


TIME

Il min = 60 s
1 hr = 60 min = 3600 s
I day = 24 hr = 86,400 s

LENGTH

[ m = 3.281 ft = 39.37 in.

1 km = 0.6214 mi

1 in. = 0.08333 ft = 0.02540 m

[ft = 121n. = 0.3048 m

1 mi = 5280 ft = 1.609 km

1 nautical mile = 1852 m = 6080 ft

ANGLE

1 rad = 180/7 deg = 57.30 deg
1deg = 7/180rad = 0.01745 rad
1 revolution = 277 rad = 360 deg
1 rev/min (rpm) = 0.1047 rad/s

AREA

1 mm® = 1.550 X 1073 in® = 1.076 X 107 ft?
1 m® = 10.76 ft*

1in’* = 6452 mm?

1 f2 = 144 in* = 0.0929 m?

VOLUME

I mm® = 6.102 X 1073 in® = 3.531 X 107% ft}
1 m® = 6.102 X 10*in® = 35.31 f*

lin® = 1.639 X 10* mm?® = 1.639 X 10° m?
18 = 0.02832 m’

VELOCITY
1 m/s = 3.281 ft/s

Unit Conversion Factors

ACCELERATION

1 m/s* = 3.281 ft/s*> = 39.37 in/s>
Lin/s? = 0.08333 ft/s2 = 0.02540 m/s?
1 ft/s* = 0.3048 m/s’

1 g =981 m/s* = 322 ft/s

MASS

1 kg = 0.0685 slug
1 slug = 14.59 kg
1 t (metric tonne) = 10° kg = 68.5 slug

FORCE
I N = 0.22481b
11b = 4448 N

1 kip = 1000 Ib = 4448 N
I ton = 2000 1b = 8896 N

WORK AND ENERGY

1J = 1N-m = 0.7376 ft-1b
1 ft-Ib = 1.356 ]

POWER

1W = 1 N-m/s = 0.7376 ft-Ib/s = 1.340 X 107 hp

1 ft-Ib/s = 1.356 W
1 hp = 550 ft-1b/s = 746 W

PRESSURE

1 Pa = 1 N/m? = 0.0209 Ib/ft* = 1.451 X 10 * Ib/in’

1 bar = 10° Pa
1 Ib/in® (psi) = 144 Ib/f* = 6891 Pa

1 1b/f* = 6.944 X 107 1b/in> = 47.85 Pa

|

| 1km/hr = 0.2778 m/s = 0.6214 mi/hr = 0.9113 ft/s

| 1 mi/hr = (88/60) ft/s = 1.609 km/hr = 0.4470 m/s
| 1knot = 1 nautical mile/hr = 0.5144 m/s = 1.689 ft/s
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Preface

Our original objective in writing this book was to present the foundations and
applications of statics as we do in the classroom. We used many sequences of
figures, emulating the gradual development of a figure by a teacher explaining
a concept. We stressed the importance of visual analysis in gaining understanding,
especially through the use of free-body diagrams. Because inspiration is so
conducive to learning, we based many of our examples and problems on a variety
of modern engineering applications. With encouragement and help from many
students and fellow teachers who have used the book, we continue and expand
upon these themes in this edition.

Examples that Teach

The Strategy/Solution/Discussion framework employed by most of our
examples is designed to emphasize the critical importance of good problem-
solving skills. Our objective is to teach students how to approach problems
and critically judge the results.

Example 9.3

Analyzing a Friction Brake

The motion of the disk in Fig. 9.11 is controlled by the friction force exerted
at C by the brake ABC. The hydraulic actuator BE exerts a horizontal force of
magnitude F on the brake at B. The coefficients of friction between the disk
and the brake are u, and p,. What couple A is necessary to rotate the disk at
a constant rate in the counterclockwise direction?

“Strategy” sections
show the preliminary
planning needed to
begin a solution. What
principles and equa-
tions apply? What must
be determined, and in
what order?

Figure 9.11

Strategy

We can use the free-body diagram of the disk to obtain a relation between M
and the reaction exerted on the disk by the brake, then use the free-body dia-
gram of the brake to determine the reaction in terms of F.

The solution is then

"
p . p . : N
described in detail, using Solution L0
sequences of ﬁgures We draw the free-body diagram of the disk in Fig. a, representing the force ﬂ/( _[)x.l
exerted by the brake by a single force R. The force R opposes the counter- k. 9 _//

when needed to clarify
the steps.

clockwise rotation of the disk. and the friction angle is the angle of Kinetic
friction §, = arctan g, . Summing moments about D, we obtain

(@) The free-body diagram of the disk.

IMompy =M — {Rsinf,)r = 0. , X
Then, from the free-body diagram of the brake (Fig. b). we obtain —= 76,
(ol
- 1 ‘h J
Moy = —Fl 51t} + (Rcos)h = (Rsinf, )b = 0. L.’ 7 [
\2 o
2 |
We can solve these two equations for M and R. The solution for the couple M is ‘@JT
" (1/2)hr F sin#, (1/2)hr Fp, A 1
‘ hcos, — bsiné, h — by, (b) The free-body diagram of the brake

“Discussion” sections
point out properties
of the solution, or
comment on alterna-
tive solution methods,
or suggest out ways
to check answers.

Discussion

R

If g, is sufficiently small, then the denominator of the solution for the couple, L /w‘
(hcosé, — bsind,), is positive. As g, becomes larger, the denominator be- (—
comes smaller, because cos 6, decreases and sin#, increases. As the denomi- 7
nator approaches zero, the couple required to rotate the disk approaches
infinity. To understand this result, notice that the denominator equals zero
when tan 6, = hi/b. which means that the line of action of R passes through
point A (Fig. ¢). As p, becomes larger and the line of action of R approaches
point A, the magnitude of R necessary to balance the moment of F about A (¢) The line of action of R passing through
approaches infinity and, as a result. M approaches infinity point A.
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Engineering Design

We include simple design considerations in many examples and problems wit
compromising emphasis on fundamental mechanics. Design problems are
with a & Icon. Optional exam-ples titled “Application to Engineering™
more detailed discussions of the uses of statics in engineering design:

Example 4.9

A “Design Issues”
section then
discusses design
implications of
the application
and places it in a
broader engineer-
ing context.

o~

(’G' Application to Engineering:

Rotating Machines <

The crewman in Fig. 4.25 exerts the forces shown on the handles of the cof-
fee grinder winch, where F = 4j + 32k N. Determine the total moment he
exerts (a) about point O, (b) about the axis of the winch, which coincides with
the x axts,

|

=018, 028 0.1y m

4

{0.18, -0.28, -0.1) m

Figure 4.25

Strategy

(a) To obtain the total moment about point Q. we must sum the momeats of
the two forces about O. Let the sum be denoted by IM,,. (b) Because point
O is on the x axis, the total moment about the x axis is the component of
M, parallel to the ¢ axis, which is the x component of SM,,

/ esign Issues

The winch 1n this example is a simple representative of a ciass of rotating ma-
chines that includes hydrodynamic and aerodynamic power turbines. pro-
pellers. jet engines, and electric motors and generators. The ancestors of
hydrodynamic and aerodynamic power turbines—water wheels and wind-
mills—were among the earliest machines. These devices illustrate the impor-
tance of the cggeept of the moment of a force about a line. Their common
I designed to rotate and perform some function when it is sub-

feature 1s a p

ng the boat’s sails. A hydrodynamic power turbine (Fig. 4.26) has wrbine
blades that are subjected to forces by flowing water, exerting a moment about
the axis of rotation. This moment rotates the shaft to which the blades are at-
tached. turning an electric generator that is connected to the same shaft

Generator

A specific engineer-
ing application is
first described and
analyzed.

Figure 4.26
A hydroelectric turbine. Water flowing
through the wrbine blades exerts a moment
about the axis of the shaft, tuming the
generaor.

Turbine blad.




Computational Mechanics

Some instructors prefer to teach statics without requiring the use of a computer.
Others use statics as an opportunity to introduce students to the use of
computers in engineering, having them either write their own programs in a
lower level language or use higher level problem-solving software. Our book
is suitable for each of these approaches. We provide optional, self-contained
“Computational Mechanics” sections with examples and problems designed
for solution by a programmable calculator or computer. In addition, tutorials
on using Mathcad® and MaTLAB® in engineering mechanics are available from
our texts website. See supplements for a further description.

< Im

:&i_

A

g
A

Figure 9.33

(a) Moving the slider to the right a
distance x.

(b) Free-body diagram of the block when
slip is impending.

The mass of the block A in Fig. 9.33 is 20 kg, and the coefficient of static
friction between the block and the floor is u, = 0.3. The spring constant
k = 1kN/m, and the spring is unstretched. How far can the slider B be moved
to the right without causing the block to slip?

Solution

Suppose that moving the slider B a distance x to the right causes impending
slip of the block (Fig. a). The resulting stretch of the springis V1 + x> — 1 m,
so the magnitude of the force exerted on the block by the spring is

F=KV1+x—1). (9.23)

From the free-body diagram of the block (Fig. b), we obtain the equilibrium
equations

X

ZF, = (——“)E - uN =0,
V1 + x?

1
SF, = (———)R + N —mg =0.
W 2

Substituting Eq. (9.23) into these two equations and then eliminating N, we
can write the resulting equation in the form

h(x) = k(x + w)(V1 + 2 = 1) — umgV1 + x* = 0.

We must obtain the root of this function to determine the value of x corresponding
to impending slip of the block. From the graph of A{x) in Fig. 9.34, we estimate
that 2(x) = 0atx = 0,43 m. By examining computed results near this value of x,
we see that #{x) = 0, and slip is impending, when x is approximately 0.4284 m.

i ] x (m) h{x)
__j___h,_,l 0.4281 —0.1128

0.4282 —0.0777
0.4283 —0.0425
0.4284 —0.0074
0.4285 0.0278
0.4286 0.0629
0.4287 0.0981

0.1 2 03
x (meters)

Figure 9.34
Graph of the function h{x).
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Consistent Use of Color

To help students recognize and interpret elements of figures, we use consistent
indentifying colors:

Unit veclors Forces Posilions Couples

New to the Third Edition

Positive responses from users and reviewers have led us to retain the basic
organization, content, and features of the first edition. During our preparation
of this edition, we examined how we presented each concept, example, figure,
summary statement. and problem. Where necessary, we made changes,
additions, or deletions to simplify and clarify the presentation. In response to
requests, we made the following notable changes:

» New Design Problems appear at the end of most chapters, as well as
special Design Experiences. Design Experiences in particular are
more involved in nature and are appropriate to assign to teams.
Problems with design intent are marked with a & icon.

*  We have added new examples where users indicated more were need-
ed. Many of the new examples continue our emphasis on realistic and
motivational applications and engineering design.

* We have revised many existing problems to reflect metric versus
English units. We have also added more than 200 new problems. As
with the examples, many of the new problems focus on placing statics
within the context of engineering practice.

* New sets of Study Questions appear after most sections to help
students check their retention of key concepts.

» Each example is clearly labeled for its teaching purpose.

*  We have redesigned the text and also added photographs throughout to
help students connect the text to real world applications and situations.

* Anextensive new supplement program includes web-based assessment
software, visualization software, and much more. See the Supplements
description for complete information.

Commitment to Students and Instructors

In revising the textbook and solutions manual, we have taken precautions
to ensure accuracy to the best of our ability. We have each solved the new
problems in an effort to be sure that their answers are correct and that they




Deerar

are of an appropriate level of difficulty. Karim Nohra of the University of
South Florida also checked the text, examples, problems and solutions manual.
Any errors that remain are the responsibility of the authors. We welcome
communication from students and instructors concerning errors or areas for
improvement. Our mailing address is Department of Aerospace Engineering
and Engineering Mechanics, University of Texas at Austin, Austin, Texas
78712. Our electronic mail address is abedford@ mail.utexas.edu.

Supplements

Student Supplements

Web Assessment Software lets students solve problems from the text with
randomized variables so each student solves a slightly different problem. After
students have submitted their answers, they receive the actual answers and can
keep trying similar problems until they are successful. By integrating with an
optional course management system, professors can have student results
recorded electronically. Contact your PH rep for more information. This site
is password protected—passwords appear in each text’s accompanying Statics
Study Pack.

Statics Study Pack is designed to give students the tools to improve their
study skills. The Statics Study Pack comes bundled for free with every Third
Edition of Statics sold in bookstores. It consists of three study components—
a free body-diagram workbook, a Visualization CD based on Working Model
Software, and an access code to a website with 500 sample Statics and
Dynamics problems and solutions.

* Free-Body Diagram Workbook prepared by Peter Schiavone of the
University of Alberta. This workbook begins with a tutorial on free
body diagrams and then includes 50 practice problems of progressing
difficulty with complete solutions. Further “strategies and tips” help
students understand how to use the diagrams in solving the accompa-
nying problems.

* Working Model CD contains 25 pre-set simulations of Statics
examples in the text that include questions for further exploration.
Simulations are powered by the Working Model Engine and were
created with actual artwork from the text to enhance their correlation
with the text.

* Password-Protected Website contains 500 sample Statics and
Dynamics problems for students to study. Problems are keyed to each
chapter of the text and contain complete solutions. All problems are
supplemental and do not appear in the Third Edition. Student
passwords are printed on the inside cover of the Free-Body Diagram
Workbook. To access this site, students should go to http://www.pren-
hall.com/bedford and follow the on-line directions to register.

The Statics Study Pack is available as a stand-alone item. Order stand-alone
Study Packs with the ISBN 0-13-061574-9.

MATLAB®/Mathcad®Tutorials Twenty tutorials showing how to use
computational software in engineering mechanics. Each tutorial discusses a
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basic mechanics concept, and then shows how to solve a specific problem
related to this concept using MATLAB/Mathcad. There are twenty tutorials each
for MATLAB and Mathcad, and are available in PDF format from the password- -
protected area of the Bedford website. Passwords appear in each student study
pack. Worksheets were developed by Ronald Larsen and Stephen Hunt of
Montana State University—Bozeman.

Website—http://www.prenhall.com/bedford contains multiple-choice
and True/False quizzes keyed to each chapter in the book developed by Karim
Nohra of the University of South Florida. Web Assessment, MATLAB/Mathcad
tutorials, and Study Pack questions and solutions are all available at the
password protected part of this website. Passwords for the protected portion
are printed in the Statics Study Pack.

ESource ACCESS Students may obtain a password to access to Prentice
Hall's ESource, a more than 5000 page on-line database of Introductory
Engineering titles. Topics in the database include mathematics review,
MaTLAB, Mathcad, Excel, programming languages, engineering design, and
many more. This database is fully searchable and available 24 hours a day
from the web. To learn more, visit http://www.prenhall.com/esource. Contact
either your sales rep or engineering@prenhall.com for pricing and bundling
options.

Instructor Supplements

Instructor’s Solutions Manual with Presentation CD This supplement
available to instructors contains completely worked out solutions. Each
solution comes with problem statement as well as associated artwork. The
accompanying CD contains PowerPoint slides of art from examples and text
passages, as well as pdf files of all art from the book.

Course Management Prentice Hall will be supporting Bedford/Fowler with
several course management options. Contact your sales rep or
engineering@prenhall.com for complete information including prices and
availability dates as well as how to use course management with our web
assessment software.
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The architects and engineers are guided by the

principles of statics during each step of the design
and construction of a building. Statics is one of the ¥
sciences underlying the art of structural design.
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Introduction

ngineers are responsible for the design, construction, and testing of
the devices we use, from simple things such as chairs and pencil
sharpeners to complicated ones such as dams, cars, airplanes, and
spacecraft. They must have a deep understanding of the physics underlying
these devices and must be familiar with the use of mathematical models to
predict system behavior. Students of engineering begin to learn how to ana-

lyze and predict the behavior of physical systems by studying mechanics.
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BEEW Engineering and Mechanics

How do engineers design complex systems and predict their characteristics
before they are constructed? Engineers have always relied on their knowledge
of previous designs, experiments. ingenuity, and creativity to develop new de-
signs. Modern engineers add a powerful technique: They develop mathemati-
cal equations based on the physical characteristics of the devices they design.
With these mathematical models, engineers predict the behavior of their
designs, modify them, and test them prior to their actual construction. Aero-
space engineers use mathematical models to predict the paths the space shut-
tle will follow in flight. Civil engineers use mathematical models to analyze
the effects of loads on buildings and foundations.

At its most basic level, mechanics is the study of forces and their effects.
Elementary mechanics is divided into statics, the study of objects in equilibri-
um. and dynamics, the study of objects in motion. The results obtained in ele-
mentary mechanics apply directly to many fields of engineering. Mechanical
and civil engineers who design structures use the equilibrium equations de-
rived in statics. Civil engineers who analyze the responses of buildings to
earthquakes and aerospace engineers who determine the trajectories of satel-
lites use the equations of motion derived in dynamics.

Mechanics was the first analytical science; consequently fundamental con-
cepts, analytical methods, and analogies from mechanics are found in virtually
every field of engineering. Students of chemical and electrical engineering gain
a deeper appreciation for basic concepts in their fields such as equilibrium,
energy, and stability by learning them in their original mechamical contexts. By
studying mechanics, they retrace the historical development of these ideas.

BEEN Learning Mechanics

Mechanics consists of broad principles that govern the behavior of objects. In
this book we describe these principles and provide examples that demonstrate
some of their applications. Although it is essential that you practice working
problems similar to these examples, and we include many problems of this
kind, our objective is to help you understand the principles well enough to
apply them to situations that are new to you. Each generation of engineers
confronts new problems.

Problem Solving

In the study of mechanics you learn problem-solving procedures you will use in
succeeding courses and throughout your career. Although different types of prob-
lems require different approaches, the following steps apply to many of them:

* Identify the information that is given and the information, or answer, you h
must determine. It’s often helpful to restate the problem in your own \
words. When appropriate, make sure you understand the physical system
or model involved. F

* Develop a strategy for the problem. This means identifying the principles
and equations that apply and deciding how you will use them to solve the




problem. Whenever possible, draw diagrams to help visualize and solve
the problem.

* Whenever you can, try to predict the answer. This will develop your
intuition and will often help you recognize an incorrect answer.

* Solve the equations and, whenever possible, interpret your results and
compare them with your prediction. This last step is a reality check. Is
your answer reasonable?

Calculators and Computers

Most of the problems in this book are designed to lead to an algebraic expres-
sion with which to calculate the answer in terms of given quantities. A calcu-
lator with trigonometric and logarithmic functions is sufficient to determine
the numerical value of such answers. The use of a programmable calculator
or a computer with problem-solving software such as Mathcad or MATLAB is
convenient, but be careful not to become too reliant on tools you will not have
during tests.

Sections headed “Computational Mechanics” contain examples and
problems that are suitable for solution with a programmable calculator or a
computer.

Engineering Applications

Although the problems are designed primarily to help you learn mechanics,
many of them illustrate uses of mechanics in engineering. Sections headed
“Application to Engineering” describe how mechanics is applied in various
fields of engineering.

We also include problems that emphasize two essential aspects of
engineering:

* Design. Some problems ask you to choose values of parameters to satisfy
stated design criteria.

* Safety. Some problems ask you to evaluate the safety of devices and
choose values of parameters to satisty stated safety requirements.

Subsequent Use of This Text

This book contains tables and information you will find useful in subsequent
engineering courses and throughout your engineering career. In addition, you
will often want to review fundamental engineering subjects, both during the
remainder of your formal education and when you are a practicing engineer.
The most efficient way to do so is by using the textbooks with which you are
familiar. Your engineering textbooks will form the core of your professional
library.

BEXM Fundamental Concepts

1.3 Fundamental Concepts 5

Some topics in mechanics will be familiar to you from everyday experience
or from previous exposure to them in mathematics and physics courses. In
this section we briefly review the foundations of elementary mechanics.
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Numbers

Engineering measurements, calculations, and results are expressed in num-
bers. You need to know how we express numbers in the examples and prob-
lems and how to express the results of your own calculations.

Significant Digits This term refers to the number of meaningful (that is,
accurate) digits in a number, counting to the right starting with the first
nonzero digit. The two numbers 7.630 and 0.007630 are each stated to four
significant digits. If only the first four digits in the number 7,630,000 are
known to be accurate, this can be indicated by writing the number in scien-
tific notation as 7.630 X 10°.

If a number is the result of a measurement, the significant digits it con-
tains are limited by the accuracy of the measurement. If the result of a meas-
urement is stated to be 2.43, this means that the actual value is believed to be
closer to 2.43 than to 2.42 or 2.44.

Numbers may be rounded oft to a certain number of significant digits.
For example, we can express the value of 7 to three significant digits, 3.14,
or we can express it to six significant digits, 3.14159. When you use a calcu-
lator or computer, the number of significant digits is limited by the number of
digits the machine is designed to carry.

Use of Numbers in This Book You should treat numbers given in prob-
lems as exact values and not be concerned about how many significant digits
they contain. If a problem states that a quantity equals 32.2, you can assume
its value is 32.200. ... We express intermediate results and answers in the ex-
amples and the answers to the problems to at least three significant digits. If
you use a calculator, your results should be that accurate. Be sure to avoid
round-off errors that occur if you round off intermediate results when making
a series of calculations. Instead, carry through your calculations with as much
accuracy as you can by retaining values in your calculator.

Space and Time

Space simply refers to the three-dimensional universe in which we live. Our
daily experiences give us an intuitive notion of space and the locations, or po-
sitions, of points in space. The distance between two points in space is the
length of the straight line joining them.

Measuring the distance between points in space requires a unit of length.
We use both the International System of units, or SI units, and U.S. Custom-
ary units. In SI units, the unit of length is the meter (m). In U.S. Customary
units, the unit of length is the foot (ft).

Time is, of course, familiar—our lives are measured by it. The daily
cycles of light and darkness and the hours, minutes, and seconds measured by
our clocks and watches give us an intuitive notion of time. Time is measured
by the intervals between repeatable events, such as the swings of a clock pen-
dulum or the vibrations of a quartz crystal in a watch. In both SI units and
U.S. Customary units, the unit of time is the second (s). The minute (min),
hour (hr), and day are also frequently used.

If the position of a point in space relative to some reference point
changes with time, the rate of change of its position is called its velocity, and
the rate of change of its velocity is called its acceleration. In SI units, the
velocity is expressed in meters per second (m/s) and the acceleration is



expressed in meters per second per second, or meters per second squared
(m/sz). In U.S. Customary units, the velocity is expressed in feet per second
(ft/s) and the acceleration is expressed in feet per second squared (ft/sz),

Newton’s Laws

Elementary mechanics was established on a firm basis with the publication in
1687 of Philosophiae naturalis principia mathematica, by Isaac Newton. Al-
though highly original, it built on fundamental concepts developed by many
others during a long and difficult struggle toward understanding (Fig. I1.1).

Peloponnesian War

Roman invasion of Britain

Coronation of Charlemagne

Norman conquest of Britain

Signing of Magna Carta

Bubonic plague in Europe

Printing of Gutenberg Bible

Voyage of Columbus

Founding of Jamestown Colony

Thirty Years® War
Pilgrims’ arrival in Massachusetts

Founding of Harvard University

Settlement of Carolina

Pennsylvania grant to William Penn

Salem witchcraft trials

Figure 1.1

— 400 B.C.

— A.D. 400

— 800

— 1200

— 1400

L 1600

— 1650

— 1700

Aristotle: Statics of levers, speculations on dynamics
Archimedes: Statics of levers, centers of mass, buoyancy

Hero of Alexandria: Statics of levers and pulleys
Pappus: Precise definition of center of mass

John Philoponus: Concept of inertia

Jordanus of Nemore: Stability of equilibrium

Albert of Saxony: Angular velocity
Nicole d'Oresme: Graphical kinematics, coordinates
William Heytesbury: Concept of acceleration

Nicolaus Copernicus: Concept of the solar system
Dominic de Soto: Kinematics of falling objects

Tycho Brahe: Observations of planetary motions
Simon Stevin: Principle of virtual work

Johannes Kepler: Geometry and kinematics of
planerary motions

Galileo Galilei: Experiments and analyses in statics
and dynamics, motion of a projectile

René Descartes: Cartesian coordinates

Evangelista Torricelli: Experiments on hydrodynamics

Blaise Pascal: Analyses in hydrostatics

John Wallis, Christopher Wren, Christiaan Huyghens:
Impacts between objects

Isaac Newton: Concept of mass. laws of motion,
postulate of universal gravitation.
analyses of planetary motions

Chronology of developments in mechanics up to the publication of Newton's
Principia in relation to other events in history.

1.3 Fundamental Concepts 7
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XN units

Newton stated three “laws™ of motion, which we express in modern terms:

1. When the sum of the forces acting on a particle is zero, its velocity is
constant. In particular, if the particle is initially stationary, it will remain
stationary. ;

2. When the sum of the forces acting on a particle is not zero, the sum of the
forces is equal to the rate of change of the linear momentum of the
particle. If the mass is constant, the sumn of the forces is equal to the
product of the mass of the particle and its acceleration.

3. The forces exerted by two particles on each other are equal in magnitude
and opposite in direction.

Notice that we did not define force and mass before stating Newton’s
laws. The modern view is that these terms are defined by the second law. To
demonstrate, suppose that we choose an arbitrary object and define it to have
unit mass. Then we define a unit of force to be the force that gives our unit
mass an acceleration of unit magnitude. In principle, we can then determine
the mass of any object: We apply a unit force to it, measure the resulting
acceleration, and use the second law to determine the mass. We can also de-
termine the magnitude of any force: We apply it to our unit mass, measure the
resulting acceleration, and use the second law to determine the force.

Thus Newton'’s second law gives precise meanings to the terms mass and
force. In SI units, the unit of mass is the kilogram (kg). The unit of force is the
newton (N), which is the force required to give a mass of one kilogram an ac-
celeration of one meter per second squared. In U.S. Customary units, the unit
of force is the pound (Ib). The unit of mass is the slug, which is the amount of
mass accelerated at one foot per second squared by a force of one pound.

Although the results we discuss in this book are applicable to many of
the problems met in engineering practice, there are limits to the validity
of Newton’s laws. For example, they don’t give accurate results if a problem
involves velocities that are not small compared to the velocity of light
(3 X 10° m/s) Einstein’s special theory of relativity applies to such prob-
lems. Elementary mechanics also fails in problems involving dimensions that
are not large compared to atomic dimensions. Quantum mechanics must be
used to describe phenomena on the atomic scale.

Study Questions

1. What is the definition of the significant digits of a number?
2. What are the units of length, mass, and force in the SI system?

The SI system of units has become nearly standard throughout the world. In
the United States, U.S. Customary units are also used. In this section we sum-
marize these two systems of units and explain how to convert units from one
system to another.

international System of Units

In ST units, length is measured in meters (m) and mass in kilograms (kg).
Time is measured in seconds (s), although other familiar measures such as
minutes (min), hours (hr), and days are also used when convenient. Meters,



kilograms, and seconds are called the base units of the SI system. Force is
measured in newtons (N). Recall that these units are related by Newton’s
second law: One newton is the force required to give an object of one kilo-
gram mass an acceleration of one meter per second squared:

IN = (1kg)(1 m/s?) = 1 kg-m/s>.

Because the newton can be expressed in terms of the base units, it is called a
derived unit.

To express quantities by numbers of convenient size, multiples of units
are indicated by prefixes. The most common prefixes, their abbreviations, and
the multiples they represent are shown in Table 1.1. For example, 1 km is
1 kilometer, which is 1000 m, and 1 Mg is 1 megagram, which is 10° g, or
1000 kg. We frequently use kilonewtons (kN).

Table 1.1 The common prefixes used in SI units
and the multiples they represent.

Prefix Abbreviation Multiple
nano- n 107°
micro- n 10°¢
milli- m 107°
kilo- k 10°
mega- M 10°
giga- G 10°

U.S. Customary Units

In U.S. Customary units, length is measured in feet (ft) and force is measured
in pounds (Ib). Time is measured in seconds (s). These are the base units of
the U.S. Customary system. In this system of units, mass is a derived unit.
The unit of mass is the slug, which is the mass of material accelerated at one

. foot per second squared by a force of one pound. Newton’s second law states

that

11b = (1 slug)(1 ft/s?).
From this expression we obtain

1 slug = 1 Ib-s?/ft.

We use other U.S. Customary units such as the mile (1 mi = 5280 ft) and

- the inch (1 ft = 12 in.). We also use the kilopound (kip), which is 1000 Ib.

. Angular Units

In both ST and U.S. Customary units, angles are normally expressed in radi-

| ans (rad). We show the value of an angle 6 in radians in Fig. 1.2, It is defined

to be the ratio of the part of the circumference subtended by 6 to the radius of
the circle. Angles are also expressed in degrees. Since there are 360 degrees

1.4 Units 9

Figure 1.2
Definition of an angle in radians.
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(360°) in a complete circle, and the complete circumference of the circle is
2mR. 360° equals 27 rad.

Equations containing angles are nearly always derived under the assump-
tion that angles are expressed in radians. Therefore when you want to substi-
tute the value of an angle expressed in degrees into an equation, you should
first convert it into radians. A notable exception to this rule is that many cal-
culators are designed to accept angles expressed in either degrees or radians
when you use them to evaluate functions such as sin 6.

Conversion of Units

Many situations arise in engineering practice that require you to convert val-
ues expressed in units of one kind into values in other units. If some data in a
problem are given in terms of SI units and some are given in terms of U.S.
Customary units, you must express all of the data in terms of one system of
units. In problems expressed in terms of Sl units, you will occasionally be
given data in terms of units other than the base units of seconds, meters. kilo-
grams. and newtons. You should convert these data into the base units before
working the problem. Similarly, in problems involving U.S. Customary units,
you should convert terms into the base units of seconds, feet, slugs, and
pounds. After you gain some experience, you will recognize situations in
which these rules can be relaxed, but for now the procedure we propose is the
safest.

Converting units is straightforward, although you must do it with
care. Suppose that we want to express 1 mi/hr in terms of ft/s. Since one
mile equals 5280 ft and one hour equals 3600 seconds, we can treat the

expressions
<5280ft> o ( lhr>
I mi "% 13600 s

as ratios whose values are 1. In this way we obtain

5280 ft 1 hr
1 mi/hr = 1 mi/hr X X = 1.47 ft/s.
mi/hr mi/hr ( = ) (36005) fs
We give some useful unit conversions in Table 1.2.
Table 1.2 Unit conversions.
Time 1 minute = 60 seconds
1 hour = 60 minutes
1 day = 24 hours
Length 1 foot = 12 inches
1 mile = 5280 feet
1 inch = 25.4 millimeters
1 foot = 0.3048 meters
Angle 27 radians = 360 degrees
Mass 1 slug = 14.59 kilograms
Force 1 pound = 4.448 newtons




1.4 Units 11

Study Questions

1. What are the base units of the SI and U.S. Customary systems?
2. What is the definition of an angle in radians?

Example 1.1

Converting Units of Pressure

The pressure exerted at a point of the hull of the deep submersible in Fig. 1.3
is 3.00 X 10° Pa (pascals). A pascal is 1 newton per square meter. Determine
the pressure in pounds per square foot.

Figure 1.3
Deep Submersible Vehicle.

Strategy

. From Table 1.2, 1 pound = 4.448 newtons and 1 foot = 0.3048 meters.
With these unit conversions we can calculate the pressure in pounds per
square foot.

' Solution

The pressure (to three significant digits) is

11b 0.3048 m \*
00 X 10°N/m? = 3.00 X 10° N/m? X . —)
3.00 X 10°N/m 00 X 10°N/m (4.448 N) ( I ft

62,700 1b/fi%.
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Discussion

From the table of unit conversions in the inside front cover, 1 Pa =
0.0209 1b/ft>. Therefore an alternative solution is '

0209 Ib/ft’
3.00 X 10°N/m? = 3.00 X 10°N/m? X (M)

1 N/m?
= 62.700 Ib/ft.

Example 1.2

Determining Units from an Equation

Suppose that in Einstein’s equation
E = mcz,

the mass m is in kilograms and the velocity of light ¢ is in meters per second.
(a) What are the SI units of E?

(b) If the value of E in SI units is 20, what is its value in U.S. Customary base
units?

Strategy

(a) Since we know the units of the terms m and ¢, we can deduce the units of
E from the given equation.
(b) We can use the unit conversions for mass and length from Table 1.2 to
convert E from SI units to U.S. Customary units.
Solution
(a) From the equation for E,

E = (mkg)(cm/s)™

the SI units of E are kg-m?/s”.
(b) From Table 1.2, 1 slug = 14.59 kg and 1 ft = 0.3048 m. Therefore

" 2/Zx(lslug)X( b >2
&M/ 2 14.59 kg 0.3048 m

0.738 slug-ft*/s”.

1 kg-m?/s*

It

The value of £ in U.S. Customary units is

E = (20)(0.738) = 14.8 slug-ft?/s2.

Discussion

In part (a) we determined the units of E by using the fact that an equation
must be dimensionally consistent. That is, the dimensions, or units, of each
term must be the same.
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Newton postulated that the gravitational force between two particles of mass
m, and m;, that are separated by a distance r (Fig. 1.4) is

_ Gmm,

F = , 1.1
2 (1.1)

where G is called the universal gravitational constant. Based on this postulate,
he calculated the gravitational force between a particle of mass m; and a
homogeneous sphere of mass m, and found that it is also given by Eq. (1.1),
with r denoting the distance from the particle to the center of the sphere.
Although the earth is not a homogeneous sphere, we can use this result to
approximate the weight of an object of mass m due to the gravitational attrac-
tion of the earth.

Gmmg

W=—-" (1.2)
2

where mg is the mass of the earth and r is the distance from the center of the
earth to the object. Notice that the weight of an object depends on its location
relative to the center of the earth, whereas the mass of the object is a measure
of the amount of matter it contains and doesn’t depend on its position.

When an object’s weight is the only force acting on it, the resulting
acceleration is called the acceleration due to gravity. In this case, Newton’s
second law states that W = ma, and from Eq. (1.2) we see that the accelera-
tion due to gravity is

G
e bl (1.3)

r

The acceleration due to gravity at sea level is denoted by g. Denoting the ra-
dius of the earth by R, we see from Eq. (1.3) that Gmg = gRZ. Substituting
this result into Eq. (1.3), we obtain an expression for the acceleration due to
gravity at a distance r from the center of the earth in terms of the acceleration
due to gravity at sea level:

-
L[ R,

a=g (1.4)

Since the weight of the object W = ma, the weight of an object at a distance
r from the center of the earth is

Py

W = mg —,E (1.5)
2
At sea level (r = Rg), the weight of an object is given in terms of its mass by
the simple relation
W = mg. (1.6)
The value of g varies from location to location on the surface of the

earth. The values we use in examples and problems are g = 9.81 m/s” in SI
units and g = 32.2 ft/s? in U.S. Customary units.

m, 3 F F ;’mz
l
| ¢ |
Figure 1.4

The gravitational forces between two
particles are equal in magnitude and
directed along the line between them.
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Study Questions

1. Does the weight of an object depend on its location?
2. If you know an object’s mass. how do you determine its weight at sea level?

Example 1.3

Determining an Object’s Weight

In its final configuration, the International Space Station (Fig. 1.5) will have a
mass of approximately 450,000 kg.

(a) What would be the weight of the ISS if it were at sea level?

(b) The orbit of the ISS is 354 km above the surface of the earth. The earth’s
radius is 6370 km. What is the weight of the ISS (the force exerted on it by
gravity) when it is in orbit?

Figure 1.5
International Space Station.
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(a) The weight of an object at sea level is given by Eq. (1.6). Because the
mass is given in kilograms, we will express g in SI units: g = 9.81 m/s.
(b) The weight of an object at a distance r from the center of the earth is

given by Eq. (1.5).

Solution
(a) The weight at sea level is

W = mg
= (450,000)(9.81)
= 4.4] X 10°N.
(b) The weight in orbit is
2
W = mg%

(6,370,000)>

= (450,000)(9.81)
= 3.96 X 10°N.

Discussion

(6,370,000 + 354,000)*

Notice that the force exerted on the ISS by gravity when it is in orbit is ap-

proximately 90% of its weight at sea level.

1.1 Express the fractions § and 3 1o three significant digits.

1.2 What is the value of e (the base of natural logarithms) to five
significant digits?

1.3 A machinist drills a circular hole in a panel with radius
r = 5 mm. Determine the circumference C and the area A of the
hole to four significant digits.

1.4 The opening in a soccer goal is 24 ft wide and 8 ft high. Use
these values to determine its dimensions in meters to three signifi-
cant digits.

1.5 The central span of the Golden Gate Bridge is 1280 m long.
What is its length in miles to three significant digits?

1.6 Suppose that you have just purchased a Ferrari F355 coupe
and you want to know whether you can use your set of SAE (U.S.
Customary unit) wrenches to work on it. You have wrenches with
widths 20 = 1/4in., 1/2in.,3/4 in., and | in., and the car has nuts
with dimensions n = S mm, 10 mm, 15 mm, 20 mm, and 25 mm.

Defining a wrench to fit if w is no more than 2% larger than n,
which of your wrenches can you use?

P1.6

1.7 The orbital velocity of the International Space Station is
7690 m/s. Determine its velocity in km/hr and in mi/hr to three
significant digits.

1.8 High-speed “bullet trains” began running between Tokyo and
Osaka, Japan, in 1964. If a bullet train travels at 240 km/hr, what
is its velocity in mi/hr to three significant digits?
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1.9 In December 1986, Dick Rutan and Jeana Yeager flew the
Voyager aircraft around the world nonstop. They flew a distance
of 40,212 km in 9 days, 3 minutes, and 44 seconds.

(a) Determine the distance they flew in miles to three significant
digits.

(b) Determine their average speed (the distance flown divided by
the time required) in kilometers per hour, miles per hour, and
knots (nautical miles per hour) to three significant digits.

1.10 Engineers who study shock waves sometimes express
velocity in millimeters per microsecond (mm/us). Suppose the
velocity of a wavefront is measured and determined to be

5 mm/us. Determine its velocity: (a) in m/s; (b) in mi/s.

1.11 The kinetic energy of a particle of mass m is defined to be
1mv?, where v is the magnitude of the particle’s velocity. If the
value of the kinetic energy of a particle at a given time is 200
when m is in kilograms and v is in meters per second, what is the
value when m is in slugs and v is in feet per second?

1.12 The acceleration due to gravity at sea level in SI units is
g = 9.81 m/s’. By converting units, use this value to determine
the acceleration due to gravity at sea level in U.S. Customary
units.

1.13 A furlong per formight is a facetious unit of velocity,
perhaps made up by a student as a satirical comment on the bewil-
dering variety of units engineers must deal with. A furlong is

660 ft (1/8 mile). A fortnight is 2 weeks (14 nights). If you walk
to class at 2 m/s, what is your speed in furlongs per fortnight to
three significant digits?

1.14 The cross-sectional area of a beam is 480 in>. What is its
cross-sectional area in m>?

1.15 At sea level, the weight density (weight per unit volume)
of water is approximately 62.4 Ib/ft>. 1 Ib = 4.448 N,

1 ft = 0.3048 m, and g = 9.81 m/s”. Using only this infor-
mation, determine the mass density of water in kg/m">.

1.16 A pressure transducer measures a value of 300 1b/in°.
Determine the value of the pressure in pascals. A pascal (Pa) is
one newton per meter squared.

1.17 A horsepower is 550 ft-1b/s. A watt is 1 N-m/s. Determine
the number of watts generated by (a) the Wright brothers’ 1903

Boeing 747

dd02vezocuy

L8 G B R

Brothers' Flier
(shown to scale)
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airplane, which had a 12-horsepower engine; (b) a modern
passenger jet with a power of 100,000 horsepower at cruising
speed.

1.18 In Sl units, the universal gravitational constant
G = 6.67 X 107" N-m?/kg?. Determine the value of G in
U.S. Customary base units.

1.19 If the earth is modeled as a homogeneous sphere, the
velocity of a satellite in a circular orbit is

_ [sRi
UL == T,
r

where Rg is the radius of the earth and r is the radius of the
orbit.

(a) If g is in m/s® and R and r are in meters, what are the units
of v?

(b) If Rz = 6370 km and r = 6670 km, what is the value of v
to three significant digits?

(c) For the orbit described in (b), what is the value of v in mi/s
to three significant digits?

1.20 In the equation

T = 11o?,
the term / is in kg-m” and o is in s7'.
(a) What are the SI units of 7?
(b) If the value of T is 100 when / is in kg-m? and w is in s~',
what is the value of T when it is expressed in terms of U.S.
Customary base units?

1.21 The aerodynamic drag force D exerted on a moving object
by a gas is given by the expression

D = CpS3p??,

where the drag coefficient Cp, is dimensionless, S is a reference
area, p is the mass per unit volume of the gas, and v is the
velocity of the object relative to the gas.

(a) Suppose that the value of D is 800 when S, p, and v are
expressed in S] base units. By converting units, determine the
value of D when S, p, and v are expressed in U.S. Customary
base units.

(b) The drag force D is in newtons when the expression is
evaluated using SI base units and is in pounds when the expres-
sion is evaluated using U.S. Customary base units. Using your
result from (a), determine the conversion factor from newtons to
pounds.

1.22 The pressure p at a depth h below the surface of a
stationary liquid is given by

p=p.t vh
where p, is the pressure at the surface and vy is a constant.
(a) If p is in newtons per meter squared and /4 is in meters, what
are the units of y?
(b) For a particular liquid, the value of y is 9810 when p is in
newtons per meter squared and A is in meters. What is the value
of v when p is in pounds per foot squared and 4 is in feet?



1.23 The acceleration due to gravity is 1.62 m/s” on the surface
of the moon and 9.81 m/s? on the surface of the earth. A female
astronaut’s mass is 57 kg. What is the maximum allowable mass
of her spacesuit and equipment if the engineers don’t want the
total weight on the moon of the woman, her spacesuit and equip-
ment to exceed 180 N?

1.24 A person has a mass of 50 kg.

(a) The acceleration due to gravity at sea level is

g = 9.81 m/s>. What is the person’s weight at sea level?

(b) The acceleration due to gravity on the surface of the moon
is 1.62 m/s*. What would the person weigh on the moon?

1.25 The acceleration due to gravity at sea level is

g = 9.81 m/s’. The radius of the earth is 6370 km. The univer-
sal gravitational constant G = 6.67 X 107" N-m?/kg®. Use this
information to determine the mass of the earth.

1.26 A person weighs 180 Ib at sea level. The radius of the earth
is 3960 mi. What force is exerted on the person by the gravita-
tional attraction of the earth if he is in a space station in orbit

200 mi above the surface of the earth?

1.27 The acceleration due to gravity on the surface of the moon
is 1.62 m/s% The radius of the moon is Ry, = 1738 km.

1.5 Newtonian Gravitation 17

Determine the acceleration due to gravity of the moon at a point
1738 km above its surface.

Strategy: Write an equation equivalent to Eq. (1.4) for the
acceleration due to gravity of the moon.

1.28 If an object is near the surface of the earth, the variation
of its weight with distance from the center of the earth can often
be neglected. The acceleration due to gravity at sea level is

g = 9.81 m/s’. The radius of the earth is 6370 km. The weight
of an object at sea level is mg, where m is its mass. At what
height above the surface of the earth does the weight of the
object decrease to 0.99 mg?

1.29 The centers of two oranges are 1 m apart. The mass of each
orange is 0.2 kg. What gravitational force do they exert on each
other? (The universal gravitational constant

G = 6.67 X 107" N-m*/kg?)

1.30 At a point between the earth and the moon, the magnitude
of the earth’s gravitational acceleration equals the magnitude of
the moon’s gravitational acceleration. What is the distance from
the center of the earth to that point to three significant digits? The
distance from the center of the earth to the center of the moon is
383,000 km, and the radius of the earth is 6370 km. The radius of
the moon is 1738 km, and the acceleration due to gravity at its
surface is 1.62 m/s



Vectors can specify the positions of points of a
structure. Vectors are used to describe and analyze
quantities that have magnitude and direction,
including positions, forces, moments, velocities, and
accelerations.




C H A P T E R

Vectors

o describe a force acting on a structural member, both the magnitude
of the force and its direction must be specified. To describe the posi-
tion of an airplane relative to an airport, both the distance and direction
from the airport to the airplane must be specified. In engineering we deal with

many quantities that have both magnitude and direction and can be expressed

as vectors. In this chapter we review vector operations, resolve vectors into

components, and give examples of engineering applications of vectors.
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Vector Operations and Definitions

Engineers designing a structure must analyze the positions of its members
and the forces acting on them. When designing a machine, they must analyze
the velocities and accelerations of its moving parts. These and many other
physical quantities important in engineering, can be represented by vectors
and analyzed by vector operations. Here we review fundamental vector oper-
ations and definitions.

BEEW scalars and Vectors

A physical quantity that is completely described by a real number is called a
scalar. Time is a scalar quantity. Mass is also a scalar quantity. For example,
you completely describe the mass of a car by saying that its value is 1200 kg.

In contrast, you have to specify both a nonnegative real number, or
magnitude, and a direction to describe a vector quantity. Two vector quanti-
ties are equal only if both their magnitudes and their directions are equal.

The position of a point in space relative to another point is a vector quan-
tity. To describe the location of a city relative to your home, it is not enough
to say that it is 100 miles away. You must say that it is 100 miles west of your
home. Force is also a vector quantity. When you push a piece of furniture

@) across the floor, you apply a force of magnitude sufficient to move the furni-
ture and you apply it in the direction you want the furniture to move.

We will represent vectors by boldfaced letters, U, V, W, ..., and will
denote the magnitude of a vector U by |U|. A vector is represented graphical-
ly by an arrow. The direction of the arrow indicates the direction of the vec-
tor, and the length of the arrow is defined to be proportional to the

< magnitude. For example, consider the points A and B of the mechanism in

Fig. 2.1a. We can specify the position of point B relative to point A by the

ﬂ,w vector r,p in Fig. 2.1b. The direction of r,p indicates the direction from

A point A to point B. If the distance between the two points is 200 mm, the

magnitude |r,,z| = 200 mm.

The cable AB in Fig. 2.2 helps support the television transmission tower.

(b) We can represent the force the cable exerts on the tower by a vector F as
shown. If the cable exerts an 800-N force on the tower, |[F| = 800 N.

Figure 2.1
(a) Two points A and B of a mechanism.
(b) The vector r,; from A 10 B.

Figure 2.2
Representing the force cable AB exerts on
the tower by a vector F.
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Vectors are a convenient means for representing physical quantities that have
magnitude and direction, but that is only the beginning of their usefulness.
Just as you manipulate real numbers with the familiar rules for addition, sub-
traction, multiplication, and so forth, there are rules for manipulating vectors.
These rules provide you with powerful tools for engineering analysis.

Vector Addition

When an object moves from one location in space to another, we say it under-
goes a displacement. If we move a book (or, speaking more precisely, some
point of a book) from one location on a table to another, as shown in Fig. 2.3a,
we can represent the displacement by the vector U. The direction of U indi-
cates the direction of the displacement, and |U| is the distance the book moves.

Suppose that we give the book a second displacement V, as shown in
Fig. 2.3b. The two displacements U and V are equivalent to a single displace-
ment of the book from its initial position to its final position, which we repre-
sent by the vector W in Fig. 2.3c. Notice that the final position of the book is
the same whether we first give it the displacement U and then the displace-
ment V or we first give it the displacement V and then the displacement U
(Fig. 2.3d). The displacement W is defined to be the sum of the displace-
ments U and V:

U+V=W

The definition of vector addition is motivated by the addition of displace-
ments. Consider the two vectors U and V shown in Fig. 2.4a. If we place
them head to tail (Fig. 2.4b), their sum is defined to be the vector from the
tail of U to the head of V (Fig. 2.4¢). This is called the triangle rule for vector
addition. Figure 2.4(d) demonstrates that the sum is independent of the order

(a) (b)

(©) (d)

Figure 2.3

(a) A displacement represented by the
vector U.

(b) The displacement U followed by the
displacement V.

(c) The displacements U and V are
equivalent to the displacement W.

(d) The final position of the book doesn’t
depend on the order of the
displacements.
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(d) (e)
Figure 2.4
(a) Two vectors U and V.
(b) The head of U placed at the tail of V.
(c) The triangle rule for obtaining the sum of U and V.
(d) The sum is independent of the order in which the vectors are added.
(e) The parallelogram rule for obtaining the sum of U and V.

in which the vectors are placed head to tail. From this figure we obtain the
parallelogram rule for vector addition (Fig. 2.4e).
The definition of vector addition implies that

v U+ V =YV + U Vector addition is commutative. 2.1)
U+V+W

W

and
(U+V)+ W=U+ (V+ W) Vector addition (2.2)

is associative.

for any vectors U, V, and W. These results mean that when you add two or
more vectors, you don’t need to worry about the order in which you add
them. The sum is obtained by placing the vectors head to tail in any order.
v The vector from the tail of the first vector to the head of the last one is the
sum (Fig. 2.5a). If the sum is zero, the vectors form a closed polygon when
they are placed head to tail (Fig. 2.5b).

A physical quantity is called a vector if it has magnitude and direction and
obeys the definition of vector addition. We have seen that a displacement is a
vector. The position of a point in space relative to another point is also a vector
quantity. In Fig. 2.6, the vector r,. from A to C is the sum of r ;5 and rpe.

(@)

W

(b)
Figure 2.5

(a) The sum of three vectors.
(b) Three vectors whose sum is zero.

Figure 2.6
Arrows denoting the relative positions of
points are vectors.




A force has direction and magnitude. but do forces obey the definition of
vector addition? For now we will assume that they do. When we discuss dy-
namics we will show that Newton's second law implies that force is a vector.

Product of a Scalar and a Vector

The product of a scalar (real number) a and a vector U is a vector written as
aU. Its magnitude is |a||U|, where |¢| is the absolute value of the scalar a. The
direction of aU is the same as the direction of U when a is positive and is op-
posite to the direction of U when a is negative.

The product (—1)U is written as —U and is called “the negative of the
vector U It has the same magnitude as U but the opposite direction. The
division of a vector U by a scalar « is defined to be the product

Figure 2.7 shows a vector U and the products of U with the scalars 2, —1,
and 1/2.

The definitions of vector addition and the product of a scalar and a vector
imply that

a(bU) = (ab)U, The product is associative with (2.3)
respect to scalar multiplication.
(a + b)U = aU + bU  The product is distributive (2.4)

with respect to scalar addition.

and

a(U + V) = aU + aV  The product is distributive (2.5)
with respect to vector addition.

for any scalars @ and b and vectors U and V. We will need these results when
we discuss components of vectors.

Vector Subtraction

The difference of two vectors U and V is obtained by adding U to the vector
ElV:

U-V=U-+(-1)V. (2.6)
Consider the two vectors U and V shown in Fig. 2.8a. The vector (—1)V has

the same magnitude as the vector V but is in the opposite direction (Fig. 2.8b).
In Fig. 2.8c, we add the vector U to the vector (—1)V to obtain U — V.

Unit Vectors

A unit vector is simply a vector whose magnitude is 1. A unit vector specifies a
direction and also provides a convenient way to express a vector that has a par-
ticular direction. If a unit vector e and a vector U have the same direction. we
can write U as the product of its magnitude |U| and the unit vector e (Fig. 2.9),

U = [Ule.
/IUI
: lUle =U
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Z //U-(I)U /‘-2J=(1/2)U

Figure 2.7
(a) A vector U and some of its scalar
multiples.

U \*
Vo
(a)
— \%
—
Y -nHv
~—
(b)
-V
U-Vv U
}
(c)
Figure 2.8

(a) Two vectors U and V.

(b) The vectors V and (=1) V

(c) The sum of U and (1) V is the vector
difference U — V.

Figure 2.9

Since U and e have the same direction, the
vector U equals the product of its
magnitude with e.
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(b)

Figure 2.10

(a) A vector U and two intersecting lines.
(b) The vectors V and W are vector

components of U.

Any vector U can be regarded as the product of its magnitude and a unit vector
that has the same direction as U. Dividing both sides of this equation by |UJ:

U_
Ul

we see that dividing any vector by its magnitude yields a unit vector that has
the same direction.

€,

Vector Components

When a vector U is expressed as the sum of a set of vectors, each vector of
the set is called a vector component of U. Suppose that the vector U shown in
Fig. 2.10a is parallel to the plane defined by the two intersecting lines. We
can express U as the sum of vector components V and W that are parallel to
the two lines, as shown in Fig. 2.10b. We say that U is resolved into the vec-
tor components V and W.

Study Questions

What is the triangle rule for vector addition?

Vector addition is commutative. What does that mean?

If you multiply a vector U by a number a, what do you know about the
resulting vector aU?

4. What is a unit vector?

> 9 =
5 B 5

Example 2.1

Figure 2.11

Adding Vectors

Figure 2.11 is an initial design sketch of part of the roof of a sports stadium that
is to be supported by the cables AB and AC. The forces the cables exert on the
pylon to which they are attached are represented by the vectors F,; and F 4.
The magnitudes of the forces are |F,; = 100 kN and |F,¢| = 60 kN. Deter-
mine the magnitude and direction of the sum of the forces exerted on the pylon
by the cables (a) graphically and (b) by using trigonometry.

Strategy

(a) By drawing the parallelogram rule for adding the two forces with the vec-
tors drawn to scale, we can measure the magnitude and direction of their sum.
(b) We will calculate the magnitude and direction of the sum of the forces by
applying the laws of sines and cosines (Appendix A, Section A.2) to the trian-

gles formed by the parallelogram rule.
FAB
/300'

A \30° \
!

/ T Fic
\ =

B =




|
.
|

Solution

(a) We graphically construct the parallelogram rule for obtaining the sum of
the two forces with the lengths of F,; and F - proportional to their magnitudes
(Fig. a). By measuring the figure, we estimate the magnitude of the vector
F,; + F,tobe 155 kN and its direction to be 19° above the horizontal.

(b) Consider the parallelogram rule for obtaining the sum of the two forces
(Fig. b). Since a + 30° = 180°, the angle @ = 150°. By applying the law of
cosines to the shaded triangle,

g + Facl’ = [Fas” + [Fac)” = 2/F45]|Fuc] cosa
= (100)? + (60)2 — 2(100)(60) cos 150°,

we determine that the magnitude |[F,; + F,c| = 155kN.
To determine the angle 8 between the vector F,; + F,. and the horizon-
tal, we apply the law of sines to the shaded triangle:

sin sin &
[Fasl  [Fap + Fad|

The solution is

|F 5 sin e ) : ( 100 sin 150°
P iy ARSI 1OV

=1]818°
|F.s + Fal 155 >

B = arcsin(

Discussion

Engineering applications of vectors usually require the precision of analytical
solutions, but experience with graphical solutions can help you understand
vector operations. Carrying out a graphical solution can also help you formu-
late an analytical solution.
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(b) Trigonometric solution.

Resolving a Vector into Components

The force F in Fig. 2.12 lies in the plane defined by the intersecting lines L,
and Lg. Its magnitude is 400 Ib. Suppose that you want to resolve F into vec-
tor components parallel to L, and L. Determine the magnitudes of the vector
components (a) graphically and (b) by using trigonometry.

Ly

Figure 2.12
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Strategy

The parallelogram rule (Fig. 2.4e) clearly indicates how we can resolve F into
components parallel to L, and Lg. '

Solution

(a) We draw dashed lines from the head of F parallel to L, and Ly to con-

struct the vector components, which we denote F, and Fj (Fig. a). By meas-

uring the figure. we estimate their magnitudes to be |FA| = 5401b and

[Fs| = 610 1b.

(b) Consider the force F and the vector components F, and K (Fig. b). Since

Ly« + 80° 4+ 60° = 180°, the angle @ = 40°. By applying the law of sines to
triangle 1,

(@) Graphical solution.

sin60°  sina

o L |F 4| Fl
Jo 7 3(;& >

60o \\

we obtain the magnitude of F,:
N __Triangle 1

F F|sin60° 400 sin 60°
| N IF,| = | , = ———— = 5391b.
$ o~ sin a sin 40
F, L, Then by applying the law of sines to triangle 2,
(b) Trigonometric solution. sin80°  sina
RO
we obtain the magnitude of Fy:
F|sin80° 400 sin80°
[y = I I- = — = 613 1b.
sina sin40°
Problems
Refer to the following diagram when solving Problems 2.1 2.1 The magnitudes |F,| = 60 N and [F5| = 80 N. The angle
through 2.5. a = 45°. Graphically determine the magnitude of the sum of the

forces F = F, + Fj and the angle between Fy and F.

Strategy: Construct the parallelogram for determining the
sum of the forces, drawing the lengths of F, and F proportional
to their magnitudes and accurately measuring the angle a, as we
did in Example 2.1. Then you can measure the magnitude of
their sum and the angle between their sum and Fy.

2.2 The magnitudes |[F,| = 40 N and |F, + F;| = 80 N. The
angle @ = 60°. Graphically determine the magnitude of F.

2.3 The magnitudes |F,| = 100 Ib and [F;| = 140 Ib. The angle
a = 40°. Use trigonometry to determine the magnitude of the
P2.1-2.5 sum of the forces F = F, + Fj and the angle between F and F.

Lo



Strategy.: Use the laws of sines and cosines to analyze the
triangles formed by the parallelogram rule for the sum of the
forces as we did in Example 2.1. The laws of sines and cosines
are given in Section A.2 of Appendix A.

2.4 The magnitudes [F,| = 40 N and |[F, + Fj| = 80 N. The
angle @« = 60°. Use trigonometry to determine the magnitude
of Fp.

2.5 The magnitudes |F,| = 100 1b and |F,| = 140 Ib. If @ can
have any value, what are the minimum and maximum possible
values of the magnitude of the sum of the forces F = F, + Fgp,
and what are the corresponding values of a?

2.6 The angle # = 30°. What is the magnitude of the vector r,-?

P2.6

2.7 The vectors F, and Fy represent the forces exerted on the
pulley by the belt. Their magnitudes are ]F A\ = 80 N and

|FB| = 60 N. What is the magnitude |FA ar FB| of the 1otal force
the belt exerts on the pulley?

P2.7
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2.8 The magnitude of the vertical force F is 80 kN. If you resolve
it into components F,; and F - that are parallel to the bars AB
and AC, what are the magnitudes of the components?

VF P2.8

2.9 The rocket engine exerts an upward force of 4 MN
(meganewtons) magnitude on the test stand. If you resolve the
force into vector components parallel to the bars AB and CD.
what are the magnitudes of the components?

P2.9

2.10 If F is resolved into components parallel to the bars AB and
BC, the magnitude of the component parallel to bar AB is 4 kN.
What is the magnitude of F?

100 mm ~—

P2.10
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2.11 The forces acting on the sailplane are represented by three
vectors. The lift L. and drag D are perpendicular, the magnitude of
the weight W is 3500 N, and W + L + D = 0. What are the
magnitudes of the lift and drag?

N e _ -] 250

" "
x viouto ot
D ™ ‘

N,

w

1L

w P2.11

P2.15

2.12 The suspended weight exerts a downward 2000-1b force F
at A. If you resolve F into vector components parallel to the wires
AB, AC, and AD, the magnitude of the component parallel to AC
is 600 1b. What are the magnitudes of the components parallel to
AB and AD?

2.16 The rope ABC exerts forces Fy, and Fy on the block at B.
Their magnitudes are [Fz,| = [Fyc| = 800 N. Determine
|Fs, + Fyc| (a) graphically and (b) by using trigonometry.

P2.16

P2.12

2.17 Two snowcats tow a housing unit to a new location at
() 2.13 The wires in Problem 2.12 will safely support the weight if =~ McMurdo Base, Antarctica. (The top view is shown. The cables
the magnitude of the vector component of F parallel to each wire are horizontal.) The sum of the forces F, and F exerted on the
does not exceed 2000 1b. Based on this criterion, how large can unit is parallel to the line L, and |FA| = 1000 Ib. Determine |FB|
the magnitude of F be? What are the corresponding magnitudes of ~ and [F, + F| (a) graphically and (b) by using trigonometry.
the vector components of F parallel to the three wires?

2.14 Two vectors r, and rgz have magnitudes |rA[ = 30 m and L
|rB] = 40 m. Determine the magnitude of their sumr, + ry

(a) if r, and ry have the same direction. 7
(b) if r, and ry are perpendicular. r

2.15 A spherical storage tank is supported by cables. The tank is
subjected to three forces: the forces F, and F exerted by the \
cables and the weight W. The weight of the tank |[W| = 600 Ib. S
The vector sum of the forces acting on the tank equals zero. :
Determine the magnitudes of F, and F; (a) graphically and (b) by

using trigonometry. P2.17

TOP VIEW
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2.18 A surveyor determines that the horizontal distance from A to ~ 2.19 The vector r extends from point A to the midpoint between
B is 400 m and that the horizontal distance from A to C is 600 m. points B and C. Prove that

Determine the magnitude of the horizontal vector ry. from B to C
and the angle & (a) graphically and (b) by using trigonometry.

North

Pap—

r = %(rAB ar I'Ac)-

P2.19

2.20 By drawing sketches of the vectors, explain why

P2.18 U+ (V+W)=(U+V)+W.

Cartesian Components

Vectors are much easier to work with when they are expressed in terms of
mutually perpendicular vector components. Here we explain how to resolve
vectors into cartesian components in two and three dimensions and give
examples of vector manipulations using components.

BEXN components in Two Dimensions

Consider the vector U in Fig. 2.13a. By placing a cartesian coordinate system
so that U is parallel to the x-y plane, we can resolve it into vector components
U, and U, parallel to the x and y axes (Fig. 2.13b),

U=U, +U,

Then by introducing a unit vector i defined to point in the direction of the
positive x axis and a unit vector j defined to point in the direction of the posi-
tive y axis (Fig. 2.13c), we can express the vector U in the form

U = Ui + Uj. Q2.7)

The scalars U, and U, are called scalar components of U. When we refer
simply to the components of a vector, we will mean its scalar components. We
will call U, and U, the x and y components of U.

The componénts of a vector specify both its direction relative to the
cartesian coordinate system and its magnitude. From the right triangle
formed by the vector U and its vector components (Fig. 2.13c), we see that

(a)

y
U
U\
UX
(b)
}7
U
U=
.1 U=Ui
.] e )
=
(©)
Figure 2.13

(a) A vector U.

(b) The vector components U, and U,.

(c) The vector components can be
expressed in terms of i and j.
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the magnitude of U is given in terms of its components by the Pythagorea
theorem,

Ul = VU + U;. (2.8‘)

With this equation you can determine the magnitude of a vector when you
know its components.

Manipulating Vectors in Terms of Components
The sum of two vectors U and V in terms of their components is
U+ V= (Ui+Uj)+ (Vi + Vj)
= (U, + V)i + (U, + V)j. (2.9)

The components of U + V are the sums of the components of the vec-
tors U and V. Notice that in obtaining this result we used Egs. (2.2), (2.4),
and (2.5).

It is instructive to derive Eq. (2.9) graphically. The summation of U and V
is shown in Fig. 2.14a. In Fig. 2.14b we introduce a coordinate system and
resolve U and V into their components. In Fig. 2.14¢ we add the x and y com-
ponents, obtaining Eq. (2.9).

The product of a number @ and a vector U in terms of the components of
Uis

aU = a(U,i + U,j) = aU,i + aU,j.

The component of aU in each coordinate direction equals the product of a
and the component of U in that direction. We used Egs. (2.3) and (2.5) to
obtain this result.

u+v,”
VY , U+V
l)*', v Yy (LA,+'VQ)j

Ui J |
‘l (L& i VA)I

(a) (b) (c)

Figure 2.14

(a) The sum of U and V.

(b) The vector components of U and V.

(c) The sum of the components in each coordinate direction equals the component
of U + V in that direction.

Position Vectors in Terms of Components

We can express the position vector of a point relative to another point in
terms of the cartesian coordinates of the points. Consider point A with coordi-
nates (x,, _\'A) and point B with coordinates (xB. y,,). Let r,, be the vector that
specifies the position of B relative to A (Fig. 2.15a). That is, we denote the




. )
B B
(XBv )’B) yB
Ta Tap
()B —y4)l
A v, A
(x4 50 . l[ (xp-x)i :
| |
X ' | x
*a *B
(a) (b)

vector from a point A to a point B by r,;. We see from Fig. 2.15b that r,p is
given in terms of the coordinates of points A and B by

Fap = (xB - xA)i + (5 = Ya)i- (2.10)

Notice that the x component of the position vector from a point A to a point B
is obtained by subtracting the x coordinate of A from the x coordinate of B,
and the y component is obtained by subtracting the y coordinate of A from
the y coordinate of B.

Study Questions

1. How are the scalar components of a vector defined in terms of a cartesian
coordinate system?

2. If you know the scalar components of a vector, how can you determine its
magnitude?

3. Suppose that you know the coordinates of two points A and B. How do you
determine the scalar components of the position vector of point B relative to
point A?
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Figure 2.15

(a) Two points A and B and the position
vector r,; from A to B.

(b) The components of r,z can be
determined from the coordinates of
points A and B.

’ Adding Vectors in Terms y

of Components
The forces acting on the sailplane in Fig. 2.16 are its weight W = —600 (Ib),

. the drag D = —200i + 100j (Ib), and the lift L. -~ L

(a) If the sum of the forces on the sailplane is zero, what are the components

of L? ,
l (b) If the lift L has the components determined in (a) and the drag D increases DY ‘ ‘

by a factor of 2, what is the magnitude of the sum of the forces on the .,
‘ sailplane?

W
Strategy

(a) By setting the sum of the forces equal to zero, we can determine the com-
ponents of L. (b) Using the value of L from (a), we can determine the compo-
nents of the sum of the forces and use Eq. (2.8) to determine its magnitude.

Figure 2.16
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Solution
(a) We set the sum of the forces equal to zero:
W+ D+ L =0
(—600j) + (—200i + 100j) + L = 0.
Solving for the lift, we obtain
L = 200i + 500j (Ib).

(b) If the drag increases by a factor of 2, the sum of the forces on the sailplane l
is

W + 2D + L = (—=600j) + 2(—200i + 100j) + (200i + 500j)
—200i + 100j (Ib). J

From Eq. (2.8), the magnitude of the sum is
IW + 2D + L| = V/(=200)* + (100)> = 224 Ib.

Example 2.4

Figure 2.17

Determining Components in Terms
of an Angle

Hydraulic cylinders are used to exert forces in many mechanical devices. The
force is exerted by pressurized liquid (hydraulic fluid) pushing against a piston
within the cylinder. The hydraulic cylinder AB in Fig. 2.17 exerts a 4000-1b
force F on the bed of the dump truck at B. Express F in terms of components
using the coordinate system shown.

Strategy

When the direction of a vector is specified by an angle, as in this example, we
can determine the values of the components from the right triangle formed by
the vector and its components.

Solution

We draw the vector F and its vector components in Fig. a. From the resulting
right triangle, we see that the magnitude of F, is

IF,| = |F| cos30° = (4000) cos30° = 3460 Ib.
F, points in the negative x direction, so

F, = —3460i (Ib).
The magnitude of F, is

[F,| = [F|sin30° = (4000) sin30° = 2000 Ib.




The vector component F, points in the positive y direction, so
F, = 2000j (Ib).
The vector F in terms of its components is
F =F, + F, = —3460i + 2000j (Ib).
The x component of F is —3460 1b, and the y component is 2000 lb.

Discussion

When you determine the components of a vector, you should check to make
sure they give you the correct magnitude. In this example,

IF| = V/(—3460)2 + (2000)*> = 4000 Ib.
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(@) The force F and its components form a
right triangle.

Determining Vector Components

The cable from point A to point B exerts an 800-N force F on the top of the
television transmission tower in Fig. 2.18. Resolve F into components using
the coordinate system shown.

The force

exerted on

the tower

by cable

| AB

e— 40 m—= — 40 m—=f

Strategy
We determine the components of F in three ways.

First Method From the given dimensions we can determine the angle a
between F and the y axis (Fig. a), then determine the components from the
right triangles formed by the vector F and its components.

- Second Method The right triangles formed by F and its components are

similar to the triangle OAB in Fig. a. We can determine the components of F
by using the ratios of the sides of these similar triangles.

Figure 2.18
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A F,
| I
F|a :
1 I
80 m :
RS
‘ \
H \\
B
J“'b \/ .

f«— 40 m —~

(a) Vector components of F.

o)

v B
e— 40 m —

{b) The vector r,z form A to B.

[*=—40m —~

(c) The unit vector e,z pointing from A
toward B.

Third Method From the given dimensions we can determine the compo-
nents of the position vector r 4, from point A to point B [Fig. b]. By dividing
this vector by its magnitude, we will obtain a unit vector e, with the same
direction as F (Fig. ¢), then obtain F in terms of its components by expressing
it as the product of its magnitude and e z.

Solution

First Method Consider the force F and its vector components (Fig. a). The
tangent of the angle a between F and the y axis is tana = 40/80 = 0.5, so
a = arctan(0.5) = 26.6°. From the right triangles formed by F and its vector
components, the magnitude of F, is

[F,| = |F|sin26.6° = (800)sin26.6° = 358 N
and the magnitude of F| is
|[F,| = |F|cos26.6° = (800) cos26.6° = 716 N.

Since F, points in the positive x direction and F, points in the negative y di-
rection, the force F is

F = 358i — 716j (N)

Second Method The length of the cable AB is V/(80)* + (40)> = 89.4 m.
Since the triangle OAB in Fig. a is similar to the triangle formed by F and its
vector components,

F _ 0B _ 40
F| AB 894’

Thus the magnitude of F, is

40 40
= F| = = 358N.
I <89.4>| | (89'4>(800) ‘N

We can also see from the similar triangles that

[E| _oa_ s0
|F| AB 894’

so the magnitude of F is

IF,| = <§Z%)|F| — (8%)(800) = 716 N.

Thus we again obtain the result
F = 358i — 716j (N).
Third Method The vectorr,zin Fig. b is
rap = (x5 = xa)i + (35 — ya)i = (40 = 0)i + (0 — 80);
= 40i — 80j (m).
We divide this vector by its magnitude to obtain a unit vector e, that has the
same direction as the force F (Fig. ¢):
_ Tap 40i — 80j
Y el Va0 + -0y

= 0.447i — 0.894;.

Tsp




The force F is equal to the product of its magnitude |F| and e,:

, F = |Fle,, = (800)(0.447i — 0.894j) = 358i — 716j (N).
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Example 2.6

Determining an Unknown
Vector Magnitude

The cables A and B in Fig. 2.19 exert forces F, and F on the hook. The mag-
nitude of F, is 100 Ib. The tension in cable B has been adjusted so that the
total force F, + Fj is perpendicular to the wall to which the hook is attached.
(a) What is the magnitude of F?

(b) What is the magnitude of the total force exerted on the hook by the two
cables?

Strategy

The vector sum of the two forces is perpendicular to the wall, so the sum of
the components parallel to the wall equals zero. From this condition we can
obtain an equation for the magnitude of Fy.

Solution

' (a) In terms of the coordinate system shown in Fig. a, the components of F,
and Fj are

F, = |F,|sin40° + |F,| cos40°j,
F; = |Fy|sin20°i — |Fj cos20°j.
The total force is

F, + Fgz = (|[F,|sin40° + |Fy| sin20°)i

4 (|FA| cos40° — |FB‘ 00520°)j.

By setting the component of the total force parallel to the wall (the y compo-
nent) equal to zero,

‘ |FA|COS4O° = |FB| c0s20° = 0,

i we obtain an equation for the magnitude of F:
| = [E | cos40°  (100) cos 40°
| Bl c0s20°  cos20°

= 81.51b.

'~ (b) Since we now know the magnitude of Fj, we can determine the total force
acting on the hook:

F, + Fy = (|F,|sin40° + |Fy| sin20°)i
= [(100) sin40° + (81.5) sin20°]i = 92.2i (Ib).

The magnitude of the total force is 92.2 Ib.

Figure 2.19

(a) Resolving F, and F; into components
parallel and perpendicular to the wall.
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Discussion

We can obtain the solution to (a) in a less formal way. If the component of the
total force parallel to the wall is zero, we see in Fig. (a) that the magnitude of
the vertical component of F, must equal the magnitude of the vertical compo-
nent of Fy:

|F 4| cos 40° = |Fy| cos 20°.
Therefore the magnitude of Fj is
- |[F 4| cos 40° _ (100) cos 40°

| B| cos 20° cos 20°

= 81.51b.

2.21 Aforce F = 40i — 20j (N). What is its magnitude |F|? 2.28 A person exerts a 60-1b force F to push a crate onto a truck.
Strategy: The magnitude of a vector in terms of its Express F in terms of components.
components is given by Eq. (2.8).

2.22 An engineer estimating the components of a force
F = F,i + Fj acting on a bridge abutment has determined that
F, = 130 MN, [F| = 165 MN, and F is negative. What is F,?

(/) 2.23 A support is subjected to a force F = F,i + 80j (N). If the
support will safely support a force of magnitude 100 N, what is
the allowable range of values of the component F,?

)
S

2.24 IfF, = 600i — 800j (kip) and Fy = 200i — 200j (kip),
what is the magnitude of the force F = F, — 2Fz?

2.25 IfF, =i — 45j(kN)and Fz = —2i — 2j (kN), what is
the magnitude of the force F = 6F, + 4F;?

2.26 Two perpendicular vectors U and V lie in the x-y plane.
The vector U = 6i — 8j and |V| = 20. What are the compo-
nents of V?

P2.28

2.27 A fish exerts a 40-N force on the line that is represented by
the vector F. Express F in terms of components using the coordi- 2.29 The missile’s engine exerts a 260-kN force F. Express F in
nate system shown. terms of components using the coordinate system shown.

P2.27 P2.29



2.30 The coordinates of two points A and B of a truss are shown.

Express the position vector from point A to point B in terms of
~ components.

the components of the vectors r,- and r .

2.32 For the hexagonal structural element in Problem 2.31,

" determine the components of the vector ryz — rpe.

2.33 The coordinates of point A are (1.8, 3.0) m. The y coordi-

nate of point B is 0.6 m and the magnitude of the vector r 5 is
3.0 m. What are the components of r;?

DY

X

P2.30

2.31 The points A, B, ... are the joints of the hexagonal structural
element. Let r 4z be the position vector from joint A to joint B, r,¢
the position vector from joint A to joint C, and so forth. Determine

P2.31

X P2.33
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2.34 (a) Express the position vector from point A of the front-
end loader to point B in terms of components.
(b) Express the position vector from point B to point C in terms

of components.

(c) Use the results of (a) and (b) to determine the distance from
point A to point C.

P2.34

2.35 Consider the front-end loader in Problem 2.34. To raise the
bucket, the operator increases the length of the hydraulic cylinder
AB. The distance between points B and C remains constant. If the
length of the cylinder AB is 65 in., what is the position vector from
point A to point B?

2.36 Determine the position vector r,; in terms of its components
if (a) 8 = 30°% (b) 6 = 225°.

P2.36

2.37 In Problem 2.36 determine the position vector rg. in terms
of its components if (a) § = 30°%; (b) 6 = 225°.
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2.38 A surveyor measures the location of point A and determines
that r,, = 400i + 800j (m). He wants to determine the location
of a point B so that |rA,,| = 400 m and |ry, + r,ml = 1200 m.
What are the cartesian coordinates of point B?

Proposed
roadway

P2.38

2.39 Bar ABis 8.5 m long and bar AC is 6 m long. Determine
the components of the position vector r,; from point A to point B.

P2.39

2.40 For the truss in Problem 2.39, determine the components of
a unit vector e, that points from point A toward point C.

Strategy: Determine the components of the position vector
from point A to point C and divide the position vector by its
magnitude.

2.41 The x and y coordinates of points A, B, and C of the
sailboat are shown.

(a) Determine the components of a unit vector that is parallel to
the forestay AB and points from A toward B.

(b) Determine the components of a unit vector that is parallel to
the backstay BC and points from C toward B.

¥

B (4,13)m

x P2.41

2.42 Consider the force vector F = 3i — 4j (kN). Determine
the components of a unit vector e that has the same direction as F.

2.43 Determine the componénts of a unit vector that is parallel to
the hydraulic actuator BC and points from B toward C.

P2.43

2.44 The hydraulic actuator BC in Problem 2.43 exerts a 1.2-kN
force F on the joint at C that is parallel to the actuator and points
from B toward C. Determine the components of F.

2.45 A surveyor finds that the length of the line OA is 1500 m
and the length of the line OB is 2000 m.

(a) Determine the components of the position vector from point
A to point B.

(b) Determine the components of a unit vector that points from
point A toward point B.
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/ - 5 2.47 For the positions described in Problem 2.46, determine the
/ IN | components of a unit vector that points from the Earth toward
J \ Venus.
2.48 The rope ABC exerts forces F, and F - on the block at B.
s / Their magnitudes are |Fj,| = |Fy| = 800 N. Determine the mag-
Proposed bridge 7 : : .
o ek & nitude of the vector sum of the forces by resolving the forces into
/ \ components, and compare your answer with that of Problem 2.16.
B [ | ~ \
Fy \
~— A Fpc
- - A
“L60° N -—«\\
'\ \ 30° River .
A X
AN .
P2.45

2.46 The positions at a given time of the Sun (S) and the planets
Mercury (M), Venus (V), and Earth (E) are shown. The approxi-

mate distance from the Sun to Mercury is 57 X 10° km. the dis-

tance from the Sun to Venus is 108 X 10° km, and the distance

from the Sun to the Earth is 150 X 10° km. Assume that the Sun [
and planets lie in the x—y plane. Determine the components of a P2.48
unit vector that points from the Earth toward Mercury.

2.49 The magnitudes of the forces are |F| = |F,| = |[F;| = SkN.
What is the magnitude of the vector sum of the three forces?

[~ S, L )
F, 30 /
FB
[ N
45°
B>

1 P2.49

P2.46
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2.50 Four groups engage in a tug-of-war. The magnitudes of the
forces exerted by groups B, C, and D are |F s| = 800 Ib,

[Fc| = 1000 b, and [F,,| = 900 ib. If the vector sum of the four
forces equals zero, what are the magnitude of F, and the angle a?

P2.52

2.53 The figure shows three forces acting ou a joint of a
structure. The magnitude of F is 60 kN , and
F, + Fp + F. = 0. What are the magnitudes of F, and F?

| — —

FC
FH
1
X p2.50 ‘_1/L .
40"/;
2.51 The total thrust exerted on the launch vehicle by its main F, P2.53
engines is 200,000 b parallel to the y axis. Each of the two small
vernier engines exerts a thrust of 5000 Ib in the directions shown. 2.54 Four forces act on a beam. The vector sum of the forces is
Determine the magnitude and direction of the total force exerted zero. The magnitudes IFsl = 10kN and |F c’ = 5 kN. Determine
on the booster by the main and vernier engines. the magnitudes of F, and Fj,.
) FD
300{ Q

Fa l Fy Fe
P2.54

2.55 Six forces act on a beam that forms part of a building’s
frame. The vector sum of the forces is zero. The magnitudes

[Fs| = |[Fe| = 20kN, [F¢| = 16 kN, and |F,,| = 9 kN. Determine
the magnitudes of F, and F;.

Vernier
engines

f!I,.I_II-In"G

P2.51

2.52 The magnitudes of the forces acting on the bracket are
[F)| = [F,| = 2kN.If |[F, + F,| = 3.8 kN, what is the angle a?
(Assume that 0 = a = 90°.)

P2.55
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2.56 The total weight of the man and parasail is |[W| = 230 lb.
The drag force D is perpendicular to the lift force L. If the vector
sum of the three forces is zero, what are the magnitudes of L.

and D?

P2.56

2.57 Two cables AB and CD extend from the rocket gantry to
the ground. Cable AB exerts a force of magnitude 10,000 Ib on the
gantry, and cable CD exerts a force of magnitude 5000 Ib.

(a) Using the coordinate system shown, express each of the two
forces exerted on the gantry by the cables in terms of scalar
components.

(b) What is the magnitude of the total force exerted on the
gantry by the two cables?
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2.58 The cables A, B, and C help support a pillar that forms part
of the supports of a structure. The magnitudes of the forces
exerted by the cables are equal: |[F,| = |Fs| = |[F¢|. The
ngnitude of the vector sum of the three forces is 200 kN. What
is [F4|?

2.59 The cable from B to A on the sailboat shown in Problem
2.41 exerts a 230-N force at B. The cable from B to C exerts a
660-N force at B. What is the magnitude of the total force exerted
at B by the two cables? What is the magnitude of the downward
force (parallel to the y axis) exerted by the two cables on the
boat’s mast?

2.60 The structure shown forms part of a truss designed by an
architectural engineer to support the roof of an orchestra shell.
The members AB, AC, and AD exert forces F 5, Fyc, and F
on the joint A. The magnitude ’FAB| = 4 kN. If the vector sum of
the three forces equals zero, what are the magnitudes of ¥, and
Fap?

P2.60
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2.61 The distance s = 45 in.

(a) Determine the unit vector e, that points from B toward A.
(b) Use the unit vector you obtained in (a) to determine the
coordinates of the collar C.

% :
D (14.45) in

bl
8

(75.12) in

2.62 In Problem 2.61, determine the x and y coordinates of the
collar C as functions of the distance s.

2.63 The position vector r goes from point A to a poini on the

straight line between B and C. Its magnitude is [r| = 6 ft. Express

r in terms of scalar components.

BEEX W Components in Three Dimensions

X

P2.61

B & (7.9)f1

A 3.5 1t

C e (12.3)fi

P2.63

2.64 Let r be the position vector from point C to the point that is
a distance s meters from point A along the straight line between A
and B. Express r in terms of scalar components. (Your answer will
be in terms of s.)

¥

C (9,3)m

P2.64

Many engineering applications require you to resolve vectors into compo-
nents in a three-dimensional coordinate system. In this section we explain this
technique and demonstrate vector operations in three dimensions.

Let's first review how to draw objects in three dimensions. Consider a
three-dimensional object such as a cube. If we draw the cube as it appears
when your line of sight is perpendicular to one of its faces, we obtain the dia-
gram shown in Fig. 2.20a. In this view the cube appears two-dimensional;
you can’t see the dimension perpendicular to the page. To remedy this, we
can draw the cube as it appears if you move upward and to the right
(Fig. 2.20b). In this oblique view you can see the third dimension. The hidden
edges of the cube are shown as dashed lines.

We can use this method to draw three-dimensional coordinate systems.
In Fig. 2.20c we align the x, y, and z axes of a three-dimensional cartesian
coordinate system with the edges of the cube. The three-dimensional repre-
sentation of the coordinate system is shown in Fig. 2.20d.

The coordinate system in Fig. 2.20d is right-handed. If you point the fin-
gers of your right hand in the direction of the positive x axis and bend them



(a) (b)

(c)

Figure 2.20

(a) A cube viewed with the line of sight perpendicular to a face.

(b) An oblique view of the cube.

(c) A cartesian coordinate system aligned with the edges of the cube.
(d) Three-dimensional representation of the coordinate system.

(as in preparing to make a fist) toward the positive y axis, your thumb will
point in the direction of the positive z axis (Fig. 2.21). When the positive z
axis points in the opposite direction, the coordinate system is left-handed.
For some purposes, it doesn’t matter which coordinate system you use. How-
ever, some equations we will derive do not give correct results with a left-
handed coordinate system. For this reason we will use only right-handed
coordinate systems.

We can resolve a vector U into vector components U,, U,. and U. paral-
lel to the x, y, and z axes (Fig. 2.22):

U=U, + U, + U, @.11)

(We have drawn a box around the vector to help you visualize the directions
of the vector components.) By introducing unit vectors i, j, and k that point in
the positive x, y, and z directions. we can express U in terms of scalar compo-
nents as

U=Ui+Uj+ Uk (2.12)
We will refer to the scalars U,, U, and U. as the x, y. and z components of U.

Magnitude of a Vector in Terms of Components

Consider a vector U and its vector components (Fig. 2.23a). From the right
triangle formed by the vectors U_‘., U.. and their sum U, + U, (Fig. 2.23b),
we can see that

U, + Uf =y,

2

U

(2.13)

The vector U is the sum of the vectors U, and U, + U.. These three vectors
form a right triangle (Fig. 2.23c), from which we obtain

UP = |u,* + |u, + U
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(d)
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)

L

Figure 2.21
Recognizing a right-handed coordinate
system.

U: ,’P .
/f
U U,
— ——— -'
i1 —
e
—
/ i
& k
Figure 2.22

A vector U and its vector components.
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LEN

L]
2]

(a) (b)

Figure 2.23

(a) A vector U and its vector components.
(b) The right triangle formed by the vectors U,. U.. and U, + U..
(¢) The right triangle formed by the vectors U, U,, and U, + U_.

Substituting Eq. (2.13) into this result yields the equation
UP = [u + |uf’ + [uf = vl + U2+ U2

Thus the magnitude of a vector U is given in terms of its components in three
dimensions by

Ul = VU: + U; + UL (2.14)

Direction Cosines

We described the direction of a vector relative to a two-dimensional cartesian
coordinate system by specifying the angle between the vector and one of the
coordinate axes. One of the ways we can describe the direction of a vector in
three dimensions is by specifying the angles 6, , 6,, and 6_ between the vector
and the positive coordinate axes (Fig. 2.24a).

(a)

(b) (d)

Figure 2.24
(a) A vector U and the angles 6,. 6,. and 6._.
(b)—(d) The angles 6,, 6,. and 6. and the vector components of U.
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In Figs. 2.24b—d, we demonstrate that the components of the vector U are

' given in terms of the angles 6., 6,.and 6. by

U, = |U|cosO,, U, =|Ulcos®,, U.= [Ucosh,. (2.15)

The quantities cos,, cosf,, and cos 6, are called the direction cosines of U.
The direction cosines of a vector are not independent. If we substitute Egs.
(2.15) into Eq. (2.14), we find that the direction cosines satisfy the relation

cos’d, + cos’f, + cos’, = 1. (2.16)
Suppose that e is a unit vector with the same direction as U, so that
U = |Ule.
In terms of components, this equation is
Ui + Uj + Uk = |Ul(e,i + ¢,j + e.k).
Thus the relations between the components of U and e are
U, = [Ule,, U, = |[Ule,, U, = |Upe,.
By comparing these equations to Eqs. (2.15), we see that
cosf, = e,,

cosf, = e, cosl, = e,.

The direction cosines of a vector U are the components of a unit vector with
the same direction as U.

Position Vectors in Terms of Components

Generalizing the two-dimensional case, let’s consider a point A with coordi-
nates (xA,yA, zA) and a point B with coordinates (xB, Vg, zg). The position
vector r,p from A to B, shown in Fig. 2.25a, is given in terms of the coordi-

nates of A and B by
rap = (x5 = x4)i + (vs — ya)i + (25 — 24)k. 2.17)

The components are obtained by subtracting the coordinates of point A from
the coordinates of point B (Fig. 2.25b).

Components of a Vector Parallel to a Given Line

In three-dimensional applications, the direction of a vector is often defined by

- specifying the coordinates of two points on a line that is parallel to the vector.

You can use this information to determine the components of the vector.
Suppose that we know the coordinates of two points A and B on a line
parallel to a vector U (Fig. 2.26a). We can use Eq. (2.17) to determine the po-
sition vector I, from A to B (Fig. 2.26b). We can divide r,; by its magnitude
to obtain a unit vector e 4, that points from A toward B (Fig. 2.26c). Since e,

'~ has the same direction as U, we can determine U in terms of its scalar compo-

nents by expressing it as the product of its magnitude and e 5.
More generally, suppose that we know the magnitude of a vector U and
the components of any vector V that has the same direction as U. Then V/|V|
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(a)

/B Op=x)

(b)

Figure 2.25

(a) The position vector from point A to
point B.

(b) The components of r,; can be
determined from the coordinates of
points A and B.
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(.\'B. A :B) B

/ DY
(X4, V4o S4) A U

(a) o

Figure 2.26

(a) Two points A and B on a line parallel to U.
(b) The position vector from A to B.

(c) The unit vector e, that points from A toward B. (©)

2

is a untt vector with the same direction as U, and we can determine the com-
ponents of U by expressing it as U = |U|(V/|V]).

Study Questions

1. How do you identify a right-handed coordinate system?

2. If you know the scalar components of a vector in three dimensions, how can
you determine its magnitude?

3.  What are the direction cosines of a vector? If you know them, how do you
determine the components of the vector?

4. Suppose that you know the coordinates of two points A and B in three
dimensions. How do you determine the scalar components of the position vector
of point B relative to point A?

Example 2.7

Magnitude and Direction Cosines
of a Vector

An engineer designing a threshing machine determines that at a particular
time the position vectors of the ends A and B of a shaft are r, = 3i — 4 —
12k (ft)and ry = —i + 7j + 6k (fv).

(a) What is the magnitude of r,?

(b) Determine the angles 6,, 6,, and 6. between r , and the positive coordinate
axes.

(c) Determine the scalar components of the position vector of end B of the
shaft relative to end A.




Strategy

(a) Since we know the components of r,, we can use Eq. (2.14) to determine
its magnitude.

(b) We can obtain the angles 6,, 6,, and 6, from Eqgs. (2.15).

(c) The position vector of end B of the shaft relative toend Aisry; — r,.

Solution
(a) The magnitude of r is

lea = Vi, + 74, + 7 = V(3)? + (=4)* + (—12)? = 13 1.

(b) The direction cosines of r, are

T'ax 3
9 = =h—==
. e, 13
Tay —4
6, = =—,
cos% |r,,| 13
T'z; —12
0’ = —= =
- It 13

From these equations we find that the angles between r, and the positive
coordinate axes are 8, = 76.7°, 6, = 107.9°,and 6, = 157.4°.
(c) The position vector of end B of the shaft relative to end A is

ry — £y = (—i + 7j + 6k) — (3i — 4j — 12k)
= —4i + 11 + 18k (ft).
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Example 2.8

Determining Scalar Components

The crane in Fig. 2.27 exerts a 600-1b force F on the caisson. The angle be-
tween F and the x axis is 54°, and the angle between F and the y axis is 40°.
The z component of F is positive. Express F in terms of components.

} Figure 2.27
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Strategy

Only two of the angles between the vector and the positive coordinate axe
are given, but we can use Eq. (2.1§) to determine the third angle. Then we
can determine the components of F by using Egs. (2.15).

Solution
The angles between F and the positive coordinate axes are related by
cos’ 6, + cos’ 6, + cos’f. = (cos54°)* + (cos40°)® + cos’@, = 1.

Solving this equation for cosf., we obtain the two solutions cosf. = 0.260
and cos@. = —0.260, which tells us that 6. = 74.9° or 6, = 105.1°. The z
component of the vector F is positive, so the angle between F and the positive
z axis is less than 90°. Therefore 8. = 74.9°.

The components of F are

F, = |F|cosf, = 600cos54° = 3531b,
F, = [F|cosf, = 600 cos40° = 460 Ib,
F. = |F|cosf. = 600 cos 74.9° = 156 Ib.

Example 2.9

Determining Scalar Components

The tether of the balloon in Fig. 2.28 exerts an 800-N force F on the hook at
O. The vertical line AB intersects the x-z plane at point A. The angle between
the z axis and the line OA is 60°, and the angle between the line OA and F is
45°. Express F in terms of components.

Figure 2.28




Strategy

We can determine the components of F from the given geometric information
in two steps. First, we resolve F into two vector components parallel to the
lines OA and AB. The component parallel to AB is the vector component F,.
Then we can resolve the component parallel to OA to determine the vector
components F, and F..

Solution

In Fig. a, we resolve F into its y component F, and the component F,, parallel
to OA. The magnitude of F, is

[F,| = |F|sin45° = 800sin45° = 566 N,

and the magnitude of F), is
[F,| = |F|cos45° = 800 cos45° = 566 N,

- In Fig. b, we resolve F), into the vector components F, and F,. The magnitude
of F,is

[F,| = |F,|sin60° = 566 sin60° = 490 N,
and the magnitude of F is
‘ [F,| = |F,| cos60° = 566 cos60° = 283 N.

The vector components F,, F,, andF, all point in the positive axis directions,
so the scalar components of F are positive:

F = 490i + 566j + 283k (N).
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k\\\\
\jB
Rl PO
‘\\45° !
0 1 [\: x
Fy ™,

Z

(a) Resolving F inlo vector components
parallel to OA and OB.

y
£~
\\ B
4
F
F, |
|
F
0, X%*/ x
F. /60° Fil/
______ ¥,

(b) Resolving F, into vector components
parallel to the x and z axes.

Example 2.10

’ Vector Whose Direction is Specified
' by Two Points

The bar AB in Fig. 2.29 exerts a 140-N force F on its support at A. The force
is parallel to the bar and points toward B. Express F in terms of components.

| y

B
l »

‘ ~7(800, 500, —300) mm
I“ / /
!
|

A
’ (200, 200, —100) mm

Figure 2.29
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B

Tag (800, 500, -300) mm

A
(200, 200, -100) mm

z
<

(a) The position vector r,z.
y

B
_»
-~
-
-

€4
A/

<

(b) The unit vector e,z pointing from A
toward B.

Strategy

Since we are given the coordinates of points A and B, we can determine th
components of the position vector from A to B. By dividing the position vec-
tor by its magnitude, we can obtain a unit vector with the same direction as F.
Then by multiplying the unit vector by the magnitude of F, we obtain F in
terms of its components.

Solution
The position vector from A to B is (Fig. a)
Tap = (-XB - XA)i + ()’B i .‘/'A)j + (ZB = ZA)k
= [(800) — (200)]i + [(500) — (200)]j + [(~300) — (~100)]k
= 600i + 300j — 200k mm,
and its magnitude is

vl = V/(600)7 + (300)2 + (—200)2 = 700 mm.

By dividing r 4, by its magnitude, we obtain a unit vector with the same di-
rection as F (Fig. b),
Fag 6 3 2

€ip = |r,43| =7l +;J _5k.

Then, in terms of its scalar components, F is

6, 3, 2
F = [Fle,,; = (140)<5i - 7k) = 120i + 60j — 40k (N).

Example 2.11

Determining Components
in Three Dimensions

The rope in Fig. 2.30 extends from point B through a metal loop attached to
the wall at A to point C. The rope exerts forces F,; and F . on the loop at A

y

6 ft-~
A

iR FWC

7 ft

LN x
\\ 6 ft
»C

SA—— 10 ft —=

Figure 2.30



with magnitudes |F,5| = |F,c| = 200 Ib. What is the magnitude of the total
force F = F .5 + F,c exerted on the loop by the rope?

Strategy

' The force F ,5 is parallel to the line from A to B, and the force F . is parallel

to the line from A to C. Since we can determine the coordinates of points A,
B, and C from the given dimensions, we can determine the components of
unit vectors that have the same directions as the two forces and use them to
express the forces in terms of scalar components.

Solution

Let r 5 be the position vector from point A to point B and let r 4 be the posi-
tion vector from point A to point C (Fig. a). From the given dimensions, the
coordinates of points A, B, and C are

A:(6,7,0) ft, B: (2,0, 4) ft, C: (12,0, 6) ft.
Therefore the components of r,; and r - are
Fup = (XB — xu)i + (s — ya)i + (25 — ZA)k
=(2~-6)i+(0-7)j+ (4 -0k
= —4i — 7j + 4k (ft)
and
Fac = (XC - xA)i + (_VC _ }’A)j + (Zc - ZA)k
=(12-6)i+(0—7)j+ (6 —0)k
= 6i — 7j + 6k (ft).

Their magnitudes are |rAB| = 9 ft and [rACl = 11 ft. By dividing r,z and r,
by their magnitudes, we obtain unit vectors e,z and e, that point in the di-
rections of F,; and F .~ (Fig. b):

r

e = —= = —0.444i — 0.778j + 0.444Kk,
| a5l
r

esc = —< = 0.545i — 0.636j + 0.545k.
T ac

The forces F 45 and F - are

F,; = 200e,, = —88.9i — 155.6j + 88.9k (Ib),
F,. = 200e, = 109.1i — 127.3j + 109.1k (Ib).

The total force exerted on the loop by the rope is
F=F,; + F, = 20.2i — 282.8j + 198.0k (Ib),
and its magnitude is

IF| = V/(20.2)> + (—282.8)7 + (198.0)* = 346 Ib.
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A

AN

(a) The position vectors rz and r ..

~

(b) The unit vector e,z pointing and e ..
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Example 2.12

Figure 2.31

04m

(a) The unit vectors e,; and ec,.

Determining Components of a Force

The cable AB in Fig. 2.31 exerts a 50-N force T on the collar at A. Express T
in terms of components.

r/r 04 m i

Strategy

Let r 4z be the position vector from A to B. We will divide r 45 by its magni-
tude to obtain a unit vector ez having the same direction as the force T. Then
we can obtain T in terms of scalar components by expressing it as the product
of its magnitude and e,z. To begin this procedure, we must first determine the
coordinates of the collar A. We will do so by obtaining a unit vector €.
pointing from C toward D and multiplying it by 0.2 m to determine the posi-
tion of the collar A relative to C.

Solution

Determining the Coordinates of Point A The position vector from C to
D is

rep = (02 — 0.4)i + (0 — 0.3)j + (025 — 0)k
= —0.2i — 0.3j + 0.25k (m).
Dividing this vector by its magnitude, we obtain the unit vector e, (Fig. a):
_ Tep —0.2i — 0.3j + 0.25k
reol T V(02)7 + (-03) + (0.25)
= —0.456i — 0.684j + 0.570k.

€cp

Using this vector, we obtain the position vector from C to A:

res = (0.2 m)ecp = —0.091i — 0.137j + 0.114k (m).




The coordinates of A are (0.309, 0.163, 0.114) m.

position vector from A to B is

= —0.309i + 0.337j + 0.036k (m).

rys = (0 — 0309)i + (0.5 — 0.163)j + (0.1
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The position vector from the origin of the coordinate system to C is
roc = 0.4i + 0.3j(m), so the position vector from the origin to A is

Tos = Toc + Ty = (041 + 03j) + (=0.091i — 0.137j + 0.114K)
= 0.309i + 0.163j + 0.114k (m).

Determining the Components of T Using the coordinates of point A, the

5 — 0.114)k

Dividing this vector by its magnitude, we obtain the unit vector e, [Fig. (a)]:

o —0.309i + 0.337j + 0.036k

—33.7i + 36.7j + 3.9k (N).

e —3 —]
el V(=0309)2 + (0.337)7 + (0.036)
= —0.674i + 0.735j + 0.079k.
The force T is
T = [Tle,s = (50 N)(—0.674i + 0.735) + 0.079K)

2.65 A vector U = 3i — 4j — 12k. What is its magnitude?
Strategy: The magnitude of a vector is given in terms of its
components by Eq. (2.14).

2.66 A force vector F = 20i + 60j — 90k (N). Determine its
magnitude.

/) 2.67 An engineer determines that an attachment point will be
subjected to a force F = 20i + F,j — 45k (kN). If the
attachment point will safely support a force of 80-kN magnitude
in any direction, what is the acceptable range of values of F,?

2.68 A vectorU = U,i + U,j + U.k. Its magnitude [U| = 30.
Its components are related by the equations U, = —2U, and
U, = 4U,. Determine the components.

2.69 A vector U = 100i + 200j — 600k, and a vector
V = —200i + 4505 + 100k. Determine the magnitude of the
vector —2U + 3V.

2.70 Two vectors U= 3i— 2j + 6kandV = 4i + 12j = — 3k.
(a) Determine the magnitudes of U and V.
(b) Determine the magnitude of the vector 3U + 2V.

2.71 A vectorU = 40i — 70j — 40k.
(a) What is its magnitude?
(b) What are the angles 6., . and 0. between U and the
positive coordinate axes?

Strategy: Since you know the components of U, you can
determine the angles 6., 6,, and 6. from Egs. (2.15).

2.72 A force F = 600i — 700j + 600k (Ib). What are the
angles 6,, 0,, and 6, between the vector F and the positive
coordinate axes?
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2.73 The cable exerts a 50-1b force F on the metal hook at O.
The angle between F and the x axis is 40°, and the angle between
F and the y axis is 70°. The z component of F is positive.
(a) Express F in terms of components.
(b) What are the direction cosines of F?

Strategy: Since you are given only two of the angles between
F and the coordinate axes, you must first determine the third one.
Then you can obtain the components of F from Eqgs. (2.15).

F
70°
T~
\40°
0 / X
5 P2.73
2.74 A unit vector has direction cosines cos#, = —0.5 and

cosf, = 0.2. Its z component is positive. Express it in terms of
components.

2.75 The airplane’s engines exert a total thrust force T of
200-kN magnitude. The angle between T and the x axis is 120°,
and the angle between T and the y axis is 130°. The z component
of T is positive.

(a) What is the angle between T and the z axis?

(b) Express T in terms of components.

P2.75

2.76 The position vector from a point A to a point B is

3i + 4j — 4k (ft). The position vector from point A to a point C
is —3i + 13j — 2k (ft).

(a) What is the distance from point B to point C?

(b) What are the direction cosines of the position vector from
point B to point C?

2.77 A vector U = 3i — 2j + 6k. Determine the components
of the unit vector that has the same direction as U.

2.78 A force vector F = 3i — 4j — 2k (N).

(a) What is the magnitude of F?

(b) Determine the components of the unit vector that has the
same direction as F.

2.79 A force vector F points in the same direction as the unit
vector e = i — $j — 2k. The magnitude of F is 700 Ib. Express

F in terms of components.

2.80 A force vector F points in the same direction as the position
vectorr = 4i + 4j — 7k (m). The magnitude of F is 90 kN.
Express F in terms of components.

2.81 Astronauts on the space shuttle use radar to determine the
magnitudes and direction cosines of the position vectors of two
satellites A and B. The vector r, from the shuttle to satellite A has
magnitude 2 km, and direction cosines cos#, = 0.768,

cosf, = 0.384, cos 6. = 0.512. The vector r from the shuttle to
satellite B has magnitude 4 km and direction cosines

cos, = 0.743, cos 6, = 0.557, cos 6, = —0.371. What is the
distance between the satellites?

P2.81

2.82 Archaeologists measure a pre-Columbian ceremonial
structure and obtain the dimensions shown. Determine (a) the
magnitude and (b) the direction cosines of the position vector
from point A to point B.




2.83 Consider the structure described in Problem 2.82. After
returning to the United States, an archaeologist discovers that he
lost the notes containing the dimension b, but other notes indicate
that the distance from point B to point C is 16.4 m. What are the
direction cosines of the vector from B to C?

2.84 Observers at A and B use theodolites to measure the
direction from their positions to a rocket in flight. If the
coordinates of the rocket’s position at a given instant are

(4, 4, 2) km, determine the direction cosines of the vectors r
and rgp that the observers would measure at that instant.

v

B (5,0,2) km

P2.84

2.85 In Problem 2.84, suppose that the coordinates of the
rocket’s position are unknown. At a given instant, the person at A
determines that the direction cosines of r, are cos ¢, = 0.535.
cosf, = 0.802, and cos 6. = 0.267, and the person at B
determines that the direction cosines of ry are cos 6, = —0.576,
cos®, = 0.798, and cos 0, = —0.177. What are the coordinates of
the rocket’s position at that instant?

2.86 The height of Mount Everest was originally measured by a
surveyor using the following procedure. He first measured the
distance between two points A and B of equal altitude. Suppose
that they are 10.000 ft above sea level and are 32,000 ft apart. He
then used a theodolite to measure the direction cosines of the
vectors from point A to the top of the mountain P and from point

< o P

N
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B to P. Suppose that for r ,p, the direction cosines are

cosf, = 0.509, cos 0, = 0.509, cos 6. = 0.694. and for ry, they
are cos 8, = —0.605, cos6, = 0.471, cos6. = 0.642. The z axis
of the coordinate system is vertical. What is the height of Mount
Everest above sea level?

2.87 The distance from point O to point A is 20 ft. The straight
line AB is parallel to the y axis, and point B is in the x-z plane.
Express the vector r, in terms of scalar components.

Strategy: You can resolve ry, into a vector from O to B and
a vector from B to A. You can then resolve the vector from O to
B into vector components parallel to the x and z axes. See
Example 2.9.

P2.87

2.88 The magnitude of r is 100 in. The straight line from the
head of r to point A is parallel to the x axis, and point A is
contained in the y-z plane. Express r in terms of scalar
components.

Vv

A
- by > "“(nf - ﬁ@i :
1\ y

/ ™
/ 45°
/ 60°

2 P2.88
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2.89 The straight line from the head of F to point A is parallel to
the y axis, and point A is contained in the x-z plane. The x
component of F is /. = 100 N.

(a) What is the magnitude of F?

(b) Determine the angles 6,. 6,. and 6. between F and the
positive coordinate axes.

P2.89

2.90 The position of a point P on the surface of the earth is
specified by the longitude A, measured from the point G on the
equator directly south of Greenwich, England, and the latitude L
measured from the equator. Longitude is given as west (W)
longitude or east (E) longitude, indicating whether the angle is
measured west or east from point G. Latitude is given as north (N)
latitude or south (S) latitude, indicating whether the angle is
measured north or south from the equator. Suppose that P is at
longitude 30°W and latitude 45°N. Let R, be the radius of the
earth. Using the coordinate system shown, determine the
components of the position vector of P relative to the center of the
earth. (Your answer will be in terms of R;.)

P2.90

2.91 An engineer calculates that the magnitude of the axial
force in one of the beams of a geodesic dome is |P| = 7.65 kN.
The cartesian coordinates of the endpoints A and B of the
straight beam are (—12.4, 22.0, —18.4) m and

(—9.2,24.4, —15.6) m, respectively. Express the force P in te
of scalar components.

2.92 The cable BC exerts an 8-kN force F on the bar AB at B.
(a) Determine the components of a unit vector that points from
point B toward point C.

(b) Express F in terms of components.

B (5,6,1)m

C (3,0,4)m

(2]

P2.92

2.93 A cable extends from point C to point E. It exerts a 50-1b
force T on the plate at C that is directed along the line from C to
E. Express T in terms of scalar components.
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2.97 The 70-m-tall tower is supported by three cables that exert
forces F 45, F ¢, and F;, on it. The magnitude of each force is

2 kN. Express the total force exerted on the tower by the three
cables in terms of scalar components.

AD A

Fic Fip

/ / P2.93 " iy s /

/ B
2.94 What are the direction cosines of the force T in —~ E X
Problem 2.93? Rl c i /
40 m v

2.95 The cable AB exerts a 200-1b force F,5 at point A that is 40m——
directed along the line from A to B. Express F 4, in terms of scalar -
components. P2.97
y 2.98 Consider the tower described in Problem 2.97. The
; magnitude of the force F 5 is 2 kN. The x and z components of
Sh ¢ the vector sum of the forces exerted on the tower by the three
T cables are zero. What are the magnitudes of ¥, and ¥,;,?
915 2.99 Express the position vector from point O to the collar at A
in terms of scalar components.
6 ft
B
y
/ =Y
F
F,, AC
& A (6.0.10) ft P2.95
2.96 Consider the cables and wall described in Problem 2.95.
Cable AB exerts a 200-1b force F 44 at point A that is directed X
along the line from A to B. The cable AC exerts a 100-1b force /
. . . 4 ft
F ¢ at point A that is directed along the line from A to C. /
Determine the magnitude of the total force exerted at point A by &
z 41 P2.99

the two cables.
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2.100 The cable AB exerts a 32-1b force T on the collar at A.
Express T in terms of scalar components. )

&1

S P2.100 P2.101

2.101 The circular bar has a 4-m radius and lies in the x-y plane.  2.102 The cable AB in Problem 2.101 exerts a 60-N force T on
Express the position vector from point B to the collar at A in the collar at A that is directed along the line from A toward B.
terms of scalar components. Express T in terms of scalar components.

Products of Vectors

Two kinds of products of vectors, the dot and cross products, have been found
to have applications in science and engineering, especially in mechanics and
electromagnetic field theory. We use both of these products in Chapter 4 to
evaluate moments of forces about points and lines. We discuss them here so
that you can concentrate on mechanics when we introduce moments and not
be distracted by the details of vector operations.

BEX Dot Products

The dot product of two vectors has many uses, including resolving a vector
into components parallel and perpendicular to a given line and determining
the angle between two lines in space.

Definition

Consider two vectors U and V (Fig. 2.32a). The dot product of U and V, de-
noted by U - V (hence the name “dot product™), is defined to be the product
of the magnitude of U, the magnitude of V, and the cosine of the angle 6 be-
tween U and V when they are placed tail to tail (Fig. 2.32b):

U -V = |U||V|cosb. (2.18)

-



Because the result of the dot product is a scalar, the dot product is sometimes
called the scalar product. The units of the dot product are the product of the
units of the two vectors. Notice that the dot product of two nonzero vectors is
equal to zero if and only if the vectors are perpendicular.

The dot product has the properties

U:V =V U, Thedotproduct is commutative. (2.19)
a(U-V) = (aU)-V =U- (aV), Thedotproductis (2.20)
associative with
respect to scalar
multiplication.
and
U:-(V+W)=U-V + U-+W Thedot product is (2.21)

distributive with
respect to vector
addition.

for any scalar @ and vectors U, V, and W.

Dot Products in Terms of Components

In this section we derive an equation that allows you to determine the dot
product of two vectors if you know their scalar components. The derivation
also results in an equation for the angle between the vectors. The first step is
to determine the dot products formed from the unit vectors i, j, and k. Let’s
evaluate the dot product i - i. The magnitude |i| = 1, and the angle between
two identical vectors placed tail to tail is zero, so we obtain

i -1 = [illi| cos(0) = (1)(1)(1) = 1.

The dot product of i and j is
i+ j = [illif cos(90°) = (1)(1)(0) = 0.

Continuing in this way, we obtain

i-i=1, i-j=0, i-k=0,
j.i=09 j»j:ls j.k—_—O’ (2‘22)
k-i=0, k-j=0, k-k=1I.

The dot product of two vectors U and V expressed in terms of their com-
ponents is

U-V=(Ui+Uj+Uk)- (Vi+Vj+ VK
= UV (i-i) + UV(i-j) + UVi(i- k)
+UV (i - i) + V(5 -3) + UV - k)
F UV (k- i) + UV(K - §) + UV.(k - k).
In obtaining this result, we used Eqs. (2.20) and (2.21). Substituting Eqgs.
(2.22) into this expression, we obtain an equation for the dot product in terms
of the scalar components of the two vectors:

U-V=0UV,+UV,+ UV. (2.23)
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(a)
Vv,
‘/
\o
]
!
U
(b)
Figure 2.32

(a) The vectors U and V.
(b) The angle 8 between U and V when the
two vectors are placed tail to tail.
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Figure 2.33

(a) A vector U and line L.

(b) Resolving U into components parallel
and normal to L.

Figure 2.34
The unit vector e is parallel to L.

U

To obtain an equation for the angle € in terms of the components of the §M
vectors, we equate the expression for the dot product given by Eq. (2.23) to
the definition of the dot product, Eq. (2.18), and solve for cos 6:

Uu-v UV+UV, +UV.
[UIIVI. [UlIvI

cosf = (2.24)

Vector Components Parallel and Normal to a Line

In some engineering applications you must resolve a vector into components
that are parallel and normal (perpendicular) to a given line. The component of
a vector parallel to a line is called the projection of the vector onto the line.
For example. when the vector represents a force, the projection of the force
onto a line is the component of the force in the direction of the line.

We can determine the components of a vector parallel and normal to a
line by using the dot product. Consider a vector U and a straight line L
(Fig. 2.33a). We can resolve U into components U, and U, that are parallel
and normal to L (Fig. 2.33b).

(a)
The Parallel Component In terms of the angle 6 between U and the com-
ponent U, the magnitude of U,, is
|U,| = |U] cosé.
Let e be a unit vector parallel to L (Fig. 2.34). The dot product of e and U is
e U= |e|][lUcosf = |U|cos8.

(2.25)

Comparing this result with Eq. (2.25). we see that the magnitude of U, is

U,| =e-U.
Therefore the parallel component, or projection of U onto L, is

U, = (e U)e. (2.26)
(This equation holds even if e doesn’t point in the direction of U,. In that

case, the angle 8 > 90° and e - U is negative.) When the components of a
vector and the components of a unit vector e parallel to a line L are known,
we can use Eq. (2.26) to determine the component of the vector parallel to L.




The Normal Component Once the parallel component, has been deter-
mined, we can obtain the normal component from the relation U = U, + U,:

U,=U-U, (2.27)

Study Questions

1. What is the definition of the dot product?

2. The dot product is commutative. What does that mean?

3. If you know the components of two vectors U and V, how can you determine
their dot product?

4. How can you use the dot product to determine the components of a vector
parallel and normal to a line?
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Example 2.13

Calculating a Dot Product

The magnitude of the force F in Fig. 2.35 is 100 Ib. The magnitude of the
vector r from point O to point A is 8 ft.

| (a) Use the definition of the dot product to determine r - F.

(b) Use Eq. (2.23) to determiner - F.

| Strategy

(a) Since we know the magnitudes of r and F and the angle between them
when they are placed tail to tail, we can determine r * F directly from the
definition.

(b) We can determine the components of r and F and use Eq. (2.23) to deter-
mine their dot product.

Solution
(a) Using the definition of the dot product,
r-F = |r||[F|cos6 = (8)(100) cos 60° = 400 ft-Ib.
(b) The vector r = 8i (ft). The vector F in terms of scalar components is
F = 100 cos60°i + 100sin60° j (1b).
' Therefore the dot product of r and F is
r-¥F=rF +nrF +rF
= (8)(100 cos 60°) + (0)(100sin60°) + (0)(0) = 400 fi-Ib.

(0]

Figure 2.35




62 Charter 2 Vectors

Example 2.14

=
<

Figure 2.36

¥

4.3, 2)m Tap  (6.1.-2)m

(a) The position vectors r 5z and r 4¢.

Using the Dot Product
to Determine an Angle
What is the angle 6 between the lines AB and AC in Fig. 2.36?

Strategy

We know the coordinates of the points A, B, and C, so we can determine the
components of the vector r ,; from A to B and the vector r - from 4 to C
(Fig. a). Then we can use Eq. (2.24) to determine 4.

Solution

The vectors r,z and r 4 are
ra = (6—4)i+ (1 —3)j
rye = (8—4)i+ (8 —3)j

+ (=2 = 2)k = 2i — 2j — 4k (m),
+ (4 = 2)k = 4i + 5j + 2k (m).
Their magnitudes are

ral = V(2P + (=2)* + (-4)} = 490 m,

il = V(42 + (5 + (2) = 671 m.

The dot product of r 5 and r 4 1s
Fag* Tac = (2)(4) + (=2)(5) + (-4)(2) = —10m*.
Therefore

I'AB o I'A(- _ _10
|rABHrAC| (4.90)(6.71)
The angle 6 = arccos(—0.304) = 107.7°.

cos 6§ = = —0.304.

Figure 2.37

|1
LV

£ (6.6,-3)m

Components Parallel
and Normal to a Line

Suppose that you pull on the cable OA in Fig. 2.37, exerting a 50-N force F at
O. What are the components of F parallel and normal to the cable OB?

Strategy

Resolving F into components parallel and normal to OB (Fig. a), we can de-
termine the components by using Eqgs. (2.26) and (2.27). But to apply them,
we must first express F in terms of scalar components and determine the
components of a unit vector parallel to OB. We can obtain the components of




F by determining the components of the unit vector pointing from O toward
A and multiplying them by |F|.

Solution

The position vectors from O to A and from O to B are (Fig. b)
ros = 6i + 6j — 3k (m),
rog = 10i — 2j + 3k (m).

Their magnitudes are |r04| = 9m and |r03| = 10.6 m. Dividing these vectors
by their magnitudes, we obtain unit vectors that point from the origin toward
A and B (Fig. ¢):

l‘OA 61 + 6J _ 3k

€on = = 0.667i + 0.667j — 0.333k,
|"0A| 9
Yop lOl - 2j+ 3k

eop = = 0.94]i + 0.188j — 0.282k.
|rOB| 10.6

The force F in terms of scalar components is
F = |Flegs = (50)(0.667i + 0.667j — 0.333k)
= 33.3i + 33.3j — 16.7k (N).
Taking the dot product of e, and F, we obtain
eos * F = (0.941)(33.3) + (—0.188)(33.3) + (0.282)(—16.7)
= 20.4 N.
The parallel component of F is
F, = (eps - F)egs = (20.4)(0.941i — 0.188j + 0.282k)
= 19.2i — 3.8j + 5.8k (N).
and the normal component is

F,=F — F, = 142i + 37.2j — 22.4k (N).

Discussion

You can confirm that two vectors are perpendicular by making sure their dot
product is zero. In this example,

F,-F, = (192)(142) + (-3.8)(37.2) + (58)(-224) = 0.

2.5 Dot Products

e

(@) The components of F parallel and
normal to OB.

(6 6,-3) m

0,-2,3)m
z

B

{b) The position vectors ry, and rpg.

OA/

&

(c) The unit vectors e;, and egp.
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2.103 Determine the dot product of the vectors
U=8i—6j+4kandV =3i + 7j + 9k.

Strategy: Since the vectors are expressed in terms of their
components, you can use Eq. (2.23) to determine their dot
product.

2.104 Determine the dot product U « V of the vectors
U = 40i + 20j + 60k and V = —30i + 15k.

2.105 What is the dot product of the position vector
r = —-10i + 25j (m) and the force
F = 300i + 250j + 300k (N)?
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2.106 What is the dot product of the position vector r = 4i —
12j — 3k (ft) and the force F = 20i + 30j — 10k (1b)?

2.107 Two perpendicular vectors are given in terms of their
components by U = U,i — 4j + 6kand V = 3i + 2j — 3k.
Use the dot product to determine the component U, .

2.108 The three vectors
U = U,i + 3j + 2k,
V =-3i + Vj + 3k,
W = —2i + 4j + W.k

are mutually perpendicular. Use the dot product to determine the
components U,. V,, and W_.

2.109 The magnitudes |U| = 10 and |V| = 20.
(a) Use the definition of the dot product to determine U - V.
(b) Use Eq. (2.23) to determine U - V.

<
\ass \ P
N

P2.109

2.110 By evaluating the dot product U - V, prove the identity
cos (6, — 6,) = cos b, cosb, + sind, sinb,.

Strategy: Evaluate the dot product both by using the
definition and by using Eq. (2.23).

P2.110

2.111 Use the dot product to determine the angle between the
forestay (cable AB) and the backstay (cable BC) of the sailboat in
Problem 2.41.

2.112 What is the angle 0 between the straight lines AB and AC

y

5
(-4, 5,—4)*

A
7] (8.6, 4) ft
X
: C (6.0.6)f
P2.112

2.113 The ship O measures the positions of the ship A and the
airplane B and obtains the coordinates shown. What is the angle 0
between the lines of sight OA and OB?

(4,4,-4) km

(6,0, 3) km

P2.113

2.114 Astronauts on the space shuttle use radar to determine the
magnitudes and direction cosines of the position vectors of two
satellites A and B. The vector r, from the shuttle to satellite A has
magnitude 2 km and direction cosines cos 8, = 0.768,

cos, = 0.384, cosf, = 0.512. The vector r; from the shuttle to
satellite B has magnitude 4 km and direction cosines

cos, = 0.743, cos 6, = 0.557, cos §. = —0.371. What is the
angle 6 between the vectors r, and rg?



P2.114

2.115 The cable BC exerts an 800-N force F on the bar AB at B.
Use Eq. (2.26) to determine the vector component of F parallel to
the bar.

B (5,6,1)m

C 3,0,4)m
z P2.115

2.116 The force F = 21i + 14j (kN). Resolve it into vector
components parallel and normal to the line OA.

y

A (6,-2,3)m P2.116

: 2.117 At the instant shown, the Harrier’s thrust vector is
T = 3800i + 15,300j — 1800k (Ib), and its velocity vector is
v = 24i + 6j — 2k (ft/s). Resolve T into vector components °

parallel and normal to v. (These are the components of the
airplane’s thrust parallel and normal to the direction of its motion.)
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X

P2.117

2.118 Cables extend from A to B and from A to C. The cable AC
exerts a 1000-1b force F at A.

(a) What is the angle between the cables AB and AC?

(b) Determine the vector component of F parallel to the

cable AB.

(0, 0, 10) ft c

< (14,0, 14) ft P2.118

2.119 Consider the cables AB and AC shown in Problem 2.118.
Let r 45 be the position vector from point A to point B. Determine
the vector component of r 4 parallel to the cable AC.

2.120 The force F = 10i + 12j — 6k (N). Determine the
vector components of F parallel and normal to the line OA.

y

X
(0.6, 4)m\ i

z P2.120
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2.121 The rope AB exerts a 50-N force T on collar A. Determine
the vector component of T parallel to the bar CD.

3

o
K

A5 m

04 m i

P2.121

(g ]

2.122 In Problem 2.121, determine the vector component of T
normal to the bar CD.

2.123 The disk A is at the midpoint of the sloped surface. The
string from A to B exerts a 0.2-1b force F on the disk. If you
resolve F into vector components parallel and normal to the
sloped surface, what is the component normal to the surface?

=

B & (0.6.0) ft

P2.123

2.124 In Problem 2.123, what is the vector component of F
parallel to the surface?

2.125 An astronaut in a maneuvering unit approaches a space
station. At the present instant, the station informs him that his
position relative to the origin of the station's coordinate system is
rg = 50i + 80j + 180k (m) and his velocity isv = —2.2j —
3.6k (m/s).The position of an airlock is r, = —12i + 20k (m).
Determine the angle between his velocity vector and the line from
his position to the airlock’s position.

2.126 In Problem 2.125, determine the vector component of the
astronaut’s velocity parallel to the line from his position to the
airlock’s position.

2.127 Point P is at longitude 30°W and latitude 45°N on the
Atlantic Ocean between Nova Scotia and France. (See Problem
2.90.) Point Q is at longitude 60°E and latitude 20°N in the
Arabian Sea. Use the dot product to determine the shortest
distance along the surface of the earth from P to Q in terms of the
radius of the earth Rg.

Strategy: Use the dot product to determine the angle
between the lines OP and OQ; then use the definition of an
angle in radians to determine the distance along the surface of
the earth from P to Q.

ta

/
Equator -

P2.127
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Like the dot product, the cross product of two vectors has many applications,
including determining the rate of rotation of a fluid particle and calculating
the force exerted on a charged particle by a magnetic field. Because of its
usefulness for determining moments of forces, the cross product is an indis-
pensable tool in mechanics. In this section we show you how to evaluate
cross products and give examples of simple applications.

Definition

Consider two vectors U and V (Fig. 2.38a). The cross product of U and V,
denoted U X V, is defined by

U X V = |U||V|sin@ e. (2.28)

The angle 6 is the angle between U and V when they are placed tail to tail
(Fig. 2.38b). The vector e is a unit vector defined to be perpendicular to both
U and V. Since this leaves two possibilities for the direction of e, the vectors
U, V, and e are defined to be a right-handed system. The right-hand rule for
determining the direction of e is shown in Fig. 2.38c. When you point the
four fingers of your right hand in the direction of the vector U (the first vector
in the cross product) and close your fingers toward the vector V (the second
vector in the cross product), your thumb points in the direction of e.

Because the result of the cross product is a vector, it is sometimes called
the vector product. The units of the cross product are the product of the units
of the two vectors. Notice that the cross product of two nonzero vectors is
equal to zero if and only if the two vectors are parallel.

An interesting property of the cross product is that it is notf commutative.
Eq. (2.28) implies that the magnitude of the vector U X V is equal to the
magnitude of the vector V X U, but the right-hand rule indicates that they are
opposite in direction (Fig. 2.39). That is,

U X V = -V X U. The cross product is nof commutative. (2.29)

The cross product also satisfies the relations
a(U X V) = (aU) X V =U X (aV) Thecross productis (2.30)

associative with
respect to scalar
multiplication.

and
UX (V+ W)= (UXYV)+ (UX W) Thecrossproduct (2.31)

is distributive with
respect to vector
addition.

for any scalar a and vectors U, V, and W.

Cross Products in Terms of Components

To obtain an equation for the cross product of two vectors in terms of their
components, we must determine the cross products formed from the unit vec-
tors i, j, and k. Since the angle between two identical vectors placed tail to
tail is zero,

(a)

(c)

Figure 2.38

(a) The vectors U and V.

(b) The angle 6 between the vectors when
they are placed tail to tail.

(c) Determining the direction of e by the
right-hand rule.

VxU

Figure 2.39
Directions of U X Vand V X U.
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Figure 2.40
The right-hand rule indicates that
ixXj=k

(a)

ixj=k ixk=-j

i k
N

(b)

Figure 2.41

(a) Arrange the unit vectors in a circle with
arrows to indicate their order.

(b) You can use the circle to determine
their cross products.

i X i = [illi| sin(0)e = 0.
The cross producti X jis

i X j = [illj| sin(90)°e = e,

where e is a unit vector perpendicular to i and j. Either e = k or e = —k. Ap-
plying the right-hand rule, we find that e = Kk (Fig. 2.40). Therefore

ixXj=k
Continuing in this way, we obtain
ixXi= 0, ixXj= k iXk=-j
Jj Xi=-k, iXj= 0, JXk= i
kXi= j, k X j=-i, kXk= 0. (2.32)

These results can be remembered easily by arranging the unit vectors in a cir-
cle, as shown in Fig. 2.41a. The cross product of adjacent vectors is equal to
the third vector with a positive sign if the order of the vectors in the cross
product is the order indicated by the arrows and a negative sign otherwise.
For example, in Fig. 2.41b we see thati X j = k, buti X k = —j.

The cross product of two vectors U and V expressed in terms of their
components is

U XV =(Ui+Uj+ Uk) X (Vi+V,j+ V.k)
= UV, (i Xi) + UV,(i X j)+ UV,(i X k)
+UV(§ X 1) + UV X §) + U V.G X k)
+ UV (k X i) + UV (k X j) + U.V.(k X k).
By substituting Eqgs. (2.32) into this expression, we obtain the equation
Ux V=V, - Uy)i- (Y, - UW)i
+(UY, — UV k. (2.33)

This result can be compactly written as the determinant

UXV= (2.34)

< S -
o vg e
u< rQ ~

This equation is based on Egs. (2.32), which we obtained using a right-handed
coordinate system. It gives the correct result for the cross product only if a right-
handed coordinate system is used to determine the components of U and V.

Evaluating a 3 X 3 Determinant

A 3 X 3 determinant can be evaluated by repeating its first two columns as
shown and evaluating the products of the terms along the six diagonal lines.




Adding the terms obtained from the diagonals that run downward to the right
(blue arrows) and subtracting the terms obtained from the diagonals that run
downward to the left (red arrows) gives the value of the determinant:

i j k
U U, U|= UV.i+UV,j+UVk
Vi V, V.| =UV.k-UVi-UV,j

A 3 X 3 determinant can also be evaluated by expressing it as

i j ok

u ul v ul |u u
U Oy U =il L=y ) TRy )
V, vy Vz y z x z x y

The terms on the right are obtained by multiplying each element of the first
row of the 3 X 3 determinant by the 2 X 2 determinant obtained by crossing
out that element’s row and column. For example, the first element of the first
row, i, is multiplied by the 2 X 2 determinant

U,
bV,

Be sure to remember that the second term is subtracted. Expanding the 2 X 2
determinants, we obtain the value of the determinant:

)
U, Uy Uf = vaz - Uzvy)i — (vaz — Uzvx).]
v+, - Uk
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In Chapter 4, when we discuss the moment of a force about a line, we will
use an operation called the mixed triple product, defined by

U- (VX W). (2.35)

' In terms of the scalar components of the vectors,

i j k
U-(VXW)=(Ui+Uj+Uk) |V, V, V
W, W, W,

= (Ui + U,j + UK) - [(WW. - W)

— (VW = VW,)j + (V.W, = VW )K]

= U(VW, = V,W,) = U(V.W, — V.W,)
+U(V.W, — V,W,).
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Figure 2.42
Parallelepiped defined by the vectors U, V,
and W.

This result can be expressed as the determinant

U, U U,
U-(VXW) =V, v, V[ (2.36
Weow, W

Interchanging any two of the vectors in the mixed triple product changes th
sign but not the absolute value of the result. For example,

U (VXW)=-W-(VXU).

If the vectors U, V, and W in Fig. 2.42 form a right-handed system, it
can be shown that the volume of the parallelepiped equals U - (V X W).

\Y

Study Questions

1.  What is the definition of the cross product?

2. If you know the components of two vectors U and V, how can you determine
their cross product?

3. If the cross product of two vectors is zero, what does that mean?

Example 2.16

Cross Product in Terms

of Components

Determine the cross product U X V of the vectors U = -2i + j and
V = 3i — 4k.

Strategy

We can evaluate the cross product of the vectors in two ways: by evaluating
the cross products of their components term by term and by using Eq. (2.34).

Solution
U X V= (=2i+j) X (3i — 4k) g
= (=2)(3)(i X'i) + (=2)(=4)(i X k) + (1)(3)(j X i)
+(1)(=4)( X k)
= (=6)(0) + (8)(=j) + (3)(=k) + (=4)(i)
= —4j — 8j — 3k.



Using Eq. (2.34), we obtain

i j k i kK
UXV=IU, U Ul=]2 1 of=-4i-38j-3k
Vel g Vs Sy AP

X

2.7 Mixed Triple Products
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Calculating the Cross Product

The magnitude of the force F in Fig. 2.43 is 100 1b. The magnitude of the
vector r from point O to point A is 8 ft.

(a) Use the definition of the cross product to determine r X F.

(b) Use Eq. (2.34) to determine r X F.

Strategy

(a) We know the magnitudes of r and F and the angle between them when
they are placed tail to tail. Since both vectors lie in the x-y plane, the unit
vector k is perpendicular to both r and F. We therefore have all the informa-
tion we need to determine r X F directly from the definition.

(b) We can determine the components of r and F and use Eq. (2.34) to deter-
mine r X F.

Solution

(a) Using the definition of the cross product,
r X F = |r|[F|sinfe = (8)(100) sin60° e = 693 e (ft-1b).

Since e is defined to be perpendicular to r and F, either e = k or e = —k.
Pointing the fingers of the right hand in the direction of r and closing them
toward F, the right-hand rule indicates that e = k. Therefore

r X F = 693k (ft-1b).
(b) The vector r = 8i (ft). The vector F in terms of scalar components is
F = 100 cos60° i + 100 sin60° j (Ib).

From Eq. (2.34),

i Jj Kk i J k
R |, 1y | = 8 0 0
Fo b B 100 cos60°  100sin60° 0

(8)(100 cos 60°)k = 693k (ft-Ib).

o
Figure 2.43
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Example 2.18

line OB.

B
(6,6,-3)m
0 X
. A (10,-2,3)m
Figure 2.44
B
Tog
0 x
0A
A\

(a) The vectors r,, and rpp.

(b) The minimum distance d from A to the

Minimum Distance from a Point to a Line

Consider the straight lines OA and OB in Fig. 2.44.

(a) Determine the components of a unit vector that is perpendicular to both
OA and OB.

(b) What is the minimum distance from point A to the line OB?

Strategy

(a) Let ry, and ryp be the position vectors from O to A and from O to B
(Fig. a). Since the cross product ry, X ryp is perpendicular to r,, and r,; we
will determine it and divide it by its magnitude to obtain a unit vector perpen-
dicular to the lines OA and OB.

(b) The minimum distance from A to the line OB is the length d of the straight
line from A to OB that is perpendicular to OB (Fig. b). We can see that
d= |r(,A| sinf, where 6 is the angle between r,, and r,z. From the definition
of the cross product, the magnitude of o, X Tog is [Foal|ros| sind, so we can
determine d by dividing the magnitude of ry, X ryz by the magnitude of ry.

Solution

(a) The components of ry, and r; are
ro, = 10i — 2j + 3k (m),
rog = 6i + 6j — 3k (m).

By using Eq. (2.34), we obtain r, X rgg:

i j kK
roa X rog = [10 =2 3| = —12i + 48j + 72k (m?).
6 6 -3

This vector is perpendicular to r,, and r,,. Dividing it by its magnitude, we
obtain a unit vector e that is perpendicular to the lines OA and OB:

e — —
Iros X tosl  V(=12)2 + (48)® + (72)?
~0.137i + 0.549j + 0.824k.

(b) From Fig. b, the minimum distance d is
d = [rp,| siné.
The magnitude of rp, X rpgis
|r0A X r(,B] = |T0A||l'on| sin#.
Solving this equation for sin 6, the distance d is
I |r0A X r()Bl il |r0A X ros]
d= |r0A’ =

]rOB|

|r0A||TOB|
_ V(-12) + (48)* + (72)?
V(6) + (6)* + (-3)?

=97l m
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Example 2.19

Component of a Vector Perpendicular
to a Plane

The rope CE in Fig. 2.45 exerts a 500-N force T on the door ABCD. What is
the magnitude of the component of T perpendicular to the door?

Strategy

We are given the coordinates of the corners A, B, and C of the door. By tak-
ing the cross product of the position vector rq5 from C to B and the position
vector rq, from C to A, we will obtain a vector that is perpendicular to the
door. We can divide the resulting vector by its magnitude to obtain a unit vec-
tor perpendicular to the door and then apply Eq. (2.26) to determine the com-
ponent of T perpendicular to the door.

Solution

2
(0.4.0.25-0.1) m

The components of r¢z and r, are 002.0)m
A (0.5.0,0) m

reg = 0.35i — 0.2j + 0.2k (m),
req = 0.5i — 0.2j (m).

Their cross product is z

B
(0.35,0,0.2) m

i J k Figure 2.45
reg X Tea = [0.35 =02 0.2 = 0.04i + 0.1j + 0.03k (m?).
05 -02 0

Dividing this vector by its magnitude, we obtain a unit vector e that is perpen-
dicular to the door (Fig. a):

rep X re 0.04i + 0.1j + 0.03k
e — =
res X tesl  V(0.04)2 + (0.1)? + (0.03)?
= 0.358i + 0.894j + 0.268Kk.

To use Eq. (2.26), we must express T in terms of its scalar components. The
position vector from C to E is

Fep = 0.4i 4= 0.0Sj - O.Ik (m),

so we can express the force T as

l‘CE 0.4i A 0.05j — Olk
T = |T| = (500) = = = e
Irce] V(0.4)2 + (0.05)2 + (=0.1)? o
— 481.5i + 60.2j — 120.4k (N). C \
The component of T parallel to the unit vector e, which is the component per- | A .
pendicular to the door, is X
B
T,=(e-T)e= [(0.358)(481.5) + (0.894)(60.2) + (O.268)(—120.4)]e i
= 194e (N).

(@) Determining a unit vector perpendicular
The magnitude of T is 194 N. to the door.
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2.128 Determine the cross product U X V of the vectors
U=8i—6j+4kandV = 3i + 7j + 9k.

Strategy: Since the vectors are expressed in terms of their
components, you can use Eq. (2.34) to determine their cross
product.

2.129 Two vectors U = 3i + 2jand V = 2i + 4j.
(a) What is the cross product U X V?
(b) What is the cross product V X U?

2.130 What is the cross product r X F of the position vector

r = 2i + 2j + 2k (m) and the force F = 20i — 40k (N)?
2.131 Determine the cross product r X F of the position vector
r = 4i — 12j + 3k (m) and the force

F = 16i — 22j — 10k (kN).

2.132 Consider the vectors U = 6i — 2j — 3k and

V = —12i + 4j + 6k.

(a) Determine the cross product U X V.

(b) What can you conclude about U and V from the result of (a)?
2.133 The cross product of two vectors U and V is

U X V = =30i + 40k. The vector V = 4i — 2j + 3k.
Determine the components of U.

2.134 The magnitudes U] = 10 and |V| = 20.

(a) Use the definition of the cross product to determine U X V.
(b) Use the definition of the cross product to determine V X U.
(c) Use Eq. (2.34) to determine U X V.

(d) Use Eq. (2.34) to determine V X U.

¥

30°

X P2.134

2.135 The force F = 10i — 4j (N). Determine the cross product
r,; X F.
y

(6.3.0)m

P2.135

2.136 By evaluating the cross product U X V, prove the identit
sin(f), = 92) = sinf, cos§, — cos b, sinb,.

y

x P2.136

2.137 Use the cross product to determine the components of a
unit vector e that is normal to both of the vectors U = 8i —
6j + 4kand V = 3i + 7j + 9k.

2.138 (a) What is the cross product ro, X rgg?
(b) Determine a unit vector e that is perpendicular to rp, and re.

y

B (4,4,-4)m

OB

04
A(6,-2,3

: e PR

2.139 For the points O, A, and B in Problem 2.138, use the cross

product to determine the length of the shortest straight line from

point B to the straight line that passes through points O and A.

2.140 The cable BC exerts a 1000-1b force F on the hook at B.
Determine ryz X F.

—X

3 P2.140



2.141 The cable BC shown in Problem 2.140 exerts a 300-1b
force F on the hook at B.

(a) Determine ryz X Fand r,r X F.

(b) Use the definition of the cross product to explain why the
results of (a) are equal.

2.142 The rope AB exerts a 50-N force T on the collar at A. Let
I'c4 be the position vector from point C to point A. Determine the
cross product re4 X T.

P2.142

2.143 In Problem 2.142, let r¢j be the position vector from point
C to point B. Determine the cross product rez X T and compare
your answer to the answer to Problem 2.142.

2.144 The bar AB is 6 m long and is perpendicular to the bars
AC and AD. Use the cross product to determine the coordinates
Xg, ¥g, 2y of point B.

4,0,00m ~
4 P2.144

2.145 Determine the minimum distance from point P to the
plane defined by the three points A, B. and C.
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L]
(9,6,5) m

(0.0.4) m
z P2.145

2.146 Consider vectors U = 3i — 10j, V = —6j + 2Kk, and
W =2i + 6j — 4k.

(a) Determine the value of the mixed triple product

U (V X W) by first evaluating the cross product V. X W and
then taking the dot product of the result with the vector U.

(b) Determine the value of the mixed triple product

U - (V X W) by vsing Eq. (2.36).

2.147 For the vectors U = 6i + 2j — 4k, V = 2i + 7j, and
W = 3i + 2k, evaluate the following mixed triple products:
(AU - (VXW);((b)W: - (VXU)E)V-(WXU).

2.148 Use the mixed triple product to calculate the volume of
the parallelepiped.

(140, 90, 30) mm

(200, 0. 0) mm

(160, 0. 100) mm

(&}

P2.148
2.149 By using Egs. (2.23) and (2.34). show that
U U U
U-(VXW)= 1V, V, V][
W,oW, W
2.150 The vectors U =i + U_\.j + 4k, V = 2i + j — 2k, and
W = —3i + j — 2k are coplanar (they lie in the same plane).

What is the component U, ?
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Chapter Summary

U+V

(b)

‘7

(d)

In this chapter we have defined scalars, vectors, and vector operations. We
showed how to express vectors in terms of cartesian components and carry
out vector operations in terms of components. We introduced the definitions
of the dot and cross products and the mixed triple product and demonstrated
some applications of these operations, particularly the use of the dot product
to resolve a vector into components paralle] and perpendicular to a given di-
rection. In Chapter 3 we will use vector operations to analyze forces acting on
objects in equilibrium.

A physical quantity completely described by a real number is a scalar. A
vector has both magnitude and direction. A vector is represented graphically
by an arrow whose length is defined to be proportional to its magnitude.

Rules for Manipulating Vectors

The sum of two vectors is defined by the triangle rule (Fig. a) or the equiva-
lent parallelogram rule (Fig. b).

The product of a scalar a and a vector U is a vector aU with magnitude
|a||U|. Its direction is the same as U when a is positive and opposite to U
when a is negative. The product (—1)U is written —U and is called the nega-
tive of U. The division of U by a is the product (1/a)U.

A unit vector is a vector whose magnitude s 1. A unit vector specifies a
direction. Any vector U can be expressed as |Ule, where e is a unit vector
with the same direction as U. Dividing any vector by its magnitude yields a
unit vector with the same direction as the vector.

Cartesian Components
A vector U is expressed in terms of scalar components as
U=Ui+Uj+ Uk Eq@1)

(Fig. ¢). The coordinate system is right-handed (Fig. d): If the fingers of the
right hand are pointed in the positive x direction and then closed toward the
positive y direction, the thumb points in the z direction. The magnitude of U is

Ul = VU + Ul + U2, Eq.19)

Let 6,. 6,, and 6, be the angles between U and the positive coordinate
axes (Fig. e). Then the scalar components of U are

U, = |Ulcosb,, U, = |Ulcosb,, U. = |Ulcosf., Eq.(2.15)

The quantities cos §,. cosf,, and cos 6. are the direction cosines of U. They
satisfy the relation

cos’f, + cos’f, + cos’f. = 1. Eq.(2.16)

The position vector r 45 from a point A with coordinates (xA, YA, zA) to a
point B with coordinates (x,;. Vg :B) is given by

Fap = (xlf - ~"A)i aE (."B 3 )'A)j + (ZB - ZA)k- Eq. (2.17)



Dot Products
The dot product of two vectors U and V is
U-V = |U|V|cosh, Eq.(2.18)

where 6 is the angle between the vectors when they are placed tail to tail. The
dot product of two nonzero vectors is equal to zero if and only if the two vec-
tors are perpendicular.

In terms of scalar components,

U-V=UV, +UYV, +UV. Eq@223)

A vector U can be resolved into vector components U, and U, parallel
and normal to a straight line L. In terms of a unit vector e that is parallel to L,

U, = (e-U)e. Eq.(226)
and

U,=U-U, Eq@27

Cross Products
The cross product of two vectors U and V is
U X V = |U||V|sinfe, Eq.(2.28)

where 6 is the angle between the vectors U and V when they are placed tail to
tail and e is a unit vector perpendicular to U and V. The direction of e is speci-
fied by the right-hand rule: When the fingers of the right hand are pointed in
the direction of U (the first vector in the cross product) and closed toward V
(the second vector in the cross product), the thumb points in the direction of e.
The cross product of two nonzero vectors is equal to zero if and only if the two
vectors are parallel.
In terms of scalar components,

i j k
UXV=|U U U| Eq@3
V. v, V.

-

Mixed Triple Products
The mixed triple product is the operation
U- (VX W). Eq.(235
In terms of scalar components,
U. U

U.
U (VXW)=|V, V V.| Eq@236
W, W, W

nt
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Review Problems

2.151 The magnitude of F is 8 kN. Express F in terms of scalar
components.

(3.7)m

X P2.151

2.152 The magnitude of the vertical force W is 600 Ib, and the
magnitude of the force B is 1500 Ib. Giventhat A + B + W = 0,
determine the magnitude of the force A and the angle a.

P2.152

2.153 The magnitude of the vertical force vector A is 200 Ib. If
A + B + C = 0, what are the magnitudes of the force vectors B
and C?

— 100 1n. 3 -

\§E

e
D

!

P2.153

2.154 The magnitude of the horizontal force vector D in
Problem 2.153is 280 1b. If D + E + F = 0, what are the
magnitudes of the force vectors E and F?

Refer to the following diagram when solving Problems 2.155
through 2.160.

3

F =20i + 10j - 10k (Ib)
A
(4.4.2)ft
B (8,1, -2)ft
X
o P2.155-P2.160

2.155 What are the direction cosines of F?

2.156 Determine the scalar components of a unit vector parallel
to line AB that points from A toward B.

2.157 What is the angle 6 between the line AB and the force F?

2.158 Determine the vector component of F that is parallel to
the line AB.

2.159 Determine the vector component of F that is normal to the
line AB.

2.160 Determine the vector rgz, X F, where ry, is the position
vector from B to A.

2.161 (a) Write the position vector r,, from point A to point B
in terms of scalar components.

(b) The vector F has magnitude [F| = 200 N and is parallel to the
line from A to B. Write F in terms of scalar components.

2.162 The rope exerts a force of magnitude [F| = 200 b on the
top of the pole at B.

(a) Determine the vector r,; X F, where r, is the position
vector from A to B.

(b) Determine the vector ry- X F, where r . is the position
vector from A to C.

B (5.6,1)ft

e
é C (3.0.4fi
€ P2.162



2.163 The magnitude of Fzis 400 N and |FA A FB| = 900 N.
Determine the components of F,.

P2.163

2.164 Suppose that the forces F 4 and F shown in Problem
2.163 have the same magnitude and F, - F; = 600 N?. What are
F,and Fy?

2.165 The magnitude of the force vector Fj is 2 kN. Express it
in terms of scalar components.

B~ (5.0,3)m

P2.165

2.166 The magnitude of the vertical force vector F in Problem
2.165 is 6 kN. Determine the vector components of F parallel and
normal to the line from B to D.

2.167 The magnitude of the vertical force vector F in Problem
2.165is 6 kN. Given that F + F, + Fgz + F. = 0, what are the
magnitudes of F,, Fgz, and F.?

2.168 The magnitude of the vertical force W is 160 N. The
direction cosines of the position vector from A to B are

cosf, = 0.500, cosf, = 0.866, and cos @, = 0, and the direction
cosines of the posilioh vector from B to C are cos 6, = 0.707,
cos6, = 0.619, and cos 6. = —0.342. Point G is the midpoint of
the line from B to C. Determine the vector r,; X W, where r 4 is
the position vector from A to G.
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P2.168

2.169 The rope CE exerts a S00-N force T on the door ABCD.
Determine the vector component of T in the direction parallel to
the line from point A to point B.

B
(0.4,0.25,-0.1) m
A (0.5,0,0) m

0,020)m

(0.35,0,0.2) m
z P2.169

2.170 In Problem 2.169, let rgc be the position vector from point
B to point C. Determine the cross product rg- X T.

2.171 In Problem 2.169, let ry be the position vector from point
B to point C, and let e be a unit vector that points from point A
toward point B. Evaluate the mixed triple product

eAB 9 (I'BC X T).

(/) 2172 A structural engineer determines that the truss in Problem

2.10 will safely support the force F if the magnitudes of the vector
components of F parallel to the bars do not exceed 20 kN. Based
on this criterion, what is the largest safe magnitude of F?









The gravitational force on the climber is balanced
by the forces exerted by the rope suspending him.
In this chapter we use free-body diagrams to analyze
forces on objects in equilibrium.




C H A P T E R

n Chapter 2 we represented forces by vectors and used vector addition to

sum forces. In this chapter we discuss forces in more detail and introduce
two of the most important concepts in mechanics, equilibrium and the
free-body diagram. We will use free-body diagrams to identify the forces on

objects and use equilibrium to determine unknown forces.
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BEER Types of Forces

e
e

//\ Line of
action

of F

e
e
e
e

Figure 3.1
A force F and its line of action.

Figure 3.2
(a) Concurrent forces.
(b) Parallel forces.

Figure 3.3
Representing an object’s weight by a
vector.

Force is a familiar concept, as is evident from the words push, pull, and lift
used in everyday conversation. In engineering we deal with different types of
forces having a large range of magnitudes. In this section we introduce some
terms used to describe forces and discuss particular forces that occur fre-
quently in engineering applications.

Terminology .

Line of Action When a force is represented by a vector, the straight line
collinear with the vector is called the line of action of the force (Fig. 3.1).

Systems of Forces A system of forces is simply a particular set of forces.
A system of forces is coplanar, or two-dimensional, if the lines of action of
the forces lie in a plane. Otherwise it is three-dimensional. A system of forces
is concurrent if the lines of action of the forces intersect at a point (Fig. 3.2a)
and parallel if the lines of action are parallel (Fig. 3.2b).

\/

/i

(a) (b)

External and Internal Forces We say that a given object is subjected to an
external force if the force is exerted by a different object. When one part of a
given object is subjected to a force by another part of the same object, we say it
is subjected to an internal force. These definitions require that you clearly de-
fine the object you are considering. For example, suppose that you are the ob-
ject. When you are standing, the floor—a different object——exerts an external
force on your feet. If you press your hands together, your left hand exerts an in-
ternal force on your right hand. However, if your right hand is the object you
are considering, the force exerted by your left hand is an external force.

Body and Surface Forces A force acting on an object is called a body
force if it acts on the volume of the object and a surface force if it acts on its
surface. The gravitational force on an object is a body force. A surface force
can be exerted on an object by contact with another object. Both body and
surface forces can result from electromagnetic effects.

Gravitational Forces

You are aware of the force exerted on an object by the earth’s gravity when-
ever you pick up something heavy. We can represent the gravitational force,
or weight, of an object by a vector (Fig. 3.3).




The magnitude of an object’s weight is related to its mass m by
|W| = mg,

where g is the acceleration due to gravity at sea level. We will use the values
g = 9.81 m/s in SI units and g = 32.2 ft/s? in U.S. Customary units.

Gravitational forces, and also electromagnetic forces, act at a distance.
The objects they act on are not necessarily in contact with the objects exerting
the forces. In the next section we discuss forces resulting from contacts be-
tween objects.

Contact Forces

Contact forces are the forces that result from contacts between objects. For
example, you exert a contact force when you push on a wall (Fig. 3.4a). The
surface of your hand exerts a force on the surface of the wall that can be rep-
resented by a vector F (Fig. 3.4b). The wall exerts an equal and opposite
force —F on your hand (Fig. 3.4c). (Recall Newton’s third law: The forces ex-
erted on each other by any two particles are equal in magnitude and opposite
in direction. If you have any doubt that the wall exerts a force on your hand,
try pushing on the wall while standing on roller skates.)

(c)

We will be concerned with contact forces exerted on objects by contact
with the surfaces of other objects and by ropes, cables, and springs.

Surfaces Consider two plane surfaces in contact (Fig. 3.5a). We represent
the force exerted on the right surface by the left surface by the vector F in
Fig. 3.5(b). We can resolve F into a component N that is normal to the surface
and a component f that is parallel to the surface (Fig. 3.5¢). The component N
is called the normal force, and the component f is called the friction force. We
sometimes assume that the friction force between two surfaces is negligible
in comparison to the normal force, a condition we describe by saying that the
surfaces are smooth. In this case we show only the normal force (Fig. 3.5d).
When the friction force cannot be neglected, we say the surfaces are rough.

-

(a) (b) (c) d)
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Figure 3.4

(a) Exerting a contact force on a wall by
pushing on it.

(b) The vector F represents the force you
exert on the wall.

(c) The wall exerts a force —F on your
hand.

Figure 3.5

(a) Two plane surfaces in contact.

(b) The force F exerted on the right
surface.

(c) The force F resolved into components
normal and parallel to the surface.

(d) Only the normal force is shown when
friction is neglected.
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Figure 3.6

(a) Curved contacting surfaces. The dashed
line indicates the plane tangent to the
surfaces at their point of contact.

(b) The normal force and friction force on
the right surface.

If the contacting surfaces are curved (Fig. 3.6a), the normal force and th
friction force are perpendicular and parallel to the plane tangent to the sur
faces at their point of contact (Fig. 3.6b).

(b)

Ropes and Cables You can exert a contact force on an object by attachin
arope or cable to the object and pulling on it. In Fig. 3.7a, the crane’s cable is
attached to a container of building materials. We can represent the force the
cable exerts on the container by a vector T (Fig. 3.7b). The magnitude of T is
called the tension in the cable, and the line of action of T is collinear with the
cable. The cable exerts an equal and opposite force —T on the crane
(Fig. 3.7¢).

(a)

Figure 3.7

(a) A crane with its cable attached to a container.
(b) The force T exerted on the container by the cable.
(c) The force —T exerted on the crane by the cable. ()

Notice that we have assumed that the cable is straight and that the ten-
sion where the cable is connected to the container equals the tension near the
crane. This is approximately true if the weight of the cable is small compared
to the tension. Otherwise, the cable will sag significantly and the tension will
vary along its length. In Chapter 9 we will discuss ropes and cables whose
weights are not small in comparison to their tensions. For now, you should as-
sume that ropes and cables are straight and that their tensions are constant
along their lengths.
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A pulley is a wheel with a grooved rim that can be used to change the di-
rection of a rope or cable (Fig. 3.8a). For now, we assume that the tension is
the same on both sides of a pulley (Fig. 3.8b). This is true, or at least approxi-
mately true, when the pulley can turn freely and the rope or cable either is
stationary or turns the pulley at a constant rate.

=

Figure 3.8

(a) A pulley changes the direction of a rope
or cable.

(b) For now, you should assume that the
tensions on each side of the pulley are

(a) (b) equal.

Springs Springs are used to exert contact forces in mechanical devices, for
example, in the suspensions of cars (Fig. 3.9). Let’s consider a coil spring
whose unstretched length, the length of the spring when its ends are free, is
Ly (Fig. 3.10a). When the spring is stretched to a length L greater than L,
(Fig. 3.10b), it pulls on the object to which it is attached with a force F
(Fig. 3.10c). The object exerts an equal and opposite force —F on the spring
(Fig. 3.10d).

Coil spring ~__

I

el VAVAVAVAVAVZ.

Shock absorber

0 i

Figure 3.9 ©

Coil springs in car suspensions. The arrangement on the right is called a
MacPherson strut.

When the spring is compressed to a length L less than L, (Figs. 3.11a, b), (@)
the spring pushes on the object with a force F and the object exerts an equal Figure 3.10
and opposite force —F on the spring (Figs. 3.11c, d). If a spring is compressed (a) A spring of unstretched length L;.
too much, it may buckle (Fig. 3.11e). A spring designed to exert a force by  (b) The spring stretched to a length
being compressed is often provided with lateral support to prevent buckling. L > L.
for example, by enclosing it in a cylindrical sleeve. In the car suspensions (€. d) The force F exerted by the spring
shown in Fig. 3.9, the shock absorbers within the coils prevent the springs and the force —F on the spring.
from buckling.
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L L() 1

(d)

(e)

Figure 3.11

(a) A spring of length L.

(b) The spring compressed to a length
L <L,

(c, d) The spring pushes on an object
with a force F, and the object exerts a
force —F on the spring.

(e) A coil spring will buckle if it is
compressed too much.

[Fl

|L— Ly

Figure 3.12
The graph of the force exerted by a linear
spring as a function of its stretch or

compression 1s a straight line with slope k.

The magnitude of the force exerted by a spring depends on the material it
is made of, its design, and how much it is stretched or compressed relative to
its unstretched length. When the change in length is not too large compared to
the unstretched length, the coil springs commonly used in mechanical devices
exert a force approximately proportional to the change in length:

IF| = k|L ~ Lg|- (3.1)

Because the force is a linear function of the change in length (Fig. 3.12), a
spring that satisfies this relation is called a linear spring. The value of the
spring constant k depends on the material and design of the spring. Its dimen-
sions are (force)/(length). Notice from Eq. (3.1) that k equals the magnitude
of the force required to stretch or compress the spring a unit of length.

Suppose that the unstretched length of a spring is Ly = 1 m and k =
3000 N/m. If the spring is stretched to a length L = 1.2 m, the magnitude of
the pull it exerts is

k|L — Lo| = 3000(1.2 — 1) = 600 N.

Although coil springs are commonly used in mechanical devices, we are
also interested in them for a different reason. Springs can be used to model
situations in which forces depend on displacements. For example, the force
necessary to bend the steel beam in Fig. 3.13a is a linear function of the
displacement 8,

IF| = k8.

if & is not too large. Therefore we can model the force-deflection behavior of
the beam with a linear spring (Fig. 3.13b).

Study Questions

What is a two-dimensional system of forces?

What are internal and external forces?

If a surface is said to be smooth, what does that mean?

What is the relation between the magnitude of the force exerted by a linear
spring and the change in its length?

0 B0 5

b

Figure 3.13

(a) A steel beam deflected by a force.
(b) Modeling the beam’s behavior with a
(a) linear spring.
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Statics is the study of objects in equilibrium. In everyday conversation, equi-
librium means an unchanging state—a state of balance. Before we explain
precisely what this term means in mechanics, let’'s consider some examples.
Pieces of furniture sitting at rest in a room and a person standing stationary in
the room are in equilibrium. If a train travels at constant speed on a straight
track, objects that are at rest relative to the train, such as a person standing in
the aisle, are in equilibrium (Fig. 3.14a). The person standing in the room and
the person standing in the aisle of the train are not accelerating. If the train
should start to increase or decrease its speed, however, the person standing in
the aisle would no longer be in equilibrium and might lose his balance
(Fig. 3.14b).

We say that an object is in equilibrium only if each point of the object
has the same constant velocity, which is referred to as steady translation. The
velocity must be measured relative to a frame of reference in which Newton's
laws are valid, which is called an inertial reference frame. In most engineer-
ing applications, the velocity can be measured relative to the earth.

The vector sum of the external forces acting on an object in equilibrium
is zero. We will use the symbol 2F to denote the sum of the external forces.
Thus when an object is in equilibrium,

ZF=0. (3.2)

In some situations we can use this equilibrium equation to determine un-
known forces acting on an object in equilibrium. The first step will be to draw
a free-body diagram of the object to identify the external forces acting on it.
The free-body diagram is an essential tool in mechanics. It focuses attention
on the object of interest and helps identify the external forces acting on it. Al-
though in statics we will be concerned only with objects in equilibrium, free-
body diagrams are also used in dynamics to analyze the motions of objects.

The free-body diagram is a simple concept. It is a drawing of an object
and the external forces acting on it. Otherwise. nothing other than the object
of interest is included. The drawing shows the object isolated, or freed, from
its surroundings. Drawing a free-body diagram involves three steps:

1. Identify the object you want to isolate. As the following examples show,
your choice is often dictated by particular forces you want to determine.

2. Draw a sketch of the object isolated from its surroundings, and show
relevant dimensions and angles. Your drawing should be reasonably
accurate, but it can omit irrelevant details.

3. Draw vectors representing all of the external forces acting on the
isolated object, and label them. Don’t forget to include the gravitational
force if you are not intentionally neglecting it.

You will also need to choose a coordinate system so that you can express
the forces on the isolated object in terms of components. Often you will find
it convenient to choose the coordinate system before drawing the free-body
diagram, but in some situations the best choice of coordinate system will not
be apparent until after you have drawn it.

(b)

Figure 3.14

(a) While the train moves at a constant
speed, a person standing in the aisle is
in equilibrium.

(b) If the train starts to speed up, the
person is no longer in equilibrium.
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Figure 3.15
Stationary blocks suspended by cables.

Figure 3.16

(a) Isolating the lower block and part of
cable AB.

(b) Indicating the external forces completes
the free-body diagram.

(¢) Introducing a coordinate system.

A simple example demonstrates how you can choose free-body diagrams
to determine particular forces and also that you must distinguish carefully be-
tween external and internal forces. Two stationary blocks of equal weight W
are suspended by cables in Fig. 3.15. The system is in equilibrium. Suppos
that we want to determine the tensions in the two cables.

To determine the tension’in cable AB. we first isolate an “object” consist-
ing of the lower block and part of cable AB (Fig. 3.16a). We then ask our-
selves what forces can be exerted on our isolated object by objects not
included in the diagram. The earth exerts a gravitational force of magnitude
W on the block. Also, where we “cut” cable AB, the cable is subjected to a
contact force equal to the tension in the cable (Fig. 3.16b). The arrows in this
figure indicate the directions of the forces. The scalar W is the weight of the
block and T,z is the tension in cable AB. We assume that the weight of the
part of cable AB included in the free-body diagram can be neglected in com-
parison to the weight of the block.

Since the free-body diagram is in equilibrium, the sum of the external
forces equals zero. In terms of a coordinate system with the y axis upward
(Fig. 3.16¢), we obtain the equilibrium equation

ZF =Tu) - W)= (TAB N W)J -

Thus the tension in cable ABis T,z = W.

\Y

‘ ?W ?W

(a) (b) (c)

We can determine the tension in cable CD by isolating the upper block
(Fig. 3.17a). The external forces are the weight of the upper block and the
tensions in the two cables (Fig. 3.17b). In this case we obtain the equilibrium
equation

SF = Tepj = Tapd = Wi = (Tep = Tap = W)j = 0.
Since T,z = W, we find that 7;;, = 2W.
We could also have determined the tension in cable CD by treating the

two blocks and the cable AB as a single object (Figs. 3.18a, b). The equilibri-

um equation is
SFE=Tpj— Wj— Wj= (T — 2W)j = 0,

and we again obtain T, = 2W.
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(a) (b)

Why doesn’t the tension in cable AB appear on the free-body diagram in
Fig. 3.18b? Remember that only external forces are shown on free-body dia-
grams. Since cable AB is part of the free-body diagram in this case, the forces
it exerts on the upper and lower blocks are internal forces.

We have described the procedure for drawing free-body diagrams. In the
next section we will draw free-body diagrams of objects subjected to two-di-
mensional systems of forces and use them to determine unknown forces act-
ing on objects in equilibrium.

m Two-Dimensional Force Systems
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Figure 3.17

(a) Isolating the upper block to determine
the tension in cable CD.

(b) Free-body diagram of the upper block.

Figure 3.18

(a) An alternative choice for determining
the tension in cable CD.

(b) Free-body diagram including both
blocks and cable AB.

Suppose that the system of external forces acting on an object in equilibrium
is two-dimensional (coplanar). By orienting a coordinate system so that the
forces lie in the x-y plane, we can express the sum of the external forces as

SF=(ZF)i+(ZFR)j=0,
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where X F, and X F; are the sums of the x and y components of the forces.
Since a vector is zero only if each of its components is zero, we obtain two
scalar equilibrium equations:

SF,=0, XF=0. (3.3)

The sums of the x and y components of the external forces acting on an object
in equilibrium must each equal zero.

Study Questions

1. What do you know about the sum of the external forces acting on an object in
equilibrium?

2. Is a free-body diagram only useful when an object is in equilibrium?

3. What are the steps in drawing a free-body diagram?

Example 3.1

(a) Isolating the car.

mg

N

(b) The completed free-body diagram
shows the known and unknown external
forces.

Using Equilibrium to Determine
Forces on an Object

For display at an automobile show, the 1440-kg car in Fig. 3.19 is held in
place on the inclined surface by the horizontal cable from A to B. Determine
the tension that the cable (and the fixture to which it is connected at B) must
support. The car’s brakes are not engaged, so the tires exert only normal
forces on the inclined surface.

Figure 3.19

Strategy

Since the car is in equilibrium, we can draw its free-body diagram and use
Eqgs. (3.3) to determine the forces exerted on the car by the cable and the in-
clined surface.

Solution

Draw the Free-Body Diagram We first draw a diagram of the car isolated
from its surrounding (Fig. a) and then complete the free-body diagram by
showing the force exerted by the car’s weight, the force T exerted by the
cable, and the normal force N exerted by the inclined surface (Fig. b).




Apply the Equilibrium Equations In Fig. ¢, we introduce a coordinate
system and resolve the normal force into x and y components. The equilibri-
um equations are

2F =T — Nsin20° = 0,
2 F, = Ncos20° — mg = 0.
We can solve the second equilibrium equation for N,

mg (1440)(9.81)
— -— — l .
c0s 20° cos 20° SOKN,

and then solve the first equilibrium equation for the tension T':

T = Nsin20° = 5.14 kN.
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" N sin20°
mmaen

|
I
|
mg |
L
|

N cos20 — >y

A

(¢) Introducing a coordinate system and
resolving N into its components.

Choosing a Free-Body Diagram

The automobile engine block in Fig. 3.20 is suspended by a system of cables.
The mass of the block is 200 kg. What are the tensions in cables AB and AC?

Strategy

We need a free-body diagram that is subjected to the forces we want to deter-
mine. By isolating part of the cable system near point A where the cables are
joined, we can obtain a free-body diagram that is subjected to the weight of
the block and the unknown tensions in cables AB and AC.

Solution

Draw the Free-Body Diagram [solating part of the cable system near
point A (Fig. a), we obtain a free-body diagram subjected to the weight of the
block W = mg = (200 kg)(9.81 m/s*) = 1962 N and the tensions in cables
AB and AC (Fig. b).

Apply the Equilibrium Equations We select the coordinate system shown
in Fig. ¢ and resolve the cable tensions into x and y components. The result-
ing equilibrium equations are

2 F, = Ty-cosd5° — T,zcos60° = 0,
2 F, = Tycsind5° + T,psin60° — 1962 = 0.

Solving these equations, we find that the tensions in the cables are
T,; = 1436 Nand T, = 1016 N.

Alternative Solution: We can determine the tensions in the cables in anoth-
er way that will also help you visualize the conditions for equilibrium. Since
the sum of the three forces acting on our free-body diagram is zero, the vectors
form a closed polygon when placed-head to tail (Fig. d). You can see that the

Figure 3.20
B Q‘Q“ f"“} C Y; /TAC
A \45°

4

\ 60\ /

Y| — \;{
i i

L

(a) Isolating part of the cable system.
{b) The completed free-body diagram.
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AC

/

W

(c) Selecting a coordinate system and
resolving the forces into components.

g

~ 45C

W=1962 N
UTAN 30°

(d) The triangle formed by the sum of the
three forces.

sum of the vertical components of the tensions supports the weight and that t
horizontal components of the tensions must balance each other. The angle
the triangle opposite the weight W is 180° — 30° — 45° = 105°. By applyin
the law of sines,

sin45°  sin30°  sin105°

Tis T 1962
we obtain T,z = 1436 N and 7, = 1016 N.

Discussion

How were we able to choose a free-body diagram that permitted us to deter-
mine the unknown tensions in the cables? There are no definite rules f
choosing free-body diagrams. You will learn what to do in many cases fro
the examples we present. but you will also encounter new situations. It may
be necessary to try several free-body diagrams before finding one that pro-,.
vides the information you need. Remember that forces you want to determine
should appear as external forces on your free-body diagram. and your objec-
tive is to obtain a number of equilibrium equations equal to the number of un
known forces.

Applying Equilibrium to a System of
Pulleys

The mass of each pulley of the system in Fig. 3.21 is m. and the mass of the
suspended object A is m,. Determine the force T necessary for the system to
be in equilibrium.

=

R X

) f— e O

Figure 3.21




|

Strategy

By drawing free-body diagrams of the individual pulleys and applying equilib-
rium, we can relate the force T to the weights of the pulleys and the object A.
Solution

We first draw a free-body diagram of the pulley C to which the force T is ap-
plied (Fig. a). Notice that we assume the tension in the cable supported by the
pulley to equal 7 on both sides (see Fig. 3.8). From the equilibrium equation

T,— T —T — mg =0,
we determine that the tension in the cable supported by pulley D is
T, = 2T + mg.

We now know the tensions in the cables extending from pulleys C and D to
pulley B in terms of 7. Drawing the free-body diagram of pulley B (Fig. b),
we obtain the equilibrium equation

T+T+2T +mg —mg —mug =0.
Solving, we obtain T = m,g/4.

3.3 Equilibrium and Free-Body Diagrams

(a) Free-body diagram of pulley C.
(b) Free-body diagram of pulley B.
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Example 3.4

Application to Engineering:
Steady Flight

Figure 3.22 shows an airplane flying in the vertical plane and its free-body di-
agram. The forces acting on the airplane are its weight W, the thrust 7" exerted
by its engines, and aerodynamic forces. The dashed line indicates the path
along which the airplane is moving. The aerodynamic forces are resolved into
a component perpendicular to the path, the lift L, and a component parallel to

Figure 3.22
External forces on an airplane in flight.
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the path, the drag D. The angle vy between the horizontal and the path is
called the flight path angle, and « is the angle of attack. If the airplane re
mains in equilibrium for an interval of time, it is said to be in steady flight. I
vy = 6° D = 125 kN, L = 680 kN, and the mass of the airplane is 72 M
(megagrams), what values of T and « are necessary to maintain steady flight?

~

Solution :

In terms of the coordinate system in Fig. 3.22, the equilibrium equations are
2F, =Tcosa — D — Wsiny =0, (3.4)
2F =Tsina+ L — Wcosy =0. (3.5)

We solve Eq. (3.5) for sin a, solve Eq. (3.4) for cos a, and divide to obtain an
equation for tan a:

sine  Wcosy — L
cosa Wsiny + D
(72.000)(9.81) cos 6° — 680,000
(72,000)(9.81) sin6° + 125000

The angle of attack a@ = arctan(0.113) = 6.44°. Now we use Eq. (3.4) to de-
termine the thrust:

- Wsiny + D _ (72,000)(9.81) sin6° + 125,000
a cos & a cos 6.44°

= 200,000 N.

Notice that the thrust necessary for steady flight is 28% of the airplane’s
weight.

..(J/‘esign Issues

In the examples we have considered so far, the values of certain forces acting
on an object in equilibrium were given, and our goal was simply to determine
the unknown forces by setting the sum of the forces equal to zero. In many
situations in engineering, an object in equilibrium is subjected to forces that
have different values under different conditions, and this has a profound ef-
fect on its design.

When an airplane cruises at constant altitude (y = 0), Egs. (3.4) and
(3.5) reduce to

T cosa D,

Tsina + L =W.

The horizontal component of the thrust must equal the drag, and the sum of
the vertical component of the thrust and the lift must equal the weight. For a
fixed value of a, the lift and drag increase as the speed of the airplane in-
creases. A principal design concern is to minimize D at cruising speed in
order to minimize the thrust (and consequently the fuel consumption) needed
to satisfy the first equilibrium equation. Much of the research on airplane de-
sign, including both theoretical analyses and model tests in wind tunnels
(Fig. 3.23), is devoted to developing airplane shapes that minimize drag.
When an airplane cruises at low speed, satisfying the second equilibrium
equation has the most serious implications for design. The airplane’s wings




Figure 3.23
Wind tunnels are used to measure the aerodynamic forces on airplane models.

must generate sufficient lift to balance its weight. This requirement is espe-
cially difficult to achieve in fast airplanes, because wings designed for low
drag at high velocities do not generate as much lift at low speeds as wings
that are designed for flight at lower velocities. For example, the F-15 in
Fig. 3.24 must fly with a relatively large angle of attack (which increases both
the lift and the vertical component of the thrust) in comparison to the refuel-
ing plane. In the case of the F-14 (Fig. 3.25), the engineers obtained both low
drag at high velocities and good lift characteristics at low velocities by using
variable sweep wings.
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Figure 3.24
An F-15 being refueled by a KC-135 refueling plane.

Figure 3.25

An F-14 with its wings in the takeoff and
landing configuration and in the high-speed
configuration.

3.1 The figure shows the external forces acting on an object in 3.2 The force F; = 100 N and the angle & = 60°. The weight of
equilibrium. The forces F; = 32 N and F; = 50 N. Determine F, the ring is negligible. Determine the forces F, and F;.

and the angle a.

30°

2 I

- P3.1

¥

P3.2
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3.3 Consider the forces shown in Problem 3.2. Suppose that F, =
100 N and you want to choose the angle a so that the magnitude
of Fyis a minimum. What is the resulting magnitude of F3?

Strategy: Draw a vector diagram of the sum of the three
forces.

3.4 The beam is in equilibrium. If A, = 77 kN, B = 400 kN, and
the beam’s weight is negligible. what are the forces A, and C?

il

——p
A 4

53

A v5 e

C

P3.4

3.5 Suppose that the mass of the beam shown in Problem 3.4 is
20 kg and it is in equilibrium. The force A, points upward. If
A, = 258 kN and B = 240 kN, what are the forces A, and C?

3.6 A zoologist estimates that the jaw of a predator, Martes, is
subjected to a force P as large as 800 N. What forces T and M
must be exerted by the temporalis and masseter muscles to sup-
port this value of P?

P3.6

3.7 The two springs are identical, with unstretched lengths
250 mm and spring constants k = 1200 N/m.

{
300 mm
R B

————
|

280|mm

S

P3.7

(a) Draw the free-body diagram of block A.
(b) Draw the free-body diagram of block B.
(c) What are the masses of the two blocks?

3.8 The two springs in Problem 3.7 are identical, with
unstretched lengths 250 mm and spring constants k. The sum of
the masses of blocks A and B is 10 kg. Determine the value of &
and the masses of the two blocks.

3.9 The 200-kg horizontal steel bar is suspended by the three

springs. The stretch of each spring is 0.1 m. The constant of sprin
B is kg = 8000 N/m. Determine the constants k, = k¢ of springs
Aand C.

P3.9

3.20 The mass of the crane is 20 Mg (megagrams), and the ten-
sion in its cable is 1 kN. The crane’s cable is attached to a caisson
whose mass is 400 kg. Determine the magnitudes of the normal
and friction forces exerted on the crane by the level ground.

Strategy: Draw the free-body diagram of the crane and the
part of its cable within the dashed line.

P3.10
3.11 What is the tension in the horizontal cable AB in Example
3.1 if the 20° angle is increased to 25°?

3.12 The 2400-Ib car will remain in equilibrium on the sloping
road only if the friction force exerted on the car by the road is not
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greater than 0.6 times the normal force. What is the largest angle 3.16 The weights of the two blocks are W, = 200 Ib and
a for which the car will remain in equilibrium? W, = 50 Ib. Neglecting friction, determine the force the man must
exert to hold the blocks in place.

3.13 The crate is in equilibrium on the smooth surface. (Remem-
ber that *smooth™ means that friction is negligible.) The spring
constant is k = 2500 N/m and the stretch of the spring is 0.055 m.
What is the mass of the crate?

P3.13

3.14 The 600-1b box is held in place on the smooth bed of the
dump truck by the rope AB. P3.16
(a) If @ = 25° what is the tension in the rope?

(b) If the rope will safely support a tension of 400 Ib, what is

the maximum allowable value of a? 3.17 The two springs have the same unstretched length, and the
inclined surface is smooth. Show that the magnitudes of the forces
exerted by the two springs are

F = W sin«a F = W sin
R Y A T

P3.14

P3.17

3.15 Three forces act on the free-body diagram of a joint of a
structure. 1f the structure is in equilibrium and F, = 4.20 kN,

what are F and F.? 3.18 A 10-kg painting is suspended by a wire. If @ = 25°, what

is the tension in the wire?

FC
pe— — [
FH 'A
/\150 o _l_,w
T 7 k t
\ ! ;
P g '
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4 P3.15 P3.18
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¢/ 3.19 If the wire supporting the suspended painting in Problem 3.23 A construction worker on the moon (acceleration due to
3.18 breaks when the tension exceeds 150 N and you want a 100 gravity 1.62 m/s?) holds the same crate described in Problem 3.22
percent safety factor (that is, you want the wire to be able to sup-  in the position shown. What force must she exert on the cable?

port twice the actual weight of the painting), what is the smallest
value of a you can use?

3.20 Assume that the 150-1b climber is in equilibrium. What are
the tensions in the rope on the left and right sides?

P3.20 P3.23
3.21 If the mass of the climber shown in Problem 3.20 is 80 kg, 3.24 A student on his summer job needs to pull a crate across the
what are the tensions in the rope on the left and right sides? floor. Pulling as shown in Fig. a, he can exert a tension of 60 Ib.

He finds that the crate doesn’t move, so he tries the arrangement
in Fig. b, exerting a vertical force of 60 1b on the rope. What is the
magnitude of the horizontal force he exerts on the crate in each
case?

3.22 A construction worker holds a 180-kg crate in the position
shown. What force must she exert on the cable?

P3.22 P3.24




20 m

] 20 m

3.25 The 140-kg traftic light is suspended above the street by
two cables. What is the tension in the cables?

4 kN. Can he do it?

I17m

=

P3.25

3.26 Consider the suspended traffic light in Problem 3.25. To
raise the light temporarily during a parade, an engineer wants to
connect the 17-m length of cable DE to the midpoints of cables
AB and AC as shown. However, for safety considerations, he
doesn’t want to subject any of the cables to a tension larger than

P3.26

3.27 The mass of the suspended crate is 5 kg. What are the

tensions in cables AB and AC?

10m
A

\'

P3.27
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3.28 What are the tensions in the upper and lower cables? (Your
answers will be in terms of W. Neglect the weight of the pulley.)

P3.28

3.29 Two tow trucks lift a motorcycle out of a ravine following
an accident. If the 100-kg motorcycle is in equilibrium in the
position shown, what are the tensions in the cables AB and AC?

y (10,9) m c\

|- - F 1
[ ] S S

P3.29

3.30 An astronaut candidate conducts experiments on an airbear-
ing platform. While he carries out calibrations, the platform is
held in place by the horizontal tethers AB, AC. and AD. The

TOP VIEW
D _ Sl
4.0m
A
35m
B C
'~—‘ 30m——== 1.5 m'|

P3.30



102 CHarTER 3 Forces

forces exerted by the tethers are the only horizontal forces acting 3.34 The unstretched length of the spring in Problem 3.33 is

on the platform. If the tension in tether AC is 2 N, what are the 660 mm. If the mass of the suspended object is 10 kg and the system
tensions in the other two tethers? is in equilibrium in the position shown, what is the spring constant?
3.31 The forces exerted on the shoes and back of the 72-kg 3.35 The collar A slides on the smooth vertical bar. The masses
climber by the walls of the “chimney” are perpendicular to the my = 20 kg and mp = 10 kg. When h = 0.1 m, the spring is
walls exerting them. The tension in the rope is 640 N. What is the ~ unstretched. When the system is in equilibrium, # = 0.3 m.
magnitude of the force exerted on his back? Determine the spring constant k.
=——0.25
10°7" \I\ m‘—1
: TN -
'('.' ; R - ’\.‘ Wi 4 ¥
N 7 i k / F!
i vy |
B ' ‘
N
}
< Al ] ' |
3 40/' %\ ,’i ~ 30

P3.35

P3.31 336 Youare designing a cable system to support a suspended

object of weight W. The two wires must be identical, and the
dimension b is fixed. The ratio of the tension 7 in each wire to its
cross-sectional area A must equal a specified value T /A = ¢. The
“cost” of your design is the total volume of material in the two
wires, V = 2AV b?> + I*. Determine the value of / that

minimizes the cost.

3.32 The slider A is in equilibrium and the bar is smooth. What
is the mass of the slider?

P3.32 P3.36
3.33 The unstretched length of the spring AB is 660 mm, and 3.37 The system of cables suspends a 1000-1b bank of lights above
the spring constant k = 1000 N/m. What is the mass of the sus- a movie set. Determine the tensions in cables AB, CD, and CE.
pended object?
r-—’ 20 f ~——{-—18f
| i t t ——I
~— 400 mm —==——— 600 mm ——-—# P ——

P3.37

P3.33



3.38 Consider the 1000-1b bank of lights in Problem 3.37. A
technician changes the position of the lights by removing the
cable CE. What is the tension in cable AB after the change?

3.39 While working on another exhibit, a curator at the
Simithsonian Institution pulls the suspended Voyager aircraft to
one side by attaching three horizontal cables as shown. The mass
of the aircraft is 1250 kg. Determine the tensions in the cable
segments AB, BC, and CD.

Al 700

.

S —— [
\**w__: —— .__iuk. : oy |

P3.39

3.40 A truck dealer wants to suspend a 4-Mg (megagram) truck
as shown for advertising. The distance b = 15 m, and the sum of
the lengths of the cables AB and BC is 42 m. What are the ten-
sions in the cables?

- —40m —-- —_—
e . |

P3.40

3.41 The distance i = 12 in.. and the tension in cable AD is
200 Ib. What are the tensions in cables AB and AC?

3.42 You are designing a cable system to support a suspended
object of weight W. Because your design requires points A and B
10 be placed as shown, you have no control over the angle a, but
you can choose the angle B by placing point C wherever you wish.

3.3 Two-Dimensional Force Systems 103

IEEEa |

1 12 in.

P3.41

Show that to minimize the tensions in cables AB and BC, you
must choose B8 = « if the angle @ = 45°.

Strategy: Draw a diagram of the sum of the forces exerted
by the three cables at A.

P3.42

(/) 3.43 In Problem 3.42, suppose that you have no control over the

angle o and you want to design the cable system so that the ten-
sion in cable AC is a minimum. What is the required angle 87

3.44 The masses of the boxes on the left and right are 25 kg and
40 kg. respectively. The surfaces are smooth and the boxes are in
equilibrium. Determine the tension in the cable and the angle «.
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3.45 Consider the system shown in Problem 3.44. The angle

a = 45°, the surfaces are smooth, and the boxes are in equilib-
rium. Determine the ratio of the mass of the right box to the mass
of the left box.

3.46 The 3000-Ib car and the 4600-1b tow truck are stationary.
The muddy surface on which the car rests exerts a negligible
friction force on the car. What is the tension in the tow cable?

P3.46

3.47 The hydraulic cylinder is subjected to three forces. An 8-kN
force is exerted on the cylinder at B that is parallel to the cylinder
and points from B toward C. The link AC exerts a force at C that
is parallel to the line from A to C. The link CD exerts a force at C
that is parallel to the line from C to D.

(a) Draw the free-body diagram of the cylinder. (The cylinder’s
weight is negligible.)

(b) Determine the magnitudes of the forces exerted by the links
AC and CD.

//’
Hydraulic -
cylinder

£ L ey

0.15m =+==-0.6 m—~

Scdop

P3.47

3.48 The 50-1b cylinder rests on two smooth surfaces.

(a) Draw the free-body diagram of the cylinder.

(b) If @ = 30°, what are the magnitudes of the forces exerted on
the cylinder by the left and right surfaces?

P3.48

3.49 For the 50-1b cylinder in Problem 3.48, obtain an equation
for the force exerted on the cylinder by the left surface in terms o
the angle « in two ways: (a) using a coordinate system with the

¥ axis vertical, (b) using a coordinate system with the y axis paral
lel to the right surface.

3.50 The 50-kg sphere is at rest on the smooth horizontal sur-
face. The horizontal force F = 500 N. What is the normal force
exerted on the sphere by the surface?

P3.50

3.51 Consider the stationary sphere in Problem 3.50.

(a) Draw a graph of the normal force exerted on the sphere by the
surface as a function of the force F from F = 0to F = 1 kN.

(b) In the result of (a). notice that the normal force decreases to
zero and becomes negative as F increases. What does that mean?

3.52 The 1440-kg car is moving at constant speed on a road with
the slope shown. The aerodynamic forces on the car are the drag
D = 530 N, which is parallel to the road, and the lift L = 360 N,
which is perpendicular to the road. Determine the magnitudes of
the total normal and friction forces exerted on the car by the road.

P3.52

3.53 The device shown is towed beneath a ship to measure water
temperature and salinity. The mass of the device is 130 kg. The
angle a = 20°. The motion of the water relative to the device
causes a horizontal drag force D. The hydrostatic pressure distri-
bution in the water exerts a vertical “buoyancy” force B. The
magnitude of the buoyancy force is equal to the product of the
volume of the device, V = 0.075 m’, and the weight density of
the water, ¥ = 9500 N/m’. Determine the drag force D and the
tension in the cable.



P3.53

3.54 The mass of each pulley of the system is m and the mass of
the suspended object A is m,. Determine the force 7' necessary for
the system to be in equilibrium.

P3.54

3.55 The mass of each pulley of the system is /n and the mass of
the suspended object A is m,. Determine the force T necessary for
the system to be in equilibrium.

P3.55
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3.56 The system is in equilibrium. What are the coordinates of
point A?

P3.56

3.57 The light fixture of weight W is suspended from a circular
arch by a large number N of equally spaced cables. The tension T
in each cable is the same. Show that
il
2N’

Strategy: Consider an element of the arch defined by an
angle df measured from the point where the cables join:

T=

P3.57

Since the total angle described by the arch is 7 radians, the
number of cables attached to the element is (N /7 )d6. You can
use this result to write the equilibrium equations for the part of
the cable system where the cables join.

3.58 The solution to Problem 3.57 is an “asymptotic” result
whose accuracy increases as N increases. Determine the exact
tension T, for N = 3,5,9, and 17, and confirm the numbers
in the following table. (For example, for N = 3, the cables are
attached at 8 = 0.6 = 90°, and 68 = 180°.)

N 3 5 9 17
T,

exact

aW /2N

1.07
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3.59 The system in Fig. a provides lateral support for a load

Problems 3.60-3.62 are related to Example 3.4.

resting on the smooth bed of a truck. The spring constant

k = 100 1b/ft. and the unstretched length of each spring is 2 ft.
When the load is subjected to an effective lateral load F (Fig. b).
the distance from the original position of the load to its

equilibrium positionis & = 1 ft. What is F?

3.60 A 14,000-kg airplane is in steady flight in the vertical
plane. The flight path angle is ¥y = 10°, the angle of attack is

a = 4°, and the thrust force exerted by the engine is T = 60 kN.
What are the magnitudes of the lift and drag forces acting on the
airplane?

3.61 An airplane is in steady flight. the angle of attack @ = 0, th
k thrust-to-drag ratio T/D = 2. and the lift-to-drag ratio L/D = 4.
What is the flight path angle y?

3.62 An airplane glides in steady flight (T = 0), and its lift-

-3 fi—

-3 fl —

(a)

: to-drag ratio is L/D = 4.

o1 (a) What is the flight path angle y?
(b) (b) If the airplane glides from an altitude of 1000 m to zero
altitude. what horizontal distance does it travel?

P3.59

BEX Y Three-Dimensional Force Systems

The equilibrium situations we have considered so far have involved only
coplanar forces. When the system of external forces acting on an object in
equilibrium is three-dimensional. we can express the sum of the external
forces as

SF=(SF)i+(ZF)j+(SF)k=0.
Each component of this equation must equal zero, resulting in three scalar

equilibrium equations:

SF,=0. XF=0ZF=0 (3.6)

The sums of the x, y. and z components of the external forces acting on an
object in equilibrium must each equal zero.

C=
Q
() )
(-2.0.-2)m 4 .

B

(-3.0.3)m \ /@
@ & / (4.0.2)m
R e
\‘\\‘_“_
5 Al (0.-4.0)m

7
|

@ 100 kg

[rm—

Figure 3.26

Applying Equilibrium in Three
Dimensions

The 100-kg cylinder in Fig. 3.26 is suspended from the ceiling by cables at-
tached at points B, C, and D. What are the tensions in cables AB. AC, and AD?

Strategy

We can determine the tensions by the same approach we used for similar two-
dimensional problems. By isolating part of the cable system near point A, we
can obtain a free-body diagram subjected to forces due to the tensions in the ca-
bles. Since the sums of the x. y, and z components of the external forces must
each equal zero, we obtain three equations for the three unknown tensions.



Solution

T,z. Tyc. and T, are the tensions in cables AB, AC, and AD, respectively.

C
‘:‘ X
5 :3& y 8 \T;%C
oy < , AT~ ‘l_»;”'d. \ A T/
K ) : ﬁ ];m 4 f A8
£ ‘A / A
\ ’
l-(100)(9.81)j (N)

(a) (b)

Apply the Equilibrium Equations The sum of the external forces acting
on the free-body diagram is

EF = TAB ar TAC aF TAD - 98]j = 0.

To solve this equation for the tensions in the cables, we need to express the
vectors T 45, T4, and T, in terms of their components.

We first determine the components of a unit vector that points in the di-
rection of the vector T, ;. Let r,; be the position vector from point A to point
B (Fig. c):

ras = (x5 — x2)i + (vs — 3)i + (25 — z4)k = 4i + 4j + 2k (m).
Dividing r,; by its magnitude, we obtain a unit vector that has the same di-

rection as T 5:

r
e = —2 = 0.667i + 0.667j + 0.333k.

- |r,m|

Now we can write the vector T, as the product of the tension T,z in cable
ABande,;:

Tas = Tapess = Tup(0.667i + 0.667j + 0.333K).

We now express the force vectors T, and T, in terms of the tensions T,
| and T,pin cables AC and AD in the same way. The results are

| Ty = Tye(—0.408i + 0.816j — 0.408K).
Tap = Typ(—0.514i + 0.686j — 0.514k).

| We use these expressions to write the sum of the external forces in terms of
| the tensions Ty, Tyc, and T ,):

| SF =T, + T, + Tip — 981
= (0.667T,5 — 0.408T,c — 0.514T,,)i

Draw the Free-Body Diagram We isolate part of the cable system near
point A (Fig. a) and complete the free-body diagram by showing the forces
exerted by the tensions in the cables (Fig. b). The magnitudes of the vectors
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(a) Isolating part of the cable system.
(b) The completed free-body diagram
showing the forces exerted by the tensions

in the cables.

Lip

0,-4,0)m

(¢) The position vector r,.

X

B

(4,0.2) m
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+(0.667T,5 + 0.816T,c + 0.686T,, — 981)j
+(0.3337,5 — 0.408T, + 0.514T,,)k
= 0.
The sums of the forces in the x, v, and ¢ directions must each equal zero:
S F, = 0.667T,; — 0.408T, — 0.514T,, = 0,
S F, = 0.667T, + 0.816T,c + 0.686T,, — 981 = 0,
S F. = 0.333T,; — 0.408T, + 0.514T,, = 0.

Solving these equations, we find that the tensions are T,z = 519N,
T, = 636 N,and T,, = 168 N.

Discussion

Notice that this example required several of the techniques we covered in
Chapter 2. In particular, we had to determine the components of a position
vector, divide the position vector by its magnitude to obtain a unit vector with
the same direction as a particular force, and express the force in terms of its
components by writing it as the product of the unit vector and the magnitude
of the force.

Example 3.6

Figure 3.27

Application of the Dot Product

The 100-1b “slider” C in Fig. 3.27 is held in place on the smooth bar by the
cable AC. Determine the tension in the cable and the force exerted on the
slider by the bar.




Strategy

Since we want to determine forces that act on the slider, we need to draw its
free-body diagram. The external forces acting on the slider are its weight and
the forces exerted on it by the cable and the bar. If we approached this exam-
ple as we did the previous one, our next step would be to express the forces in
terms of their components. However, we don’t know the direction of the force
exerted on the slider by the bar. Since the smooth bar exerts negligible fric-
tion force, we do know that the force exerted by the bar is normal to its axis.
Therefore we can eliminate this force from the equation 2F = 0 by taking
the dot product of the equation with a unit vector that is parallel to the bar.

Solution

Draw the Free-Body Diagram We isolate the slider (Fig. a) and complete
the free-body diagram by showing the weight of the slider, the force T exerted
by the tension in the cable, and the normal force N exerted by the bar (Fig. b).

Apply the Equilibrium Equations The sum of the external forces acting
on the free-body diagram is

2F =T+ N — 100j = 0. 3.7)

Let eg;, be the unit vector pointing from point B toward point D. Since N is
perpendicular to the bar, ez, - N = 0. Therefore

esn* (SF) = egp - (T — 100j) = 0. (3.8)

This equation has a simple interpretation: The component of the slider’s
weight parallel to the bar is balanced by the component of T parallel to the bar.
Determining egp: We determine the vector from point B to point D,

rgp=(4-0)i+ (0—-7)j+(4—-0)k=4i—7j+ 4k (ft),
and divide it by its magnitude to obtain the unit vector ezp:
rgp 4 7 4

SO E S P i
| 9 9779

€sp

Resolving T into components: To express T in terms of its components,
we need to determine the coordinates of the slider C. We can write the vector
from B to C in terms of the unit vector e,

Ipe = Gegp = 2.67i — 4.67j + 2.67k (ft),

and then add it to the vector from the origin O to B to obtain the vector from
OtoC:

2.67i + 2.33j + 2.67k (ft).

If

The components of this vector are the coordinates of point C.
Now we can determine a unit vector with the same direction as T. The
vector from C to A is

Fea = (0 — 2.67)i + (7 — 2.33)j + (4 — 2.67)k
= —2.67i + 4.67j + 1.33k (ft),
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(a)

T

a—
1

~100 j (1b)
(b)

(a) Isolating the slider.

(b) Free-body diagram of the slider showing
the forces exerted by its weight, the cable,
and the bar.
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and the unit vector that points from point C toward point A is

€ca

Lea

B ‘l'cAI

= —0.482i + 0.843j + 0.241k.

Let T be the tension in the cgble AC. Then we can write the vector T as

T = Te., = T(—0.482i + 0.843j + 0.241k).

Determining T and N: Substituting our expressions for ez, and T i1
terms of their components into Eq. (3.8).

egp - (T — 100j)

9

7 4
9 9

4
= [—i ——j+ —k] - [~0.482Ti + (0.843T — 100)j + 0.241Tk

= —0.762T + 77.8 = 0.

we obtain the tension 7 = 102 Ib.
Now we can determine the force exerted on the slider by the bar by using

Eq. (3.7):
N =

~T + 100j = —102(—0.482i + 0.843j + 0.241k) + 100j

= 49.1i + 14.0j — 24.6k (Ib).

3.63 If the coordinates of point A in Example 3.5 are changed to
(0. =2. 0) m. what are the tensions in cables AB, AC. and AD?

3.64 The force F = 5i (kN) acts on point A where the cables AB,
AC, and AD are joined. What are the tensions in the three cables?

Strategy: Isolate part of the cable system near point A. See
Example 3.5.

D (0.6,0)m

’“R&m\x A F
- | e————
(12,4.2)m
c <

B £ (6.0.0)m

7

(0.4.6)m

z P3.64

3.65 The cables in Problem 3.64 will safely support a tension of
25 kN. Based on this criterion, what is the largest safe magnitude
of the force F = Fi?

3.66 To support the tent. the tension in the rope AB must be
40 1b. What are the tensions in the ropes AC, AD, and AE?

/,4
A

(3,.0.3) ft

P3.66



3.67 The bulldozer exerts a force F = 2i (kip) at A. What are the
tensions in cables AB, AC, and AD?

P3.67

3.68 Prior to its launch, a balloon carrying a set of experiments
to high altitude is held in place by groups of student volunteers
holding the tethers at B, C, and D. The mass of the balloon, exper-
iments package, and the gas it contains is 90 kg, and the buoyancy
force on the balloon is 1000 N. The supervising professor conser-
vatively estimates that each student can exert at least a 40-N ten-
sion on the tether for the necessary length of time. Based on this
estimate, what minimum numbers of students are needed at B, C,
and D?

A (0,8,0)m

C (10,0,-12) m

D
(-16,0,4) m X

<
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3.69 The 20-kg mass is suspended by cables attached to three
vertical 2-m posts. Point 4 is at (0, 1.2, 0) m. Determine the ten-
sions in cables AB, AC, and AD.

3.70 The weight of the horizontal wall section is W = 20,000 Ib.
Determine the tensions in the cables AB, AC, and AD.

A N~

A A
| ~ais ]
(2

P3.70

(/) 3.71 In Problem 3.70, each cable will safely support a tension of

40,000 Ib. Based on this criterion, what is the largest safe value of
the weight W?

3.72 The 680-kg load suspended from the helicopter is in equi-
librium. The aerodynamic drag force on the load is horizontal.
The y axis is vertical, and cable OA lies in the x-y plane.
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Determine the magnitude of the drag force and the tension in
cable OA.

3.75 The 1350-kg car is at rest on a plane surface. The unit vect
e, = 0.231i + 0.923j + 0.308k is perpendicular to the surface.
The y axis points upward. Determine the magnitudes of the norma
and friction forces the car’s wheels exert on the surface.

P3.7

(8]

P3.72

3.73 In Problem 3.72, the coordinates of the three cable attach-
ment points B, C. and D are (=3.3, =4.5,0) m, (1.1, =5.3. 1) m,
and (1.6. —5.4, —1) m. respectively. What are the tensions in
cables OB, OC, and OD?

3.74 The small sphere A weighs 20 Ib. and its coordinates are
(4.0, 6) ft. It is supported by two smooth flat plates labeled 1 and
2 and the cable AB. The unit vectore, = 3i + 2j + 3k is perpen-
dicular to plate 1. and the unit vectore, = — i + 77j + Skis
perpendicular to plate 2. What is the tension in the cable?

<

3.76 The system shown anchors a stanchion of a cable-sus-
pended roof. If the tension in cable AB is 900 kN, what are the
tensions in cables EF and EG?

) m

(0.1.4.1.2)

X

22.0.1
- c é) ( Iy P3.76

(/) 3.77 The cables of the system in Problem 3.76 will each safely
support a tension of 1500 kN. Based on this criterion, what is the
largest safe value of the tension in cable AB?

3.78 The 200-kg slider at A is held in place on the smooth

P3.74  vertical bar by the cable AB.



(a) Determine the tension in the cable.
(b) Determine the force exerted on the slider by the bar.

y
2 m/
‘/
B
1
A
Sm A
i
2m
I
/ ‘\z\m @\Lx

z/ P3.78

3.79 The 100-1b slider at A is held in place on the smooth circular
bar by the cable AB. The circular bar is contained in the x—y plane.
(a) Determine the tension in the cable.

(b) Determine the normal force exerted on the slider by the bar.
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3.80 The cable AB keeps the 8-kg collar A in place on the smooth
bar CD. The y axis points upward. What is the tension in the cable?

y
0.15m

-
l
SN

0.5m

0.4 m I

P3.80

o

3.81 In Problem 3.80, determine the magnitude of the normal
force exerted on the collar A by the smooth bar.

3.82 The 10-kg collar A and 20-kg collar B are held in place on
the smooth bars by the 3-m cable from A to B and the force F
acting on A. The force F is parallel to the bar. Determine F.

P3.82
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Computational Example 3.7

Computational Mechanics

The following examples and problems are designed for the use of a programmable calculator or computer. Example 3.7 is similar to
previous examples and problems except that the solution must be calculated for a range of input quantities. Example 3.8 leads to an
algebraic equation that must be solved numerically.

Figure 3.28
I~ b -
_________ C
: Ja gl
Lap Lyc

(a)

(a) Determining the angles a and 8.

l W=mg

(b)

(b) Free-body diagram of part of the cable
system.

+101110
100101}
101100

Determining Tensions
for a Range of Dimensions

The system of cables in Fig. 3.28 is designed to suspend a load with a mass
of 1 Mg (megagram). The dimension b = 2 m, and the length of cable AB
is 1 m. The height of the load can be adjusted by changing the length of
cable AC.

(a) Plot the tensions in cables AB and AC for values of the length of cable
AC from 1.2 mto 2.2 m.

(b) Cables AB and AC can each safely support a tension equal to the weight
of the load. Use the results of (a) to estimate the allowable range of the length
of cable AC.

Strategy

By drawing the free-body diagram of the part of the cable system where the
cables join, we can determine the tensions in the cables in terms of the length
of cable AC.

Solution

(a) Let the lengths of the cables be L,z = 1 m and L 4. We can apply the law
of cosines to the triangle in Fig. a to determine « in terms of L ¢!

bz * wa _ Lic)
2bL 45

a = arccos(

Then we can use the law of sines to determine S:

i sinoz)
AC

B = arcsin<

Draw the Free-Body Diagram We draw the free-body diagram of the part
of the cable system where the cables join in Fig. b, where T, and T, are the
tensions in the cables.

Apply the Equilibrium Equations Selecting the coordinate system shown
in Fig. b, the equilibrium equations are

YF, = —Tygcosa + TyccosB = 0,

XF‘V — —TABSinCX + TACSinB - W = O.
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Solving these equations for the cable tensions, we obtain

W cos 3
sinacosB + cosasinf’

Tyg =

_ W cosa
Tac =

sinacos B + cosasinB’

To compute the results, we input a value of the length L, and calculate

the angle «, then the angle B, and then the tensions T, and T,.. The resulting
values of 7,3/W and T,/W are plotted as functions of L, in Fig. 3.29.
(b) The allowable range of the length of cable AC is the range over which the
tensions in both cables are less than W. From Fig. 3.29 we can see that the
tension 7,5 exceeds W for values of L, less than about 1.35 m, so the safe
range is L, > 1.35m.

1.4
1.2
1
0.8
0.6
0.4
0.2

: : ‘ . : Figure 3.29
0 —\— o .
1.2 14 1.6 1.8 2 (o Ratios of the cable tensions to the
L, ., meters suspended weight as functions of L 4.

o0

| . 10LL)
Computational Example 3.8 100101

Equilibrium Position of an Object
Supported by a Spring

The 12-1b collar A in Fig. 3.30 is held in equilibrium on the smooth vertical
bar by the spring. The spring constant & = 300 Ib/ft, the unstretched length
of the spring is L, = b, and the distance b = 1 ft. What is the distance h?

Strategy

r Both the direction and the magnitude of the force exerted on the collar by the h
spring depend on h. By drawing the free-body diagram of the collar and ap-
plying the equilibrium equations, we can obtain an equation for A.

|
' Solution

|

' Draw the Free-Body Diagram We isolate the collar (Fig. a) and complete

. the free-body diagram by showing its weight W = 12 Ib, the force I exerted
by the spring, and the normal force N exerted by the bar (Fig. b).

Figure 3.30
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- A
h [_‘_1_\['; _1_‘
b
15
(b)

(a) Isolating the collar.
(b) The free-body diagram.

Figure 3.31
Graph of the function f(h).

Apply the Equilibrium Equations Selecting the coordinate system show
in Fig. b, we obtain the equilibrium equations

2F, =N - (L)F=O,

Vi + b

SF = (—”—)p— W= o.

VI + b

In terms of the length of the spring L = V i? + b?, the force exerted by
the spring is

F = kL - Ly) = (Vi + b — b).

Substituting this expression into the second equilibrium equation, we obtain
the equation

h ) SRRy
—— (VA" + b —b) = W =0.
(Tt :

Inserting the values of &, b, and W, we find that the distance 4 is a root of the
equation

f(h) = <%)(\/le +1-1)-12=0. (3.9)

How can we solve this nonlinear algebraic equation for #? Some calcula-
tors and software are designed to obtain roots of such equations. Another ap-
proach is to calculate the value of f(/) for a range of values of & and plot the
results, as we have done in Fig. 3.31. From the graph we see that the solution
i1s approximately 77 = 0.45 ft. By examining the computed results near
h = 045 ft.

1) f(h)

ANRNS SUNNUN WOV SO U OO N WO 0.449  —0.1818
0450  —0.1094
0.451  —0.0368
0452  0.0361
0453  0.1092
0454  0.1826

05 06 07 08 09 1
h, feel

0 01 02 03 04

we see that the solution (to three significant digits) is # = 0.452 ft.
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Computational Problems iﬁ

3.83 (a) Plot the tensions in cables AB and AC for values of d
fromd = 0tod = 1.8 m.

(b) Each cable will safely support a tension of 1 kN. Use your
graph to estimate the acceptable range of values of ¢

T

o
oo

!
d
!

50 kg

P3.83

3.84 The suspended traffic light weighs 100 Ib. The cables AB.
BC, AD, and DFE are each 11 ft long. Determine the smallest
permissible length of the cable BD if the tensions in the cables
must not exceed 1000 Ib.
Strategy: Plot the tensions in the cables for a range of
lengths of the cable BD.
/8

40 ft

c B D

P3.84

3.85 The 2000-1b scoreboard A is suspended above a sports
arena by the cables AB and AC. Each cable is 160 fi long.
Suppose you want to move the scoreboard out of the way for a
tennis match by shortening cable AB while keeping the length of
cable AC constant.

(a) Plot the tension in cable AB as a function of its length for
values of the length from 142 ft to 160 ft.

(b) Use your graph to estimate how much you can raise the
scoreboard relative to its original position if you don’t want to
subject cable AB to a tension greater than 6000 1b.

i 300 ft l

P3.85

3.86 Consider the suspended 4-Mg truck in Problem 3.40. The
sum of the lengths of the cables AB and BC is 42 m.

(a) Plot the tensions in cables AB and BC for values of b from
zero to 20 m.

(b) Each cable will safely support a tension of 60 kN. Use the
results of (a) to estimate the allowable range of the distance b.

3.87 The unstretched length of the spring AB is 660 mm. The
system is in equilibrium in the position shown when the mass of
the suspended object is 10 kg. If the 10-kg object is replaced by a
30-kg object, what is the resulting tension in the spring?

i |
~— 400 mm—=—— 600 mm ‘ﬂ

e e e e s At

P3.87

3.88 The cable of the tow truck shown in Problem 3.46 is 12 ft
long. Determine the tension in the cable at 1-ft intervals as the
truck slowly moves forward 5 ft from the position shown.

3.89 The system in Problem 3.59 provides lateral support for a
load resting on the smooth bed of a truck. When the load is
subjected to an effective lateral load F (Fig. b). the distance from
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the original position of the load to its equilibrium position is 6. y
The unstretched length of each spring is 1 ft. Suppose that the
load is subjected to an effective lateral load F = 200 Ib.

(a) Plot the spring constant & for valnes of § from 0.5 ft to 3 ft.
(b) Use the results of (a) to estimate the values of k for 6 = 1 ft
and 6 = 2 fi.

€/) 3.90 Consider the tethered balloon in Problem 3.68. The mass of ( GL\ = RO

0.15m

the balloon, experiments package, and the gas it contains is 90 kg,

and the buoyancy force on the balloon is 1000 N. If the tethers .
AB, AC, and AD will each safely support a tension of 500 N and \ A S 03m
the coordinates of point A are (0, 4, 0), what is the minimum 0.5 m \(

allowable height h? o g

0.25m
3.91 The collar A slides on the smooth vertical bar. The masses D

my = 20 kg and mz = 10 kg, and the spring constant /4 0.2 m—/—,/

k = 360 N/m. When h = 0.2 m, the spring is unstretched.
Determine the value of h when the system is in equilibrium.

P3.92

(8]

3.93 In Problem 3.92, determine the distance s from C to the
collar A for which the magnitude of the normal force exerted on
the collar A by the smooth bar is S0 N.

3.94 The 10-kg collar A and 20-kg collar B slide on the smooth
bars. The cable from A to B is 3 m in length. Determine the value
of the distance s in the range 1 = s = 5 m for which the system

is in equilibrium.

P3.91

3.92 The cable AB keeps the 8-kg collar A in place on the
smooth bar CD. The y axis points npward. Determine the distance
s from C to the collar A for which the tension in the cable is

150 N.

Chapter Summary

P3.94

In this chapter we discussed the forces that occur frequently in engineering
applications and introduced two of the most important concepts in mechan-
ics: the free-body diagram and equilibrium. By drawing free-body diagrams
and applying the vector techniques developed in Chapter 2, we showed how
unknown forces acting on objects in equilibrium can be determined from the
condition that the sum of the external forces must equal zero. The sum of the
moments of the external forces on an object in equilibrium must also equal
zero, and this condition can be used to obtain additional information about




unknown forces on objects. We will discuss moments of forces in Chapter 4.
We will then apply equilibrium to individual objects in Chapter 5 and to
structures in Chapter 6.

The straight line coincident with a force vector is called the line of action
of the force. A system of forces is coplanar, or two-dimensional, if the lines
of action of the forces lie in a plane. Otherwise, it is three-dimensional. A
system of forces is concurrent if the lines of action of the forces intersect at a
point and parallel if the lines of action are parallel.

An object is subjected 1o an external force it the force is exerted by a dif-
ferent object. When one part of an object is subjected to a force by another
part of the same object, the force is internal.

A body force acts on the volume of an object, and a surface or contact
Jorce acts on its surface.

Gravitational Forces

The weight of an object is related to its mass by W = mg, where
g = 9.81 m/s?in Sl units and g = 32.2 fi/s” in U.S. Customary units.

Surfaces

Two surfaces in contact exert forces on each other that are equal in magnitude
and opposite in direction. Each force can be resolved into the normal force
and the friction force. If the friction force is negligible in comparison to the
normal force, the surfaces are said to be smooth. Otherwise, they are rough.

Ropes and Cables

A rope or cable attached to an object exerts a force on the object whose mag-
nitude is equal to the tension and whose line of action is paralle] to the rope
or cable at the point of attachment.

A pudley is a wheel with a grooved rim that can be used to change the di-
rection of a rope or cable. When a pulley can turn freely and the rope or cable
either is stationary or turns the pulley at a constant rate, the tension is approx-
imately the same on both sides of the pulley.

Springs
The force exerted by a linear spring is

|F| = k|L — Ly,  Eq.(3.1)

where £ is the spring constant, L is the length of the spring, and L is its un-
stretched length.

Free-Body Diagrams

A free-body diagram is a drawing of an object in which the object is isolated
from its surroundings and the external forces acting on the object are shown.
Drawing a free-body diagram requires the steps shown in Figs. 1-3. A coordi-
nate system must be chosen to express the forces on the isolated object in
terms of components.
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1. Choose an object to isolate.

2. Draw the isolated object.

?T

i
v

W

3. Show the external forces.
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Equilibrium {
If an object is in equilibrium, the sum of the external forces acting on it i
zero: B

2F=0. Eq.(32)

This implies that the sums of the external forces in the x, y, and z directions
each equal zero:

ZF =0, z =10 2F. =0, Egs. (3.6)
1
Review Problems
3.95 The 100-Ib crate is held in place on the smooth surface by 3.97 A heavy rope used as a hawser for a cruise ship sags as
the rope AB. Determine the tension in the rope and the magnitude  shown. If it weighs 200 Ib, what are the tensions in the rope at A
of the normal force exerted on the crate by the surface. and B?

D A

— N\
45°
{ \B

‘\ 100 1b

P3.97

300 /

P3.95

3.96 The system shown is called Russell’s traction. If the sum of ~ 3.98 The cable AB is horizontal, and the box on the right weighs
the downward forces exerted at A and B by the patient’s leg is 100 Ib. The surfaces are smooth.
32.2Ib, what is the weight W? (a) What is the tension in the cable?

¥ (b) What is the weight of the box on the left?

P3.98

v P3.96




A concrete bucket used at a construction site is supported
two cranes. The 100-kg bucket contains 500 kg of concrete.
termine the tensions in the cables AB and AC.

P3.99

3.100 The mass of the suspended object A is m, and the masses
of the pulleys are negligible. Determine the force T necessary for
the system to be in equilibrium.

P3.100

Chapter Summary 121

3.101 The assembly A, including the pulley, weighs 60 Ib. What
force F is necessary for the system to be in equilibrium?

P3.101

3.102 The mass of block A is 42 kg, and the mass of block B is
50 kg. The surfaces are smooth. If the blocks are in equilibrium,
what is the force F?

P3.102

3.103 The climber A is being helped up an icy slope by two
friends. His mass is 80 kg, and the direction cosines of the force
exerted on him by the slope are cos 6, = —0.286, cos 6, = 0.429,
and cos 6. = 0.857. The y axis is vertical. If the climber is in
equilibrium in the position shown, what are the tensions in the
ropes AB and AC and the magnitude of the force exerted on him
by the slope?
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P3.103

3.104 Consider the climber A being helped by his friends in
Problem 3.103 To try to make the tensions in the ropes more equal,
the friend at B moves to the position (4, 2, 0) m. What are the new
tensions in the ropes AB and AC and the magnitude of the force
exerted on the climber by the slope?

3.105 A climber helps his friend up an icy slope. His friend is
hauling a box of supplies. If the mass of the friend is 90 kg and
the mass of the supplies is 22 kg, what are the tensions in the
ropes AB and CD? Assume that the slope is smooth.

P3.105

3.106 The small sphere of mass m is attached to a string of
length L and rests on the smooth surface of a sphere of radius R.
Determine the tension in the string in terms of m. L. h, and R.

3.107 An engineer doing preliminary design studies for a new
radio telescope envisions a triangular receiving platform sus-
pended by cables from three equally spaced 40-m towers. The
receiving platform has a mass of 20 Mg (megagrams) and is

10 m below the tops of the towers. What tension would the cables
be subjected to?

TOP VIEW

3.108 The metal disk A weighs 10 Ib. It is held in place at the
center of the smooth inclined surface by the strings AB and AC.
What are the tensions in the strings?

¥

(0, 6, 0) ft

/C@ (8.4,0) ft
X

z 10 ft P3.108



3.109 Cable AB is attached to the top of the vertical 3-m post,
and its tension is SO kN. What are the tensions in cables AO, AC,
and AD?

P3.109

3.110 The 1350-kg car is at rest on a plane surface with its
brakes locked. The unit vector e, = 0.231i + 0.923j + 0.308k
is perpendicular to the surface. The y axis points upward. The
direction cosines of the cable from A to B are cos6, = —0.816,
cos @, = 0.408, cos 8, = —0.408, and the tension in the cable is
1.2 kN. Determine the magnitudes of the normal and friction
forces the car’s wheels exert on the surface.

P3.110

IR
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3.111 The brakes of the car in Problem 3.110 are released. and
the car is held in place on the plane surface by the cable AB. The
car’s front wheels are aligned so that the tires exert no friction
forces parallel to the car’s longitudinal axis. The unit vector

e, = —0.941i + 0.131j + 0.314Kk is parallel to the plane surface
and aligned with the car’s longitudinal axis. What is the tension in
the cable?

/esign Experience A possible design for a simple scale to
weigh objects is shown. The length of the string AB is 0.5 m.
When an object is placed in the pan, the spring stretches and the
string AB rotates. The object’s weight can be determined by
observing the change in the angle a.

(a) Assume that objects with masses in the range 0.2-2 kg are to
be weighed. Choose the unstretched length and spring constant
of the spring in order to obtain accurate readings for weights in
the desired range. (Neglect the weights of the pan and spring.
Notice that a significant change in the angle « is needed to
determine the weight accurately.)

(b) Suppose that you can use the same components—the pan,
protractor, a spring, string—and also one or more pulleys.
Suggest another possible configuration for the scale. Use statics
to analyze your proposed configuration and compare its accuracy
with that of the configuration shown for objects with masses in
the range 0.2-2 kg.



Loads lifted by a building crane can exert large
moments that the crane’s structure must support.

In this chapter we calculate moments of forces and
analyze systems of forces and moments.




C H A P T E R

Systems of Forces

and Moments

he effects of forces can depend not only on their magnitudes and di-

rections but also on the moments, or torques, they exert. The rota-

tions of objects such as the wheels of a vehicle, the crankshaft of an
engine, and the rotor of an electric generator result from the moments of the
forces exerted on them. If an object is in equilibrium, the moment about any
point due to the forces acting on the object is zero. Before continuing our dis-
cussion of free-body diagrams and equilibrium, we must explain how to cal-
culate moments and introduce the concept of equivalent systems of forces

and moments.




126 CHarTER 4 Systems of Forces and Moments

BEW Two-Dimensional Description of the Moment

Consider a force of magnitude F and a point P, and let’s view them in the di-
rection perpendicular to the plane containing the force vector and the point
(Fig. 4.1a). The magnitude of the moment of the force about P is DF, where
D is the perpendicular distance from P to the line of action of the force
(Fig. 4.1b). In this example. the force would tend to cause counterclockwise
rotation about point P. That is. if we imagine the force acts on an object that
can rotate about point P, the force would tend to cause counterclockwise ro-
tation (Fig. 4.1c). We say that the sense of the moment is counterclockwise.
We define counterclockwise moments to be positive and clockwise moments to
be negative. (This is the usual convention, although we occasionally en-
counter situations in which it is more convenient to define clockwise mo-
ments to be positive.) Thus the moment of the force about P is

M, = DF. (4.1)

(a) (b) (c)

Figure 4.1

(a) The force and point P.

(b) The perpendicular distance D from point P to the line of action of F.
(¢) The sense of the moment is counterclockwise.

Notice that if the line of action of F passes through P, the perpendicular dis-
tance D = 0 and the moment of F about P is zero.

The dimensions of the moment are (distance) X (force). For example,
moments can be expressed in newton-meters in SI units and in foot-pounds in
U.S. Customary units.

Suppose that you want to place a television set on a shelf, and you aren’t
certain the attachment of the shelf to the wall is strong enough to support it.
Instinctively, you place it near the wall (Fig. 4.2a), knowing that the attach-
ment is more likely to fail if you place it away from the wall (Fig. 4.2b).
What is the difference in the two cases? The magnitude and direction of the
force exerted on the shelf by the weight of the television are the same in each
case, but the moments exerted on the attachment are different. The moment
exerted about P by its weight when it is near the wall, Mp = —D, W, is small-
er in magnitude than the moment about P when it is placed away from the
wall, M, = =D,W.
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Figure 4.2
It is better to place the television near the wall (a) instead of away from it
(b) because the moment exerted on the support at P is smaller.

The method we describe in this section can be used to determine the sum
of the moments of a system of forces about a point if the forces are two-di-
mensional (coplanar) and the point lies in the same plane. For example, con-
sider the construction crane shown in Fig. 4.3. The sum of the moments
exerted about point P by the load W, and the counterweight W, is

ZMP = DIWI - D2W2.

)
N
%

s a2

Figure 4.3
A tower crane used in the construction of high-rise buildings.

This moment tends to cause the top of the vertical tower to rotate and could
cause it to collapse. If the distance D, is adjusted so that DIW; = D,W,, the
moment about point P due to the load and the counterweight is zero.

If a force is resolved into components, the moment of the force about a
point P is equal to the sum of the moments of its components about P. We
prove this very useful result in the next section.

Study Questions

1. How do you determine the magnitude of the moment of a force about a point?

2. The moment of a force about a point is defined to be positive if its sense is
counterclockwise. What does that mean?

3. If the line of action of a force passes through a point P, what do you know
about the moment of the force about P?
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Example 4.1

40 kN

[ 6m

Figure 4.4

(@) Determining the
perpendicular distance D.

(b) Resolving the force
into components.

Determining the Moment of a Force
What is the moment of the 40-kN force in Fig. 4.4 about point A?

Strategy

We can calculate the moment in two ways: by determining the perpendicular
distance from point A to the line of action of the force or by resolving the
force into components and determining the sum of the moments of the com-
ponents about A.

Solution

First Method From Fig. a. the perpendicular distance from A to the line of
action of the force is

D = 6sin30° = 3m.

l‘ -6m —

The magnitude of the moment of the force about A is (3 m)(40 kN) =
120 kN-m, and the sense of the moment about A is counterclockwise. There-
fore the moment is

M, = 120 kN-m.

Second Method In Fig. b, we resolve the force into horizontal and vertical
components. The perpendicular distance from A to the line of action of the
horizontal component is zero, so the horizontal component exerts no moment
about A. The magnitude of the moment of the vertical component about A is
(6 m)(40sin30° kN) = 120 kN-m. and the sense of its moment about A is
counterclockwise. The moment is

M, = 120 kN-m.

I
40 sin 30° kN T140 kN
I
. V300 |
P e o e e — —

o 40 cos 30° kN

It —6m - —
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Example 4.2

Moment of a System of Forces ( T
| 30°
Four forces act on the machine part in Fig. 4.5. What is the sum of the mo- ¥ 1 2kN
ments of the forces about the origin O? |
SOTm
Strategy B e
v

We can determine the moments of the forces about point O directly from }__300 el 200 mmJ

|

the given information except for the 4-kN force. We will determine its mo-
ment by resolving it into components and summing the moments of the  Figure 4.5
components.

Solution

Moment of the 3-kN Force The line of action of the 3-kN force passes
through O. It exerts no moment about O.

Moment of the 5-kN Force The line of action of the 5-kN force also pass-
es through O. It too exerts no moment about O.

Moment of the 2-kN Force The perpendicular distance from O to the line
of action of the 2-kN force is 0.3 m, and the sense of the moment about O is
clockwise. The moment of the 2-kN force about O is

' —(0.3 m)(2 kN) = —0.600 kN-m.

(Notice that we converted the perpendicular distance from millimeters into
| meters, obtaining the result in terms of kilonewton-meters.)

Moment of the 4-kN Force In Fig. a, we introduce a coordinate system y

and resolve the 4-kN force into x and y components. The perpendicular dis-

tance from O to the line of action of the x component is 0.3 m, and the : 4sin 30°kN 4N
: sense of the moment about O is clockwise. The moment of the x compo- : t .
' nent about O is t J2w 4 cos 30°kN

300 mm
—(0.3m)(4 cos30° kN) = —1.039 kN-m. $ 'm . 2
O] 3kN | SKN

The perpendicular distance from point O to the line of action of the y compo- ’

nent is 0.7 m, and the sense of the moment about O is counterclockwise. The L_300__. 400 __ |
c mm mm

moment of the y component about O is !

(@) Resolving the 4-kN force into
(0.7 m)(4sin30° kN) = 1.400 kN-m. components.

The sum of the moments of the four forces about point O is
2 M, = —0.600 — 1.039 + 1.400 = —0.239 kN-m.

The four forces exert a 0.239 kN-m clockwise moment about point O.
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Example 4.3

Figure 4.6

components.

k-2 ft==2 ft~

l

| {
Fz ft=1=2 ft=

(a) Resolving the force exerted by the
cable into horizontal and vertical

Summing Moments to Determine
an Unknown Force

The weight W = 300 1b (Fig. 4.6). The sum of the moments about C due t
the weight W and the force exerted on the bar CA by the cable AB is zero.
What is the tension in the cable? ]

Strategy

Let T be the tension in cable AB. Using the given dimensions, we can express
the horizontal and vertical components of the force exerted on the bar by the
cable in terms of T. Then by setting the sum of the moments about C due to
the weight of the bar and the force exerted by the cable equal to zero, we can
obtain an equation for 7.

Solution

Using similar triangles, we resolve the force exerted on the bar by the cable
into horizontal and vertical components (Fig. a). The sum of the moments
about C due to the weight of the bar and the force exerted by the cable AB is

4
S Me = 4(§T) + 4(21) —2W = 0.

Solving for T, we obtain

T = 0357TW = 107.1 Ib.

4.1 Determine the moment of the 50-N force about (a) point A,

(b) point B.

4.2 The radius of the pulley is » = 0.2 m and it is not free to rotate.
The magnitudes of the forces are |F,| = 140 N and [F;| = 180 N.

(a) What is the moment about the center of the pulley due to
the force F,?

(b) What is the sum of the moments about the center of the
pulley due to the forces F, and F;?

P4.1

P4.2




4.3 The wheels of the overhead crane exert downward forces on
the horizontal I-beam at B and C. If the force at B is 40 kip and
the force at C is 44 kip, determine the sum of the moments of the
farces on the beam about (a) point A, (b) point D.

10 ft =t

25ft

15 fi

4.4 If you exert a 90-N force on the wrench in the direction shown,
what moment do you exert about the center of the nut? Compare
your answer to the moment exerted if you exert the 90-N force
perpendicular to the shaft of the wrench.

P4.4

4.5 If you exert a force F on the wrench in the direction shown
and a 50 N-m moment is required to loosen the nut, what force F
must you apply?

J V. 4

“T/)

265mm i}
300 mm

P4.5
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4.6 The support at the left end of the beam will fail if the
moment about P due to the 20-kN force exceeds 35 kN-m. Based
on this criterion, what is the maximum safe value of the angle a in
the range 0 = a = 90°?

20 kN

% 2m

| P4.6

4.7 The gears exert 200-N forces on each other at their point
of contact.

(a) Determine the moment about A due to the force exerted on
the left gear.

(b) Determine the moment about B due to the force exerted on
the right gear.

4.8 The support at the left end of the beam will fail if the
moment about A of the 15-kN force F exceeds 18 kN-m. Based
on this criterion, what is the largest allowable length of the beam?

P4.8
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4.9 Determine the moment of the 80-1b force about P.

80 Ib
20°

P 40°  3ft

N

4.10 The 20-N force F exerts a 20 N-m counterclockwise
moment about P.

to reach around his friend, can only exert the two 30-1b forces.
What torque (moment) do they exert on the nut?

P4.9

(a) What is the perpendicular distance from P to the line of

action of F?
(b) What is the angle a?

4.11 The lengths of bars AB and AC are 350 mm and
450 mm respectively. The magnitude of the vertical force
at A is |[F| = 600 N. Determine the moment of F about B
and about C.

4.12 Two students attempt to loosen a lug nut with a lug wrench.
One of the students exerts the two 60-1b forces; the other, having

4.13 The two students described in Problem 4.12, having failed
to loosen the lug nut, try a different tactic. One of them stands on
the lug wrench, exerting a 150-1b force on it. The other pulls on
the wrench with the force F. If a torque of 245 ft-Ib is required to
loosen the lug nut, what force F must the student exert?

P4.10

P4.13

4.14 The moment exerted about point E by the weight is
299 in-1b. What moment does the weight exert about point §?

P4.14



4.15 Three forces act on the square plate. Determine the sum of
the moments of the forces (a) about A, (b) about B, (¢) about C.

200 N

A
3Im 200 N

P4.15

4.16 Determine the sum of the moments of the three forces about
(a) point A, (b) point B, (c) point C.

- 1 i q
}-v2ft—-|-—2ft 2 ft l 2 ft {

4.17 Determine the sum of the moments of the five forces acting
on the Howe truss about point A.

800 Ib

600 1b l
D o

K

Vo

H 1 L f
}—4ﬂ+4ﬂ+4ﬁ-—1~—4ft+4ﬂ+4ﬂ"

P4.17

4.18 The right support of the truss in Problem 4.17 exerts an
upward force of magnitude G. (Assume that the force acts at the
right end of the truss.) The sum of the moments about A due to the
upward force G and the five downward forces exerted on the truss
is zero. What is the force G?

4.19 The sum of the forces F; and F, is 250 N and the sum of the
' moments of 7, and F; about B is 700 N-m. What are | and F>?
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—2m—f—2m | P4.19

4.20 Consider the beam shown in Problem 4.19. If the two
forces exert a 140 kN-m clockwise moment about A and a
20 kN-m clockwise moment about B, what are F; and F>?

4.21 The force F* = 140 Ib. The vector sum of the forces acting
on the beam is zero, and the sum of the moments about the left
end of the beam is zero.

(a) What are the forces A,, A, and B?

(b) What is the sum of the moments about the right end of the
beam?

- T e -~ e
— - — - —

e fe

1' i 6 ft P4.21

4.22 The vector sum of the three forces is zero, and the sum of
the moments of the three forces about A is zero.

(a) What are F, and Fg?

(b) What is the sum of the moments of the three forces about B?

80N

A v B
¢ 3

re—lp
!

| e
w7

900 mm —— == 400 mm &

P4.22

4.23 The weights (in ounces) of fish A, B, and C are 2.7, 8.1. and
2.1, respectively. The sum of the moments due to the weights of
the fish about the point where the mobile is attached to the ceiling
is zero. What is the weight of fish D?

12 in 3in

6 in 2in
=

7in 2in

e P4.23
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4.24 The weight W = 1.2 kN. The sum of the moments about A
due to W and the force exerted at the end of the bar by the rope is
zero. What is the tension in the rope?

P4.24

4.25 The 160-N weights of the arms AB and BC of the robotic
manipulator act at their midpoints. Determine the sum of the
moments of the three weights about A.

P4.25

4.26 The space shattle’s attitude thrusters exert two forces of
magnitude F = 7.70 kN. What moment do the thrusters exert
about the center of mass G?

22m,
;,
22'm l
Fo l | F
5;, & = —_L .‘60
& < e

18 m

4.27 The force F exerts a 200 ft-1b counterclockwise moment about
A and a 100 ft-1b clockwise moment about B. What are F and 0?

(-5,5) ft

B
B. - ft P4.27
4.28 Five forces act on a link in the gear-shifting mechanism of a
lawn mower. The vector sum of the five forces on the bar is zero.
The sum of their moments about the point where the forces A, and
A, act is zero.
(a) Determine the forces A,, A,, and B.
(b) Determine the sum of the moments of the forces about the
point where the force B acts.

il l
T A
’ 25kN
’ %
650 mm
| 30kN 450 mm
| 4;'>\
i L RS S, Y =, > B
’ l
i 650 mm I 350 mm -{ P4.28

4.29 Five forces act on a model truss built by a civil engineering
student as part of a design project. The dimensions are » = 300 mm
and & = 400 mm; F = 100 N. The sum of the moments of the
forces about the point where A, and A act is zero. If the weight of
the truss is negligible, what is the force B?




4.30 Consider the truss shown in Problem 4.29. The dimensions
are b = 3ftand h = 4 ft; F = 300 Ib. The vector sum of the
forces acting on the truss is zero, and the sum of the moments

of the forces about the point where A, and A, act is zero.

(a) Determine the forces A,, A,, and B.

{b) Determine the sum of the moments of the forces about the
point where the force B acts.

4.31 The mass m = 70 kg. What is the moment about A due to
the force exerted on the beam at B by the cable?

4.32 Consider the system shown in Problem 4.31. The beam will
collapse at A if the magnitude of the moment about A due to the
force exerted on the beam at B by the cable exceeds 2 kN-m.
What is the largest mass m that can be suspended?

4.33 The bar AB exerts a force at B that helps support the verti-
cal retaining wall. The force is parallel to the bar. The civil engi-
neer wants the bar to exert a 38 kN-m moment about O. What is

the magnitude of the force the bar must exert?

3
i
1
1 [
. $
> i
o 4 m
4 A |
1\ -
I m
0
\
—=1m 3m

P4.33

4.34 A contestant in a fly-casting contest snags his line in some
grass. If the tension in the line is 5 Ib, what moment does the force
exerted on the rod by the line exert about point f/, where he holds
the rod?
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P TN

7 ft 15 ft {

P4.34

4.35 The cables AB and AC help support the tower. The tension
in cable AB is 5 kN. The points A, B, C, and O are contained in
the same vertical plane.

(a) What is the moment about O due to the force exerted on the
tower by cable AB?

(b) If the sum of the moments about O due to the forces exerted
on the tower by the two cables is zero, what is the tension in
cable AC?

-l

P4.35

4.36 The cable from B to A (the sailboat’s forestay) exerts a
230-N force at B. The cable from B to C (the backstay) exerts a
660-N force at B. The bottom of the sailboat’s mast is located at
x = 4m,y = 0. What is the sum of the moments about the bot-
tom of the mast due to the forces exerted at B by the forestay and
backstay?

B (4,13) m

 C
9.1)m

A
(0.1.2)y m

* P4.36
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4.37 The tension in each cable is the same. The forces exerted on  4.41 The hydraulic cylinder BC exerts a 2200-1b force on the
the beam by the three cables exert a 1.2 kN-m counterclockwise boom of the crane at C. The force is parallel to the cylinder. The
moment about O. What is the tension in the cables? angle a = 40°. What is the moment of the force about A?

—I—LQO 5 ) =)
| | ‘
{-—lm—-rl m——;{<—lm4~]l

P4.37

4.38 The tension in cable AB is 300 lb. The sum of the moments
about O due to the forces exerted on the beam by the two cables is
zero. What is the magnitude of the sum of the forces exerted on
the beam by the two cables?

" P4.41

R 4.42 The hydraulic cylinder BC in Problem 4.41 exerts a 2200-1b
force on the boom of the crane at C. The force is parallel to the cylin-
der. The cable supporting the suspended crate exerts a downward

6 ft force at the end of the boom equal to the weight of the crate. The

angle & = 35°. If the sum of the moments about A due to the two

forces exerted on the boom is zero, what is the weight of the crate?

4.43 The unstretched length of the spring is 1 m, and the spring

constant is k = 20 N/m. If @« = 30°, what is the moment about A

due to the force exerted by the spring on the circular bar at B?

P4.38

/) 4.39 The beam shown in Problem 4.38 will safely support the
forces exerted by the two cables at A if the magnitude of the hori-
zontal component of the total force exerted at A does not exceed
1000 Ib and the sum of the moments about O due to the forces
exerted by the cables equals zero. Based on these criteria, what are
the maximum permissible tensions in the two cables?

4.40 The hydraulic cylinder BC exerts a 300-kN force on the
boom of the crane at C. The force is parallel to the cylinder. What

is the moment of the force about A? P4.48
6 4.44 The hydraulic cylinder exerts an 8-kN force at B that is par-

(o) allel to the cylinder and points from C toward B. Determine the

o © moments of the force about points A and D.
7 §‘\\\
T £ |
2.4jm _I_W —
| | m
1 1 Ym | B {
| L1 J
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i ———+ P4.40 0.15m r*‘r- 0.6 m-— Scoop P4.44
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BEEN The Moment Vector

vector and explain how it is evaluated. We then show that when we use the
two-dimensional description of the moment described in Section 4.1, we are
specifying the magnitude and direction of the moment vector.
Consider a force vector F and point P (Fig. 4.7a). The moment of F P
about P is the vector

The moment of a force about a point is a vector. In this section we define this /
F

Mp,=r XF. 4.2) @

where r is a position vector from P to any point on the line of action of F /

] /
(Fig. 4.7b).
Magnitude of the Moment %

/
From the definition of the cross product, the magnitude of M, is //
r
M| = [r][F]sin6. 7
/
where 6 is the angle between the vectors r and F when they are placed tail to /
tail. The perpendicular distance from P to the line of action of F is (b)
D = |r|sin® (Fig. 4.7¢). Therefore the magnitude of the moment M, equals ’
the product of the perpendicular distance from P to the line of action of F and /
the magnitude of F: /
F
IM;| = DJF|. 4.3)
/
Notice that if you know the vectors M, and F, you can solve this equation for /0
’ the perpendicular distance D. P_E

"Sense of the Moment D~

' We know from the definition of the cross product that M, is perpendicular to

both r and F. That means that M, is perpendicular to the plane containing P Figure 4.7
'and F (Fig. 4.8a). Notice in this figure that we denote a moment by a circular () The force F and point P.

arrow around the vector. (b) A vector r from P to a point on the line
of action of F.

The direction of M, also indicates the sense of the moment: If you point
(c) The angle 6 and the perpendicular

the thumb of your right hand in the direction of M, the “arc” of your fingers

indicates the sense of the rotation that F tends to cause about P (Fig. 4.8b). distance .
| - .
) e
A7 \ A
| / I\ 7
| /
M, / F
| \‘/-/ ,
| u / //
‘ \Q})v// /‘/
P
D> - ] Figure 4.8
Plane containing o . .
| > rand F | L~ (a) M, is perpendicular to the plane
‘ . ; ~ containing P and F.
-3 i (b) The direction of M, indicates the sense

(a) (b) of the moment.
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Figure 4.9

(a) A vector r from P to the line of action
of F.

(b) A different vector r’.

Cr=r"+u

The result obtained from Eq. (4.2) doesn’t depend on where the vecto
intersects the line of action of F. Instead of using the vector r in Fig. 4.9a,
could use the vector r' in Fig. 4.9b. The vector r = r’ + u, where u is par.
lel to F (Fig. 4.9¢). Therefore -

rXF=(r+u)XF=r"XF

because the cross product of the parallel vectors u and F is zero.

In summary, the moment of a force F about a point P has three properties:

1. The magnitude of M, is equal to the product of the magnitude of F and
the perpendicular distance from P to the line of action of F. If the line of
action of F passes through P, M, = 0.

2. M; is perpendicular to the plane containing P and F.

3. The direction of M, indicates the sense of the moment through a right-
hand rule (Fig. 4.8b). Since the cross product is not commutative, you
must be careful to maintain the correct sequence of the vectors in the
equation M, = r X F.

Let us determine the moment of the force F in Fig. 4.10a about the point
P. Since the vector r in Eq. (4.2) can be a position vector to any point on the
line of action of F, we can use the vector from P to the point of application of
F (Fig. 4.10b):

r=(12-3)i+ (6 —-4)j+ (=5— 1k =9i + 2j — 6k (ft).
The moment is

i j k
M,=rXF=19 2 —6|=38i —87j + 28Kk (ft-1b).
4 4 7
The magnitude of M,

IM,| = V/(38)* + (=87)% + (28)> = 99.0 fi-Ib,

equals the product of the magnitude of F and the perpendicular distance D
from point P to the line of action of F. Therefore
M| 990 fi-lb
[F| 91b
The direction of M, tells us both the orientation of the plane containing P
and F and the sense of the moment (Fig. 4.10c).

= 11.0 ft.



y ¥
F=4i+4j+ 7k (Ib)
F
(12,6,-5) ft r (12, 6,-5) ft
P, P,
(3.4, 1) ft 3,4, 1) f1
X X
(a) (b)
Figure 4.10

(a) A force F and point P.

(b) The vector r from P to the point of application of F.

(¢) M; is perpendicular to the plane containing P and F. The right-hand rule
indicates the sense of the moment.

Relation to the Two-Dimensional Description

If our view is perpendicular to the plane containing the point P and the force
F, the two-dimensional description of the moment we used in Section 4.1
specifies both the magnitude and direction of M. In this situation, M, is per-
pendicular to the page, and the right-hand rule indicates whether it points out
of or into the page.

For example, in Fig. 4.11a, the view is perpendicular to the x—y plane
and the 10-N force is contained in the x—y plane. Suppose that we want to de-
termine the moment of the force about the origin O. The perpendicular dis-
tance from O to the line of action of the force is 4 m. The two-dimensional
description of the moment of the force about O is that its magnitude is
(4 m)(10 N) = 40 N-m and its sense is counterclockwise, or

Mo = 40 N‘m.
D! y
10j (N) 10j (N)
]
" (4.2,0)m ‘\ (4,2,0) m
JO X (0) X
| (a) /

Figure 4.11
} (b)

the page.

[}
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containing
Pand F

10j (N)

4,2,0)m

©

(a) The force is contained in the x—y plane.
(b) The sense of the moment indicates that M, points out of

(¢) The vector r from O to the point of application of F.
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That tells us that the magnitude of the vector M, is 40 N-m, and the righ
hand rule (Fig. 4.11b) indicates that it points out of the page. Therefore

M, = 40k (N-m).

We can confirm this result by using Eq. (4.2). If we let r be the vector from
to the point of application of the force (Fig. 4.11c¢), ‘

M, = r X F = (4i + 2j) X 10j = 40k (N-m). |

As this example illustrates, the two-dimensional description of the moment
determines the moment vector. The converse is also true. The magnitude o
M,, equals the product of the magnitude of the force and the perpendicular
distance from O to the line of action of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>