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Unit Conversion Factors

TIME ACCELERATION

1 min = 60 s 1 m/s^ = 3.281 ft/s^ = 39.37 in/s^

1 hr = 60 min = 3600 s 1 in/s^ = 0.08333 ft/s^ = 0.02540 m/s^

1 day = 24 hr = 86,400 s 1 ft/s^ = 0.3048 m/s^

1 g = 9.81 m/s- = 32.2 ft/s^

LENGTH

1 m = 3.281 ft = 39.37 in.
MASS

1 km = 0.6214 mi 1 kg = 0.0685 slug

1 in. = 0.08333 ft = 0.02540 m 1 slug = 14.59 kg

I ft - 12 in. = 0.3048 m 1 t (metric tonne) = 10' kg = 68.5 slug

Imi = 5280 ft = 1.609 km
1 nautical mile = 1852 m = 6080 ft FORCE

ANGLE 1 N = 0.2248 lb

1 lb = 4.448 N
Irad = 180/77 deg = 57.30 deg 1 kip = 1000 lb = 4448 N
1 deg = 7r/180 rad = 0.01745 rad 1 ton = 2000 lb = 8896 N
1 revolution = Itt rad = 360 deg

1 rev/min (rpm) = 0.1047 rad/s WORK AND ENERGY

AREA IJ = 1 N-m = 0.7376 ft-lb

1 ft-lb = 1.356 J

1 mm- = 1.550 X 10"' in' = 1.076 X 10"^ ft^

Im- = 10.76 ft- POWER
1 in= = 645.2 mm^
1 ft^ = 144 in^ = 0.0929 m^ 1 W = 1 N-m/s = 0.7376 ft-lb/s = 1.340 X 10"^ hp

1 ft-lb/s = 1.356W
VOLUME 1 hp = 550 ft-lb/s = 746W

1 mm^ = 6.102 X 10"^ in^ = 3.531 X 10"^ ft' PRESSURE
1 m^ = 6.102 X 10^ in^ = 35.31 ft'

1 in-' = 1.639 X 10' mm' = 1.639 X 10

1 ft^ = 0.02832 m-'

--^m'
1 Pa = 1 N/m- = 0.0209 lb/ft- = 1.451 X lO-^b/in^

1 bar = 10-' Pa

1 Ib/in^ (psi) = 144 Ib/ft^ = 6891 Pa

VELOCITY 1 lb/ft- = 6.944 X 10"' Ib/in^ = 47.85 Pa

1 m/s = 3.281 ft/s

1 km/hr = 0.2778 m/s = 0.6214 mi/hr = 0.9113 ft/s

1 mi/hr = (88/60) ft/s = 1.609 km/hr = 0.4470 m/s
1 knot = 1 nautical mile/hr = 0.5144 m/s = 1.689 ft/s
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Our original objective in writing this book was to present the foundations and

appHcations of statics as we do in the classroom. We used many sequences of

figures, emulating the gradual development of a figure by a teacher explaining

a concept. We stressed the importance of visual analysis in gaining understanding,

especially through the use of free-body diagrams. Because inspiration is so

conducive to learning, we based many of our examples and problems on a variety

of modem engineering applications. With encouragement and help from many

students and fellow teachers who have used the book, we continue and expand

upon these themes in this edition.

Examples that Teach

The Strategy/Solution/Discussion framework employed by most of our

examples is designed to emphasize the critical importance of good problem-

solving skills. Our objective is to teach students how to approach problems

and critically judge the results.

"Strategy" sections

show the preliminary

planning needed to

begin a solution. What
principles and equa-

tions apply? What must

be determined, and in

what order?

The solution is then

described in detail, using

sequences of figures

when needed to clarify

the steps.

"Discussion" sections

point out properties

of the solution, or

comment on alterna-

tive solution methods,

or suggest out ways

to check answers.

Example 9.3

Analyzing a Friction Bral<e

The motion of the disk in Fig. 9.1 1 is controlled by the friction force exerted

ai C by the brake ABC. The hydraulic actuator BE exerts a horizontal force of

magnitude F on the brake at B. The coefficients of friction between the disk

and the brake are /x^ and ju,,,- What couple M is necessary to rotate the disk at

a constant rate in the counterclockwise direction?

V

—^
/ M \

h •£i— *

t
F -t

A
Figure 9.11

Strategy

We can use the free-body diagram of the disk to obtain a relation between M
and the reaction exerted on the disk by the brake, then use the free-body dia-

gram of the brake to determine the reaction in terms of F.

Solution

We draw the free-body diagram of the disk in Fig. a. representing the force

exerted by the brake by a single force R, The force R opposes the counter-

clockwise rotation of the disk, and the friction angle is the angle of kinetic

friction ^i = arcian ^^. Summing moments about D. we obtain

SW,p.,.„,„, = M - (/?sine,)r = 0.

Then, from the free-body diagram of the brake (Fig. b). we obtain

SA/,, = -F\ -h + (Rcos0^)h - (/?sin«Jfo = 0.

We can solve these two equations for M and R. The solution for the couple M is

{l/2}/irf sin^k i\/2)hr Ffi^^

/? cos 6*1^
- h sinWv ^Mw

Discussion

If /J.1, IS sufficiently small, then the denominator of the solution for the couple.

(h cosf/i - b sin^k). is positive. As ;Ui^ becomes larger, the denominator be-

comes smaller, because cos^i^ decreases and sinfeii. increases. As the denomi-

nator approaches zero, the couple required to rotate the disk approaches

infinity. To understand this result, notice that the denominator equals zero

when Ian 6^ = h/b. which means that the line of action of R passes through

point A (Fig. c). As ^^ becomes larger and the line of action of R approaches

point A, the magnitude of R necessary to balance the moment of F about A

approaches infinity and. as a result. M approaches mfinity.

(a) The tree-body diagram of the disk.

(b) The free-body diagram of the brake.

(c) The line of action of R passing through

point A.
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Engineering Design

We include simple design considerations in many examples and problems without

compromising emphasis on fundamental mechanics. Design problems are marked

with a ® Icon. Optional exam-pies titled "Application to Engineering" provide

more detailed discussions of the uses of statics in engineering design:

Example 4.9

*-
Application to Engineering:

Rotating Machines m

The crewman in Fig, 4.25 exerts the forces shown on the handles of the cof-

fee grinder winch, where F = 4j + 32k N. Determine the total moment he

exerts (a) about point O. (b) about the axis of the winch, which coincides with

the X axis.

Hgure 4.25

(0.18. -0.28. -0.1 In

Strategy

(a) To obtain the total moment about point O. we must sum the moments of

the two forces about O. Let the sum be denoted by 2M„. (b) Because point

O is on the x axis, the total moment about the x axis is the component of

SM„ parallel to the x axis, which is the x component of SM,,.

A "Design Issues"

section then

discusses design

implications of

the application

and places it in a

broader engineer-

ing context.

L/esign Issues

The w inch in this example is a simple representative of a class of rotating ma-
chines that includes hydrodynamic and aerodynamic power turbines, pro-

pellers, jet engines, and electric motors and generators. The ancestors of

hydrodynamic and aerodynamic power turbines—water wheels and wind-

mills—were among the earliest machines. These devices illustrate the impor-

tance of the ca>cept of the moment of a force about a line. Their common
feature is a owt designed to rotate and perform some function when it is sub-

jected ti^rmomenl about its axis of rotation. In the case of the winch, the

Verted on the handles by the crewman exerl a moment about the axis

liation. causing the winch to rotate and wind a rope onto a drum, trim-

the boat's sails. A hydrodynamic power turbine (Fig. 4.26) has turbine

blades that are subjected to forces by flowing water, exerting a moment about

the axis of rotation. This moment rotates the shaft to which the blades are at-

tached, turning an electric generator that is connected to the same shaft.

A specific engineer-

ing application is

first described and

analyzed.

Figure 4.26

A hydroelectric turbine. Water flowing

through the turbine blades exerts a moment
about the axis of the shaft, turning the

licncrator
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Computational Mechanics

Some instructors prefer to teach statics without requiring the use of a computer.

Others use statics as an opportunity to introduce students to the use of

computers in engineering, having them either write their own programs in a

lower level language or use higher level problem-solving software. Our book

is suitable for each of these approaches. We provide optional, self-contained

"Computational Mechanics" sections with examples and problems designed

for solution by a programmable calculator or computer. In addition, tutorials

on using Mathcad® and Matlab® in engineering mechanics are available from

our texts website. See supplements for a further description.

Computational Example 9.11

Figure 9.33

(a) Moving the slider to the right a

distance x.

I m

Img

^' IN

(b) Free-body diagram of the block when

slip is impending.

IDlOll
iDllOO

The mass of the block A in Fig. 9.33 is 20 kg, and the coefficient of static

friction between the block and the floor is /x, = 0.3. The spring constant

k = 1 kN/m, and the spring is unstretched. How far can the shder B be moved

to the right without causing the block to slip?

Solution

Suppose that moving the sUder B a distance x to the right causes impending

slip of the block (Fig. a). The resulting stretch of the spring is VI + j:" - 1 m.

so the magnitude of the force exerted on the block by the spring is

(9.23)F, = k{Vl + X- - 1).

From the free-body diagram of the block (Fig. b), we obtain the equilibrium

equations

2F =

2F, =

Vl + X'

1

F, - fjL.N = 0,

F, + N - mg = 0.

Vl + x-

Substituting Eq. (9.23) into these two equations and then eliminating N. we

can write the resulting equation in the form

h{x) = k{x + MsXVl + X- - 1) - M>'"gVl + X- = 0.

We must obtain the root of this function to determine the value of .v corresponding

to impending sUp of the block. From the graph of h(x) in Fig. 9.34, we estimate

that h{x) = at jr = 0,43 m. By examining computed results near this value of x.

we see that h{x) = 0, and slip is impending, when x is approximately 0.4284 m.

0.1 0.2 0.3 0.4 0.5 0.6

.V (meters)

Figure 9.34

Graph of the function h{x).

x(m) h{x)

0.4281 -0.1128

0.4282 -0.0777

0.4283 -0.0425

0.4284 -0.0074

0.4285 0.0278

0.4286 0.0629

0.4287 0.0981
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Consistent Use of Color

To help students recognize and interpret elements of figures, we use consistent

indentifying colors:

Unii vectors Forces Positions Couples

/ s/

New to the Third Edition

Positive responses from users and reviewers have led us to retain the basic

organization, content, and features of the first edition. During our preparation

of this edition, we examined how we presented each concept, example, figure,

summary statement, and problem. Where necessary, we made changes,

additions, or deletions to simplify and clarify the presentation. In response to

requests, we made the following notable changes:

• New Design Problems appear at the end of most chapters, as well as

special Design Experiences. Design Experiences in particular are

more involved in nature and are appropriate to assign to teams.

Problems with design intent are marked with a Q icon.

• We have added new examples where users indicated more were need-

ed. Many of the new examples continue our emphasis on realistic and

motivational applications and engineering design.

• We have revised many existing problems to reflect metric versus

English units. We have also added more than 200 new problems. As

with the examples, many of the new problems focus on placing statics

within the context of engineering practice.

• New sets of Study Questions appear after most sections to help

students check their retention of key concepts.

• Each example is clearly labeled for its teaching purpose.

• We have redesigned the text and also added photographs throughout to

help students connect the text to real world applications and situations.

• An extensive new supplement program includes web-based assessment

software, visualization software, and much more. See the Supplements

description for complete information.

Commitment to Students and Instructors

In revising the textbook and solutions manual, we have taken precautions

to ensure accuracy to the best of our ability. We have each solved the new
problems in an effort to be sure that their answers are correct and that they
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are of an appropriate level of difficulty. Karim Nohra of the University of

South Florida also checked the text, examples, problems and solutions manual.

Any errors that remain are the responsibility of the authors. We welcome

communication from students and instructors concerning errors or areas for

improvement. Our mailing address is Department of Aerospace Engineering

and Engineering Mechanics, University of Texas at Austin, Austin, Texas

78712. Our electronic mail address is abedford@mail.utexas.edu.

Supplements

student Supplements

Web Assessment Software lets students solve problems from the text with

randomized variables so each student solves a slightly different problem. After

students have submitted their answers, they receive the actual answers and can

keep trying similar problems until they are successful. By integrating with an

optional course management system, professors can have student results

recorded electronically. Contact your PH rep for more information. This site

is password protected—passwords appear in each text's accompanying Statics

Study Pack.

Statics Study Pack is designed to give students the tools to improve their

study skills. The Statics Study Pack comes bundledforfree with every Third

Edition of Statics sold in bookstores. It consists of three study components^

a free body-diagram workbook, a Visualization CD based on Working Model

Software, and an access code to a website with 500 sample Statics and

Dynamics problems and solutions.

• Free-Body Diagram Workbook prepared by Peter Schiavone of the

University of Alberta. This workbook begins with a tutorial on free

body diagrams and then includes 50 practice problems of progressing

difficulty with complete solutions. Further "strategies and tips" help

students understand how to use the diagrams in solving the accompa-

nying problems.

• Working Model CD contains 25 pre-set simulations of Statics

examples in the text that include questions for further exploration.

Simulations are powered by the Working Model Engine and were

created with actual artwork from the text to enhance their correlation

with the text.

• Password-Protected Website contains 500 sample Statics and

Dynamics problems for students to study. Problems are keyed to each

chapter of the text and contain complete solutions. All problems are

supplemental and do not appear in the Third Edition. Student

passwords are printed on the inside cover of the Free-Body Diagram

Workbook. To access this site, students should go to http://www.pren-

hall.com/bedford and follow the on-line directions to register.

The Statics Study Pack is available as a stand-alone item. Order stand-alone

Study Packs with the ISBN 0-13-061574-9.

IVIATIJVB®/Mathcad®Tutorials Twenty tutorials showing how to use

computational software in engineering mechanics. Each tutorial discusses a
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basic mechanics concept, and then shows how to solve a specific problem

related to this concept using MATLAB/Mathcad. There are twenty tutorials each

for Matlab and Mathcad, and are available in PDF format from the password-

protected area of the Bedford website. Passwords appear in each student study

pack. Worksheets were developed by Ronald Larsen and Stephen Hunt of

Montana State University—Bozeman.

Website—http://www.prenhall.com/bedford contains multiple-choice

and True/False quizzes keyed to each chapter in the book developed by Karim

Nohra of the University of South Florida. Web Assessment, MATLAB/Mathcad

tutorials, and Study Pack questions and solutions are all available at the

password protected part of this website. Passwords for the protected portion

are printed in the Statics Study Pack.

ESource ACCESS Students may obtain a password to access to Prentice

Hall's ESource, a more than 5000 page on-line database of Introductory

Engineering titles. Topics in the database include mathematics review.

Matlab, Mathcad, Excel, programming languages, engineering design, and

many more. This database is fully searchable and available 24 hours a da\

from the web. To learn more, visit http://www.prenhaU.com/esource. Contact

either your sales rep or engineering@prenhall.com for pricing and bundling

options.

Instructor Supplements

Instructor's Solutions Manual with Presentation CD This supplement

available to instructors contains completely worked out solutions. Each

solution comes with problem statement as well as associated artwork. The

accompanying CD contains PowerPoint slides of art from examples and text

passages, as well as pdf files of all art from the book.

Course Management Prentice Hall will be supporting Bedford/Fowler with

several course management options. Contact your sales rep or

engineering@prenhall.com for complete information including prices and

availability dates as well as how to use course management with our web

assessment software.
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ENGINEERING MECHANICS

STATICS



The architects and engineers are guided by the

principles of statics during each step of the design

and construction of a building. Statics is one of the

sciences underlying the art of structural design.
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Engineers are responsible for the design, construction, and testing of

the devices we use, from simple things such as chairs and pencil

sharpeners to complicated ones such as dams, cars, airplanes, and

spacecraft. They must have a deep understanding of the physics underlying

these devices and must be familiar with the use of mathematical models to

predict system behavior. Students of engineering begin to learn how to ana-

lyze and predict the behavior of physical systems by studying mechanics.
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Engineering and Mechanics

How do engineers design complex systems and predict their characteristics

before they are constructed? Engineers have always relied on their knowledge

of previous designs, experiments, ingenuity, and creativity to develop new de-

signs. Modern engineers add a powerful technique: They develop mathemati-

cal equations based on the physical characteristics of the devices they design.

With these mathematical models, engineers predict the behavior of their

designs, modify them, and test them prior to their actual construction. Aero-

space engineers use mathematical models to predict the paths the space shut-

tle will follow in flight. Civil engineers use mathematical models to analyze

the effects of loads on buildings and foundations.

At its most basic level, mechanics is the study of forces and their effects.

Elementary mechanics is divided into statics, the study of objects in equilibri-

um, and dynamics, the study of objects in motion. The results obtained in ele-

mentary mechanics apply directly to many fields of engineering. Mechanical

and civil engineers who design structures use the equilibrium equations de-

rived in statics. Civil engineers who analyze the responses of buildings to

earthquakes and aerospace engineers who determine the trajectories of satel-

lites use the equations of motion derived in dynamics.

Mechanics was the first analytical science; consequently fundamental con-

cepts, analytical methods, and analogies from mechanics are found in virtually

every field of engineering. Students of chemical and electrical engineering gain

a deeper appreciation for basic concepts in their fields such as equilibrium,

energy, and stability by learning them in their original mechanical contexts. By

studying mechanics, they retrace the historical development of these ideas.

Learning Meclianics

Mechanics consists of broad principles that govern the behavior of objects. In

this book we describe these principles and provide examples that demonstrate

some of their applications. Although it is essenfial that you practice working

problems similar to these examples, and we include many problems of this

kind, our objective is to help you understand the principles well enough to

apply them to situations that are new to you. Each generation of engineers

confronts new problems.

Problem Solving

In the study of mechanics you learn problem-solving procedures you will use in

succeeding courses and throughout your career. Although different types of prob-

lems require different approaches, the following steps apply to many of them:

• Idendfy the information that is given and the information, or answer, you

must determine. It's often helpful to restate the problem in your own

words. When appropriate, make sure you understand the physical system

or model involved.

• Develop a strategy for the problem. This means identifying the principles

and equations that apply and deciding how you will use them to solve the
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problem. Whenever possible, draw diagrams to help visualize and solve

the problem.

• Whenever you can, try to predict the answer. This will develop your

intuition and will often help you recognize an incorrect answer.

• Solve the equations and, whenever possible, interpret your results and

compare them with your prediction. This last step is a reality check. Is

your answer reasonable?

Calculators and Computers

Most of the problems in this book are designed to lead to an algebraic expres-

sion with which to calculate the answer in terms of given quantities. A calcu-

lator with trigonometric and logarithmic functions is sufficient to determine

the numerical value of such answers. The use of a programmable calculator

or a computer with problem-solving software such as Mathcad or Matlab is

convenient, but be careful not to become too reliant on tools you will not have

during tests.

Sections headed "Computational Mechanics" contain examples and

problems that are suitable for solution with a programmable calculator or a

computer.

Engineering Applications

Although the problems are designed primarily to help you learn mechanics,

many of them illustrate uses of mechanics in engineering. Sections headed

"Application to Engineering" describe how mechanics is applied in various

fields of engineering.

We also include problems that emphasize two essential aspects of

engineering:

• Design. Some problems ask you to choose values of parameters to satisfy

stated design criteria.

• Safety. Some problems ask you to evaluate the safety of devices and

choose values of parameters to satisfy stated safety requirements.

Subsequent Use of This Text

This book contains tables and information you will find useful in subsequent

engineering courses and throughout your engineering career. In addition, you

will often want to review fundamental engineering subjects, both during the

remainder of your formal education and when you are a practicing engineer.

The most efficient way to do so is by using the textbooks with which you are

familiar. Your engineering textbooks will form the core of your professional

library.

Fundamental Concepts

Some topics in mechanics will be familiar to you from everyday experience

or from previous exposure to them in mathematics and physics courses. In

this section we briefly review the foundations of elementary mechanics.
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Numbers

Engineering measurements, calculations, and results are expressed in num-

bers. You need to know how we express numbers in the examples and prob-

lems and how to express the results of your own calculations.

Significant Digits This term refers to the number of meaningful (that is,

accurate) digits in a number, counting to the right starting with the first

nonzero digit. The two numbers 7.630 and 0.007630 are each stated to four

significant digits. If only the first four digits in the number 7,630,000 are

known to be accurate, this can be indicated by writing the number in scien-

tific notation as 7.630 X 10^

If a number is the result of a measurement, the significant digits it con-

tains are limited by the accuracy of the measurement. If the result of a meas-

urement is stated to be 2.43, this means that the actual value is believed to be

closer to 2.43 than to 2.42 or 2.44.

Numbers may be rounded off to a certain number of significant digits.

For example, we can express the value of tt to three significant digits, 3.14,

or we can express it to six significant digits, 3.14159. When you use a calcu-

lator or computer, the number of significant digits is limited by the number of

digits the machine is designed to carry.

Use of Numbers in This Book You should treat numbers given in prob-

lems as exact values and not be concerned about how many significant digits

they contain. If a problem states that a quantity equals 32.2, you can assume

its value is 32.200. . . . We express intermediate results and answers in the ex-

amples and the answers to the problems to at least three significant digits. If

you use a calculator, your results should be that accurate. Be sure to avoid

round-off errors that occur if you round off intermediate results when making

a series of calculations. Instead, carry through your calculations with as much
accuracy as you can by retaining values in your calculator.

Space and Time

Space simply refers to the three-dimensional universe in which we live. Our

daily experiences give us an intuitive notion of space and the locations, or po-

sitions, of points in space. The distance between two points in space is the

length of the straight line joining them.

Measuring the distance between points in space requires a unit of length.

We use both the International System of units, or SI units, and U.S. Custom-

ary units. In SI units, the unit of length is the meter (m). In U.S. Customary

units, the unit of length is the foot (ft).

Time is, of course, familiar—our lives are measured by it. The daily

cycles of light and darkness and the hours, minutes, and seconds measured by

our clocks and watches give us an intuitive notion of time. Time is measured

by the intervals between repeatable events, such as the swings of a clock pen-

dulum or the vibrations of a quartz crystal in a watch. In both SI units and

U.S. Customary units, the unit of time is the second (s). The minute (min),

hour (hr), and day are also frequently used.

If the position of a point in space relative to some reference point

changes with time, the rate of change of its position is called its velocity, and

the rate of change of its velocity is called its acceleration. In SI units, the

velocity is expressed in meters per second (m/s) and the acceleration is
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expressed in meters per second per second, or meters per second squared

(m/s^). In U.S. Customary units, the velocity is expressed in feet per second

(ft/s) and the acceleration is expressed in feet per second squared (ft/s").

Newton's Laws

Elementary mechanics was established on a firm basis with the publication in

1 687 of Philosophiae naturalis principia mathematica, by Isaac Newton. Al-

though highly original, it built on fundamental concepts developed by many

others during a long and difficult struggle toward understanding (Fig. 1.1).

Peloponnesian War

Roman invasion of Britain

Coronation of Charlemagne

Norman conquest of Britain

Signing of Magna Carta

Bubonic plague in Europe

Printing of Gutenberg Bible

Voyage of Columbus

Founding of Jamestown Colony

Thirty Years" War

Pilgrims' arrival in Massachusetts

Founding of Harvard University

Settlement of Carolina

Pennsylvania grant to William Penn

Salem witchcraft trials

400 B.C.

H

— A.D. 400

— 800 —

1200

1400

— 1600 —

— 1650 —

i— 1700

Aristotle: Statics of levers, speculations on dynamics

Archimedes: Statics of levers, centers of mass, buoyancy

Hero of Alexandria: Statics of levers and pulleys

Pappus: Precise definition of center of mass

John Philoponus: Concept of inertia

Jordanus of Nemore: Stability of equilibrium

Albert of Saxony: Angular velocity

Nicole d'Oresme: Graphical kinematics, coordinates

William Heytesbury: Concept of acceleration

Nicolaus Copernicus: Concept of the solar system

Dominic de Soto: Kinematics of falling objects

Tycho Brahe: Observations of planetary motions

Simon Stevin: Principle of virtual work

Johannes Kepler: Geometry and kinematics of

planetary motions

Galileo Galilei: Experiments and analyses in statics

and dynamics, motion of a projectile

Rene Descartes: Cartesian coordinates

Evangelista Torricelli: Experiments on hydrodynamics

Blaise Pascal: Analyses in hydrostatics

John Wallis, Christopher Wren. Christiaan Huyghens:

Impacts between objects

Isaac Newton: Concept of mass, laws of motion,

postulate of universal gravitation,

analyses of planetary motions

Figure 1.1

Chronology of developments in mechanics up to the publication of Newton's

Principia in relation to other events in history.
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Newton stated three "laws" of motion, which we express in modem terms:

1. When the sum of the forces acting on a particle is zero, its velocity is

constant. In particular, if the particle is initially stationary, it will remain

stationary.

2. When the sum of theforces acting on a particle is not zero, the sum of the

forces is equal to the rate ofchange of the linear momentum of the

particle. If the mass is constant, the sum of the forces is equal to the

product ofthe mass of the particle and its acceleration.

3. The forces exerted by two particles on each other are equal in magnitude

and opposite in direction.

Notice that we did not define force and mass before stating Newton's

laws. The modem view is that these terms are defined by the second law. To

demonstrate, suppose that we choose an arbitrary object and define it to have

unit mass. Then we define a unit of force to be the force that gives our unit

mass an acceleration of unit magnitude. In principle, we can then determine

the mass of any object: We apply a unit force to it, measure the resulting

acceleration, and use the second law to determine the mass. We can also de-

termine the magnitude of any force: We apply it to our unit mass, measure the

resulting acceleration, and use the second law to determine the force.

Thus Newton's second law gives precise meanings to the terms mass and

force. In SI units, the unit of mass is the kilogram (kg). The unit of force is the

newton (N), which is the force required to give a mass of one kilogram an ac-

celeration of one meter per second squared. In U.S. Customary units, the unit

of force is the pound (lb). The unit of mass is the slug, which is the amount of

mass accelerated at one foot per second squared by a force of one pound.

Although the results we discuss in this book are applicable to many of

the problems met in engineering practice, there are limits to the validity

of Newton's laws. For example, they don't give accurate results if a problem

involves velocides that are not small compared to the velocity of light

(3 X 10** m/s). Einstein's special theory of relativity applies to such prob-

lems. Elementary mechanics also fails in problems involving dimensions that

are not large compared to atomic dimensions. Quantum mechanics must be

used to describe phenomena on the atomic scale.

Study Questions
1. What is the definition of the significant digits of a number?

2. What are the units of length, mass, and force in the SI system?

Units

The SI system of units has become nearly standard throughout the world. In

the United States, U.S. Customary units are also used. In this section we sum-

marize these two systems of units and explain how to convert units from one

system to another.

International System of Units

In SI units, length is measured in meters (m) and mass in kilograms (kg).

Time is measured in seconds (s), although other familiar measures such as

minutes (min), hours (hr), and days are also used when convenient. Meters,
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kilograms, and seconds are called the base units of the SI system. Force is

measured in newtons (N). Recall that these units are related by Newton's

second law: One newton is the force required to give an object of one kilo-

gram mass an acceleration of one meter per second squared:

1 N = (1 kg)(l m/s^) = 1 kg-m/sl

Because the newton can be expressed in terms of the base units, it is called a

derived unit.

To express quantities by numbers of convenient size, multiples of units

are indicated by prefixes. The most common prefixes, their abbreviations, and

the multiples they represent are shown in Table 1.1. For example, 1 km is

1 kilometer, which is 1000 m, and 1 Mg is 1 megagram, which is 10^ g, or

1000 kg. We frequently use kilonewtons (kN).

Table 1.1 The common prefixes used in SI units

and the multiples they represent.

Prefix Abbreviation Multiple

nano- n lo--^

micro- M 10"^

milli- m 10-3

kilo- k 10^

mega- M 10*

giga- G 10^

U.S. Customary Units

In U.S. Customary units, length is measured in feet (ft) and force is measured

in pounds (lb). Time is measured in seconds (s). These are the base units of

the U.S. Customary system. In this system of units, mass is a derived unit.

The unit of mass is the slug, which is the mass of material accelerated at one

foot per second squared by a force of one pound. Newton's second law states

that

1 lb = (1 slug)(lft/s^).

From this expression we obtain

1 slug = 1 Ib-sVft.

We use other U.S. Customary units such as the mile (1 mi = 5280 ft) and

the inch (1 ft = 12 in.). We also use the kilopound (kip), which is 1000 lb.

Angular Units

In both SI and U.S. Customary units, angles are normally expressed in radi-

ans (rad). We show the value of an angle 6 in radians in Fig. 1.2. It is defined

to be the ratio of the part of the circumference subtended by 6 to the radius of

the circle. Angles are also expressed in degrees. Since there are 360 degrees

Figure 1.2

Definition of an angle in radians.
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/^ 5280ft

V 1 mi
and

Ihr

3600 s

(360°) in a complete circle, and the complete circumference of the circle is

2ttR, 360° equals lir rad.

Equations containing angles are nearly always derived under the assump-

tion that angles are expressed in radians. Therefore when you want to substi-

tute the value of an angle expressed in degrees into an equation, you should

first convert it into radians. A notable exception to this rule is that many cal-

culators are designed to accept angles expressed in either degrees or radians

when you use them to evaluate functions such as sin 6.

Conversion of Units

Many situations arise in engineering practice that require you to convert val- >

ues expressed in units of one kind into values in other units. If some data in a
'

problem are given in terms of SI units and some are given in terms of U.S.

Customary units, you must express all of the data in terms of one system of

units. In problems expressed in terms of SI units, you will occasionally be

given data in terms of units other than the base units of seconds, meters, kilo-

grams, and newtons. You should convert these data into the base units before

working the problem. Similarly, in problems involving U.S. Customary units,

you should convert terms into the base units of seconds, feet, slugs, and

pounds. After you gain some experience, you will recognize situations in

which these rules can be relaxed, but for now the procedure we propose is the

safest.

Converting units is straightforward, although you must do it with

care. Suppose that we want to express 1 mi/hr in terms of ft/s. Since one

mile equals 5280 ft and one hour equals 3600 seconds, we can treat the

expressions

as ratios whose values are 1 . In this way we obtain

/5280ft\ / Ihr
1 mi/hr = 1 mi/hr X (

——- ) X '

V 1 mi y V 3600 s

We give some useful unit conversions in Table 1 .2.

1.47 ft/s.

Table 1.2 Unit conversions.

Time 1 minute = 60 seconds

1 hour = 60 minutes

1 day = 24 hours

Length 1 foot = 12 inches

1 mile = 5280 feet

1 inch = 25.4 milHmeters

1 foot — 0.3048 meters

Angle 27r radians = 360 degrees

Mass 1 slug = 14.59 kilograms

Force 1 pound = 4.448 newtons
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Study Questions

1. What are the base units of the SI and U.S. Customary systems?

2. What is the definition of an angle in radians?

Example 1.1

Converting Units of Pressure

The pressure exerted at a point of the hull of the deep submersible in Fig. 1.3

is 3.00 X 10^ Pa (pascals). A pascal is 1 newton per square meter. Determine

the pressure in pounds per square foot.

Figure 1.3

Deep Submersible Vehicle.

Strategy

From Table 1.2, 1 pound = 4.448 newtons and 1 foot = 0.3048 meters.

With these unit conversions we can calculate the pressure in pounds per

square foot.

Solution

The pressure (to three significant digits) is

3.00 X 10'' N/m- = 3.00 X 10^ N/m^ X

= 62,700 Ib/ftl

1 lb

4.448 N
X

0.3048 m
1ft
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Discussion

From the table of unit conversions in the inside front cover, 1 Pa =^

0.0209 lb/ft". Therefore an alternative solution is

' 0.0209 lb/ft^\
3.00 X 10* N/m' = 3.00 X 10* N/m^ X f

-

= 62,700 Ib/ftl

IN/m^

Example 1.2

Determining Units from an Equation
Suppose that in Einstein's equation

E = mc~,

the mass m is in kilograms and the velocity of light c is in meters per second.

(a) What are the SI units of El

(b) If the value of E in SI units is 20, what is its value in U.S. Customary base

units?

Strategy

(a) Since we know the units of the terms m and c, we can deduce the units of

E from the given equation.

(b)We can use the unit conversions for mass and length from Table 1.2 to

convert E from SI units to U.S. Customary units.

Solution

(a) From the equation for E,

E = {m kg)(c m/s)^.

the SI units of E are kg-m^/s^.

(b) From Table 1.2, 1 slug = 14.59 kg and 1 ft = 0.3048 m. Therefore

1 kg-mVs^ = 1 kg-mVs' x
1 slug

X
1 ft

14.59 kg/ V 0.3048 m

= 0.738 slug-ftVsl

The value of £ in U.S. Customary units is

E = (20)(0.738) = 14.8 slug-ftVsl

Discussion

In part (a) we determined the units of E by using the fact that an equation

must be dimensionally consistent. That is, the dimensions, or units, of each

term must be the same.
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Newton postulated that the gravitational force between two particles of mass

/Wi and m2 that are separated by a distance r (Fig. 1.4) is

F =
Gtn\m2

(1.1)

where G is called the universal gravitational constant. Based on this postulate,

he calculated the gravitational force between a particle of mass m, and a

homogeneous sphere of mass ^2 and found that it is also given by Eq. (1.1),

with r denoting the distance from the particle to the center of the sphere.

Although the earth is not a homogeneous sphere, we can use this result to

approximate the weight of an object of mass m due to the gravitational attrac-

tion of the earth.

W =
Gmm^

(1.2)

m^

Figure 1.4

The gravitational forces between two

particles are equal in magnitude and

directed along the line between them.

where Wg is the mass of the earth and r is the distance from the center of the

earth to the object. Notice that the weight of an object depends on its location

relative to the center of the earth, whereas the mass of the object is a measure

of the amount of matter it contains and doesn't depend on its position.

When an object's weight is the only force acting on it, the resulting

acceleration is called the acceleration due to gravity. In this case, Newton's

second law states that W = ma, and from Eq. ( 1 .2) we see that the accelera-

tion due to gravity is

Gmr
a = (1.3)

The acceleration due to gravity at sea level is denoted by g. Denoting the ra-

dius of the earth by R^, we see from Eq. (1.3) that Gm^ = gR\. Substituting

this result into Eq. (1.3), we obtain an expression for the acceleration due to

gravity at a distance r from the center of the earth in terms of the acceleration

due to gravity at sea level:

a (1.4)

Since the weight of the object W = ma, the weight of an object at a distance

r from the center of the earth is

W = mg—.
r

(1.5)

At sea level (r = ^e)- the weight of an object is given in terms of its mass by

the simple relation

W = mg. (1.6)

The value of g varies from location to location on the surface of the

earth. The values we use in examples and problems are g = 9.81 m/s" in SI

units and g = 32.2 ft/s^ in U.S. Customary units.
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Example 1.3

Study Questions

1. Does the weight of an object depend on its location?

2. If you know an object's mass, how do you determine its weight at sea level?

Determining an Objects Weigtit

In its final configuration, the International Space Station (Fig. 1.5) will have a

mass of approximately 450,000 kg.

(a) What would be the weight of the ISS if it were at sea level?

(b) The orbit of the ISS is 354 km above the surface of the earth. The eailh's

radius is 6370 km. What is the weight of the ISS (the force exerted on it by

gravity) when it is in orbit?

Figure 1.5

International Space Station.
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Strategy

(a) The weight of an object at sea level is given by Eq. (1.6). Because the

mass is given in kilograms, we will express g in SI units: g = 9.81 m/s^.

(b) The weight of an object at a distance r from the center of the earth is

given by Eq. (1.5).

Solution

(a) The weight at sea level is

W = mg

= (450,000) (9.81)

= 4.41 X 10^ N.

(b) The weight in orbit is

2

ERlW = mg
2

r

= (450,000) (9.81)

= 3.96 X 10'^ N.

(6,370,000)'

(6,370,000 + 354,000)'

Discussion

Notice that the force exerted on the ISS by gravity when it is in orbit is ap-

proximately 90% of its weight at sea level.

Problems

1.1 Express the fractions ^ and | to three significant digits.

1.2 What is the value of e (the base of natural logarithms) to five

significant digits?

1.3 A machinist drills a circular hole in a panel with radius

r = 5 mm. Determine the circumference C and the area A of the

hole to four significant digits.

1.4 The opening in a soccer goal is 24 ft wide and 8 ft high. Use

these values to determine its dimensions in meters to three signifi-

cant digits.

1.5 The central span of the Golden Gate Bridge is 1 280 m long.

What is its length in miles to three significant digits?

1.6 Suppose that you have just purchased a Ferrari F355 coupe

and you want to know whether you can use your set of SAE (U.S.

Customary unit) wrenches to work on it. You have wrenches with

widths w = 1/4 in., 1 /2 in., 3/4 in., and 1 in., and the car has nuts

with dimensions « = 5 mm, 10 mm, 15 mm, 20 mm, and 25 mm.

Defining a wrench to fit if w is no more than 2% larger than n,

which of your wrenches can you use?

P1.6

1.7 The orbital velocity of the International Space Station is

7690 m/s. Determine its velocity in km/hr and in mi/hr to three

significant digits.

1.8 High-speed "bullet trains" began running between Tokyo and

Osaka, Japan, in 1964. If a bullet train travels at 240 km/hr, what

is its velocity in mi/hr to three significant digits?
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1.9 In December 1986, Dick Rutan and Jeana Yeager flew the

Voyager aircraft around the world nonstop. They flew a distance

of 40,212 km in 9 days, 3 minutes, and 44 seconds.

(a) Detemiine the distance they flew in miles to three significant

digits.

(b) Determine their average speed (the distance flown divided by

the time required) in kilometers per hour, miles per hour, and

knots (nautical miles per hour) to three significant digits.

1.10 Engineers who study shock waves sometimes express

velocity in millimeters per microsecond (mm/^s). Suppose the

velocity of a wavefront is measured and determined to be

5 mm/fis. Determine its velocity: (a) in m/s; (b) in mi/s.

1.11 The kinetic energy of a particle of mass m is defined to be

\mv^, where v is the magnitude of the particle's velocity. If the

value of the kinetic energy of a particle at a given time is 200

when m is in kilograms and v is in meters per second, what is the

value when m is in slugs and v is in feet per second?

1.12 The acceleration due to gravity at sea level in SI units is

g = 9.81 m/s". By converting units, use this value to determine

the acceleration due to gravity at sea level in U.S. Customary

units.

1.13 A furlong perfortnight is a facetious unit of velocity,

perhaps made up by a student as a satirical comment on the bewil-

dering variety of units engineers must deal with. A furlong is

660 ft (1/8 mile). A fortnight is 2 weeks (14 nights). If you walk

to class at 2 m/s, what is your speed in furlongs per fortnight to

three significant digits?

1.14 The cross-sectional area of a beam is 480 in". What is its

cross-sectional area in m^?

1.15 At sea level, the weight density (weight per unit volume)

of water is approximately 62.4 Ib/ft^. 1 lb = 4.448 N,

1 ft = 0.3048 m, and g = 9.81 m/s'. Using only this infor-

mation, determine the mass density of water in kg/m\

1.16 A pressure transducer measures a value of 300 Ib/in^.

Determine the value of the pressure in pascals. A pascal (Pa) is

one newton per meter squared.

1.17 A horsepower is 550 ft-lb/s. A watt is 1 N-m/s. Determine

the number of watts generated by (a) the Wright brothers' 1903

.yi.
Brothers' Rier

(shown to scale)

airplane, which had a 1 2-horsepower engine; (b) a modem
passenger jet with a power of 100,000 horsepower at cruising

speed.

1.18 In SI units, the universal gravitational constant

G = 6.67 X 10"" N-m-/kg-. Determine the value of G in

U.S. Customary base units.

1.19 If the earth is modeled as a homogeneous sphere, the

velocity of a satellite in a circular orbit is

P1.17

'^ = V"r'

where R^ is the radius of the earth and r is the radius of the

orbit.

(a) If g is in m/s^ and R^ and r are in meters, what are the units

of v?

(b) If /?E
= 6370 km and r = 6670 km, what is the value of v

to three significant digits?

(c) For the orbit described in (b), what is the value of v in mi/s

to three significant digits?

1.20 In the equation

T = \lw\

the term / is in kg-m^ and w is in s"'.

(a) What are the SI units of 7?

(b) If the value of T is 100 when / is in kg-m^ and w is in s'\

what is the value of T when it is expressed in terms of U.S.

Customary base units?

1.21 The aerodynamic drag force D exerted on a moving object

by a gas is given by the expression

D = CuS'2Pv\

where the drag coefficient Cq is dimensionless, S is a reference

area, p is the mass per unit volume of the gas, and v is the

velocity of the object relative to the gas.

(a) Suppose that the value of D is 800 when S, p, and v are

expressed in SI base units. By converting units, determine the

value of D when 5, p, and v are expressed in U.S. Customary

base units.

(b) The drag force D is in newtons when the expression is

evaluated using SI base units and is in pounds when the expres-

sion is evaluated using U.S. Customary base units. Using your

result from (a), determine the conversion factor from newtons to

pounds.

1.22 The pressure p at a depth h below the surface of a

stationary liquid is given by

p = p, + yh,

where p^ is the pressure at the surface and 7 is a constant.

(a) If p is in newtons per meter squared and h is in meters, what

are the units of y?

(b) For a particular liquid, the value of 7 is 9810 when p is in

newtons per meter squared and h is in meters. What is the value

of y when p is in pounds per foot squared and h is in feet?
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1.23 The acceleration due to gravity is 1.62 m/s^ on the surface

of the moon and 9.81 m/s^ on the surface of the earth. A female

astronaut's mass is 57 kg. What is the maximum allowable mass

of her spacesuit and equipment if the engineers don't want the

total weight on the moon of the woman, her spacesuit and equip-

ment to exceed 180 N?

1.24 A person has a mass of 50 kg.

(a) The acceleration due to gravity at sea level is

g = 9.81 m/s^.What is the person's weight at sea level?

(b) The acceleration due to gravity on the surface of the moon

is 1.62 m/s^. What would the person weigh on the moon?

1.25 The acceleration due to gravity at sea level is

g = 9.81 m/s^. The radius of the earth is 6370 km. The univer-

sal gravitational constant G = 6.67 X 10"" N-m^/kg^. Use this

information to determine the mass of the earth.

1.26 A person weighs 180 lb at sea level. The radius of the earth

is 3960 mi. What force is exerted on the person by the gravita-

tional attraction of the earth if he is in a space station in orbit

200 mi above the surface of the earth?

1.27 The acceleration due to gravity on the surface of the moon
is 1.62 m/s^. The radius of the moon is R^ = 1 738 km.

Determine the acceleration due to gravity of the moon at a point

1738 km above its surface.

Strategy: Write an equation equivalent to Eq. (1.4) for the

acceleration due to gravity of the moon.

1.28 If an object is near the surface of the earth, the variation

of its weight with distance from the center of the earth can often

be neglected. The acceleration due to gravity at sea level is

g = 9.81 m/s^. The radius of the earth is 6370 km. The weight

of an object at sea level is mg, where m is its mass. At what

height above the surface of the earth does the weight of the

object decrease to 0.99 mg?

1.29 The centers of two oranges are 1 m apart. The mass of each

orange is 0.2 kg. What gravitational force do they exert on each

other? (The universal gravitational constant

G = 6.67 X 10-"N-mVkgl)

1.30 At a point between the earth and the moon, the magnitude

of the earth's gravitational acceleration equals the magnitude of

the moon's gravitational acceleration. What is the distance from

the center of the earth to that point to three significant digits? The

distance from the center of the earth to the center of the moon is

383,000 km, and the radius of the earth is 6370 km. The radius of

the moon is 1738 km, and the acceleration due to gravity at its

surface is 1.62 m/s^.
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Vectors can specify the positions of points of a

structure. Vectors are used to describe and analyze

quantities that have magnitude and direction,

including positions, forces, moments, velocities, and

accelerations.

rlTT^^^WCMJ^^^B

4

' ..V '^

' 'J'fi^i

'-'Mflff'



H

Vectors
* '.

.
' t

^<

%M
k • *%

To describe a force acting on a structural member, both the magnitude

of the force and its direction must be specified. To describe the posi-

tion of an airplane relative to an airport, both the distance and direction

from the airport to the airplane must be specified. In engineering we deal with

many quantities that have both magnitude and direction and can be expressed

as vectors. In this chapter we review vector operations, resolve vectors into

components, and give examples of engineering applications of vectors.
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Vector Operations and Definitions

Engineers designing a structure must analyze the positions of its members

and the forces acting on them. When designing a machine, they must analyze

the velocities and accelerations of its moving parts. These and many other

physical quantities important in engineering, can be represented by vectors

and analyzed by vector operations. Here we review fundamental vector oper-

ations and definitions.

Scalars and Vectors

(a)

(b)

Figure 2.1

(a) Two points A and fi of a mechanism.

(b) The vector r^g from A to B.

Figure 2.2

Representing the force cable AB exerts on

the tower by a vector F.

A physical quantity that is completely described by a real number is called a

scalar. Time is a scalar quantity. Mass is also a scalar quantity. For example,

you completely describe the mass of a car by saying that its value is 1200 kg.

In contrast, you have to specify both a nonnegative real number, or

magnitude, and a direction to describe a vector quantity. Two vector quanti-

ties are equal only if both their magnitudes and their directions are equal.

The position of a point in space relative to another point is a vector quan-

tity. To describe the location of a city relative to your home, it is not enough

to say that it is 100 miles away. You must say that it is 100 miles west of your

home. Force is also a vector quantity. When you push a piece of furniture

across the floor, you apply a force of magnitude sufficient to move the furni-

ture and you apply it in the direction you want the furniture to move.

We will represent vectors by boldfaced letters, U, V, W, . .
.

, and will

denote the magnitude of a vector U by |U|. A vector is represented graphical-

ly by an arrow. The direction of the arrow indicates the direction of the vec-

tor, and the length of the arrow is defined to be proportional to the

magnitude. For example, consider the points A and B of the mechanism in

Fig. 2.1a. We can specify the position of point B relative to point A by the

vector r^g in Fig. 2.1b. The direction of r^g indicates the direction from

point A to point B. If the distance between the two points is 200 mm, the

magnitude Ir^gl = 200 mm.
The cable AB in Fig. 2.2 helps support the television transmission tower.

We can represent the force the cable exerts on the tower by a vector F as

shown. If the cable exerts an 800-N force on the tower, IFI = 800 N.
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Rules for Manipulating Vectors

Vectors are a convenient means for representing physical quantities that have

magnitude and direction, but that is only the beginning of their usefulness.

Just as you manipulate real numbers with the familiar rules for addition, sub-

traction, multiplication, and so forth, there are rules for manipulating vectors.

These rules provide you with powerful tools for engineering analysis.

Vector Addition

When an object moves from one location in space to another, we say it under-

goes a displacement. If we move a book (or, speaking more precisely, some

point of a book) from one location on a table to another, as shown in Fig. 2.3a,

we can represent the displacement by the vector U. The direction of U indi-

cates the direction of the displacement, and |U| is the distance the book moves.

Suppose that we give the book a second displacement V, as shown in

Fig. 2.3b. The two displacements U and V are equivalent to a single displace-

ment of the book from its initial position to its final position, which we repre-

sent by the vector W in Fig. 2.3c. Notice that the final position of the book is

the same whether we first give it the displacement U and then the displace-

ment V or we first give it the displacement V and then the displacement U
(Fig. 2.3d). The displacement W is defined to be the sum of the displace-

ments U and V:

U + V = w.

The definition of vector addition is motivated by the addition of displace-

ments. Consider the two vectors U and V shown in Fig. 2.4a. If we place

them head to tail (Fig. 2.4b), their sum is defined to be the vector from the

tail of U to the head of V (Fig. 2.4c). This is called the triangle rule for vector

addition. Figure 2.4(d) demonstrates that the sum is independent of the order

t
.. ^TO.„^-r,.J|.,^->.-.-J^-.-

(a) (b)

(c)

Figure 2.3

(a) A displacement represented by the

vector U.

(b) The displacement U followed by the

displacement V.

(c) The displacements U and V are

equivalent to the displacement W.
(d) The final position of the book doesn't

depend on the order of the

displacements.
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(a) (b)

U + V

(c)

(d) (e)

Figure 2.4

(a) Two vectors U and V.

(b) The head of U placed at the tail of V.

(c) The triangle rule for obtaining the sum of U and V.

(d) The sum is independent of the order in which the vectors are added.

(e) The parallelogram rule for obtaining the sum of U and V.

u + v + w

(a)

(b)

Figure 2.5

(a) The sum of three vectors.

(b) Three vectors whose sum is zero.

Figure 2.6

Arrows denoting the relative positions of

points are vectors.

in which the vectors are placed head to tail. From this figure we obtain the

parallelogram rule for vector addition (Fig. 2.4e).

The definition of vector addition implies that

U + V = V + U Vector addition is commutative.

and

(U + V) + W = U + (V + W) Vector addition

is associative.

(2.1)

(2.2)

for any vectors U, V, and W. These results mean that when you add two or

more vectors, you don't need to worry about the order in which you add

them. The sum is obtained by placing the vectors head to tail in any order.

The vector from the tail of the first vector to the head of the last one is the

sum (Fig. 2.5a). If the sum is zero, the vectors form a closed polygon when

they are placed head to tail (Fig. 2.5b).

A physical quantity is called a vector if it has magnitude and direction and

obeys the definition of vector addition. We have seen that a displacement is a

vector. The position of a point in space relative to another point is also a vector

quantity. In Fig. 2.6, the vector r^c from .4 to C is the sum of r^g and Tbc-
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A force has direction and magnitude, but do forces obey the definition of

vector addition? For now we will assume that they do. When we discuss dy-

namics we will show that Newton's second law implies that force is a vector.

Product of a Scalar and a Vector

The product of a scalar (real number) a and a vector U is a vector written as

flU. Its magnitude is |a||U|, where \a\ is the absolute value of the scalar a. The

direction of a\] is the same as the direction of U when a is positive and is op-

posite to the direction of U when a is negative.

The product (— 1)U is written as —U and is called "the negative of the

vector U." It has the same magnitude as U but the opposite direction. The

division of a vector U by a scalar a is defined to be the product

U
a

U.

Figure 2.7 shows a vector U and the products of U with the scalars 2, -1,

and 1/2.

The definitions of vector addition and the product of a scalar and a vector

imply that

a{b\]) = (ab)U, The product is associative with

respect to scalar multiplication.

(a + b)U = aV + bU The product is distributive

with respect to scalar addition.

(2.3)

(2.4)

and

a(U -I- V) = «U + a\ The product is distributive (2.5)

with respect to vector addition.

for any scalars a and b and vectors U and V. We will need these results when

we discuss components of vectors.

Vector Subtraction

The difference of two vectors U and V is obtained by adding U to the vector

(-l)V:

U - V = U + (-l)V. (2.6)

Consider the two vectors U and V shown in Fig. 2.8a. The vector (— 1)V has

the same magnitude as the vector V but is in the opposite direction (Fig. 2.8b).

In Fig. 2.8c, we add the vector U to the vector (-1 )V to obtain U — V.

Unit Vectors

A unit vector is simply a vector whose magnitude is 1 . A unit vector specifies a

direction and also provides a convenient way to express a vector that has a par-

ticular direction. If a unit vector e and a vector U have the same direction, we

can write U as the product of its magnitude |U| and the unit vector e (Fig. 2.9),

U = lUle.

^ = (l/2)U

Figure 2.7

(a) A vector U and some of its scalar

multiples.

|U|e = U

(c)

Figure 2.8

(a) Two vectors U and V.

(b) The vectors V and (-1) V.

(c) The sum of U and (—1 ) V is the vector

difference U — V.

Figure 2.9

Since U and e have the same direction, the

vector U equals the product of its

magnitude with e.
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Figure 2.10

(a) A vector U and two intersecting lines.

(b) The vectors V and W are vector

components of U.

Any vector U can be regarded as the product of its magnitude and a unit vector

that has the same direction as U. Dividing both sides of this equation by |U|:

_U_

lui

= e.

we see that dividing any vector by its magnitude yields a unit vector that has

the same direction.

Vector Components

When a vector U is expressed as the sum of a set of vectors, each vector of

the set is called a vector component of U. Suppose that the vector U shown in

Fig. 2.10a is parallel to the plane defined by the two intersecting lines. We
can express U as the sum of vector components V and W that are parallel to

the two lines, as shown in Fig. 2.10b. We say that U is resolved into the vec-

tor components V and W.

Study Questions

1. What is the triangle rule for vector addition?

2. Vector addition is commutative. What does that mean?

3. If you multiply a vector U by a number a, what do you know about the

resulting vector aU?
4. What is a unit vector?

Example 2.1

Adding Vectors

Figure 2.11 is an initial design sketch of part of the roof of a sports stadium that

is to be supported by the cables AB and AC. The forces the cables exert on the

pylon to which they are attached are represented by the vectors F^g and F^^.

The magnitudes of the forces are |FAB\ 100 kN and FAC] 60 kN. Deter-

mine the magnitude and direction of the sum of the forces exerted on the pylon

by the cables (a) graphically and (b) by using trigonometry.

Strategy

(a) By drawing the parallelogram rule for adding the two forces with the vec-

tors drawn to scale, we can measure the magnitude and direction of their sum.

(b) We will calculate the magnitude and direction of the sum of the forces by

applying the laws of sines and cosines (Appendix A, Section A.2) to the trian-

gles formed by the parallelogram rule.

Figure 2.11

^
'AB.

30°

"-AC
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Solution

(a) We graphically construct the parallelogram rule for obtaining the sum of

the two forces with the lengths of F^g and F^c proportional to their magnitudes

(Fig. a). By measuring the figure, we estimate the magnitude of the vector

F^a + F^c to be 155 kN and its direction to be 19° above the horizontal.

(b) Consider the parallelogram rule for obtaining the sum of the two forces

(Fig. b). Since a + 30° = 180°, the angle a = 150°. By applying the law of

cosines to the shaded triangle,

|2

l^AB + F^cP = iF^fiP + |F/»cr - 2|F^B||*,,c|cosa= |F^«r + IF.^r - 2|F.„||F^

(100)' + (60)^ - 2(100)(60)cosl50°,

we determine that the magnitude {F^b + F^^l ~ 155 kN.

To determine the angle /3 between the vector F^^ + F^c ^nd the horizon-

tal, we apply the law of sines to the shaded triangle:

sinjS sma

'AB\ F.« + FAC\

The solution is

P = arcsin

FJ sin a

F.B + FAC]

— arcsm
100 sin 150°

155
18.8°

100 kN

60 kN ^c

(a) Graphical solution.

ac

(b) Trigonometric solution.

Discussion

Engineering applications of vectors usually require the precision of analytical

solutions, but experience with graphical solutions can help you understand

vector operations. Carrying out a graphical solution can also help you formu-

late an analytical solution.

Example 2.2

Resolving a Vector into Components
The force F in Fig. 2.12 lies in the plane defined by the intersecting lines L^

and Lb- Its magnitude is 400 lb. Suppose that you want to resolve F into vec-

tor components parallel to L^ and Lg. Determine the magnitudes of the vector

components (a) graphically and (b) by using trigonometry.

Figure 2.12
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Strategy

The parallelogram mle (Fig. 2.4e) clearly indicates how we can resolve F into

components parallel to L^ and Lg.

Solution

(a) We draw dashed lines from the head of F parallel to L,, and Lg to con-^«\ ^x
struct the vector components, which we denote F^ and Fg (Fig. a). By meas-V /' \. uring the figure, we estimate their magnitudes to be F^ — 540 lb and

Fb = 610 lb.\'
(b) Consider the force F and the vector components F^ and Fg (Fig. b). Since

Fa ^a a + 80° + 60° = 180°, the angle a = 40°. By applying the law of sines to

(a) Graphical solution.
triangle 1,

sin 60° sin a

Triangle 2

X. ^° 60°
"^-s

Fa |F|
'

we obtain the magnitude of F^

:

N. p \ Tnangle 1

|F|sin60° 400 sin 60° ^^^ ,^F^ — — — 539 lb.

sma sm40

Fa ^a Then by applying the law of sines to triangle 2,

(b) Trigonometric solution. sin 80° sin a

F« |F| '

we obtain the magnitude of Fg:

|F|sin80° 400 sin 80° ^_
..

Fg = — = = 613 lb.

sma sm40

Problems

Refer to the following diagram when solving Problems 2.

through 2.5.

2.1 The magnitudes |F^| = 60 N and |Fg| = 80 N. The angle

a = 45°. Graphically determine the magnitude of the sum of the

forces F = F^ + Eg and the angle between Eg and F.

Strategy: Construct the parallelogram for determining the

sum of the forces, drawing the lengths of E^ and Eg proportional

to their magnitudes and accurately measuring the angle a. as we

did in Example 2.1. Then you can measure the magnitude of

their sum and the angle between their sum and Yg.

2.2 The magnitudes IF^I = 40 N and |E^ + Eg| = 80 N. The

angle a = 60°. Graphically determine the magnitude of Eg.

2.3 The magnitudes |E^| = 100 lb and |Eg| = 140 lb. The angle

a = 40°. Use trigonometry to determine the magnitude of the

P2.1-2.5 sum of the forces E = F^ + Eg and the angle between Eg and F.
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Strategy: Use the laws of sines and cosines to analyze the

triangles formed by the parallelogram rule for the sum of the

forces as we did in Example 2.1. The laws of sines and cosines

are given in Section A.2 of Appendix A.

2.8 The magnitude of the vertical force F is 80 kN. If you resolve

it into components F^g and F^,- that are parallel to the bars AB
and AC, what are the magnitudes of the components?

2.4 The magnitudes |F^| = 40 N and |F^ + Fg] = 80 N. The

angle a = 60°. Use trigonometry to determine the magnitude

ofFfi.

2.5 The magnitudes |F^| = 100 lb and |Fa| = 140 lb. If a can

have any value, what are the minimum and maximum possible

values of the magnitude of the sum of the forces F = F^ + Fg,

and what are the corresponding values of a?

2.6 The angle 6 = 30°. What is the magnitude of the vector r^^?

\r.

b

\
W2^

•> v\\
Vc-""^,\\

ao"!"'^1h
'

F P2.8

2.9 The rocket engine exerts an upward force of 4 MN
(meganewtons) magnitude on the test stand. If you resolve the

force into vector components parallel to the bars AB and CD.

what are the magnitudes of the components?

P2.6
P2.9

2.7 The vectors F^ and Fg represent the forces exerted on the

pulley by the belt. Their magnitudes are |F^| = 80 N and

|Fg| = 60 N. What is the magnitude |F^ + Fg| of the total force

the belt exerts on the pulley?

2.10 If F is resolved into components parallel to the bars AB and

BC, the magnitude of the component parallel to bar AB is 4 kN.

What is the magnitude of F?

P2.7
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2.11 The forces acting on the sailplane are represented by three

vectors. The lift L and drag D are perpendicular, the magnitude of

the weight W is 3500 N, and W + L + D = 0. What are the

magnitudes of the lift and drag?

P2.ll

2.12 The suspended weight exerts a downward 2000-lb force F

at A. If you resolve F into vector components parallel to the wires

AB, AC, and AD, the magnitude of the component parallel to AC
is 600 lb. What are the magnitudes of the components parallel to

AB and ADl

P2.15

2.16 The rope ABC exerts forces Fg^ and Fg^ on the block at B.

Their magnitudes are iFg^l = |Fg(-| = 800 N. Determine

l^BA + Fgcl (a) graphically and (b) by using trigonometry.

P2.16
P2.12

2.13 The wires in Problem 2.12 will safely support the weight if

the magnitude of the vector component of F parallel to each wire

does not exceed 2000 lb. Based on this criterion, how large can

the magnitude of F be? What are the corresponding magnitudes of

the vector components of F parallel to the three wires?

2.14 Two vectors r^ and tg have magnitudes |r^| = 30 m and

|rg| = 40 m. Determine the magnitude of their sum r^ + Tg

(a) if r^ and tg have the same direction.

(b) if r^ and r^ are perpendicular.

2.15 A spherical storage tank is supported by cables. The tank is

subjected to three forces: the forces F^ and Fg exerted by the

cables and the weight W. The weight of the tank
j
W| = 600 lb.

The vector sum of the forces acting on the tank equals zero.

Determine the magnitudes of F^ and Fg (a) graphically and (b) by

using trigonometry.

2.17 Two snowcats tow a housing unit to a new location at

McMurdo Base, Antarctica. (The top view is shown. The cables

are horizontal.) The sum of the forces F^ and Fg exerted on the

unit is parallel to the line L, and |F^| = 1000 lb. Determine |Fg|

and |F^ + Fg| (a) graphically and (b) by using trigonometry.

^

\
'91^

50' 30-/ »

N/

TOP VIEW

P2.17
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2.18 A surveyor determines that the horizontal distance from A to

B is 400 m and that the horizontal distance from A to C is 600 m.

Determine the magnitude of the horizontal vector rg,- from fi to C
and the angle a (a) graphically and (b) by using trigonometry.

North

2.19 The vector r extends from point A to the midpoint between

points B and C. Prove that

AB + ^AC)-

East

P2.19

2.20 By drawing sketches of the vectors, explain why

P2.18 U + (V + W) = (U + V) + W.

Cartesian Components u

Vectors are much easier to work with when they are expressed in terms of

mutually perpendicular vector components. Here we explain how to resolve

vectors into cartesian components in two and three dimensions and give

examples of vector manipulations using components.

Components in Two Dimensions

Consider the vector U in Fig. 2.13a. By placing a cartesian coordinate system

so that U is parallel to the x-y plane, we can resolve it into vector components

Vjc and U,, parallel to the x and y axes (Fig. 2. 13b),

U = U, + U,.

Then by introducing a unit vector i defined to point in the direction of the

positive X axis and a unit vector j defined to point in the direction of the posi-

tive y axis (Fig. 2.13c), we can express the vector U in the form

V ^UJ + [/J. (2.7)

The scalars f/^ and U^, are called scalar components of U. When we refer

simply to the components of a vector, we will mean its scalar components. We
will call U^ and f/,. the x and y components of U.

The components of a vector specify both its direction relative to the

cartesian coordinate system and its magnitude. From the right triangle

formed by the vector U and its vector components (Fig. 2.13c), we see that

(a)

t

u
u>

u.

(b)

J

u
u, = f/J

U.= l^.i

(c)

Figure 2.13

(a) A vector U.

(b) The vector components U, and U,,

(c) The vector components can be

expressed in terms of i and j.
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the magnitude of U is given in terms of its components by the Pythagorean!

theorem,

|U| = \/u] + ul. (2.8)'

With this equation you can determine the magnitude of a vector when you

know its components.

Manipulating Vectors in Terms of Components

The sum of two vectors U and V in terms of their components is

u + V = {u,\ + i/j) + (Ki + Kj)

= (^, + V,)i + ((/, + K)j. (2.9)

The components of U + V are the sums of the components of the vec-

tors U and V. Notice that in obtaining this result we used Eqs. (2.2), (2.4j,

and (2.5).

It is instructive to derive Eq. (2.9) graphically. The summation of U and V
is shown in Fig. 2.14a. In Fig. 2.14b we introduce a coordinate system and

resolve U and V into their components. In Fig. 2.14c we add the x and y com-
ponents, obtaining Eq. (2.9).

The product of a number a and a vector U in terms of the components of

Uis

The component of aV in each coordinate direction equals the product of a

and the component of U in that direction. We used Eqs. (2.3) and (2.5) to

obtain this result.

(a) (b)

Figure 2.14

(a) The sum of U and V.

(b) The vector components of U and V.

(c) The sum of the components in each coordinate direction equals the component

of U -I- V in that direction.

(f^v + VJ

(c)

Position Vectors in Terms of Components

We can express the position vector of a point relative to another point in

terms of the cartesian coordinates of the points. Consider point A with coordi-

nates [x/^, y^^ and point B with coordinates (jtg, y^. Let r^g be the vector that

specifies the position of B relative to A (Fig. 2.15a). That is. we denote the



2.3 Components in Two Dimensions 31

(•^4- :v>.)

(Xg,yg)

(^B-VJ

(a) (b)

Figure 2.15

(a) Two points A and B and the position

vector r^B from A to B.

(b) The components of r^g can be

determined from the coordinates of

points A and B.

vector/raw a point /I to a point B by r^g. We see from Fig. 2.15b that r^B is

given in terms of the coordinates of points A and B by

{xb - XA)i + {y'B
- Va)j.'AB (2.10)

Notice that the x component of the position vector from a point A to a point B
is obtained by subtracting the x coordinate of A from the x coordinate of B,

and the y component is obtained by subtracting the y coordinate of A from

the y coordinate of B.

Study Questions

1. How are the scalar components of a vector defined in terms of a cartesian

coordinate system?

2. If you know the scalar components of a vector, how can you determine its

magnitude?

3. Suppose that you know the coordinates of two points A and B. How do you

determine the scalar components of the position vector of point B relative to

point A?

Example 2.3

Adding Vectors in Tern^s

of Components
The forces acting on the sailplane in Fig. 2.16 are its weight W = —600j (lb),

the drag D = -200 i + lOOj (lb), and the lift L.

(a) If the sum of the forces on the sailplane is zero, what are the components

ofL?

(b) If the lift L has the components determined in (a) and the drag D increases

by a factor of 2, what is the magnitude of the sum of the forces on the

sailplane?

Strategy

(a) By setting the sum of the forces equal to zero, we can determine the com-

ponents of L. (b) Using the value of L from (a), we can determine the compo-

nents of the sum of the forces and use Eq. (2.8) to determine its magnitude. Figure 2.16
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Solution

(a) We set the sum of the forces equal to zero:

W + D + L = 0.

(-600J) + (-200i + lOOj) + L = 0.

Solving for the lift, we obtain

L = 200i + 500j (lb).

(b) If the drag increases by a factor of 2, the sum of the forces on the sailplane

is

W + 2D + L = (-600J) + 2(-200i + lOOj) + (200i + 500j)

= -200 i + lOOj(lb).

From Eq. (2.8), the magnitude of the sum is

|W + 2D + L| = V(-200)2 + (100)- = 224 lb.

Example 2.4

Figure 2.17

Determining Components in Terms
of an Angie
Hydraulic cylinders are used to exert forces in many mechanical devices. The

force is exerted by pressurized liquid (hydraulic fluid) pushing against a piston

within the cylinder. The hydraulic cylinder AB in Fig. 2.17 exerts a 4000-lb

force F on the bed of the dump truck at B. Express F in terms of components

using the coordinate system shown.

Strategy

When the direction of a vector is specified by an angle, as in this example, we

can determine the values of the components from the right triangle formed by

the vector and its components.

Solution

We draw the vector F and its vector components in Fig. a. From the resulting

right triangle, we see that the magnitude of F^ is

|fJ = |F|cos30° = (4000) cos 30° = 34601b.

Fj points in the negative x direction, so

F, = -3460i (lb).

The magnitude of F^, is

|F,| = |F|sin30° = (4000) sin 30° = 20001b.
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The vector component F^ points in the positive y direction, so

F, = 2000J (lb).

The vector F in terms of its components is

F = F^ + F, = -34601 + 2000J (lb).

The X component of F is -3460 lb, and the y component is 2000 lb.

Discussion

When you determine the components of a vector, you should check to make

sure they give you the correct magnitude. In this example,

|F| = V(-3460)- + (2000)^ = 4000 lb.

CF I
^ '

>| 30°,' I

F

(a) The force F and its components form a

right triangle.

Example 2.5

Determining Vector Components
The cable from point A to point B exerts an 800-N force F on the top of the

television transmission tower in Fig. 2.18. Resolve F into components using

the coordinate system shown.

The force

exerted on

the tower

by cable

AB

40 m

—

\
-40 m- Figure 2.18

Strategy

We determine the components of F in three ways.

First Method From the given dimensions we can determine the angle a

between F and the y axis (Fig. a), then determine the components from the

right triangles formed by the vector F and its components.

Second Method The right triangles formed by F and its components are

similar to the triangle OAB in Fig. a. We can determine the components of F

by using the ratios of the sides of these similar triangles.
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80 m

\

a

^F
\

\

\

O 40 m

(a) Vector components of F.

80 m

k— 40m—

^

(b) The vector r^^ form A to B.

(c) The unit vector e^g pointing from A
toward B.

Third Method From the given dimensions we can determine the compo-

nents of the position vector r^g from point A to point B [Fig. b]. By dividing

this vector by its magnitude, we will obtain a unit vector e^g with the same

direction as F (Fig. c), then obtain F in terms of its components by expressing

it as the product of its magnitude and e^g

.

Solution

First Method Consider the force F and its vector components (Fig. a). The

tangent of the angle a between F and the v axis is tan a = 40/80 — 0.5, so

a = arctan(0.5) = 26.6°. From the right triangles formed by F and its vector

components, the magnitude of F^ is

|F,| = |F| sin 26.6° = (800) sin 26.6° = 358 N

and the magnitude of F^. is

|F,| = |F| cos 26.6° = (800) cos 26.6° = 716 N.

Since F, points in the positive x direction and F,. points in the negative v di-

rection, the force F is

F = 3581 - 716j(N)

Second Method The length of the cable AB is \/(80)^ + (40)' = 89.4 m.

Since the triangle OAB in Fig. a is similar to the triangle formed by F and its

vector components,

|fJ _ OB _^
|F|

~ AB ~
89.4

Thus the magnitude of F^ is

,

I
/ 40 V^, f 40

'

' ^' V89.4/' ' V89.4

We can also see from the similar triangles that

JFyl _0A _ 80

|F|
" AB ~

89.4'

so the magnitude of F,, is

80 \,„, / 80

(800) = 358 N.

FJ = F =
89.4

(800) = 716 N.
,89.4

Thus we again obtain the result

F = 3581 - 716j(N).

Third Method The vector r^g in Fig. b is

Tab = i^B - ^.)i + (Vfi
- yjj = (40 - 0)i + (0 - 80)

j

= 40i - 80j (m).

We divide this vector by its magnitude to obtain a unit vector e^g that has the

same direction as the force F (Fig. c):

40i - 80j
^AB

'^AB

'/4B| V(40)^ + (-80)^

= 0.4471 -
0.894J.



The force F is equal to the product of its magnitude |F| and e^^:

F = |F|e^g = (800)(0.447i - 0.894J) = 358i - 716j (N).
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Example 2.6

Determining an Uniinown
Vector IViagnitude

The cables A and B in Fig. 2.19 exert forces F^ and F^ on the hook. The mag-

nitude of F^ is 100 lb. The tension in cable B has been adjusted so that the

total force F^ + Fg is perpendicular to the wall to which the hook is attached.

(a) What is the magnitude of Fg?

(b) What is the magnitude of the total force exerted on the hook by the two

cables?

Strategy

The vector sum of the two forces is perpendicular to the wall, so the sum of

the components parallel to the wall equals zero. From this condition we can

obtain an equation for the magnitude of Fg

.

Solution

(a) In terms of the coordinate system shown in Fig. a, the components of F^

and Fg are

F^ = |F^|sin40°i + |F^|cos40°j,

Ffi = |FB|sin20°i - |Fb|cos20°j.

The total force is

F^ + Fg - (|F^| sin 40° + |Fb| sin20°)i

+ (|F^|cos40° - |Fg|cos20°)j.

By setting the component of the total force parallel to the wall (the y compo-

nent) equal to zero,

|F^|cos40° - |Fb|cos20° = 0,

we obtain an equation for the magnitude of F^:

|F^|cos40° (100) cos 40°

cos 20° cos 20°
= 81.51b.

(b) Since we now know the magnitude of F^, we can determine the total force

acting on the hook:

F^ + Fg = (|fJ sin 40° + |Fb| sin20°)i

= [(100) sin40° + (81.5) sin20°]i = 92.2i (lb).

The magnitude of the total force is 92.2 lb.

Figure 2.19

(a) Resolving F^ and Fg into components

parallel and perpendicular to the wall.
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Discussion

We can obtain the solution to (a) in a less formal way. If the component of the

total force parallel to the wall is zero, we see in Fig. (a) that the magnitude of

the vertical component of F^ must equal the magnitude of the vertical compo-

nent of F^:

|F^|cos40° = |Fb|cos20°.

Therefore the magnitude of Fg is

If^
I

cos 40° (100) cos 40°

cos 20° cos 20°
- 81.51b.

Problems

2.21 A force F = 40i - 20j (N). What is its magnitude |F|?

Strategy: The magnitude of a vector in terms of its

components is given by Eq. (2.8).

2.22 An engineer estimating the components of a force

F = fji + Fyj acting on a bridge abutment has determined that

F, = 130 MN, |F| = 165 MN. and F, is negative. What is F,?

2.23 A support is subjected to a force F = F,i + 80j (N). If the

support will safely support a force of magnitude 100 N, what is

the allowable range of values of the component F, ?

2.24 If F^ = 600i - 800 j (kip) and Fg = 2001 - 200j (kip),

what is the magnitude of the force F = F^ — 2Fg?

2.25 IfF^ = i - 4.5j(kN)andFB = -2i - 2 j (kN), what is

the magnitude of the force F = 6F^ + 4Fg ?

2.26 Two perpendicular vectors U and V lie in the x-y plane.

The vector U = 6i - 8 j and |V| = 20. What are the compo-

nents of V?

2.27 A fish exerts a 40-N force on the line that is represented by

the vector F. Express F in terms of components using the coordi-

nate system shown.

2.28 A person exerts a 60-lb force F to push a crate onto a truck.

Express F in terms of components.

P2.28

2.29 The missile's engine exerts a 260-kN force F. Express F in

terms of components using the coordinate system shown.

31

y^^40°

n

dIP^Iri^B

P2.27 P2.29
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2.30 The coordinates of two points A and fi of a truss are shown.

Express the position vector from point A to point B in terms of

components.

(6. 4) m

(2, Dm

P2.30

2.31 The points A, B,...aie the joints of the hexagonal structural

element. Let r^g be the position vector from joint A to joint B, r^^

the position vector from joint A to joint C, and so forth. Determine

the components of the vectors r^c and ^af

P2.31

2.32 For the hexagonal structural element in Problem 2.31,

determine the components of the vector r^jj — rgc-

2.33 The coordinates of point A are ( 1 .8, 3.0) m. The y coordi-

nate of point B is 0.6 m and the magnitude of the vector r^e is

3.0 m. What are the components of r^g?

2.34 (a) Express the position vector from point A of the front-

end loader to point B in terms of components.

(b) Express the position vector from point B to point C in terms

of components.

(c) Use the results of (a) and (b) to determine the distance from

point A to point C.

P2.34

2.35 Consider the front-end loader in Problem 2.34. To raise the

bucket, the operator increases the length of the hydraulic cylinder

AB. The distance between points B and C remains constant. If the

length of the cylinder AB is 65 in., what is the position vector fi^om

point A to point Bl

2.36 Determine the position vector r4g in terms of its components

if(a)0 = 3O°;(b)0 = 225°.

P2.36

2.37 In Problem 2.36 determine the position vector Tgc in terms

of its components if (a) 6 = 30°; (b) 6 = 225°.

P2.33
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2.38 A surveyor measures the location of point A and determines

that r„j^ = 400 i + 800 j (m). He wants to determine the location

of a point B so that jr^el = 400 m and |ro^ + r^gl = 1200 m.

What are the cartesian coordinates of point Bl

(b) Determine the components of a unit vector that is parallel to

the backstay BC and points from C toward B.

P2.38

P2.41

2.42 Consider the force vector F = 3i — 4j (kN). Determine

the components of a unit vector e that has the same direction as F.

2.39 Bar AB is 8.5 m long and bar AC is 6 m long. Determine 2.43 Determine the components of a unit vector that is parallel to

the components of the position vector r^g from point A to point B. the hydraulic actuator BC and points from B toward C.

y

-—3m—

^

BlaJ - cioj.

N^
P2.39 0.15iii[->[— 0.6 m— Scoop

P2.43

2.40 For the truss in Problem 2.39, determine the components of

a unit vector e^^ that points from point A toward point C.

Strategy: Determine the components of the position vector

from point A to point C and divide the position vector by its

magnitude.

2.41 The X and y coordinates of points A, B, and C of the

sailboat are shown.

(a) Determine the components of a unit vector that is parallel to

the forestay AB and points from A toward B.

2.44 The hydraulic actuator BC in Problem 2.43 exerts a 1.2-kN

force F on the joint at C that is parallel to the actuator and points

from B toward C. Determine the components of F.

2.45 A surveyor finds that the length of the line OA is 1500 m
and the length of the line OB is 2000 m.

(a) Determine the components of the position vector from point

A to point B.

(b) Determine the components of a unit vector that points from

point A toward point B.
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P2.45

2.46 The positions at a given time of the Sun (S) and the planets

Mercury (M), Venus (V), and Earth (E) are shown. The approxi-

mate distance from the Sun to Mercury is 57 X 10'' km, the dis-

tance from the Sun to Venus is 108 X 10'' km, and the distance

from the Sun to the Earth is 150 X 10* km. Assume that the Sun

and planets lie in the x-y plane. Determine the components of a

unit vector that points from the Earth toward Mercury.

2.47 For the positions described in Problem 2.46, determine the

components of a unit vector that points from the Earth toward

Venus.

2.48 The rope ABC exerts forces F^,, and Fg^ on the block at B.

Their magnitudes are |Fg^| = JFgd = 800 N. Determine the mag-

nitude of the vector sum of the forces by resolving the forces into

components, and compare your answer with that of Problem 2.16.

P2.48

2.49 The magnitudes of the forces are |F|| = [F^I = IF,] = 5 kN.

What is the magnitude of the vector sum of the three forces?

> P2.49

P2.46
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2.50 Four groups engage in a tug-of-war. The magnitudes of the

forces exerted by groups B, C, and D are |Fa| = 800 lb,

|Fc| = 1000 lb, and |Fo| = 900 lb. If the vector sum of the four

forces equals zero, what are the magnitude of F^ and the angle a?

P2.50

2.51 The total thrust exerted on the launch vehicle by its main

engines is 200,000 lb parallel to the v axis. Each of the two small

vernier engines exerts a thrust of 5000 lb in the directions shown.

Determine the magnitude and direction of the total force exerted

on the booster by the main and vernier engines.

P2.52

2.53 The figure shows three forces acting on a joint of a

structure. The magnitude of F(- is 60 kN , and

F/i + Ffi + Fc = 0. What are the magnitudes of F^ and Fg?

P2.53

2.54 Four forces act on a beam. The vector sum of the forces is

zero. The magnitudes |Fg| = 10 kN and \Fc\ = 5 kN. Determine

the magnitudes of F^ and F^.

Vernier

engines

P2.51

2.52 The magnitudes of the forces acting on the bracket are

|F,| = IF2I = 2 kN. If |F, + F2I = 3.8 kN, what is the angle a?

(Assume that < a < 90°.)

30o^^^*b_ o ^^

P2.54

2.55 Six forces act on a beam that forms part of a building's

frame. The vector sum of the forces is zero. The magnitudes

|Fg| = IF^I = 20 kN, |Fc| = 16 kN, and |Fd| = 9 kN. Determine

the magnitudes of F^ and F^

.

I

P2.55
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' 2.56 The total weight of the man and parasail is |W| = 230 lb.

The drag force D is perpendicular to the lift force L. If the vector

sum of the three forces is zero, what are the magnitudes of L
andD?

2.58 The cables A, B, and C help support a pillar that forms part

of the supports of a structure. The magnitudes of the forces

|F.I
=

|Fb| = |Fc|.Theexerted by the cables are equal:

magnitude of the vector sum of the three forces is 200 kN. What

is |F,|?

4m- 4m- 4m-

i
w

P2.56

2.57 Two cables AB and CD extend from the rocket gantry to

the ground. Cable AB exerts a force of magnitude 10,000 lb on the

gantry, and cable CD exerts a force of magnitude 5000 lb.

(a) Using the coordinate system shown, express each of the two

forces exerted on the gantry by the cables in terms of scalar

components.

(b) What is the magnitude of the total force exerted on the

gantry by the two cables?

P2.58

2.59 The cable from B to A on the sailboat shown in Problem

2.41 exerts a 230-N force at B. The cable from B to C exerts a

660-N force at B. What is the magnitude of the total force exerted

at B by the two cables? What is the magnitude of the downward

force (parallel to the y axis) exerted by the two cables on the

boat's mast?

2.60 The structure shown forms part of a truss designed by an

architectural engineer to support the roof of an orchestra shell.

The members AB, AC, and AD exert forces F^g, F^^. ^"d F^^

on the joint A. The magnitude |F^g| = 4 kN. If the vector sum of

the three forces equals zero, what are the magnitudes of F^^- and

(-2, -3) ml

P2.60

P2.57
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2.61 The distance s - 45 in.

(a) Determine the unit vector Cg^ that points from B toward A.

(b) Use the unit vector you obtained in (a) to determine the

coordinates of the collar C.

B \(1, 9) ft

A (3. 5) ft

C * (12, 3) ft

(75. 12) in

P2.63

2.64 Let r be the position vector from point C to the point that is

a distance .? meters from point A along the straight line between A
and B. Express r in terms of scalar components. (Your answer will

be in terms oi s.)

(10. 9) m

P2.61

2.62 In Problem 2.61, determine the x and y coordinates of the

collar C as functions of the distance s.

2.63 The position vector r goes from point A to a point on the

straight line between B and C. Its magnitude is |r| = 6 ft. Express

r in terms of scalar components.

C (9, 3) m

P2.64

Components in Three Dimensions

Many engineering applications require you to resolve vectors into compo-

nents in a three-dimensional coordinate system. In this section we explain this

technique and demonstrate vector operations in three dimensions.

Let's first review how to draw objects in three dimensions. Consider a

three-dimensional object such as a cube. If we draw the cube as it appears

when your line of sight is perpendicular to one of its faces, we obtain the dia-

gram shown in Fig. 2.20a. In this view the cube appears two-dimensional;

you can't see the dimension perpendicular to the page. To remedy this, we

can draw the cube as it appears if you move upward and to the right

(Fig. 2.20b). In this oblique view you can see the third dimension. The hidden

edges of the cube are shown as dashed lines.

We can use this method to draw three-dimensional coordinate systems.

In Fig. 2.20c we align the jc, y, and z axes of a three-dimensional cartesian

coordinate system with the edges of the cube. The three-dimensional repre-

sentation of the coordinate system is shown in Fig. 2.20d.

The coordinate system in Fig. 2.20d is right-handed. If you point the fin-

gers of your right hand in the direction of the positive x axis and bend them
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(b)

(c)

Figure 2.20

(a) A cube viewed with the line of sight perpendicular to a face.

(b) An obhque view of the cube.

(c) A cartesian coordinate system aligned with the edges of the cube.

(d) Three-dimensional representation of the coordinate system.

(d)

(as in preparing to make a fist) toward the positive y axis, your thumb will

point in the direction of the positive z axis (Fig. 2.21). When the positive z

axis points in the opposite direction, the coordinate system is left-handed.

For some purposes, it doesn't matter which coordinate system you use. How-

ever, some equations we will derive do not give correct results with a left-

handed coordinate system. For this reason we will use only right-handed

coordinate systems.

We can resolve a vector U into vector components U^, U^., and U. paral-

lel to the X, y, and z axes (Fig. 2.22):

U = U, + U. + U- (2.11)

(We have drawn a box around the vector to help you visualize the directions

of the vector components.) By introducing unit vectors i, j, and k that point in

the positive x, y, and z directions, we can express U in terms of scalar compo-

nents as

Figure 2.21

Recognizing a right-handed coordinate

system.

V = U/i + U,j + U-k. (2.12)

We will refer to the scalars U^, U^., and U. as the x. y, and z components of U.

Magnitude of a Vector in Terms of Components

Consider a vector U and its vector components (Fig. 2.23a). From the right

triangle formed by the vectors U,., U-, and their sum U,, + U, (Fig. 2.23b),

we can see that

|u, + u,p = |u,|- + |U- (2.13)

The vector U is the sum of the vectors U^ and U, + U.. These three vectors

form a right triangle (Fig. 2.23c), from which we obtain

|U|- = |u,|' + |u, + uf.

u. ^^

u u„

u

Figure 2.22

A vector U and its vector components.
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I U

u.

I
.« 1

1

1

1

J

—

|u,+

U,| 1

H^-

||Uvl
|U| |U, + l

|u,l

(a) (b) (c)

Figure 2.23

(a) A vector U and its vector components.

(b) The right triangle formed by the vectors U^. U-, and U, + U-.

(c) The right triangle formed by the vectors U, U,, and U> + U-.

(a)

(b)

Substituting Eq. (2.13) into this result yields the equation

|U|- = |U,p + |U/ + |uf = [/.; + U\ + U\.

Thus the magnitude of a vector U is given in terms of its components in three

dimensions by

lUl \/u\ + U\. + u\. (2.14)

Direction Cosines

We described the direction of a vector relative to a two-dimensional cartesian

coordinate system by specifying the angle between the vector and one of the

coordinate axes. One of the ways we can describe the direction of a vector in

three dimensions is by specifying the angles 0,, 0,. and Q. between the vector

and the positive coordinate axes (Fig. 2.24a).

(c) (dj

Figure 2.24

(a) A vector U and the angles 0,, 0,, and Q..

(b)-(d) The angles 0,, <?,. and Q. and the vector components of U.
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In Figs. 2.24b-d, we demonstrate that the components of the vector U are

given in terms of the angles 6^, dy, and 6,. by

U, = |U|cos0^, U, = |U|cos0j,, U, = |U|cos0,. (2.15)

The quantities cos 6^ , cos 0, , and cos 6, are called the direction cosines of U.

The direction cosines of a vector are not independent. If we substitute Eqs.

(2.15) into Eq. (2.14), we find that the direction cosines satisfy the relation

cos^e^ + cos-0, + cos^e, = 1. (2.16)

Suppose that e is a unit vector with the same direction as U, so that

U = |U|e.

In terms of components, this equation is

f/,i + U,i + U,k= \l]\{ej + ej + e,k).

Thus the relations between the components of U and e are

U, = \V\e„ U, = |U|^„ U, = me,.

By comparing these equations to Eqs. (2.15), we see that

cos 6^ = e^, COS0,, = e^, cos 6, = e^.

The direcfion cosines of a vector U are the components of a unit vector with

the same direction as U.

Position Vectors in Terms of Components

Generalizing the two-dimensional case, let's consider a point A with coordi-

nates {x/^,yj^,z^ and a point B with coordinates (xg, Vg, Zg). The position

vector r^B from A to B, shown in Fig. 2.25a, is given in terms of the coordi-

nates of A and B by

MB = (-^s - -^a)' + (.Vs - .Va)J + (zs - z^k. (2.17)

The components are obtained by subtracting the coordinates of point A from

the coordinates of point B (Fig. 2.25b).

Components of a Vector Parallel to a Given Line

In three-dimensional applications, the direction of a vector is often defined by

specifying the coordinates of two points on a line that is parallel to the vector.

You can use this information to determine the components of the vector.

Suppose that we know the coordinates of two points A and B on a line

parallel to a vector U (Fig. 2.26a). We can use Eq. (2.17) to determine the po-

sition vector r^g from AioB (Fig. 2.26b). We can divide r^g by its magnitude

to obtain a unit vector e^g that points from A toward B (Fig. 2.26c). Since e^g

has the same direction as U, we can determine U in terms of its scalar compo-

nents by expressing it as the product of its magnitude and e^g.

More generally, suppose that we know the magnitude of a vector U and

the components of any vector V that has the same direction as U. Then V/| V|

^AB^^^'^'-B' >'fl> ^fl)

(x^, J^, Z/)

(a)

<>'B-.>;*)J

(b)

Figure 2.25

(a) The position vector from point A to

point B.

(b) The components of r^g can be

determined from the coordinates of

points A and B.
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(a)

Figure 2.26

(a) Two points A and B on a line parallel to U.

(b) The position vector from A to B.

(c) The unit vector e^g that points from A toward B.

(b)

= |UkAB

(C)

Example 2.7

is a unit vector with the same direction as U, and we can determine the com-

ponents of U by expressing it as U = |U|(V/|V|).

Study Questions
1. How do you identify a right-handed coordinate system?

2. If you know the scalar components of a vector in three dimensions, how can

you determine its magnitude?

3. What are the direction cosines of a vector? If you know them, how do you

determine the components of the vector?

4. Suppose that you know the coordinates of two points A and B in three

dimensions. How do you determine the scalar components of the position vector

of point B relative to point A?

Magnitude and Direction Cosines
of a Vector '

An engineer designing a threshing machine determines that at a particular

time the position vectors of the ends A and fi of a shaft are r^ = 3i — 4j -

12k (ft) and Fg = -i + 7j + 6k (ft).

(a) What is the magnitude of r^?

(b) Determine the angles 0,., 0,., and 6. between r^ and the positive coordinate

axes.

(c) Determine the scalar components of the position vector of end B of the

shaft relative to end A.

I
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Strategy
1

(a) Since we know the components of r^, we can use Eq. (2.14) to determine |

its magnitude.

(b) We can obtain the angles 6^, dy. and 6, from Eqs.(2.15).

(c) The position vector of end B of the shaft relative to end A is Fg - r^-

Solution

(a) The magnitude of r^ is

= 13 ft.r^ = Vr^^ + ri, + i4 = V(3)^ + (-4)^ + (-12)2

(b) The direction cosines of r^ are

fA 13

'av -4

From these equations we find that the angles between r^ and the positive

coordinate axes are dj, = 76.7°, 6, = 107.9°, and 0, = 157.4°.

(c) The position vector of end B of the shaft relative to end A is

Tfl - r^ = (-i + 7j + 6k) - (3i -
4j - 12k)

= -4i + llj + 18k (ft).

Example 2.8

Determining Scalar Components
The crane in Fig. 2.27 exerts a 600-lb force F on the caisson. The angle be-

tween F and the x axis is 54°, and the angle between F and the y axis is 40°.

The z component of F is positive. Express F in terms of components.

Figure 2.27
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Strategy

Only two of the angles between the vector and the positive coordinate axes

are given, but we can use Eq. (2.16) to determine the third angle. Then we
can determine the components of F by using Eqs. (2. 15).

Solution

The angles between F and the positive coordinate axes are related by

cos-0^ + cos-0, + cos-e- = (cos 54°)- + (cos 40°)^ + cos^O. = 1.

Solving this equation for cos 6., we obtain the two solutions cos 6. = 0.260

and COS0- = -0.260, which tells us that 9. = 74.9° or 6- = 105.1°. The z

component of the vector F is positive, so the angle between F and the positive

z axis is less than 90°. Therefore 9. — 74.9°.

The components of F are

F, = |F| COS0, = 600 cos 54° = 353 lb,

F, = |F| cos 9, = 600 cos 40° = 460 lb,

R = iFlcose. = 600 cos 74.9° = 1561b.

Example 2.9

Determining Scaiar Components
The tether of the balloon in Fig. 2.28 exerts an 800-N force F on the hook at

O. The vertical line AB intersects the x-z plane at point A. The angle between

the z axis and the line OA is 60°, and the angle between the line OA and F is

45°. Express F in terms of components.

Figure 2.28
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Strategy

We can determine the components of F from the given geometric information

in two steps. First, we resolve F into two vector components parallel to the

lines OA and AB. The component parallel to AB is the vector component F^,.

Then we can resolve the component parallel to OA to determine the vector

components F^ and F^

.

Solution

In Fig. a, we resolve F into its y component F^, and the component F;, parallel

to OA. The magnitude of F^ is

|fJ = |F|sin45° = 800 sin 45° = 566 N,

and the magnitude of Fy, is

|F;,| = |F|cos45° = 800 cos 45° = 566 N,

In Fig. b, we resolve F^, into the vector components F ^ and F. . The magnitude

of F^ is

|fJ = |F;,|sin60° = 566 sin 60° = 490 N,

and the magnitude of F, is

|fJ = |F;,|cos60° = 566 cos 60° = 283 N.

The vector components F^, F^, andF, all point in the positive axis directions,

so the scalar components of F are positive:

F = 490i + 566j + 283k (N).

(a) Resolving F into vector components

parallel to OA and OB.

Oj

y

/
F-/60°

(b) Resolving F^ into vector components

parallel to the x and z axes.

Example 2.10

Mectot Whose Direction is Specified

by Two Points

The bar AB in Fig. 2.29 exerts a 140-N force F on its support at A. The force

is parallel to the bar and points toward B. Express F in terms of components.

B

"(800, 500, -300) mm

(200, 200, -100) mm

Figure 2.29
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(800, 500, -300) mm

(200, 200, -100) mm

(a) The position vector r^g.

y

B

^AB,

(b) The unit vector e^g pointing from A
toward B.

Strategy

Since we are given the coordinates of points A and fl, we can determine the

components of the position vector from A to B. By dividing the position vec-

tor by its magnitude, we can obtain a unit vector with the same direction as F.

Then by multiplying the unit vector by the magnitude of F, we obtain F in

terms of its components.

Solution

The position vector from A to fi is (Fig. a)

^AB = {xb - Xa)'! + [y'B - >'a)J + {Zb - ZAJk

= [(800) - (200) ]i + [(500) - (200) ]j + [(-300) - (-100) ]k

= 600i + 300j - 200k mm,

and its magnitude is

IrMB V(600)2 + (300)- + (-200)' = 700 mm.

By dividing r^g by its magnitude, we obtain a unit vector with the same di-

rection as F (Fig. b),

Tab 6,3, 2

,

e^B =
]
—r = -I + -J - -k.
k.4B| 111

Then, in terms of its scalar components, F is

F = |F|e,,= (140)(^i + ^j-^k 120i + 60j - 40k (N).

Example 2.11

Determining Components
in Three Dimensions
The rope in Fig. 2.30 extends from point B through a metal loop attached to

the wall at A to point C. The rope exerts forces F^g and F^c on the loop at A

2ft^
2 ft-

z

— 6ft-j

7 ft

4ffy

A

7"

^B

^aJ^ac

\ ^
\ 6 ft

10 ft -y

Figure 2.30



with magnitudes F^g AC\ 200 lb. What is the magnitude of the total

force F - F^g + F^c exerted on the loop by the rope?

Strategy

The force F^g is parallel to the line from A to B, and the force F^c is parallel

to the line from A to C. Since we can determine the coordinates of points A,

B, and C from the given dimensions, we can determine the components of

unit vectors that have the same directions as the two forces and use them to

express the forces in terms of scalar components.
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Solution

Let r^B be the position vector from point A to point B and let r^^ be the posi-

tion vector from point A to point C (Fig. a). From the given dimensions, the

coordinates of points A, B, and C are

/I: (6, 7, 0) ft, S: (2, 0,4) ft, C: (12, 0, 6) ft.

Therefore the components of r^g and r^^ are

^AB = (^B - X^ji + (vb - Ja)] + {Zb - ZAJii

= (2 - 6)i + (0 - 7)j + (4

= -4i - 7j + 4k (ft)

0)k

and

'AC = {xc - XaYi + {yc - Va)] + (zc - Za)^

= (12 - 6)i + (0 - 7)j + (6 - 0)k

= 6i - 7j + 6k (ft).

Their magnitudes are |r^g| = 9 ft and Ir^cl - H ft- By dividing r^g and r^^

by their magnitudes, we obtain unit vectors e^g and e^c that point in the di-

rections of Fab and F^c (Fig- b):

-AB

'=AC

^AB

'ABl

'AC

'AC\

-0.444i -
0.778J + 0.444k,

0.545i -
0.636J + 0.545k.

The forces F^g and F^c are

F^B = 200e^B = -88.9i -
155.6J + 88.9k (lb),

Fac = 200e4c = 109.1 i - 127.3J + 109.1k (lb).

The total force exerted on the loop by the rope is

F = F^B + F^c = 20.2i - 282.8J + 198.0k (lb),

and its magnitude is

|F| = V(20.2)- + (-282.8)- + (198.0)' = 346 lb.

(a) The position vectors r^g and r^^-

A

^ABjf\^AC

/ \
/

/
-V-

\

\

(b) The unit vector e^g pointing and ^.j^q.
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Example 2.12

Determining Con^ponents of a Force
The cable AB in Fig. 2.31 exerts a 50-N force T on the collar at A. Express T
in terms of components.

0.15 m

Figure 2.31

0.15 mj

(a) The unit vectors e^g and e^

Strategy

Let r^B be the position vector from A to B. We will divide r^^ by its magni-

tude to obtain a unit vector e^g having the same direction as the force T. Then
we can obtain T in terms of scalar components by expressing it as the product

of its magnitude and e^g. To begin this procedure, we must first determine the

coordinates of the collar A. We will do so by obtaining a unit vector Cco
pointing from C toward D and multiplying it by 0.2 m to determine the posi-

tion of the collar A relative to C.

Solution

Determining the Coordinates of Point A The position vector from C to

Dis

rcD = (0.2 - 0.4)i + (0 - 0.3)j + (0.25 - 0)k

= -0.2i - 0.3j + 0.25k (m).

Dividing this vector by its magnitude, we obtain the unit vector e^o (Fig- a):

rrn -0.2i - 0.3j + 0.25k
^CD ~

^CD

kcol V(-0.2)2 + (-0.3)2 ^ ^Q_25)2

= -0.456i - 0.684J + 0.570k.

Using this vector, we obtain the position vector from C to A:

rcA = (0.2 m)ecD = -0.091i - 0.137J + 0.114k (m).

11
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The position vector from the origin of the coordinate system to C is

Toe — 0.4 i + 0.3j (m), so the position vector from the origin to A is

ToA = roc + rcA = (0-4i + 0.3j) + (-0.091 i - 0.137J + 0.114k)

= 0.309i + 0.163J + O.I14k (m).

The coordinates of A are (0.309, 0.163, 0.114) m.

Determining ttie Components of T Using the coordinates of point A, the

position vector from A to iB is

Tab = (0 - 0.309)i + (0.5 - 0.163)j + (0.15 - 0.114)k

= -0.3091 + 0.337J + 0.036k (m).

Dividing this vector by its magnitude, we obtain the unit vector e^^ [Fig. (a)]:

Tab -0.309i + 0.337J + 0.036k
MS

\rAB\ V(-0.309)' + (0.337)^ + (0.036)^

= -0.674i + 0.735J + 0.079k.

The force T is

T = |T|e^B = (50N)(-0.674i + 0.735J + 0.079k)

= -33.71 + 36.7J + 3.9k (N).

Problems

2.65 A vector U = 3i - 4j - 12k. What is its magnitude?

Strategy: The magnitude of a vector is given in terms of its

components by Eq. (2.14).

2.66 A force vector F = 20! + 60j

magnitude.

90 k (N). Determine its

f) 2.67 An engineer determines that an attachment point will be

subjected to a force F = 20i + FJ - 45k (kN). If the

attachment point will safely support a force of 80-kN magnitude

in any direction, what is the acceptable range of values of F,,?

2.68 A vector U = U,i + UJ + U.k. Its magnitude |U| = 30.

Its components are related by the equations Uy = —2U^ and

U- = 4f/,,. Determine the components.

2.69 A vector U = 100! + 200j - 600k, and a vector

V = -200! + 450 j + 100 k. Determine the magnitude of the

vector -2U + 3V.

2.70 Two vectors U= 3!- 2j + 6kandV = 4! + 12j = - 3k.

(a) Determine the magnitudes of U and V.

(b) Determine the magnitude of the vector 3U + 2V.

2.71 A vector U = 40! - 70 j - 40 k.

(a) What is its magnitude?

(b) What are the angles 6^, dy, and 0, between U and the

positive coordinate axes?

Strategy: Since you know the components of U, you can

determine the angles 6,. 6y. and 6. from Eqs. (2.15).

2.72 A force F = 600! - 700j + 600k (lb). What are the

angles 0^, 6y, and 6. between the vector F and the positive

coordinate axes?
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2.73 The cable exerts a 50-lb force F on the metal hook at O.

The angle between F and the x axis is 40°, and the angle between

F and the y axis is 70°. The z component of F is positive.

(a) Express F in terms of components.

(b) What are the direction cosines of F?

Strategy: Since you are given only two of the angles between

F and the coordinate axes, you must first determine the third one.

Then you can obtain the components of F from Eqs. (2.15).

z P2.73

2.74 A unit vector has direction cosines cos 0, = —0.5 and

cos0^ = 0.2. Its z component is positive. Express it in terms of

components.

2.75 The airplane's engines exert a total thrust force T of

200-lcN magnitude. The angle between T and the x axis is 120°,

and the angle between T and the y axis is 1 30°. The ; component

of T is positive.

(a) What is the angle between T and the z axis?

(b) Express T in terms of components.

P2.75

2.76 The position vector from a point A to a point B is

3i + 4j — 4k (ft). The position vector from point A to a point C
is-3i + 13j - 2k (ft).

(a) What is the distance from point B to point C?

(b) What are the direction cosines of the position vector from

point B to point C?

2.77 A vector U = 3i — 2j + 6k. Determine the components

of the unit vector that has the same direction as U.

2.78 A force vector F = 31 - 4j - 2k (N).

(a) What is the magnitude of F?

(b) Determine the components of the unit vector that has the

same direction as F.

2.79 A force vector F points in the same direction as the unit

vector e = 7i-7J-7k. The magnitude of F is 700 lb. Express

F in terms of components.

2.80 A force vector F points in the same direction as the position

vector r = 4i + 4j - 7k (m). The magnitude of F is 90 kN.

Express F in terms of components.

2.81 Astronauts on the space shuttle use radar to determine the

magnitudes and direction cosines of the position vectors of two

satellites A and B. The vector r^ from the shuttle to satellite A has

magnitude 2 km, and direction cosines cos0^ = 0.768,

COS0J, = 0.384, cos 6- = 0.512. The vector fg from the shuttle to

satellite B has magnitude 4 km and direction cosines

COS0, = 0.743. cos 0, = 0.557, cos 0, = -0.371. What is the

distance between the satellites?

P2.81

2.82 Archaeologists measure a pre-Columbian ceremonial

structure and obtain the dimensions shown. Determine (a) the

magnitude and (b) the direction cosines of the position vector

from point A to point B.

y

X P2.82
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2.83 Consider the structure described in Problem 2.82. After

returning to the United States, an archaeologist discovers that he

lost the notes containing the dimension b, but other notes indicate

that the distance from point B to point C is 16.4 m. What are the

direction cosines of the vector from B to C?

2.84 Observers at A and B use theodolites to measure the

direction from their positions to a rocket in flight. If the

coordinates of the rocket's position at a given instant are

(4, 4, 2) km, determine the direction cosines of the vectors r^«

and rgg that the observers would measure at that instant.

B (5,0,2) km

P2.84

2.85 In Problem 2.84, suppose that the coordinates of the

rocket's position are unknown. At a given instant, the person at A
determines that the direction cosines of r,,/, are cos 6, — 0.535,

cos 6y = 0.802, and cos Q. = 0.267. and the person at B

determines that the direction cosines of Xg^ are cos^^ = —0.576,

cos 6, = 0.798, and cos0- = -0.177. What are the coordinates of

the rocket's position at that instant?

2.86 The height of Mount Everest was originally measured by a

surveyor using the following procedure. He first measured the

distance between two points A and B of equal altitude. Suppose

that they are 10,000 ft above sea level and are 32,000 ft apart. He

then used a theodolite to measure the direction cosines of the

vectors from point A to the top of the mountain P and from point

B to P. Suppose that for r^p, the direction cosines are

COS0, = 0.509, COS 61, = 0.509, cos 0, = 0.694, and for rg,, they

are cos 0, = -0.605, cos 0, = 0.471, cos 0. = 0.642. The ; axis

of the coordinate system is vertical. What is the height of Mount

Everest above sea level?

2.87 The distance from point O to point A is 20 ft. The straight

line AB is parallel to the y axis, and point B is in the x-z plane.

Express the vector r^^ in terms of scalar components.

Strategy: You can resolve Tqa into a vector from O to B and

a vector from B to A. You can then resolve the vector from O to

B into vector components parallel to the x and z axes. See

Example 2.9.

P2.87

2.88 The magnitude of r is 100 in. The straight line from the

head of r to point A is parallel to the .v axis, and point A is

contained in the y-z plane. Express r in terms of scalar

components.

P2.86 P2.88
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2.89 The straight Hne from the head of F to point A is parallel to 2.91 An engineer calculates that the magnitude of the axial

the y axis, and point A is contained in the x-z plane. The x

component of F is F, = 100 N.

(a) What is the magnitude of F?

(b) Determine the angles 6^, 0,, and B. between F and the

positive coordinate axes.

force in one of the beams of a geodesic dome is |P| = 7.65 kN.

The cartesian coordinates of the endpoints A and B of the

straight beam are (-12.4, 22.0. -18.4) m and

(-9.2, 24.4, -15.6) m, respectively. Express the force P in terms

of scalar components.

P2.89

2.90 The position of a point P on the surface of the earth is

specified by the longitude A, measured from the point G on the

equator directly south of Greenwich, England, and the latitude L
measured from the equator. Longitude is given as west (W)

longitude or east (E) longitude, indicating whether the angle is

measured west or east from point G. Latitude is given as north (N)

latitude or south (S) latitude, indicating whether the angle is

measured north or south from the equator. Suppose that P is at

longitude 30°W and latitude 45°N. Let R^ be the radius of the

earth. Using the coordinate system shown, determine the

components of the position vector of P relative to the center of the

earth. (Your answer will be in terms of /?£.)

Equator

P2.91

2.92 The cable BC exerts an 8-kN force F on the bar AB at B.

(a) Determine the components of a unit vector that points from

point B toward point C.

(b) Express F in terms of components.

B (5,6, l)m

C (3, 0, 4) m

P2.92

2.93 A cable extends from point C to point E. It exerts a 50-lb

force T on the plate at C that is directed along the line from C to

P2.90 E. Express T in terms of scalar components.
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P2.93

2.94 What are the direction cosines of the force T in

Problem 2.93?

2.95 The cable AB exerts a 200-lb force F^g at point A that is

directed along the line from A to B. Express F^g in terms of scalar

components.

2.97 The 70-m-tall tower is supported by three cables that exert

forces F^g, F^c ^nd F^^, on it. The magnitude of each force is

2 kN. Express the total force exerted on the tower by the three

cables in terms of scalar components.

P2.97

2.98 Consider the tower described in Problem 2.97. The

magnitude of the force F^g is 2 kN. The x and z components of

the vector sum of the forces exerted on the tower by the three

cables are zero. What are the magnitudes of F^c ^^^ F^^?

2.99 Express the position vector from point O to the collar at A

in terms of scalar components.

A (6. 0. 10) ft P2.95

2.96 Consider the cables and wall described in Problem 2.95.

Cable AB exerts a 200-lb force F^g at point A that is directed

along the line from A to B. The cable AC exerts a 100-lb force

F^c at point A that is directed along the line from A to C.

Determine the magnitude of the total force exerted at point A by

the two cables.

7-x

P2.99
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2.100 The cable AB exerts a 32-lb force T on the collar at A.

Express T in terms of scalar components.

P2.100 P2.101

2.101 The circular bar has a 4-m radius and lies in the x-y plane.

Express the position vector from point B to the collar at A in

terms of scalar components.

2.102 The cable AB in Problem 2. 101 exerts a 60-N force T on

the collar at A that is directed along the line from A toward B.

Express T in terms of scalar components.

Products of Vectors

Dot Products

Two kinds of products of vectors, the dot and cross products, have been found

to have applications in science and engineering, especially in mechanics and

electromagnetic field theory. We use both of these products in Chapter 4 to

evaluate moments of forces about points and lines. We discuss them here so

that you can concentrate on mechanics when we introduce moments and not

be distracted by the details of vector operations.

The dot product of two vectors has many uses, including resolving a vector

into components parallel and perpendicular to a given line and determining

the angle between two lines in space.

Definition

Consider two vectors U and V (Fig. 2.32a). The dot product of U and V, de-

noted by U • V (hence the name "dot product"), is defined to be the product

of the magnitude of U, the magnitude of V, and the cosine of the angle Q be-

tween U and V when they are placed tail to tail (Fig. 2.32b):

u- V = luiivicose. (2.18)
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Because the result of the dot product is a scalar, the dot product is sometimes

called the scalar product. The units of the dot product are the product of the

units of the two vectors. Notice that the dot product of two nonzero vectors is

equal to zero ifand only if the vectors are perpendicular.

The dot product has the properties

U • V — V • U. The dot product is commutative.

a(U • V) = (aU) • V = U • (aV), The dot product is

associative with

respect to scalar

multiplication.

(2.19)

(2.20)

and

U-(V + W) = U-V + U-W The dot product is

distributive with

respect to vector

addition.

(2.21)

for any scalar a and vectors U, V, and W.

Dot Products in Terms of Components

In this section we derive an equation that allows you to determine the dot

product of two vectors if you know their scalar components. The derivation

also results in an equation for the angle between the vectors. The first step is

to determine the dot products formed from the unit vectors i, j, and k. Let's

evaluate the dot product i • i. The magnitude |i| = 1, and the angle between

two identical vectors placed tail to tail is zero, so we obtain

(1)(1)(1) = 1-

=(1)(1)(0)=0.

i • i = |i||i| cos(O) =

The dot product of i and j is

i-j = |i||j|cos(90°)

Continuing in this way, we obtain

i • i = 1, i • j = 0, i • k = 0,

j-i = 0, j-j = l, j-k = 0, (2.22)

k-i = 0, k • j = 0, k- k = 1.

The dot product of two vectors U and V expressed in terms of their com-

ponents is

U • V = (f/,i + f/,j + f/,k) • (V,i + VJ + Kk)

= ^,v,,(i-i) + ^,K(i-j) + {/,K(i-k)

+ t/,v,(j-i) + t/,K(J-J) + f/vV,(j-k)

+ Uy,{\i • i) + t/,-K(k • j) + t/:^:(k • k).

In obtaining this result, we used Eqs. (2.20) and (2.21). Substituting Eqs.

(2.22) into this expression, we obtain an equation for the dot product in terms

of the scalar components of the two vectors:

U • V = U,V, + U,V, + l^-Jz- (2.23)

u

(a)

(b)

Figure 2.32

(a) The vectors U and V.

(b) The angle between U and V when the

two vectors are placed tail to tail.
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To obtain an equation for the angle 6 in terms of the components of the

vectors, we equate the expression for the dot product given by Eq. (2.23) to

the definition of the dot product, Eq. (2. 18), and solve for cos 6:

u . V u,v. + ux + u,v,—
. (2.24)cos 6 =

|U||V|. |U||V|

Vector Components Parallel and Normal to a Line

In some engineering applications you must resolve a vector into components

that are parallel and normal (perpendicular) to a given line. The component of

a vector parallel to a line is called the projection of the vector onto the line.

For example, when the vector represents a force, the projection of the force

onto a line is the component of the force in the direction of the line.

We can determine the components of a vector parallel and normal to a

line by using the dot product. Consider a vector U and a straight line L

(Fig. 2.33a). We can resolve U into components Up and U^ that are parallel

and normal to L (Fig. 2.33b).

Figure 2.33

(a) A vector U and line L.

(b) Resolving U into components parallel

and normal to L. (a)

Figure 2.34

The unit vector e is parallel to L.

The Parallel Component In terms of the angle 6 between U and the com-

ponent Up, the magnitude of Up is

UJ = lUlcose. (2.25)

Let e be a unit vector parallel to L (Fig. 2.34). The dot product of e and U is

e • U = |e||U|cos0 = |U|cose.

Comparing this result with Eq. (2.25), we see that the magnitude of Up is

|Up| = e • U.

Therefore the parallel component, or projection of U onto L, is

Up = (e • U)e. (2.26)

(This equation holds even if e doesn't point in the direction of Up. In that

case, the angle 6 > 90° and e • U is negative.) When the components of a

vector and the components of a unit vector e parallel to a line L are known,

we can use Eq. (2.26) to determine the component of the vector parallel to L.
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The Normal Component Once the parallel component, has been deter-

mined, we can obtain the normal component from the relation U = Up + Un

:

U„ = U u
P"

(2.27)

Study Questions

1. What is the definition of the dot product?

2. The dot product is commutative. What does that mean?

3. If you know the components of two vectors U and V, how can you determine

their dot product?

4. How can you use the dot product to determine the components of a vector

parallel and normal to a line?

Example 2.13

Calculating a Dot Product
The magnitude of the force F in Fig. 2.35 is 100 lb. The magnitude of the

vector r from point O to point A is 8 ft.

(a) Use the definition of the dot product to determine r • F.

(b) Use Eq. (2.23) to determine r • F.

Strategy

(a) Since we know the magnitudes of r and F and the angle between them

when they are placed tail to tail, we can determine r • F directly from the

definition.

(b) We can determine the components of r and F and use Eq. (2.23) to deter-

mine their dot product.

>

r ,/

/
\60°

A

Figure 2.35

Solution

(a) Using the definition of the dot product,

r • F = |r||F|cos0 = (8) (100) cos 60° = 400 ft-lb.

(b) The vector r = 8i (ft). The vector F in terms of scalar components is

F = 100 cos 60° i + 100 sin 60° j (lb).

Therefore the dot product of r and F is

r • F = r,F, + r^F, + r^F^

= (8) (100 cos 60°) + (0)(100sin60°) + (0)(0) = 400 ft-lb.
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Example 2.14

(8, 8. 4) m

Figure 2.36

Using the Dot Product
to Determine an Angle
What is the angle 6 between the lines AB and AC in Fig. 2.36?

Strategy

We know the coordinates of the points A, S, and C, so we can determine the

components of the vector r^^ from A to B and the vector r^^ frorn .4 to C
(Fig. a). Then we can use Eq. (2.24) to determine 6.

Solution

The vectors r^g and r^^ are

(4. 3. 2)m (6. 1.-2) m

(8. 8, 4) m
'AB (6 - 4)i + (1 - 3)j + (-2 - 2)k = 21 - 2j - 4k (m).

r,c = (8 - 4)i + (8 - 3)j + (4 - 2)k = 41 + 5j + 2k (m).

(4. 3. 2)m ^AB (6. i.-2)m Their magnitudes are

\rj = V(2)^ + (-2)- + (-4)- = 4.90 m,

'ACl

(a) The position vectors r^g and r^^-

|r,c| = V(4)2 + (5)' + (2)^ = 6.71 m.

The dot product of r^^ and r^,; is

r.B • r,c = (2)(4) + (-2)(5) + (-4)(2) = -10 m\

Therefore

TjR • r^r -10
cos 6

MB 'AC

ItabIKcI (4.90)(6.71)

The angled = arccos (-0.304) = 107.7°.

-0.304.

Example 2.15

(6. 6, -3) m

(10. -2.3) m

Components Parallel

and Normal to a Line

Figure 2.37

Suppose that you pull on the cable OA in Fig. 2.37, exerting a 50-N force F at

O. What are the components of F parallel and normal to the cable OB?

Strategy

Resolving F into components parallel and normal to OB (Fig. a), we can de-

termine the components by using Eqs. (2.26) and (2.27). But to apply them,

we must first express F in terms of scalar components and determine the

components of a unit vector parallel to OB. We can obtain the components of
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F by determining the components of the unit vector pointing from O toward

A and multiplying them by |F|.

Solution

The position vectors from O to ^4 and from O to B are (Fig. b)

'OA 6i + 6j - 3k (m).

XoB = lOi - 2j + 3k (m).

Their magnitudes are |ro^| = 9 m and |rog| = 10.6 m. Dividing these vectors

by their magnitudes, we obtain unit vectors that point from the origin toward

A and B (Fig. c):

^Ok

^nR ~
'^OB

'O/l

'0/\|

^OB

'OS|

6i + 6j - 3k

lOi - 2j + 3k

ia6

0.667i + 0.667J
- 0.333k,

= 0.941i + 0.188J
- 0.282k.

The force F in terms of scalar components is

F = |F|eo4 = (50)(0.667i + 0.667J
- 0.333k)

= 33.3i + 33.3J
- 16.7k (N).

Taking the dot product of Qqb ^nd F, we obtain

Cob • F = (0.941)(33.3) + (-0.188) (33.3) + (0.282)(-16.7)

= 20.4 N.

The parallel component of F is

Fp = (eoB • F)eoB = (20.4)(0.941i -
0.188J + 0.282k)

= 19.2i - 3.8j + 5.8k (N).

and the normal component is

14.2i + 37.2J
- 22.4k (N).

Discussion

You can confirm that two vectors are perpendicular by making sure their dot

product is zero. In this example,

F • F* p * n (19.2)(14.2) + (-3.8)(37.2) + (5.8)(-22.4) = 0.

(a) The components of F parallel and

normal to OB.

(6, 6, -3) m

(10,-2, 3) m

(b) The position vectors r^^ and Tog.

y

A

a

"OA/

OB

B

(c) The unit vectors Cqa and Cob-

Problems

2.103 Determine the dot product of the vectors

U = 8i - 6j + 4k and V = 3i + 7j + 9k.

Strategy: Since the vectors are expressed in terms of their

components, you can use Eq. (2.23) to determine their dot

product.

2.104 Determine the dot product U • V of the vectors

U = 40i + 20j + 60k and V = -30i + 15k.

2.105 What is the dot product of the position vector

r = —lOi + 25j (m) and the force

F = 300i + 250j + 300k (N)?
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2.106 What is the dot product of the position vector r = 4i —

12j - 3k (ft) and the force F = 20i + 30j - 10k (lb)?

2.107 Two perpendicular vectors are given in terms of their

components by U = [/, i - 4j + 6k and V = 3i + 2j - 3k.

Use the dot product to determine the component t/,.

2.108 The three vectors

U = UJ + 3j + 2k,

V = -3i + VJ + 3k,

W = -2i + 4j + W.k

are mutually perpendicular. Use the dot product to determine the

components [/,, V,, and W-.

2.109 The magnitudes |U| = 10 and |V| = 20.

(a) Use the definition of the dot product to determine U • V.

(b) Use Eq. (2.23) to determine U • V.

2.112 What is the angle 6 between the straight lines AB and AC?

(6, 0, 6) ft

P2.112

2.113 The ship O measures the positions of the ship A and the

airplane B and obtains the coordinates shown. What is the angle 6

between the lines of sight OA and OB?

P2.109

2.110 By evaluating the dot product U • V, prove the identity

cos(0i - ^2) = cos^icosei + sin^isin^j-

Strategy: Evaluate the dot product both by using the

definition and by using Eq. (2.23).

P2.110

2.111 Use the dot product to determine the angle between the

forestay (cable AB) and the backstay (cable BC) of the sailboat in

Problem 2.41.

(6, 0, 3) km

P2.113

2.114 Astronauts on the space shuttle use radar to determine the

magnitudes and direction cosines of the position vectors of two

satellites A and B. The vector r^ from the shuttle to satellite A has

magnitude 2 km and direction cosines cos 6^ = 0.768,

COS0, = 0.384, COS0. = 0.512. The vector r^ from the shuttle to

satellite B has magnitude 4 km and direction cosines

COS0, = 0.743, COS0, = 0.557, COS0, = -0.371. What is the

angle 6 between the vectors r^ and r^?



2.5 Dot Products 65

P2.114

2.115 The cable BC exerts an 800-N force F on the bar AB at B.

Use Eq. (2.26) to determine the vector component of F parallel to

the bar.

B (5, 6, 1) m

IK

P2.117

2.118 Cables extend from A to B and from A to C. The cable AC
exerts a 1000-lb force F at A.

(a) What is the angle between the cables AB and AC?
(b) Determine the vector component of F parallel to the

cable AB.

A Bi (0. 7. 0) ft

C (3. 0, 4) m
P2.115

2.116 The force F = 21i + 14j (kN). Resolve it into vector

components parallel and normal to the line OA.
(14,0, 14) ft P2.118

2.119 Consider the cables AB and AC shown in Problem 2.1 18.

Let r^B be the position vector from point A to point B. Determine

the vector component of r^g parallel to the cable AC.

2.120 The force F = lOi + 12j - 6k (N). Determine the

vector components of F parallel and normal to the line OA.

A (6, -2, 3) m P2.116

2.117 At the instant shown, the Harrier's thrust vector is

T = 3800i + 15,300j - 1800k (lb), and its velocity vector is

V = 24i + 6j — 2k (ft/s). Resolve T into vector components

parallel and normal to v. (These are the components of the

airplane's thrust parallel and normal to the direction of its motion.)

(0, 6, 4) m

P2.120
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2.121 The rope AB exerts a 50-N force T on collar A. Determine

the vector component of T parallel to the bar CD.

0.15 m

0.5 m

-0.2 m
P2.121

P2.125

2.122 In Problem 2.121, determine the vector component of T
normal to the bar CD.

2.123 The disk A is at the midpoint of the sloped surface. The

string from Ato B exerts a 0.2-lb force F on the disk. If you

resolve F into vector components parallel and normal to the

sloped surface, what is the component normal to the surface?

P2.123

2.124 In Problem 2.123. what is the vector component of F
parallel to the surface?

2.125 An astronaut in a maneuvering unit approaches a space

station. At the present instant, the station informs him that his

position relative to the origin of the station's coordinate system is

Tc = 50i + 80j + 180k (m) and his velocity is v = -2.2j -

3.6k (m/s).The position of an airlock is r^ = — 12i + 20k (m).

Determine the angle between his velocity vector and the line from

his position to the airlock's position.

2.126 In Problem 2.125, determine the vector component of the

astronaut's velocity parallel to the line from his position to the

airlock's position.

2.127 Point P is at longitude 30°W and latitude 45°N on the

Atlantic Ocean between Nova Scotia and France. (See Problem

2,90.) Point Q is at longitude 60°E and latitude 20°N in the

Arabian Sea. Use the dot product to determine the shortest

distance along the surface of the earth from P toQ'm terms of the

radius of the earth R^.

Strategy: Use the dot product to determine the angle

between the lines OP and OQ: then use the definition of an

angle in radians to determine the distance along the surface of

the earth from P to Q.

Equator

P2.127
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Cross Products

Like the dot product, the cross product of two vectors has many applications,

including determining the rate of rotation of a fluid particle and calculating

the force exerted on a charged particle by a magnetic field. Because of its

usefulness for determining moments of forces, the cross product is an indis-

pensable tool in mechanics. In this section we show you how to evaluate

cross products and give examples of simple applications.

Definition

Consider two vectors U and V (Fig. 2.38a). The cross product of U and V,

denoted U X V, is defined by

U X V = |U||V|sin0e. (2.28)

The angle 6 is the angle between U and V when they are placed tail to tail

(Fig. 2.38b). The vector e is a unit vector defined to be perpendicular to both

U and V. Since this leaves two possibilities for the direction of e, the vectors

U, V, and e are defined to be a right-handed system. The right-hand rule for

determining the direction of e is shown in Fig. 2.38c. When you point the

four fingers of your right hand in the direction of the vector U (the first vector

in the cross product) and close your fingers toward the vector V (the second

vector in the cross product), your thumb points in the direction of e.

Because the result of the cross product is a vector, it is sometimes called

the vector product. The units of the cross product are the product of the units

of the two vectors. Notice that the cross product of two nonzero vectors is

equal to zero if and only if the two vectors are parallel.

An interesting property of the cross product is that it is not commutative.

Eq. (2.28) implies that the magnitude of the vector U X V is equal to the

magnitude of the vector V X U, but the right-hand rule indicates that they are

opposite in direcUon (Fig. 2.39). That is,

U X V = -V X U. The cross product is not commutative.

The cross product also satisfies the relations

a(U X V) = (aU) X V = U X (aV) The cross product is

associative with

respect to scalar

multiplication.

(2.29)

(2.30)

and

U X (V + W) = (U X V) + (U X W) The cross product

is distributive with

respect to vector

addition.

(2.31)

for any scalar a and vectors U, V, and W.

Cross Products in Terms of Components

To obtain an equation for the cross product of two vectors in terms of their

components, we must determine the cross products formed from the unit vec-

tors i, j, and k. Since the angle between two identical vectors placed tail to

tail is zero,

(a)

(c)

Figure 2.38

(a) The vectors U and V.

(b) The angle 6 between the vectors when

they are placed tail to tail.

(c) Determining the direction of e by the

right-hand rule.

UxV

^ u

'^ u

*VxU

Figure 2.39

Directions of U X V and V X U.

'
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Figure 2.40

The right-hand rule indicates that

i X j = k.

(a)

~n
(b)

Figure 2.41

(a) Arrange the unit vectors in a circle with

arrows to indicate their order.

(b) You can use the circle to determine

their cross products.

i X k = -j,

j X k = i,

k X k = 0.

i X i = |i||i|sin(0)e = 0.

The cross product i X j is

i X j = |i||j|sin(90)°e = e,

where e is a unit vector perpendicular to i and j. Either e = k or e = —k. Ap-

plying the right-hand rule, we find that e = k (Fig. 2.40). Therefore

i X j = k.

Continuing in this way, we obtain

i X i = 0, i X j = k.

j X i = -k, j X j = 0,

k X i = j, k X j = -i, k X k = 0. (2.32)

These results can be remembered easily by arranging the unit vectors in a cir-

cle, as shown in Fig. 2.41a. The cross product of adjacent vectors is equal to

the third vector with a positive sign if the order of the vectors in the cross

product is the order indicated by the arrows and a negative sign otherwise.

For example, in Fig. 2.41b we see that i x j = k, but i X k = —j.

The cross product of two vectors U and V expressed in terms of their

components is

U X V = ([/,i + UJ + U,k) X {VJ + VJ + Kk)

= UX{i X i) + UMi X j) + UMi X k)

+ UyV^ii X i) + u,y,{i X j) + u,v,{j X k)

+ U,V,{k X i) + U,V,{k X j) + U,V,{k X k).

By substituting Eqs. (2.32) into this expression, we obtain the equation

U X V = {UyV, - U,V,)i - {U,V, - U,V,)j

+ {U,Vy - UX)k. (2.33)

This result can be compactly written as the determinant

U X V =
k

- „ ^z

V. V. V,

> J

(2.34)

This equation is based on Eqs. (2.32), which we obtained using a right-handed

coordinate system. It gives the correct result for the cross product only if a right-

handed coordinate system is used to determine the components of U and V.

Evaluating a 3 x 3 Determinant

A 3 X 3 determinant can be evaluated by repeating its first two columns as

shown and evaluating the products of the terms along the six diagonal lines.

(-) (-) (-) (+) (+) (+)
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Adding the terms obtained from the diagonals that run downward to the right

(blue arrows) and subtracting the terms obtained from the diagonals that run

downward to the left (red arrows) gives the value of the determinant:

J k

U, U, = U,VA + U,VJ + U^Vyk

A 3 X 3 determinant can also be evaluated by expressing it as

kJ

u.

V V
J

The terms on the right are obtained by multiplying each element of the first

row of the 3 X 3 determinant by the 2 X 2 determinant obtained by crossing

out that element's row and column. For example, the first element of the first

row, i, is multiplied by the 2 X 2 determinant

V.

T ^
Uy U,

t K K

Be sure to remember that the second term is subtracted. Expanding the 2 X 2

determinants, we obtain the value of the determinant:

+ (t/,K-t/vVjk.

i J k

u. u. U,

K ^y v.

Mixed Triple Products

In Chapter 4, when we discuss the moment of a force about a line, we will

use an operation called the mixed triple product, defined by

U • (V X W).

In terms of the scalar components of the vectors,

U • (V X W) = (^,i + f/J + f/,k)

(2.35)

i j k

V,- K K
W'. w.

+ UlV.Wy - KM/,).
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This result can be expressed as the determinant

f/, U.. U.

U • (V X W) = K
W.

(2.36)

Interchanging any two of the vectors in the mixed triple product changes the

sign but not the absolute value of the result. For example,

U • (V X W) = -W • (V X U).

If the vectors U, V, and W in Fig. 2.42 form a right-handed system, it

can be shown that the volume of the parallelepiped equals U • (V X W).

Figure 2.42

Parallelepiped defined by the vectors U, V,

and W.

Study Questions

1. What is the definition of the cross product?

2. If you know the components of two vectors U and V, how can you determine

their cross product?

3. If the cross product of two vectors is zero, what does that mean?

Example 2.16

Cross Product in Terms
of Components
Determine the cross product U X V of the vectors U = -2 i + j and

V = 3i - 4k.

Strategy

We can evaluate the cross product of the vectors in two ways: by evaluating

the cross products of their components term by term and by using Eq. (2.34).

Solution

U X V = (-21 + j) X (3i - 4k)

= (-2)(3)(i X i) + (-2)(-4)(i X k) + (l)(3)(j X i)

+ (l)(-4)(jXk)

= (-6)(0) + (8)(-j) + (3)(-k) + (-4)(i)

= -4i - 8j - 3k.
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Using Eq. (2.34), we obtain

i J k » j k

U X V = U, [/. U,

K Vy V,

-2 1

3 -4

= -4i --8j-- 3k.

Example 2.17

Calculating the Cross Product
The magnitude of the force F in Fig. 2.43 is 100 lb. The magnitude of the

vector r from point O to point .4 is 8 ft.

(a) Use the definition of the cross product to determine r X F.

(b) Use Eq. (2.34) to determine r x F.

Strategy

(a) We know the magnitudes of r and F and the angle between them when

they are placed tail to tail. Since both vectors lie in the x-y plane, the unit

vector k is perpendicular to both r and F. We therefore have all the informa-

tion we need to determine r X F directly from the definition.

(b) We can determine the components of r and F and use Eq. (2.34) to deter-

mine r X F.

Solution

(a) Using the definition of the cross product,

r X F = |r||F|sin6»e = (8)(100) sin60° e = 693e(ft-lb).

Since e is defined to be perpendicular to r and F, either e = k or e = -k.

Pointing the fingers of the right hand in the direction of r and closing them

toward F, the right-hand rule indicates that e = k. Therefore

r X F = 693k (ft-lb).

(b) The vector r = 8i (ft). The vector F in terms of scalar components is

F = 100 cos 60° i + 100 sin 60° j (lb).

From Eq. (2.34),

Figure 2.43

r X F

i j k

''.V '\ r- =

F. Fy F,

i j k

8

100 cos 60° 100 sin 60°

= (8)(100cos60°)k = 693k (ft-lb)
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Example 2.18

(6. 6, -3) m

Minimum Distance from a Point to a Line

Consider the straight lines OA and OB in Fig. 2.44.

(a) Determine the components of a unit vector that is perpendicular to both

OA and OB.

(b) What is the minimum distance from point A to the line 0B7

A (10,-2, 3)m

Figure 2.44

(a) The vectors Tqa and Tob-

(b) The minimum distance d from A to the

line OB.

Strategy

(a) Let Tqa and Vob be the position vectors from O to A and from O to B
(Fig. a). Since the cross product Tqa ^ ^ob is perpendicular to Tqa and tog we
will determine it and divide it by its magnitude to obtain a unit vector perpen-

dicular to the lines OA and OB.

(b) The minimum distance from A to the line OB is the length d of the straight

line from A to OB that is perpendicular to OB (Fig. b). We can see that

d — ItqaI sin0, where 6 is the angle between r^^ and Tob- From the definition

of the cross product, the magnitude of Tqa X Tob is |ro^||roB| sin0, so we can

determine d by dividing the magnitude of Tqa ^ ^ob by the magnitude of Tqb.

Solution

(a) The components of Tqa and r^g are

ToA = lOi - 2j + 3k (m),

Tqb = 61 + 6j - 3k (m).

By using Eq. (2.34), we obtain r^^ X r^g

i J k

^OA X Tqb 10 -2

6 6

= -12i + 48j + 72k (m').

This vector is perpendicular to Tqa and Tqb Dividing it by its magnitude, we
obtain a unit vector e that is perpendicular to the lines OA and OB:

^ rpA X Tqb ^ -12i + 48j + 72k

Ka X TobI V(-12)2 + (48)2 + (72)2

= -0.137i + 0.549J + 0.824k.

(b) From Fig. b, the minimum distance d is

d = ItqaI sin0.

The magnitude of Tqa x Tqb is

Ka X Foal = |ro^||roB|sin0.

Solving this equation for sin 6, the distance d is

d = r,041

'OA X r,OB\

'O/l 'OB

^OA X ToBl

'OBI

V(-12)2 ^ (4g^2 + (72)-

V(6)2 + (6)2 +"F^
= 9.71 m.
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Example 2.19

Component of a Vector Perpendicular
to a Plane
The rope CE in Fig. 2.45 exerts a 500-N force T on the door ABCD. What is

the magnitude of the component of T perpendicular to the door?

Strategy

We are given the coordinates of the comers A, B, and C of the door. By tak-

ing the cross product of the position vector Tcb from C to fl and the position

vector TcA from C to A, we will obtain a vector that is perpendicular to the

door. We can divide the resulting vector by its magnitude to obtain a unit vec-

tor perpendicular to the door and then apply Eq. (2.26) to determine the com-

ponent of T perpendicular to the door.

Solution

The components of Tcb and r^^ are

Tcb = 0.35i - 0.2j + 0.2k (m),

rc^ = 0.5i - 0.2j (m).

Their cross product is

i J k

c
(0.0.2.0) m

"CB ^ ^CA 0.35

0.5

-0.2 0.2

-0.2

(0.35,0,0.2) m

Figure 2.45

= 0.04i + O.lj + 0.03k (m-).

Dividing this vector by its magnitude, we obtain a unit vector e that is perpen-

dicular to the door (Fig. a):

Tcb X TcA 0.04 i + O.lj + 0.03k
e = -.

r = — .

I^CB X ^ca\ V(0.04)- + (0.1)- + (0.03)^

= 0.358i + 0.894J + 0.268k.

To use Eq. (2.26), we must express T in terms of its scalar components. The

position vector from C to £ is

TcE = 0.4i + 0.05J
- 0.1k (m),

so we can express the force T as

ITI 7^ = (500)
0.4i + 0.05J

- 0.1k

irc£| V(0.4)- + (0.05)- + (-0.1)2

= 481.5i + 60.2J - 120.4k (N).

The component of T parallel to the unit vector e, which is the component per-

pendicular to the door, is

Tp = (e • T)e = [(0.358)(481.5) + (0.894)(60.2) + (0.268)(-120.4)]e

= 194e (N).

The magnitude of Tp is 194 N.

(a) Determining a unit vector perpendicular

to the door.
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Problems

2.128 Determine the cross product U X V of the vectors

U = 8i - 6j + 4k and V = 3i + 7j + 9k.

Strategy: Since the vectors are expressed in terms of their

components, you can use Eq. (2.34) to determine their cross

product.

2.129 Two vectors U = 3i + 2j and V = 2i + 4j.

(a) What is the cross product U X V?

(b) What is the cross product V X U?

2.130 What is the cross product r X F of the position vector

r = 2i + 2j + 2k (m) and the force F = 20i - 40k (N)?

2.131 Determine the cross product r X F of the position vector

r = 41 - 12j + 3k (m) and the force

F = 16i - 22j - 10k (kN).

2.132 Consider the vectors U = 6i - 2j - 3k and

V = -12i + 4j + 6k.

(a) Determine the cross product U X V.

(b) What can you conclude about U and V from the result of (a)?

2.133 The cross product of two vectors U and V is

U X V = -30i + 40k. The vector V = 4i - 2j + 3k.

Determine the components of U.

2.134 The magnitudes |U| = 10 and |V| = 20.

(a) Use the definition of the cross product to determine U X V.

(b) Use the definition of the cross product to determine V X U.

(c) Use Eq. (2.34) to determine U X V.

(d) Use Eq. (2.34) to determine V X U.

2.136 By evaluating the cross product U X V, prove the identity

sin(0| — di) = sin0|Cos02 ~ cos0|Sin02-

X P2.136

2.137 Use the cross product to determine the components of a

unit vector e that is normal to both of the vectors U = 8i
—

6j + 4k and V = 3i + 7j + 9k.

2.138 (a) What is the cross product Fqa ^ Tos?

(b) Determine a unit vector e that is perpendicular to Tqa and rgg.

B (4. 4.-4) m

A(6, -2, 3)m
P2.138

» P2.134

2.135 The force F = lOi — 4j (N). Determine the cross product

Tab X F.

y

2.139 For the points O, A, and B in Problem 2.138, use the cross

product to determine the length of the shortest straight line from

point B to the straight line that passes through points O and A.

2.140 The cable BC exerts a lOOO-lb force F on the hook at B.

Determine r^^ X F.

P2.140
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2.141 The cable BC shown in Problem 2.140 exerts a 300-lb

force F on the hook at B.

(a) Determine r^g X F and r^f X F.

(b) Use the definition of the cross product to explain why the

results of (a) are equal.

2.142 The rope AB exerts a 50-N force T on the collar at A. Let

FfM be the position vector from point C to point A. Determine the

cross product r^^ X T.

0.15 m

0.5 m

-0.2 m
P2.142

2.143 In Problem 2. 142, let Tcb be the position vector from point

C to point B. Determine the cross product t^-b ^ T and compare

your answer to the answer to Problem 2. 142.

2.144 The bar AB is 6 m long and is perpendicular to the bars

AC and AD. Use the cross product to determine the coordinates

J^B.-Vfl. Cfl of point B.

(.Vg.Vg.Cg)

(0, 3, 0) m

C

(4, 0. 0) m
P2.144

2.145 Determine the minimum distance from point P to the

plane defined by the three points A, fi, and C.

(0. 0. 4) m
P2.145

2.146 Consider vectors U = 3i - lOj, V = -6j + 2k, and

W = 2i + 6j - 4k.

(a) Determine the value of the mixed triple product

U • (V X W) by first evaluating the cross product V X W and

then taking the dot product of the result with the vector U.

(b) Determine the value of the mixed triple product

U • (V X W) by using Eq. (2.36).

2.147 For the vectors U = 6i + 2j - 4k, V = 2i + 7j, and

W = 3i + 2k, evaluate the following mixed triple products:

(a) U • (V X W); (b) W • (V X U); (c) V • (W X U).

2.148 Use the mixed triple product to calculate the volume of

the parallelepiped.

,(140. 90, 30) mm

~~^-~^0. 0, 0) mm
" — x

^^ (160, 0. 100) mm

P2.148

2.149 By using Eqs. (2.23) and (2.34), show that

u, u,. u.

U • (V X W) = V, V, K
W, W, W-

2.150 The vectors U = i + U,j + 4k, V = 2i + j - 2k, and

W = —3i + j — 2k are coplanar (they lie in the same plane).

What is the component t/, ?
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Chapter Summary

u + v

(a)

(b)

In this chapter we have defined scalars, vectors, and vector operations. We
showed how to express vectors in terms of cartesian components and carry

out vector operations in terms of components. We introduced the definitions

of the dot and cross products and the mixed triple product and demonstrated

some apphcations of these operations, particularly the use of the dot product

to resolve a vector into components parallel and perpendicular to a given di-

rection. In Chapter 3 we will use vector operations to analyze forces acting on

objects in equilibrium.

A physical quantity completely described by a real number is a scalar. A
vector has both magnitude and direction. A vector is represented graphically

by an arrow whose length is defined to be proportional to its magnitude.

Rules for Manipulating Vectors

The sum of two vectors is defined by the triangle rule (Fig. a) or the equiva-

lent /7«ra//f/ogra/?7 rule (Fig. b).

The product of a scalar a and a vector U is a vector aU with magnitude

|a||U|. Its direction is the same as U when a is positive and opposite to U
when a is negative. The product (— 1)U is written —U and is called the nega-

tive of U. The division of U by a is the product (l/a)U.

A unit vector is a vector whose magnitude is 1 . A unit vector specifies a

direction. Any vector U can be expressed as |U|e, where e is a unit vector

with the same direction as U. Dividing any vector by its magnitude yields a

unit vector with the same direction as the vector.

(c)

(d)

Cartesian Components

A vector U is expressed in terms of scalar components as

U = UJ + U,i + U.k Eq.(2.12)

(Fig. c). The coordinate system is right-handed (Fig. d): If the fingers of the

right hand are pointed in the positive x direction and then closed toward the

positive y direction, the thumb points in the z direction. The magnitude of U is

|U| = VU; + U; + Ul. Eq.(2.14)

Let 6^, By, and 6- be the angles between U and the positive coordinate I

axes (Fig. e). Then the scalar components of U are

U, = |U|cos0„ U, = |U|cos0„ U, = |U|cos0,, Eq.(2.15)

The quantities cos0^, cos0,, and cos0. are the direction cosines of U. They

satisfy the relation i

COS^^j, + COS^e, -I- COS^e, = 1. Eq.(2.16)

The position vector r^^ from a point A with coordinates {x^, y^, z^) to a

point B with coordinates (jcg, Vg, Zb) is given by

^AB = {xb - Xj,)\ + (Vfi - \u)j + {zb - Za)^- Eq.(2.17)
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Dot Products

The dot product of two vectors U and V is

U • V = |U||V|COS0, Eq.(2.18)

where 6 is the angle between the vectors when they are placed tail to tail. The

dot product of two nonzero vectors is equal to zero if and only if the two vec-

tors are perpendicular.

In terms of scalar components,

V '\ = UX + UX + U.V.. Eq.(2.23)

A vector U can be resolved into vector components Up and Un parallel

and normal to a straight line L. In terms of a unit vector e that is parallel to L,

and

Up = (e • U)e. Eq.(2.26)

U„ = U - Up. Eq.(2.27)

Cross Products

The cross product of two vectors U and V is

U X V = |U||V| sinfle, Eq.(2.28)

where 6 is the angle between the vectors U and V when they are placed tail to

tail and e is a unit vector perpendicular to U and V. The direction of e is speci-

fied by the right-hand rule: When the fingers of the right hand are pointed in

the direction of U (the first vector in the cross product) and closed toward V
(the second vector in the cross product), the thumb points in the direction of e.

The cross product of two nonzero vectors is equal to zero if and only if the two

vectors are parallel.

In terms of scalar components.

U X V =
i j k

u. u,. u.

V. v; V-

Eq. (2.34)

(e)

Mixed Triple Products

The mixed triple product is the operation

U-(VXW). Eq.(2.35)

In terms of scalar components,

U, Uy U,

K v. V.U- (V X W) =

w, vy, w.

Eq. (2.36)
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Review Problems

2.151 The magnitude of F is 8 kN. Express F in terms of scalar

components.

Refer to the following diagram when solving Problems 2. 1 55

through 2.160.

(3. 7)m

\
F \

^(7,2)1

P2.151

2.152 The magnitude of the vertical force W is 600 lb. and the

magnitude of the force B is 1500 lb. Given that A + B + W = 0.

determine the magnitude of the force A and the angle a.

P2.152

2.153 The magnitude of the vertical force vector A is 200 lb. If

A + B + C = 0, what are the magnitudes of the force vectors B
andC?

2.154 The magnitude of the horizontal force vector D in

Problem 2.153 is 280 lb. If D + E + F = 0. what are the

magnitudes of the force vectors E and F?

F = 20i+ lOj- 10k (lb)

5(8. 1.-2) ft

P2.155-P2.160

2.155 What are the direction cosines of F?

2.156 Determine the scalar components of a unit vector parallel

to line AB that points from A toward B.

2.157 What is the angle 6 between the line AB and the force F?

2.158 Determine the vector component of F that is parallel to

the line AB.

2.159 Determine the vector component of F that is normal to the

hneAB.

2.160 Determine the vector r;,^ X F, where Tg^ is the position

vector from B to A.

2.161 (a) Write the position vector r ,« from point A to point B
in terms of scalar components.

(b) The vector F has magnitude |F| = 200 N and is parallel to the

line from A to B. Write F in terms of scalar components.

2.162 The rope exerts a force of magnitude |F| = 200 lb on the

top of the pole at B.

(a) Determine the vector r^g X F, where r^g is the position

vector from A to B.

(b) Determine the vector r^^ X F, where r^c is the position

vector from A to C.

B (5.6. l)ft

C (3. 0. 4) ft

P2.162
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2.163 The magnitude of Fgis 400 N and |F^ + Fg| = 900 N.

Determine the components of F^.

P2.163

2.164 Suppose that the forces F^ and Fg shown in Problem

2.163 have the same magnitude and F^ • Fg = 600 N". What are

F^andFfi?

2.165 The magnitude of the force vector Fg is 2 kN. Express it

in terms of scalar components.

B (5. 0, 3)

m

X
(6, 0, 0) m

P2.165

P2.168

2.169 The rope CE exerts a 500-N force T on the door ABCD.
Determine the vector component of T in the direction parallel to

the line from point A to point B.

2.166 The magnitude of the vertical force vector F in Problem

2.165 is 6 kN. Determine the vector components of F parallel and

normal to the line from B to D.

2.167 The magnitude of the vertical force vector F in Problem

2.165 is 6 kN. Given that F + F^ + Fg + Fc = 0, what are the

magnitudes of F^, Fg, and F^?

2.168 The magnitude of the vertical force W is 160 N. The

direction cosines of the position vector from A to 6 are

cos 6^ = 0.500, cos dy = 0.866, and cos d. = 0, and the direction

cosines of the position vector from B to C are cos 6^ = 0.707, Q]
cose,. = 0.619, and cosfl. = -0.342. Point G is the midpoint of

the line from B to C. Determine the vector r^^ X W, where r^g is

the position vector from A to G.

(0.35,0,0.2) m
P2.169

2.170 In Problem 2.169, let r^c be the position vector from point

B to point C. Determine the cross product Fgc ^ T.

2.171 In Problem 2.169, let Fgc be the position vector from point

B to point C, and let e^g be a unit vector that points from point A
toward point B. Evaluate the mixed triple product

^BC X T

2.172 A structural engineer determines that the truss in Problem

2. 10 will safely support the force F if the magnitudes of the vector

components of F parallel to the bars do not exceed 20 kN. Based

on this criterion, what is the largest safe magnitude of F?
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Q) 2.173 Consider the sling supporting the storage tank in Problem CJ 2.174 By moving the block at 5, the designer of the system

2.15. The tension in the supporting cable is JF^I = |Fg|. Suppose supporting the lifeboat in Problem 2.16 can increase the 20° angle

that you want a factor of safety of 1.5, which means the cable can between the vector Fg,- and the horizontal, thereby decreasing the

support 1.5 times the tension to which it is expected to be total force |Fg^ + Fg^-I exerted on the block. (Assume that the

subjected. support at A is also moved so that the vector Fg^ remains vertical.)

(a) What minimum tension must the cable used be able to If the designer does not want the block to be subjected to a force

support? greater than 740 N, what is the minimum acceptable value of the

(b) Suppose that design constraints require you to increase the 40° angle?

angle. If the cable used will support a tension of 800 lb, what is ^,

the maximum acceptable value of the angle? ® 2.175 Suppose that the bracket in Problem 2.52 is to be

subjected to forces |F|| = IFi] = 3 kN. and it will safely support a

total force of 4-kN magnitude in any direction. What is the

acceptable range of the angle a?





vif^^^'%:..:.
;'j. "I'l

*y

*-\

iki

The gravitational force on the climber is balanced

by the forces exerted by the rope suspending him.

,.^ a In this chapter we use free-body diagrams to analyze

forces on objects in equilibrium.



H

In
Chapter 2 we represented forces by vectors and used vector addition to

sum forces. In this chapter we discuss forces in more detail and introduce

two of the most important concepts in mechanics, equilibrium and the

free-body diagram. We will use free-body diagrams to identify the forces on

objects and use equilibrium to determine unknown forces.
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Types of Forces

Figure 3.1

A force F and its line of action.

Figure 3.2

(a) Concurrent forces.

(b) Parallel forces.

Force is a familiar concept, as is evident from the words push, pull, and lift

used in everyday conversation. In engineering we deal with different types of

forces having a large range of magnitudes. In this section we introduce some

terms used to describe forces and discuss particular forces that occur fre-

quently in engineering applications.

Terminology

Line of Action When a force is represented by a vector, the straight line

collinear with the vector is called the line ofaction of the force (Fig. 3.1).

Systems of Forces A system offorces is simply a particular set of forces.

A system of forces is coplanar, or two-dimensional, if the lines of action of

the forces lie in a plane. Otherwise it is three-dimensional. A system of forces

is concurrent if the lines of action of the forces intersect at a point (Fig. 3.2a)

and parallel if the lines of action are parallel (Fig. 3.2b).

f\ Ab

(b)

Figure 3.3

Representing an object's weight by a

vector.

External and Internal Forces We say that a given object is subjected to an

external force if the force is exerted by a different object. When one part of a

given object is subjected to a force by another part of the same object, we say it

is subjected to an internal force. These definitions require that you clearly de-

fine the object you are considering. For example, suppose that you are the ob-

ject. When you are standing, the floor—a different object exerts an external

force on your feet. If you press your hands together, your left hand exerts an in-

ternal force on your right hand. However, if your right hand is the object you

are considering, the force exerted by your left hand is an external force.

Body and Surface Forces A force acting on an object is called a body

force if it acts on the volume of the object and a surface force if it acts on its

surface. The gravitational force on an object is a body force. A surface force

can be exerted on an object by contact with another object. Both body and

surface forces can result from electromagnetic effects.

Gravitational Forces

You are aware of the force exerted on an object by the earth's gravity when-

ever you pick up something heavy. We can represent the gravitational force,

or weight, of an object by a vector (Fig. 3.3).
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The magnitude of an object's weight is related to its mass m by

|W| = mg,

where g is the acceleration due to gravity at sea level. We will use the values

g = 9.81 m/s" in SI units and g = 32.2 ft/s" in U.S. Customary units.

Gravitational forces, and also electromagnetic forces, act at a distance.

The objects they act on are not necessarily in contact with the objects exerting

the forces. In the next section we discuss forces resulting from contacts be-

tween objects.

Contact Forces

Contact forces are the forces that result from contacts between objects. For

example, you exert a contact force when you push on a wall (Fig. 3.4a). The

surface of your hand exerts a force on the surface of the wall that can be rep-

resented by a vector F (Fig. 3.4b). The wall exerts an equal and opposite

force —F on your hand (Fig. 3.4c). (Recall Newton's third law: The forces ex-

erted on each other by any two particles are equal in magnitude and opposite

in direction. If you have any doubt that the wall exerts a force on your hand,

try pushing on the wall while standing on roller skates.)

----1

r ./

-F

(a) (b) (c)

Figure 3.4

(a) Exerting a contact force on a wall by

pushing on it.

(b) The vector F represents the force you

exert on the wall.

(c) The wall exerts a force -F on your

hand.

We will be concerned with contact forces exerted on objects by contact

with the surfaces of other objects and by ropes, cables, and springs.

Surfaces Consider two plane surfaces in contact (Fig. 3.5a). We represent

the force exerted on the right surface by the left surface by the vector F in

Fig. 3.5(b). We can resolve F into a component N that is normal to the surface

and a component f that is parallel to the surface (Fig. 3.5c). The component N
is called the normalforce, and the component f is called the friction force. We
sometimes assume that the friction force between two surfaces is negligible

in comparison to the normal force, a condition we describe by saying that the

surfaces are smooth. In this case we show only the normal force (Fig. 3.5d).

When the friction force cannot be neglected, we say the surfaces are rough.

(a) (b) (c) (d)

Figure 3.5

(a) Two plane surfaces in contact.

(b) The force F exerted on the right

surface.

(c) The force F resolved into components

normal and parallel to the surface.

(d) Only the normal force is shown when

friction is neglected.
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If the contacting surfaces are curved (Fig. 3.6a), the normal force and the

friction force are perpendicular and parallel to the plane tangent to the sur-

faces at their point of contact (Fig. 3.6b).

Figure 3.6

(a) Curved contacting surfaces. The dashed

line indicates the plane tangent to the

surfaces at their point of contact.

(b) The normal force and friction force on

the right surface.

N

L.

1
(b)

Ropes and Cables You can exert a contact force on an object by attaching

a rope or cable to the object and pulling on it. In Fig. 3.7a, the crane's cable is

attached to a container of building materials. We can represent the force the

cable exerts on the container by a vector T (Fig. 3.7b). The magnitude of T is

called the tension in the cable, and the line of action of T is coUinear with the

cable. The cable exerts an equal and opposite force —T on the crane

(Fig. 3.7c).

Figure 3.7

(a) A crane with its cable attached to a container

(b) The force T exerted on the container by the cable

(c) The force -T exerted on the crane by the cable. (c)

Notice that we have assumed that the cable is straight and that the ten-

sion where the cable is connected to the container equals the tension near the

crane. This is approximately true if the weight of the cable is small compared

to the tension. Otherwise, the cable will sag significantly and the tension will

vary along its length. In Chapter 9 we will discuss ropes and cables whose

weights are not small in comparison to their tensions. For now, you should as-

sume that ropes and cables are straight and that their tensions are constant

along their lengths.

*



A pulley is a wheel with a grooved rim that can be used to change the di-

rection of a rope or cable (Fig. 3.8a). For now, we assume that the tension is

the same on both sides of a pulley (Fig. 3.8b). This is true, or at least approxi-

mately true, when the pulley can turn freely and the rope or cable either is

stationary or turns the pulley at a constant rate.
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.-^
w=\y

(b)

Figure 3.8

(a) A pulley changes the direction of a rope

or cable.

(b) For now, you should assume that the

tensions on each side of the pulley are

equal.

Springs Springs are used to exert contact forces in mechanical devices, for

example, in the suspensions of cars (Fig. 3.9). Let's consider a coil spring

whose unstretched length, the length of the spring when its ends are free, is

Lq (Fig. 3.10a). When the spring is stretched to a length L greater than Lg

(Fig. 3.10b), it pulls on the object to which it is attached with a force F
(Fig. 3.10c). The object exerts an equal and opposite force -F on the spring

(Fig. 3.1 Od).

Coil spring -^^^

Shock absorber

Coil spring

\

Shock absorber

Figure 3.9

Coil springs in car suspensions. The arrangement on the right is called a

MacPherson strut.

When the spring is compressed to a length L less than Lq (Figs. 3.1 la, b),

the spring pushes on the object with a force F and the object exerts an equal

and opposite force -F on the spring (Figs. 3.1 Ic, d). If a spring is compressed

too much, it may buckle (Fig. 3.1 le). A spring designed to exert a force by

being compressed is often provided with lateral support to prevent buckling,

for example, by enclosing it in a cylindrical sleeve. In the car suspensions

shown in Fig. 3.9, the shock absorbers within the coils prevent the springs

from buckling.

@=vwvvv^
(a)

>AAAAAA/<
(b)

j^AAAA/*^
(c)

>WWW§—--F

(d)

Figure 3.10

(a) A spring of unstretched length Z.,,.

(b) The spring stretched to a length

L > Lq.

(c. d) The force F exerted by the spring

and the force —F on the spring.
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(b)

(c)

(d)

% I I

(e)

Figure 3.11

(a) A spring of length L^.

(b) The spring compressed to a length

L < Lo.

(c, d) The spring pushes on an object

with a force F, and the object exerts a

force —F on the spring.

(e) A coil spring will buckle if it is

compressed too much.

Figure 3.12

The graph of the force exerted by a linear

spring as a function of its stretch or

compression is a straight line with slope k.

The magnitude of the force exerted by a spring depends on the material it

is made of, its design, and how much it is stretched or compressed relative to

its unstretched length. When the change in length is not too large compared to

the unstretched length, the coil springs commonly used in mechanical devices

exert a force approximately proportional to the change in length:

IFI = k\L - Ln (3.1)

Because the force is a linear function of the change in length (Fig. 3.12), a

spring that satisfies this relation is called a linear spring. The value of the

spring constant k depends on the material and design of the spring. Its dimen-

sions are (force)/(length). Notice from Eq. (3.1) that k equals the magnitude

of the force required to stretch or compress the spring a unit of length.

Suppose that the unstretched length of a spring is Lq = 1 m and k =

3000 N/m. If the spring is stretched to a length L = 1.2 m, the magnitude of

the pull it exerts is

k\L 3000(1.2 - 1) = 600N.

Although coil springs are commonly used in mechanical devices, we are

also interested in them for a different reason. Springs can be used to model

situations in which forces depend on displacements. For example, the force

necessary to bend the steel beam in Fig. 3.13a is a linear function of the

displacement 8,

|F| = ^5,

if 5 is not too large. Therefore we can model the force-deflection behavior of

the beam with a linear spring (Fig. 3.13b).

Study Questions
1. What is a two-dimensional system of forces?

2. What are internal and external forces?

3. If a surface is said to be smooth, what does that mean?

4. What is the relation between the magnitude of the force exerted by a linear

spring and the change in its length?

V k

(b)

(a)

Figure 3.13

(a) A steel beam deflected by a force.

(b) Modeling the beam's behavior with a

linear spring.
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Statics is the study of objects in equilibrium. In everyday conversation, equi-

librium means an unciianging state—a state of balance. Before we explain

precisely what this tenti means in mechanics, let's consider some examples.

Pieces of furniture sitting at rest in a room and a person standing stationary in

the room are in equilibrium. If a train travels at constant speed on a straight

track, objects that are at rest relative to the train, such as a person standing in

the aisle, are in equilibrium (Fig. 3. 14a). The person standing in the room and

the person standing in the aisle of the train are not accelerating. If the train

should start to increase or decrease its speed, however, the person standing in

the aisle would no longer be in equilibrium and might lose his balance

(Fig. 3.14b).

We say that an object is in equilibrium only if each point of the object

has the same constant velocity, which is referred to as steady translation. The

velocity must be measured relative to a frame of reference in which Newton's

laws are valid, which is called an inertial reference frame. In most engineer-

ing applications, the velocity can be measured relative to the earth.

The vector sum of the external forces acting on an object in equilibrium

is zero. We will use the symbol 2F to denote the sum of the external forces.

Thus when an object is in equilibrium.

SF = 0. (3.2)

In some situations we can use this equilibrium equation to determine un-

known forces acting on an object in equilibrium. The first step will be to draw

a free-body diagram of the object to identify the external forces acting on it.

The free-body diagram is an essential tool in mechanics. It focuses attention

on the object of interest and helps identify the external forces acting on it. Al-

though in statics we will be concerned only with objects in equilibrium, free-

body diagrams are also used in dynamics to analyze the motions of objects.

The free-body diagram is a simple concept. It is a drawing of an object

and the external forces acting on it. Otherwise, nothing other than the object

of interest is included. The drawing shows the object isolated, or freed, from

its surroundings. Drawing a free-body diagram involves three steps:

1. Identify the object you want to isolate. As the following examples show,

your choice is often dictated by particular forces you want to determine.

2. Draw a sketch of the object isolatedfrom its surroundings, and show

relevant dimensions and angles. Your drawing should be reasonably

accurate, but it can omit irrelevant details.

3. Draw vectors representing all of the externalforces acting on the

isolated object, and label them. Don't forget to include the gravitational

force if you are not intentionally neglecting it.

You will also need to choose a coordinate system so that you can express

the forces on the isolated object in terms of components. Often you will find

it convenient to choose the coordinate system before drawing the free-body

diagram, but in some situations the best choice of coordinate system will not

be apparent until after you have drawn it.

J » ..nil**

(a)

(b)

Figure 3.14

(a) While the train moves at a constant

speed, a person standing in the aisle is

in equilibrium.

(b) If the train starts to speed up. the

person is no longer in equilibrium.



90 Chapter 3 Forces

Figure 3.15

Stationary blocks suspended by cables.

A simple example demonstrates how you can choose free-body diagrams

to determine particular forces and also that you must distinguish carefully be-

tween external and internal forces. Two stationary blocks of equal weight W
are suspended by cables in Fig. 3.15. The system is in equilibrium. Suppose

that we want to determine the tensions in the two cables.

To determine the tension in cable AB, we first isolate an "object" consist-

ing of the lower block and part of cable AB (Fig. 3.16a). We then ask our-

selves what forces can be exerted on our isolated object by objects not

included in the diagram. The earth exerts a gravitational force of magnitude

W on the block. Also, where we "cut" cable AB, the cable is subjected to a

contact force equal to the tension in the cable (Fig. 3.16b). The arrows in this

figure indicate the directions of the forces. The scalar W is the weight of the

block and T^g is the tension in cable AB. We assume that the weight of the

part of cable AB included in the free-body diagram can be neglected in com-

parison to the weight of the block.

Since the free-body diagram is in equilibrium, the sum of the external

forces equals zero. In terms of a coordinate system with the v axis upward

(Fig. 3.16c), we obtain the equilibrium equafion

2F = r,«j - Wj = {T,s - w)i ^ 0.

Thus the tension in cable AB is T,AB w.

Figure 3.16

(a) Isolating the lower block and part of

cable AB.

(b) Indicating the external forces completes

the free-body diagram.

(c) Introducing a coordinate system.

dW
ct

B

(a) (b) (c)

We can determine the tension in cable CD by isolating the upper block

(Fig. 3.17a). The external forces are the weight of the upper block and the

tensions in the two cables (Fig. 3.17b). In this case we obtain the equilibrium

equation

2 F = Tcoi - T,si -Wi = {Tco ' T,, - W)i = 0.

Since T^g = W. we find that Tco = 21V.

We could also have determined the tension in cable CD by treating the

two blocks and the cable AB as a single object (Figs. 3.18a, b). The equilibri-

um equation is

2 F = Tco j - W] -W\ = [Tco - 2W)j = 0,

and we again obtain T(-d — 2W.

I
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C

Bl

(a) (b)

Figure 3.17

(a) Isolating the upper block to determine

the tension in cable CD.

(b) Free-body diagram of the upper block.

AT

(a) (b)

Figure 3.18

(a) An alternative choice for determining

the tension in cable CD.

(b) Free-body diagram including both

blocks and cable AB.

Why doesn't the tension in cable AB appear on the free-body diagram in

Fig. 3.18b? Remember that only external forces are shown on free-body dia-

grams. Since cable AB is part of the free-body diagram in this case, the forces

it exerts on the upper and lower blocks are internal forces.

We have described the procedure for drawing free-body diagrams. In the

next section we will draw free-body diagrams of objects subjected to two-di-

mensional systems of forces and use them to determine unknown forces act-

ing on objects in equilibrium.

Two-Dimensional Force Systems

Suppose that the system of external forces acting on an object in equilibrium

is two-dimensional (coplanar). By orienting a coordinate system so that the

forces lie in the x-y plane, we can express the sum of the external forces as
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Example 3.1

where 2 F, and S F, are the sums of the x and v components of the forces.

Since a vector is zero only if each of its components is zero, we obtain two

scalar equilibrium equations:

S F, = 0, S F, = 0. (3.3)

The sums of the x and y components of the externalforces acting on an object

in equilibrium must each equal zero.

Study Questions

1. What do you know about the sum of the external forces acting on an object in

equilibrium?

2. Is a free-body diagram only useful when an object is in equilibrium?

3. What are the steps in drawing a free-body diagram?

Using Equilibrium to Determine
Forces on an Object
For display at an automobile show, the 1440-kg car in Fig. 3.19 is held in

place on the inclined surface by the horizontal cable from A to B. Determine

the tension that the cable (and the fixture to which it is connected at B) must

support. The car's brakes are not engaged, so the tires exert only normal

forces on the inclined surface.

(a) Isolating the car.

mg

(b) The completed free-body diagram

shows the known and unknown external

forces.

Figure 3.19

Strategy

Since the car is in equilibrium, we can draw its free-body diagram and use

Eqs. (3.3) to determine the forces exerted on the car by the cable and the in-

clined surface.

Solution

Draw the Free-Body Diagram We first draw a diagram of the car isolated

from its surrounding (Fig. a) and then complete the free-body diagram by

showing the force exerted by the car's weight, the force T exerted by the

cable, and the normal force A^ exerted by the inclined surface (Fig. b).
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Apply the Equilibrium Equations In Fig. c, we introduce a coordinate

system and resolve the normal force into x and y components. The equilibri-

um equations are

'ZF, = T- ^sin20° = 0,

2F, = A^ cos 20° - mg = 0.

We can solve the second equilibrium equation for A^,

mg (1440) (9.81)
A^ = 15.0 kN,

cos 20° cos 20°

and then solve the first equilibrium equation for the tension T:

T = A^ sin 20° = 5.14 kN.

\i
mgy

20°
]

cos20° !

N sin20°

A'

(c) Introducing a coordinate system and

resolving A^ into its components.

Example 3.2

Choosing a Free-Body Diagram
The automobile engine block in Fig. 3.20 is suspended by a system of cables.

The mass of the block is 200 kg. What are the tensions in cables AB and AC?

Strategy

We need a free-body diagram that is subjected to the forces we want to deter-

mine. By isolating part of the cable system near point A where the cables are

joined, we can obtain a free-body diagram that is subjected to the weight of

the block and the unknown tensions in cables AB and AC.

Solution

Draw the Free-Body Diagram Isolating part of the cable system near

point A (Fig. a), we obtain a free-body diagram subjected to the weight of the

block W = mg = (200 kg)(9.81 m/s") = 1962 N and the tensions in cables

AB and AC (Fig. b).

Apply the Equilibrium Equations We select the coordinate system shown

in Fig. c and resolve the cable tensions into x and v components. The result-

ing equilibrium equations are

2F, = 7^cCOs45° - 7^^ cos 60° = 0,

2Fy = r^c-sin45° + r^gsin60° - 1962 - 0.

Solving these equations, we find that the tensions in the cables are

T^B = 1436 N and r^c = 1016 N.

Alternative Solution: We can determine the tensions in the cables in anoth-

er way that will also help you visualize the conditions for equilibrium. Since

the sum of the three forces acting on our free-body diagram is zero, the vectors

form a closed polygon when plac~ed4iead to tail (Fig. d). You can see that the

Figure 3.20

(a) Isolating part of the cable system.

(b) The completed free-body diagram.



94 Chapter 3 Forces

7- r.„sin60°

^r^^ cos 45°

(c) Selecting a coordinate system and

resolving the forces into components.

(d) The triangle formed by the sum of the

three forces.

sum of the vertical components of the tensions supports the weight and that the

horizontal components of the tensions must balance each other. The angle of

the triangle opposite the weight W is 180° - 30° - 45° = 105°. By applying

the law of sines.

sin 45° sin 30°

'/IS 'AC

sin 105°

1962

we obtain T,„ = 1436 N and T.r = 1016 N.AC

Discussion

How were we able to choose a free-body diagram that permitted us to deter-

mine the unknown tensions in the cables? There are no definite rules for

choosing free-body diagrams. You will learn what to do in many cases from

the examples we present, but you will also encounter new situations. It may

be necessary to try several free-body diagrams before finding one that pro-

vides the information you need. Remember that forces you want to determine

should appear as external forces on your free-body diagram, and your objec-

tive is to obtain a number of equilibrium equations equal to the number of un-

known forces.

Example 3.3

Applying Equilibrium to a System of

Pulleys

The mass of each pulley of the system in Fig. 3.21 is i?i, and the mass of the

suspended object A is m^. Determine the force T necessary for the system to

be in equilibrium.

Figure 3.21
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Strategy

By drawing free-body diagrams of the individual pulleys and applying equilib-

rium, we can relate the force T to the weights of the pulleys and the object A.

Solution

We first draw a free-body diagram of the pulley C to which the force T is ap-

plied (Fig. a). Notice that we assume the tension in the cable supported by the

pulley to equal T on both sides (see Fig. 3.8). From the equilibrium equation

T^-T -T - mg = 0,

we determine that the tension in the cable supported by pulley D is

To^2T + mg.

We now know the tensions in the cables extending from pulleys C and D to

pulley B in terms of T. Drawing the free-body diagram of pulley B (Fig. b),

we obtain the equilibrium equation

T + T + 2T + mg

Solving, we obtain T = m^g/A.

mg - m^g = 0.

(b)

(a) Free-body diagram of pulley C.

(b) Free-body diagram of pulley B.

Example 3.4

Application to Engineering:

Steady Fiiglit

Figure 3.22 shows an airplane flying in the vertical plane and its free-body di-

agram. The forces acting on the airplane are its weight W, the thrust T exerted

by its engines, and aerodynamic forces. The dashed line indicates the path

along which the airplane is moving. The aerodynamic forces are resolved into

a component perpendicular to the path, the lift L, and a component parallel to

Path

X ~ ~\_

,

Figure 3.22

External forces on an airplane in flight.
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the path, the drag D. The angle y between the horizontal and the path is

called the flight path angle, and a is the angle of attack. If the airplane re-

mains in equilibrium for an interval of time, it is said to be in steady flight. If

7 = 6°, D = 125 kN, L = 680 kN, and the mass of the airplane is 72 Mg
(megagrams), what values of T and a are necessary to maintain steady flight?

Solution

In terms of the coordinate system in Fig. 3.22, the equilibrium equations are

2F, = Tcosa - D - W smy = 0, (3.4)

IF, = Tsina + L - IVcosy = 0. (3.5)

We solve Eq. (3.5) for sin a, solve Eq. (3.4) for cos a, and divide to obtain an

equation for tan a:

tana
sin a W cos y

cos a W siny + D

(72,000) (9.81) cos 6° - 680,000

(72,000) (9.81) sin 6° + 125,000
0.113.

The angle of attack a — arctan(0.1 13) = 6.44°. Now we use Eq. (3.4) to de-

termine the thrust:

Wsiny + D (72,000) (9.81) sin6° + 125,000
T = = ^— = 200,000 N.

cos a cos 6.44

Notice that the thrust necessary for steady flight is 28% of the airplane's

weight.

\

design Issues

In the examples we have considered so far, the values of certain forces acting

on an object in equilibrium were given, and our goal was simply to determine

the unknown forces by setting the sum of the forces equal to zero. In many

situations in engineering, an object in equilibrium is subjected to forces that

have different values under different conditions, and this has a profound ef-

fect on its design.

When an airplane cruises at constant altitude (y = 0), Eqs. (3.4) and

(3.5) reduce to

7 cos a = D,

Tsina + L = W.

The horizontal component of the thrust must equal the drag, and the sum of

the vertical component of the thrust and the lift must equal the weight. For a

fixed value of a, the lift and drag increase as the speed of the airplane in-

creases. A principal design concern is to minimize D at cruising speed in

order to minimize the thrust (and consequently the fuel consumption) needed

to satisfy the first equilibrium equation. Much of the research on airplane de-

sign, including both theoretical analyses and model tests in wind tunnels

(Fig. 3.23), is devoted to developing airplane shapes that minimize drag.

When an airplane cruises at low speed, satisfying the second equilibrium

equation has the most serious implications for design. The airplane's wings
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Figure 3.24

An F-15 being refueled by a KC-135 refueling plane.

Figure 3.23

Wind tunnels are used to measure the aerodynamic forces on airplane models.

must generate sufficient lift to balance its weight. This requirement is espe-

cially difficult to achieve in fast airplanes, because wings designed for low

drag at high velocities do not generate as much lift at low speeds as wings

that are designed for flight at lower velocities. For example, the F-15 in

Fig. 3.24 must fly with a relatively large angle of attack (which increases both

the lift and the vertical component of the thrust) in comparison to the refuel-

ing plane. In the case of the F-14 (Fig. 3.25), the engineers obtained both low

drag at high velocities and good lift characteristics at low velocities by using

variable sweep wings.

Figure 3.25

An F-14 with its wings in the takeoff and

landing configuration and in the high-speed

configuration.

Problems

3.1 The figure shows the external forces acting on an object in

equilibrium. The forces F, = 32 N and ^3 = 50 N. Determine Fj

and the angle a.

3.2 The force F, = 100 N and the angle a = 60°. The weight of

the ring is negligible. Determine the forces Fi and F3.

y

P3.1 P3.2
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1

3.3 Consider the forces shown in Problem 3.2. Suppose that Fi =

100 N and you want to choose the angle a so that the magnitude

of F3 is a minimum. What is the resulting magnitude of Fj?

Strategy: Draw a vector diagram of the sum of the three

forces.

3.4 The beam is in equilibrium. If A, = 77 kN, B = 400 kN, and

the beam's weight is negligible, what are the forces A, and C?

\
\ J

^
T m M

B \30°\c
P3.4

3.5 Suppose that the mass of the beam shown in Problem 3.4 is

20 kg and it is in equilibrium. The force A,, points upward. If

A, = 258 kN and fi = 240 kN, what are the forces A, and C?

3.6 A zoologist estimates that the jaw of a predator. Martes. is

subjected to a force P as large as 800 N. What forces T and M
must be exerted by the temporalis and masseter muscles to sup-

port this value of PI

P3.6

3.7 The two springs are identical, with unstretched lengths

250 mm and spring constants k = 1200 N/m.

300 mm

280 mm

(a) Draw the free-body diagram of block A.

(b) Draw the free-body diagram of block B.

(c) What are the masses of the two blocks?

3.8 The two springs in Problem 3.7 are identical, with

unstretched lengths 250 mm and spring constants k. The sum of

the masses of blocks A and fi is 10 kg. Determine the value of k

and the masses of the two blocks.

3.9 The 200-kg horizontal steel bar is suspended by the three

springs. The stretch of each spring is 0. 1 m. The constant of spring

B is kg = 8000 N/m. Determine the constants k^ = kc of springs

A and C.

P3.9

3.10 The mass of the crane is 20 Mg (megagrams), and the ten-

sion in its cable is 1 kN. The crane's cable is attached to a caisson

whose mass is 400 kg. Determine the magnitudes of the normal

and friction forces exerted on the crane by the level ground.

Strategy: Draw the free-body diagram of the crane and the

part of its cable within the dashed line.

P3.10

3.11 What is the tension in the horizontal cable AB in Example

3. 1 if the 20° angle is increased to 25°?

3.12 The 2400-lb car will remain in equilibrium on the sloping

road only if the friction force exerted on the car by the road is not

P3.7

I

P3.12
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greater than 0.6 times the normal force. What is the largest angle

a for which the car will remain in equilibrium?

3.13 The crate is in equilibrium on the smooth surface. (Remem-

ber that "smooth" means that friction is negligible.) The spring

constant is k = 2500 N/m and the stretch of the spring is 0.055 m.

What is the mass of the crate?

3.16 The weights of the two blocks are W, = 200 lb and

Wt = 50 lb. Neglecting friction, determine the force the man must

exert to hold the blocks in place.

P3.13

3.14 The 600-lb box is held in place on the smooth bed of the

dump truck by the rope AB.

(a) If a = 25°, what is the tension in the rope?

(bj If the rope will safely support a tension of 400 lb. what is

the maximum allowable value of a?

P3.14

3.15 Three forces act on the free-body diagram of a joint of a

structure. If the structure is in equilibrium and F^ = 4.20 kN,

what are F^and F^-?

3.17 The two springs have the same unstretched length

inclined surface is smooth. Show that the magnitudes of

exerted by the two springs are

P3.16

, and the

the forces

W sin a

1 -I- k./k.
F. = W sin a

1 + kjk.

—

^

P3.17

3.18 A 10-kg painting is suspended by a wire. If a = 25°, what

is the tension in the wire?

P3.15 P3.18
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3.19 If the wire supporting the suspended painting in Problem

3.18 breaks when the tension exceeds 150 N and you want a 100

percent safety factor (that is, you want the wire to be able to sup-

port twice the actual weight of the painting), what is the smallest

value of a you can use?

3.20 Assume that the 150-lb climber is in equilibrium. What are

the tensions in the rope on the left and right sides?

3.23 A construction worker on the moon (acceleration due to

gravity 1.62 m/%~) holds the same crate described in Problem 3.22

in the position shown. What force must she exert on the cable?

P3.20 P3.23

3.21 If the mass of the climber shown in Problem 3.20 is 80 kg,

what are the tensions in the rope on the left and right sides?

3.22 A construction worker holds a 180-kg crate in the position

shown. What force must she exert on the cable?

3.24 A student on his summer job needs to pull a crate across the

floor. Pulling as shown in Fig. a, he can exert a tension of 60 lb.

He finds that the crate doesn't move, so he tries the arrangement

in Fig. b, exerting a vertical force of 60 lb on the rope. What is the

magnitude of the horizontal force he exerts on the crate in each

case?

(a)

(b)

P3.22 P3.24
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3.25 The 140-kg traffic light is suspended above the street by

two cables. What is the tension in the cables?

P3.25

) 3.26 Consider the suspended traffic light in Problem 3.25. To

raise the light temporarily during a parade, an engineer wants to

connect the 17-m length of cable DE to the midpoints of cables

AB and AC as shown. However, for safety considerations, he

doesn't want to subject any of the cables to a tension larger than

4 kN. Can he do it?

17in

P3.26

3.27 The mass of the suspended crate is 5 kg. What are the

tensions in cables AB and AC?

10m

3.28 What are the tensions in the upper and lower cables? (Your

answers will be in terms of IV. Neglect the weight of the pulley.)

P3.28

3.29 Two tow trucks lift a motorcycle out of a ravine following

an accident. If the 100-kg motorcycle is in equilibrium in the

position shown, what are the tensions in the cables AB and ACl

P3.29

3.30 An astronaut candidate conducts experiments on an airbear-

ing platform. While he carries out calibrations, the platform is

held in place by the horizontal tethers AB, AC, and AD. The

P3.27 P3.30
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forces exerted by the tethers are the only horizontal forces acting

on the platform. If the tension in tether AC is 2 N, what are the

tensions in the other two tethers?

3.31 The forces exerted on the shoes and back of the 72-kg

climber by the walls of the "chimney" are perpendicular to the

walls exerting them. The tension in the rope is 640 N. What is the

magnitude of the force exerted on his back?

10'

1 . i;*'^ d^'9?

,o/^'

V?-

\
X'^'

P3.31

3.32 The slider A is in equilibrium and the bar is smooth. What

is the mass of the slider?

P3.32

3.34 The unstretched length of the spring in Problem 3.33 is

660 mm. If the mass of the suspended object is 10 kg and the system

is in equilibrium in the position shown, what is the spring constant?

3.35 The collar A slides on the smooth vertical bar. The masses

m^ — 20 kg and Wg = 10 kg. When /i = 0.1 m, the spring is

unstretched. When the system is in equilibrium, h = 0.3 m.

Determine the spring constant k.

P3.35

3.36 You are designing a cable system to support a suspended

object of weight W. The two wires must be identical, and the

dimension b is fixed. The ratio of the tension T in each wire to its

cross-sectional area A must equal a specified value T/A = a. The

"cost" of your design is the total volume of material in the two

wires, V = lAvir + }\-
. Determine the value of h that

minimizes the cost.

P3.36

3.33 The unstretched length of the spring AB is 660 mm, and

the spring constant k = 1 000 N/m. What is the mass of the sus-

pended object?

-400 mm- - 600 mm

3.37 The system of cables suspends a 1000-lb bank of lights above

a movie set. Determine the tensions in cables AB, CD, and CE.

-20 ft -18 ft-

P3.33

I

P3.37
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3.38 Consider the 1000-lb bank of lights in Problem 3.37. A
technician changes the position of the lights by removing the

cable CE. What is the tension in cable AB after the change?

3.39 While working on another exhibit, a curator at the

Smithsonian Institution pulls the suspended Voyager aircraft to

one side by attaching three horizontal cables as shown. The mass

of the aircraft is 1250 kg. Determine the tensions in the cable

segments AB, BC, and CD.

12 in.

8 in.

12 in.

12 in.

P3.41

Show that to minimize the tensions in cables AB and BC, you

must choose j8 = a if the angle a s 45°.

Strategy: Draw a diagram of the sum of the forces exerted

by the three cables at A.

P3.39

3.40 A truck dealer wants to suspend a 4-Mg (megagram) truck

as shown for advertising. The distance b = 15 m, and the sum of

the lengths of the cables AB and BC is 42 m. What are the ten-

sions in the cables?

P3.42

<y) 3.43 In Problem 3.42, suppose that you have no control over the

angle a and you want to design the cable system so that the ten-

sion in cable AC is a minimum. What is the required angle /3?

3.44 The masses of the boxes on the left and right are 25 kg and

40 kg, respectively. The surfaces are smooth and the boxes are in

equilibrium. Determine the tension in the cable and the angle a.

P3.40

3.41 The distance h = \2 in., and the tension in cable AD is

200 lb. What are the tensions in cables AB and AC?

3.42 You are designing a cable system to support a suspended

tihject of weight W. Because your design requires points A and B
Id be placed as shown, you have no control over the angle a, but

sou can choose the angle (3 by placing point C wherever you wish. P3.44
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3.45 Consider the system shown in Problem 3.44. The angle

a = 45°, the surfaces are smooth, and the boxes are in equiUb-

rium. Determine the ratio of the mass of the right box to the mass

of the left box.

3.46 The 3000-lb car and the 4600-lb tow truck are stationary.

The muddy surface on which the car rests exerts a negligible

friction force on the car. What is the tension in the tow cable?

P3.46

3.47 The hydraulic cylinder is subjected to three forces. An 8-kN

force is exerted on the cylinder at B that is parallel to the cylinder

and points from B toward C. The link AC exerts a force at C that

is parallel to the line from A to C. The link CD exerts a force at C
that is parallel to the line from C to D.

(a) Draw the free-body diagram of the cylinder. (The cylinder's

weight is negligible.)

(b) Determine the magnitudes of the forces exerted by the links

AC and CD.

0.15 m 1*4— 0.6 m— Scoop

P3.47

3.48 The 50-lb cylinder rests on two smooth surfaces.

(a) Draw the free-body diagram of the cylinder.

(b) If a = 30°, what are the magnitudes of the forces exerted on

the cylinder by the left and right surfaces?

3.49 For the 50-lb cylinder in Problem 3.48, obtain an equation

for the force exerted on the cylinder by the left surface in terms of

the angle a in two ways: (a) using a coordinate system with the

y axis vertical, (b) using a coordinate system with the y axis paral-

lel to the right surface.

3.50 The 50-kg sphere is at rest on the smooth horizontal sur-

face. The horizontal force F = 500 N. What is the normal force

exerted on the sphere by the surface?

I

*-F

P3.50

3.51 Consider the stationary sphere in Problem 3.50.

(a) Draw a graph of the normal force exerted on the sphere by the

surface as a function of the force F from F = to f = 1 kN.

(b) In the result of (a), notice that the normal force decreases to

zero and becomes negative as F increases. What does that mean?

3.52 The 1440-kg car is moving at constant speed on a road with

the slope shown. The aerodynamic forces on the car are the drag

D = 530 N, which is parallel to the road, and the lift L = 360 N,

which is perpendicular to the road. Determine the magnitudes of

the total normal and friction forces exerted on the car by the road.

P3.48

I

P3.52

1

3.53 The device shown is towed beneath a ship to measure water

temperature and salinity. The mass of the device is 130 kg. The

angle a = 20°. The motion of the water relative to the device

causes a horizontal drag force D. The hydrostatic pressure distri-

bution in the water exerts a vertical "buoyancy" force B. The

magnitude of the buoyancy force is equal to the product of the

volume of the device, V = 0.075 m', and the weight density of

the water, y = 9500 N/m-\ Determine the drag force D and the

tension in the cable.
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P3.53

3.54 The mass of each pulley of the system is m and the mass of

the suspended object A'ls m^. Determine the force T necessary for

the system to be in equilibrium.

3.56 The system is in equilibrium. What are the coordinates of

point Al

P3.56

P3.54

3.55 The mass of each pulley of the system is m and the mass of

the suspended object A is m^. Determine the force T necessary for

the system to be in equilibrium.

3.57 The light fixture of weight W is suspended from a circular

arch by a large number A' of equally spaced cables. The tension T
in each cable is the same. Show that

T = ttW

IN'

Strategy: Consider an element of the arch defined by an

angle dd measured from the point where the cables join:

P3.57

Since the total angle described by the arch is tt radians, the

number of cables attached to the element is [N /Tt)dd. You can

use this result to write the equilibrium equations for the part of

the cable system where the cables join.

3.58 The solution to Problem 3.57 is an "asymptotic" result

whose accuracy increases as A' increases. Determine the exact

tension T^^^„ for A' = 3, 5, 9, and 17, and confirm the numbers

in the following table. (For example, for N = 3, the cables are

attached at 6 = 0.6 = 90°, and 6 = 180°.)

P3.55

A' 3 5 9 17

T
' exact

1.91 1.32 1.14 1.07
TTW/2N
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3.59 The system in Fig. a provides lateral support for a load

resting on tiie smooth bed of a truck. The spring constant

k = 100 lb/ft, and the unstretched length of each spring is 2 ft.

When the load is subjected to an effective lateral load F (Fig. b).

the distance from the original position of the load to its

equilibrium position is 5 = 1 ft. What is f ?

3fl-i-| ^3 ft

--^MHv^^^y^:
F I

(b)

Problems 3.60-3.62 are related to Example 3.4.

3.60 A 14,000-kg airplane is in steady flight in the vertical

plane. The flight path angle is y = 10°, the angle of attack is

a = 4°, and the thrust force exerted by the engine is 7" = 60 kN.

What are the magnitudes of the lift and drag forces acting on the

airplane?

3.61 An airplane is in steady flight, the angle of attack a = 0, the

thrust-to-drag ratio T/D = 2. and the lift-to-drag ratio L/D = 4.

What is the flight path angle y?

3.62 An airplane glides in steady flight {T = 0), and its lift-

to-drag ratio is L/D = 4.

(a) What is the flight path angle y?

(b) If the airplane glides from an altitude of 1000 m to zero

altitude, what horizontal distance does it travel?

(a) P3.59

Three-Dimensional Force Systems

The equilibrium situations we have considered so far have involved only

coplanar forces. When the system of external forces acting on an object in

equilibrium is three-dimensional, we can express the sum of the external

forces as

2F = (2Fji + (SF,,)j + (2Fjk = 0.

Each component of this equation must equal zero, resulting in three scalar

equilibrium equations:

2 F, = 0, 2 F, = 0, 2 F. = 0. (3.6)

The sums of the .v. y. and c components of the external forces acting on an

object in equilibrium must each equal zero.

Example 3.5

Figure 3.26

Applying Equilibrium in Three
Dimensions \

The 100-kg cylinder in Fig. 3.26 is suspended from the ceiling by cables at-

tached at points B. C. and D. What are the tensions in cables AB, AC, and AD?

Strategy

We can determine the tensions by the same approach we used for similar two-

dimensional problems. By isolating part of the cable system near point A, we

can obtain a free-body diagram subjected to forces due to the tensions in the ca-

bles. Since the sums of the .v, y, and c components of the external forces must

each equal zero, we obtain three equations for the three unknown tensions.



Solution

Draw the Free-Body Diagram We isolate part of the cable system near

point A (Fig. a) and complete the free-body diagram by showing the forces

exerted by the tensions in the cables (Fig. b). The magnitudes of the vectors

T iH, T^f , and T^^ are the tensions in cables AB, AC, and AD, respectively.
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-(100)(9.81)j(N)

(a) (b)

(a) Isolating part of the cable system.

(b) The completed free-body diagram

showing the forces exerted by the tensions

in the cables.

Apply the Equilibrium Equations The sum of the external forces acting

on the free-body diagram is

SF ^AB + T,,c + TAD 981j = 0.

To solve this equation for the tensions in the cables, we need to express the

vectors T^g, T^^-^ and T^^, in terms of their components.

We first determine the components of a unit vector that points in the di-

rection of the vector T^^. Let r^g be the position vector from point A to point

B (Fig. c):

^AB = (-Vfi
- x^)! + (vg - y^)j + [zb - Za)^ - 4i + 4j + 2k (m).

Dividing r^g by its magnitude, we obtain a unit vector that has the same di-

rection as T^g

:

'

B

^ABy^(4.Q.

,/ ' (0, -4, 0) m

i
(c) The position vector r^g.

^AB
~ MB

'ABl

= 0.667i + 0.667J + 0.333k.

Now we can write the vector T^g as the product of the tension T^b in cable

AB and e^g:

MB ^AB^AB r^B(0.667i + 0.667J + 0.333k).

We now express the force vectors T^c and T^^, in terms of the tensions T^c

and T^o in cables AC and AD in the same way. The results are

T^c = r^c(-0.408i + 0.816J - 0.408k),

Tad = TAo{-0.5l4i + 0.686J - 0.514k).

We use these expressions to write the sum of the external forces in terms of

the tensions T^b, T^c, and T^p:

2F = T,g + T,c + T,„-981j

= (0.667r^g - 0.40874C - 0.514r4o)i
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+ (0.66774B + 0.816r^c + 0.6867^0 - 981 )j

+ (0.333748 - 0.408r4c + 0.514r^o)k

= 0.

The sums of the forces in the x, \ . and c directions must each equal zero:

2 F, = 0.661T^B - 0.408r^c - 0.514r^o = 0.

2 F, = 0.661T^B + 0.816r4c + 0.6867^0 "981 =0,

2 F, = 0.333r4g - 0.408r^c + 0.514F^d = 0.

Solving these equations, we find that the tensions are T^g = 519 N,

'AC 636 N, and T.^ = 168 N

Discussion

Notice that this example required several of the techniques we covered in

Chapter 2. In particular, we had to determine the components of a position

vector, divide the position vector by its magnitude to obtain a unit vector with
'

the same direction as a particular force, and express the force in terms of its

components by writing it as the product of the unit vector and the magnitude

of the force.

Example 3.6

Application of ttie Dot Product
The 100-lb "slider" C in Fig. 3.27 is held in place on the smooth bar by the

cable AC. Determine the tension in the cable and the force exerted on the

slider by the bar.

Figure 3.27
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Strategy

Since we want to determine forces that act on the slider, we need to draw its

free-body diagram. The external forces acting on the slider are its weight and

the forces exerted on it by the cable and the bar. If we approached this exam-

ple as we did the previous one, our next step would be to express the forces in

terms of their components. However, we don't know the direction of the force

exerted on the slider by the bar. Since the smooth bar exerts negligible fric-

tion force, we do know that the force exerted by the bar is normal to its axis.

Therefore we can eliminate this force from the equation 2F = by taking

the dot product of the equation with a unit vector that is parallel to the bar.

Solution

Draw the Free-Body Diagram We isolate the slider (Fig. a) and complete

the free-body diagram by showing the weight of the slider, the force T exerted

by the tension in the cable, and the normal force N exerted by the bar (Fig. b).

Apply the Equilibrium Equations The sum of the external forces acting

on the free-body diagram is

2F = T + N - lOOj = 0. (3.7)

Let Cflo be the unit vector pointing from point B toward point D. Since N is

perpendicular to the bar, Cbd • N = 0. Therefore

'BD (SF) ^BD (T - lOOj) = 0. (3.8)

This equation has a simple interpretation: The component of the slider's

weight parallel to the bar is balanced by the component of T parallel to the bar.

Determining ego'. We determine the vector from point B to point D,

r^o = (4 - 0)i + (0 - 7)j + (4 - 0)k = 41

and divide it by its magnitude to obtain the unit vector egp:

^BD ^ 4

7j + 4k (ft),

Cfi/5 ~
7. 4.
-j + -k9J 9

Resolving T into components: To express T in terms of its components,

we need to determine the coordinates of the slider C. We can write the vector

from B to C in terms of the unit vector Cbd,

ifiC btsD = 2.671 - 4.67J + 2.67k (ft),

and then add it to the vector from the origin O to B to obtain the vector from

OtoC:

roc = roB + ffic = 7j + (2.671 - 4.67J + 2.67k)

= 2.671 + 2.33J + 2.67k (ft).

The components of this vector are the coordinates of point C.

Now we can determine a unit vector with the same direction as T. The

vector from C to A is

rcA = (0 - 2.67)1 + (7 - 2.33)j + (4

= -2.671 + 4.67J + 1.33k (ft),

2.67)k

-100 j (lb)

(b)

(a) Isolating the slider.

(b) Free-body diagram of the slider showing

the forces exerted by its weight, the cable,

and the bar.
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and the unit vector that points from point C toward point A is

ec4 - -^ = -0.482 i + 0.843j + 0.241k.

Let T be the tension in the cable AC. Then we can write the vector T as

T = TecA = r(-0.482i + 0.843J + 0.241k).

Detennining T and N: Substituting our expressions for tgo and T in

terms of their components into Eq. (3.8),

^sD ' (T - lOOj)

= 4 7 4
_9'-9J + 9\

• [-0.48271 + (0.8437 - 100)j + 0.2417k'

= -0.7627 + 77.8 - 0,

we obtain the tension 7 = 102 lb.

Now we can determine the force exerted on the slider by the bar by using

Eq. (3.7):

N = -T + lOOj = -102(-0.482i + 0.843J + 0.241k) + lOOj

= 49.1 i + 14.0J
- 24.6k (lb).

Problems

3.63 If the coordinates of point A in Example 3.5 are changed to 3.66 To support the tent, the tension in the rope AB must be

(0, -2, 0) m, what are the tensions in cables AB, AC. and AD"] 40 lb. What are the tensions in the ropes AC. AD, and AEI

3.64 The force F = 5i (icN) acts on point A where the cables AB
AC. and AD are joined. What are the tensions in the three cables?

Strategy: Isolate part of the cable system near point A. See

Example 3.5.

(0,4,

3.65 The cables in Problem 3.64 will safely support a tension of

25 kN. Based on this criterion, what is the largest safe magnitude

of the force F = Fil P3.66

I
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3.67 The bulldozer exerts a force F = 21 (kip) at A. What are the 3.69 The 20-kg mass is suspended by cables attached to three

tensions in cables AB, AC, and ADl vertical 2-m posts. Point A is at (0, 1.2, 0) m. Determine the ten-

sions in cables AB, AC, and AD.

P3.67

P3.69

3.70 The weight of the horizontal wall section is W = 20,000 lb.

Determine the tensions in the cables AB, AC, and AD.

3.68 Prior to its launch, a balloon carrying a set of experiments

to high altitude is held in place by groups of student volunteers

holding the tethers at B, C, and D. The mass of the balloon, exper-

iments package, and the gas it contains is 90 kg, and the buoyancy

force on the balloon is 1000 N. The supervising professor conser-

vatively estimates that each student can exert at least a 40-N ten-

sion on the tether for the necessary length of time. Based on this

estimate, what minimum numbers of students are needed at B, C,

andD?

A (0, 8,0)m

D
(-16,0,4) m

C (10,0,-12)m

-^^tv ^K. ^.^^^f^: >ifv ^K. ^K. >r

P3.70

B (16,0, 16) m P3.68

3.71 In Problem 3.70, each cable will safely support a tension of

40,000 lb. Based on this criterion, what is the largest safe value of

the weight W?

3.72 The 680-kg load suspended from the helicopter is in equi-

librium. The aerodynamic drag force on the load is horizontal.

The y axis is vertical, and cable OA lies in the x-y plane.
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Determine the magnitude of the drag force and the tension in

cable OA.

3.75 The 1350-icg car is at rest on a plane surface. The unit vector

e„ = 0.231 i + 0.923j + 0.308k is perpendicular to the surface.

The }' axis points upward. Determine the magnitudes of the nomial

and friction forces the car's wheels exert on the surface.

P3.75

P3.72

3.73 In Problem 3.72, the coordinates of the three cable attach-

ment points B. C, and D are (-3.3. -4.5, 0) m, (1.1, -5.3. 1) m.

and ( 1 .6. —5.4, -1 ) m, respectively. What are the tensions in

cables OB. OC. and OD7

3.74 The small sphere A weighs 20 lb. and its coordinates are

(4, 0, 6) ft. It is supported by two smooth flat plates labeled 1 and

2 and the cable AB. The unit vector e, = | i + ^ j + | k is perpen-

dicular to plate 1 . and the unit vector Ci = — ^i + nJ + u^^^
perpendicular to plate 2. What is the tension in the cable?

(0. 4. 0) ft

3.76 The system shown anchors a stanchion of a cable-sus-

pended roof. If the tension in cable AB is 900 kN, what are the

tensions in cables EF and EG'l

(3.4. I.O)m

Q) 3.77 The cables of the system in Problem 3.76 will each safely

support a tension of 1500 kN. Based on this criterion, what is the

largest safe value of the tension in cable AB?

3.78 The 200-kg slider at A is held in place on the smooth

P3.74 vertical bar by the cable AB.

I
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(a) Determine the tension in the cable.

(b) Determine the force exerted on the slider by the bar.

3.80 The cable AB keeps the 8-kg collar A in place on the smooth

bar CD. The y axis points upward. What is the tension in the cable?

0.15 m

P3.78
P3.80

3.79 The 100-lb slider at A is held in place on the smooth circular

bar by the cable AB. The circular bar is contained in the x-y plane.

(a) Determine the tension in the cable.

(b) Determine the normal force exerted on the slider by the bar.

3.81 In Problem 3.80, determine the magnitude of the normal

force exerted on the collar A by the smooth bar.

3.82 The 10-kg collar A and 20-kg collar B are held in place on

the smooth bars by the 3-m cable from A to 6 and the force F
acting on A. The force F is parallel to the bar. Determine F.

P3.79

(4, 0, 0) m

(0, 0, 4) m P3.82
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\lllll Computational Mechanics
The following examples and problems are designed for the use of a programmable calculator or computer Example 3. 7 is similar to

previous examples and problems except that the solution must be calculated for a range of input quantities. Example 3.8 leads to an

algebraic equation that must be solved numerically.

Computational Example 3.7

Figure 3.28

la- ~P^

lOlllD
:dioii
lOllOQ

Determining Tensions
for a Range of Dimensions
The system of cables in Fig. 3.28 is designed to suspend a load with a mass

of 1 Mg (megagram). The dimension b = 2 m, and the length of cable AB
is 1 m. The height of the load can be adjusted by changing the length of

cable AC.

(a) Plot the tensions in cables AB and AC for values of the length of cable

AC from 1.2 m to 2.2 m.

(b) Cables AB and AC can each safely support a tension equal to the weight

of the load. Use the results of (a) to estimate the allowable range of the length

of cable AC.

Strategy

By drawing the free-body diagram of the part of the cable system where the

cables join, we can determine the tensions in the cables in terms of the length

of cable AC.
|

<-AC

m
(a)

(a) Determining the angles a and /3.

•AC

W = mg

(b)

(b) Free-body diagram of part of the cable

system.

Solution

(a) Let the lengths of the cables be L^g = 1 m and L^c- We can apply the law I

of cosines to the triangle in Fig. a to determine a in terms of L^f

:

a — arccos
b^ + Ll, - L'AC

IbL^B

Then we can use the law of sines to determine j3:

arcsm
'AC

|!

Draw the Free-Body Diagram We draw the free-body diagram of the part

of the cable system where the cables join in Fig. b, where Tj^g and T^c are the

tensions in the cables.
\

Apply the Equilibrium Equations Selecting the coordinate system shown

in Fig. b, the equilibrium equations are

2 Fj = —r^gcosa -I- r^cCOsjS = 0,

2 /\, — -Tab sin a + T^c sin j3 - W = 0. t
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Solving these equations for the cable tensions, we obtain

WcosP
'AB

T,c =

sin a cos jS + cos a sin j8'

Wcosa

sin a cos /3 + cos a sin jS

To compute the results, we input a value of the length L^c ^"d calculate

the angle a, then the angle /3, and then the tensions T^g and T^^. The resulting

values of T^^/W and T^c/^ ^e plotted as functions of L^c in Fig- 3-29.

(b) The allowable range of the length of cable AC is the range over which the

tensions in both cables are less than W . From Fig. 3.29 we can see that the

tension T^g exceeds W for values of Lf,c less than about 1.35 m, so the safe

range is L^c > 1-35 m.

1.4

1.2

1

0.8

0.6

0.4

0.2

V^J
; \^
i \niy~~'

--
\

T,JW ^h^
! i\

1.2 1.4 1.6

L^^ , meters

2.2

Figure 3.29

Ratios of the cable tensions to the

suspended weight as functions of L^^-

Computational Example 3.8
lOlllD
.01011
aiiOD

Equilibrium Position of an Object
Supported by a Spring
The 12-lb collar A in Fig. 3.30 is held in equilibrium on the smooth vertical

bar by the spring. The spring constant k = 300 lb/ft, the unstretched length

of the spring is Lg = b, and the distance b = \ f{. What is the distance /i?

Strategy

Both the direction and the magnitude of the force exerted on the collar by the

spring depend on h. By drawing the free-body diagram of the collar and ap-

plying the equilibrium equations, we can obtain an equation for h.

Solution

Draw the Free-Body Diagram We isolate the collar (Fig. a) and complete

the free-body diagram by showing its weight W — 12 lb, the force F exerted

by the spring, and the normal force N exerted by the bar (Fig. b).

Figure 3.30
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(b)

(a) Isolating the collar.

(b) The free-body diagram.

Apply the Equilibrium Equations Selecting the coordinate system shown

in Fig. b, we obtain the equilibrium equations

2 R = yv -

SF =

VtfVh"
F = 0,

Vh^Vb"
F - W = 0.

I

In terms of the length of the spring L = vh^ + b^ , the force exerted by

the spring is

F = k{L - Lo) = k{Vh- + b~ - b).

Substituting this expression into the second equilibrium equation, we obtain

the equation

, \k(^h- + b- - b) - W = 0.

Inserting the values of k, b, and W, we find that the distance /i is a root of the

equation

f{h)
300/2

V/z^ + 1

(W + 1 - l) - 12 = 0. (3.9)

How can we solve this nonlinear algebraic equation for hi Some calcula-

tors and software are designed to obtain roots of such equations. Another ap-

proach is to calculate the value of /(/j) for a range of values of h and plot the

results, as we have done in Fig. 3.31. From the graph we see that the solution

is approximately h = 0.45 ft. By examining the computed results near

h = 0.45 ft.

Figure 3.31

Graph of the function f{h).

80

60

40

/(h)

20

-20

^ .y K.
1.

J
j ^ .y.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h. feet

Kft) fih)

0.449 -0.1818

0.450 -0.1094

0.451 -0.0368

0.452 0.0361

0.453 0.1092

0.454 0.1826

we see that the solution (to three significant digits) is /i = 0.452 ft.
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Computational Problems .mi

3.83 (a) Plot the tensions in cables AB and AC for values of d

from J = Olod = 1.8 m.

(b) Each cable will safely support a tension of 1 kN. Use your

graph to estimate the acceptable range of values of d

1 m 1 m

P3.83

300 ft

P3.85

3.86 Consider the suspended 4-Mg truck in Problem 3.40. The

sum of the lengths of the cables AB and BC is 42 m.

(a) Plot the tensions in cables AB and BC for values of b from

zero to 20 m.

(b) Each cable will safely support a tension of 60 kN. Use the

results of (a) to estimate the allowable range of the distance b.

3.84 The suspended traffic light weighs 100 lb. The cables AB,

BC, AD, and DE are each 1 1 ft long. Determine the smallest

permissible length of the cable BD if the tensions in the cables

must not exceed 1000 lb.

Strategy: Plot the tensions in the cables for a range of

lengths of the cable BD.

40 ft

P3.84

3.85 The 2000-lb scoreboard A is suspended above a sports

arena by the cables AB and AC. Each cable is 160 ft long.

Suppose you want to move the scoreboard out of the way for a

tennis match by shortening cable AB while keeping the length of

cable AC constant.

(a) Plot the tension in cable AB as a function of its length for

values of the length from 142 ft to 160 ft.

(b) Use your graph to estimate how much you can raise the

scoreboard relative to its original position if you don't want to

subject cable AB to a tension greater than 6000 lb.

3.87 The unstretched length of the spring AB is 660 mm. The

system is in equilibrium in the position shown when the mass of

the suspended object is 10 kg. If the 10-kg object is replaced by a

30-kg object, what is the resulting tension in the spring?

400 mm - 600 mm

P3.87

3.88 The cable of the tow truck shown in Problem 3.46 is 12 ft

long. Determine the tension in the cable at 1-ft intervals as the

truck slowly moves forward 5 ft from the position shown.

3.89 The system in Problem 3.59 provides lateral support for a

load resting on the smooth bed of a truck. When the load is

subjected to an effective lateral load F (Fig. b), the distance from
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the original position of the load to its equilibrium position is S.

The unstretched length of each spring is 1 ft. Suppose that the

load is subjected to an effective lateral load F = 200 lb.

(a) Plot the spring constant k for values of d from 0.5 ft to 3 ft.

(b) Use the results of (a) to estimate the values of k for 8 = 1 ft

and 5 = 2 ft.

3.90 Consider the tethered balloon in Problem 3.68. The mass of

the balloon, experiments package, and the gas it contains is 90 kg,

and the buoyancy force on the balloon is 1000 N. If the tethers

AB, AC. and AD will each safely support a tension of 500 N and

the coordinates of point A are (0, h, 0), what is the minimum
allowable height hi

3.91 The collar A slides on the smooth vertical bar. The masses

m^ = 20 kg and rtig = 10 kg, and the spring constant

k = 360 N/m. When h = 0.2 m. the spring is unstretched.

Determine the value of h when the system is in equilibrium.

0.15 m

P3.92

3.93 In Problem 3.92, determine the distance s from C to the

collar A for which the magnitude of the normal force exerted on

the collar A by the smooth bar is 50 N.

3.94 The 1 0-kg collar A and 20-kg collar B slide on the smooth

bars. The cable from A to B is 3 m in length. Determine the value

of the distance i in the range I < 5 < 5 m for which the system

is in equilibrium.

(0, 5, 0) m

P3.91

3.92 The cable AB keeps the 8-kg collar A in place on the

smooth bar CD. The v axis points upward. Determine the distance

s from C to the collar A for which the tension in the cable is

150 N.

(4, 0. 0) m

P3.94

Chapter Summary

In this chapter we discussed the forces that occur frequently in engineering

applications and introduced two of the most important concepts in mechan-

ics: the free-body diagram and equilibrium. By drawing free-body diagrams

and applying the vector techniques developed in Chapter 2, we showed how

unknown forces acting on objects in equilibrium can be determined from the

condition that the sum of the external forces must equal zero. The sum of the

moments of the external forces on an object in equilibrium must also equal

zero, and this condition can be used to obtain additional information about

'



Chapter Summary 119

unknown forces on objects. We will discuss moments of forces in Chapter 4.

We will then apply equilibrium to individual objects in Chapter 5 and to

structures in Chapter 6.

The straight line coincident with a force vector is called the line of action

of the force. A system of forces is coplanar, or two-dimensional, if the lines

of action of the forces lie in a plane. Otherwise, it is three-dimensional . A
system of forces is concurrent if the lines of action of the forces intersect at a

point and parallel if the lines of action are parallel.

An object is subjected to an external force if the force is exerted by a dif-

ferent object. When one part of an object is subjected to a force by another

part of the same object, the force is internal.

A body force acts on the volume of an object, and a surface or contact

force acts on its surface.

Gravitational Forces

The weight of an object is related to its mass by W = mg, where

g = 9.81 m/s^ in SI units and g = 32.2 ft/s" in U.S. Customary units.

Surfaces

Two surfaces in contact exert forces on each other that are equal in magnitude

and opposite in direction. Each force can be resolved into the normal force

and ihe friction force. If the friction force is negligible in comparison to the

normal force, the surfaces are said to be smooth. Otherwise, they are rough.

Ropes and Cables

A rope or cable attached to an object exerts a force on the object whose mag-

nitude is equal to the tension and whose line of action is parallel to the rope

or cable at the point of attachment.

A pulley is a wheel with a grooved rim that can be used to change the di-

rection of a rope or cable. When a pulley can turn freely and the rope or cable

either is stationary or turns the pulley at a constant rate, the tension is approx-

imately the same on both sides of the pulley.

r-y--!

ID!

1. Choose an object to isolate.

Springs

The force exerted by a linear spring is

|F| = k\L - L„|, Eq. (3.1)

where k is the spring constant. L is the length of the spring, and Lq is its un-

stretched length.

nree-Body Diagrams

A free-body diagram is a drawing of an object in which the object is isolated

from its surroundings and the external forces acting on the object are shown.

Drawing a free-body diagram requires the steps shown in Figs. 1-3. A coordi-

nate system must be chosen to express the forces on the isolated object in

terms of components.

2. Draw the isolated object.

t'

*„W

3. Show the external forces.
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Equilibrium

If an object is in equilibrium, the sum of the external forces acting on it is

zero:

2F = 0. Eq. (3.2)

This implies that the sums of the external forces in the x, y, and z directions

each equal zero:

2 F^ = 0, 2 F^. = 0, 1F, = 0, Eqs. (3.6)

Review Problems

3.95 The 100-lb crate is held in place on the smooth surface by 3.97 A heavy rope used as a hawser for a cruise ship sags as

the rope AB. Determine the tension in the rope and the magnitude shown. If it weighs 200 lb, what are the tensions in the rope at A
of the normal force exerted on the crate by the surface. and B?

100 lb P3.97

P3.95

3.96 The system shown is called Russell's traction. If the sum of 3.98 The cable AB is horizontal, and the box on the right weighs

the downward forces exerted at A and B by the patient's leg is 100 lb. The surfaces are smooth.

32.2 lb, what is the weight IV?
^^^ ^j^^^ -^ ^j,^ ^^^^-^^ -^ ^j,^ ^^j,,^,

y (b) What is the weight of the box on the left?

P3.98

V P3.96

I
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3.99 A concrete bucket used at a construction site is supported

by two cranes. The 100-icg bucket contains 500 kg of concrete.

Determine the tensions in the cables AB and AC.

3.101 The assembly A, including the pulley, weighs 60 lb. What

force F is necessary for the system to be in equilibrium?

(5. 14)

m

P3.101

3.102 The mass of block A is 42 kg, and the mass of block B is

50 kg. The surfaces are smooth. If the blocks are in equilibrium,

what is the force F?

P3.99

3.100 The mass of the suspended object A is m^ and the masses

of the pulleys are negligible. Determine the force T necessary for

the system to be in equilibriutn.

P3.100

P3.102

3.103 The climber A is being helped up an icy slope by two

friends. His mass is 80 kg, and the direction cosines of the force

exerted on him by the slope are cos^^ = -0.286, cos 6, = 0.429,

and cos 6. = 0.857. The y axis is vertical. If the climber is in

equilibrium in the position shown, what are the tensions in the

ropes AB and AC and the magnitude of the force exerted on him

by the slope?
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(2. 2. 0)m * ^^^ y^WI III • ». •-
,

^r-
c
(5.2,-1) m

P3.106

P3.103

3.104 Consider the climber A being helped by his friends in

Problem 3. 103 To try to make the tensions in the ropes more equal,

the friend at B moves to the position (4, 2, 0) m. What are the new

tensions in the ropes AB and AC and the magnitude of the force

exerted on the climber by the slope?

3.105 A climber helps his friend up an icy slope. His friend is

hauling a box of supplies. If the mass of the friend is 90 kg and

the mass of the supplies is 22 kg, what are the tensions in the

ropes AB and CDl Assume that the slope is smooth.

P3.105

3.106 The small sphere of mass m is attached to a string of

length L and rests on the smooth surface of a sphere of radius R.

Determine the tension in the string in terms of m, L. /?, and R.

3.107 An engineer doing preliminary design studies for a new

radio telescope envisions a triangular receiving platform sus-

pended by cables from three equally spaced 40-m towers. The

receiving platform has a mass of 20 Mg (megagrams) and is

10 m below the tops of the towers. What tension would the cables

be subjected to?

TOP VIEW

P3.107

3.108 The metal disk A weighs 10 lb. It is held in place at the

center of the smooth inclined surface by the strings AB and AC.

What are the tensions in the strings?

(8, 4,0) ft

P3.108
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3.109 Cable AB is attached to the top of the vertical 3-m post,

and its tension is 50 kN. What are the tensions in cables AO. AC.

and AD?

P3.109

3.110 The 1 350-kg car is at rest on a plane surface with its

brakes locked. The unit vector e„ = 0.231i + 0.923J + 0.308k

is perpendicular to the surface. The y axis points upward. The

direction cosines of the cable from A to S are cos0^ = —0.816,

COS0, = 0.408. cos 6- = -0.408, and the tension in the cable is

1.2 kN. Determine the magnitudes of the normal and friction

forces the car's wheels exert on the surface.

3.111 The brakes of the car in Problem 3. 110 are released, and

the car is held in place on the plane surface by the cable AB. The

car's front wheels are aligned so that the tires exert no friction

forces parallel to the car's longitudinal axis. The unit vector

Cp = -0.941 i + 0.131J + 0.314k is parallel to the plane surface

and aligned with the car's longitudinal axis. What is the tension in

the cable?

design Experience A possible design for a simple scale to

weigh objects is shown. The length of the string AB is 0.5 m.

When an object is placed in the pan, the spring stretches and the

string AB rotates. The object's weight can be determined by

observing the change in the angle a.

-1 m

(a) Assume that objects with masses in the range 0.2-2 kg are to

be weighed. Choose the unstretched length and spring constant

of the spring in order to obtain accurate readings for weights in

the desired range. (Neglect the weights of the pan and spring.

Notice that a significant change in the angle a is needed to

determine the weight accurately.)

(b) Suppose that you can use the same components—the pan,

protractor, a spring, string—and also one or more pulleys.

Suggest another possible configuration for the scale. Use statics

to analyze your proposed configuration and compare its accuracy

with that of the configuration shown for objects with masses in

the range 0.2-2 kg.

P3.110
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The effects of forces can depend not only on their magnitudes and di-

rections but also on the moments, or torques, they exert. The rota-

tions of objects such as the wheels of a vehicle, the crankshaft of an

engine, and the rotor of an electric generator result from the moments of the

forces exerted on them. If an object is in equilibrium, the moment about any

point due to the forces acting on the object is zero. Before continuing our dis-

cussion of free-body diagrams and equilibrium, we must explain how to cal-

culate moments and introduce the concept of equivalent systems of forces

and moments.
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Two-Dimensional Description of the Moment

Consider a force of magnitude F and a point P, and let's view them in the di-

rection perpendicular to the plane containing the force vector and the point

(Fig. 4.1a). The magnitude of the moment of the force about P is DF, where

D is the perpendicular distance from P to the line of action of the force

(Fig. 4.1b). In this example, the force would tend to cause counterclockwise

rotation about point P. That is. if we imagine the force acts on an object that

can rotate about point P, the force would tend to cause counterclockwise ro-

tation (Fig. 4.1c). We say that the sense of the moment is counterclockwise.

We define counterclockwise moments to be positive and clockwise moments to

be negative. (This is the usual convention, although we occasionally en-

counter situations in which it is more convenient to define clockwise mo-

ments to be positive.) Thus the moment of the force about P is

Mp DF. (4.1)

(a) (b) (c)

Figure 4.1

(a) The force and point P.

(b) The perpendicular distance D from point P to the line of action of F.

(c) The sense of the moment is counterclockwise.

Notice that if the line of action of F passes through P, the perpendicular dis-

tance D — Q and the moment of F about P is zero.

The dimensions of the moment are (distance) X (force). For example,

moments can be expressed in newton-meters in SI units and in foot-pounds in

U.S. Customary units.

Suppose that you want to place a television set on a shelf, and you aren't

certain the attachment of the shelf to the wall is strong enough to support it.

Instinctively, you place it near the wall (Fig. 4.2a), knowing that the attach-

ment is more likely to fail if you place it away from the wall (Fig. 4.2b).

What is the difference in the two cases? The magnitude and direction of the

force exerted on the shelf by the weight of the television are the same in each

case, but the moments exerted on the attachment are different. The moment

exerted about P by its weight when it is near the wall, Mp = —D^W, is small-

er in magnitude than the moment about P when it is placed away from the

v/a\\,Mp = -D2W.
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(a) (b)

Figure 4.2

It is better to place the television near the wall (a) instead of away from it

(b) because the moment exerted on the support at P is smaller.

The method we describe in this section can be used to determine the sum

of the moments of a system of forces about a point if the forces are two-di-

mensional (coplanar) and the point lies in the same plane. For example, con-

sider the construction crane shown in Fig. 4.3. The sum of the moments

exerted about point P by the load Wi and the counterweight Wi is

2Mp = DilV, - D2W2.

Figure 4.3

A tower crane used in the construction of high-rise buildings.

This moment tends to cause the top of the vertical tower to rotate and could

cause it to collapse. If the distance Z), is adjusted so that D|W| = 1*2^2' the

moment about point P due to the load and the counterweight is zero.

If a force is resolved into components, the moment of the force about a

point P is equal to the sum of the moments of its components about P. We
prove this very useful result in the next section.

Study Questions
1. How do you determine the magnitude of the moment of a force about a point?

2. The moment of a force about a point is defined to be positive if its sense is

counterclockwise. What does that mean?

3. If the line of action of a force passes through a point P, what do you know

about the moment of the force about P?
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Example 4.1

Figure 4.4

Determining ttie Moment of a Force
40 kN What is the moment of the 40-kN force in Fig. 4.4 about point A?

Strategy

We can calculate the moment in two ways: by determining the perpendicular

distance from point A to the line of action of the force or by resolving the

force into components and determining the sum of the moments of the com-

ponents about A.

Solution

First Method From Fig. a, the perpendicular distance from A to the line of

action of the force is

D = 6sin30° = 3 m.

(a) Determining the

perpendicular distance D.

The magnitude of the moment of the force about A is (3 m)(40 kN) =

120 kN-m, and the sense of the moment about A is counterclockwise. There-

fore the moment is

M^ - 120 kN-m.

Second Method In Fig. b, we resolve the force into horizontal and vertical

components. The perpendicular distance from A to the line of action of the

horizontal component is zero, so the horizontal component exerts no moment

about A. The magnitude of the moment of the vertical component about A is

(6 m)(40sin30° kN) = 120 kN-m. and the sense of its moment about A is

counterclockwise. The moment is

M^ = 120 kN-m.

(b) Resolving the force

into components.

40 sin 30° kN >

1

6 m

"n40kN
I

\30°
1^1

40 cos 30° kN



4.1 Two-Dimensional Description of the Moment 129

Example 4.2

Moment of a System of Forces

Four forces act on the machine part in Fig. 4.5. What is the sum of the mo-

ments of the forces about the origin 01

Strategy

We can determine the moments of the forces about point O directly from

the given information except for the 4-kN force. We will determine its mo-

ment by resolving it into components and summing the moments of the

components.

300 mm

U:
H 3kN

[—300 I

Figure 4.5

2kN
:^:

4kN

30°

5kN

-400 mm-

Solution

Moment of the 3-kN Force The line of action of the 3-kN force passes

through O. It exerts no moment about O.

Moment of the 5-kN Force The line of action of the 5-kN force also pass-

es through O. It too exerts no moment about O.

Moment of the 2-kN Force The perpendicular distance from O to the line

of action of the 2-kN force is 0.3 m, and the sense of the moment about O is

clockwise. The moment of the 2-kN force about O is

-(0.3m)(2kN) = -0.600 kN-m.

(Notice that we converted the perpendicular distance from millimeters into

meters, obtaining the result in terms of kilonewton-meters.)

Moment of the 4-kN Force In Fig. a, we introduce a coordinate system

and resolve the 4-kN force into x and v components. The perpendicular dis-

tance from O to the line of action of the x component is 0.3 m, and the

sense of the moment about O is clockwise. The moment of the x compo-

nent about O is

-(0.3m)(4cos30°kN) = -1.039 kN-m.

The perpendicular distance from point O to the line of action of the v compo-

nent is 0.7 m, and the sense of the moment about O is counterclockwise. The

moment of the y component about O is

(0.7 m) (4 sin 30° kN) = 1.400 kN-m.

The sum of the moments of the four forces about point O is

2Mo = -0.600 - 1.039 + 1.400 = -0.239 kN-m.

The four forces exert a 0.239 kN-m clockwise moment about point O.

4 sin 30°JcN 4 ^^

4 cos 30° kN

5kN

(a) Resolving the 4-kN force into

components.
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Example 4.3

Figure 4.6

3 ft

4 ft

B

J-j;

I

-2 ft-

W

-2 ft-

Summing Moments to Determine
an l/nknoivn Force
The weight W = 300 lb (Fig. 4.6). The sum of the moments about C due to

the weight W and the force exerted on the bar CA by the cable AB is zero.

What is the tension in the cable?

Strategy

Let T be the tension in cable AB. Using the given dimensions, we can express

the horizontal and vertical components of the force exerted on the bar by the

cable in terms of T. Then by setting the sum of the moments about C due to

the weight of the bar and the force exerted by the cable equal to zero, we can

obtain an equation for T.

Solution

Using similar triangles, we resolve the force exerted on the bar by the cable

into horizontal and vertical components (Fig. a). The sum of the moments

about C due to the weight of the bar and the force exerted by the cable AB is

'ZMc = 4^T + 4[-T \

- 2W = 0.

Solving for T, we obtain

T = 0.357W = 107.1 lb.

(a) Resolving the force exerted by the

cable into horizontal and vertical

components.

Probiems
\

4.1 Determine the moment of the 50-N force about (a) point A,

(b) point B.

P4.1

4.2 The radius of the pulley is r = 0.2 m and it is not free to rotate.

The magnitudes of the forces are |F^| = 140Nand|Fg| = 180 N.

(a) What is the moment about the center of the pulley due to

the force F^?

(b) What is the sum of the moments about the center of the

pulley due to the forces F^ and Fg?

P4.2
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4.3 The wheels of the overhead crane exert downward forces on

the horizontal I-beam at B and C. If the force at B is 40 kip and

the force at C is 44 kip, determine the sum of the moments of the

forces on the beam about (a) point A, (b) point D.

4.6 The support at the left end of the beam will fail if the

moment about P due to the 20-kN force exceeds 35 kN-m. Based

on this criterion, what is the maximum safe value of the angle a in

the range < a < 90°?

-10ft- 25 ft
-

1
15 ft-

^ M
imi- m^ D

? P4.3

4.4 If you exert a 90-N force on the wrench in the direction shown,

what moment do you exert about the center of the nut? Compare

your answer to the moment exerted if you exert the 90-N force

perpendicular to the shaft of the wrench.

P4.4

4.5 If you exert a force F on the wrench in the direction shown

and a 50 N-m moment is required to loosen the nut, what force F
must you apply?

20 kN

a

-2m- P4.6

4.7 The gears exert 200-N forces on each other at their point

of contact.

(a) Determine the moment about A due to the force exerted on

the left gear.

(b) Determine the moment about B due to the force exerted on

the right gear.

P4.7

4.8 The support at the left end of the beam will fail if the

moment about A of the 15-kN force F exceeds 18 kN-m. Based

on this criterion, what is the largest allowable length of the beam?

P4.5 P4.8
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4.9 Determine the moment of the 80-lb force about P.

801b

P4.9

4.10 The 20-N force F exerts a 20 N-m counterclockwise

moment about P.

(a) What is the perpendicular distance from P to the line of

action of F?

(b) What is the angle a?

U^

-2ni-

4.11 The lengths of bars AB and AC are 350 mm and

450 mm respectively. The magnitude of the vertical force

at A is |F| = 600 N. Determine the moment of F about B
and about C.

P4.10

to reach around his friend, can only exert the two 30-lb forces.

What torque (moment) do they exert on the nut?

301b

P4.12

4.13 The two students described in Problem 4.12, having failed

to loosen the lug nut, try a different tactic. One of them stands on

the lug wrench, exerting a 150-lb force on it. The other pulls on

the wrench with the force F. If a torque of 245 ft-lb is required to

loosen the lug nut, what force F must the student exert?

1501b

P4.13

P4.ll

4.12 Two students attempt to loosen a lug nut with a lug wrench.

One of the students exerts the two 60-lb forces; the other, having

4.14 The moment exerted about point E by the weight is

299 in-lb. What moment does the weight exert about point S?

I

P4.14

I
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4.15 Three forces act on the square plate. Determine the sum of

the moments of the forces (a) about A, (b) about B, (c) about C.

I200N

200 N

F.

fi

2ni -2m 2m P4.19

4.16 Determine the sum of the moments of the three forces about

(a) point A, (b) point B, (c) point C.

4.20 Consider the beam shown in Problem 4. 19. If the two

forces exert a 140 kN-m clockwise moment about A and a

20 kN-m clockwise moment about B, what are F, and F2?

4.21 The force F = 140 lb. The vector sum of the forces acting

P4.15 on the beam is zero, and the sum of the moments about the left

end of the beam is zero.

(a) What are the forces A^, A,., and B?

(b) What is the sum of the moments about the right end of the

beam?

100 lb

fi

2001b 1001b

C
^ JA,.

2 ft 2 ft 2 ft 2ft-
8 ft 6 ft P4.21

P4.16
4.22 The vector sum of the three forces is zero, and the sum of

the moments of the three forces about A is zero.

4.17 Determine the sum of the moments of the five forces acting (a) What are F^ and Fg?

on the Howe truss about point A. (b) What is the sum of the moments of the three forces about fi?

8001b

600 lb I 600 lb

4001b

SON

(4 D
/k

900 mm -400 mm

^B

I J K LElm "

1^ 4 ft ^1^ 4 ft-^ 4 ft-^ 4 ft-^ 4 ft -*|^ 4 ft -^

P4.22

4.23 The weights (in ounces) offish A. B. and C are 2.7. 8.1, and

2. 1 , respectively. The sum of the moinents due to the weights of

the fish about the point where the mobile is attached to the ceiling

is zero. What is the weight of fish D?

P4.17

4.18 The right support of the truss in Problem 4.17 exerts an

upward force of magnitude G. (Assume that the force acts at the

right end of the truss.) The sum of the moments about A due to the

upward force G and the five downward forces exerted on the truss

is zero. What is the force G?

4.19 The sum of the forces F, and Ft is 250 N and the sum of the

moments of F, and F, about B is 700 N-m. What are F, and F,?
P4.23
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4.24 The weight W = ].2 kN. The sum of the moments about A
due to W and the force exerted at the end of the bar by the rope is

zero. What is the tension in the rope?

P4.24

4.25 The 160-N weights of the arms AB and BC of the robotic

manipulator act at their midpoints. Determine the sum of the

moments of the three weights about A.

P4.25

4.26 The space shuttle's attitude thrusters exert two forces of

magnitude F = 7.70 kN. What moment do the thrusters exert

about the center of mass G?

(-5,

A f: y

5)ft^
Fjr

>/o

\ ;f(A.-i)ii

\
(°/\

B\^\
(3, -4) ft P4.27

4.28 Five forces act on a link in the gear-shifting mechanism of a

lawn mower. The vector sum of the five forces on the bar is zero.

The sum of their moments about the point where the forces A^ and

Ay act is zero.

(a) Determine the forces A,, A, , and B.

(b) Determine the sum of the moments of the forces about the

point where the force B acts.

L.

650 mm

25 kN

30 kN

45^
• 650 mm 350 mm

P4.28

4.29 Five forces act on a model truss built by a civil engineering

student as part of a design project. The dimensions are fo = 300 mm
and h = 400 mm; F = 100 N. The sum of the moments of the

forces about the point where A , and A, act is zero. If the weight of

the truss is negligible, what is the force Bl

^

2.2 m

18m- 12m
Ti

16°

P4.26

4.27 The force F exerts a 200 ft-lb counterclockwise moment about

A and a 100 ft-lb clockwise moment about B. What are F and 61
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4.30 Consider the truss shown in Problem 4.29. The dimensions

are fc = 3 ft and /; = 4 ft; F = 300 lb. The vector sum of the

forces acting on the truss is zero, and the sum of the moments

of the forces about the point where A, and Ay act is zero.

(a) Determine the forces -4,, A,, and B.

(b) Determine the sum of the moments of the forces about the

point where the force B acts.

4.31 The mass m = 70 kg. What is the moment about A due to

the force exerted on the beam at B by the cable?

P4.31

1 4h32 Consider the system shown in Problem 4.31. The beam will

collapse at A if the magnitude of the moment about A due to the

I force exerted on the beam at B by the cable exceeds 2 kN-m.

What is the largest mass m that can be suspended?

4.33 The bar AB exerts a force at B that helps support the verti-

cal retaining wall. The force is parallel to the bar. The civil engi-

neer wants the bar to exert a 38 kN-m moment about O. What is

the magnitude of the force the bar must exert?

P4.33

4.34 A contestant in a fly-casting contest snags his line in some

grass. If the tension in the line is 5 lb, what moment does the force

exerted on the rod by the line exert about point H, where he holds

the rod?

P<"
4 ft

:4.

6ft

i
-7 ft- 15 ft- P4.34

4.35 The cables AB and AC help support the tower. The tension

in cable AB is 5 kN. The points A, B, C, and O are contained in

the same vertical plane.

(a) What is the moment about O due to the force exerted on the

tower by cable ABl
(b) If the sum of the moments about O due to the forces exerted

on the tower by the two cables is zero, what is the tension in

cable AC?

P4.35

4.36 The cable from B lo A (the sailboat's forestay) exerts a

230-N force at B. The cable from 6 to C (the backstay) exerts a

660-N force at B. The bottom of the sailboat's mast is located at

X = 4 m, y = 0. What is the sum of the moments about the bot-

tom of the mast due to the forces exerted at B by the forestay and

backstay?

B (4,13)

m

' P4.36
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4.37 The tension in each cable is the same. The forces exerted on

the beam by the three cables exert a 1 .2 kN-m counterclockwise

moment about O. What is the tension in the cables?

% -^ '-^^3

— I m 1 m- 1 m-

P4.37

4.38 The tension in cable AB is 300 lb. The sum of the moments

about O due to the forces exerted on the beam by the two cables is

zero. What is the magnitude of the sum of the forces exerted on

the beam by the two cables?

P4.38

4.39 The beam shown in Problem 4.38 will safely support the

forces exerted by the two cables at A if the magnitude of the hori-

zontal component of the total force exerted at A does not exceed

1000 lb and the sum of the moments about O due to the forces

exerted by the cables equals zero. Based on these criteria, what are

the maximum permissible tensions in the two cables?

4.40 The hydraulic cylinder BC exerts a 300-kN force on the

boom of the crane at C. The force is parallel to the cylinder. What
is the moment of the force about A?

2.4 m

4.41 The hydraulic cylinder BC exerts a 2200-lb force on the

boom of the crane at C. The force is parallel to the cylinder. The

angle a = 40°. What is the moment of the force about A1

P4.41

4.42 The hydraulic cylinder BC in Problem 4.41 exerts a 2200-lb

force on the boom of the crane at C. The force is parallel to the cylin-

der. The cable supporting the suspended crate exerts a downward

force at the end of the boom equal to the weight of the crate. The

angle a = 35°. If the sum of the moments about A due to the two

forces exerted on the boom is zero, what is the weight of the crate?

4.43 The unstretched length of the spring is 1 m, and the spring

constant is <: = 20 N/m. If a = 30°, what is the moment about A
due to the force exerted by the spring on the circular bar at B?

P4.43

4.44 The hydraulic cylinder exerts an 8-kN force at B that is par-

allel to the cylinder and points from C toward B. Determine the

moments of the force about points A and D.

P4.40 P4.44
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The moment of a force about a point is a vector. In this section we define this

vector and explain how it is evaluated. We then show that when we use the

two-dimensional description of the moment described in Section 4.1, we are

specifying the magnitude and direction of the moment vector.

Consider a force vector F and point P (Fig. 4.7a). The moment of F
about P is the vector

/

Mp = r X F. (4.2)
(a)

where r is a position vector from P to any point on the line of action of F
(Fig. 4.7b).

Magnitude of the Moment

From the definition of the cross product, the magnitude of Mp is

|Mp| = |r||F|sin0,

\\ here d is the angle between the vectors r and F when they are placed tail to

tail. The perpendicular distance from P to the line of action of F is

D - |r| sin0 (Fig. 4.7c). Therefore the magnitude of the moment Mp equals

the product of the perpendicular distance from P to the line of action of F and

the magnitude of F:

iMf OIFI. (4.3)

Notice that if you know the vectors Mp and F, you can solve this equation for

the perpendicular distance D.

Sense of the Moment

We know from the definition of the cross product that Mp is perpendicular to

both r and F. That means that Mp is perpendicular to the plane containing P
and F (Fig. 4.8a). Notice in this figure that we denote a moment by a circular

arrow around the vector.

The direction of Mp also indicates the sense of the moment: If you point

the thumb of your right hand in the direction of Mp, the "arc" of your fingers

indicates the sense of the rotation that F tends to cause about P (Fig. 4.8b).

(c)

Figure 4.7

(a) The force F and point P.

(b) A vector r from P to a point on the line

of action of F.

(c) The angle 6 and the perpendicular

distance D.

Plane containing

r and F

(a)

Figure 4.8

(a) Mp is perpendicular to the plane

containing P and F.

(b) The direction of Mp indicates the sense

of the moment.
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Figure 4.9

(a) A vector r from P to the line of action

ofF.

(b) A different vector r'.

(c) r = r' + u.

The result obtained from Eq. (4.2) doesn't depend on where the vector r

intersects the line of action of F. Instead of using the vector r in Fig. 4.9a, we

could use the vector r' in Fig. 4.9b. The vector r = r' + u, where u is paral-

lel to F (Fig. 4.9c). Therefore

r X F = (r' + u) X F = r' X F

because the cross product of the parallel vectors u and F is zero.

/ /
D

K7'
(b) (c)

In summary, the moment of a force F about a point P has three properties:

1. The magnitude of M^ is equal to the product of the magnitude of F and

the perpendicular distance from P to the line of action of F. If the line of

action of F passes through P, Mp = 0.

2. Mp is perpendicular to the plane containing P and F.

3. The direction of Mp indicates the sense of the moment through a right-

hand rule (Fig. 4.8b). Since the cross product is not commutative, you

must be careful to maintain the correct sequence of the vectors in the

equation Mp = r X F.

Let us determine the moment of the force F in Fig. 4.10a about the point

P. Since the vector r in Eq. (4.2) can be a position vector to any point on the

line of action of F, we can use the vector from P to the point of application of

F (Fig. 4.10b):

r = (12 - 3)i + (6 - 4)j + (-5 - l)k = 9i + 2j - 6k (ft).

The moment is

M, r X F =
i J k

9 2 -6

4 4 7

= 38i - 87j + 28k (ft-lb).

The magnitude of Mp,

\Mp\ = V(38)2 + (-87)' (28)^ = 99.0 ft-lb.

equals the product of the magnitude of F and the perpendicular distance D
from point P to the line of action of F. Therefore

D
M, 99.0 ft-lb

91b
= 11.0 ft.

The direction of Mp tells us both the orientation of the plane containing P
and F and the sense of the moment (Fig. 4. 10c).
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F = 4i + 4j + 7k(lb)

P,

-5) ft

(3,4, l)ft

-5) ft

(3,4, l)ft

z z

(a) (b)

Figure 4.10

(a) A force F and point P.

(b) The vector r from P to the point of application of F.

(c) Mp is perpendicular to the plane containing P and F. The right-hand rule

indicates the sense of the moment.

Plane

containing

PandF

(c)

Relation to the Two-Dimensional Description

If our view is perpendicular to the plane containing the point P and the force

F, the two-dimensional description of the moment we used in Section 4.1

specifies both the magnitude and direction of M^. In this situation, Mp is per-

pendicular to the page, and the right-hand rule indicates whether it points out

of or into the page.

For example, in Fig. 4.11a, the view is perpendicular to the x-y plane

and the 10-N force is contained in the x-y plane. Suppose that we want to de-

termine the moment of the force about the origin O. The perpendicular dis-

tance from O to the line of action of the force is 4 m. The two-dimensional

description of the moment of the force about O is that its magnitude is

(4 m)(10 N) = 40 N-m and its sense is counterclockwise, or

Mo = 40 N-m.

lOj (N)

(4, 2, 0) m

O*

(a)

lOj (N)

(4, 2, 0) m

lOj (N)

(4, 2, 0) m

(b)

(0

Figure 4.11

(a) The force is contained in the x-y plane.

(b) The sense of the moment indicates that M^ points out of

the page.

(c) The vector r from O to the point of application of F.
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That tells us that the magnitude of the vector M,, is 40 N-m, and the right-j

hand rule (Fig. 4.11b) indicates that it points out of the page. Therefore

Mo = 40k (N-m). -

We can confirm this result by using Eq. (4.2). If we let r be the vector from O
to the point of application of the force (Fig. 4. 1 Ic),

Mo = r X F = (4i + 2j) X lOj = 40k (N-m).

As this example illustrates, the two-dimensional description of the moment

determines the moment vector. The converse is also true. The magnitude of

Mq equals the product of the magnitude of the force and the perpendicular

distance from O to the line of action of the force, 40 N-m, and the direction of

Mo indicates that the sense of the moment is counterclockwise (Fig. 4. 1 lb).

Varignon's Theorem

Let F|, Ft, Fjv be a concurrent system of forces whose lines of action in-

tersect at a point Q. The moment of the system about a point P is

{rpQ X F,) + [rpQ X F,) + •• + (r^g X F^)

^rpQ X (F, + F. + --- + F;v),

where r^g is the vector from P to Q (Fig. 4.12). This result, known as

Varignon's theorem, follows from the distributive property of the cross prod-

uct, Eq. (2.3 1 ). It confirms that the moment of a force about a point P is equal

to the sum of the moments of its components about P.

\ /
\ ^ /

P ^PQ

Figure 4.12

A system of concurrent forces and a

point P.

Study Questions

1. When you use the equation M/, = r X F to determine the moment of a force F

about a point P, how do you choose the vector r?

2. If you know the components of the vector M^ = r X F, how can you

determine the product of the magnitude of F and the perpendicular distance

from P to the line of action of F?

3. How does the direction of the vector M^ = r X F indicate the sense of the

moment of F about P?
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Example 4.4

Two-Dimensional Description and ttie

Moment Vector

Determine the moment of the 400-N force in Fig. 4. 1 3 about O.

\ (a) What is the two-dimensional description of the moment?

I (b) Express the moment as a vector without using Eq. (4.2).

(c) Use Eq. (4.2) to determine the moment.

Solution

I

(a) Resolving the force into horizontal and vertical components (Fig. a), the

two-dimensional description of the moment is

Mo = -(2 m) (400 cos 30° N) - (5 m) (400 sin 30° N)

= -1.69 kN-m.

2m

O

400 sin 30° N
ffi

/30°
1400 cos 30° N

400 N

-5 m-

(b) To express the moment as a vector, we introduce the coordinate system

shown in Fig. b. The magnitude of the moment is 1 .69 kN-m, and its sense is

clockwise. Pointing the arc of the fingers of the right- hand clockwise, the

thumb points into the page. Therefore

M. 1.69k (kN-m).

y Ct^
400 sin 30° N

730°

!

•i 400 COS 30° N

400 N

+

(c) We apply Eq. (4.2):

Choose the Vector r We can let r be the vector from O to the point of ap-

plication of the force (Fig. c):

r = 5i + 2j (m).

Evaluate r x F The moment is

O"

-5 m-

Figure 4.13

(a) Resolving the

force into

components.

(b) Introducing a

coordinate system.

Mo = r X F = (5i + 2j) X (400cos30°i

= -1.69k (kN-m).

400sin30°j)

rTS

(c) The vector r from O to the point of

application of the force.
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Example 4.5

A

(0, 6, 5) ft

Figure 4.14

Determining ttie Moment
and ttie Perpendicuiar Distance
to ttie Line of Action
The line of action of the 90-lb force F in Fig. 4.14 passes through points B and C.

(a) What is the moment of F about point A?

(b) What is the perpendicular distance from point A to the line of action of F?

Strategy

(a) We must use Eq. (4.2) to determine the moment. Since r is a vector from

A to any point on the line of action of F, we can use either the vector from A

to B or the vector from A to C. To demonstrate that we obtain the same result,

we will determine the moment using both.

(b) Since the magnitude of the moment is equal to the product of the magni-

tude of F and the perpendicular distance from A to the line of action of F, we

can use the result of (a) to determine the perpendicular distance.

C •(7.7,0) ft

\

B » n 1 n 41 fiS» (11. 0.4) ft

A

(0, 6, 5) ft

C • (7. 7. 0) ft

J'BC

B '(11.0.4)ft

(a) The unit vector Cg^.

C, (7. 7, Oft

B (11,0, 4n't

(b) The moment can be determined using

either r^^ or r^c-

Solution

(a) To evaluate the cross product in Eq. (4.2), we need the components of F.

The vector from fi to C is

(7 - ll)i + (7 - 0)j + (0 - 4)k = -4i + 7j - 4k (ft).

Dividing this vector by its magnitude, we obtain a unit vector t^c '^hat has the

same direction as F (Fig. a):

'^BC

4 7

9 9"'

4

Now we express F as the product of its magnitude and e^c:

F = 90eac = "401 + 70j - 40k (lb).

Choose the Vector r The position vector from Alo B (Fig. b) is

r^, = (11 - 0)i + (0 - 6)j + (4 - 5)k = Hi - 6j - k (ft).

Evaluate r x F The moment of F about A is

i J k

M4 = r.AB X F = 11 -6 -1

-40 70 -40

= 310i + 480j + 530k (ft-lb).

Alternative Choice of Position Vector If we use the vector from A to C
instead,

i-Ac = (7 - 0)i + (7 - 6)j + (0 - 5)k = 7i + j - 5k (ft).
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we obtain the same result:

M. '4C X F =
i J k

7 1
-5

40 70 -40

= 310i + 480j + 530k (ft-lb).

(b) The perpendicular distance is

|M^| V(310)^ + (480)' + (530)2

V(-40)- + (70)- + (-40)'

= 8.66 ft.

Example 4.6

Applying the Moment Vector

The cables AB and AC in Fig. 4.15 extend from an attachment point A on the

floor to attachment points B and C in the walls. The tension in cable AB is

10 kN, and the tension in cable AC is 20 kN. What is the sum of the moments

about O due to the forces exerted on A by the two cables?

Solution

Let F^B and ¥^c be the forces exerted on the attachment point A by the two

cables (Fig. a). To express F^ig in terms of its components, we determine the

position vector from A to B,

(0 - 4)i + (4 - 0)j + (8 - 6)k = -4i + 4j + 2k (m),

and divide it by its magnitude to obtain a unit vector e^g with the same direc-

tion as Fab (Rg- b):

-4i + 4j + 2k 2 . 2.1
'AB

2 2
-i + -j
3 36 3 3 3

Now we write F^g as

Fab = lOe^B = -6.67i + 6.67J + 3.33k (kN).

We express the force F^^ in terms of its components in the same way:

F^c = 5.71i + 8.57J
- 17.14k (kN).

Choose the Vector r Since the lines of action of both forces pass through

point A, we can use the vector from O to A to determine the moments of both

forces about point O (Fig. a):

r = 4i + 6k (m).

Evaluate r x F The sum of the moments is

2Mo = (rXF,B) + (r X F^c)

i j k

4 6

-6.67 6.67 3.33

= -91.4i + 49.5J

• J k

+ 4 6

? 5.71 8.57 -17.14

61.0k (kN-m).

Figure 4.15

C. (6, 3, 0) m
/'

(0,4, 8) m\

(a) The forces F^g and F^c exerted at A

by the cables.

(0. 4. 8)m \

(b) The unit vector e^^ has the same

direction as F^g.
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Problems

4.45 Use Eq. (4.2) to determine the moment of the 50-lb force

about the origin O. Compare your answer with the two-dimen-

sional description of the moment.

1

50i (lb)
^

(0, 3, 0) ft

, , , , 1

P4.45

4.46 Use Eq. (4.2) to determine the moment of the 80-N force

about the origin O letting r be the vector (a) from Olo A; (b) from

OloB.

80j (N)

B I (6. 4. 0)in

O
A (6, 0. 0)m

P4.46

4.47 A bioengineer studying an injury sustained in throwing the

javelin estimates that the magnitude of the maximum force

exerted was |F| = 360 N and the perpendicular distance from O
to the line of action of F was 550 mm. The vector F and point O
are contained in the .v-v plane. Express the moment of F about the

shoulder joint at O as a vector.

4.48 Use Eq.(4.2) to determine the moment of the 100-kN force

(a) about A, (b) about B.

AlOOj(kN)

P4.48

4.49 The line of action of the 100-lb force is contained in the

.v-v plane.

(a) Use Eq.(4.2) to determine the moment of the force about

the origin O.

(b) Use the result of (a) to determine the perpendicular distance

from O to the line of action of the force.

1001b

30°/

(10, 5, Oft

O P4.49

4.50 The line of action of F is contained in the x-y plane. The

moment of F about O is 140k (N-m). and the moment of F about

A is 280k (N-m). What are the components of F?

P4.47

A (0, 7, 0) m

• (5, 3, 0) m

P4.50
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4.51 To test the bending stiffness of a light composite beam,

engineering students subject it to the vertical forces shown. Use

Eq. (4.2) to determine the moment of the 6-kN force about A.

|3kN

£
|3kN

6kN

-0.2 m-

^
-0.2 m- -0.2 m—4-— 0.2 m-

P4.51

4.52 Consider the beam and forces shown in Problem 4.51. Use

Eq. (4.2) to determine the sum of the moments of the three forces

(a) about A, (b) about B.

4.53 Three forces are applied to the plate. Use Eq.(4.2) to

determine the sum of the moments of the three forces about

the origin O.

5001b

P4.53

4.55 A force F = -4i -I- 6j - 2k (kN) is applied at the point

(8, 4, —4) m. What is the magnitude of the moment of F about the

point P with coordinates (2, 2, 2) m? What is the perpendicular

distance D from P to the line of action of F?

4.56 A force F = 20i - 30j + 60k (N) is applied at the point

(2, 3, 6) m. What is the magnitude of the moment of F about the

point P with coordinates (—2, — 1, — 1
) m? What is the perpendi-

cular distance D from P to the line of action of F?

4.57 A force F = 20i - 30j -I- 60k (lb). The moment of F
about a point PisMp = 450i - lOOj - 200k (ft-lb). What is

the perpendicular distance from point P to the line of action of F?

4.58 A force F is applied at the point (8, 6, 13) m. Its magnitude

is |F| = 90 N, and the moment of F about the point (4, 2, 6) is

zero. What are the components of F?

4.59 The force F = 30i -t- 20j - 10k (N).

(a) Determine the magnitude of the moment of F about A.

(b) Suppose that you can change the direction of F while

keeping its magnitude constant, and you want to choose a

direction that maximizes the moment of F about A. What

is the magnitude of the resulting maximum moment?

/
A (8, 2, -4) m

(4, 3, 3) m

P4.59

4.54 (a) Determine the magnitude of the moment of the 150-N

force about A by calculating the perpendicular distance from A to

the line of action of the force.

(b) Use Eq. (4.2) to determine the magnitude of the moment of

the 150-N force about A.

(0, 6, 0) m

Q) 4.60 The direction cosines of the force F are cos 6, = 0.818,

cos 6,. = 0.182, and cosO. = -0.545. The support of the beam at

O will fail if the magnitude of the moment of F about O exceeds

100 kN-m. Determine the magnitude of the largest force F that

can safely be applied to the beam.

(6, 0, 0) m

P4.54 P4.60
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4.61 The force F exerted on the grip of the exercise machine

points in the direction of the unit vector e = 5i-|j + 5k and

its magnitude is 120 N. Determine the magnitude of the moment

of F about the origin O.

P4.61

@ 4.62 The force F in Problem 4.61 points in the direction of the

unit vector e = |i — |j + \V.. The support at O will safely sup-

port a moment of 560 N-m magnitude.

(a) Based on this criterion, what is the largest safe magnitude of F?

(b) If the force F may be exerted in any direction, what is its

largest safe magnitude?

4.63 An engineer estimates that under the most adverse expected

weather conditions, the total force on the highway sign will be

F = ±1.4i -
2.0J (kN). What moment does this force exert about

the base 01

P4.64

4.65 The tension in cable AC is 100 lb. Determine the moment

about the origin O due to the force exerted at A by cable AC. Use

the cross product, letting r be the vector (a) from O to A. (b) from

OtoC.

^^
(0. 8, 0) ft

P4.63

4.64 The weights of the arms OA and AB of the robotic

manipulator act at their midpoints. The direction cosines of the

centerline of arm OA are cos 0, = 0.500, cos 0, = 0.866. and

COS0- = 0, and the direction cosines of the centerline of arm AB
arecose^ = 0.707, cos0, = 0.619, and cos 0. = -0.342. What is

the sum of the moments about O due to the two forces?

(14,0. 14) ft

P4.65

4.66 Consider the tree in Problem 4.65. The tension in cable AB
is 100 lb, and the tension in cable AC is 140 lb. Determine the

magnitude of the sum of the moments about O due to the forces

exerted at A by the two cables.
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4.67 The force F = 5i (kN) acts on the ring A where the cables

AB, AC, and AD are joined. What is the sum of the moments

about point D due to the force F and the three forces exerted on

the ring by the cables?

Strategy: The ring is in equilibrium. Use what you know

about the four forces acting on it.

(0.4,

P4.67

4.68 In Problem 4.67, determine the moment about point D due

to the force exerted on the ring A by the cable AB.

4.69 The tower is 70 m tall. The tensions in cables AB, AC, and

AD are 4 kN, 2 kN, and 2 kN, respectively. Determine the sum of

the moments about the origin O due to the forces exerted by the

cables at point A.

P4.71

4.72 Consider the wall shown in Problem 4.71. The total force

exerted by the two cables in the direction perpendicular to the wall

is 2 kN. The magnitude of the sum of the moments about D due to

the forces exerted on the wall by the cables is 18 kN-m. What are

the tensions in the cables?

4.73 The force F = 800 lb. The sum of the moments about O
due to the force F and the forces exerted at A by the cables AB
and AC is zero. What are the tensions in the cables?

.6, -10) ft

(8. 6, 0) ft

P4.73

P4.69

4.70 Consider the 70-m tower in Problem 4.69. Suppose that the

tension in cable AB is 4 kN, and you want to adjust the tensions in

cables AC and AD so that the sum of the moments about the ori-

gm O due to the forces exerted by the cables at point A is zero. g) 4.74 j,, problem 4.73, the sum of the moments about O due to

Determine the tensions.
^^^ f^^^^ ^ ^^ ^^^ f^^^^^ exerted at A by the cables AB and AC is

4.71 The tension in cable AB is 1 50 N. The tension in cable AC ^^ro. Each cable will safely support a tension of 2000 lb. Based on

is 100 N. Determine the sum of the moments about D due to the this criterion, what is the largest safe value of the force F?

forces exerted on the wall by the cables.
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4.75 The 200-kg slider at A is held in place on the smooth verti-

cal bar by the cable AB. Determine the moment about the bottom

of the bar (point C with coordinates x = 2m,y = z = 0) due to

the force exerted on the slider by the cable.

4.76 To evaluate the adequacy of the design of the vertical steel

post, you must determine the moment about the bottom of the post

due to the force exerted on the post at B by the cable AB. A cali-

brated strain gauge mounted on cable AC indicates that the ten-

sion in cable AC is 22 kN. What is the moment?

P4.75 P4.76

Moment of a Force About a Line

(a)

(b)

Figure 4.16

(a) Turning a capstan.

(b) A vertical force does not turn the capstan.

The device in Fig. 4.16. called a capstan, was used in the days of square-

rigged sailing ships. Crewmen turned it by pushing on the handles as shown

in Fig. 4.16a, providing power for such tasks as raising anchors and hoisting

yards. A vertical force F applied to one of the handles as shown in Fig. 4.16b

does not cause the capstan to turn, even though the magnitude of the moment

about point P is ci\F\ in both cases.

The measure of the tendency of a force to cause rotation about a line, or

axis, is called the moment of the force about the line. Suppose that a force F
acts on an object such as a turbine that rotates about an axis L, and we resolve

F into components in terms of the coordinate system shown in Fig. 4.17. The

components /v, and F- do not tend to rotate the turbine, just as the force paral-

lel to the axis of the capstan did not cause it to turn. It is the component F,,

that tends to cause rotation, by exerting a moment of magnitude a/\, about the

turbine's axis. In this example we can determine the moment of F about L

easily because the coordinate system is conveniently placed. We now intro-

duce an expression that determines the moment of a force about any line.

Definition

Consider a line L and force F (Fig. 4.18a). Let Mp be the moment of F about

an arbitrary point P on L (Fig. 4.18b). The moment of F about L is the com-

ponent of Mp parallel to L, which we denote by M^ (Fig. 4. 1 8c). The magni-

tude of the moment of F about L is |M^|, and when the thumb of the right

hand is pointed in the direction of M^, the arc of the fingers indicates the

sense of the moment about L.
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Figure 4.17

Applying a force to a turbine with axis of rotation L.

In terms of a unit vector e along L (Fig. 4.18d), M^, is given by

Mz. = (e • Mp)t. (4.4)

(The unit vector e can point in either direction. See our discussion of vector

components parallel and normal to a line in Section 2.5.) The moment

Mp = r X F, so we can also express M^ as

M, = [e • (r X F)]e. (4.5)

The mixed triple product in this expression is given in terms of the compo-

nents of the three vectors by

(rXF)
e.. e. e.

r. ^ r.

F. ^v F.

(4.6)

Notice that the value of the scalar e • Mp = e • (r X F) determines both the

magnitude and direction of M^^. The absolute value of e • M^ is the magni-

tude of M^. If e • M.p is positive, M^ points in the direction of e, and if e • Mp
is negative, M^ points in the direction opposite to e.

The result obtained with Eq. (4.4) or (4.5) doesn't depend on which point

on L is chosen to determine M/, = r X F. If we use point P in Fig. 4.19 to

determine the moment of F about L, we get the result given by Eq. (4.5). If

we use P' instead, we obtain the same result,

[e- (r' X F)]e = {e • [(r + u) x F]}e

= [e • (r X F) -f e • (u X F)]e

= [e- (r X F)]e,

because u X F is perpendicular to e.

/'

(a)

(c)

(d)

Figure 4.18

(a) The line L and force F.

(b) Mp is the moment of F about any point

P on L.

(c) The component M^ is the moment of F

about L.

(d) A unit vector e along L.

Figure 4.19

Using different points P and P' to

determine the moment of F about L.
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Applying the Definition

To demonstrate that M^^ is the measure of the tendency of F to cause rotation

about L, we return to the turbine in Fig. 4.17. Let g be a point on L at an ar-

bitrary distance b from the origin (Fig. 4.20a). The vector r from 2 to P is

r = ai — bk, so the moment of F about Q is

Mq = r X F

i J k

a -b

fr K F.

= bF,i - {af. + bF,)i + aF,k.

F. X

(a) (b)

Figure 4.20

(a) An arbitrar)' point 2 on L and the vector r from Q to P.

(b) M,^ and the sense of the moment about L.

Since the z axis is coincident with L, the unit vector k is along L. Therefore

the moment of F about L is

M^ = (k • Mg)k = aFX

The components F, and F, exert no moment about L. If we assume that F, is

positive, it exerts a moment of magnitude aFy about the turbine's axis in the

direction shown in Fig. 4.20b.

Now let's determine the moment of a force about an arbitrary line L
(Fig. 4.21a). The first step is to choose a point on the line. If we choose point

A (Fig. 4.21b), the vector r from A to the point of application of F is

4)k = 6i + 6j (m).r = (8 - 2)i + (6 - 0)j + (4

The moment of F about A is

M. = r X F

= -120i + 120j + 300k (N-m).

The next step is to determine a unit vector along L. The vector from A to S is

(-7 - 2)i + (6 - 0)j + (2 - 4)k = -9i + 6j - 2k (m).

i J k

6 6

10 60 -20
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F= 10i + 60j-20k(N)

/
(8, 6,4)m

A (2. 0, 4) m

Figure 4.21

(a) A force F and line L.

(b) The vector r from A to the point of

appHcation of F.

(c) e^g points from A toward B.

(d) The right-hand rule indicates the sense

of the moment.

/

A (2. 0. 4) m

(c)

/

Dividing this vector by its magnitude, we obtain a unit vector e^^ that points

from A toward B (Fig. 4.21c):

MB
9 6.2=

i + — j k.
11 ir 11

The moment of F about L is

Mi = (e^B • M^)e^B

-)(-120) + ^1(120) + (- -^1(300) '\B

- 109e^B (N-m).

The magnitude of M^^ is 109 N-m; pointing the thumb of the right hand in the

direction of e^g indicates the direction.

If we calculate M^ using the unit vector e/,^ that points from B toward A
instead, we obtain

M, = -109eB,(N-m).

We obtain the same magnitude, and the minus sign indicates that M^^ points

in the direction opposite to e^^, so the direction of M^^ is the same. Therefore

the right-hand rule indicates the same sense (Fig. 4.2 Id).

The preceding examples demonstrate three useful results that we can

state in more general terms:

• When the line of action of F is perpendicular to a plane containing L
(Fig. 4.22a), the magnitude of the moment of F about L is equal to the

product of the magnitude of F and the perpendicular distance D from L

to the point where the line of action intersects the plane: iM^j = |F|D.

• When the line of action of F is parallel to L (Fig. 4.22b). the moment of F
about L is zero: M^ ~ 0. Since Mp = r X F is perpendicular to F, Mp is

perpendicular to L and the vector component of Mp parallel to L is zero.

(a)

(c)

Figure 4.22

U) F is perpendicular to a plane containing L.

(b) F is parallel to L.

(c) The line of action of F intersects L at P.
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• When the line of action of F intersects L (Fig. 4.22c), the moment of F
about L is zero. Since we can choose any point on L to evaluate Mp, we
can use the point where the line of action of F intersects L. The moment

M;; about that point is zero, so its vector component parallel to L is zero.

In summary, determining the moment of a force F about a point P using

Eqs. (4.4)-(4.6) requires three steps:

1. Determine a vector r—Choose any point P on L, and determine the

components of a vector r from P to any point on the line of action of F.

2. Determine a vector e—Determine the components of a unit vector along

L. It doesn't matter in which direction along L it points.

3. Evaluate M^—You can calculate M/> = r X F and determine M^ by

using Eq. (4.4), or you can use Eq. (4.6) to evaluate the mixed triple

product and substitute the result into Eq. (4.5).

Study Questions

1. When you use Eq. (4.5) to determine the moment of a force F about a line L,

how do you choose the vector r? What is the definition of the vector e?

2. Explain how the direction of the vector M^ in Eq. (4.5) indicates the sense of

the moment of F about L.

3. What is the moment of a force F about a line L if the line of action of F passes

through L? What is the moment if the line of action of F is parallel to LI

Example 4.7

(4. 0. 3) ft

(a) The vector r from O to the point of

application of the force.

Moment of a Force About the x Axis
What is the moment of the 50-lb force in Fig. 4.23 about the x axis?

Strategy

We can determine the moment in two ways.

First Method We can use Eqs. (4.5) and (4.6). Since r can extend from any

point on the x axis to the line of action of the force, we can use the vector

from O to the point of application of the force. The vector e must be a unit

vector along the .v axis, so we can use either i or —i.

Second Method This example is the first of the special cases we just discussed,

because the 50-lb force is perpendicular to the x-z plane. We can determine the

magnitude and direction of the moment directly from the given information.

Solution

First Method Determine a vector r. The vector from O to the point of

application of the force is (Fig. a)

r = 4i + 3k (ft).

Determine a vector e. We can use the unit vector i.

Evaluate M^. Using Eq. (4.6), the mixed triple product is

1

i- (r X F) = 4 3 = -150ft-lb.

50

Then from Eq. (4.5), the moment of the force about the x axis is

M (xaxis)
= [i- (r X F)]i = -150i (ft-Ib).

(b) The sense of the moment. The magnitude of the moment is 150 ft-lb, and its sense is as shown in Fig. b.
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Second Method Since the 50-lb force is perpendicular to a plane (the x-z

plane) containing the x axis, the magnitude of the moment about the x axis is

equal to the perpendicular distance from the x axis to the point where the line

of action of the force intersects the x-z plane (Fig. c):

M (x axis)
I

(3 ft) (50 lb) = 150ft-lb.

Pointing the arc of the fingers in the direction of the sense of the moment

about the x axis (Fig. c), we find that the right-hand rule indicates that M(_,a^js)

points in the negative jc-axis direction. Therefore

M(,axis) = -150i (ft-lb).

50j (lb)

^
-t)

3ft

(c) The distance from the x axis to the point

where the line of action of the force intersects

the x-z plane is 3 ft. The arrow indicates the

sense of the moment about the x axis.

Example 4.8

Moment of a Force About a Line

What is the moment of the force F in Fig. 4.24 about the bar BC?

Strategy

We can use Eqs. (4.5) and (4.6) to determine the moment. Since we know the

coordinates of points B and C, we can determine the components of a vector

r that extends either from B to the point of application of the force or from C
to the point of application. We can also use the coordinates of points B and C
to determine a unit vector along the line BC.

Solution

Determine a Vector r We need a vector from any point on the line BC to

any point on the line of action of the force. We can let r be the vector from B
to the point of application of F (Fig. a):

r = (4 - 0)i + (2 - 0)j + (2 - 3)k = 4i + 2j - k (m).

Determine a Vector e To obtain a unit vector along the bar BC, we deter-

mine the vector from B to C,

(0 - 0)i + (4 - 0)j + (0 - 3)k = 4j - 3k (m),

and divide it by its magnitude (Fig. a):

4j -3k
^BC 0.8j - 0.6k.

Evaluate M^ Using Eq. (4.6), the mixed triple product is

0.8 -0.6

Cbc • (r X F) = 4 2 -1 = -24.8 kN-m.

-2 6 3

Substituting this result into Eq. (4.5), the moment of F about the bar BC is

Msc = [[Cflc • (r X Djcec = -24.8esc (kN-m).

The magnitude of Mbc is 24.8 kN-m, and its direction is opposite to that of

tgc- The sense of the moment is shown in Fig. b.

C/^!>^(0. 4, 0) m

t
F = -2i + 6j + 3k (kN)

(0. 0, 3)m

Figure 4.24

(a) The vectors r and egc-

(b) The right-hand rule indicates the sense

of the moment about BC.



154 Chapter 4 Systems of Forces and Moments

Example 4.9

^ Application to Engineering:

Rotating Machines

The crewman in Fig. 4.25 exerts the forces shown on the handles of the cof-

fee grinder winch, where F = 4j + 32k N. Determine the total moment he

exerts (a) about point O, (b) about the axis of the winch, which coincides with

the X axis.

Figure 4.25

(0.18. -0.28, -0.1) m

Strategy

(a) To obtain the total moment about point O, we must sum the moments of

the two forces about O. Let the sum be denoted by 2Mo. (b) Because point

O is on the x axis, the total moment about the x axis is the component of

2Mo parallel to the x axis, which is the x component of IMq.

Solution

(a) The total moment about point O is

2 Mr

i J k

0.18 0.28 0.1 +

4 32

J k

-0.28 -0.1

-4 -32

0.18

= 17.1i + 11.5J
- 1.4k (N-m).

(b) The total moment about the x axis is the x component of SMq (Fig. a):

2M(,_) = 17.1 (N-m).

Notice that this is the result given by Eq. (4.4): Since i is a unit vector parallel

to the X axis.

2M {x axis)
- (i • ^Mo)i = 17.1 (N-m
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(a) The total moment about the x axis.

design Issues

The winch in this example is a simple representative of a class of rotating ma-

chines that includes hydrodynamic and aerodynamic power turbines, pro-

pellers, jet engines, and electric motors and generators. The ancestors of

hydrodynamic and aerodynamic power turbines—water wheels and wind-

mills—were among the earliest machines. These devices illustrate the impor-

tance of the concept of the moment of a force about a line. Their common
feature is a part designed to rotate and perform some function when it is sub-

jected to a moment about its axis of rotation. In the case of the winch, the

forces exerted on the handles by the crewman exert a moment about the axis

of rotation, causing the winch to rotate and wind a rope onto a drum, trim-

ming the boat's sails. A hydrodynamic power turbine (Fig. 4.26) has turbine

blades that are subjected to forces by flowing water, exerting a moment about

the axis of rotation. This moment rotates the shaft to which the blades are at-

tached, turning an electric generator that is connected to the same shaft.

Generator

Turbine blades

Figure 4.26

A hydroelectric turbine. Water flowing

through the turbine blades exerts a moment

about the axis of the shaft, turning the

generator.
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Problems

4.77 Use Eqs. (4.5) and (4.6) to determine the moment of the

40-N force about the z axis. (First see if you can write down the

result without using the equations.)

40j (N)

(8.0. 0)m

P4.77

4.78 Use Eqs. (4.5) and (4.6) to determine the moment of the

20-N force about (a) the x axis, (b) the v axis, (c) the c axis. (First

see if you can write down the results without using the equations.)

(7, 4, 0) m

P4.78

4.79 Three forces parallel to the y axis act on the rectangular

plate. Use Eqs. (4.5) and (4.6) to determine the sum of the

moments of the forces about the x axis. (First see if you can write

down the result without using the equations.)

4.81 The person exerts a force F = 0.2i — 0.4j -f- 1.2k (lb) on

the gate at C. Point C lies in the .v-v plane. What moment does the

person exert about the gate's hinge axis, which is coincident with

the V axis?

.4

A
5

'x

mm^^
I

3.5 ft

T

C

1

'

1 -

imn
B t—

*

P4.81

4.82 Four forces parallel to the >• axis act on the rectangular

plate. The sum of the forces in the positive y direction is 200 lb.

The sum of the moments of the forces about the .v axis is

—300i (ft-lb) and the sum of the moments about the ; axis is

400k (ft-lb). What are the magnitudes of the forces?

y

F..

/^l 1001b

o
F,.

^
, ,

J /

/;
ft

V
-4 ft- /

P4.82

2kN

k
6kN

-900 mm
P4.79

4.80 Consider the rectangular plate shown in Problem 4.79. The

three forces are parallel to the v axis. Determine the sum of the

moments of the forces (a) about the y axis, (b) about the c axis.

4.83 The force F = lOOi + 60j - 40k (lb). What is the

moment of F about the y axis? Draw a sketch to indicate the

sense of the moment.

P4.83
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4.84 Suppose that the moment of the force F shown in Problem

4.83 about the x axis is -80i (ft-lb), the moment about the v axis

is zero, and the moment about the z axis is 160k (ft-lb). If

Fy = 80 lb, what are F^ and F.?

4.85 The robotic manipulator is stationary. The weights of the

arms AB and BC act at their midpoints. The direction cosines of

the centerline of arm AB are cosO^ = 0.500, cos^^ = 0.866,

cos 6. = 0, and the direction cosines of the centerline of arm BC
arecose, = 0.707, cos6', = 0.619, cos0. = -0.342. What total

moment is exerted about the z axis by the weights of the arms?

P4.85

4.86 In Problem 4.85, what total moment is exerted about the

X axis by the weights of the arms?

4.87 Two forces are exerted on the crankshaft by the connecting

rods. The direction cosines of F^ are cos 6^ = —0.182,

COS0,, = 0.818, and cosO. = 0.545, and its magnitude is 4 kN.

The direction cosines of Fg are cos0^ = 0.182, cosOy = 0.818,

and COS0- = —0.545, and its magnitude is 2 kN. What is the sum

of the moments of the two forces about the x axis? (This is the

moment that causes the crankshaft to rotate.)

4.88 Determine the moment of the 20-N force about the line AB.

Use Eqs. (4.5) and (4.6), letting the unit vector e point (a) from A
toward B, (b) from B toward A.

P4.88

4.89 The force F = -lOi + 5j - 5k (kip). Determine the

moment of F about the line AB. Draw a sketch to indicate the

sense of the moment.

P4.89

4.90 The force F = lOi + 12j - 6k (N). What is the moment

of F about the line AO? Draw a sketch to indicate the sense of the

moment.

(0, 6, 4) m

(8, 0. 6) m
P4.90

P4.87
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4.91 The tension in the cable AB is 1 kN. Determine the moment

about the .v axis due to the force exerted on the hatch by the cable

at point B. Draw a sketch to indicate the sense of the moment.

P4.91

4.92 Determine the moment of the force applied at D about the

straight line through the hinges A and B. (The line through A and

B lies in the y-; plane.)

20i - 60j (lb)

P4.92

4.93 In Problem 4.92, the tension in the cable CE is 160 lb.

Determine the moment of the force exerted by the cable on the

hatch at C about the straight line through the hinges A and B.

4.94 The coordinates of A are (-2.4, 0. -0.6) m, and the

coordinates of 8 are (-2.2, 0.7. -1.2) m. The force exerted at B
by the sailboat's main sheet AB is 130 N. Determine the moment

of the force about the centerline of the mast (the y axis). Draw a

sketch to indicate the sense of the moment.

4.95 The tension in cable AB is 200 lb. Determine the moments

about each of the coordinate axes due to the force exerted on point B
by the cable. Draw sketches to indicate the senses of the moments.

A * (2, 5. -2) ft

(10, -2. 3) ft P4.95

4.96 The total force exerted on the blades of the turbine by the

steam nozzle is F = 20i - 120j + 100k (N), and it effectively

acts at the point (100. 80, 300) mm. What moment is exerted

about the axis of the turbine (the .v axis)?

Fixed

Rotating

P4.96

4.97 The tension in cable AB is 50 N. Determine the moment

about the line OC due to the force exerted by the cable at B. Draw

a sketch to indicate the sense of the moment.

UO, 7, 0) m

P4.94 4) m P4.97
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4.98 The tension in cable AB is 80 lb. What is the moment about

the line CD due to the force exerted by the cable on the wall at fi?

4.101 The tension in cable AB is 2 kN. What is the magnitude of

the moment about the shaft CD due to the force exerted by the

cable at A? Draw a sketch to indicate the sense of the moment

about the shaft.

J

^3ft^ B —
^^^^^qM^HH^HHmHH llllllHIHflinfifi^I^WVilSaS iHHHHuHHI
^D&HBl
{^^nlHHil

mmSmi H^HmBhHIB

A (6,0, 10) ft P4.98

4.99 The universal joint is connected to the drive shaft at A and

A'. The coordinates of A are (0, 40, 0) mm, and the coordinates of

A' are (0, —40, 0) mm. The forces exerted on the drive shaft by the

universal joint are -30j + 400k (N) at A and 30j - 400k (N) at

A'. What is the magnitude of the torque (moment) exerted by the

universal joint on the drive shaft about the shaft axis 0-0'?

P4.101

4.102 The axis of the car's wheel passes through the origin of

the coordinate system and its direction cosines are cos 0^ = 0.940,

COS0J = 0, COS0. = 0.342. The force exerted on the tire by the

road effectively acts at the point x = 0. v = —0.36 m, c = and

has components F = -720i + 3660J + 1240k (N). What is the

moment of F about the wheel's axis?

Universal joint
Drive shaft
/

O
\A'

3f

P4.99

4.100 A motorist applies the two forces shown to loosen a lug

nut. The direction cosines of F are cos 0, =
i^ , cos 6^. = || , and

cos 0, = jj.U the magnitude of the moment

about the x axis must be 32 ft-lb to loosen the nut, what is the

magnitude of the forces the motorist must apply?

P4.102

P4.100
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4.103 The direction cosines of the centerline OA are

cos 0, = 0.500, COS0, = 0.866, and cos Q. = 0, and the direction

cosines of the Hne AG are cos0, = 0.707, cosfl, = 0.619, and

COS0. = -0.342. What is the moment about OA due to the 250-N

weight? Draw a sketch to indicate the sense of the moment about

the shaft.

4.105 Consider the steering wheel in Problem 4.104. Determine

the moment of F about the shaft OC of the steering wheel if a=30°.

Draw a sketch to indicate the sense of the moment about the shaft.

4.106 The weight W causes a tension of 100 lb in cable CD. If

d = li\., what is the moment about the z axis due to the force

exerted by the cable CD at point C?

(3.0. 10) ft P4.106

P4.103

4.107 The rod AB supports the open hood of the car. The force

exerted by the rod on the hood at B is parallel to the rod. If the rod

must exert a moment of 100 ft-lb magnitude about the x axis to

support the hood and the distance d = liK, what is the magnitude

of the force the rod must exert on the hood?

4.104 The radius of the steering wheel is 200 mm. The distance

from O to C is 1 m. The center C of the steering wheel lies in the

.v-v plane. The driver exerts a force F = lOi + lOj - 5k (N) on

the wheel at A. If the angle a = 0, what is the magnitude of the

moment about the shaft OC? Draw a sketch to indicate the sense

of the moment about the shaft.

P4.104 P4.107
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Couples

Now that we have described how to calculate the moment due to a force, consid-

er this question: Is it possible to exert a moment on an object without subjecting

it to a net force? The answer is yes, and it occurs when a compact disk begins ro-

tating or a screw is turned by a screwdriver. Forces are exerted on these objects,

but in such a way that the net force is zero while the net moment is not zero.

Two forces that have equal magnitudes, opposite directions, and different

lines of action are called a couple (Fig. 4.27a). A couple tends to cause rota-

tion of an object even though the vector sum of the forces is zero, and it has

the remarkable property that the moment it exerts is the same about any point.

(a) (b) (c)

/

y-

(d) (e) (f)

Figure 4.27

(a) A couple.

(b) Determining the moment about P.

(c) The vector r = r, - r2

.

(d) Representing the moment of the couple.

(e) The distance D between the lines of action.

(f) M is perpendicular to the plane containing F and —F.

The moment of a couple is simply the sum of the moments of the forces

about a point P (Fig. 4.27b):

M = [r, X F] + [rj X (-F)] = (r, - r.) X F.

The vector r, - Ft is equal to the vector r shown in Fig. 4.27c, so we can ex-

press the moment as

M = r X F.

Since r doesn't depend on the position of P, the moment M is the same for

any point P.

Because a couple exerts a moment but the sum of the forces is zero, it is

often represented in diagrams simply by showing the moment (Fig. 4.27d).

Like the Cheshire cat in Alice's Adventures in Wonderland, which vanished

except for its grin, the forces don't appear; you see only the moment they

exert. But we recognize the origin of the moment by referring to it as a mo-

ment ofa couple, or simply a couple.
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Notice in Fig. 4.27c that M = r X F is the moment of F about a point

on the line of action of the force —F. The magnitude of the moment of a force

about a point equals the product of the magnitude of the force and the perpen-

dicular distance from the point to the line of action of the force, so

|M| = D|F|, where D is the perpendicular distance between the lines of ac-

tion of the two forces (Fig. 4.27e). The cross product r X F is perpendicular

to r and F, which means that M is perpendicular to the plane containing F
and -F (Fig. 4.27f)- Pointing the thumb of the right hand in the direction of

M, the arc of the fingers indicates the sense of the moment.

In Fig. 4.28a, our view is perpendicular to the plane containing the two

forces. The distance between the lines of action of the forces is 4 m, so the

magnitude of the moment of the couple is |M| = (4 m)(2 kN) = 8 kN-m.

The moment M is perpendicular to the plane containing the two forces. Point-

ing the arc of the fingers of the right hand counterclockwise, we find that the

right-hand rule indicates that M points out of the page. Therefore the moment

of the couple is

M = 8k (kN-m).

(3, 7, 0) m

-2j (kN)

1(3. 7,0) m

2j(kN)

(7. 2, 0) m

(a)

'2j(kN)

O 8 kN-m

(c)

Figure 4.28

(a) A couple consisting of 2-kN forces.

(b) Determining the sum of the moments of the forces about O.

(c) Representing a couple in two dimensions.
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We can also determine the moment of the couple by calculating the sum of

the moments of the two forces about any point. The sum of the moments of

the forces about the origin O is (Fig. 4.28b)

M = [r, X (2j)] + [r^ x (-2j)]

= [(7i + 2j) X (2j)] + [(3i + 7j) X (-2j)]

= 8k (kN-m).

In a two-dimensional situation like this example, it isn't convenient to repre-

sent a couple by showing the moment vector, because the vector is perpendi-

cular to the page. Instead, we represent the couple by showing its magnitude

and a circular arrow that indicates its sense (Fig. 4.28c).

By grasping a bar and twisting it (Fig. 4.29a), a moment can be exerted

about its axis (Fig. 4.29b). Although the system of forces exerted is distrib-

uted over the surface of the bar in a complicated way, the effect is the same as

if two equal and opposite forces are exerted (Fig. 4.29c). When we represent

a couple as in Fig. 4.29b, or by showing the moment vector M, we imply that

some system of forces exerts that moment. The system of forces (such as the

forces exerted in twisting the bar, or the forces on the crankshaft that exert a

moment on the drive shaft of a car) is nearly always more complicated than

two equal and opposite forces, but the effect is the same. For this reason, we

can model the actual system as a simple system of two forces.

(a) IbJ (c)

Figure 4.29

(a) Twisting a bar.

(b) The moment about the axis of the bar.

(c) The same effect is obtained by applying two equal and opposite forces.

Study Questions
1. How do you determine the moment exerted about a point P by a couple

consisting of forces F and —F?
2. If you know the moment of a couple about a point P, what do you know about

the moment of the couple about a different point P'?

3. A couple consists of forces F and —F. The perpendicular distance between

the lines of action of the forces is D. What is the magnitude of the moment
of the couple?
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Example 4.10

Determining ttie IVioment of a Coupie
The force F in Fig. 4.30 is lOi - 4j (N). Determine the moment of the couple

and represent it as shown in Fig. 4.29b.

(6, 6, 0) m

Figure 4.30

(6. 6. 0) m

(a) Determining the moment about the

point of application of F.

(10, 7,3) m

(8, 3, 0) m

(b) Determining the moment about P.

Strategy

We can determine the moment in two ways: We can calculate the sum of the

moments of the forces about a point, or we can sum the moments of the two

couples formed by the x and >' components of the forces.

Solution

First Method If we calculate the sum of the moments of the forces about a

point on the line of action of one of the forces, the moment of that force is

zero and we only need to calculate the moment of the other force. Choosing

the point of application of F (Fig. a), we calculate the moment as

M = r X (-F) = (-2i + 3j) X (-lOi + 4j) = 22k (N-m).

We would obtain the same result by calculating the sum of the moments

about any point. For example, the sum of the moments about the point P in

Fig. b is

M = [r, X F] + [r. X (-F)]

• J

-2 -4

10 -4

= 22k (N-m]

+

i J k

-4 -1 -3

-10 4

Second Method The x and v components of the forces form two couples

(Fig. c). We determine the moment of the original couple by summing the

moments of the couples formed by the components.

(c) The X and v

components form two

couples.

ION
(6. 6. 0) m

(8. 3, 0)m

ION

4N
' (6, 6, 0) m

(8, 3, 0) m
,4N
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Consider the 10-N couple. The magnitude of its moment is

(3 m)(10 N) = 30 N-m, and its sense is counterclockwise, indicating that the

moment vector points out of the page. Therefore the moment is 30k N-m.

The 4-N couple causes a moment of magnitude (2 m)(4 N) = 8 N-m and

its sense is clockwise, so the moment is -8k N-m. The moment of the origi-

nal couple is

M = 30k - 8k = 22k (N-m).

Its magnitude is 22 N-m, and its sense is counterclockwise (Fig. d).

o 22 N-m

(d) Representing the moment.

Example 4.11

Determining Unknown Forces
Two forces A and B and a 200 ft-lb couple act on the beam in Fig. 4.31. The

sum of the forces is zero, and the sum of the moments about the left end of

the beam is zero. What are the forces A and fi?

Solution

The sum of the forces is

2 F, = ^ + B = 0.

The moment of the couple (200 ft-lb clockwise) is the same about any point,

so the sum of the moments about the left end of the beam is

200 ft-lb

SM,
(left end) 4fi - 200 = 0.

The forces are S = 50 lb and A = -50 lb.

Discussion

Notice that A and B form a couple (Fig. a). It causes a moment of magnitude

(4 ft)(50 lb) = 200 ft-lb, and its sense is counterclockwise, so the sum of the

moments of the couple formed by A and B and the 200 ft-lb clockwise couple

is zero.

-4 ft- -4 ft-

Figure 4.31

t5011

200 ft-lb

4ft-

501b

-4fl-

(a) The forces on the beam form a couple.
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Example 4.12

Sum of the Moments Due
to Two Couples
Determine the sum of the moments exerted on the pipe in Fig. 4.32 by the

two couples.

Solution

Consider the 20-N couple. The magnitude of the moment of the couple is

(2 m)(20 N) = 40 N-m. The direction of the moment vector is perpendicular

to the y-z plane, and the right-hand rule indicates that it points in the positive

j:-axis direction. The moment of the 20-N couple is 40i (N-m).

By resolving the 30-N forces into v and ; components, we obtain the two

couples in Fig. a. The moment of the couple formed by the y components is

-(30sin60°)(4)k (N-m), and the moment of the couple formed by the z

components is (30 cos 60°)(4)j (N-m).

The sum of the moments is

SM = 40i + (30 cos 60°) (4)j - (30sin60°)(4)k

= 40i + 60j - 103.9k (N-m).

20

&
"Al I

,

Vonm
20 Ny. 60=

4 m

30 sin 60° N 30 sin 60° N

30 cos 60° N

4 m

7^
30 cos 60° N

Figure 4.32 (a) Resolving the 30-N forces into y and z components.

Discussion

Although the method we used in this example helps you recognize the contri-

butions of the individual couples to the sum of the moments, it is convenient

only when the orientations of the forces and their points of application rela-

tive to the coordinate system are fairly simple. When that is not the case, you

can determine the sum of the moments by choosing any point and calculating

the sum of the moments of the forces about that point.

Example 4.13

Distance Between the Lines ofAction

The force F in Fig. 4.33 is -20i + 20j + 10k (lb).

(a) What moment does the couple exert on the bracket?

(b) What is the perpendicular distance D between the lines of action of the

two forces?



strategy

(a) We can choose a point and determine the sum of the moments of the

forces about that point.

(b) The magnitude of the moment of the couple equals D |F|, so we can use

the result of (a) to determine D.

Solution

(a) If we determine the sum of the moments of the forces about the origin O,

the moment of the force —F is zero. The moment of the couple is (Fig. a)

M = r X F

i J k

4 1 1

-20 20 10

-lOi - 60j + 100k (ft-lb).

(b) The perpendicular distance is

|M| V(-IO)- + (-60)- + (100)2
D

V(-20)- + (20)- + (10)-

= 3.90 ft.

Figure 4.33
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(4. I. Dft

(4. 1. Dft

(a) Determining the sum of the moments

about O.

Problems

4.108 Determine the moment of the couple and represent it as

shown in Fig. 4.28c.

4l0j(N)

-lOj (N)

(4, 0, 0)iTi

P4.108

4.109 The forces are contained in the x-y plane.

(a) Determine the moment of the couple and represent it as

shown in Fig. 4.28c.

(b) What is the sum of the moments of the two forces about the

point (10, -40, 20) ft?

10001b

60'^
20 ft

60'

^1000 lb

20 ft

4.110 The forces are contained in the x-y plane and the moment

of the couple is —1 10k (N-m).

(a) What is the distance />?

(b) What is the sum of the moments of the two forces about the

point (3, -3, 2) m?

SON

350

SON

P4.110

4.111 Point P is contained in the x-y plane, |F| = 100 N,

and the moment of the couple is -500k (N-m). What are the

coordinates of PI

P4.109
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V

/ F

-X

/

/

/

/

/\70°
1 \

c
(-4, 0, 0) ft

50 ft-lb

1̂0 ft-lb

P4.114

4.115 Determine the sum of the moments exerted on the plate by

P4 111 ^^^ '^° couples.

4.112 The forces are contained in the .v-v plane.

(a) Determine the sum of the moments of the two couples.

(b) What is the sum of the moments of the four forces about the

point (—6, —6. 2) m?
(c) Represent the result of (a) as shown in Fig. 4.28c.

lOON

4 m ilOON

2ni

t

i

2m

ICON''' 4 m

lOON

P4.115

4.116 Determine the sum of the moments exerted about A by the

couple and the two forces.

100 lb 1400 lb

900 ft-lb

P4.112

ZT ^
— 3 ft -4 ft-

"Hfi

-3fit- -4ft- P4.116
4.113 The moment of the couple is 40 icN-m counterclockwise.

(a) Express the moment of the couple as a vector.

(b) Draw a sketch showing two equal and opposite forces that 4.117 Determme the sum of the moments exerted about A by the

exert the given moment. couple and the two forces.

40kN-m

e
P4.113

0,2 m

300 N-m

P4.117

4.114 The moments of two couples are shown. What is the sum

of the moments about point PI 4.118 What is the sum of the moments exerted on the object?
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100 N-m

ir
30 N

-6 m 3m
P4.118

4.119 Four forces and a couple act on the beam. The vector sum

of the forces is zero, and the sum of the moments about the left

end of the beam is zero. What are the forces /4,, /A,, and B?

800 N

\ 200 N-m

i
p^ ^^--̂it—

B

\

-4 m- -4 m 3 m
P4.119

4.120 The force F = 40i + 24j + 12k (N).

(a) What is the moment of the couple?

(b) Determine the perpendicular distance between the lines of

action of the two forces.

(6, 3, 2) m

(10,0, Dm

4.122 What is the magnitude of the sum of the moments exerted

on the T-shaped structure by the two couples?

50i + 20j - 10k (lb)

-50i-20j-i- 10k (lb) P4.122

4.123 The tension in cables AB and CD is 500 N.

(a) Show that the two forces exerted by the cables on the

rectangular hatch at B and C form a couple.

(b) What is the moment exerted on the plate by the cables?

(0, 2, 0) m

(6, -2, 3) m

P4.123

P4.120 4.124 Determine the sum of the moments exerted about P by the

couple and two forces acting on the cube.

4.121 Determine the sum of the moments exerted on the plate

by the three couples. (The 80-lb forces are contained in the x-z

plane.)

P4.121

-i+j + k(kN)

4i - 4j + 4k (kN-m)

P4.124
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4.125 The bar is loaded by the forces

Fg = 2i + 6j + 3k (kN),

Fc = i - 2j + 2k (kN),

and the couple

Mc = 2i + j - 2k(kN-m).

Determine the sum of the moments of the two forces and the

couple about A.

P4.125

4.126 In Problem 4.125. the forces

Fe = 21 + 6j + 3k (kN).

Ff = i - 2j + 2k (kN),

and the couple

Determine the values of Mcy and A/f;, so that the sum of the

moments of the two forces and the couple about A is zero.

4.127 Two wrenches are used to tighten an elbow fitting. The

force F = 10k (lb) on the right wrench is applied at (6, —5. —3) in.,

and the force -F on the left wrench is applied at (4, -5, 3) in.

(a) Determine the moment about the .v axis due to the force

exerted on the right wrench.

(b) Determine the moment of the couple formed by the forces

exerted on the two wrenches.

(c) Based on the results of (a) and (b). explain why two

wrenches are used.

M. A^o J + ^c:k (kN-m). P4.127

Equivalent Systems

A system offorces and moments is simply a particular set of forces and mo-

ments of couples. The systems of forces and moments dealt with in engineer-

ing can be complicated. This is especially true in the case of distributed

forces, such as the pressure forces exerted by water on a dam. Fortunately, if

we are concerned only with the total force and moment exerted, we can repre-

sent complicated systems of forces and moments by much simpler systems.

Conditions for Equivalence

We define two systems of forces and moments, designated as system 1 and

system 2, to be equivalent if the sums of the forces are equal,

(2F), = (2F)2,

and the sums of the moments about a point P are equal,

(2Mp), = (2Mp)..

Demonstration of Equivalence

(4.7)

(4.8)

To see what the conditions for equivalence mean, consider the systems of

forces and moments in Fig. 4.34a. In system 1, an object is subjected to two

forces F^ and Fg and a couple M^. In system 2, the object is subjected to a

force F^, and two couples Mf and M^ . The first condition for equivalence is
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System 1

^M,

y
(a)

System 1

Figure 4.34

(a) Different systems of forces and moments applied to an object.

(b) Determining the sum of the moments about a point P for each system.

(2F), = (2F),:

F^ + Ffi = F^. (4.9)

If we determine the sums of the moments about the point P in Fig. 4.34b, the

second condition for equivalence is

(2Mp), = (2Mp)2:

(r^ X Fj + (re X F^) + M^ = (r^ X F^) + M^ + M^. (4.10)

If these conditions are satisfied, systems 1 and 2 are equivalent.

We will use this example to demonstrate that if the sums of the forces are

equal for two systems offorces and moments and the sums of the moments

about one point P are equal, then the sums of the moments about any point

are equal. Suppose that Eq. (4.9) is satisfied, and Eq. (4.10) is satisfied for the

point P in Fig. 4.34b. For a different point P' (Fig. 4.35), we will show that

(2Mp.)i = (SM;..),:

(r;, X Fj + (r^ X Ffi) + M^ = [r'^ X F^) + M^ + M^. (4.11)

In terms of the vector r from P' to P, the relations between the vectors r^, r^,

and Fq in Fig. 4.35 and the vectors r^, r^, and r^ in Fig. 4.34b are

<A = r + r^, Fg = r + Tfi, To = r + r^.

Substituting these expressions into Eq. (4.1 1), we obtain

[(r + rj X F^] + [(r + r^) x F^] + M^

= [(r + To) x F„] + Mf + M,.

Rearranging terms, we can write this equation as

[r x (2F),] + (2Mp), = [r X (SF).] + (SM;,).,

which holds in view of Eqs. (4.9) and (4. 10). The sums of the moments of the

two systems about any point are equal.

Study Questions
1. What conditions must be satisfied for two systems of forces and moments to be

equivalent?

2. If the sums of the forces in two systems of forces and moments are the same,

and the sums of the moments about a point P are the same, what do you know

about the sums of the moments about a different point P'l

J<^^c

System 2

Q^"«

II\
r K

M.

Svstem 1

System 2

Figure 4.35

Determining the sum of the moments about

a different point P' for each system.
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Example 4.14

Determining Wiiettier Systems
are Equivaient

Three systems of forces and moments act on the beam in Fig. 4.36. Are they

equivalent?

System 1

1 m

v O

System 3

-v O

Figure 4.36

Solution

Are the Sums of the Forces Equal? The sums of the forces are

(2F), =50j(N),

(SF)2 = 50j(N),

(2F)3 = 50j(N).

Are the Sums of the Moments About an Arbitrary Point Equal? The
^

sums of the moments about the origin O are

(2 Mo), =0.

(2 Mo): = (50N)(0.5m) - (50N-m) = -25 N-m,

{iMo}^ = (50N)(1 m) - (50 N-m) = 0.

Systems 1 and 3 are equivalent.

Discussion

Remember that you can choose any convenient point to determine whether

the sums of the moments are equal. For example, the sums of the moments^

about the right end of the beam are

(2M,gHtend), = -(50N)(1 m) - 50 N-m,

(2Mrigh,end)2 = -(50N)(0.5m) - (50 N-m) = -75 N-m,

(2M„„h,end)3 = -50 N-m.
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Example 4.15

Determining Wiiettier Systems
are Equivaient

Two systems of forces and moments act on the rectangular plate in Fig. 4.37.

Are they equivalent?

System 1 System 2

AlOlb

201b

P

5 ft

O M^

101b

20 ft-lb

25 ft-lb

15 lb

5 ft

p 15 lb

o

gftJ^ 201b

Solution

Are the Sums of the Forces Equal? The sums of the forces are

(2F), = 20i + lOj - lOj = 20i (lb),

(2F)2 = 20i + 15i - 15i = 20i (lb).

Are the Sums of the Moments About an Arbitrary Point Equal? The

sums of the moments about the origin O are

(2 Mo), = -(8ft)(101b) - (20 ft-lb) = -100 ft-lb,

(2Mo)2 = -(5ft)(15Ib) - (25 ft-lb) = -100 ft-lb.

The systems are equivalent.

Figure 4.37

Discussion

Let's confirm that the sums of the moments of the two systems about a differ-

ent point are equal. The sums of the moments about P are

(SM/,), = -(8ft)(101b) + (5ft)(201b) - (20 ft-lb) = 0,

(2A/p)2 = -(5ft)(151b) + (5ft)(201b) - (25 ft-lb) = 0.
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Example 4.16

System 1

M

Determining \Nhether Systems
are Equivalent

Two systems of forces and moments are shown in Fig. 4.38, wiiere

F4 = -lOi + lOj - 15k (kN),

Ffi = 30i + 5j + 10k (kN),

M = -90i + 150j + 60k (kN-m),

Fc = lOi - 5j + 5k (kN),

Fo = lOi + 20j - lOk (kN).

Are they equivalent?

Solution

Are the Sums of the Forces Equal? The sums of the forces are

(2F), = F^ + Ffi = 20i + 15j - 5k (kN).

(SF), = Fc + Fd = 201 + 15j - 5k (kN).

Are the Sums of the Moments About an Arbitrary Point Equal? The

sum of the moments about the origin O in system 1 is

(2 Mo), = (6ixF«) + M
J k

(6. 0, 0) m

if-

System 2

Figure 4.38

+ (-90i + 150j + 60k)6

30 5 10

= -90i + 90j + 90k (kN-m).

The sum of the moments about O in system 2 is

J

3(2 Mo): = (6i + 3j + 3k) X F,, =

10 20

= -90i + 90j + 90k (kN-m).

The systems are equivalent.

k

3

-10

Representing Systems by Equivalent Systems

If we are concerned only with the total force and total moment exerted on an

object by a given system of forces and moments, we can represent the system

by an equivalent one. By this we mean that instead of showing the actual

forces and couples acting on an object, we would show a different system that

exerts the same total force and moment. In this way. we can replace a given

system by a less complicated one to simplify the analysis of the forces and
, ,

moments acting on an object and to gain a better intuitive understanding of li )

their effects on the object.

I
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Representing a System by a Force and a Couple

Let's consider an arbitrary system of forces and moments and a point P (system

1 in Fig. 4.39). We can represent this system by one consisting of a single force

acting at P and a single couple (system 2). The conditions for equivalence are

(2F)2 = (2F),:

F = (2F),

and

(2M^)2 = (SM,),:

M = (2M;,),.

These conditions are satisfied if F equals the sum of the forces in system 1

and M equals the sum of the moments about P in system 1

.

Thus no matter how complicated a system offorces and moments may

be, we can represent it by a single force acting at a given point and a single

couple. Three particular cases occur frequently in practice:

Representing a Force by a Force and a Couple We can represent a force

Fp acting at a point P (system 1 in Fig. 4.40a) by a force F acting at a different

point Q and a couple M (system 2). The moment of system 1 about point Q is

r X Fp, where r is the vector from Q to P (Fig. 4.40b). The conditions for

equivalence are

(2:f)2= (2F),:

F = Fp

and

(2M2)2 = (2Me),:

M = r X Fp.

System 1

.r"'
^^'

fr
M,

P*

System 2

,.
M^

Figure 4.39

(a) An arbitrary system of forces and

moments.

(b) A force acting at P and a couple.

System 1

:/

System 2

p» F

(a)

Q
% M

Figure 4.40

(a) System 1 is a force ¥p acting at point

P. System 2 consists of a force F acting

at point Q and a couple M.

(b) Determining the moment of system 1

about point Q.

The systems are equivalent if the force F equals the force F/. and the couple

M equals the moment of Fp about Q.

Concurrent Forces Represented by a Force We can represent a system

of concurrent forces whose lines of action intersect at a point P (system 1 in

Fig. 4.41) by a single force whose line of action intersects P (system 2). The

sums of the forces in the two systems are equal if

F = F, + F, + + F,

The sum of the moments about P equals zero for each system, so the systems

are equivalent if the force F equals the sum of the forces in system 1.

System 1

F,\ \
\

7'
. \ /

System 2

F

X
p*

Figure 4.41

A system of concurrent forces and a system

consisting of a single force F.
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Figure 4.42

A system of parallel forces and a system

consisting of a single force F.

Parallel Forces Represented by a Force We can represent a system of

parallel forces whose sum is not zero by a single force F (Fig. 4.42). We
demonstrate this result in Example 4.20.

System 1

Study Questions

1. If you represent a system of forces and moments by a force F acting at a point

P and a couple M. how do you determine F and M?
2. If you represent a system of concurrent forces by a single force F. what

condition must be satisfied by the line of action of F?

Example 4.17

System 1

A (4, 4, 2) ft

Figure 4.43

Representing a Force by a Force
and Couple
System 1 in Fig. 4.43 consists of a force F^ = lOi + 4j - 3k (lb) acting at

A. Represent it by a force acting at B and a couple.

Strategy

We want to represent the force F^ by a force F acting at B and a couple M
(system 2 in Fig. a). We can determine F and M by using the two conditions

for equivalence.

Solution

The sums of the forces must be equal:

(2F), = (2F),:

F = F^ = lOi + 4j - 3k (lb).

The sums of the moments about an arbitrary point must be equal: The vector

from 5 to A is

r^^ = (4 - 8)i + (4 - 0)j + (2 - 6)k = -4i + 4j - 4k (ft),

so the moment about B in system 1 is

B (8.0, 6) ft

System 2

-&
M ^BA ^ F/1 -

(a) A force acting at B and a couple.

i J k

-4 4 -4

10 4 -3

4i - 52j - 56k (ft-lb).
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The sums of the moments about B must be equal:

(MB)2 = (Me),:

M = 4i - 52j - 56k (ft-lb).

Example 4.18

Representing a System by
a Simpler Equivalent System
System 1 in Fig. 4.44 consists of two forces and a couple acting on a pipe.

Represent system 1 by (a) a single force acting at the origin O of the coordi-

nate system and a single couple and (b) a single force.

Strategy

(a) We can represent system 1 by a force F acting at the origin and a cou-

ple M (system 2 in Fig. a) and use the conditions for equivalence to deter-

mine F and M.

(b) Suppose that we place the force F with its point of application a distance

D along the x axis (system 3 in Fig. b). The sums of the forces in systems 2

and 3 are equal. If we can choose the distance D so that the moment about O
in system 3 equals M, system 3 will be equivalent to system 2 and therefore

equivalent to system 1.

Solution

(a) The conditions for equivalence are

(SF)2 = (2F),:

F = 30j + (20i + 20j) = 20i + 50j (kN),

and

(2Mo)2 = (2Mo),:

M = (30kN)(3m) + (20kN)(5m) + 210kN-m

= 400 kN-m.

(b) The sums of the forces in systems 2 and 3 are equal. Equating the sums of

the moments about O,

(50 kN)D = 400 kN-m.

we find that system 3 is equivalent to system 2 if D = 8 m.

Discussion

To represent the system by a single force in (b), we needed to place the line

of action of the force so that the force exerted a 400 kN-m counterclockwise

moment about O. Placing the point of application of the force a distance D
along the x axis was simply a convenient way to accomplish that.

System 1

O

30j (kN) 20i + 20j (kN)

^»-
3 m 2 m

Figure 4.44

210 kN-m

Svstem 2

(a) A force F acting at O and a couple M.

System 3

/
0*Z

.J-

(b) A system consisting of the force F

acting at a point on the x axis.
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Example 4.19

Figure 4.45

System 1

(4, 3. -2) m

Representing a System
by a Force and Couple
System 1 in Fig. 4.45 consists of the following forces and couple:

F^ = -lOi + lOj - 15k (kN),

Fs = 30i + 5j + 10k (kN),

Mc = -90i + 150j + 60k (kN-m).

Suppose you want to represent it by a force F acting at P and a couple M
(system 2). Determine F and M.

Solution

The sums of the forces must be equal:

(SF)2 = (SF),:

F = F^ + Ffi = 20i + 15j - 5k (kN).

The sums of the moments about an arbitrary point must be equal: The sums

of the moments about point P must be equal:

(i:M,)2 = (2Mp),:

i j k i j k

M = -4 -3 2+2-32
-10 10 -15 30 5 10

+ (-90i + 150j + 60k)

= -105i + llOj + 90k (kN-m).

Example 4.20

Representing Parallel Forces
by a Single Force
System 1 in Fig. 4.46 consists of parallel forces. Suppose you want to repre-

sent it by a force F (system 2). What is F, and where does its line of action in-

tersect the x-z plane?

Strategy

We can determine F from the condition that the sums of the forces in the two

systems must be equal. For the two systems to be equivalent, we must

choose the point of application P so that the sums of the moments about a

point are equal. This condition will tell us where the line of action intersects

the x-z plane.
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Solution

The sums of the forces must be equal:

(2F), = (2F),:

F = 30j + 20j - lOj = 40j (lb).

The sums of the moments about an arbitrary point must be equal: Let the co-

ordinates of point P be (x, y, z). The sums of the moments about the origin O
must be equal.

20j (lb)

(-3. 0, -2) ft

System 1

y

30j (lb)

I
(2, 0, 4) ft

(6, 0, 2) ft

(2Mo)2 = (2Mo),:
-lOj (lb)

i J k i J k

X y z = 6 2 +

40 30

J

-10

+
J

20

Expanding the determinants, we obtain

(20 + 40z)i + (100 - 40;c)k = 0.

The sums of the moments about the origin are equal if

X = 2.5 ft,

z = -0.5 ft.

The systems are equivalent if F = 40j (lb) and its line of action inter-

sects the x-z plane at x = 2.5 ft and z = —0.5 ft. Notice that we did not ob-

tain an equation for the y coordinate of P. The systems are equivalent if F is

applied at any point along the line of action.

Figure 4.46

System 2

>'

'O

Discussion

We could have determined the x and z coordinates of point P in a simpler

way. Since the sums of the moments about any point must be equal for the

systems to be equivalent, the sums of the moments about any line must also

be equal. Equating the sums of the moments about the x axis,

(2M,,,ij2 = (2M,,,,i,),:

-40z = -(30)(2) + (10)(4) + (20)(2).

we obtain z = —0.5 ft, and equating the sums of the moments about the z axis,

(2M,„ij2 = (SM.^iJ,:

40x = (30)(6) - (10)(2) - (20)(3),

we obtain x = 2.5 ft.
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Representing a System by a Wrench

We have shown that any system of forces and moments can be represented by

a single force acting at a given point and a single couple. This raises an inter-

esting question: What is the simplest system that can be equivalent to any

system of forces and moments?

To consider this question, let's begin with an arbitrary force F acting at a

point P and an arbitrary couple M (system 1 in Fig. 4.47a) and see whether

we can represent this system by a simpler one. For example, can we represent

it by the force F acting at a different point Q and no couple (Fig 4.47b)? The

sum of the forces is the same as in system 1 . If we can choose the point Q so

that r X F = M, where r is the vector from P io Q (Fig. 4.47c), the sum of

the moments about P is the same as in system 1 and the systems are equiva-

lent. But the vector r X F is perpendicular to F, so it can equal M only if M
is perpendicular to F. That means that, in general, we can't represent system

1 by the force F alone.

However, we can represent system 1 by the force F acting at a point Q
and the component of M that is parallel to F. Figure 4.47d shows system 1

with a coordinate system placed so that F is along the v axis and M is con-

tained in the x-v plane. In terms of this coordinate system, we can express

FA

/ M

V%

System 1

F F4

(a) (b) (c)

System 1

(d) (e)

Figure 4.47

(a) System 1 is a single force and a single couple.

(b) Can system 1 be represented by a single force and no couple?

(c) The moment of F about P is r X F.

(d) F is along the y axis, and M is contained in the x~y plane.

(e) System 2 is the force F and the component of M parallel to F.
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the force and couple as F = Fj and M = MJ + MJ. System 2 in

Fig. 4.47e consists of the force F acting at a point on the z axis and the com-

ponent of M parallel to F. If we choose the distance D so that D = M^/F,

system 2 is equivalent to system 1 . The sum of the forces in each system is F.

The sum of the moments about P in system 1 is M, and the sum of the mo-

ments about P in system 2 is

(SMp), = [(-Dk) X (Fj)] + M,j = M,i + MJ = M.

A force F and a couple Mp that is parallel to F is called a wrench; it is the sim-

plest system that can be equivalent to an arbitrary system of forces and moments.

How can you represent a given system of forces and moments by a

wrench? If the system is a single force or a single couple or if it consists of a

force F and a couple that is parallel to F, it is a wrench, and you can't simpli-

fy it further. If the system is more complicated than a single force and a sin-

gle couple, begin by choosing a convenient point P and representing the

system by a force F acting at P and a couple M (Fig. 4.48a). Then represent-

ing this system by a wrench requires two steps:

1. Determine the components ofM parallel and normal to F (Fig. 4.48b).

2. The wrench consists of the force F acting at a point Q and the parallel

component M^ (Fig. 4.48c). To achieve equivalence, you must choose

the point Q so that the moment of F about P equals the normal

component M^ (Fig. 4.48d)—that is, so that r^g X F = M„.

(a)

M_ jT

/
/%

(c) (d)

Figure 4.48

(a) If necessary, first represent the system by a single force and a single couple.

(b) The components of M parallel and normal to F.

(c) The wrench.

(d) Choose Q so that the moment of F about P equals the normal component of M.
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Example 4.21

Representing a Force and Couple
by a Wrench
The system in Fig. 4.49 consists of the force and couple

F = 3i + 6j + 2k (N),

M = 12i + 4j + 6k (N-m).

Represent it by a wrench, and determine where the line of action of the

wrench's force intersects the x-z plane.

Strategy

The wrench is the force F and the component of M parallel to F (Figs, a, b).

We must choose the point of application P so that the moment of F about O
equals the normal component M^. By letting P be an arbitrary point of the x-z

plane, we can determine where the line of action of F intersects that plane.

Solution

Dividing F by its magnitude, we obtain a unit vector e with the same di-

rection as F:

(a) Resolving M into components parallel

and normal to F.

-X-

(b) The wrench acting at a point in the x-

plane.

e =
3i + 6j + 2k

= 0.429i + 0.857J + 0.286k.
|F| V(3)2 + (6)- + (2)

We can use e to calculate the component ofM parallel to F:

Mp = (e • M)e = [(0.429)(12) + (0.857)(4) + (0.286)(6)]e

= 4.408i + 8.816J + 2.939k (N-m).

The component ofM normal to F is

M„ = M - Mp = 7.592i -
4.816J + 3.061k (N-m).

The wrench is shown in Fig. b. Let the coordinates of P be (x, 0, z). The

moment of F about O is

ro/> X F =
i J k

X z

3 6 2

= -6; {2x - 3z)j + 6xk.

By equating this moment to M^,

-6zi - {2x - 3z)i + 6xk = 7.592i -
4.816J + 3.061k,

we obtain the equations

-6z = 7.592,

-2x + 3z = -4.816,

6x = 3.061.

Solving these equations, we find the coordinates of point P are

X = 0.510 m, c = -1.265 m.
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Problems

4.128 Two systems offerees act on the beam. Are they

equivalent?

Strategy: Check the two conditions for equivalence. The

sums of the forces must be equal, and the sums of the moments

about an arbitrary point must be equal.

4.130 Four systems of forces and moments act on an 8-m beam.

Which systems are equivalent?

System 1 System 2

c
t

10 kN

) (^
kN

J
80 kN-m ^ -S m

50 N

System 1

100 N

1 m

System 2

2m

J
SON

P4.128

System 3

|lOkN

-8m-

pOkN

System 4

120 kN

c
80 kN-m

•"—4 m—

'

i10 kN

-4 m- P4.130

4.131 The four systems shown in Problem 4. 1 30 can be made

equivalent by adding a couple to one of the systems. Which

system is it, and what couple must be added?

4.132 System 1 is a force F acting at a point O. System 2 is the

force F acting at a different point O' along the same line of action.

Explain why these systems are equivalent. (This simple result is

called the principle oftransmissibility.)

System 1 System 2

4.129 Two systems of forces and moments act on the beam. Are

they equivalent?

F /
'O'

'O P4.132

101bt3U rt-iD

201b

-2ft-

System 1

50 ft-lb 20 lb

System 2

-2ft—

lOlbl
30 ft-lb

-2ft- 2ft '\

4.133 The vector sum of the forces exerted on the log by the

cables is the same in the two cases. Show that the systems of

forces exerted on the log are equivalent.

A

16m-

|— 6r -20 m-

P4.129 P4.133
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4.134 Systems 1 and 2 each consist of a couple. If they are

equivalent, what is F?

5 m

System 1

200^

j_30°

200 N

30°

4 m

System 2

20°

(5, 4, 0) m

J0°

P4.134

4.135 Two equivalent systems offerees and moments act on the

L-shaped bar. Determine the forces F^ and Fg and the couple M.

System 1

P4.137

System 1

120N-m

ON
I ^

®
60

50 N

T
3m

±
40 N

System 2

M

-— 3 m—4"— 3 m—

"

©

4.138 Three forces and a couple are applied to a beam (system 1).

(a) If you represent system 1 by a force applied at A and a couple

(system 2). what are F and Ml
(b) If you represent system 1 by the force F (system 3), what is

3 m the distance D?

±
6 m

P4.135
201b

A

4.136 Two equivalent systems of forces and moments act on the

plate. Determine the force F and the couple M.

System 1 System 2

01b

v)^ ,:

M
00 in -lb

P4.136

4.137 In system 1, four forces act on the rectangular flat plate.

The forces are perpendicular to the plate and the 400-kN force

acts at its midpoint. In system 2, no forces or couples act on the

plate. Systems 1 and 2 are equivalent. What are the forces F, , F2,

and F3?

System 1

401b

-2 ft-

System 2

System 3

F^
D

301b

-2 ft-

30 ft-lb

P4.138

4.139 Represent the two forces and couple acting on the beam

by a force F. Determine F and determine where its line of action

intersects the x axis.
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2 kip

280 N-m
60i + 60j (N)

* 7-
-40j (N)

'

-3 m- 3 m P4.139

4.140 The vector sum of the forces acting on the beam is zero,

and the sum of the moments about the left end of the beam is zero.

(a) Determine the forces A^, Ay, and B.

(b) If you represent the forces A,, A, , and B by a force F acting

at the right end of the beam and a couple M, what are F and M?

1001b

1120in-lb

P4.140

4.141 The vector sum of the forces acting on the beam is zero,

and the sum of the moments about the left end of the beam is zero.

(a) Determine the forces A^ and A^, and the couple Af^.

(b) Determine the sum of the moments about the right end of the

beam.

(c) If you represent the 600-N force, the 200-N force, and the

30 N-m couple by a force F acting at the left end of the beam
and a couple M, what are F and Ml

A o

P4.142

4.143 The distributed force exerted on part of a building

foundation by the soil is represented by five forces. If you

represent them by a force F, what is F, and where does its

line of action intersect the x axis?

1-
80 kN

h-3m-

l351cN l30kN l40kN i

I

I

|85kN

'! 3 m - - 3 m * * 3 m-^

P4.143

M.^ leooN

30 N-m

-380mm-

I2OON

180 mm—
»j P4.141

4.142 The vector sum of the forces acting on the truss is zero,

and the sum of the moments about the origin O is zero.

(a) Determine the forces A^, A,,, and B.

(b) If you represent the 2-kip, 4-kip, and 6-kip forces by a

force F, what is F, and where does its line of action intersect

the y axis?

(c) If you replace the 2-kip, 4-kip, and 6-kip forces by the force

you determined in (b), what are the vector sum of the forces

acting on the truss and the sum of the moments about O?

4.144 After landing, the pilot engages the airplane's thrust

reversers and engines 1, 2, 3, and 4 exert forces toward the right

of magnitudes 39 kN, 40 kN. 42 kN, and 40 kN, respectively. If

you represent the four forces by an equivalent force F, what is F,

and what is the v coordinate of its line of action?

P4.144
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4.145 The pilot of the airplane in Problem 4.144 wants to adjust

engine 2 so that the forces exerted by the engines can be repre-

sented by an equivalent force whose line of action intersects the

z axis. When this is done, what force is exerted by engine 2?

4.146 The system is in equilibrium. If you represent the forces

F^a and F^^- by a force F acting at A and a couple M, what are F

and M?

4.149 Consider the system shown in Problem 4.148. The tension

in each of the cables AB and CD is 400 N. If you represent the

forces exerted on the right post by the cables by a force F, what is

F, and where does its line of action intersect the _v axis?

4.150 If you represent the three forces acting on the beam cross

section by a force F, what is F, and where does its line of action

intersect the x axis?

P4.146

4.147 Three forces act on the beam.

(a) Represent the system by a force F acting at the origin O and

a couple M.

(b) Represent the system by a single force. Where does the line

of action of the force intersect the x axis?

5001b

6 inl

6 in
'

U

8001b

5001b P4.150

30 N

'5 m

o

_. ;

30 N 6 m 4m SON P4.147

4.148 The tension in cable AB is 400 N, and the tension in cable

CD is 600 N.

(a) If you represent the forces exerted on the left post by the

cables by a force F acting at the origin O and a couple M. what

are F and M?
(b) If you represent the forces exerted on the left post by the

cables by the force F alone, where does its line of action

intersect the v axis?

400 mm

4.151 The two systems of forces and moments acting on the

beam are equivalent. Determine the force F and the couple M.

System 1

System 2

P4.148

P4.151

4.152 The wall bracket is subjected to the force shown.

(a) Determine the moment exerted by the force about the z axis.

(b) Determine the moment exerted by the force about the 3' axis.

(c) If you represent the force by a force F acting at O and a

couple M, what are F and M?
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P4.152

4.153 A basketball player executes a "slam dunk" shot, then

hangs momentarily on the rim, exerting the two 100- lb forces

shown. The dimensions are /! = 14|in., andr = 95in., andthe

angle a = 120°.

(a) If you represent the forces he exerts by a force F acting at O
and a couple M, what are F and M?
(b) The glass backboard will shatter if |M| > 4000 in-Ib. Does

it break?

determine the force and the coordinates y and z- (See Example

4.20.)

4.155 The positions and weights of three particles are shown. If

you represent the weights by a single force F, determine F and

show that its line of action intersects the x-z plane at

i-XyyyZ,)

\
-wj

(=1

I

Uj. Vy^

-wj

I
^.J-j.Zj)

-WA

P4.155

lOOj (lb)

P4.153

4.154 The three forces are parallel to the x axis.

(a) If you represent the three forces by a force F acting at the

origin O and a couple M, what are F and M?
(b) If you represent the forces by a single force, what is the

force, and where does its line of action intersect the y-z plane?

Strategy: In (b), assume that the force acts at a point (0, y,

z) of the y-z plane, and use the conditions for equivalence to

(0. 6, 2) ft

3001b

4.156 Two forces act on the beam. If you represent them by a

force F acting at C and a couple M, what are F and M?

P4.156

4.157 An axial force of magnitude P acts on the beam. If you

represent it by a force F acting at the origin O and a couple M,
what are F and M?

P4.154 P4.157
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4.158 The brace is being used to remove a screw.

(a) If you represent the forces acting on the brace by a force F

acting at the origin O and a couple M, what are F and M?
(b) If you represent the forces acting on the brace by a force F'

acting at a point P with coordinates (jcp, V/., Zp) and a couple

M', what are F' and M'?

P4.158

4.159 Two forces and a couple act on the cube. If you represent

them by a force F acting at point P and a couple M. what are F

andM?

-i+j + k(kN)

4i-4j + 4k(kN-m)

P4.159

4.160 The two shafts are subjected to the torques (couples) shown,

(a) If you represent the two couples by a force F acting at the

origin O and a couple M, what are F and M?

4kN-m

(b) What is the magnitude of the total moment exerted by the

two couples?

4.161 The persons A and B support a bar to which three dogs are

tethered. The forces and couples they exert are

F^ = -5i + 15j - 10k (lb),

M. 15j + 10k (ft-lb).

Fg = 5i + lOj - 10k (lb),

Ms = -lOj - 15k (ft-lb).

If person B let go, person A would have to exert a force F and

couple M equivalent to the system both of them were exerting

together. What are F and M?

P4.161

4.162 Point G is at the center of the block. The forces are

F^ = -20i + lOj + 20k (lb),

Fs= lOj - 10k (lb).

If you represent the two forces by a force F acting at G and a

P4.160 couple M, what are F and M?
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20 in

30 in -f

P4.162

P4.165

4.163 The engine above the airplane's fuselage exerts a thrust

Tq = 16 kip, and each of the engines under the wings exerts a

thrust T(j = 12 kip. The dimensions are /; = 8ft, c = 12ft, and

b = 16ft. If you represent the three thrust forces by a force F

acting at the origin O and a couple M, what are F and M?

P4.163

4.164 Consider the airplane described in Problem 4. 1 63 and sup-

pose that the engine under the wing to the pilot's right loses thrust.

(a) If you represent the two remaining thrust forces by a force F
acting at the origin O and a couple M. what are F and M?
(b) If you represent the two remaining thrust forces by the force

F alone, where does its line of action intersect the x-y plane?

4.165 The tension in cable AB is 100 lb, and the tension in cable

CD is 60 lb. Suppose that you want to replace these two cables by

a single cable EF so that the force exerted on the wall at E is

equivalent to the two forces exerted by cables AB and CD on the

walls at A and C. What is the tension in cable EF, and what are

the coordinates of points E and F?

4.166 The distance s = 4m. If you represent the force and the

200-N-m couple by a force F acting at the origin O and a couple

M, what are F and M?

(2, 6,0)tn

100i + 20j-20k(N)

200 N-m

(4, 0. 3) m

P4.166

4.167 The force F and couple M in system 1 are

F = 12i + 4j - 3k (lb),

M = 4i + 7j + 4k (ft-lb).

Suppose you want to represent system 1 by a wrench (system 2).

Determine the couple Mp and the coordinates .v and z where the

line of action of the force intersects the x-z plane.

System 1 System 2

O.

•'

(X. 0, z)

M

P4.167
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4.168 A system consists of a force F acting at the origin O and a

couple M, where

F = lOi (lb), M = 20j (ft-lb).

If you represent the system by a wrench consisting of the force

F and a parallel couple Mp. what is Mp, and where does the line

of action of F intersect the y-z plane?

4.169 A system consists of a force F acting at the origin O and a

couple M, where

F = i + 2j + 5k (N), M = lOi + 8j - 4k (N-m).

If you represent it by a wrench consisting of the force F and a

parallel couple Mp, (a) determine Mp. and determine where the

line of action of F intersects (b) the x-z plane, (c) the v-c plane.

4.170 Consider the force F acting at the origin O and the

couple M given in Example 4.21. If you represent this system by

a wrench, where does the line of action of the force intersect the

x-y plane?

4.171 Consider the force F acting at the origin O and the couple

M given in Example 4.21 . If you represent this system by a

wrench, where does the line of action of the force intersect the

plane v = 3 m?

4.172 A wrench consists of a force of magnitude 100 N acting at

the origin O and a couple of magnitude 60 N-m. The force and

couple point in the direction from O to the point ( 1 . 1 , 2) m. If you

represent the wrench by a force F acting at the point (5, 3, 1) m
and a couple M, what are F and M?

4.173 System I consists of two forces and a couple. Suppose

that you want to represent it by a wrench (system 2). Determine

the force F, the couple Mp, and the coordinates x and ; where the

line of action of F intersects the x-z plane.

600k (kN)y

System 1

1000i + 600j(kN-m)

System 2

3 m
k300j(kN)

M.

4 m ^
(X. 0, ;)

P4.173

4.174 A plumber exerts the two forces shown to loosen a pipe.

(a) What total moment does he exert about the axis of the pipe?

(b) If you represent the two forces by a force F acting at O and

a couple M, what are F and M?
(c) If you represent the two forces by a wrench consisting of the

force F and a parallel couple Mp, what is Mp, and where does

the line of action of F intersect the a-v plane?

50 k (lb)

P4.174

aiiDo Computational Mechanics
The following example and problems are designed for the use of a programmable calculator or computer

Computational Example 4.22
lOlllD
GOlDll
lOIlQD

The radius R of the steering wheel in Fig. 4.50 is 200 mm. The distance from

O to C is 1 m. The center C of the steering wheel lies in the x-y plane. The

force F = sina(10i + lOj — 5k) N. Deteimine the value of a at which the

magnitude of the moment of F about the shaft OC of the steering wheel is a

maximum. What is the maximum magnitude?

Strategy

We will determine the moment of F about OC in terms of the angle a and ob-

tain a graph of the moment as a function of a.



Computational Mechanics 191

Figure 4.50

Solution

In terms of the vector r^^ from point C on the shaft to the point of apphcation

of the force, and the unit vector e^c that points along the shaft from point O
toward point C (Fig. a), the moment of F about the shaft is

Moc = [^oc {rcA X F)]eoc-

From Fig. a, the unit vector Cqc 'S

Coc = cos 20° i + sin 20° j,

and the z component of r^^ is —R sin a. By viewing the steering wheel with

the z axis perpendicular to the page (Fig. b), we can see that the x component

of TcA is R cos a sin 20° and the y component is —R cos a cos 20°, so

TcA = /?(cos a sin 20° i - cos a cos 20° j - sinak).

The magnitude of M^c is the absolute value of the scalar

cos 20° sin 20°

Cqc ' {fcA X F) = /? COS a sin 20° -/? cos a cos 20° -Rsina

10 sin a 10 sin a —5 sin a

= /?[5sinacosa + 10(cos20° - sin20°) sin^a].

Computing the absolute value of this expression as a function of a, we obtain

the graph shown in Fig. 4.51. The magnitude of the moment is an extremum

at values of a of approximately 70° and 250°. By examining the computed re-

sults near 70°,

(a) The position vector r^^ and the unit

vector Cqc-

(b) Determining the x and y components

of rc„-

a Moc (N-m)

67° 1.3725

68° 1.3749

69° 1.3764

70° 1.3769

71° 1.3765

72° 1.3751

73° 1.3728

we can see that the maximum value is approximately 1.38 N-m. The value of

the moment at a = 250° is also 1.38 N-m.

l.J

J
r\

/IK

OS / \ / \
/ \u V^

50 100 150 200 :50 :-0() 350

a(degrees)

Figure 4.51

Magnitude of the moment as a function of
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Computational Problems GOlSxi
lOllDD

4.175 Consider the system described in Problem 4.43.

(a) Obtain a graph of the moment about A due to the force

exerted by the spring on the circular bar at B for values of the

angle a from zero to 90°.

(b) Use the result of (a) to estimate the angle at which the

maximum moment occurs and the value of the maximum moment.

i 4.176 The exercise equipment shown is used by resting the

elbow on the fixed pad and rotating the forearm to stretch the

elastic cord AB. The cord behaves like a linear spring, and its

unstretched length is 1 ft. Suppose you want to design the

equipment so that the maximum moment that will be exerted

about the elbow joint E as the forearm is rotated will be 60 ft-lb.

What should the spring constant k of the elastic cord be?

a graph of the moment exerted by the force about A as a function

of the angle a for < a < 90°, and use it to estimate the values

of a for which the moment equals 12,000 ft-lb.

4.178 In Problem 4. 1 77. the moment about A exerted by the

2200-lb force exerted by the hydraulic cylinder BC depends on

the angle a. Estimate the maximum value of the moment and the

angle a at which it occurs.

4.179 The support cable extends from the top of the 3-m column

at A to a point B on the line L. The tension in the cable is 2 kN.

The line L intersects the ground at the point (3, 0. 1 ) m and is

parallel to the unit vector e =
f i + f j

- |k. The distance along

L from the ground to point B is denoted s. What is the range of

values of 5 for which the magnitude of the moment about O due to

the force exerted by the cable at A exceeds 5.6 kN-m?

4.177 The hydraulic cylinder BC exerts a 2200-lb force on the

boom of the crane at C. The force is parallel to the cylinder. Draw

(3,0, Dm P4.179

P4.176 4.180 Consider Problem 4.106. Determine the distance d that

causes the moment about the z axis due to the force exerted by

the cable CD at point C to be a maximum. What is the

maximum moment?

£/,' 4.181 Consider Problem 4. 107. The rod AB must exert a

moment of magnitude 100 ft-lb about the x axis to support the

hood of the car. Draw a graph of the magnitude of the force the

rod must exert on the hood at B as a function of d for

1 :£ ^ < 4 ft. If you were designing the support AB, what value

of d would you choose, and what is the magnitude of the force AB
must exert on the hood?

4.182 Consider the system shown in Problem 4.148. The

forces exerted on the left post by cables AB and CD can be

represented by a single force F. Determine the tensions in the

cables so that |F| = 600 N and the line of action of F intersects

the V axis at v = 400 mm.

4.183 Suppose you want to represent the force and the 200-N-m

couple in Problem 4. 166 by a force F and a couple M. and choose

the distance s so that the magnitude ofM is a minimum.

P4.177 Determine s, F, and M.
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In this chapter we have defined the moment of a force about a point and about

a line and explained how to evaluate them. We introduced the concept of a

couple and defined equivalent systems of forces and moments. We can now

apply two consequences of equilibrium: The sum of the forces equals zero,

and the sum of the moments about any point equals zero. We will consider in-

dividual objects in Chapter 5 and structures in Chapter 6.

Moment of a Force About a Point

The moment of a force about a point is the measure of the tendency of the

force to cause rotation about the point. The moment of a force F about a point

P is the vector

M, r X F, Eq. (4.2)

where r is a position vector from P to any point on the line of action of F.

The magnitude of Mp is equal to the product of the perpendicular distance D
from P to the line of action of F and the magnitude of F:

Mp = DIFI. Eq. (4.3)

The vector Mp is perpendicular to the plane containing P and F. When the

thumb of the right hand points in the direction of Mp, the arc of the fingers

indicates the sense of the rotation that F tends to cause about P. The dimen-

sions of the moment are (distance) X (force).

If a force is resolved into components, the moment of the force about a

point P is equal to the sum of the moments of its components about P. If the

line of action of a force passes through a point P, the moment of the force

about P is zero.

When the view is perpendicular to the plane containing the force and the

point (Fig. a), the two-dimensional description of the moment is

M„ DF. Eq.(4.1)

Moment of a Force About a Line

The moment of a force about a line is the measure of the tendency of the

force to cause rotation about the line. Let P be any point on a line L and let

Mp be the moment about P of a force F (Fig. b). The moment M^ of F about

L is the vector component of M^ parallel to L. If e is a unit vector along L,

M^ = (e • Mp)t = [e • (r X F)]e. Eq. (4.4), (4.5)

When the line of action of F is perpendicular to a plane containing L,

\Mi\ is equal to the product of the magnitude of F and the perpendicular dis-

tance D from L to the point where the line of action intersects the plane.

When the line of action of F is parallel to L or intersects L, M,^ = 0.

Couples

Two forces that have equal magnitudes, opposite directions, and do not have the

same line of action are called a couple. The moment M of a couple is the same

about any point. The magnitude of M is equal to the product of the magnitude

/
•is^^-'

(a)

Figure (a)

(b)

Figure (b)
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Figure (c)

Figure (d)

Figure (e)

M \

\
(c)

o
(d)

M

(e)

(f)

of one of the forces and the perpendicular distance between the Hnes of action,

and its direction is perpendicular to the plane containing the lines of action.

Because a couple exerts a moment but no net force, it can be represented

by showing the moment vector (Fig. c), or it can be represented in two di-

mensions by showing the magnitude of the moment and a circular arrow to

indicate the sense (Fig. d). The moment represented in this way is called the

moment of a couple, or simply a couple.

Equivalent Systems

Two systems of forces and moments are defined to be equivalent if the sums

of the forces are equal.

(SF),= (2F)„

and the sums of the moments about a point P are equal,

(2Mp), = (SMp),.

Eq. (4.7)

Eq. (4.8)

Figure (f)

If the sums of the forces are equal and the sums of the moments about one

point are equal, the sums of the moments about any point are equal.

Representing Systems by Equivalent Systems

If the system of forces and moments acting on an object is represented by an

equivalent system, the equivalent system exerts the same total force and total

moment on the object.

Any system can be represented by an equivalent system consisting of a

force F acting at a given point P and a couple M (Fig. e). The simplest sys-

tem that can be equivalent to any system of forces and moments is the

wrench, which is a force F and a couple Mp that is parallel to F (Fig. f)).

A system of concurrent forces can be represented by a single force. A sys-

tem of parallel forces whose sum is not zero can be represented by a single force.

Review Problems

4.184 Determine the moment of the 200-N force about A.

(a) What is the two-dimensional description of the moment?

(b) Express the moment as a vector.

(-400. 0. 0) mm

-200 j(N)

A.
(400, -200, 0) mm

P4.184

4.185 The Leaning Tower of Pisa is approximately 55 m tall and

7 m in diameter. The horizontal displacement of the top of the

tower from the vertical is approximately 5 m. Its mass is approxi-

mately 3.2 X 10'' kg. If you model the tower as a cylinder and

assume that its weight acts at the center, what is the magnitude of

the moment exerted by the weight about the point at the center of

the tower's base?

imp—

P4.185
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4.186 The device shown has been suggested as a design for a

perpetual motion machine. Determine the moment about the axis

of rotation due to the four masses as a function of the angle as the

device rotates 90° clockwise from the position shown, and indi-

cate whether gravity could cause rotation in that direction.

P4.186

4.187 In Problem 4. 1 86, determine whether gravity could cause

rotation in the counterclockwise direction.

4.188 Determine the moment of the 400-N force (a) about A,

(b) about B.

220 mm

>

260 mm

I 30°

400 N

a:
500 mm P4.188

4.189 Determine the sum of the moments exerted about A by the

three forces and the couple.

k 300 lb
5 ft

800 ft-lb

""• ^200

200 Ibt

6 ft J^3ft-*]

lb

P4.189

4.190 In Problem 4. 1 89, if you represent the three forces and the

couple by an equivalent system consisting of a force F acting at A
and a couple M, what are the magnitudes of F and M?

4.191 The vector sum of the forces acting on the beam is zero,

and the sum of the moments about A is zero.

(a) What are the forces ^4^, A, , and B?

(b) What is the sum of the moments about Bl

220 mm

260 mm

'30°

.400N

P
500 mm

P4.191

4.192 To support the ladder, the force exerted at B by the

hydraulic piston AB must exert a moment about C equal in

magnitude to the momefit about C due to the ladder's 450-lb

weight. What is the magnitude of the force exerted at Bl

P4.192

4.193 The force F = -60i + 60j (lb).

(a) Determine the moment of F about point A.

(b) What is the perpendicular distance from point A to the line

of action of F?

(8,2, 12) ft

P4.193
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4.194 The 20-kg mass is suspended by cables attached to three

vertical 2-m posts. Point A is at (0, 1.2, 0) m. Determine the

moment about the base £ due to the force exerted on the post BE
by the cable AB.

P4.194

4.195 Three forces of equal magnitude are applied parallel to the

sides of an equilateral triangle.

(a) Show that the sum of the moments of the forces is the same

about any point.

(b) Determine the magnitude of the moment.

Strategy: To do (a), resolve one of the forces into vector

components parallel to the other two forces.

P4.195

4.196 The bar AB supporting the lid of the grand piano exerts a

force F = —6i + 35j - 12k (lb) at B. The coordinates of B are

(3, 4, 3) ft. What is the moment of the force about the hinge line

of the lid (the x axis)?

4.197 Determine the moment of the vertical 8(X)-lb force about

point C.

I
800 lb

(4. 3. 4) ft

C (5. 0, 6) ft

P4.197

4.198 In Problem 4. 197, determine the moment of the vertical

800-lb force about the straight line through points C and D.

4.199 The system of cables and pulleys supports the 300-lb

weight of the work platform. If you represent the upward force

exerted at E by cable EF and the upward force exerted at G by

cable GH by a single equivalent force F, what is F, and where

does its line of action intersect the x axis?

P4.196

P4.199

4.200 Consider the system in Problem 4.199.

(a) What are the tensions in cables AB and CDl
(b) If you represent the forces exerted by the cables at A and C
by a single equivalent force F, what is F, and where does its line

of action intersect the x axis?

4.201 The two systems are equivalent. Determine the forces A^

and A^ , and the couple M^

.
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System 1

20N^

400 mm

600 mm- -400 mm-

System 2

30 N

4.205 The tugboats A and B exert forces F^ = 1 kN and

Fg = 1.2 kN on the ship. The angle d = 30°. If you represent the

two forces by a force F acting at the origin O and a couple M,

what are F and Ml

P4.201
P4.205

4.202 If you represent the equivalent systems in Problem 4.201

by a force F acting at the origin and a couple A/, what are F and Ml

4.203 If you represent the equivalent systems in Problem 4.201

by a force F, what is F, and where does its line of action intersect

the X axis?

4.204 The two systems are equivalent. If

F = -lOOi + 40j + 30k (lb),

M' = -80i + 120j + 40k (in-lb),

determine F' and M.

Syst itn 1

^

^
1

3

h

—

^ n—-

^^1

6 in

/ •

AmV 6 in

4.206 The tugboats A and B in Problem 4.205 exert forces

F4 = 600 N and Fg = 800 N on the ship. The angle 6 = 45°. If

you represent the two forces by a force F, what is F, and where

does its line of action intersect the y axis?

4.207 The tugboats A and B in Problem 4.205 want to exert two

forces on the ship that are equivalent to a force F acting at the

origin O of 2-kN magnitude. If F^ = 800 N, determine the neces-

sary values of F^ and 6.

4.208 If you represent the forces exerted by the floor on the table

legs by a force F acting at the origin O and a couple M, what are

F and M?

P4.204 SON P4.208
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4.209 If you represent the forces exerted by the floor on the

table legs in Problem 4.208 by a force F, what is F, and where

does its line of action intersect the x-z plane?

4.210 Two forces are exerted on the crankshaft by the connect-

ing rods. The direction cosines of F^ are cosd, = —0.182,

cos 6, = 0.818, and cos6(. = 0.545, and its magnitude is 4 kN.

The direction cosines of Fg are cosfl, = 0.182, cos0, = 0.818,

and COS0- = —0.545, and its magnitude is 2 kN. If you represent

the two forces by a force F acting at the origin O and a couple M,

what are F and M?

80 mm
80 mm^ X

P4.210

4.211 If you represent the two forces exerted on the crankshaft

in Problem 4.210 by a wrench consisting of a force F and a paral-

lel couple Mp,

action of F intersect the x-z plane?

what are F and Mp, and where does the line of

design Experience A relatively primitive device for exercis-

ing the biceps muscle is shown. Suggest an improved configura-

tion for the device. You can use elastic cords (which behave like

linear springs), weights, and pulleys. Seek a design such that the

variation of the moment about the elbow joint as the device is

used is small in comparison to the design shown. Give considera-

tion to the safety of your device, its reliability, and the require-

ment to accommodate users having a range of dimensions and

strengths. Choosing specific dimensions, determine the range of

the magnitude of the moment exerted about the elbow joint as

your device is used.
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The Space Shuttle main engine being held in

equilibrium by a support. In this chapter we use the

equilibrium equations to determine forces and

couples exerted on objects by their supports.
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By
applying the techniques developed in Chapters 3 and 4, we can

now analyze many of the equilibrium problems that arise in engi-

neering applications. After stating the equilibrium equations, we de-

scribe the various types of supports that are used. We then show how

free-body diagrams and equilibrium are used to determine unknown forces

and couples acting on objects.
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The Equilibrium Equations

In Chapter 3 we defined an object to be in equilibrium when it is stationary or

in steady translation relative to an inertial reference frame. When an object

acted upon by a system of forces and moments is in equilibrium, the follow-

ing conditions are satisfied.

1. The sum of the forces is zero:

2F = 0.

2. The sum of the moments about any point is zero:

(5.1)

2M (any poini)
0. (5.2)

Figure 5.1

An object subjected to concurrent forces.

ZMb

Figure 5.2

The sum of the moments S M;. about a

point P on the line L.

Before we consider specific applications, some general observations about

these equations are in order.

From our discussion of equivalent systems of forces and moments in

Chapter 4, Eqs. (5.1) and (5.2) imply that the system of forces and moments

acting on an object in equilibrium is equivalent to a system consisting of no

forces and no couples. This provides insight into the nature of equilibrium.

From the standpoint of the total force and total moment exerted on an object

in equilibrium, the effects are the same as if no forces or couples acted on the

object. This observation also makes it clear that if the sum of the forces on an

object is zero and the sum of the moments about one point is zero, then the

sum of the moments about every point is zero.

Figure 5.1 shows an object subjected to concurrent forces F,, F2, ... , F^

and no couples. If the sum of these forces is zero.

F| + F. + • + Fn = 0, (5.3)

the conditions for equilibrium are satisfied, because the moment about

point P is zero. The only condition imposed by equilibrium on a set of con-

current forces is that their sum is zero.

To determine the sum of the moments about a line L due to a system of

forces and moments acting on an object, we choose any point P on the line

and determine the sum of the moments SM^ about P (Fig. 5.2). Then the sum

of the moments about the line is the component of 2Mp parallel to the line. If

the object is in equilibrium, SM;, = 0. We see that the sum of the moments

about any line due to the forces and couples acting on an object in equilibrium

is zero. This result is useful in certain types of problems.

Two-Dimensional Applications

Many engineering applications involve two-dimensional systems of forces

and moments. These include the forces and moments exerted on many beams

and planar structures, pliers, some cranes and other machines, and some types

of bridges and dams. In this section we discuss supports, free-body diagrams,

and the equilibrium equations for two-dimensional applications.
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Supports

When you are standing, the floor supports you. When you sit in a chair, the

chair supports you. In this section we are concerned with the ways objects are

held in place or are attached to other objects. Forces and couples exerted on

an object by its supports are called reactions, expressing the fact that the sup-

ports "react" to the other forces and couples, or loads, acting on the object.

For example, a bridge is held up by the reactions exerted by its supports, and

the loads are the forces exerted by the weight of the bridge itself, the traffic

crossing it, and the wind.

Some very common kinds of supports are represented by stylized models

called support conventions. Actual supports often closely resemble the sup-

port conventions, but even when they don't, we represent them by these con-

\entions if the actual supports exert the same (or approximately the same)

reactions as the models.

The Pin Support Figure 5.3a shows a pin support. The diagram represents

a bracket to which an object (such as a beam) is attached by a smooth pin that

passes through the bracket and the object. The side view is shown in Fig. 5.3b.

To understand the reactions that a pin support can exert, it's helpful to

imagine holding a bar attached to a pin support (Fig. 5.3c). If you try to move

the bar without rotating it (that is, translate the bar), the support exerts a reac-

tive force that prevents this movement. However, you can rotate the bar about

the axis of the pin. The support cannot exert a couple about the pin axis to

prevent rotation. Thus a pin support can't exert a couple about the pin axis,

but it can exert a force on an object in any direction, which is usually ex-

pressed by representing the force in terms of components (Fig. 5.3d). The ar-

rows indicate the directions of the reactions if /I, and A,, are positive. If you

determine A^ or A,, to be negative, the reaction is in the direction opposite to

that of the arrow.

The pin support is used to represent any real support capable of exerting

a force in any direction but not exerting a couple. Pin supports are used in

many common devices, particularly those designed to allow connected parts

to rotate relative to each other (Fig. 5.4).

The Roller Support The convention called a roller support (Fig. 5.5a) rep-

resents a pin support mounted on wheels. Like the pin support, it cannot exert

Pin

Supported object

Equivalent

supports

Bracket \ fo\
1 \' a'

(a)

C^^^ ^

CT

Ta\
(b)

X K
(c) (d) (e)

Figure 5.5

(a) A roller support.

(b) The reaction consists of a force normal to the surface.

(c)-(e) Supports equivalent to the roller support.

Bracket
Pin Supported object

m
(a)

J a r~t

(b)

Vl
(c)

(d)

Figure 5.3

(a) A pin support.

(b) Side view showing the pin passing

through the beam.

(c) Holding a supported bar.

(d) The pin support is capable of exerting

two components of force.

Figure 5.4

Pin supports in a pair of scissors and a

stapler
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Figure 5.6

Supporting an object with a plane smooth

surface.

a couple about the axis of the pin. Since it can move freely in the direction par-

allel to the surface on which it rolls, it can't exert a force parallel to the surface

but can only exert a force normal (perpendicular) to this surface (Fig. 5.5b).

Figures 5.5c-e are other commonly used conventions equivalent to the roller

support. The wheels of vehicles and wheels supporting parts of machines are

roller supports if the friction forces exerted on them are negligible in compari-

son to the normal forces. A plane smooth surface can also be modeled by a

roller support (Fig. 5.6). Beams and bridges are sometimes supported in this

way so that they will be free to undergo thermal expansion and contraction.

The supports shown in Fig. 5.7 are similar to the roller support in that

they cannot exert a couple and can only exert a force normal to a particular

direction. (Friction is neglected.) In these supports, the supported object is

attached to a pin or slider that can move freely in one direction but is con-

strained in the perpendicular direction. Unlike the roller support, these sup-

ports can exert a normal force in either direction.

Figure 5.7

Supports similar to the roller support except

that the normal force can be exerted in

either direction.

(a) Pin in a slot.

(b) Slider in a slot.

(c) Slider on a shaft.

X

(a) (b)

Equivalent supports

(c)

The Built-in Support The built-in support shows the supported object lit-

erally built into a wall (Fig. 5.8a). This convention is also called a fixed

support. To understand the reactions, imagine holding a bar attached to a

built-in support (Fig. 5.8b). If you try to translate the bar, the support exerts a

reactive force that prevents translation, and if you try to rotate the bar, the

support exerts a reactive couple that prevents rotation. A built-in support can

exert two components of force and a couple (Fig. 5.8c). The term M^ is the

couple exerted by the support, and the curved arrow indicates its direction.

Fence posts and lampposts have built-in supports. The attachments of parts

connected so that they cannot move or rotate relative to each other, such as

the head of a hammer and its handle, can be modeled as built-in supports.

4
Supported object

(a) (b)

Figure 5.8

(a) Built-in support.

(b) Holding a supported bar.

(c) The reactions a built-in support is

capable of exerting. (c)
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Table 5.1 summarizes the support conventions commonly used in two-

dimensional applications, including those we discussed in Chapter 3. Although

the number of conventions may appear daunting, the examples and problems

Table 5.1 Supports used in two-dimensional applications.

Supports Reactions

Rope or Cable Spring

\
One Collinear Force

Contact with a Smooth Surface

A
One Force Normal

to the Supporting Surface

Contact with a Rough Surface Two Force Components

Pin Support

y

Two Force Components

&
Roller Support

cr
Equivalents

r
One Force Normal

to the Supporting Surface

V ^.=^
Constrained Pin or Slider One Normal Force

M.

Built-in (Fixed) Support Two Force Components and One Couple
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will help you become familiar with them. You should also observe how vari-

ous objects you see in your everyday experience are supported and think about

whether each support could be represented by one of the conventions.

Ree-Body Diagrams

We introduced free-body diagrams in Chapter 3 and used them to determine

forces acting on simple objects in equilibrium. By using the support conven-

tions, we can model more elaborate objects and construct their free-body dia-

grams in a systematic way.

For example, the beam in Fig. 5.9a has a pin support at the left end and a

roller support at the right end and is loaded by a force F. The roller support

rests on a surface inclined at 30° to the horizontal. To obtain the free-body di-

agram of the beam, we first isolate it from its supports (Fig. 5.9b), since the

free-body diagram must contain no object other than the beam. We complete

the free-body diagram by showing the reactions that may be exerted on the

beam by the supports (Fig. 5.9c). Notice that the reaction B exerted by the

roller support is normal to the surface on which the support rests.

^ V V
30°

Figure 5.9

(a) A beam with pin and roller supports.

(b) Isolating the beam from its supports.

(c) The completed free-body diagram.

(a)

Reactions due to

the pin support

(c)

(b)

Reaction due to

the roller support

The object in Fig. 5.10a has a fixed support at the left end. A cable pass-

ing over a pulley is attached to the object at two points. We isolate it from its

supports (Fig. 5.10b) and complete the free-body diagram by showing the re-

actions at the built-in support and the forces exerted by the cable (Fig. 5.10c).

Don't forget the couple at a built-in support. Since we assume the tension in

the cable is the same on both sides of the pulley, the two forces exerted by the

cable have the same magnitude T

.

Once you have obtained the free-body diagram of an object in equilibri-

um to identify the loads and reactions acting on it, you can apply the equilib-

rium equations.
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^
/,.

(a)

Figure 5.10

(a) An object with a built-in support.

(b) Isolating the object.

(c) The completed free-body diagram.

(b)

Reactions due ley

the cable / T

^K.\

Reactions due to the

built-in support

(c)

^F.--= 0,

IF,--= 0,

(any point)
= 0.

The Scalar Equilibrium Equations

When the loads and reactions on an object in equilibrium form a two-dimen-

sional system of forces and moments, they are related by three scalar equilib-

rium equations:

2M

A natural question is whether more than one equation can be obtained

from Eq. (5.6) by evaluating the sum of the moments about more than one

point. The answer is yes, and in some cases it is convenient to do so. But

there is a catch—the additional equations will not be independent of

Eqs. (5.4)-(5.6). In other words, more than three independent equilibrium

equations cannot be obtained from a two-dimensional free-body diagram,

which means we can solve for at most three unknown forces or couples. We
discuss this point further in Section 5.3.

The seesaw found on playgrounds, consisting of a board with a pin sup-

port at the center that allows it to rotate, is a simple and familiar example that

illustrates the role of Eq. (5.6). If two people of unequal weight sit at the see-

saw's ends, the heavier person sinks to the ground (Fig. 5.11a). To obtain

equilibrium, that person must move closer to the center (Fig. 5.11b).

We draw the free-body diagram of the seesaw in Fig. 5.1 Ic, showing the

weights of the people W, and W, and the reactions at the pin support. Evaluat-

ing the sum of the moments about A, the equilibrium equations are

2F. = A, 0,

2F. Wi - W.

2M,
(point A) Avv, D.W,

= 0,

0.

(5.7)

(5.8)

(5.9)

Thus A, = 0, Ay = W, + W,, and D, W, = DjW,. The last condition indicates

the relation between the positions of the two persons necessary for equilibrium.

(a)

<P *
[
(b)

(c)

Figure 5.11

(a) If both people sit at the ends of the

seesaw, the heavier one sinks.

(b) The seesaw and people in equilibrium.

(c) The free-body diagram of the seesaw,

showing the weights of the people and

the reactions at the pin support.
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(a)

(b)

Figure 5.12

(a) A pulley of radius R.

(b) Free-body diagram of the pulley and

part of the cable.

To demonstrate that an additional independent equation is not obtained

by evaluating the sum of the moments about a different point, we can sum the

moments about the right end of the seesaw:

2Af,(right end) (D, + D,,)\V, - DjA, = 0.

This equation is a linear combination of Eqs. (5.8) and (5.9):

(Z), + Dj)^, - D^A, = -D2{A, - ly, - W2)

Eq. (5.8)

+ (D,IV, - D2W.) = 0.

Eq. (5.9)

Until now we have assumed in examples and problems that the tension in

a rope or cable is the same on both sides of a pulley. Consider the pulley in

Fig. 5.12a. In its free-body diagram in Fig. 5.12b, we do not assume that the

tensions are equal. Summing the moments about the center of the pulley, we
obtain the equilibrium equation

2M,(poini A)
= RT - RT. = 0.

The tensions must be equal if the pulley is in equilibrium. However, notice

that we have assumed that the pulley's support behaves like a pin support

and cannot exert a couple on the pulley. When that is not true—for example,

due to friction between the pulley and the support—the tensions are not nec-

essarily equal.

Example 5.1

Study Questions
1. What is a pin support? What reactions can it exert on an object subjected to a

two-dimensional system of forces and moments?

2. What is a roller support? What reactions can it exert on an object subjected to a

two-dimensional system of forces and moments?

3. How many independent equilibrium equations can you obtain from a two-

dimensional free-body diagram?

Reactions at Pin and Roiler Supports
The beam in Fig. 5.13 has pin and roller supports and is subjected to a 2-kN

force. What are the reactions at the supports?

|2kN

Figure 5.13

A
3m- -2m-

30°
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Solution

Draw the Free-Body Diagram We isolate the beam from its supports and

show the loads and the reactions that may be exerted by the pin and roller

supports (Fig. a). There are three unknown reactions: two components of

force A^ and Ay at the pin support and a force B at the roller support.

Apply the Equilibrium Equations Summing the moments about point A,

the equilibrium equations are

IF, = A,- B sin 30° = 0,

iFy = A, + Bcos30° -2 = 0,

2M(p„i„„) = (5)(Bcos30°) - (3)(2) = 0.

Solving these equations, the reactions are /4^ - 0.69 kN, Ay — 0.80 kN, and

B - 1 .39 kN. The load and reactions are shown in Fig. b. It is good practice

to show your answers in this way and confirm that the equilibrium equations

are satisfied:

"ZF, = 0.69 - 1.39 sin 30° = 0,

2F„ = 0.80 + 1.39 cos 30° - 2 0,

2M(p„i„,) = (5)(1.39cos30°) - (3)(2) = 0.

Discussion

We drew the arrows indicating the directions of the reactions A, and Ay in the

positive X and y axis directions, but we could have drawn them in either di-

rection. In Fig. c we draw the free-body diagram of the beam with the compo-

nent Ay pointed downward. From this free-body diagram we obtain the

equilibrium equations

2F, = A,- Bsm30° = 0,

ZFy = -Ay + B cos 30° -2 = 0,

2M(p,,,^) = (5)(Bcos30°) - (2)(3) = 0.

The solutions are A, = 0.69 kN, Ay = -0.80 kN, and B = 1.39 kN. The neg-

ative value of Ay indicates that the vertical force exerted on the beam by the

pin support is in the direction opposite to that of the arrow in Fig. c; that is, the

force is 0.80 kN upward. Thus we again obtain the reactions shown in Fig. b.

|2kN

A

\
2kN

-3 m- , „ , 30°>
-2 m •

(a) Drawing the free-body diagram of the

beam.

(b) The load and reaction.

,/!„

-3 m- -2 m-
30°^

(c) An alternative free-body diagram.
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Example 5.2

Reactions at a Built-in Support
The object in Fig. 5.14 has a built-ih support and is subjected to two forces

and a couple. What are the reactions at the support?

100 lb

Figure 5.14

(a) Drawing the free-body diagram.

300 ft-lb

Solution

Draw the Free-Body Diagram We isolate the object from its support and

show the reactions at the built-in support (Fig. a). There are three unknown

reactions: two force components /4, and Ay and a couple M^. (Remember that

we can choose the directions of these arrows arbitrarily.) We also resolve the

100-lb force into its components.

1001b
1

J
200 'b ni00c'os30°lb t

2 ft

Apply the Equilibrium Equations Summing the moments about point A,

the equilibrium equations are

2F, = A, + 100 cos 30° = 0,

2F, = A, - 200 + 100 sin 30° - 0,

2M(p„,„,,) = M, + 300 - (200)(2) - (100cos30°)(2)

+ (100sin30°)(4) = 0.

Solving these equations, we obtain the reactions A^

and Mj, = 73.2 ft-lb.

Discussion

-86.6 lb. A, = 150.01b,

Notice that the 300-ft-lb couple and the couple M^ exerted by the built-in

support don't appear in the first two equilibrium equations because a couple

exerts no net force. Also, since the moment due to a couple is the same about

any point, the moment about point A due to the 300-ft-lb counterclockwise

couple is 300 ft-lb counterclockwise.
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Example 5.3

Reactions on a Car's Tires

The 2800-lb car in Fig. 5.15 is stationary. Determine the normal forces exert-

ed on the front and rear tires by the road.

Figure 5.15

Solution

Draw the Free-Body Diagram In Fig. a we isolate the car and show its

weight and the reactions exerted by the road. There are two unknown reac-

tions: the forces A and B exerted on the front and rear tires.

Apply the Equilibrium Equations The forces have no x components. Sum-

ming the moments about point B, the equilibrium equations are

'EF, = A + B - 2800 = 0,

2M(p„i„,5) = (6)(2800) -9A = 0.

Solving these equations, the reactions are A = 1867 lb and B - 933 lb.

Discussion

This example doesn't fall within our definition of a two-dimensional system

of forces and moments because the forces acting on the car are not coplanar.

Let's examine why you can analyze problems of this kind as if they were

two-dimensional.

In Fig. b we show an oblique view of the free-body diagram of the car. In

this view you can see the forces acting on the individual tires. The total nor-

mal force on the front tires is Al + Ar = A, and the total normal force on the

rear tires is B^^ + Bf^ — B. The sum of the forces in the y direction is

IF, = Al + Ar + Sl + Br 2800 ^ A + B - 2800 = 0.

Since the sum of the moments about any line due to the forces and couples

acting on an object in equilibrium is zero, the sum of the moments about the

Z axis due to the forces acting on the car is zero:

2M„,,„, = (9)(Al + Ar) - (6)(2800) = 9A - (6)(2800) - 0.

Thus we obtain the same equilibrium equations we did when we solved the

problem using a two-dimensional analysis.

Total normal force

exerted on the

two rear tires

Total normal force

exerted on the

two front tires

(a) The free-body diagram.

(b) An oblique view showing the forces on

the individual tires.
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Example 5.4

Figure 5.16

Choosing the Point About Which
to Evaluate l^oments
The structure AB in Fig. 5.16 supports a suspended 2-Mg (megagram) mass.

The structure is attached to a slider in a vertical slot at A and has a pin sup-

port at B. What are the reactions at A and B?

Solution

Draw the Free-Body Diagram We isolate the structure and mass from the

supports and show the reactions at the supports and the force exerted by the

weight of the 2000-kg mass (Fig. a). The slot at A can exert only a horizontal

force on the slider

Apply the Equilibrium Equations Notice that if we sum the moments

about point B, we obtain an equation containing only one unknown reaction,

the force A. The equilibrium equations are

I.F, = A + B, = 0,

SF, = B, - (2000)(9.81) = 0,

M2(X)0)(9.81)N

(a) Drawing the free-body diagram.

2M
(poini B) A{3) + (2000)(9.81)(2) = 0.

The reactions are A = -13.1 kN, B, = 13.1 kN, and B, = 19.6 kN.

Discussion

You can often simplify equilibrium equations by a careful choice of the point

about which you sum moments. For example, when you can choose a point

where the lines of action of unknown forces intersect, those forces will not

appear in your moment equation.

Example 5.5

^ Application to Engineering:

Design for Human Factors

Figure 5.17 shows an airport luggage carrier and its free-body diagram when

it is held in equilibrium in the tilted position. If the luggage carrier supports a

weight W = 50 lb, the angle a = 30°, a = 8 in., b = 16 in., and ^ = 48 in.,

what force F must the user exert?

Strategy

The unknown reactions on the free-body diagram are the force F and the nor-

mal force N exerted by the floor. If we sum moments about the center of the

wheel C, we obtain an equation in which F is the only unknown reaction.
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Solution

Summing moments about C,

2M(po,nic) - ^(Fcosa) + a{Wsina) - b{W co% a) = 0,

and solving for F, we obtain

ib — a tana)W
F = —. (5.10)

a

Substituting the values of W, a, a, b, and d, the solution is F = 11.9 lb.

design Issues

Design that accounts for human physical dimensions, capabilities, and char-

acteristics is a special challenge. This art is called design for human factors.

Here we consider a simple device, the airport luggage carrier in Fig. 5.17, and

show how consideration of its potential users and the constraints imposed by

the equilibrium equations affect its design.

The user moves the carrier by grasping the bar at the top, tilting it, and

walking while pulling the carrier. The height of the handle (the dimension h)

needs to be comfortable. Since h = R + d^in a, if we choose values of h and

the wheel radius R, we obtain a relation between the length of the carrier's

handle d and the tilt angle a:

h - R
d = . (5.11)

sin a

Substituting this expression for d into Eq. (5.10), we obtain

sina(i> — a tana)W
F = ^ —.

h - R
(5.12)

Suppose that based on statistical data on human dimensions, we decide to

design the carrier for convenient use by persons up to 6 ft 2 in. tall, which corre-

sponds to a dimension h of approximately 36 in. Let R — ?> in., a = 6 in., and

b = 12 in. The resulting value of F/W as a function of a is shown in Fig. 5.18.

At a = 63°, the force the user must exert is zero, which means the weight of the

luggage acts at a point directly above the wheels. This would be the optimum

solution if the user could maintain exactly that value of a. However, a inevitably

varies, and the resulting changes in F make it difficult to control the carrier. In

addition, the relatively steep angle would make the carrier awkward to pull.

From this point of view, it is desirable to choose a design within the range of

values of a in which F varies slowly, say, 30° < a < 45°. (Even though the

force the user must exert is large in this range of a in comparison with larger

values of a, it is only about 1 3% of the weight.) Over this range of a. the dimen-

sion d varies from 5.5 ft to 3.9 ft. A smaller carrier is desirable for lightness and

ease of storage, so we choose J = 4 ft for our preliminary design.

We have chosen the dimension d based on particular values of the di-

mensions R, a, and b. In an actual design study, we would carry out the

analysis for expected ranges of values of these parameters. Our final design

would also reflect decisions based on safety (for example, there must be ade-

quate means to secure the luggage and no sharp projections), reliability (the

frame must be sufficiently strong and the wheels must have adequate and reli-

able bearings), and the cost of manufacture.

Figure 5.17

0.15

0.05

-0.05

-0.15
40° 45°

Figure 5.18

Graph of the ratio F/W as a function of a.



214 Chapter 5 Objects in Equilibrium

Problems

Assume that objects are in equilibrium. In the statements of the

answers, x components are positive to the right and y components

are positive upward.

5.1 The beam has pin and roller supports and is subjected to a

4-kN load.

(a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the supports.

Strategy: (a) Draw a diagram of the beam isolated from

its supports. Complete the free-body diagram of the beam by

adding the 4-lcN load and the reactions due to the pin and roller

supports (see Table 5.1). (b) Use the scalar equilibrium equa-

tions (5.4)-(5.6) to determine the reactions.

5.4 (a) Draw the free-body diagram of the beam,

(b) Determine the reactions at the supports.

5kN

=5

3 m- 3 m P5.4

4kN

5.5 (a) Draw the free-body diagram of the 60-lb drill press,

assuming that the surfaces at A and B are smooth,

(b) Determine the reactions at A and B.

H^ at
tr-g'

2m

3 m P5.1

5.2 The beam has a built-in support and is loaded by a 2-kN

force and a 6 kN-m couple.

(a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the supports.

2kN

5)'
6 kN-m

2 m-
l^-lOin- 14in-

3m P5.2

5.3 The beam is subjected to a load F = 400 N and is supported

by the rope and the smooth surfaces at A and B.

(a) Draw the free-body diagram of the beam.

(b) What are the magnitudes of the reactions at A and B?

P5.5

5.6 The masses of the person and the diving board are 54 kg and

36 kg, respectively. Assume that they are in equilibrium.

(a) Draw the free-body diagram of the diving board.

(b) Determine the reactions at the supports A and B.

1
^I.2m- 1.5 m-

JF^

1 m —
P5.3

^1.2m

2.4 m

W^

• 4.6 m

W„

P5.6
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5.7 The ironing board has supports at A and B that can be

modeled as roller supports.

(a) Draw the free-body diagram of the ironing board.

(b) Determine the reactions at A and B.

5.13 Consider the beam in Problem 5.12. First represent the

loads (the 2-kN force and the 24-kN-m couple) by a single

equivalent force; then determine the reactions at the supports.

5.14 If the force F = 40 kN, what are the reactions at A and Bl

6 m

P5.7 a
5.8 The distance jc = 2 m.

(a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the supports.

I lOkN

'8m^

I2m-

K TL

-4m-
P5.8

^ 5.9 Consider the beam in Problem 5.8. An engineer determines

that each support will safely support a force of 7.5 kN. What is the

range of values of the distance x at which the 1 0-kN force can

safely be applied?

5.10 (a) Draw the free-body diagram of the beam,

(b) Determine the reactions at the supports.

P5.14

^) 5.15 In Problem 5.14, the structural designer determines that the

magnitude of the force exerted on the support A by the beam must

not exceed 80 kN, and the magnitude of the force exerted on the

support B must not exceed 140 kN. Based on these criteria, what

is the largest allowable value of the upward load F?

5.16 The person doing push-ups pauses in the position shown.

His mass is 80 kg. Assume that his weight W acts at the point

shown. The dimensions shown are a = 250 mm, b = 740 mm.
and c = 300 mm. Determine the normal force exerted by the

floor (a) on each hand, (b) on each foot.

100 Ibi

900 ft-lb

3r ^
4001b

3 ft -4ft- -3 ft- -4 ft- P5.10

5.11 Consider the beam in Problem 5.10. First represent the

loads (the 100-lb force, the 400-lb force, and the 900 ft-lb couple)

by a single equivalent force; then determine the reactions at the

supports.

5.12 (a) Draw the free-body diagram of the beam,

(b) Determine the reactions at the supports.

|2kN

s r 2.4 kN-m

-400 mm-

^
800 mm - 400 mm -

^30°

P5.12

ci h P5.16

5.17 With each of the devices shown you can support a load R
by applying a force F. They are called levers of the first, second,

and third class.

I" t"
n

3

Firsl-class lever

h— ^—T

—

'^
—

Second-class lever

Third-class le\er P5.17
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(a) The ratio R/F is called the mechanical advantage.

Determine the mechanical advantage of each lever.

(b) Determine the magnitude of the reaction at A for each lever.

(Express your answers in terms of F.)

5.18 (a) Draw the free-body diagram of the beam, (b) Determine

the reactions at the support.

1 400 lb

14001b

P5.18

point X = 2.00 m,y = 0.68 m. If the angle a = 15°, what is the

total normal force exerted on the two rear tires by the sloped

ramp?

P5.22

5.19 The force F = 12 kN. Determine the reactions at A.

!$\.

-5 m- P5.19

5.20 The buih-in support of the beam shown in Problem 5.19

will fail if the magnitude of the total force exerted on the beam by

the support exceeds 20 kN or if the magnitude of the couple

exerted by the support exceeds 65 kN-m. Based on these criteria,

what is the maximum force F that can be applied?

5.21 The mobile is in equilibrium. The fish B weighs 27 oz.

Determine the weights of the fish A, C, and D. (The weights of

the crossbars are negligible.)

5.23 The car in Problem 5.22 can remain in equilibrium on the

sloped ramp only if the total friction force exerted on its tires does

not exceed 0.8 times the total normal force exerted on the two rear

tires. What is the largest angle a for which it can remain in

equilibrium?

5.24 The 14.5-lb chain saw is subjected to the loads at A by the

log it cuts. Determine the reactions R, B, , and B, that must be

applied by the person using the saw to hold it in equilibrium.

.5 in

13 in

I/'4
^tlL.
1 14.51b

— 6 in —

"

2 in

12 in 3 in

%w
7 in

fi 111 2 in

2 in

D

rC
P5.21

5.22 The car's wheelbase (the distance between the wheels) is

2.82 m. The mass of the car is 1760 kg and its weight acts at the

P5.24

5.25 The mass of the trailer is 2.2 Mg (megagrams). The distances

a = 2.5 m and b = 5.5 m. The truck is stationary, and the wheels of

the trailer can turn freely, which means the road exerts no horizontal

force on them. The hitch at B can be modeled as a pin support.

(a) Draw the free-body diagram of the trailer.

(b) Determine the total normal force exerted on the rear tires

at A and the reactions exerted on the trailer at the pin support B.



5.2 Two-Dimensional Applications 217

—

^

^^^^^^ '^
'V-

A
h

P5.25

5.26 The total weight of the wheelbarrow and its load is

W = 1001b.

(a) If F = 0, what are the vertical reactions at A and B?

(b) What force F is necessary to lift the support at A off the

ground?

5.27 The airplane's weight is IV = 2400 lb.

Its brakes keep the rear wheels locked. The

front (nose) wheel can turn freely, and so the

ground exerts no horizontal force on it. The

force T exerted by the airplane's propeller is

horizontal.

(a) Draw the free-body diagram of the air-

plane. Determine the reaction exerted on the

nose wheel and the total normal reaction

exerted on the rear wheels

(b) when 7 = 0;

(c) when T = 250 lb.

P5.27

5.28 The forklift is stationary. The front wheels are free to turn,

and the rear wheels are locked. The distances are a = 1.25 m,

b = 0.50 m, and c = 1.40 m. The weight of the load is W^ =

2 kN, and the weight of the truck and operator is W^ = 8 kN.

What are the reactions at A and B7

5.29 Consider the stationary forklift shown in Problem 5.28. The

front wheels are free to turn, and the rear wheels are locked. The

distances are a = 45 in., b = 20 in., and c = 50 in. The weight of

the truck and operator is IV^ = 3000 lb. For safety reasons, a rule

is established that the reaction at the rear wheels must be at least

400 lb. If the weight W^ of the load acts at the position shown,

what is the maximum safe load?

5.30 The weight of the fan is W = 20 lb. Its base has four

equally spaced legs of length b = 12 in., and h = 36 in. What

is the largest thrust T exerted by the fan's propeller for which the

fan will remain in equilibrium?

P5.28 Side View Top View P5.30
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5.31 Consider the fan described in Problem 5.30. As a safety

criterion, an engineer decides that the vertical reaction on any of

the fan's legs should not be less than 20% of the fan's weight. If

the thrust 7 is 1 lb when the fan is set on its highest speed, what

is the maximum safe value of /??

5.32 To decrease costs, an engineer considers supporting a fan

with three equally spaced legs instead of the four-leg configura-

tion shown in Problem 5.30. For the same values of b, h, and W.

show that the largest thrust T for which the fan will remain in

equilibrium with three legs is related to the value with four legs by

' (three legs) {UV2)T (̂four legs) •

P5.32

5.33 A force F = 400 N acts on the bracket. What are the

reactions at A and B?

80 mm
i

P5.33

5.34 The hanging sign exerts vertical 25-lb forces at A and B.

Determine the tension in the cable and the reactions at the support

atC.

Consultini
Engineers

ift

-8 ft H I

1 ft

5.35 This device, called a swape or shadoof, is used to help a

person lift a heavy load. (It was used in Egypt at least as early as

1550 B.C. and is still in use in various parts of the world today.)

The distances are a = 12 ft and ft = 4 ft. If the load being lifted

weighs 1 00 lb and W = 200 lb, determine the vertical force the

person must exert to support the stationary load (a) when the load

is just above the ground (the position shown); (b) when the load is

3 ft above the ground. (Assume that the rope remains vertical.)

P5.35

5.36 This structure, called a truss, has a pin support at A and a

roller support at B and is loaded by two forces. Determine the

reactions at the supports.

Strategy: Draw a free-body diagram, treating the entire truss

as a single object.

K^- P5.36

P5.34

5.37 An Olympic gymnast is stationary in the "iron cross" posi-

tion. The weight of his left arm and the weight of his body not

including his arms are shown. The distances are a = ft = 9 in.

and c = 13 in. Treat his shoulder 5 as a built-in support, and

determine the magnitudes of the reactions at his shoulder. That

is, determine the force and couple his shoulder must support.
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5.40 The weight W of the bar acts at its center. The surfaces are

smooth. What is the tension in the horizontal string?

L
1 P5.40

5.41 The mass of the bar is 36 kg and its weight acts at its

midpoint. The spring is unstretched when a = 0. The bar is in

P5.37 equilibrium when a = 30°. Determine the spring constant k.

5.38 Determine the reactions at A.

200 Ibl

6 ft U-3ft- P5.38

5.39 The car's brakes keep the rear wheels locked, and the front

wheels are free to turn. Determine the forces exerted on the front

and rear wheels by the road when the car is parked (a) on an

upslope with a = 15°; (b) on a downslope with a = —15°.

4 m

P5.41

5.42 The plate is supported by a pin in a smooth slot at B. What

are the reactions at the supports?

2kN 6kN-m

P5.39 P5.42
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5.43 The force F = 800 N. and the couple M = 200 N-m. The 5.48 The tension in cable BC is 100 lb. Determine the reactions

distance L = 2m. What are the reactions at A and Bl at the built-in support.

i -l^ J

P5.43 2001b
»- 3 ft -|- 3 ft ^ 6 ft

300 ft-lb

P5.48

5.44 The mass of the bar is 40 kg and its weight acts at its mid-

point. Determine the tension in the cable and the reactions at A.
5.49 The tension in cable AB is 2 kN. What are the reactions

at C in the two cases?

P5.44

5.45 If the length of the cable in Problem 5.44 is increased

by 1 m, what are the tension in the cable and the reactions at A?

5.46 The mass of each of the suspended boxes is 80 kg.

Determine the reactions at the supports at A and E.

300 mm

P5.46

5.47 The suspended boxes in Problem 5.46 are each of

mass m. The supports at A and E will each safely support

a force of 6 kN magnitude. Based on this criterion, what is

the largest safe value of ml

(b) P5.49

5.50 Determine the reactions at the supports.

H
3 in

i

6 in 5 in -

>Ay- 501b

3 in

lOOin-lb

\30°

P5.50

5.S1 The weight W = 2 kN. Determine the tension in the cable

and the reactions at A.

\^

W
-0.6 m- -0.6 m- P5.51
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5.82 The cable shown in Problem 5.5 1 will safely support a

tension of 6 kN. Based on this criterion, what is the largest safe

value of the weight W?

8.53 The spring constant is ^ = 9600 N/m and the unstretched

length of the spring is 30 mm. Treat the bolt at A as a pin support

and assume that the surface at C is smooth. Determine the reac-

tions at A and the normal force at C.

P5.53

^ 8.54 The engineer designing the release mechanism shown in

Problem 5.53 wants the normal force exerted at C to be 120 N. If

the unstretched length of the spring is 30 mm, what is the neces-

sary value of the spring constant k1

8.55 Suppose that you want to design the safety valve to open

when the difference between the pressure p in the circular pipe

(diameter = 150 mm) and atmospheric pressure is 10 MPa
(megapascals; a pascal is 1 N/m"). The spring is compressed

20 mm when the valve is closed. What should the value of the

spring constant be?

jlSOmml- -250 mm

P A

R
150 mm

P5.55

5.56 The bar AB is of length L and weight W, and the weight

acts at its midpoint. The angle a = 30°. What is the tension in the

string?

P5.56

5.57 The crane's arm has a pin support at A. The hydraulic

cylinder BC exerts a force on the arm at C in the direction parallel

to BC. The crane's arm has a mass of 200 kg. and its weight can be

assumed to act at a point 2 m to the right of A. If the mass of the

suspended box is 800 kg and the system is in equilibrium, what is

the magnitude of the force exerted by the hydraulic cylinder?

2.4 ra

P5.57

5.58 In Problem 5.57. what is the magnitude of the force exerted

on the crane's arm by the pin support at A?

5.59 A speaker system is suspended by the cables attached at D and

E. The mass of the speaker system is 1 30 kg, and its weight acts at G.

Determine the tensions in the cables and the reactions at A and C.

PS.59
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5.60 The weight W, = 1 000 lb. Neglect the weight of the bar

AB. The cable goes over a pulley at C. Determine the weight Wj

and the reactions at the pin support A.

P5.60

5.61 The dimensions a = 2 m and b = \ m. The couple

M = 2400 N-m. The spring constant is k = 6000 N/m. and

the spring would be unstretched if /; = 0. The system is in

equilibrium when /; = 2 m and the beam is horizontal. Deter-

mine the force F and the reactions at A.

5.63 The boom derrick supports a suspended 15-ldp load.

The booms BC and DE are each 20 ft long. The distances are

a = 15 ft and b = 2 ft, and the angle d = 30°. Determine the

tension in cable AB and the reactions at the pin supports C and D.

P5.63

5.64 The arrangement shown controls the elevators of an

airplane. (The elevators are the horizontal control surfaces in

the airplane's tail.) The elevators are attached to member EDG.
Aerodynamic pressures on the elevators exert a clockwise couple

of 120 in. -lb. Cable BG is slack, and its tension can be neglected.

Determine the force F and the reactions at the pin support A.

Elevator

I20in-lb

P5.61
(Not to scale) P5.64

5.62 The bar is 1 m long, and its weight W acts at its midpoint.

The distance b = 0.75 m, and the angle a = 30°. The spring

constant is k = 100 N/m, and the spring is unstretched when

the bar is vertical. Determine W and the reactions at A.

P5.62

Problems 5.65-5.68 are related to Example 5.5.

5.65 In Fig. 5.17, suppose that a = 40°, d = I m. a = 200 mm,

b = 500 mm, R = 75 mm, and the mass of the luggage is 40 kg.

Determine F and N.

5.66 In Fig. 5.17, suppose that a = 35°, d = 46 in., a = \0 in.,

b = \4 in., ^ = 3 in., and you don't want the user to have to exert

a force F larger than 20 lb. What is the largest luggage weight that

can be placed on the carrier?

5.67 One of the difficulties in making design decisions is that

you don't know how the user will place the luggage on the carrier

in Example 5.5. Suppose you assume that the point where the

weight acts may be anywhere within the "'envelope"

/? < a < 0.75c and < /? < 0J5d. If a = 30°, c = 14 in.,

<y = 48 in., /? = 3 in., and W = 80 lb, what is the largest force F

the user will have to exert for any luggage placement?
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5.68 In our design of the luggage carrier in Example 5.5, we

assumed a user that would hold the carrier's handle at h = 36 in.

above the floor. We assumed that /? = 3 in., a = 6 in., and

b = \2 in., and we chose the dimension J = 4 ft. The resulting

ratio of the force the user must exert to the weight of the luggage

is F/W = 0.132. Suppose that people with a range of heights use

this carrier. Obtain a graph of F/W as a function of h for

24 < /i < 36 in.

Statically Indeterminate Objects

In Section 5.2 we discussed examples in which we were able to use the equi-

librium equations to determine unknown forces and couples acting on objects

in equilibrium. You need to be aware of two common situations in which this

procedure doesn't lead to a solution.

First, the free-body diagram of an object can have more unknown forces

or couples than the number of independent equilibrium equations you can ob-

tain. Since you can write no more than three such equations for a given free-

body diagram in a two-dimensional problem, when there are more than three

unknowns you can't determine them from the equilibrium equations alone.

This occurs, for example, when an object has more supports than the mini-

mum number necessary to maintain it in equilibrium. Such an object is said

to have redundant supports. The second situation is when the supports of an

object are improperly designed such that they cannot maintain equilibrium

under the loads acting on it. The object is said to have improper supports. In

either situation, the object is said to be statically indeterminate.

Engineers use redundant supports whenever possible for strength and

safety. Some designs, however, require that the object be incompletely sup-

ported so that it is free to undergo certain motions. These two situations

—

more supports than necessary for equilibrium or not enough—are so common
that we consider them in detail.

Redundant Supports

Let's consider a beam with a built-in support (Fig. 5.19a). From its free-body

diagram (Fig. 5.19b), we obtain the equilibrium equations

2F, = A, = 0,

F = 0,

L

^Fy = A

2 M(p<,i„, 4)
= Ma F = 0.

Assuming we know the load F, we have three equations and three unknown

reactions, for which we obtain the solutions /4,. — 0,Ay — F, andM^ = FL/2.

Now suppose we add a roller support at the right end of the beam (Fig.

5.20a). From the new free-body diagram (Fig. 5.20b), we obtain the equilibrium

equations

2F, A,

2F, = A,

0,

F + B 0,

2M,(point A) M,
f
)f + Lfi = 0.

(5.13)

(5.14)

(5.15)

M.

-i
L
2

L
2

(b)

Figure 5.19

(a) A beam with a built-in support.

(b) The free-body diagram has three

unknown reactions.

^
L

2

L

2

(a)

M,

re ^-

^v B

L

2

L

2

(b)

Figure 5.20

(a) A beam with built-in and roller

supports.

(b) The free-body diagram has four

unknown reactions.
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Now we have three equations and four unknown reactions. Although the first

equation tells us that A, = 0, we can't solve the two equations (5.14) and

(5. 15) for the three reactions A, , B. and M^.

When faced with this situation, students often attempt to sum the mo-

ments about another point, such as point B, to obtain an additional equation:

IM,(point B) M, + F - LA, = 0.

Unfortunately, this doesn't help. This is not an independent equation but is a

linear combination of Eqs. (5. 14) and (5. 15):

2M(poi„,fi) = M,^ + LA,

L
= M,-\-\F + LB

V

Eq. (5.15)

l{a, - f + b).

Eq. (5.14)

As this example demonstrates, each support added to an object results in addi-

tional reactions. The difference between the number of reactions and the num-

ber of independent equilibrium equations is called the degree of redundancy.

Even if an object is statically indeterminate due to redundant supports, it

may be possible to determine some of the reactions from the equilibrium

equations. Notice that in our previous example we were able to determine the

reaction A , even though we could not determine the other reactions.

Since redundant supports are so ubiquitous, you may wonder why we de-

vote so much effort to teaching you how to analyze objects whose reactions

can be determined with the equilibrium equations. We want to develop your

understanding of equilibrium and give you practice writing equilibrium equa-

tions. The reactions on an object with redundant supports can be determined

by supplementing the equilibrium equations with additional equations that re-

late the forces and couples acting on the object to its deformation, or change in

shape. Thus obtaining the equilibrium equations is the first step of the solution.

Example 5.6

Recognizing a Staticaily

indeterminate Object
The beam in Fig. 5.21 has two pin supports and is loaded by a 2-kN force.

(a) Show that the beam is statically indeterminate.

(b) Determine as many reactions as possible.

2kN

Figure 5.21
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Strategy

The beam is statically indeterminate if its free-body diagram has more un-

known reactions than the number of independent equilibrium equations we

can obtain. But even if this is the case, we may be able to solve the equilibri-

um equations for some of the reactions.

Solution

Draw the Free-Body Diagram We draw the free-body diagram of the

beam in Fig. a. There are four unknown reactions

—

A^, A^, B^, and B,—and

we can write only three independent equilibrium equations. Therefore the

beam is statically indeterminate.

Apply the Equilibrium Equations

the equilibrium equations are

Summing the moments about point A,

2F, = A, + B, = 0,

2f; = A, + B,- 2 = 0,

2M(p,i„,^, = 5B,, -(2)(3)=0.

We can solve the third equation for By and then solve the second equation for

Ay. The results are Ay = 0.8 kN and B^ =1.2 kN. The first equation tells us

that B^ = —A,, but we can't solve for their values.

12 kN

n B
y ^y

(a) The free-body diagram of the beam.

Discussion

This example can give you insight into why the reactions on objects with re-

dundant constraints can't be determined from the equilibrium equations

alone. The two pin supports can exert horizontal reactions on the beam even

in the absence of loads (Fig. b), and these reactions satisfy the equilibrium

equations for any value of T (SF^ = —T + 7 = 0).
(b) The supports can exert reactions on the

beam.

Improper Supports

We say that an object has improper supports if it will not remain in equilibri-

um under the action of the loads exerted on it. Thus an object with improper

supports will move when the loads are applied. In two-dimensional problems,

this can occur in two ways:

1. The supports can exert only parallel forces. This leaves the object free to

move in the direction perpendicular to the support forces. If the loads

exert a component of force in that direction, the object is not in

equilibrium. Figure 5.22a shows an example of this situation. The two

roller supports can exert only vertical forces, while the force F has a

horizontal component. The beam will move horizontally when F is

applied. This is particularly apparent from the free-body diagram

(Fig. 5.22b). The sum of the forces in the horizontal direction cannot be

zero because the roller supports can exert only vertical reactions.

M /
^3.

(a)

r
iF

1
(b)

Figure 5.22

(a) A beam with two roller supports is not

in equilibrium when subjected to the

load shown.

(b) The sum of the forces in the horizontal

direction is not zero.
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Figure 5.23

(a) A beam with roller supports on sloped

surfaces.

(b) The sum of the moments about point P
is not zero.

The supports can exert only concurrentforces. If the loads exert a

moment about the point where the lines of action of the support forces

intersect, the object is not in equilibrium. For example, consider the beam
in Fig. 5.23a. From its free-body diagram (Fig. 5.23b) we see that the

reactions A and B exert no moment about the point P, where their lines of

action intersect, but the load F does. The sum of the moments about point

P is not zero, and the beam will rotate when the load is applied.

Lines of action

- of the reactions

Pf intersect.

X Y

/ \

45 45° 'A\45° 45Y\b

(a) (b)

Except for problems that deal explicitly with improper supports, objects

in our examples and problems have proper supports. You should develop the

habit of examining objects in equilibrium and thinking about why they are

properly supported for the loads acting on them.

Study Questions

1. What does it mean when an object is said to have redundant supports?

2. How can you recognize if an object is statically indeterminate due to

redundant supports?

3. What is the "degree of redundancy" of an object?

Example 5.7

Proper and Improper Supports
State whether each L-shaped bar in Fig. 5.24 is properly or improperly sup-

ported. If a bar is properly supported, determine the reactions at its supports.

Solution

We draw the free-body diagrams of the bars in Fig. 5.25.

Bar (a) The lines of action of the reactions due to the two roller supports (<
intersect at P, and the load F exerts a moment about P. This bar is improper-

ly supported.
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A 1

(c)

Figure 5.24

Lines of

action of

the reactions

intersect.

(a)

Figure 5.25

Free-body diagrams of the three bars.

Lines of

action of

the reactions

intersect

Bar (b) The lines of action of the reactions intersect at A, and the load F
exerts a moment about A. This bar is also improperly supported.

Bar (c) The three support forces are neither parallel nor concurrent. This

bar is properly supported. The equilibrium equations are

IF^ = A, - B = 0,

SF, = A,- F = 0,

2M,(point A) BL - FL ^ 0.

Solving these equations, the reactions are A^ — F,Ay = F, and B = F.
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Problems n
5.69 (a) Draw the free-body diagram of the beam and show that

it is statically indeterminate.

(b) Determine as many of the reactions as possible.

5.75 State whether each of the L-shaped bars shown is properly

or improperly supported. If a bar is properly supported, determine

the reactions at its supports.

20N-m

K S—

^

800 mm - 300 mm -i-j

P5.69

w

^
5.70 Consider the beam in Problem 5.69. Choose supports at A

and B so that it is not statically indeterminate. Determine the

reactions at the supports.

5.71 (a) Draw the free-body diagram of the beam and show that

it is statically indeterminate. (The external couple Mq is known.)

(b) By an analysis of the beam's deflection, it is determined that

the vertical reaction B exerted by the roller support is related to

the couple A/y by fl = 2Mq/L. What are the reactions at A?

M„

45

(1) (2)

45°; ^
A^_

iA
a 45°

4
(3) P5.75

I I P5.71

5.72 Consider the beam in Problem 5.71. Choose supports at

A and B so that it is not statically indeterminate. Determine the

reactions at the supports.

5.73 Draw the free-body diagram of the L-shaped pipe assembly

and show that it is statically indeterminate. Determine as many of

the reactions as possible.

Strategy: Place the coordinate system so that the x axis

passes through points A and B.

5.76 State whether each of the L-shaped bars shown is properly

or improperly supported. If a bar is properly supported, determine

the reactions at its supports.

Cn

^Sl

4Z.

45°

(1) (2)

^

P5.73 S
5.74 Consider the pipe assembly in Problem 5.73. Choose

supports at A and B so that it is not statically indeterminate.

Determine the reactions at the supports.

A
(3) P5.76
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You have seen that when an object in equilibrium is subjected to a two-

dimensional system of forces and moments, you can obtain no more than

three independent equiHbrium equations. In the case of a three-dimensional

system of forces and moments, you can obtain up to six independent equilib-

rium equations: The three components of the sum of the forces must equal

zero, and the three components of the sum of the moments about any point

must equal zero. Your procedure for determining the reactions on objects sub-

jected to three-dimensional systems of forces and moments—drawing the

free-body diagram and applying the equilibrium equations—is the same as in

two-dimensions. You just need to become familiar with the support conven-

tions used in three-dimensional applications.

Supports

We present five conventions frequently used in three-dimensional problems.

Again, even when actual supports do not physically resemble these models,

we represent them by the models if they exert the same (or approximately the

same) reactions.

The Ball and Socket Support In the ball and socket support, the support-

ed object is attached to a ball enclosed within a spherical socket (Fig. 5.26a).

The socket permits the ball to rotate freely (friction is neglected) but prevents

it from translating in any direction.

Imagine holding a bar attached to a ball and socket support (Fig. 5.26b).

If you try to translate the bar (move it without rotating it) in any direction, the

support exerts a reactive force to prevent the motion. However, you can rotate

the bar about the support. The support cannot exert a couple to prevent rota-

tion. Thus a ball and socket support can't exert a couple but can exert three

components of force (Fig. 5.26c). It is the three-dimensional analog of the

two-dimensional pin support.

The human hip joint is an example of a ball and socket support

(Fig. 5.27). The support of the gear shift lever of a car can be modeled as a

ball and socket support within the lever's range of motion.

The Roller Support The roller support (Fig. 5.28a) is a ball and socket

support that can roll freely on a supporting surface. A roller support can exert

only a force normal to the supporting surface (Fig. 5.28b). The rolling "cast-

ers" sometimes used to support furniture legs are supports of this type.

y

A

(a) (b)

(c)

Figure 5.26

(a) A ball and socket support.

(b) Holding a supported bar.

(c) The ball and socket support can exert

three components of force.

Socket

(a) (b)

Pelvis

Figure 5.27

The human femur is attached to the pelvis

by a ball and socket support.

Figure 5.28

(a) A roller support.

(b) The reaction is normal to the supporting

surface.
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The Hinge The hinge support is the familiar device used to support doors.

It permits the supported object to rotate freely about a line, the hinge axis. An
object is attached to a hinge in Fig. 5.29a. The z axis of the coordinate system

is aligned with the hinge axis.

If you imagine holding a bar attached to a hinge (Fig. 5.29b), notice that

you can rotate the bar about the hinge axis. The hinge cannot exert a couple

about the hinge axis (the - axis) to prevent rotation. However, you can't rotate

the bar about the x or v axis because the hinge can exert couples about those

axes to resist the motion. In addition, you can't translate the bar in any direc-

tion. The reactions a hinge can exert on an object are shown in Fig. 5.29c.

There are three components of force, A^, A,., and A., and couples about the x

and V axes, M^,. and M^,,.

In some situations, either a hinge exerts no couples on the object it sup-

ports, or they are sufficiently small to neglect. An example of the latter case is

when the axes of the hinges supporting a door are properly aligned (the axes

of the individual hinges coincide). In these situations the hinge exerts only

forces on an object (Fig. 5.29d). Situations also arise in which a hinge exerts

no couples on an object and exerts no force in the direction of the hinge axis.

(The hinge may actually be designed so that it cannot support a force parallel

to the hinge axis.) Then the hinge exerts forces only in the directions perpen-

dicular to the hinge axis (Fig. 5.29e). In examples and problems, we indicate

when a hinge does not exert all five of the reactions in Fig. 5.29c.

y y

Supported

object

(a)

(b)

(c) (d) (e)

Figure 5.29

(a) A hinge. The z axis is aligned with the hinge axis.

(b) Holding a supported bar.

(c) In general, a hinge can exert five reactions: three force components and two

couple components.

(d) The reactions when the hinge exerts no couples.

(e) The reactions when the hinge exerts neither couples nor a force parallel to the

hinge axis.
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y Supported

object

(c) (d)

Figure 5.30

(a) A bearing. The r axis is aligned with the axis of the shaft.

(b) In general, a bearing can exert five reactions: three force components and two

couple components.

(c) The reactions when the bearing exerts no couples.

(d) The reactions when the bearing exerts neither couples nor a force parallel to the

axis of the shaft.

The Bearing The type of bearing shown in Fig. 5.30a suppoit.s a circular

shaft while permitting it to rotate about its axis. The reactions are identical to

those exerted by a hinge. In the most general case (Fig. 5.30b), the bearing

can exert a force on the supported shaft in each coordinate direction and can

exert couples about axes perpendicular to the shaft but cannot exert a couple

about the axis of the shaft.

As in the case of the hinge, situations can occur in which the bearing ex-

erts no couples (Fig. 5.30c) or exerts no couples and no force parallel to the

shaft axis (Fig. 5.30d). Some bearings are designed in this way for specific

applications. In examples and probleins, we indicate when a bearing does not

exert all of the reactions in Fig. 5.30b.

The Buiit-ln Support You are already familiar with the built-in. or fixed,

support (Fig. 5.31a). Imagine holding a bar with a built-in support (Fig.

5.31b). You cannot translate it in any direction, and you cannot rotate it about

any axis. The support is capable of exerting forces A^. /\,,, and A. in each co-

ordinate direction and couples M^,, M,,,,, and M,,, about each coordinate axis

(Fig. 5.31c).

Table 5.2 summarizes the support conventions commonly used in three-

dimensional applications.

(a)

(b)

(0

Figure 5.31

(a) A built-in support.

(b) Holding a supported bar.

(c) A built-in support can exert six

reactions: three force components and

three couple components.
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Table 5.2 Supports used in three-dimensional applications.

Supports Reactions

Rope or Cable

V
One Collinear Force

Contact with a Smooth Surface One Normal Force

Contact with a Rough Surface Three Force Components

Ball and Socket Support

/
z

Three Force Components

Roller Support One Normal Force
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Table 5.2 (continued)

Supports Reactions

Hinge

(The ; axis is parallel

to the hinge axis.)

Bearing

(The z axis is parallel to the

axis of the supported shaft.)

^..cl;^

./ A/,

/

Three Force Components,

Two Couple Components

/
z

(When no couples are exerted)

y

(When no couples and

no axial force are exerted)

Built-in (Fixed) Support Three Force Components,

Three Couple Components
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The Scalar Equilibrium Equations

The loads and reactions on an object in equilibrium satisfy the six scalar equi-

librium equations

2F, = 0,

2F, = 0,

2R = 0,

2M, = 0,

1M, = 0,

2M. = 0.

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

Example 5.8

400

mm

Figure 5.32

You can evaluate the sums of the moments about any point. Although you can

obtain other equations by summing the moments about additional points, they

will not be independent of these equations. More than six independent equi-

librium equations cannot be obtainedfrom a given free-body diagram, so we

can solve for at most six unknown forces or couples.

The steps required to determine reactions in three dimensions are famil-

iar from your experience with two-dimensional applications. You must first

obtain a free-body diagram by isolating an object and showing the loads and

reactions acting on it, then use Eqs. (5.16)-(5.21) to determine the reactions.

Study Questions
1. What is a ball and socket support? What reactions can it exert on an object?

2. In general, a hinge support can exert five reactions on an object. What are they?

3. If an object has a built-in support and any additional supports, it is statically

indeterminate. Why is this true?

Determining Reactions
in Three Dimensions
The bar AB in Fig. 5.32 is supported by the cables BC and BD and a ball and

socket support at A. Cable BC is parallel to the z axis, and cable BD is paral-

lel to the X axis. The 200-N weight of the bar acts at its midpoint. What are

the tensions in the cables and the reactions at /I?

Strategy

We must obtain the free-body diagram of the bar AB by isolating it from the

support at A and the two cables. Then we can use the equilibrium equations

to determine the reactions at A and the tensions in the cables.

Solution

Draw the Free-Body Diagram In Fig. a we isolate the bar and show the re-

actions that may be exerted on it. The ball and socket support can exert three

components of force, A^,Ay, and A.. The terms Tg^ and Tgo represent the ten-

sions in the cables.
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Forces exerted

by the cables

Reactions due to the

ball and socket support

Apply the Equilibrium Equations The sums of the forces in each coordi-

nate direction equal zero:

IF, = A, - T,„ = 0,

2F, = A, - 200 = 0,

2F, = A.~ Tbc = 0. (5.22)

Let r^g be the position vector from A to B. The sum of the moments

about A is

2M(poi„,^) = [r^5 X i-Tsck)] + [r^s X {-Tsoi)]

+ [|r,eX(-200j)]

J k

0.6 0.4 +

-Tsc

i J k

0.5 0.3 0.2

-200

1

'BD

J

0.6

k

0.4

+

= {-0.6Tbc + 40)i + {Tbc - OATsDJi + (0.67^0 - 100)k.

The components of this vector (the sums of the moments about the three co-

ordinate axes) each equal zero:

IM, = -0.6Tbc + 40 = 0,

0.47,BD 0,2M,, = Tsc

2M, = 0.67bo
- 100 = 0.

Solving these equations, we obtain the tensions in the cables:

66.7 N, 166.7 N.' BC ~ ""' '*' ' BD

(Notice that we needed only two of the three equations to obtain the two ten-

sions. The third equation is redundant.)

Then from Eqs. (5.22) we obtain the reactions at the ball and socket support:

A, = 166.7 N, A, = 200 N, A, = 66.7 N.

Discussion

Notice that by summing moments about A we obtained equations in which

the unknown reactions A,, A,., and /\, did not appear. You can often simplify

your solutions in this way.

(a) Obtaining the

free-body diagram of

the bar.
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Example 5.9

Reactions at a Hinge Support
The bar AC in Fig. 5.33 is 4 ft long and is supported by a hinge at A and the

cable BD. The hinge axis is along the ;: axis. The centerline of the bar lies in the

x-y plane, and the cable attachment point B is the midpoint of the bar. Deter-

mine the tension in the cable and the reactions exerted on the bar by the hinge.

D 0(2. 2. -I) ft

Figure 5.33

c

lOOj (lb)

Solution

Draw the Free-Body Diagram We isolate the bar from the hinge support and

the cable and show the reactions they exert (Fig. a). The terms A,, A,., and A. are

the components of force exerted by the hinge, and the terms M^^ and M^y are the

couples exerted by the hinge about the x and v axes. (Remember that the hinge

cannot exert a couple on the bar about the hinge axis.) The term T is the tension

in the cable.

(a) The free-body

diagram of the bar.

Reaction

due to the

hinge
Force exerted by

cable BD

I

-100j(lb)f

Apply the Equilibrium Equations To write the equilibrium equations, we

must first express the cable force in terms of its components. The coordinates

of point B are (2 cos 30°, -2 sin 30°, 0) ft, so the position vector from 5 to D is

(2 - 2cos30°)i + [2 - (-2sin30°)]j + (-1 - 0)k

= 0.268i + 3j - k.

'BD
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We divide this vector by its magnitude to obtain a unit vector e^o that points

from point B toward point D:

^BD ~
^BD

'BDl

0.084i + 0.945J - 0.315k.

Now we can write the cable force as the product of its magnitude and Cgp

:

TCbd = 7'(0.084i + 0.945J - 0.315k).

The sums of the forces in each coordinate direction must equal zero:

IF, = A, + 0.0847 = 0,

IF, = A, + 0.9457 - 100 = 0,

SF. = A, - 0.3157 = 0. (5.23)

If we sum moments about A, the resulting equations do not contain the un-

known reactions ^4^, A,, and A,. The position vectors from Ato B and from A
to Care

r^B = 2cos30°i - 2sin30°j.

'AC 4cos30°i - 4sin30°j.

The sum of the moments about A is

SMfpoin,^) = M^i + M^,i + [r^s X {TesD}] + [r^c X (-lOOj)]

i J

= M^J + M^,i + 1.732

k

0.0847 0.9457 -0.3157

+

i J k

3.464 -2

-100

= {Ma_, + 0.3157)i + {M^, + 0.5467)j

+ (1.727 - 346)k = 0.

From this vector equation we obtain the scalar equations

IM, = M^ + 0.3157 = 0,

SM, = M^, + 0.5467 = 0,

2M, = 1.727 - 346 = 0.

Solving these equations, we obtain the reactions

7 = 201 lb, Ma, = -63.4 ft-lb.

Then from Eqs. (5.23) we obtain the forces exerted on the bar by the hinge:

A, = -17.0 lb. A, = -90.2 lb, A- = 63.4 lb.

Ay -109.8 ft-lb.
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Example 5.10

-400j (N)

Figure 5.34

Reactions due to

hinge A. It

exerts no

axial

force.

Reactions at Properly Aligned Hinges
The plate in Fig. 5.34 is supported by hinges at A and B and the cable CE. The

properly aligned hinges do not exert couples on the plate, and the hinge at A
does not exert a force on the plate in the direction of the hinge axis. Determine

the reactions at the hinges and the tension in the cable.

Solution

Draw the Free-Body Diagram We isolate the plate and show the reactions

at the hinges and the force exerted by the cable (Fig. a). The term T is the

force exerted on the plate by cable CE.

Apply the Equilibrium Equations Since we know the coordinates of

points C and E, we can express the cable force as the product of its magni-

tude T and a unit vector directed from C toward E. The result is

r( -0.842 i + 0.337j + 0.421k).

The sums of the forces in each coordinate direction equal zero:

2F, = A, + B, - 0.8427 = 0,

1F, = A, + B, + 0331T - 400 = 0,

IF. = B, + 0.4217 = 0.

If we sum the moments about B. the resulting equations will not contain the

three unknown reactions at B. The sum of the moments about B is

Reactions

due to

hinge B

IM (point B)

-400j (N)

(a) The free-body diagram of the plate.

i j k i j k

0.2 + 0.2

-0.8427 0.3377 0.4217 A.. A,

i j k

f 0.2 0.2

-400

= [-0.2A, + 80)i + (-0.08427 + 0.2A,)j

+ (0.06747 - 80)k = 0.

The scalar equations are

2M, - -0.2A, + 80 = 0.

IM, = -0.08427 + 0.2A, = 0,

2M, = 0.06747 - 80 = 0.

Solving these equations, we obtain the reactions

7= 1187 N, A, = 500N, A, = 400 N.

Then from Eqs. (5.24), the reactions at B are

fi, = 500 N, B, = -400 N, B, = -500 N.
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Discussion

If our only objective had been to determine the tension T, we could have done

so easily by setting the sum of the moments about the line AB (the z axis)

equal to zero. Since the reactions at the hinges exert no moment about the

z axis, we obtain the equation

(0.2)(0.337r) - (0.2)(400) = 0,

which yields the result T = 1 187 N.

Problems

5.77 The bar AB has a built-in support at A and is loaded by the

forces

Ffi = 2i + 6j + 3k (kN),

Fc = i - 2j + 2k (kN).

(a) Draw the free-body diagram of the bar.

(b) Determine the reactions at A.

Strategy: (a) Draw a diagram of the bar isolated from its

supports. Complete the free-body diagram of the bar by adding

the two external forces and the reactions due to the built-in

support (see Table 5.2). (b) Use the scalar equilibrium equations

(5.16)-(5.21) to determine the reactions.

5.79 The bar AB has a built-in support at A. The collar at B is

fixed to the bar. The tension in the cable BC is 10 kN.

(a) Draw the free-body diagram of the bar.

(b) Determine the reactions at A.

B (5,6, Dm

C (3, 0, 4) m

P5.79

P5.77

5.80 Consider the bar in Problem 5.79. The magnitude of the

couple exerted on the bar by the built-in support is 100 kN-m.

What is the tension in the cable?

5.81 The force exerted on the highway sign by wind and the

sign's weight is F = 800i — 600j (N). Determine the reactions

at the built-in support at O.

B.78 The bar AB has a built-in support at A. The tension in

cable BC is 8 kN. Determine the reactions at A.

z^*\ —

,0.5.-0.5)ni

P5.78 P5.81
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Qi 5.82 In Problem 3.81, the force exerted on the sign by wind

and the sign's weight is F = ±4.4v-i - 600j (N), where v is

the component of the wind's velocity perpendicular to the sign

in meters per second (m/s). If you want to design the sign to

remain standing in hurricane winds with velocities v as high as

70 m/s, what reactions must the built-in support at O be

designed to withstand?

5.83 The tension in cable \E is 24 kN. Detennine the reactions

at the built-in support D.

5.85 The force exerted on the grip of the exercise machine is

F = 260i - 130j (N). What are the reactions at the built-in

support at O?

P5.83

5.84 The robotic manipulator is stationary' and the y axis is

vertical. The weights of the arms AB and EC act at their mid-

points. The direction cosines of the centerline of arm AB are

COS0, = 0.174, COS0, = 0.985. cos0. = 0, and the direction

cosines of the centerline of arm BC are cos 0, = 0.743.

COS0J. = 0.557, COS0- = -0.371. The support at A behaves like

a built-in support.

(a) What is the sum of the moments about A due to the weights

of the two arms?

(b) What are the reactions at A?

P5.85

5.86 The designer of the exercise machine in Problem 5.85

assumes that the force F exerted on the grip will be parallel to the

.v-v plane and that its magnitude will not exceed 900 N. Based on

these criteria, what reactions must the built-in support at O be

designed to withstand?

5.87 The boom ABC is subjected to a force F = -8j (kN) at C and

is supported by a ball and socket at A and the cables BD and BE.

(a) Draw the free-body diagram of the boom.

(b) Determine the tensions in the cables and the reactions at A.

9^A1

Q) 5.88 The cables supporting the boom ABC in Problem 5.87 will

each safely support a tension of 25 kN. Based on this criterion,

what is the largest safe magnitude of the downward force F?

5.89 The suspended load exerts a force F = 600 lb at A, and the

weight of the bar OA is negligible. Determine the tensions in the

P5.84 cables and the reactions at the ball and socket support O.
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6,-10) ft

(8, 6, 0) ft

P5.92

5.93 The cables in Problem 5.92 will each .safely support a

tension of 10 kN. Based on this criterion, what is the largest safe

mass of the horizontal wall section?

5.94 An engineer designs a system of pulleys to pull his model

trains up and out of the way when they aren't in use. What are the

tensions in the three ropes when the system is in equilibrium?

P5.89

B.90 In Problem 5.89, suppose that the suspended load exerts a

force F = 600 lb at A and bar OA weighs 200 lb. Assume that the

bar's weight acts at its midpoint. Determine the tensions in the

cables and the reactions at the ball and socket support O.

5.91 The 158,000-kg airplane is at rest on the ground (z = is

ground level). The landing gear carriages are at A, B, and C. The

coordinates of the point G at which the weight of the plane acts

are (3, 0.5, 5) m. What are the magnitudes of the normal reactions

exerted on the landing gear by the ground?

P5.94

P5.91

8.92 The 800-kg horizontal wall section is supported by the three

vertical cables A, B, and C. What are the tensions in the cables?

5.95 The L-shaped bar is supported by a bearing at A and rests

on a smooth horizontal surface at B. The vertical force F = 4 kN
and the distance b = 0.15 m. Determine the reactions at A and B.

P5.95

5.96 In Problem 5.95, the vertical force F = 4 kN and the dis-

tance h = 0.15 m. If you represent the reactions at A and B by an

equivalent system consisting of a single force, what is the force

and where does its hne of action intersect the x-z plane?
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5.97 In Problem 5.95, the vertical force F = 4 kN. The bearing

at A will safely support a force of 2.5-lcN magnitude and a couple

of 0.5 kN-m magnitude. Based on these criteria, what is the allow-

able range of the distance b?

5.98 The 1 . 1 -m bar is supported by a ball and socket support

at A and the two smooth walls. The tension in the vertical

cable CD is 1 kN.

(a) Draw the free-body diagram of the bar.

(b) Determine the reactions at A and B.

P5.98

5.99 The 8-ft bar is supported by a ball and socket support at A, the

cable BD, and a roller support at C. The collar at B is fixed to the bar

at its midpoint. The force F = —50k (lb). Determine the tension in

cable BD and the reactions at A and C.

P5.101

5.102 Consider the tower in Problem 5. 101 . If the tension in

cable BC is 2 kN, what must the tensions in cables BD and BE
be if you want the couple exerted on the tower by the built-in

support at A to be zero? What are the resulting reactions at A?

5.103 The space truss has roller supports at B, C, and D and

is subjected to a vertical force F = 20 kN at A. What are the

reactions at the roller supports?

5.100 Consider the 8-ft bar in Problem 5.99. The force

F = FJ - 50k (lb). What is the largest value of F,, for which

the roller support at C will remain on the floor?

5.101 The tower is 70 m tall. The tension in each cable is 2 kN.

Treat the base of the tower A as a built-in support. What are the

reactions at A?

A (4, 3. 4) m

,» . ,^'1^. P5.103

P5.99 5.104 In Problem 5. 103, suppose that you don't want the reaction
j

at any of the roller supports to exceed 15 kN. What is the largest

force F the truss can support?

5.105 The 40-lb door is supported by hinges at A and B.

The y axis is vertical. The hinges do not exert couples on the door,]

and the hinge at B does not exert a force parallel to the hinge axis.

The weight of the door acts at its midpoint. What are the reactions
j

at A and Bl
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P5.105

5.106 The vertical cable is attached at A. Determine the tension

in the cable and the reactions at the bearing B due to the force

F= lOi - 30j - 10k (N).

50 mm
100 mm

50 mm

P5.108

5.109 The rocket launcher is supported by the hydraulic jack DE
and the bearings A and B. The bearings lie on the x axis and

support shafts parallel to the x axis. The hydraulic cylinder DE
exerts a force on the launcher that points along the line from D to

E. The coordinates of D are (7. 0, 7) ft, and the coordinates of E
are (9, 6, 4) ft. The weight W = 30 kip acts at (4.5, 5, 2) ft. What

is the magnitude of the reaction on the launcher at £?

100 mm

P5.106
P5.109

5.107 In Problem 5.106, suppose that the z component of the

force F is zero, but otherwise F is unknown. If the couple exerted

on the shaft by the bearing at B is M^ = 6j - 6k N-m, what are

the force F and the tension in the cable?

5.108 The device in Problem 5.106 is badly designed because

of the couples that must be supported by the bearing at B, which

would cause the bearing to "bind." (Imagine trying to open a door

supported by only one hinge.) In this improved design, the bear-

ings at B and C support no couples, and the bearing at C does

not exert a force in the x direction. If the force F = lOi — 30j
—

10k (N), what are the tension in the vertical cable and the reac-

tions at the bearings B and C?

5.110 Consider the rocket launcher described in Problem 5.109.

The bearings at A and B do not exert couples, and the bearing B

does not exert a force in the x direction. Determine the reactions

at A and B.

5.111 The crane's cable CD is attached to a stationary object at

D. The crane is supported by the bearings E and F and the hori-

zontal cable AB. The tension in cable AB is 8 kN. Determine the

tension in the cable CD.

Strategy: Since the reactions exerted on the crane by the

bearings do not exert moments about the z axis, the sum of the

moments about the z axis due to the forces exerted on the crane

by the cables AB and CD equals zero. (See the discussion at the

end of Example 5.10.)



244 Chapter 5 Objects in Equilibrium

P5.111

5.112 The crane in Problem 5.1 1 1 is supported by the horizontal

cable AB and the bearings at E and F. The bearings do not exert

couples, and the bearing at F does not exert a force in the z direc-

tion. The tension in cable AB is 8 kN. Determine the reactions at

E and F.

5.113 The plate is supported by hinges at A and B and the

cable CE. and it is loaded by the force at D. The edge of the plate

to which the hinges are attached lies in the v-c plane, and the axes

of the hinges are parallel to the line through points A and B. The

hinges do not exert couples on the plate. What is the tension in

cable CEl
y

2i-6jrkN)

5.114 In Problem 5. 11 3, the hinge at B does not exert a force on

the plate in the direction of the hinge axis. What are the magnitudes

of the forces exerted on the plate by the hinges at A and 6?

5.115 The bar ABC is supported by ball and socket supports

at A and C and the cable BD. and is loaded by the 200-lb sus-

pended weight. What is the tension in cable BD1

P5.115

5.116 In Problem 5.1 15, determine the v components of the

reactions exerted on the bar ABC by the ball and socket supports

at A and C.

5.117 The bearings at A, B, and C do not exert couples on the

bar and do not exert forces in the direction of the axis of the bar.

Determine the reactions at the bearings due to the two forces on

the bar.

P5.113

P5.117

5.118 The support that attaches the sailboat's mast to the deck

behaves like a ball and socket support. The line that attaches the

spinnaker (the sail) to the top of the mast exerts a 200-lb force on

the mast. The force is in the horizontal plane at 15° from the

centerline of the boat. (See the top view.) The spinnaker pole

exerts a 50-lb force on the mast at P. The force is in the horizontal

plane at 45° from the centerline. (See the top view.) The mast is

supported by two cables, the back stay AB and the port shroud

ACD. (The fore stay AE and the starboard shroud AFG are slack.
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and their tensions can be neglected.) Determine the tensions in the

cables AB and CD and the reactions at the bottom of the mast.

5.119 The door is supported by the cable DE and hinges at A
and B, and is subjected to a 2-kN force at C. The door's weight is

negligible. The hinges do not exert couples on the door, and their

axes are aligned with the line from A to B. Determine the tension

in the cable.

(0, 0.6.

D (0.6, 0.4, -0.3) m

C (1.2, 0.2, 0.6) m

-2j (kN)

B (0.6. -0.2, 0.9) m P5.119

P5.118

5.120 Determine the reactions at the hinges supporting the door

in Problem 5.119. Assume that the hinge at B exerts no force

parallel to the hinge axis.

Strategy: Express the reactions at the hinges as

A = A^i + AJ + A-k and B = B/i + BJ + B-k. Let e^g be a

unit vector parallel to the hinge axes. Since the hinge at B exerts

no force parallel to the hinge axis, you know that e^g • B = 0.

Two-Force and Three-Force Members

You have seen how the equilibrium equations are used to analyze objects sup-

ported and loaded in different ways. Here we discuss two particular cases that

occur so frequently you need to be familiar with them. The first one is espe-

cially important and plays a central role in our analysis of structures in the

next chapter.

Two-Force Members

If the system of forces and moments acting on an object is equivalent to two

forces acting at different points, we refer to the object as a two-force member.

For example, the object in Fig. 5.35a is subjected to two sets of concurrent

forces whose lines of action intersect at A and B. Since we can represent them

by single forces acting at A and B (Fig. 5.35b), where F = F, + F^ + • • + F/v

andF' = F', + F^ + •• + F';^^ , this object is a two-force member.

If the object is in equilibrium, what can we infer about the forces F and

F'? The sum of the forces equals zero only if F' = -F (Fig. 5.35c). Further-

more, the forces F and —F form a couple, so the sum of the moments is not

zero unless the lines of action of the forces lie along the line through the points
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(a) (b)

(c) (d)

Figure 5.35

(a) An object subjected to two sets of concurrent forces.

(b) Representing the concurrent forces by two forces F and F'.

(c) If the object is in equiUbrium, the forces must be equal and opposite.

(d) The forces form a couple unless they have the same line of action.

A and B (Fig. 5.35d). Thus equilibrium tells us that the two forces are equal in

magnitude, are opposite in direction, and have the same line ofaction. Howev-

er, without additional information, we cannot determine their magnitude.

A cable attached at two points (Fig. 5.36a) is a familiar example of a

two-force member (Fig. 5.36b). The cable exerts forces on the attachment

points that are directed along the line between them (Fig. 5.36c).

Figure 5.36

(a) A cable attached at A and B.

(b) The cable is a two-force member.

(c) The forces exerted by the cable.

I

-aHLl

(a) (b) (c)

A bar that has two supports that exert only forces on it (no couples) and

is not subjected to any loads is a two-force member (Fig. 5.37a). Such bars

are often used as supports for other objects. Because the bar is a two-force

member, the lines of action of the forces exerted on the bar must lie along the

line between the supports (Fig. 5.37b). Notice that, unlike the cable, the bar

can exert forces at A and B either in the directions shown in Fig. 5.37c or in
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i^

(a) (b) (c)

Figure 5.37

(a) The bar /4B attaches the object to the

pin support.

(b) The bar AB is a two-force member.

(c) The force exerted on the supported

object by the bar AB.

the opposite directions. (In other words, the cable can only pull on its sup-

ports, while the bar can either pull or push.)

In these examples we assumed that the weights of the cable and the bar

could be neglected in comparison with the forces exerted on them by their

supports. When that is not the case, they are clearly not two-force members.

Three-Force Members

If the system of forces and moments acting on an object is equivalent to three

forces acting at different points, we call it a three-force member. We can show

that if a three-force member is in equilibrium, the three forces are coplanar

and are either parallel or concurrent.

We first prove that the forces are coplanar. Let them be called F, , r2. and

F3, and let P be the plane containing the three points of application (Fig.

5.38a). Let L be the line through the points of application of F, and F^. Since

the moments due to F, and F, about L are zero, the moment due to F3 about L

must equal zero (Fig. 5.38b):

[e • (r X F3)]e = [F3 • (e x r)]e = 0.

This equation requires that F3 be perpendicular to e X r, which means that F3

is contained in P. The same procedure can be used to show that F, and F2 are

contained in P, so the forces are coplanar. (A different proof is required if the

points of application lie on a straight line, but the result is the same.)

If the three coplanar forces are not parallel, there will be points where

their lines of action intersect. Suppose that the lines of action of two of the

forces intersect at a point Q. Then the moments of those two forces about Q
are zero, and the sum of the moments about Q is zero only if the line of action

of the third force also passes through Q. Therefore either the forces are paral-

lel or they are concurrent (Fig. 5.38c).

You can often simplify the analysis of an object in equilibrium by recog-

nizing that it is a two-force or three-force member. However, you are not get-

ting something for nothing. Once you have drawn the free-body diagram of a

two-force member as shown in Figs. 5.36b and 5.37b, you cannot obtain any

further information about the forces from the equilibrium equations. When
you require that the lines of action of nonparallel forces acting on a three-

force member be coincident, you have used the fact that the sum of the mo-

ments about a point must be zero and cannot obtain any further information

from that condition.

i
^. F,

^ \

\ F^

(b)

Figure 5.38

(a) The three forces and the plane P.

(b) Determining the moment due to force

F, about L.

(c) If the forces are not parallel, they must

be concurrent.
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Example 5.11

6kN

r/^°-

S
400 mm

700 mm -

Figure 5.39

A Two-Force Member
The L-shaped bar in Fig. 5.39 has a pin support at A and is loaded by a 6-kN

force at B. Neglect the weight of the bar. Determine the angle a and the reac-

tions at A.

Strategy

The bar is a two-force member because it is subjected only to the 6-kN force

at B and the force exerted by the pin support. (If we could not neglect the

weight of the bar, it would not be a two-force member.) We will determine

the angle a and the reactions at A in two ways, first by applying the equilibri-

um equations in the usual way and then by using the fact that the bar is a two-

force member.

Solution

Applying the Equilibrium Equations We draw the free-body diagram of

the bar in Fig. a, showing the reactions at the pin support. Summing moments

about point A, the equilibrium equations are

IF, - A, + 6 cos a = 0,

2F^. = /4,. + 6sina — 0,

6kN

0^

n
(a) The free-body diagram of the bar.

2M,, = (6sina)(0.7) - (6cosa)(0.4) = 0.'(point A)

From the third equation we see that a = arctan (0.4/0.7). In the range

:^ a < 360°, this equation has the two solutions a = 29.7° and

a = 209.7°. Knowing a, we can determine A^ and Ay from the first two equi-

librium equations. The solutions for the two values of a are

and

a = 29.7°, A, = -5.21 kN, A, = -2.98 kN,

a = 209.7°, A, = 5.21 kN, A, = 2.98 kN.

Treating the Bar as a Two-Force Member We know that the 6-kN force

at B and the force exerted by the pin support must be equal in magnitude, op-

posite in direction, and directed along the line between points A and B. The

two possibilities are shown in Figs, b and c. Thus by recognizing that the bar

is a two-force member, we immediately know the possible directions of the

forces and the magnitude of the reaction at A.

In Fig. b we can see that tan a = 0.4/0.7, so a = 29.7° and the compo-

nents of the reaction at A are

A, = -6 cos 29.7° = -5.21 kN

A,. = -6 sin 29.7° -2.98 kN
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a

ewj^e.

6kNj^f)

6k;N

(b), (c) The possible directions of the forces.

In Fig. c, a = 180° + 29.7° = 209.7°, and the components of the reac-

tion at A are

A, = 6 cos 29.7° = 5.21 kN

A.. = 6 sin 29.7° = 2.98 kN

Example 5.12

Two and Three Force Members
The 100-lb weight of the rectangular plate in Fig. 5.40 acts at its midpoint.

Determine the reactions exerted on the plate at B and C.

Strategy

The plate is subjected to its weight and the reactions exerted by the pin sup-

ports at B and C, so it is a three-force member. Furthermore, the bar AB is a

two-force member, so we know that the line of action of the reaction it exerts

on the plate at B is directed along the line between A and B. We can use this

information to simplify the free-body diagram of the plate.

Solution

The reaction exerted on the plate by the two-force member AB must be di-

rected along the line between A and B, and the line of action of the weight is

vertical. Since the three forces on the plate must be either parallel or concur-

rent, their lines of action must intersect at the point P shown in Fig. a. From

the equilibrium equations

2F,. = Bsin45° - Csin45° = 0,

SF, = flcos45° + C cos 45° - 100 = 0,

we obtain the reactions B ^ C = 10J lb.

Figure 5.40

y"
/ \

/ \
/ \

/ \ \/ ^ 1
/ \ 1

/ h ^ 1
/ V \ ]

/ ^ \/ ^\
45°- ? ^ly/h 100 Ih

(a) The free-body diagram of the plate.

The three forces must be concurrent.
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Problems

5.121 The horizontal bar has a mass of 10 kg. Its weight acts at

the midpoint of the bar, and it is supported by a roller support at A
and the cable BC. Use the fact that the bar is a three-force member

to determine the angle a. the tension in the cable BC. and the

magnitude of the reaction at A.

30y --«<J

-2m- P5.121

5.122 The horizontal bar is of negligible weight. Use the fact

that the bar is a three-force member to determine the angle a

necessary for equilibrium.

P5.124

5.125 The weight W = 40 N acts at the center of the disk. The

surfaces are rough. What force F is necessary to lift the disk off

the floor?

150 mm

30°/ ^ Yr
50 mm

P5.125

-4 m- 9m

P5.122

5.126 Use the fact that the horizontal bar is a three-force

member to determine the angle a and the magnitudes of the

reactions at A and B.

5.123 The suspended load weighs 1000 lb. If you neglect its

weight, the structure is a three-force member. Use this fact to

determine the magnitudes of the reactions at A and B. A

5 ft

1 m -2m-
1 P5.126

5.127 The suspended load weighs 600 lb. Use the fact that ABC
is a three-force member to determine the magnitudes of the reac-

tions at A and B.

3 ft

P5.123

5.124 The weight W = 50 lb acts at the center of the disk. Use

the fact that the disk is a three-force member to determine the

tension in the cable and the magnitude of the reaction at the pin

support. P5.127
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5.128 (a) Is the L-shaped bar a three-force member?

(b) Determine the magnitudes of the reactions at A and B.

(c) Are the three forces acting on the L-shaped bar concurrent?

P5.128

5.129 The bucket of the excavator is supported by the two-force

member AB and the pin support at C. Its weight is W = 1500 lb.

What are the reactions at C?

P5.130

5.131 In Problem 5.130, determine the reactions on the member

ACG by using the fact that it is a three-force member.

5.132 A rectangular plate is subjected to two forces A and B
(Fig. a). In Fig. b, the two forces are resolved into components. By
writing equilibrium equations in terms of the components A^.A^,

B^, and fi,, show that the two forces A and B are equal in magni-

tude, opposite in direction, and directed along the line between

their points of application.

(a)

(b) P5.132

P5.129

5.133 An object in equilibrium is subjected to three forces

whose points of application lie on a straight line. Prove that the

forces are coplanar

5.130 The member ACG of the front-end loader is subjected to

a load W = 2 kN and is supported by a pin support at A and the

hydraulic cylinder BC.Treat the hydraulic cylinder as a two-

force member.

(a) Draw the free-body diagrams of the hydraulic cylinder and

the member ACG.
(b) Determine the reactions on the member ACG. P5.133
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:]iiDiiia

^^loiioi Computational Mechanics
The following example and problems are designed for the use of a programmable calculator or computer.

Computational Example 5.13

Figure 5.41

(a) Rotating the beam through an angle a.

(b) The free-body diagram of the beam.

oiaiioD

The beam in Fig. 5.41 weighs 200 lb and is supported by a pin support at A and

the wire BC. The wire behaves like a linear spring with spring constant k =

60 lb/ft and is unstretched when the beam is in the position shown. Determine

the reactions at A and the tension in the wire when the beam is in equilibrium.

x/;
2 ft

1 W
4 ft- 4 ft-

Strategy

When the beam is in equilibrium, the sum of the moments about A due to the

beam's weight and the force exerted by the wire equals zero. We will obtain a

graph of the sum of the moments as a function of the angle of rotation of the

beam relative to the horizontal to determine the position of the beam when it

is in equilibrium. Once we know the position, we can determine the tension

in the wire and the reactions at A.

Solution

Let a be the angle from the horizontal to the centerline of the beam (Fig. a).

The distances b and h are

/? = 8(1 — cos a),

h = 2 + Ssina,

and the length of the stretched wire is

L = Vb- + h\

The tension in the wire is

T ^ k{L - 2).

We draw the free-body diagram of the beam in Fig. b. In terms of the

components of the force exerted by the wire.

7, = - r.
h

T = —T

the sum of the moments about A is

2M^ - (8sina)7;, + (8cosa)r^ - {4cosa)W.
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If we choose a value of a, we can sequentially evaluate these quantities.

Computing 2M^ as a function of a, we obtain the graph shown in Fig. 5.42.

From the graph we estimate that SM^ = when a = 12°. By examining

computed results near 12°,

we estimate that the beam is in equilibrium when a = 11.89°. The corre-

sponding value of the tension in the wire isT = 99. 1 lb.

a SM^ (ft-lb)

11.87° -1.2600

11.88° -0.5925

11.89° 0.0750

11.90° 0.7424

11.91° 1.4099

600

400

^y
^

200 /y
£

^^
y^

i
-200 ^y
-400

^^
^

-600^X

"^°°0
2 4 6 8 10 12 14 16 18 20

o, degrees

To determine the reactions at A, we use the equilibrium equations

2F, = A, + t; = 0,

2F, = A, + T,-W = 0,

obtaining A^ = -4.7 lb and A^ = 101.01b.

Figure 5.42

The sum of the moments as a function of a.

Computational Problems
11lis

5.134 The rectangular plate is held in equilibrium by the

horizontal force F. The weight W acts at the midpoint of the plate.

The ratio b/h = 4. Determine the angle a at which the plate is in

equilibrium for five values of the ratio F/W: 0, 0.5, 1.0, 1.5, and

2. (Assume that < a < 90°.)

c

P5.134

B.138 The mass of the bar is 36 kg and its weight acts at its

midpoint. The spring is unstretched when a = 0, and the spring

constant is ^ = 200 N/m. Determine the values of a in the range

< a < 90° at which the bar is in equilibrium.

4 m

P5.135
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5.136 Consider the system shown in Problem 5.61 . The

distances are a = 2 m and b = \ m. The couple M = 1 kN-m,

and the force F = 2 kN. The spring constant is k = 3 kN/m. The

spring would be unstretched if /? = 0. Determine the distance h

for equilibrium of the horizontal bar and the reactions at A.

5.137 Consider the system shown in Problem 5.62. The bar is

1 m long, and its weight W = 35 N acts at its midpoint. The

distance b = 0.75 m. The spring constant is A: = 100 N/m, and

the spring is unstretched when the bar is vertical. Determine the

angle a and the reactions at A.

5.138 The hydraulic actuator BC exerts a force at C that points

along the line from B to C. Treat A as a pin support. The mass of

the suspended load is 4000 kg. If the actuator BC can exert a

maximum force of 90 kN, what is the smallest permissible value

of a?

5.139 The beam is in equilibrium in the position shown. Each

spring has an unstretched length of 1 m. Determine the distance b

and the reactions at A.

200 N/m

1 m

1 m

P5.139

P5.138

Chapter Summary

Building on our discussions of forces in Chapter 3 and moments in Chapter 4,

in this chapter we have used the equilibrium equations to analyze the forces

and couples acting on many types of objects. We defined the support conven-

tions commonly used in engineering and presented examples of their use. We
discussed situations that can result in an object's being statically indetermi-

nate. Finally, we defined two-force and three-force members. In Chapter 6 we

will use the concepts and methods developed in this chapter to analyze the in-

dividual members of structures, beginning with structures consisting entirely

of two-force members.

When an object is in equilibrium, the following conditions are satisfied:

1. The sum of the forces is zero,

2F = 0. Eq.(5.1)
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2. The sum of the moments about any point is zero,

2M(,„yp„,„,) = 0. Eq. (5.2)

Forces and couples exerted on an object by its supports are called reac-

tions. The other forces and couples on the object are the loads. Common sup-

ports are represented by models called support conventions.

Two-Dimensional Applications

When the loads and reactions on an object in equilibrium form a two-dimen-

sional system of forces and moments, they are related by three scalar equilib-

rium equations:

2F, = 0,

2F, = 0, Eqs. (5.4)-(5.6)

2M(any point) ~ 0-

No more than three independent equilibrium equations can be obtained from

a given two-dimensional free-body diagram.

Support conventions commonly used in two-dimensional applications are

summarized in Table 5.1.

Three-Dimensional Applications

The loads and reactions on an object in equilibrium satisfy the six scalar equi-

librium equations

2F^ = 0, EF^ = 0, 2F. = 0,

2«,=0, 2M,=0, 2«; = 0^
E,s.(5.,6H5.21,

No more than six independent equilibrium equations can be obtained from a

given free-body diagram.

Support conventions commonly used in three-dimensional applications

are summarized in Table 5.2.

Statically Indeterminate Objects

An object has redundant supports when it has more supports than the mini-

mum number necessary to maintain it in equilibrium and improper supports

when its supports are improperly designed to maintain equilibrium under the

applied loads. In either situation, the object is statically indeterminate. The

difference between the number of reactions and the number of independent

equilibrium equations is called the degree of redundancy. Even if an object is

statically indeterminate due to redundant supports, it may be possible to de-

termine some of the reactions from the equilibrium equations.

Two-Force and Three-Force Members

If the system of forces and moments acting on an object is equivalent to two

forces acting at different points, the object is a two-force member. If the ob-

ject is in equilibrium, the two forces are equal in magnitude, opposite in di-

rection, and directed along the line through their points of application. If the

system of forces and moments acting on an object is equivalent to three

forces acting at different points, it is a three-force member. If the object is in

equilibrium, the three forces are coplanar and either parallel or concurrent.
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Review Problems

5.140 Determine the reactions at A and B.

220 mm

>

260 mm

5.142 (a) Draw the free-body diagram of the 50-lb plate, and

explain why it is statically indeterminate.

(b) Determine as many of the reactions at A and B as possible.

400 N

3..
500 mm P5.140

P5.142

5.141 Paleontologists speculate that the stegosaur could stand on

its hind limbs for short periods to feed. Based on the free-body

diagram shown and assuming that m = 2000 kg. determine the

magnitudes of the forces B and C exerted by the ligament-muscle

brace and vertebral column, and determine the angle a.

iQ^^ a^i^^r ^ P

1 iSIW 580

^ F^W mm 1

60 mm/

i

r *

y^
A-
/ 22°

1 \:.-

415 790

mm mm

mg

P5.141
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5.143 The mass of the truck is 4 Mg. Its wheels are locked, and

the tension in its cable is T = 10 kN.

(a) Draw the free-body diagram of the truck.

(b) Determine the normal forces exerted on the truck's wheels

by the road.

P5.143

8.144 Assume that the force exerted on the head of the nail by

the hammer is vertical, and neglect the hammer's weight.

(a) Draw the free-body diagram of the hammer.

(b) If F = 10 lb, what are the magnitudes of the force exerted

on the nail by the hammer and the normal and friction forces

exerted on the floor by the hammer?

5.145 (a) Draw the free-body diagram of the beam,

(b) Determine the reactions at the supports.

200 N-m

(^ :^ J^:

A300N

1 m 1 m- 1 m J

P5.145

5.146 Consider the beam shown in Problem 5.145. First represent

the loads (the 300-N force and the 200-N-m couple) by a single

equivalent force; then determine the reactions at the supports.

5.147 The truss supports a 90-kg suspended object. What are the

reactions at the supports A and Bl

P5.147

P5.144
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5.148 The trailer is parked on a 15° slope. Its

wheels are free to turn. The hitch H behaves like

pin support. Determine the reactions at A and H.

P5.148

5.149 To determine the location of the point where the weight of

a car acts (the center ofmass), an engineer places the car on scales

and measures the normal reactions at the wheels for two values of

a, obtaining the following results.

A, (kN) B(kN)

10°

20°

10.134

10.150

4.357

3.677

What are the distances b and hi

P5.149

5.150 The bar is attached by pin supports to collars that slide on

the two fixed bars. Its mass is 10 kg, it is 1 m in length, and its

weight acts at its midpoint. Neglect friction and the masses of

the collars. The spring is unstretched when the bar is vertical

(a = 0), and the spring constant is A: = 100 N/m. Determine

the values of a in the range s a ^ 60° at which the bar is

in equilibrium.

5.151 The 450-lb ladder is supported by the hydraulic cylinder

AB and the pin support at C. The reaction at B is parallel to the

hydraulic cylinder. Determine the reactions on the ladder.

P5.151

5.152 Consider the crane shown in Problem 5. 138. The hydraulic

actuator BC exerts a force at C that points along the line from B
to C. Treat /I as a pin support. The mass of the suspended load is

6000 kg. If the angle a = 35°, what are the reactions at Al

5.153 The horizontal rectangular plate weighs 800 N and is sus-

pended by three vertical cables. The weight of the plate acts at its

midpoint. What are the tensions in the cables? .

0.5 m

P5.153

5.154 Consider the suspended 800-N plate in Problem 5.153.

The weight of the plate acts at its midpoint. If you represent the

P5.150 reactions exerted on the plate by the three cables by a single
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equivalent force, what is the force, and where does its line of

action intersect the plate?

5.155 The 20-kg mass is suspended by cables attached to three

vertical 2-m posts. Point A is at (0, 1.2, 0) m. Determine the reac-

tions at the built-in support at E.

force member to determine the angle a, the tension in the cable,

and the magnitude of the reaction at A.

5.159 The bicycle brake on the right is pinned to the bicycle's

frame at A. Determine the force exerted by the brake pad on the

wheel rim at B in terms of the cable tension T.

P5.155

5.156 In Problem 5.155, the built-in support of each vertical post

will safely support a couple of 800 N-m magnitude. Based on this

criterion, what is the maximum safe value of the suspended mass?

5.157 The 80-lb bar is supported by a ball and socket support at

i4, the smooth wall it leans against, and the cable BC. The weight

of the bar acts at its midpoint.

(a) Draw the free-body diagram of the bar.

(b) Determine the tension in cable BC and the reactions at A.

Brake pad

Wheel rim

P5.157

5.158 The horizontal bar of weight W is supported by a roller

support at A and the cable BC. Use the fact that the bar is a three-

design Experience The traditional wheelbarrow shown is

designed to transport a load W while being supported by an

upward force F applied to the handles by the user, (a) Use statics

to analyze the effects of a range of choices of the dimensions a

and b on the size of load that could be carried. Also consider the

implications of these dimensions on the wheelbarrow's ease and

practicality of use. (b) Suggest a different design for this classic

device that achieves the same function. Use statics to compare

your design to the wheelbarrow with respect to load-carrying

ability and ease of use.

P5.158



The highway bridge is supported by a truss

structure. In this chapter we describe techniques

for determining the forces and couples acting on

the individual members of structures.
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CHAPTER

In
engineering, the term structure can refer to any object that has the ca-

pacity to support and exert loads. In this chapter we consider structures

composed of interconnected parts, or members. To design such a struc-

ture, or to determine whether an existing one is adequate, you must determine

the forces and couples acting on the structure as a whole as well as on its in-

dividual members. We first demonstrate how this is done for the structures

called trusses, which are composed entirely of two-force members. The fa-

miliar frameworks of steel members that support some highway bridges are

trusses. We then consider other structures, called frames if they are designed

to remain stationary and support loads and machines if they are designed to

move and exert loads.
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Trusses

Figure 6.1

A typical house is supported by trusses

made of wood beams.

We can explain the nature of truss structures such as the beams supporting a

house (Fig. 6.1) by starting with very simple examples. Suppose we pin three

bars together at their ends to form a triangle. If we add supports as shown in

Fig. 6.2a, we obtain a structure that will support a load F. We can construct

more elaborate structures by adding more triangles (Figs. 6.2b and c). The

bars are the members of these structures, and the places where the bars are

pinned together are called the joints. Even though these examples are quite

simple, you can see that Fig. 6.2c, which is called a Warren truss, begins to

resemble the structures used to support bridges and the roofs of houses

(Fig. 6.3). If these structures are supported and loaded at their joints and we
neglect the weights of the bars, each bar is a two-force member. We call such

a structure a truss.

We draw the free-body diagram of a member of a truss in Fig. 6.4a. Be-

cause it is a two-force member, the forces at the ends, which are the sums of

the forces exerted on the member at its joints, must be equal in magnitude,

opposite in direction, and directed along the line between the joints. We call

the force T the axial force in the member. When T is positive in the direction

shown (that is, when the forces are directed away from each other), the mem-
ber is in tension. When the forces are directed toward each other, the member

is in compression.

(a) (b)

Figure 6.2

Making structures by pinning bars together to form triangles.

Pratt Bridge Truss

Howe Roof Truss Pratt Roof Truss

Figure 6.3

Simple examples of bridge and roof structures. (The lines represent members, and

the circles represent joints.)



In Fig. 6.4b, we "cut" the member by a plane and draw the free-body dia-

gram of the part of the member on one side of the plane. We represent the

system of internal forces and moments exerted by the part not included in the

free-body diagram by a force F acting at the point P where the plane inter-

sects the axis of the member and a couple M. The sum of the moments about

P must equal zero, so M = 0. Therefore we have a two-force member, which

means that F must be equal in magnitude and opposite in direction to the

force T acting at the joint (Fig. 6.4c). The internal force is a tension or com-

pression equal to the tension or compression exerted at the joint. Notice the

similarity to a rope or cable, in which the internal force is a tension equal to

the tension applied at the ends.

Although many actual structures, including "roof trusses" and "bridge

trusses," consist of bars connected at the ends, very few have pinned joints.

For example, if you examine a joint of a bridge truss, you will see that the

members are bolted or riveted together so that they are not free to rotate at the

joint (Fig. 6.5). It is obvious that such a joint can exert couples on the mem-
bers. Why are these structures called trusses?

The reason is that they are designed to function as trusses, meaning that

they support loads primarily by subjecting their members to axial forces.

They can usually be modeled as trusses, treating the joints as pinned connec-

tions under the assumption that couples they exert on the members are small

in comparison to axial forces. When we refer to structures with riveted joints

as trusses in problems, we mean that you can model them as trusses.

In the following sections we describe two methods for determining the

axial forces in the members of trusses. The method of joints is usually the

preferred approach when you need to determine the axial forces in all mem-
bers of a truss. When you only need to determine the axial forces in a few

members, the method of sections often results in a faster solution than the

method of joints.

(a)

(c)

Figure 6.4

(a) Each member of a truss is a two-force

member.

(b) Obtaining the free-body diagram of part

of the member.

(c) The internal force is equal and opposite

to the force acting at the joint, and the

internal couple is zero.

Figure 6.5

A joint of a bridge truss.
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The Method of Joints

(a)

Figure 6.6

(a) A Warren truss supporting two loads.

(b) Free-body diagram of the truss.

The method of joints involves drawing free-body diagrams of the joints of a

truss one by one and using the equilibrium equations to determine the axial

forces in the members. Before beginning, it is usually necessary to draw a

free-body diagram of the entire truss (that is, treat the truss as a single object)

and determine the reactions at its supports. For example, let's consider the

Warren truss in Fig. 6.6a, which has members 2 m in length and supports

loads at B and D. We draw its free-body diagram in Fig. 6.6b. From the equi-

librium equations.

2F. 0,

SF, = A, + E - 400 - 800 = 0,

2A/(p„,„,,) = -(1)(400) - (3) (800) + 4£ = 0,

we obtain the reactions A^ = 0. Ay = 500 N, and E = 700 N.

Our next step is to choose a joint and draw its free-body diagram. In

Fig. 6.7a, we isolate joint A by cutting members AB and AC. The terms T^g

and T^(- are the axial forces in members AB and AC, respectively. Although the

directions of the arrows representing the unknown axial forces can be chosen

arbitrarily, notice that we have chosen them so that a member is in tension if

we obtain a positive value for the axial force. We feel that consistently choos-

ing the directions in this way helps avoid errors.

Figure 6.7

(a) Obtaining the free-body diagram of

joint A.

(b) The axial forces on members AB
and AC.

(c) Realistic and simple free-body

diagrams of joint A.

577 N

577 N

500 N

(b)

500 N (c)
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The equilibrium equations for joint A are

2F, = T^c + Tab cos 60° = 0,

2F, = r^Bsin60° + 500 = 0.

Solving these equations, we obtain the axial forces T^g = —577 N and

r^c — 289 N. Member AB is in compression, and member AC is in tension

(Fig. 6.7b).

Although we use a realistic figure for the joint in Fig. 6.7a to help you

understand the free-body diagram, in your own work you can use a simple

figure showing only the forces acting on the joint (Fig. 6.7c).

We next obtain a free-body diagram of joint B by cutting members AB,

EC, and BD (Fig. 6.8a). From the equilibrium equations for joint B,

SF, Tbd + Tgc cos60° + 577 cos 60° = 0,

IF, = -400 + 577 sin 60° - 7^^ sin 60° = 0,

we obtain Tgc = 115N and Tgp = -346 N. Member BC is in tension, and

member BD is in compression (Fig. 6.8b). By continuing to draw free-body

diagrams of the joints, we can determine the axial forces in all of the members.

In two dimensions, you can obtain only two independent equilibrium

equations from the free-body diagram of a joint. Summing the moments

about a point does not result in an additional independent equation because

the forces are concurrent. Therefore when applying the method of joints, you

should choose joints to analyze that are subjected to no more than two

unknown forces. In our example, we analyzed joint A first because it was

subjected to the known reaction exerted by the pin support and two unknown

forces, the axial forces T^g and T^c (Fig- 6.7a). We could then analyze joint B
because it was subjected to two known forces and two unknown forces, Tg^

and Tgp (Fig. 6.8a). If we had attempted to analyze joint B first, there would

have been three unknown forces.

When you determine the axial forces in the members of a truss, your task

will often be simpler if you are familiar with three particular types of joints.

• Truss joints with two coilinear members and no load (Fig. 6.9). The

sum of the forces must equal zero, T^ = Ti. The axial forces are equal.

• Truss joints with two noncollinear members and no load (Fig. 6.10).

Because the sum of the forces in the x direction must equal zero, T2 — 0.

Therefore T, must also equal zero. The axial forces are zero.

4/

(a)

Figure 6.10

(a) A joint with two noncollinear members and no load.

(b) Free-body diagram of the joint.

400 N

¥ X

511^/ ^ • BC

I

I 500 N 700 N I

(a)

346 N 346 N

Figure 6.8

(a) Obtaining the free-body diagram of

joint B.

(b) Axial forces in members BD and BC.

(a)

Figure 6.9

(a) A joint with two coilinear members and

no load.

(b) Free-body diagram of the joint.
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Figure 6.11

(a) A joint with three members, two of

which are collinear, and no load.

(b) Free-body diagram of the joint.

Truss joints with three members, two of which are collinear, and no

load (Fig. 6. 11 ). Because the sum of the forces in the x direction must

equal zero, T^ = 0. The sum of the forces in the y direction must equal

zero, so 7j = T2. The axial forces in the collinear members are equal, and

the axial force in the third member is zero.

^
(a) (b)

Example 6.1

Study Questions

1. What is a truss?

2. What is the method of joints?

3. How many independent equilibrium equations can you obtain from the free-

body diagram of a joint?

Applying the Method of Joints

Determine the axial forces in the members of the truss in Fig. 6. 12.

Solution

Determine the Reactions at the Supports We first draw the free-body

diagram of the entire truss (Fig. a). From the equilibrium equations,

IF, = A, + B = 0,

2F, = ^,-2 = 0,

2M(p„i„,s) = -6^,- (10)(2) =0,

we obtain the reactions A, = -3.33 kN,A, = 2 kN, and B = 3.33 kN.

(a) Free-body

diagram of the entire

truss.

6 m

2kN
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Identify Special Joints Because joint C has three members, two of which

are coUinear, and no load, the axial force in member BC is zero, Tg^ = 0, and

the axial forces in the collinear members AC and CD are equal, T^c ~ ^co-

Draw Free-Body Diagrams of the Joints We know the reaction exerted

on joint A by the support, and joint A is subjected to only two unknown

forces, the axial forces in members AB and AC. We draw its free-body dia-

gram in Fig. b. The angle a = arctan(5/3) = 59.0°. The equilibrium equa-

tions for joint A are

2F^ = r^csina — 3.33 = 0,

2F„ - 2 - rAB TAC COS a = 0.

3.33 kN B

Solving these equations, we obtain T^n = and T^c - 3-89 kN. Because the

axial forces in members AC and CD are equal, Tco = 3.89 kN.

Now we draw the free-body diagram of joint B in Fig. c. (We already

know that the axial forces in members AB and BC are zero.) From the equi-

librium equation

2F, = Tbd + 3.33 = 0,

we obtain Tbd — -3.33 kN. The negative sign indicates that member BD is in

compression.

The axial forces in the members are

Afl:0,

AC: 3.89 kN in tension (T),

fiC:0,

BD: 3.33 kN in compression (C),

CD: 3.89 kN in tension (T).

(b) Free-body diagram of joint A.

(c) Free-body diagram of joint B.
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Example 6.2

Determining the Largest Force a Truss
Will Support
Each member of the truss \n Fig. 6.13 will safely support a tensile force of

10 kN and a compressive force of 2 kN. What is the largest downward load F
that the truss will safely support?

Strategy

This truss is identical to the one we analyzed in Example 6. 1 . By applying the

method of joints in the same way, the axial forces in the members can be de-

termined in terms of the load F. The smallest value of F that will cause a ten-

sile force of 10 kN or a compressive force of 2 kN in any of the members is

the largest value of F that the truss will support.

Solution

By using the method of joints in the same way as in Example 6.1. we obtain

the axial forces

AB:0.

AC: IMF (J),

BC:0,

BD: 1.67F(C),

CD: 1.94F(T).

For a given load F, the largest tensile force is 1 .94F (in members AC and

CD) and the largest compressive force is 1 .61F (in member BD). The largest safe

tensile force would occur when 1.94F = 10 kN or when F - 5.14 kN. The

largest safe compressive force would occur when \.67F — 2 kN or when F =

1 .20 kN. Therefore the largest load F that the truss will safely support is 1 .20 kN.

Example 6.3

I I I I I
U

—

b—4-

—

b—4-

—

b—-I-

—

b—

J

^-

Figure 6.14

^1 Application to Engineering:

Bridge Design

The loads a bridge structure must support and pin supports where the struc-

ture is to be attached are shown in Fig. 6.14(1). Assigned to design the struc-

ture, a civil engineering student proposes the structure shown in Fig. 6.14(2).

What are the axial forces in the members?

Solution

The vertical members AG, BH, CI, DJ, and EK are subjected to compressive

forces of magnitude F. From the free-body diagram of joint C, we obtain

Tgc = T(^D
~ ~"1-93F. We draw the free-body diagram of joint B in Fig. a.

3^

2ft

-^ -

(1)
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" IF IF

2b

(2) (a) Free-body diagram of joint B.

From the equilibrium equations

2Fj = —Tab cos a + Tgc cos 15° = 0,

IFy = —r^gsina + 7^^- sin 15° - F - 0,

we obtain T^g = —2.39F and a = 38.8°. By symmetry, To^ = 7^^. The axial

forces in the members are shown in Table 6. 1

.

design Issues

The bridge was an early application of engineering. Although initially the so-

lution was as primitive as laying a log between the banks, engineers con-

structed surprisingly elaborate bridges in the remote past. For example,

archaeologists have identified foundations of the seven piers of a 120-m

(400-ft) highway bridge over the Euphrates that existed in Babylon at the

time of Nebuchadnezzar II (reigned 605-562 B.C.).

The basic difficulty in bridge design is that a single beam extended be-

tween the banks will fail if the distance between banks, or span, is too large.

To meet the need for bridges of increasing strength and span, civil engineers

created ingenious and aesthetic designs in antiquity and continue to do so

today.

The bridge structure proposed by the student in Example 6.3. called an

arch, is an ancient design. Notice in Table 6.1 that all the members of the

structure are in compression. Because masonry (stone, brick, or concrete) is

weak in tension but very strong in compression, many bridges made of these

materials were designed with arched spans in the past. For the same reason,

modem concrete bridges are often built with arched spans (Fig. 6.15).

Table 6.1 Axial forces in the members

of the bridge structure.

Members Axial Force

AG, BH, CI, DJ, EK F (C)

AB, DE 2.39F (C)

BCCD 1.93F (C)

Figure 6.15

A bridge along Highway 1 in California

that is supported by concrete arches

anchored in rock.
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Figure 6.16

A Pratt truss supporting a bridge.

Figure 6.17

The Forth Bridge (Scotland, 1890) is an example of a

large truss bridge. Each main span is 520 m long.

Table 6.2 Axial forces in the members

of the Pratt truss.

Members Axial Force

AB, BC, CD, DE \.5F (T)

AG. EI 2.12F (C)

CG.CI 0.71F (T)

GH.HI 2F (C)

BG.DI F (T)

CH

Table 6.3 Axial forces in the members

of the suspension structure.

Members Axial Force

BH. CI, DJ
AB,DE
BCCD

F (T)

2.39F (T)

1.93F (T)

t: t: t

Figure 6.18

A suspension structure supporting a bridge.

Unlike masonry, wood and steel can support substantial forces in both

compression and tension. Beginning with the wooden truss bridges designed

by the architect Andrea Palladio (1518-1580), both of these materials have

been used to construct a large variety of trusses to support bridges. For exam-

ple, the forces in Fig. 6.14(1) can be supported by the Pratt truss shown in

Fig. 6.16. Its members are subjected to both tension and compression (Table

6.2). The Forth Bridge (Fig. 6.17) has a truss structure.

Truss structures are too heavy for the largest bridges. (The Forth Bridge

contains 58.000 tons of steel.) By taking advantage of the ability of relatively

light cables to support large tensile forces, civil engineers use suspension struc-

tures to bridge very large spans. The system of five forces we are using as an ex-

ample can be supported by the simple suspension structure in Fig. 6.18. In

effect, the compression arch used since antiquity is inverted. (Compare Figs.

6.14(2) and 6.18.) The loads in Fig. 6.18 are "suspended" from members AB,

BC, CD. and DE. Every member of this structure except the towers AG and EK
is in tension (Table 6.3). The largest existing bridges, such as the Golden Gate

Bridge (Fig. 6.19), consist of cable-suspended spans supported by towers.

Figure 6.19

The Golden Gate Bridge

(California) has a central suspended

span 1280 m (4200 ft) in length.
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Problems

6.1 Determine the axial forces in the members of the truss and

indicate whether they are in tension (T) or compression (C).

Strategy: Draw a free-body diagram of joint A. By writing

the equiUbrium equations for the joint, you can determine the

axial forces in the two members.

Q) 6.5 (a) Let the dimension h = 0.1 m. Determine the axial forces

in the members, and show that in this case this truss is equivalent

to the one in Problem 6.4.

(b) Let the dimension h = 0.5 m. Determine the axial forces in

the members. Compare the results to (a), and observe the drama-

tic effect of this simple change in design on the maximum ten-

sile and compressive forces to which the members are subjected.

P6.1

6.2 The truss supports a 10-kN load at C.

(a) Draw the free-body diagram of the entire truss, and

determine the reactions at its supports.

(b) Determine the axial forces in the members. Indicate whether

they are in tension (T) or compression (C).

P6.5

10 kN
P6.2

6.3 In Example 6.1, suppose that the 2-kN load is applied at D in

the horizontal direction, pointing from D toward B. What are the

axial forces in the members?

6.4 Determine the axial forces in the members of the truss.

6.6 The load F = 10 kN. Determine the axial forces in the

members.

P6.6

0.3 m

0.4 m

P6.4

6.7 Consider the truss in Problem 6.6. Each member will safely

support a tensile force of 1 50 kN and a compressive force of

30 kN. What is the largest downward load F that the truss will

safely support at D?

6.8 The Howe and Pratt bridge trusses are subjected to

identical loads.

(a) In which truss does the largest tensile force occur? In what

member(s) does it occur, and what is its value?

(b) In which truss does the largest compressive force occur? In

what member(s) does it occur, and what is its value?
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P6.8

6.12 If the loads on the truss shown in Problem 6. 1 1 are

Fi = 6 kN and Fi = 10 kN, what are the axial forces in members

AB, BC. and fiD?

6.13 The truss supports loads at C and E. If f = 3 kN, what are

the axial forces in members BC and BE?

' IF P6.13

6.9 The truss shown is part of an airplane's internal structure.

Determine the axial forces in members BC. BD. and BE.

14kN

P6.9

6.10 For the truss in Problem 6.9, determine the axial forces in

members DF. EF. and EG.

6.11 The loads F, = f; = 8 kN. Determine the axial forces in

members BD. BE. and BG.

6.14 Consider the truss in Problem 6.13. Each member will

safely support a tensile force of 28 kN and a compressive force of

12 kN. Taking this criterion into account, what is the largest safe

(positive) value of F?

6.15 The truss is a preliminary design for a structure to attach one

end of a stretcher to a rescue helicopter. Based on dynamic

simulations, the design engineer estimates that the downward forces

the stretcher will exert will be no greater than 360 lb at A and at B.

What are the resulting axial forces in members CE. DE, and EGl

-4 m- -4m-
P6.ll

P6.15

6.16 Upon learning of an upgrade in the helicopter's engine, the

engineer designing the truss shown in Problem 6.15 does new

simulations and concludes that the downward forces the stretcher

will exert at A and at B may be as large as 400 lb. What are the

resulting axial forces in members DE, DF, and DG?
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6.17 Determine the axial forces in the members in terms of the

weight W.

P6.17

!> 6.18 Consider the truss in Problem 6.17. Each member will

safely support a tensile force of 6 kN and a compressive force

of 2 kN. Use this criterion to determine the largest weight W the

truss will safely support.

6.19 The loads F, = 600 lb and Fo = 300 lb. Determine the

axial forces in members AE, BD, and CD.

P6.21

6.22 The Warren truss supporting the walkway is designed to

support vertical 50-kN loads at B, D. F, and H. If the truss is

subjected to these loads, what are the resulting axial forces in

members BC, CD, and CEI

P6.22

6ft

P6.19

6.23 For the Warren truss in Problem 6.22, determine the axial

forces in members DF, EF, and FG.

6.24 The Pratt bridge truss supports five forces (F = 300 kN).

The dimension Z. = 8 m. Determine the axial forces in members

BC, BI, and BJ.

P6.24

6.20 Consider the truss in Problem 6.19. The loads F, = 450 lb

and F. = 150 lb. Determine the axial forces in members AB, AC, 6-25 For the Pratt bridge truss in Problem 6.24, determine the

and BC. ^'^'^l forces in members CD, CJ, and CK.

6.21 Each member of the truss will safely support a tensile force 6.26 The Howe truss helps support a roof. Model the supports at

of 4 kN and a compressive force of 1 kN. Determine the largest A and G as roller supports. Determine the axial forces in members

mass m that can safely be suspended. AB, BC. and CD.
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8001b

600 lb I 600 lb

4001b

Q) 6.29 (a) Design a truss attached to the supports A and B that

supports the loads applied at points C and D.

(b) Determine the axial forces in the members of the truss you

designed in (a).

[^ 4 ft ^|— 4 ft ^1^ 4 ft -4*- 4 ft-^ 4 ft ^1^ 4 ft -^

P6.26

6.27 The plane truss forms part of the supports of a crane on an

offshore oil platform. The crane exerts vertical 75-kN forces on

the truss at S, C, and D. You can model the support at /I as a pin

support and model the support at £ as a roller support that can

exert a force normal to the dashed line but cannot exert a force

parallel to it. The angle a = 45°. Determine the axial forces in

the members of the truss.

-2m-

>.

1>.

-3 m-

2m

Im

D

2kN 2kN P6.29

Q) 6.30 Suppose that you want to design a truss supported at A and

B (Fig. a) to support a 3-kN downward load at C. The simplest

design (Fig. b) subjects member AC to a 5-kN tensile force.

Redesign the truss so that the largest tensile force is less than 3 kN.

ti

3.4 m P6.27

Q) 6.28 (a) Design a truss attached to the supports A and B that

supports the loads applied at points C and D.

(b) Determine the axial forces in the members of the truss you

designed in (a).

.2 m

f

C

3kN

1.6m

(a) (b)

P6.30

Problems 6.31-6.33 are related to Example 6.3.

1 1000 lb

4 ft

K
5ft-

^
-5 ft- -5 ft-

D

6.31 The bridge structure shown in Fig. 6.14 can be given a

higher arch by increasing the 15° angles to 20°. If this is done,

what are the axial forces in members AB, BC, CD, and D£?
Compare your answers to the values in Table 6. 1

.

6.32 Determine the axial forces in the Pratt truss in Fig. 6.16 and

confirm the values in Table 6.2.

6.33 Determine the axial forces in the suspension bridge

structure in Fig. 6.18, including the reactions exerted on the

P6.28 towers, and confirm the values in Table 6.3.

20001b

2 ft

_L_
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The Method of Sections

When we need to know the axial forces only in certain members of a truss,

we often can determine them more quickly using the method of sections than

using the method of joints. For example, let's reconsider the Warren truss we

used to introduce the method of joints (Fig. 6.20a). It supports loads at B and

D, and each member is 2 m in length. Suppose that we need to determine

only the axial force in member BC.

(a) (b)

Figure 6.20

(a) A Warren truss supporting two loads.

(b) Free-body diagram of the truss, showing the reactions at the supports.

Just as in the method of joints, we begin by drawing a free-body diagram

of the entire truss and determining the reactions at the supports. The results of

this step are shown in Fig. 6.20b. Our next step is to cut the members AC,

BC, and BD to obtain a free-body diagram of a part, or section, of the truss

(Fig. 6.21). Summing moments about point B, the equilibrium equations for

the section are

^F. = T,c + T,''bd + rBcCos60° = 0,

2F, = 500 - 400 - 7Bcsin60° = 0,

2M(poi„,B) = 7;c(2sin60°) - (500) (2 cos 60°) = 0.

Solving them, we obtain T^c = 289 N, Tgc = 115 N, and Tgo = -346 N.

Notice how similar this method is to the method of joints. Both methods

involve cutting members to obtain free-body diagrams of parts of a truss. In

the method of joints, we move from joint to joint, drawing free-body dia-

grams of the joints and determining the axial forces in the members as we go.

In the method of sections, we try to obtain a single free-body diagram that al-

lows us to determine the axial forces in specific members. In our example, we
obtained a free-body diagram by cutting three members, including the one

(member BC) whose axial force we wanted to determine.

In contrast to the free-body diagrams of joints, the forces on the free-

body diagrams used in the method of sections are not usually concurrent, and

as in our example, we can obtain three independent equilibrium equations.

Although there are exceptions, it is usually necessary to choose a section that

requires cutting no more than three members, or there will be more unknown

axial forces than equilibrium equations.

Figure 6.21

Obtaining a free-body diagram of a section

of the truss.
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Example 6.4

Applying the Method of Sections
The truss in Fig. 6.22 supports a lOO-kN load. The horizontal members are

each 1 m in length. Determine the axial force in member CJ, and state whether

it is in tension or compression.

Figure 6.22 100 kN

Strategy

We need to obtain a section by cutting members that include member CJ. By

cutting members CD, CJ, and IJ, we will obtain a free-body diagram with

three unknown axial forces.

(a) Obtaining the

section.

Solution

To obtain a section (Fig. a), we cut members CD, CJ, and IJ and draw the

free-body diagram of the part of the truss on the right side of the cuts. From

the equilibrium equation

2F, = rc;Sin45° - 100 = 0,

we obtain T^j = 141.4 kN. The axial force in member CJ is 141.4 kN (T).

100 kN

^^M^
IM
100 kN

Discussion

Notice that by using the section on the right side of the cuts, we did not need

to determine the reactions at the supports A and G.
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Example 6.5

Choosing an Appropriate Section

Determine the axial forces in members DG and BE of the truss in Fig. 6.23.

Figure 6.23

Strategy

An appropriate choice of section is not obvious, and it isn't clear beforehand

that we can determine the requested information by the method of sections.

We can't obtain a section that involves cutting members DG and BE without

cutting more than three members. However, cutting members DG, BE, CD,

and BC results in a section with which we can determine the axial forces in

members DG and BE even though the resulting free-body diagram is statically

indeterminate.

Solution

Determine the Reactions at the Supports We draw the free-body dia-

gram of the entire truss in Fig. a. From the equilibrium equations,

2F< = A, = 0,

^F, = A, + K - E - 2F - E -- 0,

2M(p<,i„,,) = -EL - 2E{2L) - F(3L) + /r(4L) = 0,

we obtain the reactions A^ — 0, A, = 2F, and K = 2E.

Choose a Section In Fig. b, we obtain a section by cutting members DG,
CD. BC. and BE. Because the lines of action of T„^. T^c 'ind Tfo pass

through point B, we can determine 7}x; by summing moments about B:

IM,(point B)

The axial force T,DG

-2FL - T^{2L) = 0.

E. Then from the equilibrium equation

0,

we see that 7g£ = —TpQ = E. Member DG is in compression, and member
BE is in tension.

(a) Free-body diagram of the entire truss.
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(b) A section of the truss obtained by

passing planes through members DG. CD.

BC. and BE.
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Problems

6.34 The truss supports a 100-kN load at J. The horizontal

members are each 1 m in length.

(a) Use the method of joints to determine the axial force in

member DG.

(b) Use the method of sections to determine the axial force in

member DG.

°J °J °*
f

F C H \

100 kN

P6.34

6.35 For the truss in Problem 6.34. use the method of sections to

determine the axial forces in members BC. CF. and FG.

6.36 Use the method of sections to determine the axial forces in

members AB. BC, and CE.

f2F P6.36

6.37 The truss supports loads at A and H. Use the method of

sections to determine the axial forces in members CE, BE, and

BD.

6.38 For the truss in Problem 6.37, use the method of sections to

determine the axial forces in members EG. EF, and DF.

6.39 For the Howe and Pratt trusses, use the method of sections

to determine the axial force in member BC.

Howe

Pratt P6.39

6.40 For the Howe and Pratt trusses in Problem 6.39, determine

the axial force in member HI.

6.41 The Pratt bridge truss supports five forces F = 340 kN.

The dimension L = 8 m. Use the method of sections to determine

the axial force in member JK.

P6.37

P6.41

6.42 For the Pratt bridge truss in Problem 6.41 , use the method

of sections to determine the axial force in member EK.

6.43 The walkway exerts vertical 50-kN loads on the Warren

truss at B. D, F, and H. Use the method of sections to determine

the axial force in member CE.



P6.43

6.44 The walkway in Problem 6.43 exerts equal vertical loads

on the Wan-en tniss at B. D. F. and H. Use the method of

sections to determine the maximum allowable value of each

vertical load if the magnitude of the axial force in member FG is

not to exceed 100 kN.

6.45 The mass w = 120 kg. Use the method of sections to

determine the axial forces in members BD, CD, and CE.

P6.45

6.46 For the truss in Problem 6.45, use the method of sections to

determine the axial forces in members AC, BC, and BD.

6.47 The Howe truss helps support a roof. Model the supports at

A and G as roller supports.

(a) Use the method of joints to determine the axial force in

member BI.

(b) Use the method of sections to determine the axial force in

member BI.

2kN

|-^ 2 m * 2 m '[' 2 m » 2 m » « 2 m - - 2 m -^
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6.48 Consider the truss in Problem 6.47. Use the method of

sections to determine the axial force in member EJ.

6.49 Use the method of sections to determine the axial force in

member EF.

10 kip

12 ft-
P6.49

6.50 Consider the truss in Problem 6.49. Use the method of

sections to determine the axial force in member FG.

6.51 The load F = 20 kN and the dimension L = 2 m. Use the

method of sections to determine the axial force in member HK.
Strategy: Obtain a section by cutting members HK, HI, IJ.

and JM. You can determine the axial forces in members HK and

JM even though the resulting free-body diagram is statically

indeterminate.

P6.51

P6.47
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6.52 The weight of the bucket is W = 1000 lb. The cable passes

over pulleys at A and D.

(a) Determine the axial forces in members FG and HI.

(b) By drawing free-body diagrams of sections, explain why the

axial forces in members FG and HI are equal.

P6.52

6.53 Consider the truss in Problem 6.52. The weight of the

bucket is IV = 1000 lb. The cable passes over pulleys at A and D.

Determine the axial forces in members IK and JL.

6.54 The truss supports loads at A'. P. and R. Determine the

axial forces in members IL and KM.

P6.54

6.55 Consider the truss in Problem 6.54. Determine the axial

forces in members HJ and GI.

6.56 Consider the truss in Problem 6.54. By drawing free-body

diagrams of sections, explain why the axial forces in members

DE, FG, and HI are zero.

Space Trusses

We can form a simple three-dimensional structure by connecting six bars at

their ends to obtain a tetrahedron, as shown in Fig. 6.24a. By adding mem-

bers, we can obtain more elaborate structures (Figs. 6.24b and c). Three-

dimensional structures such as these are called space trusses if they have

joints that do not exert couples on the members (that is, the joints behave like

ball and socket supports) and they are loaded and supported at their joints.

Space trusses are analyzed by the same methods we described for two-dimen-

sional trusses. The only difference is the need to cope with the more compli-

cated geometry.

Figure 6.24

Space trusses with 6, 9. and 12 members. (a) (c)

Consider the space truss in Fig. 6.25a. Suppose that the load

F = -2i - 6j - k (kN). The joints A. B. and C rest on the smooth floor.

Joint A is supported by the comer where the smooth walls meet, and joint C
rests against the back wall. We can apply the method of joints to this truss.
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First we must determine the reactions exerted by the supports (the floor

and walls). We draw the free-body diagram of the entire truss in Fig. 6.25b.

rhe corner can exert three components of force at A, the floor and wall can

exert two components of force at C, and the floor can exert a normal force at

B. Summing moments about .4, the equilibrium equations are

2F, = A, -2 = 0,

2F, = A, + B, + C, - 6 = 0,

SF- = A. + C. - 1 = 0,

IM,(point A) (r,B X S,j) + [r^c X (CJ + Ck)] + (r^^ X F

• j k

2 3 +

B,

1 J

4

C

k

c.

+
J

3

-2 -6 -1

= (-3B, + 3)i + (-4C)j

+ (2B, + 4C, - 6)k = 0.

Solving these equations, we obtain the reactions y4,. — 2 kN, Ay = 4 kN,

A, = 1 kN, B, = 1 kN, C, = 1 kN, and C. = 0.

In this example, we can determine the axial forces in members AC, BC,

and CD from the free-body diagram of joint C (Fig. 6.25c). To write the equi-

librium equations for the joint, we must express the three axial forces in terms

of their components. Because member AC lies along the x axis, we express

the force exerted on joint C by the axial force T^c ^s the vector -T^c'- Let Tcb

be the position vector from C to B:

TcB = (2 - 4)i + (0 - 0)j + (3 - 0)k = -2i + 3k (m).

Dividing this vector by its magnitude to obtain a unit vector that points from

C toward B,

^CB ~
^CB

'CB|

= -0.555i + 0.832k,

we express the force exerted on joint C by the axial force Tgc as the vector

Tbc^cb = 7;c(-0.555i + 0.832k).

In the same way, we express the force exerted on joint C by the axial force

Tco as the vector

7cD(-0.535i + 0.802J + 0.267k).

Setting the sum of the forces on the joint equal to zero,

-TacI + 7"Bc(-0-555i + 0.832k)

+ rcD(-0.535i + 0.802J + 0.267k) + (l)j = 0,

(a)

(b)

(c)

Figure 6.25

(a) A space truss supporting a load F.

(b) Free-body diagram of the entire truss.

(c) Obtaining the free-body diagram of

joint C.
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we obtain the three equihbrium equations

SF, = -T^c - 0.555Tbc - 0.535Tcd = 0,

2F, = O.miTcD +1=0,

Sf: = 0.8327'ec + 0.261Tcd = 0.

Solving these equations, the axial forces are 7^^ - 0.444 kN, Tg^ = 0.401 kN,

and TcD = -1.247 kN. Members AC and BC are in tension, and member CD
is in compression. By continuing to draw free-body diagrams of the joints, we
can determine the axial forces in all the members.

As our example demonstrates, three equilibrium equations can be ob-

tained from the free-body diagram of a joint in three dimensions, so it is usu-

ally necessary to choose joints to analyze that are subjected to known forces

and no more than three unknown forces.

Problems

6.57 The mass of the suspended object is 900 kg. Determine the

axial forces in the bars AB and AC.

Strategy: Draw the free-body diagram of joint A.

6.60 The space truss supports a vertical load F at A. Each

member is of length L, and the truss rests on the horizontal

surface on roller supports at B, C, and D. Determine the axial

forces in members AB, AC, and AD.

B (0. 0,

P6.60

PS.57

6.58 The space truss supports a vertical 10-kN load at D. The

reactions at the supports at joints A, B. and C are shown. What are

the axial forces in members AD, BD, and CDl

6.61 For the truss in Problem 6.60, determine the axial forces in

members AB, BC, and BD.

6.62 The space truss has roller supports at B. C. and D and

supports a vertical 800-lb load at A. What are the axial forces in

members AB, AC, and ADl

I 800 lb

* .4 (4. 3. 4) ft

P6.58

6.59 Consider the space truss in Problem 6.58. The reactions at

the supports at joints A, B, and C are shown. What are the axial

forces in members AB. AC, and ADl P6.62



6.4 Space Trusses 283

6.63 The space truss shown models an airplane's landing gear. It

has ball and socket supports at C, D, and E. If the force exerted at

A by the wheel is F = 40j (kN), what are the axial forces in mem-

bers Afi, AC, and ADl

E (0.0.8.0)m

6.66 The free-body diagram of the part of the construction crane

to the left of the plane is shown. The coordinates (in meters) of

the joints A, B, and C are (1.5, 1.5, 0), (0, 0. 1), and (0, 0. -1 ),

respectively. The axial forces Pi . A' iind Py are parallel to the

X axis. The axial forces P4, P5. and P^ point in the directions of the

unit vectors

64 = 0.640i - 0.640J - 0.426k,

e, = 0.640 i - 0.640j + 0.426 k,

e^ = 0.832i - 0.555k.

The total force exerted on the free-body diagram by the weight

of the crane and the load it supports is —F j = —44j (kN) acting

at the point (-20, 0, 0) m. What is the axial force P3?

Strategy: Use the fact that the moment about the line that

passes through joints A and B equals zero.

(1.1,-0.4, 0)m

P6.63

6.64 If the force exerted at point A of the truss in Problem 6.63

is F = lOi + 60j + 20k (kN), what are the axial forces in

members EC, ED, and EEl

6.65 The space truss is supported by roller supports on the

horizontal surface at C and D and a ball and socket support at E.

The y axis points upward. The mass of the suspended object is

120 kg. The coordinates of the joints of the truss are A:

(1.6, 0.4, 0) m, B: (1.0, 1.0, -0.2) m, C: (0.9, 0, 0.9) m, D:

(0.9, 0, -0.6) m, and E: (0. 0.8, 0) m. Determine the axial forces

in members AB, AC, and AD.

P6.66

6.67 In Problem 6.66, what are the axial forces P\, P^, and P5?

Strategy: Write the equilibrium equations for the entire free-

PS.65 body diagram.
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6.68 The mirror housing of the telescope is

supported by a 6-bar space truss. The mass

of the housing is 3 Mg (megagrams), and its

weight acts at G. The distance from the axis

of the telescope to points A. B. and C is 1 m,

and the distance from the axis to points D,

E. and F is 2.5 m. If the telescope axis is

vertical (a = 90°), what are the axial forces

in the members of the truss?

6.69 Consider the telescope described in

Problem 6.68. Determine the axial forces

in the members of the truss if the angle a

between the horizontal and the telescope

axis is 20°.

Mirror housing

END VIEW P

/
60°^^|—..^ 60°

P6.68

Frames and Machines

Many structures, such as the frame of a car and the human structure of bones,

tendons, and muscles (Fig. 6.26), are not composed entirely of two-force

members and thus cannot be modeled as trusses. In this section we consider

structures of interconnected members that do not satisfy the definition of a

truss. Such structures are called /ra/n^5 if they are designed to remain station-

ary and support loads and machines if they are designed to move and apply

loads.

When trusses are analyzed by cutting members to obtain free-body dia-

grams of joints or sections, the internal forces acting at the "cuts" are simple

axial forces (see Fig. 6.4). This is not generally true for frames or machines,

and a different method of analysis is necessary. Instead of cutting members,

you isolate entire members, or in some cases combinations of members, from

the structure.

(a) (b)

Figure 6.26

The internal structure of a person

(a) and a car's frame (b) are not

trusses.
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To begin analyzing a frame or machine, we draw a free-body diagram of

tiie entire structure (that is, treat the structure as a single object) and determine

the reactions at its supports. In some cases the entire structure will be statical-

ly indeterminate, but it is helpful to determine as many of the reactions as pos-

sible. We then draw free-body diagrams of individual members, or selected

combinations of members, and apply the equilibrium equations to determine

the forces and couples acting on them. For example, let's consider the station-

ary structure in Fig. 6.27. Member BE is a two-force member, but the other

three members

—

ABC, CD, and DEG—are not. This structure is a frame. Our

objective is to determine the forces on its members.

Analyzing the Entire Structure

We draw the free-body diagram of the entire frame in Fig. 6.28. It is statically

indeterminate: There are four unknown reactions, A^, Ay, G^, and G,, where-

as we can write only three independent equilibrium equations. However, no-

tice that the lines of action of three of the unknown reactions intersect at A.

By summing moments about A,

IM, point A) 2G, + (1)(8) - (3)(6) = 0,

we obtain the reaction G^ = 5 kN. Then from the equilibrium equation

2F, = A, + G, + 8 = 0,

we obtain the reaction A^ = —13 kN. Although we cannot determine A^. or G,

from the free-body diagram of the entire structure, we can do so by analyzing

the individual members.

Analyzing the Members

Our next step is to draw free-body diagrams of the members. To do so. we treat

the attachment of a member to another member just as if it were a support.

Looked at in this way, we can think of each member as a supported object of

the kind analyzed in Chapter 5. Furthermore, the forces and couples the mem-
bers exert on one another are equal in magnitude and opposite in direction. A
simple demonstration is instructive. If you clasp your hands as shown in

Fig. 6.29a and exert a force on your left hand with your right hand, your left

hand exerts an equal and opposite force on your right hand (Fig. 6.29b). Simi-

larly, if you exert a couple on your left hand, your left hand exerts an equal and

opposite couple on your right hand.

Figure 6.27

A frame supporting two loads.

--1 m-^-^l m-»-^l m-H

Figure 6.28

Obtaining the free-body diagram of the

entire frame.

^
(a) (b)

Figure 6.29

Demonstrating Newton's third law:

(a) Clasp your hands and pull on your left

hand.

(b) Your hands exert equal and opposite

forces.
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f

In Fig. 6.30 we "disassemble" the frame and draw free-body diagrams of

its members. Observe that the forces exerted on one another by the members i

are equal and opposite. For example, at point C on the free-body diagram of

member ABC, the force exerted by member CD is denoted by the compo-

nents Cj, and Cy. We can choose the directions of these unknown forces arbi-

trarily, but once we have done so, the forces exerted by member ABC on

member CD at point C must be equal and opposite, as shown.

Figure 6.30

Obtaining the free-body diagrams of the

members.

i

1
(b)

Figure 6.31

Free-body diagram of member BE:

(a) Not treating it as a two-force member.

(b) Treating it as a two-force member.

We need to discuss two important aspects of these free-body diagrams

before completing the analysis.

Two-Force Members Member BE is a two-force member, and we have

taken this into account in drawing its free-body diagram in Fig. 6.30. The

force T is the axial force in member BE, and an equal and opposite force is

subjected on member ABC at B and on member GED at E.

Recognizing two-force members in frames and machines and drawing

their free-body diagrams as we have done will reduce the number of un-

knowns and will greatly simplify the analysis. In our example, if we did not

treat member BE as a two-force member, its free-body diagram would have

four unknown forces (Fig. 6.31a). By treating it as a two-force member

(Fig. 6.31b), we reduce the number of unknown forces by three.

Loads Applied at Joints A question arises when a load is applied at a

joint: Where does the load appear on the free-body diagrams of the individual

members? The answer is that you can place the load on a?n' one of the mem-

bers attached at the joint. For example, in Fig. 6.27, the 6-kN load acts at the

joint where members ABC and CD are connected. In drawing the free-body

diagrams of the individual members (Fig. 6.30), we assumed that the 6-kN

load acted on member ABC. The force components C, and C, on the free-

body diagram of member ABC are the forces exerted by the member CD.
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To explain why we can draw the free-body diagrams in this way, let us

assume that the 6-kN force acts on the pin connecting members ABC and

CD, and draw separate free-body diagrams of the pin and the two members

(Fig. 6.32a). The force components C, and C[ are the forces exerted by the

pin on member ABC, and C, and C, are the forces exerted by the pin on

member CD. If we superimpose the free-body diagrams of the pin and mem-

ber ABC, we obtain the two free-body diagrams in Fig. 6.32b, which is the

way we drew them in Fig. 6.30. Alternatively, by superimposing the free-

body diagrams of the pin and member CD, we obtain the two free-body dia-

grams in Fig. 6.32c.

Thus if a load acts at a joint, it can be placed on any one of the members

attached at the joint when drawing the free-body diagrams of the individual

members. Just make sure not to place it on more than one member.

To detect errors in the free-body diagrams of the members, it is helpful to

"reassemble" them (Fig. 6.33a). The forces at the connections between the

members cancel (they are internal forces once the members are reassembled),

and the free-body diagram of the entire structure is recovered (Fig. 6.33b).

^ 6kN

f;^"^

I -^=1 I
6kN

(a)

6kN

C. C.

U
(b)

|6kN

f °)-

C. C'

(c)

Figure 6.32

(a) Drawing free-body diagrams of the pin

and the two members.

(b) Superimposing the pin on member

ABC.

(c) Superimposing the pin on member CD.

(b)

Figure 6.33

(a) "Reassembling" the free-body diagrams

of the individual members.

(b) The free-body diagram of the entire

frame is recovered.
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Our final step is to apply the equilibrium equations to the free-body dia-

grams of the members (Fig. 6.34). In two dimensions, we can obtain three in-

dependent equilibrium equations from the free-body diagram of each member

of a structure that we do not treat as a two-force member. (By assuming that

the forces on a two-force member are equal and opposite axial forces, we

have already used the three equilibrium equations for that member.) In this

example, there are three members in addition to the two-force member, so we

can write (3) (3) = 9 independent equilibrium equations, and there are 9 un-

known forces: A^, A^., C^. Q . D,, D^ , G,, G^, and T.

A
^1 m-

|6kN

-2m-

C.

(a)

JUUl
*-lm-

£ D

^1 m-H

D

(b)

Figure 6.34

Free-body diagrams of the members. (c)

Recall that we determined that A, = -13 kN and G, = 5 kN from our

analysis of the entire structure. The equilibrium equations we obtained from

the free-body diagram of the entire structure are not independent of the equi-

librium equations obtained from the free-body diagrams of the members, but

by using them to determine /\, and G,, we get a head start on solving the

equations for the members. Consider the free-body diagram of member ABC
(Fig. 6.34a). Because we know A,, we can determine C, from the equation

2F. = A,. + C 0,

obtaining C, — —A^ — 13 kN. Now consider the free-body diagram of GED
(Fig. 6.34b). We can determine D, from the equation

2f,. = G, + D, 0,

obtaining D, - -G, = -5 kN. Now consider the free-body diagram of mem-

ber CD (Fig. 6.34c). Because we know C,, we can determine Q by summing

moments about D:

1M. point D)
= (2)C, -(l)C,, -(1)(8)=0.
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We obtain Q = 18 kN. Then from the equation

2f, = -q - A = 0,

we find that D,. — —C, = -18 kN. Now we can return to the free-body dia-

grams of members ABC and GED to determine A, and G,.. Summing mo-

ments about point B of member ABC,

2M(p„;„,«) = -{l)A, + {2)q. - (2)(6) = 0,

we obtain Ay = 2Cy — 12 = 24 kN. Then by summing moments about point

E of member GED,

IM,(point E)
= (1)A, - (1)G, = 0,

we obtain G,. = D,, = —18 kN. Finally, from the free-body diagram of mem-
ber GED, we use the equilibrium equation

I.F, = D, + G, + T = 0,

which gives us the result T — —D,. — G, = 36 kN. The forces on the mem-
bers are shown in Fig. 6.35. As this example demonstrates, determination of

the forces on the members can often be simplified by carefully choosing the

order in which the equations are solved.

24kNA

13 kN

'36 kN

16 kN

"T 13'kN

llSkN

36kNi

36 kN^

18kN

13 kN c

//18kN

D 5kN

G £
136

kN

1.
5kN

J I
5kN

T18kN 18kNT

Figure 6.35

Forces on the members of the frame.

We see that determining the forces and couples on the members of

frames and machines requires two steps:

1. Determine the reactions at the supports—Draw the free-body diagram of

the entire structure, and determine the reactions at its supports. This step

can greatly simplify your analysis of the members. If the free-body

diagram is statically indeterminant, determine as many of the reactions

as possible.

2. Analyze the members—Draw free-body diagrams of the members, and

apply the equilibrium equations to determine the forces acting on them.

You can simplify this step by identifying two-force members. If a load

acts at a joint of the structure, you can place the load on the free-body

diagram of any one of the members attached at that joint.
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Example 6.6

Analyzing a Frame
The frame in Fig. 6.36 is subjected to a 200-N-m couple. Determine the

forces and couples on its members.

200 N-m

Figure 6.36

(a) Free-body

diagram of the entire

frame.

Solution

Determine the Reactions at tiie Supports We draw the free-body dia-

gram of the entire frame in Fig. a. The term M^ is the couple exerted by the

built-in support. From the equilibrium equations

SF, = A, = 0,

'LF, = A, + C = 0,

200 + (1)C = 0.

we obtain the reaction A^ = 0. We can't determine ^4,,, M^, or C from this

free-body diagram.

M

2M(p„,„,^) = M^

2tf 200 N-m
400 mm

1000 mm

Analyze the IVIembers We "disassemble" the frame to obtain the free-

body diagrams of the members in Fig. b. The equilibrium equations for

member BC are

2F, = -fi, = 0,

2f; = -B, + C = 0,

2M(p„,„,5, = -200 + (0.4)C = 0.
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W.

^

600 mm -

t

11

200 N-m

400 mm

(b) Obtaining the free-body diagrams of tiie members.

Solving these equations, we obtain B, = 0, B, = 500 N, and C = 500 N.

The equilibrium equations for member AB are

SF, = A, + B, = 0,

SF, = A, + B, = 0,

2M(p„i„,,) = M, + (0.6)fi, = 0.

Because we already know A,, B,, and By, we can solve these equations for A^.

and Mfy . The results are Ay. = -500 N and M^ = -300 N-m. This completes

the solution (Fig. c).

Discussion

We were able to solve the equilibrium equations for member BC without hav-

ing to consider the free-body diagram of member AB. We were then able to

solve the equilibrium equations for member AB. By choosing the members

with the fewest unknowns to analyze first, you will often be able to solve

them sequentially, but in some cases you will have to solve the equilibrium

equations for the members simultaneously.

Even though we were unable to determine the four reactions ^4^, Ay. M^,

and C with the three equilibrium equations obtained from the free-body dia-

gram of the entire frame, we were able to determine them from the free-body

diagrams of the individual members. By drawing free-body diagrams of the

members, we gained three equations because we obtained three equilibrium

equations from each member but only two new unknowns, fi , and fi^,

.

A SOON

SOON

SOON
200 N-m

SOON

(c) Forces and couples on the members.
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Example 6.7

Determining Forces on Members
of a Frame
The frame in Fig. 6.37 supports a suspended weight W = 40 lb. Determine

the forces on members ABCD and CEG.

Figure 6.37
8 in 8in-

Solution

Determine the Reactions at tlie Supports We draw the free-body dia-

gram of the entire frame in Fig. a. From the equilibrium equations

2F, = A, - D = 0,

SF, = A, - 40 = 0,

SM,(point A) (18)D - (19)(40) = 0,

we obtain the reactions A, = 42.2 lb. A, = 40 lb, and D = 42.2 lb.

(a) Free-body

diagram of the entire

frame.

401b

Analyze tlie IVIembers We obtain the free-body diagrams of the members

in Fig. b. Notice that BE is a two-force member. The angle a — arc-

tan (6/8) = 36.9°.
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Sin

(b) Obtaining the free-body diagrams of

the members.

The free-body diagram of the pulley has only two unknown forces. From

the equilibrium equations

2F, = G, - 40 = 0,

SF, = G, - 40 = 0,

we obtain G, = 40 lb and G, = 40 lb. There are now only three unknown forces

on the free-body diagram of member CEG. From the equilibrium equations

SF, = -C, - /? cos a - 40 = 0,

I,F, = -C, - /? sin a - 40 = 0,

2M(p„i„,c) = -(8)/?sina- (16)(40) =0,

we obtain C, = 66.7 lb, C,, = 40 lb, and R = -133.3 lb, completing the

solution (Fig. c).

11^ 42.2 lb

40 1b

66.7 lb

40

/ It)

;()ib I

42.2 lb

C

3.3.3 lb

J^36.9°
B

66.7 lb C

40 lb?

C

36 95^ in»it^
- ^133.3 lb f40|t,

-1 A

40 1b (c) Forces on members ABCD and CEG.
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Example 6.8

Free-Body Diagrams for Three Joined
IViembers

Determine the forces on the members of the frame in Fig. 6.38.

120 N

Figure 6.38

300 mm

300 mm

Strategy

You can confirm that no information can be obtained from the free-body dia-

gram of the entire frame. To analyze the members, we must deal with an inter-

esting challenge at joint D, where a load acts and three members are

connected. We will obtain the free-body diagrams of the members by first iso-

lating member AD. then separating members BD and CD.

Solution

We first isolate member AD from the rest of the structure, introducing the re-

actions D^ and Dy (Fig. a). We then separate members BD and CD, introduc-

ing equal and opposite forces E^ and Ey (Fig. b). In this step we could have

placed the 300-N load and the forces D, and D, on either free-body diagram.

120 N 120 N

B,—

i

^C

180 N

I240N

D

300 N

-400 mm-

300 mm
D,

^400 mm"-$:

(a) Isolating member AD.
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Only three unknown forces act on member AD. From the equihbrium

equations

IF, = A + D, = 0.

2f, = D, - 120 = 0,

2M(p„i„,o)
= -(0.3)/l + (0.4)(120) =0,

we obtain A = 160 N, D, = -160 N, and D, = 120 N. Now we consider the

free-body diagram of member BD. From the equation

2M(p„;„„„ = -(0.8)B, + (0.4)(180) = 0,

we obtain By = 90 N. Now we use the equation

2F, = fi, - A + £, - 180 = 90 - 120 + £, - 180 = 0,

obtaining £, = 210 N. Now that we know Ey, there are only three unknown

forces on the free-body diagram of member CD. From the equilibrium

equations

2F, = C, - E, = 0,

IF, = C, - E, - 240 = C, - 210 - 240 = 0,

2M(p„,„,c-, = (0.3)£, - (0.8)£, - (0.4)(240)

= (0.3)£, - (0.8) (210) - (0.4) (240) = 0,

we obtain C, = 880 N, C, = 450 N, and E, = 880 N. Finally, we return to

the free-body diagram of member BD and use the equation

IF, = B, + E, - D, - 300 = fi, + 880 + 160 - 300 =

to obtain B, = -740 N, completing the solution (Fig. c).

-400 mm
SOON

1—400 mm -|—

t
i—4,^'

^^.^=^
240 N D

300 N

Dt
^-^

240 N
300 mm

[—400 mm —t*" "^00 mm ^^

(b) Separating members BD and CD.

90 N A

*4f
740 N

180 N

A—

^

160 N

90 N
D

740 N

450 NSON A

-I
880 N

120N

DtsM 160 N

1201

210NI

r
^— 880 N

I240N

(c) Solutions for the forces on the members.
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Example 6.9

Analyzing a Truck and Trailer as a Frame
The truck in Fig. 6.39 is parked on a 10° slope. Its brakes prevent the wheels

at B from turning, but the wheels at C and the wheels of the trailer at A can

turn freely. The trailer hitch at D behaves like a pin support. Determine the

forces exerted on the truck at B, C. and D.

Figure 6.39

5 (t 6 in

Strategy

We can treat this example as a structure whose "members" are the truck and

trailer. We must isolate the truck and trailer and draw their individual free-

body diagrams to determine the forces acting on the truck.

Solution

Determine the Reactions at the Supports The reactions in this example

are the forces exerted on the truck and trailer by the road. We draw the free-

body diagram of the connected truck and trailer in Fig. a. Because the tires at

B are locked, the road can exert both a normal force and a friction force, but

only normal forces are exerted at A and C. The equilibrium equations are

2F, = B, - 8 sin 10° - 14 sin 10° = 0,

I,F, = A + B, + C - 8 cos 10° - 14 cos 10° = 0,

2M(p„„,^) = 14B, + 25C + (6)(8sinl0°)

-(4)(8cosl0°) + (3)(14sinl0°)

-(22)(14cosl0°) = 0.

From the first equation we obtain the reaction fi, = 3.82 kip, but we can't
|

solve the other two equations for the three reactions ^4, B, . and C.

Analyze the Members We draw the free-body diagrams of the trailer and

truck in Figs, b and c, showing the forces D, and D, exerted at the hitch. Only

three unknown forces appear on the free-body diagram of the trailer. From

the equilibrium equations for the trailer,

2F, = D, - 8 sin 10° = 0,

SF, = A + A - 8 cos 10° = 0,

2M(p„,„,o) = (0.5)(8sinlO°) + (12)(8cos 10°) - 16A = 0.
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we obtain A = 5.95 kip, D, = 1.39 kip, and D, = 1.93 kip. (Notice that by

summing moments about D, we obtained an equation containing only one un-

known force.)

The equilibrium equations for the truck are

SF, = B, - D, - 14 sin 10° = 0,

SF, = B, + C - A - 14 cos 10° = 0,

2M(p„i„,B, = lie + 5.5D, - 2A + (3)(14sinl0°)

-(8)(14cosl0°) = 0.

Using the known values of D, and D^, we can solve these equations, obtain-

ing fi, = 3.82 kip, B, =6.69 kip, and C = 9.02 kip.

\

Discussion

We were unable to solve two of the equilibrium equations for the connected

J truck and trailer. When that happens, you can use the equilibrium equations

j

for the entire structure to check your results:

2F, = B, - 8 sin 10° - 14 sin 10°

= 3.82 - 8 sin 10° - 14 sin 10° = 0,

2F, = A^- B,^ C - 8 cos 10° - 14 cos 10°

= 5.95 + 6.69 + 9.02 - 8 cos 10° - 14 cos 10° = 0,

2M(po,„,^, = 14B, + 25C + (6)(8sinlO°)

-(4)(8cosl0°) + (3)(14sinl0°) - (22)(14cosl0°)

= (14)(6.69) + (25)(9.02) + (6)(8sinl0°)

-(4)(8cosl0°) + (3)(14sinl0°)

-(22)(14cosl0°) = 0.

(a) Free-body diagram of the combined

truck and trailer.

(b), (c) The individual free-body

diagrams.
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Example 6.10

Analyzing a Machine
What forces are exerted on the bolt at E in Fig. 6.40 as a result of the 150-N

forces on the pliers?

150 N

Figure 6.40 150 N

Strategy

A pair of pliers is a simple example of a machine, a structure designed to move

and exert forces. The interconnections of the members are designed to create a

mechanical advantage, subjecting an object to forces greater than the forces

exerted by the user.

In this case there is no information to be gained from the free-body dia-

gram of the entire structure. We must determine the forces exerted on the bolt

by drawing free-body diagrams of the members.

Solution

We "disassemble" the pliers in Fig. a to obtain the free-body diagrams of the

members, labeled (1), (2), and (3). The force R on free-body diagrams (1) and (3)

is exerted by the two-force member AB. The angle a = arctan (30/70) = 23.2°.

Our objective is to determine the force E exerted by the bolt.

The free-body diagram of member (3) has only three unknown forces

and the 150-N load, so we can determine R, D,, and D, from this free-body

diagram alone. The equilibrium equations are

2F, = D, + Rcosa = 0,

IF, = D, - Rsina + 150 = 0,

^M(po,..B) = 30A - (100) (150) = 0.

Solving these equations, we obtain D^ = — 1517 N, Dy = 500 N, and

R = 1650 N. Knowing D,, we can determine E from the free-body diagram

of member (2) by summing moments about C,

2M(p<„„,c) = -30£ - 30O, - 0.

The force exerted on the bolt by the pliers is £ = —D^ — 1517 N. The me-

chanical advantage of the pliers is (1517 N)/( 150 N) = 10.1.
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—^30 mm
150 N

150 N

o o

B D

(2)

—J 30 mm ••

—

(a) Obtaining the free-body diagrams of

the members.

Discussion

Notice that we did not need to use the free-body diagram of member (1) to

determine E. When this happens, you can use the "leftover" free-body dia-

gram to check your work. Using our results for R and E, we can confirm that

the sum of the moments about point C of member (1 ) is zero:

2M(p„i„,c) = (130) (150) - 100/? sin a + 30£

= (130)(150) - (100) (1650) sin 23.2° + (30)(1517) = 0.

Problems

6.70 Determine the reactions on member AB at A. (Notice that 6.71 (a) Determine the forces and couples on member AB for

SC is a two-force member.) cases ( 1 ) and (2).

200 N-m

A ,^-^ B C

I
200 N

300 mm 300 mm
400 mm -

P6.70

^=4
-1 m-

-1 m-

(2)

^
-1 m-

(1)

200 N-m
B /—

s

C^^
-1 m-

P6.71
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(b) You know that the moment of a couple is the same about any

point. Explain why the answers are not the same in cases ( 1 ) and (2).

6.72 For the frame shown, determine the reactions at the built-in

support A and the forces exerted on member AB at B.

200 lb

BD. The largest lifting force the jack can exert is limited by the

pin support A. which will safely support a force of magnitude

20 kN. What is the largest lifting force the jack can exert at C,

and what is the resulting axial force in the hydraulic actuator?

6.77 Determine the forces on member BC and the axial force

in member AC.

P6.72

6.73 The force F = 10 kN. Determine the forces on member

ABC. presenting your answers as shown in Fig. 6.35.

D
X

^1 1 m 2m 1 m

P6.73

6.74 Consider the frame in Problem 6.73. The cable CE will

safely support a tension of 10 kN. Based on this criterion, what is

the largest downward force F that can be applied to the frame?

6.75 The hydraulic actuator BD exerts a 6-kN force on member

ABC. The force is parallel to BD. and the actuator is in compres-

sion. Determine the forces on member ABC. presenting your

answers as shown in Fig. 6.35.

P6.75

6.76 The simple hydraulic jack shown in Problem 6.75 is

designed to exert a vertical force at point C. The hydraulic

actuator BD exerts a force on the beam ABC that is parallel to

6.78 An athlete works out with a squat thrust machine. To rotate

the bar ABD. he must exert a vertical force at A that causes the

magnitude of the axial force in the two-force member BC to be

1 800 N. When the bar ABD is on the verge of rotating, what are

the reactions on the vertical bar CDE at D and £?

P6.78

6.79 The frame supports a 6-kN load at C. Determine the

reactions on the frame at A and D.

0.5 m
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6.80 The mass m = 120 kg. Determine the forces on member 6.83 The mass m = 50 kg. Determine the forces on member

ABC, presenting your answers as shown in Fig. 6.35. ABCD, presenting your answers as shown in Fig. 6.35.

> .4 B C

300 mm

P6.80

6.81 The tension in cable BD is 500 lb. Determine the reactions

at A for cases (1) and (2).

6.84 Determine the forces on member BCD.

4001b

L G

1

I

I

t

6 in

^
1

1

6 in

C

3001b

H
(2)

P6.81

8 ft

P6.83

P6.84

6.82 Determine the forces on member ABCD, presenting your 6.85 Determine the forces on member ABC.
answers as shown in Fig. 6.35.

-4ft- -4 ft- -4ft-

T"
1 m

1 m

P6.82

6kN

P6.85
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6.86 Determine the forces on member ABD.

Sin

8 in -I- 8 in

:^

C D

U

60 lb I 60 lb
I
60 lb

I

6.89 The man using the exercise machine is holding the 80-lb

weight stationary in the position shown. What are the reactions at

the built-in support £ and the pin support F? (A and C are pinned

connections.)

1 ft 6 in

9 in

P6.86

6.87 The mass m = 12 kg. Determine the forces on member
CDE.

200 mm
100 mm

P6.89

6.90 The frame supports a horizontal load F at C. The resulting

compressive axial force in the two-force member CD is 2400 N.

Determine the magnitude of the reaction exerted on member ABC
atfi.

200 mm

P6.87

6.88 The weight W = 80 lb. Determine the forces on member
ABCD.

3 in
P6.90

6.91 The two-force member CD of the frame shown in Problem

6.90 will safely support a compressive axial load of 3 kN. Based

on this criterion, what is the largest safe magnitude of the horizon-

P6.88 tal load F?
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6.92 The unstretched length of the spring is Lq. Show that when

the system is in equilibrium the angle a satisfies the relation

sin a = 2{Lo - 2F/k)/L.

6.95 Determine the forces on member AD.

I200 N
30 mm

400 N

P6.95

6.96 The frame shown is used to support high-tension wires. If

P6 92 ^ = 3 ft, a = 30°, and W = 200 lb, what is the axial force in

member HJ?

6.93 The pin support B will safely support a force of 24-kN

magnitude. Based on this criterion, what is the largest mass m
that the frame will safely support?

P6.93

6.94 Determine the reactions at A and C.

P6.96

6.97 What are the magnitudes of the forces exerted by the pliers

on the bolt at A when 30-lb forces are applied as shown? (B is a

pinned connection.)

3 ft

3 ft

301b

P6.94 P6.97
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6.98 The weight IV = 60 kip. What is the magnitude of the force

the members exert on each other at D?

3tt^ P6.98

6.99 Figure a is a diagram of the bones and biceps muscle of a

person's arm supporting a mass. Tension in the biceps muscle

holds the forearm in the horizontal position, as illustrated in the

simple mechanical model in Fig. b. The weight of the forearm is

9 N, and the mass m = 2 kg.

(a) Detemiine the tension in the biceps muscle AB.

(b) Determine the magnitude of the force exerted on the upper

arm by the forearm at the elbow joint C.

6.100 The clamp presses two blocks of wood together.

Determine the magnitude of the force the members exert on

each other at C if the blocks are pressed together with a force

of 200 N.

100

6.101 The pressure force exerted on the piston is 2 kN toward

the left. Determine the couple M necessary to keep the system in

equilibrium.

(b)

P6.99

P6.101

6.102 In Problem 6. 101, determine the forces on member AB
at A and B.

6.103 This mechanism is used to weigh mail. A package placed

at A causes the weighted pointer to rotate through an angle a.

Neglect the weights of the members except for the counterweight

at B. which has a mass of 4 kg. If a = 20°, what is the mass of

the package at A?
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^
m

—"O

y

^
>- bn«i^
'00 jT^\00^
"> #r tnw^^bAf \

6.106 In Problem 6. 105, determine the axial force in the

hydraulic actuator BC.

6.107 Determine the force exerted on the bolt by the bolt cutters.

100 N

75 mm

30°

P6.103

6.104 The scoop C of the front-end loader is supported by two

identical arms, one on each side of the loader. One of the two

arms {ABC) is visible in the figure. It is supported by a pin sup-

port at A and the hydraulic actuator BD. The sum of the other

loads exerted on the arm, including its own weight, is

F = 1.6 kN. Determine the axial force in the actuator BD and

the magnitude of the reaction at A.

P6.104

6.105 The mass of the scoop is 220 kg, and its weight acts at G.

Both the scoop and the hydraulic actuator BC are pinned to the

horizontal member at B. The hydraulic actuator can be treated as a

two-force member. Determine the forces exerted on the scoop at B
andD.

1 m

0.15 m

6.108 For the bolt cutters in Problem 6.107, determine the

magnitude of the force the members exert on each other at the pin

connection B and the axial force in the two-force member CD.

6.109 This device is designed to exert a large force on the

horizontal bar at A for a stamping operation. If the hydraulic

cylinder DE exerts an axial force of 800 N and a = 80°, what

horizontal force is exerted on the horizontal bar at A?

400 mm

P6.109

6.110 This device raises a load W by extending the hydraulic

actuator DE. The bars AD and BC are 4 ft long, and the distances

b = 2.5 ft and /j = 1.5 ft. If W = 300 lb, what force must the

actuator exert to hold the load in equilibrium?
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P6.110

6.111 The linkage is in equilibrium under the action of the

couples M^ and M^. If a^ = 60° and ag = 70°, what is the ratio

P6.111

6.112 A load W = 2 kN is supported by the member ACG and

the hydraulic actuator BC. Determine the reactions at A and the

compressive axial force in the actuator BC.

6.113 The dimensions are a = 260 mm, b = 300 mm,
c = 200 mm, d = \50 mm, e = 300 mm, and / = 520 mm. The

ground exerts a vertical force F = 7000 N on the shovel. The

mass of the shovel is 90 kg and its weight acts at G. The weights

of the links AB and AD are negligible. Determine the horizontal

force P exerted at A by the hydraulic piston and the reactions on

the shovel at C.

Shovel

P6.113

6.114 The dimensions of the mechanism in Problem 6. 1 1 3 are

a = 10 in., ^ = 12 in., c = 8 in., d = 6 in., e = 12 in., and

/ = 20 in. The 200-lb weight of the shovel acts at G. The weights

of the links AB and AD are negligible. The horizontal force P

exerted at A by the hydraulic piston is 4000 lb. Determine the

vertical force F exerted on the ground by the shovel and the

reactions on the shovel at C.

P6.112
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LQiiDQ Computational Mechanics
The following example and problems are designed for the use of a programmable calculator or computer.

Computational Example 6.11 mLC
lOllC

The device in Fig. 6.41 is used to compress air in a cylinder by applying a

couple M to the arm AB. The pressure p in the cylinder and the net force F
exerted on the piston by pressure are

P - Pal

F = Apa

V

V
1

where A = 0.02 m"^ is the cross-sectional area of the piston, p^^^ = 10^ Pa

(Pascals, or N/m") is atmospheric pressure, V is the volume of air in the

cylinder, and Vq is the value of V when a = 0. The dimensions /? = 150 mm,
b = 350 mm, d = 150 mm, and L = 1050 mm. If M and a are initially zero

and M is slowly increased until its value is 40 N-m, what are the resulting

values of a and /??

Strategy

By expressing the volume of air in the cylinder in terms of a, we will deter-

mine the force exerted on the cylinder by pressure in terms of a. From the

free-body diagram of the piston we will determine the axial force in the two-

force member BC in terms of the pressure force on the cylinder. Then from the

free-body diagram of the arm AB we will obtain a relation between M and a.

Figure 6.41

Solution

From the geometry of the arms AB and BC (Fig. a), the volume of air in the

cylinder is

V = A{L - d - Vb- - R-sin-a + Rcosa).

When a = 0, the volume is

Vo = A{L - d - b + R).

Therefore the force exerted on the piston by pressure is

Vo
F = ^Pa,

'^Pal

V
- 1

L - d - b + R

L — d — vb^ — R^ sin" a + R cos a
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X (c) Free-body diagram of the arm AB.

-— /f cos a (a) Geometry for determining V in terms of a.

/? sina
-X (b) Free-body diagram of the piston.

E 40

J30

10° 20° 30° 40° 50° 60° 70° 80° 90°

a

Figure 6.42

The moment M as a function of a.

a M (N-m)

79.59° 39.9601

79.60° 39.9769

79.61° 39.9937

79.62° 40.0105

79.63° 40.0272

We draw the free-body diagrams of the piston and the arm AB in Figs, b

and c, where N is the force exerted on the piston by the cylinder (friction is

neglected), Q is the axial force in the two-force member BC, and A^ and Ay

are the reactions due to the pin support A. From Fig. b, we obtain the equilib-

rium equation

2F, = F - ecosjS = 0,

where

jS = arctan
/?sina

yb' — Rr sin" a

The force exerted on the arm Afi at B is

2cosj3i + gsinjSj.

The moment of this force about A is

'AB X ((2cos/3i + C2sin/3j)

i J k

R cos a /? sin a

(2 cos/3 2 sin/3

= 2^(cosasin;3 - sinacos)S)k.

Using this result, the sum of the moments about A is

2M(pojn,^) = M + ^7?(cosasin)8 — sina cos /3) = 0.

If we choose a value of a, we can sequentially calculate V, F, /3, Q, and

M. Computing M as a function of a, we obtain the graph shown in Fig. 6.42.

The moment M = 40 N-m at approximately a = 80°. By examining com-

puted results near 80° (see table), we estimate that a = 79.61° when

M = 40 N-m. Once we know a, we can calculate V and then p. obtaining

P = 1.148ft, 1.148 X 10-' Pa.
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Computational Problems
< lOlllQ
J.Q0IQ11
liailOD

6.115 (a) For each member of the truss, obtain a graph of (axial

force)/F as a function of x for < jr < 2 m.

(b) If you were designing this truss, what value of x would you

choose based on your results in (a)?

1 m

P6.115

6.116 Consider the mechanism for weighing mail described in

Problem 6.103.

(a) Obtain a graph of the angle a as a function of the mass of

the mail for values of the mass from to 2 kg.

(b) Use the results of (a) to estimate the value of a when the

mass is 1 kg.

5 6.117 A preliminary design for a bridge structure is shown. The

forces F are the loads the structure must support at G, //, /. J. and

K. Plot the axial forces in members AB and BC as a function of the

angle /3. Use your graphs to estimate the value of /3 for which the

maximum compressive load in any member of the bridge does not

exceed 2F. Draw a sketch of the resulting design.

P6.117

6.118 Consider the system described in Problem 6.109. The

hydraulic cylinder DE exerts an axial force of 800 N.

(a) Obtain a graph of the horizontal component of force exerted

on the horizontal bar at A by the rod AB for values of a from

45° to 85°.

(b) Use the results of (a) to estimate the value of a for which

the horizontal force is 2 kN.

6.119 The weight of the suspended object is 10 kN. The two

members have equal cross-sectional areas A, and each will safely

support an axial force of 40A MN, where A is in square meters.

Determine the value of h that minimizes the total volume of

material in the two members.

-1 m -4—0.5 m-H

P6.119

6.120 Consider the device shown in Problem 6.110. The bars

AD and BC are 4 ft long, the distance b = 2.5 ft, and W = 300 lb.

If the largest force the hydraulic actuator DE can exert is 1000 lb,

what is the smallest height h at which the load can be supported?

6.121 The linkage in Problem 6. 1 1 1 is in equilibrium under the

action of the couples A/^ and Mg. When a^ = 60°, Og = 70°.

For the range £ a, :s 180°. estimate the maximum positive

and negative values of M^/Mg and the values of a^ at which they

occur.

6.122 Consider the front-end loader in Problem 6.1 12. A load

W = 2 kN is supported by the member ACG and the hydraulic

actuator BC. If the actuator BC can exert a maximum axial force

of 12 kN, what is the largest height above the ground at which the

center of mass G can be supported?

6.123 Consider the truss in Problem 6.27. The crane exerts

vertical 75-kN forces on the truss at B. C. and D. You can model

the support at A as a pin support and model the support at £ as a

roller support that can exert a force normal to the dashed line but

cannot exert a force parallel to it. Determine the value of the

angle a for which the largest compressive force in any of the mem-
bers is as small as possible. What are the resulting axial forces in

the members?
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6.124 Draw graphs of the magnitudes of the axial forces in the

members BC and BD as functions of the dimension h for

0.5 < /i < 1.5 m.

Q) 6.125 For the truss in Problem 6. 124, determine the value of the

dimension h in the range 0.5 ^ /i ^ 1 .5 m so that the magnitude

of the largest axial force in any of the members, tensile or

compressive, is a minimum. What are the resulting axial forces in

the members?

Chapter Summary

P6.124

A structure of members interconnected at joints is a truss if it is composed

entirely of two-force members. Otherwise, it is a frame if it is designed to re-

main stationary and support loads and a machine if it is designed to move and

exert loads.

Trusses

A member of a truss is in tension if the axial forces at the ends are directed

away from each other and is in compression if the axial forces are directed to-

ward each other. Before beginning to determine the axial forces in the mem-
bers of a truss, it is usually necessary to draw a free-body diagram of the

entire truss and determine the reactions at its supports. The axial forces in the

members can be determined by two methods. The method ofjoints involves

drawing free-body diagrams of the joints of a truss one by one and using the

equilibrium equations to determine the axial forces in the members. In two

dimensions, choose joints to analyze that are subjected to known forces and

no more than two unknown forces. The method of sections involves drawing

free-body diagrams of parts, or sections, of a truss and using the equilibrium

equations to determine the axial forces in selected members.

A space truss is a three-dimensional truss. Space trusses are analyzed by

the same methods used for two-dimensional trusses. Choose joints to analyze

that are subjected to known forces and no more than three unknown forces.

Frames and Machines

Begin analyzing a frame or machine by drawing a free-body diagram of the

entire structure and determining the reactions at its supports. If the entire

structure is statically indeterminate, determine as many reactions as possible.

Then draw free-body diagrams of individual members, or selected combina-

tions of members, and apply the equilibrium equations to determine the forces

and couples acting on them. Recognizing two-force members will reduce the

number of unknown forces that must be determined. If a load is applied at a

joint, it can be placed on the free-body diagram of any one of the members

attached at the joint.
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6.126 The loads F, = 60 N and F, = 40 N.

(a) Draw the free-body diagram of the entire truss, and determine

the reactions at its supports.

(b) Determine the axial forces in the members. Indicate whether

they are in tension (T) or compression (C).

P6.126

6.127 Consider the truss in Problem 6. 1 26. The loads

Fi = 440 N and Fj = 160 N. Determine the axial forces in

the members. Indicate whether they are in tension (T) or

compression (C).

6.128 The truss supports a load F = 10 kN. Determine the axial

forces in members AB, AC, and BC.

P6.128

5 Cil29 Each member of the truss shown in Problem 6. 1 28 will

safely support a tensile force of 40 kN and a compressive force of

32 kN. Based on this criterion, what is the largest downward load

F that can safely be applied at C?

6.130 The Pratt bridge truss supports loads at F, G, and H.

Determine the axial forces in members BC. BG. and FG.

A\ / "v i

/ \ / \. 4 m

}
/ \/ V^ ,

\ f CI H

60 kN T80kN

iA
'

20 kN

•—4 m

—

-

P

'l m » - A il .«

P6.130

6.131 Consider the truss in Problem 6. 130. Determine the axial

forces in members CD. GD, and GH.

6.132 The truss supports loads at F and //. Determine the axial

forces in members AB, AC, BC, BD, CD, and CE.

2001b

P6.132

6.133 Consider the truss in Problem 6.132. Determine the axial

forces in members EH and FH.

6.134 Determine the axial forces in members BD, CD, and CE.

lOkN ^

6ni P6.134
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6.135 For the truss in Problem 6.134, determine the axial forces

in members DF, EF, and EG.

6.136 The truss supports a 400-N load at G. Determine the axial

forces in members AC, CD, and CF.

600 mm

P6.141
300 mm 300 mm 300 mm P6.136

6.137 Consider the truss in Problem 6.136. Determine the axial

forces in members CE, EF, and EH. Q)

6.138 Consider the truss in Problem 6.136. Which members

have the largest tensile and compressive forces, and what are

their values?

6.139 The Howe truss helps support a roof. Model the supports

at A and G as roller supports. Use the method of joints to

determine the axial forces in members BC, CD, CI, and CJ.

6icN

HI J K L \

[•-2 m 2 m • 2 m * * 2 m * 2 m * * 2 m-^

P6.139

6.140 For the roof truss in Problem 6.139, use the method of

sections to determine the axial forces in members CD, CJ, and IJ.

6.141 A speaker system is suspended from the truss by cables

attached at D and E. The mass of the speaker system is 130 kg,

and its weight acts at G. Determine the axial forces in members

BC and CD.

6.142 Consider the system described in Problem 6.141. If each

member of the truss will safely support a tensile force of 5 kN and

a compressive force of 3 kN, what is the maximum safe value of

the mass of the speaker system?

6.143 Determine the forces on member ABC, presenting your

answers as shown in Fig. 6.35. Obtain the answers in two ways:

(a) When you draw the free-body diagrams of the individual

members, place the 400-lb load on the free-body diagram of

member ABC.

(b) When you draw the free-body diagrams of the individual

members, place the 400-lb load on the free-body diagram of

member CD.

P6.143

m^
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6.144 The mass w = 120 kg. Determine the forces on member

ABC.

300 mm

P6.144

6.145 Determine the forces on member ABC, presenting your

answers as shown in Fig. 6.35.

2 ft

1 ft

^

1ft

_L_

-2 ft-

1001b

D

1 400 lb

J )200ft-lb

C

^
-2 ft- -2 ft-

P6.145

6.146 Determine the force exerted on the bolt by the bolt cutters

and the magnitude of the force the members exert on each other at

the pin connection A.

90 N

P6.146

6.147 The 600-lb weight of the scoop acts at a point 1 ft 6 in.

to the right of the vertical line CE. The line ADE is horizontal.

The hydraulic actuator AS can be treated as a two-force member.

Determine the axial force in the hydraulic actuator AB and the

forces exerted on the scoop at C and E.

6.148 This structure supports a conveyer belt used in a lignite

mining operation. The cables connected to the belt exert the force

F at J. As a result of the counterweight W = 8 kip, the reaction at

E and the vertical reaction at D are equal. Determine F and the

axial forces in members BG and EF.

In...

P6.148

6.149 Consider the structure described in Problem 6. 148. The

counterweight W = 8 kip is pinned at D and is supported by the

cable ABC, which passes over a pulley at A. What is the tension in

the cable, and what forces are exerted on the counterweight at D?

6.150 The weights W, = 4 kN and W, = 10 kN. Determine the

forces on member ACDE at points A and E.

P6.150
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Q) fJB»\gfn Experience Design a truss structure to support a foot

bridge with an unsupported span (width) of 8 m. Make
conservative estimates of the loads the structure will need to

support if the pathway supported by the truss is made of wood.
Consider two options: ( 1 ) Your client wants the bridge to be

supported by a truss below the bridge so that the upper surface

will be unencumbered by structure. (2) The client wants the truss

to be above the bridge and designed so that it can serve as

handrails. For each option, use statics to estimate the maximum
axial forces to which the members of the structure will be

subjected. Investigate alternative designs and compare the

resulting axial loads.
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The loads that the legs of the piano must be

designed to support depend not only on the piano's

weight but also on the position of its center of

mass—the point at which the weight effectively acts.



H
i

Centroids and

Centers of Mass

^

An object's weight does not act at a single point—it is distributed

over the entire volume of the object. But we can represent the

weight by a single equivalent force acting at a point called the cen-

ter of mass. In this chapter we define the center of mass and show how it is

determined for various kinds of objects. Along the way, we also introduce

definitions that can be interpreted as the average positions of areas, volumes,

and lines. These average positions are called centroids. Centroids coincide

with the centers of mass of particular classes of objects, but they also arise in

many other applications.
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Centroids

Because centroids have such varied appHcations, we first define them using-

the general concept of a weighted average. Let's begin with the familiar idea

of an average position. Suppose we want to determine the average position of

a group of students sitting in a room. First, we introduce a coordinate system

so that we can specify the position of each student. For example, we can align

the axes with the walls of the room (Fig. 7. 1 a). We number the students from

1 to A' and denote the position of student I by .v, . y, . the position of student 2

by A'2, y2- and so on. The average .v coordinate .v is the sum of their x coordi-

nates divided by N,

Xl + Xi + " + x^

N N
(7.1)

where the symbol ^ stands for "sum over the range of /". The average y
i

coordinate is

A'

We indicate the average position by the symbol shown in Fig. 7.1b.

(7.2)

Figure 7.1

(a) A group of students in a classroom.

(b) Their average position.

I \

c

(a)

Now suppose that we pass out some pennies to the students. Let the

number of coins given to student 1 be c, . the number given to student 2 be Ci.

and so on. What is the average position of the coins in the room? Clearly, the

average position of the coins may not be the same as the average position of

the students. For example, if the students in the front of the room have more

coins, the average position of the coins will be closer to the front of the room

than the average position of the students.

To determine the x coordinate of the average position of the coins, we

need to sum the x coordinates of the coins and divide by the number of coins.

We can obtain the sum of the .v coordinates of the coins by multiplying the

number of coins each student has by his or her x coordinate and summing.
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We can obtain the number of coins by summing the numbers c, , C2,— Thus

the average x coordinate of the coins is

X:C:

Ec,

(7.3)

We can determine the average y coordinate of the coins in the same way:

i

(7.4)

By assigning other meanings to c, , C2, . .
.

, we can determine the average po-

sitions of other measures associated with the students. For example, we

could determine the average position of their age or the average position of

their height.

More generally, we can use Eqs. (7.3) and (7.4) to determine the average

position of any set of quantities with which we can associate positions. An
average position obtained from these equations is called a weighted average

position, or centroid. The "weight" associated with position JCi, ^i, is c,, the

weight associated with position Xj, ^2 is Cj, and so on. In Eqs. (7.1) and (7.2),

the weight associated with the position of each student is 1 . When the census

is taken, the centroid of the population of the United States—the average po-

sition of the population—is determined in this way. In the next section we use

Eqs. (7.3) and (7.4) to determine centroids of areas.

Centroids of Areas

Consider an arbitrary area A in the x-y plane (Fig. 7.2a). Let us divide the

area into parts A, , A2, . .
.

, /4/v (Fig. 7.2b) and denote the positions of the parts

by {xi, y\), {x2, J2), ••• , {xf^, yj^). We can obtain the centroid, or average po-

sition of the area, by using Eqs. (7.3) and (7.4) with the areas of the parts as

the weights:

X =

S4
I

(7.5)

A question arises if we try to carry out this procedure: What are the exact

positions of the areas A, , Aj, . .
.

, Af^l We could reduce the uncertainty in their

positions by dividing A into smaller parts, but we would still obtain only ap-

(a)

(b)

Figure 7.2

(a) The area A.

(b) Dividing A into A' parts.

(c) A differential element of area dA with

coordinates x. v.

(d) The centroid of the area.
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proximate values for x and y. To determine the exact location of the centroid,

we must take the limit as the sizes of the parts approach zero. We obtain this

limit by replacing Eqs. (7.5) by the integrals

(7.6)

(7.7)

where x and v are the coordinates of the differential element of area dA

(Fig. 7.2c). The subscript A on the integral signs means the integration is car-

ried out over the entire area. The centroid of the area is shown in Fig. 7.2d.

Keeping in mind that the centroid of an area is its average position will

often help you locate it. For example, the centroid of a circular area or a rectan-

gular area obviously lies at the center of the area. If an area has "mirror image"

symmetry about an axis, the centroid lies on the axis (Fig. 7.3a), and if an area

is symmetric about two axes, the centroid lies at their intersection (Fig. 7.3b).

(b)

Figure 7.3

(a) An area that is symmetric about an axis.

(b) An area with two axes of symmetry.

Study Questions

1. How is a weighted average position defined?

2. How is the concept of a weighted average used to define the centroid of a

plane area?

3. Why is integration generally needed to determine the exact position of the

centroid of an area?
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Example 7.1

Centroid of an Area by Integration

Determine the centroid of the triangular area in Fig. 7.4.

Strategy

We will determine the coordinates of the centroid by using an element of area

dA in the form of a "strip" of width dx.

Solution

Let dA be the vertical strip in Fig. a. The height of the strip is {h/b)x, so dA —

{h/b)x dx. To integrate over the entire area, we must integrate with respect to x

from x = Oto X = b. The x coordinate of the centroid is

x dA / X — x dx]
Jo \b J

h

b

h

b

'x''

.3.

.2 .

b

^^*
b

To determine y, we let y in Eq. (7.7) be the y coordinate of the midpoint of

the strip (Fig. b):

jydA f
J A Jo

M^xV-xrf^

Ja"^^ Jo b
x dx

I (h V \x'^ b

2\b) _ 3 .

h [^'1
h

b . 2

= 3"-

Figure 7.4

(a) An element dA in the form of (b) The y coordinate of the

a strip. midpoint of the strip is 5 {h/b)x.

The centroid is shown in Fig. c.

Discussion

You should always be alert for opportunities to check your results. In this

example we should make sure that our integration procedure gives the correct

result for the area of the triangle:

dA =
'' h h
— X dx = — x~

~1 = -bh.

(c) Centroid of the area.
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Example 7.2

Figure 7.5

Area Defined by Two Equations
Determine the centroid of the area in Fig. 7.5.

Solution

Let dA be the vertical strip in Fig. a. The height of the strip is jc - x^, so

dA = [x — x")cic. The A' coordinate of the centroid is

xdA
I

h~~ IJ A Jo

x{x — x^-^dx

[x — x'^dx

\x' x'^
1

_ 3 4
. 1

x- x'^
1 2

.2 3 .

(a) A vertical strip of width dx.

The height of the strip is equal to

the difference in the two functions.

(b) The y coordinate of the

midpoint of the strip.

The V coordinate of the midpoint of the strip is x" -^ \[x — x^^ =

^(x + jc^) (Fig. b). Substituting this expression for y in Eq. (7.7), we obtain

the V coordinate of the centroid:

\dA
1

[x + x") (.V — x^)dx

dA {x - x-)dx
J A JO

2

5'

Problems

7.1 If a = 2. what is the x coordinate of the centroid of the area?

Strategy: The .v coordinate of the centroid is given by

Eq. (7.6). For the element of area dA, use a vertical strip of

width dx. (See Example 7.1.)

7.2 Determine the _v coordinate of the centroid of the area shown

in Problem 7.1 if a = 3.

P7.1
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7.3 If the X coordinate of the centroid of the area is x

is the value of a?

2, what

P7.3

7.4 The X coordinate of the centroid of the area shown in

Problem 7.3 is I = 2. What is the y coordinate of the centroid?

7.5 Consider the area in Problem 7.3. The "center of area" is

defined to be the point for which there is as much area to the right

of the point as to the left of it and as much area above the point as

below it. If a = 4, what are the x coordinate of the center of area

and the x coordinate of the centroid?

7.6 Determine the x coordinate of the centroid of the area and

compare your answer to the value given in Appendix B.

P7.6

7.7 Determine the v coordinate of the centroid of the area and

compare your answer to the value given in Appendix B.

7.8 Suppose that an art student wants to paint a panel of wood

as shown, with the horizontal and vertical lines passing through

the centroid of the painted area, and asks you to determine the

coordinates of the centroid. What are they?

7.9 The V coordinate of the centroid of the area is _v = 1 .063.

Determine the value of the constant c and the x coordinate of the

centroid.

2

7.10 Determine the coordinates of the centroid of the metal

plate's cross-sectional area.

y

P7.9

P7.10

7.11 An architect wants to build a wall with the profile shown.

To estimate the effects of wind loads, he must determine the wall's

area and the coordinates of its centroid. What are they?

^^.^^-^

y = 2 + 0,02x2^^^__---—
""^"^

! i 1 !

-

4 6

.». m
10

P7.ll

7.12 Determine the x coordinate of the centroid of the area.

y

v = -.v- + ar-12

P7.12

P7.8
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7.13 Determine the y coordinate of the centroid of the area

shown in Problem 7.12.

7.14 Determine the x coordinate of the centroid of the area.

7.19 Determine the y coordinate of the centroid of the area.

P7.14

7.15 Determine the y coordinate of the centroid of the area

shown in Problem 7.14.

7.16 Determine the coordinates of the centroid of the area.

P7.19

7.20 Determine the x coordinate of the centroid of the area in

Problem 7.19.

7.21 An agronomist wants to measure the rainfall at the centroid

of a plowed field between two roads. What are the coordinates of

the point where the rain gauge should be placed?

P7.16

7.17 Determine the x coordinate of the centroid of the area.

y = x^-20

P7.17

7.18 Determine the y coordinate of the centroid of the area in

Problem 7.17.

P7.21

7.22 The cross section of an earth-fill dam is shown. Determine

the coefficients a and b so that the y coordinate of the centroid of

the cross section is 10 m.

P7.22
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7.23 The Supermarine Spitfire used by Great Britain in World

War II had a wing with an eUiptical profile. Determine the

coordinates of its centroid.

2b

P7.24

7.25 Determine the x coordinate of the centroid of the area. By

setting h = 0, confirm the answer to Problem 7.24.

P7.23

7.24 Determine the coordinates of the centroid of the area.

Strategy: Write the equation for the circular boundary in the

form y = {R^ — X-) and use a vertical "strip" of width dx as

the element of area dA.

P7.25

7.26 Determine the > coordinate of the centroid of the area in

Problem 7.25.

Centroids of Composite Areas

Although centroids of areas can be determined by integration, the process be-

comes difficult and tedious for complicated areas. In this section we describe a

much easier approach that can be used if an area consists of a combination of

simple areas, which we call a composite area. We can determine the centroid

of a composite area without integration if the centroids of its parts are known.

The area in Fig. 7.6a consists of a triangle, a rectangle, and a semicircle,

which we call parts 1, 2, and 3. The x coordinate of the centroid of the com-

posite area is

I xdA xdA + xdA + x dA
Ja Ja, Ja2 Ja^

X =
;;

= -^ -^ -„ ,

I dA dA + dA +
Ja Ja, Ja, Ja

(7.8)

dA

The X coordinates of the centroids of the parts are shown in Fig. 7.6b. From
the equation for the x coordinate of the centroid of part 1,

JA,

xdA

dA

(a)

1 ' 1

B

'^i^
h.

1

h

(b)

Figi

(a)

(b)

ire 7.6

A composite area com
simple areas.

The centroids of the p

posed of

irts.

three
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we obtain

(c)

Figure 7.7

(a) An area with a cutout.

(b) The triangular area.

(c) The area of the cutout.

J A,

X dA — x,A,.

Using this equation and equivalent equations for parts 2 and 3, we can write

Eq. (7.8) as

XxA, + XJA^ + x-iA13/13

A, + A, + A.

We have obtained an equation for the x coordinate of the composite area in

terms of those of its parts. The coordinates of the centroid of a composite area

with an arbitrary number of parts are

X =
2 ^<^i

i

y
= i

(7.9)

When you can divide an area into parts whose centroids are known, you can

use these expressions to determine its centroid. The centroids of some simple

areas are tabulated in Appendix B.

We began our discussion of the centroid of an area by dividing an area

into finite parts and writing equations for its weighted average position. The

results, Eqs. (7.5), are approximate because of the uncertainty in the positions

of the parts of the area. The exact Eqs. (7.9) are identical except that the posi-

tions of the parts are their centroids.

The area in Fig. 7.7a consists of a triangular area with a circular hole, or

cutout. Designating the triangular area (without the cutout) as part 1 of the

composite area (Fig. 7.7b) and the area of the cutout as part 2 (Fig. 7.7c), we

obtain the x coordinate of the centroid of the composite area:

I xdA - I

J A, J A

xdA _

I dA - I dA
J A, Ja,

M

This equation is identical in form to the first of Eqs. (7.9) except that the

terms corresponding to the cutout are negative. As this example demonstrates,

you can use Eqs. (7.9) to determine the centroids of composite areas contain-

ing cutouts by treating the cutouts as negative areas.

We see that determining the centroid of a composite area requires three steps:

1. Choose the parts—Try to divide the composite area into parts whose

centroids you know or can easily determine.

2. Determine the values for the parts—Determine the centroid and the area

of each part. Watch for instances of symmetry that can simplify your task.

3. Calculate the centroid—Use Eqs. (7.9) to determine the centroid of the

composite area.
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Example 7.3

Centroid of a Composite Area
Determine the centroid of the area in Fig. 7.8.

Solution

Choose the Parts We can divide the area into a triangle, a rectangle, and a

semicircle, which we call parts 1, 2, and 3, respectively.

Determine the Values for the Parts The x coordinates of the centroids

of the parts are shown in Fig. a. The x coordinates, the areas of the parts, and

their products are summarized in Table 7.1.

Table 7.1 Information for determining the x coordinate of the centroid

Xi A> XiAi

Part 1 (triangle) \b kb{2R) i:%b)[\b{2R)]

Part 2 (rectangle) b + kc c{2R) [b + U)[c{2R)]

Part 3 (semicircle)
AR

b + c + —
37r

\7tR'- (*.c.^^)(i..=)

Calculate the Centroid The x coordinate of the centroid of the composite

area is

x,A, + x-,Ai + x-,A3^3

Ai + A2 + Aj

AR
(|/7)[U(2/?)] + (Z> + \c)[c{2R)] + [b + c + ^jQ77/?-)

\b{2R) + c{2R) + ittR-

We repeat the last two steps to determine the v coordinate of the centroid. The

y coordinates of the centroids of the parts are shown in Fig. b. Using the in-

formation summarized in Table 7.2, we obtain

_ _ V|/l| + yiAj + y^A^
'
~

A, + ^2 + A3

[\{2R)][{b{2R)] + R[c{2R)] + RJW R'-)

\b{2R) + c{2R) + {tt R-

Table 7.2 Information for determining the y coordinate of the centroid

yi Ai yA,

Part 1 (triangle) \{2R)

Part 2 (rectangle) R

Part 3 (semicircle) R

\b{2R) \\,{2R)][[b{2R)]

c{2R) R[c{2R)

{ttR- Ki^R-)

Figure 7.8

(a) The x coordinates of the centroids of

the parts.

(b) The >' coordinates of the centroids of

the parts.
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Example 7.4

Figure 7.9

Centroid of an Area with a Cutout
Determine the centroid of the area in Fig. 7.9.

Solution

Choose the Parts We will treat the area as a composite area consisting of

the rectangle without the semicircular cutout and the area of the cutout, which

we call parts 1 and 2, respectively (Fig. a).

Determine the Values for the Parts From Appendix B, the x coordinate

of the centroid of the cutout is

4(100)

200 mm —^

X-, =
4^
3tt 37r

mm.

The information for determining the x coordinate of the centroid is summa-

rized in Table 7.3. Notice that we treat the cutout as a negative area.

Table 7.3 Information for determining .v

j:,(min) A,(min ) jc,A,(min )

Part 1 (rectangle) 100 (200)(280) (100)[(200)(280)]

4(100)
,

, 4(100)
Part 2 (cutout)

37r
l7r(100)-

377
[i^(ioo)^]

Calculate the Centroid The x coordinate of the centroid is

h^H

(a) The rectangle and the semicircular

cutout. A, + A-,

r n
4(100) ., ,,

(100)[(200)(280)] - ^—-^[i 77(100)-]

(200)(280) - 577(100)-

Because of the symmetry of the area, y = 0.

= 122mm

Problems

For Problems 7.27-7.36, determine the coordinates of the

centroids.

40 mm

• 60 mm - 40 mm-
P7.27

20 mm
i

60 mm

-30 mm—"

-70 mm
P7.28
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P7.29

100 mm

60 mm

40 mm
_i

— 1 40 mm
P7.33

P7.30
P7.34

20 mm

P7.31
P7.35

P7.32

5 mm

15 mm

5 mm

15 mm

50 mm

5 mm

15 mm

'10' 15 ' 15 '10'

mm mm mm mm P7.36
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7.37 The dimensions b — 41 mm and /( = 22 mm. Determine

the y coordinate of the centroid of the beam's cross section.

P7.37

P7.41

7.42 By determining the x coordinate of the centroid of the area

shown in Problem 7.41 in terms of a, b, and e, and evaluating its

limit as £ —> 0, show that the x coordinate of the centroid of a

quarter-elliptical line is

Aa{a + lb)

37r(fl + b)
'

7.43 Three sails of a New York pilot schooner are shown. The

coordinates of the points are in feet. Determine the centroid of sail 1.

7.38 If the cross-sectional area of the beam shown in Problem

7.37 is 8400 mm" and the y coordinate of the centroid of the area

is y = 90 mm, what are the dimensions b and hi

7.39 Determine the x coordinate of the centroid of the Boeing

747 's vertical stabilizer.

P7.39

7.40 Determine the y coordinate of the centroid of the vertical

stabilizer in Problem 7.39.

7.41 The area has elliptical boundaries. If a = 30 mm,
b = \5 mm, and e = 6 mm, what is the x coordinate of the

centroid of the area?

(a)

(14.29)

P7.43I

7.44 Determine the centroid of sail 2 in Problem 7.43.

7.45 Determine the centroid of sail 3 in Problem 7.43.
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Distributed Loads

The load exerted on a beam (stringer) supporting a floor of a building is dis-

tributed over the beam's length (Fig. 7.10a). The load exerted by wind on a tel-

evision transmission tower is distributed along the tower's height (Fig. 7.10b).

In many engineering applications, loads are continuously distributed along

lines. We will show that the concept of the centroid of an area can be useful in

the analysis of objects subjected to such loads.

Figure 7.10

Examples of distributed forces: (a) Uniformly distributed load exerted on a beam of

a building's frame by the floor, (b) Wind load distributed along the height of a tower.

Describing a Distributed Load

We can use a simple example to demonstrate how such loads are expressed

analytically. Suppose that we pile bags of sand on a beam, as shown in

Fig. 7.11a. You can see that the load exerted by the bags is distributed over

the length of the beam and that its magnitude at a given position x depends on

how high the bags are piled at that position. To describe the load, we define a

function w such that the downward force exerted on an infinitesimal element

dx of the beam is w dx. With this funcfion we can model the varying magni-

tude of the load exerted by the sand bags (Fig. 7.1 lb). The arrows in the fig-

ure indicate that the load acts in the downward direction. Loads distributed

along lines, from simple examples such as a beam's own weight to complicat-

ed ones such as the lift distributed along the length of an airplane's wing, are

modeled by the function w. Since the product of w, and dx is a force, the di-

mensions of w are (force )/(length). For example, w, can be expressed in new-

tons per meter in SI units or in pounds per foot in U.S. Customary units.

Determining Force and Moment

Let's assume that the function w describing a particular distributed load is

known (Fig. 7.12a). The graph of w, is called the loading cun'e. Since the

force acting on an element dx of the line is w dx, we can determine the total

J£ 3.

(a)

(b)

Figure 7.11

(a) Loading a beam with bags of sand.

(b) The distributed load ^v models the load

exerted by the bags.
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wdx
(a)

(b)

Figure 7.12

(a) A distributed load and the force exerted

on a differential element dx.

(b) The equivalent force.

force F exerted by the distributed load by integrating the loading curve with

respect to x:

-Lw dx. (7.10)

We can also integrate to determine the moment about a point exerted by the

distributed load. For example, the moment about the origin due to the force

exerted on the element dx is xw dx, so the total moment about the origin due

to the distributed load is

M
-L'

xw dx. (7.11)

When you are concerned only with the total force and moment exerted by

a distributed load, you can represent it by a single equivalent force F
(Fig. 7.12b). For equivalence, the force must act at a position .v on the x axis

such that the moment of F about the origin is equal to the moment of the dis-

tributed load about the origin:

xF
L
xw dx.

Therefore the force F is equivalent to the distributed load if we place it at

the position

X — I
xw dx

w dx

(7.12)

(a)

(b)

Figure 7.13

(a) Determining the "area" between the

function w and the x axis.

(b) The equivalent force is equal to the

"area." and the line of action passes

through its centroid.

The Area Analogy

Notice that the term iv dx is equal to an element of "area" dA between the

loading curve and the x axis (Fig. 7.13a). (We use quotation marks because

w dx is actually a force and not an area.) Interpreted in this way, Eq. (7.10)

states that the total force exerted by the distributed load is equal to the "area"

A between the loading curve and the x axis:

= w dx =
Jl Ja

dA = A.

Substituting w dx = dA into Eq. (7.12), we obtain

(7.13)

X =
I
xw dx ^

Jl _ JA

wdx
Jl Ja

(7.14)

The force F is equivalent to the distributed load if it acts at the centroid of the

"area" between the loading curve and the x axis (Fig. 7.13b). Using this anal-

ogy to represent a distributed load by an equivalent force can be very useful

when the loading curve is relatively simple (see Example 7.5).



study Questions

1. What is the definition of the function w7

2. How is the force exerted by a distributed load determined from the loading curve?

3. How is the moment exerted by a distributed load determined from the

loading curve?
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Example 7.5

Beam with a Triangular Distributed Load
The beam in Fig. 7.14 is subjected to a "triangular" distributed load whose

value at B is 100 N/m.

(a) Represent the distributed load by a single equivalent force. '

\f\i-

(b) Determine the reactions at A and B. -;.—-;

100 N/m

ai

Strategy

(a) The magnitude of the force is equal to the "area" under the triangular load-

ing curve, and the equivalent force acts at the centroid of the triangular "area."

(b) Once the distributed load is represented by a single equivalent force, we

can apply the equilibrium equations to determine the reactions.

Solution

(a) The "area" of the triangular distributed load is one-half its base times its

height, or 5 (12 m) X (100 N/m) = 600 N. The centroid of the triangular

"area" is located at .r = 3 (12 m) = 8 m. We can therefore represent the dis-

tributed load by an equivalent downward force of 600-N magnitude acting at

x = 8 m (Fig. a).

y

Figure 7.14

•12m-

|(12m)-

= 8m

(12m)(100N/m)

= 600N

3

-12m-
(a) Representing the distributed load by an

equivalent force.

(b) From the equilibrium equations

2F, = A, = 0.

SF, = A, + B - 600 = 0.

2M(poi„,^, = 12fi - (8)(600) = 0,

we obtain A, = 0, A, - 200 N, and B = 400 N.

Discussion

The loading curve in this example was sufficiently simple that we did not

need to integrate to determine its area and centroid. In the following example

we must integrate to determine the area and centroid.
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Example 7.6

€)

Beam with a Distributed Load
The beam in Fig. 7.15 is subjected to a distributed load, a force, and a couple.

2000 lb The distributed load isw = 300x - 50x- + 03x'^ lb/ft.

10 000 ft-lb (^) Represent the distributed load by a single equivalent force.

(b) Determine the reactions at the built-in support A.

10 ft

Figure 7.15

10 ft

(a) Free-body

diagram of the beam.

Strategy

(a) Since we know the function w, we can use Eq. (7.13) to determine the

"area" under the loading curve, which is equal to the total force exerted by

the distributed load. The x coordinate of the centroid is given by Eq. (7.14).

(b) Once the distributed load is represented by a single equivalent force, we can

apply the equilibrium equations to determine the reactions at the built-in support.

Solution

(a) The downward force exerted by the distributed load is

F = wdx =
/ (300.x - 50.x^ + 03x^)dx = 4330 lb.

Jl Jo

The X coordinate of the centroid of the distributed load is

xwdx / x{300x - 50x' + 03x'^)dx
- _ _Jl _ Jo
^ ~

f
~ /"lo

I
wdx I (300a- - 5Qx- + Q3x^)dx

JL Jo

25,000

4330
= 5.77 ft.

The distributed load is equivalent to a downward force of 4330-lb magnitude

acting at J = 5.77 ft.

(b) In Fig. a, we draw the free-body diagram of the beam with the distributed

force represented by the single equivalent force. From the equilibrium equations

2F, = A, = 0,

^F, = A, + 2000 - 4330 = 0,

2M, point A

)

(20)(2000) + 10,000 - (5.77)(4330) + M^ - 0,

we obtain A, = 0, A, = 2330 lb, and M^ = -25,000 ft-lb.

2000 lb
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Example 7.7

Beam Subjected to Distributed Loads
The beam in Fig. 7.16 is subjected to two distributed loads. Determine the

reactions at A and B.

400 N/m

400 N/m

800 N/m

Strategy

We can easily represent the uniform distributed load on the right by an equiva-

lent force. We can treat the distributed load on the left as the sum of uniform

and triangular distributed loads and represent each load by an equivalent force.

Solution

We draw the free-body diagram of the beam in Fig. a, expressing the left distrib-

uted load as the sum of uniform and triangular loads. In Fig. b, we represent the

three distributed loads by equivalent forces. The "area" of the uniform distrib-

uted load on the right is (6 m) X (400 N/m) = 2400 N, and its centroid is 3 m
from B. The area of the uniform distributed load on the vertical part of the beam

is (6 m) X (400 N/m) = 2400 N, and its centroid is located at >• = 3 m. The

area of the triangular distributed load is ^ (6 m) X (400 N/m) = 1200 N, and

its centroid is located at v =
^ (6 m) = 2 m.

From the equilibrium equations

IF, = A, + 1200 + 2400 = 0,

XF, = A, + B - 2400 = 0,

2M(p„,„,,) = 6B - (3)(2400) - (2)(1200) - (3)(2400) = 0,

we obtain A^ = -3600 N, A^ = -400 N, and B = 2800 N.

Figure 7.16

:,||m||| 1400 N/m

2400 N
1200 N

400 N/m 400 N/m -^.v

6 m -6 m J

(a) Free-body diagram of the beam. (b) Representing the distributed loads by equivalent forces.



336 Chapter 7 Centroids and Centers of Mass

Problems

7.46 The value of the distributed load iv at x = 6 m is 240 N/m.

(a) The equation for the loading curve is w = 40x N/m. Use

Eq. (7.10) to determine the magnitude of the total force exerted

on the beam by the distributed load.

(b) If you use the area analogy to represent the distributed load

by an equivalent force, what is the magnitude of the force and

where does it act?

(c) Determine the reactions at A and B.

w
240 N/m

_iE W
6 m- P7.46

7.47 In a preliminary design study for a pedestrian bridge, an

engineer models the combined weight of the bridge and maximum
expected load due to traffic by the distributed load shown.

(a) Use Eq. (7.10) to determine the magnitude of the total force

exerted on the bridge by the distributed load.

(b) If you use the area analogy to represent the distributed load

by an equivalent force, what is the magnitude of the force and

where does it act?

(c) Determine the reactions at A and B.

w = 50 kN/m

, '
' ' ' '

, '

10m

P7.47

7.48 Determine the reactions at the built-in support A.

7.49 Determine the reactions at A and B.

y

-^^TTrrriTTTiK,

-L/2- -Z./2-
P7.49

7.50 Determine the reactions at the built-in support A.

y

x^l25) kN/m

P7.50

7.51 An engineer measures the forces exerted by the soil on

a 10-m section of a building foundation and finds that they are

described by the distributed load w = —\0x - x^' + 0.2j:^

kN[/]m.

(a) Determine the magnitude of the total force exerted on the

foundation by the distributed load.

(b) Determine the magnitude of the moment about A due to the

distributed load.

P7.51

7.52 The distributed load \% w = 6x + 0.4.v' N/m. Determine

the reactions at A and B.

P7.48 P7.52
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7.53 The aerodynamic lift of the wing is described by the

distributed load w = -SOoVl - 0.04a:- N/m. The mass of the

wing is 27 kg, and its center of mass is located 2 m from the wing

root/?.

(a) Determine the magnitudes of the force and the moment

about R exerted by the lift of the wing.

j^
(b) Determine the reactions on the wing at R.

7.56 Determine the reactions on member AB at A and B.

600N/ni

P7.56

7.57 Determine the reactions on member ABCD at A and D.

2kN/m
ITTTTTTTl}^

:kN/m

P7.53

7.54 The force F = 2000 lb. Determine the reactions at A and B.

w = 400;c2 lb/ft

,,A

|—Im—j P7.57

3 ft -3ft 2ft

P7.54
7.58 Determine the forces on member ABC of the frame.

7.55 Determine the reactions at A and B.

20 kN-m 4kN/n,(jJl|lJ|||lJt^^;^^

6kN'
-6 m- 6 m- -6 m-

P7.55

1 m

1 m

3kN/ni

P7.58

Centroids of Volumes and Lines

Here we define the centroids, or average positions, of volumes and lines, and

show how to determine the centroids of composite volumes and lines. We will

show in Section 7.7 that knowing the centroids of volumes and lines allows

you to determine the centers of mass of certain types of objects, which tells

you where their weights effectively act.
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Figure 7.17

A volume V and differential element dV.

Front View Side View

(a)

JV

Figure 7.18

(a) A volume of uniform thickness.

(b) Obtaining dV by projecting dA through

the volume.

Definitions

Volumes Consider a volume V, and let dV be a differential element of V
with coordinates x, y, and z (Fig. 7.17). By analogy with Eqs. (7.6) and (7.7),

the coordinates of the centroid of V are

x dV

'

\dV

X —

l"
y
=

Ir
z =

zdV

Ir
(7.15)

The subscript V on the integral signs means that the integration is carried out

over the entire volume.

If a volume has the form of a plate with uniform thickness and cross-

sectional area A (Fig. 7.18a), its centroid coincides with the centroid of A and

lies at the midpoint between the two faces. To show that this is true, we ob-

tain a volume element dV by projecting an element dA of the cross-sectional

area through the thickness T of the volume, so that dV — T dA (Fig. 7.18b).

Then the x and v coordinates of the centroid of the volume are

jc dV
I
xT dA

V JA

xdA

T dA

\T dA

dA

ydA

dV TdA dA
Jv J A JA

The coordinate z = by symmetry. Thus you know the centroid of this type of

volume if you know (or can determine) the centroid of its cross-sectional area.

Lines The coordinates of the centroid of a line L are

I'''
\ - IJ"' L

zdL

(7.16)

dL
I dL I dL I

Jl Jl Jl

where dL is a differential length of the line with coordinates x, v, and z. (Fig. 7.19).

Figure 7.19

A line L and differential element dL.
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Example 7.8

Centroid of a Cone by Integration

Determine the centroid of the cone in Fig. 7.20.

Figure 7.20

Strategy

The centroid must lie on the x axis because of symmetry. We will deter-

mine its X coordinate by using an element of volume dV in the form of a

"disk" of width dx.

Solution

Let dV be the disk in Fig. a. The radius of the disk is {R/h)x (Fig. b), and its

volume equals the product of the area of the disk and its thickness, dV =

ir[(^//j);c]" dx. To integrate over the entire volume, we must integrate with

respect to x from x = Oio x - h. The x coordinate of the centroid is

I xdV I

Jv _ jJo_

h^ IJv Jo

h nl
^ 2 J

XTT —T X dx

h p2^ 2 J
TT -^ X dx

h'

(a) An element dV in the form of a disk.

I

(b) The radius of the element is {R-jh)x.
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Example 7.9

(a) A differential line element dL.

Centroid of a Line by Integration

The line L in Fig. 7.21 is defined by the function y = x^. Determine the x co-

ordinate of its centroid.

Solution

We can express a differential element dL of the line (Fig. a) in terms of dx and dy:

dxV
dL = Vdx^ + dy- =

\/ 1 + JT dx.

From the equation describing the line, the derivative dy/dx = 2x, so we ob-

tain an expression for dL in terms of x:

dL = Vl + 4x- dx.

To integrate over the entire Hne, we must integrate from j: = to x = 1. The

.X coordinate of the centroid is

X —
I xdL I

X
Jl Jo

Vl + 4x^ dx

Jl Jo

= 0.574.

dL
I
Vl + 4x^ dx

Example 7.10

Centroid of a Semicircular Line

by Integration

Determine the centroid of the semicircular line in Fig. 7.22.

y

Figure 7.22
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Strategy

Because of the symmetry of the line, the centroid lies on the x axis. To deter-

mine jc, we will integrate in terms of polar coordinates.

Solution

By letting Q change by an amount dQ, we obtain a differential line element of

length dL = R dd (Fig. a). The x coordinate of dL is x = R cos 6. To inte-

grate over the entire line, we must integrate with respect to 6 from

e = -n-/2 to = +TT/2:

I dL Rdd
Jl J-n/l

R[en)

2R

77

Discussion

Notice that our integration procedure gives the correct length of the line:

dL= R
Jl J-jr/2

dL = RdO

dd - R[d]Zi;
7r/2

/2
ttR.

(a) A differential line element dL = R dd.

Problems

7.59 Determine the coordinates of the centroid of the truncated

conical volume.

Strategy: Use the method described in Example 7.8.

7.60 A grain storage tank has the form of a surface of revolution

with the profile shown. The height of the tank is 7 m and its

diameter at ground level is 10 m. Determine the volume of the

tank and the height above ground level of the centroid of its

volume.

P7.59 P7.60
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7.61 The object shown, designed to serve as a pedestal for a 7.64 The volume consists of a segment of a sphere of radius R.
speaker, has a profile obtained by revolving the curve y = O.I67x- Determine its centroid.

about the x axis. What is the jf coordinate of the centroid of the

object?

P7.64

P7.61

7.62 Determine the volume and centroid of the pyramid.

y

7.65 A volume of revolution is obtained by revolving the curve
X /a- + y-/b- = 1 about the x axis. Determine its centroid.

P7.62

7.63 Determine the centroid of the hemispherical volume.

P7.65

7.66 The volume of revolution has a cylindrical hole of radius R.

Determine its centroid.

y

P7.63 P7.66
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7.67 Determine the >• coordinate of the centroid of the line (see

Example 7.9).

(1.1)

7.69 Determine the x coordinate of the centroid of the line.

P7.67

7.68 Determine the x coordinate of the centroid of the line.

7.70 Determine the centroid of the circular arc.

P7.68

P7.69

P7.70

Centroids of Composite Volumes and Lines

The centroids of composite volumes and lines can be derived using the

same approach we applied to areas. The coordinates of the centroid of a

composite volume are

E^-K S-v,^ ^ly,
z =

Ek Sk ^Vi
i i i

and the coordinates of the centroid of a composite line are

X =
2 ^i^i

i

2A

Sv,L, ^Z,L,

y
=

s^, S^-

(7.17)

(7.18)

The centroids of some simple volumes and lines are tabulated in Appen-

dixes B and C.



344 Chapter 7 Centroids and Centers of Mass

Example 7.11

Determining the centroid of a composite volume or line requires three steps:

Choose the parts—Try to divide the composite into parts whose centroids

you know or can easily determine.

Determine the values for the parts—Determine the centroid and the

volume or length of each part. Watch for instances of symmetry that can

simplify your task.

Calculate the centroid—Use Eqs. (7.17) or (7.18) to determine the

centroid of the composite volume or line.

Figure 7.23

Centroid of a Composite Voiume
Determine the centroid of the volume in Fig. 7.23.

Solution

Choose the Parts The volume consists of a cone and a cylinder, which we
call parts 1 and 2, respectively.

Determine the Values for the Parts The centroid and volume of the

cone are given in Appendix C. The .v coordinates of the centroids of the parts

^ are shown in Fig. a, and the information for determining the x coordinate of

the centroid is summarized in Table 7.4.

2

^—

(a) The x coordinates of the centroids of

the cone and cylinder.

Table 7.4 Information for determining .v

x,V,

Parti (cone) |/2 \tt R'h {^h){\TTR-h)

Part 2 (cylinder) h + {b -rrR-b {h + \b){7rR-b)

Calculate the Centroid The x coordinate of the centroid of the composite

volume is

_ _ Jr.V, + X2V2 _ {lh){\7TR-h) + {h + {b){7TR'-b)

Vi + Vi ~ i-rrR^h + TrR'b

Because of symmetry, y = and 2 = 0.

Example 7.12

Centroid of a Volume Containing a Cutout

Determine the centroid of the volume in Fig. 7.24.

Solution

Choose the Parts We can divide the volume into the five simple parts

shown in Fig. a. Part 5 is the volume of the 20-mm-diameter hole.
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Determine the Values for the Parts The centroids of parts 1 and 3 are

located at the centroids of their semicircular cross sections (Fig. b). The infor-

mation for determining the x coordinate of the centroid is summarized in

j^ Table 7.5. Part 5 is a negative volume.

Table 7.5 Information for determining x.

jc,(mmj V,(mm-') XjVi{mn\^)

Part 1

Part 2

Parts

Part 4

Parts

4(25) 77(25)-

200

377

100

,

4(25)

377

200

(20)
4(25)

377

77(25)^

(20)

(200) (50) (20)

77(25)-

^^(20)

77(25)-(40)

-77(10)-(20)

(100)[(200)(50)(20)]

200 +
4(25)

377

77(25)^

(20)

-(200)[77(10)-(20)]

Calculate the Centroid The x coordinate of the centroid of the composite

volume is

X —
X|V, + XjVj + X3V3 + .V4V4 + X5V,

V, + V, + V, + V4 + V5

4(25)

377

77(25)^

(20)

200 +
4(25)

377

+ (100)[(200)(50)(20)]

77(25)^

(20) + - (200)[77(10)-(20)]

77(25)^

(20) + (200)(50)(20) +
77(25)^

25 mm 20 mm

- 200 mm

Side View

y

^h 20 mm

mm
End View

Figure 7.24

(20) + 77(25)-(40) - 77(10)-(20)

72.77 mm.

The z coordinates of the centroids of the parts are zero except Z4 = 30 mm.
Therefore the z coordinate of the centroid of the composite volume is

z = Z4V4

Vi + V2 + Vj, + V4 + V5 (a) Dividing the volume into five parts.

30[77(25)2(40)]

77(25)- 77(25)-
—-^(20) + (200)(50)(20) + -^(20) + 77(25)-(40) - 77(10)-(20)

= 7.56 mm.

Because of symmetry, v — 0.
4(25)

(b) Positions of the centroids of parts 1

and 3.
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Example 7.13

Centroid of a Composite Line

Determine the centroid of the line in Fig. 7.25. The quarter-circular arc lies in

the y-z plane.

Figure 7.25 (4, 0, 2) m

(2, 0. 2) m
(0. 0. 2) m (4. 0. 2) m

(a) Dividing the line into three parts.

Solution

Choose the Parts The line consists of a quarter-circular arc and two

straight segments, which we call parts 1, 2, and 3 (Fig. a).

Determine the Values for the Parts From Appendix B, the coordinates of the

centroid of the quarter-circular arc are .v, = 0, Vi 2(2)/7r m. The cen-

troids of the straight segments he at their midpoints. For segment 2, Xj = 2 m,

5'2 = 0, and Z2 = 2 m, and for segment 3, Xt, = 2 m, ^3 = 1 m, and C3 = 1 m.

The length of segment 3 is Lj = V'(4)' -I- (2)' -I- (2)' = 4.90 m. This infor-

mation is summarized in Table 7.6.

Table 7.6 Information for determining the centroid.

Xi >•/ Zi Li

Part 1 2(2)/7r 2(2)/7r 7r(2)/2

Part 2 2 2 4

Part 3 2 1 1 4.90

Calculate the Centroid The coordinates of the centroid of the composite

line are

x,L, + X2L2 + X3L3 + (2)(4) + (2)(4.90)
= 1.478 m,

y
=

L^ + L2 + Li TT + 4 + 4.90

j,L, + V2L2 + hLi [2(2)/77][77(2)/2] + + (1)(4.90)

z =

L, + L2 + L3

^j Li -I- Z2L2 + ZjL^

L, + Ln + U

TT + 4 + 4.90

[2(2)/7r][7r(2)/2] + (2)(4) + (1)(4.90)

TT + 4 + 4.90

0.739 m,

= 1.404 m.
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Problems

For Problems 7.71-7.78, determine the centroids of the

volumes.

~7~

60 mm

40 mm

40 mm

/

-~ 40 mm -4- 60 mm

15 in

15 in

P7.71

40 mm <y I \

30 mm

P7.74

P7.75

P7.72

160
nun

80 mm

40 mm

-80 mm- 100 mm-

I

60 mm

1

40 mm
1 ^x ' 50 mm

-60 mm-"

Holes are 40 mm in diameter. P7.73

25 mm

P7.76
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1.75 in

7.80 Two views of a machine element are shown. Determine the

centroid of its volume.

_i^

P7.77

20

mm
50 mm

18 mm

4 mm

60 mm

P7.80

30 mm

60 mm

For Problems 7.81-7.83, determine the centroids of the

lines.

P7.78
P7.81

7.79 The dimensions of the Gemini spacecraft (in meters) are

a = 0.70, b = 0.88. c = 0.74. d = 0.98. e = 1.82./ = 2.20,

g = 2.24. and h = 2.98. Determine the centroid of its volume.

2m

P7.82

P7.79
-2 m- -2 m-

P7.83
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7<84 The semicircular part of the Une lies in the x-z plane.

Determine the centroid of the line.

7.85 The following theorem is not true: "The centroid of any

area is coincident with the centroid of the line forming its bound-

ary." Disprove it by finding a counterexample. That is. find an

example for which it is not true.

P7.84

The Pappus-Guldinus Theorems

In this section we discuss two simple and useful theorems relating surfaces and

volumes of revolution to the centroids of the lines and areas that generate them.

First Theorem

Consider a line L in the x-y plane that does not intersect the x axis

(Fig. 7.26a). Let the coordinates of the centroid of the line be x, y. We can

generate a surface by revolving the line about the x axis (Fig. 7.26b). As the

line revolves about the x axis, the centroid of the line moves in a circular path

of radius y.

The first Pappus-Guldinus theorem states that the area of the surface of

revolution is equal to the product of the distance through which the centroid

of the line moves and the length of the line:

liryL. (7.19)

To prove this result, we observe that as the line revolves about the x axis, the

area dA generated by an element dL of the line is dA — liry dL, where v is

the y coordinate of the element dL (Fig. 7.26c). Therefore the total area of the

surface of revolution is

A = 2rr
I
y dL.

From the definition of the y coordinate of the centroid of the line,

ydL

(7.20)

>'
h
I"-'

we obtain

ydL = yL.

Substituting this result into Eq. (7.20), we obtain Eq. (7.19).

(a)

(c)

Figure 7.26

(a) A line L and the y coordinate of its

centroid.

(b) The surface generated by revolving the

line L about the .v axis and the path

followed by the centroid of the line.

(c) An element dL of the line and the

element of area dA it generates.



350 Chapter 7 Centroids and Centers of Mass

Second Theorem

Consider an area A in the x-y plane that does not intersect the x axis

(Fig. 7.27a). Let the coordinates of the centroid of the area be x, y. We can.

generate a volume by revolving the area about the x axis (Fig. 7.27b). As the

area revolves about the x axis, the centroid of the area moves in a circular

path of length liry.

The second Pappus-Guldinus theorem states that the volume V of the

volume of revolution is equal to the product of the distance through which the

centroid of the area moves and the area:

V = IttxA. (7.21)

As the area revolves about the x axis, the volume dV generated by an element

dA of the area is dV = 2tt y dA, where y is the >' coordinate of the element

dA (Fig. 7.27c). Therefore the total volume is

(7.22)V ^ iTT ydA.

From the definition of the y coordinate of the centroid of the area,

\dA

dA

(a)

(b)

Figure 7.27

(a) An area A and the y coordinate of its

centroid.

(b) The volume generated by revolving the

area A about the x axis and the path

followed by the centroid of the area.

(c) An element dA of the area and the

element of volume dV it generates. (c)

m



we obtain

/y dA = yA.

Substituting this result into Eq. (7.22), we obtain Eq. (7.21).
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Example 7.14

Use the Pappus-Guldinus theorems to determine the surface area A and vol-

ume V of the cone in Fig. 7.28.

Strategy

We can generate the curved surface of the cone by revolving a straight line

about an axis, and we can generate its volume by revolving a right triangular

area about the axis. Since we know the centroids of the straight line and the

triangular area, we can use the Pappus-Guldinus theorems to determine the

area and volume of the cone.

Solution

Revolving the straight line in Fig. (a) about the x axis generates the curved

surface of the cone. The v coordinate of the centroid of the line is Vl = 2 ^^

and its length is L = V /z^ + R~ . The centroid of the line moves a distance

27ryL as the line revolves about the x axis, so the area of the curved surface is

(27ry)L = tt/jV/j^ + R^

.

We obtain the total surface area A of the cone by adding the area of the base,

A = TTR\/h- + /?' + 77-/?l

Revolving the triangular area in Fig. (b) about the x axis generates the vol-

ume V. The y coordinate of its centroid is yj = 5 R, and its area is A = ^ hR,

so the volume of the cone is

V = (27ryT-)^ = hTThR".

Figure 7.28

\ = ^'^

(a) The straight line that generates the curved

surface of the cone.

h=\'^l

(b) The area that generates the volume of the

cone.
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Example 7.15

(a) Revolving a semicircular line about the

A' axis.

(b) Revolving a semicircular area about the

A' axis.

Determining Centroids witli

Pappus-Guidinus Tiieorems
The circumference of a sphere of radius R is 2ttR, its surface area is AttR^,

and its volume is 5 7r/?\ Use this information to determine (a) the centroid of

a semicircular line; (b) the centroid of a semicircular area.

Strategy

Revolving a semicircular line about an axis generates a spherical area, and re-

volving a semicircular area around an axis generates a spherical volume.

Knowing the area and volume, we can use the Pappus-Guldinus theorems to

determine the centroids of the generating line and area.

Solution

(a) Revolving the semicircular line in Fig. a about the x axis generates the

surface area of a sphere. The length of the line is L = ttR. and Vl is the y co-

ordinate of its centroid. The centroid of the line moves a distance 27ryL, so

the surface area of the sphere is

{27ry^)L = In'Ry^.

By equating this expression to the surface area 4ttR^, we determine Jl :

.Vl

2R

(b) Revolving the semicircular area in Fig. b generates the sphere's volume.

The area of the semicircle is A = \ ttR', and y^ is the y coordinate of its cen-

troid. The centroid moves a distance 27r}'s, so the volume of the sphere is

(27rys)^ = T^'R^ys-

Equating this expression to the volume 5 ttR^, we obtain

>'s
= 4^

377
'

Discussion

If you can obtain a result by using the Pappus-Guldinus theorems, you will

often save time and effort in comparison with other approaches. Compare this

example with Example 7.10, in which we use integration to determine the

centroid of a semicircular line.
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Problems

7.86 Revolving the area of the triangle ABC about the x axis

generates a conical volume. Use the second Pappus-Guldinus

theorem to calculate the volume and compare your answer to the

value given in Appendix C.

7.92 A nozzle for a large rocket engine is designed by revolving

the function y = l{x - I )'^' about the > axis. Use the first

Pappus-Guldinus theorem to determine the surface area of the

nozzle.

P7.86

7.87 Revolving the line ABC shown in Problem 7.86 about the

X axis generates a conical surface. Use the first Pappus-Guldinus

theorem to calculate the area of the conical surface.

Refer to P7.88 for Problems 7.88-7.91.

7.88 Use the second Pappus-Guldinus theorem to determine the

volume generated by revolving the curve about the x axis.

7.89 Use the second Pappus-Guldinus theorem to determine the

volume generated by revolving the curve about the y axis.

7.90 The length of the curve is L = 1.479, and the area gen-

erated by rotating it about the x axis is A = 3.810. Use the first

Pappus-Guldinus theorem to determine the v coordinate of the

centroid of the curve.

7.91 Use the first Pappus-Guldinus theorem to determine the area

of the surface generated by revolving the curve about the v axis.

P7.92

7.93 A volume of revolution is obtained by revolving the area

between the function > = 5 jc
'' about the >' axis. Use the second

Pappus-Guldinus theorem to determine its volume.

P7.93

7.94 Use the first Pappus-Guldinus theorem to determine

the area of the curved surface of the volume of revolution in

Problem 7.93.

7.95 The volume of revolution contains a hole of radius R.

P7.88 (a) Use integration to determine its volume.

(b) Use the second Pappus-Guldinus theorem to determine its

volume.

R + a

P7.95
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7.96 Determine the volume of the volume of revolution. 7.98 The volume of revolution has an elliptical cross section.

Determine its volume.

E ,

t

140

mm

1

y

80

mm P7.96

7.97 Determine the surface area of the volume of revolution in

Problem 7.96.

180 mm

P7.98

Centers of Mass

The center of mass of an object is the centroid, or average position, of its

mass. In the following section we give the analytical definition of the center of

mass and demonstrate one of its most important properties: An object's weight

can be represented by a single equivalent force acting at its center of mass. We
then discuss how to locate centers of mass and show that for particular classes

of objects, the center of mass coincides with the centroid of a volume, area, or

line. Finally, we show how to locate centers of mass of composite objects.

Definition of the Center of Mass

dm m

y^

Figure 7.29

An object and differential element of mass

dm.

The center of mass of an object is defined by

/ xdm
— Jm
X =

;;
.

V dm

I
dm

Jm
dm

zdm
Jm

I
dm

Jm

(7.23)

where x, v, and z are the coordinates of the differential element of mass dm

(Fig. 7.29). The subscripts m indicate that the integration must be carried out

over the entire mass of the object.

Before considering how to determine the center of mass of an object, we

will demonstrate that the weight of an object can be represented by a single

equivalent force acting at its center of mass. Consider an element of mass dm
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ot an object (Fig. 7.30a). If the y axis of the coordinate system points upward,

the weight of dm is —dm gj. Integrating this expression over the mass w, we

obtain the total weight of the object,

- gj dm = -wgj = -Wj.

The moment of the weight of the element dm about the origin is

(xi + >'j + ck) X {-dm g\) = gzidm - gxkdm.

Integrating this expression over m, we obtain the total moment about the ori-

gin due to the weight of the object:

Jm
{gzidm — gAkrfm) = mgz'\ — wgjck = Wz'x — VVxk.

If we represent the weight of the object by the force —Wj acting at the center

of mass (Fig. 7.30b), the moment of this force about the origin is equal to the

total moment due to the weight:

{x\ + yj + ?k) X (-Wj) = IVzi - Wx\i.

This result shows that when you are concerned only with the total force and

total moment exerted by the weight of an object, you can assume that its

weight acts at the center of mass.

Centers of Mass of Objects

(a)

< (X,J.2)

Wj

(b)

Figure 7.30

(a) Weight of the element dm.

(b) Representing the weight by a single

force at the center of mass.

To apply Eqs. (7.23) to specific objects, we will change the variable of inte-

gration from mass to volume by introducing the mass density.

The mass density p of an object is defined such that the mass of a differ-

ential element of its volume is dm = p dV. The dimensions of p are therefore

(mass)/(volume). For example, it can be expressed in kg/m^ in SI units or in

slug/ft"' in U.S. Customary units. The total mass of an object is

m = dm = pdV. (7.24)

An object whose mass density is uniform throughout its volume is said to be

homogeneous. In this case, the total mass equals the product of the mass den-

sity and the volume:

m = p dV = pV. Homogeneous object (7.25)

The weight density y = gp. It can be expressed in N/m^ in SI units or in Ib/ft^

in U.S. Customary units. The weight of an element of volume dV of an object

is dW = y dV, and the total weight of a homogeneous object equals yV.
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Front View

Figure 7.31

A plate of uniform thickness.

Side View

(a)

(b)

Figure 7.32

(a) A slender bar and the centroid of its

axis.

(b) The element dm.

By substituting dm = p dV into Eqs. (7.23), we can express the coordi-

nates of the center of mass in terms of volume integrals:

JC
= /

pxdV
I
pydV IpzdV

I/" I/" f/"'

(7.26)

If p is known as a function of position in an object, these integrals determine

its center of mass. Furthermore, we can use them to show that the centers of

mass of particular classes of objects coincide with centroids of volumes,

areas, and lines:

• The center of mass of a homogeneous object coincides with the

centroid of its volume. If an object is homogeneous, p = constant and

Eqs. (7.26) become the equations for the centroid of the volume.

X = —
xdV ydV

V =

dV

z = —
zdV

dV i"
The center of mass of a homogeneous plate of uniform thickness

coincides with the centroid of its cross-sectional area (Fig. 7.31). The

center of mass of the plate coincides with the centroid of its volume, and

we showed in Section 7.4 that the centroid of the volume of a plate of

uniform thickness coincides with the centroid of its cross-sectional area.

The center of mass of a homogeneous slender bar of uniform cross-

sectional area coincides approximately with the centroid of the axis

of the bar (Fig. 7.32a). The axis of the bar is defined to be the line

through the centroid of its cross section. Let dm — pA dL, where A is the

cross-sectional area of the bar and dL is a differential element of length

of its axis (Fig. 7.32b). If we substitute this expression into Eqs. (7.26),

they become the equations for the centroid of the axis:

X —
;:

.

dL /= dL

L" l" l"
This result is approximate because the center of mass of the element dm
does not coincide with the centroid of the cross section in regions where the

bar is curved.

Study Questions <

If you want to represent the weight of an object as a single equivalent force, at

what point must the force act?

How is the mass density of an object defined?

What is the relationship between the mass density p and the weight density y?

If an object is homogeneous, what do you know about the position of its

center of mass?

1.

2.

3.

4.

lAlLi
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Example 7.16

Representing the Weight of an
L-Shaped Bar
The mass of the homogeneous slender bar in Fig. 7.33 is 80 kg. What are the

reactions at A and B?

Strategy

We determine the reactions in two ways.

First Method We represent the weight of each straight segment of the bar

by a force acting at the center of mass of the segment.

Second Method We determine the center of mass of the bar by determin-

ing the centroid of its axis and represent the weight of the bar by a single

force acting at the center of mass.

Solution

First Method In the free-body diagram in Fig. a, we place half of the

weight of the bar at the center of mass of each straight segment. From the

equilibrium equations

IF, = A, - B = 0,

SF, = A, - (40)(9.81) - (40)(9.81) 0,

2M,,(poim.) = (1)B - (1)(40)(9.81) - (0.5)(40)(9.81) = 0,

we obtain A, = 589 N, A, = 785 N, and B = 589 N.

Second Method We can treat the centerline of the bar as a composite line

composed of two straight segments (Fig. b). The coordinates of the centroid

of the composite line are

(0.5)(1)+(1)(1)
X = XjLi + XtL2^2

>' =

1 + 1

(Q)(i) + (o.5)(i)

1 + 1

= 0.75 m,

= 0.25 m.

^In the free-body diagram in Fig. c, we place the weight of the bar at its center

^ of mass. From the equilibrium equations

IF, = A,- B = 0,

IF, = A, - (80)(9.81) =

^M(po,..A) = (l)fi - (0.75)(80)(9.81) = 0,

we again obtain A, = 589 N, A, = 785 N, and B = 589 N.

t A

51

^ T

1 m

Figure 7.33

(40)(9.81)N

^
-0.5 m-

(40)(9.81)N

-0.5 m-

(a) Placing the weights of the straight

segments at their centers of mass.

[-0.5 m--|̂

i

0.5 m

_L,

(b) Centroids of the straight segments of

the axis.

1 m

A
X

A
i(80)(9.8I)N

— 0.75 m—
(c) Placing the weight of the bar at its

center of mass.
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Example 7.17

Figure 7.34

(a) An element of

volume dV in the

form of a disk.

Cylinder with Nonuniform Density
Determine the mass of the cylinder in Fig. 7.34 and the position of its center

of mass if (a) it is homogeneous with mass density po ; (b) its density is given

by the equation p = po(l + x/L).

Strategy

In (a), the mass of the cylinder is simply the product of its mass density and

its volume and the center of mass is located at the centroid of its volume. In

(b), the cylinder is nonhomogeneous and we must use Eqs. (7.24) and (7.26)

to determine its mass and center of mass.

Solution

(a) The volume of the cylinder is LA, so its mass is PqLA. Since the center of

mass is coincident with the centroid of the volume of the cylinder, the coordi-

nates of the center of mass are x = {L,y = 0,z = 0.

(b) We can determine the mass of the cylinder by using an element of volume

dV in the form of a disk of thickness dx (Fig. a). The volume dV = A dx. The

mass of the cylinder is

m fpdV= [
Jv Jo

Po 1 + Adx
3

The X coordinate of the center of mass is

xpdV

pdV

Pq\ X + — ]Adx

PqAL
-I-

Because the density does not depend on y or z, we know from symmetry that

y = md z = 0.

Discussion

Notice that the center of mass of the nonhomogeneous cylinder is not located

at the centroid of its volume.
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Problems

7.99 The mass of the homogeneous flat plate is 450 kg. What are 7.102 The bar has a mass of 80 kg. What are the reactions at A

the reactions at A and B'l and fi?

Strategy: The center of mass of the plate is coincident with

the centroid of its area. Determine the horizontal coordinate of

the centroid and assume that the plate's weight acts there.

P7.102

7.103 The semicircular part of the homogeneous slender bar lies

in the x-z plane. Determine the center of mass of the bar.

-5 m-

P7.99

7.100 The mass of the homogeneous flat plate is 50 kg.

Determine the reactions at the supports A and B.

P7.100

7.101 The suspended sign is a homogeneous flat plate that has a

mass of 130 kg. Determine the axial forces in members AD and

CE. (Notice that the v axis is positive downward.)

T
Im

P7.103

7.104 When the truck is unloaded, the total reactions at the front

and rear wheels are A = 54 kN and 5 = 36 kN. The density of

the load of gravel is p = 1600 kg/m\ The dimension of the load

in the z direction is 3 m, and its surface profile, given by the func-

tion shown, does not depend on z. What are the total reactions at

the front and rear wheels of the loaded truck?

y = 1.5-0.45.V + 0.062.r2

V = 1 + 0.0625.V-

P7.101 P7.104
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7.105 The 10-ft horizontal cylinder with 1-ft radius is supported 7.106 A horizontal cone with 800-mm length and 200-nini

at A and B. Its weight density is y = 100(l — 0.002j:^) Ib/ft^. radius has a built-in support at A. Its mass density is

What are the reactions at A and B'l p = 6000{l + 0.4a')) kg/m\ where x is in meters. What are

the reactions at A?

800 mm -

P7.105 P7.106

Centers of Mass of Composite Objects

You can easily determine the center of mass of an object consisting of a com-

bination of parts if you know the centers of mass of its parts. The coordinates

of the center of mass of a composite object composed of parts with masses

m,, mj , are

X =
2 •^''"'

2 '"<

y
=
2 >'/"i,

z =
Zitni

2 '"'

(7.27)

where jc,, j,, z, are the coordinates of the centers of mass of the parts. Because

the weights of the parts are related to their masses by Wj = gw,, Eqs. (7.27)

can also be expressed as

X = i

V — z = (7.28)

When you know the masses or weights and the centers of mass of the parts of a

composite object, you can use these equations to determine its center of mass.

Determining the center of mass of a composite object requires three steps:

1. Choose the parts—Try to divide the object into parts whose centers of

mass you know or can easily determine.

2. Determine the values for the parts—Determine the center of mass and

the mass or weight of each part. Watch for instances of symmetry that

can simplify your task.

3. Calculate the center of mass—Use Eqs. (7.27) or (7.28) to determine the

center of mass of the composite object.
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Example 7.18

Center of Mass of a Composite Object

The L-shaped machine part in Fig. 7.35 is composed of two homogeneous

bars. Bar 1 is tungsten alloy with mass density 14,000 kg/m^, and bar 2 is

steel with mass density 7800 kg/m\ Determine the center of mass of the

machine part.

40 mm

Solution

The volume of bar 1 is

(80)(240)(40) = 7.68 X lO' mm' = 7.68 X 10"^ m\

so its mass is (7.68 X 10"^)(l.4 X 10^) = 10.75 kg. The center of mass of

bar 1 coincides with the centroid of its volume: 3c, = 40 mm, y\ = 120 mm,

:, =0.

Bar 2 has the same volume as bar 1, so its mass is (7.68 X 10 "*)

( 7.8 X 10^) — 5.99 kg. The coordinates of its center of mass are .V; = 200 mm,
y, - 40 mm, Z2 = 0. Using the information summarized in Table 7.7, we ob-

tain the X coordinate of the center of mass,

x^m, + x,m. (40)(10.75) + (200)(5.99)
X = = = 97.2 mm,

w, + /«2 10.75 + 5.99

and the v coordinate,

y,/«, + y.m, (120) (10.75) + (40) (5.99)
•^

m, + m, 10.75 + 5.99

Because of the symmetry of the object, z = 0.

Table 7.7 Information for determining the center of mass

91.4 mm.

'"i (kg) Xj (mm) Xjttii (mm-kg) J, (mm) j,/n, (mm-kg)

Barl

Bar 2

10.75

5.99

40

200

(40)(10.75)

(200)(5.99)

120

40

(120)(10.75)

(40)(5.99)

Figure 7.35
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Example 7.19

Center of Mass of a Composite Object
The composite object in Fig. 7.36 consists of a bar welded to a cylinder. The

homogeneous bar is aluminum (weight density 168 Ib/ft^), and the homoge-

neous cylinder is bronze (weight density 530 Ib/ft^). Determine the center of

mass of the object.

Figure 7.36

^, 3

(a) Dividing the bar into three parts.

y

4(4)

(b) The centroids of the two semicircular

parts.

f

*-5 in-^ p-5 in-

12 in

Side View Front View

Strategy

We can determine the weight of each homogeneous part by multiplying its

volume by its weight density. We also know that the center of mass of each

part coincides with the centroid of its volume. The centroid of the cylinder is

located at its center, but we must determine the location of the centroid of the

bar by treating it as a composite volume.

Solution

The volume of the cylinder is 12[7r(4)^ - 77(2)^] = 452 in.^ = 0.262 ft^ so

its weight is

^'(cylinder)
= (0.262)(530) = 138.81b.

The X coordinate of its center of mass is x (cylinder) 10 in.

The volume of the bar is (10)(8)(2) + 57r(4)'(2) -577(4)^(2) =

160 in.^ = 0.0926 ft\ and its weight is

W(b^, = (0.0926) (168) = 15.61b.

We can determine the centroid of the volume of the bar by treating it as a

composite volume consisting of three parts (Fig. a). Part 3 is a semicircular

"cutout." The centroids of part 1 and the semicircular cutout 3 are located at

the centroids of their semicircular cross sections (Fig b). Using the informa-

tion summarized in Table 7.8, we have
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Table 7.8 Information for determining the x coordinate of the

centroid of the bar

X, (in.) V, (in^) x,V,{m*)

Part 1

4(4)

377

Part 2 5

4(4)
Part 3 10 -

377

^77(4)^(2)

(10)(8)(2)

-^77(4)^(2)

4(4)
[i^(4)^(2)]

10

377

5[(10)(8)(2)]

4(4)

377
[i^(4)^(2)]

(bar)

JCiV| + X2V2 + ^3^3

V, + V2 + ^3

4(4)

377
[^77(4)^(2)] + 5[(10)(8)(2)] - 10 - 4(4)

377
[k(4)^(2)]

;77(4)^(2) + (10)(8)(2)-i77(4)^(2)

= 1.86 in.

Therefore the x coordinate of the center of mass of the composite object is

^(bar)^(bar) + ^(cylinder) ^(cylinder)

X =
^(bar) + ^(cylinder)

(1.86)(15.6) + (10)(138.8)

15.6 + 138.8
9.18 in.

Because of the symmetry of the bar, the y and z coordinates of its center of

mass are V = and z = 0.

tf^,Application to Engineering:

Centers of Mass of Vehicles

A car is placed on a platform that measures the normal force exerted by each

tire independently (Fig. 7.37). Measurements made with the platform hori-

zontal and with the platform tilted at a = 15° are shown in Table 7.9. Deter-

mine the position of the car's center of mass.

Table 7.9 Measurements of the normal forces exerted by the tires

Wheelbase = 2.82 m
Track = 1.55 m Measured Loads (N)

a = a = 15'

Left front wheel, A^lf

Right front wheel, A^^p

Left rear wheel, A^lr

Right rear wheel, A^rr

5104 4463

5027 4396

3613 3956

3559 3898

Example 7.20

I
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(a) Side view of the free-body diagram

with the platform horizontal.

p— Track—
-j

Figure 7.37

Solution

We draw the free-body diagram of the car when the platform is in the hori-

zontal position in Figs, a and b. The car's weight is

W - /Vlf + A^RF + A^LR + A'rr

= 5104 + 5027 + 3613 + 3559

= 17,303 N

From Fig. a, we obtain the equilibrium equation

2M(,axis) = (wheelbase)(yVLF + ^rf) - ^W = 0,

which we can solve for x:

(wheelbase)(A'LF + A^rf)
X =

W

_ (2.82)(5104 + 5027)
"

17,303

= 1.651 m.

From Fig. b,

which we can solve for z'

_ (track)(yVRF + A^rr)

(.axis) = zW - (track)(yVRF + A^rr) = 0,

w

(1.55) (5027 + 3559)

(b) Front view of the free-body diagram

with the platform horizontal.

17,303

= 0.769 m.
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Now that we know x, we can determine y from the free-body diagram of

the car when the platform is in the tilted position (Fig. c). From the equilib-

rium equation

2M(,,,i,) = (wheelbase)(NLF + -'Vrf) + yW sin 15° - 3fM^cosl5°

we obtain

= 0,

3fWcosl5° - (wheelbase)(A^LF + ^'rf)

W sin 15°

( 1.651 )( 17,303) cos 15° - (2.82)(4463 + 4396)

17,303 sin 15°

= 0.584 m.

Notice that we could not have determined y without the measurements made

with the car in the tilted position.

Jl° \Nv.*^%ee\^-^^-
(c) Side view of the free-body diagram

with the platform tilted.

design Issues

The location of the center of mass of a vehicle affects its operation and per-

formance. The forces exerted on the suspensions and wheels of cars and train

coaches, the tractions their wheels create, and their dynamic behaviors are af-

fected by the locations of their centers of mass. Not only are the performances

of airplanes affected by the locations of their centers of mass, they cannot fly

unless their centers of mass lie within prescribed bounds. For engineers who
design vehicles, the position of the center of mass is one of the principal pa-

rameters governing decisions about the configuration of the vehicle and the

layout of its contents. In testing new designs of both land vehicles and air-

planes, the position of the center of mass is affected by the configuration of

the particular vehicle and the weights and locations of stowage and passen-

gers. It is often necessary to locate the center of mass experimentally by a

technique such as the one we have described. Such experimental measure-

ments are also used to confirm center of mass locations predicted by calcula-

tions made during design.
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Problems

7.107 The circular cylinder is made of aluminum (Al) with mass

density 2700 kg/m' and iron (Fe) with mass density 7860 kg/m\

(a) Determine the centroid of the volume of the cylinder.

(b) Determine the center of mass of the cylinder.

200 mm

P7.107

7.108 The cylindrical tube is made of aluminum with mass

density 2700 kg/m . The cylindrical plug is made of steel with

mass density 7800 kg/m\ Determine the coordinates of the center

of mass of the composite object.

7.109 A machine consists of three parts. The masses and the

locations of the centers of mass of the parts are

Determine the coordinates of the center of mass of the machine.

7.110 A machine consists of three parts. The masses and the

locations of the centers of mass of two of the parts are

Part Mass (kg) v (mm) v (mm) (mm)

2.0

4.5

100

150

50

70

-20

The mass of part 3 is 2.5 kg. The design engineer wants to posi-

tion part 3 so that the center of mass location of the machine is

X = 120 mm, j = 80 mm, z = 0- Determine the necessary

position of the center of mass of part 3.

7.111 Two views of a machine element are shown. Part 1 is

aluminum alloy with mass density 2800 kg/m\ and part 2 is steel

with mass density 7800 kg/m^. Determine the x coordinate of its

center of mass.

24 mm

60 mm

P7.111I

r>

100 100

mm mm

Section A-A

J20 mm

'' 35 mm

P7.108

7.112 Determine the v and z coordinates of the center of mass of |

the machine element in Problem 7.111.

7.113 With its engine removed, the mass of the car is 1100 kg

and its center of mass is at C. The mass of the engine is 220 kg.

(a) Suppose that you want to place the center of mass E of the

engine so that the center of mass of the car is midway between

the front wheels A and the rear wheels B. What is the distance fc?|

(b) If the car is parked on a 15° slope facing up the slope, what

total normal force is exerted by the road on the rear wheels B?
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P7.113

7.114 The airplane is parked with its landing gear resting on

scales. The weights measured at A, B, and C are 30 kN, 140 kN,

" and 146 kN, respectively. After a crate is loaded onto the plane,

the weights measured at A, B, and C are 31 kN, 142 kN, and

147 kN, respectively. Determine the mass and the x and y coor-

dinates of the center of mass of the crate.

Problems 7.115 and 7.116 are related to Example 7.20.

7.115 A suitcase with a mass of 90 kg is placed in the trunk of the

car described in Example 7.20. The position of the center of mass

of the suitcase is x^ = -0.533 m, }\ = 0.762 m, z^ = -0.305 m. If

the suitcase is regarded as part of the car, what is the new position

of the car's center of mass?

7.116 A group of engineering students constructs a miniature

device of the kind described in Example 7.20 and uses it to deter-

mine the center of mass of a miniature vehicle. The data they

obtain are shown in the following table:

Wheelbase = 36 in.

Track = 30 in. Measured Loads (lb)

= 10=

Left front wheel, Nlp 35

Right front wheel, A^Rp 36

Left rear wheel, A^lr 27

Right rear wheel, A'rr 29

32

33

34

30

Determine the center of mass of the vehicle. Use the same

coordinate system as in Example 7.20.

P7.114

Chapter Summary

Centroids

A centroid is a weighted average position. The coordinates of the centroid of

an area A in the x-y plane are

X =
;;

h
y = —

~r

— Eqs. (7.6), (7.7)

dA

The coordinates of the centroid of a composite area composed of parts

A,,/42,...,are

X =
2 ^i^i

i

Eq. (7.9)
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Similar equations define the centroids of volumes [Eqs. (7.15) and (7.17)]

and lines [(Eqs. (7.16) and (7.18)].

Distributed Forces

A force distributed along a line is described by a function w, defined such

that the force on a differential element dx of the line is w dx. The force exert-

ed by a distributed load is

/wdx, Eq. (7.10)

and the moment about the origin is

M = xwdx. Eq. (7.11)

The force F is equal to the "area" between the function w, and the x axis and

is equivalent to the distributed load if it is placed at the centroid of the "area."

The Pappus-Guidinus Theorems

First Theorem Consider a line of length L in the x-y plane with centroid

X, y. The area A of the surface generated by revolving the line about the x axis is

A = liryL. Eq. (7.19)

Second Theorem Let A be an area in the v-v plane with centroid x, y. The

volume V generated by revolving A about the x axis is

V = IttvA. Eq. (7.21)

Centers of Mass

The center ofmass of an object is the centroid of its mass. The weight of an ob-

ject can be represented by a single equivalent force acting at its center of mass.

The mass density p is defined such that the mass of a differential element

of volume is dm — p dV. An object whose mass density is uniform through-

out its volume is said to be homogeneous. The weight density y = gp.

The coordinates of the center of mass of an object are

px dV
/ py dV / pz dV

- Jv - Jv - Jv „ ,_ ^,.
X = —^ , y = —^ , z = —~

. Eq. (7.26)

I pdV pdV pdV

The center of mass of a homogeneous object coincides with the centroid of its

volume. The center of mass of a homogeneous plate of uniform thickness co-

incides with the centroid of its cross-sectional area. The center of mass of a

homogeneous slender bar of uniform cross-sectional area coincides approxi-

mately with the centroid of the axis of the bar.
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Review Problems

7.117 Determine the centroid of the area by letting dL4 be a

\ ertical strip of width dx.

200 N/m

P7.117

7.118 Determine the centroid of the area in Problem 7. 1 17 by

letting dAhea horizontal strip of height dy.

7.119 Determine the centroid of the area.

P7.121

7.122 What is the axial load in member BD of the frame?

100 N/m

60 cm

80 cm 60 cm -

lOm
P7.119

7.120 Determine the centroid of the area.

40 mm

1 P7.122

7.123 An engineer estimates that the maximum wind load on the

40-m tower in Fig. a is described by the distributed load in Fig. b.

The tower is supported by three cables, ^4, B, and C, from the top

of the tower to equally spaced points 15 m from the bottom of the

tower (Fig. c). If the wind blows from the west and cables B and

C are slack, what is the tension in cable A? (Model the base of the

tower as a ball and socket support.)

200 N/m

P7.120

7.121 The cantilever beam is subjected to a triangular distributed

load. What are the reactions alA?

(a) (0

P7.123
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7.124 If the wind in Problem 7.123 blows from the east and

cable A is slack, what are the tensions in cables B and C?

7.125 Estimate the centroid of the volume of the Apollo lunar

return configuration (not including its rocket nozzle) by treating it

as a cone and a cylinder.

P7.125

7.126 The shape of the rocket nozzle of the Apollo lunar return

configuration is approximated by revolving the curve shown

around the .v axis. In terms of the coordinate system shown, deter-

mine the centroid of the volume of the nozzle.

0.350 + 0.435a: -0.035x2

2.83 m P7.126

7.127 Determine the volume of the volume of revolution.

P7.127

7.128 Determine the surface area of the volume of revolution in

Problem 7.127.

7.129 Determine the y coordinate of the center of mass of the

homogeneous steel plate.

20 mm

P7.129

7.130 Determine the x coordinate of the center of mass of the

homogeneous steel plate.

220 mm

50 mm P7.130

7.131 The area of the homogeneous plate is 1 ft^. The vertical

reactions on the plate at A and B are 80 lb and 84 lb, respectively.

Suppose that you want to equalize the reactions at A and B by

drilling a 1 -ft-diameter hole in the plate. What horizontal distance

from A should the center of the hole be? What are the resulting

reactions at A and B?

a ^
5 ft

P7.131

7.132 The plate is of uniform thickness and is made of homoge-

neous material whose mass per unit area of the plate is 2 kg/m".

The vertical reactions at A and 5 are 6 N and 10 N, respectively.

What is the x coordinate of the centroid of the hole?

2m
P7.132
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7.133 Determine the center of mass of the homogeneous sheet of

metal.

P7.133

7.134 Determine the center of mass of the homogeneous object.

— 60 mm —
^

10 mm

20 mniJ-,,^
60 rnm

30 1

mm

P7.134

7.135 Determine the center of mass of the homogeneous object.

5 in-
1.5 in

Top View

1

t

3 in

\

1 in

1'

j

t2 in
1

7.136 The arrangement shown can be used to determine the

location of the center of mass of a person. A horizontal board has

a pin support at A and rests on a scale that measures weight at B.

The distance from A to B is 2.3 m. When the person is not on the

board, the scale at B measures 90 N.

(a) When a 63-kg person is in position (1), the scale at B measures

496 N. What is the x coordinate of the person's center of mass?

(b) When the same person is in position (2), the scale measures

523 N. What is the x coordinate of his center of mass?

_AiQ=^

(1)

(2) P7.136

7.137 If a string is tied to the slender bar at A and the bar is allowed

to hang freely, what will be the angle between AB and the vertical?

8.

P7.137

7.138 The positions of the centers of three homogeneous spheres

of equal radii are shown. The mass density of sphere 1 is po, the

mass density of sphere 2 is 1 .2po, and the mass density of sphere

3 is 1.4po.

y

(-2. 4, 3) m

(3. 3.2)m

Side View P7.135
(5, 0, .S) m

P7.138
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(a) Determine the centroid of the volume of the three spheres.

(b) Determine the center of mass of the three spheres.

7.139 The mass of the moon is 0.0123 times the mass of the

earth. If the moon's center of mass is 383.000 km from the center

of mass of the earth, what is the distance from the center of mass

of the earth to the center of mass of the earth-moon system?

Project Construct a homogeneous thin flat plate with the shape

shown. (Use the cardboard back of a pad of paper to construct the

plate. Choose your dimensions so that the plate is as large as pos-

sible.) Calculate the location of the center of mass of the plate.

Measuring as carefully as possible, mark the center of mass clearly

on both sides of the plate. Then carry out the following

experiments.

(a) Balance the plate on your finger (Fig. a) and observe that it

balances at its center of mass. Explain the result of this experi-

ment by drawing a free-body diagram of the plate.

(b) This experiment requires a needle or slender nail, a length of

string, and a small weight. Tie the weight to one end of the

string and make a small loop at the other end. Stick the needle

through the plate at any point other than its center of mass. Hold

the needle horizontal so that the plate hangs freely from it

(Fig. b). Use the loop to hang the weight from the needle, and let

the weight hang freely so that the string lies along the face of the

plate. Observe that the string passes through the center of mass

of the plate. Repeat this experiment several times, sticking the

needle through various points on the plate. Explain the results of

this experiment by drawing a free-body diagram of the plate.

(c) Hold the plate so that the plane of the plate is vertical, and

throw the plate upward, spinning it like a Frisbee. Observe that

the plate spins about its center of mass.

f
\

(a)

1

i
(b)

^
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A beam's resistance to bending and ability to

support loads depend on a property of its cross

i.J section called the moment of inertia. In this chapter

we define and calculate moments of inertia of areas.

.*%^
X,
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The quantities called moments of inertia arise repeatedly in analyses of

engineering problems. Moments of inertia of areas are used in the

study of distributed forces and in calculating deflections of beams. The

moment exerted by the pressure on a submerged flat plate can be expressed in

terms of the moment of inertia of the plate's area. In dynamics, mass moments

of inertia are used in calculating the rotational motions of objects. We show

how to calculate the moments of inertia of simple areas and objects and then

use results called parallel-axis theorems to calculate moments of inertia of

more complex areas and objects.
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Areas

Definitions

ta)

(b)

Figure 8.1

(a) An area A in the x-y plane.

(b) A differential element of A.

The moments of inertia of an area are integrals similar in form to those used

to determine the centroid of an area. Consider an area A in the jc-v plane

(Fig. 8. la). Four moments of inertia of A are defined:

1. Moment of inertia about the x axis:

-Ly-dA, (8.1)

where _y is the j coordinate of the differential element of area dA

(Fig. 8.1b). This moment of inertia is sometimes expressed in terms of

the radius ofgyration about the x axis, k^, defined by

A:;A

2. Moment of inertia about the 3' axis:

x^dA,' ^ h

(8.2)

(8.3)

where x is the x coordinate of the element dA (Fig. 8.1b). The radius of

gyration about the y axis, k^., is defined by

A.
= k;.A.

3. Product of inertia:

'" ^ L'
/rv = / xydA.

(8.4)

(8.5)

4. Polar moment of inertia:

Jn= Ir^dA,
'"^I:

(8.6)

where r is the radial distance from the origin of the coordinate system to

dA (Fig. 8.1b). The radius of gyration about the origin, ko, is defined by

Jo = klA. (8.7)

The polar moment of inertia is equal to the sum of the moments of inertia

about the x and \ axes:

Jo = fr'dA = f{y' + x'-)dA = I, + I,.

JA JA

Substituting the expressions for the moments of inertia in terms of the radii of

gyration into this equation, we obtain

kl = kl + £.
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^A.

The dimensions of the moments of inertia of an area are (length)'*, and

the radii of gyration have dimensions of length. You can see that the defini-

tions of the moments of inertia I,, /,,, and Jq and the radii of gyration imply

that they have positive values for any area. They cannot be negative or zero.

We can also make some qualitative deductions about the values of these

quantities based on their definitions. In Fig. 8.2, A, = Ai. But because the con-

tribution of a given element dA to the integral for I^ is proportional to the square

of its perpendicular distance from the x axis, the value of I^ is larger for A2 than

" for A I : (/Jt > (4)1- For the same reason, (/Jt < (^v)i and {Jo)2 > {Jo)\-

The circular areas in Fig. 8.3 are identical, but because of their positions relative

to the coordinate system, (/J2 > {h)\^ (A)2 > (A)i' ^nd {Jo)2 > {Jo)i-

Figure 8.2

The areas A, = Ai. Based on their shapes,

conclusions can be made about the relative

sizes of their moments of inertia:

(/,)2>(/J,. (/v)2<(/>)|. {Jo)2>{Jo\.

Figure 8.3

These identical areas have different moments

of inertia depending on the position of the xy

coordinate system:

(0: >(/,),. (/v)2>(/v)l, U)2>(-/o)i

The areas Ai and A^ in Fig. 8.4 are obtained by rotating A^ about the y
and X axes, respectively. We can see from the definitions that the moments of

inertia I^, /,., and Jq of these areas are equal. The products of inertia

(Av)2 ~
~(^vv)i and (/f,)3 = ~(/vv)i- For each element JA of A, with coordi-

nates (x, y), there is a corresponding element of Aj with coordinates (-.v. y)

and a corresponding element of A, with coordinates (.v, -y). These results

also imply that if an area is symmetric about either the x axis or the y axis, its

product of inertia is zero.

1 Figure 8.4

j
The areas At and A3 are obtained by rotating the area A, about the y and x axes,

respectively. The moments of inertia /,. /,, and Jp of these areas are equal. The

products of inertia are related by

(/j2 = -(/.,v)., (U = -(/.v.v)l.
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Example 8.1

Moments of Inertia of a Triangular Area
Determine the moments of inertia and radii of gyration of the triangular area

in Fig. 8.5.

Figure 8.5

Strategy

Equation (8.3) for the moment of inertia about the y axis is very similar in

form to the equation for the x coordinate of the centroid of an area, and we

can evaluate it for this triangular area in exactly the same way: by using a dif-

ferential element of area dA in the form of a vertical strip of width dx. We can

then show that /^ and /_,,. can be evaluated using the same element of area. The

polar moment of inertia Jp is the sum of 4 and ly.

Solution

Let dA be the vertical strip in Fig. a. The height of the strip is {h/b)x, so

dA - {h/b)x dx.To integrate over the entire area, we must integrate with re-

spect to X from X = Oto X = b.

(a) An element dA

in the forni of a strip.

Moment of Inertia About the y Axis

L = x'dA = x~{ — X \dx
X

4 JO

= - hb\
4
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The radius of gyration ky is

k,=
{l/4)hb' ^ 1

{\/2)bh V2 '

Moment of Inertia About the x Axis We will first determine the moment

of inertia of the strip dA about the x axis while holding x and dx fixed. In

terms of the element of area dA^ = dx dy shown in Fig. b,

ih/b)x

Jstnp Jostnp

I
3

(h/b)x ^3

dx = —T x^ dx.
3b'

Integrating this expression with respect to x from x = to x = b, v/e obtain

the value of L for the entire area:

/,
=

* h' 1

^^x^dx ^ — bh\
3b^ 12

The radius of gyration k^ is

rr^ l{\/i2)bh'
k. =

{\/2)bh V6
h.

Product of Inertia We can determine /,,, the same way we determined /,.

We first evaluate the product of inertia of the strip dA, holding x and dx

fixed (Fig. b):

(h/b)xr rwb)x

(Ustrip = / xydA,= I {xydx)dy
'stnp

(h/b)x ^2

X dx = —r x' dx.
2b'

Integrating this expression with respect to x from x — to x = b, we obtain

the value of /„, for the entire area:

''
Jo 2b' 8

Polar IVIoment of Inertia

Jn = I, + Iy=^bh' + ^hb\'o

The radius of gyration ko is

ko = \/kl + k: = ^^h'+^-b\

dy
rI

dA

k
dx

(b) An element of the strip element dA.

Discussion

As this example demonstrates, the integrals defining the moments and products

of inertia are so similar in form to the integrals used to determine centroids of

areas (Section 7.1) that you can use the same methods to evaluate them.

r
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Example 8.2

Figure 8.6

Moments of Inertia of a Circular Area
Determine the moments of inertia and radii of gyration of the circular area in

Fig. 8.6.

Strategy

We will first determine the polar moment of inertia Jq by integrating in terms

of polar coordinates. We know from the symmetry of the area that /^ = /,.,

and since I, + /, = Jq, the moments of inertia /, and I, are each equal IoUq.

We also know from the symmetry of the area that /^^.
= 0.

Solution

By letting r change by an amount dr, we obtain an annular element of area

dA — lirr dr (Fig. a). The polar moment of inertia is

Jo = rdA = / lirPdr = 2tt
—

R
1

2

and the radius of gyration about O is

^ _ [Jo_ (1/2)77/?^ _ 1

The moments of inertia about the a and v axes are

_ _ 1 _ 1
4

h ^ '> ~
2

'^'^ ~
4
^^ '

and the radii of gyration about the x and >• axes are

(a) An annular element dA.

k^ = k.. = J- =
A

The product of inertia is zero:

/„ = 0.

0/4)77^_ 1

^ — ~ A.
ttR^ 2

Discussion

The symmetry of this example saved us from having to integrate to determine

/, . /, , and /j, . Be alert for symmetry that can shorten your work. In particular,

remember that I^y = if the area is symmetric about either the x or the y axis.
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Problems

8.1 Determine /,, and i,.

8.2 Determine /^ and k^ by letting dA be (a) a horizontal strip of

height dy; (b) a vertical strip of width dx.

8.3 Determine /.„.

8.9 Determine /,,.

8.10 Determine/^.

8.11 Determine y^.

8.12 Determine /,„.

P8.1-P8.3

8.4 Determine /,, k^,I^, and ky for the beam's rectangular cross

section. 8.13 Determine /,, and k^

8.5 Determine /„ and /o for the beam's rectangular cross section. ^ ^^ Determine/ and k

y
8.15 Determine Jq and kg.

8.16 Determine 7;,^,.

P8.4, P8.5

/
8.6 Determine /j. and /:j,.

•.7 Determine y^i and ^o.

8.8 Determine /.„.

P8.9-P8.12

y = x

P8.13-P8.16

8.17 Determine the moment of inertia /, of the metal plate's

cross-sectional area.

8.18 Determine the moment of inertia /, and the radius of

gyration k^ of the cross-sectional area of the metal plate.

y

P8.6-P8.8 P8.17, P8.18



382 Chapter 8 Moments of Inertia

8.19 (a) Determine /,. and ky by letting d^ be a vertical strip of

width dx.

(b) The polar moment of inertia of a circular area with its center

at the origin is 7^ = j ttR*. Explain how you can use this

information to confirm your answer to (a).

P8.19

8.20 (a) Determine /, and k, for the area in Problem 8.19 by

letting dA be a horizontal strip of height dy.

(b) The polar moment of inertia of a circular area with its center

at the origin is 7^ = :
'"'^*- Explain how you can use this infor-

mation to confirm your answer to (a).

8.21 Determine the moments of inertia /, and I,.

Strategy: Use the procedure described in Example 8.2 to

determine Jq, then use the symmetry of the area to determine /^

and /,.

P8.22, P8.23

8.24 Determine ly and ky.

P8.24

P8.21

8.22 If and a = 5m and b = I m. what are the values of /, and

k^. for the elliptical area of the airplane's wing?

8.23 What are the values of /^ and k^ for the elliptical area of the

airplane's wing in Problem 8.22?

8.25 Determine /, and k^ for the area in Problem 8.24.

8.26 A vertical plate of area A is beneath the surface of a station-

ary body of water. The pressure of the water subjects each element

dA of the surface of the plate to a force {pq + yy) dA, where Pq is

the pressure at the surface of the water and y is the weight density

of the water. Show that the magnitude of the moment about the

X axis due to the pressure on the front face of the plate is

A^(xaxis) = PoyA + yh,

where v is the y coordinate of the centroid of A and /^ is the

moment of inertia of A about the x axis.

P8.26 _

mmmtm
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Parallel-Axis Theorems

In some situations the moments of inertia of an area are known in terms of a

particular coordinate system but we need their values in terms of a different

coordinate system. When the coordinate systems are parallel, the desired

moments of inertia can be obtained by using the theorems we describe in

this section. Furthermore, these theorems make it possible for us to deter-

mine the moments of inertia of a composite area when the moments of iner-

tia of its parts are known.

Suppose that we know the moments of inertia of an area A in terms of a

coordinate system x'y' with its origin at the centroid of the area, and we wish

to determine the moments of inertia in terms of a parallel coordinate system

.XV (Fig. 8.7a). We denote the coordinates of the centroid of A in the xy coor-

dinate system by [d,, dy), and d = Vd] + d] is the distance from the origin

of the xy coordinate system to the centroid (Fig. 8.7b).

y y

(aj

Figure 8.7

(a) The area A and the coordinate systems

x'y' and xy.

(b) The differential element dA.

We need to obtain two preliminary results before deriving the parallel-

axis theorems. In terms of the x'y' coordinate system, the coordinates of the

centroid of A are

fx' dA fy'
-, JA -, JA
X = —;;

, >• = —r

dA

dA h
But the origin of the x'y' coordinate system is located at the centroid of A, so

jc' = and y' = 0. Therefore

1/
dA = 0. y' dA = 0. (8.8)

Moment of Inertia About the x Axis In terms of the xy coordinate sys-

tem, the moment of inertia of A about the x axis is

-Iy'dA, (8.9)

where y is the coordinate of the element of area dA relative to the xy coordi-

nate system. From Fig. 8.7b, you can see that y = y' + d,., where y' is the
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Figure 8.8

The parallel-axis theorem for the moment

of inertia about the x axis.

coordinate of dA relative to the x'y' coordinate system. Substituting this ex-

pression into Eq. (8.9), we obtain

4 = / (y + d,)'dA = / {y')-dA + 2d, y' dA + d; dA.
JA JA JA JA

The first integral on the right is the moment of inertia of A about the

x' axis. From Eq. (8.8), the second integral on the right equals zero. There-

fore we obtain

/, = /,. + dlA. (8.10)

This is a parallel-axis theorem. It relates the moment of inertia of A about the

x' axis through the centroid to the moment of inertia about the parallel axis x

(Fig. 8.8).

d'A

Moment of Inertia About the y Axis In terms of the xy coordinate sys-

tem, the moment of inertia of A about the y axis is

/, = / A- JA = / (x' + d,y
JA J A

= / [x')- dA + 2d, / x'

JA JA

dA

dA + 2d^ I x'dA + di dA.
A JA

From Eq. (8.8), the second integral on the right equals zero. Therefore the

parallel-axis theorem that relates the moment of inertia of A about the >'' axis

through the centroid to the moment of inertia about the parallel axis y is

I, = Iy + dlA. (8.11)

Product of Inertia The parallel-axis theorem for the product of inertia is

/., = /.y + dAA. (8.12)

Polar Moment of Inertia The parallel-axis theorem for the polar moment

of inertia is

Jo = Jo + {dl + d^)A = J'o + J-A, (8.13)

where d is the distance from the origin of the x'y' coordinate system to the

origin of the xy coordinate system.
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How can the parallel-axis theorems be used to determine the moments

of inertia of a composite area? Suppose that we want to determine the mo-

ment of inertia about the y axis of the area in Fig. 8.9a. We can divide it

into a triangle, a semicircle, and a circular cutout, denoted parts 1, 2, and 3

(Fig. 8.9b). By using the parallel-axis theorem for ly, can determine the mo-

ment of inertia of each part about the y axis. For example, the moment of

inertia of part 2 (the semicircle) about the y axis is (Fig. 8.9c)

(/v)2 = (/v')2 + {d.)U2.

(a)

o
(b)

y'

(dX

^

(c)

Figure 8.9

(a) A composite area.

(b) The three parts of the area.

(c) Determining {ly)2-

We must determine the values of (/,,')2 and (rf^)!. Moments of inertia and

centroid locations for some simple areas are tabulated in Appendix B. Once

this procedure is carried out for each part, the moment of inertia of the com-

posite area is

ly = (A), + (/v)2 - (03-

Notice that the moment of inertia of the circular cutout is subtracted.

We see that determining a moment of inertia of a composite area in terms

of a given coordinate system involves three steps:

1. Choose the paits—Try to divide the composite area into parts whose

moments of inertia you know or can easily determine.

2. Determine the moments of inertia of the parts—Determine the moment

of inertia of each part in terms of a parallel coordinate system with its
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Example 8.3

origin at the centroid of the part, and then use the parallel-axis theorem to

determine the moment of inertia in terms of the given coordinate system.

3. Sum the results—Sum the moments of inertia of the parts (or subtract in

the case of a cutout) to obtain the moment of inertia of the composite area.

Figure 8.10

Demonstration of the Parallel

Axis Theorems
The moments of inertia of the rectangular area in Fig. 8. 1 in terms of the x'y' co-

ordinate system are I^' - j^bh^^ A' = l2^^^ AvV = 0, and J'q — Yi{bh^ + hb^)

(see Appendix B). Determine its moments of inertia in terms of the xy coordinate

system.

Strategy

The x'y' coordinate system has its origin at the centroid of the area and is par-

allel to the xy coordinate system. We can use the parallel-axis theorems to de-

termine the moments of inertia of A in terms of the xy coordinate system.

Solution

The coordinates of the centroid in terms of the xy coordinate system are

d^ = b/2, dy = h/2. The moment of inertia about the jc axis is

/, = /,. + d;A =—bh^ + \]-h\ bh = -bt?.
12 \2 ) 3

The moment of inertia about the y axis is

/, = /,. + dlA = —hb^ + l-b] bh = - hb\
•' " 12 \2 3

The product of inertia is

The polar moment of inertia is

/,y + d,dyA = 0+[^-b]l^h]bh=^ b'h\

1

Jo = J'o + d^A = — {bh^ + hb^) + 5*y+(i/." bh

1

[bh^ + hb^).

Discussion

Notice that we could also have determined Jq by using the relation

Jo L + L
1,1,
-bh^ + - hb\
3 3
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Moments of Inertia of a Composite /\tea

Determine /,, ^j^, and /„ for the composite area in Fig. 8.1 1.

Solution

Choose the Parts We can determine the moments of inertia by dividing

the area into the rectangular parts 1 and 2 shown in Fig. a.

Determine the Moments of Inertia of the Parts For each part, we intro-

duce a coordinate system x'y' with its origin at the centroid of the part (Fig. b).

The moments of inertia of the rectangular parts in terms of these coordinate

systems are given in Appendix B. We then use the parallel-axis theorem to de-

tennine the moment of inertia of each part about the x axis (Table 8. 1).

Table 8.1 Determining the moments of inertia of the parts

about the x axis.

d. (m) A{m') //(m') /. - I, + dl (m^)

Part 1

Part 2

2

0.5

(1)(4)

(2)(1) l^(2)(ir

.21.33.

0.67

Sum the Results The moment of inertia of the composite area about

the X axis is

4 = (/Ji + (/v)2 = 21.33 + 0.67 = 22.00 m^

The sum of the areas is A = /i ,
-1-^2 = 6 m^, so the radius of gyration about

the X axis is

IZ /22
k, = J- = J— = 1.91m.
' VA V 6

Repeating this procedure, we determine /„, for each part in Table 8.2.

The product of inertia of the composite area is

/,v
= (/,v)i +(/,,)2 = 4 + 2 = 6m^

Table 8.2 Determining the products of inertia of the parts in terms

of the xy coordinate system

J,(m) d,{m) A(m^) /,y I,„ = hw + dJ^,A{m*)

Part 1

Part 2

0.5

2

2

0.5

(1)(4)

(2)(1)

4

2

Discussion

The moments of inertia you obtain do not depend on how you divide a com-

posite area into parts, and you will often have a choice of convenient ways to

divide a given area. See Problem 8.28, in which we divide the composite area

in this example in a different way.

-lm»|

4 m

-3 m-

4

1 m
_!

Figure 8.11

y

(a) Dividing the area into rectangles 1 and 2.

0.5 m —

y

rk

1

%

2m

2m

«-
0.5 m

(b) Parallel coordinate systems x'y' with

.

origins at the centroids of the parts.
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Example 8.5

Moments of Inertia of a Composite Area
Determine /,, and ky for the composite area in Fig. 8. 12.

Figure 8.12

(a) Parts 1, 2, and 3.

Solution

Choose the Parts We divide the area into a rectangle, a semicircle, and

the circular cutout, calling them parts 1, 2, and 3, respectively (Fig. a).

Determine the Moments of Inertia of the Parts The moments of iner-

tia of the parts in terms of the x'y' coordinate systems and the location of the

centroid of the semicircular part are given in Appendix B. In Table 8.3 we use

the parallel-axis theorem to determine the moment of inertia of each part

about the y axis.

Table 8.3 Determining the moments of inertia of the parts.

d^ (mm) A (mm^) /,,- (mm'') /,,
= ly' + d^A (mm*)

Part 1

Part 2 120 +

60 (120) (80)

4(40)

3-77

Part 3 120

J
77(40)2

77(20)2

^(80)(120)

77

8 977
(40)^

-M2or

4.608 X 10^

4.744 X 10^

1.822 X 10^

Sum the Results The moment of inertia of the composite area about

the y axis is

/, = (/J, + (/Jz
- {Iy)i = (4.608 + 4.744 - 1.822) X 10'

= 7.530 X 10' mml

The total area is

A = Ai + A2- Ai^ (120)(80) + -77(40)2 _ ^(20)2

= 1.086 X 10'* mm^,

so the radius of gyration about the v axis is

.„ = ,/- = 7.530 X 10'

1.086 X 10*
= 83.3 mm.
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tf^,Application to Engineering:

Example 8.6

Beam Design

The equal areas in Fig. 8.13 are candidates for the cross section of a beam. (A

beam with the second cross section shown is called an I-beam.) Compare

their moments of inertia about the x axis.

Solution

Square Cross Section From Appendix B, the moment of inertia of the

square cross section about the x axis is

4 = —(144.2) (144.2)^ = 3.60 X 10^ mm!

I-Beam Cross Section We can divide the area into the rectangular parts

shown in Fig. a. Introducing coordinate systems x'y' with their origins at the

centroids of the parts (Fig. b), we use the parallel-axis theorem to determine

the moments of inertia about the x axis (Table 8.4). Their sum is

/..
= (4). + (/Jz + (/J3 = (5.23 + 0.58 + 5.23) X 10^

= 11.03 X 10^ mm^

The moment of inertia of the I-beam about the x axis is 3.06 times that of the

square cross section of equal area.

144.2
mm -<y

-144.2-
imn

i

y

40 mm

120 mm h
\j

40 mm

f

1

^40 r

—

mm
200 mm

Figure 8.13

^^

y.y

\y
80
mm

y.y

n

T
80
mm

y-y

(a) Dividing the I-beam cross section into

parts.

(b) Parallel coordinate systems x'y' with origins at the centroids of the parts.

Table 8.4 Determining the moments of inertia of the parts about the x axis.

d,. (mm) A (mm^) /,- (mm**) /, = /y + d].A (mm"*)

Parti 80

Part 2

Part 3 -80

(200)(40)

(40)(120)

(200)(40)

i^ (200) (40)^

1^(40) (120)-^

1^(200)(40)-'

5.23 X 10^

0.58 X 10^

5.23 X 10^

design Issues

A beam is a bar of material that supports lateral loads, meaning loads perpendi-

cular to the axis of the bar. Two common types of beams are shown in Fig. 8. 14

supporting a lateral load F. A beam with pinned ends is called a simply support-

ed beam, and a beam with a single, built-in support is called a cantilever beam.

ii ^
A simply supported beam.

A cantilever beam.

Figure 8.14
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^R>— .V

(a) Unloaded

(b) Subjected to couples at the ends.

Figure 8.15

A beam with symmetrical cross section.

-X

(a) A box beam with thin walls.

(b) Failure by buckling.

(c) Stabilizing the walls with a filler.

Figure 8.17

The lateral loads on a beam cause it to bend, and it must be stiff, or re-

sistant to bending, to support them. A beam's resistance to bending depends

directly on the moment of inertia of its cross-sectional area. Let's consider the

beam in Fig. 8.15a. The cross section is symmetric about the y axis and the

origin of the coordinate system is placed at its centroid. If the beam consists

of a homogeneous structural material such as steel and it is subjected to cou-

ples at the ends, as shown in Fig. 8.15b, it bends into a circular arc of radius

R. It can be shown that

R =
M

where I^ is the moment of inertia of the beam cross section about the x axis.

The "modulus of elasticity" or "Young's modulus" E has different values for

different materials. (This equation holds only if M is small enough so that the

beam returns to its original shape when the couples are removed. The bending

in Fig. 8.15b is exaggerated.) Thus the amount the beam bends for a given

value of M depends on the material and the moment of inertia of its cross

section. Increasing /^ increases the value of /?, which means the resistance of

the beam to bending is increased.

This explains in large part the cross sections of many of the beams you

see in use—for example, in highway overpasses and in the frames of build-

ings. They are configured to increase their moments of inertia. The cross sec-

tions in Fig. 8.16 all have the same area. The numbers are the ratios of the

moment of inertia /, to the value of /, for the solid square cross section.

1.78 3.06

<^

7.48 8.88

Figure 8.16

Typical beam cross sections and the ratio of /, to the value for a solid square beam

of equal cross-sectional area.

However, configuring the cross section of a beam to increase its moment

of inertia can be carried too far. The "box" beam in Fig. 8. 17a has a value of/,

that is four times as large as a solid square beam of the same cross-sectional

area, but its walls are so thin they may "buckle," as shown in Fig. 8.17b. The

stiffness implied by the beam's large moment of inertia is not realized because

it becomes geometrically unstable. One solution used by engineers to achieve

a large moment of inertia in a relatively light beam while avoiding failure due

to buckling is to stabilize its walls by filling the beam with a light material

such as honeycombed metal or foamed plastic (Fig. 8.17c).
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Problems

8.27 Determine /_, and k^ for the composite area by dividing it

into rectangles 1 and 2 as shown, and compare your results to

those of Example 8.4.

8.28 Determine ly and ky for the composite area.

1 m -

4 m
1

2

1 m

-, .

8.34 If you design the beam cross section so that

I, = 6.4 X 10' mm"*, what are the resulting values of 7^. and y^?

P8.27, P8.28
P8.34

8.29 Determine /^ and k^

.

8.30 Determine Iy and ky.

6m

2m

—3m-^
12m-

' 8.31 Determine 7, and /c^.

8.32 Determine /j, and/:
J,.

8.33 Determine /o and /co-

100

mm

70
mm

-30 mm-

-90 mm-

8.35 Determine/,, and /:^..

8.36 Determine 4 and ^;t.

8.37 Determine /,>,.

P8.29, P8.30

3/

160
mm -^

)0

m

}40mm

2(

m 40
mm

}40 mm

— 120_
mm

8.38 Determine /^ and k^

8.39 Determine /,, and ky

8.40 Determine/,,,.

P8.35-P8.37

P8.31-P8.33

—- 160
mm

)0

m

( 40 mm

—
^

it

m
n
to

im

\ 40 mm

— i;

m
10

P8.38-P8.40
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8.41 Determine /^ and k^

.

8.42 Determine Vo and ito.

8.43 Determine/

8.52 Determine y,, and /to- *

xy

^4ft— 3ft—

/ 1

3ft

120
mm

80
mm

P8.41-P8.43

8.44 Determine /^ and ^^.

8.45 Determine y^ and <:o.

8.46 Determine 7^^..

« 1 ft .

1 t

3ft«* -X

P8.44-P8.46

8.47 Determine /, and k^.

8.48 Determine 7„ and /cfl.

8.49 Determine /„.

P8.47-P8.49

I
20

40 mm

-80 mm-

8.53 Determine /> and ky.

8.54 Determine Vo and )to-

y

P8.50-P8.52

P8.53, P8.54

8.55 Determine /,, and k^ if /; = 3 m.

8.56 Determine /^ and k^if h = 3 m.

8.57 If /^,
= 5 m'*, what is the dimension h?

y

P8.55-P8.57

8.50 Determine /, and )t^.

8.58 Determine /> and ^v-

8.59 Determine/, and /:,.

8.51 Determine/,, and /t...
> >

8.60 Determine /^^.
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100 mm

60 mm

140 mm-

8.61 Determine />, and ^,,.

8.62 Determine /, and k^.

8.63 Determine /,>,.

100 mm

60 mm

^-

-140 mm-

8.64 Determine I, and k^

.

8.65 Determine /, and k^.

8.66 Determine/,,,.

!*

6 in 6 in 6 in

P8.58-P8.60

J 40 mm

P8.61-P8.63

8.67 Determine /, and ky

.

8.68 Determine 7(5 3nd^o-

8.69 Determine/,, and A:,..

8.70 Determine/, and ^..

8.71 Determine /;,j,.

8.72 Determine /, and ^,.

.

8.73 Determine /, and /:,.

8.74 Determine /,„.

P8.67, P8.68

P8.69-P8.71

P8.64-P8.66 P8.72-P8.74
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8.75 Determine /, and it,

.

8.76 Determine Jq and kg.

8.80 The area A = 100 in^ and it is symmetric about the x axis. The

moments of inertia /, = 420 in^ /,. = 580 in\ Jq = 11,000 in\

and /„ = 4800 in'. What are /, and /,?

5 nun

15 mm

5 mm

15 mm

50 mm

5 mm
O P8.80

15 mm

' 10' 15 ' 15 10'

mm mm mm mm
8.81 Derive the parallel-axis theorem for the product of inertia,

P8.75, P8.76 Eq. (8.12), by using the same procedures we used to derive

Eqs. (8.10) and (8.11).

8.77 Determine 7^. for the cross section of the concrete masonry

unit.

,,5.
15^ m

2 in

4 in

3;^ in

1 in-

3iin

3
9 .

lin

8.82 Derive the parallel-axis theorem for the polar moment of

inertia, Eq. (8.13), (a) by using the same procedures we used to

derive Eqs. (8.10) and (8.11); (b) by using Eqs. (8.10) and (8.11).

Problems 8.83-8.86 are related to Example 8.6.

8.83 Determine the moment of inertia of the beam cross section

about the x axis. Compare your result with the moment of inertia

of a solid square cross section of equal area and confirm the ratio

shown in Fig. 8.16.

^5.
5o in

1 in

20 mm

1 in

P8.77

8.78 Determine /^ for the cross section in Problem 8.77.

8.79 The area A = 2 X 10'* mm^. Its moment of inertia about

the y axis is /, = 3.2 X 10* mm'*. Determine its moment of inertia

about the v axis.

160 mm

20 mm
-100 mm- P8.83

8.84 The area of the beam cross section is 5200 mm". Determine

the moment of inertia of the beam cross section about the x axis.

Compare your result with the moment of inertia of a sohd square

cross section of equal area and confirm the ratio shown in Fig. 8.16.

100 mm 120 mm P8.79 -— 20 mm P8.84

_1
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8.85 (a) If /, is expressed in m'', R is in meters, and M is in N-m,

what are the SI units of the modulus of elasticity £?

(b) A beam with the cross section shown is subjected to couples

\/ = 180 N-m as shown in Fig. 8.15b. As a result, it bends into

a circular arc with radius ^ = 3 m. What is the modulus of elas-

ticity of the material?

8.86 Suppose that you want to design a beam made of material

whose density is 8000 kg/m\ The beam is to be 4 m in length and

have a mass of 320 kg. Design a cross section for the beam so that

/, = 3 X 10"' m*.

3 mm

9mm

3 mm

<,^

A 3 I-

mm
-9 mm- P8.85

Rotated and Principal Axes

Suppose that Fig. 8.18(a) is the cross section of a cantilever beam. If you

apply a vertical force to the end of the beam, a larger vertical deflection re-

sults if the cross section is oriented as shown in Fig. 8.18(b) than if it is ori-

ented as shown in Fig. 8.18(c). The minimum vertical deflection results when

the beam's cross section is oriented so that the moment of inertia 4 is a maxi-

mum (Fig. 8.1 8d).

In many engineering applications you must determine moments of inertia

of areas with various angular orientations relative to a coordinate system and

also determine the orientation for which the value of a moment of inertia is a

maximum or minimum. We discuss these procedures in this section.

(a) (b) (0

Figure 8.18

(a) A beam cross section.

(bHd) Applying a lateral load with different orientations of the cross section.
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Rotated Axes

Let's consider an area A, a coordinate system xy, and a second coordinate sys-

tem x'y' that is rotated through an angle 6 relative to the xy coordinate system.

(Fig. 8.19a). Suppose that we know the moments of inertia of A in terms of the

xy coordinate system. Our objective is to determine the moments of inertia in

terms of the x'y' coordinate system.

Figure 8.19

(a) The x'y' coordinate system is rotated

through an angle 6 relative to the xy

coordinate system.

(b) A differential element of area dA. (a) (b)

In terms of the radial distance r to a differential element of area dA and the

angle a in Fig. 8.19b, the coordinates of dA in the xy coordinate system are

X = rcosa, (8.14)

y = r sina. (8.15)

The coordinates of dA in the x'y' coordinate system are

x' — /•cos(a — d) = r(cosacos0 + sinasin^), (8.16)

v' = /'sin(a — 6) = r{s'macosd — cosasinS). (8.17)

In Eqs. (8.16) and (8.17), we use identities for the cosine and sine of the dif-

ference of two angles (Appendix A). By substituting Eqs. (8.14) and (8.15)

into Eqs. (8.16) and (8.17), we obtain equations relating the coordinates of

dA in the two coordinate systems:

x' ^ xcosd + ysinO, (8.18)

y' = -jcsine + ycosO. (8.19)

We can use these expressions to derive relations between the moments of in-

ertia of A in terms of the xy and x'y' coordinate systems:

Moment of Inertia About the x' Axis

h' = / {}'')' dA = / (-xsine + y cosdfdA

= cos-a y^dA - 2sin0cos0 xy dA + sin^0 x^ dAxydA + sin^e /;
JA J A

From this equation we obtain

// = Lcos'd - 2/,„sin0cos0 + Lsin^O. (8.20)

k
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Moment of Inertia About the y' Axis

/y = l{x'fdA= {xcosd + ysineydA
JA JA

= sin-0 y^dA + 2 sin0cos0 / xy dA + cos^0 / jc^ dA.
JA JA JA

This equation gives us the result

A'
— Asin"0 + 2AvSin0cos0 + I^.cos~6. (8.21)

Product of Inertia In terms of the x'y' coordinate system, the product of

inertia ofA is

A'v'
= (a - a) sine cos + (cos'e - sin^0)A (8.22)

Polar Moment of Inertia From Eqs. (8.20) and (8.21), the polar moment

of inertia in terms of the x'y' coordinate system is

J'n // + A.' A + A = Jn.

Thus the value of the polar moment of inertia is unchanged by a rotation of

the coordinate system.

Principal Axes

'ibu have seen that the moments of inertia of A in terms of the x'y' coordi-

nate system depend on the angle d in Fig. 8.19a. Let's consider the follow-

ing question: For what values of 6 is the moment of inertia 1/ a maximum
or minimum?

To consider this question, it is convenient to use the identities

sin 20 = 2 sin cos 0,

cos20 = cos'0 - sin^e = 1 - 2sin^0 = 2cos^0 - 1.

With these expressions, we can write Eqs. (8.20)-(8.22) in the forms

A + A A - A/ = -1- cos 20 /...sin 20, (8.23)

/, + A /. - A
T f-nr- O^ 1 / fin ^ fi

(8.24)/,/ — cos ZU 1 1,,. sm ZU,
> 2 2 ^> '

/, - A
I cirt 0/1 1 f r^t^n 1/7 (8.25)ij^'y' — Sin ZU 1 ij^y COS ZU.

We will denote a value of at which A- is a maximum or minimum by 0p. To
^\ determine 0p, we evaluate the derivative of Eq. (8.23) with respect to 20 and

equate it to zero, obtaining

2L
tan20„ = —

' A. - /,

(8.26)

If we set the derivative of Eq. (8.24) with respect to 20 equal to zero to deter-

mine a value of for which /y is a maximum or minimum, we again obtain
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Eq. (8.26). The second derivatives of 4' and /,.- with respect to 26 are opposite

in sign,

d{2df diiey .

which means that at an angle 6^ for which /,- is a maximum, /, is a minimum,

and at an angle 6^, for which /, is a minimum, /, is a maximum.

A rotated coordinate system ,v'v' that is oriented so that /, and ly have

maximum or minimum values is called a set of principal axes of the area A.

The corresponding moments of inertia /^ and /, are called the principal

moments of inertia. In the next section we can show that the product of inertia

I^'y' corresponding to a set of principal axes equals zero.

Because the tangent is a periodic function, Eq. (8.26) does not yield a

unique solution for the angle dp. We can show, however, that it does deter-

mine the orientation of the principal axes within an arbitrary multiple of 90°.

Observe in Fig. 8.20 that if 2^0 is a solution of Eq. (8.26). then 20n + «(180°)

is also a solution for any integer n. The resulting orientations of the x'y' coor-

dinate system are shown in Fig. 8.21.

tan 20

Figure 8.20

For a given value of tanl^o- there are

multiple roots 20o + «(180°).

Figure 8.21

The orientation of the a'v' coordinate system

is determined within a multiple of 90°.

e(j + 90=

Determining principal axes and principal moments of inertia of an area

involves three steps:

1. Determine I^, /, , and /,,—You must determine the moments of inertia of

the area in terms of the xy coordinate system.

2. Determine dp—Solve Eq. (8.26) to determine the orientation of the

principal axes within an arbitrary multiple of 90°.

3. Calculate /, and /,—Once you have chosen the orientation of the principal

axes, you can use Eqs. (8.20) and (8.21) or Eqs. (8.23) and (8.24) to

determine the principal moments of inertia.
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Example 8.7

Determining Principai Axes
and Moments of Inertia

Determine a set of principal axes and the corresponding principal moments of

inertia for the triangular area in Fig. 8.22.

Strategy

We can obtain the moments of inertia of the triangular area from Appendix B.

Then we can use Eq. (8.26) to determine the orientation of the principal axes

and evaluate the principal moments of inertia with Eqs. (8.23) and (8.24).

Solution

Determine 1^, ly, and l^y The moments of inertia of the triangular area are

/v
= \ (4)^(3) = 48 m\

Determine 0^ From Eq. (8.26),

2/.,. 2(18)
tan20„ = —

P
A,
- /, 48-9

0.923,
' \' ' X

Figure 8.22

21.4°

and we obtain d^ = 21.4°. The principal axes corresponding to this value of (a) The principal axes corresponding to

0p are shown in Fig. a. 6 = 21.4°.

Calculate 1^, and ly Substituting 6^ = 21.4° into Eqs. (8.23) and (8.24),

we obtain

/.v + A 4 -
/v

/,< = \ cos 26 — /,„ sin 26

9 + 48\ ^ f^—^)cos[2(21.4°)] - (18) sin[2(21.4°)] = 1.96 m^

/, + /, /, - /,

L = —-— - cos20 + /,,sin20
2 2

9 + 48\ /9-48
cos[2(21.4°)] + (18)sin[2(21.4°)] = 55.0 m^

Discussion

The product of inertia corresponding to a set of principal axes is zero. In this

example, substituting 6p = 21.4° into Eq. (8.25) confirms that /,y = 0.

N
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Example 8.8

Figure 8.23

Rotated and Principal Axes
The moments of inertia of the area in Fig. 8.23 in terms of the xy coordinate

system shown are /, = 22 ft^ 7^. = 10 ff*, and I,y = 6 ft", (a) Determine

/y, ly, and /,y for 6 = 30°. (b) Determine a set of principal axes and the cor-

responding principal moments of inertia.

Solution

(a) Determine 1^, ly , and l^y By setting 6 = 30° in Eqs. (8.23)-(8.25),

we obtain the moments of inertia:

A + /v /, - A
/. = — 1 cos 20 - /„. sin20

22 + 10\ /22 - 10
1 r . xT r 1+ I

:
I cos [2(30°)] - (6) sin [2(30°)] = 13.8 ft",

/. + A A - A
h = ——— ——cos 20 + AvSin20^22 ^

22 + 10\ /22 - 10
cos [2(30°)] + (6) sin [2(30°)] = 18.2 ft*,

A - A
h'y' = —I— sin 26 + /.., cos 26'xy

2

22 - 10

•xy

sin [2(30°)] + (6) cos [2(30°)] = 8.2 ft'*

-22.5°

(b) Determine 9^ Substituting the moments of inertia in terms of the xy

coordinate system into Eq. (8.26),

2Av 2(6)
tan20„

/, 10 - 22

(a) The set of principal axes corresponding

to ^p = -22.5°

we obtain 6p = -22.5°. The principal axes corresponding to this value of 0p

are shown in Fig. a.

Calculate /;, and ly We substitute 6^ = -22.5° into E^is. (8.23) and (8.24),

obtaining the principal moments of inertia:

/y = 24.5 ft^ /,. = 7.5 ft^

Mohr's Circle

Given the moments of inertia of an area in terms of a particular coordinate

system, we have presented equations with which you can determine the mo-

ments of inertia in terms of a rotated coordinate system, the orientation of the

principal axes, and the principal moments of inertia. You can also obtain this

information by using a graphical method called Mohr's circle, which is very

useful for visualizing the solutions of Eqs. (8.23)-(8.25).
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Determining l^, ly-, and l^y' We first describe how to construct Mohr's cir-

cle and then explain why it works. Suppose we know the moments of inertia

/, . ly, and /„. of an area in terms of a coordinate system xy and we want to de-

termine the moments of inertia for a rotated coordinate system x'y' (Fig. 8.24).

Constructing Mohr's circle involves three steps:

1. Establish a set of horizontal and vertical axes and plot two points: point 1

with coordinates (Z^, /_,,,) and point 2 with coordinates (/^, -I^y) as

shown in Fig. 8.25a.

2. Draw a straight line connecting points 1 and 2. Using the intersection of

the straight line with the horizontal axis as the center, draw a circle that

passes through the two points (Fig. 8.25b).

3. Draw a straight line through the center of the circle at an angle 26

measured counterclockwise from point 1. This line intersects the circle at

point r with coordinates [l^', 4,,) and point 2' with coordinates

(/y, —I/y'), as shown in Fig. 8.25c.

\

Figure 8.24

The xy coordinate system and the rotated

x'y' coordinate system.

(+)

2,

^ v' xy'

(a)

1

(/,./)

-(+)

(b)

(/.'V

(c)

Figure 8.25

(a) Plotting the points 1 and 2.

(b) Drawing Mohr's circle. The center of

the circle is the intersection of the line

from 1 to 2 with the horizontal axis.

(c) Finding the points 1' and 2'.

Thus for a given angle 6, the coordinates of points 1
' and 2' determine

the moments of inertia in terms of the rotated coordinate system. Why does

this graphical construction work? In Fig. 8.26a, we show the points 1 and 2

and Mohr's circle. Notice that the horizontal coordinate of the center of the

circle is (/^ -I- I^)/2. The sine and cosine of the angle )8 are

/. - A.

sin/3 = cosjS =
2R

where R, the radius of the circle, is given by
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From Fig. 8.26b, the horizontal coordinate of point 1
' is

(b)

Figure 8.26

(a) The points 1 and 2 and Mohr's circle.

(b) The points 1' and 2'.

/. + A
- + /?cos(/3 + 26)

/.v
+ A

2-

/, + A
+

2 2

and the horizontal coordinate of point 2' is

+ /?(cos/3cos20 - sin /3 sin 20)

A - A
cos 20 -

/j,. sin 20 = I^-,

/, + A
- - /?cos(/3 + 20)

/. + A

2

/. + h

^(cos)8cos20 - sin /3 sin 20)

/, - A
cos 20 + 7,3. sin 20 = /y.

2 2

The vertical coordinate of point 1
' is

/?sin()3 + 20) = /?(sin/3cos20 + cos /3 sin 20)

sin 20 'x'y'f

Figure 8.27

To determine the orientation of a set of

principal axes, let points 1' and 2' be the

points where the circle intersects the

horizontal axis.

= /„ cos 20 + —
and the vertical coordinate of point 2' is

-/?sin(/3 + 20) = -4y.

We have shown that the coordinates of point I' are (/,, /.y) and the coordi-

nates of point 2' are (/,. — /, ^z).

Determining Principal Axes and Principal IVIoments of Inertia Because

the moments of inertia /, and I^' are the horizontal coordinates of points 1' and

2' of Mohr's circle, their maximum and minimum values occur when points 1'

and 2' coincide with the intersections of the circle with the horizontal axis

(Fig. 8.27). (Which intersection you designate as 1' is arbitrary. In Fig. 8.27,

we have designated the minimum moment of inertia as point 1'.) You can de-

termine the orientation of the principal axes by measuring the angle 20p from

point 1 to point 1'. and the coordinates of points 1' and 2' are the principal mo-

ments of inertia.

Notice that Mohr's circle demonstrates that the product of inertia /,y cor-

responding to a set of principal axes (the vertical coordinate of point 1' in

Fig. 8.27) is always zero. Furthermore, we can use Fig. 8.26a to obtain an

analytical expression for the horizontal coordinates of the points where the cir-

cle intersects the horizontal axis, which are the principal moments of inertia:

Principal moments of inertia

/. + A

2

/. + A

± R

+ (IJ.

I
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Example 8.9

Moments of Inertia by Mohr's Circle

The moments of inertia of the area in Fig. 8.28 in terms of the xy coordinate

system are 1^ = 22 ff*, I,. = 10 ft"*, and I^y = 6 ft^. Use Mohr's circle to de-

termine (a) the moments of inertia 1^', /y, and /yy for 9 = 30°; (b) a set of

principal axes and the corresponding principal moments of inertia.

Solution

(a) First we plot point 1 with coordinates (/,, /^J
— (22, 6) ft'* and point 2

with coordinates (/,,, —4,.) = (10, -6) ft"* (Fig. a). Then we draw a straight

line between points 1 and 2 and, using the intersection of the line with the hor-

izontal axis as the center, draw a circle that passes through the points (Fig. b).

To determine the moments of inertia for 6 — 30°, we measure an angle

26 — 60° counterclockwise from point 1 (Fig. c). From the coordinates of

points r and 2', we obtain

/y = 14ft\ /yy = 8ft^ /y = 18ftl

(b) To determine the principal axes, we let the points 1' and 2' be the points

where the circle intersects the horizontal axis (Fig. d). Measuring the angle

from point 1 to point 1', we determine that 20p = 135°. From the coordinates

of points r and 2', we obtain the principal moments of inertia:

/y = 7.5 ft\ /,' = 24.5 ft^

The principal axes are shown in Fig. e.

Figure 8.28

10

-10

*(^,«)jiT-
•

'

ni - fi) ft*
\

> 1

1

1

10 20 30

(a) Plot point 1 with coordinates (/,, /^,)

and point 2 with coordinates (/^., —I„).

10

-10

^ ^
/^ si,m ^1 rt*

/ / *

p^,

/ / 1

f /
/

\
L / i

'

\ y /
d 3 -£l ft"

X y
rr- \

lOr

10 20 30

(b) Draw a line from point 1 to point 2

and construct the circle.

Discussion

-10

1. = ">
^K.,/,.)/ ^

/ 60 > \/ ~/ y
IV

}\
\

1

L / \
i

r

\y \ /
2'X )

y^d^^y{, <i-=v¥

10

10 20 30

(c) Measure the angle 2Q = 60°

counterclockwise from point 1 to

determine the points 1' and 2'.

In Example 8.8 we solved this problem by using Eqs. (8.23)-(8.26). For

e = 30°, we obtained /y = 13.8 ft^ !,, = 8.2 ft\ and I,- = 18.2 ft^ The dif-

ferences between these results and the ones we obtained using Mohr's circle are

due to the errors inherent in measuring the answer graphically. By using

Eq. (8.26) to determine the orientation of the principal axes, we obtained the

principal axes shown in Fig. a of Example 8.8 and the principal moments of in-

ertia /y = 24.5 ft" and /y = 7.5 ft"*. The difference between those results and the

ones we obtained using Mohr's circle simply reflects the fact that the orienta-

tion of the principal axes can be determined only within a multiple of 90°.

-10

^_
X

*

^.1
21

1 /\
/^~sx \^ ^r " T ', ' /^ ,

' ^ 2^
"

,)(/,/,,) X (/..-/
^ \ ; v^L 7 r

>

V /
2 V >

1 1

10 20 30

(d) Determine the principal axes by letting

points r and 2' correspond to the points

where the circle intersects the horizontal axis.

(e) The principal axes corresponding to

^p = 67.5°.
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Problems

8.87 Determine /,. /,. and /,•, . (Do not use Mohr's circle.)

2ft >
-6 ft-

P8.87

8.90 Determine tiie moments of inertia /,•, />, and /,,- if

6 = 50° (Do not use" Mohr's circle.)

P8.90

8.88 Determine I^ , ly, and /^y. (Do not use Mohr's circle.)

y

P8.88

8.89 The moments of inertia of the rectangular area are

/, = 76.0 m\ /, = 14.7 m\ and l„ = 25.7 m"". Determine a

set of principal axes and the corresponding principal moments

of inertia. (Do not use Mohr's circle.)

8.91 For the area in Problem 8.90, determine a set of principal

axes and the corresponding principal moments of inertia. (Do not

use Mohr's circle.)

8.92 Determine a set of principal axes and the corresponding

principal moments of inertia. (Do not use Mohr's circle.)

160 mm

200 mm

40 mm

40 mm

40 mm

120 mm-
P8.92

P8.89

8.93 Solve Problem 8.87 by using Mohr's circle.

8.94 Solve Problem 8.88 by using Mohr's circle.

8.95 Solve Problem 8.89 by using Mohr's circle.

8.96 Solve Problem 8.90 by using Mohr's circle.

8.97 Solve Problem 8.91 by using Mohr's circle.

8.98 Solve Problem 8.92 by using Mohr's circle.

8.99 Derive Eq. (8.22) for the product of inertia by using the

same procedure we used to derive Eqs. (8.20) and (8.21).
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Masses

The acceleration of an object that results from the forces acting on it de-

pends on its mass. The angular acceleration, or rotational acceleration, that

results from the forces and couples acting on an object depends on quanti-

ties called the mass moments of inertia of the object. In this section we dis-

cuss methods for determining mass moments of inertia of particular objects.

We show that for special classes of objects, their mass moments of inertia

can be expressed in terms of moments of inertia of areas, which explains

how the names of those area integrals originated.

An object and a line or "axis" Lq are shown in Fig. 8.29a. The mass

moment of inertia of the object about the axis Lq is defined by

Jm
dm. (8.27)

where r is the perpendicular distance from the axis to the differential element

of mass dm (Fig. 8.29b). Often Lq is an axis about which the object rotates,

and the value of Iq is required to determine the angular acceleration, or the

rate of change of the rate of rotation, caused by a given couple about Lq.

Figure 8.29

(a) An object and axis Lq.

(b) A differential element of mass dm.

Simple Objects

The mass moments of inertia of complicated objects can be determined by sum-

ming the mass moments of inertia of their individual parts. We therefore begin by

determining mass moments of inertia of some simple objects. Then in the next

section we describe the parallel-axis theorem, which makes it possible to deter-

mine mass moments of inertia of objects composed of combinations of parts.

Slender Bars

Let us determine the mass moment of inertia of a straight, slender bar about a per-

pendicular axis L through the center of mass of the bar (Fig. 8.30a). "Slender"

means that we assume that the bar's length is much greater than its width. Let the

bar have length /, cross-sectional area A, and mass m. We assume that A is uni-

form along the length of the bar and that the material is homogeneous.

Consider a differential element of the bar of length dr at a distance r from

the center of mass (Fig. 8.30b). The element's mass is equal to the product of

its volume and the mass density: dm = pA dr. Substituting this expression

into Eq. (8.27), we obtain the mass moment of inertia of the bar about a per-

pendicular axis through its center of mass:

/ r~ dm = / pAr~ dr = — pAP
Jm J-1/2 12

The mass of the bar equals the product of the mass density and the volume of

the bar, m = pAl, so we can express the mass moment of inertia as

1

/ = — mf.
12

(8.28)

\- dr

(b)

Figure 8.30

(a) A slender bar.

(b) A differential element of length dr.
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We have neglected the lateral dimensions of the bar in obtaining this result.

That is, we treated the differential element of mass dm as if it were concentrat-

ed on the axis of the bar. As a consequence, Eq. (8.28) is an approximation for

the mass moment of inertia of a bar. Later in this section we determine the •

mass moments of inertia for a bar of finite lateral dimension and show that

Eq. (8.28) is a good approximation when the width of the bar is small in com-

parison to its length.

^T

(a)

(b)

Figure 8.31

(a) A plate of arbitrary shape and uniform

thickness 7".

(b) An element of volume obtained by

projecting an element of area dA
through the plate.

Thin Plates

Consider a homogeneous flat plate that has mass m and uniform thickness T.

We will leave the shape of the cross-sectional area of the plate unspecified.

Let a cartesian coordinate system be oriented so that the plate lies in the x-y

plane (Fig. 8.31a). Our objective is to determine the mass moments of inertia

of the plate about the x, y, and z axes.

We can obtain a differential element of volume of the plate by project-

ing an element of area dA through the thickness T of the plate (Fig. 8.31b).

The resulting volume is T dA. The mass of this element of volume is equal

to the product of the mass density and the volume: dtn = pT dA. Substitut-

ing this expression into Eq. (8.27), we obtain the mass moment of inertia of

the plate about the z axis in the form

Ac axis)
= I r-dmr^ dm = pT

Jm JA
r^dA,

where r is the distance from the z axis to dA. Since the mass of the plate is

m = pT A, where A is the cross-sectional area of the plate, pT = m/A. The

integral on the right is the polar moment of inertia Jq of the cross-sectional

area of the plate. We can therefore write the mass moment of inertia of the

plate about the z axis as

'(taxis)

m
o- (8.29)

From Fig 8.31b, we see that the perpendicular distance from the x axis to the

element of area dA is the y coordinate of dA. Therefore the mass moment of

inertia of the plate about the x axis is

'{x axis)

m
V" dm = pT y dA = — /^,

A
(8.30)

where I^ is the moment of inertia of the cross-sectional area of the plate about

the X axis. The mass moment of inertia of the plate about the y axis is

/,(> axis) x^ dm = pT
Jm J A

m
x'dA = -Iy,

A -^
(8.31)

where ly is the moment of inertia of the cross-sectional area of the plate about

the V axis.

Thus we have expressed the mass moments of inertia of a thin homoge-

neous plate of uniform thickness in terms of the moments of inertia of the

cross-sectional area of the plate. In fact, these results explain why the area in-

tegrals /j., ly, and Jq are called moments of inertia.
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Since the sum of the area moments of inertia I^ and 7^. is equal to the

polar moment of inertia Jq. the mass moment of inertia of the thin plate about

the - axis is equal to the sum of its moments of inertia about the x and y axes:

/,(zaxis) ~ A.vaxis) + h\( y axis) • Thin plate (8.32)

Example 8.10

Moments of Inertia of a Slender Bar
Two homogeneous slender bars, each of length /, mass m, and cross-sectional

area A, are welded together to form the L-shaped object in Fig. 8.32. Determine

the mass moment of inertia of the object about the axis Lq through point O.

(The axis Lp is perpendicular to the two bars.)

Strategy

Using the same integration procedure we used for a single bar, we will deter-

mine the mass moment of inertia of each bar about Lq and sum the results.

Solution

Our first step is to introduce a coordinate system with the z axis along Lq and the

.V axis collinear with bar 1 (Fig. a). The mass of the differential element of bar 1

of length dxisdm = pA dx. The mass moment of inertia of bar 1 about Lq is

(/o),
= j r-dm =

I
pAx- dx ^ - pAl\

Jm Jo -J

In terms of the mass of the bar, m = pAI, we can write this result as

(/o), -\>nr-.

The mass of an element of bar 2 of length dy, shown in Fig. b, is

dm = pA dy. From the figure we see that the perpendicular distance from Lq

to the element is r = V /" + y'
. Therefore the mass moment of inertia of bar 2

about Lq is

{10)2 = [r- dm = / pA{r- + y^)dy = \pAl\
Jm Jo 3

In terms of the mass of the bar, we obtain

4
(/o):2-^rnl

The mass moment of inertia of the L-shaped object about Lq is

Figure 8.32

dm

\^dx

(a) Differential element of bar 1.

O

n dv

dm.

1

(b) Differential element of bar 2.
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Example 8.11

Figure 8.33

Moments of Inertia of a Triangular Piate

The thin homogeneous plate in Fig. 8.33 is of uniform thickness and mass m.

Determine its mass moments.of inertia about the x, y, and z axes.

Strategy

The mass moments of inertia about the x and v axes are given by Eqs. (8.30)

and (8.31) in terms of the moments of inertia of the cross-sectional area of

the plate. We can determine the mass moment of inertia of the plate about the

z axis from Eq. (8.32).

Solution

From Appendix B, the moments of inertia of the triangular area about the x

and y axes are /, = ]3 bh^ and /,, = j hb^. Therefore the mass moments of iner-

tia of the plate about the x and y axes are

/,

m
(jr axis)

\bh}\\2 ) 6

_ m _
'(vaxis) . 'v

m

{bh
-hbA =-mb\4/2

The mass moment of inertia about the z axis is

'(zaxis) '(jraxis) ' '(yaxis)
,6 2

Parallel-Axis Theorem

The parallel-axis theorem allows us to determine the mass moment of inertia

of an object about any axis when the mass moment of inertia about a parallel

axis through the center of mass is known. This theorem can be used to calcu-

late the mass moment of inertia of a composite object about an axis given the

mass moments of inertia of each of its parts about parallel axes.

Suppose that we know the mass moment of inertia / about an axis L

through the center of mass of an object, and we wish to determine its mass

moment of inertia Iq about a parallel axis Lq (Fig. 8.34a). To determine Iq,

we introduce parallel coordinate systems xyz and x'y'z with the z axis along

Lq and the z' axis along L, as shown in Fig. 8.34b. (In this figure the axes Lq

and L are perpendicular to the page.) The origin O of the xyz coordinate sys-

tem is contained in the x'-y' plane. The terms d^ and d, are the coordinates of

the center of mass relative to the xyz coordinate system.
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(a) (b)

The mass moment of inertia of the object about Lq is

= r^dm ^ {x^ + y^)dm,
Jm Jm

Io = (8.33)

where r is the perpendicular distance from Lq to the differential element of

mass dm, and x, y are the coordinates of dm in the x-y plane. The coordinates

oidm in the two coordinate systems ?>'•'' rpiat^H hv

X = x' + d^

, are related by

y^y' + d,.

By substituting these expressions into Eq. (8.33), we can write it as

^o= [{x'Y + {y'y] dm + 2d, x'dm + 2d, / y' dm
Jm Jm Jm

+ [dl + dfjdm. (8.34)

Since {x'Y + {y'Y = {r')', where r' is the perpendicular distance from L to

dm, the first integral on the right side of this equation is the mass moment of

inertia / of the object about L. Recall that the x' and v' coordinates of the cen-

ter of mass of the object relative to the x'y'z' coordinate system are defined by

Ix'dm y'

-t Jm ~f Jm
c = V ~

/ dm
Jm

dm

Because the center of mass of the object is at the origin of the x'y'z' system,

jc' = and y' = 0. Therefore the integrals in the second and third terms on

the right side of Eq. (8.34) are equal to zero. From Fig. 8.34b, we .see that

dl + dl = d^, where d is the perpendicular distance between the axes L and

Lq. Therefore we obtain

Io = I + d^m, (8.35)

where m is the mass of the object. This is the parallel-axis theorem. If the

mass moment of inertia of an object is known about a given axis, we can use

this theorem to determine its mass moment of inertia about any parallel axis.

Figure 8.34

(a) An axis L through the center of mass of

an object and a parallel axis Lq.

(b) The xyz and x'y'z' coordinate systems.
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Determining the mass moment of inertia about a given axis Lq typically

requires three steps:

1. Choose the parts—Try to divide the object into parts whose mass

moments of inertia you know or can easily determine.

2. Determine the mass moments of inertia of the parts—You must first

determine the mass moment of inertia of each part about the axis

through its center of mass parallel to Lq. Then you can use the parallel-

axis theorem to determine its mass moment of inertia about Lq.

3. Sum the results—Sum the mass moments of inertia of the parts (or

subtract in the case of a hole or cutout) to obtain the mass moment of

inertia of the composite object.

Example 8.12

Figure 8.35

(a) The distances from Lq to parallel axes

through the centers of mass of bars 1 and 2.

Moment of Inertia of a
Composite Bar
Two homogeneous slender bars, each of length / and mass m, are welded to-

gether to form the L-shaped object in Fig. 8.35. Determine the mass moment

of inertia of the object about the axis Lq through point O. (The axis Lq is per-

pendicular to the two bars.)

Solution

Choose the Parts The parts are the two bars, which we call bar 1 and bar |i

2 (Fig. a).

Determine the IVIass IVIoments of Inertia of the Parts From Eq. (8.28),

the mass moment of inertia of each bar about a perpendicular axis through its

center of mass is I - yj ml'. The distance from Lq to the parallel axis through

the center of mass of bar 1 is 5/ (Fig. a). Therefore the mass moment of inertia

of bar 1 about Lq is

(/o),
= / + dhn = ^mf- +

(^/j
'« -^\fnl\

The distance from Lq to the parallel axis through the center of mass of bar 2

is [/^ -I- (2/)"]' ' The mass moment of inertia of bar 2 about Lq is

[10)2 = I + d'^m ^ ^mf- + r-^\^,i m — — ml'.
3

Sum the Results The mass moment of inertia of the L-shaped object about

Lois

lo = (/o), + (/o)2 = \'^l' + y^^' = ^'"''•

M
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Discussion

Compare this solution to Example 8.10, in which we used integration to

determine the mass moment of inertia of this object about Lq. We obtained

the result much more easily with the parallel-axis theorem, but of course we
needed to know the mass moments of inertia of the bars about the axes

through their centers of mass.

Example 8.13

Moment of Inertia of a
Composite Object
The object in Fig. 8.36 consists of a slender. 3-kg bar welded to a thin, circu-

lar 2-kg disk. Determine its mass moment of inertia about the axis L through

its center of mass. (The axis L is perpendicular to the bar and disk.)

Strategy

We must first locate the center of mass of the composite object and then

apply the parallel-axis theorem to the parts separately and sum the results.

Solution

Choose the Parts The parts are the bar and the disk. Introducing the coor-

dinate system in Fig. a, the x coordinate of the center of mass of the compos-

ite object is

^(barj/^Cbar) + ^(disk) ^(disk) (0.3)(3) + (0.6 + 0.2)(2)
X = = : : = 0.5 m.

'"(bar) + '"(disk) 3 + 2

Determine the Mass Moments of Inertia of the Parts The distance from

the center of mass of the bar to the center of mass of the composite object is

0.2 m (Fig. b). Therefore the mass moment of inertia of the bar about L is

/(bar)
= :|^(3)(0.6)- + (0.2)^-(3) = 0.210 kg-ml

The distance from the center of mass of the disk to the center of mass of the

composite object is 0.3 m (Fig. c). The mass moment of inertia of the disk

about L is

/(d,sk)
= ^(2)(0.2)^ + (0.3)2(2) = 0.220 kg-ml

Sum the Results The mass moment of inertia of the composite object

about L is

/ =
/(bar) + /(disk)

= 0.430 kg-ml

(a) The coordinate x of the center of mass

of the object.

0.2 m

(b) Distance from L to the center of mass

of the bar.

(c) Distance from L to the center of mass

of the disk.
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Example 8.14

Figure 8.37

(a) A differential element of the cylinder

in the form of a disk.

Moments of Inertia of a Cylinder

The homogeneous cylinder in Fig. 8.37 has mass m, length /, and radius /?.

Determine its mass moments of inertia about the x, y, and z axes.

Strategy

We first determine the mass moments of inertia about the x, y, and z axes of an

infinitesimal element of the cylinder consisting of a disk of thickness dz. We
then integrate the results with respect to z to obtain the mass moments of inertia

of the cylinder. We must apply the parallel-axis theorem to determine the mass

moments of inertia of the disk about the x and y axes.

Solution

Consider an element of the cylinder of thickness dz at a distance z from the cen-

ter of the cylinder (Fig. a). (You can imagine obtaining this element by "slicing"

the cylinder perpendicular to its axis.) The mass of the element is equal to the

product of the mass density and the volume of the element, dm = p{ttR' dz).

We obtain the mass moments of inertia of the element by using the values for a

thin circular plate given in Appendix C. The mass moment of inertia about the z

axis is

^/(zaxis) ^-dmR' = -{p7TR'dz)R\

By integrating this result with respect to z from —1/2 to //2, we sum the mass

moments of inertia of the infinitesimal disk elements that make up the cylin-

der. The result is the mass moment of inertia of the cylinder about the z axis:

f"^ 1 1

Azaxis) = / -:^P'^ R'^ dz ^ -pTT RH.

We can write this result in terms of the mass of the cylinder, m = p{ttRH), as

'{z axis)
mR'

The mass moment of inertia of the disk element about the x' axis is

dl(x'axK) -dmR^ = - (pttR^ dz)R\
4 4

We can use this result and the parallel-axis theorem to determine the mass

moment of inertia of the element about the x axis:

dl(x^is) = ^/(X-axis) + z^dm = -{pTTR^dz)R^ + z\p'!tR^ dz).

Integrating this expression with respect to z from —1/2 to 1/2, we obtain the

mass moment of inertia of the cylinder about the x axis:

/,(jraxis)

///2 V 4
Ptt/?^ + pttRY

)
dz = ^pttRH + n ^'^ ^^^^-
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In terms of the mass of the cyhnder,

'(jraxis)
= - mR- + — mP-.

4 12

Due to the symmetry of the cylinder,

'(>'axis) '(raxis)-

Discussion

When the cylinder is very long in comparison to its width, />?>/?, the first term

in the equation for /(, axis) can be neglected, and we obtain the mass moment of

inertia of a slender bar about a perpendicular axis, Eq. (8.28). Conversely, when

the radius of the cylinder is much greater than its length, /?>£>/, the second

term in the equation for /( , a^j,,
can be neglected, and we obtain the mass mo-

ment of inertia for a thin circular disk about an axis parallel to the disk. This in-

dicates the sizes of the terms you neglect when you use the approximate

expressions for the mass moments of inertia of a "slender" bar and a "thin" disk.

Problems

8.100 The axis Lq is perpendicular to both segments of the

L-shaped slender bar. The mass of the bar is 6 kg and the material

is homogeneous. Use integration to determine its mass moment of

inertia about Lq.

P8.100

8.101 Two homogeneous slender bars, each of mass m and

length /, are welded together to form the T-shaped object. Use

integration to determine the mass moment of inertia of the object

about the axis through point that is perpendicular to the bars.

O

P8.101

8.102 A homogeneous slender bar is bent into a circular ring of

mass m and radius R. Determine the mass moment of inertia of the

ring about the axis through its center of mass that is perpendicular

to the ring. (That is, the axis is perpendicular to the page.)

P8.102

8.103 Determine the mass moment of inertia of the ring in

Problem 8.102 about the axis L that passes through the center

of mass and is parallel to the ring.

8.104 The homogeneous thin plate has mass m = 12 kg and

dimensions b = \ m and h = 2m. Determine its mass moments

of inertia about the x, y, and z axes.

Strategy: The mass moments of inertia of a thin plate of

arbitrary shape are given by Eqs. (8.30)-(8.32) in terms of the

moments of inertia of the cross-sectional area of the plate. You

can obtain the moments of inertia of the triangular area from

Appendix B.

y

^-^ \ h^^ '^"^.^^ AH \

• b
P8.104
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8.105 The homogeneous thin plate is of uniform thickness and

mass m.

(a) Determine its mass moments of inertia about the x and ;

axes.

(b) Let ^1 = 0, and compare your results with the values given

in Appendix C for a thin circular plate.

(c) Let /?! —> /?o, and compare your results with the solutions of

Problems 8.102 and 8.103.

P8.105

8.106 The homogeneous thin plate is of uniform thickness and

weighs 20 lb. Determine its mass moment of inertia about the

y axis.

P8.106

8.107 Determine the mass moment of inertia of the plate in

Problem 8.106 about the x axis.

8.108 The mass of the object is 10 kg. Its mass moment of

inertia about L, is 10 kg-m". What is its mass moment of inertia

about L2? (The three axes lie in the same plane.)

0.6 m- 0.6 m -

8.109 An engineer gathering data for the design of a maneuvering

unit determines that the astronaut's center of mass is at j: = 1 .01 m,

_v = 0.16 m and that his mass moment of inertia about the z axis is

105.6 kg-m^. His mass is 81.6 kg. What is his mass moment of iner-

tia about the ;' axis through his center of mass?

P8.109

8.110 Two homogeneous slender bars, each of mass m and length /,

are welded together to form the T-shaped object. Use the parallel-axis

theorem to determine the mass moment of inertia of the object about

the axis through point O that is perpendicular to the bars.

O"

P8.110

8.111 Use the parallel-axis theorem to determine the mass

moment of inertia of the T-shaped object in Problem 8. 110 about

the axis through the center of mass of the object that is perpendi-

cular to the two bars.

8.112 The mass of the homogeneous slender bar is 20 kg.

Determine its mass moment of inertia about the z axis.

P8.112

P8.108

8.113 Determine the mass moment of inertia of the bar in

Problem 8. 112 about the ;' axis through its center of mass.
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8.114 The homogeneous slender bar weighs 5 lb. Determine its

mass moment of inertia about the z axis.

P8.114

8.115 Determine the mass moment of inertia of the bar in

Problem 8.114 about the z' axis through its center of mass.

8.116 The rocket is used for atmospheric research. Its weight

and its mass moment of inertia about the z axis through its center

of mass (including its fuel) are 10 kip and 10,200 slug-ft^, respec-

tively. The rocket's fuel weighs 6000 lb, its center of mass is

located at a: = —3 ft, y = 0, z = 0, and the mass moment of

inertia of the fuel about the axis through the fuel's center of mass

parallel to z is 2200 slug-ft^. When the fuel is exhausted, what is

the rocket's mass moment of inertia about the axis through its new

center of mass parallel to z?

ia 1^ ^k
P8.116

8.117 The mass of the homogeneous thin plate is 36 kg.

Determine its mass moment of inertia about the x axis.

0.3 m

0.3 m

P8.117

8.118 Determine the mass moment of inertia of the plate in

Problem 8.1 17 about the z axis.

8.119 The homogeneous thin plate weighs 10 lb. Determine its

mass moment of inertia about the x axis.

S in ^ in

/

/ 10 in

5 n

"

P8.119

8.120 Determine the mass moment of inertia of the plate in

Problem 8.1 19 about the >• axis.

8.121 The thermal radiator (used to eliminate excess heat from a

satellite) can be modeled as a homogeneous thin rectangular plate.

Its mass is 5 slugs. Determine its mass moments of inertia about

the X, y, and z axes.

1

^^

P8.121

8.122 The mass of the homogeneous thin plate is 2 kg. Determine

its mass moment of inertia about the axis Lq through point O that is

perpendicular to the plate.

P8.122
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8.123 The homogeneous cone is of mass m. Determine its mass

moment of inertia about the z axis, and compare your result with

the value given in Appendix C.

Strategy: Use the same approach we used in Example 8.14

to obtain the moments of inertia of a homogeneous cylinder.

P8.123

8.124 Determine the mass moments of inertia of the homoge-

neous cone in Problem 8.123 about the x and y axes, and compare

your results with the values given in Appendix C.

8.125 The homogeneous object has the shape of a truncated

cone and consists of bronze with mass density p = 8200 kg/m'.

Determine its mass moment of inertia about the z axis.

60 mm

180 mm

P8.127

8.128 The L-shaped machine part is composed of two homoge-

neous bars. Bar 1 is tungsten alloy with mass density 14,000 kg/m^,

and bar 2 is steel with mass density 7800 kg/m'. Determine its

moment of inertia about the x axis.

40 mm

P8.128

8.129 Determine the moment of inertia of the L-shaped machine

part in Problem 8.128 about the z axis.

8.130 The homogeneous ring consists of steel of density

p = 15 slug/ft\ Determine its mass moment of inertia about the

axis L through its center of mass.

P8.125

8.126 Determine the mass moment of inertia of the object in

Problem 8.125 about the x axis.

8.127 The homogeneous rectangular parallelepiped is of mass m.

Determine its mass moments of inertia about the x, v, and z axes,

and compare your results with the values given in Appendix C.

^

4 in

P8.130 I
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8.131 The homogeneous half-cylinder is of mass m. Determine

its mass moment of inertia about the axis L through its center of

mass.

20 mm

--^--t

*-r-

P8.131

r 8.132 The homogeneous machine part is made of aluminum

alloy with mass density p = 2800 kg/m\ Determine its mass

moment of inertia about the z axis.

40
mm P8.132

8.133 Determine the mass moment of inertia of the machine part

in Problem 8.132 about the x axis.

8.134 The object consists of steel of density p = 7800 kg/m'.

Determine its mass moment of inertia about the axis Lq .

1
10 mm r 31

1
30 mm
A

P8.134

8.135 Determine the mass moment of inertia of the object in

Problem 8. 1 34 about the axis through the center of mass of the

object parallel to Lq.

8.136 The thick plate consists of steel of density p = 15 slug/ft^.

Determine its mass moment of inertia about the z axis.

-^

-4in^

P8.136

8.137 Determine the mass moment of inertia of the plate in

Problem 8.136 about the x axis.

Chapter Summary

Areas

Four area moments of inertia are defined (Fig. a):

1. The moment of inertia about the x axis:

/, = jy'dA.

2. The moment of inertia about the y axis:

/„ = x~ dA.

Eq.(8.1)

Eq. (8.3)

(a) (a)
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3. The product of inertia:

-IxydA. Eq. (8.5)

4. The polar moment of inertia:

Jo= r^ dA. Eq. (8.6)

(b)

The radii of gyration about the x and v axes are defined by k^ = \/lJA and

ky = \/lyl

A

, respectively, and the radius of gyration about the origin O is de-

fined by kg = \/JqIA

.

The polar moment of inertia is equal to the sum of the moments of inertia

about the x and y axes: Jq = I^ + A • If an area is symmetric about either the

X axis or the v axis, its product of inertia is zero.

Let x'y' be a coordinate system with its origin at the centroid of an area A,

and let xy be a parallel coordinate system. The moments of inertia of /i in tenns

of the two systems are related by the parallel-axis theorems [Eqs. (8.10)-(8.13)):

/, = /,. + dlA,

ly = ly + dlA,

A, = A'y' + d,d,A,

Jo^ J'o + [dl + dl)A = J'o + d^A,

where d^ and J, are the coordinates of the centroid of A in the xy coordinate

system.

Masses

The mass moment of inertia of an object about an axis Lq is (Fig. b)
;

(c)

(c)

4> = /
'" dm, Eq. (8.27);

where r is the perpendicular distance from Lq to the differential element ol

mass dm.

Let L be an axis through the center of mass of an object, and let Lq be a

parallel axis (Fig. c). The moment of inertia Iq to about Lq is given in terms

of the moment of inertia / about L by the parallel-axis theorem,

Io = I + d^m. Eq. (8.35^

where m is the mass of the object and d is the perpendicular distance between

L and Lg

.



Chapter Summary 419

Review Problems

Refer to P8.138 for Problems 8.138-8.141.

8.138 Determine /^ and ky.

(1.1)

;
8.139 Determine/, and ^^.

8.140 Determine /o ^"'1 ^o-

8.141 Determine /„.

Refer to P8.142 for Problems 8.142-8.144.

8.142 Determine A, and ^„.

P8.138

8.146 Determine /, and k/.

8.147 Determine /,,.

8.148 Determine 7^. and ky.

80 _ 40 I 80
" mm

\
mm ["*" mm

P8.148

8.149 Determine /, and k^ for the area in Problem 8.148.

8.150 Determine/, and/:,.

K
P8.142

143 Determine /, and k^

.

8.144 Determine/,,..

Refer to P8.145 for Problems 8.145-8.147. The origin of

the x'y' coordinate system is at the centroid of the area.

8.145 Determine / and L/.

y = x--^x-

u_ 80 ^ 40 1^ 80 _,"*~ mm^ mm r~ mm ~*| P8.150

8.151 Determine Jq and k^ for the area in Problem 8. 150.

8.152 Determine /, and ky

y

P8.152
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8.153 Determine ]„ and kQ for the area in Problem 8. 152.

8.154 Determine/, and )t,.

P8.154

8.155 Determine I, and k,. for the area in Problem 8. 154.

8.156 The moments of inertia of the area are /^ = 36 m''.

/, = 145 m"*. and /„ = 44.25 m". Determine a set of principal

axes and the principal moments of inertia.

P8.157

8.158 The mass of the thin homogeneous plate is 4 kg.

Determine its mass moment of inertia about the > axis.

P8.156

8.157 The mass moment of inertia of the 3 1 -oz bat about a per-

pendicular axis through point B is 0.093 slug-ft". What is the bat's

mass moment of inertia about a perpendicular axis through point

Al (Point A is the bat's "instantaneous center," or center of

rotation, at the instant shown.)

P8.158I

8.159 Determine the mass moment of inertia of the plate in

Problem 8.158 about the z axis.
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8.160 The homogeneous pyramid is of mass m. Determine its

mass moment of inertia about the z axis.

P8.160

8.161 Determine the mass moments of inertia of the homoge-

neous pyramid in Problem 8. 160 about the x and y axes.

8.162 The homogeneous object weighs 400 lb. Determine its

mass moment of inertia about the x axis.

8.163 Determine the mass moments of inertia of the object in

Problem 8. 162 about the y and z axes.

8.164 Determine the mass moment of inertia of the 14-kg

flywheel about the axis L.

Q 50 mm

100 mm

150 mm

P8.164

9 in

36 in

46 in -

Side View

P8.162
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Shoe soles are designed to support the friction

forces necessary to prevent slipping. In this chapter

we analyze friction forces between surfaces in

contact.



CHAPTER

Friction forces have many important effects, both desirable and unde-

sirable, in engineering applications. The Coulomb theory of friction

allows us to estimate the maximum friction forces that can be exerted

by contacting surfaces and the friction forces exerted by sliding surfaces. This

opens the path to the analysis of important new classes of supports and ma-

chines, including wedges (shims), threaded connections, bearings, and belts.
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Theory of Dry Friction

^p^/f

X
f

Friction force

(a)

Figure 9.1

Objects supported by friction forces.

Figure 9.2

(a) Exerting a horizontal force on a book.

(b) The free-body diagram of the book.

When you climb a ladder, it remains in place because of the friction force ex-

erted on it by the floor (Fig. 9.1a). If you remain stationary on the ladder, the

equilibrium equations determine the friction force. But an important question

cannot be answered by the equilibrium equations alone: Will the ladder re-

main in place, or will it slip on the floor? If a truck is parked on an incline,

the friction force exerted on it by the road prevents it from sliding down the

incline (Fig. 9.1b). Here too there is another question: What is the steepest in-

cline on which the truck can be parked?

t
f-FricFriction force

(b)

To answer these questions, we must examine the nature of friction forces

in more detail. Place a book on a table and push it with a small horizontal

force, as shown in Fig. 9.2a. If the force you exert is sufficiently small, the

book does not move. The free-body diagram of the book is shown in

Fig. 9.2b. The force W is the book's weight, and N is the normal force exert-

ed by the table. The force F is the horizontal force you apply, and / is the

friction force exerted by the table. Because the book is in equilibrium,

f = F.

\w

\N

(b)

Now slowly increase the force you apply to the book. As long as the

book remains in equilibrium, the friction force must increase corresponding-

ly, since it equals the force you apply. When the force you apply becomes too

large, the book moves. It slips on the table. After reaching some maximum
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\ alue, the friction force can no longer maintain the book in equiHbrium. Also,

notice that the force you must apply to keep the book moving on the table is

smaller than the force required to cause it to slip. (You are familiar with this

phenomenon if you've ever pushed a piece of furniture across a floor.)

How does the table exert a friction force on the book? Why does the

book slip? Why is less force required to slide the book across the table than is

required to start it moving? If the surfaces of the table and the book are mag-

nified sufficiently, they will appear rough (Fig. 9.3). Friction forces arise in

part from the interactions of the roughnesses, or asperities, of the contacting

surfaces. On a still smaller scale, contacting surfaces tend to form atomic

bonds that "glue" them together (Fig. 9.4). The fact that more force is re-

quired to start an object sliding on a surface than to keep it sliding is ex-

plained in part by the necessity to break these bonds before sliding can begin.

In the following sections we present a theory that predicts the basic phe-

nomena we have described and has been found useful for approximating fric-

tion forces between dry surfaces in engineering applications. (Friction

between lubricated surfaces is a hydrodynamic phenomenon and must be ana-

lyzed in the context of fluid mechanics.)

Figure 9.3

The roughnesses of the surfaces can be

seen in a magnified view.

Coefficients of Friction

The theory of dry friction, or Coulomb friction, predicts the maximum fric-

tion forces that can be exerted by dry, contacting surfaces that are stationary

relative to each other. It also predicts the friction forces exerted by the sur-

faces when they are in relative motion, or sliding. We first consider surfaces

that are not in relative motion.

The Static Coefficient The magnitude of the maximum friction force that

can be exerted between two plane dry surfaces in contact is

/ = /^s/V, (9.1)

where A^ is the normal component of the contact force between the surfaces

and /x, is a constant called the coefficient of static friction.

The value of fx^ is assumed to depend only on the materials of the con-

tacting surfaces and the conditions (smoothness and degree of contamination

by other materials) of the surfaces. Typical values of [x^ for various materials

are shown in Table 9.1. The relatively large range of values for each pair of

materials reflects the sensitivity of /u-s to the conditions of the surfaces. In en-

gineering applicadons it is usually necessary to measure the value of fx^ for

the actual surfaces used.

•v/.v,

^'^^^-^^^i^^!::^

Figure 9.4

Computer simulation of a bond or "neck"

of atoms formed between a nickel tip (red)

and a gold surface.

Table 9.1 Typical values of the coefficient

of static friction.

Coefficient of

Materials Static Friction fx^

Metal on metal 0.15-0.20

Masonry on masonry 0.60-0.70

Wood on wood 0.25-0.50

Metal on masonry 0.30-0.70

Metal on wood 0.20-0.60

Rubber on concrete 0.50-0.90
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(a)

Direction of

impending slip

f=H,N
IN

N\
A'

(b)

Figure 9.5

(a) The upper surface is on the verge of

slipping to the right.

(b) Directions of the friction forces.

Let's return to the example of the book on the table (Fig. 9.2). If the

force F exerted on the book is small enough that the book does not move, the

condition for equilibrium requires that the friction force f = F. Why do we

need the theory of dry friction? If we begin to increase F. the friction force /
will increase until the book slips. Equation (9.1) gives the maximum friction

force that the two surfaces can exert and thus tells us the largest force F that

can be applied to the book without causing it to slip. Suppose that we know

the coefficient of static friction /jl^ between the book and the table and the

weight W of the book. Since the normal force N = W. the largest value of F
that can be applied to the book without causing it to slip is F = f = fi^W.

Equation (9.1) determines the magnitude of the maximum friction force

but not its direction. The friction force is a maximum, and Eq. (9.1) is appli-

cable, when two surfaces are on the verge of slipping relative to each other.

We say that slip is impending, and the friction forces resist the impending

motion. In Fig. 9.5a. suppose that the lower surface is fixed and slip of the

upper surface toward the right is impending. The friction force on the upper

surface resists its impending motion (Fig. 9.5b). The friction force on the

lower surface is in the opposite direction.

The Kinetic Coefficient According to the theory of dry friction, the mag-

nitude of the friction force between two plane dry contacting surfaces that are

in motion (sliding) relative to each other is

/ = /^kA^. (9.2)

where A' is the normal force between the surfaces and fi^^ is the coefficient of\

kinetic friction. The value of fi^^ is assumed to depend only on the composi-

tions of the surfaces and their conditions. For a given pair of surfaces, its

value is generally smaller than that of /x^.

Once you have caused the book in Fig. 9.2 to begin sliding on the table,

the friction force / = jx^N — ^i^W. Therefore the force you must exert to

keep the book in uniform motion is F = f = /jlJV.

When two surfaces are sliding relative to each other, the friction forces I

resist the relative motion. In Fig. 9.6a. suppose that the lower surface is fixed

and the upper surface is moving to the right. The friction force on the upper

surface acts in the direction opposite to its motion (Fig. 9.6b). The friction
|

force on the lower surface is in the opposite direction.

Figure 9.6

(a) The upper surface is moving to the

right relative to the lower surface.

(b) Directions of the friction forces.

Direction of

relative motion

(b)

I

J
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Angles of Fk'iction

Instead of resolving the reaction exerted on a surface due to its contact with

another surface into the normal force A' and friction force / (Fig. 9.7a), we

can express it in terms of its magnitude R and the angle offriction 6 between

the force and the normal to the surface (Fig. 9.7b). The normal force and fric-

tion force are related to P and 6 by

/ = Rsind,

N = Rcosd.

(9.3)

(9.4)

The value of when slip is impending is called the angle of static friction 6^,

and its value when the surfaces are sliding relative to each other is called the

angle of kinetic friction 6^,. By using Eqs. (9.1)-(9.4), we can express the an-

gles of static and kinetic friction in terms of the coefficients of friction:

tanfl, = /i„

tan^k = Mk-

(9.5)

(9.6)

In summary, if slip is impending, the magnitude of the friction force is given

by Eq. (9.1) and the angle of friction by Eq. (9.5). If surfaces are sliding rela-

'

tive to each other, the magnitude of the friction force is given by Eq. (9.2) and

the angle of friction by Eq. (9.6). Otherwise, the friction force must be deter-

mined from the equilibrium equations. The sequence of decisions in evaluat-

ing the friction force and angle of friction is summarized in Fig. 9.8.

Study Questions

1. How is the coefficient of static friction defined?

2. How is the coefficient of kinetic friction defined?

3. If relative slip of two dry surfaces in contact is impending, what do you know

about the friction forces they exert on each other?

If two dry surfaces in contact are sliding relative to each other, what do you

know about the resulting friction forces?

Are the surfaces in motion (sliding)

relative to each other?

\ /
\

\
\
\
\

\

(a)

A^

Figure 9.7

(a) The normal force A^ and the friction

force /.

(b) The magnitude R and the angle of

friction 6.

/=/j|^A'and tan d^,--

The friction force opposes the

relative motion.

Do you know that slip is impending?

Yes No

f= II N and tan 6 = jj .

The friction force opposes the

impending motion.

You must determine the magnitude and

direction of the friction force from the

equilibrium equations. If/ >n^N or

tan 6> 1^. the system cannot be in

equilibrium.

Figure 9.8

Evaluating the friction force.

I
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Example 9.1

Figure 9.9

(a) Free-body

diagram of the crate.

Determining t/ie Friction Force
The arrangement in Fig. 9.9 exerts a horizontal force on the stationary 80-kg

crate. The coefficient of static friction between the crate and the ramp is

IX, = 0.4.

(a) If the rope exerts a 400-N force on the crate, what is the friction force ex-

erted on the crate by the ramp?

(b) What is the largest force the rope can exert on the crate without causing it

to slide up the ramp?

Strategy

(a) We can follow the logic in Fig. 9.8 to decide how to evaluate the friction

force. The crate is not sliding on the ramp, and we don't know whether slip

is impending, so we must determine the friction force by using the equilibri-

um equations.

(b) We want to determine the value of the force exerted by the rope that caus

es the crate to be on the verge of slipping up the ramp. When slip is impend-

ing, the magnitude of the friction force h f — ix^N and the friction force

opposes the impending slip. We can use the equilibrium equations to deter-

mine the force exerted by the rope.

Solution

(a) We draw the free-body diagram of the crate in Fig. a, showing the force T

exerted by the rope, the weight mg of the crate, and the normal force A^ and

friction force / exerted by the ramp. We can choose the direction of / arbi-

trarily, and our solution will indicate the actual direction of the friction force

By aligning the coordinate system with the ramp as shown, we obtain the

equilibrium equation

2F, = / + 7 cos 20° - mg sin 20° 0.
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Solving for the friction force, we obtain

/ = -r cos 20° + wgsin20° = -(400) cos 20° + (80)(9.81) sin20°

= -107 N.

The minus sign indicates that the direction of the friction force on the crate is

down the ramp.

(b) The friction force is / = /x^A^, and it opposes the impending slip. To sim-

plify our solution for T, we align the coordinate system as shown in Fig. b,

obtaining the equilibrium equations

2F, = T - A^sin20° - /a,/Vcos20° = 0,

2F,, = A'cos20° - /i.,yVsin20° - mg = 0.

Solving the second equilibrium equation for A', we obtain

mg (80) (9.81)
A' = = ^^

—

= 977 N.
cos 20° - /i, sin 20° cos 20° - (0.4) sin 20°

Then from the first equilibrium equation, T is

T = yv(sin20° + /a,cos20°) = (977)[sin20° + (0.4)cos20°]

= 702 N.

y

f=IJN

(b) The free-body diagram when slip

up the ramp is impending.

Alternative Solution We can also determine T by representing the reaction ex-

erted on the crate by the ramp as a single force (Fig. c). Because slip of the crate

up the ramp is impending, R opposes the impending motion and the friction angle

is 6^ = arctan fx^ = arctan (0.4) = 21.8°. From the triangle formed by the sum
of the forces acting on the crate (Fig. d), we obtain

T = mgtan(20° + 6,) = (80) (9.81) tan (20° + 21.8°) = 702 N.

(c) Representing the reaction exerted

by the ramp as a single force.

(d) The forces on the crate.
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Example 9.2

Figure 9.10

Determining Whether an Object
Will Tip Over
Suppose that we want to push the tool chest in Fig. 9.10 across the floor by

applying the horizontal force F. If we apply the force at too great a height /i,

the chest will tip over before it slips. If the coefficient of static friction be-

tween the floor and the chest is /i^, what is the largest value of h for which

the chest will slip before it tips over?

Strategy

When the chest is on the verge of tipping over, it is in equilibrium with no

reaction at B. We can use this condition to determine F in terms of h. Then,

by determining the value of F that will cause the chest to slip, we will ob-

tain the value of /; that causes the chest to be on the verge of tipping over

and on the verge of slipping.

Solution

We draw the free-body diagram of the chest when it is on the verge of tipping

over in Fig. a. Summing moments about A, we obtain

2M(poin,^) = Fh W[^b] = 0.

(a) The free-body diagram when the chest

is on the verge of tipping over.

Equilibrium also requires that f = F and N = W.

When the chest is on the verge of slipping,

/ = f^sN,

so

F^f = ti^N = ^l,W.

Substituting this expression into the moment equation, we obtain

fi,Wh -wl-bj =0.

Solving this equation for h, we find that the chest is on the verge of tipping

over and on the verge of slipping when

If /j is smaller than this value, the chest will begin sliding before it tips over.

Discussion

Notice that the largest value of h for which the chest will slip before it tips

over is independent of F. Whether the chest will tip over depends only on

where the force is applied, not how large it is.
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Example 9.3

Analyzing a Friction Braiie

The motion of the disk in Fig. 9.11 is controlled by the friction force exerted

at C by the brake ABC. The hydraulic actuator BE exerts a horizontal force of

magnitude F on the brake at B. The coefficients of friction between the disk

and the brake are fi^ and /x.^ • What couple M is necessary to rotate the disk at

a constant rate in the counterclockwise direction?

Strategy

We can use the free-body diagram of the disk to obtain a relation between M
and the reaction exerted on the disk by the brake, then use the free-body dia-

gram of the brake to determine the reaction in terms of F.

Solution

We draw the free-body diagram of the disk in Fig. a, representing the force

exerted by the brake by a single force R. The force R opposes the counter-

clockwise rotation of the disk, and the friction angle is the angle of kinetic

friction 6^ = arctan fx^^. Summing moments about D, we obtain

2M(poin,D) = M - (/?sin0k)r = 0.

Then, from the free-body diagram of the brake (Fig. b), we obtain

2M,(point A)
= -F\\h + {Rcos.e^h - {R^ind^b = 0.

We can solve these two equations for M and R. The solution for the couple M is

{\/2)hrF^ind^, {l/2)hr F/jl^

M =
h cos B^ — b sin 0^ ^Mk

Discussion

If ^i( is sufficiently small, then the denominator of the solution for the couple,

{/!cos0|( — ^sin^i^), is positive. As /i|^ becomes larger, the denominator be-

comes smaller, because cos ^i^ decreases and sin 6^ increases. As the denomi-

nator approaches zero, the couple required to rotate the disk approaches

infinity. To understand this result, notice that the denominator equals zero

when tan 6^ - h/b, which means that the line of action of R passes through

point A (Fig. c). As
fj.y.

becomes larger and the line of action of R approaches

point A, the magnitude of R necessary to balance the moment of F about A
approaches infinity and, as a result, M approaches infinity.

Figure 9.11

(a) The free-body diagram of the disk.

F 2

(b) The free-body diagram of the brake.

(c) The line of action of R passing through

point A.

I
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Example 9.4

A Friction Problem in Titree Dimensions
The 80-kg climber at A in Fig. 9.12 is being helped up an icy slope by

friends. The tensions in ropes AB and AC are 130 N and 220 N, respectively.

The y axis is vertical, and the unit vector e = -0.182i + 0.818J + 0.545k is

perpendicular to the ground where the climber stands. What minimum coeffi-

cient of static friction between the climber's shoes and the ground is neces-

sary to prevent him from slipping?

^^^^ (5, 2,-1) m

Figure 9.12

Strategy

We know the forces exerted on the climber by the two ropes and by his weight,

so we can use equilibrium to determine the force R exerted on him by the

ground. When slip is impending, the angle between R and the unit vector e is

equal to the angle of static friction 6^. We can use this condition to calculate

the coefficient of static friction for impending slip.

Solution

We draw the free-body diagram of the climber in Fig. a, showing the forces

T^g and T^c exerted by the ropes, the force R exerted by the ground, and his

weight. The sum of the forces equals zero:

R + T.« + TAB '^AC mgj - 0.

By expressing T^g and T^f in terms of their components, we can solve this

equation for the components of R. The force T^g is
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'^AB ^AB\

(2 - 3)i + (2 - 0)j + (0 - 4)k •

'LV(2 - 3)2 + (2 - 0)2 + (0 - 4)2.

= (130)(-0.218i + 0.436J - 0.873k)

= -28.4i + 56.7J
- 113.5k (N),

and the force T^^ is

(5 - 3)i + (2 - 0)j + (-1 - 4)k
T.r = TAC\

V(5 - 3)2 + (2 - 0)2 + (-1

(220)(0.348i + 0.348J - 0.870k)

76.6i + 76.6J
- 191.5k (N).

4)2

Substituting these expressions into the equilibrium equation and solving for

R, we obtain

R = -48.2i + 651.5j + 305.0k (N).

To determine the angle 6 between R and the unit vector e that is normal to the

surface on which the climber stands (Fig. b), we use the dot product. From

the definition Re = |R| |e| cos d, we obtain

cos 6
Re

= 0.982.

(-48.2)(-0.182) + (651.5)(0.818) + (305.0) (0.545)

V(-48.2)2 + (651.5)2 ^ (305.0)2

The angle 6 = 10.9°. Setting this angle equal to the angle of static friction,

we obtain the coefficient of static friction for impending slip:

/A, = tan^, = tan 10.9° = 0.193.

<
(a) Free-body diagram of the climber. (b) The angle e.
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Problems

9.1 The coefficients of static and kinetic friction between the

0.4-kg book and the table are /Lt, = 0.30 and /j.^^
= 0.28. A person

exerts a horizontal force on the book as shown.

(a) If the magnitude of the force is 1 N and the book remains sta-

tionary, what is the magnitude of the friction force exerted on the

book by the table?

(b) What is the largest force the person can exert without causing

the book to slip?

(c) If the person pushes the book across the table at a constant

speed, what is the magnitude of the friction force?

P9.1

9.2 The 10.5-kg Sojourner rover, placed on the surface of Mars

by the Pathfinder Lander on July 4, 1997, was designed to negoti-

ate a 45° slope without tipping over.

(a) What minimum static coefficient of friction between the

wheels of the rover and the surface is necessary for it to rest on a

45° slope? The acceleration due to gravity at the surface of Mars

is 3.69 m/sl

(b) Engineers testing the Sojourner on Earth want to confirm that

it will negotiate a 45° slope without tipping over. What minimum

static coefficient of friction between the wheels of the rover and

the surface is necessary for it to rest on a 45° slope on Earth?

P9.3

9.4 The coefficient of static friction between the 5-kg box and

the inclined surface is jx^ = 0.3. The force F is horizontal and the

box is stationary.

(a) If F = 40 N, what friction force is exerted on the box by the

inclined surface?

(b) What is the largest value of F for which the box will not slip?

P9.4

P9.2

9.5 In Problem 9.4, what is the smallest value of the force F for

which the box will not slip?

9.6 The device shown is designed to position pieces of luggage

on a ramp. It exerts a force parallel to the ramp. The mass of the

suitcase 5 is 9 kg. The coefficients of friction between the suitcase

and ramp are ix^ = 0.20 and /a^ = 0.18.

(a) Will the suitcase remain stationary on the ramp when the de-

vice exerts no force on it?

(b) What force must the device exert to start the suitcase moving

up the ramp?

(c) What force must the device exert to move the suitcase up the

ramp at a constant speed?

9.3 The coefficient of static friction between the tires of the

8000-kg truck and the road is /x, = 0.6.

(a) If the truck is stationary on the incline and a = 15°. what is

the magnitude of the total friction force exerted on the tires by

the road?

(b) What is the largest value of a for which the truck will not slip?

11

P9.6
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9.7 The mass of the stationary crate is 40 kg. The length of the

spring is 180 mm, its unstretched length is 200 mm, and the spring

constant is k = 2500 N/mm. The coefficient of static friction be-

tween the crate and the inclined surface is /x^ = 0.6. Determine

the magnitude of the friction force exerted on the crate.

P9.7

9.8 The coefficient of kinetic friction between the 40-kg crate

and the floor is /Xi,
= 0.3. If the angle a = 20°, what tension must

the person exert on the rope to move the crate at constant speed?

P9.8

9.9 In Problem 9.8, for what angle a is the tension necessary to

move the crate at constant speed a minimum? What is the neces-

sary tension?

9.10 Box A weighs 100 lb, and box B weighs 30 lb. The coeffi-

cients of friction between box A and the ramp are /x., = 0.30 and

;ik = 0.28. What is the magnitude of the friction force exerted on

box A by the ramp?

P9.10

9.11 In Problem 9.10, box A weighs 100 lb, and the coefficients

of friction between box A and the ramp are /u,, = 0.30 and

/ii( = 0.28. For what range of weights of the box B will the sys-

tem remain stationary?

9.12 The mass of the box on the left is 30 kg, and the mass of the

box on the right is 40 kg. The coefficient of static friction between

each box and the inclined surface is /i, = 0.2. Determine the min-

imum angle a for which the boxes will remain stationary.

P9.12

9.13 In Problem 9. 12. determine the maximum angle a for

which the boxes will remain stationary.

9.14 The box is stationary on the inclined surface. The coeffi-

cient of static friction between the box and the surface is /x,

.

(a) If the mass of the box is 10 kg, a = 20°, P = 30°, and

fi^ = 0.24, what force T is necessary to start the box sliding up

the surface?

(b) Show that the force T necessary to start the box sliding up the

surface is a minimum when tan/3 = /x^.

P9.14

9.15 To explain observations of ship launchings at the port of

Rochefort in 1779, Coulomb analyzed the system shown in Prob-

lem 9.14 to determine the minimum force T necessary to hold the

box stationary' on the inclined surface. Show that the result is

T =
(sina /i, cos a)mg

cosjS — /x, sin^

9.16 Two sheets of plywood A and B lie on the bed of the truck.

They have the same weight VV. and the coefficient of static fricfion

between the two sheets of wood and between sheet B and the

truck bed is ix^.

(a) If you apply a horizontal force to sheet A and apply no force

to sheet 6, can you slide sheet A oft' the truck without causing

sheet B to move? What force is necessary to cause sheet A to start

moving?
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(b) If you prevent sheet A from moving by exerting a horizontal

force on it, what horizontal force on sheet B is necessary to start it

moving?

/A, = 0.32. What is the largest angle a for which the lower box

will not slip?

P9.16

9.17 Suppose that the truck in Problem 9.16 is loaded with

A' sheets of plywood of the same weight W, labeled (from the

top) sheets \.2, ... , N. The coefficient of static friction between

the sheets of wood and between the bottom sheet and the truck

bed is /Li,. If you apply a horizontal force to the sheets above it

to prevent them from moving, can you pull out the /th sheet,

1 < / < Af, without causing any of the sheets below it to

move? What force must you apply to cause it to start moving?

9.18 The masses of the two boxes are w, = 45 kg and

nij = 20 kg. The coefficients of friction between the left box and

the inclined surface are /u.^ = 0.12 and pt^ = 0.10. Determine the

tension the man must exert on the rope to pull the boxes upward at

a constant rate.

P9.18

9.19 In Problem 9. 1 8, for what range of tensions exerted on the

rope by the man will the boxes remain stationary?

9.20 The coefficient of static friction between the two boxes is

fi^ = 0.2, and between the lower box and the inclined surface it is

P9.20

9.21 The coefficient of static friction between the two boxes and

between the lower box and the inclined surface is /j,^. What is the

largest force F that will not cause the boxes to slip?

P9.21

9.22 Consider the system shown in Problem 9.21 . The coeffi-

cient of static friction between the two boxes and between the

lower box and the inclined surface is /j,,. If F = 0, the lower box

will slip down the inclined surface. What is the smallest force F
for which the boxes will not slip?

9.23 A sander consists of a rotating cylinder with sandpaper

bonded to the outer surface. The normal force exerted on the

workpiece A by the sander is 30 lb. The workpiece A weighs

50 lb. The coefficients of friction between the sander and the

workpiece Aaie (j.^ = 0.65 and /jl^ = 0.60. The coefficients of

friction between the workpiece A and the table are /n, = 0.35

and ^t|j = 0.30. Will the workpiece remain stationary while it

is being sanded?

'

P9.23
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9.24 Suppose that you want the bar of length L to act as a sim-

ple brake that will allow the workpiece A to slide to the left but

will not allow it to slide to the right no matter how large a hori-

zontal force is applied to it. The weight of the bar is W. and the

coefficient of static friction between it and the workpiece A is pi^.

You can neglect friction between the workpiece and the surface it

rests on.

(a) What is the largest angle a for which the bar will prevent the

workpiece from moving to the right?

(b) If a has the value determined in (a), what horizontal force is

necessary to slide the workpiece A toward the left at a constant

rate?

y

T
a

J.

/

P9.26

P9.24

9.25 The coefficient of static friction between the 20-lb bar and

the floor is /a^ = 0.3. Neglect friction between the bar and the

wall.

(a) If a = 20°. what is the magnitude of the friction force exerted

on the bar by the floor?

(b) What is the maximum value of a for which the bar will not

slip?

P9.25

9.26 The masses of the ladder and the person are 1 8 kg and

90 kg, respectively. The center of mass of the 4-m ladder is at its

midpoint. If a = 30°. what is the minimum coefficient of static

friction between the ladder and the floor necessary for the person

to climb to the top of the ladder? Neglect friction between the lad-

der and the wall.

9.27 In Problem 9.26. the coefficient of static friction between

the ladder and the floor is /x, = 0.6. The masses of the ladder and

the person are 18 kg and 100 kg, respectively. The center of mass

of the 4-m ladder is at its midpoint. What is the maximum value of

a for which the person can climb to the top of the ladder? Neglect

friction between the ladder and the wall.

9.28 In Problem 9.26, the coefficient of static friction between

the ladder and the floor is ^t, = 0.6. and a = 35°. The center of

mass of the 4-m ladder is at its midpoint, and its mass is 18 kg.

(a) If a football player with a mass of 140 kg attempts to climb

the ladder, what maximum value of x will he reach? Neglect fric-

tion between the ladder and the wall.

(b) What minimum friction coeftlcient would be required for him

to reach the top of the ladder?

9.29 The disk weighs 50 lb. Neglect the weight of the bar. The

coefficients of friction between the disk and the floor are /i, = 0.6

and jLi|, = 0.4.

P9.29
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(a) What is the largest couple M that can be applied to the station-

ary disk without causing it to start rotating?

(b) What couple M is necessary to rotate the disk at a constant

rate?

9.30 The cylinder has weight W. The coefficient of static finction

between the cylinder and the floor and between the cylinder and

the wall is /i,,. What is the largest couple M that can be applied to

the stationary cylinder without causing it to rotate?

P9.30

9.31 The cylinder has weight W. The coefficient of static friction

between the cylinder and the floor and between the cylinder and

the wall is /j.^ . What is the largest couple M that can be applied to

the stationary cylinder without causing it to rotate?

P9.33

9.34 The coefficient of static friction between the jaws of the pli-

ers and the gripped object is /jl,. What is the largest value of the

angle a for which the gripped object will not slip out? (Neglect

the object's weight.)

Strategy: Draw the free-body diagram of the gripped object,

and assume that slip is impending.

P9.34

P9.31

9.32 Suppose that a = 30° in Problem 9.31 and that a couple

M = 0.5RW is required to turn the cylinder at a constant rate.

What is the coefficient of kinetic friction?

9.33 The disk of weight W and radius R is held in equilibrium on

the circular surface by a couple M. The coefficient of static fric-

tion between the disk and the surface is ^t^ . Show that the largest

value M can have without causing the disk to slip is

u^RW
M

Vl +Atf

9.35 The stationary disk, of 300-mm radius, is attached to a pin

support at D. The disk is held in place by the brake ABC in con-

tact with the disk at C. The hydraulic actuator BE exerts a hori-

zontal 400-N force on the brake at B. The coefficients of friction

between the disk and the brake are /a, = 0.6 and yi^ = 0.5. What

couple must be applied to the stationary disk to cause it to slip in

the counterclockwise direction?

P9.35

9.36 What couple must be applied to the stafionary disk in Prob-

lem 9.35 to cause it to slip in the clockwise direction?

9.37 The mass of block fi is 8 kg. The coefficient of static fric-

tion between the surfaces of the clamp and the block is ^l^ = 0.2.

When the clamp is aligned as shown, what minimum force must

the spring exert to prevent the block from slipping out?
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P9.37

9.38 By altering its dimensions, redesign the clamp in Prob-

lem 9.37 so that the minimum force the spring must exert to pre-

vent the block from slipping out is 180 N. Draw a sketch of your

new design.

9.39 The horizontal bar is attached to a collar that slides on

the smooth vertical bar. The collar at P slides on the smooth

horizontal bar. The total mass of the horizontal bar and the two

collars is 12 kg. The system is held in place by the pin in the cir-

cular slot. The pin contacts only the lower surface of the slot, and

the coefficient of static friction between the pin and the slot is

0.8. If the system is in equilibrium and y = 260 mm, what is the

magnitude of the friction force exerted on the pin by the slot?

9.40 In Problem 9.39, what is the minimum height y at which the

system can be in equilibrium?

9.41 The rectangular 100-lb plate is supported by the pins A and

B. If friction can be neglected at A and the coefficient of static

friction between the pin at B and the slot is /li^ = 0.4, what is the

largest angle a for which the plate will not shp?

P9.39

P9.41

9.42 If you can neglect friction at B in Problem 9.4 1 and the coeffi-

cient of static friction between the pin at A and the slot is /it, = 0.4,

what is the largest angle a for which the plate will not slip?

9.43 The airplane's weight is W = 2400 lb. Its brakes keep the

rear wheels locked, and the coefficient of static friction between

the wheels and the runway is /x^ = 0.6. The front (nose) wheel

can turn freely and so exerts only a normal force on the runway.

Determine the largest horizontal thrust force T the plane's pro-

peller can generate without causing the rear wheels to slip.

P9.43
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9.44 The refrigerator weighs 350 lb. The distances h = 60 in. and

f, = 14 in. The coefficient of static friction at A and B is /x, = 0.24.

(a) What force F is necessary for impending slip?

(b) Will the refrigerator tip over before it slips?

P9.44

9.45 If you want the refrigerator in Problem 9.44 to slip before it

tips over, what is the maximum height h at which you can push it?

C/" 9.46 To obtain a preliminary evaluation of the stability of a turn-

ing car, imagine subjecting the stationary car to an increasing lat-

eral force F at the height of its center of mass, and determine

whether the car will slip (skid) laterally before it tips over. Show

that this will be the case if b/h > 2/i,,. (Notice the importance of

the height of the center of mass relative to the width of the car.

This reflects on recent discussions of the stability of sport utility

vehicles and vans that have relatively high centers of mass.)

P9.46

9.47 The man exerts a force P on the car at an angle a = 20°.

The 1760-kg car has front wheel drive. The driver spins the front

wheels, and the coefficient of kinetic friction is /Lt,j = 0.02. Snow

behind the rear tires exerts a horizontal resisting force S. Getting

the car to move requires overcoming a resisting force 5 = 420 N.

What force P must the man exert?

9.48 In Problem 9.47. what value of the angle a minimizes the

magnitude of the force P the man must exert to overcome the re-

sisting force S = 420 N exerted on the rear tires by the snow?

What force must he exert?

9.49 The coefficient of static friction between the 3000-lb car's tires

and the road is /i,, = 0.5. Determine the steepest grade (the largest

value of the angle a) the car can drive up at constant speed if the car

has (a) rear-wheel drive; (b) front-wheel drive; (c) fourwheel drive.

P9.49

9.50 The stationary cabinet has weight W. Determine the force F
that must be exerted to cause it to move if (a) the coefficient of

static friction at A and at Bis fi^., (b) the coefficient of static fric-

tion at A is fi^^ and the coefficient of static friction at B is fi^g.

F
r — G

u - _J

r

if

1

t^"'^.::l 1

i

1.

A
—c s 1

b b

2 2 P9.50

9.51 The mass of the 3-m bar is 20 kg. It will slip if the angle a

is larger than 15°. What is the coefficient of static friction between

the ends of the bar and the circular surface?

P9.51

P9.47
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9.S2 The coefficient of static friction between the right bar and

the surface at /\ is /x, = 0.6. Neglect the weights of the bars. If

a = 20°, what is the magnitude of the friction force exerted at Al

P9.52

9.53 Consider the system in Problem 9.52. The coefficient of

static friction between the right bar and the surface at A is

/lis
= 0.6. Neglect the weights of the bars. What is the largest

angle a at which the truss will remain stationary without slipping?

9.54 Each of the uniform 2-ft bars weighs 4 lb. Neglect the

weight of the collar at P. The coefficient of static friction between

the collar and the horizontal bar is /x, = 0.6. If the system is in

equilibrium and the angle d = 45°, what is the magnitude of the

friction force exerted on the collar by the horizontal bar?

the weights of the bars. What is the largest value of the force F
that will not cause the box to slip?

9.57 The mass of the suspended object is 6 kg. The structure is

supported at B by the normal and friction forces exerted on the

plate by the wall. Neglect the weights of the bars.

(a) What is the magnitude of the friction force exerted on the

plate at B?

(b) What is the minimum coefficient of static friction at B neces-

sary for the structure to remain in equilibrium?

P9.57

P9.54

9.55 In Problem 9.54, what is the minimum coefficient of static

friction between the collar P and the horizontal bar necessary for

the system to be in equilibrium when 6 = 45°?

9.56 The weight of the box is W = 20 lb and the coefficient of

static friction between the box and the floor is /i, = 0.65. Neglect

9.58 Suppose that the lengths of the bars in Problem 9.57 are

Lab = 1-2 m and L^c = 1.0 m and their masses are /m^b ~ 3.6 kg

and Wac = 3.0 kg.

(a) What is the magnitude of the friction force exerted on the

plate at B?

(b) What is the minimum coefficient of static friction at B neces-

sary for the structure to remain in equilibrium?

9.59 The frame is supported by the normal and friction forces

exerted on the plates at A and G by the fixed surfaces. The coeffi-

cient of static friction at A\s jx^ = 0.6. Will the frame slip at A
when it is subjected to the loads shown?

P9.56 P9.59
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9.60 The frame is supported by the normal and friction forces

exerted on the plate at A by the wall.

(a) What is the magnitude of the friction force exerted on the

plate at Al

(b) What is the minimum coefficient of static friction at A neces-

sary for the structure to remain in equilibrium?

1

1 m

1 m

6kN

P9.60

9.61 The direction cosines of the crane's cable are

cose, = 0.588, cose, = 0.766, cos^- = 0.260. The v axis is ver-

tical. The stationary caisson to which the cable is attached weighs

2000 lb and rests on horizontal ground. If the coefficient of static

friction between the caisson and the ground is /x, = 0.4, what ten-

sion in the cable is necessary to cause the caisson to slip?

P9.61

Applications

9.62 The 10-lb metal disk A is at the center of the inclined sur-

face. The tension in the string AB is 5 lb. What minimum coeffi-

cient of static friction between the disk and the surface is

necessary to keep the disk from slipping?

P9.62

9.63 The suspended weight W = 600 lb. The bars AB and AC
have ball and socket supports at each end. Suppose that you want

the ball and socket at B to be held in place by the normal and fric-

tion forces between the support and the wall. What minimum co-

efficient of friction is required?

A (3. 2. 4) ft

C (4, 0, 0) ft

P9.63

9.64 In Problem 9.63, what friction force is exerted on the sup-

port at B by the wall?

Effects of friction forces, such as wear, loss of energy, and generation of heat,

are often undesirable. But many devices cannot function properly without

friction forces and may actually be designed to create them. A car's brakes

work by exerting friction forces on the rotating wheels, and its tires are de-

signed to maximize the friction forces they exert on the road under various

weather conditions. In this section we analyze several types of devices in

which friction forces play important roles.
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Wedges

A wedge is a bifacial tool with the faces set at a small acute angle (Figs. 9.13a

and b). When a wedge is pushed forward, the faces exert large lateral forces

as a result of the small angle between them (Fig. 9.13c). In various forms,

wedges are used in many engineering applications.

(c)

Figure 9.13

(a) An early wedge tool—a bifacial "hand

axe" from Olduvai Gorge, Tanzania.

(b) A modem chisel blade.

(c) The faces of a wedge can exert large

lateral forces.

The large lateral force generated by a wedge can be used to lift a load

(Fig. 9.14a). Let Wl be the weight of the load and W^ the weight of the

wedge. To determine the force F necessary to start raising the load, we as-

sume that slip of the load and wedge are impending (Fig. 9.14b). From the

free-body diagram of the load, we obtain the equilibrium equations

2F^ = Q — N sina — fx^N cos a — 0,

2F^, = Ncosa — /x.yVsina - jjl^Q - Wl = 0.

From the free-body diagram of the wedge, we obtain the equations

IF^ = yVsina + fx^Ncosa + fx^P - F = 0,

2F,. = P - Ncosa + fx^N sina -
W^fJ = 0.

These four equations determine the three normal forces Q, N, and P and the

force F. The solution for F is

F = tx,W^ +
[l - ^?)tana + 2/x,

W.
.(l - i4) - 2fxjima.

Suppose that W^ = 0.2Wl and a = 10°. If /x, = 0, the force necessary to lift

the load is only 0.176iyL. But if fx, = 0.2, the force becomes O.68OW1 , and if

fi^ = 0.4, it becomes 1.44iyL- From this standpoint, friction is undesirable.

But if there were no friction, the wedge would not remain in place when the

force F is removed.
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, Load

/
/ Wedge

F
a

S(

(a)

Figure 9.14

(a) Raising a load with a wedge.

(b) Free-body diagrams of the load and the

wedge when slip is impending. (b)

Example 9.5

Forces on a Wedge

6
Figure 9.15

Splitting a log must have been among the first applications of the wedge

(Fig. 9.15). Although it is a dynamic process—the wedge is hammered into

the wood—you can get an idea of the forces involved from a static analy-

sis. Suppose that a = 10° and the coefficients of friction between the sur-

faces of the wedge and the log are /u,, = 0.22 and fx^^
= 0.20. Neglect the

weight of the wedge.

(a) If the wedge is driven into the log at a constant rate by a vertical force F,

what are the magnitudes of the normal forces exerted on the log by the wedge?

(b) Will the wedge remain in place in the log when the force is removed?

Strategy

(a) The friction forces resist the motion of the wedge into the log and are

equal to fii,N, where A' is the normal force the log exerts on the faces. We can

use equilibrium to determine A^ in terms of F.

(b) By assuming that the wedge is on the verge of slipping out of the log, we can

determine the minimum value of (jl^ necessary for the wedge to stay in place.
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Solution

(a) In Fig. a we draw the free-body diagram of the wedge as it is pushed into

the log by a force F. The faces of the wedge are subjected to normal forces

and friction forces by the log. The friction forces resist the motion of the

wedge. From the equilibrium equation

( a\ (a
2Nsmy-j + Ifi^N cosy- F = 0,

we obtain the normal force N:

F
N =

2[sin(a/2) + iXy,cos{a/2)] 2[sin(1072) + (0.20) cos(1072)]

= 1.75F.

(b) In Fig. b we draw the free-body diagram when F = and the wedge is on

the verge of slipping out. From the equilibrium equation

2A^ sin I
—

I

- l/x^N cos I

—
0.

we obtain the minimum coefficient of friction necessary for the wedge to re-

main in place:

Ms = tan I
:

= 0.087.

We can also obtain this result by representing the reaction exerted on the

wedge by the log as a single force (Fig. c). When the wedge is on the verge of

slipping out, the friction angle is the angle of static friction 6^. The sum of the

forces in the vertical direction is zero only if

a
6^ = arctan (/x,) = — = 5°,

so /I, = tan 5° = 0.087. Thus we conclude that the wedge will remain in place.

(a) Free-body diagram of the wedge with a

vertical force F applied to it.

N vUJ N
UN ^W*H,N

(b) Free-body diagram of the wedge when

it is on the verge of slipping out.

(c) Representing the reactions by a single

force.

Threads

Threads are familiar from their use on wood screws, machine screws, and

other machine elements. We show a shaft with square threads in Fig. 9.16a.

The axial distance p from one thread to the next is called the pirch of the

thread, and the angle a is its slope. We will consider only the case in which

the shaft has a single continuous thread, so the relation between the pitch

and slope is

tana =
27rr

'

(9.7)

where r is the mean radius of the thread.

Suppose that the threaded shaft is enclosed in a fixed sleeve with a mat-

ing groove and is subjected to an axial load F (Fig. 9.16b). Applying a couple

M in the direction shown will tend to cause the shaft to start rotating and

moving in the axial direction opposite to F. Our objective is to determine the

couple M necessary to cause the shaft to start rotating.
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(c)

Figure 9.16

(a) A shaft with a square thread.

(b) The shaft within a sleeve with a mating

groove and the direction of M that can

cause the shaft to start moving in the

axial direction opposite to F.

(c) A differential element of the thread

when slip is impending.

(aj

(b)

Figure 9.17

(a) TTie direction of M that can cause the

shaft to move in the axial direction of F.

(b) A differential element of the thread

when slip is impending.

We draw the free-body diagram of a differential element of the thread of

length dL in Fig. 9.16c, representing the reaction exerted by the mating

groove by the force dR. If the shaft is on the verge of rotating. dR resists the

impending motion and the friction angle is the angle of static friction 6^. The

vertical component of the reaction on the element is dR cos [6^ + a). To de-

termine the total vertical force on the thread, we must integrate this expres-

sion over the length L of the thread. For equilibrium, the result must equal the

axial force F acting on the shaft:

cos(0, + a) dR = F. (9.8)

The moment about the center of the shaft due to the reaction on the element

is r dR sin [d^ + a). The total moment must equal the couple M exerted on

the shaft:

r sin(0, + a) dR = M.

Dividing this equation by Eq. (9.8), we obtain the couple M necessary for

the shaft to be on the verge of rotating and moving in the axial direction op-

posite to F:

M = rFXan[e, + a). (9.9)

Replacing the angle of static friction 6^ in this expression with the angle of kinetic

friction 6^ gives the couple required to cause the shaft to rotate at a constant rate.

If the couple M is applied to the shaft in the opposite direction (Fig. 9.17a),

the shaft tends to start rotating and moving in the axial direction of the load F.

Figure 9. 1 7b shows the reaction on a differential element of the thread of length

dL when slip is impending. The direction of the reaction opposes the rotation of

the shaft. In this case, the vertical component of the reaction on the element is

dR cos{d^ - a). Equilibrium requires that

cos{d, - a) dR = F. (9.10)

The moment about the center of the shaft due to the reaction is r dR sin (0^ — a),

so

rsin (s. "'/dR = M.

Dividing this equation by Eq. (9.10), we obtain the couple M necessary for the

shaft to be on the verge of rotating and moving in the direction of the force F:

M = rF tan{d,- a). (9.11)

Replacing 0, with ^^, in this expression gives the couple necessary to rotate

the shaft at a constant rate.

Notice in Eq. (9.11) that the couple required for impending motion is zero

when 6^ = a. When the angle of static friction is less than this value, the shaft

will rotate and move in the direction of the force F with no couple applied.

Study Questions
1. How is the slope a of a thread defined?

2. If you know the pitch and mean radius of a thread, how do you determine its slope?

3. If a threaded shaft is subjected to an axial load, how do you determine the

couple necessary to rotate the shaft at a constant rate and cause it to move in

the direction opposite to the direction of the axial load?
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Example 9.6

Rotating a Threaded Collar

The right end of bar AB in Fig. 9.18 is pinned to an unthreaded collar B that

rests on the threaded collar C. The mean radius of the thread is r = 40 mm
and its pitch is p = 5 mm. The coefficients of static and kinetic friction be-

tween the threads of the collar C and those of the threaded shaft are

/As = 0.25 and yLt^ = 0.22. The 180-kg suspended object can be raised or low-

ered by turning the collar C.

(a) When the system is in the position shown, what couple must be applied to

the collar C to rotate it at a constant rate and cause the suspended object to

move upward?

(b) Will the system remain in equilibrium in the position shown if no couple

is applied to the collar C?

Strategy

(a) By drawing the free-body diagram of the bar and collar B, we can deter-

mine the axial force exerted on collar C. Then we can use Eq. (9.9), with 6^

replaced by 6^, to determine the required couple.

(b) From Eq. (9. 1 1), the collar C is on the verge of rotating and moving in the

direction of the axial load when no couple is exerted on it if 6^ — a. If the

angle of static friction d^ is greater than or equal to the slope a, the system

will remain in equilibrium with no couple applied.

Solution

(a) We draw the free-body diagram of the bar and collar B in Fig. a, where F is

the force exerted on the collar B by the collar C. From the equilibrium equation

2M(p,i„„) = (1.0)F-(0.5)mg = 0,

we obtain F = \mg =
^ (180) (9.81) = 883 A^. This is the axial force exerted

on collar C (Fig. b). Replacing d^ by dy^ in Eq. (9.9), the couple necessary to

rotate the collar at a constant rate is

M = rF tan{di, + a).

The slope a is related to the pitch and mean radius of the thread by Eq. (9.7):

p 0.005
tana = 0.0199.

27rr 27t(0.04)

We obtain a = arctan(0.0199) = 1.14°. The angle of kinetic friction is

dy, = arctan(/Ak) = arctan(0.22) = 12.41°.

Using these values, the required couple is

M = rFtan(0k + a)

= (0.04)(883) tan (12.41° + 1.14°)

= 8.51 N-m.

(b) The angle of static friction is

0, = arctan(/x,) = arctan(0.25) = 14.04°.

Therefore 0, is greater than the slope a, and we conclude from Eq. (9.11) that

the system will remain in equilibrium with no couple applied to collar C.

-0.5 m- -0.5 m

^

Figure 9.18

fmg

i

(a) Free-body diagram of bar AB and the

collar B.

(b) The threaded shaft and the collar C.
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Problems

9.65 A force F = 200 N is necessary to raise the block /i at a

constant rate. The mass of the wedge B is negligible. Between all

of the contacting surfaces, /i, = 0.28 and /x,, = 0.26. What is the

mass of block A?

P9.65

9.66 In Problem 9.65, suppose that the mass of block A is 30 kg

and the mass of the wedge 6 is 5 kg. What force F is necessary to

start the wedge B moving to the left?

9.67 The wedge shown is being used to split the log. The wedge

weighs 20 lb and the angle a equals 30°. The coefficient of kinetic

friction between the faces of the wedge and the log is 0.28. If the

normal force exerted by each face of the wedge must equal 1 50 lb

to split the log. what vertical force F is necessary to drive the

wedge into the log at a constant rate?

P9.67

9.68 The coefficient of static friction between the faces of the

wedge and the log in Problem 9.67 is 0.30. Will the wedge remain

in place in the log when the vertical force F is removed?

9.69 The masses of A and B are 42 kg and 50 kg. respectively.

Between all contacting surfaces, ^u.^ = 0.05. What force F is re-

quired to start A moving to the right?

9.70 The stationary blocks A. B, and C each have a mass of

200 kg. Between all contacting surfaces, /x, = 0.6. What force F
is necessary to start B moving downward?

P9.70

9.71 Small wedges called shims can be used to hold an object in

place. The coefficient of kinetic friction between the contacting

surfaces is 0.4. What force F is needed to push the shim down-

ward until the horizontal force exerted on the object A is 200 N?

Shims

P9.71

9.72 The coefficient of static friction between the contacting sur-

faces in Problem 9.71 is 0.44. If the shims are in place and exert a

200-N horizontal force on the object A, what upward force must
P9.69 be exerted on the left shim to loosen it?

w
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9.73 The crate A weighs 600 lb. Between all contacting surfaces,

/is = 0.32 and /x^ = 0.30. Neglect the weights of the wedges.

What force F is required to move A to the right at a constant rate?

P9.73

9.74 Suppose that between all contacting surfaces in Problem

9.73, II, = 0.32 and /a,, = 0.30. Neglect the weights of the 5°

wedges. If a force F = 800 N is required to move A to the right at

a constant rate, what is the mass of Al

9.75 The box A has a mass of 80 kg, and the wedge B has a mass

of 40 kg. Between all contacting surfaces, ^t, = 0.15 and

/Lii(
= 0. 1 2. What force F is required to raise A at a constant rate?

P9.77

9.78 The masses of A, B, and C are 8 kg, 12 kg, and 80 kg, re-

spectively. Between all contacting surfaces, fi^ = 0.4. What force

F is required to start C moving upward?

A

J}
F

~~~-~~-—J__JO°

10°

12°

P9.78

9.79 The vertical threaded shaft fits into a mating groove in the

tube C. The pitch of the threaded shaft is p = 0.1 in., and the

mean radius of the thread is r = 0.5 in. The coefficients of friction

between the thread and the mating groove are /i^ = 0. 1 5 and

P9.75

9.76 Suppose that in Problem 9.75, A weighs 800 lb and B
weighs 400 lb. The coefficients of friction between all of the con-

tacting surfaces are ijl^
= 0.15 and jx^, = 0.12. Will B remain in

place if the force F is removed?

9.77 Between A and B, /i, = 0.20, and between B and C,

jtis = 0.18. Between C and the wall, /x^ = 0.30. The weights

Wb = 20 lb and Wc = 80 lb. What force F is required to start C
moving upward? P9.79
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/ii,
= 0.10. The weight W = 200 lb. Neglect the weight of the

threaded shaft.

(a) Will the stationary threaded shaft support the weight if no

couple is applied to the shaft?

(b) What couple must be applied to the threaded shaft to raise the

weight at a constant rate?

9.80 Suppose that in Problem 9.79, the pitch of the threaded shaft

is /J = 2 mm and the mean radius of the thread is r = 20 mm. The

coefficients of friction between the thread and the mating groove

are /n, = 0.22 and ^k = 0.20. The weight W = 500 N. Neglect the

weight of the threaded shaft. What couple must be applied to the

threaded shaft to lower the weight at a constant rate?

9.81 The position of the horizontal beam can be adjusted by turn-

ing the machine screw A. Neglect the weight of the beam. The pitch

of the screw is p = 1 mm. and the mean radius of the thread is

r = 4 mm. The coefficients of friction between the thread and the

mating groove are /j.^ = 0.20 and ^t|^ = 0. 18. If the system is ini-

tially stationary, determine the couple that must be applied to the

screw to cause the beam to start moving (a) upward; (b) downward.

I400N

100 mm P9.81

9.82 Suppose that in Problem 9.81, the pitch of the machine screw

is /J = 1 mm and the mean radius of the thread is r = 4 mm. What

minimum value of the coefficient of static friction between the

thread and the mating groove is necessary for the beam to remain in

the position shown with no couple applied to the screw?

9.83 The mass of block A is 60 kg. Neglect the weight of the 5°

wedge. The coefficient of kinetic friction between the contacting

surfaces of the block A, the wedge, the table, and the wall is

/Li^ = 0.4. The pitch of the threaded shaft is 5 mm, the mean ra-

dius of the thread is 15 mm, and the coefficient of kinetic friction

between the thread and the mating groove is 0.2. What couple

must be exerted on the threaded shaft to raise the block A at a con-

stant rate?

9.84 The vise exerts 80-lb forces on A. The threaded shafts are

subjected only to axial loads by the jaws of the vise. The pitch of

their threads is /j = 1/8 in., the mean radius of the threads is

r = 1 in., and the coefficient of static friction between the threads

and the mating grooves is 0.2. Suppose that you want to loosen

the vise by turning one of the shafts. Determine the couple you

must apply (a) to shaft B; (b) to shaft C.

P9.84

9.85 Suppose that you want to tighten the vise in Problem 9.84

by turning one of the shafts. Determine the couple you must apply

(a) to shaft B. (b) to shaft C.

9.86 The threaded shaft has a ball and socket support at B. The

400-lb load A can be raised or lowered by rotating the threaded

shaft, causing the threaded collar at C to move relative to the shaft.

Neglect the weights of the members. The pitch of the shaft is

p = 4 in., the mean radius of the thread is r = 1 in., and the coeffi-

cient of static friction between the thread and the mating groove is

0.24. If the system is stationary in the position shown, what couple

is necessary to start the shaft rotating to raise the load?

P9.86

9.87 In Problem 9.86, if the system is stationary in the position

shown, what couple is necessary to start the shaft rotating to

P9.83 lower the load?



I

9.88 The car jack is operated by turning the threaded shaft at A.

The threaded shaft fits into a mating groove in the collar at B.

causing the collar to move relative to the shaft as the shaft turns.

As a result, points B and D move closer together or farther apart,

causing point C (where the jack is in contact with the car) to move

up or down. The pitch of the threaded shaft is p = 5 mm, the

mean radius of the thread is / = 10 mm, and the coefficient of ki-

netic friction between the thread and the mating groove is 0. 15.

What couple is necessary to turn the shaft at a constant rate and

raise the jack when it is in the position shown if F = 6.5 kN?

F

P9.88

9.89 In Problem 9.88, what couple is necessary to turn the

threaded shaft at a constant rate and lower the jack when it is in

the position shown if the force F = 6.5 kN?

9.90 A tumbuckle, used to adjust the length or tension of a bar or

cable, is threaded at both ends. Rotating it draws threaded seg-

ments of a bar or cable together or moves them apart. Suppose

that the pitch of the threads is /? = 3 mm their mean radius is

r = 25 mm, and the coefficient of static friction between the

threads and the mating grooves is 0.24. If 7 = 800 N, what cou-

ple must be exerted on the tumbuckle to start tightening it?

— c"'^H^tg»H» wm'^^M
P9.90

9.91 In Problem 9.90, what couple must be exerted on the tum-

buckle to start loosening it?

9.92 Member BE of the frame has a tumbuckle. (See Problem

9.90.) The threads have pitch p = 1 mm, their mean radius is

r = 6 mm, and the coefficient of static friction between the

threads and the mating grooves is 0.2. What couple must be exert-

ed on the tumbuckle to start loosening it?

I600N

-r ^
0.5 m

Uo.4 m- -1.0m-

B
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9.93 In Problem 9.92, what couple must be exerted on the tum-

buckle to start tightening it?

9.94 Members CD and DG of the truss have tumbuckles. (See

Problem 9.90.) The pitch of the threads is /? = 4 mm, their mean

radius is r = 10 mm, and the coefficient of static friction between

the threads and the mating grooves is 0.18. What couple must be

exerted on the tumbuckle of member CD to start loosening it?

P9.94

9.95 In Problem 9.94, what couple must be exerted on the tum-

buckle of member DG to start loosening it?

9.96 The load W = 800 N can be raised or lowered by rotating

the threaded shaft. The distances are fc = 75 mm and

h = 200 mm. The pinned bars are each 300 mm in length. The

pitch of the threaded shaft is p = 5 mm, the mean radius of the

thread is r = 15 mm, and the coefficient of kinetic friction be-

tween the thread and the mating groove is 0.2. When the system is

in the position shown, what couple must be exerted to tum the

threaded shaft at a constant rate, raising the load?

-0.8m- ^0.4 m-
P9.92 P9.96
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Journal Bearings

A bearing is a support. This term usually refers to supports designed to allow

the supported object to move. For example, in Fig. 9.19a, a horizontal shaft is

supported by two journal bearings, which allow the shaft to rotate. The shaft

can then be used to support a load perpendicular to its axis, such as that sub-

jected by a pulley (Fig. 9.19b).

(a)

^ Wheel

(b)

Figure 9.20

(a) A journal bearing with one row of balls.

(b) Journal bearing assembly of the wheel

of a car. There are two rows of balls

between the rotating wheel and the

fixed inner cylinder.

(c) (d)

Figure 9.19

(a) A shaft supported by journal bearings.

(b) A pulley supported by the shaft.

(c) The shaft and bearing when no couple is applied to the shaft.

(d) A couple causes the shaft to roll within the bearing.

(e) Free-body diagram of the shaft.

(f) The two forces on the shaft must be equal and opposite.

Here we analyze journal bearings consisting of brackets with holes

through which the shaft passes. The radius of the shaft is slightly smaller

than the radius of the holes in the bearings. Our objective is to determine the

couple that must be applied to the shaft to cause it to rotate in the bearings.

Let F be the total load supported by the shaft including the weight of the

shaft itself. When no couple is exerted on the shaft, the force F presses it

against the bearings as shown in Fig. 9.19c. When a couple M is exerted on

the shaft, it rolls up the surfaces of the bearings (Fig. 9.19d). The term a

is the angle from the original point of contact of the shaft to its point of con-

tact when M is applied.

In Fig. 9.19e, we draw the free-body diagram of the shaft when M is

sufficiently large that slip is impending. The force R is the total reaction ex-

erted on the shaft by the two bearings. Since R and F are the only forces act-

ing on the shaft, equilibrium requires that a = 6^ and R = F (Fig. 9.19f).

The reaction exerted on the shaft by the bearings is displaced a distance

r sin 61, from the vertical line through the center of the shaft. By summing

moments about the center of the shaft, we obtain the couple M that causes

the shaft to be on the verge of slipping:

M — rF sind. (9.12)

This is the largest couple that can be exerted on the shaft without causing it to

start rotating. Replacing 6^ in this expression by the angle of kinetic friction

0i5 gives the couple necessary to rotate the shaft at a constant rate.

The simple type of journal bearing we have described is too primitive for

most applications. The surfaces where the shaft and bearing are in contact

would quickly become worn. Designers usually incorporate "ball" or "roller"

bearings in journal bearings to minimize friction (Fig. 9.20).
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Example 9.7

Pulley Supported by Journal Bearings

The mass of the suspended load in Fig. 9.21 is 450 kg. The pulley P has a

150-mm radius and is rigidly attached to a horizontal shaft supported by jour-

nal bearings. The radius of the horizontal shaft is 12 mm and the coefficient

of kinetic friction between the shaft and the bearings is 0.2. The masses of the

pulley and shaft are negligible. What tension must the winch A exert on the

cable to raise the load at a constant rate?

Figure 9.21

Strategy

Equation (9.12) with 6^ replaced by dy^ relates the couple M required to turn

the pulley at a constant rate to the total force F on the shaft. By expressing M
and F in terms of the load and the tension exerted by the winch, we can ob-

tain an equation for the required tension.

Solution

Let T be the tension exerted by the winch (Fig. a). By calculating the magni-

tude of the sum of the forces exerted by the tension and the load (Fig. b), we

obtain an expression for the total force F on the shaft supporting the pulley:

F = V{mg + rsin45°)- + (rcos45°)^

The (clockwise) couple exerted on the pulley by the tension and the load is

M = 0.15(r - mg).

The radius of the shaft is r = 0.012 m and the angle of kinetic friction is 0,,

arctan(0.2) = 11.3°. We substitute our expressions for F and M into Eq. (9.12).

M = rF sin 0k

:

150 mm

(a) Free-body diagram of the pulley.

(b) The total force F on the shaft.

0.15[7' - (450)(9.81)] = 0.012 \/[(450)(9.81) + rsin45°]- + (rcos45°)-sin(n.3°).

Solving for the tension, we obtain T = 4.54 kN.
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Thrust Bearings and Clutches

A thrust bearing supports a rotating shaft that is subjected to an axial load. In

the type shown in Figs. 9.22a and 9.22b, the conical end of the shaft is pressed

against the mating conical cavity by an axial load F. Let us determine the cou-

ple M necessary to rotate the shaft.

Figure 9.22

(a), (b) A thrust bearing supports a shaft

subjected to an axial load,

(c) The differential element dA and the

uniform pressure p exerted by the

cavity.

Ca) (b)

!I

(c)

The differential element of area dA in Fig. 9.22(c) is

/ dr
dA = iTTr ds — lirri

V cos a ,

Integrating this expression from r = Tj to r = r^ , we obtain the area of contact:

,
<rl - rf)

A = .

cos a

If we assume that the mating surface exerts a uniform pressure p, the axial

component of the total force due to p must equal F: pA cos a = F. Therefore

the pressure is

12

Acosa 7r{rl - rf)'

As the shaft rotates about its axis, the moment about the axis due to the fric-

tion force on the element dA is rp,^ [p dA). The total moment equals M:

n

M
j
p^rp dA ^ p^r

^{rl - n)

lirr dr

cos a

Integrating, we obtain the couple M necessary to rotate the shaft at a constant

rate:

M =
Ip^F f rl - r^

3 cos a \rg — rf

(9.13)

Itu
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"(. ,) MC^ .5

(a) (b)

Figure 9.23

A thrust bearing that supports a flat-ended

shaft.

A simpler thrust bearing is shown in Figs. 9.23a and 9.23b. The bracket

supports the flat end of a shaft of radius r that is subjected to an axial load F.

We can obtain the couple necessary to rotate the shaft at a constant rate from

Eqs. (9.13) by setting a = 0, r, = 0, and r^ = r.

M = jMk/^/"- (9.14)

Although they are good examples of the analysis of friction forces, the

thrust bearings we have described would become worn too quickly to be used

in most applications. The designer of the thrust bearing in Fig. 9.24 mini-

mizes friction by incorporating "roller" bearings.

A clutch is a device used to connect and disconnect two coaxial rotating

shafts. The type shown in Figs. 9.25a and 9.25b consists of disks of radius r

attached to the ends of the shafts. When the disks are separated (Fig. 9.25a),

the clutch is disengaged, and the shafts can rotate freely relative to each other.

When the clutch is engaged by pressing the disks together with axial forces F
(Fig. 9.25b), the shafts can support a couple M due to the friction forces be-

tween the disks. If the couple M becomes too large, the clutch slips.

The friction forces exerted on one face of the clutch by the other face are

identical to the friction forces exerted on the flat-ended shaft by the bracket in

Fig. 9.23. We can therefore determine the largest couple the clutch can sup-

port without slipping by replacing fi^ by /i., in Eqs. (9.14):

M = — LL^Fr.3^^ (9.15)

Study Questions
1.

2.

3.

What is a journal bearing?

If the shaft of a journal bearing is subjected to a lateral force F, how do you

determine the couple M necessary to rotate the shaft at a constant rate?

When the axis of a clutch is subjected to an axial force F (Fig. 9.25b), how do

you determine the largest couple M the clutch can support without slipping?

r31 \ / fS1

3^^^3r 5_

,/

\\ M ^b.

I 1
r

\\ 4r;r"! 1 ^Bi"!

Rollers

Figure 9.24

A thrust bearing with two rows of

cylindrical rollers between the shaft and

the fixed support.

(a)

(b)

Figure 9.25

A clutch.

(a) Disengaged position.

(b) Engaged position.
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Example 9.8

f «^y'

Figure 9.26

Friction on a Disli Sander
The handheld sander in Fig. 9.26 has a rotating disk D of 4-in. radius with

sandpaper bonded to it. The total downward force exerted by the operator and

the weight of the sander is 15 lb. The coefficient of kinetic friction between

the sandpaper and the surface is /i.,^ = 0.6. What couple (torque) M must the

motor exert to turn the sander at a constant rate?

Strategy

As the disk D rotates, it is subjected to friction forces analogous to the fric-

tion forces exerted on the flat-ended shaft by the bracket in Fig. 9.23. We can

determine the couple required to turn the disk D at a constant rate from

Eq. (9.14).

Solution

The couple required to turn the disk at a constant rate is

M = ^fi,rF = |(0-6)(-^)(15) = 2ft-lb.

Problems

9.97 The horizontal shaft is supported by two journal bearings.

The coefficient of kinetic friction between the shaft and the bear-

ings is |J.^^ = 0.2. The radius of the shaft is 20 mm. and its mass is

5 kg. Determine the couple M necessary to rotate the shaft at a

constant rate.

Strategy: You can obtain the couple necessary to rotate the

shaft at a constant rate by replacing 6^ by 0^ in Eq. (9.12).

P9.97

9.98 The horizontal shaft is supported by two journal bearings.

The coefficient of static friction between the shaft and the bear-

ings is /i,, = 0.3. The radius of the shaft is 20 mm, and its mass

is 5 kg. Determine the largest mass m that can be suspended as

shown without causing the stationary shaft to slip in the

bearings.

P9.98

9.99 Suppose that in Problem 9.98 the mass m = 8 kg and the

coefficient of kinetic friction between the shaft and the bearings is

/iij
= 0.26. What couple must be applied to the shaft to raise the

mass at a constant rate?

9.100 The pulley is mounted on a horizontal shaft supported by

journal bearings. The coefficient of kinetic friction between the

shaft and the bearings is )LI|^ = 0.3. The radius of the shaft is

20 mm. and the radius of the pulley is 150 mm. The mass

m = 10 kg. Neglect the masses of the pulley and shaft. What

force T must be applied to the cable to move the mass upward at a

constant rate?
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P9.100

9.101 In Problem 9. 100, what force T must be applied to the

cable to lower the mass at a constant rate?

9.102 The pulley of 8-in. radius is mounted on a shaft of 1-in. ra-

dius. The shaft is supported by two journal bearings. The coefficient

of static friction between the bearings and the shaft is /n, = 0.15.

Neglect the weights of the pulley and shaft. The 50-Ib block A rests

on the floor. If sand is slowly added to the bucket B, what do the

bucket and sand weigh when the shaft slips in the bearings?

P9.102

9.103 The pulley of 50-mm radius is mounted on a shaft of

10-mm radius. The shaft is supported by two journal bearings.

The mass of the block A is 8 kg. Neglect the weights of the pulley

and shaft. If a force 7" = 84 N is necessary to raise block A at a

constant rate, what is the coefficient of kinetic friction between

the shaft and the bearings?

50 mm

9.104 The mass of the suspended object is 4 kg. The pulley has a

100-mm radius and is rigidly attached to a horizontal shaft sup-

ported by journal bearings. The radius of the horizontal shaft is 10

mm and the coefficient of kinetic friction between the shaft and

the bearings is 0.26. What tension must the person exert on the

rope to raise the load at a constant rate?

A.
P9.104

9.105 In Problem 9. 104. what tension must the person exert to

lower the load at a constant rate?

9.106 The radius of the pulley is 200 mm, and it is mounted on a

shaft of 20-mm radius. The coefficient of static friction between

the pulley and shaft is /i, = 0.18. If F^ = 200 N. what is the

largest force Fg that can be applied without causing the pulley to

turn? Neglect the weight of the pulley.

P9.106

9.107 The mass of the pulley in Problem 9. 106 is 4 kg. The

force Fj^ = 200 N. Including the effect of the weight of the pul-

ley, determine the largest force Fg that can be applied without

causing the pulley to turn, and compare your answer to that of

Problem 9.106.

9.108 The two pulleys have a radius of 4 in. and are mounted on

shafts of 1-in. radius supported by journal bearings. Neglect the

weights of the pulleys and shafts. The tension in the spring is

40 lb. The coefficient of kinetic friction between the shafts and the

bearings is ^ly = 0.3. What couple M is required to turn the left

pulley at a constant rate?

P9.103 P9.108
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9.109 The weights of the two boxes are W, = 100 lb and Wn =

50 lb. The coefficient of kinetic friction between the left box and

the inclined surface is ^i^ = 0. 14. Each pulley has a 6-in. radius

and is mounted on a shaft of j-in. radius. The coefficient of kinetic

friction between each pulley and its shaft is /i,; = 0.12. Determine

the tension the man must exert on the rope to pull the boxes up-

ward at a constant rate.

100 N

P9.109

9.110 Each pulley has a radius of 100 mm and a mass of 2 kg.

Both are mounted on shafts of 5-mm radius supported by journal

bearings. The coefficient of kinetic friction between the shafts and

the bearings is /x,, = 0.18. The mass of A is 14 kg. What force T is

required to raise A at a constant rate?

P9.110

9.111 The circular flat-ended shaft is pressed into the thrust

bearing by an axial load of 100 N. Neglect the weight of the shaft.

The coefficients of friction between the end of the shaft and the

bearing are fi, = 0.20 and /Lt^ = 0.15. What is the largest couple

M that can be applied to the stationary shaft without causing it to

rotate in the bearing?

30 mm

P9.111

9.112 In Problem 9. 1 1 1, what couple M is required to rotate the

shaft at a constant rate?

9.113 Suppose that the end of the shaft in Problem 9.111 is sup-

ported by a thrust bearing of the type shown in Fig. 9.22, where

r„ = 30 mm, r, = 10 mm. a = 30°, and /i^ = 0.15. What couple

M is required to rotate the shaft at a constant rate?

9.114 The disk D is rigidly attached to the vertical shaft. The

shaft has flat ends supported by thrust bearings. The disk and the

shaft together have a mass of 220 kg and the diameter of the shaft

is 50 mm. The vertical force exerted on the end of the shaft by the

upper thrust bearing is 440 N. The coefficient of kinetic friction

between the ends of the shaft and the bearings is 0.25. What cou-

ple M is required to rotate the shaft at a constant rate?

1 1

M«= > • =.

D

immJ
P9.114

9.115 Suppose that the ends of the shaft in Problem 9. 1 14 are

supported by thrust bearings of the type shown in Fig. 9.22, where

Tp = 25 mm, r, = 6 mm, a = 45°, and p.^ = 0.25. What couple

M is required to rotate the shaft at a constant rate?

9.116 The shaft is supported by thrust bearings that subject it to

an axial load of 800 N. The coefficients of kinetic friction between

the shaft and the left and right bearings are 0.20 and 0.26, respec-

tively. What couple is required to rotate the shaft at a constant

rate?
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/I ^
/ 38 mm

15 mm

*»«™"

^38j
mm I P9.116

9.117 A motor is used to rotate a paddle for mixing chemicals.

The shaft of the motor is coupled to the paddle using a friction

clutch of the type shown in Fig. 9.25. The radius of the disks of

the clutch is 1 20 mm, and the coefficient of static friction between

the disks is 0.6. If the motor transmits a maximum torque of

15 N-m to the paddle, what minimum normal force between the

plates of the clutch is necessary to prevent slipping?

Clutch

P9.117

9.118 The thrust bearing is supported by contact of the collar C
with a fixed plate. The area of contact is an annulus with an inside

diameter D, = 40 mm and an outside diameter Dt = 120 mm.
The coefficient of kinetic friction between the collar and the plate

is /An = 0.3. The force F = 400 N. What couple M is required to

rotate the shaft at a constant rate?

'M

• D, .

P9.118

9.119 An experimental automobile brake design works by press-

ing the red annular plate against the rotating wheel. If ij.^
= 0.6,

what force F pressing the plate against the wheel is necessary to

exert a couple of 200 N-m on the wheel?

P9.119

9.120 In Problem 9.1 19, suppose that ix^,
= 0.65 and the force

pressing the plate against the wheel is F = 2 kN.

(a) What couple is exerted on the wheel?

(b) What percentage increase in the couple exerted on the wheel

is obtained if the outer radius of the brake is increased from

90 mm to 100 mm?

9.121 The coefficient of static friction between the plates of the

car's clutch is 0.8. If the plates are pressed together with a force

F = 2.60 kN, what is the maximum torque the clutch will support

without slipping?

P9.121

9.122 The "Morse taper" is used to support the workpiece on a

machinist's lathe. The taper is driven into the spindle and is held

in place by friction. If the spindle exerts a uniform pressure

p = 15 psi on the taper and /x, = 0.2. what couple must be exert-

ed about the axis of the taper to loosen it?

Spindle Taper

P9.122
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Figure 9.27

A rope wrapped around a post.

Belt Friction

If a rope is wrapped around a fixed post as shown in Fig. 9.27, a large force 7^

exerted on one end can be supported by a relatively small force 7", applied to the

other end. In this section we analyze this familiar phenomenon. It is referred to

as belt friction because a similar approach can be used to analyze belts used in

machines, such as the belts that drive alternators and other devices in a car.

Let's consider a rope wrapped through an angle /3 around a fixed cylinder

(Fig. 9.28a). We will assume that the tension 7, is known. Our objective is to

determine the largest force T; that can be applied to the other end of the rope

without causing the rope to slip.

We begin by drawing the free-body diagram of an element of the rope

whose boundaries are at angles a and a + Aa from the point where the rope

comes into contact with the cylinder (Figs. 9.28b and 9.28c). The force T is

the tension in the rope at the position defined by the angle a. We know that the

tension in the rope varies with position, because it increases from Tj at a =

to T2 at a = (3. We therefore write the tension in the rope at the position

a + Aa as r + IT. The force AA^ is the normal force exerted on the element

by the cylinder. Because we want to determine the largest value of T; that will

not cause the rope to slip, we assume that the friction force is equal to its max-

imum possible value fi^^N. where /i^ is the coefficient of static friction be-

tween the rope and the cylinder.

The equilibrium equations in the directions tangential to and normal to

the centerline of the rope are

2F,(tangential) = fjL^^N + T COS
Aa

- {T + Ar)cos
ia

2F,(normal) ^ AN - {T + Ar)sin
ia

Tsin
Aa

0,

0. (9.16)

(c)

Figure 9.28

(a) A rope wrapped around a fixed cylinder.

(b) A differential element with boundaries at angles a and a

(c) Free-body diagram of the element.
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Eliminating AA^, we can write the resulting equation as

Aa\ / Aa
cos I

—^
I

- /i., sin
AT _ sin(Aa/2) ^
Aa ^' (Aa/2)2 y

"^^
V 2

Evaluating the limit of this equation as Aa —> and observing that

sin(Aa/2)

(Aa/2)
1,

we obtain

dT

da
ixj = 0.

This differential equation governs the variation of the tension in the rope. By

separating variables,

dT
ix.da.

we can integrate to determine the tension Tj in terms of the tension 7] and

the angle /8:

Jt, ^ Jo
fjL^ da.

Thus we obtain the largest force Tj that can be applied without causing the

rope to slip when the force on the other end is 7,

:

r, = Te''^'^. (9.17)

The angle j8 in this equation must be expressed in radians. Replacing /x, by

the coefficient of kinetic friction fii^ gives the force Tj required to cause the

I rope to slide at a constant rate.

Equation (9.17) explains why a large force can be supported by a rela-

tively small force when a rope is wrapped around a fixed support. The force

required to cause the rope to slip increases exponentially as a function of the

angle through which the rope is wrapped. Suppose that /x^ = 0.3. When the

rope is wrapped one complete turn around the post {fi
= Itt), the ratio

T2/Ti = 6.59. When the rope is wrapped four complete turns around the post

(^ = Stt), the ratio T^/r, = 1880.

I

Study Questions

1. What is the definition of the term )3 in Eq. (9.17)?

2. If a rope is wrapped through a given angle around a fixed post and one end is

subjected to a given tension Ti , how can you determine the tension T", necessary

to cause the rope to be on the verge of slipping in the direction of Fj? How can

you determine the smallest value of Tt that will prevent the rope from slipping

in the direction of 7", ?
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Example 9.9

Rope Wrapped Around Two Cylinders

The 50-kg crate in Fig. 9.29 is suspended from a rope that passes over two

fixed cylinders. The coefficient of static friction is 0.2 between the rope and

the left cylinder and 0.4 between the rope and the right cylinder. What is the

smallest force the woman can exert and support the crate?

Figure 9.29

(a) The tensions in the rope.

Strategy

She exerts the smallest possible force when slip of the rope is impending on

both cylinders. Because we know the weight of the crate, we can use Eq. (9.17)

to determine the tension in the rope between the two cylinders and then use

Eq. (9. 1 7) again to determine the force she exerts. ,

Solution

The weight of the crate is W = (50)(9.81) = 491 N. Let T be the tension in

the rope between the two cylinders (Fig. a). The rope is wrapped around the

left cylinder through an angle /3 = 77/2 rad. The tension T necessary to pre-

vent the rope from slipping on the left cylinder is related to W by

Solving for T, we obtain

T = ive-'"-'*'^/-' = (491)f-("-'('^/-' = 358 N.

The rope is also wrapped around the right cylinder through an angle

P = 7t/2 rad. The force F the woman must exert to prevent the rope from

slipping on the right cylinder is related to T by

Y ^ f^fi,(3 = ^^(0.4)(7r/2)_

The solution for F is

F = re-(°-^)('^/2' = (358)e-«^-^'("^-' = 191 N.

St

By

b

feu
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Example 9.10

^
Application to Engineering:

Belts and Pulleys

The pulleys in Fig. 9.30 turn at a constant rate. The large pulley is attached to

a fixed support. The small pulley is supported by a smooth horizontal slot and

is pulled to the right by the force F = 200 N. The coefficient of static friction

between the pulleys and the belt is /x^ = 0.8, the dimension b = 500 mm,
and the radii of the pulleys are R^ = 200 mm and Rg - 100 mm. What are

the largest values of the couples M^ and Mg for which the belt will not slip?

(a) Free-body

diagram of the

large pulley.

Figure 9.30

(b) Free-body

diagram of the

small pulley.

Strategy

By drawing free-body diagrams of the pulleys, we can use the equilibrium

equations to relate the tensions in the belt to M^ and Mg and obtain a relation

between the tensions in the belt and the force F. When slip is impending, the

tensions are also related by Eq. (9.17). From these equations we can deter-

mine M^ and Mg.

Solution

From the free-body diagram of the large pulley (Fig. 9.30a). we obtain the

equilibrium equation

Ma = Ra{T2 - r,), (9.18)

and from the free-body diagram of the small pulley (Fig. 9.30b), we obtain

F = (r, + r2)cosa, (9.19)

Mg = Rg{T2 - r,). (9.20)
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(c) Determining the angle a.

The belt is in contact with the small pulley through the angle tt - 2a

(Fig. 9.30c). From the dashed line parallel to the belt, we see that the angle a
satisfies the relation

R. /?«

sin a
200 - 100

500
= 0.2.

Therefore a = 11.5° = 0.201 rad. If we assume that slip impends between

the small pulley and the belt, Eq. (9. 1 7) states that

r. T^e^^^ J 0.g(n-2a) ^ g_95^

We solve this equation together with Eq. (9.19) for the two tensions, obtain-

ing r, = 20.5 N and 7; = 183.6 N. Then from Eqs. (9.18) and (9.20), the cou-

ples are M^ = 32.6 N-m and Mg = 16.3 N-m.

If we assume that slip impends between the large pulley and the belt, we
obtain M^ = 36.3 N-m and Mg = 18.1 N-m, so the belt slips on the small

pulley at smaller values of the couples.

Pulley

design Issues

Belts and pulleys are used to transfer power in cars and many other types of

machines, including printing presses, farming equipment, and industrial ro-

bots. Because two pulleys of different diameters connected by a belt are sub-

jected to different torques and have different rates of rotation, they can be

used as a mechanical "transformer" to alter torque or rotation rate.

In this example we assumed that the belt was flat, but "V-belts" that fit

into matching grooves in the pulleys are often used in applications (Fig. 9.31

a). This configuration keeps the belt in place on the pulleys and also decreas-

es the tendency of the belt to slip. Suppose that a V-belt is wrapped through

an angle /3 around a pulley (Fig. 9.31b). If the tension 7, is known, what is the

largest tension T2 that can be applied to the other end of the belt without caus-

ing it to slip relative to the pulley?

In Fig. 9.31c, we draw the free-body diagram of an element of the belt

whose boundaries are at angles a and a + Aa from the point where the belt

comes into contact with the pulley. (Compare this figure with Fig. 9.28c.)

(a) Cross-sectional view of a V-belt and pulley.

(b) V-belt wrapped around a pulley.

Figure 9.31

T+AT

End view

(c) Free-body diagram of an element of the belt.

Side view
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The equilibrium equations in the directions tangential to and normal to the

centerline of the belt are

2F(,ange„Ual) = 2fX,AN + T COS
ia

- {T + Ar)cos[^) = 0,

7
2F(„„^a.) = 2AA^sin[| 1

- {T + Ar) sin ^

Aa
— T sin

Aa
= 0.

(9.21)

By the same steps leading from Eqs. (9.16) to Eq. (9.17), it can be shown that

r, = T,e.ti,P/
%in{y/2)

(9.22)

Thus using a V-belt effectively increases the coefficient of friction between

the belt and pulley by the factor l/sin(y/2).

When it is essential that the belt not slip relative to the pulley, a belt with

cogs and a matching pulley (Fig. 9.32a) or a chain and sprocket wheel

(Fig. 9.32b) can be used. The chains and sprocket wheels in bicycles and mo-

torcycles are examples.

Figure 9.32

Designs that prevent slip of the belt relative

to the pulley.

Problems

9.123 Suppose that you want to lift a 50-lb crate off the ground

by using a rope looped over a tree limb as shown. The coefficient

of static friction between the rope and the limb is 0.4, and the

rope is wound 1 20° around the limb. What force must you exert to

lift the crate?

Strategy: The tension necessary to cause impending slip of

the rope on the limb is given by Eq. (9.17), with 7, = 50 lb,

fi, = 0.4, and (3 = (7r/180)(120) rad.

P9.123



466 Chapter 9 Friction

9.124 In Problem 9.123, once you have lifted the crate off the

ground, what is the minimum force you must exert on the rope to

keep it suspended?

9.125 Winches are used on sailboats to help support the forces

exerted by the sails on the ropes (sheets) holding them in position.

The winch shown is a post that will rotate in the clockwise direc-

tion (seen from above), but will not rotate in the counterclockwise

direction. The sail exerts a tension 7"s
= 800 N on the sheet,

which is wrapped two complete turns around the winch. The coef-

ficient of static friction between the sheet and the winch is

/i,, = 0.2. What tension T(- must the crew member exert on the

sheet to prevent it from slipping on the winch?

P9.125

9.126 The coefficient of kinetic friction between the sheet and

the winch in Problem 9.125 is /x^ = 0.16. If the crew member
wants to let the sheet slip at a constant rate, releasing the sail, what

initial tension Tq must he exert on the sheet as it begins slipping?

9.127 The mass of the block A is 18 kg. The rope is wrapped

one and one-fourth turns around the fixed wooden post. The coef-

ficients of friction between the rope and post are ^i, = 0.15 and

^l|^ = 0.12. What force would the person have to exert to raise the

block at a constant rate?

P9.127

9.128 The weight of block A is W. The disk is supported by a

smooth bearing. The coefficient of kinetic friction between the

disk and the belt is /Zk. What couple M is necessary to turn the

disk at a constant rate?

P9.128

9.129 The couple required to turn the wheel of the exercise bicy-

cle is adjusted by changing the weight W. The coefficient of kinet-

ic friction between the wheel and the belt is ^t|^. Assume the wheel

turns clockwise.

(a) Show that the couple M required to turn the wheel is

M = WR{l - e'^-'''^').

(b) If W = 40 lb and fx^,
= 0.2, what force will the scale S indi-

cate when the bicycle is in use?
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P9.129

9.130 The box B weighs 50 lb. The coefficients of friction between

the cable and the fixed round supports are ^i; = 0.4 and /Ai^ = 0.3.

(a) What is the minimum force F required to support the box?

(b) What force F is required to move the box upward at a constant

rate?

P^^
P9.130

9.131 The 20-kg box A is held in equilibrium on the inclined

surface by the force T acting on the rope wrapped over the fixed

cylinder. The coefficient of static friction between the box and the

inclined surface is 0.1. The coefficient of static friction between

the rope and the cylinder is 0.05. Determine the largest value of T
that will not cause the box to slip up the inclined surface.

9.132 In Problem 9.131, determine the smallest value of T nec-

essary to hold the box in equilibrium on the inclined surface.

9.133 The mass of the block A is 14 kg. The coefficient of kinet-

ic friction between the rope and the cylinder is 0.2. If the cylinder

is rotated at a constant rate, first in the counterclockwise direction

and then in the clockwise direction, the difference in the height of

block A is 0.3 m. What is the spring constant kl

A .A.

-

—

-

i

P9.133

Problems 9.134-9.138 are related to Example 9.10.

9.134 If the force F in Example 9.10 is increased to 400 N, what

are the largest values of the couples M^ and Mg for which the belt

will not slip?

9.135 If the belt in Example 9. 10 is a V-belt with angle y = 45°,

what are the largest values of the couples M^ and Mg for which

the belt will not slip?

9.136 The spring exerts a 320-N force on the left pulley. The co-

efficient of stafic friction between the flat belt and the pulleys is

/Li, = 0.5. The right pulley cannot rotate. What is the largest cou-

ple M that can be exerted on the left pulley without causing the

belt to slip?

40 mm

P9.131

P9.136

9.137 Suppose that the belt in Problem 9. 1 36 is a V-belt with

angle y = 30°. What is the largest couple M that can be exerted

on the left pulley without causing the belt to slip?

9.138 Beginning with Eqs. (9.21), derive Eq. (9.22):

J = J ^M>/3/sin(r/2)^
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aaiDiI
lOllDO Computational Mechanics

The following example and problems are designed for the use of a programmable calculator or computer.

Computational Example 9.11
101110
^ODlOll
IDllDO

Figure 9.33

1
(a) Moving the slider to the right a

distance x.

1 m

.

I /

\mg

UN t^' In

(b) Free-body diagram of the block when

slip is impending.

The mass of the block A in Fig. 9.33 is 20 kg, and the coefficient of static

friction between the block and the floor is /x^ = 0.3. The spring constant

k = 1 kN/m, and the spring is unstretched. How far can the slider B be moved

to the right without causing the block to slip?

Solution

Suppose that moving the slider B a distance x to the right causes impending

+ x' 1 m.slip of the block (Fig. a). The resulting stretch of the spring is v 1

so the magnitude of the force exerted on the block by the spring is

F, = k{V\ + -r - l). (9.23)

From the free-body diagram of the block (Fig. b). we obtain the equilibrium

equations

2F.

2f- = 1

VT + x'

F, - iJi^N = 0,

F, + N - mg = 0.

Substituting Eq. (9.23) into these two equations and then eliminating A^, we

can write the resulting equation in the form

hix) = k{x + ^iJ(Vl + x^ - 1) - iJijngVl + X- = 0.

We must obtain the root of this function to determine the value of x corresponding

to impending slip of the block. From the graph of h{x) in Fig. 9.34, we estimate

that h{x) = at jr = 0,43 m. By examining computed results near this value of x,

we see that h(x) = 0, and slip is impending, when x is approximately 0.4284 m.

50

h(x)

-50

inn

/
y/

^
^

0.1 0.2 0.3 0.4

X (meters)

0.5 0.6

.r(m) h{x)

0.4281 -0.1128

0.4282 -0.0777

0.4283 -0.0425

0.4284 -0.0074

0.4285 0.0278

0.4286 0.0629

0.4287 0.0981

in

Figure 9.34

Graph of the function /j(;c).
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Computational Problems
.101100

9.139 The mass of the block A is 20 kg, and the coefficient of

static friction between the block and the floor is /ix, = 0.3. The

spring constant k = 1 kN/m, and the spring is unstretched. How
far can the slider B be moved to the right without causing the

block to slip?

P9.139

9.140 The slender circular ring of weight W is supported by nor-

mal and friction forces at A. If slip is impending when the vertical

force F = 0.41V, what is the coefficient of static friction between

the ring and the support?

P9.140

9.141 Suppose that the vertical force on the ring in Problem 9.140

isF = KW and slip is impending. Draw a graph of ^ as a function

of the coefficient of static friction between the ring and the support

forO < /A, < 1.

9.142 The mass of the 3-m bar is 20 kg, and the coefficient of

static friction between the ends of the bar and the circular surface

is /LI, = 0.3. What is the largest value of the angle a for which the

bar will not slip?

9.143 The load W = 800 N can be raised or lowered by rotating

the threaded shaft. The distance b = 15 mm, and the pinned bars

are each 300 mm in length. The pitch of the threaded shaft is

/? = 5 mm, the mean radius of the thread is r = 15 mm, and the

coefficient of kinetic friction between the thread and the mating

groove is 0.2. Draw a graph of the moment that must be exerted to

turn the threaded shaft at a constant rate, raising the load, as a

function of the height h from /? = 100 mm to /? = 400 mm.

QaagBMJVmj

iz
P9.143

9.144 The 10-lb metal disk A is at the center of the inclined sur-

face. The coefficient of static friction between the disk and the

surface is 0.3. What is the largest tension in the string AB that will

not cause the disk to slip?

P9.142 P9.144
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9.145 The direction cosines of the crane's cable are

COS0, = 0.588. cose, = 0.766, and cos 0. = 0.260. The >' axis is

vertical. The stationary caisson to which the cable is attached

weighs 2000 lb. The unit vector e = 0.260i + 0.940J - 0.221k

is perpendicular to the ground where the caisson rests. If the coef-

ficient of static friction between the caisson and the ground is

fj.^
= 0.4, what is the largest tension in the cable that will not

cause the caisson to slip?

P9.145

9.146 The thrust bearing is supported by contact of the collar C 9.148 The coefficient of static friction between the 1-kg slider and

with a fixed plate. The area of contact is an annulus with inside di-

ameter D| and outside diameter D2 . Suppose that because of ther-

mal constraints, you want the area of contact to be 0.02 m'. The

coefficient of kinetic friction between the collar and the plate is

ju,k
= 0.3. The force F = 600 N, and the couple M required to ro-

tate the shaft at a constant rate is 10 N-m. What are the diameters

D|,and£)2?

JZc

-M

D, .

P9.146

9.147 The block A weighs 30 lb, and the spring constant

k = 30 lb/ft. If the cylinder is rotated at a constant rate, first in

the counterclockwise direction and then in the clockwise direc-

tion, the difference in the height of block A is 2 ft. What is the co-

efficient of kinetic friction between the rope and the cylinder?

--4^WW-<

the vertical bar is /i.^ = 0.6. The constant of the spring is

k = 20 N/m, and its unstretched length is 1 m. Determine the range

of values of y at which the slider will remain stationary on the bar.

P9.148

9.149 The axial force on the thrust bearing is F = 200 lb, and

the dimension b = bin. The uniform pressure exerted by the mat-

ing surface is p = 1 psi, and the coefficient of kinetic friction is

^l|^ = 0.28. If a couple M = 360 in-lb is required to turn the shaft,

what are the dimensions D^ and Dj?

P9.147 P9.149

»1

HI
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Dry Fhriction

The forces resulting from the contact of two plane surfaces can be expressed

in terms of the normal force A^ and friction force / (Fig. a) or the magnitude

R and angle of friction d (Fig. b).

(a) (b)

If slip is impending, the magnitude of the friction force is

/ = fJL.N, Eq. (9.1)

and its direction opposes the impending slip. The angle of friction equals the

angle of static friction 0, = arctan (/xj.

If the surfaces are sliding, the magnitude of the friction force is

/ = ^kA^, Eq. (9.2)

and its direction opposes the relative motion. The angle of friction equals the

angle of kinetic friction d^, = arctan (yitj.

Threads

The slope a of the thread (Fig. c) is related to its pitch p by

P
tana =

Ittk
Eq. (9.7)

The couple required for impending rotation and axial motion opposite to the

direction of F is

M = rFtan{e, + a). Eq. (9.9)

and the couple required for impending rotation and axial motion of the shaft

in the direction of F is

M = rF tan{e, - a). Eq. (9.11)

When 6^ < a, the shaft will rotate and move in the direction of the force F
with no couple applied.

a

^^^H 1

(c)
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Journal Bearings

The couple required for impending slip of the circular shaft (Fig. d) is

M = rF s'md,. Eq. (9.12)

where F is the total load on the shaft.

Thrust Bearings and Clutches

The couple required to rotate the shaft at a constant rate (Fig. e) is

2Mk^ (rl- r^

(d)
M

3 cos a \r' — r(
Eq. (9.13)

(f)

T
M

1^ ^'
(e)

Belt Friction

The force Tj required for impending slip in the direction of Ti (Fig. f) is

T2 = T^e^^^, Eq. (9.17)

where j8 is in radians.

Review Problems

9.150 The weight of the box is W = 30 lb, and the force F is

perpendicular to the inclined surface. The coefficient of static fric-

tion between the box and the inclined surface is /a,, = 0.2.

(a) If F = 30 lb, what is the magnitude of the friction force

exerted on the stationary box?

(b) If F = 10 lb, show that the box cannot remain at rest on the

inclined surface.

9.151 In Problem 9. 150, what is the smallest force F necessary

to hold the box stationary on the inclined surface?

9.152 Blocks A and B are connected by a horizontal bar. The co-

efficient of static friction between the inclined surface and the

400-lb block A is 0.3. The coefficient of static friction between the

surface and the 300-lb block B is 0.5. What is the smallest force F
that will prevent the blocks from slipping down the surface?

P9.150 P9.152

U

111
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9.153 What force F is necessary to cause the blocks in Problem

9.152 to start sliding up the plane?

9.154 The masses of crates A and B are 25 kg and 30 kg, respec-

tively. The coefficient of static friction between the contacting sur-

faces is /i,^ = 0.34. What is the largest value of a for which the

crates will remain in equilibrium?

P9.154

9.155 The side of a soil embankment has a 45° slope (Fig. a). If

the coefficient of static friction of soil on soil is yu.^ = 0.6, will the

embankment be stable or will it collapse? If it will collapse, what

is the smallest slope that can be stable?

Strategy: Draw a free-body diagram by isolating part of the

embankment as shown in Fig. b.

P9.156

9.157 In Problem 9. 156, what is the largest value of a for which

the van can remain in equilibrium if it points up the slope?

9.158 The shelf is designed so that it can be placed at any height

on the vertical beam. The shelf is supported by friction between

the two horizontal cylinders and the vertical beam. The combined

weight of the shelf and camera is W. If the coefficient of static

friction between the vertical beam and the horizontal cylinders is

/Lt,, what is the minimum distance b necessary for the shelf to stay

in place?

M

w

\ti^

(a) P9.158

(b) P9.155

9.156 The mass of the van is 2250 kg, and the coefficient of stat-

ic friction between its tires and the road is 0.6. If its front wheels

are locked and its rear wheels can turn freely, what is the largest

value of a for which it can remain in equilibrium?

9.159 The 20-lb homogeneous object is supported at A and B.

The distance /? = 4 in., friction can be neglected at B, and the co-

efficient of static friction at A is 0.4. Determine the largest force F
that can be exerted without causing the object to slip.

\

\.^ 2 in

^\,^^

F

1 t

6 in

A y ^
S

4 in P9.159
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9.160 In Problem 9. 159, suppose that the coefficient of static

friction at B is 0.36. What is the largest value of h for which the

object will slip before it tips over?

9.161 The 180-lb climber is supported in the "chimney" by the

normal and friction forces exerted on his shoes and back. The stat-

ic coefficients of friction between his shoes and the wall and be-

tween his back and the wall are 0.8 and 0.6, respectively. What is

the minimum normal force his shoes must exert?

P9.161

9.162 The sides of the 200-lb door fit loosely into grooves in the

walls. Cables at A and B raise the door at a constant rate. The co-

efficient of kinetic friction between the door and the grooves is

/i.^ = 0.3. What force must the cable at A exert to continue raising

the door at a constant rate if the cable at B breaks?

#

P9.162

9.163 The coefficients of static friction between the tires of the

1000-kg tractor and the ground and between the 450-kg crate and

the ground are 0.8 and 0.3, respectively. Starting from rest, what

torque must the tractor's engine exert on the rear wheels to cause

the crate to move? (The front wheels can turn freely.)

9.164 In Problem 9. 163, what is the most massive crate the trac-

tor can cause to move from rest if its engine can exert sufficient

torque? What torque is necessary?

9.165 The mass of the vehicle is 900 kg, it has rear-wheel drive,

and the coefficient of static friction between its tires and the sur-

face is 0.65. The coefficient of static friction between the crate and

the surface is 0.4. If the vehicle attempts to pull the crate up the

incline, what is the largest value of the mass of the crate for which

it will slip up the incline before the vehicle's tires slip?

P9.165

9.166 Each of the uniform 1-m bars has a mass of 4 kg. The co-

efficient of static friction between the bar and the surface at B is

0.2. If the system is in equilibrium, what is the magnitude of the

friction force exerted on the bar at Bl

P9.166

9.167 In Problem 9.166, what is the minimum coefficient of

static friction between the bar and the surface at B necessary for

the system to be in equilibrium?

9.168 The collars A and B each have a mass of 2 kg. If friction be-

tween collar B and the bar can be neglected, what minimum coeffi-

cient of static friction between collar A and the bar is necessary for

the collars to remain in equilibrium in the position shown?

1.4 m 0.8 m P9.163
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P9.168

9.169 In Problem 9. 168, if the coefficient of static friction has the

same value /x, between collars A and B and the bars, what minimum

value of /Lt,, is necessary for the collars to remain in equilibrium in

the position shown? (Assume that slip impends at A and B.)

9.170 The clamp presses two pieces of wood together. The pitch

of the threads is p = 2 mm, the mean radius of the thread is

r = 8 mm, and the coefficient of kinetic friction between the

thread and the mating groove is 0.24. What couple must be exert-

ed on the threaded shaft to press the pieces of wood together with

a force of 200 N?

50 mm

50 mm

50 mm
I

P9.170

9.171 In Problem 9. 1 70, the coefficient of static friction be-

tween the thread and the mating groove is 0.28. After the threaded

shaft is rotated sufficiently to press the pieces of wood together

with a force of 200 N, what couple must be exerted on the shaft to

loosen it?

9.172 The axles of the tram are supported by journal bearing.

The radius of the wheels is 75 mm, the radius of the axles is

15 mm, and the coefficient of kinetic friction between the axles

and the bearings is ^(,k
= 0. 14. The mass of the tram and its load is

160 kg. If the weight of the tram and its load is evenly divided be-

tween the axles, what force P is necessary to push the tram at a

constant speed?

9.173 The two pulleys have a radius of 6 in. and are mounted on

shafts of 1-in. radius supported by journal bearings. Neglect the

weights of the pulleys and shafts. The coefficient of kinetic friction

between the shafts and the bearings is /i,< = 0.2. If a force T = 200 lb

is required to raise the man at a constant rate, what is his weight?

% In
^:-

wJ^}.

n P9.173

9.174 If the man in Problem 9. 173 weighs 160 lb, what force T

is necessary to lower him at a constant rate?

9.175 If the two cylinders are held fixed, what is the range of IV

for which the two weights will remain stationary?

H =0.34

uNo.32^
/i, = 0.30

///ik = 0.28

P9.172

P9.175

9.176 In Problem 9. 175, if the system is initially stationary and

the left cylinder is slowly rotated, determine the largest weight W
that can be (a) raised; (b) lowered.

(design Experience Design and build a device to measure

the coefficient of static friction /x, between two materials. Use it to

measure jU, for several of the materials listed in Table 9.1 and

compare your results with the values in the table. Discuss possible

sources of error in your device and determine how closely your

values agree when you perform repeated experiments w ith the

same two materials.
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The system of cables supporting the roadway

subjects the bridge's arch to a distribution of
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Internal Forces

and Moments

CHAPTER

We began our study of equilibrium by drawing free-body dia-

grams of individual objects to determine unknown forces and

moments acting on them. In this chapter we carry this process

one step further and draw free-body diagrams of parts of individual objects to

determine internal forces and moments. In doing so, we arrive at the central

concern of the design engineer: It is the forces within an object that determine

whether it will support the external loads to which it is subjected.
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Beams

10.1 Axial Force, Shear Force, and Bending IVIoment

To ensure that a structural member will not fail (break or collapse) due to the

forces and moments acting on it, the design engineer must know not only the

external loads and reactions acting on it but also the forces and moments act-

ing within the member.

Consider a beam subjected to an external load and reactions (Fig. 10.1a).

How can we determine the forces and moments within the beam? In Fig. 10.1b,

we "cut" the beam by a plane at an arbitrary cross section and isolate part of it.

You can see that the isolated part cannot be in equilibrium unless it is subjected

to some system of forces and moments at the plane where it joins the other part

of the beam. These are the internal forces and moments we seek.

I

<s

4

-,1

I
(s:

I

(a)

(b)

B

\B

I

(c)

(d)

Figure 10.1

(a) A beam subjected to a load and reactions.

(b) Isolating a part of the beam.

(c), (d) The axial force, shear force, and bending moment.

J.
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In Chapter 4 we demonstrated that any system of forces and moments can

be represented by an equivalent system consisting of a force and a couple. Since

the system of external loads and reactions on the beam is two-dimensional, we

can represent the internal forces and moments by an equivalent system consist-

ing of two components of force and a couple (Fig. 10.1c). The component P
parallel to the beam's axis is called the axial force. The component V normal to

the beam's axis is called the shearforce, and the couple M is called the bending

moment. The axial force, shear force, and bending moment on the free-body

diagram of the other part of the beam are shown in Fig. 10. Id. Notice that they

are equal in magnitude but opposite in direction to the internal forces and

moment on the free-body diagram in Fig. 10. Ic.

The directions of the axial force, shear force, and bending moment in

Figs. 10.1c and 10. Id are the established definitions of the positive directions

of these quantities. A positive axial force P subjects the beam to tension. A
positive shear force V tends to rotate the axis of the beam clockwise

(Fig. 10.2a). Bending moments are defined to be positive when they tend to

bend the axis of the beam upward (Fig. 10.2b). In terms of the coordinate sys-

tem we use, "upward" means in the direction of the positive y axis.

(a)

Figure 10.2

(a) Positive shear forces tend to rotate the axis of the beam clockwise.

(b) Positive bending moments tend to bend the axis of the beam upward.

Determining the internal forces and moment at a particular cross section

of a beam typically involves three steps:

1. Determine the external forces and moments—Draw the free-body

diagram of the beam, and determine the reactions at its supports. If the

beam is a member of a structure, you must analyze the structure.

2. Draw the free-body diagram of part of the beam—Cut the beam at the

point at which you want to determine the internal forces and moment,

and draw the free-body diagram of one of the resulting parts. You can

choose the part with the simplest free-body diagram. If your cut divides a

distributed load, don't represent the distributed load by an equivalent

force until after you have obtained your free-body diagram.

3. Apply the equilibrium equations—Use the equilibrium equations to

determine P, V, and M.

Study Questions
1. What are the axial force, shear force, and bending moment?
2. How is the positive direction of the shear force defined?

3. How is the positive direction of the bending moment defined?
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Example 10.1

Aa'^^
!^-

Figure 10.3

i,f

a
jz.-"

l
(a) The free-body diagram of the beam

and a plane through point C.

€'• ^M.

f\ it

(b) The free-body diagram of the part of

the beam to the left of the plane through

point C.

Determining t/ie internal Forces
and IVIoment

For the beam in Fig. 10.3, determine the internal forces and moment at C.

Solution

Determine the External Forces and Moments We begin by drawing the

free-body diagram of the beam and determining the reactions at its supports;

the results are shown in Fig. (a).

Draw the Free-Body Diagram of Part of the Beam We cut the beam at

C (Fig. a) and draw the free-body diagram of the left part, including the inter-

nal forces and moment in their defined positive directions (Fig. b).

Apply the Equilibrium Equations From the equilibrium equations

2F, = Pc = 0,

1

SF. F - Vc = 0,

IM,{point C)
= Mc 'A^^ = 0,

we obtain P^ = 0, V^ = \ F, and Mc =
jf,
LF.

Discussion

We should check our results with the free-body diagram of the other part of

the beam (Fig. c). The equilibrium equations are

2F, = -Pc = 0,

IF, ^ Vr - F + - F

2M(pointC) = -Mc 2M^niO u^i'"-

confirming that P^ = 0, V^ = \F, and Mc -
i^ LF.

(c) The free-body diagram of the part of

the beam to the right of the plane through

point C.

I

.1..

t;
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Example 10.2

Determining ttie internai Forces
and /Wo/ne/it

For the beam in Fig. 10.4, determine the internal forces and moment (a) at

B: (b) at C.

Solution

Determine the External Forces and Moments We draw the free-body

diagram of the beam and represent the distributed load by an equivalent force

in Fig. a. The equilibrium equations are

SF, = A, ^ 0,

2F, = A, + D - 180 = 0,

2M(p„,„) = 12D - (4)(180) = 0.

Solving them, we obtain A^ = 0, A,. = 120 N, and D = 60 N.

Draw the Free-Body Diagram of Part of the Beam We cut the beam at

B. obtaining the free-body diagram in Fig. b. Because point B is at the mid-

point of the triangular distributed load, the value of the distributed load at B is

30 N/m. By representing the distributed load in Fig. b by an equivalent force,

we obtain the free-body diagram in Fig. c. From the equilibrium equations

2F, = P« = 0,

SF, = 120 - 45 - Vg = 0,

SM, point B) Ms+ (1)(45) - (3)(120) =0,

we obtain Pg = 0, Vg = 75 N, and Mg = 315 N-m.

To determine the internal forces and moment at C, we obtain the simplest

free-body diagram by isolating the part of the beam to the right of C (Fig. d).

From the equilibrium equations

2F, = -Pc = 0,

2F, = Vc + 60 = 0,

2M(p„i„,c) = -Mc + (3)(60) = 0,

we obtain Pc = 0, V^- = -60 N, and Mc = 180N-m.

Discussion

If you attempt to determine the internal forces and moment at B by cutting

the freebody diagram in Fig. a at B, you do not obtain correct results. (You

can confirm that the resulting free-body diagram of the part of the beam to

the left of B gives Pg = 0, V^ == 120 N, and Mg = 360 N-m.) The reason is

that you do not properly account for the effect of the distributed load on your

free-body diagram. You must wait until after you have obtained the free-body

diagram of part of the beam before representing distributed loads by equiva-

lent forces.

£
f 60 N/m

¥^
p-3 m * • 3 m-

Figure 10.4

-3 m ' • 3 m-H

I , |i(6m)(60N/m)=180N

12m-

(a) Free-body diagram of the entire beam

with the distributed load represented by an

equivalent force.

120

30 N/m

P.

(b) 1

j

|(3 m) j
i(3 m)(30 N/m) = 45 N

-1=

120 fjl— 3 m— tv

(c)

(d)

(b), (c) Free-body diagram of the part of

the beam to the left of B.

(d) Free-body diagram of the part of the

beam to the right of C.

I
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Problems

10.1 Determine the reactions at the beam's built-in support. Then 10.5 Determine the internal forces and moment at A.

determine the internal forces and moment at A (a) by drawing the

free-body diagram of the part of the beam to the left of A\ (b) by

drawing the free-body diagram of the part of the beam to the right

ofA

|2kN

..-0.4 m— -0.8 m-

-800 mm-
2kN

2.4 kN-m

^
^ 400 mm *

m ^30°

800 mm- -400 mm—
P10.5

PlO.l

10.2 Determine the internal forces and moment at A.

200 N-m

&
— 0.4 m-— 0.6 m 0.4 m -

10.6 Determine the internal forces and moment at A for each

loading.

P10.2

10.3 The shear force and bending moment at A are V^ = —6 kN
and M^ = —3 kN-m. Determine the force F and dimension L.

J^"^

^
— 1 m—

4 m

(a)

2kN/m

i^

P10.3

10.4 Determine the internal forces and moment at A.

P10.6

10.7 Model the ladder rung as a simply supported (pin support-

ed) beam and assume that the 750-N load exerted by the person's

shoe is uniformly distributed. Determine the internal forces and

moment at A.

1001b

L
1 400 lb

900 ft-lb^
5 ft-

•3 ft- -4ft- -3ft-

^
-4ft-

P10.4

ill

-250 mm -*A

-200 mm +-100 mm-^

375 mm
P10.7
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10.8 The length Z, = 3 m. The shear force and bending moment

at A are V^ = -275 N and A/^, = 260 N-m. Determine the dimen-

sion b and the value of Wq.

P10.8

10.13 The distributed load is w = IOa:^ lb/ft. Determine the

internal forces and moment at A.

P10.13

10.9 If X = 3 m, what are the internal forces and moment at A? 10.14 Determine the internal forces and moment at A.

llOkN

lOkN/m

P10.9

10.10 If X = 8 m in Problem 10.9, what are the internal forces

and moment at A?

10.11 Determine the internal forces and moment at B for the

loadings (a) and (b).

2kN/ni

(a)
1 ¥^

6 m-

|6kN

(b)
1z

*2m*

— 4 m-

% iA

lOm-

-12m-

PlO.ll

10.12 For the loadings (a) and (b) shown in Problem 10.1 1,

determine the internal forces and moment at A.

C

*)
^

1 m- -1 m -1 m- 1 m- 1 m-

P10.14

10.15 Determine the internal forces and moment at point B in

Problem 10.14.

10.16 Determine the internal forces and moment at A.

400 N

800 mm - P10.16

10.17 Determine the internal forces and moment at point B of

the truss in Problem 10.16.

10.18 The tension in the rope is 10 kN. Determine the internal

forces and moment at point A.

P10.18
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10.19 The mass m = 120 kg. Determine the internal forces and 10.20 Determine the internal forces and moment at A.

moment at A.

4kN/m

300 mm
2m

P10.20

10.21 Determine the internal forces and moment at point B of

P10.19 the frame in Problem 10.20.

10.2 Shear Force and Bending Moment Diagrams

Figure 10.5

(a) A beam loaded by a force F and its

free-body diagram.

(b) Cutting the beam at an arbitrary

position .V to the left of F.

(c) Cutting the beam at an arbitrary

position X to the right of F.

To design a beam, an engineer must know the internal forces and moments

throughout its length. Of special concern are the maximum and minimum val-

ues of the shear force and bending moment and where they occur. In this sec-

tion we show how the values of P, V, and M can be determined as functions

of X and introduce shear force and bending moment diagrams.

Consider a simply supported beam loaded by a force (Fig. 10.5a). Instead

of cutting the beam at a specific cross section to determine the internal forces

and moment, we cut it at an arbitrary position x between the left end of the

beam and the load F (Fig. 10.5b). Applying the equilibrium equations to this

free-body diagram, we obtain

P =

V ^ -F
3

M ^ -Fx
3

Q < X <-L.
3
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To determine the internal forces and moment for values of x greater than

5L, we obtain a free-body diagram by cutting the beam at an arbitrary posi-

tion X between the load F and the right end of the beam (Fig. 10.5c). The

results are

P =

V = --F

M F{L - x)

) - L < x < L.
3

The shear force and bending moment diagrams are simply the graphs of V
and M, respectively, as functions of .v (Fig. 10.6). They permit you to see the

changes in the shear force and bending moment that occur along the beam's

length as well as their maximum and minimum values. (By maximum we

mean the least upper bound of the shear force or bending moment, and by

minimum we mean the greatest lower bound.)

Thus you can determine the distributions of the internal forces and mo-

ment in a beam by considering a plane at an arbitrary distance x from the end

of the beam and solving for P, V, and M as functions of x. Depending on the

complexity of the loading, you may have to draw several free-body diagrams

to determine the distributions over the entire length of the beam. The result-

ing equations for V and M allow you to draw the shear force and bending

moment diagrams.

I-

i-
M

i-

:FL

Figure 10.6

The shear force and bending moment

diagrams indicating the maximum and

minimum values of V and M.
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Example 10.3

Shear Force and Bending /Wo/nent
Diagrams

300 N

Figure 10.7

200 N/m
IJTn>t^

I300N

A 100N/m{Um^m

\f B

(a) Free-body diagram of the entire beam.

^(6m)(200N/m) (6m)(100N/m)
2 \i /

i(6^jHl^4'6ni) p^

-6 m-
I

- 6 m—H-— 6 m—

-

O

(b) Representing the distributed loads by

equivalent forces.

y

300 N/m
W)

200 nI

^i;

100 N/m I300N

~n
y I

200.Pit

C ' D

300 N

(c) Free-body diagram for < jr < 6 m.

I
300 N/mi ntm^

200
j^}—em^-^

itv

].-—

^

(d) Free-body diagram for 6 < a: < 12 m.

For the beam in Fig. 10.7, (a) draw the shear force and bending moment dia-

grams; (b) determine the locations and values of the maximum and minimum
shear forces and bending moments.

Strategy

To determine the internal forces and moment as functions of x for the entire

beam, we must use three free-body diagrams: one for the range < jc < 6 m,

one for 6 < j; < 12 m, and one for 12 < x < 18 m.

Solution

(a) We begin by drawing the free-body diagram of the beam, treating the dis-

tributed load as the sum of uniform and triangular distributed loads (Fig. a).

We then represent these distributed loads by equivalent forces (Fig. b). From

the equilibrium equations

2F, = A, = 0,

IF, = A, + C - 600 - 600 - 300 = 0,

2M(p„i„,^) = 12C - (8)(600) - (9)(600) - (18)(300) = 0,

we obtain the reactions A, = 0. A, = 200 N, and C = 1300 N.

We draw the free-body diagram for the range < j: < 6 m in Fig. c.

From the equilibrium equations

i:f, = p = 0,

SF, = 200 - V = 0,

2M(right end)
= M - 200;r = 0,

we obtain

P =

V = 200 N
M = 200;c N-m

< ;c < 6 m.

We draw the free-body diagram for the range 6 < x < 12 m in Fig. d. To ob-

tain the equilibrium equations, we determine w, as a function of x and inte-

grate to determine the force and moment exerted by the distributed load. We
can express w, in the form w = ex + d, where c and d are constants. Using

the conditions w = 300N/m at x = 6 m and if = 100 N/m at x = 12 m,

we obtain the equation w = -(100/3)x + 500N/m. The downward force on

the free body in Fig. d due to the distributed load is

= w dx = I

JL Jb

100 .rsr.\ ,
50 ,

x + 500]dx = x'3/3 + 500x - 2400 N.
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The clockwise moment about the origin (point A) due to the distributed load is

xw dx =/'"*=/"( ^^°
X- + 500x1 ^a: = -^x^ + 250x2 - 6600 N-m.

The equilibrium equations are

1F, = P = 0,

50 ,

2F, = 200 - V + — X' - 500x + 2400 - 0,
^

3

2A/(p„i„,^) = M - Vx +— x^ - 250x- + 6600 = 0.

Solving them, we obtain

P =
^

,/
50 ,V^jx~-- 500x + 2600 N

M = fx3-- 250x' + 2600x -- 6600 N-m

> 6 < X < 12 m.

For the range 12 < x < 18 m, we obtain a very simple free-body dia-

gram by using the part of the beam on the right of the cut (Fig. e). From the

equilibrium equations

SF, = -P = 0,

2F„ = V - 300 = 0,

we obtain

P =

V = 300 N

M = 300x -

-M - 300(18 - x) = 0,

12 < X < 18 m.

5400 N-m

The shear force and bending moment diagrams obtained by plotting the equa-

tions for V and M for the three ranges of x are shown in Fig. 10.8.

(b)From the shear force diagram, the minimum shear force is —1000 N at

X = 12 m, and its maximum value is 300 A' over the range 12 < x < 18 m.

The minimum bending moment is —1800 N-m at x = 12 m. The bending mo-

ment has its maximum value in the range 6 < x < 12 m. It occurs where

dM/dx = 0. Using the equation for A/ as a function of x in the range

6 < X < 12 m, we obtain

dM
dx

150
500x + 2600 = 0.

The applicable root is x = 6.69 m. Substituting it into the equation for M, we

determine that the value of the maximum bending moment is 1270 N-m.

u300 N

D

18-j:

(e) Free-body diagram for

12 < X < 18 m.

300 N

200 N

200 N

-lOOON

-1800 N-m

Figure 10.8

The shear force and bending moment

diagrams.
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Problems

10.22 (a) Determine the internal forces and moment as func-

tions of X.

(b) Draw the shear force and bending moment diagrams.

Strategy: Cut the beam at an arbitrary position x and draw

the free-body diagram of the part on the left.

k
P10.22

10.23 (a) Determine the internal forces and moment as func-

tions of .V.

(b) Show that the equations for V and M as functions of x satisfy

the equation V = dM/dx.

(c) Draw the shear force and bending moment diagrams.

rrm I n 1 1 1 11
>50kN/m

10.26 The force f = 800 N and the couple C = 3600 N-m. De-

termine the internal forces and moment as functions of x.

^
H' -4 m- P10.26

10.27 Draw the shear force and bending moment diagrams for

the beam in Problem 10.26.

10.28 (a) Determine the internal forces and moment as func-

tions oi X.

(b) Draw the shear force and bending moment diagrams.

P10.28

10m

P10.23

10.24 (a) Determine the internal forces and moment as func-

tions of X.

(b) Show that the equations for V and M as functions of x satisfy

the equation V = dM/dx.

200 N/m

10.29 The loads F = 200 N and C = 800 N-m.

(a) Determine the internal forces and moment as functions of x.

(b) Draw the shear force and bending moment diagrams.

P10.24

1 P10.29

10.30 The beam in Problem 10.29 will safely support shear

forces and bending moments of magnitudes 2 kN and 6.5 kN-m,

respectively. On the basis of this criterion, can it safely be subject-

ed to the loads F = 1 kN, C = 1.6 kN-m?

10.25 Draw the shear force and bending moment diagrams for

the beam in Problem 10.24.

10.31 Model the ladder rung as a simply supported (pin-supported)

beam and assume that the 750-N load exerted by the person's shoe is



uniformly distributed. Draw the shear force and bending moment

diagrams.

-^

-200 mm-

375 mm
-100 mm—

, "
P10.31
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10.35 Draw the shear force and bending moment diagrams for

beam AB in Problem 10.34.

10.36 Determine the shear force as a function of x.

2kN/m

P10.36

10.32 What is the maximum bending moment in the ladder rung

in Problem 10.31 and where does it occur?

10.33 Assume that the surface the beam rests on exerts a uni-

formly distributed load. Draw the shear force and bending mo-

ment diagrams.

10.37 Draw the shear force and bending moment diagrams for

the beam in Problem 10.36.

10.38 The load F = 4650 lb. Draw the shear force and bending

moment diagrams.

14kN |2kN

^r-^mieiFr^^^^

2 m -J Im —
•6 m-

P10.33

10.34 The homogeneous beams AB and CD weigh 600 lb and

500 lb, respectively. Draw the shear force and bending moment
diagrams for beam CD.

6 ft-

B

f= rr

— 2ft^
D

8001b

5 ft

P̂10.38

10.39 If the load F = 2150 lb in Problem 10.38, what are the

maximum and minimum shear forces and bending moments, and

at what values of x do they occur?

10.40 Draw the shear force and bending moment diagrams.

20kN-m
4kN/m

e
6kN^

^:
6 m 6 m 6 m

P10.34 P10.40
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10.3 Relations Between Distributed Load, Siiear Force,

and Bending IVIoment

The shear force and bending mometit in a beam subjected to a distributed

load are governed by simple differential equations. In this section we derive

these equations and show that they provide an interesting and enlightening

way to obtain shear force and bending moment diagrams. These equations are

also useful for determining the deflections of beams.

Suppose that a portion of a beam is subjected to a distributed load w
(Fig. I0.9a). In Fig. 10.9b. we obtain a free-body diagram by cutting the

beam at .v and at x + A.v. The terms AP. AV. and AM are the changes in the

axial force, shear force, and bending moment, respectively, from x to

X + Ax. From this free-body diagram we obtain the equilibrium equations

IF, = P + AP - P = 0,

IF, = V - V - AV - wAx - 0{Ax-) = 0.

2M,(point e)
M + AM - M - {V + AV)Ax - wO{Ax-) = 0.

where the notation 0{Ax') means a term of order Ax^. Dividing these equa-

tions by Ax and taking the limit as Ax -^ 0, we obtain

dx

dV

dx

dM
dx

= 0,

= ~w.

= V.

(10.1)

(10.2)

(10.3)

mM
(a)

[TTTl

w

^
.t=-

-A.i -

Figure 10.9

(a) A portion of a beam subjected to a

distributed force ic.

(b) Obtaining the free-body diagram of an

element of the beam.

M + AW

-fl- 13-P + AP-

(b) -^ A^ K-
V+AV

Equation (10.1) simply states that the axial force does not depend on a: in a

portion of a beam subjected only to a lateral distributed load. But notice that

you can integrate Eq. (10.2) to determine V as a function of x if you know w,

and then you can integrate Eq. ( 10.3) to determine M as a function of x.

We derived Eqs. (10.2) and (10.3) for a portion of beam subjected only to

a distributed load. When you use these equations to determine shear force and

bending moment diagrams, you must also account for the effects of forces
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and couples. Let's determine what happens to the shear force and bending

moment diagrams where a beam is subjected to a force F in the positive v di-

rection (Fig. 10.10a). By cutting the beam just to the left and just to the right

of the force, we obtain the free-body diagram in Fig. 10.10b, where the sub-

scripts - and -I- denote values to the left and right of the force, respectively.

Equilibrium requires that

K - V_ = F, (10.4)

M^ - M^ = 0. (10.5)

M

(d)

{Figure 10.10

(a) A portion of a beam subjected to a distributed force F in the positive y

direction.

(b) Obtaining a free-body diagram by cutting the beam to the left and right of F.

(c) The shear force diagram undergoes a positive jump of magnitude F.

(d) The bending moment diagram is continuous.

The shear force diagram undergoes a jump discontinuity of magnitude F
(Fig. 10.10c), but the bending moment diagram is continuous (Fig. lO.lOd).

The jump in the shear force is positive if the force is in the positive y direction.

Now we consider what happens to the shear force and bending moment

diagrams when a beam is subjected to a counterclockwise couple C
(Fig. 10.1 1 a). Cutting the beam just to the left and just to the right of the

couple (Fig. 10.1 lb), we determine that

V+ - V_ = 0.

M^- M^ = -C.

(10.6)

(10.7)

The shear force diagram is continuous (Fig. 10.1 Ic), but the bending moment
diagram undergoes a jump discontinuity of magnitude C (Fig. 10.1 Id) where

a beam is subjected to a couple. The jump in the bending moment is negative

if the couple is in the counterclockwise direction.

mc

(c)

M

(d)

Figure 10.11

(a) A portion of a beam subjected to a

counterclockwise couple C.

(b) Obtaining a free-body diagram by

cutting the beam to the left and right

of C.

(c) The shear force diagram is continuous.

(d) The bending moment diagram

undergoes a negative jump of

magnitude C.
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y

\_

3 [

C

3.

3

(a)

Figure 10.12

(a) A beam loaded by a force F.

(b) The shear force diagram from A to B.

(c) The complete shear force diagram.

(d) The bending moment diagram from A
to B.

(e) The complete bending moment
diagram.

We illustrate the application of these results by considering the simply

supported beam in Fig. 10.12a. To determine its shear force diagram, we
begin at x - 0. where the upward reaction at A results in a positive value of

V of magnitude \F. Since there is no load between A and B, Eq. (10.2) states

that dV/dx = 0. The shear force- remains constant between A and B
(Fig. 10.12b). At B, the downward load F causes a negative jump in V of

magnitude F. There is no load between B and C, so the shear force remains

constant between B and C (Fig. 10. 12c).

Now that we have completed the shear force diagram, we begin again

at .V = to determine the bending moment diagram. There is no couple at

x = 0. so the bending moment is zero there. Between A and B,V =^ \F. In-

tegrating Eq. (10.3) from x = to an arbitrary value of .v between A and B.

dM V dx = I

F dx.

we determine A/ as a function of .v from A to B:

M Fx, < X < -L.

The bending moment diagram from A to 6 is shown in Fig. 10.1 2d. The value

of the bending moment at B is M^ = I FL.

Between B and C,V = -\F. Integrating Eq. (10.3) from x = \L to an

arbitrary value of x between B and C,

dM = V dx =
Jm„ y2L/3 JlLi2Z./3

we obtain M as a function of x from B to C:

M = M. F\ X
3

Fdx,

F{L - X), L < X < L.

The completed bending moment diagram is shown in Fig. 10.12e. Compare

the shear and bending moment diagrams in Figs. 10.12c and 10.12e with

those in Fig. 10.6, which we obtained by cutting the beam and solving equi-

librium equations.

We see that Eqs. (10.2)—(10.7) can be used to obtain the shear force and.

bending moment diagrams:

1. Shear force diagram—For segments of the beam that are unloaded or are

subjected to a distributed load, you can integrate Eq. (10.2) to determine

V as a function of x. In addition, you must use Eq. (10.4) to determine

the effects of forces on V.

2. Bending moment diagram—Once you have determined V as a function

of X. integrate Eq. (10.3) to determine M as a function of .v. Use

Eq. (10.7) to determine the effects of couples on M.

Study Questions
1. For a portion of a beam that is subjected only to a distributed load w, how

are the shear force and bending moment distributions determined from

Eqs. (10.2) and (10.3)?
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2. What effect does a force F have on the shear force and bending moment

distributions?

3. What effect does a couple C have on the shear force and bending moment

distributions?

Example 10.4

Applying Eqs. (10.2)-(10.7)

Determine the shear force and bending moment diagrams for the beam in

Fig. 10.13.

300 N/m

Figure 10.13

Solution

We must first determine the reactions at A. The results are shown on the free-

body diagram of the beam in Fig. a. The equation describing the distributed

load as a function of x is w = (x/6)300 = 50x N/m.

Shear Force Diagram The upward force at A causes a positive value of V
of 900-N magnitude, so that V^ = 900 N. Integrating Eq. (10.2) from .v =

to an arbitrary value of x.

rv rx rx

dV = - wdx = - 50xdx,
JV. Jo Jo

we obtain V as a function of x:

V ^Va- 25x- = 900 - 25.V-.

I

The shear force diagram is shown in Fig. b.

Bending Moment Diagram The counterclockwise couple at A causes a

negative value of M of 3600 N-m magnitude, so that M^ = -3600 N-m. Inte-

grating Eq. (10.3) from j: = to an arbitrary value of a:,

rM rx rx

/ dM = V dx =-
/ (900 - 25x^)dx,

Jm, Jo Jo

we obtain

M = M. + 900x - 25
,3 _ 25 ,

-3600 + 900.V - — x\

The bending moment diagram is shown in Fig. c.

3600 N-m
w = 50.r N/mw = 3Ur iN/m ____—1—

I

6 m-
900 N

(a) Free-body diagram of the beam.

900 N

(b) Shear force diagram.

M

(c) Bending moment diagram.
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Example 10.5

300 N/m

^
6 m—

•

Figure 10.14

6 m-

Applying Eqs. (10,2)-(10. 7)
Determine the shear force and bending moment diagrams for the beam in

Fig. 10.14.

Solution

The first step, determining the reactions at the supports, was carried out for

this beam and loading in Example 10.3. The results are shown in Fig. a.

Shear Force Diagram From A to B. There is no load between A and fi, so

the shear force increases by 200 N at A and then remains constant from A to B:

lIUn^
300 N

} 100 N/m

C D

•6 m-

V = 200 N, < A- < 6 m.

From B to C. We can express the distributed load w between B and C in the

form w = ex + d. where c and d are constants. Using the conditions

w = 300 N/m at X = 6 m and tv — 100 N/m at jc = 12 m, we obtain the

equation %v = — (100/3)a: + 500 N/m. Integrating Eq. (10.2) from x = 6 m
to an arbitrary value of x between B and C,

-V

dV w dx
100

IV„ Jb Jb

we obtain an equation for V between B and C:

50
V 500x + 2600 N.

x - 500 dx.

6 < X < 12 m.

Atx = 12 m, V = -1000 N.

From C to D. At C, V undergoes a positive jump of 1300-N magnitude,

so that its value becomes —1000 + 1300 = 300 N. There is no loading be-

tween C and D. so V remains constant from C to D:

V = 300N, 12 < X < 18 m.

The shear force diagram is shown in Fig. b.

Bending Moment Diagram From A to B. There is no couple at x = 0, so

the bending moment is zero there. Integrating Eq. (10.3) from x = to an ar-

bitrary value of X between A and B,
,

dM =
Jo Jo

V dx

we obtain

M = 200x N-m,

200 dx.

< X < 6 m.

*e

Atx = 6m,A/g = 1200 N-m.

From B to C. Integrating from x

tween B and C.

6 m to an arbitrary value of x be-

dM V dx
50

X- - 500x + 2600 dx,
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300 N

(a) Free-body diagram of the beam.

(b) Shear force diagram.

-1800 N-m
(c) Bending moment diagram.

we obtain

50 ,M = —x^ - 250x^ + 2600x - 6600 N-m, 6 < x < 12 m.

At X = 12 m, Mc = -1800 N-m.

From C to D. Integrating from x = 12 m to an arbitrary value of x be-

tween C and D,

PM rx r.x

/ dM = V dx ^ 300 dx,

JMc J\2 J\2

we obtain

M = 300.r - 5400 N-m. 12 < ;<: < 18 m.

The bending moment diagram is shown in Fig. c.
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Problems

The following problems are to be solved using Eqs.

(10.2)-(10.7).

10.41 Determine V and M as functions of x.

600 N/. Uiiiiiiiiiiiiiiiiiiii

10.45 Determine V and M as functions of x.

200 N/m.^

-10m-

P10.45

10.46 Determine V and M as functions of .v for < x < 1 m.

P10.41

10.42 The length L = 6 m and tVu = 1200 N/m.
(a) Determine V and M as functions of x.

(b) Draw a free-body diagram and use the equilibrium equations

to determine the reactions at the built-in support. Use the results

of part (a) to check your answers.

200 N-m

iS
^—^ zuu iN-ni

l.Om- 0.4 m—
P10.46

'"o{rrTTTTTTTrrrri-r^-.-__,.

10.43 Determine V and M as functions of x.

«j = 3(l-A:2/25)kN/m

10.44 Determine V and M as functions of x.

10.47 For the beam in Problem 10.46, determine V and M as

functions of .v for 1 < a- < 1.4 m.

10.48 Determine V and M as functions of x.

P10.42 &l1

2kN/m

-6in-

a ilc

on

-6 m- P10.48

10.49 Determine V and M as functions of jc for the beam AB.

P10.43

P10.44

400 N/m

P10.49
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Cables

Because of their unique combination of strength, Hghtness, and flexibility,

ropes and cables are often used to support loads and transmit forces in struc-

tures, machines, and vehicles. The great suspension bridges are supported by

enormous steel cables. Architectural engineers use cables to create aesthetic

structures with open interior spaces (Fig. 10.15). In the following sections we

determine the tensions in cables subjected to distributed and discrete loads.

10.4 Loads Distributed Uniformly

Aiong Straight Lines

The main cable of a suspension bridge is the classic example of a cable sub-

jected to a load uniformly distributed along a straight line (Fig. 10.16). The

weight of the bridge is (approximately) uniformly distributed horizontally.

The load, transmitted to the main cable by the large number of vertical ca-

bles, can be modeled as a distributed load. In this section we determine the

shape and the variation in the tension of a cable loaded in this way.

Main cable

(a) (b)

Consider a suspended cable subjected to a load distributed uniformly

along a horizontal line (Fig. 10.17a). We neglect the weight of the cable. The
origin of the coordinate system is located at the cable's lowest point. Let the

function y{x) be the curve described by the cable in the jc-v plane. Our ob-

jective is to determine the curve y{x) and the tension in the cable.

Shape of the Cable

We obtain a free-body diagram by cutting the cable at its lowest point and at

an arbitrary position x (Fig. 10.17b). The term Tq is the tension in the cable at

its lowest point, and T is the tension at x. The downward force exerted by the

distributed load is wx. From this free-body diagram we obtain the equilibri-

um equations

Tcosd = To,

Tsind = wx. (10.8)

We eliminate the tension T by dividing the second equation by the first

one, obtaining

tan0 = — X
To

ax.

Figure 10.15

The use of cables to suspend the roof of

this sports stadium provides spectators with

a view unencumbered by supporting

columns.

Figure 10.16

(a) Main cable of a suspension bridge.

(b) The load is distributed horizontally.

Kw
rr*

;
/

-r#=|JiT T T T

'
" '

'

' 1 ' ' ' '

w

(a)

x<f

(b)

Figure 10.17

(a) A cable subjected to a load uniformly

distributed along a horizontal line.

(b) Free-body diagram of the cable between

X = and an arbitrary position x.
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where

w
a = —

.

To

The slope of the cable at x is dy/dx = tan 6, so we obtain a differential equa-

tion governing the curve described by the cable:

dx
= ax. (10.9)

We have chosen the coordinate system so that v = at x = 0. Integrating

Eq. (10.9),

dy = / ax dx,

Jo

we find that the curve described by the cable is the parabola

y = — ax
^ 2

(10.10)

Tension of the Cable

To determine the distribution of the tension in the cable, we square both sides

of Eqs. (10.8) and then sum them, obtaining

T = T.V\ + aV

.

(10.11)

Figure 10.18

The length s of the cable in the horizontal

interval from to x.

The tension is a minimum at the lowest point of the cable and increases mo-
notonically with distance from the lowest point.

Length of the Cable

In some applications it is useful to have an expression for the length of the

cable in terms of x. We can write the relation ds^ = dx^ + dy^, where ds is an

element of length of the cable (Fig. 10. 18), in the form

Substituting Eq. (10.9) into this expression and integrating, we obtain an

equation for the length s of the cable in the horizontal interval from to x:

s = ^SxVl + a'x" + -\n[ax + Vl + a-x-]\. (10.12)

Study Questions
1. If a cable is subjected to a load that is uniformly distributed along a straight line

and its weight is negligible, what mathematical curve describes its shape?

2. Equation (10.10) describes the shape of a cable loaded as described in

Question 1 . Where must the origin of the x-y coordinate system be located?
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Example 10.6

Cable with a Horizontally Distributed Load
The horizontal distance between the supporting towers of the Golden Gate

Bridge in San Francisco. California, is 1280 m (Fig. 10.19). The tops of the

towers are 160 m above the lowest point of the main supporting cables. Ob-

tain the equation for the curve described by the cables.

Strategy

We know the coordinates of the cables' attachment points relative to their

lowest points. By substituting the coordinates into Eq. (10.10), we can deter-

mine a. Once a is known, Eq. ( 10. 10) describes the shapes of the cables.

Solution

The coordinates of the top of the right supporting tower relative to the lowest

point of the support cables are x^ = 640 m, >'r
= 160 m (Fig. a). By substi-

tuting these values into Eq. (10.10),

160 = -a(640)^

we obtain

a = 7.81 X 10"-* m"'.

The curve described by the supporting cables is

y = -ax^ = (3.91 X 10"')x-.

Fig. a compares this parabola with a photograph of the supporting cables.

Figure 10.19

y = (3.91 X 10-'')j^m

(a) The theoretical curve sup)erimposed on

a photograph of the supporting cable.
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Example 10.7

100 lb/ft

U 40 ft •]

Figure 10.20

(a) A coordinate system with its origin at

the lowest point and the coordinates of the

left and right attachment points.

Maximum Tension in a Cabie
The cable in Fig. 10.20 supports a distributed load of 100 lb/ft. What is the

maximum tension in the cable?

Strategy

We are given the vertical coordinate of each attachment point, but we are told

only the total horizontal span. However, the coordinates of each attachment

point relative to a coordinate system with its origin at the lowest point of the

cable must satisfy Eq. (10.10). This permits us to determine the horizontal

coordinates of the attachment points. Once we know them, we can use

Eq. (10.10) to determine a = w/Tq, which tells us the tension at the lowest

point, and then use Eq. (10.1 1) to obtain the maximum tension.

Solution

We introduce a coordinate system with its origin at the lowest point of the

cable, denoting the coordinates of the left and right attachment points by

(^L' Jl) and (•'^R' >'r) respectively (Fig. a). Equation (10.10) must be satisfied

for both of these points:

>L = 40 ft = - axl.

Jr 20 ft

1

axi. (10.13)

We don't know a, but we can eliminate it by dividing the first equation by the

second one, obtaining

>

— = 2
2

We also know that

;cr - a:l = 40 ft.

(The reason for the minus sign is that Xi^ is negative.) We therefore have two

equations we can solve for Xl and jcr; the results are Al = —23.4 ft and

A-R = 16.6 ft.

We can now use either of Eqs. (10.13) to determine a. We obtain

a = 0.146 ft"', so the tension Tq at the lowest point of the cable is

w 100
= 686 lb.

a 0.146

From Eq. (10.11), we know that the maximum tension in the cable occurs at

the maximum horizontal distance from its lowest point, which in this example

is the left attachment point. The maximum tension is therefore

ToV\ + ahl = 686Vl + (0.146)^(-23.4)2 = 24401b.
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10.5 Loads Distributed Uniformly Along Cables

A cable's own weight subjects it to a load that is distributed uniformly along

its length. If a cable is subjected to equal, parallel forces spaced uniformly

along its length, the load on the cable can often be modeled as a load distrib-

uted uniformly along its length. In this section we show how to determine

both the cable's resulting shape and the variation in its tension.

Suppose that a cable is acted on by a distributed load that subjects each ele-

ment ds of its length to a force iv ds, where w is constant. In Fig. 10.21 we show

the free-body diagram obtained by cutting the cable at its lowest point and at a

point a distance s along its length. The terms Tq and T are the tensions at the

lowest point and at s, respectively. The distributed load exerts a downward force

ws. The origin of the coordinate system is located at the lowest point of the

cable. Let the function y{x) be the curve described by the cable in the x-y plane.

Our objective is to determine y{x) and the tension T.

Shape of the Cable

From the free-body diagram in Fig. 10.21 we obtain the equilibrium equations

T sin = ws,

T cosd — Tq.

Dividing the first equation by the second one, we obtain

(10.14)

(10.15)

Figure 10.21

A cable subjected to a load distributed

uniformly along its length.

where

w
tan = — s = as,

To

w

(10.16)

The slope of the cable dy/dx = tan 6, so

dv

dx
as.

The derivative of this equation with respect to x is

dsd_ di

dx \dx dx'
(10.17)

By using the relation

ds- — dx^ + dy^,

we can write the derivative of s with respect to x as

— -
dx ir^-^' (10.18)
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where a is the slope

cr = -— = tan0.
ax

With Eq. (10.18), we can write Eq. (10.17) as

d(T
= a dx.

The slope cr = at x = 0. Integrating this equation,

do-
a dx.

/o Vl + a" Jo

we obtain the slope as a function of x:

a = — = -{e'" - e-"') = smhax. (10.19)

Then integrating this equation with respect to x, yields the curve described by

the cable, which is called a catenary:

y = ^ {^"^ + e'"' - 2) = - (coshfljc - 1). (10.20)
2a 'a

Tension of the Cable

Using Eq. (10.15) and the relation dx = cosd ds, we obtain

To ds
= 70-.

COS0 dx

Substituting Eq. (10.18) into this expression and using Eq. (10.19) yields the

tension in the cable as a function of x:

1 ' ^^ -..^2T = ToJl + - {e"' - e''"f = Tocoshax. (10.21)

Length of the Cable

From Eq. (10.16), the length .s is

1 a
5 = — tan = —

.

a a

Substituting Eq. (10.19) into this equation, we obtain an expression for the

length s of the cable in the horizontal interval from its lowest point to x\

1 / ^, ^v\ sinhax
s = —ie'" - e-") = . (10.22)

2a^ ' a



10.5 Loads Distributed Uniformly Along Cables 503

Example 10.8

Cable Loaded by Its Own Weight
The mass per unit length of the cable in Fig. 10.22 is 1 kg/m. The tension at

its lowest point is 50 N. Determine the distance h and the maximum tension

in the cable.

Figure 10.22

Strategy

The cable is subjected to a load w = (9.81 m/s^)(l kg/m) - 9.81 N/m dis-

tributed uniformly along its length. Since we know w and Tq, we can deter-

mine a = w/Tq. Then we can determine h from Eq. (10.20). Since the

maximum tension occurs at the greatest distance from the lowest point of the

cable, we can determine it by letting x = 10 m in Eq. (10.21).

Solution

The parameter a is

a = w 9.81

To 50
0.196 m"

In terms of a coordinate system with its origin at the lowest point of the cable

(Fig. a), the coordinates of the right attachment point are x = 10 m, y = h.

From Eq. (10.20),

h = -(coshflx - 1) = ——-{cosh [(0.196) (10)1 - l} = 13.4m.
a 0.196

From Eq. (10.21), the maximum tension is

7„,, = TqV\ + sinh'ax = 50Vl + sinh-[(0.196)(10)] = 181 N.

(a) A coordinate system with its origin at

the lowest point of the cable.
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Problems

10.50 The cable supports a uniformly distributed load

w = 1 kN/m.

(a) What is the maximum tension in the cable?

(b) What is the length of the cable?

Strategy: You know the coordinates of the attachment points

of the cable relative to its lowest point, so you can use

Eq. (10.10) to determine the coefficient a and then use

a = io/Tq to determine the tension at the lowest point.

Jf

K

v
\V

*^^r^ <^f^f
ff

f
7 m

' '
' r ' ' r '

'
' ' '

'
• <

' 1

w

10 •" - i. n m .

P10.50

10.51 The cable in Problem 10.50 will safely support a tension

of 40 kN. On the basis of this criterion, what is the largest value of

the distributed load w?

10.52 A cable is used to suspend a pipeline above a river. The

towers supporting the cable are 36 m apart. The lowest point of

the cable is 1 .4 m below the tops of the towers. The mass of the

suspended pipe is 2700 kg.

(a) What is the maximum tension in the cable?

(b) What is the suspending cable's length?

P10.52

10.53 In Problem 10.52, let the lowest point of the cable be a

distance h below the tops of the towers supporting the cable.

(a) If the cable will safely support a tension of 70 kN, what is the

minimum safe value of hi

(b) If h has the value determined in part (a), what is the suspend-

ing cable's length?

10.54 The cable supports a uniformly distributed load

w = 750 N/m. The lowest point of the cable is 0. 18 m below the

attachment points C and D. Determine the axial loads in the truss

members AC and BC.

0.4 m

10.55 The cable supports a railway bridge between two tunnels.

The distributed load is w = 1 MN/m, and /; = 40 m.

(a) What is the maximum tension in the cable?

(b) What is the length of the cable?

P10.55

10.56 The cable in Problem 10.55 will safely support a tension

of 40 MN. What is the shortest cable that can be used, and what is

the corresponding value of /;?
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10.57 An oceanographic research ship tows an instrument pack-

age from a cable. Hydrodynamic drag subjects the cable to a uni-

formly distributed force iv = 2 lb/ft. The tensions in the cable at

1 and 2 are 800 lb and 1 300 lb, respectively. Determine the

distance h.

300 ft

P10.57

10.58 Draw a graph of the shape of the cable in Problem 10.57.

10.59 The mass of the rope per unit length is 0.10 kg/m. The

tension at its lowest point is 4.6 N.

(a) What is the maximum tension in the rope?

(b) What is the rope's length?

Strategy: Use the given information to evaluate the coefficient

a = iv/T(). Because the rope is loaded only by its own weight,

the tension is given as a function of x by Eq. (10.21) and the

length of the rope in the horizontal interval from its lowest point

to -v is given by Eq. (10.22).

P10.59

10.60 The stationary balloon's tether is horizontal at point O
where it is attached to the truck. The mass per unit length of the

tether is 0.45 kg/m. The tether exerts a 50-N horizontal force

on the truck. The horizontal distance from point O to point A
where the tether is attached to the balloon is 20 m. What is the

height of point A relative to point O?

P10.60

10.61 In Problem 10.60, determine the magnitudes of the hori-

zontal and vertical components of the force exerted on the balloon

at A by the tether.

10.62 The mass per unit length of lines AB and BC is 2 kg/m.

The tension at the lowest point of cable AB is 1.8 kN. The two

lines exert equal horizontal forces at B.

(a) Determine the sags h^ and Z^.

(b) Determine the maximum tensions in the two lines.

P10.62

10.63 The rope is loaded by 2-kg masses suspended at 1-m in-

tervals along its length. The mass of the rope itself is negligible.

The tension in the rope at its lowest point is 100 N. Determine h

and the maximum tension in the rope.

Strategy: Obtain an approximate answer by modeling the

discrete loads on the rope as a load uniformly distributed along

its length.

P10.63
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10.6 Discrete Loads

Our first applications of equilibrium in Chapter 3 involved determining the

tensions in cables supporting suspended objects. In this section we consider

the case of an arbitrary number A^ of objects suspended from a cable

(Fig. 10.23a). We assume that the weight of the cable can be neglected in

comparison to the suspended weights and that the cable is sufficiently flexible

that we can approximate its shape by a series of straight segments.

Figure 10.23

(a) A' weights suspended from a cable.

(b) The first free-body diagram.

(c) The second free-body diagram. (a)

' A/+ 1

j/N \,|[
''^-'{

N +

^

(c)

Determining the Configuration and Tensions

Suppose that the horizontal distances £>, , bj ^N + ]
are known and that the

vertical distance hfJ+^ specifying the position of the cable's right attachment

point is known. We have two objectives: (1) to determine the configuration

(shape) of the cable by solving for the vertical distances h^, hj, ... , h^ speci-

fying the positions of the attachment points of the weights and (2) to deter-

mine the tensions in the segments 1,2 , A^ + 1 of the cable.

We begin by drawing a free-body diagram, cutting the cable at its left at-

tachment point and just to the right of the weight W, (Fig. 10.23b). We re-

solve the tension in the cable at the left attachment point into its horizontal

and vertical components 7h and T^. Summing moments about the attachment

point /I
I

, we obtain the equation

= hj. bj,. = 0.•^"^(poinl/t.

Our next step is to obtain a free-body diagram by cutting the cable at its left

attachment point and just to the right of the weight Wj (Fig. 10.23c). Sum-

ming moments about At, we obtain

2M(point A2
= hjT^- [b, + b2)T, + b2W, = 0.

Proceeding in this way, cutting the cable just to the right of each of the A^

weights, we obtain A^ equations. We can also draw a free-body diagram by

cutting the cable at its left and right attachment points and sum moments

about the right attachment point. In this way, we obtain A^ -I- 1 equations in

terms of N + 2 unknowns: the two components of the tension T^ and T^ and

the vertical positions of the attachment points /i, , /?2 . .
.

, /i^^. If the vertical po-

sition of just one attachment point is also specified, we can solve the system

of equations for the vertical positions of the other attachment points, deter-

mining the configuration of the cable.



10.6 Discrete Loads 507

Once we know the configuration of the cable and the force 7], , we can

determine the tension in any segment by cutting the cable at the left attach-

ment point and within the segment and summing forces in the horizontal

direction.

Comments on Continuous and Discrete Models

By comparing cables subjected to distributed and discrete loads, we can make

some observations about how continuous and discrete systems are modeled in

engineering. Consider a cable subjected to a horizontally distributed load w
(Fig. 10.24a). The total force exerted on it is wL. Since the cable passes

through the point x = L/2, y = L/2, we find from Eq. (10.10) that a = 4/L,

so the equation for the curve described by the cable is y = {2/L)x~.

In Fig. 10.24b, we compare the shape of the cable with the distributed

load to that of a cable of negligible weight subjected to three discrete loads

W = wLjl with equal horizontal spacing. (We chose the dimensions of the

cable with discrete loads so that the heights of the two cables would be equal

at their midpoints.) In Fig. 10.24c, we compare the shape of the cable with

the distributed load to that of a cable subjected to five discrete loads

W = wL/5 with equal horizontal spacing. In Figs. 10.25a and 10.25b, we
compare the tension in the cable subjected to the distributed load to those in

the cables subjected to three and five discrete loads.

The shape and the tension in the cable with a distributed load are ap-

proximated by the shapes and tensions in the cables with discrete loads.

Although the approximation of the tension is less impressive than the ap-

proximation of the shape, it is clear that the former can be improved by in-

creasing the number of discrete loads.

This approach—approximating a continuous distribution by a discrete

model—is very important in engineering. It is the starting point of the finite

difference and finite element methods. The opposite approach—modeling dis-

crete systems by continuous models—is also widely used, for example, when

the forces exerted on a bridge by traffic are modeled as a distributed load.

7"/r„

Three discrete

loads

loads

Five discrete

loads

Continuous

loads

i U i i i i i i U i i h

Figure 10.24

(a) A cable subjected to a continuous load.

(b) A cable with three discrete loads.

(c) A cable with five discrete loads.

Figure 10.25

(a) The tension in a cable with a continuous load compared to the cable with three

discrete loads.

(b) The tension in a cable with a continuous load compared to the cable with tlve

discrete loads.
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Example 10.9

Cable Subjected to Discrete Loads
Two masses /», = 10 kg and nu = 20 kg are suspended from the cable in

Fig. 10.26.

(a) Determine the vertical distance /it.

(b) Determine the tension in cable segment 2.

Figure 10.26

I m I m 1 m

\l'
•1 m

•

A/
XJ /^^*^--:^

>5CN-. ^^

Solution

(a) We begin by cutting the cable at the left attachment point and just to the

right of the mass w,, and resolve the tension at the left attachment point into

horizontal and vertical components (Fig. a). Summing moments about A,

yields

2A/(poin.A,)= (OT'h- (l)7^v = 0.

(a) First free-body

diagram

T,

We then cut the cable just to the right of the mass m^ (Fig. b) and sum mo-

ments about y42:

^M^,o«..^.^-h{T^- (2)rv + (l)'",g = 0.

(b) Second free-body

diagram.
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The last step is to cut the cable at the right attachment point (Fig. c) and sum

moments about -43:

2M,, -(3)r, + {2)m,g + {l)m,g = 0.
'(point A-i]

We have three equations in terms of the unknowns Ty^,T^, and hj. Solving

them yields Th = 7^ = 131 N and h^ = 1.25 m.

(b)To determine the tension in segment 2, we use the free-body diagram

in Fig. a. The angle between the force Tj and the horizontal is arctan

[(/12 — l)/l] = 14.0°. Summing forces in the horizontal direction,

we obtain

T2 cos 14.0° - Th = 0, (c) Free-body diagram of the entire cable.

T, =
cos 14.0°

135 N.

Problems

10.64 In Example 10.9, what are the tensions in cable segments

1 and 3?

10.65 If the masses in Example 10.9 are changed to n?, = 24 kg

and 1712 — 40 kg, what are the vertical distance hi and the tension

in cable segment 3?

10.66 Two weights, IV, = W^ = 50 lb, are suspended from a

cable. The vertical distance Z;, = 4 ft.

(a) Determine the vertical distance h2.

(b) What is the maximum tension in the cable?

10.69 In Problem 10.68, what are the tensions in cable segments

1 and 2?

P10.68

2 ft

P10.66

10.67 In Problem 10.66, W, = 50 lb, Wj = 100 lb, and the verti-

cal distance hf = 4 ft.

(a) Determine the vertical distance /),.

(b) What is the maximum tension in the cable?

10.68 Three identical masses m = 10 kg are suspended from

the cable. Determine the vertical distances /i, and /?, and draw a

sketch of the configuration of the cable.

10.70 Three masses are suspended from the cable, where

OT = 30 kg. and the vertical distance /i, = 400 mm. Determine

the vertical distances h^ and /i-..

500 mm 700 mm 300 mm 300 mm

200 mm

PIG.70

10.71 In Problem 10.70. what is the maximum tension in the

cable, and where does it occur?

(/)10.72 The cable in the system shown in Problem 10.70 will safe-

ly support a tension of 15 kN. If the vertical distance

hi = 200 mm, what is the largest safe value of m?
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iDiiDo Computational Mechanics
The following example and problems are designed to be solved using a programmable calculator or computer.

Computational Example 10.10
iOlllD
.001011
:iDiioo

As the first step in constructing a suspended pedestrian bridge, a cable is sus-

pended across the span from attachment points of equal height (Fig. 10.27).

The cable weighs 5 lb/ft and is 42 ft long. Determine the maximum tension

in the cable and the vertical distance from the attachment points to the cable's

lowest point.

Figure 10.27

Strategy

Equation (10.22) gives the length s of the cable as a function of the horizontal

distance x from the cable's lowest point and the parameter a — w/Tq. The

term w is the weight per unit length, and Tq is the tension in the cable at its

lowest point. We know that the half-span of the cable is 20 ft, so we can draw

a graph of s as a function of a and estimate the value of a for which

5 = 21 ft. Then we can determine the maximum tension from Eq. (10.21) and

the vertical distance to the cable's lowest point from Eq. (10.20).

Solution

Setting .V = 20 ft in Eq. (10.22),

sinh20a
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we compute ^ as a function of a (Fig. 10.28). The lengtii .y = 21 ft when the

parameter a is approximately 0.027. By examining the computed results near

a = 0.027,

a (ft-) .(ft)

0.0269 20.9789

0.0270 20.9863

0.0271 20.9937

0.0272 21.0012

0.0273 21.0086

0.0274 21.0162

0.0275 21.0237

20.0 Figure 10.28
0.010 0.015 0.020 0.025 0.030 0.035 0.040 Graph of the length 5 as a function of the

ajr parameter a.

we see that 5 is approximately 21 ft when a = 0.0272 ft '. Therefore the ten-

sion at the cable's lowest point is

w
Tn = - = 184 lb,

a 0.0272

and the maximum tension is

T'max = rocosha;c = 184cosh[(0.0272)(20)] = 2121b.

From Eq. (10.20), the vertical distance from the cable's lowest point to the at-

tachment points is

^-.ax
- ;^(cosh«;c - I) = ^^ {cosh [(0.02272) (20)] - l} = 5.58 ft.
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Computational Problems
101110
nniDll
01100

10.73 The beam's length is L = 10 m and the distributed load is (a) Determine the sags /», , and /i,.

,(,-w = 20a:I 1 ^1 N/m.

What is the maximum bending moment in the beam, and where

does it occur?

(b) Determine the maximum tensions in the two lines.

P10.77

PIG.73

10.74 The rope weighs 1 N/m and is 16 m in length.

(a) What is the maximum tension?

(b) What is the vertical distance from the attachment points to the

lowest point of the rope?

P10.74

10.75 A chain weighs 20 lb and is 20 ft long. It is suspended

from two points of equal height that are 10 ft apart.

(a) Determine the maximum tension in the chain.

(b) Draw a sketch of the shape of the chain.

10.76 An engineer wants to suspend high-voltage power lines

between poles 200 m apart. Each line has a mass of 2 kg/m.

(a) If the engineer wants to subject the lines to a tension no

greater than 10 kN. what should be the maximum allowable sag

between poles? That is. what is the largest allowable vertical dis-

tance between the attachment points and the lowest point of

the line?

(b) What is the length of each line?

10.77 The mass per unit length of lines AB and BC is 2 kg/m.

The length of line AB is 62 m. The two lines exert equal horizon-

tal forces at B.

10.78 The mass per unit length of the lines AB and BC in Prob-

lem 10.77 is 2 kg/m. The sag /;, = 4.5 m, but the length of line

AB is unknown. The two lines exert equal horizontal forces at B.

(a) Determine the sag lu-

(b) Determine the maximum tensions in the two lines.

10.79 Two 30-ft cables A and B are suspended from points of

equal height that are 20 ft apart. Cable A is subjected to a 200-lb

load uniformly distributed horizontally. Cable B is subjected to a

200-lb load distributed uniformly along its length. What are the

maximum tensions in the two cables?

10.80 Draw a graph of the two cables in Problem 10.79, compar-

ing their shapes.

10.81 The masses w, = 10 kg and wij = 20 kg. The total length

of the three segments of rope is 5 m.

fa) What are//, and/?,?

(b) What is the maximum tension in the rope?

Strategy: If you choose a value of /?, , you can determine lu

and then L. By drawing a graph of L as a function of /;, . you

can determine the value of /;, that corresponds to L = 5 m.

P10.81
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Liquids and Gases

Wind forces on buildings and aerodynamic forces on cars and airplanes are

examples of forces that are distributed over areas. The downward force exert-

ed on the bed of a dump truck by a load of gravel is distributed over the area

of the bed. The upward force that supports a building is distributed over the

area of its foundation. Loads distributed over the roofs of buildings by accu-

mulated snow can be hazardous. Many forces of concern in engineering are

distributed over areas. In this section we analyze the most familiar example,

the force exerted by the pressure of a gas or liquid.

10.7 Pressure and the Center of Pressure

A surface immersed in a gas or liquid is subjected to forces exerted by molec-

ular impacts. If the gas or liquid is stationary, the load can be described by a

function p, the pressure, defined such that the normal force exerted on a dif-

ferential element dA of the surface is p dA (Figs. 10.29a and 10.29b). (Notice

the parallel between the pressure and a load ic distributed along a line, which

is defined such that the force on a differential element dx of the line is w dx.)

pdA

(a) (b)

Figure 10.29

(a) The pressure on an area.

(b) The force on an element dA\s p dA.

The dimensions of p are (force)/(area). In U.S. Customary units, pres-

sure can be expressed in pounds per square foot or pounds per square inch

(psi). In SI units, pressure can be expressed in newtons per square meter,

which are called pascals (Pa).

In some applications, it is convenient to use the gage pressure

P2 = P (10.23)

where p^tm is the pressure of the atmosphere. Atmospheric pressure varies

with location and climatic conditions. Its value at sea level is approximately

I X 10' Pa in SI units and 14.7 psi or 2120 lb/ft- in U.S. Customary units.

If the distributed force due to pressure on a surface is represented by an

equivalent force, the point at which the line of action of the force intersects

the surface is called the center ofpressure. Let's consider a plane area A sub-

jected to a pressure p and introduce a coordinate system such that the area
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Figure 10.30

(a) A plane area subjected to pressure.

(b) The force on a differential element dA.

(c) The total force acting at the center of

pressure.

lies in the x-y plane (Fig. 10.30a). The normal force on each differential ele-

ment of area dA'i?, p dA (Fig. 10.30b), so the total normal force on A is

-LpdA (10.24)

Now we will determine the coordinates (x^, y^) of the center of pressure

(Fig. 10.30c). Equating the moment of F about the origin to the total moment

due to the pressure about the origin,

[x;\ + »j) X (-fk) = /(^i + >'J) X (-P^k),

and using Eq. (10.24), we obtain

xp dA yp dA

Xp^
r ^ yp r

pdA p
J A JA

(10.25)

dA

These equations determine the position of the center of pressure when the pres-

sure p is known. If the pressure p is uniform, the total normal force {?, F = pA
and Eqs. (10.25) indicate that the center of pressure is the centroid of A.

(a) (0

In Chapter 7 we showed that if you calculate the "area" defined by a load

distributed along a line and place the resulting force at its centroid, the force

is equivalent to the distributed load. A similar result holds for a pressure dis-

tributed on a plane area. The term p dA in Eq. (10.24) is equal to a differential

element dV of the "volume'" between the surface defined by the pressure dis-

tribution and the area A (Fig. 10.31a). The total force exerted by the pressure

is therefore equal to this "volume":

F = dV ^ V.

Substituting p dA = c?Vinto Eqs. (10.25), we obtain

I
i

xdV

yp
=

ydV

dV dV

The center of pressure coincides with the x and y coordinates of the centroid

of the "volume" (Fig. 10.31b).
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P ^.x

(a) (b)

Figure 10.31

(a) The differential element dV = p dA.

(b) The line of action of F passes through

the centroid of V.

Study Questions

1. What is the definition of the pressure pi

2. What is the gage pressure?

3. What is the center of pressure? How can the "volume" defined by the pressure

distribution be used to determine the location of the center of pressure?

10.8 Pressure in a Stationary Liquid

Designers of pressure vessels and piping, ships, dams, and other submerged

structures must be concerned with forces and moments exerted by water pres-

sure. If you swim toward the bottom of a swimming pool, you can feel the

pressure on your ears increase—the pressure in a liquid at rest increases with

depth. We can determine the dependence of pressure on depth by using a sim-

ple free-body diagram.

Introducing a coordinate system with its origin at the surface of the liq-

uid and the positive x axis downward (Fig. 10.32a), we draw a free-body

diagram of a cylinder of liquid that extends from the surface to a depth x

(Fig. 10.32b). The top of the cylinder is subjected to the pressure at the sur-

face, which we call p^. The sides and bottom of the cylinder are subjected

to pressure by the surrounding liquid, which increases from p^ at the

(a) (b)

Figure 10.32

(a) A cylindrical volume that extends to a

depth ,v in a body of stationary liquid.

(b) Free-body diagram of the cylinder.
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surface to a value p at the depth x. The volume of the cylinder is Ax, where

A is its cross-sectional area. Therefore its weight is IV = yAx, where y is

the weight density of the liquid. (Recall that the weight and mass densities

are related by y = pg.) Since the liquid is stationary, the cylinder is in

equilibrium. From the equilibrium equation

Sf, = PqA — p/4 + yAx = 0,

we obtain a simple expression for the pressure p the liquid at depth jc:

p = Po + y-'^- (10.26)

Thus the pressure increases linearly with depth, and the derivation we have used

illustrates why; The pressure at a given depth literally holds up the liquid above

that depth. If the surface of the liquid is open to the atmosphere, po ~ Patm ^nd

we can write Eq. (10.26) in terms of the gage pressure Pg = p —
Patm ^s

Pg = yx. (10.27)

In SI units, the mass density of water at sea level conditions is p = 1000 kg/m^,

so its weight density is approximately y = pg = 9.81 kN/m"\ In U.S. Custom-

ary units, the weight density of water is approximately 62.4 lb/ft\

We have seen that the force and moment due to the pressure on a sub-

merged plane area can be determined in two ways:

1. Integration—Integrate Eq. (10.26) or Eq. (10.27).

2. Volume analogy—Determine the total force by calculating the "volume"

between the surface defined by the pressure distribution and the area A.

The center of pressure coincides with the x and y coordinates of the

centroid of the volume.

Example 10.11

Pressure Force and Center of Pressure
An engineer making preliminary design studies for a canal lock needs to de-

termine the total pressure force on a submerged rectangular plate (Fig. 10.33)

and the location of the center of pressure. The top of the plate is 6 m below

the surface. Atmospheric pressure is p.^^^ = 1 X 10^ Pa, and the weight den-

sity of the water is y = 9.81 kN/m^.

T

Figure 10.33

6 m

12 m

1— 8 m—
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Strategy

We will determine the pressure force on a differential element of area of the

plate in the form of a horizontal strip and integrate to determine the total

force and moment exerted by the pressure.

Solution

In terms of a coordinate system with its origin at the surface and the positive

X axis downward (Fig. a), the pressure of the water is p = p.^^^ + yx. The

horizontal strip dA = %dx. Therefore the total force exerted on the face of the

plate by the pressure is

F = \pdA=
I (p3,„, + yx)iSdx) = 96/73,„ + 1150y

= (96)(l X 10^) + (1150)(9810) = 20.9 MN.

t

6 m

18

i
X

m M
d

1H
Va ^,^^^^^H

— 8 m— M
The moment about the v axis due to the pressure on the plate is

M = xpdA = / .v(/7„„, + yx){S dx) = 262 MN-m.
JA Jb

The force F acting at the center of pressure (Fig. b) exert a moment about the

y axis equal to M:

x,,F = M.

Therefore the location of the center of pressure is

M 262 MN-m
X,, = — = = 12.5 m.

' F 20.9 MN

(a) An element of area in the form of a

horizontal strip.

(b) The center of pressure.
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Example 10.12

Gate Loaded by a Pressure Distribution

The gate AB in Fig. 10.34 has water of 2-ft depth on the right side. The width

of the gate (the dimension into the page) is 3 ft, and its weight is 100 lb. The

weight density of the water is y = 62.4 Ib/ft^. Determine the reactions on the

gate at the supports A and B.

Figure 10.34

m

fefe^

+ p, = rx

p.aim ' aim -V

(a) The pressures acting on the faces of

the gate.

(b) The face of the gate and the differential

element dA.

Strategy

The left face of the gate and the right face above the level of the water are

exposed to atmospheric pressure. From Eqs. (10.23) and (10.26), the pres-

sure in the water is the sum of atmospheric pressure and the gage pressure

Pg = yx, where x is measured downward from the surface of the water. The

effects of atmospheric pressure cancel (Fig. a), so we need to consider only

the forces and moments exerted on the gate by the gage pressure. We will

determine them by integrating and also by calculating the "volume" of the

pressure distribution.

Solution

Integration The face of the gate is shown in Fig. b. In terms of the differ-

ential element of area dA, the force exerted on the gate by the gage pressure is

F =

— 3 ft

p, dA = (yx)3 dx = 374 lb,

A
'

Jo

T
1 ft

2 ft

X

1

dA t

dx
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and the moment about the v axis is

M - xpg dA x{yx)3ctc = 499ft-lb.

M ^0

The position of the center of pressure is

M 499 ft-lb

3741b
= 1.33 ft.

Volume Analogy The gage pressure at the bottom of the gate is pg = (2 ft)y

(Fig. c), so the "volume" of the pressure distribution is

^ =
} [2 ft][(2 ft)(62.4 lb/ft^)][3 ft] = 374 lb.

The X coordinate of the centroid of the triangular distribution, which is the

center of pressure, is I (2) = 1.33 ft.

2 ft

A2ft)= 1.33 ft

(̂2 ft)/

Determining the Reactions We draw the free-body diagram of the gate in

Fig. d. From the equilibrium equations.

SF, = A, + 100 = 0.

2F, = A- + B - 374 = 0,

2M(„,,,) = (1)S - {2)A, + (1.33)(374) = 0,

we obtain A, = -100 lb, A. = 291.2 lb, and B = 83.2 lb.

374 lb

(c) Determining the "volume" of the

pressure distribution and its centroid.

(d) Free-body

diagram of the gate.
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Example 10.13

Determination of a Pressure Force
The container in Fig. 10.35 is filled with a liquid with weight density y. Deter-

mine the force exerted by the pressure of the liquid on the cylindrical wall AB.

Figure 10.35

(a) The pressure of the liquid on the

wall AB.

1

''atm

111^.
/ »•

/ *•

/

/ J^
]>^\

(b) Free-body diagram of the liquid to the

right of A.

Strategy

The pressure of the liquid on the cylindrical wall varies with depth (Fig. a). It

is the force exerted by this pressure distribution we want to determine. We
could determine it by integrating over the cylindrical surface, but we can

avoid that by drawing a free-body diagram of the quarter-cylinder of liquid to

the right of A.

Solution

We draw the free-body diagram of the quarter-cylinder of liquid in Fig. b. The

pressure distribution on the cylindrical surface of the liquid is the same one

that acts on the cylindrical wall. If we denote the force exerted on the liquid

by this pressure distribution by F^, the force exerted by the liquid on the

cylindrical wall is —F^.

The other forces parallel to the ,v-v plane that act on the quarter-cylinder

of liquid are its weight, atmospheric pressure at the upper surface, and the

pressure distribution of the liquid on the left side. The volume of liquid is

(577 R-)b. so the force exerted on the free-body diagram by the weight of the

liquid is {jTrR'^bi. The force exerted on the upper surface by atmospheric

pressure is Rbp^^^ i.

We can integrate to determine the force exerted by the pressure on the

left side of the free-body diagram. Its magnitude is

pdA =
(/^atm + yx)bdx = Rb[ p.,,„ + -yR

From the equilibrium equation

1 I

SF = -y7TR'bi + Rbp,,J + Rbl^p,,^ + -yR jj + F^ = 0,

we obtain the force exerted on the wall AB by the pressure of the liquid:

77

p Rb[p,,^ + -yRji + Rb\^p,,^ + -yR]y
1
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Problems

10.82 A deep submersible research vehicle operates at a depth of

1000 m. The average mass density of the water is

p = 1025 kg/m\ Atmospheric pressure is Pa,n,
= 1 X 10^ Pa. De-

termine the pressure on the vehicle's surface (a) in pascals (Pa);

(b) in pounds per square inch (psi).

10.83 An engineer planning a water system for a new communi-

ty estimates that at maximum expected usage, the pressure drop

between the central system and the farthest planned fire hydrant

will be 25 psi. Firefighting personnel indicate that a gage pressure

of 40 psi at the fire hydrant is required. The weight density of the

water is y = 62.4 lb/ft\ How tall would a water tower at the cen-

tral system have to be to provide the needed pressure?

10.84 A cube of material is suspended below the surface of a

liquid of weight density y. By calculating the forces exerted on

the faces of the cube by pressure, show that their sum is an up-

ward force of magnitude yb^.

i aij
P10.84

10.85 The area shown is subjected to a uniform pressure

; Px 1 X 10' Pa.

(a) What is the total force exerted on the area by the pressure?

(b) What is the moment about the y axis due to the pressure on

the area?

(a) What is the total force exerted on the area by the pressure?

(b) What is the moment about the y axis due to the pressure on

the area?

P10.87

10.88 Determine the coordinates of the center of pressure in

Problem 10.87.

10.89 The top of the rectangular plate is 2 m below the surface

of a lake. Atmospheric pressure is z?-,,^
= 1 X lO"' Pa and the

mass density of the water is p = 1000 kg/m^.

(a) What is the maximum pressure exerted on the plate by the

water?

(b) Determine the force exerted on a face of the plate by the pres-

sure of the water

2in

P10.89

P10.85

10.86 Determine the coordinates of the center of pressure in

Problem 10.85.

10.87 The area shown is subjected to a uniform pressure

Pa.m = 14.7 psi.

10.90 In Problem 10.89. how far below the top of the plate is the

center of pressure located?

10.91 The width of the dam (the dimension into the page) is

100 m. The mass density of the water is p = 1000 kg/m\ Deter-

mine the force exerted on the dam by the gage pressure of the
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water (a) by integration; (b) by calculating the "volume" of the

pressure distribution.

P10.91

10.92 In Problem 10.91. how far down from the surface of

the water is the center of pressure due to the gage pressure of the

water on the dam?

10.93 The width of the gate (the dimension into the page) is 3 m.

Atmospheric pressure is p^^^ =1X10" Pa and the mass density

of the water is p = 1000 kg/m"\ Determine the horizontal force

and couple exerted on the gate by its built-in support A.

1

2m m
i

4
A P10.93

10.94 The homogeneous gate weighs 100 lb, and its width (the

dimension into the page) is 3 ft. The weight density of the water is

•y = 62.4 lb/ft\ and atmospheric pressure is p^^^ = 2120 lb/ft".

Determine the reactions at A and B.

10.95 The width of the gate (the dimension into the page) is 2 m
and there is water of depth d = 1 m on the right side. Atmospher-

ic pressure is p„„ = 1 X lO"* Pa and the mass density of the water

is p = 1000 kg/m\ Determine the horizontal forces exerted on

the gate at A and B. .

! tj
500 mm 1

f 1 1

A d m

. 4
P10.95

10.96 The gate in Problem 10.95 is designed to rotate and re-

lease the water when the depth d exceeds a certain value. What is

that depth?

10.97 The dam has water of depth 4 ft on one side. The width of

the dam (the dimension into the page) is 8 ft. The weight density

of the water is y = 62.4 lb/ft\ and atmospheric pressure

Pjim = 2120 lb/ft". If you neglect the weight of the dam, what are

the reactions at A and B?

P10.97

10.98 A spherical tank of 400-mm inner radius is full of water

(
p = 1 000 kg/m' ) . The pressure of the water at the top of the

tank is 4 X lO'Pa.

P10.94 P10.98
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(a) What is the pressure of the water at the bottom of the tank?

(b) What is the total force exerted on the inner surface of the tank

by the pressure of the water?

Strategy: For (b), draw a free-body diagram of the sphere of

water in the tank.

10.99 Consider a plane, vertical area A below the surface of a

liquid. Let po be the pressure at the surface.

(a) Show that the force exerted by pressure on the area is

F = pA, where p = pg + yx is the pressure of the liquid at the

centroid of the area.

(b) Show that the x coordinate of the center of pressure is

III
pA'

X +

where /, is the moment of inertia of the area about the y' axis

through its centroid.

P10.99

10.100 A circular plate of 1 -m radius is below the surface of a

stationary pool of water. Atmospheric pressure is

Pmrn =1X10'' Pa, and the mass density of the water is

p = 1000 kg/m-\ Determine (a) the force exerted on a face of the

plate by the pressure of the water; (b) the .v coordinate of the cen-

ter of pressure. (See Problem 10.99.)

->'

10.101 The tank consists of a cylinder with hemispherical ends.

It is filled with water (p = 1000 kg/m^). The pressure of the

water at the top of the tank is 140 kPa. Determine the magnitude

of the force exerted by the pressure of the water on each hemi-

spherical end of the tank.

Strategy: Draw a free-body diagram of the water to the

right of the dashed line in the figure. See Example 10.13.

PlO.lOl

10.102 An object of volume V and weight W is suspended

below the surface of a stationary liquid of weight density y
(Fig. a). Show that the tension in the cord is W — Vy. In other

words, show that the pressure distribution on the surface of the ob-

ject exerts an upward force equal to the product of the object's

volume and the weight density of the water. This result is due to

Archimedes (287-212 B.C.)

Strategy: Draw the free-body diagram of a volume of liquid

that has the same shape and position as the object (Fig. b).

P10.102

PIO.IOO



524 Chapter 10 Internal Forces and Moments

Chapter Summary

r)-

(a)

Beams

The internal forces and moment in a beam are expressed as the axial force P,

shear force V, and bending moment M. Their positive directions are defined

in Fig. a.

By cutting a beam at an arbitrary position .v, the axial load P, shear force

V, and bending moment M can be determined as functions of .v. Depending

on the loading and supports of the beam, it may be necessary to draw several

free-body diagrams to determine the distributions for the entire beam. The

graphs of V and M as functions of x are the shearforce and bending moment

diagrams.

The distributed load, shear force, and bending moment in a portion of a

beam subjected only to a distributed load satisfy the relations

dV

dx

dM
dx

-IV,

V.

Eq. (10.2)

Eq. (10.3)

For segments of a beam that are unloaded or are subjected to a distributed

load, these equations can be integrated to determine V and M as functions

of X. To obtain the complete shear force and bending moment diagrams,

forces and couples must also be accounted for.

I I lllTrmTnTrrmlTrlt]

(b)

Cables

Loads Distributed Uniformly Along a Straight Line If a suspended cable

is subjected to a horizontally distributed load w (Fig. b), the curve described by

the cable is the parabola

1 ,

y =
2

^^'^ Eq. (10.10)

where a = w/To and 7",, is the tension in the cable at x = 0. The tension in

the cable at a position x is

T = J-qVi + aV, Eq. (10.11)

and the length of the cable in the horizontal interval from to x is

Vl + flV + -\n[ax + Vl + a-x-]\. Eq. (10.12)^ = 2^'^

[

Loads Distributed Uniformly Along a Cable If a suspended cable is sub-

jected to a load w distributed along its length, the curve described by the

cable is the catenary

y = — {e"' + e'"' - 2) = - (coshflx - 1), Eq. (10.20)
2a a



where a = w/Tq and Tq is the tension in the cable at .v = 0. The tension in

the cable at a position x is

T = T^Jl + -{e"' - e'"')- = Tocoshax, Eq. (10.21)

and the length of the cable in the horizontal interval from to x is

, = ^{e^-^-e-)=^'^^^^. Eq. (10.22)
2a a

Discrete Loads If A^ known weights are suspended from a cable and the

positions of the attachment points of the cable, the horizontal positions of the

attachment points of the weights, and the vertical position of the attachment

point of one of the weights are known, the configuration of the cable and the

tension in each of its segments can be determined.

Liquids and Gases

The pressure /? on a surface is defined so that the normal force exerted on an

element dA of the surface \s, p dA. The total normal force exerted by pressure

on a plane area A is

L^
dA. Eq. (10.24)

The center of pressure is the point on A at which F must be placed to be

equivalent to the pressure on A. The coordinates of the center of pressure are

Xp = L
xp dA

L^

yp
= h^

dA

dA
L^

Eq. (10.25)

dA

The pressure in a stationary liquid is

P = Po + yx. Eq. (10.26)

where p^ is the pressure at the surface, y is the weight density of the liquid,

and X is the depth. If the surface of the liquid is open to the atmosphere,

Po ~ Paini' the atmospheric pressure.

Review Problems

Chapter Summary 525

10.103 Determine the internal forces and moment at B (a) if 10.104 Determine the internal forces and moment (a) at B\ (b) at C.

X = 250 mm; (b) if .v = 750 mm.

y

1801b
B

20 N-m

!^ & c

500 mm

1000 mm

&
B C D^^

6 ft- 3ft-

P10.103 12 ft- P10.104
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10.105 (a) Determine the maximum bending moment in the

beam and the value of x where it occurs.

(b) Show that the equations for V and M as functions of x satisfy

the equation V = dM/dx.

360 lb/ft

4 ft

P10.109
•II

10.110 Determine the internal forces and moments at A.

18 ft-

P10.105

10.106 Draw the shear and bending moment diagrams for the

beam in Problem 10.105.

10.107 Determine the shear force and bending moment diagram's

for the beam.

H = 10(1 2x-;c-) lb/ft

12 ft

P10.107

10.108 Draw the shear force and bending moment diagrams for

beam ABC.

C& ^17

-2 m-

D

4kN
-2ni -U 2 m-

1 m

P10.108

10.109 Draw the shear force and bending moment diagrams for

beam ABC.

3kN/m

2m 1 m —|-^ I m —1»- 1 m -»

PlO.llO

10.111 Draw the shear force and bending moment diagrams of

beam BC in Problem 10.1 10.

10.112 Determine the internal forces and moment at B (a) if

.V = 250 mm; (b) if x = 750 mm.

20N-m

40 N

P10.112

10.113 Draw the shear force and bending moment diagrams for

the beam in Problem 10.112.

10.114 The homogeneous beam weighs 1000 lb. What are the

internal forces and bending moment at its midpoint?

^2ft-H 3 ft
-

10 ft- P10.114
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10.115 Draw the shear force and bending moment diagrams for

the beam in Problem 10.1 14.

10.116 At A the main cable of the suspension bridge is horizon-

tal and its tension is 1 X 10* lb.

(a) Determine the distributed load acting on the cable.

(b) What is the tension at 5?

P10.116

10.117 The power line has a mass of 1 .4 kg/m. If the line will

safely support a tension of 5 kN, determine whether it will safely

support an ice accumulation of 4 kg/m.

10.119 In Problem 10. 1 1 8, determine the magnitude of the net

moment exerted on the window about the horizontal axis L by

the pressure of the seawater (y = 64 lb/ft') and the atmospheric

pressure of the air on the opposite side. (See Problem 10.99.)

10.120 The gate has water of 2-m depth on one side. The width

of the gate (the dimension into the page) is 4 m, and its mass is

160 kg. The mass density of the water is p = 1000 kg/m\ and at-

mospheric pressure is Pa,n,
= 1 X 10^ Pa. Determine the reactions

on the gate at A and B. (The support at B exerts only a horizontal

reaction on the gate.)

P10.120

P10.117

10.118 The water depth at the center of the elliptical aquarium

window is 20 ft. Determine the magnitude of the net force exerted

on the window by the pressure of the seawater (y = 64 lb/ft')

and the atmospheric pressure of the air on the opposite side. (See

Problem 10.99.)

-fe"^#

10.121 The dam has water of depth 4 ft on one side. The width

of the dam (the dimension into the page) is 8 ft. The weight densi-

ty of the water is y = 62.4 lb/ft\ and atmospheric pressure is

p^,^ = 2120 lb/ft". If you neglect the weight of the dam, what are

the reactions at A and Bl

P10.121

P10.118
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v^

The force necessary to hold the extensible platform

in equilibrium can be determined by subjecting the

platform to a hypothetical motion and applying the

concept of virtual work.



H

Virtual Work
and Potential

Energy

When a spring is stretched, the work performed is stored in the spring

as potential energy. Raising an extensible platform increases its

gravitational potential energy. In this chapter we define work and

potential energy and introduce a general and powerful result called the principle

of virtual work.
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11.1 Virtual Work

(b)

Figure 11.1

(a) A force F acting on an object.

(b) A displacement dr of P.

(c) The work dU = (|F| cosO) \dr\.

The principle of virtual work is a statement about work done by forces and

couples when an object or structure is subjected to various hypothetical mo-

tions. Before we can introduce this principle, we must define work.

Work

Consider a force acting on an object at a point P (Fig. 11.1a). Suppose that

the object undergoes an infinitesimal motion, so that P has a differential dis-

placement dr (Fig. 11.1b). The work dU done by F as a result of the displace-

ment dr is defined to be

dU = F • dr. (11.1)

From the definition of the dot product. dU = (|F| cos0) \dr\, where 6 is the

angle between F and dr (Fig. 11.1c). The work is equal to the product of the

component of F in the direction of dr and the magnitude of dr. Notice that if

the component of F parallel to dr points in the direction opposite to dr, the

work is negative. Also notice that if F is perpendicular to dr, the work is zero.

The dimensions of work are (force) X (length).

Now consider a couple acting on an object (Fig. 11.2a). The moment due

to the couple is M = Fh in the counterclockwise direction. If the object rotates

through an infinitesimal counterclockwise angle da (Fig. 1 1 .2b), the points of

application of the forces are displaced through differential distances 5 h da.

Consequently, the total work done is dU = F{\h da) + F{jh da) = M da.

We see that when an object acted on by a couple M is rotated through an

angle da in the same direction as the couple (Fig. 1 1 .2c), the resulting work is

dU=Mda. (11.2)

If the direction of the couple is opposite to the direction of da, the work is

negative.

Srfa

Figure 11.2

(a) A couple acting on an object.

(b) An infinitesimal rotation of the object.

(c) An object acted on by a couple M
rotating through an angle da. (c)



11.1 Virtual Work 531

Principle of Virtual Work

Now that we have defined the work done by forces and couples, we can intro-

duce the principle of virtual work. Before stating it, we first discuss an exam-

ple to give you context for understanding the principle.

The homogeneous bar in Fig. 1 1.3a is supported by the wall and by the

pin support at A and is loaded by a couple M. The free-body diagram of the

bar is shown in Fig. 1 1 .3b. The equilibrium equations are

2F =

IF.

2M,(point A)

A, - N = 0, (11.3)

Ay-W = 0, (11.4)

A^Lsina - W-Lcosa -- M = 0. (11.5)

(a)

Figure 11.3

(a) A bar subjected to a couple M.

(b) Free-body diagram of the bar.

(b)

We can solve these three equations for the reactions A^, Ay, and A'. However,

we have a different objective.

Let's ask the following question: If the bar is acted on by the forces and

couple in Fig. 11.3b and we subject it to a hypothetical infinitesimal transla-

tion in the x direction, as shown in Fig. 1 1 .4, what work is done? The hypo-

thetical displacement Sx is called a virtual displacement of the bar, and the

resulting work 8U is called the virtual work. The pin support and the wall

prevent the bar from actually moving in the .v direction: the virtual displace-

ment is a theoretical artifice. Our objective is to calculate the resulting virtual

work:

SU = A,8x + {-N)dx = [a, - N)8x. (11.6)

The forces A^ and W do no work because they are perpendicular to the dis-

placements of their points of application. The couple M also does no work,

because the bar does not rotate. Comparing this equation with Eq. (1 1.3), we
find that the virtual work equals zero.

Next we give the bar a virtual translation in the y direction (Fig. 11.5).

The resulting virtual work is

5U = A,8y + {-W)8y = [A, - W)8y.

From Eq. (1 1 .4), the virtual work again equals zero.

(11.7)

Figure 11.4

A virtual displacement 8x.

Figure 11.5

A virtual displacement Sy.
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Finally, we give the bar a virtual rotation while holding point A fixed

(Fig. 1 1 .6a). The forces A, and A,, do no work because their point of application

does not move. The work done by the couple M is —M 8a, because its direction

is opposite to that of the rotation. The displacements of the points of application

of the forces N and W are shown in Fig. 11.6b, and the components of the

forces in the direction of the displacements are shown in Fig. 1 1.6c. The work

done by N is (/V sina)(Z, 5a), and the work done by W is {-W cosa){{L 8a).

The total work is

dU = {Nsma){L8a) + {-W cos a)i- L 8a] - M 8a

= (NLsina - W-Lcosa - Mj5a. (11.8)

From Eq. (11.5), the virtual work resulting from the virtual rotation is also

zero.

Figure 11.6

(a) A virtual rotation 5a.

(b) Displacements of the points of application of N and W.

(c) Components of A' and W in the direction of the displacements.

We have shown that for three virtual motions of the bar, the virtual work

is zero. These results are examples of a form of the principle of virtual work:

Ifan object is in equilibrium, the virtual work done by the external forces and

couples acting on it is zero for any virtual translation or rotation:

8U - 0. (11.9)

As our example illustrates, this principle can be used to derive the equilibri-

um equations for an object. Subjecting the bar to virtual translations 8x and

8y and a virtual rotation 8a results in Eqs. (1 1.6)-(1 1.8). Because the virtual

work must be zero in each case, we obtain Eqs. (1 1.3)-(1 1.5). But there is no

advantage to this approach compared to simply drawing the free-body dia-

gram of the object and writing the equations of equilibrium in the usual way.

The advantages of the principle of virtual work become evident when we

consider structures.
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Application to Structures

The principle of virtual work stated in the preceding section applies to each

member of a structure. By subjecting certain types of structures in equilibri-

um to virtual motions and calculating the total virtual work, we can determine

unknown reactions at their supports as well as internal forces in their

members. The procedure involves finding virtual motions that result in virtual

work being done both by known loads and by unknown forces and couples.

Suppose that we want to determine the axial load in member BD of the

truss in Fig. 1 1.7a. The other members of the truss are subjected to the 4-kN

load and the forces exerted on them by member BD (Fig. 1 1.7b). If we give

the structure a virtual rotation Sa as shown in Fig. 1 13c, virtual work is done

by the force Tgp acting at B and by the 4-kN load at C. Furthermore, the vir-

tual work done by these two forces is the total virtual work done on the mem-
bers of the structure, because the virtual work done by the internal forces they

exert on each other cancels out. For example, consider joint C (Fig. 1 1 .7d).

The force T„c is the axial load in member BC. The virtual work done at C on

member BC is Tgci^Am) 8a, and the work done at C on member CD is

(4 kN - rg(;)(l-4 m) 6a. When we add up the virtual work done on the mem-
bers to obtain the total virtual work on the structure, the virtual work due to

the internal force Tg^ cancels out. (If the members exerted an internal couple

on each other at C—for example, as a result of friction in the pin support

—

the virtual work would not cancel out.) Therefore we can ignore internal

forces in calculating the total virtual work on the structure:

SU = {TBaCOse){lAm)da + (4 kN)(1.4 m) 5a = 0.

The angle 6 = arctan( 1.4/1) = 54.5°. Solving this equation, we obtain

Tbi) = -6.88 kN.

We have seen that using virtual work to determine reactions on members

of structures involves two steps:

1. Choose a virtual motion—Identify a virtual motion that results in virtual

work being done by known loads and by an unknown force or couple

you want to determine.

2. Determine the virtual work—Calculate the total virtual work resulting

from the virtual motion to obtain an equation for the unknown force or

couple.

Study Questions
1. What work is done by a force F when its point of application undergoes a

displacement dr'l

2. What work is done by a couple M when the object on which it acts rotates

through an angle da in the same direction as the couple?

3. What does the principle of virtual work say about the work done when an

object in equilibrium is subjected to a virtual translation or rotation?

1 m
4kN

(a)

4kN

(b)

(1.4mi<5a (1.4 m) 5a
4kN

(c)

(1.4 m) 5a (1.4 m) 5a
4kN

Figure 11.7

(a) A truss with a 4-kN load.

(b) Forces exerted by member BD.

(c) A virtual motion of the structure.

(d) Calculating the virtual work on

members BC and CD at the joint C.
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II

Example 11.1

Applying Virtual Worl< to a Structure
For the structure in Fig. 1 1.8, use the principle of virtual work to determine

the horizontal reaction at C.

Figure 11.8

Solution

Choose a Virtual Motion We draw the free-body diagram of the structure

in Fig. a. Our objective is to determine C^. If we hold point A fixed and sub-

ject bar AB to a virtual rotation 5a while requiring point C to move horizon-

tally (Fig. b), virtual work is done only by the external loads on the structure

and by C^. The reactions A^ and A^. do no work because A does not move, and

the reaction C, does no work because it is perpendicular to the virtual dis-

placement of point C.

400 sin 40° N /^ , g

(a) Free-body diagram of the structure. (b) A virtual displacement in which A
remains fixed and C moves horizontally.

Determine the Virtual Work The virtual work done by the 400-N force is

(400 sin 40° N)(l m) 8a. The bar BC undergoes a virtual rotation 5a in the

counterclockwise direction, so the work done by the couple is (500 N-m) 5a.

In terms of the virtual displacement 5x of point C, the work done by the reac-

tion Cj is Q5x. The total virtual work is

SU = (400sin40°)(l)5a -f- 5005a + C,Sx = 0.
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To obtain C, from this equation we must determine the relationship between

5a and Sx. From the geometry of the structure (Fig. c), the relationship

between the angle a and the distance x from A to C is

X — 2(2cosa).

(c) The geometry for determining the

relation between 5a and Sx.

The derivative of this equation with respect to a is

da
-4 sin a.

Therefore an infinitesimal change in x is related to an infinitesimal change in

a by

dx = —4 sin a da.

Because the virtual rotation 8a in Fig. b is a decrease in a, we conclude that

8x is related to 8a by

8x = 4 sin 40° Sa.

Substituting this expression into our equation for the virtual work gives

8U = [400sin40° + 500 + C,(4sin40°)] Sa = 0.

Solving, we obtain C, = —294 N.

Discussion

Notice that we ignored the internal forces the members exert on each other at

B. The virtual work done by these internal forces cancels out. To obtain the

solution, we needed to determine the relationship between the virtual dis-

placements 8x and 8a. Determining the geometrical relationships between

virtual displacements is often the most challenging aspect of applying the

principle of virtual work.
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Example 11.2

Applying Virtual Work to a Machine
The extensible platform in Fig. 11.9 is raised and lowered by the hydraulic

cylinder BC. The total weight of the platform and men is W. The weights of the

beams supporting the platform can be neglected. What axial force must the hy-

draulic cylinder exert to hold the platform in equilibrium in the position shown?

Strategy

We can use a virtual motion that coincides with the actual motion of the plat-

form and beams when the length of the hydraulic cylinder changes. By calcu-

lating the virtual work done by the hydraulic cylinder and by the weight of

the men and platform, we can determine the force exerted by the hydraulic

cylinder.

Solution

Choose a Virtual Motion We draw the free-body diagram of the platform

and beams in Fig. a. Our objective is to determine the force F exerted by the

hydraulic cylinder If we hold point A fixed and subject point C to a horizon-

tal virtual displacement 8x. the only external forces that do virtual work are F
and the weight W. (The reaction due to the roller support at C is perpendicu-

lar to the virtual displacement.)

Figure 11.9

(a) Free-body diagram of the platform and

supporting beams.
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Determine the Virtual Work The virtual work done by the force F as

point C undergoes a virtual displacement 8x to the right (Fig. b) is —F 8x. To

determine the virtual work done by the weight W. we must determine the ver-

tical displacement of point D in Fig. b when point C moves to the right a dis-

tance 5.V. The dimensions b and h are related by

b- ^ h-^- L\

where L is the length of the beam AD. Taking the derivative of this equation

with respect to b, we obtain

dh
2b + 2/2— = 0,

db

which we can solve for dh in terms of db:

(b) A virtual displacement in which A

remains fixed and C moves horizontally.

dh >
Thus when b increases an amount bx, the dimension h decreases an amount

{bjh') 6x. Because there are three pairs of beams, the platform moves down-

ward a distance {'ib/h) 8x, and the virtual work done by the weight is {'ib/h)W

8x. The total virtual work is

8U -F + \^\W dx = 0,

and we obtain F = {3b/h)W.

Problems

The following problems are to be solved using the principle

of virtual work.

11.1 Determine the reaction at B.

Strategy: Subject the beam to a virtual rotation about A.

300 N-m

s ^
ri

—

h

s
h

1

2kN

2.4 kN-mm B ^30°

400 mm- 800 mm -400 mm-

11.3 Determine the tension in the cable.

P11.2

5m Pll.l

11.2 (a) Determine the virtual work done by the 2-kN force and

the 2.4 kN-m couple when the beam is rotated through a counter-

clockwise angle 86 about point A.

(b) Use the result of (a) to determine the reaction at B.

60

£t
—0.8 m- 1.6 m-

T2OON

P11.3
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11.4 The L-shaped bar is in equilibrium. Determine F.

600 mm
, 60N

h:

-500 mm-

100 N-m

500 mm
P11.4

11.5 The dimension L = 2 m and iv^ = 400 N/m.

(a) Determine the virtual work done by the distributed load when

the beam is rotated through a counterclockwise angle 86 about

point A.

(b) Use the result of part (a) to determine the reaction at B.

Strategy: To do part (a), remember that the force exerted by

the distributed load on an element of the beam of length dx is

w dx. You can calculate the virtual work done by the force w dx

and then integrate to obtain the virtual work done by the entire

distributed load.

P11.5

11.6 (a) Determine the virtual work done by the distributed

load when the beam is rotated through a counterclockwise angle

86 about point A.

(b) Determine the reactions at the built-in support A.

M.' = 3(l -.v-/25)kN/m

11.8 Determine the reaction at the roller support.

200 N

1.5 m

Im

fl

c

1 m

1.5 m

1.5m- ^ P11.8

11.9 Determine the couple M necessary for the mechanism to be

in equilibrium.

II

(f

600 N/m P11.9

P11.6

11.7 The mechanism is in equilibrium. Determine the force R in

terms of F.

11.10 The system is in equilibrium. The total mass of the sus-

pended load and assembly A is 120 kg.

(a) By using equilibrium, determine the force F.

(b) Using the result of (a) and the principle of virtual work, deter-

mine the distance the suspended load rises if the cable is pulled up-

ward 300 mm at B.

P11.7 Pll.lO
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11.11 Determine the force P necessary for the mechanism to be

in equilibrium.

Strategy: Write the law of cosines in terms of a and take

the derivative of the resulting equation with respect to a. (See

Example 11.2.)

200 mm
400 mm

600 mm

Pll.ll

11.12 The system is in equilibrium, the weights of the bars are

negligible, and the angle a = 20°. Determine the magnitude of

the friction force exerted on the bar at A.

8x

P11.14

11.15 The linkage is in equilibrium. What is the force F?

P11.12

11.13 Determine the magnitude of the force exerted on the wall

by the block at A.

— 200 mm— 400 mm J
P11.15

11.16 The linkage is in equilibrium. What is the force F?

P11.13 3ft

11.14 Show that 8x is related to 8a by

L,jr sin a
8x = 8a.

X — L, cos a

^4ft—|- 6 ft- -4 ft- ;ft -{

P11.16
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11.17 Bar AC is connected to bar BD by a pin that fits in the

smooth vertical slot. The masses of the bars are negligible. If

Ma = 30 N-m, what couple M^ is necessary for the system to

be in equilibrium?

-0.7 m-

P11.17

11.18 The angle a = 20°. and the force exerted on the station-

ary piston by pressure is 4 kN toward the left. What couple M is

necessary to keep the system in equilibrium?

P11.18

11.19 The structure is subjected to a 400-N load and is held in

place by a horizontal cable. Determine the tension in the cable.

I400N

11.20 If the car jack is subjected to a force F = 6.5 kN, what is

the tension in the threaded shaft between B and D?

P11.20

11.21 What are the reactions at A and B?

Strategy: Use the equilibrium equations to determine the

horizontal components of the reactions, and use the principle of

virtual work to determine the vertical components.

300 lb

P11.21

11.22 This device raises a load W by extending the hydraulic

actuator DE. The bars AD and BC are each 2 m long, and the dis-

tances h = \.4m and h = 0.8 m. If W = 4 kN, what force must

the actuator exert to hold the load in equilibrium?

P11.19 P11.22
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11.23 Determine the force P necessary for the mechanism to be

in equilibrium.

600 mm

600 mm

11.24 The collar A weighs 100 lb, and friction is negligible. De-

termine the tension in the cable AB.

Strategy: Let s be the distance along the bar from C to the

collar, and let tco be a unit vector that points from C toward D.

To apply the principle of virtual work, let the collar undergo a

virtual displacement 8stco.

P11.23

P11.24

11.2 Potential Energy

The work of a force F due to a differential displacement of its point of appli-

cation is

dU ^Y • dr.

If a function of position V exists such that for any dr,

dU = F-dr = -dV, (11.10)

the function V is called the potential energy associated with the force F, and

F is said to be conserx'ative. (The negative sign in this equation is in keeping

with the interpretation of V as "potential" energy. Positive work results from

a decrease in V.) If the forces that do work on a system are conservative, we
will show that you can use the total potential energy of the system to deter-

mine its equilibrium positions.

Examples of Conservative Forces

Weights of objects and the forces exerted by linear springs are conservative.

In the following sections we derive the potential energies associated with

these forces.

Weight in terms of a coordinate system with its y axis upward, the force

exerted by the weight of an object is F = -Wj (Fig. 1 1.10a). If we give the

object an arbitrary displacement dr = d.x i + dy j + ^- k (Fig. 1 1.10b), the

work done by its weight is

dU = F dr ^ (-Vyj) • {d.x i + dy j + dzk) ^ -W dy.

^

I
(a)

(b)

Figure 11.10

(a) Force exerted by the weight of an object.

(b) A differential displacement.
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Figure 11.11

(a) A spring connected to an object.

(b) The force exerted on the object.

(c) A differential displacement of the

object.

(d) The work done by the force is

dU = -kS dS.

We seek a potential energy V such that

dU - -W dy = -dV, (11.11)

or

dV_

dy
= W.

If we neglect the variation in the weight with height and integrate, we obtain

V = Wy + C.

The constant C is arbitrary, since this function satisfies Eq. (11.11) for any

value of C, and we will let C = 0. The position of the origin of the coordi-

nate system can also be chosen arbitrarily. Thus the potential energy associat-

ed with the weight of an object is

V = Wy, (11.12)

where v is the height of the object above some chosen reference level, or

datum.

Springs Consider a linear spring connecting an object to a fixed support

(Fig. 11.1 la). In terms of the stretch S — ? - rg, where r is the length of the

spring and Kq is its unstretched length, the force exerted on the object is kS

(Fig. 11.11b). If the point at which the spring is attached to the object under-

goes a differential displacement dr (Fig. 1 1.11 c), the work done by the force

on the object is

dU = -kS dS,

where dS is the increase in the stretch of the spring resulting from the dis-

placement (Fig. 1 1.1 Id). We seek a potential energy V such that

dU = -kS dS = -dV, (11.13)

or

dV

dS
kS.

) S, /s
^

.A^

(a) (b)

c^^

(c) (d)



Integrating this equation and letting the integration constant be zero, we ob-

tain the potential energy associated with the force exerted by a linear spring:

V = - kS\
2

(11.14)

Notice that V is positive if the spring is either stretched (5 is positive) or com-

pressed (5 is negative). Potential energy (the potential to do work) is stored in

a spring by either stretching or compressing it.
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Principle of Virtual Work for Conservative Forces

Because the work done by a conservative force is expressed in terms of its

potential energy through Eq. (11.10), we can give an alternative statement of

the principle of virtual work when an object is subjected to conservative

forces: Suppose that an object is in equilibrium. If the forces that do work as

the result of a virtual translation or rotation are conservative, the change in

the total potential energy is zero:

SV = 0. (11.15)

We emphasize that it is not necessary that all of the forces acting on the ob-

ject be conservative for this result to hold; it is necessary only that the forces

that do work be conservative. This principle also applies to a system of inter-

connected objects if the external forces that do work are conservative and the

internal forces at the connections between objects either do no work or are

conservative. Such a system is called a conservative system.

If the position of a system can be specified by a single coordinate q, the

system is said to have one degree offreedom. The total potential energy of a

conservative, one-degree-of-freedom system can be expressed in terms of q,

and we can write Eq. (11.15) as

8V = ^8,
dq

0.

Thus when the object or system is in equilibrium, the derivative of its total

potential energy with respect to q is zero:

dV

dq
= 0. (11.16)

We can use this equation to determine the values of q at which the system is

in equilibrium.

Stability of Equilibrium

Suppose that a homogeneous bar of weight W and length L is pinned at one

end. In terms of the angle a shown in Fig. 1 1.12a, the height of the center of

mass relative to the pinned end is —\L cos a. Choosing the level of the pin

support as the datum, we can therefore express the potential energy associat-

ed with the weight of the bar as

1

WL cos a.

Datum

(a)

Figure 11.12

(a) A bar suspended from one end.
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:^ ^ a= 180°

a =

(b) (c)

Figure 11.12 (continued)

(b) The equilibrium position a = 0.

(c) The equilibrium position a = 180°.

Unstable

equilibrium

(a)

(b)

(c)

Unstable

Figure 11.13

Graphs of V. dV/da. and d^V/da-.

When the bar is in equilibrium,

dV 1— = -WLsma = 0.

da 2

This condition is satisfied when a = (Fig. 1 1.12b) and also when a = 180°

(Fig. 11.12c).

There is a fundamental difference between the two equilibrium positions

of the bar. In the position shown in Fig. 1 1 . 12b, if we displace the bar slightly

from its equilibrium position and release it, the bar will remain near the equi-

librium position. We say that this equilibrium position is stable. When the bar

is in the position shown in Fig. 1 1.12c, if we displace it slightly and release it,

the bar will move away from the equilibrium position. This equilibrium posi-

tion is unstable.

The graph of the bar's potential energy V as a function of a is shown in

Fig. 1 1.13a. The potential energy is a minimum at the stable equilibrium po-

sition a = and a maximum at the unstable equilibrium position a = 180°.

The derivative of V (Fig. 11.13b) equals zero at both equilibrium positions.

The second derivative of V (Fig. 11.13c) is positive at the stable equilibrium

position a — and negative at the unstable equilibrium position a — 180°.

If a conservative, one-degree-of-freedom system is in equilibrium and

the second derivative of V evaluated at the equilibrium position is positive,

the equilibrium position is stable. If the second derivative of V is negative, it

is unstable (Fig. 1 1.14).

— =
dq

dV

dq
= 0,

d'V
~TT>0:
dq

d'V

dq^
< 0:

Stable equilibrium

Unstable equilibrium

Proving these results requires analyzing the motion of the system near an

equilibrium position.

Using potential energy to analyze the equilibrium of one-degree-of-freedom

systems typically involves three steps:

1. Determine the potential energy—Express the total potential energy in

terms of a single coordinate that specifies the position of the system.

2. Find the equilibrium positions—By calculating the first derivative of the

potential energy, determine the equilibrium position or positions.

3. Examine the stability—Use the sign of the second derivative of the

potential energy to determine whether the equilibrium positions are stable.

.1

Figure 11.14

Graphs of the potential energy V as a

function of the coordinate q that exhibit

stable and unstable equilibrium positions.

Stable

equilibrium

Unstable

equilibrium
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Study Questions

1. What is the definition of the potential energy of a conservative force?

2. If an object in equilibrium is subjected only to conservative forces, what do you

know about the total potential energy when the object undergoes a virtual

translation or rotation?

3. What does it mean when an equilibrium position of an object is said to be

stable or unstable? How can you distinguish whether an equilibrium position of

a conservative, one-degree-of-freedom system is stable or unstable?

Example 11.3

Stability of a Conservative System
In Fig. 11.15 a crate of weight W is suspended from the ceiling by a wire mod-

eled as a linear spring with constant k. The coordinate x measures the position

of the centered mass of the crate relative to its position when the wire is un-

stretched. Find the equilibrium position of the crate, and determine whether it

is stable or unstable.

Strategy

The forces acting on the crate—its weight and the force exerted by the

spring—are conservative. Therefore the system is conservative, and we can

use the potential energy to determine both the equilibrium position and

whether the equilibrium position is stable. Figure 11.15

Solution

Determine the Potential Energy We can use ,r = as the datum for the

potential energy associated with the weight. Because the coordinate x is posi-

tive downward, the potential energy is —Wx. The stretch of the spring equals

X, so the potential energy associated with the force of the spring is 5 kx'. The

total potential energy is

V = -kx^
2

Wx.

Find the Equilibrium Positions When the crate is in equilibrium,

dV-- = kx - W = 0.
ax

The equilibrium position is j: = W /k.

Examine the Stability The second derivative of the potential energy is

dx'
= k.

The equilibrium position is stable.
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Example 11.4

Figure 11.16

Stability of an Equilibrium Position

The homogeneous hemisphere in Fig. 11.16 is at rest on the plane surface.

Show that it is in equilibrium in the position shown. Is the equilibrium posi-

tion stable?

Strategy

To determine whether the hemisphere is in equilibrium and whether its equilib-

rium is stable, we must introduce a coordinate that specifies its orientation and

express its potential energy in terms of that coordinate. We can use as the coor-

dinate the angle of rotation of the hemisphere relative to the position shown.

Datum

(a) The hemisphere rotated through an

angle a.

Solution

Determine the Potential Energy Suppose that the hemisphere is rotated

through an angle a relative to its original position (Fig. a). Using the datum

shown, the potential energy associated with the weight W of the hemisphere is

V - RW cos a.

Find the Equilibrium Positions When the hemisphere is in equilibrium,

dV 3— = -/?Wsma = 0.
da 8

which confirms that a = is an equilibrium position.

Examine the Stability The second derivative of the potential energy is

d-V 3—r = - RW COS a.
da~ 8

This expression is positive at a = 0, so the equilibrium position is stable.

Discussion

Notice that we ignored the normal force exerted on the hemisphere by the plane

surface. This force does no work and so does not affect the potential energy.

Example 11.5

Figure 11.17

Stability of an Equilibrium Position

The pinned bars in Fig. 1 1.17 are held in place by the linear spring. Each bar

has weight W and length L. The spring is unstretched when a = 0. and the

bars are in equilibrium when a = 60°. Determine the spring constant k, and

determine whether the equilibrium position is stable or unstable.
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Strategy

The only forces that do work on the bars are their weights and the force ex-

erted by the spring. By expressing the total potential energy in terms of a

and using Eq. (11.16), we will obtain an equation we can solve for the

spring constant k.

Solution

Determine the Potential Energy If we use the datum shown in Fig. a, the

potential energy associated with the weights of the two bars is

W — L sin a I + W{ L sin a |
— —WL sin a.

2 J \ 2

Datum

iLsin a

2L cos a

j^^AAAA^

(a) Determining the total potential energy.

The spring is unstretched when a = and the distance between points A and

B is 2L cos a (Fig. a), so the stretch of the spring is 2L — 2L cos a. Therefore

the potential energy associated with the spring is \k{2L — 2L cos a)", and the

total potential energy is

V = -WL sin a + 2kL^{l - cosa)l

When the system is in equilibrium,

dV

da
= —WLcosa + 4kL s'ma{l — cos a) = 0.

Because the system is in equilibrium when a = 60°, we can solve this equa-

tion for the spring constant in terms of W and L:

k = W cosa iycos60° 0.2891V

4Lsina(l - cosa) 4Lsin60°(l - cos60°)

Examine the Stability The second derivative of the potential energy is

d'V
T- = WL sin a + 4kL'(cosa — cos" a + sin^a)

da-
^ '

= lVLsin60° + 4kL-{cos60° - cos2 60° + sin" 60°)

= 0.S66WL + 4kL-.

This is a positive number, so the equilibrium position is stable.
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Problems

11.25 The potential energy of a conservative system is given by

V = 2r' + 3a:^ - \2x.

(a) For what values of x is the system in equilibrium?

(b) Determine whether the equilibrium positions you found in (a)

are stable or unstable.

11.26 The potential energy of a conservative system is given by

V = 2q^ - 2\q- + llq.

(a) For what values of <7 is the system in equilibrium?

(b) Determine whether the equilibrium positions you found in (a)

are stable or unstable.

11.27 The mass w = 2 kg and the spring constant

k = \QQ N/m. The spring is unstretched when x = 0.

(a) Determine the value of x for which the mass is in equilibrium.

(b) Is the equilibrium position stable or unstable?

(a) Show that the mass is in equilibrium when x = 1.12 m and

when X = 2.45 m.

(b) Determine whether the equilibrium positions are stable or un-

stable.

11.30 The two straight segments of the bar are each of weight W
and length L. Determine whether the equilibrium position shown

is stable if (a) < «„ < 90°; (b) 90° < ao < 180°.

P11.30

Im . m' '

P11.27

11.28 The nonlinear spring exerts a force —^.v + e.v' on the

mass, where k and e are constants. Determine the potential energy

V associated with the force exerted on the mass by the spring.

3_Z * l-i. *-

P11.28

11.29 The 1-kg mass is suspended from the nonlinear spring de-

scribed in Problem 1 1.28. The constants k = 10 and e = 1, where

X is in meters.

11.31 The homogeneous composite object consists of a hemi-

sphere and a cylinder. It is at rest on the plane surface. Show that

this equilibrium position is stable only if L < R/Vl.

n
P11.31

11.32 The homogeneous composite object consists of a hemi-

sphere and a cone. It is at rest on the plane surface. Show that this

equilibrium position is stable only if h < V3/?.

P11.32

11.33 The homogeneous bar has weight W, and the spring is un-

stretched when the bar is vertical (a = 0).

P11.29
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(a) Use potential energy to show that the bar is in equilibrium

when a = 0.

(b) Show that the equilibrium position a = is stable only if

2kL > W.

11.34 Suppose that the bar in Problem 1 1.33 is in equilibrium

when a = 20°.

(a) Show that the spring constant k = 0.490 W/L.

(b) Determine whether the equilibrium position is stable.

11.35 The bar AB has mass m and length L. The spring is un-

stretched when the bar is vertical (a = 0). The light collar C
slides on the smooth vertical bar so that the spring remains hori-

zontal. Show that the equilibrium position a = is stable only if

2kL > mg.

AAAAAA

P11.35

11.36 The bar AB in Problem 1 1.35 has mass /w = 4 kg, length

2 m, and the spring constant is k = 12 N/m.

(a) Determine the value of a in the range < a < 90° for which

the bar is in equilibrium.

(b) Is the equilibrium position determined in part (a) stable?

11.37 The bar AB has weight W and length L. The spring is un-

stretched when the bar is vertical (a = 0). The light collar C
slides on the smooth horizontal bar so that the spring remains ver-

tical. Show that the equilibrium position a = is unstable.

11.38 The bar AB described in Problem 1 1 .37 has a mass of

2 kg, and the spring constant is /: = 80 N/m.

(a) Determine the value of a in the range < a < 90° for which

the bar is in equilibrium.

(b) Is the equilibrium position determined in (a) stable?

11.39 Each homogeneous bar is of mass m and length L. The

spring is unstretched when a = 0. If mg = kL, determine the

value of a in the range < a < 90° for which the system is in

equilibrium.

P11.39

11.40 Determine whether the equilibrium position found in

Problem 1 1.39 is stable or unstable.

11.41 The spring is unstretched when a = 90°. \i mg = bk/2,

determine the value of a in the range < a < 90° for which the

system is in equilibrium.

P11.41

11.42 Determine whether the equilibrium position found in

P11.37 Problem 1 1 .4 1 is stable or unstable.
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11.43 The bar weighs 15 lb. The spring is unstretched when

a = 0. The bar is in equilibrium when a = 30°. Determine the

spring constant k.

4 ft

11.44 Determine whether the equilibrium positions of the bar in

Problem 1 1 .43 are stable or unstable.

11.45 Each bar is of weight W, and the spring is unstretched

when a = 90°.

(a) Show that the system is in equilibrium when

a = arcsin {W/AkL).

(b) Is the equilibrium position described in (a) stable?

P11.45

P11.43

liiSo Computational Mechanics
The following example and problems are designed for the use of a programmable calculator or computer.

Computational Example 11.6
IDlllD
ZOlOll
iOllQO

The two bars in Fig. 1 1 . 1 8 are held in place by the linear spring. Each bar has

weight W and length L. The spring is unstretched when a = 0. \f W — kL,

what is the value of a for which the bars are in equilibrium? Is the equilibri-

um position stable?

Figure 11.18

Strategy

By obtaining a graph of the derivative of the total potential energy as a func-

tion of a, we can estimate the value of a corresponding to equilibrium and

determine whether the equilibrium position is stable.

f
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Solution

We derived the total potential energy of the system and determined its deriva-

tive with respect to a in Example 1 1.5, obtaining

dV— = —WLcosa + 4kL' sina{] — cos a).
da

Substituting W = kL, we obtain

dV

da
= kL^[—cosa + 4sina(l — cos a)].

From the graph of this function (Fig. 11.19), we estimate that the system is in

equilibrium when a = 43°.

The slope of dV/da, which is the second derivative of V, is positive at

a — 43°. The equilibrium position is therefore stable.

4

3
/

/
2

1

/
1 dV

kL- da yV
yy

^^
-1

—

^

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

a
Figure 11.19

Graph of the derivative of V.

Computational Problems aoiDH
lOllDD

11.46 The 1-kg mass is suspended from a nonlinear spring that

exerts a force — IOj: + x", where x is in meters.

(a) Draw a graph of the total potential energy of the system as a

function of x from x = to x = 4 m.

(b) Use your graph to estimate the equilibrium positions of the

mass.

(c) Determine whether the equilibrium positions you obtained in

(b) are stable or unstable.

11.47 Suppose that the homogeneous bar in Problem 1 1.33

weighs 20 lb and has length L = 2 ft, and that A: = 4 lb/ft.

(a) Determine the value of a in the range < a < 90° for which

the bar is in equilibrium.

(b) Is the equilibrium posidon found in (a) stable?

^

P11.46
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11.48 The bar in Problem 1 1 .43 weighs 1 5 lb, and the spring is

unstretched when a = 0. The spring constant is k = 6 lb/ft.

(a) Determine the value of a in the range < a < 90° for which

the bar is in equilibrium.

(b) Is the equilibrium position found in (a) stable?

11.49 The homogeneous bar has length L and mass 4m.

(a) Determine the value of a in the range < a < 90° for which

the bar is in equilibrium.

(b) Is the equilibrium position found in (a) stable?

11.50 The 2-m long, 10-kg homogeneous bar is pinned at A and

at its midpoint B to light collars that slide on a smooth bar. The

spring attached at A is unstretched when a = 0, and its constant is

k = 1.2kN/m.

(a) Determine the value of a when the bar is in equilibrium.

(b) Determine whether the equilibrium position found in (a) is

stable.

P11.50

..;

P11.49

Chapter Summary

Work
i\

The work done by a force F as a result of a displacement dr of its point of ap- |
i|

plication is defined by

dU = F-dr. Eq. (11.1)

The work done by a counterclockwise couple M due to a counterclockwise

rotation da is

dU = M da.

Principle of Virtual Work

Eq. (11.2)

If an object is in equilibrium, the virtual work done by the external forces and

couples acting on it is zero for any virtual translation or rotation:

SU = 0.

Potential Energy

Eq. (11.9)

I

If a function of position V exists such that for any displacement dr, the work

done by a force F is

dU = F dr -dV, Eq. (11.10)
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V is called the potential energy associated with the force, and F is said to be

consen'citive.

The potential energy associated with the weight W of an object is

V = Wy, Eq. (11.12)

where v is the height of the center of mass above some reference level, or

datum.

The potential energy associated with the force exerted by a linear spring is

V
1

kS\ Eq.(11.14)

where k is the spring constant and 5 is the stretch of the spring.

Principle of Virtual Work for Conservative Forces

An object or a system of interconnected objects is consen-ative if the external

forces and couples that do work are conservative and internal forces at the

connections between objects either do no work or are conservative. The

change in the total potential energy resulting from any virtual motion of a

conservative object or system is zero:

8V = 0. Eq. (11.15)

If the position of an object or a system can be specified by a single coordinate

c/, it is said to have one degree offreedom. When a conservative, one-degree-

of-freedom object or system is in equilibrium.

dV

dq
0. Eq. (11.16)

If the second derivative of V is positive, the equilibrium position is stable, and if

the second derivative of V is negative, it is unstable.

Review Problems

11.51 (a) Determine the couple exerted on the beam at A.

(b) Determine the vertical force exerted on the beam at A.

200 N-m ICON^ ^•<30°

-2 m-
P11.51

11.52 The structure is subjected to a 20 kN-m couple. Determine

the horizontal reaction at C.

P11.52
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11.53 The "rack and pinion" mechanism is used to exert a verti-

cal force on a sample at A for a stamping operation. If a force

F = 30 lb is exerted on the handle, use the principle of virtual

work to determine the force exerted on the sample.

P11.53

11.54 If you were assigned to calculate the force exerted on the

bolt by the pliers when the grips are subjected to forces F as

shown in Fig. a, you could carefully measure the dimensions,

draw free-body diagrams, and use the equilibrium equations. But

another approach would be to measure the change in the distance

between the jaws when the distance between the handles is

changed by a small amount. If your measurements indicate that

the distance d in Fig. b decreases by 1 mm when D is decreased

8 mm, what is the approximate value of the force exerted on the

bolt by each jaw when the forces F are applied?

(a)

11.55 The system is in equilibrium. The total weight of the sus-

pended load and assembly A is 300 lb.

(a) By using equilibrium, determine the force F.

(b) Using the result of (a) and the principle of virtual work, deter-

mine the distance the suspended load rises if the cable is pulled

downward 1 ft at B.

ft

M

P11.55

11.56 The system is in equilibrium.

(a) By drawing free-body diagrams and using equilibrium

equations, determine the couple M.

(b) Using the result of (a) and the principle of virtual work,

determine the angle through which pulley B rotates if pulley A
rotates through an angle a.

200 mm
in:

P11.56

11.57 The mechanism is in equilibrium. Neglect friction be-

tween the horizontal bar and the collar. Determine M in terms of

F, a, and L.

(b) P11.54 P11.57
a

k
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11.58 In an injection casting machine, a couple M applied to

arm AB exerts a force on the injection piston at C. Given that the

horizontal component of the force exerted at C is 4 kN. use the

principle of virtual work to determine M.

P11.58

11.59 Show that if bar AB is subjected to a clockwise virtual ro-

tation da. bar CD undergoes a counterclockwise virtual rotation

{b/a) 8a.

P11.59

11.60 The system in Problem 1 1.59 is in equilibrium,

a = 800 mm, and b = 400 mm. Use the principle of virtual work

to determine the force F.

11.61 Show that if bar AB is subjected to a clockwise virtual ro-

tation 5a, bar CD undergoes a clockwise virtual rotation

[ad/{ac + be - bd)]Sa.

P11.61

11.62 The system in Problem 1 1.61 is in equilibrium,

a = 300 mm, b = 350 mm, c — 350 mm, and d = 200 mm. Use

the principle of virtual work to determine the couple M.

11.63 The mass of the bar is 10 kg, and it is 1 m in length. Neglect

the masses of the two collars. The spring is unstretched when the bar

is vertical (a = 0), and the spring constant is ^ = 100 N/m. Deter-

mine the values of a at wliich the bar is in equilibrium.

P11.63

11.64 Determine whether the equilibrium positions of the bar in

Problem 1 1.63 are stable or unstable.

11.65 The spring is unstretched when a = 90°. Determine the

value of a in the range < a < 90° for which the system is in

equilibrium.

P11.65

11.66 Determine whether the equilibrium position found in

Problem 1 1 .65 is stable or unstable.

11.67 The hydraulic cylinder C exerts a horizontal force at A, rais-

ing the weight W. Determine the magnitude of the force the hydrauhc

cylinder must exert to support the weight in terms of W and a.

P11.67
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A.l Algebra

Quadratic Equations

The solutions of the quadratic equation

ax' + bx + c =

are

-b ± Vb- - Aac

2a

Natural Logarithms

The nautural logarithm of a positive real number x is denoted

by In .V. It is defined to be the number such that

where e = 2.7182 ... is the base of natural logarithms.

Logarithms have the following properties:

In(xv) = In.v + Inv,

ln(A/v) = InA- - In}',

Iny' = xlny.

A.2 Trigonometry

The trigonometric functions for a right triangle are

la \ b
sma cos a tana

1

esc a c sec a c cot a b

The sine and cosine satisfy the relation

sin^a + cos" a = 1,

and the sine and cosine of the sum and difference of two angles satisfy

sin(a + ^) = sina cos/3 + cosa sin/3,

sin(a — /3) = sina cos /3 — cosa sin/3,

cos(a + /3) = cosa cos/3 — sina sin/3,

cos(a — /3) = cosa cos/3 + sina sin/3.

The law of cosines for an arbitrary triangle is

c' = a' -\- b" — lab cos a^,

and the law of sines is

sin a„ sin a^ sin a^.

556
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X ^.t

—x" = nx"-'
ax

d

'dx'

— In j: = —
dx X

-e' = e

— sinjf = cosj:
dx

d— cosjr = —sinjc
dx

d 1— tan ;c = —r—
dx cos X

dx
sinhj: = coshx

d

dx
cosh a: = sinhx

d
tanhx

1

dx cosh^ X

A.4 Integrals

n + 1

(«^-l)x"a

x~' dx = Inx

{a + bxY'-dx = T7{a + bx)

I
x{a + bxY'-dx

/(I + a^-xT '

fxil + aV)

jx\\ + a\x'-)

2{2a - 3bx)ia + bx^'

I5b-

''dx = -\x{l+a'-x'y'' + -\n
2 [

^ '
a

^'- dx = - axi — + X-] Tx(\+ah^)2„2^1/2

%a'
In A- + 1 ^ + A-

a

/ x{l - a-A-)' ' d[x = --( — - A'

/ x-{a' - X-) ^ dx = - — x(a' - a^)

x[i — ax) -I— arcsinajf

+ -za'
I 2 IVl^ ,

x\a — X ) + a arcsin —
a

I
dx

2 2\i/:

(1 + a'x')

= -In
1

Nl/2

X + \— + X
a'

, „ = — arcsin ax, or arccos ax
2^2^'/- a aJ {I- a'x'-)

I
sinx dx = —cos x

/ cos X dx = sin j:

/
• 2 . 1 .

1

/ sin X dx = sm a: cos x -\— x
J 2 2

/
2 . 1

.

1

/ COS X dx = — sin A cos x -\— x
J 2 2

/sin3.d. = -icos.(sin^.^2)

/ cos^xdx = - sin a:(cos^ j: + 2)

/cos^

f (sin a:)"*'

/ sin" a: cos AT ti^r = ;—;— (/? ^^ — 1)

3 1 . ^ 1 . ^

X dx = - X H— sin 2a' -I sin 4x
8 4 32

n + 1

sinh .V dx = cosh xh
I

I
f e""

cosh.v dx = sinhx

tanhAdLi = In cosh jc

xe'" dx = -7 {ax -
1

)

a'
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A.5 Taylor Series

The Taylor series of a function /(.v) is

f{a + x) = f{a) + f'{a)x + }^f"{a)x' + lf"'{a)x' + •••,

3!

where the primes indicate derivatives.

Some useful Taylor series are

X- x^
e ' = 1 + jf + — + — + ••

,

2! 3!

sin (a + a) = sinfl + (cosa)A' (sin(7).v" (cosa).v' + •••,

2 6

cos (a + .v) = cos a — (sina)A' (cosa)A' H— (sino).v'' + •,
2 6

I
1 \ /

sma
tan (a + x) = tana + | 7- ]x +

\
;— |a-

+

cos" a

sin" a 1

cos a

+ -^^W + -.
cos a 3 COS" a

A.6 Vector Analysis

Cartesian Coordinates

The gradient of a scalar field ijj is

r)l// (lib (ill/

?i// = — i + — j + — k.
Bx dy dz

The divergence and curl of a vector field

\ = v/i + v,i + V- k are

dv, Sv, dv-
V V = —^ + — + ^,

dx dy dz

V X V =

i J k

a d d

dx dy dz

V, V, V.

Cylindrical Coordinates

The gradient of a scalar field (// is

dtp 1 dip dtp

Vi// = — e, + -— Cfl
+ — e,-.

dr I r)d dz

The divergence and curl of a vector field

V =
i-v e^ + Vf, e„ + V. e. are

dv, V, 1 dVff dv.
V-v = ^ + — + + ^

dr r r dO dz

V X V =

e, '-e» e.

d d d

dr dO dz

Vr rve V.

I



APPENDIX Properties of Areas and Lines |
B.l Areas

The coordinates of the centroid of the area A are

dA dA

The moment of inertia about the x axis /_,, the moment of inertia

about the y axis ly, and the product of inertia /^,. are

A = fy'dA, /, = [x-dA, /„= /
Ja Ja J a

dA, h

The polar moment of inertia about O is

y„= [r'-dA= f{x' + y')dA = 1^ + 1,.

Ja Ja

y y
—b-

xy dA.

Area = — bh
2

12
bh\

36
bh\

^
rori

Rectangular area

Area = bh

l. = \bl,\ U = \hb\ I„. = \b^~h

' -> ^->^ l.y =

1

1

h

^^
\ \

to-f'^
Triangular area

l,^-hb\

36
hb\

L=lbV

//„. = — b-h-
72

Area = -bh
2

Circular area

Area = ttR- !, = !, = - ttR\ !,, =

>' y

t
^^

R \
1

, J^ \

O
' <r

)

—^ 4R

Area = - ttR-
2

/,• = - ttR\

Semicircular area

1

/, = A = - tt/?-*
^ 8

n 8
/,

8 977
R'

S59
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Area = - nR-
4

Area = aR^

Quarter-circular area

1 J la
4 = 4 = -T ^^ ' 4v = X ^

16 8

3a

Circular sector

/, = - R*ia sin2a ). /, = -/?""( a + -sin2a
" 4 V 2 / • 4 V 2

/,. =

Quarter-elliptical area

Area = — nab
4

/, = — Trab\
' 16

A,
= -W..

Spandrel

Area

/.
=

cb"

n + 1

9/1 + 3

'

A = cfo"

A, = g«V

H + 3'
/„ =

4;i + 4

B.2 Lines

The coordinates of the centroid of the line L are

LxdL

L
dL

\dL

L
dL

)
!

\
"^K

2R
n

R '

/ ^
7R
K

*

i
:</£

Semicircular arc Quarter-circular arc

h

«H^



APPENDIX Properties of Volumes

and Homogeneous Objects

The coordinates of the centroid of the volume V are

xdV

y

vdV zdV

z =

dV
I
dV

I
dV

IV Jv Jv

(The center of mass of a homogeneous object coincides with the

centroid of its volume.)

The mass moment of inertia of the object about the axis Z.,, is

In = I r^ dm.
Jm

4,
'

o ^
Slender bar

'mr-'{praxis) '-'» '(yaxis) '(caxis) ^

^(i'axis) ~ 0' A.v'axis) — I(-Jmk) — .- '"'"

Thin circular plate

1

A^'axis) ~ ^(.v'axis) ~ ^ mR',
_ 1

A:' axis) - 2 '"^

praxis) - ~tnh ,

' ( r' axlaxis) ~ 7^
'"'' '

A.vaxis) ~ -,
"''^"'

!,.(yaxis) 12
"'b-.

A.-, axis) = 3
'"(''" + ''")

A:'ax,s) =
Y^

'"(''" + ''")
Thin rectangular plate

561
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Thin plate

/ = J A J
_ J A 1 _r IT

'(jraxis) 4 -^ ' '(vaxis) . 'y' '(caxis) '(jraxis) ' '(yaxis)

(The superscripts A denote moments of inertia of the plate's cross-sectional area A.)

Rectangular prism

Volume = abc

h.^'zx,s)
= -^rn{a^ + b-), I^,,

Ac' axis) = ]^
'"(''" + <^")-

12
w(«^ + c%

Circular cylinder

Volume = ttR'I

A^axis) - A.vaxis) - '"I . /" + .
R

1 .. ,
1

'(a' axis) ~ hy' axis) m[—r- + -R-
12 4

A{;: axis) mR'

Ac' axis) - 2
"'^

Circular cone

Volume = ~ nR'h
3

A^axis) = Avaxis) = '" 7 /'' + :;;:
^"

'

3,.
,

3 „,

/,

20

= /rv'„i«> = ml -zz h^ + -— R-
(j:' axis) '(y'axis)

80 20

Araxis) - 10
'"^

Acax.s) - 10
'"^^

Sphere

Volume = — ttR^
3

"(jt'axis) '(y'axis) '(;'axis) -niR-



Answers to Even-Numbered Problems

Chapter 1

1.2 2.7183.

1.4 7.32 m wide, 2.44 m high.

1.6 The 1-in. wrench fits the 25-mm nut.

1.8 149 mi/hr.

1.10 (a) 5000m/s;(b) 3.11 mi/s.

1.12 g = 32.2 ft/s-.

1.14 0.310 m-.

1.16 2.07 X 10* Pa.

1.18 G = 3.44 X 10"* lb-ft-/slug-.

1.20 (a) The SI units of T are kg-rnVs";

(b) T = 73.8 slug-ft-/s-.

1.22 (a) N/m-\ (b) y = 62.4 Ib/ftl

1.24 (a) 491 N;(b) 81.0 N.

1.26 163 lb.

1.28 32.1 km.

1.30 345,000 km.

Chapter 2

2.2

2.4

2.6

2.8

2.10

2.12

2.14

2.16

2.18

2.22

2.24

2.26

2.28

2.30

2.32

2.34

2.36

2.38

2.40

2.42

2.44

2.46

2.48

2.50

2.52

2.54

2.56

|FbI

52 N.

52.1 N.

AC\
= 62.2 kN.

+ r„ = 50 m.

jr^cl = 199 mm.

|fJ = 117.0 kN,

|F| = 7.02 kN.

AB : 1202 lb. AD : 559 lb.

(a) Ir^ + ral
= 70 m; (b) |r^

l^BA + F«c| = 918 N.

|r| = 390 m. a = 21.2°.

F, = -102 MN.
|F| = 447 kip.

V, = 16, V, = 12 or V, = -16, V^. = -12.

F = 56.4 i + 20.5j (lb).

Tab = -4i " 3j (m).

^AB - fflc = > - 1-73J (m)

(a) r^s = 48i + 15j (in.); (b) r«f = -53i + 5j (in.);

(c) |r^B + Tgcl = 20.6 in.

(a) r^B = 52.0i + 30j (mm);

(b) r^B = -42.4i - 42.4J (mm).

xg = 785 m, Vfl
= 907 m

or Xg = 255 m, Vg = 1173 m.

Cac = -0.757i + 0.653J.

e = ii - U-
F = -937 i + 750j (N).

CfM = 0-609 i
- 0.793j.

\Vba + Fflcl = 918 N.

JF^I = 1720 lb, a = 33.3°.

Q = 36.4°.

|F^| = 10 kN,

ILI = 216.1 lb. IDI

8.66 kN.

78.7 lb.

2.58

2.60

2.62

2.64

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

2.82

2.84

2.86

2.88

2.90

2.92

2.94

2.96

2.98

2.100

2.102

2.104

2.106

2.108

2.112

2.114

2.116

2.118

2.120

2.122

2.124

2.126

2.128

2.130

2.132

2.134

2.138

2.140

2.142

U, = 3.61,

U, = -3.61,

(a) |U| = 7,

e, = 56.9°,

F^l = 68.2 kN.

F^cl = 2.11 kN, iF^ol = 2.76 kN.

X = 15 - 0.8805, y = 12 + 0.4765.

r = (0.8145 - 6)i + (0.5815 + l)j (m).

|F| = HON.
U, = -7.22. U, = -28.89 or

U, = 7.22, U- = 28.89.

|V| = 13; (b) |3U + 2V| = 27.5.

e, = 129.5°, e, = 56.9°.

F = -0.5i + 0.2j + 0.843k.

(a) 11 ft; (b) cos0^ = -0.545, cos0, = 0.818,

COS0. = 0.182.

(a) 5.39 N; (b) 0.557i - 0.743J - 0.371k.

F = 40i + 40j - 70k (kN).

(a) IfabI
= 16.2 m; (b) cos0, = 0.615.

COS0, = -0.492, COS0- = -0.615.

r^^ : cos 0^ = 0.667, cos 0, = 0.667,

COS0- = 0.333. Tgn : cos0, = -0.242,

cose, = 0.970, COS0- = 0.

29,100 ft.

r = 70.7i + 61.2j + 35.4k (in.).

Top = /?E(0.612i + 0.707J + 0.354k).

(a) Cfif = -0.286 i - 0.857j + 0.429 k.

(b) F = -2.29i -
6.86J + 3.43k (kN).

COS0, = -0.703, cose, = 0.592, cos^, = 0.394.

259 lb.

|F^c| = 1116N, If^dI = 910 N.

T = -15.4i + 27.0J + 7.7k (lb).

T = -41.1 i + 28.8J + 32.8k (N).

U • V = -300.

-250 ft-lb.

U, = 2.857, K = 0.857,

81.6°.

e = 53.5°.

Parallel component is 12i

component is 9i + 18j

(a) 42.5°; (b) -423j + 604k (lb).

Fp = 5.54J + 3.69k (N), F„ = lOi + 6.46J
-

9.69k (N).

T„ = -37.1 i + 31.6J + 8.2k (N).

+ 0.0304j - 0.1 2 16k (lb).

1.68J
- 3.36k (m/s).

U X V = -82i - 60j + 74k.

r X F = -80i + 120j - 40k (N-m).

(a) U X V = 0; (b) They are parallel,

(a), (c) U X V = -51.8k; (b), (d) V X U = 51.8k.

(a) VoA X foB = -4i + 36j + 32k (m");

(b) -0.083i + 0.745J + 0.662k or

0.083 i - 0.745j - 0.662 k.

W. = -3.143.

4j + 6k (kN), normal

6k (kN).

Fp = -0.1231 i

Vp = -1.30i -

r^s X F = -2400:

rcA X T = -4.721

+ 9600J + 7200k (ft-lb).

-
3.48J

- 7.96k (N-m).

563
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2.144 Xb = 2.81 m, Vfl = 6.75 m, Zb = 3.75 m. 3.70 Tab = 10,270 lb, Tac = 4380 lb, Tao = 11,010 lb.

2.146 U • (V X W) = -4. 3.72 D = 1176N, ToA = 6774 N. d
2.148 1.8 X 10'^ mm-. 3.74 12.3 lb.

*

2.150 f/, = -2. 3.76 Tef = Teg = 738 kN.

2.152 |A| = 1110 1b. a = 29.7°. 3.78 (a) The tension = 2.70 kN;

2.154 E| = 313 lb, |F| = 140 lb. (b) The force exerted by the bar = 1.31 i
- 1.31k (kN).

2.156 e^B = 0.625i - 0.469J - 0.625k. 3.80 Tab = 357 N.

2.158 Fp = 8.78i -
6.59J

- 8.78k (lb). 3.82 F = 36.6 N. i
2.160 Tfi^ X F = -70i + 40j - 100k (ft-lb). 3.84 18.0 ft.

1
2.162 (a), (b) 686i - 486j - 514k (ft-lb). 3.86 (b) b < 10.0 moT b > 30.0 m.

1
2.164 F, = 18.2i + 19.9J + 15.3k (N),

Fb = -7.76i + 26.9J + 13.4k (N).

3.88 Distance, ft Tension, lb

1328.0

1

2.166 Fp = 1.29i -
3.86J + 2.57k (kN).

F„ = -1.29i -
2.14J

- 2.57k (kN).

1 1332.7

2 1338.2
1

2.168 r^c X W = -16.4i - 82.4k (N-m). 3 1344.5 1
2.170 ffic X T = -12.0i -

138.4J
- 117.4k (N-m). 4 1351.7 1

2.172 20.8 kN. 5 1359.7 1
2.174 34.9°. 3.90

3.92

/( = 1.66 m.

s = 0.305 m.

Chapter 3 3.94 .? = 2.65 m.

3.2

3.4

3.6

3.8

3.10

3.12

3.14

3.16

f, = 86.6 N, F, = 50 N.

A, = 267 kN. C = 154 kN.

T = 763 N. M = 875 N.

Jt = 1960 N/m, ;n, = 4 kg. Wg = 6 kg.

Normal force = 196,907 N, friction force = 707 N.

a = 31.0°.

(a) 254 lb: (b) 41.8°.

150 1b.

3.96

3.98

3.100

3.102

3.104

3.106

3.108

3.110

W = 25.0 lb.

(a) 83.9 lb: (b) 230.5 lb.

F = wg/26.

F = 162.0 N.

Tab = 420 N, T,c = 533 N, F^l = 969 N
F = mgL/(R + h).

Tab = 1-54 lb, Tac = 1-85 lb.

Normal force = 12.15 kN, friction force == 4.03 kN.

3.18

3.20

116N.

7-,,,, = 299 lb, T;,,,, = 300 lb.

Chapter 4

3.22 188 N. 4.2 (a) 28 N-m. (b) -8 N-m.

3.24 (a) 56.4 lb. (b) 340.3 lb. 4.4 Direction shown, 40.5 N-m; perpendicular. 45 N-m.
3.26 No. The tension in cables BD and CE would be 4.6 a = 61.0°.

4.14 kN. 4.8 L = 2.4 m.

3.28 Upper cable tension is 0.8281V, lower cable tension is 4.10 (a) 1 m; (b) 53.1° or 180°.

0.132W. 4.12 229 ft-lb.

3.30 r,g = 1.21 N, T,o = 2.76 N. 4.14 Ms = 61 1 in-lb.

3.32 m = 12.2 kg. 4.16 (a)-(c) Zero.
;i

3.34 k = 2250 N/m. 4.18 G = 1400 1b.
1

3.36 h = b. 4.20 F, = -30 kN, F2 = 50 kN. f

3.38 Tab = 688 lb. 4.22 (a) Fa = 24.6 N, Fg = 55.4 N; (b) Zero.

3.40 AB:64.0kN, fiC : 61.0 kN. 4.24 F = 1.2 kN.

3.44 F = 196 N, a = 53.1°. 4.26 M = 2.39 kN-m.
3.46 F = 1330 lb. 4.28 (a) A, = 18.1 kN, A, = -29.8 kN. B = -20.4 kN:
3.48 (b) Left surface : 36.6 lb: right surface : 25.9 lb. (b) Zero.

3.50 202 N. 4.30 (a) A, = 300 lb. A, = 240 lb, B = 280 lb; ||
3.52 Normal force = 13.29 kN, friction force = 4.19 kN. (b) Zero. 1
3.54 T = mAgp - (4/7) mg. 4.32 186 kg. E
3.56 X =k{b - /7cot30°),y = -J (fe tan 30° - h). 4.34 -22.3 ft-lb.

3.60 L = 131.1 kN. D = 36.0 kN. 4.36 M = -2340 N-m. 1
3.62 (a) y = -14.0°; (b) 4 km. 4.38 671 lb. 1
3.64 Tab = 780 N, T^c = 1976 N, T.o = 2568 N. 4.40 617 kN-m. p
3.66 Tac = 20.6 lb. Tad = 21.4 lb. F,£ =11.7 lb. 4.42 1040 1b.

3.68 Two at B, three at C, and three at D. 4.44 Ma = -3.00 kN-m, M^ = 7.50 kN-m.
It

li
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4.46

4.48

4.50

4.52

4.54

4.56

4.58

4.60

4.62

4.64

4.66

4.68

4.70

4.72

4.74

4.76

4.78

4.80

4.82

4.84

4.86

4.88

4.90

4.92

4.94

4.96

4.98

4.100

4.102

4.104

4.106

4.108

4.110

4.112

4.114

4.116

4.118

4.120

4.122

4.124

4.126

4.128

4.130

4.134

4.136

4.138

4.140

4.142

4.144

4.146

(a), (b) 480k (N-m).

(a) 800k (kN-m); (b) -400k (kN-m)

F = 20i + 40j (N).

(a), (b) Zero.

(a), (b) 1270 N-m.

|M;,| = 502 N-m, D = 7.18 m.

F = 40i -t- 40.i + 70k (N) or F

70k (N).

58.0 kN.

(a) |F| = 1586 N. (b) |F| = 1584 N.

-16.4i - 111.9k (N-m).

1540 ft-lb.

Mo = 1.25i -I- 1.25J
- 6.25k (kN-m).

Tac = 2.23 kN, Tad = 2.43 kN.

T^B = 1.60 kN, T^c = 117kN.

F = 2530 lb.

M = 482k (kN-m).

(a) M,,,,i,, = 80i (N-m).

(b) M,,,„„ = -140j (N-m). (c) M,,,,,,

(a) Zero; (b) 2.7 k (kN-m).

F, = 200 lb, F2 = 100 lb, F, = 200 lb.

F = 80i -I- 80j + 40k (lb).

-16.41 (N-m).

(a), (b) Mab = -76.1 i - 95.1 j (N-m).

M.40 = 119.1J + 79.4k (N-m).

M^fl = 77.1J
- 211.9k (ft-lb).

40 i - 40

j

= 0.

M
M

(yaxis)

(.taxis)

= 215j (N-m).

= 441 (N-m).

-338j (ft-lb).

|F| = 13 lb.

M,ax,s) = -478i - 174k (N-m).

1 N-m.

124k (ft-lb).

40 N-m counterclockwise, or 40k (N-m).

(a) b = 3.84 m. (b) -110k (N-m).

(a), (b) -400k (N-m).

40 ft-lb clockwise, or -40k (ft-lb).

2200 ft-lb clockwise.

330 N-m counterclockwise, or 330k (N-m).

(a) M = 12i -h 88j - 216k (N-m). (b) 4.85 m.

356 ft-lb.

Mp = 3i - 2j -I- 2k (kN-m).

Mcy = 1 kN-m, Mc, = -2 kN-m.

Yes.

Systems 1 , 2, and 4 are equivalent.

F = 265 N.

F = 70 lb, M = 130 in-lb.

(a) F = -lOj (lb), M = -10 ft-lb; (b) D = 1 ft.

(a) A, = 0, A, = 20 lb, 5 = 80 lb:

(b) F = lOOj (lb), M = -1120 in-lb.

(a) A, = 12 kip. A, = 10 kip, B = -10 kip;

(b) F = -12i (kip), intersects at y = 5 ft;

(c) they are both zero.

F = 161 i (kN), y = -0.0932 m.

F = lOOj (lb), M = 0.

4.148

4.150

4.152

4.154

4.156

4.158

4.160

4.162

4.164

4.166

4.168

4.170

4.172

4.174

4.176

4.178

4.180

4.182

4.184

4.186

4.188

4.190

4.192

4.194

4.196

4.198

4.200

4.202

4.204

4.206

4.208

4.210

(a) F = 920i - 390j (N), M = -419 N-m;

(b) intersects at >> = 456 mm.

F = 800j (lb), intersects at x = 7.5 in.

(a) -360k (in-lb); (b) -36j (in-lb);

(c) F = lOi - 30j + 3k (lb).

M = -36j - 360k (in-lb).

(a) F = 600i (lb), M = 1400J - 1800k (ft-lb);

(b) F = 600i (lb), intersects at y = 3 ft, z = 2.33 ft.

F = lOOj -I- 80k (N), M = 240j - 300k (N-m).

(a) F = 0, M = rAi; (b) F' = 0, M' = rAi.

(a) F = 0, M = 4.60 i -I- 1.86j - 3.46k (kN-m);

(b) 6.05 kN-m.

F = -20i -I- 20j + 10k (lb).

M = 50i -I- 250j + 100k (in-lb).

(a) F = 28k (kip), M = 96i - 192j (ft-kip);

(b) X = 6.86 ft, y = 3.43 ft.

F = lOOi -I- 20j - 20k (N),

M = -143i -I- 406j - 280k (N-m).

M, = 0, line of action intersects at y = 0, z = 2 ft.

X = 2.41 m, y = 3.80 m.

F = 40.8i -I- 40.8J + 81.6k (N),

M = -179.6i + 391.9J
- 32.7k (N-m).

(a) 320i (in-lb);

(b) F = -20k (lb), M = 3201 -f- 660j (in-lb);

(c) M, = 0, X = 33 in., y = -16 in.

Jt = 124 lb/ft.

M^ = 13,200 ft-lb at a = 48.2°.

d = 13.0 ft, moment is 265 k (ft-lb).

Tab = 155 N, Tco = 445 N.

(a) 160 N-m; (b) 160k (N-m).

No. The moment is mg sin a counterclockwise, where

a is the clockwise angle.

(a) -76.2 N-m; (b) -66.3 N-m.

|F| = 224 lb, |M| = 1600 ft-lb.

671 lb.

-228.11 - 68.4k (N-m).

M,,,,i,) = -153i (ft-lb).

McD = -173i + 1038k (ft-lb).

(a) Tab = TcD = 173 lb;

(b) F = 300j (lb), intersects at .v = 4 ft.

F = -20i + 70j (N), M = 22 N-m.

F' = -lOOi + 40j -t- 30k (lb).

M = -80i -I- 200k (in-lb).

F = 11661 -t- 566j (N), y = 13.9 m.

F = 190j (N), M = -981 -I- 184k (N-m).

F = -0.364 i + 4.908J + 1.090k (kN),

M = -0.131 i - 0.044J -I- 1.112k (kN-m).

Chapter 5

5.2

5.4

5.6

5.8

5.10

5.12

(b) A. = 0,

A, = 0, A

A, = 0, A

(b) A, = 0,

(b)

(b)

A = 100 lb, B =

A, = 1.15 kN, A

A, = 2 kN, Ma = -2 kN-m.

= -5 kN. B = 10 kN.

= -1.85 kN. B = 2.74 kN.

A, = 5 kN, S = 5 kN.

200 lb.

= 0, B = 2.31 kN.
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5.14

5.16

5.18

5.20

5.22

5.24

5.26

5.28

5.30

5.34

5.36

5.38

5.40

5.42

5.44

5.46

5.48

5.50

5.52

5.54

5.56

5.58

5.60

5.62

5.64

5.66

5.68

5.76

5.78

5.80

5.82

5.84

5.86

5.88

5.90

A, = -26.7 kN, fi, = 26.7 kN, B, = -40 kN.

(a) 293.3 N. (b) 99.1 N.

(b) -4, = 0. A, = -1000 lb, M,^ = -12,800 ft-lb.

F = 18.38 kN.

5.93 kN.

R= 12.5 lb, B, = 11.3 lb, B, = 15.3 lb.

(a) A = 53.8 lb, B = 46.2 lb: (b) F = 21.2 lb.

A = 9211 N, B, =0, B, = 789 N.

T = 4.71 lb.

Tension is 50 lb, C, = -43.3 lb, C, = 25 lb.

A^ = 0, A, = 1.5F. B = 2.5F.

A, = -200 lb, A, = -100 lb, M., = 1600 ft-lb.

0.354W.

A, = 3.46 kN,

B, = 2 kN.

T = 392 N, A,

A, = -1.57 kN,

A, = -2 kN, B, = -3.46 kN,

= 340 N, A,

A„ = 1.57 kN.

= 196 N.

E = 1.57 kN.

A, = 0, A, = 200 lb, M^ = 900 ft-lb.

A, = 57.7 lb. A, = -13.3 lb. B = 15.3 lb.

W = 15kN.

k = 13,500 N/m.

0.6121^.

20.3 kN.

W, = 2484 lb. A, = -2034 lb. A, = 2425 lb.

W = 46.2 N, A, = 22.3 N, A, = 61.7 N.

F = 44.5 lb. A, = 25.3 lb. A, = -1.9 lb.

W = 132 lb.

(1) and (2) are improperly supported. For (3), reactions

are A = F/2, B = F/2, C = F.

(b) A, = -6.53 kN, A, = -3.27 kN, A. = 3.27 kN,

Ma, = 0, M^y = -6.53 kN-m,

M^-^ = -6.53 kN-m.

Tbc = 20.3 kN.

O, = ±21.6kN. O, = 0.6 kN. O. = 0,

-4.8 kN-m. Mo, = ±172.5 kN-m,Mo.

Mo, = ±172.5 kN-m.

(a) -17.8i - 62.8k (N-m). (b) A, = 0, A, = 360 N,

A, = 0, M^, = 17.8 N-m, M^, = 0,

Ma, = 62.8 N-m.

O, = ±900 N, O, = ±900 N, O, = 0,

Mo, = ±135 N-m, Mg, = ±135 N-m,

Mo, = ±288 N-m.

|F| = 10.7 kN.

r.« = 553 lb. <AC 289 lb, O, = 632 lb.

5.94

5.96

5.98

5.100

5.102

5.104

5.106

5.108

5.110

5.112

5.114

5.116

5.118

5.120

5.122

5.124

5.126

5.128

5.130

5.134

5.136

5.138

5.140

5.142

5.144

5.146

5.148

5.150

5.152

5.154

5.156

5.158

-0.64 kN,

1.87 kN, A, = 0,

0.

Ta = 54.7 lb, Tg = 22.7 lb, Tc = Al.l lb.

F = 4j (kN) at a: = 0, z = 0.15 m.

(b) A, = -0.74 kN, A, = 1 kN, A,

B, = 0.74 kN, B- = 0.64 kN.

F, = 34.5 lb..

Fflo = 1.47 kN,

A, = 4.24 kN, /

F = 22.5 kN.

Tension is 60 N, B, = -10 N, B, = 90 N,

B, = 10 N, Me, = 1 N-m, Mg, = -3 N-m.

Tension is 60 N, B, = -10 N, B, = 75 N,

B- = 15 N, C, = 15 N, C, = -5 N.

A, = 17.86 kip. A- = -8.10 kip,

B, = 12.38 kip.

E, = -1.33 kN,

F, = 6.67 kN.

IBI = 10.75 kN.

A, = -2.86 kip,

B, = 3.57 kip,

E, = 0.67 kN,

F, = 4.67 kN,

lAl = 8.54 kN,

2.67 kN,

C, = 0, A, = 66.7 lb.

'AB 488 lb, TcD = 373 lb, reaction is

87k (lb).

A, = -825 N, A, = -1956N;

B, = 2380 N, B. = -44 N.

31 i + 823j -

A, = 474 N,

B, = 860 N.

a = 52.4°.

Tension is 33.3 lb; magnitude of reaction is 44.1 lb.

a = 73.9°, magnitude at A is 4.32 kN, magnitude at B
is 1.66 kN.

(a) No, because of the 3 kN-m couple; (b) magnitude

at A is 7.88 kN; magnitude at B is 6.66 kN; (c) no.

(b) A, = -8 kN, A, = 2 kN, C = 8 kN.

a = 75.96°, 30.96°, 12.53°, 4.40°, and zero.

h = 2.46 m. A, = 2.036 kN, A, = 0.333 kN.

a = 30.8°.

A, = -346.4 N, A, = 47.6 N, 6, = 152.4 N.

(a) There are four unknown reactions and three

equilibrium equations; (b) A, = —50 lb, B, = 50 lb.

(b) Force on nail = 55 lb, normal force = 50.77 lb,

friction force = 9.06 lb.

A = 500 N, B, = 0, B, = -800 N.

A = 727 lb, //, = 225 lb, H, = 113 lb.

a = and a = 59.4°.

A, = -32.0 kN, A, = -61.7 kN.

The force is 800 N upward; its line of action passes

through the midpoint of the plate.

m = 67.2 kg.

a = 90°, Tbc = W/2, A = W/2.

O, = 574 lb, O, = 0.

5.92 Ta = 3.72 kN, Tg = 2.60 kN, Tc = 1.53 kN.

Chapter 6

6.2 (a) A = 13.3 kN, B, = -13.3 kN, B, = 10 kN;

(b) AB : zero; BC : 16.7 kN (T); AC : 13.3 kN (C).

6.4 AB: 2.839 kN (T); AC: 0.926 kN (C);

BC : 0.961 kN (C).

6.6 AB : 16.7 kN (T); AC : 13.3 kN (C); BC : 20 kN (C);

BD : 16.7 kN (T); CD : 13.3 kN (C).

6.8 (a) Howe, 2F in members GH and HI;

(b) they are the same: 2.12F in members AB and DE.
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6.10

6.12

6.14

6.16

6.18

6.20

6.22

6.24

6.26

6.34

6.36

6.38

6.42

6.44

6.46

6.48

6.50

6.52

6.54

6.58

6.60

6.62

6.64

6.66

6.68

6.70

6.72

6.74

6.76

6.78

6.80

6.82

6.84

6.86

6.88

6.90

6.94

6.96

6.98

6.100

6.102

DF : 14.7 kN (C); £F : 5 kN (C); FG : zero.

AB : 13.75 kN (T); BC : zero; BD : 7.5 kN (T).

F = 5.09 kN.

DE : 800 lb (C); DF : 447 lb (C); DG : 894 lb (T).

1.56 kN.

AB : 375 lb (C); AC : 625 lb (T); BC : 300 lb (T).

BC : 90.1 kN (T); CD : 90.1 kN (C); CE : 300 kN (T).

BC : 1200 kN (C); BI : 300 kN (T); BJ : 636 kN (T).

AB : 2520 lb (C); BC : 2160 lb (C); CD : 1680 lb (C).

141 kN (C).

AB : 1.33F (C); BC : 1.33F (C); CE : 1.33F (T).

EG : 32 kN (T); £F : 5 kN (C): DF : 28 kN (C).

96.2 kN (T).

55.5 kN.

AC : 3.33 kN (T): BC : 1.18 kN (C); BD :

3.33 kN (C).

2.50 kN (C).

3.33 kip (C).

(a) 1160 lb (C).

IL: 16 kN (C); KM : 24 kN (T).

AD : All kN (C); BD : 4.16 kN (C); CD :

4.85 kN (C).

AB. AC. AD : 0.408F (C).

AB : 379 lb (C); AC : 665 lb (C); AD: 160 lb (C).

BC : 32.7 kN (T); BD : 45.2 kN (T); BE :

112.1 kN(C).

Fj = -315 kN.

5.59 kN (C) in each member.

A, = 100 N, A, = 100 N.

A, = 57.2 lb, A, = 42.8 lb, M^ = 257 ft-lb,

B, = -57.2 lb, B, = -42.8 lb.

F = 50 kN.

The largest lifting force is 8.94 kN. Axial force is

25.30 kN.

E.

A,

B,

A..

C,

B,

= -1475 N, D, = -516 N,

= -516N, Mir = 6\9N-m.
= -2.35 kN, A, = 2.35 kN,

= -4.71 kN. C, = 2.35 kN
= -400 lb, -4,

c'= 200 lb,

.
= -400 lb

C, = 200 lb,

a\ = -150 lb,

= -30 lb,

= -310 lb,

= -80 lb,

= -80 lb,

= 1200 N,

= -22 lb,

,

= 3 lb.

300 lb (C).

110 kip.

539 N.

A, = 2 kN, A,

B, = 1.52 kN.

£, = 0,

Bv = 0,

C, = 2.35 kN.

-100 lb, tension = 361 lb,

300 lb, D = 100 lb.

A,

B,

O,

IB

A.

C,

B, = -300 lb,

D, = 0, D, =

A, = 120 lb,

= -30 lb,

= -35 lb,

= 310 lb,

= -80 lb.

A,

C, = 400 lb,

- 100 lb.

B, = 180 lb,

D, = -90 lb.

B, = 80 lb,

C = 195 lb.

A,. = 15 lb, C, -14 lb.

6.104

6.106

6.108

6.110

6.112

6.114

6.116

6.118

6.120

6.122
6.124

Axial force is 4 kN compression, reaction at A is

4.31 kN.

BC : 1270 N (C).

|B| = 726 N; CD : 787 N (C).

742 lb.

A, = -8 kN, A, = 2 kN, axial force = 8 kN.

f = 1587 lb. C. = -4000 lb, C, = -53.3 lb.

(b) 13.9°.

(b) a = 79.5°.

h = 1.15 ft.

3.54 m.
2.5

« 1.5

0.5

6.126

6.128

6.130

6.132

6.134

6.136

6.138

6.140

6.142

6.144

6.146

^^>^^ BD
"^~^

^^^::^Z_

y^
/ BC

/
0.5 1.5

(a) B = 82.9 N, C, = 40 N, C, = -22.9 N;

(b) AB : 82.9 N (C); BC : zero: AC : 46.1 N (T).

7-^a
= 7.14kN(C), 7^^ = 5.71 kN (T),

T,c= lOkN(T).

BC : 120 kN (C); BG : 42.4 kN (T); FG : 90 kN (T).

AB : 125 lb (C); AC : zero; BC : 188 lb(T); BD :

225 lb (C); CD: 125 lb (C); CE : 225 lb (T).

r«o= 13.3 kN(T). Tco= 11.7kN(T),

TcE = 28.3 kN (C).

AC : 480 N (T); CD : 240 N (C); CF : 300 N (T).

Tension: member AC. 480 lb (T): Compression:

member BD. 633 lb (C).

CD : 1 1.42 kN (C); Cy : 4.17 kN (C);

IJ : 12.00 kN (T).

182 kg.

A, = -1.57kN, A, = 1.18kN, B> = 0,

B, = -2.35 kN, C, = 1.57 kN, C, = 1.18 kN.

The force on the bolt is 972 N. The force at A is

576 N.

-1.52 kN, B, = -2kN,

6.148 F = 7.92 kip; BG : 19.35 kip (T); EF : 1 2.60 kip (C

6.150 A, = -52.33 kN, A,, = -43.09 kN, E, = 0.81 kN,

E^ = -14.86 kN.

Chapter 7

7.2 ,v = 27/10.

7.4 _v
= 4.46.

7.6 X = a{n + l)/(/i + 2).

7.8 ^ = 0.711 ft, y = 0.584 ft.

7.10 ^ = 0, y = 1.6 ft.

7.12 X = 4.
'

7.14 J = 0.533.

7.16 X = y = 9/20.
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7.18

7.20

7.22

7.24

7.26

7.28

7.30

7.32

7.34

7.36

7.38

7.40

7.42

7.44

7.46

7.48

7,50

7.52

7.54

7.56

7.58

7.60

7.62

7.64

7.66

7.68

7.70

7.72

7.74

7.76

7.78

7.80

7.82

7.84

7.86

7.88

7.90

7.92

7.94

7.96

7.98

7.100

7.102

7.104

7.106

7.108

7.110

7.112

7.114

7.116

7.118

V = -7.6.

X = 2.27.

a = 0.656, b = 6.56 X lO"' m'\

X = y = 4R/3v:

V = [(2/?V3) - R^h + hy3]/2A, where the area

A = {R/2)[{i7R/2) - h{\ - h~/R-y'- - R
arcsin {h/R)].

X = 0. V = 47.5 mm.
X = 9.90 in., y = 0.

X = -1.12 in., J = 0.

X = 9 in., y = 13.5 in.

X = 3.67 mm. y = 21.52 mm.

b = 39.6 mm, h = 18.2 mm.

y = 4.60 m.

y = 4.02 in.

X = 6.47 ft, y = 10.60 ft.

(a) 720 N. (b) 720 N at a- = 4 m.

(c) A, = 0, A, = 240 N, fi = 480 N.

A, = 0, A, = 300 N, M^ -= 1500 N-m.

A, = 0. A, = 10 kN, M„ = -31.3 kN-m.

A, = 0, A, = -25.9 N. B = 263.5 N.

A, = 0, Ay = 4940 lb, B = 660 lb.

A, = 0, A, = 350 N, B, =0, B, = -200 N.

A, = -18 kN, A, = 20 kN, S, = 0,

B, = -4 kN, C, = 18 kN. C, = -16 kN.

V = 275 m\ height = 2.33 m.

V = 0.032 m\ X = 0.45 m, y = 0, 3 = 0.

X = 0.675/?, V = 0, z = 0.

= 0.

= 3.52 mm.

X = h[{2R/3)'+ a/4]/{R + a/3),

.V = 3.24.

X = R sin a/a. y = R{\ — cosa)/a

X = 15.7 in., y = 13.3 in., z = 10 in.

X = 88.4 mm, y = c = 0.

X = 0. y = 43.7 mm, z = 38.2 mm.
X = 229.5 mm. y = ; = 0.

X = 23.65 mm. y = 36.63 mm,
3f = 6 m. y = 1.83 m.

X = 65.9 mm. y = 21.7 mm, z = 68.0 mm.
Volume =

I
irR-h.

V = 77/5.

y = 0.410.

A = 138 ft-.

A = 19.1 ml
V = 2.48 X 10^ mml
Volume = 0.0266 m\
A, = 0, A, = 294 N,

A, = 0, A, = 316 N,

A = 80.7 kN, B = 171.6 kN
A, = 0, A, = 3.16 kN
X = 121 mm. y = 0, z =

3c3 = 82 mm, y^,
= 122 mm,

y = 34.05 mm, z = 8.45 mm.
Mass = 408 kg, x = 2.5 m,

X = 20.10 in., y = 8.03 in.,

X = 3/8, y = 3/5.

0.

B = 196 N.

B = 469 N.

A/^ = 1.94 kN-m.

Zj. = 16 mm.

y = —1.5 m.

z = 15.35 in.

7.120 X = 87.3 mm, y = 55.3 mm.
7.122 917 N(T).

7.124 Tb = Tc = 15.2 kN.

7.126 X = 1.87 m.

7.128 A = 682 m\
7.130 ^ = 110 mm.
7.132 X = 1.70 m.

7.134 X = 25.24 mm, y = 8.02 mm, z

7.136 (a) X = 1.511 m. (b) x = 1.611 m.

7.138 (a) .V = 2 ft, y = 2.33 ft, I = 3.33 ft,

(b) X = 1.72 ft, y = 2.39 ft, z = 3.39 ft,

27.99 mm.

Chapter 8

8.2

8.4

8.6

8.8

8.10

8.12

8.14

8.16

8.18

8.20

8.22

8.24

8.28

8.30

8.32

8.34

8.36

8.38

8.40

8.42

8.44

8.46

8.48

8.50

8.52

8.54

8.56

8.58

8.60

8.62

8.64

8.66

8.68

8.70

8.72

8.74

8.76

8.78

(a), (b) /, = \bh\ k.
1

h.

V3
/, = 7.20 X 10' mm^ k, = 17.3 mm,

A = 3.20 X 10-' mm^ k, = 11.5 mm.

I, = i,hb\ K-~b.
hy = lib^h^.

I, = b^"^'/{9n + 3).

I„ = b^"^y{4n + 4).

I, = 0.0500, k, = 0.447.

/,, = 0.0625.

I, = 78.0 h\ A:, = 1.91 ft.

(a) /, =lnR\ ^, = U.
/, = 49.09 m^ k, = 2.50 m.

/, = 522, k, = 2.07.

/, = 10.00 m\ k, = 1.29 m.

/, = 1512 m^ k, = 4.58 m.

/,, = 5.92 X 10^ mm\ k, = 29.3 mm.

/, = 3.6 X 10' mm\ 7,, = 1 X 10" mm^
2.65 X 10*mm\ k, = 129 mm.
I, = 7.79 X 10^ mm-*, k, = 69.8 mm.

/,, = 1.08 X 10^mm^

Jo = 363 ft^ ko = 4.92 ft.

I, = 10.7 ft\ k, = 0.843 ft.

/,, = 7.1 ft^

Jo = 5.63 X 10' mm\ kg = 82.1 mm.

/, = 1.08 X 10' mm^ k, = 36.0 mm.

Jo = 1.58 X 10' mm\ kg = 43.5 mm.

70 = 2.35 X 10' in^ /t,, = 15.1 in.

/., = 49.7 m\ k, = 2.29 m.

/, = 5.48 X 10' mm\ k, = lA.l mm.

/„ = 1.73 X 10' mm-*.

I, = 7.59 X 10" mm\ k, = 21.S mm.
I, = 4.34 X 10^ in^

I,, = 4.83 X 10^ in-*.

Jo = 4.01 X 10' in^

I, = 8.89 X 10' in\

/, = 3.52 X 10-' m\
I,, = 995 in".

70 = 5.80 X 10" mm^ ^n

L = 1550 in-*.

k, = 10.5 in.

ko = 14.6 in.

k, = 7.18 in.

k,, = 4.52 in.

37.5 mm.
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8.80 /, = 4020 in^ A = 6980 in', or

/, = 6820 in', /, = 4180 in'.

9.14

9.16

8.84 A = 4.01 X 10'^ mm'. 9.18

8.88 /,. = 76.0 m', // = 14.7 m', I.w = 25.7 m'. 9.20

8.90 /,. = 8.81 m', /, = 3.69 m'. l^w = 2.74 m'. 9.22

8.92 dj, = -12.1°, principal moments of inertia are 9.24

80.2 X lO"*' m' and 27.7 X 10"* m'. 9.26

8.94 /,. = 76.0 m', /,. = 14.7 m'. //v'
= 25.7 m". 9.28

8.96 /,. = 8.81 m', /y = 3.69 m'. hw = 2.74 m'. 9.30

8.98 0p = -12.r, principal moments of inertia are 9.32

80.2 X 10"* m' and 27.7 X 10"* m'. 9.34

8.100 /o = 14 kg-m^. 9.36

8.102 / = mR\ 9.38

8.104 /(xaxi.)
= 2.667 kg-m^ 7,^^:^,

== 0.667 kg-m^ 9.40

/,„„„ = 3.333 kg-ml 9.42

8.106 /,_=1.99slug-ft^ 9.44

8.108 20.8kg-ml 9.48

8.110 /„ = |^m/l 9.50

8.112 /.axis
= 47.0 kg-m^

8.114 /,,„i,,
= 0.0803 slug-ftl 9.52

8.116 3810 slug-ft^. 9.54

8.118 /,,,i,
= 9.00 kg-m^ 9.56

8.120 /,^„ = 0.0881 slug-ft^. 9.58

8.122 /o
= 0.0188 kg-m-. 9.60

8.124 /.taxis
= /j'axis = mi^Q R^ + s''^)-

9.62

8.126 /_,, = 0.844 kg-ml 9.64

8.128 /,_ = 0.221 kg-ml 9.66

8.130 / = 0.460 slug-ftl 9.68

8.132 /,_ = 0.00911 kg-ml 9.70

8.134 /o
= 0.00367 kg-m*. 9.72

8.136 /,^;, = 0.714 slug-ft^ 9.74

8.138 h = l k,= Vl.
9.76

9.78

8.140 1-26. . _ \/76
J — 105 ' ''O

~ V 35 . 9.80

8.142 /, = 12.8, k, = 2.19. 9.82

8.144 /,, = 2.13. 9.84

8.146 /,. = 0.183, k,. = 0.262 9.86

8.148 /, = 2.75 X 10^ mm', k, = 43.7 mm. 9.88

8.150 /, = 5.03 X 10' mm', /t, = 59.1 mm. 9.90

8.152 A = 94.2 ft', k, = 2.24 ft.
9.92

8.154 A = 396 ft', k, = 3.63 ft.
9.94

8.156 Bp = 19.5°, 20.3 m', 161 m' 9.96

8.158

8.160

8.162

/,,,;,
= 0.0702 kg-m-.

/caxis = h>nw'^-

/_„ = 3.83 slug-ftl

9.98

9.100

9.102

9.104

9.106
8.164 0.537 kg-ml

Chapter 9
9.108

9.110

9.2 (a), (b) Ms = 1- 9.112

9.4 (a) / = 10.1 N toward the left. (b) F = 52.0 N. 9.114

9.6 (a) No. (b) 46.8 N.(c) 45.1 N 9.116

9.8 T = 112.94 N. 9.118

9.10 20 1b. 9.120

9.12 a = 14.0°. 9.122

T = 56.5 N.

(a) Yes. The force is /i^VV. (b) ^^x.^W.

T = 455 N.

a = 40.0°

F = W(sina — 5fi^cosa).

(a) a = arctan(/x.,); (b) /ikW/4.

IX, = 0.529.

(a) X = 2.07 m; (b) /x, = 0.66.

M = ,Ji,RW{l + Ms)/(1 + Ms).

/u,|( = 0.35.

a = 2arctan(/[is).

27.7 N-m.

240 N.

y = 234 mm.

a = 9.27°.

(a) F = 84 lb; (b) Yes.

a = 1.54°, P = 202 N.

(a) F = Ai,W;

(b) F = (W/2)(m.^ + M,a)/[l + (/»/fe)(MsA
-

F/2.

/ = 2 lb.

F = 74.3 lb.

(a) / = 24.5 N. (b) /n, = 0.503.

(a) / = 8 kN. (b) fi, = 0.533.

H, = 0.432.

fe = 429 lb.

F = 272 N.

Yes. It is necessary that /Lt^ > 0.268.

F = 2.30 kN.

F = 156 N.

343 kg.

No. The minimum value of /x, required is 0.176,

F = 1160N.

1.84 N-m.

fi, = 0.0398.

(a) 2.39 ft-lb; (b) 1.20ft-lb.

11.8ft-lb.

15.1 N-m.

10.4 N-m.

4.18 N-m.

4.88 N-m.

17.4 N-m.

2.02 kg.

106 N.

51.9 1b.

T = 40.9 N.

Fb = 207 N.

M = 1.92 ft-lb.

T = 80.7 N.

M = 0.3 N-m.

M = 12.7 N-m.

M = 7.81 N-m.

M = 5.20 N-m.

(a) M = 93.5 N-m; (b) 8.17 percent.

9.51 ft-lb.

MsB)]•



570 Answers to Even-Numbered Problems

9.124 21.6 1b.

9.126 7c = 107 N.

9.128 M = rW{c'"'^ - 1).

9.130 (a) 14.2 lb; (b) 128.3 lb.

9.132 T = 50.1 N.

9.134 M^ = 65.2 N-m. Mg = 32.6 N-m.

9.136 M = 19.2 N-m.

9.138 r, = 7-|>.^/^i"(T/2)].

9.140 ^. = 0.298.

9.142 a = 37.8°.

9.144 T = 3.84 lb.

9.146 D| = 29.2 mm, Dj = 162.2 mm.
9.148 -1.963V < V < 0.225 m.

9.150 (a) / = 10.3 lb.

9.152 F = 290 lb.

9.154 a = 65.7°.

9.156 a = 24.2°.

9.158 b = {h/fJL, - t)/2.

9.160 h = 5.82 in.

9.162 286 lb.

9.164 1 130 kg, torque = 2.67 kN-m.

9.166 / = 2.63 N.

9.168 Ms = 0.272.

9.170 M = 1.13 N-m,

9.172 P = 43.5 N.

9.174 146 lb.

9.176 (a) W = 106 lb; (b) W = 273 lb.

Chapter 10

10.2 Pa = 0, V^ = -142.9 N, M^ = -57.1 N-m.

10.4 Pa = 0, V4 = 200 lb, M^ = 700 ft-lb.

10.6 (a) Pa = 0. V, = 4 kN. M^ = 4 kN-m;

(b) Pa = 0, Va = 2 kN, Ma = 3 kN-m.

10.8 b = 2.40 m. Wo = 600 N/m.

10.10 Pa = 0, Va = 5.00 kN, Ma = -3.33 kN-m.

10.12 (a) Pa = 0. Va = 3.33 kN, Ma = 7.56 kN-m

(b) Pa = 0. Ka = 4 kN, M^ = 8 kN-m.

10.14 Pa = 0, Va= -2 kN, M^ = 6 kN-m.

10.16 Pa = 500 N, Va = 0. Ma = 0.

10.18 P^ = 4 kN, K4 = 6 kN, Af^ = 4.8 kN-m.

10.20 Pa = 0, K4 = -6 kN, Ma = 6 kN-m.

10.22 y

F>
i

!, —

I

10.24 (a) V = 1000 - lO.v" N,

M = - = (10.000) + 1000.y - ^jf'N-m.

(b) dM/ dx = 1000 - lO.v- N.

10.26 < .V < 2 m:V = -800 N. A/ = 800(6 - x) -

3600 N-m. 2 < .V < 6 m:l/ = -800 N,

M = 800(6 - .v) N-m.

10.28 V

3UU lb

6ft 12 ft

10.30 No. The maximum bending moment magnitude is

8 kN-m.

10.32 M = 54.2 N-m at x = 233 mm.

10.34 V
2000 lb

10001b-

—

-1000 lb -

-20(K) lb -

1 ft ft 3 fi 4 fi 5 ft

It 3 It 4 fi 5 ft

10.36 < .V < 4 m: V = -2x -I- 8.8 kN.

4 < .V < 10 m: V = -5.2 + ^(10 - -v)" kN.

10.38

1
4650 lb

2400 lb

4500 fl-lb

-2700 ft-lb

I;
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10.40 10.80

10.42

10.44

10.46

10.48

10.50

10.52

10.54

10.56

10.58

10.60

10.62

10.64

10.66

10.68

10.70

10.72

10.74

20 kN-m 4kN/m.

9—f—f"
6kNt l23.3kN 1 18.7 1

Ht^^^^^.

(a) V = -1200JC + 100A:^ M = -600.v- + '-fx\

(b) A, = 0, A, = 3600 N, M^ = 14,400 N-m

clockwise.

V = iv„L/6 - rt'o.v7(2Z.), M = [Lx - x^/L)wo/6.

V = -143 N, M = -143x N-m.

< A- < 6 m: V = 4 - g .r- kN,

M = 4x - ^x^ kN-m. 6 < .v < 12 m:

V = -2kN. M = -2(.v - 12) kN-m.

(a) 15.8 kN; (b) 28.7 m.

(a) r„,, = 86.2 kN. (b) 36.14 m.

AC: 1061 N (T), BC:1200 N (C).

Length = 108.3 m. h = 37.2 m.

6(X)
(587.5. 520.5) ft

'^^\
^^

{287.5.

1 1

148.6) ft

1

1

\
\ -
\
\
\

400

600 400 200

22.8 m.

(a) /i| = 4.95 m. /;. = 2.19 m:

(b) T^B = 1.90 kN, Tbc = 1.84 kN.

7, = 185 N, T, = 209 N.

(a) h. = 4 ft; (b) 90.1 lb.

/i, = /i, = 0.75 m.

/;, = 385 mm.112 = 464 mm
m = 211 kg.

(a) 9.15 N; (b) 4.71 m.

10.76 (a) 10.0 m; (b) 201 m.

10.78 (a) /!, = 1.99 m; (b) 7"^g

x.ft

10.82

10.86

10.88

10.90

10.92

10.94

10.96

10.98

(a) 1.016 X 10' Pa. (b) 1470 psi.

Vp = 0.3 m.

9.90 in., y„ = 0.

Xp = 0.75 m.

p

1.55 m.

6.67 m.

A : 257 lb to the right, 248 lb upward; B : 136 lb.

d = 1.5 m.

(a) 4.08 X 10^ Pa; (b) 2630 N upward.

10.100 (a) 376 kN; (b) x^ = 2.02 m.

10.104 (a) Pg = 0, Vb = -26.7 lb. A/« 160 ft-lb;

(b) Pc

10.106 V

10801b

0, Vr -26.7 lb, Mc = 80 ft-lb.

18 ft

10.108

2.06 kN, 7a, 2.01 kN.

10.110 P, = 0. V^ = 8kN, M^ = -8 kN-m.

10.112 (a) Pb = 0. Vfi
= -40 N, Mg = 10 N-m:

(b) Pfi = 0. V8 = -40N, MB=10N-m.
10.114 P = 0. V = -100 lb. M = -50 ft-lb.

10.116 (a) ?(' = 74,100 lb/ft; (b) 1.20 X 10* lb.

10.118 84.4 kip.

10.120 A : 44.2 kN to the left. 35.3 kN upward: B : 34.3 kN.
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Chapter 11

11.2 (a) Work = -3.20 86 kN-m; (b) B = 2.31 kN
11.4 F = 217 N.

11.6 (a) 31.25 86 kN-m. (b) A, = 0, A, = 10 kN
M^ = 31.25 kN-m clockwise.

11.8 F = 450 N.

11.10 (a) F = 392 N: (b) 100 mm.
11.12 F/2.

11.16 F = 360 lb.

11.18 M = 270 N-m.

11.20 13 kN.

11.22 9.17 kN.

11.24 T = 102 lb.

11.26 (a) q = 3, q = 4;

(b) ^ = 3 is unstable and q = 4 is stable.

11.28 V = Ux= -^,Ex\

11.30 (a) Stable; (b) Unstable.

11.34 (b) It is stable.

11.36 (a) a = 35.2°. (b) No.

11.38 (a) a = 28.7°: (b) Yes.

11.40 Stable.

11.42 Stable.

11.44 a = is unstable and a = 30° is stable.

11.46 (b) X = 1.12 m and x = 2.45 m;

(c) X = 1.12 m is stable and x = 2.45 m is unstable.

11.48 (a) a = 43.9°; (b) Yes.

11.50 (a) a = 30.5°; (b) Yes.

11.52 8F.

11.54 C, = -7.78 kN.

11.56 (a) M = 800 N-m; (b) a/4.

11.58 M = 1.50 kN-m.

11.60 F = 5 kN.

11.62 M = 63 N-m.

11.64 a = is unstable and a = 59.4° is stable.

11.66 Unstable.



Acceleration, 6, 19

due to gravity, 13

Adding vectors, 26-27

components

examples, 31-32

examples, 24—25

parallelogram rule, 22

Aerodynamic forces

airplane models, 97

airplanes, 513

cars, 513

Aerospace engineers, 4

Airplanes

aerodynamic forces, 97, 513

cruising, 96

external forces, 95

wind tunnels, 97

Angle

using dot product

examples, 62

Angle components

determining

examples. 32-33

Angular acceleration, 405

Angular units, 9-10

Arch, 269

Arched spans, 269

Area, 376-377

centroids, 319-320

definition. 376

two equations

example, 322

Asperities, 425

Axial forces, 262, 478-479

bridge, 269

members

trusses, 263-264

space trusses, 28

1

suspension structure, 270

B

Ball and socket support, 229

Bar

L-shaped

weight example, 357

virtual displacement, 531

Base units, 9

Beams, 262, 477-480

cross section, 395

573
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Beams (continued)

design, 389-393

distributed load

examples, 334

examples, 480^81

problems, 482-^84

triangular distributed load

examples, 333

Bearings, 231,423

journal, 452

Belts, 423

examples. 463^65

friction, 460^61

examples, 462-465

problems, 465-^67, 472^75

slips, 465

Bending moment, 478-479, 490-493

diagrams, 484-485

examples, 486-487, 493^95

problems. 488-489, 496

Biceps muscle

exercising device, 198

Body forces, 84

Book

horizontal force, 424

Bridges. 269

axial forces. 269

design

difficulties. 269

examples, 268-269

structures

examples, 262

suspension, 270, 497

truss

joint, 263

Buildings

wind forces, 513

Built-in support, 204-206, 231

Cables, 86, 497^98

continuous load. 507

discrete load, 507

equipment, 499-500

examples

discrete loads, 508-509

horizontally distributed load, 499

loads distributed uniformly, 503

tension, 500

weight load, 503

length. 498

loads distributed uniformly. 501-502

problems. 504

shape, 497-498

suspension bridge, 497

tension, 86, 90, 498

Cantilever beam

cross section. 395

Capstan. 148

Cars

aerodynamic forces. 5 1

3

center of mass, 363

Cartesian components, 29-3

1

examples, 31-36

problems, 36-42

Center of mass, 354-355

car. 363

composite object

examples, 361

definitions, 354-355

determination, 361

example, 357-360

objects, 355-356

vehicles, 363

Center of pressure, 5 1 3-5 1

5

examples. 516-517

Centroid, 318-319

areas, 319-320

composite areas, 325-326

determine exact location, 320

examples

area, 321-325

composite area, 327-331

composite line, 346

composite volume, 344

cone, 339

cutout, 328, 344-345

lines, 339-341,344-349
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Pappus-Guldinus theorem, 352

semicircular line, 340-341

volumes, 339-341,344-349

lines. 337-338

problems, 341-344

theorems relating surfaces and volumes of

revolution, 349

volumes, 337-338

problems, 341-344

X coordinate determination, 363

Chisel blade, 443

Chronology of developments

mechanics, 7

Circular area

moments of inertia

examples, 380

Civil engineers, 4

Clutch, 455

disengaged, 455

Coefficient of kinetic friction, 426

Coefficient of static friction

values, 425

Coefficients of friction, 425

Components

dot products, 59-60

examples

adding vectors, 31-32

cross products, 70-71

determining force, 52-53

determining in three dimensions, 50-51

parallel and normal, 62-63

of vector perpendicular to plane, 73

position vectors, 45

vector

magnitude, 43-44

parallel to given line, 45-46

Components in three dimensions, 42^6

examples, 46-53

problems, 53-57

Composite area

centroid

examples, 327

centroids, 325-326

moments of inertia

examples, 387-388

Composite bar

moment of inertia

examples, 410-411

Composite line

centroid

examples, 346

Composite object

examples

center of mass, 361

moment of inertia, 41

1

Composite volume

centroid, 343

examples, 344

Compression, 262

Concrete arches, 269

Concurrent dimensional system of forces, 84

Cone

centroid

examples, 339

Conservative forces, 541-543

virtual work, 543

Conservative system

stability

examples, 545

Contact forces, 85

Continuous load

cable, 507

Continuous models

discrete loads, 507

Conversion of units, 10

Coordinate system

right-handed, 42-43

Coplanar system of forces, 84

Coulomb friction, 425

Coulomb theory of friction, 423

Couples, 161-163

determination, 289

examples, 164-167

problems. 167-170

Cross products, 67-69

components, 67-68

definition, 67

evaluating 3x3 determinant, 68-69

examples

calculating, 7

1
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Cross products (continued)

components, 70-71

Cutout

centroid

examples, 328, 344-345

Cuts, 284

Cylinder

examples

moments of inertia, 412^13

nonuniform density, 358

Deflections of beams, 375

Derived unit, 9

Design, 5

Determinant

evaluating. 63-64, 68-69

Direction cosines, 44-45

Direction cosines magnitude

vector

examples, 46-47

Discrete loads, 506-507

cables, 507

examples, 508-509

configuration, 506-507

continuous models, 507

discrete models, 507

examples, 508-5 1

1

problems, 509, 512

tension, 506-507

Discrete models

discrete loads, 507

Disk Sander

friction

examples, 456

Displacement, 22, 26

Distance

from point to line

examples, 72

Distributed forces, 375

Distributed loads, 331-333, 490-493

area analogy, 332-333

beam

examples, 334

description, 331

examples, 333-337, 493-495

force determination, 331-332

moment determination, 331-332

problems, 496

suspension bridge, 497

Dot products, 6

1

components, 59-60

examples, 61-63

problems, 63-66

Downward force, 33

1

Draw objects

three dimensions, 42

Dynamics, 4

\

Electromagnetic forces, 85

Engineering

mechanics, 4

Engineers

responsibility, 3

Equilibrium, 89-91

examples

forces, 92

pulleys, 94-95

stability, 543-544

three-dimensional force systems, 106

unknown forces, 83

Equilibrium equations, 89, 202

Equilibrium position

stability

examples, 546-547

Equivalent systems, 170-172

examples, 172-174

representing systems, 174—175

examples. 176-179

Exercising device

biceps muscle, 198

External forces, 84

airplane, 95
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F-14

configuration, 97

F-15

refueling, 97

Fixed support, 204-206

Forces, 8, 83-117, 124-182

determination, 289

distributed loads, 331-332

members of frame

examples, 292-293

problems, 120-123

terminology, 84

tires

measurements, 363

truss support

examples, 268

types, 84-88

Forth Bridge

Scotland, 270

Frames, 261,289-310

analyzing entire structure, 285

analyzing member, 285-289

examples, 290-299, 307-310

problems, 299-306

truck and trailer

examples, 296-297

Free-body diagrams, 89-91, 206

drawing, 89

selection

examples, 93-94

thread, 446

unknown forces, 83

Friction

angles, 427

applications, AA2-AAA

examples, AAA-AAl

problems, 448^5

1

disk Sander

examples, 456

three dimensions

examples, 432-433

Friction brake

analyzing

examples, 43

1

Friction forces, 85

determination

examples, 428-429

evaluation, 427

objects supported, 424

Gases, 5 1

3

Gate loaded

pressure distribution

examples, 518-519

Golden Gate Bridge, 270

Gravitational constant, 1

3

Gravitational force, 1 3, 84-85

H

Hand axe, 443

Hinges, 230

reactions

examples, 236-239

problems, 239-245

support, 236-238

Homogenous, 355

Horizontal force

book, 424

Horizontally distributed load

cables

example, 499

House

trusses, 262

Hydroelectric turbine, 155

Impending slip, 426, 427

Improper supports, 223, 225-226

examples, 226-227

problems, 228



578 INDEX

Inertia. See Moment of inertia

Inertial reference frame, 89

Internal forces, 84

determination

example. 480-481

and movements, 477-527

International System of units, 6, 8-9

L-shaped bar

weight

examples, 357

Joints, 262

bridge truss, 263

free-body diagram, 264, 265

truss. 271-275

load applied at, 286-289

no load

three members. 266

two collinear members. 265

two noncollinear members. 265

Journal bearings. 452

examples, 453^55

problems, 456-459

M

Law of motion, 8

Linear spring, 88

Line of action, 84

determining

example, 142-143

Lines

centroid

examples, 340

centroids, 337-338, 343

examples, 339-341, 344-349

problems, 341-344

loads distributed uniformly, 497^98

Liquids. 513

Loading curve, 331-332

Loads. 203

applied at joints, 286-289

wedge, 444

Machines, 261,289-310

examples. 290-299, 307-310

virtual work, 536-537

problems, 299-306

Magnitude. 19

force. 19

of moment, 137

Mass, 8, 405

examples, 407^08

Mass density, 355

Mass moment of inertia. 405

simple objects, 405^07

examples, 407-^08

slender bars, 405^06

thin plates. 406-407

Mathcad, 5

Maximum, 485

Maximum friction force, 426

Mechanical engineers, 4

Mechanics

chronology of developments, 7

engineering, 4

fundamental concepts, 5-8

learning, 4—5

Members, 261

analyze, 289

forces. 289

free-body diagrams, 288

reassembling, 287

trusses, 263

axial forces, 263-264

Method of joints, 264-266

examples, 266-270

problems, 271-275

Method of sections, 275

examples, 276-277

problems, 278-288

Minimum. 485

Mirror image symmetry, 320
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Mixed triple products, 69

examples, 70-73

problems, 74-75

Mohr's circle, 400

moments of inertia

examples, 403

Moment, 124-182

bending, 478^79, 490^93

diagrams, 484-485

examples, 486-^87

problems, 488-489

determination

distributed loads, 331-332

example, 480-481

determining force

example, 128-129

determining unknown force

examples, 130-136

magnitude, 126

sense of, 1 26

system of forces

example, 128

two-dimensional description, 126-127

examples, 128-130

problems, 130-136

vector, 137-140

examples, 141-143

problems, 144-148

Moment of couple, 161

Moment of force

about a line, 148-152

definition, 148-152

examples, 152-155

problems, 156-160

Moment of inertia, 375-421.

See also Mass moment of inertia

circular area

examples, 380

composite area

examples, 387-388

composite bar

examples, 410-411

composite object

examples, 41

1

cylinder

examples, 412^13

dimensions, 377

Mohr's circle

examples, 403

polar, 376

slender bars

examples, 407

triangular area

examples, 378-379

triangular plate

examples, 408

X axis, 396

y axis, 397

N

Nebuchadnezzar II, 269

Newton, Isaac, 7

Newtonian gravitation, 13-14

examples, 14-15

problems, 15-17

Newton's laws, 7

Newton's third law, 85

demonstration, 285

Normal component

vector, 61

Normal force, 85

Numbers, 6

Objects

center of mass, 355-356

Objects in equilibrium, 201-255

problems, 256-259

Object's weight, 317

Palladia, Andrea, 270

Pappus-Guldinus theorem, 349-35

1

centroids

examples, 352

example, 351-354
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Parallel-axis theorems, 375, 383-386, 408-410

examples, 386-390, 410-413

demonstrations, 386

problems, 391-395, 413-417, 419-421

Parallel component

vector, 60

Parallel dimensional system of forces, 84

Parallelogram rule

vector addition, 22

Perpendicular distance

determining

example, 142-143

Pin

free-body diagrams, 287

support, 203

Pinned joints, 263

Pitch

threads, 445

Pliers, 298

Point

position in space, 22

Polar moment of inertia, 376

Position vectors

components, 30-3 1 , 45

Positive bending, 479

Positive shear force, 479

Potential energy, 541-544

examples, 545-547

problems, 548-552

Pratt truss, 270

Prefixes

SI units, 9

Pressure, 5 1 3-5 1

5

stationary liquid, 5 1

5

examples, 516-520

problems, 521-523

Pressure force

examples. 516-517, 520

Principal axes. 395-398

examples, 399—403

problems, 404

Problem solving, 4-5

Product of inertia, 376

Programmable calculator, 5

Properly aligned hinges

reactions

examples, 238-239

problems, 239-245

Pulleys, 87, 464

examples, 463—465

equilibrium, 94—95

journal bearings, 453^55

Quantum mechanics, 8

Reactions, 203

Reality check, 5

Redundant supports, 223-224

Representing systems

equivalent systems, 174-175

examples, 176-179

wrench, 180-181

examples, 182, 190-191

problems, 192, 194-198

Resolved. 24

Right-handed coordinate system, 42—43

Roller support, 203-204, 229

Roof structures

examples, 262

Ropes, 86

two cylinders

example, 462

Rotated axis, 395-398

example, 399^03

problems, 404

Rotating machines, 155

Rotation

mechanical transformer, 464

rates, 464

Rotational acceleration, 405

Rotational motions, 375

Roughness, 425

Rough surfaces, 85

fl
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S

Safety, 5

Scalar

components, 29

examples, 47^9

equilibrium equations, 207-208, 234

product, 22

vectors, 19

Section

choosing appropriate

examples, 277

Semicircular line

centroid

examples, 340-341

Sense

of moment, 137-139

Shear force, 478-479, 490^93

and bending moment

diagrams, 484-485

examples, 486-487

problems, 488^89

examples, 486^87, 493^95

problems, 496

Shims, 423, 448

Significant digits, 6

Simple objects

mass moments of inertia, 405^07

SI units, 6, 8-9

Slender bars

mass moments of inertia, 405-406

moments of inertia

examples, 407

Slope

threads, 445

Smooth surfaces, 85

Space, 6

Space trusses, 280-284

axial forces, 281

problems, 282-284

supports, 281

Span, 269

Springs, 87, 542-543

constant k, 88

potential energy, 529

Statically indeterminate objects, 223-224

examples, 224—227

problems, 228

Static coefficient, 425

Statics, 4, 89

Stationary liquid

pressure, 515

examples, 516-520

problems, 521-523

Steady flight

examples, 95-96

Steady translation, 89

Straight lines

loads distributed uniformly, 497^98

Strategy

development, 4-5

Structures

definition, 261

in equilibrium, 261-314

problems, 311-313

making, 262

virtual work

examples, 534-535

Supports, 203-204, 229-234

Surface forces, 84

Surfaces, 85

Suspension bridge

cable, 497

distributed load. 497

Suspension structure

axial forces, 270

bridge, 270

System of forces, 84

and moments, 172

Systems

equivalent systems, 174-179

wrench, 182, 190-198

Tension, 262

cable, 86, 90

example, 500
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Theory of dry friction, 424-427

examples, 428^33

problems, 434-442

Thin plates

mass moments of inertia, 406-407

Threaded collar

rotating

examples, 447

Threaded connections, 423

Threads, 445^46

example, 447

problems, 448^5

1

Three dimension

components

examples, 42-46

draw objects. 42

examples, 234—235

Three-dimensional applications, 229-233

examples, 234—239

problems, 239-245

Three-dimensional coordinate systems, 42

Three-dimensional force systems, 84, 106

examples, 106-110. 114-120

problems, 110-113

Three-force members, 247

Three joined members

free-body diagrams

examples, 294-295

Thrust bearing, 454-455

flat-ended shaft, 455

Time, 6

Tires

forces

measurements, 363

TK! Solver, 5

Torque, 464. See also Moments

mechanical transformer, 464

Triangle rule, 26-27

Triangular area

moments of inertia

examples, 378-379

Triangular distributed load

beam

examples, 333

Triangular plate

moments of inertia

examples, 408

Trusses, 262-263

free-body diagrams, 275

joints, 271-275

house, 262

members, 263

axial forces, 263-264

Warren

two loads, 271, 275

Two-dimensional applications, 202-208

examples. 208-213

problems, 214-223

Two-dimensional description. 139-140

moment. 126-127

Two-dimensional force systems, 84, 91-92

examples, 92-96

problems, 97-106

Two-force members, 245-247, 286

example, 252

examples, 248-249

problems, 250-251, 253-255

Two points vector

direction

examples, 49-50

u

Unit conversions, 10

Units, 8-11

example. 1 1-12

Unit vectors, 22-23

US Customary units, 6, 9

8

Varignon's theorem, 140

Vectors, 19-73

addition. 26-27

examples, 24-25, 31-32

parallelogram rule, 22

components, 23, 29
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examples, 33-35

parallel to given line, 45-46

definition, 19

magnitude

components, 43-44

examples, 35-36

manipulating, 21-23

components, 30

examples, 24-26

problems, 26-29

moment, 137-140

examples, 141-143

problems, 144-148

normal component, 61

operations, 19

parallel component, 60

problems, 78-80

products, 22, 58-75, 61

resolving into components

examples, 25-26

scalars, 19

subtraction, 22

Vehicles

center of mass, 363

Velocity, 6, 19

Vertical deflection, 395

Virtual displacement

bar, 531

Virtual work, 529-533

conservative forces, 543

examples, 534-536

principle, 531-532

problems, 537-541

structures application, 533

Volumes

centroids, 337-338

examples, 339-341, 344-349

problems, 341-344

w

Warren truss

two loads, 271, 275

Water wheels, 155

Wedges, 423, 443

large lateral force, 443

load, 444

Weight

L-shaped bar

examples, 357

single equivalent force, 317

Weight density, 355, 541-542

Weighted average, 318

Weighted average position, 321

Weight load

cable

example, 503

Winches. 155,466

Wind forces

buildings, 513

Windmills, 155

Wind tunnels

airplane models, 97

Work, 530

Wrench

representing systems, 180-181

examples, 182, 190-191

problems, 192, 194-198
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Areas

The coordinates of the centroid of the area A are

X = T"

dA

L

>' = ~~r

dA
L

dA

The moment of inertia about the x axis /, . the moment of inertia

about the y axis /,,, and the product of inertia /^> are

/, = ly^dA, A= Ix^dA. /„ = l xy dA.
JA JA JA

The polar moment of inertia about O is

Jo= r^dA = / (jc- + y^)dA = /, + /,.

JA JA

Area = bh

h = -^bH\

/,. = —bh\
12

Area = — bh
2

12

1

bh\

!. = -^bH\

3> y

\ c\ L
¥

Xj 1

X
h

\o^¥-\
Rectangular area

K = -^i^b\

I. = ^M^,

l.=-^b^h^

hy =

Triangular area

;, = -;,*',

/,.--**',

4v = o bV
8

,21,2

72
b'h

Area = -bh
2

Area = ttR' /, = /, 'itR\ l,y =

Area = - vR-
2

i. = -^^R\

Semicircular area

'it 8

hy =

A/
8 977

/?', /yv' =



Area = - ttR^
4

Area = aR^

Quarter-circular area

/. = A = ^-^\ R'

3a

Circular sector

/, = -/?•*(«- -sin2a j, /, = -/?'*( a + -sin2a ),

/,v =

Area = — Trab
4

h = Y^^ab\

Quarter-elliptical area

/,
= -.«3,,

Spandrel

Area = cb"

n + 1

9/1 + 3" A.
= cb'

n + 3

= raV

n + 3' '" 4n + 4

Lines

The coordinates of the centroid of the line L are

xdL I ydLL
I

dL

y

dL

Semicircular arc Quarter-circular arc
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