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Preface 

In a contribution (Bartlett, 1971 a) to the Symposium on 
Statistical Ecology at Yale in 1969, I noted in my 
introductory remarks that that paper was not intended to be 
in any way a review of statistical techniques for analysing 
spatial patterns. My contribution to a conference at Sheffield 
in 1973 aimed, at least in part, to supply such a review and 
forms the basis of this monograph; but in these prefatory 
remarks I must still make clear what I decided to discuss, and 
what I have omitted. 

Broadly speaking, the coverage is that included in seminars 
and lectures I have given on this theme since 1969. We may 
divide problems of spatial pattern (in contrast with complete 
random chaos) into (i) detecting departures from randomness, 
Oi) analysing such departures when detected, for example, in 
relation to some stochastic model and (iii) special problems 
which require separate consideration; for example, 
sophisticated problems of pattern recognition in specific 
fields, such as the computer reading of handwriting or 
recognition of chromosomes. 

While I shall refer to (i), I consider that the area denoted 
by (ii) is now of more interest and importance, and is the one 
to be mainly discussed. Class (iii) is of course of considerable 
importance, but not one that is conveniently included with 
(ii), nor indeed would I be the right person to attempt to 
discuss problems in this class. Classes (i) and (ii) are indeed 
broad enough, as is adequately indicated if we recall that the 
classes of models needed in the one-dimensional case may 
include all stochastic processes in time (as analogous, with 
reservations to be noted, to one space dimension), and that it 
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is intended to concentrate mainly on the two-dimensional 
spatial analogues. 

I have found it convenient to separate the review of 
theoretical models from the statistical examples, partly 
because, as I hope will become clear, the development of the 
appropriate theory is a vital part of knowing how to conduct 
a meaningful analysis. 

While I am defining the scope of this monograph, let me 
mention further problems omitted for convenience, or for 
brevity. One is the specific problem of robust density 
estimation in ecology (e.g. of plants or trees) in the case of 
non-random pattern, even though this is linked in the 
literature, with the study of particular patterns and models 
(see, for example, Holgate, 1972, Diggle, 1973). Another is 
the problem of multivariate measurements of one kind or 
another, including the vast area of cluster and discriminant 
analysis techniques applied to spatial pattern problems. 
Finally, I shall not discuss the important problem, for 
example in epidemiology, usually referred to as the detection 
of space-time interactions. 

The large area of problems remaining I shall classify in 
relation to the appropriate stochastic model, whether (i) 
continuous variable over continuous space, denoted by X(r) 
(ii) a point process N(r) or dN(r) over continuous space, (iii) a 
process Xi over a lattice of sites i. We could of course divide 
the class of variables Xi in (iii) into continuous or discrete 
(e.g. binary), but part of the relevant theory at least is 
common, and is conveniently dealt with before any 
differences are noted. 

Some problems, while strictly classifiable under one of 
these headings, may need separate consideration. An example 
is a mosaic pattern of vegetation over an area, which is 
divided into contiguous continuous regions where the 
vegetation is or is not present. This is classifiable as X(r), 
where X is either I or O. Other problems might be related to 
line processes rather than to point processes or to continuous 
processes, and some discussion of this class of processes has 
been included. 
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Finally, as in the one-dimensional case, it is hardly feasible 
to present standard methods for the analogues of 
non-stationary processes with the generality accorded to 
stationary models, which will be a further theoretical 
constraint usually in mind. This classification of models 
appropriate to some types of two-dimensional data is in the 
last resort one of expediency, and must never be assumed 
exhaustive. 

The two-part structure has the perhaps dubious attraction 
that theoreticians can stop at Part I, and non-mathematical 
biometricians can concentrate on Part II; but to my mind the 
interdependence of both Parts already referred to is such that 
most readers, and certainly most statisticians and 
biometricians, should read this monograph as a whole. If they 
do, I hope they will find the central role played by the 
same stochastic processes and models in both physical and 
biological problems one of the fascinating aspects to emerge 
in recent years from this whole field of study (see in 
particular section 2.2). 

March 1975 M.S.B. 
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PART I 

Survey of Underlying Theory 



CHAPTER ONE 

Continuous, Point and Line 
Processes 

1.1 Continuous processes X(r). Autocorrelation and spectral 
theory 

For the general mathematical theory of stochastic processes, 
and in particular stationary processes, the reader is referred 
to one of the several books on stochastic processes now 
available (e.g. Bartlett, 1966; Cox and Miller, 1965). For a 
stochastic process * { X(t)}, complete stationarity implies 
stochastic equivalence of {X(t)} and { XU + h)}. It is 
convenient to extend the stationarity definition to processes 
in more than one dimension, so that even for a space 
vector r the stationarity property implies stochastic 
equivalence of {X(r)} and {X(r + h)}. 

When the variable X has a continuous range, whether or 
not r is a continuous or discrete vector variable, 
autocorrelation or spectral theory provides a natural 
theoretical tool, in the sense that if{ X(r)} is a normal 
(Gaussian) process, the autocorrelation or equivalent spectral 
function is the only function that arises in the description or 
specification of the process, apart from a possible non-zero 
mean E{X(r)} = m. There should be no need to review this 
theory in complete detail, but its salient features in the case 
of any number of dimensions will be recalled (cf., for 
example, Bartlett, 1966 § § 6.5 and 9.4). Thus, taking for 

*The entire process is strictly denoted by {X(t)} , as distinct from a single random 
variable X(t) at time t, though in some contexts the latter notation may be used 
for {X(t)} without ambiguity. 
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convenience the constant mean m = E{X(r)} zero, we may 
define the auto covariance and autocorrelation functions by 
w(s) and pes) respectively, where 

w(s) = 0 2 pes) = E{X(r + s)X* (r)} , I 
0 2 = w(O), 

(1) 

and X* (r), the complex conjugate of X(r), is of course 
identical with X(r) for real processes. The spectral 
distribution function F( w) in the case, say, of two 
dimensions is related with pes) by the equation 

pes) = J ei(s, W I +S2 W 2) dF(w), (2) 

where s = (SI, S2), w = (WI, W2). If dF(w) arises entirely 
from a spectral density function f( w), then (2) becomes 

pes) = Jei(SI W I +S2 W 2) few) dw, (3) 

where dw = dW I dW2. With this 'standardized' definition for 
F(w) (andf(w)), note that the auto covariance function is 
mathematically related to 0 2 F(w). 

For any linear transformation or 'filter' of X(r) of the type 

Y(r) = J X(s)dH(r - s), (4) 

it is easy to see that if 

hew) = Je-i(S, W I +S2 W 2) dH(s), 

then for Y(r) 

o~fY (w) = h(w)oifx (w)h*(w), 

where it is assumed that fx (w) exists. In particular, when 
X(r) degenerates to a process for which pes) = 0 for any 
s *- 0, formula (6) becomes 

fy (w) 0: h(w)h*(w), 

(5) 

(6) 

(7) 

a type of formula familiar in the theory of one-dimensional 
time-series. A further point to note is that a strictly 
continuous spatial area (X(r) might, for example, represent 
soil acidity varying over an area of land) can be studied from 
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its values over a regular lattice (as in one dimension), though 
'aliasing' of the higher frequencies then occurs. Thus if the 
two-dimensional rectangular lattice has cell dimensions unity, 
then the autocovariance function in (1) is only available for s 
changing by unit steps. Formula (2) then becomes modified 
to 

pes) = Jei(Sl w 1 +s, W,) dF I (w), (8) 

where FI (w) is only defined in the range WI = -7r to 7r, 
W2 = -7r to 7r. Since pes) on the left-hand-side is unchanged, 
we obtain the relation 

00 

dFI (w) = L dF(wl + 2u7r, W2 + 2v7r). (9) 
U,v=-oo 

Another quite common way in which a lattice process may 
arise from a process over continuous space is by integration 
over a rectangle with the lattice point as its centre, i.e. we 
have a derived process 

YCr) = J X(r + u)du (10) 

integrated over a rectangular region centred at r. As (10) is a 
special case of (4), the relation between the spectrum of 
X(r) and Y(r) is straightforward. In fact, choosing our scales 
to have a square area of unit dimensions, we have from 
formula (6) 

. 2 . 2 sm WI sm W2 2 
o}fy(W) = 2 0xfx(w). wi W 2 

(11 ) 

Formula (11) is, however, still for continuous r; for discrete 
r, we have the further relation (9). 

In the case of processes X(r) defined only for discrete r, 
notice that formulae (4) and (5) become sums, and a formula 
like (7) is necessarily expressible in terms of z = eiw in the 
case of one dimension, or z I = eiw 

1 , Z 2 = eiw 2 in the case of 
two. 

The consideration of possible stochastic models and their 
properties, while relevant to this section, is conveniently 
deferred until later. In particular, it will be shown from the 
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study of lattice nearest neighbour models (see Chapter 2) that 
analogous Markov field models in continuous space must also 
be severely restricted. 

1.2 Point processes N(r). Some specific models and their 
distributional properties 

With point processes N(r), where it is assumed that the 
increment dN(r) between rand r + dr is either 0 to I, 
required, for example, as models for plant or tree stands, it 
seems more relevant to comment first on some useful classes 
of models rather than on the appropriate spectral theory, 
bearing in mind that the non-Gaussian character of such 
processes necessarily limits the use of spectral properties as an 
adequate description. 

Two broad classes of models are as follows: 
A random or Poisson (two-dimensional) process, used as a 

basis for generating the final model in two alternative ways. 
(a) (i) Clustering models. The individuals are taken as 

parents (or nuclei) of families of children (or 
satellites), which are usually assumed to be 
distributed independently, given the position s 
of the parent individual, according to some 
density law fer - s), and with family size n 

(excluding the parent) following a distribution 
law g(n). 

(ii) Doubly stochastic Poisson process. Hetero­
geneity or patchiness is introduced by allowing 
the density parameter A. of the Poisson process 
to be itself a continuous stationary process 
{A(r)}, say. 

(b) Contagion or inhibitory (negative contagion) models. 
The basic individuals are no longer random, but are attracted 
or repelled by their neighbours, even to the extent of a 
minimum separation distance. 

The distributional properties for classes (a)(i) and (a)(ii) 
are fairly well-known; in particular, the form of the complete 
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characteristic functional (c.fl.) for each of these classes is 
known (see, for example, Bartlett, 1964b). 

(i) C{e(r)} == E{exp[ife(r)dN(r)]} 
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= exp(JAo[w{e(r)} - 1] dr), (2) 

where w(e(r)) is the c.fl. stemming from one parent (parents 
having density Ao). In particular, for the case of n 
independent offspring with probability-generation function 

H(z) == E{ezN } = ~ g(n)zn, 
r =1 

w{e(r)} = HO + ff(u - r)[z(u) - 1] du), (3) 

if z(r) = exp {i8(r)} and only offspring are considered (parents 
being omitted) in C{e(r)}. 

(ii) C{e(r)} = EA {exp(JA(u)[z(u) - 1] du)}, (14) 

and in particular if 

A(r) = f~(r - v)dM(v), (5) 

where M(r) is another basic Poisson process with density Al , 
then 

log C{e(r)} = fAI (exp{f~(r - v)[;o(r) - 1] dr} - 1 )dv. 

(16) 

Such formulae determine in principle all distributional 
properties of N(r). Thus it has been noted by Paloheimo 
(see discussion to Matern, 1971) that they enable 
nearest-neighbour distributions to be determined in the case 
of these non-random models. However, it should perhaps be 
noted also, for those unfamiliar with the use of characteristic 
functionals, that direct probability derivations of such 
distributions are not difficult to write down. 

Let us take the case of the clustering model (a) (i). It is 
well-known that, while the sampling distribution of 
nearest-neighbour distance is in the purely random case the 
same whether this distance is from I. a random point II. a 
random individual, this is no longer so for a non-random 
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process. So consider cases I and II separately, leaving aside 
the problem of how to pick a random individual in case II! 

Case I In this case we shall consider the distribution both if 
parents are excluded, and if they are included. In the former 
situation, consider an arbitrary region of area A, and let the 
probability of no children in A be PI' and the probability of 
no individuals P 2 <Pl. Suppose a parent is at s, s + ds 
relative to the random point at the origin, and denote the 
event 

'No children in A from parent in ds' 

by &(ds). (Given the shape and position of the region A, the 
probability of this event can always be written down as a 
mathematical integral.) Then 

PI = II [P{&(ds)}P{parent at ds} 
ds 

+ I - P{parent at ds}] 

= exp(fAo ds[P{&(ds)} - 1]); 

P2 =P{no parents inA}P{no children inA I 

(17) 

no parents in A} (18) 

10gP2 = - AoA + JAods[P{&(ds)} - 1], 

where the integration for 10gP 2 is over the entire space 
excluding A. Note that 

P2 =1=e-"AAp l · 

To obtain the cumulative distribution function F(R) of the 
nearest-neighbour distance R, say, we choose a circle, radius 
R, centre 0, and then 

(19) 

In Case II, we consider for simplicity the case of children 
only in N(r). Let the origin 0 now be at a 'random 
individual'; any individual in A may now belong to the same 
family as the individual at 0 or to a different family. Given 
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the second contingency, the relevant probability of no 
individ uals in A is PI above. Let the overall probability be P 3 • 

Then 

P 3 = P{no children of different family} 

x P{no children of same family I no children of 

different family} 

= P{no children of different family} P{no children of 

same family} 

as these probabilities are independent 

(20) 

where 

P 4 = P {no children of same family in A I child in da at a} 

P{no children of same family in A, child in da} 
= 

P{child in da} 

P{no children in A'} - P{no children in A}. 
=-------------------------------

P{ child in da} 

J [P{&'(ds)} -P{&(ds)}]Aods 
= (21 ) 

Ada 

where &'(ds) is the event 'no children inA' ==A excluding da 
at 0, from parent in ds', and A = AoE{N}. 

1.2.1 Spectral theory 

The spectral theory for two-dimensional point processes, 
which was given by Bartlett (1 964b ), is recapitula ted here. Let 

E {dN(r)} = Adr, I 
E {dN(r) dN(r')} = {A 2 + w(r - r') }drdr', (r =1= r' ), (22) 

where dr == dxdy, and dN(r) = N(r + dr) - N(r). It is assumed 
that dN(r) is restricted to values I or 0 so that 

E{[dN(r)]2} =E{dN(r)}. 
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The complete covariance density function for N(r) is then 
defined by w(r - r') + oCr - r'), where o(u) is the 
two-dimensional Dirac delta-function. The corresponding 
complete spectral density function is defined by 

I [f ., few) = ~e-IWr w(r)dr + A] 
(27T )2 

(23) 

where w'r = w,x + w 2Y. For convenience, 47T2 few) may be 
denoted by g(w); being a 'modulation' of the uniform 
function A, it cannot, as for a continuous process X(r), be 
standardized to integrate to unity. 

To determine g(w) for a clustering model as in (i), let the 
distribution of number of offspring per parent be Ps, and let 
the spatial distribution function of each offspring about its 
parent have a density function her). Then the contributions 
to the proper component of the covariance density are 

AO ([her) +h(- r)]E{s} +h 2 (r)E{s(s - I)}} (24) 

if parents are included, and the last term only if parents are 
excluded, where h2 (r) represents the distribution of vector 
distance between two offspring from the same parent. In the 
case of offspring only, this leads to the spectral function 

g(w) = A {l + C(w)C*(w)E{s(s - I)} IE {s}}, (25) 

where C(w) is the characteristic function of her). In 
particular, for the isotropic Gaussian density 

I 1l 2/ 2 her) = -- e- 72r a , 
27T02 

so that 

we obtain 

I (rn2 + v - rn )e- a2 (w;+w;) I 
g( w) = A I + 0 0 0 , 

rno 

(26) 

(27) 

(28) 

where rno and vo are mean and variance of s. For example, if 
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.... 
80 

60 .. ' 
... .: 

40 

... . .. 
. \. .. 

20 ). ... 

.. ., 
o 20 40 60 80 

.. . , 

100 

Fig. 1 Simulation of clustering model (for detailed specification, see 
text). (From Biometrika, 1964b) 

Ps is Poisson, Vo = mo and this becomes 

11 

(29) 

A simulated example of 100 points of this last clustering 
process, with mo = 2 and a = I, is shown in Fig.!. It should 
be noted that for these models the additional spectral 
component from w(r) is essentially positive, as it is for 
doubly-stochastic Poisson models, so that it may be difficult 
(or even in certain cases impossible) to discriminate between 
these two types of model. By contrast, models involving 
inhibition between individuals (see § 1.2.2) can lead to 
negative components, as I have demonstrated elsewhere in 
the one-dimensional spectral analysis of traffic patterns. 

1.2.2 Contagion and inhibitory models 

Coming now to the second broad class of models referred to 
in § 1.2.1 viz. contagion processes, we may define these as 
models where individuals attract or repel each other, just as 
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physical particles may do. Unfortunately while these models 
are very relevant for many physical and biological situations, 
they are extremely difficult to cope with mathematically, 
especially in more than one dimension, so that models may 
have to be simulated before data can be compared with the 
theoretical model. 

Even in one dimension the distinction between two-way 
spatial symmetry and the one-way temporal direction may be 
crucial. As an example consider that of swallows perching on 
a telegraph wire, and suppose that in our model we wish to 
have an inhibitory minimum distance a, but otherwise no 
restriction. Two alternative models would then be as follows: 

(i) Apart from the minimum distance a, the birds alight at 
random unidirectionally, the overall space density being A. 
In other words, apart from the 'dead intervals' a, the positions 
of the birds would define a Poisson process. If the density of 
such a process is Ao , then obviously 

a + 1/"'-0 = 1/"'-. 
(ii) The birds alight consecutively at random, but within a 

given distance L, and still subject to the minimum distance a. 
The distributional problem is now related with a classical 
packing problem (the 'car-parking' problem: see, for example, 
Moran, 1966; the distinction between (i) and (ii) in the 
present context has been stressed and further discussed by 
Diggle, 1973). 

1.3 Line processes 

To a considerable extent the specification of stochastic 
processes is a matter of convenience. Renewal processes, for 
example, are familiar in their own right, or as a special class 
of point processes. If vehicles are moving on a road, they may 
be represented (approximately) either as point processes 
evolving in time, or as paths in a space-time continuum. The 
latter static representation is an example of a line process 
(Bartlett, 1967b), and clearly all examples of random paths 
in space could be so designated. I shall, however, bearing in 
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Fig, 2 Simulation o/random line process. (From Proc. 5th Berkeley 
Symp. on Math. Stat. and Prob., Vol. 111, 1967b) 

mind the scope of this book, restrict the class of line 
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processes considered very drastically to straight lines in a 
plane. With this restriction, the number of possible examples 
is rather sparse, and only an introductory discussion of types 
of analysis will be attempted. Even the example of vehicles 
on a road will be excluded as being largely one-dimensional if 
the data consist of a single sample of vehicles passing a spatial 
point, whether or not velocities at this point are recorded (for 
analyses of such traffic data, see Bartlett, 1966 § 9 .23; 
1967b). The existence of alternative !"epresentations of the 
same process we shall see becomes very relevant-for 
example, with regard to the appropriate spectral theory. 

Fig. 2 shows a simulated sample of random lines in a plane 
(for its construction, see § 3.3). In order to consider a rather 
wider class, define first the spatial process 

X(r) = fHs - r) dN(s), (30) 

where {N(s)} is some point process, and U(r)} is a random 
function associated with each point event of {N(s)}. The 
H(r)} are independently realized for each such point. For 
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our restricted class of line processes, Hr) will be zero except 
on a straight line, possibly infinite in extent, where it is given 
a constant measure. 

For such processes the direct spectral function of X(r) may 
be obtained by the use of formulae like (6) and (7) of § 1.1, 
with appropriate scaling to give a non-zero and finite measure. 
Thus for N(s) in (30) a random Poisson process with density 
"A, and randomly orientated lines, 

I 

alfx(w) -+ 2"A1 I (1 - z/l)Jo(wz)dz, 
o 

(w 2 = wi + w~) (31 ) 

where I is the (constant) length of the lines, and the constant 
measure assigned to an element ds of a line is dS/Ol, where Ol is 
the 'width' of the line and tends to zero. In the further case 
of /-+ 00, this formula becomes 

alfx(w) -+ 2"A/w, (w>O) (32) 

the measure being now dS/OlVI (cf. Bartlett, 1966, §6.S2). 
However, these direct spectral functions do not seem 

especially convenient, at least for digital computations on 
these processes, and transformation to pure point process 
representations before analysis seems likely to be more 
convenient. Thus in the case of (effectively) infinite straight 
lines, these may be defined by the equations 

x cos e + y sin § =_p, 

and specified by a point process in the infinite strip p from 
- 00 to + 00 , and e from 0 to 7r (cf. Kendall and Moran, 
1963). If the lines have direction, then e would vary from 0 
to 27r. 

If the lines are finite but constant in length, the 
representation (1) may be used to specify the point process 
N(s) for their centres, and e from 0 to 7r for their slope. 

Notice that the point process representation, while 
two-dimensional, has a different structure in that one 
coordinate is an angle variable with a Fourier series spectrum. 
The combined spectrum for p (or s in the finite length case) 
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and e will consequently be a series of coefficients, each 
coefficient being a spectral function for P (or s). For 
completely random lines, these spectral values will be 
theoretically constan t. 

15 

One-dimensional transect sampling In some cases it may be 
of interest to consider the properties of the point process 
obtained by intersection with a standard transect line, 
specified by, say Po, eo (cf. Pielou's example, §3.1). For 
lines of infinite extent, some useful results have been stated 
by Solomon and Wang (1972). 

Suppose the line process is such that p is random (density 
f.1), but e independently distributed with cumulative 
distribution function G(e} Then the point intersections on 
the line (Po, eo) form a Poisson process with constant 
density A(e o), where 

A(e o) = f.1 cos eo J:""I v - tan eo 1(1 + v2 )-Y'dH(v), 

(v = tan e). (33) 

In the particular case of e random, 

1 dv 
dH(v) =; 1 + v2 . (34) 

Special cases of (Po, eo) are relevant to applications to 
traffic motion, where the second original dimension is time, 
and if v is velocity eo corresponding to a sample in space is 
111T and eo corresponding to a sample in time is O. Formula 
(33) gives in the two cases 

A(V21T) = f.1 J:"" (1 + V2)-V2 dH(v), (35) 

(36) 

For e random, formula (33), and its particular cases (35) 
and (36), all give the same density 

(37) 
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whatever eo. This is not of course true for arbitrary G(e), a 
comment which is relevant if these line-process models are 
being studied by sample transect lines (again cf. Pielou's 
example, § 3.1). 

Spectral functions for non-random line processes The effect 
of a non-random point process e.g. a clustering process for 
the centres of lines of finite length, may also be introduced. 
Thus for lines of constant length I orientated at random the 
additional term to formula (31) is 

4 [J:I 10 (wu)du r [gN (w) - A] , (38) 

where gN(W) is 41T2 f(w)"where few) was defined for a point 
eWes) by equation (23) of § 1.2.1 and illustrated by formulae 
(28) and (29) of § 1.2.1 in the case of clustering point 
processes. 

Consider now the spectral function for s, e (not p, e, as I is 
finite). This is clearly uniform for e, and, for s, simply g( w). 
For infinite I and the p, e representation, however, we 
encounter some difficulties. Suppose we consider a sample 
circle C1 of radius a and the generation of lines intersecting it 
from a much larger ring of radius A. A + <SA. For a density A 
of foci generating lines, and the lines orientated at random, 
the number intersecting the sample circle will be 21TM(<SA) 
(CX/21T), where sin Y2cx = a/A, 'V2Aa(8A), and tends to infinity 
as we add contributions over increasing A. Thus all the lines 

tiA 

Fig. 3 
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intersecting the sample circle, if we reduce the density to an 
extent for this number to be finite, will be corning from foci 
infinitely distant. This implies a breakdown of the model, and 
the construction of more realistic models would be required 
when the conditions in any particular problem were specified 
in detail. 



CHAPTER TWO 

Nearest-neighbour Systems 
on a Lattice 

2.1 Lattice processes Xi' Continuous variables. Conditional 
and simultaneous systems 

For definiteness, we shall usually consider uniformly-spaced 
rectangular lattice sites i = (r, s) in two dimensions, and in 
this section we suppose that the associated random variable 
Xi has a continuous range of possible values. The spectral and 
autocorrelation theory recalled in § 1.1 is then modified as 
indicated in equation (8) of that section, viz 

(1) 

over the range -11' to 11' for WI and W2' As before, we denote 
the autocovariance function by w(s) = alp(s). For a linear 
transformation 

(2) 

equations (6) and (7) of § l.1 are not altered provided now 

h(w) = L e-i(uw I +vw 2)h u,v r-u,s-v· (3) 

By analogy with auto-regressive and moving average models 
in time series, an important class of models will be those 
where dependence is local (e.g. nearest-neighbour). The most 
familiar will be linear, but are of two possible forms (cf. 
Brook, 1964). The first of these is the simultaneous model 

X rs =~IXr-l,s +~~Xr+l,s +~'IXr,s-1 +~~Xr,s+1 + Yrs 

(4) 
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where { Yrs } is an array of independent variables with 
identical distribution (and E{Y} = 0). In particular, in the 
laterally symmetric case, this model becomes 

19 

(5) 

Whether or not the Yrs are normal, the spectral function is 
easily written down, owing to the uniform spectrum of Y rs 
and the linear relation (5), say. Thus the spectral function for 
a linear relation 

(6) 

where E, = 1 + i:J., is the shift difference operator acting on r 
and E 2 similarly for s, since formally 

Xrs = (r'(E, ,E2 )Yrs , 

and E, is equivalent to eiw , for the Fourier transform (3), and 
and E2 to eiw " must be proportional to 

[1 - 2(~, cos w, + ~2 cos W2)] -2 (7) 

(cf. similar one-dimensional results in Bartlett (1966), §6.3). 
One difficulty with the model represented by equation (5) 

is that, even if the Yrs and hence the Xrs. are normal, the 
estimation of ~1 and ~2 from data is not a simple least-squares 
problem, owing to the complicated Jacobian when 
transforming from the independent Yrs to the observed X rs 

(cf. Whittle (1954); Ord (1972), and examples in §4.1). 
In order to obtain an asymptotic expression for this 

Jacobian, we shall follow the derivation due to Whittle. We 
assume that log f( w) has a Fourier expansion 

~ 00 00 

10gG(z"z2)=-(Y2~oo + ~ ~OkZ~+ ~ ~ ~jkZ{Zn, 
k=' j=l k=-~ 

(8) 

so that 

few) ex l/[G(w)G*(w)], (9) 



20 THE STATISTICAL ANALYSIS OF SPATIAL PATTERN 

which implies that the autoregressive scheme 

(ai = v), (10) 

where E == (E 1, E2 ), and cp(E) is the one-sided spatial operator 
equivalent to G(w), will have the required spectral function 
few). We assume here that G(w) has a Fourier expansion. 

Under the assumption of €rs normal, their joint probability 
is 

(21TV)-Y2mn exp {- 12 L r,s€;s/vl}[I1 r,sd€rs 

for a rectangular array of mn observations. Hence, neglecting 
end effects, we have for X rs the probability 

of'ln (21TV)-Y2mn exp {- 12 Ly,s cp(E)Xrs/v} I1r,sdXrs (11) 

where ex is the coefficient of X rs in cp(E)Xrs> and is 

exp( -12exo 0) = exp { - 8~2 flOg few )dW}. 

The logarithm of the likelihood function may thus be written 

12mn(2 log ex - log v) - 12Lr,s€;s/v), 

or, after maximization with respect to v, 

12mn(2 log ex - log v) - 12mn, 

where v = Lr s€;s/(mn). Hence we require to minimize kD, 
where k = I /ex2 , i.e. 

1 
log k = -2 f logf(w)dw. 

41T 

(12) 

(13) 

Conditional systems The second model, while still to be 
linear for continuous variables Xi> is defined as a conditional 
nearest-neighbour model 

P{xrs [ all other values} 

= P{xrs I Xr-l ,s, Xr+l,s, xr,S-1> xr,s+!}, (14) 

and is also known as a Markov field, though it should be 
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Fig. 4 

remarked that the close relation between ordered Markov 
sequences and conditional nearest-neighbour systems in one 
dimension (Bartlett, (1966) § 2.22) is less useful in more than 
one dimension, as the ordering is more complicated and not 
unique. It may sometimes be convenient, for example, to 
consider the particular ordering shown in the diagram 
(Fig. 4), starting with the first set S 1 == Xrs at position I, the 
second set S2 == (xr-I,s, xr+l,s, Xr,S-I, Xr,S+I) at positions 2, 
and so on, but notice that only the first set in this hierarchy 
consists of a single variable. 

The requirement (4), while a natural possible assumption, 
turns out to be a severe one. It may be shown that if we 
define 

{ P(X I y,U,V,W)} 
rex I y,u,v,w) = log 

P(O I y,u,v,w) 
(15) 

where without loss of generality 0 is assumed a feasible value 
of x, and x,(Y,u,v,w) are realized values of Sj, S2, then (as a 
special case of a more general result derived in § 2.3) 
rex I y,u,v,w) must have the form 

X {<t>(x) + yl/11 (x,y) + UI/11 (u,x) + VI/12 (x,v) + Wl/12 (w,x)}; 

(16) 

and with lateral symmetry, so that rex I y,u,v,w) is a function 
of y + 11 and v + w, then rex I y,U, v, w) becomes of the form 

(17) 

From this result Besag (1 972b) has shown that the 
conditional cumulant function K(8) for X must be quadratic 
in 8, and X normal, provided the model is linear i.e. 

E{X I y,u,v,w} = 1 + (31 (y + u) + (32 (u + w). (18) 
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For if the conditional moment-generating function of X, 
given y, U, v, W, is M(8) == E{ exe } , and we denote y + u by 
A, v + W by p., and exp rex) summed over all x by C(A, p.), we 
may note that 

K(a 1 8) == 10gM(a l 8) = log C(A + 8, p.) -log C(A, p.), 

and as equation (18) linear in A and p. must result from 
a log c/a(a1 A), the quadratic form in 8 for K(8) readily 
follows. 

A more general formulation of conditional nearest-
neighbour lattice schemes is deferred until the end of this 
chapter (§2.3). 

Linear conditional spatial-temporal models Consider next 
the class of linear conditional spatial-temporal models (cf. 
Bartlett, 1971 b) 

dX rst = - AI/>(E)Xrst dt + dZyst , (19) 

where I/>(E) is for the moment any linear spatial displacement 
operator acting on X Yst , and dZrst are homogeneous 
independent terms (with zero means) for all r, sand t, 
t + dt, .... Any such process, if it leads to eventual 
sta tionarity (in both space and time), leads to the following 
conseq uences: 
(i) the spatial-temporal spectrum f x (w t , w) must be 
proportional to 

[iw t - AG(w)] -1 [- iWt - AG*(w)] -1, (20) 

where G(w) is the Fourier factor corresponding to the linear 
operatorI/>, andfx(wt , w) is defined similarly tofx(w) (for 
two lattice space dimensions) by 

1 f 00 . a~fx(wt,w)=--3 ~ ~ e-I(WtT+W,u+w,v) 
(21T) _00 _00 _00 

XW(T,u,v)dT (21) 

where 

WeT, U, v) = E{XystXy+u,S+V,t+T}; (22) 
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(ii) the marginal spatial spectrum fx(w) is consequently 
proportional to 
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{~A[G(W) + G*(w)]} -I; 

(iii) if 

(23) 

(ct>(E) - I )Xrs = ~~ Xr-1,s + ~~'Xr+l,s + ~~Xr,s-I 

+ ~~Xr s+1 

then from (ii) we note that the marginal spectrum for the 
linear case (24) is proportional to 

(24) 

(25) 

where ~l = Y2(~; + ~'/), ~2 = ~(~~ + ~~'). This is in contrast 
with result (7), which has negative index two. Note further 
that the above choice of ct>(E) - I to correspond to the 
nearest neighbours of Xrs does not in itself ensure that the 
marginal spatial distribution is a conditional nearest­
neighbour system as earlier defined. In fact, for binary 
Xrs it is known that it is not (see § 2.2). 

For normal Xrs (and ~'l = ~'l" ~~ = ~~'), however, Besag's 
results imply that it is, and it is termed the auto-normal 
model. In this case the result in equation (18), which for 
E{X} = 0 becomes 

E{Xrs I y,u,u,w} = ~l (y + u) + ~2 (u + w) 

is consistent with the spectrum (25). 

(26) 

One-dimensional simultaneous and conditional systems The 
contrast between the processes (5) and (26), demonstrated by 
their different spectral functions, has not always been 
appreciated, and it may therefore be helpful to demonstrate 
it even in the one-dimensional case. Let the analogue of (5) in 
one dimension be 

Xr = ~l (Xr-1,s + X r+1,s) + Y" 

with spectral function proportional to 

[I - 2~ 1 cos WI 1 -2 . 

(27) 

(28) 
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The equivalence already noted in one dimension between a 
Markov sequence Xr and a conditional nearest-neighbour 
system leads for the linear Markov process 

Xy = pXy_1 + Yy (29) 

to the equivalent regression relation 

p 
Xy = --2 [Xy- 1 + XY+l 1 + Zy, 

l+p 
(30) 

but this equation, which corresponds to (26), must not be 
identified with (27) (with ~I = p/(l + p2)). The spectrum of 
(30) must of course be identical with that of (29) viz 

a} 
--------=----------

a} (l - eiw)(l - pe- iW ) a}(l + p2)[1 - 2~1 cos wl 
(31 ) 

This may be reconciled with the form of equation (30) by 
noting that the Zy in (30) are not mutually independent (like 
the Yy in (27)), but are defined in terms of the independent 
Yy in (29) by the relation 

(32) 

It can thus be misleading to refer to such a model as (27) as a 
regression model, and it might be better to term it a 
moving-average model; it is, however, equivalent to the 
one-sided second-order autoregressive model 

Xy = 2aXY _ 1 - ~2 Xr- 2 + W" where ~I = ~/(l + ~2). 
(33) 

Conversion of simultaneous system to conditional system It 
is also clear from the more general derivation of normal 
conditional schemes for linear dependence extending beyond 
first neighbours that simultaneous normal systems may be 
converted to equivalent conditional systems. For example, 
the scheme (27) (or (33)) has spectrum 

[1-~I(zl+zll)1-2, (ZI =eiW1 ), 
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which on expansion yields 

[1 + 2~I - 2~1 (Zl + zll) + ~HZI + ZI2)] -1 (34) 

which must correspond to the conditional scheme 

E{Xr I all other values} = 'Yl (Xr- l + Xr+l) 

+ 'Y2 (Xr - 2 + Xr+2 ) (35) 

where 

'Yl = 2~1 /0 + 2~n, 'Y2 = - ~U(l + 2~n· 

Similarly in two dimensions the simultaneous scheme with 
spectrum 

[l-~l(Zl +z11)-~2(z2 +z2"1)]-2 

=[1 +2~i +2~~ -2~tCZl +zI1)-2~2(z2 +Z21) 

+~i(zi +zI2)+~Hz~ +Z22) 

+~1~2(ZlZ2 +zll z2 +Zl Z2 1 +zll Z21)]-1, (36) 

corresponds to the conditional scheme 

E{Xrs I all othervalues}='Yl(Xr_l,s +Xr+l,s) 

+'Y2(Xr,S-1 +Xr,S+1)+'Y3(Xr- 2 ,s +Xr+2 ,s) 

+ 'Y4(Xr,S-2 + X r,S+2) 

+ 'Ys(Xr-l,S-l + Xr-l,S+l + Xr+l,S-l + Xr+l,S+l) 

(37) 

where 

2~1 2~2 
'Y 1 = I + 2~i + 2~r 'Y 2 = 1 + 2~i + 2~r 

- ~i - ~~ 
'Y3 = I + 2~i + 2~r 'Y4 = I + 2~i + 2~r 

{31~2 

'Y 5 = 1 + 2~i + 2~~ 
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Approximate conversion of two-sided conditional system to 
one-sided system The equivalence of the one-dimensional 
two-sided system (30) to the one-sided system (29) is 
important for statistical inference purposes (see Part II), as it 
implies that the simultaneous probability of the observed 
values (i.e. the likelihood function when regarded as a function 
of the parameters of the system) readily factorizes. This is no 
longer possible in more than one dimension (cf., however, the 
use of coding methods below), but one-sided approximations 
may be useful if the regression parameters are not too large. 
Thus for the scheme with spectrum 

[1-~dzI +zlI)-~2(z2 +Z2I )]-1 (38) 

we have the successive approximations: 

(39) 

with exact spectrum for comparison with (38) 

(1-b l z I -b2Z2)-I(l-bIZll -b2z:;I)-I 

= [1 + b i + b ~ - b 1 (z 1 + Z II ) - b 2 (z 2 + Z 21 ) 

+b l b2(Z IZ:;I +zIIz2)]-I. (40) 

with exact spectrum 

(I-blz I -b2 z2 -blb2Z2ZI-I)-1 

(I-b l z 11 -b 2 z21 -blb2Z2IZI)-I 

= [I +bi +b~ +bib~ -bl(a-b~)(zl +zlI) 

-b 2 (Z2 +Z21)+bib2(ziz21 +z12z 2)]-I. 

Thus the identification in the case of (i) of (31 with 

(42) 

b 11(1 + bi + b~) and (32 with b 2 1(1 + b i + b~) is correct to 
O(b l b2 ); and in the case of (ii) of {31 with b I (1 - bOI 
(1 +bi +b~ +bibDand{32 withb 2 /(1 +bi +b~ +bibD 
is correct to 0(bib 2 ). 
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x x x 
x x x x 

x x x 
x x x x 

Fig. 5 

Coding methods In the case of one-dimensional lattice 
models, we have noted that the two-sided nature of spatial 
models is not a serious problem. The absence of a simple 
exact method of converting to one-sided finite models in the 
case of two-dimensional models has been ingeniously 
by-passed by a method of coding introduced by Besag (1974a). 
Thus in the case of the scheme 

E {XyS I all other values} = ~J (Xr-1,s + Xy+!,s) 

+ ~2 (Xy,s-l + Xr,s+! ) 

we label the interior sites of the lattice alternately X and. , 
as shown in Fig. 5. This allows the values associated with the 
X sites (or alternatively the. sites) to be taken, conditional 
on the values at the. sites (or, in the alternative case, the X 
sites) as independent, and the likelihood function for these 
values is therefore simple to write down, and conditional 
regression analyses straightforward. With higher-order 
schemes involving longer-range dependences, the method is 
still applicable. Thus for second-order schemes a coding 
pattern as in Fig. 6 could be used, where the values at the X 
sites are considered conditional on the values at the. sites. 
This provides four sets of estimates by suitable choice of 
coding framework. 

The efficiency of these coding methods is in general not 
known, but some information may be gained from the 
one-dimensional case. Here the corresponding coding pattern 

x x x x 

x x x x 

Fig. 6 
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Table I 

Ip I 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

~ { ' .... ' patt,,. O~, 0.85 0.70 0.52 0.36 0.22 0.12 0.05 0.01 
c:: 
CIl 
'0 
!;:i 

Average of both 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19 "'" ~ 

for a first-order scheme was first in effect proposed by 
Ogawara (1951) and studied further by Hannan (1955). In 
that context the interest of the coding method was primarily 
to provide an exact, as distinct from an asymptotic, estimator 
and test; but from the present standpoint the interest is in the 
efficiency as well as the convenience of the method. Hannan 
gives two tables showing the efficiency of estimating the one 
regression or correlation coefficient p (i) by one coding 
pattern, (ii) by averaging the estimates from the two 
alternative patterns. His results are shown in Table I. It will 
be seen that. the efficiency is high for low p, but not very 
great as p increases in the case of a single pattern, though 
considerably better for the average from both patterns than 
if one only is used. 

Some recent results for the two-dimensional case by Besag 
and Moran (1975) are consistent with the expectation 
suggested by Table I. These, which are for the single pattern, 
might for reasonable comparability be plotted against the 
multiple correlation of a site value with its nearest neighbour 
values, and if then compared with the corresponding curve 
adapted from Table I, show a similar behaviour, though with 
rather lower efficiency in the two-dimensional case. 

2.1.1 Markov fields in continuous space 

We may now return to the case of continuous space, at least 
for processes definable as limit processes first defined for 
lattice space and then allowing the grid dimensions to 
decrease (Le. separable processes). If X(r) is not to be related 
to a priori rectangular axes, it must not only be laterally 
symmetric but isotropic (in any case lateral symmetry can be 
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converted to isotropy by choice of scale). It follows that such 
linear conditional nearest-neighbour models in continuous 
space must be normal, with spectral form (in two dimensions) 

in contrast to the 'autoregressive model' 

(where Y(r) is an improper process approximated by a 
'stationary' process over r with rapidly decreasing 
autocovariance), which has spectral density function 
proportional to 

(,,2 + wi + W~)-2. 

The first form (1) may be derived from the linear spatial­
temporal model 

[_~ + ,,2 _ (0: + 0: )]X(r, t) = Y(r, t) 
at ax Oy 

as its stationary marginal spatial spectrum. 

(43) 

(44) 

(45) 

(46) 

The identification of (43) and (45) as analogues of the 
results (25) and (7) respectively in §2.l throws further light 
on their own classification as spatial models, following their 
original introduction by Whittle (1954; cf. also Heine, 1955; 
Whittle, 1962; Bartlett, 1966 §9.4; Moran, 1973). 

2.2 Binary and other discrete variables 

Finally, let us consider nearest-neighbour models for discrete 
variables, and in particular for the special but very important 
case of binary variables, taking the two values 0, I, say (or 
alternatively, especially in the situation when each value is 
equally likely, the two values - I and 1, so that E {X} = 0). 

The development and study of such models has a 
remarkable history which underlines the essential unity of 
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statistical theory remarked on in the Preface. Perhaps I may 
trace some of my own steps in the pursuit of such models, in 
order to illustrate how the recognition of this unity in the 
present context has grown. 

In 1967 (Bartlett, 1967 a, Appendix II) I used a one-sided 
linear model to represent 'contagion' models on a lattice. 
This 'open-ended' process had the limitations already referred 
to when used as a model in what was strictly a symmetrical 
spatial context, but it nevertheless did represent a simple 
'one-sided nearest-neighbour model' which enabled me to fit 
such models to non-random data (see also Part II). Their 
slight spatial asymmetry, however, led to the development of 
further one-sided approximations to the symmetrical model 
with spectrum (25), which could at least be realized by the 
spatial-temporal linear model (19) of § 2.1. 

At the same time I was interested to see if these models 
threw any light on the physical lattice problem familiar for 
many years as the Ising problem. Here it was customary to 
start with the classical simultaneous distribution for Xr,s of 
the form 

p(x) = C exp {- 0:' ~r Xrs - '11 ~ xrsxr-I,s 
r,s 

- '12 ~ XrsXr,s- 1 } 
r,s 

(47) 

determined by its required Gibbs form 

p(x) = C exp (- H /KT) (48) 

where H was the energy, in a physical context which is not 
relevant for our present purpose. I found, however, that no 
linear spatial-temporal nearest-neighbour binary model could 
give rise to the required distribution (47), and more awkward 
non-linear processes had to be introduced. In fact, we have 
seen from the work of J. E. Besag, noted in § 2.1, that the 
linear spatial-temporal nearest-neighbour binary model is 
incompatible with any marginal spatial nearest-neighbour 
binary model. 
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221 The auto-logistic model 

In particular, the spectrum (25) of § 2-1 is not a possible one 
for such a binary model, and Besag (1972b) introduced the 
auto-logistic binary model to be compatible with the 
requirement (17) of § 2. L This model now becomes identical 
with (47) of §2.2, and is the only possible binary model with 
lateral symmetry. (Other workers (e.g. Spitzer, 1971; see 
Grimmett, 1972) had reached an equivalent conclusion.) This 
auto-logistic model, in terms of 0, 1 values, may be written 

, exp{-x[Q+'YI(t+U)+'Y2(V+W)]} 
p(x I t,u,v,w) = . 

1 +exp -{Q+'YI(t+U)+'Y2(V+W)} 

(49) 

This identification of models leads to the unfortunate 
consequence that the correlational properties of the only 
possible binary model (49) with the required bilateral 
properties are most complicated. Even in the simplest case in 
equation (47) of §2.2 of Q = 0 (when x = ± 1), 'YI = 'Y2, the 
correlations exhibit a singularity at a critical value of 'YI 
(corresponding to a critical temperature in a physical context 
context), as was originally shown by Onsager (1944). 
Derivations of his solution for the nearest-neighbour 
correlation are still very involved; and formulae for 
longer-range correlations even more cumbersome. There are 
moreover further intriguing and relevant questions still not 
completely resolved, such as the extent to which the models 
for intinite lattices are uniquely defined (see, for example, 
Dobrushin, 1968 a,b,c; Hammersley, 1972). 

However, in spite of some expedient by-passing of these 
correlational properties in fitting auto-logistic models to data 
(see Chapter 4), they are very important and further 
discussion of them is given below (cf. Bartlett, 1971 b, 1972). 
The one-dimensional case is included, for this may be needed 
for some examples, and for non-zero Q is by no means 
completely trivial. For 

p(x) = C exp{ - QLXi - 'YI LXiUi - 'Y2 LXiVd (50) 
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where for convenience the sites are labelled by i, and in the 
two-dimensional case (49) Xi == Xr,s, Ui == X r-l,s, Vi == Xr,S-l> 

(and in the one-dimensional case Xi == Xy, Ui == X r-l , and Vi 

does not arise), consider 

where Sn = ~Xi' Un = ~XiUi' Vn = ~XiVi· 
The suffix n denotes the number of sites, at present finite. 

The form of (50) ensures that 

K (8, ¢ 1 , ¢ 2 ) = log C( a, 11 , 12 ) 

-- log(a - 0,11 - ¢1 ,12 - ¢2 )(52) 

whence K(a, 11,12) = log C(a, 11 ,12) -log C(O, 0, 0), 
(53) 

etc. 

E{Sn} = [aK(O'¢I'¢2)/aO]e,I/>,,1/>2=o 

= a log C(a, 11 ,12 )/aa, 

Note also that 

log C(a, 11,12) -log C(O, 0, 0) 

= - Ko(- a, - 11, - 12), 

where Ko denotes K for ex = 11 = 12 = O. Hence 

m ==E{Sn} = aKo(- a, - 11, - 12)/aa 

(54) 

(55) 

(56) 

etc., and may be alternatively derived from the properties of 
purely random lattice configurations. This is the method 
usually employed (although not always with an explanation 
of its logical basis). For example, in the one-dimensional 
problem with Xi == Xr = ± 1,11 == 1, Ko may be derived by a 
standard matrix-powering technique (see Bartlett, 1966, 
§2.22). The relevant matrix is, if ¢1 == ¢, 

(57) 

and Mn depends asymptotically for large n on the dominant 
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eigenvalue 

Al = V2e4> {cosh e + [sinh 2 e + e - 44> ] Y2 } , 

giving 

log C(ex, 1') - log C(O, 0) ~ -n log(V2e-'Y {cosh ex 

+ [sinh2 ex+e4 'Y]%} 

whence 

min = a log C(ex, 1') = -sinh ex 
aex [sinh2 ex+e4 'Y]Y2 

(=0 when ex = 0), 

m2 In = a log C(ex, 1') 
a'Y 

The nearest-neighbour correlation (in the usual statistical 
sense) is 
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(58) 

(59) 

(60) 

(61 ) 

m2 In - (mln)2 cosh ex - [sinh2 ex + e4 'Y] Y2 

r1 = 1 _ (mln)2 = cosh ex + [sinh2 ex + e4 'Y] Y2 . (62) 

reducing to -tanh l' when ex = O. 
The derivation of r1 even for ex =F 0 by the above method is 

rather deceptively simple, as the method, although extended 
by Onsager in the two-dimensional case (for ex = 0), then 
involves much more complicated matrices. Even in the one­
dimensional case notice that only the first-order correlation 
r1 has been derived. 

For an alternative combinatorial approach, suggested by 
B. L. van der Waerden and developed further by M. Kac and 
1. C. Ward (see Newell, G. F. and Montroll, E. W., 1953), 
consider the expression (in the two-dimensional case) 

p(x) = cni exp(-O'.Xi)· exp(-'YIXiUi)' exp(-'Y2Xivi). 

(63) 
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Now 

e-CtXi = cosh(ctXi) - sinh(ctXi) = cosh a (1 - Xit 1 ), 

where t 1 = tanh a, and 

e-'YI x iYi = cosh 1'1 (1 - XiUi f 1 ), etc. 

where f 1 = tanh 1'1 . Hence 

p(x) = C coshn a coshn 1'1 coshn 'Y2I1iO - Xitl) 

X (1 - XiUif dO - XiVi f 2) (64) 

Since some factors in Xi cancel out (because xl = 1) when 
summed over all Xi, this gives 

1 = C coshn a coshn 1'1 coshn 1'2 So, 

where So is the constant term in the expansion of the product 
on the right. For example, in the one-dimensional case with 
a = 0, this gives 

1 = C coshn l' x constant term in IlyO - XyXr_ 1 r) (65) 

which leads obviously (for circular end-conditions) to 

or 

C= l/[coshn 'Y+sinhn(-'Y)] ~cosh-n'Y, 

whence 

m2/n = PI = -tanh l' = -f, 

(66) 

as already deduced. Notice also that by multiplying each side 
of (64) above by XrXY_I before summing, we can obtain 
E{xyxY_I}, and this gives (a = 0) 

PI = C coshn l' tanh( -1'), 

whence 

PI = tanh( -1'), as before. 
In the two-dimensional case the method again becomes 

very involved, but it was shown by Kac and Ward that for 
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~ = 0 and an n = N x M rectangular lattice (M even) 

211'r 211'S} x (1 - X2 ) cos - - 2x(l --- y 2) cos - (67) 
n n 

where x = -tanh "II' Y = tanh "12' As N, M ~ 00, this leads to 
Onsager's result 

1 1r J1r 
[log C] /n ~ log 2 +)2 J log[cosh 2"11 cosh 21'2 

_11' 0 0 

+ (sinh 2"11 )( cos WI) + sinh(2'Y2 )(cos W 2 )] dw I dW2 

(68) 

Differentiation of (68) with respect to "II or "12 leads to 
formulae for the nearest-neighbour product-moments PI 0, 

Po I' In the completely symmetric case with "11 = "12 = "I, the 
formula for PI 0 = Po I may be put in the form (Bartlett, 
1972) 

_ (e +y'(l - e2 )~I o(n 
PIO - - 0 

l--2~Plo(n 
(69) 

where ~ = - ey'(l - e2 ), e = tanh 2"1, and PI 0 (2~1 ) is the 
nearest-neighbour correlation for the symmetric (~I = (32 ) 
'linear spectrum' (25) of § 2.1. A numerical table of PI 0 in 

o 
(69) is given in Table All. Table AI gives values of Prs(2{31)' 

Yet another possible approach (Bartlett, 1971 b, 1972) is 
an extension of the spatial-temporal models of § 2.1 to 
non-linear processes leading to the equilibrium distribution 
(50). The Markov process in time, defined by 

(70) 

is considered, where Xt denotes the n values of Xi 

simultaneously at time t, and G i(X t ) is an arbitrary function 
in all the Xj,t affecting Xi, t+d t. When the possible values of Xi 

are restricted to ± 1, equation (70) implies that any 
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equilibrium distribution must satisfy 

L Gi(X) = L Gi(Yi )P(Yi )/p(X), (71 ) 
i i 

where Yi == x except that - Xi replaces Xi. For the distribution 
(50) to be possible, we find 

L GJx) = L Gi(Yi) exp "{2ax; + 2'Y\XiU; + 2'Y2X;V;}, (72) 
i i 

where u;, v; are the symmetrized forms ofui, Vi (e.g. in one 
dimension, where Ui == Xr-l' u; == V2(Xr-l + Xr+ 1)). Equation 
(72) may most obviously be satisfied by the local (symmetric) 
solutions 

(73) 

where f is some appropriate function, even in all its variables. 
It may (see, however, Bartlett, lac. cit; Besag, 1972) 
sometimes also be satisfied by global (one-sided) solutions 

Gi(x) = exp{ axi + 'Yl XiUi + 'Y2XiVd g(axi), (74) 

but we consider here only the type (73). Possible choices of 
this type are, for ex = 0, 

One dimension: 

Gi(x) = 1 + €U;, 

where € == tanh(2'Y) 

Two dimensions ('Yl = 'Y2 = 'Y): 

where z~s = u;s + v;s. When ex =F 0, we have 

Gi(x) = (1 + Xi tanh ex) Gi(x; ex = 0). 

If we expand p(x) by the unique orthogonal series 

2n p(x) = 1 + L XiPi + L XiXjPij + ... 
i i,j 

(75) 

(76) 

(77) 

(78) 
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where Pi = E{Xi}, Pij = E{XiXj}, etc., we find that 
term-by-tenn solution of (71) leads to the equation 
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xi{Ai(x)b(x) + Bi(x)a(x)} = 0, (79) 

where Gi(x) = Ai(x) + XiBi(X), p(x) = a(x) + Xib(X), the 
functions A, B, a, b not containing Xi explicitly. Thus for 
Gi(x) in (75), when p(x) is symmetric so that Pi = Pijk = ... 
= 0, the coefficient of XiXj leads to the equation 

Ps + Y2€(Ps-I + Ps+l ) = 0, (80) 

equivalent to the previous solution PI = - tanh 'Y, and also to 
Ps = P~ . For the one-dimensional case and a =1= 0, the reader 
may like to investigate the analogous equations and try to 
derive results (60) and (62) from them. (Although the 
equations now involve higher moments like Pijk, these may 
be reduced in the one-dimensional case, by using Markov 
chain relations available in that case, to recurrence equations 
for Ps of the type (80), thus providing solutions for Ps for all s. 

In the two-dimensional case, even for a = 0 when the exact 
solution (69) for PI is known, this last approach has not so 
far yielded exact solutions, but an approximate solution for 
PI based on a quasilinearization of the equations for Ps has 
been investigated (for further details, see Bartlett, 1971 b, 1972, 
1974). It appears quite accurate below the critical value of 'Y 
when compared with the exact solution, and has also been 
evaluated in the three-dimensional case (a = 0, 'YI ~ 'Y2 = 
'Y3 = 'Y). It could if required be extended in the two- (and 
three-) dimensional cases for a =1= O. . 

2.2.2 Sub-critical 'temperatures' 

The discussion of the auto-logistic model in § 2.2.1 does not 
treat in any detail the situation for high 'Y(and a = 0), 
corresponding to a low temperature T in a physical context, 
below the critical value Tc. Conditions in this range of'Y are 
perhaps less likely to be of interest in biological applications, 
but in view of their relevance in physical applications some 
further remarks when 'Y is in this range are made below. First 
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it should be noted that the distribution (50) and the 
expansion (78) of §2.2.1 are defined for finite n, and critical 
behaviour only strictly arises in the limit as n ~ 00 (cf. (67) 
and (68)). This means that the interpretation of product 
moments arising from (79) as spatially analogous to terms in 
an injinite time series must be made with caution, as 
non-ergodic limiting components could complicate the 
passage to the limit. 

Suppose, for example, we consider the one-dimensional 
case with non-zero mean m (0-: -=1= 0). The equation for m leads 
to only one solution, which vanishes as 0-: ~ O. However, in 
the higher-dimensional cases this is no longer true, so that 
under some conditions the equations for m may provide a 
solution m(o-:) such that lim m(ex.) -=1= O. In a physical context 

a-->O 

this is proportional to the spontaneous magnetization, but is 
clearly a property of the auto-logistic model as such. It 
indicates that we may put, when n = 00, 

Xi=Yi+ m , (81 ) 

even in the ex. = 0 case, where m is a non-ergodic or long-range 
component, such that 

(82) 

where E {Yi} = O. E{Xi} is also zero, as for the symmetric 
situation 0-: = 0 we have strictly E{Xi} = Y2m + VI( -m) = 0, 
only I m lor m 2 being of relevance in (82); however, the 
situation is exactly in any single realization like (81), and the 
jidl expansion (78) should be retained even for 0-: = O. 

This model for infinite n may be checked from the 
situation for high 'Y by considering the equations near 
PIO = 1. Thus the complete equations may be written (for 
t I = 0) 

x;{(l + e2 si)(m + L' XjPij + L' XjXkPijk + ... ) 
j jk 

+ ez;(l + m L' Xj + L' XjXkPjk + ... )} = 0 (83) 
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...... 

Fig. 7 Structure of nearest-neighbour correlation for the 
two-dimensional Ising model. Upper dotted curve: PI o. Lower dotted 
curve: r: 0 (identical with PI 0 below E' = 1/V2). Solid curve: m 2 (From 
1. Appl. Prob., 1974b) 

four nearest-neighbours of Xi, and Si the mean product of 
pairs x;x;', etc. The summation L' , excludes i, and L' ,etc. 

i i" 
similar summation over j < k < .... The first equation 
(coefficient of Xi) is 

(1 +2c)m+ e2P lo(2)=O (84) 

where PI 0(2) = E{XiSd. As a first approximation, we may 
write PI 0(2) rv m 3 , whence a possible solution near m 2 = 1 
is 

(85) 

where e' = -e = 1 - y. This may be compared with the exact 
formula for m 2 below Te due to Yang (1952) 

m2 = [l -- sinh-42~] I;:' = 1 __ y2 _ 3y 3 + O(y4), 

(~ = -- ')'). (86) 



40 THE STATISTICAL ANALYSIS OF SPATIAL PATTERN 

Agreement to the next order may be obtained by a second 
approximation in which we write in (84) and further relations 
such approximations as 

E{XiX;x;'}rvm3 +m(2Plo +PII) 

(see Bartlett, 1974b). 

(87) 

It is of interest to compare the behaviour of the correlation 

(88) 

with the one-dimensional correlation rl in (62). The latter is 
easily shown to decrease with increasing m, and similarly rl 0 

decreases below Tc as m2 increases (see Fig. 7). 

2.3 General specification of conditional lattice systems 

We come now to the more general formulation (Besag, 1974a) 
mentioned earlier, defining n sites i and neighbours affecting 
Xi, in a more arbitrary manner. It is supposed that the 
conditional probability distribution. P{Xi I all other site 
values}, is specified and positive for all i, and that for the 
possible (finite set of) values of Xi no restrictions hold for 
the simultaneous realizations. Then for two given realizations 
x and y 

p(x) = p(xn I XI, ... xn -I )P(XI, ... Xn -I) 

P (x n I X I , . . . X n -I )p (x 1 , . . . X n -I , Y n ) = 
P(Yn IXI," .xn-d 

p(Xn IXI,"'Xn _ l ) p(xn- I IX 1""Xn-2,Yn) 
=--------------~ ~-------------------

P (y n I XI' . . . X n - I) P (y' n - 1 I XI' . . . X n - 2 , Y n ) 

X P (x I , . . . X n - 2 , Y n - 1 , Y n ) 

n P(Xi I Xl, ... Xi -1, ... Y n ) 
= .... = p(y) II ) . 

i=lP(Yi IXl," .Xi-l,Yi+l,·· ·Yn 

(89) 

Next we define the set of neighbours of site i by the 
condition P(Xi I all other values) is dependent on Xj if and 
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only if site j (=1= i) is a 'neighbour' of site i. Any set of sites 
consisting of a single site i, or in which every site is a 
neighbour of every other site in the set is called a 'clique'. 
For convenience and without loss of generality, we still 
suppose that ° is one possible value of x, and define 
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L(x) = log p(x) - log p(O). (90) 

Expand L(x) in the unique expansion below, 

L(x) = LiXiGi(Xi) + Li,jXiXjGi,j(xj, Xj) + ... + 

X I X2" .XnGI ,2, ... n(XI,X2,' .. xn) (91) 

where in the summations no i, j, ... are repeated. (For 
example, 

XiXPi/Xi,Xj) = 10gp(0, ... O,xi,O, ... O,Xj'O ... 0) 

-log p(O, ... O,Xi'O, ... 0) -log p(O, ... O,Xj,O, ... 0) 

+log p(O).) 

Then it will be shown (the Hammersley-Clifford theorem) 
that the functions Gi,j, ... s in (91) are arbitrary, except that 
they may be non-null if and only if the sites i, j, ... s form 
a clique. 

Note first that from (89), if Xi denotes (Xl, ... Xi-] ,0, 
Xi+l ... xn) then 

exp{L(x) - L(xiH = P(Xi I Xl, ... Xi-l "Xi+l' ... Xn )/ 

p(O I Xl'" ,Xi-I,Xi+I," .Xn) 

and can only depend on Xi and values at 'neighbouring' sites. 
Consider in particular site 1. We have 

L(x) - L(x]) = Xl {G I (Xl) + L/XjGI,j(X\, Xj) + .. .} 

where the dashed summations do not involve site 1. Suppose 
site k (=1=1) is not a neighbour of site 1. The L(x) - L(XI ) 
must be independent of Xk for all x. Putting Xi = ° for i =1= ° 
or k, we see that G l.k (x 1, Xk) = O. Similarly the higher-uHler 
G functions involving X 1 and Xk must be null. Similar results 
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also follow for any pair of sites that are not neighbours, and 
the theorem follows. 

The theorem may be extended to more general x variates 
provided of course that the sum or integral of exp L (x) 
remains finite. 

In the cases where L(x) depends only on contributions 
from cliques containing no more than two sites, the 
expansion for L(x) must be of the form 

(92) 

In the further special case where x is binary (0, I), Gi(Xi) and 
Gi.j(Xi, Xj) must necessarily be constants for each i, j. If the 
system is also 'stationary', Gi is an absolute constant, and 
Gi,j depends only on the (signless) vector displacement of i 
and j. The simplest form of the auto-logistic model so defined 
is the one previously discussed, where only the nearest­
neighbours on a rectangular lattice contribute. The auto­
logistic model for a regular triangular lattice, where each site 
has six nearest neighbours in a plane, is similarly readily 
obtained. 

It is recalled that the number n of sites in the above 
discussion is finite. This is strictly consistent with practical 
situations, but the latter must then be considered for terminal 
boundary conditions (i.e. we cannot have strict 'stationarity'); 
alternatively, if n increases indefinitely the further problems 
of ergodicity previously mentioned will arise. 

2.3.1 Spatial-temporal processes for other auto-schemes 

Other auto-models of the conditional nearest-neighbour or 
Markov Field type, while necessarily conforming to the 
general form (92) of §2.3, may be defined even on the 
rectangular lattice if the basic distribution is not restricted to 
the binary or normal. They may (cf. Besag, 1974b) be 
conveniently generated by relaxing the restriction in our 
spatial-temporal process for the auto-logistic model from 
binary (0,1) variables to positive integer variables. Thus in 
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place of equation (70) of § 2_2-1 we may write 

Phi,t+dt = Y I xt } = "AGi(y, xt)dt, (y =l=xi,t). (93) 

The limiting equilibrium distribution P(x) must satisfy (in 
place of equation (71) of §2.2.1) 

(94) 

where S y denotes summation over values of y =1= x a t site i, 
and Yi = x except that the value at site i is not x but y. We 
choose the convenient term-by-term or 'local' solution of (<)4) 

VIZ 

P(Yi)Gi(X, yJ = p(x)Gi(y, x). 

Auto-binomial model Suppose in particular that Xi only 
changes at most by one, and in particular 

where 

{ 
'Y(x) = exp [(\' + L j,6jXj 1 
o(x) = exp[(\" + Lj,6;Xj 1, 

for y = Xi + I 
for y = Xi - I 

Xj being the nearest neighbours of Xi. If we write 

,6(x) = exp [(\' - (\" + L j(,6j - ,6;)Xj 1 

(95) 

where ,6j - - ,6; is assumed to have at least lateral symmetry in 
relation to Xi and Xj' then the limiting conditional distribution 
at site i is binomial with parameters nand e = ,6(x)/ [I + ,6(x) 1. 
When n = 1, this model reduces to the auto-logistic (0, I) 
model. 

Auto-Poisson model If alternatively 

{ 'Y(x) 
Gi(y, x) = XiO(X) 

for y = Xi + 1 (except if Xi = 0) 
for y = Xi - 1 
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then the limiting conditional distribution at site i is Poisson 
with mean ~(x). At first sight this appears a potentially useful 
model, but the requirement that p(x) is a valid distribution 
imposes the rather severe restriction that ~j - ~; ::::;: 0 (Besag, 
1974a), implying competition rather than positive contagion 
between neighbouring sites. 



PART II 

Examples of Statistical Analyses 



CHAPTER THREE 

Analyses of Continuous and 
Point Processes 

3.1 Continuous processes X(r). Pielou's example 

Examples of processes as defined in § 1.1 are not difficult to 
imagine, but not strictly very numerous, as it is more 
customary to consider either extracted lattice processes X rs 

(as in one dimension), or derived lattice processes Y m where 
Y(r) was defined in equation (1) of § 1.1. 

Such examples will be deferred until § 4.1, and this section 
will deal with the special problem mentioned in the Preface, 
of a mosaic pattern where X(r) is either 1 or 0 (presence or 
absence). Such an example was cited by Pielou (1964), and 
analysed on the basis of a Markov chain transect model, that 
is, it was assumed that on any straight line intersecting the 
area, the probability of switching to vegetation if there were 
none at the moment was, say, A.l ds in a distance ds, and 
A.2 ds of a switch to no vegetation if there were vegetation 
present. This model implies exponential intervals of 
vegetation of mean length l/A.2 and exponential intervals of 
no vegetation of mean length 1 /A.l . The stochastic equation 
for the 0,1 variable Xs is, moreover, 

(1) 

implying an exponential correlation function of A. J + A.2 , viz 

Ps = e-("t +",)s, (s > 0). 

It was not immediately clear that such a model was 
appropriate or even admissible in such a two-dimensional 

(2) 
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Table II Observations on a population of Antennaria umbrinella (from 
Pielou, 1964, Table 1) 

Event s;: 1 2 3 4 5 6 Total 

00 135 133 124 114 129 

I] 1 
[0;: 00 + %(01)] 

01 (10) 20 28 43 59 44 
878 

[1 ;: 11 + %(01)] 

11 45 39 33 27 27 27 322 

Total 200 200 200 200 200 200 1200 

context (it may, however, be shown that it is consistent with 
vegetation areas bounded by random straight lines; see 
Switzer, 1965) but the correlation function (2) does in fact 
fit the observed correlations reasonably well (Bartlett, 1964a). 
More natural correlation functions in this two-dimensional 
context (though not perhaps for a 0,1 variable) would 
correspond to the spectral functions (43) or (45) of § 2.1.1. 

The sampling data, which are given in full in Table II, were 
obtained from quadrat-pairs, each quadrat being a circle of 
2 cm diameter, and the distance between the pair being in 
units of 2 cm. Of the two degrees of freedom for each quadrat­
pair type, one merely checks the randomness of the sampling, 
and the other corresponds to the correlation-coefficient value 
given in Table III. 

Table III Pielou's transect example (Antennaria 
umbrinella) 

Interval Observed correlation r.,xponential 

2em 0.75 0.78 
4em 0.64 0.61 
6em 0.46 0.48 
8em 0.27 0.37 

10 em 0.41 0.29 
12 em 0.32 (±0.07) 0.23 
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3.2 Point processes. A simulated clustering model. 
X2 analyses. Mead's randomization test 

Examples of two-dimensional point-processes N(r), with 
spectral and other analyses, have been given in Bartlett 
(1964b). In that paper I noted the value of a simple but 
powerful analysis of variance of the counts in a suitable grid, 
rather on the lines advocated by Greig-Smith (1957), though 
not necessarily so systematic. If a preliminary check of non­
randomness is required, a chi-square analysis of the cell 
counts, possibly after extracting rows and columns, may 
prove informative. 

The examples given, which were not ideal, included the 
analysis of data from Numata (1961) on 'stands' of Japanese 
black pine saplings, and also one of hypothetical data 
conforming to a clustering model (offspring only) with 
Poisson size families and isotropic Gaussian dispersal. For the 
simulated data shown in Fig. 1 (§ 1.2.1) of 100 points with 
Poisson family size 2, and dispersal standard deviation I (in 
each dimension), the clustering in this hypothetical example 

.' 
80 

'. 
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40 

... 

20 

o 20 40 60 80 100 

Fig. 8 Clustering model (cf. Fig. 1, which is same realization with 
one-fifth the dispersion). (From Adv. Appl. Prob. 1974a) 
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Table IVa (based on original simulation) 

Counts Chi-square analysis 

9 1 4 0 4 Rows 8.1 (4) 
3 1 4 2 5 Columns 4.7 (4) 
1 6 3 4 0 Remainder 34.2** (16) 

12 5 5 4 3 
3 8 2 6 5 Total 47.0** (24) 

is very marked, more so than appears in a 5 x 5 cell count, 
although the heterogeneity of these may be demonstrated 
(Table IV). The spectral function for this is given by 

g(w) = A(l + 2e-(w;+w;)). (3) 

In later discussion of this example, I have pointed out the 
dangers of the rather arbitrary scale in an analysis like 
Table IV, as distinct from Greig-Smith's more systematic 
counting or a full spectral analysis. As an illustration I took 
the same hypothetical example, but blew up the dispersal 
scale five-fold, so that the spectral function was now 

the same simulated points were used otherwise, apart from 
any necessary adjustments round the margins. Rather 

Table IVb (based on modified simulation) 

Counts 

5 2 5 1 4 
4 2 6 1 3 
1 5 5 4 1 

12 4 5 3 5 
2 9 2 7 2 

* Denotes P = 0.05 significance. 
** 0.01 significance. 

*** 0.001 significance. 

Chi-square analysis 

Rows 6.3 
Columns 3".5 
Remainder 31.7* 

Total 41.5* 

(4) 
(4) 

(16) 

(24) 

(4) 
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remarkably, although the simulated data shows much less 
visual evidence of clustering (Fig. 8; the cases of very near 
nearest-neighbours are fortuitous and do not even come from 
the same families) the cell counts and corresponding chi­
square analysis tell very much the same story as before 
(Table IVb). 

This similarity of the two analyses is, however, rather 
dependent on a particular choice of grid, as may be illustrated 
by carrying through a fuller X2 analysis of the Greig-Smith 
nested type. It is convenient for this analysis to choose a grid 
of the 2k x 2k type, and the total square for each simulation 
was divided into 16 x 16 units, the counts for these being 
shown in Tables Va and Vb, which also show the 
corresponding X2 analyses. The second simulation does not 
now succeed in demonstrating significance at all; and from 
the theoretical mean squares shown, which are available as we 
know the underlying model (see below), it is clear that the 
clustering is too diffuse to show up in this analysis. This is 
somewhat unlucky; it will be seen that the actual mean 
squares are well below expection for the larger squares. It 
may be checked that this wide variation from theory is not 
abnormal, for the lower 0.05 limits on the true expectations 
are even further below the observed mean squares (even on 
the basis of standard significance levels, which would tend to 
underestimate the variability to be expected from a 
heterogeneous or clustering pattern). 

The theoretical mean squares are computed as follows. For 
a stationary point process eWer) (cf. § § 1.2, 1.21) we have 

E{N2 } = fE{eW(r)} + ffE{dN(r)eW(s)} , (5) 

or 

0 2 (N) = M + ffw(r - s)drds, (6) 

where N is the total count over a square of area A , and the 
integration of both rand s in the last integral is over this 
region. If w(r - s) is of the form Cw I (x I - X2)W I (y I - Y2), 
where r = (x I ,Y I ), s = (x 2, Y 2 ), then this integral may be 
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written 

[ iJ ] 2 
C S_iJ(h-lul)W1(U)dU =CJ2, (7) 

say, where A = h2 . In particular, for the clustering model used 
for these simulations, for which 

w(r) = Amoexp{ -(xi + YI )/4a2} /(4rra2), 

we have C = Amo and 

Wi (u) = (4rra2 )_'/2 exp( -Y2U 2 /a 2). 

The variance-mean ratio becomes 1 + moI2 /A = 1 + moP, 
where 

(8) 

(9) 

h 

J=2 SO O--u/h)(4rra2)-Y2exp{-u2/(4a2)}du. (0) 

Notice that for a small compared with h, this ratio tends to 
I + mo, or 3 in the simulations, for which mo = 2. For a 
large, J ~ Y2h/y'(rra2), and the ratio tends to I + h2 (2rra2). 
Even for Simulation 2, the smallest value of h is 100/16, 
compared with a = 5; the above approximation then gives 
1.25, compared with the more exact value, 1.21. 

The upper limit of 1 + mo may be checked by reference 
to the distribution for N in the limiting case, as members of 
the same cluster may then all be assumed counted in a square 
whenever the centre falls within it. For Poisson families, this 
gives the probability-generating function of N, 

rr(z) = exp{M [emo(Z-I) -In (11 ) 

from which we find a mean AmoA and a variance of 
AmoA + Am6A, or a variance-mean ratio of 1 + mo, as above. 

Finally, if the variance-mean ratio for a single square of 
side h is denoted by Rh , and the number of such squares is 
22 k , then an individual mean square in the X2 table has from 
its construction the form 

(12) 
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It should be noted that for these clustering-type models 
the mean square rises to a maximum when the spread of the 
clusters is small; in Simulation 1 even the smallest square unit 
gives a theoretical mean square which is 2.12, in contrast with 
Simulation 2, where square units with sides four times as long 
a theoretical mean square of l.93, consistently with the five­
fold scale increase in cluster size. In any empirical analysis a 
further increase in mean square could indicate a further 
clustering effect at a larger scale. To illustrate this type of 
analysis with real data, K. A. Kershaw's Nardus Stricta data 
(1957), discussed further by Mead (1974), have been taken. 
These were actually transect data of the cover type for a five 
point grid, and effectively one-dimensional, so that the 
nested analysis proceeds by factors of two. The data for the 
first transect are shown in Table VI (where the single row of 
counts is shown as eight consecutive rows for convenience). 
The clustering is evident from these counts, :md the resulting 
mean squares rise to a high maximum of over 6, from the 
between 4 's line onwards. While there is a still higher peak of 
12, this is on the one transect based on only two degrees of 
freedom, and would not justify further consideration, except 
that it is maintained on the analysis (quoted from Mead) on 
the full data of five transects. This raises the question whether 
such a value can be precisely tested, once the original random 
hypothesis has been discarded. 

A method due to Mead of handling this question may be 
illustrated on the data shown in Table VI. Let us tabulate the 
total counts of 4's viz 

0,2,2,0; 0,0, l, 10; 11,1,0,2; 5,9,4,10; 

0,1,17,3; 0,3,0,0; 0,0,0,1; 0,0,0,5. 

The differences between the neighbouring pair totals within 
sets of four are consequently 0,11,10,0,19,3,1,5: total 
49. If, however, the grouping of these pairs within sets of 
four is of no real consequence, a randomization within these 
sets would produce comparable totals. Each set of four 
produces three possible differences, and the eight sets 38 

possible totals, in comparison with which the observed total 
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of 49 may be judged. Mead also notes that the test may be 
modified if thought advisable, to reduce any effect of 
heterogeneity of scale within the groups of 4, by replacing 
the actual triads of possible differences, which are necessarily 
of the form (a, a, b), (a, b, c), or (a, b, b) where a < b < c, by 
(0,0, 2), (0, 1,2) and (0, 2, 2) respectively. 

With the results shown in Table VI the main interest with 
this further test is for the additional peak referred to above, 

Table VI K. A. Kershaw's Nardus Stricta data (first transect, adapted 
from R. Mead, Table 2 Biometrics, 30 (1974) 293) 

Total 

(1) 2 2 4 
(2) 2 4 4 11 
(3) 2 3 4 2 1 2 14 
(4) 1 4 3 3 2 2 1 I 3 5 2 28 
(5) 1 5 3 4 5 2 1 21 
(6) 2 3 
(7) ,I , 1 
(8) 2 2 5 

87 

x2 analysis 

Full data 
D.F. S.S. M.S. (cf. Mead) 

Within 2's 64 56.60 0.88 0.99 (512) 
Between 2's within 4's 32 39.36 1.23 2.38 (256) 
Between 4's within 8's 16 87.72*** 5.48 5.19 (128) 
Between 8's within 16's 8 56.74*** 7.09 4.72 (64) 
Between 16's within 32's 4 26.90*** 6.72 5.89 (32) 
Between 32's within 64's 2 24.21 *** 12.11 13.41 (16) 
Between 64's 1 8.39** 8.39 6.95 (8) 

Total 127 299.92*** 2.36 

M.S. excluding first two entries 6.58 
(from full data, 6.00) 
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for which the full data must be used. The significance level 
obtained by Mead was 0.032 for the untransformed data, but 
only 0.092 for the distribution-free modified test, so that the 
significance of this peak must remain somewhat doubtful. 

To avoid the complications of the exact randomization, 
Mead also gives the normal approximation in the 
distribution-free case. 

Triads of type (a, a, b), (a, b, c), (a, b, b) 

Observed nl n2 n3 
nlO a's n20 a's n30 a's 
n l 2 b's n2 I b's n32 b's 

n22 c's 

For such a set of results, we should calculate 

which is asymptotically normal with zero mean and unit 
variance. 

3.2. J Spectral analysis 

For the spectral analysis of the (first) simulation referred to 
in § 3 .2, which was reported in the paper cited (Bartlett, 
1964b), the 'periodogram' for such a point process realization 
of n points with co-ordinates x s , Ys is calculated as 

(14 ) 

where 

') n 

Jpq = Ap + iBp =V~ ~ exp{i(xswi (p) + YsW2(q)}' (15) 
IlA s=1 

(WI, W2) being chosen to have a set of integral values 
WI (P) = 21Tp/n, W2 (q) = 21Tq In. To standardize the 
calculations, we may set x; = nXsl L 1 ,y; = ny sl L 2; this helps 



58 THE STATISTICAL ANALYSIS OF SPATIAL PATTERN 

to eliminate bias near w = 0 due to the discrete component 
2n 2 /(pA) at the origin. In order that EUpq } -+ 2 as w -+ 00, 

we choose also pA = r. 
For processes with spectral density function, such as the 

two-dimensional Poisson process or a clustering process like 
(3) of §3.2, it is well-known (cf. Bartlett, 1966 §9.23 for 
one-dimensional point processes) that Ip q requires 
'smoothing' if it is to converge to g( w) as n -+ 00. Uniform 
weighting of individual values will usually be most convenient, 
and to avoid excessive tabulation of all Ip q values, cumulative 
totals of Ipq over blocks 6 x 6 in p and q were computed and 
are given in Table VIla. The values of p and q chosen should 
in general cover the complete range including the axes p = 0 
and q = 0 (but excluding p = q = 0) and either p or q = 
-1, -2, .... However with this isotropic simulated case there 
seemed no point in including negative p or q values, which 
were taken in the range p, q up to 48. 

The spectral values agree sufficiently well with the 
theoretical expected values, as is indicated in Table VIIb, 
where the values have been scaled by the expected values 
obtained by integration of the spectrum (3) of § 3.2 to give a 
uniform expectation of 72 (2 x 36) equal to the asymptotic 
values for large p, q. 

The use of spectral analysis seems theoretically more 
attractive than analyses on counts, which we have seen may 
be difficult to interpret, but of course requires precise 
pin-pointing of the data, and this is not always feasible. A 
further difficulty may be the computing involved, which gets 
more heavy in two-dimensional examples; it may therefore be 
useful to note an ingenious modification of the spectral 
analysis of point processes in one dimension proposed by 
French and Holden (1971) in the context of the analysis of 
neural impulses. In place of dN(t) we introduce the 
continuous process 

f sin [(t - r)1T] 
XU) = dN(r), 

(t - r)1T 
(16) 

which filters out the frequencies w < 1T, and then sample at 
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Table VIla (From Bartlett, 1964b, Table 10) 

Spectrum totals 

p--> 186.45 182.91 110.88 76.51 64.85 5l.72 79.27 81.37 
q 111.37 130.41 98.34 67.57 42.39 55.63 58.04 59.62 
~ 109.14 85.28 74.79 61.97 49.43 66.43 66.37 68.33 

8l.84 65.22 52.60 76.49 49.31 70.44 92.37 65.02 
66.30 62.62 63.l0 67.l2 63.62 59.l6 62.35 66.53 
80.26 88.83 90.23 92.42 74.l8 89.91 87.16 91.75 
76.25 72.46 82.l6 65.90 79.26 87.36 72.43 108.92 
63.08 92.32 83.08 55.71 77.24 60.52 78.l0 79.95 

Table VIlb (From Bartlett, 1964b, Table 11) 

Spectrum totals scaled to give expectation of 72 

p--> 67.19 79.01 63.91 58.18 58.95 50.46 78.38 81.37 
q 48.11 65.86 63.65 54.93 39.43 54.54 57.75 59.62 
~ 62.90 55.20 57.31 54.84 43.74 65.77 66.37 68.33 

62.24 53.02 46.55 72.50 46.74 70.09 92.37 65.02 
60.27 58.25 60.67 65.80 63.30 59.16 62.35 66.53 
78.30 87.09 89.34 9l.96 74.18 89.91 87.16 91.75 
75.87 72.10 82.16 65.90 79.26 87.36 72.43 108.92 
63.08 92.32 83.08 55.71 77.24 60.52 78.10 79.95 

unit time intervals, which permits the use offast Fourier 
transform computing techniques (Cooley and Tukey, 1965). 
Any aliasing problem for frequencies over 1f is avoided, as 
they have already been eliminated. The frequency cut-off 
may be chosen by appropriate choice of the time unit. 

This device is obviously applicable in more than one 
dimension. Thus for two spatial dimensions we should write 

X(r) = fsin[(X I -X2)1f] sin[YI -Y2)1f] dN(s) (17) 
(x I - X 2 )1f (y I - Y 2 )1f 

where r = (XI, Y I), s = (X2, Y2), and sample X(r) on the 
intersections of the rectangular lattice of unit squares. 

3.2.2 Nearest-neighbour distances between gulls' nests 

The general effect of inhibitory action between individuals on 
spectral analysis or related analysis of variance results has 
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Fig. 9 Nearest-neighbour nesting distances for the lesser black-backed 
gull. The mean distance is 8.069, and the dotted histogram is a random 
distribution with the same mean (From Adv. Appl. Prob., 1974a) 

been already mentioned at the end of § 1.2.1. Sharply 
defined nearest-neighbour inhibition is more directly studied 
by measurements between neighbours, but the relevant 
theoretical models to be fitted to such measurements usually 
have to be studied by simulation (cf. § 1.2.2). 
Two-dimensional examples of such data are the positions of 
gulls' nests, or the positions of towns. 

In Table VIII and Figs. 9 and 10 are shown the observed 
frequency distributions of nearest-neighbour radial distances 
(r) from each nest for two gull species (a) the lesser 
black-backed gull (b) the herring gull. 

In Figs. 9 and 10 the theoretical random distributions 
which are well-known to have density function 

fer) = 21TAr e- 1rAy2 (18) 

are also shown (for boundary values of r 1.5,2.5, ... ), and 
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Table VIII (Mac Roberts' data) 

r (a) (b) r (a) (b) 

1 0 0 14 5 11 
2 5 7 15 7 7 
3 8 4 16 2 20 
4 27 8 17 3 11 
5 48 28 18 2 10 
6 71 34 19 1 3 
7 70 39 20 0 5 
8 79 68 21 0 8 
9 48 50 22 1 2 

10 47 55 23 1 
11 33 51 24 1 
12 20 41 25 1 
13 16 33 26 1 

Total 493 499 

are obviously unsatisfactory for small Y, owing to the 
tendency for very small distances to be avoided. 
If the Eberhardt Index (Eberhardt, 1967) 

n!:.y2/(!:.y)2 

is calculated, it gives values l.133 for (a), and l.161 for (b) 
compared with the theoretical value 1.27 for a random 
distribution. The 95% confidence interval for a n:umber of 
simulations for n = 500 carried out by P. D. Macdonald was 
1.23-1.33 (note that even in the random case the known 
nearest-neighbour distance distribution does not give us 
the simultaneous distribution determining the standard 
error). 

61 

An attempt was made to allow for local inhibition in a 
further simulation with n = 500. Unfortunately, the total 
areas involved were not known, and once an inhibition effect 
is included the scale is of course fixed. A further difficulty is 
the indication from the data that any cut-off at small 
distances is not sharp; and in case (a) the model adopted had 
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Fig. 10 Nearest-neighbour nesting distances for the herring gull. The 
mean distance is 10.2485, and the dotted histogram is a random 
distribution with the same mean (From Adv. Appl. Prob., 1974a) 

the variable inhibition radius 
r: 0 1 2 3 

p o 0.10 0.10 0.10 

4 

0.70 

The resulting distribution from simulation (n = 500) gave 
of course reasonable agreement for very small r (as the 
variable inhibition radius had been arrived at after inspection 
of the data), but too large a mean r (l0.553), and hence too 
long a tail. A rough adjustment was made by re-scaling the 
distances (using equivalent areas, but with no additional 
allowance for non-uniform spread) to make the means agree; 
the small r values are now inappropriate (in the first place 
because of the shifted inhibition effect, but also because of 
the crude nature of the re-scaling), but the fit at the other end 
seems now reasonable (see Fig. 11 and Table IX), so that in 
spite of these difficulties of comparing with an inappropriate 
simulation, the inhibition effect seems to emerge as the main 
cause of the non-random distribution. 
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Fig. 11 Simulated distribution (dotted histogram) compared with 
observed distribution of nearest-neighbour distances after re-scaling 
to give closer agreement for the mean (which is now 8.007 for the 
re-scaled simulation). (From Adv. Appl. Prob., 1974a) 

Table IX (From Bartlett, 1974a, Table VII) Simulation for (a) 

r Simulated Re-scaled r Simulated Re-scaled 

1 0 2 14 21 26 
2 4 9 15 29 13 
3 9 20 16 11 7 
4 15 49 17 17 3 
5 39 66 18 14 1 
6 37 67 19 9 
7 61 45 20 7 
8 48 34 21 11 
9 36 48 22 6 

10 30 35 23 3 
11 32 33 24 2 
12 29 22 25 
13 31 20 26 

Total 500 500 
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3.3 Line processes 

The spectral analysis of the p, e representation of the random 
set of 50 lines of Fig. 2 (§ 1.3) is given below for illustration. 
These data, which are quoted in Table X for reference, were 
obtained by calculating e = tan -1 (xly) from a pair of 
independent normal variates x and y (Tracts for Computers, 
No. 25) and p from uniformly distributed numbers in the 
range 0 to 100 (Tracts for Computers, No. 24), dividing by 
"";2 for Fig. 2 to ensure that the lines intersected a circle of 
radius 50....;2. (While two did not intersect the inscribed 
square of side 50, they were retained in the analysis.) It will 
be noticed that the representation used here is for e 0 to 21T, 
and p the range 0 to 50 extracted from 0 to 00, in contrast 
with the ranges in § 1.3 of e 0 to 1T, and p _00 to 00. Either 
representation is available, but in the case of possibly non­
random real data the _00 to 00 range for p might be 
preferable. 

The periodogram sums are analogous to those defined in 
§ 3 .2.1, modified to cope with the variable 0 by defining (in 
the case of the p, e representation) 

2 n 
Jqs = - ~ exp{i(xrwq + ers}, 

n r=1 
(19) 

where Wq = 21Tq In, s = 0, ± 1, ±2, ... The theoretical spectral 

Table X (From Bartlett, 1967b, Table I) 

p e p e p e p e p e 

2.45 2.461 48.32 4.683 12.40 0.913 5.60 0.217 28.76 5.931 
11.85 5.771 19.39 2.244 29.15 1.154 28.74 3.630 36.19 2.799 
39.31 4.584 21.17 1.534 64.52 1.856 66.72 3.074 41.70 3.879 
59.69 4.893 7.97 1.637 60.26 0.392 12.99 4.820 7.69 5.280 
23.48 0.017 27.03 4.223 62.76 0.484 10.63 0.582 43.59 3.436 

12.86 0.557 47.14 0.000 30.92 3.261 21.31 1.443 54.86 4.962 
16.56 3.737 48.12 0.883 44.03 4.573 26.77 0.671 37.16 0.173 
26.76 5.110 45.39 4.009 39.85 5.085 69.96 5.808 26.91 0.375 
40.04 0.983 5.64 1.540 12.40 1.346 67.00 5.945 3.10 2.922 
11.37 5.1-2 19.08 3.038 8.73 0.l16 1l.92 1.307 56.70 5.731 
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function is of the form 

(20) 

for random independent e, where for e = 0 to 27rDs = 0 except 
for s = 0, when Ds = 1. Here f(w) is the modulated part of the 
spectral function of p, and is 0 for random p (O's(w) being 
then standardized to unity). 

Values of Iqs = JqsJJs are shown in Table XI in block 
totals of ten for q = 1 to 100 and s = 0 to ±5, and appear 
satisfactorily uniform. The mean value of these totals is 21.0, 
or 2.10 for each Iq s' compared with the expected value of 
2.00. 



CHAPTER FOUR 

Analyses of Processes on a 
Lattice 

4.1 Lattice processes Xi. Continuous variables. Examples 
using simultaneous and conditional models 

In Whittle's pioneering 1954 paper, he discussed the 
numerical fitting of models like (5) of § 2.1, viz 

(1) 

where the Yrs are assumed independent (and with zero mean), 
to the classical Mercer and Hall uniformity trial on wheat. He 
noted the limitations of this set of data, which were treated 
as values X rs when they are really of the integrated type (see 
equation (11) of § 1.1). 

Other examples include studies by Mead (e.g. 1967) in the 
context of inter-plant competition, though there seems, as 
already remarked (see § 2.1), to have been some confusion in 
the literature between model (1) and the conditional nearest­
neighbour model 

E{Xrs I all other X's} = ~l (Xr-1,s + X r+1,s) 

+~2(Xr,s-1 +Xr,S+l) (2) 

which was first fitted to some of these examples by Besag 
(1974a). 
The Mercer and Hall data. These data consist of grain 
yields from 500 plots, 11 ft by 10.82 ft, arranged in a 
20 x 25 rectangle. Estimated autocorrelations for these data 
as given by Whittle are quoted in Table XII, the co-ordinate s 
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Table XII (From Whittle, 1954, Table 1) 

t s=O s = 1 s=2 s=3 s=4 

-3 0.1880 0.1602 0.1509 0.1276 0.1352 
-2 0.1510 0.0234 0.0020 -0.0137 -0.1039 
-1 0.2923 0.1853 0.1349 0.0788 0.0878 

0 1.0000 0.5252 0.4055 0.3639 0.3561 
1 0.2923 0.2354 0.1799 0.1205 0.1399 
2 0.1510 0.1285 0.0999 0.0749 0.0859 
3 0.1880 0.1935 0.2483 0.2415 0.2284 

denoting the north-south direction and t the east-west. In the 
case of fitting the simultaneous model (1), Whittle showed 
that (for normal processes) the maximum likelihood 
estimation of the coefficients is equivalent to the 
minimization of the usual mean squared residual U times a 
function k of the coefficients, this last factor arising from the 
Jacobian of the transformation from Yrs to X rs (see § 2.1 ). 
In the case of one-sided schemes, k is of course unity. For 
models with spectrum 

(3) 

it was shown that log k is the absolute term in the expansion 
of 

-2log[I-H(z1,z2)]' 

For the model (I), we have 

10 k = ~ f (2i)! a2ia2; 
g ..' [ "' (" ")' ] 2 ,.., 1 ,..,2 , 1=1J=O 1 J" 1 - J " 

which in the completely symmetric case ~1 = ~2 =~, say 
reduces to 

co I (2i)2 ~ -:- -:- (~)2i" 
;=1 I I 

(4) 

(5) 

(6) 

In the case of conditional models, Besag (1974a) has noted 
that Whittle's method of obtaining maximum likelihood 
estimates may still be applied. Thus for a process with 
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Table XIII 

Whittle's 
Description of model model no. {3, (32 k U kU 

One-sided 1 0.488 0.202 1 0.6848 0.6848 
Completely symmetric 5 0.159 0.159 1.1240 0.6508 0.7314 
Two-sided 6 0.213 0.102 1.1332 0.6217 0.7045 

spectrum as in (3), but raised to the negative first power 
only, the appropriate k is merely half the value in (4). The 
maximum likelihood method in this case may be shown from 
the functional form of the auto-normal scheme to equate the 
relevant theoretical and observed autocorrelations. 

Some of Whittle's original analyses are summarized in 
Table XIII. The one-sided model referred to was 

(7) 

The interesting feature of these three first-order models is 
that the one-sided model gives the best fit; and it has been 
pointed out by Besag that this might be construed as 
indicating a better fit from the conditional (or auto-normal) 
first-order model, in the sense that the one-sided model was 
shown in § 2.1 to provide a first approximation to the 
conditional two-sided model. The corresponding approximate 
estimates of ~ 1 and ~2 for the two-sided model are shown in' 
Table XIV, which summarizes the various estimates obtained 
by Besag for the auto-normal model, including the. second 

Table XIV Auto-normal model 

Maximum likelihood 
Coding: (1) 

(2) 
Mean of (1) and (2) 
1 st one-sided approximation 
2nd one-sided approximation 

*s.e.0.03 

0.368 
0.332* 
0.354* 
0.343 
0.382 
0.374 

0.107 
0.128* 
0.166* 
0.147 
0.158 
0.119 
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approximation via the one-sided model, the estimates using 
the coding methods described in § 2.1 and the maximum 
likelihood estimates. These estimates appear reasonably 
consistent with each other. 

Second-order models The values of kU in Table XIII do not 
include the smallest among Whittle's models, as he considered 
adding further terms, and in particular with the one-sided 
model (his Model 4) 

XyS = ~lXr+l,s + ~2Xr,S+l + 'Y1 X r+2,s + 'Y2Xr,s+2 (8) 

obtained estimates 

~l = 0.402, ~2 = 0.168, 'Yl = 0.172, 'Y2 = 0.092 

with a value of kU = 0.6564, (k = I). 
Besag also fitted an auto-normal model with further terms 

relating to diagonal nearest-neighbours viz. 

E{Xrs I all other values} = {3\ (Xy-1,s + Xy+1,s) 

+ ~2 (Xy,S-l + Xy,S+l) 

+ 'Yl (Xr-1,S-1 + Xy+1,S+l) 

+ 'Y2 (Xy-1,S+1 + Xy+1,S-1 ) 

(9) 

using the second coding pattern given in Fig. 6 (§ 2.1) as 
appropriate for this model. Four possible sets of patterns give 
rise to four sets of estimates, which are quoted in Table XV, 

Table XV (From Besag, 1974a, Table 10) 

Coding pattern ~I ~2 11 12 

(i) 0.344 0.043 0.079 -0.062 
(ii) 0.318 0.085 0.016 0.011 
(iii) 00407 0.243 -0.067 -0.034 
(iv) 0.361 0.236 -0.092 -0.041 
s.e. 0.05 0.06 0.07 0.06 
Mean estimate 0.358 0.152 -0.016 -0.032 
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Table XVI (From Besag, 1974a, Table II) Analysis of 
variance (pattern (i)) 

Sum of squares D.F. Mean Square 

~1' ~2 9.63 2 4.81 
/'1, /'2 0.19 2 0.10 
Residual 10.89 103 0.106 

Total 20.71 107 

71 

together with the s.e.'s of each set. It appears that there is no 
significant gain by fitting the additional 'Y-coefficients in (9), 
and this is indicated also by the analysis of variance of the 
first set (Table XVI). The coefficients in Whittle's model (8) 
have of course no very close relation with the four 
coefficients in Besag's model (9). 

Both Whittle and Besag draw attention to trends in the 
data needing further consideration before any final 
conclusions on the best-filling model are drawn. It should be 
noticed that the values of ~2 in Table XI appear inconsistent 
when the (iii) and (iv) sets are compared with (i) and (ii). 

4.2 Discrete variables. Simple X2 analyses. Further analyses 
and examples. 

Coming next to lattice processes involving discrete variables, 
which will often, but not always, be binary, I shall first of all 
in this section note some of my first X2 analyses of such data. 
These analyses, whilst the further developments outlined in 
Part I have enabled us to see their role and limitations in a 
wider theoretical context, have the merit of being both 
informative and simple, so that they are likely to be still 
useful even for situations where there may be more logical, 
but, from the analysis viewpoint at least, more complicated, 
models. 

Like the continuous variable example of the Mercer and 
Hall data, these first two examples to be considered are not 
strictly lattice data, the lattice being imposed on a continuous 
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area, and, with the present examples, counts taken over each 
cell of the lattice constituting the data. Such data may 
perhaps more adequately be analysed by simple semi­
empirical models with a view to studying their structure than 
by a more complicated model analytically only strictly 
appropriate to genuine lattice data. 

The two sets of data are similar in type, the first being 
numbers of balsam-fir seedlings in five feet square quadrats 
taken from Ghent (1963), and the second counts of Carex 
arenaria made by Dr. P. Greig-Smith and quoted in Bartlett 
(1971 a). The data are thus not dissimilar in type from the 
simulated clustering model of § 3.2, but the X2 analyses 
illustrated there were mainly checks on complete 
randomness, whereas here it is the use of models of local 
relations that necessitates the care on the interpretation and 
validity of the X2 analysis. 

It will be seen that in Table XVII the counts range up to 7, 
and the binary presence-absence classification would be 
throwing away rather too much information in this case. 
Regression on the actual neighbouring counts might be a 
possibility, but as simple linear nearest-neighbour models are 
to be tried, a reasonable compromise was to follow Ghent in 
classifying the counts into three categories, L, low density 
(0 or 1),M, medium (2 or 3), andH, high (4 or more). We 

Table XVII Number of balsam-fir seedlings in five feet 
square quadrats (Taken from Ghent, 1963 
Fig. 4) 

0 1 2 3 4 3 4 2 2 1 
0 2 0 2 4 2 3 3 4 2 
1 1 1 1 4 1 5 2 2 3 
4 1 2 5 2 0 3 2 1 1 
3 1 4 3 1 0 0 2 7 0 
4 2 0 0 2 0 3 2 3 2 
2 2 2 0 3 4 7 4 3 3 
2 3 1 2 3 8 5 5 1 2 
1 1 2 1 4 4 5 3 2 3 
3 1 6 3 5 4 7 4 3 
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Table XVIII (From Bartlett, 1967a, Table 9) 

X=-1 2(4.00) 11 (9.82) 8 (6.58) 3(3.04) 0(0.58) 24 
0 6(3.55) 7(11.10) 13(10.21) 7(7.55) 3(3.55) 36 
1 0(0.45) 7 (4.07) 2 (6.21) 7(6.41) 5(3.87) 21 

Total 8 25 23 17 8 81 

then, if we classify the counts in relation to the one-sided 
pattern of nearest-neighbours (L, M or H) to the left and 
above in the Table, and consider moreover an assumed 
dependence of XyS on the sum SyS = Xy-1,s + Xy,S-l ,scoring 
L as -1, M as 0, and H as 1, arrive at the frequency 
classification (for the last nine rows and columns) in Table 
XVIII. A X2 analysis on the hypothesis of no relation with S, 
so that the row totals are used to provide the expected 
frequencies for each column, gives 19.68 with 8 dJ. 
(P"v 0.01). However, if the probability model 

P{XyS = r I SyS = s} = CXy + ~YS (10) 

is fitted, the coefficient ~ being taken as the 'unweighted' 
regression estimate 0.107, we arrive at the expected 
frequencies shown in brackets in Table XVIII. X2 is now 
11.94 with 7 d.f. (P"v 0.10). The fit could perhaps be 
improved further by the use of a more efficient estimate of ~ 
or by the use of a less arbitrary (though admissible) model, 
but seems sufficiently satisfactory. 

With Greig-Smith's data (Table XIX), the counts are small 
enough for presence-absence analysis to seem reasonable. A 
frequency table of the 0, 1 values classified against the one­
sided nearest-neighbour configurations gave the results of 
Table XX. In this Table the expected frequencies in brackets 
are based on the simple one-sided model 

P{xyS = 1 I Xy-l,s, Xy,S-l} = P + CX(XY-l,S + Xy,S-l) (11) 

with cx = 0.1411; and, while we know that this model cannot 
be an exact conditional nearest-neighbour model in the two­
sided sense, it gives an adequate fit as far as Table XX is 
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Table XX (From Bartlett, 1971a, Table VI) 

0 1 0 1 
Total 0 0 1 1 

0 194(190.8) 55(60.7) 54(56.8) 36(31.4) 339 
1 50 (53.2) 38(32.3) 33(30.2) 24(28.6) 145 

Total 244 93 87 60 484* 

*A 22 x 22 array, the last row and column being omitted for 
symmetry with the given first row and column. 

39 40 41 42 43 44 45 46 47 48 49 

1 N V N N N 
2 N N N N N 
3 N N N N N N N N 
4 N N N N N N N N 
5 N N N N N N N 
6 N N N N N N N 
7 N N N N N 
8 N V N N N N N N N 
9 N N N V N N N 

10 N N N N N N N V N 
11 N N N N N N 
12 N N N N N N 
13 N N V N N N N 
14 N N N N V V 
15 V N 
16 N V N N N 
17 V N 
18 N N N 
19 N N 
20 N N 
21 V N N 
22 N N N N 
23 N V N 
24 N N 
25 N N N 
26 N N N 
27 N N 
28 N N 
29 N 
30 

N = Nettlehead plant. V = Vacancy. • = Plant without symptoms. 

Fig. 12 Incidence ofnettleheod virus in 1951 among hop plants. (From 
Freeman, 1953, Biometrika, Fig. 1) 
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Table XXI (From Bartlett, 1974a, Table VIII) X2 analyses of Freeman's 
data 1951 plants (Lattice 11 x 30, with effect of 12 
vacancies neglected) 

One-sided nearest-neighbour configurations 

0 0 
0 0 

First 0 13(10.5) 17(16.9) 15(17.8) 19(18.7) 64 
half 1 10(12.5) 20(20.1) 24(21.2) 22(22.3) 76 

23 37 39 41 140 

Hypothesis of no dependence: PI = 0.5429 xi = 1.92 (3 dJ.) 

Second 83(77 .5) 14(18.6) 12(9.7) 4(7.3) 113 
half 13(18.5) 9 (4.4) 0(2.3) 5(1.7) 27 

96 23 12 9 140 

Hypothesis of no dependence: P2 = 0.1929 X~ = 18.73*** (3 dJ.) 

Total 0 96(75.2) 31(37.9) 27(32.2) 23(31.6) 177 
1 23(43.8) 29(22.1) 24(18.8) 27(18.4) 103 

119 60 51 50 280 

Hypothesis of no dependence: P = 0.3679 x2 = 27.66*** (3 d.f.) 

concerned (X2 = 3.60 with 2 d.f.). This does not imply of 
course that a more detailed look at the data would not reveal 
discrepancies (cf. the analysis below of Gleaves' data). 

The third example in this section is a more genuine case of 
lattice data, consisting of records in 1951 of the presence or 
absence of nettlehead virus disease of a lattice of hop plants. 
There are, however, as with most real data, other 
complications militating against too precise an analysis, 
including some vacancies where there are no plants (v in the 
diagram, Fig. 12), and an obvious decrease in incidence from 
top right to bottom left. This would make any overall tests of 
'runs' or 'links' to demonstrate non-randomness very 
misleading. The X2 analysis which is shown in Table XXI and 
based on a one-sided nearest-neighbour classification has been 
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Table XXIII (From Besag, 1974a, 
Table 1) 

Coding pattern a ~ 

(i) -2.254 0.724 
(ii) -2.141 0.748 
Approx. s.e. 0.07 0.04 
Mean for (i) & (ii) -2.198 0.736 

carried out separately for the top and bottom halves of the 
data, and the significance of the X2 for the entire data is 
attributable partly to the effect of pooling heterogeneity and 
partly to the evidence of association where incidence is low. 

The citing of this example here is partly to illustrate (Table 
XXII) a fit of a temporal-spatial model conceived in the spirit 
of the temporal models referred to in § 2.1. The existence of 
records for 1950 enabled a regression to be made on nearest­
neighbours the year before. This eliminated the complication 
in the X2 analysis if symmetrical nearest-neighbours are to be 
tested; it also enabled diagonal nearest-neighbours to be 
readily included, at first separately, but finally (and 
adequately) on a par with the others. 

It will be seen that the fit of the regression model (in spite 
of its over-simple linear form) appears adequate. 

If a symmetrical spatial model is to be tested on data of 
this type, the difficulty of extracting independent degrees of 
freedom (see Bartlett, 1971 a) may be avoided, at the cost of 
some inefficiency, by restricting the analysis to alternate sites, 
a method due to Besag (see § 2.1), who first examined the fit 
of the auto-logistic model to the data of Greig-Smith's used as 
one of my earlier examples. 

Besag's auto-logistic analysis of Gleaves' data. Some data 
similar in type to Greig-Smith's data were collected by 
Gleaves on Plantago Ian ceo lata. The area sampled at 
Treloggan, Flintshire was a long and narrow transect lOx 940 
of cells 2 x 2 cm, presence/absence of plants in each cell 
being the variable considered by Besag (197 4a) in his analysis, 
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Table XXV (From Besag 1974a, Table 4) 

Coding pattern Q ~ 'Y 

(i) -2.534 0.518 0.497 
(ii) -2.459 0.529 0.528 
(iii) -2.369 0.543 0.456 
(iv) -2.456 0.515 0.487 
Approx. s.e. 0.10 0.07 0.07 
Mean of (i) ... (iv) -2.455 0.526 0.492 

which was based firstly on the isotropic auto-logistic model 

(see § 2.2) 

exp {(a + {3zrs)x rs } 
P{xrs I all other values} = ,(12) 

1 + exp(a + (3zrs) 

where zrs = Xr-l,s + Xr+l,s + Xr,s-l + Xr,S+l' Estimates for a 
and {3 were made for the coding pattern given §2.1 and are 
quoted in Table XXIII. Table XXIV gives the observed and 
expected frequencies for the first of the two analyses (the 
second gives a similar result) and suggests a satisfactory fit, 
though Besag notes that with only 2 d.f. available for the 
goodness-of-fit test the class of alternatives under scrutiny is 

Table XXVI (From Besag, 1974a, Table 6) 

Frequencies Coding pattern (i) (out of 4) 

xrs zrs = 0 2 3 4 

o 0 628(617.1) 207(220.6) 61(60.5) 6 (6.5) 1(1.8) 
I 38 (48.9) 43 (29.4) l3(l3.5) 3 (2.5) 2(1.2) 

0 223(218.5) l35(141.1) 61(56.3) 16(14.8) 3(3.4 ) 
1 24 (28.5) 37 (30.9) 16(20.7) 8 (9.2) 4(3.6) 

2 0 49 (54.4) 60 (54.4) 36(37.4 ) 18(14.4) 4(3.3) 
17 (11.6) 14 (19.6) 24(22.6) 11(14.6) 5(5.7) 

3 0 8 (8.9) 7 (6.9) 17(19.6) 7 (9.4) 4(1.8) 
1 4 (3.1) 4 (4.1) 22(19.4) 18(15.6) 3(5.2) 

4 0 0 (0.0) 0 (0.0) 4 (3.8) 1 (0.5) 0(0.5) 
1 0 (0.0) 0 (0.0) 6 (6.2) 1 (1.5) 3(2.5) 
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necessarily very limited (cf. the one-sided analysis of Greig­
Smith's data). The higher-order isotropic model 

81 

Phys I all other values} ex exp{a + ~Zys + 'YUys}xyS (13) 

where Urs = Xr-l,s-l + Xr+l,S+l + Xr-l,S+l + Xr+l,s-l, was 
also considered by Besag, leading to the estimates of 
Table XXV using the four coding patterns available for this 
higher-order model. The frequency table for the first of these 
analyses is shown in Table XXVI, and gives a X2 of 28.3 with 
20 d.f. (approximately, owing to some small expectations). 
Similar tests for all four analyses suggests a barely adequate 
fit, although it is clear from Table XXV that the inclusion of 
the'Y coefficient has been useful. 

It will be recalled that for the auto-normal process the 
maximum likelihood method is equivalent to equating the 
relevant observed and theoretical auto-correlations. This is 
readily shown to be true also for the auto-logistic model, but 
stresses the present unavailability of the maximum likelihood 
method for this model when the theoretical auto-correlations 
are still unknown for general a, ~. 



Appendix 

Table AI Correlations Prs(2P) for the auto-nonnal model 
(symmetric case) 

P ~I o (2P) PI I (2P) P2o(2P) 

0.0200 0.0200 0.0008 0.0004 
0.0400 0.0403 0.0032 0.0016 
0.0600 0.0611 0.0074 0.0038 
0.0800 0.0827 0.0135 0.0069 
0.1000 0.1055 0.0218 0.Q114 
0.1200 0.1299 0.0327 0.0174 
0.1400 0.1567 0.0470 0.0256 
0.1600 0.1869 0.0656 0.0370 
0.1800 0.2222 0.0907 0.0531 
0.2000 0.2659 0.1260 0.0777 

0.2100 0.2930 0.1500 0.0955 
0.2200 0.3260 0.1810 0.1198 
0.2300 0.3690 0.2242 0.1559 
0.2400 0.4341 0.2946 0.2196 

0.2410 0.4432 0.3048 0.2293 
0.2420 0.4530 0.3160 0.2400 
0.2430 0.4639 0.3284 0.2521 
0.2440 0.4760 0.3425 0.2660 
0.2450 0.4898 0.3586 0.2821 
0.2460 0.5060 0.3777 0.3015 
0.2470 0.5256 0.4011 0.3257 
0.2480 0.5512 0.4321 0.3583 
0.2490 0.5898 0.4795 0.4094 

0.2495 0.6228 0.5207 0.4548 
0.2496 0.6324 0.5328 0.4682 
0.2497 0.6442 0.5475 0.4847 
0.2498 0.6596 0.5669 0.5065 
0.2499 0.6831 0.5967 0.5401 
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Table AI (continued) 

~ PI o(2~) PI I (2~) P2 o(2~) 

0.2499600 0.7098 0.6306 0.5784 
0.2499875 0.7374 0.6660 0.6177 
0.2499920 0.7469 0.6781 0.6315 
0.2499980 0.7725 0.7106 0.6687 
0.2499998750 0.8098 0.7580 0.7230 
0.2499999550 0.8216 0.7731 0.7402 
0.2499999950 0.8414 0.7982 0.7691 
0.2499999992 0.8548 0.8153 0.7886 

0.25- 0.9205 0.8989 0.8843 
0.25- 0.9603 0.9494 0.9421 
0.25- 0.9801 0.9747 0.9711 
0.25 1.0000 1.0000 1.0000 

Table All Product moment PI 0 and m'2 for the auto-logistic model 
(symmetric case with a: = 0, x = ± 1) 

e' = -tanh 2r Plo(e') 
, 

m2 e PIO 

0.7071 0.7071 0.7071 0.7071 0 
0.7000 0.6661 0.7141 0.7474 0.5258 
0.6971 0.6534 0.7170 0.7594 0.5714 
0.6948 0.6445 0.7192 0.7720 0.5992 
0.6911 0.6306 0.7228 0.7806 0.6368 

0.6844 0.6086 0.7291 0.8003 0.6876 
0.6747 0.5788 0.7381 0.8258 0.7412 
0.6610 0.5458 0.7504 0.8518 0.7943 
0.6502 0.5217 0.7598 0.8697 0.8253 
0.6411 0.5030 0.7675 0.8827 0.8464 

0.6329 0.4878 0.7743 0.8928 0.8627 
0.6000 0.4332 0.8000 0.9251 0.9093 
0.5514 0.3687 0.8343 0.9549 0.9485 
0.5124 0.3259 0.8588 0.9700 0.9667 
0.4782 0.2930 0.8782 0.9792 0.9772 

0.4472 0.2659 0.8944 0.9850 0.9840 
0.3162 0.1713 0.9847 0.9970 0.9969 
0.2042 0.1053 0.9790 0.9995 0.9995 
0.1005 0.0507 0.9949 1.0000 1.0000 
0.0000 0.0000 1.0000 1.0000 1.0000 
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