such a
space. The data may take on a variety of forms. It may consist of a unit vector of
directions, pairs of such vectors, or a vector of directions along with a corresponding
random variable on the line. Examples of applications are to be found in the fields
of astronomy, biology, geology, medicine, and meteorology (Downs 1973; Johnson
and Wehrly 1977; Breckling 1989). A large number of the works presented deal
with the study of inference from parametric models. In this section, we define a
corresponding notion of angular correlation using the ranks of the data.

Let X and Y be random vectors with covariance matrix † partitioned as

† D
�
†11 †12
†21 †22

�

and suppose †11 and †22 are non-singular of ranks p and q, respectively.

Definition 3.5 (Jupp and Mardia 1989). The correlation coefficient 
XY between
X and Y is defined to be the trace 
 of the matrix


XY D T rŒ†�1
11 †12†

�1
22 †21�:

It follows that, 
XY D Ps
iD1 �2i where the �i are the canonical correlations and

s D min.p; q/. This coefficient satisfies the property of invariance under rotation
and reflection in addition to the usual properties of a correlation.

Suppose now that � and ' are circular variables with 0 � �; ' � 2 . Define the
directional vectors t

0

1.�/ D .cos �; sin �/, t
0

2.'/ D .cos'; sin '/; and let † be the
covariance matrix of t1 and t2: It is seen that


�' D Œ�2cc C �2cs C �2sc C �2ss C 2.�cc�ss � �cs�sc/�1�2 � 2.�cc�cs (3.37)

C�sc�ss/�1 � 2.�cc�sc C �cs�ss/�2�=Œ.1 � �21/.1 � �22/�:

where �cc D corr.cos �; cos'/, �cs D corr.cos �; sin '/, etc., and �1 D
corr.cos �; sin �/, �2 D corr.cos'; sin '/.

Let (�i ; 'i ) for i D 1; : : : ; n be a random sample of n pairs of angles which
define points on the unit circle. Without loss in generality assume that the ranks of
the �’s are the natural integers 1,. . . ,n whereas the corresponding ranks of the '’s
are denoted by R1; : : : ; Rn: Let

�.1/ D .cos
2

n
; cos

4

n
; : : : ; cos 2/0, �.2/ D .sin

2

n
; sin

4

n
; : : : ; sin 2/0

�.1/D.cos
2R1

n
; cos

2R2

n
; : : : ; cos

2Rn

n
/0; �.2/D.sin

2R1

n
; sin

2R2

n
; : : : ; sin

2Rn

n
/0:
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We may formally construct on the basis of the sample the matrix of pairwise
correlations

‡12 D
�
�.�.1/; �.1// �.�.1/; �.2//

�.�.2/; �.1// �.�.2/; �.2//

�

where �.�; �/ is a measure of correlation between � and �: We shall consider
correlations based on the Spearman and Kendall distance functions in subsequent
sections and we will determine the corresponding asymptotic distributions of the
correlation coefficients as n ! 1:

3.6.1 Spearman Distance

We shall consider the Kendall notion of a type b correlation (Kendall and Gibbons
1990) given by

�S.�; �/ D
P

i¤j
�
�i � �j

� �
�i � �j

�
qP

i¤j
�
�i � �j

�2P
i¤j

�
�i � �j

�2

D 2

n
�0�:

It is straightforward to show

nX

iD1
cos

2i

n
D

nX

iD1
sin

2i

n
D

nX

iD1
cos

2i

n
sin

2i

n
D 0

and

nX

iD1
cos2

2i

n
D

nX

iD1
sin2

2i

n
D n

2
:

It follows that †11 D †22 D n
2
I . The sample estimate of †12 is given by

‡S
12 D 2

n

�
Tcc Tcs
Tsc Tss

�

where Tcc D �.1/
0

�.1/; Tcs D �.1/
0

�.2/; Tsc D �.2/
0

�.1/; Tss D �.2/
0

�.2/:

We recognize that the T0s are measures of correlation in the Spearman sense.
Consequently, the sample correlation using Spearman distance becomes


S D 4

n2

�
T2cc C T2ss C T2cs C T2sc

�
:
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3.6.2 Kendall Distance

Recalling the Kendall measure of distance defined by

dK.�; �/ D
X

i<j

˚
1 � sgn.�i � �j /sgn.�i � �j /

�

where sgn indicates the sign function, we may define a corresponding type b
correlation as

�K.�; �/ D
P

i¤j sgn.�i � �j /sgn.�i � �j /qP
i¤j .sgn.�i � �j //2

qP
i¤j .sgn.�i � �j //2

D
P

i¤j sgn.�i � �j /sgn.�i � �j /
p
A.�/A.�/

;

whereA.�/ D #
�
pairs .i; j /; i ¤ j j�i ¤ �j

�
: It is easy to see that†11 and†22 are

diagonal matrices. In fact, the off-diagonal terms are equal to

X

i¤j
sgn

�
cos

2i

n
� cos

2j

n

�
sgn

�
sin

2i

n
� sin

2j

n

�

D �4
X

i¤j
sgn

�
sin

.i C j /

n
sin

.i � j /
n

�
sgn

�
cos

.i C j /

n
sin

.i � j /
n

�

D �2
X

i¤j
sgn

�
sin

2.i C j /

n

�
D 0:

The normalization in the Kendall case is somewhat delicate and depends in part
on the parity of n. For example, for n D 10; there are five pairs of equal values in the
set
˚
sin 2i

n

�
whereas for n D 11; all the values are distinct. In general, the number

of equal pairs is at most O.n/: The sample estimate of ‡12 is given by

‡K
12 D

�
Kcc Kcs

Ksc Kss

�

where Kcc D �K.�
.1/; �.1//, Kcs D �K.�

.1/; �.2//, Ksc D �K.�
.2/; �.1//, Kss D

�K.�
.2/; �.2//.

It follows that the sample correlation coefficient in the Kendall case is given by


K D �
K2
cc CK2

ss CK2
cs CK2

sc

�
:

In the following sections, we shall derive the asymptotic null distributions of the
test statistics induced by the Spearman and Kendall distances.



3.6 Angular Correlations 49

3.6.3 Asymptotic Distributions

We are interested in testing the null hypothesis that the circular variables �; '
are independent. In terms of the ranks, assuming no ties, this translates into the
hypothesis H0 that all permutations of the integers 1; : : : ; n are equally likely.

Theorem 3.6. The asymptotic null distribution of n
S as n! 1 is �24.

Proof. The joint distribution of Tcc; Tss; Tcs ; Tsc is asymptotically normal. In fact,
for arbitrary fai g, consider the linear combination

a1TccCa2TssCa3TcsCa4Tsc D
nX

iD1
Œcos

2Ri

n
.a1 cos

2i

n
C a2 sin

2i

n
/C sin

2Ri

n
.a3 cos

2i

n
C a4 sin

2i

n
/�:

Let

d.i; j / D cos
2i

n
.a1 cos

2j

n
Ca2 sin

2j

n
/Csin

2i

n
.a3 cos

2j

n
Ca4 sin

2j

n
/:

Since

maxd2n .i; j / � 4.a21 C a22 C a23 C a24/

and the variance

1

n

nX

iD1

nX

jD1
d 2n .i; j / D n

4
.a21 C a22 C a23 C a24/

we have that

max d2n .i; j /
1
n

Pn
iD1

Pn
jD1 d 2n .i; j /

! 0 as n ! 1:

The result follows on using Hoeffding’s combinatorial central limit theorem (see
Appendix B.1). Hence ‡S

12 is multivariate normal and the theorem follows. ut
A similar result holds for the Kendall tau statistic.

Theorem 3.7. The asymptotic null distribution of 9
4
n
K as n! 1 is �24.

Proof. See Alvo (1998) for the proof. A different proof can make use of the
asymptotic equivalence between the Kendall and Spearman coefficients in general.

ut
Example 3.9. We revisit the wind direction data. We calculate

‡S
12 D

��0:246 0:306

�0:376 �0:452
�
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and hence n
S D 21.0:50047/ D 10:51 with a p-value of 0:0327: Consequently,
we conclude that there is evidence that the 6 a.m. and noon wind directions are
significantly correlated.

It is interesting to compare this result with the usual product moment correlation
between the two angular measurements. The latter yields a value equal to �0:04,
thereby implying that the variables are independent. On the other hand, restricting
attention only to the pairs of measurements for which the 6 a.m. readings are below
180ı the value of the product moment correlation is 0:512 while for pairs for which
the 6 a.m. readings are above 180ı it is �0:475. These results taken separately imply
a fair degree of dependence. The test statistic 
S takes into account the fact that very
small and very large angles (mod 2) are close to one another.

For the Kendall statistic, we may also calculate

‡K
12 D

��0:1822 0:2097
�0:3106 �0:3637

�

and hence 9n
4

K D 9.21/

4
.0:3056/ D 14:44 with a p-value of 0:006: It is clear that

with either the Spearman or the Kendall statistic, the hypothesis of independence is
in doubt.

3.7 Angle-Linear Correlation

Suppose that we are now interested in defining the correlation between an angle �
and a real valued random variableX . It can be shown that the correlation coefficient
in that case is given by


L D Œ�2xc C �2xs � 2�xc�xs�cs�=.1 � �2cs/

where

�xc D corr.X; cos �/; �xs D corr.X; sin �/; �cs D corr.cos �; sin �/:

In the nonparametric context, let .Xi ; �i / for i D 1; : : : ; n be a random sample
of linear-angular measurements. Let fRi g be the ranks of the fXig and let fSig be
the ranks of the f�ig. We may assume without loss in generality that the Si are in
natural order 1; 2; : : : ; n: Based on the Spearman measure of distance, the sample
angular-linear correlation is defined by


LS D ŒT 2xc C T 2xs�

n
2

�
n.n2�1/
12

�
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where Txc D P
Ri cos

�
2i
n

�
; Txs D P

Ri sin
�
2i
n

�
: Similarly, for the Kendall

measure, the angular-linear correlation is then given by


LK D ŒK2
xc CK2

xs�

where

Kxc D
P

i¤j Œsgn.Ri �Rj /sgn.cos
�
2i
n

� � cos
�
2j

n

�
/�

p
Œn.n � 1/�

qP
i¤j .sgn.�

.1/
i � �

.1/
j //

2

Kxs D
P

i¤j Œsgn.Ri �Rj /sgn.sin
�
2i
n

� � sin
�
2j

n

�
/�

p
Œn.n � 1/�

qP
i¤j .sgn.�

.2/
i � �

.2/
j //

2

:

We may now prove a theorem giving the asymptotic distributions of 
LS and 
LK
under the null hypothesis that all vectors of ranks .R1; : : : ; Rn/ are equally likely.

Theorem 3.8. The asymptotic null distribution of n
LS as n! 1 is �22.

Proof. The joint distribution of Txc; Txs is asymptotically normal. In fact, for
arbitrary constants a1; a2, consider the linear combination

a1Txc C a2Txs D
nX

iD1
ŒRi .a1 cos

2i

n
C a2 sin

2i

n
/:

This is a linear rank statistic for which the conditions in Hoeffding (1951) are
satisfied. In fact, let

dn.i; j / D .i � nC 1

2
/.a1 cos

2i

n
C a2 sin

2i

n
/:

The variance is then equal to

1

n

nX

iD1

nX

jD1
d 2n .i; j / D 1

4
.a21 C a22/

n.n2 � 1/

12

and we have that

max d2n.i; j /
1
n

Pn
iD1

Pn
jD1 d 2n .i; j /

! 0

as n ! 1. The result follows. ut
Theorem 3.9. The asymptotic null distribution of 9n

4

LK as n! 1 is �22.
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Table 3.7 Wind direction and ozone concentration

Wind direction 327 91 88 305 344 270 67 21 281

Ozone concentration 28.0 85.2 80.5 4.7 45.9 12.7 72.5 56.6 31.5

Wind direction 8 204 86 333 18 57 6 11 27 84

Ozone concentration 112.0 20.0 72.5 16.0 45.9 32.6 56.6 52.6 91.8 55.2

Proof. For arbitrary constants a1; a2; consider the linear combination

nX

i¤j
sgn.Ri � Rj /bij

where

bij D Œ.a1sgn.cos
2i

n
� cos

2j

n
/C a2sgn.sin

2i

n
� sin

2j

n
/�:

Using a result of Daniels (1950), the asymptotic normality of Kxc and Kxs follows.
ut

Example 3.10 (Johnson and Wehrly 1977). We consider data on wind direction and
ozone concentration collected at a weather station for 19 days at 4-day intervals.
The readings are given in Table 3.7.

The Spearman test statistic to be n
LS D 19 .0:3751/ D 7:13 which has a p-value
equal to 0:0283: On the other hand the Kendall statistic is given by 9n

4

LK D

9.19/

4
.0:1595/ D 6:82 for a p-value of 0:033. Both statistics imply that there is a

fair degree of dependence between wind direction and ozone concentration.

Chapter Notes

In this chapter, the traditional rank correlation has been extended to include
incomplete rankings. This was made possible using the notion of compatibility
which was developed by Alvo and Cabilio in a series of papers. Cabilio and
Tilley (1999) report the results of a simulation study where they considered linear,
quadratic, and square root trends. They observed that when there were no missing
observations, the Spearman statistic was more powerful than Kendall’s. In the
incomplete case, however, the new Kendall statistic has superior power for more
patterns.

The calculation of the exact variance of A�
K under H2, in Theorem 3.4, is more

involved, and the reader is referred to Alvo and Cabilio (1992), where it is shown
that
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Var
�A�

K

� D �1�2

9t .t � 1/

"
.2t C k1 C 3/ .2t C k2 C 3/

2
C
�
t2 � k1 � 2

� �
t2 � k2 � 2

�

.t � 2/

#
:

An important application of the results presented above which do not discard
missing data is in tests of trend where k2 D t and k1 < t: It is seen that in this
context, the superiority of the extended Spearman statistic is established through
the calculation of its asymptotic relative efficiency relative to the “naive” statistic.
(Alvo and Cabilio 1994) applied these methods to test for trend in precipitation
data for St John and Fredericton (NB) and showed that the extended statistic based
on Spearman distance is more sensitive in detecting trends than the statistic which
ignores the missing observations. Tables of selected critical values of A�

S and A�
K

for the trend case when k � t=2 have been developed for both hypotheses (Alvo
and Cabilio 1993). The results of this section have been extended to the case of ties
(Yu et al. 2002) and applied to deal with tests of independence in opinion surveys.
A further extension to assess trend in proportions appears in Chap. 7.

Alvo and Smrz (2005) proposed an arc model which serves as a good approxi-
mation to Kendall distance.

Although not considered in this book, Alvo and Park (2002) were concerned with
multivariate tests of trend when the data are partially incomplete. Such is the case
in environmental studies when pH data for one or more lakes are often recorded
over regular time intervals and examined for monotone increasing or decreasing
trends in order to test for trend in acidification. In monitoring recovering patients,
one looks for trends in their vital signs which are often multivariate data in nature.
There may be as many as 20–30 blood constituents measured weekly over a period
of several months or years. In those case, the use of separate tests on each constituent
is inefficient.



Chapter 4
Testing for Randomness, Agreement,
and Interaction

Suppose that n judges are asked to rank t contestants in accordance with some
predetermined criterion. One immediate question that comes to mind is: are
the judges ranking the contestants by selecting a ranking at random or is
there some specific pattern for their choices? Placing this problem in a geometric
setting, we may represent each ranking as a point in a t-dimensional space. If indeed
the judges act in accordance with some specific nonrandom manner, the points
would tend to cluster close together in one or more groups. Intuitively then, a test of
randomness could be based on the average pairwise distance between points with
large values of that statistic displaying evidence of the random pattern of the points.

In the literature, the KendallW has been a widely used statistic whose asymptotic
distribution was derived by Friedman (1937). Treating each judge as a block, it
consists of calculating for each object the average of the ranks assigned by the
judges and computing the variance of the averages. Small values of the test statistic
are considered consistent with the null hypothesis of randomness. This test statistic
is not always sensitive to patterns that may exist in the data. For example, if half
the judges assign rankings in the natural order, 1; 2; : : : ; t and the other half assign
rankings in the reverse order, t; t�1; : : : ; 1, then the value of the KendallW statistic
will be small and the null hypothesis will not be rejected. Such considerations
lead one to inquire as to whether or not there are other test statistics with better
performance.

4.1 Tests for Randomness

We begin with some notation. Let P D ˚
�j
�

be the set of t Š possible rankings of t
objects and denote the rankings by

�j D �
�j .1/ ; : : : ; �j .t/

�0
; j D 1; : : : ; t Š

© Springer Science+Business Media New York 2014
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and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5__4
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Suppose that we have a random sample of n rankings denoted by R; : : : ; Rn
observed from some population of rankers and suppose that each judge chooses
a ranking in accordance with some distribution p,

p D .p1; : : : ; ptŠ/
0

where

pj D P
�
R D �j

�
:

Our interest is in developing a test of the null hypothesis of randomness, namely

H0 W p D p0 D 1=tŠ

against the alternative

H1 W p ¤ p0:

The null hypothesis indicates that each judge chooses a ranking at random from the
population of possible rankings. Select a distance function, d .Rk;Rl/, between two
rankings, Rk;Rl . A possible test statistic for testing the null hypothesis consists of
computing the average pairwise distance between all the observed rankings

Ndn D 1

n .n � 1/
††k;ld .Rk;Rl/ : (4.1)

Under the null hypothesis, one would expect the average pairwise distance to be
large or, equivalently from (4.1), the average pairwise correlation

N̨n D 1 � 2 Ndn
M

(4.2)

to be small. Equivalently, one should reject the null hypothesis whenever N̨n is large.
Note that we may write

d .Rk;Rl/ D †i†jd
�
�i ; �j

�
I ŒRk D �i � I ŒRl D �i �

where I ŒB� is the indicator function taking value 1 if the event B is true and 0
otherwise. It follows that

n .n � 1/ Ndn D †k†ld .Rk;Rl/ (4.3)

D †k†l†i†jd
�
�i ; �j

�
I ŒRk D �i � I

�
Rl D �j

�
(4.4)

D †i†j .†kI ŒRk D �i �/
�
†lI

�
Rl D �j

��
d
�
�i ; �j

�
(4.5)

D †i†jNiNjd
�
�i ; �j

�
(4.6)

D N 0	N (4.7)
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where	 D �
d
�
�i ; �j

��
is the matrix of pairwise distances and N 0 D .N1; : : : ; NtŠ/

is the vector of frequencies with

Ni D †kI ŒRk D �i � :

We recognize that (4.7) is a quadratic form and that N is a multinomial random
variable with mean and covariance respectively given by

EN D np; Cov .N / D n
X

;

where
P D .d iag .p/� pp0/ and diag .p/ is a t Š � t Š diagonal matrix having

entries pi along the diagonal. Let Opn D N=n and recall from (3.13)

Q D J �
�
2

M

�
	:

Theorem 4.1. (a) UnderH0, for n! 1, andQp0 D c�1, we have that

.n � 1/
� N̨n � c�� )L Z0

0QZ0 � 1C c�

where Z has a t!-variate normal distribution with mean 0 and covariance
matrix †0 D .tŠ/�2 ..tŠI � J /. Here I is the identity matrix and J is a t Š � t Š
matrix of ones.

(b) UnderH1; for n! 1,

p
n
�
˛n � p0Qp

� )L 2Z0Qp

where Z has a t!-variate normal distribution with mean 0 and covariance
matrix

X
D �

diag .p/� pp0� :

Proof. (a) Define

Zn D n�1=2 .N � np/ :

A Taylor series expansion around Opn D p reveals the identity

Op0
nQ Opn � p0Qp D 2 . Opn � p/0Qp C . Opn � p/0Q. Opn � p/ (4.8)

D 2p
n
Z0
nQp C 1

n
Z0
nQZn:
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Under the null hypothesis p D p0 andQp0 D c�1, so that p0
0Qp0 D c�: Now

the relationships

Q D J � 2

M
	

˛n D 1 � �
n
2

��1 �
N 0	N

�
=M

imply

.n � 1/ N̨n C 1 D �
n Op0

nQ Opn

�

On using the multivariate central limit theorem for multinomial random vari-
ables (Timm 1975), it follows from (4.8)

.n � 1/
�
˛n � c�� C1 � c� D n

� Op0
nQ Opn � p0

0Qp0
�

D Z0
nQZn

) LZ0QZ:

(b) On the other hand if p ¤ p0 we have from (4.8)

p
n
� Op0

nQ Opn � p0Qp
� )L 2Z0Qp

.n � 1/ ˛n D �1C n Op0
nQ Opn

and it follows that

p
n
�
˛n � p0Qp

� )L 2Z0Qp:

ut
The distribution of Z0QZ under the null hypothesis is that of a weighted chi

square where the weights are given by the eigenvalues of the matrix

Q†0 D .tŠ/�1
�
Q � c�J

�
:

In what follows, we shall obtain properties of that matrix for both the Spearman and
Kendall cases. For these cases, the constant c� D 0 and hence

Q†0 D .tŠ/�1 Q:

Before dealing with the specific distributions of the Spearman and Kendall
statistics, we will need the following lemmas which are useful in their own right.
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Lemma 4.1. Let A .s; s0; t; t 0/ D †�sgn .� .s/ � � .t// sgn .� .s0/� � .t 0//. Then,
underH0

A
�
s; s0; t; t 0

� D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

0 s ¤ s0; t ¤ t 0;
t Š s D s0; t D t 0;
t Š
3

s D s0; t ¤ t 0;
� t Š
3

s D t 0; s0 ¤ t:

(4.9)

Proof. Let R be a random ranking of t objects. Note that in distribution

sgn ŒR .s/ �R .t/� Dd sgn ŒU � V �

where U; V are independent uniform random variables on .0; 1/ :
Let Z D sgn ŒU1 � V1� sgn ŒU2 � V2� where U1; U2; V1; V2 are independent

uniform random variables on .0; 1/. It follows that

P .Z > 0/ D P .U1�V1 > 0;U2�V2 > 0/CP .U1�V1 < 0;U2 � V2 < 0/
D P .U1�V1 > 0/P .U2�V2 > 0/CP .U1�V1 < 0/P .U2�V2 < 0/

D
�
1

2

�2
C
�
1

2

�2
D 1

2
:

Similarly, P .Z < 0/ D 1
2
: Also, if Z1 D sgn ŒU1 � V1� sgn ŒU1 � V2�, then

P .Z1 > 0/ D P .U1 � V1 > 0; U1 � V2 > 0/C P .U1 � V1 < 0; U1 � V2 < 0/

D
1ˆ

0

P .x � V1 > 0; x � V2 > 0/ dx C
1ˆ

0

P .x � V1 < 0; x � V2 < 0/ dx

D
1ˆ

0

P .x � V1 > 0/P .x � V2 > 0/ dx C
1ˆ

0

P .x � V1 < 0/P .x � V2 < 0/ dx

D
1ˆ

0

x2dx C
1ˆ

0

.1� x/
2
dx D 2

3
:

It now follows that

1

tŠ
†�sgn .� .s/� � .t// sgn .� .s/� � .t 0// D E Œsgn .R .s/ �R .t// sgn .R .s/� R .t 0//�

D P .Z1 > 0/� P .Z1 < 0/ D 1

3
:

The other cases follow in a similar way. ut
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Lemma 4.2. The matrices QS;QK satisfy

(i) Q2
S D t Š

t�1QS and hence, t�1
t Š
QS is idempotent.

(ii) QKQS D 2t Š.tC1/
3t.t�1/ QS .

(iii) QK D 2.tC1/
3t

QS C A;QSA D 0.

(iv) Q2
K D 4t Š.tC1/2

9t2.t�1/ QS C 2t Š
3t.t�1/A.

Proof. Setting cS D t.t2�1/
12

the matrix

cSQS D T0
STS D .t � 2/ŠcS ŒtI � J � :

In fact, the diagonal elements are equal to

.t � 1/Š
X�

i � t C 1

2

�2
D .t � 1/ŠcS ;

whereas the off-diagonal elements are equal to

.t � 2/Š
X

i¤j

�
i � t C 1

2

��
j � t C 1

2

�
D � .t � 2/ŠcS :

The matrix QS is singular since the rows sum to 0. A generalized inverse of cSQS

is given by 1
.t�2/ŠtcS ŒI C J �.

Now to show idempotency in (i), we see that

.QS/
2 D 1

c2S
T0
STST0

STS

D 1

cS
.t � 2/ŠT0

S ŒtIt � J �TS

D 1

cS
.t � 2/Š �tT0

STS
�

D t Š

t � 1
.QS/ :

Next we prove (ii). We first note that the i th rank can be represented in terms of the
remaining .t � 1/ ranks as

	
� .i/ � t C 1

2



D 1

2
†lsgn Œ� .i/ � � .l/� : (4.10)

Part (ii) is equivalent to showing

�
T0
KTK

� �
T0
STS

� D 1

cK

tŠ .t C 1/

3

�
T0
STS

�

where cK D t .t�1/
2

.
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For simplicity, note that the first row and column entry in the matrix
�
T0
KTK

�
T0
S

is given by

†tŠhD1†i<j sgn Œ�1 .j / � �1 .i/� sgn Œ�h .j / � �h .i/�
	
�h .1/� t C 1

2



D

1

2
†tlD2†i<j sgn Œ�1 .j / � �1 .i/�†

tŠ
hD1sgn Œ�h .j / � �h .i/� sgn Œ�h .1/� �h .l/� :

There are two cases to consider, namely .i D 1; j D l/ and .i ¤ 1; j D l/.
It follows that

�1
2


t Š†tlD2sgn Œ�1 .l/� �1 .1/�C t Š

3
†i¤1;j†l¤j sgn Œ�h .j / � �h .l/�

�
D

	
t Š

�
�1 .1/� t C 1

2

�

� t Š

3
.t � 2/†j¤1

�
�1 .l/ � t C 1

2

��
D


t Š

�
�1 .1/� t C 1

2

�
C t Š

3
.t � 2/

�
�1 .1/� t C 1

2

��
D

.t C 1/

3
tŠ

�
�1 .1/� t C 1

2

�
:

Other entries are treated similarly. Part (iii) follows directly from (ii).
To show part (iv) it suffices to show

�
T0
KTK

�2 D t Š

3

�
T0
KTK

�C 4tŠ

3

�
T0
STS

�
: (4.11)

In fact, this follows since the rs term of the left-hand side of (4.11) is equal to

X

k<l

X

k0<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s
�
k0� � �s

�
l 0
��

�
t ŠX

hD1
sgn Œ�h .k/ � �h .l/� sgn

�
�h
�
k0� � �h

�
l 0
�� D

t Š

3

X

k<l

X

k0<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s
�
k0� � �s

�
l 0
��

C t Š

3

X

k<l

X

k<l 0

sgn Œ�r .k/� �r .l/� sgn
�
�s .k/ � �s

�
l 0
��

D t Š

3

X

k<l

X

k0<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s
�
k0� � �s

�
l 0
��

C 4
tŠ

3

X

k

�
�r .k/ � t C 1

2

��
�s .k/� t C 1

2

�
: ut
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Theorem 4.2. The asymptotic distribution of the Spearman statistic under the null
hypothesis of randomness is given by

.t � 1/ f.n � 1/ �n C 1g )L �
2
t�1: (4.12)

The left-hand side of (4.12) can also be expressed as

12n

t .t C 1/

tX

iD1

�
NRi � t C 1

2

�2

which is the usual Friedman statistic.

Proof. The asymptotic distribution of .t � 1/ f.n � 1/ �n C 1g is that of a weighted
�2 where the weights are determined by the eigenvalues of the idempotent matrix
.t�1/
t Š
QS . Hence its eigenvalues are 0 or 1: Moreover, the rank of the matrix is

.t � 1/.
The left-hand side of (4.12) is equal to

.t � 1/Z0QZ D t � 1

cS
n k T Opn k2

D 12n .t � 1/
t .t2 � 1/

tX

iD1

�
NRi � t C 1

2

�2
:

ut
Theorem 4.3. The asymptotic distribution of the Kendall statistic under the null
hypothesis of randomness is given by

.n � 1/ N�n C 1 )L

2

3t .t � 1/
n
.t C 1/ �2t�1 C �2

.t�12 /

o
� 1: (4.13)

The left-hand side of (4.13) can also be expressed as

P
.2xi � n/2

n
�
t
2

�

where the summation is taken over all
�
t
2

�
pairs of objects and xi is the number of

judges whose ranking of the pair i of objects agrees with the ordering of the same
pair in a criterion ranking such as the natural ordering.

Proof. From Lemma 4.2,

A D QK � 2 .t C 1/

3t
QS
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and it follows that

A2 D 2tŠ

3t .t � 1/
A:

This implies 3t.t�1/
2t Š

A is an idempotent matrix. Noting that

T race .A/ D t Š .t � 2/

3t
D rank .A/ ;

we see that QK has two distinct nonzero eigenvalues,

�1 D 2tŠ .t C 1/

3t .t � 1/
; �2 D 2tŠ

3t .t � 1/

and (4.13) follows.
Now, let aij D 1; if judge j agrees with the ranking in pair i and D �1 if he

disagrees. Then, setting ai D P
j aij and noting that if xi Dnumber of judges who

agree with the ranking in pair i and yi Dnumber who disagree, we have

xi C yi D n; xi � yi D ai ;

then ai D 2xi � n. The left-hand side of (4.13) is equal to

P
.ai /

2

n
�
t
2

�

and the result follows. ut
The preceding theorems did not consider the situation where ties are possible

in the rankings. This situation was considered in the literature for the case of the
Spearman statistic (Lehmann 1975) wherein the asymptotic distribution is obtained
by conditioning on the observed ties. Consider the following example where it
may not be desirable to condition on the observed ties only. Suppose that tasters
are asked to rank in order of preference each of three varieties of tea. If ties are
permitted, the sample space would consist of all possible permutations, including
those where either two or all three varieties are tied. Alvo and Cabilio (1985) derived
the correction for ties under precisely such situations. This correction for ties is
made once and for all. This approach allows for comparisons to be made when the
same experiment is repeated. We recall for completeness the definition of a tied
ordering, previously given in Chapter 3.

Definition 4.1. A tied ordering of n objects is a partition into e sets, 1 � e � t , each
of which contains di objects, d1Cd2C: : :Cde D t; so that the di objects in each set
share the rank i , 1 � i � e: Such a tie pattern is denoted by ı D .d1; d2; : : : ; de/ :

The ranking denoted by �ı D .�ı .1/; �ı .2/; : : : ; �ı .t//, resulting from such an
ordering, is a tied ranking and is one of t Š=.d1Šd2Š : : : deŠ/ possible permutations.
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Let ki D t Š
d1Š:::deŠ

. Then the total number of possible permutations is given by

k D P2t�1

iD1 ki . Define ti D 1
12

Pe
jD1

�
d3ij � dij

�
, �i D 1� 12ti

t.t2�1/ , � D P2t�1

iD1 ki �i .

Theorem 4.4. (a) The asymptotic distribution of the Spearman statistic under the
null hypothesisH0 W pi D 1

k
is as n ! 1 given by

.t � 1/
k

�


.n � 1/ �n C �

k

�
!L �

2
t�1:

(b) The asymptotic distribution of the Kendall statistic under the null hypothesis
H0 W pi D 1

k
is given by

n N�n )L

2

3t .t � 1/

�

k
.t C 1/ �2t�1 C 3 .ˇ � 2
/

k
�2
.t�12 /

�
� ˇ

k

where the two �2 variates are independent and

ˇ D
2t�1X

iD1
kiˇi ; ˇi D

0

@t2 �
X

j

d 2ij

1

A = .t .t � 1//


 D
2t�1X

iD1
ki
i ; 
i D 1

t � 2

�i
t C 1

3
� ˇi

�
:

Proof. See Alvo and Cabilio (1985) for the proof. ut
When ties are not allowed, �i D ˇi D 1, � D ˇ D k D t Š, 
i D 1

3
, 
 D k

3
.

4.2 Tests for Agreement Among Groups

We may wish to compare two groups of patients with respect to how they perceive
their hospitalization, those who require bed rest and those who are mobile in their
recovery. Each patient is presented with a set of situations and asked to rank them in
order of severity of stress. The result is that two sets of rankings are obtained and it is
necessary to determine if the groups are responding in a similar manner. In another
example Hollander and Sethuraman (1978) considered data of C. Sutton in his/her
1976 thesis on leisure preferences and attitudes on retirement of the elderly for
14 white and 13 black females in the age group 70–79 years. Each individual was
asked: with which sex do you wish to spend your leisure? Each female was asked to
rank the three responses: male(s), female(s) or both, assigning rank 1 for the most
desired and 3 for the least desired. The first object in the ranking corresponds to
“male,” the second to “female,” and the third to “both.” It was desired to compare
these two groups. The data is reproduced in Table 4.1.
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Table 4.1 Sutton data on leisure preferences

Rankings .123/ .132/ .213/ .231/ .312/ .321/

Frequencies for white females 0 0 1 0 7 6

Frequencies for black females 1 1 0 5 0 6

We begin with a general introduction to the concepts of diversity and dissimi-
larity. These concepts provide a generalization of the classical analysis of variance
and are particularly applicable to data in the form of rankings. Consider a set of
g populations where the individuals are characterized by a set of rankings chosen
from the set of all possible rankings P in accordance with some distribution.

Definition 4.2. The diversity coefficient of the population whose distribution on the
set of possible rankings is pi is defined to be

Hi D p0
i	pi

where 	 is the matrix of pairwise distances between rankings. The diversity
coefficient is the average difference between two randomly chosen individuals from
the i th population.

Similarly, we may define the similarity coefficient when one individual is drawn
from the i th and another from the j th population

Hij D p0
i	pj : (4.14)

The dissimilarity coefficient or between population diversity is then defined to be
the difference

Hij � 1

2

�
Hi CHj

� D �1
2

�
pi � pj

�0
	
�
pi � pj

�
: (4.15)

Suppose now that the individuals are mixed together in accordance with the
proportions �1; : : : ; �g such that

Pg
iD1 �i D 1: The convex set generated by

the mixture leads to a new population with probability vector p D Pg
iD1 �ipi . The

notions of diversity and between population diversity can now be formally defined.

Definition 4.3. The total diversity, the within population diversity, and the between
population diversity are defined respectively to be

(i) H .p/ D p0	p,
(ii) HW D P

i �ip
0
i	pi ,

(iii) HB D �Pi<j �i�j
�
pi � pj

�0
	
�
pi � pj

�
.

It can be seen that

H .p/ D HB CHW :
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The requirement that the between population diversityHB be positive demands that

a0	a � 0 whenever
t ŠX

iD1
a .i/ D 0:

It can be seen from (4.15) that this condition is equivalent to requiring that H
be a concave function. The concavity requirement imposes certain conditions on
the distance function which must be verified for each potential distance measure.
It does not follow from the right-invariance property. The following lemma makes
this requirement more precise.

Lemma 4.3. If the distance measure d .�; �/ is right invariant on the set of
permutations, then there exists a constant c > 0 such that

	1 D .ctŠ/ 1

andH .p/ is concave if and only if

Q� D cJ �	

is positive semidefinite. Moreover, in this case H .p/ has the maximum value c at
u D 1

t Š
1.

Proof. The existence of the eigenvalue ctŠ follows from the right-invariance prop-
erty of the distance measure. We note that whenever a01 D 0; for any x D a C b1,
which includes all points in RtŠ

x0Q�x D cb0Jb � x0	x � 0:

Writing p D u C .p � u/ we note that since u is an eigenvector of 	 orthogonal to
.p � u/ we have

H .p/ D u0	u C .p � u/0	.p � u/ � c

showing that for right-invariant measures, the uniform distribution over the set of all
permutations is most diverse among diversity measures. ut

Specializing to the Spearman and Kendall distances, we saw earlier in Chap. 3
that the matrix cQ can be expressed as

cKQK D T0
KTK; cSQS D T0

STS :

In the next result we establish the link between the characteristic T and the
between population diversity, thus showing that it is this characteristic which forms
the basis for inference when comparing populations.
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Lemma 4.4. For a right-invariant metric on the set of permutations, the between
population diversity is given by

X

i<j

�i�j
��Tpi � Tpj

��2
s

D t r fvar .TpI /g

where k:ks is the Euclidean norm in Rsand I has the distribution P.I D i/ D �i :

Proof. We note that since 	 D cJ � T0T;

�
X

i<j

�i�j

h�
pi � pj

�0
	
�
pi � pj

�i D

X

i<j

�i�j

h�
pi � pj

�0
T0T

�
pi � pj

�i D
X

i<j

�i�j
��Tpi � Tpj

��2
s
:

ut
Suppose that we have a random sample of ni judges from population i each of

whom chooses a ranking in accordance with some distribution pi . Set N D P
ni :

Given that the basis for inference for comparing two or more groups are the
characteristics Tp, consider therefore a test of the null hypothesis

H0 W Tp1 D Tp2 D : : : D Tpg (4.16)

against the alternative that at least two among the T pi are not equal. We observe for
each group i , the relative frequency of occurrence of each ranking �l ; l D 1; : : : ; t Š

denoted by Opi .l/,i D 1; : : : ; g: Set Opi D . Opi .1/ ; : : : ; Opi .t Š//0. A central limit
theorem exists for each of the statistics T Opi .
Theorem 4.5. Suppose that ni=N ! �i > 0 as N ! 1: Then

(a)

p
niT . Opi � pi / ) Zi

where

Zi � Ns
�
0;T†iT0�

and the Zi are independent with

†i D …i � pip0
i ;…i D diag .pi .1/ ; : : : ;pi .t Š// :

(b) UnderH0;

p
NT

� Opi � Opj
� ) Ns

�
0;T†T0�
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where

† D †i

�i
C †j

�j
:

Moreover, for a consistent estimator O† of † and if OD is the Moore–Penrose
inverse of T O†T0, then

N
� Opi � Opj

�0
T0 ODT

� Opi � Opj
� ) �2r

where r = rank.T†T0/.

Proof. (a) The multivariate central limit theorem applies to multinomial vectors

p
ni . Opi � pi / ) NtŠ .0;†i/ :

The result follows.
(b) Using standard multivariate normal theory (Timm 1975), this part follows from

the independence of the Z0
i s and the null hypothesis.

ut
We note that the use of the Moore–Penrose inverse may be circumvented by

choosing the matrix T so that T†T0 is of full rank. Hence, in the case of the
Spearman distance, we may reduce the matrix TS by using only the ranks of the
first (t-1) objects. This problem does not immediately arise for the Kendall distance
since there is no singularity in TK:

An unbiased estimate of the covariance matrix †i is given by

O†i D ni

ni � 1
� O…i � Opi Op0

i

�

where

O…i D diag . Opi .1/ ; : : : ; Opi .t Š// :

Suppose now that we are interested in the two-sample problem and that we wish
to test the null hypothesis that

Ho .1/ W Tp1 D Tp2:

Under Ho .1/, it follows that an estimate of the covariance matrix † in
Theorem 4.5 is given by

O†Separate D N

 O†1
n1

C
O†2
n2

!
:
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The separate estimation of the covariances is appropriate in this case since the
covariances are not assumed to be equal. In the situation when the null hypothesis
is given by

Ho .2/ W p1 D p2;

we may pool the separate estimates as

O†Pooled D N

�
1

n1
C 1

n2

� 
.n1 � 1/ O†1 C .n2 � 1/ O†2

N � 2

!
:

Hollander and Sethuraman (1978) actually used the combined estimate

O†combined D
�
N � 2

N � 1

�
O†pooled C

�
N

N � 1

�
.f1 � f2/ .f1 � f2/

0

where f1; f2 are the frequency vectors. It should be noted that the estimates of the
.s � s/ covariance matrices are based on the observed score vectors

˚
t
�
Xij

��
; that

is,

T O†iT0 D
Pni

jD1
�
t
�
Rij

� � t i:
� �
t
�
Rij

�� t i:
�0

ni � 1

where Rij is the observed ranking of judge j in group i and

Nti D 1

ni

niX

jD1
t
�
Rij
�
:

Consequently, the calculations do not require computation of the individual covari-
ance matrices O†i .We may apply the methodology to the following example on
leisure time preferences.

Example 4.1. Sutton data was analyzed in Feigin and Alvo (1986) using both
the Spearman and Kendall test statistics. The total diversity was apportioned as
indicated in Table 4.2. It can be seen that there is strong evidence that the two groups
of females differ significantly.

The hypothesis expressed in (4.16) can alternatively be tested by using general
multivariate analysis of variance methods. We do not pursue this further but instead
refer the reader to Timm (1975).
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Table 4.2 Analysis of the Sutton
data

Spearman Kendall

Within 0.88 1.51

Between 0.41 0.54

Total 1.29 2.05
�22 �23

Separate 28.0 28.1

Pooled 28.5 28.5

4.3 Test for Interaction in a Two-Way Layout

In this section, we consider the general two-factor design with equal numbers of
replications in each cell. Such designs are utilized in statistics to test for main
effects and for interactions in a variety of experiments. In more recent times, they
have been applied in a genetics environment in order to understand the underlying
biological mechanisms. See Gao and Alvo (2005b) for an application in a more
general situation. In the gene expression data of Drosoplila melanogaster (Jin et al.
2001) for example, there are 24 cDNA microarrays, 6 for each combination of
two genotypes (Oregon R and Samarkand) and two sexes. As each array used
two different dyes, there were in total 48 separate labeling reactions. Focusing on
the individual expression level of a gene and its relationship with genotypes and
sexes, the objective of the study was to identify genes whose expression levels are
affected by the interaction between the two factors. For such data, the assumption
of normality for the error terms is not warranted and consequently, nonparametric
procedures are needed. We shall consider a nonparametric test for interaction based
on the row ranks and column ranks of the data.

We consider the following general two-way layout with interaction

Xijn D �C ˛i C ˇj C 
ij C �ijn; i D 1; : : : ; I; j D 1; : : : ; J; n D 1; : : : ; N

where Xij in is the response, f˛i g and
˚
ˇj
�

are main effects,
˚

ij
�

are interaction
effects, and

˚
�ijn

�
are independent and identically distributed according to a

continuous cumulative distribution Fij : We wish to test the null hypothesis of no
interaction effects

H0 W 
ij D 0 for all i; j

against the alternative

H1 W 
ij ¤ 0 for some i; j:
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We propose a test statistic based on both row and column ranks. This statistic is
invariant under monotone transformations and therefore can be applied directly on
the original data. In order to motivate the test, let Rijn be the rank of Xijn with
respect to the entries in the i th row. Similarly, let C ijnbe the rank of Xijn with
respect to the entries in the j th column. Define the score

aijn D Rijn

NJ C 1
C Cijn

NI C 1
: (4.17)

Set the indicator function

u .x/ D
(
1 x � 0;

0 x < 0:

It then follows that

E
�
aijn

� D 1

NJ C 1

JX

bD1

NX

n0D1
Eu

�
Xijn �Xibn0

�C 1

NI C 1

IX

aD1

NX

n0D1
Eu

�
Xijn �Xajn0

�

D 1

NJ C 1

 
N

JX

bD1

ˆ
FibdFij C 1

2

!
C 1

NI C 1

 
N

IX

aD1

ˆ
Faj dFij C 1

2

!
:

Under the null hypothesis of no interaction effects

X

b

ˆ
FibdFij D

ˆ
F .x � ˛i � ˇ0/ dF

�
x � ˛i � ˇj

� D
ˆ
F
�
x C ˇj � ˇ0

�

which does not depend on i. Similarly,
P

a

´
Faj dFij does not depend on j. Setting

aij: D 1

N

X

n

aijn; ai: D 1

NJ

X

n

aijn; a:j: D 1

NI

X

n

aijn; a::: D 1

NIJ

X

n

aijn

it follows that

E
�
aij: � ai:: � a:j: C a:::

� D 0:

The quantity aij: � ai:: � a:j: C a::: serves as the nonparametric analogue of Xij: �
Xi:: � X:j: C X::: which is the measure of the interaction effect appearing in the F
statistic in the usual normal theory test for interaction.
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4.3.1 Proposed Row–Column Test Statistic

In light of the motivation for the test statistic, define the sum of the row ranks in the
.i; j / cell

SN .i; j / D 1

NJ C 1

NX

nD1
Rijn

and set

SN D .SN .1; 1/ ; : : : ;SN .I; J //
0 :

Similarly, define the sum of the column ranks in the .i; j / cell

TN .i; j / D 1

NI C 1

NX

nD1
Cijn

and set

TN D .TN .1; 1/ ; : : : ;TN .I; J //
0 :

Let II and IJ represent the I � I and J � J identity matrices, respectively, and let
JI and JJ represent the I � I and J � J matrices with all elements equal to one,
respectively. Set

A D JI ˝
�

� 1
I

IJ

�
C II ˝ IJ ;

B D IJ ˝
�

IJ � 1

J
JJ

�
:

We note that the .i; j / term of 1
N
.ASN C BTN / is

�
aij: � ai:: � a:j: C a:::

�
. The

proposed test statistic is then given by

W D 1

N
.ASN C BTN /

0
� OX��

.ASN C BTN / (4.18)

where
� OP��

is the generalized inverse of the estimate of the variance-covariance

matrix of ASN C BTN . The covariance matrix is not of full rank since there exist
I+J-1 linear combinations of ASN C BTN which are constants. We may obtain a
formal expression for the estimate of the covariance matrix. Let

P
1 D lim

1

N
Var .SN/ ;

P
2 D lim

1

N
Var .TN/ ;

P
12 D lim

1

N
cov .SN;TN / :
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Then

OX D A
OX
1
A0 C B

OX
2
B0 C 2A

OX
12

B0

where estimates of the covariances denoted by hats will be given in the next section.

4.3.2 Asymptotic Distribution of the Test Statistic
Under the Null Hypothesis

The asymptotic distribution of the test statistic W in (4.18) is a consequence of the
general theory for linear rank statistics. We begin by recalling some theorems of
Hajek.

Let X1; : : : ; XN be independent random variables with continuous distribution
functions F1; : : : ; FN , respectively. Let Ri be the rank of Xi among X1; : : : ; XN
and let ci ; i D 1; : : : ; N be regression coefficients. Let ˛N .x/ be generated by a
real values function � .x/ having a second derivative as

˛N .i/ D �

�
i

N C 1

�
:

A simple linear rank statistic takes the form

S D
NX

iD1
ci˛N .Ri / :

Let

c D 1

N

X
ci ;

� D
ˆ 1

0

� .x/ dx;

H .x/ D 1

N

X
Fi .x/ ;

� D
X

ci

ˆ
� .H .x// dFi .x/ :

We quote the following two theorems from Hajek (1968).

Theorem 4.6. Let

Li .x/ D 1

N

NX

jD1

�
cj � ci

�ˆ
Œu .y � x/ � Fi .x/� �0 .H .x// dFj .x/
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and

�2 D
X

var .Li .Xi // :

If for every " > 0; there exists K� such that

Var .S/ > K� max
1�i�N .ci � c/2 ;

then

max1<x<1jP
�

S �ES < x .varS/½
�

�ˆ.x/ j < �

where ˆ denotes the standard normal distribution function. The conclusion still
holds if var.S/ is replaced by �2. If

P
c2i is bounded by a multiple of

P
.ci � c/2,

ES can be replaced by � in the conclusion.

We note that an integration by parts yields

ˆ
Œu .y � x/ � Fi .x/� �

0 .H .x// dFi .x/ D
ˆ 1

x

�0 .H .y// dFj .y/C constant:

Moreover,ELi .Xi / D 0.
The proof of Theorem 4.6 makes use of a projection argument. It is shown that

the statistic S � ES can be approximated best in the mean square sense by the
statistic

OS D
NX

iD1
Li .Xi/

which is the projection onto the Hilbert space generated by sums of independent
square integrable linear functions of the Xi . The next result from Hajek makes this
notion more precise.

Theorem 4.7. Let Zi D Li .Xi /. There exists a constant M independent of N such
that

E

 
S �ES �

NX

iD1
Zi

!2
� M

N

NX

iD1
.ci � c/2

and

E .S � �/2 � M

N

NX

iD1
c2i :
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The proof of the asymptotic normality of our test statistic rests on extending
Hajek’s result to the study of composite linear rank statistics. We illustrate this
result in the following simple situation whereby X1; : : : ; Xn1 ; : : : ; Xn1Cn2 ; : : : ; XN
are independent random variables. Consider the two simple linear rank statistics

S1 D
n1Cn2X

iD1
c
.1/
i a

�
R
.1/
i

�
;

S2 D
NX

iDn1C1
c
.2/
i a

�
R
.2/
i

�
;

where R.1/i is the rank of Xi among fX1; : : : ; Xn1Cn2g and R.2/i is the rank of Xi
among fXn1C1; : : : ; XN g : We are interested in the asymptotic normality of the
composite linear rank statistic formed by the sum

S D S1 C S2:

This is done by adapting the projection argument. First, S1 is projected onto the
space spanned by linear combinations of fX1; : : : ; Xn1Cn2g. Next, S2 is projected
onto the space spanned by linear combinations of fXn1C1; : : : ; XN g. Then the sum
is projected onto the combined space fX1; : : : ; XN g. Let

Wi D

8
ˆ̂<

ˆ̂:

Zi i D 1; : : : ; n1;

Zi CZ�
i i D n1 C 1; : : : ; n1 C n2;

Z�
i i D n1 C n2 C 1; : : : ; N;

where Zi D Li .Xi / and Z�
i D L�

i .Xi / are the respective projections. Here,

Li .x/ D 1

n1 C n2

n1Cn2X

jD1

�
c
.1/
j � c

.1/
i

�ˆ
Œu .y � x/ � Fi .x/� �0 .H1 .x// dFj .x/ ;

L�
i .x/ D 1

n2 C n3

n2Cn3X

jD1

�
c
.2/
j � c

.2/
i

�ˆ
Œu .y � x/ � Fi .x/� �0 .H2 .x// dFj .x/ ;

with

H1 .x/ D 1

n1 C n2

n1Cn2X

iD1
Fi .x/ ;H2 .x/ D 1

n2 C n3

n2Cn3X

iD1
Fi .x/ :

We note that EWi D 0:
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Theorem 4.8. Let S1; S2 be defined as above. Also let

LN D max


sup

�
c
.1/
j � c.1/

�2
; sup

�
c
.2/
j � c.2/

�2�

and

�2N D Var

 
NX

iD1
Wi

!
:

If the following condition holds

lim
LN

�2N
D 0; as min .n1 C n2; n2 C n3/ ! 1;

then

S1 C S2 � E .S1 C S2/
�N

)L N .0; 1/ :

Proof. From (4.7), there exist constantsM1;M2 such that

E

 
S1 �ES1 �

n1Cn2X

iD1
Zi

!2
� M1

n1 C n2

n1Cn2X

iD1

�
c
.1/
i � c.1/

�2
;

E

0

@S2 �ES2 �
NX

iDn1C1
Z�
i

1

A
2

� M2

n2 C n3

NX

iDn1C1

�
c
.2/
i � c.2/

�2
:

Hence,

E

 
S1 C S2 �E .S1 C S2/�

NX

iD1
Wi

!2
� 2 .M1 CM2/LM :

It remains to show that
PN

iD1 Wi�N is asymptotically normally distributed with
mean 0 and variance 1. This follows from the Lindeberg theorem. ut

We state the general limiting distribution of the vector .SN ;TN /.

Theorem 4.9. Under the assumption that the errors
˚
�ijn

�
are independent identi-

cally distributed in the two-way layout, we have that as N ! 1
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(i) 1p
N

�
SN � E .SN /
TN � E .TN /

�
H) N2IJ .0;

P
/

(ii) W H) �2.I�1/.J�1/ underH0

(iii) W H) �2.I�1/.J�1/ .ı/ underH1 where ı is the noncentrality parameter under
Pitman alternatives

Proof. The proof makes use of projection arguments and Theorems 4.7 and 4.8
above. We refer the reader to Gao and Alvo (2005a) for details of the proof. ut

To estimate the covariance of the test statistics define the following variables
involving the empirical distribution functions:

C
.i;j /

abn D

8
ˆ̂<

ˆ̂:

� 1
NJ

PN
n0D1 u

�
Xabn � Xajn0

�
a D i; b ¤ j;

1
NJ

P
j¤j 0

PN
n0D1 u

�
Xabn �Xaj 0n0

�
a D i; b D j;

0 a ¤ i:

The fact that C .i;j /

abn � W
.i;j /

abn ! 0 almost surely leads to the following consistent
estimator

O�21
�
i; j; i 0; j 0� D

X

a;b

1

N

NX

nD1

�
C
.i;j /

abn � C
.i;j /

ab:

��
C
.i 0;j 0/

abn � C
.i 0;j 0/

ab:

�
:

Similarly, defining

G
.i;j /

abn D

8
ˆ̂<

ˆ̂:

� 1
NI

PN
n0D1 u

�
Xabn � Xajn0

�
a ¤ i; b D j;

1
NI

P
i¤i 0

PN
n0D1 u

�
Xabn � Xaj 0n0

�
a D i; b D j;

0 b ¤ j;

we may construct consistent estimators for †2 and †12, respectively,

O�22
�
i; j; i 0; j 0� D

X

a;b

1

N

NX

nD1

�
G
.i;j /

abn �G
.i;j /

ab:

��
G
.i 0;j 0/

abn �G
.i 0;j 0/

ab:

�
;

O�212
�
i; j; i 0; j 0� D

X

a;b

1

N

NX

nD1

�
C
.i;j /

abn � C .i;j /

ab:

��
G
.i 0;j 0/

abn �G
.i 0;j 0/

ab:

�
:

Gao and Alvo (2005a) report the result of some simulation studies which
compare the proposed row–column statistic with the aligned test as well as the rank
transform test. It is shown that the row–column test performs very well under a
variety of underlying distributions including the normal, contaminated normal, and
Cauchy. The following example was also considered.
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Example 4.2. Consider the gene expression data of D. melanogaster of Jin et al.
(2001). The gene fs.1/ k10 is known to be expressed in reproductive systems and
its expression level was reportedly affected by the gender and genotype interaction.
The row–column statistic was applied to this data to account for the genotype, the
gender, and the genotype-gender interaction. It was found that the interaction effect
was statistically significant with a p-value equal to 0:004: The parametric F statistic
and the aligned rank transform using the residuals yielded similar results. In order to
illustrate the robustness of the nonparametric procedures, the analyses were redone
with the first observation changed to an arbitrarily large number. The performance of
the F statistic was severely affected and yielded a nonsignificant result. On the other
hand, the nonparametric procedures were unaffected.

Next, we recall that in an example of a 3 � 4 factorial design considered by Box
and Cox (1964) it was claimed that only after application of a nonlinear transfor-
mation can the error term be stabilized and the data made suitable for standard
statistical analysis. We applied the row–column procedure to the untransformed
data and obtained a p-value of 0:44. Thus the hypothesis of no interaction was not
rejected, a finding that concurs with Box and Cox. The aligned test on the other hand
yielded a p-value of 0:02 which indicates the presence of interaction. However, for
the transformed data, the aligned test with a p-value of 0:45 did not reject the null
hypothesis.

Chapter Notes

Alvo et al. (1982) developed a new approach to test for randomness. This allowed
the consideration of various distance functions including Kendall’s distance.
Theorems 4.2 and 4.3 provide the asymptotic distributions of the Spearman and
Kendall test statistics in the complete randomized block design. Iman and Davenport
(1980) describe the F distribution approximation to the Friedman statistic which is
used later in Chap. 10.

One question of interest in connection with the asymptotic results is how
accurate are the asymptotic distributions. Alvo and Cabilio (1984) considered the
accuracy of the asymptotic distribution of Kendall’s test statistic and compared it
to other approximations for small values of t and n: In addition, tables of the exact
distribution were computed for t D 3; n D 3; : : : ; 19I t D 4; n D 3; : : : ; 9; and
t D 5; n D 3; 4; 5. Some exact calculations are made of the Bahadur efficiency
where it is demonstrated that the Kendall tau is more efficient.

Feigin and Alvo (1986) considered the two-group problem by placing it in
the context of diversity and described an extensive discussion of the literature on
the subject. Bu et al. (2009) developed an extension of the two-sample situation to
the case where there are missing data. Although not discussed in this book, it may
be of interest to consider the problem of paired comparisons whereby a judge ranks
a set of objects before and after a treatment.
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Gao and Alvo (2005b) provide a brief historical look at the analysis of unbal-
anced two-way layout with interaction effects. Using the notion of a weighted rank,
they present tests for both main effects as well as for interaction effects. In addition,
there is a discussion of the asymptotic relative efficiency of the proposed tests
relative to the parametric F test. Various simulations further exemplify the power
of the proposed tests. In a specific application, it is shown that the test statistic is the
most robust in the presence of extreme outliers compared to other procedures.

Gao et al. (2008) also consider nonparametric multiple comparison procedures
for unbalanced one-way factorial designs whereas Gao and Alvo (2008) treat
nonparametric multiple comparison procedures for unbalanced two-way layouts.



Chapter 5
Block Designs

In the previous chapter, we were concerned with the study of complete randomized
block designs. In biological studies involving animals, however, it is not always
possible to compare several treatments within litters since the size of the litter will
be a function of the particular species used. In such cases, it is then necessary
to consider various types of incomplete experimental designs. The methodology
presented here rests on the concept of compatibility and the extended notion of
distance between rankings. This approach provides a natural extension of the
well-known Friedman and Durbin statistics to some partially balanced incomplete
designs. The tests developed are also applicable to general block designs with ties
and multiple observations per cell.

We also address the general problem of what are the best choices of functions of
the rankings based on considerations of efficiency.

5.1 Incomplete Block Designs

Consider the situation in which t objects are ranked kh at a time, 2 � kh � t by
b judges (blocks) independently and in such a way that each object is presented to
ri judges and each pair of objects .i; j / is compared by �ij judges, h D 1; : : : ; b,
i; j D 1; : : : ; t: We would like to test the hypothesis of no treatment effect, that is,

H0: each judge, when presented with the specified kh objects, picks the ranking
at random from the space of khŠ permutations of .1; 2; : : : ; kh/.

In the study of the asymptotic behavior of various statistics for such problems,
we consider n replications of such basic designs. In the complete ranking case
kh D t; b D 1 for each block, so that the design becomes a randomized block.
An example of a test in such a situation is the Friedman test with test statistic studied
in Theorem 4.2
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GS D
tX

iD1

�
Ri � n .t C 1/

2

�2

where Ri = sum of the ranks assigned by the judges to object i .
Under Ho; as n ! 1;

1

n
GS !L


t .t C 1/

12

�
�2t�1:

An interpretation of the Friedman statistic is that it is essentially the average of
the Spearman correlations between all pairs of judges’ rankings.

In the balanced incomplete block design (BIBD), we have kh D k; ri D r;

�ij D �; bk D rt; and � .t � 1/ D r .k � 1/ : An example of a test in such a
case is the Durbin test with test statistic

GS D
tX

iD1

�
.t C 1/

.k C 1/
Ri � nr .t C 1/

2

�2
:

Under Ho; as n ! 1;

1

n
GS !L


�t.t C 1/2

12 .k C 1/

�
�2t�1:

In order to measure the level of concordance of the judges, distance functions and
their related measures of similarity can be defined on the t Š-dimensional space of
all complete rankings. The measure of similarity A .�1; �2/ between the rankings
�1 and �2 previously defined is an unstandardized rank correlation, which in many
cases can be expressed as the inner product

A .�1; �2/Dt .�1/
0 � t .�2/ ;

where t .�/ is a column vector whose components are scores which characterize the
ranking �. We recall the Spearman, Kendall, and Hamming measures, respectively,

AS .�1; �2/ D
tX

iD1

�
�1 .i/ � t C 1

2

��
�2 .i/� t C 1

2

�
;

AK .�1; �2/ D
X

i<j

sgn .�1.j / � �1 .i// sgn .�2.j / � �2 .i// ;

AH .�1; �2/ D
tX

iD1

tX

jD1

�
I Œ�1 .i/ D j � � 1

t

��
I Œ�2 .i/ D j � � 1

t

�
;

where I Œ�� is the indicator function, which is 1 or 0 depending on whether the
statement in brackets holds or not. The dimensions of the t .�/ vector depend on
the measure chosen, so that for Spearman it is t; while for Kendall it is

�
t

2

�
and for



5.1 Incomplete Block Designs 83

Hamming t2. Under H0, the expected values of the components of the score vector
t .�/ are zero. As before, the collection of the score vectors t .�/, as � ranges over
all its t Š possible values, is represented by the matrix T: The .tŠ � t Š/ matrix T

0

T
has components A .�1; �2/, with �1 and �2 ranging over all t Š permutations of
.1; 2; : : : ; t/.

We also recall that in the incomplete ranking situation, the distance between ��
1

and ��
2 is defined as the average of the distances between all the complete rankings

compatible with each of ��
1 and ��

2 . Thus, with each set of incomplete kh-rankings
with a given pattern, we associate a .tŠ � khŠ/ matrix of compatibility Ch; whose
column vectors are indicators that identify which of the t Š complete rankings are
compatible with the particular kh-permutation indexed by the column.

For a given pattern of t � kh missing observations, each permutation of the kh
objects has its own distinct set of t Š=khŠ compatible t-rankings, so that each column
of Ch contains exactly t Š=khŠ 1’s and each row exactly one 1. For any incomplete
kh-ranking ��, this definition can be shown to lead to an analogue of T given by

T�
h D khŠ

tŠ
TCh; (5.1)

whose columns are the score vectors of

�� D �
�� .1/ ; �� .2/ ; : : : ; �� .kh/

�0

as �� ranges over each of the khŠ permutations.

Example 5.1. Let t D 3, kh D 2: The complete rankings associated with the rows
are in the order (123), (132), (213), (231), (312), (321). For the incomplete rankings
(12_), (21_) indexing the columns, the associated matrix Ch is

Ch D

2
66666664

1 0

1 0

0 1

1 0

0 1

0 1

3
77777775

:

In the Spearman case, for the incomplete rankings (12_), (21_)

khŠ

tŠ
TSCh D 1

3
:

2

4
�1 �1 0 0 1 1

0 1 �1 1 �1 0

1 0 1 �1 0 �1

3

5

2

66666664

1 0

1 0

0 1

1 0

0 1

0 1

3

77777775

D
2

4
� 2
3

2
3

2
3

� 2
3

0 0

3

5 :
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If for any such fixed incomplete ranking �� we denote by C .��/ the class of
complete rankings compatible with ��; then, under H0; the columns of T�

h are the
conditional expected scores E .t .�/ jC .��/ /.

For a specific pattern of missing observations for each of the b blocks, the matrix
of scores is given by

T� D �
T�
1 j T�

2 j : : : j T�
b

� D T
�
k1Š

tŠ
C1 j k2Š

tŠ
C2 j : : : j kbŠ

tŠ
Cb

�
;

where the index of each block identifies the pattern of missing observations, if any,
in that block. Patterns may or may not be different from block to block, so that the
T�
i ’s need not be distinct. In this setting the null hypothesisH0 becomes that each

judge, presented with kh objects, picks a ranking of these uniformly from the set of
khŠ possible rankings. Because of interblock independence, the matrix .T�/

0

T� for
this specified design contains, underH0; components of the form

A
�
��
1 ; �

�
2

� D E
�A .�1; �2/

ˇ̌C ���
1

�
; C ���

2

��
;

and defines a type of unstandardized rank correlation between incomplete rankings.
Recall that T0T is the matrix of similarities

�A ��i ; �j
��

. In order to detail the

elements of .T�/
0

T�, consider the case of say
�
T�
1

�0
T�
2 D k1Š

t Š
C0
1 .T

0T/C2
k2Š
t Š
:

The first row of C0
1 .T

0T/ gives row elements

"
X

m

A .�m; �1/ ;
X

m

A .�m; �2/ ; : : : ;
X

m

A .�m; �tŠ/
#
;

where the summation is over all complete rankings compatible with the permutation
��
1 identified with the first columns of C1:

If we now multiply this row by any column of C2; the resulting element will be
X

`

X

m

A .�m; �`/

where the outer summation is over all complete rankings compatible with the
permutation ��

2 identified with that column of C1. The proposed test rejects for
large values of

G 	 �
T�f

�0 �
T�f

� D f0 �T��0 T�f; (5.2)

where the
Pb

hD1 khŠ-dimensional vector of frequencies f is given by

f D .f1 j f2 j : : : j fb/
0

and fh is the khŠ-dimensional vector of the observed frequencies of each of the khŠ
ranking permutations for the incomplete pattern h D 1; 2; : : : ; b:



5.3 Spearman Case 85

5.2 Asymptotic Distribution

The asymptotic distribution of the various test statistics is given in the following:

Theorem 5.1. UnderH0 as n ! 1,

1p
n

T�f !L N .0;�/ ; (5.3)

where N .0;�/ is a multivariate normal with mean 0 and covariance

� D
bX

hD1

1

khŠ

�
T�
h

� �
T�
h

�0 D
bX

hD1

1

khŠ

�
khŠ

tŠ
TCh

��
khŠ

tŠ
TCh

�0
: (5.4)

Thus

n�1G D n�1 �T�f
�0 �

T�f
� !L

X
˛i z

2
i ; (5.5)

where fzi g are independent identically distributed normal variates and f˛i g are the
eigenvalues of � :

Proof. The proof is a straightforward application of standard multivariate normal
theory. ut

Note that the covariance of T�f can be written in an explicit form, and often its
eigenvalues can be found analytically. If necessary, the eigenvalues of � may readily
be calculated numerically since the dimension of � is not very large, being .t � t/
in the Spearman case and

��
t
2

� � �t
2

��
in the Kendall case.

In the following, we will need to make use of notation to differentiate between
the elements of the space of possible incomplete rankings with a particular pattern
of missing observations and a ranking picked from this space. For a given pattern
of missing observations h D 1; : : : ; b; the permutations of .1; 2; : : : ; kh/ comprise
the space of possible rankings, and these permutations may be indexed by s D
1; 2; : : : ; khŠ: Let ��

h.s/
.i/ denote the rank of object i for the permutation indexed by

s in block pattern h, while ��
h.i/ will denote the observed rank of object i for this

block.

5.3 Spearman Case

We shall be interested in determining the eigenvalues of the � matrix. It will be
shown that there is a direct link to the information matrix encountered in the study
of experimental designs.
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Lemma 5.1. The t � t matrix

� D
bX

hD1

1

khŠ

�
khŠ

tŠ
TSCh

��
khŠ

tŠ
TSCh

�0
D

bX

hD1

2hAh

where

Ah D
(

kh�1
kh
ıh .j / on the diagonal

� 1
kh
ıh .j / ıh .j

0/ off the diagonal
(5.6)

and 
2h D 1
.kh�1/

Pkh
jD1

�
.tC1/
.khC1/j � .tC1/

2

�2
:

Proof. Consider the matrix T�
h D khŠ

t Š
TSCh , where TS is the .t � t Š/ matrix of

Spearman score vectors. The vectors t .�/ are vectors of mean adjusted ranks. For a
given permutation of .1; 2; : : : ; kh/; indexed by s D 1; 2; : : : ; khŠ; the corresponding
i th row element of column s of khŠ

t Š
TSCh is found to be

.t C 1/

.kh C 1/

�
��
h.s/ .i/ � kh C 1

2

�
ıh.i/ D

�
.t C 1/

.kh C 1/
��
h.s/ .i/� t C 1

2

�
ıh.i/I

(5.7)

ıh.i/ is either 1 or 0 depending on whether the object i is, or is not, ranked in block
h; and ��

h.s/
.i/; as defined above, is the rank of object i for the permutation indexed

by s for block pattern h: An .i; j / element of
�
khŠ
t Š

TSCh

� �
khŠ
t Š

TSCh

�0
is thus of the

form

khŠX

sD1

�
.t C 1/

.kh C 1/
��
h.s/ .i/� t C 1

2

��
.t C 1/

.kh C 1/
��
h.s/ .j / � t C 1

2

�
ıh.i/ıh.j /;

and a direct evaluation of this yields the result. ut
The elements of � are thus

8
<

:
.t C 1/2

h
1
12

Pb
hD1

kh�1
khC1 ıh.j /

i
on the diagonal;

.t C 1/2
h
� 1
12

Pb
hD1 1

khC1 ıh.j /ıh.j
0/
i

off the diagonal:
(5.8)

Note that the elements of each row of � sum to 0; so that rank .�/ � t � 1:

In the case of a basic design of b blocks, so that the number of replications is
n D 1; the test statistic is found as follows. Since

T�
S f D

bX

hD1

khŠ

t Š
TSChfh;



5.3 Spearman Case 87

then its i th component is given by

bX

hD1

.t C 1/

.kh C 1/

�
��
h .i/ � kh C 1

2

�
ıh.i/ D

bX

hD1

�
.t C 1/

.kh C 1/
��
h .i/� t C 1

2

�
ıh.i/;

(5.9)

where ��
h .i/ is the observed rank of object i in block h: In terms of n � 2

replications of the basic design of b blocks, the statistic is

n�1GS D n�1 �T�
S f
�0 �

T�
S f
� D n�1

tX

iD1

�
S�
nb .i/� nri

.t C 1/

2

�2
; (5.10)

where

S�
nb .i/ D

nbX

hD1

.t C 1/

.kh C 1/
��
h .i/ ıh.i/ (5.11)

is a weighted sum of the ranks given to treatment i and ri D Pnb
hD1 ıh.i/: Under

H0, n�1=2T�f has mean 0 and covariance matrix � , so that an alternative form of
the statistic is

n�1 �T�
S f
�

�� �T�
S f
� D n�1

�
Snb � n

.t C 1/

2
r
�0

��
�

Snb � n
.t C 1/

2
r
�

(5.12)
where

SnbD
�
S�
nb .1/ ; S

�
nb .2/ ; : : : ; S

�
nb .t/

�0
; r D .r1; r2; : : : ; rt /

0 ;

and �� is a generalized inverse of � : This statistic has an asymptotic�2-distribution
with degrees of freedom equal to rank .�/ � t � 1:

The matrix � with elements given in Lemma 5.1 is closely related to the
information matrix of a block design. John and Williams (1995) detail how this
matrix occurs in the least squares estimation of treatment effects and the role its
eigenvalues play in determining optimality criteria for choosing between different
designs. This information matrix A has components

( Pb
hD1

kh�1
kh
ıh.i/ on the diagonal;

�Pb
hD1 1

kh
ıh.i/ıh.j / off the diagonal:

(5.13)

Note that A and � share the same rank.
In some designs there may be one or more sets of objects which have the property

that there is no block in which objects of one set are ever compared to objects of
another set. These are known as “non-compared” sets in Benard and van Elteren
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(1953), and their existence leads to a “disconnected” design. A design which is not
disconnected is said to be connected. The rank of � in a connected design will be
t � 1:

There are various important connected designs for which the number of objects
ranked in each block is kh D k; and the number of judges who rank object i is
ri D r:

In such cases

� D k .t C 1/2

12 .k C 1/
A;

so that we may make use of the known eigenvalues of A for various incomplete
block designs in order to apply Theorem 5.1 to the statistic n�1GS .

5.3.1 Applications

Example 5.2 (Complete Case and the BIBD). In the case of a complete randomized
block design, every treatment appears in every block k D t; b D 1: The statistic is
the Friedman test,

n�1GS D n�1
tX

iD1

�
Sn .i/� n.t C 1/

2

�2

where Sn .i/ D sum of the ranks assigned by the judges to object i . The eigenvalues
of � are

˛1 D t .t C 1/ =12;

with multiplicity t � 1; so that underHo; as n ! 1;

n�1GS !L ft .t C 1/ =12g�2t�1:

Similarly in the BIBD, �ij D �; bk D rt; and � .t � 1/ D r .k � 1/ : The statistic
is the well-known Durbin test. The eigenvalues of � are

˛1 D 1

12
�t.t C 1/2 .k C 1/�1 ;

with multiplicity t � 1; so that underHo; as n ! 1;

n�1GS !L


1

12
�t.t C 1/2 .k C 1/�1

�
�2t�1:
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Table 5.1 Example of a
group divisible design

Treatments 1 2 3 4 5 6

Block 1 X X X

Block 2 X X X

Block 3 X X X

Block 4 X X

Block 5 X X X

Block 6 X X X

Block 7 X X X

In the parametric case, the efficiency factor for the BIBD relative to the
randomized complete block design is given as the ratio of the variances between
two treatment means. It is given here as

�t

rk
D r .k � 1/ t
rk .t � 1/

D t

.t � 1/

�
1 � 1

k

�

which shows that the efficiency increases with increasing block size. The BIBD will
be more precise if the ratio of the variance of the BIBD to the complete randomized
block design is smaller than t

.t�1/
�
1 � 1

k

�
:

Example 5.3 (Group Divisible Designs). It may not always be possible to construct
BIBDs. For example, the smallest number of replications for a BIBD is r D �.t�1/

.k�1/ :
When t D 6; k D 4; the balanced design would require r D 10 replications and
hence rt D 60 experimental units. Such a large number of units may either not
be available or too costly for the researcher to acquire. The partially balanced group
divisible design helps to reduce the number of experimental units required at the cost
of forcing some comparisons between treatments to be more precise than others.
In this design, the t objects occur in g groups of d objects, t D gd . Within each
group pairs of objects are compared by �1 judges, whereas each pair of objects
between groups is compared by �2 judges. Such designs must satisfy the additional
conditions

bk D rt; r .k � 1/ D .d � 1/ �1 C d .g � 1/ �2

If �1 D �2; then we have a BIBD.
We illustrate such a design in Table 5.1 for t D 6; k D 4; r D 2; g D 2; �1 D

1; �2 D 2. Treatments .1; 4/, .2; 5/, .3; 6/ are compared �2 D 2 times whereas all
the other pairs are compared only once. The number of experimental units required
here is rt D 12 compared to the 60 for a BIBD.

In general, the construction of such designs and, the form of A and its eigenvalues
are all given in John and Williams (1995). The eigenvalues of � are
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Table 5.2 Example of a cyclic design

Treatments 1 2 3 4 5 6

Block 1 X X X X

Block 2 X X X X

Block 3 X X X X

(
˛1 D .tC1/2

12
fr.k�1/C�1g

.kC1/ with multiplicity g .d � 1/ ;

˛2 D .tC1/2
12

t�2
.kC1/ with multiplicity .g � 1/ :

In the parametric case, the efficiency for the comparison of two treatments for the
first group is

.�1 C rk � r/

rk

and for the second group

t�2 .�1 C rk � r/

rk .�1 C �2t � �2/
:

For our example, these efficiencies become 0.875 for the first group and 0.955 for
the second group. On the other hand, for the corresponding BIBD, the efficiency
is 0.9.

Example 5.4 (Cyclic Designs). Incomplete block designs often require the use of
tables which may not always be available in the field. Moreover, care must be taken
to record data correctly for such designs. Cyclic designs on the other hand are easily
constructed from an initial block and the treatments can be easily assigned. Such
designs are obtained by cyclic development of an initial block or combinations of
such sets. Let �0 D r and �j�1 D �1j ; j D 2; : : : ; t; be the number of judges
that compare object 1 with object j: The matrix A is a circulant related to the matrix
derived by the cyclic development of .�0; �1; : : : ; �t�1/ and its eigenvalues are given
in John and Williams (1995). The eigenvalues of � are

˛i D .t C 1/2

12

(
r .k � 1/
.k C 1/

� 1

.k C 1/

t�1X

hD1
�h cos

�
2ih

t

�)
; i D 1; 2; : : : ; t � 1:

As an example of a cyclic design, consider Table 5.2 with t D 6; k D r D 3; b D 6.
Note that this is not a BIBD since, for example, �14 D 2 ¤ �13 D 1:

Finally, we note that the canonical efficiency factors of an incomplete block
design in the parametric case are given in terms of the eigenvalues of a matrix related
to the information matrix (John and Williams 1995). As we have seen, that matrix
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also arises in the nonparametric context. Consequently, we may by analogy define
in exactly the same manner the efficiency factors for the nonparametric case. We do
not pursue this subject further in this book.

5.4 Kendall Case

Recall that the Kendall scores are given by the
��
t
2

� � t Š� matrix TK where the row
elements of each column of TK are sgn .�s.j / � �s .i// for each object pair .i; j /,
1 � i < j � t .

The element of T�
h D khŠ

t Š
TKCh in the row which corresponds to the given

object pair .i; j /, i < j , and the column s D 1; 2; : : : ; khŠ, which indexes a given
permutation of .1; 2; : : : ; kh/; is

ah.s/.i; j / D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

sgn.��
h.s/
.j / � ��

h.s/
.i// if ıh.i/ D ıh.j / D 1;

1 � 2��
h.s/
.i/

.kh C 1/
if ıh.i/ D 1; ıh.j / D 0;

2��
h.s/
.j /

.kh C 1/
� 1 if ıh.i/ D 0; ıh.j / D 1;

0 otherwise;

(5.14)

where, as previously, for the block pattern h, ��
h.s/
.i/ is the rank of object i in the

permutation indexed by s and ıh.i/ is either 1 or 0 depending on whether the object
i is, or is not, ranked in block h.

We consider a simple example. For the incomplete rankings (12_), (21_)

khŠ

tŠ
TKCh D 1

3

2

4
1 1 �1 1 �1 �1
1 1 1 �1 �1 �1
1 �1 1 �1 1 �1

3

5

2

66666664

1 0

1 0

0 1

1 0

0 1

0 1

3

77777775

D
2

4
1 �1
1
3

� 1
3

� 1
3

1
3

3

5 :

In general, the component of T�f D Pb
hD1

khŠ
t Š

TKChfh corresponding to object

pair .i; j / is given by
Pb

hD1 ah.i; j /; where, for a given block pattern h, ah.i; j / is
that value corresponding to the observed ranking ��

h : Thus the test statistic in this
case is

GK D
X

i<j

(
bX

hD1
ah.i; j /

) 2
; (5.15)
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which in terms of n replications of a basic design would be altered by taking the
inner sum over all nb blocks, with the statistic becoming n�1GK: The elements

of
�
khŠ
t Š

TKCh

� �
khŠ
t Š

TKCh

�0
(and thus of the covariance �) are somewhat more

complicated to write down in general than in the Spearman case and are given in
Alvo and Cabilio (1996) for the case where kh D k for all blocks. As an alternative
to the statistic n�1GK; we may again proceed as in the Spearman case and define
the statistic

n�1K D n�1 �T�f
�0

�� �T�f
�
: (5.16)

For the complete and balanced incomplete designs the matrix � is shown to be
of full rank

�
t
2

�
; so that in such cases the inverse of � replaces �� in Brunden

and Mohberg (1976). In the Spearman situation the statistics are the same for such
balanced designs, but this is not the case with the Kendall-based statistics.

In the complete case b D 1; t D k; r D ri D 1, �ij D � D 1: Let the index

q.i; j / D .i � 1/.t � i

2
/C .j � i/; 1 � i < j � t;

correspond to the object pair .i; j /.
The .q .i; j / ; q .`;m// element of � is

8
ˆ̂<

ˆ̂:

1 i D `; j D m (diagonal);
1
3
i D `; j ¤ m or i ¤ `; j D m;

� 1
3
i D m; j ¤ ` or i ¤ m; j D `;

0 i; j; `;m all different

(5.17)

while the Kendall scores become

as.i; j / D sgn.�s.j / � �s.i// D 2I Œ�s.j / > �s.i/� � 1; i < j:

A test for this design of the form Brunden and Mohberg (1976) was introduced
by Wormleighton (1959). The differences between the two forms of such Kendall-
based tests are explored in the following example.

Example 5.5. Consider once again the case with t D 3. Although in practice the
statistic n�1GK would be calculated directly, it is useful in this example to write
it in general as a function of the observed frequencies through the form .Tf/0 .Tf/.
In this case we index the t Š D 6 possible permutations .123/, .132/, .213/, .231/,
.312/, .321/ in this order from s D 1 to 6, so that fs refers to the observed frequency
in the n trials of the ranking indexed by s: Using the fact that in this case � D 1

6
TT0

gives

� D
2

4
1 � 1

3
1
3

� 1
3

1 � 1
3

1
3

� 1
3

1

3

5 ;
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so that

��1 D 3

4

2

4
2 �1 1

�1 2 �1
1 �1 2

3

5 :

Direct computation of Brunden and Mohberg (1976) with T replacing T� shows
that

K D 3
n
.f1 � f6/2 C .f2 � f5/

2 C .f3 � f4/
2
o
;

while a calculation of .Tf/0 .Tf/ gives

GK D K C 2 f.f1 � f6/ .f2 � f5/C .f1 � f6/ .f3 � f4/ � .f2 � f5/ .f3 � f4/g :

Note that while K and GK both compare conjugate rankings, the statistic GK also
includes interactions between these comparisons.

The null distributions of these statistics are quite different. For example, in the
case where n D 3, K does not differentiate between

Object 1 2 3
Judge 1 3 2 1
Judge 2 3 2 1
Judge 3 3 1 2

Object 1 2 3
Judge 1 3 2 1
Judge 2 3 2 1
Judge 3 1 3 2

,

assuming the same value of 15 for both. On the other hand, GK D 19 for the first
and 11 for the second. It may be argued that the judges in the first realization share
a higher level of agreement than do those in the second.

The null distribution of GK is much richer than that of K . In the case n D 6;

using the lower-tail probabilities in Table I in Wormleighton (1959), the upper-tail
probabilities of K with probability 0.2 or less are

u 108 78 60 54 48 42 36

P .K � u/ 0:0001 0:0032 0:0109 0:0315 0:0400 0:1017 0:1172
;

while use of Table II in Alvo and Cabilio (1984), with the quantity there labeled x
transformed to u D 18 .5x C 1/, gives us the upper-tail probabilities of GK

u 108 88 76 72 68 56 52 48

P .GK � u/ 0:0001 0:0017 0:0055 0:0081 0:0135 0:0367 0:0521 0:0606

u 44 40 36 32

P .GK � u/ 0:0760 0:0914 0:1519 0:1905
:
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5.5 Hamming Case

We introduced the Hamming distance in Chap. 3. As noted, this distance has found
applications in coding theory for binary strings. In this section we consider its
applications in the analysis of block designs. We recall that the distance is defined as

dH .�; �/ D t �
tX

iD1

tX

jD1
I .�.i/ D j / I .�.i/ D j / (5.18)

where I.:/ is the indicator function which is 1 or 0 depending on whether the
statement in brackets holds or not. The following lemmas provide information on
the test statistic based on the Hamming distance. Define

�h.j; l/ D E
�
I .�.i/ D j / jC ����� :

It is seen

�h.j; l/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 
j � 1

l � 1

! 
t � j;
kh � l

! 
t

k

!�1
1 � l � j; 0 � kh � t � j

0 otherwise:

Then, from .5:1/, the element of T�
h D khŠ

t Š
THCh in row q.i; j / and column

s D 1; : : : ; khŠ which indexes a given permutation of .1; 2; : : : ; kh/ is

�
�h

�
j; ��

h.s/.i/
�

� 1

t

�
ıh.i/

where ��
h.s/

.i/ is the rank of object i in the permutation indexed by s and ıh .i/ is
either 1 or 0 depending on whether object i is or is not ranked in the h block.

The component q .i; j / of T�f D P khŠ
t Š

THChfh becomes

bX

hD1

khX

lD1


�h.j; l/ � 1

t

�
ıh.i/ I

�
��
h .i/ D l

�

leading to the test statistic

GH D
tX

iD1

tX

jD1

(
bX

hD1

khX

lD1


�h.j; l/ � 1

t

�
ıh.i/ I

�
��
h .i/ D l

�
) 2
: (5.19)
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Lemma 5.2. In the special case where each judge ranks exactly k out of t , the test
statistic in (5.19) is given by

GH D
tX

iD1

tX

jD1

(
kX

lD1


�.j; l/ Di .l/ � 1

t

�) 2
� 1

t

tX

iD1
r2i

where Di.l/ is the number of judges that assign rank l to object i and ri is the
number of judges who consider object i .

Proof. We note that

Di.l/ D
bX

hD1
ıh.i/ I

�
��
h .i/ D l

�

and

ri D
kX

lD1
Di .l/ :

Hence

GH D
tX

iD1

tX

jD1

(
kX

lD1

n
�.j; l/ Di .l/� ri

t

o) 2
:

Since

t�kClX

jDl
�.j; l/ D 1

the cross term above becomes

�2
t

tX

iD1
r2i

and the result follows. ut
We note that in the context of n replications of a basic design of b blocks, ri in

Lemma 5.2 would be replaced by nri ,Di.l/ would be taken over all nb blocks, and
the statistic used would be GH=n: In the next lemma, we obtain a specific form for
the elements of the covariance matrix � :

Lemma 5.3. The .q.i; j / ; q.l;m// element of the t2 � t2 matrix

1

khŠ

�
khŠ

tŠ
THCh

��
khŠ

tŠ
THCh

�0
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with index q.i; j / D .i � 1/ t C j; 1 � i; j � t is

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1
kh

n
 h.j; j / � kh

t2

o
ıh.i/ i D l; j D m;

1
kh

n
 h.j;m/ � kh

t2

o
ıh.i/ i D l; j ¤ m;

� 1
kh.kh�1/

n
 h.j; j / � kh

t2

o
ıh.i/ ıh.l/ i ¤ l; j D m;

� 1
kh.kh�1/

n
 h.j;m/ � kh

t2

o
ıh.i/ ıh.l/ i ¤ l; j ¤ m;

where for u D max .j;m/ � t C kh; v D min .j;m/

 h.j;m/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Pv
xDu

 
j � 1

x � 1

! 
t � j

kh � x

! 
m � 1
x � 1

! 
t �m
kh � x

! 
t

kh

!�2

u � v;

0 otherwise:

Proof. The proof proceeds by considering a typical element of the product

khŠX

sD1


�h

�
j; ��

h.s/

�
� 1

t

� 
�h

�
m;��

h.s/

�
� 1

t

�
ıh.i/ ıh.l/

and noting that

khX

xD1
�h.j; x/ D kh

t
:

ut
We shall now consider the special case when each judge ranks exactly k out t

objects. Define the .t � k/ matrix H D .�.j; l// and set E D HH 0 � k
t2
J to be a

t � t matrix. We may then write the Kronecker product

� D 1

k � 1A ˝ E

where A ˝ E is the matrix formed by multiplying each element of E by the
previously defined matrix A with

A D
X

Ah:

Hence, the eigenvalues of � are 1
k�1˛i�j where the ˛i ’s and �j ’s are the

eigenvalues of A and E , respectively.



5.5 Hamming Case 97

5.5.1 Applications

Example 5.6 (Complete Case). In the complete case k D t; ri D �il D 1, H D I;

and E D A D �
I � J

t

�
, so that

� D 1

t � 1

�
I � J

t

�
˝
�
I � J

t

�
:

In view of the fact that
�
I � J

t

�
is idempotent and has rank .t � 1/, it follows that

� has a distinct eigenvalue 1
t�1 with multiplicity .t � 1/2 : Hence

t � 1
n

GH ) �2
.t�1/2 :

In that case,

GH D
XXn

Di.l/ � n

t

o2

D
XX

D2
i .l/ � n2:

This test was first introduced by Anderson (1959) and rediscovered by Kannemann
(1976) who claimed that it was more sensitive to small differences in treatment
location than the Friedman test.

Example 5.7 (General Case). Let Ji�j be the i � j matrix of ones. Since
HJ 0

t�k= k
t
Jt�t , it follows that

�
H � Jt�k

t

��
H � Jt�k

t

�0

D E: (5.20)

Moreover,
�
H � Jt�k

t

�
is orthogonal to Jt�k so that its rank is .k � 1/. In the next

lemma we state a result for the eigenvalues of the matrix E:

Lemma 5.4. In the Hamming case with kh D k; the .k � 1/ eigenvalues of the
matrix E given in (5.20) are

�j D
�
t � j � 1

k � j � 1
��

t C j

k C j

��
t

k

��2
; j D 1; : : : ; k � 1:

Proof. The proof appears in Alvo and Cabilio (1998) where it is shown that the
corresponding eigenvectors are given by the Chebyshev polynomials. ut
Example 5.8 (The BIBD). In the BIBD design, ri D r and the design matrix
A D �t

k

�
I � J

t

�
has a distinct eigenvalue �t

k
with multiplicity .t � 1/. Thus the

eigenvalues of � are
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�t

k .k � 1/�j ; i D 1; : : : ; k � 1;

each with multiplicity .t � 1/ : In that case,

GH D
tX

iD1

tX

jD1

(
kX

lD1
�.j; l/ Di .l/

) 2
� r2:

The Anderson statistic was also studied by Shach (1979) who modified it instead
and showed that as n! 1

�
t � 1
t

�"
1

nb

tX

iD1

kX

lD1


Di.l/ � nb

t

� 2#
)L �

2
.k�1/.t�1/:

5.6 Score Statistics

The statistics that have been considered thus far were based directly on the ranks
themselves without consideration of whether they are optimal in any sense. In this
section we shall consider a generalization of such statistics by replacing the ranks
assigned by each judge by real valued functions a .j; ki /, 1 � j � ki � t , which
we shall call scores. We wish to test the hypothesis

H0: each judge, when presented with the specified ki objects, picks the ranking
at random from the space of ki Š permutations of .1; 2; : : : ; ki /.

For a given function a .j; t/, 1 � j � t , and a complete ranking �; define the
vector of adjusted scores

a.�/ D .a.� .1/ ; t/ � at ; a.� .2/ ; t/ � at ; : : : ; a.� .t/ ; t/ � at /0 (5.21)

where underH0,

at D t�1
tX

rD1
a.r; t/ ;

For a random ranking �; it can be shown that the covariance matrix of a .�/ is
given by

†0 D t

t � 1�
2
0

�
I�1
t

J
�

(5.22)

where

�20 	 Var.a.� .j / ; t// D t�1
tX

rD1
.a.r; t/ � at/2 ;
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I is the identity .t � t/ matrix, and J is the .t � t/ matrix of 1’s. Let

Sn.j / D
nX

iD1
a.�i .j / ; t/ ;

where�i .j /, i D 1; : : : ; n; represents the observed rankings of object j . In analogy
with the Spearman measure of similarity between the complete rankings �1 and �2
define

A .�1; �2/ D a.�1/
0 a.�2/ D

tX

jD1
.a.�1.j / ; t/ � at / .a.�2.j / ; t/ � at / :

(5.23)

Let the .t � t Š/ matrix T represent the collection of adjusted score vectors a .�/ as
� ranges over all its t Š possible values, and let f be the t Š vector of frequencies of
the observed rankings. The .tŠ � t Š/ matrix T

0

T has components A .�1; �2/, with
�1 and �2 ranging over all t Š permutations of .1; 2; : : : ; t/: Let

SnD .Sn.1/ ; Sn.2/ ; : : : ; Sn.t//
0 ;

so that Tf D .Sn � nat1/, where 1 is the t-vector of 1’s. Proceeding as before, the
proposed statistic is the quadratic form

n�1 .Tf/0 .Tf/ D n�1
tX

jD1
.Sn.j / � nat/

2 : (5.24)

Large values of this statistic are inconsistent with H0. Under H0, as n ! 1,
n�1=2Tf is asymptotically normal with mean vector 0 and covariance matrix †0:

Consequently, since I� 1
t
J is an idempotent matrix of rank t � 1; the statistic

Qn D t � 1
nt�20

tX

jD1
.Sn.j / � nat /

2

has asymptotically as n ! 1 a �2 distribution with t � 1 degrees of freedom.
Consider now the incomplete block situation in which the i th judge ranks 2 �

ki � t objects. In this setup, a basic design of b blocks is defined and then replicated
n times, so that a total of nb judges rank the specified subsets of the t objects.
Recall that rj is the total number of blocks that include object j . For an incomplete
ranking pattern let �h.s/ s D 1; 2; : : : ; khŠ denote the possible kh-rankings, that
is, the permutations of .1; 2; : : : ; kh/: The analogue of the adjusted matrix T, the
collection of adjusted score vectors a .�/ is given by

T� D �
T�
1 j T�

2 j : : : j T�
b

�
(5.25)
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where

T�
h D khŠ

tŠ
TCh

and Ch is the compatibility matrix associated with �h.s/; s D 1; 2; : : : ; khŠ:

Denote by C��h.s/
�

the class of complete rankings compatible with the specified
kh-permutation �h.s/ indexed by column s of Ch. Under H0; the columns of T�

h

are the conditional expected scores E
�
a.�/

ˇ̌C��h.s/
� �
: We define the notion of a

weighted score as follows.

Definition 5.1. For a given score function a.j; t/, 1 � j � t; if object j is ranked
in a given block 1� h � b and if �h .j / D r; the weighted score is given by

a�.r; kh/ D
t�khCrX

qDr
a.q; t/

 
q � 1

r � 1

! 
t � q

kh � r

! 
t

kh

!�1
; r D 1; 2; : : : ; kh: (5.26)

Theorem 5.2. For an incomplete ranking with �h.s/ s D 1; 2; : : : ; khŠ denoting the
permutations of .1; 2; : : : ; kh/ within the specified incomplete pattern, the row j;

column s element of T�
h D khŠ

t Š
TCh is

�
a� ��h.s/.j / ; kh

� � at
�
ıh.j /

Proof. See Alvo and Cabilio (2005) for details of the proof which follows by
computing the conditional expectation the score onto the space of compatible
rankings. ut

Under H0, for an incomplete ranking �h; we have

k�1
h

khX

rD1
a�.r; kh/ D E

�
a�.�h.j / ; kh/

�

D E .a.� .j / ; t//

D at

so that the vector of adjusted weighted scores,

a .�h/ D ��
a�.�h.1/ ; kh/ � at

�
ıh .1/ ;

�
a�.�h .2/ ; kh/� at

�
ıh.2/ ; : : : ;

� �
a�.�h .t/ ; kh/ � at

�
ıh .t/

�0
;

has the covariance matrix †h D 
2hAh, where


2h D .kh � 1/�1
khX

rD1

�
a�.r; kh/� at

�2
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and the .t � t/ matrix

Ah D
(

kh�1
kh
ıh .j / on the diagonal;

� 1
kh
ıh .j / ıh .j

0/ off the diagonal:
(5.27)

In order to extend the notation for the weighted scores to all the nb rankings,
define

a�.r; ki / D a� .r; kh/ if i 	 h .mod b/ for b C 1 � h � nb:

The test statistic in this more general setting is given by

n�1 �T�f
�0 �

T�f
� D n�1

tX

jD1

 
nbX

iD1

�
a�.�i .j / ; ki / � at

�
ıi .j /

!2
(5.28)

Set SnbD
�
S�
nb.1/ ; S

�
nb.2/ ; : : : ; S

�
nb.t/

�0
; r D .r1; r2; : : : ; rt /

0, where

S�
nb .j / D

nbX

iD1
a�.�i .j / ; ki / ıi .j / ;

so that the test statistic is

Gn D n�1 .Snb � n Nat r/0 .Snb � n Nat r/ D n�1
tX

jD1

�
S�
nb .j / � nrj at

�2
(5.29)

which is asymptotically distributed as
P
˛i z2i ; where fzi g are independent identi-

cally distributed normal variates and f˛i g are the eigenvalues of †0: Under H0,
n�1=2T�f has covariance matrix

†0 D
bX

iD1

2i Ai ; (5.30)

so that an alternative form of the statistic is

n�1 �T�f
�0

†�
0 T�f Dn�1 .Snb � n Nat r/0 †�

0 .Snb � n Natr/ (5.31)

where †�
0 is a generalized inverse of †0:

We shall require the following assumption.

Assumption A. The random variables .Xi1; Xi2; : : : ; Xit /, which may or may not
be observable, underlie the rankings

�iD .�i .1/ ; �i .2/ ; : : : ; �i .t//
0 ; i D 1; : : : ; b:
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These random variables are assumed independent with absolutely continuous
distribution functions Fij .x/ D Fi

�
x � �j

�
, where

P
�j D 0 and Fi .x/ have

continuous densities fi .x/, for which
´1

�1 f 2
i .x/ dx < 1:

The null hypothesis of random uniform selection of rankings becomes

H 0
0 W � D 0;

where �0D .�1; �2; : : : ; �t / : If the asymptotics of interest are simply that the number
of blocks b becomes large, the definitions and notation used earlier may be modified
by setting n D 1 as appropriate. The test statistic may be rewritten as

G�
b D .Sb � Natr/0 †�

0 .Sb � Nat r/ ;
and, as b ! 1; if the design is connected, G�

b has an asymptotic �2-distribution
with t � 1 degrees of freedom.

When the score function is a .j; t/ D j; the Wilcoxon score, the weighted score
becomes

a� .r; ki / D r

t�khCrX

qDr

 
q

r

! 
t � q

kh � r

! 
t

kh

!�1

D r

 
t C 1

t � ki

! 
t

kh

!�1

D r
t C 1

ki C 1
:

The measure of similarity is simply the Spearman measure and our previous results
hold. We may now consider the asymptotic distribution of the test statistic under the
alternative:

H1n W � D �n D n�1=2�;� D .�1; �2; : : : ; �t /
0 :

The following theorem provides the basis for determining optimal score functions.

Theorem 5.3. Under the alternative, n�1 .Snb � n Nat r/0 †�
0 .Snb � n Nat r/ has for

n ! 1 a noncentral chi-square distribution with t � 1 degrees of freedom and a
specified noncentrality parameter ın .a�/. The form of this noncentrality parameter
is simplified if kh D k for all h D 1; 2; : : : ; b; and, in such a case, this parameter is
maximized when

a� .r; k/ � at D c .ˇr�2 � ˇr�1/ : (5.32)

where ˇs D �
k�2
s

� ´1
�1 F .x/s .1 � F .x//k�2�s f 2 .x/ dx; s D 0; 1; : : : ; k � 2.

Proof. See Alvo and Cabilio (2005) for the proof. ut
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5.6.1 Special Score Functions

We consider weighted scores which are associated with certain score functions
af .r; t/ detailed for the complete ranking case in Sen (1968). In the complete case,
under Assumption A, and with the additional assumption that block effects are
additive so that the underlying density is f .x/, the score functions which optimize
the test statistics satisfy the relationship

af .r; t/ � at D c .ˇr�2 � ˇr�1/ (5.33)

where ˇs is defined above with t replacing kh: The corresponding weighted score
for an incomplete ki -block is

a� .r; ki / D
t�kiCrX

qDr
af .q; t/

 
q � 1

r � 1

! 
t � q

ki � r

! 
t

ki

!�1
: (5.34)

1. For the Wilcoxon score, af .j; t/ D j , and Qn is optimal in the case that
the rankings result from samples from the logistic distribution with density
f .x/ D e�x= .1C e�x/2 ;�1 < x < 1. The weighted score may be written

as a� .r; ki / D
�
tC1
kiC1

�
af .r; ki /.

2. With the score af .1; t/ D 1; af .t; t/ D �1; af .r; t/ D 0 otherwise, Qn is
optimal when sampling from the uniform distribution with density f .x/ D
1I 0 � x � 1: Direct substitution into (5.32) gives a� .r; ki / D ki

t
af .r; ki /.

3. With the score af .1; t/ D 1; af .r; t/ D 0 otherwise, Qn is optimal when
sampling from the exponential distribution with density f .x/ D e�x I 0 � x <

1. Again, direct substitution into (5.32) gives a� .r; ki / D ki
t
af .r; ki /.

4. When sampling from the double exponential distribution with density
f .x/ D e�jxj, �1 < x < 1, Qn associated with the score function
af .r; t/ D 1 � 2

Pr�1
iD0

�
t
i

�
2�t is shown to be optimal. It may be shown that

a� .r; ki / D af .r; ki /.

All the weighted scores associated with these score functions have the property that

a� .r; ki / D K .ki ; t/ af .r; ki / ;

where K .ki ; t/ depends only on the number of objects ranked in the block. Note
that since

k�1
i

kiX

rD1
a� .r; ki / D at ;

it follows that for such scores, at D K .ki ; t/ Naki . If the design is such that the
number of objects ranked in each block is constant, that is, ki D k for all i; these
weighted scores a� .r; k/ satisfy the relation (5.32). Thus the statistic

n�1 .Snb � n Nat r/0 †�
0 .Snb � n Nat r/

is optimal in the cases enumerated above.
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Chapter Notes

Alvo and Cabilio (1996) consider non-doubly balanced incomplete block designs
(DBIBD), whereby each triplet of objects is not necessarily presented to the same
number of judges and they obtain the asymptotic distribution for the Kendall statistic
in this case. Although we have concentrated on the measures of Spearman and
Kendall, the methods presented here for the analysis of block designs are quite
general and applicable to other measures of similarity between rankings, particularly
to those that can be written as inner products of score vectors. These methods
have been applied in Alvo and Cabilio (1998) to the case of Hamming measure.
On the whole, unlike various other approaches to such problems, the resulting tests
have forms which are easily calculated immediate extensions of their versions in the
complete block situation.

The asymptotic distributions are linear combinations of independent chi squares,
with coefficients that are given analytically for many designs based on the Spearman
or Kendall measures and which can in any case be calculated quite simply. Once
the coefficients are determined, the critical values can be approximated using a
procedure such as that in Jensen and Solomon (1972).

The statistics may be modified in order to simplify their asymptotic distributions
to chi square, but this comes at the cost of making the statistics more complex. The
example given previously for the Kendall case further shows that such statistics may
have exact distributions whose support is less dense than that of the forms derived
here.

Caution should be exercised in the use of the large sample critical values in
conducting a small sample test. Various studies indicate that at least for complete
block and BIBDs, other approximations to the small sample critical values may be a
great deal more accurate (see for example Alvo and Cabilio 1995b). One approach
which may have some value in dealing with small samples and with unbalanced
designs is to generate the p-values of the test by simulation methods.

Ties for Hamming distance are also discussed in Alvo and Cabilio (1998). The
discussion on the choice of scores follows closely the development in Alvo and
Cabilio (2005) for the incomplete case where some simulation results are reported.
This in turn was motivated by the work of Sen (1968)

A companion result to Lemma 5.4 showing a further use of Chebyshev polyno-
mials appears in Alvo and Cabilio (2000). In particular, it is shown that one can
compute values of the hypergeometric distributions recursively.



Chapter 6
General Theory of Hypothesis Testing

The notion of distance was fruitfully utilized in previous chapters in order to develop
tests of hypotheses for both complete and incomplete rankings. In this chapter we
consider a more general framework for constructing tests of hypotheses. We begin
by defining two sets of rankings: one set consists of all the rankings which are
most in agreement with the observed ranking while the second set contains all the
rankings which are most in agreement with the alternative hypothesis. A distance
function is then defined between those two sets of rankings. The notion of distance
between sets is well known in mathematics and is often taken to be the minimum
distance between pairs of elements, one from each set. In the present statistical
context however, the more workable definition of distance is chosen to be the
average of all pairwise distances between pairs of rankings, one from each set. Then
the test rejects the null hypothesis whenever the distance between the two sets is
small. Following a description of the basic construction of the sets, we then consider
some general hypothesis testing problems. We begin with the multi-sample location
problem with ordered alternatives and then consider tests with umbrella alternatives.
The general theory is further exemplified in Chap. 7.

6.1 The Construction

The construction of the test statistic follows a simple procedure. Let H0;H1 denote
the null and alternative hypotheses, respectively, in a typical testing situation.
Let Pn D f� W Œ� .1/ ; : : : ; � .n/�g be the set of all permutations of the integers
1; 2; : : : ; n and let d .�; �/ be a distance function between the two permutations
�; �.

Step 1: Let X1; : : : ; Xn be a collection of random variables from continuous distri-
butions and let  .i/ be the rank ofXi among theX 0s. The continuity assumption
ensures that with probability one there can be no ties in the permutation

© Springer Science+Business Media New York 2014
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 D Œ .1/ ; : : : ;  .n/�0 :

Step 2: Define fg to be the subclass of permutations which are “equivalent” to
the observable permutation  in the sense that ranks occupied by identically
distributed random variables are exchangeable.

Step 3: Define E to be the subclass of extremal permutations consisting of all
permutations which are most “in agreement” with H1.

Step 4: Define the distance between the subclasses fg and E to be the sum of
pairwise distances between permutations �; � with �� fg ; ��E:

d .fg ; E/ D
X

��fg

X

��E

d .�; �/ :

It is seen consequently that small values of d .fg ; E/ are consistent with the
alternative and lead to the rejection of the null hypothesis. It should be pointed out
that the extremal set E is not identical to the entire critical region of the test but
rather consists of those permutations exhibiting the strongest evidence in favor of
H1. In the next sections we consider various examples of tests of hypotheses and
develop corresponding test statistics. Before proceeding we consider an example
to illustrate the computation.

Example 6.1. Consider the two sample problem and suppose we wish to test the
hypothesis H0 W F1 .x/ D F2 .x/ against the alternative H1 W F1 .x/ � F2: .x/

for some x. Suppose that we observe x1 D 2; x2 D 4:5 from F1 and x3 D
4; x4 D 7 from F2. Then, using the convention that the rankings of the first
population are placed first, the observed ranking  D Œ1; 3; 2; 4�. The subclass
fg D fŒ1324� ; Œ3124� ; Œ1342� ; Œ3142�g. The extremal set E consists of those
permutations which allocate ranks 3; 4 to population 1 and ranks 1; 2 to population 2.
Hence, E D fŒ3412� ; Œ4312� ; Œ3421� ; Œ4321�g. The sum of the pairwise distances
using the Spearman distance is then given by

dS .fg ; E/ D
X

��fg

X

��E

dS .�; �/

D 112:

6.2 The Multi-Sample Location Problem with Ordered
Alternatives

We consider now the general location problem with ordered alternatives. Let
F1 .x/ ; : : : ; Fr .x/ be r continuous distributions and suppose that we wish to test

H0 W Fr .x/ D : : : D F1 .x/
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against the ordered alternative

H1 W Fr .x/ � : : : � F1 .x/

with strict inequality for some x. Let XNk�1C1; : : : ; XNk be a random sample of size
nk from Fk .x/ where N0 D 0 and Nk D n1 C : : :C nk; k D 1; : : : ; r . Rank the Nr
observations among themselves and write the permutation  as

 D Œ .1/ ; : : : ;  .N1/ j : : : ; j .Nr�1 C 1/ ; : : : ;  .Nr/�
0

where ranks from the same distribution are placed together. The equivalent subclass
fg corresponding to  may be written as

fg D
n
Œ .i11/ ; : : : ;  .i1n1/ j : : : ; j .Nr�1 C ir1/ ; : : : ;  .Nr C imr /� W
�
ik1; : : : ; iknk

�
�Pnk ; 1 � k � r

o0

and it consists of all permutations of the integers 1; : : : ; Nr which assign the same
set of ranks to the populations as  does. On the other hand, the extremal set consists
of all permutations which assign ranksNk�1C1; : : : ; Nk to population k. Formally,

ED˚Œi11; : : : ; i1n1 j : : : ; jNr�1 C ir1; : : : ; Nr C imr � W
�
ik1; : : : ; iknk

�
�Pnk ; 1�k�r� :

The main result is the following theorem.

Theorem 6.1. The test statistics corresponding to various distances for the location
problem with ordered alternatives are indicated below. The null hypothesis is
rejected in all cases whenever the distances are small.

(i) Spearman

dS .fg ; E/ D …r
kD1

.nkŠ/
2 Nr .Nr C 1/ .4Nr � 1/

12

�1
2

2

4…r
kD1 .nkŠ/

2

rX

kD1
.Nk�1 CNk/

NkX

iDNrk�1C1

 .i/

3

5 :

(ii) Kendall

dK .fg ; E/ D …r
kD1

.nkŠ/
2 Nr .Nr � 1/

2

C…r
kD1 .nkŠ/

2
r�1X

kD1

r�1X

tDk

NkX

iDNk�1C1

NkC1X

jDNkC1
.sgn . .i/ �  .j /// :

(iii) Spearman Footrule

dF .fg ; E/D2…r
kD1 .nkŠ/2

rX

kD1

NkX

j1DNk�1C1

NkX

j2DNk�1C1

Œ .j1/� .j2/� IŒ.j1/>.j2/�
nk

:
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(iv) Hamming

dH .fg ; E/ D …r
kD1 .nkŠ/

2

 
Nr �

rX

kD1

Yk

nk

!

where Yk is the cardinality of fNk�1 C 1; : : : ; Nkg and f .Nk�1 C 1/ ; : : : ;

 .Nk/g.

Proof. The proofs are the result of direct calculations. ut
In all cases, the null hypothesis is rejected whenever the distance between

sets is large. The Spearman statistic is a linear rank statistic involving the sums
of the rankings observed for each population. The Kendall statistic measures the
disagreements between pairs of objects, one from each population. The Spearman
Footrule test statistic is a function of the differences by which an observed ranking
from a given population exceeds each of the rankings prescribed by the alternative
for that population. The Hamming statistic counts for each population the number
of common rankings between the observed and the alternative.

Specializing to the two-sample case, r D 2 we see that the test statistics
associated with Spearman and Kendall are equivalent. However, such is not the case
for r > 2. Nonetheless, they are asymptotically equivalent.

Theorem 6.2. Under the null hypothesis, the standardized Spearman and Kendall
test statistics in the multi-sample location problem with ordered alternatives are
asymptotically equivalent when min .n1; : : : ; nr / ! 1.

Proof. The proof appears in Alvo and Pan (1997). It consists of obtaining expres-
sions for the variances of the Spearman and Kendall test statistics and then showing
that the standardized statistics and equivalent in mean square. ut
In the next theorem, we state the result on the asymptotic distribution of the test
statistics under the null hypothesis.

Theorem 6.3. Consider the multi-sample location problem with an ordered alter-
native. Let nk=Nr ! wk > 0 as min .n1; : : : ; nr / ! 1 and set Wk D w1 C : : :C
wk . Then, under the null hypothesis,

(i) Spearman

Sr D
NkX

iD1
c .i/

 .i/

Nr C 1

� Normal

�
Nr

2
; �2S

�

where

c .i/ D .Nk�1 CNk/ ;Nk�1 < i � Nk;; 1 � k � r
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and

�2S D N3
r

12

X
wkWkWk�1:

The test rejects for large values of Sr .
(ii) Spearman Footrule

Fr D
NrX

iD1
ci.i/

� Normal

�
N2
r

6
; �2F

�

where

cij D
NrX

sD1
ais .j � s/ I.j>s/

and

ais D
(

1
nk

i; s� fNk�1 C 1; : : : ; Nkg ; 1 � k � r;

0 otherwise:

Moreover, the variance

�2F D 1

Nr � 1

NrX

i;j

d 2 .i; j /

� MN3
r C o

�
N3
r

�

where d .i; j / D cij � ci: � c:j C c::. The test rejects for small values of Fr .
(iii) Hamming

Hr D
NrX

iD1
ai.i/

� Normal

�
1;
r � 1
Nr � 1

�
:

The test rejects for large values ofHr .

Proof. The proofs make direct use of Hoeffding’s general result and appear in Alvo
and Pan (1997). ut
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6.2.1 Asymptotic Distribution Under the Alternative

In this section we consider the asymptotic distribution of the test statistics under
contiguous alternatives. This will permit us to compute the relative efficiencies of
the test statistics. LetF .x/ be a continuous distribution function with density f .x/.
Define the inverse of F .x/

F�1 .u/ D inf fx W F .x/ � ug :

Set the information function, assumed finite,

I .f / D
ˆ 1

�1

	
f 0 .x/
f .x/


2
f .x/ dx

and let

' .u; f / D f 0 �F�1 .u/
�

f .F�1 .u//
; 0 < u < 1:

We rephrase the hypothesis testing problem as follows:

H0 W F1 .x/ D : : : D Fr .x/ D F
�
x � Nd�

against the ordered alternative

H1 W Fk .x/ D F .x � dk/ ; 1 � k � r

with Nd D 1
Nr

PNr
iD1 di and d1 < : : : < dr . We shall assume as min .n1; : : : ; nr /

! 1

N1=2
r dk ! ık; 1 � k � r:

We quote the following theorem which provides the asymptotic normality of
linear rank statistics under the alternative.

Theorem 6.4 (Theorem VI.2.4 Hájek and Sidak 1967). Let Sn D Pn
ID1 .ci � Nc/

an . .i// where the scores satisfy

lim

ˆ 1

0

fan .1C Œun� � ' .u//g2 du D 0

and

P
.ci � Nc/2

max1�i�n .ci � Nc/2 ! 1:
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Then if max1�i�n
�
di � Nd �2 ! 0 and I .f /

P�
di � Nd �2 + b2, a finite constant,

we have that Sn is asymptotically normal with mean

m D
nX

iD1
.c .i/ � Nc/ �di � Nd�

ˆ 1

0

' .u/ ' .u; f / du

and variance

�2 D
nX

iD1
.c .i/ � Nc/2

ˆ 1

0

.' .u/� N'/2 du:

We are now ready for the main result.

Theorem 6.5. Consider the multi-sample location problem with an ordered alter-
native. Let nk=Nr ! wk > 0 as min .n1; : : : ; nr / ! 1 and set Wk D w1 C : : :C
wk . Then, under the alternative hypothesis,

(i) Spearman

Sr D
NkX

iD1
c .i/

 .i/

Nr C 1

� Normal
�
m�
S ; �

2
S

�

where

m�
S D N2

r

2
C

NrX

iD1
.c .i/ � Nc/ �di � Nd �

ˆ 1

0

u' .u; f / du

c .i/ D .Nk�1 CNk/ ; Nk�1 < i � Nk;; 1 � k � r;N0 D 0

and

�2S D N3
r

12

X
wkWkWk�1:

(ii) Spearman Footrule

Fr D
NrX

iD1
ci.i/

� Normal

�
N2
r

6
C �F ; �

2
F

�
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where

�F D N3=2
r

X�
ık �

X
wj ıj

�

�
( ˆ Wk

Wk�1

.u �Wk�1/2

2
Œ' .u; f /� N' .f /� du

C
ˆ 1

Wk

wk

�
u � Wk CWk�1

2

�
Œ' .u; f /� N' .f /� du

)
:

(iii) Hamming

Hr D
NrX

iD1
ai.i/

� Normal

�
1C �H ;

r � 1
Nr � 1

�

where

�H D N�1=2
r

X
ık

ˆ Wk

Wk�1

Œ' .u; f /� N' .f /� du:

Proof. The proofs make direct use of Theorem 6.4 and Hoeffding’s general result
and appear in Alvo and Pan (1997). ut
The asymptotic distributions of the test statistics under both the null and the
alternative hypotheses permit us now to compute the asymptotic power efficiencies.
The latter depend on the underlying distributions. Alvo and Pan (1997) have shown
that for the test statistics considered, the asymptotic power is of the form

1 �ˆ.k˛ � B/

where k˛ denotes the .1 � ˛/ quantile of the standard normal distribution and B is a
constant depending onF and on the test statistic. The asymptotic power efficiency is
then defined to be B2. (See Chap. VII.1.3 in Hájek and Sidak 1967.) The following
examples were considered.

Example 6.2. Let r D 2; n1 D n2.

(a) Let f .x/ be a standard normal density. Then

B2
S D 0:9554;

B2
F D 0:8808;

B2
H D 0:6369:
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(b) Let f .x/ D 1
2
exp .�jxj/ be the double exponential density. Then

B2
S D 0:7500;

B2
F D 0:8333;

B2
H D 1:

(c) Let f .x/ D e�x .1C e�x/2 be the logistic density. Then

B2
S D 1;

B2
F D 0:9765;

B2
H D 0:7500:

We see that the Spearman (or equivalently the Kendall) statistic achieves
higher asymptotic power than either the Spearman Footrule or the Hamming
statistic when the underlying distributions are normal or logistic but lower if
the distribution is double exponential. In all cases, it worthy to note that the
Spearman Footrule is robust.

6.3 Tests Under Umbrella Alternatives

The general theory of hypothesis testing may also be applied in the case of an
umbrella alternative. Consider the following example on intelligence scores.

Example 6.3. The Wechsler Adult Intelligence Scale scores shown in Table 6.1
were recorded on 12 males listed by age groups. If we assume that the peak is
located in the 35–54 age group, we would like to test the null hypothesis that there
is no difference due to age against the alternative that the scores rise monotonically
prior to the ages 35–54 and decrease thereafter. More generally, we may not want to
specify the location of the peak age group.

Formally, let Xi.1/; : : : ; Xi.mi /; i D 1; : : : ; k; be k independent random samples
with Xi.l/; l D 1; : : : ; mi having an absolutely continuous distribution function
Fi .x/. In the parametric case, we may have Fi .x/ 	 F .x � �i /, where F has
median zero. We shall be concerned with testing the hypothesis of no treatment

Table 6.1 Wechsler adult
intelligence scale scores

Age group

16–19 20–34 35–54 55–69 >70

8.62 9.85 9.98 9.12 4.80

9.94 10.43 10.69 9.89 9.18

10.06 11.31 11.40 10.57 9.27
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effect against the alternative that there is a monotone treatment effect subject to a
change in direction. Alternatives of this type arise in situations where the treatment
effect changes in direction after reaching a peak. For example, the effectiveness
of a drug may change with time, the effectiveness in learning as a function of
age may peak at a certain stage, the reaction to increasing levels of a drug dosage
may peak at a certain point and decrease thereafter, etc. Formally, letting Fp be the
distribution where the turning point occurs, the null and the alternative hypothesis
are respectively

H0 W F1 .x/ D : : : D Fk .x/ ;

H1 W F1 .x/ � : : : � Fp�1 .x/ � Fp .x/ � FpC1 .x/ � : : : � Fk .x/ ;

with at least one strict inequality for some x. Equivalently, in the parametric case,
the hypotheses become

H0 W �1 D : : : D �k;

H1 W �1 � : : : � �p�1 � �p � �pC1 � : : : � �k;

with at least one strict inequality inH1. We note that an umbrella alternative contains
as special cases the ordered alternatives corresponding to p D k or p D 1.

We may use the general theory for constructing test statistics based on the ranks
of the observations for the situation when the location of the peak is known. Test
statistics will be determined using both the Spearman and Kendall distances. We
shall then obtain their asymptotic null distributions under the assumption that the
minimum of the sample sizes gets large. Finally, we shall propose an algorithm to
estimate the location of peak when it is unknown.

6.3.1 The Construction of the Test Statistics

In arriving at test statistics, we will assume that there is a single peak and that its
location is known.

We will also adopt the following notation. Let

ni D
iX

hD1
mh; i D 1; : : : ; k; n D nk; On D n �mp; n0 D 0:

In keeping with the general approach, we propose the following steps.

Step 1: Rank all the observations together so that the smallest gets rank 1, the next
smallest rank 2, etc. Let the n-dimensional vector

 D . .1/ ; : : : ;  .m1/ j .m1 C 1/ ; : : : ;  .m1 Cm2/ j : : : ;  .n//
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represent the ranks of the
˚
Xi.l/

�
; i D 1; : : : ; k; l D 1; : : : ; mi and grouped

by populations. In view of the continuity assumption on the distributions, ties
among the observations occur with probability zero.

Step 2: Define f�g to be the subclass of permutations  in the sense that ranks
occupied by identically distributed random variables are exchangeable. This
subclass consists of all the permutations  where the rankings within each
population are permuted among themselves only. The cardinality of fg is given
by the product .…mhŠ/.

Step 3: In the present context, permutations in the extremal set E are such that
ranks occupied by observations from Fi are always less than those from Fi 0 ; if
i < i 0 � p; whereas the reverse is true if p � i < i 0. Moreover, ranks attributed
to a distribution consist of consecutive integers. Hence the cardinality of E is
equal to c .…miŠ/ where c D �

k�1
p�1
�
.

The enumeration of the extremal set E is a two-stage procedure. First,
choose the relative order of the .p � 1/ populations F1; : : : ; Fp�1 among
F1; ::; Fp�1; FpC1; : : : ; Fk . This can be done in c D �

k�1
p�1
�

ways. Then
partition the integers 1; : : : ; n in accordance with the prescribed ordering of the
populations while taking into account corresponding sample sizes. The extremal
set E is finally obtained by permuting the integers within each population.
Population Fp is always allocated the lastmp integers, namely OnC1; : : : ; n. The
cardinality of E is therefore equal to c .…mi Š/.

Step 4: Let d .�; �/ be a distance function between two permutations �; � and
define the distance between the two sets fg and an extremal set E

d .fg ;E/ D
X

��fg

X

��E

d .�; �/ : (6.1)

Small values of d .fg ;E/ are inconsistent with the null hypothesis and conse-
quently lead to rejection of H0. In what follows, we shall consider the Spearman
and Kendall distances between permutations adapted to the present context:

Spearman:

dS .�; �/ D 1

2

kX

iD1

miX

lD1
Œ� .i .l// � � .i .l//�2

D n
�
n2 � 1�

12
�

kX

iD1

miX

lD1
Œ� .i .l//�

	
� .i .l//� nC 1

2



:

Kendall:

dK .�; �/ D
X

i1.l/<i2.l 0/

˚
1 � sgn

�
� .i1 .l// � � �i2

�
l 0
���

sgn
�
� .i1 .l//� �

�
i2
�
l 0
����
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D n .n � 1/

2

�
X

i1.l/<i2.l 0/

˚
sgn

�
� .i1 .l// � �

�
i2
�
l 0
���

sgn
�
� .i1 .l// � � �i2

�
l 0
����

:

6.3.2 The Test Statistic Corresponding to Spearman Distance

In this section, we derive the test statistic corresponding to Spearman distance under
the extremal set E when the location of the peak is known. Throughout, we shall
assume that permutations defined by the extremal sets are arranged in columns
indexed by 1 � i .l/ � n in such a way that ranks are in increasing order for
populations Fi ; i � p and in decreasing order when i � p.

Suppose that Fi ; i < p is in relative position j and hence populations
F1; : : : ; Fi�1 are in relative positions chosen from among the first .j � 1/
positions. Populations FiC1; : : : ; Fp�1 are then assigned positions chosen from
.j C 1/ ; : : : ; .k � 1/. This can happen with frequency

�
j�1
i�1
��
k�1�j
p�1�i

�
. The positions

of the remaining populations are then automatically determined. Together
populations F1; : : : ; Fi�1 and FkCi�jC1; : : : ; Fk are assigned the first aij integers
where

aij D
 
i�1X

hD1
mh

!
C
0

@
kX

hDkCi�jC1
mh

1

A

D ni�1 C n � nkCi�j :

Population Fi is assigned integers aij C 1; : : : ; aij C mi whose sum is equal to�
aij C miC1

2

�
mi . The process of permuting ranks within Fi implies that each entry

will contribute the sum .mi � 1/Š times. Hence, for each entry taking into account
the permutations, we have

.…mi Š/

�
aij C mi C 1

2

�
; i < p:

Finally, summing over each j , we have

.…mi Š/

kCi�pX

jDi

�
aij C mi C 1

2

� 
j � 1

i � 1

! 
k � 1� j

p � 1 � i

!
:

On the other hand for the data vector we have for each entry in Fi

.…miŠ/

	
Ni � nC 1

2
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where Ni represents the average of the ranks for the i th population. Similarly for
i > p; we may define

bij D
 

kX

hDiC1
mh

!
C
0

@
jCi�k�1X

hD1
mh

1

A

D n � ni C njCi�k�1:

The calculation of (6.1) then yields

dS .fg ; E/ D n
�
n2 � 1

�

12
c .…mi Š/

2 � c .…mi Š/
2 S

where S D
kP
iD1

mivi
� Ni � nC1

2

�
and

vi D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

c�1 kCi�pP
jDi

�
aij C 1Cmi

2

� �
j�1
i�1
��
k�1�j
p�1�i

�
i < p;

�
OnC 1Cmp

2

�
i D p;

c�1 k�iCpP
jDk�iC1

�
bij C 1Cmi

2

� �
j�1
k�i
��
k�1�j
i�1�p

�
i > p:

(6.2)

It is instructive to consider the special case mi D m where an equal number of
observations is taken from each population. In that case, aij D bij D .j � 1/m and

vi D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

c�1 kCi�pP
jDi

�
jmC 1�m

2

� �
j�1
i�1
��
k�1�j
p�1�i

�
i < p;

kmC �
1�m
2

�
i D p;

c�1 k�iCpP
jDk�iC1

�
jmC 1�m

2

� �
j�1
k�i
��
k�1�j
i�p�1

�
i > p

(6.3)

and hence

vi D

8
<̂

:̂

n i
p

C �
1�m
2

�
i � p;

n
.kC1�i /
kC1�p C �

1�m
2

�
i > p:

(6.4)
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It follows that

S D mn

8
<

:
X

i�p

i

p

	
Ni � nC 1

2



C
X

i>p

.k C 1 � i/

.k C 1 � p/
	

Ni � nC 1

2


9=

; : (6.5)

6.3.3 The Test Statistic Corresponding to Kendall Distance

In this section, we derive the test statistic corresponding to the Kendall distance.
Consider for now the situation when there is only one observation per population.
Fix 1 � i1 < p < i2 � k. Suppose that integer j is assigned to Fi1 and integer j2
is assigned to Fi2 ; with j2 > j . Then the frequency with which this can happen is
given by

 
j � 1

i1 � 1

! 
j2 � j � 1

j2 C i2 � i1 � k � 1

! 
k � j2
i2 � p

!
; j2 > j: (6.6)

In fact, from the point of view of the .p � 1/ populations F1; : : : ; Fp�1; the
number of ways of choosing .i1 � 1/ integers to be less than j is

�
j�1
i1�1

�
. If q is the

number of populations among F.i1C1/; : : : ; F.p�1/ which are assigned ranks greater
than j but less than j2, then we must have

q C i1 C .k � i2/ D j2 � 1: (6.7)

Their ranks are chosen from .j C 1/ ; : : : ; .j2 � 1/.
Summing over j2 we obtain the total number of negatives

H .i1; i2/ D
X

j2>j

 
j � 1

i1 � 1

! 
j2 � j � 1

q

! 
k � j2 � 1

i2 � p � 1

!
(6.8)

D
kCi1�i2X

jDi1

 
j � 1

i1 � 1

! 
k � 1 � j

k C i1 � j � p

!
(6.9)

D
kCi1�i2X

jDi1

 
j � 1

i1 � 1

! 
k � 1 � j
p � 1 � i1

!
: (6.10)

Alternatively, we may first sum over j

H .i1; i2/ D
kCp�i2X

j2DkCi1�i2

kCi1�i2X

jDi1

 
j � 1

i1 � 1

! 
j2 � j � 1

q

! 
k � j2 � 1

i2 � p � 1

!
(6.11)
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D
kCp�i2X

j2DkCi1�i2

 
j2 � 1
k � i2

! 
k � j2 � 1

i2 � p � 1

!
: (6.12)

It follows that the sum over the signs is given by the positives less the negatives

c � 2H .i1; i2/ : (6.13)

Considering only the second term in the Kendall distance and setting

W .i1; i2/ D
8
<

:

�c 1 � i1 < i2 � p;

c � 2H .i1; i2/ 1 � i1 < p < i2 � k;

c p � i1 < i2 � k;

(6.14)

it follows that the Kendall test statistic becomes

X

i1<i2

W .i1; i2/ fsgn Œ .i1/�  .i2/�g : (6.15)

We now consider the more general case with unequal observations when the
extremal set is E2. In that case, the extremal set is determined by first specifying
the ordering of the populations and then permuting within populations. It follows
that the weight function will be a function only of the indices i1; i2 since the sign of
the difference Œ .i1 .l// �  .i2 .l 0//� is determined entirely by the ordering of the
populations. The data set on the other hand consists of permuting the ranks occupied
by the ranks within populations. This yields the double sum

X

l

X

l 0

sgn
��
 .i1 .l// �  �i2

�
l 0
����

:

There is no contribution to the sum from permutations within each population. Set

U .i1; i2/ D
mi1X

lD1

mi2X

l 0D1

˚
sgn

��
 .i1 .l// � 

�
i2
�
l 0
�����

: (6.16)

Hence the Kendall test statistic for unequal numbers of observations when the
extremal set is E becomes

� D
X

i1<i2

W .i1; i2/ U .i1; i2/ : (6.17)
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6.3.4 The Asymptotic Distribution of the Test Statistics Under
the Null Hypothesis

In this section, we consider the asymptotic distribution of the Spearman and Kendall
test statistics under the null hypothesis.

Theorem 6.6. Assume that min .mi/ ! 1 in such a way as

mi

n
! �i > 0:

Define

�2p D .nC 1/2
Pk

iD1 mi .vi � Nv/2
12

:

Then the test statistic S D
kP
iD1

mivi
� Ni � nC1

2

�
corresponding to the Spearman

distance is asymptotically normal with mean 0 and variance equal to �2p .

Proof. We note that the Spearman test statistic S can be represented as a normalized
linear rank statistic

.nC 1/

kX

iD1
�i

miX

lD1

	
Ri.l/

nC 1
� 1

2



:

Since wi =n converges to a constant, the result follows since

max
i

.�i � N�/2
P
mi .�i � N�/2 � 1

minmi

max
i�k

.�i � N�/2
Pk

iD1 .�i � N�/2
! 0 as min .mi/ ! 1:

It can be shown that

Nv D nC 1

2
;

and in the equal sample size case the variance is given by

�2p D Œn .nC 1/�2 m

12

2

4
pX

iD1

�
i

p
� k C 1

2k

�2
C

kX

iDpC1

�
k C 1 � i

k C 1 � p � k C 1

2k

�2
3

5 :

ut



6.3 Tests Under Umbrella Alternatives 121

Theorem 6.7. The projection of

� D
X

i1<i2

W .i1; i2/U .i1; i2/

onto the space of linear rank statistics is given by

O� D 4c

n
S:

Proof. The proof of the asymptotic distribution of the Kendall statistic makes use
of the following projection adapted from Hájek and Sidak (1967):

E
˚
sgn

�
 .i1 .l//� 

�
i2
�
l 0
��� j .i/Dj �D

8
<̂

:̂

1
n�1 .2j � .nC 1// iDi1 .l/ ; 1 � j � n;
1
n�1 ..nC 1/� 2j / iDi2

�
l 0
�
; 1 � j � n;

0 Otherwise:

We refer the reader to Alvo (2008) for further details of the proof. ut
In the next theorem, we state the result showing that the Kendall and Spearman
statistics are asymptotically equivalent.

Theorem 6.8. Assume that min .mi/ ! 1 in such a way as

mi

n
! �i > 0:

Then Var �=Var O� ! 1 and the Kendall and Spearman test statistics are
asymptotically equivalent.

Proof. It was shown in Alvo (2008) that the ratio of the variances

Var .�/

Var . O�/ D 1C
P mi1

n

mi2
n
W 2 .i1; i2/

n
P mi

n

� u1i
n

� u2i
n

�2 ! 1 as n ! 1:

Hence the result follows. ut
The asymptotic distribution under the alternative hypothesis can be obtained in
a similar way as in Alvo and Pan (1997). Assume that F .x/ is a continuous
distribution function with density f .x/. Let F�1 .u/ D inf fx W F .x/ � ug and
define

' .u; f / D f 0 �F�1 .u/
�

f .F �1 .u//
; 0 < u < 1



122 6 General Theory of Hypothesis Testing

and

I .f / D
ˆ 1

�1

	
f 0 .x/
f .x/


2
f .x/ dx:

It can be shown that the asymptotic power efficiency is given by the expression

12
h´ 1
0

u' .u; f / du
i2

I .f /
:

We may thus conclude that the asymptotic power efficiency is greater when the
underlying distribution is logistic as compared to either the normal or the double
exponential.

6.3.5 The Test Statistics When the Location of the Peak
is Unknown

In the case when the location of the peak is unknown, we may construct a test
statistic as follows. Allowing p to vary, let

S�
p D Sp

�p
;D�

p D Dpq
Var

�
Dp

� ; p D 1; : : : ; k

be the standardized statistics and let

Smax D maxpS
�
p ;Dmax D maxpD

�
p:

The test based on Spearman distance rejects the null hypothesis in favor of an
umbrella alternative whenever Smax is large. Similarly, the test based on Kendall
distance rejects whenever Dmax is large. The asymptotic distribution of the respec-
tive test statistics under the null hypothesis is given in the next theorem.

Theorem 6.9. Let the vector S D �
S�
1 ; : : : ; S

�
k

�0
and let cov .S/ D BB 0. Under

the null hypothesis, if min .mi/ ! 1 in such a way as

mi

n
! �i > 0; i D 1; : : : ; k;

then S has asymptotically the distribution of BZ where Z has a standard
multivariate normal with mean 0 and covariance matrix I . Consequently, Smax has
asymptotically the distribution of maxBZ.
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Table 6.2 Critical values for the Spearman test statistic

k\% 1 1.5 2 2.5 3 3.5 4 4.5 5 10

3 2.67 2.54 2.44 2.36 2.29 2.23 2.18 2.14 2.09 1.80

4 2.77 2.63 2.53 2.45 2.39 2.33 2.28 2.23 2.19 1.89

5 2.82 2.67 2.59 2.51 2.44 2.38 2.33 2.29 2.24 1.95

6 2.86 2.73 2.63 2.55 2.48 2.42 2.37 2.32 2.28 1.98

7 2.89 2.74 2.65 2.57 2.50 2.44 2.39 2.24 2.30 2.00

Similarly, let D D �
D�
1 ; : : : ;D

�
k

�0
; then cov .D/ and cov .S/ are asymptotically

equivalent and Dmax has asymptotically the distribution of maxBZ.

Proof. See Alvo (2008) for the proof.
The distribution of maxBZ cannot be explicitly determined although it can be

easily simulated. The approximate p-value of the Spearman-based test is given by

P .maxBZ � smax/

where smax is the observed value of the Smax. The asymptotic critical values for the
Spearman statistic were very stable for m � 3. They are displayed in Table 6.2 for
m D 10. ut

Example 6.4. Returning to Example 6.3 on adult intelligence scores on males by
age groups, we calculate S D 155:79; �2p D 4486:464; and a standardized test

statistic S
�p

D 2:326. The resulting p-value is 0:01. On the other hand, using Kendall

tau, we calculate that � D 256, Var O� D 11485:348, Var O� D 12229:348. The
standardized test statistic becomes �p

Var �
D 256

110:586
D 2:315 which gives a p-

value of 0:01. It can be seen that the statistics based on the Spearman and Kendall
distances provided very close results.

6.3.6 Simulation Study

In this section, we report results on a limited simulation study. Four families of dis-
tributions were considered: normal, double exponential, logistic, and exponential.
Let k D 5; p D 3.

In Table 6.3, when the location of the peak is assumed to be known, we report the
probability of rejecting the null hypothesis when it is true. In that case the critical
value for rejection from Table 6.2 is 2.24. It is seen that the probabilities are very
close to the nominal value chosen to be 5%. For each value of the sample size, we
used 10,000 repetitions.

The power function was then determined for distributions F1; : : : ; F5 whose
location parameters were set equal to 0; 1

2
; 1; 1

2
; 0, respectively, under the alternative

and variances all equal to 1. The powers reported in Table 6.4 show that the test
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Table 6.3 Significance level for the Spearman and Kendall statistics for
the case k D 5, p D 3; N, normal; D, double exponential; L, logistic; E,
exponential

Spearman Kendall

m N D L E m N D L E

5 0.048 0.045 0.047 0.043 5 0.044 0.049 0.041 0.042

6 0.050 0.044 0.045 0.047 6 0.051 0.047 0.047 0.058

7 0.052 0.047 0.048 0.047 7 0.052 0.049 0.054 0.041

8 0.045 0.047 0.049 0.043 8 0.047 0.048 0.051 0.055

9 0.049 0.050 0.052 0.049 9 0.052 0.050 0.048 0.046

10 0.049 0.048 0.048 0.048 10 0.048 0.051 0.050 0.058

15 0.045 0.047 0.050 0.045 15 0.052 0.049 0.050 0.051

Tests reject when the statistics exceeds 2.24

Table 6.4 Power function for the Spearman and Kendall statistics for the
case k D 5, p D 3; N, normal; D, double exponential; L, logistic; E,
exponential

Spearman Kendall

m N D L E m N D L E

5 0.344 0.448 0.386 0.558 5 0.352 0.459 0.383 0.602

6 0.408 0.539 0.463 0.656 6 0.421 0.555 0.462 0.700

7 0.478 0.619 0.519 0.744 7 0.481 0.627 0.536 0.763

8 0.533 0.677 0.578 0.800 8 0.539 0.691 0.592 0.823

9 0.589 0.737 0.635 0.844 9 0.598 0.740 0.640 0.867

10 0.648 0.778 0.696 0.883 10 0.649 0.793 0.696 0.900

15 0.833 0.929 0.870 0.979 15 0.831 0.932 0.877 0.981

Tests reject when the statistics exceeds 2.24

statistics perform well with increasing values of m. Although not reported here,
additional simulations showed that the Spearman statistic performs well also when
the location parameters under the alternative are not equally spaced.

A further simulation can be done to determine how well one can choose the
peak distribution. The following algorithm may be used. Compute the distance
d .fg ; E/ to the extremal set for all possible values of p and then choose the
corresponding distribution Fp that minimizes that distance. We report in Table 6.5
the results of that simulation for both the normal distributions and the double
exponential. It can be seen that the probability of choosing the correct peak location
at p D 3 increases rapidly as m gets large while the probability of choosing the
other locations gets quite small. Moreover, the probability of correct selection is
higher for the double exponential than it is for the normal. This is natural since the
double exponential is more peaked.
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Table 6.5 Probability of choosing the peak

Normal Double exponential

m F1 F2 F3 F4 F5 m F1 F2 F3 F4 F5

5 0.07 0.17 0.52 0.17 0.07 5 0.05 0.16 0.59 0.15 0.05

6 0.06 0.16 0.57 0.16 0.06 6 0.04 0.14 0.65 0.14 0.03

7 0.04 0.15 0.61 0.15 0.04 7 0.03 0.13 0.69 0.12 0.03

8 0.04 0.15 0.63 0.15 0.04 8 0.03 0.12 0.72 0.12 0.02

9 0.03 0.14 0.67 0.13 0.03 9 0.02 0.11 0.74 0.11 0.01

10 0.02 0.13 0.70 0.12 0.03 10 0.01 0.10 0.78 0.10 0.01

15 0.01 0.10 0.79 0.09 0.01 15 0.00 0.06 0.86 0.07 0.00

Chapter Notes

Alvo and Pan (1997) also discussed the situation when the alternatives are unordered
by considering the union of the r! possible ordered alternatives.

For the problem of testing for umbrella alternatives, we refer the reader to Alvo
(2008) for additional references and for a brief history of the subject. The Spearman
statistic considers the data on either side of the peak separately whereas the Kendall
statistic (6.15) considers, in addition, the relationship of the data between both sides
of the peak. For small sample sizes this may increase the sensitivity of that statistic.
The approach presented may have potential applications in the study of isotonic
regression.



Chapter 7
Testing for Ordered Alternatives

In this chapter, we shall consider a randomized block experiment given by the model

Xij D bi C �j C eij; i D 1; ::; n; j D 1; : : : ; t:

where bi is the i th block effect, �j is the j th treatment effect, and the eij are
independent identically distributed error terms having a continuous distribution.
We wish to test the hypothesis of no treatment effect

H0 W �1 D �2 D : : : D �t

against the ordered alternative

H1 W �1 � �2 � : : : � �t

with at least one inequality strict. This problem has been considered in the literature
by Page (1963) and by Jonckheere (1954) who proposed different test statistics in
the case where there is complete data in each block.

In the next section, we shall use the general theory of hypothesis testing to derive
the appropriate test statistics when the data contains no missing values. It will be
seen that the approach leads to the Page statistic when using the Spearman distance.
However, the use of the Kendall distance does not lead to the Jonckheere test. We
obtain the asymptotic distributions in each case. In Sect. 7.2, we consider the more
general situation when one or more observations are missing from one or more
blocks and we obtain a generalization of the Page and Jonckheere tests. We will
apply these tests on the data in Example 7.2.

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5__7
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7.1 Test Statistics When the Data Is Complete in Each Block

We proceed to obtain the test statistics using the method outlined in Chap. 6.
For each i, let

Ri D ŒRi1; : : : ; Rit �

denote the permutation of the integers 1; : : : ; t which preserves the relative order of
the original data Xi1; : : : ; Xit .

Step 1: The observed permutation  is the ranking of all the nt data. We adopt the
convention that object .i � 1/ tCj is from block i and treatment j, for i D 1; ::; n

and j D 1; : : : ; t . The rank given to this object is then

 ..i � 1/ t C j / :

Step 2: The equivalence class fg then consists of all permutations ��P such that

� D Œ�1 .1/ ; : : : ; �1 .t/ j : : : j�n .1/ ; : : : ; �n .t/�

where .�i .1/ ; : : : ; �i .t// preserves the same relative order as .Xi1; : : : ; Xit / for
i D 1; : : : ; n.

Step 3: Define E to be the subclass of extremal permutations consisting of all
permutations ��P such that

� D Œ�1 .1/ ; : : : ; �1 .t/ j : : : j�n .1/ ; : : : ; �n .t/�

where .�i .1/ ; : : : ; �i .t// preserves the same relative order as .1; : : : ; t/ for i D
1; : : : ; n.

Step 4: Define the distance between the subclasses fg and E to be the sum of
pairwise distances between permutations �; � with �� fg ; ��E;

d .fg ; E/ D
X

��fg

X

��E

d .�; �/ :

Example 7.1. In order to illustrate the subclass E, suppose that t D 3; n D 2.
Hence, there are tnŠ D 720 possible rankings of which

�
6
3

��
3
3

� D 20 preserve
the monotone increasing ordering in each block. For instance, .123 j 456/ and
.234 j 156/ are such rankings.

In the next theorem we obtain the test statistics corresponding to the various
distance functions.
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Theorem 7.1. The test statistics for the two-way layout with an ordered alternative
are equivalently given by
Spearman:

dS .fg ; E/ 	 �
nX

iD1

tX

jD1
iRij :

Kendall:

dK .fg ; E/ 	 � 1
�
2t
t

�2
X

1�j1<j2�n

X

1�i1<i2�t
a
�
Ri1j1 ; Ri2j2

�
a Œi1; i2�

�
nX

jD1

X

1�i1<i2�t
sgn

�
Ri2j � Ri1j

�

where

a Œi; j � D
 
2t

t

!
�

t�iX

lD0

 
l C i C j � 1

i � 1

! 
2t � l � i � j

t � i

!
:

Spearman Footrule:

dF .fg ; E/ 	
nX

jD1

tX

iD1
f
�
i; Rij

�

where

f .i; j / D
t .n�1/CiX

sDi

t .n�1/CjX

lDj

 
s � 1

i � 1

! 
tn � 1
t � 1

! 
l � 1
j � 1

! 
tn � l
t � j

!
max .s; l/ :

Hamming:

dH .fg ; E/ 	 �
nX

jD1

tX

iD1
h
�
i; Rij

�

with

h .i; j / D
.n�1/tCmin.i;j /X

lDmax.i;j /

 
l � 1
j � 1

! 
tn � l
t � j

! 
l � 1

i � 1

! 
tn � l

t � i

!
:
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Proof. We sketch the proof for the Spearman case and refer the reader to Alvo and
Pan (1997) for the others.

Define compatibility .tn/Š � 1 vectors Cfg; CE such that the .t .j � 1/C i/ th
component is equal to 1 if � .t .j � 1/C i/ is in the set and 0 otherwise. Let

˚
j
�

for 1� j � n the set of permutations which keeps the same relative order as Rj
only and similarly Ej the set which keeps the same relative order for block j only.
Then, it can be shown that

TSCfg D 1

.tŠ/n�1
nX

jD1
TSCfj g

and

�
TSCfpg

�0 �
TSCfsg

� D 0; p ¤ s:

A combinatorial argument shows that for the component representing the i th
treatment and j th block,

�
TSCfg

�
ij

D .tnC 1/Š

.t C 1/Š .tŠ/n�1

	
Rij � t C 1

2



;

whereas

�
TSCfl g

�
ij

D
(
.tnC1/Š
.tC1/Š

�
Rij � tC1

2

�
l D j;

0 otherwise:

Finally,

dS .fg ; E/ D C
0

E	SCfg

D C
0

E

	
tn .tnC 1/ .tn � 1/

12
J � T

0

STS



Cfg

D tn .tnC 1/ .tn � 1/
12

" 
tn

t

!
: : :

 
2t

t

!#2

�
Pn

jD1
�
TSCfj g

�0 �
TSCfEj g

�

.tŠ/2
.n�1/ :

The result follows. ut
We also note that the Spearman and Hamming test statistics are functions of the
relative ranks within each block and are sums of independent random variables.
As a result, their asymptotic distributions will follow from the usual central
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limit theorems. The Kendall statistic, although not a sum of independent random
variables, can be shown to be asymptotically equivalent to a nondegenerate U-
statistic as n ! 1 and its asymptotic distribution will follow from the theory for U
statistics. We state these results in the next theorem.

Theorem 7.2. The asymptotic distributions as n ! 1 of the test statistics under
the null hypothesis are as follows:
Spearman:

nX

iD1

tX

jD1
iRij )L N

�
mS; �

2
S

�

where

mS D nt .t C 1/2

4

and

�2S D n

t � 1

"
t
�
t2 � 1�

12

#2
:

Kendall:

� 1
�
2t
t

�2
X

1�j1<j2�n

X

1�i1<i2�t
a
�
Ri1j1 ; Ri2j2

�
a Œi1; i2�

�
nX

jD1

X

1�i1<i2�t
sgn

�
Ri2j �Ri1j

� )L N
�
mK; �

2
K

�

where

mK D 0

and

�2K D n3t .t C 1/3
�
13t2 � 2t C 1

�

144 .t � 1/
:

Spearman Footrule:

nX

jD1

tX

iD1
f
�
i; Rij

� )L N
�
mF ; �

2
F

�
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where

mF D n

t

nX

jD1

tX

iD1
f .i; j /

and

�2F D n

t � 1
nX

jD1

tX

iD1
F 2
ij

Fij D f .i; j /� Nf .i; :/� Nf .:; j /C Nf .:; :/ ;
with dots indicating averaging over that index.
Hamming:

nX

jD1

tX

iD1
f
�
i; Rij

� )L N
�
mH; �

2
H

�

where

mH D n

t

nX

jD1

tX

iD1
h .i; j /

�2H D n

t � 1
nX

jD1

tX

iD1
Hij

and

H .i; j / D h .i; j /� Nh .i; :/� Nh .:; j /C Nh .:; :/

with dots indicating averaging over that index.

7.2 The Incomplete Case

It often happens in experiments, however, that one or more observations are missing
from one or more blocks. As an example, we consider the data in Table 7.1 which
displays lymph heart pressure measurements in mm Hg taken over 24 h at 6 h
intervals on 8 toads during an induced dehydration period. The data shows that
some cells are empty. If we identify the 6 h intervals as treatments and the toads
with the blocks, then we have n D 8; t D 4; k1 D k2 D k6 D k7 D k8 D 4; k3 D
k5 D 3; k4 D 2. We wish to test against the alternativeH1 W �1 � �2 � �3 � �4 with
at least one inequality strict. The data shows that some cells are empty.
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Table 7.1 Lymph heart
pressure in mm Hg taken over
a 24 h period at 6 h intervals
on 8 toads during dehydration

Time

Toad ID Block 6 h 12 h 18 h 24 h

21 1 11:865 9:832 7:567 10:168

22 2 5:601 4:892 4:032 3:126

23 3 14:415 14:185 7:800

24 4 13:267 9:953

25 5 8:006 7:793 7:582

27 6 17:692 16:644 15:327 11:573

28 7 9:027 7:973 11:855 6:820

29 8 9:789 7:967 7:758 7:849

In what follows, we shall obtain a generalization of the Page and Jonckheere test
statistics. To this end, define oil to be the label of the l th object ranked in the i th
block and set

A�
S .i/ D .t C 1/

.ki C 1/

kiX

lD1

�
oil � t C 1

2

��
��
i .oil /� ki C 1

2

�

where ki is the number of objects ranked in block i . This statistic represents a
measure of the association between the observed ranking ��

i for the treatments
labeled foilg and the complete criterion ranking specified by the alternative chosen
to be f1; 2; : : : ; kg. It can be interpreted as the sum of a naive statistic which ignores
gaps and a correction term:

A�
S .i/ D .t C 1/

.ki C 1/

kiX

lD1

�
l � t C 1

2

��
��
i .oil / � ki C 1

2

�
C

4

.ki C 1/

kiX

lD1
.oil � l/

�
��
i .oil /� ki C 1

2

�
:

The term .oil � l/ represents the number of missing observations to the left of oil
and is a weighting for the observed rank. The proposed test statistic is the sum

L�
S D

nX

iD1
A�
S .i/ :

A further informative expression may be had by defining

uij D ��
i .j / ıij C ki C 1

2

�
1 � ıij

�

Vi D
X

i

juij
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where ıij D 1 if treatment j is ranked in block i and D 0 otherwise. Note that for
each block i ,

tX

jD1

.t C 1/

.ki C 1/
uij D t .t C 1/

2
:

Then,

A�
S .i/ D t C 1

ki C 1
Vi � t .t C 1/2

4

and

L�
S D

nX

iD1

t C 1

ki C 1
Vi � nt .t C 1/2

4
:

In this form, we see that instead of taking the sum of the ranks assigned to
treatment j as we would in the complete case, we calculate a weighted sum of
the scores assigned to that treatment, which is the sum of the ranks in a block in the
complete case. Large values of L�

S are consistent with the alternative.
Turning attention to the Kendall statistic, let

ai .l;m/ D

8
ˆ̂̂
<

ˆ̂̂
:

sgn.��
i .oim/� ��

i .oil // if ıil D ıim D 1;

1 � 2��

i .oil /

.kiC1/ if ıil D 1; ıim D 0;
2��

i .oim/

.kiC1/ � 1 if ıil D 0; ıim D 1;

0 otherwise;

where ıil D 1 or 0 according to whether or not the l th treatment response is
observed in the i th block. We may now write the Kendall statistic

A�
K .i/ D

kiX

l<m

ai .l;m/

D
kiX

l<m

sgn
�
��
i .oim/ � ��

i .oil /
�C

4

.ki C 1/

kiX

lD1
.oil � l/

�
��
i .oil /� ki C 1

2

�
:
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The extended Jonckheere statistic can then be defined to be

L�
K D

nX

iD1
A�
K .i/ :

Alternatively, setting U �
i .l; m/ D 1

2
.1C ai .l;m//, we obtain the extended

Jonckheere statistic

LK
� D 2

nX

iD1

X

l<m

U �
i .l; m/� nt .t � 1/

2
:

The statisticsL�
S ; L

�
K are respectively generalizations of the Page and Jonckheere

statistics for ordered alternatives. Under H0 and conditional on the pattern of
missing observations, the following theorems can be shown to be true.

Theorem 7.3. L�

S

�S
) N .0; 1/ as n ! 1, ki � 2, where �2S D Pn

iD1 �2S .i/ ;

�2S .i/ D ki .t C 1/2

12 .ki C 1/

kiX

lD1
.oil � ol /

2 ;

and ol D Pki
lD1 oil=ki .

Proof. The proof consists of demonstrating the Lyapunov condition holds and then
applying the Lindeberg-Feller central limit theorem. See Alvo and Cabilio (1995b)
for the details. ut
Theorem 7.4. L�

K

�K
) N .0; 1/ as n ! 1 ki � 2; where �2K D Pn

iD1 �2K .i/ and

�2K .i/ D 16

.t C 1/2
�2S .i/C 5ki .ki � 1/

18
C 8

3 .ki C 1/

kiX

lD1
.oil � l/

�
l � ki C 1

2

�
:

Proof. The proof consists once again of demonstrating the Lyapunov condition
holds and then applying the Lindeberg-Feller central limit theorem. It is much more
involved than the proof of Theorem 7.3. It requires expressions found in Quade
(1972) for the moments of the Kendall correlation between the criterion ranking
with blanks removed and the incomplete ranking in each block. See Alvo and
Cabilio (1995b) for the details. ut
Example 7.2 (Application). We may illustrate the use of these methods in the
following example. We shall use the statistic L� by first ranking from largest to
smallest. Table 7.2 contains the scores ui l , weights tC1

kiC1 ; and sums
Pn

iD1 tC1
kiC1ui l .
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Table 7.2 Scores ui l , weights tC1
kiC1

, and sums
Pn

iD1
tC1
kiC1

ui l

Toad ID Block
Time

6h 12 h 18 h 24 h tC1
kiC1

21 1 1 3 4 2 1

22 2 1 2 3 4 1

23 3 2 1 2 3 1.25

24 4 1 1:5 1:5 2 1.66

25 5 1 2 2 3 1.25

27 6 1 2 3 4 1

28 7 2 3 1 4 1

29 8 1 2 4 3 1Pn
iD1

tC1
kiC1

ui l 11:416 18:250 22:500 27:833

Table 7.3 Null distribution of Vi

V1 none missing V3 missing .1/ V4 missing .2; 3/ V5 missing .3/

Value Prob. Value Prob. Value Prob. Value Prob.

20 0.0416 18 0.1666 13.5 0.5 17 0.1666

21 0.1250 19 0.3333 16.5 0.5 18 0.1666

22 0.0416 21 0.3333 19 0.1666

23 0.1666 22 0.1666 21 0.1666

24 0.0833 22

25 0.0833

26 0.0833

27 0.1666

28 0.0416

29 0.1250

30 0.0416

The value of L�
S D 26:75. Table 7.3 gives the null distributions of the relevant

V 0
i s. Note that in this case, V1; V2; V6; V7, and V8 are identically distributed. Note

further that in general, the distributions depend on the values of ki ; t as well as
the pattern of missing values. The distribution of L� can now be generated by
implementing a program to calculate the distribution of the sum of the independent
variables tC1

kiC1Vi: As a result, we find that P.L�
S � 26:75/ D 0:00006 is the p-value

of the test. A naive approach to the problem consists of deleting the incomplete
blocks and conducting a Page test on the remaining 5 blocks. This yields an exact p-
value of 0:002. It is not difficult to imagine examples where the naive approach
would not be viable. Table 7.4 lists other selected upper probabilities for this
distribution, specifically the critical values with corresponding probabilities close
to but not exceeding :1; :05; :025; :01; :005, and :001.
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Table 7.4 Selected critical
values of L� and
corresponding normal
probabilities for the block
pattern in Table 7.1

l P
�
L�

S � l
�

P
�
Z � l

7:6376

�

10 0.0999 0.0952

12.75 0.0489 0.0475

15 0.0248 0.0248

17.75 0.0092 0.0101

19.5 0.0046 0.0053

22.75 0.0009 0.0014

7.2.1 Asymptotic Efficiency

Missing observations in blocks should result in a loss of power and it is interesting
to determine for a given value of t how this loss depends on ki . We assume for
this exercise that we have n replications of a BIBD of t treatments in b blocks and
k0 treatments per block, with each treatment occurring r times in the basic design.
Thus there are nb blocks observed. For a basic design, � denotes the number of
times each pair of treatments occurs together and

bk0 D t r; � D r .ko � 1/

.t � 1/ :

As a basis for comparisons, one generally assumes that the number of times
each treatment appears is the same for the two designs under consideration. In our
case, this requires that for each replication of b blocks in the incomplete design, we
have bk0

t
blocks in the complete design. Restricting attention to the extended Page

statistic, we can show that the asymptotic relative efficiency in the Pitman sense of
the extended Page test to the Page test is

.k0 � 1/ .t C 1/

.k0 C 1/ .t � 1/
:

7.3 Tests for Trend in Proportions

There are several instances in practice when one is interested in testing for a trend
in proportions. For instance, one may be interested in the trend in birth rates, in
mortality rates, or in the incidence of a certain disease. As an example, we will
consider the mortality statistics in South Africa during the period 2000–2008. One
may ask if there is an increasing trend in the mortality rates.
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In such problems, one usually observes at time values t1 < t2 < : : : < tk a
random sample of ni binary variables

˚
yij
�

with yij taking values 1 or 0 with
unknown probabilities �i and 1 � �i , respectively. The observed data may be
viewed as

Time t1 t2 � � � tk Total

y1 y2 � � � yk y

n1 � y1 n2 � y2 � � � nk � yk n� y

Total n1 n2 � � � nk n

where yi D P
j yij , y D P

i yi . Let N�i D yi=ni and N� D y=n. Without loss in
generality, we shall be interested in detecting a monotone increasing trend in �i .

Let fxi g represent arbitrary preselected scores, x1 < x2 < : : : < xk , which
mimic a monotone increasing time trend. The linear regression model of yij can be
expressed by

�i D ˛ C ˇ .xi � Nxk/ (7.1)

and subject to the constraint that
P

i ni .xi � Nxk/ D 0where Nxk D P
nixi=n yields

estimates

Ǫ D
P

i ni
N�iP

i ni
D N�; Ǒ D

P
i ni .xi � Nxk/

� N�i � N��
P

i ni .xi � Nxk/2
:

The hypothesis of homogeneity is

H0 W �i D �; i D 1; ::k

(or equivalently ˇ D 0). Possible alternatives are

H1 W �1 � �2 � : : : � �kwith at least one strict inequality;

H2 W �i ¤ �j ; for at least one pair .i; j / :

HypothesisH2 can also be expressed as

X

i<j

�
�i � �j

� D
X

i

.k C 1 � 2i/ �i ¤ 0: (7.2)

Under the null hypothesis of homogeneity, the estimate of variance of Ǒ is given by

V
� Ǒ� D

N� �1 � N��
P

i ni .xi � Nxk/2
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and consequently we reject H0 in favor of H1 (or equivalently ˇ > 0/ for large
values of the statistic

Ǒ=
r
V
� Ǒ� D

P
i ni .xi � Nxk/

� N�i � N��
q

N� �1� N��
qP

i ni .xi � Nxk/2
(7.3)

which for large samples has a standard normal. If we suppose further that N� is small
(of the order of 1 %–2 %) so that N�2 is negligible, then the statistic becomes

P
i ni .xi � Nxk/

� N�i � N��
qP

i ni
N� .xi � Nxk/2

:

The difference between observed and expected frequencies ni
� N�i � N�� is multiplied

by the score effect .xi � Nxk/ in the numerator whereas the square of the score effects
is weighted by the expected frequencies in the denominator. The statistic provides
a test of trend in frequencies as opposed to a test of trend on the proportions. Since
the sample correlation between

˚ N�i � N�� and fxi � Nxkg is given by

P
i ni .xi � Nxk/

� N�i � N��
qP

i ni
� N�i � N��2Pi ni .xi � Nxk/2

D Ǒ
vuut
P

i ni .xi � Nxk/2
P

i ni
� N�i � N��2

;

we may view the test of monotonicity as equivalent to a test that the correlation is
0. Alternatively, the test of homogeneity may be conducted by treating the data as
coming from a 2 x k contingency table. That test rejectsH0 in favor of H2 for large
values of the statistic

X

i

�
ni N�i � ni N��2

ni N� C
X

i

�
ni
�
1 � N�i

� � ni
�
1 � N���2

ni
�
1 � N�� (7.4)

D
P

i ni
� N�i � N��2

N� �1 � N�� (7.5)

which for large samples ni ! 1 has a chi-square distribution with .k � 1/ degrees
of freedom. In that case there is no need to define scores. We note that even though
H1 is included in H2; one-sided tests which focus strictly on H1 will in general be
more powerful.
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The regression model may be extended to apply to two or more groups of
individuals. For example, to model the birth rates of men and women in the
population, the functional regression model becomes

�i D ˛ C ˇ .xi � Nxk/C 

�
˛0 C ˇ0 .xi � Nxk/

�
(7.6)

where 
 takes value 1 for the first group and 0 otherwise.
In the next section, we make use of the general theory of hypothesis testing to

construct a nonparametric test statistic based on the ranks of the observations to test
H0 againstH2.

7.3.1 The Construction of the Test Statistics

We recall the following measures of similarities due to Spearman, Kendall,
and Hamming, respectively, for rankings � D .� .1/ ; : : : ; � .n//0 ; � D
.� .1/ ; : : : ; � .n//0:

AS .�; �/ D
nX

iD1

�
�.i/ � nC 1

2

��
�.i/� nC 1

2

�

AK.�; �/ D
X

i<j

sgn .�.j / � �.i// sgn .�.j / � �.i//

AH.�; �/ D
nX

iD1

nX

jD1

�
I Œ�.i/ D j � � 1

n

��
I Œ�.i/ D j � � 1

n

�

where sgn.x/ is either 1 or �1 depending on whether x > 0 or x < 0 and where
I Œ�� is the indicator function which is 1 or 0 depending on whether the statement in
brackets holds or not. In the model considered, the ranking which describes the time
points may be viewed as a tied ranking with tie pattern

ı1 D .n1; n2; : : : ; nk/ (7.7)

and with ordering

*
.1; : : : ; n1/ .n1 C 1; : : : ; n1 C n2/ : : :

 
k�1X

iD1
ni C 1; : : : ;

kX

iD1
ni

!+
: (7.8)

On the other hand, the binary variables yij have with e D 2 the simple tie pattern

ı2 D .y; n � y/ : (7.9)
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7.3.2 The Test Statistic Corresponding to Spearman
and Kendall Similarity

To compute the test statistic corresponding to Spearman similarity, note that

AS

�
�ı1; �ı2

�

D
nX

iD1
E

	�
�.i/ � nC 1

2

�
jC .�/



E

	�
�.i/� nC 1

2

�
jC .�/



:

The average of the compatible ranks at time t1 is g1 D �
n1C1
2

�
; at time t2

it is g2 D n1 C �
n2C1
2

�
, and so on. In general at time tl the average rank is

gl D Pl�1
iD1 ni C �

nlC1
2

�
; l D 1; ::; k. Clearly,

Pk
iD1 nigi D n.nC1/

2
. Hence, the

conditional expectation

E Œ�.l/jC .�/� D gl ; l D 1; : : : ; ni :

Turning attention now to the binary observations, the average rank for the n � y

which take value 0 is l1 D n�yC1
2

, whereas the average rank for the y observations

which take value 1 is l2 D n � y C
�
yC1
2

�
D n � y

2
C 1

2
. It follows that at time ti ;

E Œ�.l/jC .�/� D

l1 l D 1; : : : ; ni � yi ;
l2 l D ni � yi C 1; : : : ; ni :

Since l2 � l1 D n
2

and
Pk

iD1 nigi D n.nC1/
2

; we have that

AS .�ı1 ; �ı2 / D
kX

iD1

	
gi � nC 1

2



Œl2yi C .ni � yi / l1�

D n

2

kX

iD1

	
gi � nC 1

2



yi :

Hence, we may define the Spearman statistic to be

S D
kX

iD1

	
gi � nC 1

2



yi (7.10)

D
kX

iD1
ni ci

�
�i � �

�
(7.11)

where ci D gi � nC1
2

and
Pk

iD1 ni ci D 0.
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We now consider the test statistic corresponding to Kendall’s similarity measure.
Note that within a given time period, the difference between ties is zero and hence
there is no contribution to the distance. Between different time periods we have

nX

i<j

E Œsgn .�.j / � �.i// jC .�/�E Œsgn .�.j /� �.i// jC .�/�

D
kX

i<j

�
.ni � yi / yj � �

nj � yj
�
yi
�

D
kX

i<j

�
niyj � nj yi

�
:

Now

kX

jDiC1
nj D

2

4n � ni �
i�1X

jD1
nj

3

5

D
	
n � gi � ni � 1

2



:

Hence,

AK

�
�ı1; �ı2

� D
kX

iD1
yi

	
gi � ni C 1

2



�

kX

iD1
yi

	
n � gi � ni � 1

2




D 2

kX

iD1

	
gi � nC 1

2



yi

and it is seen that the Kendall and Spearman statistics are equivalent.

7.3.3 The Test Statistic Corresponding to Hamming Similarity

For the Hamming similarity, we have for time ti ; l D Pi�1
qD1 nq C 1; : : : ;

Pi
qD1 nq

and consequently

E ŒI .�.l/ D j / jC .�/� D

8
<̂

:̂

1
ni
;
Pi�1

qD1 nq C 1 � j � Pi
qD1 nq;

0; otherwise;

9
>=

>;
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For the data, it is seen that at time ti and l D Pi�1
qD1 nq C 1; : : : ;

Pi
qD1 nq;

E ŒI .�.l/ D j / jC .�/� D P .� .l/ D j jC .�//

D
(

yi
niy

j D 1;
.ni�yi /
ni .n�y/ j D 0:

Consequently, the Hamming similarity measure for tied data becomes

AH .�ı1 ; �ı2/

D
nX

i;j

.E ŒI .�.i/ D j / jC .�/�E ŒI .�.i/ D j / jC .�/�/ � 1

D
kX

iD1

	
yi
yi

niy
C .ni � yi /

.ni � yi /

ni .n � y/



� 1

D
kX

iD1
ni

" N�2i
y

C
�
1 � N�i

�2

.n � y/

#
� 1

D n

N� �1 � N��
kX

iD1

h
ni
� N�i � N��2

i
: (7.12)

This is the usual goodness-of-fit statistic.

7.3.4 The Asymptotic Distribution of the Test Statistics Under
the Null Hypothesis

The asymptotic distribution of the Spearman test statistic under the null hypothesis
may be determined under two different assumptions. Let fyi g be k independent
binomials (ni ; �i / and suppose we would like to test H0 vsH1. In most applications
the asymptotic situation of interest occurs when

ni ! 1; with
ni

n
! �i > 0; i D 1; : : : ; k: (7.13)

We now show that the Spearman statistic has an asymptotic normal distribution
under either (7.13) or under the condition that the fni g are bounded while k ! 1.
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Theorem 7.5. Suppose that both y ! 1 and n � y ! 1 as n ! 1. Under Ho

the Spearman test statistic has asymptotically a standard normal distribution, i.e.,

Pk
iD1 ni ci

� N�i � N��
qPk

iD1 c2i ni �i .1 � �i /

!d N .0; 1/

under either .i/ (7.13) or (ii) the fni g are bounded and k ! 1.

Proof. (i) The Spearman statistic (7.11) is expressible as a linear combination
of independent binomials,

Pk
iD1 ciyi where ci D gi � nC1

2
and gi DPi�1

iD1 ni C �
niC1
2

�
. Hence, under (7.13), we have approximately yi Ðd

N .ni�i ; ni �i .1 � �i //. In view of the independence of the fyi g,

X
ciyi Ðd N

�X
cini �i ;

X
c2i ni �i .1 � �i /

�

and hence

.
P
ciyi �P

cini �i /qP
c2i ni �i .1 � �i /

!d N .0; 1/ :

UnderH0;
P
cini �i D 0 and hence

P
ciyiqP

c2i ni �i .1 � �i /
!d N .0; 1/ :

(ii) For this part, note that the Spearman statistic is expressible as

kX

iD1

niX

jD1
ciyij

where the
˚
yij
�

are Bernoulli .�i /. We need to show that

max1�i�k c2iPk
iD1

Pni
jD1 c2i

! 0; as k ! 1:

Note that if ni � M; for all i ,

c2i � g2i C .nC 1/2

4

� M2

�
i � 1

2

�2
C 1

4
C .nC 1/2

4
D O

�
k2
�
:
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Moreover, since n D Pk
iD1 ni � Mk

kX

iD1

niX

jD1
c2i D

kX

iD1
nig

2
i � n .nC 1/2

4

�
kX

iD1
nig

2
i � M3k3

4

D
kX

iD1
ni

0

@
i�1X

jD1
nj

1

A
2

C
kX

iD1
.ni C 1/

0

@
i�1X

jD1
nj

1

AC
kX

iD1
ni

�
ni C 1

2

�2
� M3k3

4

�
kX

iD1
ni .i � 1/2 C 2

kX

iD1
.i � 1/ D O

�
k3
�
:

It follows that

max1�i�k c2iPk
iD1

Pni
jD1 c2i

D O.
1

k
/ ! 0; as k ! 1

and the theorem is proved. ut
We may estimate �i either by N�i or by N� . In the first case, the test rejects whenever

Pk
iD1 ciyiqPk

iD1 c2i ni N�i
�
1 � N�i

� � z˛

where z˛ is the upper 100 .1 � ˛/ percentage point from a standard normal
distribution. The expression for the estimate of the asymptotic power becomes

1 �ˆ

0
B@z˛ �

Pk
iD1 ni ci �iqP
c2i ni �i .1� �i /

1
CA D ˆ

0
B@

Pk
iD1 ni ci �iqPk

iD1 c2i ni �i .1 � �i /

� z˛

1
CA :

It is seen that the power converges to 1 with increasing n.
Alternatively, we may use the statistic

Pk
iD1 ni ci

� N�i � N��
q

N� �1 � N��
qPk

iD1 ni c2i
(7.14)
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Table 7.5 Mortality
statistics for South Africa
2000–2008

Year Number of deaths Population size

2000 416; 155 43; 789; 115

2001 454; 882 43; 997; 828

2002 502; 050 44; 187; 637

2003 556; 779 44; 344; 136

2004 576; 709 42; 718; 530

2005 598; 131 42; 768; 678

2006 612; 778 43; 647; 658

2007 603; 094 43; 586; 097

2008 592; 073 43; 421; 021

which in the simulation studies reported appears to more closely attain the pre-
scribed significance level. In the case of equal sample sizes, ni D n0, say, the test
statistic (7.14) takes the simpler form

Pk
iD1

�
i � kC1

2

� � N�i � N��
p
n0

q
N� �1 � N��

q
k.k2�1/

12

:

Example 7.3. Returning to the data on mortality rates in South Africa in Table 7.5,
we calculated values of 260:1 and 70:3 for the Spearman and Hamming similarity
measures, respectively. These yielded p-values< 10�4.

We consider another application for 6 beaches in Hong Kong.

Example 7.4. Table 7.6 shows the geometric E. Coli count for each of 6 beaches
in the Sai Kung District of Hong Kong during the period 1986–2009. A beach is
classified as good if the count is at most 24. The Spearman test statistic yielded a
value of 22.98 which points to strong evidence of an upward trend in the annual
proportion of good beaches.

Chapter Notes

It was seen that the Spearman distance induces the Page statistic (Page 1963)
whereas the Kendall distance does not induce the Jonckheere statistic (Jonckheere
1954).

There are a number of different approaches to the problem of testing for trend
in proportions which are reported in Alvo and Berthelot (2012). For the well-
known Cochran-Armitage test (Cochran 1954; Armitage 1955), it is known that
when the expected values ni�i or ni .1 � �i / are small, the normal approximation



Chapter Notes 147

Table 7.6 Annual geometric
mean E. Coli level (per 100
ml) in the Sai Kung District.
Beaches: Clear Water Bay
First (1), Clear Water Bay
Second (2), Hap Mun Bay
(3), Kiu Tsui (4), Silverstrand
(5), Trio (6), and number of
good beaches (7)

Year (1) (2) (3) (4) (5) (6) (7)

1986 102 69 9 18 255 49 2

1987 133 52 6 9 62 32 2

1988 39 35 4 3 129 35 2

1989 80 38 3 5 192 23 3

1990 51 42 4 5 89 31 2

1991 30 14 2 4 106 14 4

1992 52 42 2 5 94 32 2

1993 31 16 3 4 56 20 4

1994 30 35 3 3 72 14 3

1995 55 39 6 3 226 16 3

1996 34 43 5 5 126 29 2

1997 62 66 3 5 148 30 2

1998 41 44 2 4 99 21 3

1999 11 12 2 4 32 17 5

2000 16 26 2 5 61 10 4

2001 28 22 1 5 100 12 4

2002 28 14 2 4 133 6 4

2003 17 21 4 5 97 10 5

2004 9 10 3 17 74 2 5

2005 16 19 4 14 67 6 5

2006 20 13 4 11 30 5 5

2007 14 9 3 6 33 2 5

2008 11 19 5 12 35 12 5

2009 15 27 3 19 31 5 4

may become unreliable. As a consequence the Cochran-Armitage test becomes
conservative and may lead to a type I error rate greater than to the prescribed
significance level. As well, the Cochran-Armitage test is very sensitive to the choice
of scores.

A small simulation study was conducted in Alvo and Berthelot (2012). For k=5,
three cases were considered: proportions which are strictly increasing, proportions
which are nondecreasing, and some which have no particular pattern. It was seen
that the Spearman measure is quite often superior in the first two cases. Predictably
the power is smaller when the f�i g are closer together than when they are further
apart.



Chapter 8
Probability Models for Ranking Data

Probability modeling for ranking data is an efficient way to understand people’s per-
ception and preference on different objects. Various probability models for ranking
data have been developed, particularly in the last decade where many new problems
involving a large number of objects emerged. In their review paper on probability
models for ranking data, Critchlow et al. (1991) broadly categorized these models
into four classes: (1) order statistics models, (2) paired comparison models, (3)
distance-based models, and (4) multistage models. Since their publication in 1991,
variants of these models and new models have been developed. In this chapter, we
will introduce these four classes of models and describe their properties.

Before introducing these models, we would like to describe several distinctive
features of these models, which may affect the choice of models to be considered in
our study:

(a) Some models allow for the presence of covariates
In collecting data on rankings of a set of objects from a sample of judges,
we may also obtain information on some covariates from the judges (judge-
specific covariates) and covariates of the objects (object-specific covariates).
Some covariates may even be judge-object-specific. For example, in collecting
customers’ preferences on a list of mobile phones, the judge-specific covariates
could be age, gender, and income, and the object-specific covariates could be
prices, weights, and brands, and the judge-object-specific covariates could be
some personal experience on using each phone or brand. Most models except
for the distance-based models and multistage models can allow for the presence
of covariates.

(b) Some models are predictive
If we want to build a model to predict a ranking assigned by an individual, we
need to have a predictive model for ranking data. In this case, the presence of
covariates is a must and it is expected that the population is heterogeneous and
different covariates may lead to different ranking of objects predicted from the

© Springer Science+Business Media New York 2014
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fitted model. However when the population is homogeneous, the rankings given
by judges can be assumed to be generated from a probability model on rankings.
A distance-based model is a typical example.

(c) Some models can handle big ranking data with a large number of objects
Most ranking models should work well for a small number of objects, say
less than 10 or 15. Some may become computationally demanding or even
infeasible to use for a large number of objects, examples of which will be the
Thurstone order statistics models as its likelihood requires the computation of
a high-dimensional integration. Recently, the development of social networks
and the competitive pressure to provide customized services motivated many
new ranking problems on hundreds or thousands of objects. Recommendations
on products such as movies, books, and songs are typical examples in which the
number of objects is extraordinarily large. In recent years, many researchers in
statistics and computer science have developed models to handle such big data.

8.1 Order Statistics Models

Among the above four classes of probability models for ranking data, the class of
order statistics models has the longest history in the statistical and psychological
literature. Dating back to 1927, Thurstone published his/her famous paper A law of
comparative judgment in Psychological Review in which the ranking of two objects
was considered. The basic idea behind this approach is that a judge may have tastes
that fluctuate from one instant to another according to the perception of each object
which is not perfectly predictable and hence is a random variable. The ordering of
these random variables then determines the judge’s ranking of the objects. Thurstone
(1927) proposed a ranking process where the ranking �j of t objects given by a
random sample of judge j .j D 1; 2; : : : ; n/ is determined by the relative ordering
of t random utilities y1j ; y2j ; � � � ; ytj , where yj D .y1j ; � � � ; ytj /0; j D 1; � � � ; n
are independent.

The probability of observing a ranking �j under the class of order statistics
models is

P.�j / D P.yŒ1�j j > yŒ2�j j > : : : > yŒt �j j /; �n 2 P (8.1)

where < Œ1�j ; Œ2�j ; � � � ; Œt �j > is the ordering of objects corresponding to ranking
�j such that judge j assigns rank i to object Œi �j (i.e., j .Œi �j / D i or �1

j .i/ D
Œi �j ) and P is the set of all t Š possible rankings. It should be noted that the order
statistics model (8.1) is invariant under any strictly increasing transformation of the
yij ’s for which the ordering of the yij ’s is preserved.

Critchlow et al. (1991) observed that if the utilities y1j ; � � � ; ytj are allowed
to have arbitrary dependencies, any probability distribution on rankings can be
expressed as in (8.1). To simplify the model, some probabilistic structures on y’s
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are assumed. The most common one is to assume that the yij ’s are independent
with cumulative distribution function. Fi .y/ D F.y � ˛ij / or equivalently

yij D ˛ij C "ij ; (8.2)

where ˛ij is the expected utility determined by judge j to object i and "j D
."1j ; � � � ; "tj /0; j D 1; � � � ; n are i.i.d. random vectors with cumulative distribution
function F . Such models are referred to as Thurstone order statistics models
(see Yellot 1977; Critchlow et al. 1991). Two famous Thurstone models studied
extensively in the literature are

• Thurstone model (Thurstone 1927; Daniels 1950; Mosteller 1951):

F is the standard normal.

• Luce model (Bradley and Terry 1952; Luce 1959):

F is Gumbel (type I extreme value)1; i.e., F."/ D exp.� exp.�"//.

Since the Luce model leads to a closed form,

P.�j / D
t�1Y

iD1

exp.˛Œi �j j /Pt
lDi exp.˛Œl�j j /

; (8.3)

most applications and extensions are based on the Luce model. As the exponential
distribution satisfies the memoryless property, it may not be appropriate in modeling
the running times in many track competitions. Henery (1983) and Stern (1990a,b)
thus extended the Luce model to the Thurstone model with error "ij D ln.uij /,
where uij follows a Gamma distribution with shape r and scale 1. Properties of the
Thurstone order statistics model can be found in Henery (1981) and Critchlow et al.
(1991).

8.1.1 Luce Model

The Luce model can be viewed as an extension of the multinomial (conditional)
logit model for top choice (McFadden 1974). For example, in examining 3 objects
by judge j , object 2 is selected as the top-choice, i.e., the ordering is < 2; _; _ >,
with the following top choice probability:

P.< 2; _; _ >/ D P.y2j > y1j ; y3j / D exp.˛2j /

exp.˛1j /C exp.˛2j /C exp.˛3j /
:

1Note e�" follows an exponential distribution with mean 1.
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Also, the probability of observing the ranking of 3 objects (3, 1, 2) (i.e., ordering:
< 2; 3; 1 >) under the Luce model is

P.y2j > y3j > y1j / D e˛2j

e˛1j C e˛2j C e˛3j
� e˛3j

e˛1j C e˛3j
:

It is not difficult to see that the ranking probability under the Luce model can be
expressed as a function of top-choice probabilities only.

Theorem 8.1. Let pij be the probability that object i is ranked first by judge j
among the full list of t objects. That is, pij D P.yij > ykj 8k ¤ i/. Then the
probability of ranking �j with ordering < Œ1�j ; Œ2�j ; � � � ; Œt �j > under the Luce
model is given by

P.�j /DpŒ1�j j
pŒ2�j j

1 � pŒ1�j j

pŒ3�j j

1 � pŒ1�j j � pŒ2�j j
� � � pŒt�1�j j
1 � pŒ1�j j � pŒ2�j j � � � � � pŒt�2�j j

:

Proof. The proof follows by observing that under the Luce model,

pij D exp.˛ij /

exp.˛1j /C � � � C exp.˛tj /
: ut

Definition 8.1 (Independence of Irrelevant Alternatives (IIA) Tversky 1972).
Let P.ajS/ be the probability of choosing an object a from a choice set S 

f1; 2; � � � ; tg. The independence of irrelevant alternatives asserts that object a is
preferred to object b, by the (top) choice probability, is independent of the choice
set S .

From Definition 8.1, we have,

P.ajS/ > P.bjS/ ” P.ajfa; bg/ > P.bjfa; bg/ ” P.ajfa; bg/ > 1

2
:

If object a is preferred to object b out of the choice set fa; bg, then introducing a
third alternative object c, thus expanding the choice set to fa; b; cg, must not make
object b preferable to object a. In other words, the choices between a and b depend
on the preferences between a and b only, i.e., it is irrelevant to c.

Theorem 8.2 (Luce 1959). The Luce model satisfies the IIA.

Proof. Under the Luce model, it is easy to show that

P.ajS/ D exp.˛a/P
i2S exp.˛i /

and thus P.ajS/
P.bjS/ > 1 ” exp.˛a/

exp.˛b/
> 1 ” exp.˛a/=.exp.˛a/Cexp.˛b//

exp.˛b/=.exp.˛a/Cexp.˛b//
> 1 ”

P.ajfa;bg/
P.bjfa;bg/ > 1. ut
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Example 8.1. Is IIA a good property? No. Let us consider the problem of selecting
a travel mode to work among a car (C), a blue bus (B), or a red bus (R).
Initially a traveler has a choice of going to work by car or taking a blue bus
with P.C / D P.B/ D 1

2
. Now a red bus is introduced and the traveler

considers the red bus to be exactly like the blue bus (i.e., P.R/ D P.B/).
However, in the Luce model, the odds P.C /=P.B/ is the same whether or not
another alternative exists. The only probabilities for which P.C /=P.B/D 1 and
P.R/=P.B/D 1 are P.C /DP.B/DP.R/D 1

3
. In real life, we would expect

P.C /D 1
2

and P.B/DP.R/D 1
4
.

It is natural that our choice on an object (such as the blue bus) will depend on our
preference on similar objects or even its substitutes (like the red bus). By ignoring
such dependency, the estimation of choice/ranking probabilities of course will be
biased. In other words, if the list of all travel modes contains many irrelevant objects
such as walking, bicycling, and skateboarding, it might be acceptable to estimate the
probability for choosing car/bus based on the subset {car, bus} instead of the full list
{car, bus, walking, bicycling, skateboarding}. However the estimation in this case
will be relatively less efficient.

8.1.2 Rank-Ordered Logit Models

The Luce model can be extended to incorporate covariates as well. For example,
we may include M covariates of judge j , xmj , m D 1; 2; : : : ;M , into the mean
utility, i.e.,

˛ij D ˇi0 C
MX

mD1
ˇimxmj ; (8.4)

where ˇim, m D 0; 1; : : : ;M are the parameters specific to object i , and P

covariates of object i , zpi , p D 1; 2; � � � ; P , into the mean utility, i.e.,

˛ij D ˇi0 C
PX

pD1

pzpi ; (8.5)

where 
p , p D 1; 2; � � � ; P are the parameters specific to all judges.
A further extension of the Luce model (specified in Allison and Christakis

(1994)) includes judge-specific covariates, object-specific covariates, and their
interactions or judge-object-specific covariates (wqij ; q D 1; 2; � � � ;Q/ into the
mean utility:

˛ij D ˇi0 C
PX

pD1

pzpi C

MX

mD1
ˇimxmj C

QX

qD1
�qwqij ; (8.6)
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where �q; q D 1; 2; � � � ;Q are the parameters specific to all judges and objects.
These extensions of the Luce models are known as rank-ordered logit (ROL) model
in the field of econometrics (see for example Chapman and Staelin 1982; Beggs
et al. 1981; Hausman and Ruud 1987).

In the Luce and ROL models described above, the log-likelihood function is
globally concave, and hence a global maximum exists (Beggs et al. 1981). The
maximum likelihood estimates (MLE) of the model parameters can thus be obtained
using standard methods, e.g., Newton-Raphson algorithm. Besides MLE, Koop and
Poirier (1994) used a Bayesian method to estimate the parameters.

Both the Luce and ROL models can be built using the R package mlogit. Here,
we use an example to demonstrate these two models.

Example 8.2. Consider a ranking data set for gaming platforms in which 91 Dutch
students were asked to rank 6 gaming platforms: Xbox, PlayStation, GameCube,
PlayStation Portable, Gameboy, or a personal computer (PC). The data set also
contains information on whether the student currently owns each platform (own),
the age of the student (age), and the number of hours spent on gaming per week
(time). This data set was first studied in Fok et al. (2012) and can be accessed in the
R package, mlogit.

First, we fit a Luce model (9.3) with PC as the reference level and the parameter
estimates are shown in Table 8.1. It is noticed that students prefer Xbox for playing
games the most and then PC, PlayStation, PlayStation Portable, GameCube, and
Gameboy. However, playing games on Xbox and PlayStation are not significantly
different from that on PC.

Now, we extend the Luce model by including object-specific covariate (own) and
judge-specific covariate (time) into the model. This leads to the rank-ordered logit
(ROL) model and the parameter estimates are shown in Table 8.1. It can be observed
that owning a platform has a positive effect on the preference for the same platform
and that students who spend more time playing games prefer a PC more than other
gaming platforms. Applying the likelihood ratio test to compare the two models, it
is clearly that the ROL model is substantially better. Notice that including age as
another judge-specific covariate does not significantly improve the likelihood of the
ROL (from �517:37 to �516:55), and hence the results are omitted here.

ROL models are popular for ranking data, and many extensions have been
developed by different scholars. Koop and Poirier (1994) extended the use of ROL
models to more general cases of ranking data. The number of objects ranked by n
judges can be different. The rank given by each judge is not necessarily complete.
The objects that each judge is assigned to rank can be different as well. Fok et al.
(2012) studied the mixtures of ROL models and found them to be useful in analyzing
ranking capabilities.
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Table 8.1 Parameter
estimates of the fitted Luce
and ROL models for the
gaming platform data

Variable Luce ROL

Intercept

Xbox 0.13 (0.18) 1.40 (0.29)

PlayStation �0:00 (0.18) 0.94 (0.27)

PlayStation Portable �0:65 (0.18) 0.80 (0.28)

GameCube �1:22 (0.20) 0.05 (0.30)

Gameboy �1:28 (0.19) 0.09 (0.28)

Platform ownership 0.96 (0.19)

Hours spent on gaming

Xbox �0:17 (0.05)

PlayStation �0:13 (0.04)

PlayStation Portable �0:23 (0.05)

GameCube �0:19 (0.05)

Gameboy �0:24 (0.05)

Log-likelihood �547:00 �517:37

8.1.3 Some Non-IIA Order Statistics Models

In spite of the fact that the ranking probability (8.1) under both the Luce and ROL
models has a closed form, the unrealistic IIA property makes them fit some data not
so well (see for example Brook and Upton 1974; Tallis and Dansie 1983; Bockenholt
1993). The main reason is that no correlation is assumed among the errors over the
objects. This lack of correlation translates into an unrealistic substitution pattern
among objects in some situations (see Example 8.1). Therefore, to overcome these
problems, dependency structures other than those in the Thurstone order statistics
model are required.

8.1.3.1 Multivariate (Generalized) Extreme Value (GEV) Models

McFadden (1978) introduced the multivariate (or generalized) extreme value model
which provides closed-form top-choice probabilities without the IIA restriction. The
GEV assumes that the error terms in (8.2) follows a generalized extreme value
distribution with cumulative distribution function

F."1; � � � ; "t / D expŒ�H.e�"1 ; � � � ; e�"t /�;

where G D exp.�H/ is a t-dimensional copula and all the univariate marginals
are Gumbel distributed. Of course, when H.x1; � � � ; xI / D PI

iD1 xi , the model
degenerates to the Luce model. The GEV model is very flexible and Joe (2001)
showed that the GEV model can fit various types of ranking data. Note that this
result does not provide a way to construct the functionH . In fact, the popular GEV
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model used in the literature is the nested logit model in which the function H is
expressed in a hierarchical form:

H.x1; � � � ; xI / D
KX

kD1
.
X

j2Bk
x
1=�k
j /�k ;

where B1; � � � ; BK are K nonoverlapping subsets (called nests) formed from a
partition of all objects.

Under the nested logit model, the "i ’s are correlated within nests but uncorrelated
between nests. For example, suppose K D 2, B1 D{car}, and B2 D{red bus, blue
bus}, it is reasonable that one who prefers traveling with the red bus may also prefer
traveling with the blue bus and vice versa, but one’s preference on car may not
depend on his/her preference on the two buses. Such dependency structure can be
represented by the following hierarchical form:

car

private

red bus blue bus

public

8.1.3.2 Mixed Logit Models

Note that the rank-ordered logit model assumes that the utility for each object
follows the linear model:

yij D x0
ijˇ C "ij

where the error terms "ij ’s are independent and identically (type I) extreme value
distributed. To allow dependency among the utilities, mixed logit models assume
that the beta coefficients are judge-specific:

yij D x0
ijˇj C "ij

and further assume that ˇj ’s are random and independent identically distributed
with density f .ˇj�/, where � are some unknown parameters. A typical choice of f
is the normal density with mean ˇ0 and covariance matrix �. Such randomness in
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ˇj allows unexplainable variation of covariates’ impacts over judges and correlation
of utilities across objects. McFadden and Train (2000) showed that any discrete
choice model can be well approximated by a mixed logit model with appropriate
specification of the distribution of ˇj and the covariates x.

Conditional on ˇj , the probability of observing �j by judge j is given in (8.3)
with ˛ij D x0

ijˇj . Integrating it over the density of ˇj then gives the unconditional
probability under the mixed logit model:

P.�j / D
ˆ t�1Y

iD1

 
e

x0

Œi �j j
ˇ

Pt
lDi e

x0

Œl�j j
ˇ

!
f .ˇ/ dˇ:

If the mixing distribution f .ˇ/ is discrete, with ˇ taking a finite set of distinct
values, the mixed logit model becomes the latent class model and sometimes called
the finite mixture model.

Both nested logit and mixed logit models can be built using the R package
mlogit which provides maximum likelihood estimation and the numerical inte-
gration (if any) in the likelihood is estimated using simulation techniques such as
quasi-Monte Carlo method.

Example 8.3. The R package mlogit contains a top-choice data set named
Electricity in which 361 individuals were asked in a series of at most 12 choice
experiments. In each experiment, each individual was asked to choose the best out of
four hypothetical electricity suppliers with different combination of characteristics
including electricity price (pf ) (in cents per kWh) and length of contract (cl , in
years) offered, whether a time-of-day rate (tod ) is included, whether a seasonal rate
(seas) is included, and whether the supplier is local (loc) or is well known (wk).

We first fit a multinomial logit (MNL) model (i.e., the Luce model with the top
choice only) using mlogit and its parameter estimates are shown in Table 8.2.
The significant negative coefficients for pf , tod , seas, and cl and the significant
positive coefficients for loc and wk indicate that individuals tend to prefer a local
and well-known supplier which offers a shorter length of contract with a lower fee.

Note that Electricity is a clustered data set as each individual was involved
in a number of choice experiments. The independence assumption of the choice
responses used in the multinomial logit model is therefore invalid. To incorporate
such clustered effect, we use the mixed logit model with utility yijk for supplier i
given by individual j in the kth experiment as follows:

yijk D x0
ijkˇj C "ijk;

where ˇj ’s are independent identically distributed. As the utilities made by
individual j share the same random ˇj , the utilities given by the same individual
are correlated whereas the utilities given by different individuals are uncorrelated.
This helps describe the clustered effect.
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Table 8.2 Parameter
estimates of the fitted MNL
and mixed logit models for
the electricity supplier data

Variable MNL Mixed logit

Fixed effect

Electricity price (pf ) �0:625 (0.023) �0:933 (0.034)

Length of contract (cl) �0:108 (0.008) �0:196 (0.013)

Time-of-day rate (tod )? �5:463 (0.184) �8:838 (0.286)

Seasonal rate (seas)? �5:840 (0.187) �8:860 (0.287)

Local (loc)? 1.442 (0.051) 2.105 (0.080)

Well known (wk)? 0.996 (0.045) 1.493 (0.065)

Random effect (standard deviation)

Electricity price (pf ) 0.200 (0.011)

Length of contract (cl) 0.357 (0.018)

Time-of-day rate (tod )? 2.489 (0.120)

Seasonal rate (seas)? 1.274 (0.107)

Local (loc)? 1.503 (0.089)

Well known (wk)? 0.885 (0.075)

Log-likelihood �4958:6 �3970:3

Using the independent normal assumption for the ˇj ’s, the mixed logit model
is fitted using mlogit and the parameter estimates are shown in Table 8.2. It can
be seen from the log-likelihood that the mixed logit model significantly performs
better than the multinomial logit model and, in fact, all random effects in the mixed
logit model are highly significant. Based on the fitted model, it is easy to see that
an individual with mean coefficients for pf and cl is willing to pay 0:196=0:933D
0:21 cent per kWh extra in order to shorten the contract length by one year.

8.1.3.3 Multilevel Logit Models

Notice that the above mixed logit model is basically a mixed model with both fixed
and random effects. If more sampling information and dependency structures are
available, more structured mixed models can be considered. For instance, Skrondal
and Rabe-Hesketh (2003) applied a three-level logit model to analyze ranking data
collected from the 1987–1992 panel of the British Election Study for rankings
on three political parties: Conservative, Labour, and Liberal (Alliance) (indexed
by a), given by a sample of voters (indexed by j ) casting votes at different
elections (indexed by i ) over different constituencies (indexed by k). Note that in
this three-level model, elections are nested within voters and voters nested within
constituencies. One model considered is the random intercepts model at voter and
constituency levels:

yaijk D ˛aijk C 
ajk C 
ak C "aijk
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where ˛aijk D zaijkb C x0
aijkˇa represents the fixed effects while 
ajk and


ak represent, respectively, the random intercepts at both voter and constituency
levels, and constituency level only. This special kind of multilevel logit models
for ranking data can be built using the Stata program gllamm (http://gllamm.org/
examples.html) which provides maximum likelihood estimation with integration
approximated by quadrature methods.

8.2 Paired Comparison Models

Motivated by the connection between a ranking of objects and all pairwise com-
parisons of objects, paired comparison models aim at combining models for paired
comparisons to generate a probabilistic model for ranking data. Note that a ranking
of t objects can be indexed by t.t � 1/=2 pairwise preferences Iab , a < b, where
Iab D 1 means object a is preferred to object b. Smith (1950) assumed that the
ranking is deduced from a set of t.t�1/=2 arbitrary paired comparison probabilities
pab , a < b, where pab is the probability of object a being preferred to object b. The
model does not allow ties, so that pab D 1 � pba. Assuming mutual independence
of these t.t � 1/=2 paired comparisons under the Smith model, the probability of
observing a ranking �j is thus given by

P.�j / D C
Y

f.a;b/Wj .a/<j .b/g
pab; (8.7)

where the constant C is chosen to make the probabilities sum to 1. Note that
the Smith model is indexed by t.t � 1/=2 parameters fpabg. Imposing additional
constraints on the fpabg proposed by Mallows (1957) leads to two important
subclasses of the Smith model: the Mallows-Bradley-Terry model and the Mallows
model.

The Class of Mallows-Bradley-Terry (MBT) Models. To reduce the number of
parameters in (8.7), Bradley and Terry (1952) proposed to re-parametrize pab as

pab D va
va C vb

where vi is a positive value associated with object i and the sum of all vi 0s is
equal to 1. Mallows (1957) substituted this form into the Smith model, which
leads to the following ranking model. For any ranking �j with associated ordering
< Œ1�j ; Œ2�j ; � � � ; Œt �j >,

P.�j / D C.v/
t�1Y

sD1
.vŒs�j /

t�s

http://gllamm.org/examples.html
http://gllamm.org/examples.html
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where C.v/ is the proportionality constant. Since the Bradley-Terry paired compar-
ison probabilities are invariant when multiplying the vi ’s by a positive constant, the
number of free parameters is reduced to t � 1. Larger values of vi correspond to
more preferred objects, just as the Thurstone order statistics model.

The Class of Mallows Models. Before discussing details of the model, we first
give the definition of modal ranking.

Definition 8.2. A probability model is said to be strongly unimodal with modal
ranking �0, if its ranking probability has the unique maximum at � D �0.

Mallows (1957) further simplified the MBT model by re-expressing pab as

pab D 1

2
C 1

2
tanhŒ..a/ � .b// ln.�/C ln.�/�;

where �; � 2 .0; 1/. Thus, the Mallows model is given by

P.�j / D c.�; �/�dS .;0/�dK.;0/;

where c.�; �/ is chosen to make the probabilities sum to 1 and dS.�;�0/ and
dK.�;�0/ are the Spearman and Kendall distances between � and �0 (c.f.
Sect. 3.1). The Mallows model has the interpretation that the ranking probability
decreases geometrically according to increasing distance from � to the modal
ranking �0.

For a detailed review on paired comparison models, readers can refer to David
(1988). Pendergrass and Bradley (1960) further extended the paired comparison
models to triple comparison models.

8.3 Distance-Based Models

A distance function is useful in measuring the discrepancy between two rankings.
The usual properties of a distance function between two rankings � and � are: (1)
reflexivity, d.�;�/ D 0; (2) positivity, d.�; �/ > 0 if � ¤ �; and (3) symmetry,
d.�; �/ D d.�; �/. For ranking data, we require that the distance, apart from having
these usual properties, must be right invariant,

d.�; �/ D d.� ı �; � ı �/; where � ı �.i/ D �.�.i//:

This requirement ensures that a relabeling of the objects has no effect on the
distance. If a distance function satisfies the triangle inequality d.�; �/ � d.�; � /C
d.� ; �/, the distance is said to be a metric.

Some popular right-invariant distances have been given in Chap. 3. Note that
the Spearman Footrule and Kendall distance are metrics, but the Spearman distance
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is not, just as the squared Euclidean distance is not. To produce a metric version of
the Spearman distance, we may take the square root of the Spearman distance, as
given by

 
tX

iD1
Œ�.i/ � �.i/�2

!0:5
: (8.8)

Readers can refer to Critchlow et al. (1991) for further examples of distance
functions.

It is reasonable to assume that there is a modal ranking �0, and we expect most
of the judges to have rankings close to �0. According to this framework, Diaconis
(1988) developed a class of distance-based models,

P.�j�;�0/ D e��d.� ;�0/

C.�/
; (8.9)

where � � 0 is the dispersion parameter and d.�; � / is an arbitrary right-invariant
distance. In the particular case where we use Kendall as the distance function, the
model is called the Mallows’ �-model (Mallows 1957). Note that Mallows’ �-
models also belong to the class of paired comparison models (Critchlow et al. 1991).
Critchlow and Verducci (1992) and Feigin (1993) provided more details about the
relationship between distance-based models and paired comparison models.

In distance-based models, the ranking probability is the greatest at the modal
ranking �0 and the probability of a ranking will decay the further it is away from the
modal ranking �0. The rate of the decay is governed by the parameter �. For a small
value of �, the distribution of rankings will be more concentrated around �0. When
� becomes very large, the distribution of rankings will look more uniform. The
closed form for the proportionality constant C.�/ only exists for some distances.
In principle, it can be solved numerically by summing the value e��d.�;�0/ over
all possible � in P . This numerical calculation could be time-consuming, as the
computational time increases exponentially with the number of objects.

Given a ranking data set f�k; k D 1; : : : ; ng and a known modal ranking �0, the
maximum likelihood estimator (MLE) O� of the distance-based model can be found
by solving the following equation:

1

n

nX

kD1
d.�k;�0/ D EO�;� Œd.�;�0/�; (8.10)

which equates the observed mean distance with the expected distance under the
distance-based model.

The MLE can be found numerically because the observed mean distance is a
constant and the expected distance is a strictly decreasing function of O�. For the
ease of solving, we re-parametrize � with � where � D e��. The range of � lies in
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.0; 1� and the value of O� can be obtained using the method of bisection. Critchlow
(1985) suggested applying the method with 15 iterations, which yields an error of
less than 2�15. Also, the central limit theorem holds for the MLE O�, which is shown
in Marden (1995).

If the modal ranking �0 is unknown, it can be estimated by the MLE O�0 which
minimizes the sum of distance over P , that is,

O�0 D argmin
�0�P

nX

kD1
d.�k;�0/: (8.11)

For a large t , a global search algorithm for MLE O�0 is not practical because the
number of possible rankings is too large. Instead, as suggested in Busse et al. (2007),
a local search algorithm should be used. They suggested iteratively searching for
the optimal model ranking with the smallest sum of distances

Pn
kD1 d.�k;�0/

over �0 2 ….m/, where ….m/ is the set of all rankings having a Cayley distance
(Sect. 8.3.2) of 0 or 1 to the optimal modal ranking found in the mth iteration:

O�.mC1/
0 D argmin

�0�….m/

nX

kD1
d.�k;�0/:

Cayley’s distance dC .�; � / is defined to be the minimal number of transpositions
needed to transform � to � . A reasonable choice of the initial ranking O�.0/

0 can be
formed by ordering the mean ranks.

Distance-based models can handle partial ranking, with some modifications in
the distance measures. There are several ways to handle partially ranked data in
distance-based models. Beckett (1993) estimated the model parameters using the
EM algorithm. On the other hand, Adkins and Fligner (1998) offered a non-iterative
maximum likelihood estimation procedure for Mallows’ �-model without using the
EM algorithm. Critchlow (1985) suggested replacing the distance metric d by the
Hausdorff metric d�. The Hausdorff metric between two partial rankings �� and
� � equals

d�.��; � �/ D maxŒ max
�2C.��/

min
�2C.��/

d.�; � /; max
�2C.��/

min
�2C.��/

d.�; � /�; (8.12)

where C.��/ is the set of complete rankings compatible with �� (see Defini-
tion 3.1).

8.3.1 	-Component Models

Fligner and Verducci (1986) extended the distance-based models by decomposing
the distance metric d.�; � / into t � 1 distance metrics,

d.�; � / D
t�1X

iD1
di .�; � /; (8.13)
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where di.�; � /’s are statistically independent. Kendall’s distance can be decom-
posed in this form. Fligner and Verducci (1986) developed two new classes of
ranking models, called �-component models and cyclic structure models, for the
decomposition.

Fligner and Verducci (1986) showed that Kendall distance satisfies (8.13):

dK.�;�0/ D
t�1X

iD1
Vi ; (8.14)

where

Vi D
tX

jDiC1
I fŒ.�1

0 .i// � .�1
0 .j //� > 0g: (8.15)

Here, V1 represents the number of adjacent transpositions required to place the
best object in �0 in the first position and then remove this item in both � and �0,
and V2 is the number of adjacent transpositions required to place the best remaining
object in �0 in the first position of the remaining items, and so on. Therefore, the
ranking can be described as t�1 stages, V1 to Vt�1, where Vi D m can be interpreted
as m mistakes made in stage i .

By applying dispersion parameter �i at stage Vi , the Mallow’s �-model is
extended to

P.�j
;�0/ D e�Pt�1
iD1 �i Vi

C.
/
; (8.16)

where 
 D f�i ; i D 1; : : : ; t � 1g and C.
/ is the proportionality constant, which
equals

t�1Y

iD1

1 � e�.t�iC1/�i
1 � e��i : (8.17)

These models were named t�1 parameter models in Fligner and Verducci (1986),
but were also named �-component models in other papers (e.g., Critchlow et al.
1991). Mallow’s �-models are special cases of �-component models when �1 D
: : : D �t�1.

Based on a ranking data set f�k; k D 1; : : : ; ng and a given modal ranking �0,
the maximum likelihood estimates O�i , i D 1; 2; : : : ; t � 1 can be found by solving
the equation

1

n

nX

kD1
Vk;i D e�O�i

1 � e�O�i
� .t � i C 1/e�.t�iC1/O�i

1 � e�.t�iC1/O�i
; (8.18)
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where

Vk;i D
tX

jDiC1
I fŒk.�1

0 .i// � k.
�1
0 .j //� > 0g: (8.19)

The left- and right hand sides of (8.18) can be interpreted as the observed mean and
theoretical mean of Vi , respectively.

The extension of distance-based models to t � 1 parameters allows more
flexibility in the model, but unfortunately, the symmetric property of distance is lost.
Notice here that the so-called “distance” in �-component models can be expressed
as

X

i<j

�iI fŒ.�1
0 .i//� .�1

0 .j //� > 0g; (8.20)

which is obviously not symmetric, and hence it is not a proper distance measure.
For example, in �-component model, let � D .2; 3; 4; 1/;�0 D .4; 3; 1; 2/:

d.�;�0/ D �1V1 C �2V2 C �3V3 D 3�1 C 0�2 C 1�3

¤ 1�1 C 2�2 C 1�3 D d.�0;�/:

The symmetric property of distance is thus not satisfied. Lee and Yu (2012)
introduced new weighted distance measures which can retain the properties of a
distance and also allow different weights for different ranks. For the details, read
Chap. 11.

8.3.2 Cyclic Structure Models

Cayley’s distance can also be decomposed into t �1 statistical independent metrics.
Fligner and Verducci (1986) showed that dC .�;�0/ can be decomposed as

dC .�;�0/ D
t�1X

iD1
Xi .�;�0/; (8.21)

where Xi.�;�0/ D I.i ¤ maxf�.i/, �.�.i//, : : :g/ and �.i/ D .�1
0 .i//.

This generalization can be illustrated by an example found in Fligner and
Verducci (1986). Suppose there are t lockers and each locker has one key that can
open it. The key for locker j is placed in locker �.j /. Without loss of generality, let
the cost of breaking a locker be one. The minimum cost of opening all lockers will
then be C.�;�0/, and it can be decomposed as the sum of costs of opening locker
�1.i/, i D 1; 2; : : : t � 1, which equals Xi.�;�0/.
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If we relax the assumption that the costs of breaking every locker are equal, the
total cost will become

t�1X

iD1
�iXi.�;�0/; (8.22)

where �i is the cost of opening locker i . This “total cost” can be interpreted as
a weighted version of Cayley’s distance. Similar to the extension of Mallow’s �-
models to �-component models, Fligner and Verducci (1986) developed the cyclic
structure models using the weighted Cayley distance. Under this model assumption,
the probability of observing a ranking � is

P.�j�;�0/ D e�Pt�1
iD1 �iXi .�;�0/

C.�/
; (8.23)

where � D f�i ; i D 1; : : : ; t � 1g and C.�/ is the proportionality constant, which
equals

t�1Y

iD1
f1C .t � i/e��i g: (8.24)

For a ranking data set f�k; k D 1; : : : ; ng with a given modal ranking �0, the
MLEs O�i , i D 1; 2; : : : ; t � 1 can be found from the equation

O�i D log.t � i/� log
NXi

1 � NXi
; (8.25)

where

NXi D
Pn

kD1 Xi.�k;�0/

n
: (8.26)

8.4 Multistage Models

The class of multistage models includes ranking data models that postulate the
ranking process can be decomposed into a sequence of independent stages. For a
ranking of t objects, the ranking process can be decomposed into t � 1 stages,
where at stage i , the i th object is selected. In this respect, the Luce models and �-
component models described above clearly belong to the class of multistage models.
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Fligner and Verducci (1988) proposed the general multistage models with t .t�1/
2

parameters. They are

p.m; r/ D Prob.Vr D m/; (8.27)

where

t�rX

mD0
p.m; r/ D 1 (8.28)

and V ’s are defined as in the previous section.
A total of three multistage models are proposed in Fligner and Verducci (1988),

namely the free model, the strongly unimodal model, and the exponential factor
model. Under the free model, which is the most general (least constraints) multistage
models, the probability of observing a ranking � is

t�1Y

rD1
p.m; r/: (8.29)

Under the strongly unimodal model, the parameters will have additional con-
straints, which are

p.0; r/ > p.1; r/ (8.30)

and

p.m; r/ is a nonincreasing function of m; (8.31)

for both m and r D 1; 2; : : : t .
Under the exponential factor model, the parameters will be in the form of

p.m; r/ D C.r/e��rf .m/; (8.32)

where f .�/ is a nonnegative and strictly increasing arbitrary function, and C.r/ is
the proportionality constant. To avoid the identification problem, the convention that
f .0/ D 0 and f .1/ D 1 is suggested. Note that if f .x/ D x, the model will become
the �-component model.

Besides the multistage model proposed by Fligner and Verducci (1988), Xu
(2000) also proposed a multistage model with .t � 1/2 parameters cij , both i and
j D 1; 2; : : : t � 1. The parameters crj , j D 1; 2; : : : ; t � 1 determine which object
will be selected in stage r .



8.5 Properties of Ranking Models 167

8.5 Properties of Ranking Models

As defined in Critchlow et al. (1991), some properties for ranking models are as
follows:

(1) Label invariance
The relabeling of objects has no effect on the probability models.

(2) Reversibility
A reverse function 
.�/ for a ranking of t objects is defined as


.i/ D t C 1 � i: (8.33)

Reversing the ranking � has no effect on the probability models.
(3) L-decomposability

The ranking of t objects can be decomposed into t � 1 stages. At stage i , where
i = 1; 2; : : : ; t�1, the best among the objects remaining at that stage is selected,
and then this object will be removed in the following stages.

(4) Strong unimodality (weak transposition property)
A transposition function �ij is defined to mean that i and j are interchanged as

�.i/ D j; �.j / D i; �.m/ D m for all m ¤ i; j: (8.34)

With modal ranking �0, for every pair of objects i and j such that 0.i/ <
0.j / and every � such that .i/ D .j / � 1,

P.�/ � P.� ı �ij /; (8.35)

with equality attained at � = �0. It guarantees the probability is nonincreasing
as � moves one step away from �0, for objects having adjacent ranks.

(5) Complete consensus (transposition property)
As compared with the strong unimodality, complete consensus is an even
stronger property which guarantees for every pair of objects .i; j / such that
0.i/ < 0.j / and every � such that .i/ < .j /, P.�/ � P.� ı �ij /. From
this definition, we can see that complete consensus implies strong unimodality.

All four classes of models satisfy property (1). However, not all of them satisfy
properties (2) to (5). We will discuss them in the following.

8.5.1 Properties of Order Statistics Models

Critchlow et al. (1991) showed that, for order statistics models, if the random error
distribution is symmetric, then the models will satisfy property (2).
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Property (3) is difficult to verify for the order statistics model, because it involves
a multiple integral which may not have a closed form, except for the special case of
the Luce (1959) model, which can satisfy property (3).

Savage (1956, 1957), and Henery (1981) showed that, if for all i , �ij is distinct
for j D 1; 2; : : : ; t and

F 0.y � �iu/

F 0.y � �iv/ (8.36)

is a nonincreasing function of x for �iu < �iv, where F.�/ is the cumulative
distribution function of the random error, the order statistics models will satisfy
properties (4) and (5).

8.5.2 Properties of Paired Comparison Models

Marley (1968) showed that the class of paired comparison models satisfy properties
(2) and (3), which can be easily verified from the definition of paired comparison
models.

Critchlow et al. (1991) showed that paired comparison models will satisfy
property (4) under the following conditions:

• pij > 0:5 and pjm > 0:5 imply pim > 0:5,
• pij ¤ 0:5,

for all i , j , m D 1; 2; : : : ; t .
Property (5) will be satisfied under the following conditions:

• pij > 0:5 and pjm > 0:5 imply pim > max.pij ; pjm/,
• pij ¤ 0:5,

for all i , j , m D 1; 2; : : : ; t .

8.5.3 Properties of Distance-Based and Multistage Models

Critchlow et al. (1991) showed that all distance-based models satisfy properties (1)
and (2) and models with the four distances in Sect. 8.3 satisfy properties (3) to
(5). The Hausdorff metric extension of Critchlow (1985) with the four distances in
Sect. 8.3 also satisfies properties (1) to (5).

It is obvious that multistage models satisfy property (3) but not (2). Fligner and
Verducci (1988) showed that the strongly unimodal model, but not the free model,
satisfies property (3). Furthermore, the exponential factor model satisfies property
(4), and hence the �-component model also satisfies property (4) as it is a special
case of the exponential factor model.
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Chapter Notes

In this chapter, we have introduced several important probability models for ranking
data. Extension of order statistics models and distance-based models will be
discussed in Chaps. 9 and 11, respectively. Other models not considered here are a
variety of exponential family models based on marginals (spectral decomposition of
Diaconis (1988, 1989)) or pairwise and higher-way comparisons (inversion models
of McCullagh (1993b)), nested orthogonal contrast models (Marden 1992), and
models based on insertion sorting (Doignon et al. 2004; Biernacki and Jacques
2013).



Chapter 9
Probit Models for Ranking Data

In 1980, the American Psychological Association (APA) conducted an election
in which five candidates (A;B;C;D, and E) were running for president and
voters were asked to rank order all of the candidates. Candidates A and B are
research psychologists, C is a community psychologist, and D and E are clinical
psychologists. Among those voters, 5738 gave complete rankings. These complete
rankings are considered here (Diaconis (1988)). Note that lower rank implies more
favorable. Then the average ranks received by candidates A;B;C;D, and E are
2.84, 3.16, 2.92, 3.09, and 2.99, respectively. This means that voters generally prefer
candidate A the most, candidate C the second, etc. However, in order to make
inferences on the preferences of the candidates, modeling of the ranking data is
needed. In Sect. 9.1 we consider a model for this data which takes into account
covariates.

In Sect. 9.2 we consider the following example for which factor analysis would
be appropriate. In 1997, a mainland marketing research firm conducted a survey on
people’s attitude toward career and living style in three major cities in Mainland
China – Beijing, Shanghai, and Guangzhou. Five hundred responses from each city
were obtained. A question regarding the behavior, conditions, and criteria for job
selection of the 500 respondents in Guangzhou will be discussed here. In the survey,
respondents were asked to rank the three most important criteria on choosing a
job among 13 criteria: (1) favorable company reputation, (2) large company scale,
(3) more promotion opportunities, (4) more training opportunities, (5) comfortable
working environment, (6) high income, (7) stable working hours, (8) fringe benefits,
(9) well matched with employees’ profession or talent, (10) short distance between
working place and home, (11) challenging, (12) corporate structure of the company,
and (13) low working pressure.

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5__9
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9.1 Multivariate Normal Order Statistics Models

In light of the Thurstone order statistics model mentioned in Sect. 8.1, the
multivariate normal order statistics (MVNOS) model assumes that the ranking
of t objects given by a judge is determined by ordering t latent utilities for the
objects assigned by the judge. However, unlike the Thurstone order statistics model
that assumes independent utilities, the MVNOS model assumes that the utilities
are possibly correlated and the ranking �j given by judge j has the following
probability:

P.�j / D P.yŒ1�j ;j > yŒ2�j ;j > � � � > yŒt�j ;j /; i D 1; � � � ; t; (9.1)

where < Œ1�j ; � � � ; Œt �j > is the ordering of the t objects corresponding to the
ranking �j and the latent utility vector yj D .y1j ; � � � ; ytj /0 of judge j is
assumed to follow multivariate normal distribution with mean utility vector �j D
.�1j ; � � � ; �tj /0 and a general covariance matrix V , i.e.,

yj D �j C ej (9.2)

ej
iid� N.0;V /: (9.3)

The MVNOS model is sometimes termed the multinomial probit model for ranking
data.

9.1.1 The MVNOS Model with Covariates

When there are some covariates associated with the judges and objects, it is natural
to impose the following linear model for �j :

�j D Z jˇ; (9.4)

where Z j is a t � p matrix of covariates associated with judge j and ˇ is a p � 1
vector of unknown parameters. For example, in a marketing survey, respondents are
asked to rank products according to their preference. Usually, apart from the ranking
given by the respondents, some socioeconomic variables (sj ) about the respondents
and the attributes (ai ) of the products are also available. Then one may study the
heterogeneity of the preference due to these variables by assuming the following
model:

�ij D a0
i� C s0

j ıi ; i D 1; � � � ; t: (9.5)
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The parameter vector � represents the attribute effect common to all the respondents
while the vector ıi represents the respondents’ socioeconomic background which
may affect their preference of product i . It is easily seen that equation (9.5) is a
particular case of the model in (9.4) when

Z j D

0

BBBB@

a0
1 s0

j 0 � � � 0

a0
2 0 s0

j 0
:::
:::

: : :

a0
t 0 0 s0

j

1

CCCCA
and ˇ D

0
BBBBB@

�

ı1

ı2
:::

ıt

1
CCCCCA
:

In what follows, we shall consider the MVNOS model with the mean given in
equation (9.4).

9.1.2 Parameter Identifiability of the MVNOS Model

Note that one can add an arbitrary constant (location shift) or multiply a positive
constant (scale shift) to both sides of (9.2) while leaving the ranking probability
unchanged. The location-shift problem is commonly dealt with by subtracting the
first t � 1 rows by the last row leading to the model

wj D X jˇ C "j (9.6)

"j
iid� N.0;†/; (9.7)

where wij D yij � ytj , X j D ŒI t�1;�1t�1�Z j , "ij D eij � etj , and

† D ŒI t�1;�1t�1�V ŒI t�1;�1t�1�0:

Here, I denotes an identity matrix and 1 denotes a vector of 1’s. Then the ranking
�j with respective ordering< Œ1�j ; � � � ; Œt �j > corresponds to the event

Ej D fwj W wŒ1�j ;j > � � � > wŒr�1�j ;j > 0 > wŒrC1�j ;j > � � � > wŒt �;j g
whenever Œr�j D t: (9.8)

For the sake of simplicity, we use the convention wŒ0�j ;jDC1 and wŒtC1�j ;j D �1.
Notice that the scale-shift problem still exists in the model given by (9.6) and it can
be easily resolved by adding a constraint on † such as �11 D 1.

Since rankings of objects only depend on utility differences, ˇ and † (with �11
fixed) are estimable, but the original parameters �j and V still cannot be fully
identified. For example, suppose t D 3 and �j D �. Then the following three
sets of parameters under the MVNOS model lead to the same ranking probabilities:



174 9 Probit Models for Ranking Data

Set A: Set B: Set C:
�A D .1; 0;�1/0 �B D .�1;�2;�3/0 �C D .1; 0;�1/0

V A D
0

@
1 0 0:2

0 1 0:8

0:2 0:8 1

1

A V B D
0

@
0:4 0 0:4

0 1:6 1:6

0:4 1:6 2

1

A V C D
0

@
0:756 �0:444 �0:311

�0:444 0:356 0:089

�0:311 0:089 0:222

1

A

This is because they all have the same utility differences y1 � y3 and y2 � y3 whose
joint distribution is

N

�	
2

1



;

	
1:6 0

0 0:4


�
:

Generally speaking, the parameter ˇ can be identified in the presence of covari-
ates X j . However, when there are no covariates, i.e., �j D �, the values of the
�i ’s will be determined only within a location shift. This indeterminacy can be
eliminated by imposing one constraint on the �i ’s, say, �t D 0.

The major identification problem is due to indeterminacy of the covariance
matrix V of the utilities. Owing to the fact that the utilities yij ; i D 1; � � � ; t; are
invariant under any scale shift of V and any transformation of V of the form:

V �! V C c10
t C 1tc 0; (9.9)

for any constant vector c (Arbuckle and Nugent 1973), V can never be identified
unless it is structured. In the previous example, it can be seen that V A can be
transformed to V B and V C by setting c D .�0:3; 0:3; 0:5/0 and c D .�0:122;
�0:322;�0:389/0, respectively. This identification problem is well known in
the context of Thurstone order statistics models and multinomial probit models
(Arbuckle and Nugent 1973; Dansie 1985; Bunch 1991; Yai et al. 1997; Train
2003).

Various solutions which impose constraints on the covariance matrix V have
been proposed in the literature. Among them, the methods proposed by Chintagunta
(1992) and Yu (2000) provide the most flexible form for V which does not require
fixing any cell. Chintagunta’s method restricts each column sum of V to zero (and
�11 D 1), resulting in V D B�†.B 0/�, with B D ŒI t�1;�1t�1�while Yu’s method
restricts each column sum of V to 1 (and �11 D 1), leading to

V D A�1
	

† 0
0 t



.A0/�1 with A D

	
I t�1 �1t�1
10
t�1 1



:

Note that the V identified by Chintagunta’s method is singular and the associated
utilities must be correlated whereas Yu’s method always produces a non-singular
matrix V and includes the identity matrix (or its scale shift) as a special case.
In addition, it is easy to show that this non-singular matrix is an invariant trans-
formation of the matrix used by Chintagunta (1992) under the transformation (9.9)
with c D 1

2t
1t .
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9.1.3 Bayesian Analysis of the MVNOS Model

Given a sample of n judges, the likelihood function of .ˇ;†/ is given by

L.ˇ;†/ D
nY

jD1
P.Ej /; (9.10)

where the eventEj is given in (9.8). Note that the evaluation of the above likelihood
function requires the numerical approximation of the .t � 1/-dimensional integral
(e.g., Genz 1992) which can be done relatively accurately provided that the number
of objects (t) is small, say less than 15. To avoid a high-dimensional numerical
integration, limited information methods using the induced paired/triple-wise com-
parisons from the ranking data (e.g., structural equation models by Maydeu-Olivares
and Bockenholt (2005) fitted using Mplus) have been proposed. Another approach
is to use a Monte Carlo Expectation-Maximization (MCEM) algorithm (e.g., Yu
et al. 2005; see also Sect. 9.2) which can avoid the direct maximization of the above
likelihood function.

In this section we will consider a simulation-based Bayesian approach which
can also avoid the evaluation and maximization of the above likelihood function.
Recently, a number of R packages have become available for the Bayesian
estimation of the MVNOS models for ranking data, including MNP (Imai and
van Dyk 2005), rJAGS (Johnson and Kuhn 2013) as well as our own package
StatMethRank.

9.1.3.1 Bayesian Estimation and Prior Distribution

In a Bayesian approach, the first step is to specify the prior distribution of the
identified parameters. As mentioned previously one constraint on † could be
added in order to fix the scale and hence to identify all the parameters. Under this
condition, the usual Wishart prior distribution for the constrained † could not be
used. In the context of multinomial probit model studied by McCulloch and Rossi
(1994), instead of imposing the scale constraint on †, we may compute the full
posterior distribution of ˇ and † and obtain the marginal posterior distribution of
the identified parameters such as ˇ=

p
�11; �i i =�11 and �ij D �ij =

p
�ii�jj .

Let f .ˇ;†/ denote the joint prior distribution of .ˇ;†/. Then the posterior
density of .ˇ;†/ is

f .ˇ;†j…/ / L.ˇ;†/f .ˇ;†/; (9.11)

where … D f�1; � � � ;�ng is the data set of all n observed rankings. It is convenient
to use a normal prior on ˇ,

ˇ � N.ˇ0;A
�1
0 /;
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and an independent Wishart prior on G 	 †�1,

G 	 †�1 � Wt�1.˛;P/:

Note that our parametrization of the Wishart distribution is such that E.†�1/ D
˛P�1.

Although (9.11) is intractable for Bayesian calculations, we may use the method
of Gibbs sampling with data augmentation. We augment the parameter .ˇ;†/ by the
latent variable W D .w1; � � � ;wn/. Now, the joint posterior density of .ˇ;†;W / is

f .ˇ;†;W j�/ / f .…jW /f .W jˇ;†/f .ˇ;†/; (9.12)

which allows us to sample from the full conditional posterior distributions. The
details are provided in the next section.

9.1.3.2 Gibbs Sampling Algorithm for the MVNOS Model

The Gibbs sampling algorithm for the MVNOS model consists of drawing samples
consecutively from the full conditional posterior distributions, as follows:

1. Draw wj from f .wj jˇ;†;…/, for j D 1; � � � ; n.
2. Draw ˇ from f .ˇj†;W ;…/ / f .ˇj†;W /.
3. Draw † from f .†jˇ;W ;…/ / f .†jˇ;W /:

In step (1), it can be shown that given ˇ, †, and …, the wj ’s are independent and wj
follows a truncated multivariate normal distribution, N.Xjˇ;†/I.wj 2 Ej /. One
may simulate wj by using the acceptance-rejection technique, but this may lead to
a high rejection rate when the number of objects is fairly large. Instead of drawing
the whole vector wj at one time, we successively simulate each entry of wj by
conditioning on the other t � 2 entries. More specifically, we replace step (1) by

1. draw wij from f .wij jw�i;j ;ˇ;†;…/, for i D 1; � � � ; t � 1; j D 1; � � � ; n, where
w�i;j is wj with wij deleted.

Let x0
ij be the i th row of X j , X�i;j be X j with the i th row deleted, and g�i;i be

the i th column of G with gii deleted. Suppose < Œ1�j ; � � � ; Œt �j > is the ordering of
objects corresponding to their ranks �j D .1j ; � � � ; tj /. Then ij D r if and only
if Œr�j D i . Now we have

wij jw�i;j ;ˇ;†;… � N.mij ; �
2
ij /

subject to wŒrC1�j j < wij < wŒr�1�j j whenever ij D r;
(9.13)

where

mij D x0
ijˇ � g�1

i i g0�i;i .w�i;j � X�i;jˇ/

and �2ij D g�1
i i .
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Although it still involves simulation from a truncated univariate normal distribu-
tion, we can adopt the inverse method to sample from this distribution without using
the acceptance-rejection technique which may not be efficient (Devroye 1986).

Returning to steps (2) and (3), since we are conditioning on W , the MVNOS
model is simply a standard Bayesian linear model setup. Therefore, the full
conditional distribution of ˇ is

ˇj†;W � Np.ˇ1;A
�1
1 /; (9.14)

where

A1 D A0 C
nX

jD1
X 0
j†�1X j and ˇ1 D A�1

1 .A0ˇ0 C
nX

jD1
X 0

j †�1wj /:

Finally, the full conditional distribution of † is such that † D G�1 with

G jˇ;W � Wt�1

0

@˛ C n;P C
nX

jD1
.wj � X 0

jˇ/.wj � X 0
jˇ/0

1

A : (9.15)

With a starting value for .ˇ;†;W /, we draw in turn from each of the full
conditional distributions given by (9.13), (9.14), and (9.15). When this process is
repeated many times, the draws obtained will converge to a single draw from the
full joint posterior distribution of ˇ, †, and W . In practice, we iterate the process
M C N times. The first M burn-in iterations are discarded. Because the iterates in
the Gibbs sample are autocorrelated, we keep every sth draw in the lastN iterates so
that the resulting sample contains approximately independent draws from the joint
posterior distribution. The value s here can be determined based on the graph of the
sample autocorrelation of the Gibbs iterates.

A natural choice for a starting value for .ˇ;†/ is to use .0; I/. However, it is
nonstandard to find a starting value for W . We adopt an approach motivated by the
fact that the ranking of fw1j ; � � � ;wt�1;j ; 0g must be consistent with the observed
ranking f1j ; � � � ; tj g. Using this fact, a simple choice for the starting value of the
w’s is to use wij D .ij � tj /=

p
.t2 � 1/=12, a type of standardized rank score.

It should be remarked that since Thurstone’s normal order statistics model is a
MVNOS model with V D I t , its parameters can be estimated by fixing V to I t , or
equivalently, fixing † to I t�1 C 1t�110

t�1 and skipping the step of generating † in
the above Gibbs sampling algorithm.

Remark. Although the MVNOS model discussed here considered the case of the
complete ranking of t objects, it is not difficult to extend it to incorporate incomplete
or partial ranking by modifying the event Ej in (9.8) and the corresponding
truncation rule in (9.13) used to sample wij in the Gibbs sampling. For instance
a partial ordering of 4 objects A;B;C , and D given by judge j is B � C � A;D.
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The eventEj will then be modified to fwj W maxfwAj ; 0g < wCj < wBj g, and hence
wAj , wBj , and wCj will be separately simulated from truncated normal over intervals
.�1;wCj /, .wCj ;C1/, and .maxfwAj ; 0g;wBj /, respectively. So far, we assume
that the data does not contain tied ranks or, equivalently, the observed ordering of
the objects that are tied is unknown. For example we will treat the tied ranking
B � C � A D D as if the partial ranking B � C � A;D. See Sect. 9.2.1 for
similar treatments of incomplete rankings in the context of factor analysis.

9.1.4 Adequacy of the Model Fit

To test for the adequacy of the model, we may group the t Š rankings into a
small number of meaningful subgroups and examine the fit for each subgroup. In
particular, let ni be the observed frequency that object i is ranked as the top object.
Also let

Opi D P.Yi > Y1; � � � ; Yi�1; YiC1; � � � ; Yt j Ǒ ; O†/

be the estimated partial probability of ranking object i as first under the fitted
MVNOS model with posterior mean estimates Ǒ and O†. The fit can be examined
by comparing the observed frequency ni with the expected frequency n Opi , i D
1; 2; � � � ; t , or by calculating the standardized residuals:

ri D ni � n Opip
n Opi .1 � Opi/

; j D 1; 2; � � � ; t:

If the expected frequencies match the observed frequencies well or the absolute
values of the residuals are small enough, say, < 2, the MVNOS model adequately
fits the data. The same argument can be applied to other ranking models.

In performing these calculations, it is necessary to evaluate numerically the
estimated probability Opi which may be expressed as

ˆ 0

�1
� � �
ˆ 0

�1
�.vjˇ�;†�/dv;

where v D .Y1 � Yi ; � � � ; Yi�1 � Yi ; YiC1 � Yi ; � � � ; Yt � Yi/
0 � N.ˇ�;†�/ and

ˇ� and †� can be obtained from Ǒ and O†, respectively. We employ the Geweke-
Hajivassiliou-Keane (GHK) method (see Geweke 1991; Hajivassiliou 1993; Keane
1994). Let L D .`ij / be the unique lower triangular matrix obtained from the
Cholesky decomposition of †� (i.e., †� D LL0). The GHK simulator for the
estimated partial probability Opi is constructed via the following steps:



9.1 Multivariate Normal Order Statistics Models 179

1. Compute

P.v1 < 0jˇ�;†�/ D ˆ.�ˇ
�
1

`11
/;

and draw a �1 � N.0; 1/ with �1 < � ˇ�

1

`11
.

2. For s D 2; � � � ; t � 1, compute P.vs < 0j�1; �2; � � � ; �s�1;ˇ�;†�/ D
ˆ.�ˇ�

s CPs�1
jD1 `sj �j

`ss
/, and draw a �s � N.0; 1/ with �s < �ˇ�

s CPs�1
jD1 `sj �j

`ss
.

3. Estimate Opi by P.v1 < 0jˇ�;†�/…t�1
sD2P.vs < 0j�1; �2; � � � ; �s�1;ˇ�;†�/.

4. Repeat steps 1–3 a large number of times to obtain independent estimates of Opi ,
and finally by taking the average of these estimates, the GHK simulator for Opi is
obtained. In a later application, we will use 10,000 replications.

9.1.5 Analysis of the APA Election Data

We now consider the APA election data. Let Yij be the j th voter’s utility of
selecting candidate i , i D A;B;C;D;E . We apply the MVNOS model in which
(i) the j th voter’s ranking is assumed to be formed by the relative ordering of
YAj ; YBj ; YCj ; YDj ; YEj ; and (ii) the Y ’s satisfy the following model:

Yij D �i C eij ; i D A;B;C;D;E; j D 1; � � � ; 5738;
.eAj ; eBj ; eCj ; eDj ; eEj /

0 iid� N.0;V /;

or equivalently, the model could be formed by the relative ordering of
wAj ;wBj ;wCj ;wDj ; 0, and the w’s satisfy

wij D ˇi C "ij ; i D A;B;C;D; j D 1; � � � ; 5738;
."Aj ; "Bj ; "Cj ; "Dj /

0 iid� N.0;†/;

where ˇi D �i � �E and † D .�ij / with �ij D vij C vEE � viE � vjE .
Using the proper priors, ˇ � N.ˇ0 D 0;A�1

0 D 100/ and †�1 � Wt�1.˛ D
t C 1;P D .t C 1I/, 11,000 Gibbs iterations are generated. The first 1000 burn-
in iterations were discarded. As evidenced from the sample autocorrelation of
the Gibbs samples (not shown here), keeping every 20th draw in the last 10,000
Gibbs iterations gives approximately independent draws from the joint posterior
distribution of the parameters ˇ and † of the MVNOS model. By imposing the
constraint �E D 0 and our constraint for V to the Gibbs sequences, we obtain
estimates for �i.i D A;B;C;D;E/ and vij ; .i � j /.
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Table 9.1 Observed proportions and estimated probabilities that a candidate is ranked as first
under various models for the APA election data (the value in bracket is the residual, ri )

Estimated probabilities, Opi , under the following models
Stern’s mixture model

Candidate

Observed
proportion,
ni=n

MVNOS
model

Thurstone’s
model 2 components 3 components

A 0.184 0.193 (�1:87) 0.170 (2.78) 0.199 (�2:89) 0.189 (�1:16)

B 0.135 0.130 (1.17) 0.231 (�17:24) 0.153 (�3:84) 0.155 (�4:27)

C 0.280 0.276 (0.70) 0.179 (20.12) 0.276 (0.80) 0.272 (1.19)

D 0.204 0.198 (1.25) 0.220 (�2:93) 0.186 (3.47) 0.192 (2.28)

E 0.197 0.200 (�0:58) 0.200 (�0:65) 0.186 (2.12) 0.189 (1.41)

9.1.5.1 Adequacy of Model Fit and Model Comparison

To examine the goodness of fit of the MVNOS model, Table 9.1 shows the observed
proportions and estimated partial probabilities under the MVNOS model. The two
statistics for Thurstone’s normal order statistics model and Stern’s mixture of Luce
(called BTL in his/her paper) models are also listed in Table 9.1 as alternatives to
the MVNOS model. Thurstone’s model is fitted by repeating the Gibbs sampling
with V fixed at I t , while Stern’s mixture models were fitted by Stern (1993). Stern
found that the data seem to be a mixture of 2 or 3 groups of voters. This feature
is also supported by Diaconis’s (1989) spectral analysis and McCullagh’s (1993b)
model of inversions.

As seen from Table 9.1, the estimated partial probabilities for the MVNOS model
match the observed proportions very well. Also the magnitudes of the standardized
residuals ri for the MVNOS model only are all very small (< 2), indicating that
among the four models considered in Table 9.1, the MVNOS model gives the best
fit to the APA election data.

9.1.5.2 Interpretation of the Fitted MVNOS Model

Table 9.2 shows the posterior means, standard deviations, and 90 % posterior
intervals for the parameters of the MVNOS model. It is not surprising to see that
the ordering of the posterior means of the �i ’s is the same as that of the average
ranks. Apart from the posterior means, the Gibbs samples can also provide estimates
of the probability that candidate i is more favorable than candidate j . For instance,
the probability that candidate A is more favorable than candidate C is estimated by
the sample mean of ˆ. �A��Cp

vAACvCC�2vAC
/ in the Gibbs samples, which is found to be

0.509 (posterior standard deviation D 0.006).
According to the boxplots of �i , vi i , and rij D vij =

p
vi ivjj .i ¤ j / shown in

Fig. 9.1, distributions of some parameters are fairly symmetric. In addition, a large
estimate of vCC indicates that voters have fairly large variation of the preference
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Table 9.2 Parameter estimates of the MVNOS
model for the APA election data

Posterior moments
Parameter Mean SD 90% interval

�A 0.086 0.015 (0.062, 0.111)

�B �0:071 0.014 (�0:097, �0:048)

�C 0.067 0.018 (0.037, 0.095)

�D �0:048 0.014 (�0:071, �0:026)

vAA 0.524 0.008 (0.511, 0.537)

vAB 0.116 0.006 (0.106, 0.126)

vAC 0.246 0.008 (0.233, 0.257)

vAD 0.041 0.008 (0.027, 0.053)

vAE 0.074 0.004 (0.067, 0.081)

vBB 0.498 0.011 (0.479, 0.516)

vBC 0.087 0.009 (0.072, 0.100)

vBD 0.178 0.007 (0.166, 0.191)

vBE 0.121 0.007 (0.109, 0.132)

vCC 0.833 0.024 (0.795, 0.870)

vCD �0:123 0.014 (�0:146, �0:101)

vCE �0:043 0.010 (�0:060, �0:026)

vDD 0.679 0.018 (0.651, 0.708)

vDE 0.224 0.008 (0.212, 0.239)

vEE 0.624 0.008 (0.610, 0.638)

on candidate C. To further investigate the structure of the covariance matrix V , a
principal components analysis of the posterior mean estimate for V is performed
and the result is presented in Table 9.3.

A principal components analysis of the posterior mean estimate for V produces
the utilities of the five candidates fA;B;C;D;Eg as

2

666664

yA
yB
yC

yD
yE

3

777775
D

2

666664

0.086
-0.071
0.067

-0.048
0

3

777775
C p

1:015a1z1 C p
0:215z2 C p

0:440a3z3

Cp
0:357a4z4 C p

0:346a5z5 (9.16)

where the z’s are independently and identically distributed as N.0; 1/ and the
principal components a’s are given in Table 9.3. Since rankings of objects only
depend on utility differences, the term

p
0:215z2 does not affect the rankings and

hence, interpretation is based on the remaining four components.
Component 1 separates two groups of candidates, {A, C} and {D, E}, implying

that there are two groups of voters: voters who prefer candidates A and C more and
those who prefer candidates D and E more. Component 3 contrasts candidate E with
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Fig. 9.1 Boxplots of �i , vi i , and rij D vij =
p

vi i vjj .i ¤ j / for the APA election data

candidates B and D, indicating that voters either prefer B and D to E or prefer E to B
and D. For instance, if voters like B, they prefer D to E. Finally, components 4 and
5 indicate a contrast between A and C and a contrast between B and D, respectively.
Based on the variances of the components, we can see that component 1 dominates
and hence it plays a major role on ranking the five candidates.
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Table 9.3 Principal components analysis of the posterior mean
estimate for V

Principal component, ai

Candidate 1 2 3 4 5

A 0.245 0.447 0.046 0.789 �0:340
B �0:087 0.447 �0:412 0.133 0.778

C 0.726 0.447 0.012 �0:515 �0:081
D �0:524 0.447 �0:442 �0:281 �0:502
E �0:361 0.447 0.796 �0:125 0.145

Variance 1.015 1.000 0.440 0.357 0.346

9.2 Factor Analysis

It was mentioned in Sect. 9.1.2 that the parameters of a MVNOS model cannot
be fully identified unless the covariance matrix V is structured. One possibility to
resolve this problem is to impose a factor covariance structure used in factor analysis
onto V .

Factor analysis is widely used in social sciences and marketing research to
identify the common characteristics among a set of variables. The classical d -factor
model for a set of continuous variables y1; y2; � � � ; yt is defined as

yij D z0
jai C "ij ; i D 1; : : : ; t I � j D 1; : : : ; n (9.17)

where yj D .y1j ; : : : ; ytj /
0 is a t-dimensional vector of response variables from

individual j , zj D .z1j ; : : : ; zdj /0 is a vector of unobserved common factors associ-
ated with individual j , ai D .ai1; : : : ; aid /

0 is a vector of factor loadings associated
with object i on the d factors, and "ij represents the error of the factor model. By
adopting the MVNOS framework with the latent utilities satisfying the above factor
model, we can generalize the classical factor model to analyze ranking data. In what
follows, we shall assume that the reader has a basic familiarity with the statistical
concepts of factor scores, factor loadings, and varimax rotation as can be found in
most textbooks on multivariate analysis.

9.2.1 The Factor Model

Suppose we have a random sample of n individuals from the population and each
individual is asked to rank t objects under study according to their own preferences.
Within the framework of the MVNOS model, the ranking of the t objects given by
individual j in the factor model is determined by the ordering of t latent utilities
y1j ; : : : ; ytj which satisfies a more general d -factor model:

yij D z0
jai C bi C "ij j D 1; : : : ; nI i D 1; : : : ; t.> d/ (9.18)
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where b D .b1; : : : ; bt /
0

is the mean utility vector reflecting the relative importance
of the t objects and ai D .ai1; : : : ; aid /

0

represents the factor loadings. It is assumed
that the latent common factors z1; : : : ; zn are independent and identically distributed
according to the standard d -variate normal distribution, Nd.0; I/. The error term,
"ij , is the unique factor which is assumed to follow a N.0; �2i / distribution,
independent of the zi ’s.

Denote a complete ranking by �j D .1j ; : : : ; tj /
0

where ij is the rank of
object i from individual j . Smaller ranks refer to the more preferred objects and
hence higher utilities. For example, if �j D .2; 3; 1/

0

is recorded, it corresponds to
the unobservable utilities yj D .y1j ; y2j ; y3j /

0

with y2j < y1j < y3j . Note that the
only observable quantities are the ij ’s but not the yij ’s.

Remark. Extension of the above factor model to incorporate incomplete ranking
data is quite straightforward. In the case of the top q partial rankings with the
top q objects being Œ1�j ; : : : ; Œq�j for individual j , it is natural to assign objects
Œ1�j ; : : : ; Œq�j with ranks 1; : : : ; q, respectively, and the rest of objects with midrank,
i.e., Œ.q C 1/ C � � � C t �=.t � q/. The factor model can be extended to restrict the
utilities y1j ; � � � ; ytj to satisfy yŒ1�j j > yŒ2�j j > � � � > yŒq�j j > yŒqC1gj j ; � � � ; yŒt �j j .
For subset rankings, individuals are asked to rank a subset of the t objects only.
Ranking of the set of remaining objects is unknown and we can simply restrict the
ordering of the utilities of objects in the subset consistent to the ranking of these
objects. Generally speaking, a ranking �, complete or incomplete, corresponds to
an event fy W Cy < 0g, for some contrast matrix C . For instance in the case of
ranking t D 4 objects, the complete ranking �1 D .2; 3; 1; 4/0, top 2 partial ranking
�2 D .2; 3:5; 1; 3:5/0, and the subset ranking �3 D .2; _; 1; _/0 refer to the events
with their respective matrices C being

0

@
1 0 �1 0

�1 1 0 0

0 �1 0 1

1

A ;

0

@
1 0 �1 0

�1 1 0 0

�1 0 0 1

1

A ; and
�
1 0 �1 0 � :

Notationally, let

Ad�t D Œa1 � � � at �;

‰ t�t be the diagonal matrix with diag.‰/ D .�21 ; : : : ; �
2
t /, and all other entries

equal to zero, and

� D fA;b;‰g

the set of parameters of interest. We shall discuss the maximum likelihood
estimation of � based on various types of ranking data via the Monte Carlo
Expectation-Maximization (MCEM) algorithm in the next section.
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9.2.2 Monte Carlo Expectation-Maximization Algorithm

In order to deal with missing data, the EM algorithm is a broadly applica-
ble approach for the computation of maximum likelihood estimates having the
advantages of simplicity and stability. It requires one to compute the conditional
expectation of the complete-data log-likelihood function given the observed data
(E-step) and then to maximize the likelihood function with respect to the parameters
of interest (M-step).

Let Y n�t ;Z n�d be the matrices of the unobservable response utilities and latent
common factors, respectively, with their j th rows corresponding to individual j .
Denote by …n�t D Œ�1; : : : ;�n�

0

the matrix of the observed ranked data. Under an
EM setting, we denote by {Y; Z} the missing data and by … the observed data.

9.2.2.1 Implementing the E-step via the Gibbs Sampler

Since the complete-data log-likelihood function, apart from a constant, is given by

`.�jY ;Z / D �n
2

tX

iD1
log �2i � 1

2

tX

iD1

nX

jD1

.yij � z0
jai � bi/

2

�2i
; (9.19)

the E-step here only involves computation of the conditional expectations of the
complete-data sufficient statistics fY 0Y ;Z 0Z ;Z 0Y ;Y 01;Z 01g given … and � . This
can be done by using the Gibbs sampling algorithm which consists of drawing
samples consecutively from the full conditional posterior distributions, as shown
below:

1. Draw zj from f .zj jyj ;�j ;�/.
2. Draw yj from f .yj jzj ;�j ;�/ for j D 1; : : : ; n.

For step 1, making draws from f
�
zj jyj ;�j ;�

�
is simple because

f .zj jyj ;�j ;�/ D f .zj jyj ;�/;

which is independent of �j . Draws of Z can be made from the conditional
distribution

zj jyj ;� � Nd.A.A
0A C ‰/�1.yj � b/; I � A.A0A C ‰/�1A0/: (9.20)

For step 2, yj requires to have consistent orderings with the observed ranking �j .
Suppose that < Œ1�j ; � � � ; Œt �j > represents the ordering of the t objects with respect
to the complete ranking �j such that Œ1�j is the most preferred object, Œ2�j is the
second most preferred object, and so on. Define yŒ0�j j D C1 and yŒtC1�j j D �1.
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Complete Rankings

For the cases with complete rankings, we can draw yij sequentially for i D 1; � � � ; t
from

yij jy1j ; : : : ; yi�1;j ; yiC1;j ; : : : ; ytj ;�j ; zj ;� � N.z0
jai ; �

2
i / (9.21)

with the constraint yŒr�1�j j > yij > yŒrC1�j j for ij D r (or Œr�j D i ).

Top q Partial Rankings

For top q partial rankings, we draw the top q objects (i.e., fxŒ1�j j ; : : : ; xŒq�j j g) as in
the complete case and simulate the other objects by

yij � N.z0
jai ; �

2
i / (9.22)

with the constraint �1 < yij < yŒq�j j for ij D r (or Œr�j D i ).

Subset Rankings

For subset rankings, individuals are asked to rank a subset of the t objects only.
Rankings of the set of remaining objects, fyi 0j g, are unknown and we can simulate
fyi 0j g from

fyi 0j ji 0 … franked objectsgg � N.z0
jai ; �

2
i /: (9.23)

The conditional expectation of Y 01 and Y 0Y can be approximated by taking
the average of the random draws of

P
j yj and the average of their product sumP

j yjy 0
j , respectively. Finally, conditional expectations of Z 01, Z 0Z , and Z 0Y

can be obtained by

EŒZ 01j…;�� D A.A0A C ‰/�1.EŒY 01j…;�� � nb/;

EŒZ 0Z j…;�� D nŒI � A.A0A C ‰/�1A0�
CA.A0A C ‰/�1EŒ.Y � 1b0/0.Y � 1b0/j…;��.A0A C ‰/�1A0

EŒZ 0Y j…;�� D A.A0A C ‰/�1EŒ.Y 0 � b10/Y j…;��:

9.2.2.2 M-Step

By replacing the complete-data sufficient statistics fY 0Y ;Z 0Z ;Z 0Y ;Y 01;Z 01g
with their corresponding conditional expectations obtained in E-step, we can
compute the maximum likelihood estimate of � by
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 OA
Ob0

!
D �

.Z 1/0.Z 1/
��1

.Z 1/0Y D
	

Z 0Z Z 01
10Z 101


�1 �
Z 0Y
10Y

�

and

O‰ D 1

n
diag

�
.Y � Z OA � 1 Ob0

/0.Y � Z OA � 1 Ob0
/
�

D 1

n
diag

�
Y 0Y � 2 OA0Z 0Y � 2 Ob10Y C OA0Z 0Z OA C 2 Ob10Z OA C n Ob Ob0�

:

The new set of � is then used for calculation of the conditional expectation of the
sufficient statistics in the E-step and the algorithm is iterated until convergence is
attained.

9.2.2.3 Determining Convergence of MCEM via Bridge Sampling

To determine convergence of the EM algorithm we propose to use the bridge
sampling criterion discussed by Meng and Wong (1996). The bridge sampling
estimate for the likelihood ratio associated with the individual j is given by

L.�.sC1/jyj ; zj /
L.� .s/jyj ; zj /

D
PM

mD1
	
L.�.sC1/jy .s;m/j ;z.s;m/j /

L.�.s/jy .s;m/j ;z.s;m/j /


1=2

PM
mD1

	
L.�.s/jy .sC1;m/

j ;z.sC1;m/
j /

L.�.sC1/jy .sC1;m/
j ;z.sC1;m/

j /


1=2 ;

where fy.s;m/j ; z.s;m/j ;m D 1; : : : ;M g denote the M Gibbs samples from

f .yj jzj ;�j ;�
.s// and f .zj jyj ;�j ;�

.s// with � .s/ being the sth iterate of � .
The estimate for the log-likelihood ratio of two consecutive iterates is then given by

Oh.�.sC1/;� .s// D
nX

jD1
log

L.� .sC1/jyj ; zj /
L.� .s/jyj ; zj /

:

We plot Oh.�.sC1/;� .s// against s to determine the convergence of the MCEM
algorithm. A curve converging to zero indicates a convergence because the EM
algorithm should increase the likelihood at each step.

9.2.3 Simulation

We adopt the parameter values listed in Table 9.4 used by Brady (1989) to study the
MCEM algorithm for complete and incomplete rankings. Using the factor model
and these parameter values, thirty sets of data with n D 1; 000 and utility vectors
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Table 9.4 The Parameter
values of a 2-factor model for
seven objects

Object a1 a2 b � j

1 6.0 7.0 30.0 8.49

2 �3.0 5.0 32.0 6.00

3 9.0 �8.0 34.0 4.24

4 �7.2 �4.0 36.0 4.24

5 12.0 10.0 38.0 8.49

6 �2.0 �9.0 40.0 5.00

7 �8.0 6.0 42.0 8.00

Table 9.5 Incomplete block
design for subset rankings

1 2 4

2 3 5

3 4 6

4 5 7

1 5 6

2 6 7

1 3 7

of t D 7 objects were simulated. Three types of ranked data were observed from
each data set. The first type corresponds to the complete rankings for seven objects
by ranking the utilities of the 7 objects. The second type corresponds to the top 3
partial rankings constructed from the rankings of the three largest utilities while the
third type corresponds to the subset rankings of 3 out the 7 objects chosen according
to the incomplete block design as shown in Table 9.5.

In our simulation studies, the Gibbs sampler and the MCEM algorithm both
converge fairly fast. Computation time required for each MC E-step in the case
of subset rankings is shorter than that in complete rankings because the number of
truncated normal variates to be drawn is smaller. For each E step, we discarded the
first 100 burn-in cycles and selected one xi systematically from every fifth cycle
afterward until a total of 40 draws was reached. The MCEM algorithm converged
within 10 iterations for all simulation data sets. The means of the 30 sets of estimates
for the complete rankings, top 3 partial rankings and 3 out of 7 subset rankings,
together with their biases and standard errors are shown in Table 9.6. Small values of
biases and standard errors show that the estimation method for incomplete rankings
is extremely efficient and reliable with high accuracy.

Intuitively, since more information is provided when complete rankings are
observed, the estimation of the factor model should perform better than with partial
or subset rankings. This is indeed the case as can be seen from Table 9.6. Larger
biases and standard errors are obtained for the case of 3 out of 7 subset rankings.
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Table 9.6 Simulation results of MCEM algorithm

a1 a2 b � j

Object Mean Bias SE� Mean Bias SE� Mean Bias SE� Mean Bias SE�

Complete rankings

1 6.03 0.03 0.08 6.81 �0.19 0.06 30.09 0.09 0.07 8.38 �0.11 0.07

2 �3.12 �0.12 0.06 4.99 �0.01 0.06 32.16 0.16 0.05 6.00 0.00 0.06

3 9.14 0.14 0.04 �7.95 0.05 0.05 33.87 �0.13 0.06 4.18 �0.06 0.06

4 �7.21 �0.01 0.05 �3.89 0.11 0.04 35.88 �0.12 0.06 4.17 �0.07 0.04

5 12.02 0.02 0.10 9.90 �0.10 0.08 38.08 0.08 0.14 8.53 0.04 0.09

6 �2.01 �0.01 0.05 �8.96 0.04 0.05 39.76 �0.24 0.05 4.94 �0.06 0.05

7 �8.07 �0.07 0.09 6.11 0.11 0.08 42.16 0.16 0.10 8.02 0.02 0.07

Top 3 partial rankings

1 5.96 �0.04 0.12 6.87 �0.13 0.12 29.98 �0.02 0.13 8.62 0.13 0.12

2 �2.92 0.08 0.10 4.96 �0.04 0.09 32.06 0.06 0.08 5.97 �0.03 0.11

3 8.97 �0.03 0.07 �8.01 �0.01 0.08 33.94 �0.06 0.09 4.29 0.05 0.04

4 �7.19 0.01 0.06 �4.03 �0.03 0.05 36.08 0.08 0.06 4.20 �0.04 0.07

5 11.81 �0.19 0.16 10.05 0.05 0.15 37.88 �0.12 0.11 8.53 0.04 0.15

6 �1.97 0.03 0.07 �8.89 0.11 0.08 40.03 0.03 0.07 5.07 0.07 0.09

7 �7.88 0.12 0.10 6.07 0.07 0.10 42.05 0.05 0.10 7.84 �0.16 0.09

3 out of 7 subset rankings

1 6.16 0.16 0.17 7.09 0.09 0.20 30.06 0.06 0.16 8.52 0.03 0.16

2 �3.21 �0.21 0.11 4.93 �0.07 0.14 32.03 0.03 0.10 6.09 0.09 0.10

3 8.98 �0.02 0.08 �7.86 0.14 0.06 34.03 0.03 0.09 4.23 �0.01 0.01

4 �7.09 0.11 0.07 �3.98 0.02 0.06 35.96 �0.04 0.09 4.21 �0.03 0.02

5 12.26 0.26 0.18 9.81 �0.19 0.19 37.84 �0.16 0.15 8.46 �0.03 0.08

6 �2.18 �0.18 0.08 �8.84 0.16 0.11 40.12 0.12 0.11 4.94 �0.06 0.05

7 �8.15 �0.15 0.14 5.83 �0.17 0.12 41.94 0.06 0.13 7.98 �0.02 0.08
� The standard errors are obtained empirically based on the 30 estimates

9.2.4 Factor Score Estimation

So far we have been interested mainly in problems concerning the parameters in
factor models and their estimation. Indeed, this frequently represents the main
objective of factor analysis since the loading coefficients, to a large extent, determine
the reduction of observed variables into a small number of common factors in
terms of meaningful phenomena. While these problems constitute the primary
interest of factor analysis, it is sometimes desirable to go one step further and
to estimate the scores of an individual on the common factors in terms of the
realizations of the variates for that individual. Factor scores provide information
concerning the relative position of each individual corresponding to each factor
whereas the loadings generally remain constant for all individuals. We therefore
turn our attention to the problem of factor score estimation.
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With the normality assumption, estimates of the factor score can be obtained
via the regression approach and the generalized least squares approach that, respec-
tively, minimize the variation of the estimator and the sum of squared standardized
residuals (see Lawley and Maxwell 1971). However, these two approaches can
only be used when the utility Y can be observed. Recently, Shi and Lee (1997a)
developed a Bayesian approach for estimating the factor scores in factor models
with polytomous data. By constructing appropriate posterior distribution, they
proposed using the posterior mean as a factor score estimate. Their method involves
computation of some multiple integrals which is handled by some Monte Carlo
methods. To avoid tedious computation, Shi and Lee (1997b) applied the EM
algorithm to obtain a Bayesian estimate of the factor score with polytomous
variables. In this section, we will estimate the factor scores with ranked data via
the MCEM algorithm discussed in Sect. 9.2.2.

9.2.4.1 Factor Score Estimation Using the MCEM Algorithm

The factor score zj can be estimated by the posterior mode of the posterior
distribution zj j�j ;� . Hence, the MCEM algorithm can be used to find the estimate
by viewing the zj ’s as parameters in the complete-data log-likelihood function `
in (9.19) and the resulting maximum likelihood estimate of zj will then be the
posterior mode estimate. The MCEM iteration can be simplified as follows: given
an initial value z.0/j and the estimate � , at the .s C 1/th MCEM iteration,

E-step: Find E.yj j�j ; z
.s/
j ;�/ via Gibbs sampler.

M-step: Update z.s/j to z.sC1/j by

z.sC1/j D A.A0A C ‰/�1ŒE.yj j�j ; z
.s/
j ;�/� b/�: (9.24)

The Monte Carlo E-step is exactly the same as finding the conditional expectation of
yj while the M-step improves the estimate of zj in a single step only. This iterative
procedure will converge to the appropriate posterior mode which will be taken as
an estimate of zj . We propose to stop the MCEM iteration when the likelihood

function of z.s/j and z.sC1/j is very close to each other. A simple stopping criterion is
to consider the following expression:

l.z.s/; z.sC1// D log
exp

P
i z.s/j

0

z.s/j
2

exp
P
i z.sC1/
j

0

z.sC1/
j

2

D 1

2

X

i

�
z.s/j

0

z.s/j � z.sC1/j

0

z.sC1/j

�
:

(9.25)

Convergence of the MCEM iteration is attained when l.z.s/; z.sC1// becomes
stationary at zero level.
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Note that it is possible to estimate the factor scores using the posterior mean
based on the samples generated from the Gibbs sampler. We note that the posterior
mode and the posterior mean are usually very close and, moreover, the covariance
matrix of the posterior mode can be obtained as a by-product of the MCEM factor
score estimation.

9.2.4.2 The Covariance Matrix of the Factor Score Estimates

To provide more insight about the estimates and the impact of lost information from
continuous to ranking measurements, it is desirable to derive the covariance matrix
of the posterior distribution f .zj j�j ;�/, which is given by the negative inverse of
the Hessian matrix of logŒf .zj j�j ;�/�. A convenient way to evaluate the Hessian
matrix is via the following expression:

� @2 logŒf .zj j�j ;�/�

@zj @z0
j

D �
ˆ
@2 logŒf .zj jyj ;�/�

@zj @z0
j

f .yj jzj ;�j ;�/dyj

�Var


�@ logŒf .zj jyj ;�/�

@zj

�
(9.26)

where the variance is with respect to f .yj jzj ;�j ;�/ (Tanner (1997)).
It can be shown that the covariance matrix of the factor score estimate Ozj is

equal to

�
.I � A.A0A C ‰/�1A0/�1 � W Var.yj jzj ;�j ;�/W

0��1 j zjDOzj ; (9.27)

where W D .I � A.A0A C‰/�1A0/�1A.A0A C‰/�1 and Var.yj jzj ;�j ;�/ can
be approximated by the Gibbs sample variance, a by-product of the MCEM factor
score estimation.

9.2.5 Application to the Job Selection Ranking Data

We now consider the marketing survey on people’s attitude toward career and living
style in three main cities in Mainland China – Beijing, Shanghai, and Guangzhou.
Five hundred responses from each city were obtained. A question regarding the
behavior, conditions, and criteria for job selection of the 500 respondents in
Guangzhou will be discussed here. Respondents were asked to rank the three most
important criteria on choosing a job among the following 13 criteria: 1. favorable
company reputation; 2. large company scale; 3. more promotion opportunities; 4.
more training opportunities; 5. comfortable working environment; 6. high income;
7. stable working hours; 8. fringe benefits; 9. well matched with employees’
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Table 9.7 Summary statistics of job selection ranking data

Criteria
Sample
mean

Sample
variance

1. Favorable company reputation 8.16 2.18

2. Large company scale 7.01 6.27

3. More promotion opportunities 7.43 5.69

4. More training opportunities 8.12 2.43

5. Comfortable working environment 6.89 7.68

6. High income 6.03 11.14

7. Stable working hours 7.64 4.72

8. Fringe benefits 6.68 8.59

9. Well matched with employees’ profession or talent 8.14 2.18

10. Short distance between working place and home 8.30 1.13

11. Challenging 8.19 1.92

12. Corporate structure of the company 8.40 0.63

13. Low working pressure 8.22 1.43

profession or talent; 10. short distance between working place and home; 11.
challenging; 12. corporate structure of the company; and 13. low working pressure.

This is a typical top 3 out of 13 objects partial ranking problem. The values “1”,
“2,” and “3” were assigned to the most, second, and third important criteria for job
selection, respectively. Regarding the other less important items, it is common to
define the midrank, i.e., 1

t�q Œ.qC1/C� � �C t �, as their rank. In this case the midrank

is 1
10
Œ4C � � � C 13� D 8:5. Table 9.7 provides some preliminary statistics, including

sample mean and sample variance for each of the 13 criteria based on these 500
incomplete rankings with the midrank imputations.

The factor model is assumed and the analysis is made possible by the MCEM
algorithm. Initial values of � were obtained by principal factor analysis and a
standardized rank score, ijp

.t2�1/=12 � 1pP
i 1=�

2
i

, was used as starting value of yij

in the Gibbs sampler. The choice of standardized rank score was motivated by the
fact that the rankings of yij 0s must be consistent with the observed ranking �j .

9.2.5.1 Model Estimation

Factor models with the number of factors ranging from zero to five were estimated.
The Gibbs sampler (in the MC E-step) converged quite rapidly. We discarded the
first 100 burn-in cycles and selected one yj systematically from every fifth cycle
afterward until a total of 40 draws was reached.

We used the bridge sampling criterion discussed in Sect. 9.2.2.3 to detect
the convergence of the MCEM algorithm. Figure 9.2 shows the plot of the log-
likelihood ratio against the number of iterations of the 3-factor model. The MCEM
algorithm converged after 20 iterations.
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Fig. 9.2 Bridge sampling criteria

Table 9.8 AIC values and proportions of variance explained
by the d -factor model with d D 0; 1; 2; 3; 4; 5

Number of
factors (d )

Number of free
parameters

AIC
value

Proportion of
variance explained

0 24 6086.2 –

1 36 5909.0 0.1933

2 47 5894.6 0.2745

3 57 5892.8 0.4125

4 66 5896.7 0.4861

5 74 5903.8 0.5385

The Akaike information criterion (AIC) was used to determine the appropriate
number of factors. The observed likelihood function which can be written as
a product of multivariate normal probabilities over the rectangular region was
approximated by the Geweke-Hajivassiliou-Keane (GHK) method shown to be
unbiased and most reliable. Table 9.8 exhibits the values of AIC approximated by
GHK methods and the proportions of variation explained by the d -factor models
with d D 0; 1; 2; 3; 4; 5. It can be seen that the “best" model according to AIC is
the 3-factor model and the proportion of variation explained by the 3-factor model
is 41 %.

To examine the goodness of fit of the 3-factor model, we compare the top-
choice probability for each of the 13 objects based on the fitted model with its
corresponding observed proportions. Here, the top-choice probabilities is estimated
using the GHK method. Figure 9.3 provides a plot of the estimated top-choice
probabilities vs the respective observed proportions. The points appear to lie on
the straight line, indicating the 3-factor model fits the data reasonably well.
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Fig. 9.3 Estimated top-choice probabilities vs observed proportions

Table 9.9 Parameter estimates of the 3-factor model

Criteria Factor 1 Factor 2 Factor 3 b � 2

1 �0:58 �0:41 0:25 �0:79 0:73

2 �0:02 �0:21 0:79 �0:46 0:29

3 0:29 �0:65 �0:04 0:30 0:40

4 0:44 �0:38 0:24 �0:74 1:10

5 �0:10 0:09 �0:14 0:75 0:47

6 �0:05 0:07 �0:73 1:31 0:35

7 �0:09 0:69 �0:17 0:42 0:27

8 �0:22 0:36 �0:34 0:94 0:31

9 0:58 0:03 0:21 �0:26 0:53

10 0:14 0:70 �0:15 �0:05 0:19

11 0:39 �0:07 0:09 �0:46 0:88

12 �0:50 0:21 0:08 �1:10 0:82

13 �0:07 0:52 �0:23 �0:17 0:47

Cumul. prop. exp. 0:15 0:30 0:41

Estimated values of the factor loadings were obtained by varimax rotation. The
values of factor loadings expressed as the correlation between factors and utilities
together with the estimated values of b and � 2 are summarized in Table 9.9. The
first factor can be regarded as a measure of career prospect. Utilization of one’s
talent and job aspiration are major concerns in this factor. The second dimension
represents the undemanding job nature. Short distance between working place and
home, stable working hours, and low working pressure all score high loadings in
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Fig. 9.4 Stopping criterion

this factor. The third factor represents a contrast between the scale of the company
and the salary. A large company offering lower income can be more attractive than
a small company offering higher income.

Also, the mean vector b reflects the overall importance of the 13 criteria. Note
that the ordering of Ob1; : : : ; Obt is consistent with the average of the 500 rankings.
Criterion 6 has the largest mean value which implies salary is their major concern
on choosing a job while factors regarding the company itself are least important
because Ob1, Ob4, and Ob12 get large negative values.

9.2.5.2 Factor Score Estimation

To estimate the factor scores of the fitted 3-factor model, we applied the MCEM
method. It is found that the Gibbs sampler in the E-step converged quite rapidly. We
discarded the first 100 burn-in cycles and selected one yj systematically from every
fifth cycle afterward until 40 draws were reached. We simulated a total of 300 cycles
for each E-step. Also, we applied the stopping criterion to detect the convergence
of the MCEM algorithm. Figure 9.4 gives the plot of l.z.s/; z.sC1// against the
number of iterations. According to the plot, the MCEM algorithm converged after
20 iterations.

It is often of interest to study the relationship between the factor scores and the
covariates of each individual. In this survey, age group was collected in nine 5-year
bands covering the ages from 15 to 59 ((1) 15–19, (2) 20–24, : : :., (9) 55–59),
while education level was recorded in five categories: primary (1), junior secondary
(2), senior secondary (3), postsecondary (4), and university degree or above (5).
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Fig. 9.5 Factor scores vs age and education level

Figure 9.5 provides plots of the means of the factor score estimates of individuals
of different age groups and education levels. From the plot of factor scores by age,
a decreasing trend for factor 1 scores and an increasing trend for factor 2 scores are
observed whereas from the plot of factor scores by education, an increasing trend for
factor 1 scores and a decreasing trend for factor 2 scores are observed. For factor 3
scores, only a slightly increasing trend in education is observed. These observations
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Table 9.10 Standard error of
factor scores

S11 S22 S33 S12 S13 S23

Mean 0.1727 0.3279 0.3275 0.0119 0.0483 0.0174

SD 0.0052 0.0064 0.0140 0.0040 0.0064 0.0077

Min. 0.1606 0.3135 0.2993 0.0014 0.0354 0.0000

Max. 0.1903 0.3509 0.3825 0.0243 0.0699 0.0428

imply a young, well-educated person acquires more on career prospect while an
old, less educated person may seek for a job with undemanding job nature. Finally,
a better educated person is more willing to work in a large company offering lower
salary.

To demonstrate the performance of our estimation on factor scores, Table 9.10
provides descriptive statistics on the covariance matrix S of Ozj ; i D 1; : : : ; 500:

Small values of the standard error show that the estimation method is good and
reliable. Also, it seems that the impact of unobservable information for this case is
not serious.

Chapter Notes

To address the robustness of the MVNOS model, Yu (2000) considered two
approaches. The first one is to study the sensitivity of the parameter estimates if
an outlying ranking is added to the data while the second one is to consider a more
general distribution and look at the differences between the 2 sets of estimates.

In Sect. 9.1, we discussed that the parameters of a MVNOS model cannot be
fully identified unless the variance-covariance matrix V is structured. Of course,
factor analysis mentioned in Sect. 9.2 provides a solution for the simplified but yet
flexible dependency structure for V . Other choices of dependency structure include
wandering vector models (Yu and Chan 2001) and wandering ideal point models
(Leung 2003).

In the factor analysis for ranking data, Yu et al. (2005) commented that apart from
studying the relationship between the factors and individual’s covariate via factor
score estimation, we can incorporate the effect of covariates directly into the factor
model: yij D z

0

jai Cbi Cw
0

j ci C"ij , where wj is a vector of covariates of individual
j such as sex and age and ci is a vector of regression parameters. The procedures of
the MCEM algorithm can be implemented easily for this model but the details are
omitted here. However, the number of parameters to be estimated would increase
accordingly. Recently, Yu et al. (2013) further extended factor analysis to a data set
of paired rankings such as rankings given by couples and identified the common
factors between the individuals in each pair.
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So far, we treated the ranking with ties as if the ordering of tied objects is
unknown. Poon and Xu (2009) extended the MVNOS model to allow for tied objects
by assuming that any two objects a and b have different ranks if and only if their
utilities differ by more than a small value, i.e., jya � ybj � ı. For example, the
ranking B � A D C has utilities satisfying yB � yA � ı; yB � yC � ı, and
jyA � yC j < ı. However, the parameter ı in Poon and Xu (2009) must be fixed at a
prespecified value because of the parameter identifiability problem.



Chapter 10
Decision Tree Models for Ranking Data

A number of models for ranking data were introduced in Chaps. 8 and 9. However,
not all of these models are designed to incorporate individual/object-specific
covariates. Distance-based models discussed in Sect. 8.3 are typical examples of
ranking models that are not presently designed to incorporate covariates. As these
models generally assume a homogeneous population of individuals, they always
give the same predicted ranking. Order statistics models discussed in Sect. 8.3 and
Chap. 9 are typical examples of models that are able to incorporate covariates in a
“linear model” form. However, there are only a few diagnostic procedures available
to determine whether a satisfactory model is found. For instance, is it necessary to
transform some of the covariates? Which variables or interaction terms should be
included into the model?

For those ranking models that are able to incorporate covariates, it will be
difficult to interpret the coefficients of the fitted models if nonlinearity or higher-
order interactions are present. For example, Holland and Wessells (1998) applied a
rank-ordered logit model with more than 20 interaction terms to predict consumer
preferences for fresh salmon. They reported that the model performance has greatly
improved after including the interactions but at the same time they mentioned that
interpretation of the coefficients is less clear.

The use of decision trees can provide a powerful nonparametric model capable
of automatically detecting nonlinear and interaction effects. This could serve as a
complement to existing parametric models for ranking data. Decision trees are so
called because they can be constructed by a set of rules displayed in a treelike
structure. Figure 10.1 exhibits a decision tree with 3 leaf (or terminal) nodes.
Since the resulting trees are easy to interpret and provide insight into the data
structure, they have been popularly used for classification and regression problems
by statisticians, machine learning researchers, and many other data analysts.
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Leaf 1

Yes

X4 < 1.6

X3 < 2.1

Leaf 2

Yes

Leaf 3

No

No

Fig. 10.1 A hypothetical decision tree

In the literature, there are many variants of tree-construction methods such as
CART (Breiman et al. 1984) and C4.5 (Quinlan 1992). Many of these decision
tree models are constructed in a top-down manner: starting at the root node (the
entire training data set) and recursively partitioning the data into two or more child
nodes in such a way that each new generation of nodes has better performance than
its parent node. The most important step in tree construction is to select the best
split for each internal node according to a certain splitting criterion. One approach
is to search for the best split based on an “impurity” function (impurity function
approach). An impurity function defined for each node measures the degree of
impurity of the node. The most frequently used impurity functions are the entropy
and the Gini index. An alternative approach to do splitting is to apply a statistical test
of homogeneity to test whether the split can make the child nodes with significant
different distributions of the data (statistical test approach). Common statistical
tests are the chi-square test and likelihood ratio test for independence in a two-way
contingency table. Generally speaking, construction of a decision tree comprises
two stages: tree growing and tree pruning. See Appendix C for a detailed review of
decision trees.

Many popular statistical and data mining software such as SAS/Enterprise Miner,
Salford Predictive Modeler, and R provide modeling tools for building decision trees
for discrete choice data but not for ranking data. In this chapter, we will introduce
recent works by Yu et al. (2010) and Wan (2011) which developed decision tree
models based on impurity function and statistical test approaches, respectively.
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10.1 Impurity Function Approach

In this section, we describe a methodology for constructing a decision tree for
ranking data based on the impurity function approach. First of all, the ranking data
is randomly partitioned into a training set and a testing set. Following the idea of the
CART method, Yu et al. (2010) developed a decision tree algorithm which consists
of two stages:

• Tree growing: starting from the root node (the training set), recursively partition
each node to identify the best split according to the impurity function until some
split-stopping criteria are met. Once tree growing is stopped, a tree is built.

• Tree pruning: using the tree found in the tree-growing stage, find the best subtree
by removing branches that does not show any significant improvement in a cost-
complexity measure based on a ten-fold cross-validation.

10.1.1 Building Decision Tree for Ranking Data

10.1.1.1 Tree Growing

In growing a tree, the most important step is to search for the best splitting rule
in each node based on an impurity function. Here, we will introduce four impurity
functions designed for ranking data. Suppose we are given an internal node � which
contains a data set of rankings of t objects. We first define some notations.

Definition 10.1. Let � t;m be a set of all possible rankings of m objects from
the t objects. Let �

t;m

fa1;a2;��� ;amg be a set of all possible rankings of the m objects

fa1; a2; � � � ; amg from the t objects. Let �t
m be a collection of all possible subsets

of m objects from the t objects.

For example, we have t D 4 objects: f1; 2; 3; 4g. Then we have

�4;2 D f.1; 2/; .2; 1/; .1; 3/; .3; 1/; .1; 4/; .4; 1/; .2; 3/; .3; 2/; .2; 4/; .4; 2/;
.3; 4/; .4; 3/g

�
4;2

f1;2g D f.1; 2/; .2; 1/g
�4
2 D ff1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg:

Definition 10.2 (Top q notion). For r D .a1; a2; � � � ; aq/ 2 � t;q , let pT .rj �/ be
the proportion of individuals in node � who rank object a1 the first, object a2 the
second, and so on until object aq the qth. Ranks of the remaining t � q objects are
not considered.
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Definition 10.3 (m-wise notion). For r D .a1; a2; � � � ; am/ 2 �
t;m
Bm

, where Bm 2
�t
m, let pW .rj �/ be the proportion of individuals in node � who rank object a1

higher than object a2, object a2 higher than object a3, and so on until object
am�1 higher than object am. Objects other than a1; a2; : : : ; an are not taken into
consideration.

In Appendix C.2.1 impurity functions for unordered categorical responses are
described. We provide an extension of the Gini and entropy impurity functions to
deal with ranking data.

Given a ranking data set of t objects, the extended Gini and entropy developed
using the top q and m-wise notions are defined as follows:

Top-q Gini: i
.q/
T .�/ D 1 �

X

r2�t;q

ŒpT .r j �/�2 (10.1)

Top-q entropy: i
.q/
T .�/ D �

X

r2�t;q

pT .r j �/ log2 pT .r j �/ (10.2)

m-wise Gini: i
.m/
W .�/ D 1

C t
m

X

Bm2 �t
m

0

B@1�
X

r2�
t;m
Bm

ŒpW .r j �/�2
1

CA (10.3)

m-wise entropy: i
.m/
W .�/ D �1

C t
m

0

B@
X

Bm2 �t
m

X

r2�
t;m
Bm

pW .r j �/ log2 pW .r j �/

1

CA

(10.4)

The normalizing term 1=C t
m is to bound i .m/W .�/ in the range of 0 and 1.

Given an impurity function i.�/ (one of the above measures), we define the
goodness of (binary) split s for node � , denoted by 4i.s; �/, as

4i.s; �/ D i.�/� pLi.�L/� pRi.�R/:

4i.s; �/ is the difference between the impurity measure for node � and the weighted
sum of the impurity measures for the left child and the right child nodes. The
weights, pL and pR, are the proportions of the samples in node � that go to the
left node �L and the right node �R, respectively.

By going through all the possible splits, the best split of node � is the one with
the largest goodness of split 4i.s; �/. The node splitting will continue until the
node size is less than a prespecified minimum node size value. In our application,
the minimum node size is set to be one-tenth of the size of the training set.
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10.1.1.2 Tree Pruning

After the tree is fully constructed, we proceed to the tree pruning stage where the
optimal subtree is determined to improve the prediction accuracy. The basic idea is
to make use of the minimal cost-complexity algorithm described in Appendix C.2.2
with ten-fold cross-validation to obtain the final tree that minimizes the misclassi-
fication cost. See Yu et al. (2010) for details of the choice of misclassification cost
and the implementation procedure of tree pruning.

10.1.2 Leaf Assignment

Various approaches are proposed to make the assignment for every leaf node:

1. Calculate the mean rank of each object and deduce the predicted ranking by
ordering the mean ranks.

2. Calculate the top-choice frequency of each object and decide the predicted
ranking by ordering the frequency.

3. Use the most frequently observed ranking to represent the predicted ranking.
4. Look at the paired comparison probabilities of each object pair or the top-5 most

frequently observed ranking responses.

The first three approaches reveal the predicted ranking of the objects. However,
in some situations, the predicted rankings are not of primary concern. Instead, it is of
interest to investigate the importance of the covariates to the rank order preference.
For this kind of exploration, method 4 provides a more general idea of how the
preference orders are distributed within a leaf node. In the following, we advocate
a nonparametric procedure to examine the differences among the mean ranks of
objects in each leaf node.

10.1.2.1 Nonparametric Inference of the Leaf Nodes

Given a fitted tree, the training data is partitioned into a number of relatively more
homogeneous leaf nodes. In this case, we would like to understand the preference
of the objects in each leaf node. It is thus of interest to examine the rank order
difference among the objects so that a clearer picture can be obtained in interpreting
each leaf node.

The first thing we should consider is to test for randomness on ranking of t
objects in each leaf node. This is equivalent to apply the Friedman test to the ranking
data in each leaf node. Under the null hypothesisH0 of randomness in the Friedman
test, the Friedman test statistic Q�, corrected for the observed ties, in leaf node �
with n� individuals is given by
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Q� D
.t � 1/

tP
iD1

Œri � n� .t C 1/=2�2

n�P
jD1

tP
iD1

r2ij � n� t.t C 1/2=4

;

where ri is the sum of the ranks rij for object i . When the data contains no ties, Q�

becomes the test statistic used in Sect. 2.3.
Iman and Davenport (1980) argued that the chi-square approximation of Q�

may be undesirably conservative and suggested using the following F distribution
approximation:

QF D .n� � 1/Q�

n�.t � 1/�Q�

:

Under H0, QF follows asymptotically an F distribution with .t � 1/ and .n� � 1/

.t � 1/ degrees of freedom.
Upon rejection ofH0 in the Friedman test, it is possible to identify the difference

between specific pairs of objects by the multiple comparison procedure (Conover
1999). Preferences on objects a and b are significantly different at the significance
level ˛ if the following inequality is satisfied:

jra � rbj > t1�˛=2

vuut2n�

�Pn�
iD1

Pt
jD1 r2ij �Pt

jD1 r2j=n�
�

.n� � 1/.t � 1/

where t1�˛=2 is the value from the student-t distribution with .n� �1/.t�1/ degrees
of freedom.

10.1.3 Performance Assessment of Decision Tree
for Ranking Data

Another important issue that should be addressed is the performance assessment
of the fitted decision tree. The most frequently used performance measure is mis-
classification rate. However, this is not a good performance measure for assessing
predictive accuracy of the fitted tree because a predicted ranking can only be
classified either correctly or incorrectly, overlooking the fact that the predicted
ranking can be partially agreed with the observed ranking. That means some objects
in the rank permutation, but not all, are in the correct ordered position.

A widely used single measure for evaluating the overall performance of a binary
classifier is the area under the receiver operating characteristic (ROC) curve. It is
simple and attractive because it is not susceptible to the threshold choice and it is
regardless of the costs of the different kinds of misclassification and class priors
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(Bradley 1997; Hand and Till 2001) . The value of AUC always falls within [0.5,
1.0] – it equals 0.5 when the instances are predicted at random and equals 1.0 for
perfect accuracy.

However, standard ROC curve can be used for binary data only. Hand and Till
(2001) extended it to discrete choice data and Yu et al. (2010) further generalized
it to ranking data. The general idea is to first convert the observed and predicted
rankings in a testing set into many binary choices with each comparing preference
between a pair of objects. Using the observed and predicted binary choice outcomes
for each pair of objects, an ROC curve can be drawn and the corresponding AUC can
be computed using the standard procedure. Finally, the AUC of the fitted decision
tree for ranking data can be obtained by taking the average of the AUCs for all pairs
of objects.

10.1.4 Analysis of 1993 European Value Priority Data

The ranking data set was obtained from the International Social Service Programme
(ISSP) in 1993 (Jowell et al. 1993), which is a continuing, annual program of
cross-national collaboration on surveys covering a wide spectrum of topics for
social science research. The survey was conducted using standardized questionnaire
in 1993 at 20 countries around the world, such as Great Britain, Australia, the
USA, Bulgaria, the Philippines, Israel, and Spain. It mainly focused on value
orientations, attitudes, beliefs, and knowledge concerning nature and environmental
issues and included the so-called Inglehart Index, a collection of four indicators
of materialism/post-materialism as well. Respondents were asked to pick the most
important (rank “1") and the second most important (rank “2") goals for their
government from the following four alternatives:

1. Maintain order in nation (ORDER).
2. Give people more to say in government decisions (SAY).
3. Fight rising prices (PRICES).
4. Protect freedom of speech (SPEECH).

After removing those invalid responses, the survey gave a ranked data set of 5,737
observations with top choice and top two rankings. In addition, the data provide
some judge-specific characteristics and they are applied in tree partitioning. The
candidate splitting variables are summarized in Table 10.1.

Respondents can be classified into value priority groups on the basis of their top
two choices among the four goals. “Materialist” corresponds to an individual who
gives priority to ORDER and PRICES regardless of the ordering, whereas those
who choose SAY and SPEECH will be termed “post-materialist.” The last category
consists of judges giving all the other combinations of rankings, and they will be
classified as holding “mixed” value orientations.

Inglehart’s thesis of generational based values has been influential in political
science since the early 1970s. He has argued that value priorities were shifting
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Table 10.1 Description of 1993 EVP data

Covariate Description/Code Type

Country West Germany D 1, East Germany D 2, Nominal
Great Britain D 3, Italy D 4, Poland D 5

Gender Male D 1, female D 2 Binary

Education 0–10 years D 1, 11–13 years D 2, Ordinal
14 or more years D 3

Age Value ranges from 15 to 91 Interval

Religion Catholic and Greek Catholic=1, Nominal
Protestant D 2, others D 3, none D 4

Table 10.2 Summary of the best pruned subtrees by four impurity measures

Method Avg. AUC SE AUC No. of leaves Depth

Top-2 entropy 0.61947 0.0056 0.62951 12 5

Pairwise Gini 0.61896 0.0058 0.62902 12 5

Pairwise entropy 0.61857 0.0056 0.62709 11 5

Top-2 Gini 0.61425 0.0063 0.61931 9 4

profoundly in economically developed Western countries, from concern over
sustenance and safety needs toward quality of life and freedom of self-expression,
thus from a materialist orientation to a post-materialist orientation. In this analysis,
we study the Inglehart hypothesis in five European countries by our decision tree
approach, which helps to identify the attributes that affect Europeans’ value priority.

The data are divided randomly into 2 sets, 70% to the training set for growing the
initial tree and finding the best pruned subtree for each of the four splitting criteria;
and 30% to the testing set for performance assessment and selection of the splitting
criterion to build the final tree.

As a decision tree is an unstable classifier, small changes in the training set can
cause major changes in the fitted tree structure; we therefore repeat this procedure
50 times and compare the four splitting criteria with their averaged AUC. The final
tree model is created using the entire data set for interpretation. Notice that the
testing set is not involved in the tree building process and pruned subtree selection.
The four splitting criteria for rankings include top-2 and pairwise measures of Gini
and entropy.

The second and third columns of Table 10.2 show the averaged AUC and their
standard error of the best pruned subtrees for each splitting criterion based on
50 repetitions. The tree structure and performance of the final models are also
presented. Figure 10.2 displays the six ROC curves of each object pairs that arise
from the top-2 entropy tree. The tree did a better job of predicting the object pair
“SAY vs PRICES”, but poor for “SAY vs SPEECH.” The performance of the four
trees is comparable and it is hard to distinguish them in the graph.

The four tree models are found to have similar node partitions. The root node
is split according to whether the judges came from Poland or not. At the second
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Fig. 10.2 ROC curves of top-2 entropy tree
Remark: The four value objects are coded as follows 1 D [ORDER], 2 D [SAY], 3 D [PRICES]
and 4 D [SPEECH]. The 45ı diagonal line connecting (0,0) and (1,1) is the ROC curve correspond-
ing to random chance. Given next to the legends are the areas under the corresponding dashed ROC
curves

level, the splits are based on age. For Polish, the respondents are divided with the
rule “age<59?”, while the remaining judges are split according to age < 53 or not.
Further partitions involve education level, country, and age. The factors religion and
gender do not seem to be influential. It is observed that in the learning phase, top-2
Gini tends to give a smaller tree, while top-2 entropy gives a more complicated tree
on average. Based on the assessment criterion, the top-2 entropy tree is chosen as
the best model and it is applied for further analysis.

The tree with 5 levels of depth and 12 leaves is sketched in Figure 10.3. For the
sake of brevity, we do not show the other three tree structures. A summary of the leaf
nodes of the final tree is reported in two tables. Table 10.3 shows the individuals’
value priority, the three most frequent top two rankings, together with the proportion
of six pairs of political goals in each leaf node whereas Table 10.4 lists the mean
rank of the four political goals. In order to determine if the observed rankings in the
leaf node imply statistically significant differences across alternatives, the Friedman
test is used, and highly significant results are obtained in all leaves, indicating that
the respondents had different priority to at least one political goal. The post hoc
multiple comparison procedures are thus further performed and based on the results,
the rankings of the four goals are deduced (see Table 10.4).

We now turn to examine the covariate and interaction effects based on the final
tree model. In Poland, individuals were more likely to favor materialistic objects
ORDER (in leaves 5, 8, and 9) and PRICES (in leaves 5 and 8) than the other two
post-materialistic objects. In East Germany, judges appeared to support ORDER and
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Fig. 10.3 Fitted tree based on top-2 entropy
Remark: In each node, the node ID and the number of judges are shown. The splitting rule is given
under the node. The abbreviation “edu” stands for the variable education

SAY more; particularly those older generations gave higher priority to ORDER (in
leaf 12). Respondents of West Germany showed stronger emphasis on SAY. Those
better educated West Germans were more post-materialist than the lower educated
ones as they preferred SAY and SPEECH, rather than the other two materialist
objects (in leaf 15). Mixed value orientations were anchored in British because all
the related leaf nodes give us a preference prediction of ORDER � SAY or SAY �
ORDER.

Summarizing, we note that:

(i) Despite some cross-national differences, our findings do not deviate much
from Inglehart’s theory, which claimed that societies embrace post-materialistic
values as they move toward more economic security and affluence. The older
European generations experienced economic and social insecurity in their
preadult years during World War II. They thus attached more importance to
materialistic values compared to younger cohorts. Younger postwar generations
developed post-materialist values as they grew up during periods of relative
prosperity.

(ii) There is a clear tendency in each country for the higher educated to be
the more post-materialistic groups. Duch and Taylor (1993) stated that the
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post-materialistic objects tap certain fundamental democratic values, such as
liberty and rights consciousness. The better educated would have had more
opportunity to learn to appreciate such principles, and thus they will prefer
post-materialistic objects more.

10.2 Statistical Test Approach Based on Intergroup
Concordance

In Sect. 10.1, a decision tree for ranking data was constructed in such a way that
the leaf nodes are as pure as possible according to a certain impurity measure. In
other words, the node splitting in the impurity function approach aims to find the
best split such that the two resulting child nodes are as homogeneous as possible.
However, this does not guarantee that the rankings of objects between the two child
nodes are significantly different.

As mentioned earlier, there is a statistical test approach which can provide an
alternative splitting measure based on a test for intergroup concordance on rankings
for the selection of the best split during the tree-growing stage. In Sect. 4.2, we have
seen several tests for testing for agreement or concordance between two or more
groups in ranking a set of objects. Therefore, it is possible to apply those tests in
constructing decision tree for ranking data.

10.2.1 Building Decision Tree Using Test for Intergroup
Concordance

To construct a decision tree based on the statistical test of intergroup concordance,
we follow the same methodology used in the impurity function approach in
Sect. 10.1 except for the choice of splitting criterion. For the splitting criterion,
the best splitting rule of a node is the one that maximizes the test statistic for testing
concordance between two child nodes.

Here, we will make use of two tests of concordance based on Spearman and
Kendall statistics described in Sect. 4.2. Note that the combined estimates of the
covariance function is used throughout. The notation SP refers to the Spearman
statistic and KW to the Kendall statistic.

The partitioning process stops when further splitting does not lead to a statisti-
cally significant result. The tree size can then be controlled by setting a threshold
significance level on the test procedures. Lower threshold values tend to produce
smaller trees.

After the tree is fully constructed, the cost-complexity pruning procedure is
executed to avoid the problem of overfitting the ranking data. Most steps are the
same as the one used in Sect. 10.1 except that an alternative cost function based on
Spearman Footrule distance is considered. For the details of this pruning procedure,
see Wan (2011).
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10.2.2 Analysis of US General Social Survey Data on Job
Value Preference

The general social survey (GSS) has been conducted in US by the National Opinion
Research Center (NORC) of the University of Chicago annually since 1972 (except
for the years 1979 and 1981) and biennially since 1994 (Davis and Smith 2009).
Each year the GSS consisted of a 90-min in-person interview with a full-probability
sample of English- or Spanish-speaking persons aged 18 years or above who lived
in households. It is a multidimensional social survey that gathers sociodemographic
characteristics and replicated core measurements on social and political attitudes
and behaviors, plus topics of special interest. Many of the core questions have
remained unchanged since 1972 to facilitate time-trend studies as well as replication
of earlier findings. In relation to job value, the characteristics were measured by
the GSS in an ipsative approach. The respondents were asked to rank in order of
preference from (i) “most preferred,” (ii) “second most important,” to (v) “fifth most
important” five aspects about a job:

1. High income (JINC)
2. No danger of being fired (JSEC)
3. Working hours are short, lots of free time (JHOUR)
4. Chances for advancement (JPRO)
5. Work important and gives a feeling of accomplishment (JMEAN)

Job values, as defined by Kalleberg (1977), are what individuals hold as desir-
able with respect to their work activity and the attitudes are central to the
social psychology of work. Under many other names (including work/occupational
value/attribute/characteristic), they refer to the importance people place on occupa-
tional rewards and play a key role in conditioning a range of work-related outcomes,
such as job satisfaction and commitment, work centrality, and occupational choice
and stability. Theoretically, the perceived job attributes have been conceptualized
into two value dimensions, either intrinsic or extrinsic. Intrinsic values concern the
rewards emanating directly from the work activity and experience itself (e.g., job
autonomy, challenge, use of abilities, expression of interest and creativity, work-
place cooperation, job useful to society). In contrast, extrinsic values involve the
rewards derived from the job but external to the work itself (e.g., job security, pay,
fringe benefit, prestige, promotional opportunities, pleasant working environment,
good hours, no excessive amount of works). Among the five work values listed in
the GSS, the first four attributes (i)–(iv) represent extrinsic factors of the job, while
the last value (v) is considered intrinsic.

An ongoing interest among researchers in work value preference has been
witnessed over the decades. Previous studies have shown that work values are not
externally given, but rather come as a result of socialization processes throughout an
individual’s life (Johnson 2002; Mortimer and Lorence 1979). They are developed
initially as a function of parents’ social origin and socioeconomic positions, during
schooling and the early years of work. Past research has consisted of comparing and
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explaining the differences in job value preferences between white and blue collar
workers (Weaver 1975), male and female (Lacy et al. 1983), older and younger
generations (Loscocco and Kalleberg 1988), as well as blacks and whites (Martin
and Tuch 1993). In the following section, we exploit the data from the General
Social Survey to revisit the priority of occupational values in the US using the
proposed tree model.

This study utilized data from three samples (N D 3744) collected in 1973, 1985,
and 2006, in order to examine the role of social class origins and socioeconomic
characteristics in shaping one’s job value orientation. Table 10.5 shows the eight
individual attributes (sex, race, birth cohort, highest educational degree attained,
family income, marital status, number of children that the respondent ever had,
and household size) and three properties of work conditions (working status,
employment status, and occupation) that are involved in the model building process.
The attribute “year,” referring to the year of survey, is also included to address the
question of changing work values over time.

Complete rankings of the five job characteristics were obtained from the entire
sample. Summarized results of their preferences by years are provided in Table 10.6.
The pattern is remarkably consistent over the 30-year period. Meaningful work
(JMEAN) was far more important than any other value, taking over 40 % of the top
rank order in each year of survey. The next two attributes, high income (JINC) and
having opportunities for advancement (JPROMO), were fairly close to each other
in importance. Less than 5 % of the respondents regarded short working hours and
more leisure time (JHOUR) as the most important value, while 51.3 % placed it as
the least important.

Next, the ranking data are analyzed using the decision tree model described
earlier. Following the methodology presented in Sect. 10.1.4, we randomly divide
the data into 2 parts: (1) the learning set constituting 70 % of the data to grow the
initial tree with a threshold significance level of 0.5 and search the best pruned
subtree for each of the test statistic and (2) the testing set containing the remaining
data to evaluate the tree performance and select the best splitting measure to build
the final tree. Note that the entire sample will be included to produce the final model.

Preliminary attempts at learning from the data are not promising because the
overall value placed on short working hours in all leaf nodes is found to be the
least important to people than meaningful work, high income, and advancement
opportunities. Given the limited significance of “JHOUR,” we removed it from
further analysis and reduced the number of ranked objects to four. The performance
of the best pruned subtree for each statistical measure is reported in columns 2
and 3 of Table 10.7. The averaged AUC and the standard error obtained over 50
replications do not differ much among the measures. Indeed, the trees developed
have similar structure; the splitting rules at the first, second, and third level are
found to be the same. For this reason, we restrict attention to the SP tree model
in the coming discussion.

Figure 10.4 depicts the ROC curves of six object pairs that arise from the SP tree.
The predictive performance of the classifier is found to be superior on the object
pairs “JMEAN vs JSEC” and “JMEAN vs JINC” and inferior on the object pairs
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Table 10.6 Importance of five job values in the US General Social Survey

Year JMEAN JINC JPRO JSEC JHOUR Sample size

Top choice

1973 620 (53.7%) 221 (18.4%) 223 (19.2%) 77 (6.4%) 59 (4.9%) 1,200

1985 643 (48.8%) 255 (19.4%) 287 (21.8%) 91 (6.9%) 41 (3.1%) 1,317

2006 506 (41.2%) 283 (23.1%) 244 (19.9%) 131 (10.7%) 63 (6.4%) 1,227

Total 1769 (47.2%) 759 (20.3%) 754 (20.1%) 299 (8.0%) 163 (4.4%) 3,744

Last choice

1973 90 (7.5%) 79 (6.6%) 115 (9.6%) 359 (29.9%) 557 (46.4%) 1,200

1985 67 (5.1%) 47 (3.6%) 77 (5.8%) 351 (26.7%) 775 (58.8%) 1,317

2006 85 (6.9%) 85 (6.9%) 122 (9.9%) 345 (28.1%) 590 (48.1%) 1,227

Total 242 (6.5%) 211 (5.6%) 314 (8.4%) 1055 (28.2%) 1922 (51.3%) 3,744

Table 10.7 Summary of the best pruned subtrees by two statistical
significance measures

Method Avg. AUC SE AUC No. of leaves Depth

Spearman 0.65045 0.0056 0.64689 28 9

Kendall 0.64844 0.0062 0.64229 22 12

Fig. 10.4 ROC curves of SP tree
Remark: The four value objects are coded as follows: 1 D [JMEAN], 2 D [JINC], 3 D [JPRO], and
4 D [JSEC]. The 45ı diagonal line connecting (0,0) and (1,1) is the ROC curve corresponding to
random chance. The areas under the corresponding dashed ROC curves appear in brackets

“JINC vs JSEC” and “JINC vs JPRO.” As displayed in Figure 10.5, the nine-level SP
tree has 28 leaf nodes (in square box). Inside each node, the node ID and the number
of judges are shown, whereas the splitting rule is given under the node. Race is
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found to be the most important factor, splitting the entire sample into white (race=1)
and black (race=2) Americans. At the second level, white Americans are separated
based on their occupation (occ=1 vs occ¤1), while for black Americans, they are
divided according to their highest education level attained (educD0 or not). Other
predictor variables appearing in the partitions in lower levels include birth cohort,
family income, number of children ever had, working status, and household size.
Surprisingly, the demographic variable sex has no contribution in the classification
problem, while marital status and employment status are found not to be influential
as well. In addition, the factor “year” does not appear in any splitting rule. This
suggests that after controlling for the personal and work-related characteristics, the
work value orientations have not varied over the past few decades.

Leaf statistics of the SP tree are given in Tables 10.8 and 10.9, which present
the mean rank, the three most frequent rankings and the pairwise probability of the
six object pairs. For every leaf node, the Friedman test is applied to examine if
the rank order differences are significant across four job values and the test results
are summarized in column 7 of Table 10.9. It is found that all tests performed are
statistically significant at 0.1 level, indicating that at least one value tends to be
ranked higher. We conducted multiple comparisons between all pairs of values to
determine differences in terms of preferences. The induced ranking in the 28 leaf
nodes is provided in the last column of Table 10.9.

It appears that black Americans placed more emphasis on the extrinsic rewards
than whites, especially among those less educated (in leaf 12) and with lower family
income (in leaf 22). These racial differences may be attributed to their persistent
disadvantaged economic status and wage gap in the labor market (Martin and
Tuch 1993). On the other hand, resulting from anti-discrimination legislation and
improvements in the economic and social conditions in the US since the 1980s, a
greater emphasis on intrinsic job value was found among the younger black cohort
(in leaf 13).

For white Americans, the occupation effect is important. The result indicates
that professional, technical, and related workers attach relatively higher importance
to the intrinsic value “JMEAN” than workers in other occupational groups (in leaves
8, 16, 35, and 42). Given their greater skills and credentials, they felt more secure
in their ability to seek alternative employment and, thus, showed less favor to the
value “JSEC.” Nevertheless, professionals with more children have less propensity
to take risk in the labor market (in leaf 43).

Consistent with a hierarchy of needs perspective, nonprofessional part-time
working white Americans who are less educated, earn less, and have a large
household size have higher valuation on extrinsic value of job security and high
income when compared to their counterparts (in leaf 7). Meanwhile, the younger
cohort in their early stages of working careers tended to desire a job with good
prospects for advancement (in leaves 13, 24, and 27).

In summary, the study reveals that significant racial disparities in extrinsic and
intrinsic job value preferences existed in US throughout the last three decades. The
race effect in conjunction with other variables including education level, family
income, age, household size, number of children, and working status explains
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preferences on work values among Americans. Individuals with advantaged aca-
demic experiences, more income, larger household size, less children, and full-time
work were more concerned with the intrinsic value of jobs. All these interaction
effects have a stronger relationship to job attribute priority than gender.

Although the data utilized in this study covers a 30-year span, the cross-sectional
nature of the data limits our work to an incomplete picture from individuals’
transition in occupational values over time. Of course, the use of panel data will help
to address the changing trajectories in a life course perspective. Another limitation
of this study stems from the unavailability of time-series data. With only three
time points, it is difficult to confirm whether our conclusion of social and work
influences on job value preferences is short term or evidence of longer trends in
society. Collecting such data will help to place the findings in a larger perspective
and hence should be a goal of subsequent research.



Chapter 11
Extension of Distance-Based Models
for Ranking Data

11.1 Weighted Distance-Based Models

Recall from Sect. 8.3 that distance-based models assume that the probability of
observing a ranking � is inversely proportional to its distance from a modal ranking
�0. The closer to the modal ranking �0, the more likely the ranking � is observed.
There are different measures of distances between two rankings as previously
noted. Recently, Lee and Yu (2012) proposed new distance-based models by using
weighted distance measures to allow different weights for different ranks. In this
way, the properties of distance can be retained while at the same time enhancing the
model flexibility.

Motivated by Shieh (1998), we define the weighted Kendall distance by

dK.�; � I w/ D
X

i<j

w0.i/w0.j /I fŒ.i/ � .j /�Œ�.i/ � �.j /� < 0g; (11.1)

where the weights are functions related to the modal ranking. It is important to note
that this weighted distance satisfies all the usual distance properties, in particular,
the symmetric property: dK.�; � I w/ D dK.� ;�I w/.

Other distance measures can be generalized in a similar manner as follows:
Weighted Spearman distance is

dS.�; � I w/ D
tX

iD1
w0.i/Œ.i/ � �.i/�2: (11.2)

Square root of weighted Spearman distance is

dp
S.�; � I w/ D p

dS.�; � I w/ D
vuut

tX

iD1
w0.i/Œ.i/ � �.i/�2: (11.3)
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Weighted Spearman Footrule is

dF .�; � I w/ D
tX

iD1
w0.i/j.i/ � �.i/j: (11.4)

See Tarsitano (2009) for other examples.
The probability of observing a ranking � under the weighted distance-based

ranking model is

P.�jw;�0/ D e�d.�;�0Iw/

C.w/
: (11.5)

Generally speaking, a large value of wi increases our confidence in the ranking of
the object ranked i in �0. This is because such disagreement will greatly increase
the distance and hence the probability of observing it will become very small. If wi
is close to zero, a change in the rank of the object ranked i in �0 will not affect the
distance much. If w D 0, this is just a uniform model or a random noise (denoted
by modelN hereafter).

11.1.1 Properties of Weighted Distance-Based Models

As defined in Sect. 8.5, some properties for ranking models are (1) label invariance,
(2) reversibility, (3) L-decomposability, (4) strong unimodality, and (5) complete
consensus.

It is natural to see that property (1) is essential for all statistical models for rank-
ing data, and it is satisfied by the distances in Sect. 8.3. All the proposed weighted
distance-based models satisfy property (2) and only the weighted Spearman and
Footrule distances satisfy (3), as shown in the following theorem.

Theorem 11.1. The weighted Spearman and Footrule distances are L-decompos-
able.

Proof. Critchlow et al. (1991) showed that a ranking model is L-decomposable if
there exist functions fr , r = 1; : : : t such that

d.�; e/ D
tX

rD1
fr Œ

�1.r/�:

Since

dS.�; e/ D
tX

rD1
w0.�1.r//Œr � �1.r/�2
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Table 11.1 Details of
Footrule and weighted
Footrule models for the
“song” data set

Expected frequency
Ordering

Observed
frequency Footrule Weighted Footrule

3�2�1�4�5 19 28.478 26.592

3�1�2�4�5 10 6.459 11.384

1�3�2�4�5 9 1.465 5.204

3�2�4�1�5 8 6.459 8.203

1�2�3�4�5 7 1.465 5.557
2�3�1�4�5 6 6.459 5.204

3�2�1�5�4 6 6.459 2.001

3�2�4�5�1 5 1.465 2.001

2�1�3�4�5 4 1.465 2.379
3�1�4�2�5 3 1.465 1.503

2�3�4�1�5 2 1.465 1.605

3�4�2�1�5 2 1.465 1.083

3�2�5�4�1 2 1.465 1.583

others 0 16.963 8.701

Total 83

Log likelihood �234:177 �212:183

and

dF .�; e/ D
tX

rD1
w0.�1.r//jr � �1.r/j

the result follows. ut
All weighted distance-based ranking models do not satisfy properties (4) and (5)

unless all the weights are equal. However, rankings that violate properties (4) and
(5) are commonly seen.

Example 11.1. Consider the “song” data set from Critchlow et al. (1991). Ninety-
eight students were asked to rank 5 words, (1) score, (2) instrument, (3) solo,
(4) benediction, and (5) suit, according to the association with the word “song.”
However, only 83 rankings are given in Critchlow et al. (1991) and we fit the
Footrule model and the weighted Footrule model for comparison. The details are
given in Table 11.1.

The modal ranking is 3 � 2 � 1 � 4 � 5. Note that object 1 is less preferred
than object 2 in the modal ranking. It is interesting to examine the ranking pair
(1 � 2 � 3 � 4 � 5, 2 � 1 � 3 � 4 � 5). By the strong unimodality property, we
expect P.1 �2 �3 �4 �5/� P.2 �1 �3 �4 �5/. The observed rankings however
do not follow the property, and hence this data set cannot be fitted well using
(unweighted) distance-based models. The weighted Footrule model gives a better
fit as it is more flexible than its unweighted counterpart. Note that in this data set,
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there are other ranking pairs which cannot satisfy property (4) or (5). It will be seen
that the extension using weighted distance provides a greater flexibility resulting in
a better fit when the ranking data do not satisfy properties (4) and (5).

11.2 Mixtures of Weighted Distance-Based Models

Distance-based models assume a homogeneous population with a single modal
ranking �0. In the case of heterogeneous data, one can adopt a mixture modeling
framework to produce more sophisticated models. The EM algorithm can fit the
mixture models in a quick and simple manner. Murphy and Martin (2003) extended
the use of mixture models to distance-based models to describe the presence of
heterogeneity among the judges. As a result, the limitation of the assumption of
homogeneous population in distance-based models can be relaxed. Inspired by these
results, Lee and Yu (2012) considered mixtures of weighted distance-based models
for ranking data.

If a population contains G subpopulations with probability mass function (pmf)
Pg.x/ and the proportion of subpopulation g equals pg , the pmf of the mixture
model is

P.x/ D
GX

gD1
pgPg.x/: (11.6)

Hence, the probability of observing a ranking � under a mixture of G-weighted
distance-based ranking models is

P.�/ D
GX

gD1
pgP.�jwg;�0g/ D

GX

gD1
pg
e�d.�;�0g Iwg/

C.wg/
; (11.7)

and the log-likelihood for n observations is

` D
nX

kD1
log

0

@
GX

gD1
pg
e�d.�k ;�0g Iwg/

C.wg/

1

A : (11.8)

Estimating the model parameters can be done by applying the EM algorithm
The E-step of an EM algorithm computes, for all observations, the probabilities
of belonging to every subpopulation, and the M-step maximizes the conditional
expected complete-data log-likelihood given the estimates generated in E-step.

To derive the EM algorithm, we define a latent variable zk = .z1k ; : : : ; zGk/ as:
zgk D 1 if observation k belongs to subpopulation g, otherwise zgk D 0. The
complete-data log-likelihood is
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Lcom D
nX

kD1

GX

gD1
zgkŒlog.pg/�d.�k;�0gI wg/� log.C.wg//�: (11.9)

We first select the initial parameters for wg , �0g , and pg . Then we alternatively
run the E-step and M-step until the estimates converge.

In the E-step, Ozgk, g D 1; 2; : : : ; G are updated for observations k D 1; 2; : : : ; n,
by

Ozgk D OpgP. O�kj Owg; O�0g/PG
hD1 OphP. O�kj Owh; O�0h/

: (11.10)

In the M-step, model parameters are updated by maximizing complete-data
log-likelihood with zgk replaced by Ozgk . The MLE of O�0g and Owg are obtained
simultaneously. For a given g D 1; : : : ; G, O�0g is obtained by an exhaustive search
algorithm. Then Owg satisfies the following equation (Murphy and Martin 2003,
pp. 648, Equation (5)):

Pn
kD1 Ozgkd.�k; O�0gI Owg/Pn

kD1 Ozgk D
t ŠX

jD1
P.� j j Owg; O�0g/d.� j ; O�0gI Owg/

is obtained, where � 1; � � � ; � t Š are all possible rankings of the t objects. Using the
latest weights, O�0g is recomputed. The model fitting procedure stops when O�0g does
not change anymore.

Based on our experience, we found that the parameter estimates are not sensitive
to the initialization. Therefore, random numbers drawn from the uniform distribu-
tion on the interval (0, 1), 1=G, and the ranking sorted according to the mean rank
were used as initial values for w, p, and �0, respectively. In our experience, it is
found that the EM algorithm can converge within 20 iterations.

There will be two major difficulties in fitting weighted distance-based models
when t is large. First, the global search algorithm for the maximum likelihood
estimate O�0 is not practical because the number of possible choices is too large.
Instead, as suggested in Busse et al. (2007), a local search algorithm should be
used. They suggested computing the sum of distances

Pn
kD1 d.�k; O�0I w/ for all

O�0 2 …, where… is a set containing all rankings having a Cayley distance of 0/1 to
the “initial ranking.” A reasonable choice of initial ranking can be constructed using
mean rank.

Second, the numerical computation of the proportionality constantC.w/ is time-
consuming. Lebanon and Lafferty (2002) proposed an MCMC algorithm for fitting
(unweighted) distance-based models, and the simulation study in Klementiev et al.
(2008) showed that the performance of this estimation technique is acceptable for
t=10. Similar methods can be extended to the weighted distance-based models.

To determine the number of mixtures, we use the Bayesian information criterion
(BIC). BIC equals
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� 2`C v log.n/; (11.11)

where ` is the log-likelihood, n is the sample size, and v is the number of model
parameters. The model with the smallest BIC is chosen to be the best model
(Murphy and Martin 2003).

To assess the goodness of fit of the model, we use the sum of squares Pearson
residuals (�2) suggested by Marden (1995). It is given by

�2 D
t ŠX

i

r2i ; (11.12)

where

ri D .Oi �Ei/p
Ei

(11.13)

is the Pearson residual and Oi and Ei are the observed and expected frequencies of
ranking i , respectively.

However, if the size of some Ei is smaller than 5, the computed chi-square
statistic will be biased. We are likely to encounter this problem when the size of
the data set is small and t is large. In this case, we suggest using the truncated
sum of squares Pearson residuals criterion described in Erosheva et al. (2007). For
a specified level of truncation, the truncated sum of squares Pearson residuals is
computed by summing up the residuals in which the expected value is greater than
the specified level. When using the truncated sum of squares Pearson residuals, the
effective number of observations, which is the number of observations included in
the truncated sum of squares Pearson residuals, should also be reported.

Simulation studies were conducted to demonstrate the performance of the EM
algorithm and also the effectiveness of using BIC in selecting the number of
mixtures (Lee and Yu 2012). These studies showed that the algorithm can accurately
estimate the model parameters and the BIC is appropriate in the model selection.

11.2.1 Analysis of Croon’s Political Goals Data

To illustrate the applicability of the weighted distance-based models, we make use
of the ranking data set obtained from Croon (1989). It consists of 2,262 rankings
of four political goals for the government collected from a survey conducted in
Germany. The four goals were:

(A) Maintain order in nation.
(B) Give people more say in government decisions.
(C) Fight rising prices.
(D) Protect freedom of speech.
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Table 11.2 BIC of mixture
models (unweighted
distances)

Distance
# Mixture Kendall

p
Spearman Spearman Footrule

N 14377.52 14377.52 14377.52 14377.52

1 13052.58 13001.36 12988.06 13163.26

1CN 13014.91 13009.09 12889.45 13162.11

2 12908.05 12848.57 12851.75 12980.63

2CN 12860.70 12856.28 12758.02 12944.18

3 12846.88 12832.44 12754.64 12902.74

3CN 12839.56 12733.08 12770.09 12932.52

4 12851.53 12847.89 12770.09 12918.19

Table 11.3 BIC of mixture
models (weighted distances)

Weighted distance
# Mixture Kendall

p
Spearman Spearman Footrule

N 14377.52 14377.52 14377.52 14377.52

1 12974.28 13011.22 12951.34 13174.30

1CN 12943.44 13018.94 12863.46 13172.96

2 12797.52 12774.10 12864.90 12806.18

2CN 12688.72 12713.96 12691.64 12697.92

3 12692.20 12678.88 12671.24 12670.82
3CN 12678.06 12688.20 12673.36 12843.80

4 12730.74 12716.28 12709.86 12701.08

The respondents were classified into three value priority groups according to their
top two choices. “Materialist” corresponds to individuals who gave priority to (A)
and (C) regardless of the ordering, whereas those who chose (B) and (D) were
classified as “post-materialist.” The last category consisted of respondents giving
all the other combinations of rankings and they were classified as holding “mixed”
value orientations.

Weighted distance-based models were fitted for four types of weighted distances
with mixing components G D N; 1; : : : ; 3 C N , and 4, where N represents the
noise model, i.e., the one with w D 0. The BIC values are listed in Tables 11.2
and 11.3. The underlined BIC values represent the best number of mixtures within
each distance type. In each table, the BIC value in bold type represents the best
model within that class of mixture model. Finally, we find that the best model
is the weighted Footrule with G D 3 (Table 11.3). The BIC is 12670.82 which
is better than the strict utility (SU) model (i.e., the Luce model in Sect. 8.1.1)
(12670.87) and pendergrass-bradley (PB) model (i.e., the MBT model in Sect. 8.2)
(12673.07) discussed in Croon (1989). It is undoubtedly better than the best
(unweighted) distance-based model (12733.08,

p
Spearman, Table 11.2). For all

types of distances, both unweighted and weighted, the lowest BIC appear when
G D 3 or 3CN .
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Table 11.4 Parameters of weighted Footrule mixture model and SU mixture
model

Group Ordering of goals in �0 p w1 w2 w3 w4
1 C � A � B � D 0.352 2.030 1.234 	 0 0.191

2 A � C � B � D 0.441 1.348 0.917 0.107 0.104

3 B � D � C � A 0.208 0.314 	 0 0.151 0.552

Group p A B C D

1 0.449 0.590 �1.071 1.730 �1.249

2 0.326 1.990 �0.920 0.060 �1.130

3 0.225 �0.691 0.630 �0.010 0.071

Fig. 11.1 A truncated octahedron representing rankings of 4 objects

The parameter estimates of the best model, mixtures of three weighted Footrule
models, are shown in Table 11.4. The parameter estimates of SU model are provided
for comparison. For the SU model, an object with a larger parameter implies
that this object is more preferred. The first two groups, which comprised 79 % of
respondents, were materialists as they ranked (A) and (C) more important than
the other two goals. The third group was post-materialistic as people in this group
ranked (B) and (D) more important. Based on our grouping, we may conclude that
Inglehart’s theory is not appropriate in Germany (c.f. Sect. 10.1.4). We should at
least distinguish the two types of materialists, one ranking (A) higher than (C) and
the other ranking (C) higher than (A). This conclusion is similar to the findings in
Croon (1989) and Moors and Vermunt (2007).

The mixture solution obtained here is slightly different from the SU mixture
solution of Croon (1989). This can be evidenced by visualizing the data via a
truncated octahedron (Thompson 1993a). An illustration of the truncated octahedron
is shown in Fig. 11.1. The 24 rankings are placed on the vertices in a way that the
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Fig. 11.2 Representation of Footrule mixture model

Fig. 11.3 Representation of SU mixture model

edges represent a Kendall distance of 1. Among all six hexagon surfaces, there are
four surfaces where all vertices have the same top choice. For example, the hexagon
surface facing the readers represents the six rankings with top choice C .

Figures 11.2 and 11.3 show the predicted distributions of the Footrule and SU
mixture models, respectively. The three truncated octahedrons represent mixtures
having central rankings C � A � B � D, A � C � B � D, and B � D �
C � A, respectively. Rankings with frequency greater than 5 % of the total mixture
size are plotted. It can be seen that the three mixtures produced using the weighted
Footrule distance are more separated since the difference between groups 1 and 2 is
clearer than in the SU mixture model. For groups 1 and 2, weights w3 and w4 are
close to zero while w1 and w2 are much larger, indicating that observations from
groups 1 and 2 are mainly C � A �‹ �‹ and A � C �‹ �‹, respectively.
As compared with that in groups 1 and 2, the weights in group 3 are close to
zero, implying that people belonging to this group were less certain about their
preferences than people in the other groups. The weight of object A is the largest in
group 3, meaning that A has a relatively high probability to be ranked the last. This
can be seen from Table 11.5 as well.

Although both models suggest three-mixture solution and their �2 values are very
close, the constituent of the three mixtures are quite different. Comparing Fig. 11.2
with Fig. 11.3, we see that the weighted Footrule mixtures are much more pure. A
detailed frequency table is provided (Table 11.5). In the SU mixtures the estimated
proportions of groups 1 and 2 are 0.449 and 0.326, respectively. Our model has a
higher estimated proportion of group 2 (0.441). This difference is mainly due to
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the difference in assigning rankings A � C � B � D and A � C � D � B to
group 2. At first glance, these two rankings should be assigned to group 2. Referring
to Table 11.5, our mixture model assigns approximately 96 % of these two rankings
to group 2, while for the SU mixture model the percentage drops to 63 %. The
grouping of weighted Footrule mixture model appears in fact more reasonable.

11.3 Distance-Based Tree Models

For distance-based models, the inability to incorporate covariates still remains a
major inadequacy. Lee and Yu (2010) provide a plausible solution by combining a
decision tree and a distance-based model so as to develop a more flexible distance-
based model which can allow the presence of covariates, hence addressing the
problem of homogeneous population. Our proposed methodology for constructing
distance-based tree models will be explained below.

11.3.1 Building Distance-Based Tree Models

Suppose we have n observations f.�k; Xk/; k D 1; : : : ; ng, whereXk is a collection
of m-dimensional covariates. Here, the Xk’s can be categorical, interval, or ordinal
variables. In the following, we will illustrate how we can construct a distance-based
tree model using these observations, with the aim of building a model for predicting
ranking � based on X .

The tree-growing stage is similar to the one used in Chap. 10 except for the choice
of splitting criterion. In selecting the splitting rule for each internal node, Lee and
Yu (2010) chose the one that minimizes the weighted sum of the mean deviance
of two child nodes formed, i.e., nLDL C nRDR. For the weighted distance-based
model, the deviance of a particular node � with size n� is

D� D 2

n�

n�X

kD1
d.�k; O�0I Ow/C 2logC. Ow/ (11.14)

which equals � 2
n�

� log-likelihood (see (11.5)). An exhaustive search algorithm is
used to determine the best splitting rule that gives the smallest weighted sum of
mean deviance of the two child nodes.

Lee and Yu (2010) commented that the above mean deviance criterion often
results in a split which produces two unbalanced nodes, where one of them is small
but pure. To avoid this problem, they suggested to stop splitting when the size of a
child node is smaller than one-tenth of the size of its parent node. Besides, in order to
avoid overfitting, a node with sample size smaller than one-tenth of the total sample
will not be further split and will automatically become a leaf node.
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Table 11.6 Subject covariates for 1999 EVP data

Covariate Description/code Type

Country Group 1 D 1, group 2 D 2, group 3 D 3, group 4 D 4 Nominal

Gender Male D 1, female D 2 Binary

Year of birth Value ranges from 1909–1981 Interval

Marital status Married D 1, windowed D 2, Nominal

divorced D 3, separated D 4, never married D 5

Employment status Ordinal value ranges from 1 to 8 Ordinal

Household income Ordinal value ranges from 1 to 10 Ordinal

Age of education completion Interval value ranges from 7 to 50 Interval

Note that in the growing stage, we tend to build an overly large tree, hoping
not to miss any important features of the tree. As a result, many redundant nodes
will be created and interpretation will become difficult. Pruning is necessary to
remove these redundant nodes. The pruning procedure of our model makes use
of the minimal cost-complexity measure with ten-fold cross-validation to obtain
the final tree, where the cost function used is the total deviance, i.e., the sum of
deviances (11.14) for all leaf nodes. See Lee and Yu (2010) for details of the pruning
procedure.

11.3.2 Analysis of 1999 European Value Priority Data

Consider the ranking data set obtained from the European Values Studies which
is a continuing, annual program of cross-national collaboration on surveys covering
topics important for social science research. Here, we will examine the survey which
was conducted in 1999 in 32 countries in Europe (Vermunt 2004).

The respondents’ covariates used in tree building are summarized in Table 11.6.
Countries were categorized into four groups as suggested by Vermunt (2004).
Table 11.7 shows the four groups of countries. After removing records containing
missing in any one of the covariates, we end up with a ranking data of 1,911
respondents. We use 75 % of the data for model building (1,433 observations) and
the remaining data (478 observations) for testing model performance.

The survey mainly focused on value orientations, attitudes, beliefs, and knowl-
edge concerning nature and environmental issues and included the so-called Ingle-
hart Index (Inglehart 1977), a collection of four indicators of materialism/post-
materialism as well. Respondents were asked to pick the most important and the
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Table 11.7 The four groups
of countries

Group 1 Group 2 Group 3 Group 4

Italy Croatia Luxembourg Lithuania

Sweden Belgium Slovenia Latvia

Denmark Greece Czechnia Poland

Austria France Iceland Estonia

Netherlands Spain Finland Belarus

Northern Ireland West Germany Slovakia

Ireland Portugal Hungary

Romania Ukraine

Malta Russia

East Germany

Bulgaria

second most important political goals for their government from the following four
alternatives (or objects):

(A) Maintain order in nation.
(B) Give people more say in government decisions.
(C) Fight rising prices.
(D) Protect freedom of speech.

In Sect. 11.2, we have studied similar political goals data for Germany (Croon data)
using the mixture of weighted distance-based models. However, the Croon data
set contains complete rankings with no covariates whereas the 1999 EVP data set
contains top 2 rankings with seven covariates. In Sect. 10.1.4, we have studied 1993
EVP data for five countries only, but here the 1999 EVP data set contains data on 32
European countries.

Note that only top two objects are ranked in the 1999 EVP data. We need to
modify the likelihood in order to fit the distance-based models to this data set. Since
we have no preference information about the non-ranked objects in a top 2 ranking,
it is natural to assume that all possible rankings that are compatible with the top 2
ranking are equally likely to be observed. Therefore, the probability of observing a
top 2 ranking �� is the sum of the probabilities of all possible complete ranking �

that are compatible with ��.
Four classes of distance-based models are considered. Table 11.8 shows the

comparison of different distance-based models and their corresponding tree models
and their weighted distance versions. In terms of cross-validation deviance, tree-
based extensions of distance-based models with different types of distances are
all better than the original models. Similarly, weighted distance-based tree models
perform better than �-component tree models. Obviously, the best among them is
the weighted Kendall tree model, as the deviance on testing data (2.2562) is the
smallest.

Figure 11.4 displays the weighted Kendall tree. Table 11.9 provides the parame-
ter estimates in the leaf nodes of weighted Kendall tree model. The corresponding
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Table 11.8 Log-likelihood, AIC, and deviance for different models

Model Size Log L AIC DEV-CV DEV-testing

(Unweighted) distance-based models

Kendall 1 �3387 6776 2.4913 2.8536

�-Component 1 �3296 6596 2.3015 2.5231p
Spearman 1 �3365 6732 2.4920 2.8532

Spearman 1 �3430 6862 2.4634 2.6810

Footrule 1 �3407 6816 2.4920 2.5281

Weighted distance-based models

Kendall 1 �3252 6512 2.2722 2.4705p
Spearman 1 �3495 6994 2.8402 2.9930

Spearman 1 �3732 7468 2.6001 2.6362

Footrule 1 �3762 7528 2.6267 2.6663

(Unweighted) Distance-based tree models

Kendall 5 �3460 6938 2.4578 2.3755

�-Component 3 �3271 6558 2.2854 2.3871p
Spearman 4 �3451 6916 2.4599 2.6167

Spearman 12 �3545 7136 2.4389 2.4521

Footrule 5 �3467 6952 2.4452 2.3906

Weighted distance-based tree models

Kendall 5 �3074 6196 2.1766 2.2562p
Spearman 2 �3494 7006 2.3761 2.5377

Spearman 4 �3454 6946 2.4033 2.5332

Footrule 4 �3495 7028 2.4222 2.5041

Country

Education Completion

1

< 16

2

= 4

Country

3

= 1

Education Completion

4

< 19

5

³ 19

³ 16 = 2, 3

= 1, 2, 3

Fig. 11.4 The fitted weighted Kendall tree model
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Table 11.9 Parameter estimates of the fitted weighted Kendall model and weighted Kendall tree
model

Model Node Size Ordering of goals in 0 w1 w2 w3 w4
Weighted Kendall 1433 A � B � C � D 0:94 0:36 0:50 0:67

Weighted Kendall tree 1 114 A � C � B � D 0:69 1:24 0:10 2:24

2 487 A � B � C � D 0:79 0:24 0:84 1:58

3 177 A � C � D � B 0:64 0:55 0:26 1:40

4 383 A � B � C � D 1:33 0:20 0:52 0:65

5 272 A � B � D � C 0:59 1:07 0:27 1:00

weighted Kendall model is shown for comparison. A model fitness was carried out,
the results of which appear in Table 11.10. It is evident that there is good agreement
between observed and expected frequencies and that hence the weighted Kendall
tree model provides a good fit to the data.

In general, the two covariates, country and education level, were important
predictors of how Inglehart’s objects are ranked. Country was a more important
predictor than age of education completion. People in group 1 countries and those
people in group 4 countries (mainly former USSR countries) who ended their
education before the age of 16 tended to prefer (A) and (C), and they could be
classified as materialist type. However, people in group 4 countries believed that
the protection of freedom of speech (D) was least important, but people in group 1
countries considered that giving people more say in government decisions (B) was
least important. Finally, people in other country groups tended to prefer (A) and (B),
and they were of mixed type.

This case study clearly points out that tree-based extensions of distance-based
models successfully improve the model fitness, thereby widening their applicability.
In particular, our weighted distance-based tree models outperform the unweighted
distance-based ranking models.

Chapter Notes

Distance-based tree model is a kind of model-based decision tree where a statistical
model is built in each leaf node of the tree. Models other than distance-based models
could also be considered. Lee and Yu (2013) have developed rank-ordered logit
(ROL) tree model. Unlike distance-based tree model, this model can handle both
linear and nonlinear effects via the ROL regression and the tree, respectively.

The scope of analyzing ranking data has been expanded in the recent decade and
new areas of ranking research are established. Examples include the recommenda-
tion system (Sun and Lebanon 2012), rank aggregation (Hall and Schimek 2012),
institutional ranking (Hall and Miller 2010), gene ranking (Alvo et al. 2010), etc.
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Appendix A: Ranking Data Sets

A.1 Goldberg Data

In the Goldberg (1976) data, 143 graduates were asked to rank ten occupations
according to the degree of social prestige. These ten occupations are (i) faculty
member in an academic institution (Fac), (ii) mechanical engineer (ME), (iii)
operation researcher (OR), (iv) technician (Tech), (v) section supervisor in a factory
(Sup), (vi) owner of a company employing more than 100 workers (Own), (vii)
factory foreman (For), (viii) industrial engineer (IE), (ix) manager of a production
department employing more than 100 workers (Mgr), and (x) applied scientist
(Sci). The data are given in Cohen and Mallows (1980) and have been analyzed
by many researchers. Fligner and Verducci (1988) and Marden (1992) summarized
the findings of these analyses.

Feigin and Cohen (1978) analyzed the Goldberg data and found three outliers due
to the fact that the corresponding graduates wrongly presented rankings in reverse
order. After reversing these three rankings, the average ranks received by the ten
occupations are 8.57, 4.90, 6.29, 1.90, 4.34, 8.13, 1.47, 6.27, 5.29, 7.85, with the
convention that higher rank means more prestige. Then the preference of graduates
is in the order Fac > Own > Sci > OR > IE > Mgr > ME > Sup > Tech > For.

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5
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A.2 Leisure Time Data

Table A.1 Sutton’s leisure time data

Ranks on Number of
white females

Number of
black femalesA: males B: females C: both sexes

1 2 3 0 1

1 3 2 0 1

2 1 3 1 0

2 3 1 0 5

3 1 2 7 0

3 2 1 6 6

The data appear in Hollander and Sethuraman (1978).

A.3 Data on the Big Four EPL Teams

Table A.2 Data on ranking of Big Four EPL teams

Ranks on

Season ended in Arsenal Chelsea Liverpool Manchester United

1993 3 4 2 1

1994 2 4 3 1

1995 4 3 2 1

1996 3 4 2 1

1997 2 4 3 1

1998 1 4 3 2

1999 2 3 4 1

2000 2 4 3 1

2001 2 4 3 1

2002 1 4 2 3

2003 2 3 4 1

2004 1 2 4 3

2005 2 1 4 3

2006 4 1 3 2

2007 4 2 3 1

2008 3 2 4 1

2009 4 3 2 1

2010 3 1 4 2

2011 3 2 4 1

2012 2 3 4 1

2013 3 2 4 1

The data are obtained from Wikipedia.
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A.4 MovieLens Data

MovieLens data set (http:\www.grouplens.org) consists of one million online ratings
of 4,000 movies by 6,000 raters on a scale of 1–5 (Resnick et al. 1994). The one that
we studied in this book is a subset of the original data. By ordering the ratings of
movies given by each rater, it ends up with a ranking data containing 72,979 possibly
incomplete and tied rankings of 55 movies made by 5,625 raters.

A.5 Language and Arithmetic Scores Data

Table A.3 Language and arithmetic scores

Student 1 2 3 4 5 6 7 8 9

Language 50 23 28 34 14 54 46 52 53

Arithmetic 38 28 14 26 18 40 23 30 27

Language ranks 6 2 3 4 1 9 5 7 8

Arithmetic ranks 8 6 1 4 2 9 3 7 5

The data appear in Lehmann (1975).

Table A.4 Incomplete language and arithmetic scores

Student 3 5 7 4 9 6 6 1 9

Arithmetic (2) 14 18 23 26 27 30 40 – –

Language (1) 28 14 46 – 53 – 54 50 –

Arithmetic ranks 1 2 3 4 5 6 7 – –

Language ranks 2 1 3 – 5 – 6 4 –

The data appear in Lehmann (1975).

A.6 Public Opinion Survey Data

Table A.5 Data from the public opinion survey

Education level
Response

1 2 3 4 5 Missing Subtotal

Primary or below 2 35 23 7 3 33 103

Secondary 2 72 129 37 6 53 299

Matriculated 0 9 9 7 0 3 28

Tertiary, nondegree 1 9 6 6 0 5 27

Tertiary, degree 0 22 28 7 6 6 69

Missing 0 2 3 0 0 1 6

Subtotal 5 149 198 64 15 101 532

http:www.grouplens.org
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A.7 Wind Direction Data

Wind directions were recorded at 6 a.m. and at 12 noon on each day at a weather
station for 21 consecutive days.

Table A.6 Wind direction in degree

6 a.m. 356 97 211 262 343 292 157 302 324 85 324

Noon 119 162 221 259 270 29 97 292 40 313 94

6 a.m. 85 324 340 157 238 254 146 232 122 329

Noon 45 47 108 221 248 270 45 23 270 119

The data appear in Johnson and Wehrly (1977).

In another example, wind direction and ozone concentration were measured.

Table A.7 Wind direction and ozone concentration

Wind direction 327 91 88 305 344 270 67 21 281

Ozone concentration 28:0 85:2 80:5 4:7 45:9 12:7 72:5 56:6 31:5

Wind direction 8 204 86 333 18 57 6 11 27 84

Ozone concentration 112:0 20:0 72:5 16:0 45:9 32:6 56:6 52:6 91:8 55:2

The data appear in Johnson and Wehrly (1977).

A.8 Lymph Heart Pressure Data

Table A.8 Lymph heart
pressure in mm Hg taken over
a 24 h period at 6 h intervals
on eight toads during
dehydration

Time
Toad ID Block 6 h 12 h 18 h 24 h

21 1 11:865 9:832 7:567 10:168

22 2 5:601 4:892 4:032 3:126

23 3 14:415 14:185 7:800

24 4 13:267 9:953

25 5 8:006 7:793 7:582

27 6 17:692 16:644 15:327 11:573

28 7 9:027 7:973 11:855 6:820

29 8 9:789 7:967 7:758 7:849

The data appear in Alvo and Cabilio (1995b).
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A.9 Mortality Data for South Africa 2000–2008

Table A.9 Mortality
statistics for South Africa
2000–2008

Year Number of deaths Population size

2000 416;155 43;789;115

2001 454;882 43;997;828

2002 502;050 44;187;637

2003 556;779 44;344;136

2004 576;709 42;718;530

2005 598;131 42;768;678

2006 612;778 43;647;658

2007 603;094 43;586;097

2008 592;073 43;421;021

The data appear in Alvo and Berthelot (2012).

A.10 E. coli Data for Six Beaches in Hong Kong

Table A.10 Annual
geometric mean E. coli level
(per 100 ml) in the Sai Kung
District. Beaches: Clear
Water Bay First (1), Clear
Water Bay Second (2), Hap
Mun Bay (3), Kiu Tsui (4),
Silverstrand (5), Trio (6), and
number of good beaches (7)

Year (1) (2) (3) (4) (5) (6) (7)

1986 102 69 9 18 255 49 2

1987 133 52 6 9 62 32 2

1988 39 35 4 3 129 35 2

1989 80 38 3 5 192 23 3

1990 51 42 4 5 89 31 2

1991 30 14 2 4 106 14 4

1992 52 42 2 5 94 32 2

1993 31 16 3 4 56 20 4

1994 30 35 3 3 72 14 3

1995 55 39 6 3 226 16 3

1996 34 43 5 5 126 29 2

1997 62 66 3 5 148 30 2

1998 41 44 2 4 99 21 3

1999 11 12 2 4 32 17 5

2000 16 26 2 5 61 10 4

2001 28 22 1 5 100 12 4

2002 28 14 2 4 133 6 4

2003 17 21 4 5 97 10 5

2004 9 10 3 17 74 2 5

2005 16 19 4 14 67 6 5

2006 20 13 4 11 30 5 5

2007 14 9 3 6 33 2 5

2008 11 19 5 12 35 12 5

2009 15 27 3 19 31 5 4

The data appear in Alvo and Berthelot (2012).
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A.11 Umbrella Alternative Data

Example discussed (Alvo 2008) on the Wechsler Adult intelligence scale scores on
males by age groups

Age group

16–19 20–34 35–54 55–69 >70

8.62 9:85 9:98 9:12 4:80

9.94 10:43 10:69 9:89 9:18

10.06 11:31 11:40 10:57 9:27

A.12 APA Election Data

In 1980, the American Psychological Association (APA) conducted an election
in which five candidates (A;B;C;D, and E) were running for president and
voters were asked to rank order all of the candidates. Candidates A and B are
research psychologists, C is a community psychologist, and D and E are clinical
psychologists. Among those voters, 5,738 gave complete rankings. These complete
rankings are considered here (Diaconis 1988). Note that lower rank implies more
favorable. Then the average ranks received by candidates A;B;C;D, and E are
2.84, 3.16, 2.92, 3.09, and 2.99, respectively. This means that voters generally prefer
candidate A the most, candidate C the second, etc.

A.13 Job Selection Data

In 1997, a mainland marketing research firm conducted a survey on people’s attitude
toward career and living style in three major cities in Mainland China—Beijing,
Shanghai, and Guangzhou. Five hundred responses from each city were obtained.
A question regarding the behavior, conditions, and criteria for job selection of the
500 respondents in Guangzhou will be discussed here. In the survey, respondents
were asked to rank the three most important criteria on choosing a job among 13
criteria:

(1) Favorable company reputation
(2) Large company scale
(3) More promotion opportunities
(4) More training opportunities
(5) Comfortable working environment
(6) High income
(7) Stable working hours



A Ranking Data Sets 245

(8) Fringe benefits
(9) Well matched with employees’ profession or talent

(10) Short distance between working place and home
(11) Challenging
(12) Corporate structure of the company
(13) Low working pressure

A.14 1993 European Value Priority Data

The ranking data set was obtained from the International Social Service Programme
(ISSP) in 1993 (Jowell et al. 1993), which is a continuing, annual program of
cross-national collaboration on surveys covering a wide spectrum of topics for
social science research. The survey was conducted using standardized questionnaire
in 1993 at 20 countries around the world, such as Great Britain, Australia, the
USA, Bulgaria, the Philippines, Israel, and Spain. It mainly focused on value
orientations, attitudes, beliefs, and knowledge concerning nature and environmental
issues and included the so-called Inglehart Index, a collection of four indicators
of materialism/post-materialism as well. Respondents were asked to pick the most
important (rank “1”) and the second most important (rank “2”) goals for their
government from the following four alternatives:

1. Maintain order in nation (ORDER).
2. Give people more to say in Government decisions (SAY).
3. Fight rising prices (PRICES).
4. Protect freedom of speech (SPEECH).

After removing those invalid responses, the survey gave a ranked data set of 5,737
observations with top choice and top two rankings. In addition, the data provide
some judge-specific characteristics and they are applied in tree partitioning. The
candidate splitting variables are summarized in Table A.11.

Respondents can be classified into value priority groups on the basis of their top
two choices among the four goals. “Materialist” corresponds to an individual who

Table A.11 Description of
European ranking data of
political values

Covariate Description/code Type

Country West Germany=1, East Germany=2, Nominal

Great Britain=3, Italy=4, Poland=5

Gender Male=1, female=2 Binary

Education 0–10 years=1, 11–13 years=2, Ordinal

14 or more years=3

Age Value ranges from 15 to 91 Interval

Religion Catholic and Greek Catholic=1, Nominal

Protestant=2, others=3, none=4
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gives priority to ORDER and PRICES regardless of the ordering, whereas those
who choose SAY and SPEECH will be termed “post-materialist.” The last category
comprises of judges giving all the other combinations of rankings, and they will be
classified as holding “mixed” value orientations.

A.15 US General Social Survey Data

The General Social Survey (GSS) has been conducted in the USA by the National
Opinion Research Center (NORC) of the University of Chicago annually since
1972 (except for the years 1979 and 1981) and biennially since 1994 (Davis and
Smith 2009). Each year the GSS consisted of a 90-min in-person interview with a
full-probability sample of English- or Spanish-speaking persons aged 18 years or
above who lived in households. It is a multidimensional social survey that gathers
sociodemographic characteristics and replicated core measurements on social and
political attitudes and behaviors, plus topics of special interest. Many of the core
questions have remained unchanged since 1972 to facilitate time-trend studies as
well as replication of earlier findings. In relation to job value, the characteristics
were measured by the GSS in an ipsative approach. The respondents were asked to
rank in order of preference from (i) “most preferred,” (ii) “second most important,”
to (v) “fifth most important” five aspects about a job:

1. High income (JINC)
2. No danger of being fired (JSEC)
3. Working hours are short, lots of free time (JHOUR)
4. Chances for advancement (JPRO)
5. Work important and gives a feeling of accomplishment (JMEAN)

Job values, as defined by Kalleberg (1977), are what individuals hold as desir-
able with respect to their work activity and the attitudes are central to the
social psychology of work. Under many other names (including work/occupational
value/attribute/characteristic), they refer to the importance people place on occupa-
tional rewards and play a key role in conditioning a range of work-related outcomes,
such as job satisfaction and commitment, work centrality, and occupational choice
and stability. Theoretically, the perceived job attributes have been conceptualized
into two value dimensions, either intrinsic or extrinsic. Intrinsic values concern the
rewards emanating directly from the work activity and experience itself (e.g., job
autonomy, challenge, use of abilities, expression of interest and creativity, work-
place cooperation, job useful to society). In contrast, extrinsic values involve the
rewards derived from the job but external to the work itself (e.g., job security, pay,
fringe benefit, prestige, promotional opportunities, pleasant working environment,
good hours, no excessive amount of works). Among the five work values listed in
the GSS, the first four attributes (i)–(iv) represent extrinsic factors of the job, while
the last value (v) is considered intrinsic.
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A.16 Song Data

Consider the “song” data set from Critchlow et al. (1991). Ninety-eight students
were asked to rank five words, (1) score, (2) instrument, (3) solo, (4) benediction,
and (5) suit, according to the association with the word “song.” Critchlow et al.
(1991) reported that the average ranks for words (1)–(5) are 2.72, 2.27, 1.60, 3.71,
and 4.69, respectively. However, the available data given in Critchlow et al. (1991) is
in grouped format and the ranking of 15 students is unknown and hence discarded,
resulting in 83 rankings, as shown below.

Table A.12 “Song” data set Observed

Ordering frequency

3�2�1�4�5 19

3�1�2�4�5 10

1�3�2�4�5 9

3�2�4�1�5 8

1�2�3�4�5 7

2�3�1�4�5 6

3�2�1�5�4 6

3�2�4�5�1 5

2�1�3�4�5 4

3�1�4�2�5 3

2�3�4�1�5 2

3�4�2�1�5 2

3�2�5�4�1 2

Others 0

Total 83

A.17 Croon’s Political Goals Data

This ranking data set is obtained from Croon (1989) which consists of 2,262
rankings of four political goals for the government collected from a survey
conducted in Germany. The four goals were:

(A) Maintain order in nation.
(B) Give people more say in Government decisions.
(C) Fight rising prices.
(D) Protect freedom of speech.



248 A Ranking Data Sets

A.18 1999 European Value Priority Data

Similar to the 1993 European Value Priority data, this data set is collected in the
survey which was conducted in 1999 in 32 countries in Europe (Vermunt 2004).
The respondents’ covariates used in tree building are summarized in Table A.14.
Countries were categorized into four groups as suggested by Vermunt (2004).
Table A.15 shows the four groups of countries. After removing records containing
missing in any one of the covariates, we end up with a ranking data of 1,911
respondents.

Table A.13 Croon’s political
goals data

Ordering Frequency Ordering Frequency

A�B�C�D 137 C�A�B�D 330

A�B�D�C 29 C�A�D�B 294

A�C�B�D 309 C�B�A�D 117

A�C�D�B 255 C�B�D�A 69

A�D�B�C 52 C�D�A�B 70

A�D�C�B 93 C�D�B�A 34

B�A�C�D 48 D�A�B�C 21

B�A�D�C 23 D�A�C�B 30

B�C�A�D 61 D�B�A�C 29

B�C�D�A 55 D�B�C�A 52

B�D�A�C 33 D�C�A�B 35

B�D�C�A 59 D�C�B�A 27

Table A.14 Subject covariates for 1999 EVP data

Covariate Description/code Type

Country Group 1=1, group 2=2, Nominal

group 3=3, group 4=4

Gender Male=1, female=2 Binary

Year of birth Value ranges from 1909 to 1981 Interval

Marital status Married=1, windowed=2, Nominal

divorced=3, separated=4,

never married=5

Employment status Ordinal value ranges from 1 to 8 Ordinal

Household income Ordinal value ranges from 1 to 10 Ordinal

Age of education completion Interval value ranges from 7 to 50 Interval
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Table A.15 The four groups
of countries

Group 1 Group 2 Group 3 Group 4

Italy Croatia Luxembourg Lithuania

Sweden Belgium Slovenia Latvia

Denmark Greece Czechnia Poland

Austria France Iceland Estonia

Netherlands Spain Finland Belarus

Northern Ireland West Germany Slovakia

Ireland Portugal Hungary

Romania Ukraine

Malta Russia

East Germany

Bulgaria



Appendix B: Limit Theorems

B.1 Hoeffding’s Combinatorial Central Limit Theorem

Let .Yn1; :::; Ynn/ be a random vector which takes the n! permutations of .1; :::; n/
with equal probabilities 1=nŠ. Set

Sn D
nX

iD1
an .i/ bn .Yni /

and

dn .i; j / D cn .i; j / � 1

n

nX

gD1
cn .g; j / � 1

n

nX

hD1
cn .i; h/C 1

n2

nX

gD1

nX

hD1
cn .g; h/ :

Theorem B.1 (Hoeffding 1951). The distribution of Sn is asymptotically normal
with mean

ESn D 1

n

XX
cn .i; j /

and variance

VarSn D 1

n � 1
XX

d2n .i; j /

provided

limn!1n
max .an .i/ � Nan/2P

.an .i/� Nan/2
max

�
bn .i/� Nbn

�2
P�

bn .i/ � Nbn
�2 D 0:
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B.2 Multivariate Central Limit Theorem

A random m-vector Y is said to have a multivariate normal distribution with mean
vector � and variance-covariance matrix † if its density is given by

f .y/ D .2/�m=2 j†j�1=2exp � 1

2
.y � �/0†�1 .y � �/

written Y � Nm .�;†/.
The maximum likelihood estimators of �;† based on a random sample of size n

are given respectively by

NYn D 1

n

X
Yi

O† D 1

n

X�
Yi � NYn

� �
Yi � NYn

�0
:

If Y � Nm .�;†/ and Z D AY C b for some q �m matrix of constants A of rank
q� m and b is a constant q-vector, then

Z � Nq
�
A�C b;A†A0� :

Theorem B.2. Let Y 1; :::; Yn be a random sample from some m-variate distribution
with mean and variance-covariance matrix �;†, respectively. Then, as n! 1; the
asymptotic distribution of

p
n
� NYn � �� is multivariate normal with mean 0 and

variance-covariance matrix †:

Corollary B.1. Let T be an r�m matrix. Then
p
n
� NT Y n � T�� is multivariate

normal with mean 0 and variance-covariance matrix T†T 0:

B.3 Quadratic Forms

If Y � Nm .�;†/ and A is a symmetric matrix of rank r, then

Y 0AY � �2r .ı/ ;

ı D �0A� if and only if A† is idempotent or if A†A D A:
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B.4 Asymptotic Efficiency

B.4.1 One-Sided Tests

We follow closely the development in Hájek and Sidak (1967, p. 267). Knowledge
of the asymptotic power of a test forms the basis for a comparison of two tests. Let
F be a cumulative distribution function and let f be its density. Define the Fisher
information function

I .f / D
ˆ 1

�1

�
f 0 .x/
f .x/

�2
f .x/ dx

and set

' .u; f / D f 0 �F�1 .u/
�

f .F�1 .u//
; 0 < u < 1:

Suppose that the asymptotically most powerful test of H0 againstH1is based on
a test statisticZ0 and that we wish to compare another test statistic Z1 to it. Suppose
moreover that asymptotically we have the following characteristics:

Under H0

Z0 � N
�
0; �20

�

Z1 � N
�
0; �21

�

whereas underH1

Z0 � N
�
�0; �

2
0

�

Z1 � N
�
�1; �

2
1

�

with �1 � 0: Then the asymptotic efficiency of the test based on Z1 is defined to be

e D
�
�1�0

�0�1

�2
:

Suppose now that the likelihood function of the data under the alternative is given
by the product

Y
f0 .xi i � di/ (B.1)

and that we are interested in the linear rank statistic

Z1 D
X

.ci � c/ aN .Ri / :
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Assume:

1. max
�
di � d

�2 ! 0

2. I .f0/max
�
di � d

�2 ! b2 < 1
3.

P
.ci�c/2

max.ci�c/2 ! 1
4.

´
'.u/'.u;f0/dup´

'2.u;f0/du
´
.'.u/�'/2du

D Q1

5.
P
.ci�c/.di�d/qP
.ci�c/2P.di�d/2

! Q2

Then it can be shown under these assumptions and (B.1) that

e D .Q1Q2/
2 :



Appendix C: Review on Decision Trees

C.1 Introduction

A decision tree model is a rule for predicting the class of an object based on its
covariates. It is widely used in data mining because it is easy to interpret and it can
handle both categorical and interval measurement. The decision tree is constructed
by recursively partitioning the data into different nodes.

Among the numerous tree building strategies, the classification and regression
trees (CART) procedure (Breiman et al. 1984) is the most popular one. Trees for
categorical target are named classification trees, and trees for continuous target are
named regression trees.

C.2 CART Algorithm

Suppose we have a learning sample of size N with measurements .Yi ;X i /; i D
1; :::; N , where Y is our target variable and X is the vector ofQ predictorsXq; q D
1; :::;Q. X and Y can be interval, ordinal, or categorical variables. The goal is
to predict Y based on X via tree-structured classification. CART consists of two
stages: growing and pruning. We will discuss them in the following.

C.2.1 Growing Stage of Decision Tree

CART is a decision tree that is constructed by recursively partitioning theN learning
sample into different subsets, beginning with the root node that contains the whole
learning sample. Each subset is represented by a node in the tree. In a binary tree
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structure, all internal nodes have two child/descendant nodes whereas the nodes
with no descendants are called terminal/leaf nodes.

At each partition process, a splitting rule s.�/, comprised of a splitting variable
Xq and a split point, is used to split a group of N.�/ cases in node � to the left
node NL.�/ and the right node NR.�/. The decision tree identifies the best split by
exhaustive search. The number of possible splits of a categorical predictor Xq of
I categories is 2I�1 � 1. For an interval Xq with F distinct values or an ordinal
predictor with F ordered categories, F � 1 possible splits will be produced on Xq .

The key step of tree growing is to choose a split among all possible splits at each
node so that the resulting child nodes are the “purest.” To measure the purity of a
node � , Breiman et al. (1984) proposed a measure called impurity function i.�/.
Let p .j j �/; j 2 1; :::; t be the conditional probability of having class j in the
learning sample in node � ,

Pt
jD1 p .j j t/ D 1. Impurity function should satisfy the

following three properties:

1. It is minimum when the node is pure (p .j j �/ D 1 for one j 2 f1; :::; tg).
2. It is maximum when the node is the most impure (p.1j �/ D ::: D p.t j �/ D 1

t
).

3. Renaming of objects does not change the node impurity.

It can be shown that if the impurity function is concave, properties 1 and 2 will
be satisfied. Property 3 is required because labeling of classes is arbitrary. CART
includes various impurity criteria for classification trees, namely the Gini criterion,
twoing criterion and entropy:

Gini: i.�/ D 1 �
tX

jD1
p .j j �/2 (C.1)

Twoing: i.�/ D pL � pR
4

2

4
tX

jD1
jp .j j �L/� p .j j �R/j

3

5
2

(C.2)

Entropy: i.�/ D �
tX

jD1
p .j j �/ log2 p .j j �/ (C.3)

where pL D NL.�/=N.�/ and pR D NR.�/=N.�/ are the proportion of data
cases in � to the left child node �L and to the right child node �R, respectively.
Modification of existing measures of node homogeneity is essential for building
decision tree model for ranking data and the two more popular impurity measures—
Gini and entropy are adopted.

Based on the impurity measure for a node, a splitting criterion 4i.s; �/ can be
defined as the reduction in impurity resulting from the split s of node � :

4i.s; �/ D i.�/� pLi.�L/� pRi.�R/: (C.4)
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The best split is chosen to maximize a splitting criterion. The concavity property of
i.�/ assures that further splitting does not increase the impurity, so we can continue
growing a tree until every node is pure, and some may contain only one observation.
This would lead to a very large tree that would over-fit the data. To eliminate nodes
that are overspecialized, pruning is required so that the best pruned subtree can be
obtained.

C.2.2 Pruning Stage of Decision Tree

In order to shape the tree into a reasonable size for easy understanding and
interpretation, two common approaches of tree pruning are introduced, namely pre-
pruning and post-pruning. Pre-pruning terminates the tree construction earlier and
this can be done by imposing some stop splitting criteria such as:

1. The number of observations in one or more resulting child node(s) is less than
the minimum number of observations for a parent node.

2. The maximum tree depth has been reached.
3. The reduction in impurity after splitting is less than a certain threshold (for

impurity based splitting measure).
4. The purity of the node reached a certain bound (for impurity-based splitting

measure).
5. The test value of the statistical test is less than a certain threshold (for splitting

measure based on statistical test).

Thus, the splitting node will turn to a leaf node once any of the predefined stop
splitting rules are met.

On the other hand, post-pruning emphasized removing subtrees after a full
tree has been created. CART uses a sophisticated method called minimal cost-
complexity pruning to do the task. Before proceeding to the algorithmic framework,
some notations are first defined. Let Q‡ be the set of leaf nodes of tree ‡ and
the number of leaf nodes, denoted by j Q‡ j, be defined as the complexity of ‡ .
Define C.�/ to be the cost induced by node � . An obvious candidate of C.�/ is the
misclassification rate; there are also other choices for the cost function. In a class
probability tree, Breiman et al. (1984) considered pruning with the mean square
error, which corresponds to take C.�/ as the Gini diversity index. For entropy tree,
it is natural to take C.�/ as deviance. Chou (1991) developed a class of divergences
in the form of expected loss function and it was shown that Gini, entropy, and
misclassification rate can be written in the proposed form. In Chaps. 10 and 11,
we specify the cost functions C.�/ such that they coincide with impurity functions
for ranking data.

For any tree ‡ , the cost-complexity function C�.‡/ is formulated as a linear
combination of the cost of ‡ , C.‡/, and its complexity, � j Q‡ j:
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C�.‡/ D
X

�2 Q‡
.C.�/C �/ D C.‡/C � j Q‡ j:

The complexity parameter � measures how much additional accuracy a split must
add to the entire tree to warrant the addition of one more leaf node. Now consider
‡� 0 as the subtree with root � 0, ‡� 0 will be retained as long as

C�.‡� 0/ < C�.�
0/;

the branch ‡� 0 contributes less complexity cost to tree ‡ than node � 0. This occurs
for small � .

When � increases to a certain value, the equality of the two cost-complexities
is achieved. At this point, the subtree ‡� 0 will be removed since it no longer helps
improving the classification. The strength of the link from node � , g.�/, is therefore
defined as

g.�/ D C.�/ � C.‡� /
j Q‡� j � 1

:

The V -fold cross-validation cost-complexity pruning algorithm works as fol-
lows: The full learning data set L is divided randomly into V equal-size subsets
L1;L2; :::; LV and the vth learning sample is denoted to be Lv D L � Lv. Using
the full learning data set L, an overly large tree ‡0 is built. The function g.�/ are
calculated for all internal nodes in ‡0 and the node with the minimum value g.�1/
is located. A pruned tree ‡1 is created by turning the weakest-linked internal node
�1 into a leaf node. This process is repeated until ‡0 is pruned up to the root ‡� .

Denote by �i the value of g.�/ at the i th stage. A sequence of nested trees ‡0 �
‡1 � ‡2 � ::: � ‡� is generated, such that each pruned tree ‡i is optimal
for � 2 Œ�i ; �iC1/. Here, the word “nested” means that each subsequent tree in
the sequence is obtained from its predecessor by cutting one or more subtrees, and
thus the accuracy of the sequence of progressively smaller pruned trees decreases
monotonically.

Next, for v D 1; :::; V , the vth auxiliary maximal tree ‡0
v is constructed based on

Lv and the nested sequence of pruned subtrees of ‡0
v

‡0
v � ‡1

v � ‡2
v � ::: � ‡�

v

is generated. The cross-validation estimate of the cost CCV .‡i / is then evaluated
as

CCV .‡i / D 1

V

VX

vD1
C.‡v.

p
�i �iC1//
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where ‡v.�/ is equal to the pruned subtree ‡i
v in the i th stage such that �i �

� � �iC1. Note that the cost of the pruned subtree ‡v.
p
�i �iC1/ is estimated

by the independent subset Lv. Finally, the right-sized tree ‡� is selected from
f‡0;‡1; :::; ‡� g such that

CCV .‡�/ D min
i
C CV .‡i /:

Nonetheless, the position of the minimum CCV .‡�/ is unstable. The uncertain-
ties in the estimates CCV .‡i / can be gauged by estimating their standard errors. As
a result, the 1-standard error (1-SE) rule

CCV .‡��/ � CCV .‡�/C SE.CCV .‡�//

is adopted to choose the simplest subtree ‡�� as the final tree model.

C.2.3 Class Assignment of Leaf Nodes of Decision Tree

Each leaf node of the final selected tree ‡� carries with it a class label j � 2
f1; :::; tg, which represents the predicted class for target Y , of the samples which
fall within this node. The class label is usually determined by the plurality rule

p .j �j �/ D max
j
Œp .j j �/�

so that the misclassification rate of the tree is minimized. The decision tree classifies
a new observation by first passing it down the tree from the root node till it ends up
in a leaf node and then the new observation will be assigned to the class according
to the above plurality rule.

C.3 Other Decision Tree Models

Apart from CART, there are many tree building strategies proposed in the literature,
for example, C4.5 (Quinlan 1992), FACT (Loh and Vanichsetakul 1988), and
QUEST (Loh and Shih 1997).

CART is capable of handling categorical and continuous data only. There are
many extensions proposed in the literature which enable CART to handle other
kinds of data, for example, longitudinal data, (Segal 1992), ordinal data (Piccarreta
2008; Kim and Baets 2003), and time-series data (Meek et al. 2002). CART
was originally designed for univariate data and it was later extended to handle
multivariate data as well, for example, Siciliano and Mola (2000) and Zhang (1998).



Bibliography

Adkins, L., & Fligner, M. (1998). A non-iterative procedure for maximum likelihood estimation
of the parameters of Mallows’ model based on partial rankings. Communications in Statistics:
Theory and Methods, 27(9), 2199–2220.

Allison, P. D., & Christakis, N. A. (1994). Logit models for sets of ranked items. Sociological
Methodology, 24, 199–228.

Alvo, M. (1998). On non-parametric measures of correlation for directional data. Environmetrics,
9, 645–656.

Alvo, M. (2008). Nonparametric tests of hypotheses for umbrella alternatives. Canadian Journal
of Statistics, 36, 143–156.

Alvo, M., & Berthelot, M.-P. (2012). Nonparametric tests of trend for proportions. International
Journal of Statistics and Probability, 1, 92–104.

Alvo, M., & Cabilio, P. (1984). A comparison of approximations to the distribution of average
Kendall tau. Communications in Statistics: Theory and Methods, 13, 3191–3216.

Alvo, M., & Cabilio, P. (1985). Average rank correlation statistics in the presence of ties.
Communications in Statistics: Theory and Methods, 14, 2095–2108.

Alvo, M., & Cabilio, P. (1992). Correlation methods for incomplete rankings. (Technical Report
200) Laboratory for Research in Statistics and Probability: Carleton University and University
of Ottawa.

Alvo, M., & Cabilio, P. (1993). Tables of critical values of rank tests for trend when the data
is incomplete. (Technical Report 230) Laboratory for Research in Statistics and Probability:
Carleton University and University of Ottawa.

Alvo, M., & Cabilio, P. (1994). Rank test of trend when data are incomplete. Environmetrics, 5,
21–27.

Alvo, M., & Cabilio, P. (1995a). Rank correlation methods for missing data. Canadian Journal of
Statistics, 23, 345–358.

Alvo, M., & Cabilio, P. (1995b). Testing ordered alternatives in the presence of incomplete data.
Journal of the American Statistical Association, 90, 1015–1024.

Alvo, M., & Cabilio, P. (1996). Analysis of incomplete blocks for rankings. Statistics and
Probability Letters, 29, 177–184.

Alvo, M., & Cabilio, P. (1998). Applications of Hamming distance to the analysis of block data. In
B. Szyszkowicz (Ed.), Asymptotic methods in probability and statistics: A volume in honour of
Miklós Csörgõ (pp. 787–799). Amsterdam: Elsevier Science.

Alvo, M., & Cabilio, P. (2000). Calculation of hypergeometric probabilities using Chebyshev
polynomials. The American Statistician, 54, 141–144.

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5

261



262 Bibliography

Alvo, M., & Cabilio, P. (2005). General scores statistics on ranks in the analysis of unbalanced
designs. The Canadian Journal of Statistics, 33, 115–129.

Alvo, M., Cabilio, P., & Feigin, P. (1982). Asymptotic theory for measures of concordance with
special reference to Kendall’s tau. The Annals of Statistics, 10, 1269–1276.

Alvo, M., & Ertas, K. (1992). Graphical methods for ranking data. Canadian Journal of Statistics,
20(4), 469–482.

Alvo, M., Liu, Z., Williams, A., & Yauk, C. (2010). Testing for mean and correlation changes
in microarray experiments: An application for pathway analysis. BMC Bioinformatics, 11(60),
1–10.

Alvo, M., & Pan, J. (1997). A general theory of hypothesis testing based on rankings. Journal of
Statistical Planning and Inference, 61, 219–248.

Alvo, M., & Park, J. (2002). Multivariate non-parametric tests of trend when the data are
incomplete. Statistics and Probability Letters, 57, 281–290.

Alvo, M., & Smrz, P. (2005). An arc model for ranking data. Journal of Statistical Research, 39,
43–54.

Anderson, R. (1959). Use of contingency tables in the analysis of consumer preference studies.
Biometrics, 15, 582–590.

Arbuckle, J., & Nugent, J. H. (1973). A general procedure for parameter estimation for the law
of comparative judgement. British Journal of Mathematical and Statistical Psychology, 26,
240–260.

Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics, 11,
375–386.

Baba, Y. (1986). Graphical analysis of rank data. Behaviormetrika, 19, 1–15.
Barnes, S. H., & Kaase, M. (1979). Political action: Mass participation in five western countries.

London: Sage.
Beckett, L. A. (1993). Maximum likelihood estimation in Mallows’ model using partially ranked

data. In M. A. Fligner & J. S. Verducci (Eds.), Probability models and statistical analyses for
ranking data (pp. 92–108). New York: Springer.

Beggs, S., Cardell, S., & Hausman, J. (1981). Assessing the potential demand for electric cars.
Journal of Econometrics, 16, 1–19.

Benard, A., & van Elteren, P. H. (1953). A generalization of the method of m rankings.
Indagationes Mathematicae, 15, 358–369.

Benter, W. (1994). Computer-based horse race handicapping and wagering systems: A report.
In W. T. Ziemba, V. S. Lo, & D. B. Haush (Eds.), Efficiency of racetrack betting markets
(pp. 183–198). San Diego: Academic.

Biernacki, C., & Jacques, J. (2013). A generative model for rank data based on insertion sort
algorithm. Computational Statistics and Data Analysis, 58, 162–176.

Bockenholt, U. (1993). Applications of Thurstonian models to ranking data. In M. Fligner &
J. Verducci (Eds.), Probability models and statistical analyses for ranking data. New York:
Springer.

Bockenholt, U. (2001). Mixed-effects analysis of rank-ordered data. Psychometrika, 66(1), 45–62.
Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications

(2nd ed.). New York: Springer.
Box, G., & Cox, D. (1964). An analysis of transformations. Journal of the American Statistical

Association, 26, 211–252.
Brady, H. E. (1989). Factor and Ideal Point Analysis for Interpersonally Incomparable Data,

Psychometrika, 54(2), 181–202.
Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine

learning algorithms. Pattern Recognition, 30, 1145–1159.
Bradley, R. A., & Terry, M. (1952). Rank analysis of incomplete block designs: I. The method of

paired comparisons. Biometrika, 39(3/4), 324–345.
Breckling, J. (1989). The analysis of directional time series. Lecture Notes in Statistics (Vol. 61).

Berlin: Springer.



Bibliography 263

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. Belmont, CA: Wadsworth.

Brook, D., & Upton, G. (1974). Biases in local government elections due to position on the ballot
paper. Applied Statistics, 23, 414–419.

Brunden, M., & Mohberg, N. (1976). The Bernard-van Elteren statistic and nonparametric
computation. Communications in Statistics: Simulation and Computation, 4, 155–162.

Bu, J., Cabilio, P., & Zhang, Y. (2009). Tests of concordance between groups of incomplete
rankings. International Journal of Statistical Sciences, 9, 97–112.

Bunch, D. (1991). Estimability in the multinomial probit model. Transportation Research Part B:
Methodological, 25(1), 1–12.

Busse, L. M., Orbanz, P., & Buhmann, J. M. (2007). Cluster analysis of heterogeneous rank data.
In Proceedings of the 24th International Conference on Machine Learning, ACM New York,
NY, USA (pp. 113–120).

Cabilio, P., & Tilley, J. (1999). Power calculations for tests of trend with missing observations.
Environmetrics, 10, 803–816.

Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard,
R. A. Kimball, & S. B. Nerlove (Eds.), Multidimensional scaling: Theory and applications
in the behavioral sciences, Volume I: Theory. New York: Seminar Press.

Cayley, A. (1849). A note on the theory of permutations. Philosophical Magazine, 34, 527–529.
Chapman, R., & Staelin, R. (1982). Exploiting rank ordered choice set data within the stochastic

utility model. Journal of Marketing Research, 19, 288–301.
Chintagunta, P. K. (1992). Estimating a multinomial probit model of brand choice using the method

of simulated moments. Marketing Science, 11(4), 386–407.
Chou, P. A. (1991). Optimal partitioning for classification and regression trees. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 13, 340–354.
Cochran, W. G. (1954). Some methods of strengthening the common chi-square tests. Biometrics,

10, 417–451.
Cohen, A., & Mallows, C. (1980). Analysis of ranking data. (Technical memorandum). Murray

Hill, NJ: AT&T Bell Laboratories.
Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). New York: Wiley.
Coombs, C. (1950). Psychological scaling without a unit of measurement. Psychological Review,

57, 147–158.
Cox, T., & Cox, M. (2001). Multidimensional scaling (2nd ed.). Boca Raton: Chapman and Hall.
Craig, B. M., Busschbach, J. J. V., & Salomon, J. A. (2009). Modeling ranking, time trade-off,

and visual analog scale values for eq-5d health states: A review and comparison of methods.
Medical Care, 47(6), 634–641.

Critchlow, D. (1985). Metric methods for analyzing partially ranked data. New York: Springer.
Critchlow, D., & Verducci, J. (1992). Detecting a trend in paired rankings. Applied Statistics, 41,

17–29.
Critchlow, D. E., Fligner, M. A., Verducci, J. S. (1991). Probability models on rankings. Journal

of Mathematical Psychology, 35, 294–318.
Croon, M. A. (1989). Latent class models for the analysis of rankings. In G. D. Soete, H. Feger, &

K. C. Klauer (Eds.), New developments in psychological choice modeling (pp. 99–121). North-
Holland: Elsevier Science.

Daniels, H. (1950). Rank correlation and population models. Journal of the Royal Statistical
Society Series B, 12, 171–181.

Dansie, B. R. (1985). Parameter estimability in the multinomial probit model. Transportation
Research Part B: Methodological, 19(6), 526–528.

David, H. A. (1988). The method of paired comparisons. New York: Oxford University Press.
Davis, J. A., & Smith, T. W. (2009). General social surveys, 1972–2008 [machine-readable data

file]. National Data Program for the Social Sciences, No. 18.
de Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R.

Journal of Statistical Software, 31(3), 1–30.



264 Bibliography

Decarlo, L. T., & Luthar, S. S. (2000). Analysis and class validation of a measure of parental
values perceived by early adolescents: An application of a latent class models for rankings.
Educational and Psychological Measurement, 60(4), 578–591.

Devroye, L. (1986). Non-uniform random variate generation. New York: Springer.
Diaconis, P. (1988). Group representations in probability and statistics. Hayward: Institute of

Mathematical Statistics.
Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. Annals

of Statistics, 17, 949–979.
Diaconis, P., & Graham, R. (1977). Spearman’s footrule as a measure of disarray. Journal of the

Royal Statistical Society Series B, 39, 262–268.
Dittrich, R., Katzenbeisser, W., & Reisinger, H. (2000). The analysis of rank ordered preference

data based on Bradley-Terry type models. OR Spektrum, 22, 117–134.
Doignon, J.-P., Pekec, A., & Regenwetter, M. (2004). The repeated insertion model for rankings:

Missing link between two subset choice models. Psychometrika, 69(1), 33–54.
Downs, T. (1973). Rotational angular correlations. New York: Wiley.
Duch, R. M., & Taylor, M. A. (1993). Postmaterialism and the economic condition. American

Journal of Political Science, 37, 747–778.
Duncan, O. D., & Brody, C. (1982). Analyzing n rankings of three items. In R. M. Hauser,

D. Mechanic, A. O. Haller, & T. S. Hauser (Eds.), Social structure and behavior (pp. 269–310).
New York: Academic. .

Erosheva, E. A., Fienberg, S. E., & Joutard, C. (2007). Describing disability through individual-
level mixture models for multivariate binary data. The Annals of Applied Statistics, 1(2),
502–537.

Feigin, P. D. (1993). Modelling and analysing paired ranking data. In M. A. Fligner & J. S. Verducci
(Eds.), Probability models and statistical analyses for ranking data (pp. 75–91). New York:
Springer.

Feigin, P. D., & Alvo, M. (1986). Intergroup diversity and concordance for ranking data: An
approach via metrics for permutations. The Annals of Statistics, 14, 691–707.

Feigin, P. D., & Cohen, A. (1978). On a model for concordance between judges. Journal of the
Royal Statistical Society Series B, 40, 203–213.

Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal
Statistical Society Series B, 48(3), 359–369.

Fligner, M. A., & Verducci, J. S. (1988). Multi-stage ranking models. Journal of the American
Statistical Association, 83, 892–901.

Fok, D., Paap, R., & van Dijk, B. (2012). A rank-ordered logit model with unobserved heterogene-
ity in ranking capabilities. Journal of Applied Econometrics, 27, 831–846.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association, 32, 675–701.

Gao, X., & Alvo, M. (2005a). A nonparametric test for interaction in two-way layouts. The
Canadian Journal of Statistics, 33, 1–15.

Gao, X., & Alvo, M. (2005b). A unified nonparametric approach for unbalanced factorial designs.
Journal of the American Statistical Association, 100, 926–941.

Gao, X., & Alvo, M. (2008). Nonparametric multiple comparison procedures for unbalanced two-
way layouts. Journal of Statistical Planning and Inference, 138, 3674–3686.

Gao, X., Alvo, M., Chen, J., & Li, G. (2008). Nonparametric multiple comparison procedures
for unbalanced one-way factorial designs. Journal of Statistical Planning and Inference, 138,
2574–2591.

Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Compu-
tational and Graphical Statistics, 1, 141–149.

Geweke, J. (1991). Efficient simulation from the multivariate normal and student-t distributions
subject to linear constraints. In Computer Science and Statistics: Proceedings of the 23rd
Symposium on the Interface (pp. 571–578). Alexandria: American Statistical Association.

Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statistical inference (5th ed.). New York:
Chapman Hall.



Bibliography 265

Goldberg, A. I. (1975). The relevance of cosmopolitan local orientations to professional values
and behavior. Sociology of Work and Occupation, 3, 331–356.

Gormley, I. C., & Murphy, T. B. (2008). Exploring voting blocs within the Irish electorate: A
mixture modeling approach. Journal of the American Statistical Association, 103, 1014–1027.

Hajek, J. (1968). Asymptotic normality of simple linear rank statistics under alternatives. The
Annals of Mathematical Statistics, 39, 325–346.

Hájek, J., & Sidak, Z. (1967). Theory of rank tests. New York: Academic.
Hajivassiliou, V. (1993). Simulation estimation methods for limited dependent variable models. In

G. S. Maddala, C. R. Rao, & H. D. Vinod (Eds.), Handbook of statistics: Econometrics (Vol. 11,
pp. 519–543). Amsterdam: North-Holland.

Hall, P., & Miller, H. (2010). Modeling the variability of rankings. The Annals of Statistics, 38,
2652–2677.

Hall, P., & Schimek, M. G. (2012). Moderate-deviation-based inference for random degeneration
in paired rank lists. Journal of the American Statistical Association, 107, 661–672.

Han, S. T., & Huh, M. H. (1995). Biplot of ranked data. Journal of the Korean Statistical Society,
24(2), 439–451.

Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for
multiple class classification problems. Machine Learning, 45, 171–186.

Hausman, J., & Ruud, P. A. (1987). Specifying and testing econometric models for rank-ordered
data. Journal of Econometrics, 34, 83–104.

Henery, R. J. (1981). Permutation probabilities as models for horse races. Journal of the Royal
Statistical Society Series B, 43, 86–91.

Henery, R. J. (1983). Permutation probabilities for gamma random variables. Applied Probability,
20, 822–834.

Higgins, J. J. (2004). An introduction to modern nonparametric statistics. Pacific Grove: Brooks
Cole-Thomson.

Hirst, D., & Naes, T. (1994). A graphical technique for assessing differences among a set of
rankings. Journal of Chemometrics, 8, 81–93.

Hoeffding, W. (1951). A combinatorial central limit theorem. Annals of Mathematical Statistics,
22, 558–566.

Holland, D., & Wessells, C. R. (1998). Predicting consumer preferences for fresh salmon: The
influence of safety inspection and production method attributes. Agricultural and Resource
Economics Review, 27, 1–14.

Hollander, M., & Sethuraman, J. (1978). Testing for agreement between two groups of judges.
Biometrika, 65(2), 403–411.

Imai, K., & van Dyk, D. A. (2005). MNP: R package for fitting the multinomial probit model.
Journal of Statistical Software, 14(3), 32.

Iman, R. L., & Davenport, J. M. (1980). Approximations of the critical region of the friedman
statistic. Communications in Statistics - Theory and Methods, 9, 571–595.

Inglehart, R. (1977). The silent revolution: Changing values and political styles among western
publics. Princeton: Princeton University Press.

Jensen, D., & Solomon, H. (1972). A gaussian approximation to the distribution of a definite
quadratic form. Journal of the American Statistical Association, 67, 898–902.

Jin, W. R., Riley, R. M., Wolfinger, R. D., White, K. P., Passador-Gundel, G., & Gibson, G.
(2001). The contribution of sex, genotype and age to transcriptional variance in Drosophila
melanogaster. Nature Genetics, 29, 389–395.

Joe, H. (2001). Multivariate extreme value distributions and coverage of ranking probabilities.
Journal of Mathematical Psychology, 45, 180–188.

John, J., & Williams, E. (1995). Cyclic designs. New York: Chapman Hall.
Johnson, M. K. (2002). Social origins, adolescent experiences, and work value trajectories during

the transition to adulthood. Social Forces, 80, 1307–1340.
Johnson, R., & Wehrly, T. (1977). Measures and models for angular correlation and angular-linear

correlation. Journal of the Royal Statistical Society Series B, 39, 222–229.



266 Bibliography

Johnson, T. R., & Kuhn, K. M. (2013). Bayesian Thurstonian models for ranking data using JAGS.
Behavior R, 45(3), 857–872.

Jonckheere, A. (1954). A test of significance for the relation between m rankings and k ranked
categories. The British Journal of Statistical Psychology, 7, 93–100.

Jowell, R., Brook, L., & Dowds, L. (1993). International social attributes: The 10th BSA Report.
Aldershot: Dartmouth Publishing.

Jupp, P., & Mardia, K. (1989). A unified view of the theory of directional statistics, 1975–1988.
International Statistical Review, 57, 261–294.

Kalleberg, A. L. (1977). Work values and job rewards: A theory of job satisfaction. American
Sociological Association, 42, 124–143.

Kamishima, T., & Akaho, S. (2006). Efficient clustering for orders. In Proceedings of the 2nd
International Workshop on Mining Complex Data, Hong Kong, China (pp. 274–278).

Kannemann, K. (1976). An incidence test for k related samples. Biometrische Zeitschrift, 18, 3–11.
Keane, M. P. (1994). A computationally practical simulation estimator for panel data. Economet-

rica, 62, 95–116.
Kendall, M., & Gibbons, J. (1990). Rank correlation methods. London: Edward Arnold.
Kidwell, P., Lebanon, G., & Cleveland, W. S. (2008). Visualizing incomplete and partially ranked

data. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1356–1363.
Kim, C. V., & Baets, B. D. (2003). Growing decision trees in an ordinal setting. International

Journal of Intelligent System, 18, 733–750.
Klementiev, A., Roth, D., & Small, K. (2008). Unsupervised rank aggregation with distance-based

models. In Proceedings of the 25th International Conference on Machine Learning, ACM
New York, NY, USA, (pp. 472–479).

Koop, G., & Poirier, D. J. (1994). Rank-ordered logit models: An empirical analysis of ontario
voter preferences. Journal of Applied Econometrics, 9(4), 69–388.

Krabbe, P. F. M., Salomon, J. A., & Murray, C. J. L. (2007). Quantification of health states with
rank-based nonmetric multidimensional scaling. Medical Decision Making, 27, 395–405.

Lacy, W. B., Bokemeier, J. L., & Shepard, J. M. (1983). Job attribute preferences and work
commitment of men and women in the United States. Journal of the American Statistical
Association, 36, 315–329.

Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method (2nd ed.). London:
Butterworth.

Lebanon, G., & Lafferty, J. (2002). Cranking: Combining rankings using conditional probability
models on permutations. In Proceedings of the 19th International Conference on Machine
Learning, ACM New York, NY, USA (pp. 363–370).

Lee, H., & Yu, P. (2013). Rank-ordered logit tree regression. (Technical report). The University of
Hong Kong.

Lee, P. H., & Yu, P. L. H. (2010). Distance-based tree models for ranking data. Computational
Statistics and Data Analysis, 54, 1672–1682.

Lee, P. H., & Yu, P. L. H. (2012). Mixtures of weighted distance-based models for ranking data with
applications in political studies. Computational Statistics and Data Analysis, 56, 2486–2500.

Lehmann, E. (1975). Nonparametrics: Statistical methods based on ranks. New York: McGraw-
Hill.

Leung, H. L. (2003). Wandering ideal point models for single or multi-attribute ranking data: A
Bayesian approach. (Master’s thesis). The University of Hong Kong.

Loh, W. Y., & Shih, Y. S. (1997). Split selection methods for classification trees. Statistica Sinica,
7, 815–840.

Loh, W. Y., & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant
analysis. Journal of the American Statistical Association, 83, 715–728.

Loscocco, K. A., & Kalleberg, A. L. (1988). Age and the meaning of work in the United States
and Japan. Social Forces, 67, 337–356.

Luce, R. D. (1959). Individual choice behavior. New York: Wiley.
Mallows, C. L. (1957). Non-null ranking models. I. Biometrika, 44, 114–130.



Bibliography 267

Marden, J. I. (1992). Use of nested orthogonal contrasts in analyzing rank data. Journal of the
American Statistical Association, 87, 307–318.

Marden, J. I. (1995). Analyzing and modeling rank data. New York: Chapman Hall.
Mardia, K. (1975). Statistics of directional data. Journal of the Royal Statistical Society Series B,

37, 349–393.
Mardia, K. (1976). Linear-circular correlation coefficients and rhythnometry. Biometrika, 63,

403–405.
Marley, A. A. J. (1968). Some probabilistic models of simple choice and ranking. Journal of

Mathematical Psychology, 5, 311–332.
Martin, J. K., & Tuch, S. A. (1993). Black-white differences in the value of job rewards revisited.

Social Science Quarterly, 74, 884–901.
Maydeu-Olivares, A., & Bockenholt, U. (2005). Structural equation modeling of paired-

comparison and ranking data. Psychological Methods, 10(3), 285–304.
McCabe, C., Brazier, J., Gilks, P., Tsuchiya, A., Roberts, J., O’Hagan, A., & Stevens, K. (2006).

Use rank data to estimate health state utility models. Journal of Health Economics, 25,
418–431.

McCullagh, P. (1993a). Models on spheres and models for permutations. In M. A. Fligner & J. S.
Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 278–283).
New York: Springer.

McCullagh, P. (1993b). Permutations and regression models. In M. Fligner & J. Verducci (Eds.),
Probability models and statistical analyses for ranking data (pp. 196–215). New York:
Springer.

McCulloch, R. E. & Rossi, P.E. (1994). An exact likelihood analysis of the multinomial probit
model. Journal of Econometrics, 64, 207–240.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka
(Ed.), Frontiers in econometrics (pp. 105–142). New York: Academic.

McFadden, D. (1978). Modeling the choice of residential location. In F. Snickars & J. Weibull
(Eds.), Spatial interaction theory and planning models (pp. 75–96). North Holland: Amster-
dam.

McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied
Econometrics, 15, 447–470.

Meek, C., Chickering, D. M., & Heckerman, D. (2002). Autoregressive tree models for time-
series analysis. In Proceedings of the Second International SIAM Conference on Data Mining,
Arlington, VA, USA (pp. 229–244).

Meng, X. L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple
identity: A theoretical exploration. Statistica Sinica, 6, 831–860.

Moors, G., & Vermunt, J. (2007). Heterogeneity in post-materialists value priorities. Evidence from
a latent class discrete choice approach. European Sociological Review, 23, 631–648.

Mortimer, J. T., & Lorence, J. (1979). Work experience and occupational value socialization:
A longitudinal study. The American Journal of Sociology, 84, 1361–1385.

Mosteller, F. (1951). Remarks on the method of paired comparisons. I. The least squares solution
assuming equal standard deviations and equal correlations. Psychometrika, 16, 3–9.

Murphy, T. B., & Martin, D. (2003). Mixtures of distance-based models for ranking data.
Computational Statistics and Data Analysis, 41, 645–655.

Nombekela, S. W., Murphy, M. R., Gonyou, H. W., & Marden, J. I. (1993). Dietary preferences in
early lactation cows as affected by primary tastes and some common feed flavors. Journal of
Diary Science, 77, 2393–2399.

Page, E. (1963). Ordered hypotheses for multiple treatments: A significance test for linear ranks.
Journal of the American Statistical Association, 58, 216–230.

Pendergrass, R. N., & Bradley, R. A. (1960). Ranking in triple comparisons. In O. Olkin,
S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability
and statistics (pp. 331–351). Stanford: Stanford University Press.

Piccarreta, R. (2008). Classification trees for ordinal variables. Computational Statistics, 23,
407–427.



268 Bibliography

Plumb, A. A. O., Grieve, F. M., & Khan, S. H. (2009). Survey of hospital clinicians’ preferences
regarding the format of radiology reports. Clinical Radiology, 64, 386–394.

Poon, W. Y., & Xu, L. (2009). On the modelling and estimation of attribute rankings with ties
in the thurstonian framework. British Journal of Mathematical and Statistical Psychology, 62,
507–527.

Quade, D. (1972). Average internal rank correlation. (Technical report) Amsterdam: Mathematical
Centre.

Quinlan, J. R. (1992). C4.5 programs for machine learning. San Mateo, CA: Morgan Kaufmann.
Ratcliffe, J., Brazaier, J., Tsuchiya, A., Symonds, T., & Brown, M. (2006). Estimation of a

preference based single index from the sexual quality of life questionnaire (SQOL) using
ordinal data. Discussion Paper Series, Health Economics and Decision Science, The University
of Sheffield, 06, 6.

Ratcliffe, J., Brazaier, J., Tsuchiya, A., Symonds, T., & Brown, M. (2009). Using DCE and ranking
data to estimate cardinal values for health states for deriving a preference-based single index
from the sexual quality of life questionnaire. Health Economics, 18, 1261–1276.

Regenwetter, M., Ho, M. H. R., & Tsetlin, I. (2007). Sophisticated approval voting, ignorance
priors, and plurality heuristics: A behavioral social choice analysis in a Thurstonian framework.
Psychological Review, 114(4), 994–1014.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference
on Computer Supported Cooperative Work (CSCW) (pp. 175–186). New York, NY: ACM.

Riketta, M., & Vonjahr, D. (1999). Multidimensional scaling of ranking data for different age
groups. Experimental Psychology, 46(4), 305–311.

Salomon, J. A. (2003). Reconsidering the use of rankings in the valuation of health states: A model
for estimating cardinal values from ordinal data. Population Health Metrics, 1, 1–12.

Savage, I. R. (1956). Contributions to the theory of rank order statistics: The two-sample case.
Annals of Mathematical Statistics, 27, 590–615.

Savage, I. R. (1957). Contributions to the theory of rank order statistics: The “trend” case. Annals
of Mathematical Statistics, 28, 968–977.

Schulman, R. S. (1979). A geometric model of rank correlation. The American Statistician, 33(2),
77–80.

Segal, M. R. (1992). Tree-structured methods for longitudinal data. Journal of the American
Statistical Association, 87, 407–418.

Sen, P. (1968). Asymptotically efficient tests by the method of n rankings. Journal of the Royal
Statistical Society, Series B, 30, 312–317.

Shach, S. (1979). A generalization to the friedman test with certain optimality properties. The
Annals of Statistics, 7, 537–550.

Shi, J. Q., & Lee, S. Y. (1997a). A Bayesian estimation of factor scores in confirmatory factor
model with polytomous, censored or truncated data. Psychometika, 62, 29–50.

Shi, J. Q., & Lee, S. Y. (1997b). Estimation of factor scores with polytomous data by the EM
algorithm. British Journal of Mathematical and Statistical Psychology, 50, 215–226.

Shieh, G. S. (1998). A weighted Kendall’s tau statistic. Statistics and Probability Letters, 39,
17–24.

Siciliano, R., & Mola, F. (2000). Multivariate data analysis and modeling through classification
and regression trees. Computational Statistics and Data Analysis, 32, 285–301.

Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and
rankings. Psychometrika, 68(2), 267–287.

Smith, B. B. (1950). Discussion of Professor Ross’s paper. Journal of the Royal Statistical Society
Series B, 12, 53–56.

Stern, H. (1990a). A continuum of paired comparisons models. Biometrika, 77, 265–273.
Stern, H. (1990b). Models for distributions on permutations. Journal of the American Statistical

Association, 85, 558–564.



Bibliography 269

Stern, H. (1993). Probability models on rankings and the electoral process. In M. A. Fligner & J. S.
Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 173–195).
New York: Springer.

Sun, M., & Lebanon, G. (2012). Estimating probabilities in recommendation systems. Applied
Statistics, 61(3), 471–492.

Tallis, G., & Dansie, B. (1983). An alternative approach to the analysis of permutations. Applied
Statistics, 32, 110–114.

Tanner, M. A. (1997). Tools for statistical inference: Methods for the exploration of posterior
distributions and likelihood functions (3rd ed.). New York: Springer.

Tarsitano, A. (2009). Comparing the effectiveness of rank correlation statistics. (Working Papers
200906). Università della Calabria, Dipartimento di Economia e Statistica.

Thompson, G. L. (1993a). Generalized permutation polytopes and exploratory graphical methods
for ranked data. The Annals of Statistics, 21, 1401–1430.

Thompson, G. L. (1993b). Graphical techniques for ranked data. In M. A. Fligner & J. S. Verducci
(Eds.), Probability models and statistical analyses for ranking data (pp. 294–298). New York:
Springer.

Thurstone, L. L. (1927). A law of comparative judgement. Psychological Reviews, 34, 273–286.
Timm, N. H. (1975). Multivariate analysis with applications in education and psychology.

Monterey: Wadsworth Publishing Company, Inc.
Train, K. (2003). Discrete choice methods with simulation. Cambridge: Cambridge University

Press.
Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4),

281–299.
Vermunt, J. K. (2004). Multilevel latent class models. Sociological Methodology, 33, 213–239.
Vigneau, E., Courcoux, P., & Semenou, M. (1999). Analysis of ranked preference data using latent

class models. Food Quality and Preference, 10, 201–207.
Wan (2011). On some topics in modeling and mining ranking data. (Ph.D. thesis). The University

of Hong Kong.
Weaver, C. N. (1975). Job preferences of white collar and blue collar workers. The Academy of

Management Journal, 18, 167–175.
Wormleighton, R. (1959). Some tests of permutation symmetry. Annals of Mathematical Statistics,

30, 1005–1017.
Xu, L. (2000). A multistage ranking model. Psychometrika, 65(2), 217–231.
Yai, T., Iwakura, S., & Morichi, S. (1997). Multinomial probit with structured covariance for route

choice behavior. Transportation Research Part B: Methodological, 31(3), 195–207.
Ye, J., & McCullagh, P. (1993). Matched pairs and ranked data. In M. A. Fligner & J. S. Verducci

(Eds.), Probability models and statistical analyses for ranking data (pp. 299–306). New York:
Springer.

Yellot, J. (1977). The relationship between Luce’s choice axiom, Thurstone’s theory of comparative
judgment and the double exponential distribution. Journal of Mathematical Psychology, 15,
109–144.

Yu, P. L. H. (2000). Bayesian analysis of order-statistics models for ranking data. Psychometrika,
65(3), 281–299.

Yu, P. L. H., & Chan, L. K. Y. (2001). Bayesian analysis of wandering vector models for displaying
ranking data. Statistica Sinica, 11, 445–461.

Yu, P. L. H., Lam, K. F., & Alvo, M. (2002). Nonparametric rank test for independence in opinion
surveys. Austrian Journal of Statistics, 31, 279–290.

Yu, P. L. H., Lam, K. F., & Lo, S. M. (2005). Factor analysis for ranked data with application to a
job selection attitude survey. Journal of the Royal Statistical Society Series A, 168(3), 583–597.

Yu, P. L. H., Lee, P. H., & Wan, W. M. (2013). Factor analysis for paired ranked data with
application on parent-child value orientation preference data. Computational Statistics, 28,
1915–1945.



270 Bibliography

Yu, P. L. H., Wan, W. M., & Lee, P. H. (2010). Preference learning. In J. Furnkranz &
E. Hullermeier (Eds.), Decision tree modelling for ranking data (pp. 83–106). New York:
Springer.

Zhang, H. P. (1998). Classification trees for multiple binary responses. Journal of the American
Statistical Association, 93, 180–193.



Index

Symbols
1993 European Value Priority data, 205
1999 European Value Priority data, 234

A
Angular correlations, 45
APA election data, 179
Asymptotic efficiency, 41, 137, 253
Average pairwise distance, 56

B
Bayesian analysis, 175
Between-population-diversity, 65
BIBD, 88
BIC, 227
Block design, 87
Bridge sampling, 187

C
CART, 201, 255
Cayley, 162, 164, 227
Chebyshev polynomials, 97
Combinatorial central limit theorem, 251
Compatibility, 29
Compatibility matrix, 31
Complete consensus, 167
Complete rankings, 186
Contiguous alternatives, 110
Copula, 155
Correlation, 23, 46
Croon’s political goals data, 228
Cross-validation, 201, 203

Cyclic designs, 90
Cyclic structure models, 164

D
Decision tree models, 199
Deviance, 236
Dissimilarity coefficient, 65
Distance function, 24
Distance-based models, 149, 160
Distance-based tree models, 233
Diversity coefficient, 65
Double exponential density, 113

E
EM algorithm, 226
Entropy, 202
EPL teams, 240

F
F distribution approximation, 204
Factor analysis, 183
Factor score estimation, 189
Footrule, 224
Friedman test, 203

G
Gene expression data, 70
General Social Survey, 212, 246
General theory of hypothesis testing, 105
GHK method, 178, 193
Gibbs sampling, 176, 185

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5

271



272 Index

Gini, 202
Goldberg data, 239
Group divisible designs, 89

H
Hamming, 23, 83, 94, 108, 130, 142
Hessian matrix, 191
Hoeffding, 251
Hypothesis of homogeneity, 138
Hypothesis of randomness, 62

I
Impurity function, 201
Incomplete block designs, 81
Incomplete rankings, 1, 29, 187
Independence of irrelevant alternatives, 152
Information matrix, 87
Inter-group concordance, 211
International Social Service Programme, 205

J
Jonckheere statistic, 135

K
Kendall, 23, 58, 82, 107, 118, 131, 141, 223

L
L-decomposability, 167, 224
Label-invariance, 167
Leaf node, 203
Leisure Time data, 240
Linear rank statistic, 37
Logistic density, 113
Luce model, 151
Lymph heart pressure data, 242

M
Mallows models, 160
Mallows-Bradley-Terry (MBT) models, 159
MDPREF, 15
Mixed logit Models, 156
Mixture models, 226
Modal ranking, 160
Monte Carlo Expectation-Maximization

(MCEM) algorithm, 185
Multi-sample location, 106, 108
Multidimensional preference analysis, 15
Multidimensional scaling, 11

Multilevel logit models, 158
Multinomial logit model, 151
Multinomial probit model, 172
Multistage models, 149, 165
Multivariate (generalized) extreme value

(GEV) models, 155
Multivariate normal order statistics models,

172

N
Nested logit models, 156

O
Order statistics models, 149, 150
Ordered Alternatives, 127
Ordered alternatives, 106, 108

P
Page and Jonckheere statistics, 135
Paired comparison models, 149
Paired comparisons models, 159
Pearson residuals, 228
Permutation, 23
Permutation polytope, 9
�-Component models, 162
Principal components analysis, 181
Probability modeling, 149
Probit models, 171

R
rank-ordered logit (ROL) tree, 237
Rank-ordered logit models, 153
Ranking data, 1
Rearrangement inequality, 26
Receiver operating characteristic (ROC) curve,

204
Regression coefficients, 37
Reversibility, 167
Right invariance, 24
Row and column ranks, 71

S
Score statistics, 98
Scores, 37
Similarity coefficient, 65
Similarity function, 25
Song data, 225
Spearman, 23, 58, 82, 107, 116, 130, 141, 223
Spearman Footrule, 24, 107



Index 273

Spearman tree, 215
Strong unimodality, 167
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