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Preface

We began the development of the Fifth Editions of Engi-

neering Mechanics: Statics and Dynamics by asking our-

selves how our textbooks could be restructured to help

students learn mechanics more effectively and efficiently. 

From the first editions, our objective has been to pres-

ent material in a way that emulates the teacher s develop-

ment of concepts in the classroom and emphasizes visual

analysis to enhance student understanding. 

Now, based on our classroom experiences and insights

provided by colleagues and students over many years, we

have designed the fifth editions to conform more closely to

the way today s students actually use textbooks in learning

mechanics. In developing the new elements described below,

we have continued to adhere to our original goals of teach-

ing effective problem-solving procedures and the central

importance of free-body diagrams.

New to this Edition

Active Examples 

A new example format designed to help students learn con-

cepts and methods and test their understanding. Discussions

are visually related to figures and equations in a new integrated

text/art format for efficient reading. A Practice Problem is

provided at the end of theActive Example so that students will

be motivated to spend more time working with the example

and checking whether they understood the material. They can

easily assess their understanding by referring to the answer to

the Practice Problem that is provided on the page, or by study-

ing the complete solution that is presented in an appendix in the

same text/art integrated format as the Active Example.

Example-Focused Problems

New homework problems designed to encourage students

to study given examples and expand their understanding of

concepts. The numbers of these problems are cited at the

beginning of each example so that teachers can easily use

them to encourage study of selected topics.

Results 

Most sections of the text now conclude with a new Results

subsection, a self-contained and complete description of the

results required to understand the following examples and

problems. They are presented in the same integrated text/art

format used in the Active Examples for easier comprehen-

sion. Students can efficiently refer to these subsections while

studying examples and working problems. 

Problem Sets 

Thirty percent of the problems are new in the statics text.

Problems that are relatively lengthier or more difficult have

been marked with an asterisk. Additional problems can be

generated using the online homework system with its algo-

rithmic capabilities.

Hallmark Elements of the Text

Examples 

In addition to the new Active Examples, we maintain our

examples that follow a three-part framework Strategy/

Solution/Critical Thinking designed to help students

develop engineering problem skills. In the Strategy sections,

we demonstrate how to plan the solution to a problem. The

Solution presents the detailed steps needed to arrive at the

required results. 

Some of the examples have a focus on design and pro-

vide detailed discussions of applications in statics in engi-

neering design.

Computational Mechanics

Some instructors prefer to teach statics without emphasiz-

ing the use of the computer. Others use statics as an oppor-

tunity to introduce students to the use of computers in

engineering, having them either write their own programs in

a lower level language of use higher level problem-solving

software. Our book is suitable for both approaches. Optional,

self-contained Computational Mechanics material is avail-

able for this text on the Companion Website, including tuto-

rials using Mathcad and MATLAB. See the supplements

section for further information.

Art Program

We recognize the importance of helping students visualize

problems in mechanics. Students prefer, and are more

motivated by, realistic situations. Our texts include many

photographs as well as figures with photo-realistic
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rendering to help students visualize applications and provide

a stronger connection to actual engineering practice.

Consistent Use of Color

To help students recognize and interpret elements of figures,

we use consistent identifying colors:

the responsibility of the authors. We welcome communica-

tion from students and instructors concerning errors or areas

for improvement. Our mailing address is Department of

Aerospace Engineering and Engineering Mechanics, Uni-

versity of Texas at Austin, Austin, Texas 78712. Our email

address is abedford@mail.utexas.edu

Instructor & Student Resources 

Student Resources

The Statics Study Pack is designed to give students the

tools to improve their skills drawing free-body diagrams,

and to help them review for tests. It contains a tutorial on

free-body diagrams with fifty practice problems of increasing

difficulty with complete solutions. Further strategies and tips

help students understand how to use the diagrams in solv-

ing the accompanying problems. This supplement and

accompanying chapter by chapter review material was pre-

pared by Peter Schiavone of the University of Alberta. An ac-

cess code for the Companion Website is included inside the

Study Pack.

The Statics Study Pack is also available as a stand-alone

item. Order stand-alone Study Packs with the ISBN 0-13-

614002-5.

Web Assessment and Tutorial Resources Students

can access tutorial resources such as supplemental practice

problems on the Companion Website for this text.

www.prenhall.com/bedford

Additionally, instructors can assign online homework for stu-

dents using PH GradeAssist. Answers are graded and results

are recorded electronically. 

Each tutorial discusses a basic mechanics concept, and

then shows how to solve a specific problem related to this

concept using MATLAB and Mathcad. There are twenty tuto-

rials each for MATLAB and Mathcad, and are available to in-

structors in PDF format for distribution to students.

Worksheets were developed by Ronald Larsen and Stephen

Hunt of Montana State University Bozeman.

Instructor Resources

Instructor s Solutions Manual This supplement, avail-

able to instructors, contains completely worked out solutions.

Each solution comes with the problem statement as well

as associated artwork. The ISBN for the printed manual is 

0-13-614003-3. Solutions are also available electronically

for instructors at www.prenhall.com

xiv Preface

Unit vectors

Forces

Positions

Couples

Triple Accuracy Checking Commitment 
to Students and Instructors 

It is our commitment to students and instructors to take pre-

cautions to ensure the accuracy of the text and its solutions

manual to the best of our ability. We use a system of triple

accuracy checking in which three parties, in addition to the

authors, solve the problems in an effort to be sure that their

answers are correct and that they are of an appropriate level

of difficulty. Our accuracy team consists of:

Scott Hendricks of Virginia Polytechnic University

Karim Nohra of the University of South Florida

Kurt Norlin of Laurel Technical Services 

The parties further verified the text, examples, problems, and

solutions manuals to help ensure accuracy. Any errors remain
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Preface xv

Instructor s Resource Center on CD This CD contains

PowerPoint slides and JPEG files of all art from the text. It also

contains sets of PowerPoint slides showing each example.

Web Assessment and Tutorial Resources Through

Prentice Hall Grade Assist, instructors can create online as-

signments for students using problems from the text. PH

GradeAssist also offers every problem in an algorithmic format

so that each student can work with slightly different numbers.

Students also benefit from an integrated e-book. Answers to

problems are recorded in an online grade book that can be

downloaded into Excel. For additional tutorial resources, stu-

dents should access the Companion Website where they can

find supplemental problem sets and information. Contact your

Prentice Hall representative for details or a demonstration.

Ordering Options

Engineering Mechanics: Statics with Study Pack (0-13-

600042-8). Engineering Mechanics: Statics with Study Pack

and PHGA (0-13-135456-6).
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xviii Preface

The new elements that make this edition such a departure

from our previous ones, particularly the integration of text

and art, were developed with the help of students, colleagues

and our publisher. Our reviewers of the early samples offered

encouragement and suggested helpful refinements. Once the

new format had been established, the support we received

from Prentice Hall in the development of the books was typ-

ically superb. Our editor Tacy Quinn smoothly organized the

large team effort that books of this kind require and gave us

enthusiastic help and insightful advice. Marcia Horton and

TimGalligan were dedicated to this major revision from our

initial conversations about our ideas through the text s pub-

lication. Craig Little continued to teach us about the details

of book production andwas instrumental in keeping the proj-

ect on schedule. Xiaohong Zhu again provided consummate

support on art and photography issues. Dee Bernhard and

Mack Patterson managed our communications with review-

ers and users of the books. Jennifer Lonschein provided

editorial and production support. DavidAlick, Ben Paris, and

Kristin Mayo coordinated the development of the online

resources that have become such essential tools for users.

Jonathan Boylan designed the covers. We thank Peter

Schiavone for developing the study packs that accompany

the books, and Stephen Hunt and Ronald Larsen for writing

the MATLAB/Mathcad tutorials. Scott Hendricks, Karim

Nohra, and Kurt Norlin, valued colleagues from previous

campaigns, advised us on style and clarity, correctedmany of

our errors, and revised the solution manuals. We are respon-

sible for errors that remain. Nancy Bedford gave us editori-

al advice and help with checking. Many other talented and

professional people at Prentice Hall and elsewhere con-

tributed, and we thank them. And once again we thank our

families, especially Nancy andMarsha, for their forbearance

and understanding of the realities of new editions.

Anthony Bedford and Wallace Fowler

Austin, Texas 
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C H A P T E R

1
Introduction

How do engineers design and construct the devices we use, from

simple objects such as chairs and pencil sharpeners to compli-

cated ones such as dams, cars, airplanes, and spacecraft? They

must have a deep understanding of the physics underlying the

design of such devices and must be able to use mathematical

models to predict their behavior. Students of engineering begin

to learn how to analyze and predict the behaviors of physical

systems by studying mechanics.

 Engineers are guided by the principles of statics during each step of the
design and assembly of a structure. Statics is one of the sciences underlying the
art of structural design.
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4 Chapter 1 Introduction

1.1 Engineering and Mechanics

BACKGROUND

How can engineers design complex systems and predict their characteristics

before they are constructed? Engineers have always relied on their knowledge

of previous designs, experiments, ingenuity, and creativity to develop new de-

signs. Modern engineers add a powerful technique: They develop mathemati-

cal equations based on the physical characteristics of the devices they design.

With these mathematical models, engineers predict the behavior of their de-

signs, modify them, and test them prior to their actual construction. Aerospace

engineers use mathematical models to predict the paths the space shuttle will fol-

low in flight. Civil engineers use mathematical models to analyze the effects of

loads on buildings and foundations.

At its most basic level, mechanics is the study of forces and their effects.

Elementary mechanics is divided into statics, the study of objects in equilibri-

um, and dynamics, the study of objects in motion. The results obtained in ele-

mentary mechanics apply directly to many fields of engineering. Mechanical and

civil engineers designing structures use the equilibrium equations derived in

statics. Civil engineers analyzing the responses of buildings to earthquakes and

aerospace engineers determining the trajectories of satellites use the equations

of motion derived in dynamics.

Mechanics was the first analytical science. As a result, fundamental con-

cepts, analytical methods, and analogies from mechanics are found in virtually

every field of engineering. Students of chemical and electrical engineering gain

a deeper appreciation for basic concepts in their fields, such as equilibrium, energy,

and stability, by learning them in their original mechanical contexts. By studying

mechanics, they retrace the historical development of these ideas.

Mechanics consists of broad principles that govern the behavior of objects.

In this book we describe these principles and provide examples that demonstrate

some of their applications. Although it is essential that you practice working

problems similar to these examples, and we include many problems of this kind,

our objective is to help you understand the principles well enough to apply them

to situations that are new to you. Each generation of engineers confronts new

problems.

Problem Solving

In the study of mechanics you learn problem-solving procedures that you will use

in succeeding courses and throughout your career. Although different types of

problems require different approaches, the following steps apply to many of them:

Identify the information that is given and the information, or answer, you

must determine. It s often helpful to restate the problem in your own

words. When appropriate, make sure you understand the physical system

or model involved.

Develop a strategy for the problem. This means identifying the principles and

equations that apply and deciding how you will use them to solve the problem.

Whenever possible, draw diagrams to help visualize and solve the problem.

Whenever you can, try to predict the answer. This will develop your intui-

tion and will often help you recognize an incorrect answer.

Solve the equations and, whenever possible, interpret your results and

compare them with your prediction. This last step is a reality check. Is your

answer reasonable?
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1.1 Engineering and Mechanics 5

Numbers

Engineering measurements, calculations, and results are expressed in numbers.

You need to know how we express numbers in the examples and problems and

how to express the results of your own calculations.

Significant Digits This term refers to the number of meaningful (that is,

accurate) digits in a number, counting to the right starting with the first nonze-

ro digit. The two numbers 7.630 and 0.007630 are each stated to four signif-

icant digits. If only the first four digits in the number 7,630,000 are known to

be accurate, this can be indicated by writing the number in scientific notation

as

If a number is the result of a measurement, the significant digits it contains

are limited by the accuracy of the measurement. If the result of a measurement

is stated to be 2.43, this means that the actual value is believed to be closer to

2.43 than to 2.42 or 2.44.

Numbers may be rounded off to a certain number of significant digits. For

example, we can express the value of to three significant digits, 3.14, or we

can express it to six significant digits, 3.14159. When you use a calculator or

computer, the number of significant digits is limited by the number of digits

the machine is designed to carry.

Use of Numbers in This Book You should treat numbers given in prob-

lems as exact values and not be concerned about how many significant digits

they contain. If a problem states that a quantity equals 32.2, you can assume its

value is 32.200. We generally express intermediate results and answers in the

examples and the answers to the problems to at least three significant digits. If

you use a calculator, your results should be that accurate. Be sure to avoid round-

off errors that occur if you round off intermediate results when making a series

of calculations. Instead, carry through your calculations with as much accuracy

as you can by retaining values in your calculator.

Space and Time

Space simply refers to the three-dimensional universe in which we live. Our

daily experiences give us an intuitive notion of space and the locations, or po-

sitions, of points in space. The distance between two points in space is the length

of the straight line joining them.

Measuring the distance between points in space requires a unit of length.

We use both the International System of units, or SI units, and U.S. Customary

units. In SI units, the unit of length is the meter (m). In U.S. Customary units,

the unit of length is the foot (ft).

Time is, of course, familiar our lives are measured by it. The daily cycles

of light and darkness and the hours, minutes, and seconds measured by our

clocks and watches give us an intuitive notion of time. Time is measured by

the intervals between repeatable events, such as the swings of a clock pendu-

lum or the vibrations of a quartz crystal in a watch. In both SI units and U.S. Cus-

tomary units, the unit of time is the second (s). The minute (min), hour (h), and

day are also frequently used.

If the position of a point in space relative to some reference point changes

with time, the rate of change of its position is called its velocity, and the rate

of change of its velocity is called its acceleration. In SI units, the velocity is

expressed in meters per second and the acceleration is expressed in

meters per second per second, or meters per second squared In U.S.1m/s22.

1m/s2

p

7.630 * 10
6
.
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6 Chapter 1 Introduction

Customary units, the velocity is expressed in feet per second (ft /s) and the ac-

celeration is expressed in feet per second squared

Newton s Laws

Elementary mechanics was established on a firm basis with the publica-

tion in 1687 of Philosophiae Naturalis Principia Mathematica, by Isaac

Newton. Although highly original, it built on fundamental concepts devel-

oped by many others during a long and difficult struggle toward understand-

ing (Fig. 1.1).

1ft /s22.

 Peloponnesian War 400 B.C.

A.D. 400

800

1200

1400

1600

1650

1700

Roman invasion of Britain

Coronation of Charlemagne

Norman conquest of Britain

Signing of Magna Carta

Bubonic plague in Europe

Printing of Gutenberg Bible

Voyage of Columbus

Founding of Jamestown Colony

Thirty Years   War

Pilgrims  arrival in Massachusetts

Founding of Harvard University

Settlement of Carolina

Pennsylvania grant to William Penn

Salem witchcraft trials

Aristotle: Statics of levers, speculations on dynamics

Archimedes: Statics of levers, centers of mass, buoyancy

Hero of Alexandria: Statics of levers and pulleys

Pappus: Precise definition of center of mass

John Philoponus: Concept of inertia

Jordanus of Nemore: Stability of equilibrium

Albert of Saxony: Angular velocity

Nicole d Oresme: Graphical kinematics, coordinates

William Heytesbury: Concept of acceleration

Nicolaus Copernicus: Concept of the solar system

Dominic de Soto: Kinematics of falling objects

Tycho Brahe: Observations of planetary motions

Simon Stevin: Principle of virtual work

Johannes Kepler: Geometry and kinematics of 

planetary motions

Galileo Galilei: Experiments and analyses in statics 

and dynamics, motion of a projectile

Ren  Descartes: Cartesian coordinates

Evangelista Torricelli: Experiments on hydrodynamics

Blaise Pascal: Analyses in hydrostatics

John Wallis, Christopher Wren, Christiaan Huyghens: 

Impacts between objects

Isaac Newton: Concept of mass, laws of motion, 

postulate of universal  gravitation, 

analyses of planetary motions

0

Figure 1.1
Chronology of developments in mechanics up to the publication of Newton s

Principia in relation to other events in history.
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1.1 Engineering and Mechanics 7

Newton stated three laws  of motion, which we express in modern terms:

1. When the sum of the forces acting on a particle is zero, its velocity is

constant. In particular, if the particle is initially stationary, it will remain

stationary.

2. When the sum of the forces acting on a particle is not zero, the sum of the

forces is equal to the rate of change of the linear momentum of the particle.

If the mass is constant, the sum of the forces is equal to the product of the

mass of the particle and its acceleration.

3. The forces exerted by two particles on each other are equal in magnitude

and opposite in direction.

Notice that we did not define force and mass before stating Newton s laws. The

modern view is that these terms are defined by the second law. To demonstrate,

suppose that we choose an arbitrary object and define it to have unit mass. Then

we define a unit of force to be the force that gives our unit mass an acceleration

of unit magnitude. In principle, we can then determine the mass of any object:

We apply a unit force to it, measure the resulting acceleration, and use the sec-

ond law to determine the mass. We can also determine the magnitude of any

force: We apply it to our unit mass, measure the resulting acceleration, and use

the second law to determine the force.

Thus Newton s second law gives precise meanings to the terms mass and

force. In SI units, the unit of mass is the kilogram (kg). The unit of force is the

newton (N), which is the force required to give a mass of one kilogram an ac-

celeration of one meter per second squared. In U.S. Customary units, the unit

of force is the pound (lb). The unit of mass is the slug, which is the amount of

mass accelerated at one foot per second squared by a force of one pound.

Although the results we discuss in this book are applicable to many of the

problems met in engineering practice, there are limits to the validity of

Newton s laws. For example, they don t give accurate results if a problem

involves velocities that are not small compared to the velocity of light

Einstein s special theory of relativity applies to such problems.

Elementary mechanics also fails in problems involving dimensions that are

not large compared to atomic dimensions. Quantum mechanics must be used

to describe phenomena on the atomic scale.

International System of Units

In SI units, length is measured in meters (m) and mass in kilograms (kg). Time

is measured in seconds (s), although other familiar measures such as minutes

(min), hours (h), and days are also used when convenient. Meters, kilograms,

and seconds are called the base units of the SI system. Force is measured in

newtons (N). Recall that these units are related by Newton s second law: One

newton is the force required to give an object of one kilogram mass an accel-

eration of one meter per second squared:

Because the newton can be expressed in terms of the base units, it is called a

derived unit.

To express quantities by numbers of convenient size, multiples of units are

indicated by prefixes. The most common prefixes, their abbreviations, and the

multiples they represent are shown in Table 1.1. For example, 1 km is 1 kilo-

meter, which is 1000 m, and 1 Mg is 1 megagram, which is or 1000 kg.

We frequently use kilonewtons (kN).

10
6 g,

1 N = 11 kg211 m/s22 = 1 kg-m/s2.

13 * 10
8 m/s2.

Table 1.1 The common prefixes used in
SI units and the multiples they represent.

Prefix Abbreviation Multiple

nano- n

micro-

milli- m

kilo- k

mega- M

giga- G 109
106
103
10-3
10-6m

10-9
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8 Chapter 1 Introduction

s

s

R

u

u *
R

Figure 1.2
Definition of an angle in radians.

Table 1.2 Unit conversions.

Time

Length

Angle

Mass

Force 4.448 newtons=1 pound

14.59 kilograms=1 slug

360 degrees=2p radians

0.3048 meters=1 foot

25.4 millimeters=1 inch

5280 feet=1 mile

12 inches=1 foot

24 hours=1 day

60 minutes=1 hour

60 seconds=1 minute

U.S. Customary Units

In U.S. Customary units, length is measured in feet (ft) and force is measured

in pounds (lb). Time is measured in seconds (s). These are the base units of the

U.S. Customary system. In this system of units, mass is a derived unit. The unit

of mass is the slug, which is the mass of material accelerated at one foot per

second squared by a force of one pound. Newton s second law states that

From this expression we obtain

We use other U.S. Customary units such as the mile and

the inch We also use the kilopound (kip), which is 1000 lb.

Angular Units

In both SI and U.S. Customary units, angles are normally expressed in radians

(rad). We show the value of an angle in radians in Fig. 1.2. It is defined to be

the ratio of the part of the circumference subtended by to the radius of the

circle. Angles are also expressed in degrees. Since there are 360 degrees (360 )

in a complete circle, and the complete circumference of the circle is 360

equals 

Equations containing angles are nearly always derived under the assump-

tion that angles are expressed in radians. Therefore, when you want to substi-

tute the value of an angle expressed in degrees into an equation, you should

first convert it into radians. A notable exception to this rule is that many calcu-

lators are designed to accept angles expressed in either degrees or radians when

you use them to evaluate functions such as 

Conversion of Units

Many situations arise in engineering practice that require values expressed in one

kind of unit to be converted into values in other units. For example, if some of

the data to be used in an equation are given in SI units and some are given in

U.S. Customary units, they must all be expressed in terms of one system of

units before they are substituted into the equation. Converting units is straight-

forward, although it must be done with care.

Suppose that we want to express 1 mile per hour in terms of feet per

second (ft/s). Because 1 mile equals 5280 feet and 1 hour equals 3600 seconds,

we can treat the expressions

as ratios whose values are 1. In this way, we obtain

Some useful unit conversions are given in Table 1.2.

1 mi/h = 11 mi/h2a
5280 ft

1 mi
b a

1 h

3600 s
b = 1.47 ft /s.

a
5280 ft

1 mi
b and a

1 h

3600 s
b

1mi/h2

sin u.

2p rad.

2pR,

u

u

11 ft = 12 in2.

11 mi = 5280 ft2

1 slug = 1 lb-s2/ft.

1 lb = 11 slug211 ft /s2
2.
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1.1 Engineering and Mechanics 9

Identify the given information and the answer that

must be determined.

Develop a strategy; identify principles and

equations that apply and how they will be used.

Try to predict the answer whenever possible.

Obtain the answer and, whenever possible, interpret

it and compare it with the prediction.

SI Units The base units are time in seconds (s), length in

meters (m), and mass in kilograms (kg). The unit of force is

the newton (N), which is the force required to accelerate a

mass of one kilogram at one meter per second squared.

U.S. Customary Units The base units are time in seconds

(s), length in feet (ft), and force in pounds (lb). The unit of

mass is the slug, which is the mass accelerated at one foot

per second squared by a force of one pound.

Equivalent quantities, such as 1 hour * 60 minutes,

can be written as ratios whose values are 1:

and used to convert units. For example,

15 min * 15 min                 * 0.25 h.

Problem Solving: These

steps apply to many types

of problems.

Systems of units.

Definition of an

angle in radians.

Conversion of units.
1 h

60 min
* 1,

1 h
60 min

s
u *

R

s

R

u

RESULTS

A comprehensive resource on units has been compiled by Russ Rowlett of the

University of North Carolina at Chapel Hill and made available online at

www.unc.edu/~rowlett/units.

BEDFMC01_0136129153.QXD  4/13/07  10:50 PM  Page 9



10 Chapter 1 Introduction

Example 1.2 Converting Units of Pressure (* Related Problem 1.16)

Deep Submersible Vehicle.

The pressure exerted at a point of the hull of the deep submersible vehicle 

is (pascals). A pascal is 1 newton per square meter. Determine

the pressure in pounds per square foot.

Strategy
From Table 1.2, and With

these unit conversions we can calculate the pressure in pounds per square foot.

Solution
The pressure (to three significant digits) is

Critical Thinking
How could we have obtained this result in a more direct way? Notice from the

table of unit conversions in the inside front cover that 

Therefore,

 = 62,700 lb/ft2.

 3.00 * 10
6
 N/m2

= 13.00 * 10
6
 N/m2

2a
0.0209 lb/ft2

1 N/m2
b

1 Pa = 0.0209 lb/ft2.

 = 62,700 lb/ft2.

 3.00 * 10
6
 N/m2

= 13.00 * 10
6
 N/m2

2a
1 lb

4.448 N
b a

0.3048 m

1 ft
b

2

1 foot = 0.3048 meters.1 pound = 4.448 newtons

3.00 * 10
6 Pa

Active Example 1.1 Converting Units (* Related Problem 1.11)

A man is riding a bicycle at a speed of 6 meters per second (m/s). How fast is

he going in kilometers per hour (km/h)?

Strategy
One kilometer is 1000 meters and one hour is 60 minutes + 60 seconds * 3600

seconds. We can use these unit conversions to determine his speed in km/h.

Solution

Practice Problem A man is riding a bicycle at a speed of 10 feet per second (ft/s).

How fast is he going in miles per hour (mi/h)?

Answer: 6.82 mi/h.

* 21.6 km/h.

Convert meters to kilometers.

Convert seconds to hours.

6 m/s * 6 m/s
1 km

1000 m
       

3600 s

1 h
       

BEDFMC01_0136129153.QXD  4/13/07  10:50 PM  Page 10



1.1 Engineering and Mechanics 11

Example 1.3 Determining Units from an Equation (* Related Problem 1.20)

Suppose that in Einstein s equation

the mass m is in kilograms and the velocity of light c is in meters per second.

(a) What are the SI units of E?

(b) If the value of E in SI units is 20, what is its value in U.S. Customary base units?

Strategy

(a) Since we know the units of the terms m and c, we can deduce the units of

E from the given equation.

(b) We can use the unit conversions for mass and length from Table 1.2 to con-

vert E from SI units to U.S. Customary units.

Solution

(a) From the equation for E,

the SI units of E are 

(b) From Table 1.2, and Therefore,

The value of E in U.S. Customary units is

Critical Thinking
In part (a), how did we know that we could determine the units of E by deter-

mining the units of The dimensions, or units, of each term in an equation

must be the same. For example, in the equation the dimensions of

each of the terms a, b, and c must be the same. The equation is said to be

dimensionally homogeneous. This requirement is expressed by the colloquial

phrase Don t compare apples and oranges.

a + b = c,

mc2?

E = 120210.7382 = 14.8 slug-ft2/s2
.

 = 0.738 slug-ft2/s2
.

 1 kg-m2/s2
= 11 kg-m2/s2

2a
1 slug

14.59 kg
b a

1 ft

0.3048 m
b

2

1 ft = 0.3048 m.1 slug = 14.59 kg

kg-m2/s2
.

E = 1m kg21c m/s22
,

E = mc2
,
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12 Chapter 1 Introduction

1.1 The value of p is 3.14159265. . . . If C is the circumference

of a circle and r is its radius, determine the value of to four

significant digits.

r/C

Problems

Problem 1.1

C

r

1.2 The base of natural logarithms is 

(a) Express e to five significant digits.

(b) Determine the value of to five significant digits.

(c) Use the value of e you obtained in part (a) to determine the

value of to five significant digits.

[Part (c) demonstrates the hazard of using rounded-off values in

calculations.]

e
2

e
2

e = 2.718281828 .

1.3 A machinist drills a circular hole in a panel with a nominal

radius mm. The actual radius of the hole is in the range

(a) To what number of significant digits can you express the radius?

(b) To what number of significant digits can you express the area

of the hole?

r = 5 ; 0.01 mm.

r = 5

5 mm

Problem 1.3

1.5 The Burj Dubai, scheduled for completion in 2008, will be

the world s tallest building with a height of 705 m. The area of its

ground footprint will be 8000 . Convert its height and footprint

area to U.S. Customary units to three significant digits.

m2

Problem 1.5

Problem 1.4

1.4 The opening in the soccer goal is 24 ft wide and 8 ft high, so

its area is What is its area in to three

significant digits?

m224 ft * 8 ft = 192 ft2.
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Problem 1.8

1.7 Suppose that the height of Mt. Everest is known to be

between 29,032 ft and 29,034 ft. Based on this information, 

to how many significant digits can you express the height 

(a) in feet? (b) in meters?

1.8 The maglev (magnetic levitation) train from Shanghai to the

airport at Pudong reaches a speed of 430 km/h. Determine its

speed (a) in mi/h; (b) in ft/s.

1.6 Suppose that you have just purchased a Ferrari F355 coupe

and you want to know whether you can use your set of SAE

(U.S. Customary unit) wrenches to work on it. You have wrenches

with widths and 1 in, and the car

has nuts with dimensions 10 mm, 15 mm, 20 mm,

and 25 mm. Defining a wrench to fit if w is no more than 2%

larger than n, which of your wrenches can you use?

n = 5 mm,

1>2 in, 3>4 in,w = 1>4 in,

w n

Problem 1.6

* 1.11 The kinetic energy of the man in Active Example 1.1

is defined by where m is his mass and v is his velocity.

The man s mass is 68 kg and he is moving at 6 m/s, so his kinetic

energy is What is his kinetic

energy in U.S. Customary units?

1.12 The acceleration due to gravity at sea level in SI units is

By converting units, use this value to determine the

acceleration due to gravity at sea level in U.S. Customary units.

1.13 A furlong per fortnight is a facetious unit of velocity,

perhaps made up by a student as a satirical comment on the

bewildering variety of units engineers must deal with. A furlong is

660 ft A fortnight is 2 weeks (14 nights). If you walk

to class at what is your speed in furlongs per fortnight to

three significant digits?

1.14 Determine the cross-sectional area of the beam (a) in ; 

(b) in in2
.

m2

2 m/s,

11/8 mile2.

g = 9.81 m/s2
.

1

2
(68 kg)(6 m/s)2

= 1224 kg-m2/s2.

1

2
 mv2

,

Problem 1.10

1.9 In the 2006 Winter Olympics, the men s 15-km cross-country

skiing race was won by Andrus Veerpalu of Estonia in a time of

38 minutes, 1.3 seconds. Determine his average speed (the dis-

tance traveled divided by the time required) to three significant

digits (a) in km/h; (b) in mi/h.

1.10 The Porsche s engine exerts 229 ft-lb (foot-pounds) of

torque at 4600 rpm. Determine the value of the torque in N-m

(newton-meters).

Problem 1.14

120 mm x

y

40 mm

40 mm

40

mm

200 mm
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14 Chapter 1 Introduction

x

y

A

Problem 1.15

1.15 The cross-sectional area of the American

Standard Channel steel beam is What is its

cross-sectional area in mm2?

A = 8.81 in2.

C12* 30

* 1.16 A pressure transducer measures a value of 

Determine the value of the pressure in pascals. A pascal (Pa) is

one newton per square meter.

300 lb/in2.

Problem 1.17

1.17 A horsepower is 550 ft-lb/s. A watt is 1 N-m/s. Determine

how many watts are generated by the engines of the passenger jet

if they are producing 7000 horsepower.

1.18 Chapter 7 discusses distributed loads that are expressed in

units of force per unit length. If the value of a distributed load is

400 N/m, what is its value in lb/ft?

1.19 The moment of inertia of the rectangular area about the

x axis is given by the equation

The dimensions of the area are and 

Determine the value of I to four significant digits in terms of 

(a) (b) and (c) in4.m4,mm4,

h = 100 mm.b = 200 mm

I =
1

3
 bh3.

h

b
x

y

Problem 1.19

* 1.20 In Example 1.3, instead of Einstein s equation consider

the equation where the mass m is in kilograms and the

velocity of light c is in meters per second. (a) What are the

SI units of L? (b) If the value of L in SI units is 12, what is its

value in U.S. Customary base units?

1.21 The equation

is used in the mechanics of materials to determine normal stresses

in beams.

(a) When this equation is expressed in terms of SI base units, 

M is in newton-meters (N-m), y is in meters (m), and I is in

meters to the fourth What are the SI units of 

(b) If and what is

the value of in U.S. Customary base units?s

I = 7 * 10-5 m4,M = 2000 N-m, y = 0.1 m,

s?power 1m4
2.

s =

My

I

L = mc,
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1.2 Newtonian Gravitation 15

1.2 Newtonian Gravitation

BACKGROUND

Newton postulated that the gravitational force between two particles of mass 

and that are separated by a distance r (Fig. 1.3) is

(1.1)

where G is called the universal gravitational constant. The value of G in SI units

is . Based on this postulate, he calculated the gravita-

tional force between a particle of mass and a homogeneous sphere of mass

and found that it is also given by Eq. (1.1), with r denoting the distance from the

particle to the center of the sphere.Although the earth is not a homogeneous sphere,

we can use this result to approximate the weight of an object of mass m due to the

gravitational attraction of the earth. We have

(1.2)

where is the mass of the earth and r is the distance from the center of the

earth to the object. Notice that the weight of an object depends on its location

relative to the center of the earth, whereas the mass of the object is a measure

of the amount of matter it contains and doesn t depend on its position.

When an object s weight is the only force acting on it, the resulting accel-

eration is called the acceleration due to gravity. In this case, Newton s second

law states that and from Eq. (1.2) we see that the acceleration due to

gravity is

(1.3)

The acceleration due to gravity at sea level is denoted by g. Denoting the

radius of the earth by we see from Eq. (1.3) that Substituting

this result into Eq. (1.3), we obtain an expression for the acceleration due to

gravity at a distance r from the center of the earth in terms of the acceleration

due to gravity at sea level:

(1.4)

Since the weight of the object the weight of an object at a distance

r from the center of the earth is

(1.5)

At sea level the weight of an object is given in terms of its mass

by the simple relation

(1.6)

The value of g varies from location to location on the surface of the earth.

The values we use in examples and problems are in SI units and

in U.S. Customary units.g = 32.2 ft/s2
g = 9.81 m/s2

W = mg.

1r = RE2,

W = mg 

RE
2

r 
2

.

W = ma,

a = g 

RE
2

r 
2

.

GmE = gRE
2.RE,

a =
GmE

r 
2

.

W = ma,

mE

W =
GmmE

r 
2

,

m2m1

6.67 * 10-11 N-m2/kg2

F =
Gm1 m2

r 
2

,

m2

m1

m2

F

m1

F

r

Figure 1.3

The gravitational forces between two

particles are equal in magnitude and 

directed along the line between them.
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16 Chapter 1 Introduction

where G is the universal gravitational constant.

The value of G in Sl units is 6.67 + 10*11 N-m2
/kg2.

where g is the acceleration due to gravity at sea level.

where m is the mass of the object and g is the

acceleration due to gravity at sea level.

W, mg, (1.6)

F, (1.1),

When the earth is modeled as a homogeneous sphere of

radius RE, the acceleration due to gravity at a distance r

from the center is

The gravitational force between two particles of mass

m1 and m2 that are separated by a distance r is

Newtonian gravitation.

Acceleration due to

gravity of the earth.

Weight of an object

at sea level.

Gm1m2

r2

,a , g (1.4)
R2

E

r2

Active Example 1.4 Weight and Mass (* Related Problem 1.22)

The C-clamp weighs 14 oz at sea level. [16 oz (ounces)* 1 lb.] The accelera-

tion due to gravity at sea level is g* 32.2 ft/ . What is the mass of the C-clamp

in slugs?

Strategy
We must first determine the weight of the C-clamp in pounds. Then we can use

Eq. (1.6) to determine the mass in slugs.

Solution

Practice Problem The mass of the C-clamp is 0.397 kg. The acceleration due to

gravity at sea level is . What is the weight of the C-clamp at sea level in

newtons? 

Answer: 3.89 N.

g = 9.81 m/s
2

s
2

Convert the weight from

ounces to pounds.

Use Eq. (1.6) to calculate

the mass in slugs.

0.875 lb

32.2 ft/s2

1 lb

16 oz

W

g
m* * * 0.0272 slug.

14 oz * 14 oz * 0.875 lb.
* +

RESULTS
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1.2 Newtonian Gravitation 17

Example 1.5 Determining an Object s Weight (* Related Problem 1.27)

When the Mars Exploration Rover was fully assembled, its mass was 180 kg.

The acceleration due to gravity at the surface of Mars is and the ra-

dius of Mars is 3390 km.

(a) What was the rover s weight when it was at sea level on Earth?

(b) What is the rover s weight on the surface of Mars?

(c) The entry phase began when the spacecraft reached the Mars atmospheric

entry interface point at 3522 km from the center of Mars. What was the rover s

weight at that point?

3.68 m/s2

Mars Exploration Rover being assembled.
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18 Chapter 1 Introduction

Strategy

The rover s weight at sea level on Earth is given by Eq. (1.6) with 

We can determine the weight on the surface of Mars by using Eq. (1.6) with the

acceleration due to gravity equal to 

To determine the rover s weight as it began the entry phase, we can write an

equation for Mars equivalent to Eq. (1.5).

Solution

(a) The weight at sea level on Earth is

(b) Let be the acceleration due to gravity at the surface of

Mars. Then the weight of the rover on the surface of Mars is

(c) Let be the radius of Mars. From Eq. (1.5), the rover s weight

when it is 3522 km above the center of Mars is

Critical Thinking

In part (c), how did we know that we could apply Eq. (1.5) to Mars? Equa-

tion (1.5) is applied to Earth based on modeling it as a homogeneous sphere.

It can be applied to other celestial objects under the same assumption. The

accuracy of the results depends on how aspherical and inhomogeneous the

object is.

 = 614 N 1138 lb2.

 = 1180 kg213.68 m/s2
2 

13,390,000 m2
2

13,522,000 m2
2

 W = mgM 

RM
2

r 
2

RM = 3390 km

 = 662 N 1149 lb2.

 = 1180 kg213.68 m/s2
2

 W = mgM

gM = 3.68 m/s2

 = 1770 N 1397 lb2.

 = 1180 kg219.81 m/s2
2

 W = mg

3.68 m/s2
.

g = 9.81 m/s2
.
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Problems 19

1.28 If an object is near the surface of the earth, the variation

of its weight with distance from the center of the earth can

often be neglected. The acceleration due to gravity at sea level

is The radius of the earth is 6370 km. The

weight of an object at sea level is mg, where m is its mass. At

what height above the surface of the earth does the weight of

the object decrease to 0.99mg?

1.29 The planet Neptune has an equatorial diameter of 49,532 km

and its mass is If the planet is modeled as 

a homogeneous sphere, what is the acceleration due to 

gravity at its surface? (The universal gravitational constant is

)G = 6.67 * 10
-11

 N-m2/kg2.

1.0247 * 10
26

 kg.

g = 9.81 m/s2
.

* 1.22 The acceleration due to gravity on the surface of the moon

is (a) What would the mass of the C-clamp in Active

Example 1.4 be on the surface of the moon? (b) What would the

weight of the C-clamp in newtons be on the surface of the moon?

1.23 The cube of iron weighs 490 lb at sea

level. Determine the weight in newtons of a 

cube of the same material at sea level.

1 m * 1 m * 1 m

1 ft * 1 ft * 1 ft

1.62 m/s2.

Problems

1 ft

1 ft 1 ft

Problem 1.23

1.24 The area of the Pacific Ocean is 64,186,000 square miles

and its average depth is 12,925 ft. Assume that the weight per unit

volume of ocean water is Determine the mass of the

Pacific Ocean (a) in slugs; (b) in kilograms.

1.25 The acceleration due to gravity at sea level is

The radius of the earth is 6370 km. The universal gravitational

constant Use this information to

determine the mass of the earth.

1.26 A person weighs 180 lb at sea level. The radius of the

earth is 3960 mi. What force is exerted on the person by the

gravitational attraction of the earth if he is in a space station in

orbit 200 mi above the surface of the earth?

* 1.27 The acceleration due to gravity on the surface of the

moon is The moon s radius is 

(See Example 1.5.)

(a) What is the weight in newtons on the surface of the moon of

an object that has a mass of 10 kg? 

(b) Using the approach described in Example 1.5, determine the

force exerted on the object by the gravity of the moon if the object

is located 1738 km above the moon s surface.

RM = 1738 km.1.62 m/s2.

G = 6.67 * 10
-11

 N-m2/kg2
.

g = 9.81 m/s2
.

64 lb/ft3.

1.30 At a point between the earth and the moon, the magni-

tude of the force exerted on an object by the earth s gravity

equals the magnitude of the force exerted on the object by the

moon s gravity. What is the distance from the center of the

earth to that point to three significant digits? The distance from

the center of the earth to the center of the moon is 383,000 km,

and the radius of the earth is 6370 km. The radius of the

moon is 1738 km, and the acceleration due to gravity at its

surface is 1.62 m/s2
.
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V

 Fields of vectors show the velocities and directions of a gas flow at three
vertical positions. Vectors are used to describe and analyze quantities that
have magnitude and direction, including positions, forces, moments,
velocities, and accelerations.

Vectors

If an object is subjected to several forces that have different

magnitudes and act in different directions, how can the magni-

tude and direction of the resulting total force on the object be

determined? Forces are vectors and must be added according to

the definition of vector addition. In engineering we deal with

many quantities that have both magnitude and direction and can

be expressed and analyzed as vectors. In this chapter we review

vector operations, express vectors in terms of components, and

present examples of engineering applications of vectors.

C H A P T E R

2
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22 Chapter 2 Vectors

2.1 Scalars and Vectors

BACKGROUND

A physical quantity that is completely described by a real number is called a

scalar. Time is a scalar quantity. Mass is also a scalar quantity. For example, you

completely describe the mass of a car by saying that its value is 1200 kg.

In contrast, you have to specify both a nonnegative real number, or mag-

nitude, and a direction to describe a vector quantity. Two vector quantities are

equal only if both their magnitudes and their directions are equal.

The position of a point in space relative to another point is a vector quan-

tity. To describe the location of a city relative to your home, it is not enough to

say that it is 100 miles away. You must say that it is 100 miles west of your

home. Force is also a vector quantity. When you push a piece of furniture across

the floor, you apply a force of magnitude sufficient to move the furniture and

you apply it in the direction you want the furniture to move.

We will represent vectors by boldfaced letters, U, V, W, and will

denote the magnitude of a vector U by A vector is represented graphically

by an arrow. The direction of the arrow indicates the direction of the vector,

and the length of the arrow is defined to be proportional to the magnitude. For

example, consider the points A and B of the mechanism in Fig. 2.1a. We can

specify the position of point B relative to point A by the vector in Fig. 2.1b.

The direction of indicates the direction from point A to point B. If the dis-

tance between the two points is 200 mm, the magnitude 

The cable AB in Fig. 2.2 helps support the television transmission tower.

We can represent the force the cable exerts on the tower by a vector F as shown.

If the cable exerts an 800-N force on the tower, (A cable sus-

pended in this way will exhibit some sag, or curvature, and the tension will vary

along its length. For now, we assume that the curvature in suspended cables

and ropes and the variations in their tensions can be neglected. This assumption

is approximately valid if the weight of the rope or cable is small in comparison

to the tension. We discuss and analyze suspended cables and ropes in more de-

tail in Chapter 10.)

Vectors are a convenient means for representing physical quantities that

have magnitude and direction, but that is only the beginning of their useful-

ness. Just as real numbers are manipulated with the familiar rules for addition,

subtraction, multiplication, and so forth, there are rules for manipulating vectors.

These rules provide powerful tools for engineering analysis.

Vector Addition

When an object moves from one location in space to another, we say it under-

goes a displacement. If we move a book (or, speaking more precisely, some

point of a book) from one location on a table to another, as shown in Fig. 2.3a,

we can represent the displacement by the vector U. The direction of U indicates

the direction of the displacement, and is the distance the book moves.

Suppose that we give the book a second displacement V, as shown in

Fig. 2.3b. The two displacementsU andV are equivalent to a single displacement

of the book from its initial position to its final position, which werepresent by the

vectorW in Fig. 2.3c. Notice that the final position of the book is the same whether

we first give it the displacement U and then the displacement V or we first give

it the displacementV and then the displacementU (Fig. 2.3d). The displacement

W is defined to be the sum of the displacementsU andV:

U + V = W.

U

F = 800 N.

rAB = 200 mm.

rAB

rAB

U .

,

A

B

(a)

(b)

B

rAB

A

B

A

Figure 2.1
(a) Two points A and B of a mechanism.

(b) The vector from A to B.rAB

F

A

B

Figure 2.2
Representing the force cable AB exerts on

the tower by a vector F.
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2.1 Scalars and Vectors 23

(a) (b)

(c) (d)

U U V

U V

W
UV

U V

W

(a)

U

V

(b)

U

V

U

U  V 

V

(c)

(d)

U
U

V

V

(e)

U

V

U  V U  V 

Figure 2.4

(a) Two vectors U and V.

(b) The head of U placed at the tail of V.

(c) The triangle rule for obtaining the sum of U and V.

(d) The sum is independent of the order in which the vectors

are added.

(e) The parallelogram rule for obtaining the sum of U and V.

Figure 2.3

(a) A displacement represented by the vector U.

(b) The displacement U followed by the displace-

ment V.

(c) The displacements U and V are equivalent to

the displacement W.

(d) The final position of the book doesn t depend

on the order of the displacements.

U

V

W

U  V  W

Figure 2.5

Sum of the three vectors U, V, and W.

The definition of vector addition is motivated by the addition of dis-

placements. Consider the two vectors U and V shown in Fig. 2.4a. If we place

them head to tail (Fig. 2.4b), their sum is defined to be the vector from the tail

of U to the head of V (Fig. 2.4c). This is called the triangle rule for vector ad-

dition. Figure 2.4d demonstrates that the sum is independent of the order in

which the vectors are placed head to tail. From this figure we obtain the paral-

lelogram rule for vector addition (Fig. 2.4e).

The definition of vector addition implies that

Vector addition is commutative. (2.1)

and

Vector addition is (2.2)

associative.

for any vectors U, V, and W. These results mean that when two or more vectors

are added, the order in which they are added doesn t matter. The sum can be

obtained by placing the vectors head to tail in any order, and the vector from the

tail of the first vector to the head of the last one is the sum (Fig. 2.5). If the sum

of two or more vectors is zero, they form a closed polygon when they are placed

head to tail (Fig. 2.6).

1U + V2 + W = U + 1V + W2

U + V = V + U 

W

U

V

Figure 2.6

Three vectorsU,V, andWwhose sum is zero.
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24 Chapter 2 Vectors

A physical quantity is called a vector if it has magnitude and direction and

obeys the definition of vector addition. We have seen that displacement is a

vector. The position of a point in space relative to another point is also a vector

quantity. In Fig. 2.7, the vector from A to C is the sum of and A

force has direction and magnitude, but do forces obey the definition of vector

addition? For now we will assume that they do. When we discuss dynamics, we

will show that Newton s second law implies that force is a vector.

Product of a Scalar and a Vector

The product of a scalar (real number) a and a vector U is a vector written as aU.

Its magnitude is where is the absolute value of the scalar a. The

direction of aU is the same as the direction of U when a is positive and is

opposite to the direction of U when a is negative.

The product is written as and is called the negative of the vec-

tor U.  It has the same magnitude as U but the opposite direction. The division

of a vector U by a scalar a is defined to be the product

Figure 2.8 shows a vector U and the products of Uwith the scalars 2, and 

The definitions of vector addition and the product of a scalar and a vec-

tor imply that

The product is associative with (2.3)
respect to scalar multiplication.

The products are distributive (2.4)
with respect to scalar addition.

and

The products are distributive (2.5)
with respect to vector addition.

for any scalars a and b and vectors U and V. We will need these results when

we discuss components of vectors.

Vector Subtraction

The difference of two vectorsU andV is obtained by addingU to the vector :

(2.6)

Consider the two vectors U and V shown in Fig. 2.9a. The vector has

the same magnitude as the vector V but is in the opposite direction (Fig. 2.9b).

In Fig. 2.9c, we add the vector U to the vector to obtain 

Unit Vectors

Aunit vector is simply a vector whose magnitude is 1.Aunit vector specifies a di-

rection and also provides a convenient way to express a vector that has a particu-

lar direction. If a unit vector e and a vector U have the same direction, we can

writeU as the product of its magnitude and the unit vector e (Fig. 2.10),

U = U e.

U

U - V.1-12V

1-12V

U - V = U + 1-12V.

1-12V

a1U + V2 = aU + aV,

1a + b2U = aU + bU,

a1bU2 = 1ab2U,

1>2.-1,

U

a
= a

1

a
bU.

-U1-12U

aa U ,

rBC.rABrAC

AA

B

rAB

C

rAC

rBCrBC

Figure 2.7

Arrows denoting the relative positions of

points are vectors.

U 2U *U + (*1)U +

U

2

1

2
U

U * V 

(c)

U

(*1)V

(*1)V

(b)

U
V

V

(a)

Figure 2.8

A vector U and some of its scalar multiples.

Figure 2.9

(a) Two vectors U and V.

(b) The vectors V and 

(c) The sum of U and is the vector

difference U - V.

1-12V

1-12V.
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2.1 Scalars and Vectors 25

Any vector U can be regarded as the product of its magnitude and a unit vec-

tor that has the same direction as U. Dividing both sides of this equation by 

yields

so dividing any vector by its magnitude yields a unit vector that has the same

direction.

RESULTS

A physical quantity that is completely described by a real number is called a

scalar. A vector has both magnitude and direction and satisfies a defined rule

of addition. A vector is represented graphically by an arrow whose length is

defined to be proportional to the magnitude.

U

U
= e,

U

U

*U*

*U*e  U

e 1

Figure 2.10

Since U and e have the same direction, the

vector U equals the product of its magnitude

with e.

Triangle rule

U

U  V

V

Parallelogram rule

U

V

U  V

Vector Addition

The sum of two vectors U and V is

defined by the triangle rule or the

equivalent parallelogram rule.

U 2U U ( 1)U U

Product of a Scalar and a Vector

The product of a scalar a and a vector U is defined

to be a vector aU with magnitude *a**U*. Its direction

is the same as that of U when a is positive and is

opposite to that of U when a is negative. The division

of U by a is defined to be the product (1/a) U.
U 

2

1 

2

U  V 
U

( 1)V

U
V

Vector Subtraction

The difference of two vectors U and V is

defined by

U  V  U  ( 1)V.
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26 Chapter 2 Vectors

U

*U*

*U*e  U

e 1

Unit Vectors

A unit vector is a vector whose magnitude is 1.

Any vector U can be expressed as *U*e, where

e is a unit vector with the same direction as U.

Dividing a vector U by its magnitude yields a

unit vector with the same direction as U.

Active Example 2.1 Vector Operations (* Related Problem 2.1)

The measured value of

2V

13.0

U

45

*U  2V* is 13.0.

Drawing the vectors U and 2V

to scale, place them head to tail.

2V6

8

U

45

The magnitudes of the vectors shown are The vector V is

vertical. Graphically determine the magnitude of the vector 

Strategy
By drawing the vectors to scale and applying the triangle rule for addition, we

can measure the magnitude of the vector 

Solution

U + 2V.

U + 2V.

|U| = 8 and |V| = 3.

U V

45

Practice Problem The magnitudes of the vectors shown are 

The vector V is vertical. Graphically determine the magnitude of the vector 

Answer: |U - 2V| = 5.7.

U - 2V.

 |V| = 3.|U| = 8 and
VU

45
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Problems 27

Part of the roof of a sports stadium is to be supported by the cables AB and AC.

The forces the cables exert on the pylon to which they are attached are rep-

resented by the vectors and The magnitudes of the forces are

and Determine the magnitude and direction

of the sum of the forces exerted on the pylon by the cables.

FAC = 60 kN.FAB = 100 kN

FAC.FAB

Example 2.2 Adding Vectors ( Related Problem 2.2)

Strategy
By drawing the parallelogram rule for adding the two forces with the vectors

drawn to scale, we can measure the magnitude and direction of their sum.

Solution
We graphically construct the parallelogram rule for obtaining the sum of the

two forces with the lengths of and proportional to their magnitudes

(Fig. a). By measuring the figure, we estimate the magnitude of the vector

to be 155 kN and its direction to be 19 above the horizontal.

Critical Thinking
In engineering applications, vector operations are nearly always done analyti-

cally. So why is it worthwhile to gain experience with graphical methods?

Doing so enhances your intuition about vectors and helps you understand

vector operations. Also, sketching out a graphical solution can often help you

formulate an analytical solution.

FAB + FAC

FACFAB

B

A

C

30
30

FAC

FAB

FAB

FAC

FAB  FAC 

100 kN

60 kN

19

(a) Graphical solution.

Problems

 2.1 In Active Example 2.1, suppose that the vectorsU andV

are reoriented as shown. The vectorV is vertical. The magnitudes

are and Graphically determine the magnitude

of the vectorU + 2V.

V = 3.U = 8

VU

45

Problem 2.1

 2.2 Suppose that the pylon in Example 2.2 is moved closer to

the stadium so that the angle between the forces and is

Draw a sketch of the new situation. The magnitudes of the

forces are and Graphically

determine the magnitude and direction of the sum of the forces

exerted on the pylon by the cables.

FAC = 60 kN.FAB = 100 kN

50 .

FACFAB
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28 Chapter 2 Vectors

FB

FA

a

FC

+

2.3 The magnitude and the angle The

magnitude Graphically determine the

magnitude of 

2.4 The magnitudes and

The angles and Graphically determine the

magnitude of

2.5 The magnitudes and the

angle Graphically determine the value of the angle for

which the magnitude is a minimum and the

minimum value of .

2.6 The angle Graphically determine the magnitude of

the vector rAC.

u = 50 .

FA + FB + FC

FA + FB + FC

ba = 30 .

FA = FB = FC = 100 lb,

FA + FB + FC.

b = 80 .a = 50

FC = 40 N.FA = 40 N, FB = 50 N,

FB.

FA + FB = 120 lb .

a = 65 .FA = 80 lb

Problems 2.3 2.5

60 mm 150 mm

A C

B

rAB rBC

rAC

,

Problem 2.6

2.7 The vectors and represent the forces exerted on the

pulley by the belt. Their magnitudes are and

Graphically determine the magnitude of the total

force the belt exerts on the pulley.

FB = 60 N.

FA = 80 N

FBFA

45*

F
A

F
B

10*

Problem 2.7

2.8 The sum of the forces The magnitude

and the angle Graphically determine the

magnitudes and 

2.9 The sum of the forces The magnitudes

and Graphically determine the

magnitude and the angle a.FC

FB = 80 N.FA = 100 N

FA + FB + FC = 0.

FC .FB

a = 60 .FA = 100 N

FA + FB + FC = 0.

30*

FB

FA

FC

a

Problems 2.8/2.9

Refer to the following diagram when solving Problems

2.3 through 2.5. The force vectors and lie in

the same plane.

FCFB,FA,
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2.10 The forces acting on the sailplane are represented by three

vectors. The lift L and drag D are perpendicular. The magnitude of

the weight W is 500 lb. The sum of the forces

Graphically determine the magnitudes of the lift and drag.

W + L + D = 0.

W

D

L

25*

Problem 2.10

2.12 The rope ABC exerts forces and of equal magnitude

on the block at B. The magnitude of the total force exerted on the

block by the two forces is 200 lb. Graphically determine .|FBA|

FBCFBA

2.11 A spherical storage tank is suspended from cables. The tank

is subjected to three forces, the forces and exerted by the

cables and its weight W. The weight of the tank is 

The vector sum of the forces acting on the tank equals zero.

Graphically determine the magnitudes of and .FBFA

W = 600 lb.

FBFA

40*

FA

W

FB

20* 20*

Problem 2.11

2.13 Two snowcats tow an emergency shelter to a new location

near McMurdo Station, Antarctica. (The top view is shown. The

cables are horizontal.) The total force exerted on the

shelter is in the direction parallel to the line L and its magnitude

is 400 lb. Graphically determine the magnitudes of and FB.FA

FA + FB

20*

FBC

FBA

B

C

A

B

Problem 2.12

L

Top View

FA

FB50*
30*

Problem 2.13

2.14 A surveyor determines that the horizontal distance from A

to B is 400 m and the horizontal distance from A to C is 600 m.

Graphically determine the magnitude of the vector and the

angle .a

rBC

East

North

60*

20*

C

B

A

rBC

a

Problem 2.14
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30 Chapter 2 Vectors

2.2 Components in Two Dimensions

BACKGROUND

Vectors are much easier to work with when they are expressed in terms of mu-

tually perpendicular vector components. Here we explain how to express vec-

tors in cartesian components and give examples of vector manipulations using

components.

Consider the vector U in Fig. 2.11a. By placing a cartesian coordinate sys-

tem so that the vector U is parallel to the x y plane, we can write it as the sum

of perpendicular vector components and that are parallel to the x and y

axes (Fig. 2.11b):

Then by introducing a unit vector i defined to point in the direction of the pos-

itive x axis and a unit vector j defined to point in the direction of the positive

y axis (Fig. 2.11c), we can express the vector U in the form

(2.7)

The scalars and are called scalar components of U. When we refer sim-

ply to the components of a vector, we will mean its scalar components. We will

refer to and as the x and y components of U.

The components of a vector specify both its direction relative to the carte-

sian coordinate system and its magnitude. From the right triangle formed by

the vector U and its vector components (Fig. 2.11c), we see that the magnitude

of U is given in terms of its components by the Pythagorean theorem:

(2.8)

With this equation the magnitude of a vector can be determined when its com-

ponents are known.

Manipulating Vectors in Terms of Components

The sum of two vectors U and V in terms of their components is

(2.9) = 1Ux + Vx2i + 1Uy + Vy2j.

 U + V = 1Ux i + Uy j2 + 1Vx i + Vy j2

U = 2U2

x + U2

y.

UyUx

UyUx

U = Ux i + Uy j.

U = Ux + Uy.

UyUx

(a)

U

(b)

x

y

Ux

Uy

U

j

(c)i
x

y

U

Ux  Uxi

Uy  Uy j

Figure 2.11
(a) A vector U.

(b) The vector components and 

(c) The vector components can be expressed

in terms of i and j.

Uy.Ux

A

C

B

rAC

r

rABrAB

Problem 2.15

2.15 The vector r extends from point A to the midpoint between

points B and C. Prove that

r =
1

2
1rAB + rAC2.

2.16 By drawing sketches of the vectors, explain why

U + 1V + W2 = 1U + V2 + W.
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2.2 Components in Two Dimensions 31

(a)

U

V

(b)

x

y

U  VU  V

Uy j

Vy j

Ux i

U  V
(Uy  Vy)j

(Ux  Vx)i

Vx i

(c)

x

y

(a)

x

A

B

rAB

rAB

(xA, yA)

(xB, yB)

(b)

x

y

(xB  xA)i

(yB  yA)j

A

ByB

yA

xA xB

y

Figure 2.13
(a) Two points A and B and the position

vector from A to B.

(b) The components of can be determined

from the coordinates of points A and B.

rAB

rAB

Figure 2.12
(a) The sum of U and V. (b) The vector components of U and V. (c) The sum of the

components in each coordinate direction equals the component of in that direction.U + V

The components of are the sums of the components of the vectors U and

V. Notice that in obtaining this result we used Eqs. (2.2), (2.4), and (2.5).

It is instructive to derive Eq. (2.9) graphically. The summation of U and V

is shown in Fig. 2.12a. In Fig. 2.12b we introduce a coordinate system and show

the componentsU andV. In Fig. 2.12c we add the x and y components, obtaining

Eq. (2.9).

The product of a number a and a vector U in terms of the components of U is

The component of aU in each coordinate direction equals the product of  a

and the component of U in that direction. We used Eqs. (2.3) and (2.5) to obtain

this result.

Position Vectors in Terms of Components

We can express the position vector of a point relative to another point in terms of

the cartesian coordinates of the points. Consider point A with coordinates 

and point B with coordinates Let be the vector that specifies the posi-

tion of B relative to A (Fig. 2.13a). That is, we denote the vector from a point A to

a point B by We see from Fig. 2.13b that is given in terms of the coor-

dinates of points A and B by

(2.10)

Notice that the x component of the position vector from a point A to a point B

is obtained by subtracting the x coordinate of A from the x coordinate of B, and

the y component is obtained by subtracting the y coordinate of A from the

y coordinate of B.

RESULTS

rAB = 1xB - xA2i + 1yB - yA2j.

rABrAB.

rAB1xB, yB2.

1xA, yA2

aU = a1Ux i + Uy j2 = aUx i + aUy j.

U + V

x

y

U

A vector U that is parallel to the x y plane can be expressed as

where i is a unit vector that points in the positive x axis direction

and j is a unit vector that points in the positive y axis direction. 

The magnitude of U is given by

U   U2
x  U2

y. (2.8)

(2.7)U  Uxi  Uy j,
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32 Chapter 2 Vectors

Vector addition (or subtraction)

and multiplication of a vector

by a number can be carried out in

terms of components.

U  V  (Ux i  Uy j)  (Vx i  Vy j)

aU  a(Ux i  Uy j)

 aUx i  aUy j.

 (Ux  Vx)i  (Uy  Vy) j, (2.9)

The position vector from A to B is given by

A

x

y

B

rAB

(xA, yA)

(xB, yB)

rAB  (xB  xA)i  (yB  yA)j.       (2.10)

Manipulating Vectors in Terms of Components

Active Example 2.3 Determining Components (* Related Problem 2.31)

The cable from point A to point B exerts a 900-N force on the top of the televi-

sion transmission tower that is represented by the vector F. Express F in terms

of components using the coordinate system shown.

Strategy
We will determine the components of the vector F in two ways. In the first

method, we will determine the angle between F and the y axis and use trigonom-

etry to determine the components. In the second method, we will use the given

slope of the cable AB and apply similar triangles to determine the compo-

nents of F.

Solution

First Method

A

B

80 m

40 m

A

B

80 m

F

40 m

x

y

Force
  exerted on
    the tower
      by cable
        AB

Position Vectors in Terms of Components

x

y

40 m

80 m F

B

A

a

Determine the angle between F

and the y axis:

a  arctan            26.6 .
40

80   
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2.2 Components in Two Dimensions 33

Second Method

Use trigonometry to determine F in terms of  

its components:

F  *F*sin ai  *F*cos aj

 900 sin 26.6  i  900 cos 26.6  j (N)

 402i  805j (N).

x

y

F

B

A

a

Using the given dimensions, calculate

the distance from A to B:

(40 m)2  (80 m)2  89.4 m.

x

y

40 m

80 m

B

A

Use similar triangles to determine the

components of F:

so

 402i  805j (N).

F 
40

89.4
(900 N)i 

80

89.4
(900 N)j

40 m

80 m

x

y

89.4 m

*Fx*

*F*

*Fy*
*Fx*

*F*

and
40 m

89.4 m

*Fy*

*F*

80 m

89.4 m
,

Practice Problem The cable from point A to point B exerts a 900-N force on the

top of the television transmission tower that is represented by the vector F. Suppose

that you change the placement of point B so that the magnitude of the y component

of F is three times the magnitude of the x component of F. Express F in terms of its

components. How far along the x axis from the origin of the coordinate system should

B be placed?

Answer: Place point B at 26.7 m from the origin.F = 285i - 854j (N).
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34 Chapter 2 Vectors

A

F

x

30*

y

B

30* A

B

Example 2.4 Determining Components in Terms of an Angle (* Related Problem 2.33)

Hydraulic cylinders are used to exert forces in many mechanical devices. The

force is exerted by pressurized liquid (hydraulic fluid) pushing against a piston

within the cylinder. The hydraulic cylinder AB exerts a 4000-lb force F on the

bed of the dump truck at B. Express F in terms of components using the coor-

dinate system shown.

Strategy
When the direction of a vector is specified by an angle, as in this example, we

can determine the values of the components from the right triangle formed by

the vector and its components.

Solution
We draw the vector F and its vector components in Fig. a. From the resulting

right triangle, we see that the magnitude of is

points in the negative x direction, so

The magnitude of is

The vector component points in the positive y direction, so

The vector F, in terms of its components, is

The x component of F is and the y component is 2000 lb.

Critical Thinking
When you have determined the components of a given vector, you should

make sure they appear reasonable. In this example you can see from the vec-

tor s direction that the x component should be negative and the y component

positive. You can also make sure that the components yield the correct magni-

tude. In this example,

F = 21-3460 lb22
+ 12000 lb22

= 4000 lb.

-3460 lb,

F = Fx + Fy = -3460i + 2000j 1lb2.

Fy = 2000j 1lb2.

Fy

Fy = F  sin 30 = 14000 lb2sin 30 = 2000 lb.

Fy

Fx = -3460i 1lb2.

Fx

Fx = F  cos 30 = 14000 lb2cos 30 = 3460 lb.

Fx

30*

Fx

Fy

F

y

x

(a) The force F and its compo-

nents form a right triangle.
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2.2 Components in Two Dimensions 35

Example 2.5 Determining an Unknown Vector Magnitude (* Related Problem 2.47)

The cables A and B exert forces and on the hook. The magnitude of 

is 100 lb. The tension in cable B has been adjusted so that the total force

is perpendicular to the wall to which the hook is attached.

(a) What is the magnitude of 

(b) What is the magnitude of the total force exerted on the hook by the two cables?

Strategy
The vector sum of the two forces is perpendicular to the wall, so the sum of the

components parallel to the wall equals zero. From this condition we can obtain

an equation for the magnitude of 

Solution
(a) In terms of the coordinate system shown in Fig. a, the components of and

are

The total force is

Now we set the component of the total force parallel to the wall (the y compo-

nent) equal to zero:

We thus obtain an equation for the magnitude of 

(b) Since we now know the magnitude of we can determine the total force

acting on the hook:

The magnitude of the total force is 92.2 lb.

Critical Thinking
We can obtain the solution to (a) in a less formal way. If the component of the total

force parallel to the wall is zero, we see in Fig. a that the magnitude of the verti-

cal component of must equal the magnitude of the vertical component of :

Therefore the magnitude of is

FB =
FA  cos 40

cos 20
=

1100 lb2 cos 40

cos 20
= 81.5 lb.

FB

FA  cos 40 = FB  cos 20 .

FBFA

 = [1100 lb2sin 40 + 181.5 lb2sin 20 ]i = 92.2i 1lb2.

 FA + FB = 1 FA  sin 40 + FB  sin 20 2i

FB,

FB =
FA  cos 40

cos 20
=

1100 lb2cos 40

cos 20
= 81.5 lb.

FB:

FA  cos 40 - FB  cos 20 = 0,

+ 1 FA  cos 40 - FB  cos 20 2j.

FA + FB = 1 FA  sin 40 + FB  sin 20 2i

 FB = FB  sin 20 i - FB  cos 20 j.

 FA = FA  sin 40 i + FA  cos 40 j, 

FB

FA

FB.

FB?

FA + FB

FAFBFA

A

20*

40*

B

40*
FA

FB

20*

FA

20*
FB

y

x

40*

(a) Resolving and into

components parallel and

perpendicular to the wall.

FBFA
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36 Chapter 2 Vectors

y

x

F

3

4

Problem 2.25

y

x

F

7

11

y

x

W

D

L

F
20*

x

y

Problem 2.24

Problem 2.21

Problem 2.23

A

C

y

x

B

0.4 m

0.6 m

0.7 m
D

0.6 m 1.2 m

Problem 2.26

Problems

2.17 A force (N). What is its magnitude 

Strategy: The magnitude of a vector in terms of its compo-

nents is given by Eq. (2.8).

2.18 An engineer estimating the components of a force 

acting on a bridge abutment has determined that

and is negative. What is 

2.19 A support is subjected to a force (N). If the

support will safely support a force of magnitude 100 N, what is

the allowable range of values of the component 

2.20 If (kip) and (kip),

what is the magnitude of the force 

2.21 The forces acting on the sailplane are its weight

the drag and the lift L.

The sum of the forces Determine the compo-

nents and the magnitude of L.

W + L + D = 0.

D = -200i + 100j (lb),W = -500j (lb),

F = FA - 2FB?

FB = 200i - 200jFA = 600i - 800j

Fx?

F = Fxi + 80j

Fy?FyFx = 130 MN, F = 165 MN,

Fxi + Fy 
jF =

F ?F = 40i - 20j

2.25 The missile s engine exerts a 260-kN force F. (a) Express F

in terms of components using the coordinate system shown. (b) The

mass of the missile is 8800 kg. Determine the magnitude of the sum

of the forces exerted by the engine and the missile s weight.

2.26 For the truss shown, express the position vector from

point A to point D in terms of components. Use your result to

determine the distance from point A to point D.

rAD

2.22 Two perpendicular vectors U and V lie in the x y plane. The

vector and What are the components of V? 

2.23 A fish exerts a 10-lb force on the line that is represented by

the vector F. Express F in terms of components using the coordi-

nate system shown.

V = 20.U = 6i - 8j

2.24 A man exerts a 60-lb force F to push a crate onto a truck.

(a) Express F in terms of components using the coordinate system

shown. (b) The weight of the crate is 100 lb. Determine the

magnitude of the sum of the forces exerted by the man and the

crate s weight.
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Problems 37

 2.31 In Active Example 2.3, the cable AB exerts a 900-N force

on the top of the tower. Suppose that the attachment point B is

moved in the horizontal direction farther from the tower, and

assume that the magnitude of the force F the cable exerts on the

top of the tower is proportional to the length of the cable. (a) What

is the distance from the tower to point B if the magnitude of the

force is 1000 N? (b) Express the 1000-N force F in terms of com-

ponents using the coordinate system shown.

2.32 Determine the position vector in terms of its compo-

nents if (a) (b) u = 225 .u = 30 ;

rAB2 m

x

y

A B

E

F
C

D

Problems 2.27/2.28

2.29 The coordinates of point A are The y coordinate

of point B is 0.6 ft. The vector has the same direction as the unit

vector What are the components of rAB?eAB = 0.616i - 0.788j .

rAB

(1.8, 3 .0) ft .

x

y

A

B

rAB

Problem 2.29

45 in

98 in

50 in55 in
35 in

A

50 in

y

x

C

B

Problem 2.30

2.30 (a) Express the position vector from point A of the front-

end loader to point B in terms of components.

(b) Express the position vector from point B to point C in terms

of components.

(c) Use the results of (a) and (b) to determine the distance from

point A to point C.

x

y

A

B

O

rAB

rOA

Proposed
roadway

N

Problem 2.34

60 mm
150 mm

x

y

A C

B

*

rAB
rBC

Problem 2.32

2.33 In Example 2.4, the coordinates of the fixed point A are 

(17, 1) ft. The driver lowers the bed of the truck into a new

position in which the coordinates of point B are (9, 3) ft. The

magnitude of the force F exerted on the bed by the hydraulic

cylinder when the bed is in the new position is 4800 lb. Draw a

sketch of the new situation. Express F in terms of components.

2.34 A surveyor measures the location of point A and determines

that (m). He wants to determine the location

of a point B so that and 

What are the cartesian coordinates of point B?

rOA + rAB = 1200 m.rAB = 400 m

rOA = 400i + 800j

2.27 The points are the joints of the hexagonal struc-

tural element. Let be the position vector from joint A to joint

B, the position vector from joint A to joint C, and so forth.

Determine the components of the vectors and 

2.28 Determine the components of the vector rAB - rBC.

rAF.rAC

rAC

rAB

A, B,
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A

B
C x

y

3 m

Problems 2.35/2.36

y

x

B (4, 13) m

C

(9, 1) m
A

(0, 1.2) m

2.37 The x and y coordinates of points A, B, and C of the sailboat

are shown.

(a) Determine the components of a unit vector that is parallel to

the forestay AB and points from A toward B.

(b) Determine the components of a unit vector that is parallel to

the backstay BC and points from C toward B.

1 m

0.6 m Scoop

A B

D

C

0.15 m

0.6 m

1 m

x

y

Problems 2.39/2.40

2.35 The magnitude of the position vector from point B

to point A is 6 m and the magnitude of the position vector

from point C to point A is 4 m. What are the components

of

2.36 In Problem 2.35, determine the components of a unit vector

that points from point C toward point A.

Strategy: Determine the components of and then divide

the vector by its magnitude.rCA

rCA

eCA

rBA?

rCA

rBA

B

A

x

y

0.3 m

0.4 m

Problem 2.38

2.38 The length of the bar AB is 0.6 m. Determine the

components of a unit vector that points from point A

toward point B.

eAB

Problem 2.37

2.39 Determine the components of a unit vector that is parallel to

the hydraulic actuator BC and points from B toward C.

2.40 The hydraulic actuator BC exerts a 1.2-kN force F on the

joint at C that is parallel to the actuator and points from B toward

C. Determine the components of F.

BEDFMC02_0136129153.QXD  4/14/07  12:08 PM  Page 38



Problems 39

2.41 A surveyor finds that the length of the line OA is 1500 m and the length of the line OB is 2000 m.

(a) Determine the components of the position vector from point A to point B.

(b) Determine the components of a unit vector that points from point A toward point B.

2.42 The magnitudes of the forces exerted by the cables are and 

What is the magnitude of the total force exerted by the four cables?

2.43 The tensions in the four cables are equal: Determine the value of so that the four cables

exert a total force of 12,500-lb magnitude on the support.

TT3 = T4 =  T.T1 = T2 =

T4 = 5000 lb .T3 = 4000 lb,T2 = 3200 lb,T1 = 2800 lb,

x

y

29*

9*

40*51*

T4 T3

T2

T1

Problems 2.42/2.43

x

y

60*

B

A

O

Proposed bridge

River30*

N

Problem 2.41
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20*

FBC

FBA

B

C

A

B

Problem 2.44

2.44 The rope ABC exerts forces and on the block 

at B. Their magnitudes are equal: The magnitude 

of the total force exerted on the block at B by the rope is

Determine by expressing the forces

and in terms of components.FBCFBA

FBA920 N.FBA + FBC =

FBA = FBC .

FBCFBA

F1

F
2

F3

30*

45*

x 

 y

Problem 2.45

2.45 The magnitude of the horizontal force is 5 kN and

What are the magnitudes of and F3?F2F1 + F2 + F3 = 0.

F1

FB

FA

FD

FC

x

y

70*

30*

20*
a

Problem 2.46

2.46 Four groups engage in a tug-of-war. The magnitudes of the

forces exerted by groups B, C, and D are 

and If the vector sum of the four forces

equals zero, what is the magnitude of and the angle a?FA

FD = 900 lb.1000 lb,

FC =FB = 800 lb,

 2.47 In Example 2.5, suppose that the attachment point of

cable A is moved so that the angle between the cable and the

wall increases from to Draw a sketch showing the

forces exerted on the hook by the two cables. If you want the

total force to have a magnitude of 200 lb and be in

the direction perpendicular to the wall, what are the necessary

magnitudes of and

2.48 The bracket must support the two forces shown, where

An engineer determines that the bracket

will safely support a total force of magnitude 3.5 kN in any

direction. Assume that What is the safe range

of the angle a?

0 a 90 .

F1 = F2 = 2 kN.

FB?FA

FA + FB

55 .40

a

F2

F1

Problem 2.48
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Problems 41

2.49 The figure shows three forces acting on a joint of a struc-

ture. The magnitude of is 60 kN, and 

What are the magnitudes of and FB?FA

FA + FB + FC = 0.FC

y

x

FC

FB

FA

15*

40*

Problem 2.49

FD30*

FB FC

FA

Problem 2.50

2.50 Four coplanar forces act on a beam. The forces and 

are vertical. The vector sum of the forces is zero. The magnitudes

and Determine the magnitudes of 

and FD.

FAFC = 5 kN.FB = 10 kN

FCFB

2.51 Six forces act on a beam that forms part of a building s

frame. The vector sum of the forces is zero. The magnitudes

and 

Determine the magnitudes of and FG.FA

FD = 9 kN.FB = FE = 20 kN, FC = 16 kN,

50*70*
40* 40*

FEFB

FGFC FDFA

Problem 2.51

2.52 The total weight of the man and parasail is

The drag force D is perpendicular to the lift force L. If the

vector sum of the three forces is zero, what are the magnitudes

of L and D?

W = 230 lb .

2

5

x

y

L

D

W

Problem 2.52

2.53 The three forces acting on the car are shown. The force

T is parallel to the x axis and the magnitude of the force W is

14 kN. If what are the magnitudes of the

forces T and N?

T + W + N = 0,

20*

20*
W

T

N

y

x

Problem 2.53
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FA

FB

FC

4 m

A B C

6 m

4 m
4 m

Problem 2.54

2.54 The cables A, B, and C help support a pillar that forms

part of the supports of a structure. The magnitudes of the

forces exerted by the cables are equal:

The magnitude of the vector sum of the three forces is 200 kN.

What is FA ?

FA = FB = FC .

2.55 The total force exerted on the top of the mast B by the

sailboat s forestay AB and backstay BC is

What are the magnitudes of the forces exerted at B by the cables

AB and BC?

180i - 820j 1N2.

FAB
FAC

FAD

A

(*4, 1) m
B

C

D

x

y

(*2, *3) m

(4, 2) m

Problem 2.56

y

x

B (4, 13) m

C

(9, 1) m
A

(0, 1.2) m

Problem 2.55

2.56 The structure shown forms part of a truss designed by an

architectural engineer to support the roof of an orchestra shell. The

members AB, AC, and AD exert forces and on the

joint A. The magnitude If the vector sum of the three

forces equals zero, what are the magnitudes of and FAD?FAC

FAB = 4 kN.

FADFAB, FAC,

2.57 The distance 

(a) Determine the unit vector that points from B toward A.

(b) Use the unit vector you obtained in (a) to determine the coor-

dinates of the collar C.

2.58 Determine the x and y coordinates of the collar C as func-

tions of the distance s.

eBA

s = 45 in.

y

x

s

A

B

C

(14, 45) in

(75, 12) in

Problems 2.57/2.58

42 Chapter 2 Vectors
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x

y

A

(7, 9) ft

(12, 3) ft

(3, 5) ft

B

C

r

Problem 2.59 Problem 2.60

x

y

A

(9, 3) m

(10, 9) m

(3, 4) m

B

C

r

s

2.60 Let r be the position vector from point C to the point that is

a distance s meters from point A along the straight line between A

and B. Express r in terms of components. (Your answer will be in

terms of s.)

2.59 The position vector r goes from point A to a point on the

straight line between B and C. Its magnitude is Express

r in terms of components.

r = 6 ft.

2.3 Components in Three Dimensions

BACKGROUND

Many engineering applications require vectors to be expressed in terms of com-

ponents in a three-dimensional coordinate system. In this section we explain

this technique and demonstrate vector operations in three dimensions.

We first review how to draw objects in three dimensions. Consider a three-

dimensional object such as a cube. If we draw the cube as it appears when the

point of view is perpendicular to one of its faces, we obtain Fig. 2.14a. In this

view, the cube appears two dimensional. The dimension perpendicular to the

page cannot be seen. To remedy this, we move the point of view upward and to

the right, obtaining Fig. 2.14b. In this oblique view, the third dimension is vis-

ible. The hidden edges of the cube are shown as dashed lines.

(b)

x

y

z

(c)

x

y

z

(d)(a)

Figure 2.14
(a) A cube viewed with the line of sight perpendicular to a face.

(b) An oblique view of the cube.

(c) A cartesian coordinate system aligned with the edges of the cube.

(d) Three-dimensional representation of the coordinate system.
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x

y

z

Uy

Uz

Ux

Uj

i

k

(a)

x

y

z

x

y

z

x

y

z

(c)(b)

*Uy * Uz*

*Uy * Uz*

*Uz*

*Uy*Uy

Uz

Ux

U

*Ux*

*U*

We can use this approach to draw three-dimensional coordinate systems. In

Fig. 2.14c we align the x, y, and z axes of a three-dimensional cartesian coor-

dinate system with the edges of the cube. The three-dimensional representation

of the coordinate system alone is shown in Fig. 2.14d. The coordinate system

shown is said to be right handed. If the fingers of the right hand are pointed in

the direction of the positive x axis and then bent (as in preparing to make a fist)

toward the positive y axis, the thumb points in the direction of the positive z axis

(Fig. 2.15). Otherwise, the coordinate system is left handed. Because some

equations used in mathematics and engineering do not yield correct results when

they are applied using a left-handed coordinate system, we use only right-hand-

ed coordinate systems.

We can express a vector U in terms of vector components and 

parallel to the x, y, and z axes, respectively (Fig. 2.16), as

(2.11)

(We have drawn a box around the vector to help in visualizing the directions

of the vector components.) By introducing unit vectors i, j, and k that point

in the positive x, y, and z directions, we can express U in terms of scalar

components as

(2.12)

We will refer to the scalars and as the x, y, and z components of U.

Magnitude of a Vector in Terms of Components

Consider a vector U and its vector components (Fig. 2.17a). From the right tri-

angle formed by the vectors and their sum (Fig. 2.17b), we can

see that

(2.13)

The vector U is the sum of the vectors and These three vectors form

a right triangle (Fig. 2.17c), from which we obtain

Substituting Eq. (2.13) into this result yields the equation

U 2
= Ux

2
+ Uy

2
+ Uz

2
= Ux

2 + Uy
2 + Uz

2
.

U 2
= Ux

2
+ Uy + Uz

2
.

Uy + Uz.Ux

Uy + Uz
2
= Uy

2
+ Uz

2
.

Uy + UzUy, Uz,

UzUx, Uy,

U = Ux 
i + Uy  

j + Uz 
k.

U = Ux + Uy + Uz.

UzUx, Uy,

Figure 2.16
A vector U and its vector components.

Figure 2.17
(a) A vector U and its vector components.

(b) The right triangle formed by the vectors and 

(c) The right triangle formed by the vectors U, and Uy + Uz.Ux,

Uy + Uz.Uy, Uz,

y

x

z

Figure 2.15
Recognizing a right-handed coordinate

system.

44 Chapter 2 Vectors
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(c) (d)

xxxx

yyy y

zzz z

Uzk

Uyj

Uxi

uz

uy

uxux

uy

uz

(b)(a)

*U*
*U*

*U*

U

Figure 2.18

(a) A vector U and the angles and 

(b) (d) The angles and and the vector components of U.uzux, uy,

uz.ux, uy,

Thus, the magnitude of a vector U is given in terms of its components in three

dimensions by

(2.14)

Direction Cosines

We described the direction of a vector relative to a two-dimensional cartesian

coordinate system by specifying the angle between the vector and one of the co-

ordinate axes. One of the ways we can describe the direction of a vector in three

dimensions is by specifying the angles and between the vector and the

positive coordinate axes (Fig. 2.18a).

In Figs. 2.18b d, we demonstrate that the components of the vector U are

respectively given in terms of the angles and by

(2.15)

The quantities and are called the direction cosines of U. The

direction cosines of a vector are not independent. If we substitute Eqs. (2.15) into

Eq. (2.14), we find that the direction cosines satisfy the relation

(2.16)

Suppose that e is a unit vector with the same direction as U, so that

In terms of components, this equation is

Thus the relations between the components of U and e are

By comparing these equations to Eqs. (2.15), we see that

The direction cosines of a vector U are the components of a unit vector with the

same direction as U.

cos ux = ex,  cos uy = ey,  cos uz = ez.

Ux = U ex, Uy = U ey, Uz = U ez.

Ux i + Uy 
j + Uzk = U 1ex i + ey 

j + ezk2.

U = U e.

cos2 ux + cos2 uy + cos2 uz = 1.

cos uzcos ux, cos uy,

Ux = U  cos ux, Uy = U  cos uy, Uz = U  cos uz.

uz,ux, uy,

uzux, uy,

U = 2Ux
2
+ Uy

2
+ Uz

2.
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(a)

z z

z

U

(b)

xx

y

y

U

(c)

x

y

A

B

A

B

A

B

(xB, yB, zB)

(xA, yA, zA)

rAB

U + *U*eABeAB +
rAB

*rAB*

Figure 2.20
(a) Two points A and B on a line parallel to U.

(b) The position vector from A to B.

(c) The unit vector that points from A toward B.eAB

Position Vectors in Terms of Components

Generalizing the two-dimensional case, we consider a point A with coordi-

nates and a point B with coordinates The position

vector from A to B, shown in Fig. 2.19a, is given in terms of the coordi-

nates of A and B by

(2.17)

The components are obtained by subtracting the coordinates of point A from the

coordinates of point B (Fig. 2.19b).

Components of a Vector Parallel to a Given Line

In three-dimensional applications, the direction of a vector is often defined

by specifying the coordinates of two points on a line that is parallel to the vec-

tor. This information can be used to determine the components of the vector.

Suppose that we know the coordinates of two points A and B on a line

parallel to a vector U (Fig. 2.20a). We can use Eq. (2.17) to determine the

rAB = 1xB - xA2i + 1yB - yA2j + 1zB - zA2k.

rAB

1xB, yB, zB2.1xA, yA, zA2

46 Chapter 2 Vectors

(a)

x

y

z
x

y

z

(b)

A A

B
B

(yB * yA)j(xB, yB, zB)

(xA, yA, zA)

rAB rAB

(zB * zA)k

(xB * xA)i

Figure 2.19
(a) The position vector from point A to

point B.

(b) The components of can be deter-

mined from the coordinates of points

A and B.

rAB
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x

y

z

Any vector U can be expressed as

where i is a unit vector that points in the positive x axis  
direction, j is a unit vector that points in the positive y axis 
direction, and k is a unit vector that points in the positive  
z axis direction.

The magnitude of U is given by

U   U2
x  U2

y  U2
z.             (2.14)

U

(2.12)U  Ux i  Uy j  Uzk,

Direction Cosines

position vector from A to B (Fig. 2.20b). We can divide by its magni-

tude to obtain a unit vector that points from A toward B (Fig. 2.20c). Since

has the same direction as U, we can determine U in terms of its scalar

components by expressing it as the product of its magnitude and 

More generally, suppose that we know the magnitude of a vector U and

the components of any vector V that has the same direction as U. Then 

is a unit vector with the same direction as U, and we can determine the com-

ponents of U by expressing it as 

RESULTS

U = U 1V> V 2.

V> V

eAB.

eAB

eAB

rABrAB

U

x 

y

z

uy

uxuz

The direction of a vector U relative
to a given coordinate system can be
specified by the angles  ux, uy,  and uz
between the vector and the positive
coordinate axes.

The components of U are given by

Uz  U cos uz.

The terms cos ux, cos uy, and cos uz are called
the direction cosines of U. The direction cosines
are the components of a unit vector with the
same direction as U.

Ux  U cos ux,

Uy  U cos uy,
(2.15)
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Active Example 2.6 Direction Cosines (* Related Problem 2.67)

The coordinates of point C of the truss are and

the coordinates of point D are What are the

direction cosines of the position vector from point C to point D?rCD

xD = 2 m, yD = 3 m, zD = 1 m.

xC = 4 m, yC = 0, z C = 0,

48 Chapter 2 Vectors

C

A

B

x

y

D

z

A

x

 y

B

rAB

(xA, yA, zA)

(xB, yB, zB)

z

The position vector from A to B is given by

rAB  (xB  xA)i  (yB  yA)j  (zB  zA)k.       (2.17)

z

U

x

y

A

B
(xB, yB, zB)

(xA, yA, zA)

The vector U is parallel to the line

through points A and B. Obtain the

position vector rAB from A to B in terms

of its components. Divide rAB by its

magnitude to obtain a unit vector eAB

that is parallel to the line. Then the vector

U in terms of its components is given by

U  *U*eAB.

Position Vectors in Terms of Components

Components of a Vector Parallel to a Given Line
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2.3 Components in Three Dimensions 49

Strategy
Knowing the coordinates of points C and D, we can determine in terms of

its components. Then we can calculate the magnitude of (the distance from

C to D) and use Eqs. (2.15) to obtain the direction cosines.

Solution

rCD

rCD

Practice Problem The coordinates of point B of the truss are 

Determine the components of a unit vector that points from point B

toward point D.

Answer: .eBD = -0.110i + 0.827j - 0.551k

eBDzB = 3 m.

 yB = 0,xB = 2.4 m,

rCD

(2, 3, 1) m

(4, 0, 0) m

C
x

y

D

z

Calculate the magnitude of rCD.

Determine the position vector rCD in

terms of its components.

rCD  (xD  xC)i  (yD  yC)j  (zD  zC)k.

 (2  4)i  (3  0)j  (1  0)k (m)

 2i  3j  k (m).

rCD   r2
CDx  r2

CDy  r2
CDz 

( 2 m)2  (3 m)2  (1 m)2

3.74 m.

cos ux  0.535,

Determine the direction cosines.

rCDx 

rCD

2 m

3.74 m

cos uz  0.267,
rCDz 

rCD

1 m

3.74 m

cos uy  0.802,
rCDy 

rCD

3 m

3.74 m
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50 Chapter 2 Vectors

Example 2.7 Determining Components in Three Dimensions (* Related Problem 2.76)

The crane exerts a 600-lb force F on the caisson. The angle between F and the x

axis is 54 , and the angle betweenF and the y axis is 40 . The z component ofF is

positive. Express F in terms of components.

Strategy
Only two of the angles between the vector and the positive coordinate axes are

given, but we can use Eq. (2.16) to determine the third angle. Then we can de-

termine the components of F by using Eqs. (2.15).

Solution
The angles between F and the positive coordinate axes are related by

Solving this equation for we obtain the two solutions 

and which tells us that or The z

component of the vector F is positive, so the angle between F and the positive

z axis is less than 90 . Therefore 

The components of F are

Critical Thinking
You are aware that knowing the square of a number does not tell you the

value of the number uniquely. If the number a can be either 2 or 

In this example, knowledge of the angles and allowed us to solve 

Eq. (2.16) for the value of which resulted in  two possible values of

the angle There is a simple geometrical explanation for why this happened.

The two angles and are sufficient to define a line parallel to the vector F,

but not the direction of F along that line. The two values of we obtained

correspond to the two possible directions of F along the line. Additional

information is needed to indicate the direction. In this example, the additional

information was supplied by stating that the z component of F is positive.

uz

uyux

uz.

cos2
 uz,

uyux

-2.a2
= 4,

 Fz = F  cos uz = 600 cos 74.9 = 156 lb.

 Fy = F  cos uy = 600 cos 40 = 460 lb, 

 Fx = F  cos ux = 600 cos 54 = 353 lb, 

uz = 74.9 .

uz = 105.1 .uz = 74.9cos uz = -0.260,

cos uz = 0.260cos uz,

cos2
 ux + cos2

 uy + cos2
 uz = 1cos 54 2

2
+ 1cos 40 2

2
+ cos2

 uz = 1.

40* F

y

x
54*

z

BEDFMC02_0136129153.QXD  4/14/07  12:09 PM  Page 50
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The tether of the balloon exerts an 800-N force F on the hook at O. The verti-

cal line AB intersects the x z plane at point A. The angle between the z axis and

the line OA is 60 , and the angle between the line OA and F is 45 . Express F

in terms of components.

Strategy
We can determine the components of F from the given geometric information

in two steps. First, we express F as the sum of two vector components parallel

to the lines OA and AB. The component parallel to AB is the vector component

Then we can use the component parallel to OA to determine the vector com-

ponents and 

Solution
In Fig. a, we express F as the sum of its y component and the component 

parallel to OA. The magnitude of is

and the magnitude of is

In Fig. b, we express in terms of the vector components and The mag-

nitude of is

and the magnitude of is

The vector components and all point in the positive axis directions,

so the scalar components of F are positive:

Critical Thinking
As this example demonstrates, two angles are required to specify a vector s

direction relative to a three-dimensional coordinate system. The two angles

used may not be defined in the same way as in the example, but however they

are defined, you can determine the components of the vector in terms of the

magnitude and the two specified angles by a procedure similar to the one we

used here.

F = 490i + 566j + 283k 1N2.

FzFx, Fy,

Fz = Fh  cos 60 = 1566 N2 cos 60 = 283 N.

Fz

Fx = Fh  sin 60 = 1566 N2 sin 60 = 490 N,

Fx

Fz.FxFh

Fh = F  cos 45 = 1800 N2 cos 45 = 566 N.

Fh

Fy = F  sin 45 = 1800 N2 sin 45 = 566 N,

Fy

FhFy

Fz.Fx

Fy.

Example 2.8 Determining Components in Three Dimensions (* Related Problem 2.86)

O

y

x

B

F

z

O

A

O

y

x

B

F

A

Fy

45*

z

Fh

O

y

x

B

F

A

Fy

z

Fh

Fx

60*Fz

(a) Resolving F into vector com-

ponents parallel to OA and OB.

(b) Resolving into vector compo-

nents parallel to the x and z axes.

Fh
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The rope extends from point B through a metal loop attached to the wall at A

to point C. The rope exerts forces and on the loop at A with magni-

tudes What is the magnitude of the total force

exerted on the loop by the rope?F = FAB + FAC

FAB = FAC = 200 lb.

FACFAB

6 ft

7 ft

10 ft2 ft

4 ft
6 ft

A

C
B

Example 2.9 Determining Components in Three Dimensions (* Related Problem 2.90)

Strategy
The force is parallel to the line from A to B, and the force is parallel

to the line from A to C. Since we can determine the coordinates of points A, B,

and C from the given dimensions, we can determine the components of unit

vectors that have the same directions as the two forces and use them to express

the forces in terms of scalar components.

Solution
Let be the position vector from point A to point B and let be the posi-

tion vector from point A to point C (Fig. a). From the given dimensions, the

coordinates of points A, B, and C are

A: 16, 7, 02 ft,  B: 12, 0, 42 ft,  C: 112, 0, 62 ft.

rACrAB

FACFAB

B
C

A

x

z

y

rAB

rAC

(a) The position vectors and rAC.rAB

Therefore, the components of and with the coordinates in ft, are given by

 = -4i - 7j + 4k 1ft2

 = 12 - 62i + 10 - 72j + 14 - 02k

 rAB = 1xB - xA2i + 1yB - yA2j + 1zB - zA2k

rAC,rAB

7 ft

B
C

A

x

z

y

FAB FAC

6 ft

10 ft2 ft

4 ft
6 ft

BEDFMC02_0136129153.QXD  4/14/07  12:09 PM  Page 52



2.3 Components in Three Dimensions 53

and

Their magnitudes are and By dividing and 

by their magnitudes, we obtain unit vectors and that point in the direc-

tions of and (Fig. b):

 eAC =
rAC

rAC
= 0.545i - 0.636j + 0.545k.

 eAB =
rAB

rAB
= -0.444i - 0.778j + 0.444k, 

FACFAB

eACeAB

rACrABrAC = 11 ft.rAB = 9 ft

 = 6i - 7j + 6k 1ft2.

 = 112 - 62i + 10 - 72j + 16 - 02k

 rAC = 1xC - xA2i + 1yC - yA2j + 1zC - zA2k

B
C

A

x

z

y

eAB eAC

(b) The unit vectors and eAC.eAB

The forces and are

The total force exerted on the loop by the rope is

and its magnitude is

Critical Thinking

How do you know that the magnitude and direction of the total force exert-

ed on the metal loop at A by the rope is given by the magnitude and direc-

tion of the vector At this point in our development of

mechanics, we assume that force is a vector, but have provided no proof.

In the study of dynamics it is shown that Newton s second law implies that

force is a vector.

F = FAB + FAC?

F = 2120.22
2
+ 1-282.82

2
+ 1198.02

2
= 346 lb.

F = FAB + FAC = 20.2i - 282.8j + 198.0k 1lb2,

 FAC = 1200 lb2eAC = 109.1i - 127.3j + 109.1k 1lb2.

 FAB = 1200 lb2eAB = -88.9i - 155.6j + 88.9k 1lb2, 

FACFAB
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Example 2.10 Determining Components of a Force (* Related Problem 2.95)

The cable AB exerts a 50-N force T on the collar at A. Express T in terms of

components.

0.4 m

0.5 m

0.15 m

0.3 m

0.25 m

0.2 m
z

x

y

A

B C

D

O

eCDeAB

(a) The unit vectors and eCD.eAB

Strategy
Let be the position vector from A to B. We will divide by its magnitude

to obtain a unit vector having the same direction as the force T. Then we

can obtain T in terms of scalar components by expressing it as the product of

its magnitude and To begin this procedure, we must first determine the co-

ordinates of the collar A. We will do so by obtaining a unit vector pointing

from C toward D and multiplying it by 0.2 m to determine the position of the

collar A relative to C.

Solution

Determining the Coordinates of Point A The position vector from C to D,

with the coordinates in meters, is

Dividing this vector by its magnitude, we obtain the unit vector (Fig. a):

Using this vector, we obtain the position vector from C to A:

The position vector from the origin of the coordinate system to C is

so the position vector from the origin to A is

The coordinates of A are (0.309, 0.163, 0.114) m.

 = 0.309i + 0.163j + 0.114k 1m2.

 rOA = rOC + rCA = 10.4i + 0.3j2 + 1-0.091i - 0.137j + 0.114k2

rOC = 0.4i + 0.3j 1m2,

rCA = 10.2 m2eCD = -0.091i - 0.137j + 0.114k 1m2.

 = -0.456i - 0.684j + 0.570k.

 eCD =
rCD

rCD

=
-0.2i - 0.3j + 0.25k

21-0.22
2
+ 1-0.32

2
+ 10.252

2

eCD

 = -0.2i - 0.3j + 0.25k 1m2.

 rCD = 10.2 - 0.42i + 10 - 0.32j + 10.25 - 02k

eCD

eAB.

eAB

rABrAB

0.5 m

0.2 m

z

D

O

0.25 m

0.3 m0.2 m

x

0.4 m

0.15 m

y

A

T

CB
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Problems 55

Determining the Components of T Using the coordinates of point A, we

find that the position vector from A to B is

Dividing this vector by its magnitude, we obtain the unit vector (Fig. a).

The force T is

Critical Thinking
Look at the two ways unit vectors were used in this example. The unit vector

was used to obtain the components of the position vector which made

it possible to determine the coordinates of point A. The coordinates of point A

were then used to determine the unit vector which was used to express the

force T in terms of its components.

eAB,

rCA,eCD

 = -33.7i + 36.7j + 3.9k 1N2.

 T = T eAB = 150 N21-0.674i + 0.735j + 0.079k2

 = -0.674i + 0.735j + 0.079k.

 eAB =
rAB

rAB
=

-0.309i + 0.337j + 0.036k 1m2

21-0.309 m2
2
+ 10.337 m2

2
+ 10.036 m2

2

eAB

 = -0.309i + 0.337j + 0.036k 1m2.

 rAB = 10 - 0.3092i + 10.5 - 0.1632j + 10.15 - 0.1142k

Problems

2.61 A vector What is its magnitude?

Strategy: The magnitude of a vector is given in terms of its

components by Eq. (2.14).

2.62 The vector is a unit vector. Determine

the component 

2.63 An engineer determines that the attachment point will be

subjected to a force If the attach-

ment point will safely support a force of 80-kN magnitude in any

direction, what is the acceptable range of values of Fy?

F = 20i + Fy  
j - 45k 1kN2.

ez.

e =
1
3 i +

2
3  j + ez k

U = 3i - 4j - 12k.

y

z

x

F

Problem 2.63

2.64 A vector Its magnitude 

Its components are related by the equations and

Determine the components. 

2.65 An object is acted upon by two forces 

and What is the mag-

nitude of the total force acting on the object?

2.66 Two vectors and 

(a) Determine the magnitudes of U and V.

(b) Determine the magnitude of the vector 

 2.67 In Active Example 2.6, suppose that you want to

redesign the truss, changing the position of point D so that the

magnitude of the vector from point C to point D is To

accomplish this, let the coordinates of point D be

and determine the value of so that Draw a

sketch of the truss with point D in its new position. What

are the new direction cosines of ?

2.68 A force vector is given in terms of its components by

(a) What are the direction cosines of F?

(b) Determine the components of a unit vector e that has the same

direction as F.

F = 10i - 20j - 20k 1N2.

rCD

rCD = 3 m.yD

(2, yD, 1) m,

3 m.rCD

3U + 2V.

V = 4i + 12j - 3k.U = 3i - 2j + 6k

F2 = -60i + 20j + 40k 1kN2.24k 1kN2

F1 = 20i + 30j -

Uz = 4Uy.

Uy = -2Ux

U = 30.U = Ux 
i + Uy  

j + Uz 
k.
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2.69 The cable exerts a force F on the hook at O whose magni-

tude is 200 N. The angle between the vector F and the x axis is

40 , and the angle between the vector F and the y axis is 70 .

(a) What is the angle between the vector F and the z axis?

(b) Express F in terms of components.

Strategy: (a) Because you know the angles between the

vector F and the x and y axes, you can use Eq. (2.16) to determine

the angle between F and the z axis. (Observe from the figure that

the angle between F and the z axis is clearly within the range

) (b) The components of F can be obtained

with Eqs. (2.15).

0 6 uz 6 180 .

Refer to the following diagram when solving Problems
2.72 through 2.75.

y

x

z

O

70*

40*

F

Problem 2.69

130*

120*

y

x

z

T

y

x

z

Problem 2.71

B (5, 0, 3) m

C (6, 0, 0) m

D (4, 3, 1) m

z

y

x

A

Problems 2.72 2.75

2.72 Determine the components of the position vector from

point B to point D. Use your result to determine the distance

from B to D.

2.73 What are the direction cosines of the position vector 

from point B to point D?

2.74 Determine the components of the unit vector that

points from point C toward point D.

2.75 What are the direction cosines of the unit vector that

points from point C toward point D?

 2.76 In Example 2.7, suppose that the caisson shifts on the

ground to a new position. The magnitude of the force F remains

600 lb. In the new position, the angle between the force F and the

x axis is and the angle between F and the z axis is Express

F in terms of components.

2.77 Astronauts on the space shuttle use radar to determine the

magnitudes and direction cosines of the position vectors of two

satellites A and B. The vector from the shuttle to satellite A has

magnitude 2 km and direction cosines 

The vector from the shuttle to satellite

B has magnitude 4 km and direction cosines 

What is the distance between

the satellites?

cos uz = -0.371.cos uy = 0.557,

cos ux = 0.743,

rBcos uz = 0.512.0.384,

cos uy =cos ux = 0.768,

rA

70 .60

eCD

eCD

rBD

rBD

2.70 A unit vector has direction cosines and

Its z component is positive. Express it in terms of

components.

2.71 The airplane s engines exert a total thrust force T of 200-kN

magnitude. The angle between T and the x axis is 120 , and the

angle between T and the y axis is 130 . The z component of T

is positive.

(a) What is the angle between T and the z axis?

(b) Express T in terms of components.

cos uy = 0.2.

cos ux = -0.5

x

rB

z

B

A rA

y

Problem 2.77
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2.79 Consider the structure described in Problem 2.78. After re-

turning to the United States, an archaeologist discovers that a

graduate student has erased the only data file containing the di-

mension b. But from recorded GPS data he is able to calculate

that the distance from point B to point C is 16.61 m.

(a) What is the distance b?

(b) Determine the direction cosines of the position vector

from B to C.

2.80 Observers at A and B use theodolites to measure the direc-

tion from their positions to a rocket in flight. If the coordinates of

the rocket s position at a given instant are (4, 4, 2) km, determine

the direction cosines of the vectors and that the observers

would measure at that instant.

2.81* Suppose that the coordinates of the rocket s position are

unknown. At a given instant, the person at A determines that the

direction cosines of are and

and the person at B determines that the direction

cosines of are and

What are the coordinates of the rocket s

position at that instant?

cos uz = -0.177.

cos uy = 0.798,cos ux = -0.576,rBR

cos uz = 0.267,

cos uy = 0.802,cos ux = 0.535,rAR

rBRrAR

4 m

y

10 m

z

b

x

A

C

10 m

B

4 m

8 m

8 m

Problem 2.78

B  (5, 0, 2) km

A

rAR

rBR

x

y

z

Problems 2.80/2.81

P

y

A

z

B x

Problem 2.82

2.82* The height of Mount Everest was originally measured by a

surveyor in the following way. He first measured the altitudes of

two points and the horizontal distance between them. For exam-

ple, suppose that the points A and B are 3000 m above sea level

and are 10,000 m apart. He then used a theodolite to measure the

direction cosines of the vector from point A to the top of the

mountain P and the vector from point B to P. Suppose that

the direction cosines of are 

and and the direction cosines of are

and 

Using this data, determine the height of Mount Everest above

sea level.

cos uz = 0.5472.cos ux = -0.3743, cos uy = 0.7486,

rBPcos uz = 0.5048,

cos ux = 0.5179, cos uy = 0.6906,rAP

rBP

rAP

y

x

z

30*

B

O

A

rOA

60*

Problem 2.83

2.83 The distance from point O to point A is 20 ft. The straight

line AB is parallel to the y axis, and point B is in the x z plane.

Express the vector in terms of components.

Strategy: You can express as the sum of a vector from O

to B and a vector from B to A. You can then express the vector

from O to B as the sum of vector components parallel to the x and

z axes. See Example 2.8.

rOA

rOA

2.78 Archaeologists measure a pre-Columbian ceremonial

structure and obtain the dimensions shown. Determine (a) the

magnitude and (b) the direction cosines of the position vector

from point A to point B.
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2.84 The magnitudes of the two force vectors are 

and Determine the magnitude of the sum of the

forces 

2.85 Determine the direction cosines of the vectors and FB .FA

FA + FB.

FB = 100 lb .

FA = 140 lb 2.88 The cable BC exerts an 8-kN force F on the bar AB at B.

(a) Determine the components of a unit vector that points from

point B toward point C.

(b) Express F in terms of components.

B

P

A

Problem 2.87

y

A

C  (3, 0, 4) m

B  (5, 6, 1) m

z

x

F

Problem 2.88

D
x

C
B

A

20*

4 ft

4 ft

6 ft

2 ft

E

z

y

T

Problem 2.89

2.89 A cable extends from point C to point E. It exerts a 50-lb

force T on the plate at C that is directed along the line from C to

E. Express T in terms of components.

x

y

z

40*

50*30*

60*

FB

FA

Problems 2.84/2.85

2.86 In Example 2.8, suppose that a change in the wind

causes a change in the position of the balloon and increases the

magnitude of the force F exerted on the hook at O to 900 N. In

the new position, the angle between the vector component

and is and the angle between the vector components

and is Draw a sketch showing the relationship of these

angles to the components of F. Express F in terms of its

components.

2.87 An engineer calculates that the magnitude of the axial force

in one of the beams of a geodesic dome is The

cartesian coordinates of the endpoints A and B of the straight

beam are and

respectively. Express the force P in terms of components.

1-9.2, 24.4, -15.62 m,1-12.4, 22.0, -18.42 m

P = 7.65 kN.

40 .Fz

Fh35 ,F

Fh

 2.90 In Example 2.9, suppose that the metal loop at A is

moved upward so that the vertical distance to A increases from

7 ft to 8 ft. As a result, the magnitudes of the forces and

increase to What is the magni-

tude of the total force exerted on the loop by

the rope?

F = FAB + FAC

FAB = FAC = 240 lb .FAC

FAB
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A

x

y

40 m

60 m

40 m
40 m

60 m

B

C

D

z

FABFAC

FAD

A

Problems 2.93/2.94

 2.95 In Example 2.10, suppose that the distance from point

C to the collar A is increased from 0.2 m to 0.3 m, and the

magnitude of the force T increases to 60 N. Express T in terms

of its components.

2.96 The cable AB exerts a 32-lb force T on the collar at A.

Express T in terms of components.

x

y

A

A
6 ft

B

4 ft

4 ft

7 ft

4 ft

z

T

Problem 2.96

z

y

x

A

B

4 m

4 m

3 m

20*

Problems 2.97/2.98

2.97 The circular bar has a 4-m radius and lies in the x y plane.

Express the position vector from point B to the collar at A in terms

of components.

2.98 The cable AB exerts a 60-N force T on the collar at A that

is directed along the line from A toward B. Express T in terms of

components.

2.93 The 70-m-tall tower is supported by three cables that

exert forces and on it. The magnitude of each

force is 2 kN. Express the total force exerted on the tower by

the three cables in terms of components.

2.94 The magnitude of the force is 2 kN. The x and z

components of the vector sum of the forces exerted on the

tower by the three cables are zero. What are the magnitudes of

and FAD?FAC

FAB

FADFAB, FAC,

2.91 The cable AB exerts a 200-lb force at point A that is

directed along the line from A to B. Express in terms of

components.

2.92 Cable AB exerts a 200-lb force at point A that is di-

rected along the line from A to B. The cable AC exerts a 100-lb

force at point A that is directed along the line from A to C.

Determine the magnitude of the total force exerted at point A

by the two cables.

FAC

FAB

FAB

FAB

A (6, 0, 10) ft

B

C
8 ft

x

z

y

6 ft

FAB
FAC

8 ft

Problems 2.91/2.92
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U
V

(b)

(a)

V

U

u

Figure 2.21
(a) The vectors U and V.

(b) The angle between U and V when the

two vectors are placed tail to tail.

u

60 Chapter 2 Vectors

2.4 Dot Products

BACKGROUND

Two kinds of products of vectors, the dot and cross products, have been found to

have applications in science and engineering, especially in mechanics and elec-

tromagnetic field theory. We use both of these products in Chapter 4 to evaluate

moments of forces about points and lines. 

The dot product of two vectors has many uses, including determining the

components of a vector parallel and perpendicular to a given line and deter-

mining the angle between two lines in space.

Definition

Consider two vectors U and V (Fig. 2.21a). The dot product of U and V, denoted

by (hence the name dot product ), is defined to be the product of the

magnitude of U, the magnitude of V, and the cosine of the angle between U

and V when they are placed tail to tail (Fig. 2.21b):

(2.18)

Because the result of the dot product is a scalar, the dot product is sometimes

called the scalar product. The units of the dot product are the product of the

units of the two vectors. Notice that the dot product of two nonzero vectors is

equal to zero if and only if the vectors are perpendicular.

The dot product has the properties

The dot product is commutative. (2.19)

The dot product is associative (2.20)
with respect to scalar 

multiplication.

and

The dot product is associative
(2.21)

with respect to vector addition.

for any scalar a and vectors U, V, and W.

Dot Products in Terms of Components

In this section we derive an equation that allows you to determine the dot prod-

uct of two vectors if you know their scalar components. The derivation also

results in an equation for the angle between the vectors. The first step is to

determine the dot products formed from the unit vectors i, j, and k. Let us eval-

uate the dot product The magnitude and the angle between two

identical vectors placed tail to tail is zero, so we obtain

The dot product of i and j is

Continuing in this way, we obtain

(2.22)

i # i = 1, i # j = 0, i # k = 0,

j # i = 0, j # j = 1, j # k = 0,

k # i = 0, k # j = 0, k # k = 1.

i # j = i j # cos 190 2 = 112112102 = 0.

i # i = i i  cos 102 = 112112112 = 1.

i = 1,i # i.

U #
1V + W2 = U # V + U #W, 

a 1U # V2 = 1aU2
# V = U #

1aV2, 
U # V = V # U, 

U # V = U V  cos u.

u

U # V
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U

e

L

u

Figure 2.23
The unit vector e is parallel to L.

U

(a)

L

U

(b)

Un

Up

L

u

Figure 2.22
(a) A vector U and line L.

(b) Resolving U into components parallel

and normal to L.

The dot product of two vectors U and V, expressed in terms of their com-

ponents, is

In obtaining this result, we used Eqs. (2.20) and (2.21). Substituting Eqs. (2.22)

into this expression, we obtain an equation for the dot product in terms of the

scalar components of the two vectors:

(2.23)

To obtain an equation for the angle in terms of the components of the vectors,

we equate the expression for the dot product given by Eq. (2.23) to the defini-

tion of the dot product, Eq. (2.18), and solve for 

(2.24)

Vector Components Parallel and Normal to a Line

In some engineering applications a vector must be expressed in terms of vec-

tor components that are parallel and normal (perpendicular) to a given line. The

component of a vector parallel to a line is called the projection of the vector onto

the line. For example, when the vector represents a force, the projection of the

force onto a line is the component of the force in the direction of the line.

We can determine the components of a vector parallel and normal to a line

by using the dot product. Consider a vector U and a straight line L (Fig. 2.22a).

We can express U as the sum of vector components and that are parallel

and normal to L (Fig. 2.22b).

The Parallel Component In terms of the angle between U and the vector

component the magnitude of is

(2.25)

Let e be a unit vector parallel to L (Fig. 2.23). The dot product of e and U is

Comparing this result with Eq. (2.25), we see that the magnitude of is

Therefore the parallel vector component, or projection of U onto L, is

(2.26)

(This equation holds even if e doesn t point in the direction of In that case, the

angle and is negative.) When the components of a vector and

the components of a unit vector e parallel to a line L are known, we can use

Eq. (2.26) to determine the component of the vector parallel to L.

The Normal Component Once the parallel vector component has been

determined, we can obtain the normal vector component from the relation

(2.27)Un = U - Up.

U = Up + Un:

e # Uu 7 90

Up.

Up = 1e # U2e.

Up = e # U.

Up

e # U = e U  cos u = U  cos u.

Up = U  cos u.

UpUp,

u

UnUp

cos u =
U # V
U V

=
UxVx + UyVy + UzVz

U V
.

cos u:

u

U # V = UxVx + UyVy + UzVz.

 + UzVx1k
# i2 + UzVy1k

# j2 + UzVz1k
# k2.

 + UyVx1j
# i2 + UyVy1j

# j2 + UyVz1j
# k2

 = UxVx1i
# i2 + UxVy1i

# j2 + UxVz1i
# k2

 U # V = 1Ux i + Uy j + Uzk2
#
1Vx i + Vy j + Vzk2
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U

Un

Up

L

u

Vector Components Parallel and Normal to a Line

A vector U can be resolved into a vector component Up 

that is parallel to a given line L and a vector component Un

that is normal to L. If e is a unit vector that is parallel to L,

the parallel component of U is given by

The normal component can be obtained from the relation

Up  (e U) e.                                                           (2.26)

Un  U  Up. (2.27)

Active Example 2.11 Dot Products (* Related Problem 2.99)

The components of two vectors U and V are 

(a) What is the value of U  V? (b)

What is the angle between U and V when they are placed tail to tail?

Strategy
Knowing the components of U and V, we can use Eq. (2.23) to determine the

value of U  V. Then we can use the definition of the dot product, Eq. (2.18),

to calculate the angle between the vectors.

V = 4i + 2j + 2k.

U = 6i - 5j - 3k and

Dot Product in Terms of Components

The dot product of U and V is given in terms of the 

components of the vectors by

V

U

u

Dot Product

The dot product of two vectors U and V is defined by

U V  *U**V*cos u,

where u is the angle between the vectors when they

are placed tail to tail. Notice that U U  *U*

2.

If *U*  0 and *V*  0, U V  0 if and only if

U and V are perpendicular.

U V  UxVx  UyVy  UzVz.

(2.18)

(2.23)

RESULTS
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Example 2.12 Using the Dot Product to Determine an Angle (* Related Problem 2.100)

What is the angle between the lines AB and AC?

Strategy
We know the coordinates of the points A, B, and C, so we can determine the com-

ponents of the vector from A to B and the vector from A to C (Fig. a).

Then we can use Eq. (2.24) to determine 

Solution
The vectors and with the coordinates in meters, are

Their magnitudes are

The dot product of and is

Therefore,

The angle 

Critical Thinking
What does it mean if the dot product of two vectors is negative? From

Eq. (2.18) and the graph of the cosine (Fig. b), you can see that the dot product

is negative, as it is in this example, only if the enclosed angle between the two

vectors is greater than 90 .

u = arccos1-0.3042 = 107.7 .

cos u =
rAB

# rAC

rAB rAC

=
-10 m2

14.90 m216.71 m2

= -0.304.

rAB
# rAC = 12 m214 m2 + 1-2 m215 m2 + 1-4 m212 m2 = -10 m2.

rACrAB

 rAC = 214 m2
2
+ 15 m2

2
+ 12 m2

2
= 6.71 m.

 rAB = 212 m2
2
+ 1-2 m2

2
+ 1-4 m2

2
= 4.90 m, 

 rAC = 18 - 42i + 18 - 32j + 14 - 22k = 4i + 5j + 2k 1m2.

 rAB = 16 - 42i + 11 - 32j + 1-2 - 22k = 2i - 2j - 4k 1m2, 

rAC,rAB

u.

rACrAB

u

x

y

z

(8, 8, 4) m

(6, 1, 2) m(4, 3, 2) m
A B

C

u

rAC

rAB

x

y

z

(8, 8, 4) m

(6, 1, 2) m(4, 3, 2) m
A B

C

u

cos u

1

0

0 90 180

1

u

(b) Graph of cos u.

(a) The position vectors and rAC.rAB

Use the components of the vectors

to determine the value of U*V.

Use the definition of 

U*V to determine u.

U*V  *U**V*cos u,

U *V  UxVx  UyVy  UzVz

 (6)(4)  ( 5)(2)  ( 3)(2)

Therefore u  78.7 .

cos u
U*V

*U**V*

so

  0.195.

8

(6)2  ( 5)2  ( 3)2 (4)2  (2)2  (2)2

 8.

Solution

Practice Problem The components of two vectors U and V are and

. Determine the value of the component so that the vectors U and

V are perpendicular.

Answer: Vx = 2.67.

VxV = Vx 
i + 2

 
j + 2

 
k

U = 6i - 5j - 3k

BEDFMC02_0136129153.QXD  4/14/07  12:09 PM  Page 63



64 Chapter 2 Vectors

x

y

(6, 6, *3) m

(10, *2, 3) m

A

B

O

rOB

rOA

z

x

y

A

B

O

eOB

eOA

z

Suppose that you pull on the cable OA, exerting a 50-N force F at O. What are the

vector components of F parallel and normal to the cable OB?

Strategy
Expressing F as the sum of vector components parallel and normal to OB (Fig. a),

we can determine the vector components by using Eqs. (2.26) and (2.27). But to

apply them, we must first express F in terms of scalar components and determine

the scalar components of a unit vector parallel to OB. We can obtain the compo-

nents of F by determining the components of the unit vector pointing from O

toward A and multiplying them by 

Solution
The position vectors from O to A and from O to B are (Fig. b)

Their magnitudes are and Dividing these vectors

by their magnitudes, we obtain unit vectors that point from the origin toward A

and B (Fig. c):

The force F in terms of scalar components is

Taking the dot product of and F, we obtain

The parallel vector component of F is

and the normal vector component is

Critical Thinking
How can you confirm that two vectors are perpendicular? It is clear from Eq. (2.18)

that the dot product of two nonzero vectors is zero if and only if the enclosed angle

between them is 90 . We can use this diagnostic test to confirm that the components

of F determined in this example are perpendicular. Evaluating the dot product of

and in terms of their components in newtons, we obtain

Fp
# Fn = 119.22114.22 + 1-3.832137.22 + 15.7521-22.42 = 0.

FnFp

Fn = F - Fp = 14.2i + 37.2j - 22.4k 1N2.

 = 19.2i - 3.83j + 5.75k 1N2, 

 Fp = 1eOB
# F2eOB = 120.4 N210.941i - 0.188j + 0.282k2

 = 20.4 N.

 eOB
# F = 10.9412133.3 N2 + 1-0.1882133.3 N2 + 10.28221-16.7 N2

eOB

 = 33.3i + 33.3j - 16.7k 1N2.

 F = F eOA = 150 N210.667i + 0.667j - 0.333k2

 eOB =
rOB

rOB

=
10i - 2j + 3k 1m2

10.6 m
= 0.941i - 0.188j + 0.282k.

 eOA =
rOA

rOA

=
6i + 6j - 3k 1m2

9 m
= 0.667i + 0.667j - 0.333k, 

rOB = 10.6 m.rOA = 9 m

 rOB = 10i - 2j + 3k 1m2.

 rOA = 6i + 6j - 3k 1m2, 

F .

x

y

(6, 6, 3) m

(10, *2, 3) m

F

A

B

O

z

x

y

F

A

B

Fn

Fp

O

z

(b) The position vectors and rOB.rOA

(a) The components of F parallel

and normal to OB.

(c) The unit vectors and eOB.eOA

Example 2.13 Vector Components Parallel and Normal to a Line (* Related Problem 2.111)
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Problems

 2.99 In Active Example 2.11, suppose that the vector V is

changed to 

(a) What is the value of 

(b) What is the angle between and when they are placed

tail to tail?

 2.100 In Example 2.12, suppose that the coordinates of point

B are changed to What is the angle between the lines

AB and AC?

2.101 What is the dot product of the position vector

and the force vector 

2.102 Suppose that the dot product of two vectors U and V is

If what do you know about the vector V?

2.103 Two perpendicular vectors are given in terms of their

components by and 

Use the dot product to determine the component 

2.104 The three vectors

are mutually perpendicular. Use the dot product to determine the

components and 

2.105 The magnitudes and 

(a) Use Eq. (2.18) to determine 

(b) Use Eq. (2.23) to determine U # V.

U # V.

V = 20.U = 10

Wz.Ux, Vy,

 W = -2 i + 4 j + Wz 
k

 V = -3 i + Vy 
j + 3k, 

 U = Ux 
i + 3 j + 2k, 

Ux.

V = 3i + 2j - 3k.U = Ux 
i - 4j + 6k

U Z 0,U # V = 0.

F = 300i + 250j + 300k 1N2?25j 1m2

r = -10i +

u(6, 4, 4) m.

VU

U # V?

V = 4i - 6j - 10k.

2.107 Use the dot product to determine the angle between the

forestay (cable AB) and the backstay (cable BC) of the sailboat.

x

y

V

45+

U

30+

Problem 2.105

x

y

VU

u1

u2

Problem 2.106

y

x

B (4, 13) m

C

(9, 1) m
A

(0, 1.2) m

Problem 2.107

(4, 3, *1) m
B

y

x
A

z
C

(5, *1, 3) m

u

Problem 2.108

2.108 Determine the angle between the lines AB and AC

(a) by using the law of cosines (see Appendix A); 

(b) by using the dot product.

u

2.106 By evaluating the dot product prove the identity

Strategy: Evaluate the dot product both by using Eq. (2.18)

and by using Eq. (2.23).

cos1u1 - u22 = cos u1 cos u2 + sin u1 sin u2.

U # V,
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2.109 The ship O measures the positions of the ship A and the

airplane B and obtains the coordinates shown. What is the angle 

between the lines of sight OA and OB?

u

2.110 Astronauts on the space shuttle use radar to determine the

magnitudes and direction cosines of the position vectors of two

satellites A and B. The vector from the shuttle to satellite A

has magnitude 2 km and direction cosines 

The vector from the shuttle

to satellite B has magnitude 4 km and direction cosines

What is the

angle between the vectors and rB?rAu

cos uz = -0.371.0.557,cos uy =cos ux = 0.743,

rBcos uz = 0.512.cos uy = 0.384,

cos ux = 0.768,

rA

 2.111 In Example 2.13, if you shift your position and the

coordinates of point A where you apply the 50-N force become

what is the vector component of F parallel to the

cable OB?

(8, 3,-3) m,

2.113 At the instant shown, the Harrier s thrust vector is

and its velocity vector is

The quantity where

is the vector component of T parallel to v, is the power

currently being transferred to the airplane by its engine.

Determine the value of P.

Tp

P = Tp v ,v = 7.3i + 1.8j - 0.6k 1m/s2.

T = 17,000i + 68,000j - 8,000k 1N2

O

150 mm

250 mm

200 mm

F

z

y

x

Problem 2.112

x

y

z

A

B

O

(6, 0, 3) km

(4, 4, *4) km

u

Problem 2.109

u

x

rB

z

B

A rA

y

Problem 2.110 x

y

T

v

Problem 2.113

2.112 The person exerts a force on the

handle of the exercise machine. Use Eq. (2.26) to determine the

vector component of F that is parallel to the line from the origin O

to where the person grips the handle.

F = 60i - 40j (N)
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y

x

z

A

(0, 6, 4) m

O

F

Problem 2.116

2.116 The force Determine the

vector components of F parallel and normal to the line OA.

F = 10i + 12j - 6k 1N2.

2.117 The rope AB exerts a 50-N force T on collar A. Determine

the vector component of T parallel to the bar CD.

2.118 In Problem 2.117, determine the vector component of T

normal to the bar CD.

0.4 m

0.5 m

0.15 m

0.3 m0.2 m

0.25 m

0.2 m
z

x

y

A

B C

D

O

T

Problems 2.117/2.118

2.119 The disk A is at the midpoint of the sloped surface. The

string from A to B exerts a 0.2-lb force F on the disk. If you ex-

press F in terms of vector components parallel and normal to the

sloped surface, what is the component normal to the surface?

2.120 In Problem 2.119, what is the vector component of F paral-

lel to the surface?

y

z

A

B

F

(0, 6, 0) ft

2 ft

8 ft

10 ft

x

Problems 2.119/2.120

2.114 Cables extend from A to B and from A to C. The cable AC

exerts a 1000-lb force F at A.

(a) What is the angle between the cables AB and AC?

(b) Determine the vector component of F parallel to the

cable AB.

2.115 Let be the position vector from point A to point B.

Determine the vector component of parallel to the cable AC.rAB

rAB

F

A (0, 7, 0) ft

B

C

x

y

z (14, 0, 14) ft
(0, 0, 10) ft

Problems 2.114/2.115
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2.5 Cross Products

BACKGROUND

Like the dot product, the cross product of two vectors has many applications,

including determining the rate of rotation of a fluid particle and calculating the

force exerted on a charged particle by a magnetic field. Because of its useful-

ness for determining moments of forces, the cross product is an indispensable

tool in mechanics. In this section we show you how to evaluate cross products

and give examples of simple applications.

Definition

Consider two vectors U and V (Fig. 2.24a). The cross product of U and V,

denoted is defined by

(2.28)

The angle is the angle between U and V when they are placed tail to tail

(Fig. 2.24b). The vector e is a unit vector defined to be perpendicular to both

U and V. Since this leaves two possibilities for the direction of e, the vectors

U, V, and e are defined to be a right-handed system. The right-hand rule for

determining the direction of e is shown in Fig. 2.24c. If the fingers of the right

hand are pointed in the direction of the vector U (the first vector in the cross

product) and then bent toward the vector V (the second vector in the cross

product), the thumb points in the direction of e.

Because the result of the cross product is a vector, it is sometimes called the

vector product. The units of the cross product are the product of the units of the

u

U * V = U V  sin u e.

U * V,

2.123 Point P is at longitude 30 W and latitude 45 N on the

Atlantic Ocean between Nova Scotia and France. Point Q is at

longitude 60 E and latitude 20 N in the Arabian Sea. Use the

dot product to determine the shortest distance along the surface

of the earth from P to Q in terms of the radius of the earth 

Strategy: Use the dot product to determine the angle be-

tween the lines OP and OQ; then use the definition of an angle in

radians to determine the distance along the surface of the earth

from P to Q.

RE.

Problem 2.123

Equator

y

z

x

P

N

O

45*

30* 60*

G

20*

Q

2.121 An astronaut in a maneuvering unit approaches a space

station. At the present instant, the station informs him that his po-

sition relative to the origin of the station s coordinate system is

and his velocity is 

The position of an airlock is 

Determine the angle between his velocity vector and the line from

his position to the airlock s position.

2.122 In Problem 2.121, determine the vector component of the

astronaut s velocity parallel to the line from his position to the

airlock s position.

rA = -12i + 20k 1m2.3.6k 1m/s2.

v = -2.2j -rG = 50i + 80j + 180k 1m2

G

Problems 2.121/2.122
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2.5 Cross Products 69

two vectors. Notice that the cross product of two nonzero vectors is equal to zero

if and only if the two vectors are parallel.

An interesting property of the cross product is that it is not commutative.

Eq. (2.28) implies that the magnitude of the vector is equal to the mag-

nitude of the vector but the right-hand rule indicates that they are

opposite in direction (Fig. 2.25). That is,

The cross product is not commutative. (2.29)

The cross product also satisfies the relations

The cross product is 

(2.30)
associative with

respect to scalar

multiplication.

and

The cross product is 

(2.31)
distributive with

respect to vector

addition.

for any scalar a and vectors U, V, and W.

Cross Products in Terms of Components

To obtain an equation for the cross product of two vectors in terms of their com-

ponents, we must determine the cross products formed from the unit vectors i,

j, and k. Since the angle between two identical vectors placed tail to tail is zero,

it follows that

The cross product is

where e is a unit vector perpendicular to i and j. Either or 

Applying the right-hand rule, we find that (Fig. 2.26). Therefore,

Continuing in this way, we obtain

(2.32)

These results can be remembered easily by arranging the unit vectors in a cir-

cle, as shown in Fig. 2.27a. The cross product of adjacent vectors is equal to the

third vector with a positive sign if the order of the vectors in the cross product

is the order indicated by the arrows and a negative sign otherwise. For exam-

ple, in Fig. 2.27b we see that but 

The cross product of two vectors U and V, expressed in terms of their com-

ponents, is

 + UzVx1k * i2 + UzVy1k * j2 + UzVz1k * k2.

 + UyVx1j * i2 + UyVy1j * j2 + UyVz1j * k2

 = UxVx1i * i2 + UxVy1i * j2 + UxVz1i * k2

 U * V = 1Ux i + Uy j + Uzk2 * 1Vx i + Vy j + Vzk2

i * k = - j.i * j = k,

 k * i = j,  k * j = - i,  k * k = 0. 

 j * i = -k,  j * j = 0,  j * k = i, 

 i * i = 0,  i * j = k,  i * k = - j, 

i * j = k.

e = k

e = -k.e = k

i * j = i j  sin 90 e = e,

i * j

i * i = i i  sin102e = 0.

U *  1V + W2 = 1U * V2 + 1U * W2

a 1U * V2 = 1aU2 * V = U * 1aV2

U * V = -V * U. 
V * U,

U * V

V

U

e

V

U

V U

(a)

(b)

(c)

u

Figure 2.24
(a) The vectors U and V.

(b) The angle between the vectors

when they are placed tail to tail.

(c) Determining the direction of e by

the right-hand rule.

u

U * V 

V * U 

V

U

V

U

Figure 2.25
Directions of and V * U.U * V
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70 Chapter 2 Vectors

By substituting Eqs. (2.32) into this expression, we obtain the equation

(2.33)

This result can be compactly written as the determinant

(2.34)

This equation is based on Eqs. (2.32), which we obtained using a right-handed

coordinate system. It gives the correct result for the cross product only if a right-

handed coordinate system is used to determine the components of U and V.

Evaluating a Determinant

A determinant can be evaluated by repeating its first two columns and

evaluating the products of the terms along the six diagonal lines:

Adding the terms obtained from the diagonals that run downward to the right

(blue arrows) and subtracting the terms obtained from the diagonals that run

downward to the left (red arrows) gives the value of the determinant:

A determinant can also be evaluated by expressing it as

The terms on the right are obtained by multiplying each element of the first row

of the determinant by the determinant obtained by crossing out that

element s row and column. For example, the first element of the first row, i, is

multiplied by the determinant

Be sure to remember that the second term is subtracted. Expanding the 

determinants, we obtain the value of the determinant:

Mixed Triple Products

In Chapter 4, when we discuss the moment of a force about a line, we will use

an operation called the mixed triple product, defined by

(2.35)U # 1V * W2.

3

i j k

Ux Uy Uz

Vx Vy Vz

3 = 1UyVz - UzVy2i - 1UxVz - UzVx2j + 1UxVy - UyVx2k.

2 * 2

3

i j k

Ux Uy Uz

Vx Vy Vz

3 .

2 * 2

2 * 23 * 3

3

i j k

Ux Uy Uz

Vx Vy Vz

3 = i `

Uy Uz

Vy Vz

` - j `

Ux Uz

Vx Vz

` + k `

Ux Uy

Vx Vy

` .

3 * 3

3

i j k

Ux Uy Uz

Vx Vy Vz

3 =
UyVz i  + UzVx j   + UxVy k

-UyVxk  -  UzVy i  -  UxVz j.

1-2 1-2 1-2  1+2 1+2 1+2

3

 i j k 
 Ux Uy Uz 
 Vx Vy Vz 

3

 i j

 Ux Uy

  Vx Vy

3 * 3

3 : 3

U * V = 3

i j k

Ux Uy Uz

Vx Vy Vz

3 .

 + 1UxVy - UyVx2k.

 U * V = 1UyVz - UzVy2i - 1UxVz - UzVx2j

y

x

j

k i
z

Figure 2.26
The right-hand rule indicates that i * j = k.

i

kj

(a)

i

kj

(b)

i , j + k i , k + *j

Figure 2.27
(a) Arrange the unit vectors in a circle with

arrows to indicate their order.

(b) You can use the circle to determine their

cross products.
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V

U

e

V

U
u

Cross Product in Terms of Components

The cross product of U and V is given in terms of the

components of the vectors by

i        j       k

Ux      Uy       Uz

Vx       Vy        Vz

U  V  (UyVz  UzVy) i  (UxVz  UzVx)j

Cross Product

The cross product of two vectors U and V is defined by

As in the dot product, u is the angle between the vectors

when they are placed tail to tail. The unit vector e is  

defined to be perpendicular to U, perpendicular to V, and

directed so that U, V, e form a right-handed system. If 

*U*  0 and *V*  0, U  V  0 if and only if U and  

V are parallel.

U  V  *U**V*sin u e.                                         (2.28)

(2.33) (UxVy  UyVx)k

(2.34)

U

V

W

Figure 2.28

Parallelepiped defined by the vectors U, V,

and W.

In terms of the scalar components of the vectors,

This result can be expressed as the determinant

(2.36)

Interchanging any two of the vectors in the mixed triple product changes the sign

but not the absolute value of the result. For example,

If the vectors U, V, and W in Fig. 2.28 form a right-handed system, it can

be shown that the volume of the parallelepiped equals 

RESULTS

U # 1V * W2.

U # 1V * W2 = -W #
1V * U2.

U # 1V * W2 = 3

Ux Uy Uz

Vx Vy Vz

Wx Wy Wz

3

.

 + Uz1VxWy - VyWx2.

 = Ux1VyWz - VzWy2 - Uy1VxWz - VzWx2

 -  1VxWz - VzWx2j + 1VxWy - VyWx2k]

 = 1Ux i + Uy 
j + Uzk2

#
[1VyWz - VzWy2i

 U # 1V * W2 = 1Ux i + Uy j + Uzk2
#

3

i j k

Vx Vy Vz

Wx Wy Wz

3
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72 Chapter 2 Vectors

Active Example 2.14 Cross Products (* Related Problem 2.124)

The components of two vectors U and V are and

. (a) Determine the cross product . (b) Use the dot

product to prove that is perpendicular to U.

Strategy
(a) Knowing the components of U and V, we can use Eq. (2.33) to determine

. (b) Once we have determined the components of the vector , we

can prove that it is perpendicular to U by showing that .

Solution

(U * V)
# U = 0

U * VU * V

U * V

U * VV = 4i + 2j + 2k

U = 6i - 5j - k

(a) Use the components of the

vectors to determine U  V.

(b) Show that (U  V)*U  0.

U  V  (UyVz  UzVy)i  (UxVz  UzVx)j

 8i 16j  32k.

 [(6)(2)  ( 5)(4)]k

 [( 5)(2)  ( 1)(2)]i  [(6)(2)  ( 1)(4)]j

 (UxVy  UyVx)k

(U  V)*U  (U  V)x Ux  (U  V)y Uy  (U  V)z Uz

 ( 8)(6)  ( 16)( 5)  (32)( 1) 

 0.

Practice Problem The components of two vectors U and V are 

and . Determine the components of a unit vector that is perpendicu-

lar to U and perpendicular to V.

Answer: e = -0.477i + 0.304j - 0.825k or e = 0.477i - 0.304j + 0.825k.

V = 5i - 3j - 4k

U = 3i + 2j - k

When U, V, W form a right-handed

system, the volume of the parallelepiped

shown equals U* (V  W).
U

V

W

Mixed Triple Product

The operation U *(V  W) is called the mixed triple product of  

the vectors U, V, and W. It can be expressed in terms of the  

components of the vectors by the determinant

U* (V  W)                          .                                       (2.36)

Ux      Uy      Uz

Vx       Vy       Vz

Wx     Wy     Wz
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2.5 Cross Products 73

Example 2.15 Minimum Distance from a Point to a Line (* Related Problem 2.133)

Consider the straight lines OA and OB.

(a) Determine the components of a unit vector that is perpendicular to both OA

and OB.

(b) What is the minimum distance from point A to the line OB?

Strategy
(a) Let and be the position vectors from O to A and from O to B (Fig. a).

Since the cross product is perpendicular to and we will de-

termine it and divide it by its magnitude to obtain a unit vector perpendicular to

the lines OA and OB.

(b) The minimum distance from A to the line OB is the length d of the straight

line from A to OB that is perpendicular to OB (Fig. b). We can see that

where is the angle between and From the definition

of the cross product, the magnitude of is so we can

determine d by dividing the magnitude of by the magnitude of 

Solution
(a) The components of and are

By using Eq. (2.34), we obtain :

This vector is perpendicular to and Dividing it by its magnitude, we

obtain a unit vector e that is perpendicular to the lines OA and OB:

(b) From Fig. b, the minimum distance d is

The magnitude of is

Solving this equation for we find that the distance d is

Critical Thinking
This example is an illustration of the power of vector methods. Determining the

minimum distance from point A to the line OB can be formulated as a mini-

mization problem in differential calculus, but the vector solution we present is

far simpler.

 =
21-12 m2

2
2
+ 148 m2

2
2
+ 172 m2

2
2

216 m2
2
+ 16 m2

2
+ 1-3 m2

2
= 9.71 m.

 d = rOA a

rOA * rOB

rOA rOB

b =
rOA * rOB

rOB

sin u,

rOA * rOB = rOA rOB  sin u.

rOA * rOB

d = rOA  sin u.

 = -0.137i + 0.549j + 0.824k.

 e =
rOA * rOB

rOA * rOB

=
-12i + 48j + 72k 1m2

2

21-12 m2
2

2
+ 148 m2

2
2
+ 172 m2

2
2

rOB.rOA

rOA * rOB = 3

i j k

10  -2 3

6 6  -3

3 = -12i + 48j + 72k 1m2
2.

rOA * rOB

 rOB = 6i + 6j - 3k 1m2.

 rOA = 10i - 2j + 3k 1m2, 

rOBrOA

rOB.rOA * rOB

rOA rOB  sin u,rOA * rOB

rOB.rOAud = rOA  sin u,

rOB,rOArOA * rOB

rOBrOA

B

(6, 6, *3) m

x

y

z

O

A (10, *2, 3) m

B

x

y

z

O

A

rOB

rOA

B

x

y

z

O

A

rOB

rOA

d

u

(a) The vectors and rOB.rOA

(b) The minimum distance d

from A to the line OB.
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Example 2.16 Component of a Vector Perpendicular to a Plane (* Related Problem 2.139)

The rope CE exerts a 500-N force T on the door ABCD. What is the magnitude

of the component of T perpendicular to the door?

Strategy
We are given the coordinates of the corners A, B, and C of the door. By taking

the cross product of the position vector from C to B and the position vec-

tor from C to A, we will obtain a vector that is perpendicular to the door.

We can divide the resulting vector by its magnitude to obtain a unit vector per-

pendicular to the door and then apply Eq. (2.26) to determine the component of

T perpendicular to the door.

Solution
The components of and are

Their cross product is

Dividing this vector by its magnitude, we obtain a unit vector e that is perpen-

dicular to the door (Fig. a):

To use Eq. (2.26), we must express T in terms of its scalar components. The

position vector from C to E is

so we can express the force T as

The component of T parallel to the unit vector e, which is the component of T

perpendicular to the door, is

The magnitude of the component of T perpendicular to the door is 373 N.

Critical Thinking
Why is it useful to determine the component of the force T perpendicular to the

door? If the y axis is vertical and the rope CE is the only thing preventing

the hinged door from falling, you can see intuitively that it is the component of

the force perpendicular to the door that holds it in place. We analyze problems

of this kind in Chapter 5.

 = 373e 1N2.

 1e # T2e = [10.35821333 N2 + 10.89421333 N2 + 10.26821-167 N2]e

 = 333i + 333j - 167k 1N2.

 T = T
rCE

rCE

= 1500 N2 

0.2i + 0.2j - 0.1k 1m2

210.2 m2
2
+ 10.2 m2

2
+ 1-0.1 m2

2

rCE = 0.2i + 0.2j - 0.1k 1m2,

 = 0.358i + 0.894j + 0.268k.

 e =
rCB * rCA

rCB * rCA

=
0.04i + 0.1j + 0.03k 1m2

2

210.04 m2
2

2
+ 10.1 m2

2
2
+ 10.03 m2

2
2

rCB * rCA = 3

i j k

0.35  -0.2 0.2

0.5  -0.2 0

3 = 0.04i + 0.1j + 0.03k 1m2
2.

 rCA = 0.5i - 0.2j 1m2.

 rCB = 0.35i - 0.2j + 0.2k 1m2, 

rCArCB

rCA

rCB

x

y

z

(0.5, 0, 0) m
A

E

B

C

DT

(0, 0.2, 0) m

(0.35, 0, 0.2) m

(0.2, 0.4, *0.1) m

x

y

z

B

A

C

D

e

rCA

rCB

(a) Determining a unit vector perpendicular

to the door.
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Problems

2.132 By evaluating the cross product prove the identity

sin 1u1 - u22 = sin u1 cos u2 - cos u1 sin u2.

U * V,

y

x

B

A

rAB

(6, 3, 0) m

(6, 0, 4) m

F

z

F

y

x

z

4 ft

4 ft

5 ft

(6, 0, 4) ft

C

A

B

Problem 2.131

U

V

x

y

45*

30*

Problem 2.130

Problems 2.126/2.127

x

y

V
U

u1

u2

Problem 2.132

2.131 The force Determine the cross product

rAB * F.

F = 10i - 4j 1N2.

 2.124 In Active Example 2.14, suppose that the vector V is

changed to (a) Determine the cross product

(b) Use the dot product to prove that is

perpendicular to V.

2.125 Two vectors and 

(a) What is the cross product 

(b) What is the cross product 

2.126 The two segments of the L-shaped bar are parallel to the x

and z axes. The rope AB exerts a force of magnitude 

on the bar at A. Determine the cross product where 

is the position vector from point C to point A.

2.127 The two segments of the L-shaped bar are parallel to the x

and z axes. The rope AB exerts a force of magnitude 

on the bar at A. Determine the cross product where 

is the position vector from point C to point B. Compare your

answer to the answer to Problem 2.126.

rCBrCB * F,

F = 500 lb

rCArCA * F,

F = 500 lb

V * U?

U * V?

V = 2i + 4j.U = 3i + 2j

U * VU * V.

V = 4i - 6j - 10k.

2.128 Suppose that the cross product of two vectors U and V is

If what do you know about the vector V?

2.129 The cross product of two vectors U and V is 

The vector The vector

U = 4i + Uy j + Uzk. Determine Uy and Uz.

V = 4i - 2j + 3k.-30i + 40k.

U * V =

U Z 0,U * V = 0.

2.130 The magnitudes and 

(a) Use the definition of the cross product to determine 

(b) Use the definition of the cross product to determine 

(c) Use Eq. (2.34) to determine 

(d) Use Eq. (2.34) to determine V * U.

U * V.

V * U.

U * V.

V = 20.U = 10

2.133 In Example 2.15, what is the minimum distance from

point B to the line OA?
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2.137 The force vector F points along the straight line from

point A to point B. Its magnitude is The coordinates

of points A and B are and

(a) Express the vector F in terms of its components.

(b) Use Eq. (2.34) to determine the cross products and

rB * F.

rA * F

yB = 1 m, zB = -2 m.xB = 8 m,

xA = 6 m, yA = 8 m, zA = 4 m

F = 20 N.

2.138 The rope AB exerts a 50-N force T on the collar at A. Let

be the position vector from point C to point A. Determine the

cross product rCA * T.

rCA

rAB

A

B

C

z

x

y

rAC

F

6 ft

8 ft

4 ft

4 ft 12 ft

Problem 2.136

0.4 m

0.5 m

0.15 m

0.3 m0.2 m

0.25 m

0.2 m
z

x

y

A

B C

D

O

T

Problem 2.138

x

y

z

rB

rA

A

B 

F

Problem 2.137

* 2.139 In Example 2.16, suppose that the attachment point E

is moved to the location and the magnitude of 

T increases to 600 N. What is the magnitude of the component

of T perpendicular to the door?

2.140 The bar AB is 6 m long and is perpendicular to the bars AC

andAD. Use the cross product to determine the coordinates

of point B.

xB, yB, zB

(0.3, 0.3, 0) m

C

A

B

(0, 0, 3) m (4, 0, 0) m x

y

(0, 3, 0) m

(xB, yB, zB)

D

z

Problem 2.140

2.136 The cable BC exerts a 1000-lb force F on the hook at B.

Determine rAB * F.

A (6, *2, 3) m

B (4, 4, *4) m

x

y

z

O

rOB

rOA

Problems 2.134/2.135

2.134 (a) What is the cross product (b) Determine

a unit vector e that is perpendicular to and 

2.135 Use the cross product to determine the length of the short-

est straight line from point B to the straight line that passes

through points O and A.

rOB.rOA

rOA * rOB?

BEDFMC02_0136129153.QXD  4/14/07  12:09 PM  Page 76



Review Problems 77

A

(3, 0, 0) m

(0, 5, 0) mB

x

y

z

C
(0, 0, 4) m

P
(9, 6, 5) m

Problem 2.141

2.142* The force vector F points along the straight line from

point A to point B. Use Eqs. (2.28) (2.31) to prove that

Strategy: Let be the position vector from point A to point

B. Express in terms of and Notice that the vectors 

and F are parallel.

rABrAB.rArB

rAB

rB * F = rA * F.

2.143 For the vectors and

evaluate the following mixed triple products:

(a)

(b)

(c)

2.144 Use the mixed triple product to calculate the volume of

the parallelepiped.

V # 1W * U2.

W #
1V * U2;

U # 1V * W2;

W = 3i + 2k,

U = 6i + 2j - 4k, V = 2i + 7j,

x

y

z

rB

rA

A

B 

F

Problem 2.142

x

y

z

(140, 90, 30) mm

(200, 0, 0) mm

(160, 0, 100) mm

Problem 2.144

2.145 By using Eqs. (2.23) and (2.34), show that

2.146 The vectors and

are coplanar (they lie in the same plane).

What is the component Uy?

W = -3i + j - 2k

U = i +  Uy 
j + 4k, V = 2i + j - 2k,

U # 1V * W2 = 3

Ux Uy Uz

Vx Vy Vz

Wx Wy Wz

3 .

Review Problems

2.147 The magnitude of F is 8 kN. Express F in terms of scalar

components.

F

x

y

(7, 2) m

(3, 7) m

Problem 2.147

a

B

W

A

50*

Problem 2.148

2.148 The magnitude of the vertical force W is 600 lb, and the

magnitude of the force B is 1500 lb. Given that 

determine the magnitude of the force A and the angle a.

A + B + W = 0,

2.141* Determine the minimum distance from point P to the

plane defined by the three points A, B, and C.
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2.157 (a) Write the position vector from point A to point B in

terms of components.

(b) A vector R has magnitude and is parallel to the

line from A to B. Write R in terms of components.

2.158 The rope exerts a force of magnitude on the

top of the pole at B.

(a) Determine the vector where is the position vec-

tor from A to B.

(b) Determine the vector where is the position vec-

tor from A to C.

rACrAC * F,

rABrAB * F,

F = 200 lb

R = 200 lb

rAB

Bedford
Falls

Bedford
Falls

45-
60-

O
x

y

r

z

A

Problem 2.159

x

y

z

A

(4, 4, 2) ft

B (8, 1, +2) ft

F , 20i * 10j + 10k (lb)

u

Problems 2.151 2.157

Refer to the following diagram when solving Problems

2.151 through 2.157.
x

y
B  (5, 6, 1) ft

C  (3, 0, 4) ft

z

A

F

Problem 2.158

C

70 in 100 in

50 in E

F

D
B

A

Problems 2.149/2.150

2.149 The magnitude of the vertical force vector A is 200 lb.

If what are the magnitudes of the force

vectors B and C?

2.150 The magnitude of the horizontal force vector D is 280 lb.

If what are the magnitudes of the force vectors

E and F?

D + E + F = 0,

A + B + C = 0,

2.151 What are the direction cosines of F?

2.152 Determine the components of a unit vector parallel to line

AB that points from A toward B.

2.153 What is the angle between the line AB and the force F?

2.154 Determine the vector component of F that is parallel to

the line AB.

2.155 Determine the vector component of F that is normal to

the line AB.

2.156 Determine the vector where is the position

vector from B to A.

rBArBA * F,

u

2.159 The pole supporting the sign is parallel to the x axis and is

6 ft long. Point A is contained in the y z plane. (a) Express the

vector r in terms of components. (b) What are the direction

cosines of r?
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y

z

x

A

F

20+

60+

O

Problem 2.160

y

x
C

(4, 3, 1) m

(6, 0, 0) m
(5, 0, 3) mB

D

A
FB

FC
FA

F

z

Problems 2.161 2.163

60
0 

m
m

x
z

y

W

600 m
m

C

G

B

A

Problem 2.164

x

y

z

A  (0.5, 0, 0) m

E

B

C

D
T

(0, 0.2, 0) m

(0.35, 0, 0.2) m

(0.2, 0.4, *0.1) m

Problems 2.165/2.166

2.165 The rope CE exerts a 500-N force T on the hinged door.

(a) Express T in terms of components.

(b) Determine the vector component of T parallel to the line from

point A to point B.

2.166 In Problem 2.165, let be the position vector from

point B to point C. Determine the cross product rBC * T.

rBC

2.164 The magnitude of the vertical force W is 160 N. The direc-

tion cosines of the position vector from A to B are 

and and the direction cosines of the

position vector from B to C are 

and Point G is the midpoint of the line from B

to C. Determine the vector where is the position

vector from A to G.

rAGrAG * W,

cos uz = -0.342.

cos ux = 0.707, cos uy = 0.619,

cos uz = 0,cos uy = 0.866,

cos ux = 0.500,

2.161 The magnitude of the force vector is 2 kN. Express it

in terms of components.

2.162 The magnitude of the vertical force vector F is 6 kN. De-

termine the vector components of F parallel and normal to the line

from B to D.

2.163 The magnitude of the vertical force vector F is 6 kN.

Given that what are the magnitudes

of and FC?FA, FB,

F + FA + FB + FC = 0,

FB

2.160 The z component of the force F is 80 lb. (a) Express F

in terms of components. (b) What are the angles and 

between F and the positive coordinate axes? 

uzuy,ux,
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Forces

 The forces due to the weight of the bridge are transferred to the vertical
support towers by cables. In this chapter we use free-body diagrams to
analyze the forces acting on objects in equilibrium.

In Chapter 2 we represented forces by vectors and used vector

addition to sum forces. In this chapter we discuss forces in

more detail and introduce two of the most important concepts in

mechanics, equilibrium and the free-body diagram. We will use

free-body diagrams to identify the forces on objects and use

equilibrium to determine unknown forces.

C H A P T E R

3
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82 Chapter 3 Forces

W

Figure 3.3
Representing an object s weight by a vector.

Line of

action

of F
F

Figure 3.1
A force F and its line of action.

(a)

FC

FA FB
FA FB FD

FC

(b)

Figure 3.2
(a) Concurrent forces.

(b) Parallel forces.

3.1 Forces, Equilibrium, and Free-Body Diagrams

BACKGROUND

Force is a familiar concept, as is evident from the words push, pull, and lift

used in everyday conversation. In engineering we deal with different types of

forces having a large range of magnitudes. In this section we define some

terms used to describe forces, discuss particular forces that occur frequently in

engineering applications, and introduce the concepts of equilibrium and free-

body diagrams.

Terminology

Line of Action When a force is represented by a vector, the straight line

collinear with the vector is called the line of action of the force (Fig. 3.1).

Systems of Forces A system of forces is simply a particular set of forces. A

system of forces is coplanar, or two dimensional, if the lines of action of the

forces lie in a plane. Otherwise it is three dimensional. A system of forces is

concurrent if the lines of action of the forces intersect at a point (Fig. 3.2a) and

parallel if the lines of action are parallel (Fig. 3.2b).

External and Internal Forces We say that a given object is subjected to an

external force if the force is exerted by a different object. When one part of a

given object is subjected to a force by another part of the same object, we say

it is subjected to an internal force. These definitions require that you clearly

define the object you are considering. For example, suppose that you are the

object. When you are standing, the floor a different object exerts an exter-

nal force on your feet. If you press your hands together, your left hand exerts

an internal force on your right hand. However, if your right hand is the object

you are considering, the force exerted by your left hand is an external force.

Body and Surface Forces A force acting on an object is called a body force

if it acts on the volume of the object and a surface force if it acts on its surface. The

gravitational force on an object is a body force. A surface force can be exerted on

an object by contact with another object. Both body and surface forces can result

from electromagnetic effects.

Gravitational Forces

You are aware of the force exerted on an object by the earth s gravity whenever

you pick up something heavy. We can represent the gravitational force, or

weight, of an object by a vector (Fig. 3.3).
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*FF

(b)(a) (c)

(a)

F

(b)

N

(d)(c)

f

N

Figure 3.4

(a) Exerting a contact force on a wall by

pushing on it.

(b) The vector F represents the force you

exert on the wall.

(c) The wall exerts a force on your

hand.

-F

The magnitude of an object s weight is related to its mass m by

(3.1)

where g is the acceleration due to gravity at sea level. We will use the values

in SI units and in U.S. Customary units.

Gravitational forces, and also electromagnetic forces, act at a distance.

The objects they act on are not necessarily in contact with the objects exerting

the forces. In the next section we discuss forces resulting from contacts between

objects.

Contact Forces

Contact forces are the forces that result from contacts between objects. For ex-

ample, you exert a contact force when you push on a wall (Fig. 3.4a). The sur-

face of your hand exerts a force on the surface of the wall that can be represented

by a vector F (Fig. 3.4b). The wall exerts an equal and opposite force on your

hand (Fig. 3.4c). (Recall Newton s third law: The forces exerted on each other

by any two particles are equal in magnitude and opposite in direction. If you have

any doubt that the wall exerts a force on your hand, try pushing on the wall

while standing on roller skates.)

We will be concerned with contact forces exerted on objects by contact

with the surfaces of other objects and by ropes, cables, and springs.

Surfaces Consider two plane surfaces in contact (Fig. 3.5a). We represent the

force exerted on the right surface by the left surface by the vector F in Fig. 3.5b.

We can resolve F into a component N that is normal to the surface and a compo-

nent f that is parallel to the surface (Fig. 3.5c). The component N is called the

normal force, and the component f is called the friction force. We sometimes as-

sume that the friction force between two surfaces is negligible in comparison to

the normal force, a condition we describe by saying that the surfaces are smooth.

In this case we show only the normal force (Fig. 3.5d). When the friction force

cannot be neglected, we say the surfaces are rough.

-F

g = 32.2 ft/s2g = 9.81 m/s2

W = mg,

Figure 3.5

(a) Two plane surfaces in contact.

(b) The force F exerted on the right surface.

(c) The force F resolved into components

normal and parallel to the surface.

(d) Only the normal force is shown when

friction is neglected.
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If the contacting surfaces are curved (Fig. 3.6a), the normal force and the

friction force are perpendicular and parallel to the plane tangent to the surfaces

at their point of contact (Fig. 3.6b).

Ropes and Cables A contact force can be exerted on an object by attach-

ing a rope or cable to the object and pulling on it. In Fig. 3.7a, the crane s cable

is attached to a container of building materials. We can represent the force the

cable exerts on the container by a vector T (Fig. 3.7b). The magnitude of T is

called the tension in the cable, and the line of action of T is collinear with the

cable. The cable exerts an equal and opposite force on the crane (Fig. 3.7c).

Notice that we have assumed that the cable is straight and that the tension

where the cable is connected to the container equals the tension near the crane.

This is approximately true if the weight of the cable is small compared to the

tension. Otherwise, the cable will sag significantly and the tension will vary

along its length. In Chapter 9 we will discuss ropes and cables whose weights

are not small in comparison to their tensions. For now, we assume that ropes and

cables are straight and that their tensions are constant along their lengths.

A pulley is a wheel with a grooved rim that can be used to change the

direction of a rope or cable (Fig. 3.8a). For now, we assume that the tension is

-T

(a)

(c)

*T

(b)

T

(a)

N

f

(b)

Figure 3.6

(a) Curved contacting surfaces. The dashed

line indicates the plane tangent to the

surfaces at their point of contact.

(b) The normal force and friction force on

the right surface.

Figure 3.7

(a) A crane with its cable attached to a container.

(b) The force T exerted on the container by the cable.

(c) The force exerted on the crane by the cable.-T
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the same on both sides of a pulley (Fig. 3.8b). This is true, or at least approxi-

mately true, when the pulley can turn freely and the rope or cable either is sta-

tionary or turns the pulley at a constant rate.

Springs Springs are used to exert contact forces in mechanical devices, for

example, in the suspensions of cars (Fig. 3.9). Let s consider a coil spring whose

unstretched length, the length of the spring when its ends are free, is (Fig.

3.10a). When the spring is stretched to a length L greater than (Fig. 3.10b), it

pulls on the object to which it is attached with a force F (Fig. 3.10c). The object

exerts an equal and opposite force on the spring (Fig. 3.10d). When the spring

is compressed to a length L less than (Figs. 3.11a, b), the spring pushes on the

object with a force F and the object exerts an equal and opposite force on the

spring (Figs. 3.11c, d). If a spring is compressed too much, it may buckle (Fig.

3.11e). A spring designed to exert a force by being compressed is often provided

with lateral support to prevent buckling, for example, by enclosing it in a cylin-

drical sleeve. In the car suspensions shown in Fig. 3.9, the shock absorbers with-

in the coils prevent the springs from buckling.

The magnitude of the force exerted by a spring depends on the material it

is made of, its design, and how much it is stretched or compressed relative to

its unstretched length. When the change in length is not too large compared to

the unstretched length, the coil springs commonly used in mechanical devices

exert a force approximately proportional to the change in length:

(3.2)F = k L - L0 .

-F

L0

-F

L0

L0

Shock absorber

Coil spring

Coil spring

Shock absorber

T1

T2

|T1| + |T2| 

(b)(a)

L0

L

*F

F

(a)

(b)

(c)

(d)

Figure 3.10

(a) A spring of unstretched length 

(b) The spring stretched to a length 

(c, d) The force F exerted by the spring and

the force on the spring.-F

L 7 L0.

L0.

Figure 3.8

(a) A pulley changes the direction of a rope

or cable.

(b) For now, you should assume that the

tensions on each side of the pulley are

equal.

Figure 3.9

Coil springs in car suspensions. The

arrangement on the right is called a

MacPherson strut.
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*F*

1

k

*L * L0*

L0

L

*F

F

(a)

(b)

(c)

(d)

(e)

F

(a)

(b)

k

dd

F

Figure 3.13
(a) A steel beam deflected by a force.

(b) Modeling the beam s behavior with a linear spring.

Because the force is a linear function of the change in length (Fig. 3.12), a spring

that satisfies this relation is called a linear spring. The value of the spring con-

stant k depends on the material and design of the spring. Its dimensions are

(force)/(length). Notice from Eq. (3.2) that k equals the magnitude of the force

required to stretch or compress the spring a unit of length.

Suppose that the unstretched length of a spring is and

If the spring is stretched to a length the magnitude

of the pull it exerts is

Although coil springs are commonly used in mechanical devices, we are

also interested in them for a different reason. Springs can be used to model

situations in which forces depend on displacements. For example, the force

necessary to bend the steel beam in Fig. 3.13a is a linear function of the

displacement or

if is not too large. Therefore we can model the force-deflection behavior of

the beam with a linear spring (Fig. 3.13b).

d

F = kd,

d,

k L - L0 = 300011.2 - 12 = 600 N.

L = 1.2 m,k = 3000 N/m.

L0 = 1 m

Figure 3.12
The graph of the force exerted by a linear

spring as a function of its stretch or com-

pression is a straight line with slope k.

Figure 3.11
(a) A spring of length 

(b) The spring compressed to a length

(c, d) The spring pushes on an object with a

force F, and the object exerts a force

on the spring.

(e) A coil spring will buckle if it is com-

pressed too much.

-F

L 6 L0.

L0.

Equilibrium

In everyday conversation, equilibrium means an unchanging state a state of

balance. Before we state precisely what this term means in mechanics, let us

consider some familiar examples. If you are in a building as you read this,

objects you observe around you that are at rest (stationary) relative to the

building, such as pieces of furniture, are in equilibrium. A person sitting or

standing at rest relative to the building is also in equilibrium. If a train travels

at constant speed on a straight track, objects within the train that are at rest

relative to the train, such as the passenger seats or a passenger standing in the

aisle (Fig. 3.14a), are in equilibrium. The person at rest relative to the build-

ing and also the passenger at rest relative to the train are not accelerating.
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(b)

(a)

Figure 3.14
(a) While the train moves at a constant

speed, a person standing in the aisle is

in equilibrium.

(b) If the train starts to speed up, the person

is no longer in equilibrium.

3.1 Forces, Equilibrium, and Free-Body Diagrams 87

However, if the train should begin increasing or decreasing its speed, the per-

son standing in the aisle of the train would no longer be in equilibrium and

might lose his balance (Fig. 3.14b).

We define an object to be in equilibrium only if each point of the ob-

ject has the same constant velocity, which is referred to as steady transla-

tion. The velocity must be measured relative to a frame of reference in

which Newton s laws are valid. Such a frame is called a Newtonian or

inertial reference frame. In many engineering applications, a frame of ref-

erence that is fixed with respect to the earth can be regarded as inertial.

Therefore, objects in steady translation relative to the earth can be assumed

to be in equilibrium. We make this assumption throughout this book. In the

examples cited in the previous paragraph, the furniture and person at rest

in a building and also the passenger seats and passenger at rest within the

train moving at constant speed are in steady translation relative to the earth

and so are in equilibrium.

The vector sum of the external forces acting on an object in equilibrium is

zero. We will use the symbol to denote the sum of the external forces. Thus,

when an object is in equilibrium,

(3.3)

In some situations we can use this equilibrium equation to determine unknown

forces acting on an object in equilibrium. The first step will be to draw a free-

body diagram of the object to identify the external forces acting on it.

Free-Body Diagrams

A free-body diagram serves to focus attention on the object of interest and helps

identify the external forces acting on it. Although in statics we are concerned

only with objects in equilibrium, free-body diagrams are also used in dynam-

ics to study the motions of objects.

Although it is one of the most important tools in mechanics, a free-body di-

agram is a simple concept. It is a drawing of an object and the external forces

acting on it. Otherwise, nothing other than the object of interest is included.

The drawing shows the object isolated, or freed, from its surroundings. 

Drawing a free-body diagram involves three steps:

1. Identify the object you want to isolate As the following examples show,

your choice is often dictated by particular forces you want to determine.

2. Draw a sketch of the object isolated from its surroundings, and show rel-

evant dimensions and angles Your drawing should be reasonably accu-

rate, but it can omit irrelevant details.

3. Draw vectors representing all of the external forces acting on the isolated

object, and label them Don t forget to include the gravitational force if you

are not intentionally neglecting it.

A coordinate system is necessary to express the forces on the isolated ob-

ject in terms of components. Often it is convenient to choose the coordinate

system before drawing the free-body diagram, but in some situations the best

choice of a coordinate system will not be apparent until after it has been drawn.

A simple example demonstrates how you can choose free-body diagrams

to determine particular forces and also that you must distinguish carefully be-

tween external and internal forces. Two stationary blocks of equal weight W

are suspended by cables in Fig. 3.15. The system is in equilibrium. Suppose

that we want to determine the tensions in the two cables.

F = 0.

F

D

C

B

A

Figure 3.15
Stationary blocks suspended by cables.
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A

TAB

A

TAB

y

D

C

B

A

(a) (b)

x

(c)

W W

Figure 3.16

(a) Isolating the lower block and part of

cable AB.

(b) Indicating the external forces completes

the free-body diagram.

(c) Introducing a coordinate system.

C

B

D

C

B

A

(a)

TCD

TAB

y

x

(b)

W

Figure 3.17

(a) Isolating the upper block to determine

the tension in cable CD.

(b) Free-body diagram of the upper block.

To determine the tension in cable AB, we first isolate an object  consisting

of the lower block and part of cable AB (Fig. 3.16a). We then ask ourselves what

forces can be exerted on our isolated object by objects not included in the dia-

gram. The earth exerts a gravitational force of magnitude W on the block. Also,

where we cut  cable AB, the cable is subjected to a contact force equal to the

tension in the cable (Fig. 3.16b). The arrows in this figure indicate the directions

of the forces. The scalar W is the weight of the block and is the tension in

cable AB. We assume that the weight of the part of cable AB included in the free-

body diagram can be neglected in comparison to the weight of the block.

Since the free-body diagram is in equilibrium, the sum of the external forces

equals zero. In terms of a coordinate system with the y axis upward (Fig. 3.16c),

we obtain the equilibrium equation

Thus, the tension in cable AB is 

We can determine the tension in cable CD by isolating the upper block

(Fig. 3.17a). The external forces are the weight of the upper block and the tensions

in the two cables (Fig. 3.17b). In this case we obtain the equilibrium equation

Since we find that TCD = 2W.TAB = W,

F = TCD j - TAB 
j - W j = 1TCD - TAB - W2j = 0.

TAB = W.

F = TAB 
j - W j = 1TAB - W2j = 0.

TAB
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3.1 Forces, Equilibrium, and Free-Body Diagrams 89

We could also have determined the tension in cable CD by treating the two

blocks and the cable AB as a single object (Figs. 3.18a, b). The equilibrium

equation is

and we again obtain 

Why doesn t the tension in cable AB appear on the free-body diagram in

Fig. 3.18b? Remember that only external forces are shown on free-body dia-

grams. Since cable AB is part of the free-body diagram in this case, the forces

it exerts on the upper and lower blocks are internal forces.

RESULTS

TCD = 2W.

F = TCD j - W j - W j = 1TCD - 2W2j = 0,

C

B

D

C

B

A A

(a)

W

W

TCD

y

x

(b)

Figure 3.18

(a) An alternative choice for determining

the tension in cable CD.

(b) Free-body diagram including both

blocks and cable AB.

Line of

action

of F
F

Line of Action

The straight line collinear with a vector

representing a force is the line of action of

the force.

Concurrent forces

FC

FA FB

FA FB FD

FC

Parallel forces

Systems of Forces

A system of forces is two dimensional if

the lines of action of the forces lie in a 

plane. Otherwise it is three dimensional. A

system of forces is concurrent if the lines

of action intersect at a point and is parallel

if the lines of action are parallel.

External and Internal Forces

An object is subjected to an external force

if the force is exerted by a different object.

A force exerted on part of an object by a

different part of the same object is an

internal force.
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Gravitational Forces

The weight of an object can be represented

by a vector. Its magnitude at sea level is

related to the mass m of the object by

W

*W* + mg,                                          (3.1)

where g is the acceleration due to gravity at

sea level.

f

N

N

Contact Forces

Contacting objects exert equal and

opposite forces on each other.

B

B

A B

F

*F

A B

Objects A and B with plane
surfaces in contact.

The contact forces A and B
exert on each other.

Resolving the force on B into
the normal and friction forces.

When friction is neglected
there is only a normal force.

Ropes and Cables

If the weight of a rope or cable connecting two

objects is negligible in comparison to its

tension, it exerts equal and opposite forces on

the objects that are parallel to the rope or cable.

Objects A and B connected by a cable.

A

B

The forces exerted on A and B.

F
*F

B

A
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Linear Springs

The magnitude of the equal and opposite

forces exerted on two objects connected by a

linear springs is

*F* + k*L* L0*,                                     (3.2)

where k is the k spring constant, L is the lengthL

of the spring, and L0 is its unstretched length.

Objects A and B connected by a spring.

The forces exerted on A and B.

B

A

A

B

F
*F

Equilibrium

An object is in equilibrium if it is in steady translation (each point

of the object has the same constant velocity) relative to an inertial

reference frame. The sum of the external forces acting on an object

in equilibrium is zero:

,F + 0. (3.3)

Free-Body Diagrams

A free-body diagram is a drawing of an object,

isolated from its surroundings, that shows the

external forces acting on it. Drawing a free-body

diagram involves three steps.

Identify the object you

want to isolate.

Draw a sketch of the object

isolated from its surroundings.

Draw vectors representing the

external forces acting on the

object.

1. 

2. 

3.

3.2 Two-Dimensional Force Systems

Suppose that the system of external forces acting on an object in equilibrium is

two dimensional (coplanar). By orienting a coordinate system so that the forces

lie in the x y plane, we can express the sum of the external forces as

where and are the sums of the x and y components of the forces. Since

a vector is zero only if each of its components is zero, we obtain two scalar

equilibrium equations:

(3.4)

The sums of the x and y components of the external forces acting on an object

in equilibrium must each equal zero.

Fx = 0, Fy = 0.

FyFx

F = 1 Fx2i + 1 Fy2j = 0,
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Active Example 3.1 Using Equilibrium to Determine Forces (* Related Problem 3.1)

The 1440-kg car is held in place on the inclined ramp by the horizontal cable from

A to B. The car s brakes are not engaged, so the tires exert only normal forces on

the ramp. Determine the magnitude of the force exerted on the car by the cable.

A B

20

Strategy
Because the car is in equilibrium, we can draw its free-body diagram and use

Eqs. (3.4) to determine the force exerted by the cable.

Solution

Draw the Free-Body Diagram of the Car

Draw a sketch of the isolated car.

mg

T

N

Complete the free-body diagram by

showing the forces exerted on the car

by its weight, the cable, and the ramp.

Apply the Equilibrium Equations

Fy   N cos 20   mg  0.

 5140 N.

(1440 kg)(9.81 m/s2)sin 20

cos 20

T 
mg sin 20

cos 20
mg

y

x

T

N

20

Fx  T  N sin 20   0,

Eliminating N yields

Practice Problem Suppose that the cable attachment point B is moved upward so that

the cable is parallel to the ramp. Determine the magnitude of the force exerted on the car

by the cable.

Answer: 4830 N.
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Example 3.2 Choosing a Free-Body Diagram (* Related Problem 3.3)

The automobile engine block is suspended by a system of cables. The mass of

the block is 200 kg. The system is stationary. What are the tensions in cables AB

and AC?

Strategy
We need a free-body diagram that is subjected to the forces we want to deter-

mine. By isolating part of the cable system near point A where the cables are

joined, we can obtain a free-body diagram that is subjected to the weight of the

block and the unknown tensions in cables AB and AC.

Solution
Draw the Free-Body Diagram Isolating part of the cable system near point

A (Fig. a), we obtain a free-body diagram subjected to the weight of the block

and the tensions in cables AB and

AC (Fig. b).

19.81 m/s2
2 = 1962 NW = mg = 1200 kg2

B

C

A

60*

45*

W

60* 45*

TAC

TAB

x

y

ATAB cos 60*
TAC 

cos 45*

TAC 
sin 45*

TAB 
sin 60*

(c) Selecting a coordinate system and re-

solving the forces into components.

(a) Isolating part of the cable system.

(b) The completed free-body diagram.

B C

(a) (b)

A

W

60* 45*

TAC
TAB

Apply the Equilibrium Equations We select the coordinate system shown

in Fig. c and resolve the cable tensions into x and y components. The resulting

equilibrium equations are

Solving these equations, we find that the tensions in the cables are

and

Critical Thinking
How can you choose a free-body diagram that permits you to determine par-

ticular unknown forces? There are no definite rules for choosing free-body

diagrams. You will learn what to do in many cases from the examples we pre-

sent, but you will also encounter new situations. It may be necessary to try sev-

eral free-body diagrams before finding one that provides the information you

need. Remember that forces you want to determine should appear as external

forces on your free-body diagram, and your objective is to obtain a number of

equilibrium equations equal to the number of unknown forces.

TAC = 1016 N.

TAB = 1436 N

 Fy = TAC sin 45 + TAB sin 60 - 1962 N = 0.

 Fx = TAC cos 45 - TAB cos 60 = 0,
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T
T T

TD

T T

(a)

TD * 2T + mg

(b)

mAg

A

D

CC

C

B

B

mg

mg

T

A

BB

D

C

Example 3.3 Applying Equilibrium to a System of Pulleys (* Related Problem 3.54)

The mass of each pulley of the system is m, and the mass of the suspended

object A is Determine the force T necessary for the system to be in

equilibrium.

mA.

(a) Free-body diagram of pulley C.

(b) Free-body diagram of pulley B.

Strategy
By drawing free-body diagrams of the individual pulleys and applying equilib-

rium, we can relate the force T to the weights of the pulleys and the object A.

Solution
We first draw a free-body diagram of the pulley C to which the force T is ap-

plied (Fig. a). Notice that we assume the tension in the cable supported by the

pulley to equal T on both sides (see Fig. 3.8). From the equilibrium equation

we determine that the tension in the cable supported by pulley D is

We now know the tensions in the cables extending from pulleys C and D to

pulley B in terms of T. Drawing the free-body diagram of pulley B (Fig. b), we

obtain the equilibrium equation

Solving, we obtain 

Critical Thinking
Notice that the objects we isolate in Figs. a and b include parts of the cables.

The weights of those parts of cable are external forces acting on the free-body

diagrams. Why didn t we include them? We tacitly assumed that the weights

of those parts of cable could be neglected in comparison to the weights of the

pulleys and the suspended object A. You will notice throughout the book that

weights of objects are often neglected in analyzing the forces acting on them.

This is a valid approximation for a given object if its weight is small compared

to the other forces acting on it. But in any real engineering application, this

assumption must be carefully evaluated. We discuss the weights of objects in

more detail in Chapter 7.

T = mAg/4.

T + T + 2T + mg - mg - mAg = 0.

TD = 2T + mg.

TD - T - T - mg = 0,
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Example 3.4 Forces on an Airplane in Equilibrium (* Related Problems 3.60 3.62)

The figure shows an airplane flying in the vertical plane and its free-body dia-

gram. The forces acting on the airplane are its weight W, the thrust T exerted by

its engines, and aerodynamic forces resulting from the pressure distribution on

the airplane s surface. The dashed line indicates the path along which the air-

plane is moving. The aerodynamic forces are resolved into a component per-

pendicular to the path, the lift L, and a component parallel to the path, the drag

D. The angle between the horizontal and the path is called the flight path

angle, and is the angle of attack. If the airplane remains in equilibrium for

an interval of time, it is said to be in steady flight. If 

and the mass of the airplane is 72,000 kg, what values of T and 

are necessary to maintain steady flight?

aL = 680 kN,

D = 125 kN,g = 6 ,

a

g

Strategy
The airplane is assumed to be in equilibrium. By applying Eqs. (3.4) to the

given free-body diagram, we will obtain two equations with which to deter-

mine T and 

Solution
In terms of the coordinate system in the figure, the equilibrium equations are

(1)

(2)

where the airplane s weight is We

solve Eq. (2) for solve Eq. (1) for and divide to obtain an equation

for :

The angle of attack Now we use Eq. (1) to deter-

mine the thrust:

Notice that the thrust necessary for steady flight is 28% of the airplane s weight.

= 200,000 N. =
1706,000 N2 sin 6 + 125,000 N

cos 6.44

 T =
W sin g + D

cos a

a = arctan10.1132 = 6.44 .

 = 0.113. =
1706,000 N2 cos 6 - 680,000 N

1706,000 N2 sin 6 + 125,000 N

 tan a =
W cos g - L

W sin g + D

tan a

cos a,sin a,

W = 172,000 kg219.81 m/s2
2 = 706,000 N.

 Fy = T sin a + L - W cos g = 0,

 Fx = T cos a - D - W sin g = 0,

a.

y

T
L

D

W

Horizon

Path

x a
g
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x

y

30*

F2

F1
a

Problem 3.2

B
C

A A
x

y

a a

TAB TAC

(200 kg) (9.81 m/s2)

Problem 3.4

Problems

 3.1 In Active Example 3.1, suppose that the angle between

the ramp supporting the car is increased from to . Draw

the free-body diagram of the car showing the new geometry.

Suppose that the cable from A to B must exert a 1900-lb horizon-

tal force on the car to hold it in place. Determine the car s weight

in pounds.

3.2 The ring weighs 5 lb and is in equilibrium. The force

Determine the force and the angle a.F2F1 = 4.5 lb.

3020

3.6 A physiologist estimates that the masseter muscle of a

predator, Martes, is capable of exerting a force M as large as

900 N. Assume that the jaw is in equilibrium and determine the

necessary force T that the temporalis muscle exerts and the force

P exerted on the object being bitten.

 3.3 In Example 3.2, suppose that the attachment point C is

moved to the right and cable AC is extended so that the angle

between cable AC and the ceiling decreases from to 

The angle between cable AB and the ceiling remains . What

are the tensions in cables AB and AC?

3.4 The 200-kg engine block is suspended by the cables AB and

AC. The angle The free-body diagram obtained by

isolating the part of the system within the dashed line is shown.

Determine the forces and TAC.TAB

a = 40 .

60

35 .45

T

22*

P

M

36*

Problem 3.6

B 40*

55* A

Problem 3.5

3.5 A heavy rope used as a mooring line for a cruise ship sags as

shown. If the mass of the rope is 90 kg, what are the tensions in the

rope at A and B?
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3.7 The two springs are identical, with unstretched lengths

250 mm and spring constants 

(a) Draw the free-body diagram of block A.

(b) Draw the free-body diagram of block B.

(c) What are the masses of the two blocks?

3.8 The two springs are identical, with unstretched lengths of

250 mm. Suppose that their spring constant k is unknown and the

sum of the masses of blocks A and B is 10 kg. Determine the

value of k and the masses of the two blocks.

k = 1200 N/m.

B

A

300 mm

280 mm

Problems 3.7/3.8

60*

T

Problem 3.11

B

A

300 mm

280 mm

30*

Problem 3.9

45 *

Problem 3.10

3.9 The inclined surface is smooth. (Remember that smooth

means that friction is negligible.) The two springs are identical,

with unstretched lengths of 250 mm and spring constants

What are the masses of blocks A and B?k = 1200 N/m.

3.10 The mass of the crane is 20,000 kg. The crane s cable is

attached to a caisson whose mass is 400 kg. The tension in the

cable is 1 kN.

(a) Determine the magnitudes of the normal and friction forces

exerted on the crane by the level ground.

(b) Determine the magnitudes of the normal and friction forces

exerted on the caisson by the level ground.

Strategy: To do part (a), draw the free-body diagram of the

crane and the part of its cable within the dashed line.

3.11 The inclined surface is smooth. The 100-kg crate is held

stationary by a force T applied to the cable.

(a) Draw the free-body diagram of the crate.

(b) Determine the force T.
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A

B
30*

50*

Problem 3.15

3.15 The 80-lb box is held in place on the smooth inclined

surface by the rope AB. Determine the tension in the rope and the

normal force exerted on the box by the inclined surface.

3.16 The 1360-kg car and the 2100-kg tow truck are stationary.

The muddy surface on which the car s tires rest exerts negligible

friction forces on them. What is the tension in the tow cable?

D

C

B

A

70*

20*

45*

Problem 3.17

98 Chapter 3 Forces

3.12 The 1200-kg car is stationary on the sloping road.

(a) If what are the magnitudes of the total normal and

friction forces exerted on the car s tires by the road?

(b) The car can remain stationary only if the total friction force

necessary for equilibrium is not greater than 0.6 times the total

normal force. What is the largest angle for which the car can

remain stationary?

a

a = 20 ,

3.13 The 100-lb crate is in equilibrium on the smooth surface.

The spring constant is Let S be the stretch of the

spring. Obtain an equation for S (in feet) as a function of the

angle a.

k = 400 lb/ft.

a

Problem 3.12

a

Problem 3.13

A

B

a

Problem 3.14

3.14 The 600-lb box is held in place on the smooth bed of the

dump truck by the rope AB.

(a) If what is the tension in the rope?

(b) If the rope will safely support a tension of 400 lb, what is the

maximum allowable value of a?

a = 25 ,

18*10*

26*

Problem 3.16

3.17 Each box weighs 40 lb. The angles are measured relative to

the horizontal. The surfaces are smooth. Determine the tension in

the rope A and the normal force exerted on box B by the inclined

surface.
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1.2 m

Problem 3.18

3.18 A 10-kg painting is hung with a wire supported by a nail.

The length of the wire is 1.3 m.

(a) What is the tension in the wire?

(b) What is the magnitude of the force exerted on the nail by

the wire?

3.19 A 10-kg painting is hung with a wire supported by two

nails. The length of the wire is 1.3 m.

(a) What is the tension in the wire?

(b) What is the magnitude of the force exerted on each nail by

the wire? (Assume that the tension is the same in each part of

the wire.)

Compare your answers to the answers to Problem 3.18.

3.20 Assume that the 150-lb climber is in equilibrium. What are

the tensions in the rope on the left and right sides?

3.21 If the mass of the climber shown in Problem 3.20 is 80 kg,

what are the tensions in the rope on the left and right sides?

3.22 The construction worker exerts a 20-lb force on the rope to

hold the crate in equilibrium in the position shown. What is the

weight of the crate?

0.4 m0.4 m 0.4 m

Problem 3.19

14* 15*

Problems 3.20/3.21

5*

30*

Problem 3.23

3.23 A construction worker on the moon, where the acceleration

due to gravity is , holds the same crate described in

Problem 3.22 in the position shown. What force must she exert

on the cable to hold the crate in equilibrium (a) in newtons; 

(b) in pounds?

1.62 m/s2

5*

30*

Problem 3.22
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3.28 What are the tensions in the upper and lower cables? (Your

answers will be in terms of W. Neglect the weight of the pulley.)

3.29 Two tow trucks lift a 660-lb motorcycle out of a ravine

following an accident. If the motorcycle is in equilibrium in the

position shown, what are the tensions in cables AB and AC?

B

A

C
(12, 32) ft

(36, 36) ft

(26, 16) ft

x

y

Problem 3.29

45*
30*

W

C

B

A

5m

Problems 3.26/3.27

Problem 3.28

100 Chapter 3 Forces

3.26 Cable AB is 3 m long and cable BC is 4 m long. Points A

and C are at the same height. The mass of the suspended object is

350 kg. Determine the tensions in cables AB and BC.

3.27 The length of cable AB is adjustable. Cable BC is 4 m

long. If you don t want the tension in either cable AB or cable

BC to exceed 3 kN, what is the minimum acceptable length of

cable AB?

30 ft

CA

B

10 ft

20 ft

80 ft

Problem 3.25

10*

20*

(a)

(b)

Problem 3.24

3.24 The person wants to cause the 200-lb crate to start sliding

toward the right. To achieve this, the horizontal component of the

force exerted on the crate by the rope must equal 0.35 times the

normal force exerted on the crate by the floor. In Fig. a, the person

pulls on the rope in the direction shown. In Fig. b, the person

attaches the rope to a support as shown and pulls upward on the

rope. What is the magnitude of the force he must exert on the rope

in each case?

3.25 A traffic engineer wants to suspend a 200-lb traffic light

above the center of the two right lanes of a four-lane thoroughfare

as shown. Points A and C are at the same height. Determine the

tensions in the cables AB and BC.
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3.30 An astronaut candidate conducts experiments on an airbear-

ing platform. While she carries out calibrations, the platform is

held in place by the horizontal tethers AB, AC, and AD. The forces

exerted by the tethers are the only horizontal forces acting on the

platform. If the tension in tether AC is 2 N, what are the tensions

in the other two tethers?

3.0 m 1.5 m

B C

TOP VIEW

D

4.0 m

3.5 m

A

Problem 3.30

3.31 The bucket contains concrete and weighs 5800 lb. What are

the tensions in the cables AB and AC?

3.32 The slider A is in equilibrium and the bar is smooth. What

is the mass of the slider?

B C

A

(20, 34) ft(5, 34) ft

(12, 16) ft

y

x

Problem 3.31

20*

45*

200 N
A

Problem 3.32

B C

A

D

0.4 m0.4 m 0.48 m

0.64 m

Problem 3.33

3.33 The 20-kg mass is suspended from three cables. Cable AC

is equipped with a turnbuckle so that its tension can be adjusted

and a strain gauge that allows its tension to be measured. If the

tension in cable AC is 40 N, what are the tensions in cables AB

and AD?
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W

b

h
h

b

Problem 3.36

3.35 The collar A slides on the smooth vertical bar. The masses

and When the spring is

unstretched. When the system is in equilibrium, 

Determine the spring constant k.

h = 0.3 m.

h = 0.1 m,mB = 10 kg.mA = 20 kg

B

A

h

k

0.25 m

3.36* Suppose that you want to design a cable system to suspend

an object of weight W from the ceiling. The two wires must be

identical, and the dimension b is fixed. The ratio of the tension T

in each wire to its cross-sectional area A must equal a specified

value The cost  of your design is the total volume of

material in the two wires, Determine the

value of h that minimizes the cost.

V = 2A2b
2
+ h

2.

T>A = s.

Problem 3.35

FB

FC

FA FD

80*

65*

35*

Problem 3.34

3.34 The structural joint is in equilibrium. If and what are and FC?FBFD = 5000 lb,FA = 1000 lb
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A

B

C

D

70*

50*

30*

Problem 3.39

3.40 A truck dealer wants to suspend a 4000-kg truck as shown for advertising. The distance and the sum of the lengths of the

cables AB and BC is 42 m. Points A and C are at the same height. What are the tensions in the cables?

b = 15 m,

CA

b

40 m

B

Problem 3.40

D

C

A

E

45*
30*

20 ft

B

18 ft

Problems 3.37/3.38

3.37 The system of cables suspends a 1000-lb bank of lights

above a movie set. Determine the tensions in cables AB, CD,

and CE.

3.38 A technician changes the position of the 1000-lb bank

of lights by removing the cable CE. What is the tension in cable

AB after the change?

3.39 While working on another exhibit, a curator at the 

Smithsonian Institution pulls the suspended Voyager aircraft to

one side by attaching three horizontal cables as shown. The mass

of the aircraft is 1250 kg. Determine the tensions in the cable

segments AB, BC, and CD.
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1 m

0.6 m Scoop

A B

D

C

0.15 m

0.6 m

1 m

Hydraulic
cylinder

A D

B
C

W1

W2

30 in 30 in 30 in

20 in
16 in

Problems 3.45/3.46

3.47 The hydraulic cylinder is subjected to three forces. An 8-kN

force is exerted on the cylinder at B that is parallel to the cylinder

and points from B toward C. The link AC exerts a force at C that

is parallel to the line from A to C. The link CD exerts a force at C

that is parallel to the line from C to D.

(a) Draw the free-body diagram of the cylinder. (The cylinder s

weight is negligible.)

(b) Determine the magnitudes of the forces exerted by the links

AC and CD.

3.45 The weights and are suspended by the cable

system shown. Determine the weight and the tensions in the

cables AB, BC, and CD.

3.46 Assume that If you don t want the tension

anywhere in the supporting cable to exceed 200 lb, what is the

largest acceptable value of W1?

W2 = W1>2.

W2

W2W1 = 50 lb

Problem 3.47

3.42 You are designing a cable system to support a suspended

object of weight W. Because your design requires points A and B

to be placed as shown, you have no control over the angle but

you can choose the angle by placing point C wherever you

wish. Show that to minimize the tensions in cables AB and BC,

you must choose if the angle 

Strategy: Draw a diagram of the sum of the forces exerted by

the three cables at A.

a 45 .b = a

b

a,

C

B

A

W

a

b

Problem 3.42

3.43* The length of the cable ABC is 1.4 m. The 2-kN force is

applied to a small pulley. The system is stationary. What is the

tension in the cable?

C

B

A
1 m

0.75 m

15*

2 kN

Problem 3.43

3.44 The masses and are suspended by

the cable system shown. The cable BC is horizontal. Determine

the angle and the tensions in the cables AB, BC, and CD.a

m2 = 6 kgm1 = 12 kg

C

A

*

B

D

70*

m2

m1

Problem 3.44

3.41 The distance and the tension in cable AD is

200 lb. What are the tensions in cables AB and AC?

h = 12 in,

12 in

12 in

12 in

8 in

8 in
h

D

B

A

C

Problem 3.41
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45*

a 

Problems 3.48/3.49

C

B

A

k

k

0.6 m

Problem 3.50

C

B

A

k

0.7 m

Problem 3.51

3.50 The two springs are identical, with unstretched length

0.4 m. When the 50-kg mass is suspended at B, the length of

each spring increases to 0.6 m. What is the spring constant k?

3.51 The cable AB is 0.5 m in length. The unstretched length of

the spring is 0.4 m. When the 50-kg mass is suspended at B, the

length of the spring increases to 0.45 m. What is the spring

constant k?

3.48 The 50-lb cylinder rests on two smooth surfaces.

(a) Draw the free-body diagram of the cylinder.

(b) If what are the magnitudes of the forces exerted on

the cylinder by the left and right surfaces?

3.49 Obtain an equation for the force exerted on the 50-lb

cylinder by the left surface in terms of the angle in two

ways: (a) using a coordinate system with the y axis vertical,

(b) using a coordinate system with the y axis parallel to the

right surface.

a

a = 30 ,

R

h L

m

Problem 3.52

3.52* The small sphere of mass m is attached to a string of

length L and rests on the smooth surface of a fixed sphere of ra-

dius R. The center of the sphere is directly below the point where

the string is attached. Obtain an equation for the tension in the

string in terms of m, L, h, and R.
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3.53 The inclined surface is smooth. Determine the force T

that must be exerted on the cable to hold the 100-kg crate in

equilibrium and compare your answer to the answer of

Problem 3.11.

* 3.54 In Example 3.3, suppose that the mass of the suspended

object is and the masses of the pulleys are 

and Show that the force T necessary

for the system to be in equilibrium is 0.275mAg.

mD = 0.2mA.mC = 0.2mA,

mB = 0.3mA,mA

3.55 The mass of each pulley of the system is m and the mass of

the suspended object A is Determine the force T necessary for

the system to be in equilibrium.

mA.

3.56 The suspended mass Neglecting the masses of

the pulleys, determine the value of the mass necessary for the

system to be in equilibrium.

m2

m1 = 50 kg.

T

60*

Problem 3.53

T

A

Problem 3.55

106 Chapter 3 Forces

A

B

C

m1

m2

Problem 3.56
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3.57 The boy is lifting himself using the block and tackle shown. If the weight of the block and tackle is negligible, and the combined

weight of the boy and the beam he is sitting on is 120 lb, what force does he have to exert on the rope to raise himself at a constant rate?

(Neglect the deviation of the ropes from the vertical.)

Problem 3.57

3.60 A 14,000-kg airplane is in steady flight in the vertical

plane. The flight path angle is the angle of attack is

and the thrust force exerted by the engine is 

What are the magnitudes of the lift and drag forces acting on the

airplane? (See Example 3.4.)

 3.61 An airplane is in steady flight, the angle of attack 

the thrust-to-drag ratio and the lift-to-drag ratio

What is the flight path angle (See Example 3.4.)

 3.62 An airplane glides in steady flight and its lift-

to-drag ratio is 

(a) What is the flight path angle 

(b) If the airplane glides from an altitude of 1000 m to zero alti-

tude, what horizontal distance does it travel? (See Example 3.4.)

g?

L>D = 4.

1T = 02,

g?L>D = 4.

T>D = 2,

a = 0,

T = 60 kN.a = 4 ,

g = 10 ,

T T T

W

W

W

(a) One pulley

(b) Two pulleys

(c) Three pulleys

Problems 3.58/3.59

3.58 Pulley systems containing one, two, and three pulleys are

shown. Neglecting the weights of the pulleys, determine the force

T required to support the weight W in each case.

3.59 The number of pulleys in the type of system shown could

obviously be extended to an arbitrary number N.

(a) Neglecting the weights of the pulleys, determine the force T

required to support the weight W as a function of the number of

pulleys N in the system.

(b) Using the result of part (a), determine the force T required to

support the weight W for a system with 10 pulleys.
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Active Example 3.5 (* Related Problem 3.63)

The 100-kg cylinder is suspended from the ceiling by cables attached at points

B, C, and D. What are the tensions in cables AB, AC, and AD?

Strategy
By isolating part of the cable system near point A, we will obtain a free-body

diagram subjected to forces due to the tensions in the cables. Because the sums

of the external forces in the x, y, and z directions must each equal zero, we can

obtain three equilibrium equations for the three unknown tensions. To do so, we

must express the forces exerted by the tensions in terms of their components.

Solution

Draw the Free-Body Diagram and Apply Equilibrium

( 3, 0, 3) m

( 2, 0, 2) m

z

D

(0, 4, 0) m

(4, 0, 2) m

B

A

100 kg

yC

x

(100 kg)(9.81 m/s2)j

TAB

TAC

TAD
AA

D

C
y

x
B

z

Isolate part of the cable system near

point A and show the forces exerted due to

the tensions in the cables. The sum of the

forces must equal zero:

F  TAB  TAC  TAD  (981 N)j  0.

3.3 Three-Dimensional Force Systems

The equilibrium situations we have considered so far have involved only

coplanar forces. When the system of external forces acting on an object in

equilibrium is three dimensional, we can express the sum of the external

forces as

Each component of this equation must equal zero, resulting in three scalar equi-

librium equations:

(3.5)

The sums of the x, y, and z components of the external forces acting on an object

in equilibrium must each equal zero.

Fx = 0,  Fy = 0,  Fz = 0.

F = 1 Fx2i + 1 Fy2j + 1 Fz2k = 0.
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3.3 Three-Dimensional Force Systems 109

Solving these three equations yields and

Practice Problem Suppose that cables AB, AC, and AD are lengthened so that the

attachment point A is located at the point (0, 6, 0) m. What are the tensions in the cables?

Answer: TAB = 432 N,  TAC = 574 N,  TAD = 141 N.

TAD = 168 N.

TAC = 636 N,TAB = 519 N,

rAB

A (0, 4, 0) m

(4, 0, 2) m
B

x

y

C

D

z

Obtain a unit vector that has the

same direction as the force TAB

by dividing the position vector

rAB from point A to point B by its

magnitude.

rAB  (xB  xA)i  (yB  yA)j  (zB  zA)k.

eAB   0.667i  0.667j  0.333k.

 4i  4j  2k (m).

rAB

*rAB*

Express the force TAB in terms of

its components by writing it as

the product of the tension TAB in

cable AB and the unit vector eAB.

Express the forces TAC and TAD

in terms of their components

using the same procedure.

Substitute these expressions into the equilibrium equation

TAB  TAB eAB

 TAB (0.667i  0.667j  0.333k),

TAC  TAC ( 0.408i  0.816j  0.408k),

TAD  TAD( 0.514i  0.686j  0.514k).

0.667TAB  0.408TAC  0.514TAD  0,

0.667TAB  0.816TAC  0.686TAD  981 N  0,

0.333TAB  0.408TAC  0.514TAD  0.

TAB  TAC  TAD  (981 N)j  0.

Because the i, j, and k components must each equal zero,

this results in three equations:

Write the Forces in Terms of Their Components
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Example 3.6 Application of the Dot Product (* Related Problem 3.79)

6 ft

O

y

C

A

B

D

z

4 ft

7 ft

4 ft

4 ft

x

The 100-lb slider  C is held in place on the smooth bar by the cable AC.

Determine the tension in the cable and the force exerted on the slider by the

bar.

Strategy
Because we want to determine forces that act on the slider, we need to draw its

free-body diagram. The external forces acting on the slider are its weight and

the forces exerted on it by the cable and the bar. If we approached this exam-

ple as we did the previous one, our next step would be to express the forces in

terms of their components. However, we don t know the direction of the force

exerted on the slider by the bar. Since the smooth bar exerts negligible friction

force, we do know that the force is normal to the bar s axis. Therefore we can

eliminate this force from the equation by taking the dot product of the

equation with a unit vector that is parallel to the bar.

Solution

Draw the Free-Body Diagram We isolate the slider (Fig. a) and complete

the free-body diagram by showing the weight of the slider, the force T exerted

by the tension in the cable, and the normal force N exerted by the bar (Fig. b).

Apply the Equilibrium Equations The sum of the external forces acting on

the free-body diagram is

(1)

Let be the unit vector pointing from point B toward point D. Since N is

perpendicular to the bar, Therefore,

(2)

Determining : We determine the vector from point B to point D,

and divide it by its magnitude to obtain the unit vector :

eBD =
rBD

rBD

=
4

9
 i -

7

9
 j +

4

9
 k.

eBD

rBD = 14 - 02i + 10 - 72j + 14 - 02k = 4i - 7j + 4k1ft2,

eBD

eBD
#
1 F2 = eBD

# [T - 1100 lb2j] = 0.

eBD
# N = 0.

eBD

F = T + N - 1100 lb2j = 0.

F = 0
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N

T

*100 j (lb)

(a)

(b)

Expressing T in terms of components: We need to determine the coordinates of

the slider C. We can write the vector from B to C in terms of the unit vector 

and then add it to the vector from the origin O to B to obtain the vector from O to C:

The components of this vector are the coordinates of point C. Now we can deter-

mine a unit vector with the same direction as T. The vector from C to A is

and the unit vector that points from point C toward point A is

Let T be the tension in the cable AC. Then we can write the vector T as

Determining T and N: Substituting our expressions for and T in terms of

their components into Eq. (2) yields

and we obtain the tension 

Now we can determine the force exerted on the slider by the bar by

using Eq. (1):

Critical Thinking

By taking the dot product of the equilibrium equation for the slider with a

unit vector that is parallel to the smooth bar BD, we obtained Eq. (2),

which does not contain the normal force N. Why does this happen? The for-

mal answer is that is perpendicular to N, and so But the

physical interpretation of Eq. (2) provides a more compelling explanation:

It states that the component of the slider s weight parallel to the bar is bal-

anced by the component of T parallel to the bar. The normal force exerted

on the slider by the smooth bar has no component parallel to the bar. We

were therefore able to solve for the tension in the cable without knowing the

normal force N.

eBD
# N = 0.eBD

eBD

 = 49.1i + 14.0j - 24.6k 1lb2.

 = -1102 lb21-0.482i + 0.843j + 0.241k2 + 1100 lb2j

 N = -T + 1100 lb2j

T = 102 lb.

 = -0.762T + 77.8 lb,

 = a
4

9
 i -

7

9
 j +

4

9
 kb # [-0.482T i + 10.843T - 100 lb2j + 0.241T k]

0 = eBD
# 3T - 1100 lb2j4

eBD

T = TeCA = T1-0.482i + 0.843j + 0.241k2.

eCA =
rCA

rCA

= -0.482i + 0.843j + 0.241k.

 = -2.67i + 4.67j + 1.33k 1ft2,

 rCA = 10 - 2.672i + 17 - 2.332j + 14 - 2.672k

 = 2.67i + 2.33j + 2.67k 1ft2.

 rOC = rOB + rBC = 7j + 12.67i - 4.67j + 2.67k2

rBC = 6eBD = 2.67i - 4.67j + 2.67k 1ft2,

eBD,

(a) Isolating the slider.

(b) Free-body diagram of the slider show-

ing the forces exerted by its weight, the

cable, and the bar.
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Problems 3.64/3.65

Problem 3.66

Problems

 3.63 In Active Example 3.5, suppose that the attachment

point B is moved to the point What are the tensions

in cables AB, AC, and AD?

3.64 The force acts at point A where the

cables AB, AC, and AD are joined. What are the tensions in the

three cables?

3.65* Suppose that you want to apply a 1000-lb force F at point

A in a direction such that the resulting tensions in cables AB, AC,

and AD are equal. Determine the components of F.

F = 800 i + 200j (lb)

(5, 0, 0) m.

3.68 Prior to its launch, a balloon carrying a set of experi-

ments to high altitude is held in place by groups of student

volunteers holding the tethers at B, C, and D. The mass of the

balloon, experiments package, and the gas it contains is 90 kg,

and the buoyancy force on the balloon is 1000 N. The super-

vising professor conservatively estimates that each student

can exert at least a 40-N tension on the tether for the necessary

length of time. Based on this estimate, what minimum

numbers of students are needed at B, C, and D?

y

z

(12, 4, 2) ft

(0, 4, 6) ft

(6, 0, 0) ftB

C

A

F

(0, 6, 0) ftD

x

3.66 The 10-lb metal disk A is supported by the smooth inclined

surface and the strings AB and AC. The disk is located at coordi-

nates What are the tensions in the strings?(5, 1, 4) ft .

(0, 6, 0) ft

(8, 4, 0) ftC

y

B

z

2 ft

8 ft

10 ft

A

x

y

x

z

C  (10,0,*12) m

B (16, 0, 16) m

D
(*16, 0, 4) m

  (0, 8, 0) mA

Problem 3.68

3.67 The bulldozer exerts a force at A. What are

the tensions in cables AB, AC, and AD?

F = 2i 1kip2

y

C

A

Dz
4 ft

3 ft

2 ft

8 ft

8 ft

6 ft

B

x

Problem 3.67
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3.69 The 20-kg mass is suspended by cables attached to three

vertical 2-m posts. Point A is at (0, 1.2, 0) m. Determine the

tensions in cables AB, AC, and AD.

B

A

C

D

y

z

x
2 m

0.3 m

1 m

1 m

Problem 3.69

3.70 The weight of the horizontal wall section is 

Determine the tensions in the cables AB, AC, and AD.

W = 20,000 lb.

6 ft

10 ft

4 ft
8 ft

7 ft

14 ft

W

D

A

C
B

Problem 3.70

C

A

y

B

E

(a)

x

8 ft 6 ft

6 ft 5 ft

5 ft

5 ft
4 ft

D
C

B

z

z

x

E

(b)

(0, 10, 0) ft

3.71 The car in Fig. a and the pallet supporting it weigh 3000 lb.

They are supported by four cables AB, AC, AD, and AE. The

locations of the attachment points on the pallet are shown in

Fig. b. The tensions in cables AB and AE are equal. Determine

the tensions in the cables.

Problem 3.71
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y

x

A

DC

B

O

10+

Problems 3.72/3.73

3.74 If the mass of the bar AB is negligible compared to the mass of

the suspended object E, the bar exerts a force on the ball atB that

points from A toward B. The mass of the object E is 200 kg. The y

axis points upward. Determine the tensions in the cables BC and BD.

Strategy: Draw a free-body diagram of the ball at B. (The

weight of the ball is negligible.)

x

y

z

C

BD

A

(0, 5, 5) m

(0, 4, *3) m

(4, 3, 1) m

E

Problem 3.74

3.75* The 3400-lb car is at rest on the plane surface. The unit

vector is perpendicular to the

surface. Determine the magnitudes of the total normal force N

and the total friction force f exerted on the surface by the car s

wheels.

en = 0.456i + 0.570j + 0.684k

y

z

x

en

Problem 3.75

3.76 The system shown anchors a stanchion of a cable-suspended

roof. If the tension in cable AB is 900 kN, what are the tensions in

cables EF and EG?

3.77* The cables of the system will each safely support a tension

of 1500 kN. Based on this criterion, what is the largest safe value

of the tension in cable AB?

y

z

x

F

(0, 1.4, 1.2) m

(0, 1.4, *1.2) m

(1, 1.2, 0) m

(2, 1, 0) m

(2.2, 0, 1) m

(2.2, 0, *1) m

(3.4, 1, 0) m

G

E

B A

C

D

Problems 3.76/3.77

3.72 The 680-kg load suspended from the helicopter is

in equilibrium. The aerodynamic drag force on the load is

horizontal. The y axis is vertical, and cable OA lies in the

x y plane. Determine the magnitude of the drag force and

the tension in cable OA.

3.73 The coordinates of the three cable attachment points 

B, C, and D are and

respectively. What are the tensions in cables

OB, OC, and OD?

11.6, -5.4, -12 m,

11.1, -5.3, 12 m,1-3.3, -4.5, 02 m,
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z

y

x

A

B

2 m

5 m

2 m

2 m

Problem 3.78

3.78 The 200-kg slider at A is held in place on the smooth

vertical bar by the cable AB.

(a) Determine the tension in the cable.

(b) Determine the force exerted on the slider by the bar.

 3.79 In Example 3.6, suppose that the cable AC is replaced

by a longer one so that the distance from point B to the slider

C increases from 6 ft to 8 ft. Determine the tension in the cable.

3.80 The cable AB keeps the 8-kg collar A in place on the smooth

bar CD. The y axis points upward. What is the tension in the cable?

3.81* Determine the magnitude of the normal force exerted on

the collar A by the smooth bar.

0.4 m

0.5 m

0.15 m

0.3 m0.2 m

0.25 m

0.2 m

z

y

B
C

D

O x

A

Problems 3.80/3.81

z

x

y

B

A

F

3 m

(4, 0, 0) m

(0, 0, 4) m

(0, 3, 0) m

(0, 5, 0) m

Problem 3.82

3.82* The 10-kg collar A and 20-kg collar B are held in 

place on the smooth bars by the 3-m cable from A to B and 

the force F acting on A. The force F is parallel to the bar. 

Determine F.
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3.86 The cable AB is horizontal, and the box on the right weighs

100 lb. The surfaces are smooth.

(a) What is the tension in the cable?

(b) What is the weight of the box on the left?

B
C

A A
x

y

a a

TAB TAC

400 lb

3.87 Assume that the forces exerted on the 170-lb climber by the

slanted walls of the chimney  are perpendicular to the walls. If

he is in equilibrium and is exerting a 160-lb force on the rope,

what are the magnitudes of the forces exerted on him by the left

and right walls?

A B

20*

40*

Problem 3.86

Problem 3.85

Problem 3.87

4*

10*

3*

Review Problems

45*

A

B

30*

Problem 3.83

3.83 The 100-lb crate is held in place on the smooth surface by

the rope AB. Determine the tension in the rope and the magnitude

of the normal force exerted on the crate by the surface.

3.84 The system shown is called Russell s traction. If the sum

of the downward forces exerted at A and B by the patient s leg is

32.2 lb, what is the weight W?

y

W

A

B

20*

25*

60*

x

Problem 3.84

3.85 The 400-lb engine block is suspended by the cables AB and

AC. If you don t want either or to exceed 400 lb, what is

the smallest acceptable value of the angle a?

TACTAB
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3.88 The mass of the suspended object A is and the masses of

the pulleys are negligible. Determine the force T necessary for the

system to be in equilibrium.

mA

T A

Problem 3.88

3.89 The assembly A, including the pulley, weighs 60 lb. What

force F is necessary for the system to be in equilibrium?

F

A

Problem 3.89

3.90 The mass of block A is 42 kg, and the mass of block B is

50 kg. The surfaces are smooth. If the blocks are in equilibrium,

what is the force F?

A

(3, 0, 4) m

B
(2, 2, 0) m

C

(5, 2, *1) m

y

x
z

3.91 The climber A is being helped up an icy slope by two

friends. His mass is 80 kg, and the direction cosines of the force

exerted on him by the slope are 

and The y axis is vertical. If the climber is in

equilibrium in the position shown, what are the tensions in the

ropes AB and AC and the magnitude of the force exerted on him

by the slope?

3.92 Consider the climber A being helped by his friends in Prob-

lem 3.91. To try to make the tensions in the ropes more equal, the

friend at B moves to the position (4, 2, 0) m. What are the new

tensions in the ropes AB and AC and the magnitude of the force

exerted on the climber by the slope?

cos uz = 0.857.

cos ux = -0.286, cos uy = 0.429,

B

45+

A

20+

F

Problem 3.90

Problems 3.91/3.92
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x

3 m

y

A
B

D

O

C

(6, 2, 0) m

z

12 m

4 m

5 m

5 m

8 m

Problem 3.97

118 Chapter 3 Forces

3.96 To support the tent, the tension in the rope AB must be

35 lb. What are the tensions in the ropes AC, AD, and AE?

x

A B

C

D

(0, 5, 0) ft

(6, 4, 3) ft

(8, 4, 3) ft

    E 
(3, 0, 3) ft

(0, 6, 6) ft

z

y

Problem 3.96

3.97 Cable AB is attached to the top of the vertical 3-m post,

and its tension is 50 kN. What are the tensions in cables AO,

AC, and AD?

3.93 A climber helps his friend up an icy slope. His friend is

hauling a box of supplies. If the mass of the friend is 90 kg

and the mass of the supplies is 22 kg, what are the tensions in the

ropes AB and CD? Assume that the slope is smooth. That is, only

normal forces are exerted on the man and the box by the slope.

D

60*

75*

40*

C

B
20*

A

Problem 3.93

3.94 The 2800-lb car is moving at constant speed on a road with

the slope shown. The aerodynamics forces on the car are the drag

which is parallel to the road, and the lift 

which is perpendicular to the road. Determine the magnitudes of

the total normal and friction forces exerted on the car by the road.

L = 120 lb,D = 270 lb,

D
L

15*

Problem 3.94

3.95 An engineer doing preliminary design studies for a new

radio telescope envisions a triangular receiving platform suspended

by cables from three equally spaced 40-m towers. The receiving

platform has a mass of 20 Mg (megagrams) and is 10 m below the

tops of the towers. What tension would the cables be subjected to?

65 m

20 m

TOP VIEW

Problem 3.95
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Review Problems 119

3.98* The 1350-kg car is at rest on a plane surface with its

brakes locked. The unit vector is

perpendicular to the surface. The y axis points upward. The direc-

tion cosines of the cable from A to B are 

and the tension in the cable is

1.2 kN. Determine the magnitudes of the normal and friction

forces the car s wheels exert on the surface.

cos uz = -0.408,cos uy = 0.408,

cos ux = -0.816,

en = 0.231i + 0.923j + 0.308k

3.99* The brakes of the car are released, and the car is held in

place on the plane surface by the cable AB. The car s front wheels

are aligned so that the tires exert no friction forces parallel to the

car s longitudinal axis. The unit vector 

is parallel to the plane surface and aligned with the car s

longitudinal axis. What is the tension in the cable?

0.314k

ep = -0.941i + 0.131j +

B

en

ep

y

z

x

A

Problems 3.98/3.99

1 m

C
B

A

a

Design Project 1 A possible design for a simple scale to

weigh objects is shown. The length of the string AB is 0.5 m.

When an object is placed in the pan, the spring stretches and the

string AB rotates. The object s weight can be determined by

observing the change in the angle a.

(b) Suppose that you can use the same components the pan,

protractor, a spring, string and also one or more pulleys. Sug-

gest another possible configuration for the scale. Use statics to

analyze your proposed configuration and compare its accuracy

with that of the configuration shown for objects with masses in

the range 0.2 2 kg.

Design Project 2 Suppose that the positions of points A, C,

and D of the system of cables suspending the 100-kg mass are

fixed, but you are free to choose the x and z coordinates of point

B. Investigate the effects of different choices of the location of

point B on the tensions in the cables. If the cost of cable AB is

proportional to the product of the tension in the cable and its

length, investigate the effect of different choices of the location

of point B on the cost of the cable. Write a brief report describing

the results of your investigations and recommending a location

for point B. 

100 kg

(*3, 0, 3) m

(*2, 0, *2) m

z

D

A
(0, *4, 0) m

(x, 0, z) m

B

x

y
C

(a) Assume that objects with masses in the range 0.2 2 kg are to

be weighed. Choose the unstretched length and spring constant

of the spring in order to obtain accurate readings for weights in

the desired range. (Neglect the weights of the pan and spring.

Notice that a significant change in the angle is needed to de-

termine the weight accurately.)

a
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The effects of forces can depend not only on their mag-

nitudes and directions but also on the moments, or

torques, they exert. The rotations of objects such as the

wheels of a vehicle, the crankshaft of an engine, and the

rotor of an electric generator result from the moments of

the forces exerted on them. If an object is in equilibrium,

the moment about any point due to the forces acting on

the object is zero. Before continuing our discussion of

free-body diagrams and equilibrium, we must explain

how to calculate moments and introduce the concept of

equivalent systems of forces and moments.

Systems of Forces and Moments

 The counterweight of the building crane exerts a large moment that the
crane's structure must support during assembly. In this chapter we calculate
moments of forces and analyze systems of forces and moments.

C H A P T E R

4
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4.1 Two-Dimensional Description of the Moment

BACKGROUND

Consider a force of magnitude F and a point P, and let s view them in the di-

rection perpendicular to the plane containing the force vector and the point

(Fig. 4.1a). The magnitude of the moment of the force about P is the product

DF, where D is the perpendicular distance from P to the line of action of

the force (Fig. 4.1b). In this example, the force would tend to cause counter-

clockwise rotation about point P. That is, if we imagine that the force acts on

122 Chapter 4 Systems of Forces and Moments

F

(c)(b)

D

(a)

F F

P P P

Figure 4.1
(a) The force and point P.

(b) The perpendicular distance D from

point P to the line of action of F.

(c) The direction of the moment is

counterclockwise.

an object that can rotate about point P, the force would cause counterclock-

wise rotation (Fig. 4.1c). We say that the direction of the moment is counterclock-

wise. We define counterclockwise moments to be positive and clockwise moments

to be negative. (This is the usual convention, although we occasionally en-

counter situations in which it is more convenient to define clockwise moments

to be positive.) Thus, the moment of the force about P is

(4.1)

Notice that if the line of action of F passes through P, the perpendicular distance

and the moment of F about P is zero.

The dimensions of the moment are For example,

moments can be expressed in newton-meters in SI units and in foot-pounds in

U.S. Customary units.

Suppose that you want to place a television set on a shelf, and you aren t

certain the attachment of the shelf to the wall is strong enough to support it.

Intuitively, you place it near the wall (Fig. 4.2a), knowing that the attachment

is more likely to fail if you place it away from the wall (Fig. 4.2b). What is the

difference in the two cases? The magnitude and direction of the force exerted

on the shelf by the weight of the television are the same in each case, but the

moments exerted on the attachment are different. The moment exerted about P

by its weight when it is near the wall, is smaller in magnitude than

the moment about P when it is placed away from the wall, 

The method we describe in this section can be used to determine the

sum of the moments of a system of forces about a point if the forces are

two-dimensional (coplanar) and the point lies in the same plane. For exam-

ple, consider the construction crane shown in Fig. 4.3. The sum of the mo-

ments exerted about point P by the load and the counterweight is

This moment tends to cause the top of the vertical tower to rotate and could

cause it to collapse. If the distance is adjusted so that the mo-

ment about point P due to the load and the counterweight is zero.

D1W1 = D2W2,D2

MP = D1W1 - D2W2.

W2W1

MP = -D2W.

MP = -D1W,

1distance2 * 1force2.

D = 0

MP = DF.

D
1

W

(a)

D
2

(b)

W

P

P

Figure 4.2
(a) Placing the television near the wall mini-

mizes the moment exerted on the support

of the shelf at P. 

(b) Placing the television far from the wall

exerts a large moment on the support at

P and could cause it to fail.
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If a force is expressed in terms of components, the moment of the force

about a point P is equal to the sum of the moments of its components about P.

We prove this very useful result in the next section.

RESULTS

4.1 Two-Dimensional Description of the Moment 123

P

W
1

P

D
1

D
2

W
2

Figure 4.3

A tower crane used in the construction of

high-rise buildings.

F

P

The force vector of magnitude F and the point P

are both contained in the plane of the page.

D

F

P

Magnitude of the Moment

The magnitude of the moment of F about P is

the product DF, where D is the perpendicular

distance from P to the line of action of F.

Direction and Sign of the Moment

The direction of the moment is said to be counterclockwise

if F would tend to rotate an object pinned at P in the

counterclockwise direction about P. Except where otherwise

stated, we define counterclockwise moments to be positive

and clockwise moments to be negative. Thus the moment

of the force shown about P is

F

P

MP * DF.                               (4.1)

If F is expressed in terms of components,

the moment of F about P is equal to the

sum of the moments of the components of F

about P.

F

P

y

x
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124 Chapter 4 Systems of Forces and Moments

Active Example 4.1 Determining a Moment (* Related Problem 4.1)

What is the moment of the 40-kN force about point A?

6 m

40 kN

30*
A

6 m

40 kN

30+

D

A

The perpendicular distance from A to the

line of action of the force is

D * (6 m)sin30+ * 3m.

The direction of the moment is

counterclockwise, so

(3 m)(40 kN) * 120 kN-m.

Therefore the magnitude of the moment is

MA * 120 kN-m.

Strategy
We can calculate the magnitude of the moment by determining the perpendicu-

lar distance from point A to the line of action of the force.

Solution

Practice Problem Resolve the 40-kN force into horizontal and vertical components

and calculate the sum of the moments of the components about A.

Answer: 120 kN-m.

Example 4.2 Moment of a System of Forces (* Related Problem 4.12)

Four forces act on the machine part. What is the sum of the moments of the

forces about the origin O?

Strategy
We can determine the moments of the forces about point O directly from

the given information except for the 4-kN force. We will determine its moment

by expressing it in terms of components and summing the moments of the

components.

Solution

Moment of the 3-kN Force The line of action of the 3-kN force passes

through O. It exerts no moment about O.

300 mm

4 kN

2 kN

3 kNO

30+

5 kN

400 mm300 mm
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4.1 Two-Dimensional Description of the Moment 125

Moment of the 5-kN Force The line of action of the 5-kN force also passes

through O. It too exerts no moment about O.

Moment of the 2-kN Force The perpendicular distance from O to the line of

action of the 2-kN force is 0.3 m, and the direction of the moment about O is

clockwise. The moment of the 2-kN force about O is

(Notice that we converted the perpendicular distance from millimeters into

meters, obtaining the result in terms of kilonewton-meters.)

Moment of the 4-kN Force In Fig. a, we introduce a coordinate system and ex-

press the 4-kN force in terms of x and y components. The perpendicular distance

from O to the line of action of the x component is 0.3 m, and the direction of the

moment about O is clockwise. The moment of the x component about O is

-10.3 m214 cos 30  kN2 = -1.039 kN-m.

-10.3 m212 kN2 = -0.600 kN-m.

y

300

mm

2 kN

4 kN

5 kN

O

3 kN
x

4 sin 30* kN

4 cos 30* kN

300

mm

400

mm

(a) Resolving the 4-kN force into 

components.

The perpendicular distance from point O to the line of action of the y compo-

nent is 0.7 m, and the direction of the moment about O is counterclockwise.

The moment of the y component about O is

The sum of the moments of the four forces about point O is

The four forces exert a 0.239 kN-m clockwise moment about point O.

Critical Thinking

If an object is subjected to a system of known forces, why is it useful to deter-

mine the sum of the moments of the forces about a given point? As we discuss

in Chapter 5, the object is in equilibrium only if the sum of the moments about

any point is zero, so calculating the sum of the moments provides a test for

equilibrium. (Notice that the object in this example is not in equilibrium.)

Furthermore, in dynamics the sum of the moments of the forces acting on

objects must be determined in order to analyze their angular motions.

M0 = -0.600 - 1.039 + 1.400 = -0.239 kN-m.

10.7 m214 sin 30  kN2 = 1.400 kN-m.
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126 Chapter 4 Systems of Forces and Moments

Problems

 4.1 In Active Example 4.1, the 40-kN force points above

the horizontal. Suppose that the force points below the hori-

zontal instead. Draw a sketch of the beam with the new orienta-

tion of the force. What is the moment of the force about point A?

4.2 The mass The magnitude of the total moment

about B due to the forces exerted on bar AB by the weights of the

two suspended masses is 170 N-m. What is the magnitude of the

total moment due to the forces about point A?

m1 = 20 kg.

30

30

0.35 m

A

m1 m2

B

0.35 m 0.35 m

Problem 4.2

4.3 The wheels of the overhead crane exert downward forces on

the horizontal I-beam at B and C. If the force at B is 40 kip and

the force at C is 44 kip, determine the sum of the moments of the

forces on the beam about (a) point A, (b) point D.

A D

25 ft10 ft 15 ft

B C

Problem 4.3

The weight . The sum of the moments about C due to the weight

W and the force exerted on the bar CA by the cable AB is zero. What is the

tension in the cable?

Strategy
Let T be the tension in cable AB. Using the given dimensions, we can express

the horizontal and vertical components of the force exerted on the bar by the

cable in terms of T. Then by setting the sum of the moments about C due to

the weight of the bar and the force exerted by the cable equal to zero, we can

obtain an equation for T.

Solution
Using similar triangles, we express the force exerted on the bar by the cable in

terms of horizontal and vertical components (Fig. a). The sum of the moments

about C due to the weight of the bar and the force exerted by the cable AB is

Solving for T, we obtain

Critical Thinking
This example is a preview of the applications we consider in Chapter 5 and

demonstrates why you must know how to calculate moments of forces. If the

bar is in equilibrium, the sum of the moments about C is zero. Applying this

condition allowed us to determine the tension in the cable. Why didn t we need

to consider the force exerted on the bar by its support at C? Because we know

that the moment of that force about C is zero.

T = 0.357W = 107.1 lb.

MC = 4a
4

5
 Tb + 4a

3

5
 Tb - 2W = 0.

W = 300 lb

Example 4.3 Summing Moments to Determine an Unknown Force ( Related Problem 4.23)

2 ft 2 ft

4 ft

C

W

7 ft

B

A

4 ft

3 ft

C

A

B

W

T

2 ft 2 ft

T
3 

5

T
4 

5

(a) Resolving the force exerted

by the cable into horizontal

and vertical components.
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Problems 127

4.5 Two forces of equal magnitude F are applied to the wrench

as shown. If a 50 N-m moment is required to loosen the nut, what

is the necessary value of F?

42*

165
mm

P

F

Problem 4.4

F

F

300 mm

380 mm
F

F

30*

20*

Problem 4.5

F

x

y

(7, 2) m

(3, 7) m

(3, 2) m

(8, 5) m

P

Q

Problems 4.6/4.7

4.4 What force F applied to the pliers is required to exert a 4 N-m

moment about the center of the bolt at P?

4.6 The force What is the moment of the force about

point P?

4.7 If the magnitude of the moment due to the force F about Q is

30 kN-m, what is F?

F = 8 kN.

4.8 The support at the left end of the beam will fail if the mo-

ment about A of the 15-kN force F exceeds 18 kN-m. Based on

this criterion, what is the largest allowable length of the beam?

25*

A

B

F
30*

Problem 4.8

4.9 The length of the bar AP is 650 mm. The radius of the pulley

is 120 mm. Equal forces are applied to the ends of the

cable. What is the sum of the moments of the forces (a) about A;

(b) about P?

T = 50 N

T

T

A

P 45*

45*

30*

Problem 4.9
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4.10 The force A structural engineer determines that

the magnitude of the moment due to F about P should not exceed

5 kN-m. What is the acceptable range of the angle Assume that

0 a 90 .

a?

F = 12 kN.

4.15 The magnitudes of the forces exerted on the pillar at D by

the cables A, B, and C are equal: The magnitude

of the total moment about E due to the forces exerted by the three

cables at D is 1350 kN-m. What is FA?

FA = FB = FC.

4.16 Three forces act on the piping. Determine the sum of the

moments of the three forces about point P.

128 Chapter 4 Systems of Forces and Moments

2 m

1 m

F 

P

a

Problem 4.10

4.11 The length of bar AB is 350 mm. The moments exerted about

points B and C by the vertical force F are and

Determine the force F and the length of

bar AC.

MC = -4.20 kN-m.

MB = -1.75 kN-m

 4.12 In Example 4.2, suppose that the 2-kN force points

upward instead of downward. Draw a sketch of the machine

part showing the orientations of the forces. What is the sum of

the moments of the forces about the origin O?

4.13 Two equal and opposite forces act on the beam. Determine

the sum of the moments of the two forces (a) about point P;

(b) about point Q; (c) about the point with coordinates

x = 7 m, y = 5 m.

4.14 The moment exerted about point E by the weight is 299 in-lb.

What moment does the weight exert about point S?

B

C

20*

30*

A

F

Problem 4.11

2 m
2 m

40 N

30*

P

y

Q

40 N

30*

x

Problem 4.13

S

30*

E 40*

12 in

13 in

Problem 4.14

FA

FB

FC

4 m

A

E

D

D

B C

6 m

4 m

4 m

Problem 4.15

0.2 m

P

2 kN

0.2 m

0.2 m

2 kN
4 kN

0.2 m

20*

Problem 4.16
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4.21 Three forces act on the car. The sum of the forces is zero

and the sum of the moments of the forces about point P is zero.

(a) Determine the forces A and B.

(b) Determine the sum of the moments of the forces about point Q.

 4.23 In Example 4.3, suppose that the attachment point B is

moved upward and the cable is lengthened so that the vertical

distance from C to B is 9 ft. (The positions of points C and A are

unchanged.) Draw a sketch of the system with the cable in its new

position. What is the tension in the cable?

4.24 The tension in the cable is the same on both sides of the

pulley. The sum of the moments about point A due to the 800-lb

force and the forces exerted on the bar by the cable at B and C is

zero. What is the tension in the cable?

FD30* 

FB FC

FA

y

x

6 ft 4 ft

Problems 4.19/4.20

B
P Q

A

y

x

2800 lb

6 ft 3 ft

Problem 4.21

2 ft

P

80 lb

2 ft
2 ft

20 lb

2 ft

45*

A

B

y

x
Q

C

Problem 4.22

A

30 in
800 lb

B
C

30 in
30 in

30*

Problem 4.24

Problems 129

4.17 The forces and What

is the sum of the moments of the forces about point A?

4.18 The force The vector sum of the three forces is

zero. What is the sum of the moments of the forces about point A?

F1 = 30 N.

F3 = 40 N.F2 = 80 N,F1 = 30 N,

4.19 The forces and

What is the sum of the moments of the forces about

the origin of the coordinate system?

4.20 The force The vector sum of the forces on the

beam is zero, and the sum of the moments of the forces about the

origin of the coordinate system is zero. (a) Determine the forces

and (b) Determine the sum of the moments of the

forces about the right end of the beam.

FD.FB, FC,

FA = 30 lb.

FD = 30 lb.

FC = 20 lb,FB = 40 lb,FA = 30 lb,

F1

F2

F3

30*

45*

A

B

C

x

y

8 m

2 m

Problems 4.17/4.18

4.22 Five forces act on the piping. The vector sum of the forces is

zero and the sum of the moments of the forces about point P is zero.

(a) Determine the forces A, B, and C.

(b) Determine the sum of the moments of the forces about point Q.
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4.27 The force F exerts a 200 ft-lb counterclockwise moment

about A and a 100 ft-lb clockwise moment about B. What are F

and u?

130 Chapter 4 Systems of Forces and Moments

          A
(+5, 5) ft

      B
(3, +4) ft

(4, 3) ft

F

y

x

u

Problem 4.27

650 mm

650 mm
350 mm

450 mm30 kN

45*

20*

B

Ax

Ay

25 kN

Problem 4.28

h

60*
F

60*
F

B

Ax

Ay
b b b b b b

Problems 4.29/4.30

4.28 Five forces act on a link in the gear-shifting mechanism of a

lawn mower. The vector sum of the five forces on the bar is zero.

The sum of their moments about the point where the forces and

act is zero.

(a) Determine the forces and B.

(b) Determine the sum of the moments of the forces about the

point where the force B acts.

Ax, Ay,

Ay

Ax

4.29 Five forces act on a model truss built by a civil engineering

student as part of a design project. The dimensions are 

and The sum of the moments of the

forces about the point where and act is zero. If the weight of

the truss is negligible, what is the force B?

4.30 The dimensions are and 

The vector sum of the forces acting on the truss is zero, and the

sum of the moments of the forces about the point where and 

act is zero.

(a) Determine the forces and B.

(b) Determine the sum of the moments of the forces about the

point where the force B acts.

Ax, Ay,

AyAx

h = 4 ft and F = 300 lb.b = 3 ft

AyAx

h = 400 mm and F = 100 N.

b = 300 mm

18 m 12 m

5* 6*

2.2 m

2.2 m

G

F F

Problem 4.26

4.26 The space shuttle s attitude thrusters exert two forces of

magnitude What moment do the thrusters exert

about the center of mass G?

F = 7.70 kN.

4.25 The 160-N weights of the arms AB and BC of the robotic

manipulator act at their midpoints. Determine the sum of the

moments of the three weights about A.

600 mm

600 m
m

40*

20*

160 N

40 N

160 N

C

A

150

mm

B

Problem 4.25
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y

x

B (4, 13) m

C

(9, 1) m
A

(0, 1.2) m

Problem 4.36

Problem 4.34

4 ft
6 ft

H

7 ft 15 ft

4.33 The bar AB exerts a force at B that helps support the verti-

cal retaining wall. The force is parallel to the bar. The civil engi-

neer wants the bar to exert a 38 kN-m moment about O. What is

the magnitude of the force the bar must exert?

4.34 Acontestant in a fly-casting contest snags his line in some grass.

If the tension in the line is 5 lb, what moment does the force exerted

on the rod by the line exert about pointH, where he holds the rod?

4.35 The cables AB and AC help support the tower. The tension

in cable AB is 5 kN. The points A, B, C, and O are contained in

the same vertical plane. (a) What is the moment about O due to

the force exerted on the tower by cable AB? (b) If the sum of the

moments about O due to the forces exerted on the tower by the two

cables is zero, what is the tension in cable AC?

20 m

45* 60*

A

BOC

Problem 4.35

Problems 131

4.31 The mass What is the moment about A due to

the force exerted on the beam at B by the cable?

m = 70 kg.

3 m

m

B
A

30*
45*

Problem 4.31

A D

B C

P

W2W1

6 ft
50*

Problem 4.32

4.32 The weights and are suspended by the cable system

shown. The weight The cable BC is horizontal.

Determine the moment about point P due to the force exerted on

the vertical post at D by the cable CD.

W1 = 12 lb.

W2W1

B

A

O

4 m

1 m

1 m 3 m

Problem 4.33

4.36 The cable from B to A (the sailboat s forestay) exerts a 230-N

force at B. The cable from B to C (the backstay) exerts a 660-N force

at B. The bottom of the sailboat s mast is located at 

What is the sum of the moments about the bottom of the mast due

to the forces exerted at B by the forestay and backstay?

x = 4 m, y = 0.

BEDFMC04_0136129153.QXD  4/14/07  1:00 AM  Page 131



4.39 The mass of the luggage carrier and the suitcase combined

is 12 kg. Their weight acts at A. The sum of the moments about

the origin of the coordinate system due to the weight acting at A

and the vertical force F applied to the handle of the luggage

carrier is zero. Determine the force F (a) if

(b) if a = 50 .

a = 30 ;

132 Chapter 4 Systems of Forces and Moments

F

1.2 m

0.28 m 0.14 m

A

C

y

x

a

Problem 4.39

1.8 m 1.2 m

7 m

2.4 m

1 m

A

B

C

Problem 4.40

4.40 The hydraulic cylinder BC exerts a 300-kN force on the

boom of the crane at C. The force is parallel to the cylinder. What

is the moment of the force about A?

4.37 The cable AB exerts a 290-kN force on the crane s boom

at B. The cable AC exerts a 148-kN force on the boom at C. Deter-

mine the sum of the moments about P due to the forces the cables

AB and AC exert on the boom.

4.38 The mass of the crane s boom is 9000 kg. Its weight acts at G.

The sum of the moments about P due to the boom s weight, the

force exerted at B by the cable AB, and the force exerted at C by the

cable AC is zero. Assume that the tensions in cables AB and AC are

equal. Determine the tension in the cables.

8 m

16 m

38 m

56 m

PG

A

B C

Boom

Problems 4.37/4.38
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Problems 133

A B

C

3 ft

6 ft 3 ft

6 ft

W

Problem 4.41

1 m

0.6 m Scoop

A B

D

C

0.15 m

0.6 m

1 m

Hydraulic
cylinder

Problem 4.42

4.42 The hydraulic cylinder exerts an 8-kN force at B that is

parallel to the cylinder and points from C toward B. Determine

the moments of the force about points A and D.

H

L K

100
mm

160
mm

Shaft

260
mm

320
mm

380
mm

C

D

1040
mm 1120

mm

260
mm

Scoop

B

180
mm

J

Problems 4.43/4.44

4.41 The hydraulic piston AB exerts a 400-lb force on the

ladder at B in the direction parallel to the piston. The sum of the

moments about C due to the force exerted on the ladder by the

piston and the weight W of the ladder is zero. What is the weight

of the ladder?

4.43 The structure shown in the diagram is one of two identical structures that support the scoop of the excavator. The bar BC exerts a

700-N force at C that points from C toward B. What is the moment of this force about K?

4.44 The bar BC exerts a force at C that points from C toward B. The hydraulic cylinder DH exerts a 1550-N force at D that points

from D toward H. The sum of the moments of these two forces about K is zero. What is the magnitude of the force that bar BC

exerts at C?
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134 Chapter 4 Systems of Forces and Moments

4.2 The Moment Vector

BACKGROUND

The moment of a force about a point is a vector. In this section we define this

vector and explain how it is evaluated. We then show that when we use the two-

dimensional description of the moment described in Section 4.1, we are speci-

fying the magnitude and direction of the moment vector.

Consider a force vector F and point P (Fig. 4.4a). The moment of F about

P is the vector

(4.2)

where r is a position vector from P to any point on the line of action of F

(Fig. 4.4b).

Magnitude of the Moment

From the definition of the cross product, the magnitude of is

where is the angle between the vectors r and F when they are placed tail to

tail. The perpendicular distance from P to the line of action of F is 

(Fig. 4.4c). Therefore the magnitude of the moment equals the product of

the perpendicular distance from P to the line of action of F and the magni-

tude of F:

(4.3)

Notice that if we know the vectors and F, this equation can be solved for

the perpendicular distance D.

Direction of the Moment

We know from the definition of the cross product that is perpendicular to

both r and F. That means that is perpendicular to the plane containing P and

F (Fig. 4.5a). Notice in this figure that we denote a moment by a circular arrow

around the vector.

MP

MP

MP

MP = D F .

MP

D = r  sin u

u

MP = r F  sin u,

MP

MP = r * F,

P

F

(a)

F

r

P

F

(c)

r

D

P

u

u

(b)

Figure 4.4
(a) The force F and point P.

(b) A vector r from P to a point on the line

of action of F.

(c) The angle and the perpendicular

distance D.

u

F

(b)

r

P

F

(a)

MP

P

r

Plane containing
r and F

MP

Figure 4.5
(a) is perpendicular to the plane

containing p and F.

(b) The direction of indicates the

direction of the moment.

MP

MP
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4.2 The Moment Vector 135

P

F

r

(a)

P

F

P

(c)

r

r*
u

F

r*

(b)

Figure 4.6

(a) A vector r from P to the line of action

of F.

(b) A different vector 

(c) r = r + u.

r .

The direction of also indicates the direction of the moment: Pointing

the thumb of the right hand in the direction of the arc  of the fingers in-

dicates the direction of the rotation that F tends to cause about P (Fig. 4.5b).

The result obtained from Eq. (4.2) doesn t depend on where the vector r

intersects the line of action of F. Instead of using the vector r in Fig. 4.6a, we

could use the vector in Fig. 4.6b. The vector where u is paral-

lel to F (Fig. 4.6c). Therefore,

because the cross product of the parallel vectors u and F is zero.

In summary, the moment of a force F about a point P has three properties:

1. The magnitude of is equal to the product of the magnitude of F and the

perpendicular distance from P to the line of action of F. If the line of ac-

tion of F passes through 

2. is perpendicular to the plane containing P and F.

3. The direction of indicates the direction of the moment through a right-

hand rule (Fig. 4.5b). Since the cross product is not commutative, it is es-

sential to maintain the correct sequence of the vectors in the equation

Let us determine the moment of the force F in Fig. 4.7a about the point P.

Since the vector r in Eq. (4.2) can be a position vector to any point on the line

of action of F, we can use the vector from P to the point of application of F

(Fig. 4.7b):

The moment is

The magnitude of 

MP = 21382
2
+ 1-872

2
+ 1282

2
= 99.0 ft-lb,

MP,

MP = r * F = 3

i j k

9 2 -6

4 4 7

3 = 38i - 87j + 28k 1ft-lb2.

r = 112 - 32i + 16 - 42j + 1-5 - 12k = 9i + 2j - 6k 1ft2.

MP = r * F.

MP

MP

P, MP = 0.

MP

r * F = 1r + u2 * F = r * F

r = r + u,r

MP,

MP
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136 Chapter 4 Systems of Forces and Moments

equals the product of the magnitude of F and the perpendicular distance D from

point P to the line of action of F. Therefore,

D

The direction of tells us both the orientation of the plane containing P and

F and the direction of the moment (Fig. 4.7c).

Relation to the Two-Dimensional Description

If our view is perpendicular to the plane containing the point P and the force F,

the two-dimensional description of the moment we used in Section 4.1 speci-

fies both the magnitude and direction of the vector In this situation, is

perpendicular to the page, and the right-hand rule indicates whether it points out

of or into the page.

For example, in Fig. 4.8a, the view is perpendicular to the x y plane and the

10-N force is contained in the x y plane. Suppose that we want to determine the

MPMP.

MP

=
MP

F
=

99.0 ft-lb

9 lb
= 11.0 ft.

Figure 4.8
(a) The force is contained in the x y plane.

(b) The counterclockwise direction of the moment indicates that points out of the page.

(c) The vector r from O to the point of application of F.

MO

x

y

(4, 2, 0) m

10j (N)

(b)

O x

y

(4, 2, 0) m

10j (N)

(a)

O x

y

(4, 2, 0) m

10j (N)

(c)

r

O

P

(a)

(3, 4, 1) ft

(12, 6, *5) ft

F + 4i , 4j , 7k (lb)

P

(b)

(3, 4, 1) ft

(12, 6, *5) ftr

F

yy y

MP

(c)

P

zz z

xxx

F

Plane

containing

P and F

Figure 4.7
(a) A force F and point P.

(b) The vector r from P to the point of application of F.

(c) is perpendicular to the plane containing P and F. 

The right-hand rule indicates the direction of the moment.

MP
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4.2 The Moment Vector 137

moment of the force about the origin O. The perpendicular distance from O to

the line of action of the force is 4 m. The two-dimensional description of the

moment of the force about O is that its magnitude is 

and its direction is counterclockwise, or

That tells us that the magnitude of the vector is 40 N-m, and the right-hand

rule (Fig. 4.8b) indicates that it points out of the page. Therefore,

We can confirm this result by using Eq. (4.2). If we let r be the vector from O

to the point of application of the force (Fig. 4.8c),

As this example illustrates, the two-dimensional description of the moment de-

termines the moment vector. The converse is also true. The magnitude of 

equals the product of the magnitude of the force and the perpendicular distance

from O to the line of action of the force, 40 N-m, and the direction of the vec-

tor indicates that the moment is counterclockwise (Fig. 4.8b).

Varignon s Theorem

Let be a concurrent system of forces whose lines of action inter-

sect at a point Q. The moment of the system about a point P is

where is the vector from P to Q (Fig. 4.9). This result, known as Varignon s

theorem, follows from the distributive property of the cross product, Eq. (2.31).

It confirms that the moment of a force about a point P is equal to the sum of the

moments of its components about P.

rPQ

 = rPQ * 1F1 + F2 + + FN2,

 1rPQ * F12 + 1rPQ * F22 + + 1rPQ * FN2

F1, F2, , FN

MO

MO

MO = r * F = 14i + 2j2 * 10j = 40k 1N-m2.

MO = 40k 1N-m2.

MO

MO = 40 N-m.

14 m2110 N2 = 40 N-m

P
rPQ

Q

FN

F2
F1

Figure 4.9
A system of concurrent forces and a point P.
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138 Chapter 4 Systems of Forces and Moments

Active Example 4.4 Determining a Moment (* Related Problem 4.45)

Determine the moment of the 90-lb force F about point A.

Strategy
To apply Eq. (4.2), we must express the force F in terms of its components. The

vector r is a vector from point A to any point on the line of action of F, so we

can use the vector from point A to point B.

(0, 6, 5) ft

A

C (7, 7, 0) ft

y

x

z

B

F

(11, 0, 4) ft

RESULTS

Moment

Magnitude of the Moment

The magnitude of the vector MP is 

Direction of the Moment

The vector MP is perpendicular to the plane

containing the point P and the vector F. Pointing the

thumb of the right hand in the direction of MP, the

fingers point in the direction of the rotation that F

tends to cause about P.

F

r
P

F

r

P

MP

The moment of a force F about a point P is defined by

MP   D F ,                                  (4.3) 

where D is the perpendicular distance from P

to the line of action of F.

MP  r  F,                                                (4.2)

where r is a position vector from P to any point on the

line of action of F.
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4.2 The Moment Vector 139

Solution

Practice Problem (a) Use Eq. (4.2) to determine the moment of F about point A, 

letting the vector r be the position vector from point A to point C. (b) Determine the

perpendicular distance from point A to the line of action of F.

Answer: (a) MA = 310i + 480j + 530k (ft-lb). (b) 8.66 ft.

Obtain a unit vector that has the

same direction as the force F 

by dividing the position vector

from point B to point C by its

magnitude.

rBC  (xC  xB) i  (yC  yB) j  (zC  zB)k

 4i  7j  4k (ft).

(0, 6, 5) ft

A

C

y

x

z

B

eBC

(7, 7, 0) ft 

(11, 0, 4) ft

4

9
i

7

9
j

4

9
k.eBC  

rBC

rBC

Express the force F in terms of its

components by writing it as the

product of its magnitude and the

unit vector eBC.

F  (90 lb)eBC

 (90 lb)

 40i  70j  40k (lb).

4

9
i

7

9
j

4

9
k

                

Apply Eq. (4.2) to determine the

moment of F about point A.

rAB

F

(0, 6, 5) ft

A

(7, 7, 0) ft

y

x

z

B

C

(11, 0, 4) ft

 i         j       k

11   6    1

40     70   40

MA  rAB  F

 310i  480j  530k (ft-lb).

rAB  (xB  xA)i  (yB  yA)j  (zB  zA)k

 11i  6j  k (ft).
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Example 4.5 Applying the Moment Vector (* Related Problem 4.57)

The cables AB and AC extend from an attachment point A on the floor to

attachment points B and C in the walls. The tension in cable AB is 10 kN, and

the tension in cable AC is 20 kN. What is the sum of the moments about O due

to the forces exerted on the attachment point A by the two cables?

Strategy
We must express the forces exerted on the attachment point A by the two cables

in terms of their components. Then we can use Eq. (4.2) to determine the

moments the forces exert about O.

Solution
Let and be the forces exerted on the attachment point A by the two

cables (Fig. a). To express in terms of its components, we determine the

position vector from A to B,

and divide it by its magnitude to obtain a unit vector with the same direc-

tion as (Fig. b):

Now we write as

We express the force in terms of its components in the same way:

Choose the Vector r Since the lines of action of both forces pass through

point A, we can use the vector from O to A to determine the moments of both

forces about point O (Fig. a):

Evaluate The sum of the moments is

Critical Thinking
The lines of action of the forces and intersect at A. Notice that, accord-

ing to Varignon s theorem, we could have summed the forces first, obtaining

FAB + FAC = -0.952i + 15.24j - 13.81k 1kN2,

FACFAB

 = -91.4i + 49.5j + 61.0k 1kN-m2.

 = 3

i j k

4 0 6

-6.67 6.67 3.33

3 + 3

i j k

4 0 6

5.71 8.57 -17.14

3

 MO = 1r * FAB2 + 1r * FAC2

r * F

r = 4i + 6k 1m2.

FAC = 5.71i + 8.57j - 17.14k 1kN2.

FAC

FAB = 10eAB = -6.67i + 6.67j + 3.33k 1kN2.

FAB

eAB =
-4i + 4j + 2k 1m2

21-4 m2
2
+ 14 m2

2
+ 12 m2

2
= -  

2

3
 i +

2

3
 j +

1

3
 k.

FAB

eAB

10 - 42i + 14 - 02j + 18 - 62k = -4i + 4j + 2k 1m2,

FAB

FACFAB

140 Chapter 4 Systems of Forces and Moments

y

x

z

A

(6, 3, 0) m

(0, 4, 8) m O

(4, 0, 6) m

B

C

A (4, 0, 6) m

C

(6, 3, 0) m

O

B

(0, 4, 8) m

eAB

y

z

x

A

r

(4, 0, 6) m

C

(6, 3, 0) m

O

B
(0, 4, 8) m

FAB

FAC

y

z

x

(a) The forces and exerted at A by

the cables.

FACFAB

(b) The unit vector has the same

direction as FAB.

eAB
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Problems 141

 4.45 In Active Example 4.4, what is the moment of F about the

origin of the coordinate system?

4.46 Use Eq. (4.2) to determine the moment of the 80-N force

about the origin O letting r be the vector (a) from O to A; (b) from

O to B.

4.48 Use Eq. (4.2) to determine the moment of the 100-kN force

(a) about A; (b) about B.

and then determined the sum of the moments of the two forces about O by

calculating the moment of the sum of the two forces about O:

 = -91.4i + 49.5j + 61.0k 1kN-m2.

 = 3

i j k

4 0 6

-0.952 15.24 -13.81

3

MO = r * 1FAB + FAC2

Problems

80j (N)

(6, 4, 0) mB

O

y

x

A (6, 0, 0) m

Problem 4.46

4.47 A bioengineer studying an injury sustained in throwing

the javelin estimates that the magnitude of the maximum force

exerted was and the perpendicular distance from 

O to the line of action of F was 550 mm. The vector F and

point O are contained in the x y plane. Express the moment 

of F about the shoulder joint at O as a vector.

F = 360 N

x

y

F

O

Problem 4.47

4.49 The cable AB exerts a 200-N force on the support at A that

points from A toward B. Use Eq. (4.2) to determine the moment of

this force about point P, (a) letting r be the vector from P to A; 

(b) letting r be the vector from P to B.

6 m

A

y

8 m

12 m

B
x

100j (kN)

Problem 4.48

y

x

(1, 0.2) m

(0.3, 0.5) m

(0.9, 0.8) m

B

P

A

Problem 4.49
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142 Chapter 4 Systems of Forces and Moments

4.51 Use Eq. (4.2) to determine the sum of the moments of the

three forces (a) about A; (b) about B.
4.54 (a) Determine the magnitude of the moment of the 150-N

force about A by calculating the perpendicular distance from A to

the line of action of the force.

(b) Use Eq. (4.2) to determine the magnitude of the moment of the

150-N force about A.

A (0, 7, 0) m

O

y

x

(5, 3, 0) m

F

Problem 4.50

3 kN 3 kN

0.2 m 0.2 m 0.2 m 0.2 m

A B
x

6 kN

y

Problem 4.51

200 lb

6 ft 4 ft

3 ft

3 ft

200 lb

500 lb

O x

y

Problem 4.52

4.52 Three forces are applied to the plate. Use Eq. (4.2) to

determine the sum of the moments of the three forces about 

the origin O.

4.53 Three forces act on the plate. Use Eq. (4.2) to determine the

sum of the moments of the three forces about point P.

0.18 m P

0.10 m

0.12 m

0.28 m
12 kN

3 kN

4 kN

20*

30*

45*

x

y

Problem 4.53

z

A

y

x

150k (N)
(0, 6, 0) m

(6, 0, 0) m

Problem 4.54

4.50 The line of action of F is contained in the x y plane. The

moment of F about O is 140k (N-m), and the moment of F about

A is 280k (N-m). What are the components of F?
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Problems 143

4.56 What is the magnitude of the moment of F about point B?
4.60 The direction cosines of the force F are 

and The support of the beam at

O will fail if the magnitude of the moment of F about O exceeds

100 kN-m. Determine the magnitude of the largest force F that can

safely be applied to the beam.

cos uz = -0.545.cos uy = 0.182,

cos ux = 0.818,

x

y

z

A

(4, 4, 2) ft

B (8, 1, *2) ft

F + 20i , 10j * 10k (lb)

Problem 4.56

 4.57 In Example 4.5, suppose that the attachment point C is

moved to the location and the tension in cable AC

changes to 25 kN. What is the sum of the moments about O due to

the forces exerted on the attachment point A by the two cables?

4.58 The rope exerts a force of magnitude on the

top of the pole at B. Determine the magnitude of the moment of F

about A.

F = 200 lb

(8, 2, 0) m

x

y
B  (5, 6, 1) ft

C  (3, 0, 4) ft

z

A

F

Problem 4.58

4.59 The force 

(a) Determine the magnitude of the moment of F about A.

(b) Suppose that you can change the direction of F while keeping

its magnitude constant, and you want to choose a direction that

maximizes the moment of F about A. What is the magnitude of the

resulting maximum moment?

F = 30i + 20j - 10k 1N2.

y

x

z

(4, 3, 3) m

A (8, 2, *4) m

F

Problem 4.59

z

y

O

x

F

3 m

Problem 4.60

4.55 (a) Determine the magnitude of the moment of the 600-N

force about A by calculating the perpendicular distance from A to

the line of action of the force.

(b) Use Eq. (4.2) to determine the magnitude of the moment of

the 600-N force about A.

z

y

x

(0.6, 0.5, 0.4) m

0.8 m

A

600i (N)

Problem 4.55
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144 Chapter 4 Systems of Forces and Moments

4.64 The weights of the arms OA and AB of the robotic manipu-

lator act at their midpoints. The direction cosines of the centerline

of arm OA are and 

and the direction cosines of the centerline of arm AB are

and What is

the sum of the moments about O due to the two forces?

cos uz = -0.342.cos ux = 0.707, cos uy = 0.619,

cos uz = 0,cos ux = 0.500, cos uy = 0.866,

y

O

F

z

x

8 m

8 m

Problem 4.63

4.65 The tension in cable AB is 100 lb. If you want the magni-

tude of the moment due to the forces exerted on the tree by the

two ropes about the base O of the tree to be 1500 ft-lb, what is the

necessary tension in rope AC?

200 N60
0 

m
m

x
z

y

600 m
m

B

A

O

160 N

Problem 4.64

B

O

C

x

z

(0, 0, 10) ft (14, 0, 14) ft

y

A (0, 8, 0) ft

Problem 4.65

4.61 The force F exerted on the grip of the exercise machine

points in the direction of the unit vector and its

magnitude is 120 N. Determine the magnitude of the moment of F

about the origin O.

4.62 The force F points in the direction of the unit vector

The support at O will safely support a

moment of 560 N-m magnitude. (a) Based on this criterion, 

what is the largest safe magnitude of F? (b) If the force F may be

exerted in any direction, what is its largest safe magnitude?

e =
2

3
 i -

2

3
 j +

1

3
 k.

e =
2

3
 i -

2

3
 j +

1

3
 k

4.63 A civil engineer in Boulder, Colorado, estimates that under

the severest expected Chinook winds, the total force on the high-

way sign will be Let be the moment

due to F about the base O of the cylindrical column supporting the

sign. The y component of is called the torsion exerted on the

cylindrical column at the base, and the component of parallel

to the x z plane is called the bending moment. Determine the

magnitudes of the torsion and bending moment.

MO

MO

MOF = 2.8i - 1.8j 1kN2.

O

150 mm

250 mm

200 mm

F

z

y

x

Problems 4.61/4.62
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Problems 145

(12, 4, 2) m

(6, 0, 0) m

(0, 4, 6) m

y

B
x

z

C

D (0, 6, 0) m

A F

Problems 4.67/4.68

35 m

35 m

40 m
40 m

40 m

A

y

x

z

B

O

C

D

Problems 4.69/4.70

4.71 The tension in cable AB is 150 N. The tension in cable AC

is 100 N. Determine the sum of the moments about D due to the

forces exerted on the wall by the cables.

4.72 The total force exerted by the two cables in the direction

perpendicular to the wall is 2 kN. The magnitude of the sum of the

moments about D due to the forces exerted on the wall by the

cables is 18 kN-m. What are the tensions in the cables?

C

y

x

D

z
A

B

5 m

5 m

8 m

8 m

4 m

Problems 4.71/4.72

4.69 The tower is 70 m tall. The tensions in cables AB, AC, and

AD are 4 kN, 2 kN, and 2 kN, respectively. Determine the sum of

the moments about the origin O due to the forces exerted by the

cables at point A.

4.70 Suppose that the tension in cable AB is 4 kN, and you want

to adjust the tensions in cables AC and AD so that the sum of the

moments about the origin O due to the forces exerted by the

cables at point A is zero. Determine the tensions.

4.66* A force F acts at the top end A of the pole. Its magnitude is

and its x component is The coordinates of

point A are shown. Determine the components of F so that the

magnitude of the moment due to F about the base P of the pole is

as large as possible. 

Fx = 4 kN.F = 6 kN

(4, 3, *2) m

x

y

P

A

F

z

Problem 4.66

4.67 The force acts on the ring A where the cables

AB, AC, and AD are joined. What is the sum of the moments about

point D due to the force F and the three forces exerted on the ring

by the cables?

Strategy: The ring is in equilibrium. Use what you know

about the four forces acting on it.

4.68 In Problem 4.67, determine the moment about point D due

to the force exerted on the ring A by the cable AB.

F = 5i 1kN2
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z

y

x

A

C

B

2 m

5 m

2 m

2 m

Problem 4.75

x

3 m

y

A

B

D

O

C

(6, 2, 0) m

z

12 m

4 m

5 m

5 m

8 m

Problem 4.76

4.75 The 200-kg slider at A is held in place on the smooth verti-

cal bar by the cable AB. Determine the moment about the bottom

of the bar (point C with coordinates ) due to

the force exerted on the slider by the cable.

x = 2 m, y = z = 0

x

y

z

C

BD

A

(0, 5, 5) m

(0, 4, *3) m

(4, 3, 1) m

E

Problems 4.73/4.74

4.76 To evaluate the adequacy of the design of the vertical steel

post, you must determine the moment about the bottom of the

post due to the force exerted on the post at B by the cable AB. 

A calibrated strain gauge mounted on cable AC indicates that the

tension in cable AC is 22 kN. What is the moment?

4.73 The tension in the cable BD is 1 kN. As a result, cable BD

exerts a 1-kN force on the ball  at B that points from B toward D.

Determine the moment of this force about point A.

4.74* Suppose that the mass of the suspended object E is 100 kg

and the mass of the bar AB is 20 kg. Assume that the weight of the

bar acts at its midpoint. If the sum of the moments about point A

due to the weight of the bar and the forces exerted on the ball

at B by the three cables BC, BD, and BE is zero, determine the

tensions in the cables BC and BD.
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z

x

y

F
a

L
P

Fz
Fx

Fy

Figure 4.11
Applying a force to a turbine with axis of

rotation L.

4.3 Moment of a Force About a Line

BACKGROUND

The device in Fig. 4.10, called a capstan, was used in the days of square-rigged

sailing ships. Crewmen turned it by pushing on the handles as shown in Fig. 4.10a,

providing power for such tasks as raising anchors and hoisting yards. A verti-

cal force F applied to one of the handles as shown in Fig. 4.10b does not cause

the capstan to turn, even though the magnitude of the moment about point P is

in both cases.

The measure of the tendency of a force to cause rotation about a line, or axis,

is called the moment of the force about the line. Suppose that a force F acts on

an object such as a turbine that rotates about an axis L, and we resolve F into

components in terms of the coordinate system shown in Fig. 4.11. The compo-

nents and do not tend to rotate the turbine, just as the force parallel to the

axis of the capstan did not cause it to turn. It is the component that tends to

cause rotation, by exerting a moment of magnitude about the turbine s axis.

In this example we can determine the moment of F about L easily because the

coordinate system is conveniently placed. We now introduce an expression that

determines the moment of a force about any line.

aFy

Fy

FzFx

d
*
F

*

(a)

F

P

d

(b)

F
P

d

Figure 4.10
(a) Turning a capstan.

(b) A vertical force does not turn the capstan.
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148 Chapter 4 Systems of Forces and Moments

Definition

Consider a line L and force F (Fig. 4.12a). Let be the moment of F about an ar-

bitrary point P on L (Fig. 4.12b). The moment of F about L is the component of 

parallel to L, which we denote by (Fig. 4.12c). The magnitude of the moment

of F about L is and when the thumb of the right hand is pointed in the direc-

tion of the arc of the fingers indicates the direction of the moment about L. In

terms of a unit vector e along L (Fig. 4.12d), is given by

(4.4)

(The unit vector e can point in either direction. See our discussion of vector

components parallel and normal to a line in Section 2.5.) The moment

so we can also express as

(4.5)

The mixed triple product in this expression is given in terms of the components

of the three vectors by

(4.6)

Notice that the value of the scalar determines both the

magnitude and direction of The absolute value of is the magnitude

of If is positive, points in the direction of e, and if is neg-

ative, points in the direction opposite to e.

The result obtained with Eq. (4.4) or (4.5) doesn t depend on which point

on L is chosen to determine If we use point P in Fig. 4.13 to

determine the moment of F about L, we get the result given by Eq. (4.5). If we

use instead, we obtain the same result,

because is perpendicular to e.

Applications

To demonstrate that is the measure of the tendency of F to cause rotation

about L, we return to the turbine in Fig. 4.11. Let Q be a point on L at an arbi-

trary distance b from the origin (Fig. 4.14a). The vector r from Q to P is

so the moment of F about Q is

Since the z axis is coincident with L, the unit vector k is along L. Therefore the

moment of F about L is

ML = 1k #MQ2k = aFy 
k.

MQ = r * F = 3

i j k

a 0 -b

Fx Fy Fz

3 = bFy 
i - 1aFz + bFx2 j + aFy 

k.

r = ai - bk,

ML

u * F

 = [e # 1r * F2]e,

 = [e # 1r * F2 + e # 1u * F2]e

 [e # 1r * F2]e = 5e # [1r + u2 * F]6e

P

MP = r * F.

ML

e #MPMLe #MPML.

e #MPML.

e #MP = e # 1r * F2

e # 1r * F2 = 3

ex ey ez

rx ry rz

Fx Fy Fz

3 .

ML = [e # 1r * F2]e.

MLMP = r * F,

ML = 1e #MP2e.

ML

ML,

ML ,

ML

MP

MP

u

r*

r

e
F

L

P*

P

Figure 4.13

Using different points P and to determine

the moment of F about L.

P

(a)

L

F

(b)

L

F

r

MP + r , F

P

MP

ML

MP

ML

(c)

L

P

(d)

L

P e

Figure 4.12

(a) The line L and force F.

(b) is the moment of F about any point

P on L.

(c) The component is the moment of F

about L.

(d) A unit vector e along L.

ML

MP
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The components and exert no moment about L. If we assume that is

positive, it exerts a moment of magnitude about the turbine s axis in the di-

rection shown in Fig. 4.14b.

Now let us determine the moment of a force about an arbitrary line L

(Fig. 4.15a). The first step is to choose a point on the line. If we choose point A

(Fig. 4.15b), the vector r from A to the point of application of F is

The moment of F about A is

The next step is to determine a unit vector along L. The vector from A to B is

1-7 - 22i + 16 - 02j + 12 - 42k = -9i + 6j - 2k 1m2.

 = -120i + 120j + 300k 1N-m2.

MA = r * F = 3

i  j  k

6   6  0

10 60 -20

3

r = 18 - 22i + 16 - 02j + 14 - 42k = 6i + 6j 1m2.

aFy

FyFzFx

4.3 Moment of a Force About a Line 149

(a)

y

x

A (2, 0, 4) m

B (*7, 6, 2) m

(8, 6, 4) m

L

F + 10 i , 60 j * 20k (N)

z

(b)

y

xL

A (2, 0, 4) m

B (*7, 6, 2) m

(8, 6, 4) m

F

r

z

(c)

z

y

x

A (2, 0, 4) m

B (*7, 6, 2) m F

eAB

(d)

y

x

A

B F

eBA

z

Figure 4.15

(a) A force F and line L.

(b) The vector r from A to the point of

application of F.

(c) points from A toward B.

(d) The right-hand rule indicates the

direction of the moment.

eAB

Figure 4.14

(a) An arbitrary point Q on L and the

vector r from Q to P.

(b) and the direction of the moment 

about L.

ML

x

y

F

Fx

Fy

a

L P

(a)

b

Q

Fz

  z

y

(b)

ML + a Fy k

z

r
x 
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Dividing this vector by its magnitude, we obtain a unit vector that points

from A toward B (Fig. 4.15c):

The moment of F about L is

The magnitude of is 109 N-m; pointing the thumb of the right hand in the

direction of indicates the direction.

If we calculate using the unit vector that points from B toward A

instead, we obtain

We obtain the same magnitude, and the minus sign indicates that points in

the direction opposite to so the direction of is the same. Therefore the

right-hand rule indicates the same direction (Fig. 4.15d).

The preceding examples demonstrate three useful results that we can state

in more general terms:

When the line of action of F is perpendicular to a plane containing L

(Fig. 4.16a), the magnitude of the moment of F about L is equal to the

product of the magnitude of F and the perpendicular distance D from L to

the point where the line of action intersects the plane: 

When the line of action of F is parallel to L (Fig. 4.16b), the moment of F

about L is zero: Since is perpendicular to F, 

is perpendicular to L and the vector component of parallel to L is

zero.

When the line of action of F intersects L (Fig. 4.16c), the moment of

F about L is zero. Since we can choose any point on L to evaluate

we can use the point where the line of action of F intersects L. The

moment about that point is zero, so its vector component parallel to

L is zero.

MP

MP,

MP

MPMP = r * FML = 0.

ML = F D.

MLeBA,

ML

ML = -109eBA 1N-m2.

eBAML

eAB

ML

 = 109eAB 1N-m2.

 = c a -  

9

11
b1-120 N-m2 + a

6

11
b1120 N-m2 + a -  

2

11
b1300 N-m2 deAB

 ML = 1eAB
#MA2eAB

eAB = -  

9

11
 i +

6

11
 j -

2

11
 k.

eAB

150 Chapter 4 Systems of Forces and Moments

P

L
F

r

(b)

P

L

F

(c)

L

D

F

(a)

Figure 4.16

(a) F is perpendicular to a plane containing L.

(b) F is parallel to L.

(c) The line of action of F intersects L at P.
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4.3 Moment of a Force About a Line 151

RESULTS

Determining the Moment of a Force F About a Line L

L

F

r

MP * r + F

P

MP

MLL

P

Choose any point P on the line

and determine the moment MP

of F about P.

The component of MP parallel to L,

denoted by ML, is the moment of F

about the line. (Pointing the thumb of

the right hand in the direction of ML,

the fingers point in the direction of the

moment about the line.)

If e is a unit vector parallel to L,

ML * (e *MP) e.                (4.4)

L
F

P

L

F

L

D

F

When the line of action of F is perpendicular to a plane

containing L, *ML* * *F*D, where D is the perpendicular

distance from L to the point where the line of action

intersects the plane.

When the line of action of F is parallel

to L, ML * 0.

When the line of action of F intersects

L, ML * 0.

Special Cases
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152 Chapter 4 Systems of Forces and Moments

Active Example 4.6 Moment of a Force About a Line (* Related Problem 4.87)

What is the moment of the force F about the axis of the bar BC?

Strategy
Because we know the coordinates of points A, B, and C, we can determine the

moment due to F about a point on the axis of the bar. We will determine the mo-

ment about point B. The component of that moment parallel to the axis BC is

the moment of F about the axis. By obtaining a unit vector parallel to the axis,

we can use Eq. (4.4) to determine the parallel component.

Solution

y

F

x

B

C

A
r

z

Determine the components of the

vector from point B to the point of

application of F.

r  (xA  xB)i  (yA  yB)j  (zA  zB)k

 4i  2j  k (m).

Calculate the moment of F about

point B.

i        j       k

4       2    1

2       6       3

MB  r  F

 12i  10j  28k (kN-m).

y

F  2i  6j  3k (kN)

x
B

C

A (4, 2, 2) m

(0, 0, 3) m

(0, 4, 0) m

z
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4.3 Moment of a Force About a Line 153

Practice Problem Determine the moment of the force F about point C. Use

it to calculate the moment of F about the axis BC by determining the component of 

parallel to the axis.

Answer: MBC = -24.8eBC (kN-m).

MC

MC

y

x

B

C

eBC

z

Obtain a unit vector parallel to

the axis BC by dividing the

position vector from point B to

point C by its magnitude.

rBC  (xC  xB)i  (yC  yB)j  (zC  zB)k

eBC   0.8j  0.6k.

 4j  3k (m).

rBC

*rBC*

Apply Eq. (4.4) to determine the

moment of F about the axis BC.

Notice the negative result. Pointing

the thumb of the right hand

opposite to the direction of the unit

vector eBC, the fingers point in the

direction of the moment of F about

the axis BC.

MBC  (eBC * MB) eBC

 [(0)(12)  (0.8)( 10)  ( 0.6)(28)]eBC

 24.8eBC (kN-m).

y

F

x

B

C

A
eBC

z
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154 Chapter 4 Systems of Forces and Moments

y

x

50j (lb)

3 ft

z

y

x

*150i (ft-lb)

z

y

xO

(4, 0, 3) ft

50j (lb)

z

r

y

xO

(4, 0, 3) ft

50j (lb)

z

Example 4.7 Moment of a Force About the x Axis (* Related Problem 4.77)

(a) The vector r from O to the point

of application of the force.

(b) The direction of the moment.

(c) The distance from the x axis to the

point where the line of action of the

force intersects the x z plane is 3 ft.

The arrow indicates the direction of

the moment about the x axis.

What is the moment of the 50-lb force about the x axis?

Strategy

We can determine the moment in two ways.

First Method We can use Eqs. (4.5) and (4.6). Since r can extend from any

point on the x axis to the line of action of the force, we can use the vector from

O to the point of application of the force. The vector e must be a unit vector

along the x axis, so we can use either i or 

Second Method This example is the first of the special cases we discussed,

because the 50-lb force is perpendicular to the x z plane. We can determine the

magnitude and direction of the moment directly from the given information.

Solution

First Method Determine a vector r. The vector from O to the point of appli-

cation of the force is (Fig. a)

Determine a vector e. We can use the unit vector i.

Evaluate From Eq. (4.6), the mixed triple product is

Then from Eq. (4.5), the moment of the force about the x axis is

The magnitude of the moment is 150 ft-lb, and its direction is as shown in Fig. b.

Second Method Since the 50-lb force is perpendicular to a plane (the x z

plane) containing the x axis, the magnitude of the moment about the x axis is

equal to the perpendicular distance from the x axis to the point where the line

of action of the force intersects the x z plane (Fig. c):

Pointing the arc of the fingers in the direction of the moment about the x axis

(Fig. c), we find that the right-hand rule indicates that points in the

negative x axis direction. Therefore,

Critical Thinking
The hinged door in this example is designed to rotate about the x axis. If no

other forces act on the door, you can see that the 50-lb upward force would

tend to cause the door to rotate upward. It is the moment of the force about the x

axis, and not the moment of the force about some point, that measures the

tendency of the force to cause the door to rotate on its hinges. Furthermore, the

direction of the moment of the force about the x axis indicates the direction in

which the force tends to cause the door to rotate. (See Fig. b.)

M x axis = -150i 1ft-lb2.

M x axis

M x axis = 13 ft2150 lb2 = 150 ft-lb.

M x axis = [i # 1r * F2]i = -150i 1ft-lb2.

i # 1r * F2 = 3

1 0 0

4 0 3

0 50 0

3 = -150 ft-lb.

ML.

r = 4i + 3k 1ft2.

- i.
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4.3 Moment of a Force About a Line 155

Example 4.8 Rotating Machines (* Related Problem 4.100)

The crewman exerts the forces shown on the handles of the coffee grinder

winch, where Determine the total moment he exerts

(a) about point O; (b) about the axis of the winch, which coincides with 

the x axis.

F = 4j + 32k N.

Strategy
(a) To obtain the total moment about point O, we must sum the moments of the

two forces about O. Let the sum be denoted by 

(b) Because point O is on the x axis, the total moment about the x axis is 

the component of parallel to the x axis, which is the x component

of

Solution
(a) The total moment about point O is

(b) The total moment about the x axis is the x component of (Fig. a):

Notice that this is the result given by Eq. (4.4): Since i is a unit vector parallel

to the x axis,

M x axis = 1i # MO2i = 17.1 1N-m2.

M x axis = 17.1 1N-m2.

MO

 = 17.1i + 11.5j - 1.4k 1N-m2.

MO = 3

i j k

-0.18 0.28 0.1

0 4 32

3 + 3

i j k

0.18 -0.28 -0.1

0 -4 -32

3

MO.

MO

MO.

x

y

z

O

*F

F

(*0.18, 0.28, 0.1) m

(0.18, *0.28, *0.1) m

x

y

z

O
Mx axis

MO

(a) The total moment about the x axis.
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156 Chapter 4 Systems of Forces and Moments

* 4.77 The force Use both of the

procedures described in Example 4.7 to determine the moment

due to F about the z axis.

F = 20i + 40j - 10k 1N2. 4.81 The person exerts a force on

the gate at C. Point C lies in the x y plane. What moment does the

person exert about the gate s hinge axis, which is coincident with

the y axis?

F = 0.2i - 0.4j + 1.2k 1lb2

Problems

y

x

F

(8, 0, 0) m

z

Problem 4.77

4.78 Use Eqs. (4.5) and (4.6) to determine the moment of the 20-N

force about (a) the x axis, (b) the y axis, (c) the z axis. (First see if

you can write down the results without using the equations.)

4.79 Three forces parallel to the y axis act on the rectangular

plate. Use Eqs. (4.5) and (4.6) to determine the sum of the

moments of the forces about the x axis. (First see if you can

write down the result without using the equations.)

4.80 The three forces are parallel to the y axis. Determine the

sum of the moments of the forces (a) about the y axis; (b) about

the z axis.

(7, 4, 0) m

20k (N)

z

y

x

Problem 4.78

3 kN

x

y

z

2 kN
600 mm6 kN

900 mm

Problems 4.79/4.80

2 ft

y

x

3.5 ft

A

B

C

Problem 4.81

4.82 Four forces act on the plate. Their components are

Determine the sum of the moments of the forces (a) about the x axis;

(b) about the z axis.

 FD = 2i + 6j + 4k 1kN2.

 FC = 2j + 3k 1kN2,

 FB = 3j - 3k 1kN2,

 FA = -2i + 4j + 2k 1kN2,

FA

FD FC

FB

x

y

z
3 m

2 m

Problem 4.82
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z
x

(4, 2, 2) ft

F

y

Problems 4.83/4.84

200 N60
0 

m
m

x
z

y

600 m
m

C

B

A

160 N

Problems 4.85/4.86

(*4, 0, 0) m

B

A (0, 5, 0) m
(7, 4, 0) m

20k (N)

y

x

z

Problem 4.88

(6, 0, 0) ft

A
x

(6, 6, 0) ft

B
y

F

z

Problem 4.89

4.90 The force What is the moment

of F about the line AO? Draw a sketch to indicate the direction of

the moment.

F = 10i + 12j - 6k 1N2.

y

x

z

(0, 6, 4) m

(8, 0, 6) m

O

A

F

Problem 4.90

* 4.87 In Active Example 4.6, suppose that the force changes

to Determine the magnitude of the

moment of the force about the axis of the bar BC.

4.88 Determine the moment of the 20-N force about the line AB.

Use Eqs. (4.5) and (4.6), letting the unit vector e point (a) from A

toward B; (b) from B toward A.

F = -2 i + 3j + 6k (kN).

4.83 The force 

(a) What is the moment of F about the y axis?

(b) Suppose that you keep the magnitude of F fixed, but you change

its direction so as to make the moment of F about the y axis as large

as possible. What is the magnitude of the resulting moment?

4.84 The moment of the force F about the x axis is 

the moment about the y axis is zero, and the moment about the z axis

is 160k (ft-lb). If what are and Fz?FxFy = 80 lb,

-80i 1ft-lb2,

F = 30i + 20j - 10k 1lb2.

4.85 The robotic manipulator is stationary. The weights of the

arms AB and BC act at their midpoints. The direction cosines of

the centerline of arm AB are 

and the direction cosines of the centerline of arm BC

are What total

moment is exerted about the z axis by the weights of the arms?

4.86 In Problem 4.85, what total moment is exerted about the 

x axis by the weights of the arms?

cos ux = 0.707, cos uy = 0.619, cos uz = -0.342.

cos uz = 0,

cos ux = 0.500, cos uy = 0.866,

4.89 The force Determine the

moment of F about the line AB. Draw a sketch to indicate the

direction of the moment.

F = -10i + 5j - 5k 1kip2.
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158 Chapter 4 Systems of Forces and Moments

4.92 Determine the moment of the force applied at D about the

straight line through the hinges A and B. (The line through A and

B lies in the y z plane.)

4.93 The tension in the cable CE is 160 lb. Determine the

moment of the force exerted by the cable on the hatch at C about

the straight line through the hinges A and B.

4.95 The tension in cable AB is 200 lb. Determine the moments

about each of the coordinate axes due to the force exerted on

point B by the cable. Draw sketches to indicate the direction of 

the moments.

D
x

C
B

A

20*

E

z

y

6 ft

2 ft

4 ft

4 ft

20i + 60j (lb)

Problems 4.92/4.93

4.94 The coordinates of A are and the

coordinates of B are The force exerted 

at B by the sailboat s main sheet AB is 130 N. Determine the

moment of the force about the centerline of the mast (the y axis).

Draw a sketch to indicate the direction of the moment.

1-2.2, 0.7, -1.22 m.

1-2.4, 0, -0.62 m,

x

z

B

A

y

Problem 4.94

y

z

x

B

A (400, 300, 0) mm

600 mm

1000 mm

Problem 4.91

4.91 The tension in the cable AB is 1 kN. Determine the moment

about the x axis due to the force exerted on the hatch by the 

cable at point B. Draw a sketch to indicate the direction of 

the moment.

(2, 5, +2) ftA

(10, +2, 3) ftB

x

y

z

Problem 4.95
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Problems 159

4.96 The total force exerted on the blades of the turbine by the

steam nozzle is and it effectively

acts at the point (100, 80, 300) mm. What moment is exerted

about the axis of the turbine (the x axis)?

F = 20i - 120j + 100k 1N2,

4.99 The magnitude of the force F is 0.2 N and its direction

cosines are and 

Determine the magnitude of the moment of F about the axis AB of

the spool.

cos uz = 0.582.cos ux = 0.727, cos uy = -0.364,

z

y

x

(480, *40, 40) mm
A

(60, 100, *30) mmB

O

Problem 4.97

4.97 The pneumatic support AB holds a trunk lid in place. It

exerts a 35-N force on the fixture at B that points in the direction

from A toward B. Determine the magnitude of the moment of the

force about the hinge axis of the lid, which is the z axis.

4.98 The tension in cable AB is 80 lb. What is the moment

about the line CD due to the force exerted by the cable on the

wall at B?

y

x

3 ft

8 ft

6 ft

B

C

D

A (6, 0, 10) ftz

Problem 4.98

y

x

z

(160, 475, 290) mm

(200, 400, 0) mm

(*100, 500, 400) mm

B

PA

F

Problem 4.99

y

x

z

Fixed
Rotating

Problem 4.96
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x

y

z

Problem 4.102

160 Chapter 4 Systems of Forces and Moments

4.102 The axis of the car s wheel passes through the origin of the

coordinate system and its direction cosines are 

The force exerted on the tire by the

road effectively acts at the point and

has components What is the

moment of F about the wheel s axis?

F = -720i + 3660j + 1240k 1N2.

x = 0, y = -0.36 m, z = 0

cos uy = 0, cos uz = 0.342.

cos ux = 0.940,

4.103 The direction cosines of the centerline OA are 

and and the direction cosines 

of the line AG are and 

What is the moment about OA due to the 250-N weight?

Draw a sketch to indicate the direction of the moment about the shaft.

-0.342.

cos uz =cos ux = 0.707, cos uy = 0.619,

cos uz = 0,cos uy = 0.866,0.500,

cos ux =

x
z

y
750 m

m

A

O

6
0
0
 m

m

250 N

G

Problem 4.103

4.101 The tension in cable AB is 2 kN. What is the magnitude of

the moment about the shaft CD due to the force exerted by the

cable at A? Draw a sketch to indicate the direction of the moment

about the shaft.

B

3 m

1 m

D

2 m

C
A

2 m

Problem 4.101

* 4.100 A motorist applies the two forces shown to loosen a lug

nut. The direction cosines of F are and

If the magnitude of the moment about the x axis must

be 32 ft-lb to loosen the nut, what is the magnitude of the forces

the motorist must apply? (See Example 4.8.)

cos uz =
3

13
.

cos ux =
4

13
, cos uy =

12

13
,

*F F

16 in16 in

x

z

y

Problem 4.100
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Problems 161

(3, 0, 10) ft

(12, 10, 0) ft

(0, 3, 0) ft

W

D

C

d

y

x

z

Problem 4.106

A
(100, 250, 0) mm

B

D

G

C (200, 55, 390) mm

(0, 180, 360) mm

(100, 500, 700) mm

x

z

y

Problem 4.107

4.107* The y axis points upward. The weight of the 4-kg rectan-

gular plate acts at the midpoint G of the plate. The sum of the

moments about the straight line through the supports A and B due

to the weight of the plate and the force exerted on the plate by the

cable CD is zero. What is the tension in the cable?

O
z

x

y

20*

F

A

C

a

Problem 4.104

4.104 The radius of the steering wheel is 200 mm. The distance

from O to C is 1 m. The center C of the steering wheel lies in the

x y plane. The driver exerts a force on

the wheel at A. If the angle what is the magnitude of the

moment about the shaft OC? Draw a sketch to indicate the

direction of the moment about the shaft.

a = 0,

F = 10i + 10j - 5k 1N2

z

y

A (3, 8, 0) m

L

B

(0, 2, 6) m (12, 4, 4) mP

F

x

Problem 4.105

4.106 The weight W causes a tension of 100 lb in cable CD. If

what is the moment about the z axis due to the force

exerted by the cable CD at point C?

d = 2 ft,

4.105* The magnitude of the force F is 10 N. Suppose that you

want to choose the direction of the force F so that the magnitude

of its moment about the line L is a maximum. Determine the

components of F and the magnitude of its moment about L. 

(There are two solutions for F.)
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162 Chapter 4 Systems of Forces and Moments

4.4 Couples

BACKGROUND

Now that we have described how to calculate the moment due to a force, con-

sider this question: Is it possible to exert a moment on an object without sub-

jecting it to a net force? The answer is yes, and it occurs when a compact disk

begins rotating or a screw is turned by a screwdriver. Forces are exerted on

these objects, but in such a way that the net force is zero while the net moment

is not zero.

Two forces that have equal magnitudes, opposite directions, and different

lines of action are called a couple (Fig. 4.17a). A couple tends to cause rotation

of an object even though the vector sum of the forces is zero, and it has the

remarkable property that the moment it exerts is the same about any point.

The moment of a couple is simply the sum of the moments of the forces

about a point P (Fig. 4.17b):

The vector is equal to the vector r shown in Fig. 4.17c, so we can ex-

press the moment as

Since r doesn t depend on the position of P, the moment M is the same for any

point P.

Because a couple exerts a moment but the sum of the forces is zero, it is

often represented in diagrams simply by showing the moment (Fig. 4.17d). Like

the Cheshire cat in Alice s Adventures in Wonderland, which vanished except for

its grin, the forces don t appear; only the moment they exert is visible. But we

recognize the origin of the moment by referring to it as a moment of a couple,

or simply a couple.

M = r * F.

r1 - r2

M = [r1 * F] + [r2 * 1-F2] = 1r1 - r22 * F.

r1 r1

r2r2*F *F *F

*F*F

(a) (b)

(d)

(c)

(e) (f)

F F

P

F

P

M

F

r

D

F

M

Figure 4.17
(a) A couple.

(b) Determining the moment about P.

(c) The vector 

(d) Representing the moment of the couple.

(e) The distance D between the lines of action.

(f) M is perpendicular to the plane containing F and -F.

r = r1 - r2.
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Notice in Fig. 4.17c that is the moment of F about a point on

the line of action of the force The magnitude of the moment of a force

about a point equals the product of the magnitude of the force and the perpen-

dicular distance from the point to the line of action of the force, so 

where D is the perpendicular distance between the lines of action of the two

forces (Fig. 4.17e). The cross product is perpendicular to r and F, which

means that M is perpendicular to the plane containing F and (Fig. 4.17f).

Pointing the thumb of the right hand in the direction of M, the arc of the fingers

indicates the direction of the moment.

In Fig. 4.18a, our view is perpendicular to the plane containing the two forces.

The distance between the lines of action of the forces is 4 m, so the magnitude of

the moment of the couple is The moment M is

perpendicular to the plane containing the two forces. Pointing the arc of the fin-

gers of the right hand counterclockwise, we find that the right-hand rule indicates

that M points out of the page. Therefore, the moment of the couple is

We can also determine the moment of the couple by calculating the sum of the

moments of the two forces about any point. The sum of the moments of the

forces about the origin O is (Fig. 4.18b)

In a two-dimensional situation like this example, it isn t convenient to represent

a couple by showing the moment vector, because the vector is perpendicular to

the page. Instead, we represent the couple by showing its magnitude and a

circular arrow that indicates its direction (Fig. 4.18c).

By grasping a bar and twisting it (Fig. 4.19a), a moment can be exerted

about its axis (Fig. 4.19b). Although the system of forces exerted is distributed

over the surface of the bar in a complicated way, the effect is the same as if two

equal and opposite forces are exerted (Fig. 4.19c). When we represent a couple

as in Fig. 4.19b, or by showing the moment vector M, we imply that some sys-

tem of forces exerts that moment. The system of forces (such as the forces ex-

erted in twisting the bar, or the forces on the crankshaft that exert a moment on

 = 8k 1kN-m2.

 = [17i + 2j2 * 12j2] + [13i + 7j2 * 1-2j2]

 M = [r1 * 12j2] + [r2 * 1-2j2]

M = 8k 1kN-m2.

M = 14 m212 kN2 = 8 kN-m.

-F

r * F

M = D F ,

-F.

M = r * F

4.4 Couples 163

y

y

y

x x x

(a)

(3, 7, 0) m

2j (kN)
*2j (kN) *2j (kN)

(7, 2, 0) m

O
(b)

r1

(7, 2, 0) m
r2

2j (kN)

(3, 7, 0) m

8 kN-m

(c)

Figure 4.18

(a) A couple consisting of 2-kN forces.

(b) Determining the sum of the moments of the forces about O.

(c) Representing a couple in two dimensions.

(a)

M

(b)

F

F

(c)

Figure 4.19

(a) Twisting a bar.

(b) The moment about the axis of the bar.

(c) The same effect is obtained by applying

two equal and opposite forces.
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164 Chapter 4 Systems of Forces and Moments

Active Example 4.9 Moment of a Couple (* Related Problem 4.108)

The force Determine the moment due to the couple. Repre-

sent the moment by its magnitude and a circular arrow indicating its direction.

F = 10i - 4j (N).

Strategy
We will determine the moment in two ways. In the first method, we will choose

a point and calculate the sum of the moments of the two forces about that point.

Because the moment due to a couple is the same about any point, we can choose

any convenient point. In the second method, we will sum the moments of the

two couples formed by the x and y components of the forces.

y

x

(6, 6, 0) m

(8, 3, 0) m

*F

F

The moment about a point due to a couple

is the sum of the moments of the two

forces about that point. The moment M due

to a couple is the same about any point.

Its magnitude is D*F*, where D is the

perpendicular distance between the lines

of action of the forces. The vector M is

perpendicular to the plane containing the

lines of action.

*F

F

D

Because the total force exerted by a couple is zero, a

couple is often represented by the moment it exerts.
M

When the lines of action of the forces of a

couple lie in the x y plane, the couple can be

represented by its magnitude and a circular

arrow that indicates its direction.

y

x

M

*F

F

Two forces with equal magnitudes,

opposite directions, and different lines

of action are called a couple.

the drive shaft of a car) is nearly always more complicated than two equal and

opposite forces, but the effect is the same. For this reason, we can model the

actual system as a simple system of two forces.

RESULTS
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4.4 Couples 165

Solution

First Method

Second Method

Practice Problem Use the cross product to calculate the sum of the moments of the

forces F and *F about the point P with coordinates (10, 7, 3) m. Represent the moment

by its magnitude and a circular arrow indicating its direction.

Answer: or 22 N-m counterclockwise.22k (N-m),

Calculate the sum of the moments of

the two forces about the point of

application of the force F.

M  r  ( F)

y

x

(6, 6, 0) m

(8, 3, 0) m

r

*F

F

 ( 2i  3j)  ( 10i  4j)

 22k (N-m).

The magnitude of the moment is 22 N-m.

Pointing the thumb of the right hand in

the direction of the unit vector k, the

direction of the moment in the x y plane is

counterclockwise.

22 N-m

y

x

The components of the

two forces form two

couples.

The magnitude of the moment due to the

10-N couple is (3 m)(10 N)  30 N-m,

and the moment is counterclockwise.

The magnitude of the moment due to

the 4-N couple is (2 m)(4 N)  8 N-m,

and the moment is clockwise. Therefore

the total counterclockwise moment is

30  8  22 N-m.

y y

+

(6, 6, 0) m
(6, 6, 0) m

10 N

10 N 4 N

4 N

(8, 3, 0) m

xx

(8, 3, 0) m
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166 Chapter 4 Systems of Forces and Moments

Example 4.10 Determining Unknown Forces (* Related Problem 4.113)

Two forces A and B and a 200 ft-lb couple act on the beam. The sum of the

forces is zero, and the sum of the moments about the left end of the beam is zero.

What are the forces A and B?

Strategy
By summing the two forces (the couple exerts no net force on the beam) and

summing the moments due to the forces and the couple about the left end of the

beam, we will obtain two equations in terms of the two unknown forces.

Solution
The sum of the forces is

The moment of the couple (200 ft-lb clockwise) is the same about any point,

so the sum of the moments about the left end of the beam is

The forces are and A = -50 lb.B = 50 lb

Mleft end = 14 ft2 B - 200 ft-lb = 0.

Fy = A + B = 0.

4 ft
4 ft

x

y

A B

200 ft-lb

y

50 lb

4 ft 4 ft

50 lb

200 ft-lb

x

The forces on the beam form a couple.

Critical Thinking
Notice that the total moment about the left end of the beam is the sum of the

moment due to the force B and the moment due to the 200 ft-lb couple. As we

observe in Chapter 5, if an object subjected to forces and couples is in equilib-

rium, the sum of the forces is zero and the sum of the moments about any

point, including moments due to couples, is zero. In this example we needed

both these conditions to determine the unknown forces A and B.
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4.4 Couples 167

Example 4.11 Sum of the Moments Due to Two Couples (* Related Problem 4.119)

Determine the sum of the moments exerted on the pipe by the two couples.

Strategy
We will express the moment exerted by each couple as a vector. To express the

30-N couple in terms of a vector, we will express the forces in terms of their

components. We can then sum the moment vectors to determine the sum of the

moments exerted by the couples.

Solution
Consider the 20-N couple. The magnitude of the moment of the couple is

The direction of the moment vector is perpendicular

to the y z plane, and the right-hand rule indicates that it points in the positive

x axis direction. The moment of the 20-N couple is 40i (N-m).

By resolving the 30-N forces into y and z components, we obtain the two

couples in Fig. a. The moment of the couple formed by the y components is

and the moment of the couple formed by the 

z components is (30 cos 60 )(4)j (N-m).

The sum of the moments is therefore

 = 40i + 60j - 104k 1N-m2.

 M = 40i + 130 cos 60 2142j - 130 sin 60 2142k 1N-m2

-130 sin 60 2142k 1N-m2,

12 m2120 N2 = 40 N-m.

x

y

60*

30 N

20 N

20 N
30 N2 m

4 m 4 m

60*

z

Critical Thinking
Although the method we used in this example helps you recognize the contri-

butions of the individual couples to the sum of the moments, it is convenient

only when the orientations of the forces and their points of application relative

to the coordinate system are fairly simple. When that is not the case, you can

determine the sum of the moments by choosing any point and calculating the

sum of the moments of the forces about that point.

x

y

30 cos 60* N 30 cos 60* N

30 sin 60* N30 sin 60* N

4 m

z

(a) Resolving the 30-N forces into y and 

z components.
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168 Chapter 4 Systems of Forces and Moments

 4.108 In Active Example 4.9, suppose that the point of appli-

cation of the force F is moved from to Draw

a sketch showing the new position of the force. From your sketch,

will the moment due to the couple be clockwise or counterclock-

wise? Calculate the moment due to the couple. Represent the mo-

ment by its magnitude and a circular arrow indicating its direction.

4.109 The forces are contained in the x y plane.

(a) Determine the moment of the couple and represent it as shown

in Fig. 4.18c.

(b) What is the sum of the moments of the two forces about the

point 110, -40, 202 ft?

(8, 8, 0) m.(8, 3, 0) m

4.112 Three forces of equal magnitude are applied parallel to the

sides of an equilateral triangle. (a) Show that the sum of the mo-

ments of the forces is the same about any point. (b) Determine the

magnitude of the sum of the moments.

Problems

1000 lb 1000 lb

60*60*

20 ft 20 ft

x

y

Problem 4.109

4.110 The moment of the couple is 600k (N-m). What is the

angle a?

100 N

100 N

(0, 4) m

(5, 0) m

a

a

x

y

Problem 4.110

4.111 Point P is contained in the x y plane, and

the moment of the couple is What are the

coordinates of P?

-500k 1N-m2.

F = 100 N,

x

F

30*

P

70*

y

*F

Problem 4.111

L
F

F

F

Problem 4.112

 4.113 In Example 4.10, suppose that the 200 ft-lb couple is

counterclockwise instead of clockwise. Draw a sketch of the beam

showing the forces and couple acting on it. What are the forces A

and B?

4.114 The moments of two couples are shown. What is the sum

of the moments about point P?

4.115 Determine the sum of the moments exerted on the plate by

the two couples.

50 ft-lb

y

10 ft-lb

x
(+4, 0, 0) ft

P

Problem 4.114

x
20 lb

30 lb

30 lb

3 ft

2 ft

20 lb

5 ft 4 ft

y

Problem 4.115
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Problems 169

4.116 Determine the sum of the moments exerted about A by the

couple and the two forces.

4.120 (a) What is the moment of the couple?

(b) Determine the perpendicular distance between the lines of

action of the two forces.

4.117 Determine the sum of the moments exerted about A by the

couple and the two forces.

4.118 The sum of the moments about point A due to the forces

and couples acting on the bar is zero.

(a) What is the magnitude of the couple C?

(b) Determine the sum of the moments about point B due to the

forces and couples acting on the bar.

 4.119 In Example 4.11, suppose that instead of acting in the

positive z axis direction, the upper 20-N force acts in the positive

x axis direction. Instead of acting in the negative z axis direction,

let the lower 20-N force act in the negative x axis direction. Draw

a sketch of the pipe showing the forces acting on it. Determine the

sum of the moments exerted on the pipe by the two couples.

100 lb

900 ft-lb

400 lb

BA

3 ft 4 ft 3 ft 4 ft

Problem 4.116

0.2 m

30*

100 N

0.2 m 0.2 m0.2 m

300 N-m

200 N

A

Problem 4.117

3 m

3 m5 m

A

B

C

4 kN

4 kN

3 kN2 kN5 kN

20 kN-m

Problem 4.118

z

y

(0, 4, 0) m

(0, 0, 5) m

+2i , 2j , k (kN)
2i + 2j + k (kN)

x

Problem 4.120

4.121 Determine the sum of the moments exerted on the 

plate by the three couples. (The 80-lb forces are contained in 

the x z plane.)

z 60* 80 lb 60* 80 lb

40 lb

40 lb

8 ft

x

y

3 ft

20 lb 20 lb

3 ft

Problem 4.121

z

y

x

50 i , 20 j + 10k (lb)

+50 i +20 j , 10k (lb)

50 j (lb)

+50j (lb)

3 ft
3 ft

3 ft

3 ft

Problem 4.122

4.122 What is the magnitude of the sum of the moments exerted

on the T-shaped structure by the two couples?
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4.124 The cables AB and CD exert a couple on the vertical pipe.

The tension in each cable is 8 kN. Determine the magnitude of the

moment the cables exert on the pipe.

4.125 The bar is loaded by the forces

and the couple

Determine the sum of the moments of the two forces and the

couple about A.

4.126 The forces

and the couple

Determine the values of and so that the sum of the

moments of the two forces and the couple about A is zero.

MCzMCy

MC = MCy j + MCz 
k 1kN-m2.

 FC = i - 2j + 2k 1kN2,

 FB = 2i + 6j + 3k 1kN2,

MC = 2i + j - 2k 1kN-m2.

 FC = i - 2j + 2k 1kN2,

 FB = 2i + 6j + 3k 1kN2,

3 m

3 m

A (0, 2, 0) m

y

z

C

D

B

x

(6, 2, 3) m

Problem 4.123

x

z

y

D

C

(*1.6, 2.2, *1.2) m

(0.2, 0.6, 0.2) m

(*0.2, 1.6, *0.2) m

(1.6, 0, 1.2) m

A

B

Problem 4.124

4.127 Two wrenches are used to tighten an elbow fitting. The force

on the right wrench is applied at and

the force on the left wrench is applied at

(a) Determine the moment about the x axis due to the force

exerted on the right wrench.

(b) Determine the moment of the couple formed by the forces

exerted on the two wrenches.

(c) Based on the results of (a) and (b), explain why two wrenches

are used.

14, -5, 32 in.-F

16, -5, -32 in,F = 10k 1lb2

1 m
1 m

z

y

x

B

FB

FC

A
C

MC

Problems 4.125/4.126

x

y

F

*F

z

Problem 4.127

170 Chapter 4 Systems of Forces and Moments

4.123 The tension in cables AB and CD is 500 N.

(a) Show that the two forces exerted by the cables on the rectan-

gular hatch at B and C form a couple.

(b) What is the moment exerted on the plate by the cables?
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4.5 Equivalent Systems 171

4.5 Equivalent Systems

BACKGROUND

A system of forces and moments is simply a particular set of forces and mo-

ments of couples. The systems of forces and moments dealt with in engineer-

ing can be complicated. This is especially true in the case of distributed forces,

such as the pressure forces exerted by water on a dam. Fortunately, if we are con-

cerned only with the total force and moment exerted, we can represent compli-

cated systems of forces and moments by much simpler systems.

Conditions for Equivalence

We define two systems of forces and moments, designated as system 1 and sys-

tem 2, to be equivalent if the sums of the forces are equal, or

(4.7)

and the sums of the moments about a point P are equal, or

(4.8)

To see what the conditions for equivalence mean, consider the systems

of forces and moments in Fig. 4.20a. In system 1, an object is subjected

to two forces and and a couple In system 2, the object is subjected to

a force and two couples and The first condition for equivalence is

:

(4.9) FA + FB = FD.

 1 F21 = 1 F22

MF.MEFD

MC.FBFA

1 MP21 = 1 MP22.

1 F21 = 1 F22,

(a)

System 1

FB

MC

FA

System 2

FD

MF

ME

Figure 4.20
(a) Different systems of forces and

moments applied to an object.

(b) Determining the sum of the moments

about a point P for each system.(b)

System 2

FD

MF

ME

rD

P

System 1

FB

MC

FA
rA

rB

P
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172 Chapter 4 Systems of Forces and Moments

If we determine the sums of the moments about the point P in Fig. 4.20b, the

second condition for equivalence is

:

(4.10)

If these conditions are satisfied, systems 1 and 2 are equivalent.

We will use this example to demonstrate that if the sums of the forces are

equal for two systems of forces and moments and the sums of the moments about

one point P are equal, then the sums of the moments about any point are equal.

Suppose that Eq. (4.9) is satisfied, and Eq. (4.10) is satisfied for the point P in

Fig. 4.20b. For a different point (Fig. 4.21), we will show that

:

(4.11)

In terms of the vector r from to P, the relations between the vectors 

and in Fig. 4.21 and the vectors and in Fig. 4.20b are

Substituting these expressions into Eq. (4.11), we obtain

Rearranging terms, we can write this equation as

which holds in view of Eqs. (4.9) and (4.10). The sums of the moments of the

two systems about any point are equal.

Representing Systems by Equivalent Systems

If we are concerned only with the total force and total moment exerted on an

object by a given system of forces and moments, we can represent the system

by an equivalent one. By this we mean that instead of showing the actual forces

and couples acting on an object, we would show a different system that exerts

the same total force and moment. In this way, we can replace a given system

by a less complicated one to simplify the analysis of the forces and moments

acting on an object and to gain a better intuitive understanding of their effects

on the object.

Representing a System by a Force and a Couple Let us consider an

arbitrary system of forces and moments and a point P (system 1 in Fig. 4.22). We

can represent this system by one consisting of a single force acting at P and a

single couple (system 2). The conditions for equivalence are

:

and

:

 M = 1 MP21.

 1 MP22 = 1 MP21

 F = 1 F21

 1 F22 = 1 F21

[r * 1 F21] + 1 MP21 = [r * 1 F22] + 1 MP22,

= [1r + rD2 * FD] + ME + MF.

[1r + rA2 * FA] + [1r + rB2 * FB] + MC

rA = r + rA, rB = r + rB, rD = r + rD.

rDrA, rB,rD

rA, rB,P

 1rA * FA2 + 1rB * FB2 + MC = 1rD * FD2 + ME + MF.

1 MP 21 = 1 MP 22

P

 1rA * FA2 + 1rB * FB2 + MC = 1rD * FD2 + ME + MF.

 1 MP21 = 1 MP22

System 1

FB

MC

FA
r*A

r*B

P r
P*

System 2

FD

MF

ME

r*D

P r
P*

Figure 4.21
Determining the sums of the moments about

a different point P .

System 1

System 2

F1
M1

F2

FN
P

M2

MK

F

P

M

Figure 4.22
(a) An arbitrary system of forces and

moments.

(b) A force acting at P and a couple.
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4.5 Equivalent Systems 173

These conditions are satisfied if F equals the sum of the forces in system 1 and

M equals the sum of the moments about P in system 1.

Thus no matter how complicated a system of forces and moments may be, it

can be represented by a single force acting at a given point and a single couple.

Representing a Force by a Force and a Couple A force acting at a

point P (system 1 in Fig. 4.23a) can be represented by a force F acting at a dif-

ferent point Q and a couple M (system 2). The moment of system 1 about point

Q is where r is the vector from Q to P (Fig. 4.23b). The conditions for

equivalence are

:

and

:

The systems are equivalent if the force F equals the force and the couple

M equals the moment of about Q.

Concurrent Forces Represented by a Force A system of concurrent

forces whose lines of action intersect at a point P (system 1 in Fig. 4.24) can be

represented by a single force whose line of action intersects P (system 2). The

sums of the forces in the two systems are equal if

The sum of the moments about P equals zero for each system, so the systems

are equivalent if the force F equals the sum of the forces in system 1.

Parallel Forces Represented by a Force A system of parallel forces

whose sum is not zero can be represented by a single force F (Fig. 4.25). We

demonstrate this result in Example 4.14. 

Representing a System by a Wrench

We have shown that any system of forces and moments can be represented by

a single force acting at a given point and a single couple. This raises an inter-

esting question: What is the simplest system that can be equivalent to any sys-

tem of forces and moments?

F = F1 + F2 + + FN.

FP

FP

 M = r * FP.

 1 MQ22 = 1 MQ21

 F = FP

 1 F22 = 1 F21

r * FP,

FP

(a)

Q

P

System 1

FP

System 2

P F

Q

M

(b)

System 1

FP

P

r

Q

Figure 4.23
(a) System 1 is a force acting at point P.

System 2 consists of a force F acting at

point Q and a couple M.

(b) Determining the moment of system 1

about point Q.

FP

System 1

F1

F2

F3

System 2

F

Figure 4.25
A system of parallel forces and a system consisting of a single force F.

System 1 System 2

F1

P

FNF2

P

F

Figure 4.24
A system of concurrent forces and a

system consisting of a single force F.
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To consider this question, let us begin with an arbitrary force F acting at a

point P and an arbitrary couple M (system 1 in Fig. 4.26a) and see whether we

can represent this system by a simpler one. For example, can we represent it by

the force F acting at a different point Q and no couple (Fig. 4.26b)? The sum

of the forces is the same as in system 1. If we can choose the point Q so that

where r is the vector from P to Q (Fig. 4.26c), the sum of the mo-

ments about P is the same as in system 1 and the systems are equivalent. But

the vector is perpendicular to F, so it can equal M only if M is perpen-

dicular to F. That means that, in general, we can t represent system 1 by the

force F alone.

However, we can represent system 1 by the force F acting at a point Q

and the component of M that is parallel to F. Figure 4.26d shows system 1

with a coordinate system placed so that F is along the y axis and M is con-

tained in the x y plane. In terms of this coordinate system, we can express the

force and couple as and System 2 in Fig. 4.26e

consists of the force F acting at a point on the z axis and the component of

M parallel to F. If we choose the distance D so that system 2 is

equivalent to system 1. The sum of the forces in each system is F. The sum

of the moments about P in system 1 is M, and the sum of the moments about

P in system 2 is

Aforce F and a couple that is parallel to F is called a wrench. It is the sim-

plest system that can be equivalent to an arbitrary system of forces and moments.

Mp

1 MP22 = [1-Dk2 * 1Fj2] + My j = Mx i + My j = M.

D = Mx>F,

M = Mx i + My j.F = Fj

r * F

r * F = M,

System 1

P

(a)

F

M

P

(b)

F

Q

P

(c)

F

Q

r

System 1

y

z

x

(d)

y

z

x

(e)

P

M

Mx i

My j

P

Q

D

System 2

My j

F * Fj

F * Fj

Figure 4.26

(a) System 1 is a single force and a single couple.

(b) Can system 1 be represented by a single force and no couple?

(c) The moment of F about P is 

(d) F is along the y axis, and M is contained in the x y plane.

(e) System 2 is the force F and the component of M parallel to F.

r * F.

174 Chapter 4 Systems of Forces and Moments
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A system of forces and moments is simply a particular set of forces

and moments due to couples. We define two systems of forces and

moments, designated as system 1 and system 2, to be equivalent if

two conditions are satisfied:

1. The sum of the forces in system 1 is equal to the sum of the 

     forces in system 2.

2. The sum of the moments about any point P due to the forces and

    moments in system 1 is equal to the sum of the moments about 

    the same point P due to the forces and moments in system 2.

4.5 Equivalent Systems 175

How can we represent a given system of forces and moments by a wrench?

If the system is a single force or a single couple or if it consists of a force F and

a couple that is parallel to F, it is a wrench, and we can t simplify it further. If

the system is more complicated than a single force and a single couple, we can

begin by choosing a convenient point P and representing the system by a force

F acting at P and a couple M (Fig. 4.27a). Then representing this system by a

wrench requires two steps:

1. Determine the components of M parallel and normal to F (Fig. 4.27b).

2. The wrench consists of the force F acting at a point Q and the parallel com-

ponent (Fig. 4.27c). To achieve equivalence, the point Q must be cho-

sen so that the moment of F about P equals the normal component 

(Fig. 4.27d) that is, so that rPQ * F = Mn.

Mn

MP

RESULTS

Equivalent Systems of Forces and Moments

P

(a)

M

F

P

M

F

Mn

Mp

P

(c)

F

Mp

Q

P

(d)

F

Mp

Q
rPQ

(b)

Figure 4.27
(a) If necessary, first represent the system

by a single force and a single couple.

(b) The components of M parallel and

normal to F.

(c) The wrench.

(d) Choose Q so that the moment of F about

P equals the normal component of M.
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176 Chapter 4 Systems of Forces and Moments

Representing an Arbitrary System by a

Force and Couple

Any system of forces and moments (system 1) can be

represented by an equivalent system consisting of a

force F acting at any point P and a couple M (system 2).

The systems are equivalent if F equals the sum of the

forces in system 1 and M equals the sum of the moments

about P due to the forces and moments in system 1.

System 1

System 2

F1
M1

F2

FN
P

M2

MK

F

P

M

Representing a Force by  a Force and Couple

A force F acting at a point P (system 1) can be

represented by an equivalent system consisting of the

force F acting at a different point Q and a couple M

(system 2). The systems are equivalent if M equals the

moment about point Q due to system 1.
Q

P

System 1

F

System 2

P F

Q

M

Representing Concurrent Forces by a Force

A system of concurrent forces whose lines of action

intersect at a point P (system 1) can be represented

by an equivalent system consisting of a force F

whose line of action passes through P (system 2).

The systems are equivalent if F equals the sum of the

forces in system 1.

System 1 System 2

F1

P

FNF2

P

F

Representing Parallel Forces

by a Force

A system of parallel forces whose sum

is not zero (system 1) can be represented

by an equivalent system consisting of a

force F acting at a point P (system 2).

The systems are equivalent if F equals the

sum of the forces in system 1 and the sum

of the moments about any point due to the

forces in system 1 is equal to the sum of

the moments about the same point due to

the forces in system 2.

System 1

F1

F2

F3

System 2

F

P

Representing Systems of Forces and Moments 
by Equivalent Systems
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4.5 Equivalent Systems 177

Active Example 4.12 (* Related Problem 4.151)

System 1 consists of the following forces and couples:

Suppose that you want to represent system 1 by an equivalent system consist-

ing of a force F acting at the point P with coordinates and a cou-

ple M (system 2). Determine F and M.

(4, 3, -2) m

 MC = -90i + 150j + 60k 1kN-m2.

 FB = 30i + 5j + 10k 1kN2,

 FA = -10i + 10j - 15k 1kN2,

Strategy
The conditions for equivalence are satisfied if F equals the sum of the forces in

system 1 and M equals the sum of the moments about point P due to the forces

and moments in system 1. We can use these conditions to determine F and M.

Solution

Practice Problem Suppose that you want to represent system 2 by an equivalent

system consisting of a force F* acting at the origin of the coordinate system and a

couple M* (system 3). Determine F* and M*.

Answer: F = 20i + 15j - 5k (kN), M = -90i + 90j + 90k (kN-m).

y

x

z

P
(4, 3, 2) m

M
F

System 2

y

x

z

(6, 0, 0) m

FA

P

(4, 3, 2) m

System 1

MC

FB

The force F must equal the sum

of the forces in system 1.

F  FA  FB

 20i  15j  5k (kN).

The couple M must equal the sum

of the moments about point P due

to the forces and moments in

system 1. ( 90i  150j  60k)

 105i  110j  90k (kN-m).

M 

i        j       k

4    3      2

10    10   15

i        j       k

2    3      2

30     5      10
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178 Chapter 4 Systems of Forces and Moments

Example 4.13 Representing a System by a Simpler Equivalent System (* Related Problem 4.137)

System 1 consists of two forces and a couple acting on a pipe. Represent sys-

tem 1 by (a) a single force acting at the origin O of the coordinate system and

a single couple and (b) a single force.

Strategy
(a) We can represent system 1 by a force F acting at the origin and a couple M

(system 2 in Fig. a) and use the conditions for equivalence to determine F and M.

(b) Suppose that we place the force F with its point of application a distance

D along the x axis (system 3 in Fig. b). The sums of the forces in systems 2 and

3 are equal. If we can choose the distance D so that the moment about O in sys-

tem 3 equals M, system 3 will be equivalent to system 2 and therefore equiva-

lent to system 1.

Solution
(a) The conditions for equivalence are

:

and

:

(b) The sums of the forces in systems 2 and 3 are equal. Equating the sums of

the moments about O yields

:

and we find that system 3 is equivalent to system 2 if 

Critical Thinking
In part (b), why did we assume that the point of application of the force is on

the x axis? In order to represent the system in Fig. a by a single force, we

needed to place the line of action of the force so that the force would exert a

400 kN-m counterclockwise moment about O. Placing the point of application

of the force a distance D along the x axis was simply a convenient way to

accomplish that.

D = 8 m.

 150 kN2D = 400 kN-m,

 1 MO23 = 1 MO22

 = 400 kN-m.

 M = 130 kN213 m2 + 120 kN215 m2 + 210 kN-m

 1 MO22 = 1 MO21

 F = 30j + 120i + 20j2 1kN2 = 20i + 50j 1kN2,

 1 F22 = 1 F21

D

y

O

F

System 3

x

y

O

F

M

System 2

x

(a) A force F acting at O and a couple M. (b) A system consisting of the force F

acting at a point on the x axis.

y

O

30j (kN) 20i * 20j (kN)

System 1

210 kN-m

x

3 m 2 m
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4.5 Equivalent Systems 179

Example 4.14 Representing Parallel Forces by a Single Force (* Related Problem 4.154)

System 1 consists of parallel forces. Suppose you want to represent it by a force

F (system 2). What is F, and where does its line of action intersect the x z plane?

Strategy
We can determine F from the condition that the sums of the forces in the two sys-

tems must be equal. For the two systems to be equivalent, we must choose the

point of application P so that the sums of the moments about a point are equal.

This condition will tell us where the line of action intersects the x z plane.

Solution
The sums of the forces must be equal.

:

The sums of the moments about an arbitrary point must be equal: Let the coor-

dinates of point P be (x, y, z). The sums of the moments about the origin O

must be equal.

:

Expanding the determinants, we obtain

The sums of the moments about the origin are equal if

The systems are equivalent if and its line of action intersects
the x z plane at and Notice that we did not obtain an
equation for the y coordinate of P. The systems are equivalent if F is applied at
any point along the line of action.

Critical Thinking
In this example we could have determined the x and z coordinates of point P

in a simpler way. Since the sums of the moments about any point must be

equal for the systems to be equivalent, the sums of the moments about any line

must also be equal. Equating the sums of the moments about the x axis yields

:

and we obtain Also, equating the sums of the moments about the

z axis gives

:

and we obtain x = 2.5 ft.

 140 lb2x = 130 lb216 ft2 - 110 lb212 ft2 - 120 lb213 ft2,

1 Mz axis22 = 1 Mz axis21

z = -0.5 ft.

 -140 lb2z = -130 lb212 ft2 + 110 lb214 ft2 + 120 lb212 ft2,

1 Mx axis22 = 1 Mx axis21

z = -0.5 ft.x = 2.5 ft
F = 40j 1lb2

 z = -0.5 ft.

 x = 2.5 ft,

320 ft-lb + 140 lb2z4i + 3100 ft-lb - 140 lb2x4k = 0.

+ 3

i j k

-3 0 -2

0 20 0

33

i j k

x y z

0 40 0

3 = 3

i j k

6 0 2

0 30 0

3 + 3

i j k

2 0 4

0 -10 0

3

 1 MO22 = 1 MO21

 F = 30j + 20j - 10j 1lb2 = 40j 1lb2.

 1 F22 = 1 F21

y

x

z

System 1

(2, 0, 4) ft

(6, 0, 2) ft

(*3, 0, 2) ft

y

x

z

System 2

O

O

20j (lb)

30j (lb)

*10j (lb)

F

P
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180 Chapter 4 Systems of Forces and Moments

Example 4.15 Representing a Force and Couple by a Wrench (* Related Problems 4.170, 4.171)

The system consists of the force and couple

Represent it by a wrench, and determine where the line of action of the wrench s

force intersects the x z plane.

Strategy
The wrench is the force F and the component of M parallel to F (Figs. a, b).

We must choose the point of application P so that the moment of F about O

equals the normal component By letting P be an arbitrary point of the

x z plane, we can determine where the line of action of F intersects that plane.

Solution
Dividing F by its magnitude, we obtain a unit vector e with the same direction

as F:

We can use e to calculate the component of M parallel to F:

The component of M normal to F is

The wrench is shown in Fig. b. Let the coordinates of P be (x, 0, z). The

moment of F about O is

By equating this moment to or

we obtain the equations

Solving these equations, we find the coordinates of point P are 

Critical Thinking
Why did we place point P at an arbitrary point (x, 0, z) in the x z plane? Our

objective was to place the line of action of the force F of the wrench so as to

satisfy the condition that the moment of F about O would equal Placing

the point of application of F at a point (x, 0, z) and then using this condition to

determine x and z was a convenient way to determine the necessary location

of the line of action. The point m is the inter-

section of the line of action with the x z plane.

1x, 0, z2 = 10.510, 0, -1.2652

Mn.

z = -1.265 m.

x = 0.510 m,

 6x = 3.061.

 -2x + 3z = -4.816,

 -6z = 7.592,

-6zi - 12x - 3z2j + 6xk 1N-m2 = 7.592i - 4.816j + 3.061k 1N-m2,

Mn,

rOP * F = 3

i j k

x 0 z

3 6 2

3 = -6zi - 12x - 3z2j + 6xk 1N-m2.

Mn = M - Mp = 7.592i - 4.816j + 3.061k 1N-m2.

= 4.408i + 8.816j + 2.939k 1N-m2.

 Mp = 1e # M2e = [10.4292112 N-m2+10.857214 N-m2+10.286216 N-m2]e

e =
F

F
=

3i + 6j + 2k 1N2

213 N2
2
+ 16 N2

2
+ 12 N2

2
= 0.429i + 0.857j + 0.286k.

Mn.

 M = 12i + 4j + 6k 1N-m2.

 F = 3i + 6j + 2k 1N2,

F

Mp

P
(x, 0, z)

x

y

O

z

z

M

F

Mp

Mn

y

xO

z

y

F

O

M

x

(b) The wrench acting at a point in the

x z plane.

(a) Resolving M into components

parallel and normal to F.
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Problems 181

4.128 Two systems of forces act on the beam. Are they equivalent?

Strategy: Check the two conditions for equivalence. The

sums of the forces must be equal, and the sums of the moments

about an arbitrary point must be equal.

4.132 System 1 is a force F acting at a point O. System 2 is the

force F acting at a different point along the same line of action.

Explain why these systems are equivalent. (This simple result is

called the principle of transmissibility.)

O*

1 m

y

x

50 N

System 1

100 N

1 m

2 m

y

x

System 2

50 N

Problem 4.128

2 ft2 ft

50 ft-lb

System 1

10 lb

y

20 lb

x

x

20 lb

y

10 lb

30 ft-lb

System 2

2 ft2 ft

Problem 4.129

10 kN

8 m

System 1

80 kN-m

System 2

System 3

20 kN
10 kN

System 4

4 m4 m

10 kN

10 kN

20 kN

80 kN-m

8 m

8 m

Problems 4.130/4.131

O

F

System 1 System 2

F

O*

O

Problem 4.132

Problems

4.129 Two systems of forces and moments act on the beam. Are

they equivalent?

4.130 Four systems of forces and moments act on an 8-m beam.

Which systems are equivalent?

4.131 The four systems can be made equivalent by adding a

couple to one of the systems. Which system is it, and what couple

must be added?
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4.135 Two equivalent systems of forces and moments act on 

the L-shaped bar. Determine the forces and and the 

couple M.

FBFA

4.136 Two equivalent systems of forces and moments act on the

plate. Determine the force F and the couple M.

 4.137 In Example 4.13, suppose that the 30-kN vertical force

in system 1 is replaced by a 230-kN vertical force. Draw a sketch

of the new system 1. If you represent system 1 by a single force F

as in system 3, at what position D on the x axis must the force be

placed?

4.138 Three forces and a couple are applied to a beam (system 1).

(a) If you represent system 1 by a force applied at A and a couple

(system 2), what are F and M?

(b) If you represent system 1 by the force F (system 3), what is

the distance D?

System 1 System 2

30*

30*

5 m 200 N

x

y

4 m

20*

20*

2 m

(5, 4, 0) m

x

y

F

200 N

F

Problem 4.134

3 m 3 m

50 N

60 N

System 1

120 N-m

6 m

40 N

System 2

3 m MFA

FB

3 m

Problem 4.135

50 lb

5 in

8 in

30 lb 10 lb

M

System 1

5 in

8 in

30 lb

System 2

30 lb

F

100 in-lb

Problem 4.136

40 lb20 lb

x

y

System 2

System 1

x

2 ft

30 ft-lb

30 lb

M

A

F

System 3

x

F

A

D

2 ft

A

y

y

Problem 4.138

4.134 Systems 1 and 2 each consist of a couple. If they are

equivalent, what is F?

182 Chapter 4 Systems of Forces and Moments

4.133 The vector sum of the forces exerted on the log by the

cables is the same in the two cases. Show that the systems of

forces exerted on the log are equivalent.

12 m

12 m

B

A

20 m

16 m

D

C

E

6 m

Problem 4.133
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Problems 183

4.141 The vector sum of the forces acting on the beam is zero,

and the sum of the moments about the left end of the beam 

is zero.

(a) Determine the forces and and the couple 

(b) Determine the sum of the moments about the right end of the

beam.

(c) If you represent the 600-N force, the 200-N force, and the 

30 N-m couple by a force F acting at the left end of the beam and

a couple M, what are F and M?

MA.Ay,Ax

4.142 The vector sum of the forces acting on the truss is zero,

and the sum of the moments about the origin O is zero.

(a) Determine the forces and B.

(b) If you represent the 2-kip, 4-kip, and 6-kip forces by a 

force F, what is F, and where does its line of action intersect 

the y axis?

(c) If you replace the 2-kip, 4-kip, and 6-kip forces by the force

you determined in (b), what are the vector sum of the forces

acting on the truss and the sum of the moments about O?

Ax, Ay,

4.143 The distributed force exerted on part of a building founda-

tion by the soil is represented by five forces. If you represent them

by a force F, what is F, and where does its line of action intersect

the x axis?

Ax

Ay 200 N

x

30 N-m

y

600 N
MA

380 mm 180 mm

Problem 4.141

2 kip

4 kip

6 kip

x

6 ft

3 ft

3 ft

3 ft

Ax O

Ay B

y

Problem 4.142

40 kN
85 kN80 kN

30 kN35 kN

y

x

3 m 3 m 3 m 3 m

Problem 4.143

60i + 60j (N)

y

*40j (N)

280 N-m

3 m 3 m

x

Problem 4.139

4.140 The bracket is subjected to three forces and a couple. If

you represent this system by a force F, what is F and where does

its line of action intersect the x axis?

0.65 m

0.4 m

0.2 m

140 N-m

400 N

180 N

200 N

y

x

Problem 4.140

4.139 Represent the two forces and couple acting on the beam

by a force F. Determine F and determine where its line of action

intersects the x axis.
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184 Chapter 4 Systems of Forces and Moments

4.148 The tension in cable AB is 400 N, and the tension in cable

CD is 600 N.

(a) If you represent the forces exerted on the left post by the cables

by a force F acting at the originO and a coupleM, what are F andM?

(b) If you represent the forces exerted on the left post by the cables

by the force F alone, where does its line of action intersect the y axis?

4.149 The tension in each of the cables AB and CD is 400 N. If

you represent the forces exerted on the right post by the cables by

a force F, what is F, and where does its line of action intersect the

y axis?

y

x

5 m

6 m 4 m30 N

30 N

50 N

O

Problem 4.147

400 mm

300 mm 300 mm

800 mm
O

A

C

D

B

y

x

Problems 4.148/4.149

4.150 If you represent the three forces acting on the beam cross

section by a force F, what is F, and where does its line of action

intersect the x axis?

* 4.151 In Active Example 4.12, suppose that the force is

changed to and you want to repre-

sent system 1 by an equivalent system consisting of a force F

acting at the point P with coordinates and a 

couple M (system 2). Determine F and M.

(4, 3,-2) m

FB = 20 i - 15j + 30k (kN),

FB

y

x

z

500 lb

500 lb

800 lb

6 in

6 in

Problem 4.150

4.144 At a particular instant, aerodynamic forces distributed over

the airplane s surface exert the 88-kN and 16-kN vertical forces

and the 22 kN-m counterclockwise couple shown. If you represent

these forces and couple by a system consisting of a force F acting

at the center of mass G and a couple M, what are F and M?

4.145 If you represent the two forces and couple acting on the

airplane by a force F, what is F, and where does its line of action

intersect the x axis?

9 m

5.7 m

5 m

88 kN

22 kN-m

y

x

16 kN

G

Problems 4.144/4.145

4.146 The system is in equilibrium. If you represent the forces

and by a force F acting at A and a couple M, what are F

and M?

FACFAB

100 lb

A

100 lb

A

B C60* 40*

y

FAB FAC

x

Problem 4.146

4.147 Three forces act on the beam.

(a) Represent the system by a force F acting at the origin O and a

couple M.

(b) Represent the system by a single force. Where does the line of

action of the force intersect the x axis?
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 4.154 In Example 4.14, suppose that the 30-lb upward force

in system 1 is changed to a 25-lb upward force. If you want to

represent system 1 by a single force F (system 2), where does

the line of action of F intersect the x z plane?

4.155 The normal forces exerted on the car s tires by the road are

If you represent these forces by a single equivalent force N, what

is N and where does its line of action intersect the x z plane?

 ND = 3559j 1N2.

 NC = 3613j 1N2,

 NB = 5027j 1N2,

 NA = 5104j 1N2,

4.156 Two forces act on the beam. If you represent them by a

force F acting at C and a couple M, what are F and M?

1.4 m

x

z

y

0.8 m

1.4 m
D B

C A

0.8 m

x

Problem 4.155

z

y

x

100 N

3 m

80 N

C

Problem 4.156

4.152 The wall bracket is subjected to the force shown.

(a) Determine the moment exerted by the force about the z axis.

(b) Determine the moment exerted by the force about the y axis.

(c) If you represent the force by a force F acting at O and a

couple M, what are F and M?

12 in
z

y

x

O 10i * 30j + 3k (lb)

Problem 4.152

4.153 A basketball player executes a slam dunk  shot, then

hangs momentarily on the rim, exerting the two 100-1b forces

shown. The dimensions are and and the

angle 

(a) If you represent the forces he exerts by a force F acting at O

and a couple M, what are F and M?

(b) The glass backboard will shatter if Does it

break?

M 7 4000 in-lb.

a = 120 .

r = 9 
1

2
 in,h = 14 

1

2
 
 
in

y

O

z x
h

*100j (lb)

r
*100j (lb)

a

Problem 4.153
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4.160 The two shafts are subjected to the torques (couples) shown.

(a) If you represent the two couples by a force F acting at the

origin O and a couple M, what are F and M?

(b) What is the magnitude of the total moment exerted by the

two couples?

4.161 The two systems of forces and moments acting on the bar

are equivalent. If

what are F and M?

 MB = 10i + 40j - 10k 1kN-m2,

 FB = 40i - 20j + 25k 1kN2,

 FA = 30i + 30j - 20k 1kN2,

x

y

z

4 kN-m

6 kN-m

40*

30*

Problem 4.160

z

y

x

z

y

x

MBFA

FB

System 1

M

F

System 2

A

B
2 m

2 m

Problem 4.161

4.158 The brace is being used to remove a screw.

(a) If you represent the forces acting on the brace by a force F

acting at the origin O and a couple M, what are F and M?

(b) If you represent the forces acting on the brace by a force 

acting at a point P with coordinates and a couple 

what are and M ?F

M ,1xP, yP, zP2

F

186 Chapter 4 Systems of Forces and Moments

4.157 An axial force of magnitude P acts on the beam. If you

represent it by a force F acting at the origin O and a couple M,

what are F and M?

z

x

y

O

P i

b

h

Problem 4.157

x

z

B

B

y

O

A

h

h

r

A
1

2

A
1

2

Problem 4.158

4.159 Two forces and a couple act on the cube. If you represent

them by a force F acting at point P and a couple M, what are F

and M?

y

x

z
1 m

MC ,
4i + 4j - 4k (kN-m)

FB ,
2i + j (kN)

P

FA ,
+i - j - k (kN)

Problem 4.159

BEDFMC04_0136129153.QXD  4/14/07  1:01 AM  Page 186



Problems 187

x

y

z

x

y

z

B

A
D

C (4, 6, 0) ft

(7, 0, 2) ft

(3, 0, 8) ft

E

F

(0, 6, 6) ft

Problem 4.165

4.166 The distance If you represent the force and the

200-N-m couple by a force F acting at the origin O and a couple

M, what are F and M?

s = 4 m.

z

(2, 6, 0) m

y

x

(4, 0, 3) m

100i + 20j * 20k (N)

O
200 N-m

s

Problem 4.166

4.162 Point G is at the center of the block. The forces are

If you represent the two forces by a force F acting at G and a

couple M, what are F and M?

 FB = 10j - 10k 1lb2.

 FA = -20i + 10j + 20k 1lb2,

30 in

10 in

y

z

x

FA

FB

G

20 in

Problem 4.162

4.163 The engine above the airplane s fuselage exerts a thrust

and each of the engines under the wings exerts a

thrust The dimensions are and

If you represent the three thrust forces by a force F

acting at the origin O and a couple M, what are F and M?

4.164 Consider the airplane described in Problem 4.163 and

suppose that the engine under the wing to the pilot s right loses

thrust.

(a) If you represent the two remaining thrust forces by a force F

acting at the origin O and a couple M, what are F and M?

(b) If you represent the two remaining thrust forces by the force F

alone, where does its line of action intersect the x y plane?

b = 16 ft.

h = 8 ft, c = 12 ft,TU = 12 kip.

T0 = 16 kip,

y

x

b b

O

z

y

2 TU

T0

c

h

O

Problems 4.163/4.164

4.165 The tension in cable AB is 100 lb, and the tension in cable

CD is 60 lb. Suppose that you want to replace these two cables by

a single cable EF so that the force exerted on the wall at E is

equivalent to the two forces exerted by cables AB and CD on the

walls at A and C. What is the tension in cable EF, and what are

the coordinates of points E and F?
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188 Chapter 4 Systems of Forces and Moments

4.173 System 1 consists of two forces and a couple. Suppose

that you want to represent it by a wrench (system 2). Determine

the force F, the couple and the coordinates x and z where the

line of action of F intersects the x z plane.

Mp,

4.174 A plumber exerts the two forces shown to loosen a pipe.

(a) What total moment does he exert about the axis of the pipe?

(b) If you represent the two forces by a force F acting at O and a

couple M, what are F and M?

(c) If you represent the two forces by a wrench consisting of the

force F and a parallel couple what is and where does the

line of action of F intersect the x y plane?

Mp,Mp,

4.168 A system consists of a force F acting at the origin O and a

couple M, where

If you represent the system by a wrench consisting of the force F

and a parallel couple what is and where does the line of

action of F intersect the y z plane?

4.169 A system consists of a force F acting at the origin O and a

couple M, where

If you represent it by a wrench consisting of the force F and 

a parallel couple (a) determine and determine where 

the line of action of F intersects (b) the x z plane, (c) the 

y z plane.

4.170 Consider the force F acting at the origin O and the cou-

ple M given in Example 4.15. If you represent this system by a

wrench, where does the line of action of the force intersect the 

x y plane?

 4.171 Consider the force F acting at the origin O and the

couple M given in Example 4.15. If you represent this system

by a wrench, where does the line of action of the force intersect

the plane 

4.172 A wrench consists of a force of magnitude 100 N acting at

the origin O and a couple of magnitude 60 N-m. The force and

couple point in the direction from O to the point (1, 1, 2) m. If you

represent the wrench by a force F acting at the point (5, 3, 1) m

and a couple M, what are F and M?

y = 3 m?

Mp,Mp,

F = i + 2j + 5k 1N2, M = 10i + 8j - 4k 1N-m2.

Mp,Mp,

F = 10i 1lb2, M = 20j 1ft-lb2.

4.167 The force F and couple M in system 1 are

Suppose you want to represent system 1 by a wrench (system 2).

Determine the couple and the coordinates x and z where the

line of action of the force intersects the x z plane.

Mp

 M = 4i + 7j + 4k 1ft-lb2.

 F = 12i + 4j - 3k 1lb2,

y

z

x

M

F

O

y

z

x

Mp
F

O

(x, 0, z)

System 1 System 2

Problem 4.167

y

z z

x

System 1

1000i + 600j (kN-m)

300j (kN)
600k (kN)

3 m

4 m

y

x

Mp

F

(x, 0, z)

System 2

Problem 4.173

x

*70k (lb)

50k (lb)

12 in
6 in

16 in

16 in

y

z

O

Problem 4.174
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Review Problems 189

6 ft 3 ft

300 lb

200 lb

5 ft

800 ft-lb

200 lb

A

Problems 4.179/4.180

4.175 The Leaning Tower of Pisa is approximately 55 m tall and

7 m in diameter. The horizontal displacement of the top of the

tower from the vertical is approximately 5 m. Its mass is approxi-

mately If you model the tower as a cylinder and

assume that its weight acts at the center, what is the magnitude of

the moment exerted by the weight about the point at the center

of the tower s base?

3.2 * 10
6 kg.

4.177 Three forces act on the structure. The sum of the moments

due to the forces about A is zero. Determine the magnitude of the

force F.

Review Problems

5m

Problem 4.175

4.176 The cable AB exerts a 300-N force on the support A that

points from A toward B. Determine the magnitude of the moment

the force exerts about point P.

x

y

(0.3, 0.6) m

(0.5, +0.2) m

A

B

P

(+0.4, 0.3) m

Problem 4.176

4.178 Determine the moment of the 400-N force (a) about A, 

(b) about B.

b

F

A

2b b

b

45* 30*

4 kN 2 kN

Problem 4.177

260 mm

220 mm

30*

500 mm

A

B

400 N

Problem 4.178

4.179 Determine the sum of the moments exerted about A by the

three forces and the couple.

4.180 If you represent the three forces and the couple by an

equivalent system consisting of a force F acting at A and a 

couple M, what are the magnitudes of F and M?
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190 Chapter 4 Systems of Forces and Moments

4.181 The vector sum of the forces acting on the beam is zero,

and the sum of the moments about A is zero.

(a) What are the forces and B?

(b) What is the sum of the moments about B?

Ax, Ay,

500 mm

30*

Ax

Ay
400 N220 mm

260 mm

B

Problem 4.181

4.182 The hydraulic piston BC exerts a 970-lb force on the

boom at C in the direction parallel to the piston. The angle

The sum of the moments about A due to the force

exerted on the boom by the piston and the weight of the

suspended load is zero. What is the weight of the suspended load?

a = 40 .

9 ft

6 ft

6 ft

A B

C

a

Problem 4.182

4.184 The 20-kg mass is suspended by cables attached to three

vertical 2-m posts. Point A is at (0, 1.2, 0) m. Determine the

moment about the base E due to the force exerted on the post BE

by the cable AB.

4.183 The force 

(a) Determine the moment of F about point A.

(b) What is the perpendicular distance from point A to the line of

action of F?

F = -60i + 60j 1lb2.

4.185 What is the total moment due to the two couples? 

(a) Express the answer by giving the magnitude and stating

whether the moment is clockwise or counterclockwise. 

(b) Express the answer as a vector.

y

x

F

(4, +4, 2) ft

A
(8, 2, 12) ft

z

Problem 4.183

B

A

C

D

y

E

z
x

2 m
0.3 m

1 m

1 m

Problem 4.184

y

100 N

100 N

100 N

100 N

4 m

2 m

2 m

4 m

x

Problem 4.185
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4.189 The system of cables and pulleys supports the 300-lb

weight of the work platform. If you represent the upward force

exerted at E by cable EF and the upward force exerted at G by

cable GH by a single equivalent force F, what is F, and where

does its line of action intersect the x axis?

4.190 The system of cables and pulleys supports the 300-lb

weight of the work platform.

(a) What are the tensions in cables AB and CD?

(b) If you represent the forces exerted on the work platform

by the cables at A and C by a single equivalent force F,

what is F and where does its line of action intersect

the x axis?

60*60*

A C

x

y

8 ft

F

B

H

G

D

E

Problems 4.189/4.190

4.186 The bar AB supporting the lid of the grand piano exerts a

force at B. The coordinates of B are

(3, 4, 3) ft. What is the moment of the force about the hinge line

of the lid (the x axis)?

F = -6i + 35j - 12k 1lb2

y

x

z

B

A

Problem 4.186

4.187 Determine the moment of the vertical 800-lb force about

point C.

4.188 Determine the moment of the vertical 800-lb force about

the straight line through points C and D.

800 lb

B

D (6, 0, 0) ft

C (5, 0, 6) ft

A (4, 3, 4) ft

z

y

x

Problems 4.187/4.188
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y

x
O

A

B

25 m

FB

60 m

60 m

FA

O

u

Problems 4.195 4.197

192 Chapter 4 Systems of Forces and Moments

4.195 The tugboats A and B exert forces and

on the ship. The angle If you represent the

two forces by a force F acting at the origin O and a couple M,

what are F and M?

4.196 The tugboats A and B exert forces and

on the ship. The angle If you represent

the two forces by a force F, what is F, and where does its line of

action intersect the y axis?

4.197 The tugboats A and B want to exert two forces on the

ship that are equivalent to a force F acting at the origin O of

2-kN magnitude. If determine the necessary values

of and u.FB

FA = 800 N,

u = 45 .FB = 800 N

FA = 600 N

u = 30 .FB = 1.2 kN

FA = 1 kN

4.194 The two systems are equivalent. If

determine and M.F

 M = -80i + 120j + 40k 1in-lb2,

 F = -100i + 40j + 30k 1lb2,

x

y

System 1 System 2

x

4 in 4 in

6 in 6 in

F

M
y

F*

M*

zz

6 in 6 in

Problem 4.194

y

x

600 mm 400 mm

Ay 30 N

400 mm

20 N

Ax

System 1

y

x

10 N

8 N-m

MA

System 2

80 N

20 N

600 mm 400 mm

400 mm

Problems 4.191 4.193

4.191 The two systems are equivalent. Determine the forces 

and and the couple 

4.192 If you represent the equivalent systems in Problem 4.191

by a force F acting at the origin and a couple M, what are F and M?

4.193 If you represent the equivalent systems in Problem 4.191

by a force F, what is F, and where does its line of action intersect

the x axis?

MA.Ay,

Ax
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4.198 If you represent the forces exerted by the floor on the

table legs by a force F acting at the origin O and a couple M,

what are F and M?

4.199 If you represent the forces exerted by the floor on the

table legs by a force F, what is F, and where does its line of action

intersect the x z plane?

y

x

z 48 N

50 N

50 N

1 m 2 m

42 N

Problems 4.198/4.199

x

z

y

O

FB

FA

80 mm

80 mm

360 mm

160 mm

Problems 4.200/4.201

Design Project A relatively primitive device for exercising

the biceps muscle is shown. Suggest an improved configuration

for the device. You can use elastic cords (which behave like

linear springs), weights, and pulleys. Seek a design such that

the variation of the moment about the elbow joint as the device

is used is small in comparison to the design shown. Give con-

sideration to the safety of your device, its reliability, and the

requirement to accommodate users having a range of dimen-

sions and strengths. Choosing specific dimensions, determine

the range of the magnitude of the moment exerted about the

elbow joint as your device is used.

E

A

B

5 in

10 in

15
 i
n

a

4.200 Two forces are exerted on the crankshaft by the connect-

ing rods. The direction cosines of are 

and and its magnitude is 4 kN.

The direction cosines of are 

and and its magnitude is 2 kN. If you represent

the two forces by a force F acting at the origin O and a couple M,

what are F and M?

4.201 If you represent the two forces exerted on the crankshaft

in Problem 4.200 by a wrench consisting of a force F and a

parallel couple what are F and and where does the line

of action of F intersect the x z plane?

Mp,Mp,

cos uz = -0.545,

cos ux = 0.182, cos uy = 0.818,FB

cos uz = 0.545,cos uy = 0.818,

cos ux = -0.182,FA
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Objects in Equilibrium

Building on concepts developed in Chapters 3 and 4, 

we first state the general equilibrium equations. We

describe various ways that structural members can be

supported, or held in place. Using free-body diagrams

and equilibrium equations, we then show how to deter-

mine unknown forces and couples exerted on structural

members by their supports. The principal motivation for

this procedure is that it is the initial step in answering 

an essential question in structural analysis: How do 

engineers design structural elements so that they will

support the loads to which they are subjected?

 The beam is in equilibrium under the actions of its weight and the forces
exerted by the chains. In this chapter we apply the equilibrium equations to
determine unknown forces and couples acting on objects.

C H A P T E R

5
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196 Chapter 5 Objects in Equilibrium

5.1 Two-Dimensional Applications

BACKGROUND

When an object acted upon by a system of forces and moments is in equilibrium,

the following conditions are satisfied:

1. The sum of the forces is zero:

(5.1)

2. The sum of the moments about any point is zero:

(5.2)

From our discussion of equivalent systems of forces and moments in Chapter 4,

Eqs. (5.1) and (5.2) imply that the system of forces and moments acting on an

object in equilibrium is equivalent to a system consisting of no forces and no

couples. This provides insight into the nature of equilibrium. From the stand-

point of the total force and total moment exerted on an object in equilibrium, the

effects are the same as if no forces or couples acted on the object. This obser-

vation also makes it clear that if the sum of the forces on an object is zero and

the sum of the moments about one point is zero, then the sum of the moments

about every point is zero.

The Scalar Equilibrium Equations

When the loads and reactions on an object in equilibrium form a two-dimensional

system of forces and moments, they are related by three scalar equilibrium equations:

(5.3)

(5.4)

(5.5)

A natural question is whether more than one equation can be obtained from

Eq. (5.5) by evaluating the sum of the moments about more than one point. The

answer is yes, and in some cases it is convenient to do so. But there is a catch

the additional equations will not be independent of Eqs. (5.3) (5.5). In other

words, more than three independent equilibrium equations cannot be obtained

from a two-dimensional free-body diagram, which means we can solve for at most

three unknown forces or couples. We discuss this point further in Section 5.2.

Supports

When you are standing, the floor supports you. When you sit in a chair with your

feet on the floor, the chair and floor support you. In this section we are con-

cerned with the ways objects can be supported, or held in place. Forces and

couples exerted on an object by its supports are called reactions, expressing the

fact that the supports react  to the other forces and couples, or loads, acting on

the object. For example, a bridge is held up by the reactions exerted by its sup-

ports, and the loads are the forces exerted by the weight of the bridge itself, the

traffic crossing it, and the wind.

Some very common kinds of supports are represented by stylized models

called support conventions. Actual supports often closely resemble the support

 Many point = 0.

 Fy = 0,

 Fx = 0,

Many point = 0.

F = 0.
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(a)

Bracket
Pin Supported object

(c)

(b)

x

y

Ax

Ay

(d)

Figure 5.1

(a) A pin support.

(b) Side view showing the pin passing through the beam.

(c) Holding a supported bar.

(d) The pin support is capable of exerting two components of force.

5.1 Two-Dimensional Applications 197

Pin supports

Figure 5.2

Pin supports in a pair of scissors and a stapler.

conventions, but even when they don t, we represent them by these conventions

if the actual supports exert the same (or approximately the same) reactions as

the models.

The Pin Support Figure 5.1a shows a pin support. The diagram represents

a bracket to which an object (such as a beam) is attached by a smooth pin that

passes through the bracket and the object. The side view is shown in Fig. 5.1b.

To understand the reactions that a pin support can exert, it s helpful to

imagine holding a bar attached to a pin support (Fig. 5.1c). If you try to move

the bar without rotating it (that is, translate the bar), the support exerts a

reactive force that prevents this movement. However, you can rotate the bar

about the axis of the pin. The support cannot exert a couple about the pin axis

to prevent rotation. Thus a pin support can t exert a couple about the pin axis,

but it can exert a force on an object in any direction, which is usually expressed

by representing the force in terms of components (Fig. 5.1d). The arrows

indicate the directions of the reactions if and are positive. If you deter-

mine or to be negative, the reaction is in the direction opposite to that

of the arrow.

The pin support is used to represent any real support capable of exerting a

force in any direction but not exerting a couple. Pin supports are used in many

common devices, particularly those designed to allow connected parts to rotate

relative to each other (Fig. 5.2).

The Roller Support The convention called a roller support (Fig. 5.3a) rep-

resents a pin support mounted on wheels. Like the pin support, it cannot exert

a couple about the axis of the pin. Since it can move freely in the direction par-

allel to the surface on which it rolls, it can t exert a force parallel to the surface

but can only exert a force normal (perpendicular) to this surface (Fig. 5.3b).

Figures 5.3c e are other commonly used conventions equivalent to the roller

support. The wheels of vehicles and wheels supporting parts of machines are

roller supports if the friction forces exerted on them are negligible in compari-

son to the normal forces. A plane smooth surface can also be modeled by a roller

AyAx

AyAx
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198 Chapter 5 Objects in Equilibrium

support (Fig. 5.4). Beams and bridges are sometimes supported in this way so

that they will be free to undergo thermal expansion and contraction.

The supports shown in Fig. 5.5 are similar to the roller support in that they

cannot exert a couple and can only exert a force normal to a particular direction.

(Friction is neglected.) In these supports, the supported object is attached to a

pin or slider that can move freely in one direction but is constrained in the

perpendicular direction. Unlike the roller support, these supports can exert a

normal force in either direction.

The Fixed Support The fixed support shows the supported object literally

built into a wall (Fig. 5.6a). This convention is also called a built-in support. 

To understand the reactions, imagine holding a bar attached to a fixed support 

(Fig. 5.6b). If you try to translate the bar, the support exerts a reactive force that

Figure 5.4

Supporting an object with a plane smooth

surface.

(a) (b) (c) A

Figure 5.5

Supports similar to the roller support except

that the normal force can be exerted in either

direction.

(b)

Ay

Ax

MA

x

(c)

(a)

Supported object

y

Figure 5.6

(a) Fixed support.

(b) Holding a supported bar.

(c) The reactions a fixed support is capable

of exerting.

(a) Pin in a slot. (b) Slider in a slot. (c) Slider on a shaft.

(a)

Pin

Equivalent
supports

Supported object

Bracket

(c)

(b)

A

(d) (e)

Figure 5.3

(a) A roller support.

(b) The reaction consists of a force normal

to the surface.

(c) (e) Supports equivalent to the roller

support.
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Supports

Rope or Cable Spring A Collinear Force

T

Contact with a Smooth Surface A Force Normal
to the Supporting Surface

Contact with a Rough Surface Two Force Components

Pin Support Two Force Components

Equivalents

Roller Support

A Force Normal
to the Supporting Surface

Constrained Pin or Slider A Normal Force

Fixed (Built-in) Support
Two Force Components

and a Couple

Reactions

A

A

Ay

Ax

y

x

Ay

Ax

y

Ay

Ax

MA

y

x

x

A

prevents translation, and if you try to rotate the bar, the support exerts a reac-

tive couple that prevents rotation. A fixed support can exert two components of

force and a couple (Fig. 5.6c). The term is the couple exerted by the support,

and the curved arrow indicates its direction. Fence posts and lampposts have

fixed supports. The attachments of parts connected so that they cannot move or

rotate relative to each other, such as the head of a hammer and its handle, can

be modeled as fixed supports.

Table 5.1 summarizes the support conventions commonly used in two-

dimensional applications, including those we discussed in Chapter 3. Although

MA

Table 5.1 Supports used in two-dimensional applications.
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F
BA

(a) (b)

F

BA

30*

(c)

x

BAx
Ay

Reactions due to
the pin support

Reaction due to
the roller support

y

F
BA

30*

Figure 5.7
(a) A beam with pin and roller supports.

(b) Isolating the beam from its supports.

(c) The completed free-body diagram.

the number of conventions may appear daunting, the examples and problems will

help you become familiar with them. You should also observe how various

objects you see in your everyday experience are supported and think about

whether each support could be represented by one of the conventions.

Free-Body Diagrams

We introduced free-body diagrams in Chapter 3 and used them to determine

forces acting on simple objects in equilibrium. By using the support conventions,

we can model more elaborate objects and construct their free-body diagrams in

a systematic way.

For example, the beam in Fig. 5.7a has a pin support at the left end and a

roller support at the right end and is loaded by a force F. The roller support

rests on a surface inclined at 30 to the horizontal. To obtain the free-body di-

agram of the beam, we first isolate it from its supports (Fig. 5.7b), since the

free-body diagram must contain no object other than the beam. We complete the

free-body diagram by showing the reactions that may be exerted on the beam

by the supports (Fig. 5.7c). Notice that the reaction B exerted by the roller

support is normal to the surface on which the support rests.

The object in Fig. 5.8a has a fixed support at the left end. A cable passing

over a pulley is attached to the object at two points. We isolate it from its sup-

ports (Fig. 5.8b) and complete the free-body diagram by showing the reactions

at the fixed support and the forces exerted by the cable (Fig. 5.8c). Don t forget

the couple at a fixed support. Since we assume the tension in the cable is the

same on both sides of the pulley, the two forces exerted by the cable have the

same magnitude T.

Once you have obtained the free-body diagram of an object in equilibrium

to identify the loads and reactions acting on it, you can apply the equilibrium

equations.
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The sum of the forces is zero:

The sum of the moments

about any point is zero:

When an object is in equilibrium,

the system of forces and moments

acting on it satisfies two conditions.

*F + 0.                       (5.1)

*Many point + 0.            (5.2)

When the system of forces and moments

acting on an object in equilibrium is

two dimensional, it satisfies three scalar

equilibrium equations.

*Fx + 0,       (5.3)

*Fy + 0,       (5.4)

*Many point + 0.       (5.5)

Pin Support

Roller Support

Fixed (Built-in) Support

A Force Normal
to the Supporting Surface

A

Two Force Components
and a Couple

Ay

Ax

MA

y

x

Two Force Components

Ay

Ax

y

x

To draw the free-body diagram

of an object, isolate it from its

supports and show the reactions,

the forces and moments that the

supports may exert (Table 5.1).

Supports

A

(a) (b)

A
x

Ax

Ay

y

T

T

MA

Reactions due to the 
built-in support

A

(c)

Reactions due to 
the cable 

Figure 5.8
(a) An object with a fixed support.

(b) Isolating the object.

(c) The completed free-body diagram.
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202 Chapter 5 Objects in Equilibrium

Active Example 5.1 Reactions at a Fixed Support (* Related Problem 5.1)

The beam has a fixed support at A and is subjected to a 4-kN force. (a) Draw the

free-body diagram of the beam. (b) Determine the reactions at the fixed support.

Strategy
To draw the free-body diagram of the beam we must isolate it from the built-in

support and show the reactions that the support may exert. Then we can apply

the equilibrium equations to determine the unknown reactions.

Solution

Practice Problem The beam has pin and roller supports and is subjected to a 4-kN

force. (a) Draw the free-body diagram of the beam. (b) Determine the reactions at the

supports.

Answer: Ax 0, Ay 1.33 kN, B 2.67 kN.

4 kN

2 m

A

4 kN

2 m

Ay

y

xAx

MA
(b) Write the equilibrium equations,

(a) Draw a diagram of the beam

isolated from its fixed support and

show the reactions due to the support.

and solve them, obtaining

Fx  Ax  0,

Fy  Ay  4 kN  0,

Mleft end  MA  (2 m) (4 kN)  0,

 Ax  0,  Ay  4 kN, MA  8 kN-m.

2 m

3 m

BA

4 kN
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30*

300 ft-lb

200 lb

A

100 lb

2 ft2 ft

2 ft

100 lb

300 ft-lb

200 lb

A

2 ft

y

Ay

Ax

MA

100 sin 30* lb

100 cos 30* lb

x

(a) Drawing the free-body diagram.

2 ft

2 ft

2 ft

300 ft-lb

2 ft

100 lb

200 lb

A

30*

Example 5.2 Reactions at a Fixed Support (* Related Problem 5.9)

The object has a fixed support at A and is subjected to two forces and a couple.

What are the reactions at the support?

Strategy
We will obtain a free-body diagram by isolating the object from the fixed sup-

port at A and showing the reactions exerted at A, including the couple that may

be exerted by a fixed support. Then we can determine the unknown reactions by

applying the equilibrium equations.

Solution

Draw the Free-Body Diagram We isolate the object from its support and

show the reactions at the fixed support (Fig. a). There are three unknown re-

actions: two force components and and a couple (Remember that

we can choose the directions of these arrows arbitrarily.) We also resolve the

100-lb force into its components.

MA.AyAx

Apply the Equilibrium Equations Summing the moments about point A,

the equilibrium equations are

Solving these equations, we obtain the reactions

and 

Critical Thinking
Why don t the 300 ft-lb couple and the couple exerted by the fixed sup-

port appear in the first two equilibrium equations? Remember that a couple

exerts no net force. Also, because the moment due to a couple is the same

about any point, the moment about A due to the 300 ft-lb counterclockwise

couple is 300 ft-lb counterclockwise.

MA

MA = 73.2 ft-lb.

 Ay = 150 lb,Ax = -86.6 lb,

+ 14 ft21100 sin 30  lb2 = 0.

 Mpoint A = MA + 300 ft-lb - 12ft21200 lb2 - 12 ft21100 cos 30  lb2

 Fy = Ay - 200 lb + 100 sin 30  lb = 0,

 Fx = Ax + 100 cos 30  lb = 0,
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2 m

A

B

3 m

2 m

A

B

AA

B

y

x

(2000)(9.81) N

Bx

By

2 m2 m

3 m

Example 5.3 Choosing the Point About Which to Evaluate Moments (* Related Problem 5.15)

The structure AB supports a suspended 2-Mg (megagram) mass. The structure

is attached to a slider in a vertical slot at A and has a pin support at B. What are

the reactions at A and B?

Strategy
We will draw the free-body diagram of the structure and the suspended mass by

removing the supports at A and B. Notice that the support at A can exert only a

horizontal reaction. Then we can use the equilibrium equations to determine

the reactions at A and B.

Solution

Draw the Free-Body Diagram We isolate the structure and mass from the

supports and show the reactions at the supports and the force exerted by the

weight of the 2000-kg mass (Fig. a). The slot at A can exert only a horizontal

force on the slider.

Apply the Equilibrium Equations Summing moments about point B, we

find that the equilibrium equations are

The reactions are and 

Critical Thinking
Although the point about which moments are evaluated in writing equilibrium

equations can be chosen arbitrarily, a careful choice can often simplify your

solution. In this example, point B lies on the lines of action of the two unknown

reactions and By evaluating moments about B, we obtained an equation

containing only one unknown, the reaction at A.

By.Bx

By = 19.6 kN.A = -13.1 kN, Bx = 13.1 kN,

 Mpoint B = 13 m2A + 12 m2[12000219.812 N] = 0.

 Fy = By - 12000219.812 N = 0,

 Fx = A + Bx = 0,

Example 5.4 Analysis of a Luggage Carrier (* Related Problems 5.65 5.68)

The figure shows an airport luggage carrier and its free-body diagram when it

is held in equilibrium in the tilted position. If the luggage carrier supports a

weight the angle and 

what force F must the user exert?

Strategy
The unknown reactions on the free-body diagram are the force F and the nor-

mal force N exerted by the floor. If we sum moments about the center of the

wheel C, we obtain an equation in which F is the only unknown reaction.

d = 48 in,a = 30 , a = 8 in, b = 16 in,W = 50 lb,

(a) Drawing the free-body diagram.
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Solution
Summing moments about C,

and solving for F, we obtain

Substituting the values of W, a, b, and d yields the solution F = 11.9 lb.a,

F =
1b - a tan a2W

d
.

M
1point C2 = d1F cos a2 + a1W sin a2 - b1W cos a2 = 0,

d

b

a

W

R

A

F

N

h

a

C

Problems

Assume that objects are in equilibrium. In the state-

ments of the answers, x components are positive to the

right and y components are positive upward.

 5.1 In Active Example 5.1, suppose that the beam is

subjected to a counterclockwise couple at the right end

in addition to the 4-kN downward force. Draw a sketch of the

beam showing its new loading. Draw the free-body diagram of

the beam and apply the equilibrium equations to determine the

reactions at A.

5.2 The beam has a fixed support at A and is loaded by two

forces and a couple. Draw the free-body diagram of the beam and

apply equilibrium to determine the reactions at A.

6 kN-m

2 kN4 kN

60*
A

6 kN-m

1.5 m1.5 m1 m

Problem 5.2

5.3 The beam is subjected to a load and is supported

by the rope and the smooth surfaces at A and B.

(a) Draw the free-body diagram of the beam.

(b) What are the magnitudes of the reactions at A and B?

F = 400 N

F

30* 
45*

A B

1.2 m 1.5 m 1 m

Problem 5.3
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3 ft 4 ft 3 ft 4 ft

100 lb 400 lb

B

A

900 ft-lb

Problem 5.10

206 Chapter 5 Objects in Equilibrium

WP

A B

WD

1.2 m

2.4 m

4.6 m

Problem 5.6

5.7 The ironing board has supports at A and B that can be mod-

eled as roller supports.

(a) Draw the free-body diagram of the ironing board.

(b) Determine the reactions at A and B.

5.8 The distance 

(a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the supports.

x = 9 m.

y

x
A

10 lb 3 lb

B

12 in 10 in 20 in

Problem 5.7

60 lb

A B

10 in 14 in

Problem 5.5

5.5 (a) Draw the free-body diagram of the 60-lb drill press,

assuming that the surfaces at A and B are smooth.

(b) Determine the reactions at A and B.

5.4 (a) Draw the free-body diagram of the beam.

(b) Determine the tension in the rope and the reactions at B.

5.6 The masses of the person and the diving board are 54 kg and

36 kg, respectively. Assume that they are in equilibrium.

(a) Draw the free-body diagram of the diving board.

(b) Determine the reactions at the supports A and B.

5 ft 9 ft

30*

30*

BA

600 lb

Problem 5.4

10 kN

B
A

x

6 m

Problem 5.8

* 5.9 In Example 5.2, suppose that the 200-lb downward force

and the counterclockwise couple change places; the

200-lb downward force acts at the right end of the horizontal bar,

and the counterclockwise couple acts on the horizontal

bar 2 ft to the right of the support A. Draw a sketch of the object

showing the new loading. Draw the free-body diagram of the

object and apply the equilibrium equations to determine the

reactions at A.

5.10 (a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the supports.

300 ft-lb

300 ft-lb
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5.12 (a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the pin support A.

5.13 (a) Draw the free-body diagram of the beam.

(b) Determine the reactions at the supports.

30*

A
B2 kN-m

8 kN 8 kN

600

mm

500

mm

600

mm

600

mm

Problem 5.12

20 N

20 N

20 N

C

50 mm

45*

80

mm

25

mm

C

Cy

Cx

B

Problem 5.11

5.14 (a) Draw the free-body diagram of the beam.

(b) If what are the reactions at A and B?F = 4 kN,

A

y

6 m

8 m

12 m

B
x

40 kN

Problem 5.13

* 5.15 In Example 5.3, suppose that the attachment point for the

suspended mass is moved toward point B such that the horizontal

distance from A to the attachment point increases from 2 m to 3 m.

Draw a sketch of the beam AB showing the new geometry. Draw

the free-body diagram of the beam and apply the equilibrium

equations to determine the reactions at A and B.

5.16 A person doing push-ups pauses in the position shown.

His weight W acts at the point shown. The dimensions

and Determine the normal force

exerted by the floor on each of his hands and on each of his feet.

c = 16 in.b = 42 in,a = 15 in,

180-lb

A 2 kN-m

B

F 0.2 m

0.4 m
0.3 m

0.3 m

0.2 m

Problem 5.14

5.11 The person exerts 20-N forces on the pliers. The free-body

diagram of one part of the pliers is shown. Notice that the pin at C

connecting the two parts of the pliers behaves like a pin support.

Determine the reactions at C and the force B exerted on the pliers

by the bolt.

W

a b

c

Problem 5.16
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5.20 The unstretched length of the spring CD is 350 mm. Sup-

pose that you want the lever ABC to exert a 120-N normal force

on the smooth surface at A. Determine the necessary value of the

spring constant k and the resulting reactions at B.

20*

B

A

C

k

D
450

mm

180

mm

300

mm

330

mm

230

mm

Problem 5.20

A

30 in
800 lb

B
C

30 in
30 in

30*

Problem 5.19

5.22 The car s wheelbase (the distance between the wheels) is

2.82 m. The mass of the car is 1760 kg and its weight acts at the

point If the angle what is the

total normal force exerted on the two rear tires by the sloped ramp?

a = 15 ,x = 2.00 m, y = 0.68 m.

y

x

a

Problem 5.22

5.21 The mobile is in equilibrium. The fish B weighs 27 oz.

Determine the weights of the fish A, C, and D. (The weights of the

crossbars are negligible.)

12 in 3 in

2 in6 in

2 in7 in

A

C
D

B

Problem 5.21

C

D

BA

100 lb

E

400 lb

200 ft-lb

2 ft

1 ft

1 ft

2 ft 2 ft 2 ft

Problem 5.18

5.18 Draw the free-body diagram of the structure by isolating it

from its supports at A and E. Determine the reactions at A and E.

5.19 (a) Draw the free-body diagram of the beam.

(b) Determine the tension in the cable and the reactions at A.

5.17 The hydraulic piston AB exerts a 400-lb force on the ladder

at B in the direction parallel to the piston. Determine the weight of

the ladder and the reactions at C.

A B

C

3 ft

6 ft 3 ft

6 ft

W

Problem 5.17
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5.23 The link AB exerts a force on the bucket of the excavator at

A that is parallel to the link. The weight . Draw the

free-body diagram of the bucket and determine the reactions at C.

(The connection at C is equivalent to a pin support of the bucket.)

W = 1500 lb

8 in

14 in

8 in

W

C

A
16 in

4 in

B

Problem 5.23

y

x

R

By

Bx

1.5 in

13 in
   

7 in

14.5 lb

60*

6 in

A

10 lb

5 lb

2 in

Problem 5.24

5.24 The 14.5-lb chain saw is subjected to the loads at A by the

log it cuts. Determine the reactions R, and that must be

applied by the person using the saw to hold it in equilibrium.

ByBx,

5.25 The mass of the trailer is 2.2 Mg (megagrams). The distances

and The truck is stationary, and the wheels

of the trailer can turn freely, which means the road exerts no hori-

zontal force on them. The hitch at B can be modeled as a pin support.

(a) Draw the free-body diagram of the trailer.

(b) Determine the total normal force exerted on the rear tires at A

and the reactions exerted on the trailer at the pin support B.

b = 5.5 m.a = 2.5 m

a b

W

A

B

Problem 5.25

5.26 The total weight of the wheelbarrow and its load is

. (a) What is the magnitude of the upward forceF neces-

sary to lift the support atA off the ground? (b) What is the magnitude

of the downward force necessary to raise the wheel off the ground?

W = 100 lb

14 in

B

W

40 in

12 in

A

F

Problem 5.26

4 ft

T

5 ft

W

A

2 ft

B

Problem 5.27

5.27 The airplane s weight is Its brakes keep the

rear wheels locked. The front (nose) wheel can turn freely, and so

the ground exerts no horizontal force on it. The force T exerted by

the airplane s propeller is horizontal.

(a) Draw the free-body diagram of the airplane. Determine the

reaction exerted on the nose wheel and the total normal reaction

exerted on the rear wheels

(b) when 

(c) when T = 250 lb.

T = 0;

W = 2400 lb.
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mg

B

22*

C160

mm

580

mm

415

mm

790

mm

a

Problem 5.29

5.28 A safety engineer establishing limits on the loads that can be carried by a forklift analyzes the situation shown. The dimensions

are and . The combined weight of the forklift and operator is . As the weight 

supported by the forklift increases, the normal force exerted on the floor by the rear wheels at B decreases. The forklift is on the verge

of tipping forward when the normal force at B is zero. Determine the value of that will cause this condition.WL

WLWF = 1200 lbc = 26 inb = 30 in,a = 32 in,

a b c

WF

BA

WL

Problem 5.28

5.29 Paleontologists speculate that the stegosaur could stand on its hind limbs for short periods to feed. Based on the free-body

diagram shown and assuming that determine the magnitudes of the forces B and C exerted by the ligament muscle

brace and vertebral column, and determine the angle a.

m = 2000 kg,
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b

T

Problem 5.32

5.30 The weight of the fan is . Its base has four

equally spaced legs of length . Each leg has a pad near

the end that contacts the floor and supports the fan. The height

. If the fan s blade exerts a thrust what total

normal force is exerted on the two legs at A?

5.31 The weight of the fan is . Its base has four

equally spaced legs of length . Each leg has a pad near

the end that contacts the floor and supports the fan. The height

. As the thrust T of the fan increases, the normal force

supported by the two legs at A decreases. When the normal force

at A is zero, the fan is on the verge of tipping over. Determine

the value of T that will cause this condition.

h = 32 in

b = 12 in

W = 20 lb

T = 2 lb,h = 32 in

b = 12 in

W = 20 lb

h

b

T

W

Side View

A B

Top View

T

Problems 5.30/5.31

5.32 In a measure to decrease costs, the manufacturer of the fan

described in Problem 5.31 proposes to support the fan with three

equally spaced legs instead of four. An engineer is assigned to

analyze the safety implications of the change. The weight of

the fan decreases to . The dimensions b and h are

unchanged. What thrust T will cause the fan to be on the verge

of tipping over in this case? Compare your answer to the answer

to Problem 5.31.

W = 19.6 lb

5.33 A force acts on the bracket. What are the

reactions at A and B?

F = 400 N

B

320 mm

F

A

80 mm

Problem 5.33

Ws

B

A

C

D

E

33 in

30 in11 in 11 in

20*

30*

Problem 5.34

5.34 The sign s weight acts at the point shown. The

10-lb weight of bar AD acts at the midpoint of the bar. Determine

the tension in the cable AE and the reactions at D.

Ws = 32 lb
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6 ft

3 ft
200 lb

5 ft

200 lb

300 lb 800 ft-lb

A

Problem 5.38

5.38 Determine the reactions at A.

W

25*

b

a

Problem 5.35

5.35 The device shown, called a swape or shadoof, helps a per-

son lift a heavy load. (Devices of this kind were used in Egypt at

least as early as 1550 B.C. and are still in use in various parts of

the world.) The dimensions and The mass

of the bar and counterweight is 90 kg, and their weight W acts at

the point shown. The mass of the load being lifted is 45 kg. Deter-

mine the vertical force the person must exert to support the sta-

tionary load (a) when the load is just above the ground (the

position shown); (b) when the load is 1 m above the ground. 

Assume that the rope remains vertical.

b = 1.2 m.a = 3.6 m

b b b b

4 kN 2 kN

A

45

B

b

30

Problem 5.36

5.36 This structure, called a truss, has a pin support at A and a

roller support at B and is loaded by two forces. Determine the

reactions at the supports.

Strategy: Draw a free-body diagram treating the entire truss

as a single object.

144 lb
8 lb

a b c

S

Problem 5.37

5.37 An Olympic gymnast is stationary in the iron cross

position. The weight of his left arm and the weight of his body not

including his arms are shown. The distances are 

and Treat his shoulder S as a fixed support, and

determine the magnitudes of the reactions at his shoulder. That is,

determine the force and couple his shoulder must support.

c = 13 in.

a = b = 9 in

BEDFMC05_0136129153.QXD  4/14/07  1:15 AM  Page 212



Problems 213

L

k

*

Problems 5.40/5.41

3300 lb

36 in

70 in

y

20 in x

a

Problem 5.39

5.39 The car s brakes keep the rear wheels locked, and the front

wheels are free to turn. Determine the forces exerted on the front

and rear wheels by the road when the car is parked (a) on an

upslope with (b) on a downslope with a = -15 .a = 15 ;

5.40 The length of the bar is . Its weight acts

at the midpoint of the bar. The floor and wall are smooth. The

spring is unstretched when the angle If the bar is in

equilibrium when what is the spring constant k?

5.41 The weight W of the bar acts at its midpoint. The floor and

wall are smooth. The spring is unstretched when the angle 

Determine the angle at which the bar is in equilibrium in terms

of W, k, and L.

a

a = 0.

a = 40 ,

a = 0.

W = 6 lbL = 4 ft

B

2 kN-m

2 m

6 kN-m

60*

A

Problem 5.42

5.42 The plate is supported by a pin in a smooth slot at B. What

are the reactions at the supports?

5.43 Determine the reactions at the fixed support A.

5.44 Suppose that you want to represent the two forces and

couple acting on the beam in Problem 5.43 by an equivalent

force F as shown. (a) Determine F and the distance D at which

its line of action crosses the x axis. (b) Assume that F is the

only load acting on the beam and determine the reactions at the

fixed support A. Compare your answers to the answers to

Problem 5.43.

30 lb 40 lb

150 ft-lb

3 ft

A

y

x

3 ft 6 ft

45*

Problem 5.43

F

y

x

D

A

Problem 5.44

5.45 The bicycle brake on the right is pinned to the bicycle s

frame at A. Determine the force exerted by the brake pad on the

wheel rim at B in terms of the cable tension T.

T

40 mm

45 mm

40 mm

Brake pad

Wheel rim

35+

A

B

Problem 5.45
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5.46 The mass of each of the suspended weights is 80 kg. Deter-

mine the reactions at the supports at A and E.

5.47 The suspended weights are each of mass m. The supports

at A and E will each safely support a force of 6 kN magnitude.

Based on this criterion, what is the largest safe value of m?

A B C

D

E

200 mm 200 mm

300 mm

Problems 5.46/5.47

5.48 The tension in cable BC is 100 lb. Determine the reactions

at the fixed support.

3 ft 3 ft
6 ft

6 ft

B

C

A

200 lb
300 ft-lb

Problem 5.48

2 m 1 m

C

(a)

60*

2 m 1 m

A B C

(b)

60*A B

Problem 5.49

5.49 The tension in cable AB is 2 kN. What are the reactions at C

in the two cases?

6 in 5 in

3 in

3 in

50 lb

100 in-lb

A

B

30*

Problem 5.50

5.51 The weight Determine the tension in the cable

and the reactions at A.

5.52 The cable will safely support a tension of 6 kN. Based on

this criterion, what is the largest safe value of the weight W?

W = 2 kN.

5.53 The blocks being compressed by the clamp exert a 200-N

force on the pin at D that points from A toward D. The threaded

shaft BE exerts a force on the pin at E that points from B toward E.

(a) Draw a free-body diagram of the arm DCE of the clamp, as-

suming that the pin at C behaves like a pin support.

(b) Determine the reactions at C.

5.54 The blocks being compressed by the clamp exert a 200-N

force on the pin at A that points from D toward A. The threaded

shaft BE exerts a force on the pin at B that points from E toward B.

(a) Draw a free-body diagram of the arm ABC of the clamp, as-

suming that the pin at C behaves like a pin support.

(b) Determine the reactions at C.

5.50 Determine the reactions at the supports.

50 mm

50 mm

50 mm

125 mm

A

D

C

B E

125 mm 125 mm

Problems 5.53/5.54

0.6 m 0.6 m

A

W

30*

Problems 5.51/5.52
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250 mm150 mm

A

150 mm

k

p

Problem 5.55

5.55 Suppose that you want to design the safety valve to open

when the difference between the pressure p in the circular pipe

and atmospheric pressure is 10 MPa

(megapascals; a pascal is ). The spring is compressed

20 mm when the valve is closed. What should the value of the

spring constant be?

1 N/m2

1diameter = 150 mm2

1 ft

30*

B

C

A

3 ft

Problem 5.56

5.56 The 10-lb weight of the bar AB acts at the midpoint of the

bar. The length of the bar is 3 ft. Determine the tension in the

string BC and the reactions at A.

5.57 The crane s arm has a pin support at A. The hydraulic cylin-

der BC exerts a force on the arm at C in the direction parallel to

BC. The crane s arm has a mass of 200 kg, and its weight can be

assumed to act at a point 2 m to the right of A. If the mass of the

suspended box is 800 kg and the system is in equilibrium, what is

the magnitude of the force exerted by the hydraulic cylinder?

5.58 In Problem 5.57, what is the magnitude of the force exerted

on the crane s arm by the pin support at A?

1.8 m 1.2 m

7 m

B

C

2.4 m

1 m

A

Problems 5.57/5.58

5.59 Aspeaker system is suspended by the cables attached atD and

E. The mass of the speaker system is 130 kg, and its weight acts atG.

Determine the tensions in the cables and the reactions atA andC.

0.5 m 0.5 m 0.5 m 0.5 m
1 m

G

A

B D

1 m

EC

Problem 5.59
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b

W
A

k

a

Problem 5.62

a

A

k

M

b

F

h

Problem 5.61

5.61 The dimensions and The couple

The spring constant is and the

spring would be unstretched if The system is in equili-

brium when and the beam is horizontal. Determine

the force F and the reactions at A.

h = 2 m

h = 0.

k = 6000 N/m,M = 2400 N-m.

b = 1 m.a = 2 m

5.62 The bar is 1 m long, and its weight W acts at its midpoint.

The distance and the angle The spring con-

stant is and the spring is unstretched when the bar

is vertical. Determine W and the reactions at A.

k = 100 N/m,

a = 30 .b = 0.75 m,

a b

C DA

E

B

u

Problem 5.63

2.5 in

120 in
(Not to scale)

2.5 in2 in

EB

F C

2.5 in

6 in

3.5 in

DA

1.5 in

120 in-lb

Elevator

G

Problem 5.64

5.63 The boom derrick supports a suspended 15-kip load. The

booms BC and DE are each 20 ft long. The distances are

and and the angle Determine the

tension in cable AB and the reactions at the pin supports C and D.

u = 30 .b = 2 ft,a = 15 ft

5.64 The arrangement shown controls the elevators of an air-

plane. (The elevators are the horizontal control surfaces in the

airplane s tail.) The elevators are attached to member EDG.

Aerodynamic pressures on the elevators exert a clockwise

couple of 120 in-lb. Cable BG is slack, and its tension can be

neglected. Determine the force F and the reactions at the pin

support A.

* 5.65 In Example 5.4, suppose that 

and the mass of the

luggage is 40 kg. Determine F and N.

* 5.66 In Example 5.4, suppose that 

and you don t want the user to

have to exert a force F larger than 20 lb. What is the largest luggage

weight that can be placed on the carrier?

R = 3 in,b = 14 in,a = 10 in,

a = 35 , d = 46 in,

R = 75 mm,b = 500 mm,a = 200 mm,

a = 40 , d = 1 m,

5.60 The weight Neglect the weight of the bar

AB. The cable goes over a pulley at C. Determine the weight 

and the reactions at the pin support A.

W2

W1 = 1000 lb.

B

AW1

W2

C

35*50*

Problem 5.60
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* 5.67 One of the difficulties in making design decisions is

that you don t know how the user will place the luggage on the

carrier in Example 5.4. Suppose you assume that the point

where the weight acts may be anywhere within the envelope

and If

and what is the largest force F

the user will have to exert for any luggage placement?

W = 80 lb,d = 48 in, R = 3 in,

a = 30 , c = 14 in,0 b 0.75d.R a 0.75c

* 5.68 In Example 5.4, assume a user that would hold the carrier s

handle at above the floor. Assume that

and The resulting ratio of the force

the user must exert to the weight of the luggage is

Suppose that people with a range of heights use this carrier. Obtain a

graph of as a function of h for .24 h 36 inF>W

F>W = 0.132.

d = 4 ft.b = 12 in,a = 6 in,

R = 3 in, h = 36 in

5.2 Statically Indeterminate Objects

BACKGROUND

In Section 5.1 we discussed examples in which we were able to use the equi-

librium equations to determine unknown forces and couples acting on objects

in equilibrium. It is important to be aware of two common situations in which

this procedure doesn t lead to a solution. First, the free-body diagram of an

object can have more unknown forces or couples than the number of inde-

pendent equilibrium equations that can be obtained. For example, because no

more than three independent equilibrium equations can be obtained from a given

free-body diagram in a two-dimensional problem, if there are more than three

unknowns they can t all be determined from the equilibrium equations alone.

This occurs, for example, when an object has more supports than the minimum

number necessary to maintain it in equilibrium. Such an object is said to have

redundant supports. The second situation is when the supports of an object are

improperly designed such that they cannot maintain equilibrium under the loads

acting on it. The object is said to have improper supports. In either situation, the

object is said to be statically indeterminate.

Engineers use redundant supports whenever possible for strength and safety.

Some designs, however, require that the object be incompletely supported so that

it is free to undergo certain motions. These two situations more supports than

necessary for equilibrium or not enough are so common that we consider them

in detail.

Redundant Supports

Consider a beam with a fixed support (Fig. 5.9a). From its free-body diagram

(Fig. 5.9b), we obtain the equilibrium equations

Assuming we know the load F, we have three equations and three unknown re-

actions, for which we obtain the solutions and MA = FL>2.Ax = 0, Ay = F,

 Mpoint A = MA - a
L

2
bF = 0.

 Fy = Ay - F = 0,

 Fx = A x = 0,

F

y

A
MA

Ax

x

Ay

(b)

F

A

(a)

L

2

L

2

L

2

L

2

Figure 5.9
(a) A beam with a fixed support.

(b) The free-body diagram has three

unknown reactions.
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218 Chapter 5 Objects in Equilibrium

Now suppose we add a roller support at the right end of the beam (Fig. 5.10a).

From the new free-body diagram (Fig. 5.10b), we obtain the equilibrium equations

(5.6)

(5.7)

(5.8)

Now we have three equations and four unknown reactions. Although the first

equation tells us that we can t solve the two equations (5.7) and (5.8)

for the three reactions B, and 

When faced with this situation, students often attempt to sum the moments

about another point, such as point B, to obtain an additional equation:

Unfortunately, this doesn t help. This is not an independent equation, but is a

linear combination of Eqs. (5.7) and (5.8):

As this example demonstrates, each support added to an object results in

additional reactions. The difference between the number of reactions and the

number of independent equilibrium equations is called the degree of redun-

dancy. Even if an object is statically indeterminate due to redundant supports,

it may be possible to determine some of the reactions from the equilibrium

equations. Notice that in our previous example we were able to determine the

reaction even though we could not determine the other reactions.

Since redundant supports are so ubiquitous, you may wonder why we de-

vote so much effort to teaching you how to analyze objects whose reactions can

be determined with the equilibrium equations. We want to develop your un-

derstanding of equilibrium and give you practice writing equilibrium equations.

The reactions on an object with redundant supports can be determined by sup-

plementing the equilibrium equations with additional equations that relate the

forces and couples acting on the object to its deformation, or change in shape.

Thus obtaining the equilibrium equations is the first step of the solution.

Ax

= MA - a
L

2
bF + L B - L1A y - F + B2.

(''')'''* (''')'''*

Eq. 15.82 Eq. 15.72

Mpoint B = MA + a
L

2
bF - L  A y

Mpoint B = MA + a
L

2
bF - L  A y = 0.

MA.Ay,

Ax = 0,

 Mpoint A = MA - a
L

2
bF + LB = 0.

 Fy = Ay - F + B = 0,

 Fx = Ax = 0,

F

A B

(a)

F

y

Ax

MA

Ay

x

BA

B

(b)

L

2

L

2

L

2

L

2

Figure 5.10

(a) A beam with fixed and roller supports.

(b) The free-body diagram has four

unknown reactions.

BEDFMC05_0136129153.QXD  4/14/07  1:15 AM  Page 218



5.2 Statically Indeterminate Objects 219

F

A

(a)

B

F

A

A

(b)

B

B

Figure 5.11

(a) A beam with two roller supports

is not in equilibrium 

when subjected to the load

shown.

(b) The sum of the forces in the hori-

zontal direction is not zero.

Figure 5.12

(a) A beam with roller supports on sloped

surfaces.

(b) The sum of the moments about point P

is not zero.

BA

F

45* 45*
45* 45*

(a) (b)

BA

F

A B

P

Lines of action

of the reactions

intersect.

Improper Supports

We say that an object has improper supports if it will not remain in equilibrium

under the action of the loads exerted on it. Thus an object with improper sup-

ports will move when the loads are applied. In two-dimensional problems, this

can occur in two ways:

1. The supports can exert only parallel forces. This leaves the object free to

move in the direction perpendicular to the support forces. If the loads exert

a component of force in that direction, the object is not in equilibrium.

Figure 5.11a shows an example of this situation. The two roller supports can

exert only vertical forces, while the force F has a horizontal component. The

beam will move horizontally when F is applied. This is particularly ap-

parent from the free-body diagram (Fig. 5.11b). The sum of the forces in

the horizontal direction cannot be zero because the roller supports can exert

only vertical reactions.

2. The supports can exert only concurrent forces. If the loads exert a moment

about the point where the lines of action of the support forces intersect, the

object is not in equilibrium. For example, consider the beam in Fig. 5.12a.

From its free-body diagram (Fig. 5.12b) we see that the reactions A and B

exert no moment about the point P, where their lines of action intersect, but

the load F does. The sum of the moments about point P is not zero, and the

beam will rotate when the load is applied.

Except for problems that deal explicitly with improper supports, objects in

our examples and problems have proper supports. You should develop the habit

of examining objects in equilibrium and thinking about why they are properly

supported for the loads acting on them.

RESULTS

A supported object is said to be statically indeterminate in two circumstances:

Redundant Supports

The object has more supports than the minimum number necessary to

maintain equilibrium. The difference between the number of reactions

due to the supports and the number of independent equilibrium equations

is called the degree of redundancy.

Improper Supports

The supports cannot maintain the object in equilibrium under the loads

acting on it.
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220 Chapter 5 Objects in Equilibrium

Active Example 5.5 Recognizing a Statically Indeterminate Object (* Related Problem 5.69)

The beam has two pin supports and is loaded by a 2-kN force.

(a) Show that the beam is statically indeterminate and determine the degree of

redundancy.

(b) Determine as many reactions as possible.

Draw the free-body diagram of

the beam. There are four unknown

reactions.

2 kN

A

y

Ax

Ay

x

By

Bx

B

There are three independent equilibrium equations, so the beam is

statically indeterminate and the degree of redundancy is 4  3  1.

We cannot determine Ax or Bx from the equilibrium equations, but we

can determine Ay and By.

Write the equilibrium equations.

Fx  Ax  Bx  0,

Fy  Ay  By  2 kN  0,

Mpoint A  (5 m)By  (3 m)(2 kN)  0.

Determine the reactions Ay and By.
By  1.2 kN,

Ay  2 kN  By  0.8 kN.

(3 m)(2 kN)

(5 m)

3 m
2 m

2 kN

A B

Strategy
The beam is statically indeterminate if its free-body diagram has more unknown

reactions than the number of independent equilibrium equations we can obtain.

The difference between the number of reactions and the number of equilibri-

um equations is the degree of redundancy. Even if the beam is statically inde-

terminate, it may be possible to solve the equilibrium equation for some of the

reactions.

Solution

Practice Problem Suppose that the pin support at point A of the beam is replaced

by a fixed support. (a) Show that the beam is statically indeterminate and determine

the degree of redundancy. (b) Determine as many reactions as possible.

Answer: (a) Degree of redundancy is 2. (b) No reactions can be determined.
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Example 5.6 Proper and Improper Supports (* Related Problems 5.75, 5.76)

State whether each L-shaped bar is properly or improperly supported. If a bar

is properly supported, determine the reactions at its supports.

Strategy
By drawing the free-body diagram of each bar, we can determine whether the

reactions of the supports can exert only parallel or concurrent forces on it. If so,

we can then recognize whether the applied load results in the bar not being in

equilibrium.

(a)

F

L

L

A

B

(b)

F

L

A

B

L

(c)

F

L

L

A

B

Solution
Consider the free-body diagrams of the bars (shown below): 

Bar (a) The lines of action of the reactions due to the two roller supports

intersect at P, and the load F exerts a moment about P. This bar is improperly

supported.

Bar (b) The lines of action of the reactions intersect at A, and the load F exerts

a moment about A. This bar is also improperly supported.

Bar (c) The three support forces are neither parallel nor concurrent. This bar

is properly supported. The equilibrium equations are

Solving these equations, the reactions are and B = F.Ax = F, Ay = F,

 Mpoint A = BL - FL = 0.

 Fy = Ay - F = 0,

 Fx = Ax - B = 0,

(a)

F

A

B

(c)

B

A

(b)

B

Ay

Ax

y

A B
x

F

F

B

B

Ay

Ax

y

A
x

Lines of

action of

the reactions

intersect.
Lines of

action of

the reactions

intersect.

P

Critical Thinking
An essential part of learning mechanics is developing your intuition about the

behaviors of the physical systems we study. In this example, think about the

effects of the loads on the three systems, and see if you can predict whether they

are properly supported. Will the loads cause the bars to move or not? Then see

if your judgment is confirmed by the analyses given in the example.
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A B

L

M0

Problems 5.71/5.72

700 mm

100 N-m
A

B

300 mm

80 N

300 mm

L

L

BA

F

L

BA

F

C

(1) (2)

B

A

F

C

45*

45*

(3)

L

45*

 L
1

2

 L
1

2

 L
1

2

 L
1

2

Problem 5.75

(1) (2)

B

B

A

F

C

(3)

L

L

A

 L
1

2

 L
1

2

L

B

A

F F

C

45*

 L
1

2

 L
1

2

 L
1

2

 L
1

2

Problem 5.76

Problems

5.69 (a) Draw the free-body diagram of the beam and show

that it is statically indeterminate. (See Active Example 5.5.)

(b) Determine as many of the reactions as possible.

5.70 Choose supports at A and B so that the beam is not statically

indeterminate. Determine the reactions at the supports.

5.71 (a) Draw the free-body diagram of the beam and show that

it is statically indeterminate. (The external couple is known.)

(b) By an analysis of the beam s deflection, it is determined that

the vertical reaction B exerted by the roller support is related to

the couple by What are the reactions at A?

5.72 Choose supports at A and B so that the beam is not

statically indeterminate. Determine the reactions at the supports.

B = 2M0>L.M0

M0

5.73 Draw the free-body diagram of the L-shaped pipe assembly

and show that it is statically indeterminate. Determine as many

of the reactions as possible.

Strategy: Place the coordinate system so that the x axis

passes through points A and B.

5.74 Choose supports at A and B so that the pipe assembly is

not statically indeterminate. Determine the reactions at the

supports.

800 mm 300 mm

BA
20 N-m

Problems 5.69/5.70

 5.76 State whether each of the L-shaped bars shown is

properly or improperly supported. If a bar is properly supported,

determine the reactions at its supports. (See Active Example 5.6.)

5.75 State whether each of the L-shaped bars shown is

properly or improperly supported. If a bar is properly supported,

determine the reactions at its supports. (See Active Example 5.6.)

Problems 5.73/5.74
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5.3 Three-Dimensional Applications

BACKGROUND

We have seen that when an object in equilibrium is subjected to a two-

dimensional system of forces and moments, no more than three independent

equilibrium equations can be obtained. In the case of a three-dimensional system

of forces and moments, up to six independent equilibrium equations can be

obtained. The three components of the sum of the forces must equal zero and

the three components of the sum of the moments about a point must equal zero.

The procedure for determining the reactions on an object subjected to a three-

dimensional system of forces and moments drawing a free-body diagram and

applying the equilibrium equations is the same as in two dimensions.

The Scalar Equilibrium Equations

When an object is in equilibrium, the system of forces and couples acting on

it satisfy Eqs. (5.1) and (5.2). The sum of the forces is zero and the sum of

the moments about any point is zero. Expressing these equations in terms of

cartesian components in three dimensions yields the six scalar equilibrium

equations.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

The sums of the moments can be evaluated about any point. Although more

equations can be obtained by summing moments about other points, they will

not be independent of these equations. More than six independent equilibrium

equations cannot be obtained from a given free-body diagram, so at most six un-

known forces or couples can be determined.

The steps required to determine reactions in three dimensions are familiar

from the two-dimensional applications we have discussed. First obtain a free-

body diagram by isolating an object and showing the loads and reactions act-

ing on it, then use Eqs. (5.9) (5.14) to determine the reactions.

Supports

We present five conventions frequently used in three-dimensional problems.  Even

when actual supports do not physically resemble these models, we represent them

by the models if they exert the same (or approximately the same) reactions.

The Ball and Socket Support In the ball and socket support, the supported

object is attached to a ball enclosed within a spherical socket (Fig. 5.13a). The

socket permits the ball to rotate freely (friction is neglected) but prevents it

from translating in any direction.

Imagine holding a bar attached to a ball and socket support (Fig. 5.13b). If

you try to translate the bar (move it without rotating it) in any direction, the

support exerts a reactive force to prevent the motion. However, you can rotate

 Mz = 0.

 My = 0,

 Mx = 0,

 Fz = 0,

 Fy = 0,

 Fx = 0,
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(b)(a)

z
x

y

AxAz

Ay

(c)

Figure 5.13

(a) A ball and socket support.

(b) Holding a supported bar.

(c) The ball and socket support can exert three components of force.

Pelvis
Femur

Ball

Socket

Figure 5.14

The human femur is attached to the pelvis

by a ball and socket support.

224 Chapter 5 Objects in Equilibrium

the bar about the support. The support cannot exert a couple to prevent rotation.

Thus a ball and socket support can t exert a couple but can exert three compo-

nents of force (Fig. 5.13c). It is the three-dimensional analog of the two-

dimensional pin support.

The human hip joint is an example of a ball and socket support (Fig. 5.14).

The support of the gear shift lever of a car can be modeled as a ball and socket

support within the lever s range of motion.

The Roller Support The roller support (Fig. 5.15a) is a ball and socket

support that can roll freely on a supporting surface. A roller support can exert

only a force normal to the supporting surface (Fig. 5.15b). The rolling casters

sometimes used to support furniture legs are supports of this type.

The Hinge The hinge support is the familiar device used to support doors.

It permits the supported object to rotate freely about a line, the hinge axis. An

object is attached to a hinge in Fig. 5.16a. The z axis of the coordinate system

is aligned with the hinge axis.

If you imagine holding a bar attached to a hinge (Fig. 5.16b), notice that

you can rotate the bar about the hinge axis. The hinge cannot exert a couple

about the hinge axis (the z axis) to prevent rotation. However, you can t rotate

the bar about the x or y axis because the hinge can exert couples about those

x

y

A

(a) (b)

z

Figure 5.15

(a) A roller support.

(b) The reaction is normal to the supporting surface.
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z

x

y

z

x

y

A
Supported
object

(b)(a)

Hinge
A

(d)

Ay

Ax

Az
z

x

y

(c)

Ay

MAy

MAx

Ax

Az

z

x

y

(e)

Ay

Ax

z

x

y

Figure 5.16

(a) A hinge. The z axis is aligned with the hinge axis.

(b) Holding a supported bar.

(c) In general, a hinge can exert five reactions: three force

components and two couple components.

(d) The reactions when the hinge exerts no couples.

(e) The reactions when the hinge exerts neither couples nor

a force parallel to the hinge axis.

axes to resist the motion. In addition, you can t translate the bar in any direc-

tion. The reactions a hinge can exert on an object are shown in Fig. 5.16c.

There are three components of force, and and couples about the x

and y axes, and 

In some situations, either a hinge exerts no couples on the object it supports,

or they are sufficiently small to neglect. An example of the latter case is when

the axes of the hinges supporting a door are properly aligned (the axes of the in-

dividual hinges coincide). In these situations the hinge exerts only forces on an

object (Fig. 5.16d). Situations also arise in which a hinge exerts no couples on

an object and exerts no force in the direction of the hinge axis. (The hinge may

actually be designed so that it cannot support a force parallel to the hinge axis.)

Then the hinge exerts forces only in the directions perpendicular to the hinge

axis (Fig. 5.16e). In examples and problems, we indicate when a hinge does

not exert all five of the reactions in Fig. 5.16c.

The Bearing The type of bearing shown in Fig. 5.17a supports a circular

shaft while permitting it to rotate about its axis. The reactions are identical to

those exerted by a hinge. In the most general case (Fig. 5.17b), the bearing can

exert a force on the supported shaft in each coordinate direction and can exert

couples about axes perpendicular to the shaft but cannot exert a couple about

the axis of the shaft.

As in the case of the hinge, situations can occur in which the bearing ex-

erts no couples (Fig. 5.17c) or exerts no couples and no force parallel to the

shaft axis (Fig. 5.17d). Some bearings are designed in this way for specific

MAy.MAx

Az,Ax, Ay,
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(a)

x

z

y

Bearing

Shaft

(d)

x

y

z

Ax

Ay

x

y

Az

z

(b)

Ay

MAy

MAx

Ax

(c)

x

y

Az
z

Ax

Ay

Figure 5.17

(a) A bearing. The z axis is aligned with the axis of the shaft.

(b) In general, a bearing can exert five reactions: three force components

and two couple components.

(c) The reactions when the bearing exerts no couples.

(d) The reactions when the bearing exerts neither couples nor a force

parallel to the axis of the shaft.
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(a)

y

x

z

Supported

object

(b)

y

x

z

y

MAy

Ay

x
MAx

z

(c)

Ax

Az

MAz

Figure 5.18

(a) A fixed support.

(b) Holding a supported bar.

(c) A fixed support can exert six reactions: three force components and three couple components.

applications. In examples and problems, we indicate when a bearing does not

exert all of the reactions in Fig. 5.17b.

The Fixed Support You are already familiar with the fixed, or built-in,

support (Fig. 5.18a). Imagine holding a bar with a fixed support (Fig. 5.18b).

You cannot translate it in any direction, and you cannot rotate it about any axis.
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5.3 Three-Dimensional Applications 227

The support is capable of exerting forces and in each coordinate di-

rection and couples and about each coordinate axis (Fig. 5.18c).

Table 5.2 summarizes the support conventions commonly used in three-

dimensional applications.

MAzMAx, MAy,

AzAx, Ay,

Supports Reactions

Rope or Cable

Contact with a Smooth Surface

x

y

z

A Collinear Force

T

A Normal Force

x

y

A

z

Contact with a Rough Surface

Ball and Socket Support

x

y

z

x

y

Three Force Components

Three Force Components

Roller Support A Normal Force

x

y

Ay

Ax
Az

z

x

y

Ay

Ax
Az

zz

x

y

x

y

A

zz

Table 5.2 Supports used in three-dimensional applications.
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Ax

x

Supports Reactions

Fixed (Built-in) Support Three Force Components,
Three Couple Components

(When no couples and
no axial force are exerted)

Bearing
(The z axis is parallel to the
axis of the supported shaft.)

Hinge
(The z axis is parallel

to the hinge axis.)

x

y

Ay

Ax

z

(When no couples are exerted)

x

y

Ay

Ax
Az

z

x

y

z

Three Force Components,
Two Couple Components

Ay

MAx

MAz

MAy

Az

x

y

z

y

z

Ax

x

Ay

y

Az

z

x

y

z

MAx

MAy

228 Chapter 5 Objects in Equilibrium

Table 5.2 continued
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5.3 Three-Dimensional Applications 229

RESULTS

Equilibrium Equations

If an object is in equilibrium, the sum of the external forces acting on it equals

zero,

*Mx + 0,       (5.12)

*Many point + 0 *My + 0,       (5.13)

*Mz + 0.       (5.14)

Three Force Components

x

y

Ay

Ax
Az

z

Ball and Socket Support

x

y

z

A Normal Force

x

y

A

z

Roller Support

x

y

z

Ax

x

Fixed (Built-in) Support Three Force Components,
Three Couple Components

Ay

MAx

MAz

MAy

Az

x

y

z

y

z

Examples of supports used in

three-dimensional applications.

(See Table 5.2.)

*Fx + 0,         (5.9)

*F + 0 *Fy + 0,       (5.10)

*Fz + 0,       (5.11)

and the sum of the moments about any point due to the forces and couples acting

on it is zero,

Supports
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Active Example 5.7 Determining Reactions in Three Dimensions (* Related Problem 5.86)

The bar AB is supported by the cables BC and BD and a ball and socket

support at A. Cable BC is parallel to the z axis and cable BD is parallel to the

x axis. The 200-N force acts at the midpoint of the bar. Determine the tensions

in the cables and the reactions at A.

x

z

TBC

B

,200j (N)

A

y

Ay

Ax
Az

TBD

Forces exerted
by the cables

Reactions due to the
ball and socket support

Isolate the bar and show the reactions

exerted by the cables and the ball and

socket support.

The sums of the forces in each

coordinate direction equal zero.

*Fx + Ax , TBD + 0,

*Fy + Ay , 200 N + 0,

*Fz + Az , TBC + 0.

x

y

z

1000 mm

600 mm

C
B

,200j (N)

400 
mm

600 
mm

D

A

Strategy
We must obtain the free-body diagram of the bar by isolating it and showing the

reactions exerted by the cables and the ball and socket support. Then we can

apply the equilibrium equations to determine the reactions.

Solution

Draw the Free-Body Diagram of the Bar

Apply the Equilibrium Equations

230 Chapter 5 Objects in Equilibrium
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5.3 Three-Dimensional Applications 231

A

200j (N)

B

(1000, 600, 400) mm

y

z

x

The sum of the

moments about

any point equals

zero.

The components of this vector (the sums of the moments

about the three coordinate axes) must each equal zero.

Solving the six scalar equilibrium equations yields

Ax  166.7 N,  Ay  200 N,  Az  66.7 N,  TBC  66.7 N,

and TBD  166.7 N.

Mx  (0.6 m)TBC  40 N-m  0,

i       j       k

1     0.6    0.4

0      0   TBC

    i       j       k

    1     0.6    0.4

TBD   0       0

    i        j       k

  0.5    0.3    0.2

   0   200    0

 ( 0.6TBC  40)i  (TBC  0.4TBD)j  (0.6TBD  100)k.

My  (1 m)TBC  (0.4 m)TBD  0,

Mz  (0.6 m)TBD  100 N-m  0.

               rAB  ( 200j)
1

2
Mpoint A  [rAB  ( TBCk)]  [rAB  ( TBDi)] 

Practice Problem Suppose that the cables BC and BD are removed and

the ball and socket joint at A is replaced by a fixed support. Determine the reactions

at A.

Answer: Ax 0, Ay 200 N, Az 0, MAx 40 N-m, MAy 0, MAz 100 N-m.
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232 Chapter 5 Objects in Equilibrium

Example 5.8 Reactions at a Hinge Support (* Related Problem 5.104)

The bar AC is 4 ft long and is supported by a hinge at A and the cable BD. The

hinge axis is along the z axis. The centerline of the bar lies in the x y plane,

and the cable attachment point B is the midpoint of the bar. Determine the ten-

sion in the cable and the reactions exerted on the bar by the hinge.

Strategy
We will obtain a free-body diagram of bar AC by isolating it from the cable and

hinge. (The reactions the hinge can exert on the bar are shown in Table 5.2.) Then

we can determine the reactions by applying the equilibrium equations.

Solution
Draw the Free-Body Diagram We isolate the bar from the hinge support

and the cable and show the reactions they exert (Fig. a). The terms and

are the components of force exerted by the hinge, and the terms and

are the couples exerted by the hinge about the x and y axes. (Remember that

the hinge cannot exert a couple on the bar about the hinge axis.) The term T is

the tension in the cable.

MAy

MAxAz

Ax, Ay,

x

y

z

+100j (lb)

A

B

C

30*

(2, 2, +1) ftD

x

y

z

+100j (lb)

A

B

C

Az

AxMAx

MAy

Ay

T

Reactions

due to the

hinge
Force exerted by

cable  BD

(a) The free-body diagram of the bar.

Apply the Equilibrium Equations To write the equilibrium equations, we

must first express the cable force in terms of its components. The coordinates of

point B are so the position vector from B to D is

We divide this vector by its magnitude to obtain a unit vector that points

from point B toward point D:

Now we can write the cable force as the product of its magnitude and :

The sums of the forces in each coordinate direction must equal zero:

(1)

 Fz = Az - 0.315T = 0.

 Fy = Ay + 0.945T - 100 lb = 0,

 Fx = Ax + 0.084T = 0,

TeBD = T10.084i + 0.945j - 0.315k2.

eBD

eBD =
rBD

rBD

= 0.084i + 0.945j - 0.315k.

eBD

 = 0.268i + 3j - k 1ft2.

 rBD = 12 - 2 cos 30 2i + [2 - 1-2 sin 30 2] j + 1-1 - 02k

12 cos 30 , -2 sin 30 , 02 ft,
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5.3 Three-Dimensional Applications 233

If we sum moments about A, the resulting equations do not contain the unknown

reactions and The position vectors from A to B and from A to C are

The sum of the moments about A, with forces in lb and distances in ft, is

From this vector equation, we obtain the scalar equations

Solving these equations yields the reactions

Then from Eqs. (1) we obtain the forces exerted on the bar by the hinge:

Critical Thinking

Notice in Table 5.2 that there are three possibilities for the reactions exerted

by a hinge or bearing. How do you know which one to choose? Under certain

circumstances, a hinge may not exert significant couples on the object to

which it is connected, and it also may not exert a significant force in the direc-

tion of the hinge axis. For example, when an object has two hinge supports and

their axes are aligned (see Example 5.9), you can often assume that each indi-

vidual hinge does not exert couples on the object. But in general, it requires

experience to make such judgments. In upcoming examples and problems,

we will indicate the reactions that you can assume are exerted by a hinge.

Whenever you are in doubt, you should assume that a hinge may exert the

most general set of reactions shown in Table 5.2 (three force components and

two couple components).

Ax = -17.0 lb, Ay = -90.2 lb, A z = 63.4 lb.

T = 201 lb, MAx = -63.4 ft-lb, MAy = -109.8 ft-lb.

 Mz = 11.72 ft2TBD - 346 ft-lb = 0.

 My = MAy + 10.546 ft2T = 0,

 Mx = MAx + 10.315 ft2T = 0,

 + 11.72T - 3462k = 0.

 = 1MAx + 0.315T2i + 1MAy + 0.546T2j

 + 3

i j k

3.464 -2 0

0 -100 0

3

 = MAx i + MAy j + 3

i j k

1.732 -1 0

0.084T 0.945T - 0.315T

3

 Mpoint A = MAxi + MAy j + [rAB * 1TeBD2] + [rAC * 1-100 j2]

 rAC = 4 cos 30 i - 4 sin 30 j 1ft2.

 rAB = 2 cos 30 i - 2 sin 30 j 1ft2,

Az.Ay,Ax,
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y

*400j (N)

z

x

A

D

C

T

B
Bz

By

Bx

Ax

Ay

Reactions due to
hinge A.  It
exerts no
axial
force.

Reactions
due to
hinge B

Force
exerted
by cable
CE   

y

B

C

D

A

*400j (N)

200 mm

200 mm

80 mm

100
mm

z

x

E

The plate is supported by hinges at A and B and the cable CE. The properly

aligned hinges do not exert couples on the plate, and the hinge at A does not exert

a force on the plate in the direction of the hinge axis. Determine the reactions

at the hinges and the tension in the cable.

Strategy
We will draw the free-body diagram of the plate, using the given information

about the reactions exerted by the hinges at A and B. Before the equilibrium

equations can be applied, we must express the force exerted on the plate by the

cable in terms of its components.

Solution

Draw the Free-Body Diagram We isolate the plate and show the reactions

at the hinges and the force exerted by the cable (Fig. a). The term T is the force

exerted on the plate by cable CE.

Apply the Equilibrium Equations Since we know the coordinates of points

C and E, we can express the cable force as the product of its magnitude T and

a unit vector directed from C toward E. The result is

The sums of the forces in each coordinate direction equal zero:

(1)

If we sum the moments about B, the resulting equations will not contain the

three unknown reactions at B. The sum of the moments about B, with forces

in N and distances in m, is

The scalar equations are

Solving these equations, we obtain the reactions

Then from Eqs. (1), the reactions at B are

Bx = 500 N, By = -400 N, Bz = -500 N.

T = 1187 N, Ax = 500 N, Ay = 400 N.

 Mz = 10.0674 m2T - 80 N-m = 0.

 My = -10.0842 m2T + 10.2 m2Ax = 0,

 Mx = -10.2 m2Ay + 80 N-m = 0,

 + 10.0674T - 802k = 0.

 = 1-0.2Ay + 802i + 1-0.0842T + 0.2Ax2j

 + 3

i  j k

0.2 0 0.2

0 -400 0

3

 Mpoint B = 3

i j k

0.2 0 0

-0.842T 0.337T 0.421T

3 + 3

i j k

0 0 0.2

Ax Ay 0

3

 Fz = Bz + 0.421T = 0.

 Fy = Ay + By + 0.337T - 400 = 0,

 Fx = Ax + Bx - 0.842T = 0,

T1-0.842i + 0.337j + 0.421k2.

Example 5.9 Reactions at Properly Aligned Hinges (* Related Problem 5.112)

(a) The free-body diagram of the plate.
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A

C

x

B
2 m

z

y

(3, 0.5, *0.5) m

Problem 5.78

y
B  (6, 6, 2) ft

A

C  (8, 0, 3) ft

z

x

Problems 5.79/5.80

FC

FB

A

C

x

B1 m

1 m

z

y

Problem 5.77

Problems

Critical Thinking
Properly aligned hinges means hinges that are mounted on an object so that

their axes are aligned. When this is the case, as in this example, it can usually be

assumed that each individual hinge does not exert couples on the object. Notice

that it is also assumed in this example that the hinge at A exerts no reaction par-

allel to the hinge axis but the hinge at B does. The hinges can be intentionally

designed so that this is the case, or it can result from the way they are installed.

If our only objective in this example had been to determine the tension T,

we could have done so easily by evaluating the sum of the moments about the

line AB (the z axis). Because the reactions at the hinges exert no moment about

the z axis, we obtain the equation

which yields T = 1187 N.

10.2 m210.337T2 - 10.2 m21400 N2 = 0,

5.77 The bar AB has a fixed support at A and is loaded by the

forces

(a) Draw the free-body diagram of the bar.

(b) Determine the reactions at A.

Strategy: (a) Draw a diagram of the bar isolated from its

supports. Complete the free-body diagram of the bar by adding

the two external forces and the reactions due to the fixed

support (see Table 5.2). (b) Use the scalar equilibrium

equations (5.9) (5.14) to determine the reactions.

 FC = i - 2j + 2k 1kN2.

 FB = 2i + 6j + 3k 1kN2,

5.78 The bar AB has a fixed support at A. The tension in cable

BC is 8 kN. Determine the reactions at A.

5.79 The bar AB has a fixed support at A. The collar at B is fixed

to the bar. The tension in the rope BC is 300 lb. (a) Draw the free-

body diagram of the bar. (b) Determine the reactions at A.

5.80 The bar AB has a fixed support at A. The collar at B is fixed

to the bar. Suppose that you don t want the support at A to be

subjected to a couple of magnitude greater than 3000 ft-lb. What

is the largest allowable tension in the rope BC?
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236 Chapter 5 Objects in Equilibrium

5.81 The total force exerted on the highway sign by its weight

and the most severe anticipated winds is 

Determine the reactions at the fixed support.

F = 2.8i - 1.8j 1kN2.

5.82 The tension in cable AB is 800 lb. Determine the reactions

at the fixed support C.

5.83 The tension in cable AB is 24 kN. Determine the reactions

at the fixed support D.

5.84 The robotic manipulator is stationary and the y axis is verti-

cal. The weights of the arms AB and BC act at their midpoints. The

direction cosines of the centerline of arm AB are 

and the direction cosines of the

centerline of arm BC are 

The support at A behaves like a fixed 

support.

(a) What is the sum of the moments about A due to the weights of

the two arms?

(b) What are the reactions at A?

cos uz = -0.371.

cos ux = 0.743, cos uy = 0.557,

cos uy = 0.985, cos uz = 0,

cos ux = 0.174,

y

O

F

z

x

8 m

8 m

Problem 5.81

F

y

x

z

4 ft

4 ft

5 ft

(6, 0, 4) ft

C

A

B

Problem 5.82

B

3 m

1 m
D

2 m

C
A

2 m

x

y

z

Problem 5.83

B

y

200 N

6
0
0
 m

m

x
z

600 m
m

C

A

160 N

Problem 5.84
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* 5.86 In Active Example 5.7, suppose that cable BD is length-

ened and the attachment point D moved from (0, 600, 400) mm to

(0, 600, 600) mm. (The end B of bar AB remains where it is.) Draw

a sketch of the bar and its supports showing cable BD in its new

position. Draw the free-body diagram of the bar and apply equilib-

rium to determine the tensions in the cables and the reactions at A.

5.87 The force F acting on the boom ABC at C points in the

direction of the unit vector and its

magnitude is 8 kN. The boom is supported by a ball and socket at

A and the cables BD and BE. The collar at B is fixed to the boom.

(a) Draw the free-body diagram of the boom.

(b) Determine the tensions in the cables and the reactions at A.

5.88 The cables BD and BE in Problem 5.87 will each safely

support a tension of 25 kN. Based on this criterion, what is the

largest acceptable magnitude of the force F?

0.512i - 0.384j + 0.768k

5.89 The suspended load exerts a force at A, and the

weight of the bar OA is negligible. Determine the tensions in the

cables and the reactions at the ball and socket support O.

5.90 The suspended load exerts a force at A and bar

OA weighs 200 lb. Assume that the bar s weight acts at its mid-

point. Determine the tensions in the cables and the reactions at the

ball and socket support O.

F = 600 lb

F = 600 lb

5.91 The 158,000-kg airplane is at rest on the ground ( is

ground level). The landing gear carriages are at A, B, and C. The

coordinates of the point G at which the weight of the plane acts

are (3, 0.5, 5) m. What are the magnitudes of the normal reactions

exerted on the landing gear by the ground?

z = 0

y

z

x

A

C

D

E

B

2 m

2 m

1 m

1.5 m 2 m

2 m

F

Problems 5.87/5.88

(0, 10, 4) ft

B

(0, 6, *10) ft
C

A
(8, 6, 0) ft

x

y

*F j

O

z

Problems 5.89/5.90

x

6 m

21 m

A

B

C

G

6 m

y

Problem 5.91

5.85 The force exerted on the grip of the exercise machine is

What are the reactions at the fixed

support at O?

F = 260i - 130j 1N2.

O

150 mm

250 mm

200 mm

F

z

y

x

Problem 5.85
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5.98 The 1.1-m bar is supported by a ball and socket support

at A and the two smooth walls. The tension in the vertical cable

CD is 1 kN.

(a) Draw the free-body diagram of the bar.

(b) Determine the reactions at A and B.

x

z

0.3 m
0.4 m

C

A

B

(x, 0, z)

y

Problem 5.92

8 m

mg

4 m

6 m 7 m

7 m

7 m

A

B

C

Problem 5.93

C
14 in8 in

B

D (18, *8, 7) in

A

z

x

y

Problem 5.94

z

y

A

B

0.3 m

0.2 m

F b

x

Problems 5.95 5.97

B

C

D

A

400 mm

700 mm

x

y

z

600 mm

Problem 5.98

5.92 The horizontal triangular plate is suspended by the three

vertical cables A, B, and C. The tension in each cable is 80 N.

Determine the x and z coordinates of the point where the plate s

weight effectively acts.

5.93 The 800-kg horizontal wall section is supported by the three

vertical cables A, B, and C. What are the tensions in the cables?

5.94 The bar AC is supported by the cable BD and a bearing 

at A that can rotate about the z axis. The person exerts a force

at C. Determine the tension in the cable and the

reactions at A.

F = 10j 1lb2

5.95 The L-shaped bar is supported by a bearing at A and

rests on a smooth horizontal surface at B. The vertical force

and the distance Determine the reactions

at A and B.

5.96 The vertical force and the distance 

If you represent the reactions at A and B by an equivalent system

consisting of a single force, what is the force and where does its

line of action intersect the x z plane?

5.97 The vertical force The bearing at A will safely

support a force of 2.5-kN magnitude and a couple of 0.5 kN-m

magnitude. Based on these criteria, what is the allowable range

of the distance b?

F = 4 kN.

b = 0.15 m.F = 4 kN

b = 0.15 m.F = 4 kN
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A

z

y

x

4 ft
2 ft

3 ft

F

D

B

C

Problems 5.99/5.100

E

C

D

z
x

y

A

40 m

40 m

50 m

50 m

20 m

B

Problems 5.101/5.102

F

B

D (6, 0, 0) m

C (5, 0, 6) m

A (4, 3, 4) m

z

y

x

Problem 5.103

5.99 The 8-ft bar is supported by a ball and socket support at A,

the cable BD, and a roller support at C. The collar at B is fixed to

the bar at its midpoint. The force Determine the

tension in cable BD and the reactions at A and C.

5.100 The bar is 8 ft in length. The force 

What is the largest value of for which the roller support at C

will remain on the floor?

Fy

F = Fy j - 50k 1lb2.

F = -50k 1lb2.

5.101 The tower is 70 m tall. The tension in each cable is 2 kN.

Treat the base of the tower A as a fixed support. What are the re-

actions at A?

5.102 The tower is 70 m tall. If the tension in cable BC is 2 kN,

what must the tensions in cables BD and BE be if you want the

couple exerted on the tower by the fixed support at A to be zero?

What are the resulting reactions at A?

5.103 The space truss has roller supports at B, C, and D and

is subjected to a vertical force at A. What are the

reactions at the roller supports?

F = 20 kN

z

40*

4 ft

x

y

1 ft

5 ft

1 ft
A

B

Problem 5.105

* 5.104 In Example 5.8, suppose that the cable BD is lengthened

and the attachment point B is moved to the end of the bar at C. The

positions of the attachment pointD and the bar are unchanged.

Draw a sketch of the bar showing cable BD in its new position.

Draw the free-body diagram of the bar and apply equilibrium to

determine the tension in the cable and the reactions at A.

5.105 The 40-lb door is supported by hinges at A and B. The

y axis is vertical. The hinges do not exert couples on the door,

and the hinge at B does not exert a force parallel to the hinge

axis. The weight of the door acts at its midpoint. What are the

reactions at A and B?
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A

y

z

x

200 mm

100 mm

100 mm

200 mmB

F

Problems 5.106/5.107

A

y

z

C

x

200 mm
50 mm

50 mm

100 mm

200 mm

F

B

Problem 5.108

3 ft

W

A B
D

E

3 ft

y

x

Problems 5.109/5.110

4 m

2 m 2 m

3 m

y

x

A B

3 m

C

D

E

A

B

C

y

x

D

3 m

6 m

z

F

Problem 5.111

5.108 The device in Problem 5.106 is badly designed because of

the couples that must be supported by the bearing at B, which

would cause the bearing to bind.  (Imagine trying to open a door

supported by only one hinge.) In this improved design, the bearings

at B and C support no couples, and the bearing at C does not exert

a force in the x direction. If the force 

what are the tension in the vertical cable and the reactions at the

bearings B and C?

F = 10i - 30j - 10k 1N2,

5.109 The rocket launcher is supported by the hydraulic jack

DE and the bearings A and B. The bearings lie on the x axis and

support shafts parallel to the x axis. The hydraulic cylinder DE

exerts a force on the launcher that points along the line from D

to E. The coordinates of D are (7, 0, 7) ft, and the coordinates of

E are (9, 6, 4) ft. The weight kip acts at (4.5, 5, 2) ft.

What is the magnitude of the reaction on the launcher at E?

W = 30

5.106 The vertical cable is attached at A. Determine the tension

in the cable and the reactions at the bearing B due to the force

5.107 Suppose that the z component of the force F is zero, but

otherwise F is unknown. If the couple exerted on the shaft by the

bearing at B is what are the force F and

the tension in the cable?

MB = 6j - 6k N-m,

F = 10i - 30j - 10k 1N2.

5.111 The crane s cable CD is attached to a stationary object at

D. The crane is supported by the bearings E and F and the hori-

zontal cable AB. The tension in cable AB is 8 kN. Determine the

tension in the cable CD.

Strategy: Since the reactions exerted on the crane by the

bearings do not exert moments about the z axis, the sum of the

moments about the z axis due to the forces exerted on the crane

by the cables AB and CD equals zero.

5.110 Consider the rocket launcher described in Problem 5.109.

The bearings at A and B do not exert couples, and the bearing B

does not exert a force in the x direction. Determine the reactions at

A and B.
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D
x

C
B

A

20*

E

z

y

3 m

1 m

2 m

2 m

2i + 6j (kN)

Problems 5.113/5.114

y

x

z

A

B

C

(+2, 2, +1) m

2 m
4 m

4 m

D

Problems 5.115/5.116

* 5.112 In Example 5.9, suppose that the cable CE is shortened

and its attachment point E is moved to the point (0, 80, 0) mm. The

plate remains in the same position. Draw a sketch of the plate and its

supports showing the new position of cable CE. Draw the free-body

diagram of the plate and apply equilibrium to determine the

reactions at the hinges and the tension in the cable.

5.113 The plate is supported by hinges at A and B and the cable

CE, and it is loaded by the force at D. The edge of the plate to

which the hinges are attached lies in the y z plane, and the axes

of the hinges are parallel to the line through points A and B. The

hinges do not exert couples on the plate. What is the tension

in cable CE?

5.114 In Problem 5.113, the hinge at B does not exert a force

on the plate in the direction of the hinge axis. What are the magni-

tudes of the forces exerted on the plate by the hinges at A and B?

5.115 The bar ABC is supported by ball and socket supports at A

and C and the cable BD. The suspended mass is 1800 kg. Deter-

mine the tension in the cable.

5.116* In Problem 5.115, assume that the ball and socket support

at A is designed so that it exerts no force parallel to the straight

line from A to C. Determine the reactions at A and C.

5.117 The bearings at A, B, and C do not exert couples on the bar

and do not exert forces in the direction of the axis of the bar. Deter-

mine the reactions at the bearings due to the two forces on the bar.

x

y

z

C

B

A

200i (N)

300 mm

180 mm

150 mm

150 mm

100k (N)

Problem 5.117

A

x

z

A

P

F

G

B

Top View (Spinnaker not shown)

15*

45*
C

D

200 lb

50 lb

6 ft

Aft View

DD
E B

P

y

x

Spinnaker

50 ft

Side View 21 ft 15 ft

A

C

G   

P

C F

A

E

5.118 The support that attaches the sailboat s mast to the deck

behaves like a ball and socket support. The line that attaches the

spinnaker (the sail) to the top of the mast exerts a 200-lb force on

the mast. The force is in the horizontal plane at 15 from the cen-

terline of the boat. (See the top view.) The spinnaker pole exerts a

50-lb force on the mast at P. The force is in the horizontal plane at

45 from the centerline. (See the top view.) The mast is supported

by two cables, the backstay AB and the port shroud ACD. (The

forestay AE and the starboard shroud AFG are slack, and their

tensions can be neglected.) Determine the tensions in the cables

AB and CD and the reactions at the bottom of the mast.

Problem 5.118
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B

(d)(c)

F

*F

B

A

F*

B

(b)

A
F*M

F

FN

(a)

F*2

F*1

A
F3

F2

F1

*FF

A

B

Figure 5.19
(a) An object subjected to two sets of

concurrent forces.

(b) Representing the concurrent forces by

two forces F and 

(c) If the object is in equilibrium, the forces

must be equal and opposite.

(d) The forces form a couple unless they

have the same line of action.

F .

(0.3, 0.4, 0.3) m

(0.3, 0.5, 0) m

(0.82, 0.60, 0.40) m

(0.46, 0.46, 0.33) m

(0.7, 0, 0.5) m
D

B

CE

A

z

x

y

Problems 5.119/5.120

5.119* The bar AC is supported by the cable BD and a bearing

at A that can rotate about the axis AE. The person exerts a force

at C. Determine the tension in the cable.

Strategy: Use the fact that the sum of the moments about the

axis AE due to the forces acting on the free-body diagram of the

bar must equal zero.

5.120* In Problem 5.119, determine the reactions at the

bearing A. 

Strategy: Write the couple exerted on the free-body diagram

of the bar by the bearing as

Then, in addition to the equilibrium equations, obtain an

equation by requiring the component of parallel to the

axis AE to equal zero.

MA

MA = MAx i + MAy j + MAz k.

F = 50j 1N2

5.4 Two-Force and Three-Force Members

BACKGROUND

We have shown how the equilibrium equations are used to analyze objects that

are supported and loaded in different ways. Here we discuss two particular types

of loading that occur so frequently they deserve particular attention. The first

type, the two-force member, is especially important and plays an important role

in our analysis of structures in Chapter 6.

Two-Force Members

If the system of forces and moments acting on an object is equivalent to two

forces acting at different points, we refer to the object as a two-force member.

For example, the object in Fig. 5.19a is subjected to two sets of concurrent forces

whose lines of action intersect at A and B. Since we can represent them by single

forces acting at A and B (Fig. 5.19b), where and

this object is a two-force member.F = F1 + F2 + + FM,

F = F1 + F2 + + FN
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If the object is in equilibrium, what can we infer about the forces F and

The sum of the forces equals zero only if (Fig. 5.19c). Further-

more, the forces F and form a couple, so the sum of the moments is not zero

unless the lines of action of the forces lie along the line through the points A

and B (Fig. 5.19d). Thus equilibrium tells us that the two forces are equal in

magnitude, are opposite in direction, and have the same line of action. How-

ever, without additional information, we cannot determine their magnitude.

A cable attached at two points (Fig. 5.20a) is a familiar example of a two-

force member (Fig. 5.20b). The cable exerts forces on the attachment points

that are directed along the line between them (Fig. 5.20c).

A bar that has two supports that exert only forces on it (no couples) and is

not subjected to any loads is a two-force member (Fig. 5.21a). Such bars are

often used as supports for other objects. Because the bar is a two-force mem-

ber, the lines of action of the forces exerted on the bar must lie along the line

between the supports (Fig. 5.21b). Notice that, unlike the cable, the bar can

exert forces at A and B either in the directions shown in Fig. 5.21c or in the op-

posite directions. (In other words, the cable can only pull on its supports, while

the bar can either pull or push.)

In these examples we assumed that the weights of the cable and the bar

could be neglected in comparison with the forces exerted on them by their sup-

ports. When that is not the case, they are clearly not two-force members.

-F

F = -FF ?

5.4 Two-Force and Three-Force Members 243

B

(a)

A

(c)

B

A

(b)

T

T

T

T

B

A Figure 5.20

(a) A cable attached at A and B.

(b) The cable is a two-force member.

(c) The forces exerted by the cable.

T

T

A

B

(b)

B

(a)

A

B

A

(c)

T

T

Figure 5.21

(a) The bar AB attaches the object to the pin support.

(b) The bar AB is a two-force member.

(c) The force exerted on the supported object by the bar AB.
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F

*F

B

A

Two-Force Member

If an object in equilibrium is subjected

to two forces acting at different points

and no other forces or couples, it is

called a two-force member. Equilibrium

requires that the two forces be equal and

opposite and parallel to the line between the

two points.

Three-Force Member

If an object in equilibrium is subjected

to three forces acting at different points and

no other forces or couples, it is called a

three-force member. Equilibrium requires

that the three forces be coplanar and either

parallel or concurrent.

244 Chapter 5 Objects in Equilibrium

F3

F1

F2

P

(a)

(b)

(c)

F1

F2

P

F3

r

e
L

F1

F2

F3

Q

Figure 5.22
(a) The three forces and the plane P.

(b) Determining the moment due to

force about L.

(c) If the forces are not parallel, they

must be concurrent.

F3

Three-Force Members

If the system of forces and moments acting on an object is equivalent to three

forces acting at different points, we call it a three-force member. We can show

that if a three-force member is in equilibrium, the three forces are coplanar and

are either parallel or concurrent.

We first prove that the forces are coplanar. Let them be called and

and let P be the plane containing the three points of application (Fig. 5.22a).

Let L be the line through the points of application of and Since the mo-

ments due to and about L are zero, the moment due to about L must

equal zero (Fig. 5.22b):

This equation requires that be perpendicular to which means that 

is contained in P. The same procedure can be used to show that and are

contained in P, so the forces are coplanar. (A different proof is required if the

points of application lie on a straight line, but the result is the same.)

If the three coplanar forces are not parallel, there will be points where their

lines of action intersect. Suppose that the lines of action of two of the forces in-

tersect at a point Q. Then the moments of those two forces about Q are zero, and

the sum of the moments about Q is zero only if the line of action of the third force

also passes through Q. Therefore, either the forces are parallel or they are con-

current (Fig. 5.22c).

The analysis of an object in equilibrium can often be simplified by rec-

ognizing that it is a two-force or three-force member. However, in doing so

we are not getting something for nothing. Once the free-body diagram of

a two-force member is drawn, as shown in Figs. 5.20b and 5.21b, no fur-

ther information can be obtained from the equilibrium equations. And when

we require that the lines of action of nonparallel forces acting on a three-

force member be coincident, we have used the fact that the sum of the mo-

ments about a point must be zero and cannot obtain further information

from that condition.

RESULTS

F2F1

F3e * r,F3

[e # 1r * F32]e = [F3
#
1e * r2]e = 0.

F3F2F1

F2.F1

F3,

F1, F2,
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5.4 Two-Force and Three-Force Members 245

Active Example 5.10 Two- and Three-Force Members (* Related Problem 5.121)

The 100-lb weight of the rectangular plate acts at its midpoint. Neglect

the weight of the link AB. Determine the reactions exerted on the plate at B

and C.

y

x

P

100 lbB C

45*

The force exerted on the plate by the bar AB 

must be directed along the line between

A and B, and the line of action of the weight of

the plate is vertical, so the three forces on the

plate are not parallel. Therefore they must be

concurrent.

Apply the equilibrium equations.

+Fx , B sin 45* - C sin 45*, 0,

+Fy , B cos 45* . C cos 45*- 100 lb , 0.

Solving yields the reactions B , C , 70.7 lb.

4 ft

B

45*

A
C

Strategy
The plate is subjected to its weight and the reactions exerted by the pin supports

at B and C, so it is a three-force member. The link BC is a two-force member,

so the line of action of the reaction it exerts on the plate at B must be directed

along the line between A and B. We can use this information to simplify the

free-body diagram of the plate.

The reaction exerted on the plate by the two-force member AB must be

directed along the line between A and B.

Solution

Practice Problem Suppose that the plate is replaced with a 100-lb plate whose thick-

ness (the dimension perpendicular to the page) is not uniform. The line of action of the

weight of the nonuniform plate is 3 ft to the right of point B. Determine the reactions

exerted on the plate at B and C.

Answer: B , 35.4 lb, C , 79.1 lb.
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400 mm

700 mm

A

6 kN

a

B

A

6 kN

B

y

Ax

Ay

x

a

(a) The free-body diagram of the bar.

Example 5.11 A Two-Force Member (* Related Problem 5.122)

The L-shaped bar has a pin support at A and is loaded by a 6-kN force at B. Neglect

the weight of the bar. Determine the angle and the reactions at A.

Strategy
The bar is a two-force member because it is subjected only to the 6-kN force

at B and the force exerted by the pin support. (If we could not neglect the

weight of the bar, it would not be a two-force member.) We will determine the

angle and the reactions at A in two ways, first by applying the equilibrium

equations in the usual way and then by using the fact that the bar is a two-

force member.

Solution
Applying the Equilibrium Equations We draw the free-body diagram of

the bar in Fig. a, showing the reactions at the pin support. Summing moments

about point A, the equilibrium equations are

From the third equation we see that In the range

this equation has the two solutions and

Knowing we can determine and from the first two equilibrium equa-

tions. The solutions for the two values of are

and

Treating the Bar as a Two-Force Member We know that the 6-kN force at

B and the force exerted by the pin support must be equal in magnitude, oppo-

site in direction, and directed along the line between points A and B. The two

possibilities are shown in Figs. b and c. Thus by recognizing that the bar is a two-

force member, we immediately know the possible directions of the forces and

the magnitude of the reaction at A.

In Fig. b we can see that tan so and the com-

ponents of the reaction at A are

In Fig. c, and the components of the reaction

at A are

Critical Thinking
Why is it worthwhile to recognize that an object is a two-force member?

Doing so tells you the directions of the forces acting on the object and also that

the forces are equal and opposite. As this example demonstrates, such infor-

mation frequently simplifies the solution of a problem.

 Ay = 6 sin 29.7  kN = 2.98 kN.

 Ax = 6 cos 29.7  kN = 5.21 kN

a = 180 + 29.7 = 209.7 ,

 Ay = -6 sin 29.7  kN = -2.98 kN.

 Ax = -6 cos 29.7  kN = -5.21 kN,

a = 29.7a = 0.4>0.7,

a = 209.7 , Ax = 5.21 kN, Ay = 2.98 kN.

a = 29.7 , Ax = -5.21 kN, Ay = -2.98 kN,

a

AyAxa,

a = 209.7 .a = 29.70 a 360 ,

a = arctan10.4>0.72.

 Mpoint A = 10.7 m216 sin a kN2 - 10.4 m216 cos a kN2 = 0.

 Fy = Ay + 6 sin a kN = 0,

 Fx = Ax + 6 cos a kN = 0,

a

a

A

6 kN

B

y

x6 kN

a

(b)

A

6 kN B

y

x

6 kN

a

(c)

(b), (c) The possible directions of the forces.

246 Chapter 5 Objects in Equilibrium
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Problems 247

14 in

17 in

x

y

B

A

Problem 5.122

Problems

5.121 In Active Example 5.10, suppose that the support at A

is moved so that the angle between the bar AB and the vertical

decreases from 45 to 30 . The position of the rectangular plate

does not change. Draw the free-body diagram of the plate

showing the point P where the lines of action of the three

forces acting on the plate intersect. Determine the magnitudes

of the reactions on the plate at B and C.

 5.122 The magnitude of the reaction exerted on the L-shaped

bar at B is 60 lb. (See Example 5.11.)

(a) What is the magnitude of the reaction exerted on the bar by the

support at A? 

(b) What are the x and y components of the reaction exerted on the

bar by the support at A?

5 ft

B

A

10 ft

Problem 5.123

5.123 The suspended load weighs 1000 lb. The structure is a

three-force member if its weight is neglected. Use this fact to

determine the magnitudes of the reactions at A and B. 5.126 Use the fact that the horizontal bar is a three-force

member to determine the angle and the magnitudes of the

reactions at A and B. Assume that 0 a 90 .

a

50 mm

F
150 mm

W

Problem 5.125

1 m
3 kN

2 m

A

B

a
30*

60*

Problem 5.126

5.125 The weight acts at the center of the disk. The

surfaces are rough. What force F is necessary to lift the disk off

the floor?

W = 40 N

W

60*

Problem 5.124

5.124 The weight acts at the center of the disk. Use the

fact that the disk is a three-force member to determine the tension

in the cable and the magnitude of the reaction at the pin support.

W = 50 lb
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5.129 The hydraulic piston exerts a horizontal force at B to

support the weight W + 1500 lb of the bucket of the excavator.

Determine the magnitude of the force the hydraulic piston must

exert. (The vector sum of the forces exerted at B by the hydraulic

piston, the two-force member AB, and the two-force member BD

must equal zero.)

5.130 The member ACG of the front-end loader is subjected to a

load and is supported by a pin support at A and the

hydraulic cylinder BC. Treat the hydraulic cylinder as a two-force

member.

(a) Draw the free-body diagrams of the hydraulic cylinder and the

member ACG.

(b) Determine the reactions on the member ACG.

5.131 In Problem 5.130, determine the reactions on the member

ACG by using the fact that it is a three-force member.

W = 2 kN

250

mm 500 mm

700 mm

300 mm

150 mm

2 kN

3 kN-m

A

B

Problem 5.128

8 in

14 in 12 in

Hydraulic
piston

Bucket

8 in

W

C D

A
16 in

4 in

B

Problem 5.129

0.5 m

1 m

0.75 m

1.5 m 1.5 m

W

G

C

A

B

Problems 5.130/5.131

5.127 The suspended load weighs 600 lb. Use the fact that ABC

is a three-force member to determine the magnitudes of the reac-

tions at A and B.

45*

30*

3 ft

4.5 ft

A

B

C

Problem 5.127

5.128 (a) Is the L-shaped bar a three-force member?

(b) Determine the magnitudes of the reactions at A and B. 

(c) Are the three forces acting on the L-shaped bar concurrent?
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A

(a)

h

b

B

B

A

A

(b)

h

b

B

By

Bx

x

y

Ay

Ax

Problem 5.132

5.132 A rectangular plate is subjected to two forces A and B

(Fig. a). In Fig. b, the two forces are resolved into components.

By writing equilibrium equations in terms of the components

and show that the two forces A and B are equal

in magnitude, opposite in direction, and directed along the line

between their points of application.

By,Ax, Ay, Bx,

F1

F2

F3

Problem 5.133

5.133 An object in equilibrium is subjected to three forces

whose points of application lie on a straight line. Prove that the

forces are coplanar.

5.135 Determine the reactions at the fixed support.

A

B

32*

50*

Problem 5.134

Review Problems

5.134 The suspended cable weighs 12 lb.

(a) Draw the free-body diagram of the cable. (The tensions in the

cable at A and B are not equal.)

(b) Determine the tensions in the cable at A and B.

(c) What is the tension in the cable at its lowest point? 3 m

3 m5 m

A

4 kN

3 kN

20 kN-m

2 kN

Problem 5.135
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5.137 The mass of the truck is 4000 kg. Its wheels are locked,

and the tension in its cable is 

(a) Draw the free-body diagram of the truck.

(b) Determine the normal forces exerted on the truck s wheels at

A and B by the road.

T = 10 kN.

5.138 Assume that the force exerted on the head of the nail by

the hammer is vertical, and neglect the hammer s weight.

(a) Draw the free-body diagram of the hammer.

(b) If what are the magnitudes of the force exerted on

the nail by the hammer and the normal and friction forces exerted

on the floor by the hammer?

F = 10 lb,

12 in

8 in

A

B

20 in

x

y

50 lb

Problem 5.136

2 in

F

11 in

65*

Problem 5.138

A B

mg

2 m 2.5 m 2.2 m

30*
3 m

T

Problem 5.137

5.139 The spring constant is and the unstretched

length of the spring is 30 mm. Treat the bolt at A as a pin support

and assume that the surface at C is smooth. Determine the

reactions at A and the normal force at C.

5.140 The engineer designing the release mechanism wants the

normal force exerted at C to be 120 N. If the unstretched length 

of the spring is 30 mm, what is the necessary value of the spring

constant k?

k = 9600 N/m

5.141 The truss supports a 90-kg suspended object. What are the

reactions at the supports A and B?

30 mm 50 mm

15 mm C

B

A

k
30 mm

24 mm

30*

300 mm

400 mm 700 mm

A

B

Problem 5.141

Problems 5.139/5.140

5.136 (a) Draw the free-body diagram of the 50-lb plate, and

explain why it is statically indeterminate.

(b) Determine as many of the reactions at A and B as possible.
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x

y

15*

8 ftA

H

1.6 ft

2.8 ft

1.4 ft

870 lb

Problem 5.142

5.142 The trailer is parked on a 15 slope. Its wheels are free to turn. The hitch H behaves like a pin support. Determine the reactions

at A and H.

Ay

Ax

W
B

h

b

2.7 m

x
y

a

Problem 5.143

5.143 To determine the location of the point where the weight of

a car acts (the center of mass), an engineer places the car on scales

and measures the normal reactions at the wheels for two values of

obtaining the following results.

What are the distances b and h?

a,

a

k

Problem 5.144

5.144 The bar is attached by pin supports to collars that slide

on the two fixed bars. Its mass is 10 kg, it is 1 m in length, and

its weight acts at its midpoint. Neglect friction and the masses

of the collars. The spring is unstretched when the bar is vertical

and the spring constant is Determine

the values of in the range at which the bar is

in equilibrium.

0 a 60a

k = 100 N/m.1a = 02,

B (kN)

10 10.134 4.357

20 10.150 3.677

Ay 1kN2a
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5.147 The 20-kg mass is suspended by cables attached to three

vertical 2-m posts. Point A is at (0, 1.2, 0) m. Determine the

reactions at the fixed support at E.

5.148 In Problem 5.147, the fixed support of each vertical

post will safely support a couple of 800 N-m magnitude. 

Based on this criterion, what is the maximum safe value of the

suspended mass?

x

A

C

B

3 ft

3 ft
5 ft

z

4 ft

y

3 ft

Problem 5.149

L/2

A B

C

L/2

W

a

Problem 5.150

252 Chapter 5 Objects in Equilibrium

B

A

C

D

y

E

z
x

2 m
0.3 m

1 m

1 m

Problems 5.147/148

5.150 The horizontal bar of weight W is supported by a roller

support at A and the cable BC. Use the fact that the bar is a three-

force member to determine the angle the tension in the cable,

and the magnitude of the reaction at A.

a,

A

B
C

1 m

0.5 m

2 m

Problem 5.146

5.149 The 80-lb bar is supported by a ball and socket support at

A, the smooth wall it leans against, and the cable BC. The weight

of the bar acts at its midpoint.

(a) Draw the free-body diagram of the bar.

(b) Determine the tension in cable BC and the reactions at A.

R

L

F

L

A

L

F

L

R

A

F

L

Third-class lever

L

A

R

First-class lever Second-class lever

Problem 5.145

5.146 The force exerted by the weight of the horizontal rectan-

gular plate is 800 N. The weight of the rectangular plate acts at its

midpoint. If you represent the reactions exerted on the plate by the

three cables by a single equivalent force, what is the force, and

where does its line of action intersect the plate?

5.145 With each of the devices shown you can support a load R

by applying a force F. They are called levers of the first, second,

and third class. 

(a) The ratio is called the mechanical advantage. Determine

the mechanical advantage of each lever. 

(b) Determine the magnitude of the reaction at A for each lever.

(Express your answers in terms of F.)

R/F
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Design Project 1 The traditional wheelbarrow shown is de-

signed to transport a load W while being supported by an up-

ward force F applied to the handles by the user. (a) Use statics to

analyze the effects of a range of choices of the dimensions a and

b on the size of load that could be carried. Also consider the im-

plications of these dimensions on the wheelbarrow s ease and

practicality of use. (b) Suggest a different design for this classic

device that achieves the same function. Use statics to compare

your design to the wheelbarrow with respect to load-carrying

ability and ease of use.

b

W

a

F

Design Project 2 The figure shows an example of the popular

devices called mobiles,  which were introduced as an art form

by American artist Alexander Calder (1898 1976). Suppose that

you want to design a mobile representing the solar system, and

have chosen colored spheres to represent the planets. The

masses of the spheres that represent Mercury, Venus, Earth,

Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto are 10 g, 25 g,

25 g, 10 g, 50 g, 40 g, 40 g, 40 g, and 10 g. Assume that the

cross bars and string you use are of negligible mass. Design your

mobile so that the planets are in their correct order relative to the

sun. Write a brief report including a drawing of your design and

the analysis proving that your mobile is balanced.

Design Project 3 The bed of the dump truck (Fig. a) is raised

by two tandem hydraulic cylinders AB (Fig. b). The mass of the

truck s bed and load is 16,000 kg and its weight acts at point G.

(Assume that the position of point G relative to the bed does not

change when the bed is raised.)

(a) Draw a graph of the magnitude of the total force the hy-

draulic cylinders must exert to support the stationary bed for

values of the angle from zero to 30 .

(b) Consider other choices for the locations of the attachment

points A and B that appear to be feasible and investigate how your

choices affect the magnitude of the total force the hydraulic cylin-

ders must exert as varies from zero to 30 . Also compare the

costs of your choices of the attachment points to the choices

shown in Fig. a, assuming that the cost of the hydraulic cylinders

is proportional to the product of the maximum force they must

exert as varies from zero to 30 and their length when 

(c) Write a brief report presenting your investigations and mak-

ing a recommendation for the locations of points A and B.

a = 30 .a

a

a

(a)

G

A B0.5 m 0.3 m

0.9 m

1.2 m1.8 m

2.4 m

C

(b)

a

G
A

B

C
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 The Neolithic engineers who built Stonehenge set an example for the
design of enduring structures. In this chapter we describe techniques for
determining the forces and couples acting on individual members of
structures.

In engineering, the term structure can refer to any object that

has the capacity to support and exert loads. In this chapter we

consider structures composed of interconnected parts, or

members. To design such a structure, or to determine whether

an existing one is adequate, it is necessary to determine the

forces and couples acting on the structure as a whole as well

as on its individual members. We first demonstrate how this

is done for the structures called trusses, which are composed

entirely of two-force members. The familiar frameworks of

steel members that support some highway bridges are trusses.

We then consider other structures, called frames if they are

designed to remain stationary and support loads and machines

if they are designed to move and exert loads.

Structures in Equilibrium

CHAPTER

6
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256 Chapter 6 Structures in Equilibrium

6.1 Trusses

BACKGROUND

We can explain the nature of truss structures such as the beams supporting a

house (Fig. 6.1) by starting with very simple examples. Suppose we pin three

bars together at their ends to form a triangle. If we add supports as shown in

Fig. 6.2a, we obtain a structure that will support a load F. We can construct

more elaborate structures by adding more triangles (Figs. 6.2b and c). The bars

are the members of these structures, and the places where the bars are pinned to-

gether are called the joints. Even though these examples are quite simple, you can

see that Fig. 6.2c, which is called a Warren truss, begins to resemble the struc-

tures used to support bridges and the roofs of houses (Fig. 6.3). If these structures

are supported and loaded at their joints and we neglect the weights of the bars,

each bar is a two-force member. We call such a structure a truss.

We draw the free-body diagram of a member of a truss in Fig. 6.4a.

Because it is a two-force member, the forces at the ends, which are the sums

of the forces exerted on the member at its joints, must be equal in magnitude,

opposite in direction, and directed along the line between the joints. We call

the force T the axial force in the member. When T is positive in the direction

shown (that is, when the forces are directed away from each other), the mem-

ber is in tension. When the forces are directed toward each other, the member

is in compression.

In Fig. 6.4b, we cut  the member by a plane and draw the free-body dia-

gram of the part of the member on one side of the plane. We represent the sys-

tem of internal forces and moments exerted by the part not included in the

free-body diagram by a force F acting at the point P where the plane intersects

Figure 6.1
A typical house is supported by trusses 

made of wood beams.

(c)

F

(b)

FF

(a)

F

Figure 6.2

Making structures by pinning bars together to form triangles.

Howe Bridge Truss Pratt Bridge Truss

Howe Roof Truss Pratt Roof Truss 

Figure 6.3

Simple examples of bridge and roof structures. (The lines represent

members, the circles represent joints.)
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T

F

M

(a) (b)

T

T

T

P

(c)

T T

T

Figure 6.4

(a) Each member of a truss is a two-force member.

(b) Obtaining the free-body diagram of part of the member.

(c) The internal force is equal and opposite to the force acting at

the joint, and the internal couple is zero.

the axis of the member and a couple M. The sum of the moments about P must

equal zero, so Therefore we have a two-force member, which means

that F must be equal in magnitude and opposite in direction to the force T act-

ing at the joint (Fig. 6.4c). The internal force is a tension or compression equal

to the tension or compression exerted at the joint. Notice the similarity to a

rope or cable, in which the internal force is a tension equal to the tension ap-

plied at the ends.

Although many actual structures, including roof trusses and bridge

trusses, consist of bars connected at the ends, very few have pinned joints.

For example, a joint of a bridge truss is shown in Fig. 6.5. The ends of the

members are welded at the joint and are not free to rotate. It is obvious that

such a joint can exert couples on the members. Why are these structures called

trusses?

The reason is that they are designed to function as trusses, meaning that they

support loads primarily by subjecting their members to axial forces. They can

usually be modeled as trusses, treating the joints as pinned connections under

the assumption that couples they exert on the members are small in comparison

to axial forces. When we refer to structures with riveted joints as trusses in prob-

lems, we mean that you can model them as trusses.

M = 0.

Figure 6.5

A joint of a bridge truss.
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Trusses

Structures that consist of straight bars pinned

at the ends and are supported and loaded only

at the joints where the members are connected 

are called trusses. It is assumed that the weights

of the members are negligible in comparison to

the applied loads.

F

FF

F

258 Chapter 6 Structures in Equilibrium

6.2 The Method of Joints

BACKGROUND

The method of joints involves drawing free-body diagrams of the joints of a

truss one by one and using the equilibrium equations to determine the axial

forces in the members. Before beginning, it is usually necessary to draw a

free-body diagram of the entire truss (that is, treat the truss as a single object)

and determine the reactions at its supports. For example, let s consider the

Warren truss in Fig. 6.6a, which has members 2 m in length and supports

RESULTS

Free-Body Diagram of an

Individual Member

Because each member of a truss is a

two-force member, it is subjected

only to equal and opposite axial

loads. We call the force T the axial

force in a member. When T is

positive in the direction shown (that

is, when the forces are directed away

from each other), the member is in

tension (T). When the forces are

directed toward each other, 

the member is in compression (C).

F

T

T
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A

B
577 N 

577 N 
A

289 N 

C

289 N 

(b)

B D

C

E

400 N 800 N

500 N 700 N

y

500 N

x

(a)

60 

A

A
TAC

TAB

(c)

500 N

60*60*

A

TAC TAC

500 N

TAB TAB

A

Figure 6.7

(a) Obtaining the free-body diagram

of joint A.

(b) The axial forces on members AB and AC.

(c) Realistic and simple free-body diagrams

of joint A.

loads at B and D. We draw its free-body diagram in Fig. 6.6b. From the equi-

librium equations,

we obtain the reactions and 

Our next step is to choose a joint and draw its free-body diagram. In Fig. 6.7a,

we isolate joint A by cutting members AB and AC. The terms and are

the axial forces in members AB and AC, respectively. Although the directions

of the arrows representing the unknown axial forces can be chosen arbitrarily,

notice that we have chosen them so that a member is in tension if we obtain a

positive value for the axial force. Consistently choosing the directions in this way

helps avoid errors.

The equilibrium equations for joint A are

Solving these equations, we obtain the axial forces and

Member AB is in compression, and member AC is in tension

(Fig. 6.7b).

Although we use a realistic figure for the joint in Fig. 6.7a to help you un-

derstand the free-body diagram, in your own work you can use a simple figure

showing only the forces acting on the joint (Fig. 6.7c).

We next obtain a free-body diagram of joint B by cutting members AB, BC,

and BD (Fig. 6.8a). From the equilibrium equations for joint B,

we obtain and Member BC is in tension, and

member BD is in compression (Fig. 6.8b). By continuing to draw free-body di-

agrams of the joints, we can determine the axial forces in all of the members.

In two dimensions, you can obtain only two independent equilibrium equa-

tions from the free-body diagram of a joint. Summing the moments about a point

does not result in an additional independent equation because the forces are

concurrent. Therefore when applying the method of joints, you should choose

joints to analyze that are subjected to no more than two unknown forces. In our

TBD = -346 N.TBC = 115 N

 Fy = -400 N + 577 sin 60  N - TBC sin 60 = 0,

 Fx = TBD + TBC cos 60 + 577 cos 60  N = 0,

TAC = 289 N.

TAB = -577 N

 Fy = TAB sin 60 + 500 N = 0.

 Fx = TAC + TAB cos 60 = 0,

TACTAB

E = 700 N.Ax = 0, Ay = 500 N,

Mpoint A = -11 m21400 N2 - 13 m21800 N2 + 14 m2E = 0,

 Fy = Ay + E - 400 N - 800 N = 0,

 Fx = Ax = 0,

A

B

C

D

E

400 N 800 N

(a)

2 m

B

A

Ax

D

400 N 800 N

y

Ay
C

E

(b)

1 m

x

1 m2 m

Figure 6.6

(a) A Warren truss supporting two loads.

(b) Free-body diagram of the truss.
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example, we analyzed joint A first because it was subjected to the known reac-

tion exerted by the pin support and two unknown forces, the axial forces and

(Fig. 6.7a). We could then analyze joint B because it was subjected to two

known forces and two unknown forces, and (Fig. 6.8a). If we had at-

tempted to analyze joint B first, there would have been three unknown forces.

When you determine the axial forces in the members of a truss, your task

will often be simpler if you are familiar with three particular types of joints.

Truss joints with two collinear members and no load (Fig. 6.9). The

sum of the forces must equal zero, The axial forces are equal.

Truss joints with two noncollinear members and no load (Fig. 6.10).

Because the sum of the forces in the x direction must equal zero, 

Therefore must also equal zero. The axial forces are zero.

Truss joints with three members, two of which are collinear, and no

load (Fig. 6.11). Because the sum of the forces in the x direction must

equal zero, The sum of the forces in the y direction must equal

zero, so The axial forces in the collinear members are equal,

and the axial force in the third member is zero.

T1 = T2.

T3 = 0.

T1

T2 = 0.

T1 = T2.

TBDTBC

TAC

TAB

260 Chapter 6 Structures in Equilibrium

(a) (b)

T1

T2

(a)

x

T2

T1

(b)

y

Figure 6.10

(a) A joint with two noncollinear 

members and no load.

(b) Free-body diagram of the joint.

Figure 6.9

(a) A joint with two collinear members

and no load.

(b) Free-body diagram of the joint.

x

T3

T2

T1

(a) (b)

y

Figure 6.11

(a) A joint with three members, two of which are collinear, and no load.

(b) Free-body diagram of the joint.

(a)

B D

C
EA

400 N 800 N

500 N 700 N

TBD60* 60*

400 N

577 N TBC

y

x
B

B

346 N 

D

346 N 

(b)

C

B

115 N 

115 N 

Figure 6.8

(a) Obtaining the free-body diagram of 

joint B.

(b) Axial forces in members BD and BC.
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RESULTS

Method of Joints

F

A A

B D

E
C

B D

E

E

y

x

F

C

Ay

Ax

A

B D

E

EF

C

Ay

Ax

Ay

TAC

TAB

Ax

A

Before beginning, it is

usually necessary to draw

the free-body diagram of the

entire truss considered as a

single object and apply the

equilibrium equations to

determine the reactions at

the supports.

Isolate an individual joint by

passing planes through the

connected members. Complete

the free-body diagram by

showing the axial forces in the 

members. Apply the equilibrium

equations *Fx + 0 and *Fy + 0 

to the free-body diagram of the

joint. Repeat this process for 

other joints until the desired axial

loads have been determined.

If a joint consists of two collinear members

and no external load is applied to the joint,

the axial forces in the members are equal.

If a joint consists of two noncollinear

members and no external load is applied to

the joint, there is no axial force in either

member.

If a joint consists of three members, two

of which are collinear, and no external load

is applied to the joint, the axial forces in the

collinear members are equal and the axial 

force in the third member is zero.

Special Joints
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262 Chapter 6 Structures in Equilibrium

Active Example 6.1 The Method of Joints (* Related Problem 6.1)

Determine the axial forces in members AB and AC of the truss.

Strategy
We will first draw a free-body diagram of the entire truss, treating it as a single ob-

ject, and determine the reactions at the supports. Then we can determine the axial

forces in members AB and AC by drawing the free-body diagram of joint A.

Solution

C

5 m
5 m

A

D

B

2 kN

3 m

3 m

Draw the free-body diagram of the entire

truss and apply the equilibrium equations.

10 m

A

C

D

B
x

Ax

Ay

2 kN

y

B

6 m

Fx  Ax  B  0,

Fy  Ay  2 kN  0,

Mpoint B  (6 m)Ax  (10 m)(2 kN)  0. 

Solving yields Ax  3.33 kN, Ay  2 kN, 

and B  3.33 kN.

Draw the free-body

diagram of joint A and 

apply the equilibrium

equations.

A

C

D

B
2 kN

2 kN

3.33 kN

3.33 kN

2 kN

TAB

y

TAC

x
A

3.33 kN

a

The angle a  arctan(5/3)  59.0 .

Fx  TAC sina  3.33 kN  0, 

Fy  2 kN  TAB  TAC cosa  0. 

Solving yields TAB  0 and TAC  3.89 kN. 

The axial force in member AB is zero and 

the axial force in member AC is 3.89 kN 

in tension, which we write as

AB: zero, AC: 3.89 kN (T).
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6.2 The Method of Joints 263

Practice Problem Determine the axial forces in members BC and BD of the truss. In

doing so, use the fact that it is already known from the analysis of joint A that the axial

force in member AB is zero.

Answer: BC: zero, BD: 3.33 kN (C).

Example 6.2 A Bridge Truss (* Related Problem 6.31)

The loads a bridge structure must support and pin supports where the structure

is to be attached are shown in Fig. 1. Assigned to design the structure, a civil

engineering student proposes the structure shown in Fig. 2. What are the axial

forces in the members?

Strategy
The vertical members AG, BH, CI, DJ, and EK are subjected to compressive

forces of magnitude F. Because of the symmetry of the structure, we can de-

termine the axial loads in the remaining members by analyzing joints C and B.

Members Axial Force

AG, BH, CI, DJ, EK F (C)

AB, DE 2.39F (C)

BC, CD 1.93F (C)

Axial forces in the members of the
bridge structure

2b

F F F F F

b

(1)

b b b

2b

F F F

(2)

b b b b

B

C

D

EA

15*15*

G JI KH

F F

a a

Solution
We will leave it as an exercise to show by drawing the free-body diagram of

joint C that members BC and CD are subjected to equal compressive loads of

magnitude 1.93F. We draw the free-body diagram of joint B in Fig. a, where

From the equilibrium equations

we obtain and By symmetry, The axial

forces in the members are shown in the table.

TDE = TAB.a = 38.8 .TAB = -2.39F

 Fy = -TAB sin a + TBC sin 15 - F = 0,

 Fx = -TAB cos a + TBC cos 15 = 0,

TBC = -1.93F.

y

x
B

F

TBC

TAB

15*

a

(a) Free-body diagram of

joint B.
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A

B

W

C

60 in

60 in 60 in

Problem 6.3

600 lb

D

E

3 ft

3 ft

3 ft

3 ft

A

C

B

Problem 6.4

C

800 N

0.7 m
0.7 m

A

B

0.4 m

20*

Problem 6.2

0.32 m
0.16 m0.16 m

0.4 m

A

B
C D

m m

Problem 6.5

0.6 m

0.4 m

h

1.2 m

0.7 m1 kN 

C

D

B

A

Problem 6.6

Problems

* 6.1 In Active Example 6.1, suppose that in addition to the

2-kN downward force acting at point D, a 2-kN downward force

acts at point C. Draw a sketch of the truss showing the new

loading. Determine the axial forces in members AB and AC

of the truss.

6.2 Determine the axial forces in the members of the truss and

indicate whether they are in tension (T) or compression (C).

6.3 Member AB of the truss is subjected to a 1000-lb tensile

force. Determine the weight W and the axial force in member AC.

6.4 Determine the axial forces in members BC andCD of the truss.

6.5 Each suspended weight has mass Determine the

axial forces in the members of the truss and indicate whether they

are in tension (T) or compression (C).

m = 20 kg.

6.6 Determine the largest tensile and compressive forces that

occur in the members of the truss, and indicate the members in

which they occur if

(a) the dimension 

(b) the dimension 

Observe how a simple change in design affects the maximum

axial loads.

h = 0.5 m.

h = 0.1 m;
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6.7 This steel truss bridge is in the Gallatin National Forest south

of Bozeman, Montana. Suppose that one of the tandem trusses

supporting the bridge is loaded as shown. Determine the axial

forces in members AB, BC, BD, and BE.

6.8 Determine the largest tensile and compressive forces that

occur in the members of the bridge truss, and indicate the mem-

bers in which they occur.

17 ft 17 ft 17 ft 17 ft

A

B D F

H

GEC

8 ft

10 kip 10 kip 10 kip

Problems 6.7/6.8

17 ft 17 ft 17 ft 17 ft

A

B D F

H

GEC

8 ft

10 kip 10 kip 10 kip

Problem 6.9

6.9 The trusses supporting the bridge in Problems 6.7 and 6.8 are

called Pratt trusses. Suppose that the bridge designers had decided

to use the truss shown instead, which is called a Howe truss. De-

termine the largest tensile and compressive forces that occur in the

members, and indicate the members in which they occur. Com-

pare your answers to the answers to Problem 6.8.

F

400
mm

400
mm

400
mm

300 mm

300 mm

6 kN

A

B

C

D

E

G

Problem 6.10

6.10 Determine the axial forces in members BD, CD, and CE of

the truss.

6.11 The loads Determine the axial forces in

members BD, BE, and BG.

F1 = F2 = 8 kN.

20 in 20 in 20 in

30*

800 lb

A

B

CE

D

h

Problem 6.12

A

B

G

F2

F1

4 m

C

4 m

3 m

D

E

3 m

Problem 6.11

6.12 Determine the largest tensile and compressive forces that

occur in the members of the truss, and indicate the members in

which they occur if

(a) the dimension 

(b) the dimension 

Observe how a simple change in design affects the maximum

axial loads.

h = 10 in.

h = 5 in;

A B

C

D

E

G

1 m

F

2F

1 m 1 m 1 m

Problem 6.13

6.13 The truss supports loads at C and E. If what are

the axial forces in members BC and BE?

F = 3 kN,
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12 m

3 m

A

F

C
D

B

4 m

Problem 6.14

0.8 m
0.8 m

0.8 m

B E

D

1 m

1 m

A

C

W

Problem 6.17

300

mm

290

mm

390

mm

200 mm

480 mm

150 mm

AB

D

C

G

F

E

Problems 6.15/6.16

6.15 The truss is a preliminary design for a structure to attach

one end of a stretcher to a rescue helicopter. Based on dynamic

simulations, the design engineer estimates that the downward

forces the stretcher will exert will be no greater than 1.6 kN at A

and at B. What are the resulting axial forces in members CF, DF,

and FG?

6.16 Upon learning of an upgrade in the helicopter s engine, the

engineer designing the truss does new simulations and concludes

that the downward forces the stretcher will exert at A and at B

may be as large as 1.8 kN. What are the resulting axial forces in

members DE, DF, and DG?

6.17 Determine the axial forces in the members in terms of the

weight W.

6.14 If you don t want the members of the truss to be subjected

to an axial load (tension or compression) greater than 20 kN,

what is the largest acceptable magnitude of the downward

force F?

6.18 The lengths of the members of the truss are shown. The

mass of the suspended crate is 900 kg. Determine the axial forces

in the members.

12 m

12 m

5 m

13 m

13 m

C

D

B

A

40*

Problem 6.18
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Problems 267

6.19 The loads and Determine the

axial forces in members AE, BD, and CD.

6.20 The loads and Determine the

axial forces in members AB, AC, and BC.

F2 = 150 lb.F1 = 450 lb

F2 = 300 lb.F1 = 600 lb

F2

F1

D

A

B

C

4 ft

3 ft

G

E

6 ft

4 ft

Problems 6.19/6.20

A

B C D E G

I J K L M

H

L

F F F F F

L

L L L L L

Problem 6.24

C E

G

FD

HA

B

4 ft

4 ft

4 ft4 ft4 ft

12 kip

Problem 6.21

6 m6 m6 m6 m

A C E G I

B D F H

2 m

Problems 6.22/6.23

6.21 Determine the axial forces in members BC, CD, and CE of

the truss. 

6.24 The Pratt bridge truss supports five forces 

The dimension Determine the axial forces in members

BC, BI, and BJ.

L = 8 m.

1F = 300 kN2.

6.22 The Warren truss supporting the walkway is designed to

support vertical 50-kN loads at B, D, F, and H. If the truss is

subjected to these loads, what are the resulting axial forces in

members BC, CD, and CE?

6.23 For the Warren truss in Problem 6.22, determine the axial

forces in members DF, EF, and FG.

6.25 For the roof truss shown, determine the axial forces in

members AD, BD, DE, and DG. Model the supports at A and I as

roller supports.

A

B

C F

H

I

E

3 m 3 m 3 m 3 m 3 m 3 m

D G

6 kN
6 kN

8 kN
8 kN

10 kN

3.6 m

Problem 6.25

4 ft 4 ft 4 ft 4 ft 4 ft 4 ft

800 lb

8 ft

A

B

C

G

F

E

D

H I J K L

600 lb600 lb

400 lb400 lb

Problem 6.26

6.26 The Howe truss helps support a roof. Model the supports at

A and G as roller supports. Determine the axial forces in members

AB, BC, and CD.
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A B

C

D

2 ft

1000 lb

2000 lb

4 ft

5 ft 5 ft 5 ft

Problem 6.28

A B

C4 m

Obstacle

6 m 3.5 m 4.5 m
1 m

2 m
10 kN

Problem 6.29

A

B

C

A

B

C

3 kN

1.2 m

1.6 m

(a) (b)

3 kN

Problem 6.30

6.29 (a) Design a truss attached to the supports A and B that

goes over the obstacle and supports the load applied at C.

(b) Determine the axial forces in the members of the truss you

designed in (a).

6.30 Suppose that you want to design a truss supported at A and B

(Fig. a) to support a 3-kN downward load at C. The simplest design

(Fig. b) subjects member AC to a 5-kN tensile force. Redesign the

truss so that the largest tensile force is less than 3 kN.

* 6.31 The bridge structure shown in Example 6.2 can be given

a higher arch by increasing the 15 angles to 20 . If this is done,

what are the axial forces in members AB, BC, CD, and DE?

E

B D

400 N 800 N

A

C
2 m

(a) (b)

C

E

B D

400 N 800 N

A

500 N 700 N

Figure 6.12
(a) A Warren truss supporting two loads.

(b) Free-body diagram of the truss, showing

the reactions at the supports.

3.4 m3.4 m 3.4 m3.4 m

1.8 m

2.2 m A E
F G H

C
DB

a

Problem 6.27

6.27 The plane truss forms part of the supports of a crane on an

offshore oil platform. The crane exerts vertical 75-kN forces on

the truss at B, C, and D. You can model the support at A as a pin

support and model the support at E as a roller support that can

exert a force normal to the dashed line but cannot exert a force

parallel to it. The angle Determine the axial forces in

the members of the truss.

a = 45 .

6.28 (a) Design a truss attached to the supports A and B that

supports the loads applied at points C and D. (b) Determine the

axial forces in the members of the truss you designed in (a).

6.3 The Method of Sections

BACKGROUND

When we need to know the axial forces only in certain members of a truss, we

often can determine them more quickly using the method of sections than using

the method of joints. For example, let s reconsider the Warren truss we used

to introduce the method of joints (Fig. 6.12a). It supports loads at B and D,

and each member is 2 m in length. Suppose that we need to determine only the

axial force in member BC.
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6.3 The Method of Sections 269

B
D

E

A

C

800 N
400 N

500 N

700 N

TBC

B

A

y

60*

x
TAC

60*

TBD

400 N

500 N

Figure 6.13
Obtaining a free-body diagram of a section

of the truss.

Before beginning, it is usually

advantageous to draw the

free-body diagram of the

entire truss considered as a

single object and apply the

equilibrium equations to

determine the reactions at the 

supports.

Pass planes through enough

members to isolate a part, or

section, of the truss. In doing so,

attempt to pass planes through

members whose axial forces are

to be determined. Complete the

free-body diagram of the section

by showing the axial forces in the

members. Apply the equilibrium

equations to the free-body

diagram of the section.

F

A A

B D

E

C

B D

E

E

y

x

F

C

Ay

Ax

A

B D

E

E

y

x

F

C

Ay

Ax

TAC

TBC

TBD

A

B
y

Ay

Ax

Just as in the method of joints, we begin by drawing a free-body diagram of

the entire truss and determining the reactions at the supports. The results of this

step are shown in Fig. 6.12b. Our next step is to cut the members AC, BC, and

BD to obtain a free-body diagram of a part, or section, of the truss (Fig. 6.13).

Summing moments about point B, the equilibrium equations for the section are

Solving them, we obtain and 

Notice how similar this method is to the method of joints. Both methods in-

volve cutting members to obtain free-body diagrams of parts of a truss. In the

method of joints, we move from joint to joint, drawing free-body diagrams of

the joints and determining the axial forces in the members as we go. In the

method of sections, we try to obtain a single free-body diagram that allows us

to determine the axial forces in specific members. In our example, we obtained

a free-body diagram by cutting three members, including the one (member BC)

whose axial force we wanted to determine.

In contrast to the free-body diagrams of joints, the forces on the free-body

diagrams used in the method of sections are not usually concurrent, and as in

our example, we can obtain three independent equilibrium equations. Although

there are exceptions, it is usually necessary to choose a section that requires

cutting no more than three members, or there will be more unknown axial forces

than equilibrium equations.

RESULTS

The Method of Sections

When the axial forces in particular members of a truss must be determined, the

method of sections can often provide the needed results more efficiently than

the method of joints.

TBD = -346 N.TAC = 289 N, TBC = 115 N,

 Mpoint B = 12 sin 60  m2TAC - 12 cos 60  m21500 N2 = 0.

 Fy = 500 N - 400 N - TBC sin 60 = 0,

 Fx = TAC + TBD + TBC cos 60 = 0,
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270 Chapter 6 Structures in Equilibrium

Active Example 6.3 The Method of Sections (* Related Problem 6.32)

The horizontal members of the truss are each 1 m in length. Determine the axial

forces in members CD, CJ, and IJ.

A B C D E F

G H I J K L

100 kN

M

1 m

x

y

TCD

TCJ

TIJ

45

A B C D E F

G H I J K L
M

D E F

J K L
M

100 kN

100 kN

Pass planes through members

CD, CJ, and IJ and draw the free-

body diagram of the section.

Apply the equilibrium equations.

Fx  TCD  TCJ cos 45   TIJ  0,

Fy  TCJ sin 45   100 kN  0,

Mpoint J  (1 m)TCD  (3 m)(100 kN)  0.

Solving yields TCD  300 kN, TCJ  141 kN, 

and TIJ  400 kN. The axial loads are 

CD: 300 kN (T), CJ: 141 kN (T), 

IJ: 400 kN (C).

Practice Problem Use the method of sections to determine the axial forces in mem-

bers DE, DK, and JK of the truss.

Answer: DE: 200 kN (T), DK: 141 kN (T), JK: 300 kN (C).

Strategy
By passing planes through members CD, CJ, and IJ, we will obtain a section

from which we can obtain the desired axial forces.

Solution

BEDFMC06_0136129153.QXD  4/14/07  1:32 AM  Page 270
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K

L

L

D

L L L L

G J

IC

B E H

F F2F

A

D G J

F F2F

IC

B E H
A K

TDG

2F

D

F
B

A

TBE
2F

TBC

TCD

2F

(b) A section of the truss obtained by

passing planes through members

DG, CD, BC, and BE.

D G J

F F2F

IC

B E H
A K

KAy

Ax

(a) Free-body diagram of the

entire truss.

Example 6.4 Choosing an Appropriate Section (* Related Problem 6.33)

Determine the axial forces in members DG and BE of the truss.

Strategy
We can t obtain a section that involves cutting members DG and BE without

cutting more than three members. However, cutting members DG, BE, CD,

and BC results in a section with which we can determine the axial forces in

members DG and BE.

Solution
Determine the Reactions at the Supports We draw the free-body diagram

of the entire truss in Fig. a. From the equilibrium equations,

we obtain the reactions and 

Choose a Section

In Fig. b, we obtain a section by cutting members DG, CD, BC, and BE. Because

the lines of action of and pass through point B, we can determine

by summing moments about B:

The axial force Then, from the equilibrium equation

we see that Member DG is in compression, and member

BE is in tension.

Critical Thinking
This is a clever example, but not one that is typical of problems faced in prac-

tice. The section used to solve it might not be obvious even to a person with

experience analyzing structures. Notice that the free-body diagram in Fig. b is

statically indeterminate, although it can be used to determine the axial forces

in members DG and BE.

TBE = -TDG = F.

Fx = TDG + TBE = 0,

TDG = -F.

Mpoint B = -L12F2 - 12L2TDG = 0.

TDG

TCDTBE, TBC,

K = 2F.Ax = 0, Ay = 2F,

 Mpoint A = -LF - 12L212F2 - 13L2F + 14L2K = 0,

 Fy = Ay + K - F - 2F - F = 0,

 Fx = Ax = 0,
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272 Chapter 6 Structures in Equilibrium

Problems

* 6.32 In Active Example 6.3, use the method of sections to de-

termine the axial forces in members BC, BI, and HI.

* 6.33 In Example 6.4, obtain a section of the truss by passing

planes through members BE, CE, CG, and DG. Using the fact that

the axial forces in members DG and BE have already been deter-

mined, use your section to determine the axial forces in members

CE and CG.

6.34 The truss supports a 100-kN load at J. The horizontal

members are each 1 m in length.

(a) Use the method of joints to determine the axial force in

member DG.

(b) Use the method of sections to determine the axial force in

member DG.

6.35 The horizontal members are each 1 m in length. Use the

method of sections to determine the axial forces in members BC,

CF, and FG.

6.36 Use the method of sections to determine the axial forces in

members AB, BC, and CE.

6.37 Use the method of sections to determine the axial forces in

members DF, EF, and EG.

6.38 The Pratt bridge truss is loaded as shown. Use the method

of sections to determine the axial forces in members BD, BE,

and CE.

A B C D

E F G H

100 kN

J

1 m

Problems 6.34/6.35

A B

C

D

E

G

1 m 1 m 1 m

1 m

F

2F

Problem 6.36

A

B

C

D

E

F

G
H

300 mm

400 mm 400 mm 400 mm 400 mm

18 kN 24 kN

Problem 6.37

17 ft 17 ft 17 ft 17 ft

A

B D F

H

GEC

8 ft

10 kip 30 kip 20 kip

Problem 6.38
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A

B C D E G

I J K L M

H

LLL

F F F F F

L

LLL LLL LLLLLL LLL

Problems 6.41/6.42

6.39 The Howe bridge truss is loaded as shown. Use the method

of sections to determine the axial forces in members BD, CD,

and CE.

6.40 For the Howe bridge truss, use the method of sections to

determine the axial forces in members DF, DG, and EG.

6.41 The Pratt bridge truss supports five forces 

The dimension Use the method of sections to determine

the axial force in member JK.

6.42 For the Pratt bridge truss in Problem 6.41, use the method

of sections to determine the axial force in member EK.

L = 8 m.

F = 340 kN.

17 ft 17 ft 17 ft 17 ft

A

B D F

H

GEC

8 ft

10 kip 30 kip 20 kip

Problems 6.39/6.40

600 lb

D

E

3 ft

4 ft

4 ft

3 ft

A

C

B

Problem 6.44

6.43 The walkway exerts vertical 50-kN loads on the Warren

truss at B, D, F, and H. Use the method of sections to determine

the axial force in member CE.

6.44 Use the method of sections to determine the axial forces in

members AC, BC, and BD.

6 m6 m6 m6 m
A C E G I

B D F H

2 m

Problem 6.43
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6.51 The load and the dimension Use the

method of sections to determine the axial force in member HK.

Strategy: Obtain a section by cutting members HK, HI, IJ,

and JM. You can determine the axial forces in members HK and

JM even though the resulting free-body diagram is statically

indeterminate.

L = 2 m.F = 20 kN

A B C

D

H

K

G

J

M

E

I

F

F

L

L

L

L

L

Problem 6.51

2 m 2 m 2 m 2 m 2 m 2 m

2 kN

4 m

A

B

C

G

F

E

D

H I J K L

2 kN2 kN

2 kN2 kN

Problems 6.47/6.48

C E

G

FD

HA

B

4 ft

4 ft

4 ft4 ft4 ft

12 kip

Problem 6.49

6.47 The Howe truss helps support a roof. Model the supports

at A and G as roller supports.

(a) Use the method of joints to determine the axial force in

member BI.

(b) Use the method of sections to determine the axial force in

member BI.

6.48 Use the method of sections to determine the axial force in

member EJ.

6.49 Use the method of sections to determine the axial forces in

members CE, DE, and DF.

D F H J

I

200 kN 200 kN 200 kN 200 kN 200 kN

B

A

C

E

G

3 m
4 m

7 m

5 m 5 m 5 m 5 m

Problem 6.50

6.50 For the bridge truss shown, use the method of sections to

determine the axial forces in members CE, CF, and DF.

I

C

A

B D F

H

E G

400 mm 400 mm

6 kN 4 kN

400 mm400 mm

300 mm

300 mm

Problems 6.45/6.46

6.45 Use the method of sections to determine the axial forces in members FH, GH, and GI.

6.46 Use the method of sections to determine the axial forces in members DF, DG, and EG.
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6.4 Space Trusses 275

6.52 The weight of the bucket is The cable passes

over pulleys at A and D.

(a) Determine the axial forces in members FG and HI.

(b) By drawing free-body diagrams of sections, explain why the

axial forces in members FG and HI are equal.

6.53 The weight of the bucket is The cable passes

over pulleys at A and D. Determine the axial forces in members

IK and JL.

W = 1000 lb.

W = 1000 lb.

3 ft 6 in
3 ft

3 ft

3 ft 3 in

35*

L

J

H

F

C

K

I

G

E

B

AD

W

Problems 6.52/6.53

6.54 The truss supports loads at N, P, and R. Determine the axial

forces in members IL and KM.

6.55 Determine the axial forces in members HJ and GI.

6.56 By drawing free-body diagrams of sections, explain why

the axial forces in members DE, FG, and HI are zero.

2 m

2 m

2 m

2 m

1 m

6 m

2 m 2 m 2 m 2 m 2 m

K

I

M

L

O

N

Q

P
RJ

H

F

D

G

E

C

BA

1 kN 2 kN 1 kN

Problems 6.54 6.56

6.4 Space Trusses

BACKGROUND

We can form a simple three-dimensional structure by connecting six bars at

their ends to obtain a tetrahedron, as shown in Fig. 6.14a. By adding mem-

bers, we can obtain more elaborate structures (Figs. 6.14b and c). Three-

dimensional structures such as these are called space trusses if they have

joints that do not exert couples on the members (that is, the joints behave

like ball and socket supports) and they are loaded and supported at their joints.

Space trusses are analyzed by the same methods we described for two-

dimensional trusses. The only difference is the need to cope with the more

complicated geometry.

Consider the space truss in Fig. 6.15a. Suppose that the load

The joints A, B, and C rest on the smooth floor. JointF = -2i - 6j - k 1kN2.

(c)(a) (b)

Figure 6.14
Space trusses with 6, 9, and 12 members.
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x

z

y

F

A

B (2, 0, 3) m

D (2, 3, 1) m

C (4, 0, 0) m

(a)

xz

y

A

B (2, 0, 3) m

D (2, 3, 1) m

C (4, 0, 0) m

Ay

Ax

Az

Cy

Cz

By

F

(b)

F

4 kN

2 kN

1 kN

1 kN

1 kN

A

B

C

D

TCD

TAC

TBC

Cy * 1 kN

C

(c)

Figure 6.15

(a) A space truss supporting a load F.

(b) Free-body diagram of the entire truss.

(c) Obtaining the free-body diagram of 

joint C.

A is supported by the corner where the smooth walls meet, and joint C rests

against the back wall. We can apply the method of joints to this truss.

First we must determine the reactions exerted by the supports (the floor

and walls). We draw the free-body diagram of the entire truss in Fig. 6.15b. The

corner can exert three components of force at A, the floor and wall can exert two

components of force at C, and the floor can exert a normal force at B. Sum-

ming moments about A, we find that the equilibrium equations, with forces in

kN and distances in m, are

Solving these equations, we obtain the reactions 

and 

In this example, we can determine the axial forces in members AC, BC,

and CD from the free-body diagram of joint C (Fig. 6.15c). To write the equi-

librium equations for the joint, we must express the three axial forces in terms

of their components. Because member AC lies along the x axis, we express the

force exerted on joint C by the axial force as the vector Let be

the position vector from C to B:

Dividing this vector by its magnitude to obtain a unit vector that points from C

toward B yields

and we express the force exerted on joint C by the axial force as the vector

In the same way, we express the force exerted on joint C by the axial force 

as the vector

TCD1-0.535i + 0.802j + 0.267k2.

TCD

TBC eCB = TBC1-0.555i + 0.832k2.

TBC

eCB =
rCB

rCB

= -0.555i + 0.832k,

rCB = 12 - 42i + 10 - 02j + 13 - 02k = -2i + 3k 1m2.

rCB-TAC i.TAC

Cz = 0.Az = 1 kN, By = 1 kN, Cy = 1 kN,

Ax = 2 kN, Ay = 4 kN,

 +  12By + 4Cy - 62k = 0.

= (-3By + 32i + 1-4Cz2j

+  3

i j k

2 3 1

-2 -6 -1

3= 3

i j k

2 0 3

0 By 0

3 + 3

i j k

4 0 0

0 Cy Cz

3

Mpoint A = 1rAB * By j2 + [rAC * 1Cy j + Cz k2] + 1rAD * F2

 Fz = Az + Cz - 1 = 0,

 Fy = Ay + By + Cy - 6 = 0,

 Fx = Ax - 2 = 0,
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6.4 Space Trusses 277

Setting the sum of the forces on the joint equal to zero, we obtain

and then get the three equilibrium equations

Solving these equations, the axial forces are 

and Members AC and BC are in tension, and member CD

is in compression. By continuing to draw free-body diagrams of the joints, we

can determine the axial forces in all the members.

As our example demonstrates, three equilibrium equations can be obtained

from the free-body diagram of a joint in three dimensions, so it is usually nec-

essary to choose joints to analyze that are subjected to known forces and no

more than three unknown forces.

RESULTS

A space truss is a truss whose members are not coplanar. Axial forces in the

members of a statically determinate space truss can be determined by applying

the method of joints.

TCD = -1.247 kN.

TAC = 0.444 kN, TBC = 0.401 kN,

 Fz = 0.832TBC + 0.267TCD = 0.

 Fy = 0.802TCD + 1 kN = 0,

 Fx = -TAC - 0.555TBC - 0.535TCD = 0,

+TCD1-0.535i + 0.802j + 0.267k2 + 11 kN2j = 0,

-TAC i + TBC1-0.555i + 0.832k2

A

B

C

D

TCD

TAC

TBC

C

Before beginning, it is usually

necessary to draw the free-

body diagram of the entire

truss considered as a single

object and apply the

equilibrium equations to

determine the reactions at the

supports.

Isolate an individual joint by

passing planes through the

connected members. Complete

the free-body diagram by

showing the axial forces in the 

members. Apply the equilibrium

equation *F + 0 to the free-body

diagram of the joint. Repeat this

process for other joints until the

desired axial loads have been

determined.
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Active Example 6.5 Space Truss (* Related Problem 6.57)

The space truss has roller supports at B, C, and D and supports a vertical

1200-lb load at A. Determine the axial forces in members AD, BD, and CD.

1200 lb

B
D (10, 0, 0) ft

C (6, 0, 6) ft

A (5, 3, 2) ft

z

y

x

1200 lb

B
D

C

A

z

y

x

1200 lb

C

B

D

B
D (10, 0, 0) ft

C (6, 0, 6) ft

A (5, 3, 2) ft

z

y

x

Draw the free-body diagram

of the entire truss and apply

the equilibrium equations.

Solving yields B  440 lb, C  400 lb, and D  360 lb.

 (2400  6C )i  ( 6000  6C  10D )k  0.

Fy  B  C  D  1200 lb  0,

Mpoint B  rBA  [ 1200j (lb)]  rBC   Cj  rBD  Dj

 i         j       k

5        3       2

0   1200   0

 i         j       k

6        0       6

0        C      0

 i         j       k

10        0       0

0        D      0

Strategy
Wewill first draw a free-body diagramof the entire truss, treating it as a single ob-

ject, and determine the reactions at the supports. Thenwe can determine the axial

forces inmembersAD,BD, andCD by drawing the free-body diagramof jointD.

Solution
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6.4 Space Trusses 279

1200 lb

BBBBBBBB
DDDDDDDD (10, 0, 0) ft(1(((

A (5, 3, 2) ft

zzzzzz

y

x

360 lb

TCDTT

TBDT

TADT

D Draw the free-body

diagrams of joint D.

400 lb

444444444444440440440440 lb
bbbblblblblb0 l0 l0 l0 60 60606036036363636333

C ftft) ft) ft) ft6) ft6) ft6) ft6) ft 6) ft, 6) ft0, 6) ft0, 6) ft(6, 0, 6) ftC

Practice Problem Determine the axial forces in members AB and AC of the truss.

Answer: AB : 904 lb (C), AC: 680 lb (C).

Divide the position vector from D

to A by its magnitude to obtain a

unit vector eDA that points from D

toward A. Express the axial force

in member AD in terms of its

components by writing it as

TAD eDA. Express the axial forces

in members BD and CD in terms

of their components in the same

way.

rDA  5i  3j  2k (ft).

TAD eDA  TAD ( 0.811i  0.487j  0.324k),

eDA   0.811i  0.487j  0.324k.
rDA 

*rDA*

TBD eDB  TBD i,

TCD eDC  TCD ( 0.555i  0.832k).

Apply equilibrium.

TAD eDA  TBD eDB  TCD eDC  (360 lb)j  0.

Solving yields TAD  740 lb, TBD  440 lb,

and TCD  288 lb. The axial forces are AD: 740 lb (C), 

BD: 440 lb (T), CD: 288 lb (T).

The i, j, and k components of this equation must each

equal zero, resulting in the three equations

0.811TAD  TBD  0.555TCD   0,

0.487TAD  360 lb  0,

0.324TAD  0.832TCD  0.
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B
(1, 0, 0) m

A
(1.1, *0.4, 0) m

0.4 m

0.6 m

y

x

z

E  (0, 0.8, 0) m

C

D

F

Problems 6.63/6.64

800 lb

B
D (6, 0, 0) ft

C (5, 0, 6) ft

A (4, 3, 4) ft

z

y

x

Problem 6.62

6.62 The space truss has roller supports at B, C, and D and supports

a vertical 800-lb load at A. What are the axial forces in members AB,

AC, and AD?

6.63 The space truss shown models an airplane s landing gear.

It has ball and socket supports at C, D, and E. If the force exerted

at A by the wheel is what are the axial forces in

members AB, AC, and AD?

6.64 If the force exerted at point A of the truss in Problem 6.63

is what are the axial forces in

members BC, BD, and BE?

F = 10i + 60j + 20k 1kN2,

F = 40j 1kN2,

x

y

z

B

A

D

C

E

Problem 6.65

6.65 The space truss is supported by roller supports on the hori-

zontal surface at C and D and a ball and socket support at E. The 

y axis points upward. The mass of the suspended object is 120 kg.

The coordinates of the joints of the truss are A: (1.6, 0.4, 0) m, B:

C: (0.9, 0, 0.9) m, D: and E:

(0, 0.8, 0) m. Determine the axial forces in members AB, AC,

and AD.

10.9, 0, -0.62 m,11.0, 1.0, -0.22 m,

B (5, 0, 3) m

Ay
Ax

Az

Cy

Cz

By

C (6, 0, 0) m

D (4, 3, 1) m

10 kN

z

y

x

A

Problems 6.58/6.59

Problems

* 6.57 In Active Example 6.5, draw the free-body diagram of

joint B of the space truss and use it to determine the axial forces

in members AB, BC, and BD.

6.58 The space truss supports a vertical 10-kN load at D. The

reactions at the supports at joints A, B, and C are shown. What

are the axial forces in members AD, BD, and CD?

6.59 The reactions at the supports at joints A, B, and C are

shown. What are the axial forces in members AB, AC, and AD?

F

A

B

C

D

Problems 6.60/6.61

6.60 The space truss supports a vertical load F at A. Each

member is of length L, and the truss rests on the horizontal surface

on roller supports at B, C, and D. Determine the axial forces in

members AB, AC, and AD.

6.61 For the truss in Problem 6.60, determine the axial forces in

members AB, BC, and BD.
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Problems 281

6.66 The free-body diagram of the part of the construction crane to

the left of the plane is shown. The coordinates (in meters) of the

joints A, B, andC are (1.5, 1.5, 0), (0, 0, 1), and respec-

tively. The axial forces and are parallel to the x axis. The

axial forces and point in the directions of the unit vectors

The total force exerted on the free-body diagram by the weight of

the crane and the load it supports is acting at

the point What is the axial force 

Strategy: Use the fact that the moment about the line that

passes through joints A and B equals zero.

6.67 In Problem 6.66, what are the axial forces and 

Strategy: Write the equilibrium equations for the entire

free-body diagram.

P5?P1, P4,

P3?1-20, 0, 02 m.

-Fj = -44j 1kN2

 e6 = 0.832i - 0.555k.

 e5 = 0.640i - 0.640j + 0.426k,

 e4 = 0.640i - 0.640j - 0.426k,

P6P4, P5,

P3P1, P2,

10, 0, -12,

y

x

z

P1

A

B

F

C
P4

P5

P3P6
P2

Problems 6.66/6.67

Mirror housing

A

B

CG

E

D

F

4 m

1 m

x

z

y

a

A FD

B C

E

60*

60* 60*

60*

60*60*

G

END VIEW
y

x

Problems 6.68/6.69

6.68 The mirror housing of the telescope is supported by a

6-bar space truss. The mass of the housing is 3 Mg (megagrams),

and its weight acts at G. The distance from the axis of the

telescope to points A, B, and C is 1 m, and the distance from

the axis to points D, E, and F is 2.5 m. If the telescope axis is

vertical what are the axial forces in the members of

the truss?

6.69 Consider the telescope described in Problem 6.68. Deter-

mine the axial forces in the members of the truss if the angle 

between the horizontal and the telescope axis is 20 .

a

1a = 90 2,
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282 Chapter 6 Structures in Equilibrium

Figure 6.16
The internal structure of a person and a car s frame are not trusses.

6.5 Frames and Machines

BACKGROUND

Many structures, such as the frame of a car and the human structure of bones,

tendons, and muscles (Fig. 6.16), are not composed entirely of two-force

members and thus cannot be modeled as trusses. In this section we consider

structures of interconnected members that do not satisfy the definition of a

truss. Such structures are called frames if they are designed to remain sta-

tionary and support loads and machines if they are designed to move and

apply loads.

When trusses are analyzed by cutting members to obtain free-body diagrams

of joints or sections, the internal forces acting at the cuts  are simple axial forces

(see Fig. 6.4). This is not generally true for frames or machines, and a different

method of analysis is necessary. Instead of cutting members, we isolate entire

members, or in some cases combinations of members, from the structure.

To begin analyzing a frame or machine, we draw a free-body diagram of

the entire structure (that is, treat the structure as a single object) and determine

the reactions at its supports. In some cases the entire structure will be statically

indeterminate, but it is helpful to determine as many of the reactions as possible.

We then draw free-body diagrams of individual members, or selected combi-

nations of members, and apply the equilibrium equations to determine the forces

and couples acting on them. For example, consider the stationary structure in
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Fig. 6.17. Member BE is a two-force member, but the other three members

ABC, CD, and DEG are not. This structure is a frame. Our objective is to de-

termine the forces on its members.

Analyzing the Entire Structure

We draw the free-body diagram of the entire frame in Fig. 6.18. It is statically

indeterminate: There are four unknown reactions, and whereas

we can write only three independent equilibrium equations. However, notice

that the lines of action of three of the unknown reactions intersect at A. Sum-

ming moments about A yields

and we obtain the reaction Then, from the equilibrium equation

we obtain the reaction Although we cannot determine or 

from the free-body diagram of the entire structure, we can do so by analyzing

the individual members.

Analyzing the Members

Our next step is to draw free-body diagrams of the members. To do so, we treat

the attachment of a member to another member just as if it were a support.

Looked at in this way, we can think of each member as a supported object of the

kind analyzed in Chapter 5. Furthermore, the forces and couples the members

exert on one another are equal in magnitude and opposite in direction. A simple

GyAyAx = -13 kN.

Fx = Ax + Gx + 8 kN = 0,

Gx = 5 kN.

Mpoint A = 12 m2Gx + 11 m218 kN2 - 13 m216 kN2 = 0,

Gy,Ax, Ay, Gx,

6.5 Frames and Machines 283

8 kN

EG
D

1 m 1 m 1 m

1 m

1 m

A B C

6 kN

Figure 6.17
A frame supporting two loads.

A B C

6 kN

8 kN

EG D

1 m 1 m 1 m

1 m

1 m

A B C

6 kN

8 kN

EG D

3 m

1 m

2 m

Ay

Ax

Gx

Gy

Figure 6.18
Obtaining the free-body diagram of the

entire frame.
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demonstration is instructive. If you clasp your hands as shown in Fig. 6.19a and

exert a force on your left hand with your right hand, your left hand exerts an

equal and opposite force on your right hand (Fig. 6.19b). Similarly, if you exert

a couple on your left hand, your left hand exerts an equal and opposite couple

on your right hand.

In Fig. 6.20 we disassemble  the frame and draw free-body diagrams

of its members. Observe that the forces exerted on one another by the mem-

bers are equal and opposite. For example, at point C on the free-body diagram

of member ABC, the force exerted by member CD is denoted by the components

284 Chapter 6 Structures in Equilibrium

(a)

F

F

(b)

Figure 6.19

Demonstrating Newton s third law:

(a) Clasp your hands and pull on your left hand.

(b) Your hands exert equal and opposite forces.

A

Ay

Ax

B

T Cy

C

Cx

6 k N

A

Ay

Ax

B
C

6 kN

CCx

8 kN8 kN

EG D

Gy

Gx

E

T

B

T

G

Gy

Gx E D

Dy

Dx

T

Cy

Dy

DDx

Figure 6.20

Obtaining the free-body diagrams of the members.
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and The forces exerted by member ABC on member CD at point C must

be equal and opposite, as shown.

We need to discuss two important aspects of these free-body diagrams

before completing the analysis.

Two-Force Members Member BE is a two-force member, and we have

taken this into account in drawing its free-body diagram in Fig. 6.20. The force 

T is the axial force in member BE, and an equal and opposite force is subjected

on member ABC at B and on member GED at E.

Recognizing two-force members in frames and machines and drawing their

free-body diagrams as we have done will reduce the number of unknowns and

will greatly simplify the analysis. In our example, if we did not treat member

BE as a two-force member, its free-body diagram would have four unknown

forces (Fig. 6.21a). By treating it as a two-force member (Fig. 6.21b), we reduce

the number of unknown forces by three.

Loads Applied at Joints A question arises when a load is applied at a joint:

Where does the load appear on the free-body diagrams of the individual mem-

bers? The answer is that you can place the load on any one of the members

attached at the joint. For example, in Fig. 6.17, the 6-kN load acts at the joint

where members ABC and CD are connected. In drawing the free-body diagrams

of the individual members (Fig. 6.20), we assumed that the 6-kN load acted on

member ABC. The force components and on the free-body diagram of

member ABC are the forces exerted by the member CD.

To explain why we can draw the free-body diagrams in this way, let us as-

sume that the 6-kN force acts on the pin connecting members ABC and CD,

and draw separate free-body diagrams of the pin and the two members (Fig.

6.22a). The force components and are the forces exerted by the pin on

member ABC, and and are the forces exerted by the pin on member CD.

If we superimpose the free-body diagrams of the pin and member ABC, we

obtain the two free-body diagrams in Fig. 6.22b, which is the way we drew

them in Fig. 6.20. Alternatively, by superimposing the free-body diagrams of the

pin and member CD, we obtain the two free-body diagrams in Fig. 6.22c.

Thus if a load acts at a joint, it can be placed on any one of the members

attached at the joint when drawing the free-body diagrams of the individual

members. Just make sure not to place it on more than one member.

CyCx

C*

yC*

x

CyCx

Cy.Cx
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E

T

B

T

E

B

By

Bx

Ex

Ey

(a) (b)

Figure 6.21
Free-body diagram of member BE:

(a) Not treating it as a two-force member.

(b) Treating it as a two-force member.

C*x

C*x

Cx

Cx

C*y

C*y Cy

Cy

6 kN

(a)

6 kN

(b)

6 kN

Cy Cy

CxCx

 

(c)

6 kN

C*y

C*x C*x

C*y

Figure 6.22
(a) Drawing free-body diagrams of the pin

and the two members.

(b) Superimposing the pin on member ABC.

(c) Superimposing the pin on member CD.
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286 Chapter 6 Structures in Equilibrium

To detect errors in the free-body diagrams of the members, it is helpful

to reassemble  them (Fig. 6.23a). The forces at the connections between the

members cancel (they are internal forces once the members are reassembled),

and the free-body diagram of the entire structure is recovered (Fig. 6.23b).

Our final step is to apply the equilibrium equations to the free-body dia-

grams of the members (Fig. 6.24). In two dimensions, we can obtain three in-

dependent equilibrium equations from the free-body diagram of each member

of a structure that we do not treat as a two-force member. (By assuming that

the forces on a two-force member are equal and opposite axial forces, we have

already used the three equilibrium equations for that member.) In this example,

there are three members in addition to the two-force member, so we can write

independent equilibrium equations, and there are nine unknown

forces: and T.

Recall that we determined that and from our

analysis of the entire structure. The equilibrium equations we obtained from the

free-body diagram of the entire structure are not independent of the equilibrium

Gx = 5 kNAx = -13 kN

Ax, Ay, Cx, Cy, Dx, Dy, Gx, Gy,

3 * 3 = 9

A

Ay

Ax

B

T Cy

C

Cx

6 kN

A
Ay

Ax

B
T

T

T

C

Cx
Cy

Cx
Cy

6 kN

CCx

8 kN8 kN

E
T

G D Dx
Dx

Dy

Dy
Gy

Gx

E

T

B

T

G

Gy

Gx E D

Dy

Dx

T

Cy

Dy

D
Dx

A B C

6 kN

8 kN

EG D

Ay

Ax

Gx

Gy

(a)

(b)

Figure 6.23

(a) Reassembling the free-body diagrams of the individual members.

(b) The free-body diagram of the entire frame is recovered.
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equations obtained from the free-body diagrams of the members, but by using

them to determine and we get a head start on solving the equations for

the members. Consider the free-body diagram of member ABC (Fig. 6.24a).

Because we know we can determine from the equation

obtaining Now consider the free-body diagram of GED

(Fig. 6.24b). We can determine from the equation

obtaining Now consider the free-body diagram of mem-

ber CD (Fig. 6.24c). Because we know we can determine by summing

moments about D:

We obtain Then, from the equation

we find that Now we can return to the free-body dia-

grams of members ABC and GED to determine and Summing moments

about point B of member ABC yields

Mpoint B = -11 m2Ay + 12 m2Cy - 12 m216 kN2 = 0,

Gy.Ay

Dy = -Cy = -18 kN.

Fy = -Cy - Dy = 0,

Cy = 18 kN.

Mpoint D = 12 m2Cx - 11 m2Cy - 11 m218 kN2 = 0.

CyCx,

Dx = -Gx = -5 kN.

Fx = Gx + Dx = 0,

Dx

Cx = -Ax = 13 kN.

Fx = Ax + Cx = 0,

CxAx,

Gx,Ax

A

Ay

Ax

B

T Cy

C

Cx

6 kN

(a)

G

Gy

Gx E D

Dy

Dx

T

(b)

Cy

C
Cx

8 kN

Dy

D

Dx

(c)

1 m 2 m 1 m 1 m

1 m

1 m

1 m

Figure 6.24

Free-body diagrams of the members.
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A B C

6 kN

C

8 kN

D

E

B

G E D

5 kN

18 kN

18 kN

13 kN

13 kN

18 kN36 kN

13 kN

24 kN

36 kN

36 kN

5 kN

36 kN

18 kN 18 kN

5 kN

Figure 6.25

Forces on the members of the frame.

and we obtain Then, summing moments about

point E of member GED, we have

from which we obtain Finally, from the free-body dia-

gram of member GED, we use the equilibrium equation

which gives us the result The forces on the mem-

bers are shown in Fig. 6.25. As this example demonstrates, determination of

the forces on the members can often be simplified by carefully choosing the

order in which the equations are solved.

We see that determining the forces and couples on the members of frames

and machines involves two steps:

1. Determine the reactions at the supports Draw the free-body diagram of

the entire structure, and determine the reactions at its supports. Although

this step is not essential, it can greatly simplify your analysis of the mem-

bers. If the free-body diagram is statically indeterminant, determine as

many of the reactions as possible.

2. Analyze the members Draw free-body diagrams of the members, and

apply the equilibrium equations to determine the forces acting on them.

You can simplify this step by identifying two-force members. If a load acts

at a joint of the structure, you can place the load on the free-body diagram

of any one of the members attached at that joint.

RESULTS

A structure of interconnected members that cannot be modeled as a truss is called

a frame if it is designed to remain stationary and support loads and a machine if

it is designed to move and apply loads. The forces and couples acting on the in-

dividual members of a frame or machine in equilibrium can often be determined

by applying the equilibrium equations to the individual members.

T = -Dy - Gy = 36 kN.

Fy = Dy + Gy + T = 0,

Gy = Dy = -18 kN.

Mpoint E = 11 m2Dy - 11 m2Gy = 0,

Ay = 2Cy - 12 kN = 24 kN.
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A

B

C

D

E

F

A

B

C

D

E

F

It is often advantageous to begin by drawing the free-body diagram of

the entire structure considered as a single object and applying the

equilibrium equations. Even if the free-body diagram of the entire

structure is statically indeterminate, it may be possible to determine the

reactions from the subsequent analysis of the individual members.

Cx

Cy E

Draw the free-body diagrams of the individual members and apply the equilibrium

equations to them. Notice that where two members are connected, the reactions they

exert on each other are equal and opposite. Notice that member BD is a two-force

member. Recognizing two-force members will simplify the analysis of a structure.

A

A

B

CC

D

B D

TT

EF
F

T

T

E

Cx

Ay

Ax

Ay

Ax

Cy

Cx

E

Cy

A

D

E

BEDFMC06_0136129153.QXD  4/14/07  1:32 AM  Page 289



290 Chapter 6 Structures in Equilibrium

400 mm

600 mm

C

200 N-m

400 mm

A B

BA

C

Ay

C

Ax

MA

400 mm

200 N-m

1000 mm

Draw the free-body diagram

of the entire frame and apply

the equilibrium equations.

Fx  Ax  0,

Fy  Ay  C  0,

Mpoint A  MA  200 N-m  (1.0 m)C  0.

The reaction Ax  0, but Ay, C, and MA

cannot be determined from these equations. The

free-body diagram of the entire frame is statically

indeterminate.

Active Example 6.6 Analyzing a Frame (* Related Problem 6.70)

Determine the forces and couples acting on the members of the frame.

Strategy
We will first draw a free-body diagram of the entire frame, treating it as a sin-

gle object, and attempt to determine the reactions at the supports. We will then

draw free-body diagrams of the individual members and apply the equilibrium

equations to determine the forces and couples acting on them.

Solution
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200 N-m

C

C

C

By

Bx

A B

Bx

By

C

200 N-m

Ay

Ax

MA

A B B

Ay

Ax

MA

600 mm

400 mm

400 mm

Draw the free-body

diagrams of the

individual members.

Apply equilibrium to member BC.

Fx  Bx  0,

Fy  By  C  0,

Mpoint B  200 N-m  (0.4 m)C  0.

Solving yields Bx  0, By  500 N, and

C  500 N.

Apply equilibrium to member AB.

Fx  Ax  Bx  0,

Fy  Ay  By  0,

Mpoint A  MA  (0.6 m)By  0.

Because Ax, Bx, and By have

already been determined, these

equations can be solved for Ay and

MA. The results are Ay  500 N

and MA  300 N-m, which

completes the solution.

Practice Problem The frame has pin supports at A and C. Determine the forces and

couples acting on member BC at B and C.

400 mm

600 mm

C

200 N-m

400 mm

A
B

Answer: Bx  500 N, By  0, Cx  500 N, Cy  0. (In the statements of the answers, x
components are positive to the right and y components are positive upward.)
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8 in
8 in

C

6 in

6 in

6 in

W

E

D

B

A

3 in

G

Example 6.7 Determining Forces on Members of a Frame (* Related Problem 6.74)

The frame supports a suspended weight Determine the forces on

members ABCD and CEG.

W = 40 lb.

Strategy
We will draw a free-body diagram of the entire frame and attempt to determine

the reactions at the supports. We will then draw free-body diagrams of the in-

dividual members and use the equilibrium equations to determine the forces

and couples acting on them. In doing so, we can take advantage of the fact that

the bar BE is a two-force member.

Solution

Determine the Reactions at the Supports We draw the free-body diagram

of the entire frame in Fig. a. From the equilibrium equations

we obtain the reactions and 

Analyze the Members We obtain the free-body diagrams of the members

in Fig. b. Notice that BE is a two-force member. The angle 

The free-body diagram of the pulley has only two unknown forces. From

the equilibrium equations

we obtain and There are now only three unknown forces

on the free-body diagram of member CEG. From the equilibrium equations

we obtain and completing the solu-

tion (Fig. c).

R = -133.3 lb,Cx = 66.7 lb, Cy = 40 lb,

Mpoint C = -18 in2R sin a - 116 in2140 lb2 = 0,

 Fy = -Cy - R sin a - 40 lb = 0,

 Fx = -Cx - R cos a - 40 lb = 0,

Gy = 40 lb.Gx = 40 lb

 Fy = Gy - 40 lb = 0,

 Fx = Gx - 40 lb = 0,

arctan16>82 = 36.9 .

a =

D = 42.2 lb.Ax = 42.2 lb, Ay = 40 lb,

Mpoint A = 118 in2D - 119 in2140 lb2 = 0,

 Fy = Ay - 40 lb = 0,

 Fx = Ax - D = 0,

Ay

G

D

B

19 in

E
18 in

D

C

Ax
40 lbA

(a) Free-body diagram of the entire frame.
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D 42.2 lb

42.2 lb

40 lb

A

B

66.7 lb

133.3 lb 40 lb

40 lb

GEC

36.9*

66.7 lb

133.3 lb
40 lb

36.9*

40 lb

40 lb

C

(c) Forces on members ABCD and CEG.

Gx

Gy

Cx

Cy
Gy

Gx

Cx

Cy

8 in

6 in

E

R

R

B

A

C

40 lb

B

E

42.2 lb

42.2 lb

40 lb

40 lb

40 lb

3 in

8 in 8 in

D

R

GEC

D

6 in

6 in

6 in

R

42.2 lb

42.2 lb

40 lb

A

40 lb

B

C
G

a

a

a

(b) Obtaining the free-body diagrams of the members.

Critical Thinking

In problems of this kind, the reactions on the individual members of the frame can

be determined from the free-body diagrams of the members. Why did we draw the

free-body diagram of the entire frame and solve the associated equilibrium equa-

tions? The reason is that it gave us a head start on solving the equilibrium equations

for the members. In this example, when we drew the free-body diagrams of the

members we already knew the reactions at A and D, which simplified the remain-

ing analysis. Analyzing the entire frame can also provide a check on your work.

Notice that we did not use the equilibrium equations for member ABCD. We can

check our analysis by confirming that this member is in equilibrium (Fig. c):

-  115 in2140 lb2 + 118 in2142.2 lb2 = 0.

Mpoint A = 16 in21133.3 cos 36.9  lb2 - 112 in2166.7 lb2

 Fy = 40 lb - 133.3 sin 36.9  lb + 40 lb = 0,

 Fx = 42.2 lb - 133.3 cos 36.9  lb + 66.7 lb + 40 lb - 42.2 lb = 0,
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150 N

70 mm
30 mm30 mm

30 mm

30 mm

B
D

150 N

A

C

E

Example 6.8 Analyzing a Machine (* Related Problem 6.103)

What forces are exerted on the ball at E as a result of the 150-N forces on the

pliers?

Strategy
A pair of pliers is a simple example of a machine, a structure designed to move

and exert forces. The interconnections of the members are designed to create a

mechanical advantage, subjecting an object to forces greater than the forces

exerted by the user.

In this case there is no information to be gained from the free-body diagram

of the entire structure. We must determine the forces exerted on the ball by

drawing free-body diagrams of the members.

Solution
We disassemble  the pliers in Fig. a to obtain the free-body diagrams of the

members, labeled (1), (2), and (3). The force R on free-body diagrams (1) and (3)

is exerted by the two-force member AB. The angle 

Our objective is to determine the force E exerted by the ball.

The free-body diagram of member (3) has only three unknown forces and

the 150-N load, so we can determine R, and from this free-body diagram

alone. The equilibrium equations are

Solving these equations, we obtain and

Knowing we can determine E from the free-body diagram of

member (2) by summing moments about C:

The force exerted on the ball by the pliers is The

mechanical advantage of the pliers is 11517 N2>1150 N2 = 10.1.

E = -Dx = 1517 N.

Mpoint C = -130 mm2E - 130 mm2Dx = 0.

Dx,R = 1650 N.

Dx = -1517 N, Dy = 500 N,

 Mpoint B = 130 mm2Dy - 1100 mm21150 N2 = 0.

 Fy = Dy - R sin a + 150 N = 0,

 Fx = Dx + R cos a = 0,

DyDx,

a = arctan130>702 = 23.2 .
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Critical Thinking
What is the motivation for determining the reactions on the members of the

pliers? This process is essential for machine and tool design. To design the

configuration of the pliers and choose the materials and dimensions of its

members, it is necessary to determine all the forces acting on the members,

as we have done in this example. Once the forces are known, the methods of

mechanics of materials can be used to assess the adequacy of the members

to support them.

100 mm

150 N

150 N

150 N

150 N
R

B D

Cx

Cx

Cy

Cy

C

E
D

Dx

Dx

Dy

Dy

30
mm

30
mm

30
mm

30
mm

30
 mm

100 mm

R

E

C

A

A
C

DB

(2)

(1)

(3)

*

*

*

(a) Obtaining the free-body diagrams of the members.

Problems

Assume that objects are in equilibrium. In the state-

ments of the answers, x components are positive to

the right and y components are positive upward.

* 6.70 In Active Example 6.6, suppose that in addition to

being loaded by the 200 N-m couple, the frame is subjected to a

400-N force at C that is horizontal and points toward the left.

Draw a sketch of the frame showing the new loading. Determine

the forces and couples acting on member AB of the frame.

3 ft

5 ft

6 ft4 ft

A

B C

D

E

Problem 6.71

6.71 The object suspended at E weighs 200 lb. Determine the

reactions on member ACD at A and C.
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6 in

6 in

300 lb

D

G

8 in
8 in

E

A
B

C

(1)

6 in

6 in

300 lb

D

G

8 in
8 in

E

A
B

C

(2)

Problem 6.75

A

B E

D

C

F G

400 mm 400 mm 400 mm800 mm

200 mm

800 mm

Problem 6.72

1 m 1 m 2 m 1 m
A

D

B

C

E G

F

Problem 6.73

6.72 The mass of the object suspended at G is 100 kg. Determine the reactions on member CDE at C and E.

6.73 The force Determine the forces on member

ABC, presenting your answers as shown in Fig. 6.25.

F = 10 kN.

* 6.74 In Example 6.7, suppose that the frame is redesigned so

that the distance from point C to the attachment point E of the

two-force member BE is increased from 8 in to 10 in. Determine

the forces acting at C on member ABCD.

6.75 The tension in cable BD is 500 lb. Determine the reactions

at A for cases (1) and (2).
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C

D

BA

100 lb

E

400 lb2 ft

1 ft

1 ft

2 ft 2 ft 2 ft

Problem 6.77

0.6 m0.6 m

E

D

BA

C

1.65 m

0.42 m

Problem 6.78

A B C

D

E

200 mm 200 mm

300 mm

mm

mm

Problem 6.80

B

C

0.4 m

0.4 m600 N

0.6 m 0.4 m 0.4 m

E

A

D

Problem 6.76

C

0.4 m 1.0 m 6 kN

0.4 m0.8 m

F

A B

D E

0.5 m

Problem 6.79

6.76 Determine the reactions on member ABCD at A, C, and D.

6.77 Determine the forces exerted on member ABC at A and C.

6.78 An athlete works out with a squat thrust machine. To rotate

the bar ABD, she must exert a vertical force at A that causes the

magnitude of the axial force in the two-force member BC to be

1800 N. When the bar ABD is on the verge of rotating, what are

the reactions on the vertical bar CDE at D and E?

6.79 The frame supports a 6-kN vertical load at C. The bars ABC

and DEF are horizontal. Determine the reactions on the frame at A

and D.

6.80 The mass Determine the forces on member

ABC, presenting your answers as shown in Fig. 6.25.

m = 120 kg.

6.81 Determine the reactions on member BCD.

C

E

A
B

D F

8 in.

8 in.

18 in. 12 in.
8 in.

30 lb

40 lb

G

8 in.

Problem 6.81
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6.82 The weight of the suspended object is Deter-

mine the tension in the spring and the reactions at F. (The slotted

member DE is vertical.)

W = 50 lb.

200 mm

100 mm

200 mm

200 mm

400 mm

A

C
D

B
E

m

Problem 6.87

E

8 in

11 in 12 in
5 in

3 in

F

W

A C DB

Problem 6.88

6.87 The mass Determine the forces on member CDE.m = 12 kg.

6.88 The weight Determine the forces on member

ABCD.

W = 80 lb.

A

400 lb

4 ft

4 ft

8 ft

D

B

E

C

6 ft

Problem 6.84

D C

E

A B

1 m

1 m

6 kN

2 m 2 m

1 m

Problem 6.85

8 in

8 in 8 in

60 lb 60 lb

8 in

8 in

A

C D

B

E

Problem 6.86

6.83 The mass Bar DE is horizontal. Determine the

forces on member ABCD, presenting your answers as shown in

Fig. 6.25.

m = 50 kg.

6.84 Determine the forces on member BCD.

6.85 Determine the forces on member ABC.

6.86 Determine the forces on member ABD.

A
F

D E

B

C

m

1 m1 m

1 m

1 m

1 m

Problem 6.83

A

8 in 8 in 10 in 10 in

10 in

6 in

4 in

B

W

E

C

D
F

Problem 6.82
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D E
0.2 m

0.6 m0.8 m

0.2 m

C

0.6 m

A B

m

Problem 6.91

E F

80 lb

A
B

D
2 ft 2 in

60*

2 ft

C

1 ft 6 in

6 ft

9 in

Problem 6.89

E

B
C

DA

9 in

8 in

4 in13 in

80 lb

Problem 6.90

6.89 The woman using the exercise machine is holding the 80-lb

weight stationary in the position shown. What are the reactions at

the fixed support E and the pin support F? (A and C are pinned

connections.)

6.90 Determine the reactions on member ABC at A and B.

6.91 The mass of the suspended object is Determine

the reactions on member ABC.

m = 50 kg.

6.92 The unstretched length of the spring is Show that when

the system is in equilibrium the angle satisfies the relation

sin a = 21L0 - 2F>k2>L.

a

L0.

6.93 The pin support B will safely support a force of 24-kN mag-

nitude. Based on this criterion, what is the largest mass m that the

frame will safely support?

k

F

a a

1

2
L

1

4
L

1

4
L

Problem 6.92

500 mm

100 mm

300 mm

m

300 mm 400 mm 400 mm

D
E

C

A

B

F

Problem 6.93
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3 in 6 in 4 in

20 in

A

20 lb

20 lb

B

Problem 6.97

20 N

20 N

C

45*

25 mm 80 mm

B

50 mm

6.97 Determine the force exerted on the ball by the bolt cutters

and the magnitude of the axial force in the two-force member AB.

6.98 The woman exerts 20-N forces to the pliers as shown.

(a) What is the magnitude of the forces the pliers exert on the

bolt at B?

(b) Determine the magnitude of the force the members of the

pliers exert on each other at the pinned connection C.

Problem 6.98

3 ft

A

72 ft-lb

36 lb

C

B

3 ft

8 ft4 ft

18 lb

Problem 6.94

400 N

200 N

C

D

130 mm

400 mm

400 mm

B
A

400 mm

Problem 6.95

B

A

C

D

E

FG

J

H

I W

W

W

b b b b

a a

a a

Problem 6.96

6.94 Determine the reactions at A and C.

6.95 Determine the forces on member AD.

6.96 The frame shown is used to support high-tension wires. If

and what is the axial force in

member HJ?

W = 200 lb,b = 3 ft, a = 30 ,
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(a)

A

B

C

290 
mm 

50
mm 

150 mm

9 N

200 mm

m

(b)

Problem 6.99

40 cm

72 cm

8
cm

10
cm

8
cm

A

N

B

C
D

E
F

6 cm
6 cm
6 cm

3 cm

(a) (b)

Problem 6.100

6.101 The pressure force exerted on the piston is 2 kN toward

the left. Determine the couple M necessary to keep the system in

equilibrium.

6.102 In Problem 6.101, determine the forces on member AB

at A and B.

6.99 Figure a is a diagram of the bones and biceps muscle of a

person s arm supporting a mass. Tension in the biceps muscle

holds the forearm in the horizontal position, as illustrated in the

simple mechanical model in Fig. b. The weight of the forearm is

9 N, and the mass 

(a) Determine the tension in the biceps muscle AB.

(b) Determine the magnitude of the force exerted on the upper

arm by the forearm at the elbow joint C.

m = 2 kg.

6.100 The bones and tendons in a horse s rear leg are shown in

Fig. a. A biomechanical model of the leg is shown in Fig. b. If the

horse is stationary and the normal force exerted on its leg by the

ground is determine the tensions in the superficial

digital flexor BC and the patellar ligament DF. 

N = 1200 N,

A

B

M C

400 mm

350 mm300 mm

45*

Problems 6.101/6.102

* 6.103 In Example 6.8, suppose that the object being held by

the pliers is moved to the left so that the horizontal distance from

D to the object at E decreases from to . Draw a

sketch of the pliers showing the new position of the object. What

forces are exerted on the object at E as a result of the 150-N forces

on the pliers?

20 mm30 mm
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6.104 The shovel of the excavator is supported by a pin support at E and the two-force member BC. The 300-lb weight W of the shovel

acts at the point shown. Determine the reactions on the shovel at E and the magnitude of the axial force in the two-force member BC.

6.105 The shovel of the excavator has a pin support at E. The position of the shovel is controlled by the horizontal hydraulic piston

AB, which is attached to the shovel through a linkage of the two-force members BC and BD. The 300-lb weight W of the shovel acts at

the point shown. What is the magnitude of the force the hydraulic piston must exert to hold the shovel in equilibrium?

W

12 in

15 in

3 in

Shovel

Hydraulic
cylinder

12 in
C

B
A

D

E

7 in 20 in

Problems 6.104/6.105

BA
C

D

E

25 mm25 mm36 mm

65 mm
20 N

20 N

Problem 6.106

6.106 The woman exerts 20-N forces on the handles of the shears. Determine the magnitude of the forces exerted on the branch at A.
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A B

E

D

C

50 mm 30 mm 75 mm

8 mm 40 mm

40 N

40 N

Problems 6.107/6.108

A

90*

250 m
m

2
5
0
 m

m

250 m
m

B

D

C E

400 mm

a

Problem 6.109

A

C

B

D E

b

h

W

Problem 6.110

0.7 m

0.15 m

0.2 m

0.15 m

0.2 m

0.2 m

0.3 m

Forks

W

ED

A

F

C

B

Problem 6.111

6.107 The person exerts 40-N forces on the handles of the

locking wrench. Determine the magnitude of the forces the

wrench exerts on the bolt at A.

6.108 Determine the magnitude of the force the members of the

wrench exert on each other at B and the axial force in the two-

force member DE.

6.109 This device is designed to exert a large force on the hori-

zontal bar at A for a stamping operation. If the hydraulic cylinder

DE exerts an axial force of 800 N and what horizontal

force is exerted on the horizontal bar at A?

a = 80 ,

6.110 This device raises a load W by extending the hydraulic

actuator DE. The bars AD and BC are 4 ft long, and the distances

and If what force must the

actuator exert to hold the load in equilibrium?

W = 300 lb,h = 1.5 ft.b = 2.5 ft

6.111 The four-bar linkage operates the forks of a fork lift truck.

The force supported by the forks is Determine the

reactions on member CDE.

W = 8 kN.
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6.112 If the horizontal force on the scoop is what is the magnitude of the axial force in the hydraulic actuator AC?F = 2000 lb,

10 in 12 in20 in

B

C

D

A

38 in

28 in

10 in

Scoop

F

Problem 6.112
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Bucket

2 ft 3 ft

2 ft

9 ft

2 ft E

F

D

B

A

C

4 ft 4 in

5 ft 6 in

1 ft 8 in

1 ft 4 in

10 kip

Problem 6.113

6.113 A 10-kip horizontal force acts on the bucket of the excavator. Determine the reactions on member ACF at A and F.

6.114 The structure shown in the diagram (one of the two identical structures that support the scoop of the excavator) supports a down-

ward force atG. Members BC andDH can be treated as two-force members. Determine the reactions on member CDK at K.F = 1800 N

H

L K

100
mm

160
mm

Shaft

260
mm

320
mm

380
mm

200
mm

C

D

1040
mm

1120
mm

260
mm

B

J

180
mm

Scoop

G

F

Problem 6.114
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Review Problems

6.115 The loads and Determine the

axial forces in the members. Indicate whether they are in tension

(T) or compression (C).

F2 = 160 N.F1 = 440 N

B

200 mm

400 mm

A

F1

700 mm

F2

C

Problem 6.115

B

3 m

A

4 m 3 m

DC

F

Problems 6.116/6.117

6.116 The truss supports a load Determine the axial

forces in members AB, AC, and BC.

6.117 Each member of the truss will safely support a tensile

force of 40 kN and a compressive force of 32 kN. Based on this

criterion, what is the largest downward load F that can safely be

applied at C?

F = 10 kN.

B C D

4 m

60 kN 80 kN 20 kN

F G H

EA

4 m 4 m 4 m 4 m

Problems 6.118/6.119

6.118 The Pratt bridge truss supports loads at F, G, and H.

Determine the axial forces in members BC, BG, and FG.

6.119 Determine the axial forces in members CD, GD, and GH.

A I

200 lb

F

100 lb

H

J

E

D

C G

B

4 in

6 in 6 in 6 in 6 in

4 in

4 in

Problems 6.120/6.121

6.120 The truss supports loads at F and H. Determine the axial

forces in members AB, AC, BC, BD, CD, and CE.

6.121 Determine the axial forces in members EH and FH.
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2 m

2 m

2 m

2 m

A

C

E

G

I

6 m

D

B

F

H

10 kN

14 kN

Problems 6.122/6.123

6.122 Determine the axial forces in members BD, CD, and CE.

6.123 Determine the axial forces in members DF, EF, and EG.

6.124 The truss supports a 400-N load at G. Determine the axial

forces in members AC, CD, and CF.

6.125 Determine the axial forces in members CE, EF, and EH.

6.126 Which members have the largest tensile and compressive

forces, and what are their values?

2 m 2 m 2 m 2 m 2 m 2 m

6 kN

4 m

A

B

C

G

F

E

D

H I J K L

4 kN4 kN

2 kN2 kN

Problems 6.127/6.128

6.127 The Howe truss helps support a roof. Model the supports

at A and G as roller supports. Use the method of joints to deter-

mine the axial forces in members BC, CD, CI, and CJ.

6.128 Use the method of sections to determine the axial forces in

members CD, CJ, and IJ.

400 N

300 mm

B

D

F

H

GECA

300 mm300 mm300 mm

600 mm

Problems 6.124 6.126

6.129 A speaker system is suspended from the truss by cables

attached at D and E. The mass of the speaker system is 130 kg,

and its weight acts at G. Determine the axial forces in members

BC and CD.

G

E
C

A

B D

0.5 m 0.5 m 0.5 m0.5 m
1 m

1 m

Problem 6.129
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6.132 The mass Determine the forces on member

ABC.

m = 120 kg.

6.131 Determine the forces on member ABC, presenting your

answers as shown in Fig. 6.25. Obtain the answers in two ways:

(a) When you draw the free-body diagrams of the individual

members, place the 400-lb load on the free-body diagram of

member ABC.

(b) When you draw the free-body diagrams of the individual

members, place the 400-lb load on the free-body diagram of

member CD.

A

C

B

200 lb

400 lb

1 ft

1 ft

1 ft

D

E

F

1 ft 1 ft

Problem 6.131

A B C

D

E

m

200 mm200 mm

300 mm

Problem 6.132

6.133 Determine the reactions on member ABC at B and C.

0.2 m 0.2 m

A

B

C

D

E

4 kN

0.2 m

0.2 m
2 kN-m

Problem 6.133

6.134 The truck and trailer are parked on a slope. The

14,000-lb weight of the truck and the 8000-lb weight of the

trailer act at the points shown. The truck s brakes prevent its

rear wheels at B from turning. The truck s front wheels at C

and the trailer s wheels at A can turn freely, which means they

do not exert friction forces on the road. The trailer hitch at D

behaves like a pin support. Determine the forces exerted on the

truck at B, C, and D.

10

14 ft

A

B
C

D

y

x
4 ft

3 ft

5 ft 6 in

6 ft

8 kip

14 kip

10*

3 ft

2 ft 9 ft

Problem 6.134

y

z

x

D (0, 4, 0) m

A (3, 4, 4) m

C (4, 0, 0) m
B (0, 0, 3) m

Problem 6.130

6.130 The mass of the suspended object is 900 kg. Determine

the axial forces in the bars AB and AC.

Strategy: Draw the free-body diagram of joint A.
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1 ft 6 in

2 ft 6 in1 ft
5 ft

2 ft

C

B

D
EA

Scoop

Problem 6.135

6.135 The 600-lb weight of the scoop acts at a point 1 ft 6 in

to the right of the vertical line CE. The line ADE is horizontal.

The hydraulic actuator AB can be treated as a two-force member.

Determine the axial force in the hydraulic actuator AB and the

forces exerted on the scoop at C and E.

6.136 Determine the force exerted on the bolt by the bolt cutters.

6.137 Determine the magnitude of the force the members of the

bolt cutters exert on each other at the pin connection B and the

axial force in the two-force member CD.

100 N

100 N

90 mm 60 mm65 mm

55 mm
75 mm

40 mm

300 mm

A

C

D

B

Problems 6.136/6.137

8 m

Concrete footings

Design Project 1 Design a truss structure to support a foot

bridge with an unsupported span (width) of 8 m. Make conser-

vative estimates of the loads the structure will need to support

if the pathway supported by the truss is made of wood. Con-

sider two options: (1) Your client wants the bridge to be sup-

ported by a truss below the bridge so that the upper surface

will be unencumbered by structure. (2) The client wants the

truss to be above the bridge and designed so that it can serve

as handrails. For each option, use statics to estimate the maxi-

mum axial forces to which the members of the structure will

be subjected. Investigate alternative designs and compare the

resulting axial loads.

300
mm

290
mm

390
mm

200 mm

480 mm

150 mm

AB

D

C

G

F

E

Design Project 2 The truss shown connects one end of a

stretcher to a rescue helicopter. Consider alternative truss de-

signs that support the stretcher at A and B and are supported at E

and G. Compare the maximum tensile and compressive loads in

the members of your designs to those in the truss shown. Assum-

ing that the cost of a truss is proportional to the sum of the

lengths of its members, compare the costs of your designs to that

of the truss shown. Write a brief report describing your analysis

and recommending the design you would choose.

Design Project 3 Go to a fitness center and choose an exercise

device that seems mechanically interesting. (For example, it may

employ weights, pulleys, and levers.) By measuring dimensions

(while the device is not in use), drawing sketches, and perhaps

taking photographs, gather the information necessary to analyze

the device. Use statics to determine the range of forces a person

must exert in using the device.

Suggest changes to the design of the device (other than simply

increasing weights) that will increase the maximum force the

user must exert.

Prepare a brief report that (1) describes the original device;

(2) presents your model and analysis of the device; (3) describes

your proposed changes and any analyses supporting them; and

(4) recommends the design change you would choose to in-

crease the maximum force the user must employ.
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An object s weight does not act at a single point it is distributed over

the entire volume of the object. But the weight can be represented by a

single equivalent force acting at a point called the center ofmass.When

the equilibrium equations are used to determine the reactions exerted

on an object by its supports, the location of the center ofmassmust be

known if theweight of the object is to be included in the analysis. The

dynamic behaviors of objects also depend on the locations of their cen-

ters ofmass. In this chapter we define the center ofmass and show how it

is determined for various kinds of objects.We also introduce definitions

that can be interpreted as the average positions of areas, volumes, and

lines. These average positions are called centroids. Centroids coincide

with the centers ofmass of particular classes of objects, and they also

arise inmany other engineering applications.

Centroids and Centers of Mass

CHAPTER

7

* To be balanced, the woman s center of mass the point at which her
weight effectively acts must be directly above her hands. In this chapter we
introduce the concept of an average position, or centroid, and show how to
locate the centers of mass of objects.
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7.1 Centroids of Areas

BACKGROUND

Suppose that we want to determine the average position of a group of students

sitting in a room. First, we introduce a coordinate system so that we can spec-

ify the position of each student. For example, we can align the axes with the

walls of the room (Fig. 7.1a). We number the students from 1 to N and denote

the position of student 1 by the position of student 2 by and so

on. The average x coordinate, which we denote by is the sum of their x co-

ordinates divided by N; that is,

(7.1)

where the symbol means sum over the range of i.  The average y coordi-

nate is

(7.2)

We indicate the average position by the symbol shown in Fig. 7.1b.

Now suppose that we pass out some pennies to the students. Let the num-

ber of coins given to student 1 be the number given to student 2 be and

so on. What is the average position of the coins in the room? Clearly, the aver-

age position of the coins may not be the same as the average position of the

students. For example, if the students in the front of the room have more coins,

the average position of the coins will be closer to the front of the room than the

average position of the students.

To determine the x coordinate of the average position of the coins, we

need to sum the x coordinates of the coins and divide by the number of coins.

We can obtain the sum of the x coordinates of the coins by multiplying the

number of coins each student has by his or her x coordinate and summing.

We can obtain the number of coins by summing the numbers Thus,

the average x coordinate of the coins is

(7.3)

We can determine the average y coordinate of the coins in the same way:

(7.4)

By assigning other meanings to we can determine the average posi-

tions of other measures associated with the students. For example, we could

determine the average position of their age or the average position of their

height.

c1, c2, ,

y =

a
i

 yi 
ci

a
i

 ci

.

x =

a
i

 xi 
ci

a
i

 ci

.

c1, c2, .

c2,c1,

y =

a
i

 yi

N
.

a
i

x =
x1 + x2 + + xN

N
=

a
i

 xi

N
,

x,

(x2, y2),(x1, y1),

312 Chapter 7 Centroids and Centers of Mass

(a)

y

x

(b)

y

x

y

x

Figure 7.1
(a) A group of students in a classroom.

(b) Their average position.
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More generally, we can use Eqs. (7.3) and (7.4) to determine the average

position of any set of quantities with which we can associate positions. An

average position obtained from these equations is called a weighted average

position, or centroid. The weight  associated with position is the

weight associated with position is and so on. In Eqs. (7.1) and (7.2),

the weight associated with the position of each student is 1. When the census is

taken, the centroid of the population of the United States the average posi-

tion of the population is determined in this way. 

Let us consider an arbitrary area A in the x y plane (Fig. 7.2a). Divide the

area into parts (Fig. 7.2b) and denote the positions of the parts

by We can obtain the centroid, or average

position of the area, by using Eqs. (7.3) and (7.4) with the areas of the parts as

the weights:

(7.5)

A question arises if we try to carry out this procedure: What are the exact posi-

tions of the areas We could reduce the uncertainty in their po-

sitions by dividing A into smaller parts, but we would still obtain only

approximate values for and To determine the exact location of the centroid,

we must take the limit as the sizes of the parts approach zero. We obtain this limit

by replacing Eqs. (7.5) by the integrals

(7.6) x =
LA

x dA

LA

 dA

, 

y.x

A1, A2, , AN?

x =

a
i

 xi 
Ai

a
i

 Ai

, y =

a
i

 yi 
Ai

a
i

 Ai

.

1x1, y12, 1x2, y22, , 1xN, yN2.

A1, A2, , AN

c2,1x2, y22

c1,1x1, y12
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(d)

x

y

x

y

(c)

A

AN

(b)

x

y

A1

A2

(a)

A

x

y

A

x

y

_
y

_
x

dA
Figure 7.2

(a) The area A.

(b) Dividing A into N parts.

(c) A differential element of area dA with

coordinates (x, y).

(d) The centroid of the area.
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314 Chapter 7 Centroids and Centers of Mass

(7.7)

where x and y are the coordinates of the differential element of area dA (Fig. 7.2c).

The subscript A on the integral signs means the integration is carried out over

the entire area. The centroid of the area is shown in Fig. 7.2d.

RESULTS

 y =
LA

y dA

LA
 dA

, 

Keeping in mind that the centroid of an area is its average position will often

help in locating it. If an area has mirror image  symmetry about an axis, its

centroid lies on the axis. If an area is symmetric about two axes, the centroid

lies at the intersection of the axes.

A

x

y

_
y

_
x

Coordinates of the centroid, or average

position, of an area A in the x y plane.

(7.6),

(7.7)

x *

,y *

LA
x dA

LA
dA

LA
y dA

LA
dA
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7.1 Centroids of Areas 315

Active Example 7.1 Centroid of an Area by Integration (* Related Problem 7.1)

Determine the x coordinate of the centroid of the triangular area.

y

x

h

b

Strategy
We will evaluate Eq. (7.6) using an element of area dA in the form of a vertical

strip  of width dx.

Solution

y

x
x dx

h
*

b

dA

x

The height of a strip of width dx at position

x is (h/b)x, so its area is dA * (h/b)x dx.

Use this expression to evaluate Eq. (7.6).

** b.
2

3
*

0

x
L

b
h

b         
x dx

0L

b

b

h

b

h

b

x3

3

x dx

0

  

b
h

b

x2

2 0

x *
LA

x dA

LA
dA

Practice Problem Determine the y coordinate of the centroid of the triangular area.

Evaluate Eq. (7.7) by using an element of area dA in the form of a vertical strip  of width

dx, and let y be the height of the midpoint of the strip.

Answer: .y =

1

3
h
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316 Chapter 7 Centroids and Centers of Mass

Example 7.2 Area Defined by Two Equations (* Related Problems 7.2, 7.3)

Determine the centroid of the area. 

Strategy
We can determine the coordinates of the centroid using an element of area

in the form of a vertical strip, just as we did in Active Example 7.1. In this

case the strip must be defined so that it extends from the lower curve 

to the upper curve 

Solution
Let dA be the vertical strip in Fig. a. The height of the strip is so

The x coordinate of the centroid is

x =
LA

x dA

LA

 dA

=
L

1

0

x1x - x2
2 dx

L

1

0

1x - x2
2 dx

=

c

x3

3
-

x4

4
d

0

1

c

x2

2
-

x3

3
d

0

1
=

1

2
.

dA = 1x - x2
2 dx.

x - x2,

1y = x2.

1y = x2
2

x

y

(1, 1)

y * x
2

y * x

x

y

x + x
2

(1, 1)

x dx
x

y

(1, 1)

x

(x , x
2
)

1

2

(b) The y coordinate of the

midpoint of the strip.

(a) A vertical strip of width

dx. The height of the

strip is equal to the 

difference in the two

functions.

The y coordinate of the midpoint of the strip is

(Fig. b). Substituting this expression for y in Eq. (7.7), we obtain the y coordinate

of the centroid:

Critical Thinking
Notice the generality of the approach we use in this example. It can be used to

determine the x and y coordinates of the centroid of any area whose upper and

lower boundaries are defined by two functions.

y =
LA

y dA

LA

 dA

=
L

1

0

 c

1

2
 1x + x2

2 d1x - x2
2 dx

L

1

0

1x - x2
2 dx

=

1

2
 c

x3

3
-

x5

5
d

0

1

c

x2

2
-

x3

3
d

0

1
=

2

5
.

x2 +
1

2
1x - x22 =

1

2
1x + x22

BEDFMC07_0136129153.QXD  4/14/07  12:15 PM  Page 316



Problems 317

 7.1 In Active Example 7.1, suppose that the triangular area is

oriented as shown. Use integration to determine the x and y coor-

dinates of its centroid. (Notice that you already know the answers

based on the results of Active Example 7.1.)

7.5 Determine the coordinates of the centroid of the area.

Problems

y

x

h

b

y * x
2

x

y

y * 1

(1, 1)

x

y

2

y * x
2 
+ x , 1

 7.2 In Example 7.2, suppose that the area is redefined as

shown. Determine the x coordinate of the centroid.

 7.3 In Example 7.2, suppose that the area is redefined as

shown. Determine the y coordinate of the centroid.

7.4 Determine the centroid of the area.

x

y

2

93

6

Problem 7.5

Problem 7.1

Problems 7.2/7.3

Problem 7.4

y

x
0 b

y * cx
n

Problems 7.6/7.7

y

x
0 1 ft

y * x , x
3

Problem 7.8

7.6 Determine x coordinate of the centroid of the area and 

compare your answer to the value given in Appendix B.

7.7 Determine the y coordinate of the centroid of the area and

compare your answer to the value given in Appendix B.

7.8 Suppose that an art student wants to paint a panel of wood as

shown, with the horizontal and vertical lines passing through the

centroid of the painted area, and asks you to determine the coordi-

nates of the centroid. What are they?
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7.10 Determine the coordinates of the centroid of the metal

plate s cross-sectional area.

7.11 An architect wants to build a wall with the profile shown.

To estimate the effects of wind loads, he must determine the

wall s area and the coordinates of its centroid. What are they?

7.12 Determine the coordinates of the centroid of the area.

7.13 Determine the coordinates of the centroid of the area.

7.14 Determine the x coordinate of the centroid of the area.

7.15 Determine the y coordinate of the centroid of the area.

7.16 Determine the x component of the centroid of the area.

318 Chapter 7 Centroids and Centers of Mass

x

y

y * x
3

y * x

Problems 7.14/7.15

x

y

2

y * x2 
+ x , 1

Problem 7.16

x

y

y * +     x2 , 4x + 7
1

4

Problem 7.12

x

y

y * 5

y * +     x2 , 4x + 7
1

4

Problem 7.13x

y

420

y * cx
2

Problem 7.9

y

x

y * 4 +     x
2
 ft

1

4

Problem 7.10

0

1

2

3

4

20 4

y * 2 , 0.02x
2

6 8 10

y
 (

m
)

x (m)

Problem 7.11

7.9 Determine the value of the constant c so that the y coordinate

of the centroid of the area is What is the x coordinate of

the centroid?

y = 2.
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Problems 319

7.17 Determine the x coordinate of the centroid of the area.

7.18 Determine the y coordinate of the centroid of the area.

7.19 What is the x coordinate of the centroid of the area?

7.20 What is the y coordinate of the centroid of the area?

7.21 An agronomist wants to measure the rainfall at the centroid

of a plowed field between two roads. What are the coordinates of

the point where the rain gauge should be placed?

7.22 The cross section of an earth-fill dam is shown. Determine

the coefficients a and b so that the y coordinate of the centroid of

the cross section is 10 m.

7.23 The Supermarine Spitfire used by Great Britain in World

War II had a wing with an elliptical profile. Determine the coordi-

nates of its centroid.

x

y

y * x

y * x
2 
+ 20

Problems 7.17/7.18

x

y

y * +     x
2
 , 2x

6 2

2

1

6

Problems 7.19/7.20

0.3 mi

0.5 mi 0.6 mi

0.5 mi

0.2 mi

0.3 mi

x

y

Problem 7.21

x

y

100 m

y * ax + bx
3

Problem 7.22

a

y

2b x

x
2

a
2

y
2

b
2

, * 1

Problem 7.23
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320 Chapter 7 Centroids and Centers of Mass

7.2 Composite Areas

BACKGROUND

Although centroids of areas can be determined by integration, the process be-

comes difficult and tedious for complicated areas. In this section we describe a

much easier approach that can be used if an area consists of a combination of

simple areas, which we call a composite area. We can determine the centroid of

a composite area without integration if the centroids of its parts are known.

The area in Fig. 7.3a consists of a triangle, a rectangle, and a semicircle,

which we call parts 1, 2, and 3. The x coordinate of the centroid of the com-

posite area is

(7.8)

The x coordinates of the centroids of the parts are shown in Fig. 7.3b. From the

equation for the x coordinate of the centroid of part 1,

we obtain

Using this equation and equivalent equations for parts 2 and 3, we can write

Eq. (7.8) as

x =
x1 

A1 + x2 
A2 + x3 

A3

A1 + A2 + A3

.

LA1

x dA = x1 
A1.

x1 =
LA1

x dA

LA1

 dA

,

x =
LA

x dA

LA

 dA

=
LA1

x dA +

LA2

x dA +

LA3

x dA

LA1

 dA +

LA2

 dA +

LA3

 dA

.
y

x

y

x

(b)

(a)

1 2 3

1 2 3

_ 
x2_ 
x3

_ 
x1

Figure 7.3
(a) A composite area composed of three

simple areas.

(b) The centroids of the parts.

7.24 Determine the coordinates of the centroid of the area.

Strategy: Write the equation for the circular boundary in the

form and use a vertical strip  of width dx as

the element of area dA.

y = 1R2
- x2

2
1>2

7.25* If and what is the y coordinate of the cen-

troid of the area?

7.26* What is the x coordinate of the centroid of the area in 

Problem 7.25?

b = 3,R = 6

x

y

R

Problem 7.24 x

y

R

b

Problems 7.25/7.26
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7.2 Composite Areas 321

y

x

(a)

y

x

1

y

x

2

(c)(b)

_ 
x2

_ 
x1

Figure 7.4

(a) An area with a cutout.

(b) The triangular area.

(c) The area of the cutout.

We have obtained an equation for the x coordinate of the composite area in

terms of those of its parts. The coordinates of the centroid of a composite area

with an arbitrary number of parts are

(7.9)

When we can divide an area into parts whose centroids are known, we can use

these expressions to determine its centroid. The centroids of some simple areas

are tabulated in Appendix B.

We began our discussion of the centroid of an area by dividing an area into

finite parts and writing equations for its weighted average position. The results,

Eqs. (7.5), are approximate because of the uncertainty in the positions of the parts

of the area. The exact Eqs. (7.9) are identical except that the positions of the parts

are their centroids.

The area in Fig. 7.4a consists of a triangular area with a circular hole, or

cutout. Designating the triangular area (without the cutout) as part 1 of the com-

posite area (Fig. 7.4b) and the area of the cutout as part 2 (Fig. 7.4c), we obtain

the x coordinate of the centroid of the composite area:

This equation is identical in form to the first of Eqs. (7.9) except that the terms

corresponding to the cutout are negative. As this example demonstrates, we can

use Eqs. (7.9) to determine the centroids of composite areas containing cutouts

by treating the cutouts as negative areas.

We see that determining the centroid of a composite area requires three steps:

1. Choose the parts Try to divide the composite area into parts whose cen-

troids you know or can easily determine.

2. Determine the values for the parts Determine the centroid and the area of

each part. Watch for instances of symmetry that can simplify your task.

3. Calculate the centroid Use Eqs. (7.9) to determine the centroid of the

composite area.

x =

LA1

x dA -

LA2

x dA

LA1

 dA -

LA2

 dA

=

x1 
A1 - x2 

A2

A1 - A2

.

x =

a
i

 xi Ai

a
i

 Ai

, y =

a
i

 yi Ai

a
i

 Ai

.
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322 Chapter 7 Centroids and Centers of Mass

If an area contains a hole or cutout, the centroid of the area can be

determined from Eqs. (7.9) by treating the cutout as a negative area.

y

x

y

x

2

_ 
x2

y

x

1

_ 
x1

A triangular area with a circular cutout.

The triangular area without the cutout.

Let its area be A1 and let x1 be the x

coordinate of its centroid.

The area of the circular cutout. Let

its area be A2 and let x2 be the x

coordinate of its centroid.

The x coordinate of the centroid of

the triangular area with the cutout is

x .
x1A1  x2A2

A1  A2

RESULTS

Coordinates of the centroid of a

composite area consisting of parts

1, 2, .... The term Ai is the area of

the ith part, and xi, yi are the

coordinates of the centroid of Ai.

x1A1  x2A2    
A1  A2   

x 

xiAi
i

Ai
i

y1A1  y2A2    
A1  A2   

y 

yiAi
i

Ai
i

(7.9)
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7.2 Composite Areas 323

Active Example 7.3 Centroid of a Composite Area (* Related Problem 7.27 )

Determine the x coordinate of the centroid of the composite area.

Strategy
We must divide the area into simple parts (in this example the parts are obvious),

determine the areas and centroid locations for the parts, and apply Eq. (7.9)1.

Solution

y

x

1 2 3

b
2

3

4R

3p

b  c 

1

2
b c

Choose the Parts

Divide the area into simple parts. The x

coordinates of the centroids of the parts

are shown.

Determine the Values for the Parts

Tabulate the terms needed to apply Eq. (7.9)1.

See Appendix B.

Part 1 (triangle)

Part 2 (rectangle)

Part 3 (semicircle)

b
2

3

c(2R)cb 
1

2

b  c 
4R

3p

b(2R)
1

2

pR21

2

xi Ai xi Ai

          
b(2R)b

2

3

1

2

pR2
1

2
      b  c 

4R

3p           

[c(2R)]
       c

1

2
b 

Calculate the Centroid

Use Eq. (7.9)1 to determine

the x component of the

centroid.

b(2R)  c(2R)  pR21

2

1

2

[c(2R)] 
          

b(2R)b
2

3

1

2
pR2

1

2
             b  c 

4R

3p           
c

1

2
b 

x 
x1A1  x2A2  x3A3 

A1  A2  A3

Practice Problem Determine the y coordinate of the centroid of the composite

area.

Answer: .y =

C

1

3
(2R) D C

1

2
b(2R) D + R Cc(2R) D + R A

1

2
pR2

B

1

2
b(2R) + c(2R) +

1

2
pR2

y

x

R

cb
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324 Chapter 7 Centroids and Centers of Mass

Example 7.4 Centroid of an Area with a Cutout (* Related Problem 7.28)

Determine the centroid of the area.

Strategy
Instead of attempting to divide the area into parts, a simpler approach is to treat

it as a composite of a rectangular area with a semicircular cutout. Then we can

apply Eq. (7.9) by treating the cutout as a negative area.

Solution

Choose the Parts We call the rectangle without the semicircular cutout and

the area of the cutout parts 1 and 2, respectively (Fig. a).

y

x

140 mm
100 mm

140 mm

200 mm
y

x

200 mm

100 mm

y

x

21

_ 
x2

_ 
x1

Information for determining x

Part 1 (rectangle) 100 (200)(280) (100)[(200)(280)]

Part 2 (cutout) -

411002

3p
 C

1

2
 p11002

2
D-

1

2
 p11002

2
411002

3p

xi 
Ai 1mm3

2Ai 1mm2
2xi 1mm2

Calculate the Centroid The x coordinate of the centroid is

Because of the symmetry of the area, 

Critical Thinking
If you try to divide the area into simple parts, you will gain appreciation for

the approach we used. We were able to determine the centroid by dealing 

with two simple areas, the rectangular area without the cutout and the

semicircular cutout. Determining centroids of areas can often be simplified in

this way.

y = 0.

x =
x1 

A1 + x2 
A2

A1 + A2

=

11002[1200212802] -

411002

3p
 C

1

2
 p11002

2
D

1200212802 -
1

2
 p11002

2
= 122 mm

(a) The rectangle and the

semicircular cutout.

Determine the Values for the Parts From Appendix B, the x coordinate of

the centroid of the cutout is

The information for determining the x coordinate of the centroid is summa-

rized in the table. Notice that we treat the cutout as a negative area.

x2 =
4R

3p
=

411002

3p
  mm.

BEDFMC07_0136129153.QXD  4/14/07  12:15 PM  Page 324



Problems 325

* 7.27 In Active Example 7.3, suppose that the area is placed as

shown. Let the dimensions R 6 in, c 14 in, and b  18 in.

Use Eq. (7.9)1 to determine the x coordinate of the centroid.

Problems

* 7.28 In Example 7.4, suppose that the area is given a second

semicircular cutout as shown. Determine the x coordinate of the

centroid.

For Problems 7.29 7.36, determine the coordinates of

the centroids.

y

x

R

bc

Problem 7.27

4 in

2 in
8 in

x

y

10 in

3 in

6 in

Problem 7.29

y

x

40 in

20 in

30 in

Problem 7.32

y

x

140 mm
100 mm

50 mm 140 mm

200 mm

Problem 7.28

x

y

10 in

20 in

Problem 7.30

y

x

0.8 m

0.6 m

1.0 m

Problem 7.31
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326 Chapter 7 Centroids and Centers of Mass

7.37 The dimensions and Determine

the y coordinate of the centroid of the beam s cross section.

7.38 If the cross-sectional area of the beam is and the

y coordinate of the centroid of the area is what are

the dimensions b and h?

y = 90 mm,

8400 mm2

h = 22 mm.b = 42 mm

y

x

h

b

200 mm

120 mm

Problems 7.37/7.38

y

x

3 ft

2 ft

4 ftProblem 7.34

y

x

90 mm

20 mm

10

mm

30 mm

30 mm

20 mm

Problem 7.35

10

mm

15

mm

15

mm

10

mm

5 mm 5 mm

15 mm 15 mm

5 mm

15 mm

50 mm

x

y

Problem 7.36

x

y

300 mm

300

mm

400

mm

300

mmProblem 7.33

7.39 Determine the y coordinate of the centroid of the beam s

cross section.

7.40 Determine the coordinates of the centroid of the airplane s

vertical stabilizer.

70*

48*

11 m

12.5 m

y

x

Problem 7.40

x

y

2 in 5 in

8 in

3 in3 in 5 in5 in

Problem 7.39
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7.3 Distributed Loads 327

7.43 Three sails of a New York pilot schooner are shown. The co-

ordinates of the points are in feet. Determine the centroid of sail 1.

7.44 Determine the centroid of sail 2.

7.45 Determine the centroid of sail 3.

7.41 The area has elliptical boundaries. If 

and what is the x coordinate of the cen-

troid of the area?

7.42 By determining the x coordinate of the centroid of the area

shown in Problem 7.41 in terms of a, b, and and evaluating its

limit as show that the x coordinate of the centroid of a

quarter-elliptical line is

x =

4a1a + 2b2

3p1a + b2
.

e: 0,

e,

e = 6 mm,b = 15 mm,

a = 30 mm,

x

y

a

*

b

*

Problems 7.41/7.42

1 2 3

(a)

y y y

x x

(20, 21)

(3, 20) (3.5, 21)

(14, 29)

(16, 0) (10, 0) (23, 0)

x

1 2 3

(b)

(12.5, 23)

Problems 7.43 7.45

7.3 Distributed Loads

BACKGROUND

The load exerted on a beam (stringer) supporting a floor of a building is dis-

tributed over the beam s length (Fig. 7.5a). The load exerted by wind on a tele-

vision transmission tower is distributed along the tower s height (Fig. 7.5b). In

many engineering applications, loads are continuously distributed along lines.

We will show that the concept of the centroid of an area can be useful in the

analysis of objects subjected to such loads.

(a) (b)

Figure 7.5
Examples of distributed forces:

(a) Uniformly distributed load exerted on a

beam of a building s frame by the floor.

(b) Wind load distributed along the height

of a tower.
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Describing a Distributed Load

We can use a simple example to demonstrate how such loads are expressed an-

alytically. Suppose that we pile bags of sand on a beam, as shown in Fig. 7.6a.

It is clear that the load exerted by the bags is distributed over the length of the

beam and that its magnitude at a given position x depends on how high the bags

are piled at that position. To describe the load, we define a function w such

that the downward force exerted on an infinitesimal element dx of the beam

is w dx. With this function we can model the varying magnitude of the load

exerted by the sand bags (Fig. 7.6b). The arrows in the figure indicate that the

load acts in the downward direction. Loads distributed along lines, from sim-

ple examples such as a beam s own weight to complicated ones such as the lift

distributed along the length of an airplane s wing, are modeled by the function

w. Since the product of w and dx is a force, the dimensions of w are

For example, w can be expressed in newtons per meter in

SI units or in pounds per foot in U.S. Customary units.

Determining Force and Moment

Let s assume that the function w describing a particular distributed load

is known (Fig. 7.7a). The graph of w is called the loading curve. Since the

force acting on an element dx of the line is w dx, we can determine the total

force F exerted by the distributed load by integrating the loading curve with

respect to x:

(7.10)

We can also integrate to determine the moment about a point exerted by the

distributed load. For example, the moment about the origin due to the force

exerted on the element dx is xw dx, so the total moment about the origin due to

the distributed load is

(7.11)

When you are concerned only with the total force and moment exerted by

a distributed load, you can represent it by a single equivalent force F (Fig. 7.7b).

For equivalence, the force must act at a position on the x axis such that the

moment of F about the origin is equal to the moment of the distributed load

about the origin:

Therefore the force F is equivalent to the distributed load if we place it at the

position

(7.12)x =

LL
xw dx

LL
w dx

.

xF =

LL
xw dx.

x

M =

LL
xw dx.

F =

LL
w dx.

1force2>1length2.

328 Chapter 7 Centroids and Centers of Mass

y

x

(a)

y

x

(b)

w

Figure 7.6
(a) Loading a beam with bags of sand.

(b) The distributed load w models the load

exerted by the bags.

y

x

y

x

F

(b)

w

x dx

w dx

(a)

_
x

Figure 7.7
(a) A distributed load and the force exerted

on a differential element dx.

(b) The equivalent force.
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7.3 Distributed Loads 329

The Area Analogy

Notice that the term w dx is equal to an element of area  dA between the load-

ing curve and the x axis (Fig. 7.8a). (We use quotation marks because w dx is

actually a force and not an area.) Interpreted in this way, Eq. (7.10) states that

the total force exerted by the distributed load is equal to the area  A between

the loading curve and the x axis:

(7.13)

Substituting into Eq. (7.12), we obtain

(7.14)

The force F is equivalent to the distributed load if it acts at the centroid of the

area between the loading curve and the x axis (Fig. 7.8b). Using this analogy

to represent a distributed load by an equivalent force can be very useful when

the loading curve is relatively simple.

RESULTS

x =
LL

xw dx

LL

w dx

=

LA

x dA

LA

 dA

.

w dx = dA

F =

LL

w dx =

LA

 dA = A.

y

x

w

x dx

w dx

To represent a load that is distributed along the x axis, we

define a function w such that the downward force on an

element dx of the x axis is w dx. The graph of w is called

the loading curve.

The total downward force and the total clockwise

moment about the origin due to a distributed load

w acting on an interval L of the x axis can be

determined by integration.M       xw dx,      (7.11)
 LL

F       w dx,      (7.10)
 LL

y

x

F  A

A

(b)

x

y

dA  w dx

w

x dx

(a)

Figure 7.8

(a) Determining the area  between the

function w and the x axis.

(b) The equivalent force is equal to the

area,  and the line of action passes

through its centroid.

The total downward force F due to a distributed

load is equal to the area  A between the loading

curve and the x axis. When this force is

represented by a vector, the force vector is

equivalent to the distributed load if it is placed at

the centroid of the area.  (That is, the clockwise

moment about the origin due to the force vector is

equal to M.) This is called the area analogy.

y

x

F  A

A
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Active Example 7.5 Beam with a Distributed Load (* Related Problem 7.46 )

The beam is subjected to a triangular  distributed load whose value at B

is 100 N/m. (That is, the function w increases linearly from w * 0 at A to 

w* 100 N/m at B.) Determine the reactions on the beam at A and B.

2

3 B

12 m

x
Ax

Ay

y

(12 m)(100 N/m)

* 600 N
(12 m)

* 8 m

2

3

1

2
The area  of the triangular distributed load

is one-half its base times its height, or

    (12 m) . (100 N/m) * 600 N. The

centroid of the triangular area  is located at

x *    (12 m) * 8 m.

1

2

2

3

-Fx * Ax * 0,

Solving yields Ax * 0, Ay * 200 N, and

B * 400 N.

Apply equilibrium.

-Fy * Ay , B + 600 N * 0,

-Mpoint A * (12 m)B + (8 m)(600 N) * 0.

A
B

12 m

100 N/m

Practice Problem (a) Determine w as a function of x for the triangular distributed load

in this example. (b) Use Eqs. (7.10) and (7.11) to determine the total downward force

and the total clockwise moment about the left end of the beam due to the triangular

distributed load.

Answer: (a) (b) .M = 4800 N-mF = 600 N,w =

100

12
x N/m.

Strategy
We can use the area analogy to represent the distributed load by an equivalent

force. Then we can apply the equilibrium equations to determine the reactions

at A and B.

Solution
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7.3 Distributed Loads 331

Example 7.6 Beam Subjected to Distributed Loads (* Related Problem 7.48)

 Mpoint A = 16 m2B - 13 m212400 N2 - 12 m211200 N2 - 13 m212400 N2 = 0,

400 N/m

6 m
6 m800 N/m

6 m

A
B

400 N/m

The beam is subjected to two distributed loads. Determine the reactions at A

and B.

Strategy
We can easily apply the area analogy to the uniformly distributed load between

A and B. We will treat the distributed load on the vertical section of the beam

as the sum of uniform and triangular distributed loads and use the area analogy

to represent each distributed load by an equivalent force.

Solution
We draw the free-body diagram of the beam in Fig. a, expressing the left

distributed load as the sum of uniform and triangular loads. In Fig. b, we

represent the three distributed loads by equivalent forces. The area of

the uniform distributed load on the right is

and its centroid is 3 m from B. The area of the uniform distributed load

on the vertical part of the beam is and

its centroid is located at The area of the triangular distributed

load is and its centroid is located at

From the equilibrium equations

 Fy = Ay + B - 2400 N = 0, 

 Fx = Ax + 1200 N + 2400 N = 0, 

y =
1
316 m2 = 2 m.

1

2
16 m2 * 1400 N/m2 = 1200 N,

y = 3 m.

16 m2 * 1400 N/m2 = 2400 N,

16 m2 * 1400 N/m2 = 2400 N,

we obtain and 

Critical Thinking
When you analyze a problem involving distributed loads, should you always use

the area analogy to represent them as we did in this example? The area analogy

is useful when a loading curve is sufficiently simple that its area and the loca-

tion of its centroid are easy to determine. When that is not the case, you can use

Eqs. (7.10) and (7.11) to determine the force and moment exerted by a distrib-

uted load. We illustrate this approach in Example 7.7.

B = 2800 N.Ax = -3600 N, Ay = -400 N,

x

Ay

400 N/m

B400 

N/m

*

y

6 m 6 m

6 m

Ax400 

N/m

x

Ay B

y

6 m 6 m

Ax

3 m
2 m

2400 N

1200 N
3 m

2400 N

(a) Free-body diagram of the beam.

(b) Representing the distributed loads by

equivalent forces.
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Example 7.7 Beam with a Distributed Load (* Related Problem 7.49)

10 ft 10 ft

MA

Ay

AAx

y

x

2000 lb

10,000 ft-lb

w

The beam is subjected to a distributed load, a force, and a couple. The distrib-

uted load is Determine the reactions at the

fixed support A.

Strategy
Since we know the function w, we can use Eqs. (7.10) and (7.11) to determine

the force and moment exerted on the beam by the distributed load. We can then

use the equilibrium equations to determine the reactions at A.

Solution
We isolate the beam and show the reactions at the fixed support in Fig. a. The

downward force exerted by the distributed load is

The clockwise moment about A exerted by the distributed load is

From the equilibrium equations

we obtain and MA = -25,000 ft-lb.Ax = 0, Ay = 2330 lb,

Mpoint A = MA - 25,000 ft-lb + 120 ft212000 lb2 + 10,000 ft-lb = 0,

 Fy = Ay - 4330 lb + 2000 lb = 0, 

 Fx = Ax = 0, 

3
L 

xw dx =

L

10

0

x1300x - 50x2
+ 0.3x4

2 dx = 25,000 ft-lb.

3
L 
w dx =

L

10

0

1300x - 50x2
+ 0.3x4

2
 dx = 4330 lb.

w = 300x - 50x2
+ 0.3x4 lb/ft.

(a) Free-body diagram of the beam.

Critical Thinking
When you use Eq. (7.11), it is important to be aware that you are calculating the

clockwise moment due to the distributed loadw about the origin x = 0.

10,000 ft-lb

2000 lb

w

y

A
x

10 ft
10 ft
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* 7.46 In Active Example 7.5, suppose that the distributed load

is modified as shown. Determine the reactions on the beam at

A and B.

7.52 Determine the reactions on the beam at A and B.

Problems

5 m

w * 3(1 + x2/25) kN/m

x
A

y

Problem 7.50

600 N/m
400 N/m

6 m 6 m

6 m

A

B

400 N/m

Problem 7.48

y

x

A
10 m2 m

Problem 7.51

60 N/m

A B

8m 4m

Problem 7.46

200 lb/ft

4 ft

6 ft

6 ft

BA

200 lb/ft

Problem 7.47

7.47 Determine the reactions at A and B.

* 7.48 In Example 7.6, suppose that the distributed loads are

modified as shown. Determine the reactions on the beam at

A and B.

* 7.49 In Example 7.7, suppose that the distributed load acting

on the beam from x* 0 to x* 10 ft is given by * 350, 0.3x3

lb/ft. (a) Determine the downward force and the clockwise

moment about A exerted by the distributed load. (b) Determine

the reactions at the fixed support.

w

7.51 An engineer measures the forces exerted by the soil on a 

10-m section of a building foundation and finds that they are

described by the distributed load 

(a) Determine the magnitude of the total force exerted on the

foundation by the distributed load.

(b) Determine the magnitude of the moment about A due to the

distributed load.

w = -10x - x
2
+ 0.2x

3 kN/m.

4 m

A

B

2 m

3 kN/m
2 kN/m

Problem 7.52

7.50 Determine the reactions at the fixed support A.
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7.54 Determine the reactions on the bar at A and B.

7.55 Determine the reactions on member AB at A and B.

7.56 Determine the axial forces in members BD, CD, and CE of the truss and indicate whether they are in tension (T) or

compression (C).

x

2 ft

2 ft

y

400 lb/ft

4 ft 4 ft

600 lb/ft

B

A

400 lb/ft

Problem 7.54

Problem 7.55

R

y

2 m

5 m

x

Problem 7.53

A
D F H

GE
C

2 m

2 m 2 m 2 m 2 m

8 kN/m
4 kN/m

B

Problem 7.56

6 ft6 ft 6 ft

300 lb/ft

300 lb/ft

A
B

C

7.53 The aerodynamic lift of the wing is described by the distrib-

uted load The mass of the wing is

27 kg, and its center of mass is located 2 m from the wing root R.

(a) Determine the magnitudes of the force and the moment about

R exerted by the lift of the wing.

(b) Determine the reactions on the wing at R.

w = -300 21 - 0.04x
2 N/m.
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7.57 Determine the reactions on member ABC at A and B.

400 N/m

200 N/m

400 N/m

160

mm

160

mm

160

mm

160 mm

240 mm

A

B

C

D

E

Problem 7.57

7.58 Determine the forces on member ABC of the frame.

2 m

A

C

2 m 1 m

1 m

1 m 3 kN/m

B

Problem 7.58

7.4 Centroids of Volumes and Lines

BACKGROUND

Here we define the centroids, or average positions, of volumes and lines, and

show how to determine the centroids of composite volumes and lines. We will

show in Section 7.7 that knowing the centroids of volumes and lines allows you

to determine the centers of mass of certain types of objects, which tells you

where their weights effectively act.

Volumes Consider a volume V, and let dV be a differential element of V with

coordinates x, y, and z (Fig. 7.9). By analogy with Eqs. (7.6) and (7.7), the co-

ordinates of the centroid of V are

(7.15)

The subscript V on the integral signs means that the integration is carried out over

the entire volume.

x =

LV
x dV

LV
 dV

, y =
LV
y dV

LV
 dV

, z =
LV
z dV

LV
 dV

.

x

y

z
x

z

y

dV

Figure 7.9
A volume V and differential element dV.
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x

y

z

x
z

y

dL

L

Figure 7.11

A line L and differential element dL.

If a volume has the form of a plate with uniform thickness and cross-

sectional area A (Fig. 7.10a), its centroid coincides with the centroid of A and

lies at the midpoint between the two faces. To show that this is true, we obtain

a volume element dV by projecting an element dA of the cross-sectional area

through the thickness T of the volume, so that (Fig. 7.10b). Then the

x and y coordinates of the centroid of the volume are

The coordinate by symmetry. Thus you know the centroid of this type of

volume if you know (or can determine) the centroid of its cross-sectional area.

Lines The coordinates of the centroid of a line L are

(7.16)

where dL is a differential length of the line with coordinates x, y, and z. (Fig. 7.11).

x =

LL

x dL

LL

 dL

, y =
LL

y dL

LL

 dL

, z =
LL

z dL

LL

 dL

,

z = 0

 y =

LV

y dV

LV

 dV

=

LA

yT dA

LA

T dA

=

LA

y dA

LA

 dA

.

 x =

LV

x dV

LV

 dV

=

LA

xT dA

LA

T dA

=

LA

x dA

LA

 dA

, 

dV = T dA

(a)

Front View Side View

A

(b)

dA

y y

x z

T

dV

x

y

Figure 7.10

(a) A volume of uniform thickness.

(b) Obtaining dV by projecting dA through

the volume.
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x

y

z
x

z

y

dV

Coordinates of the centroid of a

volume V.
(7.15)

x * ,

y * ,

z * .V

z dV
L

V

dV
L

V

y dV
L

V

dV
L

V

x dV
L

V

dV
L

Front View Side View

A
If a volume has the form of a plate with

uniform thickness and cross-sectional

area A, its centroid coincides with the

centroid of A and lies at the midpoint

between the two faces.

x

y

z

x
z

y

dL

L

Coordinates of the centroid of a

line L.
(7.16)y *

z *

,
L

x dL
L

L

dL
L

.L

z dL
L

L

dL
L

,
L

y dL
L

L

dL
L

x *

RESULTS
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Active Example 7.8 Centroid of a Cone by Integration (* Related Problem 7.59)

Determine the centroid of the cone.

x

z

y

R

h

An element of volume in

the form of a disk.

x

z

y

x

dx

dV

y

x

dxx

x

R

R

h

The radius of the disk at

position x is (R/h)x. The

volume of the disk is the

product of the area of the

disk and its thickness:

dV * p x
R 

h         

2

dx.

Apply Eq. (7.15)1.* h.
3

4
x * *

0

xp

dx

x

L

h
R 

h         

0

p x

L

h
R 

h         

2

2

V

x dV

L

V

dV

L

Strategy
Because of the axial symmetry of the cone, the centroid must lie on the x axis.

We will determine the x coordinate of the centroid by applying Eq. (7.15)1 using

an element of volume dV in the form of a disk of thickness dx.

Solution
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x

z

y

4 ft

Practice Problem The radius in feet of the circular cross section of the truncated

cone is given as a function of x by Determine the x coordinate of its

centroid.

r = 1 +
1
4x.

Answer: 2.43 ft.

Example 7.9 Centroid of a Line by Integration (* Related Problem 7.66)

x

(1, 1)

dx

dy

x

y

dL

The line L is defined by the function Determine the x coordinate of its

centroid.

Strategy
We can express a differential element dL of a line (Fig. a) in terms of dx and dy:

From the equation describing the line, the derivative so we obtain

an expression for dL in terms of x:

Solution
To integrate over the entire line, we must integrate from to The

x coordinate of the centroid is

Critical Thinking
Our approach in this example is appropriate to determine the centroid of a line

that is described by a function of the form In Example 7.10 we show how

to determine the centroid of a line that is described in terms of polar coordinates.

y = f1x2.

x =
LL

x dL

LL

 dL

=
L

1

0

x21 + 4x2 dx

L

1

0

21 + 4x2 dx

= 0.574.

x = 1.x = 0

dL = 21 + 4x2 dx.

dy>dx = 2x,

dL = 2dx2
+ dy2

=

B
1 + a

dy

dx
b

2

 dx.

y = x2.

(a) A differential line element dL.

x

y

y * x2

(1, 1)

L
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340 Chapter 7 Centroids and Centers of Mass

Example 7.10 Centroid of a Semicircular Line by Integration (* Related Problem 7.70)

x

y

R

Determine the centroid of the semicircular line.

x

y

x * R cos u 

dL * Rdu
du

u

(a) A differential line element dL = R du.

Strategy
Because of the symmetry of the line, the centroid lies on the x axis. To deter-

mine we will integrate in terms of polar coordinates. By letting change by

an amount we obtain a differential line element of length (Fig. a).

The x coordinate of dL is 

Solution
To integrate over the entire line, we must integrate with respect to from

to 

x =
LL

x dL

LL

 dL

=
L

p>2

-p>2

1R cos u2R du

L

p>2

-p>2

R du

=

R
2
3sin u4

-p>2

p>2

R3u4
-p>2

p>2
=

2R

p
.

u = +p>2:u = -p>2

u

x = R cos u.

dL = R dudu,

ux,

Critical Thinking
Notice that our integration procedure gives the correct length of the line:

LL

 dL =

L

p>2

-p>2

R du = R Cu D
-p>2

p>2
= pR.
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Problems 341

y

x

10 m

7 m

y * ax1/2

Problem 7.60

x

z

y

R

h

2

h

2

Problem 7.59

Problems

* 7.59 Use the method described in Active Example 7.8 to 

determine the centroid of the truncated cone.

7.60 A grain storage tank has the form of a surface of revolu-

tion with the profile shown. The height of the tank is 7 m and

its diameter at ground level is 10 m. Determine the volume of

the tank and the height above ground level of the centroid of

its volume.

7.61 The object shown, designed to serve as a pedestal for

a speaker, has a profile obtained by revolving the curve

about the x axis. What is the x coordinate of the

centroid of the object?

y = 0.167x2

7.62 The volume of a nose cone is generated by rotating the

function about the x axis.

(a) What is the volume of the nose cone?

(b) What is the x coordinate of the centroid of the volume?

y = x - 0.2x2

x

z

y

0.75 m

0.75 m

Problem 7.61

y

x

z

2 m

Problem 7.62
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342 Chapter 7 Centroids and Centers of Mass

7.67 Determine the coordinates of the centroid of the line.

7.68 Determine the x coordinate of the centroid of the line.

x

y

50

(x + 1)
3/2y *

2

3

1

Problem 7.68

x

y

2

y *x2

+1

Problem 7.67

7.64 The volume consists of a segment of a sphere of radius R.

Determine its centroid.

7.65 A volume of revolution is obtained by revolving the curve

about the x axis. Determine its centroid.x
2
>a

2
+ y

2
>b

2
= 1

* 7.66 In Example 7.9, determine the y coordinate of the cen-

troid of the line.

x

y

z

x2

a2

y2

b2
, * 1

Problem 7.65

R x

y

z

R

2

Problem 7.64

7.63 Determine the centroid of the hemispherical volume.

z R

y

x

Problem 7.63
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7.5 Composite Volumes and Lines 343

* 7.70 Use the method described in Example 7.10 to determine

the centroid of the circular arc.

7.69 Determine the x coordinate of the centroid of the line.

x

y

R

a

Problem 7.70
x

y

20

y * x3/2
2

3

Problem 7.69

7.5 Composite Volumes and Lines

BACKGROUND

The centroids of composite volumes and lines can be derived using the same

approach we applied to areas. The coordinates of the centroid of a compos-

ite volume are

(7.17)

and the coordinates of the centroid of a composite line are

(7.18)

The centroids of some simple volumes and lines are tabulated in Appendices

B and C.

Determining the centroid of a composite volume or line requires three steps:

1. Choose the parts Try to divide the composite into parts whose centroids

you know or can easily determine.

2. Determine the values for the parts Determine the centroid and the vol-

ume or length of each part. Watch for instances of symmetry that can sim-

plify your task.

3. Calculate the centroid Use Eqs. (7.17) or (7.18) to determine the centroid

of the composite volume or line.

x =

a
i

 xiLi

a
i

 Li

, y =

a
i

 yiLi

a
i

 Li

, z =

a
i

 ziLi

a
i

 Li

.

x =

a
i

 xiVi

a
i

 Vi

, y =

a
i

 yiVi

a
i

 Vi

, z =

a
i

 ziVi

a
i

 Vi

,
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344 Chapter 7 Centroids and Centers of Mass

Active Example 7.11 Centroid of a Composite Volume (* Related Problem 7.71)

Determine the x coordinate of the centroid of the composite volume.y

x

z

b
R

h

Choose the Parts

Divide the volume into simple parts.

The x coordinates of the centroids of

the parts are shown. See Appendix C.

Determine the Values for the Parts

Tabulate the terms needed to apply Eq. (7.17)1.

x

y

1 2

h
3

4

bh 
1

2

Part 1 (cone)

Part 2 (cylinder)

h
3

4

pR
2
bbh 

1

2
(pR

2
b)bh 

1

2

pR
2
h

1

3

xi Vi xiVi

   

       

       
pR

2
hh

3

4

1

3

Calculate the Centroid

Use Eq. (7.17)1 to determine

the x component of the

centroid..

          
pR

2
hh

3

4

1

3
     
pR

2
b

pR
2
h  pR

2
b

1

3

       
b

1

2
h 

x .
x1V1  x2V2

V1  V2

Practice Problem The composite volume consists of a circular cylinder and a

hemisphere. Determine the x coordinate of its centroid.

Answer: x =

A

1

2
b B ApR

2
b B + Ab +

3

8
R B A

2

3
pR

3
B

pR
2
b +

2

3
pR

3
.

y

x

z
b

R

Strategy
We must divide the volume into simple parts (in this example the parts are 

obvious), determine the volumes and centroid locations for the parts, and apply

Eq. (7.17)1.

Solution
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7.5 Composite Volumes and Lines 345

Example 7.12 Centroid of a Volume Containing a Cutout (* Related Problem 7.72)

Determine the centroid of the volume.

Strategy
We can divide this volume into the five simple parts shown in Fig. a. Notice that

parts 2 and 3 do not have the cutout. It is assumed to be filled in,  which sim-

plifies the geometries of those parts. Part 5, which is the volume of the 20-mm-

diameter hole, will be treated as a negative volume in Eqs. (7.17).

Solution

Choose the Parts We can divide the volume into the five simple parts shown

in Fig. a. Part 5 is the volume of the 20-mm-diameter hole.

Determine the Values for the Parts The centroids of parts 1 and 3 are

located at the centroids of their semicircular cross sections (Fig. b). The

information for determining the x-coordinate of the centroid is summarized

in the table. Part 5 is a negative volume.

End View

y

z

40
mm

20 mm

x

y

z

Side View

x

y

20 mm

200 mm

25 mm

Information for determining x

Part 1

Part 2 100 (200)(50)(20) (100)[(200)(50)(20)]

Part 3

Part 4 0 0

Part 5 200 -1200[p11022
1202]-p11022

1202

p12522
1402

c200 +

41252

3p
d c

p12522

2
 1202 d

p12522

2
 1202200 +

41252

3p

c -

41252

3p
d c

p1252
2

2
 1202 d

p12522

2
 1202-

41252

3p

xiVi 1mm4
2Vi 1mm3

2xi 1mm2

Calculate the Centroid The x coordinate of the centroid of the composite

volume is

 c -

41252

3p
d c

p1252
2

2
 1202 d + 11002[1200215021202]

 x =
x1V1 + x2V2 + x3V3 + x4V4 + x5V5

V1 + V2 + V3 + V4 + V5

 = 72.77 mm.

 =

+ c200 +

41252

3p
d c

p12522

2
1202 d + 0 - 12002[p11022

1202]

p12522

2
 1202 + 1200215021202 +

p12522

2
 1202 + p12522

1402 - p11022
1202

x

y

1 3

200 mmmm
4(25)

3p
mm

4(25)

3p

(b) Positions of the centroids of parts

1 and 3.

1

2

3

4

5

(a) Dividing the line into three parts.
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Because of symmetry, y = 0.

 = 7.56 mm.

 =
30[p12522

1402]

p12522

2
 1202 + 1200215021202 +

p12522

2
 1202 + p12522

1402 - p11022
1202

Critical Thinking
You can recognize that the volume in this example could be part of a mechan-

ical device. Many manufactured parts have volumes that are composites of

simple volumes, and the method used in this example can be used to determine

their centroids and, if they are homogeneous, their centers of mass.

Example 7.13 Centroid of a Composite Line (* Related Problem 7.81)

Determine the centroid of the line. The quarter-circular arc lies in the y z plane.

Strategy
We must divide the line into parts (in this case the quarter-circular arc and the two

straight segments), determine the centroids of the parts, and apply Eqs. (7.18).

2 m

z
x

y

(4, 0, 2) m

346 Chapter 7 Centroids and Centers of Mass

Solution

Choose the Parts The line consists of a quarter-circular arc and two straight

segments, which we call parts 1, 2, and 3 (Fig. a).

Determine the Values for the Parts From Appendix B, the coordinates of the

centroid of the quarter-circular arc are The cen-

troids of the straight segments lie at their midpoints. For segment 2,

and and for segment 3, and

The length of segment 3 is 

This information is summarized in the table.

L3 = 21422
+ 1222

+ 1222
= 4.90 m.z3 = 1 m.

x3 = 2 m, y3 = 1 m,z2 = 2 m,x2 = 2 m, y2 = 0,

x1 = 0, y1 = z1 = 2122>p m.

z
x

y

(4, 0, 2) m(0, 0, 2) m
(2, 0, 2) m

(2, 1, 1) m

(0, 2, 0) m

1

2

3

m
2(2)

p

m
2(2)

p

(a) Dividing the line into three parts.

The z coordinates of the centroids of the parts are zero except 

Therefore the z coordinate of the centroid of the composite volume is

 z =
z4V4

V1 + V2 + V3 + V4 + V5

z4 = 30 mm.
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Problems 347

 z =
z1L1 + z2L2 + z3L3

L1 + L2 + L3

=

[2122>p][p122>2] + 122142 + 11214.902

p + 4 + 4.90
= 1.404 m.

 y =
y1L1 + y2L2 + y3L3

L1 + L2 + L3

=

[2122>p][p122>2] + 0 + 11214.902

p + 4 + 4.90
= 0.739 m, 

Critical Thinking
What possible reason could you have for wanting to know the centroid (average

position) of a line? In Section 7.7 we show that the center of mass of a slender

homogeneous bar, which is the point at which the weight of the bar can be

represented by an equivalent force, lies approximately at the centroid of the

bar s axis.

Calculate the Centroid The coordinates of the centroid of the composite line are

 x =
x1L1 + x2L2 + x3L3

L1 + L2 + L3

=

0 + 122142 + 12214.902

p + 4 + 4.90
= 1.478 m, 

* 7.71 In Active Example 7.11, suppose that the cylinder is hol-

low with inner radius as shown. If the dimensions 

and what is the x coordinate of the centroid

of the volume?

b = 10 in,h = 12 in,

R = 6 in,R/2

Problems

y

x

z

b

h
R

R
2

Problem 7.71

* 7.72 Use the procedure described in Example 7.12 to

determine the x component of the centroid of the volume.

x z

25 mm

10 mm

60 mm 20

mm

y y

Problem 7.72

Information for determining the centroid.

Part 1 0

Part 2 2 0 2 4

Part 3 2 1 1 4.90

p122>22122>p2122>p

Li 1m2zi 1m2yi 1m2xi 1m2
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348 Chapter 7 Centroids and Centers of Mass

For Problems 7.73 7.78, determine the centroids of the

volumes.

y

x

z

4R

R

Problem 7.73

60 mm

90 mm

y

x

z

360 mm

460 mm

Problem 7.75

z

y

x

120 mm 25 mm

75 mm

20 mm

25 mm

100 mm

Problem 7.76

y

z x

300 mm

200 mm

Problem 7.74

x

y

z

5 in

1 in1.75 in

1 in
4 in

Problem 7.77

x

z

y

180

mm
180

mm

30 mm

60 mm

Problem 7.78
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Problems 349

7.79 The dimensions of the Gemini spacecraft (in meters) were

and Determine the centroid of its volume.h = 2.98.g = 2.24,

f = 2.20,e = 1.82,c = 0.74, d = 0.98,a = 0.70, b = 0.88,

y

xda

b c

e

g

f h

Problem 7.79

7.80 Two views of a machine element are shown. Determine the

centroid of its volume.

* 7.81 In Example 7.13, suppose that the circular arc is replaced

by a straight line as shown. Determine the centroid of the three-

segment line.

16
mm

60 mm

y

zx

18 mm

24 mm

8 mm

8 mm

50 mm

20
mm

y

Problem 7.80

z
x

y

(4, 0, 2) m

(0, 0, 2) m

(0, 2, 0) m

Problem 7.81

For Problems 7.82 and 7.83, determine the centroids of

the lines.

3 m

y

x

6 m

Problem 7.82

y

x

2 m

2 m

2 m 2 m

Problem 7.83

7.84 The semicircular part of the line lies in the x z plane. Deter-

mine the centroid of the line.

100 mm

120 mm

160 mm

x

y

z

Problem 7.84

7.85 Determine the centroid of the line.

y

x

200 mm

60*

Problem 7.85
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350 Chapter 7 Centroids and Centers of Mass

7.6 The Pappus Guldinus Theorems

BACKGROUND

In this section we discuss two simple and useful theorems relating surfaces and

volumes of revolution to the centroids of the lines and areas that generate them.

First Theorem

Consider a line L in the x y plane that does not intersect the x axis (Fig. 7.12a).

Let the coordinates of the centroid of the line be We can generate a sur-

face by revolving the line about the x axis (Fig. 7.12b). As the line revolves

about the x axis, the centroid of the line moves in a circular path of radius 

The first Pappus Guldinus theorem states that the area of the surface of

revolution is equal to the product of the distance through which the centroid of

the line moves and the length of the line:

(7.19)

To prove this result, we observe that as the line revolves about the x axis, the

area dA generated by an element dL of the line is where y is the

y coordinate of the element dL (Fig. 7.12c). Therefore, the total area of the sur-

face of revolution is

(7.20)

From the definition of the y coordinate of the centroid of the line,

we obtain

Substituting this result into Eq. (7.20), we obtain Eq. (7.19).

LL

y dL = yL.

y =

LL

y dL

LL

 dL

,

A = 2p
LL

y dL.

dA = 2py dL,

A = 2py L.

y.

1x, y2.

(a)

L

y

x

(c)

z

x

y

dL

y

dA

_
y

(b)

z

x

y

_
y

Figure 7.12
(a) A line L and the y coordinate of its centroid.

(b) The surface generated by revolving the line L about the x axis and the path

followed by the centroid of the line.

(c) An element dL of the line and the element of area dA it generates.
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7.6 The Pappus Guldinus Theorems 351

Second Theorem

Consider an area A in the x y plane that does not intersect the x axis (Fig. 7.13a).

Let the coordinates of the centroid of the area be We can generate a vol-

ume by revolving the area about the x axis (Fig. 7.13b). As the area revolves

about the x axis, the centroid of the area moves in a circular path of length 

The second Pappus Guldinus theorem states that the volume V of the vol-

ume of revolution is equal to the product of the distance through which the cen-

troid of the area moves and the area:

(7.21)

As the area revolves about the x axis, the volume dV generated by an element

dA of the area is where y is the y coordinate of the element dA

(Fig. 7.13c). Therefore, the total volume is

(7.22)

From the definition of the y coordinate of the centroid of the area,

we obtain

Substituting this result into Eq. (7.22), we obtain Eq. (7.21).

LA
y dA = yA.

y =

LA
y dA

LA
 dA

,

V = 2p
LA

y dA.

dV = 2py dA,

V = 2pyA.

2py.

1x, y2.

y

z

x

(b)

y

x

(a)

y

z

x

dA

dV

y

(c)

A

_
y_

y

Figure 7.13
(a) An area A and the y coordinate of its centroid.

(b) The volume generated by revolving the area A about the x axis and the path

followed by the centroid of the area.

(c) An element dA of the area and the element of volume dV it generates.
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RESULTS

The First Pappus Guldinus Theorem

The Second Pappus Guldinus Theorem

The line L is in the x y plane. The y

coordinate of the centroid of  L is y.

If the line L is revolved about the x axis, its

centroid moves in a circular path of radius y.

The area of the surface of revolution generated

by L as it revolves is equal to the product of

the distance through which its centroid moves

and the length of L:

L

y

x

z

x

y

_
y

_
y

A  2pyL. (7.19)

The area A is in the x y plane. The y

coordinate of the centroid of  A is y.

If the area A is revolved about the x axis, its

centroid moves in a circular path of radius y.

The volume of revolution generated by A as

it revolves is equal to the product of the

distance through which its centroid moves

and the area A:

y

z

x

y

x
A

_
y

_
y

V  2pyA. (7.21)
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7.6 The Pappus Guldinus Theorems 353

Active Example 7.14 The Pappus Guldinus Theorems (* Related Problem 7.86)

Use the first Pappus Guldinus theorem to determine the surface area of the cone.

Strategy
We can generate the curved surface of the cone by revolving a straight line about an

axis. Because the location of the centroid of the straight line is known, we can use

the first Pappus Guldinus theorem to determine the area of the curved surface.

Solution

y

h

x

R
RL 

_
y

1

2

Revolving this straight line about the x axis

generates the curved surface of the cone. The

y coordinate of the centroid of the line is shown.

Adding the area of the base, the total surface

area of the cone is pR  h2 
 R2  pR2.

The length of the line is L    h2 
 R2.

The area of the curved surface is

A  2pyLL  pR  h2 
 R2.

R

h

Practice Problem Use the second Pappus Guldinus theorem to determine the volume

of the cone.

Answer: V =

1

3
phR

2
.

Example 7.15 Determining a Centroid with a Pappus Guldinus Theorem (* Related Problem 7.88)

The circumference of a sphere of radius R is and its surface area is 

Use this information to determine the centroid of a semicircular line.

Strategy
Revolving a semicircular line about an axis generates a spherical area. Know-

ing the area, we can use the first Pappus Guldinus theorem to determine the

centroid of the generating line.

Solution
The length of the semicircular line is and is the y coordinate of its

centroid. Rotating the line about the x axis generates the surface of a sphere. The

first Pappus Guldinus theorem states that the surface area of the sphere is

By equating this expression to the given surface area we obtain 

Critical Thinking
If you can obtain a result by using the Pappus Guldinus theorems, you will

often save time and effort in comparison with other approaches. Compare this

example with Example 7.10, in which we used integration to determine the cen-

troid of a semicircular line.

yL =

2R

p

.

yL:4pR2,

12pyL2L = 2p2RyL.

yLL = pR,

4pR2
.2pR

y

R

x

_  
yL

Revolving a semicircular line about

the x axis.
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354 Chapter 7 Centroids and Centers of Mass

* 7.86 Use the method described in Active Example 7.14 to deter-

mine the area of the curved part of the surface of the truncated cone.

7.87 Use the second Pappus Guldinus theorem to determine the

volume of the truncated cone.

7.92 A nozzle for a large rocket engine is designed by revolving

the function about the y axis. Use the first Pappus

Guldinus theorem to determine the surface area of the nozzle.

y =
2
31x - 123>2

7.93 The coordinates of the centroid of the line are 

and Use the first Pappus Guldinus theorem to de-

termine the area of the surface of revolution obtained by revolving

the line about the x axis.

7.94 The coordinates of the centroid of the area between the 

x axis and the line are and Use the

second Pappus Guldinus theorem to determine the volume 

obtained by revolving the area about the x axis.

y = 78.4 mm.x = 355 mm

y = 118 mm.

x = 332 mm

Problems

y

x

(1, 1)

y * x2

Problems 7.89 7.91

x

z

y

R

h

2

h

2

Problems 7.86/7.87

y

x

R

_  
yS

Problem 7.88

7.89 Use the second Pappus Guldinus theorem to determine the

volume generated by revolving the curve about the y axis.

7.90 The length of the curve is and the area gene-

rated by rotating it about the x axis is Use the first

Pappus Guldinus theorem to determine the y coordinate of the

centroid of the curve.

7.91 Use the first Pappus Guldinus theorem to determine the area

of the surface generated by revolving the curve about the y axis.

A = 3.810.

L = 1.479,

* 7.88 The area of the shaded semicircle is . The volume of

a sphere is . Extend the approach described in Example 7.15

to the second Pappus Guldinus theorem and determine the centroid

of the semicircular area.yS

4

3
pR3

1

2
pR2

y

x

5 ft

(x + 1)3/2y *
2

3

Problem 7.92

y

x

200 mm

60-

Problems 7.93/7.94

7.95 The volume of revolution contains a hole of radius R.

(a) Use integration to determine its volume.

(b) Use the second Pappus Guldinus theorem to determine its

volume.

h

R

R , a

Problem 7.95
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7.96 Determine the volume of the volume of revolution.

7.97 Determine the surface area of the volume of revolution.

7.98 The volume of revolution has an elliptical cross section.

Determine its volume.

140

mm

80

mm

Problems 7.96/7.97

180 mm

130 mm

230 mm

Problem 7.98

7.7 Centers of Mass of Objects

BACKGROUND

The center of mass of an object is the centroid, or average position, of its mass.

Here we give the analytical definition of the center of mass and demonstrate one

of its most important properties: An object s weight can be represented by a sin-

gle equivalent force acting at its center of mass. We then discuss how to locate

centers of mass and show that for particular classes of objects, the center of

mass coincides with the centroid of a volume, area, or line. 

The center of mass of an object is defined by

(7.23)

where x, y, and z are the coordinates of the differential element of mass dm

(Fig. 7.14). The subscripts m indicate that the integration must be carried out over

the entire mass of the object.

Before considering how to determine the center of mass of an object, we

will demonstrate that the weight of an object can be represented by a single

equivalent force acting at its center of mass. Consider an element of mass dm

of an object (Fig. 7.15a). If the y axis of the coordinate system points upward,

the weight of dm is Integrating this expression over the mass m, we 

obtain the total weight of the object,

The moment of the weight of the element dm about the origin is

Integrating this expression over m, we obtain the total moment about the origin

due to the weight of the object:

Lm

1gz i dm - gxk dm2 = mgz i - mgx k = W z i - W x k.

1xi + yj + zk2 * 1-dmg j2 = gzi dm - gxk dm.

Lm

- g j dm = -mg j = -W j.

-dmg j.

x =
Lm

x dm

Lm

 dm

, y =
Lm

y dm

Lm

 dm

, z =
Lm

z dm

Lm

 dm

,

x

y

z x

z

y

dm

Figure 7.14
An object and differential element of 

mass dm.
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356 Chapter 7 Centroids and Centers of Mass

If we represent the weight of the object by the force acting at the center

of mass (Fig. 7.15b), the moment of this force about the origin is equal to the

total moment due to the weight:

This result shows that when we are concerned only with the total force and total

moment exerted by the weight of an object, we can assume that its weight acts

at the center of mass.

To apply Eqs. (7.23) to specific objects, we will change the variable of in-

tegration from mass to volume by introducing the density. The density of an

object is defined such that the mass of a differential element dV of the volume

of the object is The dimensions of are therefore 

For example, it can be expressed in in SI units or in in U.S. Cus-

tomary units. The total mass of an object is

(7.24)

An object whose density is uniform throughout its volume is said to be homoge-

neous. In this case, the total mass equals the product of the density and the volume:

Homogeneous object (7.25)

The weight density is defined by It can be expressed in in SI units

or in in U.S. Customary units. The weight of an element of volume dV of

an object is and the total weight of a homogeneous object equals 

By substituting into Eq. (7.23), we can express the coordinates

of the center of mass in terms of volume integrals:

(7.26)

If is known as a function of position in an object, these expressions deter-

mine its center of mass. Furthermore, we can use these expressions to show

that the centers of mass of particular classes of objects coincide with centroids

of volumes, areas, and lines:

The center of mass of a homogeneous object coincides with the cen-

troid of its volume. If an object is homogeneous, and Eqs. (7.26)

become the equations for the centroid of the volume,

The center of mass of a homogeneous plate of uniform thickness coin-

cides with the centroid of its cross-sectional area (Fig. 7.16). The center

of mass of the plate coincides with the centroid of its volume, and we

showed in Section 7.4 that the centroid of the volume of a plate of uniform

thickness coincides with the centroid of its cross-sectional area.

The center of mass of a homogeneous slender bar of uniform cross-

sectional area coincides approximately with the centroid of the axis of

x =
LV

x dV

LV

 dV

, y =
LV

ydV

LV

 dV

, z =
LV

z dV

LV

 dV

.

r = constant

r

x =
LV

rx dV

LV

r dV

, y =
LV

ry dV

LV

r dV

, z =
LV

rz dV

LV

r dV

.

dm = r dV

gV.dW = g dV,

lb/ft3
N/m3

g = gr.

m = r

LV

 dV = rV.

m =

Lm

 dm =

LV

r dV.

slug/ft3kg/m3

(mass/volume).rdm = r dV.

r

1x i + y j + z k2 * 1-W j2 = W z i - W x k.

-Wj

Front View Side View

A

Figure 7.16

A plate of uniform thickness.

(a)

(b)

x

y

z

y

z

x

*Wj

dm

*dmgj

(x, y, z)

(x, y, z)

Figure 7.15

(a) Weight of the element dm.

(b) Representing the weight by a single

force at the center of mass.
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Coordinates of the center of mass of an object,

where dm is an infinitesimal element of its mass

and r is its density.

x

y

z x

z

y

dm

(7.23), (7.26).

x * *

Lm

x dm

Lm

 dm

LV

rx dV

L
r dV

,

* *

Lm

y dm

Lm

 dm

LV

ry dV

LV

r dV

,

z * *

Lm

z dm

Lm

 dm

LV

rz dV

LV

r dV

.

i

y

7.7 Centers of Mass of Objects 357

the bar (Fig. 7.17a). The axis of the bar is defined to be the line through

the centroid of its cross section. Let where A is the cross-

sectional area of the bar and dL is a differential element of length of its

axis (Fig. 7.17b). If we substitute this expression into Eqs. (7.26), they

become the equations for the centroid of the axis:

This result is approximate because the center of mass of the element dm does not

coincide with the centroid of the cross section in regions where the bar is curved.

RESULTS

x =
LL

x dL

LL

 dL

, y =
LL

y dL

LL

 dL

, z =
LL

z dL

LL

 dL

.

dm = rA dL,

x

y

z

(a)

x

y

z

(b)

dL

dm

Figure 7.17

(a) A slender bar and the centroid of its axis.

(b) The element dm.

An object is homogeneous if its density r is

constant, or uniform. The center of mass of

a homogeneous object coincides with the

centroid of its volume.
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Front View Side View

AThe center of mass of a homogeneous plate

of uniform thickness coincides with the

centroid of its cross-sectional area.

x

y

z

The center of mass of a homogeneous slender

bar of uniform cross-sectional area coincides

approximately with the centroid of the axis of

the bar.

Active Example 7.16 Representing the Weight of an L-Shaped Bar (* Related Problem 7.99)

The mass of the homogeneous slender bar is 80 kg. What are the reactions at A

and B?

Strategy
We can determine the reactions in two ways.

First Method By representing the weight of each straight segment of the bar

by a force acting at the center of mass of the segment.

Second Method By determining the center of mass of the entire bar, which

is located at the centroid of its axis, and representing the weight of the entire

bar by a force acting at its center of mass.

Solution

First Method

1 m

1 m

A

B

Represent the

weight of each

straight segment

by a force acting at

the center of mass

of the segment, and

apply equilibrium.
Solving yields Ax * 589 N, Ay * 785 N, and B * 589 N.

x

y

Ax

Ay

1 m

B

(40)(9.81) N

(40)(9.81) N

0.5 m 0.5 m

, Fx * Ax + B * 0,

, Fy * Ay + (40)(9.81) N + (40)(9.81) N * 0,

,Mpoint A * (1 m)B + (1 m)[(40)(9.81) N] + (0.5 m)[(40)(9.81) N] * 0.
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Treat the axis of the bar as a

composite line with parts 1

and 2 and calculate the

coordinates of its centroid.

x

y

1

2

0.5 m

0.5 m

 0.75 m,
(0.5)(1)  (1)(1)

1  1

 0.25 m,
(0)(1)  (0.5)(1)

1  1

x 
x1L1  x2L2

L1  L2

y 
y1L1  y2L2

L1  L2

x

y

Ax

Ay

1 m

B

(80)(9.81) N

0.75 m

Place the weight of the entire

bar at its center of mass and

apply equilibrium.

Fx  Ax  B  0,

Fy  Ay  (80)(9.81) N  0,

Solving again yields Ax  589 N, Ay  785 N, 

and B  589 N.

Mpoint A  (1 m)B  (0.75 m) [(80)(9.81) N]  0.

Practice Problem The mass of the homogeneous circular bar is 80 kg. What are the

reactions at A and B?

1 m

A

B

Second Method

Answer: Ax = 500 N,  Ay = 785 N,  B = 500 N.
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360 Chapter 7 Centroids and Centers of Mass

Example 7.17 Cylinder with Nonuniform Density (* Related Problem 7.105)

Determine the mass of the cylinder and the position of its center of mass if

(a) it is homogeneous with density (b) its density is given by the equation

Strategy
In (a), the mass of the cylinder is simply the product of its density and its vol-

ume and the center of mass is located at the centroid of its volume. In (b), the

cylinder is inhomogeneous and we must use Eqs. (7.24) and (7.26) to deter-

mine its mass and center of mass.

Solution
(a) The volume of the cylinder is LA, so its mass is Since the center of

mass is coincident with the centroid of the volume of the cylinder, the coordi-

nates of the center of mass are 

(b) We can determine the mass of the cylinder by using an element of volume

dV in the form of a disk of thickness dx (Fig. a). The volume The

mass of the cylinder is

The x coordinate of the center of mass is

Because the density does not depend on y or z, we know from symmetry

that and 

Critical Thinking
Notice that the center of mass of the inhomogeneous cylinder is not located

at the centroid of its volume. Its density increases from left to right, so the

center of mass is located to the right of the midpoint of the cylinder. Many

of the objects we deal with in engineering are not homogeneous, but it is not

common for an object s density to vary continuously through its volume as

in this example. More often, objects consist of assemblies of parts (compos-

ites) that have different densities because they consist of different materials.

Frequently the individual parts are approximately homogeneous. We discuss

the determination of the centers of mass of such composite objects in the

next section.

z = 0.y = 0

x =
Lv

xr dV

Lv

r dV

=
L

L

0

r0 ax +
x2

L
bA dx

3

2
 r0 AL

=
5

9
 L.

m =

Lv

r dV =

L

L

0

r0 a1 +
x

L
bA dx =

3

2
 r0AL.

dV = A dx.

x =
1
2 L, y = 0, z = 0.

r0LA.

r = r011 + x>L2.

r0;
y

x

z

A

L

(a) An element of volume dV in the form 

of a disk.

dx

y

z

x

dV

x
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* 7.99 Suppose that the bar in Active Example 7.16 is replaced

with this 100-kg homogeneous bar. (a) What is the x coordinate of

the bar s center of mass? (b) Determine the reactions at A and B.

Problems

7.102 The bar has a mass of 80 kg. What are the reactions at A

and B?

2 m

2 m

A

B

Problem 7.102

1 m

0.5 m

1 m

A

B

x

y

A
B

200 mm

600 mm

100 mm

800 mm 600 mm

400 mm

Problem 7.100

Problem 7.99

1 m

2 m 4 m
CA

DB

y

x
E

y * 1 + 0.0625x2

Problem 7.101

7.100 The mass of the homogeneous flat plate is 50 kg. Deter-

mine the reactions at the supports A and B.

7.101 The suspended sign is a homogeneous flat plate that has a

mass of 130 kg. Determine the axial forces in members AD and

CE. (Notice that the y axis is positive downward.)

7.103 The mass of the bar per unit length is Choose the

dimension b so that part BC of the suspended bar is horizontal.

What is the dimension b, and what are the resulting reactions on

the bar at A?

2 kg/m.

b

30,

1 m

A

B

C

Problem 7.103

7.104 The semicircular part of the homogeneous slender bar lies

in the x z plane. Determine the center of mass of the bar.

x
z

y

10 in

12 in

16 in

Problem 7.104
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362 Chapter 7 Centroids and Centers of Mass

* 7.105 The density of the cone is given by the equation

where is a constant. Use the procedure de-

scribed in Example 7.17 to show that the mass of the cone is given

by where V is the volume of the cone, and that the

x coordinate of the center of mass of the cone is x = (27>35)h.

m = (7>4)r0V,

r0r = r0(1 + x>h),

7.106 A horizontal cone with 800-mm length and 200-mm radius

has a fixed support at A. Its density is

where x is in meters. What are the reactions at A?

r = 600011 + 0.4x2
2 kg/m3,

y

A

800 mm

200 mm

x

Problem 7.106

Problem 7.105

x

z

y

R

h

7.8 Centers of Mass of Composite Objects

BACKGROUND

The center of mass of an object consisting of a combination of parts can be deter-

mined if the centers of mass of its parts are known. The coordinates of the center

of mass of a composite object composed of parts with masses are

(7.27)

where are the coordinates of the centers of mass of the parts. Because

the weights of the parts are related to their masses by Eqs. (7.27)

can also be expressed as

(7.28)

When the masses or weights and the centers of mass of the parts of a compos-

ite object are known, these equations determine its center of mass.

Determining the center of mass of a composite object requires three steps:

1. Choose the parts Try to divide the object into parts whose centers of mass

you know or can easily determine.

2. Determine the values for the parts Determine the center of mass and the

mass or weight of each part. Watch for instances of symmetry that can sim-

plify your task.

3. Calculate the center of mass Use Eqs. (7.27) or (7.28) to determine the

center of mass of the composite object.

x =

a
i

 xiWi

a
i

 Wi

, y =

a
i

 yiWi

a
i

 Wi

, z =

a
i

 ziWi

a
i

 Wi

.

Wi = gmi,

xi, yi, z i

x =

a
i

 xi mi

a
i

 mi

, y =

a
i

 yi mi

a
i

 mi

, z =

a
i

 zi mi

a
i

 mi

,

m1, m2, ,
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Active Example 7.18 Center of Mass of a Composite Object (* Related Problem 7.107)

x

1

2

z

y

240 mm

80 mm

240 mm

40 mm

80 mm

The L-shaped machine part is composed to two homogeneous bars. Bar 1

is tungsten alloy with a density of Bar 2 is steel with a density

of Determine the x coordinate of the center of mass of the

machine part.

Strategy
We can determine the mass and the x coordinate of the center of mass of each

homogeneous bar and apply Eq. (7.27)1.

Solution

7800 kg/m3
.

14,000 kg/m3
.

Mass of bar 1.

The volume of bar 1 is

so its mass is

m1  r1V1

V1  (80 mm)(240 mm)(40 mm)

 7.68  105  mm3

 7.68  10 4  m3, 

 (14,000 kg/m3)(7.68  10 4  m3)

 10.8 kg.

Mass of bar 2.

Bar 2 has the same volume as

bar 1, so the mass of bar 2 is

m2  r2V2

 (7800 kg/m3)(7.68  10 4 m3)

 5.99 kg.

Center of mass of bar 2.

 80 mm     (240 mm)  200 mm.
1

2

The x coordinate of the centroid of the volume

of the bar is

x2

Center of mass of bar 1.

 (80 mm)  40 mm.x1 

The center of mass coincides

with the centroid of the volume

of the bar, so

1 

2

Apply Eq. (7.27)1.

 97.2 mm.

(40 mm)(10.8 kg)  (200 mm)(5.99 kg)

10.8 kg  5.99 kg

x 
x1m1  x2m2

m1  m2

Practice Problem Determine the y coordinate of the center of mass of the 

L-shaped machine part.

Answer: y = 91.4 mm.
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Front View

zx

yy

Side View

10 in

2 in

4 in

12 in

5 in 5 in

Example 7.19 Center of Mass of a Composite Object (* Related Problem 7.109)

The composite object consists of a bar welded to a cylinder. The homogeneous

bar is aluminum (weight density ), and the homogeneous cylinder is 

bronze (weight density ). Determine the center of mass of the object.530 lb/ft3
168 lb/ft3

Strategy
We can determine the weight of each homogeneous part by multiplying its vol-

ume by its weight density. We also know that the center of mass of each part co-

incides with the centroid of its volume. The centroid of the cylinder is located

at its center, but we must determine the location of the centroid of the bar by

treating it as a composite volume.

Solution
The volume of the cylinder is

so its weight is

The x coordinate of its center of mass is The volume of the

bar is

and its weight is

We can determine the centroid of the volume of the bar by treating it as a

composite volume consisting of three parts (Fig. a). Part 3 is a semicircular

cutout.  The centroids of part 1 and the semicircular cutout 3 are located at the

Wbar = 10.0926 ft321168 lb/ft32 = 15.6 lb.

 = 160 in3
= 0.0926 ft3, 

 Vbar = 110 in218 in212 in2 +
1
2 p14 in22

12 in2 -
1
2 p14 in22

12 in2

xcylinder = 10 in.

Wcylinder = 10.262 ft321530 lb/ft32 = 138.8 lb.

 = 452 in3
= 0.262 ft3, 

 Vcylinder = 112 in2[p14 in22
- p12 in22]
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Information for determining the x coordinate of the centroid of the bar

Part 1

Part 2 5 (10)(8)(2) 5[(10)(8)(2)]

Part 3 - c10 -

4142

3p
d C

1

2
 p142

2
122 D-

1

2
 p142

2
12210 -

4142

3p

-

4142

3p
 C

1

2
 p142

2
122D

1

2
 p142

2
122-

4142

3p

xiVi 1in
4
2Vi 1in

3
2xi 1in2

Therefore, the x coordinate of the center of mass of the composite object is

Because of the symmetry of the bar, the y and z coordinates of its center of

mass are and 

Critical Thinking

The composite object in this example is not homogeneous, which means we

could not assume that its center of mass coincides with the centroid of its vol-

ume. But the bar and the cylinder are each homogeneous, so we could deter-

mine their individual centers of mass by finding the centroids of their volumes.

The primary challenge in this example was determining the centroid of the vol-

ume of the bar with its semicircular end and semicircular cutout.

z = 0.y = 0

 = 9.18 in.

 =
11.86 in2115.6 lb2 + 110 in21138.8 lb2

15.6 lb + 138.8 lb

 x =

x barWbar + x cylinderWcylinder

Wbar + Wcylinder

1 3

10 in

y

x

in
4(4)

3p
in

4(4)

3p

(b) The centroids of the two semicircular parts.

1

2

3

(a) Dividing the bar into three parts.

centroids of their semicircular cross sections (Fig b). Using the information

summarized in the table, we have

= 1.86 in.

=

-

4142

3p
 [

1

2
 p142

2
122] + 5[1102182122] - c10 -

4142

3p
d[

1

2
 p142

2
122]

1

2
 p142

2
122 + 1102182122 -

1

2
 p142

2
122

xbar =
x1V1 + x2V2 + x3V3

V1 + V2 + V3

BEDFMC07_0136129153.QXD  4/14/07  12:16 PM  Page 365



366 Chapter 7 Centroids and Centers of Mass

Example 7.20 Centers of Mass of Vehicles (* Related Problems 7.115, 7.116 )

A car is placed on a platform that measures the normal force exerted by each tire

independently. Measurements made with the platform horizontal and with the

platform tilted at are shown in the table. Determine the position of the

car s center of mass.

a = 15

Strategy
The given measurements tell us the normal reactions exerted on the car s tires

by the platform. By drawing free-body diagrams of the car in the two positions

and applying equilibrium equations, we will obtain equations that can be solved

for the unknown coordinates of the car s center of mass.

Solution
We draw the free-body diagram of the car when the platform is in the hori-

zontal position in Figs. a and b. The car s weight is

From Fig. a, we obtain the equilibrium equation

Mz axis = 1wheelbase21NLF + NRF2 - xW = 0,

 = 17,303 N.

 = 5104 + 5027 + 3613 + 3559

 W = NLF + NRF + NLR + NRR

Measurements of the normal forces exerted by the tires

Measured Loads (N)

Left front wheel, 5104 4463

Right front wheel, 5027 4396

Left rear wheel, 3613 3956

Right rear wheel, 3559 3898NRR

NLR

NRF

NLF

a = 15a = 0

Track * 1.55 m

Wheelbase * 2.82 m

Wheelbase

Track

a

x
y

W
x

Wheelbase

NLR 
* NRR NLF 

* NRF

(a) Side view of the free-body diagram with

the platform horizontal.
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7.8 Centers of Mass of Composite Objects 367

which we can solve for 

From Fig. b,

which we can solve for 

Now that we know we can determine from the free-body diagram of the

car when the platform is in the tilted position (Fig. c). From the equilibrium

equation

we obtain

Notice that we could not have determined without the measurements made

with the car in the tilted position.

y

 = 0.584 m.

 =
11.651 m2117,303 N2 cos 15 - 12.82 m214463 N + 4396 N2

117,303 N2 sin 15

 y =
xW cos15 - 1wheelbase21NLF + NRF2

W sin 15

 = 0,

 Mz axis = 1wheelbase21NLF + NRF2 + yW sin 15 - xW cos 15

yx,

 = 0.769 m.

 =
11.55 m215027 N + 3559 N2

17,303 N

 z =
1track21NRF + NRR2

W

z:

Mx axis = zW - 1track21NRF + NRR2 = 0,

 = 1.651 m.

 =
12.82 m215104 N + 5027 N2

17,303 N

 x =
1wheelbase21NLF + NRF2

W

x:

y

15+
y

Wheelbase

x

NLR 
*  NRR

NLF 
*  NRF

W

x

(c) Side view of the free-body diagram with the platform tilted.

W
z

y

Track

NLF * NLR
NRF * NRR

z

(b) Front view of the free-body diagram

with the platform horizontal.

BEDFMC07_0136129153.QXD  4/14/07  12:16 PM  Page 367



368 Chapter 7 Centroids and Centers of Mass

* 7.107 In Active Example 7.18, suppose that bar 1 is replaced

by a bar with the same dimensions that consists of aluminum alloy

with a density of . Determine the x coordinate of the

center of mass of the machine part.

7.108 The cylindrical tube is made of aluminum with density

The cylindrical plug is made of steel with density

Determine the coordinates of the center of mass of

the composite object.

7800 kg/m3.

2700 kg/m3.

2600 kg/m3

* 7.109 In Example 7.19, suppose that the object is redesigned

so that the radius of the hole in the hollow cylinder is increased

from 2 in to 3 in. What is the x coordinate of the center of mass of

the object?

7.110 A machine consists of three parts. The masses and the

locations of the centers of mass of two of the parts are

The mass of part 3 is 2.5 kg. The design engineer wants to posi-

tion part 3 so that the center of mass location of the machine is

Determine the necessary posi-

tion of the center of mass of part 3.

x = 120 mm, y = 80 mm, z = 0.

7.113 With its engine removed, the mass of the car is 1100 kg

and its center of mass is at C. The mass of the engine is 220 kg.

(a) Suppose that you want to place the center of mass E of the

engine so that the center of mass of the car is midway between the

front wheels A and the rear wheels B. What is the distance b?

(b) If the car is parked on a 15 slope facing up the slope, what

total normal force is exerted by the road on the rear wheels B?

y

x

z

y

z

A

A

20 mm

35 mm

Section A-A 

x

y

100
mm

100
mm

Tube

Plug

Problem 7.108

Part Mass (kg) (mm) (mm) (mm)

1 2.0 100 50

2 4.5 150 70 0

-20

zyx

50 mm

20
mm

16
mm

60 mm

y y

zx

18 mm

2

1

24 mm

8 mm

8 mm

Problem 7.111

Problem 7.112

1.14 mA

b
2.60 m

B

0.6 m
0.45 m

C

E

Problem 7.113

A

B

G

F2

F1

4 m

C

4 m

3 m

D

E

3 m

y

x

Problems

7.112 The loads . The mass of the truss is

900 kg. The members of the truss are homogeneous bars with the

same uniform cross section. (a) What is the x coordinate of the

center of mass of the truss? (b) Determine the reactions at A andG.

F1 = F2 = 25 kN

7.111 Two views of a machine element are shown. Part 1 is alu-

minum alloy with density and part 2 is steel with den-

sity Determine the coordinates of its center of mass.7800 kg/m3.

2800 kg/m3,
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Review Problems 369

7.114 The airplane is parked with its landing gear resting on

scales. The weights measured at A, B, and C are 30 kN, 140 kN,

and 146 kN, respectively. After a crate is loaded onto the plane,

the weights measured at A, B, and C are 31 kN, 142 kN, and

147 kN, respectively. Determine the mass and the x and y coor-

dinates of the center of mass of the crate.

y

x

10 m

6 m B

C

A

6 m

Problem 7.114

* 7.115 A suitcase with a mass of 90 kg is placed in the trunk of

the car described in Example 7.20. The position of the center of mass

of the suitcase is

If the suitcase is regarded as part of the car, what is the new position

of the car s center of mass?

* 7.116 A group of engineering students constructs a miniature 

device of the kind described in Example 7.20 and uses it to

determine the center of mass of a miniature vehicle. The data

they obtain are shown in the following table:

x s = -0.533 m, ys = 0.762 m, z s = -0.305 m.

Determine the center of mass of the vehicle. Use the same

coordinate system as in Example 7.20.

Measured Loads (lb)

Left front wheel, 35 32

Right front wheel, 36 33

Left rear wheel, 27 34

Right rear wheel, 29 30NRR

NLR

NRF

NLF

a = 10a = 0

Track * 30 in

Wheelbase * 36 in

Review Problems

7.117 Determine the centroid of the area by letting dA be a

vertical strip of width dx.

7.118 Determine the centroid of the area by letting dA be a

horizontal strip of height dy.

x

y

y * x2

(1, 1)

Problems 7.117/7.118

7.119 Determine the centroid of the area.

x

60 cm

60 cm

y

80 cm

Problem 7.119

7.120 Determine the centroid of the area.

160 mm

120 mm

20 mm
40 mm

80 mm

x

y

40 mm

Problem 7.120
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370 Chapter 7 Centroids and Centers of Mass

7.122 What is the axial load in member BD of the frame?

7.124 Determine the reactions on member ABCD at A and D.

7.125 Estimate the centroid of the volume of the Apollo lunar re-

turn configuration (not including its rocket nozzle) by treating it

as a cone and a cylinder.

7.126 The shape of the rocket nozzle of the Apollo lunar return

configuration is approximated by revolving the curve shown

around the x axis. In terms of the coordinate system shown, deter-

mine the centroid of the volume of the nozzle.

5 m

10 m

100 N/m

5 m

A

B D

C

E

Problem 7.122

N

15 m

A

A

B

B, C

C

(c)

40 m

(a)

200 N/m

400 N/m

(b)

Problem 7.123

A F

B

C

D E

2 kN/m

1 m

1 m

1 m

1 m

1 m

2 kN/m

Problem 7.124

14 ft10 ft

Nozzle

x12.8 ft

y

Problem 7.125
7.123 An engineer estimates that the maximum wind load on the

40-m tower in Fig. a is described by the distributed load in Fig. b.

The tower is supported by three cables, A, B, and C, from the top

of the tower to equally spaced points 15 m from the bottom of the

tower (Fig. c). If the wind blows from the west and cables B and C

are slack, what is the tension in cable A? (Model the base of the

tower as a ball and socket support.)
y

x

y , 0.350 * 0.435x + 0.035x2

2.83 m

Problem 7.126

7.121 The cantilever beam is subjected to a triangular distributed

load. What are the reactions at A?

y

10 m

x

200 N/m

A

Problem 7.121
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Review Problems 371

7.127 Determine the coordinates of the centroid of the volume.

7.128 Determine the surface area of the volume of revolution.

7.129 Determine the y coordinate of the center of mass of the 

homogeneous steel plate.

7.130 Determine the x coordinate of the center of mass of the

homogeneous steel plate.

7.131 The area of the homogeneous plate is The vertical

reactions on the plate at A and B are 80 lb and 84 lb, respectively.

Suppose that you want to equalize the reactions at A and B by

drilling a 1-ft-diameter hole in the plate. What horizontal distance

from A should the center of the hole be? What are the resulting

reactions at A and B?

10 ft2.

y

x

z

30 mm

40 mm

20 mm

120 mm

100

mm

Problem 7.127

6 in

9 in

5 in

Problem 7.128

x

y

80 mm

20 mm

20 mm

10 mm

20 mm

Problem 7.129

x

y

50 mm

150 mm

220 mm

Problem 7.130

5 ft

A B

Problem 7.131

7.132 The plate is of uniform thickness and is made of homoge-

neous material whose mass per unit area of the plate is 

The vertical reactions at A and B are 6 N and 10 N, respectively.

What is the x coordinate of the centroid of the hole?

2 kg/m2
.

2 m

1 m

A B

Problem 7.132
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372 Chapter 7 Centroids and Centers of Mass

7.133 Determine the center of mass of the homogeneous sheet

of metal.

7.134 Determine the center of mass of the homogeneous object.

7.135 Determine the center of mass of the homogeneous object.

7.136 The arrangement shown can be used to determine the

location of the center of mass of a person. A horizontal board has

a pin support at A and rests on a scale that measures weight at B.

The distance from A to B is 2.3 m. When the person is not on the

board, the scale at B measures 90 N.

(a) When a 63-kg person is in position (1), the scale at B measures

496 N. What is the x coordinate of the person s center of mass?

(b) When the same person is in position (2), the scale measures

523 N. What is the x coordinate of his center of mass?

z

x

12 in

y

4 in

9 in

8 in

Problem 7.133

y

x

(1)

(2)

B

B

A

A

x

y

Problem 7.136

y

z

x

x

x

1.5 in

z

y

5 in

Top  View

3 in
1 in

2 in

Side View

Problem 7.135

x

y

z

60 mm

60 mm

10 mm

20 mm

30
mm

30 mm

10 mmz

y

z

x

Problem 7.134

7.137 If a string is tied to the slender bar at A and the bar is

allowed to hang freely, what will be the angle between AB and the

vertical?

A

B

8 in

4 in

Problem 7.137
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7.138 When the truck is unloaded, the total reactions at the front

and rear wheels are and The density of

the load of gravel is The dimension of the load

in the z direction is 3 m, and its surface profile, given by the func-

tion shown, does not depend on z. What are the total reactions at

the front and rear wheels of the loaded truck?

r = 1600 kg/m3
.

B = 36 kN.A = 54 kN

7.139 The mass of the moon is 0.0123 times the mass of the

earth. If the moon s center of mass is 383,000 km from the center

of mass of the earth, what is the distance from the center of mass

of the earth to the center of mass of the earth moon system?

2.8 m 3.6 m

5.2 m

A B

y * 1.5 + 0.45x , 0.062x2

x

y

Problem 7.138

Design Project

7.140 Construct a homogeneous thin flat plate with the shape

shown in Fig. a. (Use the cardboard back of a pad of paper to

construct the plate. Choose your dimensions so that the plate is

as large as possible.) Calculate the location of the center of

mass of the plate. Measuring as carefully as possible, mark the

center of mass clearly on both sides of the plate. Then carry out

the following experiments.

(a) Balance the plate on your finger (Fig. b) and observe that it

balances at its center of mass. Explain the result of this experi-

ment by drawing a free-body diagram of the plate.

(b) This experiment requires a needle or slender nail, a length

of string, and a small weight. Tie the weight to one end of the

string and make a small loop at the other end. Stick the needle

through the plate at any point other than its center of mass.

Hold the needle horizontal so that the plate hangs freely from it

(Fig. c). Use the loop to hang the weight from the needle, and let

the weight hang freely so that the string lies along the face of the

plate. Observe that the string passes through the center of mass

of the plate. Repeat this experiment several times, sticking the

needle through various points on the plate. Explain the results of

this experiment by drawing a free-body diagram of the plate.

(c) Hold the plate so that the plane of the plate is vertical, and

throw the plate upward, spinning it like a Frisbee. Observe that

the plate spins about its center of mass.

(b) (c)

1 1

1

1

(a)
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Moments of Inertia

Quantities called moments of inertia arise repeatedly in

analyses of engineering problems. Moments of inertia of

areas are used in the study of distributed forces and in

calculating deflections of beams. The moment exerted by

the pressure on a submerged flat plate can be expressed

in terms of the moment of inertia of the plate s area. In

dynamics, mass moments of inertia are used in calculating

the rotational motions of objects. We show how to calcu-

late the moments of inertia of simple areas and objects and

then use results called parallel-axis theorems to calculate

moments of inertia of more complex areas and objects.

* A beam s resistance to bending and ability to support loads depend on a
property of its cross section called the moment of inertia. In this chapter we
define and show how to calculate moments of inertia of areas. 

C H A P T E R

8
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8.1 Definitions

Consider an area A in the x y plane (Fig. 8.1a). Four moments of inertia of A

are defined:

1. Moment of inertia about the x axis:

(8.1)

where y is the y coordinate of the differential element of area dA (Fig. 8.1b).

This moment of inertia is sometimes expressed in terms of the radius of

gyration about the x axis, which is defined by

(8.2)

2. Moment of inertia about the y axis:

(8.3)

where x is the x coordinate of the element dA (Fig. 8.1b). The radius of

gyration about the y axis, is defined by

(8.4)Iy = ky
2 A.

ky,

Iy =

LA

 x2
 dA,

Ix = kx
2 A.

kx,

Ix =

LA

 y2
 dA,

376 Chapter 8 Moments of Inertia

(a)

x

y

A

(b)

x

y

dA

y

x

r

Figure 8.1

(a) An area A in the x y plane.

(b) A differential element of A.

AREAS
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3. Product of inertia:

(8.5)

4. Polar moment of inertia:

(8.6)

where r is the radial distance from the origin of the coordinate system to

dA (Fig. 8.1b). The radius of gyration about the origin, is defined by

(8.7)

The polar moment of inertia is equal to the sum of the moments of inertia about

the x and y axes:

Substituting the expressions for the moments of inertia in terms of the radii of

gyration into this equation, we obtain

The dimensions of the moments of inertia of an area are and the

radii of gyration have dimensions of length. Notice that the definitions of the mo-

ments of inertia and and the radii of gyration imply that they have pos-

itive values for any area. They cannot be negative or zero.

If an area A is symmetric about the x axis, for each element dA with coor-

dinates (x, y), there is a corresponding element dA with coordinates 

as shown in Fig. 8.2. The contributions of these two elements to the product

of inertia of the area cancel: This means that the

product of inertia of the area is zero. The same kind of argument can be used for

an area that is symmetric about the y axis. If an area is symmetric about either

the x axis or the y axis, its product of inertia is zero.

xy dA + 1-xy2 dA = 0.Ixy

1x, -y2,

JOIx, Iy,

1length24
,

kO
2
= kx

2
+ ky

2
.

JO =

LA

 r 2
 dA =

LA

 1y2
+ x2

2 dA = Ix + Iy.

JO = kO
2   A.

kO,

JO =

LA

 r 2
 dA,

Ix y =

LA

 xy dA.

8.1 Definitions 377

x

y

dA (x, y)

dA (x, *y)

A

Figure 8.2
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378 Chapter 8 Moments of Inertia

Active Example 8.1 Moments of Inertia of a Triangular Area (* Related Problems 8.1 8.3)

Determine Ix and Iy for the triangular area.

Strategy
Equation (8.3) for the moment of inertia about the y axis is very similar in form

to the equation for the x coordinate of the centroid of an area, and we can eval-

uate it in exactly the same way, by using a differential element of area dA in the

form of a vertical strip of width dx. We will then show that Ix can be evaluated

using the same element of area.

Solutionx

y

b

h

x

y

h 
f (x) *

b

b

dA

x
dx

x

h

The height of a strip of width dx at position x is

f(x) * (h/b)x, so its area is dA * f(x) dx. Use

this expression to evaluate Eq. (8.3).

* hb3.

Iy *

*

*

LA

x2 dA

x2f(x) dx
L

b

0

x2

L

b

0

h

b   
x dx

1 

4

Let dAs be an element of the vertical strip

dA and apply Eq. (8.1).

x

y

dy

x
dx

y

dA
s

f (x)

* [ f(x)]3dx.

(Ix)strip *

*

Lstrip

y2 dAs

(y2dx) dy
L

f (x)

0

1 

3

To evaluate Ix, we will first determine the moment of inertia about the x axis of

the vertical strip dA.
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8.1 Definitions 379

Practice Problem Determine Ixy for the triangular area. Do so by determining the

product of inertia for the vertical strip dA and then integrating the resulting expression

with respect to x from x * 0 to x* b.

Answer: Ixy *
1

8
 b

2
h

2
.

Example 8.2 Moments of Inertia of a Circular Area (* Related Problem 8.21)

Determine the moments of inertia and radii of gyration of the circular area.

Strategy
We will first determine the polar moment of inertia by integrating in terms

of polar coordinates. We know from the symmetry of the area that and 

since the moments of inertia and are each equal to We

also know from the symmetry of the area that 

Solution
By letting r change by an amount dr, we obtain an annular element of area

(Fig. a). The polar moment of inertia is

and the radius of gyration about O is

The moments of inertia about the x and y axes are

and the radii of gyration about the x and y axes are

The product of inertia is zero:

Critical Thinking
The symmetry of this example saved us from having to integrate to determine

and Be alert for symmetry that can shorten your work. In particular,

remember that if the area is symmetric about either the x or the y axis.Ixy = 0

Ixy.Ix, Iy,

Ixy = 0.

kx = ky = C
Ix

A
= C

11>42pR4

pR2
=

1

2
R.

Ix = Iy =
1

2
 JO =

1

4
 pR4

,

kO = C
JO

A
= C

11>22pR4

pR2
=

1

22

  R.

JO =

LA

 r2
 dA =

L

R

0

2pr 3
 dr = 2p c

r4

4
d

0

R

=
1

2
 pR4

,

dA = 2pr dr

Ixy = 0.

1

2
 JO.IyIxIx + Iy = JO,

Ix = Iy,

JO

x

y

R

Integrate the expression for (Ix)strip with

respect to x from x * 0 to x * b to

determine Ix for the triangle.

* bh3.

Ix *

*

L

b

L

b

0

0

h

b   
dx

1 

12

1 

3

1 

3

[ f (x)]3 dx

x
3

dA

dr

r
x

y

(a) An annular element dA.
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x

y

1 m

0.6 m

0.3 m

Problems 8.6 8.8

y*

y

x*

x

dx

dy

40 mm

60 mm

O*

O

Problems 8.4/8.5

8.6 Determine and 

8.7 Determine and 

8.8 Determine Ixy.

kO.JO

ky.Iy

8.4 (a) Determine the moment of inertia of the beam s rectan-

gular cross section about the y axis.

(b) Determine the moment of inertia of the beam s cross sec-

tion about the Using your numerical values, show that

where A is the area of the cross section.

8.5 (a) Determine the polar moment of inertia of the beam s

rectangular cross section about the origin O.

(b) Determine the polar moment of inertia of the beam s

cross section about the origin Using your numerical values,

show that where A is the area of the

cross section.

JO = JO + 1dx
2
+ dy

2
2A,

O .

JO

JO

Iy = Iy + dx
2  A,

y  axis.

Iy

Iy

x

y

0.6 m

0.4 m0.2 m

Problems 8.1/8.2

y

x

h

b

Problem 8.3

Problems

* 8.1 Use the method described in Active Example 8.1 to deter-

mine Iy and ky for the rectangular area.

* 8.2 Use the method described in Active Example 8.1 to deter-

mine Ix and kx for the rectangular area.

* 8.3 In Active Example 8.1, suppose that the triangular area is

reoriented as shown. Use integration to determine Iy and ky.
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x

y

y  5

y       x
2
  4x  7 

1 

4

x

y

R

x

y

Ri

Ro

Problem 8.21

Problems 8.19/8.20

Problems 8.17/8.18

x

y

y       x
2
  4x  7 

1 

4

Problems 8.13 8.16

8.13 Determine and 

8.14 Determine and 

8.15 Determine and 

8.16 Determine Ixy.

kO.JO

kx.Ix

ky.Iy

8.17 Determine and 

8.18 Determine and kx.Ix

ky.Iy

8.19 (a) Determine and by letting dA be a vertical strip of

width dx.

(b) The polar moment of inertia of a circular area with its center

at the origin is Explain how you can use this infor-

mation to confirm your answer to (a).

8.20 (a) Determine and by letting dA be a horizontal strip

of height dy.

(b) The polar moment of inertia of a circular area with its center

at the origin is Explain how you can use this infor-

mation to confirm your answer to (a).

JO =
1

2
 pR 

4
.

kxIx

JO =
1

2
 pR 

4
.

kyIy

* 8.21 Use the procedure described in Example 8.2 to determine

the moments of inertia Ix and Iy for the annular ring.

x

y

1

y  2  x
2

Problems 8.9 8.12

8.9 Determine 

8.10 Determine 

8.11 Determine 

8.12 Determine Ixy.

JO.

Ix.

Iy.
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5 m

y

2 m

, + 1

x

x2

a2

y2

b2

Problems 8.22/8.23

8.22 What are the values of and for the elliptical area of the

airplane s wing?

8.23 What are the values of and for the elliptical area of the

airplane s wing?

kxIx

kyIy

x

y

y + x  

y + x2 
* 20  

Problems 8.24/8.25

8.24 Determine and 

8.25 Determine and kx .Ix

ky 
.Iy

8.26 A vertical plate of area A is beneath the surface of a sta-

tionary body of water. The pressure of the water subjects each 

element dA of the surface of the plate to a force 

where is the pressure at the surface of the water and is the

weight density of the water. Show that the magnitude of the 

moment about the x axis due to the pressure on the front face of

the plate is

where is the y coordinate of the centroid of A and is the mo-

ment of inertia of A about the x axis.

Ixy

Mx axis = pOyA + gIx,

gpO

1pO + gy2 dA,

x

y

A

Problem 8.26
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8.2 Parallel-Axis Theorems 383

8.2 Parallel-Axis Theorems

BACKGROUND

The values of the moments of inertia of an area depend on the position of the

coordinate system relative to the area.

In some situations the moments of inertia of an area are known in terms of

a particular coordinate system but we need their values in terms of a different co-

ordinate system. When the coordinate systems are parallel, the desired moments

of inertia can be obtained by using the theorems we describe in this section. Fur-

thermore, these theorems make it possible for us to determine the moments of

inertia of a composite area when the moments of inertia of its parts are known.

Suppose that we know the moments of inertia of an area A in terms of a co-

ordinate system with its origin at the centroid of the area, and we wish to

determine the moments of inertia in terms of a parallel coordinate system xy

(Fig. 8.3a). We denote the coordinates of the centroid of A in the xy coordinate

system by and is the distance from the origin of the

xy coordinate system to the centroid (Fig. 8.3b).

We need two preliminary results before deriving the parallel-axis theorems.

In terms of the coordinate system, the coordinates of the centroid of A are

But the origin of the coordinate system is located at the centroid of A, so

and Therefore,

(8.8)

Moment of Inertia About the x Axis In terms of the xy coordinate sys-

tem, the moment of inertia of A about the x axis is

(8.9)

where y is the coordinate of the element of area dA relative to the xy coordi-

nate system. From Fig. 8.3b, we see that where is the coordi-

nate of dA relative to the coordinate system. Substituting this expression

into Eq. (8.9), we obtain

The first integral on the right is the moment of inertia of A about the From

Eq. (8.8), the second integral on the right equals zero. Therefore, we obtain

(8.10)Ix = Ix + d y
2 A.

x axis.

Ix =

LA
 1y + dy2

2
 dA =

LA
 1y 2

2
 dA + 2dy

LA
 y dA + d y

2

LA
 dA.

x y

yy = y + dy,

Ix =

LA
 y

2
 dA,

LA
 x dA = 0, 

LA
 y dA = 0.

y = 0.x = 0

x y

x =
LA

 x dA

LA
 dA

, y =
LA

 y dA

LA
 dA

.

x y

d = 2dx
2
+ dy

2
1dx, d y2,

x y

(a)

A

x

y

x*

y*

(b)

dA

x

y

x*

y*

y*

ydy

x*
x

dx

d

Figure 8.3
(a) The area A and the coordinate systems

and xy.

(b) The differential element dA.

x y
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384 Chapter 8 Moments of Inertia

This is a parallel-axis theorem. It relates the moment of inertia of A about the 

through the centroid to the moment of inertia about the parallel axis x (Fig. 8.4).

Moment of Inertia About the y Axis In terms of the xy coordinate sys-

tem, the moment of inertia of A about the y axis is

From Eq. (8.8), the second integral on the right equals zero. Therefore, the

parallel-axis theorem that relates the moment of inertia of A about the 

through the centroid to the moment of inertia about the parallel axis y is

(8.11)

Product of Inertia In terms of the xy coordinate system, the product of

inertia is

The second and third integrals equal zero from Eq. (8.8). We see that the parallel-

axis theorem for the product of inertia is

(8.12)

Polar Moment of Inertia The polar moment of inertia Sum-

ming Eqs. (8.10) and (8.11), the parallel axis theorem for the polar moment of

inertia is

(8.13)

where d is the distance from the origin of the coordinate system to the ori-

gin of the xy coordinate system.

x y

JO = J O + 1dx
2
+ dy

2
2A = J O + d2A,

JO = Ix + Iy.

Ixy = Ix y + dx dy 
A.

 =

LA

 x y dA + dy
LA

 x dA + dx
LA

 y dA + dx dy
LA

 dA.

 Ixy =

LA

 xy dA =

LA

 1x + dx21y + dy2 dA

Iy = Iy + d x
2 A.

y axis

 =

LA

 1x 2
2
 dA + 2dx

LA

 x dA + dx
2

LA

 dA.

 Iy =

LA

 x2
 dA =

LA

 1x + dx2
2
 dA

x axis

dy
2A

x

y

x+

y+

dy

Ix

x

y

*Ix+

x+

y+

,

A

Figure 8.4
The parallel-axis theorem for the moment of

inertia about the x axis.
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8.2 Parallel-Axis Theorems 385

How can the parallel-axis theorems be used to determine the moments of

inertia of a composite area? Suppose that we want to determine the moment of

inertia about the y axis of the area in Fig. 8.5a. We can divide it into a triangle,

a semicircle, and a circular cutout, denoted as parts 1, 2, and 3 (Fig. 8.5b). By

using the parallel-axis theorem for we can determine the moment of inertia

of each part about the y axis. For example, the moment of inertia of part 2 (the

semicircle) about the y axis is (Fig. 8.5c)

We must determine the values of and Moments of inertia and cen-

troid locations for some simple areas are tabulated in Appendix B. Once this pro-

cedure is carried out for each part, the moment of inertia of the composite area is

Notice that the moment of inertia of the circular cutout is subtracted.

We see that determining a moment of inertia of a composite area in terms

of a given coordinate system involves three steps:

1. Choose the parts Try to divide the composite area into parts whose mo-

ments of inertia you know or can easily determine.

2. Determine the moments of inertia of the parts Determine the moment of

inertia of each part in terms of a parallel coordinate system with its origin

at the centroid of the part, and then use the parallel-axis theorem to deter-

mine the moment of inertia in terms of the given coordinate system.

3. Sum the results Sum the moments of inertia of the parts (or subtract in the

case of a cutout) to obtain the moment of inertia of the composite area.

Iy = 1Iy21 + 1Iy22 - 1Iy23.

1dx22.1Iy 22

1Iy22 = 1Iy 22 + 1dx22
2 

A2.

Iy,

x

y

3

x

y

1

(c)

x

y

(dx)2

x*

y*

(a)

x

y

y

x

2

(b)

Figure 8.5

(a) A composite area.

(b) The three parts of the area.

(c) Determining 1Iy22.
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386 Chapter 8 Moments of Inertia

RESULTS

The parallel-axis theorems are relationships

between the moments and product of inertia of

an area expressed in terms of a coordinate

system x y z with its origin at the centroid of

the area and a parallel coordinate system xyz.

Ix  Ix   dy
2A,

Iy  Iy   dx
2A,

Ixy  Ix y   dx dy A,

JO  J O   d2A.

(8.10)

(8.11)

(8.12)

(8.13)

x

y

A

x

y

dy

dx

d

The parallel-axis theorems make it possible to determine the moments and product

of inertia of a composite area in terms of a given coordinate system xyz when the

moments and products of inertia of each part of the composite area are known in

terms of a parallel coordinate system with its origin at the centroid of the part. The

values of the moments and product of inertia of the parts in terms of the xyz

coordinate system can be summed (or subtracted in the case of a cutout) to obtain

the values for the composite area.

Active Example 8.3 Moments of Inertia of a Composite Area (* Related Problem 8.27 )

Determine Ix for the composite area.

Strategy
We can divide this area into two rectangles. We must use the parallel-axis the-

orems to determine Ix for each rectangle in terms of the xy coordinate system.

The values can be summed to determine Ix for the composite area.

Solution

x

y

3 m

1 m

4 m

1 m

x

y

1

2

Divide the composite area

into two rectangles.
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8.2 Parallel-Axis Theorems 387

Practice Problem Determine Ixy for the composite area.

Answer: Ixy 6 m4.

Apply Eq. (8.10) to area 12.

x

y

1

2 m

y

x

0.5 m

From Appendix B, the moment of inertia of area 1

about the x  axis is

(Ix )1 

Applying the parallel-axis theorem, the moment

of inertia of area 1 about the x axis is

1 

12
(1 m)(4 m)3  5.33 m4.

(Ix)1  5.33 m4  (2 m)2 (1 m)(4 m)  21.3 m4.

Apply Eq. (8.10) to area 2.

x

y

2

0.5 m

2 m

x

y

The moment of inertia of area 2 about the

x  axis is

(Ix )2 

Applying the parallel-axis theorem, the moment of

inertia of area 2 about the x axis is

1 

12
(2 m)(1 m)3  0.167 m4.

(Ix)2  0.167 m4  (0.5 m)2 (2 m)(1 m)  0.667 m4.

Sum the values for the parts.

The moment of inertia of the composite

area about the x axis is

 22.0 m4.

Ix  (Ix)1  (Ix)2

 21.3 m4  0.667 m4
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388 Chapter 8 Moments of Inertia

Example 8.4 Moments of Inertia of a Composite Area (* Related Problem 8.30)

Determine and for the composite area.

Strategy
We can divide this area into a rectangle without the semicircular cutout, a semi-

circle without the semicircular cutout, and a circular cutout. We can use a paral-

lel-axis theorem to determine for each part in terms of the xy coordinate system.

Then, by adding the values for the rectangle and semicircle and subtracting the

value for the circular cutout, we can determine for the composite area. Then we

can use Eq. (8.4) to determine the radius of gyration for the composite area.

Solution

Choose the Parts We divide the area into a rectangle, a semicircle, and the

circular cutout, calling them parts 1, 2, and 3, respectively (Fig. a).

Determine the Moments of Inertia of the Parts The moments of inertia of

the parts in terms of the coordinate systems and the location of the centroid

of the semicircular part are given in Appendix B. In the table we use the parallel-

axis theorem to determine the moment of inertia of each part about the y axis.

x y

ky

Iy

Iy

kyIy

Part 1 60 (120)(80)

Part 2

Part 3 120 1.822 * 10
71

4
 p1202

4
p1202

2

4.744 * 10
7

a
p

8
-

8

9p
b1402

41

2
 p1402

2
120 +

41402

3p

4.608 * 10
71

12
180211202

3

Iy = Iy + dx
2 A 1mm4

2Iy  1mm4
2A 1mm2

2dx 1mm2

Determining the moments of inertia of the parts

Sum the Results The moment of inertia of the composite area about the y axis is

The total area is

so the radius of gyration about the y axis is

Critical Thinking
Integration is an additive process, which is why the moments of inertia of com-

posite areas can be determined by adding (or, in the case of a cutout, subtracting)

the moments of inertia of the parts. But you can t determine the radii of gyration

of composite areas by adding or subtracting the radii of gyration of the parts. This

can be seen from the equations relating the moments of inertia, radii of gyration,

and area. For this example, we can demonstrate it numerically. The operation

does not yield the correct radius of gyration of the composite area.

1ky21 + 1ky22 - 1ky23 =
B

1Iy21

A1

+
B

1Iy22

A2

-
B

1Iy23

A3

= 86.3 mm

ky =
B

Iy

A
=
B

7.530 * 10
7
 mm4

1.086 * 10
4
 mm2

= 83.3 mm.

 = 1.086 * 10
4
 mm2

, 

 A = A1 + A2 - A3 = 1120 mm2180 mm2 +
1

2
 p140 mm2

2
- p120 mm2

2

 = 7.530 * 10
7
 mm4

.

 Iy = 1Iy21 + 1Iy22 - 1Iy23 = 14.608 + 4.744 - 1.8222 * 10
7
 mm4

x, x*

y

y

y*

(dx)1 1

y*

2

x, x*

y y*

3

x, x*

(dx)2

(dx)3

(a) Parts 1, 2, and 3.

x

y

20 mm

40 mm

120 mm
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8.2 Parallel-Axis Theorems 389

x

y

1

2

3

Example 8.5 Beam Cross Sections (* Related Problems 8.81 8.84)

The equal areas are candidates for the cross section of a beam. (A beam with the

second cross section shown is called an I-beam.) Compare their moments of

inertia about the x axis.

Strategy
We can obtain the moment of inertia of the square cross section from Appen-

dix B. We will divide the I-beam cross section into three rectangles and use the

parallel-axis theorem to determine its moment of inertia.

Solution

Square Cross Section From Appendix B, the moment of inertia of the square

cross section about the x axis is

I-Beam Cross Section We can divide the area into the rectangular parts shown

in Fig. a. Introducing coordinate systems with their origins at the centroids

of the parts (Fig. b), we use the parallel-axis theorem to determine the moments

of inertia about the x axis (see table). Their sum is

 = 11.03 * 10
7
 mm4

.

 Ix = 1Ix21 + 1Ix22 + 1Ix23 = 15.23 + 0.58 + 5.232 * 10
7
 mm4

x y

Ix =
1

12
 1144.2 mm21144.2 mm2

3
= 3.60 * 10

7
 mm4

.

x, x*x

y, y*

x*

80

mm
x

y, y*

x*

80

mm

y, y*

1

2

3

(b) Parallel coordinate systems with origins at the centroids of the parts.x y

Part 1 80 (200)(40)

Part 2 0 (40)(120)

Part 3 (200)(40) 5.23 * 10
71

12
120021402

3
-80

0.58 * 10
71

12
140211202

3

5.23 * 10
71

12
120021402

3

Ix = Ix + dy
2 A 1mm4

2Ix  1mm4
2A 1mm2

2dy 1mm2

Determining the moments of inertia of the parts about the x axis.

(a) Dividing the I-beam cross

section into parts.

Critical Thinking
The moment of inertia of the I-beam is 3.06 times that of the square cross sec-

tion of equal area. Generally a beam with a larger moment of inertia has greater

resistance to bending and greater ability to support lateral loads. The cross sec-

tions of I-beams are designed to obtain large moments of inertia.

144.2 

mm

120 mm

x

y

x

y

40 mm

40 mm

40

mm

200 mm

144.2 

mm
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390 Chapter 8 Moments of Inertia

x
3 m

1 m

4 m

1

2

y

1 m

Problems 8.27/8.28

x

y

0.6 m

0.2 m

0.6 m

0.2 m

0.8 m

0.2 m

Problem 8.29

y

0.6 m

0.2 m

0.6 m

0.2 m

0.8 m

0.2 m

x

Problems 8.31 8.33

x

y

h

h

30

mm

30

mm

Problem 8.34

Problems

* 8.27 Using the procedure described in Active Example 8.3,

determine Ix and kx for the composite area by dividing it into

rectangles 1 and 2 as shown.

8.28 Determine Iy and ky for the composite area by dividing it

into rectangles 1 and 2 as shown.

8.29 Determine and kx.Ix

* 8.30 In Example 8.4, determine Ix and kx for the composite area.

8.31 Determine and 

8.32 Determine and 

8.33 Determine and kO.JO

ky.Iy

kx.Ix

8.35 Determine and 

8.36 Determine and 

8.37 Determine Ixy.

kx.Ix

ky.Iy

8.38 Determine and 

8.39 Determine and 

8.40 Determine Ixy.

ky.Iy

kx.Ix

x

y

40

mm

40 mm

120

mm

200

mm

40 mm

160

mm

Problems 8.35 8.37

8.34 If you design the beam cross section so that

what are the resulting values of and JO?IyIx = 6.4 * 10 

5
 mm4

,

x

y

160

mm

200

mm

120

mm

40

mm

40 mm

40 mm

Problems 8.38 8.40
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Problems 391

x

y

3 ft

3 ft4 ft

Problems 8.41 8.43

x

y

3 ft

3 ft4 ft

Problems 8.44 8.46

40 mm

x

y

80 mm

80

mm

120

mm
20

mm

Problems 8.47 8.49

40 mm

x

y

80 mm

80

mm

120

mm

20

mm

Problems 8.50 8.52

y

x

12 in

20 in

Problems 8.53/8.54

8.44 Determine and 

8.45 Determine and 

8.46 Determine Ixy.

kO.JO

kx.Ix

8.47 Determine and 

8.48 Determine and 

8.49 Determine Ixy.

kO.JO

kx.Ix

8.50 Determine and 

8.51 Determine and 

8.52 Determine and kO.JO

ky.Iy

kx.Ix

8.53 Determine and 

8.54 Determine and kO.JO

ky.Iy

8.41 Determine and 

8.42 Determine and 

8.43 Determine Ixy.

kO.JO

kx.Ix

h

y

x

1.2 m

Problems 8.55 8.57

8.55 Determine and if 

8.56 Determine and if 

8.57 If what is the dimension h?Iy = 5 m
4
,

h = 3 m.kxIx

h = 3 m.kyIy
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392 Chapter 8 Moments of Inertia

8.58 Determine and 

8.59 Determine and 

8.60 Determine Ixy.

kx.Ix

ky.Iy

x

y

x

20 in

40 in

30 in

Problems 8.58 8.60

8.61 Determine and 

8.62 Determine and 

8.63 Determine Ixy.

kx.Ix

ky.Iy

x

y

x

20 in

40 in

30 in

Problems 8.61 8.63

x

y

18 in

6 in 6 in 6 in

Problems 8.64 8.66

8.64 Determine and 

8.65 Determine and 

8.66 Determine Ixy.

kx.Ix

ky.Iy

8.67 Determine and 

8.68 Determine and kO.JO

ky.Iy

8 in 8 in

6 in

2 in

x

y

Problems 8.67/8.68
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8.69 Determine and 

8.70 Determine and 

8.71 Determine Ixy.

kx.Ix

ky.Iy

x

y

12 in

16 in

4 in

8 in

4 in

2 in

Problems 8.69 8.71

x

y

12 in

16 in

4 in

8 in

4 in

2 in

Problems 8.72 8.74

8.72 Determine and 

8.73 Determine and 

8.74 Determine Ixy.

kx.Ix

ky.Iy

10

mm

15

mm

15

mm

10

mm

5 mm 5 mm

15 mm 15 mm

5 mm

15 mm

50 mm

x

y

Problems 8.75/8.76

x

y

2 in 5 in

8 in

3 in3 in 5 in5 in

Problem 8.77

8.77 Determine and for the beam s cross section.IyIx

8.75 Determine and 

8.76 Determine and kO.JO

ky.Iy
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394 Chapter 8 Moments of Inertia

x

y

20 mm

 8.82 The area of the beam cross section is Determine

the moment of inertia of the beam cross section about the x axis.

Compare your result with the moment of inertia of a solid square

cross section of equal area. (See Example 8.5.)

5200 mm2
.

Problem 8.82

x

y

2 in 5 in

8 in

3 in3 in 5 in5 in

Problem 8.78

8.78 Determine and for the beam s cross section.IyIx

A

yy

x,x

120 mm100 mm

Problem 8.79

8.79 The area Its moment of inertia about

the y axis is Determine its moment of inertia

about the yN axis.

Iy = 3.2 * 10
8
 mm4

.

A = 2 * 10
4
 mm2

.

8.80 The area and it is symmetric about the 

The moments of inertia 

and What are and Iy?IxIxy = 4800 in4
.JO = 11,000 in4

,

Ix = 420 in4
, Iy = 580 in4

,

x  axis.A = 100 in2

x

y

O

x*

y*

A

O*

Problem 8.80

 8.81 Determine the moment of inertia of the beam cross

section about the x axis. Compare your result with the moment

of inertia of a solid square cross section of equal area. 

(See Example 8.5.)

x

y

20 mm

20 mm

160 mm

100 mm

Problem 8.81
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Problems 395

 8.83 If the beam in Fig. a is subjected to couples of magnitude

M about the x axis (Fig. b), the beam s longitudinal axis bends

into a circular arc whose radius R is given by

where Ix is the moment of inertia of the beam s cross section

about the x axis. The value of the term E, which is called the

modulus of elasticity, depends on the material of which the

beam is constructed. Suppose that a beam with the cross

section shown in Fig. c is subjected to couples of magnitude

M * 180 N-m. As a result, the beam s axis bends into a circular

arc with radius R * 3 m. What is the modulus of elasticity of

the beam s material? (See Example 8.5.)

R =
EIx

M
,

R
M M

x

yy

z

y

x

3 mm

3
mm

9 mm

9 mm

(b) Subjected to couples at the ends.

(c) Beam cross section.

(a) Unloaded.

3 mm

Problem 8.83

 8.84 Suppose that you want to design a beam made of material

whose density is The beam is to be 4 m in length and

have a mass of 320 kg. Design a cross section for the beam so that

(See Example 8.5.)Ix = 3 * 10-5 m4.

8000 kg/m3.

14.8 mm

(a)

x

y

(b)

x

y

Problem 8.85

24.9
mm

50.2 mm

(a)

x

y

(b)

x

y

Problem 8.86

8.86 The area in Fig. a is an Angle beam 

cross section. Its cross-sectional area is and its 

moments of inertia about the x and y axes are 

and Suppose that four beams with

cross sections are riveted together to obtain a

composite beam with the cross section shown in Fig. b. What are the

moments of inertia about the x and y axes of the composite beam?

L152*102*12.7

Iy = 2.61 * 106 mm4.

Ix = 7.24 * 106 mm4

A = 3060 mm2

L152*102*12.7

8.85 The area in Fig. a is a American Standard Channel

beam cross section. Its cross-sectional area is and its

moments of inertia about the x and y axes are

and Suppose that two beams with

cross sections are riveted together to obtain a composite beam with

the cross section shown in Fig. b. What are the moments of inertia

about the x and y axes of the composite beam?

C230*30Iy = 1 * 106 mm4.

Ix = 25.3 * 106 mm4

A = 3790 mm2

C230*30
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396 Chapter 8 Moments of Inertia

x

y y y

x x

(b) (c) (d)

x x x

y y y

F

F
F

(a)

Figure 8.6
(a) A beam cross section.

(b) (d) Applying a lateral load with differ-

ent orientations of the cross section.

8.3 Rotated and Principal Axes

BACKGROUND

Suppose that Fig. 8.6a is the cross section of a cantilever beam. If a vertical

force is applied to the end of the beam, a larger vertical deflection results if the

cross section is oriented as shown in Fig. 8.6b than if it is oriented as shown in

Fig. 8.6c. The minimum vertical deflection results when the beam s cross sec-

tion is oriented so that the moment of inertia is a maximum (Fig. 8.6d).

In many engineering applications we must determine moments of inertia of

areas with various angular orientations relative to a coordinate system and also

determine the orientation for which the value of a moment of inertia is a max-

imum or minimum. We discuss these procedures in this section.

Rotated Axes

Consider an area A, a coordinate system xy, and a second coordinate system 

that is rotated through an angle relative to the xy coordinate system (Fig. 8.7a).

Suppose that we know the moments of inertia of A in terms of the xy coordinate

system. Our objective is to determine the moments of inertia in terms of the 

coordinate system.

In terms of the radial distance r to a differential element of area dA and the

angle in Fig. 8.7b, the coordinates of dA in the xy coordinate system are

(8.14)

(8.15) y = r sin a.

 x = r cos a, 

a

x y

u

x y

Ix

(b)

x

y

dA

y*

x*

r

(a)

x

y

A
y*

x*

u u

a

Figure 8.7
(a) The coordinate system is rotated

through an angle relative to the xy

coordinate system.

(b) A differential element of area dA.

u

x y
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8.3 Rotated and Principal Axes 397

The coordinates of dA in the coordinate system are

(8.16)

(8.17)

In Eqs. (8.16) and (8.17), we use identities for the cosine and sine of the differ-

ence of two angles (Appendix A). By substituting Eqs. (8.14) and (8.15) into

Eqs. (8.16) and (8.17), we obtain equations relating the coordinates of dA in

the two coordinate systems:

(8.18)

(8.19)

We can use these expressions to derive relations between the moments of 

inertia of A in terms of the xy and coordinate systems.

Moment of Inertia About the 

From this equation we obtain

(8.20)

Moment of Inertia About the 

This equation gives us the result

(8.21)

Product of Inertia In terms of the coordinate system, the product of

inertia of A is

(8.22)

Polar Moment of Inertia From Eqs. (8.20) and (8.21), the polar moment

of inertia in terms of the coordinate system is

Thus the value of the polar moment of inertia is unchanged by a rotation of the

coordinate system.

Principal Axes

We have seen that the moments of inertia of A in terms of the coordinate

system depend on the angle in Fig. 8.7a. Consider the following question: For

what values of is the moment of inertia a maximum or minimum?Ixu

u

x y

JO = Ix + Iy = Ix + Iy = JO.

x y

Ix y = 1Ix - Iy2sin u cos u + 1cos2
 u - sin2

 u2Ixy.

x y

Iy = Ix sin2
 u + 2Ixy sin u cos u + Iy cos2

 u.

 = sin2
 u

LA
 y2

 d A + 2 sin u cos u

LA
 xy d A + cos2

 u

LA
 x2

 d A.

 Iy =

LA
 1x 2

2
 d A =

LA
 1x cos u + y sin u2

2
 d A

y Axis

Ix = Ix cos2
 u - 2Ixy sin u cos u + Iy sin2

 u.

 = cos2
u

LA
 y2

 d A - 2 sin u cos u

LA
 xy dA + sin2

 u

LA
 x2

 d A.

 Ix =

LA
 1y 2

2
 d A =

LA
 1-x sin u + y cos u2

2
 d A

x Axis

x y

 y = -x sin u + y cos u.

 x = x cos u + y sin u, 

 y = r sin1a - u2 = r1sin a cos u - cos a sin u2.

 x = r cos1a - u2 = r1cos a cos u + sin a sin u2, 

x y
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398 Chapter 8 Moments of Inertia

To answer this question, it is convenient to use the identities

With these expressions, we can write Eqs. (8.20) (8.22) in the forms

(8.23)

(8.24)

(8.25)

We will denote a value of at which is a maximum or minimum by To

determine we evaluate the derivative of Eq. (8.23) with respect to and

equate it to zero, obtaining

(8.26)

If we set the derivative of Eq. (8.24) with respect to equal to zero to determine

a value of for which is a maximum or minimum, we again obtain Eq. (8.26).

The second derivatives of and with respect to are opposite in sign; that is,

which means that at an angle for which is a maximum, is a minimum;

and at an angle for which is a minimum, is a maximum.

A rotated coordinate system that is oriented so that and have

maximum or minimum values is called a set of principal axes of the area A.

The corresponding moments of inertia and are called the principal moments

of inertia. In the next section we show that the product of inertia correspon-

ding to a set of principal axes equals zero.

Because the tangent is a periodic function, Eq. (8.26) does not yield a unique

solution for the angle We show, however, that it does determine the orienta-

tion of the principal axes within an arbitrary multiple of 90 . Observe in Fig. 8.8

that if is a solution of Eq. (8.26), then is also a solution for

any integer n. The resulting orientations of the coordinate system are shown

in Fig. 8.9.

x y

2u0 + n1180 22u0

up.

Ix y

IyIx

IyIxx y

IyIxup

IyIxup

d2Ix

d12u2
2
= -

d2Iy

d12u2
2
,

2uIyIx

Iyu

2u

tan 2up =

2Ixy

Iy - Ix

.

2uup,

up.Ixu

 Ix y =

Ix - Iy

2
 sin 2u + Ixy cos 2u.

 Iy =

Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ixy sin 2u, 

 Ix =

Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ixy sin 2u, 

 cos 2u = cos2
 u - sin2

 u = 1 - 2 sin2
 u = 2 cos2

 u - 1.

 sin 2u = 2 sin u cos u, 

 

 * 180,

 tan 2u0

tan 2u

2u0 2u0

2u
 + 180,2u0  2u0 + 2(180,)

Figure 8.8

For a given value of tan there are 

multiple roots 2u0 + n1180 2.

2u0,
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8.3 Rotated and Principal Axes 399

x

y

y

x u0  90

x

y

y

x

x

y

y

x

x

y

y

x

u0

u0  180

u0  270

Figure 8.9

The orientation of the coordinate system

is determined within a multiple of 90 .

x*y*

RESULTS

x

y

A
y

x

u

The moments and product of

inertia of an area in terms of a

rotated coordinate system

x y  can be expressed in

terms of the moments and

products of inertia in terms of

the xy coordinate system and

the angle u.

Ix   Ix cos2
u  2Ixy sin ucos u  Iy sin2

u,

Iy   Ix sin2
u  2Ixy sin ucos u  Iy cos2

u,

Ix y   (Ix  Iy)sin ucos u  (cos2
u  sin2

u)Ixy.

(8.20)

(8.21)

(8.22)

Ix  cos 2u  Ixy sin 2u,
Ix  Iy 

2

Ix  Iy 

2
(8.23)

Iy  cos 2u  Ixy sin 2u,
Ix  Iy 

2

Ix  Iy 

2
(8.24)

Ix y  sin 2u  Ixy cos 2u,
Ix  Iy 

2
(8.24)

Equations (8.20) to (8.22) can be

expressed in useful alternative forms:
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400 Chapter 8 Moments of Inertia

x

y

y,

x, u0 - 90.

x

y

y,

x,

x

y

y,

x,

x

y

y,

x,

u0

u0 - 180.

u0 - 270.

A value of u for which the moment of inertia Ix, obtained from Eq. (8.23) is a 

maximum or minimum is denoted by up. If Ix, is a maximum at u + up, Iy' is a

minimum at u + up, and if Ix, is a minimum, Iy, is a maximum. The rotated

coordinate system x,y, corresponding to u + up defines the principal axes of the

area A, and the moments of inertia about the principal axes are the principal

moments of inertia. The product of inertia Ix,y, corresponding to u + up equals

zero.

For given values of Ix, Iy, and Ixy, the angle up can be determined from the

equation

tan 2up + (8.26)

This equation uniquely defines the principal axes, but defines the orientation of

the x,y, coordinate system only within a multiple of 90.. For example, if u0 is a 

solution of Eq. (8.26), then u0 - 90., u0 - 180., and u0 - 270. are also solutions,

resulting in four valid orientations of the x,y, coordinate system.

2Ixy 

Iy*Ix

.

Determining principal axes and principal moments of inertia for a given area A

and coordinate system xy involves three steps:

1. Determine Ix, Iy, and Ixy.

2. Use Eq. (8.26) to determine up to within a multiple of 90..

3. Choose the orientation of the x,y, coordinate system and use Eqs.(8.23)

 and (8.24) to determine the principal moments of inertia.

Active Example 8.6 Principal Axes and Moments of Inertia (* Related Problem 8.87 )

Determine a set of principal axes and the corresponding principal moments of

inertia for the triangular area.

Strategy
We can obtain the moments and product of inertia of the triangular area in terms

of the xy coordinate system from Appendix B. Then we can use Eq. (8.26) to de-

termine the orientation of the principal axes and evaluate the principal moments

of inertia with Eqs. (8.23) and (8.24).x

y

4 m

3 m
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8.3 Rotated and Principal Axes 401

Solution

Practice Problem The moments and product of inertia of the triangular area are

Ix 9 m4, Iy 16 m4, and Ixy 6 m4. Determine a set of principal axes and the cor-

responding principal moments of inertia.

Answer: up = 29.9 , Ix = 5.55 m4
, Iy = 19.4 m4

.

Determine the moments and products

of inertia from Appendix B.

Ix       (4 m)(3 m)3 
 9 m4,

1

12

Iy      (4 m)3(3 m) 
 48 m4,

1

4

Ixy      (4 m)2(3 m)2 
 18 m4.

1

8

Determine up from Eq. (8.26).

This yields up  21.4 .

y

x

x

y

21.4

tan 2up 

2Ixy 

Iy Ix

2(18) 

48  9
 0.923.

Calculate the principal

moments of inertia from

Eqs. (8.23) and (8.24).

 1.96 m4,

cos[2(21.4 )]  (18)sin[2(21.4 )]

Ix  cos 2u  Ixy sin 2u,
Ix  Iy 

2

Ix  Iy 

2

9  48 

2   

9  48 

2   

 55.0 m4,

cos[2(21.4 )]  (18)sin[2(21.4 )]

Iy  cos 2u  Ixy sin 2u,
Ix  Iy 

2

Ix  Iy 

2

9  48 

2   

9  48 

2   

x

y

4 m

3 m
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402 Chapter 8 Moments of Inertia

Example 8.7 Rotated and Principal Axes (* Related Problems 8.88, 8.89)

The moments of inertia of the area in terms of the xy coordinate system shown

are and (a) Determine and for

(b) Determine a set of principal axes and the corresponding principal

moments of inertia.

u = 30 .

Ix yIx , Iy ,Ixy = 6 ft4.Ix = 22 ft4, Iy = 10 ft4,

 = a
22 - 10

2
b  sin32130 24 + 162 cos32130 24 = 8.2 ft4.

 Ix y =

Ix - Iy

2
 sin 2u + Ixy cos 2u

 = a
22 + 10

2
b - a

22 - 10

2
b  cos[2130 2] + 162 sin[2130 2] = 18.2 ft4, 

 Iy =

Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ixy sin 2u

 = a
22 + 10

2
b + a

22 - 10

2
b  cos32130 24 - 162 sin32130 24 = 13.8 ft4, 

 Ix =

Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ixy sin 2u

x 

y

3 ft

1 ft

1 ft

4 ft

  y*

x*

u

Strategy
(a) We can determine the moments of inertia in terms of the coordinate

system by substituting into Eqs. (8.23) (8.25).

(b) The orientation of the principal axes is determined by solving Eq. (8.26) for

Once has been determined, the moments of inertia about the principal

axes can be determined from Eqs. (8.23) and (8.24).

Solution

(a) Determine and By setting in Eqs. (8.23) (8.25), we

obtain (with moments of inertia in )ft4
u = 30Ix yIx , Iy ,

upup.

u = 30

x y
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8.3 Rotated and Principal Axes 403

x

x+

*22.5,

y

y+

(b) Determine We substitute the moments of inertia in terms of the xy co-

ordinate system into Eq. (8.26), yielding

Thus, The principal axes corresponding to this value of are

shown in Fig. a.

Calculate and We substitute into Eqs. (8.23) and (8.24),

obtaining the principal moments of inertia:

Ix = 24.5 ft4, Iy = 7.5 ft4.

up = -22.5IyIx

upup = -22.5 .

tan 2up =

2Ixy

Iy - Ix

=
2162

10 - 22
= -1.

Up

(a) The set of principal axes corresponding

to up = -22.5 .

Critical Thinking

Remember that the orientation of the principal axes is only determined within

an arbitrary multiple of 90 . In this example we chose to designate the axes in

Fig. a as the positive and but any of these four choices is equally

valid.

y  axes,x

x
22.5,

x+

y
y+

x

x+
y

y+

x

x+

y

y+

x

x+

y

y+

22.5, 22.5, 22.5,
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404 Chapter 8 Moments of Inertia

x

y

200 mm

40 mm

40 mm

160 mm

120 mm

40 mm

Problem 8.92

8.92* Determine a set of principal axes and the corresponding

principal moments of inertia.

x

y

4 ft

1 ft

3 ft

1 ft

x

y

x*

y*

u

Problems

* 8.87 In Active Example 8.6, suppose that the vertical 3-m

dimension of the triangular area is increased to 4 m. Determine a

set of principal axes and the corresponding principal moments of

inertia.

* 8.88 In Example 8.7, suppose that the area is reoriented

as shown. Determine the moments of inertia 

* 8.89 In Example 8.7, suppose that the area is reoriented

as shown. Determine a set of principal axes and the correspon-

ding principal moments of inertia. Based on the results of

Example 8.7, can you predict a value of without using

Eq. (8.26)?

up

Ix y  if u = 30 .

Ix , Iy , and

Problems 8.88/8.89

Problems 8.90/8.91

8.90 The moments of inertia of the area are 

, and . Determine the

moments of inertia of the area and if 

8.91 The moments of inertia of the area are 

, and . Determine a

set of principal axes and the corresponding principal moments

of inertia.

Ixy = -1.02 * 10
5 in4

Iy = 6.55 * 10
5
 in4

Ix = 1.26 * 10
6
 in4

,

u = 30 .Ix yIx , Iy ,

Ixy = -1.02 * 10
5 in4

Iy = 6.55 * 10
5
 in4

Ix = 1.26 * 10
6
 in4

,
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8.4 Mohr s Circle 405

8.4 Mohr s Circle

BACKGROUND

Given the moments of inertia of an area in terms of a particular coordinate sys-

tem, we have presented equations that determine the moments of inertia in terms

of a rotated coordinate system, the orientation of the principal axes, and the

principal moments of inertia. We can also obtain this information by using a

graphical method called Mohr s circle, which is very useful for visualizing the

solutions of Eqs. (8.23) (8.25).

Determining and 

We first describe how to construct Mohr s circle and then explain why it works.

Suppose we know the moments of inertia and of an area in terms of a

coordinate system xy and we want to determine the moments of inertia for a

rotated coordinate system (Fig. 8.10). Constructing Mohr s circle involves

three steps:

1. Establish a set of horizontal and vertical axes and plot two points: point 1

with coordinates and point 2 with coordinates as shown

in Fig. 8.11a.

2. Draw a straight line connecting points 1 and 2. Using the intersection of

the straight line with the horizontal axis as the center, draw a circle that

passes through the two points (Fig. 8.11b).

3. Draw a straight line through the center of the circle at an angle measured

counterclockwise from point 1. This line intersects the circle at point 

with coordinates and point with coordinates as

shown in Fig. 8.11c.

Thus, for a given angle the coordinates of points and determine the

moments of inertia in terms of the rotated coordinate system. Why does this

graphical construction work? In Fig. 8.12, we show the points 1 and 2 and

Mohr s circle. Notice that the horizontal coordinate of the center of the circle

is The sine and cosine of the angle are

where R, the radius of the circle, is given by

Figure 8.13 shows the construction of the points and The horizontal

coordinate of point is

 =

Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ix y sin 2u = Ix , 

 =

Ix + Iy

2
+ R1cos b cos 2u - sin b sin 2u2

 

Ix + Iy

2
+ R cos1b + 2u2

1

2 .1

R = Ca

Ix - Iy

2
b

2

+ 1Ixy2
2
.

sin b =

Ix y

R
, cos b =

Ix - Iy

2R
,

b1Ix + Iy2>2.

21u,

1Iy , - Ix y 2,21Ix , Ix y 2

1

2u

1Iy, - Ixy21Ix, Ixy2

x y

IxyIx, Iy,

Ix yIx , Iy ,

u

x

y

A

y+

x+

Figure 8.10
The xy coordinate system and the rotated

coordinate system.x y

(a)

(,)

2

1

(Ix, Ixy)

(,)

(Iy, *Ixy)

(b)

(,)

2

1

(,)

(c)

(,)

2

1

(,)

1+

2+

(Ix+, Ix+y+)

(Iy+, Ix+y+)

2u

Figure 8.11
(a) Plotting the points 1 and 2.

(b) Drawing Mohr s circle. The center of

the circle is the intersection of the line

from 1 to 2 with the horizontal axis.

(c) Finding the points and 2 .1
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2

1

1+ 2+

2up

(Ix+, Ix+y+)

(Iy+, *Ix+y+)

(Iy, *Ixy)

(Ix, Ixy)

(,)

(,)

Figure 8.14
To determine the orientation of a set of

principal axes, let points and be the

points where the circle intersects the

horizontal axis.

21

and the horizontal coordinate of point is

The vertical coordinate of point is

and the vertical coordinate of point is

We have shown that the coordinates of point are and the coordinates

of point are 

Determining Principal Axes and Principal Moments 
of Inertia

Because the moments of inertia and are the horizontal coordinates of points

and of Mohr s circle, their maximum and minimum values occur when

points and coincide with the intersections of the circle with the horizon-

tal axis (Fig. 8.14). (Which intersection you designate as is arbitrary. In

Fig. 8.14, we have designated the minimum moment of inertia as point ) You

can determine the orientation of the principal axes by measuring the angle 

from point 1 to point and the coordinates of points and are the princi-

pal moments of inertia.

Notice that Mohr s circle demonstrates that the product of inertia corre-

sponding to a set of principal axes (the vertical coordinate of point in Fig. 8.14)

is always zero. Furthermore, we can use Fig. 8.12 to obtain an analytical expres-

sion for the horizontal coordinates of the points where the circle intersects the

horizontal axis, which are the principal moments of inertia:

 =

Ix + Iy

2
; Ca

Ix - Iy

2
b

2

+ 1Ixy2
2
.

 Principal moments of inertia =

Ix + Iy

2
; R

1

Ix y

211 ,

2up

1 .

1

21

21

IyIx

1Iy , - Ix y 2.2

1Ix , Ix y 21

-R sin1b + 2u2 = - Ix y .

2

 = Ixy cos 2u +

Ix - Iy

2
 sin 2u = Ix y , 

 R sin1b + 2u2 = R1sin b cos 2u + cos b sin 2u2

1

 =

Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ix y sin 2u = Iy .

 =

Ix + Iy

2
- R1cos b cos 2u - sin b sin 2u2

 

Ix + Iy

2
- R cos1b + 2u2

2

(,)

2

1

(,)

RIx  ,  Iy

2
(Ix, Ixy)

(Iy, *Ixy)

b

Ix  *  Iy

2

Figure 8.12
The points 1 and 2 and Mohr s circle.

(,)

2

1

(,)
1+

2+

2uR

b

Ix  ,  Iy

2

Figure 8.13
The points and 2 .1
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8.4 Mohr s Circle 407

RESULTS

When the values of Ix , Iy , and Ixy are known

for an area A, Mohr s circle can be used to determine

the values of Ix+, Iy+, and Ix+y+ for a given angle u:
u

x

y

A

y+

x+

(,)

2

1

(,)

(,)

2

1

(Ix, Ixy)

(,)

(Iy, *Ixy)

(,)

2

1

(,)

1+

2+

(Ix+, Ix+y+)

(Iy+, Ix+y+)

2u

Establish a set of horizontal and vertical axes

and plot two points: point 1 with coordinates

(Ix, Ixy) and point 2 with coordinates (Iy, *Ixy).

Draw a straight line connecting points 1 and 2.

Using the intersection of the straight line with the

horizontal axis as the center, draw a circle that

passes through the two points.

Draw a straight line through the center of the circle

at an angle 2u measured counterclockwise from

point 1. This line intersects the circle at point 1+

with coordinates (Ix+, Ix+y+) and point 2+ with

coordinates (Iy+, *Ix+y+).

2

1

1+ 2+

2up

(Ix+, Ix+y+)

(Iy+, *Ix+y+)

(Iy, *Ixy)

(Ix, Ixy)

(,)

(,)

Place the point 1+ at one of the points where Mohr s

circle intersects the horizontal axis. Then the values

of Ix+ and Iy+ obtained from points 1+ and 2+ are

the principal moments of inertia. The angle

measured counterclockwise from point 1 to point 1+

is 2up, so the orientation of the principal axes

can be determined.

Mohr s circle can also be used to determine the orientation of the principal axes

and the principal moments of interia:
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408 Chapter 8 Moments of Inertia

Active Example 8.8 Mohr s Circle (* Related Problems 8.94, 8.95 )

The moments and product of inertia of the area in terms of the xy coordinate sys-

tem are Use Mohr s circle to deter-

mine the moments of inertia Ix , Iy , and Ix y  for u = 30 .

Ix = 22 ft4, Iy = 10 ft4, and Ixy = 6 ft4.

Strategy
By using the given values of to construct Mohr s circle, we can

determine 

Solution

Ix , Iy , and Ix y  for u = 30 .

Ix, Iy, and Ixy

Practice Problem Use Mohr s circle to determine the orientation of the principal axes

of the area and the corresponding principal moments of inertia.

Answer: up = 67.5 , Ix = 7.5 ft4, Iy = 24.5 ft4.

x

y

3 ft

1 ft

1 ft

4 ft

y,

x,

u

10 20 30

*10

10

0

0

2

1

(22, 6) ft
4

(10, *6) ft
4

10 20 30

*10

10

0

0

2

1
(22, 6) ft

4

(10, *6) ft
4

Plot point 1 with coordinates (Ix, Ixy) + (22, 6) ft4

and point 2 with coordinates (Iy, *Ixy) + (10, *6) ft4.

Draw a straight line connecting points 1 and 2.

Using the intersection of the straight line with the

horizontal axis as the center, draw a circle that

passes through the two points.

Draw a straight line through the center of the circle at

an angle 2u + 60- measured counterclockwise from

point 1. From the coordinates of points 1, and 2,,

Ix, + 14 ft4, Iy, + 18 ft4, and Ix,y, + 8 ft4.

10 20 30

*10

10

0

0

1,

2,

2

1

60-

(Ix,, Ix,y,)

(Iy,, *Ix,y,)
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8.5 Simple Objects 409

8.93 Solve Problem 8.87 by using Mohr s circle.

* 8.94 Solve Problem 8.88 by using Mohr s circle.

* 8.95 Solve Problem 8.89 by using Mohr s circle.

8.96 Solve Problem 8.90 by using Mohr s circle.

Problems

8.97 Solve Problem 8.91 by using Mohr s circle.

8.98* Solve Problem 8.92 by using Mohr s circle.

8.99 Derive Eq. (8.22) for the product of inertia by using the

same procedure we used to derive Eqs. (8.20) and (8.21).

drr

dm

L

(a)

(b)

l

Figure 8.16
(a) A slender bar.

(b) A differential element of length dr.

LO(a)

LO(b)

r

dm

Figure 8.15
(a) An object and axis 

(b) A differential element of mass dm.

LO.

8.5 Simple Objects

BACKGROUND

The acceleration of an object that results from the forces acting on it depends

on its mass. The angular acceleration, or rotational acceleration, that results

from the forces and couples acting on an object depends on quantities called the

mass moments of inertia of the object. In this section we discuss methods for

determining mass moments of inertia of particular objects. We show that for

special classes of objects, their mass moments of inertia can be expressed in

terms of moments of inertia of areas, which explains how the names of those area

integrals originated.

An object and a line or axis  are shown in Fig. 8.15a. The moment of

inertia of the object about the axis is defined by

(8.27)

where r is the perpendicular distance from the axis to the differential element

of mass dm (Fig. 8.15b). Often is an axis about which the object rotates, and

the value of is required to determine the angular acceleration, or the rate of

change of the rate of rotation, caused by a given couple about The dimen-

sions of the moment of inertia of an object are Notice that

the definition implies that its value must be positive.

Slender Bars

Let us determine the moment of inertia of a straight, slender bar about a perpen-

dicular axis L through the center of mass of the bar (Fig. 8.16a). Slender

means that we assume that the bar s length is much greater than its width. Let

the bar have length l, cross-sectional area A, and mass m. We assume that A is

uniform along the length of the bar and that the material is homogeneous.

Consider a differential element of the bar of length dr at a distance r from

the center of mass (Fig. 8.16b). The element s mass is equal to the product of its

volume and the density: Substituting this expression into Eq. (8.27),

we obtain the moment of inertia of the bar about a perpendicular axis through its

center of mass:

I =
Lm

 r2
 dm =

L

l>2

-l>2

 rAr2
 dr =

1

12
 rAl 3

.

dm = rA dr.

1mass2 * 1length22
.

LO.

IO

LO

IO =

Lm

 r2
 dm,

LO

LO

MASSES
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z

y

x

(a)

x

y y

T

(b)

x

y

dm

y

dA

z

r

Figure 8.17

(a) A plate of arbitrary shape and uniform

thickness T.

(b) An element of volume obtained by pro-

jecting an element of area dA through

the plate.

The mass of the bar equals the product of the mass density and the volume of

the bar, so we can express the moment of inertia as

(8.28)

We have neglected the lateral dimensions of the bar in obtaining this result.

That is, we treated the differential element of mass dm as if it were concentrated

on the axis of the bar. As a consequence, Eq. (8.28) is an approximation for the

moment of inertia of a bar. In the next section we determine the moments of in-

ertia for a bar of finite lateral dimension and show that Eq. (8.28) is a good ap-

proximation when the width of the bar is small in comparison to its length.

Thin Plates

Consider a homogeneous flat plate that has mass m and uniform thickness T. We

will leave the shape of the cross-sectional area of the plate unspecified. Let a carte-

sian coordinate system be oriented so that the plate lies in the x y plane (Fig. 8.17a).

Our objective is to determine the moments of inertia of the plate about the x, y, and

z axes.

We can obtain a differential element of volume of the plate by projecting

an element of area dA through the thickness T of the plate (Fig. 8.17b). The

resulting volume is T dA. The mass of this element of volume is equal to the

product of the density and the volume: Substituting this expres-

sion into Eq. (8.27), we obtain the moment of inertia of the plate about the z axis

in the form

where r is the distance from the z axis to dA. Since the mass of the plate is

where A is the cross-sectional area of the plate, The

integral on the right is the polar moment of inertia of the cross-sectional area

of the plate. We can therefore write the moment of inertia of the plate about the

z axis as

(8.29)

From Fig. 8.17b, we see that the perpendicular distance from the x axis to the

element of area dA is the y coordinate of dA. Therefore, the moment of inertia

of the plate about the x axis is

(8.30)

where is the moment of inertia of the cross-sectional area of the plate about

the x axis. The moment of inertia of the plate about the y axis is

(8.31)

where is the moment of inertia of the cross-sectional area of the plate about

the y axis.

Because the sum of the area moments of inertia and is equal to the

polar moment of inertia the mass moment of inertia of the thin plate about

the z axis is equal to the sum of its moments of inertia about the x and y axes:

Thin plate (8.32)Iz axis = Ix axis + Iy axis.

JO,

IyIx

Iy

Iy axis =

Lm
 x2

 dm = rT
LA

 x2
 dA =

m

A
 Iy,

Ix

Ix axis =

Lm
 y2

 dm = rT
LA

 y2
 dA =

m

A
 Ix,

Iz axis =
m

A
JO.

JO

rT = m>A.m = rT A,

Iz axis =

Lm
 r2

 dm = rT
LA

 r2
 d A,

dm = rT dA.

I =
1

12
 ml2

.

m = rAl,
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8.5 Simple Objects 411

We have expressed the moments of inertia of a thin homogeneous plate of

uniform thickness in terms of the moments of inertia of the cross-sectional area

of the plate. In fact, these results explain why the area integrals and are

called moments of inertia. The use of the same terminology and similar sym-

bols for moments of inertia of areas and moments of inertia of objects can be

confusing, but is entrenched in engineering practice. The type of moment of

inertia being referred to can be determined either from the context or from the

units: for moments of inertia of areas and for

moments of inertia of masses.

RESULTS

1mass2 * 1length22
1length24

JOIx, Iy,

LO

r

dm

Moment of Inertia of an Object

The moment of inertia of an object about an axis LO 

is defined by

where r is the perpendicular distance from LO to the

differential element of mass dm.

IO 
L

r2 dm,
m

(8.27)

Slender Bars

The differential element of mass dm  rA dr, where

r is the density of the homogeneous bar and A is its

uniform cross-sectional area. The moment of inertia of

the slender bar of length l about the perpendicular axis

L through its center of mass is

In terms of the mass of the bar m  rAl,

drr

dm

L

l

(8.28)ml2.

I 
L

r2 dm
L

rAr2 dr

1 

12

1 

12
rAl3.

m

l/2

l/2

I  

Thin Plates

The moments of inertia of a thin homogeneous plate

of uniform thickness and mass m that lies in the x y

plane can be expressed in terms of the moments of

inertia of the cross-sectional area A of the plate:

Here Ix is the moment of inertia of A about the x axis,
Iy is the moment of inertia of A about the y axis, and

JO is the polar moment of inertia of A about the origin.

(8.30)

(8.31)

Iz axis  JO  Ix axis  Iy axis. (8.29)

x

y y

A

z

Ix axis  Ix ,
m 

A

Iy axis  Iy ,
m 

A
m 

A
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412 Chapter 8 Moments of Inertia

Active Example 8.9 Moment of Inertia of a Triangular Plate (* Related Problem 8.104 )

The thin homogeneous plate is of uniform thickness and mass m. Determine its

moment of inertia about the x axis.

Strategy
The moment of inertia of the plate about the x axis is given by Eq. (8.30) in

terms of the moment of inertia of the area of the plate about the x axis. We can

obtain the moment of inertia of the area from Appendix B.

Solution

The moment of inertia of the plate about the x axis is

Practice Problem Determine the moment of inertia of the plate about the y axis.

Answer: Iy axis =
1

2
 mb2.

x

y

b

h

Determine the moment of

inertia of the area of the

plate about the x axis.

From Appendix B,

Ix       bh3.
1

12

Apply Eq. (8.30).

Ix axis      Ix

      mh2.

bh

 bh31 

121 

2

1 

6

   

m 

A

m
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LO

l

l

O

y

x

dxx

dm

1

2

O

(a) Differential element of bar 1.

y

x

dy

y

dm

1

2

O

r

Example 8.10 Moments of Inertia of a Slender Bar (* Related Problem 8.100 )

Two homogeneous slender bars, each of length l, mass m, and cross-sectional

area A, are welded together to form the L-shaped object. Determine the moment

of inertia of the object about the axis through point O. (The axis is per-

pendicular to the two bars.)

Strategy
Using the same integration procedure we used for a single bar, we will deter-

mine the moment of inertia of each bar about and sum the results.

Solution
Our first step is to introduce a coordinate system with the z axis along and

the x axis collinear with bar 1 (Fig. a). The mass of the differential element of

bar 1 of length dx is The moment of inertia of bar 1 about is

In terms of the mass of the bar, we can write this result as

The mass of an element of bar 2 of length dy, shown in Fig. b, is

From the figure we see that the perpendicular distance from

to the element is Therefore, the moment of inertia of

bar 2 about is

In terms of the mass of the bar, we obtain

The moment of inertia of the L-shaped object about is

Critical Thinking
In this example we used integration to determine a moment of inertia of an

object consisting of two straight bars. The same procedure could be applied

to more complicated objects made of such bars, but it would obviously be

cumbersome. Once we have used integration to determine a moment of iner-

tia of a single bar, such as Eq. (8.28), it would be very convenient to use that

result to determine moments of inertia of composite objects made of bars

without having to resort to integration. We show how this can be done in the

next section.

IO = 1IO21 + 1IO22 =
1

3
 ml2

+
4

3
 ml2

=
5

3
 ml2

.

LO

1IO22 =
4

3
 ml2

.

1IO22 =

Lm

 r2
 dm =

L

l

0

 rA1l 2
+ y2

2 dy =
4

3
 rAl3

.

LO

r = 2l2 + y2
.LO

dm = rA dy.

1IO21 =
1

3
 ml2

.

m = rAl,

1IO21 =

Lm

 r2
 dm =

L

l

0

 rAx2
 dx =

1

3
 rAl3

.

LOdm = rA dx.

LO

LO

LOLO

(b) Differential element of bar 2.
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414 Chapter 8 Moments of Inertia

LO
2 m

1 m

Problem 8.100

l

O
l

Problem 8.101

x

y

1 m

2 m

50

Problems 8.102/8.103

Problems

* 8.100 The axis is perpendicular to both segments of the 

L-shaped slender bar. The mass of the bar is 6 kg and the material

is homogeneous. Use the method described in Example 8.10 to

determine the moment of inertia of the bar about LO.

LO

8.101 Two homogeneous slender bars, each of mass m and

length l, are welded together to form the T-shaped object. Use in-

tegration to determine the moment of inertia of the object about

the axis through point O that is perpendicular to the bars.

8.102 The slender bar lies in the x y plane. Its mass is 6 kg and

the material is homogeneous. Use integration to determine its

moment of inertia about the z axis.

8.103 Use integration to determine the moment of inertia of the

slender 6-kg bar about the y axis.

x

y

b

h

Problem 8.104

Ro

Ri

x

y

Problem 8.105

y

x

y  4     x2
 ft

1

4

Problems 8.106/8.107

* 8.104 The homogeneous thin plate has mass and

dimensions and Use the procedure described in

Active Example 8.9 to determine the moments of inertia of the

plate about the x and y axes.

h = 1 m.b = 2 m

m = 12 kg

8.105 The homogeneous thin plate is of uniform thickness and

mass m.

(a) Determine its moments of inertia about the x and z axes.

(b) Let and compare your results with the values given in

Appendix C for a thin circular plate.

Ri = 0

8.106 The homogeneous thin plate is of uniform thickness and

weighs 20 lb. Determine its moment of inertia about the y axis.

8.107 Determine the moment of inertia of the plate about the 

x axis.
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8.6 Parallel-Axis Theorem 415

8.6 Parallel-Axis Theorem

BACKGROUND

The parallel-axis theorem allows us to determine the moment of inertia of an ob-

ject about any axis when the moment of inertia about a parallel axis through the

center of mass is known. This theorem can be used to calculate the moment of

inertia of a composite object about an axis given the moments of inertia of each

of its parts about parallel axes.

Suppose that we know the moment of inertia I about an axis L through the

center of mass of an object, and we wish to determine its moment of inertia about

a parallel axis (Fig. 8.18a). To determine we introduce parallel coordinate sys-

tems xyz and with the z axis along and the along L, as shown in

Fig. 8.18b. (In this figure the axes and L are perpendicular to the page.) The ori-

gin O of the xyz coordinate system is contained in the plane. The terms and

are the coordinates of the center of mass relative to the xyz coordinate system.

The moment of inertia of the object about is

(8.33)

where r is the perpendicular distance from to the differential element of

mass dm, and x, y are the coordinates of dm in the x y plane. The coordinates

of dm in the two coordinate systems are related by

By substituting these expressions into Eq. (8.33), we can write it as

(8.34)

Since where is the perpendicular distance from L to

dm, the first integral on the right side of this equation is the moment of inertia

I of the object about L. Recall that the and coordinates of the center of

mass of the object relative to the coordinate system are defined by

Because the center of mass of the object is at the origin of the system, 

and Therefore the integrals in the second and third terms on the right side

of Eq. (8.34) are equal to zero. From Fig. 8.18b, we see that where

d is the perpendicular distance between the axes L and Therefore, we obtain

(8.35)

This is the parallel-axis theorem for moments of inertia of objects. Equation (8.35)

relates the moment of inertia I of an object about an axis through the center of mass

to its moment of inertia about any parallel axis, where d is the perpendicular

distance between the two axes and m is the mass of the object.

IO

IO = I + d2m.

LO.

dx
2
+ dy

2
= d2

,

y = 0.

x = 0x y z

x =
Lm

 x dm

Lm

 dm

, y =
Lm

 y dm

Lm

 dm

.

x y z

yx

r1x 2
2
+ 1y 2

2
= 1r 2

2
,

+

Lm

 1dx
2
+ dy

2
2 dm.

IO =

Lm

 31x 2
2
+ 1y 2

2
4dm + 2dx

Lm

 x dm + 2dy
Lm

 y dm

x = x + dx, y = y + dy.

LO

IO =

Lm

 r 2
 dm =

Lm

 1x2
+ y2

2 dm,

LO

dy

dxx y

LO

z  axisLOx y z

IO,LO

IO

(b)

x

y

x*

y*

dx

dm

r*
r

dyd

LO

(a)

L

O

Figure 8.18
(a) An axis L through the center of mass of

an object and a parallel axis 

(b) The xyz and coordinate systems.x y z

LO.
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416 Chapter 8 Moments of Inertia

Determining the moment of inertia of an object about a given axis typ-

ically requires three steps:

1. Choose the parts Try to divide the object into parts whose mass moments

of inertia you know or can easily determine.

2. Determine the moments of inertia of the parts You must first determine

the moment of inertia of each part about the axis through its center of mass

parallel to Then you can use the parallel-axis theorem to determine its

moment of inertia about 

3. Sum the results Sum the moments of inertia of the parts (or subtract in the case

of a hole or cutout) to obtain the moment of inertia of the composite object.

RESULTS

LO.

LO.

LO

LO

L

dParallel-Axis Theorem

The moment of inertia of an object of mass m about

an axis LO is given by

IO  I  d
2
m,    (8.35)

where I is the moment of inertia of the object about

a parallel axis through the center of mass and d is

the perpendicular distance between the two axes.

_ 
x
1

Composite Objects

The parallel-axis theorem makes it possible to determine the moment of inertia of a composite

object about a given axis LO. The moment of inertia of each part must be determined about an

axis through the center of mass of the part that is parallel to LO. Then the parallel-axis theorem

can be applied to each part to determine its moment of inertia about LO. Summing the results

gives the moment of inertia of the composite object about LO.

Active Example 8.11 Parallel-Axis Theorem (* Related Problem 8.111)

The homogeneous slender bar has mass m and length l. The axis LO is perpen-

dicular to the bar.

(a) Use integration to determine the moment of inertia of the bar about LO.

(b) The moment of inertia of the bar about an axis through the center of mass

of the bar that is perpendicular to the bar is . Use this result

and the parallel-axis theorem to determine the moment of inertia of the bar

about LO.

I = (1/12)ml2

LO

lO
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8.6 Parallel-Axis Theorem 417

Solution

Practice Problem Two homogeneous slender bars, each of length l and mass m, are

welded together to form an L-shaped object. Use the parallel-axis theorem to determine

the moment of inertia of the object about the axis LO. (The axis LO is perpendicular to

both bars.)

Answer: IO =

5

3
ml

2
.

(a) Integrate to determine

the moment of inertia

about LO.

dm
O

drr

l

The differential element of mass dm  rA dr,

where r is the density of the homogeneous bar

and A is its uniform cross-sectional area. The

moment of inertia is

In terms of the mass of the bar m  rAl,

IO  ml
2.

IO 
Lm

r
2
dm

LO

l

rAr
2
dr

1 

3

1 

3

rAl
3.

(b) Apply the parallel-axis

theorem.

LO

L

l

2

O

IO  I  d
2
m

 ml
2 m

2

 ml
2.

l
1 

2

1 

3

1 

12    

LO

l

l

O
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L

0.6 m

0.2 m

x 

y

0.3 m

0.8 m

_
x

Example 8.12 Moment of Inertia of a Composite Object (* Related Problem 8.127 )

The object consists of a slender, 3-kg bar welded to a thin, circular 2-kg disk.

Determine its moment of inertia about the axis L through its center of mass.

(The axis L is perpendicular to the bar and disk.)

(a) The coordinate of the center of mass

of the object.

x

Strategy
We must first locate the center of mass of the composite object and then apply

the parallel-axis theorem to the parts separately and sum the results.

Solution

Choose the Parts The parts are the bar and the disk. Introducing the coordinate

system in Fig. a, the x coordinate of the center of mass of the composite object is

 =

10.3 m213 kg2 + 10.6 m + 0.2 m212 kg2

13 kg2 + 12 kg2
= 0.5 m.

x =
xbar 

mbar + xdisk 
mdisk

mbar + mdisk

Determine the Moments of Inertia of the Parts The distance from the cen-

ter of mass of the bar to the center of mass of the composite object is 0.2 m

(Fig. b). Therefore, the moment of inertia of the bar about L is

Ibar =
1

12
 13 kg210.6 m2

2
+ 13 kg210.2 m2

2
= 0.210 kg-m2

.
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8.6 Parallel-Axis Theorem 419

The distance from the center of mass of the disk to the center of mass of the com-

posite object is 0.3 m (Fig. c). The moment of inertia of the disk about L is

Idisk =
1

2
 12 kg210.2 m2

2
+ 12 kg210.3 m2

2
= 0.220 kg-m2

.

x

0.2 m

y

(b) Distance from L to the center of mass of

the bar.

Sum the Results The moment of inertia of the composite object about L is

Critical Thinking

This example demonstrates the most common procedure for determining

moments of inertia of objects in engineering applications. Objects usually

consist of assemblies of parts. The center of mass of each part and its

moment of inertia about the axis through its center of mass must be deter-

mined. (It may be necessary to determine this information experimentally,

or it is sometimes supplied by manufacturers of subassemblies.) Then the

center of mass of the composite object is determined and the parallel-axis

theorem is used to determine the moment of inertia of each part about the

axis through the center of mass of the composite object. Finally, the individ-

ual moments of inertia are summed to obtain the moment of inertia of the

composite object.

I = Ibar + Idisk = 0.430 kg-m2
.

y

x

0.3 m

(c) Distance from L to the center of mass of

the disk.
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y

z

x

R

l

z

dz

y

z

x

x*

Example 8.13 Moments of Inertia of a Cylinder (* Related Problems 8.122, 8.123, 8.125, 8.126 )

The homogeneous cylinder has mass m, length l, and radius R. Determine its

moments of inertia about the x, y, and z axes.

(a) A differential element of the cylinder in

the form of a disk.

Strategy
We first determine the moments of inertia about the x, y, and z axes of an infin-

itesimal element of the cylinder consisting of a disk of thickness dz. We then

integrate the results with respect to z to obtain the moments of inertia of the

cylinder. We must apply the parallel-axis theorem to determine the moments of

inertia of the disk about the x and y axes.

Solution
Consider an element of the cylinder of thickness dz at a distance z from the

center of the cylinder (Fig. a). (You can imagine obtaining this element by

slicing the cylinder perpendicular to its axis.) The mass of the element is

equal to the product of the mass density and the volume of the element,

We obtain the moments of inertia of the element by using

the values for a thin circular plate given in Appendix C. The moment of in-

ertia about the z axis is

dIz axis =
1

2
 dmR2

=

1

2
 1rpR2

 dz2R2
.

dm = r1pR2
 dz2.
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8.6 Parallel-Axis Theorem 421

By integrating this result with respect to z from to we sum the mass

moments of inertia of the infinitesimal disk elements that make up the cylin-

der. The result is the moment of inertia of the cylinder about the z axis:

We can write this result in terms of the mass of the cylinder, as

The moment of inertia of the disk element about the is

We can use this result and the parallel-axis theorem to determine the moment

of inertia of the element about the x axis:

Integrating this expression with respect to z from to we obtain the

moment of inertia of the cylinder about the x axis:

In terms of the mass of the cylinder,

Due to the symmetry of the cylinder,

Critical Thinking

When the cylinder is very long in comparison to its width, the first

term in the equation for can be neglected, and we obtain the moment

of inertia of a slender bar about a perpendicular axis, Eq. (8.28). Conversely,

when the radius of the cylinder is much greater than its length,

the second term in the equation for can be neglected, and we obtain

the moment of inertia for a thin circular disk about an axis parallel to the

disk. This indicates the sizes of the terms you neglect when you use the ap-

proximate expressions for the moments of inertia of a slender bar and a

thin disk.

Ix axis

R W l,

Ix axis

l W R,

Iy axis = Ix axis.

Ix axis =
1

4
 mR2

+
1

12
 ml2

.

Ix axis =

L

l>2

-l>2

a
1

4
 rpR4

+ rpR2z2
b  dz =

1

4
 rpR4l +

1

12
 rpR2l3

.

l>2,- l>2

dIx axis = dIx  axis + z2
 dm =

1

4
 1rpR2

 dz2R2
+ z2

1rpR2
 dz2.

dIx  axis =
1

4
 dm R2

=
1

4
 1rpR2

 dz2R2
.

x  axis

Iz axis =
1

2
 mR2

.

m = r1pR2l2,

Iz axis =

L

l>2

-l>2

 

1

2
 rpR4

 dz =
1

2
 rp R4l.

l>2,- l>2
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L L1 L2

0.6 m 0.6 m

Problem 8.108

y*

x*

x

y

Problem 8.109

l

O
l

Problems 8.110/8.111

8.109 An engineer gathering data for the design of a maneuver-

ing unit determines that the astronaut s center of mass is at

and that her moment of inertia about the

z axis is Her mass is 81.6 kg. What is her moment of

inertia about the through her center of mass?z  axis

105.6 kg-m2
.

x = 1.01 m, y = 0.16 m

8.110 Two homogeneous slender bars, each of mass m and length

l, are welded together to form the T-shaped object. Use the parallel-

axis theorem to determine the moment of inertia of the object about

the axis through point O that is perpendicular to the bars.

* 8.111 Use the parallel-axis theorem to determine the moment

of inertia of the T-shaped object about the axis through the center

of mass of the object that is perpendicular to the two bars. 

(See Active Example 8.11.)

8.108 The mass of the object is 10 kg. Its moment of inertia

about is What is its moment of inertia about 

(The three axes lie in the same plane.)

L2?10 kg-m2
.L1

8.112 The mass of the homogeneous slender bar is 20 kg. Deter-

mine its moment of inertia about the z axis.

8.113 Determine the moment of inertia of the 20-kg bar about

the through its center of mass.z  axis

Problems

x*

y*

x

y

1 m

1.5 m 1 m

Problems 8.112/8.113

8.114 The homogeneous slender bar weighs 5 lb. Determine its

moment of inertia about the z axis.

8.115 Determine the moment of inertia of the 5-lb bar about the

through its center of mass.z  axis

8 in

4 in

y*

x*

x

y

Problems 8.114/8.115
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x

y

0.4 m 0.4 m

0.3 m

0.3 m

Problems 8.117/8.118

x

y

10 in

5 in5 in

5 in

Problems 8.119/8.120

y

x

6 ft

3 ft

2 ft

3 ft

Problem 8.1218.117 The mass of the homogeneous thin plate is 36 kg. Deter-

mine its moment of inertia about the x axis.

8.118 Determine the moment of inertia of the 36-kg plate about

the z axis.

8.119 The homogeneous thin plate weighs 10 lb. Determine its

moment of inertia about the x axis.

8.120 Determine the moment of inertia of the 10-lb plate about

the y axis.

8.121 The thermal radiator (used to eliminate excess heat from a

satellite) can be modeled as a homogeneous thin rectangular plate.

Its mass is 5 slugs. Determine its moments of inertia about the x,

y, and z axes.

y

x

Problem 8.116

8.116 The rocket is used for atmospheric research. Its weight

and its moment of inertia about the z axis through its center of

mass (including its fuel) are 10 kip and respec-

tively. The rocket s fuel weighs 6000 lb, its center of mass is

located at and the moment of inertia of

the fuel about the axis through the fuel s center of mass parallel to

z is When the fuel is exhausted, what is the rocket s

moment of inertia about the axis through its new center of mass

parallel to z?

2200 slug-ft2.

 y = 0, z = 0,x = -3 ft,

10,200 slug-ft2,

Problem 8.122

* 8.122 The homogeneous cylinder has mass m, length l, and

radius R. Use integration as described in Example 8.13 to deter-

mine its moment of inertia about the x axis.

z

R

l

y

x

BEDFMC08_0136129153.QXD  4/14/07  12:31 PM  Page 423



424 Chapter 8 Moments of Inertia

x

y

z

R

h

y

z
b

h
a

x

Problems 8.123/8.124

* 8.123 The homogeneous cone is of mass m. Determine its

moment of inertia about the z axis, and compare your result with

the value given in Appendix C. (See Example 8.13.)

8.124 Determine the moments of inertia of the homogeneous

cone of mass m about the x and y axes, and compare your results

with the values given in Appendix C.

* 8.125 The mass of the homogeneous wedge is m. Use integra-

tion as described in Example 8.13 to determine its moment of

inertia about the z axis. (Your answer should be in terms of m, a,

b, and h.)

* 8.126 The mass of the homogeneous wedge is m. Use integration

as described in Example 8.13 to determine its moment of inertia about

the x axis. (Your answer should be in terms of m, a, b, and h.)

Problems 8.125/8.126

x

1

2

40 mm

80 mm

80 mm

240 mm

240 mm

z

y

8.128 The L-shaped machine part is composed of two homoge-

neous bars. Bar 1 is tungsten alloy with density and

bar 2 is steel with density Determine its moment of

inertia about the x axis.

7800 kg/m3.

14,000 kg/m3,

Problem 8.128

y

z

x

h1

R1

R2

h2

Problem 8.129

8.129 The homogeneous object is a cone with a conical hole.

The dimensions and 

It consists of aluminum alloy with a density of Deter-

mine its moment of inertia about the x axis.

5 slug/ft3.

h2 = 3 in.R1 = 2 in, R2 = 1 in, h1 = 6 in,

200 mm

y

x, x*

z

Al

Fe
600 mm

600 mm

y*

z*

Problem 8.130

8.130 The circular cylinder is made of aluminum (Al) with den-

sity and iron (Fe) with density Determine

its moments of inertia about the y  axes.x  and

7860 kg/m3.2700 kg/m3

* 8.127 In Example 8.12, suppose that part of the 3-kg bar is

sawed off so that the bar is 0.4 m long and its mass is 2 kg.

Determine the moment of inertia of the composite object about 

the perpendicular axis L through the center of mass of the modi-

fied object.
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L

T

R

Problem 8.131

8.131 The homogeneous half-cylinder is of mass m. Determine

its moment of inertia about the axis L through its center of mass.

120 mm

20 mm

40 mm

x

y

40
mm

z

y

Problems 8.132/8.133

8.132 The homogeneous machine part is made of aluminum

alloy with density Determine its moment of

inertia about the z axis.

8.133 Determine the moment of inertia of the machine part

described in Problem 8.132 about the x axis.

r = 2800 kg/m3
.

10 mm 30 mm

100 mm

LO

O

20 mm

Problems 8.134/8.135

8.134 The object consists of steel of density 

Determine its moment of inertia about the axis 

8.135 Determine the moment of inertia of the object in Prob-

lem 8.134 about the axis through the center of mass of the object

parallel to LO.

LO.

r = 7800 kg/m3
.

4 in

4 in

4 in 8 in 4 in

2 in 2 in

x

y y

z

4 in

Problems 8.136/8.137

8.136 The thick plate consists of steel of density 

Determine its moment of inertia about the z axis.

8.137 Determine the moment of inertia of the plate in Problem

8.136 about the x axis.

r = 15 slug/ft3.

x

y

(1, 1)

y  x2

Review Problems

8.138 Determine and 

8.139 Determine and 

8.140 Determine and 

8.141 Determine Ixy.

kO.JO

kx.Ix

ky.Iy

Problems 8.138 8.141

x

y

y  x      x21

4

Problems 8.142 8.144

8.142 Determine and 

8.143 Determine and 

8.144 Determine Ixy.

kx.Ix

ky.Iy
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x

y

x

y

y  x       x
2

1

4

Problems 8.145 8.147

8.145 Determine and 

8.146 Determine and 

8.147 Determine Ix y .

kx .Ix

ky .Iy

x

y

4 m3 m

3 m

Problem 8.156

8.156 The moments of inertia of the area are 

and Determine a set of principal

axes and the principal moments of inertia.

Ixy = 44.25 m4
.Iy = 145 m4

,

Ix = 36 m4
,

x

y

2 ft 2 ft

6 ft

3 ft3 ft

Problems 8.154/8.155

8.154 Determine and 

8.155 Determine and ky .Iy

kx.Ix

x

y

40

mm

80

mm

80

mm

40

mm

160

mm

Problems 8.148/8.149

x

y

40

mm

160

mm

80

mm

80

mm

40

mm

Problems 8.150/8.151

x

y

2 ft

4 ft

8.148 Determine and 

8.149 Determine and kx .Ix

ky.Iy

8.150 Determine and 

8.151 Determine and kO.JO

kx.Ix

8.152 Determine and 

8.153 Determine and kO.JO

ky.Iy

Problems 8.152/8.153
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A

14 in

12 in

B

C

Problem 8.157

8.157 The moment of inertia of the 31-oz bat about a perpendi-

cular axis through point B is What is the bat s mo-

ment of inertia about a perpendicular axis through point A? (Point

A is the bat s instantaneous center,  or center of rotation, at the

instant shown.)

0.093 slug-ft2.

x

y

100 mm

200 mm

140 mm

140 mm

8.158 The mass of the thin homogeneous plate is 4 kg. Deter-

mine its moment of inertia about the y axis.

8.159 Determine the moment of inertia of the 4-kg plate about

the z axis.

Problems 8.158/8.159

8.160 The homogeneous pyramid is of mass m. Determine its

moment of inertia about the z axis.

8.161 Determine the moments of inertia of the homogeneous

pyramid of mass m about the x and y axes.

x

y

z

h

Problems 8.160/8.161

y

x

9 in

z
6 in

46 in

36 in

x

y

36 in

46 in

Side View

Problems 8.162/8.163

50 mm

100 mm

150 mm

L

440 mm

500 mm

120 mm70 mm

Problem 8.164

8.164 Determine the moment of inertia of the 14-kg flywheel

about the axis L.

8.162 The homogeneous object weighs 400 lb. Determine its

moment of inertia about the x axis.

8.163 Determine the moments of inertia of the 400-lb object

about the y and z axes.
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Friction

Friction forces have many important effects, both desirable and 

undesirable, in engineering applications. The Coulomb theory of

friction allows us to estimate the maximum friction forces that can

be exerted by contacting surfaces and the friction forces exerted by

sliding surfaces. This opens the path to the analysis of important

new classes of supports and machines, including wedges (shims),

threaded connections, bearings, and belts.

* The workpiece exerts normal and friction forces on the grinding wheel. 
In this chapter we analyze friction forces between contacting surfaces. 

C H A P T E R

9
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430 Chapter 9 Friction

(a)

Friction force

(b)

Friction force

Figure 9.1
Objects supported by friction forces.

F
W

N

f

(a) (b)

Figure 9.2
(a) Exerting a horizontal force on a book.

(b) The free-body diagram of the book.

9.1 Theory of Dry Friction

BACKGROUND

Suppose that a person climbs a ladder that leans against a smooth wall. Figure 9.1a

shows the free-body diagram of the person and ladder. If the person is station-

ary on the ladder, we can use the equilibrium equations to determine the fric-

tion force. But there is another question that we cannot answer using the

equilibrium equations alone: Will the ladder remain in place, or will it slip on

the floor? If a truck is parked on an incline, the total friction force exerted on

its tires by the road prevents it from sliding down the incline (Fig. 9.1b). We can

use the equilibrium equations to determine the total friction force. But here too

there is another question that we cannot answer: What is the steepest incline on

which the truck could be parked without slipping?

To answer these questions, we must examine the nature of friction forces

in more detail. Place a book on a table and push it with a small horizontal force,

as shown in Fig. 9.2a. If the force you exert is sufficiently small, the book does

not move. The free-body diagram of the book is shown in Fig. 9.2b. The force

W is the book s weight, and N is the total normal force exerted by the table on

the surface of the book that is in contact with the table. The force F is the hor-

izontal force you apply, and f is the total friction force exerted by the table.

Because the book is in equilibrium, 

Now slowly increase the force you apply to the book. As long as the book

remains in equilibrium, the friction force must increase correspondingly, since

it equals the force you apply. When the force you apply becomes too large, the

book moves. It slips on the table. After reaching some maximum value, the fric-

tion force can no longer maintain the book in equilibrium. Also, notice that the

force you must apply to keep the book moving on the table is smaller than the

force required to cause it to slip. (You are familiar with this phenomenon if

you ve ever pushed a piece of furniture across a floor.)

f = F.
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9.1 Theory of Dry Friction 431

How does the table exert a friction force on the book? Why does the book

slip? Why is less force required to slide the book across the table than is required

to start it moving? If the surfaces of the table and the book are magnified

sufficiently, they will appear rough (Fig. 9.3). Friction forces arise in part from

the interactions of the roughnesses, or asperities, of the contacting surfaces. We

can gain insight into this mechanism of friction by considering a simple two-

dimensional model of the rough surfaces of the book and table.

Suppose that we idealize the asperities of the book and table as the mating

two-dimensional saw-tooth  profiles in Fig. 9.4a. As the horizontal force F in-

creases, the book will remain stationary until the force is sufficiently large to

cause the book to slide upward as shown in Fig. 9.4b. What horizontal force is

necessary for this to occur? To find out, we must determine the value of F nec-

essary for the book to be in equilibrium in the slipped  position in Fig. 9.4b.

The normal force exerted on the ith saw-tooth asperity of the book is shown

in Fig. 9.4c. (Notice that in this simple model we assume the contacting surfaces

of the asperities to be smooth.) Denoting the sum of the normal forces exerted

on the asperities of the book by the table by we obtain the equilib-

rium equations

Eliminating C from these equations, we obtain the force necessary to cause the

book to slip on the table:

We see that the force necessary to cause the book to slip is proportional to the

force pressing the saw-tooth surfaces together (the book s weight). Think about

stacking increasing numbers of books and applying a horizontal force to them.

A progressively larger force is required to cause them to slip as the number of

books increases. Also, in our two-dimensional thought experiment, the angle

is a measure of the roughness of the saw-tooth surfaces. As the surfaces

become smooth and the force necessary to cause the book to slip approaches

zero. As increases, the roughness increases and the force necessary to cause

the book to slip increases.

a

a: 0,

a

F = 1tan a2W.

 Fy = C cos a - W = 0.

 Fx = F - C sin a = 0,

C = a
i

Ci,

Ci

Figure 9.3

The roughnesses of the surfaces can be seen

in a magnified view.

F

y

x

W

a a

a

Ci

a

(a) (b) (c)

Figure 9.4

(a) Two-dimensional model of rough 

surfaces in contact.

(b) Slip of the book relative to the table.

(c) Normal force on one of the book s 

asperities.
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432 Chapter 9 Friction

In the sections that follow, we present a theory that incorporates the basic

phenomena we have just described and that has been found useful for deter-

mining  friction forces between dry surfaces. (Friction between lubricated sur-

faces is a hydrodynamic phenomenon and must be analyzed in the context of

fluid mechanics.)

Coefficients of Friction

The theory of dry friction, or Coulomb friction, predicts the maximum friction

forces that can be exerted by dry, contacting surfaces that are stationary relative

to each other. It also predicts the friction forces exerted by the surfaces when they

are in relative motion, or sliding. We first consider surfaces that are not in rel-

ative motion.

The Static Coefficient The magnitude of the maximum friction force that

can be exerted between two plane, dry surfaces in contact that are not in mo-

tion relative to one another is

(9.1)

where N is the normal component of the contact force between the surfaces and

is a constant called the coefficient of static friction. The value of is assumed

to depend only on the materials of the contacting surfaces and the conditions

(smoothness and degree of contamination by other materials) of the surfaces. Typ-

ical values of for various materials are shown in Table 9.1. The relatively large

range of values for each pair of materials reflects the sensitivity of to the con-

ditions of the surfaces. In engineering applications it is usually necessary to meas-

ure the value of for the actual surfaces used.

Let us return to the example of the book on the table (Fig. 9.2). If a specified

horizontal force F is applied to the book, and the book remains in equilibrium,

what friction force is exerted on the book by the table? We can see from the

free-body diagram in Fig. 9.2b that Notice that we do not use Eq. (9.1)

to answer this question. But suppose that we want to know the largest force F

that can be applied to the book without causing it to slip. If we know the coef-

ficient of static friction between the book and the table, Eq. (9.1) tells us the

largest friction force that the table can exert on the book. Therefore, the largest

force F that can be applied without causing the book to slip is We

also know from the free-body diagram in Fig. 9.2b that so the largest

force that will not cause the book to slip is 

Equation (9.1) determines the magnitude of the maximum friction force but

not its direction. The friction force is a maximum, and Eq. (9.1) is applicable,

when two surfaces are on the verge of slipping relative to each other. We say that

slip is impending, and the friction forces resist the impending motion. In Fig. 9.5a,

suppose that the lower surface is fixed and slip of the upper surface toward the right

is impending. The friction force on the upper surface resists its impending motion

(Fig. 9.5b). The friction force on the lower surface is in the opposite direction.

The Kinetic Coefficient According to the theory of dry friction, the mag-

nitude of the friction force between two plane dry contacting surfaces that are

in motion (sliding) relative to each other is

(9.2)

where N is the normal force between the surfaces and is the coefficient of

kinetic friction. The value of is assumed to depend only on the compositionsmk

mk

f = mkN,

F = msW.

N = W,

F = f = msN.

ms

f = F.

ms

ms

ms

msms

f = msN,

N

N

(a)

(b)

Direction of 
impending slip 

f * msN

f * msN

Figure 9.5

(a) The upper surface is on the verge of

slipping to the right.

(b) Directions of the friction forces.

TABLE 9.1 Typical values of the

coefficient of static friction.

Coefficient of

Materials Static Friction 

Metal on metal 0.15 0.20

Masonry on masonry 0.60 0.70

Wood on wood 0.25 0.50

Metal on masonry 0.30 0.70

Metal on wood 0.20 0.60

Rubber on concrete 0.50 0.90

ms
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9.1 Theory of Dry Friction 433

of the surfaces and their conditions. For a given pair of surfaces, its value is

generally smaller than that of 

Once you have caused the book in Fig. 9.2 to begin sliding on the table, the

friction force Therefore, the force you must exert to keep the

book in uniform motion is 

When two surfaces are sliding relative to each other, the friction forces re-

sist the relative motion. In Fig. 9.6a, suppose that the lower surface is fixed and

the upper surface is moving to the right. The friction force on the upper surface

acts in the direction opposite to its motion (Fig. 9.6b). The friction force on the

lower surface is in the opposite direction.

Angles of Friction

We have expressed the reaction exerted on a surface due to its contact with an-

other surface in terms of its components parallel and perpendicular to the sur-

face, the friction force f and normal force N (Fig. 9.7a). In some situations it is

more convenient to express the reaction in terms of its magnitude R and the

angle of friction between the reaction and the normal to the surface (Fig. 9.7b).

The forces f and N are related to R and by

(9.3)

(9.4)

The value of when slip is impending is called the angle of static friction

and its value when the surfaces are sliding relative to each other is called the

angle of kinetic friction By using Eqs. (9.1) (9.4), we can express the angles

of static and kinetic friction in terms of the coefficients of friction:

(9.5)

(9.6) tan uk = mk.

 tan us = ms,

uk.

us,u

 N = R cos u.

 f = R sin u,

u

u

F = f = mkW.

f = mkN = mkW.

ms.

N

(a)

f

R

(b)

u

Figure 9.7

(a) The friction force f and the normal 

force N.

(b) The magnitude R and the angle of 

friction u.

N

N

(a)

(b)

Direction of 
relative motion

f * mkN

f * mkN

Figure 9.6

(a) The upper surface is moving to the right

relative to the lower surface.

(b) Directions of the friction forces.

In terms of the normal force N and

friction force f.

f 

f 
N

N

RESULTS

The forces resulting from the contact of plane surfaces can be expressed in two

alternative ways:
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In terms of the magnitude R and

angle of friction u.
RR

u

u

Friction Coefficients

The magnitude of the maximum friction force that can be exerted by dry surfaces

that are stationary relative to each other (that is, when slip is impending) is

f * msN,

where ms is the coefficient of static friction. The angle of friction when slip is

impending is related to the coefficient of static friction by

tan us * ms.

The magnitude of the friction force exerted by dry surfaces that are in motion

(sliding) relative to each other is

f * mkN,

where mk is the coefficient of kinetic friction. The angle of friction when the

surfaces are sliding is related to the coefficient of kinetic friction by

tan uk * mk

(9.1)

(9.2)

(9.6)

(9.5)

Evaluating the friction force and angle of friction requires a sequence of decisions:

Are the surfaces in motion (sliding)

relative to each other?

f * mkN and tanuk * mk.

The friction force opposes 

the relative motion.

Do you know that slip is 

impending?

NoYes

f * msN and tanus * ms.

The friction force opposes 

the impending motion.

Yes
No

You must determine the 

magnitude and direction of 

the friction force from the 

equilibrium equations. 

If f + msN or tanus + ms, 

the system cannot be in 

equilibrium.
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9.1 Theory of Dry Friction 435

Active Example 9.1 Determining a Friction Force (* Related Problem 9.1)

The rope exerts a horizontal force on the stationary 180-lb crate. The coeffi-

cient of static friction between the crate and the ramp is . If the rope

exerts a 90-lb force on the crate, what friction force is exerted on the crate by

the ramp?

ms = 0.4

Strategy
The crate is not sliding on the ramp, and we don t know whether slip is impend-

ing, so we must determine the friction force by applying the equilibrium equations.

Solution

Practice Problem What is the largest horizontal force the rope can exert on the crate

without causing it to start sliding up the ramp?

Answer: 161 lb.

20

Draw the free-body diagram of the crate. The

direction of the friction force f is not known, so

choose it arbitrarily. The sign of the answer for f

will indicate its direction.

N

f

y
x

20

W

T

Apply equilibrium. The negative

value of the friction force indicates

that its direction is down the ramp.

Calculate the maximum friction

force the surfaces will support to

confirm that it is not exceeded by

the magnitude of the friction force

necessary for equilibrium.

Fx  f  T cos 20   W sin 20   0,

msN  (0.4)(200 lb)  80 lb.

Setting W  180 lb and T  90 lb and

solving yields N  200 lb and f  23.0 lb.

Fy  N  T sin 20   W cos 20   0.
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436 Chapter 9 Friction

Example 9.2 Analyzing a Friction Brake (* Related Problem 9.22)

The motion of the disk is controlled by the friction force exerted at C by the

brake ABC. The hydraulic actuator BE exerts a horizontal force of magnitude F

on the brake at B. The coefficients of friction between the disk and the brake are

and What couple M is necessary to rotate the disk at a constant rate in

the counterclockwise direction?

mk.ms

b

C

B

A

D

M

r
E

1
2
1
2

h

h

Strategy
We can use the free-body diagram of the disk to obtain a relation between M and

the reaction exerted on the disk by the brake, then use the free-body diagram of

the brake to determine the reaction in terms of F.

Solution
We draw the free-body diagram of the disk in Fig. a, representing the force ex-

erted by the brake by a single force R. The force R opposes the counterclock-

wise rotation of the disk, and the friction angle is the angle of kinetic friction

Summing moments about D, we obtain

Then, from the free-body diagram of the brake (Fig. b), we get

We can solve these two equations for M and R. The solution for the couple 

M is

Critical Thinking
If the friction coefficient is sufficiently small, the denominator in our solu-

tion for the couple M, the term is positive. As increases,

the denominator becomes smaller, because decreases and increases.

As the denominator approaches zero, the couple required to rotate the disk

approaches infinity. To understand this result, notice that the denominator

equals zero when which means that the line of action of the force

R passes through point A (Fig. c). As increases and the line of action of R

approaches point A, the magnitude of R necessary to balance the moment due

to F about A approaches infinity. As a result, the analytical prediction for M

approaches infinity. Of course, at some value of M, the forces F and R would

exceed the values the brake could support.

mk

tan uk = h>b,

sin ukcos uk

mkh cos uk - b sin uk,

mk

M =
11>22hr F sin uk

h cos uk - b sin uk

=
11>22hr Fmk

h - bmk

.

Mpoint A = -Fa
1

2
 hb + 1R cos uk2h - 1R sin uk2b = 0.

Mpoint D = M - 1R sin uk2r = 0.

uk = arctan mk.
M

Dy

Dx

R

uk

F

R

Ay

Ax
A

b
uk

h
1

2

h
1

2

Ay

Ax

F

R

h

A

   k*
b

(a) The free-body diagram of the disk.

(b) The free-body diagram of the brake.

(c) The line of action of R passing through

point A.
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Example 9.3 Determining Whether an Object Will Tip Over (* Related Problem 9.45)

Suppose that we want to push the tool chest across the floor by applying the hor-

izontal force F. If we apply the force at too great a height h, the chest will tip

over before it slips. If the coefficient of static friction between the floor and the

chest is what is the largest value of h for which the chest will slip before it

tips over?

Strategy
When the chest is on the verge of tipping over, it is in equilibrium with no

reaction at B. We can use this condition to determine F in terms of h. Then, by

determining the value of F that will cause the chest to slip, we will obtain

the value of h that causes the chest to be on the verge of tipping over and on the

verge of slipping.

Solution
We draw the free-body diagram of the chest when it is on the verge of tipping

over in Fig. a. Summing moments about A, we obtain

Equilibrium also requires that and 

When the chest is on the verge of slipping,

so

Substituting this expression into the moment equation, we obtain

Solving this equation for h, we find that when the chest is on the verge of slip-

ping, it is also on the verge of tipping over if it is pushed at the height

If h is smaller than this value, the chest will begin sliding before it tips over.

Critical Thinking
Notice that the largest value of h for which the chest will slip before it tips over

is independent of F. Whether the chest will tip over depends only on where the

force is applied, not how large it is. What is the motivation for the solution in

this example? The possibility of heavy objects falling over is an obvious safety

hazard, and analyses of this kind can influence their design. Once they are in use,

safety engineers can establish guidelines (for example, by marking a horizon-

tal line on a vertical cabinet or machine above which it should not be pushed)

to prevent tipping.

h =
b

2ms

.

msWh - Wa
1

2
 bb = 0.

F = f = msN = msW.

f = msN,

N = W.f = F

Mpoint A = Fh - Wa
1

2
 bb = 0.

ms,
F

h

W

A B

b

2

b

2

F

W

A B x

y

N

f

h

b

2

(a) The free-body diagram when the chest is

on the verge of tipping over.
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Problems

* 9.1 In Active Example 9.1, suppose that the coefficient of

static friction between the 180-lb crate and the ramp is 

What is the magnitude of the smallest horizontal force the rope

must exert on the crate to prevent it from sliding down the ramp? 

9.2 A person places a 2-lb book on a table that is tilted at 15

relative to the horizontal. She finds that if she exerts a very small

force on the book as shown, the book remains in equilibrium, but

if she removes the force, the book slides down the table. What

force would she need to exert on the book (in the direction parallel

to the table) to cause it to slide up the table?

ms = 0.3.

15*

Problem 9.2

a

F

Problem 9.3

Problem 9.4

9.3 A student pushes a 200-lb box of books across the floor. The

coefficient of kinetic friction between the carpet and the box is

(a) If he exerts the force F at angle what is the magni-

tude of the force he must exert to slide the box across the floor?

(b) If he bends his knees more and exerts the force F at angle

what is the magnitude of the force he must exert to slide

the box?

a = 10 ,

a = 25 ,

mk = 0.15.

9.5 The truck s winch exerts a horizontal force on the 200-kg

crate in an effort to pull it down the ramp. The coefficient of static

friction between the crate and the ramp is 

(a) If the winch exerts a 200-N horizontal force on the crate, what is

the magnitude of the friction force exerted on the crate by the ramp?

(b) What is the magnitude of the horizontal force the winch must

exert on the crate to cause it to start moving down the ramp?

ms = 0.6.

20*

Problem 9.5

9.4 The 2975-lb car is parked on a sloped street. The brakes are

applied to both its front and rear wheels.

(a) If the coefficient of static friction between the car s tires and

the road is what is the steepest slope (in degrees relative

to the horizontal) on which the car could remain in equilibrium?

(b) If the street were icy and the coefficient of static friction be-

tween the car s tires and the road was what is the steep-

est slope on which the car could remain in equilibrium?

ms = 0.2,

ms = 0.8,

9.6 The device shown is designed to position pieces of luggage

on a ramp. It exerts a force parallel to the ramp. The suitcase

weighs 40 lb. The coefficients of friction between the suitcase and

the ramp are and 

(a) Will the suitcase remain stationary on the ramp when the

device exerts no force on it?

(b) What force must the device exert to push the suitcase up the

ramp at a constant speed?

mk = 0.18.ms = 0.20

20*

Problem 9.6
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9.7 The coefficient of static friction between the 50-kg crate and

the ramp is The unstretched length of the spring is

800 mm, and the spring constant is What is the mini-

mum value of x at which the crate can remain stationary on the ramp?

k = 660 N/m.

ms = 0.35.

9.12 The mass of the box on the left is 30 kg, and the mass of the

box on the right is 40 kg. The coefficient of static friction between

each box and the inclined surface is Determine the min-

imum angle for which the boxes will remain stationary.a

ms = 0.2.

50*

k

x

Problem 9.7

10*

a

Problems 9.8/9.9

9.8 The coefficient of kinetic friction between the 40-kg crate and

the slanting floor is If the angle what tension

must the person exert on the rope to move the crate at constant speed?

9.9 In Problem 9.8, for what angle is the tension necessary to

move the crate at constant speed a minimum? What is the neces-

sary tension?

a

a = 20 ,mk = 0.3.

30*

A

B

Problems 9.10/9.11

9.10 Box A weighs 100 lb and box B weighs 30 lb. The coeffi-

cients of friction between box A and the ramp are and

What is the magnitude of the friction force exerted on

box A by the ramp?

9.11 Box A weighs 100 lb, and the coefficients of friction be-

tween box A and the ramp are and For what

range of weights of the box B will the system remain stationary?

mk = 0.28.ms = 0.30

mk = 0.28.

ms = 0.30

30*a

Problem 9.12

T

60*

Problem 9.13

9.13 The coefficient of kinetic friction between the 100-kg box

and the inclined surface is 0.35. Determine the tension T neces-

sary to pull the box up the surface at a constant rate.

T

a

b

Problems 9.14/9.15

9.14 The box is stationary on the inclined surface. The coeffi-

cient of static friction between the box and the surface is 

(a) If the mass of the box is 10 kg, and

what force T is necessary to start the box sliding up

the surface?

(b) Show that the force T necessary to start the box sliding up the

surface is a minimum when tan 

9.15 In explaining observations of ship launchings at the port of

Rochefort in 1779, Coulomb analyzed the system shown to deter-

mine the minimum force T necessary to hold the box stationary on

the inclined surface. Show that the result is

T =

1sin a - ms cos a2mg

cos b - ms sin b
.

b = ms.

ms = 0.24,

a = 20 , b = 30 ,

ms.
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440 Chapter 9 Friction

B

A

Problem 9.16

30*

30*

W2

W1

Problems 9.17/9.18

9.16 Two sheets of plywood A and B lie on the bed of the truck.

They have the same weight W, and the coefficient of static friction

between the two sheets of wood and between sheet B and the

truck bed is 

(a) If you apply a horizontal force to sheet A and apply no force

to sheet B, can you slide sheet A off the truck without causing

sheet B to move? What force is necessary to cause sheet A to start

moving?

(b) If you prevent sheet A from moving by exerting a horizontal

force on it, what horizontal force on sheet B is necessary to start it

moving?

ms.

9.17 The weights of the two boxes are and

The coefficients of friction between the left box and

the inclined surface are and Determine 

the tension the man must exert on the rope to pull the boxes 

upward at a constant rate.

9.18 In Problem 9.17, for what range of tensions exerted on the

rope by the man will the boxes remain stationary?

mk = 0.10.ms = 0.12

W2 = 50 lb.

W1 = 100 lb

A

B

a

Problem 9.19

F
A

B

20*

Problems 9.20/9.21

9.19 Each box weighs 10 lb. The coefficient of static friction 

between box A and box B is 0.24, and the coefficient of static 

friction between box B and the inclined surface is 0.3. What is

the largest angle for which box B will not slip?

Strategy: Draw individual free-body diagrams of the two

boxes and write their equilibrium equations assuming that slip of

box B is impending.

a

9.20 The masses of the boxes are and 

The coefficient of static friction between boxes A and B and be-

tween box B and the inclined surface is 0.12. What is the largest

force F for which the boxes will not slip?

9.21 In Problem 9.20, what is the smallest force F for which the

boxes will not slip?

mB = 60 kg.mA = 15 kg

* 9.22 In Example 9.2, what clockwise couple M would need to

be applied to the disk to cause it to rotate at a constant rate in the

clockwise direction?
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9.23 The homogeneous horizontal bar AB weighs 20 lb. The homogeneous disk weighs 30 lb. The coefficient of kinetic friction be-

tween the disk and the sloping surface is What is the magnitude of the couple that would need to be applied to the disk to

cause it to rotate at a constant rate in the clockwise direction?

9.24 The homogeneous horizontal bar AB weighs 20 lb. The homogeneous disk weighs 30 lb. The coefficient of kinetic friction be-

tween the disk and the sloping surface is What is the magnitude of the couple that would need to be applied to the disk to

cause it to rotate at a constant rate in the counterclockwise direction?

mk = 0.24.

mk = 0.24.

Problems 9.23/9.24

9.25 The mass of the bar is 4 kg. The coefficient of static friction

between the bar and the floor is 0.3. Neglect friction between the

bar and the wall.

(a) If what is the magnitude of the friction force exerted

on the bar by the floor?

(b) What is the maximum angle for which the bar will not slip?

9.26 The coefficient of static friction between the bar and the

floor and between the 4-kg bar and the wall is 0.3. What is the

maximum angle for which the bar will not slip?a

a

a = 20 ,

9.27 The ladder and the person weigh 30 lb and 180 lb, respec-

tively. The center of mass of the 12-ft ladder is at its midpoint.

The angle Assume that the wall exerts a negligible fric-

tion force on the ladder.

(a) If what is the magnitude of the friction force exerted

on the ladder by the floor?

(b) What minimum coefficient of static friction between the lad-

der and the floor is necessary for the person to be able to climb to

the top of the ladder without slipping?

x = 4 ft,

a = 30 .

1 m

a

A
B

5 ft

1 ft

20*

Problems 9.25/9.26

x

a

Problems 9.27 9.29

9.28 The ladder and the person weigh 30 lb and 180 lb, respec-

tively. The center of mass of the 12-ft ladder is at its midpoint.

The coefficient of static friction between the ladder and the floor

is What is the largest value of the angle for which the

person could climb to the top of the ladder without it slipping?

9.29 The ladder and the person weigh 30 lb and 180 lb, respec-

tively. The center of mass of the 12-ft ladder is at its midpoint.

The coefficient of static friction between the ladder and the floor

is 0.5 and the coefficient of friction between the ladder and the

wall is 0.3. What is the largest value of the angle for which the

person could climb to the top of the ladder without it slipping?

Compare your answer to the answer to Problem 9.28.

a

ams = 0.5.
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442 Chapter 9 Friction

Problems 9.31 9.33

a

Problem 9.34

9.30 The disk weighs 50 lb and the bar weighs 25 lb. The coeffi-

cients of friction between the disk and the inclined surface are

and 

(a) What is the largest couple M that can be applied to the station-

ary disk without causing it to start rotating?

(b) What couple M is necessary to rotate the disk at a constant rate?

mk = 0.5.ms = 0.6

9.31 The radius of the 40-kg homogeneous cylinder is 

R* 0.15 m. The slanted wall is smooth and the angle .

The coefficient of static friction between the cylinder and the floor

is . What is the largest couple M that can be applied to

the cylinder without causing it to slip?

9.32 The homogeneous cylinder has weight W. The coefficient

of static friction between the cylinder and both surfaces is .

What is the largest couple M that can be applied to the cylinder

without causing it to slip? (Assume that the cylinder slips before

rolling up the inclined surface.)

9.33 The homogeneous cylinder has weight W. The coefficient

of static friction between the cylinder and both surfaces is 

What is the minimum value of for which the couple M will

cause the cylinder to roll up the inclined surface without slipping?

ms

ms.

ms

ms = 0.2

a = 30

9.34 The coefficient of static friction between the blades of the

shears and the object they are gripping is 0.36. What is the largest

value of the angle for which the object will not slip out? Neglect

the object s weight.

Strategy: Draw the free-body diagram of the object and 

assume that slip is impending.

a

9.35 A stationary disk of 300-mm radius is attached to a pin sup-

port at D. The disk is held in place by the brake ABC in contact

with the disk at C. The hydraulic actuator BE exerts a horizontal

400-N force on the brake at B. The coefficients of friction be-

tween the disk and the brake are and What

couple must be applied to the stationary disk to cause it to slip in

the counterclockwise direction?

mk = 0.5.ms = 0.6

200 mm
B

E

A

200 mm

200
mm

C
D

300
mm

M

R

a

Problem 9.35

M

5 in

30+

20 in

Problem 9.30
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2 ft

2 ft

B

A

2 ft 3 in

a

Problems 9.41/9.42

9.36 The figure shows a preliminary conceptual idea for a device

to exert a braking force on a rope when the rope is pulled down-

ward by the force T. The coefficient of kinetic friction between

the rope and the two bars is Determine the force T

necessary to pull the rope downward at a constant rate if

and (a) (b) a = 20 .a = 30 ;F = 10 lb

mk = 0.28.

9.37 The mass of block B is 8 kg. The coefficient of static fric-

tion between the surfaces of the clamp and the block is 

When the clamp is aligned as shown, what minimum force must

the spring exert to prevent the block from slipping out?

9.38 By altering its dimensions, redesign the clamp in Prob-

lem 9.37 so that the minimum force the spring must exert to

prevent the block from slipping out is 180 N. Draw a sketch of

your new design.

ms = 0.2.

9.39 The horizontal bar is attached to a collar that slides on the

smooth vertical bar. The collar at P slides on the smooth horizon-

tal bar. The total mass of the horizontal bar and the two collars is

12 kg. The system is held in place by the pin in the circular slot.

The pin contacts only the lower surface of the slot, and the coeffi-

cient of static friction between the pin and the slot is 0.8. If the

system is in equilibrium and what is the magnitude

of the friction force exerted on the pin by the slot?

9.40 In Problem 9.39, what is the minimum height y at which the

system can be in equilibrium?

y = 260 mm,

9.41 The rectangular 100-lb plate is supported by the pins A and

B. If friction can be neglected at A and the coefficient of static

friction between the pin at B and the slot is what is the

largest angle for which the plate will not slip?

9.42 If you can neglect friction at B and the coefficient of static

friction between the pin at A and the slot is what is the

largest angle for which the 100-lb plate will not slip?a

ms = 0.4,

a

ms = 0.4,

45*

160 mm

200 mm

100

mm

B

Problems 9.37/9.38

300 mm

P

y

Problems 9.39/9.40

F

F F

T

T

6 in

3 in

a a

F

Problem 9.36
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4 ft

T

5 ft

W

2 ft

BA

h

A B

F

b

2

b

2

Problem 9.43

h

F

b

2

b

2

Problem 9.46

Problems 9.44/9.45

9.43 The airplane s weight is Its brakes keep the

rear wheels locked, and the coefficient of static friction between

the wheels and the runway is The front (nose) wheel

can turn freely and so exerts a negligible friction force on the run-

way. Determine the largest horizontal thrust force T the plane s

propeller can generate without causing the rear wheels to slip.

ms = 0.6.

W = 2400 lb.

9.44 The refrigerator weighs 220 lb. It is supported at A and B.

The coefficient of static friction between the supports and the

floor is If you assume that the refrigerator does not tip

over before it slips, what force F is necessary for impending slip?

* 9.45 The refrigerator weighs 220 lb. It is supported at A and B.

The coefficient of static friction between the supports and the

floor is The distance and the dimension

When the force F is applied to push the refrigerator

across the floor, will it tip over before it slips? (See Example 9.3.)

b = 30 in.

h = 60 inms = 0.2.

ms = 0.2.

9.46 To obtain a preliminary evaluation of the stability of a turn-

ing car, imagine subjecting the stationary car to an increasing lat-

eral force F at the height of its center of mass, and determine

whether the car will slip (skid) laterally before it tips over. Show

that this will be the case if (Notice the importance of

the height of the center of mass relative to the width of the car.

This reflects on recent discussions of the stability of sport utility

vehicles and vans that have relatively high centers of mass.)

b>h 7 2ms.

9.47 The man exerts a force P on the car at an angle 

The 1760-kg car has front wheel drive. The driver spins the front

wheels, and the coefficient of kinetic friction is Snow

behind the rear tires exerts a horizontal resisting force S. Getting

the car to move requires overcoming a resisting force 

What force P must the man exert?

9.48 In Problem 9.47, what value of the angle minimizes the

magnitude of the force P the man must exert to overcome the

resisting force exerted on the rear tires by the snow?

What force must he exert?

S = 420 N

a

S = 420 N.

mk = 0.02.

a = 20 .

Problems 9.47/9.48

P

S

0.90 m

1.62 m

2.55 m

3.40 m

a
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A

F

aa

Problems 9.52/9.53

19 in

72 in

35 in

a

Problem 9.49

H
h

A B

F
G

b

2

b

2

Problem 9.50

A

B

28 in

23 in

23 in

32 in

20*

Problem 9.51

9.49 The coefficient of static friction between the 3000-lb car s

tires and the road is Determine the steepest grade (the

largest value of the angle ) the car can drive up at constant speed

if the car has (a) rear-wheel drive; (b) front-wheel drive; (c) four-

wheel drive.

a

ms = 0.5.

9.50 The stationary cabinet has weight W. Determine the force F

that must be exerted to cause it to move if (a) the coefficient of

static friction at A and at B is (b) the coefficient of static fric-

tion at A is and the coefficient of static friction at B is msB.msA

ms;

9.51 The table weighs 50 lb and the coefficient of static friction

between its legs and the inclined surface is 0.7.

(a) If you apply a force at A parallel to the inclined surface to

push the table up the inclined surface, will the table tip over be-

fore it slips? If not, what force is required to start the table moving

up the surface?

(b) If you apply a force at B parallel to the inclined surface to

push the table down the inclined surface, will the table tip over

before it slips? If not, what force is required to start the table mov-

ing down the surface?

9.52 The coefficient of static friction between the right bar and

the surface at A is Neglect the weights of the bars. If

what is the magnitude of the friction force exerted at A?

9.53 The coefficient of static friction between the right bar and

the surface at A is Neglect the weights of the bars. What

is the largest angle at which the truss will remain stationary

without slipping?

a

ms = 0.6.

a = 20 ,

ms = 0.6.
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30*

8*

Plate

A

C

B

Problems 9.57/9.58

Problems 9.54/9.55

4 in

F

8 in

8 in
4 in

F

A B

C

600 mm

500 mm
200
mm

500 mm

Problem 9.56 A B
C

6 kN

8 kN

EG D

1 m 1 m 1 m

1 m

1 m

Problem 9.59

9.54 The bar BC is supported by a rough floor at C. If 

and bar BC does not slip at C, what is the magnitude of the fric-

tion force exerted on the bar at C?

9.55 The bar BC is supported by a rough floor at C. If

what is the minimum coefficient of static friction for

which bar BC will not slip at C?

F = 2 kN,

F = 2 kN

9.56 The weight of the box is and the coefficient of static

friction between the box and the floor is Neglect the

weights of the bars. What is the largest value of the force F that

will not cause the box to slip?

ms = 0.65.

20 lb

9.57 The mass of the suspended object is 6 kg. The structure is

supported at B by the normal and friction forces exerted on the

plate by the wall. Neglect the weights of the bars.

(a) What is the magnitude of the friction force exerted on the

plate at B?

(b) What is the minimum coefficient of static friction at B neces-

sary for the structure to remain in equilibrium?

9.58 Suppose that the lengths of the bars in Problem 9.57 

are and and their masses are

and 

(a) What is the magnitude of the friction force exerted on the

plate at B?

(b) What is the minimum coefficient of static friction at B neces-

sary for the structure to remain in equilibrium?

mAC = 3.0 kg.mAB = 3.6 kg

LAC = 1.0 mLAB = 1.2 m

9.59 The frame is supported by the normal and friction forces

exerted on the plates at A and G by the fixed surfaces. The coeffi-

cient of static friction at A is Will the frame slip at A

when it is subjected to the loads shown?

ms = 0.6.
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9.62* The 10-lb metal disk A is at the center of the inclined sur-

face. The tension in the string AB is 5 lb. What minimum coeffi-

cient of static friction between the disk and the surface is

necessary to keep the disk from slipping?

9.60 The frame is supported by the normal and friction forces

exerted on the plate at A by the wall.

(a) What is the magnitude of the friction force exerted on the

plate at A?

(b) What is the minimum coefficient of static friction at A neces-

sary for the structure to remain in equilibrium?

9.61 The direction cosines of the crane s cable are

The y axis 

is vertical. The stationary caisson to which the cable is attached

weighs 2000 lb and rests on horizontal ground. If the coefficient

of static friction between the caisson and the ground is 

what tension in the cable is necessary to cause the caisson to slip?

ms = 0.4,

cos ux = 0.588, cos uy = 0.766, cos uz = 0.260.

y

z

A

B (0, 6, 0) ft

2 ft

8 ft

10 ft

x

Problem 9.62

z

x

y

Problems 9.63/9.64

A

E

D

B

C

6 kN

2 m 2 m 1 m

1 m

1 m

Problem 9.60

y

x

z

Problem 9.61

9.63* The 5-kg box is at rest on the sloping surface. The y axis

points upward. The unit vector is per-

pendicular to the sloping surface. What is the magnitude of the

friction force exerted on the box by the surface?

9.64* In Problem 9.63, what is the minimum coefficient of static

friction necessary for the box to remain at rest on the sloping surface?

0.557i + 0.743j + 0.371k
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(a) (b)

(c)

Figure 9.8
(a) An early wedge tool a bifacial hand

axe  from Olduvai Gorge, East Africa.

(b) A modern chisel blade.

(c) The faces of a wedge can exert large 

lateral forces.

9.2 Wedges

A wedge is a bifacial tool with the faces set at a small acute angle (Figs. 9.8a

and b). When a wedge is pushed forward, the faces exert large normal forces as a

result of the small angle between them (Fig. 9.8c). In various forms, wedges are

used in many engineering applications.

The large lateral force generated by a wedge can be used to lift a load

(Fig. 9.9a). Let be the weight of the load and the weight of the wedge.

To determine the force F necessary to start raising the load, we assume that slip

of the load and wedge are impending (Fig. 9.9b). From the free-body diagram

of the load, we obtain the equilibrium equations

and

Fy = N cos a - msN sin a - msQ - WL = 0.

Fx = Q - N sin a - msN cos a = 0

WWWL

WL

W
W

a

   sNWedge

Q

x

y y

F

x 

(a) (b)

F

Load

   sQm

N

P
   sPm

m

a

   sN Nm
a

WL

WW

Figure 9.9
(a) Raising a load with a wedge.

(b) Free-body diagrams of the load and the wedge when slip is impending.
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9.2 Wedges 449

From the free-body diagram of the wedge, we obtain the equations

and

These four equations determine the three normal forces Q, N, and P, and the

force F. The solution for F is

Suppose that and If the force necessary to lift

the load is only But if the force becomes and if

it becomes From this standpoint, friction is undesirable. But

if there were no friction, the wedge would not remain in place when the force

F is removed.

1.44WL.ms = 0.4,

0.680WL,ms = 0.2,0.176WL.

ms = 0,a = 10 .WW = 0.2WL

F = msWW + c

11 - ms
2
2 tan a + 2ms

11 - ms
2
2 - 2ms tan a

dWL.

Fy = P - N cos a + msN sin a - WW = 0.

Fx = N sin a + msN cos a + msP - F = 0

Active Example 9.4 Forces on a Wedge (* Related Problems 9.65, 9.66, 9.67)

A wedge is used to split a log. The angle The coefficients of friction

between the wedge and the log are and If the wedge is

driven into the log at a constant speed by a vertical force F, what are the mag-

nitudes of the normal forces exerted on the log by the wedge (that is, what are

the magnitudes of the forces causing the log to split)?

Strategy
The friction forces exerted on the wedge by the log resist the motion of the

wedge into the log and are of magnitude We can apply equilibrium to the

wedge to determine N in terms of F.

Solution

mkN.

mk = 0.20.ms = 0.22

a = 10 .

Practice Problem If the force F is removed, will the wedge remain in place in the log?

Answer: Yes.

a

F

mkN

N N

mkN
a

Draw the free-body diagram of the wedge.

Apply equilibrium.

The sum of the forces in the vertical direction is

Solving for N yields

N 
F

2[sin(a/2)  mk cos(a/2)]

 1.75F.

F

2[sin(10 /2)  (0.20) cos(10 /2)]

2N sin          2mkN cos           F  0.
a

2
  

a

2
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Problem 9.69

Problem 9.70

Problems

* 9.65 In Active Example 9.4, the coefficients of friction be-

tween the wedge and the log are and What

is the largest value of the wedge angle for which the wedge

would remain in place in the log when the force F is removed?

* 9.66 The wedge shown is being used to split the log. The

wedge weighs 20 lb and the angle equals 30 . The coefficient of

kinetic friction between the faces of the wedge and the log is 0.28.

If the normal force exerted by each face of the wedge must equal

150 lb to split the log, what vertical force F is necessary to drive

the wedge into the log at a constant rate? (See Active Example 9.4.)

* 9.67 The coefficient of static friction between the faces of

the wedge and the log in Problem 9.66 is 0.30. Will the wedge

remain in place in the log when the vertical force F is removed?

(See Active Example 9.4.)

a

a

mk = 0.20.ms = 0.22

9.68 The weights of the blocks are and

Between all of the contacting surfaces, 

and What force F is necessary to move B to the left at

a constant rate?

mk = 0.30.

ms = 0.32WB = 25 lb.

WA = 100 lb

9.69 The masses of the blocks are 

Between all of the contacting surfaces, What is the largest

force F that can be applied without causing the blocks to slip?

ms = 0.1.

mA = 30 kg and mB = 70 kg.

9.70 Each block weighs 200 lb. Between all of the contacting sur-

faces, What is the largest force F that can be applied

without causing block B to slip upward?

ms = 0.1.

F

A

B10*

A

F

B

30*

20*

F
A C

B

80* 80*

Problem 9.68

F

F a

Problems 9.66/9.67

M09_BEDF9158_05_SE_C09.QXD  1/8/08  10:32 AM  Page 450



Problems 451

A
5*

5*

Shims

F

Problems 9.71/9.72

F

5*

5*

A

Problems 9.73/9.74

F
B

10*

10*

A

Problems 9.75/9.76

9.71 Small wedges called shims can be used to hold an object in

place. The coefficient of kinetic friction between the contacting

surfaces is 0.4. What force F is needed to push the shim down-

ward until the horizontal force exerted on the object A is 200 N?

9.72 The coefficient of static friction between the contacting sur-

faces is 0.44. If the shims are in place and exert a 200-N horizon-

tal force on the object A, what upward force must be exerted on

the left shim to loosen it?

9.73 The crate A weighs 600 lb. Between all contacting surfaces,

and Neglect the weights of the wedges.

What force F is required to move A to the right at a constant rate?

9.74 Suppose that between all contacting surfaces, 

and Neglect the weights of the 5 wedges. If a force

is required to move A to the right at a constant rate,

what is the mass of A?

F = 800 N

mk = 0.30.

ms = 0.32

mk = 0.30.ms = 0.32

9.75 The box A has a mass of 80 kg, and the wedge B has a mass

of 40 kg. Between all contacting surfaces, and

What force F is required to raise A at a constant rate?

9.76 Suppose that A weighs 800 lb and B weighs 400 lb. The co-

efficients of friction between all of the contacting surfaces are

and Will B remain in place if the force F is

removed?

mk = 0.12.ms = 0.15

mk = 0.12.

ms = 0.15
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9.78 The masses of A, B, and C are 8 kg, 12 kg, and 80 kg, 

respectively. Between all contacting surfaces, What

force F is required to start C moving upward?

ms = 0.4.

10*

F

A

B

C

12*

Problem 9.78

9.3 Threads

BACKGROUND

Threads are familiar from their use on wood screws, machine screws, and other

machine elements. We show a shaft with square threads in Fig. 9.10a. The axial

distance p from one thread to the next is called the pitch of the thread, and the

angle is its slope. We will consider only the case in which the shaft has a sin-

gle continuous thread, so the relation between the pitch and slope is

(9.7)

where r is the mean radius of the thread.

tan a =

p

2pr
,

a

dL

M

F

dRr

p
(b)

(a)

(c)

a

a

a
us

Figure 9.10
(a) A shaft with a square thread.

(b) The shaft within a sleeve with a mat-

ing groove and the direction of M that

can cause the shaft to start moving in

the axial direction opposite to F.

(c) A differential element of the thread

when slip is impending.

9.77 Between A and B, and between B and C,

Between C and the wall, The weights

and What force F is required to start C

moving upward?

WC = 80 lb.WB = 20 lb

ms = 0.30.ms = 0.18.

ms = 0.20,

F B

C

A

15*

Problem 9.77
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dL

dR

F

M

(b)

(a)

us

a

a

Figure 9.11

(a) The direction of M that can cause the

shaft to move in the axial direction of F.

(b) A differential element of the thread

when slip is impending.

Suppose that the threaded shaft is enclosed in a fixed sleeve with a mating

groove and is subjected to an axial load F (Fig. 9.10b). Applying a couple M

in the direction shown will tend to cause the shaft to start rotating and moving

in the axial direction opposite to F. Our objective is to determine the couple M

necessary to cause the shaft to start rotating.

We draw the free-body diagram of a differential element of the thread of

length dL in Fig. 9.10c, representing the reaction exerted by the mating groove

by the force dR. If the shaft is on the verge of rotating, dR resists the impend-

ing motion and the friction angle is the angle of static friction The vertical

component of the reaction on the element is To determine the

total vertical force on the thread, we must integrate this expression over the

length L of the thread. For equilibrium, the result must equal the axial force F

acting on the shaft:

(9.8)

The moment about the center of the shaft due to the reaction on the element is

The total moment must equal the couple M exerted on the shaft:

Dividing this equation by Eq. (9.8), we obtain the couple M necessary for the shaft

to be on the verge of rotating and moving in the axial direction opposite to F:

(9.9)

Replacing the angle of static friction in this expression with the angle of kinetic

friction gives the couple required to cause the shaft to rotate at a constant rate.

If the couple M is applied to the shaft in the opposite direction (Fig. 9.11a),

the shaft tends to start rotating and moving in the axial direction of the load F.

Figure 9.11b shows the reaction on a differential element of the thread of length

dL when slip is impending. The direction of the reaction opposes the rotation

of the shaft. In this case, the vertical component of the reaction on the element

is Equilibrium requires that

(9.10)

The moment about the center of the shaft due to the reaction is 

so

Dividing this equation by Eq. (9.10), we obtain the couple M necessary for the

shaft to be on the verge of rotating and moving in the direction of the force F:

(9.11)

Replacing with in this expression gives the couple necessary to rotate the

shaft at a constant rate.

Notice in Eq. (9.11) that the couple required for impending motion is zero

when When the angle of static friction is less than this value, the shaft

will rotate and move in the direction of the force F with no couple applied.

us = a.

ukus

M = rF tan1us - a2.

r sin1us - a2

LL

dR = M.

r dR sin1us - a2,

cos1us - a2

LL

dR = F.

dR cos1us - a2.

uk

us

M = rF tan1us + a2.

r sin1us + a2

LL

 dR = M.

r dR sin1us + a2.

cos1us + a2

LL

 dR = F.

dR cos1us + a2.

us.
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454 Chapter 9 Friction

Active Example 9.5 Rotating a Threaded Collar (* Related Problem 9.79)

The right end of bar AB is pinned to an unthreaded collar B that rests on a

threaded collar C. The mean radius of the threaded vertical shaft is r * 1.6 in

and its pitch is p* 0.2 in. The coefficients of friction between the threads of the

collar C and the vertical shaft are and The 400-lb sus-

pended object can be raised or lowered by rotating the collar C. When the sys-

tem is in the position shown, with bar AB horizontal, what is the magnitude of

the couple that must be applied to the collar C to cause it to turn at a constant

rate and move the suspended object upward?

Strategy
By drawing the free-body diagram of bar AB and the collar B, we can determine

the axial force exerted on the collar C. Then we can use Eq. (9.9), with 

replaced by to determine the required couple.uk,

us

mk = 0.22.ms = 0.25

20 in20 in

B

C

A

The couple M required for impending

rotation and axial motion of the shaft

opposite to the direction of F, where
M * rF tan(us + a).        (9.9)

us * arctan ms.

The couple M (opposite to the direction

shown) required for impending rotation

and axial motion of the shaft in the

direction of F. If us - a, the shaft will

rotate and move in the direction of F

with no couple applied.

M * rF tan(us , a).      (9.11)

RESULTS

M

F

r

p

a

The slope a of the thread is related to its pitch p and the

radius r by

tan a * (9.7).
p

2pr
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Solution

C

F

Apply equilibrium.
the force F  200 lb. This is the axial force

exerted on collar C.

Mpoint A  (40 in)F  (20 in)(400 lb)  0,

From the sum of the moments about point A,

Apply Eq. (9.9).

From Eq. (9.7),

the slope of the thread is a  1.14 .

tan a 
p

2pr
 0.0199,

0.2 in

2p(1.6 in)

The kinetic angle of friction is

uk  arctan mk  arctan(0.22)  12.4 .

Substituting these values into Eq. (9.9),

M  rF tan(uk  a)

 (1.6 in)(200 lb) tan(12.4   1.14 )

 77.1 in-lb.

Practice Problem When the system is in the position shown, with bar AB horizontal,

what is the magnitude of the couple that must be applied to the collar C to cause it to turn

at a constant rate and move the suspended object downward?

Answer: 63.8 in-lb.

Ax
Ay

400 lb F

B

Draw the free-body diagram of the bar

and collar B.
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9.82 The pitch of the threaded shaft of the C clamp is

and the mean radius of the thread is The

coefficients of friction between the threaded shaft and the mating

collar are and 

(a) What maximum couple must be applied to the shaft to exert a

30-lb force on the clamped object?

(b) If a 30-lb force is exerted on the clamped object, what couple

must be applied to the shaft to begin loosening the clamp?

mk = 0.16.ms = 0.18

r = 0.15 in.p = 0.05 in,

Problem 9.82

5*

A

Problem 9.83

9.83 The mass of block A is 60 kg. Neglect the weight of the 5

wedge. The coefficient of kinetic friction between the contacting sur-

faces of the block A, the wedge, the table, and the wall is 

The pitch of the threaded shaft is 5 mm, the mean radius of the

thread is 15 mm, and the coefficient of kinetic friction between the

thread and the mating groove is 0.2. What couple must be exerted on

the threaded shaft to raise the block A at a constant rate?

mk = 0.4.

* 9.79 In Active Example 9.5, suppose that the pitch of the

thread is changed from to What is the

slope of the thread? What is the magnitude of the couple that must

be applied to the collar C to cause it to turn at a constant rate and

move the suspended object upward?

9.80 The pitch of the threaded shaft is and the mean

radius of the thread is The coefficients of friction be-

tween the thread and the mating groove are and

The weight Neglect the weight of the

threaded shaft. What couple must be applied to the threaded shaft

to lower the weight at a constant rate?

W = 500 N.mk = 0.20.

ms = 0.22

r = 20 mm.

p = 2 mm

p = 0.24 in.p = 0.2 in

9.81 The position of the horizontal beam can be adjusted by

turning the machine screw A. Neglect the weight of the beam. 

The pitch of the screw is and the mean radius of the

thread is The coefficients of friction between the thread

and the mating groove are and If the system

is initially stationary, determine the couple that must be applied 

to the screw to cause the beam to start moving (a) upward; 

(b) downward.

mk = 0.18.ms = 0.20

r = 4 mm.

p = 1 mm,

W

C

Problem 9.80

100 mm
300 mm

400 N

A

Problem 9.81

Problems
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18 in9 in

C

A

B

9 in

9 in

12 in

Problems 9.86/9.87

4 in

4 in

B

C

A

Problems 9.84/9.85

9.84 The vise exerts 80-lb forces on A. The threaded shafts are

subjected only to axial loads by the jaws of the vise. The pitch of

their threads is the mean radius of the threads is

and the coefficient of static friction between the threads

and the mating grooves is 0.2. Suppose that you want to loosen

the vise by turning one of the shafts. Determine the couple you

must apply (a) to shaft B; (b) to shaft C.

9.85 Suppose that you want to tighten the vise in Problem 9.84

by turning one of the shafts. Determine the couple you must apply

(a) to shaft B;

(b) to shaft C.

r = 1 in,

p = 1>8 in,

9.86 The threaded shaft has a ball and socket support at B. The

400-lb load A can be raised or lowered by rotating the threaded

shaft, causing the threaded collar at C to move relative to the shaft.

Neglect the weights of the members. The pitch of the shaft is

the mean radius of the thread is and the coeffi-

cient of static friction between the thread and the mating groove is

0.24. If the system is stationary in the position shown, what couple

is necessary to start the shaft rotating to raise the load?

9.87 In Problem 9.86, if the system is stationary in the position

shown, what couple is necessary to start the shaft rotating to lower

the load?

r = 1 in,p =
1

4
 in,

9.88 The car jack is operated by turning the horizontal threaded

shaft at A. The threaded shaft fits into a mating threading collar at

B. As the shaft turns, points A and B move closer together or 

farther apart, thereby raising or lowering the jack. The pitch of 

the threaded shaft is the mean radius of the thread is

and the coefficient of kinetic friction between the

threaded shaft and the mating collar at B is 0.15. What couple

must be applied at A to rotate the shaft at a constant rate and raise

the jack when it is in the position shown if the load 

9.89 The car jack is operated by turning the horizontal threaded

shaft at A. The threaded shaft fits into a mating threading collar at

B. As the shaft turns, points A and B move closer together or 

farther apart, thereby raising or lowering the jack. The pitch of the

threaded shaft is the mean radius of the thread is

and the coefficient of kinetic friction between the

threaded shaft and the mating collar at B is 0.15. What couple

must be applied at A to rotate the shaft at a constant rate and lower

the jack when it is in the position shown if the load L = 1400 lb?

r = 0.2 in,

p = 0.1 in,

L = 1400 lb?

r = 0.2 in,

p = 0.1 in,

3 in

3 in

5 in

B

L

A

Problems 9.88/9.89
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W

b

h

Problem 9.96

A

2 m

2 m 2 m

C E

B

2 kN

4 kN

D F

H

G

2 m 2 m

Problems 9.94/9.95

9.94 Members CD and DG of the truss have turnbuckles. 

(See Problem 9.90.) The pitch of the threads is their

mean radius is and the coefficient of static friction

between the threads and the mating grooves is 0.18. What couple

must be exerted on the turnbuckle of member CD to start 

loosening it?

9.95 In Problem 9.94, what couple must be exerted on the turn-

buckle of member DG to start loosening it?

r = 10 mm,

p = 4 mm,

9.96* The load can be raised or lowered by 

rotating the threaded shaft. The distances are and

The pinned bars are each 300 mm in length. The

pitch of the threaded shaft is the mean radius of the

thread is and the coefficient of kinetic friction 

between the thread and the mating groove is 0.2. When the system

is in the position shown, what couple must be exerted to turn the

threaded shaft at a constant rate, raising the load?

r = 15 mm,

p = 5 mm,

h = 200 mm.

b = 75 mm

W = 800 N

9.90 A turnbuckle, used to adjust the length or tension of a bar 

or cable, is threaded at both ends. Rotating it draws threaded ends

of the bar or cable together or moves them apart. Suppose that 

the pitch of the threads is their mean radius is

and the coefficient of static friction between the

threads and the mating grooves is 0.24. If what cou-

ple must be exerted on the turnbuckle to start tightening it?

9.91 Suppose that the pitch of the threads of the turnbuckle is

their mean radius is and the coefficient

of static friction between the threads and the mating grooves is

0.24. If what couple must be exerted on the turn-

buckle to start loosening it?

T = 200 lb,

r = 0.25 in,p = 0.05 in,

T = 200 lb,

r = 0.25 in,

p = 0.05 in,

9.92 Member BE of the frame has a turnbuckle. (See Problem

9.90.) The threads have pitch their mean radius is

and the coefficient of static friction between the

threads and the mating grooves is 0.2. What couple must be 

exerted on the turnbuckle to start loosening it?

9.93 In Problem 9.92, what couple must be exerted on the 

turnbuckle to start tightening it?

r = 6 mm,

p = 1 mm,

T

T

Problems 9.90/9.91

600 N

ED

F

0.4 m 1.0 m

0.5 m

A B

C

0.4 m0.8 m

Problems 9.92/9.93
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9.4 Journal Bearings

BACKGROUND

A bearing is a support. This term usually refers to supports designed to allow

the supported object to move. For example, in Fig. 9.12a, a horizontal shaft is

supported by two journal bearings, which allow the shaft to rotate. The shaft

can then be used to support a load perpendicular to its axis, such as that subjected

by a pulley (Fig. 9.12b).

Here we analyze journal bearings consisting of brackets with holes

through which the shaft passes. The radius of the shaft is slightly smaller than

the radius of the holes in the bearings. Our objective is to determine the cou-

ple that must be applied to the shaft to cause it to rotate in the bearings. Let

F be the total load supported by the shaft including the weight of the shaft it-

self. When no couple is exerted on the shaft, the force F presses it against the

bearings as shown in Fig. 9.12c. When a couple M is exerted on the shaft, it

rolls up the surfaces of the bearings (Fig. 9.12d). The term is the angle

from the original point of contact of the shaft to its point of contact when

M is applied.

In Fig. 9.12e, we draw the free-body diagram of the shaft when M is suf-

ficiently large that slip is impending. The force R is the total reaction exerted

on the shaft by the two bearings. Since R and F are the only forces acting on the

shaft, equilibrium requires that and (Fig. 9.12f). The reaction

exerted on the shaft by the bearings is displaced a distance from the

vertical line through the center of the shaft. By summing moments about the cen-

ter of the shaft, we obtain the couple M that causes the shaft to be on the verge

of slipping:

(9.12)

This is the largest couple that can be exerted on the shaft without causing it to

start rotating. Replacing in this expression by the angle of kinetic friction 

gives the couple necessary to rotate the shaft at a constant rate.

The simple type of journal bearing we have described is too primitive for

most applications. The surfaces where the shaft and bearing are in contact would

quickly become worn. Designers usually incorporate ball  or roller  bear-

ings in journal bearings to minimize friction (Fig. 9.13).

ukus

M = rF sin us.

r sin us

R = Fa = us

a

M

F F

M

R

Fr F

M

F

r

r sinus

a

a

us

us

(a) (b) (c) (d) (e) (f)

Figure 9.12
(a) A shaft supported by journal bearings.

(b) A pulley supported by the shaft.

(c) The shaft and bearing when no couple is applied to the shaft.

(d) A couple causes the shaft to roll within the bearing.

(e) Free-body diagram of the shaft.

(f) The two forces on the shaft must be equal and opposite.

(a)

Wheel

(b)

Figure 9.13
(a) A journal bearing with one row of balls.

(b) Journal bearing assembly of the wheel 

of a car. There are two rows of balls 

between the rotating wheel and the 

fixed inner cylinder.
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Active Example 9.6 Pulley Supported by Journal Bearings (* Related Problem 9.97 )

The weight of the suspended load is The pulley P has a 6-in

radius and is rigidly attached to a horizontal circular shaft that is supported by

journal bearings. The radius of the shaft is 0.5 in, and the coefficient of kinetic

friction between the shaft and the bearings is The weights of the pul-

ley and shaft are negligible. What tension must the winch A exert on the rope

to raise the load at a constant rate?

mk = 0.2.

W = 1000 lb.

Strategy
Eq. (9.12) with replaced by relates the couple M required to turn the pul-

ley at a constant rate to the lateral force F supported by the shaft. By express-

ing M and F in terms of the forces exerted on the pulley by the rope and applying

Eq. (9.12), we can obtain an equation for the tension the winch must exert.

ukus

A

45+

P

W

A journal bearing has a circular hole slightly larger

than the circular shaft it supports.

The couple M that must be applied to the circular

shaft in order for slip to impend relative to a

journal bearing is

M * rF sin us, (9.12)

F

M

where r is the radius of the shaft, F is the lateral

load supported by the shaft, and us * arctan ms.

RESULTS
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Forces exerted on the pulley by the rope. The force T is

the tension exerted by the winch.

W T

45

6 in

W

T

F

45

The vector sum of the forces exerted on

the pulley by the rope is the lateral

force F the shaft of the pulley must

support. The magnitude of F can be

expressed in terms of W and T.

F  (W  T sin 45 )2  (T cos 45 )2.

The pulley moves in the clockwise

direction. Express the clockwise couple

on the pulley in terms of T and W.
M  (6 in)(T  W).

Apply Eq. (9.12).

Equation (9.12) is

(W  T sin 45 )2  (T cos 45 )2 sin11.3 . (6 in)(T  W)  (0.5 in)

The angle of kinetic friction is 

uk  arctan mk  arctan(0.2)  11.3 . 

M  rF sin uk:

Setting W  1000 lb and solving yields

T  1030 lb.

Solution

Practice Problem What tension must the winch A exert on the rope to lower the load

at a constant rate?

Answer: T = 970 lb.
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T

m

Problems 9.100/9.101

A

B

8 in

Problem 9.102

A

20*

T
10 mm

50 mm

Problem 9.103

9.102 The pulley of 8-in radius is mounted on a shaft of 1-in

radius. The shaft is supported by two journal bearings. The 

coefficient of static friction between the bearings and the shaft is

Neglect the weights of the pulley and shaft. The 50-lb

block A rests on the floor. If sand is slowly added to the bucket B,

what do the bucket and sand weigh when the shaft slips in the

bearings?

ms = 0.15.

9.103 The pulley of 50-mm radius is mounted on a shaft of

10-mm radius. The shaft is supported by two journal bearings.

The mass of the block A is 8 kg. Neglect the weights of the

pulley and shaft. If a force is necessary to raise

block A at a constant rate, what is the coefficient of kinetic

friction between the shaft and the bearings?

T = 84 N

Problems

* 9.97 In Active Example 9.6, suppose that the placement of

the winch at A is changed so that the angle between the rope from

A to P and the horizontal increases from . If the sus-

pended load weighs 1500 lb, what tension must the winch exert

on the rope to raise the load at a constant rate?

9.98 The radius of the pulley is 4 in. The pulley is rigidly at-

tached to the horizontal shaft, which is supported by two journal

bearings. The radius of the shaft is 1 in, and the combined weight

of the pulley and shaft is 20 lb. The coefficients of friction be-

tween the shaft and the bearings are and 

Determine the largest weight W that can be suspended as shown

without causing the stationary shaft to slip in the bearings.

9.99 In Problem 9.98, suppose that the weight What

couple would have to be applied to the horizontal shaft to raise the

weight at a constant rate?

W = 4 lb.

mk = 0.28.ms = 0.30

45  to 60

W

Problems 9.98/9.99

9.100 The pulley is mounted on a horizontal shaft supported by

journal bearings. The coefficient of kinetic friction between the

shaft and the bearings is The radius of the shaft is 20 mm,

and the radius of the pulley is 150 mm. The mass

Neglect the masses of the pulley and shaft. What force Tmust be

applied to the cable to move the mass upward at a constant rate?

9.101 In Problem 9.100, what force T must be applied to the

cable to lower the mass at a constant rate?

m = 10 kg.

mk = 0.3.
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25*

100 mm

Problems 9.104/9.105

9.104 The mass of the suspended object is 4 kg. The pulley has a

100-mm radius and is rigidly attached to a horizontal shaft sup-

ported by journal bearings. The radius of the horizontal shaft is 

10 mm and the coefficient of kinetic friction between the shaft and

the bearings is 0.26. What tension must the person exert on the

rope to raise the load at a constant rate?

9.105 In Problem 9.104, what tension must the person exert to

lower the load at a constant rate?

9.107 The masses of the boxes are and 

The coefficient of static friction between boxes A and B and be-

tween box B and the inclined surface is 0.12. The pulley has a

radius of 60 mm and is mounted on a shaft of 10-mm radius. The

coefficient of static friction between the pulley and shaft is 0.16.

What is the largest force F for which the boxes will not slip?

mB = 60 kg.mA = 15 kg

FB

FA

40*

y

x

Problem 9.106

F
A

B

20*

Problem 9.107

9.106 The radius of the pulley is 200 mm, and it is mounted on a

shaft of 20-mm radius. The coefficient of static friction between

the pulley and shaft is If what is the

largest force that can be applied without causing the pulley to

turn? Neglect the weight of the pulley.

FB

FA = 200 N,ms = 0.18.

9.109 The weights of the boxes are and

The coefficient of static friction between boxes A

and B and between box B and the floor is 0.12. The pulley has a

radius of 4 in and is mounted on a shaft of 0.8-in radius. The coef-

ficient of static friction between the pulley and shaft is 0.16. What

is the largest force F for which the boxes will not slip?

WB = 130 lb.

WA = 65 lb

4 in

M

Problem 9.108

Problem 9.109

9.108 The two pulleys have a radius of 4 in and are mounted on

shafts of 1-in radius supported by journal bearings. Neglect the

weights of the pulleys and shafts. The tension in the spring is 40 lb.

The coefficient of kinetic friction between the shafts and the bear-

ings is What couple M is required to turn the left pulley

at a constant rate?

mk = 0.3.

20*

F
A

B

9.110 The coefficient of kinetic friction between the 100-kg box

and the inclined surface is 0.35. Each pulley has a radius of

100 mm and is mounted on a shaft of 5-mm radius supported by

journal bearings. The coefficient of kinetic friction between the

shafts and the journal bearings is 0.18. Determine the tension T

necessary to pull the box up the surface at a constant rate.

T

60*

Problem 9.110
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(b)(a)

ds
dr

F

(c)

rri

ro

F

M

ri
ro

M

p

dA

a

a

Figure 9.14
(a), (b) A thrust bearing supports a shaft

subjected to an axial load.

(c) The differential element dA and the uni-

form pressure p exerted by the cavity.

9.5 Thrust Bearings and Clutches

BACKGROUND

A thrust bearing supports a rotating shaft that is subjected to an axial load. In

the type shown in Figs. 9.14a and b, the conical end of the shaft is pressed

against the mating conical cavity by an axial load F. Let us determine the cou-

ple M necessary to rotate the shaft.

The differential element of area dA in Fig. 9.14c is

Integrating this expression from to we obtain the area of contact:

If we assume that the mating surface exerts a uniform pressure p, the axial com-

ponent of the total force due to p must equal F: Therefore, the

pressure is

As the shaft rotates about its axis, the moment about the axis due to the friction

force on the element dA is The total moment is

Integrating, we obtain the couple M necessary to rotate the shaft at a constant rate:

(9.13)M =

2mkF

3 cos a
 a

ro
3
- r i

3

r o
2
- r i

2
b .

M =

LA

mkrp dA =

L

ro

ri

mkr c
F

p1ro
2
- r i

2
2
d a

2pr dr

cos a
b .

rmk1p dA2.

p =

F

A cos a
=

F

p1ro
2
- r i

2
2
.

pA cos a = F.

A =

p1ro
2
- r i

2
2

cos a
.

r = ro,r = ri

dA = 2pr ds = 2pra
dr

cos a
b .
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F

F  

M
M

(a) (b)

r

Figure 9.17

A clutch.

(a) Disengaged position.

(b) Engaged position.

(a) (b)

F

M

F

M

r

Figure 9.15

A thrust bearing that supports a flat-ended shaft.

A simpler thrust bearing is shown in Figs. 9.15a and b. The bracket supports

the flat end of a shaft of radius r that is subjected to an axial load F. We can

obtain the couple necessary to rotate the shaft at a constant rate from Eq. (9.13)

by setting and :

(9.14)

Although they are good examples of the analysis of friction forces, the

thrust bearings we have described would become worn too quickly to be used

in most applications. The designer of the thrust bearing in Fig. 9.16 minimizes

friction by incorporating roller  bearings.

A clutch is a device used to connect and disconnect two coaxial rotating

shafts. The type shown in Figs. 9.17a and b consists of disks of radius r attached

to the ends of the shafts. When the disks are separated (Fig. 9.17a), the clutch

is disengaged, and the shafts can rotate freely relative to each other. When the

clutch is engaged by pressing the disks together with axial forces F (Fig. 9.17b),

the shafts can support a couple M due to the friction forces between the disks.

If the couple M becomes too large, the clutch slips.

The friction forces exerted on one face of the clutch by the other face are

identical to the friction forces exerted on the flat-ended shaft by the bracket in

Fig. 9.15. We can therefore determine the largest couple the clutch can support

without slipping by replacing with in Eq. (9.14):

(9.15)M =

2

3
 msFr.

msmk

M =

2

3
 mkFr.

ro = ra = 0, ri = 0,

Rollers

F

Figure 9.16

A thrust bearing with two rows of cylindri-

cal rollers between the shaft and the fixed

support.
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The couple required to rotate a shaft supported by a

thrust bearing in terms of the axial force supported

by the shaft.

M .       (9.13)
2mkF 

3 cos a r2
o  r2

i

r3
o  r3

i

F

ro
M

ri

a

       

The couple required to rotate a flat-ended shaft

supported by a thrust bearing in terms of the axial

force supported by the shaft.

F

M

F

M

r

M 

2

3
mkFr.              (9.14)

The couple required to cause impending slip of a

clutch in terms of the axial force applied to the clutch.
M 

2

3
msFr.              (9.15)

F

F

M
M

r
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Active Example 9.7 Thrust Bearing (* Related Problem 9.111)

The axial force on the thrust bearing is The diameters 

and and the angle The coefficient of kinetic friction is

What couple is required to turn the shaft at a constant rate?mk = 0.18.

a = 72 .Di = 1 in,

Do = 3
1

2 
inF = 200 lb.

Strategy
The couple is given by Eq. (9.13).

Solution

Practice Problem The axial force on the thrust bearing is The diameters

and the dimension The coefficient of kinetic fric-

tion is What couple is required to turn the shaft at a constant rate?mk = 0.18.

b = 5 in.Do = 3
1

2
 in and Di = 1 in,

F = 200 lb.

Answer: M = 184 in-lb.

F

Di Do

a

Apply Eq. (9.13).

The radii ro  1.75 in and ri  0.5 in.

 145 in-lb.

M 

2mkF 

3 cos a r
2
o  r

2
i

r
3
o  r

3
i

      

2(0.18)(200 lb)

3 cos 72

(1.75 in)3  (0.5 in)3

(1.75 in)2  (0.5 in)2               

F

Di Do

b

a
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Example 9.8 Friction on a Disk Sander (* Related Problem 9.118)

The handheld sander has a rotating disk D of 4-in radius with sandpaper bonded

to it. The total downward force exerted by the operator and the weight of the

sander is 15 lb. The coefficient of kinetic friction between the sandpaper and

the surface is What couple (torque) M must the motor exert to turn

the sander at a constant rate?

Strategy
As the disk D rotates, it is subjected to friction forces analogous to the friction

forces exerted on a flat-ended shaft supported by a thrust bearing. We can de-

termine the couple required to turn the disk D at a constant rate from Eq. (9.14).

Solution
The couple required to turn the disk at a constant rate is

Critical Thinking
Equations (9.13) (9.15) were derived under the assumption that the normal

force (and consequently the friction force) is uniformly distributed over the con-

tacting surfaces. Evaluating and improving upon this assumption would require

analysis of the deformations of the contacting surfaces in specific applications

such as the disk sander in this example.

M =

2

3
 mkrF =

2

3
 10.6214 in2115 lb2 = 24 in-lb.

mk = 0.6.

D

* 9.111 In Active Example 9.7, suppose that the diameters

and and the angle What couple is

required to turn the shaft at a constant rate?

9.112 The circular flat-ended shaft is pressed into the thrust

bearing by an axial load of 600 lb. The weight of the shaft is neg-

ligible. The coefficients of friction between the end of the shaft

and the bearing are What is the largest

couple M that can be applied to the stationary shaft without caus-

ing it to rotate in the bearing?

ms = 0.20 and mk = 0.15.

a = 72 .Di = 1
1

2
 inDo = 3

1

2
 in

9.113 The circular flat-ended shaft is pressed into the thrust

bearing by an axial load of 600 lb. The weight of the shaft is neg-

ligible. The coefficients of friction between the end of the shaft

and the bearing are What couple M is

required to rotate the shaft at a constant rate?

ms = 0.20 and mk = 0.15.

600 lb

M

2 in

Problems 9.112/9.113

Problems
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38 mm

15 mm

38

mm

Problem 9.116

9.114 The disk D is rigidly attached to the vertical shaft. The

shaft has flat ends supported by thrust bearings. The disk and the

shaft together have a mass of 220 kg and the diameter of the shaft

is 50 mm. The vertical force exerted on the end of the shaft by the

upper thrust bearing is 440 N. The coefficient of kinetic friction

between the ends of the shaft and the bearings is 0.25. What 

couple M is required to rotate the shaft at a constant rate?

9.115 Suppose that the ends of the shaft in Problem 9.114 are

supported by thrust bearings of the type shown in Fig. 9.14, where

and What couple

M is required to rotate the shaft at a constant rate?

mk = 0.25.ro = 25 mm, ri = 6 mm, a = 45 ,

9.116 The shaft is supported by thrust bearings that subject it to

an axial load of 800 N. The coefficients of kinetic friction between

the shaft and the left and right bearings are 0.20 and 0.26, respec-

tively. What couple is required to rotate the shaft at a constant rate?

M
M

D
D

Problems 9.114/9.115

* 9.118 The thrust bearing is supported by contact of the 

collar C with a fixed plate. The area of contact is an annulus 

with an inside diameter and an outside diameter

The coefficient of kinetic friction between the

collar and the plate is The force What

couple M is required to rotate the shaft at a constant rate?

(See Example 9.8.)

F = 400 N.mk = 0.3.

D2 = 120 mm.

D1 = 40 mm

Clutch

Paddle

Problem 9.117

F
F

M

D1

D2

C

M

C

Problem 9.118

9.117 A motor is used to rotate a paddle for mixing chemicals.

The shaft of the motor is coupled to the paddle using a friction

clutch of the type shown in Fig. 9.17. The radius of the disks of

the clutch is 120 mm, and the coefficient of static friction between

the disks is 0.6. If the motor transmits a maximum torque of 15 N-m

to the paddle, what minimum normal force between the plates of

the clutch is necessary to prevent slipping?
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9.119 An experimental automobile brake design works by

pressing the fixed red annular plate against the rotating wheel.

If what force F pressing the plate against the wheel

is necessary to exert a couple of 200 N-m on the wheel?

9.120 An experimental automobile brake design works by press-

ing the fixed red annular plate against the rotating wheel. Suppose

that and the force pressing the plate against the wheel

is 

(a) What couple is exerted on the wheel?

(b) What percentage increase in the couple exerted on the wheel

is obtained if the outer radius of the brake is increased from 

90 mm to 100 mm?

F = 2 kN.

mk = 0.65

mk = 0.6,

F

150 mm

75 mm

Problem 9.121

Taper

2 in

Spindle

1.25 in

9 in

Problem 9.122

50 mm 90 mm

F

Problems 9.119/9.120

9.122* The Morse taper  is used to support the workpiece on a

machinist s lathe. The taper is driven into the spindle and is held

in place by friction. If the spindle exerts a uniform pressure

on the taper and what couple must be 

exerted about the axis of the taper to loosen it?

ms = 0.2,p = 15 psi

9.121 The coefficient of static friction between the plates of the

car s clutch is 0.8. If the plates are pressed together with a force

what is the maximum torque the clutch will support

without slipping?

F = 2.60 kN,
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9.6 Belt Friction 471

9.6 Belt Friction

BACKGROUND

If a rope is wrapped around a fixed post as shown in Fig. 9.18, a large force ex-

erted on one end can be supported by a relatively small force applied to the other

end. In this section we analyze this familiar phenomenon. It is referred to as belt

friction because a similar approach can be used to analyze belts used in machines,

such as the belts that drive alternators and other devices in a car.

Let us consider a rope wrapped through an angle around a fixed cylin-

der (Fig. 9.19a). We will assume that the tension is known. Our objective is

to determine the largest force that can be applied to the other end of the rope

without causing the rope to slip.

We begin by drawing the free-body diagram of an element of the rope whose

boundaries are at angles and from the point where the rope comes into

contact with the cylinder (Figs. 9.19b and c). The force T is the tension in the rope

at the position defined by the angle We know that the tension in the rope varies

with position, because it increases from at to at We there-

fore write the tension in the rope at the position as The force

is the normal force exerted on the element by the cylinder. Because we want

to determine the largest value of that will not cause the rope to slip, we as-

sume that the friction force is equal to its maximum possible value where

is the coefficient of static friction between the rope and the cylinder.

The equilibrium equations in the directions tangential to and normal to the

centerline of the rope are

(9.16)

Eliminating we can write the resulting equation as

ccosa
a

2
b - ms sina

a

2
b d  

T

a
- msT 

sin1 a>22

a>2
= 0.

N,

 Fnormal = N - 1T + T2 sina
a

2
b - T sina

a

2
b = 0.

 Ftangential = ms N + T cosa
a

2
b - 1T + T2 cosa

a

2
b = 0,

ms

ms N,

T2

N

T + T.a + a

a = b.T2a = 0T1

a.

a + aa

T2

T1

b

T1

T2

T1T2

Figure 9.18
A rope wrapped around a post.

(a) (b)

T2 T1

+a

(c)

+a

+N

T  
T * +T

m
s
+N

T2 T1

a

b

Figure 9.19
(a) A rope wrapped around a fixed cylinder.

(b) A differential element with boundaries at angles and 

(c) Free-body diagram of the element.

a + a.a
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Evaluating the limit of this equation as and observing that

we obtain

This differential equation governs the variation of the tension in the rope. Sep-

arating variables yields

We can now integrate to determine the tension in terms of the tension and

the angle :

Thus, we obtain the largest force that can be applied without causing the

rope to slip when the force on the other end is :

(9.17)

The angle in this equation must be expressed in radians. Replacing by the

coefficient of kinetic friction gives the force required to cause the rope

to slide at a constant rate.

Equation (9.17) explains why a large force can be supported by a relatively

small force when a rope is wrapped around a fixed support. The force required to

cause the rope to slip increases exponentially as a function of the angle through

which the rope is wrapped. Suppose that When the rope is wrapped

one complete turn around the post the ratio When the

rope is wrapped four complete turns around the post the ratio

T2>T1 = 1880.

1b = 8p2,

T2>T1 = 6.59.1b = 2p2,

ms = 0.3.

T2mk

msb

T2 = T1e
msb.

T1

T2

L

T2

T1

 

dT

T
=
L

b

0

ms da.

b

T1T2

dT

T
= ms da.

dT

da
- msT = 0.

sin1 a>22

a>2
: 1,

a: 0

RESULTS

The force T2 necessary for impending slip of the rope

relative to the fixed support in the direction of T2, where

the angle b is in radians and ms is the coefficient of static

friction between the rope and the support.

T2  T1e
msb. (9.17)

T2 T1

b
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Active Example 9.9 Rope Wrapped Around Fixed Cylinders (* Related Problem 9.123)

The 100-lb box is suspended from a rope that passes over two fixed cylinders.

The coefficient of static friction is 0.2 between the rope and the left cylinder and

0.4 between the rope and the right cylinder. What is the smallest force the woman

needs to exert on the rope to support the stationary box?

Strategy
She exerts the smallest necessary force when slip of the rope is impending on

both cylinders. If we assume that slip is impending and apply Eq. (9.17) to each

cylinder, we can determine the force she must apply.

Solution

Practice Problem What force would the woman need to exert on the rope for slip to

be impending in the direction she is pulling? That is, how hard would she have to pull

for the box to be on the verge of moving upward? Would she need help?

Answer: 257 lb. Yes.

W F

T T
p

2
b 

p

2
b 

Let T be the tension in the rope

between the two cylinders. The

weight W  100 lb and F is the

force the woman exerts. The rope

is wrapped around each cylinder

through an angle (in radians)

b  p/2.

Apply Eq. (9.17) to the left cylinder.

Assume that slip of the rope in the

direction of the force W is impending.

Solving for T yields

T  We (0.2)(p/2)  (100 lb)e (0.2)(p/2)  73.0 lb.

W  Temsb  Te(0.2)(p/2).

Apply Eq. (9.17) to the right cylinder.

Assume that slip of the rope in the

direction of the force T is impending.

Solving for F yields

F  Te (0.4)(p/2)  (73.0 lb)e (0.4)(p/2)  39.0 lb.

T  Femsb  Fe(0.4)(p/2).

BEDFMC09_0136129153.QXD  4/14/07  2:39 AM  Page 473



474 Chapter 9 Friction

M
A

B

A
y

A
x

b

RA

FMB

F

T1

T2
T2

T1

RB

MB

a

a

a

a
MA

MA

B

RA

RB

Ax

Ay

Strategy
By drawing free-body diagrams of the pulleys, we can use the equilibrium equa-

tions to relate the tensions in the belt to and and obtain a relation between

the tensions in the belt and the force F. When slip is impending, the tensions are

also related by Eq. (9.17). From these equations we can determine and 

Solution
From the free-body diagram of the large pulley (Fig. a), we obtain the equilib-

rium equation

(1)

and from the free-body diagram of the small pulley (Fig. b), we obtain

(2)

(3) MB = RB1T2 - T12.

 F = 1T1 + T22 cos a,

MA = RA1T2 - T12,

MB.MA

MBMA

Example 9.10 Belts and Pulleys (* Related Problem 9.134 )

The pulleys turn at a constant rate. The large pulley is attached to a fixed sup-

port. The small pulley is supported by a smooth horizontal slot and is pulled

to the right by the force The coefficient of static friction between

the pulleys and the belt is the dimension and the radii

of the pulleys are and What are the largest val-

ues of the couples and for which the belt will not slip?MBMA

RB = 100 mm.RA = 200 mm

b = 500 mm,ms = 0.8,

F = 200 N.

(a) Free-body di-

agram of the

large pulley.

(b) Free-body diagram

of the small pulley.
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* 9.123 In Active Example 9.9, suppose that the left fixed

cylinder is replaced by a pulley. Assume that the tensions in the

rope on each side of the pulley are approximately equal. What is

the smallest force the woman needs to exert on the rope to support

the stationary box?

9.124 Suppose that you want to lift a 50-lb crate off the ground

by using a rope looped over a tree limb as shown. The coefficient

of static friction between the rope and the limb is 0.2, and the rope

is wound around the limb. What force must you exert to

begin lifting the crate?

135

Problem 9.124

Problems

The belt is in contact with the small pulley through the angle (Fig. c).

From the dashed line parallel to the belt, we see that the angle satisfies the

relation

Therefore, If we assume that slip impends between

the small pulley and the belt, Eq. (9.17) states that

We solve this equation together with Eq. (2) for the two tensions, obtaining

and Then from Eqs. (1) and (3), the couples are

and 

If we assume that slip impends between the large pulley and the belt, we

obtain and so the belt slips on the small

pulley at smaller values of the couples.

MB = 18.1 N-m,MA = 36.3 N-m

MB = 16.3 N-m.MA = 32.6 N-m

T2 = 183.6 N.T1 = 20.5 N

T2 = T1e
msb

= T1e
0.81p-2a2

= 8.95T1.

a = 11.5 = 0.201 rad.

sin a =

RA - RB

b
=

200 mm - 100 mm

500 mm
= 0.2.

a

p - 2a

(c) Determining the angle a.

RA * RB

b

a

a

a
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A

r
M

Problem 9.128

A

Problem 9.127

9.127 The box A weighs 20 lb. The rope is wrapped one and

one-fourth turns around the fixed wooden post. The coefficients of

friction between the rope and post are and 

(a) What minimum force does the man need to exert to support

the stationary box?

(b) What force would the man have to exert to raise the box at a

constant rate?

mk = 0.12.ms = 0.15

9.128 The weight of block A is W. The disk is supported by a

smooth bearing. The coefficient of kinetic friction between the

disk and the belt is What couple M is necessary to turn the

disk at a constant rate?

mk.

TS

TC

Problems 9.125/9.126

9.125 Winches are used on sailboats to help support the forces

exerted by the sails on the ropes (sheets) holding them in position.

The winch shown is a post that will rotate in the clockwise direc-

tion (seen from above), but will not rotate in the counterclockwise

direction. The sail exerts a tension on the sheet,

which is wrapped two complete turns around the winch. The 

coefficient of static friction between the sheet and the winch is

What tension must the crew member exert on the

sheet to prevent it from slipping on the winch?

9.126 The coefficient of kinetic friction between the sheet and the

winch in Problem 9.125 is If the crew member wants

to let the sheet slip at a constant rate, releasing the sail, what initial

tension must he exert on the sheet as it begins slipping?TC

mk = 0.16.

TCms = 0.2.

TS = 800 N
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9.130 The box B weighs 50 lb. The coefficients of friction be-

tween the cable and the fixed round supports are and

(a) What is the minimum force F required to support the box?

(b) What force F is required to move the box upward at a con-

stant rate?

mk = 0.3.

ms = 0.4

B F

Problem 9.130

W

15*

30*

R

S

Problem 9.129

9.129 The couple required to turn the wheel of the exercise 

bicycle is adjusted by changing the weight W. The coefficient of

kinetic friction between the wheel and the belt is Assume the

wheel turns clockwise.

(a) Show that the couple M required to turn the wheel is

(b) If and what force will the scale S indi-

cate when the bicycle is in use?

mk = 0.2,W = 40 lb

M = WR 11 - e
-3.4mk

2.

mk.

9.131 The coefficient of static friction between the 50-lb box

and the inclined surface is 0.10. The coefficient of static friction

between the rope and the fixed cylinder is 0.05. Determine the

force the woman must exert on the rope to cause the box to start

moving up the inclined surface.

9.132 In Problem 9.131, what is the minimum force the woman

must exert on the rope to hold the box in equilibrium on the 

inclined surface?

20* 30*

45*

A

Problems 9.131/9.132
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A

C

B

20*

Problem 9.133

9.133 Blocks B and C each have a mass of 20 kg. The coefficient of static friction at the contacting surfaces is 0.2. Block A is

suspended by a rope that passes over a fixed cylinder and is attached to block B. The coefficient of static friction between the rope and

the cylinder is 0.3. What is the largest mass block A can have without causing block B to slip to the left?

100 mm

M

260 mm

40 mm

Problem 9.135

* 9.134 If the force F in Example 9.10 is increased to 400 N, what are the largest values of the couples and for which the belt

will not slip?

9.135 The spring exerts a 320-N force on the left pulley. The coefficient of static friction between the flat belt and the pulleys is

The right pulley cannot rotate. What is the largest couple M that can be exerted on the left pulley without causing the 

belt to slip?

ms = 0.5.

MBMA
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F

A

B

45*

Problems 9.138/9.139

F

20*

W

Problems 9.136/9.137

Review Problems

9.136 The weight of the box is and the force F is

perpendicular to the inclined surface. The coefficient of static 

friction between the box and the inclined surface is 

(a) If what is the magnitude of the friction force 

exerted on the stationary box?

(b) If show that the box cannot remain at rest on the

inclined surface.

9.137 In Problem 9.136, what is the smallest force F necessary

to hold the box stationary on the inclined surface?

F = 10 lb,

F = 30 lb,

ms = 0.2.

W = 30 lb,

9.138 Blocks A and B are connected by a horizontal bar. The co-

efficient of static friction between the inclined surface and the

400-lb block A is 0.3. The coefficient of static friction between the

surface and the 300-lb block B is 0.5. What is the smallest force F

that will prevent the blocks from slipping down the surface?

9.139 What force F is necessary to cause the blocks in Problem

9.138 to start sliding up the plane?

9.141 The side of a soil embankment has a 45 slope (Fig. a). If

the coefficient of static friction of soil on soil is will the

embankment be stable or will it collapse? If it will collapse, what

is the smallest slope that can be stable?

Strategy: Draw a free-body diagram by isolating part of the

embankment as shown in Fig. b.

ms = 0.6,

(a)

45*

(b)

u

Problem 9.141

A

B

a

Problem 9.140

9.140 The masses of crates A and B are 25 kg and 30 kg, respec-

tively. The coefficient of static friction between the contacting sur-

faces is What is the largest value of for which the

crates will remain in equilibrium?

ams = 0.34.
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F

6 in

2 in

h

A B

4 in

Problems 9.145/9.146

4*
3*

Problem 9.147

9.145 The 20-lb homogeneous object is supported at A and B.

The distance friction can be neglected at B, and the co-

efficient of static friction at A is 0.4. Determine the largest force F

that can be exerted without causing the object to slip.

9.146 In Problem 9.145, suppose that the coefficient of static

friction at B is 0.36. What is the largest value of h for which the

object will slip before it tips over?

h = 4 in,

9.147 The 180-lb climber is supported in the chimney  by the

normal and friction forces exerted on his shoes and back. The

static coefficients of friction between his shoes and the wall and

between his back and the wall are 0.8 and 0.6, respectively. What

is the minimum normal force his shoes must exert?

1.2 m
3 m

1 m

a

Problems 9.142/9.143

b t

h

W

Problem 9.144

9.142 The mass of the van is 2250 kg, and the coefficient of

static friction between its tires and the road is 0.6. If its front

wheels are locked and its rear wheels can turn freely, what is the

largest value of for which it can remain in equilibrium?

9.143 In Problem 9.142, what is the largest value of for which

the van can remain in equilibrium if it points up the slope?

a

a

9.144 The shelf is designed so that it can be placed at any height

on the vertical beam. The shelf is supported by friction between

the two horizontal cylinders and the vertical beam. The combined

weight of the shelf and camera is W. If the coefficient of static

friction between the vertical beam and the horizontal cylinders is

what is the minimum distance b necessary for the shelf to stay

in place?

ms,
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3 ft

5 ft5 ft

A B

3 ft

3 ft

3 ft

Problem 9.148

0.8 m

0.4 m

1.4 m 0.8 m

Problems 9.149/9.150

9.148 The sides of the 200-lb door fit loosely into grooves in 

the walls. Cables at A and B raise the door at a constant rate. The

coefficient of kinetic friction between the door and the grooves is

What force must the cable at A exert to continue raising

the door at a constant rate if the cable at B breaks?

mk = 0.3.

9.149 The coefficients of static friction between the tires of the

1000-kg tractor and the ground and between the 450-kg crate and

the ground are 0.8 and 0.3, respectively. Starting from rest, what

torque must the tractor s engine exert on the rear wheels to cause

the crate to move? (The front wheels can turn freely.)

9.150 In Problem 9.149, what is the most massive crate the trac-

tor can cause to move from rest if its engine can exert sufficient

torque? What torque is necessary?

0.8 m

20*

2.5 m

1.5 m1.2 m
20*

Problem 9.151

A

B
45*

30*
O

Problems 9.152/9.153

9.151 The mass of the vehicle is 900 kg, it has rear-wheel drive,

and the coefficient of static friction between its tires and the sur-

face is 0.65. The coefficient of static friction between the crate

and the surface is 0.4. If the vehicle attempts to pull the crate up

the incline, what is the largest value of the mass of the crate for

which it will slip up the incline before the vehicle s tires slip?

9.152 Each 1-m bar has a mass of 4 kg. The coefficient of static

friction between the bar and the surface at B is 0.2. If the system is

in equilibrium, what is the magnitude of the friction force exerted

on the bar at B?

9.153 Each 1-m bar has a mass of 4 kg. What is the minimum

coefficient of static friction between the bar and the surface at B

necessary for the system to be in equilibrium?
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482 Chapter 9 Friction

P

Problem 9.158

T

Problems 9.159/9.160

9.158 The axles of the tram are supported by journal bearings.

The radius of the wheels is 75 mm, the radius of the axles is

15 mm, and the coefficient of kinetic friction between the axles

and the bearings is The mass of the tram and its load

is 160 kg. If the weight of the tram and its load is evenly divided

between the axles, what force P is necessary to push the tram at a

constant speed?

mk = 0.14.

9.159 The two pulleys have a radius of 6 in and are mounted on

shafts of 1-in radius supported by journal bearings. Neglect the

weights of the pulleys and shafts. The coefficient of kinetic fric-

tion between the shafts and the bearings is If a force

is required to raise the man at a constant rate, what is

his weight?

9.160 If the man in Problem 9.159 weighs 160 lb, what force T

is necessary to lower him at a constant rate?

T = 200 lb

mk = 0.2.

50 mm

50 mm

50 mm

125 mm

A

D

C

B E

125 mm 125 mm

Problems 9.156/9.157

9.154 The collars A and B each have a mass of 2 kg. If friction

between collar B and the bar can be neglected, what minimum co-

efficient of static friction between collar A and the bar is necessary

for the collars to remain in equilibrium in the position shown?

9.155 If the coefficient of static friction has the same value 

between the 2-kg collars A and B and the bars, what minimum

value of is necessary for the collars to remain in equilibrium in

the position shown? (Assume that slip impends at A and B.)

ms

ms

9.156 The clamp presses two pieces of wood together. The pitch

of the threads is the mean radius of the thread is

and the coefficient of kinetic friction between the

thread and the mating groove is 0.24. What couple must be 

exerted on the threaded shaft to press the pieces of wood together

with a force of 200 N?

9.157 In Problem 9.156, the coefficient of static friction between

the thread and the mating groove is 0.28. After the threaded shaft is

rotated sufficiently to press the pieces of wood together with a force

of 200 N, what couple must be exerted on the shaft to loosen it?

r = 8 mm,

p = 2 mm,

45*

20*

A

B

Problems 9.154/9.155
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a

W100 lb

ms * 0.34

mk * 0.32

ms * 0.30

mk * 0.28

Problems 9.161/9.162

9.161 If the two cylinders are held fixed, what is the range of W

for which the two weights will remain stationary?

9.162 If the system is initially stationary and the left cylinder is

slowly rotated, determine the largest weight W that can be 

(a) raised; 

(b) lowered.

Design Project 1

The wedge is used to split firewood by hammering it into a log

as shown (see Active Example 9.4). Suppose that you want to

design such a wedge to be marketed at hardware stores. Experi-

ments indicate that the coefficient of static friction between the

steel wedge and various types of wood varies from 0.2 to 0.4.

(a) Based on the given range of static friction coefficients, deter-

mine the maximum wedge angle for which the wedge would

remain in place in a log with no external force acting on it.

(b) Using the wedge angle determined in part (a), and assum-

ing that the coefficient of kinetic friction is 0.9 times the coeffi-

cient of static friction, determine the range of vertical forces

necessary to drive the wedge into a log at a constant rate.

(c) Write a brief report describing your analysis and recom-

mending a wedge angle for the manufactured product. Consider

whether a margin of safety in the chosen wedge angle might be

appropriate.

a

Design Project 2

Design and build a device to measure the coefficient of static

friction between two materials. Use it to measure for 

several of the materials listed in Table 9.1 and compare your 

results with the values in the table. Discuss possible sources of

error in your device and determine how closely your values

agree when you perform repeated experiments with the same

two materials.

msms
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CHAPTER

10
Internal Forces and Moments

We began our study of equilibrium by drawing free-body

diagrams of individual objects to determine unknown forces and

moments acting on them. In this chapter we carry this process

one step further and draw free-body diagrams of parts of

individual objects to determine internal forces and moments.

In doing so, we arrive at the central concern of the structural

design engineer: It is the forces within an object that determine

whether it will support the external loads to which it is

subjected.

p

 The force exerted by the water on the glass window is distributed over the
area of the window. In this chapter we analyze distributed forces in beams, in
suspended cables, and in stationary liquids.
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486 Chapter 10 Internal Forces and Moments

BEAMS

10.1 Axial Force, Shear Force, and Bending Moment

BACKGROUND

To ensure that a structural member will not fail (break or collapse) due to the

forces and moments acting on it, the design engineer must know not only the

external loads and reactions acting on the member, but also the forces and mo-

ments acting within it.

Consider a beam subjected to an external load and reactions (Fig. 10.1a).

How can we determine the forces and moments within the beam? In Fig. 10.1b,

we cut  the beam by a plane at an arbitrary cross section and isolate the part

of the beam to the left of the plane. It is clear that the isolated part cannot be in

equilibrium unless it is subjected to some system of forces and moments at the

plane where it joins the other part of the beam. These are the internal forces

and moments we seek.

In Chapter 4 we demonstrated that any system of forces and moments can

be represented by an equivalent system consisting of a force and a couple. Since

the system of external loads and reactions on the beam is two-dimensional, we

can represent the internal forces and moments by an equivalent system con-

sisting of two components of force and a couple (Fig. 10.1c). The component

P parallel to the beam s axis is called the axial force. The component V normal

to the beam s axis is called the shear force, and the couple M is called the

x

F

B

x

y

y

Ay

x

y

B

x
B

A

y

A

F

F

B
Ay

(a)

(c)

(d)

M

P

V
M

P

V

x

y

x

y

F

B

Ay

Ay

(b)

Figure 10.1
(a) A beam subjected to a load and reactions.

(b) Isolating a part of the beam.

(c), (d) The axial force, shear force, and

bending moment.
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10.1 Axial Force, Shear Force, and Bending Moment 487

y

(a)

x

V
V

y

(b)

x

M

M

Figure 10.2

(a) Positive shear forces tend to rotate the axis of the beam clockwise.

(b) Positive bending moments tend to bend the axis of the beam upward.

bending moment. The axial force, shear force, and bending moment on the part

of the beam to the right of the cutting plane are shown in Fig. 10.1d. Notice

that they are equal in magnitude but opposite in direction to the internal forces

and moment on the free-body diagram in Fig. 10.1c.

The directions of the axial force, shear force, and bending moment in

Figs. 10.1c and 10.1d are the established definitions of the positive directions

of these quantities. A positive axial force P subjects the beam to tension. A pos-

itive shear force V tends to rotate the axis of the beam clockwise (Fig. 10.2a).

A positive bending moment M tends to cause upward curvature of the beam s

axis (Fig. 10.2b). Notice that a positive bending moment subjects the upper part

of the beam to compression, shortening the beam in the direction parallel to its

axis, and subjects the lower part of the beam to tension, lengthening the beam

in the direction parallel to its axis.

RESULTS

The axial force P, shear force V, and

bending moment M are an equivalent

system representing the internal forces and

moment at a cross section of a beam. These

are their defined positive directions.
x

y

P
M

V

x

y

P
M

V

Determining the values of P, V, and M at a particular cross section of a beam

typically involves three steps:

1. Draw the free-body diagram of the beam and determine the reactions at

its supports.

2. Pass a plane through the beam at the cross section where the internal

forces and moment are to be determined. Draw the free-body diagram 

of one of the resulting parts of the beam, showing P, V, and M in their

   defined positive directions. 

  3. Apply the equilibrium equations to determine P, V, and M.
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488 Chapter 10 Internal Forces and Moments

Active Example 10.1 Determining the Internal Forces and Moment (* Related Problem 10.1)

Determine the internal forces and moment at C.

Strategy
We must first draw the free-body diagram of the entire beam and determine the

reactions at A and B. Then we will cut the beam by a plane at C and draw the

free-body diagram of the part of the beam to the left of the plane. By applying

the equilibrium equations, we will obtain the values of the internal forces and

moment at C.

Solution

A
BC

L

y

3

4
L

1

4
L F

1

4

Draw the free-body diagram of

the entire beam and apply

equilibrium to determine the

reactions at the supports.

F
y

x

Ay B

BA

Ax

L L
1

4

3

4

Fx  Ax  0,

*     +LMpoint A  LB    F  0.

Solving yields Ax   0, Ay    F, and B     F.

Fy  Ay  B  F  0,

3 

4

3 

4

1 

4

Pass a plane through the beam at C. Draw the

free-body diagram of the part of the beam to

the left of C. Apply equilibrium to determine

the internal forces and moment.

Fx  PC  0,

Mpoint C  MC  

Solving yields PC  0, VC    F, and MC      LF.

Fy  F VC  0,

 0.

x

y

PC

MC

VC
1 

4
L

1 

4
F

C

F
y

x
1 

4
F

3 

4
F

1 

4

*     +L
1 

4 *     +F
1 

4

1 

4

1 

16

Practice Problem Determine the internal forces and moment at C by passing a plane

through the beam at C and drawing the free-body diagram of the part of the beam to the

right of C.

Answer: PC = 0, VC =
1

4
F, MC =

1

16
LF.
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A
C x

y

Ax
Ay

12 m

C
B

2 

3
(6 m)

1 

2
(6 m)(60 N/m) * 180 N

Example 10.2 Determining the Internal Forces and Moment (* Related Problem 10.8)

Determine the internal forces and moment at B.

Strategy
To determine the reactions at the supports, we will represent the triangular dis-

tributed load by an equivalent force. Then we will determine the internal forces

and moment at B by cutting the beam by a plane at B and drawing the free-body

diagram of the part of the beam to the left of the plane, including the part of the

distributed load to the left of the plane.

(a) Free-body diagram of the entire

beam with the distributed load

represented by an equivalent force.

y

x

6 m

60 N/m

3 m 3 m

B
CA

Solution

Determine the External Forces and Moments We draw the free-body dia-

gram of the beam and represent the distributed load by an equivalent force in

Fig. a. The equilibrium equations are

Solving them, we obtain and 

Draw the Free-Body Diagram of Part of the Beam We cut the beam at B,

obtaining the free-body diagram in Fig. b. Because point B is at the midpoint

of the triangular distributed load, the value of the distributed load at B is 

By representing the distributed load in Fig. b by an equivalent force, we obtain

the free-body diagram in Fig. c. From the equilibrium equations

we obtain and 

Critical Thinking
If you attempt to determine the internal forces and moment at B by cutting

the free-body diagram in Fig. a at B, you do not obtain correct results. (You

can confirm that the resulting free-body diagram of the part of the beam to

the left of B gives and ) The reason

is that you do not properly account for the effect of the distributed load on

your free-body diagram. You must wait until after you have isolated part of

the beam before representing distributed loads acting on that part by equiv-

alent forces.

MB = 360 N-m.PB = 0, VB = 120 N,

MB = 315 N-m.PB = 0, VB = 75 N,

 Mpoint B = MB + 11 m2145 N2 - 13 m21120 N2 = 0,

 Fy = 120 N - 45 N - VB = 0,

 Fx = PB = 0,

30 N/m.

C = 60 N.Ax = 0, Ay = 120 N,

 Mpoint A = 112 m2C - 14 m21180 N2 = 0

 Fy = Ay + C - 180 N = 0

 Fx = Ax = 0,

B

y

60
N/m

60 N120 N

B

30 N/m

120 N

PB

MB

VB3 m

B

(3 m)(30 N/m) * 45 N

120 N 3 m

PB

MB

VB

(b)

(c)

C

1

2

y

y

x

x

x

3 m
2

3 +*

(b), (c) Free-body diagram of the part of the

beam to the left of B.
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490 Chapter 10 Internal Forces and Moments

10.3 The C clamp exerts 30-lb forces on the clamped object. 

Determine the internal forces and moment in the clamp at A.

10.5 The pipe has a fixed support at the left end. Determine the

internal forces and moment at A.

10.6 Determine the internal forces and moment at A for each

loading.

0.4 m

0.6 m0.6 m

w0

A

y

x

Problem 10.2

x

y

A

2 in

Problem 10.3

Problem 10.4

y

x

0.2 m

2 kN

A

0.2 m
0.2 m

0.2 m

2 kN

20*

y

x

900 ft-lb
A

400 lb
100 lb

3 ft 4 ft 3 ft 4 ft

Problem 10.5

(b)

2 kN/m

(a)

2 m

1 m

8 kN

4 m

A

y

1 m

4 m

A

y

x

x

Problem 10.6

Problems

* 10.1 In Active Example 10.1, suppose that the distance from

point A to point C is increased from Draw a sketch of

the beam with C in its new position. Determine the internal

forces and moment at C.

10.2 The magnitude of the triangular distributed load is

Determine the internal forces and moment at A.w0 = 2 kN/m.

1

4
L to 

1

2
L.

10.4 Determine the internal forces and moment at A.
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A x

y

200 mm 100 mm

375 mm

250 mm

Problem 10.7

Problems 10.9/10.10

A B

4 ft
3 ft 5 ft

6 ft

A B

2 ft

240 lb 180 lb

3 ft 5 ft
4 ft4 ft

60 lb/ft

(a)

(b)

Problems 10.11/10.12

6 ft

8 ft 4 ft

A

200 lb/ft
300 lb/ft

Problem 10.13

A

B

y

x

1 m

10 kN

1 m 1 m 1 m 1 m

Problems 10.14/10.15

10.7 Model the ladder rung as a simply supported (pin

supported) beam and assume that the 750-N load exerted by

the person s shoe is uniformly distributed. Determine the

internal forces and moment at A.

* 10.8 In Example 10.2, suppose that the distance from point A

to point B is increased from 3 m to 4 m. Draw a sketch of the beam

with B in its new position. Determine the internal forces and moment

at B.

10.9 If what are the internal forces and moment at A?

10.10 If what are the internal forces and moment at A?x = 4 ft,

x = 3 ft,

10.11 Determine the internal forces and moment at A for the

loadings (a) and (b).

10.12 Determine the internal forces and moment at B for the

loadings (a) and (b).

10.13 Determine the internal forces and moment at A.

10.14 Determine the internal forces and moment at A.

10.15 Determine the internal forces and moment at B.

x

y

3 ft 3 ft

600 lb/ft

600 lb/ft

x A
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492 Chapter 10 Internal Forces and Moments

10.16 Determine the internal forces and moment at A.

10.17 Determine the internal forces and moment at B.

10.18 The tension in the rope is 10 kN. Determine the internal

forces and moment at point A.

10.19 Determine the internal forces and moment at point A of

the frame.

10.20 Determine the internal forces and moment at A.

10.21 Determine the internal forces and moment at B.

0.6 m

0.6 m

0.8 m

0.8 m 0.8 m

A

y

x

3 kN

Problem 10.18

x

0.2

m

0.2

m

0.6 m

0.4 m

0.4 m

0.4 m 0.4 m

600 Ny

A B

Problems 10.16/10.17

0.2 m

0.2 m

0.2 m

0.8 m

A

x

y

3 kN

Problem 10.19

1 m

4 kN/m

1 m 1 m

2 m

B

A x

y

Problems 10.20/10.21
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FF

F
y

x

x

y

x

x

y

P

V

M

x

x

F

F

y

x

y

P

V

M

x

x
LL

(a) (b) (c)

2

3

F
2

3

F
2

3
F

2

3

L
2

3

1

3

F
1

3

F
1

3
F

1

3

F
1

3
F

1

3

F

x

y

x

V

x

M

F
2

3

L
2

3

F
 
*

 2

3

FL
2

9

F
1

3

F
1

3

L
1

3

Figure 10.4
The shear force and bending moment diagrams

indicating the maximum and minimum values

of V and M.

Figure 10.3
(a) A beam loaded by a force F and its free-body diagram.

(b) Cutting the beam at an arbitrary position x to the left of F.

(c) Cutting the beam at an arbitrary position x to the right of F.

10.2 Shear Force and Bending Moment Diagrams

BACKGROUND

To design a beam, an engineer must know the internal forces and moments

throughout its length. Of special concern are the maximum and minimum val-

ues of the shear force and bending moment and where they occur. In this sec-

tion we show how the values of P, V, and M can be determined as functions of

x and introduce shear force and bending moment diagrams.

Consider a simply supported beam loaded by a force (Fig. 10.3a). Instead

of cutting the beam at a specific cross section to determine the internal forces

and moment, we cut it at an arbitrary position x between the left end of the beam

and the load F (Fig. 10.3b). Applying the equilibrium equations to this free-

body diagram, we obtain

To determine the internal forces and moment for values of x greater than

we obtain a free-body diagram by cutting the beam at an arbitrary position x

between the load F and the right end of the beam (Fig. 10.3c). The results are

The shear force and bending moment diagrams are simply the graphs of V and

M, respectively, as functions of x (Fig. 10.4). They permit you to see the changes

in the shear force and bending moment that occur along the beam s length as well

as their maximum and minimum values. (By maximum we mean the least upper

bound of the shear force or bending moment, and by minimum we mean the

greatest lower bound.)

P = 0

V = -  

2

3
 F

M =
2

3
 F1L - x2

u 2

3
 L 6 x 6 L.

2

3
 L,

P = 0

V =
1

3
 F

M =
1

3
 Fx

u 0 6 x 6
2

3
 L.
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Active Example 10.3 Shear Force and Bending Moment Diagrams (* Related Problem 10.27)

Determine the shear force V and bending moment M for the beam as functions

of x for 0 6 x 6 2 m.

Strategy
We must first draw the free-body diagram of the entire beam and determine

the reactions at A and B. Then we will cut the beam by a plane at an arbitrary

position x between A and B to obtain functions for V and M that are valid in the

range 

Solution

0 6 x 6 2 m.

y

x

40 kN/m

2 m

A

60 kN

B C

2 m

Draw the free-body

diagram of the entire

beam. The distributed

load is represented by

an equivalent force.

2 m

1 m

2 m

y

x

By

B C
A

A

(2 m)(40 kN/m) * 80 kN

Bx

60 kN

RESULTS

By passing a plane through a beam at an arbitrary

position x, the values of P, V, and M can be

determined as functions of x. Depending on the

loading and supports, it may be necessary to draw

several free-body diagrams to determine the

distributions for the entire beam.

Shear force and bending moment diagrams for a

beam are simply the graphs of V and M as

functions of x.

x

y

P
M

V
x

Thus we can determine the distributions of the internal forces and moment

in a beam by considering a plane at an arbitrary distance x from the end of the

beam and solving for P, V, and M as functions of x. Depending on the complex-

ity of the loading, it may be necessary to draw several free-body diagrams to de-

termine the distributions over the entire length of the beam. The resulting equations

for V and M allow us to draw the shear force and bending moment diagrams.
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10.2 Shear Force and Bending Moment Diagrams 495

Practice Problem (a) Determine the shear force V and bending moment M for the

beam as functions of x for (b) Draw the shear force and bending moment

diagrams for the entire beam.

Answer: V = -60 kN, M = 60(4 - x) kN-m.

2 6 x 6 4 m.

Apply equilibrium to

determine the reactions

at A and B.

Fx  Bx  0, 

Mpoint A  (2 m)By  (1 m)(80 kN)  (4 m)(60 kN)  0.

Solving yields A  100 kN, Bx  0, and By   80 kN.

Fy  A  By  80 kN  60 kN  0, 

Pass a plane through the beam at an

arbitrary position x between A

and B. The distributed load must not

be represented by an equivalent force

before isolating part of the beam.

x

y

y

y

x

B C
A

40 kN/m

40 kN/m

60 kN

80 kN

V

M

P

100 kN

A

100 kN

A

100 kN

40x

1 

2 
x

V

M

P

Apply equilibrium to determine

V and M.

Fx  P  0,

Mright end  M  100x 

Solving yields 

0  x  2 m.
V  100  40x kN

M  100x  20x2 kN-m

Fy  100  40x  V  0, 

(40x)  0.
*     +x

1 

2
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496 Chapter 10 Internal Forces and Moments

10.29 The loads and 

(a) Determine the internal forces and moment as functions of x.

(b) Draw the shear force and bending moment diagrams.

10.30 The beam will safely support shear forces and bending

moments of magnitudes 2 kN and 6.5 kN-m, respectively. On the

basis of this criterion, can it safely be subjected to the loads

F = 1 kN, C = 1.6 kN-m?

C = 800 N-m.F = 200 N

x

y

6 ft 6 ft

100 lb/ft

Problem 10.28

y

x

F

4 m 8 m

C

4 m

Problems 10.29/10.30

10.26 Determine the shear force and bending moment as func-

tions of x for 0 6 x 6 2 m.

10.24 (a) Determine the shear force and bending moment as func-

tions of x.

(b) Show that the equations for V and M as functions of x satisfy

the equation 

Strategy: For part (a), cut the beam at an arbitrary position x

and draw the free-body diagram of the part of the beam to the

right of the plane.

10.25 Draw the shear force and bending moment diagrams.

V = dM>dx.

12 ft

x

y

60 lb/ft

Problems 10.24/10.25

Problem 10.26

* 10.27 In Active Example 10.3, suppose that the 40 kN/m 

distributed load extends all the way across the beam from A to C.

Draw a sketch of the beam with its new loading. Determine the

shear force V and bending moment M for the beam as functions

of x for 

10.28 (a) Determine the internal forces and moment as

functions of x.

(b) Draw the shear force and bending moment diagrams.

2 6 x 6 4 m.

Problems

10.22 Determine the shear force and bending moment as func-

tions of x.

Strategy: Cut the beam at an arbitrary position x and draw the

free-body diagram of the part of the beam to the left of the plane.

10.23 (a) Determine the shear force and bending moment as

functions of x.

(b) Draw the shear force and bending moment diagrams.

400 lb

3 ft

y

x

Problem 10.22

6 m

48 kN/ m
y

x

Problem 10.23

3600 N-m

x 

y

2 m 4 m
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3 ft

600 lb/ft

3 ft

x

y

600 lb/ft

4 kN

6 m

2 m 1 m

2 kN

y

x

Problem 10.33

200 lb 2 ft

6 ft

B

C
D

A

5 ft

Problems 10.36/10.37

10.33 Assume that the surface the beam rests on exerts a

uniformly distributed load. Draw the shear force and bending

moment diagrams.

10.34 The homogeneous beams AB and CD weigh 600 lb and

500 lb, respectively. Draw the shear force and bending moment

diagrams for beam AB.

10.35 The homogeneous beams AB and CD weigh 600 lb and

500 lb, respectively. Draw the shear force and bending moment

diagrams for beam CD.

10.36 Determine the shear force V and bending moment M for

the beam as functions of x for 

10.37 Draw the shear force and bending moment diagrams for

the beam.

0 6 x 6 3 ft.

Problems 10.34/10.35

x

y

200 mm 100 mm

375 mm

10.31 Model the ladder rung as a simply supported (pin-

supported) beam and assume that the 750-N load exerted by the

person s shoe is uniformly distributed. Draw the shear force and

bending moment diagrams.

10.32 What is the maximum bending moment in the ladder rung

in Problem 10.31 and where does it occur?

Problems 10.31/10.32
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498 Chapter 10 Internal Forces and Moments

10.3 Relations Between Distributed Load, Shear
Force, and Bending Moment

BACKGROUND

The shear force and bending moment in a beam subjected to a distributed load

are governed by simple differential equations. In this section we derive these

equations and show that they provide an interesting and enlightening way to

obtain shear force and bending moment diagrams. These equations are also use-

ful for determining deformations of beams.

Suppose that a portion of a beam is subjected to a distributed load w
(Fig. 10.5a). In Fig. 10.5b we obtain a free-body diagram by cutting the beam

at positions x and The terms and are the changes in theMP, V,x + x.

y

x

50 kN/m

80 kN

4.4 m 13.0 m

Problems 10.38/10.39

10.38 In preliminary design studies, the vertical forces on an airplane s wing are modeled as shown. The distributed load models aero-

dynamic forces and the force exerted by the wing s weight. The 80-kN force at models the force exerted by the weight of the

engine. Draw the shear force and bending moment diagrams for the wing for 

10.39 Draw the shear force and bending moment diagrams for the entire wing.

0 6 x 6 4.4 m.

x = 4.4 m

10.40* Draw the shear force and bending moment diagrams.

x

y

6 m

20 kN-m

6 m 6 m
6 kN

4 kN/m

Problem 10.40

BEDFMC10_0136129153.QXD  4/14/07  12:43 PM  Page 498



10.3 Relations Between Distributed Load, Shear Force, and Bending Moment 499

y

x

(a)

w

y

x

w

x +x

(b)

y

xP

M
V

V * +V

M * +M

P *+PQ

w

+x

x̂

Figure 10.5

(a) A portion of a beam subjected to a dis-

tributed force w.

(b) Obtaining the free-body diagram of an

element of the beam.

axial force, shear force, and bending moment, respectively, from x to 

The sum of the forces in the x direction is

Dividing this equation by and taking the limit as we obtain

which simply states that the axial force does not depend on x in a portion of a

beam subjected only to a lateral distributed load. To sum the forces on the free-

body diagram in the y direction, we must determine the force exerted by the dis-

tributed load. In Fig. 10.5b we introduce a coordinate that measures distance

from the left edge of the free-body diagram. In terms of this coordinate, the

downward force exerted on the free-body diagram by the distributed load is

where denotes the value of w at To evaluate this integral, we

express as a Taylor series in terms of :

(10.1)

Substituting this equation into the integral expression for the downward force

and integrating term by term, we obtain

The sum of the forces on the free-body diagram in the y direction is therefore

Dividing by and taking the limit as we obtain

(10.2)

where 

We now want to sum the moments about point Q on the free-body diagram

in Fig. 10.5b. The clockwise moment about Q due to the distributed load is

Substituting Eq. (10.1) and integrating term by term, the clockwise moment

about Q is

The sum of the moments about Q is therefore

 -  

1

2
  w1x21 x22

-
1

3
  

d w1x2

d x
 1 x23

+ = 0.

 Mpoint Q = M + M - M - 1V + V2 x

L

x

0

xN  
w1x + xN2 d xN =

1

2
  w1x21 x22

+
1

3
  

d w1x2

d x
 1 x23

+ .

L

x

0

xN  
w1x + xN2 d xN .

w = w1x2.

dV

dx
= -w,

x: 0,x

Fy = V - V - V - w1x2 x -
1

2
  

d w1x2

d x
 1 x22

+ = 0.

L

x

0

w1x + xN2 d xN = w1x2 x +
1

2
 

d w1x2

d x
 1 x22

+ .

w1x + xN2 = w1x2 +
d w1x2

dx
 xN +

1

2
 

d  
2 
w1x2

dx2
 xN2

+ .

xNw1x + xN2

x + xN.w1x + xN2

L

x

0

w1x + xN2 dxN,

xN

dP

dx
= 0,

x: 0,x

Fx = P + P - P = 0.

x + x.
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500 Chapter 10 Internal Forces and Moments

Dividing by and taking the limit as gives

(10.3)

In principle, we can use Eqs. (10.2) and (10.3) to determine the shear force

and bending moment diagrams for a beam. Equation (10.2) can be integrated

to determine V as a function of x, then Eq. (10.3) can be integrated to determine

M as a function of x. However, we derived these equations for a segment of

beam subjected only to a distributed load. To apply them for a more general

loading, we must account for the effects of any point forces and couples acting

on the beam.

Let us determine what happens to the shear force and bending moment diagrams

where a beam is subjected to a force F in the positive y direction (Fig. 10.6a). By

cutting the beam just to the left and just to the right of the force, we obtain the

free-body diagram in Fig. 10.6b, where the subscripts and denote values to

the left and right of the force, respectively. Equilibrium requires that

The shear force diagram undergoes a jump discontinuity of magnitude F

(Fig. 10.6c), but the bending moment diagram is continuous (Fig. 10.6d).

The jump in the shear force is positive if the force is in the positive y direction.

Now we consider what happens to the shear force and bending moment di-

agrams when a beam is subjected to a counterclockwise couple C (Fig. 10.7a).

Cutting the beam just to the left and just to the right of the couple (Fig. 10.7b),

we determine that

The shear force diagram is continuous (Fig. 10.7c), but the bending moment

diagram undergoes a jump discontinuity of magnitude C (Fig. 10.7d), where a

beam is subjected to a couple. The jump in the bending moment is negative if

the couple is in the counterclockwise direction.

We now have the results needed to construct shear force and bending mo-

ment diagrams.

Construction of the Shear Force Diagram

In a segment of a beam that is subjected only to a distributed load, we have

shown that the shear force is related to the distributed load by

(10.4)

This equation states that the derivative, or slope, of the shear force with respect to

x is equal to the negative of the distributed load. Notice that if there is no distributed

load throughout the segment, the slope is zero and the shear force is

constant. If w is a constant throughout the segment, the slope of the shear force is

constant, which means that the shear force diagram for the segment is a straight

line. Integrating Eq. (10.4) with respect to x from a position to a position 

L

xB

xA

 

dV

dx
 dx = -

L

xB

xA

w dx,

xB,xA

1w = 02

dV

dx
= -w.

 M+ - M- = -C.

 V+ - V- = 0,

 M+ - M- = 0.

 V+ - V- = F,

+-

dM

dx
= V.

x: 0x

y

xP+P*

M* M+

V* V+

(b)

F

y

F

x

F

y

x

(a)

V

(c)

(d)

x

x

F

M

Figure 10.6
(a) A portion of a beam subjected to a distrib-

uted force F in the positive y direction.

(b) Obtaining a free-body diagram by cut-

ting the beam to the left and right of F.

(c) The shear force diagram undergoes a

positive jump of magnitude F.

(d) The bending moment diagram is

continuous.
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y

x

(a)

C

C

y

x

y

x

V

x

(b)

(c)

C
M+

P+ P,

V+ V,

M,

M

x

(d)

C

w

x

V

x

The negative of 

this area * VB + VA

VB

VA

xA xB

xA xB

Figure 10.7
(a) A portion of a beam subjected to a coun-

terclockwise couple C.

(b) Obtaining a free-body diagram by cut-

ting the beam to the left and right of C.

(c) The shear force diagram is continuous.

(d) The bending moment diagram under-

goes a negative jump of magnitude C.

Figure 10.8
The change in the shear force is equal to the negative of

the area defined by the loading curve.

yields

The change in the shear force between two positions is equal to the negative of

the area defined by the loading curve between those positions (Fig. 10.8):

(10.5)

Where a beam is subjected to a point force of magnitude F in the positive y di-

rection, we have shown that the shear force diagram undergoes an increase of

magnitude F. Where a beam is subjected to a couple, the shear force diagram

is unchanged (continuous).

Let us demonstrate these results by determining the shear force diagram

for the beam in Fig. 10.9. The beam is subjected to a downward force F that re-

sults in upward reactions at A and C. Notice that there is no distributed load. Our

procedure is to begin at the left end of the beam and construct the diagram from

left to right. Figure 10.10a shows the increase in the value of V due to the up-

ward reaction at A. Because there is no distributed load, the value of V remains

constant between A and B (Fig. 10.10b). At B, the value of V decreases due to

the downward force (Fig. 10.10c). The value of V remains constant between B

and C, which completes the shear force diagram (Fig. 10.10d). Compare

Fig. 10.10d with the shear force diagram we obtained in Fig. 10.4 by drawing

free-body diagrams and applying the equilibrium equations.

Construction of the Bending Moment Diagram

In a segment of a beam subjected only to a distributed load, the bending moment

is related to the shear force by

(10.6)
dM

dx
= V,

VB - VA = -1area defined by the distributed load from xA to xB2.

VB - VA = -

L

xB

xA

w dx.
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502 Chapter 10 Internal Forces and Moments

which states that the slope of the bending moment with respect to x is equal to

the shear force. If V is constant throughout the segment, the bending moment

diagram for the segment is a straight line. Integrating Eq. (10.6) with respect to

x from a position to a position yields

The change in the bending moment between two positions is equal to the area

defined by the shear force diagram between those positions (Fig. 10.11):

(10.7)

Where a beam is subjected to a counterclockwise couple of magnitude C, the

bending moment diagram undergoes a decrease of magnitude C. Where a beam

is subjected to a point force, the bending moment diagram is unchanged.

As an example, we will determine the bending moment diagram for the

beam in Fig. 10.9. We begin with the shear force diagram we have already

determined (Fig. 10.12a) and proceed to construct the bending moment

diagram from left to right. The beam is not subjected to a couple at A, so

Between A and B, the slope of the bending moment is constantMA = 0.

MB - MA = area defined by the shear force from xA to xB.

MB - MA =

L

xB

xA

V dx.

xBxA

B

L

F

B

F

L

F F

C

A

y

C

A

x

2

3

2

3

1

3

1

3

Figure 10.9

Beam loaded by a force F and its free-body

diagram.

(a)

(b)

(c)

(d)

F

A
B C

V

x

x

V

x

V

x

V

x

F

y

Increase in V
due to the

reaction at A

Between A and B,

L
2

3

F
2

3

F
  2

3

L
1

3

F
1

3

F
1

3

 0
dV

dx

F
1

3

F
1

3

F
1

3

Decrease in V

due to the force

at B

Between B and C,

 0
dV

dx

Figure 10.10

Constructing the shear force diagram for the

beam in Fig. 10.9.
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Figure 10.12

Constructing the bending moment diagram

for the beam in Fig. 10.9.

which tells us that the bending moment diagram between

A and B is a straight line (10.12b). The change in the bending moment from A

to B is equal to the area defined by the shear force from A to B:

Therefore, The slope of the bending moment is also con-

stant between B and so the bending moment dia-

gram between B and C is a straight line. The change in the bending moment from

B to C is equal to the area defined by the shear force from B to C, or

MC - MB = 1
1

3
 L21-

2

3
 F2 = -

2

9
 LF,

C 1dM>dx = V = -2F>32,

MB = 2LF>9.

MB - MA = 1
2

3
 L21

1

3
 F2 =

2

9
 LF.

1dM>dx = V = F>32,

x

V

x

M

x

M

B C

0

0

L
2

3

LF
2

9

LF
2

9

L
1

3

F
1

3

F
  2

3

area defined by the shear
force diagram between A
and B.

MB 

Between A and B,

 const.
dM

dx

Between B and C,

 const.
dM

dx

A(a)

(b)

(c)

V

x

This area  MB  MA

xA xB

M

x

MB

MA

xA xB

Figure 10.11

The change in the bending moment is 

equal to the area defined by the shear force

diagram.
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504 Chapter 10 Internal Forces and Moments

w

x

V

x

The negative of 

this area  VB  VA

VB

VA

xA xB

xA xB

In a segment of a beam that is subjected only

to a distributed load, the shear force is related  

to the distributed load by

The change in the shear force between two  

positions is equal to the negative of the area  

defined by the loading curve between those  

positions.

 w.

VB  VA  (10.5)                    
area defined by w

from xA to xB

(10.4)dV 

dx

V

x

This area  MB  MA

xA xB

M

x

MB

MA

xA xB

In a segment of a beam that is subjected only  

to a distributed load, the bending moment

is related to the shear force by

The change in the bending moment between  

two positions is equal to the area defined by  

the shear force between those positions.

(10.7)

(10.6) V.

MB  MA                     
area defined by V

from xA to xB

dM 

dx

from which we obtain (Notice that we did not actu-

ally need this calculation to conclude that because the beam is not

subjected to a couple at C.) The completed bending moment diagram is shown

in Fig. 10.12c. Compare it with the bending moment diagram we obtained

in Fig. 10.4 by drawing free-body diagrams and applying the equilibrium

equations.

RESULTS

MC = 0,

MC = MB - 2LF>9 = 0.
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F

y

x

V

x

x

F

M

Where a beam is subjected to a

force F in the positive y direction,

the shear force diagram undergoes

an increase of magnitude F. The

bending moment diagram is

continuous.

Where a beam is subjected to a

counterclockwise couple C,

the bending moment diagram

undergoes a decrease of magnitude

C. The shear force diagram is

continuous.

y

x

C

V

x

M

x

C
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Active Example 10.4
Shear Force and Bending Moment Diagrams Using 
Eqs. (10.4) (10.7) (* Related Problem 10.45)

Use Eqs. (10.4) and (10.5) to determine the shear force diagram for the beam.

Strategy
The first step is to draw the free-body diagram of the beam and determine the

reactions at A and B. This was done in Active Example 10.3. We will begin at

the left end of the beam and progress toward the right constructing the shear

force diagram.

Solution

y

x

40 kN/m

2 m

A

60 kN

B C

2 m

It is helpful to think of beginning just

to the left of the left end of the beam,

with the initial value of the shear force

equal to zero. The upward 100-kN

reaction at A causes an increase in the

shear force of 100-kN magnitude.

x

x

y

40 kN/m
60 kN

80 kN100 kN

A
B C

2 m 2 m

V
Increase in V due to
the upward force at A

100 kN

x

x

y

40 kN/m
60 kN

80 kN100 kN

A
B C

2 m 2 m

V Between A and B,

 const.
dV

dx
100 kN

20 kN

Between A and B, the distributed load

on the beam is constant. From Eq. (10.4),

that means the slope of the shear diagram

between A and B is constant the diagram

is a straight line. The change in V between  

A and B can be determined from Eq. (10.5).

V  100  40x kN.

Therefore V decreases linearly from 100 kN

at A to 100 kN  80 kN  20 kN at B. 

This result can also be obtained by

integrating Eq. (10.4):

VB  VA  (2 m)(40 kN/m)

 80 kN.

dV
L

V

100

40 dx
L

x

0
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Practice Problem Use Eqs. (10.6) and (10.7) to determine the bending moment

diagram for the beam.

The downward 80-kN reaction at B

causes a decrease in the shear force

of 80-kN magnitude.

x

x

y

40 kN/m
60 kN

80 kN100 kN

A
B C

2 m 2 m

Decrease in V due to

the downward force at B

V

100 kN

20 kN

80 kN

Between B and C, there is no

distributed load on the beam. From

Eq. (10.4), that means that V is

constant between B and C,

completing the shear force diagram.

x

x

y

40 kN/m
60 kN

80 kN100 kN

A
B C

2 m 2 m

Between B and C,

 0
dV

dx

V

100 kN

20 kN

60 kN
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Example 10.5
Shear Force and Bending Moment Diagrams Using 
Eqs. (10.4) (10.7) (* Related Problem 10.44)

Determine the shear force and bending moment diagrams for the beam.

Strategy
We can begin with the free-body diagram of the beam and use Eqs. (10.4) and

(10.5) to construct the shear force diagram. Then we can use the shear force di-

agram and Eqs. (10.6) and (10.7) to construct the bending moment diagram. In

determining both the shear force and bending moment diagrams, we must ac-

count for the effects of point forces and couples acting on the beam.

y

x

6 m

300 N/m

B

A

6 m
3600 N-m

900 N

A B

x

y

300 N/m

(a)

x

V

900 N

Increase in V due
to the force at A

(b)

Solution

Shear Force Diagram The first step is to draw the free-body diagram of the

beam and determine the reactions at the built-in support A. Using the results of

this step, shown in Fig. a, we proceed to construct the shear force diagram from left

to right. Figure b shows the increase in the value of V due to the upward force at

A. Between A and B, the distributed load on the beam increases linearly from 0 to

Therefore, the slope of the shear force diagram decreases linearly from

0 to At B, the shear force must be 0, because no force acts there. With

this information, we can sketch the shear force diagram qualitatively (Fig. c).

We can also obtain an explicit equation for the shear force between A and

B by integrating Eq. (10.4). The distributed load as a function of x is 

We write Eq. (10.4) as

d V = -w d x = -50 x d x

1x >62300 = 50 x N/m.

w =

-300 N/m.

300 N/m.

x

V

900 N

Between A and B,

 w
dV

dx

VB  0

(c)

6 m
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x

M

3600

N-m

Decrease in M due

to the couple at A

(d)

and integrate to determine V at an arbitrary position x:

Due to the 900-N upward reaction at so we obtain

(1)

Bending Moment Diagram We construct the bending moment diagram from

left to right. Figure d shows the initial decrease in the value of M due to the

counterclockwise couple at A. Between A and B, the slope of the bending mo-

ment diagram is equal to the shear force V. We see from the shear force diagram

(Fig. c) that at A, the slope of the bending moment diagram has a positive value

(900 N). As x increases, the slope begins to decrease, and its rate of decrease

grows until the value of the slope reaches zero at B. At B, we know that the

value of the bending moment is zero, because no couple acts on the beam at B.

Using this information, we can sketch the bending moment diagram qualita-

tively (Fig. e). Notice that its slope decreases from a positive value at A to zero

at B, and the rate at which it decreases grows as x increases.

We can obtain an equation for the bending moment between A and B by

integrating Eq. (10.6). The shear force as a function of x is given by Eq. (1). We

write Eq. (10.6) as

and integrate:

As a result of the 3600 N-m counterclockwise couple at

yielding the bending moment

distribution

M = -3600 + 900x -
25

3
 x

3
 N-m.

A, MA = -3600 N-m,

 M - MA = 900x -
25

3
 x

3
.

 

L

M

MA

 dM =

L

x

0

1900 - 25x
2
2 dx

dM = V dx = 1900 - 25x
2
2 dx

V = 900 - 25x
2
 N.

A, VA = 900 N,

 V - VA = -25x
2
.

 

L

V

VA

 dV =

L

x

0

- 50x dx

x

M

3600

N-m

Between A and B,

6 m

(e)

A

 V
dM

dx

MB  0

Critical Thinking

As demonstrated in this example, Eqs. (10.4) (10.7) can be applied in two

ways. They provide a basis for rapidly obtaining qualitative sketches of shear

force and bending moment diagrams. In addition, explicit equations for the

diagrams can be obtained by integrating Eqs. (10.4) and (10.6).
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10.47 Determine the shear force V and bending moment M for

the beam as functions of x.

Problem 10.47

3 ft

600 lb/ft

3 ft

x

y

600 lb/ft

Problems

The following problems are to be solved using 
Eqs. (10.4) (10.7).

10.41 Draw the shear force and bending moment diagrams.

10.42 Draw the shear force and bending moment diagrams.

10.43 This arrangement is used to subject a segment of a beam

to a uniform bending moment. Draw the shear force and bending

moment diagrams.

* 10.44 Use the procedure described in Example 10.5 to draw

the shear force and bending moment diagrams for the beam.

* 10.45 In Active Example 10.4, suppose that the 40 kN/m

distributed load extends all the way across the beam from A to C.

Draw a sketch of the beam with its new loading. Draw the shear

force diagram for the beam.

10.46 Draw the shear force and bending moment diagrams.

4 ft

50 lb 50 lb

4 ft

y

x

Problem 10.41

3600 N-m

x

y

2 m 4 m

Problem 10.42

50 lb 50 lb

x

y

6 in 6 in12 in

Problem 10.43

6 m

4 kN/m

y

x

Problem 10.44

100 lb/ft

x

y

6 ft 6 ft

Problem 10.46
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Figure 10.13
The use of cables to suspend the roof of this

sports stadium provides spectators with a

view unencumbered by supporting columns.

y

A B

1 m 1 m 1 m

2 m

400 N/m

x

Problem 10.49

10.48* Draw the shear force and bending moment diagrams. 10.49 Draw the shear force and bending moment diagrams for

the beam AB.

CABLES

x

y

6 m

20 kN-m

6 m 6 m
6 kN

4 kN/m

Problem 10.48

Because of their unique combination of strength, lightness, and flexibility,

ropes and cables are often used to support loads and transmit forces in struc-

tures, machines, and vehicles. The great suspension bridges are supported by

enormous steel cables. Architectural engineers use cables to create aesthetic

structures with open interior spaces (Fig. 10.13). In the following sections

we determine the tensions in ropes and cables subjected to distributed and

discrete loads.
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(a)

w

x

y

(b)

T

T0

x

u

w

Figure 10.15
(a) A cable subjected to a load uniformly

distributed along a horizontal line.

(b) Free-body diagram of the cable between

and an arbitrary position x.x = 0

(a) (b)

Main cable

Figure 10.14
(a) Main cable of a suspension bridge.

(b) The load is distributed horizontally.

10.4 Loads Distributed Uniformly Along 
Straight Lines

BACKGROUND

The main cable of a suspension bridge is the classic example of a cable subjected

to a load uniformly distributed along a straight line (Fig. 10.14). The weight of

the bridge is (approximately) uniformly distributed horizontally. The load, trans-

mitted to the main cable by the large number of vertical cables, can be modeled

as a distributed load. In this section we determine the shape and the variation

in the tension of a cable loaded in this way.

Consider a suspended cable subjected to a load distributed uniformly along

a horizontal line (Fig. 10.15a). We neglect the weight of the cable. The origin

of the coordinate system is located at the cable s lowest point. Let the function

y(x) be the curve described by the cable in the x y plane. Our objective is to

determine the curve y(x) and the tension in the cable.

Shape of the Cable

We obtain a free-body diagram by cutting the cable at its lowest point and at an

arbitrary position x (Fig. 10.15b). The term is the tension in the cable at its low-

est point, and T is the tension at x. The downward force exerted by the distrib-

uted load is wx. From this free-body diagram, we obtain the equilibrium equations

(10.8) T sin u = wx.

 T cos u = T0,

T0
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x

y

x

s

dx

dy

ds

Figure 10.16

The length s of the cable in the horizontal

interval from 0 to x.

We eliminate the tension T by dividing the second equation by the first one,

obtaining

where

The slope of the cable at x is so we obtain a differential equa-

tion governing the curve described by the cable:

(10.9)

We have chosen the coordinate system so that at Integrating

Eq. (10.9),

we find that the curve described by the cable is the parabola

(10.10)

Tension of the Cable

To determine the distribution of the tension in the cable, we square both sides

of Eqs. (10.8) and then sum them, obtaining

(10.11)

The tension is a minimum at the lowest point of the cable and increases mo-

notonically with distance from the lowest point.

Length of the Cable

In some applications it is useful to have an expression for the length of the

cable in terms of x. We can write the relation where ds is an

element of length of the cable (Fig. 10.16), in the form

Substituting Eq. (10.9) into this expression and integrating, we obtain an equa-

tion for the length s of the cable in the horizontal interval from 0 to x:

(10.12)s =
1

2
 e x21 + a2x2

+
1

a
 ln cax + 21 + a2x2

d f .

ds = B1 + a
dy

dx
b

2

 dx.

ds2
= dx2

+ dy2
,

T = T021 + a2x2
.

y =
1

2
 ax2

.

L

y

0

 dy =

L

x

0

ax dx,

x = 0.y = 0

dy

dx
= ax.

dy>dx = tan u,

a =
w

T0

.

tan u =
w

T0

 x = a x,
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RESULTS

A suspended cable is subjected to a vertical load

uniformly distributed along a horizontal line. The origin

of the coordinate system is at the cable s lowest point.

The curve described by the cable is the parabola

The parameter a  w/T0, where w is the magnitude of

the distributed load and T0 is the tension in the cable at

its lowest point.

w

x

y

y     ax2. (10.10)
1 

2

T

y

T0

x

w

x

Tension

The tension in the cable in terms of the

tension at the lowest point and the

horizontal coordinate x relative to the

cable s lowest point.

T  T0 1  a2x2.       (10.11)

Length

The length of the cable measured from 

the lowest point x  0 to the point with

horizontal coordinate x.

s  x 1  a2x2 1  a2x2 .       (10.12)ax ln                           

1

2

1
a

x

y

x

s
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10.4 Loads Distributed Uniformly Along Straight Lines 515

Active Example 10.6 Cable with a Horizontally Distributed Load (* Related Problem 10.50)

The cable supports a distributed load of 100 lb/ft. What is the tension at its

lowest point?

Strategy
The horizontal position of the cable s lowest point is not given. However, the

coordinates of each attachment point relative to a coordinate system with its

origin at the lowest point must satisfy Eq. (10.10). With those conditions we can

determine the horizontal coordinates of the attachment points. Equation (10.10)

can be used to determine which tells us the tension at the lowest

point.

Solution

a = w/T0,

Practice Problem Determine the maximum tension in the cable.

Answer: 2440 lb.

40 ft

20 ft

100 lb/ft 

40 ft

Use Eq. (10.10) to determine the

horizontal coordinates of the

attachment points.

x

y

xR , yR

xL , yL

Equation (10.10) must be satisfied for both

attachment points:

Dividing the first equation by the second yields

The horizontal span of the cable is 

 2.

xR  xL  40 ft.

Solving these two equations yields xL  23.4 ft

and xR  16.6 ft.

1 

2
yL  40 ft      ax L

2,
1 

2
yR  20 ft      ax R

2 .

x L
2 

x R
2

Use Eq. (10.10) to determine

the tension at the lowest point.

Substituting the coordinates of the right

attachment point into Eq. (10.10),

and solving yields a  0.146 ft 1. Therefore

the tension at the lowest point is

yR

20 ft     a (16.6 ft)2,

T0 

 686 lb.

1 

2

1 

2

     axR
2:

w 

a

100 lb/ft 

0.146 ft 1
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Example 10.7 Cable with a Horizontally Distributed Load (* Related Problem 10.51)

The horizontal distance between the supporting towers of the Manhattan Bridge

in New York is 1470 ft. The tops of the towers are 145 ft above the lowest point

of the main supporting cables. Obtain the equation for the curve described by

the cables.

x 

y

y * (2.68 + 10 4)x
2

xR, yR

Strategy
We know the coordinates of the cable s attachment points relative to their lowest

points. By substituting the coordinates into Eq. (10.10), we can determine the pa-

rameter a. Once a is known, Eq. (10.10) describes the shape of the cables.

Solution
The coordinates of the top of the right supporting tower relative to the lowest

point of the support cables are (Fig. a). By sub-

stituting these values into Eq. (10.10),

 145 ft =
1

2
 a(735 ft)2

,

 y =

1

2
 ax2:

xR = 735 ft, yR = 145 ft

(a) The theoretical curve superimposed on a photograph of the

supporting cable.
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Problems 517

we obtain The curve described by the supporting

cables is

Figure a compares this parabola with a photograph of the supporting cables.

Critical Thinking
Knowing the relative locations of the cable s highest and lowest points

allowed us to determine the value of a. This parameter not only determines the

equation describing the cable s shape, as we demonstrated in this example, but

is also the ratio of the distributed load w acting on the cable to the tension in

the cable at its lowest point. If the value of w was also known, the tension

throughout the cable would be determined by Eq. (10.11).

y =
1

2
 a x2

= 12.68 * 10-   

4
2

 x2.

a = 5.37 * 10-4 ft-1.

Problems 10.52/10.53

Problems

* 10.50 The cable supports a distributed load 

Using the approach described in Active Example 10.6, determine the

maximum tension in the cable.

w = 12,000 lb/ft.

* 10.51 In Example 10.7, suppose that the tension at the lowest

point of one of the main supporting cables of the bridge is two

million pounds. What is the maximum tension in the cable?

10.52 A cable is used to suspend a pipeline above a river. The

towers supporting the cable are 36 m apart. The lowest point of

the cable is 1.4 m below the tops of the towers. The mass of the

suspended pipe is 2700 kg.

(a) What is the maximum tension in the cable?

(b) What is the suspending cable s length?

Problem 10.50

40 ft

w

90 ft

100 ft

10.53 In Problem 10.52, let the lowest point of the cable be a

distance h below the tops of the towers supporting the cable.

(a) If the cable will safely support a tension of 70 kN, what is the

minimum safe value of h?

(b) If h has the value determined in part (a), what is the suspend-

ing cable s length?

C

0.4 m1.2 m

0.4 m

0.4 m

A

B

D

E

F
w

0.4 m

Problem 10.54

10.54 The cable supports a uniformly distributed load

The lowest point of the cable is 0.18 m below 

the attachment points C and D. Determine the axial loads in

the truss members AC and BC.

w = 750 N/m.
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h

36 m 36 m

Problems 10.55/10.56

10.55 The cable supports a railway bridge between two tunnels.

The distributed load is and 

(a) What is the maximum tension in the cable?

(b) What is the length of the cable?

10.56 The cable in Problem 10.55 will safely support a tension

of 40 MN. What is the shortest cable that can be used, and what is

the corresponding value of h?

h = 40 m.w = 1 MN/m,

h

w1

2

300 ft

Problems 10.57/10.58

10.57 An oceanographic research ship tows an instrument 

package from a cable. Hydrodynamic drag subjects the cable to a

uniformly distributed force The tensions in the cable

at 1 and 2 are 800 lb and 1300 lb, respectively. Determine the 

distance h.

10.58 Draw a graph of the shape of the cable in Problem 10.57.

w = 2 lb/ft.

10.5 Loads Distributed Uniformly Along Cables

BACKGROUND

A cable s own weight subjects it to a load that is distributed uniformly along its

length. If a cable is subjected to equal, parallel forces spaced uniformly along

its length, the load on the cable can often be modeled as a load distributed uni-

formly along its length. In this section we show how to determine both the

cable s resulting shape and the variation in its tension.

Suppose that a cable is acted on by a distributed load that subjects each el-

ement ds of its length to a force w ds, where w is constant. In Fig. 10.17 we show

the free-body diagram obtained by cutting the cable at its lowest point and at a

point a distance s along its length. The terms and T are the tensions at the low-

est point and at s, respectively. The distributed load exerts a downward force ws.

The origin of the coordinate system is located at the lowest point of the cable.

Let the function y(x) be the curve described by the cable in the x y plane. Our

objective is to determine y(x) and the tension T.

T0
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x

y

s

T0

T

ws

y(x)

u

Figure 10.17

A cable subjected to a load distributed 

uniformly along its length.

Shape of the Cable

From the free-body diagram in Fig. 10.17, we obtain the equilibrium equations

(10.13)

(10.14)

Dividing Eq. (10.13) by Eq. (10.14), we obtain

(10.15)

where

(10.16)

The slope of the cable so Eq. (10.15) can be written

The derivative of this equation with respect to x is

(10.17)

By using the relation

we can write the derivative of s with respect to x as

(10.18)

where

is the slope. Now, with Eq. (10.18), we can write Eq. (10.17) as

The slope at Integrating this equation yields

and we obtain the slope as a function of x:

(10.19)

Then, integrating this equation with respect to x yields the curve described by

the cable, which is called a catenary:

(10.20)y =
1

2a
 1eax + e-ax - 22 =

1

a
 1cosh ax - 12.

s =
dy

dx
=

1

2
 1eax - e-ax2 = sinh ax.

L

s

0

 

ds

21 + s
2
=

L

x

0

a dx,

x = 0.s = 0

ds

21 + s
2
= a dx.

s =
dy

dx
= tan u

ds

dx
= B1 + a

dy

dx
b

2

= 21 + s
2
,

ds2
= dx2

+ dy2
,

d

dx
 a
dy

dx
b = a 

ds

dx
.

dy

dx
= as.

dy>dx = tan u,

a =
w

T0

.

tan u =
w

T0

 s = as,

 T cos u = T0.

 T sin u = ws,
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Tension of the Cable

Using Eq. (10.14) and the relation we obtain

Substituting Eq. (10.18) into this expression and using Eq. (10.19) yields the ten-

sion in the cable as a function of x:

(10.21)

Length of the Cable

From Eq. (10.15), the length s of the cable from the origin to the point at which

the angle between the cable and the x axis equals is

Substituting Eq. (10.19) into this equation, we obtain an expression for the

length s of the cable in the horizontal interval from its lowest point to x:

(10.22)s =
1

2a
 1eax

- e-ax
2 =

sinh ax

a
.

s =
1

a
 tan u =

s

a
.

u

T = T0A
1 +

1

4
 1eax

- e-ax
2

2
= T0 cosh ax.

T =
T0

cos u
= T0 

ds

dx
.

dx = cos u ds,

520 Chapter 10 Internal Forces and Moments

RESULTS

A suspended cable is subjected to a vertical load

uniformly distributed along the length of the cable. The

origin of the coordinate system is at the cable s lowest

point. The curve described by the cable is the catenary

 y  (eax  e ax 
 2) (cosh ax  1). (10.20)

The parameter a  w/T0, where w is the magnitude of

the distributed load and T0 is the tension in the cable at

its lowest point.
x

y

s

T0

T

y(x)

1 

2a

1 

a

Tension

The tension in the cable in terms of the

tension at the lowest point and the

horizontal coordinate x relative to the

cable s lowest point.

T  T0 T0 cosh ax.      (10.21)1      (eax 
 e ax)2 

1 

4

Length

The length of the cable measured from

the lowest point x  0 to the point with

horizontal coordinate x.

s        (eax 
 e ax) (10.22)

sinh ax 

a
.

1 

2a
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Active Example 10.8 Cable Loaded by Its Own Weight (* Related Problem 10.59)

The mass per unit length of the cable is 1 kg/m. The tension at its lowest point

is 50 N. Determine the height h of its attachment points relative to the lowest

point.

Strategy
The cable is subjected to a load 

distributed uniformly along its length. Because w and are known, we can

determine Then we can use Eq. (10.20) to determine h.a = w/T0.
T0

w = (9.81 m/s2)(1 kg/m) = 9.81 N/m

20 m

h

Solution

Practice Problem Determine the maximum tension in the cable.

Answer: 181 N.

Determine the parameter a.a  0.196 m 1.
w 

T0

9.81 N/m 

50 N

Apply Eq. (10.20).

x

y
(10, h) m

 y    

 13.4 m.  

(cosh ax  1):

h    *cosh[(0.196 m 1)(10 m)]  1+

1 

a

1 

0.196 m 1
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522 Chapter 10 Internal Forces and Moments

x

y

12 m

Problem 10.59

* 10.59 The mass of the rope per unit length is 0.1 kg/m. The

tension at its lowest point is 4.6 N. Using the approach described

in Active Example 10.8, determine (a) the maximum tension in

the rope and (b) the rope s length.

Problems

O

A

Problems 10.60/10.61

10.61 In Problem 10.60, determine the magnitudes of the

horizontal and vertical components of the force exerted on the

balloon at A by the tether.

10.60 The stationary balloon s tether is horizontal at point O

where it is attached to the truck. The mass per unit length of the

tether is The tether exerts a 50-N horizontal force on

the truck. The horizontal distance from point O to point A where

the tether is attached to the balloon is 20 m. What is the height of

point A relative to point O?

0.45 kg/m.

CBA h2h1

40 m60 m

Problem 10.62

10.62 The mass per unit length of lines AB and BC is 

The tension at the lowest point of cable AB is 1.8 kN. The two

lines exert equal horizontal forces at B.

(a) Determine the sags and 

(b) Determine the maximum tensions in the two lines.

h2.h1

2 kg/m.

10.63 The rope is loaded by 2-kg masses suspended at 1-m inter-

vals along its length. The mass of the rope itself is negligible. The

tension in the rope at its lowest point is 100 N. Determine h and

the maximum tension in the rope.

Strategy: Obtain an approximate answer by modeling the

discrete loads on the rope as a load uniformly distributed along

its length.

10 m

h

Problem 10.63
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b1

h1

1

A1

T2

Th

Tv

W1

b1

h1

1

2

h2

A2

T3

Th

Tv
b2

(c)

W1

W2

(b)

W1

W2 WN

b1

h1 hN * 1

1

2

h2 hN

N * 1

b2 bN * 1

(a)

Figure 10.18
(a) N weights suspended from a cable.

(b) The first free-body diagram.

(c) The second free-body diagram.

10.6 Discrete Loads

BACKGROUND

Our first applications of equilibrium in Chapter 3 involved determining the ten-

sions in cables supporting suspended objects. In this section we consider the

case of an arbitrary number N of objects suspended from a cable (Fig. 10.18a).

We assume that the weight of the cable can be neglected in comparison to the

suspended weights and that the cable is sufficiently flexible that we can ap-

proximate its shape by a series of straight segments.

Determining the Configuration and Tensions

Suppose that the horizontal distances are known and that the

vertical distance specifying the position of the cable s right attachment

point is known. We have two objectives: (1) to determine the configuration

(shape) of the cable by solving for the vertical distances speci-

fying the positions of the attachment points of the weights and (2) to determine

the tensions in the segments of the cable.

We begin by drawing a free-body diagram, cutting the cable at its left at-

tachment point and just to the right of the weight (Fig. 10.18b). We resolve

the tension in the cable at the left attachment point into its horizontal and ver-

tical components and Summing moments about the attachment point 

we obtain the equation

Mpoint A1
= h1Th - b1Tv = 0.

A1,Tv.Th

W1

1, 2, , N + 1

h1, h2, , hN

hN+1

b1, b2, , bN+1
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524 Chapter 10 Internal Forces and Moments

Our next step is to obtain a free-body diagram by cutting the cable at its left

attachment point and just to the right of the weight (Fig. 10.18c). Summing

moments about we obtain

Proceeding in this way, cutting the cable just to the right of each of the N

weights, we obtain N equations. We can also draw a free-body diagram by cut-

ting the cable at its left and right attachment points and sum moments about the

right attachment point. In this way, we obtain equations in terms of

unknowns: the two components of the tension and and the verti-

cal positions of the attachment points If the vertical position of

just one attachment point is also specified, we can solve the system of equa-

tions for the vertical positions of the other attachment points, determining the

configuration of the cable.

Once we know the configuration of the cable and the force the tension

in any segment can be determined by cutting the cable at the left attachment point

and within the segment and summing forces in the horizontal direction.

Comments on Continuous and Discrete Models

By comparing cables subjected to distributed and discrete loads, we can make

some observations about how continuous and discrete systems are modeled in

engineering. Consider a cable subjected to a horizontally distributed load w

(Fig. 10.19a). The total force exerted on it is wL. Since the cable passes through

the point we find from Eq. (10.10) that so the

equation for the curve described by the cable is 

In Fig. 10.19b, we compare the shape of the cable with the distributed load

to that of a cable of negligible weight subjected to three discrete loads

with equal horizontal spacing. (We chose the dimensions of the

cable with discrete loads so that the heights of the two cables would be equal

at their midpoints.) In Fig. 10.19c, we compare the shape of the cable with the

distributed load to that of a cable subjected to five discrete loads 

with equal horizontal spacing. In Figs. 10.20a and 10.20b, we compare the ten-

sion in the cable subjected to the distributed load to those in the cables sub-

jected to three and five discrete loads.

The shape and the tension in the cable with a distributed load are approxi-

mated by the shapes and tensions in the cables with discrete loads. Although the

approximation of the tension is less impressive than the approximation of the

W = wL>5

W = wL>3

y = 12>L2x2.

a = 4>L,x = L>2, y = L>2,

Th,

h1, h2, , hN.

TvThN + 2

N + 1

Mpoint A2
= h2Th - 1b1 + b22Tv + b2W1 = 0.

A2,

W2

(a)

x

w

L

y

(b)

(c)

L

2

Figure 10.19
(a) Cable subjected to a continuous load.

(b) Cable with three discrete loads.

(c) Cable with five discrete loads.

(a)

0

2x/L 2x/L

1

1.0

1.4

1.8

2.2
Three discrete
loads

Continuous
loads

(b)

0 1

1.0

1.4

1.8

2.2

T/T0T/T0

Five discrete
loads

Continuous
loadsFigure 10.20

(a) The tension in a cable with a continuous

load compared to the cable with three

discrete loads.

(b) The tension in a cable with a continu-

ous load compared to the cable with

five discrete loads.
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10.6 Discrete Loads 525

The weights, the horizontal distances

b1, b2, ..., bN 1 , and the vertical distance

hN 1 are known. The objective is to

determine the vertical distances 

h1, h2, ..., hN  and the tensions in the

segments of the cable.
W1

W2 WN

b1

h1 hN  1

1

2

h2 hN

N  1

b2 bN  1

Cut the cable at its left attachment point

and just to the right of the weight W2. 

Sum the moments about A2:

Cut the cable at its left attachment point

and just to the right of the weight W1.

Sum the moments about A1:

Continuing in this way results in N equations. In addition, cut the

cable at its left and right attachment points and sum moments about

the right attachment point. This results in N 1 equations in N 2  

unknowns: the two components Th and Tv of the tension at the right

attachment point and the vertical positions h1, h2, ..., hN. If the

vertical position of one weight is specified, the geometrical  

configuration of the cable and the components Th and Tv can be

determined. Once this has been done, the tension in any segment of

the cable can be obtained by cutting the cable at the left attachment

point and within the segment and summing forces in the horizontal  

direction.

b1

h1

1

A1

T2

Th

Tv

W1

b1

h1

1

2

h2

A2

T3

Th

Tv
b2

W1

W2

Mpoint A1
  h1Th  b1Tv  0.

Mpoint A2
  h2Th  (b1  b2)Tv  b2W1  0.

shape, it is clear that the former can be improved by increasing the number of

discrete loads.

This approach, approximating a continuous distribution by a discrete

model, is very important in engineering. It is the starting point of the finite

difference and finite element methods. The opposite approach, modeling

discrete systems by continuous models, is also widely used, for example

when the forces exerted on a bridge by traffic are modeled as a distributed

load.

RESULTS
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526 Chapter 10 Internal Forces and Moments

Active Example 10.9 Cable Subjected to Discrete Loads (* Related Problem 10.64)

The cable supports two masses Determine the

vertical distance .h2

m1 = 10 kg and m2 = 20 kg.

Strategy
By following the procedure described in Results, we can obtain three equations

in terms of the horizontal and vertical components of the tension at the right at-

tachment point and the vertical distance 

Solution

h2.

1 m

1 m

1

2

3

h2

m1

m2

1 m 1 m

Cut the cable at the left

attachment point and just to

the right of the mass m1 and

sum moments about A1.

Mpoint A1
  (1 m)Th  (1 m)Tv  0.

1 m

1 m

Tv

Th

T2

A1

m1g

Cut the cable at the left

attachment point and just to

the right of the mass m2 and

sum moments about A2.

Mpoint A2
  h2Th  (2 m)Tv  (1 m)m1g  0.

m1g
m2g

1 m 1 m

1 m h2

Tv

Th

T3

A2
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Problems 527

* 10.64 In Active Example 10.9, what are the tensions in

cable segments 1 and 3?

10.65 Each lamp weighs 12 lb.

(a) What is the length of the wire ABCD needed to suspend the

lamps as shown?

(b) What is the maximum tension in the wire?

12 in

12 in

18 in 18 in

30 in

A

B

C

D

Cut the cable at the left and

right attachment points and

sum moments about A3.

Mpoint A3
   (3 m)Tv  (2 m)m1g  (1 m)m2 g  0.

1 m 1 m 1 m

1 m h2

Tv

Th

T3

A3

m1g

m2g

Problem 10.65

Problems

10.66 Two weights, are suspended from a

cable. The vertical distance 

(a) Determine the vertical distance 

(b) What is the maximum tension in the cable?

10.67 The weights are and the

vertical distance 

(a) Determine the vertical distance 

(b) What is the maximum tension in the cable?

h2.

h1 = 4 ft.

W1 = 50 lb and W2 = 100 lb,

h2.

h1 = 4 ft.

W1 = W2 = 50 lb,

6 ft 10 ft

h1 h2

3 ft

2 ft

W1

W2

Problems 10.66/10.67

There are three equations in terms of the unknowns Solving

them yields 

Practice Problem Determine the tension in segment 2 of the cable.

Answer: 135 N.

Th = Tv = 131 N and h2 = 1.25 m.

Th, Tv, and h2.
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528 Chapter 10 Internal Forces and Moments

10.68 Three identical masses are suspended from

the cable. Determine the vertical distances and and draw a

sketch of the configuration of the cable.

10.69 In Problem 10.68, what are the tensions in cable 

segments 1 and 2?

h3h1

m = 10 kg

2 m

h1

2 m

m

1

2
m

h3

3

4

1 m 3 m 1 m

m

Problem 10.68/10.69

h1 h2
h3

m

200 mm

300 mm300 mm700 mm500 mm

1

2

m

3

4

2m

Problems 10.70/10.71

10.70 Three masses are suspended from the cable, where

and the vertical distance Determine

the vertical distances and 

10.71 In Problem 10.70, what is the maximum tension in the

cable, and where does it occur?

h3.h2

h1 = 400 mm.m = 30 kg, 2 ft
3 ft 4 ft

4 ft

h3

h2

14 ft

5 ft

W

W

W

Problem 10.72

10.72 Each suspended object has the same weight W. Determine

the vertical distances and h3.h2
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10.7 Pressure and the Center of Pressure 529

LIQUIDS AND GASES

10.7 Pressure and the Center of Pressure

BACKGROUND

Wind forces on buildings and aerodynamic forces on cars and airplanes are ex-

amples of forces that are distributed over areas. The downward force exerted on

the bed of a dump truck by a load of gravel is distributed over the area of the

bed. The upward force that supports a building is distributed over the area of its

foundation. Loads distributed over the roofs of buildings by accumulated snow

can be hazardous. Many forces of concern in engineering are distributed over

areas. In this section we analyze the most familiar example, the force exerted

by the pressure of a gas or liquid.

A surface immersed in a gas or liquid is subjected to forces exerted by

molecular impacts. If the gas or liquid is stationary, the load can be described

by a function p, the pressure, defined such that the normal force exerted

on a differential element dA of the surface is p dA (Figs. 10.21a and b). (No-

tice the parallel between the pressure and a load w distributed along a line,

which is defined such that the force on a differential element dx of the line

is w dx.)

The dimensions of p are In U.S. Customary units, pressure

can be expressed in pounds per square foot or pounds per square inch (psi). In

SI units, pressure can be expressed in newtons per square meter, which are

called pascals (Pa).

In some applications, it is convenient to use the gage pressure

(10.23)

where is the pressure of the atmosphere. Atmospheric pressure varies with

location and climatic conditions. Its value at sea level is approximately

in SI units and 14.7 psi or in U.S. Customary units.

Center of Pressure

If the distributed force due to pressure on a surface is represented by an equiv-

alent force, the point at which the line of action of the force intersects the surface

2120 lb/ft21 * 10
5
 Pa

patm

pg = p - patm,

1force2>1area2.

p

p dA
dA

(b)(a)

Figure 10.21
(a) The pressure on an area.

(b) The force on an element dA is p dA.
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530 Chapter 10 Internal Forces and Moments

(a)

x

y

pA

xp, yp

x

y

x

y

p dA

y

x

dA

(c)

(b)

F

Figure 10.22

(a) A plane area subjected to pressure.

(b) The force on a differential element dA.

(c) The total force acting at the center of pressure.

is called the center of pressure. Consider a plane area A subjected to a pressure

p and introduce a coordinate system such that the area lies in the x y plane (Fig.

10.22a). The normal force on each differential element of area dA is p dA (Fig.

10.22b), so the total normal force on A is

(10.24)

Now we will determine the coordinates of the center of pressure

(Fig. 10.22c). Equating the moment of F about the origin to the total moment

due to the pressure about the origin gives

and using Eq. (10.24), we obtain

(10.25)

These equations determine the position of the center of pressure when the

pressure p is known. If the pressure p is uniform, the total normal force

xp =
LA

xp dA

LA

p dA

,  yp =
LA

yp dA

LA

p dA

.

1xp 
i + yp 

j2 * 1-F k2 =

LA

1x i + y j2 * 1-p d A k2,

1xp, yp2

F =

LA

p dA.
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10.7 Pressure and the Center of Pressure 531

is and Eqs. (10.25) indicate that the center of pressure is the cen-

troid of A.

In Chapter 7 it was shown that if we calculate the area  defined by a load

distributed along a line and place the resulting force at its centroid, the force

is equivalent to the distributed load. A similar result holds for a pressure

distributed on a plane area. The term p dA in Eq. (10.24) is equal to a differ-

ential element dV of the volume  between the surface defined by the pressure

distribution and the area A (Fig. 10.23a). The total force exerted by the pres-

sure is therefore equal to this volume :

Substituting into Eqs. (10.25), we obtain

The center of pressure coincides with the x and y coordinates of the centroid of

the volume  (Fig. 10.23).

Pressure in a Stationary Liquid

Designers of pressure vessels and piping, ships, dams, and other submerged

structures must be concerned with forces and moments exerted by water

pressure. The pressure in a liquid at rest increases with depth, which you can

confirm by descending to the bottom of a swimming pool and noting the

effect of the pressure on your ears. If we restrict ourselves to changes in

depth for which changes in the density of the liquid can be neglected, we can

determine the dependence of the pressure on depth by using a simple free-

body diagram.

xp =
LV
x dV

LV
 dV

,  yp =
LV
y dV

LV
 dV

.

p dA = dV

F =

LV
 dV = V.

F = pA

(a)

x

y

dA
dV

p

(b)

x

y

F

xp , yp

Figure 10.23

(a) The differential element 

(b) The line of action of F passes through the centroid of V.

dV = p dA.
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532 Chapter 10 Internal Forces and Moments

x

x

A

(a) (b)

p

W

y

p0

Figure 10.24

(a) A cylindrical volume that extends to a depth x

in a body of stationary liquid.

(b) Free-body diagram of the cylinder.

Introducing a coordinate system with its origin at the surface of the liq-

uid and the positive x axis downward (Fig. 10.24a), we draw a free-body

diagram of a cylinder of liquid that extends from the surface to a depth x

(Fig. 10.24b). The top of the cylinder is subjected to the pressure at the sur-

face, which we call The sides and bottom of the cylinder are subjected to

pressure by the surrounding liquid, which increases from at the surface to

a value p at the depth x. The volume of the cylinder is Ax, where A is its cross-

sectional area. Therefore, its weight is where is the weight den-

sity of the liquid. (Recall that the weight and mass densities are related by

) Since the liquid is stationary, the cylinder is in equilibrium. From the

equilibrium equation

we obtain a simple expression for the pressure p of the liquid at depth x:

(10.26)

Thus, the pressure increases linearly with depth, and the derivation we have

used illustrates why: The pressure at a given depth literally holds up the liquid

above that depth. If the surface of the liquid is open to the atmosphere,

and we can write Eq. (10.26) in terms of the gage pressure

as

(10.27)

In SI units, the density of water at sea level conditions is so

its weight density is approximately In U.S. Customary

units, the weight density of water is approximately 62.4 lb/ft3.

g = rg = 9.81 kN/m3
.

r = 1000 kg/m3
,

pg = gx.

pg = p - patm

p0 = patm,

p = p0 + gx.

Fx = p0A - pA + gAx = 0,

g = rg.

gW = gAx,

p0

p0.
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10.7 Pressure and the Center of Pressure 533

RESULTS

Definition of the Pressure

The pressure p of a liquid or gas is defined such

that the normal force exerted on an element of

area dA of a surface is p dA. The force and 

moment due to a distribution of pressure on a

surface can be determined by integration.

where patm is atmospheric pressure. Atmospheric

pressure at sea level is approximately 1 105 Pa

in SI units and 14.7 psi or 2120 lb/ft2 in

U.S. Customary units.

The gage pressure is defined by

p dA
dA

(10.23)pg  p  patm,

Center of Pressure

If the force exerted by a distribution of

pressure on an area A is represented by an

equivalent force vector, the point where the

line of action of the force vector intersects A

is called the center of pressure.

Volume Analogy

The total force F exerted on a plane area A by

a distribution of pressure p is equal to the

volume  between A and the function p. If F is

represented by a force vector acting at the

centroid of the volume,  the force vector is

equivalent to the distribution of pressure its

line of action intersects A at the center of

pressure.

x

y

F

xp , yp

x

y

x

p0

Pressure in a Stationary Liquid 

The pressure at a depth x in a stationary liquid is

pg  gx.

where p0 is the pressure at the surface and g  rg

is the weight density of the liquid. The weight 

density of water is 9.81 kN/m3 in SI units and  

62.4 lb/ft3 in U.S. Customary units. If p0  patm,

Eq. (10.26) can be expressed in terms of the gage 

pressure as

p  p0  gx, (10.26)

(10.27)
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534 Chapter 10 Internal Forces and Moments

Active Example 10.10 Gate Loaded by a Pressure Distribution (* Related Problem 10.78)

A stationary body of water exerts pressure on the right side of the gate AB.

The width of the gate (its dimension into the page) is 3 ft, and the gate weighs

100 lb. The weight density of the water is . Determine the reactions

on the gate at the supports A and B.

Strategy
We will use integration to determine the force and moment exerted on the gate

by the pressure of the water. We can then apply equilibrium to the free-body di-

agram of the gate to determine the reactions at A and B.

Solution

62.4 lb/ft3

A

3 ft

2 ft

B

The left face of the gate and the right face above the

surface of the water are exposed to atmospheric

pressure. From Eqs. (10.23) and (10.26), the

pressure in the water is the sum of atmospheric

pressure and the gage pressure pg  gx, where x is

measured downward from the surface of the water.

The effects of atmospheric pressure on the gate

cancel, so only the forces and moments exerted on

the gate by the gage pressure must be considered.

patm patm

z

x

pg  gx

Integrate to determine the

total force exerted on the

gate by the gage pressure.

The origin of the coordinate system is

at the surface of the water. The element of

area of the gate dA  (3 ft)dx. The total

force exerted by the gage pressure is

2 ft

1 ft

3 ft

dx

x

dA

y

x

F pg dA
L

(gx) (3 ft)dx  374 lb.
L

2

A 0
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10.7 Pressure and the Center of Pressure 535

Practice Problem Determine the reactions on the gate at the supports A and B. To do

so, use the volume analogy to determine the total force exerted by gage pressure on the

gate and the location of the center of pressure.

Answer: Ax = -100 lb, Az = 291 lb, B = 83.2 lb.

Integrate to determine the

total moment exerted on the

gate by the gage pressure.

The total moment about the y axis exerted

by the gage pressure is

M xpg dA
L

x(gx) (3 ft) dx  499 ft-lb.
L

2

A 0

Determine the position of the

center of pressure from the

condition for equivalence

M  xpF.

xp                           1.33 ft.
M

F

499 ft-lb

374 lb

Draw the free-body diagram

 of the gate, placing the total

force exerted by gage pressure

at the center of pressure. Apply

equilibrium to determine the

reactions at A and B.

z

x

Az

2 ft

1 ft

Ax

B

374 lb

1.33 ft
100 lb

My axis  (1 ft)B  (2 ft)Az  (1.33 ft)(374 lb)  0.

Fx  Ax  100 lb  0,

Solving yields Ax  100 lb, Az  291 lb, and B  83.2 lb.

Fz  Az  B  374 lb  0,
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536 Chapter 10 Internal Forces and Moments

Example 10.11 Pressure Force and Center of Pressure (* Related Problems 10.79, 10.80)

xp

x

y

6 m

18 m

8 m

x

x

dx

dA

y

12 m

6 m

8 m

An engineer making preliminary design studies for a canal lock needs to de-

termine the total pressure force on a submerged rectangular plate and the loca-

tion of the center of pressure. The top of the plate is 6 m below the surface.

Atmospheric pressure is and the weight density of the water

is 

Strategy
We will determine the pressure force on a differential element of area of the

plate in the form of a horizontal strip and integrate to determine the total force

and moment exerted by the pressure.

Solution
In terms of a coordinate system with its origin at the surface and the positive x

axis downward (Fig. a), the pressure of the water is The hori-

zontal strip Therefore, the total force exerted on the face of the

plate by the pressure is

The moment about the y axis due to the pressure on the plate is

The force F acting at the center of pressure (Fig. b) exerts a moment about the

y axis equal to M:

Therefore, the location of the center of pressure is

Critical Thinking
Notice that the center of pressure does not coincide with the centroid of the area.

The center of pressure of a plane area generally coincides with the centroid of the

area only when the pressure is uniformly distributed. In this example, the pressure

increases with depth, and as a result, the center of pressure is below the centroid.

xp =
M

F
=

262 MN-m

20.9 MN
= 12.5 m.

xpF = M.

 = 262 * 10
6
 N-m.

 = patm18 m2

L

18

6

x dx + g18 m2

L

18

6

x2
 dx

 M =

LA

xp dA =

L

18

6

x1patm + gx218 m2 dx

 = 20.9 * 10
6
 N.

 = a1 * 10
5

 

N

m2
b18 m2112 m2 + a9810  

N

m3
b18 m21144 m2

2

 = patm18 m2

L

18

6

 dx + g18 m2

L

18

6

x dx

 F =

LA

p dA =

L

18

6

1patm + gx218 m2 dx

dA = 18 m2 dx.

p = patm + gx.

g = 9.81 kN/m3
.

patm = 1 * 10
5
 Pa,

(b) The center of pressure.

(a) An element of area in the form of

a horizontal strip.
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b

R

A

B

A

B

Example 10.12 Determination of a Pressure Force (* Related Problem 10.91)

The container is filled with a liquid with weight density Determine the force

exerted by the pressure of the liquid on the cylindrical wall AB.

g.

(a) The pressure of the liquid on the 

wall AB.

Strategy
The pressure of the liquid on the cylindrical wall varies with depth (Fig. a). It is

the force exerted by this pressure distribution we want to determine. We could

determine it by integrating over the cylindrical surface, but we can avoid that by

drawing a free-body diagram of the quarter-cylinder of liquid to the right of A.

Solution
We draw the free-body diagram of the quarter-cylinder of liquid in Fig. b. The

pressure distribution on the cylindrical surface of the liquid is the same one

that acts on the cylindrical wall. If we denote the force exerted on the liquid by

this pressure distribution by the force exerted by the liquid on the cylindri-

cal wall is 

The other forces parallel to the x y plane that act on the quarter-cylinder of

liquid are its weight, atmospheric pressure at the upper surface, and the pressure

distribution of the liquid on the left side. The volume of liquid is so

the force exerted on the free-body diagram by the weight of the liquid is

The force exerted on the upper surface by atmospheric pressure is

We can integrate to determine the force exerted by the pressure on the left

side of the free-body diagram. Its magnitude is

From the equilibrium equation

we obtain the force exerted on the wall AB by the pressure of the liquid:

Critical Thinking
The need to integrate over a curved surface to calculate a pressure force can

often be avoided by choosing a suitable free-body diagram as we have done in

this example.

-Fp = Rbapatm +
p

4
 gRb i + Rbapatm +

1

2
 gRbj.

F =
1

4
 gpR2bi + Rbpatmi + Rbapatm +

1

2
 gRb j + Fp = 0,

LA

p dA =

L

R

0

1patm + gx2b dx = Rbapatm +
1

2
 gRb .

Rbpatmi.

1

4
 gpR2bi.

1
1

4
 pR2

2b,

-Fp.

Fp,

y

x

W

patm

Fp

(b) Free-body diagram of the liquid to the

right of A.
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2 m

3 m

2 m

Problems 10.79/10.80

10.75 The area shown is subjected to a uniform pressure

(a) What is the total force exerted on the area by the pressure?

(b) What is the moment about the y-axis due to the pressure on

the area?

10.76 The area shown is subjected to a uniform pressure. Deter-

mine the coordinates of the center of pressure.

patm = 1 * 10
5 Pa.

10.77 The area shown is subjected to a uniform pressure

(a) What is the total force exerted on the area by the pressure?

(b) What is the moment about the y axis due to the pressure on

the area?

patm = 14.7 psi.

* 10.78 In Active Example 10.10, suppose that the water depth

relative to point A is increased from 2 ft to 3 ft. Determine the

reactions on the gate at the supports A and B.

* 10.79 The top of the rectangular plate is 2 m below the

surface of a lake. Atmospheric pressure is 

and the mass density of the water is 

(a) What is the maximum pressure exerted on the plate by the water?

(b) Determine the force exerted on a face of the plate by the pres-

sure of the water. (See Example 10.11.)

* 10.80 In Problem 10.79, how far below the top of the plate is

the center of pressure located? (See Example 10.11.)

r = 1000 kg/m3
.

patm = 1 * 10
5 Pa

x

y

1 m

y * x
2

Problems 10.75/10.76

x

y

10 in

20 in

Problem 10.77
b

d

Problem 10.74

Problems

10.73 An engineer planning a water system for a new community

estimates that at maximum expected usage, the pressure drop 

between the central system and the farthest planned fire hydrant

will be 25 psi. Firefighting personnel indicate that a gage pressure

of 40 psi at the fire hydrant is required. The weight density of the

water is How tall would a water tower at the cen-

tral system have to be to provide the needed pressure?

10.74 A cube of material is suspended below the surface of a liq-

uid of weight density By calculating the forces exerted on the

faces of the cube by pressure, show that their sum is an upward

force of magnitude gb3.

g.

g = 62.4 lb/ft3.
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10 m

Problems 10.81/10.82

10.81 The width of the dam (the dimension into the page) is 

100 m. The mass density of the water is Deter-

mine the force exerted on the dam by the gage pressure of the water 

(a) by integration; 

(b) by calculating the volume  of the pressure distribution.

10.82 In Problem 10.81, how far down from the surface of the

water is the center of pressure due to the gage pressure of the

water on the dam?

r = 1000 kg/m3
.

2 m

A

Problem 10.83

3 ft 2 ft

B

30*

A

Problem 10.84

10.83 The width of the gate (the dimension into the page) is 3 m.

Atmospheric pressure is and the mass density

of the water is Determine the horizontal force

and couple exerted on the gate by its built-in support A.

r = 1000 kg/m3
.

patm = 1 * 10
5
 Pa

10.84 The homogeneous gate weighs 100 lb, and its width (the

dimension into the page) is 3 ft. The weight density of the water is

and atmospheric pressure is 

Determine the reactions at A and B.

patm = 2120 lb/ft2.g = 62.4 lb/ft3,

dA

B

500 mm

Problems 10.85/10.86

10.85 The width of the gate (the dimension into the page) is 2 m

and there is water of depth on the right side. Atmospheric

pressure is and the mass density of the water is

Determine the horizontal forces exerted on the

gate at A and B.

10.86 The gate in Problem 10.85 is designed to rotate and release

the water when the depth d exceeds a certain value. What is that

depth?

r = 1000 kg/m3
.

patm = 1 * 10
5 Pa

d = 1 m
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540 Chapter 10 Internal Forces and Moments

A

2 ft

2 ft

B

2 ft

Problem 10.88

10.88* The dam has water of depth 4 ft on one side. The width

of the dam (the dimension into the page) is 8 ft. The weight 

density of the water is and atmospheric pressure

is If you neglect the weight of the dam, what

are the reactions at A and B?

patm = 2120 lb/ft2.

g = 62.4 lb/ft3,

10.89 Consider a plane, vertical area A below the surface of a

liquid. Let be the pressure at the surface.

(a) Show that the force exerted by pressure on the area is

where is the pressure of the liquid at the

centroid of the area.

(b) Show that the x coordinate of the center of pressure is

where is the moment of inertia of the area about the 

through its centroid.

y  axisIy

xp = x +

gIy

pA
,

p = p0 + gxF = pA,

p0

10.90 A circular plate of 1-m radius is below the surface of a sta-

tionary pool of water. Atmospheric pressure is 

and the mass density of the water is Determine

(a) the force exerted on a face of the plate by the pressure of 

the water; (b) the x coordinate of the center of pressure. (See

Problem 10.89.)

r = 1000 kg>m3
.

patm = 1 * 10
5
 Pa,

y

x

A

y*

x*

x

Problem 10.89

y

x

1 m

1 m

Problem 10.90

A

2 ft

2 ft

B

2 ft

Problem 10.87

10.87* The dam has water of depth 4 ft on one side. The width

of the dam (the dimension into the page) is 8 ft. The weight 

density of the water is and atmospheric pressure

If you neglect the weight of the dam, what are

the reactions at A and B?

patm = 2120 lb/ft2.

g = 62.4 lb/ft3,
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V V V

(a) (b)

Problem 10.92

10.92 An object of volume V and weight W is suspended below

the surface of a stationary liquid of weight density (Fig. a).

Show that the tension in the cord is In other words,

show that the pressure distribution on the surface of the object ex-

erts an upward force equal to the product of the object s volume

and the weight density of the water. This result is due to

Archimedes (287 212 B.C.).

Strategy: Draw the free-body diagram of a volume of liquid

that has the same shape and position as the object (Fig. b).

W - Vg.

g

A
B Cx

1000 mm

500 mm

20 N-m

y

x

Problem 10.93

x

y

A B C D

80 lb
4 ft

12 ft

6 ft 3 ft

Problem 10.94

Review Problems

10.93 Determine the internal forces and moment at B (a) if

(b) if x = 750 mm.x = 250 mm;

10.94 Determine the internal forces and moment (a) at B; (b) at C.

x

y

360 lb/ft

3 ft

180 lb/ft

10.95 (a) Determine the maximum bending moment in the

beam and the value of x where it occurs.

(b) Show that the equations for V and M as functions of x satisfy

the equation 

10.96 Draw the shear force and bending moment diagrams for

the beam in Problem 10.95.

V = dM>dx.

Problems 10.95/10.96

18 m

6 m

Problem 10.91

* 10.91* The tank consists of a cylinder with hemispherical

ends. It is filled with water The pressure of

the water at the top of the tank is 140 kPa. Determine the magni-

tude of the force exerted by the pressure of the water on each

hemispherical end of the tank. (See Example 10.12.)

1r = 1000 kg/m3
2.

x

12 ft

y

w+ 10(12x * x2) lb/ft

Problem 10.97

10.97 Determine the shear force and bending moment diagrams

for the beam.
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542 Chapter 10 Internal Forces and Moments

B C

D

4 kN

2 m 2 m 2 m

A

1 m

x

y

Problem 10.98

10.98 Determine V and M as functions of x for the beam ABC.

B

D

600 lb

10 ft

A

y

x

2 ft

8 ft

C

4 ft

Problem 10.99

10.99 Draw the shear force and bending moment diagrams for

beam ABC.

x

y B

2 m

A

C

1 m 1 m 1 m

1 m

1 m 3 kN/m

Problems 10.100/10.101

A
B

x

1000 mm

500 mm

20 N-m

40 N

x

y

A

1000 mm

500 mm

20 N-m

40 N

x

y

Problem 10.102

x

y

10 ft

2 ft 3 ft

Problems 10.104/10.105

10.100 Determine the internal forces and moments at A.

10.101 Draw the shear force and bending moment diagrams of

beam BC.

10.102 Determine the internal forces and moment at B

(a) if 

(b) if x = 750 mm.

x = 250 mm;

10.103 Draw the shear force and bending moment diagrams.

10.104 The homogeneous beam weighs 1000 lb. What are the

internal forces and bending moment at its midpoint?

10.105 The homogeneous beam weighs 1000 lb. Draw the shear

force and bending moment diagrams.

Problem 10.103
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x

y

A

B

900 ft

300 ft

Problem 10.106

10.106 At A the main cable of the suspension bridge is horizon-

tal and its tension is 

(a) Determine the distributed load acting on the cable.

(b) What is the tension at B?

1 * 108 lb.

12*

40 m

Problem 10.107

6 ft

L

3 ft 6 in

Problems 10.108/10.109

10.107 The power line has a mass of If the line will

safely support a tension of 5 kN, determine whether it will safely

support an ice accumulation of 0.4 kg/m.

1.4 kg/m.

10.108 The water depth at the center of the elliptical window is

20 ft. Determine the magnitude of the net force exerted on the

window by the pressure of the seawater and the

atmospheric pressure of the air on the opposite side. (See Prob-

lem 10.89.)

10.109 The water depth at the center of the elliptical window is

20 ft. Determine the magnitude of the net moment exerted on the

window about the horizontal axis L by the pressure of the seawa-

ter and the atmospheric pressure of the air on the

opposite side. (See Problem 10.89.)

1g = 64 lb/ft32

1g = 64 lb/ft32
400 mm

Problem 10.111

A

B

2 m

Problem 10.110

10.110* The gate has water of 2-m depth on one side. The width

of the gate (the dimension into the page) is 4 m, and its mass is

160 kg. The mass density of the water is and

atmospheric pressure is Determine the

reactions on the gate at A and B. (The support at B exerts only a

horizontal reaction on the gate.)

patm = 1 * 105 Pa.

r = 1000 kg/m3
,

10.111 A spherical tank of 400-mm inner radius is full of

water The pressure of the water at the top of

the tank is 

(a) What is the pressure of the water at the bottom of the tank?

(b) What is the total force exerted on the inner surface of the

tank by the pressure of the water?

Strategy: For (b), draw a free-body diagram of the sphere of

water in the tank.

4 * 105 Pa.

1r = 1000 kg/m3
2.
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When a spring is stretched, the work performed is stored in the

spring as potential energy. Raising a load with a crane increases

its gravitational potential energy. In this chapter we define work

and potential energy and introduce a general and powerful result

called the principle of virtual work.

Virtual Work and Potential Energy

 The torsional spring stores potential energy that drives the
clock mechanism. In this chapter we use the concepts of virtual
work and potential energy to analyze objects in equilibrium.

C H A P T E R

11
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546 Chapter 11 Virtual Work and Potential Energy

11.1 Virtual Work

BACKGROUND

The principle of virtual work is a statement about work done by forces and cou-

ples when an object or structure is subjected to various hypothetical motions.

Before we can introduce this principle, we must define work.

Work

Consider a force acting on an object at a point P (Fig. 11.1a). Suppose that the

object undergoes an infinitesimal motion, so that P has a differential displace-

ment dr (Fig. 11.1b). The work dU done by F as a result of the displacement dr

is defined to be

(11.1)

From the definition of the dot product, where is the

angle between F and dr (Fig. 11.1c). The work is equal to the product of the

component of F in the direction of dr and the magnitude of dr. Notice that if

the component of F parallel to dr points in the direction opposite to dr, the

work is negative. Also notice that if F is perpendicular to dr, the work is zero.

The dimensions of work are 

Now consider a couple acting on an object (Fig. 11.2a). The moment due

to the couple is in the counterclockwise direction. If the object rotates

through an infinitesimal counterclockwise angle (Fig. 11.2b), the points of

application of the forces are displaced through differential distances 

Consequently, the total work done is 

We see that when an object acted on by a couple M is rotated through an

angle in the same direction as the couple (Fig. 11.2c), the resulting work is

(11.2)

If the direction of the couple is opposite to the direction of the work is negative.da,

dU = M da.

da

dU = F1
1

2
 h da2 + F1

1

2
 h da2 = M da.

1

2
 h da.

da

M = Fh

1force2 * 1length2.

udU = 1 F  cos u2 dr ,

dU = F # dr.

u

P

F

dr

(c)

(b)

(a)

F

dr

*F* cos u

P

F

(b)

F

F

(c)

M

h

2(a)

F

F

h

da

da

da

h

2

da

Figure 11.2
(a) A couple acting on an object.

(b) An infinitesimal rotation of the object.

(c) An object acted on by a couple M rotating

through an angle da.

Figure 11.1
(a) A force F acting on an object.

(b) A displacement dr of P.

(c) The work dU = 1 F  cos u2 dr .
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11.1 Virtual Work 547

x

y

dx

Ax
Ay

N

M W

Figure 11.4
A virtual displacement dx.

L

A
M

a

L

a

Ax M x

Ay

N

y

W

Figure 11.3
(a) A bar subjected to a couple M.

(b) Free-body diagram of the bar.

Principle of Virtual Work

Now that we have defined the work done by forces and couples, we can intro-

duce the principle of virtual work. Before stating it, we first discuss an exam-

ple to give you context for understanding the principle.

The homogeneous bar in Fig. 11.3a is supported by the wall and by the pin

support at A and is loaded by a couple M. The free-body diagram of the bar is

shown in Fig. 11.3b. The equilibrium equations are

(11.3)

(11.4)

(11.5)

We can solve these three equations for the reactions and N. However, we

have a different objective.

Consider the following question: If the bar is acted on by the forces and cou-

ple in Fig. 11.3b and we subject it to a hypothetical infinitesimal translation in

the x direction, as shown in Fig. 11.4, what work is done? The hypothetical dis-

placement is called a virtual displacement of the bar, and the resulting work

is called the virtual work. The pin support and the wall prevent the bar from

actually moving in the x direction: the virtual displacement is a theoretical ar-

tifice. Our objective is to calculate the resulting virtual work:

(11.6)

The forces and W do no work because they are perpendicular to the dis-

placements of their points of application. The couple M also does no work, be-

cause the bar does not rotate. Comparing this equation with Eq. (11.3), we find

that the virtual work equals zero.

Next, we give the bar a virtual translation in the y direction (Fig. 11.5). The

resulting virtual work is

(11.7)

From Eq. (11.4), the virtual work again equals zero.

Finally, we give the bar a virtual rotation while holding point A fixed

(Fig. 11.6a). The forces and do no work because their point of appli-

cation does not move. The work done by the couple M is because its

direction is opposite to that of the rotation. The displacements of the points of

application of the forces N and W are shown in Fig. 11.6b, and the components of

the forces in the direction of the displacements are shown in Fig. 11.6c. The work

done by N is and the work done by W is

The total work is

(11.8)

From Eq. (11.5), the virtual work resulting from the virtual rotation is also zero.

 = aNL sin a - W 

1

2
 L cos a - Mbda.

 dU = 1N sin a21Lda2 + 1-W cos a2a
1

2
 Ldab - M da

1-W cos a21
1

2
 L da2.1N sin a21L da2,

-M da,

AyAx

dU = Aydy + 1-W2dy = 1Ay - W2dy.

Ay

dU = Axdx + 1-N2dx = 1Ax - N2dx.

dU

dx

Ax, Ay,

 Mpoint A = NL sin a - W 

1

2
 L cos a - M = 0.

 Fy = Ay - W = 0,

 Fx = Ax - N = 0,

x

y

Ax
Ay

N

M

W

dy

Figure 11.5
A virtual displacement dy.

(a)

(b)
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548 Chapter 11 Virtual Work and Potential Energy

We have shown that for three virtual motions of the bar, the virtual work

is zero. These results are examples of a form of the principle of virtual work:

If an object is in equilibrium, the virtual work done by the external forces

and couples acting on it is zero for any virtual translation or rotation:

(11.9)

As our example illustrates, this principle can be used to derive the equilibrium

equations for an object. Subjecting the bar to virtual translations and and

a virtual rotation results in Eqs. (11.6) (11.8). Because the virtual work must

be zero in each case, we obtain Eqs. (11.3) (11.5). But there is no advantage to

this approach compared to simply drawing the free-body diagram of the object

and writing the equations of equilibrium in the usual way. The advantages of the

principle of virtual work become evident when we consider structures.

Application to Structures

The principle of virtual work stated in the preceding section applies to each

member of a structure. By subjecting certain types of structures in equilibrium

to virtual motions and calculating the total virtual work, we can determine un-

known reactions at their supports as well as internal forces in their members. The

procedure involves finding virtual motions that result in virtual work being done

both by known loads and by unknown forces and couples.

Suppose that we want to determine the axial load in member BD of the truss

in Fig. 11.7a. The other members of the truss are subjected to the 4-kN load and

the forces exerted on them by member BD (Fig. 11.7b). If we give the structure a

virtual rotation as shown in Fig. 11.7c, virtual work is done by the force 

acting at B and by the 4-kN load at C. Furthermore, the virtual work done by these

two forces is the total virtual work done on the members of the structure, because

the virtual work done by the internal forces they exert on each other cancels out.

For example, consider joint C (Fig. 11.7d). The force is the axial load in mem-

ber BC. The virtual work done at C on member BC is and the

work done at C on member CD is When we add up the

virtual work done on the members to obtain the total virtual work on the structure,

the virtual work due to the internal force cancels out. (If the members exertedTBC

da.14 kN - TBC211.4 m2

da,TBC11.4 m2

TBC

TBDda

da

dydx

dU = 0.

Ax
Ay

a

da

da

(a)

x

y

(b)

x

y

1

2

(c)

N

x

y

W

N

M
W Lda W cos a

Lda

N sin a

Figure 11.6

(a) A virtual rotation 

(b) Displacements of the points of application of N and W.

(c) Components of N and W in the direction of the displacements.

da.
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an internal couple on each other at C for example, as a result of friction in the pin

support the virtual work would not cancel out.) Therefore, we can ignore inter-

nal forces in calculating the total virtual work on the structure:

The angle Solving this equation, we obtain

RESULTS

Work

TBD = -6.88 kN.

u = arctan11.4>12 = 54.5 .

dU = 1TBD cos u211.4 m2 da + 14 kN211.4 m2 da = 0.

11.1 Virtual Work 549

4 kN

TBD

TBD

B

A D

C

4 kN

C
C

TBCTBC

(1.4 m) da (1.4 m) da

4 kN

TBD

TBD

B

A D

C

(1.4 m) da (1.4 m) da

da

u

4 kN

B

A D

C

1 m

1.4 m

(b)

(a)

(c)

(d)

Figure 11.7
(a) A truss with a 4-kN load.

(b) Forces exerted by member BD.

(c) A virtual motion of the structure.

(d) Calculating the virtual work on

members BC and CD at the joint C.

Work done by a force F as a result of a virtual

displacement dr of its point of application.
 dU  F *dr.   (11.1)

P

F

dr
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550 Chapter 11 Virtual Work and Potential Energy

Principle of Virtual Work

Work done by a couple M as a result of a virtual

rotation da in the same direction as M.
dU  M da.   (11.2)

M
da

A virtual displacement or rotation is a

hypothetical infinitesimal displacement

or rotation.
dU  0. (11.9)

If an object is in equilibrium, the virtual work done by

the external forces and couples acting on it is zero for

any virtual translation or rotation:

The principle of virtual work can be applied to structures if no net work is

done by internal forces and couples the members exert on each other. This

involves two steps:

1. Choose a virtual motion Identify a virtual motion of the structure that

     results in virtual work being done by known loads and by an unknown

     force or couple that is to be determined.

2. Determine the virtual work Calculate the total virtual work resulting

    from the virtual motion to obtain an equation for the unknown force or

    couple.

Active Example 11.1 Applying Virtual Work to a Structure (* Related Problems 11.12 11.16)

Use the principle of virtual work to determine the horizontal reaction on the

structure at C.

Strategy
Even though the structure is fixed at A and C, it can be subjected to hypothetical

virtual motions. We must choose a virtual motion for which the horizontal reac-

tion at C and the known external loads on the structure do work. By calculating

the resulting virtual work, we can determine the horizontal reaction at C.

Solution

400 N

500 N-m

B

C

Cy
Cx

A

Ax
Ay

Free-body diagram of the structure.

The objective is to determine Cx.

400 N

40

1 m

B

2 m

40

A
C

500 N-m

BEDFMC11_0136129153.QXD  4/14/07  3:07 AM  Page 550
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Practice Problem Use the principle of virtual work to determine the vertical reaction

at C. Do so by holding point A fixed and subjecting the entire structure to a rigid clock-

wise virtual rotation 

Answer: Cy = -79.3 N.

da.

400 N

A

400 sin 40  N B

500 N-m C

Cx
Cy

Ax

Ay

1 m

da

dx

Choose a virtual motion Hold point A

fixed and let point C undergo a horizontal

virtual displacement dx. As a result, bar AB

undergoes a clockwise virtual rotation da.

Determine the virtual work.

The work done by the 400-N force is

(400 sin 40  N)(1 m)da.

dU  (400 sin 40  N)(1 m)da 

Bar BC undergoes a rotation da in the

counterclockwise direction, so the work

done by the couple is (500 N-m)da.

The work done by the reaction Cx is

Cx dx. The total virtual work is

To obtain Cx from this equation, the

relationship between da and dx must

be determined.

(500 N-m)da  Cx dx  0.

Obtain the relationship

between da and dx.

From the geometry of the structure,

The derivative of this equation with

respect to a is

so an infinitesimal change in x is related

to an infinitesimal change in a by

Because the clockwise virtual rotation

da is a decrease in a, dx is related to

da by

Substituting this expression into the

equation for the total virtual work gives

Solving yields Cx  294 N.

x  2 (2 cos a).

dx  4 sin a da.

dx  4 sin 40  da.

dU  *(400 sin 40  N)(1 m)  (500 N-m) 

            (4 sin 40  m)Cx +da  0.

4 sin a,
dx

da
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552 Chapter 11 Virtual Work and Potential Energy

A
C

h

b

B

Example 11.2 Applying Virtual Work to a Machine (* Related Problem 11.21)

The extensible platform is raised and lowered by the hydraulic cylinder BC.

The total weight of the platform and men is W. The weights of the beams sup-

porting the platform can be neglected. What axial force must the hydraulic cylin-

der exert to hold the platform in equilibrium in the position shown?

Strategy
We can use a virtual motion that coincides with the actual motion of the platform

and beams when the length of the hydraulic cylinder changes. By calculating

the virtual work done by the hydraulic cylinder and by the weight of the men and

platform, we can determine the force exerted by the hydraulic cylinder.

Solution

Choose a Virtual Motion

We draw the free-body diagram of the platform and beams in Fig. a. Our ob-

jective is to determine the force F exerted by the hydraulic cylinder. If we hold

point A fixed and subject point C to a horizontal virtual displacement the only

external forces that do virtual work are F and the weight W. (The reaction due

to the roller support at C is perpendicular to the virtual displacement.)

dx,

F

CAy

Ax

W

(a) Free-body diagram of the platform

and supporting beams.
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C

D

FA

h

b
dx

300 N

2 m

A
800 N-m

2 m

y

x

Problem 11.1

Determine the Virtual Work The virtual work done by the force F as point

C undergoes a virtual displacement to the right (Fig. b) is To deter-

mine the virtual work done by the weight W, we must determine the vertical dis-

placement of point D in Fig. b when point C moves to the right a distance The

dimensions b and h are related by

where L is the length of the beam AD. Taking the derivative of this equation

with respect to b, we obtain

which we can solve for dh in terms of db:

Thus, when b increases an amount the dimension h decreases an amount

Because there are three pairs of beams, the platform moves down-

ward a distance and the virtual work done by the weight is

The total virtual work is

and we obtain 

Critical Thinking
We designed this example to demonstrate how advantageous the method of vir-

tual work can be for certain types of problems. You can see that it would be very

tedious to draw the free-body diagrams of the individual members of the frame

supporting the platform and solve the equilibrium equations to determine the

force exerted by the hydraulic cylinder. In contrast, it was relatively simple to

determine the virtual work done by the external forces acting on the frame.

F = 13b>h2W.

dU = c -F + a
3b

h
bW ddx = 0,

13b>h2W dx.

13b>h2 dx,

1b>h2 dx.

dx,

dh = -
b

h
 db.

2b + 2h 

dh

db
= 0,

b2
+ h2

= L2,

dx.

-F dx.dx

Problems

The following problems are to be solved using the prin-

ciple of virtual work.

11.1 Determine the reactions at A.

Strategy: Subject the beam to three virtual motions: 1. a hori-

zontal displacement 2. a vertical displacement and 3. a

rotation about A.du

dy;dx;

11.2 (a) Determine the virtual work done by the 2-kN force and

the 2.4 kN-m couple when the beam is rotated through a counter-

clockwise angle about point A.

(b) Use the result of (a) to determine the reaction at B.

du

(b) A virtual displacement in which A re-

mains fixed and C moves horizontally.

30*

400 mm400 mm

B
A

2.4 kN-m

2 kN

800 mm

Problem 11.2
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554 Chapter 11 Virtual Work and Potential Energy

600 N/m

0.4 m

0.3 m

0.5 m

0.9 m

M

Problem 11.9

L /2 L /2

w0

A
B

Problem 11.5

3 ft 3 ft 2 ft

A B

x

y

100 lb/ft

300 lb/ft
600 lb

Problem 11.6

F

A

B

F

D

C

60* 60*

60*

R

Problem 11.7

1.5 m

1 m

1 m

1.5 m

A

B

C D

E

F

1.5 m

200 N

Problem 11.8

11.3 Determine the tension in the cable.

11.4 The L-shaped bar is in equilibrium. Determine F.

11.5 The dimension and Determine the

reactions at A and B.

Strategy: To determine the virtual work done by the distrib-

uted load, represent it by an equivalent force.

w0 = 300 lb>ft.L = 4 ft

11.6 Determine the reactions at A and B.

11.7 The mechanism is in equilibrium. Determine the force R in

terms of F.

11.8 Determine the reaction at the roller support.

11.9 Determine the couple M necessary for the mechanism to be

in equilibrium.

200 N

1.6 m0.8 m

60* A

Problem 11.3

60 N
600 mm

F

100 N-m

500 mm 500 mm

Problem 11.4

BEDFMC11_0136129153.QXD  4/14/07  3:07 AM  Page 554



Problems 555

B

F

A

Problem 11.10

M
F

P

200 mm

400 mm

600 mm

400 mm

400 mm

400 mm

400 mm

Problem 11.11

9 in

400 in-lb 50*

F

6 in

Problem 11.13

11.10 The system is in equilibrium. The total mass of the sus-

pended load and assembly A is 120 kg.

(a) By using equilibrium, determine the force F.

(b) Using the result of (a) and the principle of virtual work, deter-

mine the distance the suspended load rises if the cable is pulled

upward 300 mm at B.

11.11 Determine the force P necessary for the mechanism to be

in equilibrium.

* 11.12* Show that is related to by

(See Active Example 11.1.)

dx = 1L
1
 tan b2 da.

dadx

* 11.13 The horizontal surface is smooth. Determine the hori-

zontal force F necessary for the system to be in equilibrium.

(See Active Example 11.1.)

L1

L2

b

da

dx

Problem 11.12
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556 Chapter 11 Virtual Work and Potential Energy

* 11.14* Show that is related to by

Strategy: Write the law of cosines in terms of and take

the derivative of the resulting equation with respect to (See

Active Example 11.1.)

a.

a

dx =

L1x sin a

x - L1 cos a
 da.

dadx

* 11.15 The linkage is in equilibrium. What is the force F?

(See Active Example 11.1.)

* 11.16 The linkage is in equilibrium. What is the force F? (See

Active Example 11.1.)

11.17 Bar AC is connected to bar BD by a pin that fits in the

smooth vertical slot. The masses of the bars are negligible. If

what couple is necessary for the system to be

in equilibrium?

MBMA = 30 N-m,

11.18 The angle and the force exerted on the station-

ary piston by pressure is 4 kN toward the left. What couple M is

necessary to keep the system in equilibrium?

a = 20 ,

11.19 The structure is subjected to a 400-N load and is held in

place by a horizontal cable. Determine the tension in the cable.

0.7 m

0.4 m

D

C

B

MB

MA
A

Problem 11.17

3 ft

6 ft

400 lb

4 ft 8 ft

F

4 ft

Problem 11.16

M

240

mm
130

mm

a

Problem 11.18

2 m

400 N

60* 60*

2 m

Problem 11.19

200 mm

400 mm

F

2 kN

200 mm

Problem 11.15

L1
L2

x

a

da

dx

Problem 11.14
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B

A

0.2 m

0.25 m

Problem 11.24

Problem 11.20

12 in

A

300 lb

6 in

60*

60*

B

Problem 11.21

B

D

A

C

W

h

b

E

Problem 11.22

P

F

F

400 mm
800 mm

600 mm

400 mm

600 mm

Problem 11.23

11.20 If the load on the car jack is what is the ten-

sion in the threaded shaft between A and B?

L = 6.5 kN,

11.22 This device raises a load W by extending the hydraulic

actuator DE. The bars AD and BC are each 2 m long, and the dis-

tances and If what force must

the actuator exert to hold the load in equilibrium?

W = 4 kN,h = 0.8 m.b = 1.4 m

11.23 Determine the force P necessary for the mechanism to be

in equilibrium.

65 mm

65 mm

120

mm

B

L

A

* 11.21 Determine the reactions at A and B. (Use the equilibri-

um equations to determine the horizontal components of the

reactions, and use the procedure described in Example 11.2 to

determine the vertical components.)
11.24 The collar A slides on the smooth vertical bar. The masses

are and 

(a) If the collar A is given an upward virtual displacement 

what is the resulting downward displacement of the mass B?

(b) Use virtual work to determine the tension in the spring.

dy,

mB = 10 kg.mA = 20 kg
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558 Chapter 11 Virtual Work and Potential Energy

11.2 Potential Energy

BACKGROUND

The work of a force F due to a differential displacement of its point of appli-

cation is

If a function of position V exists such that for any dr,

(11.10)

the function V is called the potential energy associated with the force F, and F

is said to be conservative. (The negative sign in this equation is in keeping with

the interpretation of V as potential  energy. Positive work results from a de-

crease in V.) If the forces that do work on a system are conservative, we will

show that the total potential energy of the system can be used to determine its

equilibrium positions.

Examples of Conservative Forces

Weights of objects and the forces exerted by linear springs are conservative. In the

following sections, we derive the potential energies associated with these forces.

Weight In terms of a coordinate system with its y axis upward, the force

exerted by the weight of an object is (Fig. 11.8a). If we give the object

an arbitrary displacement (Fig. 11.8b), the work done by

its weight is

We seek a potential energy V such that

(11.11)

or

If we neglect the variation in the weight with height and integrate, we obtain

The constant C is arbitrary. Since this function satisfies Eq. (11.11) for any value

of C, we will let The position of the origin of the coordinate system can

also be chosen arbitrarily. Thus, the potential energy associated with the weight

of an object is

(11.12)

where y is the height of the object above some chosen reference level, or datum.

Springs Consider a linear spring connecting an object to a fixed support

(Fig. 11.9a). In terms of the stretch where r is the length of the spring

and is its unstretched length, the force exerted on the object is kS (Fig. 11.9b).

If the point at which the spring is attached to the object undergoes a differential

displacement dr (Fig. 11.9c), the work done by the force on the object is

dU = -kS dS,

r0

S = r - r0,

V = Wy,

C = 0.

V = Wy + C.

dV

dy
= W.

dU = -W dy = -dV

dU = F # dr = 1-Wj2 # 1dxi + dyj + dzk2 = -W dy.

dr = dxi + dyj + dzk

F = -Wj

dU = F # dr = -dV,

dU = F # dr.

(a)

(b)

x

y

z

*Wj

*Wj

x

y

z

dr

Figure 11.8
(a) Force exerted by the weight of an object.

(b) A differential displacement.
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11.2 Potential Energy 559

(a)

k

(b)

kS

(c) (d)

dS

kS

dr

dr Figure 11.9
(a) A spring connected to an object.

(b) The force exerted on the object.

(c) A differential displacement of the object.

(d) The work done by the force is

dU = -kS dS.

where dS is the increase in the stretch of the spring resulting from the dis-

placement (Fig. 11.9d). We seek a potential energy V such that

(11.13)

or

Integrating this equation and letting the integration constant be zero, we obtain

the potential energy associated with the force exerted by a linear spring:

(11.14)

Notice that V is positive if the spring is either stretched (S is positive) or com-

pressed (S is negative). Potential energy (the potential to do work) is stored in

a spring by either stretching or compressing it.

Principle of Virtual Work for Conservative Forces

Because the work done by a conservative force is expressed in terms of its po-

tential energy through Eq. (11.10), we can give an alternative statement of the

principle of virtual work when an object is subjected to conservative forces: 

Let an object be in equilibrium. If the forces and couples that do work

on the object as the result of a virtual translation or rotation are con-

servative, the change in the total potential energy is zero:

(11.15)

We emphasize that it is not necessary that all of the forces and couples acting

on the object be conservative for this result to hold; it is necessary only that the

forces and couples that do work be conservative. This principle also applies to

a system of interconnected objects if the external forces that do work are con-

servative and the internal forces at the connections between objects either do no

work or are conservative. Such a system is called a conservative system.

dV = 0.

V =

1

2
 kS2.

dV

dS
= kS.

dU = -kS dS = -dV
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560 Chapter 11 Virtual Work and Potential Energy

If the position of a system can be specified by a single coordinate q, the sys-

tem is said to have one degree of freedom. The total potential energy of a con-

servative, one-degree-of-freedom system can be expressed in terms of q, and we

can write Eq. (11.15) as

Thus, when the object or system is in equilibrium, the derivative of its total po-

tential energy with respect to q is zero:

(11.16)

We can use this equation to determine the values of q at which the system is in

equilibrium.

Stability of Equilibrium

Suppose that a homogeneous bar of weight W and length L is suspended from

a pin support at one end. In terms of the angle shown in Fig. 11.10a, the height

of the center of mass relative to the pinned end is Choosing the

level of the pin support as the datum, we can therefore express the potential en-

ergy associated with the weight of the bar as

When the bar is in equilibrium,

This condition is satisfied when (Fig. 11.10b) and also when 

(Fig. 11.10c).

There is a fundamental difference between the two equilibrium positions

of the bar. In the position shown in Fig. 11.10b, if we displace the bar slightly

from its equilibrium position and release it, the bar will remain near the equi-

librium position. We say that this equilibrium position is stable. When the

bar is in the position shown in Fig. 11.10c, if we displace it slightly and re-

lease it, the bar will move away from the equilibrium position. This equilib-

rium position is unstable.

a = 180a = 0

dV

da
=

1

2
 WL sin a = 0.

V = -

1

2
 WL cos a.

-
1

2
 L cos a.

a

dV

dq
= 0.

dV =

dV

dq
 dq = 0.

(a)

Datum

a

(b) (c)

a * 180+

a * 0Figure 11.10
(a) A bar suspended from one end.

(b) The equilibrium position 

(c) The equilibrium position a = 180 .

a = 0.
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11.2 Potential Energy 561

V

dV 

da

Unstable
equilibrium 

Stable
equilibrium 

Equilibrium

Equilibrium

Unstable

Stable

(a)

(b)

(c)

a

a

a

p

p

p

d
2
V 

da
2

Figure 11.11

Graphs of V, and d2V>da2.dV>da,

q

V

Stable

equilibrium 

Unstable

equilibrium 

Figure 11.12

Graphs of the potential energy V as a function of the

coordinate q that exhibit stable and unstable equilibrium

positions.

The graph of the bar s potential energy V as a function of is shown in

Fig. 11.11a. The potential energy is a minimum at the stable equilibrium posi-

tion and a maximum at the unstable equilibrium position The

derivative of V (Fig. 11.11b) equals zero at both equilibrium positions. The sec-

ond derivative of V (Fig. 11.11c) is positive at the stable equilibrium position

and negative at the unstable equilibrium position 

If a conservative, one-degree-of-freedom system is in equilibrium and the

second derivative of V evaluated at the equilibrium position is positive, the equi-

librium position is stable. If the second derivative of V is negative, it is unsta-

ble (Fig. 11.12).

: Stable equilibrium

: Unstable equilibrium

Proving these results requires analyzing the motion of the system near an equi-

librium position.

Using potential energy to analyze the equilibrium of one-degree-of-freedom

systems typically involves three steps:

1. Determine the potential energy Express the total potential energy in terms

of a single coordinate that specifies the position of the system.

2. Find the equilibrium positions By calculating the first derivative of the

potential energy, determine the equilibrium position or positions.

3. Examine the stability Use the sign of the second derivative of the potential

energy to determine whether the equilibrium positions are stable.

 
dV

dq
= 0, d2V

dq2
6 0

 
dV

dq
= 0, d2V

dq2
7 0

a = 180 .a = 0

a = 180 .a = 0

a

RESULTS

Potential Energy

If a function of position V exists such that, for any infinitesimal displacement

dr, the work done by a force F is

then V is called the potential energy associated with the force and F is said to

be conservative.

dU = F # dr = -dV,
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562 Chapter 11 Virtual Work and Potential Energy

This principle also applies to a system of interconnected objects if the external

forces that dowork are conservative and the internal forces between objects either

do no work or are conservative. Such a system is called a conservative system.

Principle of Virtual Work for Conservative Forces

dV  0. (11.15)

Let an object be in equilibrium. If the forces and couples that

do work on the object as the result of a virtual translation or

rotation are conservative, the change in the total potential

energy is zero:

(11.16)

If the position of a system can be specified by a single coordinate q,

the system is said to have one degree of freedom. When a conservative,

one-degree-of-freedom system is in equilibrium,

If the second derivative of V with respect to q is positive, the equilibrium

position is stable, and if the second derivative is negative, the equilibrium

position is unstable.

 0.
dV

dq

Potential energy associated with a spring,

where S is the stretch, the length of the

spring relative to its unloaded length.

V                     (11.14)kS2.
1 

2

k

Wj

x

y

z

V  Wy.            (11.12)

Potential energy associated with the weight of

an object. The coordinate y is the height of the

center of mass above an arbitrary reference

point, or datum.
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11.2 Potential Energy 563

Active Example 11.3 Stability of a Conservative System (* Related Problems 11.27 11.29)

A crate of weight W is suspended from the ceiling by a spring. The coordinate

x measures the vertical position of the center of mass of the crate relative to its

position when the spring is unstretched. Determine the equilibrium position of

the crate relative to its position when the spring is unstretched.

Potential energy associated with

the weight.

Let x  0 be the datum. Because  x

is positive downward, the potential

energy is Wx.

Potential energy associated with

the spring.

The stretch of the spring equals x,

so the potential energy is

kx
2.

1 

2

Apply Eq. (11.16).

The equilibrium position is

When the crate is equilibrium,

The total potential energy is

kx
2 

 Wx.
1 

2
V 

 kx
 

 W  0.
dV

dx

x 
W

k
.

k

x

Practice Problem Determine whether the equilibrium position of the crate is stable.

Answer: Yes.

Strategy
The forces acting on the crate its weight and the force exerted by the spring

are conservative. We can express the total potential energy in terms of the

coordinate x and use Eq. (11.16) to determine the equilibrium position.

Solution
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564 Chapter 11 Virtual Work and Potential Energy

R

Datum

3 

8
R

a

Example 11.4 Stability of an Equilibrium Position (* Related Problems 11.31, 11.32)

The homogeneous hemisphere is at rest on the plane surface. Show that it is in

equilibrium in the position shown. Is the equilibrium position stable?

Strategy
To determine whether the hemisphere is in equilibrium and whether its equi-

librium is stable, we must introduce a coordinate that specifies its orientation and

express its potential energy in terms of that coordinate. We can use as the

coordinate the angle of rotation of the hemisphere relative to the position shown.

Solution

Determine the Potential Energy Suppose that the hemisphere is rotated

through an angle relative to its original position (Fig. a). Then, from the datum

shown, the potential energy associated with the weight W of the hemisphere is

V = -

3

8
 RW cos a.

a

Find the Equilibrium Positions When the hemisphere is in equilibrium,

which confirms that is an equilibrium position.

Examine the Stability The second derivative of the potential energy is

This expression is positive at so the equilibrium position is stable.

Critical Thinking
Notice that we ignored the normal force exerted on the hemisphere by the plane

surface. This force does no work and so does not affect the potential energy.

a = 0,

d2V

da2
=

3

8
 RW cos a.

a = 0

dV

da
=

3

8
 RW sin a = 0,

(a) The hemisphere rotated through an angle a.
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The spring is unstretched when and the distance between points A and

B is (Fig. a), so the stretch of the spring is Therefore,

the potential energy associated with the spring is and the

total potential energy is

When the system is in equilibrium,

Because the system is in equilibrium when we can solve this equa-

tion for the spring constant in terms of W and L:

Examine the Stability The second derivative of the potential energy is

This is a positive number, so the equilibrium position is stable.

Critical Thinking
How do you know when you can apply the principle of virtual work for con-

servative forces to a system? The system must be conservative, which means

that the forces and couples that do work when the system undergoes a virtual

motion are conservative. Conservative forces are forces for which a potential

energy exists. In this example, work is done by the weights of the bars and the

force exerted by the spring, which are conservative forces.

 = 0.866WL + 4kL2
.

 = WL sin 60 + 4kL
2
 1cos 60 - cos2

 60 + sin2
 60 2

 
d

2V

da2
= WL sin a + 4kL2

 1cos a - cos2
 a + sin2

 a2

k =
W cos a

4L 1sin a211 - cos a2
=

W cos 60

4L 1sin 60 211 - cos 60 2
=

0.289W

L

a = 60 ,

dV

da
= -WL cos a + 4kL

2
 1sin a211 - cos a2 = 0.

V = -WL sin a + 2kL
2
11 - cos a2

2
.

1

2
 k12L - 2L cos a2

2
,

2L - 2L cos a.2L cos a

a = 0

(a) Determining the total potential energy.

The pinned bars are held in place by the linear spring. Each bar has weight W

and length L. The spring is unstretched when and the bars are in equi-

librium when Determine the spring constant k, and determine whether

the equilibrium position is stable or unstable.

Strategy
The only forces that do work on the bars are their weights and the force exerted

by the spring. By expressing the total potential energy in terms of and using

Eq. (11.16), we will obtain an equation we can solve for the spring constant k.

Solution

Determine the Potential Energy If we use the datum shown in Fig. a, the

potential energy associated with the weights of the two bars is

W a -
1

2
 L sin ab + W a -

1

2
 L sin ab = -WL sin a.

a

a = 60 .

a = 0,

kBADatum

L

1 

2
L sin a

2L cos a 

a a

Example 11.5 Stability of an Equilibrium Position (* Related Problems 11.41, 11.42)

kBA

L

a a
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k

x

m

Problem 11.27

x

Problem 11.28

x

Problem 11.29

a0 a0

Problem 11.30

R

L

Problem 11.31

Problems

11.25 The potential energy of a conservative system is given by

(a) For what values of x is the system in equilibrium?

(b) Determine whether the equilibrium positions you found in (a)

are stable or unstable.

11.26 The potential energy of a conservative system is given by

(a) For what values of q is the system in equilibrium?

(b) Determine whether the equilibrium positions you found in (a)

are stable or unstable.

*11.27 The mass and the spring constant

The spring is unstretched when 

(a) Determine the value of x for which the mass is in equilibrium.

(b) Is the equilibrium position stable or unstable? (See Example 11.3.)

x = 0.

k = 100 N/m.m = 2 kg

V = 2q 3
- 21q2

+ 72q.

V = 2x3
+ 3x2

- 12x.

* 11.28 The nonlinear spring exerts a force on

the mass, where k and are constants. Determine the potential

energy V associated with the force exerted on the mass by

the spring. (See Example 11.3.)

e

-kx + ex 3

* 11.29 The 1-kg mass is suspended from the nonlinear spring

described in Problem 11.28. The constants and 

where x is in meters.

(a) Show that the mass is in equilibrium when and

when 

(b) Determine whether the equilibrium positions are stable or

unstable. (See Example 11.3.)

x = 2.45 m.

x = 1.12 m

e = 1,k = 10

11.30 The two straight segments of the bar are each of weight W

and length L. Determine whether the equilibrium position shown

is stable if (a) (b) 90 6 a0 6 180 .0 6 a0 6 90 ;

* 11.31 The homogeneous composite object consists of a

hemisphere and a cylinder. It is at rest on the plane surface. Show

that this equilibrium position is stable only if 

(See Example 11.4.)

L 6 R>22.
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11.33 The homogeneous bar has weight W, and the spring is un-

stretched when the bar is vertical 

(a) Use potential energy to show that the bar is in equilibrium

when 

(b) Show that the equilibrium position is stable only if

11.34 Suppose that the bar in Problem 11.33 is in equilibrium

when 

(a) Show that the spring constant 

(b) Determine whether the equilibrium position is stable.

k = 0.490 W>L.

a = 20 .

2kL 7 W.

a = 0

a = 0.

1a = 02.

* 11.32 The homogeneous composite object consists of a half-

cylinder and a triangular prism. It is at rest on the plane surface.

Show that this equilibrium position is stable only if 

(See Example 11.4.)

h 6 22 R.

11.36 The bar AB in Problem 11.35 has mass length

2 m, and the spring constant is 

(a) Determine the value of in the range for which

the bar is in equilibrium.

(b) Is the equilibrium position determined in part (a) stable?

0 6 a 6 90a

k = 12 N/m.

m = 4 kg,

C
B

k

A

a

Problems 11.35/11.36

L

k

a

Problems 11.33/11.34

h

R

Problem 11.32

11.35 The bar AB has mass m and length L. The spring is

unstretched when the bar is vertical The light collar C

slides on the smooth vertical bar so that the spring remains hori-

zontal. Show that the equilibrium position is stable only if

2kL 7 mg.

a = 0

1a = 02.

BEDFMC11_0136129153.QXD  4/14/07  3:08 AM  Page 567
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11.39 Each homogeneous bar is of mass m and length L. The

spring is unstretched when If determine the

value of in the range for which the system is in

equilibrium.

11.40 Determine whether the equilibrium position found in

Problem 11.39 is stable or unstable.

0 6 a 6 90a

mg = kL,a = 0.

k

a

a

Problems 11.39/11.40

k

L

a a

Problems 11.41/11.42

2 ft

4 ft

k

a

Problems 11.43/11.44

* 11.42 Determine whether the equilibrium position found in

Problem 11.41 is stable or unstable. (See Example 11.5.)

* 11.41 The pinned bars are held in place by the linear 

spring. Each bar has weight W and length L. The spring is 

unstretched when Determine the value of in the 

range for which the system is in equilibrium.

(See Example 11.5.)

0 6 a 6 90

aa = 90 .

11.43 The bar weighs 15 lb. The spring is unstretched when

The bar is in equilibrium when Determine the

spring constant k.

11.44 Determine whether the equilibrium positions of the bar in

Problem 11.43 are stable or unstable.

a = 30 .a = 0.

11.37 The bar AB has weight W and length L. The spring is un-

stretched when the bar is vertical The light collar C

slides on the smooth horizontal bar so that the spring remains ver-

tical. Show that the equilibrium position is unstable.

11.38 The bar AB described in Problem 11.37 has a mass of

2 kg, and the spring constant is 

(a) Determine the value of in the range for which

the bar is in equilibrium.

(b) Is the equilibrium position determined in (a) stable?

0 6 a 6 90a

k = 80 N/m.

a = 0

1a = 02.

B

C

A

1 m

k

a

Problems 11.37/11.38
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8 in

2 in

F
A

Problem 11.47

100 N

2 m

A 30*

200 N-m

Problem 11.45

B

20 kN-m

y

A C x
40*40*

2 m

Problem 11.46

F

F

(a)

D

d

(b)

Problem 11.48

Review Problems

11.45 (a) Determine the couple exerted on the beam at A.

(b) Determine the vertical force exerted on the beam at A.

11.46 The structure is subjected to a 20 kN-m couple. Determine

the horizontal reaction at C.

11.47 The rack and pinion  mechanism is used to exert a verti-

cal force on a sample at A for a stamping operation. If a force

is exerted on the handle, use the principle of virtual

work to determine the force exerted on the sample.

F = 30 lb

11.48 If you were assigned to calculate the force exerted on the

bolt by the pliers when the grips are subjected to forces F as

shown in Fig. a, you could carefully measure the dimensions,

draw free-body diagrams, and use the equilibrium equations. But

another approach would be to measure the change in the distance

between the jaws when the distance between the handles is

changed by a small amount. If your measurements indicate that

the distance d in Fig. b decreases by 1 mm when D is decreased

8 mm, what is the approximate value of the force exerted on the

bolt by each jaw when the forces F are applied?
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M

L

F

2L

a

Problem 11.51

M

350 mm

300 mm

C

B

A
45*

Problem 11.52

a

A

B

C

400 mm

6 kN-m

F

D

b 600 mm

Problems 11.53/11.54

11.50 The system is in equilibrium.

(a) By drawing free-body diagrams and using equilibrium

equations, determine the couple M.

(b) Using the result of (a) and the principle of virtual work,

determine the angle through which pulley B rotates if pulley A

rotates through an angle a.

11.51 The mechanism is in equilibrium. Neglect friction be-

tween the horizontal bar and the collar. Determine M in terms of

F, and L.a,

11.52 In an injection casting machine, a couple M applied to arm

AB exerts a force on the injection piston at C. Given that the hori-

zontal component of the force exerted at C is 4 kN, use the princi-

ple of virtual work to determine M.

11.53 Show that if bar AB is subjected to a clockwise virtual

rotation bar CD undergoes a counterclockwise virtual

rotation (b/a) 

11.54 The system is in equilibrium, and

Use the principle of virtual work to determine the

force F.

b = 400 mm.

a = 800 mm,

da.

da,

100 mm

A

B

M

200

N-m

100

mm

200 mm

200

mm

Problem 11.50

A

F

B

Problem 11.49

11.49 The system is in equilibrium. The total weight of the sus-

pended load and assembly A is 300 lb.

(a) By using equilibrium, determine the force F.

(b) Using the result of (a) and the principle of virtual work, deter-

mine the distance the suspended load rises if the cable is pulled

downward 1 ft at B.
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h

R

Problem 11.62

k

a

Problems 11.57/11.58

m

k

1

2
L

1

2
L

1

2
L

a

Problems 11.59/11.60

b

W

b

A C

a

a

1

2
b

Problem 11.61

11.57 The mass of the bar is 10 kg, and it is 1 m in length.

Neglect the masses of the two collars. The spring is unstretched

when the bar is vertical and the spring constant is

Determine the values of at which the bar is in

equilibrium.

11.58 Determine whether the equilibrium positions of the bar in

Problem 11.57 are stable or unstable.

ak = 100 N>m.

1a = 02,

11.61 The hydraulic cylinder C exerts a horizontal force at A, rais-

ing the weight W. Determine the magnitude of the force the hydraulic

cylinder must exert to support the weight in terms of W and a.

11.60 Determine whether the equilibrium position found in

Problem 11.59 is stable or unstable.

11.62 The homogeneous composite object consists of a hemi-

sphere and a cone. It is at rest on the plane surface. Show that this

equilibrium position is stable only if h 6 23R.

11.59 The spring is unstretched when Determine the

value of in the range for which the system is in

equilibrium.

0 6 a 6 90a

a = 90 .

c

d

a b

A

B

C

D

24 N-m

M

Problems 11.55/11.56

11.55 Show that if bar AB is subjected to a clockwise virtual 

rotation bar CD undergoes a clockwise virtual rotation

[ad/1ac + bc - bd2] da.

da,

11.56 The system is in equilibrium, 

and Use the principle of virtual work to

determine the couple M.

d = 200 mm.c = 350 mm,

a = 300 mm, b = 350 mm,
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573

A.1 Algebra

Quadratic Equations

The solutions of the quadratic equation

are

Natural Logarithms

The natural logarithm of a positive real number x is denoted by ln x. It is defined

to be the number such that

where is the base of natural logarithms.

Logarithms have the following properties:

 ln y
x
= x ln y.

 ln1x>y2 = ln x - ln y,

 ln1xy2 = ln x + ln y,

e = 2.7182

e
ln x

= x,

x =
-b ; 2b

2
- 4ac

2a
.

ax
2
+ bx + c = 0

A P P E N D I X

A
Review of Mathematics
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A.2 Trigonometry

The trigonometric functions for a right triangle are

The sine and cosine satisfy the relation

and the sine and cosine of the sum and difference of two angles satisfy

The law of cosines for an arbitrary triangle is

and the law of sines is

A.3 Derivatives

d

dx
 tanh x =

1

cosh2
 x

d

dx
 tan x =

1

cos2
 x

d

dx
 ln x =

1

x

d

dx
 cosh x = sinh x

d

dx
 cos x = -sin x

d

dx
 e

x
= e

x

d

dx
 sinh x = cosh x

d

dx
 sin x = cos x

d

dx
 x
n
= nx

n-1

sin aa

a
=

sin ab

b
=

sin ac

c
 .

c
2
= a

2
+ b

2
- 2ab cos ac 

,

 cos1a - b2 = cos a cos b + sin a sin b.

 cos1a + b2 = cos a cos b - sin a sin b,

 sin1a - b2 = sin a cos b - cos a sin b,

 sin1a + b2 = sin a cos b + cos a sin b,

sin2
 a + cos2

 a = 1,

sin a =
1

csc a
=

a

c
 , cos a =

1

sec a
=

b

c
 , tan a =

1

cot a
=

a

b
 .

a

b

a
c

b

a
c

aa

ac

ab
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A.4 Integrals

L
xe

ax
 dx =

e
ax

a
2

 1ax - 12

L
dx

11 + a
2
x

2
2

1>2
=

1

a
 ln cx + a

1

a
2
+ x

2
b

1>2

d

L
e

ax
 dx =

e
ax

a
+  

1

8
 a

2
cx1a

2
- x

2
2

1>2
+ a

2
 arcsin 

x

a
d

L
 tanh x dx = ln cosh x

L
x

2
1a

2
- x

2
2

1>2
 dx = -  

1

4
 x1a

2
- x

2
2

3>2

L
 cosh x dx = sinh x

L
x11 - a

2
x

2
2

1>2
 dx = -  

a

3
 a

1

a
2
- x

2
b

3>2

L
 sinh x dx = cosh x

L
11 - a

2
x

2
2

1>2
 dx =

1

2
 cx11 - a

2
x

2
2

1>2
+

1

a
 arcsin ax d

L
sin

n
 x cos x dx =

1sin x2
n+1

n + 1
       1n Z -12-  

1

8a
3

 ln cx + a
1

a
2
+ x

2
b

1>2

d-
1

8a
2

 x11 + a
2
x

2
2

1>2

L
cos

4
 x dx =

3

8
 x +

1

4
 sin 2x +

1

32
 sin 4x

L
x

2
11 + a

2
x

2
2

1>2
 dx =

1

4
 ax a

1

a
2
+ x

2
b

3>2

L
cos

3
 x dx =

1

3
 sin x1cos

2
 x + 22

L
x11 + a

2
x

2
2

1>2
 dx =

a

3
 a

1

a
2
+ x

2
b

3>2

L
sin

3
 x dx = -   

1

3
 cos x1sin

2
 x + 22+

1

a
 ln cx + a

1

a
2
+ x

2
b

1>2

d f

L
 cos

2
 x dx =

1

2
 sin x cos x +

1

2
 x

L
11 + a

2
x

2
2

1>2
 dx =

1

2
 e x11 + a

2
x

2
2

1>2

L
sin

2
 x dx = -   

1

2
 sin x cos x +

1

2
 x

L
x1a + bx2

1>2
 dx = -

212a - 3bx2 1a + bx2
3>2

15b
2

L
 cos x dx = sin x

L
1a + bx2

1>2
 dx =

2

3b
 1a + bx2

3>2

L
 sin x dx = -cos x

L
x
-1

 dx = ln x

L
dx

11 - a
2
x

2
2

1>2
=

1

a
 arcsin ax     or     -  

1

a
 arccos ax

L
x

n
 dx =

x
n+1

n + 1
       1n Z -12
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A.5 Taylor Series

The Taylor series of a function is

where the primes indicate derivatives.

Some useful Taylor series are

 + a
sin2

 a

cos4
 a

+
1

3 cos2
 a
bx

3
+ .

 tan1a + x2 = tan a + a
1

cos2
 a
bx + a

sin a

cos3
 a
bx

2

 cos1a + x2 = cos a - 1sin a2x -
1

2
 1cos a2x2

+
1

6
 1sin a2x3

+ ,

 sin1a + x2 = sin a + 1cos a2x -
1

2
 1sin a2x2

-
1

6
 1cos a2x3

+ ,

e
x
= 1 + x +

x
2

2!
+

x
3

3!
+ ,

f 1a + x2 = f 1a2 + f 1a2x +
1

2!
  f 1a2x2

+
1

3!
  f 1a2x 3

+ ,

f1x2
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A P P E N D I X

B

x

y

O

A

y

x

b

Rectangular area

x

y

O

x*

y*

b

hh
1

2
1

2

Properties of Areas and Lines

B.1 Areas

The coordinates of the centroid of the area A are

The moment of inertia about the x axis the moment of inertia about the y axis

and the product of inertia are

The polar moment of inertia about O is

Ix y = 0Iy =
1

12
 hb

3
,Ix =

1

12
 bh

3
,

Ixy =
1

4
 b

2
h

2
Iy =

1

3
 hb

3
,Ix =

1

3
 bh

3
,

Area = bh

JO =

LA
r 2

 dA =

LA
1x2

+ y2
2 dA = Ix + Iy.

Ix =

LA
y2

 dA,  Iy =

LA
x2

 dA,  Ixy =

LA
xy dA.

IxyIy ,

Ix 
,

x =
LA

 x dA

LA
 dA

,  y =
LA

y dA

LA
 dA

.
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Ix y = a
1

8
-

4

9p
bR4Ix = Iy = a

p

16
 -

4

9p
bR4,

Ixy =
1

8
 R4Ix = Iy =

1

16
 pR4,Area =

1

4
 pR2

Ix y = 0Iy = a
p

8
-

8

9p
bR4,Ix =

1

8
 pR4,

Ixy = 0Ix = Iy =
1

8
 pR4,Area =

1

2
 pR2

Ix y = 0Ix = Iy =
1

4
 pR4,Area = pR2

Ix =
1

36
 bh3Ix =

1

12
 bh3,Area =

1

2
 bh

Ix y =
1

72
 b2h2Iy =

1

36
 hb3,Ix =

1

36
 bh3,

Ixy =
1

8
 b2h2Iy =

1

4
 hb3,Ix =

1

12
 bh3,

Area =
1

2
 bh

578 Appendix B Properties of Areas and Lines

Triangular area

x

y

O

x*

h

b

h

a

1

3

1

3

(a + b)

Circular area

y*

x*

R

Semicircular area 

y y*

R

x, x*
O

4R

3p

b

Triangular area

x

y

O

h

x*

y*

h

b

1

3

2

3

Quarter-circular area

y y*

R

x

x*

O 4R 

3,
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B.2 Lines 579

Circular sector

y

x
O

R

2R sin a

3a

a

a

Quarter-elliptical area

y

x

        1

a

b

O

4a

3p

4b

3p

x2

a2

y2

b2

Spandrel

y

x

y  cxn

b

(n  1)b

n  2

(n  1)cbn

4n  2

B.2 Lines

The coordinates of the centroid of the line L are

z =
LL

z dL

LL
 dL

 .y =
LL

y dL

LL
 dL

 ,x =
LL

x dL

LL
 dL

 ,

Ixy =
c

2
b

2n+2

4n + 4
Iy =

cb
n+3

n + 3
 ,Ix =

c
3
b

3n+1

9n + 3
 ,

Area =
cb

n+1

n + 1

Ixy =
1

8
 a

2
b

2
Iy =

1

16
 pa

3
b,Ix =

1

16
 pab

3
,

Area =
1

4
 pab

 Ixy = 0

 Ix =
1

4
 R

4
aa -

1

2
 sin 2ab , Iy =

1

4
 R

4
aa +

1

2
 sin 2ab ,

Area = aR
2

y

xz

L

y

x z

Semicircular arc

y

x

R

2R

p

Quarter-circular arc

y

x

R

2R

p

2R

p

Circular arc

y

x

R

a

a

R sin a

a
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A P P E N D I X

C
Properties of Volumes and
Homogeneous Objects

The coordinates of the centroid of the volume V are

The center of mass of a homogeneous object coincides with the centroid 

of its volume.

x =
LV

 x dV

LV
 dV

 , y =
LV

 y dV

LV
 dV

 , z =
LV

 z dV

LV
 dV

 .

y

xz

y

x z

V

L0

r

dm

Slender bar

y*

x, x*z*

y

z
O

l

l
1

2

Thin circular plate

z*

R

y*

x*

The moment of inertia of the object about the axis is

Ix  axis = Iy  axis =
1

4
 mR2

, Iz  axis =
1

2
 mR2

Ix axis = 0, Iy axis = Iz axis =
1

3
 ml2

Ix  axis = 0, Iy  axis = Iz  axis =
1

12
 ml2

I0 =

Lm
r 2

 dm.

L0
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Circular cylinder

y

x

z, z*

R

x*

O

l

y*

l
1

2

The terms and are the moments of inertia of the plate s cross-sectional area

A about the x and y axes.

 Ix  axis = Iy  axis = ma
1

12
 l 2

+
1

4
 R2

b , Iz  axis =
1

2
 mR2

 Ix axis = Iy axis = ma
1

3
 l2

+
1

4
 R2

b , Iz axis =
1

2
 mR2

Volume = pR2l

 Iz  axis =
1

12
 m1b2

+ c2
2

 Ix  axis =
1

12
 m1a2

+ b2
2, Iy  axis =

1

12
 m1a2

+ c2
2,

Volume = abc

IyIx

Iz axis = Ix axis + Iy axisIy axis =
m

A
 Iy 

,Ix axis =
m

A
 Ix 

,

Iz  axis =
1

12
 m1b2

+ h2
2Iy  axis =

1

12
 mb2

,Ix  axis =
1

12
 mh2

,

Iz axis =
1

3
 m1b2

+ h2
2Iy axis =

1

3
 mb2

,Ix axis =
1

3
 mh2

,

Thin rectangular plate

y

x

z

y*

x*

z*

O

h

h
b

b

1

2

1

2

Thin plate

y

xz

A

Rectangular prism

y*

x*

z*

b

a
c
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 Ix  axis = Iy  axis =
83

320
 mR2

, Iz  axis =
2

5
 mR2

 Ix axis = Iy axis = Iz axis =
2

5
 mR2

Volume =
2

3
 pR3

Ix  axis = Iy  axis = Iz  axis =
2

5
 mR2

Volume =
4

3
 pR3

 Ix  axis = Iy  axis = ma
3

80
 h2

+
3

20
 R2

b , Iz  axis =
3

10
 mR2

 Ix axis = Iy axis = ma
3

5
 h2

+
3

20
 R2

b , Iz axis =
3

10
 mR2

Volume =
1

3
 pR2h

582 Appendix C Properties of Volumes and Homogeneous Objects

Sphere

y*

x*

z*

R

Hemisphere

O

z, z*

y

y*

x*

x

R
3R

8

Circular cone

y

x

z, z*

R

x*

O

h

y*

h
3

4
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Solutions to Practice Problems

583

 6.82 mi/h.

Convert feet to miles.

Convert seconds to hours.

10 ft/s  10 ft/s
1 mi

5280 ft       

3600 s

1 h       

Active Example 1.4

Use Eq. (1.6) to calculate

the weight in newtons.
W  mg  (0.397 kg)(9.81 m/s2)  3.89 N.

Active Example 1.1

Active Example 2.1

Drawing the vectors U and 2V

to scale, place them head to tail.
8

6
U

2V

45

The measured value of

5.7

U

U  2V  is 5.7.

2V
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584 Solutions to Practice Problems

Active Example 2.3

Required the magnitude of the y

component of F to be three times

the magnitude of the x component.

The magnitude of F is

Solving yields Fx   285 N.

The vector F in terms of its

components is

900 N F 2
x  F2

y 

F 2
x  (3Fx )

2.

F  285i  3(285)j (N)

 285i  854j (N).

Fy   3 Fx .

Use similar triangles to determine

the location of point B :

xB  26.7 m.

xB

80 m

xB

80 m

x

y

A

B

Fx

F
Fy

 3 Fx
Fx

3 Fx

:

Active Example 2.6

rBD

(2, 3, 1) m

(2.4, 0, 3) mB

x

y

D

z

Determine the position vector

rBD in terms of its components.

rBD  (xD  xB)i  (yD  yB)j  (zD  zB)k

 (2  2.4)i  (3  0)j  (1  3)k (m)

 0.4i  3j  2k (m).
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( 0.4 m)2  (3 m)2  ( 2 m)2
Calculate the magnitude of rBD.

rBD  

 3.63 m.

r2
BDx  r2

BDy  r2
BDz 

Divide rBD by its magnitude to obtain

eBD in terms of its components.

 0.110i  0.827j  0.551k.

0.4i  3j  2k (m)

3.63 (m)

eBD 
rBD

rBD

Active Example 2.11

The vectors U and V are perpendicular if Use this condition to

determine .Vx

U # V = 0.

Calculate U *V in terms of the

components of the vectors.

U *V  UxVx  UyVy  UzVz

 (6)Vx  ( 5)(2)  ( 3)(2)

 6Vx  16.

Equate U*V to zero and solve

for Vx.

U *V  6Vx  16  0,

Vx  2.67.

Active Example 2.14

The cross product is perpendicular to U and perpendicular to V. By

determining the vector in terms of its components and dividing it by

its magnitude , we can obtain the components of a unit vector that is

perpendicular to U and perpendicular to V.

|U * V|

U * V

U * V

Calculate U  V in terms of the

 components of the vectors.

U  V  (UyVz  UzVy)i  (UxVz  UzVx) j

 11i  7j  19k.

 [(3)( 3)  (2)(5)]k

 [(2)( 4)  ( 1)( 3)]i  [(3)( 4)  ( 1)(5)] j

 (UxVy  UyVx)k

Divide the vector U  V

by its magnitude.

U  V  

 0.477i  0.304j  0.825k.

U  V

U  V

( 11)2  (7)2  ( 19)2

 23.0.

11i  7j  19k

23.0
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Active Example 3.1

Draw the Free-Body Diagram of the Car

Apply the Equilibrium Equations

Draw a sketch of the isolated car.

mg

T

N

Complete the free-body diagram by

showing the forces exerted on the car

by its weight, the cable, and the ramp.

Fy   N  mg cos 20   0.

 4830 N.

 (1440 kg)(9.81 m/s2)sin 20

T  mg sin 20

Fx  T  mg sin 20   0,

Solving for T yields

mg

y

x
N

20

T

Active Example 3.5

Draw the Free-Body Diagram and Apply Equilibrium

(100 kg)(9.81m/s2)j

TAB

TAC

TAD
AA

D

C
y

x
B

z

Isolate part of the cable system near

point A and show the forces exerted due to

the tensions in the cables. The sum of the

forces must equal zero:

F  TAB  TAC  TAD  (981 N) j  0.
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Write the Forces in Terms of Their Components

rAB

A (0, 6, 0) m

(4, 0, 2) m
B

x

y

C

D

z

Obtain a unit vector that has the

same direction as the force TAB

by dividing the position vector

rAB from point A to point B by its

magnitude.

rAB  (xB  xA)i  (yB  yA)j  (zB  zA)k

eAB   0.535i  0.802j  0.267k.

 4i  6j  2k (m).

rAB

*rAB*

Express the force TAB in terms of

its components by writing it as

the product of the tension TAB in

cable AB and the unit vector eAB.

Express the forces TAC and TAD

in terms of their components

using the same procedure.

Substitute these expressions into the equilibrium equation

TAB  TAB eAB

 TAB (0.535i  0.802j  0.267k),

TAC  TAC ( 0.302i  0.905j  0.302k),

TAD  TAD( 0.408i  0.817j  0.408k).

0.535TAB  0.302TAC  0.408TAD  0,

0.802TAB  0.905TAC  0.817TAD  981 N  0,

0.267TAB  0.302TAC  0.408TAD  0.

TAB  TAC  TAD (981 N) j  0.

Because the i, j, and k components must each equal zero,

this results in three equations:

Solving these three equations yields 

TAD = 141 N.

TAB = 432 N, TAC = 574 N, and
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Active Example 4.1

6 m

40 kN

30

40 cos 30  kN

40 sin 30  kN

A

y

Resolve the 40-kN force into

horizontal and vertical components.x

Calculate the sum of the moments

of the components about A.

The magnitude of the moment of the horizontal

component about A is zero. The magnitude of

the moment of the vertical component is

(6 m)(40 sin 30  N)  120 kN-m. Its direction

is counterclockwise, so the sum of the moments is

MA  120 kN-m.

Active Example 4.4

(a) Apply Eq. (4.2) to determine

the moment of F about point A.
 i        j       k

 7       1    5

40    70    40

MA  rAC  F

 310 i  480j  530k (ft-lb).

rAC  (xC  xA)i  (yC  yA) j  (zC  zA)k

 7i  j  5k (ft).

rAC

F

(0, 6, 5) ft

A

C (7, 7, 0) ft

y

x

z

B 

(11, 0, 4) ft

(b) Use the relation MA   D F , where

D is the perpendicular distance from A to

the line of action of F.

D 
MA  

F

 
(310)2  (480)2  (530)2 ft-lb 

90 lb

  8.66 ft.
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Active Example 4.6

Determine the components of the

vector from point C to the point

of application of F.

r  (xA  xC)i  (yA  yC)j  (zA  zC)k

 4i  2j  2k (m).

Calculate the moment of F about

point C.

 i        j      k

4      2     2

 2       6      3

MC  r  F

 18i  16j  20k (kN-m).

MBC  (eBC *MC)eBC

 [(0)( 18)  (0.8)( 16)  ( 0.6)(20)]eBC

 24.8eBC (kN-m).

Apply Eq. (4.4) to determine the

moment of F about the axis BC.

Although the moment of F about

point C is not the same as the

moment of F about point B, their

components parallel to the axis BC

are the same.

Active Example 4.9

Calculate the sum of the moments

of the two forces about point P.

y

x

(6, 6, 0) m

(10, 7, 3) m
r2

r1

+F

F

(8, 3, 0) m

P

 i         j        k

2     4     3

10     4       0

  i         j        k

 4      1     3

10       4        0

M  (r1  F)  [r2  ( F)]

 22k (N-m).

22 N-m

y

x

The magnitude of the moment is 22 N-m.

Pointing the thumb of the right hand in

the direction of the unit vector k, the

direction of the moment in the x y plane

is counterclockwise.
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Active Example 4.12

The force F  must equal the

sum of the forces in system 2.

F   F

 20i  15j  5k (kN).

The couple M  must equal the

sum of the moments about the

origin due to the forces and

moments in system 2.

 ( 105i  110j  90k)

 90i  90j  90k (kN-m).

M  4 3 2

20 15 5

i j k

Active Example 5.1

(a) Draw a diagram of the beam

isolated from its pin and roller 

supports and show the reactions

due to the support.

(b) Write the equilibrium equations,

and solve them, obtaining

Fx  Ax  0,

Fy  Ay  B  4 kN  0,

Mleft end  (3 m)B  (2 m)(4 kN)  0,

2 m

3 m

4 kN

Ay B

y

xAx

Ax  0,  Ay  1.33 kN, B  2.67 kN.

Active Example 5.5

Draw the free-body diagram of

the beam. There are five unknown

reactions.

2 kN

A

y

Ax

Ay

x

By

Bx

BMA

3 m

5 m

There are three independent equilibrium equations, so the beam is

statically indeterminate and the degree of redundancy is 5  3  2.

We cannot determine any of the reactions from the equilibrium equations.

Write the equilibrium equations.

Fx  Ax  Bx  0,

Fy  Ay  By  2 kN  0,

Mpoint A  MA  (5 m)By  (3 m)(2 kN)  0.
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Active Example 5.7

Draw the Free-Body Diagram of the Bar

Apply the Equilibrium Equations

Isolate the bar and show the reactions

exerted by the cables and the ball and

socket support.
Ax

Ay

y

Az

z

MAx

MAz

MAy

x

B

200j (N)

Reactions due to the
fixed support

The sums of the forces in each

coordinate direction equal zero.

Fx  Ax  0,

Fy  Ay  200 N  0,

Fz  Az  0.

The sum of the moments about

any point equals zero.

The components of this vector (the sums of the moments

about the three coordinate axes) must each equal zero.

Mx  MAx  40 N-m  0,

    i        j       k

  0.5    0.3    0.2

   0   200    0

 (MAx  40)i  MAy j  (MAz  100)k.

My  MAy  0,

Mz  MAz  100 N-m  0.

               
rAB  ( 200 j)

1

2
Mpoint A  MAxi  MAy j  MAz k 

 MAxi  MAy j  MAz k 

Solving the six scalar equilibrium equations yields

Ax  0,  Ay  200 N,  Az 0,  MAx  40 N-m, 

MAy  0, and MAz  100 N-m.
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Active Example 5.10

The force exerted on the plate by the bar AB 

must be directed along the line between

A and B, and the line of action of the weight of

the plate is vertical, so the three forces on the

plate are not parallel. Therefore they must be

concurrent.

y

x

P

100 lb

B
C

45

a

3 ft 1 ft

Apply the equilibrium equations.
Fx  B sin 45   C sin a  0,

Fy  B cos 45   C cos a  100 lb  0.

Solving yields the reactions B  35.4 lb, C  79.1 lb.

The angle a  arctan(1/3)  18.4 .

Active Example 6.1

Draw the free-body

diagram of joint B and 

apply the equilibrium

equations.

The angle a  arctan(5/3)  59.0 .

Fx  TBC sin a  TBD  3.33 kN  0, 

Fy  TBC cos a  0. 

Solving yields TBC  0 and TBD  3.33 kN. 

The axial force in member BC is zero and 

the axial force in member BD is 3.33 kN 

in compression, or

BC: zero, BD: 3.33 kN (C).

(Notice that joint C is one of the 

special joints  we discussed. We could

have determined by observation that 

TBC  0.)

A

C

D

B
2 kN

2 kN

3.33 kN

3.33 kN

y

TBC

TBD
x

B3.33 kN

a

BEDFMS_0136129153.QXD  4/14/07  8:13 PM  Page 592



Solutions to Practice Problems 593

Active Example 6.3

Pass planes through members

DE, DK, and JK and draw the

free-body diagram of the section.

A B C D E F

G H I J K L

100 kN

M

1 m

x

y

TDE

TDK

TJK

45

E F

K L
M

100 kN

Apply the equilibrium equations.

Fx  TDE  TDK cos 45   TJK  0,

Fy  TDK sin 45   100 kN  0,

Mpoint K  (1 m)TDE  (2 m)(100 kN)  0.

Solving yields TDE  200 kN, TDK  141 kN, 

and TJK  300 kN. The axial loads are

DE: 200 kN (T), DK: 141 kN (T),

JK: 300 kN (C).

BEDFMS_0136129153.QXD  4/14/07  8:13 PM  Page 593



594 Solutions to Practice Problems

Active Example 6.5

We can determine the axial forces in members AB and AC by analyzing joint A.

1200 lb

TAB

TAC

TAD

1200 lb

C

440 lb

400 lb

360 lb

B
D (10, 0, 0) ft

(6, 0, 6) ft

A (5, 3, 2) ft

z

y

x

Draw the free-body diagram

of joint A.

Divide the position vector from A 

to B by its magnitude to obtain a

unit vector eAB that points from A 

toward B. Express the axial force

in member AB in terms of its

components by writing it as

TAB eAB. Express the axial forces

in members AC and AD in terms

of their components in the same

way.

rAB  5i  3 j  2k (ft).

TAB eAB  TAB (0.811i  0.487 j  0.324k),

eAB   0.811i  0.487 j  0.324k.
rAB 

*rAB*

TAC eAC  TAC (0.196i  0.588j  0.784k),

TAD eAD  TAD (0.811i  0.487 j  0.324k).

Apply equilibrium.

TAB eAB  TAC eAC  TAD eAC  (1200 lb)j  0.

Solving yields TAB  904 lb, TAC  680 lb, and

TAD  740 lb. The axial forces are

The i, j, and k components of this equation must each

equal zero, resulting in the three equations

0.811TAB  0.196TAC  0.811TAD   0,

0.487TAB  0.588TAC  0.487TAD  1200 lb   0,

0.324TAB  0.784TAC   0.324TAD  0.

AB: 904 lb (C), AC: 680 lb (C).
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Active Example 6.6

Draw the free-body diagram

of the entire frame and apply

the equilibrium equations.

BA

C

Ay

Cy

Cx

Ax

400 mm

200 N-m

1000 mm

Fx  Ax  Cx  0,

Fy  Ay  Cy  0,

Mpoint A  200 N-m  (0.4 m)Cx  (1 m)Cy  0.

We can t determine any reactions from these equations.

The free-body diagram of the entire frame is statically

indeterminate.

Draw the free-body

diagrams of the

individual members.
200 N-m

C

Cy

Cx

Cy

Cx

C

By

Bx

A B Bx

By

200 N-m

Ay

Ax

A B B

Ay

Ax

600 mm

400 mm

400 mm

Apply equilibrium to member AB.

Fx  Ax  Bx  0,

Fy  Ay  By  0,

Mpoint A  (0.6 m)By  0.

Solving yields Ay  0, By  0, and

Ax  Bx. (Notice that AB is a two-force

member. We could have obtained these

results by observation.)

Apply equilibrium to member BC.

Fx  Bx  Cx  0,

Fy  By  Cy  0,

Mpoint B  200 N-m  (0.4 m)Cx  (0.4 m)Cy  0.

Because it has already been determined that By  0, these

equations can be solved for Bx, Cx, and Cy. The results are

Bx  500 N, Cx  500 N, and Cy  0, which completes

the solution.
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Active Example 7.1

The area of the strip is dA * (h/b)x dx.

The height of the midpoint of the strip

is y * (1/2)(h/b)x. Use these expressions

to evaluate Eq. (7.7).

y

x
x

dA

x
1

2

h

b

     

** h.
1

3
y * *

0L

b
h

b

1

2

1

2
  

x dx
    

h

b
x

h

b

b
x3

3

0L

b
h

b
x dx

0

  

b
h

b

x2

2 0

2

LA
ydA

LA
dA

Active Example 7.3

y

x

1 2 3

(2R)
R1

3

Choose the Parts

Divide the area into simple parts. The y

coordinates of the centroids of the parts

are shown.

Determine the Values for the Parts

Tabulate the terms needed to apply Eq. (7.9)2.

Part 1 (triangle)

Part 2 (rectangle)

Part 3 (semicircle)

(2R)
1

3

c (2R)R

R

b(2R)
1

2

p R21

2

yi Ai yi Ai

(2R)
1

3              
b(2R)

1

2

pR2
1

2
R       

R[c(2R)]

b c
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Calculate the Centroid

Use Eq. (7.9)2 to determine

the y component of the

centroid..

b(2R)  c(2R)  p R21

2

1

2

y 
y1A1  y2A2  y3A3 

A1  A2  A3

R[c(2R)] R p R2
1

2
      

(2R)
1

3              
b(2R)

1

2

Active Example 7.5

Write w as an arbitrary

linear function of x.
w  ax  b.

Use the known values of w at x  0 and at

x  12 m to determine the constants a and b.

w         x N/m.

100 N/m  a(12 m)  b.

Solving yields a  (100/12) N/m2

and b  0. Therefore

 0  a(0)  b,

100 

12

Apply Eq. (7.10) to determine the downward

force exerted by the distributed load.

Apply Eq. (7.11) to determine the clockwise

moment about the origin exerted by the

distributed load.

 600 N.

F  

L

12

0

x dx
100 

12

LL

wdx

 4800 N-m.

M  

L

12

0

x2 dx
100 

12

LL

xw dx

(a)

(b)
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Active Example 7.11

Choose the Parts

Divide the volume into simple parts.

The x coordinates of the centroids of

the parts are shown. See Appendix C.

Determine the Values for the Parts

Tabulate the terms needed to apply Eq. (7.17)1.

Part 1 (cylinder)

Part 2 (hemisphere)

b
1

2
pR

2
b

Rb 
3

8

(pR
2
b)

Rb 
3

8
pR

32

3

xi Vi xiVi

   

       

b
1

2

      
pR

32

3

x

y

1 2

Rb 
3

8

b
1

2

The volume of a disk of

thickness dx is

dV  pr
2
dx

       
x

1

4
1  p dx.

2

y

x

dxx

r

4 ft

Apply Eq. (7.15)1. 2.43 ft.
0

xp

L

4

0

p

L

4

       
x

1

4
1 dx

2

       
x

1

4
1 dx

2
x 

LV

LV

x dV

dV

Active Example 7.8
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Calculate the Centroid

Use Eq. (7.17)1 to determine

the x component of the

centroid..
        

pR2bb
1

2

pR2b     pR32

3

       
R

3

8
b 

x 
x1V1  x2V2

V1  V2

pR3

      

2

3
pR3

y

RT 
_
y

1

3

h

x

R

Revolving this triangle area about the

x axis generates the volume of the cone.

The y coordinate of the centroid of the

area is shown. The area of the triangle is

A     hR. The volume of the cone is 
1

2

V  2pyT A     phR2. 
1

3

x
Ax

Ay

1 m

BB

A

(80)(9.81) N

Place the weight of the

bar at its center of mass

(the centroid of its axis;

see Appendix B.2) and

apply equilibrium.

Fx  Ax  B  0,

Fy  Ay  (80)(9.81) N  0,

Solving yields Ax  500 N, Ay  785 N, and B  500 N.

Mpoint A  (1m)B               [(80)(9.81) N]  0.
2(1 m)

p

2(1 m)

p

Active Example 7.16

Active Example 7.14
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Active Example 8.1

Let dAs be an element of the vertical strip

dA and apply Eq. (8.5).

x

y

dy

x
dx

y

dA
s

f (x)

[ f (x)]2x dx.

(Ixy)strip 
Lstrip

xy dAs

(xy dx) dy
L

f (x)

0

1 

2

Integrate the expression for (Ixy) strip with

respect to x from x  0 to x  b to

determine Ix for the triangle.

b2h2.

Ixy 
L

b

L

b

0

0

h

b   
x dx

1 

8

1 

2

1 

2

[ f (x)]2 x dx

x
2

Active Example 7.18

Center of mass of bar 1.

 (240 mm)  120 mm.y1 

The center of mass coincides

with the centroid of the volume

of the bar, so

1 

2

Center of mass of bar 2.

y2     (80 mm)  40 mm.
1

2

The y coordinate of the centroid of the

volume is

Apply Eq. (7.27)2.

 91.4 mm.

(120 mm)(10.8 kg)  (40 mm)(5.99 kg)

10.8 kg  5.99 kg

y 
y1m1  y2m2

m1  m2
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Active Example 8.3

Apply Eq. (8.12) to area 1.

x

y

1

2 m

y

x

0.5 m

From Appendix B, the product of inertia of area 1

in terms of the x y  coordinate system is

(Ix y )1  0.

Therefore the product of inertia of area 1 about

the xy coordinate system is

(Ixy)1  0  (0.5 m)(2 m)(1 m)(4 m)  4 m4.

Apply Eq. (8.12) to area 2.

x

y

2

0.5 m

2 m

x

y

The product of inertia of area 2 in terms of the x y

coordinate system is

(Ix y )2  0.

The product of inertia of area 2 in terms of the xy

coordinate system is

(Ixy)2  0  (2 m)(0.5 m)(2 m)(1 m)  2 m4.

Sum the values for the parts.

The product of inertia of the composite area

in terms of the xy coordinate system is

 6 m4.

Ixy  (Ixy)1  (Ixy)2

 4 m4  2 m4

BEDFMS_0136129153.QXD  4/14/07  8:13 PM  Page 601



602 Solutions to Practice Problems

Active Example 8.8

Place the point 1  at one of the points where the

Mohr s circle intersects the horizontal axis. The

principal moments of inertia are Ix   7.5 ft4,

Iy   24.5 ft4. The angle measured counterclockwise

from point 1 to point 1  is 2up  135 , so up  67.5 .

x

y

y

x

up  67.5

10 20 30

10

10

0

0

1 2

2

1

(Ix , Ix y )
(Iy , Ix y )

2up

Active Example 8.6

Determine up from Eq. (8.26).

This yields up  29.9 .

tan 2up 

2(6) 

16  9
 1.71.

y

x

x

y

29.9

2Ixy 

Iy  Ix

Calculate the principal

moments of inertia from

Eqs. (8.23) and (8.24).

 5.55 m4,

cos[2(29.9 )]  (6)sin[2(29.9 )]

Ix  cos 2u  Ixy sin 2u
Ix  Iy 

2

Ix  Iy 

2

9  16 

2   

9  16 

2   

 19.4 m4.

cos[2(29.9 )]  (6)sin[2(29.9 )]

Iy  cos 2u  Ixy sin 2u
Ix  Iy 

2

Ix  Iy 

2

9  16 

2   

9  16 

2   
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Active Example 8.9

Determine the moment of

inertia of the area of the

plate about the y axis.

From Appendix B,

Iy      hb3.
1 

4

Apply Eq. (8.30).

The moment of inertia of the 

plate about the y axis is 

Iy axis      Iy

      mb2.

bh

hb31 

41 

2

1 

2

   

m 

A

m

Active Example 8.11

Treat the object as a composite object made up

of the bars 1 and 2. The distance between the axis

LO and parallel axes through the centers of mass

of the two bars are shown.

l
2

 (      )
2

LO

1

2

1/2

O

1 

2
l

1 

2
l

Apply the parallel-axis

theorem to bar 1.

Apply the parallel-axis

theorem to bar 2.

(IO)1  I  d2m

 ml2 m

2

 ml2.

l
1 

2

1 

3

1 

12    

(IO)2  I  d2m

 

 ml2.
4 

3

1 

12
ml2 l2 

   
m

2

l
1 

2       

Sum the results.
 ml21 

3

IO  (IO)1  (IO)2

 ml2.
5 

3

 ml24 

3

BEDFMS_0136129153.QXD  4/14/07  8:13 PM  Page 603



604 Solutions to Practice Problems

Active Example 9.1

Draw the free-body diagram of the crate. It is assumed

that slip of the crate up the ramp is impending, so the

direction of the friction force on the crate is down the

ramp and its magnitude is m
s
N.

Nf  m
s
N

y

x

W

T

Apply equilibrium.

Fx  T  N sin 20   msN cos 20   0,

Solving these equations yields T  161 lb.

Fy  N cos 20   msN sin 20  W  0.

Active Example 9.4

m
s
N

N N

m
s
N

a
Draw the free-body diagram of the wedge assuming

that F  0 and that slip of the wedge out of the log is

impending.

Apply equilibrium.

The sum of the forces in the vertical direction is

The wedge is in equilibrium if

This is the minimum static coefficient of friction

necessary for the wedge to remain in place in the

log, so it will not slip out.

2N sin          2msN cos           0.
a

2
  

a

2
  

ms  tan          tan             0.0875.
10

2

a

2
  

Active Example 9.5

Apply Eq. (9.11).

The force F  200 lb, the slope of the

thread is a  1.14 , and the angle of

friction is

uk  arctan mk  arctan (0.22)  12.4 .

Substituting these values into Eq. (9.11),

M  rF tan(uk  a)

 (1.6 in)(200 lb) tan(12.4   1.14 )

 63.8 in-lb.
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Active Example 9.6

The pulley moves in the counterclockwise

direction. Express the counterclockwise

couple on the pulley in terms of T and W.
M  (6 in)(W  T).

(W  T sin 45 )2  (T cos 45 )2 sin11.3 . 

Apply Eq. (9.12).

Equation (9.12) is

(6 in)(W  T)  (0.5 in)

The angle of kinetic friction is 

uk  arctan mk  arctan(0.2)  11.3 . 

 M  rF sin uk:

Setting W  1000 lb and solving yields

T  970 lb.

Active Example 9.7

Determine the angle a.
a  arctan[b/(ro  ri)]  arctan[5/(1.75  0.5)]  76.0 .

The radii ro  1.75 in and ri  0.5 in.

Apply Eq. (9.13).

 184 in-lb.

M 

2mkF 

3 cos a r
2
o  r

2
i

r
3
o  r

3
i

2(0.18)(200 lb)

3 cos 76.0

(1.75 in)3  (0.5 in)3

(1.75 in)2  (0.5 in)2               

Active Example 9.9

Apply Eq. (9.17) to the left cylinder.

Assume that slip of the rope in the

direction of the force T is impending.
T  We

msb  (100 lb)e(0.2)(p/2)  137 lb.

Apply Eq. (9.17) to the right cylinder.

Assume that slip of the rope in the

direction of the force F is impending.
F  Te

(0.4)(p/2)  (137 lb)e(0.4)(p/2)  257 lb.
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Active Example 10.1

Draw the free-body diagram of the part of the

beam to the right of C. (Notice the defined

positive directions of PC, VC, and MC.) Apply

equilibrium to determine the internal forces

and moment.

Fx  PC  0,

Fy  VC  F      F  0,
3 

4

and MC      LF.
1 

16

*     +L F                                0.
1 

2 *     +L
3 

4 *     +F
3 

4

Solving yields PC   0, VC    F, 
1 

4

y

F

C

PC
MC

VC

x

1 

2
L

3 

4
L

3 

4
F

Mpoint C  MC 

Active Example 10.3

(a) Pass a plane through the beam at an

arbitrary position x between B and C.

The simplest free-body diagram is

obtained by isolating the part of the

beam to the right of the plane.

4  xx

y

y

x

B C
A

40 kN/m
60 kN

x
C

60 kN

80 kN
100 kN

V
M

P
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Apply equilibrium to determine

V and M.

Fx  P  0,

Mleft end  M  60(4  x)  0.

Solving yields 

2  x  4 m.
V  60 kN

M  60(4  x) kN-m

Fy  V  60  0, 

100 kN

CB
A

100 kN

60 kN

80 kN

40 kN/m

x

y

x

x

V

0

0

 60 kN

20 kN

120 kN-m

M

2 m 2 m
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Active Example 10.6

Apply Eq. (10.11) to determine

the maximum tension.

The tension is given by Eq. (10.11) in terms

of the tension at the lowest point and the

horizontal coordinate relative to the lowest

point. From Eq. (10.11), the maximum tension

clearly occurs where the horizontal distance

from the lowest point is the greatest, which in

this example is the left attachment point. The

maximum tension is

T  T0 1  a
2
x

2
L

 2440 lb.

 (686 lb) 1  (0.146 ft 1)2 ( 23.4 ft)2

Active Example 10.4

A B C

V

M

100 kN

120 kN-m

20 kN

60 kN

2 m 2 m

x

x

No couple is applied to the beam at

A, so the bending moment at A is

zero. The shear force between A

and B is V  100  40x kN. With

this expression, Eq. (10.6) can be

integrated to determine the bending

moment between A and B:

The value of M at B is

M  100x  20x
2 kN-m.

0

dM        (100  40x)dx :
L

M

0L

x

100(2)  20(2)2  120 kN-m.

The shear force between B and C is

V  60 kN. Because V is constant,

Eq. (10.6) indicates that the slope of

the bending moment is constant the

diagram is a straight line. Because no

couple is applied to the beam at C,

the bending moment at C is zero.

Therefore M decreases linearly from

120 kN-m at B to zero at C.

This result can also be obtained by

integrating Eq. (10.6):

M  240  60x kN-m.

120

dM        60dx :
L

M

2L

x

A B C

V

M

100 kN

120 kN-m

20 kN

60 kN

2 m 2 m

4 m

Between B and C,

 const.
dM

dx

MC  0

x

x
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Active Example 10.8

Apply Eq. (10.21).

The maximum tension occurs where the

horizontal distance from the lowest point

is the greatest, at x  10 m:

T  T0 coshax 

 181 N.

 (50 N) cosh[(0.196 m 1)(10 m)]

Active Example 10.9

Cut the cable at the left

attachment point and within

segment 2 and sum forces in

the horizontal direction.

1 m

1 m

Tv

Th

T2

a

m1g

The angle a is

The sum of the horizontal forces is

T2 cosa  Th  0,

yielding

a  arctan
h2  1 m

1 m

T2 
Th 

cos a

 135 N.

 14.0 .

131 N

cos14.0

 arctan
1.25 m  1 m

1 m
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Active Example 10.10

Determine the total force exerted by the

gage pressure by calculating the volume

of the pressure distribution. The volume

is the product of the area  of the triangle

in the above figure and the dimension of

the gate into the page.

The gage pressure pg  gx increases

linearly from pg  0 at the surface of

the water to pg  (2 ft)g at the bottom

of the gate. The centroid of the

distribution is shown.

z

x

2 ft

(2 ft)  1.33 ft

(2 ft)

2

3

g

 374 lb.

F (2 ft) [(2ft)(62.4 lb/ft2)] (3 ft)
1 

2

Draw the free-body diagram

of the gate, placing the total

force exerted by gage

pressure at the center of

pressure. Apply equilibrium

to determine the reactions at

A and B.

z

x

Az

2 ft

1 ft

Ax

B

374 lb

1.33 ft
100 lb

My axis  (1 ft)B  (2 ft)Az  (1.33 ft)(374 lb)  0.

Fx  Ax  100 lb  0,

Solving yields Ax  100 lb, Az  291 lb, and B  83.2 lb.

Fz  Az  B  374 lb  0,
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Active Example 11.1

Determine the virtual work.

The work done by the 400-N force is (400 sin 40  N)(1 m)da.

Bar BC undergoes a rotation da in the clockwise direction, so

the work done by the couple is (500 N-m)da. The work done

by the reaction Cy is Cy 2(2 cos 40 )da. The total virtual work is

dU  (400 sin 40  N)(1 m)da  (500 N-m)da Cy 2(2 cos 40 )da  0.

Solving yields Cy  79.3 N.

Active Example 11.3

Determine whether the second derivative of

V is positive (stable) or negative (unstable).

The derivative of the potential energy

with respect to the coordinate x is

The second derivative is

which is positive. The equilibrium

position is stable.

 kx  W.
dV 

dx

 k,
d2V 

dx2
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Answers to Even-Numbered Problems

Chapter 1

1.2 (a) (b) (c) 

1.4

1.6 The 1-in wrench fits the 25-mm nut.

1.8

1.10

1.12

1.14 (a) (b) 

1.16

1.18

1.20

1.22 (a) 0.397 kg; (b) 0.643 N.

1.24 (a) (b) 

1.26 163 lb.

1.28 32.1 km.

1.30 345,000 km.

Chapter 2

2.2 direction is above the

horizontal.

2.4

2.6

2.8

2.10

2.12

2.14

2.18

2.20

2.22

2.24 (a) F = 56.4i + 20.5j (lb); (b) 

2.26

2.28

2.30 (a) 

(b) 

(c) 

2.32 (a) 

(b) 

2.34

2.36

2.38

2.40

2.42 14,500 lb.

2.44

2.46

2.48

2.50

2.52 L = 214 lb, D = 85.4 lb.

FA = 10 kN, FD = 8.66 kN.
57.9 a 90 .
FA = 1720 lb, a = 33.3 .
FBA = 802 N.

F = -937i + 750j 1N2.
e = 0.806i + 0.593j.
eCA = 0.458i - 0.889j.
yB = 1173 m.
xB = 785 m, yB = 907 m or xB = 255 m,

rAB = -42.4i - 42.4j 1mm2.
rAB = 52.0i + 30j 1mm2;
rAB + rBC = 20.6 in.

rBC = -53i + 5j 1in2;
rAB = 48i + 15j 1in2;

rAB - rBC = i - 1.73j 1m2.
rAD = -1.8i - 0.3j 1m2, rAD = 1.825 m.

97.4 lb.

Vx = 16, Vy = 12 or Vx = -16, Vy = -12.
F = 447 kip.

Fy = -102 MN.
a = 21.2 .rBC = 390 m,

FBA = 174 lb.

D = 211 lb.L = 453 lb,

FC = 50.0 N.FB = 86.6 N,

rAC = 181 mm.

FA + FB + FC = 83 N.

32FAB + FAC = 146 kN,

6.71 * 1020 kg.4.60 * 1019 slugs;

(a) kg-m/s; (b) 2.70 slug-ft/s.

27.4 lb/ft.

2.07 * 106 Pa.
32.2 in2.0.0208 m2;

g = 32.2 ft/s2.
310 N-m.

(a) 267 mi/h; (b) 392 ft/s.

17.8 m2.

e2 = 7.3892.e2 = 7.3891;e = 2.7183;

2.54

2.56

2.58

2.60

2.62

2.64

2.66 (a) 

(b) 

2.68 (a) 

(b) 

2.70

2.72

2.74

2.76

2.78 (a) 

(b) 

2.80

2.82

2.84

2.86

2.88 (a) 

(b) 

2.90

2.92 259 lb.

2.94

2.96

2.98

2.100

2.102 Either or V is perpendicular to U.

2.104

2.108

2.110

2.112

2.114 (a) 42.5 ; (b) 

2.116

2.118

2.120

2.122

2.124 (a) 

2.126

2.128 Either or V is parallel to U.

2.130 (a), (c) (b), (d) V * U = 51.8k.U * V = -51.8k;
V = 0

2180 i + 1530j - 1750k (ft-lb) .

U * V = 44i + 56j - 16k.

vp = -1.30i - 1.68j - 3.36k 1m/s2.
Fp = -0.1231i + 0.0304j - 0.1216k 1lb2.
Tn = -37.1i + 31.6j + 8.2k 1N2.
Fn = 10i + 6.46j - 9.69k 1N2.
Fp = 5.54j + 3.69k 1N2,

-423j + 604k 1lb2.
14.0 i + 11.2j - 8.40k (N).

u = 53.5 .
u = 62.3 .
Ux = 2.857, Vy = 0.857, Wz = -3.143.

V = 0
32.4 .

T = -41.1i + 28.8j + 32.8k 1N2.
T = -15.4i + 27.0j + 7.7k 1lb2.
FAC = 1116 N, FAD = 910 N.

F = 424 lb.

F = -2.29i - 6.86j + 3.43k 1kN2.
eBC = -0.286i - 0.857j + 0.429k;

F = 474i + 516j + 565k (N).

FA + FB = 217 lb.

h = 8848 m 129,030 ft2.
cos uy = 0.970, cos uz = 0.
cos uz = 0.333. rBR: cos ux = -0.242,
rAR: cos ux = 0.667, cos uy = 0.667,
 cos uz = -0.615.

cos ux = 0.615, cos uy = -0.492,
rAB = 16.2 m;

F = 300i + 477j + 205k (lb).

eCD = -0.535i + 0.802j + 0.267k.
rBD = - i + 3j - 2k 1m2, rBD = 3.74 m.
F = -0.5i + 0.2j + 0.843k.

e = 0.333i - 0.667j - 0.667k.
cos uz = -0.667;
cos ux = 0.333, cos uy = -0.667, 
3U + 2V = 27.5.
U = 7, V = 13;

Uy = 7.22, Uz = 28.89.or Ux = -3.61,

Uz = -28.89Ux = 3.61, Uy = -7.22,

ez =
2

3
 or ez = -

2

3
.

r = (0.814s - 6)i + (0.581s + 1)j (m).

x = 75 - 0.880s, y = 12 + 0.476s.
FAC = 2.11 kN, FAD = 2.76 kN.
FA = 68.2 kN.

613
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614 Answers to Even-Numbered Problems

2.134 (a) 

(b) 

2.136

2.138

2.140

2.144

2.146

2.148

2.150

2.152

2.154

2.156

2.158 (a), (b) 

2.160

2.162

2.164

2.166

Chapter 3

3.2

3.4

3.6

3.8

3.10 (a) 

(b) 

3.12 (a) 

(b) 

3.14 (a) 254 lb; (b) 41.8 .

3.16 5.91 kN.

3.18 (a) 128 N; (b) 98.1 N.

3.20

3.22 188 lb.

3.24 (a) 66.1 lb; (b) 12.3 lb.

3.26

3.28 Upper cable tension is 0.828W, lower cable tension is

0.132W.

3.30

3.32

3.34

3.36

3.38

3.40

3.44

3.46

3.48 (b) Left surface: 36.6 lb; right surface: 25.9 lb.

3.50

3.52

3.56

3.58 (a) (b) (c) 

3.60

3.62 (a) (b) 4 km.g = -14.0 ;

L = 131.1 kN, D = 36.0 kN.

T = W>8.T = W>4;T = W>2;

m2 = 12.5 kg.

T = mgL>(h + R).

k = 1420 N/m.

W1 = 133 lb.

TBC = 21.4 N, TCD = 62.6 N.

a = 79.7 , TAB = 120 N,

TAB = 64.0 kN, TBC = 61.0 kN.

TAB = 688 lb.

h = b.

FB = 3680 lb, FC = 2330 lb .

m = 12.2 kg.

TAB = 1.21 N, TAD = 2.76 N.

TAB = 2.75 kN, TBC = 2.06 kN.

Tleft = 299 lb, Tright = 300 lb.

a = 31.0 .

N = 11.06 kN, f = 4.03 kN;

Ncaisson = 3.22 kN, fcaisson = 0.707 kN.

Ncrane = 197 kN, fcrane = 0.707 kN;

k = 1960 N/m, mA = 4 kg, mB = 6 kg.

T = 785 N, P = 823 N.

TAB = TAC = 1.53 kN.

F2 = 4.77 lb, a = 35.2 .

rBC * T = 33.3i - 125j - 183k 1N-m2.

rAG * W = -16.4i - 82.4k 1N-m2.

 Fn = -1.29i - 2.14j - 2.57k 1kN2.

 Fp = 1.29i - 3.86j + 2.57k 1kN2, 

 uz = 62.0 .uy = 70 ,

(a) F = 139i + 58.2j + 80k (lb); (b) ux = 35.5 ,

686i - 486j - 514k 1ft-lb2.

rBA * F = -70i + 40j - 100k 1ft-lb2.

Fp = 8.78i - 6.59j - 8.78k 1lb2.

eAB = 0.625i - 0.469j - 0.625k.

E = 313 lb, F = 140 lb.

A = 1110 lb, a = 29.7 .

Uy = -2.

1.8 * 106 mm2.

xB = 2.81 m, yB = 6.75 m, zB = 3.75 m.

rCA * T = -4.72i - 3.48j - 7.96k 1N-m2.

rAB * F = -2400i + 9600j + 7200k 1ft-lb2.

or 0.083i - 0.745j - 0.662k.

-0.083i + 0.745j + 0.662k 

rOA * rOB = -4i + 36j + 32k 1m2
2; 3.64

3.66

3.68 Two at B, three at C, and three at D.

3.70

3.72

3.74

3.76

3.78 (a) The 

(b) The force exerted by the 

3.80

3.82

3.84

3.86 (a) 83.9 lb; (b) 230.5 lb.

3.88

3.90

3.92

3.94

3.96

3.98

Chapter 4

4.2 134 N-m.

4.4

4.6 25.0 kN-m clockwise.

4.8

4.10

4.12 0.961 kN-m counterclockwise.

4.14

4.16

4.18 410 N-m counterclockwise.

4.20 (a) 

(b) Zero.

4.22 (a) 

(b) Zero.

4.24 640 lb.

4.26

4.28 (a) 

(b) Zero.

4.30 (a) 

(b) Zero.

4.32 60.4 ft-lb.

4.34

4.36

4.38

4.40 617 N-m.

4.42

4.44 796 N.

4.46 (a), (b) 480k (N-m).

4.48 (a) 800k (kN-m);

(b) 

4.50

4.52

4.54 (a), (b) 1270 N-m.

4.56 128 ft-lb.

4.58 985 ft-lb.

4.60 58.0 kN.

MO = -5600k 1ft-lb2.

F = 20i + 40j 1N2.

-400k 1kN-m2.

MA = -3.00 kN-m, MD = 7.50 kN-m.

TAB = TAC = 223 kN.

M = -2340 N-m.

-22.3 ft-lb.

Ax = 300 lb, Ay = 240 lb, B = 280 lb;

 B = -20.4 kN;Ax = 18.1 kN, Ay = -29.8 kN,

M = 2.39 kN-m.

A = 56.6 lb, B = 24.4 lb, C = 12.2 lb;

FB = 37.5 lb, FC = 22.5 lb, FD = 26.0 lb;

MP = 298 N-m.

MS = 611 in-lb.

15.8 a 37.3 .

L = 2.4 m.

F = 36.2 N.

Normal force = 12.15 kN, friction force = 4.03 kN.

TAE = 9.21 lb.TAD = 17.2 lb,TAC = 16.7 lb,

N = 2580 lb, f = 995 lb.

TAB = 420 N, TAC = 533 N, FS = 969 N.

F = 162.0 N.

T = mg>26.

W = 25.0 lb.

F = 36.6 N.

TAB = 357 N.

bar = 1.31i - 1.31k 1kN2.

tension = 2.70 kN;

TEF = TEG = 738 kN.

TBC = 1.61 kN, TBD = 1.01 kN.

D = 1176 N, TOA = 6774 N.

TAB = 9390 lb, TAC = 5390 lb, TAD = 10,980 lb.

TAB = 1.54 lb, TAC = 1.85 lb.

TAD = 103 lb.TAC = 395 lb,TAB = 405 lb,
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4.62 (a)

(b)

4.64

4.66 or

4.68

4.70

4.72

4.74

4.76

4.78 (a)

(b)

(c)

4.80 (a) Zero; (b) 2.7 k (kN-m).

4.82 (a)

(b)

4.84

4.86

4.88 (a), (b) 

4.90

4.92

4.94

4.96

4.98

4.100

4.102

4.104 1 N-m.

4.106 124k (ft-lb).

4.108

4.110 or

4.112 (b)

4.114 40 ft-lb clockwise, or 

4.116 2200 ft-lb clockwise.

4.118 (a) (b) Zero.

4.120  )b( )a(

4.122 356 ft-lb.

4.124

4.126

4.128 Yes.

4.130 Systems 1, 2, and 4 are equivalent.

4.134

4.136

4.138  )b( )a(

4.140

4.142 (a)

(b) intersects at 

(c) They are both zero.

4.144

4.146

4.148 (a)

(b) intersects at 

4.150 intersects at 

4.152 (a)

(b)

(c)

4.154 x = 2.00 ft,  z = -0.857 ft .

M = -36j - 360k 1in-lb2.

F = 10i - 30j + 3k 1lb2,

-36j 1in-lb2;

-360k 1in-lb2;

x = 7.5 in.F = 800j 1lb2,

y = 456 mm.

F = 920i - 390j 1N2,  M = -419 N-m;

F = 100j 1lb2, M = 0.

F = 104j 1kN2, M = 13.2 kN-m counterclockwise.

y = 5 ft;F = -12i 1kip2,

Ax = 12 kip,  Ay = 10 kip,  B = -10 kip;

F = 200i + 180j 1N2, d = 0.317 m.

D = 1 ft.F = -10j 1lb2, M = -10 ft-lb;

F = 70 lb, M = 130 in-lb.

F = 265 N.

MCy = 7 kN-m,  MCz = -2 kN-m.

M = 6.13 kN-m.

D = 6.32 m.M = -14i - 10j - 8k 1kN-m2;

C = 26 kN-m;

-40k 1ft-lb2.

FL cos 30 .

a = 71.8 .a = 30.9

28 N-m clockwise.

Maxis = -478i - 174k 1N-m2.

F = 13 lb.

-338j 1ft-lb2.

Mx axis = 44i 1N-m2.

My axis = 215j 1N-m2.

MAB = 77.1j - 211.9k 1ft-lb2.

MAO = 119.1j + 79.4k 1N-m2.

MAB = -76.1i - 95.1j 1N-m2.

-16.4i 1N-m2.

F = 80i + 80j + 40k 1lb2.

Mz axis = 15k 1kN-m2.

Mx axis = -16i 1kN-m2;

Mz axis = 0.

My axis = -140j 1N-m2;

Mx axis = 80i 1N-m2;

M = 482k 1kN-m2.

TBC = 886 N,  TBD = 555 N.

TAB = 1.60 kN,  TAC = 1.17 kN.

TAC = 2.23 kN,  TAD = 2.43 kN.

MD = 1.25i + 1.25j - 6.25k 1kN-m2.

F = 4i - 3.38j + 2.92k 1kN2.

F = 4i - 4j + 2k 1kN2

-16.4i - 111.9k 1N-m2.

F = 1584 N.

F = 1586 N; 4.156

4.158 (a)

(b)

4.160 (a)

(b) 6.05 kN-m.

4.162

4.164 (a)

(b)

4.166

4.168 line of action intersects at 

4.170

4.172

4.174 (a) 320i (in-lb);

(b)

(c)

4.176

4.178 (a)

(b)

4.180

4.182 501 lb.

4.184

4.186

4.188

4.190 (a)

(b)

4.192

4.194

4.196

4.198

4.200

Chapter 5

5.2

5.4

5.6 (b)

5.8 (b)

5.10 (b)

5.12 (b)

5.14 (b)

5.16 On each hand, 66.3 lb. On each foot, 23.7 lb.

5.18

5.20

5.22 5.93 kN.

5.24

5.26

5.28

5.30 6.23 lb.

5.32

5.34

5.36 Ax = -1.83 kN,  Ay = 2.10 kN,  By = 2.46 kN.

TAE = 28.6 lb,  Dx = -26.9 lb,  Dy = 32.2 lb.

T = 3.68 lb.

WL = 1125 lb.

(a) 21.2 lb;  (b) 30 lb.

R = 12.5 lb, Bx = 11.3 lb,  By = 15.3 lb.

k = 3380 N/m, Bx = -188.0 N,  By = 98.7 N.

Ax = -100 lb,  Ay = -225 lb,  E = 625 lb .

Ax = 4 kN,  Ay = -2.8 kN,  By = 2.8 kN.

Ax = 502 N,  Ay = 870 N.

A = 100 lb, B = 200 lb.

Ax = 0,  Ay = -5 kN,  By = 15 kN.

Ax = 0,  Ay = -1.85 kN,  By = 2.74 kN.

Tension is 386 lb, Bx = 493 lb,  By = 186 lb .

MA = -22.9 kN-m.

Ax = -1 kN,  Ay = -5.73 kN,

M = -0.131i - 0.044j + 1.112k 1kN-m2.

F = -0.364i + 4.908j + 1.090k 1kN2,

F = 190j 1N2, M = -98i + 184k 1N-m2.

F = 1166i + 566j 1N2,  y = 13.9 m.

M = -80i + 200k 1in-lb2.

F = -100i + 40j + 30k 1lb2,

F = -20i + 70j 1N2, M = 22 N-m.

F = 300j (lb) at x = 4 ft .

TAB = TCD = 173.2 lb;

MCD = -173i + 1038k 1ft-lb2.

Mx axis = -153i 1ft-lb2.

-228.1i - 68.4k 1N-m2.

F = 224 lb,  M = 1600 ft-lb.

-66.3 N-m.

-76.2 N-m;

MP = 244 N-m.

Mt = 0,  x = 33 in,  y = -16 in.

F = -20k 1lb2, M = 320i + 660j 1in-lb2;

M = -179.6i + 391.9j - 32.7k 1N-m2.

F = 40.8i + 40.8j + 81.6k 1N2,

x = 2.41 m, y = 3.80 m.

y = 0,  z = 2 ft.Mp = 0,

M = -143i + 406j - 280k 1N-m2.

F = 100i + 20j - 20k 1N2,

x = 6.86 ft, y = 3.43 ft.

F = 28k 1kip2,  M = 96i - 192j 1ft-kip2;

M = 50i + 250j + 100k 1in-lb2.

F = -20i + 20j + 10k 1lb2,

F = 0, M = 4.60i + 1.86j - 3.46k 1kN-m2;

F = 0, M = rAi.

F = 0, M = rAi;

F = 100j + 80k 1N2,  M = 240j - 300k 1N-m2.
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5.38

5.40

5.42

5.44

5.46

5.48

5.50

5.52

5.54 (b) 

5.56

5.58 20.3 kN.

5.60

5.62

5.64

5.66

5.68

W = 132 lb.

F = 44.5 lb, Ax = 25.3 lb, Ay = -1.9 lb.

W = 46.2 N, Ax = 22.3 N, Ay = 61.7 N.

W2 = 2484 lb, Ax = -2034 lb, Ay = 2425 lb.

TBC = 5.45 lb, Ax = 5.03 lb, Ay = 7.90 lb.

Cx = 500 N, Cy = -200 N.

W = 15 kN.

Ax = 57.7 lb, Ay = -13.3 lb, B = 15.3 lb.

Ax = 0, Ay = 200 lb, MA = 900 ft-lb.

Ax = -1.57 kN, Ay = 1.57 kN, Ex = 1.57 kN.

Ay = -58.3 lb, MA = -410 ft-lb.

F = 28.3i + 58.3j (lb),  D = 7.03 ft,  Ax = -28.3 lb,

Bx = -3.46 kN, By = 2 kN.

Ax = 3.46 kN, Ay = -2 kN,

k = 3.21 lb/ft.

Ax = -200 lb, Ay = -100 lb, MA = 1600 ft-lb. 5.104 T = 139 lb, 

5.106 Tension is 60 N,

5.108 Tension is 60 N, 

5.110

5.112

5.114

5.116

5.118 reaction is

5.120

5.122 (a) 60 lb;

(b)

5.124 Tension is 33.3 lb; magnitude of reaction is 44.1 lb.

5.126

5.128 (a) No, because of the 3 kN-m couple; (b) magnitude at

A is 7.88 kN; magnitude at B is 6.66 kN; (c) no.

5.130 (b) 

5.134 (b) (c) 6.61 lb.

5.136 (a) There are four unknown reactions and three equilib-

rium equations; (b) 

5.138 (b) Force on normal 

friction 

5.140

5.142

5.144 and 

5.146 The force is 800 N upward; its line of action passes

through the midpoint of the plate.

5.148

5.150

Chapter 6

6.2 AB: 915 N (C); AC: 600 N (C); BC: 521 N (T).

6.4

6.6 (a) Tension: 2.43 kN in AB and BD. 

Compression: 2.88 kN in CD.

(b) Tension: 1.74 kN in BD. 

Compression: 1.60 kN in CD.

6.8 Tension, 31.9 kip in AC, CE, EG, and GH. Compres-

sion, 42.5 kip in BD and DF.

6.10

6.12 (a) Tension: 5540 lb in BD. Compression: 7910 lb in CE.

(b) Tension: 2770 lb in BD. Compression: 3760 lb in CE.

6.14

6.16 DE: 3.66 kN (C); DF: 1.45 kN (C); DG: 3.36 kN (T).

6.18 AB: 10.56 kN (T); AC: 17.58 kN (C); BC: 6.76 kN (T);

BD: 1.81 kN (T); CD: 16.23 kN (C).

F = 8.33 kN.

BD: zero; CD: 10 kN (T); CE: 16 kN (C).

BC: 800 lb (T); CD: 600 lb (C) .

a = 90 , TBC = W>2, A = W>2.

m = 67.2 kg.

a = 59.4 .a = 0

Ay = 727 lb, Hx = 225 lb, Hy = 113 lb.

k = 13,500 N/m.

force = 9.06 lb.

force = 50.77 lb,nail = 55 lb,

Ax = -50 lb, Bx = 50 lb.

TA = 7.79 lb, TB = 10.28 lb;

Ax = -8 kN, Ay = 2 kN, Cx = 8 kN.

a = 10.9 , FA = 1.96 kN, FB = 2.27 kN.

Ay = -46.3 lb.

Ax = 38.1 lb, Ay = 46.3 lb or Ax = -38.1 lb,

MAz = 2.13 N-m.

MAx = -2.67 N-m, MAy = 6.39 N-m,

Ax = -76.7 N, Ay = 97.0 N, Az = -54.3 N,

31i + 823j - 87k 1lb2.

TAB = 488 lb, TCD = 373 lb,

Cx = 8.15 kN, Cy = 0, Cz = 0.453 kN.

Ax = 3.62 kN, Ay = 5.89 kN, Az = 5.43 kN,

A = 8.54 kN, B = 10.75 kN.

Bz = 0, T = 1080 N.By = -400 N,

Ax = 0, Ay = 400 N, Bx = 1000 N,

By = 3.57 kip, Bz = 12.38 kip.

 Az = -8.10 kip,Ax = -2.86 kip, Ay = 17.86 kip,

 Cz = -5 N.Bz = 15 N, Cy = 15 N,

Bx = -10 N, By = 75 N,

 MBz = -3 N-m.Bz = 10 N, MBy = 1 N-m,

Bx = -10 N, By = 90 N,

MAy = -110 ft-lb.

MAx = -63.4 ft-lb,Az = 31.7 lb,

Ax = 46.4 lb, Ay = -26.8 lb,

0.19

h, in

24

F
/

W

26 28 30

0.18

0.17

0.16

0.15

0.14

0.13

32 34 36

5.76 (1) and (2) are improperly supported. For (3), reactions

are 

5.78 (b) 

5.80

5.82

5.84 (a) 

(b) 

5.86

5.88

5.90

5.92

5.94

5.96 at 

5.98 (b) 

5.100

5.102  Az = 0.Ax = 0, Ay = 4.24 kN,

TBD = 1.47 kN, TBE = 1.87 kN,

Fy = 34.5 lb.

 Bx = 0.74 kN, Bz = 0.64 kN.

Ax = -0.74 kN, Ay = 1 kN, Az = -0.64 kN,

x = 0, z = 0.15 m.F = 4j 1kN2

MAx = 0, MAy = 192.5 in-lb.

Ay = 17.5 lb, Az = -24.1 lb,

TBD = 50.2 lb, Ax = -34.4 lb,

x = 0.1 m, z = 0.133 m.

 Oz = 0.Ox = 632 lb, Oy = 574 lb,

TAB = 553 lb, TAC = 289 lb,

F = 10.9 kN.

TBC = 100 N, TBD = 170 N.

Ax = 166.7 N, Ay = 200 N, Az = 66.7 N,

MAy = 0, MAz = 62.8 N-m. MAx = 17.8 N-m,

Ax = 0, Ay = 360 N, Az = 0,

-17.8i - 62.8k 1N-m2;

MCy = -2440 ft-lb, MCz = 2790 ft-lb.

Cz = 175 lb, MCx = -3490 ft-lb,

Cx = -349 lb, Cy = 698 lb,

374 lb.

 MAz = -6.53 kN-m.

 MAx = 0, MAy = -6.53 kN-m, Az = 3.27 kN,

Ax = -6.53 kN, Ay = -3.27 kN,

A = F>2, B = F>2, C = F.
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6.20 AB: 375 lb (C); AC: 625 lb (T); BC: 300 lb (T).

6.22 BC: 90.1 kN (T); CD: 90.1 kN (C); CE: 300 kN (T).

6.24 BC: 1200 kN (C); BI: 300 kN (T); BJ: 636 kN (T).

6.26 AB: 2520 lb (C); BC: 2160 lb (C); CD: 1680 lb (C).

6.32

6.34 (a), (b) 141 kN (C).

6.36 AB: 1.33F (C); BC: 1.33F (C); CE: 1.33F (T).

6.38 BD: 95.6 kip (C); BE: 41.1 kip (T); CE: 58.4 kip (T).

6.40 DF: 69.1 kip (C); DG: 29.4 kip (C); EG: 95.6 kip (T).

6.42 96.2 kN (T).

6.44

6.46

6.48 2.50 kN (C).

6.50 CE: 680 kN (T); CF: 374 kN (C); DF: 375 kN (C).

6.52 (a) 1160 lb (C).

6.54 IL: 16 kN (C); KM: 24 kN (T).

6.58 AD: 4.72 kN (C); BD: 4.16 kN CD (C); 

CD: 4.85 kN (C).

6.60 AB, AC, AD: 0.408F (C).

6.62 AB: 379 lb (C); AC: 665 lb (C); AD: 160 lb (C).

6.64 BC: 32.7 kN (T); BD: 45.2 kN (T); BE: 112.1 kN (C).

6.66

6.68 5.59 kN (C) in each member.

6.70

6.72

6.74

6.76

6.78

6.80

6.82

6.84

6.86

6.88

6.90

6.94

6.96 300 lb (C).

6.98 B: 73.5 N; C: 88.8 N.

6.100

6.102

6.104

6.106 100 N.

6.108 At B: 1750 N. DE: 1320 N (C).

6.110 742 lb.

6.112 1150 lb .

Ex = 604 lb, Ey = 179 lb, axial force is 616 lb .

Bx = -2 kN, By = 1.52 kN.

Ax = 2 kN, Ay = -1.52 kN,

TBC = 1410 N, TDF = 625 N.

Cx = -14 lb, Cy = 3 lb.

Ax = -22 lb, Ay = 15 lb,

Bx = -170 lb, By = -209 lb.

Ax = 170 lb, Ay = 129 lb,

Dx = -80 lb, Dy = -80 lb.

By = -80 lb, Cx = 310 lb, Cy = 195 lb,

Ax = -310 lb, Ay = -35 lb, Bx = 80 lb,

By = -30 lb, Dx = -30 lb, Dy = -90 lb.

Ax = -150 lb, Ay = 120 lb, Bx = 180 lb,

Cy = 200 lb, Dx = 0, Dy = 100 lb.

Bx = -400 lb, By = -300 lb, Cx = 400 lb,

Tension = 62.5 lb, Fx = -75 lb, Fy = 25 lb.

Cx = 2.35 kN, Cy = 2.35 kN.

Bx = 0, By = -4.71 kN,

Ax = -2.35 kN, Ay = 2.35 kN,

Ey = -516 N, ME = 619 N-m.

Dx = -1475 N, Dy = -516 N, Ex = 0,

Cy = -300 N, Dx = 0, Dy = 1000 N.

Ax = 0, Ay = -400 N, Cx = -600 N,

Cx = 66.7 lb, Cy = 24 lb .

Ey = -1720 N.

Cx = 736 N, Cy = 2450 N, Ex = 245 N,

MA = -540 N-m.By = 900 N,

Ax = 400 N, Ay = -900 N, Bx = -400 N,

P3 = -315 kN.

DF: 16 kN (T); DG: 6 .67 kN (C); EG: 26.7 kN (C).

AC: 2000 lb (C); BC: 800 lb (T); BD: 1000 lb (T) .

HI: 500 kN (C).BI: 141 kN (T),BC: 400 kN (T),

6.114

6.116

6.118 BC: 120 kN (C); BG: 42.4 kN (T); FG: 90 kN (T).

6.120 AB: 125 lb (C); AC: zero; BC: 188 lb (T);

BD: 225 lb (C); CD: 125 lb (C); CE: 225 lb (T).

6.122

6.124 AC: 480 N (T); CD: 240 N (C); CF: 300 N (T).

6.126 Tension: member AC, 480 lb (T);

Compression: member BD, 633 lb (C).

6.128 CD: 11.42 kN (C); CJ: 4.17 kN (C); IJ: 12.00 kN (T).

6.130 AB: 7.20 kN (C); AC: 4.56 kN (C).

6.132

6.134

6.136 973 N.

6.138

Chapter 7

7.2

7.4

7.8

7.10

7.12

7.14

7.16

7.18

7.20

7.22

7.24

7.26

7.28

7.30

7.32

7.34

7.36

7.38

7.40

7.44

7.46

7.48

7.50

7.52

7.54

7.56 BD: 21.3 kN (C); CD: 3.77 kN (C); CE: 24 kN (T).

7.58

7.60

7.62

7.64 x = 0.675R, y = 0, z = 0.

V = 4.16 m3, x = 1.41 m.

V = 275 m3,  height = 2.33 m.

Cx = 18 kN, Cy = -16 kN.

By = -4 kN,Bx = 0,

Ax = -18 kN, Ay = 20 kN,

Ay = 3267 lb, Bx = -800 lb, By = -1267 lb.

Ax = 0, Ay = 4.17 kN, By = 8.83 kN.

Ax = 0, Ay = 10 kN, MA = -31.3 kN-m.

Ax = -1200 N, Ay = 800 N, B = 2200 N.

Ax = 0, Ay = 160 N, B = 200 N.

x = 6.47 ft, y = 10.60 ft.

x = 9.64 m, y = 4.60 m.

b = 39.6 mm, h = 18.2 mm.

x = 3.67 mm, y = 21.52 mm.

x = 2.88 ft, y = 3.20 ft.

x = 23.9 in, y = 33.3 in.

x = 9.90 in, y = 0.

x = 116 mm.

x = 3.31.

x = y = 4R>3p.

a = 0.656, b = 6.56 * 10-5 m-2.

y = 2.53.

y = -7.6.

x = 1.

x = 0.533.

x = 8, y = 3.6.

x = 0, y = 1.6 ft.

x = 0.711 ft, y = 0.584 ft.

x = 1.25, y = 0.825.

x = 3>8.

Ex = 0.81 kN, Ey = -14.86 kN.

Ax = -52.33 kN, Ay = -43.09 kN,

Dx = -1390 lb, Dy = -1930 lb .

Bx = 3820 lb, By = 6690 lb, C = 9020 lb,

Cy = 1.18 kN.

Bx = 0, By = -2.35 kN, Cx = 1.57 kN,

Ax = -1.57 kN, Ay = 1.18 kN,

TCE = 28.3 kN 1C2.

TBD = 13.3 kN 1T2, TCD = 11.7 kN 1T2,

TBC = 10 kN 1T2.

TAB = 7.14 kN 1C2, TAC = 5.71 kN 1T2,

Kx = 847 N, Ky = 363 N.
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8.30

8.32

8.34

8.36

8.38

8.40

8.42

8.44

8.46

8.48

8.50

8.52

8.54

8.56

8.58

8.60

8.62

8.64

8.66

8.68

8.70

8.72

8.74

8.76

8.78

8.80 or

8.82

8.86

8.88

8.90

8.92 principal moments of inertia are

and

8.94

8.96

8.98 principal moments of inertia are 

and

8.100

8.102

8.104

8.106

8.108

8.110

8.112

8.114 Iz axis = 0.0803 slug-ft2.

Iz axis = 47.0 kg-m2.

IO =
17
12ml

2.

20.8 kg-m2.

Iy axis = 1.99 slug-ft2.

Ix axis = 0.667 kg-m2,  Iy axis = 2.67 kg-m2.

Iz axis = 15.1 kg-m2.

IO = 14 kg-m2.

27.7 * 10-6

 
m4.80.2 * 10-6

 
m4

up = -12.1 ,

Ix y = 2.11 * 105 in4.

Iy = 7.18 * 105 in4,Ix = 1.20 * 106 in4, 

  

27.7 * 10-6 m4.80.2 * 10-6 m4
up = -12.1 ,

Ix y = 2.11 * 105 in4.

Iy = 7.18 * 105 in4,Ix = 1.20 * 106 in4,

Ix = 7.80 ft4,  Iy = 24.2 ft4,  Ix y = -2.20 ft4.

Ix = 59.8 * 106 mm4,  Iy = 18.0 * 106 mm4.

Ix = 4.01 * 106 mm4.

Ix = 6820 in4,  Iy = 4180 in4.

Ix = 4020 in4,  Iy = 6980 in4,

Ix = 1470 in4,  Iy = 3120 in4.

JO = 5.80 * 106 mm4,  kO = 37.5 mm.

Ixy = 995 in4.

Iy = 3.52 * 103 in4,  ky = 4.52 in.

Ix = 8.89 * 103 in4,  kx = 7.18 in.

JO = 4.01 * 104 in4,  kO = 14.6 in.

Ixy = 4.83 * 104 in4.

Iy = 4.34 * 104 in4,  ky = 10.5 in.

kx = 19.5 in .Ix = 1.26 * 106 in4,

Ixy = 2.54 * 106 in4.

ky = 27.8 in .Iy = 2.55 * 106 in4,

Ix = 49.7 m4,  kx = 2.29 m.

JO = 2.35 * 105 in4,  kO = 15.1 in.

JO = 1.58 * 107 mm4,  kO = 43.5 mm.

Ix = 1.08 * 107 mm4,  kx = 36.0 mm.

JO = 5.63 * 107 mm4,  kO = 82.1 mm.

Ixy = 7.1 ft4.

Ix = 10.7 ft4,  kx = 0.843 ft.

JO = 363 ft4,  kO = 4.92 ft.

Ixy = 1.08 * 107 mm4.

Ix = 7.79 * 107 mm4,  kx = 69.8 mm.

Ix = 2.65 * 108 mm4,  kx = 129 mm.

Iy = 3.6 * 105 mm4,  JO = 1 * 106 mm4.

Iy = 0.0125 m4,  ky = 0.177 m.

Ix = 6.00 * 106 mm4,  kx = 23.5 mm.7.66

7.68

7.70

7.72 .

7.74

7.76

7.78

7.80

7.82

7.84

7.86

7.88

7.90

7.92

7.94

7.96

7.98

7.100

7.102

7.104

7.106

7.108

7.110

7.112

7.114

7.116

7.118

7.120

7.122 917 N (T).

7.124

7.126

7.128

7.130

7.132

7.134

7.136 (a) (b) 

7.138

Chapter 8

8.2

8.4  )b( )a(

8.6

8.8

8.10

8.12

8.14

8.16

8.18

8.20 (a)

8.22

8.24

8.28 Iy = 10 m
4,  ky = 1.29 m.

Iy = 522, ky = 2.07.
Iy = 49.09 m4,  ky = 2.50 m.

Ix =
1
8pR

4,  kx =
1
2R.

Ix = 953,  kx = 6.68.

Ixy = 2070.

Ix = 1330,  kx = 4.30.

Ixy = 0.583.

Ix = 1.69.

Ixy = 0.0638 m4.

Iy = 0.175 m4,  ky = 0.624 m.

Iy = 3.2 * 105 mm4.Iy = 12.8 * 105 mm4;

Ix = 0.0288 m4,  kx = 0.346 m.

A = 80.7 kN, B = 171.6 kN.
x = 1.611 m.x = 1.511 m;

x = 25.24 mm, y = 8.02 mm,  z = 27.99 mm.
x = 1.70 m.
x = 110 mm.
A = 682 in2.
x = 1.87 m.

Dx = 4 kN,  Dy = 0.Ax = 7 kN,  Ay = -6 kN,

x = 87.3 mm, y = 55.3 mm.
x = 3>8, y = 3>5.
x = 20.10 in,  y = 8.03 in,  z = 15.35 in.
Mass = 408 kg, x = 2.5 m,  y = -1.5 m.
G = 33.8 kN.

(a) x = 5.17 m; (b) Ax = -50 kN,  Ay = -25.0 kN,

x3 = 82 mm,  y3 = 122 mm,  z3 = 16 mm.
x = 121 mm, y = 0, z = 0.
Ax = 0,  Ay = 3.16 kN,  MA = 1.94 kN-m.
x = 6.59 in, y = 2.17 in,  z = 6.80 in.
Ax = 0,  Ay = 316 N,  B = 469 N.
Ax = 0,  Ay = 294 N,  By = 196 N.
Volume = 0.0266 m3.
V = 2.48 * 106 mm3.
V = 0.0377 m3.
A = 138 ft2.
y = 0.410.
ys = 4R>3p.

A =
3
4pR2h

2
+ R2.

x = 65.9 mm, y = 21.7 mm,  z = 68.0 mm.
x = 6 m, y = 1.83 m.
x = 23.65 mm,  y = 36.63 mm,  z = 3.52 mm.
x = 229.5 mm, y = z = 0.
x = 0, y = 43.7 mm,  z = 38.2 mm.
x = -128 mm, y = z = 0.
x = 38.3 mm

x = R sin a/a, y = R(1 - cos a)/a.
x = 3.24.
y = 0.410.
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8.116

8.118

8.120

8.122

8.124

8.126

8.128

8.130

8.132

8.134

8.136

8.138

8.140

8.142

8.144

8.146

8.148

8.150

8.152

8.154

8.156

8.158

8.160

8.162

8.164

Chapter 9

9.2 1.04 lb.

9.4

9.6

9.8 177 N.

9.10 20 lb.

9.12

9.14 (a) 

9.16 (a) Yes. The force is (b) 

9.18

9.20

9.22

9.24 9.40 ft-lb.

9.26

9.28

9.30 (a) (b) 

9.32

9.34

9.36 (a) (b) 

9.40

9.42

9.44

9.48

9.50 (a) 

(b) 1msA - msB2].F = 1W>221msA + msB2>[1 + 1h>b2
F = ms W;

a = 1.54 , P = 202 N.
F = 44 lb.
a = 9.27 .
y = 234 mm.

T = 33.3 lb.T = 9.42 lb;
a = 39.6 .
M = msRW3sin a + ms(1 - cos a)4/3(1 + ms

2)sin a4.

M = 135 in-lb.M = 162 in-lb;
a = 28.3 .
a = 33.4 .

M = hrFmk/32(h + bmk)4.
F = 267 N.
89.6 T 110.4 lb.

3ms W.ms W;
T = 56.5 N.

a = 14.0 .

(a) No; (b) 20.4 lb.

(a) a = 38.7 ; (b) a = 11.3 .

0.537 kg-m2.

Ix axis = 3.83 slug-ft2.

Iz axis =
1
10 mw2.

Iy axis = 0.0702 kg-m2.

up = 19.5 , 20.3 m4, 161 m4.

Ix = 396 ft4, kx = 3.63 ft.

Iy = 94.2 ft4, ky = 2.24 ft.

Ix = 5.03 * 107 mm4, kx = 59.1 mm.

Iy = 2.75 * 107 mm4, ky = 43.7 mm.

Ix = 0.183, kx = 0.262.

Ixy = 2.13.

Iy = 12.8, ky = 2.19.

JO =
26
105, kO = 2

26
35.

Iy =
1
5, ky = 2

3
5.

Iz axis = 0.714 slug-ft2.

IO = 0.00367 kg-m2.

Iz axis = 0.00911 kg-m2.

Ix = 0.995 kg-m2, Iy = 20.1 kg-m2.

Ix axis = 0.221 kg-m2.

Ix axis =
1
6mh2

+
1
3ma2.

Ix axis = Iy axis = m A
3

20 R2
+

3
5 h2

B .

Ix axis = m A
1
3l2 +

1
4R2

B .

Iy axis = 0.0881 slug-ft2.

Iz axis = 9.00 kg-m2.

3810 slug-ft2. 9.52 F/2.

9.54 333 N.

9.56

9.58 (a) (b) 

9.60 (a) (b) 

9.62

9.64

9.66

9.68

9.70

9.72

9.74 343 kg.

9.76 No. The minimum value of required is 0.176.

9.78

9.80 1.84 N-m.

9.82 (a) 0.967 in-lb; (b) 0.566 in-lb.

9.84 (a) 2.39 ft-lb; (b) 1.20 ft-lb.

9.86 11.8 ft-lb.

9.88 108 in-lb.

9.90 27.4 in-lb.

9.92 4.18 N-m.

9.94 4.88 N-m.

9.96 17.4 N-m.

9.98

9.100 106 N.

9.102 51.9 lb.

9.104

9.106

9.108

9.110

9.112

9.114

9.116

9.118

9.120 (a) (b) 8.17 percent.

9.122 9.51 ft-lb.

9.124 80.1 lb.

9.126

9.128

9.130 (a) 14.2 lb; (b) 128.3 lb.

9.132 13.1 lb.

9.134

9.136 (a) 

9.138

9.140

9.142

9.144

9.146

9.148 286 lb.

9.150 1130 kg, 

9.152

9.154

9.156

9.158

9.160 146 lb.

9.162 (a) (b) W = 273 lb.W = 106 lb;

P = 43.5 N.
M = 1.13 N-m.
ms = 0.272.
f = 2.63 N.

torque = 2.67 kN-m.

h = 5.82 in.
b = 1h>ms - t2>2.
a = 24.2 .
a = 65.7 .
F = 290 lb.

f = 10.3 lb.
MA = 65.2 N-m, MB = 32.6 N-m.

M = rW1epmk - 12.
TC = 107 N.

M = 93.5 N-m;
M = 5.20 N-m.
M = 7.81 N-m.
M = 12.7 N-m.
M = 160 in-lb.

T = 346 N.
M = 1.92 ft-lb.
FB = 207 N.
T = 40.9 N.

W = 1.55 lb.

F = 1160 N.
ms

F = 156 N.
F = 1360 lb.

F = 102 lb.
F = 139 lb.
ms = 0.901.
ms = 0.432.

ms = 0.533.f = 8 kN;
ms = 0.503.f = 24.5 N;

F = 74.3 lb.
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620 Answers to Even-Numbered Problems

y

200 lb 1500 lb 700 lb

x

100 lb/ft

x

900 lb

700 lb

0

*200 lb

*600 lb

V

0

*1600 ft-lb

M

x

x

x

V

*245 kN

2970 kN-m

1408 kN-m

*465 kN

4.4 m

4.4 m

M

V

y

20 kN-m

6kN

20 kN

10 kN

0

*10kN

4kN/m

23.3 kN 18.7 kN

x

x

x

M

0

*20 kN-m

*40 kN-m

*60 kN-m

Chapter 10

10.2

10.4

10.6 (a) 

(b) 

10.8

10.10

10.12 (a) 

(b) 

10.14

10.16

10.18

10.20

10.22

10.24 (a) 

10.26

10.28 (a) 

(b) 

 M = 50x - 125>921x - 623 ft-lb;

 P = 0, V = 50 - 125>321x - 622 lb,

6 6 x 6 12 ft, M = 50x ft-lb;

0 6 x 6 6 ft, P = 0, V = 50 lb,

V = -600 N, M = -600x N-m.

 M = -15>62112 - x23 ft-lb.

V = 15>22112 - x22 lb,

V = 400 lb, M = 400x ft-lb.

PA = 0, VA = -6 kN, MA = 6 kN-m.

PA = 4 kN, VA = 6 kN, MA = 4.8 kN-m.

PA = 300 N, VA = -150 N, MA = 330 N-m.

PA = 0, VA = -2 kN, MA = 6 kN-m.

PB = 0, VB = 24 lb, MB = 600 ft-lb.

PB = 0, VB = -31 lb, MB = 572 ft-lb;

PA = 0, VA = -400 lb, MA = 267 ft-lb.

PB = 0, VB = 40 N, MB = 373 N-m.

PA = 0, VA = 2 kN, MA = 3 kN-m.

PA = 0, VA = 4 kN, MA = 4 kN-m;

PA = 0, VA = 400 lb, MA = -1900 ft-lb.

PA = 0, VA = 100 N, MA = 40 N-m.

10.36

10.38

V = -100x2 lb, M = -33.3x3
+ 1800 ft-lb .

10.40

50 lb

50 lb

0

*250 lb

M

V

400 ft-lb

200 ft-lb

0 x

x

250 lb

x

100 lb/ft

y

10.30 No. The maximum bending moment magnitude is 8 kN-m.

10.32 at 

10.34

x = 233 mm.M = 54.2 N-m
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10.44

10.46

y

x

x

x

4 kN/m

72 kN-m

24 kN

0

0

*72 kN-m

24 kN

M

V

10.48

10.50

10.52 (a) (b) 36.14 m.

10.54 AC: 1061 N (T), BC: 1200 N (C).

10.56

10.58

Length = 108.3 m, h = 37.2 m.

Tmax = 86.2 kN;

759 kip .

50 lb

50 lb

0

*250 lb

M

V

400 ft-lb

200 ft-lb

0 x

x

250 lb

x

100 lb/ft

y

10.60 22.8 m.

10.62 (a) 

(b) 

10.64

10.66 (a) (b) 90.1 lb.

10.68

10.70

10.72

10.76

10.78

10.80 1.55 m.

10.82 6.67 m.

10.84 A: 257 lb to the right, 248 lb upward; B: 136 lb.

10.86

10.88 .

10.90 (a) 376 kN; (b) 

10.94 (a) 

(b) PC = 0, VC = -26.7 lb, MC = 80 ft-lb.

PB = 0, VB = -26.7 lb, MB = 160 ft-lb;

xp = 2.02 m.

Ax = 2160 lb, Ay = 2000 lb, Bx = 1830 lb

d = 1.5 m.

B = 281 lb .Az = 562 lb,Ax = -100 lb,

xp = 3>8 m, yp = 3>5 m.

h2 = 8.38 ft, h3 = 12.08 ft.

h2 = 464 mm, h3 = 385 mm.

h1 = 1.739 m, h3 = 0.957 m.

h2 = 4 ft;

T1 = 185 N, T3 = 209 N.

TAB = 1.90 kN, TBC = 1.84 kN.

h1 = 4.95 m, h2 = 2.19 m;

V

y

20 kN-m

6 kN

20 kN

10 kN

0

*10 kN

4 kN/m

23.3 kN 18.7 kN

x

x

x

M

0

*20 kN-m

*40 kN-m

*60 kN-m

200

(587.5, 620.5) ft

y

x

400600

600

400

200
(287.5, 148.6) ft

2

1

0

600 N

V

0

*600 N

M

2400 N-m

0

*1200 N-m

x

x

x

600 N

y

3600 N-m

10.42
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622 Answers to Even-Numbered Problems

10.98

10.100

10.102 (a) 

(b) 

10.104

10.106 (a) (b) 

10.108 84.4 kip.

10.110 A: 44.2 kN to the left, 35.3 kN upward; B: 34.3 kN.

1.20 * 108 lb.w = 74,100 lb/ft;

P = 0, V = -100 lb, M = -50 ft-lb.

PB = 0, VB = -40 N, MB = 10 N-m.

PB = 0, VB = -40 N, MB = 10 N-m;

PA = 0, VA = 8 kN, MA = -8 kN-m.

M = 2.6716 - x2 kN-m.

2 6 x 6 6 m, P = 0, V = -2.67 kN,

M = 1.33x kN-m;

0 6 x 6 2 m, P = 0, V = 1.33 kN,

Chapter 11

11.2 (a) (b) 

11.4

11.6

11.8

11.10 (a) (b) 100 mm.

11.16

11.18

11.20 12 kN.

11.22 9.17 kN.

11.24 (a) (b) 216 N.

11.26 (a) 

(b) is unstable and is stable.

11.28

11.30 (a) Stable; (b) Unstable.

11.34 (b) It is stable.

11.36 (a) (b) No.

11.38 (a) (b) Yes.

11.40 Stable.

11.42 Unstable.

11.44 is unstable and is stable.

11.46

11.48 8F.

11.50 (a) (b) 

11.52

11.54

11.56

11.58 is unstable and is stable.

11.60 Unstable.

11.62 a = 30 .

a = 59.4a = 0

M = 63 N-m.

F = 5 kN.

M = 1.50 kN-m.

a>4.M = 800 N-m;

Cx = -7.78 kN.

a = 30a = 0

a = 28.7 ;

a = 35.2 ;

V =
1
2

 kx2
-

1
4

 ex4.

q = 4q = 3

q = 3, q = 4;

0.625 dy;

M = 270 N-m.

F = 360 lb.

F = 392 N;

F = 450 N.

Ax = 0, Ay = -237 lb, By = 937 lb.

F = 217 N.

B = 2.31 kN.Work = -3.20 du kN-m;

10.96

180 lb/ft

360 lb

360 lb

0

*450 lb

400 ft-lb

200 ft-lb

0

450 lb

360 lb/ft 

x

x

x

y

V

M
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A

Acceleration, 5 7

angular, 409

due to gravity, 15 19

rotational, 409

Addition, of vectors, 22 25, 27

Adjacent vectors, cross products of, 69

Aerospace engineers, 4

Airplane, in equilibrium, forces on, 95

Algebra, 573

Analysis of forces, 87 89

Angle:

determining components in terms of, 34

of friction, 433

of kinetic friction, 433

of static friction, 433

unit conversions, 9

Angular acceleration, 409

Angular units, 8

Area analogy, 329

Areas:

of centroids, 312 320

with a cutout, 324

by integration, 315

moments of inertia, 376 382

properties of, 577 579

Asperities, 431

Atmospheric pressure, 529

Axial force, 256, 258, 486 487

B

Ball and socket supports, 221 222

Base units:

defined, 7, 9

International System, 5, 9

U.S. Customary, 5, 9

Beam cross sections, 389

Beams, 256

I-beams, 389

support of, 198

Bearings, 225 226, 245, 459, See also Journal bearings

journal, 459 463

thrust, 464 467

Belt friction, 471 472

Belts and pulleys, 84 85

Bending moment, 144, 486 487

relations between shear force, distributed loads and,

498 511

Bending moment diagram, construction of, 501 504

Body forces, 82

Bridges:

arch, 268

concrete, 309

623

Index
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Bridges (continued)

examples of, 256

supports, 196, 256

trusses, 256 257, 263

Built-in support, 196 198

Burj Dubai, 12

C

Cables, 84 85, 90, 511 518

discrete loads, 523 528

with a horizontally distributed load, 515 517

loaded by their own weight, 521

loads distributed uniformly along, 518 522

cable length, 520

cable shape, 519

cable tension, 520

loads distributed uniformly along straight lines,

512 518, 561 562

cable length, 513

cable shape, 512 513

cable tension, 513

subjected to discrete loads, 526 527

suspended:

curve in, 22

vertical load, 520

Calder, Alexander, 251

Capstan, 147

Cartesian components, 30 45, 223

position vectors, 233

in terms of components, 31 32, 46, 48

in three dimensions, 43 59, 223

determining, 50 55 

in two dimensions, 30 32

Cartesian coordinates, 31

Catenary, 520

Center of mass, 249, 311, 355 362, 580

of a composite object, 363 365

coordinates of, 357

cylinder with nonuniform density, 360

defined, 311, 355

density, 356 357

homogeneous objects, 356 358, 580

of objects, 355 356

representing the weight of an L-shaped 

bar, 358 359

of vehicles, 366 367

weight density, 356

Center of pressure, 529 531, 533

defined, 529 530, 533

and pressure force, 536

Centroids, 311 373

of areas, 312 320, 577

with a cutout, 324

by integration, 315

areas defined by two equations, 316

of composite areas, 320 327

of composite volumes and lines, 343 347

of a cone by integration, 338 339

defined, 311, 314

distributed loads, 327 335

area analogy, 329

beam subjected to, 331

beam with, 330, 332

beam with a triangular, 330

describing, 328

examples of, 327

force and moment, determining, 328

of lines, 336 343, 579

composite, 343 347

by integration, 339 340

Pappus-Guldinus theorems, 350 355

determining a centroid with, 353

first theorem, 350, 352

second theorem, 351 352

of a semicircular line, by integration, 340

of volumes, 335 343, 580

composite, 343 347

containing a cutout, 345 346

Circular area:

moment of inertia, 379

properties of, 578

Circular sector, properties of, 579

Civil engineers, 4

Clutches, 464 467

defined, 465

disengaged, 465

engaged, 465

Coefficient of kinetic friction, 432 433, 434

Coefficient of static friction, 432, 434

Coefficients of friction, 432 433, 434

Components:

cartesian, 30 45, 223

624 Index
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Index 625

determining, 32 33

in terms of an angle, 34

parallel to a line, 46 48

perpendicular to a plane, 74

scalar, 30

vectors, 30

Composite:

areas, 320 327

lines, 343 347

objects, 362 365

volume, 343 347

Composite areas:

centroids of, 320 327

determining, steps in, 321

defined, 320

moments of inertia of, 386 388

Composite objects, moments of inertia, 

418 419

Compression, 86, 256 258

Concrete bridges, 309

Concurrent system of forces, 82, 89

Conservative forces:

examples of, 559 560

principle of virtual work for, 562

springs, 558 559

weight, 558

Conservative potential energy, 558

Conservative system, 559, 562

stability of, 563

Contact forces, 83 86, 90

ropes and cables, 84 85, 90

springs, 85 86

surfaces, 83 84

Coordinate systems, 87

three-dimensional, 44

Coplanar forces, 41, 82, 108, 244

Cosines:

direction, 45, 47 49

law of, 574

Coulomb theory of friction, 429, 430 447

coefficients of friction, 432 433

kinetic coefficient, 432 433

static coefficient, 432

Counterclockwise moments, 122

Couples, 162 170

defined, 162, 164

moment of, 163 165

sum of the moments due to, 163, 167

total force exerted by, 164

unknown forces, determining, 166

Cross products, 68 77

of adjacent vectors, 69

definition, 68 69

evaluating a 3 * 3 determinant, 70

minimum distance from a point 

to a line, 73

mixed triple products, 70 72

non-commutative nature of, 69

in terms of components, 69 70

units of, 68 69

Cutout, 322

centroid of a volume containing, 345 346

Cylinder:

fixed, rope wrapped around, 473

moment of inertia, 420 421

with nonuniform density, 360

D

Datum, 558, 562

Deep submersible vehicle, 10

Degree of freedom, 560, 562

Degree of redundancy, 216, 217

Degrees, angles expressed in, 8

Density, 356

weight, 364, 532 534, 536 537

defined, 356

Derivatives, 574

Derived units, 7

Design, and engineering, 5

Dimensionally homogeneous equation, defined, 11

Direction cosines, 45, 47 49

Direction, moments, 123, 134 136, 138

Discrete loads, 523 528

cable subjected to, 526 527

configuration/tensions, determining, 523 524

continuous and discrete models, 524 525

Disengaged clutches, 465

Disk sander, friction on, 468

Displacement, 22 23

virtual, 547, 550

Distributed forces, 171, 375, 485

examples of, 327
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626 Index

Distributed loads:

area analogy, 329

beam subjected to, 331

beam with, 330, 332

beam with a triangular, 330

describing, 328

examples of, 327

force and moment, determining, 328

relations between shear force, bending moment 

and, 498 511

Dot products, 60 68

application of, 110 111

definition, 60

properties of, 60

in terms of components, 60 62

using to determine an angle, 63

vector components parallel and normal to a line, 61, 62, 64

normal component, 61 62

parallel component, 61

projection, 61

Dynamics, 4

E

Einstein s special theory of relativity, 7

Electromagnetic forces, 83

Elementary mechanics, 4, 6 7

Engaged clutches, 465

Engineering, and mechanics, 4 14

Equations:

containing angles, 8

determining units from, 11

quadratic, 573

Equilibrium, 86 87, 91

applying to a system of pulleys, 94

forces on an airplane in, 95

objects in, 193 251

stability of, 560 561

statically indeterminate objects, 215, 217

structures in, 255 309

three-dimensional applications, 221, 228 229

three-force members, 242 244

two-dimensional applications, 87, 199, 227

two-force members, 240 244

examples, 243 244

using to determine forces on an object, 92

Equilibrium equations, 87, 227, See also Scalar 

equilibrium equations

three-dimensional applications, 227

two-dimensional applications, 199, 227

Equilibrium position, stability of, 564 565

Equivalent systems, 171 188

conditions for equivalence, 171 173

representing systems by, 

172 173, 175, 178

External forces, 82, 89

F

Feet (ft), 9

Feet per second (ft/s), 6, 8

Feet per second squared (ft/s2), 6

First Pappus-Guldinus theorem, 350, 352

Fixed (built-in) supports, 196 198

reactions at, 200 201

three-dimensional applications, 224 225

Flight path angle, 95

Forces, 7, 9, 81 119

analysis of, 87 89

luggage carrier, 202 203

axial, 256, 258, 486 487

bending moment, 144, 486 487

body, 82

concurrent, represented by a force, 173, 176

concurrent system of, 82

contact, 83 86, 90

coplanar, 82

determining components of, 54 55

determining the moment of, 151

effects of, 121

equilibrium, 82, 86 87

using to determine, 92

external, 82, 89

free-body diagrams, 87 89, 91

friction, 83 84, 429

gravitational, 82 83, 90

internal, 82, 89

line of action, 82, 89

measurement of, 7

moment of a system of, 124 125

normal, 83

parallel, 82, 89

BEDFMI_0136129153.QXD  4/14/07  1:35 AM  Page 626



Index 627

representing by a force and couple, 173

ropes/cables, 84 85, 90

shear, 486 487

springs, 85 86

surface, 82

systems of, 82, 89

terminology, 82 83

three-dimensional, 82, 89, 108 111

two-dimensional, 82, 89, 122 133

types of, 82 86

unit conversion, 9

as a vector quantity, 22

Frames, 255, 282 295

analyzing, 282 283, 290 291

defined, 282, 288

determining forces acting on members of, 

282 283, 292 293

entire structure, analyzing, 283

forces and couples on the members of, 288

loads applied at joints, 285 288

members, analyzing, 283 288, 294 295

reassembling free-body diagrams of individual 

members, 286

two-force members in, 285

Free-body diagrams, 81, 87 89, 91

choosing, 93

freed (isolated) objects, 87 88

steps in drawing, 87

two-dimensional applications, 198 199

Friction, 429 483

angles of, 433 434

evaluating, 434

applications:

clutches, 464 467

journal bearings, 459 463

threads, 452 455

thrust bearings, 464 467

wedges (shims), 429, 448 452

belt friction, 471 472

belts and pulleys, 474 475

brake, analyzing, 436

coefficients of, 434

kinetic coefficient, 432 433, 434

static coefficient, 432, 434

Coulomb friction, theory of, 430 447

Coulomb theory of, 429

determining tip-over potential, 437

on a disk sander, 468

dry friction, See Coulomb friction

rope wrapped around two fixed cylinders, 473

Friction brake, analyzing, 436

Friction forces, 83 84, 429, 465

determining, 435

evaluating, 434

Furlong per fortnight, defined, 13

G

Gage pressure, 529, 533

Gallatin National Forest (Montana), steel truss 

bridge in, 265

giga-, 7

Gravitation, Newtonian, 15 16

Gravitational forces, 82 83, 90

H

Hinge axis, 224 225

Hinge, 222 223

reactions at, 230 231

Hinges, properly aligned, reactions at, 232 233

Homogeneous objects, 356 358

properties of, 580 582

Horsepower (hp), 14

Hour (h), 5

Howe truss, 256, 265, 273

I

I-beams, 389

Impending slip, 432

Improper supports, 215, 217, 219

Inch (in), 8

Inertial reference frame, 87, 91

Integrals, 575

Internal forces, 82, 89

Internal forces and moment, 485 543

determining, 488 489

shear force and bending moment diagrams, 493 498

International System of units (SI units), 5, 9

prefixes used in, 7

Isolated objects, free-body diagrams, 87 88
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J

Joints, 256

loads applied at, 285 288

method of, 258 262

special, 261

Journal bearings, 459 463

defined, 459

pulley supported by, 460 461

K

kilo-, 7

Kilogram (kg), 7, 9

Kilometer (km), 7

Kilonewton-meters, 122

Kilonewtons (kN), 7

Kilopound (kip), 9

Kinetic energy, defined, 13

Kinetic friction, angle of, 433

L

Law of cosines, 574

Law of sines, 574

Laws of motion, 7

Leaning Tower of Pisa, 189

Length, unit conversions, 9

Line of action, 82, 89

determining moment and perpendicular 

distance to, 124 125

Linear spring, 86, 91

Lines:

centroids of, 336 343

composite, 343 347

by integration, 339 340

moment of a force about, 147 161

applications, 148 150

definition, 148

determining, 151

example, 152 153

properties of, 579

Liquids and gases, 529 543

center of pressure, 529 531

pressure, 529

stationary liquid, pressure in, 531 534

Loading curve, 328 329

Loads, 195 196, 217 219, 255

defined, 196

Logarithms, natural, 573

M

Machines, 282 295

analyzing, 282 283, 290 291, 294 295

defined, 282, 288

forces and couples on the 

members of, 288

MacPherson strut, 85

Magnitude, 22

moments, 122 123, 134, 138

of a vector in terms of components, 44 45

Mars Exploration Rover, 17 18

Mass, 7, 22

center of, 249, 355 362

parallel-axis theorem, 375, 384

as a scalar quantity, 22

simple objects, 409 414

slender bars, 409 410

thin plates, 410 411

unit conversion, 9

in U.S. Customary units, 9

Mathematics review, 573 576

algebra, 573

derivatives, 574

integrals, 575

natural logarithms, 573

quadratic equations, 573

Taylor series, 576

trigonometry, 574

Meaningful digits, 5

Mechanical advantage, 250

Mechanical engineers, 4

Mechanics:

chronology of developments in mechanics, 

up to Newton s Principia, 6

elementary, 4, 6 7

and engineering, 4 14

fundamental concepts, 5 8

Newton s laws, 6 7

numbers, 5
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significant digits, 5

space and time, 5 6

learning, 4 5

Newtonian gravitation, 15 16

principles of, 4

problem solving, 4 5, 9

as science, 4

space, 5

time, 5

units:

angular, 8

conversion of, 8 10

mega-, 7

Megagram (Mg), 7

Members, 255

Meter (m), 5, 7, 9

Meters per second (m/h), 5

Meters per second squared (m/s2), 5

Method of joints, 258 262

applying, 262 263

Method of sections, 268 271

applying, 271

micro-, 7

Mile (mi), 8

Mile per hour (mi/h), 8

milli-, 7

Minute (min), 5

Mixed triple products, 70 71, 72

Modulus of elasticity, 395

Mohr s circle, 405 409

constructing, steps in, 405

defined, 405

determining principal axes and 

principal moments of inertia, 406

moments of inertia by, 407

Moment of a couple, 162, 

See also Couples

determining, 164 165

Moment of a force:

about a line, 147 161

applications, 148 150

definition, 148

determining, 151

example, 152 153

about a point, 134 135, 137, 163 164

about the x axis, 154

Moment vector, 134 146

applying, 140 141

two-dimensional description 

and, 136 137

Moments:

choosing the point about which to evaluate, 202

of a couple, See Couples

determining, 124, 138 139

defined, 138

direction of, 123, 134 136, 138

magnitude of, 122 123, 134, 138

moment of a force about a line, 147 161

moment of a force about the x axis, 154

relation to two-dimensional description, 136 137

rotating machines, 155

sign of, 123

summing to determine an unknown force, 126

of a system of forces, 124 125

two-dimensional description of, 122 133

Varignon s theorem, 137

Moments of inertia, 375 427, 577

about the x axis, 376, 383 384

about the y axis, 376, 384

beam cross sections, 389

of an area, 376 382

of a circular area, 379

of a composite area, 386 388

of a composite object, 418 419

of a cylinder, 420 421

Mohr s circle, 405 409

polar moment of inertia, 377, 384 385, 577

and principal axes, 400 403, 406

product of inertia, 377, 384

of slender bars, 409 410, 413

thin plates, 410 411

of a triangular area, 378 379

Morse taper,  470

N

nano-, 7

Natural logarithms, 573

Negative of the vector U, 24

Newton, Isaac, 6 7

Newton (N), 7, 9
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Newtonian frame, 87

Newtonian gravitation, 15 16

Newton-meters, 13, 122

Newton s laws, 6 7

Newtons per meter, 328

Newtons per square meter, 10, 14, 529

Newton s second law, 7, 8, 15

Newton s third law, 83

demonstrating, 284

Nonlinear spring, 566

Normal force, 83

Numbers, 5

significant digits, 5

use of, in book, 5

O

Objects in equilibrium, 183 251

three-dimensional applications, 221 240

two-dimensional applications, 194 215

One-degree-of-freedom systems, 560 562

analyzing the equilibrium of, steps in, 561

P

Pappus-Guldinus theorems, 350 355

determining a centroid with, 353

first theorem, 350, 352

second theorem, 351 352

Parallel forces, 82, 219

represented by a force, 173, 176

representing by a single force, 179

Parallel-axis theorems, 375, 383 389, 415 425

beam cross sections, 389

defined, 415

moment of inertia about the x axis, 383 384

moment of inertia about the y axis, 384

moment of inertia of a composite 

object, 418 419

moments of inertia of a cylinder, 420 421

moments of inertia of a composite area, 386 388

polar moment of inertia, 384 385

product of inertia, 384

Parallelogram rule, vector addition, 23, 25

Pascals (Pa), 10, 14, 529

Philosophiae Naturalis Principia Mathematica

(Newton), 6

Pin supports, 195, 197

reactions at, 197

Pitch, threads, 452

Plane, component of a vector perpendicular to, 74

Point:

minimum distance from, to a line, 73

moment of a force about a point, 134, 137, 163

Polar moment of inertia, 377, 384 385, 397, 577

Position vectors, in terms of components, 46

Potential energy, 558 568

conservative forces:

examples of, 559 560

springs, 558 559

weight, 558

defined, 558

degree of freedom, 560, 562

stability of equilibrium, 560 561

Pound (lb), 7 9

Pounds per foot, 328

Pounds per square foot, 10, 529

Pounds per square inch (psi), 529

Pratt truss, 256, 265, 273

Prefixes, used in SI units, 7

Pressure, See also Center of pressure

converting units of, 10

defined, 529, 533

in a stationary liquid, 531 532

Pressure distribution, gate loaded by, 534 535

Pressure force:

and center of pressure, 536

determination of, 537

Principal axes, 397 399, 400, 402 403

defined, 398

and moments of inertia, 400 402

Principal moments of inertia, 398

Principle of transmissibility, 181

Principle of virtual work, 545, 546 548

application to structures, 548

for conservative forces, 562

Problem solving, 4 5

Product of inertia, 377, 384, 397

Products of vectors:

cross products, 68 77

dot products, 60 68

mixed triple products, 70 72
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Projection, of a vector onto a line, 61

Proper supports, 219

Properly aligned hinges, reactions at, 225

Pulleys, 84 85

applying equilibrium to a system of, 94 95

Pythagorean theorem, 30

Q

Quadratic equations, 573

Quantum mechanics, 7

Quarter-circular area, properties of, 578

Quarter-elliptical area, properties of, 579

R

Radians (rad), 8

Radius of gyration, 376, 377, See also Moments of inertia

Reactions:

defined, 196

at beams, 200

at fixed supports, 198, 200, 202 203

at hinge supports, 232 233

at pin supports, 197

at properly aligned hinges, 225

at roller supports, 197 200, 219, 221, 227, 239

supports, 200 204

three-dimensional applications, 227 228

two-dimensional applications, 199

Redundancy, degree of, 216, 217

Redundant supports, 215 216

Right triangle, trigonometric functions for, 574

Right-hand rule, 68 69

Right-handed coordinate system, 44

Roller supports, 195 196, 197

reactions at, 197 200, 219, 221, 227, 239

three-dimensional applications, 227 228

Roof structures, examples of, 256

Roof trusses, 257

Ropes/cables, 84 85, 90

Rotated axes, 396 397, 402 403

moment of inertia about the x* axis, 397

moment of inertia about the y* axis, 397

Rotating machines, 155

Rotational acceleration, 409

Rough surfaces, 83

Rounding off numbers to significant digits, 5

Rowlett, Russ, 9

Russell s traction, 116

S

Scalar components, 30

Scalar equilibrium equations:

three-dimensional applications, 221

two-dimensional applications, 194

Scalars:

defined, 22, 25

product of a vector and a scalar, 24

Second Pappus-Guldinus theorem, 351 352

Second (s), 5, 7, 9

Sections:

appropriate, choosing, 271

method of, 268 271

applying, 271

Semicircular area, properties of, 578

Shadoof, defined, 210

Shear force, 485 486

and bending moment diagrams, 493 498, 508 509

relations between distributed loads, bending 

moment and, 498 511

Shear force diagram, construction of, 500 501

Shims, 429, 448 452

SI system of units, See International System of units 

(SI units)

Significant digits, 5

Simply supported beam, 493

Sines, law of, 574

Slender bar:

moment of inertia, 409 410, 413

properties of, 580

Slip, impending, 432

Slope, threads, 452

Slug, 8, 9

Smooth surfaces, 83

Space, 5 6

Space trusses, 275 279

Span, bridges, 309

Spandrel, properties of, 579

Special joints, 261

Spring constant, 86, 91, 565
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Springs, 85 86

linear, 86, 91

spring constant, 86, 91, 565

Stability of equilibrium, 560 561

Stable equilibrium position, 561

Static friction:

angle of, 433

coefficient of, 432

Statically indeterminate objects, 215, 217

improper supports, 215, 217, 219

recognizing, 218

redundant supports, 215 216

Statics, 4

Stationary liquids, 485, 529, 541

pressure in, 531 534

Steady flight, 95

Steady translation, 87, 91

Strategies, for problem solving, 4

Stretch, 562

Structures in equilibrium, 255 309

Subtraction, of vectors, 24, 25

Supermaine Spitfire, 319

Support conventions, 194 195

Supports, 194 198, 199, 221 226

ball and socket, 221 222

bearings, 223 224

conventions, 194 195

fixed (built-in), 196 198, 224 225

reactions at, 200 201

hinge, 222 223

improper, 215, 217, 219

loads, 194

pin, 195, 197

reactions at, 197

reactions, 194, 199

redundant, 215 216

roller, 195 196, 222

reactions at, 197 200, 219, 221, 227, 239

three-dimensional applications, 221 226, 227

two-dimensional applications, 194 198

Surface force, 82

Surfaces, 83

Suspended cables:

curve in, 22

vertical load, 529

Swape, defined, 210

Systems of forces and moments, 82, 89

arbitrary system, representing by a force and couple, 176

concurrent forces, represented by a force, 173, 176

defined, 171

equivalent systems, 171 188

conditions for equivalence, 171 172

representing systems by, 172 173

forces, representing by a force and couple, 173, 176

parallel forces:

represented by a force, 173, 176

representing by a single force, 179

representing a system by a force and couple, 172 173

representing a system by a simpler equivalent 

system, 178

representing by a wrench, 173 175, 180

T

Taylor series, 576

Tension:

in a cable, 84

trusses, 223, 256 258

Thin plates, 410 411

properties of, 580 581

Threaded collar, rotating, 454 455

Threaded connections, 429

Threads, 452 455

pitch, 452, 454

slope, 452, 454

Three-dimensional applications, 221 240

reactions, 228 229

scalar equilibrium equations, 221

supports, 221 226

ball and socket, 221 222

bearings, 223 224

fixed, 224 225

hinge, 222 223, 230

roller, 222

Three-dimensional coordinate systems, 

drawing, 43 44

Three-dimensional force systems, 108

Three-dimensional forces, 82, 89

Three-force members, 242 244

example, 243

Thrust bearings, 464 467

Time, 5, 22

unit conversions, 8 9
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Torsion, 144

Translation:

steady, 87

virtual, 547

Transmissibility, principle of, 181

Triangle rule, for vector addition, 23, 25

Triangular area:

moment of inertia, 397 398

properties of, 578

Triangular plate, moment of inertia, 412

Trigonometry, 574

Trusses, 210, 256 258

axial force, 256, 258, 486 487

bridge, 257, 263

compression, 256, 258

defined, 258

Howe, 256, 265, 273

Pratt, 256, 265, 273

roof, 257

space, 275 279

tension, 223, 256 258

Warren truss, 256, 258 259, 268

Turnbuckle, 458

Two-dimensional applications, 194 215

equilibrium equations, 87, 199, 227

free-body diagrams, 198 199

scalar equilibrium equations, 194

supports, 194 198

fixed (built-in), 196 198

improper, 215, 217, 219

pin, 195

proper, 219

redundant, 215 216

roller, 195 196, 197

Two-dimensional force systems, 91

Two-dimensional forces, 82, 89

Two-force members, 240 241, 242

examples, 243 244

in frames, 285

U

Unit vectors, 24 26

Units:

angular units, 8

conversion of, 8 10

determining from an equation, 11

International System of units, 5, 9

U.S. Customary units, 5 9

Universal gravitational constant, 15

Unknown forces, determining, 166

Unknown vector magnitude, determining, 35

Unstable equilibrium position, 560

U.S. Customary units, 5 9

V

Varignon s theorem, 137

Vector product, 68

Vectors, 21 79

addition of, 22 25, 27

parallelogram rule, 23

in terms of components, 21, 30 31

triangle rule for, 23

cartesian components, 30 45, 223

components, 30

determining, 32 34

of a force, determining, 54 55

parallel and normal to a line, 61, 64

perpendicular to a plane, 74

in three dimensions, 43 59

in two dimensions, 30 43

using to determine an angle, 63

cross products, 68 77

defined, 68 69

evaluating a 3 * 3 determinant, 70

minimum distance from a point to a line, 73

mixed triple products, 70 72

in terms of components, 69 70

defined, 22, 25

direction cosines, 45, 47 49

dot products, 60 68

defined, 60

in terms of components, 60 62

using to determine an angle, 63

vector components parallel and normal to a line, 61,

62, 64

magnitude, in terms of components, 44 45

manipulating, in terms of components, 30 32

operations, 26

parallel to a given line, components of, 46 48

position vectors, in terms of components, 31 32, 46, 48
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Vectors (continued )

product of a scalar and a vector, 24, 25

products of:

cross products, 68 77

dot products, 60 68

mixed triple products, 70 71

projection onto a line, 61

rules for manipulating, 22

subtraction of, 24, 25

unit vectors, 24 26

unknown vector magnitude, determining, 35

Vehicles, centers of mass of, 366 367

Veerpalu, Andrus, 13

Velocity, 5 6

Virtual displacement, 547, 550

Virtual translation or rotation, 547, 550

Virtual work, 545 571

applying to a machine, 552 553

applying to structures, 548 551

defined, 547

potential energy, 558 568

conservative forces, examples of, 558 559

conservative forces, principle of work for, 559 560

springs, 558 559

stability of equilibrium, 560 561

weight, 558

principle of, 545, 546 548

work, 546 547

Volume analogy, and force/moment due 

to pressure, 533

Volumes:

centroids of, 335 343

composite, 343 347

containing a cutout, 345 346

defined, 335

properties of, 580 582

W

Warren truss, 256, 258 259, 268

Watt (W), 14

Wedges (shims), 429, 448 452

defined, 448

forces on, 449

Weight:

and center of mass, 355 357

determining, 17 18

and mass, 16

Weight density, 356, 364, 532 534, 536 537

Weighted average position, See Centroids

Winches, 476

Work, 546 547, See also Virtual work

Wrench, 13

locking, 303

representing a force and couple by, 180

representing a system by, 173 175
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