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Preface

This book provides the foundation of statistical inference for financial engineering,
which is a huge integration of economics, probability theory, statistics, time series
analysis, operation research, etc. Black and Scholes introduced the modern option
pricing theory assuming that the price process of an underlying asset follows a
geometric Brownian motion. However, empirical studies for the price processes
show that they do not follow the geometric Brownian motion, and that they often
behave like as non-Gaussian dependent processes. Motivated by this, we investi-
gate what stochastic models can describe the actual financial time series data
sufficiently, and how to estimate the proposed models optimally. Concretely, we
introduce various stochastic processes, e.g., non-Gaussian linear processes,
nonlinear processes, long-memory processes, locally stationary processes, etc.
For them we will develop the theory of optimal statistical inference based on local
asymptotic normality (LAN), which is due to Le Cam. This book also describes a
variety of statistical approaches, e.g., discriminant analysis, empirical likelihood
method, control variate method, quantile regression, realized volatility, etc.
The philosophy is that financial engineering should be constructed on optimal
statistical approaches for plausible stochastic processes.

Chapter 1 discusses time series modeling for financial data, and how to estimate
such models optimally. The models include general non-Gaussian vector linear
processes, nonlinear time series models, e.g., ARCH, CHARN, etc., and locally
stationary processes, etc. Their inference is developed by LAN-based optimal
theory. We give an approach based on integral functionals of nonparametric
spectral estimators, which are applicable to a lot of problems in financial statistics.
Option pricing will be discussed for a class of discretized diffusion processes. Also
we address the problem of classification for locally stationary processes, and apply
the results to actual financial data by use of dendrogram.

Chapter 2 deals with empirical likelihood approaches for financial data. Since
the observations are often supposed to be dependent, we will introduce an
estimating function which corresponds to the differential functional of Whittle
likelihood, i.e., empirical likelihood in frequency domain. After explaining the
asymptotic properties of the frequency domain empirical likelihood estimator, we
also introduce the extensions of the empirical likelihood method such as
Cressie-Read power-divergence statistic and generalized empirical likelihood. As
an application, we consider the generalized empirical likelihood estimation
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method for the multivariate stable distributions. Several real data analyses are also
included.

Chapter 3 gives applications of two statistical methods to the financial time
series data. The first one is the control variate method. The control variate method
is a method to reduce the variance of estimators by use of some information of
another process, which is correlated with the process concerned. This method has
been discussed in the case when the data are i.i.d. Since financial time series data
are often dependent, we extend this method to dependent data and give the
application to financial econometrics. The second one is the instrumental variable
method. We introduce a stochastic regression model where the explanatory and
disturbance processes are correlated. For this we apply the instrumental variable
method to estimate the regression coefficients consistently. We also address the
problem of CAPM to our analysis.

Chapter 4 introduces two techniques, which can be utilized in study of financial
risks. The first one is the method called Quantile Regression (QR), which can be
used to analyze the conditional quantile of financial assets. There, by means of
rank-based semiparametrics, we provide the statistically efficient version of QR
inference under the autoregressive conditional heteroskedasticity (ARCH). The
second technique, the Realized Volatility (RV), estimates the conditional variance,
or ‘‘volatility’’ of financial assets. Revealing the fact that its inference can be
greatly affected by the existence of additional noise called market microstructure,
we introduce and study the asymptotics of some appropriate estimator under the
microstructure with ARCH property.

This book is suitable as a professional reference book on finance, statistics, and
statistical financial engineering, or a text book for students who specialize these
topics.

A part of this book was done in a collaboration between Research Institute for
Science and Engineering, Waseda University and Government Pension Investment
Fund (GPIF) of Japan. We thank all the members, especially, Prof. Takeru Suzuki
and Dr. Takashi Yamashita (GPIF) for their cooperation. Our research was partially
supported by the following Japanese Grant-in-Aids: A2324401 (Taniguchi, M.),
B22700291 (Ogata, H.), B22700296 (Amano, T.).

Finally, we thank the editors of SpringerBriefs in Statistics for their kindness.

January 2013 Masanobu Taniguchi
Tomoyuki Amano

Hiroaki Ogata
Hiroyuki Taniai
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Chapter 1
Features of Financial Data

Abstract This chapter discusses actual features of financial time series data, and
how to model them statistically. Because the mechanism of financial market is obvi-
ously complicated, modeling for financial time series is difficult. For this, first, we
look at some empirical characteristics of financial data. Then, we review and exam-
ine various time series models (e.g., ARCH, general linear process, non-stationary
process, etc.), which show plausibility. Their estimation theory is provided in a uni-
fied fashion. Optimality of the estimation and testing, etc., is described based on the
local asymptotic normality (LAN) due to Le Cam. The theory and models are very
general and modern.

Keywords Nonlinear time seriesmodels ·Vector linear processes ·LANapproach ·
Option pricing · Classification for time series · Locally stationary processes

1.1 Introduction

In this chapter we address the problems of modeling for financial time series data
and the optimal inference for various models. Then an introduction to financial
engineering based on time series analysis is provided.

Section1.2 studies statistical features of financial returns. They naturally lead
to nonlinear time series models, e.g., ARCH, GARCH, EGARCH, CHARN, etc.
If we assume their stationarity, Wold decomposition theorem shows that they can
be expressed as linear processes. For general non-Gaussian vector-valued linear
processes, we develop the asymptotic theory for Whittle estimators and integral
functional of nonparametric spectral density estimators. Then the problems of h-step
ahead prediction and testing a strength of causality are discussed.

Lucien LeCam established one of the most important foundations of the general
statistical asymptotic theory ( e.g., see LeCam (1986)). He introduced the concept of
local asymptotic normality (LAN) for the likelihood ratio of general statistical model

M. Taniguchi et al., Statistical Inference for Financial Engineering, 1
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2 1 Features of Financial Data

Fig. 1.1 Daily log return of
IBM {Xt }
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in i.i.d. case. Beautiful thing is that once LAN is proved, the asymptotic optimality
of estimators and tests is described in terms of the LAN property.

Section1.3 introduces an important class of nonlinear time series models, called
ARCH(∞) with stochastic mean (ARCH(∞)-SM) models, which includes the usual
ARCH and GARCH as special cases. For this class, we establish the LAN, and
describe the framework of the optimal inference based on LAN, proving the opti-
mality of MLE. This stream of discussion is extended to a very general class of
conditional heteroscedastic autoregressive nonlinear (CHARN) models and nonsta-
tionary processes, called locally stationary processes.

Section1.4 develops the arguments of financial engineering based on time series
analysis. Fundamental concepts, i.e., arbitrage-free, self-financing portfolio, com-
pleteness, etc., are explained. We discuss the pricing a European call option for
discretized diffusion returns. Classification method of locally stationary processes
is introduced. Using a distance between their nonparametric spectral estimators, we
executed the hierarchical clustering for daily log-stock returns of 13 companies. The
dendrogram classifies the type of industry clearly, which implies that the method
will be useful for the problem of credit rating.

Because this book is mainly based on the research papers of the authors, it is
recommendable to refer Gouriéroux and Jasiak (2001) for financial econometrics,
Van der Vaart (1998) for the LAN approach and Brockwell and Davis (1991) for
general time series analysis.

1.2 Time Series Modeling for Financial Data

We begin by looking at actual stock price data. Figure1.1 plots the daily log return
of IBM from October 16, 2003 to September 26, 2011. Write the observed stretch
as X1, X2, . . . , Xn . As a fundamental analysis we often examine the behavior of the
sample autocorrelation function (SACF):

ρ̂Xt (l) ≡
∑n−l

t=1(Xt+l − Xn)(Xt − Xn)
∑n

t=1(Xt − Xn)2
(1.1)
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Fig. 1.2 SACF of {Xt }
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Fig. 1.3 SACF of {X2
t }
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where X̄n ≡ n−1 ∑n
t=1 Xt . The SACF ρ̂Xt (l) for {Xt } is shown in Fig. 1.2. The

SACF ρ̂X2
t
(l) for square transformed data X2

t is shown in Fig. 1.3. From (1.1), ρ̂Xt (l)
shows a strength of interrelation between Xt+l and Xt , hence, if Xt ’s are mutually
independent or uncorrelated, ρ̂Xt (l), (l �= 0), will be near zero. Figures1.2 and
1.3, respectively, suggest that Xt ’s are almost uncorrelated, and that X2

t ’s are not
uncorrelated, which leads to the following conclusion:

Xt ’s are notmutually independent and the distribution of {Xt } is non-Gaussian.

Observing these symptomsoffinancial data, Engle (1982) proposed an autoregressive
conditional heteroscedastic model (ARCH(q)), which is defined as

{
E(Xt |F t−1) = 0 a.e.,
V ar(Xt |Ft−1) = a0 + ∑q

j=1 a j X2
t− j a.e., (1.2)

where Ft−1 is σ -algebra generated by {Xt−1, Xt−2, . . .} and a0 > 0, a j ≥ 0,
j = 1, . . . , q. A concrete representation of it is given by
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{
Xt = εt

√
ht ,

ht = a0 + ∑q
j=1 a j X2

t− j ,
(1.3)

where {εt } is a sequence of i.i.d.(0, σ 2) random variables. Evidently, Xt ’s are
uncorrelated, and it is seen that they are dependent and non-Gaussian generally.
Bollerslev (1986) generalized ARCH(q) to

{
E(Xt |Ft−1) = 0 a.e.,
V ar(Xt |Ft−1) ≡ a0 + ∑q

j=1 a j X2
t− j + ∑p

j=1 b j h2
t− j a.e., (1.4)

where a0 > 0, a j ≥ 0, j = 1, . . . , q, b j ≥ 0, j = 1, . . . , p, which is called a
generalized autoregressive conditional heteroscedastic model (GARCH(p, q)).
Further, generalizing ARCH and GARCH, Giraitis et al. (2000) introduced the
ARCH(∞) defined by

{
Xt = εt

√
ht

ht = a0 + ∑∞
j=1 a j X2

t− j
(1.5)

where a0 > 0, a j ≥ 0, j = 1, . . ., {εt } is a sequence of i.i.d. random variables, and
εt is Ft -measurable and independent of Ft−1.

Empirically, it is known that stock returns are negatively correlated with changes
in returns volatility, i.e., volatility tends to rise in response to “bad news” and to fall
in response to “good news.” ARCH and GARCHmodels cannot describe this aspect.
To allow the asymmetric effect, Nelson (1991) proposed the exponential GARCH
model(EGARCH(p, q)):

{
Xt = εt · σt

log σ 2
t = a0 + ∑p

j=1 a j
|Xt− j |+γ j Xt− j

σt− j
+ ∑q

j=1 b j log σ 2
t− j

(1.6)

where a j , b j , γ j are unknown parameters, and are allowed to be negative unlike
ARCH and GARCH parameters. If a jγ j < 0, j = 1, . . . , p, then we can understand
the asymmetry of EGARCH.

Recently, the following stochastic volatility model(SV(m)) has been introduced,
and is defined by

{
Xt = σtεt

log σ 2
t − α1 log σ 2

t−1 − · · · − αm log σ 2
t−m = α0 + νt

(1.7)

where {εt } ∼ i.i.d.(0, 1), {νt } ∼ i.i.d.(0, σ 2
ν ), and {εt } and {νt } are mutually

independent.
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Incorporating ARCH with SV, Härdle et al. (1998) introduced the following
conditional heteroscedastic autoregressive nonlinear model (denoted by CHARN):

X t = Fθ (X t−1, . . . , X t−p) + Hθ (X t−1, . . . , X t−q)γt (1.8)

where Fθ : R
mp → R

m and Hθ : R
mq → R

m × R
m , are measurable functions

depending on unknown parameter θ ∈ Θ ⊂ R
r , {X t } and {γt } are sequences of

m-dimensional randomvectors, {γt } ∼ i.i.d.(0, V ) and γt is independent of {Xs, s <

t}. Although CHARN has been used for financial data, Kato et al. (2006) applied
this model to analysis of brain and muscular waves. Hence, CHARN models are
very general.

Besides the above, a lot of nonlinear time series models have been proposed.
Among them, ARCH(∞) and CHARNmodels are typical and general. If we discuss
estimation theory for nonlinear time series, their stationarity is one of the most
fundamental assumptions. Lu and Jiang (2001) gave a sufficient condition for strict
stationarity of CHARN model (1.8). Giraitis et al. (2000) gave sufficient conditions
for strict stationarity and second-order stationarity of ARCH(∞) model (1.5).

For second-order stationary processes, we have the following convenient result
(for proof, e.g., Hannan (1970), p.137).

Proposition 1.1 (Wold decomposition Theorem) Any zero-mean second-order
stationary process {Xt } can be represented in the form of linear process:

Xt =
∞∑

j=0

a j ut− j + ηt , (1.9)

where a0 = 1,
∑∞

j=0 a2
j < ∞, and

(i) E{usut } = δ(t − s)σ 2

(ii) E{usηt } = 0, for any s, t ∈ Z

(iii) ηt is purely deterministic, i.e., ηt = E{ηt |Xt−1, Xt−2, . . .}.
In view of Proposition 1.1, the class of linear processes is a sufficiently rich

one, which contains classes of various stationary nonlinear processes. Thus, in what
follows, we provide some fundamentals of linear processes.

Let {X(t) = (X1(t), . . . , Xm(t))′; t ∈ Z} be generated by

X(t) =
∞∑

j=0

A( j)U(t − j), t ∈ Z (1.10)

where {U(t) = (u1(t), . . . , um(t))′} is a sequence of m-vector random variables
satisfying

E{U(t)} = 0, E{U(t)U(s)′} = 0 (t �= s)



6 1 Features of Financial Data

and

Var{U(t)} = K = {Kab : a, b = 1, . . . , m} for all t ∈ Z.

Here, A( j) = {Aab( j); a, b = 1, . . . , m}, j ∈ Z, are m × m matrices with
A(0) = Im . We set

Assumption 1.1
∑∞

j=0 tr{A( j)KA( j)′} < ∞.

Then, {X(t)} becomes a second-order stationary process with spectral density
matrix

f (λ) = { fab(λ); a, b = 1, . . . , m} = (2π)−1 A(λ)KA(λ)∗,

where A(λ) = ∑∞
j=0 A( j)ei jλ.

In the inference for (1.10), we often deal with the integral functional of peri-
odogram matrix In(λ) :

Fn ≡
∫ π

−π

tr{φ(λ)In(λ)}dλ, (1.11)

where φ(λ) is an m × m matrix-valued continuous function on [−π, π ], and

In(λ) = (2πn)−1

{
n∑

t=1

X(t)eitλ

}{
n∑

t=1

X(t)eitλ

}∗
.

To describe the asymptotics of
√

n(Fn − F), where F = ∫ π

−π
tr{φ(λ) f (λ)}dλ,

we mention two approaches. The first approach is due to Hosoya and Taniguchi
(1982). Consider the linear process (1.10). Denote by Ft the σ -algebra generated by
{U(s); s ≤ t}.
Assumption (HT)

(i) {U(t)} is fourth-order stationary, and the fourth-order cumulants cU
a1...a4

(t1, t2, t3) ≡ cum{ua1(0), ua2(t1), ua3(t2), ua4(t3)}, (a1, . . . , a4 = 1, . . . , m),
satisfy

∞∑

t1,t2,t3=−∞

∣
∣
∣cU

a1...a4(t1, t2, t3)
∣
∣
∣ < ∞.

(ii) For each a1, a2 and s,

Var[E{ua1(t)ua2(t + s)|Ft−τ } − δ(s)Ka1a2 ] = O(τ−2−ε) for ε > 0,

uniformly in t .
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(iii) For each a1, a2, a3 and a4,

E |E{ua1(t1)ua2(t2)ua3(t3)ua4(t4)|Ft1−τ } − E{ua1(t1)ua2(t2)ua3(t3)ua4(t4)}|
= O(τ−1−η),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4 and η > 0.
(iv) For any ρ > 0 and for any integer L ≥ 0, there exists Bρ > 0 such that

E[T (n, s)2 I {T (n, s) > Bρ}] < ρ,

uniformly in n and s, where

T (n, s) =
⎡

⎣
n∑

a1,a2=1

L∑

r=0

{
n∑

t=1

ua1(t + s)ua2(t + s + r) − δ(r)Ka1a2√
n

}2
⎤

⎦

1
2

,

and I {·} is the indicator function of {·}.
(v) f (λ) ∈ Lip(α), the Lipschitz class of degree α, α > 1/2.

In the literature, a higher order martingale difference condition for {U(t)} is
imposed, i.e.,

E{ua1(t)|Ft−1} = 0 a.s., E{ua1(t)ua2(t)|Ft−1} = Ka1a2 a.s.,

E{ua1(t)ua2(t)ua3(t)|Ft−1} = γa1a2a3 a.s., etc. (1.12)

(e.g., Dunsmuir and Hannan (1976)). The assumption (HT) (ii) and (iii) mean a kind
of “asymptotically” higher order martingale difference condition, which is more
natural than (1.12).

To elucidate the asymptotics of
√

n(Fn − F), Hosoya and Taniguchi (1982)
showed:

√
n(Fn − F) is approximated by a finite linear combination of

√
n

{
1

n

n∑

t=1

Xa1(t)Xa2(t + s) − E{Xa1(t)Xa2(t + s)}
}

(1.13)

where s = 0, 1, . . . , n − 1, a1, a2 = 1, . . . , m.

Recalling that {X(t)} is generated by (1.10),we can see that (1.13) is approximated
by a finite linear combination of
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1√
n

{
n∑

t=1

ua1(t)ua2(t + l) − δ(l)Ka1a2

}

, l ≤ s. (1.14)

Applying Brown’s central limit theorem (Brown (1971)) to (1.14), Hosoya and
Taniguchi (1982) elucidated the asymptotics of

√
n(Fn − F).

The second approach is due to Brillinger (2001). Assume that {X(t)} is strictly
stationary and all the moments exist.

Let
cX

a1...ak
(t1, . . . , tk−1) = cum{Xa1(0), Xa2(t1), . . . , Xak (tk−1)},

for a1, . . . , ak = 1, . . . , m; k = 2, 3, . . . .

Assumption (B) For each j = 1, 2, . . . , k−1 and any k-tuplea1, a2, . . . , ak wehave

∞∑

t1,...,tk−1=−∞
(1 + |t j |)|cX

a1...ak
(t1, . . . , tk−1)| < ∞, k = 2, 3, . . . . (1.15)

Under Assumption (B), Brillinger (2001) evaluated the J th order cumulant cn(J )

of
√

n(Fn − F), and showed that cn(J ) → 0 as n → ∞ for all J ≥ 3, which implies
the asymptotic normality of

√
n(Fn − F).

Summarizing the two approaches, we have

Proposition 1.2 (Hosoya and Taniguchi (1982), Brillinger (2001)) Suppose that one
of the following conditions (HT) and (B) holds:
(HT) {X(t) : t ∈ Z is generated by (1.10) and satisfies Assumption (HT).
(B) {X(t) : t ∈ Z is strictly stationary, and satisfies Assumption (B).
Let φ j (λ), j = 1, . . . , q, be m × m matrix-valued continuous functions on [−π, π ]
such that φ j (λ) = φ j (λ)∗ and φ j (−λ) = φ j (λ)′. Then

(i) for each j = 1, . . . , q,

∫ π

−π

tr{φ j (λ)In(λ)}dλ
p−→

∫ π

−π

tr{φ j (λ) f (λ)}dλ (1.16)

as n → ∞,
(ii) the quantities

√
n
∫ π

−π

tr[φ j (λ){In(λ) − f (λ)}]dλ, j = 1, . . . , q

have, asymptotically, a normal distribution with zero-mean vector and covari-
ance matrix V whose (j,l)th element is



1.2 Time Series Modeling for Financial Data 9

4π
∫ π

−π

tr{ f (λ)φ j (λ) f (λ)φl(λ)}dλ

+ 2π
m∑

r,t,u,v=1

∫ ∫ π

−π

φ
( j)
r t (λ1)φ

(l)
uv (λ2)Q X

r tuv(−λ1, λ2,−λ2) dλ1dλ2.

where φ
( j)
r t (λ) is the (r,t)th element of φ j (λ), and

Q X
r tuv(λ1, λ2, λ3) = (2π)−3

∞∑

t1,t2,t3=−∞
exp{−i(λ1t1 +λ2t2 +λ3t3)}cX

r tuv(t1, t2, t3).

Let us think about the case when m = 1 (scalar process), and {X(t)} is a Gaussian
process. In the case we write X(t), In(λ), f (λ) by X (t), In(λ) and f (λ), respec-
tively. Let X = (X (1), X (2), . . . , X (n))′ be a partial realization of {X (t) : t ∈ Z}.
Denote the probability density function of X by p(X). Under appropriate regularity
conditions, Liggett (1971) showed

1

n
log{p(X)} = − log 2π − 1

4π

∫ π

−π

[

log f (λ) + In(λ)

f (λ)

]

dλ + op(1). (1.17)

Hence, if the spectral density is parameterized by q-dimensional unknown parameter
θ ∈ Θ ⊂ R

q , an approximated maximum likelihood estimator θ̂ may be defined by

θ̂ ≡ argmin
θ∈Θ

∫ π

−π

{log fθ (λ) + fθ (λ)−1 In(λ)}dλ. (1.18)

Returning to the original setting (1.10), we may understand that the multivariate
version of the right-hand side integral part in (1.18) is

D( f θ , In) ≡
∫ π

−π

[log det f θ (λ) + tr{ f θ (λ)−1 In(λ)}]dλ. (1.19)

Let

θ̂ QG M L ≡ argmin
θ∈Θ

D( f θ , In), (1.20)

which is called a quasi-Gaussian maximum likelihood estimator. Although in the
derivation of (1.17), we used Gaussianity of the process, the assumption of Gaus-
sianity may be dropped when we use θ̂ QG M L .
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Let F = { f θ (λ) : θ ∈ Θ ⊂ R
q} be a family of parametric spectral density

models, which may not contain the true model f (λ). We fit f θ (λ) ∈ F to f (λ)

by the criterion D( f θ , f ) defined by (1.19) replacing In by f . This setting is very
natural for practical situations, and has expectedly wide applications. Let

θ = argmin
θ∈Θ

D( f θ , f ), (1.21)

which is called a quasi-true value of the parameter. If f θ (λ) is sufficiently smooth
with respect to θ , and if θ̂ QG M L satisfies

∂

∂θ
D( f θ , In)|

θ=θ̂ QG M L
= 0, (1.22)

then Taylor’s expansion of (1.22) at θ leads to

0 = ∂

∂θ
D( f θ , In) + ∂2

∂θ∂θ ′ D( f θ , In)(θ̂ QG M L − θ) + · · · . (1.23)

If (1.21) implies
∂

∂θ
D( f θ , f )|θ=θ = 0, (1.24)

then, it is seen from (1.23) that

√
n(θ̂ QG M L−θ) ≈ −

[
∂2

∂θ∂θ ′ D( f θ , In)

]−1 √
n

[
∂

∂θ
D( f θ , In) − ∂

∂θ
D( f θ , f )

]

.

(1.25)

Because the derivatives of D( f θ , In) are integral functionals of In , hence, applica-
tion of Proposition 1.2 to (1.25) yields,

Proposition 1.3 (Hosoya and Taniguchi (1982)) Suppose that θ exists uniquely and
lies in IntΘ , and that

M f ≡
∫ π

−π

[
∂2

∂θ∂θ ′ tr
{

fθ (λ)−1 f (λ)
}

+ ∂2

∂θ∂θ ′ log det fθ (λ)

]

θ=θ

dλ

is a nonsingular matrix. Then, under Assumption(HT), it holds that, as n → ∞,

(i) θ̂ QG M L
p−→ θ

(ii) the distribution of
√

n(θ̂ QG M L − θ) tends to the normal distribution with zero
mean vector and covariance matrix M−1

f Ṽ M−1
f , where Ṽ = {Ṽ jl} is a q × q

matrix such that
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Ṽ jl = 4π
∫ π

−π

tr

[

f (λ)

{
∂

∂θ j
f (λ)−1

}

f (λ)

{
∂

∂θl
f (λ)−1

}]

θ=θ

dλ

+ 2π
m∑

r,t,u,v=1

∫∫ π

−π

{
∂

∂θ j
f (r,t)
θ (λ1)

∂

∂θl
f (u,v)
θ (λ2)

}

θ=θ

(1.26)

× QX
r tuv(−λ1, λ2,−λ2)dλ1dλ2

and f (r,t)
θ (λ) is the (r, t)th element of fθ (λ)−1.

If {X(t)} is Gaussian, then the non-Gaussian quantities satisfy
QX

r tuv(ω1, ω2, ω3) = 0, hence, the second term in (1.26) vanishes. If f (λ) ≡ fθ ,
i.e., there is no misspecification, then differential calculus for (∂/∂θ) fθ−1 and
(∂/∂θ) log det fθ yield,

Corollary 1.3 Suppose that {X(t)} is Gaussian, and the spectral density matrix
f (λ) ∈ F , i.e., f (λ) = fθ (λ). Then, under Assumption (HT),

√
N (θ̂ QG M L − θ)

d−→ N (0, F(θ)−1), (1.27)

where

F(θ) =
[

1

4π

∫ π

−π

tr

{

fθ (λ)−1
⎜

∂

∂θ j
fθ (λ)

)

fθ (λ)−1
⎜

∂

∂θl
fθ (λ)

)}

dλ; j, l = 1, · · · , q

]

,

which is called the (Gaussian) Fisher information matrix in time series.

In view of this corollary, tentatively, we say that an estimator θ̂ of θ is Gaussian

asymptotically efficient of
√

n(θ̂ − θ)
d−→ N (0, F(θ)−1). The rigorous asymptotic

efficiency will discussed in the next section based on the concept of LAN.
We saw in Proposition 1.3 that the asymptotics of θ̂ QG M L depend on the

integral of the fourth-order cumulant spectra QX
r tuv(·, ·, ·) which show a degree of

non-Gaussianity. We will show that there is a case when the integrals vanish even if
the process {X(t)} is non-Gaussian.
Assumption (NGR)

(i) The innovation process {U(t)} in (1.10) satisfies

cum{ua(t1), ub(t2), uc(t3), ud(t4)} =
{

κabcd if t1 = t2 = t3 = t4,
0 otherwise.

(1.28)

(ii) f (λ) = fθ (λ).
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(iii) fθ (λ) has the form (2π)−1 Aθ (λ)K Aθ (λ)∗, where Aθ (λ) = ∑∞
j=0 Aθ ( j)e−i t j

with Aθ (0) = Im , and the innovation covariance matrix K is independent of
θ , then we say that θ is “innovation-free.”

Evaluating the second integral of (1.26), we can see that all of them vanish, hence,

Corollary 1.4 Under Assumption (NGR), the asymptotic distribution of√
N (θ̂ QG M L − θ) is independent of non-Gaussianity of the process (we say that

the estimator is non-Gaussian robust (NGR)).

Our approach due to D( fθ , f ) is very wide. For example, we are interested in
prediction of X(t +h) based on a linear combination of X(t), X(t −1), . . . , X(t −r),
i.e., B(h)X(t)+B(h+1)X(t−1)+· · ·+B(h+r)X(t−r), where B(h), . . . , B(h+r)

arem ×m matrices satisfying that Im − B(h)zh −· · ·− B(h+r)zh+r is holomorphic
on D = {z ∈ C; |z| ≤ 1}.

Let Bθ (λ) = Im − B(h)eihλ − · · · − B(h + r)ei(h+r)λ, and fθ (λ) ≡
Bθ (λ)−1{Bθ (λ)−1}∗, where θ = vec{B(h), . . . , B(h + r)}. Then the h-step ahead
prediction error of {X(t + h)} is

trE[{X(t + h) − B(h)X(t) − · · · − B(h + r)X(t − r)}
× {X(t + h) − B(h)X(t) − · · · − B(h + r)X(t − r)}′]

= tr
∫ π

−π

Bθ (λ) f (λ)Bθ (λ)∗dλ

=
∫ π

−π

tr{Bθ (λ)∗ Bθ (λ) f (λ)}dλ

=
∫ π

−π

tr{ fθ
−1(λ) f (λ)}dλ (1.29)

From Theorem 3′′′ of Hannan (1970), p.162 it follows that

∫ π

−π

log det fθ (λ)dλ = 0 (1.30)

which, together with (1.29), implies that the h-step ahead prediction error is equal
to D( fθ , f ). Let θ be the quasi-true value of θ , i.e.,

θ = vec{B(h), . . . , B(h + r)} ≡ argmin
θ∈Θ

D( fθ , f ).
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Then, the corresponding predictor

B(h)X(t) + · · · + B(h + r)X(t − r) (1.31)

becomes the best h-step ahead linear predictor on {X(t), . . . , X(t − r)}. Observing
the data {X(t), X(t − 1), . . . , X(t − n + 1)}, we can estimate θ by

θ̂ QG M L ≡ vec{B̂QG M L(h), . . . , B̂QG M L(h + r)} (1.32)

whose asymptotics are given in Proposition 1.3 with dim θ = m(r + 1), i.e.,

√
N (θ̂ QG M L − θ)

d−→ N (0, M−1
f Ṽ M−1

f ). (1.33)

Let us consider the problem of portfolio. Suppose that we have m-asset returns
described by X1(t), . . . , Xm(t). Let α = (α1, . . . , αm)′ be a portfolio weight vector
satisfying α1+· · ·+αm = 1. Assuming that the present time is t , wewant to estimate
the future portfolio return α′X(t + h). In view of above, this is estimated by

α′ {B̂QG M L(h)X(t) + · · · + B̂QG M L(h + r)X(t − r)
}
. (1.34)

Hence our setting by D( fθ , f ) is unexpectedly general and wide.
We next discuss the problem of nonparametric spectral estimation. We estimate

f (λ) by weighted averages of the periodogram matrix In(λ)with a spectral window
Wn(λ) as weight, i.e.,

f̂ n(λ) =
∫ π

−π

Wn(λ − μ)In(μ)dμ (1.35)

where Wn(·) satisfies
Assumption 1.2

(i) Wn(λ) can be expanded as

Wn(λ) = 1

2π

M∑

l=−M

w

⎜
l

M

)

exp(−ilλ).

(ii) w(x) is continuous, even function with w(0) = 1, and satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|w(x)| ≤ 1,∫ ∞

−∞
w(x)2dx < ∞,

lim
x→0

1 − w(x)

|x |2 = κ2 < ∞.
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(iii) M = M(n) satisfies

n1/4/M + M/n1/2 → 0 as n → ∞.

Concrete examples of Wn(·) satisfying Assumption 1.2 are found in e.g., Hannan
(1970), and it is known that

E
[
|| f̂ n(λ) − f (λ)||2

]
=

⎜
M

n

)

+ O(M−4) (1.36)

uniformly in λ, hence, f̂ n(λ) − f (λ) = Op{(M/n)1/2}, i.e., f̂ (λ) is a
√

n/M-
consistent estimator of f (λ) (e.g., Hannan (1970)). As we saw in Proposition 1.3,
parametric estimators usually have

√
n-consistency, so the result above means a

disadvantage of nonparametric spectral estimators. But, in what follows, we will
show that this disadvantage disappears if we consider appropriate integral functionals
of f̂ n(λ).

Let D be an open subset of C
m2
.

Assumption 1.3 A mapping K : D → R is holomorphic.
The integral functional of f (λ)

∫ π

−π

K { f (λ)}dλ (1.37)

can represent a wide variety of important time series indices.

The example in financial econometrics will be given later. If we are interested
in estimation of (1.37), it is very natural to use

∫ π

−π
K { f̂ n(λ)}dλ as an estimator

of (1.37). Denote by K (1){ f (λ)} = [K (1)
ab { f (λ)}; a, b = 1, . . . , m] the first-order

derivative of K { f (λ)} at f (λ) (see Magnus and Neudecker (1988)). Showing the
relation

√
n

[∫ π

−π

K { f̂ (λ)}dλ −
∫ π

−π

K { f (λ)}dλ

]

= √
n
∫ π

−π

[
tr {In(λ) − f (λ)} K (1){ f (λ)}

]
dλ + op(1), (1.38)

Taniguchi et al. (1996) gave the following.
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Proposition 1.4 Suppose that Assumption (B) or (HT) holds. Then, under Assump-
tions 1.2 and 1.3, as n → ∞,

√
n

[∫ π

−π

K { f̂ (λ)}dλ −
∫ π

−π

K { f (λ)}dλ

]
d−→ N

(
0, ν1( f ) + ν2(QX )

)
,(1.39)

where

ν1( f ) = 4π
∫ π

−π

tr
[

f (λ)K (1){ f (λ)}
]2

dλ, (1.40)

and

ν2(QX ) = 2π
m∑

a,b,c,d=1

∫∫ π

−π

K (1)
ab { f (λ)}K (1)

cd { f (λ)}QX
abcd(−λ1, λ2,−λ2)dλ1dλ2.

(1.41)

It may be noted that
√

n-consistency holds in Proposition 1.4 despite f̂ n(λ) being
a

√
n/M-consistent estimator of f (λ). This is due to the fact that integration of

f̂ n(λ) recovers
√

n-consistency.
Consider the problem of testing

H :
∫ π

−π

K { f (λ)}dλ = c

against (1.42)

A :
∫ π

−π

K { f (λ)}dλ �= c,

where c is a given constant. Under H, it follows from Proposition 1.4 that

Sn ≡
√

n[ ∫ π

−π
K { f̂ n(λ)}dλ − c ]

√
v1( f ) + v2(QX )

d−→ N (0, 1), (1.43)

as n → ∞. However, we have to estimate the denominator if Sn is feasible for testing
(1.42). Regarding ν1( f ), ν1( f̂ n) becomes a consistent estimator of it. Taniguchi
(1982) gave a consistent estimator for quantities of the form of ν2(QX ), hence, we

write this estimator as ̂ν2(QX ). Consequently, it is seen that, as n → ∞,



16 1 Features of Financial Data

Tn ≡
√

n[ ∫ π

−π
K { f̂ n(λ)}dλ − c ]

√

ν1( f̂ n) + ̂ν2(QX )

d−→ N (0, 1), (1.44)

under H. We can use Tn as a test statistic for (1.42). It may be noted that Tn is
essentially nonparametric, and has

√
n-consistency.

Because our integral functional
∫ π

−π
K { f (λ)}dλ can represent so many important

indices in time series, the test setting in (1.42) is very wide. In what follows, a few
examples are provided. Suppose the process {X(t) : t ∈ Z} is of the form

X(t) =
[

x(t)
y(t)

]

with x(t), q vector-valued, and y(t), r vetor-valued; q + r = m and has the spectral
density matrix

f (λ) =
[

f xx(λ) f x y(λ)

f yx(λ) f yy(λ)

]

. (1.45)

We denote by H{·} the linear closed manifold generated by {·}, and denote by
P[x(t)|H{·}] the linear projection of x(t) on H{·}.

Consider the residual process

u1(t) = x(t) − P[x(t)|H{x(t − 1), x(t − 2), . . . }],
ν1(t) = y(t) − P[ y(t)|H{ y(t − 1), y(t − 2), . . . }],
u2(t) = x(t) − P[x(t)|H{x(t − 1), x(t − 2), . . . ; y(t − 1), y(t − 2), . . . }],
ν2(t) = y(t) − P[ y(t)|H{x(t − 1), x(t − 2), . . . ; y(t − 1), y(t − 2), . . . }],

and

u3(t) = x(t) − P[x(t)|H{x(t − 1), x(t − 2), . . . ; y(t), y(t − 1), . . . }].

The measure of linear feedback from Y = { y(t)} to X = {x(t)} is defined by

FY→X = log[det{V ar(u1(t))}/ det{V ar(u2(t))}] (1.46)

Symmetrically, we can define

FX→Y = log[det{V ar(ν1(t))}/ det{V ar(ν2(t))}] (1.47)

The measure of instantaneous linear feedback

FX ·Y = log[det{V ar(u2(t))}/ det{V ar(u3(t))}]

has motivation similar to that of the above two measures. The following

FX,Y = log[det{V ar(u1(t))} det{V ar(ν1(t))}/ det{V ar(U(t))}]
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is called the measure of linear dependence. Then it is shown that

FX,Y = FY→X + FX→Y + FX ·Y (1.48)

and

FX ·Y =
∫ π

−π

K { f (λ)}dλ, (1.49)

where

K { f (λ)} = − 1

2π
log[det{Iq − f x y(λ) f yy(λ)−1 f yx(λ) f xx(λ)−1}],

(see Geweke (1982).) Because FY→X , FX→Y and FX ·Y are important econometric
measures which represent “strength of causality,” the problem

H : FX,Y = c, against A : FX,Y �= c, (1.50)

is exactly an example of our testing (1.42). Therefore, we can test (1.50) by use of
Tn given in (1.44).

Next we discuss another interrelation analysis. Let X(t) = {x(t)′, y(t)′, z(t)′}′
be the m-dimensional linear process given in (1.10), where x(t), y(t) and z(t) are
q, r and s (q + r + s = m) component processes, respectively. Correspondingly we
write the spectral density matrix and the spectral representation, respectively, as

f (λ) =
⎡

⎣
f xx(λ) f x y(λ) f xz(λ)

f yx(λ) f yy(λ) f yz(λ)

f zx(λ) f z y(λ) f zz(λ)

⎤

⎦ ,

and

X(t) =
∫ π

−π

e−i tλdΣ(λ),

where dΣ(λ) = (dΣx(λ)′, dΣ y(λ)′, dΣz(λ)′)′. Hannan (1970) considered a test for
association for x = {x(t)} with y = { y(t)} (at frequency λ) after allowing for any
affects of z = {z(t)}. The hypothesis is given by

Hλ : f x y(λ) − f xz(λ) f zz(λ)−1 f z y(λ) = 0, (1.51)

which means that dΣx(λ) − f xz(λ) f zz(λ)−1dΣz(λ) is incoherent with dΣ y(λ)

− f yz(λ) f zz(λ)−1dΣz(λ), and all of the apparent association between x and y is
truly due only to their common association with z. For a given λ, Hannan (1970)
developed the testing theory for Hλ based on the asymptotic normality of the finite
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Fourier transformations of {X(t)} in a neighborhood of λ. In the context of (1.42),
we can introduce a test for association for x and y at “all the frequency λ ∈ [−π, π ]”
after allowing for any effects z. The hypothesis is written as

H : f x y(λ) − f xz(λ) f zz(λ)−1 f x y(λ) = 0 for all λ ∈ [−π, π ],

equivalently,

H :
∫ π

−π

K { f (λ)}dλ = 0, (1.52)

where

K { f (λ)} = tr[{ f x y(λ)− f xz(λ) f zz(λ)−1 f z y(λ)}{ f yx(λ)− f yz(λ) f zz(λ)−1 f zx(λ)}].

Then, we can test (1.52) by use of Tn , hence, we can grasp Hannan’s problem above
as ours.

Now, let us think of estimation based on integral functional of f̂ n . Kakizawa
(1996) introduced the following generalized disparity measure between spectral
density matrices f (λ) and g(λ);

DH ( f : g) = 1

4π

∫ π

−π

H{ f (λ)g(λ)−1}dλ, (1.53)

where H(Z) is a holomorphic function ofm×m matrix Z, and has a uniqueminimum
zero at Z = In , such as

H1(Z) = − log det(Z) + tr(Z) − m,

H2(Z) = 1

2
tr(Z − Im)2,

H3(Z) = 1

α(1 − α)

[
log det{(1 − α)Im + αZ} − α log det Z

]
, α ∈ (0, 1).

In fact, H(Z) is defined by

H(Z) =
∑

l �=0

3∑

j=1

p j,l
H j (Zl)

l2
, (1.54)

where p j,l ≥ 0 for j = 1, 2, 3; l = ±1,±2, . . . and
∑

l
∑3

j=1 p j,l = 1. Thus
DH ( f : g) includes many other criteria as special cases. Let

θ̂ H = argmin
θ∈Θ

DH ( f θ , f̂ n) (1.55)
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The following proposition is due to Kakizawa (1996) and Taniguchi and Kakizawa
(2000).

Proposition 1.5 Suppose all the assumptions in Proposition 1.3 hold, and the true
spectral density matrix is of the form f θ . Then, under Gaussianity of the process,

√
n(θ̂ H − θ)

d−→ N (0, F(θ)−1), (1.56)

as n → ∞, i.e., θ̂ H has the same asymptotics as θ̂ QG M L does (see Corollary 1.3).

Proposition 1.5 implies that we can construct infinitely many Gaussian asymptot-
ically efficient estimators. In Sect. 1.3 we will show that θ̂ H has a robustness which
θ̂ QG M L does not share.

1.3 Optimal Inference for Various Return Processes

As we saw in the previous subsection, there are a lot of time series models
(e.g., ARMA, linear process, ARCH, GARCH, EGARCH, SV, CHARN, etc.). Here,
we develop the asymptotic optimal estimation theory based on local asymptotic
normality (LAN) for typical time series models.

Lucien Le Cam established one of the most important foundations of the general
statistical asymptotic theory (e.g., see LeCam (1986)). He introduced the concept
of LAN for the likelihood ratio of general statistical model. Once LAN is proved,
the asymptotic optimality of estimators and tests is described in terms of the LAN
property.

We briefly review the LAN results for stochastic processes. Swensen (1985)
showed that the likelihood ratio of an autoregressive process of finite order with
a trend is LAN. Regarding ARMA processes, Hallin et al. (1985) and Kreiss (1987)
showed the LAN property, and applied the results to test and estimation theory.
Further, Kreiss (1990) developed the LAN theory for a class of autoregressive
processes with infinite order. Garel and Hallin (1995) proved the LAN for multi-
variate general linear models with ARMA residual.

As an important class of nonlinear time series models, Giraitis et al. (2000) intro-
duced a class of ARCH(∞) models, which includes the ARCH and GARCHmodels
as special cases, and gave sufficient conditions for the existence of a stationary solu-
tion and its explicit representation.

Here we deal with the more general ARCH(∞) model with stochastic mean
(ARCH(∞)-SMmodel). In what followswe provide the LAN results and asymptotic
optimal estimation for ARCH(∞)-SMmodel in line with Lee and Taniguchi (2005).

Suppose that (Ω,F , P) is a probability space, and {Ft : t ∈ Z} is a sequence
of sub-σ -algebras of F satisfying Ft ⊂ Ft+1, t ∈ Z. Consider the ARCH(∞)-SM
model {Yt : t ∈ Z} defined by
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{
Yt − β ′zt = σt ut , t ∈ Z,

σ 2
t = a + ∑∞

j=1 b j (Yt− j − β ′zt− j )
2.

(1.57)

where a > 0, b j ≥ 0, j = 1, 2, . . ., {ut : t ∈ Z} is a sequence of i.i.d. random
variables with density g(·), and ut is Ft -measurable and independent of Ft−1. Here
β = (β1, · · · , βp)

′ is an unknown vector and the zt = (zt1 , . . . , ztp )
′s are observable

p × 1 random vectors which are Ft−1-measurable. If β = 0, this model reduces to
the ARCH(∞) model proposed by Giraitis et al. (2000). We can see that the class of
ARCH(∞)-SM models is larger than that of GARCH(r, s)-SM models defined by

{
Yt − β ′zt = σt ut ,

σ 2
t = a + ∑r

j=1 a jσ
2
t− j + ∑s

j=1 b j (Yt− j − β ′zt− j )
2.

(1.58)

where the associated polynomials of the second equation of (1.58) satisfy the invert-
ible condition. If we take zt = (Yt−1, Yt−2, . . . , Yt−p)

′, then (1.58) becomes the
AR(p)-GARCH(r, s) models, which implies that the class of ARCH(∞)-SM mod-
els is sufficiently extensive. To develop the asymptotic theory for (1.58) we impose,

Assumption 1.4

(i) E{ut } = 0, Var{ut } = 1 and E{u4
t } < ∞

(ii) a and b j ’s are function of an unknown parameter η = (η1, . . . , ηq)′, i.e., a =
a(η) and b j = b j (η) for j ≥ 1 and η ∈ H, where H is an open subset of R

q.
The functions a(η) and b j (η) are twice continuously differentiable with respect
to η.

(iii) There exist ã > 0 and b̃ j ≥ 0 satisfying
∑∞

j=1 b̃ j < 1, such that a(η) ≥ ã and

b j (η) ≤ b̃ j for all j ≥ 1 and η ∈ H, which entails

∞∑

j=1

b j (η) < 1 f or all η ∈ H. (1.59)

(iv) There exist ã(1) > 0, ã(2) > 0 and b̃(1)
j ≥ 0, b̃(2)

j ≥ 0 satisfying
∑∞

j=1 b̃(i)
j < ∞,

i = 1, 2, such that ||∂a(η)/∂η|| ≤ ã(1), ||(∂2/∂η∂η′)a(η)|| ≤ ã(2) for all
η ∈ H, and ||(∂/∂η)b j (η)|| ≤ b̃(1)

j , ||(∂2/∂η∂η′)b j (η)|| ≤ b̃(2) for all j ≥ 1
and η ∈ H, where ||a|| denotes the Euclidean norm of a vector or matrix a, i.e.,√
tr(a′a).

The condition (1.59) guarantees the existence of strictly stationary solution for
{Yt − β ′zt } in (1.58) (c.f. Giraitis et al. (2000)).
Assumption 1.5 {E(u4

t )}1/2
∑∞

j=1 b j < 1 and E ||zt ||4 < ∞.

The condition {E(u4
t )}1/2

∑∞
j=1 b j < 1 implies E(Y 4

t ) < ∞ (see Giraitis et al.
(2000)). In a special case of GARCH models in (1.58), a necessary and sufficient
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condition for the existence of the fourth moment of Yt − β ′zt was established by
Ling and Li (1997), Chen and An (1998) and Ling and McAleer (2003).

Assumption 1.6 The innovation density g(·) is symmetric, twice continuously dif-
ferentiable, and satisfies

(i) 0 < I (g) ≡ ∫ ∞
−∞

{
g′(u)/g(u)

}2
g(u)du < ∞, and

∫ ∞
−∞

{
g′(u)/g(u)

}4

g(u)du < ∞.
(ii) lim|u|→∞ ug(u) = 0, lim|u|→∞ u2g′(u) = 0.

Assumption 1.7 The matrix n−1 ∑n
t=1 zt z′

t/σ
2
t converges to a finite limit M(0) in

L2-sense, where M(0) is positive definite.

We write θ = (β ′, η′)′ ∈ Θ and dimΘ = r = p + q, where Θ is an open subset
ofR

r . Then the σt = σt (θ)′s are measurable functions of θ and Yt− j , j ≥ 1. Let P(n)
θ

be the distribution of (us, s ≤ 0, Y1, . . . , Yn). For two hypothetical values θ, θ ′ ∈ Θ

the log-likelihood ratio is written as

Λn(θ , θ ′) ≡ log
d P(n)

θ ′

d P(n)
θ

= 2
n∑

t=1

logΦ
(n)
t (θ , θ ′), (1.60)

where Φ
(n)
t (θ , θ ′) = [{

g{φt (θ
′)}σt (θ)

}
/
{
g{φt (θ)}σt (θ

′)
}]1/2 with φt (θ) = (Yt −

β ′zt )/σt (θ). We denote by H(g; θ) the hypothesis under which the underlying para-
meter is θ ∈ Θ and the density of ut is g = g(·). Define

θn = (β ′
n, η′

n)′ ≡ θ + 1√
n
Σ , Σ = (κ ′, h′)′ ∈ S ⊂ R

r ,

where κ = (κ1, . . . , κp)
′, h = (h1, . . . , hq)′, and S is an open subset of R

r. In what
follows we denote by R

Z the product space · · · × R × R × R × R × · · · , whose
component spaces correspond to the coordinate spaces of (. . . , u−1, u0, Y1, Y2, . . . ),
and write its Borel σ -algebra by BZ.

The following proposition is due to Lee and Taniguchi (2005).

Proposition 1.6 (LAN for ARCH(∞)-SM models) Suppose that Assumptions 1.4–
1.7 hold. Then the sequence of experiments En = {RZ,BZ, {P(n)

θ : θ ∈ Θ ⊂ R
r }},

n ∈ N, is locally asymptotically normal and equicontinuous on compact subset C of
S. That is,

(i) For all θ ∈ Θ , the log-likelihood ratio Λn(θ, θn) admits the following stochas-
tic expansion under H(g; θ):

Λn(θ, θn) = (κ ′, h′) 1√
n

n∑

t=1

(Δ′
1,t ,Δ

′
2,t )

′ − 1

2
Σ ′ FΣ + op(1), (1.61)
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where Δ1,t = −(zt/σt )(g′(φt )/g(φt )) − (2σ 2
t )−1(∂σ 2

t /∂β){1 + φt (g′(φt )/

g(φt ))}, Δ2,t = −(2σ 2
t )−1{1 + φt (g′(φt )/g(φt ))} (∂/∂η)σ 2

t , and

F =
⎜

F11, F12
F21, F22

)

.

Here

F11 = I (g) · M(0) + {J (g) − 1} E[(4σ 4
t )−1(∂σ 2

t /∂β)(∂σ 2
t /∂β ′)],

F12 = {J (g) − 1} E[(4σ 4
t )−1(∂σ 2

t /∂β)(∂σ 2
t /∂η′)],

F22 = {J (g) − 1} E[(4σ 4
t )−1(∂σ 2

t /∂η)(∂σ 2
t /∂η′)],

where J (g) = E{u2
t (g

′(ut )/g(ut ))
2}.

(ii) Under H(g; θ), Δn
d−→ N (0, F), where Δn = n−1/2 ∑2

t=1(Δ
′
1,t ,Δ

′
2,t )

′.
(iii) For all n ∈ N and Σ ∈ S, the mapping Σ → P(n)

θn
is continuous with respect to

the variational distance ||P − Q|| = sup{|P(A) − Q(A)|; A ∈ BZ}.
The termΔn , called the central sequence, is measurable with respect to us , s ≤ 0,

Y j , z j , j = 1, . . . , n, but it is not so with respect to the the observable sequences,
Y j , z j , j = 1, . . . , n. Therefore, we will construct a (Y1, . . . , Yn, z1, . . . , zn)-
measurable version Δ̃n of Δn . For this, we introduce the truncated versions of σ 2

t

and φt by σ̃ 2
t = σ̃ 2

t (β, η) ≡ a +∑t−1
j=1 b j (Yt− j −β ′zt−1)

2 and φ̃t ≡ (Yt −β ′zt )/σ̃t ,
respectively.

Assumption 1.8 (i) For some r ∈ [0, 1), b j (η) = O(r j ) for all j ∈ N and η ∈ H.

(ii) For some ν1, . . . , νq ∈ [0, 1), ∂b j (η)/ηk , k = 1, . . . , q, are of order O(ν
j
k ), for

j ∈ N and η ∈ H.

The following proposition shows that the unobservable values {us; s ≤ 0} have
no influence on the LAN form below.

Proposition 1.7 (Lee and Taniguchi (2005)) Under Assumptions 1.4–1.8, the
log-likelihood ratio Λn(θ, θn) admits, under H(g; θ), as n → ∞, the stochastic
expansion

Λn(θ , θn) = (κ ′, h′)Δ̃n − 1

2
Σ ′ FΣ + op(1), (1.62)

where Δ̃n = n−1/2 ∑n
t=1(Δ̃

′
1,t , Δ̃

′
2,t )

′,

Δ̃1,t = −(zt σ̃t )(g
′(φ̃t )/g(φ̃t )) − (2σ̃ 2

t )−1(∂σ̃ 2
t /∂β){1 + φ̃t (g

′(φ̃t )/g(φ̃t ))},
Δ̃2,t = −(2σ̃ 2

t )−1{1 + φ̃t (g
′(φ̃t )/g(φ̃t ))}(∂/∂η) σ̃ 2

t .

Here, Δ̃n
d−→ N (0, F) under H(g; θ).



1.3 Optimal Inference for Various Return Processes 23

Next we discuss the estimation of θ . In what follows distribution law of a random
vector Y n under P(n)

θ is denoted by L(Y n|P(n)
θ ), and the weak convergence to Z is

denoted by L(Y n|P(n)
θ )

d−→ Z . Define the class A of sequences of estimators {Sn}
of θ as

A = [{Sn} : L{√n(Sn − θn)|P(n)
θn

} d−→ Zθ , a probability distribution ],

where Zθ depends on {Sn} generally. LetL be the class of all loss functions l : R
r →

[0,∞) of the form l(x) = τ(|x|)which satisfies τ(0) = 0 and τ(a) ≤ τ(b) if a ≤ b.
Typical examples are l(x) = I (|x| > a) and l(x) = |x|p, p ≥ 1, where I (·) is the
indicator function of (·).

Assume that the LAN property (1.61) holds. Then, a sequence {θ̂n} of estimators
of θ is said to be a sequence of asymptotically centering estimators if

√
n(θ̂n − θ) − F−1Δn = op(1) in P(n)

θ . (1.63)

The following proposition can be proved by following the arguments in Section 83
of Strasser (1985), Jeganathan (1995), and p. 69 of Taniguchi and Kakizawa (2000).

Proposition 1.8 Assume that the LAN property (1.61) for the ARCH(∞)-SM model
(1.57) holds, and that {Sn} ∈ A. Let Δ be a random vector, distributed as N (0, F).
Then the following statements hold:

(i) For any l ∈ L with E{l(Δ)} < ∞,

lim inf
n→∞ E[l{√n(Sn − θ)}|P(n)

θ ] ≥ E{l(F−1Δ)}. (1.64)

(ii) If
lim sup

n→∞
E[l{√n(Sn − θ)}|P(n)

θ ] ≤ E{l(F−1Δ)}, (1.65)

for a nonconstant l ∈ L with E{l(Δ)} < ∞, then Sn is a sequence of asymptot-
ically centering estimators.

From Proposition 1.8, it follows that {θ̂n} ∈ A is asymptotically efficient if it
is asymptotically centering. Let us construct an asymptotically efficient estimator.
For any sequence of estimators θ̃n , the discretized estimator θ̄n of θ̃n is defined by
the nearest vertex of {θ; θ = n−1/2(i1, . . . , ir )′, i j integers}. First, we assume that
the innovation density g(·) is known. Denote the Fisher information matrix F and
the central sequence Δ̃n by F(θ, g) and Δ̃n(θ, g), respectively. Let

θ̂n = θ̄n + n−1/2F(θ̄n, g)−1Δ̃n(θ̄n, g)

where θ̄n is a discrete and
√

n - consistent estimator of θ (for technical justification
for use of discrete estimators, see p. 120 of Kreiss (1987). In (1.57), we can use the
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least squares estimator(LSE) β̂L S for β. Then η is estimated by conditional LSE (see
Tjøstheim (1986)),

η̂(β̂L S) = argmin
η

n∑

t=2

⎡

⎣(Yt − β̂ ′
L S zt )

2 − a(η) −
t−1∑

j=1

b j (η)(Yt− j − β̂ ′
L S zt− j )

2

⎤

⎦

2

.

Then it is seen that the estimator (β̂ ′
L S, η̂′(β̂L S))′ becomes a candidate of θ̃n . Similar

to LeCam (1986) and Linton (1993), it can be shown that θ̂n is asymptotically effi-
cient. If g(·) is unknown, substituting an appropriate nonparametric density estimator
ĝn(·) for g(·), we can propose

ˆ̂
θn = θ̄n + n−1/2F(θ̄ , ĝn)

−1Δ̃n(θ̄n, ĝn).

Next, we discuss the problem of testing. Let M(B) be the linear space spanned
by the columns of a matrix B. Consider the problem of testing the null hypothesis
H , under which

√
n(θ − θ0) ∈ M(B) for some given r × (r − l) matrix B of full

rank and a given vector θ0 ∈ R
r . Then, similar to Sect. 8.2 of Strasser (1985) and

p.78 of Taniguchi and Kakizawa (2000), it is seen that the test

Tn = ∣
∣
∣
∣[Ir − F1/2B(B′ F B)−1B′ F1/2]F−1/2Δ̃n

∣
∣
∣
∣2
θ=θ̄n

(1.66)

is asymptotically χ2
l -distributed under H , and is locally asymptotic optimal. Here

Ir is the r × r identity matrix.
As a very general nonlinear model, we introduced the following m-dimensional

CHARN model in (1.8):

X t = Fθ (X t−1, . . . , X t−p) + Hθ (X t−1, . . . , X t−q) · γt (1.67)

where dim θ = r . In what follows, without loss of generality we assume p = q, and
set down

Assumption 1.9

(i)

Eθ

∣
∣
∣
∣Fθ (X t−1, . . . , X t−p)

∣
∣
∣
∣2 < ∞, Eθ

∣
∣
∣
∣Hθ (X t−1, . . . , X t−p)

∣
∣
∣
∣2 < ∞,

for all θ ∈ Θ .

(ii) There exists c > 0 such that

c ≤ ∣
∣
∣
∣H−1/2

θ ′ (x)Hθ (x)H−1/2
θ ′ (x)

∣
∣
∣
∣ < ∞,

for all θ , θ ′ ∈ Θ and for all x ∈ R
mp.
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(iii) Fθ and Hθ are continuously differentiablewith respect to θ , and their derivatives
∂ j Fθ and ∂ j Hθ (∂ j = ∂/∂θ j , j = 1, . . . , r ) satisfy the condition that there exist
square-integrable functions A j and B j such that

||∂ j Fθ || ≤ A j and ||∂ j Hθ || ≤ B j , j = 1, . . . , r, f or all θ ∈ Θ .

(iv) the innovation density p(·) of γt satisfies

lim||u||→∞ ||u||p(u) = 0,
∫

uu′ p(u)du = Im .

(v) the continuous derivative D p of p(·) exists on R
m , and

∫

||p−1 D p||4 p(u)du < ∞,

∫

||u||2||p−1 D p||2 p(u)du < ∞.

Suppose that an observed stretch X(n) = (X1, . . . , Xn) from (1.67) is available.
Denote by Pn,θ the probability distribution of X(n). For two hypothetical value θ ,
θ ′ ∈ Θ , the log-likelihood ratio is

Λn(θ, θ ′) ≡ log
dPn,θ ′

dPn,θ

=
n∑

t=p

log
p
{

H−1
θ ′

(
X t − Fθ ′

)}
det Hθ

p
{

H−1
θ (X t − Fθ )

}
det Hθ ′

. (1.68)

Let H(p; θ) be the hypothesis under which the concerned model is (1.67) with
unknown parameter θ ∈ Θ and the innovation density p(·). We introduce the
sequence of contiguous alternatives by

θn = θ + 1√
n

h, h ∈ S ⊂ R
r , (1.69)

where h = (h1, . . . , hr )
′ and S is an open set of R

r .
Then, deriving the asymptotics of Λn(θ , θn), Kato et al. (2006) showed

Proposition 1.9 Under Assumption 1.9, the family
{Pn,θ : θ ∈ Θ ⊂ R

r
}
, n ∈ N, is

locally asymptotically normal.

To estimate θ , we may use the maximum likelihood estimator given by

θ̂ M L ≡ argmax
θ

Λ
(
θ , θ

)
, (1.70)

whose asymptotic optimality is shown in the sense of Proposition 1.8.
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We often observe that financial time series data are nonstationary. When we deal
with nonstationary processes, one of the difficult problems is how to set up an ade-
quate asymptotic theory. For this Dahlhaus (1996a,b, 1997) introduced an important
class of nonstationary processes and developed the statistical inference. The follow-
ing definition is due to Dahlhaus (1996a,b, 1997).

Definition 1.1 A sequence of stochastic processes Xt,n (t = 1, · · · , n : n ≥ 1) is
called locally stationary with transfer function A◦ if there exists a representation

Xt,n =
∫ π

−π

exp(iλt)A◦
t,n(λ)dξ(λ) (1.71)

where

(i) ξ(λ) is a stochastic process on [−π, π ] with ξ(λ) = ξ(−λ) and

cum {dξ(λ1), . . . , dξ(λk)} = η

⎛

⎝
k∑

j=1

λ j

⎞

⎠ hk(λ1, . . . , λk−1)dλ1 · · · dλk−1,

where h1 = 0, h2(λ) = 1/(2π), hk(λ1, . . . , λk−1) = hk/(2π)k−1 for all k,
and η(λ) = ∑∞

j=−∞ δ(λ + 2π j) is the period 2π extension of the Dirac delta
function.

(ii) There exists a constant K and a 2π -periodic function A : [0, 1] × R → C with
A(u,−λ) = A(u, λ) and

sup
t,λ

∣
∣
∣
∣A◦

t,n(λ) − A

⎜
t

n
, λ

)∣
∣
∣
∣ ≤ K n−1 (1.72)

for all n. A(u, λ) is assumed to be continuous in u.

In what follows, we assume that A(u, λ) depends on an unknown parame-
ter θ = (θ1, . . . , θr )

′ ∈ Θ ⊂ R
r , i.e., A(u, λ) = Aθ (u, λ). The function

fθ (u, λ) ≡ |Aθ (u, λ)|2 is called the timevarying spectral density. Let X1,n, . . . , Xn,n

be realizations of a locally stationary process with fθ (u, λ). Writing

εt =
∫ π

−π

exp(i tλ)dξ(λ) (1.73)

suppose that εt ’s are i.i.d.(0,1) with probability density p(·). Further, we assume
{Xt,n} has the AR(∞) representation

a0
θ ,t,n(0)εt =

∞∑

k=0

b0θ ,t,n(k)Xt−k,n . (1.74)
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Under appropriate regularity conditions, Hirukawa and Taniguchi (2006) showed,

Proposition 1.10 (i) The log-likelihood ratio Λn(θ , θn) between θ and θn given
in (1.69) has the LAN properties.

(ii) For the class of regular estimators, Proposition 1.8 holds.

Since the log-likelihood ratio Λn( , ) contains {εs : s ≤ 0} which are unob-
servable, Hirukawa and Taniguchi (2006) introduced a quasi-maximum likelihood
estimator θ̂ QM L of θ which is defined by maximizing the feasible one:

Ln(θ) =
n∏

t=1

1

a0
θ ,t,n(0)

p

{∑t−1
k=0 b0θ ,t,n(k)Xt−k,n

a0
θ ,t,n(0)

}

, (1.75)

and showed that θ̂ QM L is asymptotically efficient.
For a class of vector linear processes (1.10), assuming that the coefficient matrices

satisfy long-range dependence and that {U(t)}’s are i.i.d. with probability density
p(·), Taniguchi and Kakizawa (2000) showed the results stated in Proposition 1.10,
and proved that a feasible quasi-maximum likelihood estimator is asymptotically
efficient.

1.4 Introduction to Time Series Financial Engineering

Financial engineering is the construction of various financial positions to manage
financial risks. This section uses the terminology “time series financial engineering”
because we will develop the arguments based on statistical inference of stochastic
processes, i.e., time series analysis.

Assets are defined as contracts that give the right to receive or obligation to provide
monetary cash flows (e.g., stock, bank account, bond). Stocks are called risky assets,
and bank accounts and bonds are called risk-free assets.

Now the mathematical description is given. Let (Ω,F , P) be a probability space,
and let {Ft} be a family of sub σ -fields of F satisfying Fs ⊂ Fr (s ≤ r). Suppose
that St = (S0

t , S1
t , . . . , Sm

t )′ is the price of (m +1) assets at time t (t = 0, 1, . . . , T ).
Usually S0

t is taken to be a risk-free asset, and (S1
t , . . . , Sm

t )′ is taken to be a collection
of m risky assets. In what follows we assume that {St } is a stochastic process on
(Ω,F , P), and that each St is Ft -measurable.

If one invests the assets Si
t with fraction weights wi,t (i = 0, 1, . . . , m) satisfying∑m

i=0 wi,t=1, the fraction vector wt = (w0,t , w1,t , . . . , wm,t )
′ is called the portfolio.

Here wt is assumed to be Ft−1-measurable. Then the total investment at time t is

νt (wt ) =
m∑

i=0

wi,t Si
t (1.76)

which is called the value process. If a portfolio wt satisfies
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m∑

i=0

wi,t−1Si
t =

m∑

i=0

wi,t Si
t (1.77)

then it is said to be self-financing, which means that after the initial invest-
ment no further capital is either invested or withdrawn. A collection of assets
St = (S0

t , S1
t , . . . , Sm

t )′ is said to admit an arbitrage opportunity if there exists a
self-financing portfolio wt such that

ν0(w0) = 0, νT (wT ) ≥ 0, (P − a.s.)
P{νT (wT ) > 0} > 0.

(1.78)

If there is no self-financing portfolio for which (1.78) holds, then the collection of
assets St is said to be arbitrage-free. “Arbitrage-free” means the impossibility of
achieving a sure, strictly positive gain with a zero initial endowment.

For a self-financing portfolio wt , we have νt (wt ) = νt (wt−1). In what follows we
understand νt (ws) = ∑m

i=0 wi,s Si
t . Hence, for any l < T , it holds that

νT (wT ) = νl(wl) +
T∑

t=l+1

[νt (wt−1) − νt−1(wt−1)]

= νl(wl) +
T∑

t=l+1

m∑

i=0

wi,(t−1)(Si
t − Si

t−1). (1.79)

Let Q be the probability distribution of ST ≡ {St : t = 0, 1, . . . , T }. Suppose there
exists another probability distribution Q∗ of ST which satisfies

(i) Q∗ is equivalent to Q (i.e., Q(A) = 0 ⇔ Q∗(A) = 0 for any A ∈ F),
(ii) {St } is a martingale with respect to Q∗, i.e.,

E∗{St |Ft−1} = St−1, a.e., (1.80)

where E∗{·} is the expectation with respect to Q∗.
From (1.79) and (1.80) it is not difficult to see that, for any l < T ,

E∗{νT (wT )|Fl} = νl(wl) Q∗ − a.e., (1.81)

which implies that νl(wl) is a martingale with respect to Q∗. Next we show that {St }
is arbitrage-free. For this we assume that {St } is not arbitrage-free, i.e., (1.78) holds.
Then,

Q(ν0(w0) = 0) = 1,

Q(νT (wT ) ≥ 0) = 1, (1.82)

Q(νT (wT ) > 0) > 0.
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Since Q∗ is equivalent to Q, (1.82) implies

Q∗(ν0(w0) = 0) = 1,

Q∗(νT (wT ) ≥ 0) = 1, (1.83)

Q∗(νT (wT ) > 0) > 0.

If we set l = 0 in (1.81), then

E∗{νT (wT )|F0} = ν0(w0) = 0 Q∗ − a.e., (1.84)

which contradicts (1.83). Hence, {St } must be arbitrage-free.

Proposition 1.11 (e.g., Kariya and Liu (2003)) If a collection of assets St =
(S0

t , S1
t , . . . , Sm

t )′ (t = 0, 1, . . . , T ) is a martingale with respect to a prob-
ability distribution Q∗ which is equivalent to the probability distribution Q of
{S0, S1, . . . , ST }, then the collection of assets St is arbitrage-free.

The probability distribution Q∗ is called the equivalent martingale measure. In
Proposition 1.11, the reverse statement “if the collection of assets is arbitrage-free,
there exists an equivalent martingale measure” holds.

Definition 1.2 (i) A contingent claim is a nonnegative random variable X repre-
senting a payoff at some future time T . We can regard it as a contract that an
investor makes at time t < T (e.g., option).

(ii) For a contingent claim X , if there exists a self-financing portfolio wT such that

X = νT (wT ) (1.85)

then wT is called a replicating portfolio of X .
(iii) For any contingent claim, if there exists the replicating portfolio, then themarket

of financial assets is said to be complete.

In the case of arbitrage-free, the statement “the market is complete if and only if
there exists a unique equivalent martingale measure” holds.

A derivative is a financial instrument whose value is derived from the value of
some underlying instrument such as stock price, interest rate, or foreign exchange
rate. Options are one example of many derivatives on the market. A call option gives
one the right to buy the underlying asset by a certain date, called the maturity, for a
certain price, called the strike price, while a put option gives one the right to sell the
underlying asset by a maturity for a strike price. American options can be exercised
at any time up to the maturity, but European options can be exercised only at their
maturity. European options are easier to price than American options since one does
not need to consider the possibility of early exercise. Most of the options traded on
exchanges are American.

In what follows we explain these options concretely. Let St be the price of an
underlying asset at time t . A European call with maturity T and strike price K on
this asset is theoretically equivalent to a contingent claim
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CT = max(ST − K , 0). (1.86)

If ST > K at maturity T , we will buy the asset for the strike price K and sell
it immediately in the market, whence the gain is ST − K . On the other hand, if
ST ≤ K , we will not exercise the right, whence the gain is 0. But, actually, we
have to pay the initial cost of purchasing the options, which is called the premium.
Therfore the essential gain is CT − (premium). A European put with maturity T and
strike price K is equivalent to a contingent claim

PT ≡ max(K − ST , 0). (1.87)

European options can only be exercised at maturity date T , but American options
can be exercised at any time before or at the maturity date T . An American call
option is equivalent to a contingent claim

Cn∗ ≡ max(Sn∗ − K , 0), (1.88)

where n∗ is not determined in advance but depends on the path of the underly-
ing process, i.e., n∗ is a random variable such that the event {n∗ = n} ∈ Fn =
σ(S1, S2, . . . , Sn), n ≤ T . Similarly, we can define an American put option.
Although there are various options, finally we just mention an Asian call option
whose payoff function is given by

max

[

T −1
T∑

t=1

St − K , 0

]

. (1.89)

Next we consider the problem of pricing options. We denote the present time and the
maturity date of options by t and T , respectively. For a contingent claim X , assume
that there exists a replicating portfolio wt of X constructed on an asset process
St , i.e.,

X = νT (wT ). (1.90)

Suppose that St is arbitrage-free. Then, converting values of future payments into
their present values by risk-free interest rate r we obtain

E∗{e−r(T −t) X |Ft } = νt (wt ), (1.91)

where E∗{·} is the expectation with respect to an equivalent martingale measure Q∗.
Therefore, if X is an option, and if there exists a replicating portfolio of it, then (1.91)
implies that the initial capital of the portfolio is

E∗{e−r(T −t) X |Ft }. (1.92)
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Hence, the reasonable price of the option X should be (1.92). Concrete valuation of
(1.92) has been done for the geometric Brownian motion:

St = S0 exp

[

μt + σ

∫ t

0
dWu

]

, (t ∈ [0, T ]), (1.93)

where {Wt } is the Wiener process. Dividing [0, T ] into N subintervals with length
h, Kariya and Liu (2003) introduced a discretized version of (1.93):

Sn = S0 exp

{

μnh + σ

n∑

k=1

uk
√

h

}

, ( {uk} ∼ i.i.d.N (0, 1) ), (1.94)

where n = 0, 1, . . . , N and Nh = T . Then they evaluated the price of a European
call option (1.86) at time t = nh;

C = exp{−r(T − t)}E∗{max(SN − K , 0)|Fn} (1.95)

as follows. From (1.94), it is seen that

Sn = Sn−1 exp
{
μh + σ

√
hun

}
, (1.96)

hence,

Sn

exp(rnh)
= Sn−1

exp{r(n − 1)h} exp
{
(μ − r)h + σ

√
hun

}
. (1.97)

If the discounted process Sn/ exp(rnh) becomes a martingale with respect to an
equivalent martingale measure Q∗, it should hold that

E∗ [
exp{(μ − r)h + σ

√
hun}|Fn−1

]
= 1 a.e. (1.98)

For this, letting the distribution of un under Q∗ be N (m, 1), we can see that the
left-hand side of (1.98) is

exp{(μ − r)h} × exp

{

mσ
√

h + σ 2

2
h

}

, (1.99)

which implies that if we take

m = − 1

σ
√

h

{

(μ − r)h + σ 2h

2

}

, (1.100)
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then (1.98) holds. Let u∗
n = un − m, then u∗

n ∼N (0, 1) under Q∗. From (1.96) and
(1.100) it follows that

Sn = Sn−1 exp

{⎜

rh − σ 2h

2

)

+ σ
√

hu∗
n

}

, (1.101)

under Q∗. Recursively, we obtain

SN = Sn exp

⎧
⎨

⎩

⎜

r − σ 2

2

)

(N − n)h + σ
√

h
N∑

j=n+1

u∗
j

⎫
⎬

⎭

= Sn exp{A + B Z}, (1.102)

whence

A = (r − σ 2

2
)(N − n)h,

B = σ
√

(N − n)h,

Z = 1√
N − n

N∑

j=n+1

u∗
j ∼ N (0, 1) under Q∗.

Then we can evaluate the call option (1.95) by (1.102), leading to the Black-Scholes
formula (Black and Scholes (1973)):

C = Sn Φ(dt ) − exp{−(T − t)r}K Φ(dt − σ
√

T − t), (1.103)

where dt = {log Sn
K + (r + σ 2

2 )(T − t)}/(σ√
T − t), T = Nh, t = nh and Φ(·) is

the distribution funcition of N(0, 1).
Let us return to (1.94) with n = N and h = T/N , i.e.,

SN = S0 exp

{

μT + σ

√
T

N

N∑

k=1

uk

}

. (1.104)

As we saw in Sect. 1.2, it is natural to assume that financial returns are non-Gaussian
and dependent. In view of this, Tamaki and Taniguchi (2007) derived the third-order

Edgeworth expansion of the distribution of
√

T
N

∑N
k=1 uk assuming that T is fixed

and N ↗ ∞, and that {uk} is a non-Gaussian fourth-order stationary process. Based
on the Edgeworth expansion they evaluated (1.95) as in the form of

A1 + N−1/2A2 + N−1A3 + o(N−1), (1.105)
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without martingale adjustment. Next, imposing the martingale constraint on
Sn/ exp(rnh), Tamaki and Taniguchi (2007) derived an Edgeworth approximation
for the arbitrage-free price (1.95) in the form:

C = M1 + N−1/2M2 + N−1M3 + o(N−1), (1.106)

where M1 equals the Black-Scholes formula. They discussed the influence of
non-Gaussianity and dependence of {uk} on the higher order terms M2 and M3.

In the field of financial engineering the problem of credit rating is an important
one. Usually, the credit rating has been done by use of the discriminant analysis in
i.i.d. settings, although financial data are often supposed to be non-Gaussian depen-
dent. For dependent observations the discriminant analysis has been developed by
Shumway and Unger (1974), Zhang and Taniguchi (1994), and Kakizawa et al.
(1998). For locally stationary processes, Sakiyama and Taniguchi (2004) addressed
the problem of classfication. Because financial data are often nonstationary, in what
follows, we state discrimination and classification for dependent observations in line
with Sakiyama and Taniguchi (2004).

Recall that we already introduced a scalar-valued locally stationary process in
(1.71). Here we generalize it to the case of vector-valued.

Definition 1.3 A sequence of vector-valued stochastic processes X t,n = (X (1)
t,n ,

. . . , X (d)
t,n )′(t = 1, . . . , n) is called locally stationary with transfer function matrix

At,n(λ)={At,n(λ)ab: a, b = 1, . . . , d} and mean 0 if there exists a representation

X t,n =
∫ π

π

exp(iλt)At,n(λ)dΣ(λ), (1.107)

where the following holds:
(i) Σ(λ) = (ξ1(λ), . . . , ξd(λ))′ is a complex-valued vecctor process on [−π, π ] with
ξa(λ) = ξa(−λ), E{ξa j (λ)} = 0 and

cum{dξa1(λ1), . . . , dξak (λk)} = η

⎛

⎝
k∑

j=1

λ j

⎞

⎠ ga1,...,ak (λ1, . . . , λk−1)dλ1 · · · dλk

(1.108)

for all a1, . . . , ak ∈ {1, . . . , d} and η(λ) = ∑∞
l=−∞ δ(λ + 2πl), (δ(·) is the delta

function).
(ii)There exists a constant K and a 2π -periodic matrix-valued function A(u, λ) =
{A(u, λ)a,b : a, b = 1, . . . , d} : [0, 1] × R → C

d×d with A(u, λ) = A(u,−λ) and

sup
t,λ

∣
∣
∣
∣
∣
At,n(λ)a,b − A

⎜
t

n
, λ

)

a,b

∣
∣
∣
∣
∣
≤ K n−1 (1.109)
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for all a, b ∈ {1, . . . , d} and n ∈ N, where A(u, λ) is assumed to be continuous in
u.

We call f (u, λ) ≡ A(u, λ)A(u, λ)∗ the time-varying spectral density matrix of
{X t,n}. Letting

d(a)
N (u, λ) =

N−1∑

s=0

X (a)
[un]−N/2+s+1,n exp(−iλs) (1.110)

we introduce the periodogram matrix I N (u, λ) = {IN (u, λ)a,b : a, b = 1, . . . , d}
over a segment of length N with midpoint [un], where

IN (u, λ)a,b = 1

2π N
d(a)

N (u, λ)d(b)
N (u,−λ) (1.111)

The shift from segment to segment is denoted by N . I N (u j , λ) is calculated over
segmentswithmidpoints u j n = t j = N ( j−1/2) ( j = 1, . . . , M), wheren = N M .

For φ : [0, 1] × [−π, π ] → C
d×d , define

Jn(φ) ≡ 1

M

M∑

j=1

∫ π

−π

tr{φ(u j , λ)I N (u j , λ)}dλ (1.112)

and

J (φ) ≡
∫ 1

0

∫ π

−π

tr{φ(u, λ) f (u, λ)}dudλ (1.113)

Under appropriate regularity conditions, Dahlhaus (1997) showed that

(i) Jn(φ)
p−→ J (φ), (n → ∞), (1.114)

(i i)
√

n{Jn(φ) − J (φ)} L→N(0, V ), (n → ∞), (1.115)

where V is written in terms of φ, f (u, λ) and ga1,...,a4(·).
Next, we discuss the problem of classifying a vector-valued locally stationary

process {X t,n} into one of two categories described by two hypotheses:

�1 : f (u, λ), �2 : g(u, λ), (1.116)

where f (u, λ) and g(u, λ) are d ×d time-varying spectral density matrices. For this
we use
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D( f : g) ≡ 1

4π M

M∑

j=1

∫ π

−π

[

log

{ |g(u j , λ)|
| f (u j , λ)|

}

+ tr [I N (u j , λ){g−1(u j , λ) − f −1(u j , λ)}]
]

(1.117)

as a classification statistic. That is, if D( f : g) > 0 we choose category �1.
Otherwise we choose category �2.

If we use D( f : g) as a classification criterion, the misclassification probabilities
are P(2|1) = P{D( f : g) ≤ 0| �1}, P(1|2) = P{D( f : g) > 0| �2}. Then, our
classification statistic is asymptotically consistent, i.e.,

Proposition 1.12 (Sakiyama and Taniguchi (2004))

lim
n→∞ P(2|1) = 0, lim

n→∞ P(1|2) = 0 (1.118)

Proposition 1.12 implies that the classification criterion D( f : g) has the funda-
mental goodness. To evaluate more delicate goodness of D( f : g) we assume that
g(u, λ) is contiguous to f (u, λ). Now we set the spectral densities as

�1 : f (u, λ) = f (u, λ), �2 : g(u, λ) = f (u, λ) + n−1/2h(u, λ),

(1.119)

where h(u, λ) is a d × d matrix-valued function, and assumed to be nonnegative
definite on [0, 1] × [−π, π ].
Proposition 1.13 (Sakiyama and Taniguchi (2004)) Suppose that f (u, λ) and
h(u, λ) are continuous on [0, 1] × [−π, π ], and that N and n fulfill the relations
n1/4 � N � n1/2/ log n. Then, under (1.119),

lim
n→∞ P(2|1) = lim

n→∞ P(1|2) = Φ

[ −F/2

{F + H}1/2
]

, (1.120)

where Φ(·) is the distribution function of N(0, 1) and

F = 1

4π

∫ 1

0

∫ π

−π

tr{h(u, λ) f −1(u, λ)}2dudλ,

H = 1

8π

∫ 1

0

d∑

b1,b2,b3,b4=1

×
[∫ π

−π

A(u, λ)∗{ f −1(u, λ)h(u, λ) f −1(u, λ)}A(u, λ)dλ

]

b2b1

×
[∫ π

−π

A(u, μ)∗{ f −1(u, μ)h(u, μ) f −1(u, μ)}A(u, μ)dμ

]

b3b4

× gb1b2b3b4(λ,−λ,−μ)du (1.121)
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Fig. 1.4 Dendrogram for 13 financial data. Taken from Hirukawa (2006). Published with the kind
permission of c©World Scientific Publishing Co. 2006. All Rights Reserved

In Proposition 1.13, the misclassification probabilities depend on H which shows
an influence of non-Gaussianity of the process. Sakiyama and Taniguchi (2004)
discussed non-Gaussian robustness of D( f : g) checking whether H = 0 or H �= 0.

Suppose {Xt,n} belongs to categories � j : f (u, λ) = f j (u, λ). For actual stock
data, Hirukawa (2006) introduced the following classification statistic:

DH ( f̂ j : f̂k) ≡ 1

4π

∫ 1

0

∫ π

−π

H

{
f̂ j (u, λ)

f̂k(u, λ)

}

dλdu, (1.122)
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where f̂ j (u, λ) is a consistent nonparametric estimator of f j (u, λ), and H(·) is a
smooth function. Hirukawa (2006) executed the hierarchical clustering based on
DH ( f̂ j : f̂k) for daily log-returns of 13 companies: 1. HITACHI, 2. MATSUSHITA,
3. SHARP, 4. SONY, 5. DENSO, 6. KYOCERA, 7. NISSAN, 8. TOYOTA, 9.
HONDA, 10. CANON, 11. NTT, 12. KDDI, 13. NTTDOCOMO.

Figure1.4 shows the dendrogram for H(z) = z − log z − 1. The figure classifies
the type of industry clearly, which implies that the method will be useful for the
problem of credit rating.
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Chapter 2
Empirical Likelihood Approaches
for Financial Returns

Abstract We deal with an empirical likelihood and apply it to several financial
problems. Empirical likelihood is one of the nonparametric methods of statistical
inference. It allows us to use likelihood methods although we do not assume that
the data comes from a known family. Consequently, the empirical likelihood has
both effectiveness and flexibility of the likelihood method, and reliability of the
nonparametric methods. The construction of this chapter is as follows. We briefly
look at the history of the empirical likelihood in Sect. 2.1 and review its method
for i.i.d. data in Sect. 2.2. The frequency domain approach of empirical likelihood
for multivariate non-Gaussian linear processes is discussed in Sect. 2.3. Section 2.4
gives extensions of the empirical likelihood such as Cressie-Read power-divergence
statistic and generalized empirical likelihood. Section 2.5 considers application of
the generalized empirical likelihood to an inference problem for multivariate stable
distributions. Technical proofs of the theorems are given in Sect. 2.6.

Keywords Empirical likelihood · Non-Gaussian linear process · Frequency
domain · Portfolio · Generalized empirical likelihood · Stable distribution

2.1 Introduction

Empirical likelihood is originally proposed by Owen (1988, 1990) and its overview
is found in Owen (2001). Because of its advantages, many researchers investigated
the empirical likelihood. For example, Qin and Lawless (1994) linked the estimating
functions and equations to empirical likelihood. Newey and Smith (2004) considered
generalized empirical likelihood, which is a richer class than empirical likelihood,
and gave its higher order properties. For the application of empirical likelihood to the
dependent data, Kitamura (1997) proposed blockwise empirical likelihood for the
weakly dependent processes. Monti (1997) gave the frequency domain approach to
the empirical likelihoodmethods for linear processes andOgata andTaniguchi (2010)
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extended it to the multivariate one. Ogata and Taniguchi (2009) investigated the
asymptotic properties of Cressie-Read divergence statistics, which encompasses the
empirical likelihood, for multivariate linear processes. A frequency domain empir-
ical likelihood for the processes including long-range dependence is considered by
Nordman and Lahiri (2006).

2.2 Empirical Likelihood Method for i.i.d. Data

Given X1, . . . , Xn ∞ R
m , assumed independent with common distribution function

F0, the nonparametric likelihood of distribution function F is defined by

L(F) =
n∏

i=1

F({X i }), (2.1)

where F({X i }) is the probability of getting the value X i in a sample from F . Appar-
ently, only the distributions which have the positive point mass probability on each
observation constitute positive nonparametric likelihoods. Therefore, we restrict F
to the one having the probability pi = F({X i }) > 0 on each observation X i . By
a simple calculation, we find the maximizer of the nonparametric likelihood (2.1)
turns to be the empirical distribution function Fn , placing probability 1/n on each
observation. Therefore, similar to the parametric case, nonparametric likelihood ratio
of F to the maximizer Fn is defined by:

R(F) = L(F)

L(Fn)
=

∏n
i=1 pi∏n

i=1 1/n
=

n∏

i=1

(npi ).

Suppose that we are interested in a parameter θ ∞ ρ ≡ R
p and that the true value

θ0 satisfies the following estimating equation

E[m(X; θ0)] = 0 (2.2)

where m(X; θ) ∞ R
q is a vector-valued function, called estimating function. As

examples of estimating functions, we take m(X; θ) = X − θ to indicate a vector
mean by Eq. (2.2). For Pr(X ∞ A), we take m(X; σ) = 1X∞A −σ . For a continuously
distributed scalar X and σ ∞ R, the function m(X; σ) = 1X<σ − α defines σ as the
α quantile of X . Now we define the empirical likelihood ratio function for θ by

R(θ) = max
p

{ n∏

i=1

(npi )

∣∣∣∣
n∑

i=1

pi m(X i ; θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
, (2.3)
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where p = (p1, . . . , pn). This is the maximum of the nonparametric likelihood
ratio with the restriction that the mean of the estimating function is zero under the
distribution F . R(θ) is calculated by the Lagrange multiplier method as follows.
Write

G =
n∑

i=1

log(npi ) − nξ ≥
n∑

i=1

pi m(X i ; θ) + γ

(
n∑

i=1

pi − 1

)
,

where ξ ∞ R
q and γ ∞ R are Lagrange multipliers. Setting αG/αpi = 0 gives

αG

αpi
= 1

pi
− nξ ≥m(X i ; θ) + γ = 0.

Therefore, the equation
∑n

i=1 pi (αG/αpi ) = 0 gives γ = −n. Then, we may write

pi = 1

n

1

1 + ξ ≥m(X i ; θ)

where the vector ξ = ξ(θ) satisfies q equations given by

1

n

n∑

i=1

m(X i ; θ)

1 + ξ ≥m(X i ; θ)
= 0. (2.4)

Finally, we may write

R(θ) =
n∏

i=1

(npi ) =
n∏

i=1

1

1 + ξ ≥m(X i ; θ)
. (2.5)

The following theorem is due to Owen (2001).

Theorem 2.1 (Owen (2001, Theorem 3.4)) Assume thatVar(m(X; θ0)) is finite and
has rank r . Then −2 logR(θ0) √ ν2

(r) in distribution as n √ ∼.

2.3 Estimation with Frequency Domain Empirical
Likelihood for Stationary Processes

Here we are concerned with the m-dimensional linear process {X(t)} in (1.10) and
consider the problem of estimating parameter θ ∞ ρ ≡ R

p. Suppose that the
information of θ exists through a system of general estimating equations in frequency
domain as follows. Let φ j (θ; θ), ( j = 1, . . . , q) be m ×m matrix-valued continuous
functions on [−η, η] satisfying φ j (θ; θ) = φ j (θ; θ)→ and φ j (−θ; θ) = φ j (θ; θ)≥.
We assume that each φ j (θ; θ) satisfies the spectral moment condition
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∫ η

−η

tr{φ j (θ; θ0) f (θ)} dθ = 0 ( j = 1, . . . , q) (2.6)

where θ0 = (σ10, . . . , σp0)
≥ is the true value of parameter and f (θ) is the true

spectral density matrix of X(t). By taking an appropriate function for φ j (θ; θ), the
θ0 specified by Eq. (2.6) can express various important indices for time series.

As an estimating function, we consider the following quantity

m(θt ; θ) =
(
tr{φ1(θt ; θ)In(θt )}, . . . , tr{φq(θt ; θ)In(θt )}

)≥
(2.7)

whereθt = (2η t)/n, (t = 1, . . . , n) and In(θ) is the periodogrammatrix. Following
(2.3), we define the empirical likelihood ratio function for frequency domain by

R̃(θ) = max
p

{ n∏

t=1

(npt )

∣∣∣∣
n∑

t=1

pt m(θt ; θ) = 0, pt ≥ 0,
n∑

t=1

pt = 1

}
. (2.8)

Now we impose the following assumption.

Assumption 2.1

(i) {X(t)} satisfies (B) in Proposition 1.2.
(ii) For the sequence {Ck} defined by

Ck = sup
a1...ak

∼∑

t1,...,tk−1=−∼
|cX

a1···ak
(t1, . . . , tk−1)|,

it holds

∼∑

k=1

Ck zk

k! < ∼

for z in a neighborhood of zero. Here, cX
a1···ak

(t1, . . . , tk−1) is the k-th-order
cumulant of X defined in Chap.1.

Applying Proposition 1.2, we obtain the following theorem.

Theorem 2.2 (Ogata and Taniguchi (2010)) Let Assumption 2.1 hold. Then

−2 log R̃(θ0) √ (Σ N)≥(Σ N),

where N has a q-dimensional standard normal distribution and Σ = Σ
−1/2
2 Σ

1/2
1 .

Here Σ1 and Σ2 are constant q × q matrices whose (i, j)-th components are

http://dx.doi.org/10.1007/978-3-319-03497-1
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1

η

∫ η

−η

tr{ f (θ)φi (θ; θ0) f (θ)φ j (θ; θ0)}dθ

+ 1

2η

m∑

r,t,u,v=1

∫∫ η

−η

δ
(i)
r t (θ1; θ0)δ

( j)
uv (θ2; θ0)Q X

rtuv(−θ1, θ2,−θ2)dθ1dθ2

and

1

2η

[∫ η

−η

tr{ f (θ)φi (θ; θ0) f (θ)φ j (θ; θ0)}dθ

+
∫ η

−η

tr{ f (θ)φi (θ; θ0)}tr{ f (θ)φ j (θ; θ0)}dθ

]
,

respectively.

The proof of Theorem 2.2 is given in Sect. 2.6. In what follows, we give several
application examples of the theorem.

Example 2.1 (Autocorrelation) Denote the autocovariance and the autocorrelation
of the process {Xi (t)} (i-th component of the process {X(t)}) with lag h by γi (h) and
λi (h), respectively. Suppose that we are interested in the joint estimation of λi (h)

and λ j (k). Take

φ1(θ; θ) =
{
cos(hθ) − σ1 (i, i)-th component
0 otherwise

,

φ2(θ; θ) =
{
cos(kθ) − σ2 ( j, j)-th component
0 otherwise

.

Then (2.6) leads to σ10 = γi (h)/γi (0) and σ20 = γ j (k)/γ j (0), hence, then θ0 =
(σ10, σ20)

≥ corresponds to the desired autocorrelations ρ = (λi (h), λ j (k))≥.
Example 2.2 (Portfolio selection) Let Xi (t) be the log-return of i-th asset
(i = 1, . . . , m) at time t and suppose that the process {X(t) = (X1(t), . . . , Xm(t))≥}
is stationary with zero mean. Consider the portfolio p(t) = ∑m

i=1 σi Xi (t) where
θ = (σ1, . . . , σm)≥ is a vector of weights. The process {p(t)} is a linear combina-
tion of the stationary process, hence {p(t)} is also stationary and, from Herglotz’s
theorem, its variance is

Var{p(t)} = θ ≥Var{X(t)}θ = θ ≥
(∫ η

−η

f (θ)dθ

)
θ .

Our aim is to find the weights θ0 = (σ10, . . . , σm0)
≥, that minimize the variance

(the risk) of the portfolio p(t). The first-order condition (α/αθ)θ=θ0Var{p(t)} = 0
leads to

(∫ η

−η

f (θ) + f (θ)≥dθ

)
θ0 = 0. (2.9)
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Now, for j = 1, . . . , m, consider to take

φ j (θ; θ) =
⎧
⎨

⎩

σi ( j, i)-th and (i, j)-th component, (i = 1, . . . , m and i ∈= j)
2σ j ( j, j)-th component
0 otherwise

.

Then, (2.6) coincides with the condition (2.9), which implies that the best portfolio
weights can be solved with the framework of the spectral moment condition.

Example 2.3 (Whittle estimation) Consider fitting a parametric spectral density
model f θ (θ) to the true spectral density f (θ), and seeking the quasi-true value θ in
(1.21). Assume that the specral density model has the form described in Assumption
(NGR) (iii). The Kolmogorov’s formula (cf. p. 162 of Hannan (1970)) says

det K = exp

{
1

2η

∫ η

−η

log det{2η f θ (θ)}dθ

}
.

This implies that, if θ is innovation-free, the quantity
⎞ η

−η
log det{ f θ (θ)}dθ is inde-

pendent of θ and (1.21) leads to

α

αθ

∫ η

−η

tr{ f θ (θ)−1 f (θ)}dθ

∣∣∣∣
θ=θ

= 0.

This corresponds to (2.6) when we set

φ j (θ; θ) = α f θ (θ)−1

ασ j
( j = 1, . . . , p),

so the quasi-true value can be expressed by the spectral moment condition.

2.4 Extensions of Empirical Likelihood

Since the classical empirical likelihood method was proposed, several extensions
have been considered by many researchers. Among those, we introduce Cressie-
Read power-divergence (CR) statistic and generalized empirical likelihood (GEL).

As an alternative of the empirical likelihood ratio, Baggerly (1998) made use of
the CR statistic, which is used at ν2-goodness of fit test. It is defined as:

2

π(π + 1)

k∑

i=1

Ni

{(
Ni

npi

)π

−1

}
, π ∞ R,

http://dx.doi.org/10.1007/978-3-319-03497-3_1
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where k is a number of categories, Ni is a number of the observations which fell
into the i-th category and pi is the probability that the observation falls into the i-th
category (see Read and Cressie (1988)). In the case of π = −1, 0, it is define by the
continuous limits:

2
k∑

i=1

(npi ) log

(
npi

Ni

)
and 2

k∑

i=1

Ni log

(
Ni

npi

)
.

The CR statistic contains the user-specified parameter π ∞ R and encompasses sev-
eral commonly used test statistics, i.e., the Neyman-modified ν2-statistic
(π = −2), the Kullback-Leibler divergence (π = −1), the Freeman-Tukey statistic
(π = −1/2) and Pearson’s ν2-statistic (π = 1).

In the empirical likelihood framework, we consider the distributionwhose support
is a set of observations. This means that k = n and Ni = 1 for all i in the above
setting. Therefore, CR statistic is reduced to

CRπ( p) = 2

π(π + 1)

n∑

i=1

⎟
(npi )

−π − 1
⎠
, π ∞ R. (2.10)

The empirical likelihood statistic corresponds to the specific case of π = 0, therefore,
CR statistic can be considered as an extension of the empirical likelihood. Baggerly
(1998) showed the CR statistic is asymptotically chi-square distributed for i.i.d.
random vectors.

For the asymptotic distribution of CR statistic under the dependent process, we
first consider the same estimating function as in (2.7). Following (2.8), we define the
frequency domain CR statistic:

C̃Rπ(θ) = min
p

{
CRπ( p)

∣∣∣∣
n∑

t=1

pt m(θt ; θ) = 0, pt ≥ 0,
n∑

t=1

pt = 1

}
. (2.11)

Then we obtain the following theorem.

Theorem 2.3 (Ogata andTaniguchi (2009))Let Assumption 2.1 hold. Then C̃Rπ(θ0)

has the same asymptotic distribution as in Theorem 2.2 for any π ∞ R.

The proof of Theorem 2.3 is given in Sect. 2.6. In what follows, we give several
application examples, in which we assume that X(t) is scalar, i.e., X(t) = X (t), for
simplicity.

Example 2.4 (Prediction) The h-step prediction problem as in Hannan (1970,
Chapter III Section 2) is considered. We predict X (t) using a linear combination of
X (t − j), j ≥ h, that is, we use X̃(t) = ∑

j≥h a( j; θ)X (t − j) as a predictor where

a( j; θ)s are constants. We measure the error of the predictor by E
[|X (t) − X̃(t)|2]

and find the best linear predictor which minimizes this error. The spectral represen-
tations of X (t) and X̃(t) are
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X (t) =
∫ η

−η

exp(−i tθ) z(dθ), X̃(t) =
∫ η

−η

exp(−i tθ)

{∑

j≥h

a( j; θ) exp(i jθ)

}
z(dθ)

where E
[|z(dθ)|2]= f (θ) dθ, E

[
z(dθ1) z(dθ2)

]= 0, θ1 ∈= θ2. Therefore, the pre-
diction error is written by

∫ η

−η

∣∣∣1 −
∑

j≥h

a( j; θ) exp(i jθ)

∣∣∣
2

f (θ) dθ.

We find the minimizer of this error, θ0, by the equation

α

αθ

∫ η

−η

∣∣∣1 −
∑

j≥h

a( j; θ) exp(i jθ)

∣∣∣
2

f (θ) dθ

∣∣∣∣
θ=θ0

= 0.

This is exactly our problem when we take

δ j (θ; θ) = α

ασ j

∣∣∣1 −
∑

j≥h

a( j; θ) exp(i jθ)

∣∣∣
2

in (2.6).

Example 2.5 (Interpolation) Assume that the entire time series has been observed
except for the time point t = 0. We would like to estimate X (0) by a linear com-
bination of the observed stochastic variables, that is, X̃(0) = ∑

j ∈=0 a( j; θ)X ( j).
Similar to the prediction problem, the error of interpolation becomes

∫ η

−η

∣∣∣1 −
∑

j ∈=0

a( j; θ) exp(i jθ)

∣∣∣
2

f (θ) dθ.

We find the minimizer of this error, θ0, by the equation

α

αθ

∫ η

−η

∣∣∣1 −
∑

j ∈=0

a( j; θ) exp(i jθ)

∣∣∣
2

f (θ) dθ.

∣∣∣∣
θ=θ0

= 0.

This is exactly our problem when we take

δ j (θ; θ) = α

ασ j

∣∣∣1 −
∑

j ∈=0

a( j; θ) exp(i jθ)

∣∣∣
2

in (2.6).

Example 2.6 (Smoothing) Consider smoothing the trajectory of X (t) by a linear
combination of adjacent observations,

∑N
j=−N σ j X (t + j). Then, similar to the
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previous problem, the error of this smoothing is expressed as:

∫ η

−η

∣∣∣1 −
N∑

j=−N

σ j exp(i jθ)

∣∣∣
2

f (θ) dθ.

Set θ = (σ−N , . . . , σN )≥ and we find the minimizer of this error, θ0, by the equation

α

αθ

∫ η

−η

∣∣∣1 −
N∑

j=−N

σ j exp(i jθ)

∣∣∣
2

f (θ) dθ

∣∣∣∣
θ=θ0

= 0.

This is exactly our problem when we take

δ j (θ; θ) = α

ασ j

∣∣∣1 −
N∑

j=−N

σ j exp(i jθ)

∣∣∣
2

in (2.6).

Another extension of empirical likelihood is GEL in Newey and Smith (2004).
GEL can be also considered as an alternative of generalized methods of moments
(GMM) and it is known that its asymptotic bias does not grow with the number of
moment restrictions, while the bias of GMM often does. Following the i.i.d. GEL
described in Newey and Smith (2004), Ogata (2012) investigated the asymptotic
properties of frequency domain GEL.

To describe GEL, let λ(y) be a function of a scalar y that is concave on its domain,
an open intervalY containing zero. Let τ̂n(θ) = {ξ : ξ ≥m(θt ; θ) ∞ Y, t = 1, . . . , n}.
The estimator is the solution to a saddle point problem

θ̂GEL = argmin
θ∞ρ

sup
ξ∞τ̂n(θ)

n∑

t=1

λ
(
ξ ≥m(θt ; θ)

)
.

The empirical likelihood (EL) estimator of Qin and Lawless (1994), the expo-
nential tilting (ET) estimator of Kitamura and Stutzer (1997) and the continu-
ous updating estimator (CUE) of Hansen et al. (1996) are special cases with
λ(y) = log(1 − y), λ(y) = −ey and λ(y) = −(1 + y)2/2, respectively.
Let Ω = E[m(θt ; θ0)m(θt ; σ0)

≥]. The following assumptions and theorems are
frequency domain version of those in Newey and Smith (2004), and are found in
Ogata (2012).

Assumption 2.2

(i) θ0 ∞ ρ is the unique solution to (2.6).
(ii) ρ is compact.
(iii) m(θt ; θ) is continuous at each θ ∞ ρ with probability one.
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Table 2.1 Market

Index Market

S&P 500 NYSE
Bovespa São Paulo stock exchange
CAC40 Bourse de Paris
AEX Amsterdam stock exchange
ATX Wiener Börse
HKHSI Hong Kong exchanges and clearing
Nikkei Tokyo stock exchange

Taken from Ogata (2012). Published with the kind permission of c⊂ Hiroaki Ogata 2012. Published
under the Creative Commons Attribution License

(iv) E[supθ∞ρ ||m(λt ; θ)||α] < ∼ for some α > 2.
(v) Ω is nonsingular.
(vi) λ(y) is twice continuously differentiable in a neighborhood of zero.

Theorem 2.4 Let Assumption 2.2 hold. Then θ̂GEL
p√ θ0.

Furthermore, let G = E[αm(λt ; θ0)/αθ].
Assumption 2.3

(i) θ0 ∞ int(ρ).
(ii) m(θt ; θ) is continuously differentiable in a neighborhood N of θ0 and

E

[
sup
θ∞N

∥∥∥∥
αm(θt ; θ)

αθ ≥

∥∥∥∥

]
< ∼.

(iii) rank(G) = p.

Theorem 2.5 Let Assumptions 2.2 and 2.3 hold. Then

√
n(θ̂GEL − θ0)

d√ N (0, (G≥Ω−1G)−1).

Now we are applying the frequency domain GEL estimation method to the port-
folio selection problem introduced in Example 2.2. The sample consists of 7 weekly
market indices (S&P 500, Bovespa, CAC 40, AEX, ATX, HKHSI, and Nikkei) hav-
ing 800 observations each: the initial date is April 30, 1993, and the ending date is
August 22, 2008. The data are from Ogata (2012). Refer to Table 2.1 for the market
of each index.

The log-return of the i-th (i = 1, . . . , 7) index at time t is denoted by xi (t) and
each process is assumed to be stationary. We estimate the best portfolio weights
θ0 = (σ1, . . . , σ7)

≥ described in Example 2.2 by using three types of frequency
domain GEL estimators (EL, ET, and CUE). The results are shown in Table 2.2, and
explain that Bovespa and ATX contribute large part in the optimal portfolio.
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Table 2.2 Estimated portfolio weights

EL ET CUE

S&P 500 0.0759 0.0617 0.0001
Bovespa 0.6648 0.6487 0.6827
CAC40 0.0000 0.0000 0.0000
AEX 0.0000 0.0000 0.0000
ATX 0.2593 0.2558 0.3168
HKHSI 0.0000 0.0000 0.0000
Nikkei 0.0000 0.0338 0.0004

Taken from Ogata (2012). Published with the kind permission of c⊂ Hiroaki Ogata 2012. Published
under the creative commons attribution license

2.5 GEL for Multivariate Stable Distributions

It is well known that financial data often show asymmetry and heavy-tails properties
which cannot be captured by simple distributions such as normal distribution. One
of the families of distributions which can be accommodated to such asymmetry and
heavy-tails data is the stable family. Since Mandelbrot (1963) and Fama (1965) pro-
posed the use of stable distributions to analyze financial data, these distributions have
received considerable attention; see, for example, Embrechts et al. (1997), Belka-
cem et al. (2000), and Rachev and Han (2000). Moreover, the stable distributions
arise from a generalization of the central limit theorem in which the assumption of
finite variance is relaxed, and consequently, the stable distributions are closed under
summation. This property is also a strong motivation to fit stable distributions to
financial data, since low frequency financial returns can be regarded as the sum of
high frequency data.

In order to deal with several financial assets simultaneously, we treat multivariate
stable distributions. In fact, we havemultivariate stable distributions that are included
in an elliptical family. Elliptical stable distributions are easier to handle than nonel-
liptical stable distributions but we do not consider them in this section. The reason is
in Fig. 2.1, that displays density plots of bivariate normal, elliptical stable, and nonel-
liptical stable distributions along with contour plots of the densities. The graphs for
the nonelliptical stable distribution show skewness that cannot be handled by either
normal or elliptical stable distributions. Therefore, we especially consider multivari-
ate nonelliptical stable distributions and apply the i.i.d. GELmethod to estimate their
parameters, following Ogata (2013).

We briefly review the multivariate stable distributions. A random vector X =
(X1, . . . , Xd)≥ ∞ R

d is said to be stable if its characteristic function is

δ(ν) = E
[
exp{i∗X, ν≤}]= exp{−I (ν)},

where the exponent function is
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Fig. 2.1 The left three panels showbivariate density plots and right three panels show their contours.
From top to bottom, the figures are for normal, elliptical stable, and nonelliptical stable distributions,
respectively. Taken from Ogata (2013). Published with the kind permission of c⊂ Elsevier 2013.
All Rights Reserved
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I (ν) =
∫

Sd

φ(∗s, ν≤)∂ (ds) + i∗ν,μ≤.

Here Sd = {s : ≈ s ≈= 1} is the unit sphere in R
d , the symbol ∗·, ·≤ denotes inner

product, ∂ is a finite spectral measure on Sd ,μ = (μ1, . . . , μd) ∞ R
d is the location

vector, and

φ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

|u|α
(
1 − i sign(u) tan

ηα

2

)
(α ∈= 1)

|u|
(
1 + i

2

η
sign(u) ln |u|

)
(α = 1),

where α ∞ (0, 2] is the characteristic exponent, which controls tail thickness. The
d-dimensional stable distribution is denoted by Sd(α, ∂,μ).

Our purpose is to estimate the spectral measure ∂ , the location vector μ, and the
characteristic exponent α, based on an i.i.d. sample X1, . . . , Xn of d-dimensional
random vectors drawn from this distribution. However, difficulties arise even in the
univariate case, d = 1. Foremost is the complexity of the density function. Except
for a few cases, no simple explicit form of the density exists, which is an obstacle
to implementing the usual MLE method. Moreover, the stable distributions do not
necessarily have second or even first moments, which impede using the ordinary
method of moments.

One remedy for this difficulty is to use the empirical characteristic function

δ̂n(ν) = 1

n

n∑

j=1

exp{i∗X j , ν≤}.

Following Nolan et al. (2001), we first consider a discrete approximation of the
spectral measure:

∂ → =
L∑

ω=1

γωκsω
, (2.12)

where γω = ∂ (Aω), ω = 1, . . . , L , are weights and κsω
is a point mass at

sω ∞ Sd . Here, Aω, ω = 1, . . . , L , are patches that partition the sphere Sd , where
Aω has some “center” sω. The estimation of the parameters is done via an estimating
function based on theoretical and empirical characteristic functions. Many authors
have investigated the use of empirical characteristic functions for estimation; for
a summary and extensive references, see Yu (2004). In the context of multivariate
stable distributions, suppose that {X j }n

j=1 is an i.i.d. sequence from Sd(α, ∂ →,μ),
where ∂ → is a discrete spectral measure defined in (2.12). Denote the parameters by
θ = (α, γ ≥,μ≥)≥ ∞ (0, 2] × R

L+ × R
d , and define the estimating function as
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Fig. 2.2 Scatter plot of the pair of Bovespa and CAC40. Taken from Ogata (2013). Published with
the kind permission of c⊂ Elsevier 2013. All Rights Reserved

h(ν, X j , θ) = exp{i∗ν, X j ≤} − δθ (ν),

where δθ is the theoretical characteristic function for model parameter θ . Denot-
ing true parameter value by θ0, we have E[h(ν, X j , θ0)] = 0 for any frequency
ν ∞ R

d . After choosing some frequencies ν1, . . . , νK ∞ R
d , we redefine the esti-

mating function as

g(X j , θ) = (Re[h(ν1, X j , θ)], . . . ,Re[h(νK , X j , θ)],
Im[h(ν1, X j , θ)], . . . , Im[h(νK , X j , θ)])≥, (2.13)

whereRe[·] and Im[·] are the real and imaginary parts of a complex number. Obvi-
ously, we still have E[g(X j , θ0)] = 0. Using this estimating function, we estimate
the parameters by the GEL method described in the previous section.

Now we are applying the GEL estimation method for multivariate stable distrib-
utions to real data. The sample consists of two log returns of daily market indexes,
Bovespa (São Paulo Stock Exchange) and CAC40 (Bourse de Paris), having 2536
observations in each.1 The initial date is January 4, 2000, and the ending date is
September 22, 2009. Figure 2.2 shows a scatter plot of their returns. In this plot,
several points are located far from the origin, and the data are skewed heavily down-
ward. Thus, multivariate stable distributions are more appropriate than multivariate
normal or elliptical distributions.

1 This data is a part of the data set which was used in Dominicy and Veredas (2013).
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Table 2.3 Estimated parameters andVaRs : ΩBB and ΩCC are the variances for Bovespa andCAC40,
and ΩBC is the covariance

Model Stable Normal

α 1.757
γ1 0.409 γ5 0.598

Estimated parameters γ2 0.000 γ6 0.000 ΩBB 0.999
γ3 0.000 γ7 0.000 ΩBC 0.219
γ4 0.226 γ8 0.729 ΩCC 0.988

VaRB(0.01) −5.763 −2.960
VaRC(0.01) −3.778 −1.603

VaRB(0.01) and VaRC(0.01) stand for the 1 % VaRs for Bovespa and CAC40, respectively. Taken
from Ogata (2013). Published with the kind permission of c⊂ Elsevier 2013. All Rights Reserved

We model the pair (Bovespa,CAC40) using the bivariate stable distribution
S2(α, ∂ →, 0). Here, ∂ → is a discrete spectral measure defined in (2.12), and we take
L = 8, sω = (cos σω, sin σω)

≥ for σω = (ω−1)η/4, ω = 1, . . . , 8. For comparison, the

bivariate normal distribution N

((
0
0

)
,

(
ΩB B ΩBC

ΩBC ΩCC

))
is also fitted to the data. We

use ET estimators for the parameters of the stable distribution, (α, γ1, . . . , γ8)
≥, and

MLEs for the parameters of the normal distribution, (ΩB B, ΩBC , ΩCC ). Based on the
estimated parameters for both models, we calculate the 1 % VaRs for the Bovespa
and the CAC40. Table 2.3 shows the estimation results and the VaRs.

Both VaRs from the fitted stable model are smaller than those from the fitted
normal model, which means fitting the stable distribution evaluates the risk to be
higher than that from fitting the normal distribution. The estimated marginal density
functions for Bovespa and CAC40 are displayed in Fig. 2.3.

Last, we make a comment about the data. Perhaps, heavy tails may be caused
by GARCH effects rather than by unconditional stable distributions. To remove the
effect of the dynamic conditional volatility, Dominicy and Veredas (2013) adjusted
the original data by using the AR(2)-GARCH(1,1) model. The analysis here is also
based on this adjusted data.

2.6 Appendix

In this section, we provide the proofs of Theorems 2.2 and 2.3. For the simplicity of
expression, we introduce

Pn = 1√
n

n∑

t=1

m(θt ; θ0),

Sn = 1

n

n∑

t=1

m(θt ; θ0)m(θt ; θ0)
≥,
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Fig. 2.3 The estimated probability density functions are displayed. The upper figure is for Bovespa
while lower is for CAC40. The real line is for stable fitting and dotted line is for normal fitting.
Taken from Ogata (2013). Published with the kind permission of c⊂ Elsevier 2013. All Rights
Reserved
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Zn = max
1◦t◦n

≈m(θt ; θ0)≈.

Before giving the proofs of the theorems, we prepare Lemmas 2.1, 2.2 and 2.3 whose
proofs are omitted. Lemma 2.1 is proved by use of Theorem 5.10.2 and Lemma P5.1
of Brillinger (2001), and Proposition 1.2 in Chap.1. Lemmas 2.2 and 2.3 are proved
by Theorems 7.2.2 and 4.5.1 of Brillinger (2001), respectively.

Lemma 2.1 Let Assumption 2.1 hold. Then

Pn
d√ Nq(0,Σ1)

where Σ1 is the same matrix as in Theorem 2.2.

Lemma 2.2 Let Assumption 2.1 hold. Then

Sn
p√ Σ2

where Σ2 is the same matrix as in Theorem 2.2.

Lemma 2.3 Let Assumption 2.1 hold. Then

Zn = O(log n).

2.6.1 Proof of Theorem 2.2

Following the way of leading to (2.5), we may write

R̃(θ0) =
n∏

t=1

1

1 + ξ ≥m(θt ; θ0)

where the vector ξ = ξ(θ0) satisfies q equations given by

J(ξ) ⇔ 1

n

n∑

t=1

m(θt ; θ0)

1 + ξ ≥m(θt ; θ0)
= 0. (2.14)

Put Yt = ξ ≥m(θt ; θ0) and write ξ = ≈ξ≈u where u ∞ U is a unit vector. By
substituting 1/(1 + Yt ) = 1 − Yt/(1 + Yt ) into u≥ J(ξ) = 0, we have

http://dx.doi.org/10.1007/978-3-319-03497-1
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u≥
{
1

n

n∑

t=1

m(θt ; θ0)

(
1 − Yt

1 + Yt

)}
= 0

u≥
(
1

n

n∑

t=1

m(θt ; θ0)

)
= u≥

(
1

n

n∑

t=1

m(θt ; θ0)
ξ ≥m(θt ; θ0)

1 + Yt

)

u≥
(
1

n

n∑

t=1

m(θt ; θ0)

)
= ≈ξ≈u≥

(
1

n

n∑

t=1

m(θt ; θ0)m(θt ; θ0)
≥

1 + Yt

)
u.

Then, we obtain

≈ξ≈u≥Snu ◦ ≈ξ≈u≥
(
1

n

n∑

t=1

m(θt ; θ0)m(θt ; θ0)
≥

1 + Yt

)
u · (1 + max

t
Yt )

◦ ≈ξ≈u≥
(
1

n

n∑

t=1

m(θt ; θ0)m(θt ; θ0)
≥

1 + Yt

)
u · (1 + ≈ξ≈Zn)

= n−1/2u≥ Pn(1 + ≈ξ≈Zn)

and so

≈ξ≈
(

u≥Snu − n−1/2Znu≥ Pn

)
◦ n−1/2u≥ Pn .

From Lemmas 2.1–2.3, we have

≈ξ≈{Op(1) − O(log n)Op(n
−1/2)} ◦ Op(n

−1/2),

and hence,
≈ξ≈ = Op(n

−1/2). (2.15)

After we have established an order of ξ , we have from Lemma 2.3 and (2.15) that

max
1◦t◦n

|Y t | = Op(n
−1/2)O(log n). (2.16)

Now, by (2.14),

0 = 1

n

n∑

t=1

m(θt ; θ0)

(
1 − Yt + Y 2

t

1 + Yt

)
(2.17)

= n−1/2 Pn − Snξ + 1

n

n∑

t=1

m(θt ; θ0)
Y 2

t

1 + Yt
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Noting that

1

n

n∑

t=1

≈m(θt ; θ0)≈3 ◦ Zn||Sn|| = O(log n),

the final term of (2.17) has a norm bounded by

1

n

n∑

t=1

≈m(θt , θ0)≈3≈ξ≈2|1 + Yt |−1 = O(log n)Op(n
−1)Op(1) = Op(n

−1 log n).

Hence we can write

ξ = 1√
n

S−1
n Pn + δ

where β = Op(n−1 log n). By (2.16), we can write

log(1 + Yt ) = Yt − 1

2
Y 2

t + Λt

where, for some finite constant C > 0,

Pr(|Λt | ◦ C |Yt |3, 1 ◦ t ◦ n) √ 1 as n √ ∼.

Now we may write

−2 log R̃(θ0) = −2
n∑

t=1

log(nwt ) = −2
n∑

t=1

log(1 + Yt ) = 2
n∑

t=1

Yt −
n∑

t=1

Y 2
t + 2

n∑

t=1

Λt

= P ≥
n S−1

n Pn − nδ≥Snδ + 2
n∑

t=1

Λt .

Here it is seen that

nδ≥Snδ = nOp(n
−1 log n)Op(1)Op(n

−1 log n) = Op(n
−1(log n)2),

2
n∑

t=1

Λt ◦ C≈ξ≈3
n∑

t=1

≈m(θt , θ0)≈3 = Op(n
−3/2)O(n log n) = Op(n

−1/2 log n),

and finally, from Lemmas 2.1 and 2.2, we can show that

P ≥
n S−1

n Pn
d√
(
Σ

−1/2
2 Σ

1/2
1 Σ

−1/2
1 Pn

)≥ (
Σ

−1/2
2 Σ

1/2
1 Σ

−1/2
1 Pn

)
d= (Σ N)≥(Σ N).

�
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2.6.2 Proof of Theorem 2.3

Let π ∈= 0,−1. To find the minimizing weights p = (p1, . . . , pn)≥ in (2.11), we
proceed by the Lagrange multiplier method. Write

G = CRπ( p) + ξ ≥
n∑

t=1

pt m(θt ; θ0) + γ

(
n∑

t=1

pt − 1

)
,

where ξ ∞ R
q and γ ∞ R are Lagrange multipliers. Since the objective function

CRπ( p) is convex with respect to p, the solution of the first-order condition

(i)
αG

α p
= 0 (ii)

αG

αξ
= 0 (iii)

αG

αγ
= 0 (2.18)

gives a global minimum point. The first condition of (2.18) gives

pt = 1

n

{
(π + 1)γ

2n

}−1/(1+π) {
1 + ξ ≥

γ
m(θt ; θ0)

}−1/(1+π)

(t = 1, . . . , n).

With a simpler notation, we rewrite pt as

pt = C→ ⎟1 + ξ ≥m(θt ; θ0)
⎠−1/(1+π)

(t = 1, . . . , n) (2.19)

whereC→ and ξ are certain constant and vector, respectively. From the third condition
of (2.18), the constant should be

C→ =
[

n∑

t=1

⎟
1 + ξ ≥m(θt ; θ0)

⎠−1/(1+π)

]−1

. (2.20)

Put Yt = ξ ≥m(θt ; θ0) and write ξ = ≈ξ≈u where u ∞ U is a unit vector. From the
second condition of (2.18), we have

1

n
u≥

n∑

t=1

pt m(θt ; θ0) = 0,

and by substituting (2.19) and (2.20) into this equation, we have

0 = 1

n
u≥

n∑

t=1

m(θt ; θ0)(1 + Yt )
−1/(1+π)

= 1

n
u≥

n∑

t=1

m(θt ; θ0)

{
1 − (1 + Λt Yt )

−1/(1+π)−1

1 + π
Yt

}
(0 < Λt < 1).
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We rewrite this as

||ξ || =
[

u≥
{
1

n

n∑

t=1

⎟
1 + Λt ||ξ ||u≥m(θt ; θ0)

⎠−1/(1+π)−1m(θt ; θ0)m(θt ; θ0)
≥
}

u
]−1

× (1 + π)u≥
{
1

n

n∑

t=1

m(θt ; θ0)

}
. (2.21)

From Lemmas 2.1–2.3, there exists a sufficiently large C and an integer n0 such that
if n > n0 and ||ξ || < Cn−1/2, the right hand side of (2.21) is less than Cn−1/2.
Applying the Brouwer fixed point theorem to the right hand side of (2.21), we can
see that a solution of Eq. (2.21) exists in the region ||ξ || < Cn−1/2. Hence it is shown
that

||ξ || = Op(n
−1/2). (2.22)

Now, from the second condition of (2.18), we obtain

0 = 1

n

n∑

t=1

m(θt ; θ0)(1 + Yt )
−1/(1+π)

= 1

n

n∑

t=1

m(θt ; θ0)
{
1 − (1 + π)−1Yt + Op(Y

2
t )
}

= n−1/2 Pn − (1 + π)−1Snξ + β.

With some constant C , the norm of the last term β is evaluated as

||β|| = C

n

n∑

t=1

||m(θt ; θ0)||3||ξ ||2 ◦ C Zn Sn||ξ ||2 = O(log n)Op(n
−1)

and we have

ξ = (1 + π)n−1/2S−1
n Pn + β.

Now it is shown that

n∑

t=1

Yt = ξ ≥
n∑

t=1

m(θt ; θ0) = (1 + π)P ≥
n S−1

n Pn + O(log n)Op(n
−1/2), (2.23)

n∑

t=1

Y 2
t = ξ ≥

( n∑

t=1

m(θt ; θ0)m(θt ; θ0)
≥
)

ξ

= (1 + π)2 P ≥
n S−1

n Pn + O(log n)Op(n
−1/2) (2.24)
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n∑

t=1

Y 3
t ◦ max

1◦t◦n
|Yt |

n∑

t=1

Y 2
t = ||ξ || max

1◦t◦n
||m(θt ; θ0)||

n∑

t=1

Y 2
t

= O(log n)Op(n
−1/2). (2.25)

From (2.19) and (2.20), we can write

C Rπ( p) = 2

π(π + 1)

n∑

t=1

⎟
(npt )

−π − 1
⎠

= 2

π(π + 1)

n∑

t=1

[{
n(1 + Yt )

−1/(1+π)

∑n
t=1(1 + Yt )−1/(1+π)

}−π

−1

]

= 2

π(π + 1)

[{
1

n

n∑

t=1

(1 + Yt )
−1/(1+π)

}π{ n∑

t=1

(1 + Yt )
π/(1+π)

}
−n

]
. (2.26)

Taylor expansion leads to

{
1

n

n∑

t=1

(1 + Yt )
−1/(1+π)

}π

=
{
1 − 1

n(1 + π)

n∑

t=1

Yt + 2 + π

2n(1 + π)2

n∑

t=1

Y 2
t + 1

n

n∑

t=1

Op(Y
3
t )

}π

= 1 − π

n(1 + π)

n∑

t=1

Yt + π(2 + π)

2n(1 + π)2

n∑

t=1

Y 2
t + 1

n

n∑

t=1

Op(Y
3
t ) + Op(n

−2)

(2.27)

and

n∑

t=1

(1+ Yt )
π/(1+π) = n + π

1 + π

n∑

t=1

Yt − π

2(1 + π)2

n∑

t=1

Y 2
t +

n∑

t=1

Op(Y
3
n ). (2.28)

Using (2.23)–(2.25), (2.27) and (2.28), we can show that

(A.13) = 1

(1 + π)2

n∑

t=1

Y 2
t + O(log n)Op(n

−1/2) = P ≥
n S−1

n Pn + O(log n)Op(n
−1/2).

Finally, from Lemmas 2.1 and 2.2, we can show that

P ≥
n S−1

n Pn
d√
(
Σ

−1/2
2 Σ

1/2
1 Σ

−1/2
1 Pn

)≥ (
Σ

−1/2
2 Σ

1/2
1 Σ

−1/2
1 Pn

)
d= (Σ N)≥(Σ N)
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This is the desired result.
When π = 0, Theorem 2.3 is reduced to Theorem 2.2. When π = −1, the proof

is similar. �
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Chapter 3
Various Methods for Financial Engineering

Abstract Various statistical methods have been introduced to many application
fields. Such methods are often designed for standard settings, i.e., i.i.d. cases, regular
model etc. However, financial data are usually dependent and have complicated
features (see Chap. 1). In this chapter, we state various methods which are suitable
for financial data. In Sect. 3.2, the control variate method is applied to time series
models. Control variate method is the one to reduce the variance of estimators.
However, this method has been developed mainly in i.i.d. cases. Because financial
data are usually dependent, we extend this method to dependent case. In Sect. 3.3, we
apply an instrumental variable method to a stochastic regression model. In stochastic
regression models, a natural estimator for the regression coefficients is the ordinary
least squares estimator (OLS). However, if the explanatory variable and the stochastic
disturbance are correlated, this estimator is inconsistent. To overcome this difficulty,
the instrumental variable method is used. In the CAPM model, it will be shown that
the explanatory variable and the disturbance are fractionally cointegrated. Hence, we
use the instrumental variable method to estimate the regression coefficients.

Keywords Control variate method · Instrumental variable method · Stochastic
regression model · CAPM · Long memory process · Ordinary least squares
estimator

3.1 Introduction

In this chapter, we state two important methods which are suitable for financial data.
In Sect. 3.2, the control variate method is applied to time series models. The

sample mean is one of the most natural estimators of the population mean based on
i.i.d. sample. However, if some control variables are available, it is known that the
control variate method reduces the variance of the sample mean. This method has
been discussed in the case when the sample and control variable are i.i.d.. Here we
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assume that these variables are stationary processes. Then we propose an estimator
of the mean of the stationary process of interest by using control variate method. It
is shown that this estimator improves the sample mean in the sense of mean square
error. Also this analysis is extended to the case when the mean dynamics is of the
form of regression.

In Sect. 3.3, we apply an instrumental variable method to the stochastic regression
model, which includes CAPM model with time dimension. In the CAPM, empirical
studies suggest that the response process and the explanatory process are short mem-
ory dependent and longmemory dependent, respectively. From this point of view, we
have to assume that the error process is also longmemory dependent and is correlated
with the explanatory process. For the stochastic regression model, the most funda-
mental estimator is the ordinary least squares estimator. However, the dependence
of the error process with the explanatory process makes this estimator to be incon-
sistent. To overcome this difficulty instrumental variable method was proposed. In
this section, by using instrumental variable method, we propose the two-stage least
squares (2SLS) estimator for the stochastic regression model in which the explana-
tory process and error process are long memory dependent and mutually correlated
each other. Then we prove its consistency and CLT under some conditions.

3.2 Control Variate Methods for Financial Data

When we deal with financial time series data, estimation of dynamics mean is most
fundamental, and is useful for the prediction of financial time series and construction
of portfolio on financial assets etc.

For this purpose, the sample mean is the most natural one. However, it is often
observed that the sample mean is not so good. In such a situation, if we can use some
control variate information, we can introduce more effective method to estimate the
dynamics mean, which is called the control variate method.

When some control variable vector is available (a random vector which is possibly
correlated with the variable of interest), using the information about the control
variate vector, it is known that the control variate method reduces the variance of the
samplemean. That is, ifμY is an unknownmean of i.i.d. data {Y(1), Y(2), . . . , Y(n)}
and X is a control variable vector with known mean vector μX , then for any constant
vector b, the mean of the control variate estimator μ̂Y (b) = Ȳn − b∞(X − μX) is μY

(Ȳn is the sample mean of {Y(1), Y(2), . . . , Y(n)}) and its variance is Var{Ȳn} −
2b∞Cov{Ȳn, X} + b∞∑

Xb, where
∑

X is the covariance matrix of X and Cov{Ȳn, X}
is the covariance vector between Ȳn and X. Hence if 2b∞Cov{Ȳn, X} > b∞∑

Xb, then
the variance of the control variate estimator is smaller than that of the sample mean.

This method has been discussed in the case when the sample and control vari-
able are i.i.d.. Lavenberg and Welch (1981) reviews analyses of the control variate
developed up to the date. In the paper, the value b≡ of vector b which minimizes
the variance of the control variate estimator is derived and the confidence interval of
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μ̂Y (b≡) is constructed. However, in practice, since the correlation between Ȳn and
X is unknown, this b≡ is not known and an estimator b̂≡ of b≡ is proposed. In gen-
eral, the control variate estimator involving the estimator b̂≡ is not unbaiased and the
confidence interval cannot be constructed easily. They also discuss these problems.
Rubinstein and Marcus (1985) extends the results to the case when the sample mean
Ȳn is multidimensional vector and the multidimensional control variate estimator is
represented as μ̂Y (B) = Ȳn − B(X − μX), where B is an arbitrary matrix and X is a
control variate vector with mean vector μX . Giving the matrix B≡ which minimizes
the determinant of E{μ̂Y (B)∞μ̂Y (B)}, they introduce an estimator μ̂Y (B≡). They also
introduce an estimator of B̂≡ of B≡ and discuss the confidence ellipsoid. Nelson
(1990) proves a central limit theorem of the control variate estimator. Since a lot
of control variate theories have been discussed under a specific probability structure
(usually normal distribution) for the sample and control variates, a number of authors
introduced remedies for violations of these assumptions. Nelson (1990) gives a sys-
tematic analytical evaluation of them. In recent years, this method has been applied
to financial engineering (e.g., Glasserman (2004), Chan and Wong (2006)).

As we saw in Chap. 1, empirical studies show that many financial data are depen-
dent. However, the control variate theory is usually discussed under the assumption
that the sample and control variates are i.i.d. Hence in this section, when the sample
is generated from a stationary process and some control variable process is available,
we propose an estimator ρ̂C of the mean of the concerned process by using control
variate method. Then it is shown that this estimator improves the sample mean in
the sense of mean square error (MSE). The estimator ρ̂C is expressed in terms of
nonparametric estimators for spectra of the concerned process and the control vari-
ate process. We also apply this analysis to the case when the mean dynamics is of
the form of regression. A control variate estimator for the regression coefficients is
proposed and is shown to improve the LSE in the sense of MSE. Numerical studies
show how our estimators behave. Our results have applications to various fields,
including finance in particular.

Suppose that {Y(t); t ∈ Z} is a scalar-valued process with mean E{Y(t)} = ρ and
{X(t); t ∈ Z} is an anotherm-dimensional processwith themean vectorE{X(t)} = 0,
which is possibly correlated with {Y(t)}. We are now interested in estimation of ρ .
Let Z(t) ≥ (Y(t), X∞(t))∞ and we assume {Z(t); t ∈ Z} is generated by the following
linear process.

Z(t) =
√∑

j=0

B(j)θ(t − j) + ξ (3.1)

where ξ = (ρ, 0, 0, . . . , 0)∞ is m + 1-dimensional vector and B(j)∞s are (m + 1) ×
(m + 1) matrices, and {θ(t)} is a sequence of i.i.d. (m + 1)-dimensional random
vectors with mean vector 0 and covariance matrix K.

Henceforth |U| denotes the sum of all the absolute values of elements of matrixU.

http://dx.doi.org/10.1007/978-3-319-03497-3_1
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Assumption 3.1 (i) det{∑√
u=0 B(u)zu} = 0 has no roots in the unit disc {z ∈

C; |z| ∼ 1}.
(ii) The coefficient matrices B(u) satisfy

√∑

u=0

|u|4|B(u)| < √. (3.2)

Using the same k-th order cumulant notation as in Sect. 1.1, we set the following.

Assumption 3.2 For k = 3, 4, . . . ,

Cθ
k ≥ sup

a1, ..., ak

∣∣cθ
a1, ..., ak

(0, . . . , 0)
∣∣ < √ (3.3)

and √∑

L=1

(
∑

σ

Cθ
n1 · · · Cθ

nP

)
zL/L! < √, (3.4)

for z in a neighborhood of 0, where the inner summation is over all indecomposable
partitions (see p. 20 of Brillinger (2001)) σ = (σ1, . . . , σP) of the table

1 2
3 4
...

...

2L − 1 2L

(3.5)

with σp having np > 1 elements, p = 1, . . . , P.

Write

Ck ≥ sup
a1, ..., ak

√∑

t1, ..., tk−1=−√

∣∣cz
a1, ..., ak

(t1, . . . , tk−1)
∣∣. (3.6)

Then Assumptions 3.1 and 3.2 imply Assumption (B) in Chap.1 and

√∑

L=1

(
∑

σ

Cn1 · · · CnP

)
zL/L! < √, (3.7)

in a neighborhood of 0, where the summation
∑

σ is defined as in (3.4) (see p. 48 of
Brillinger (2001)). FromAssumption 3.1, it is seen that the process {Z(t)} becomes a
stationary process with nonsingular spectral density matrix (e.g., Brillinger (2001)).
We write the spectral density matrix by

http://dx.doi.org/10.1007/978-3-319-03497-1
http://dx.doi.org/10.1007/978-3-319-03497-3_1
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f (λ) =
[

fYY (λ) f YX(λ)

f XY (λ) f XX(λ)

]
. (3.8)

From Assumption 3.1, it follows that R(s) = {cz
i,j(s); i, j = 1, . . . , m + 1} satisfies

√∑

s=−√
|s|4|R(s)| < √, (3.9)

(e.g., p. 46 of Brillinger (2001)). Suppose that partial observations {Y(0),
Y(1), . . . Y(n−1)} and {X(−Mn),X(−Mn+1), . . .,X(0), . . .,X(n−1)} are available,
where Mn = O(nγ) ( 14 ∼ γ < 1

3 ).
Now we are interested in the estimation of ρ . Based on the observations, we

introduce the following estimator ρ̂C of ρ

ρ̂C ≥ 1

n

n−1∑

t=0

{
Y(t) −

Mn∑

u=0

â∞
n(u)X(t − u)

}
, (3.10)

where ân(u) = 1
2α

∫ α

−α
Ân(λ) exp(iuλ)dλ, Ân(λ) = f̂ XX(λ)−1f̂ XY (λ). Here f̂ XX(λ)

and f̂ XY (λ) are, respectively, nonparametric estimators of f XX(λ) and f XY (λ) which
are defined as,

f̂ XY (λ) ≥ 2α

n

n−1∑

s=1

Wn

(
λ − 2αs

n

)
IXY

(
2αs

n

)
(3.11)

f̂ XX(λ) ≥ 2α

n

n−1∑

s=1

Wn

(
λ − 2αs

n

)
IXX

(
2αs

n

)
(3.12)

where IXY (μ) and IXX(μ) are submatrices of the periodogram of Z(t)

In(μ) =
[

IYY (μ) IYX(μ)

IXY (μ) IXX(μ)

]
, (3.13)

and {Wn(λ)} are weight functions which are described below. The Ân(λ) and
ân(u) are shown to be consistent estimators of A(λ) = f XX(λ)−1f XY (λ), a(u) =
1
2α

∫ α

−α
A(λ) exp(iuλ)dλ, respectively.

Next, we will show that the proposed estimator ρ̂C improves the sample mean in
the sense of MSE.

Then we get the following theorem. For the proof, see Amano and Taniguchi
(2011).
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Theorem 3.1 Suppose Assumptions3.1and3.2, and that the spectral window Wn(λ)

satisfies Assumption 1.2. Then it holds that

lim
n→√ nE|ρ̂C − ρ |2 = 2α

(
fYY (0) − f YX(0)f XX(0)−1f XY (0)

)
. (3.14)

It is known that the asymptotic variance of the sample mean Ȳn ≥ 1
n

∑n−1
t=0 Y(t)

is 2α fYY (0) (e.g., Theorem 5.2.1 of Brillinger (2001)). Since

2α
(
fYY (0) − f YX(0)f XX(0)−1f XY (0)

) ∼ 2α fYY (0), (3.15)

we observe that ρ̂C improves Ȳn in the sense of MSE.
Next, we assume {Y(t); t ∈ Z} is a trend model whose mean E[Y(t)] = μ(t) =

φ∞(t)ξ is a time-dependent function. Here φ(t) = (ν1(t), . . . , νJ(t))∞ and ξ =
(ρ1, . . . , ρJ)

∞. Let {X(t); t ∈ Z} be another m-dimensional process with mean vector
E{X(t)} = 0, which is possibly correlated with {Y(t)}. Now we apply the control
variate method to estimate the parameter ξ . Let Z(t) ≥ (Y(t), X∞(t))∞, t ∈ Z. We
impose the following assumption.

Assumption 3.3 {Z(t); t ∈ Z} is generated by the following linear process.

Z(t) =
√∑

j=0

B(j)θ(t − j) +

⎧

⎨⎨⎨⎩

μ(t)
0
...

0

⎞

⎟⎟⎟⎠ (3.16)

where B(j)∞s are (m + 1) × (m + 1) matrices satisfying Assumption 3.1 and θ(t)∞s
are i.i.d. random vectors with mean vector 0 and covariance matrix K.

For convenience, we define θ(t) by
∑√

j=0 B(j)θ(t − j) = (θ(t), X∞(t))∞, then as
discussed before, (θ(t), X∞(t))∞ has the spectral density matrix,

f (λ) =
[

fθθ(λ) f θX(λ)

f Xθ(λ) f XX(λ)

]
. (3.17)

Suppose that partial observations {Y(0), Y(1), . . . Y(n − 1)} and {X(−Mn),

X(−Mn + 1), . . . , X(0), . . . , X(n − 1)} are available.
We define nonparametric estimators f̂ XX(λ) and f̂ Xθ̂(λ) for the spectral densities

f XX(λ) and f Xθ(λ), respectively, as

f̂ XX(λ) ≥ 2α

n

n−1∑

s=1

Wn

(
λ − 2αs

n

)
IXX

(
2αs

n

)
(3.18)

f̂ Xθ̂(λ) ≥ 2α

n

n−1∑

s=1

Wn

(
λ − 2αs

n

)
IXθ̂

(
2αs

n

)
(3.19)
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where

IXX(μ) ≥ 1

2αn

{
n−1∑

t=0

X(t)eitμ

}{
n−1∑

t=0

X(t)eitμ

}≡
(3.20)

IXθ̂(μ) ≥ 1

2αn

{
n−1∑

t=0

X(t)eitμ

}{
n−1∑

t=0

θ̂(t)eitμ

}≡
(3.21)

where θ̂(t) = Y(t) − φ∞(t)ξ̂LSE , ξ̂LSE = (φ∞φ)−1φ∞Y (the least squares esti-
mator of ξ ), Y = (Y(1), . . . , Y(n))∞ and φ = (φ(1), . . . , φ(n))∞. Let Â(λ) =
f̂ XX(λ)−1 f̂ Xθ̂(λ) and â(u) = 1

2α

∫ α

−α
Â(λ) exp(iuλ)dλ.

Now we propose an estimator ξ̂
C
LSE of ξ :

ξ̂
C
LSE = (φ∞φ)−1φ∞(Y − ŴM) (3.22)

where ŴM = (ŴM(1), . . . , ŴM(n))∞ with

ŴM(t) =
Mn∑

u=0

â∞
(u)X(t − u). (3.23)

To describe the asymptotics of ξ̂
C
LSE , we impose the following Grenander’s

conditions.

Assumption 3.4 Let cn
j,k(h) = ∑n−h

t=1 νj(t + h)νk(t) = ∑n
t=1−h νj(t + h)νk(t).

cn
j,k(h)’s satisfy

(i) cn
j,j(0) = O(nη ), j = 1, . . . , J for some η > 0.

(ii) limn→√
ν2

j (n+1)

cn
j,j(0)

= 0, j = 1, . . . , J .

(iii)

lim
n→√

cn
j,k(h)

{
cn

j,j(0)c
n
k,k(0)

} 1
2

= mjk(h) (3.24)

We may take ν1(t) = 1 (constant), which evidently satisfies Assumption 3.4, hence,
the regression part φ(t) of {Y(t)} may include a constant.

We define the J × J matrix mφφ(u) by

mφφ(u) = {mjk(u); j, k = 1, . . . , J}. (3.25)

From p. 175 of Brillinger (2001), there exists an r×r matrix-valued functionGφφ(λ),
−α < λ ∼ α , whose entries are of bounded variation, such that
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mφφ(u) =
∫ α

−α

exp(iuλ)dGφφ(λ) (3.26)

for u = 0,±1, · · · Under these assumptions, we obtain the following theorem. For
the proof, see Amano and Taniguchi (2011).

Theorem 3.2 Suppose Assumptions 3.2–3.4, then

lim
n→√ nη E{(ξ̂C

LSE − ξ
)(

ξ̂
C
LSE − ξ

)∞}

= 2αmφφ(0)−1
∫ α

−α

fθ−V ,θ−V (λ)dGφφ(λ)mφφ(0)−1, (3.27)

where fθ−V ,θ−V (λ) = fθ,θ(λ) − f θX(λ)f XX(λ)−1f Xθ(λ) is the spectral density of

θ(t) − V(t). Here V(t) = ∑√
u=0 a∞(u)X(t − u), a(u) = 1

2α

∫ α

−α
A(λ) exp(iuλ)dλ,

A(λ) = f XX(λ)−1f Xθ(λ).

Note that the least squares estimator ξ̂LSE of ξ has the following asymptotic
variance

lim
n→√ nη E{(ξ̂LSE − ξ)(ξ̂LSE − ξ)∞}

= 2αmφφ(0)−1
∫ α

−α

fθ,θ(λ)dGφφ(λ)mφφ(0)−1, (3.28)

where fθ,θ(λ) is the spectral density of θ(t). It is seen that

fθ−v,θ−v(λ) ≥ fθ,θ(λ) − f θX(λ)f XX(λ)−1f Xθ(λ) ∼ fθ,θ(λ), (3.29)

which implies that the asymptotic covariance matrix of ξ̂
C
LSE is smaller than that of

ξ̂LSE .
Next we examine the control variate estimators numerically. In Example 3.1, we

compare the control variate estimators with sample means. Next the control variate
estimators are comparedwith the least squares estimators inExample 3.2. InExample
3.3, we investigate its usefulness in real financial data.

Example 3.1 We consider the following model,

Y(t) = u(t) + v(t) (3.30)

X(t) = a1u(t) + 0.4u(t − 1) + a2v(t), (3.31)

where {u(t)}, {v(t)} ∈ i.i.d. N(0,1) and they are mutually independent. The length of
Y(t) and X(t) are set by 1,000 and based on 5,000 times simulation we report MSE
of ρ̂C with Mn = 20 and Ȳn. We set a1 = 0.1, 0.2, 0.3 and a2 = 0.1, 0.2, 0.3, 4.0 in
Table3.1.
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Table 3.1 MSE of ρ̂C and Ȳn

a1 a2 MSE ρ̂C MSE Ȳn MSE Ȳn − MSE ρ̂C

0.1 0.1 0.00062385 0.00205319 0.00142934
0.1 0.2 0.00030573 0.00196825 0.00166252
0.1 0.3 0.00012184 0.00201872 0.00189688
0.2 0.1 0.00068064 0.00193495 0.00125431
0.2 0.2 0.00042055 0.00206655 0.001646
0.2 0.3 0.0002056 0.00192683 0.00172123
0.3 0.1 0.00071185 0.0020196 0.00130775
0.3 0.2 0.00047111 0.00195619 0.00148508
0.3 0.3 0.00027794 0.00198016 0.00170222
0.3 4.0 0.00068665 0.00199143 0.00130478

Taken from Amano and Taniguchi (2011). Published with the kind permission of c⊂ Elsevier B.V.
2011. All Rights Reserved

Table 3.2 MSE of ξ̂
C
LSE and ξ̂LSE for φ(t) = (1, t)∞

a2 MSE ξ̂
C
LSE MSE ξ̂LSE MSE ξ̂LSE − MSE ξ̂

C
LSE

0.1 0.00786141 0.01047323 0.00261182
0.2 0.0041377 0.00543288 0.00129518
0.3 0.00493462 0.00533173 0.00039711

Taken from Amano and Taniguchi (2011). Published with the kind permission of c⊂ Elsevier B.V.
2011. All Rights Reserved

From Table3.1, we can see MSEȲn − MSEρ̂C becomes larger as a2 becomes
large, which implies, if control variates are highly correlated with the disturbance,
then ρ̂C is better than Ȳn. However, excessive influence of the disturbance makes the
performance of ρ̂C worse.

Example 3.2 Consider the following model,

Y(t) = μ(t) + u(t) + v(t) (3.32)

X(t) = 0.3u(t) + 0.4u(t − 1) + a2v(t), (3.33)

where {u(t)}, {v(t)} ∈ i.i.d. N(0, 1) and they are mutually independent. Here μ(t) =
ξ ∞φ(t), φ(t) is a regression function and ξ is a vector-valued parameter. The length of

Y(t) andX(t) are set by 1,000 and based on 5,000 replications we reportMSE of ξ̂
C
LSE

withMn = 20 and ξ̂LSE , that isMSEof ξ̂
C
LSE and ξ̂LSE are 1

5,000

∑5,000
i=1 ||ξ̂C

LSE(i)−ξ ||2
and 1

5,000

∑5,000
i=1 ||ξ̂LSE(i)− ξ ||2 (ξ̂C

LSE(i) is ith control variate estimator and ξ̂LSE(i)
is ith least squares estimator). We set ξ = (1, 1)∞ and a2 = 0.1, 0.2, 0.3. Table3.2

shows MSE of ξ̂
C
LSE and ξ̂LSE for φ(t) = (1, t)∞, and Table3.3 shows those for

φ(t) = (1, cos(α
4 t))∞.

From Tables3.2 and 3.3, we observe that MSE ξ̂
C
LSE are smaller than MSE ξ̂LSE .

That is, control variate estimator also improves the least squares estimator.
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Table 3.3 MSE of ξ̂
C
LSE and ξ̂LSE for φ(t) = (1, cos( α

4 t))∞

a2 MSE ξ̂
C
LSE MSE ξ̂LSE MSE ξ̂LSE − MSE ξ̂

C
LSE

0.1 0.00594558 0.00837971 0.00243413
0.2 0.00747352 0.00749953 0.00002601
0.3 0.00913403 0.00940378 0.00026975

Taken from Amano and Taniguchi (2011). Published with the kind permission of c⊂ Elsevier B.V.
2011. All Rights Reserved

Table 3.4 Prediction of the stock price S(N + H) by ρ̂H,C and ȲH,n

H ŜC(N + H) Ŝ(N + H) S(N + H)

1 891.0968 891.4768 891
2 888.3209 888.7471 876

Modified from Amano and Taniguchi (2011). Published with the kind permission of c⊂ Elsevier
B.V. 2011. All Rights Reserved

Example 3.3 We calculate the control variate estimator ρ̂H,C and the sample mean
ȲH,n of {YH(t)} where YH(t) = log S(t) − log S(t − H) and {S(t)} are NIPPON OIL
CORPORATION’s stock prices (7/20/2007 ∈ 12/12/2007). We set the difference
between Yen–Euro’s exchange rate and its sample mean (7/4/2007∈ 12/11/2007) as
the control variate process. Then by use of ρ̂H,C and ȲH,n, we forecast NIPPON OIL

CORPORATION’s stock S(N+H) atN= 12/12/2007 by ŜC(N+H) ≥ eρ̂H,C+log S(N)

and Ŝ(N + H) ≥ eȲH,n+log S(N) in Table3.4.

From Table3.4, the prediction values ŜC(N + H) are nearer to the true values
S(N+H) than Ŝ(N+H), which implies the prediction by the control variate estimator
is better than that by the sample mean.

There are many cases in finance where we should estimate the statistical models
for data of interest under the circumstance that we can use some related variables. In
such situations, the estimators ξ̂C and ξ̂

C
LSE can be used, and are more efficient than

the usual estimators.

3.3 Statistical Estimation for Stochastic Regression Models
with Long Memory Dependence

The CAPM is one of the typical models of risk asset’s price on equilibrium market
and has been used for pricing individual stocks and portfolios. At first, Markowitz
(1991) worked the groundwork of this model. In his research, he cast the investor’s
portfolio selection problem in terms of expected return and variance. Sharpe (1964)
and Lintner (1965) developed Markowitz’s idea for economical implication. Black
(1972) derived a more general version of the CAPM. In their version, the CAPM
is constructed based on the excess of the return of the asset over zero-beta return
E{Ri} = E{R0m} + γim(E{Rm} − E{R0m}), where Ri and Rm are the return of the
ith asset and the market portfolio, and R0m is the return of zero-beta portfolio of the
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market portfolio. Campbell et al. (1997) discussed the estimation of CAPM, but in
their work they did not discuss the time dimension. However, in the econometric
analysis, CAPM with the time dimension should be investigated, that is, the model
should be represented as Ri(t) = δim +γimRm(t)+ λi(t). These models are included
in the stochastic regression model, Ri(t) = δi + Σ ∞

iZ(t) + λi(t), where Z(t) is the
risk factors. In the CAPM with the time dimension, the risk is only the return of the
market portfolio. However, there are some evidences of other common risk factors
besides the return of the market portfolio and stochastic regression models allow
more factors than the return of the maket portfolio as the risk. Hence here, we
investigate the stochastic regression models. Recently from the empirical analysis,
it is known that the return of asset follows a short memory process and if we assume
Z(t) follows short memory process, such a stochastic regression model has been
investigated enough. Besides, if we consider the volatility of the return of the market
portfolio as the risk factor, Z(t) follows long memory dependent. From this point of
view, we observe that Z(t) and the error process θ(t) are long memory dependent
and correlated with each other.

For the stochastic regression model, the most fundamental estimator is the ordi-
nary least squares estimator. However, the dependence of the error process with the
explanatory process makes this estimator to be inconsistent. To overcome this diffi-
culty, the instrumental variable method is proposed by use of the instrumental vari-
ables which are uncorrelated with the error process and correlated with the explana-
tory process. This method was first used by Wright (1928) and many researchers
developed this method (see, Reiersöl (1945) and Geary (1949) etc.). Comprehensive
reviews are seen in White (2001). However, the instrumental variable method has
been discussed in the case where the error process does not follow the long memory
process and this makes the estimation difficult.

For the analysis of longmemoryprocess,Robinson andHidalgo (1997) considered
a stochastic regression model defined by y(t) = δ + Σ ∞x(t) + u(t), where δ, Σ =
(γ1, ..., γK )∞ are unknownparameters and theK-vector processes {x(t)} and {u(t)} are
long memory dependent with E{x(t)} = 0, E{u(t)} = 0. Furthermore, in Choy and
Taniguchi (2001), they consider the stochastic regression model y(t) = γx(t)+u(t),
where {x(t)} and {u(t)} are stationary process with E{x(t)} = μ �= 0, and Choy and
Taniguchi (2001) introduced a ratio estimator, the least squares estimator, and the
best linear unbiased estimator for γ. However, Robinson and Hidalgo (1997) and
Choy and Taniguchi (2001) assume that the explanatory process {x(t)} and the error
process {u(t)} are independent.

In this section, by using instrumental variable method we propose the two-stage
least squares (2SLS) estimator for the stochastic regression models in which stochas-
tic explanatory process and error process are long memory dependent and mutually
correlated each other. Thenwe prove its consistency and CLT under some conditions.
Also, some numerical studies are provided.

For Sharpe and Lintner version of CAPM (see Sharpe (1964) and Lintner (1965)),
the expected return of asset i is given by

E{Ri} = Rf + γim
(
E{Rm − Rf }

)
, (3.34)
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where

γim = Cov{Ri, Rm}
Var{Rm} ,

Rm is the return of the market portfolio and Rf is the return of the risk-free asset.
Another Sharpe–Lintner CAPM (see Sharpe (1964) and Lintner (1965)) is defined
for Zi ≥ Ri − Rf ,

E{Zi} = γimE{Zm}

where

γim = Cov{Zi, Zm}
Var{Zm}

and Zm = Rm − Rf .
Black (1972) derived a more general version of CAPM, which is written as

E{Ri} = δim + γimE{Rm}, (3.35)

where δim = E{R0m}(1 − γim) and R0m is the return on the zero-beta portfolio.
Since CAPM is single-period model, (3.34) and (3.35) do not have a time dimen-

sion. However for econometric analysis of the model, it is necessary to add assump-
tions concerning the time dimension. Hence it is natural to consider the model with
the time dimension

Ri(t) = δim + γimRm(t) + λi(t)

where i denotes the asset, t denotes the period, and Ri(t) and Rm(t), i = 1, . . . , q;
t = 1, . . . , n are, respectively, considered as the returns of the asset i and the market
portfolio at t.

Indeed, there are some evidences of other common risk factors besides the return
of market portfolio. Stochastic regression models generalize CAPM with the time
dimension by allowing more factors than simply the return of market portfolio Rm(t)

Ri(t) = δi + Σ ∞
iZ(t) + λi(t)

where Σ ∞
i = (γi,1, . . . , γi,p)

∞ is a p-dimensional vector and {Z(t) = (Z1(t),
. . . , Zp(t))∞} is factors process.

Empirical features of the realized returns for assets and market portfolios are
well-known. SACF, which was defined in Chap.1, of returns of IBM stock was plot
in Fig. 1.1 (Sect. 1.1) and SACF of returns of S&P500 (squared transformed) is plot
in Fig. 3.1.

From Figs. 1.1 and 3.1, we observe that the return of stock (i.e., IBM) shows the
short memory dependence, and that squared transformed of a market index (i.e.,
S&P500) shows the long memory dependence.

Suppose that an q-dimensional process
{
Y(t) = (Y1(t), ..., Yq(t))∞

}
is generated

by

http://dx.doi.org/10.1007/978-3-319-03497-3_1
http://dx.doi.org/10.1007/978-3-319-03497-3_1
http://dx.doi.org/10.1007/978-3-319-03497-1_1
http://dx.doi.org/10.1007/978-3-319-03497-3_1
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Fig. 3.1 SACF of return
of S&P500 (square trans-
formed). Taken from Amano
et al. (2012). Published with
the kind permission of c⊂
Tomoyuki Amano et al.
(2012). Published under the
creative commons attribution
license
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Y(t) = ρ + B∞Z(t) + θ(t), (t = 1, 2, ..., n) (3.36)

where ρ = (δ1, ..., δq)
∞ and B = {

γij; i = 1, ..., p, j = 1, ..., q
}
are unknown vec-

tor and matrix, respectively,
{
Z(t) = (Z1(t), ..., Zp(t))∞

}
is a stochastic explanatory

process and
{
θ(t) = (λ1(t), ..., λq(t))∞

}
is a sequence of disturbance process. The ith

component is written as
Yi(t) = δi + Σ ∞

iZ(t) + λi(t)

where Σ ∞
i = (γi,1, ..., γi,p).

In the stochastic regression model, Y(t) is the return of assets, and Z(t) is the
factors process. As we saw, empirical studies suggest that the return of assets {Y(t)}
is short memory dependent and that the squared transformed return of the market
portfolio is long memory dependent. Furthermore, as a market risk, the volatility of
the return of the market portfolio should be considered and the stochastic regression
model (3.36) in the case Z(t) is short memory dependent has been investigated
enough. Then we assume that Z(t) is long memory dependent. On this ground, we
investigate the conditions that the stochastic regressionmodel (3.36) arewell-defined.
It is seen that if the model (3.36) is valid, we have to assume that {θ(t)} is also long
memory dependent and is correlated with {Z(t)}.

Hence, we suppose that {Z(t)} and {θ(t)} are defined by

Z(t) =
√∑

j=0

Ω (j)a(t − j) +
√∑

j=0

λ(j)b(t − j),

θ(t) =
√∑

j=0

ν(j)e(t − j) +
√∑

j=0

γ(j)b(t − j), (3.37)

where {a(t)} , {b(t)}, and {e(t)} are p-dimensional zero-mean uncorrelated
processes, and they are mutually independent. Here the coefficients {Ω (j)} and {λ(j)}
are p × p-matrices, and all the components of Ω (j) are π1-summable, (for short,
Ω (j) ∈ π1), and those of λ(j) are π2-summable (for short, λ(j) ∈ π2). The coeffi-
cients {ν(j)} and {γ(j)} are q × p-matrices, and ν(j) ∈ π1 and γ(j) ∈ π2. From (3.37)
it follows that
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Y(t) = ρ +
√∑

j=0

(
B∞Ω (j)a(t − j) + ν(j)e(t − j)

) +
√∑

j=0

(
B∞λ(j) + γ(j)

)
b(t − j).

Although
(
B∞λ(j) + γ(j)

) ∈ π2 generally, if B∞λ(j) + γ(j) = O
(

1
jδ

)
, δ > 1, then

(
B∞λ(j) + γ(j)

) ∈ π1, which leads to

Proposition 3.1 If B∞λ(j)+γ(j) = O
(
j−δ

)
, δ > 1, then the process {Y(t)} is short

memory dependent.

Proposition 3.1 provides an important view for the stochastic regression model, i.e.,
if we assume natural conditions on (3.36) based on the empirical studies, then they
impose a sort of “curved structure”: B∞λ(j) + γ(j) = O

(
j−δ

)
on the regressor and

disturbance. More important view is the statement implies that the process {Σ ∞
iZ(t)+

λi(t)} is fractionally cointegrated. HereΣ i and λi(t) are called the cointegrating vector
and error, respectively (see Robinson and Yajima (2002)).

We discuss estimation of (3.36) satisfying Proposition 3.1. Since E
(
Z(t)θ(t)∞

) �=
0, the least squares estimator for B is known to be inconsistent. In what follows
we assume that ρ = 0 in (3.36), because it can be estimated consistently by the
sample mean. However, by use of econometric theory, it is often possible to find
other variables that are uncorrelated with the errors θ(t), which we call instrumental
variables, and to overcome this difficulty. Without instrumental variables, correla-
tions between the observables {Z(t)} and unobservables {θ(t)} persistently contam-
inate our estimator for B. Hence, instrumental variables are useful in allowing us to
estimate B.

Let {X(t)} be r-dimensional vector (p ∼ r) instrumental variables with
E{X(t)} = 0, Cov{X(t), Z(t)} �= 0 and Cov{X(t), θ(t)} = 0. Consider the OLS
regression of Z(t) on X(t). If Z(t) can be represented as

Z(t) = δ∞X(t) + u(t), (3.38)

where δ is a r × p matrix and {u(t)} is a p-dimensional vector process which is
independent of {X(t)}, δ can be estimated by the OLS estimator

δ̂ =
[

n∑

t=1

X(t)X(t)∞
⎪−1 [

n∑

t=1

X(t)Z∞(t)
⎪

. (3.39)

From (3.36) with ρ = 0 and (3.38), Y(t) has the form

Y(t) = B∞δ∞X(t) + B∞u(t) + θ(t)

and δ∞X(t) is uncorrelated with B∞u(t) + θ(t), hence B can be estimated by the OLS
estimator
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B̂OLS =
[

n∑

t=1

(
δ∞X(t)

) (
δ∞X(t)

)∞
⎪−1 [

n∑

t=1

(
δ∞X(t)

)
Y ∞(t)

⎪
. (3.40)

Using (3.39) and (3.40), we can propose the 2SLS estimator

B̂2SLS =
[

n∑

t=1

(
δ̂
∞
X(t)

) (
δ̂
∞
X(t)

)∞
⎪−1 [

n∑

t=1

(
δ̂
∞
X(t)

)
Y ∞(t)

⎪
. (3.41)

Now, we aim at proving the consistency and asymptotic normality of the 2SLS
estimator B̂2SLS . For this we assume that {θ(t)} and {X(t)} jointly constitute the
following linear process.

(
θ(t)
X(t)

)
=

√∑

j=0

G(j)β (t − j) = A(t) (say),

where {β (t)} is uncorrelated (q + r)-dimensional vector process with

E{β (t)} = 0

E{β (t)β (s)≡} = τ(t, s)K

τ(t, s) =
{
1, t = s
0, t �= s

and G(j)’s are (q + r) × (q + r) matrices which satisfy
∑√

j=0 tr {G(j)KG(j)≡} < √.
Then {A(t)} has the spectral density matrix

f (λ) = 1

2α
k(λ)Kk(λ)≡ = {fab(λ); 1 ∼ a, b ∼ (q + r)}, (−α < λ ∼ α),

where

k(λ) =
√∑

j=0

G(j)eiλj = {kab(λ); 1 ∼ a, b ∼ (q + r)}, (−α < λ ∼ α).

Further, we assume that
∫ α

−α
log det f (λ)dλ > −√, so that the process {A(t)} is non-

deterministic. For the asymptotics of B̂2SLS , from page 108–109 of Hosoya (1997),
we impose Assumption (HT) (ii), (iii), and (iv) in Chap.1 on 
(t) and the following
Assumption 3.5.

Assumption 3.5 Each fab(λ) is square-integrable.

Under above assumptions, we can establish the following theorem. For the proof,
see Amano et al. (2012).

http://dx.doi.org/10.1007/978-3-319-03497-3_1
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Theorem 3.3 If 
(t) satisfies Assumption (HT) (ii), (iii), and (iv) in Chap.1, under
Assumption 3.5 it holds that

(i)

B̂2SLS
P→ B,

(ii) ∗
n
(

B̂2SLS − B
)

d→ Q−1E
[
Z(t)X∞(t)

]
E

[
X(t)X(t)∞

]−1 U

where
Q = [

E(Z(t)X(t)∞)
] [

E(X(t)X(t)∞)
]−1 [

E(X(t)Z(t)∞)
]

and U = {Ui,j; 1 ∼ i ∼ r, 1 ∼ j ∼ q} is a random matrix whose elements follow
normal distributions with mean 0 and

Cov[Ui,j, Uk,l] = 2α
∫ α

−α

[fq+i,q+k(λ)f̄j,l(λ) + fq+i,l(λ)f̄j,q+k(λ)]dλ

+ 2α
p∑

γ1,...,γ4=1

∫ α

−α

∫ α

−α

φq+i,γ1(λ1)φj,γ2(−λ1)

× φq+k,γ3(λ2)φl,γ4(−λ2)Q


γ1,...,γ4

(λ1,−λ2, λ2)dλ1dλ2, (3.42)

where Q

γ1,...,γ4

(λ1, λ2, λ3) is the fourth order spectral density of 
(t), which was
defined in Chap.1.

Next example prepares the asymptotic variance formula of B̂2SLS to investigate
its features in simulation study.

Example 3.4 Let {Z(t)} and {X(t)} be scalar long memory processes, with spectral

densities
{
2α |1 − eiλ|2dZ

}−1
and

{
2α |1 − eiλ|2dX

}−1
, respectively, and cross spec-

tral density 1
2α

(
1 − eiλ

)−dX
(
1 − e−iλ

)−dZ , where 0 < dZ < 1/2 and 0 < dX < 1/2.
Then

E (X(t)Z(t)) = 1

2α

∫ α

−α

1
(
1 − eiλ

)dX

1
(
1 − e−iλ

)dZ
dλ.

Suppose that {λ(t)} is a scalar uncorrelated process with ∂ 2
λ ≥ E

{
λ(t)2

}
. Assuming

Gaussianity of {A(t)}, it is seen that the right hand of (3.42) is

2α
∫ α

−α

1

2α |1 − eiλ|2dX

∂ 2
λ

2α
dλ,

which entails

http://dx.doi.org/10.1007/978-3-319-03497-3_1
http://dx.doi.org/10.1007/978-3-319-03497-1
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Fig. 3.2 V≡(dx, dz) in Exam-
ple 3.5. Taken from Amano
et al. (2012). Published with
the kind permission of c⊂
Tomoyuki Amano et al. 2012.
Published under the creative
commons attribution license

lim
n→√ Var

{∗
n
(

B̂2SLS − B
)}

=
2α

∫ α

−α
1

2α |1−eiλ|2dX

∂ 2
λ

2α dλ

(
1
2α

∫ α

−α
1

(1−eiλ)
dX

1

(1−e−iλ)
dZ

dλ

)2

= ∂ 2
λ

⎧

⎨⎨⎨⎩2α

∫ α

−α
1

|1−eiλ|2dX
dλ

(∫ α

−α
1

(1−eiλ)
dX

1

(1−e−iλ)
dZ

dλ

)2

⎞

⎟⎟⎟⎠

= ∂ 2
λ × V≡ (dX , dZ ) .

Now, we evaluate the behavior of B̂2SLS in the case p = 1 in (3.36) numerically.

Example 3.5 Under the condition of Example 3.4, we investigate the asymptotic
variance behavior of B̂2SLS by simulation. Figure3.2 plots V≡ (dX , dZ ) for 0 < dX <
1
2 and 0 < dZ < 1

2 .
From Fig. 3.2, we observe that if dZ ≤ 0 and if dX ≈ 1/2, then V≡ becomes large

and otherwise V≡ is small. This result implies only in the case that the long memory
behavior of Z(t) is weak and the long memory behavior of X(t) is strong, V≡ is large.
Note that long memory behavior of Z(t) makes the asymptotic variance of the 2SLS
estimator small but one of X(t) makes it large.

Example 3.6 We consider the following model,

Y(t) = Z(t) + λ(t),

Z(t) = X(t) + u(t),

λ(t) = w(t) + u(t),

whereX(t),w(t), andu(t) are scalar longmemoryprocesseswhich followFARIMA(0,
d1, 0), FARIMA(0, d2, 0), and FARIMA(0, 0.1, 0), respectively. Note that Z(t) and
λ(t) are correlated, X(t) and Z(t) are correlated, but X(t) and λ(t) are independent.
Under this model, we compare B̂2SLS with the ordinary least squares estimator B̃OLS

for B, which is defined as

B̃OLS =
[

n∑

t=1

Z2(t)

⎪−1 [
n∑

t=1

Z(t)Y(t)

⎪
.
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Table 3.5 MSE of B̂2SLS and B̃OLS

d2 0.1 0.2 0.3

B̂2SLS (d1 = 0.1) 0.03 0.052 0.189
B̃OLS (d1 = 0.1) 0.259 0.271 0.34
B̂2SLS (d1 = 0.2) 0.03 0.075 0.342
B̃OLS (d1 = 0.2) 0.178 0.193 0.307
B̂2SLS (d1 = 0.3) 0.019 0.052 0.267
B̃OLS (d1 = 0.3) 0.069 0.089 0.23

Taken from Amano et al. (2012). Published with the kind permission of c⊂ Tomoyuki Amano
et al. 2012. Published under the creative commons attribution license

Table 3.6 B̂2SLS based on the actual financial data

Stock IBM Nike Amazon American Express Ford

B̂2SLS 0.75 1.39 1.71 2.61 −1.89

Taken from Amano et al. (2012). Published with the kind permission of c⊂ Tomoyuki Amano
et al. 2012. Published under the creative commons attribution license

The length ofX(t), Y(t), and Z(t) are set by 100, and based on 5,000 times simulation
we report MSE of B̂2SLS and B̃OLS . We set d1, d2 = 0.1, 0.2, 0.3 in Table3.5.

In most cases of d1 and d2 in Table3.5, MSE of B̂2SLS is smaller than that of
B̃OLS . Hence from this Example we can see our estimator B̂2SLS is better than B̃OLS

in the sense of MSE. Furthermore from Table3.5, we can see that MSE of B̂2SLS and
B̃OLS increases as d2 becomes large, that is, long memory behavior of w(t) makes
the asymptotic variances of B̂2SLS and B̃OLS large.

Example 3.7 In this example, we calculate B̂2SLS based on the actual financial data.
We choose S&P500 (square transformed) as Z(t) and Nikkei Average as an instru-
mental variable X(t). Assuming that Y(t) (5×1) consists of the return of IBM, Nike,
Amazon, American Expresses, and Ford, the 2SLS estimates for Bi, i = 1, . . . , 5 are
recorded in Table3.6. We chose Nikkei Stock Average as the instrumental variable,
because we got the following correlation analysis between the residual processes of
returns and Nikkei:
Correlation of IBM’s residual and Nikkei Average’s return: −0.000311
Correlation of Nike’s residual and Nikkei Average’s return: −0.00015
Correlation of Amazon’s residual and Nikkei Average’s return: −0.000622
Correlation of American Express’s residual and Nikkei Average’s return: 0.000147
Correlation of Ford’s residual and Nikkei Average’s return: −0.000536,
which supports the assumption Cov(X(t), θ(t)) = 0.

From Table3.6, we observe that the return of American Express is strongly corre-
latedwith that of S&P500 and the return of the auto industry stock (Ford) is negatively
correlated with that of S&P500.
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Chapter 4
Some Techniques for ARCH Financial
Time Series

Abstract This chapter introduces two techniques which can be utilized in study
of financial risks. The first one is the method called Quantile Regression (QR),
which can be used to analyze the conditional quantile of financial assets. There, by
means of rank-based semiparametrics, we provide the statistically efficient infer-
ence under the autoregressive conditional heteroskedasticity (ARCH). The second
technique, the realized volatility, estimates the conditional variance, or “volatility”
of financial assets. Revealing the fact that its inference can be greatly affected by
the existence of additional noize called market microstructure, we introduce and
study the asymptotics of some appropriate estimator under the microstructure with
ARCH-dependent structure.

Keywords ARCH model · Quantile regression · Rank-based semiparametrics ·
Realized volatility · Market microstructure

4.1 Introduction

In this chapter, two techniques for analysis of financial risks will be introduced.
For both techniques, namely, the Quantile Regression (QR) with its semiparametrics
and Realized Volatility (RV) with dependent microstructure, here we extend their
applicability to the AutoRegressive Conditional Heteroskedasticity (ARCH)models.
As is well known, ARCH structure is one of the most particular characteristics of
financial asset’s prices. (See, e.g., Gouriéroux (1997).)

The construction of this chapter is as follows. In Sect. 4.2, we explain how QR
method can be used for ARCH time series and provide the semiparametrically effi-
cient inference as well. This method allows us to estimate the conditional quantiles
of financial assets, such as some variants of Value-at-Risk. Section4.3 is concerned
with estimation of the conditional variance, which is called “volatility” in finance.
There, the existence of additional noize calledmarketmicrostructure affects our infer-
ence greatly. By introducing some appropriate estimator, we show that this estimator
works well in the case where microstructure exhibits the ARCH property.

M. Taniguchi et al., Statistical Inference for Financial Engineering, 85
SpringerBriefs in Statistics, DOI: 10.1007/978-3-319-03497-3_4, © The Author(s) 2014
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4.2 Quantile Regression and Its Semiparametric Efficiency
for ARCH Series

Motivated by squared ARCH models, we investigate a Quantile AutoRegression
(QAR) model for non-negative series (Koenker and Bassett (1978); Koenker and
Xiao (2006); Koenker (2005)). This QAR can be interpreted as a RandomCoefficient
AutoRegression (RCAR) model for which we see the Local Asymptotic Normality
(LAN). More precisely, we decompose the random coefficient as a product of two
components, a quantile coefficient γ (ρ ) for fixed ρ and a “standardized random
coefficient” with ρ -quantile one, and think of the former as a parameter of interest
while the density g1 of the latter is treated as a nuisance. Having the LAN result with
respect to γ (ρ ) for each ρ -th quantile restriction (identification constraint) given on
the nuisance, we follow the one-step estimation method of Le Cam. Consequently,
we provide a semiparametrically efficient (at g1) version of QAR estimators.

4.2.1 Model, Estimators, and Some Asymptotics

Suppose that we have observation {y2t }n
t=1 from some experiment (Rn+,B(n),P(n)).

Also, let us consider a sequence of probability measures P(n) = {P(n)
β,g|β ∞ Θ, g ∞

G} which is described by the model known as ARCH(1), that is,

Y 2
t = (σ0 + σ1Y 2

t−1)Z2
t , (4.1)

where β := (σ0, σ1)
≡, and {Z2

t }n
t=1 are i.i.d. with density g and distribution function

G. Here Θ ⊂ R
2 and G are some parameter space and family of probability density

functions, respectively. Note that we introduced the innovation density g as that of
the squared process {Z2

t }n
t=1, not that of {Zt }n

t=1 itself. The conditional ρ -quantile of
Y 2

t (conditioned by the realized value y2t−1) in model (4.1) is

F−1
Y 2

t
(ρ |y2t−1) := F−1

Y 2
t |Y 2

t−1=y2t−1
(ρ ) = (σ0 + σ1y2t−1)G

−1(ρ ),

where F−1
X |S(·) denotes the (conditional) quantile function, i.e., F−1

X |S(ρ ) := inf{x :
P(X ≥ x |S) √ ρ }.

Motivated by the squared series ofARCH(1) above, let Xt √ 0, t ∞ Z, be a process
which takes non-negative values. Then we define a Quantile AutoRegression (QAR)
model, for given ρ ∞ (0, 1), by

F−1
Xt

(ρ |xt−1) = γ0(ρ ) + γ1(ρ )xt−1, (4.2)

where xt−1 is the realized value of Xt−1 and γ (ρ ) := (γ0(ρ ), γ1(ρ ))≡ is the para-
meter of interest. So, we see that the model (4.1) is a special case of (4.2) whith
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γ (ρ ) ∼ βG−1(ρ ). In the following, although we discuss this quantile regression
model of order 1 for simplicity, our method can be easily extended to the case of
higher dependency so that it can be applicable to ARCH(p), p √ 1.

Now, we define the QR estimator γ̂ n(ρ ) as

γ̂ n(ρ ) := argmin
b0,b1

n∑

t=1

γρ (Xt − (b0 + b1Xt−1)) , (4.3)

where γρ (u) := ρ |u| · 1{u √ 0} + (1 − ρ)|u| · 1{u < 0} = u(ρ − 1{u < 0}), u ∞ R

is called the check function (see Koenker (2005)), and 1A is the indicator function
defined by 1A = 1A(α) := 1 if α ∞ A, := 0 if α /∞ A. Also, defining

D0 := E
[
X t−1X ≡

t−1

]
, and

Dγ (ρ ) := E
[

fXt (X ≡
t−1γ (ρ )|X t−1)X t−1X ≡

t−1

]

with X t−1 := (1, Xt−1)
≡, some regularity conditions are now in order:

Assumption 4.1

(i) There exists a unique strictly stationary solution {Xt } of model (4.2) with
E[X2

t ] < →;
(ii) The matrices D0 and Dγ (ρ ) are nonsingular;
(iii) For ρ = ρ0 of our interest, the density of Xt conditional on X t−1, denoted

by fXt (x |X t−1), is continuous and positive at the points x = F−1
Xt

(ρ0|X t−1),
t = 1, 2, . . ..

Proposition 4.1 Let Assumption 4.1 hold. Then, for any ρ ∞ (0, 1), as n ∈ →,

⊂
n(γ̂ n(ρ ) − γ (ρ ))

d−∈ N
(

0, ρ (1 − ρ)D−1
γ (ρ ) D0D−1

γ (ρ )

)
, (4.4)

Proof See e.g., Koenker (2005, Chap.4), and Koul (1992, Eq. (7.3b.6)). �

Now, observe that, for each fixed ρ , the QR coefficient γ (ρ ) can be characterized
as the parameter γ = (γ0, γ1)

≡ of some model such as

Xt = (γ0 + γ1Xt−1)νt , (4.5)

where {νt √ 0, t ∞ Z} is i.i.d. with distribution function G1 and density g1,

g1 ∞ F ρ :=
{

f : [0,→) ∈ [0,→)

∣
∣
∣

∫ 1

0
f (x)dx = ρ = 1 −

∫ →

1
f (x)dx

⎡

.

This “quantile-restrictedARCHmodel” is a fixed-ρ submodel of general QARmodel
(4.2). There we find that
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fXt (X ≡
t−1γ (ρ )|X t−1) =

fXt /X ≡
t−1γ

(1)

X ≡
t−1γ

⎣

= g1(G
−1
1 (ρ ))

X ≡
t−1γ

⎤

,

so that the following corollary holds from Proposition 4.1.

Corollary 4.1 Let Assumption 4.1 hold. Then, for any γ ∞ Θ ⊂ R
2+ and any

g1 ∞ F ρ , as n ∈ →,

⊂
n(γ̂ n(ρ ) − γ )

d−∈ N

⎦

0,
ρ (1 − ρ)

g2
1(1)

D−1
1,γ D0D−1

1,γ

)

, (4.6)

where D1,γ := E[X t−1X ≡
t−1/X ≡

t−1γ ].
Remark 4.1 Note here that, for the submodel (4.5), Assumption 4.1-(i) is satisfied
if the following conditions are fulfilled

(i) The “true” values γ0 and γ1 are positive;
(ii) E[ν0] < →, E[ν20 ] < → and

(
E[ν20 ])1/2γ1 < 1.

The latter is a sufficient condition due to Giraitis et al. (2000), which may be easy
to verify. Necessary and sufficient conditions can also be found in He and Teräsvirta
(1999). �

Now, as a preparation for Sect. 4.2.2, let us write P(n)
γ := {P(n)

γ ,g1 |g1 ∞ F ρ } for
the fixed-γ subfamily of P(n). In order to apply the general results of Hallin et al.
(2006b), we first establish the existence of a generating group of P(n)

γ . Denoting
by H1 the set of all continuous and strictly increasing functions h from R+ to R+
satisfying h(0) = 0 and h(1) = 1, define

a(n)
h (ν1, . . . , νn) := (h(ν1), . . . , h(νn))

and consider the transformation group A(n)
γ (acting on R

n+)

A(n)
γ :=

{

(ξ (n)
γ )−1 ◦ a(n)

h ◦ ξ (n)
γ , h ∞ H1

⎡

, (4.7)

where ξ (n)
γ is a residual function defined by

ξ (n)
γ (X1, . . . , Xn) :=

⎦
X1

γ0 + γ1X0
, . . . ,

Xn

γ0 + γ1Xn−1

)

= (νγ ,1, . . . , νγ ,n).

Then, A(n)
γ is a generating group forP(n)

γ , in the sense that for all P1, P2 ∞ P(n)
γ , there

exists a ∞ A(n)
γ such that (X1, . . . , Xn)

d∗ P1 iff a(X1, . . . , Xn)
d∗ P2. So, defining

Sγ ,t and R(n)
γ ,t as the sign and the rank (among n copies) of (νγ ,t − 1) respectively,

we see that the map
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T (X1, . . . , Xn) = (Sγ ,1, . . . , Sγ ,n; R(n)
γ ,1, . . . , R(n)

γ ,n), (4.8)

is maximal invariant w.r.t. A(n)
γ (cf. Schmetterer (1974, Sections 7.4 and 7.6)).

Maximal invariance implies that, for any invariant map T ≡ (i.e., T ≡(x) = T ≡(ax),
a ∞ A(n)

γ ), there exists a measurable function θ such that T ≡ = θ ◦ T . Consequently,

we have that any test which is invariant w.r.t. A(n)
γ is B(n)

γ -measurable, where

B(n)
γ := η(Sγ ,1, . . . , Sγ ,n; R(n)

γ ,1, . . . , R(n)
γ ,n) (4.9)

which is the η -field generated by {Sγ ,t }n
t=1 and {R(n)

γ ,t }n
t=1. This B(n)

γ will play a key
role in Sect. 4.2.2.

4.2.2 Semiparametrically Efficient Inference

In this section, we improve the efficiency of γ̂ n(ρ ) with regard to the quantile-
restricted ARCH model (4.5). Since here we do not have any knowledge about the
true density g1, except for the fact that it belongs to F ρ , we arbitrarily choose a
“reference density” f from F ρ , and correspondingly define a “reference model”

Xt = (γ0 + γ1Xt−1)νt , (4.10)

where Xt √ 0, t ∞ Z, and {νt √ 0, t ∞ Z} is i.i.d. with density f ∞ F ρ . The goal
is to construct an asymptotically efficient version of γ̂ n(ρ ) based on some feasible
f ∞ F ρ , that is, attaining the semi-parametric lower bound at correctly specified
density f = g1 that nevertheless remains

⊂
n-consistent under misspecified density

( f ≤= g1).
First, let us assume stationarity by assuming, e.g., that the conditions of Remark

4.1 hold. Also, in order to ensure the regularity of the reference model (4.10), we
require the following assumption, which is essentially same as that for standard (i.e.,
nonsquared) ARCH models since γ has no effect on the sign of Yt .

Assumption 4.2

(i) The distribution of the initial value, L (X0|·), say, is continuous in probability
with respect to γ , i.e., for any γ n ∈ γ ,

L (X0|γ n)
P∈ L (X0|γ );

(ii) the density f ∞ F ρ is absolutely continuous with derivative f ≡ and has finite
Fisher information for scale, i.e.,
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0 < I f :=
∫ →

0
δ2

f (x) f (x)dx =
∫ 1

0
δ2

f (F−1(u))du < →,

where δ f (x) := −1 − x f ≡(x)

f (x)
.

Then, by Drost et al. (1997, Theorem 2.1), the model (4.10) satisfies the uniform
LAN (ULAN) condition under f ∞ F ρ and for any γ n of the form γ + O(n−1/2),
with the central sequence

Δ
(n)
γ n , f := 1⊂

n

n∑

t=1

δ f (νγ n ,t )W t (γ n), W t (γ n) ∼ X t−1

X ≡
t−1γ n

, (4.11)

and Fisher information I f (γ ) ∼ I f · E[W t (γ )W ≡
t (γ )], where νγ n ,t := Xt/(γn,0 +

γn,1Xt−1) denotes the residuals. The reason why we have stated ULAN, rather than
LAN at single γ , is due to the one-step improvement, which will be discussed below.

Here we observe that, by recursively replacing Xt−i by (γ0 + γ1Xt−i−1)νγ ,t−i ,
recovering the exact Xt−i requires observing the infinitely many lagged residuals
{νγ ,t−i }→i=1. However, this can be overcome by re-expressing (up to oP (1) terms) the
central sequence (4.11) by another central sequence which involves finitely lagged
residuals as follows. Since Xt−1 = γ0

∑t−1
i=1 γ i−1

1

∏i
j=1 νγ ,t− j , we have for the

second component (first component can be treated similarly) that

E

∣
∣
∣
∣
∣

Xt−1

γ0 + γ1Xt−1
− γ0

∑p
i=1 γ i−1

1

∏i
j=1 νγ ,t− j

γ0 + γ1γ0
∑p

i=1 γ i−1
1

∏i
j=1 νγ ,t− j

∣
∣
∣
∣
∣

≥ E

⎜


t−1∑

i=p+1

γ i−1
1

i⎧

j=1

νγ ,t− j

⎪

⎨ ≥ η 2
Z

1 − γ1η
2
Z

(
γ1η

2
Z

)p
, (4.12)

where η 2
Z := E[νγ ,t ]. By the stationarity, we know that (4.12) converges to zero at

a geometric rate as p = p(n) ∈ →, where this convergence p ∈ → can be made
arbitrarily slow. Hence, (4.12) is oP (1) as n ∈ → and so we do not lose anything
through this re-expression.

Then, following Hallin andWerker (2003), a semi-parametrically efficient proce-
dure can be obtained by projecting (4.11) on the maximal invariant η -field, which is
B(n)

γ in our case. So, together with (4.12), “good” inference should be based on

Δ
⎩

(n)
γ , f := E (n)

γ , f [Δ(n)
γ , f |B(n)

γ ]

= 1⊂
n − p

n∑

t=p+1

E (n)
γ , f

[

δ f (νγ ,t )
[1, γ0∑p

i=1 γ i−1
1

∏i
j=1 νγ ,t− j ]≡

γ0 + γ1γ0
∑p

i=1 γ i−1
1

∏i
j=1 νγ ,t− j

∣
∣B(n)

γ

]

+ oP (1)

= 1⊂
n − p

n∑

t=p+1

E (n)
γ , f

[

δ f [F−1(Uγ ,t )]
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× [1, γ0∑p
i=1 γ i−1

1

∏i
j=1 F−1(Uγ ,t− j )]≡

γ0 + γ1γ0
∑p

i=1 γ i−1
1

∏i
j=1 F−1(Uγ ,t− j )

∣
∣B(n)

γ

]

+ oP (1)

(say)= 1⊂
n − p

n∑

t=p+1

E (n)
γ , f [ψ f,p(Uγ ,t , . . . , Uγ ,t−p)|B(n)

γ ] + oP (1), (4.13)

where Uγ ,t := F(νγ ,t ) which is i.i.d. uniform on [0, 1] under P(n)
γ , f . The quantity

(4.13), which involves the expectation of ψ f,p, is said to be made of “exact scores”.
A more convenient version, i.e., those made of “approximate scores”, is

1⊂
n − p

n∑

t=p+1

ψ f,p(V (n)
γ ,t , . . . , V (n)

γ ,t−p) + oP (1), (4.14)

where

V (n)
γ ,t :=






ρ · R(n)
γ ,t

N (n)
γ ,L + 1

if R(n)
γ ,t ≥ N (n)

γ ,L ,

ρ + (1 − ρ) · R(n)
γ ,t − N (n)

γ ,L

n − N (n)
γ ,L + 1

otherwise,

with N (n)
γ ,L := #{t ∞ {1, . . . , n}|Sγ ,t = −1}. In short, we are first rewriting the resid-

ual νγ ,t as F−1(Uγ ,t )with realizationUγ ,t of [0, 1]-uniform r.v., then approximating

those Uγ ,t by V (n)
γ ,t with {N (n)

γ ,L ; R(n)
γ ,1, . . . , R(n)

γ ,n} given. Since this version is known

to be equivalent to the original (4.13), in the remainder of this chapter, Δ
⎩

(n)
γ , f will be

meant to be (4.14), which is computable from the sample. Finally letting

W t (b, f ) := [1, b0
∑p

i=1 bi−1
1

∏i
j=1 F−1(V (n)

b,t− j )]≡
b0 + b1b0

∑p
i=1 bi−1

1

∏i
j=1 F−1(V (n)

b,t− j )
,

we have that

W
(n)

(γ , f ) := 1

n − p

n∑

t=p+1

W t (γ , f )
P∈ μW(γ , f ), and

1

n − p

n∑

t=p+1

{W t (γ , f ) − W
(n)

(γ , f )}{W t (γ , f ) − W
(n)

(γ , f )}≡ P∈ λW(γ , f ),

for some μW(γ , f ) and λW(γ , f ). We are now ready to state the asymptotic represen-

tation of the serial linear sign-and-rank statistics Δ
⎩

(n)
γ , f of the form (4.14) as follows.
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Theorem 4.1 Let Assumptions 4.1 and 4.2 hold. Then, for any f ∞ F ρ and some
suitably large p, we have, under γ and g1,

Δ
⎩

(n)
γ , f = 1⊂

n − p

n∑

t=p+1

[

ψ f,p[G1(νγ ,t ), . . . , G1(νγ ,t−p)]

− E[ψ f,p(U0, . . . , Up) |U0 = G1(νγ ,t )]

− f (1)

ρ (1 − ρ)
(1{νγ ,t ≥ 1} − ρ)μW(γ , f )

]

+ oP (1).

(4.15)

If moreover 0 <
∫
[0,1]p+1 |ψ f,p(u0, u1, . . . , u p)|2+πdu < → for some π > 0, then,

for any f ∞ F ρ , we have, under γ and g1,

Δ
⎩

(n)
γ , f

d−∈ N

⎦

0, λ f (γ )

)

, (4.16)

where λ f (γ ) := I f λW(γ , f ) + f 2(1)

ρ (1 − ρ)
μW(γ , f )μ

≡
W(γ , f ).

Proof See Sect. 4.4.1. �

Remark 4.2 Note that the behavior ofΔ
⎩

(n)
γ , f , which is based on the reference density

f , is now studied under the true density g1. Also, due to the invariance properties,
the limiting distribution in (4.16) only depends on the reference density f , and not
on the true density g1. �

To state the “one-step estimator” of γ , the asymptotic behavior under γ and g of
Δ
⎩

(n)

γ̃ n , f , for some local alternative γ̃ n defined below, is needed. For this purpose, let
us denote, in regard to (4.15),

T (n)
b, f := 1⊂

n − p

n∑

t=p+1

⎦
δ f [F−1(G1(νb,t ))]

(
W t (b, f ) − μW(b, f )

)

1{νb,t ≥ 1} − ρ

)

.

Now, consider a local alternative, with respect to γ , of the form γ n = γ + hn/
⊂

n +
o(n−1/2), with hn ∈ h as n ∈ →. Note that this is still within our ULAN frame-
work. Then, under the following assumption, we have the asymptotic linearity.

Assumption 4.3

(i) sup
x∞R+

|xg1(x)| < → and lim
x∈→xg1(x) = 0;

(ii) δ≈
f := δ f ◦ F−1 is nondecreasing and differentiable with its derivative δ̇≈

f being
uniformly continuous on [0, 1].
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Lemma 4.1 Let Assumptions 4.1 (with Remark 4.1) and 3 hold. Then, for an arbi-
trary sequence γ n = γ + hn/

⊂
n + o(n−1/2) with hn ∈ h, we have

T (n)
γ n , f − T (n)

γ , f +
⎦I f g1λ1,W(γ , f )

−g1(1)μ≡
W(γ )

)

h = oP (1), (4.17)

whereI f g1 := ∫ 1
0 δ f [F−1(u)]δg1 [G−1

1 (u)]du,μW(γ ) := E[W t (γ )], andλ1,W(γ , f )

is such that

S(n)
1,W(γ , f ) := 1

n − p

n∑

t=p+1

W t (γ , f )W t (γ )≡ P∈ λ1,W(γ , f ). (4.18)

Proof The proof for the first component of (4.17) is similar to that of Koul (1992,
Theorem 7.3b.1). So we omit the details (See Taniai (2009)) and only remark that
the quantity Q therein corresponds here to

Q ∼
∫ 1

0
G−1

1 (u)g1(G
−1
1 (u))δ̇≈

f (u)du

=
[

G−1
1 (u)g1(G

−1
1 (u))δ≈

f (u)

]1

0
−
∫ 1

0

d{G−1
1 (u)g1(G

−1
1 (u))}

du
δ≈

f (u)du

=
∫ 1

0

{

−1 − G−1
1 (u)g≡

1(G
−1
1 (u))

g1(G
−1
1 (u))

}

δ≈
f (u)du = I f g1 ,

by Assumption 4.3-(i). Also, the second component of (4.17) follows from an appli-
cation of Koul (1992, Corollary 7.2.2). �

Finally in preparing for the one-step estimator, a “discretization trick” is to
be introduced.

Definition 4.1 For any sequence of estimators τ̂n , the discretized estimator τ̄ is
defined to be the nearest vertex of {τ : τ = 1⊂

n
(i1, i2, ..., ik)

≡, i j : integers}.

We denote by γ̄ n (= γ̄ n(ρ )) a locally discretized version of γ̂ n(ρ )which is defined at
(4.3). Recall here that Corollary 4.1 ensures the

⊂
n-consistency of γ̂ n(ρ ). So, if we

write as γ̂ n(ρ ) = γ + kn/
⊂

n then kn is a sequence which is bounded in probability.
The great advantage of the discritization is that it allows us to regard kn further as
a nonrandom sequence (See Kreiss (1987, Lemma 4.4), or Linton (1993) etc.), i.e.,
γ̄ n = γ + hn/

⊂
n as in Lemma 4.1.

Now, using the rank-based central sequence Δ
⎩

(n)
γ̄ n , f based on a

⊂
n-consistent

discretized estimator γ̄ n , we construct some γ̃ n for which
⊂

n(γ̃ n − γ ) behaves
well. If

⊂
n(γ̃ n − γ̄ n) is of the form A−1

n Δ
⎩

(n)
γ̄ n , f for some matrix An , then we have

by (4.17), under γ and g1,
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⊂
n(γ̃ n − γ ) = ⊂

n(γ̃ n − γ̄ n) + ⊂
n(γ̄ n − γ ) = A−1

n Δ
⎩

(n)
γ̄ n , f + hn

= A−1
n

⎦

Δ
⎩

(n)
γ , f − I f g1λ1,W(γ , f )h − f (1)g1(1)

ρ (1 − ρ)
μW(γ , f )μ

≡
W(γ )h

)

+ hn + oP (1).

(4.19)

This, together with hn ∈ h, suggests us to choose An to be consistent for

λ f g1(γ ) := I f g1λ1,W(γ , f ) + f (1)g1(1)

ρ (1 − ρ)
μW(γ , f )μ

≡
W(γ ), (4.20)

so that (4.19) becomes asymptotically equivalent to A−1
n Δ
⎩

(n)
γ , f . For this purpose, let

us remind (4.18) and define

M (n)
1,W(γ , f ) :=

⎦
1

n − p

n∑

t=p+1

W t (γ , f )

)( 1

n − p

n∑

t=p+1

W t (γ )

)≡
.

The consistencies S(n)
1,W(γ̄ n , f )

P∈ λ1,W(γ , f ) and M (n)
1,W(γ̄ n , f )

P∈ μW(γ , f )μ
≡
W(γ ) can

be verified in the manner of Linton (1993, Theorem 2). Now, we define the one-step
estimator γ̃ n as follows.

Definition 4.2 The rank-based one-step estimator of γ starting from the
⊂

n-
consistent and locally discrete estimator γ̄ n and based on reference density f ∞ F ρ

is defined as

γ̃ n, f := γ̄ n + Σ̂ f g1(γ̄ n)−1
Δ
⎩

(n)
γ̄ n , f⊂

n
, with (4.21)

Σ̂ f g1(γ̄ n) := Î f g1 S(n)
1,W(γ , f ) + ρ

1 − ρ
· f (1)

−ρ
· μ̂δg1 ,L M (n)

1,W(γ , f ),

where Î f g1 and μ̂δg1 ,L are consistent estimates of I f g1 and

μδg1 ,L := E[δg1 [G−1
1 (U )] |U ≥ ρ ] (= −g1(1)/ρ),

respectively.

The consistent estimators Î f g1 and μ̂δg1 ,L can be obtained in the manner of Hallin
et al. (2006a, Sect. 4.2), which will be done without the kernel estimation of g1. (See
Taniai (2009) for the details.)

If Assumptions 4.1 and 4.2 hold then we have, under γ and g1,

⊂
n(γ̃ n, f − γ )

d−∈ N

⎦

0, λ−1
f g1

(γ )λ f (γ )λ−1
f g1

(γ )

)

, (4.22)
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as a consequence of Theorem 4.1. Also, similarly to Hallin et al. (2008), this γ̃ n, f is
shown to attain the semiparametric lower bound.

Proposition 4.2 Under Assumptions 4.1–4.3, the one-step estimator γ̃ n, f defined
by (4.21) for γ is semi-parametrically efficient at f = g1.

Proof The proof is similar to that of Hallin et al. (2006b, Lemma 2), i.e., the para-
metric submodels are constructed as in Bickel et al. (1998, Example 3.2.1). We omit
the details. �

4.2.3 Numerical Studies

Based on the result of Lemma 4.1 and Le Cam’s third lemma (See van der Vaart
(1998)), we can have the convergence-in-law of T (n)

γ 0
under the local alternatives

γ n = γ 0 + h/
⊂

n (and the “true” density g1). Namely, we have, under the local
alternatives γ n ,

Δ
⎩

(n)
γ 0, f

d−∈ N

⎦

λ f g1(γ 0)h, λ f (γ 0)

)

, underPγ n ,g1 (4.23)

and hence the distribution (under γ n) of Lagrange multiplier (LM) statistics

L M (n)
f := Δ

⎩

(n)≡
γ 0, f λ

−1
f (γ 0)Δ

⎩

(n)
γ 0, f (4.24)

is asymptotically a noncentral chi-squarewith 2 degrees of freedomand noncentrality
parameter

h≡λ ≡
f g1(γ 0)λ

−1
f (γ 0)λ f g1(γ 0)h. (4.25)

Note that the distribution of L M (n)
f under the null γ 0 is asymptotically a (central)

chi-squarewith 2degrees of freedom,θ2
2 . Thus, the tests that reject the null hypothesis

H0 : γ = γ 0 if L M (n)
f exceeds F−1

θ2
2

(1 − φ) are asymptotically of level φ.

Assume now that we have two such level φ tests A(1) and A(2) based on the
statistics L M (n1)

f1
and L M (n2)

f2
. Also, let us assume that their noncentrality parameter

(under g1) can be expressed in a quadratic form of h, and denote them as ∂g1( fi , h) =
h≡Bi h, i = 1, 2. Then the two tests have the same limiting power against the same
sequence of alternatives if

h1⊂
n1

= h2⊂
n2

(4.26)

and
∂g1( f1, h1) = ∂g1( f2, h2). (4.27)
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So, from (4.26) and (4.27), we see that the asymptotic relative efficiency (ARE,
Pitman efficiency) of A(2) with respect to A(1) under g1 should be

AREg1(A(2), A(1)) := lim
n1

n2
= ∂g1( f2, h1)

∂g1( f1, h1)
. (4.28)

Since this involves h1 = (h11, h12)
≡, the unique answer regarding ARE of A(2) w.r.t.

A(1) may not be possible. However, as suggested in Puri and Sen (1971, Sect. 3.8.3),
the supremum and the infinimum of AREg1(A(2), A(1)) can be obtained as the largest
and smallest eigenvalues of B2B−1

1 by the Courant-Fischer minimax theorem. We
will show these supremum and infinimum later. Still, it is worthwhile, in fact, to
observe also the values of (4.28) for h1 = (1, 0)≡ and for h1 = (0, 1)≡. This is
because they would correspond to the testing, not both but, one of the parameters
while keeping the other parameter fixed. In order to make those displays, further
description of our setting is now explained as follows.

Let us first define the reference and/or underlying densities we consider. Below,
we see some numerical results concerning ARE of LM tests for a family of models,
which contains the squared series of ARCH model (4.1). As ARCH models require
the (unsquared) innovation Zt to be i.i.d.(0, 1), let us think of generating the density
of squared innovations from such i.i.d.(0, 1) densities. So, let us suppose that {Zt } is
a sequence of i.i.d.(0, 1) random variables with continuous distribution function FZ

of the symmetric density fZ . Then

FZ2(z) = P{Z2
t ≥ z} =

{
0, z ≥ 0,
2FZ (

⊂
z) − 1, z > 0.

(4.29)

We shall now compute (4.29) in the following particular choices of the innovation
distribution function FZ , and define families of densities, which contain such partic-
ular choices within.

(i) FZ being Normal:

FN(z) = ω(z) =
∫ z

−→
κ(t)dt = 1⊂

2Ω

∫ z

−→
e−t2/2dt,

◦ FN2(z) = 2ω(
⊂

z) − 1, fN2(z) = κ(
⊂

z)⊂
z

.

In this case, we have fN2 ∞ F0.6827 so that the commonly performed analysis
of β corresponds to the situation ρ = 0.6827. But our analysis of γ (= γ (ρ ))
concerns more generally the class of the following densities for ρ ∞ (0, 1):

f ρ
N2(z) := fN2(z · F−1

N2 (ρ )) · F−1
N2 (ρ )

⎦

= d FN2(z · F−1
N2 (ρ ))

dz

)

∞ F ρ .
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Table 4.1 The values of (E[ν20 ])−1/2: In order to maintain the stationarity of the process, γ 1
(= γ 1(ρ )) should be smaller than these values

ρ

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

g1 f ρ
N2 0.02 0.06 0.12 0.20 0.33 0.50 0.76 1.20 2.22

f ρ

DE2 0.005 0.02 0.04 0.07 0.13 0.22 0.39 0.73 1.83
f ρ

LGT2 0.01 0.04 0.08 0.14 0.23 0.36 0.56 0.94 1.99

(ii) FZ being Double Exponential (bilateral exponential, Laplace):

FDE(z) = DE

⎦

z; 0, 1⊂
2

)

=
⊂
2

2

∫ z

−→
e−⊂

2|t |dt,

◦ fDE2(z) = 1⊂
2z

exp(−⊂
2z).

In this case, while fDE2 ∞ F0.7569, we apply the class of densities

f ρ

DE2(z) := fDE2(z · F−1
DE2(ρ )) · F−1

DE2(ρ ) ∞ F ρ ,

(iii) FZ being Logistic:

FLGT(z) = Logistic

⎦

z; 0,
⊂
3

Ω

)

=
{

1 + exp

⎦

− Ω⊂
3

z

)}−1
,

◦ fLGT2(z) = Ω⊂
3z

exp(−√Ω2z/3)

{1 + exp(−√Ω2z/3)}2 .

Again, while fLGT2 ∞ F0.7196, we apply

f ρ

LGT2(z) := fLGT2(z · F−1
LGT2(ρ )) · F−1

LGT2(ρ ) ∞ F ρ .

Being provided the exact form of g1 ∞ F ρ , we have the collection of γ1, which
makes the process stationary. According to the sufficient condition of Remark 4.1,
the following Table 4.1 tells that the availability of γ1 are limited especially for
small ρ .

Now,we start with calculatingAREof rank basedLMstatistics (4.24)with respect
to a LM statistic which is based on the parametric “Gaussian” (: more accurately,
squaredGaussian f ρ

N2) score function. In order to ensure the asymptotic results for the
latter quantity, the Gaussian parametric score, here we suppose that the underlying
density is being correctly specified, i.e., g1 = f ρ

N2 . Consequently, our rank-based
tests, or any tests, can not outperform such a correctly specified parametric score
test. But still we use this as a benchmark, and observe the performances of several
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Fig. 4.1 The top and the
bottom surfaces are sup and
inf of eg1 (RB( f ρ

N2 ),P(g1)),
the ARE of rank-based test
(with reference density f ρ

N2 )
w.r.t. the correctly-specified
parametric score test under
the true density g1. Those sup
and inf are taken among all
the direction h1 of the local
perturbation. (The values for a
specific direction h1 = (0, 1)≡
is provided as the shadowed
surface.) In this case, our
setting g1 = f ρ

N2 means
the equality of the reference
density and the true density.
Still, we may observe that the
supremum of ARE seems to
be not attaining 1
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reference densities against this benchmark. To summarize, the quantity which we
first concern is

AREg1(Rank-Based with f,Parametric with g1)

= h≡λ ≡
f g1

(γ 0)λ
−1
f (γ 0)λ f g1(γ 0)h

h≡(Ig1(λW(γ ,g1) + MW(γ ,g1)))h
(say)= eg1(RB( f ),P(g1)), (4.30)

with g1 = f ρ
N2 and several f are chosen for comparison. As discussed in (4.28), we

can calculate the supremum and infinimum of eg1(RB( f ),P(g1)). Figure 4.1 shows
the case of f ∼ f ρ

N2 , and there the values of eg1(RB( f ),P(g1)) for h1 = (0, 1)≡ are
also shown. There, the sample size is n = 500 and the finite approximation is done
with p = 50. Also, there we set γ0 to be 1 − γ1 in order to keep the unconditional
variance being the same regardless of the changes of ARCH parameters (this does
not make any substantial effect on the result).

In fact, the cases where f ∼ f ρ

DE2 and f ∼ f ρ

LGT2 yield the similar result as
shown in Fig. 4.1 (See Taniai (2009)). According to this observation, it seems that
the value of the parameter γ1 does not have substantial effect on the result. On
the other hand, the dependence on ρ is evident. Those ρ ’s being too small or too big
would makes our rank-based inference difficult comparing to the parametric method.
Also, even for those supremum values, they seem to be not attaining 1. This means
that there is a definite gap between the semiparametric efficiency (the best feasible
solution), and the correctly specified parametric efficiency (the best possible but
infeasible solution).
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Fig. 4.2 The ARE among rank based tests, eg1 (RB( f ),RB(g1)) with g1 = f ρ
N2 for ρ = 0.35 and

γ1 = 0.1. Since here the underlying density is g1 = f ρ
N2 , the unit circle represents the rank based

test with the reference density based on Gaussian

Next, let us have a close look to the ARE among those rank based procedures.
That is, we observe the value of

AREg1(Rank-Based with f,Rank-Based with g1)

= h≡λ ≡
f g1

(γ 0)λ
−1
f (γ 0)λ f g1(γ 0)h

h≡λg1(γ 0)h
(say)= eg1(RB( f ),RB(g1)), (4.31)

with several choices of f and g1 for comparison. Figures 4.2 and 4.3 show
eg1(RB( f ),RB(g1)) for each direction h1 = (h11, h12)

≡ with g1 = f ρ
N2 for different

choices of ρ and γ1. This explain how much of efficiency will be lost according to
our choices for the reference densities, under the case where true density g1 = f ρ

N2

(i.e., Gaussian-based case). As for the other cases, i.e., Double Exponential based
case (g1 ∼ f ρ

DE2) and Logistic based case (g1 ∼ f ρ

LGT2), we refer to Taniai (2009).
According to the figures, it can be seen that the rank-based tests are robust against

themisspecification of the underlying density. So, wemay conclude as follows: Once
we enter the semi-parametrics, the rank-based inference in this chapter, the price for
misspecification can be reduced. Also, the reason why we may need to enter is due
to the fact that we accepted, in the first place, our ignorance or indifference about
the underlying densities.
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Fig. 4.3 (The same as Figure 4.2, but for ρ = 0.85 and γ1 = 0.9.)

0 50 100 150 200 250 300

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

m
−

in
tc

Fig. 4.4 Time plot of the monthly log stock returns of Intel from January 1973 to December 1997

Finally, let us see the real data application with the monthly log stock returns of
Intel Corporation from January 1973 to December 1997, which consists of n = 300
data points (Fig. 4.4) . This data canbe found inTsay (2002,Example 3.1), and studied
to behave as ARCH(1) under the Gaussian assumption. For example, denoting Xt

for the squared value of log stock returns at time t , ordinary Quantile Regression
analysis for ρ = 0.7 becomes,

F̂−1
Xt

(0.7|xt−1) = 0.0137838 + 0.1379812xt−1.
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Table 4.2 MSE of conditional quantiles: This table shows, for each cases of g1, how the ordinary
QR estimator (the row “QR”) and our rank-based estimators (the row “OSN2”, “OSDE2”, “OSLGT2”)
performs in estimation

ρ

0.1 0.3 0.5 0.7 0.9

g1 = f ρ
N2 QR 5.00 × 10−6 1.49 × 10−4 2.11 × 10−3 7.41 × 10−3 5.73 × 10−2

OSN2 14.9 × 10−6 1.44 × 10−4 1.12 × 10−3 4.67 × 10−3 4.89 × 10−2

OSDE2 14.9 × 10−6 1.45 × 10−4 1.13 × 10−3 4.77 × 10−3 5.12 × 10−2

OSLGT2 14.9 × 10−6 1.46 × 10−4 1.14 × 10−3 4.77 × 10−3 5.01 × 10−2

g1 = f ρ

DE2 QR 9.91 × 10−6 2.95 × 10−4 4.19 × 10−3 14.6 × 10−3 11.3 × 10−2

OSN2 15.2 × 10−6 1.18 × 10−4 1.10 × 10−3 5.46 × 10−3 11.0 × 10−2

OSDE2 15.2 × 10−6 1.19 × 10−4 1.10 × 10−3 5.38 × 10−3 10.5 × 10−2

OSLGT2 15.1 × 10−6 1.18 × 10−4 1.09 × 10−3 5.39 × 10−3 10.6 × 10−2

QR corresponds to ordinary quantile regression estimator (4.3), and OS f corresponds to our rank-
based one-step estimator (4.21) with reference density f and p = 5. N Normal, DE Double
Exponential, LGT Logistic. (The case g1 = f ρ

LGT2 is similar to that of f ρ

DE2 so we omitted.) For
example, the category “g1 = f ρ

N2” exhibits the case where the simulation is generated from the
density f ρ

N2 , and hence the estimators “OSDE2” and “OSLGT2” must be misspecifying in fact. As a
consequence their performances are worse than “OSN2,” but we note that even these misspecifying
estimators can perform better than the ordinary QR estimator

In order to check the efficiency gain of our one-step estimator, we compute the
mean squared errors (MSE) of the conditional quantile of the squared series. That is,
we compute

MSE(QR) := E
⊂

n{F̂−1
Xt

(ρ |xt−1) − F−1
Xt

(ρ |xt−1)}2
= E[{⊂n(X ′

t−1(γ̂ n(ρ ) − γ (ρ ))}2]

⇔ 1

n

n∑

t=1

tr[Xt−1 X ′
t−1

ρ(1 − ρ)

g2
1(1)

D−1
1,γ̂ n(ρ )

D0D−1
1,γ̂ n(ρ )

]

and

MSE(OS)
f = E[{⊂n(X ′

t−1(γ̃ n, f (ρ ) − γ (ρ ))}2]

⇔ 1

n

n∑

t=1

tr[Xt−1 X ′
t−1λ

−1
f g1

(γ̃ n, f (ρ ))λ f (γ̃ n, f (ρ ))λ−1
f g1

(γ̃ n, f (ρ ))].

The computed MSEs for several choice of reference density f and the true density
g1 are shown in Table4.2. Note that, there is no way to find the true density g1 since
this is the real data.

FromTable4.2,wefind that our rank-basedone-step estimator improves efficiency
formoderate choice of ρ . Unfortunately, for very small ρ (e.g., ρ = 0.1) our estimator
failed to improve efficiency. This may be related with the remark fromTable4.1 since
the estimated value is found to be γ̂n,1(0.1) = 0.012. That is, our efficiency gain
is realized only when the model (4.5) maintains the stationarity, not only the model
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(4.2). Still, it is remarkable that, for moderate value of ρ , the improvement method
of ours is achieved even without the knowledge of true density g1. In addition, the
robustness against the misspecification (as noted in Figs. 4.2 and 4.3) is observed in
this analysis as well.

4.3 Asymptotics of Realized Volatility with Non-Gaussian
ARCH(∞) Microstructure Noise

In order to control the risk of financial assets, good estimation of the conditional vari-
ance, volatility, is indispensable. For this purpose, the quantity known as RV is hav-
ing attention, especially when the frequency of the sampling is high (cf. Dacorogna
et al. (2001)).Namely, let Xt denote the log-price of an asset, and follow someprocess
such as d Xt = μt dt + ηt dWt which we will discuss later in (4.35) of Sect. 4.3.1.
Then the RV (or sometimes called also as Realized Variance) over time [0, T ] is
defined as the sum of the frequently sampled squared returns (see Andersen et al.
(2003); McAleer and Medeiros (2008)):

[X, X ]T :=
T∑

t=1

(Xt − Xt−1)
2. (4.32)

This quantity estimates the Integrated Volatility (IV) defined as

〈X, X〉T :=
∫ T

0
η 2

t dt, (4.33)

which corresponds to the quadratic variation in the Stochastic Volatility model (see
Barndorff-Nielsen and Shephard (2002)).

But here we need to pay attention also to the existence of market microstruc-
ture. That is, it is known that the estimator [X, X ]T does not converge as sampling
frequency increases when there is market microstructure dynamics behind. Here,
the market microstructure can arise through the bid-ask bounce, asynchronous trad-
ing, infrequent trading, and price discreteness, among other factors (see Madhavan
(2000); O’Hara (1997)). Still, Zhang et al. (2005) proposed some subsample-based
estimator to estimate the integrated volatility and proved its consistency in the pres-
ence of i.i.d. market microstructure noise. Their estimator is defined by adjusting the
bias from the following preliminary estimator:

[X, X ](avg)T := 1

K

K∑

k=1

[X, X ](k)
T (4.34)
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where

[X, X ](k)
T :=

Tk∑

t=1

(
Xk−1+t K − Xk−1+(t−1)K

)2
, with

Tk := ⌊T − k + 1

K

⎛
. (�x� is the integer part of a real number x)

Here, K is prespecified and the asymptotics are studied under suitably chosen T and
K , aswewill see also in Theorem4.3 below.Namely, this estimator [X, X ](avg)T firstly
uses the time scale, for example, 10 min (K = 10) to measure from 9:30 with the
intervals 9:30–9:40, 9:40–9:50, ..., then 9:31–9:41, 9:41–9:51, and so on. Then those
will be averaged so that we make use of the full data whose time scale is, say, 1 min.
By employing a bias-adjusting to this [X, X ](avg)T , the resulting consistent estimator is
called the Two Time Scales estimator of the integrated volatility, and later renamed
as Two Scales Realized Volatility (TSRV) in Aït-Sahalia et al. (2011). This latter
reference, Aït-Sahalia et al. (2011), provides the results for dependent microstructure
noise which is stationary and strong mixing with the mixing coefficients decaying
exponentially, together with a moment condition for the microstructure. Also, they
include explicit example of the AR(1) microstructure.

Extending these serial-dependent microstructure noise, in this section, we inves-
tigate the asymptotic distribution of realized volatility and its subsample estima-
tor under the case that microstructure noise follows an ARCH model of order
→ (ARCH(→)) (Engle (1982); Giraitis et al. (2000)). In fact, empirical evidence
shows that the process of market microstructure usually has the conditional het-
eroskedasticity (see Madhavan (2000), and we will discuss on this issue in Remark
4.4 below). The usual ARCH model itself may be included by the situation of
Aït-Sahalia et al. (2011), since some conditions make it satisfy the strong mixing
condition with geometric rate (see Francq and Zakoïan (2006); Meitz and Saikkonen
(2008)). The distinction between our setting and that of Aït-Sahalia et al. (2011) will
be described in Remark 4.3. Also, there is a merit when we specify the model for
the microstructure, such as forecasting, etc. We also provide the numerical results,
which show the MSE of lag averaging realized volatility is smaller than that of usual
RV even if noise follows ARCH(→).

4.3.1 Model, Estimators, and Main Results

In this section, first, we describe stochastic models for price, and explain the inte-
grated and realized volatilities. Let (β,F , P) be a probability space, and let {Ft :
0 ≥ t ≥ ρ } be a nondecreasing family of η -algebra satisfying Fs ⊆ Ft ⊆ F , s ≥ t .
We suppose that the logarithmic price of a given asset X = {Xt ,Ft : 0 ≥ t ≥ ρ }
follows a {Ft }-adapted continuous time diffusion process, that is, Ito’s process:
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d Xt = μt dt + ηt dWt (4.35)

where μt is the drift component, ηt is the instantaneous volatility and {Wt ,Ft } is the
{Ft }-adapted standard Brownian motion process.

Assumption 4.4 μt and ηt are {Ft }-adapted for each 0 ≥ t ≥ ρ , and satisfy

P

{∫ ρ

0
|μt |dt < →

⎡

= 1, (4.36)

P

{∫ ρ

0
η 2

t dt < →
⎡

= 1. (4.37)

In real trading, we can only use discretized data of assets though price process
is assumed to follow continuous process (4.35). In what follows, we denote the t-th
observation of i-th day by Xi+ t

M
, and write the true (latent) return as

ri+ t
M

:= Xi+ t
M

− Xi+ t−1
M

,

where 1/M is the length of sampling interval. The Integrated Volatility was intro-
duced to describe the true volatility of continuous latent process. The Integrated
Volatility of the i-th day, 〈X, X〉i,i+1, is defined as

〈X, X〉i,i+1 :=
∫ i+1

i
η 2

t dt. (4.38)

A good estimator for 〈X, X〉i,i+1 is the Realized Volatility of i-th day defined by

[X, X ]i,i+1 :=
M∑

t=1

r2i+ t
M

. (4.39)

Then, the following results are given by Bandi and Russell (2008).

Proposition 4.3 (Bandi and Russell (2008)) Under Assumption 4.4,

p−lim
M∈→

([X, X ]i,i+1 − 〈X, X〉i,i+1) = 0, (4.40)

⊂
M([X, X ]i,i+1 − 〈X, X〉i,i+1)

d−∈ MN (0, 2Qi,i+1), M ∈ →, (4.41)

where MN (0, 2Qi,i+1) is the mixed normal distribution with mean 0 and random
variance 2Qi,i+1, where

Qi,i+1 :=
∫ i+1

i
η 4

t dt. (4.42)
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Now, let us consider the case thatYi+ t
M
is a perturbed observationwithmicrostruc-

ture noise corresponding to the true (latent) log price Xi+ t
M
. The relation can be

modeled as
Yi+ t

M
= Xi+ t

M
+ Λi+ t

M
, (4.43)

where {Λt } is a sequence of microstructure noise. In this section we assume that the
series {Λi+ t

M
, t ∞ Z} follows an autoregressive conditionally heteroskedastic process

of order → (ARCH(→)), i.e.,

Λi+ t
M

=
⎦

a0 +
→∑

j=1

a jΛ
2
i+ t− j

M

)1/2

zi+ t
M

, (4.44)

where a0 > 0, a j √ 0 ( j √ 1), and zt ’s are i.i.d. random variables.

Remark 4.3 Zhang et al. (2005) dealt with the case when {Λt } ∗ i.i.d. Further,
Aït-Sahalia et al. (2011) discussed the case when {Λt } is a strong mixing process with
the mixing coefficient decaying exponentially (i.e., j-lag autocovariance function is
of order γ j , |γ| < 1.) In this section we deal with ARCH(→) in (4.44), which
is uncorrelated but dependent. Here, we assume that the coefficients {a j } of our
ARCH(→) satisfy Assumption 4.5 in Theorem 4.2, and that a j ∗ O( j−r ), r >

1 in Theorem 4.3. Hence our model and that of Aït-Sahalia et al. (2011) show
essentially different dependence structure. Itmaybenoted that, theARCH(→) setting
is convenient for description of heteroskedasticity in the volatility. �

Remark 4.4 This assumption of heteroskedastic microstructure is natural when
considering that the market microstructure is caused by artificial operation such
as bid-ask bounce and asynchronous trading. Empirical evidence also shows the
process of market microstructure usually has the conditional heteroskedasticity (see
Madhavan (2000)). For example, automated limit order books systems of the type
used by the Toronto Stock Exchange and Paris Bourse offer continuous trading with
high degrees of transparency (i.e., public display of current and away limit orders)
without reliance on dealers. Also, this heteroskedastic noise may have a reasoning
in view of the informational asymmetries (see e.g., O’Hara (1997)). That is, by this
persistence of ARCH(→) we are trying to describe how quickly the information is
assimilated into the latent process of asset price. Here, the existence of new informa-
tion is governed by the uncorrelated zi ’s but once if they realized then its direction
and impact of concerning information are believed to persist since they are not yet
assimilated. There, the duration how long it takes to attain the full-information price
(i.e., the latent price) is unspecified but described in terms of the significant order of
ARCH coefficients. �

Toguarantee the stationarity and geometrical ergodicity (seeGiraitis et al. (2000)),
we assume the following.
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Assumption 4.5 The coefficients in (4.44) satisfy the conditions below:

a0 > 0, a j √ 0,
→∑

j=1

a j < 1, (4.45)

E[z20]1/2
→∑

j=1

a j < 1. (4.46)

Perturbed version of the return is

r̃i+ t
M

:= Yi+ t
M

− Yi+ t−1
M

= ri+ t
M

+ Φi+ t
M

, (4.47)

where

Φi+ t
M

:= Λi+ t
M

− Λi+ t−1
M

.

The observed RV is

[Y, Y ]i,i+1 =
M∑

t=1

r̃2i+ t
M

. (4.48)

We can rewrite the realized volatility (4.48) as the sum of three components,

[Y, Y ]i,i+1 = [X, X ]i,i+1 +
M∑

t=1

Φ2i+ t
M

+ 2
M∑

t=1

ri+ t
M

Φi+ t
M

(4.49)

= I1 + I2 + 2I3. (say) (4.50)

If the true price process was observable, only the term I1 would drive the limit-
ing properties of [Y, Y ]i,i+1. The presence of microstructure noise introduces two
additional components I2 and I3. We will show that it is mainly the term I2 that
makes standard consistency arguments fail. Intuitively, I2 diverge to infinity almost
surely as the number of observations increases (or equivalently, as the frequency
of observations increases) since more and more noise will get accumulated. Under
ARCH(→) disturbances, we have the following theorem.

Theorem 4.2 Suppose that Y follows the model (4.44) with X of (4.35), and that
Assumptions 4.4 and 4.5 hold. Then, as M ∈ →, conditionally on the X process,
we have

1⊂
M

([Y, Y ]i,i+1 − [X, X ]i,i+1 − 2Mχ)
d−∈ N (0, γ1 + γ2),

where
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γ1 := 4
∫ Ω

−Ω

∫ Ω

−Ω

∫ Ω

−Ω
f Λ(∂1, ∂2, −∂2)d∂1d∂2d∂3 + 12χ2,

γ2 := 4
∫ Ω

−Ω

∫ Ω

−Ω

∫ Ω

−Ω

{

ei(∂2+∂3) f Λ(∂1, ∂2, ∂3) − 2e−i∂2 f Λ(∂1, ∂2, −∂2)

⎡

d∂1d∂2d∂3.

Here,

χ := E
[
Λ2i+ t

M

]
,

f Λ(∂1, ∂2, ∂3) := 1

(2Ω)3

→∑

l1,l2,l3=−→
QΛ(l1, l2, l3)e

−i(∂1l1+∂2l2+∂3l3),

QΛ(l1, l2, l3) := cum

⎦

Λi , Λi+ l1
M

, Λ
i+ l2

M
, Λ

i+ l3
M

)

.

Proof See Taniai et al. (2012, Theorem 1). �

This theorem implies that the observed RV, [Y, Y ]i,i+1, has a diverging bias 2Mχ

around the true RV [X, X ]i,i+1 as in the case of i.i.d. noise. However, the asymptot-
ics are affected by non-Gaussian dependent structure of the noise process. Indeed,
when the Λ is i.i.d.(see Bandi and Russell (2008)), our f Λ(∂1, ∂2, ∂3) becomes a con-
stant, hence, γ2 = 0. Thus, γ2 represents a deviation from i.i.d. assumption on {Λt }.
Since the fourth-order cumulant spectral density f Λ(∂1, ∂2, ∂3) shows the degree
of dependence and non-Gaussianity of {Λt }, we can examine their influences on the
asymptotics of [Y, Y ]i,i+1.

As for the estimator of χ above, Zhang et al. (2005) introduced χ̃ defined by

χ̃ :=
∑M

t=1 r̃2
i+ t

M

2M
= [Y, Y ]i,i+1

2M
.

Accordingly, they proposed a bias-adjusted estimator for 〈X, X〉i,i+1 by

[Y, Y ](tsrv)i,i+1 := [Y, Y ](avg)i,i+1 − M̄

M
[Y, Y ]i,i+1, (: Two Scales Realized Volatility (tsrv))

(4.51)

where [Y, Y ](avg)i,i+1 is defined, in the manner of (4.34), as

[Y, Y ](avg)i,i+1 := 1

K

K∑

k=1

[Y, Y ](k)
i,i+1,

[Y, Y ](k)
i,i+1 :=

nk∑

t=1

⎦

Yi+ k−1+t K
M

− Yi+ k−1+(t−1)K
M

)2

with nk :=
⎝

M − k + 1

K

⎞

,

(4.52)
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and M̄ is

M̄ := 1

K

K∑

k=1

nk ⇔ M + 1

K
− K + 1

2
⇔ M

K
,

where the last approximation is used when M is much larger relatively to K . The
following theorem of ours states the result for ARCH(→) disturbances case.

Theorem 4.3 Suppose that Y follows the model (4.43) with X of (4.35), and that
Assumptions 4.4 and 4.5 hold. Further, if the coefficients a j ’s satisfy a j < bj−r for
some r > 1 and b > 0, and if K = cM2/3, for some c > 0, then it holds that

M1/6([Y, Y ](tsrv)i,i+1 − 〈X, X〉i,i+1)
d−∈ MN (0, c−2(4γ + 12χ2) + MN (0, c(Φ2))

= MN (0, c−2(4γ + 12χ2) + c(Φ2)),

where

Φ := 4

3

∫ i+1

i
η 4

t dt,

γ :=
∫ Ω

−Ω

∫ Ω

−Ω

∫ Ω

−Ω

ei(∂2+∂3) f Λ(∂1, ∂2, ∂3)d∂1d∂2d∂3.

Proof See Taniai et al. (2012, Theorem 2). �

Theorem 4.3 implies the modified estimator [Y, Y ](tsrv)i,i+1 is consistent for 〈X, X〉i,i+1
even if the noise process is ARCH(→). This is because the subsampling frequency
K also diverges to infinity when the original sampling frequency M goes to infin-
ity. It may be noted that the asymptotics of [Y, Y ](tsrv)i,i+1 depend on non-Gaussianity
and dependence of the noise through the integral of fourth-order cumulant spectra,
which describes the asymptotics of the Whittle estimator for non-Gaussian depen-
dent processes in unified manner (see, Hosoya and Taniguchi (1982), Sect. 3.1 of
Taniguchi and Kakizawa (2000)).

Remark 4.5 Estimation for the asymptotic variances γ and χ2 seems important. It
is difficult to develop the general theory. But, a partial solution is given as follows.
Suppose that {Xt } is generated by a stationary continuous time ARMA process (See
Brockwell (1994), and also Taniguchi and Kakizawa (2000, p. 149)), which includes
a simple diffusion process whose discretized version is an autoregressive model.
Consider

Yt j = Xt j + Λt j , j = 1, 2, . . . , n. (4.53)

Based on the observation {Yt j }we can estimate the spectral density fY (∂) of {Yt j }. By
using a method due to Hosoya and Taniguchi (1982, pp. 139–140), we can estimate
the spectral density fX (∂) of {Xt j }, and derive an estimator X̂t j of Xt j . Then we can

calculate Λ̂t j ∼ Yt j − X̂t j . Based on Λ̂t1, . . . , Λ̂tn , we can estimate the integral
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γ =
∫ Ω

−Ω

∫ Ω

−Ω

∫ Ω

−Ω

ei(∂2+∂3) f Λ(∂1, ∂2, ∂3)d∂1d∂2d∂3.

by a method proposed by Taniguchi (1982). Hence we can construct a consistent
estimator γ̂ of γ .

4.3.2 Numerical Studies

In this section, we calculate two estimators [Y, Y ]i,i+1, [Y, Y ](tsrv)i,i+1 to estimate the
integrated volatility 〈X, X〉i,i+1. The observed frequency M is chosen as 25,000,
which corresponds to the time interval about 1 s. In order to generate the X process,
here we use the Euler-Maruyama Discretization (e.g., Kloeden and Platen (1992);
Gouriéroux and Jasiak (2001)):

Xi+ t
M

= Xi+ t−1
M

+ μi+ t−1
M

1

M
+ ηi+ t−1

M

(
Wi+ t

M
− Wi+ t−1

M

)
.

So we may express the log-return process as

ri+ t
M

= Xi+ t
M

− Xi+ t−1
M

= μi+ t−1
M

1

M
+ ηi+ t−1

M

⎠
1

M
ui+ t

M
, (4.54)

with {ut } being a sequence of i.i.d. N (0, 1) randomvariables. Consequently, provided
the condition (4.37), a discretized version of Integrated Volatility (4.38), which here
we define as

〈X, X〉(d)
i,i+1 := 1

M

M∑

t=1

η 2
i+ t−1

M
, (4.55)

is known to converge to 〈X, X〉i,i+1 as M ∈ →. Now, let us assume that μi+ t
M
and

ηi+ t
M
take the form as

μi+ t
M

= κ0 + κ1ri+ t−1
M

, η 2
i+ t

M
= s0 + s1(ri+ t−1

M
− μi+ t−1

M
)2,

so that the log-return ri+ t
M
follows an AR(1)-ARCH(1) model characterized by

ri+ t
M

= κ0

M
+ κ1

M
ri+ t−1

M
+ ei+ t

M
, ei+ t

M
:= hi+ t

M
ui+ t

M
, (4.56)

h2
i+ t

M
= s0

M
+ s1

M
e2

i+ t−1
M

.

Then, we generate the process {Xi+ t
M

} through the above AR-ARCH model (4.56)
with a choice of parameters as follows:
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ri+ t
M

= 10−5 + 0.3ri+ t−1
M

+ ei+ t
M

, ei+ t
M

:= hi+ t
M

ui+ t
M

, (4.57)

h2
i+ t

M
= s0

M
+ 0.5e2

i+ t−1
M

.

Here, according to our choice s1/M ∼ 0.5, the value of s0 is set to be s0 ∼ 1 −
s1/M so that the unconditional standard deviation over 1 period (1/M) becomes
(Var[ri+ t

M
])1/2 ∼ 1/

⊂
M . Also, we assume the market microstructure noise {Λt }

follows an ARCH(1) process

Λi+ t
M

= (
a0 + a1Λ

2
i+ t−1

M

)1/2
⎠

1

M
zi+ t

M
=
⎦

a0
M

+ a1
M

Λ2
i+ t−1

M

)1/2

zi+ t
M

. (4.58)

In our first observation below, we set a0 ∼ p2 − a1/M for varying values of a1 to
keep the unconditional standard deviation to be (Var[Λi+ t

M
])1/2 ∼ p/

⊂
M . That is,

the microstructure noise is set to always have 100p% magnitude with respect to the
asset. Substituting ui+ t

M
in (4.54) and zi+ t

M
in (4.58) with realizations of N (0, 1),

we generate 20 × M (which amounts to 1-month data points) samples of {Xi+ t
M

}.
Let MSE(rv) and MSE(tsrv) denote the mean squared error (MSE) of [Y, Y ]i,i+1

and [Y, Y ](tsrv)i,i+1, i.e.,

MSE(rv) := 1

20

20∑

i=1

([Y, Y ]i,i+1 − 〈X, X〉(d)
i,i+1)

2,

MSE(tsrv) := 1

20

20∑

i=1

([Y, Y ](tsrv)i,i+1 − 〈X, X〉(d)
i,i+1)

2.

Figure 4.5 shows the values of MSE(tsrv) with p = 1 for several choices of sampling
interval K and ARCH parameter a1.

As we will see in Table4.3, for this set of parameters the value ofMSE(rv) is about
4.42763. So, it can be seen that the TSRV estimator yields smaller estimation error
with any choice of the sampling interval from K = 2 (2 s) to K = 600 (10min.).
Also, it should be noted that MSE(tsrv) is almost robust against the choice of the
ARCH parameter. This feature of TSRV is constrast to those of RV, so we study the
following Table4.3 with this in our mind.

Table4.3 shows the values ofMSE(rv) andMSE(tsrv) for K = 10, along the choices
of the noise magnitude p and ARCH parameter a1. As mentioned, there we see that
MSE(rv) is more sensitive to the change of ARCH parameter than MSE(tsrv). From
this Table4.3, we may find two features. Firstly, the defference betweenMSE(rv) and
MSE(tsrv) varies along the choice of the size of noise p. In fact, if the relative size
of Λi+ t

M
is small enough with respect to the asset Xi+ t

M
, we even observe MSE(rv)

outperforming MSE(tsrv) uniformly in a1 (and in K also). This may be related to our
second remark of Table4.3, which is the fact that those MSEs exhibit a decreasing



4.3 Asymptotics of Realized Volatility 111

Fig. 4.5 MSE(tsrv) with p =
1. Sampling interval log K are
log(2, 3, 5, 10, 30, 60, 300,
600). As a comparison,
MSE(rv) is larger than 2.5 for
a1/M ∞ [0.1, 0.9], as shown
in Table 4.3. Taken from
Taniai et al. (2012). Published
with the kind permission of c©
Oxford University Press 2012.
All Rights Reserved
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Table 4.3 The values of MSE(rv) (upper) and MSE(tsrv) (lower) when K = 10

ARCH parameter a1/M
0.1 0.3 0.5 0.7 0.9

Noise magnitude 0 0.00987 0.00987 0.00987 0.00987 0.00987
p 0.61247 0.61247 0.61247 0.61247 0.61247

0.2 0.03210 0.03208 0.03199 0.03153 0.02579
0.61271 0.61272 0.61280 0.61295 0.61298

0.4 0.17595 0.17577 0.17496 0.17085 0.12040
0.61302 0.61305 0.61318 0.61348 0.61346

0.6 0.67318 0.67237 0.66891 0.65122 0.43442
0.61340 0.61344 0.61363 0.61405 0.61394

0.8 1.90997 1.90755 1.89733 1.84492 1.20249
0.61384 0.61391 0.61414 0.61468 0.61440

1 4.42692 4.42117 4.39710 4.27319 2.75318
0.61435 0.61444 0.61471 0.61535 0.61486

Taken from Taniai et al. (2012). Published with the kind permission of c© Oxford University Press
2012. All Rights Reserved

feature in a1. Suspecting that this stems from our request a0 ∼ p2 − a1/M , which
was to keep the unconditional variance, we investigate the behavior of MSEs along
the choice of ARCH parameters both a0 and a1 below.

By releasing the constraint a0 = p2 − a1/M , Fig. 4.6 exhibits the changes of
MSEs in ARCH parameters a0 and a1. Again, as for the sampling interval of TSRV
estimator, we applied K = 10. We observe that MSE(rv), the upper surface, is more
sensitive than MSE(tsrv), the lower surface, to both parameters a0 and a1. In fact, the
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Fig. 4.6
⊂
MSEs for ARCH

parameters. The upper and
lower surfaces coorespond to⊂
MSE(rv) and

⊂
MSE(tsrv)

(K = 10) respectively. Taken
from Taniai et al. (2012).
Published with the kind
permission of c© Oxford
University Press 2012. All
Rights Reserved
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lower surface MSE(tsrv) is almost a horizontal plane, which shows the robustness of
TSRV estimator against the ARCH affection. This, in turn, suggest the importance of
recognition of ARCHbehavior inmicrostructure noise when applying the commonly
used RV estimator (4.32).

4.4 Appendix

4.4.1 Proof of Theorem 4.1

To begin with, define, in regard to (4.13),

D(n)
γ , f := 1

n − p

n∑

t=p+1

E (n)
γ , f [ψ f,p(Uγ ,t , . . . , Uγ ,t−p) |B(n)

γ ].

Then, as in Hallin et al. (2008, Equation (A.4)), it can be shown that

D(n)
γ , f − E (n)

γ , f [D(n)
γ , f |N (n)

γ ,L ] = 1

n − p

n∑

t=p+1

[

ψ f,p(Uγ ,t , . . . , Uγ ,t−p)

− E[ψ f,p(U0, . . . , Up) |U0 = Uγ ,t ]
]

+ oP (n−1/2).

(4.59)
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More precisely, first, with help of results for Linear Serial Rank Statistics (See Hallin
et al. (2003, Sect. 4.2)), it can be shown that

D(n)
γ , f − E (n)

γ , f [D(n)
γ , f |N (n)

γ ,L ] = T (n)
γ , f − E[T (n)

γ , f |ξγ ,(·)] + oP (n−1/2), (4.60)

where

T (n)
γ , f := 1

n − p

n∑

t=p+1

ψ f,p(Uγ ,t , . . . , Uγ ,t−p).

and ξγ ,(·) denotes the vector of Order Statistics. Then, by van der Vaart (1998,
Theorem 12.3) or Serfling (1980, Sect. 5.3), the second term of the r.h.s. of (4.60)
becomes into

E[T (n)
γ , f |ξγ ,(·)] = E[T (n)

γ , f |Uγ ,(·)]

= 1

n − p

n∑

t=p+1

p∑

ξ=0

E[ψ f,p(U0, . . . , Up)|Ul = Uγ ,t−ξ]

+ (p + 1)E[ψ f,p(U0, . . . , Up)] + oP (n−1/2).

So, together with the fact that ψ f,p forms a martingale difference, that is, for all
(u1, . . . , u p) ∞ [0, 1]p,

∫ 1

0
ψ f,p(u0, u1, . . . , u p)du0 = 0, (4.61)

we have (4.59).
Evaluation of E (n)

γ , f [D(n)
γ , f |N (n)

γ ,L ] is also a modification of Hallin et al. (2008).
That is, firstly observe that, by the tower property of conditional expectations and
WLLN,

E (n)
γ , f [D(n)

γ , f |N (n)
γ ,L ] = 1

n − p

n∑

t=p+1

E (n)
γ , f [ψ f,p(Uγ ,t , . . . , Uγ ,t−p) |N (n)

γ ,L ]

= E[ψ (s)
f,p(s) |N (n)

γ ,L ] + oP (n−1/2),

where s = (s0, . . . , sp) ∞ {−1, 1}p+1 and

ψ
(s)
f,p(s) := E (n)

γ , f [ψ f,p(Uγ ,t , . . . , Uγ ,t−p) |Sγ ,t = s0, . . . , Sγ ,t−p = sp].



114 4 Some Techniques for ARCH Financial Time Series

The number of −1’s in its argument is distributed as

#{i = 0, 1, . . . , p : Sγ ,t−i = −1} d∗ HyperGeometric(n, N (n)
γ ,L , p),

sowe approximate thiswith binomial distribution. Then, noting that E (n)
γ , f [D(n)

γ , f ] = 0
by (4.61), we have

E (n)
γ , f [D(n)

γ , f |N (n)
γ ,L ] − E (n)

γ , f [D(n)
γ , f ]

=
∑

s∞{−1,1}p+1

ψ
(s)
f,p(s) · Bp

⎦N (n)
γ ,L

n
, #{i : si = −1}

)

−
∑

s∞{−1,1}p+1

ψ
(s)
f,p(s) · Bp(ρ, #{i : si = −1}) + oP (n−1/2)

=
∑

ψ
(s)
f,p(s) · ∂

∂x
Bp(x, #{i : si = −1})

∣
∣
∣
x=ρ

(N (n)
γ ,L

n
− ρ

)
+ oP (n−1/2)

=
∑

ψ
(s)
f,p(s) · Bp(ρ, #{si = −1})#{i : si = −1} − ρ(p + 1)

ρ (1 − ρ)

×
(N (n)

γ ,L

n
− ρ

)
+ oP (n−1/2)

= E[ψ (s)
f,p(s)

(
#{i : si = −1} − ρ(p + 1)

)]
ρ(1 − ρ)

×
(N (n)

γ ,L

n
− ρ

)
+ oP (n−1/2),

(4.62)

where Bp(x, w) := xw(1 − x)p+1−w. Now, observe that

E[ψ (s)
f,p(s)

(
#{i = 0, 1, . . . , p : si = −1} − ρ(p + 1)

) |s1, . . . , sp]
= P{s0 = −1}ψ (s)

f,p(−1, s1, . . . , sp)
(
1 + #{i = 1, . . . , p : si = −1} − ρ(p + 1)

)

+ P{s0 = 1}ψ (s)
f,p(1, s1, . . . , sp)

(
0 + #{i = 1, . . . , p : si = −1} − ρ(p + 1)

)

= ρ · ψ
(s)
f,p(−1, s1, . . . , sp),

where the last equality follows from P{s0 = −1} = P{Sγ ,t = −1} = ρ and

P{s0 = −1}ψ (s)
f,p(−1, s1, . . . , sp) + P{s0 = 1}ψ (s)

f,p(1, s1, . . . , sp) = 0,

by (4.61). The tower property yields that
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E[ψ (s)
f,p(s)

(
#{i : si = −1} − ρ(p + 1)

)]
= ρ · E[ψ (s)

f,p(s) |s0 = −1] = ρ · E[ψ f,p(U0, . . . , Up) |U0 ≥ ρ ]

= ρ ·
∫ ρ

0 δ f [F−1(u)]du
∫ ρ

0 du
· μW(γ , f ) = − f (1) · μW(γ , f ).

Finally, the rest of (4.62) is N (n)
γ ,L/n − ρ = n−1∑n

t=1(1{νγ ,t ≥ 1} − ρ).
The asymptotic normality (4.16) follows from Yoshihara’s CLT for U-statistics,

as shown in Hallin et al. (1985). The proof is now completed. �
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