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David H.Wolpert (Eds.)
Decision Making with Imperfect Decision Makers, 2012
ISBN 978-3-642-24646-3

Vol. 29. Roumen Kountchev and Kazumi Nakamatsu (Eds.)
Advances in Reasoning-Based Image Processing Intelligent
Systems, 2012
ISBN 978-3-642-24692-0

Vol. 30. Marina V. Sokolova and Antonio
Fernández-Caballero
Decision Making in Complex Systems, 2012
ISBN 978-3-642-25543-4

Vol. 31. Ludomir M. Laudański
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2 Polish Probabilists

 
Leon Jeśmanowicz’s drawing – usually taken for a caricature – depicts the 
members of the Symposium on Stochastic Processes which was held in Wrocław 
at the end of September 1952. This post-war meeting gathered eminent 
mathematicians not necessarily probabilists. All the mathematicians depicted are 
carefully listed in the Index with their dates of birth and death for the readers' 
convenience given in italics. To say a few words about the time when the 
Symposium was held, it may be mentioned that the first book by Joseph Leo Doob 
(1910-2004) - “Stochastic Processes” was published by John Wiley & Sons in 
1953. Today numerous biographies of the Polish mathematicians on the Internet 
are accompanied by drawings of Leon Jeśmanowicz. There is also a special album 
to commemorate Leon Jeśmanowicz – entitled “Drawings and Caricatures”, edited 
by the University of Mikołaj Kopernik, Toruń, 2005, containing 96 pages and 142 
caricatures and drawings – mostly – of professors of this University during its first 
20 years of operation. 

 
 



 
 

Prologue 

S Y L L A B I   1. What are “statistical data”?; two parallel subdivisions – based 
on the dimension & based on the order; first order statistics dimension one – 
descriptive statistics – compression: position and dispersion; preliminaries of the 
Cartesian Geometry – a point and a line; linear transformations, universal statistics 
z-scored statistics. 2. Second order statistics dimension one – grouping data; 
qualitative and quantitative statistical data; ordering qualitative statistics by using 
combinatorial rules - factorial, binomials, Pascal’s arithmetical triangle, basic 
combinatorial schemes; rules of grouping; grouping variables; frequency 
histogram & cumulative curve; compression – direct method and coded method to 
derive the mean and variance; two kinds of percentiles. 3. Descriptive statistics 
dimension two – linear regression based upon Descartes's geometry; grouped data 
dimension two – great correlation table. 4. Tracing the binomial distribution and 
its historic origins – Pascal’s arithmetical triangle, Newtonian symbol, Newtonian 
binomial; practising binomials; Poisson and Bortkiewicz's contributions. Negative 
binomials. 5. Towards normal distribution – from de Moivre & Laplace to the law 
of the large numbers; practising two theorems of de Moivre and Laplace. 

 
Logistics – per se 
 
Let us commence with a definition according to The Oxford Companion to 
Philosophy, Cambridge 1995, edited by the renowned philosopher Ted Honderich 
[1]: 

“A postulational method of constructing formalized logical system by 
specifying one’s symbols, recursively defining the well formatted formulae, and 
lying down an economical set of axioms and inference rules for proving theorems. 
Such a procedure is axiomatic”.  

The above suggested approach does not fully coincide with the common 
meaning of this term such as is to be found for instance in Wikipedia: 

Logistics is the management of the flow of the goods, information and other 
resources in a repair cycle between the point of origin and the point of 
consumption in order to meet the requirements of customers. 

 



4 Prologue
 

The specific and possibly the oldest branch of Logistics indicates its military 
origins:  
The New Shorter Oxford English Dictionary [13] defines Logistics as "the 
organization of moving, lodging and supplying troops and equipment" also as “the 
detailed organization and implementation of a plan or operation…” mentioning 
some well known people: “The historical leaders Hannibal Barca, Alexander the 
Great, and the Duke of Wellington are considered to have been logistical 
geniuses.” 

The classic nature of statistical logistics is illustrated by the well-known 
“travelling salesman problem,” for which the Internet provides quite satisfactory 
references. One of the earliest pioneers in the field is surely the Irish genius Sir 
William Rowan Hamilton (1805-1865) – to whom we most likely owe thanks for 
the first mathematical treatment of the matter. On a personal note, the author of 
this book about 15 years ago was under pressure from the Polish Airline “LOT” to 
start cooperation by working out the best network connecting Warsaw with all 
LOT destination, including other Polish airports. This was to be done by using a 
doctoral thesis of a German student from Brauschweig who apparently prior to 
that time had been cooperating with Lufthansa for the same purpose. Right from 
the start it was completely clear that such an adventure would require a change of 
employer i.e. leaving Rzeszow TU for PLL “LOT” because the suggestion of 
LOT that part time employment would be completely enough to do the job was 
greatly exaggerated - to quote Mark Twain. The project did not take off. One day 
my computer HDD refused to work so decisively that all its content became 
inaccessible, including the thesis from Braunschweig – and after a while also LOT 
as the Polish government carrier experienced similar irreversible circumstances. 
 



Dice Players 

 
 

 
 

Gauske, Briccius – period of activity 1476-1495 . Old master – painter, mason and 
architect, acting in Goerlitz (now Zgorzelec), Kutna Hora and Breslau (now 
Wrocław). The sculpture shown above is a part of the bay window on the 
southeast corner of the Wrocław City Hall and was created in the years 1476-
1488. It depicts the famous phrase of Iulius Caesar spelled out on 10 January 49 
BC while crossing with his army the river  Rubikon (Northern Italy). It was a 
symbolic act initiating the civil war against Pompeius. This phrase was the first 
time quoted by Svetonius in his history of Roman Caesars – originally as iacta 
alea est. Plutarch wrote in his “Pompeius” that this phrase shouted Ceasar in 
Greek and it could mean the order to cross the river. Thinking how this phrase 
could be understood regarding the book on statistics and probability – we would 
suggest their meaning as a moment of a suspension – expecting this what will 
happen after a while. Contemplating how ingeniously the Old Master Briccius 
Gauske, could depict it. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     
 
 
 

BOOK ONE 
THEORY 
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Chapter 1 
Descriptive Statistics 

Francis Galton and his obsessive statistical habits. Rules for compressing small 
statistics: the basic definition of the mean - deriving the basic mean and variance, 
their main properties; linear transformations – z-scored statistics – introduced 
with the elements of the Cartesian geometry 
 
Considering the First Lecture as the best opportunity to give the audience a short 
account of the subject of the studies – we shall follow a very effective technique 
invented many years ago by a Polish writer Witold Gombrowicz (1904-1969): a 
dialogue between the Student and the Author.  

1.1  A Dialogue 

Student – Can you tell me why develop a special branch of Statistics dealing with 
Logistics as its main field of applications? 

Author - As far as I know – there is no need to have such a particular branch. Even an 
extended study of the numerous Internet examples of using Statistics instructs us that 
the variety of statistical data sees Logistics as a receiver of statistical data. They 
primarily document the state of the art of a particular branch of Logistics – for instance 
in traffic planning, in the control of mechanical means of transportation (buses, trains, 
air planes), and in the management of stores and transporting stored goods. They 
serve, for instance, to run Police Logistics Department which collect and store 
statistics of traffic accidents, criminal events, and so forth. Then statistical data serve as 
the means of controlling ongoing processes – helping in their rational planning and/or 
amending their implementation. 

S. – Does it mean that the lectures in this book are not going to be in any way different 
from other known courses which are accessible on the market of books on Statistics?  

A. – The answer is both yes and no. Let us explain that somewhat. On the one 
hand the book has to do with the fact that the teaching hours of subjects related to 
mathematics are being reduced, which is very disturbing but real and of growing 
concern. It is evident in Poland at the secondary school level and later at the 
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university level as well. Those subjects also include Statistics. So, we are pressed 
to look for some attractive disguise to potentially broaden the boundaries of those 
disciplines. In this course the student will find more historical information 
concerning the origins of the basic components of the subject and the people in 
Statistical Science, here presented in close connection with Probability. The 
subdivision of the book includes five main units that approximately correspond to 
five teaching units of three teaching hours each. In other aspects it corresponds to 
typical timing for part-time Statistics studies at universities with economic and 
management profiles. The units related to the lectures are complemented by 
tutorial and laboratory hours. This task is reflected in the content of the second 
part of this book.  

 
S. – Yes – I get it – but I think you may also say more regarding those differences 
which you consider specific for this book in comparison to other similar books on 
the same subject, and to your own previous books on Statistics. 

 
A. – Well, let us try to be more specific in this respect! First there is something called 
frame of reference. Thanks to it normal distribution may be introduced without any 
introductory steps on the theory of probability, simply like statistical data undergoing 
analytically given recipe. Seeing such an example in [11] and knowing that it is a 
very popular approach in US student textbooks, I also originally decided to follow the 
same concept (see [2]). In my classes it has been a standard procedure for a decade. 
Now I have decided to change it. Therefore after initial and classic three steps (in 
Chapters 1-3) there comes Chapter 4 on Binomial distribution, and only then Chapter 
5 about Normal distribution. To recall one of the major arguments for such an 
approach we should take a look at an introductory book on probability that is very 
little known even in Poland. It is by Witold Pogorzelski (1895-1963) and it is entitled 
An outline of probability and errors theory [3].  

In this modest book, the renowned specialist on the theory of integral equations 
presented an approach starting with binomial distribution, then by showing its 
limiting property in view of normal distribution, went on to the limiting theorems, 
and in the end considered the law of large numbers. As this introduction is rather 
informal, let me mention my personal fondness for that great man dating back 
more than half a century to a time when I was a student of Aeronautical 
Engineering at Warsaw TU and attended Mathematics lectures by Prof. Witold 
Pogorzelski. My grade book features a “B” with his signature and date of 26 June 
1957. It was the end of the Spring semester of 1956-1957 when I took an oral 
examination before professor Witold Pogorzelski - an aged, dignified, charming 
man of gentle manners... To quote a poet, let me say: "Where are flowers of those 
times?!" or "Where are the snows of yesteryear?" Does anyone know this line 
attributed to François Villon (1431-1463), a French poet, thief, and vagabond? 
S. – I get the impression that you, Professor, have exhausted the topic so I will 
return to my seat and start listening to your first lecture.  
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1.2  Defining the Subject 

To begin with, we recommend examining the Logistics stage of Statistics which has to 
be considered at the beginning of some future statistical investigations. It comes in the 
shape of Table.1.1 from [4], a book by “Two Muses” [Makać-Urbanek]: 

Table 1.1 Statistical procedures and their stages 

                             
 

Among other things, Table.1.1 provides an opportunity to turn our attention 
towards the terminology that will be used. Not always, but quite frequently, it follows 
that used by U. Yule [20], who used the term “attribute” to refer to the main designate 
of statistics. Retaining the term, we propose to include two distinct types of attributes – 
qualitative attributes (in short “attributes”), such as gender, eye colour, marital status 
(widowed or married), and quantitative attributes, which will be called “variables” and 
lead to numerical statistics. 
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This is a good place to ask the following question: How should the subject called 
“Statistics” be understood? In general – from the point of view of the most common 
meaning – the answer is: “Statistics it is a collection of statistical data.” This explains 
why Table.1.1 does not include mathematical statistics. Therefore, to suggest the 
direction of a further discussion, one can ask the question of the terse Latin adage: cui 
bono? That is: Who may benefit from statistical data? Without great risk, one may say 
that there is no single answer to such a question, even from the historical point of view. 
In an attempt to find an answer, a king may be recalled who requested statistical data 
to find out how much he possessed. However, this is immediately followed by another 
question: what did he want to know it for? In light of the definitions of Logistics given 
in the Prologue, statistical data serve to perform logistic tasks, enabling control of their 
progress. Thinking about the consequences of such prospects, consider an example of 
quite unusual possibilities. It is reported that the birth of Christ was significantly 
affected by the census of a particular Roman province in the Mediterranean, even 
though that was surely not the intent of the Caesar who called for the census. Turning 
back to the main subject of our considerations, the second stage, which transformed 
Statistics significantly, must be considered the moment this new branch of knowledge 
meets the developing new field of Probability. For instance, probability provided an 
opportunity to supplement statistical analysis of very real collections of data with 
similar analyses of new sets containing infinite members – and not only countable but 
also uncountable continuous sets, using the theory of numbers to include real numbers. 
The example of first such sets was the binomial distribution, and the second was the 
normal distribution. Therefore, this second stage of development of Statistics as a 
branch of knowledge acquired a good amount of abstraction, unimaginably so, making 
it a branch of abstract mathematics which can only be further developed by 
mathematicians. This can be considered the third stage – which at least in part is called 
mathematical statistics. Statistics also went back to considering small samples, but 
now with highly sophisticated tools and advanced mathematical models. After such a 
long reasoning, the answer to the above cui bono? question, is that it is the knowledge 
of science and humanities that benefits. The development of knowledge becomes the 
primary task of Homo Sapiens species. This leads to the appearance of the developer 
called the scientist. Here we can go back to Witold Gombrowicz, who saw around him 
two species of people: the dumb and the bright. Much earlier Erasmus (Desiderius 
Erasmus Roterodamus, b. 28 Oct. 1466 d. 12 July 1536, known as Erasmus of 
Rotterdam) made similar comments in his famous book Laus Stultitiae (or Μωριαζ 
Εγκωμιο). In a science-fiction book entitled “Out of the Silent Planet” by C. S. Lewis 
[4], Martian population has three distinct strata. Only the first caste, the scientists 
(sages, and philosophers) is the productive part of the Martian population. It seems a 
pity that the development of Cosmonautics has not left room for such interesting 
speculations now. 

The above account should help in distinguishing the classification of statistical 
data types. They naturally fall into two groups. The first differ with respect to 
dimensions as they are known in geometry: one-dimensional, two-dimensional, three-
dimensional data. The second we suggest to divide into four orders. Statistics of the 
first order are called descriptive statistics. A common feature is their small number, 
usually not less than six and rarely more than sixteen. Such statistical sets can be seen 



1.3  Descriptive Statistics Dimension One 13
 

at a glance. Here in this Chapter, the leading example involves statistics expressing 
the ages of five children in one family - expressed by numbers: 14, 14, 15, 17, 20 . 
Chapter 2 is entirely devoted to statistics of the second order which we call grouped 
data. Numerous examples of such statistics fill statistical annals. By third order 
statistics we mean statistics having distributions with mathematical shapes, such as 
the countable binomial distribution, and the uncountable normal distribution. These 
statistics are in this book considered in Chapters 4 and 5, respectively. This kind of 
statistical data belongs to the first abstract class of statistical data, and as such cannot 
be an example of any goods stored in any warehouse. Maybe the cosmos can be the 
example of where this kind of statistics occur? Statistics of the fourth order are of the 
kind of sample statistics – and they are the subject of mathematical statistics not 
presented in this book. Chapter 3 in this book is related to the statistics of the first two 
orders/types – always of dimension two. Therefore it traditionally refers to 
relationships – being restrained to linear regression and linear correlation. 

1.3  Descriptive Statistics Dimension One 

1.3.1   Mean Value – Definition and Significance 

As a matter of practice, descriptive statistical samples usually do not include less than 
6 and/or more than 15-16 entries. Without great risk one may consider them as a 
testing ground for Statistics – to demonstrate, and define the basic tools of Statistics. 
Mean value becomes the opening concept. Some ambiguity is associated with this 
term demanding the beginners' attention. From one point of view – it is what we can 
call the basic mean. But more generally it is a concept spanning a variety of possible 
means. Also, the reader should be warned that quite frequent practice offers a variety 
of means, possibly of undesired origin, such as arithmetic mean, geometric mean, 
harmonic mean. For clarity we propose to make use of the synonym “average.” So 
for the purpose of all the Statistics presented here we propose to use only a single 
term “mean,” but if we are forced to adapt our habits to frequent practice we rather 
shall say arithmetic average, geometric average, harmonic average. Such an attitude 
underlines the fact that Statistics applying the Probability Theory defines a unique 
mean composing vertical hierarchy of means united under a single general idea. 
Therefore the proposed definition of the mean has not been dressed in the guise of 
mathematics – and retains the heuristic idea: 

 

To get the mean value of the statistics under consideration – add all its entries altogether and 
then divide the obtained sum by the number of those entries - the obtained number gives the 
desired mean value.  

 
The first example of making use of the above definition involves descriptive 
statistics. Descriptive statistics not only offers finite statistics but also guarantees  
free access to every entry. This procedure is formalised by using a simple algebra 

with indexed symbols – denoted by ix  -- with the auxiliary notation stating that 
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1, 2, ... ,i N=  in which the symbol N  denotes the number of entries of the 

entire statistics. With these in mind we can define the basic mean value – denoted 
by x  – by the following formula: 

x
N

xi
i

N

=
=
1

1

                             (1.1)  

Before turning our attention to the first example of using formula (1.1), it can be 
noted that: the descriptive statistics under attention can represent either ordered 
statistics or disordered statistics. Assuming that the second case can be understood 
intuitively let us define the concept for the first case. From the formal point of view it 
is necessary to make use of the procedure which uses either the symbol ≥  or the 
symbol ≤ . As a result, it leads either to the statistics where all the entries are 
arranged from the greatest to the smallest or to the contrary situation of statistics 
ordered from the smallest to the greatest element. It should be assumed that the 
indicated symbols have to be inserted between two successive entries. The unique 
result can be obtained only while proceeding from the disordered statistics to ordered 
statistics.  

Descriptive statistics given in the second column of Table 1.2 may be 
interpreted as the age of children in a family. As a consequence, the statistics have 
been ordered in a natural way. Putting in the same order the weight of the children 
(or their height), the most probable statistics would be an example of disordered 
statistics. 

The resulting number obtained by the formula (1.1) is not affected by whether 
the statistics are ordered or (remain) disordered – changing the order of the terms 
does not change the basic mean of the statistics. By using simple Algebra, the 
above given formula (1.1) can be transformed into (1.2) as follows: 

( ) ( )
1 1

1
0 0

N N

i i
i i

x x x x
N = =

= − → − =                  (1.2)  

The conclusion from (1.2) is: the mean value of the statistic deviations from the 
basic mean is zero. It is also justified to state: the basic mean is a unique value such 
that the mean deviation from it is zero. An impatient student is awaiting the 
calculation of the basic mean for the statistics given in Table 1.2. 

Let us confirm that in this case 5N =  so, formula (1.1) leads first to: 

5

1

80i
i

x
=

=      and then we get     16x =             (1.3) 

The result (1.3) can be used to start a discussion regarding the basic statistical 
procedure–i.e. the "compression of statistical data”. The basic mean indicates the 
positioning of the given statistics with respect to the axes of real numbers, which is 
considered the main reference for all statistical data. It can be also considered as a 
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result of the compression of the entire statistics. Recalling secondary school Physics - 
in particular its sub-branch of Mechanics – there is clearly an analogy between the 
basic mean and the centre of gravity. We are particularly going to make use of the 
Archimedes’ lever. The basic mean – with a help of Fig. 1.1 can be interpreted as the 
fulcrum position for the statistics given in Table 1.2. To catch such an idea one has to 
use simultaneously the result (1.2) together with the values given in the last column of 
Table 1. 2.  

Table 1.2 Statistics of Deviations. 

   i      ix     x      ix x−  

    5     20     16        4 
    4     17     16        1 
    3     15     16       -1 
    2     14     16       -2 
    1     14     16       -2 
 ( ) 0ix x− =
 
Let us focus our attention on the numerical values shown in the last column of 

Table 1.2. They are the same as the positions indicated on the plank at the bottom 
of the Fig. 1.1. Moreover the same sequence of numbers can be understood as the 
arms of the “weights” put on the weightless plank in the indicated positions. It is 
obvious that such a situation corresponds to the balance of the lever. 

From one viewpoint it is possible to say that Table 1.2 and Fig. 1.1 may be 
considered as an illustration or a picture-story whose meaning could be left for the 
student to decipher. On the other hand there is a temptation to comment that this 
particular situation has some special purposes. The upper section of Fig. 1.1 
suggests that the weights representing statistical entries hang above the lever. 
Therefore the lever itself represents now nothing more but a uniform scale 
numbered as shown in two lower pictures of Fig. 1.1. This scale can be shifted 
freely in either horizontal direction. The initial position indicates the scale 
showing numbers from 14 to 20. They depict the original statistics (as given in the 
second column of Table 1.2). There is no number “16” – but we know that it 
corresponds to the fulcrum position - put below the basic mean. 
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Fig. 1.1 Archimedes’ lever – a balance with respect to the fulcrum placed under the mean 

 
Then, by moving the lever from the left to the right by sixteen units – the new fulcrum 
position indicates "0” – shown in the lowest part of Fig. 1.1, we can read the shifted 
statistics entries as numbers from -2 – to +4 (also given in the last column of Table 
1.2). The equilibrium of the shifted statistics is especially easy to check. Values in 
Table 1.2 confirm the zero sum of these statistics – while the lever equilibrium follows 
from the resulting moment of all the weights about the fulcrum point, which is equal to 
zero. Therefore – concluding the presented picture-story – we have a rather unusual 
proposition in the end.  

The self-explanatory meaning of Fig. 1.1 encourages us to call this situation the 
Divine Proof of the Theorem expressed formally by (1.2). The idea comes from 
the obvious understanding that God does not need proofs – God sees the Truth. To 
close the above consideration – the description beneath Fig. 1.1 should have the 
form of a unique imperative expressed by a single word: Vide!  

The above (somewhat provocative) proposal was born some time ago during a 
discussion of a paper [6] by A. Smoluk. The discussion ended with the outcome 
shown here in Fig. 1.2. 

Having in mind that the Pythagoras Theorem is now familiar to a wide range of 
educated people all over the world, it may well serve as a leading example of a 
proof that can be SEEN by contemplating the content of Fig. 1.2. 

1.3.2  Variance, and Variability 

It is quite obvious that statistics differ one from the other by differences in 
variability – which in technical applications is called scatter. Possibly the first 
scientific discipline in which scatter occurs is in the quantitative differences 
among observations of stars and planets to determine their positions. In a natural 
way it leads to the concept of errors. Nowadays we consider that the famous book 
by Galileo Galilee “Dialogo i dui massimi …” [7] written in the Italian language 
(which was published almost simultaneously in Florence in 1632 and in Leyden in 
1638) laid the foundation for the future Theory of Errors. But it is also 
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Fig. 1.2 God’s Proof that 2 2 2a b c+ =  

commonly agreed that we owe to F. Gauss the scientific development of this 
discipline in his “Theoria motus …” [8] written in Latin in 1809 - (see also [12]). 
We acknowledge here these facts mainly having in mind that Logistics – 
especially as a discipline satisfying Engineering expectations lies closer to the 
Theory of Errors than Statistics - naturally satisfying the goals and expectations of 
Economics incorporated especially into the branch of Econometrics.  

Table 1.3 Squared Deviations 

 i    ix   x       2
ix      ix x−       ( )2

ix x−  

  5    20   16      400         4          16 
  4    17   16      289         1           1 
  3    15   16      225        -1           1 
  2    14   16      196        -2           4 
  1    14   16      196        -2           4 

 2 1306ix = ( ) 0ix x− = ( )2
26ix x− =  

 
There is no doubt that the statistics of deviations from the mean value is a way 

of reflecting the variability of any statistical data. However, the mean of the 
deviations cannot serve as a measure of variability, since it is always zero. Thus 
squared deviations (see Table 1.3) become the simplest useful concept. The mean 
of these squared deviations is always guaranteed to be positive – and this positive 
outcome is called the variance. 

The formal definition (1.4) may be viewed as the second basic mean, but it has 
a common name, in numerous languages, of variance: 
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( )22 1
x ix x

N
σ = −                       (1.4)  

If we literally read (1.4) it says that variance is the mean squared deviation away 

from the mean . Direct application of (1.4) to Table 1.3 gives: σ x
2 = 26 /5 = 5.2. 

Together with the procedure using the definition in (1.4) there is another algorithm 
to derive the variance. The following successive equivalent formulas lead to the 
final outcome: 

( )2 2 2 2 2

1 1

1 1
2

N N

x i i i
i i

x x x x x x
N N

σ
= =

= − + → −     

and finally 2 2 2
x x xσ = −                                                   (1.5) 

 

For a student who wants to see the omitted step, the below should do: 

( ) 2

1 1

1 1
2 2 2

N N

i i
i i

x x x x x
N N= =

− = − → −   

 

What (1.5) says is: variance is the difference between mean square and squared mean. 
By using numerical values given in Table 1.3 the mean square is 261.2 and the 

squared mean is 16 * 16 = 256. Their difference gives 
2 5.2xσ = . Exactly the same as 

the previous result. 
The algorithm based on (1.5) has an important property known as additivity. Before 

we comment on it there is a remark related to the major difference between using the 
definition in (1.4) and the property in (1.5). The point is that in numerical practice the 
stage of calculating the deviations (depicted in the two last columns of Table 1.3) 
increases significantly the volume of arithmetical operations leading to the desired 
outcome. The above-mentioned property of additivity is used when implementing the 
procedure (1.5) into calculators. This “philosophy” enables calculations to proceed 
step-by-step; entering into the calculator memory successive terms belonging to the 
statistics under consideration, and enabling one to trace the current volume and the 
current mean and standard deviation. Usually it is called the “standard deviation 
procedure” and built-in for all scientific calculators on the market. The details related 
to this are left for the student. Instruction manuals attached to the mentioned products 
offer sufficiently accessible guidance.  

Assuming that the user of either of the two practical ways described above 
resulting in numerical variance overlooks the units appearing in the statistical data 
under attention, then probably a characteristic flaw of this measure of variability 
may escape his attention. The point is that the variance units are squared units of 
the entries which occur in the considered statistics. Sometimes it may cause some 
confusion with respect to the considered subject. For instance: the unit of the 
statistics which is the subject of analyses in Table 1.2 and Table 1.3 is time – 
which with respect to the people's ages is measured in years. But what about the 
units of the variance for this case? Help comes from the concept of the standard 
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deviation – sometimes called dispersion. Returning to the example under 
consideration: 

2 2.28x xσ σ≡ ≅    or, using more digits,   2.28035085xσ ≅  
 

Recalling the concept of compression, which is mentioned from time to time, and 
anticipating future findings, we now offer the student a proposal in the shape of 
some information:  

 

xx σ±       2 xx σ±        3 xx σ±             (1.6)  
 

The formulas in (1.6) are standard for the Theory of Errors, telling us that the mean of 
some measured quantity is not an accurate value of the statistic. However, complete 
understanding of the common use of (1.6) will require the concept of normal 
distribution (which gives a 99.7% likelihood of the statistic lying within the range 
indicated by the third formula). Nevertheless it is interesting to look at these banded 
values for the statistics in Tables 1.2 and 1.3. They are: 

 

( )13.72, 18.28    ( )11.44, 20.56     ( )9.16, 22.84  
 

It is seen that the second range of the bounding values is enough to cover the entire 
statistics in the set –that there is no value bigger than 20.56 and there is no value 
smaller than 11.44.  

1.3.3  Linear Transformations 

Geometric prerequisites: points and lines in Cartesian geometry. The subject 
introduced here will be developed further in Chapter 3, but the material considered 
here is sufficient to fulfil the needs of Chapter 1. 

The history of Geometry commences not with science, but with practical needs, 
some of which have now been taken over by Geodesy and related disciplines. It is 
interesting that the scientific origin of Geometry is credited to a Greek – a man whose 
name, Euclid, is known to all, but whose life time is known only approximately as 
close to the year 300 B.C. There is a wide range of beautiful books on geometry – we 
recall here a book by H. R. Jacobs [9] and encourage the Student to make wide use of 
it. Some of our pictures below will reflect this book. The last chapter of the book 
(Chapter 17) has the title "Coordinate Geometry”. Jacobs, like most authors of books 
on Geometry, prescribes the use of a coordinate system which he attributes to Rene 
Descartes (1596-1650) or Renatus Cartesius in Latin. This is not exactly correct and 
we shall discuss the topic below. Classic Euclidean Geometry used a compass and a 
ruler to draw and to construct geometric figures. But what is the most profound 
constituent of Euclidean geometry is what is hidden behind simple practice: it is its 
deductive, or axiomatic structure. Throughout centuries there were notable efforts to 
imitate the axiomatic approach of Euclid also in the field of probability. As it is 
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denoted in the title of this sub-chapter, everything begins with points and lines [9]. To 
draw a line – we have to chose two points as seen in Fig. 1.3.  

  
 

 
Fig. 1.3 Two points determine a line 

Three noncolinear points determine a plane, see Fig. 1.4. Combining the two given 
statements, the plane is determined by a line and a point which is not on the line. The 
plane can also be determined by two intersecting nonparallel lines. When we think 
about the past we may feel greatly astonished: How could such highly developed 
civilizations as Babylon, and then Egypt go through a period of time longer than a 
millennium using geometry entirely based upon utilitarian practical rules without any 
attempt to attach them to the abstract Geometry invented by Euclid?  

 

 
Fig. 1.4 A point and a line determine a plane 

Almost two thousand years later, long, long after Euclid, a French philosopher, 
sage, mathematician (and also at times a mercenary soldier) Cartesius (most often cited 
as the father of rational philosophy, related to the Latin sentence “Cogito – ergo sum”) 
invented coordinate or analytical geometry. In all popular accounts there is always 
reference to two perpendicular axes called "Cartesian coordinates” – although this 
attribution actually follows the “Stigler Law” [27] and the original Cartesius book 
“Geometry” [10] has no such coordinates, or even such an explicit concept. The 
epoch-making book introduced a new and unique concept – how to unite two distinct 
scientific disciplines that had been separate until that time: Geometry and Algebra. In 
the following development of this approach appears the coordinate system which now 
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become a logo of analytical geometry. Leaving these historic details we shall turn 
toward our goals. In parallel to Euclid geometry, the first step is to identify points, but 
now using the coordinate system in Fig. 1.6 there are two points: A (3, 4) and B (-5, 2). 
Their coordinates are defined by an ordered couple, which means that the succession 
of the coordinates cannot be interchanged. The number “3” of Point A denotes the 
coordinate along the “x”, axis and the number “4” gives the “y” coordinate. 
Interchanging the coordinates leads to a different point in the plane unless the two 
coordinates are equal in value.  

Two perpendicular lines x and y intersecting at point O determine a coordinate 
system xOy. The two axes must be scaled with a uniform scale. For other applications 
three dimensional coordinate systems are used, but for our applications we can narrow 
down considerations to analytic geometry in the plane. 

 

 

Fig. 1.5 Cartesius and the first page of his Geometry - first edition 1637 

 

Fig. 1.6 Points in analytic geometry – ordered couple of numbers 
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The last topic in this introduction to analytic geometry is shown in Fig. 1.7. 
This figure shows line l in the plane of orthogonal coordinates xOy. The bottom 
line of Fig. 1.7 features an analytic expression describing line l. 

 

 
 

Fig. 1.7 A line in the coordinate plane xOy 
 

It is evident in Fig. 1.7 that the line contains two points: A (0, 2) and B(6, 5). 
Analytic geometry confirms this fact in a suitable fashion. Substituting the 
coordinates of point "A” into the equation: 

y = 2 + 0.5 x                             (1.7)  
 

will satisfy this equation. Let us check this statement: 

2 = 2 + 0.5⋅ 0 

Also substituting the coordinates of point B into (1.7) we should get similar a 
result: 

5 2 0.5 6= + ⋅  

Closer inspection of Fig. 1.7 shows that also the point with coordinates (-4, 0), not 
labelled in the figure lies on line AB. The student is asked to provide a check 
similar to those given above. Moreover, the student after a further inspection of 
Fig. 1.7 will also be able to find at least one more point whose coordinates are 
given by the natural numbers lying on line l . 

The example above presents an introduction to the concept of the linear 
transformation. This meaning of equation (1.7) may also illustrate an example of 

statistics iy  obtained by substituting into such a linear equation successive values 

such as those read from Table 1.2 (or Table 1.3). Such statistics iy  inherit 



1.3.3  Linear Transformations 23
 

contributions related to the statistics ix  and also some features that can be predicted 

from the general rules related to the linear transformation, now applied to the original 

statistics ix . The knowledge of those rules saves efforts in the further evaluation of 

the statistics iy . The knowledge of those rules saves efforts in the further evaluation 

of the statistics 

y a b x= +                               (1.8)  

There are two particular cases corresponding to two simplifying assumptions 
obtained by substituting into (1.8) either 0a =  or 1b = . Let us consider the 

case 1b =  , then (1.8) takes the following form:  

y a x= +                                 (1.9)  

Transformation (1.9) applied to any descriptive statistics ix  for  1, 2, ... ,i N=  

leads to descriptive statistics iy  due to: 

i iy a x= +                             (1.9a)  

For instance – applying (1.9a) to ix  - given by 14, 14, 15, 17, 20 - and assuming 

that  10a = −  we shall get statistics iy  given by 4, 4, 5, 7, 10 - which can be 

interpreted as statistics showing the age of the same children ten years earlier. Now 
let us ask about the consequences following the use of the transformation (1.9) 
with respect to the mean and variance of the resultant statistics. Regarding the first 
question the answer is: 

 

                      y a x= +                                           (1.10)  

 
The formal proof requires us to substitute relation (1.9a) into (1.1) applied to 

statistics iy . This will give the following results: 

( ) ( ) ( )
1 1 1

1 1 1N N N

i i
i i i

y a x a x
N N N= = =

= + → +    

We also add quite obvious result showing that: 

( )
1

1 1N

i

a N a
N N=

=  
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Thus the proof of the result given by (1.10) has been completed. The second 
question with respect to the consequences of the transformation (1.9) regarding the 
variance has the following answer: 

2 2
y xσ σ=                               (1.11)  

In other words – the variance of the statistics ix  becomes invariant with respect to a 
particular linear transformation in (1.9). Discussing the possible ways to prove the 
result given by (1.11), we may commence once more with a suggestion that Fig. 1.2 
offers in fact God’s Proof of this property. It is enough to see that the shifting does not 
modify the relative positions of all entries. They remain unchanged. The formal proof 
acknowledges the invariance of the deviations from the mean, which is formalized by 
the following equation, which is a simple consequence of (1.9) and (1.10): 

( ) ( )i iy y x x− = −
                      

 (1.12)  

The second particular linear transformation mentioned above is obtained by 
substituting 0a =  into (1.8), giving the form: 

y b x=                             (1.13)  

Now let us ask again about the consequences following the use of the 
transformation (1.13) with respect to the mean and variance of the resultant 

statistics. Again we commence with the mean of iy : 

1

1 N

i
i

y y
N =

=                          (1.14)  

Substituting (1.13) into (1.14) and performing simple manipulations, we get: 

1

N

i
i

b
y x y b x

N =
= → =                  (1.15)  

A similar approach can be applied with respect to the variances of the two 

statistics iy  and ix  . A purely formal procedure with (1.4) gives 

( )22 1
y iy y

N
σ = −                    (1.16)  

The student is most likely to accept that substituting into (1.16) the transformation 
in (1.13) and the result in (1.15) gives, after simple manipulations, 
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( )
2

22 2 2 2
y i y x

b
x x b

N
σ σ σ= − → =      and  y xbσ σ=   (1.17)  

Having the above in mind we suggest that you focus your attention on a linear 
transformation that applies in the general case, but has a specific nature, and also a 
special name. 

1.3.4  Z-score Statistics 

Below we are going to introduce the z-score statistics which have many applications in 
statistics but play an especially important role as a part of normal statistics. Let us 

assume that the opening step is given by statistics ix  with given mean x  and 

variance xσ , and so define  

i
i

x

x x
z

σ
−

=
                           

 (1.18)  

Transformation (1.18) leads to new statistics iz  called z-score statistics for which 

0z =  and 1zσ =  . Let’s prove the first property regarding the zero-mean. Here 
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On the other hand to derive the variance we may proceed as follows: 
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Anticipating some of the material that will be developed and presented in Chapter 
5, it may be now pointed out that the idea prescribing importance of this 
transformation with respect to statistics possessing normal distribution lies in the 
fact, that this distribution is invariant with respect to linear transformations. 
Therefore any normally distributed statistics may in a unique way be converted into 
z-scored statistics via transformation (1.18). Therefore, such unique statistics can 
be understood as a common representation for all normally distributed statistics. 
Therefore such a normal distribution may serve as a standardized normal 
distribution. In the last instant it may serve as a base for preparing special universal 
tables for normally distributed statistics. Such a table is also enclosed in this book.  
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The closure of this Chapter contains some biographical data and, as in every 
other chapter in this book, it is supplemented with a list of references.  

1.4  Famous and Admired  

Islanders – fin de sciècle generation 
 

Francis Galton (1822-1911): The quotation enclosed here is from Karl Pearson [28] – 
and may serve here as a motto. It has been taken from an obituary published in Nature 
very shortly after Galton's death:  
 

He belonged to that small group of inquirers, who do not specialize, but by their 
wide sympathies and general knowledge demonstrate how science is a real unity, 
based on the application of a common logic and a common method to the 
observation and treatment of all phenomena. 
 

Pioneering accomplishments of Galton cover a wide range of disciplines. Let’s 
mention at least some of them with no certainty that it will be a complete list. 
Commencing with the concept of correlation with respect to which he was a 
tireless collector of illustrative examples, moving on to his anthropomorphic 
studies of genealogies, of diversity and specific genders, of intelligence, and to his 
contribution to genetics. He initiated eugenics, which was later infamous and 
abused by the Nazi in connection with the concept of racism, and coined the 
phrase “natura versus nurtura". From him begins scientometrix and in particular 
psychometrix. It was Galton who focused attention on fingerprints [15]. Galton 
also deserves to be named father of meteorology as an initiator of weather maps. 
In conclusion let us recall two of his inventions. The first – Galton’s whistle – the 
original exhibit is on show at the British Museum (Fig.1.8). Is is used nowadays to 
call our dogs as the sound it emits has such high frequency that it cannot be heard 
by the human ear, but lies in the range of frequencies heard by dogs. The other 
invention is the famous Galton's board – an exceptionally simple implementation 
of the binomial distribution, which can be understood as a visualization of the 
second theorem of De Moivre-Laplace. By typing the keywords "Plinko 
Probability” in an Internet browser we get an animation of Galton’s board, where 
we can watch the motion of small spheres filling pipes and read directly the 
statistics with the mean and the variance values, complemented by the frequency 
histogram. 
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Fig. 1.8 Galton’s whistle – generating ultrasonic 

Galton’s IQ was close to 200. From the earliest childhood he was a wunderkind – a 
child prodigy, speaking Latin and reading Shakespeare at the age of 6. He left about 
340 published papers including "Hereditary Genius” – almost half of one thousand 
pages containing statistics of famous peoples throughout History–statistics collected in 
the course of his entire life. Gathering statistical data can be called his obsessive habit. 
In the end one more witty quotation – to add to the portrait of Francis Galton: 
 
At the age of 30 years it was claimed that Galton's experience had been such that 
he knew more of mathematics and physics than nine biologists out of ten, more of 
biology than nineteen mathematicians out of twenty, and more of pathology and 
physiology than forty-nine out of fifty of the biologists and mathematicians of his 
day.  
 
On the Internet there are more than 500 results if Galton's name is typed and some of 
them are extended pdf files. These document the interest that Francis Galton has 
convincingly retained until now. And our next biographical sketches may perhaps 
justify the somewhat melancholic judgemental saying that: Galton was one of the last 
gentleman scientists. 
 
Karl Pearson was born in a typical upper-middle class family in mid 19th century 
(1857) London, and died at the age of 79 (1936) in Coldharbour, Surrey 
(sometimes indicated as London). Looking at Karl Pearson's biography and the 
biography of his major counterpart R. A. Fisher, it may be said that with utmost 
difficulty it would be possible to present for them both the account sine ira et 
studio. We refer to three biographical texts [29]-[31] in a particular effort to do 
justice. Biographers note that until the age of 23 he was Carl, and then changed his 
first name to Karl. Can it be considered as a symbol of his personal struggle in 
search of his own personal identity? Sometimes the name Karl is associated with 
Karl Marx due to the socialist ideas that Pearson cultivated in his youth. Born into 
the world in 1857, born into Cambridge University in 1875,  he studied History 
and  German Philology  as well  as philosophy of science publishing in 1892 



28 1   Descriptive Statistics
 

“The Grammar of Science” [16] (printed and reprinted until now), – and finally 
concentrating on Mathematics, and founding Mathematical Statistics. About his 
Cambridge studies he said himself: 
 
At Cambridge I studied mathematics under Routh, Stokes, Cayley, and Clerk Maxwell, 
but read papers on Spinoza. There was pleasure in the friendships, there was pleasure 
in the fights, there was pleasure in the coaches' teaching, there was pleasure in 
searching for new lights as well in mathematics as in philosophy and religion. 
 
Then he studied for two years in Germany – mainly in Heidelberg and Berlin – such 
diverse fields as physics and metaphysics, Darwinism and Roman Law, physiology 
and German literature of the 16th century, also history of the Reformation, among 
many other fields. Again let’s quote his own words regarding the progress of mankind 
(1905): 
 
History shows me one way, and one way only, in which a high state of civilization has 
been produced, namely, the struggle of race with race, and the survival of the 
physically and mentally fitter race. If you want to know whether the lower races of 
man can evolve a higher type, I fear the only course is to leave them to fight it out 
among themselves, and even then the struggle for existence between individual and 
individual, between tribe and tribe, may not be supported by that physical selection 
due to a particular climate on which probably so much of the Aryan's success 
depended . . . 
 
He was a doctoral student of Francis Galton (1879) at Cambridge (The Grammar of 
Science). He developed Galton’s concept of correlation connecting it with regression 
lines. The popular– "chi-squared” distribution was not only invented by Pearson but 
he also found its application in goodness of fit tests. Cooperating with W. Weldon and 
F. Galton they founded in 1900 a scientific journal devoted to Statistics in Biology - 
"Biometrica.” This journal still exists today, and K. P. edited and published it until his 
death. There are different accounts about how many papers Pearson left behind (see 
[29]), but in every case they are counted in hundreds and show his intellectual 
versatility [30] – on the scale of his Master, Francis Galton. As has already been said 
The Grammar of Science (1892) remains in publication, as does The Art of Travel by 
Francis Galton. Udny Yule portrays Pearson in the following words: a poet, essayist, 
historian, philosopher, and statistician.  
 
Starting from 1892 until his death K. P. lived in the same house in Hampstead. From 
1911 he held the Galton Chair of Eugenics at University College, London until his 
retirement in 1933 at the age of 76. The following statement reflects a critical 
judgement of Karl Pearson (the source is left for the Student to discover): 
 
… being the chairman of a first class academic department and the managing editor 
of a major journal, Pearson sometimes used his power to the detriment of other 
important scientists, such as R. A. Fisher and Jerzy Neyman… 
 
Stephen Stigler consulted in this respect said: “I don't really think it correct to say 
he abused authority”.  It  is also appropriate to add in the end that R. A. Fisher, 
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the main target of his personal attacks, was able to retort to them in an equally 
severe manner. Moreover both of them had and still have supporters – so, 
opposition between them seems to have survived. Therefore the time for an 
unbiased account of their heritage is still ahead of us. 
 
Walter Frank Raphael Weldon (1860-1906): This is not going to be a detailed 
biography of a man who was first of all a zoologist. Moreover God did not bless 
him with a lifetime of standard length. A student interested in this is advised to use 
the rich and accessible Internet resources. Nevertheless despite such a short life 
the biography of Weldon contains more than one episode significant for the 
development of Statistics. As a matter of fact we first quote a passage from 
Pearson’s biography: 
 
The importance for science of the intense friendship that sprang up between 
Pearson and Weldon, then both in their early thirties, can scarcely be exaggerated. 
Weldon asked the questions that drive Pearson to some of his most significant 
contributions.  
 
Chapter 4 of this book presents and discusses Monte Carlo results of 26,306 rolls 
of a set of 12 dice obtained by Weldon in 1894. These data were utilized by Karl 
Pearson–confirming their close cooperation, which lasted until Weldon's death. It 
should also be recalled that both men contributed to the establishment of 
Biometrica - new scientific journal that soon became known for its high standards. 
It was at that time that Weldon wrote, quoting the authors of his biography [32], 
what follows: 
 

... the questions raised by the Darwinian hypothesis are purely statistical, and the 
statistical method is the only one at present obvious by which that hypothesis can 
be experimentally checked … 
 
George Udny Yule (1871-1951) was born in 1871 in the infamous Paris Commune 
although this fact probably had no influence upon Yule's personality who was was 
the child of a Scottish family with impeccable reputation in the fields of 
scholarship, education and administration. He obtained his Bachelor's degree in 
civil engineering at University College, London in 1890 – then he started 
practising engineering “working in engineering workshops. It was an experience 
which made him decide that engineering was not the subject for him, so, in 1892, 
he began to undertake research in physics.”  

So he moved to Germany for one year and found himself under the influence of 
Heinrich Hertz (1857-1894), the famous discoverer of electromagnetic waves. It 
was in Bonn, the town of Ludwig van Beethoven (1770-1827). On his return back 
to London, he came into contact with Karl Pearson, and this influence lasted 
throughout his entire life. Quoting here one of the opening lines of “Eugene 
Onegin” by A. S. Pushkin - "и лучше выдумать не мог” – “He couldn't have 
done better if he tried.” From 1912 he was at Cambridge University where he 
worked for the rest of his life. The early years of close cooperation with Pearson 
resulted in the publication of papers related to problems of correlation and 
regression. He publicized his restrained attitude towards universality of the normal 
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distribution. At the age 25 he became Fellow of the Royal Statistical Society and 
was very active in this respect. One of his extremely successful adventures was a 
book entitled “An Introduction to the Theory of Statistics” [20], published in 1911. 
“The text was intended for those who possessed only a limited knowledge of 
mathematics and proved a great success”. During his lifetime it had 14 editions 
(the last three with M. G. Kendall as co-Author). Once more a quotation – this 
time from Jerzy Neyman – about this book “In my opinion, this is the best book on 
statistics that has ever been written”. His excellent relations with Pearson moved 
from the stage of joint holidays to the stage of hard feelings. The reason was a 
mistaken judgement of some property of the chi-square statistics related to the 
sample volume about which Pearson was wrong. In the closing part of this 
biographical note are some lesser known facts regarding his humanistic profile. It 
was a kind of fate – while Galton and Pearson began with humanistic studies and 
ended with statistics, Yule did the other way round. Approaching his retirement he 
decided to deepen his knowledge of Latin. This resulted in a statistical analysis of 
Publius Vergilius Maro's (70-19 BC) verses. What deserves special attention is his 
desire to become a pilot and to fly air planes. In his late 50s he bought his own 
plane and acquired a pilot’s license. Unfortunately, at that time he developed a 
serious heart disease which practically disabled him. During German air raids over 
England in 1942 he confessed to Kendall that although he could fly he was unable 
to control the air plane! Now about his fascinations at end of his life. Let’s quote 
[24] once more: 
 

Yule tried to answer questions such as the following: Did Thomas à Kempis really 
write that little volume which passes under the title of its first chapter, the “De 
Imitatione Christi”? Did Shakespeare write the plays that are generally attributed 
to him? Did St. Paul write the Epistle to the Ephesians? What is the probable 
chronological order of Plato’s works? (Yule, 1944) 
 
In the end a quotation [24] with an account which was given by Frank Yates in 
Yule's obituary: “To summarize we may, I think, justly conclude that though Yule 
did not fully develop any completely new branches of statistical theory, he took the 
first steps in many directions which were later to prove fruitful lines for further 
progress… He can indeed rightly claim to be one of the pioneers of modern 
statistics” (Yates, 1952, p. 320);  
 
 

Short Hereditary Passage: Frank Yates (1902-1994) was in one respect a completely 
exceptional figure not only among the Islanders described here. This uniqueness refers 
to the genetic material which he inherited from his parents: he was a child of a couple 
where his mother was also a daughter of his father. The Author of this book can add in 
the same subject an episode from an Arab country. While giving me a lift to an 
optician where I intended to buy glasses, one of my students was asked whether the 
owner of the shop was family to him. The student replied: yes, he is  – but it is a very 
special relationship. He said that several decades earlier, life in his country was very 
difficult and in poor families when the father died, the eldest son would take over as 
head of the family and marry his mother. So, he ended - I am a son of such a couple – 
the man we are going to visit is my father and my brother. I was shaken. 
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William Sealy Gosset – "Student” (1876-1937): – The author of this book could 
consider himself as a sort of descendant of Gosset – taking into account the 
coincidence of Gosset's year of death and the author's year of birth, – although 
there is serious doubt concerning the merits of the two persons, which cannot be 
resolved in this place. Among the Islander statisticians – Weldon lived the 
shortest, but next in order came Gosset. Moreover, Gosset was not an 
academician. In fact, Gosset in his entire lifetime was connected with Guiness’ 
breweries and was eventually appointed director of the one of them. His best 
known paper [18] although written under the supervision of Karl Pearson, was his 
original achievement and not to be shared with anyone. Moreover it was not 
acknowledged by Pearson who neglected small samples and related to them 
statistical problems. On the other hand, it was R. A. Fisher who highly praised this 
approach calling it a "logical revolution”.  

Although the Student's distribution was in fact (in its exact mathematical form) 
invented by Fisher - nevertheless "Gosset's idea of adjusting estimated standard 
deviation” became the key idea and such association with him is fully justified (in 
defiance of “Stigler’s law”). Marginally, a strangely forgotten person should be 
noted here–Herbert Edward Soper (1865-1930), for his related contributions - see 
[23]. His vivid and full Obituary is on the covers of Journal of the Royal 
Statistical Society, (Vol. 94, No. 1 (1931), p. 135-41), written by his younger 
colleague M. Greenwood. 

Florence Nightingale (1820-1910) may also be mentioned here as a person who 
knew almost all the Islanders presented here. Her vivid account of them is now 
accessible on the Internet, however her stories cannot be taken as unbiased and/or 
as the only account. 
 
Egon Sharpe Pearson (1895-1980): Despite the fact that he was the son of K. P. - 
(as Karl Pearson was known among his contemporaries) he had a personality 
radically different from that of his admired father. Quiet, introvert and frail in his 
mature years, he went through a serious crisis in 1925, he said about himself: 
 
I had to go through the painful stage of realizing that K. P. could be wrong … and 
I was torn between conflicting emotions: 
 

a. finding it difficult to understand R. A. F. 
b. hating him for his attacks on my paternal ‘god’ 
c. realizing that in some things at least he was right. 

 
When K. P. reached his retirement age, against his will, the authorities of London 
College decided to divide Galton Chair into two separate units – dissatisfying both 
new chair heads: R. A. Fisher and E. S. Pearson. The struggle between K. P. and 
R. A. Fisher did not cease with the death of K. P., and the activities of R. A. Fisher 
were now aimed at Egon Pearson. In statistics the merits of E. S. P are in the 
theory of testing statistical hypothesis, although this was shared with Jerzy 
Neyman and is called the Neyman-Pearson theory, dating from 1926. Perusing 
[19] will show 10 joint papers published between 1928 and 1938, in five journals 
with three publications in Biometrica, two publications in the Bulletin of the 
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Polish Academy of Sciences (Biuletyn Polskiej Akademii Umiejętności). The 
Author of this book was able to buy [19] in 1967 for a modest (at that time) price 
of PLN 189 as for a book edited in the West. Both its authors were still alive. 
Pearson not only held the mentioned chair but also edited Biometrica. 
 
Ronald Aylmer Fisher (1890-1962) formally belonged to the same generation as E. S. 
Pearson and Jerzy Neyman, nevertheless his professional position was much higher 
than the slight age difference would suggest. It does not seem very risky to quote Erich 
Leo Lehmann (1917-2009), one of Neyman's first American Ph.D. students from 
Berkeley, California, from an extended biography of J. Neyman [25]. The quotation 
showed Fisher during an incident which took place at the Royal Statistical Society 
when Jerzy Neyman in his paper expressed a critical remark regarding the Latin 
Square by Fisher. Here it is:  
 
Fisher, who opened the discussion of the paper, stated that "he had hoped that Dr. 
Neyman's paper would be on a subject with which the author was fully acquainted, 
and on which he could speak with authority, as in the case of his address to the 
Society last summer. Since seeing the paper, he had come to the conclusion that Dr. 
Neyman had been somewhat unwise in his choice of topics"  
 
In order to maintain a balance, below there is a less critical quotation from [35] – the 
official and extended Obituary for the author of [16] which was written by Frank 
Yates, co-author of R. A. Fisher’s Statistical Tables, and the renowned specialist of 
genetics Kenneth Mather (1911-1990). The earliest years of Fisher document his 
mathematical abilities and an uneasy professional future of a person who was not a 
pupil of any famous patron. In 1919 he had choice between the position of the General 
Statistician in Galton Laboratory, under Karl Pearson, but he chose a similar position 
in Rothamsted Experimental Station, which was under a lesser known Sir John Russell 
but gave him open access to biological research and more independence. It has been 
recorded that he described this period, in a quite merciless manner, as raking over the 
muck heap. Nevertheless he was able to apply this experience to write a book - 
Statistical methods for research workers (1925). Next ten years in this job gave him 
Fellowship of the Royal Society. As we already know, Karl Pearson's retirement and 
his quick death resulted in the division of Galton Chair – which benefited Fisher as he 
got the Eugenics Chair of London College in 1933, and also the editorship of The 
Annals of Eugenics. Two years later his most renowned monograph [17] The Design 
of Experiments was published. Almost on the opening pages of this book (on p.11) one 
can find the famous problem: “A LADY declared that by testing a cup of tea made with 
milk she can discriminate whether the milk or the tea infusion was first added to the 
cup”. Jerzy Neyman in his textbook [22] examined the same problem, although their 
two approaches have very little if any in common. The author of this book has been 
also magnetized by the charm of this invention by Fisher and placed in [2] an essay 
with a more detailed re-examination of the procedure given by Neyman. Within five 
years of publishing [17], Fisher, together with F. Yates, (as was mentioned already) 
published Statistical tables. To wind up this biographical note let us amend the 
information given in [35] regarding Fisher's family. Fisher was one of twins in his 
mother's eighth pregnancy. He was born first, however, his brother was still-born. 
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Yates/Mather wrote: “He and his twin brother, who died in infancy, were the youngest 
of eight children,”, which is rather confusing. Regarding the matter of disturbing 
conflicts between Fisher and Karl Pearson their biographers Yates/Mather wrote: 
 
The originality of his [Fisher's] work inevitably resulted in conflicts with accepted 
authority [Karl Pearson] and this led to many controversies, which he entered into with 
vigour, but often in that indignant frame of mind that leads to a partial view of the 
problem and leaves unanswered objections that are obvious to the impartial observer.  
 
Regarding the disconcerting nature of this subject, note the following short 
statement from the same source: 
 
His pungent verbal comments were well known; though frequently made without 
malice, they were nevertheless disconcerting to those of less robust temperament.  
 
In 1957 Fisher retired and left his native England. His last doctoral student, Anthony 
W. F. Edwards (Professor Gonvill & Casius College at Cambridge) explains: 
"Arrangements for him to stay in a post-retirement academic position in England were 
not as attractive as in Adelaide where Henry Bennett, Professor of Genetics, and E. A. 
Cornish, a statistician at Commonwealth Scientific and Industrial Research 
Organization - CSIRO, were established, both of them being friends, collaborators, 
and great admirers of Fisher.” And there the Almighty decided that his life would end 
as reports [35]: he died following an operation, on 28 July 1962. He was still, up to a 
week before his death, full of intellectual vigour, and actively engaged in statistical 
research. 

 
Jerzy Spława Neyman (1894-1981) [25] was the grandson of a participant of 1863 
January Uprising (an uprising in the former Polish-Lithuanian Commonwealth i.e. 
present-day Poland, Lithuania, Belarus, Latvia, parts of Ukraine, western Russia; 
against the Russian Empire), a deportee together with his family to Siberia, born in 
Tsarist Russia, and lived with Moldavia after his father's family was allowed to 
resettle to Central Russia. His mother Kazimiera Lutosławska and father Czesław, a 
lawyer who died early (in 1906), took care of Jerzy's education from his earliest 
years (including French and German instruction in his boyhood). Neyman attended 
a school in Kamieniec Podolski (Юрий Чеславович Нейман – secondary school 
certificates were issued under such a name) then his mother moved with him to 
Charkow and there in 1912 he began his university studies in physics and 
mathematics under the best mathematician/probabilist Siergej Natanowicz 
Bernstein (Сергей Натанович Бернсштайн, 1880-1968). In 1916 he got the 
academic position of Chair of Mathematics. He studied Lebesgue’s theory of 
measure and integral. It was also Bernstein who acquainted him with "The 
Grammar of Science” by Karl Pearson. It is also possible to deduce that the 
personality of his master – exceptionally independent and original among the 
Tzarist Russia mathematicians – possibly affected Neyman, who, despite his 
associations with such influential scientists as Pearsons and Fisher, was able to go 
his own way. His return to his native Poland, his fatherland, was quite interesting 
and remains widely unknown. The story goes that during the war of 1919-20 which 
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Norman Davies called the war between the White Eagle and the Red Star, Neyman 
was placed under preventive arrest as a potential ally of the enemy. Then in due 
course an exchange of prisoners of war brought Neyman (aged 27) to Poland. His 
first employer was the Agricultural Institute in Bydgoszcz, but after one year he 
moved to Warsaw settling at SGGW, which still exists under this acronym initials 
as the Agricultural University. His Ph.D. thesis was defended in 1924 at Warsaw 
University under the supervision of two distinguished mathematicians – Wacław 
Sierpiński and Stefan Mazurkiewicz. Shortly after this he received a one-year grant 
for post-doctoral studies in London at the Laboratory of Karl Pearson, who was 
well recognized by that time also abroad. It is interesting to know what Lehmann 
writes (evidently based on Neyman's direct report) about Pearson's embarrassing 
ignorance of the basic theory of probability: Pearson did not understand the 
difference between independence and lack of correlation. This almost brought to an 
end Neyman's further presence in his Laboratory. Note here that only for two-
dimensional random variables of the normal distribution is it necessary that their 
one-dimensional components are independent if they are uncorrelated. In general, 
independence implies zero correlation but not the contrary. One year later, due to 
the common efforts and support from Pearson and Sierpinski, Neyman got a one-
year grant from Rockefeller scholarship funds, for which he has chose Paris with 
Lesbegue’s lectures and Hadamard’s seminars. As we know, the decisive turn 
towards Statistics came due to the cooperation with Egon Pearson. Initiated by 
Egon's cycle of investigations regarding testing hypothesis, Neyman proceeded 
with enthusiasm and new energy. Due to Lehmann's development, Neyman's 
engagement in Statistics in the 1920s and 1930s was so fast that by the time he was 
ending his cooperation with Pearson, the leader of the duo was Neyman. In 1933,  
sharp progress in Egon Pearson's independence allowed him to employ Neyman. 
After a while it became a permanent position. But what a fate! In Spring 1937 
Neyman received a proposal for a completely independent position in Berkeley, to 
which he moved in Autumn 1937 and this resulted in his stay in the United States 
for the remainder of his life. He died of a heart attack in Oakland. The fall of 
communism materialized and an extremely dangerous superpower ceased to exist. 
Summing up Neyman's material achievements, it should be said that his gradual 
effort systematically paid off inasmuch as his employment in Berkeley led to the 
rise of the Department of Statistics, which became and remains the central 
scientific centre developing statistics in the United States. Lehmann lists the names 
of 50 doctoral students of Jerzy Neyman, commencing in Poland, then England, 
and finally 35 in the USA. The third position from the top is occupied by Lehmann. 
Regarding personal features of Neyman, Lehmann emphasizes his great generosity. 
For Neyman future biographers there remains the task of describing his family life 
and his early life in the rapidly changing Tzarist Russia. Regarding religion he was 
seemingly indifferent, although from childhood his heritage was Christianity (in his 
childhood he even served as an altar boy). He  visited  Poland but the author of 
this book never met him. The following quotation from Stanisław Brzozowski 
(1879-1911), an exceptionally controversial person, may serve to dramatize this 
biography: "A man deprived of his nation resembles an empty soul – neutral, but 
sometimes even harmful if not dangerous”. Was he right at all? 



References 35
 

References  

[1] The Oxford Companion to Philosophy. Edited by Ted Honderich, Oxford (1995) 
[2] Laudański, L.M.: Statystyka nie tylko dla licencjatów. In Polish: Statistics Not Only 

for Undergraduates, part1, part2, 2nd edn. Publishing House of the Rzeszow TU, 
Rzeszów (2009) 

[3] Pogorzelski, W.: Zarys Rachunku Prawdopodobieństwa i Teorii Błędów. In: An 
Outline of Probability and the Error Theory. Towarzystwo Bratniej Pomocy 
Studentów PW (edited by the students organization soon confiscated by the 
communist government), Warsaw, pp. 1–100 (1948) (in Polish) 

[4] Makać, W., Urbanek-Krzysztofiak, D.: Metody Opisu Statystycznego. In Polish: 
General Statistics, Outline, Wydawnictwa Uniwersytetu Gdańskiego (1995, 2001). 

[5] Lewis, C.S.: Out of the Silent Planet. AVON Book Division, p. 159. The Hearst 
Corporation, New York (1949); Polish translation by Andrzej Polkowski: Z Milczącej 
Planety – Wydawnictwo M, Kraków, p. 160 (1989) 

[6] Smoluk, A.: Mathematics – a Universal Science. In: Didactics of Mathematics, 
vol. (6), pp. 5–9. Wroclaw University of Economics, Wrocław (2005) 

[7] Galileo, G.: Dialog o dwu najważniejszych układach świata Ptolemeuszowym i 
Kopernikowym. PWN, Warszawa (1962); Przełożył z języka włoskiego Edward 
Ligocki, pp. 314–316 (Dialogo sopra i due massimi sistemi del mondo Tolemaico e 
Copernico, Firenze 1632; Leyden - 1638) 

[8] Gauss, C.F.: Theoria motus corporum coelestium in sectionibus conicis Solem 
ambienitum, Hamburg (1809); English translation by Davis, C.H.: Theory of the 
Motion of the Heavenly Bodies Moving About the Sun in Conic Sections, p. 416, 
accessible via Internet. Little, Brown, and Company, Boston (1857) 

[9] Jacobs, H.R.: Geometry, 2nd edn., pp. 1–668. W.H. Freeman & Co., New York 
(1987) 

[10] Descartes, R.: La Geometrie 1637. Appendix to Discours de la méthode. Translated 
into English by Michael Mahoney (New York: Dover, 1979). Internet offers pdf 
French Edition 82 pages. Edited by R. Hermann, Paris (1886) 

[11] Weinberg, G.H., Schumaker, J.A., Oltman, D.: Statistics – An Intuitive Approach, 4th 
edn., pp. 1–447. Brooks/Cole, Monterey (1981) 

[12] Romanowski, M.: On the Normal Law of Errors. National Research Council of 
Canada. Report APH-1178, Ottawa, pp. 1–29 (February 1964) 

[13] Brown, L. (ed.): The New Shorter Oxford English Dictionary on Historical 
Principles. A-M, vol. 1, p. 1620. Clarendon Press, Oxford (1993) 

[14] Laudański, L.M.: Statystyka Ogólna z Elementami Statystyki Matematycznej (in 
Polish: General Statistics and Probability). Wydawnictwa PWSZ Jarosław (2000) 

[15] Galton, F.: Finger Prints, p. 247. MacMillan and Co, London (1892); 1892 appeared 
Second Edition of Hereditary Genius, p. 423–I Edition. 1869. Both books pdf copies 
offers Internet 

[16] Pearson, K.: The Grammar of Science. Dover Publications (1892/2004) 
[17] Fisher, R.A.: The design of experiments. Oliver & Boyd, Edinburg (1935) 
[18] Student: The probable error of a mean. Biometrika 6, 1–25 (1908); accessible in 

Internet 
[19] Neyman, J., Pearson, E.S.: Joint Statistical Papers, p. 300. Cambridge University 

Press (1967) 



36 1   Descriptive Statistics
 

[20] Yule, G.U.: An Introduction to the Theory of Statistics. Charles Griffin and Co, 
London 1911 – edited 14 times, the Second Edition was translated into Polish by Z. 
Limanowski: Wstęp do Teorji Statystyki, Gebethner i Wolff, Warszawa 1921; pp. 1–
446. 14-th Edition with M.G. Kendallem appeared in 1950 and was also translated 
into Polish Wstęp do Teorii Statystyki”, PWN, Warszawa (1966) 

[21] Laudański, L.M.: Dylematy jakości nauczania w epistolografii św, Pawła (Quality 
Dillemmas in Letters of St. Paul, Conference Proceedings) Materiały Konferencji 
Naukowej nt. Dylematy jakości kształcenia w uczelniach wyższych, pp.111–121. 
Politechnika Rzeszowska, Rzeszów (2008) 

[22] Neyman, J.: First Course in Probability and Statistics. HR&W, New York - (1950); 
Polish translation Zasady Rachunku Prawdopodobieństwa i Statystyki 
Matematycznej, PWN, Warszawa. (1969), Russian translation Nauka, Moskwa 
(1968) 

[23] Soper, H.E.: On the probable error of the correlation coefficient to a second 
approximation. Biometrica 9, s.91– s.115 (1913); Tables of Poisson’s exponential 
binomial limit. Biometrika 10, 25–35 (1914) 

[24] Williams, R.H.: George Udny Yule: Statistical Scientist. Human Nature Review 4, 
31–37 (2004) 

[25] Lehman, E.L.: Jerzy Neyman 1894-1981. A Biographical Memoir. National Academy 
of Sciences, 28 (1994) 

[26] O’Connor, J.J., Robertson, E.F.: Sergei Natanovitch Bernstein. Wikipedia, 5 
[27] Stigler Law, see Internet 
[28] Karl, P.: Francis Galton. Nature 85, 440–445 (1911) 
[29] von Collani, C.: Biography of Karl Pearson, 26 pages,  

http://encyclopedia.stochastikon.com 
[30] Williams, R.H., Zumbo, B.D., Roos, D., Zimmerman, D.W.: On the Intellectual 

Versatility of Karl Pearson. Human Nature Review 3, 296–301 (2003) 
[31] Stigler, S.: Karl Pearson’s Theoretical Errors, and the Advanced They Inspired. 

Statistical Science 23(2), 261–271 (2008) 
[32] O’Connor, J.J., Robertson, E.F.: Walter Frank Raphael Weldon – Wikipedia 
[33] Kendal, M.G.: Ronald Aylmer Fisher. Biometrika 50, 17 (1963), parts 1 and 2 
[34] Yates, F., Mather, K.: Ronald Aylmer Fisher. Biographical Memoirs of Fellows of the 

Royal Society of London 9, 91–120 (1963) 
[35] Stigler, S.: Karl Pearson and the Rule of Three. To appear in Biometrika, circa, p.14 
  



L.M. Laudański: Between Certainty and Uncertainty, ISRL 31, pp. 37–65. 
springerlink.com              © Springer-Verlag Berlin Heidelberg 201  

Chapter 2 
Grouped Data. Introduction to General Statistics 

Udny Yule’s concept of statistical entries – entirely quantitative data. How to proceed 
when grouping statistical data. Graphical tools. Making use of combinatorial rules 
while processing attributed data. Defective histogram. Number of bins versus volume 
of the raw statistical data. Frequency histogram. Direct and coded methods for 
evaluating grouped data to derive their average and variance.  Making use of 
percentiles  

 
   With the statistics of the second order of dimension one commences the study 
of “real” Statistics and its practice. The material included in Chapter 1 is quite 
often completely ignored in many textbooks – being implicitly incorporated into 
the opening pages of general statistics.  That practice seems to be impractical. To 
point out a reference where material similar to that presented here in Chapter 1 has 
been presented let us mention, for instance, Hawkins [4], whose opening chapter 
is entitled  "Descriptive Statistics,” and covers about 40 pages. But the leading 
example of such a textbook is a book [6] by Weinberg (principal author). On the 
other hand, it is rather easy to see that  statistics after the number of their 
elements increases can hardly be treated by such a direct approach as described in 
Chapter 1. The remedy is called grouping. Naturally, in the beginning comes the 
question of what is going to be grouped. And here valuable guidance is offered in 
a book by Yule [1] which seems to be now forgotten/neglected. He said: by 
Statistics we mean quantitative data affected to a marked extend by a multicity of 
causes. The particular subject of statistical data may be called an attribute with 
which we associate qualitative character, therefore, following Yule, we commence 
with the theory of attributes. Next we present the theory of variables – or theory of 
numbered attributes. Let us repeat that in many contemporary books this initial 
part regarding the theory of attributes is completely ignored.  

Regarding statistical data there are two points to be mentioned (not only for the 
beginners): how to evaluate them and how to interpret them?  In this respect it 
should be stated clearly that this book is devoted to the first question – while to 
satisfy students seeking guidance regarding the second one, we can only express 
our believe that it is a matter of practicing Statistics. In this respect, seeing evident 
abuses of Statistics, an old quarrel between Mediterranean towns regarding the 
origin of prostitution may be recalled – success has many fathers, but it is not so 
with failure. Some time ago a British statistician William John Reichmann  

3
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( 1920 - ?) wrote a very good book  [3]  under the provoking title "Use and 
Abuse of Statistics”  published/printed many times since 1961 and still available 
(this book was also translated into Polish in 1968). Unfortunately there is no 
mention of him on the Internet although in the 1960s he was director of a number 
of companies, Fellow of the Royal Statistical Society, a member of the 
Mathematical Association and other professional societies. The first chapter of [3] 
is entitled The Age of Statistics – and we quote its opening (p.11, [3]): 
 
The Age of Statistics is upon us. Almost every aspect of natural phenomena and of 
human and other activity is now subjected to measurements in terms of statistics 
which are then interpreted, sometime wisely, sometimes unwisely. Not even the 
more intimate details of human relationships have escaped the candid survey of 
the more relentless researches and, as they probe ever more deeply and more 
widely into our affairs, it is perhaps not surprising that the layman should begin to 
wonder whether the statisticians are not getting a little beyond themselves. 

2.1  Grouping Due to Attributes 

Towards the Theory of Attributes. The approach given below is based on an example 
shown in Table2.1. It can be understood as a modest introduction to the subject.   

Example 2.1. There were 10 000 children who underwent a health examination of 
three attributes – A – development defects, B – nervous symptoms,  C – poor nutrition. 
The results of the survey are given in Table 2.1. 

Table 2.1 Warner’s investigations – full record 

Aggregate 1  Frequency   
f

Aggregate 2  Frequency 

  ( )A BC        57   ( )BCα         78 

  ( )A B γ       281   ( )Bα γ        670 

  ( )A Cβ        86   ( )Cα β         65 

  ( )Aβ γ       453   ( )α β γ      8 310 

 
Instead of a full biographical reference (see [1]) for the data shown in Table 2.1 

we give the year of publication –1895, and the name of the investigator F. Warner. 
The description commences with the terminology. Investigations of the data 
shown in Table 2.1 examined three attributes – designated as  A, B, and C.  The 
collection of all observations possessing a single or more attributes is called a 
class. Classes grouping observations of a single attribute are called order 1. A 
class containing two attributes is considered to be order 2. And so on. The 
attributes to which we limit our attention in this book belong to a group 
undergoing a division by dichotomy. The objects or individuals may either possess  
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a particular attribute or not. The object/individual possessing a chosen attribute 
will be designated by a capital Latin letter  A, and those who does not posses this 
attribute will be designated by a Greek letter α . Moreover, classes designated by 
capital Latin letters are called positive classes, while classes designated by Greek 
letters are called negative classes. In this respect if the total number of the 
investigated individuals is  N , then the following equation always applies: 
 

A Nα+ =                               (2.1) 
 

The adverb “always” means that  (2.1)  remains in force for each class of order 1.  
As we have seen, the term order specifies how many attributes compose a considered 
class. In Example 2.1 the maximum order is 3. Among such classes there may also be 
empty classes. Note: the practical importance of this remark cannot be overestimated.  
Perhaps this is the place where the student may guess the necessity of applying some 
combinatorial tools/rules for the evaluation of such statistical data. For the sake of 
cohesion we propose to place a short supplement related to combinatorial analysis at 
the end of this subchapter.  The main importance is attached here to combinations 
(without repetitions). Turning back to Example 2.1 we shall repeat that we have six 
classes of order 1.  Let us now investigate how many classes of order 2 are present in 
this example. A class combining two positive attributes – for instance A  and B  - is 
designated by the symbol ( )A B  - which helps to understand that such a class has two 

attributes appearing simultaneously. Therefore the symbol  ( )B A  could be used 

equally well for such a class. Such a class in general should not be an empty class, but 
it may happen from Logistics of investigations. On the other hand a class of kind 

( )Aα  will be always empty. It is obvious that there is no such object or individual 

who could belong to a class and simultaneously not belong to the same class – because 
it would be a contradiction.  Now comes the first remark of combinatorial nature.  
Let us assume that some statistical investigations have considered n  attributes – 
(referring to Example 2.1 - 6n = ) then there come the following question: in how 

many ways is it possible to combine  n  symbols into a pair of symbols?  Which may 
be put more simply as the question posed above – how many classes of order 2 there 
will be in this case. The answer uses one of the basic combinatorial rules – called – 
combinations – which formally states: 

( )
!

2 2! 2 !

n n

n

 
=  − 

                            (2.2)    

The number of empty classes of order 2 in general will be equal to  / 2n  - 
therefore for the example under consideration there will be  3 empty classes:  

( )Aα , ( )B β  and  ( )C γ . On the other hand, substituting  6n =  from  (2.2)  

we shall get the amount of the all classes order 2: 
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( )
6 6! 6 5 4!

15
2 2! 6 2 ! 2! 4!

  ⋅ ⋅= → =  − ⋅ 
            (2.3) 

Therefore the number of non-empty classes of order 2 will be  15 – 3 = 12.  It is 
obvious that the highest order of classes in the Example 2.1 is 3r = . Let us try to 

find how many non-empty classes of order 3 belong to the case under 
consideration. As the first attempt there may appear a suggestion that their number 
will be greater than 12, but this is wrong . Even though 

                                      
6

20
3

 
= 

 
,                           (2.3a) 

one finds that the number of the empty classes is greater than in the previous case.  
Let us use this opportunity to analyze the pattern of managing non-empty classes 
(from a purely formal point of view). First it may be noted that every empty class 
has the form of a three-element permutation with two initial symbols: Aα , B β  

and  C γ .   

Generalizing this result leads to / 2n   such cases (as we already know). 
Proceeding further, the first group of symbols describing empty classes can be 
symbolized by ( )#Aα   - so, any of the remaining symbols, that is , , ,B Cβ γ  

should be used to fill the third dummy position. Therefore, in a general case their 

number will be given by ( )2n − . The remaining classes ( )#B β   and  ( )#C γ  

should respect the same pattern. Such a procedure leads to  / 2n  cases – 
therefore the total number of empty classes of order 3  is given by:   

( )2 / 2n n − .  Finally, n = 6, leads to 12 empty classes.  Now it is possible to 

determine the number of all the classes of order 3. First, due to  (2.3) we get : 

( )
6 6! 6 5 4 3!

20
3 3! 6 3 ! 3! 3!

  ⋅ ⋅ ⋅= → →  − ⋅ 
              (2.4) 

Therefore, non-empty classes of order 3 are composed of  20 – 12 = 8  cases.  
Returning now to Table 2.1 we can ask whether Table 2.1 shows all the possible 
results. And now the above given considerations justify the final conclusion – that 
Table 2.1, collecting all possible cases for such an investigation, is complete. We 
expect that the student shall appreciate this conclusion. 

An inquiring student will be able to deduce from the content of Table 2.1 the 
definition of an aggregate as a group of classes in which a single italic letter has 
been replaced by a Greek letter. All classes of order 3 can also be collected in a 
way shown in Table 2.2. It is a particular decomposition of Table 2.1. The idea 
makes use of the concept of contrary classes – that is classes with a formal 
contraction of the Italic and Greek letters. Corresponding frequencies for the 
contrary classes are adequately called contrary frequencies. 
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Table 2.2  Pairs of contraries 
 

 Classes 
Cl

 Frequencies Contrary-classes  Contrary-frequencies 

 ( )A BC          57      ( )α β γ              8 310 

 ( )BCα          78      ( )Aβ γ                453 

 ( )A Cβ          86      ( )Bα γ                670 

 ( )A B γ         281      ( )Cα β                 65 

 
Following the idea from the book [1] by Udny Yule – let us consider the 

problem in which we use the data from Example 2.1 to determine frequencies of 
the  positive classes  of all orders. 

The problem will be solved gradually, step by step. Let us first state that we 
know frequencies for all the classes of order 3, they are disconnected and the total 
frequency is the sum of the all partial frequencies and is equal to 10 000N = .   

In the first step we shall point out all the positive classes – as  ( )A , ( )B , 

( )C , ( )A B , ( )AC , ( )B C  and ( )A BC .  It should be noted, that among those 

classes there is class  ( )A BC  for which the frequency is known. All the other 

frequencies should be determined. How? The pattern of all the solutions is the 
same. To get the frequency of the class under consideration we have to add the 
frequencies of all the classes which contain outcomes within the class under 
consideration. This will give the results given below:  
 

(i). Class frequency of class ( )A   is equal to the sum of class frequencies for 

( )A BC , ( )A B γ , ( )A Cβ  and ( )Aβ γ  - they are given in Table 2.1 or 

in Table 2.2 leading to the result: 57 + 281 +  86 + 453 =  877 . The same 
pattern will give class frequency for ( )B   as  1 086, and class frequency 

for ( )C   as  286.  

(ii). Class frequency of class ( )A B  will be the sum of class frequencies for  

( )A BC   and ( )A B γ .  To derive numerical results one has to add  57  to 

281  - getting  338 . In the same way class frequency for  ( )AC   is 

calculated as 143, and class frequency for ( )B C  as 135.  

 
Further details regarding the theory of attributes are to be found in the First Part of 
book [1] – with such headings as "consistence” (Chapter II), "association” 
(Chapter III) – and some others. Continuing these introductory considerations we 
come to the concept of ultimate class and ultimate frequency, with their 
definitions and some practical remarks. The adverb ultimate serves as an indicator 
of the completeness of the statistical description. It is described by the following 
definition. The classes specified by all attributes noted in any case – i.e., the 
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classes of the n-th order in the case of  n  attributes, may be termed the  
ultimate classes and their frequencies the ultimate frequencies.  Together with 
this the following property is used: it is never necessary to enumerate more than 
the ultimate frequencies. Moreover, ultimate frequencies form a natural set of 
which the data are completely given, but any other set containing the same number 
of algebraically independent classes (i.e. containing the same number of classes, 

as will be justified below 2n  classes ) may be chosen instead. It will be proved 
below that the other set of this kind forms positive-class frequencies. The way to 
present such a proof requires the determination of the number of the ultimate 

classes in any given statistics – a result given by 2n . The procedure for obtaining 
the right answer to this question is based upon mathematical induction.  We 
present three initial steps, and then generalize the procedure:  
 

(i). for the case of a single positive attribute, denoted by A ,  there are two 
ultimate classes: ( )A  and ( )α ;  

(ii). for two positive attributes (say A  and B ) the number of the ultimate 
classes is doubled – as we have classes  ( )A B , ( )A β , ( )Bα  and ( )α β ; 

(iii). for three positive attributes denoted  A , B  and C , the number of ultimate 
classes will once more double the previous number of ultimate classes – for 
purely combinatorial reasons  – giving the result shown in Table 2.1  in the 
form of eight classes: ( )A BC , ( )A B γ , ( )A Cβ , ( )Aβ γ , ( )BCα , 

( )Bα γ , ( )Cα β , ( )α β γ . The above given procedure, by using 

mathematical induction leads to the final result: 

2 2 2 2 2 2 n× × × × × =                     (2.5) 
 

As was said above, the other set of the all class frequencies is represented by all 
positive classes reflecting all  n  attributes with additional appearance of the class 
of order 0. 

order 0           The whole number of observations                         
0

n 
 
 

 

order 1          The number of attributes noted                              
1

n 
 
 

 

order 2   The number of combinations of 2 things chosen from n things       
2

n 
 
 

  

(2.6) 

order 3   The number of combinations of  3 things chosen from n  things    
3

n 
 
 

  

           …….     ……      ……     ……     …… 

order n     The number of combinations of n things chosen from n things     n

n

 
 
 
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The series composed of all the members of the components given above also leads 
to the binomial expansion: 
 

( )... 1 1
0 1 2

nn n n n

n

       
+ + + + = +       

       
   →      ( )1 1 2

n n+ =    (2.7) 

Therefore the above result  (2.7)  becomes the final proof that the set of all the 
positive class frequencies also contains the same number of algebraically independent 

frequencies as the set of all the ultimate class frequencies – that is  2 n . 
The set of positive class frequencies is the most convenient one for both 

theoretical and practical purposes. To be certain about the truth of this statement 
compare the procedures of using the ultimate class frequencies with the positive 
class frequencies by using data from Example 2.1.  The latter gives directly the 
whole number of observations and the totals of  A’s, B’s, and C’s – while the 
former gives none of those fundamentally important figures without doing more or 
less lengthy additions. 

The expression of any class-frequency in terms of the positive frequencies is 
illustrated below: 
 

(1) ( )α β  = ( ) ( )Bα α−  because ( ) ( )N Aα = −  

  moreover  ( ) ( ) ( )B B A Bα = − ,  therefore:   

       ( )α β = ( ) ( ) ( )N A B A B− − +                                      (2.8) 

(2) ( ) ( ) ( )Cα β γ α β α β= −  - the result for ( )α β  has already been 

obtained, then ( )Cα β  = ( ) ( )C B Cα α−  

 

The result for ( )Cα  is derived like the result form ( )Bα  has been derived in 

(1), while the last class results will be derived as follows:   
 

   ( )B Cα = ( ) ( )B C AB C− ; by ordering all the obtained results we get: 

( )α β γ = ( ) ( ) ( ) ( ) ( ) ( ) ( )N A B C A B AC BC A BC− − − + + + −     (2.9)  

In the end we propose to solve the following problem. 
 
Example 2.2 
Check how Example 2.1 works by finding the ultimate frequencies from the 
positive class frequencies. 
 
The solution presents results for the three chosen classes.  
 

    ( ) ( ) ( ) 338 57 281A B A B A B Cγ = − → − =  

    ( ) ( ) ( )A A A Bβ γ γ γ= −   but  ( ) ( ) ( )A A ACγ = −  while ( )AB γ = 281, 
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therefore class frequency of  ( )Aβ γ   is   877 – 143 – 281 = 453;  then: 

( )α β γ  =  ( ) ( )Aβ γ β γ−   class-frequency of  ( )β γ   can be derived via 

(2.8)  which allows to obtain 
 

    ( )β γ  =  ( ) ( ) ( )N B C B C− − +              (2.10) 

 
Substituting into (2.10) the result obtained above for ( )Aβ γ  the class-frequency 

for ( )α β γ  will be 10 000 – 1086 – 286 + 135 – 453 =  8310.  

 
The other ultimate frequencies can be determined in a similar way. 
 
Two Examples of a Graphic Representation. Especially this kind of grouped data 
which we associate under the common heading of “attributes” may be represented 
by special kinds of graphs. Presenting two examples of this kind we commence 
with the pictorial representation that we would like to call ‘defected frequency 
histogram’ – due to its similarity to frequency histograms which are considered 
below. In the literature they are called bar graphs. 

  

Fig. 2.1 Defected frequency histogram also known as a bar graph 

Fig. 2.1 shows marital status of some office staff presented graphically with the 
vertical axis giving case frequencies, however the horizontal axis has no numerical 
values. 

The second kind of graphic representation is shown in Fig. 2.2. These data depict a 
particular vote of the Security Council in a way which abuses the decision of this UN 
body. It is enough to say that in this particular case of voting, supporting votes came 
from four countries: the USA, Great Britain, Spain and Bulgaria, all the others voted 
against the resolution, despite this fact Fig. 2.2 suggests a false equilibrium. A proper 
diagram requires right visual proportions in this or other pie chart. 
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Fig. 2.2 Pie chart to represent a voting on the UN agenda 

At the end of this subchapter an extract of combinatorial analysis is given. It is 
aimed at the actual requirements of Chapter 2 and Chapter 4. Some results 
exploring/extending this subject will also be provided later. 

2.2  Inner Appendix  

Factorial. Binomials. Pascal’s Arithmetical Triangle. 
 
An elementary definition of the factorial has the form of the following recurrence 
equation: 
 

! ( 1)!n n n= ⋅ −                         (2.11)  
 

The arguments n of the factorial   (2.11) are natural numbers. This provokes the 
first question -  How long is it allowed to go back?  The value for  n = 2  
requires the meaning of factorial  1! We choose to say that 
 

1! 1=                                 (2.12) 
 

We see now that allowing   n=1 in  (2.11)  requires a value of  0!   Therefore 
to get  (2.12)  we must define the zero factorial as 

0! 1=                                (2.13) 
 
All the above definitions lead numerically to what follows, which is frequently 
known from the secondary school: 

! ( 1) ( 2) ... 3 2 1 1n n n n= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅              (2.14) 

There is also a deeper understanding of the factorial.  It recalls the so called - 
Gamma Function  dating back to L. Euler and the integral known as Euler’s 
integral of the second order:  
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1

0

( ) p xp x e dx
∞

− −Γ = ⋅     assuming   p>0           (2.15)  

The Gamma Function is a continuous function for all the values of its argument   
p  and has continuous derivatives of all orders. Regarding the demands of the 
foregoing considerations it has the property : 
 

( 1) !n nΓ + =    here  n  is a natural number (positive and integer)     (2.16) 

 
Therefore the factorial defined by  (2.11)   becomes a special case of the Gamma 
Function for arguments being natural (numbers). The Gamma Function has the 
property which generalizes   (2.11)  as 
 

( 1) ( )p p pΓ + = ⋅Γ         for          p>0     (2.17) 
 
The biggest factorial obtained by using many scientific calculators is  69!. 
Nevertheless even market calculators allow one to calculate higher factorials than 
69! by making use of so called  Stirling’s formulae.  In fact there are three 
approximations [5], that are sufficient for our purposes. The first of them is 
 

! 2
n

n n
n n n

e
π  ≅ ⋅ ⋅  

 
                         (2.18) 

 
Newton’s Symbol   is defined as follows - with    n, k  being natural numbers: 
 

!

!( )!

n n

k k n k

  =  − 
   moreover   0 k n≤ ≤    n ≥ 0           (2.19) 

 
Newton’s Binomial  is expressed by using  (2.19) in two forms – concise, and 
expanded - as follows: 

0

( )
n

n n k k

k

n
a b a b

k
−

=

 
+ =  

 
                     (2.20) 

( ) 0 1 1 2 2 0... ...
0 1 2

n n n n n m m nn n n n n
a b a b a b a b a b a b

m n
− − −         

+ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅         
         

         

(2.21) 

Substituting  1a =  and   b = 1   into   (2.21) we get the formula already used, 
see  (2.7) : 

2 ...
0 1 2

n n n n n

n

       
= + + + +       
       

                     (2.22) 
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Pascal’s Arithmetical Triangle   becomes the object with surprisingly old roots 
(see [7]). Here is just the first of numerous possibilities in presenting it -  
numbered  as  (2.23): 
 

  (2.23) 

On the other hand the same may be presented in symbolic fashion in a position 
rotated by 45 degrees: 
 

      (2.24) 
 
Below are listed some properties of binomial numbers – i.e. the entities of the 
triangle: 
 

  
0

1
0

 
= 

 
                             (2.25) 

 

1
0

n 
= 

 
                            (2.26) 

 

1
n

n

 
= 

 
                            (2.27)   

 

n n

k n k

   
=   −   

                          (2.28) 
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Properties (2.25)-(2.27) follow immediately from (2.19) while the property (2.28) 
defines the symmetry of the binomial numbers and may be traced to the 
description given by (2.23). (2.29) gives an arithmetic scheme of determining all 
binomial numbers – although the procedure should commence from the top of the 
triangle  (2.24). 
 

 
1

1 1

n n n

k k k

+     
= +     + +     

                   (2.29) 

 
Already here – well ahead of the material presented in Chapter 4 – an impatient 
student may be advised to make use of the monograph by Edwards [7] containing 
an unusual richness of facts on this subject. 

Three Basic Combinatorial Schemes 
 
Combinatorial rules  based on (so to speak) common sense describe how 
reduced/expanded the possibilities are in ordering different given objects – going 
from one combinatorial pattern to another. It is hard to devise a common method 
of presenting the ideas. In general a student may follow either formal or informal 
studies (see: [8]-[11]). Formal approaches demand more mathematical 
prerequisites.  Informal approaches quite often use the pattern: 
 

permutation → variation → combination 
 
In the below sequence we shall follow the latter approach. Moreover there are so 
to speak regional habits – they are preferred in particular text books, and even by 
particular publishers. It is especially true when going eastwards.  
 
Permutations. They give the number of the possible arrangements of a given   
set. A quick remainder: by a set we understand a collection of elements in which 
no two elements are the same. For instance – the letters of the Latin alphabet: A, 
B, C, .... In such circumstances a permutation means any arrangement of the 
entire set. Let us list all permutations for the set of  n = 2  Latin letters:  
 

A B      B A   
 
A natural question concerns the number of all permutations for  n-members set. 
The answer may be derived by using mathematical induction.  Let us check the 
result obtained when the set of  n = 2 is expanded into a set of n = 3  by adding a 
new member  C – we get:  
 
                                  C A B   A C B   A B C    
                                  C B A   B C A   B A C    

New permutations - allocate the element C within each subgroup of symbols AB,   
first in front of them, then between them, and then behind them. The  
same pattern is used regarding subgroup  B A.  
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Therefore, introducing a third element has tripled the number of permutations.  
To see clearly what is going on we collect the results below: 
 

Set of 2 elements – number of permutations  2  =  2! 
Adding a 3-rd element – triple permutations more  –  
hence:   2 * 3 =  6  →  3! 
Adding a 4-th element – four times more permutations than for the previous case,  
so    6 * 4  =  24  →  4! 
 
Final conclusion: with  n  elements  the number of all permutations is 
determined by:  

!n                                   (2.30) 
 
Variations  – Permutation of k elements chosen from an n-element set. Their 
number is given by: 

                             
!

( )!k

n
n

n k
=

−                        (2.31) 

 

Obviously for  k = n   but also for   k = n – 1   the number of permutations 
gives  n! – while for a smaller k  it is given by  (2.31)  [we ask the Student why 
this formula does not show  k!]. The proof of  (2.31) may go backwards. As the 
first step an arbitrary element out of all  n  elements may be chosen. But in the 
second step the choice has  1n −  possibilities, and so on. Coming to the last step 

the choice has  1n k− +   possibilities; therefore the final result has the form: 
 

     )1()1( +−−⋅= knnnnk                    (2.32) 
 

Formula (2.32)  is equivalent to formula  (2.31). 
 
Combination – a variation ignoring/neglecting succession of the elements. 
Example: a pack of cards lists n cards – how many different results may be 
obtained while drawing   k  cards?  A system of  k electrons arranged in n 
orbits with a single electron in each – giving Fermi-Dirac Statistics in terms of 
Statistical Mechanics. The impossibility of differentiating particular electrons 
corresponds to ignoring the sequence of cards in the first example. Here we 
encounter the key formula in the above used combinatorial schemes: 

               
!

! ( )!
k
n

n n
C

k k n k

 
≡ =  − 

    k n≤               (2.33) 

 

Instant proof may indicate that a combination is a variant with kn  arrangements, 

but, on the other hand, the arrangement of  k  elements  leads to  !k  
permutations. Therefore disregarding the succession of k  elements in the 
previous number of arrangements will reduce the number by !k  times. Therefore  
theorem  (2.33)  is valid.   
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2.3  Grouping of Variables 

An Algorithm 

1. Range. Row statistics are given in Table 2.3. The statistics describe the 
percentage of the unemployed based on the Polish Statistical Year Book 1993 for 
49 provinces of the country.     
 
Table 2.3 Unemployment in Poland in 1992 

 
 
R - the Range/Interval  
R = maxx - minx   max 24.1x =  min 5.9x =   therefore   R = 18.2 
 
2. Number of Classes.  This important and decisive step determines the shape of the 
frequency histogram, which is the main outcome of the grouping procedure, and is 
otherwise not accessible.  Despite the fact that this statistical method becomes the 
subject of all such statistical procedures containing unusual quantities of data, there is 
no  single commonly accepted procedure of doing it. Early approaches, as symbolized 
by [1], suggest satisfying demands of practice preferring the comfort/convenience of 
logistics in organizing the statistical procedure for evaluation of collected data.  

In this book we recommend a particular formal condition (see for instance [6]). 
It is described below. If the total frequency symbolizes  N  while the number of 
classes symbolizes  n  then the requirement suggested is as follows: 

2n N≤                                   (2.34) 

For convenience of applying  (2.34),  some data are given in  Table 2.4. 
 
Table 2.4 The Rule of theThumb 

      n         N 

     4    16 - 31 
     5     32 - 63 
     6     64 - 127 
     7    128 - 255 
     8    256 - 511 
     9    512 - 1023 
    10 1024 - 2047 
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Therefore, following  (2.34)  and data given in  Table 2.4  determines the 
choice of the number of classes  
 
Number of Classes:  n  =  5  for Table 2.3 
 
3. Class Range – the stage resulting from the two above completed stages. Having 
the range  R  of the grouped data and the n  number of classes, the class range 
follows from the obvious division: 

Class Range/Interval:   x

R

n
Δ = ,  therefore  

18.2
3.64

5x xΔ = → Δ =    

4. Limits and the Middle Value of Each Class – this is the last step before the 
purely mechanical procedure of grouping collected data. The left edge of the 

frequency histogram is closely related to the value of  minx  and can always be 

accepted as this limiting value. The problem which may occur in this procedure 
concerns the right edge. The numbers placed as the limits have to satisfy a 
condition called left side continuity. The simplest way to approach this condition 
requires one to have a look at Fig. 2.3. The left edge limit is the value 5.9, while 
the right edge is 24.2. The smallest value in Table 2.3 is 5.9. Due to the above 
condition this value belongs to the first class. To the first class, due to the 
requirement of left side continuity, belong numbers satisfying the inequality: 
 

5.9 9.56ix≤ <  

The Student’s attention should be drawn towards both inequalities shown above: 

numbers ix  may include the value of the left limit, but cannot include the value of 

the right limit. If we purely mechanically calculate and collect all limits not respecting 
the condition of left side continuity, we shall get all the limits given in Table 2.5 . 
Then, as explained below, we arrive at a contradiction that will cause serious 
confusion. 

Table 2.5 First attempt to determine class limits 

Class  
limits 

Median 
values  

Class 
frequencies 

20.46 – 24.1 22.28    5  (48) 
 16.82 – 20.46 18.64    11  (43) 
 13.18 – 16.82    15.0   14  (32) 
  9.54 – 13.18    11.36     13  (18) 
   5.9  -  9.54  7.72  5 
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5. Grouping Procedure. – The difficulty mentioned above will be hidden as long 
as  we  do not approach the last class for which limits are given by the set  
(20.46, 24.1).  Among the entries in Table 2.3 there is 24.1. We know that each 

number  ix  of the utmost right class has to satisfy the following requirement: 

 
20.46 24.1ix≤ <  

 
So, the number  24.1 cannot be put in this class! The number  24.1  should be 
placed in the next class to the right, but we do not anticipate the presence of such a 
class! We can recall the reason: it follows from condition (2.34). which states that  
n = 6  is advised for the data counting up to  64  entries. So, this is the confusing 
situation and the problem has to be solved. One simple remedy may offer a slight 

correction of the value accepted as maxx - for instance to the value 24.2. The 

corrected  range/interval  will be  18.3, and corrected class range/interval will 
be 3.66. Therefore, new  boundaries and new  median values are obtained as 
found in Table 2.6. Comparing Table 2.5 and Table 2.6, it is seen that there are 
quite insignificant differences. Nevertheless, despite this fact, the columns 
containing class frequencies are not identical -  among the five classes only two 
show the same class frequencies in the two cases. Nevertheless the desire to have 
five classes, satisfying  (2.34), remains. Students frequently ask what may happen 
if condition  (2.34)  is not satisfied? Replying to this question, it first of all 
should be pointed out that temptation always goes, so to speak, upwards, to chose 
the value of  n  well above what is required by (2.34).  As  (2.34) stems from 
practice, the same source will tell us, that choosing higher values of the number of 
classes leads to a deficiency in the shape of the resulting histogram, as some 
classes will not be sufficiently filled, the diagram will be  jagged.  The student 
may easily find numerous examples of this kind in published statistical data (even 
in this book). 
 
Table 2.6 Second attempt to determine class limits 

Class 
limits 

Class 
midpoints 

Class 
frequencies 

   20.54 – 24.2      22.37           6   (49) 
   16.88 – 20.54      18.71   10   (43) 
   13.22 – 16.88      15.05   15   (33) 
    9.56 – 13.22      11.39   13   (18) 
    5.9  -  9.56       7.73    5 

 
Some comments have to be made. The last columns of Table 2.5 and Table 2.6 

contain so called accumulated class frequencies, to be used later on. The grouping 
procedure always reflects also the other conditions which we just mentioned – by 
referring to [1].  
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The final remark may be considered as specific for this book– the frequency 
histogram has to be regarded as a major outcome of grouping statistical data. It 
uncovers some hidden, so to speak, secrets of grouped data – namely, how they 
are distributed with respect to their frequencies.  

 
Fig. 2.3 Frequency histogram corresponding to Tab.2.6 

Also, from the same point of view, one may emphasize the pioneering role of 
the book [1] . The content of Chapter VI  The Frequency Distributions offers 
examples in a continuous search for the hidden shape of the frequency histogram 
associated with some kind of data. This is recommended for our Student as 
examples of the first category of inquiring explorations.  

Data presented here rather have a purpose more closely related to satisfying the 
didactic task of Statistics. Therefore samples of grouped data are rather small, as is 
possible for presentation on a white board during classes. Also, their character 
hardly reflects the requirement which was also stated with respect to the statistical 
data as “affected to a marked extend by a multiplicity of causes ” - the level of 
unemployment in Poland in 1992.  
 

The next step should be the evaluation of grouped statistical data. First we are 
going to analyze two procedures to derive averages, and the second step will be to 
use cumulated histograms to demonstrate a practice of percentiles.   

2.4  Direct Method to Derive Averages 

The example of grouped data has been borrowed from [1]. It is a scanned copy – 
labeled here as Tab. 2.7 (data for England and Wales).  

 



54 2   Grouped Data. Introduction to General Statistics
 

Table 2.7 Death-rates per Thousand of Population and per Annum, 1881-90 

 

Table 2.8 Direct method of evaluation – grouped data of Tab.2.7 

1 11x −  2
1 11x − 1 11f −  i ix f⋅  2

i ix f⋅ 12 21x −  2
12 21x − 12 21f − i ix f⋅  2

i ix f⋅  

13 169 5 65 845 24 576 5 120 2880 
14 196 16 224 3136 25 625 3 75 1875 
15 225 61 915 13725 26 676 1 26 676 
16 256 112 1792 28672 27 729 1 27 729 

17 289 159 2703 45951 28 784 2 56 1568 
18 324 104 1872 33696 29 841 0 0 0 
19 381 67 1273 25527 30 900 0 0 0 
20 400 42 840 16800 31 961 2 62 1922 

21 441 25 525 11025 32 1024 0 0 0 
22 484 18 396 8716 33 1089 1 33 1089 

23 528 8 184 4224 632 11188 203056  

Basic mean:    11188
17.70253165

632
i i

i

x f
x x x

f

⋅
= → = → =


 

Mean square: 
2

2 2 2203056
321.2911392

632
i i

i

x f
x x x

f

⋅
= → = → =


 

Variance:  ( )22 2 2 7.911512422x xx xσ σ= − → =    

Standard deviation: 2.812741087xσ =  
 
As we see the above numerical results have been derived via a long arithmetic 
procedure, but the question – whether they are right – remains unanswered.  

If we are not going to repeat in some way the above calculations, which may 
not lead to a reduction of uncertainty, the other way to find out if they are correct 
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is to obtain the same results using another procedure. Before we resort to this 
concept there will be some intermediate stages. Examining the grouped data given 
in Tab. 2.7, it is seen that the condition  (2.34)  has not been met here. The 
apparent convenience of the collected data has been placed above the requirement 
expressed by  (2.34).   It is seen from Tab. 2.4 that for  N = 632 the suggested 
class number is of order 8 – 9, while the data given in Tab. 2.7  show  21  
classes – twice as many as advised. Therefore if we propose to double the interval 
of all the classes it automatically will reduce by two times the number of classes.  
Data grouped in this way have been inserted in Tab. 2.9. 

Table 2.9 New grouped data of Tab.2.7 

  x   f    x f     x x      x x f 

32.5   1    32.5  1056.25   1056.25
30.5   2    61.0  930.25   1860.5
28.5   2    57.0  812.25   1625.0
26.5   2    53.0  702.25   1404.0

24.5   8   196.0  600.25   4802.0
22.5  26   585.0  506.25  13162.5
20.5  67  1373.5  420.25  28156.75

18.5 171  3163.5  342.25  58524.75
16.5 271  4471.5  272.25 73779.75
 14.5  77  1116.5  210.25  16189.25
12.5     5     62.5  156.25  781.25

---     632   11172   -----  201342

 
A short comment may help understand the procedure leading  from  Tab. 2.7  

to  Tab. 2.9. As the first step classes (32.5, 33.5) and (31.5, 32.5)  were united 
giving a single class of  (31.5, 33.5), for which the middle value is  32.5, and the 
corresponding class frequency is 1. Each of the following steps proceeds in the 
same fashion. Having in mind that the collection of 21 original classes was odd in 
number, the last class cannot be coupled with any other. Therefore the left side 
limit of the last class (12.5, 13.5) has been extended to preserve a constant 
interval, so the limits of this class show (11.5, 13.5), with the middle value of  
12.5  and the class frequency remains 5. 
 
Corresponding averages are listed/calculated below: 
 

11172
17.67721519

632
i i

i

x f
x x x

f

⋅
= → = → =


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2
2 2 2201342

318.5791139
632

i i

i

x f
x x x

f

⋅
= → = → =


 

( )22 2 2 6.095177026x xx xσ σ= − → =    2.468841236xσ =  

 
Conclusions: The  aforementioned re-grouping does not have much effect on the 
basic average (it has been reduced by a negligible amount of 0.1%), but does 
significantly affect the variability, reducing the variance by 23%, and the 
corresponding value of the standard deviation by 12%. Hence, this re-grouping 
has far reaching consequences and raises a question of whether such a re-grouping 
does not constitute a manipulation.  In a later part of this book the consequences 
of frequent practice resulting in changes to class ranges due to observed changes 
in the class frequency will be shown. 

The student should be pleased that below, instead of using an elaborate solution 
based on statistics given in Tab. 2.7 (and Tab. 2.8), we rather use re-grouped 
statistics from Tab. 2.9 while presenting a new method of determining the required 
statistical averages. It is called the “coded method.”  

2.5  Coded Method 

The essential evaluations of the new method are shown in Tab. 2.10. 
 
Table 2.10 Coded method based on Tab. 2.9 
 

    x    f  U   U f  U U f 

   32.5 1   7 7    49
   30.5 2   6 12    72
   28.5 2   5 10    50
   26.5 2   4 8    32

   24.5 8   3 24    72
   22.5 26   2 52  104
   20.5 67   1 67    67

   18.5 171   0 0     0
   16.5 271  -1 - 271 271
   14.5 77  -2 -154  308
   12.5   5  -3 - 15   45

    ---  632  --- - 260 1070
 
Averages obtained by the new method 
 

260
0.411392405

632

U f
U U U

f

⋅ −= → = → = −

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2 2 21070
1.693037975

632

U U f
U U U

f

⋅ ⋅
= → = → =


 

( )22 2 2 1.523794264U UU Uσ σ= − → =  

 
Conversion 
 
Linear transformation defines new entries: 
 

x R
U

i

−=       or    x i U R= ⋅ +                 (2.35) 

Basic mean: 

x i U R= ⋅ +                         (2.36) 

2, 18.5 17.67721519i R x= = → =  

Variance: 

2 2 2
x Uiσ σ= ⋅                          (2.37)     

2 6.095177056xσ =  

Short Description of the above Given Results. It is seen that the basic mean and the 
variance calculated using this new method are almost identical with the results 
obtained using the direct method. Insignificant differences are due to the different 
rounding errors appearing in the course of both arithmetical procedures. The key idea 
lies in the appearance of a new variable  U  obtained by applying the linear 
transformation  (2.35) regarding  x  the “old” variable.  The choice of both 
parameters  i  and R  of the linear transformation  (2.35)  is in part arbitrary, in 
part obligatory.  The first simply marks class range/interval of the grouped data and 
must be constant.  The choice of  R  is  arbitrary.  The choice of the row – in Tab. 
2.9 – fixes the value of  R . The structure of the data n Tab. 2.9 should obey the rule: 
the lowest values are at the bottom of the table. Then while filling the third column – 
it is done almost mechanically – by writing integer numbers – commencing from 
“zero” – upward for positive integers – and downward for negative values. Selecting 
the  row  containing  “zero” – fixes the choice of parameter  R – as it is seen in 
Tab. 2.9. Numerical practice advises to chose such a row for placing “zero” value of  
U  which gives the smallest value for the total sum obtained for the next column. 
This value can be positive or negative. The smallest value of this sum simplifies 
further calculations.  
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2.6  Discussing Two Special Cases 

1. The opening example examines some statistics from GUS, 1993. It is provided in 
Tab. 2.11 and has been chosen because of curious grouping applied by a 
professional statistician which we would like to comment. 

Table 2.11 Statistical data – not recommended pattern 

      
 

Comments: grouped data shown in Table 2.11 contain 5 classes. Two of them 
do not specify the class limits – we can denote them as  (?, 600)  and (2700, ?). 
The first one due to its class frequency numbers about 4% of the entire statistics, 
the second one about 9%. Apart from that, the other three classes have three 
different intervals 400, 800 and 900 zł. In this way the rule advising to apply the 
same interval size for grouped data has been - without any visible reason - 
completely ignored. Therefore – the main purpose of the statistical data – their 
quantitative nature has been lost. The question: who it may concern – remains 
with no precise answer – those who do not care what they refer to? 

Table 2.12 Age categories data, GUS 1993 
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2. The second example will require more of our attention – and it also comes from 
GUS sources. In fact more than in the data alone shown in Table 2.12 we are 
interested  in  some  kind  of  a further  re-evaluation.  

Despite the critical character of this passage we quote the source of this re-evaluation 
as [12]. Grouped data presented in Table 2.12 reflect the status on 31 December 1992, 
GUS Yearly Book, 1993, p.46. It is possible to refer to the age categories shown in 
Table 2.12 by using some commonly understandable description:  creche-age, 
nursery-school-age, school-age at primary and secondary stage, productive-age – in 
four sub-categories, and the past productive-age in a single last class. We should 
guess that these class intervals are of interest – at least for the people in charge of 
different districts of the country, although it may reflect an overestimation of such 
purposes. Let us have a look at the limits of the class intervals – to note, that we 
deal with  integers – therefore to calculate class intervals we cannot use - so to 
speak - ‘mechanical extraction’ – as for instance - for the second row  (6 – 3)  
does not result in 4 (and so on). The point concerns the first class: the left limit 
cannot be “0” – because “zero age” cannot be counted.  

At least it is a “delicate point” which cannot be left without necessary comments. 
Also there is an open question of similar nature with respect to the last class – the 
discussion of which we leave for the Student. Here it may only be mentioned that the 
upper limit of this class defines the age of the eldest person in the country.  To step 
one step further we enclose Table 2.13. It uses data given in Table 2.12. 

Table 2.13 Statistics of population age in Poland 1992, GUS 

 x   f   x f   x x     x x f 

77.5 4032 312480.0 6006.25 24217200.00
54.5  7645 416652.5 2970.25 22707561.25
37.0 9297 343989.0 1156.00 10747332.00
27.0 2498  67446.0  729.00  3079926.00 
22.0 2601  57222.0  484.00  1258884.00 
17.0 3068  52156.0  289.00   886652.00 
10.5 5353  56206.5  110.25   590168.25 
 4.5  2343  10543.5   20.25    47445.75 
 1.5  1581  2371.5    2.25     3557.25 
 ---- 38418 1319067  -----  63538706.5 

 
Results collected in Table 2.13 – have been used to derive the averages – mean, 

and variance. The Student should check the obtained below values by him/herself. 
They follow the so called direct method.   
 

1319067
34.33460878

38418
x x= → =          
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2 263538706.5
1653.87856

38418
x x= → =  

 
The last two values serve to derive both measures of variability: 

( )22 2 2 475.0131995 21.79479753x x xx xσ σ σ= − → = → =  

 
It should be however noted that due to different class intervals the coded method 
simplifying calculations cannot be used. Nevertheless the above result does not 
close the case. As we already noted it is a book [12] where clever re-grouping of 
the data from Table 2.12 to data shown in Table 2.14 has been performed. To have 
material for commenting such an idea we once again obtained – also for this case - 
the major averages.  

Table 2.14 Constant class intervals statistics 

1i ix x +−   x    f     x f   x x      x x f 

70-89(90) 80.0  3225.6  258048.00 6400.00 20643840.00 

60  -  69 64.5 2717.7  175291.65 4160.25 11306311.43 

50  -  59 54.5 3822.5  208326.25 2970.25 11353780.63 

40  -  49 44.5 5010.2  222953.90 1980.25  9921448.55 

30  -  39 34.5 6198.0  213831.00 1190.25  7377169.50 

20  -  29 24.5 5099.0  124925.50  600.25  3060674.75 

10  -  19 14.5 6413.7   92998.65  210.25  1348480.425 

 0  -   9  5.0 5931.4   29657.00   25.00   148285.00 

  ------ ----- 38418.1 1326031.95   ---- 65159990.29 
 
 

1326031.95
34.51581286

38418.1
x x= → =  

 

2 265159990.29
1696.075295

38418.1
x x= → =  

 

( )22 2 2 504.7339576x xx xσ σ= − → =      22.46628491xσ =  
 

Comments:  The content of the numerical values given in Table 2.14 – together 
with the content which originates in book [12] will be examined below. It 
concerns the first three columns. 

As we see, the intention was to get statistics, which preserves the constancy of 
all class intervals (except the highest class) by using non uniform intervals 
statistics given in Table 2.12. The prevailing class range counts 10 integers. A 
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systematic check of the middle values given in the second column of Table 2.14 
shows that they are right. It is not so easy to check the values in the third column.  

Table 2.15 Density of the population birth/death processes 

 
 
The evaluation which we are going to examine was based on the assumption of 
uniform class intensity. An intriguing question comes up here: what are the 
reasons of such uniformity? There is – so to speak - an interplay between the 
intensity of the births and deaths. The final result is reflected by all class 
frequencies registered at the end of 1992. It was assumed,  that for classes 
investigated in Table 2.12– each class intensity – given for convenience in Table 
2.15 - certainly describes the entire period. Calculations provided to derive results 
given in Table 2.14 can be justified in this way. Let us have a look how class 
frequency for the class range  (10 – 19) has been obtained  and given in the 
second row from the bottom of Table 2.14 and equal to  6413.7.  Assuming that 
sub-class range  (10 – 14)  – with 5 entries is characterized by the same intensity  
669.13 as the intensity for the wider class range  (7 - 14), then, further, taking  
sub-class range  (15 – 19)  containing also 5 entries having known the class 
intensity equal to  613.6  the unknown class frequency  for  the class range  
(10 – 19)  can be derived in the following way: 
                  5 669.13 5 613.6 3345.65 3068 6413.65⋅ + ⋅ = + → .   
In a similar fashion - to derive the value in the first – the lowest row of Tab. 2.14 – 
appropriate calculations are:  3 527 4 585.75 3 669.13 5931.39⋅ + ⋅ + ⋅ = .  In the third 
step - to get class frequency for the highest row it is necessary to perform:  
20 161.28 3225.6⋅ = . This result corresponds to class range (70 – 89), which has 
20 entries. To obtain a middle value equal to  “20”  -  for this case (we do not 
say “class”) it is advisable to replace class range (70 – 89) – by class range which 
includes the entry  “90”- leading to (70 – 90). To check the remaining values we 
encourage the Student – our hint: they do not rise more doubts.  
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Final Conclusions -  Results concerning averages – basic mean, and standard 
deviations - obtained following re-grouping given in Table 2.14 – are practically 
the same as results obtained following original data given in Table 2.13. Despite 
this important an annoying question may be posed here: does the above procedure 
not deserve to be called a manipulation of the statistical data?  This question 
seems to be a difficult one – although the answer seen in the light of the obtained 
here results can be rather negative. Nevertheless in general – any intrusion into 
statistical data should be treated with justified suspicion. An accusation of any 
kind of manipulation of the statistical data is a serious one. The best way is to pay 
sufficient attention at the stage of Logistics while designing the project for a 
subsequent statistical investigation. It may eliminate temptations to abuse the 
already collected statistics – whether consciously or unconsciously. 

2.7  Percentiles for the Grouped Data 

The term “percentile” in fact denotes exactly the same as “percent” nevertheless – 
maybe due the fact that it sounds new, it appears in many text-books of Statistics 
(for instance [1] and [6]) being apparently originated by Francis Galton.  The 
quotation from [1] may give a valuable definition: 

>> If the values of the variable be ranged in order of magnitude, and a value  P  of 
the variable be determined such that a percentage  p  of the total frequency lies below 
it and  (100 – p)  above, then  P  is termed  a percentile. << 

Following  [6] we also present Percentile Ranks – however, we moved the 
material to an appropriate place in Part II of this book. The concept of the 
Percentile Rank as we shall see it in Part II – presents an idea which for the given 
statistical data presents the same problem – but so to speak – from the other side. 
Looking at the arrows in Fig. 2.4 they have to be reversed. 
 

 

Fig. 2.4 Determining the position of 60th Percentile – rough account 
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The numerical example shown in Fig. 2.4 follows data given in Tab. 2.3 and also 
shown in Fig. 2.3. Although the frequency histogram in Fig. 2.3 may serve as a final 
resort to express the percentile position, the cumulative histogram (or its appropriate 
fragment) – as shows Fig. 2.4 must be used for its numerical derivation. Data in 
brackets in the last column in Tab.2.6  have been used to draw Fig. 2.4. The problem 

requires: to determine position of 60-th Percentile – which we symbolize by 60P . 

Having in mind the value of the total frequency equal to  49 – we see that  60% of 
this value will be equal to  29.4. This quantity is identified by point  A  in both 
vertical scales of Fig. 2.4.  Next we draw a horizontal line through this point – to 
intersect the line  BD and derive the point  C. Finally – projecting vertically this 

point   C  into horizontal scale line  the position of  60P  will be determined in this 

graphic way: 

60 15.9P ≈  

Making use of a finer scale shown between numbers 13.22  and  16.88  - the 
numerical value shown above can be approximately read. This result is considered 
as a rough account of the required value. To get more accurate numerical result it 
is advised to proceed as indicated below: 

1. The value to begin with serves the indicated above value obtained by  
0.6 49 29.4⋅ =  - the corresponding point  A  shows its position on both 

vertical scales; 
2. The rectangular BGDH shown in Fig. 2.4  in measures 15 units of the 

“physical” scale vertical direction, so BG = 15;  the altitude of point B 
determines “18” on the same scale;  due to calculations shown above the 
vertical position of point  F  being the same as point  A  - equal to 29.4;  
therefore the length of the segment of  BF  results from  (29.4 – 18) = 11.4 . 
With these results the ratio  BF :  BG  is equal to the ratio 11.4 : 15. 
Applying Thales Theorem  we find that ratios  BK : BH = BF : BG = 0. 76   
will be the same. From Fig. 2.4 it is clear that the segment BH has a length of  

                            (16.88 – 13.22) = 3.66,   
   therefore  distance  BK  will be equal  to  0.76 BH   which gives the value 
   0.76 * 3.66  =  2.7816 . Adding this distance to value  13.22  we shall 
   get the value  16.0016   which gives the exact value of the desired  
   percentile. 
 
3. Conclusion:  60%  of all unemployment figures is below 16%  - while for the 
remaining  40%  of the cases – it is the lowest rate of unemployment. 

In the end of this passage it has to be pointed out that the geometrical procedure 
applied here is based on the Theorem of Thales, a Greek who opens the list of 
seven sages of the antiquity.  In Greek alphabet his name is written so Θαλῆς  - 
he is known to have lived from about  624 BC – to about 546 BC. He was a 
descendant of a rich Phoenician family from Miletus. The Theorem using his 
name is known round the world. But History of Mathematics does not ascribe this 
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Theorem to him – it is rather a symbolic tribute. In Poland it is usually taught at 
primary school.  

 

Fig. 2.5 Exposing the Thales’s Theorem 

As a matter of curiosity it may be said here that Pergamon Museum in Berlin – 
Germany has on display a re-construction of the original Miletus market square  - 
although the Author of this book cannot say whether the monumental ruins found 
their way there thanks to Heinrich Schliemann (1822-90) – the famous explorer of 
Troy or thanks to some other German explorer? 
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Chapter 3 
Regression versus Correlation 

Idea of the linear regression. Auxiliary material - straight lines in Cartesian 
geometry. The concept of distance – geometrical distance and equivalent 
distances in two orthogonal directions – as a prerequisite to the concept of two 
regression lines. Frequent errors in interpreting two regression lines. The least 
square concept - Adrien Marie Legendre, Francis Galton, Karl Pearson [2]. 
Formal derivation of the two regression lines. Correlation coefficient as a 
geometrical mean of the two directional coefficients of regression lines. Which in 
fact measures the correlation coefficient? Udny Yule [1] and his warnings 
regarding abuse of correlation analysis. Further reading [3-4], [6-9].  

3.1  Linear Regression – The Idea 

The problem requires that we determine a straight line l   which best fits the 

relation between the two descriptive statistics ix  and  iy  which have been 

combined into a single, two dimensional statistics made up of the couple  

( ),i ix y . At the turn of the 19th century formalism was developed (F.Galton, K. 

Pearson, U.Yule) which relates the concept of the best fitting line to the concept of 
the least square of A. M. Legendre. In this approach, the procedure meets the 
formal condition of the minimum value of the sum of the all squared distances 

between a set of the points  ( ),i ix y  and the desired line  l  in quite a specific 

way. Below we present this approach describing its origins related to the concept 
of the geometric distance. 

Distance between Two Points.  In this place we have to recall a short reference 
to geometry from Chapter 1. After the problem of how to draw a line in coordinate 
geometry and of how its analytic equation is given are considered as resolved – we 
have to turn our attention to the problem of how the distance between a given 
point and given line is solved in this geometry. This problem can be reduced to the 
problem of determining the distance between two given points. Fig. 3.1 tells us to 

draw an auxiliary line perpendicular to the line  l  through given point 1P   - and 

3
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then – find the point  2P  -  in which this auxiliary line (not named) intersects the 

line  l . In this way the initial problem is equivalent to the problem of determining 

the length of a given segment – this time – segment 1P 2P .  

 

Fig. 3.1 Defining the distance between point  1P  and line  l 

Again with the help of Fig. 3.1 it becomes clear that the position of point 1P  is 

given by its coordinates  ( )1 1,x y , and similarly – the position of point  2P   - 

defines a pair of coordinates  ( )2 2,x y . Euclidean geometry defines the distance 

between two points as the shortest distance i.e. equal to the length of segment 

1P 2P . To determine this value analytic geometry makes use of Pythagoras 

Theorem regarding the rectangular triangle 1 2Q P P  - by writing: 

( ) ( ) ( )2 2 2

1 2 2 1 2 1P P x x y y= − + − →   ( ) ( )2 2

1 2 2 1 2 1P P x x y y= − + −    

(3.1) 

Interestingly enough, the  formula  (3.1)  regarding the considered problem was 
not applied in the regression analysis which eliminated the possibility of obtaining 
a single regression line. The procedure applied in statistical practice can be seen as 

the procedure which determines the distance between  1P   and  2P  taking 

advantage of the two definitions  (3.2)  and  (3.3)  given below (see Fig.3.1):  

the distance defined by measuring it in x-direction, requiring that it is  

                                                        12 xx −                                                       (3.2)  

the distance defined by  measuring it  in  y-direction,  requiring that it is 

                                                        12 yy −                                                      (3.3) 
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As a consequence of this approach – there are two regression lines  - and 
neither of them can be considered superior with relation to the other. This is the 
first time where we take an opportunity to warn our Student not to be drawn into 
confusing explanations especially if using the Internet.  

3.2  Regression Lines 

In fact, the material shown in Fig. 3.2 precedes the topic currently discussed – 
nevertheless it may attract the Student’s attention and push him/her to further studies.  
The statistical data in Tab. 3.was published by the US State Department to show 
community income for Whites and  Blacks between 1980-96.  

 

Fig. 3.2 Yearly income in the US – following Table 3.1 

The first variable, and the second variable statistics can be understood as a 
descriptive statistics. But their association has to be considered as a two 
dimensional variable – which we propose to call statistics of the first order 
dimension two. The subject of this Chapter deals with such kind of statistical data 

to be given by the ordered couples coordinates ( ),i ix y .                              

Table 3.1 collects seventeen such pairs, while in Fig. 3.2 all such data is shown 
as graphic data – and due to conventions of analytic geometry – they present a set 
of points filling the plane   xy . Moreover, between those points there are two 
lines – a black one, and a white one – which must be the already mentioned two 
regression lines – calling for an answer to the question of how they were 
determined. As we know “there is no royal road to Mathematics”  and elucidation 
of the answer takes at least a few pages. Apart from that, in the beginning a purely 
symbolic character of these two groups of data may be noted – dividing them into 
“whites” and “blacks” due to their origin. To proceed further the Student has to be 
equipped with a pencil and a piece of paper – and like in every kind of poetry – 
he/she has to be a poet in his/her soul.  Especially so keeping in mind an aspect of 
data in Table 3.1. – to which the usual scientific calculator with its 10 digits will 
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be insufficient as the numerical results require at times 11 digits. The calculations 
included here were made using a calculator from more advanced Word versions. 

Table 3.1 Yearly income in the United States 

No  Year        x         y           x  x      y  y           x   y 

  4 1980 35620 20521   1268 784 400    421 111 441      730 958 020 
  3 1981 35094 19693   1231 588 836    387 814 249                                                 691 106 142 

2  1982 34657 19642  1201 107 649    385 808 164               680 732 794 
  1 1983 34502 19579   1190 388 004    383 337 241      675 514 658 
  5 1984 35709 20343   1275 132 681    413 837 649      726 428 187 
  9 1985 36320 21609   1319 142 400    466 948 881      784 838 880 
 13 1986 37471 21588   1404 075 841    466 041 744      808 923 948 
 15 1987 37924 21646   1438 229 776    468 549 316      820 902 904 
 16 1988 38172 21760   1457 101 584    473 497 600      830 622 720 
 17 1989 38473 23000   1480 171 729    529 000 000      884 879 000 
 14 1990 37492 22420   1405 650 064    502 656 400      840 570 640 
 10 1991 36367 21665   1322 558 689    469 372 225      787 891 055 
  7 1992 36020 20974   1297 440 400    439 908 676      755 483 480 
  6 1993 35788 21209   1280 780 944    449 821 681      759 027 692 
  8 1994 36026 22261   1297 872 676    495 552 121      801 974 786 
 11 1995 36822 23054   1355 859 684    531 486 916      848 894 388 
 12 1996 37161 23482   1380 939 921    551 404 324      872 614 602 

  619618   364446  22606 825 278  7836 148 628  13 301 363 896 

 
We commence the calculations by determining the basic averages for single 

variables x  and  y.  
Mean value for  whites 
 

619618
36448.1176470588235294 11764705882

17
x x= → =         (3.4) 

 
It is interesting to note the presence of a cycle of 16 digits in the above decimal 
extension. 

Mean value for  blacks 
 

364446
21438

17
y y= → =                                 (3.5) 

 
is surprisingly an integer number! It may also be noted that Johan von Neumann 
(1903-57) was likely to consider number “17” as a first true prime number.1 

 

                                                           
1 According to an American mathematician of Polish origin Mark Kac (1914-84) in a 

personal communication. 
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Inserting the above determined point  ( x , y  ) -  in the plane  ( x, y ) as seen in 

Fig.3.2  we conclude that  the couple (36448, 21438) belongs to  both regression 
lines – at their intersection – although for the time being there is no theoretical 
evidence to prove it. The point is called the arbitrary point. 

As the first step towards determining regression lines an auxiliary geometric 
result from Chapter 1 has to be recalled. Due to it the first regression line will be 
given by: 

* *y A B x= +                                             (3.6)  

This line will be recognized as the  black regression line  - determined by the 

coefficients  *A and *B .  
To satisfy the intuition – it must be the closest line with respect to all 17 points 

of the statistics under consideration. From the formal point of view the closest line 
satisfies the least squares condition minimized the total squared distances of all 
the points referring them to the regression line. To explain all the required details 

we selected a single point ( )1 1,x y  - determined in  Table 3.1  (see the first 

column) as  point  “1” with coordinates ( )34502,19579 .  We also selected the 

distance definition (3.3). Due to  (3.3)  the distance is measured along direction  
“y” – in other words - vertically .  Therefore, it has to be recognized that 

coordinate 2y   points out the black regression line and according to  (3.3)  the   x  

coordinate of this point belonging to the regression line – and denoted by 2x   has 

to be equal to  1x  so  2 1x x= . Consequently, the unknown coordinates  2y   

following  (3.6)  are determined by: 

* *
2 2y A B x= +                                           (3.7) 

Similar considerations are valid for the remaining sixteen points.  This procedure 
leads to the distribution well known in Statistics – but not the subject of this 

course - called - 2χ  “chi-square -distribution”.  For our purposes it is enough to 

know that the final step in this procedure takes the form of a formal condition 
requiring to determine: 

  

  
( ) 2* *

2
2

1

min min
N

i i

y
i y

y A B x
χ

σ=

− −
=                           (3.8) 

 
Condition  (3.8)  formalizes the above expressed least square requirement of 
finding the minimum of all the squared distances (using all the considered 
statistical points) between all the points and the (black) regression line. Let us look 
at how the purely mathematical way is developing further. Taking into account 
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that the variance 2
yσ   is a constant value, condition  (3.8)  is equivalent to the 

simpler condition, below given by: 

( ) 22 * *

1

min min
N

y i i
i

y A B xχ
=

= − −                        (3.9) 

In order to satisfy (3.9)  one must solve the problem of determining the minimum 

of an unknown linear function of two variables *A , 
*B  .   In the course of such a 

formal procedure two equations are derived which assure   (3.9): 

( )
2

* *
*

2 0y
i iy A B x

A

χ∂
≡ − − − =

∂                     (3.10)        

( )
2

* *
*

2 0y
i i ix y A B x

B

χ∂
≡ − − − =

∂                 (3.11) 

In the last step, both equations  (3.10)  and  (3.11)  have to be solved 

simultaneously to give the values of the two coefficients *A , 
*B  .  Equations  

(3.10)  and  (3.11)   are a system of two linearly independent algebraic equations 
of the first order with respect to the two unknown coefficients of the regression 
line occurring in  (3.6).   Prior to the final formulae it is important to note that we 
expect to see those formulae as functions of the following quantities whose 
numerical values have been already determined in the last row of Table 3.1: 

x ,  y ,  2x ,  x y⋅    and    N                        (3.12) 

The appearance in this list of symbol   N  - expressing total frequency  - is the 
result of the following:  

* *

1

N

i

A N A
=

= ⋅                                             (3.13) 

Let us comment briefly on how to solve equations  (3.10)  and  (3.11) . By 
expanding the sums in both of these equations and then reordering results in a 
suitable way, we can  derive as an intermediate stage the following two equations:  

* *
i iN A x B y⋅ + ⋅ =                                  (3.10a) 

* 2 *
i i i ix A x B x y⋅ + ⋅ = ⋅                         (3.11a) 

The Student should note that the unknown coefficients in both equations remain 
outside the sums. This system of linear algebraic equations of the first order with 

respect to the unknown coefficients *A , 
*B   can be solved by elimination and the 

final results given below can be derived: 
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( )
2

*
22

x y x x y
A

N x x

⋅ − ⋅ ⋅
=

−
   

 
                           (3.14) 

( )
*

22

N x y x y
B

N x x

⋅ ⋅ − ⋅
=

−
  
 

                              (3.15) 

Substituting the numerical values at the bottom of Table 3.1 into  (3.14)  and  
(3.15) gives after simple evaluations the following values for the coefficients: 

                            
*A   =   - 7180. 978395266816910263135793094               (3.16) 

*B   =    0.78519770684443622921618369460312              (3.17) 

The obtained results (which for practical purposes can be rounded up to four digits 
i.e. to  - 7181  and  0.7852)  call for a check with respect to the black regression 
line  in Fig. 3.2.  It can be done in the following way. Let us substitute into  (3.6)  
the above rounded up values of both coefficients, together with the value  

34500x = . Then the rounded up value for the corresponding  y  is: 

y  =  19910                                                    (3.18) 

By inspecting Fig. 3.2 the coordinates  (34500, 19910) evidently belong to the 
black regression line at its utmost left edge visible in the picture. The above check 
confirms satisfactorily that the below given approximate equation:  

7181 0.7852y x= − +                                    (3.19) 

can be understood as an analytical expression of the black regression line shown 
in  Fig. 3.2.  The above described procedure should also be considered as a 
guideline for the Student to follow independently to solve the problem of deriving 
the white regression line. The departing point of such a procedure would be the 
definition (3.2) giving the distance measured along the "x” direction. The final 
outcome should lead to the following equation:   

* *x A B y= +                                        (3.20) 

The initial step requires us to replace the condition  (3.8)  by the following one: 

( ) 2

* *2
2

1

min min
N

i i

x
i x

x A B y
χ

σ=

− −
=                  (3.21) 
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Accordingly, conditions  (3.10)  and  (3.11)  should be replaced by: 

( )
2

* *
*

2 0x
i ix A B y

A

χ∂ ≡ − − − =
∂                      (3.22) 

( )
2

* *
*

2 0x
i i iy x A B y

B

χ∂ ≡ − − − =
∂                 (3.23) 

While the replacement of the equations  (3.10a)  and  (3.11a)  by suitable ones is 
here left for the Student who should be able to check that the below given 
formulae expressing the desired coefficients of the white regression line  are to be 
considered as proved: 

( )
2

* 22

y x y x y
A

N y y

⋅ − ⋅ ⋅
=

−
   

 
                           (3.24)  

( )* 22

N x y x y
B

N y y

⋅ ⋅ − ⋅
=

−
  
 

                            (3.25) 

Here we recommend that the Student compare formula  (3.24)  with  (3.14)  to  
recognize the possibility of deriving  (3.24)  by direct replacement of the symbols 
appearing in  (3.14)  in this way: every coordinate  “x”  has to be replaced by  “y” 
and  vice versa. A similar procedure is also true regarding the couple composed by 
formulae (3.15)  and  (3.25) .   Apart from this rule of the thumb, we consider this 
place as an opportunity to repeat our initial warning to the Student – to avoid a 
serious mistake in which such a mirroring may lead to misinterpretation of both 
regression lines.  We shall explore this remark in detail somewhat later. Here we 
present numerical values for these new coefficients: 

*A =  19789.34786081568589514433196484                     (3.26) 

                       *B =   0.77706734705864062105921414036021                (3.27) 

At this point it has to be first stated that the graph of the black regression line was 
taken for granted  when copying  Fig. 3.2  from a student's work. Therefore to 
check the quality of the obtained coefficients  * *,A and B   we proceeded in the 

way presented above. The white regression line was drawn using the derived 
numerical values of the coefficients A* and B* .  It is seen in Fig. 3.2  that in 
order to do that, an initial point  L  has been chosen. Its  y  coordinate has been 
arbitrarily fixed as  y = 22500,- while its  x  coordinate has been derived by 
placing   

* 19790A =   and  
* 0.7771B =  into  (3.20)  together with the above  

chosen  y  coordinate  - obtaining: 

x = 37270                                              (3.28) 
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In this way point  L  with coordinates  (37270, 22500) has been  determined as the 
second  point belonging to the  white regression line  (3.20) . Therefore the white 
regression line has been finally drawn throughout points  K  and  L  - as seen in 
Fig. 3.2.  

And now we recall the initial warning – and replace it by a substantial warning. 
To begin with it must be stated that it is quite common to come across remarks 
saying that the equation  (3.6)  determines the regression of  y on  x, while the 
equation  (3.20)  describes the regression of  x  on  y. One of the possible 
consequences of this terminology would be a suggestion to solve equation  (3.6)  
for variable   x . Let us demonstrate what will happen in this case, it will lead to 
the equation: 

9145 1.273x y= +                                           (3.29) 

Though we already derived the equation of the white regression line which 
assigned (3.20)  the following particular form: 

19789 0.7771x y= +                                       (3.30) 

Regarding equation  (3.29)  it must be stated that it is in fact another description of 
equation  (3.19)  determining the black regression line.  

To close these considerations we will present proof that the point ( ),x y   

denoted as "K” in Fig. 3.2 and called the arbitrary point - is the point of 
intersection of the two regression lines. We commence by recalling these two 
equations in their general form: 

* *y A B x= +                                             (3.6)                                              

* *x A B y= +                                              (3.20) 

Applying to each of them the operation determining the mean value leads to:  

* *y A B x= +                                                     (3.31) 

* *x A B y= +                                                     (3.32) 

The results  (3.31) – (3.32)  prove that the point  ( ),K x y   belongs to both of 

them. 

3.3  Arithmetical Appendix without Comments 

8 238 967 045 265 988 – 8 241 764 494 511 728  = - 2 797 449 245 740 

              384 316 029 726  -  383 926 465 924  = 389 563 802 

                      
*A   =   - 7180. 978395266816910263135793094 

                  226 123 186 232 – 225 817 301 628   =  305 884 604 
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*B  =   0.78519770684443622921618369460312 

                                                    2 34500x =  

27089.320886133049907958337463808 – 7180. 978395266816910263135793094 

                      2y  =  19908.342490866232997695201670714 

         4855418740584104 – 4847628866441616  =  7789874142488 

                   133214526676 – 132820886916 = 393639760 

                      *A =  19789.34786081568589514433196484 

                  226 123 186 232 – 225  817 301 628  =  305 884 604 

                          *B = 0.77706734705864062105921414036021 

17484.015308819413973832318158105 + 19789.34786081568589514433196484 

          y =  22500             x = 37273.363169635099868976650122945 

3.4  Correlation – Descriptive Statistics  

Introductory Remark. The interplay between Statistics and Probability manifests 
its strength in different ways at different places. This remarks seems to be very 
much appropriate in this part of Chapter 3. Considering two dimensional random 
variables and defining the first mixed moment, leads, very naturally, to the 
correlation coefficient. Formally it has an analog in the basic mean for one 
dimensional random variable.  Such a remark may throw some light on General 
Statistics which conventionally disregards Probability completely. What may be 
also noted is a hidden contradiction: authors of Statistics books are fully conscious 
of this situation, but the readers of their books – not at all!  Such a situation 
frequently causes erroneous interpretations on one side and unjustified 
expectations on the other side. Let us try to be more specific: though on the basis 
of Probability, a two dimensional random variable appears as a well defined study 
object, on the basis of Statistics we commence with two one-dimensional statistics 
as given in  Table 3.1 – without any formal reason to consider descriptive statistics 

of blacks  y  and whites  x   as the two dimensional entity ( ),x y . We know 

nothing at all about the possible two dimensional probability density of such a 
variable.  Therefore, from the opening of Chapter 3, we are subject to a serious 
accusation which may be reduced to one word: WHY?! In fact this kind of 
objection also applies to considering the nature of variability of one dimensional 
statistics. Here we may recall the definition of Statistics given by Udny Yule who 
talks about “the data affected to a marked extent by a multiplicity of causes,” 
which is responsible for the application of probabilistic tools. In order to arrive at 
some positive explanation, attention may be turned toward two-dimensional 



3.4  Correlation – Descriptive Statistics 77
 

normal distribution: to determine it in a unique way it is required to know the 
mean, the variance, and the correlation coefficient.  The above property can serve 
to justify, to some extent, the blind search for the entity from the title of Chapter 3. 
The objections expressed above were the same in case of Udny Yule and Ronald 
Fisher. The latter gave a famous example showing high correlation between 
imported apples and increasing divorce factor – and concluded that correlation 
does not imply causality.    

Covariance  is defined as follows: 

( ) ( )
1

1 N

x y i i
i

x x y y
N

σ
=

= − ⋅ −                           (3.33) 

The expression in  (3.33)  can be understood as a definition following the same 
chain of definitions as initiated in Chapter 1. To illustrate the determination of the 
numerical  value  of  covariance due to  (3.33), one can use the data given in  
Table 3.1. The Student can extend the content of  Table 3.1,  adding two more 
columns directly with the data required by  (3.33). From covariance, determination 
of the correlation is straightforward: 

x y

x y

r
σ

σ σ
=

⋅
                                          (3.34) 

These two definitions can be complemented by known formulae giving variances 
of single statistics: 

( )22 1
x ix x

N
σ = −                                        (3.35) 

( )22 1
y iy y

N
σ = −                                         (3.36) 

The most useful way to derive numerically the correlation  is based on the 
definition attributed to Karl Pearson  (1857-1936) which uses (3.33) and a set of 
inputs collected above as  (3.12): 

( )
( ) ( )2 22 2

N x y x y
r

N x x N y y

⋅ ⋅ − ⋅
=

⋅ − ⋅ ⋅ −

  
   

                 

 (3.37) 

Also from an efficient computing point of view – to determine variances instead  
of (3.36)  and  (3.37), the below formulae, also already known, are used: 

22
2
x

x x

N N
σ

 
= −   

 

 
                                      (3.38) 
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22
2
y

y y

N N
σ

 
= −   

 

 
                                  (3.39) 

Below particular steps leading to correlation by using  (3.38) are provided. The 
denominator is given by: 

226 123 186 232 – 225 817 301 628  =  305884604            (3.40) 

while the numerator is obtained as: 
 
19737.370696219899492127156535353 *  19840.356851629458532076374041938 =   

= 391596477.92589697907664626939014                               (3.41) 
 

Taking the ratio of  (3.40)  and  (3.41) gives the desired correlation: 

r   =  0.78112194884930373689231902982605                            (3.42) 

For the sake of completeness we also determine the values of both variances, and the 
corresponding standard variations: 

22
2
x

x x

N N
σ

 
= −   

 

 
= 132981325.6470588235294117647059 +   

 

- 1328465280.0138408304498269896194 = 1347971.6332179930795847750865052 

                   xσ =  1161.0218056599940877721856785502                       (3.43) 

22
2
y

y y

N N
σ

 
= −   

 

  =  460949919.29411764705882352941176 – 459587844 = 

                            = 1362075.2941176470588235294117647 
 

                    yσ = 1167.0798148017328548280220024669                       (3.44) 

There is an interesting and important relationship between the values of the 

standard deviations for the two single statistics (i.e.  xσ  and  yσ ) on the one 

hand and the values of directional coefficients of the regression lines  (i.e. *B and  

*B ) on the other hand – both combined by the correlation   r  . They are given 

below: 

* y

x

B r
σ
σ

= ⋅                     *
x

y

B r
σ
σ

= ⋅                           (3.45) 
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altogether these expressions lead to the apparently most interesting result : 
 

*
*r B B= ⋅                                           (3.46) 

Substitution   into  (3.46) of the already obtained numerical values for   *B and  

*B   gives  the value: 

r   =   0.78112194884930373689231902982605                  (3.47) 

which is exactly the same as  (3.42)  obtained via  (3.37). 

Note that the directional coefficients *B and  *B   of the two regression lines 

describe the tangential direction of those lines with respect to two different 

coordinates.  The first coefficient *B is the slope relative to the  x direction and 

denoted by the angle α ; the second coefficient *B  is the slope relative to the  y  

direction and is denoted by the angle  β   - as shown in  Fig. 3.2. Therefore the 

geometric average  determined by  (3.46), and equal to correlation   r   does not 
possess such a suggestive interpretation as it might at the first seem.  

Demonstration that the second formula of  (3.45),  for instance,  is right is 
provided by the check given below.  Substitution of  the values given by  (3.43), 
(3.44) and  (3.47)  into  (3.45), as shown below: 

1161.0218056599940877721856785502
 0.78112194884930373689231902982605

1167.0798148017328548280220024669
x

y

r
σ
σ

=  

leads to the final result: 

* 0.77706734705864062105921414036023B =                  (3.48) 

which is identical with  (3.27). A check of the remaining case has been left for the 
Student.  

Closing this paragraph we would like to present the third way of defining 
correlation, which according to some biographical references was given for the 
first time also by Karl Pearson. This approach makes use of a definition 
introduced in Chapter 1 – namely, the  linear transformation that leads to  z-score 
statistics. Therefore, advising the Student to recall the above definition, it  is also 
recommended to apply it to the two single statistics, which will be denoted by the 

symbols ( )i
xz  and  ( )i

yz .   Correlation becomes the mean value of their product:  

( ) ( )i i
x yz z

r
N

⋅
=                                             (3.49) 

Summarizing all the presented definitions of correlation, it may be repeated once 
more, that commencing evaluation of two single statistics in the way shown in  
Table 3.1, straightforward calculations leading to its numerical value are given by 
formula  (3.37)  despite its apparently discouraging appearance. 
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3.5  Correlation – Grouped Data 

The opening example of grouped data presents the results published by John 
Houbolt ( [5]), which it is proposed to name as Houbolt’s Cloud. The specific 
character of this two dimensional statistic set is the absence of numbers, except the 
numbers provided for the two coordinate scales. 

 

Fig. 3.3 Houbolt’s Cloud – intensity versus scale of atmospheric turbulence 

The problem before us is the same as that presented so far – to determine 
regression lines and correlation, but in these new circumstances. An apparent 
difficulty mentioned above and connected with a lack of numbers will be resolved 
in a way that is not seen in the literature on the subject.  The entire solution is 
obtained with the help of Table 3.2 – which is proposed to be called 

3.6  The Great Table of Correlation 

The foregoing material is presented in order to instruct the Student how to perform 
such a new kind of calculations as collected in Table 3.2. The opening part of the 
evaluation is presented in the top left part of Table 3.2, a part which is also 
distinguished graphically by double-line frames. These data have been obtained by 
an appropriate use of the data given in  Fig. 3.3, which deserve to be considered  
as raw statistical data. In this place we can briefly discuss the hypothetical  
case that would follow the situation known and experienced in Chapter 2   
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Table 3.2 The great table of correlation 
 

 

 
as given, for instance, in Table 2.7, showing grouped data of one-dimensional 
statistic. Here the procedure should be simply doubled – adding the grouped data 
to some other one-dimensional variable. And now, examining the suggested part 
of  Table 3.2,  we see the two statistics represented by the grouped data are shown 
simultaneously, due to the fact that they are interrelated.  The point now is how 
the values have been obtained.  As they are grouped data, there are routine 
questions regarding the two variables – first about their class limits and their 
number of classes, and after that about their class frequencies. Here attention must 
be turned towards  Fig. 3.3  which suggests to use class intervals equal to  

100L ftΔ =  for the scale of turbulence, and to use class intervals equal to   

sftw /1=Δσ  for the intensity of turbulence. These intervals are also identified 

in the content of  Table 3.2. In the table it is seen that the columns iy  define the 

middle values for all the classes with respect to the scale of turbulence, while the 

rows  jx   define the middle values for all the classes with respect to the gust 

intensity (which is identified with the variance of the  gust velocity). The Student 
should also recognize the customary system of units with respect to length, and 
velocity. Regarding the class frequencies – which take a substantial part of the 
table - they are determined simply by the number of dots lying inside each 
particular square shown in Fig. 3.3. So the effort of finding the numbers boils 
down to counting to determine the number of dots belonging to each particular 
“square” appearing in Fig. 3.3. The remaining part of  Table 3.2 results from a 
suitable manipulation of the data determined in the above way, which we are 
going to describe in more detail.  

The following comments will describe each result presented in Table 3.2 – step 

by step. Columns  iy   and  μin  present middle values and class frequencies for 

the scale of turbulence, in two appropriate columns. Regarding the symbol  μin , 
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the first subscript i  is the index which changes its values along the column – 
indicating the number of the appropriate row, commencing from the top. The 
subscript  μ  remains a "dummy index” occupying the place  which in the active 

case refers to the column number (column numbers increase from left to right). 

Similarly, rows jx  and jn μ  give the middle values and corresponding class 

frequencies of the intensity of turbulence. It should be noted that the total sum for 

the column jn μ  and the row μin  give the same numerical value, which is equal 

to 270n =  – where  n  denotes the total frequency of raw statistics data 

(appearing as dots in Fig. 3.2). This property can be written in a symbolic form as: 

1

N

i
i

n n μ
=

=  =  
=

M

j
jn

1
μ            12,9 == MN               (3.50) 

The next two steps lead to averages: the means and variances for each of the 
single statistics.  As can be seen in Table 3.2  the procedure follows the coded 
method. For this reason coded variables for the scale of turbulence are given in 
the column  

iu , while for the turbulence intensity they are given in the row  
jw  . 

To determine the coded mean of the scale of turbulence, one must use the total 
sum of the column  

μii nu ,- then the necessary evaluation is completed as 

follows: 

311 -
1

=
=

N

i
ii nu μ          311

- -1.151851(851)
270

u =           (3.51)            

For the turbulence intensity the total sum of the row  jj nw μ  is required, leading 

to: 

1

- 432
M

j j
j

w nμ
=

=         1.6-
270

432
- =w

                      
 (3.52) 

To determine the physical value of the basic average for the scale of turbulence  L , 
the Student should check further details presented below, given in three distinct steps:  

u uu i R= +L                                                  (3.53) 

50=ui       450=uR                                    (3.54) 

-1.151851(851) 50 450u uu i R= + = ⋅ +L  → 392 120ft m≅ ≅L     (3.55) 

A very similar procedure will lead to the value of the mean intensity which in 
customary units shows   4.9 ft/s, and when converted into  SI units gives almost 
exactly a velocity  of 1.5 m/s.  

Another step towards determining numerical values for the coded variances of 
both variables will be described roughly in order to encourage the Student to make 
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an effort to verify the other entries. The efficient numerical procedure requires us 
to extract from the mean square value the squared mean value. The Student has to 

decipher how the first two denoted by  2w   and  by  2u  are calculated in Table 
3.2. It will help him/her to check the following numerical results regarding the two 
coded variances: 

      ( )22 w-wwVar =     2 1638

270
w =      →      3.5006(6)Var w =           (3.56) 

( )22 u-uuVar =       2 1243

270
u =     →     276941016.3=uVar        (3.57) 

As the last step, the procedure of deriving true physical values of variances (and 
standard deviations)  of the turbulence scale and its intensity has to be conducted. 
This is shown below: 

2
uVar i Var u=L       →        905116155 276Var ft m≈ ≅L . .          (3.58) 

wVariVar ww
2=σ      →       smsftVar w /571.0/870990663.1 ≅≈σ    (3.59) 

If we are going to retain the same order as in the previous paragraph, we must now 
turn our attention towards the regression lines.  And here the Student faces another 
challenge. The procedure given above to determine directional coefficients has 
used formulae  (3.15)  and  (3.25), while below we will find the formulae: 

uVar

wuuwE
B

-)(
1 =                

wVar

wuuwE
B

-)(
2 =                                (3.60) 

So before making use of this procedure it is desired to examine the validity of this 
approach – proving the equivalence  of formulae  (3.60)  and  (3.15) - (3.25), and 
this is left to the Student.  In order to trace all the steps of this rather long 
procedure, it is necessary to note that formulae  (3.60)  make use of the coded 
variables, while the previously examined  (3.15)  and  (3.25)  operate with 
physical variables of the scale of turbulence and atmospheric turbulence intensity. 
Assuming that the above procedure has been successfully completed, full attention 
can be turned to  (3.60),  commencing with the derivation of the average  )(uwE   

which may be done in both of the following ways: 

( )
1 1 1 1

1 1M N N M

j i i j i j i j
j i i j

E u w w u n u w n
n n= = = =

= =   
         

 (3.61) 

The numerical results taken from Table 3.2 lead to the desired average: 
  

( ) 16
- - 0.059259(259)

270
E u w = =                           (3.62) 
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Substituting (3.62) together with  (3.51), (3.52), (3.56) and (3.57)  into both 
formulae of  (3.60)  gives, after simple calculations, the following values for the 
directional coefficients of the two regression lines: 

1 0.580487171B ≅ −         2 0.542458808B ≅ −             (3.63) 

Together with these values the correlation will give the following result: 

1 2r B B= ⋅      →   0.561150941r ≅ −                     (3.64) 

Before we explain why the correlation in this example is negative, which does not 
follow in a unique way from formula  (3.46), we first propose to determine both 
regression lines. The obtained analytical expressions for the two of them will 
justify the conclusion. This opportunity will be used to demonstrate a procedure 

that omits derivation of the free terms  1A  and   2A . The point is that the two 

regression lines have a common point with coordinates given by  ( )Lwσ ,  - the 

so called arbitrary point.  Therefore substituting the coordinates of this point into 
the general formula expressing the regression line - either  (3.6)  or  (3.20) – 
together with the appropriate value of the directional coefficient given by (3.63)  

will result in deriving the free terms  1A   or  2A .  Following the described 

procedure gives: 

395.2517946 0.580487171y x= −                             (3.65) 

217.7648545 0.542458808x y= −                              (3.66) 

The Student is advised to continue these considerations by trying to locate the 
regression lines in Fig.3.3 – first the regression line given by  (3.65) . In order to do 
that the  arbitrary point  K (4.9, 392) has to be marked in Fig. 3.3. Then one has to 
derive any other point belonging to this regression line, such as for x = 10 .  
Approximating the  y  coordinate gives  N (10, 389.5) . Therefore, it is seen that the 
first regression line, given by  (3.65), slightly declined downward remains almost 
parallel to the coordinate  x. In other words it is almost a horizontal line.  Then one 
has to determine the second regression line, given by  (3.66). It should also contain 
the arbitrary point K. To determine another point belonging to this line, one  can 
choose again the same  x = 10, which leads to the point  M (10, 383). Therefore, it 
is clear that the second regression line is declined slightly more than the first, but 
with the scales of  Fig. 3.3 these two regression lines are almost identical. 
Moreover, these numerical results confirm that the correlation coefficient is 
negative, which means that with increasing values of turbulence intensity the 
corresponding values of the turbulence scale decrease. Due to physical 
circumstances this result seems to be justified. We may add, in closing, that the 
quoted paper of Houbolt [5] has no such information and even erroneously suggests 
a positive correlation among these variables. Ending this study, though, it  must be 
added that the absence of the regression lines in Fig. 3.3  is justified by the fact that 
they would overshadow the original data. 
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Data shown in Table 3.3, copied from Udny Yule book [1], present an example 
published  in 1903 by Karl Pearson in Vol. 2 of Biometrica  [10], analyzing the 
stature of father and son, in connection with Galton‘s results which gave rise to 
the term “regression”. This example is considered in a detail in Part II. 

Table 3.3 Correlation between Stature of Father and Stature of Son  [1], [10] 
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Chapter 4 
Binomial Distribution 

Mysterious origins of the binomial distribution: binomial theorem (binomial 
coefficients) and combinatorial rules. Pascal’s Arithmetical Triangle, Bernoulli’s 
Trials. [John Arbuthnott's contribution]. Acquaintance with the binomial 
distribution – numerical examples, drawings of the distributions [their properties]. 
Jacob Bernoulli’s Weak Law of Large Numbers. How to derive Poisson-
Bortkiewicz distribution. Famous example from the chronicles of the Prussian 
Cavalry [Ladislau von Bortkiewicz’s contribution: the law of small numbers]. 
Negative binomial, a revival of old ideas. 

4.1   Tracing the Origin 

To Begin with:  H. Poincare allegedly said that the normal distribution must have 
something mysterious in itself if mathematicians consider it as a law of Nature, 
while physicists consider it as a mathematical theorem. Yet, as it will be shown in 
Chapter 5 devoted to normal distribution, its origins, despite having a variety of 
components, seem transparent. However, the origins of the binomial distribution 
are not like that. The proof of such an opinion has to be presented gradually, 
requiring some formal elements. It is interesting to add that neither Stigler in his 
very erudite “History of Statistics” [1], nor Edwards in his witty monograph [2] 
devoted to “Pascal’s Arithmetical Triangle” – gave the origins in a complete 
form. Therefore, concerning the  distribution – we are left with what is given in 
[2] and in Chapter 9 – entitled  The binomial and multinomial distributions 
(strongly inclining the balance towards multinomial distribution).  In the opening 
p. 112: “Pascal evidently possessed this form for  p = ½  in 1654, though we must 
allow for the fact that he thought in terms of expectations rather than 
probabilities”.  The Author of this book was not able to go back before 1654. 
Nevertheless the Author is unable to resists a temptation to correct an erroneous 
opinion brought by  Majstrow [3] – which attributes the binomial distribution to 
Jacob  Bernoulli. This remark – based on the publication of a complete English 
translation of “Ars Conjectandi” [4] is firmly  justified, and there is no reason to 
trace the origins of this error. Therefore, with these remarks presented openly to 
the Student, it is now  time to decide which way of introducing binomial 

3
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distribution is to be chosen. Having in mind  a very impressive paper by 
Arbuthnot [5]  which is now easily accessible from JSTOR resources we propose 
to follow his approach. The Student is advised to at least look into the original 
paper. 

Arbuthnot:  As we shall see the dramatis persona of this passage are not  
Arbuthnot, the personal physician of queen Anna, because it is Newton binomial 
which we insert in this place. Beside this imaginary character, there will be 
another one, called probabilistic experiment, involving the idea of tossing a coin. 
With time it started to be referred to as Bernoulli’s trials. Turning to practicalities, 
let us call the head success S  and the tail failure F.  It is quite natural to give them 
equal chances – therefore the chance value  ½ appears in this account. Tossing a 
coin we get either “S” or  “F”. These results can be described as: 

S         F                                                   (4.1) 

Now, what will happen if the coin is tossed twice? Also this time without recalling 
any combinatorial rules, the result can be easily described/listed as: 

S, S     S, F    F, S    F, F                                     (4.2) 

The only “agreement” here concerns the order – in the first position comes the 
result of the first tossing, and in the second place,  the other result. Moreover, it 
follows from equal chances that each of the four above described compound results 
has the same chance of occurring equal to  ¼ due to the fact that we have four.  If 
we would now like to follow Arbuthnot and his paper [5]  we have to use a 
universal formalistic description proposed by him. The method he used is easier 
than the above given procedure, which with an increasing number of tosses will 
present increasing technical difficulties in listing all the possible cases and their 
chances, even though it retains the highest readability of the final outcome.  

Following Arbuthnot we have to replace  (4.1) and (4.2)  by the following two 
descriptions: : 

( )S F+                                                      (4.3) 

( )2 2 22S F S S F F+ = + +                                  (4.4) 

This was the first step towards binomials - an ambiguous, multi-faceted term 
whose meaning has to be carefully considered in the context where it appears. The 
hint to the Student is to direct his/her attention towards an appropriate 
interpretation of coefficients expressions  (4.3)  and  (4.4)  noting an isomorphism 
between them - i.e. the unique correspondence, between descriptions  (4.1)  and  
(4.2) on the one hand and  (4.3)-(4.4) on the other. For a Student less capable of 
abstract thinking the correspondence between  (4.1)  and  (4.3)  should be easier to 
digest, but to acknowledge the same correspondence (rule) between  (4.2)  and  
(4.4)  it is advisable to re-write  (4.4)  in the form: 

( )2
2S F S S S F F F+ = + +                               (4.4a) 
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According to Edwards [2], the above presented isomorphism was familiar to  the 
Hindu mathematician  Bashkara in twelfth-century India.  Edwards presents  (4.3)  
and  (4.4)  in modern terminology as 

( )n
p z q+                                               (4.5) 

calling  (4.5)  the generation function  of the binomial distribution – with  z  being  
a dummy variable. Following a long tradition, symbols   p  and  q  denote  chances 
of  S  and  F respectively. To proceed one step further in the desired direction the 
following problem must be stated: 

Determine the chances that tossing a coin n  times  leads to exactly k successes   
(4.6) 

First we have to examine how the approach based on formulae  (4.1)-(4.2)  allows 
us to solve problem  (4.6). For the time we assume equal chances for  
success and for failure. Taking  n = 1  - the results are as follows: for   
k = 0  -  ½  and for  k = 1  - also  ½ . Taking  n = 2 , we derive, for  k = 0  - result 
¼  , “for k = 1”  - result  ½  and for  k = 2  - result  ¼ . The above listed solutions 
are obtained due to the procedure  that can be called “direct inspection”. Let us 
now examine the solution of the problem  (4.6) by using isomorphic procedure  
(4.3)-(4.4). To begin with, it must be seen that the symbols  “S” and “F”  stand for 
the chances of success and failure – that is  p  and  q  - which in this case are equal 

and have the value  ½ .  Therefore  2S  determines  k = 2 - “double success” – so 

its chance becomes  ( )2
1 1

2 4=  . The remaining terms of the expanded binomial  

(4.4)  – should follow the same rule.  
Here is a proposal to solve the case n = 4 , which describes the case of tossing a 

single coin four times or of tossing four coins once. Let us make use of the second 
procedure, i.e., one based on  (4.3)-(4.4) – by expanding the binomial as below:: 

( )4 4 3 2 2 3 44 6 4S F S S F S F S F F+ = + + + +               (4.7) 

The Student is advised to justify the results given in Table 4.1. 

Table 4.1 Binomial distribution  n = 4 

Successes   k 0 1 2 3  4 

Chances 
 ( )4

1
2  4 ( )4

1
2  6 ( )4

1
2  4 ( )4

1
2  ( )4

1
2  

 
Gradually proceeding in the presented way should lead us to the conclusion that 

we are looking for a generalization that should supply us with a general pattern 
where for instance  (4.7)  becomes just a particular case. And here we can still 
profit from the following Arbuthnot. The desired general formula given by him is 
enclosed below: 
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1 2 2 3 31 1 2

1 1 2 1 2 3
n n n nn n n n n n

S S F S F S F− − −− − −+ + + +    (4.8) 

Nevertheless we may still expect more with respect to the coefficients of the 
binomial, which from this place onward we shall call also the Bernoulli numbers. 
They can be given most concisely according to the following definition: 

 
Newton’  Symbol   defined for natural    n, k   gives the formula: 

!

!( )!

n n

k k n k

 
=  − 

   for   0 k n≤ ≤  n ≥ 0            (4.9) 

Making use  of the above formula the most concise expansion formula for the 
binomial gives: 

0

( )
n

n n k k

k

n
S F S F

k
−

=

 
+ =  

 
              (4.10)    

Fully expanded  (4.10)  has the form  (4.11):           

( ) 0 1 1 2 2 0... ...
0 1 2

n n n n n m m nn n n n n
S F S F S F S F S F S F

m n
− − −         

+ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅         
         

     

For the sake of completeness one has to define the factorial which in the simplest 
form presents the recurrent expression: 

! ( 1)!n n n= ⋅ −       supplemented by     1! 1=    and   0! 1=       (4.12) 

With  (4.12)  in mind, (4.9)  leads to the following particular results: 

0
1

0

 
= 

 
       1

0

n 
= 

 
     and      1

n

n

 
= 

 
                           (4.13) 

Pascal :  Below the Student will find other details from Edwards’ [2] book with 
regard to the distance in time necessary to take trace the essentials of the title 
story.  Edwards  proposed three groups of ideas while examining Pascal’s 
Arithmetical Triangle . The oldest Edwards called figurate numbers. This is also 
the title of Chapter 1 which he opens with the phrase (see p.1, [2] where we 
replaced the suitable number of bibliographical reference): 

>> The longest of the threads which Pascal wove together in his [6] concerns the 
figurate numbers, and stretches back to the Pythagorean preoccupation with 
number-patterns 540 years before Christ. << 

 
To explain the concept of the  figurate numbers let us make use of them in relation 
to the numbers associated with the figure of a triangle. Here is an initial list of  
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them: 1, 1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10,  10 + 5 = 15,  which also suggests the 
way of deriving them. But there is the fundamental relationship: 

1
2 2

l lf f l−= +              1, 2, 3,l =                        (4.14)                  

According to their geometric origin we present  Fig. 4.1 which  uses a pictorial 
way of defining them: 

 

Fig. 4.1 Five initial triangle numbers 

After making this first acquaintance which enables to list these numbers, our 
attention should turn to Pascal’s arithmetical triangle in order to detect these 
numbers. Probably even for the Student  who already knows Pascal’s triangle this 
step will be surprising. 

The exposition of the triangle shown in  Fig. 4.2  allows us to see among the 
rows “Rangs paralleles” the triangle numbers, (displaying the initial 8 of them) in 
the third row. The rich content of this figure shows unusual mathematical objects, 
among them also Bernoulli numbers, but we suggest approaching them gradually. 
Keeping in mind that some of the Students may have heard of the renowned 
Fibonacci numbers (taking us back to the very beginning of the 13th century and 
to Italy) we recall their definition, to avoid confusion with the recurrence form of  
(4.14): 

1 2 0 10 1n n nF F F F F− −= + = =                       (4.15)                               

Going back again to Fig. 4.2, its 4th row presents the so called pyramidal or  
tetrahedral numbers (Edwards gives Theon and Nicomachus as their inventors) 

denoted by  3
lf  - their fundamental definition is given by: 

1 1
3 3 2 3 1l l lf f f f−= + =                                  (4.16) 

Finally we give the fundamental definition of the  figurate numbers of all possible 
orders and note that it is possible to see them in the lower rows of the triangle:: 

1 1 1
1 0 0 1l l l l

k k k kf f f f f f−
−= + = = =     here   l = 2, 3, 4, …  k = 1, 2, 3,…     (4.17) 
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Fig. 4.2 Pascal’s Triangle copied from his original Treatise [6] 
 
Apparently the following step in this direction becomes the solution of the 
recurrence equation  in (4.14) leaving aside its proof.  The formula below may be 
assigned as the property of the triangle numbers  (figurate numbers of dimension 
two): 

( )1
2 2 1lf l l= +                                           (4.18)                            

Here the relation between Pascal’s triangle and Stifel’s Triangle  
(dated closely to AD 1544) may be mentioned as presented in Fig. 4.3. 

It is seen in  Fig. 4.2 that the triangle numbers  (4.14)  are given in the second 
column, then the numbers following  (4.16)  in the third column, and the 
subsequent columns give numbers that can be derived by using a general  – 
fundamental relationship to generate figurate numbers of arbitrary order  of  
(4.17).  It is also seen that the missing initial numbers can be derived according to  
(4.17). 

Reading chapters on the history of mathematics (see for instance [7]) regarding 
Fibonacci numbers one finds confirmation of the so called Stigler’s law.  They 
date back a few centuries before Leonardo from Pizza, known as Fibonacci, 
though the object called Stifel’s triangle is attributed to  Stifel – about whom 
Wikipedia tells us what is quoted below: 
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Fig. 4.3 Stifel’s version of Figurate Triangle (corrected copy Fig. 9 from [2]) 

Michael Stifel or Styfel (Esslingen 1486 or 1487 – April 19, 1567, Jena) was an 
Augustinian monk who became an early supporter of Martin Luther and was later 
appointed professor of mathematics at Jena University.  

At this point let us quote two results which  Edwards [2] attributes to Stifel: 

1 1
1

l l n n r
l l r rf f C f+ − +

−= =                                  (4.19)   and    (4.20) 

but the explanation of their meaning will be given later on in the right context. 
A new element of these investigations related to Pascal’s triangle will be 

introduced with a story from Chapter 2 of Edwards’ book [2], a chapter entitled 
“Three combinatorial rules”. According to the story, commenting on Aristotle’s 
logical Categories by writing Isagoge (comments), the  author, a Greek 
philosopher Porphyry  (234-c.305)  included there the combinatorial problem - 
asking “in how many ways can two things be chosen from  n  different things”? 
Edwards describes thoroughly Aristotle’s context, but we, trying to “get to the 
point” limit our report to the fact, that there was the particular case of  n = 5 .  
Therefore, combining the desired pairs, if in the first step we take the first “thing”, 
we can choose 4 pairs; then if we take the next “thing”, we can obtain only 3 new 
pairs; in the next step we can obtain 2 new pairs – and in the last step only 1 new 
pair; therefore: 4 + 3 + 2 + 1 = 10. And this correct answer was obtained by 
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Porphyry1 in this way. In conclusion, taking into account that the correct result 
was obtained not by enumeration, but by following a combinatorial procedure, 
Edwards suggests that we may attribute to Porphyry the discovery that the number 
of unordered pairs which can be chosen from  n  things is given by the  ( 1)thn −   

triangle number – or in our notation as  1
2
nf −  .  Not so long after that, the work of 

Pappus (a Greek mathematician living in Alexandria ca. 300 AD) who was 
looking for a solution of the geometric problem concerning  n  intersecting lines 
with restrictions leading to the same problem as solved by Porphyry, left firm 
evidence that he not only knew that the result which can be written in the form 

                         1 + 2 + 3 + 4 + … (n – 1)  =  ½ n (n – 1) . 
Pappus also says:  “it is unlikely that Euclid was ignorant of this 
[generalization]”. The Student who can  sacrifice time and efforts to study the 
book by Edwards will find one more famous name in the context of the considered 
matter: it was - Anicius Manlius Severinus Boethius (ca. AD 480 – 23 October 
524)  - who translated Isagoge from Greek into Latin and who was familiar with 

the fact that  1
2
nf −  =  ½ n (n – 1), connecting this combinatorial rule with the 

triangular numbers.  Therefore, this is the right place to connect the facts given in 
Chapter 2 regarding combinatorial rules with the triangular numbers discussed 

here by recalling formula (2.33) defining combinations  n
rC . It is interesting 

here,  in particular,  to consider the case with r = 2 . And here is what we can get 
this way: 

                   ( )
!

! !
n

r

nn
C

rr n r

 
= ≡  −  

      
( ) ( )1

2 2

!
1

2! 2 !
n n
C n n

n
= → −

−
                   (4.21)          

Also the above justifies the result (4.14)  therefore, it can be written that: 

                        ( )1 11
2 2 22 1n n nC f n n f− −= → − =                                 (4.22) 

In other words we have proved the  isomorphism between  figurate numbers  and  
combinatorial numbers – specifically between pairs  arranged by  n  different 
things/objects and the  triangular numbers showing that  (4.18) and  (4.22)  are  
identical.  The second formula of  (4.22)  can be understood as the solution of the 
recurrence equation  (4.14). But we cannot provide the details of such a procedure.  

The final conclusion regarding the above is:  the numbers seen in Pascal’s 
Arithmetical Triangle apart from their figurate  and  binomial interpretation can be 
interpreted on combinatorial grounds .  

And now we cannot resist the temptation to enclose two other combinatorial 
rules known in the ancient times despite the fact that they have no reference to the 
arithmetical triangle under discussion.  

                                                           
1 On the Internet one can find an English translation of “Isagoge” – Porphyry in 

commenting Chapter 11 by Aristotle presents the above in its original form, curiously 
enough, he did not use the fonts describing numbers! 
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The second  ancient combinatorial rule states that:  2 1n n− −   =  

2 3
n n n

nC C C+ + + ,   therefore it describes  combinations  managed from  n  

things different  taking into account permutations of two,  three … up to  n  things. 
Below is an illustrative example based on the initial letters of the Latin alphabet:   

  n  =  2       1                                              ab                                             
 n  =  3       4                                 ab  ac  bc  abc                                          (4.23) 
 n  =  4     11               ab, ac, ad, cd, bd, cb, abc, abd, bcd, adc, abcd 
 

The third ancient combinatorial rule (and the oldest one)  and defines the number 
of arrangements i.e. permutations of  n  things from a given set  - in a form known 
from  Chapter 2   as: 

n!                                                         (2.30) 

Tracing the possible origins, Edwards lists a number of sources taking us back  to 
year  300 BC  and ancient India using an example considering  n = 6.   

To comfort the Polish Student a few books are listed containing combinatorial 
analysis. [8]-[10]. The most accessible seems to be [9], but the broadest 
background is to be found in the Polish translation of a Russian book by Wilenkin.  
This book is entirely devoted to combinatorial analyses and presents a average 
level of mathematical treatment. To add a remark referring to the material listed 
here, it can be noted that the second ancient rule cannot be traced in any of these 
books (only implicitly appearing in [10], a book which was originally written in 
German).  For English-speaking Students perhaps it is still Feller’s book [25]  
which can be seen as a major reference. The book has also been translated into 
other languages (we know its Polish and Russian translations). We also list here 
[23], a small book in which its Authors especially devoted a lot of attention to 
binomial numbers. And this particular reference  brings us also to the  closing 
element  regarding comments presented here relating to Pascal’s Arithmetical 
Triangle – which we largely based on the book by Edwards  [2], this closing 
element are Bernoulli’s numbers which we also called binomial numbers.  

Bernoulli’s numbers – referring to  Jacob Bernoulli and his “Ars Conjectandi” 
[4]  are here considered as the third and closing interpretation of the content of the 
arithmetical triangle which is majestically shown in Fig. 4.2. Complementing this 
figure we present also its different orientation rotated clockwise by 45 degrees in 
Fig. 4.4 which allows a straight way of reading the binomial numbers. 

Seemingly the configuration shown in Fig. 4 – giving binomial coefficients  as 
numbers to be read horizontally and giving the initial binomials commencing with 
the power “zero” at the top of the figure -  looks most natural. Especially with 
respect to the arithmetical rule which allows us to build the entire triangle in the 
unquestionably simplest way by using the property given below for which the 
formal description seriously overshadows the simplicity of the idea which it 
expresses:  
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Fig. 4.4 Pascal’s triangle exposing Bernoulli’s numbers 

1 1

1

n n n

r r r

− −     
= +     −     

     or    1
1 1

n n n
r r rC C C+

+ += +         (4.24)                 

To avoid misunderstanding, it must be mentioned that if intending to fulfill the 
entire triangle, from the top to the bottom, the simplest way follows the property  
(4.24); however, if intending to determine any particular Bernoulli number it is 
simpler to  use the combination formula presented in this book first in Chapter 2 
as  (2.33), then recalled in the beginning of this chapter as  (4.9)  and later as  
(4.21). Considering that the auxiliary material focusing on historic origins of 
binomials has been exhausted, we come towards a modern approach regarding 
binomial distribution – an opportunity to start is offered by: 

Bayes :  Two years after the death of the Reverend Thomas Bayes (1702-1761) his 
paper [15] was published and it may up to now, in its most important part, be 
considered, so to say, the baking powder of further development of the concept of 
“inverse probability”, and the origin of Monte Carlo method. Following Edwards’ 
suggestive idea ([2], p.112-113) our attention will be directed to a passage from 
Bayes [15] - SECTION I,  PROP. 7 -  p.7-8. This passage will be the faithfully 
quoted original paper [15] apart from the symbols which will be replaced by our 
symbols used in this book and except an error which appears in the last line of the 
PROP.7: 

If the probability of an event be  “p”, and that of its failure be  “q”  in each 
single trial, probability of its happening  “k” times, and failing “n - k” times in  

“n”  trials is   k n kE p q −   if  E  be the coefficient of the term in which occurs   

k n kp q −   when the binomial   ( ) n
p q+  is expanded. 
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In a comment to the above mentioned error of the original paper  [15]  - it 
seems to be most likely a kind of a printing error, as the correct symbol “p” was  
replaced by the wrong symbol  “b”. The  enclosed text of  PROP. 7  presenting 
once again the binomial formula is now flawless.  

With respect to the above definition of the binomial, it is seen that the symbol  
“E”, the only symbol preserving the original Bayes’ symbols, determines 
Bernoulli’s number  which in our notation is given by Newtonian symbol (2.19). 
Also with respect to the same, it may be seen that Bayes offers the solution to our 
problem  (4.6). And changing the point of view once more it is justified to 
acknowledge that for Bayes the formula expressing the binomial distribution had 
the contemporary meaning commonly used now. The same conclusion can be 
found in Edwards’ book [2]. Therefore we conclude that the binomial distribution 
is expressed in one of the two following ways: 

n k n k
kC p q −                                              (4.25) 

k n kn
p q

k
− 

 
 

                                           (4.26) 

Regarding the possible period of time when Bayes could have written [15], and 
keeping in mind that he spent the last 10 years of his life in complete isolation 
devoted entirely to religious contemplation, and so this period could not have been 
a time of possible mathematical activities, the approximate time of its genesis 
could have been 1750. The Author of this book cannot say anything about the 
possibilities of deriving formulae  (4.25) – (4.26)  by anyone else, rejecting as we 
already have the claim of Majstrow [3] who mistakenly attributes it to Jacob 
Bernoulli. 

Terminology.   Coming to the end of these considerations opening Chapter 4 let us 
focus our attention on the matter of terminology. Apparently this aspect of the 
matter is the last which can be explained in a satisfactory manner by referring to 
numerous books on the history of mathematics therefore, we provide just a few 
remarks which do not pretend to exhaust the subject. A careful Student of this 
course will be, as is the Author of this book, moved by the care of  Bayes’ [15] in 
this respect, so accurately described by his friend, Richard Price  in his letter 
announcing [15] to John Canton, Fellow of the Royal Society. Bayes’ paper  
opens Section 1 with a sequence of seven definitions.  This may on the one hand 
remind one of Euclid’s “Elements” and on the other of contemporary efforts in 
determining axiomatic approaches to different branches of mathematics, logics, 
and natural sciences in a view expressed by David Hilbert in his famous lecture 
addressed to mathematicians of the twentieth century. So, we shall point out a few 
remarks related to the above.  It impossible for the Author of this book to say 
whether Bayes’ was the first to use the term  event now so frequently applied in 
mathematics and probability, designating randomness and now replaced by 
random variable. Bayes starts by defining events inconsistent, and events 
mutually  contrary. He uses determined and happening instead of the word 
occurred which we would use today. Then similarly to the concept given later by 
Laplace he defines the  probability of the event .  And  finally come his two last 
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definitions.  Def.6: “By chance I mean the same as probability.” Def.7 “Events are 
independent when the happening of any one of them does neither increase nor 
abate the probability of the rest”. 

In close relation with Bayes the above will be complemented by some 
biographical remarks evoked by papers and books appearing now in print. Let us 
start with a paper by  Stigler [14] – whose suggestive title may cause wrong 
associations suggesting that the term  “chance” has been used over the last 350 
years!  Contrary to this suggestion, most likely the author wrote the title with 
marketing in mind and it can be explained by his confession in a private letter that 
“Titling is a dark art.” Paper [14] becomes an evident tribute paid to Christian 
Huygens (1629-95) 350 years after his “De Ratiociniis in Ludo Aleæ” was 
published (exactly in 1657). In Latin of Huygens’ paper there is no English term 
of  “chance”. As proof that the Author of this book is highly appreciative of 
historic publications by Professor Stephen M. Stigler – the Student shall find in 
the literature references two other papers by Stigler:  [22] and [13]. Especially  
[13] presents little known facts regarding an English mathematician Thomas 
Strode (c.1620 - c.1690). Coming towards the end this section on terminology 
which is usually unfairly ignored, we propose one more term - “distribution” –
short for “probability distribution”. There are reasons to believe that this term 
appeared simultaneously with the term  random variable. The latter originated in 
mid twentieth century.  Looking for evidence  we can briefly examine such a 
renowned book as [12]  by James Victor Uspensky  (1883-1947) who before 
leaving his native Russia became a doctoral student of A. A. Markov (1856-1922) 
at Sankt Petersburg University. The book [12] has 16 chapters, more than 400 
pages and the concept of “distribution” is presented for the first time in Chapter 
XIII –“The General Concept of Distribution”(see p.260-282). This chapter is 
entirely devoted to considerations developing the concept which uniformly treats 
discontinuous and continuous variables. It will be reasonable to  add a remark that 
such an idea was investigated by a Dutch mathematician Thomas Joannes Stieltjes 
(1856-1895) – who was quite an extraordinary person - a kind of a self-educated 
scientist who never obtained a university diploma (started Polytechnical School in 
Delft in 1873 – failed a few examinations and in 1876 definitely quit the 
university).  The mentioned concept is widely known as Stieltjes’ Integrals. 
Returning to the point, it has to be said that the term random variable – does not 
appear in this book – but instead Uspensky uses the term stochastic variables – 
which can be found earlier in Chapter IX “Mathematical Expectation”. It 
persuades us to add a brief remark that the term  random variable some later years 
could be found among the titles of books on probability, one of the first being a 
book by Athanasios Papoulis [20] – (a hard back copy in Poland of 1965 cost 
exactly 382.50 zlotys – or 20% of junior university lecturer’s salary) – it was 
evidently a marketing sign indicating that: “in my book this term is used”. For 
comparison let us take a book by a less known author who 20 years later followed 
the same idea (see [21]). Also for comparison and to finish this remark - 
Uspensky’s paperback reprinted by the editor from his own publication of 1937 – 
at the same period of time – i.e. 1965 cost 88.5 zlotys. The black market exchange 
rate of the Polish zloty to USD was about 1 to 100.  
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4.2   Close Acquaintance 

This is going to be the most practically useful part of Chapter 4. In its general 
view it is similar to Uspensky’s [12] . But the real content of this sub chapter the 
Student is advised to reread after finishing this course. The very introductory 
pages will again present to the Student some historical episodes recalling S. Pepys, 
I. Newton, and F. Weldon. After making intensive use of calculators to collect 
particular examples of binomial distribution – the next passage will lead to the 
weak law of great numbers by Jacob Bernoulli. Then following De Moivre, an 
opportunity will be given to re-examine his method leading from binomial to the 
normal distribution. The material presented below –besides own calculations - 
follows Stigler [22], and is complemented by [24].    

4.3   Three Problems by S. Pepys [22], p.400-401 

A. Six fair dice are tossed independently and at least one „6‰ appears. 

B. Twelve fair dice are tossed independently and at least two „6‰ s  appear. 

C. Eighteen fair dice are tossed independently and at least three „6‰ s  appear. 

 
At the top are problems which Samuel Pepys sent to Isaac Newton, asking him 
which one had the greatest chance. Then, below come numerical results quoted by 
Stigler [22]. Later on detailed solutions will be presented of all three problems 
obtained as well “by direct enumeration of cases” with the second one based on 
applying the binomial distribution.  In fact Stigler did not say explicitly that the 
enclosed numerical results denoted as “A” and “B” were derived by Newton – 
instead he said: “Newton worked from first principles assuming no knowledge of 
the binomial distribution‰ what indirectly attributes them to Newton.  Definitively 
it confirms [24]. Stigler does not comment the first approach by direct 
enumeration of cases while regarding the second one he states that “solution as 
might be presented in an elementary class today‰.  In view of the AuthorÊs long 
teaching experience with Management students at Polish universities not 
studying for a degree in mathematics, his opinion is much more restrained.   
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Bernoulli trials    Intending to solve the first problem posed by S. Pepys we 
start by defining the title entity   understanding the term as such a random trial  
which has two outcomes – one denoted by “S‰ with probability  “p‰ and the other 
denoted by “F‰ with probability “q‰ – where  q = 1 – p. Following traditional 
terminology – the symbol “S‰ means “success‰, while “F‰ stands for “failure‰.  
This experiment may be repeated an arbitrary number of times – preserving 
independence of the all repetitions  and the constancy of probabilities  p  and  q.  

To commence with the first problem by S. Pepys2 let us briefly define the game 
of dice which according to the above defined Bernoulli trial -  is formally 
described by the assumption that with the above symbols  n = 6, 1

6p =   and  
5

6q =   - and we are looking for the probability that the event  “S‰  will appear at 

least once. This requirement defines the number of events  „S‰  formally 
determined by the values of  k  equal to: 1, 2, 3, 4, 5, 6. Equivalently, the above 
probability is equal to the probability that the opposite event does not appear. The 
opposite event to the above describes a single event for which   k = 0  - and its 
probability may be evaluated directly from  (4.26) : 

( ) [ ] [ ]6 60
5 51

6 6 6

6
0.33489797668038408779149519890261

0

 
= = 

 
   

Therefore the desired probability will be  0.66510202331961591220850480109739.   
Also by dividing 31031/46656 the same result 

0.66510202331961591220850480109739 is obtained.             
Let us examine more closely the solution obtained “by direct enumeration of 

cases”. The total number of all possibilities for throwing the die six times will be 

given by 66 46656= . On the other hand – the number of non-six  appearances 

which corresponds to   k = 0  - will be equal to  65 15625=  - therefore the 

number of events “favorable” for the appearance of the die-face showing “6” will 
be given by  46656 – 15625 = 31031. Their ratio describes the desired probability 
according to Laplace’s definition of probability. These results can be commented 
by pointing out that although the second procedure seems to be less sophisticated, 
nevertheless it gives an exact final result – while the first solution gives only an 
approximate result. 

  
Similar procedures are provided below with respect to the second problem defined 
by  12n =  and  1

6p =  . At some point in the first solution – probabilities for  k = 

0  and  k = 1  have to be determined - with the results given below: 

( ) [ ] [ ]12 120
5 51

6 6 6

12
0.11215665478461508427087861117227

0

 
= = 

 
 

                                                           
2 Samuel Pepys (1633-1703) an English naval administrator and Member of Parliament 

who is now most famous for his diary – adding for the benefit of the Polish Student - that 
it was translated into Polish by Maria Dąbrowska, further bibliographical details are to be 
found on the Internet. 



4.3   Three Problems by S. Pepys [22], p.400-401 101
 

( ) [ ] [ ]11 111
5 51

6 6 6

12
2 0.26917597148307620225010866681344

1

 
= = 

 
 

0.11215665478461508427087861117227  +  0.26917597148307620225010866681344 =  

 0.3813326262676912865209872779857 

 

Probability of the opposite event:  0.6186673737323087134790127220143. 
The second method results in:  
       1346704211 / 2176782336 = 0.6186673737323087134790127220143 
As it was done above, let us examine the second method “by direct 

enumeration of cases”. And now the total number of the all possibilities for 
throwing the die 12 times will be given by  126 2176782336= . Also the derivation 

of the all appearances corresponding to  k = 0  will give  125 244140625= . 

Apparently the new pattern will lead to derivation appearances for  k = 1  in a 

view  1112
5 585937500

1

 
= 

 
. But in fact the previous case also corresponds to 

1212
5 244140625

0

 
= 

 
 - having in mind that  12

1
0

  = 
 

.  Both considered cases give 

the total  of 830078125 – therefore the opposite events –after subtracting them 
from overall total appearances determine “favorable” appearances as  
1346704211. It may be noted by the way that the value of the coefficient  

12
12

1

 
= 

 
 can be derived either from  (4.9)  or from Pascal’s triangle. The last 

method was common in  Newton’s times (see [24]). 
For Pepys’ third problem it is defined by  18n =   and 1

6p =  -  requiring to 

determine probabilities for   k = 0,  k = 1  and  k = 2  - they are given by numerical 
results: 

( ) [ ] [ ]18 180
5 51

6 6 6

18
0.037561036758607910916762652168352

0

 
= = 

   

( ) [ ] [ ]17 171
5 51

6 6 6

18
3 0.13521973233098847930034554780607

1

 
= = 

   

( ) [ ] [ ]16 162
5 51

6 6 6

18
17 / 4 0.22987354496268041481058743127032

2

 
= = 

   
 

     The total probability of all of them will be  0.402654314052276805027695631244. 
Probability of the opposite event gives the desired result  of 
0.597345685947723194972304368756. 

Interestingly the second approach leads to almost the same result  
0.59734568594772319497230436875526  showing an intriguing difference in the 
last digits – which perhaps results from rounding errors of the longer chain of 
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calculation of the first approach. Below are enclosed the details of obtaining the 
above sum: 
 

0.037561036758607910916762652168352  +  0.13521973233098847930034554780607 +  
+  0.22987354496268041481058743127032 =  0.402654314052276805027695631244 

 

Following the procedures already presented – also in this case we re-examine the 
procedure “by direct enumeration of cases”.  The total number of all possibilities for 
throwing the die 18 times will be given by  186 101559956668416= ;   

Appearances for  k =0   give  185 3814697265625=   

Appearances for  k = 1 describe   1718
5 13732910156250

1

 
= 

 
  

And the third term for  k = 2  shows  1618
5 23893554687500

2

 
= 

 
  

Taking all three results together gives  40893554687500 – and finally the amount 
of  “favorable” appearances  will be  60666401980916.  Which confirms the 
impeccable character of the last check. 

 

The Student who shall make use of [22] – supported by reading  [24] will not 
be disappointed – as there are other interesting details – especially when perusing 
the original letters given in [24]. Regarding the Polish Student it may be added 
that the Polish translation [33] contains no trace of the correspondence between 
Pepys and Newton. Stigler [22]  indicates which editions of Pepys’ diaries include 
these letters.   

4.4   Weldon’s  Dice Data 

The following data are according to Professor W. F. R. Weldon, F.R.S.,3 and give 
the observed frequency of dice with 5 or 6 points when a cast of twelve dice was 
made 26, 306 times: 

The book by W.Feller [25] (see pp. 148-9) which frequently recommended as 
an easily accessible reference for an inquiring Student offers very little. Of course 
the reference to K. Pearson [34] is recommend from every point of view. For a 
serious study of the problem put forward by Weldon the paper [35] can be 
recommended. To satisfy the purposes of this Chapter Weldon’s approach has 
significant meaning as the place where the problem of fitting theory and Monte 
Carlo practice was seriously examined. In this particular approach the problem 
was to consider whether the twelve dice were fair dice or not, and how to prove 
this kind of question. 

 
 

                                                           
3 The sentence is literally quoted from K. Pearson’s paper [34] – pp.167-9 – Illustration I & 

II. 
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Table 4.2 Weldon’s Dice Data 
 

     k    1
3( ;12, )b k  Monte Carlo. ( ;12,0.3377)b k

     0 
     1 
     2 
     3 
     4 
     5 
     6 
     7 
     8 
     9 
    10 
    11 
    12 

     203 
    1217 
    3345 
    5576 
    6273 
    5018 
    2927 
    1254 
      392 
        87 
        13 
         1 
         0 

          185 
    1149 
    3265 
    5475 
    6114 
    5194 
    3067 
    1331 
      403 
      105 
       14 
        4 

            0 

          187 
    1146 
    3215 
    5465 
    6269 
    5115 
    3043 
    1330 
      424 
       96 
       15 
        1 

            0              
  26306        26306       26306 

 
Commencing from Karl Pearson – to check the hypothesis about the fair dice a 

tool invented by him in a view of 2χ  testing was used. The method belongs to 

mathematical statistics exceeding the scope of this book. Nevertheless very 
primitive comparison results included in the second and the last columns of Tab. 
4.2 may suggests that there were some discrepancies which allow to question this 
hypothesis. The authors of [35] included results justifying the shifting of the mean 
value – but even this simple outcome exceeds the scope of this lecture – as we are 
slowly approaching the values of the basic mean and the variance for the binomial 
distribution. 
 

4.5   Two Shores – Two Tails 

The main theoretical results regarding the binomial distribution will be discussed 
on the pages indicated below and in our own book [19] presenting here an 
expanded and corrected proposal. Regarding terminology and symbols we propose 
to follow Feller’s book [25]. Therefore we commence once again by giving the 
definition of the binomial distribution – this time stemming from a desire to 
satisfy purely formal reasons: 

Theorem   let  ( ; , )b k n p  denote the probability that in   n  Bernoulli’s trials  - 

determined by probability of  a single success  p  and failure  q = 1 - p   - appear 
exactly  k  successes  and  n – k  failures – preserving the condition   0 k n≤ ≤   - 
then  ( ; , )b k n p  describes the formula: 
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( ; , ) k n kn
b k n p p q

k
− 

= ⋅ ⋅ 
 

     where        0  <  p < 1           (4.27) 

Simultaneously the following shortened formula will be useful: 

( ; , ) ( )nb k n p P S k= =
                                

 (4.28) 

This is the right place to call  nS   a  random variable  and  (4.27) the probability 

distribution  – in short the  distribution.  The symbol   b  can stand either for  
binomial – or for Bernoulli. For a long time the numerical values of these 
distributions were given in mathematical tables. Rapid development of numerical 
tools stopped this practice. 

The basic mean and the variance of the binomial distribution are given by: 

nS n p= ⋅                               (4.29) 

2 (1 )S n p pσ = ⋅ ⋅ −
                       

         (4.30) 

Binomial distribution belongs to the class of discrete distributions determined on 
the additive half of the axes only in the points given by natural integers. To derive 
its basic mean we propose to use the verbal definition given in Chapter 1 – it leads 
to the formal definition which generalizes the formal rule of determining the mean 
derived for the grouped data and is given below: 

( )
0

; ,
k n

n
k

S k b k n p
=

=

= ⋅                                  (4.31) 

The symbol ( ; , )b k n p  can be read as normalized class frequency.  The below 

proof showing that the formula  (4.31)  finally results in  (4.29) offers successive 
steps of which possible mutual  equivalence has been left for the Student and 
should not cause difficulties in doing so (also [26] can be advised as a possible 
reference).  

 

1-mo    
( ) ( )0 1

! !

! ! ! !

k n k n
k n k k n k

k k

n n
k p q k p q

k n k k n k

= =
− −

= =

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅
− −   

2-do      
( )

( )
( ) ( )

1

1 1

1 !!

! ! 1 ! !

k n k n
k n k k n k

k k

nn
k p q n p p q

k n k k n k

= =
− − −

= =

−
⋅ ⋅ ⋅ = ⋅ ⋅

− − −   

3-tio   ( )
( )

( )
( )

1
1 1

1 0

1 ! 1 !

! ! ! 1 !

k n m n
k n k m n m

k m

n n
n p p q n p p q

k n k m n m

= = −
− − − −

= =

− −
⋅ ⋅ = ⋅ ⋅

− − −   

4-to                               
( )
( ) ( )

1
11

0

1 !

! 1 !

m n
nm n m

m

n
n p p q n p p q

m n m

= −
−− −

=

−
⋅ ⋅ = +

− −  

5-to                                                 ( ) 1n
n p p q n p

−+ =  
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Technically much more difficult is the proof of the result given  by (4.30)  - 
therefore the Student who is looking for it has to make use of books presenting 
higher levels of mathematical tools than this book (Polish Students may make use 
of [11]). Regarding the book by Feller [25] there are both proofs but the Author of 
this book thinks that they are aimed rather too high (one of the Polish novels 
written by Jerzy Andrzejewski (1903-1983) is entitled “He Cometh Leaping upon 
the Mountain” – which seems to indicate similar sentiments).  

 

Before moving on to the behavior of both tails of  binomial distribution (4.27) -  
attention will be paid for the central term of this distribution.  With respect to it let 
us examine the ratio of the two successive values of  (4.27) – proving what 
follows:   

( ; , ) ( 1) ( 1)
1

( 1; , ) (1 ) (1 )

b k n p n k p n p k

b k n p k p k p

− + ⋅ + ⋅ −= = +
− ⋅ − ⋅ −

         (4.32) 

The last term proves that since   ( 1)k n p< + ⋅  the distribution increases, and 

decreases when ( 1)k n p> + ⋅ . Moreover there is exactly a single integer  inm   

satisfying the condition: 

( 1) 1 ( 1)inn p m n p+ ⋅ − < ≤ + ⋅                             (4.33) 

Therefore – in general terms of  ( ; , )b k n p  - with increasing  k  commencing from 

zero – there is a monotonic increase reaching the maximum at  ink m=   and then 

follows a monotonic decrease. This property occurs  for all inm  up to the lowest  

1inm = . Specific behavior characterizes  0inm =  - because only its decreasing 

branch remains for these distributions. A specific situation is also related to all the 
cases  when ( 1)n p+ ⋅  - becomes an integer – let us denote it by   m  -  because the 

distribution has double maximum i.e. ( ; , ) ( 1; , )b m n p b m n p= − . Also once  m = 

1  the distribution has no monotonic increasing branch.  Several such cases are 
depicted by Fig. 4.5-4.7.    

 
Numerical values corresponding to Fig. 4.5: 

 

f1 0( ) 0.2097152= f1 1( ) 0.3670016=

f1 2( ) 0.2752512= f1 3( ) 0.114688=

f1 4( ) 0.028672= f1 5( ) 0.0043008=

f1 6( ) 0.0003584= f1 7( ) 0.0000128=  
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0.367002

0.000013

f1 k( )

70 k
0 1 2 3 4 5 6 7
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Fig. 4.5 Special case of   1
5( ;7, )b k    1inm =

 

Numerical values to Fig.4.6: 
 

 

0.392696

4.768372 10
7.

f1 k( )

70 k
0 1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

Fig. 4.6 Special case of   1
8( ;7, )b k    m = 1 
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0.438462

0

f1 k( )

70 k
0 1 2 3 4 5 6 7

0

0.075

0.15

0.23

0.3

0.38

0.45

0.53

0.6

 

Fig 4.7 Special case of   1
9( ;7, )b k    0inm =

 

Numerical values to Fig.4.7.  
 

 
                                                                 

Intermediate formulae: to help the Student with difficulties in deriving the last 
term in (4.32)  we show several intermediate steps towards it: 

 

1 1
1 1

!
( ; , ) ( 1)! ( 1)! ( 1)! ( )!

!( 1; , ) ! ( )!
( 1)! ( 1)!

k n k
k n k

k n k
k n k

n
p q

b k n p k n k p q n k pk n k
nb k n p k n k p q k qp q

k n k

−
−

− − +
− − +

⋅
− ⋅ − + ⋅ − + ⋅⋅ −= = ⋅ =

− ⋅ − ⋅ ⋅⋅
− ⋅ − +

 

 
Now we shall investigate the behavior of both tails of the binomial distribution. 
Commencing with the right tail i.e. deriving the probability of the appearance of at 
least  r  successes. The initial step requires: 
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0

( ) ( ; , )n
v

P S r b r v n p
∞

=
≥ = +                     (4.34) 

 
Important hint: the series  (4.34)  is only formally infinite – since the terms with  

n rν > −  vanish. The upper bound for probability denoted by  (4.34) will be 

derived below.  First to be considered is the case  r n p≥ ⋅ .  Examining  (4.32) it 

is clear that the terms of the series in  (4.34) decrease faster than the terms of a 
geometric series with ratio  1 ( ) / (1 )r n p r p− − ⋅ ⋅ −  - therefore 

 

( ) ( ; , )n

r q
P S r b r n p

r n p

⋅≥ ≤ ⋅
− ⋅

                  (4.35) 

 
Let us look closer at why  (4.35)  takes place.  On the one hand (4.32) allows to 
determine the reduction ratio of the series  (4.34) as: 

1
r n p p

r q

− ⋅ −−
⋅

                             (4.36) 

In turn (4.36) helps to see, that the geometric series  -  the reduction ratio of which 
is determined by: 

1
r n p

r q

− ⋅−
⋅

                            (4.37) 

decreases slower than (4.36) – therefore (4.35) takes place.  
It is possible to add some more details. The limit of the geometric series of the 

form: 

2 31 nx x x x+ + + + + +                              (4.38) 

with the condition requiring  1x <   with respect to the series terms is equal to: 

1

1 x−
                                     (4.39) 

Regarding formulae (4.38) and (4.39), the symbol   x  denotes the decrement 
ratio  of the terms of geometric series. Therefore the symbolic limit (4.39), by 
substituting the expression  (4.37)  instead of  x  – after a simple manipulation 

gives the ratio ( )/r q r n p−  as indicated in (4.35). To complete the proof the 

formula  (4.35) should be presented in view of an explicit algebraic form.  
With respect to this requirement let us note that  the values of  k  satisfying the 

following condition: 

inm k r≤ ≤                           (4.40) 
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will be more than values determined by: 

r n p− ⋅                                                    (4.41) 

Because the  integer  inm  - satisfying inequalities  (4.40)  is greater than the real  

n p⋅  and moreover the condition  (4.41)  further involves two bounding values. It 

justifies the below given inequality: 

1
( ; , )

( )
b r n p

r n p
<

− ⋅
                             (4.42) 

Altogether the final upper bound value is given by: 

2

(1 )
( )

( )n

r p
P S r

r n p

⋅ −≥ ≤
− ⋅

     where    r n p> ⋅              (4.43) 

The above procedure supplied us with the upper limiting value for the right tail of 
the binomial distributions. A similar procedure could be conducted to determine 
the lower limit for the left tail of these distributions. Instead we have decided to 
present only the final result which has the following form: 

2

( )
( )

( )n

n r p
P S r

n p r

− ⋅≤ ≥
⋅ −

   where   r n p< ⋅                (4.44) 

4.6   Jacob Bernoulli’s Weak Law of Large Numbers 

It is true that quite well-known intuitive notion of probability follows from the 
assumption, that if in  n  identical experiments the event  A  appears  ν   times and 
moreover n  is sufficiently great – then the ratio  ν/n  should be close to the 
probability  p  of the appearance of the event  A  . Therefore – returning on the 

ground of binomial distribution – if  nS   denotes the number of successes in   n   

trials – then /nS n   is the average number of successes and it is natural to expect 

that this number is close to  p  - the probability of the appearance of success in a 
single Bernoulli trial. The above method leads to the title entity – the Law of 
Large Numbers as it first appeared in a work by Jacob Bernoulli entitled “Ars 
Conjectandi” [4], posthumously edited in 1713. 

Here it can only be noted that the properties of the binomial distribution allow 
to prove what follows  (see for instance Chapter VI of [12], “Bernoulli’s 
Theorem”, pp. 96-118):  

1nS
P p

n
ε η − < > − 

 
    for small ,ε η    and accordingly big  n   (4.45)  
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We may read (4.45) in the following manner: with increasing n the probability that the 
mean number of successes  will differ from p  more than by the arbitrarily chosen   

0ε >  - tends to be zero. Comments and proofs of this theorem  frequently called the 
Weak Law of Large Numbers – fill the pages of many advanced books on Probability.  
Among them Uspensky’s [12] deserves special attention. He starts by giving the proof 
originally provided by the inventor of the theorem – Jacob Bernoulli – it consists of 5 
pages and has Uspensky’s recommendation who insisted that: 
 

… Several proofs of this important theorem are known which are shorter and 
simpler but less natural than Bernoulli’s original approach … 

 
It is interesting to know that the theorem  (4.45)  can be used to determine such  

a value of  n  with respect to assumed  ,ε η   that the theorem will be satisfied: 

2

1 1 1
lnn

ε
ε η ε
+≥ +                                       (4.46) 

Let us derive, following  (4.46),   such an   n   which corresponds to  0.01ε =   and   

0.001η = .   By using a scientific calculator we shall get   n = 69868.32832. 

Having in mind that  n  must be a natural number, we get  69 869  - which was 
also derived by Uspensky (see [12] p. 101). Further points closely related to what 
is being discussed here will be presented in Chapter 5 – keeping in mind a 
generalization of the Law of Large Numbers.  
 

Keeping in mind the subject of the next paragraph – and intending to announce 
the problem, this is the right place to draw the Student’s attention, still with 
respect to the consequences of increasing values of  n,  firstly to the fact of 
increasing numerical difficulties in operating with binomial distribution and 
secondly to the fact that apart from the troubling consequences, increasing values 
of  n  enable to make use of the normal distribution in approximating the values of 
the binomial distribution in a very simple way. Here we come close to the subject 
which was investigated successfully by Abraham de Moivre. 

4.7   Following Abraham de Moivre 

The approach presented below, leading from the binomial distribution to the 
normal distribution, may be found in a modest book by W. Pogorzelski [11] 
(known only to those who read in Polish). Out of two such proofs, the less 
rigorous one has been chosen which commences from the place already examined 
above.  To begin with, the binomial distribution is expressed once more in a 
slightly different notation which proves useful: 
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  ( ) ( )
!

! !
k n kn

P k p q
k n k

−=
−

                               (4.47) 

 
The presented approach examines the increment of the binomial distribution first 
as:   

 

( ) ( ) ( )
1 1!

1
1 ! 1 !

k n kn
P k p q

k n k
+ − −+ =

+ − −
              (4.48) 

 
This serves to derive the expression related to  (4.32): 

 

 
( )

( )
1

1

P k n k p

P k k q

+ −=
+

                                      (4.49) 

 
With the help of  (4.49)  we can determine the relative increment of the function  

( )P k : 

 

( ) ( )
( )

1
1

1

P k P k n k p

P k k q

+ − −= −
+

                       (4.50) 

 
It will be reasonable to recall the essential means of the binomial distribution: 

k n p=                                                  (4.29) 

2
k n p qσ =                                              (4.30) 

For the purpose of further considerations a new variable x  has to be defined  
which belongs to the domain of real numbers, formally determined by: 
 

x k n p= −                                                     (4.51) 

The numerator of  (4.50) will be further denoted as: 
 

( ) ( ) ( )1P k P k P kΔ = + −                                   (4.52) 

 
Formulae (4.50)-(4.52)  allow to get the following approximate result: 

1 P x

P x n p q

Δ = −
Δ

                                     (4.53) 
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The ratio  (4.53), assuming that the increment  xΔ  is sufficiently small leads to 

the functional equation: 
 

  
1 d P x

P d x n p q
= −


                                      (4.54) 

 
Its solution is presented in three steps: 

 

  ( )ln
d x

P
d x n p q

= −    then   
2

ln ln
2

x
P C

n p q
= − +    (4.55)  & (4.56) 

 

Finally (4.56)  determines the continuous function ( )P x  of the exponential 

form: 

( )
2

exp
2

x
P x C

n p q

 
= − 

 
                                    (4.57) 

 
So, in this way we obtained the result  (4.57) which for the large numbers  n  well 
approximates  the discrete function  (4.47)  in the neighborhood of  the mean  n p . 
Moreover it is seen that  (4.57) – is an even function  possessing the property  

( ) ( )P x P x= −  ;  ( )P x  presents a fast decreasing function due to its 

exponential form. Normalized requirements allow to determine the constant  C : 
 

1

2
C

n p qπ
=                                              (4.58) 

( )P x  in a view of  (4.57)  and  (4.58)  defines new probability distribution 

known as the  normal distribution – called also the  Gaussian distribution. Normal 
distribution plays a leading role in Statistics but it is sometimes overshadowed by 
a habit to present numerous distributions in Statistics courses. This particular 
course pays attention to this distribution was devoted to it the entire Chapter 5, 
which closed the theoretical part of the book. In the end of this paragraph we 
repeat – the first mathematician who derived this distribution was a French 
emigrant to England – Abraham de Moivre.  The closing part of this chapter is 
devoted to a few concepts closely related to the binomial distribution – the 
opening paragraph presents the Poisson distribution. 
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4.8   Beyond the Binomial Distribution  

4.8.1   Montmort, de Moivre, Poisson, Bortkiewicz 

Empirical Background preceded by some Biographical Data 
 

Distribution by Poisson-Bortkiewicz – commonly known as the Poisson 
distribution  should be placed at the top of Statistical distributions – combining the 
binomial distribution, the normal distribution and the Poisson distribution. The 
reason why this distribution has such a high rank can probably be deduced from 
the content of this paragraph. But the Student who wants to know about its 
application is directed to go to Chapter 5 – Part two, Exercises.  Jack Good 
examines the credit which goes to Denis Poisson (1781-1840) in a paper [27] 
consisting of 10 pages but devoting to Poisson distribution a single page (quoting 
about 100 papers of which only 25% are of his own). Jack Good himself deserves 
for a brief note. Good was born Isadore Jacob Gudak to a Polish-Jewish family in 
London 1916. Isadore later changed his name to Irving John Good – as was later 
known as Jack Good. His range of scientific interests is reminiscent of Francis 
Galton (presented in Chapter 1), he also died at approximately the same age. He 
left a good record of his war time activities working closely with Allan Turing 
(1912-54) at Bletchley Park on German Enigma. Later on he moved to the United 
States and got professorship at the Virginia Polytechnic Institute.  

During this time he wrote numerous books on probability, and is known as the 
creditor of modern Bayesian methods. Writing a paper on Poisson close when he 
was practically in his seventies he demonstrated his deep knowledge of 
Probability, profoundness of his historical references, his general erudition and his 
good sense of humor. He died of natural causes in 2009. Let us now return to his 
paper [27] and its third part which is in the end due to the fact that “Poisson was 
scarcely responsible for introducing this distribution, nor for its application”. 
Good refers to [36] which states that the discoverer of the distribution was 
Abraham de Moivre who derived it as a limiting form of the negative binomial 
(1718), and the same result was then obtained by Poisson (1837) in the same way, 

however neither of them knew the formula  / !ke kλ λ− ⋅   used today (below we 

return to this analytical details). In an interesting excerpt Good [27] says: 
Perhaps the Poisson distribution should have been named after von Bortkiewicz 

(1898) because he was the first to write extensively about rare events … 
So, continuing our biographical data we finally arrive at two names which will 

be shortly mentioned: Poisson and Bortkiewicz. Although the life of Poisson is 
described in numerous sources, in  the Author’s opinion it is rare that we can find 
such an account as the one by Boyer [7] therefore we quote just a few lines from 
[7]: 

Simeon-Denis Poisson (1781-1840) was the son of a small-town (Pithiviers) 
administrator who took charge of local affairs when the Revolution broke out, and 
the child was reared under republican principles; but he later became a staunch 
Legitimist and in 1825 was rewarded with the title of baron. In 1837, under Louis 
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Philippe, he became a peer of France. Relatives at first hoped that the young man 
would become a physician,  but strong mathematical interest led him in 1798 to 
enter the École Polytechnique, where on graduation he became successively 
lecturer, professor, and examiner. He is said to have once remarked that the life is 
good for only two things: to do mathematics and to teach it. Consequently he 
published almost 400 works, and he enjoyed a reputation as an excellent 
instructor. 

Unable to indicate another source which would supply us with such a brief 
biography of Bortkiewicz, we include here our own few lines regarding him. 
When crediting Bortkiewicz there is no better source than a short paper by J. E. 
Gumbel [28] which forces us to also include some remarks  about the latter. 
Ladislaus von Bortkiewicz (1868-1931) written in Russian in the following way  
Владислав Иосифович Борткевич and in Polish as Władysław Bortkiewicz – is 
called todaу a Russian economists and statistician of Polish descent (his mother 
was Helena Rokicka, father – a colonel of Russian cavalry). Born in Saint 
Petersburg, he graduated with a degree in law in 1890. Influenced by the lectures 
of mathematics given there by A. A. Markov he discovered in himself a talent for 
this subject. He went to Goettingen where under Wilhelm Lexis (1837-1914) he 
obtained his doctoral degree in 1893, then in Strasbourg he got his Habilitation in 
1895. Shortly after publishing a book about the Poisson distribution “Das Gesetz 
der Kleinen Zahlen” (The Law of Small Numbers) – Gumbel calls it “a brochure 
of sixty pages” – which presented his significant contribution to the Poisson 
distribution theory and applications - he obtained a position at Berlin University 
where he worked there until his death. We shall describe this contribution below. 
He is moreover considered an important contributor to economy – especially with 
respect to a critical account of Capital (Das Kapital, vol.3) by Karl Marx in which 
he undermined the latter’s claim to have provided a consistent account of capitalist 
economics. Bortkiewicz also contributed to the system of price index numbers 
used for a few decades before him. Gumbel claims that “He was a true scholar of 
the old school and his life was passed in enviable quietness” (perhaps having in 
mind his own life). And here are a few remarks about Emil Julius Gumbel (born 
on 18 July 1891, died on 10 Sept. 1966). We have to say in the beginning that his 
was a split personality – he possessed two faces (or better to say two faiths) – he 
was a mathematician and a pacifistic politician.  Born in Munich, he graduated 
from University of Munich in 1913. Until 1932 he taught Statistics at the 
University of Heidelberg. Expelled from this post for his pacifism and leftist 
views he settled in the United States in 1941. Despite quite a long period of time 
which he spent there, he only enjoyed a part time job at the Columbia University 
at one point. His biographer (see [37]) says that until this death of cancer he was 
permanently struggling with financial troubles. His major scientific contribution 
was the theory of extreme values and “Statistics of Extremes” [39] was his crown 
achievement. Following the Russian translation of his work, Gumbel became 
known in Poland. The exact date of his birth was given here as it coincides with 
the Author’s (July 18, however the Author was born almost half a century later) 
who became familiar with the book on extreme values at the time it was published 
by Mir. This was not incidental as the Author’s main field of specialization is 
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related to the gust-loads problems in Aeronautics. In the literature of his book 
Gumbel included a report by H. Press [40]  documenting the applicability of the 
statistics of extremes also in the field of Aeronautical Engineering. And this is 
where we end the biographical passage and return to the empirical background of 
the Poisson distribution - commencing from Bortkiewicz. 

The work which made Bortkiewicz’s name widely known was a brochure [41]. 
It gives an example of the number of soldiers killed by horse kicks (per year in the 
Prussian army corps) documenting that the overall distribution is remarkably well 
fitted by the Poisson distribution. Bortkiewicz’s results are provided here first as 
an extract  from [26] – pp. 155 – 156 and  given below:  

  
P(0) = 0.545;   P(1) = 0.325;   P(2) = 0.110;   P(3) = 0.015;  P(4) = 0.005            (4.59)                                                    

The mean value of the empirical distribution given by  (4.59) is determined below: 

1λ̂   =    0 * 0.545 + 1 * 0.325 + 2 * 0.110 + 3 * 0.015 + 4 * 0.005 = 0.610   (4.60) 

The variance estimate, obtained in a similar way as the above mean estimate, is: 

2
2

ˆ 0.6079λ σ= =     →      0.7797σ ≈                      (4.61), (4.62) 

Original data by  L. Bortkiewicz copied from the Internet are given as Table 4.3 
(see also [29], p.20). 
 
Table 4.3 

 

To accompany this famous example two brief remarks will be added. Soldiers 
who died in the way investigated by Bortkiewicz – were referred to by Good [27] 
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expressing his sense of humor as the victims of “Bortkiewicz’s disease” which “is 
always fatal by definition”. Secondly – although we can frequently read about the 
remarkably good fit of this empirical data with the Poisson distribution – we were 
able to find only one book [26] which contains the proof of this claim. Instead of 
providing other examples of empirical data fitting the Poisson distribution, we 
rather make use of a remark made by Gumbel in [28] which we consider very 
much up to the point and very much true (see pp. 24-25): 

In this [Poisson] distribution the variance (…) is equal to the expectation. The 
corresponding observed quotient should therefore be near unity. This is called 
“normal dispersion” in the Lexis theory. The law of small numbers says that rare 
events usually show normal dispersion. For a mathematical explanation of this 
fact consistent with Lexis theory, see Gosset [42].(…) Bortkiewicz created an 
important instrument for mathematical statistics and probability theory. However, 
the name he gave it was unfortunate because it implied a nonexistent contrast to 
the law of large numbers and led to much confusion and unnecessary arguments 
(…)  It would have been better to speak of “rare events”. 

Before we close such a brilliant reference as Good’s paper [27],  we would like 
to quote also a short passage (see p.166): 

It is reasonable to maintain that even de Moivre was anticipated by de 
Montmort (1708) who discussed  the matching problem (or “treize”). If two packs, 
each of  “n”  cards, the cards being labeled  1, 2, …, n – in each pack, are 
shuffled and laid out in two rows, the probability of exactly  “r”  matches, when  

n → ∞ , tends to 1 / !e r−   that is, to the Poisson distribution with mean  1.  

And in the end let us quote what Winston Churchill said according to Good’s 
[27] and which remains true in many countries: “Everybody has a right to 
pronounce foreign names as he chooses”. 

4.9   Derivation of the Poisson Distribution 

The proof presented below is the one which can be seen in contemporary books on 
Statistics and Probability. As it has been already noted the original proof was so 
specific that it has not been included (see Stigler [38]). The formal procedure 
below regarding limiting property the formal exposition should overcome 
inefficiency of the Word Equations Editor. The Student familiar with this Editor 
looking at what is shown below will recognize the point. Otherwise it would be 
difficult to explain. Having in mind our purposes, also the binomial formula has to 
be rewritten again in a slightly different form:  

kn
n

k
nn pp

knk

n
pnkb −−

−
= )1(

!)(!

!
),;(

            

     (4.63) 

The mentioned difficulty is found in a limiting procedure in which simultaneously 

with  n → ∞   there are gradually decreasing probabilities  0np →   
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preserving the constancy of the multiplier  nn p λ=    which we have tried to 

express below: 

                                    
λ⎯⎯ →⎯ ∞→n

npnlim
                                          

 (4.64) 

Such a  double limiting procedure leads to the Poisson distribution:  

lim ( ; , )
!

k
n

nb k n p e
k

λλ→∞ −⎯⎯⎯→                      (4.65) 

The theoretical problem under consideration can be stated as determining the  
limit: 

!
lim ( ) lim (1 )

!( )!
k n k
n n

n n

n
b k p p

k n k
−

→∞ →∞
= −

−
                  

(4.66) 

The next stage may have the shape: 

! ( 1)( 2) ( ( 1))
lim (1 ) lim 1

!( )! !

k n k
k n k
n nn n

n n n n n k
p p

k n k k n n

λ λ −
−

→∞ →∞

− − − −    − = −   −    



               (4.67) 

The right side of (4.67) may be transformed into what follows: 

1 2 1
lim 1 1 1 1 1

!

n kk

n

k

k n n n n n

λ λ λ −

→∞

−         − ⋅ − ⋅⋅ ⋅ − ⋅ − ⋅ −         
         

         (4.68) 

To develop the sequence of the particular limits we get the following one: 

1 1
lim 1
n

n n n k

n n n→∞

− − +⋅ ⋅ ⋅ =                                (4.69) 

Afterwards   (4.68)  takes the shape: 

lim 1 lim 1
!

n kk

n nk n n

λ λ λ −

→∞ →∞

   − ⋅ −   
                             

 (4.70) 

The two limits given below secure the final outcome : 

lim 1 1
k

n n

λ −

→∞

 − = 
 

                                 (4.71) 
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lim 1
n

n
e

n
λλ −

→∞

 − = 
 

                      (4.72) 

And the formula  (4.68)  becomes identical with  (4.65). Which ends this proof. 

The Student who can for instance consult [31] (pp.87-88), may find there proofs 
for the limits given by (4.70)  and  (4.71) – see also [32], pp.125-127 (the 
reference indicates a Polish translation).  

Two Numerical Examples   

The examples below show applicability of the Poisson distribution instead of 
binomial distribution in such cases when  ‘n’  is comparatively high while the 

probability of a single success np   is comparatively low  –  and their multiplier is 

close to one– then  the Poisson distribution proves to fitting such cases well.   

Example 4.1.  To determine probability that among 500 people chosen randomly 
exactly  ‘k’ people born in the New Year’s Day can be found. 

Solution.  Binomial distribution under the assumption that children are born 
uniformly throughout the entire year seems to be well documented by statistical 
data. Therefore the above example falls under the binomial distribution with the 
following parameters:  

np  = 1/365   and    n = 500                  (4.73) 

The below calculations  done with a help of MathCad  package – provide the 
answers to the problem stated in the Example 4.1 – for both distributions – first 
taking binomial, then Poisson distributions. All these results for both distributions 
calculated for  k = 0, 1, 2 and  3  are denoted as  (4.74): 
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The above obtained numerical results are convincingly close to each another. 

Moreover due to small   np  also  we have 1 1n n nq p q= − → ≈  

therefore also   2(1 )n p p n p σ λ⋅ ⋅ − ≈ ⋅ → ≈  . The Student is advised to check 

that coming up to  k = 5  he/she should get 
5

1

( , ) 1.353
k

k p k λ
=

⋅ ≈     via the 

Poisson distribution  taking an approximate value   1.369853λ ≈ .  

Example 4.2.  Automatic production of nuts assesses their high quality, so the 
probability of getting a defective product is equal to  0.015. Determine probability 
that for hundred nuts random sample there is not a single defective one.   

Solution requires to find a single numerical value.  First, the exact result from 
binomial: 

100(1 0.015) 0.22060891046938756292526835432722− =                                           (4.75)   

then for  100 0.015 1.5λ = ⋅ =    the Poisson approximation is:  

                                              
1.5 0.223130160148 ...e − =                                           (4.76) 

Deriving the Basic Mean and the Variance 
The simplest procedure leads to the formula giving the basic mean. Also this time to 
present the procedure we propose to write the Poisson distribution in a new form: 

λλλ −⋅= e
k

kp
k

!
);(                                     (4.77) 

Presenting the “Bortkiewicz’s disease” data by  (4.59)  we already used the 
formula  (4.60)  determining the mean value of the Poisson distribution but in the 
general form it is given as below:   


∞

=
=⋅

0

);(
k

kpk λλ                                       (4.78) 

As the essential stage of the evaluation of the above has to be written as follows: 

1

0 1 0! ( 1)! !

k k r

k k r

k e e e e e
k k r

λ λ λ λ λλ λ λλ λ λ
−∞ ∞ ∞

− − − −

= = =

⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅
−        (4.79) 

Commenting  (4.79) it is visible that mostly simple formal steps have been taken there. 
First the exponential expression can be moved and placed in front of the sum. 
Together with this also the term  λ  has been extracted. Regarding the sum its first term 
can be increased to  correspond to  k = 1 . Therefore the lower symbol will indicate the 
value k = 1 instead  of k = 0. Then the ratio  k/k!  can take the form of 1/(k – 1)!  and if 
we replace  (k – 1)  by  r , it  simplifies the term under the sign of summation (the 
change in the summation index needs to be noted).   Finally it has to be noted that the 
sum presenting the infinite series converges with the exponential limit – being the 
expansion of  the number  ( )exp λ  - as shown below: 
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1 0 1 2 3

1 0( 1)! ! 0! 1! 2! 3!

k r

k r

e
k r

λλ λ λ λ λ λ−∞ ∞

= =

= = + + + + →
−          (4.80) 

The result  (4.80)  obviously concludes the procedure.  
Below we also present the procedure leading to the variance of the Poisson 

distribution. In due course the well known property (used from Chapter 1) offers 
the departing point: 

222 )(kkk −=σ                                       (4.81)  

The following result  is an essential part of the proof:   

λλ += 22k                                  (4.82) 

Substitution of  (4.82)  into  (4.81)  gives the final result: 

λλλλσ =−+= 222
k                 (4.83) 

To prove a surprisingly simple property (4.82)  we recall the formal definition of 
the mean square value: 

λλ −
∞

=
⋅⋅=  e

k
kk

k

k

0

22

!
                                      (4.84) 

The procedure leading from  (4.84)  to  (4.82)  includes an apparent digression 
presenting a new path leading to  (4.78) . In this new procedure the opening step 
makes use of the result which states exactly the same as  (4.80) although in a 
slightly rearranged formulation:  
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e
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                   (4.85) 

The trick requires to differentiate  (4.85)  with respect to variable  k . It leads to the 
following: 
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                  (4.86) 

While substitution of   (4.85)  into  (4.86) gives the new identity: 

1
!0

1

=⋅⋅ −
∞

=

−

 λλ
e

k
k

k

k

                         (4.87) 

And now multiplying  (4.87)  by  λ   gives  (4.78). This trick has to be conducted 
for a second time getting per analogiam  the result  (4.82) – as required. Again the 
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first step requires to differentiate with respect to variable  k   the new identity   
(4.87) – and then proceed in the above way – which has been left for the Student. 

 
Ending this analytical passage we add an interesting result which can be found 

in a small book by J. F. C. Kingman [30].  This time the Poisson distribution has 

been denoted by the symbol  kπ   then the following property (whose proof can be 

found in [30]) takes occurs: 

kk
k

d

d ππ
λ
π −= −1                        (4.88) 

4.10   Notes on the Multinomial and Negative Binomial 
Distributions 

Multinomial Distribution 
Edwards in [2] p.113 writes: 
The rule, that the number of arrangements of  “a”  things of one kind, “b” of 
another, “c” of another, and so on, is equal to: 

!

! ! !

n

a b c 
                                               (4.89) 

first appears in the West in work of Mersenne in 1636 and was explained by 
Wallis in 1685; Bashkara had already given in the East. 

The explanation of  (4.89)  is straightforward: n different things can be 
arranged in  n!  ways, but if any  a  of them (which can be arranged among 
themselves in  a!  ways) should be identical, the number of arrangements is 
thereby reduced to  n!/a! ,  and so on for  b, c, …Therefore if we have only two 
different things – the probability distribution governing their arrangements will be 
given by the binomial distribution. To generalize formally this case the binomial 
distribution and its isomorphic counterpart can be written as follows: 

1 2

1 2
1 2

!

! !
k kn

p p
k k

      1 2n k k= +    1 2 1p p+ =     and      ( )1 2

n
p p+   (4.90) 

Then every new case in which more than two components (“things”) appear is called 
“multinomial”. To illustrate the above we shall use the most popular example of 
throwing dice. Let us identify – following the formal rule expressed by  (4.90)  its 

formal items. Assuming fair dice it is obvious that 1
6ip =  for  1, 2, , 6i =  . 

But to present the applicability of  (4.90) it has to be said how many times a die  has 
been thrown, i.e. some particular value of  n  - for instance  n = 12  and also – how 

many times each face of the die appeared, i.e. values  ?ik =  for  

1, 2, , 6i =  . Assume  2ik = - then: 
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( )
( )12

1
612

12! 479001600

4096 21767823362!
=

⋅
  

with scientific calculator accuracy the result 0.000 053 723 is obtained but using 
Word calculator we get 5.3723217092478280749885688157293 e-5   in any case - 
hardly a high probability! 
 
Negative Binomial Distribution – Terminated Binomial 
Suppose there is a sequence of Bernoulli trials with probability of success p and of 
failure  (1 – p). The sequence is observed until predefined number  r  of successes has 
occurred. Then with the number of  trials n  the number k = n – r   failures will be 
associated having the negative binomial distribution given by: 

( ) ( )1
1

1
krk r

f k p p
r

+ − 
= ⋅ ⋅ − − 

 for n =  r,  r + 1, r + 2, …  or    k =  0, 1, 2, …    (4.91) 

Let us include the following list: 
 

n =  number of events 
r =  number of successes terminating the game 
p =  probability of success on a single trial 
q = (1 – p)  probability of failure 
 

The mean, and the variance of the negative binomial defined as above are given 
by the two following formulae: 

( )1 /p r p−     and      ( ) 21 /p r p−                  (4.92)  and  (4.93) 

Formulae (4.92)-(4.93) locate these values on the  k  scale – but to locate them on  
the n  scale  they have to be shifted by the value  r = 5. This will be illustrated in a 
numerical example provided below. Before resorting to the example a formula 
equivalent to (4.91)  will be given which is the consequence of the following 
equivalence which can be easily proved: 

1 1

1

k r k r

r k

+ − + −   
=   −   

                               (4.94) 

( ) ( )1
1

krk r
f k p p

k

+ − = ⋅ ⋅ − 
 

      0k ≥                   (4.95) 

Let us examine the following example: 

Example 4.3. Consider an unfair coin with probability of  the appearance of  heads 
success  p = 0.4, and tails, failure   q = 0.6 . Assume the coin is tossed until  r = 5  
successes appears. Determine the probability of  n  tossing  which secure the 
appearance of   k   failures with the fixed  number of   r   successes .   
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Solution.  To get the equivalent formulation of  (4.91)  suitable  for this case, 
substitute   k  =  n − 5   into the distribution function (4.91) to get the  distribution 
of the trials  (independent variable   n ≥ 5): 

( ) ( )1
1

1
n rrn

f n p p
r

−− 
= ⋅ ⋅ − − 

    n ≥ 5               (4.96) 

To derive the formula corresponding to the particular conditions stated in the 
above example, substitute numerical values  r = 5, and   p = 0.4  to get  first     

( ) ( ) 551
0.4 1 0.4

4
nn

f n
−− 

= ⋅ ⋅ − 
 

  which can be transformed into what 

follows:   ( )
5

51 3
2

4 5

n

n

n
f n

−− 
= ⋅ ⋅ 
 

       the formula most useful to perform 

calculations whose results are shown in Tab.4.4. By the way it can be noted that 

there is also the following equivalence:  1 1

1

n n

r n r

− −   
=   − −   

. The proof goes 

directly from the definition of  a

b

 
 
 

. 

Fig.4.8 presents the distribution of the negative binomial  (r = 5, p = 0.4)   
even beyond the range values shown in Tab. 4.4. 

Resorting to the history of mathematics, according to Gurland [43] this 
distribution was formulated by Pierre Montmort (1678-1719) in his Essay [44], 
which takes us back to 1713. For biographical data about this Frenchman the 
Student is advised to use the Internet. Now we briefly discuss the comparison of 
the averages for three distributions closely interconnected and discussed here: 
(positive) binomial, Poisson, and negative binomial. Regarding the (positive) 
binomial  n p  >  n p q,  its average is always above its variance.  For the Poisson 
distribution – they are equal  2

k kλ σ=  .  Then,  in the negative binomial the 

variance is always greater than its mean  ( )1 /p r p−   <  ( ) 21 /p r p− .  These 

properties may help in statistical practice when trying to chose the distribution to 
fit some empirical results (see [42]).  

And again in this context – we return to the above given Example 4.3. 
Applying the result  (4.92),  we shall get the mean value, which we denote by  

kμ = 7.5   (Greek letter corresponding to the Latin  “m” – the initial of the word 

“mean”). In the  n  scale shifted by the value of  r = 5,  it corresponds to  

12.5nμ = . The variance according to  (4.93)  is  equal to  2 18.75σ =  - 

disregarding the scale. The Student is here advised to recall an appropriate part of 
Chapter 1 discussing implications of linear transformation with respect to the main 
averages.  
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Table 4.4  Numerical results for Example 4.3 

 

 

Fig. 4.8  Negative binomial   r = 5,  p = 0.4 



References 125
 

Returning to the data in  Tab. 4.4 – we can say that the cumulative probability 
for the last calculated result is  0.990529  -  which means that less than 1%  of all 
results remain outside the calculated statistics. The distribution is discrete and 
infinite. 
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Chapter 5  
Normal Distribution Binomial Heritage 

Acquaintance with the normal distribution, tables of the normal distribution. 
Probabilistic paper. Sample means distribution and Monte Carlo simulation. Two 
theorems of de Moivre-Laplace. When does normal approximation fit binomial 
distribution data? [Heritage of F.Gauss and Marquis de Laplace] –  

5.1   Normal Statistics, Preliminaries 

To understand how specific and how universal the normal distribution is, the point 
based on the Central Limit Theorems of the Theory of Probability should be taken. 
A routine course presenting this theory usually closes with the Central Limit 
Theorems. Therefore, the foregoing presentation may only present these results 
without supplying the Student with any rigorous proofs and leaving out the details. 
Thus, when indicating possible courses which present a similar approach, let us 
first mention a book by Weinberg [1] referred to earlier rather than that by 
Neyman [2], however, this remark is addressed more to the instructor than to the 
student. From an intuitional point of view a very important element of the limit 
theorems seems to be the fact that the normal distribution is the result of the sum 
of a number of random components (strictly speaking they are random variables) 
not necessarily of precisely defined nature (which stands for the knowledge of 
their distributions)1.  How universal the normal distribution is has constituted a 
heated subject of discussions or even bitter quarrels among mathematicians and 
statisticians for more than a century. There is no doubt about its power, but there 
is also no doubt about its limitations. The human species displays a wide range of 
such applications, from the purely physical (stature or weight) to mental (such as 
IQ or grades). One of its special applications is mass products. From a theoretical 
point of view the normal distribution has a unique property: invariance regarding 
linear transformations. The first encounter with such a property was offered by 
Chapter 1.   
                                                           
1 Just here we may recall a rule of the thumb well known in Statistics and using at least 

twelve uniformly distributed components to get a sample of the normal distribution. 

3
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Below we commence with presenting the normal distribution from scratch. It is 
given in general form by (5.1) showing a real function of the real variable with 

two parameters denoted by 2,x σ  and these symbols suggest the special meaning 

of the parameters. Of course  x  denotes the basic mean, and 2σ  denotes the 
variance. 

f x e x x( ) ( ) /= − −1

2

2 22

σ π
σ

     here:   −∞ < x < ∞                 (5.1) 

The above stated properties of the normal distribution will be proved (see p.5.4) – 
here we limit ourselves to presenting the defining steps. The basic mean is 
formally defined by: 

( )x f x dxμ
+∞

−∞

= ⋅                           (5.2) 

To avoid a clash of symbols in  (5.2)  symbol  μ  also appears with respect to the 

first moment. The proof will justify that substitution  of (5.1)  by  (5.2)  will give: 

μ = x                                            (5.3) 

To make  (5.2)  more familiar, let us recall the formal rule to derive the basic 

mean on the ground of the grouped data  
1

1
N

i i
i

N f xμ
=

= ⋅ , assuming that  

if N  is replaced by  ( )f x  interprets  (5.2)  as the formula suitable for the 

continuous distribution such as normal distribution. Similar reasoning can be 
applied with respect to the formal rule deriving the variance: 

2 2( ) ( )x x f x dxσ
+∞

−∞

= − ⋅                           (5.4) 

To be illustrated graphically the distribution given in (5.1) should be slightly 
modified. This modification means that the mean value has been assumed as zero. 
The result of such a transformation leads to the centered distribution  (5.5): 

2 2( ) /21
( )

2
xf x e σ

σ π
−=                                   (5.5) 

We shall comment the content of Fig. 5.1 depicting three well known bell-shaped 
curves. It gives the best opportunity to explain the role of the variance particularly 
regarding normal distribution due to the fact, that Fig.5.1 presents three diagrams 
preserving the real scales in both coordinates showing appropriate numerical 
values. Regarding these values we are also going to pay attention. 
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Fig. 5.1 Centered normal statistics with different variances 

Fig. 5.1 gives the first opportunity to mark the ranges of the normal distribution 
with respect to changing variances. But first let us denote the maximum value for 
each diagram: they decrease in the following proportion: 0.79788456,  
0.39894228  and  0.19947114  and their relative values correspond to the ratios  
4:2:1. The above given maxima can be easily calculated by using a scientific 
calculator substituting into  (5.6)  the suitable values of  σ  : 

f x( ; )= =0
1

2
σ

σ π
                        (5.6) 

This initial discussion directly leads to another simplification which this time 
plays a very important role in Statistics. Now we insert σ = 1 in (5.5).  Such a 
value leads to the standardized normal distribution  with   and σ = 1.  

This important function is given by  (5.7):  

f x e x( ) /= −1

2

2 2

π
                                           (5.7) 

Formula (5.7) will keep our attention for some time. However, earlier two 
intermediate definitions have to be given which due to the field of interest also 
play an important role. The first of these two is the so called error function 
defined by: 

( ) 
−

−=
t

t

z dzeterf 2/2

2

1

π
                  

                  (5.8) 

Due to the importance of this function we depict it in Fig. 5.2. 
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Fig. 5.2 Error function determined by  (5.8) 

Moreover few values of the error functions are given below: 

                                            erf (1) = 0.68268949 
erf (2) = 0.95449976                                           (5.9) 

                                            erf (3) = 0.9973002 
                                            erf (4) = 0.99993668 

What has to be noted here concerns the possibilities of solving the integral  (5.8) 
which cannot be done precisely and the above given values have been found 
numerically. Geometric interpretation of the definite integral is the area under the 
integrated function in certain limits. Therefore, to interpret for instance what it means 
that  erf(1) = 0.68268949 requires resorting to Fig. 5.3 which shows the curve σ = 1 
(see Fig. 5.1) colored grey between the limits (-1, +1). 

 

 

Fig. 5.3 The meaning of the error function seen in Fig. 5.2 
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Subchapter 5.3 follows up on the idea shown in Fig. 5.3 once more. In the next 
step of these preliminaries we provide the definition of the distribution function: 


∞−

=
ξ

ξ dxxfF )()(                                              (5.10) 

Which for the normal variable has the following form : 

( )21
( ) exp 2

2
F x dx

ξ

ξ
π −∞

= −
                 

 (5.11) 

Expression  (5.11)  takes into account that σ = 1  and   as shown in 

Fig.5.4 and the Student is warned about a possible confusion of the distribution 
function with the error function.  
 

 

Fig. 5.4 The distribution of the normal variable 

To emphasize our warning we provide below a new set of numerical values:  

F(0)=0.5  F(3)=0.9986501 
F(1)=0.84134475 F(4)=0.99996833 
F(2)=0.97724987 F(5)=0.99999971               

(5.11a)

 
And here is an example showing mutual correspondence between the error function 
and the distribution function: 
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erf F F( ) ( ( ) ( . ))2 2 2 0 5= ⋅ −               (5.12) 

Closing this subchapter – we shall present another graphic idea related to the normal 
statistics. What we are going to present is frequently called probabilistic paper – and 
in particular a paper on the normal distribution.  In order to do this we must define T 
(u) the function which is the reverse function with respect to the distribution function 
given by: 

( )21
exp 2

2

T

dv uν
π −∞

− =            (5.13) 

The horizontal scale of Fig. 5.5 shows the values of this function – while the vertical 
scale represents the regular pattern. The vertical scale in Fig. 5.5 is linear while the 
horizontal scale corresponds to the non-linear function 5.13. Depicting the normal 
distribution function using this paper leads to a straight line. Probabilistic paper 
serves as an auxiliary tool to help recognize the type of the statistical distribution. If 
the empirical values show a pattern close to a straight line – by using a probabilistic 
paper of a particular distribution - it confirms the right strike. To illustrate the 
application of such a tool Fig. 5.5 shows grades of students from one of the classes 
taught by the Author of this book.  These are the final examination results. 
Traditional grades from “C” to “A” – given as 3.0,  3.5, 4.0, 4.5 and 5.0 are supposed 
to belong to normal distribution. 

 

Fig. 5.5 Normal probability graph paper to test students’ grades 
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5.3   Making  Use of the Statistical Tables of the Nor mal D istribution 

5.2   Four Properties of the Normal Distribution 

The properties refer to the normal curve depicted in Fig. 5.3 remarking that the 
independent variable of this curve has to be identified with the concept of the z-
score statistics. Therefore let us recall an appropriate definition which is based 
upon both parameters of the normal distribution: its mean and its variance: 

                                                                                                           
i

x
x

x x
z

σ
−=  

1. Normal distribution is concentrated at its origin corresponding to its mean 
value equal to zero. According to the exponential law expressed by (5.7) the 
rate of decrease is so high that practically the values of this function diminish 
outside the range  (-3, +3).  

2. The bell shaped curve is symmetric regarding the origin. Therefore 
determining its values for the positive arguments simultaneously determines 
them for the negative arguments, therefore this property has an exact 
mathematical formulation – it is called the even function:  

( ) ( )f x f x− =                                             (5.14) 

3. Normally distributed statistics have an infinite number of entities belonging to 
the continuous distributions. This property sometimes misleads beginners who 
are discouraged by the infinite span-wise character of the normal distribution. 

4. The normal curve belongs to the class of single-mode curves that posses a 
single extreme (maximum) value. The middle value – called median -  of the 
normal statistics is identical with its mode value and both are identical with its 
mean value.  

5.3   Making Use of the Statistical Tables of the Normal 
Distribution 

A specific feature of the normal statistics belonging to the class of continuous 
distributions is the fact that we do not have this information which is also related to 
the discrete distributions examined in Chapter 4  - namely we do not have the number 
of its terms and have to make conclusions about them by determining the area under 
the curve such as given by  (5.7).  Having the probability (density) distribution we 
have to resort to mathematics in order to find an appropriate value of the definite 
integral within certain limits. In general it can be done precisely, but not in this 
particular case (we have already mentioned it). Therefore we have to resort to the 
numerical methods of Analyses  - which in numerical practice means that we are 
willing to use intermediate tools available on the market such as Excell, MathCad, 
Statistica , etc. In fact this practice is easier thanks to the popular Maths Tables and 
using them the Student can obtain the desired solution almost at once. Below is 
presented the first Example of this kind. 
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Example 5.1. Determine the fraction of the normal statistics which corresponds to 
the values of  z-scores  greater then  0.0  and smaller than  0.7.  

Solution Fig. 5.6 suggests that we have to determine the highlighted area under the 
curve. Analytically it is expressed in the following form: 

                          

( )
0.7

2

0

1
exp 2 0.258036

2
x dx

π
− ≈  

Therefore the point is: how to get the above result? Looking at the upper part of  
Table 5.1 we propose a section – slightly cut down after removing some 
unnecessary parts to show how to easily obtain the desired result:  

 

Fig. 5.6 For the solution of Example 5.1

 

Table 5.1 Initial part of the standard normal distribution table  
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The suitable upper limit of the integral under consideration is composed of the 
components of the first row and the first column of Tab. 5.1. This is a frequent 
trick used in creating such tables. In our example we combine   0.7  from the first 
column and   0.00  from the first row giving us  0.70  which leads to the value 
shown in bold in the above section, that is  number  0.2580.  This value is given as  
a  fraction – of the value  1.0. The table included in this book shows similar values 
but with higher accuracy and displays them as percentage. 

Similar procedures allow to solve much more advanced problems – as seen in 
Part Two of this book. We do not provide the Student with an exhausting survey 
of formal matters related to the mathematical tables which usually are to be found 
in selected tools accompanying statistical books, but also in special publications. 

5.4   Two Proofs 

We mentioned earlier the presentation of the proofs justifying two important 
results regarding the mean and the variance. We present them in the same order.  

In the first step the following substitution will take place: 

σ
xx

z
−=      or    xzx +⋅= σ                        (5.15) 

Then the defining formula (5.1)  is substituted into (5.2) initiating the following 
chain of equivalences: 


+∞

∞−

⋅= dxxfx )(μ  → dxe
2

1
x

2

2

2

)xx(

σ

πσ
μ

−
−∞

∞−
 ⋅⋅=  → dze)xz(

2

1 2

z2

⋅⋅⋅+⋅=
−

∞

∞−
 σσ

πσ
μ

 
 

                     

2 2

2 2

2 2

z zx
z e dz e dz

σμ
π π

∞ ∞
− −

−∞ −∞

= ⋅ +         

 
The Student should check that the first integral leads to  zero, while the second to 
the one, therefore in the last instant it closes the proof: 

x1x0
2

1 =⋅+⋅=
π

μ                                 (5.16) 

Coming to the second procedure we commence by a formal proposal, instead of 
(5.5), we propose the following purely symbolic alteration of the problem: 

                  

22 dx)x(f)xx()x(Var σ=⋅−= 
+∞

∞−
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Once  f(x)  is replaced by  (5.1) the initial step takes the shape: 

                         

dxe
2

1
)xx()x(Var

22

2)xx(
2 σ

πσ

−−∞

∞−

⋅
⋅

⋅−=   

To proceed further with the proof requires application of  (5.15)  resulting in the 
form: 

2

2 2 2
1

( )
2

z

Var x z e dzσ σ
σ π

∞
−

−∞

= ⋅ ⋅ ⋅
⋅   and then we get the desired result: 

23 2
2 2( ) 2

2 2

z

Var x z e dz
σ σ π

σ π π

∞
−

−∞

= ⋅ = ⋅
⋅          (5.17) 

The above equivalence applies one more well known result on the value of the 
integral describing the exponential function under the integral.  

5.5   The Central Limit Theorem – An Intuitive Approach 

Below we propose a somewhat extensive procedure (as for the proportions of this 
book) which will result in a special kind of the normal distribution called the 
distribution of the sample mean.  This distribution will be the only distribution of 
this kind belonging to the distributions of mathematical statistics. 

To ensure appropriate general population for the foregoing theorem, open 
access to infinitely large statistics, that is to all its terms, should be assumed. 
Sometimes this statistics is called the general population. We shall call it the 
population. We do not know the probability distribution of this statistics, but we 
shall assume that the distribution allows to determine the mean and the variance 
which remain unknown. Imagine a statistical experiment allowing us to choose as 
many terms as we like from this population. Performing this procedure we will 
assume that we choose very time the same number of terms which we call 
samples.  
 
Theorem 5.1. The Central Limit Theorem – Intuitionally. Let us assume that as 
the first step M  samples have been drawn from an infinite population . Each sample 
has  N  terms.  As the second step the terms of each sample are summarized.  
Therefore, at the beginning of the third step we have only  M  numbers which we 
consider the terms of a new distribution which we call the “distribution of sample 
sums”. It follows that this distribution is approximately normal.  

Below we shall try to present an approach offering necessary formal components 
to this Theorem.  Let us denote the terms of the first sample as follows: 

(1) (1) (1) (1)
1 2 3, , ,..., Nx x x x                      (5.18) 

accordingly, the j-sample is as follows: 
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( ) ( ) ( )
1 2, ,...,j j j

Nx x x                  (5.19) 

Concluding this stage it is apparent that both sequences  (5.18) and  (5.19) – 
present a single sample. As far as the number of samples M,  its value remains 
open so far.   
The next step presents the system of equations given below: 

                                             
(1) (1) (1)
1 2 1... Nx x x y+ + + =  

                                        
(2) (2) (2)
1 2 2... Nx x x y+ + + =     

(5.20) 

                                                                            

                                            
( ) ( ) ( )
1 2 ...M M M

N Mx x x y+ + + =  

Following the above given theorem CLT (Central Limit Theorem) – statistics  iy   

is normally distributed. The result is called the distribution of sample sums.  There 
is close relation between the number  N  and the quality of the sample sums 
distribution.  

To come to the kernel of the CLT we suggest the following virtual experiment. 
Assume first that we have a crate filled with a huge number of coins of the same 
dimension. Assume that each coin on one face has the digit “1”  and on the other 
“0”. Assume that a single coin is released at a time. Assume that the coins are well 
mixed – so we can be certain that we can get each coin in a purely random 
fashion. We read its designate and return it back to the crate. This experiment is 
repeated N=100 times. Remark that the number of samples   M  may be as great as 
we wish. Then there comes the question what the sample sum distribution will be. 

In these circumstances it should be seen that the probability distribution is a 
binominal distribution with  n =100  and  p = 0.5. According to the CLT its 
limiting case would be normal distribution. This result has been discussed in 
Chapter 4 while here it is seen as a particular case of the CLT.  

Nevertheless we may consider the above described experiment closer. From the 
binomial distribution follows for instance the probability of  k = 50  successes 
corresponding to the mean value of the binomial distribution, thus we get: 

                          

( ) 50 50100!
50; 100, 0.5

50! 50!
P k n p p q= = = = ⋅

⋅
 

The Word accessories include a calculator which can compute such values. The 
results close to the mean value are presented in Tab. 5.2. 
 

 



140 Normal Distribution Binomial Heritage
 

Table 5.2 Binomial distribution – the right tail probabilities 

50 0,07958923738717876149812705024217     49 0,078028664105077217155026519845265     
48 0,073527010406707377703774989854192   47 0,066590499990980266599645273830212     
46 0,05795839814029763944783940500037     45 0,048474296626430752992738411454854     
44 0,038952559789096140797736223490508   43 0,030068642644214564826322698834778     
42 0,02229226954657286702641165603268     41 0,015869073236543396866259144972417     
40 0,010843866711637987858610415731151   39 0,0071107322699265494154822398237058   
38 0,0044728799762441197936097960181375   37 0,0026979276047186754310662261696702   
36 0,0015597393964779842335851620043406   35 0.00086385566574165280629332049471172    

 
The numerical results presented in Tab. 5.2 may be used for many purposes. 

Here we suggest assessing to what extent they can be approximated by the normal 
distribution with the mean value  50  and the variance  25. It can be done directly 
and indirectly. For instance we can determine the ratio of the reduction of the 
distribution once it reaches  z = 1, 2 and 3.   

5.6   Distribution of Sample Means 

The below Theorem 5.2 presents a particular case of the Theorem 5.1. Therefore we 
copied the formulation of the first and made necessary replacements/amendments.   

Theorem 5.2. The Central Limit Theorem for Sample Means. Let us assume 
that as the first step M  samples have been drawn from an infinite population . Each 
sample has  N  terms.  As the second step the terms of each sample are used to 
compute the mean of each sample.  Therefore, at the beginning of the third step we 
have again  M  numbers which we consider the terms of a new distribution which 
we shall call the “distribution of sample means”. Therefore it follows that also 
this distribution is approximately normal.  

If the Theorem 5.1 is true – then it guarantees the truth of the  Theorem 5.2. 
Technical facilities at our disposal are too modest to present a rigorous proof of 
both theorems under our consideration.  Therefore with respect to the Theorem 5.2 
we limit ourselves to pointing out one possible proof. We have in mind a 
procedure resorting to the fact (which also should be taken for granted) that the 
normal distribution is invariant regarding linear transformations (of its variables). 
Therefore it seems enough to acknowledge that variables shown  below as  (5.21)  
are linearly dependent regarding variables given by  (5.20).  

Therefore our first step is given by the equations  (5.21) shown below:  

                                            

(1) (1) (1)
1 2

1

... Nx x x

N
μ+ + + =  

                                        

(2) (2) (2)
1 2

2

... Nx x x

N
μ+ + + =                        (5.21) 

                                           

            
( ) ( ) ( )
1 2 ...M M M

N
M

x x x

N
μ+ + + =  
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According to the Theorem  5.1 probability distribution of the variables  iy   is 

normal  – therefore distribution of variables  iμ   is also normal  -  because 

statistics  iμ    and  iy   are interrelated with the linear transformation: 

i
i

y

N
μ =                           (5.22) 

Which concludes if not the proof then at least the procedure indicating a formal 
reason justifying the Theorem 5.2. 
 

5.7   Properties of the Distribution of Sample Means 

Distribution of the Sample Means possess some important properties from the 
point of view of its numerous applications. To satisfy the requirements imposed 
by the Probability Theory it is expected that the value of  M  can be infinite. 

The distribution of sample means has the same mean value as the general 
population, due to the procedure described below:  

Theorem 5.3. As the first step an infinite number of samples is drawn from the 
original population. Each sample has  N  terms.  As the second step the terms of 
each sample are used to compute the mean.  They form the distribution of sample 
means. The mean value of this distribution is the same as the mean value of the 
original population.   
 
To formalize the sentence of the Theorem 5.3 let us denote the mean of the 
original population with the symbol  μ , while the mean of the distribution sample 

means with the symbol Xμ . In this circumstances the thesis of the Theorem 5.3 

will state what follows: 

Xμ  = μ                                   (5.23) 

Let us now come to the details expressed by the Theorem 5.3 by using the already 
developed formalism, first in the form :  

1 2 ...
lim M

M M

μ μ μ μ
→∞

+ + + =              (5.24) 

But in the second step we substitute the explicit terms iμ  given by  (5.22) into 

(5.24)   to get: 
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(1) (1) (1) (2) (2) (2) ( ) ( ) ( )
1 2 1 2 1 2... ... ... ...

lim
M M M

N N N

M

x x x x x x x x x

N M
μ

→∞

+ + + + + + + + + + + + =
⋅

               

(5.25) 

The result given by  (5.25)  contains evidence that the mean value of the sample 
means with the number of samples tending to infinity is calculated with respect to 
all terms of the original population, disregarding the sample volume, therefore it 
becomes identical with the mean value of the original population. 

The last theorem in this sequence will explain the behavior of the standard 
deviation of means. It is described by the following procedure: 

Theorem 5.4. As the first step an infinite number of samples is drawn from the 
original population. Each sample has  N  terms.  In the second step the terms of 
each sample are used to compute the mean.  They form the distribution of sample 
means. The standard deviation of means equals the standard deviation of the 
original population divided by the square root of  N. 

Denoting the standard deviation of the original population with σ   and denoting 

the standard deviation of means  with Xσ  -  we find that the Theorem 5.4 states 

X Nσ σ=                        (5.26) 

To prove  (5.26)  we propose two steps. In the first step we shall prove that: 

2 2
yσ σ=                             (5.27) 

To justify (5.27)  claiming that statistics iy  retains the variability of the original 

population it will be sufficient to recall the  Theorem  5.1. Then, let us consider 

the nature of transformations given by  (5.20). Statistics iy  belongs to the class of 

statistics the values of which are shifted with respect to  the values of the statistics 

ix . We investigated this kind of a linear transformation in Chapter 1 concluding 

that such a transformation does not change the variability of the initial statistics. 
So,  (5.27)  is true. 

In the second step let us notice that statistics  iy  and statistics iμ  are in a 

linear relation: 

i
i

y

N
μ =                          (5.28) 

Let us recall once again the content of Chapter 1 regarding the transformation  
such as (5.28) denoted there with  (1.13), while its consequences are presented by  
(1.15)  and  (1.17)  - which are exactly the same as   (5.26).  Theorem 5.4 opens a 
wide field of applications. To support this suggestion  a suitable example is 
provided below. 
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Example 5.2  The parent population collects IQ test results describing the normal 
distribution with mean value equal to  100, and the standard deviation 15. 
Suppose we gather an infinitude of random samples of 10 scores each. Determine 
the distribution of the sample means obtained in this way and examine it 
numerically.  

This example offers a temptation which we cannot resist. It gave rise to the famous 
result whose author was for long time known as “Student”. We know from the 
closing part of Chapter 1 that it was William Sealy Gosset  who published paper [11]  
introducing his original idea – of determining the distribution of the sample means for 
small samples which is now known as t-Student distribution. This distribution occurs 
when the mother population has normal distribution with unknown variance. The 
point is that the t-Student distributions for samples of   N >30   become close to the 
normal distribution. Returning to the considered example according to Theorem 5.3 
the sample means mean value is equal to the mean of the parent population: 

                                                  Xμ  = μ  = 100 

On the other hand  Theorem 5.4 will give us the standard deviation  of means as: 

NX

σσ =    7434.4
10

15 ≅                   (5.29) 

 

Fig. 5.7 Parent distribution and sample means distribution of Example 5.2 

The best comment for the mutual interrelations between the two investigated 
distributions is offered by Fig. 5.7. According to Theorem 5.3 they have common 
means, and according to Theorem 5.4 their standard deviations are defined in (5.29). 
And using the MathCad  package we get Fig. 5.7 which presents diagrams of both 
distributions (see how the rule of three-sigma is obeyed). 
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To complement the obtained solution we also include both analytical forms of 
both distributions as shown in (5.30).  Some simple calculations are left for the 
Student. 

2

2

( 100)

2 (15)
1

1
( )

15 2

x

f x e
π

−−
⋅=       and    

2

2

( 100)

2 (4.7434)
2

1
( )

(4.7434) 2

x

f x e
π

−−
⋅=

  

 (5.30) 

A brief comment to the above presented results indicates a conclusion on sampling 
with an increasing number of terms. The foregoing distributions gradually 
concentrate closer and closer to the mean value. To support this obvious 
conclusion we add one more result presenting three sample means distributions – 
depicted in Fig. 5.8. The third one describes samples with the number of entries 
100:  

5.1
15

100 =
=== XX N

N σσσ                    (5.31) 

 

Fig. 5.8 Two sample means distributions with their parent distribution 

5.8   To Initiate the Monte Carlo Simulation 

Commencing with this exciting and important tool of Statistics and/or Probability 
let us recall Chapter 2 and the procedure of grouping variables which will be used 
afterwards. The point is that here we can use a very special kind of raw statistical 
data , i.e. pseudo random numbers uniformly distributed along the interval  (0, 1) 
which will be grouped afterwards. We have in mind a simple tool in the form of a 
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scientific calculator which is usually supplied with the RND generator. In fact it 
presents a secret of the manufacturers who supply the user with an instruction 
recommending extremely simple handling: just press a button to get the successive 
digit. Students today usually cannot imagine what sophisticated tools are 
accessible this way. Not so long ago – to make use of the random numbers the 
only way was to read them from special mathematical tables. Returning to the 
point it must be stated that the smallest random number seen on the display is  
0.000, and the biggest 0.999.  To come to the uniform probability distribution on 
the interval  (0, 1)  we provide formal steps leading to its mean and the variance:  

1

0

( )x x f x dx= ⋅ ⋅      
∞

∞−

−= dx)x(f)xx( 22
xσ   here  f x( ) ≡ 1  so:   x = 1

2      

    (5.32a) 

12
1

4
1

2
1

3
12

1

0

2
12 dx)x( =+−=−= σ  then   ...288675134.0

6
3

12
1 ≈==σ         

(5.32b) 

Commenting both results, the first one stating x = 1
2   seems to be quite obvious, 

but the second result stating that 2 1
12σ =  does not look so obvious. An RND 

generator has been used to produce a sample with 50 terms collected in Tab. 5.3. 
Maybe it will be reasonable to say that the succession shown in Tab. 5.3 omits the 
fact whether the terms have been generated preserving rows or columns. 

Table 5.3 Random numbers generated by a RND generator 

.993 .953 .982 .835 .327 .746 .564 .039 .029 .222 

.521 .704 .126 .180 .459 .055 .186 .779 .714 .768 

.152 .270 .724 .165 .333 .000 .276 .987 .709 .889 

.229 .443 .898 .027 .360 .397 .778 .465 .489 .298 

.586 .412 .063 .628 .556 .506 .998 .825 .450 .131 

The statistics collected in Tab. 5.3 has been evaluated to determine the 
frequency histogram shown in Fig. 5.9. To establish the number of classes the rule 
of the thumb described in Chapter 2 has been used. Therefore, we have chosen 5 
classes – so the class interval is equal to  0.2. All particular limits (preserving the 
left continuous) are also shown in Fig. 5.9. 

The evidence for the left continuous can be found in the first interval due to the 
appearance of the term  0.000. Now, let us ask whether the frequency histogram 
shown in Fig. 5.9 documents sufficiently or rejects the hypothesis of the uniform 
distribution. Mathematical statistics offer in this respect some special tools to  
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Fig. 5.9 Frequency histogram for data given in Tab. 5.3 

resolve such problems (at least a part of them) but here we have no access to them, 
therefore we can – again – resort to the concept of the Probability Graph Paper  
(see [12] pp.212-215) already mentioned. In this case we present Fig. 5.10. 

 

Fig. 5.10 Test on uniform probability graph paper 

It seems that a visual examination of the hypothesis about the uniform distribution 
with respect to the sample given in Tab. 5.3 carried out with the help of Fig. 5.10, does 
not reject it. In other words – apparently the quality of the RND generator which has 
been used to generate this sample is rather good. With this example we came closer to 
concept in the title. However, such a tool as a scientific calculator  cannot ensure  
full access to the matter. As the next step in the desired direction let  
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us now present the idea of the generator which makes use of the rule of the thumb 
mentioned at the beginning of this Chapter in the footnote. This idea makes direct use 
of the sample means distribution although this time we resort to the uniform parents 
distribution. Therefore we recall first of all the system of equations given by (5.20) 
which now has the designate:  

                                         
(1) (1) (1)
1 2 1... Nx x x y+ + + =  

                                        
(2) (2) (2)
1 2 2... Nx x x y+ + + =

                            
         (5.33) 

                                                                            

                                       
( ) ( ) ( )
1 2 ...M M M

N Mx x x y+ + + =  

The difference lies in the fact that samples   ( ) ( ) ( )
1 2, ,...,j j j

Nx x x   are gathered from 

pseudo-random numbers uniformly distributed over the range (0, 1). Nevertheless 

for the foregoing purposes every term  ix   has to undergo a linear transformation 

which will transpose it into a z-scored  number – of which the mean is zero and 
the variance is equal to one. Having in mind fresh results given by  (5.32a)  and  
(5.32b)  the desired transformation is determined by:    

0.5

1 12
i i

i
x

x x x
z

σ
− −= =

                         

           (5.34) 

Now let us state clearly what we are going to obtain from the procedure defined 
by (5.33)  regarding the terms determined by  (5.34).  Our target result has to be 
the standard normal distribution. Therefore we have to resort to the properties 
guaranteed by the sample sums theorem. Therefore there must appear the next 
new variable determined by:  

( )

1

N
j

i
i

j

z

N
ζ ==


                                

           (5.35) 

Following the Theorem 5.3 this new variable  jζ   has the same mean value as the 

parent population made of variables iz   – it means that it is  zero. The last step 

results from the Theorem 5.4 – which via  (5.26)  gives the relation between the 

appropriate variances. Therefore, to assess that the target variables jλ  will 

conform to the  z-score  requirements, values  jζ  and N need  to be divided. 

Combining all the above statements will result in the final formula determining 

statistics  iλ   from statistics  ix : 
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( )

1

0.5

1 12

N
j

i
i

j

x

N
N

λ =
−

=
⋅


                              (5.36) 

For  N = 12  - formula (5.36)  gives an extremely simple result: 

12
( )

1

0.5j
j i

i

xλ
=

= −                             (5.37) 

Moreover (5.37) explains why we speak about the rule of dozen. If the above 
procedure despite all our efforts still leaves some uncertainty, we have reserved the 
most convincing procedure: by showing this result evidently providing the 
appropriate simulation. The point is that to present this procedure we no longer can 
use the scientific calculator.   To calculate the sample of  the desired standard normal 
statistics counting  50  terms as shown in  Tab. 5.4 we have to use a computer code. 
The results collected in Tab. 5.3 could ensure getting only the first four terms of the 
desired statistics which (as we know from Chapter 2) cannot be considered even as a 
small sample.  The Author of this book published a paper [5] where the inquiring 
Student may find many more details referring to such simulations. 

Table 5.4 Simulated statistics  λ    N = 12,  M = 50 

0.10 0.77 1.17 -0.59 -0.99 -0.45  0.40 -0.63 -0.56 -0.61 -1.46 -0.59 -0.58 -2.42  1.13 

0.41 -0.68 1.02 -0.27 -1.09 0.26  0.20 -1.11 -0.03  0.21  1.22 -0.86  0.29 -0.10  1.04 

0.39 -0.33 -0.21 -0.80 -0.87 -0.08 -0.28  1.73 -2.04  0.83 -0.06  0.70  0.07 -1.81  0.08 

1.40 -0.98 -0.20 1.22  0.12  

Usually quite a satisfactory frequency histogram for the raw statistics  λ  requires 
to have a number of terms M in the order of hundreds. Such data can be seen in [5].  A 
sample gathering only  50  terms here  given in  Tab. 5.4  allows to be grouped into not 
more than 5 classes. Therefore this stage has been here skipped. Instead Tab. 5.5 
presents a cumulated histogram in order to test it using the Probability Graph Paper of 
the normal distribution.  The result is seen in Fig. 5.11. A cautious conclusion is that 
the test does not reject the normal distribution hypothesis. 

Table 5.5 Grouped data for data given in Tab. 5.4 

Middle values   -2.5  -1.5  -0.5   0.5   1.5
Cumulated class    0.04  0.12  0.54  0.82  0.98

Having access to the Statistica package we cannot resist the temptation to apply 
the test chi-square called “goodness of fit” which does not reject this hypothesis at 
the confidence level 0.13α = .     
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Fig. 5.11 Testing on normal probability graph paper of Tab.5.5 data 

5.9   De Moivre–Laplace Limit Theorems  

Regarding the fact who of the first few Christiaan Huygens, Blaise Pascal, Jacob 
Bernoulli or Abraham de Moivre may be credited as being the first to write the 
first tract on Probability of which even the name varies from one proposal to 
another, from “Ratiociniis in Ludo Aleae”, through “Ars Conjectandi” to “The 
Doctrine of Chances”, historians are divided, nevertheless the position of the book 
listed as [8] – is unquestionably important and significant. In this subchapter we 
present strong evidence in favor of the above claim. We have in mind two limit 
theorems bearing the names of Abraham de  Moivre and Pierre Simon, Marquis de 
Laplace. Having in mind that now the Student has open access to “The Doctrine 
of Chances” (see [8]) we commence this subchapter with a few lines taken directly 
from p.243 of [8]  in finding which we have to acknowledge the help of S. Stigler 
[7]): 

 

>>   Although the Solution of Problems of Chances often require that several 

Terms of the Binomial  ( )n
a b+  be added together, nevertheless in very 

high Powers the thing appears so laborious, and so great of difficulty, that 
few people have undertaken that Task; for besides James and Nicolas 
Bernoulli, two great Mathematicians, I know of no body that has attempted 
it;  << 

 
The above quotation is considered the best introduction to the following material.  
Stigler ([7], p.82) – on his side – extracted from the quoted excerpt of “The 
Doctrine of Chances” three numbers which he inserted in a table and this table is 
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partially reproduced here in the second column of our Tab. 5.6. For an inquiring 
Student we have to add that the first number  0.682688 is to be found on p.246 of 
[8], while the two others i.e. 0.95428  and  0.99874  on p.248 of [8]. The details of 
the numerical procedure – as it is seen – take up several pages and we can warn 
the Student – that their study is not easy! Also, it seems, that the contemporary 
account of Stigler – does not help significantly.  Then let us add that the position 
of the pages 243-254 in the book [8] is quite special: they follow after PROBLEM 
LXXIII, and before PROBLEM LXXIV. De Moivre explains that he repeats there 
his own paper which was ready on November 12, 1733.  With everything so far in 
this Chapter the Student should easily recognize the value of the results derived by 
Abraham de Moivre and give the right comment to the content of Tab. 5.6  

Table 5.6 Error integral accounts  

  n σ De Moivre Contemporary [9] 

n = 1  0.682 688   0.682 689 49 

n = 2  0.954 28   0.954 499 76 

n = 3  0.998 74   0.997 300 20 

 
De Moivre-Laplace Local Theorem probability of the appearance of exactly “k” 
successes  when tossing a coin “n” times  exactly expressed by the binomial  (4.27) 
can be approximated by the normal distribution  given below for every value of 
“p”  only if  “n”  is sufficiently high: 

21 ( )
exp

2 (1 )2 (1 )

k n p

n p pn p pπ
 − ⋅− ⋅ ⋅ ⋅ −⋅ ⋅ ⋅ ⋅ −  

          (5.38) 

It is seen from  (5.38)  that the normal distribution has the same mean and the same 
variance as the binomial distribution  (4.27).  Having at hand a copy of De 
Moivre’s book [8] we cannot resist the temptation to add a remark acknowledging 
the appearance of  the symbol π   in the square root of denominator (5.38). De 
Moivre there had to mention “the Circumference of a Circle whose Radius is One” 
(see p.244 of [8]). Returning to the point we have to note that  (5.38)  allows to 
determine the required probability without resorting to the troubling factorials 
demanded by  (4.27). Before we draw the Student’s attention to the numerical 
examples supporting these theorems we will present the second theorem bearing 
the same two names: 
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De Moivre-Laplace Integral Limit Theorem.  To make use of the normal 
approximation given below which approximates the number of successes 

( )1 2,k k   as accurately determined by the binominal distribution, the condition 

∞→n  must be: 

dz
2
z

exp
2

1 2

1

z

z

2

 







−

⋅π
                   (5.39) 

of which 1z  lower  and 2z  upper limits, z-scored auxiliary variables,  are 

determined by: 

1
1

(1 )

k n p
z

n p p

− ⋅=
⋅ ⋅ −

 and 2
2

(1 )

k n p
z

n p p

− ⋅=
⋅ ⋅ −

               (5.40) 

Note, that regarding the first theorem –  the last subchapter 5.10 is thought to 
bring closer the quantitative convergence of the binomial to normal distribution. 
Nevertheless it can be instructing to see what the examination of the binomial 
diagrams presented in Fig. 5.12 offers in this respect.  

 
 

Fig. 5.12 Three binomials  n = 160  for  p = 0.1,  0.25  and  0.5 

As we know the normal distribution is a symmetrical one. Therefore when 
examining Fig. 5.12 it is recommended especially to see how such comparatively 
high value of  n  converts unsymmetrical binomial distribution into a shape close 
to the symmetrical one. This fact qualitatively supports the essential meaning of 
the convergence . Numerical aspects of this convergence depicted in  Fig. 5.12  
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are documented by the provided below coupled values of both binomial 
distributions.  Let us first take   f1(k)  i.e. the binomial with  p = 0.1  and the mean 
value 16  to examine the three couples with arguments indicating the distance of 
each argument from the mean value: 

                        

The comparison shows rather unexpected behavior justifying the need of further 
investigations. Then let us take   f2(k)   corresponding to  p = 0.25  with the mean 
value  40  and examine the next three couples symmetrically positioned regarding 
the mean: 

 

It is evident that not only do they differ but that those differences appear in a 
different pattern once their position with respect to the mean value of the binomial 
is changed. To this point we return on p.5.10 but here it is worth mentioning that 
Feller (see [13], p.182, Table 2) mentioned some details of the convergence which 
can be seen if we compare  coupled values for the same argument but for both 
binomial and normal distributions under consideration. So far we will present two 
examples to illustrate both DeMoivre-Laplace theorems (the spelling “Demoivre” 
is sometimes used even by experts in this field). 

Example 5.3. Determine probability of gathering exactly   k = 4950   successes 
while tossing a fair coin  p = 0.5  for  n =10000  times. 

Coming to the numerical results and a possibility of deriving them by using a 
scientific calculator currently (i.e. in 2011) accessible in Word 7 it comes as a 
pleasant surprise that this calculator can calculate the below given expression: 

( ) 10000

10000! 1

4950! 5050! 2
f k = ⋅

⋅
                        

 (5.44) 

The result which we got in this way is as follows: 

f ( k ) = 0.0048394951423164156764058974813258              (5.45a) 

The result obtained by using the local theorem has been obtained by the MathCad 
tools and is presented below: 
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If we use an ordinary 10-digit calculator we get:  0.004 839 414 49 – and we see 
that the accuracy of this result is sufficient for the account of accuracy of the 
normal approximation which does not come above the first five digits. For the 
Polish Student it is reasonable to remark that in the popular book on Probability by 
T. Czechowski [6] the above example was also solved but the numerical result of 
0.007042  is completely wrong, although it was repeated in  both editions 
mentioned in our Literature (Edition 1, p.71,  Edition 2, p.72). 
 

In statistical practice especially the second theorem plays a significant role. 
Therefore comments, advice, examples usually concern this one. Before resorting 
to its numerical illustration we provide two valuables rules, following Jerzy 
Neyman’s book  [2]  – both deal with the second theorem. 

 
Rule 1.   
 

Apply the integral theorem if the variance is greater than 3. 

( )2 1n p pσ = ⋅ ⋅ −  >  3            (5.46) 

Rule 2. 
 

For the cases when  n  is comparatively small, broadening the limiting values 

( )1 2,k k  by the value  0.5  ensures higher accuracy of the normal approximation: 

* 1
1

( 0.5)

(1 )

k n p
z

n p p

− − ⋅=
⋅ ⋅ −

  * 2
2

( 0.5)

(1 )

k n p
z

n p p

+ − ⋅=
⋅ ⋅ −

       

 (5.47) 

Example 5.4 Determine probability of the compound event regarding the number 

of successes from 1k = 4950  up  to  2k  = 5100  while tossing n = 10000  times 

the fair coin  of  p = 0.5 . 
 

Solution  of this example can be very simply obtained only by the integral 
theorem and in defined conditions partly without any calculations. We have in 
mind the procedure to determine suitable  z-scores corresponding to   k1=4950  
and  k2=5100  - in a view of  z1 = -1, and  z2 = +2.  In the next step we have to 
make use of the normal distribution tables and read from there the appropriate 
values of probabilities:  0.3413  for   z1  and   0.4772   for  z2 . Then we have to 
add both of them getting the desired final answer of  0.8185.  Having in mind that 
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both numbers of successes were so high there was no necessity to use the Rule 2 – 
and the related formula (5.42).  It is easy to check that  (5.40)  gives satisfactory 
accuracy in determining  z1 and  z2.  

5.10   Remarks on the Binomials Convergence [10] 

Apparently the simplest idea of convergence will require determining the 
difference  between  the target, normal, and the initial binomial distributions. In 
Fig. 5.13 this idea is illustrated by using a numerical example of the binomial 
defined by  n = 160, and  p = 0.5.  The maximum value of the normal distribution 
appearing at  k = 80  can be obtained by the ordinary scientific calculator giving us 

the result 1 80 0.063078313π⋅ = . With a help of the Word7 calculator we 

can obtain a corresponding value of the binomial shown here with the same 
accuracy as  0.062979831. Calculating the difference between them it becomes 
obvious that the first five digits depicted in Fig. 5.13 are confirmed.  

 

Fig. 5.13  Differences between normal and binomial distributions 

Moreover, this first result tells us about the true sign of such differences – which 
allows to see further  details, that is, in fact the strange behavior of these differences 
which afterwards diminish if we proceed far enough along the left tail of both 
distributions. Due to the symmetry of the considered binomial – exactly the same 
pattern is justified regarding the right tail of both distributions. But according to 
numerical results shown above it is not the case for all binomials covering the 
continuous range values regarding  p .  
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Even more surprising is the behavior of relative differences which we define below 
with numerical and graphic results of appropriate calculations for two binomials – still 
corresponding to fair dice and the number of tossing   n = 100  and  n = 160.  
Appropriate pictorial illustrations follow in both cases after the numerical results. 

 

Graphic results shown in  Fig. 5.14 –cover the range   50  >  k  > 35.   

 

Fig. 5.14 Relative “errors” for   n = 100  close to the mean value 50=μ  
 

Fig. 5.14 allows  to see  that the  relative  differences regarding the mean value 
k = n p   are comparatively small – and change their sign twice. However, once we 
cross  k = 38  tending towards  k = 0  the differences constantly increase reaching 
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the maximum  at  k = 0. The same is seen for   n = 160  - although the maximum 
value  of  the  difference  significantly  exceeds the value shown in Fig. 5.14 for   
n = 100 . We ask ourselves whether it is intuitive behavior.  

     

 

Fig. 5.15 Relative “errors” for   n = 160  close to the mean value 80=μ  
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First Approach 

One of the most haunting of Bruegel's images, Big Fish Eat Little Fish is among 
the first of the artist's many treatments of proverbs in paintings or prints. The 
image reveals many small and large fish tumbling out of the mouth of an 
enormous beached fish. A small, helmeted figure with an oversized knife slices 
open the big fish's belly, revealing even more marine creatures. Land, air, and 
water seem to be overrun by an odd assortment of real and fantastic fish, while in 
the foreground a man, accompanied by his son, gestures toward the scene. The 
meaning of his gesture is conveyed in the Flemish inscription below, which 
translates: "Look son, I have long known that the big fish eat the small." This 
vernacular form of the ancient Latin proverb, which appears in majuscule lettering 
just above, relates to the theme of a senseless world in which the powerful 
instinctively and consistently prey on the weak. That the son understands the 
lesson is apparent from his gesture toward the other man in the boat, who has 
extracted a small fish from a larger one. Bruegel's brilliant visualization of the 
proverb was first conceived as a drawing (Vienna, Graphische Sammlung 
Albertina, pen and brush drawing 22 x 31 cm) that is signed by the artist and dated 
1556. This engraving by Pieter van der Heyden  (22.9 x 29.6 cm), however, is 
signed in the lower left corner with the name Hieronymus Bosch, who had died in 
1516. The print's publisher, Hieronymus Cock, was probably responsible for 
replacing Bruegel's name with that of the more famous and salable Bosch, who 
had, not coincidentally, a major influence on Bruegel. Depicted engraving is 
owned by the British Museum, very similar one is in a possession of the 
Metropolitan Museum, and the third one stores the Royal Library in Bruxelles.        

                                                                   [Wikipedia, unknown author] 

Second Approach 

Here, like Jheronimus Bosch before him, Bruegel illustrates a proverb. The saying 
‘Big fish eat little fish’, meaning that the rich get richer while the poor get poorer, 
had been widely known throughout Europe since ancient times. Bruegels’s 
representation has generally been interpreted as an allusion to greed, yet 
surprisingly enough, the most significant detail has often been overlooked: the 
biggest and greediest fish lies stranded and gutted, while small fish spill from its 
entrails. In other words, all it accumulated is now lost, the moral of the story being 
that greed does not pay. We see, in the detail below, the father showing his child 
the fish and teaching him a valuable lesson. The text that accompanied the original 
artwork stated “Here son, I have long known that big fish eat little fish.” Also of 
interest, is the hallmark born by the cutter’s knife, what appears to be an orb of 
State. Hence this big fish, the biggest in the sea, is still subject to the rule of 
Princes. However, this proverb seems not to hold in our current times: some Big 
Fish are now ‘too big to fail’, think on the Banks & I’m sure you will agree that 
something has changed in the grand order of things. The knife of State is now a 
blunt instrument & the Big Fish roam free.                [Wikipedia, unknown author] 
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Third Strike  

Bruegel’ drawing can be also associated with the famous quote of Isaac Newton 
(1642-1727): 

 
If I have seen further it is only by standing on the shoulders of giants. 
 

In other words  - it is allegory regarding the processes of accumulating the human 
knowledge: “the big fish” stands for the next generation of scientists, “the small 
fish” – symbolize the past generations – a symbolic cascade of fruitful efforts of 
the creativity. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     
 
 
 

Book Two 
Exercises 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



L.M. Laudański: Between Certainty and Uncertainty, ISRL 31, pp. 165–187. 
springerlink.com                           © Springer-Verlag Berlin Heidelberg 201  

Unit 1 
Descriptive Statistics 

Problem 1.1  (see: [1], Prob. 4.10, p.59) 

Salesperson Sarah sells 50 units on day one when the mean number of units sold is 
65 and the standard deviation is 12, and 18 units on day two when the mean is 15 
with a standard deviation of  3. Salesperson Saul sells 45 units the first day and 21 
units on the second day. Which salesperson is the most successful on the basis of 
these two days’ sales? 

Solution 
We have to assume that the problem requires understanding the sales conditions 
on the two days which apply to both salespersons. It is suggested that the z-scored 
results are used to determine the selling efficiency. Therefore, we have to calculate 
four values of the appropriate  z-scores. 

Sarah had 1

50 65
1.25

12
z

−= = −   and  2

18 15
1.00

3
z

−= = +  her total 

score      - 0.25                                

Saul had    1

45 65
1.67

12
z

−= = −     and   2

21 15
2.00

3
z

−= = +   his total 

score     + 0.33 

Conclusion: Saul is the most successful salesperson. 

Problem 1.2 (see: [1], Prob. 2.8, p.23) 

The ages at which 20 emphysema victims who were pack-a-day smokers were 
diagnosed are: 68, 57, 35, 49, 57, 53, 70, 48, 59, 67, 63, 65, 48, 55, 63, 65, 41, 85, 
60, 57. Compute the mean and median ages at which the disease was diagnosed 
for this population. Determine also the variance of the population. 

 

3
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Solution 

Ordered statistics allows to determine the median (it is the medium value) as  
(57 + 59)/2 = 58. The calculations will partly be done with the help of the SD 

procedure. It will produce the following results: 1165ix = , 

2 70203ix =   - and in particular  58.25x =   with  10.82069776xσ =   

and  2 117.0875xσ = . Therefore, the median and the mean value are almost 

identical. 
However, it has to be pointed out that the variance is greater than the mean. As the 

Student will see (it will be discussed in Chapter 5) such cases correspond to the 
negative binomial distribution. The Student is advised to complete calculations of all 
the squared values and then the mean square value  as  70203/20 = 3510.15  
and the square of mean as 3393.0625. Their difference gives the variance   
3510.15 – 3393.0625 = 117.0875, i.e.  exactly the same as shown above. The Student 
who wants to broaden his/her skills by performing numerical calculations is advised 
to derive the variance applying the direct definition  (1.4). 

Table 1P.1 Age of smokers  

       ix          2
ix        ix          2

ix  
       35        1225        59       3481 
       41        1681        60       3600 
       48        2304        63       3969 
       48        2304        63       3969 
       49        2401        65       4225 
       53        2809        65       4225 
       55        3025        67       4489 
       57        3249        68       4624 
       57        3249        70       4900 
       57        3249        85       7225 
      ---      ---  1165  70203 

Problem 1.3 (see [1], Prob. 2.20, p.25) 

Ten mopeds tested for gas mileage yielded the following results in miles per 
gallon: 123, 85, 97, 92, 103, 114, 109, 91, 98, 83   mil/gal.  Find the mean and the 
variance. If the antipollution device is installed on any moped, its gas mileage is 
decreased by 7.5 mil/gal – find the mean and the variance also for this case. 

 

Solution 1 

It is seen that 995ix = , 99.5x = , then 2 100487ix = , therefore the 

coefficients of variability 12.18400591xσ =  and 2 148.45xσ = . 



Problem 1.3 (see [1], Prob. 2.20, p.25) 167
 

Table 1 P.2 US gas mileage 

     ix         2
ix             ix                2

ix  

    123     15129           114            12996 
     85      7225           109            11881 
     97      9409             91              8281 
     92      8464             98              9604 
    103    10609             83              6889 
      ---      ---   1165        100487 

 
Now to the second question: there are two solutions but only one of them is 

straightforward. The mean value of the new statistics is less than above 
determined for 7.5 mil/gal and is equal to 92 mil/gal. But the variance in both 
cases remains the same. 

The Student who does not understand these results has two choices. First, to 
justify the above results regarding the mean and the variance it is enough to recall 
the results  (1.10)  and  (1.12). 

There is also another approach which is less formal but perhaps more evident. To 

resort to the calculations given above with respect to statistics  7.5i iy x= − . This 

kind of proof is less general, we may even say that it is particular as gives the answer 
only for this numerical case. 

Solution 2 

The second approach follows the European standard to find out the gas mileage. 
First it uses SI Units, therefore 1 gallon = 3.785 liter, 1 state mile = 1609 meters. 
Secondly in Europe we determine the gas yield per 100 km. Let us apply the 
conversion procedure for the first moped which travels 123 miles on 1 gallon of 
gas, which is 197.907 km per 1 gallon, which gives 52.287186 km per 1 liter, 
therefore to travel 100 km it will use 1.9125144638643403214641220371184  
liters of gas. With only four digits after the decimal point, the results in the SI 
units are presented below. 

Table 1P.3 European gas mileage 

     ix        2
ix        ix           2

ix  

    1.9125   3.65771157      2.0635     4.25804235 
    2.7675   7.65917210      2.1582     4.65764821 
    2.4251   5.88133897      2.5850           6.68246811 
    2.5569   6.53798658      2.4004     5.76194033 
    2.2839   5.21609185      2.8342     8.03273602 
      ---      ---  23.9872  58.34513609 
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2.39872x =    0.283999948xσ =   2 0.0806559706xσ =  

Now, let us convert the above result for the mean mileage  99.5 mil/gal  into SI units, 
it will give us  2.3642  - which compared to  2.39872  shows troubling discrepancy 
demanding an explanation.  The answer is simple but unexpected at first glance: the 
example documents that the calculated average  2.39872 is wrong – and has to be 
replaced by the so called harmonic average defined below: 

1

1
N

harm i
i

x N x
=

=                                    (1P.1) 

Let us apply the above definition to the example under consideration by substituting 

values given in the Table1P.3 for all  ix into the denominator of the formula  (1P.1). 

Then we obtain the following result performing the necessary calculations with 
Word7: 

1

1 4.2297533189422709478390019204956
N

i
i

x
=

=  

Therefore, we get the harmonic average as  

2.3642040672245839923214803012844harmx =  

Ignoring the unnecessary digits at the end of the procedure which cannot be 
considered as accurate as it does not provide more than the first four decimal 
places – we have exactly the same value as was obtained in Solution 1 as the mean 
value – sometimes called the arithmetic average.  

Then the following question appears: why could the same procedure applied in 
Solution 2 not give the right answer?  Again, the answer is trivial: the calculations 
cannot be done mechanically. In fact the procedure to determine the values given 
in  Table1P.3 uses reciprocal values  and applying a mechanical averaging 
procedure to them the gives the wrong result. We hope that the following example 
will give the Student a satisfying opportunity to consider this matter once again 
but in a simpler arrangement. 

Problem 1.4 

Determine the mean yield (i.e. the number of quintals of the crop from one hectare) 
taking into account the three neighbor farmers whose data is given in  Table 1P.4. 
 
Solution 

 
It should be obvious that the answer (20 + 22 + 24)/3 = 22 is wrong. Such answer 
would suggest that the arable acreage for each farm is the same, but it is not. The 
desired answer is given below:  
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Table 1P.4 Farm yield 

 
    Owners of the farms 
 

     Yield 
 from hectare
   in quintals 

 Total crop 
       in    
  quintals 

 Acreage 
 arable in 
 hectares 

Malinowsky 
Nowacks 
Zelias 

      20 
      22 
      24 

     1000 
     1100 
     1440 

     50 
     50 
     60 

    ------------------     ----------      3540    160 

 

   
3540

22.125 /
160avex q ha= =

       (1P.2) 

A closer analysis of this procedure allows to establish some details which deserve to 
be understood as they are more general. Let us examine the following calculations 

1000 1100 1440
1000 1100 1440

20 22 24

avex
+ +=
+ +

             (1P.3) 

Moving forward, algebraic formalism identifies (1P.3) by the general expression: 

1 1

N N

harm i i i
i i

x f f x
= =

=                               (1P.4) 

Going backwards, formula (1P.1) used for grouped data may be simplified to one 
which is known as harmonic average  in the verbal arrangement  and is used in 
descriptive statistics.: 

1

1
N

harm i
i

x N x
=

=                          (1P.1) 

Note, that  (1P.4)  has been already used above to solve Problem 1.4. 
Ending this passage we supply our Student with one more example of this kind 

which can be found in Reichmann’s book [2], see pp.56-57. As a point of interest 
we quote Reichmann’ book stating this problem which is so puzzling that it 
deserves to be called a brain-twister, in Russian expressed by the term 
головоломка.  

Business take-over. There are two greengrocers in a vegetable market. A regularly 
sells new potatoes at a shilling for two pounds, while B sells slightly lower quality at a 
shilling for three pounds. Each of them sells 60 lb per day. Together they earn 30 + 20 
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shilling daily. One day they are both replaced by a third one who sells two and half 
pounds potatoes for one shilling. He sells 120 lb, but he earns only 48 shillings. Why?! 

We can add in the end that the Polish Student can find all these examples in this 
Author’s book [3] presented in an alternative way. 

Problem 1.5  (Follows  Prob.4.25 [1]) 

Seventeen readings of the earthquakes registered at the same station at two periods of 
time “A” and “B” are given. Consider the consequences of merging these readings.  
“A”:  5.3, 5.6, 3.7, 2.9, 5.1, 5.0, 4.6, 5.1  “B”:  3.7, 3.9, 4.2, 7.1, 6.3, 3.7, 3.8, 4.5, 7.5                     

Solution 
 

Regarding statistics “A” see Table 1P.5 given below.  

Table 1P.5 Earthquakes records “A” 

        ix            2
ix         z-score 

       5.3       28.09    0.747498513 
       5.6       31.36    1.09926252  
       3.7       13.69   -1.128576187 
       2.9         8.41   -2.066613537  
       5.1       26.01    0.512989176 
       5.0       25.00    0.395734507 
       4.6       21.16   -0.073284168 
       5.1       26.01    0.512989176 

 37.3     179.73        0 

Earthquake statistics “A” shows Aμ = 4.6625,  and  Aσ = 0.852844505. 

These values serve as a required constant to derive  z-scores  statistics given in the 
third column of Table1P.5. 

Regarding statistics “B”, the data are provided in Table1P.6 - to derive similar 
results as those in Table 1P.5. 

Earthquake statistics “B” shows Bμ = 4.96(6), and  Bσ = 1.462873887 – then 

used to calculate  z-score statistics shown in the third column of  Table1P.6. 
Now let us consider the problem of merging data “A” and data “B”. The first 

concept is shown in Table1P.7 – presenting concatenation of the set “A” with the 
set “B”  - at the level of  z-scores  for both statistics. Table1P.7  presents ordered 
entries with the total number of entries determined by  8 + 9 = 17 .  

The new statistics is z-scored statistics. The problem is how to prove it? It is 
very simple to claim that the mean value is zero. But how to prove that the 
variance remains equal to 1?  
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Table 1.P.6 Earthquake records “B” 

       ix          2
ix        z-score 

       3.7       13.69  -0.865875505 
       3.9       15.21  -0.729158320 
       4.2       17.64  -0.524082542 
       7.1       50.41   1.458316641 
       6.3       39.69   0.911447901 
       3.7       13.69  -0.865875505 
       3.8       14.44  -0.797516912 
       4.5       20.25  -0.319006764 
       7.5       56.25   1.731751011 

 44.7  241.27  0 

Table 1P.7 First merging,  z-scores 

-2.066613537 -0.729158320 0.512989176 1.458316641 
-1.128576187 -0.524082542 0.512989176 1.731751011 
-0.865875505 -0.319006764 0.747498513        ----- 
-0.865875505 -0.073284168 0.911447901        ----- 
-0.797516912 0.395734507 1.09926252        ----- 

Let us denote statistics “A” with the number of entries equal to 8 by  ix   and 

the other with 9 entries by  iy  . If each statistics has mean value equal to zero and 

the variance equal to 1,  then  it is true that: 

2 8 1ix =    and    2 9 1iy =    so   2 8ix =   and  2 9iy =  

The above obtained results prove that the mean square value z-scored statistics is 
equal to its variance and then, equal to  1. 

Therefore, for the concatenated statistics the variance will be also equal to the 
mean square which in the end will be equal to  (8 + 9)/17 = 1. What ends the 
proof.  

In the second approach let us concatenate both original statistics “A” and “B”.  
The mean value of the new statistics can be calculated as follows with the help of 
the results given in Table1P.5 and 6: 

37.3 44.7
4.823529412

9 8A Bμ +
+= =
+

 

In a similar way the variance (of the concatenated statistics) can also be calculated. We 
prefer using the auxiliary form  (1.5)  i.e. calculating the mean square value and 
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subtracting the square of the mean to derive the variance. Again, making use of the 
partial sums given in the above mentioned two tables we get: 

498269897.1
17
82

89
73.17927.241

2
2

BA =





−

+
+=+σ  

Using the Windows7 calculator we get: 

1.49826989619377162629757785467128 

Corresponding standard deviation: 

224038357.1BA =+σ  

Then we face the following question: did both concatenations give the same 
statistics or did we derive two different statistics in this way? In order to find the 
answer to this question we calculated z-scored statistics for the second merging 
statistics and obtained results presented in  Table 1P.8.  

The problem arising here can be re-stated as follows: what makes the difference 
between two  z-scored statistics? The obvious answer is: they differ only in their 
probability distributions. So, to get the final answer here rather exceeds our 
possibilities at this stage. Nevertheless, we may make a step towards the methods 
developed in Chapter-2 “Grouped data” where among other tools an important 
place is occupied by the frequency histogram which can be considered a substitute 
for the probability density functions. So we suggest the Student bravely tackles the 
problems of drawing histograms.  

In order to complete such a task in the simplest manner, we have to have ordered 
statistical data at hand. So we recall here Table1P.7 and insert its data into graph of the 
histogram – as seen in  Fig.1P.1. To help the Student obtain such a histogram we 
present a few figures from Table1P.7 showing their place in the histogram. 

Table 1P.8 Second merging, original statistics 

ix      2
ix        z-scores       ix          2

ix       z-scores 

3.7    13.69  -0.917887421        5.3       28.09  0.389261158 
3.9    15.21  -0.754493848        5.6       31.36  0.634351517 
4.2    17.64  -0.50940349        3.7       13.69 -0.917887421 
7.1    50.41   1.85980331        2.9         8.41 -1.571461711 
6.3     39.69   1.20622902        5.1       26.01  0.225867586 
3.7    13.69  -0.917887421        5.0       25.00  0.144170799 
3.8    14.44  -0.836190634        4.6       21.16 -0.182616345 
4.5    20.25  -0.264313131        5.1       26.01  0.225867586 
7.5    56.25   2.186590455      ------       -------    ------------- 
    82  421  0 
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Fig. 1P.1 Histogram of the first merged statistics 

To draw the second histogram we first collected all obtained  z-scores given in 
Table1P.8 – into an ordered set given in  Table1P.9. 

Table 1P.9 Second merging – z-scores 

  -1.571461711    -0.754493848  0.225867586    1.85980331 
  -0.917887421    -0.50940349  0.225867586    2.186590455 
  -0.917887421    -0.264313131  0.389261158        ----- 
  -0.917887421    -0.182616345  0.634351517        ----- 
  -0.836190634     0.144170799  1.20622902        ----- 

 
Then the second frequency histogram – Fig.1P.2 was drawn in the same way as 

the first shown in Fig.1P.1. 
                                                                        

 

Fig. 1P.2 Histogram of the second merged statistics 
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And now we face directly a relatively difficult problem of the similarity of both 
histograms presented in Fig.1P.1 and Fig.1P.2. We cannot ignore the significance of 
the number of gathered records of the Earthquakes. So, with this reservation a cautious 
conclusion is that they are similar but not identical. 

Problem 1.6  (see [1], Prob.2.29) 

Fifteen haulers presently provide trash service for the city. The number of residences 
served by the haulers are 6050, 4750, 8093, 3857, 6247, 5190, 3025, 5520, 4055, 
6385, 6700, 4350, 4470, 3960 and 8030. Find the mean, variance and standard 
deviation of residents served per hauler. If the city agrees to contract with a new 
company to take over 7% of each route then how many residents will the new 
company serve and what will the new mean, variance, and standard deviation per 
hauler be?  

Answers:    1x =  5378.8,  xΔ =  5648, 2x = 5395.625; 1xσ =  1467.765657, 

1x =  80 682, 2
1x = 466 287 382; 2x = 86 330, 2

2x = 498 187 286, 

2xσ = 1422.651127. 

Moreover   
15

1
1

i
i

x x
=

=   and   
15

2 2
1

1
i

i

x x
=

=   then 
16

2
1

i
i

x x
=

=  ,  

16
2 2
2

1
i

i

x x
=

=  .   

The above results have been obtained by using the procedure SD of scientific 
calculators on the market. But it can be verified that the rule denoted as  (1.5)  (see 
Part 1, Chapter 1) gives us the following results: 

2
2
x 15

80682

15

466287382




−=σ  then  44.28931489)6(46.310858252

x −=σ  

And in the two next steps we get the final answers: 

)6(026.21543362
x =σ        and     1467.765658xσ =  

to satisfy the inquiring Student with higher accuracy of both results. Complementing 
the above we also present a direct solution of the problem in Table 1P.10. 

It is left for the Student to make use of the results given in Table1P.10 – with a 
hint, that the results are accurate and as such can be used to continue with further 
accurate calculations as a challenge to an ambitious Student. 
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Table 1P.10 Direct solution 

         ix               2
ix      xxi −        2

i )xx( −  

        6050          36602500       671.2      450509.44    # 
        4750          22652500      -628.8      395389.44    # 
        8093          65496649     2714.2    7366881.64    # 
        3857          14876449    -1521.8    2315875.24    # 
        6247          39025009       868.2      753771.24    # 
        5190          26936100      -188.8        35645.44    # 
        3025            9150625    -2353.8    5540374.44    # 
        5520          30470400       141.2        19937.44    # 
        4055          16443025    -1323.8    1752446.44    # 
        6385          40768225     1006.2    1012438.44    # 
        6700          44890000     1321.2    1745569.44    # 
        4350          18922500    -1028.8    1058429.44    # 
        4470          19980900      -908.8      825917.44    # 
        3960          15681600    -1418.8    2012993.44    # 
        8030          64480900     2651.2    7028861.44    # 

 80682  466287382   0   32315040.4 

Problem 1.7  (see [1], Prob.2.26) 

One of the priorities of the new state administration is to encourage foreign tourists to 
visit the state. Records for the past eight years show that the following numbers of 
foreigners have vacationed in the state (per year).  200 500, 185 000, 190 000, 210 
000, 155 500, 145 000, 187 000, 165 000. What has been the mean, variance, and 
standard deviation of foreign visitors per year during the last eight years? By what 
percent would the mean yearly number have to be increased to reach the state goal of  
300 000 visitors from other countries per year? 

Answers: 
1x = 179 750 tourist/year, 

1x =  1 438 000, 2
1x = 2.620245 * 1110 ,  

1xσ = 21 047.565 18; desired increase 67% to raise the new average to 300 

thousand tourist/year. 
There are also two direct solutions. The first solution uses numbers expressed by all 

digits: 
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Table 1P.11 Direct solution 1 

            ix                     2
ix   xxi −            2

i )xx( −  

         200 500          40200250000    20750           430562500 
         185 000          34225000000      5250             27562500 
         190 000          36100000000    10250           105062500 
         210 000          44100000000    30250           915062500 
         155 500          24180250000   -24250           588062500 
         145 000          21025000000   -34750           1207562500 
         187 000            34969000000      7250             52562500 
         165 000          27225000000   -14750           217562500 

 1438000  262024500000   0  3544000000 

 
The second direct solution economizes on calculations by using thousands: 

Table 1P.12 Direct solution 2 in thousands 

        ix             2
ix   xxi −         2

i )xx( −  

      200.5        40200.25    20.75         430.5625 
      185        34225      5.25           27.5625 
      190        36100    10.25         105.0625 
      210        44100    30.25         915.0625 
      155.5        24180.25   -24.25         588.0625 
      145        21025   -34.75               1207.5625 
      187          34969      7.25           52.5625 
      165        27225   -14.75         217.5625 

  1438   262024.5    0     3544 

Problem 1.8  (see: [1], Prob.2.23) 

Hospital occupancy figures show the following totals for number of unoccupied 
beds in the metropolitan area. 

Jan. 385 Apr. 250 July 629 Oct. 297 
Feb. 400 May 227 Aug. 600 Nov. 318 
Mar. 270 June 573 Sept. 340 Dec. 635 

Find the mean, variance, and standard deviation of the monthly totals. If the 
construction of a new hospital increased the number of unoccupied beds by 25% as 
claimed by the hospital council, what would the new mean be? 
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Ans.: 1x =  410.3(3); 1x = 4924, 2
1x = 2 287 282, 1xσ = 149.1086479); 

2x =  512.91(6)  

Problem 1.9 (see [1], Prob.3.9) 

A dozen large banks report that sales of gold in ounces for the week were 

685, 857, 973, 495, 453, 892, 1173, 733, 1244, 797, 852  and  971 

a. Find the mean, variance, and standard deviation for gold sales at 12 
banks for the week in question by subtracting 400 from each term.  

b. If prices had gone up as expected, sales would have been down 
approximately 10%; what would the mean, variance, and standard 
deviation have been increased each term by 10%? 

 
Solution 

 
The problem is solved in the British customary units. The Student who wants to obtain 
the solution in SI units has to remember the following conversion factors. 1 lb = 16 
ounces. Then  1 lb = 0.45359237 kg which is frequently rounded up to 0.4536 kg 
(regarding the mass). 

Table 1P.13 Direct solution 

       ix   ( ix  - 400)       ( ix  - 400)² 

     685       285            81225 
     857       457          208849 
     973       573          328329 
     495         95              9025 
     453         53              2809 
     892       492          242064 
    1173       773          597529 
     733       333          110889 
    1244       844          712336 
     797       397          157609 
     852       452          204304 
     971       571          326041 

   10125    5325  2981009 

 
To determine the true mean of the statistics under consideration one has to 

perform the following calculations: 
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( 400)
400 443.75 400 843.75ix

x
N

−
= + = + =

 

For the statistics of differences shown in Table1P.13 we can use a suitable notion 
for its mean: 

400

( 400)
443.75ix

N
μ

−
= =

     then write    400 400x μ= +  

Using data given in  Table1P.13 the mean value of the original statistics results from 

10125
843.75

12
x = =  

Regarding the variance and standard deviation we obtain: 

0625.1969144166.248417
12

5325
12

2981009
N

)400x(

N

)400x( 22

i
2

i2
x −=



−=







 −
−

−
= σ  

Finally the variance, and standard deviation will be equal to 

3541.515032
x =σ                  and 9435042.226x =σ  

If an inquiring Student uses the Standard Deviation procedure in scientific 

calculators, they get    ix = 10125,   2
ix  = 9161009, xσ =  226.9435043. It 

should serve as a practical reminder of the conclusion  (1.11)  known from 
Chapter 1: the shifted statistics retain the variability of the original statistics. The 
solution of point (b) regarding new statistics where all terms are reduced by factor  
0.9  is left for the Student. Hint: it can be done very simply by recalling  results  in 
(1.15)  and  (1.17)  from  Chapter 1. 

Short Note 

Another aspect of the above given can be also seen in the  following considerations 
presented below. First, it is seen that: 

   2
400

2
x

2
400 μσσ +=  

To be certain about the meaning of the notation  2
400σ  it is given explicitly below: 

N

)400x( 2
i2

400
 −

=σ  
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Let us make use of the initial formula to derive the variance of the original statistics: 

2
400

2
400

2
x μσσ −=  

Substitution of the numerical values from  Table1P.13 will confirm that: 

3541.515030625.1969144166.24841775.443
12

2981009 22
x =−=−=σ

The Student should see that the important formula  (1.5)  was used above although in 
somewhat different disguise. 

Problem 1.10   (see: [1], Prob.3.7) 

Fifteen sufferers from migraine headaches required the following number of 
milligrams of the active ingredient in a new remedy for relief. 

325, 350, 270, 280, 295, 380, 400, 250, 420, 415, 315, 365, 385, 415, 505 

(i) what is the variance, and standard deviation of these 15 terms? (ii) had each 
person required 50 milligrams less, what would be the variance and standard 
deviation? 

 
Solution 

Table 1P.14  Direct solution 

       ix        ix  - 358      ( ix  - 358)² 

      325             -33           1089 
      350              -8               64 
      270             -88           7744 
      280             -78           6084 
      295             -63           3969 
      380              22             484 
      400              42           1764 
      250           -108          11664 
      420              62           3844 
      415              57           3249 
      315            -43           1849 
      365               7               49 
      385             27             729 
      415             57           3249 
      505           147          21609 

  5370        0  67440 
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The numerical solution to the first question of Prob.1.10 proposed in  
Table1P.14 also presents a direct way to derive the answer. This approach makes 
use of the basic mean which has to be determined initially; this can be done by 

applying the data in the first column of the mentioned table. We get  x =  358. 

Then in the second column we derived all differences from the mean, to be 
squared in the third column. Therefore, finally the variance follows as the mean 
square deviation from the mean: 

4496
15

67440
N

)358x( 2
i2

x ==
−

= σ     and    67.05221845696084051xσ ≅  

The obvious answer to the second question is left for the Student. But we have one 
more similar problem to give an opportunity to consider how ambiguous wording 
in presenting the problem may lead us in the wrong direction. 
Proble m 1.12   (see: [1], Prob.3 .13, p.42)  

Problem 1.11   (see: [1], Prob.3.21) 

Ten standard homeowner insurance policies from different companies were 
compared with the companies’ standard policies for the previous year. In each 
case the newer policy was easier to understand and contained fewer words. The 
word reduction (in numbers of words) for the 10 policies were  897, 513, 400, 
1057, 615, 299, 753, 1184, 387, and 350. (a) Determine the variance and standard 
deviation of the 10 terms. (b) If each policy were shortened by an additional 150 
words, what would the variance and standard deviation be?  
 

Solution by using the SD procedure:  
Answers: (a) 6455ix = , 2 5053787ix = , 2 88708.45xσ = , 297.8396381xσ =  

(b) except the mean reduced to  495.5, the variability remains the same! 

Problem 1.12   (see: [1], Prob.3.13, p.42) 

The numbers of repairs necessary for over five-year period for 25 automobiles of 
the same make are given here: 37, 43, 21, 28, 29, 17, 42, 33, 25, 26, 29, 24, 37, 35, 
32, 32, 18, 15, 24, 39, 24, 29, 18, 41, 12. How many of the above terms are within 
(a) one, (b) two, and (c) three standard deviations of the mean? 
Answers: 710x = , 2 21998x = , 8.741662695σ = , 2 17.48332539σ = , 

3 26.22498808σ = ,  28.4x = .  

Solution  

A simple way to obtain the answer is to order these statistics from the lowest to 
the highest value: 12, 15, 17, 18, 18, 21, 24, 24, 24, 25, 26, 28, 29, 29, 29, 32, 32, 
33, 35, 37, 37, 39, 41, 42, 43; and then establish the limits for all the three classes 
with (a) 19.66-37.14; (b) 10.92 – 45.88;  and (c)  2.18 - 54.62.  Therefore, all 25 
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are within  (c),  also all 25 are within (b), and 16 of them are within (a) [the last 
answer in Weinberg’s book shows 14, which is incorrect]. Note: if all the terms 
belong to class (b) it is obvious that they will all be also in class (c).  

A very similar problem has been provided below, the only difference is that 
there is no answer. 

Problem 1.13  (see [1], 3.28, p.45) 

Consider the following 17  terms, which indicate miles walked or ridden to school 
by the first-graders in an experimental school designed to integrate the community 
culturally and economically:  3.2, .1, 6.8, 9.0, 2.1, 4.4, 7.8, 2.1, 5.5, 2.3, 14.0, 3.7, 
12.3, 8.7, 6.2, 9.7, 11.2. How many children travel distances within  (a) one, (b) 
one and half, and (c) three standard deviations of the mean? 

Solution 

As in the previous problem we use the Standard Deviation procedure included in 
scientific calculators on the market. We get the following results: 109.1x = , 

2 956.69x = , 3.884544836σ = , 1.5 5.826817254σ = , 

3 11.65363451σ = ,  6.417547059x = . 

Also, as in Problem 1.12,  to solve this Problem we order the statistics in the 
following way:  0.1, 2.1, 2.1, 2.3, 3.2, 3.7, 4.4, 5.5, 6.2, 6.8, 7.8, 8.7, 9.0, 9.7, 11.2, 
12.3, 14.0. Initial data from the SD procedure make it possible to determine class 
limits. We find limits (2.53, 10.3)  for class  (a) ; the limiting values (0.59, 12.24), 
for the class  (b)  and finally  limits for class  (c)  of  (0, 18.07) .  Having in mind 
the fact that distances can not be negative we established the lowest limit as zero. 
Looking at the ordered statistics we notice that there are 10 terms in class  (a), 14 
terms in class  (b), and all 17 in class (c). It may be said here that taking the class 
of two sigma will classify all terms, as its limits will be  0 - 14.19 . But how this 
information may support community integration culturally and economically, the 
Author of this book cannot say. 

                                                        *** 
As the next we propose a problem which is formulated and solved in 

Hawkins/Weber’s  [6]  in order to introduce such statistical measures which are 
not so frequently used: Pearson’s coefficient of skewness, and two central 
moments to measure asymmetry and flatness (called also peakedness) – skewness, 
and kurtosis.  

Problem 1.14  (see [6], 2.21) 

The Federal Statistical System for 1975 of federal construction jobs in 13 western 
states ($ million) is given in the following, ordered statistics: 13.4, 22.4, 25.6, 
27.0, 29.3, 56.8, 72.5, 102.4, 107.9, 135.6, 143.6, 206.9, 370.6 . Examine it from 
the point of view of asymmetry and flatness. 
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Solution 

Before we start answering/solving the Problem, we will define the above 
parameters. But in order to do that we have to note that in fact they are rooted in 
grouped data and probability density functions. If we apply them in this statistics 
which we analyze in Unit 1 it can be done purely by using the core idea of the 
appropriate definitions.  

 
The Pearsonian coefficient of skewness  SK  is defined as 

( )3 × m ean - m ed ian

stan d ard  d evia tio n
S K =  

Coefficient of skewness  3α   : 

( )3

3 3

/i

x

x x N
α

σ
−

=   

Coefficient of kurtosis  4α : 

( )4

4 4

/i

x

x x N
α

σ
−

=   

In the second step it is justified to make use of the Standard Deviation procedure 
to derive the basic averages: mean and the standard deviation. In this way we get 
the following 

1314x = ,  2 252695.12x = ,  101.0769231x = , 96.02885907xσ =  

The above values have been verified using a Word 7 calculator. The two essential 
sums are exactly the same as the ones above. Then the mean, the mean square, and the 
standard deviation were calculated using the Word 7 calculator. The results are 
presented below. 

     x =  101.07692307692307692307692307692  

     2x  = 19438.086153846153846153846153846 
 

2σ =  9221.5417751479289940828402366864    

σ =  96.028859074488274345394113355714 

Subsequently to determine the successive parameters we start the calculations with the 
simplest Pearsonian skewness. By inserting the median value in bold of 72.5  we get 

  0.29758682200151225164352702384652SK =    rounded to  SK = 0.2976 
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In order to determine the coefficient of skewness we propose the following 
procedure. It is easily possible to justify that the following formula is true: 

( )3 3 2 3/ 3 2ix x N x x x x− = − ⋅ ⋅ + ⋅  

It means that to derive the skewness coefficient we have to determine the mean cube 

value  3x  besides the known averages. In the procedure leading to this result, the 
entire sum of the cubic values was calculated first 

  3x = 68180756.118,  and then 3x = 5244673.5475384615384615384615385 

In the next step we derived the value of the negative term  
23 x x⋅ ⋅ = 5894225.8168047337278106508875708. Then we collected the two 

positive terms  3 32x x+ ⋅  =  7309987. 2880937642239417387346367. In the 

end of this essential step, the third central moment was derived as 
                              1415761.4712890304961310878470667. 
The above value was normalized by the cube of standard deviation to get the desired 
result of the skewness coefficient: 

3 1.5987655522386401022098157062012α =     rounded to   3 1.60α =  

The same rounded value was obtained by Hawkins/Weber, although it was derived by 
direct evaluation of the  presented formula of the central moment. It is obvious that the 
procedure shown here saves time and may lead to the final result of higher accuracy. 

Intending to determine kurtosis we derived the formula again using an indirect 
approach. In doing so, the essential formal result was obtained first: 

( )4 4 3 2 2 4/ 4 6 3ix x N x x x x x x− = − ⋅ ⋅ + ⋅ ⋅ − ⋅  

To apply the above formula, the average of the mean fourth power 4x  has to be 
determined. The four other components can be calculated by using already known 
results. So, we  calculated first   

4x = 21744799306.4996 and then the desired  

4x = 1672676869.7307384615384615384615 . 
To determine the final result we separated negative and positive terms and then 

added them. The remaining positive term value is 

2 26 x x⋅ ⋅  =  1191540418.9663723258989531178871 

These two give  2864217288.6971107874374146563486. Two negative terms are 
calculated as 

                    34 x x⋅ ⋅  = 2120461858.9124733727810650887567   and 
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                     43 x⋅  =  313133337.12573089177549805679044  . 
 

And the final result is 430622092.65890652288085151080087. Dividing it  
by the fourth power of standard deviation gives us kurtosis of 
5.0639479262287234666531003039779  rounded to  

4 5.06α =  . The result shown 

by  Hawkins/Weber is the same as the above rounded one. To finish this solution we 
decided to present own results in view of the  Table  1P.15.  The main tool used in 
order to fill this Table could not be a scientific calculator available on the market 
although it allows to obtain accurate results. Then for comparison we also present 
Table  1P.16  which shows the solution given by  Hawkins/Weber. 

Table 1P.15  Determining skewness and kurtosis 

     x       x  x       x  x  x            x  x  x  x 
    13.4     179.56         2406.104            32241.7936 
    22.4     501.76       11239.424          251763.0976 
    25.6     655.36       16777.216          429496.7296 
    27.0     729.00       19683.000          531441.0000 
    29.3     858.49       25153.757          737005.0801 
    56.8   3226.24     183250.432      10408624.5376 
    72.5   5256.25     381078.125      27628164.0625 
  102.4 10485.76   1073741.824    109951162.7776 
  107.9 11642.41   1256216.039    135545710.6081 
  135.6 18387.36   2493326.016    338095007.7696 
  143.6 20620.96   2961169.856    425223991.3216 
  206.9 42807.61   8856894.509  1832491473.9121 
  370.6   137344.36 50899819.816     18863473223.8096 
1314.0   252695.12 68180756.118     21744799306.4996   

 
To finish it will be reasonable to note that according to our standards the 

solution shown in Table 1P.16 is not a not recommended one, mainly because 
there is no the concluding sums which have to end each column. 
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Table 1P.16  Determining skewness and kurtosis following Hawkins/Weber 
                                                 

 

Problem 1.15   (see: [1], Prob.3.27) 

Each of 20 members of the music faculty contributes the same amount of the 
coffee fund each month. The total number of cups consumed, however, varies 
from teacher to teacher as indicated by the totals for each week given here. 

Table 1P.17 Coffee cups consumed per week 

  14   25   46   15   24 
  18   23   29   10   05 
  15   08   17   17   15 
  30   11   12   10   25 

 
(1)  find the variance and standard deviation for the number of cups consumed for 
the week in question; (2) assuming everyone cuts his or her coffee drinking 
exactly in half next week, find next week’s variance and standard deviation; (3) if 
everyone increases their coffee drinking next week by five cups, what will the 
variance and standard deviation be? 

Answers:   x =  18.45 ,    xσ =  9.303090884 ,    2
xσ = 86.5475 ,  

                                  ix =  369 ,   2
ix = 8539  .  
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Solution 
To present the complete calculations of the statistics given in Table1P.17, its content  
has been ordered from the smallest term to the biggest one and the table was filled 
from the top to the bottom. To save space, data in columns 3 and 4 of Table 1P.18 are 
the continuation of columns 1 and 2. 

Table 1P.18  Direct solution 

     ix        2
ix  ix  - cont. 2

ix  - cont. 

   05       25       17     289 
   08       64       17     289 
   10     100       18     324 
   10     100       23     529 
   11     121       24     576 
   12     144       25     625 
   14     196       25     625 
   15     225       29     841 
   15     225       30     900 
   15     225       46   2116 
    ---      ---  369  8539 

 
Following a method which economizes on calculations, the procedure applying 

the  (1.5)  rule has been proposed which requires only to determine the squared 
values of the statistics. Then it is seen that the results obtained in this way shown 
at the bottom of the third and the fourth columns confirm the SD procedure. We 
partially present it here. 

( )22 2
x x xσ = −  2 28539

426.95
20

x x= → =  
369

18.45
20

x x= → =  

2
xσ = 86.5475,  xσ = 9.303090884 . 

We add to the following to a short discussion on the consequences of two 
revolutionary changes in the teaching staff habits of drinking coffee. Regarding the 
consequences of reducing each term of the original statistics by half – the new mean 
value and new standard deviation will be also reduced by half. The reduction of each 
term by 5 units will result in the reduction of the mean by 5 units giving  y = 13.45 

and the variability of the new statistics will not change. 
In the end we have a proposal rather similar to that in the solution of Problem 

1.5. Let us fix six class intervals each with eight terms and class limits  (5 ÷ 12), 
(13 ÷20), (21 ÷ 28), (29 ÷ 36), (37 ÷ 44), and (45 ÷ 53); then determine the 
number of class frequencies for each interval as  6, 7, 4, 2, 0, 1 in the end we 
obtain the frequency histogram shown in Fig.1P.3. 
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Fig. 1P.3 Frequency histogram of consumed coffee 

Comments. (1) such distinct six classes of faculty teachers should equally 
contribute to the total coffee fund despite the fact that their coffee consumption is 
so different; this gives rise to the following question: how would a justified 
proposal of their contribution to the total coffee fund look like?  (2)  the Student is 
encouraged to discuss the consequences of the appearance in this statistics of an 
unusually high term  “46”– the z-score of which is close to  2.96; so, how will the 
mean and the variance be changed if this term is rejected?   
 

Answers:   17x = , 2
xσ = 49.0526315 , xσ = 7.00378385. 
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Unit 2 
Grouped Data 

First, we offer our Students an opportunity to master the subject from the opening 
part of Chapter 2 related to the theory of attributes in view of three problems from 
Udny Yule’s book [1]. The problems are stated and have complete solutions. In a 
preparatory stage we give a brief account of  the specific definitions  and major 
concepts on this subject. 

Problem 2.1  (see [1], p.15) 

 

Solution 

To solve the problem we can follow a similar solution given in Chapter 2. Let us 
first evoke the concept of the positive classes by listing all of them for this case: 
(A), (B), (C), (AB), (AC), (BC),  and  (ABC). The term follows from the fact that 
each class collects the positive attributes. It also seems worth  emphasizing that 
each collection discussed here includes only the attributes with a division by 
dichotomy: that is the object (individual) either possesses a chosen attribute or not. 
Then, it is important to determine the total number of non empty classes 
possessing the attributes under investigation. We also remind the Student that the 
selection of three attributes as is the case here results in six non empty classes of 
order one, twelve classes of order two, and eight (non empty) classes of order 
three. Therefore, the data given in Problem 2.1 describe the problem completely. 
So, adding all class frequencies for those eight classes, we get   N = 26 287,  the 
totality of the objects under investigation, i.e. boys amongst the number of school-

3
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children. According to the proposed terminology (consult Chapter 2) these eight 
classes form the ultimate set – that is the set of all attributes, moreover these 
classes possesses the property of completeness of statistical description. It also 
should be pointed out that it is never necessary to enumerate more than the 
ultimate frequencies. Chapter 2 show (see Example 2.2) how to determine all 
ultimate frequencies from the positive class frequencies. Requested positive 
classes also form the complete set. Now let us go back to the solution of our 
problem: determining all the positive class frequencies:  
 
(A)  =  (ABC) + (ABγ) + (AβC) + (Aβγ)   →   149 + 738 + 225 + 1196  = 2308 
(B)  =  (ABC) + (ABγ) + (αBC) + (αBγ)   →   149 + 738 + 204 + 1762  = 2853 
(C)  =  (ABC) + (αBC) + (AβC) + (αβC)  →   149 + 204 + 225 +   171  =  749 
(AB) =  (ABC) + (ABγ)     →  149  +  738   =  887 
(AC) =  (ABC)  +  (AβC)  →  149  +  225   =  374 
(BC) =  (ABC)  +  (αBC)  →  149  +  204   =  353 
(ABC)  =  149;    N = 26287 

Problem 2.2  (see [1], p.16) 

 

Solution 

We proceed with calculations which in the beginning follow three ultimate class 
patterns given in the first paragraph of Chapter 2: 
 

( ) ( ) ( )A B A B A B Cγ = − →  587 – 156  =  431  

( ) ( ) ( )A A ABβ γ γ γ= − ,  ( ) ( ) ( )A A ACγ = −    →    1618  -  428  -  431 =  759 

( )α β γ = ( ) ( )Aβ γ β γ− , ( )β γ =   

 =  ( ) ( ) ( )N B C B C− − +
 
→   23713 - 2015 - 770 +335 - 759  =  20504                                  

( ) ( ) ( )A C AC ABCβ = − → 428 – 156 = 272 

( ) ( ) ( )BC BC ABCα = − →  335 – 156 = 179 

( ) ( ) ( ) ,B B ABα γ γ γ= −  ( ) ( ) ( )B B B Cγ = −  →   2015 – 335 – 431 = 1249 

( ) ( ) ( ) ,Cαβ αβ αβγ= −  ( )α β = ( ) ( ) ( )N A B AB− − +   →   163 
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The above results, as our Student should remember, can satisfy the obvious condition: 
the totality of the ultimate class frequencies must be equal to the total number of 
individuals appearing in considered statistics. This time their sum should give the 
number  of 23713 and the Student can easily check that it really gives this number.  
 

Note: the meaning of the negative class  ( )α β γ   is especially meaningful – 

those girls are healthy, free of the any of the listed defects. 

Problem 2.3  (see: [1]), p.16) 

 
 
Solution 
 
As we may guess the Census statement also presents a set of classes with the property 
of completeness. It can be called a mixed set. To complete the requirements of sub 
problem (a) we have to determine only the following three positive class frequencies: 
 
(AB) =  (ABC) + (ABγ)     →  25  +  82   =  137 
(AC) =  (ABC)  +  (AβC)  →  25  +  380   =  405 
(BC) =  (ABC)  +  (αBC)  →  25  +  500   =  525 
 
To complete the requirements of sub problem (b) the following ultimate classes 
must be determined:   

( )A β γ , ( )α β γ , ( )Bα γ , and  ( )Cαβ . The details of the calculations 

may follow the above solution to Problem 2.2. Therefore, we obtain: 
 

( ) ( ) ( )A A A Bβ γ γ γ= − , ( ) ( ) ( )A A ACγ = −    →  23467 – 405 – 82 = 22980 

( )α β γ = ( ) ( )Aβ γ β γ− , ( )β γ = ( ) ( ) ( )N B C B C− − +   

→   29002525 -  14192 – 97383  + 525 – 22980  =  28 868 495 

( ) ( ) ( ) ,B B ABα γ γ γ= −  ( ) ( ) ( )B B B Cγ = −  →   14192 – 525 – 82  = 13585 

( ) ( ) ( ) ,Cαβ αβ αβγ= −  ( )α β = ( ) ( ) ( )N A B A B− − +    

→   29002525 – 23467 + 137 – 28868495  = 110700. 
 

*** 
 
In the next step we move towards the theory of variables regarding grouped data. The 
most frequent exposition, as in [1] for instance, does not pay special attention to the 
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initial procedure – leading from the raw statistical data to the grouped data. Here the 
Student will find the discussion of this stage preceding further evaluation procedures 
of the grouped data. In this case we follow and make use of the book by Weinberg [2] 
and Spiegel [4],  not to mention our own book [3]. There is a question of which case 
should be taken first, the continuous or the discrete one? Despite the common 
practice in mathematics courses which gives priority to the discrete data – here in 
grouping statistical data, an apparently easier case is presented by the continuous 
data, therefore we commence from this case. 

Problem 2.4 (see [2], Prob.5.12) - The Continuous Case 

According to the assessor’s office the sizes (in hundreds of the square feet) of the 77 
homes in the Fairfax addition are as given below. Represent the data using a grouped 
frequency table (continuous case), and a frequency histogram. Find the mean, 
variance, standard deviation for the grouped data and compare them with the raw 
statistics data. 
 

16.83 17.30 23.90 15.21 18.75 19.31 15.95 25.72 18.40 15.00 19.30 
22.00 21.70 16.45 23.43 19.30 17.41 17.42 18.75 18.30 28.00 16.02 
15.10 16.32 13.05 15.47 16.81 16.11 18.00 28.70 18.20 25.20 15.90 
29.30 30.04 18.10 19.40 17.93 15.50 19.00 19.60 19.76 16.50 16.70 
16.03 19.51 16.30 28.40 15.75 27.20 14.30 16.00 23.93 30.00 15.00 
23.00 14.70 14.25 17.11 19.50 15.21 17.15 17.80 15.50 18.00 16.50 
15.00 16.00 14.03 18.03 21.08 18.50 18.70 24.10 15.50 17.08 21.40 

 
Solution 
 
SD procedure gives the following raw statistics results: 

ix = 1455.7, 2
ix =  28 834.1496, x = 18.9051948, xσ =  4.130748697   

 
Grouped data results are gradually presented below with some comments. 

Following (see Chapter 1 for a possible reference) an algorithm of designing 
the frequency histogram for the continuous case data we proceed as follows. 

Selecting a number of classes (or intervals) it must be kept in mind that there is no 
common rule, therefore the end product is not unique. We recommend as a guideline 

the thumb rule which in this particular case ( )62 64 77= ≤  recommends to assume 

six classes. 
To determine the total range the difference between the largest and the smallest 

terms must be found:  (30.04 - 13.05) = 16.99. 
Then the above results allow to determine the interval of each class as  

16.99 : 6 = 2.8316 (6).  But it should be noted that determining the highest class 
limits as  (27.21, 30.04) the left band continuity will be broken. It means that the 
greatest term  30.04  would belong to the non existing seventh class. The problem 
can be solved by choosing a common interval width of 2.832. It will lead to the 
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class intervals as shown in Table2P.1 and then to the frequency histogram shown 
in Fig.2P.1. 

 

 

Fig. 2P.1 Frequency histogram - the continuous case 

The histogram in Fig. 2P.1 presents the class frequencies (the third column of 
Table2P.1). With the midpoints shown in the second column of the table – the 
stage of grouping is completed. For the continuous data it is recommended to 
determine the midpoints as was shown for the highest class: 
 
(i)  30.042 – 27.21 = 2.832   (ii)  2.832 : 2 = 1.416   (iii)  27.21 + 1.416 = 28.626 ≈ 28.63 
 
The lower midpoint value can be obtained by subtracting from the class width, the 
exact midpoint value of the higher class. Rounding is always as the last step. The 
rounded value is inserted in the table. If we require higher accuracy, the 
subsequent numerical steps do not have to be rounded.  

Table 2P.1 Direct method to determine mean values 

   Class limits       x     f      f x       x²        f  x² 
27.21 – 30.042 28.63 06 171.78 819.6769 4918.0614
24.38 – 27.21   25.79   03  077.37 665.1241  1995.3723 
21.55 – 24.38   22.96   07  160.72 527.1616  3690.1312 
18.71 – 21.55   20.13   13  261.69 405.2169  5267.8197 
15.88 – 18.71   17.30   32  553.60 299.2900  9577.2800 
13.05 – 15.88   14.47   16  231.52 209.3809  3350.0944 
    N= 77 1456.68     28798.7590 

 
Let us now proceed with the determining numerical values of the mean, variance, 
and standard deviation for this grouped data. We make use of the values 
determined in Table 2P.1. 
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1456.68
18.91792208

77
i i

i

x f
x x x

f

⋅
= → = → =


 

[ x = 18.9051948]

  
2

2 2 228798.759
374.0098571

77
i i

i

x f
x x x

f

⋅
= → = → =


 

( )22 2 2 2374.0098571 18.91792208 16.12208132x xx xσ σ= − → − → =  

4.015231166xσ =   [ xσ = 4.130748697]  

The Student is advised to look closely at the results obtained on the base of the 
grouped data, and compare them with the above given results for the raw statistics 
(partially repeated here in the brackets). The mean differs by 0.067%, but the 
variance differs by 5.51%  (dispersion by 2.8%). For the grouped data the mean 
became greater but the variance smaller than appropriate raw data averages. It 
seems that the sign of the differences for both means can be either positive or 
negative. The Student is recommended to observe these changes in the following 
examples. Unfortunately typical examples for this Unit according to common 
practice deal with the data which has been already grouped. We will have a look at 
this matter below. Before that we consider how to group the discrete raw statistics. 

Problem 2.5 (see [2], Prob.5.10) – The Discrete Case 

The sports programming coordinator of a major network has requested her 
administrative assistant to compile the length of the last 50 televised professional 
football games. The data collected show the following lengths (in minutes): 

103 107  095  110  115  123  096  107  115  097  090  125  123  127  095  102  107 
115 093  108  110  111  115  139  116  105  097  144  098  104  114  119  129  133 
122 121  111  127  118  115  123  118  094  132  093  106  114  115  111  112 

 
Group the data into a frequency table and represent it on a histogram. Determine 
the mean, variance, standard deviation. 
 
Solution 
 
SD procedure gives the following raw statistics results: 
 

5619ix =   2 639143ix =    2 12782.86avex =    112.38x =     
2 153.5956xσ =  12.39336919xσ =      

 

The grouping procedure for the discrete data has some specific features but the 
algorithm of the procedure is the same as described above. The first two points of 
the Algorithm can be proceeded in either direction. Let us determine the range  
first, i.e. (144 – 90) = 54, then the greatest and the smallest terms must be 
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combined to give the answer.  Then  let  us  suggest  the number of the classes as  
n = 5. To determine the common interval we calculate 54 5 10.8 11xΔ = → ≈  

which has to be also a discrete value – so, we should always round up.  

Table 2P.2 Direct method to determine averages - the discrete case 

   Class limits  Midpoints  x     f      f x        x²        f  x² 
134 – 144 139 02 278 19321 38642

    123 – 133     128   09   1152   16384    147456 
    112 – 122     117   15   1755   13689    205335 
    101 – 111     106   14   1484  11236    157304 
     90 -   100      95   10    950    9025      90250 
    N= 50    5619         638987 

 
Determining the interval limits and the midpoints due to the specific differences 
with respect to the continuous case requires some comments. Let us look at the 
lowest class. Its left band is determined by the smallest value of the grouped data. 
Each class has 11 terms and each class contains terms appearing at the class 
bands. These requirements allow to determine the right band as equal to 100. The 
immediately following higher class has the lowest term 101 as the next following 
after the term 100. To determine the right band for this class we have to proceed 
exactly in the same way as for the lowest class. In the end we have to check 
whether the highest class contains the greatest term 144. To determine midpoints 
we commence again from the lowest class. Among the 11 discrete terms the 
midpoint is the sixth term counting from each side. For an even case of the 
number of terms, the two middle terms have to be selected and their average 
determined. This average will serve as the midpoint.  

Each subsequent midpoint of the case under consideration is greater by 11 than 
the previous one. Generally the midpoints are distanced by the value of the 
interval – as it is the case also for the continuous data. 

 

Fig. 2P.2 Frequency bar histogram – the discrete case (see Table 2P.2). 
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The next stage makes use of the calculations given in Table 2P.2. First to derive 
the mean – we see that the grouped data gives exactly the same value as that 
obtained for the raw statistics. Also there is no significant difference regarding the 
measures of variability. The variance of the grouped data is 2% smaller than the 
variance obtained for the raw statistics. Below in squared brackets are repeated 
raw statistics results (indicating the variance data as different for both cases). 
 

2
2 2 2638987

12779.74
50

i i

i

x f
x x x

f

⋅
= → = → =


[ 2 12782.86avex = ] 

( )22 2 2 212779.74 112.38 150.4756x xx xσ σ= − → − → =    12.26684964xσ =  

[ 2 153.5956xσ = ],  [ 12.39336919xσ = ] 

 
Any doubts that the obtained results could be wrong may be removed if 
remember in relation to the mean, that the results are identical – such a rare 
coincidence cannot be incidental. The remaining doubts regarding variability may 
be resolved thus: the results in the last column of Table 2P.2 are calculated once 
more by multiplying the results of the second column with the results of the 
fourth column to get the same values as obtained from multiplying the third and 
fifth columns. 

Problem 2.6  (see: [4], pp.32-33) 

The final marks in mathematics of 80 students at State University are recorded in 
the accompanying table. 

 

By making frequency bar histogram determine the all major averages for the 
grouped data. 

Solution 

In the book [4] Spiegel proposed  n = 10  i.e.  ten classes - while grouping the 
above given  N = 80  grades – called here raw statistics  or  descriptive statistics. 
According to our guidelines, the highest number of classes would be  n = 6  - as 
this number satisfies the recommended rule of the thumb. It is seen that with   
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n = 6  we have an interval 44 6 7.3 8xΔ = → ≈ . But we recommend   

n = 5  - which gives the interval   44 5 8.8 9xΔ = → ≈  . Let us discus 

these proposals. 
Apparently Spiegel’s proposal seems  to offer a worse proposal. He disregards 

the true range of the initial statistics and proposes ten classes:  (50-54), (55-59), 
(60-64), (65-69), … , (90-94), (95-99). Nevertheless this proposal also has an 
evident advantage: the grading system with grades in the range of (50-99) is 
commonly used at universities. Therefore, all such results will fall into the array 
proposed by Spiegel. However, for the particular case under consideration our 
proposal suits it better. Taking   n = 6   we get the following classes:    (53-60), 
61-68), (69-76), (77-84), (85-92), and (93-100). Only the highest class has the 
upper limit greater than the greatest value of the initial statics. From this point of 
view the proposal   n = 5  is   the ideal  one  with the following limits:  (53-61), 
62-70), (71-79), (80-88), and (89-97). Moreover, the widely used “traditional 
marks” suit this scale – offering respectively: 3.0, 3.5, 4.0, 4.5 and 5.0 for the 
above class limits. So, the Student can see a number of valuable proposals taken 
into account here and consider the arguments for each particular one. If we end 
our discussion at this point it is not because we exhausted the possible remarks on 
the matter but rather because of limitations of the length of this passage. 

 
Fig. 2P.3 Frequency bar histogram – the discrete case 

 



198 2   Grouped Data
 

The Student is also recommended to make a histogram according to class limits 
given by Spiegel. It will provide a good opportunity to understand the advantages 
of accepting our rule of the thumb regarding the choice of the number of classes: 
the zig-zag multimodal histogram obtained by Spiegel serves as the best 
recommendation of this thumb rule. But there is a second comment which points 
to the histogram shown in Fig. 2P.3 – its unimodal shape is shifted towards the 
higher grades but the normal law of grade distribution suggests that the maximum 
should be closer to the medium grades, say 3.5 in this scale – but not 4.0. It 
follows that the passing grade for these examination was set  too low. Then we 
turn to numerical calculations. 

Table 2P.3 Direct method to determine averages – the discrete case 

   Class limits x midpoints       f       f x        f  x² 
89 – 97 93 09 837 77841

    80 – 88       84     14   1176    98784
    71 – 79       75     33   2475  185625
    62 – 70       66    16   1056    69696
    53 -  61       57     08    456    25992
    N=80    6000   457938 

 
6020ix =   2 461508ix =    2 5768.85avex =    75.25x =   

2 106.2875xσ =  

6000
75

80
i i

i

x f
x x x

f

⋅
= → = → =


    [75.25] 

 
2

2 457938
5724.225

80
i ix f

x
N

⋅
= → =     [5768.85] 

( )22 2 5724.225 5625 99.225x x xσ = − → − =   [106.2875] 

9.96117463xσ ≅   [10.3095829]    in brackets – results obtained for the original 

raw statistics (obtained using the SD procedure). 
 

*** 
  
Before presenting the next problem we present Table IX from [1], (see p.95 in 

Polish translation or  p.114 in the original edition)  which will be used below as a 
reference to at least one problem solved here.  
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Table IX – Weights for Adult Men [1] 

 
 
                                                               *** 

Problem 2.7 

Taking into account the grouped data of Table IX regarding Men born in Wales, 

draw both histograms and find 40P  and 143XPR = ; also find the main averages. 

 
Solution – we commence by calculating the mean values following the results 

from Table 2P.4. 
116650

158.06233062330623306233062330623
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i i

i

x f
x x x

f

⋅
= → = → =
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2
2 2 218694400

25331.165311653116531165311653117
738

i i
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x f
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f

⋅
= → = → =


( )22 2 225331.16531 158.0623306x x xσ = − → −  

2 347.46494958174513994462437849311xσ =  

18.6404117331604330618140278963338xσ =  
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Table 2P.4 Direct method to determine averages – the continuous case 

 Class limits x f x f     x x f Class limits    x f x f x x f
    190 – 200   195  14   2730    532350      ---     
    180 – 190     185  34   6290  1163650   280 -  290   285   01    285    81225 
    170 – 180  175 102 17850  3123750   270 -  280   275   00    ---      ---  
    160 – 170  165 134 22110  3648150   260 -  270   265   00    ---      --- 
    150 – 160  155 178 27580  4274900   250 -  260   255   01    255    65025 
    140 – 150  145 153 22185  3216825   240 – 250   245   00    ---      --- 
    130 – 140     135  68   9180  1239300   230 – 240   235   02    470  110450 
    120 – 130  125  23   2875   359375   220 – 230   225   01    225    50625 
    110 – 120     115  10   1150   132250   210 -  220   215   08  1720  369800 
    100 – 110  105  02     310     32550   200 – 210   205   07  1435  294175 
        ----            ---      ---     ----  738 116650 18694400 

 

 
An interesting numerical experiment is shown below: eliminating the last 

record given in Table IX leads to the following numerical results. 

Table 2P.5 Both methods to determine averages – the continuous case - modified 

Class X F F- F*X X*X F*X*X U F*U U*U F*U*U
    250 -  260   255 01  737      255     65025       65025    8    08    64      64 
    240 – 250   245 00  736     --     60025    ---------    7     0    49       0 

    230 – 240   235 02  736      470     55225     110450    6    12    36      72 

    220 – 230   225 01  734      225     50625       50625    5    05    25      25 

    210 -  220   215 08  733    1720     46225     369800    4    32    16    128 

    200 – 210   205 07  725    1435     42025     294175    3    21    09      63 

    190 – 200    195 14  718    2730     38025     532350    2    28    04      56 

    180 – 190      185 34  704    6290     34225   1163650    1    34    01      34 

    170 – 180   175 102  670  17850     30625   3123750    0     0     0       0 

    160 – 170   165 134  568  22110     27225   3648150   -1  -134    01    134 

    150 – 160   155 178  434  27590     24025   4276450   -2  -356    04    712 

    140 – 150   145 153  256  22185     21025   3216825   -3  -459    09  1377  

    130 – 140      135 68  103    9180     18225   1239300   -4  -272    16  1088 

    120 – 130   125 23    35    2875     15625     359375   -5  -115    25    575 

    110 – 120      115 10    12    1150     13225     132250   -6   -60    36    360 

    100 – 110   105 02    02      210     11025        22050   -7   -14    49      98 

     ------------   ---- 737  116275      ------ 18604225   ---- -1270   ---- 4786 
 

Direct method results: 
Mean value:  157.76797829036635006784260515604 lb      
Variance: 352.44684435231023861818329101992  
Standard deviation:  18.773567704416500668614996734586 lb 
 

Coded method results: 

Mean:   1270
10 175 157.767978290366500678426 lb

737
− ⋅ + ≅  
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Variance:   
2

2 4786 1270
3.52446844352310238618183291

737 737Uσ  = − ≅ 
 

 

The simple but meaningful conclusion is left for the Student. 
The next part of the solution is devoted to derivation of the indicated 

percentiles. In the procedure which leads to their determination we have to draw a 
graphic frequency histogram. It is shown in Fig.2P.4. 

 

Fig. 2P.4  Frequency histogram – the continuous case 

Before coming to the next step we propose a brief comment which is related to 
the rule of the thumb recommended in this book. According to this rule the 
proposal with respect to the number of classes seen in the statistics under 
consideration  n = 19  would be in a harmony with  N = 524288  individuals to be 
considered. Keeping in mind that we have in fact only the total number of 
individuals   N = 737  -  the right tail of the histogram shown in  Fig.2P.4  presents 
a serious deficiency. On the other hand, from the point of view of the procedure 
collecting such statistics, the presented case seems to have been conducted 
correctly and the interval  10x lbΔ =  evidently cannot be broadened if we are to 

maintain the accuracy of measuring adult’s weight. Now let us proceed to solve 
the problem. 
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Fig. 2P.5  Cumulated frequency histogram, left tail – the continuous case 

In order to determine the 40th percentile, we propose first to follow a rough 
graphic solution which is depicted in Fig.2P.5. It contains an initial part of the 
cumulated frequency histogram. This initial part uses values from Table 2P.5, 
although it does  not have the greatest term which has to be added in the last step, 
leading to the final value of the cumulative frequency  738.  

The vertical scale in Fig.2P.5 has two numerical values: on the left side we see 
the scale of cumulative frequencies – on the right side the corresponding values of 
the percentiles are indicated. Therefore the cumulative frequency  73.8 
corresponds to the percentile “10”, the value  147.6 – to the percentile “20” and so 
on. Subsequently it is seen that the percentile “40” – corresponds to the cumulated 
frequency  “295.2”. Looking for the weight of an individual, which corresponds to 
this cumulated frequency, we draw a horizontal line through the value “295.2” – 
until the line reaches the frequency bar corresponding to the sixth class of the 
weight – i.e. a value between 150 and 160 pounds. To determine roughly the 
appropriate weight, which is called the “position of the percentile forty” – there is 
a segment denoted as  A B, the intersection between this segment and the 
horizontal line denoted as  G  - has to be projected vertically to the horizontal 

axes,  the projection point determines the position of the percentile forty  4 0P . 

The last step has to give an approximate number corresponding to this point, for 

instance  4 0 151P ≈  lb. Now let us explain the meaning of this weight: 

individuals with a weight of less than 151 lb belong to the subset of 40% of the 
entire set of the investigated people, while those with weight bigger than 151 lb 
belong to the complement subset. To determine a more accurate value of this 
percentile we will present an appropriate procedure (see also Chapter 2) using an 
important part of  Fig.2P.5 – denoted as  Fig.2P.6. 
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Fig. 2P.6  To explain the procedure of determining percentiles 

40

295.2 256
150 (160 150) 152.20224719101123595505617977528

434 256
P

−= + − =
−

 

The above result hardly needs any comments. To see Thales’ Theorem, the 
Student has to consider the triangle AMB with its sides subdivided by points  K  
and  G  - and that is all. There is also one important point to mention: the 
presented method implicitly assumes that every class is filled by a continuum of 
numbers which are supposed to represent a continuum of individuals. In practice 
we always deal with a finite number of objects/individuals. So, the mentioned 
assumption cannot be literally carried out in practice as it presents an idealization 
of the statistical reality. The same remark goes for the second concept – the 
ranking percentile of a given term. We are going to present the solution to the 
problem stated above showing how to determine the ranking percentile for an 
individual weighing  177 lb. Its numerical part is presented below, and contains 
two figures giving a rough solution in Fig. 2P7, and then in  Fig. 2P.8. 

177

568 0.7 102
100 % 86.63956(63956) % 87 %

738XP =
+ ⋅= = ≈  

Before we turn the Student’s attention to the drawings, we look at the numerical 
details seen in the above result: there is interesting cycle “639566” which it is 
possible to see using the Windows calculator but impossible with  the 10 digit 
scientific calculators available on the market, which gives us the number of  
“86.6395664”. 
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Fig. 2P.7  Cumulated frequency histogram explaining how to determine the ranking 
percentile 

To see more details regarding the possibility of applying once more Thales’ 
theorem we resort to Fig.2P.8  which vividly tells us that the procedure to 
determine the ranking percentile for the individual whose weight is  177 pounds is 
exactly the reversal of the above procedure determining here the position of the 
forty percentile. 

To finish explanations regarding the coefficient  “0.7”  from the above  
numerical formula, we add a short comment: the number “0.7” indicates the 
relative position of number “177” in the class of individuals whose weight ranges 
from 170 lb  to 180 lb - excluding this real number. In fact it would be determined 
in the following way: 

( ) ( )177 170 / 180 170 7 /10− − =  

In a subsequent step, this ratio from the MB  side of the AMB  triangle  according 
to Thales’ theorem  is  “exported” to the AM side where the ratio  AK: AM  must 
give the same  0.7. In the scale of the cumulated frequency histogram, point  A  
marks the number  “568”, while the position of point  M  is higher than  A  for  
“102”  points, therefore to determine the position of point  K  in this scale  we 
have to add  0.7 * 102  =  71.4  to  568 and then determine the position 
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Fig. 2P.8  To explain the procedure of determining the ranking percentiles 

of number  71.4 + 568 = 639.4  in the scale showing percentiles. In the end this 
will give us number  86.63956 (63956) – which rounded to the nearest integer will 
give the final answer  “87”.  

Problem 2.8 (see [2], Prob.5.21) 

The following Table 2P.6 shows the number of turkey in each weight class 
delivered to one of its outlets in metropolitan area by a large turkey distributor. 
Determine (1) the mean, (2) variance, (3) draw both frequency and cumulative 
histograms, (4) determine the 30th percentile, (5) determine the ranking percentile 
for the turkey weight 20.3 lb. 

Table 2P.6 Grouped Data to the Problem 2.8 

    Class limits  lb Class frequency     Class limits  lb Class frequency 

         9.5-11.5              3        17.5-19.5              70 
       11.5-13.5              7        19.5-21.5              60 

        13.5-15.5              10        21.5-23.5              25 

        15.5-17.5                     60         23.5-25.5              15 
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Solution 

                    X         F           XF             XXF         U        UF      UUF       FFF 
                   24.5     15        367.5       9003.75       -3       -45       135         250 
                   22.5     25        562.5     12656.25       -2       -50       100         235   
                   20.5     60      1230.0     25215.00       -1       -60        60          210                                              
                   18.5     70      1295.0     23957.50        0          0          0           150          
                   16.5     60        990.0     16335.00        1         60        60            80 
                   14.5     10        145.0       2102.50        2         20        40            20       
                   12.5      7           87.5       1093.75        3         21        63            10 
                   10.5      3           31.5         330.75        4         12        48             3              
                              250     4709.0     90694.50       --       -42       506          ---- 

Using the above numerical values the following results have been obtained: 

μ  = 18.836 lb       0.168U = −       i = 2    R = 18.5      a check:      μ  = 18.836 
2 7.983104xσ =    a check       2 1.995776Uσ =     2 2 2

x Uiσ σ= ⋅  2 7.983104xσ =  

                                      30 17.3(3)P =       20.3 69.6%PR =  

Comment 1:  

(i) note the bin interval of 2 lb; (ii)  to determine 30P  the fourth bin of the 

cumulative histogram which corresponds to the mark  0.3 * 250 = 75 is to be used; 
(iii) the fourth bin shows an increase of 60 marks in the class frequency (with 
respect to the third bin), while the mark 20 corresponds to the top of the third bin; 
(iv) further calculations, therefore, are as follows: 
 

                                          (75 – 20) / 60 * 2 + 15.5  = 17.3 (3)                          
Comment 2:   
to determine the ranking percentile corresponding to the object  20.3 lb it has to be 
pointed out that this value belongs to the sixth class with the limits  (19.5, 21.5).  
The mark showing cumulated frequency corresponding to the top of the bin 
spanning the sixth class is 210 (see the above Table). The sixth bin has a 60 pint 
bigger class frequency than the previous one. The mark corresponding to the top 
of the fifth bin indicates 150.  All of this is inserted in the following calculations: 
 

          [ ( [(20.3 – 19.5) / 2 ] * 60 + 150 ) / 250 ] * 100 %  =  69.6 %  →  70 % 
 

The Student is requested to draw a cumulative histogram to follow directly the 
above given comments. 

Problem 2.9 (see [2], Review I, Prob.1.13) 

There is often a considerable time span between the discovery of a drug and its 
introduction to the market. Testing, government regulations, and production-
marketing activities account for much of this time. A study of 5000 drugs available 
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today, some by prescription and some over-the-counter, shows the time between 
development and introduction for each drug. A summary of the results follows. 

Table 2P.6 Grouped Data to the problem 2.9 

    Class limits  lb Class frequency     Class limits  lb Class frequency 

        0.5-3.5             137        12.5-15.5              84 
        3.5-6.5              85        15.5-18.5              52 

        6.5-9.5              44        18.5-21.5              70 

        9.5-12.5                       17        21.5-24.5              11 
 
 

Determine (1) the mean, (2) variance, (3) draw both frequency and cumulative 
histograms, (4) determine the 28th percentile, (5) determine the ranking percentile 
for the drug tested 13.8 years. 

Solutions 

X            F             FFF            XF                XXF          U             UF            UUF 

23          11            500            253             5819             4              44              176 
20          70            489           1400           28000            3             210             630 
17          52            419            884            15028            2             104             208 
14          84            367           1176           16464            1               84               84 
11          17            283            187              2057            0              ---              ----- 
 8           44            266            352              2816           -1             -44               44 
 5           85            222            425              2125           -2            -170             340 
 2          137           137            274                548           -3            -411            1233 
---         500           ------         4951           72857           ----          -183            2715  
 
To determine the mean 
Direct method    9.902x =  

Coded method    0.366U = −      i  =  3     R = 11 *x U i R= + →    9.902x =      

To determine the variance and standard deviation 
Direct method 

2 72857 / 500 9.902 *9.902 145.714 98.049604 47.664396xσ = − = − =  

6.903940614xσ =  

Coded method 

2 2715 / 500 0.366 * 0.366 5.43 0.133956 5.296044Uσ = − = − =  

2 2 2 9 *5.296044 47.664396x Uiσ σ= = =  
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Comment 1: note that the bin interval equals 3; determining 28P  the second bin of 

the cumulative  histogram  is  to  be  used  as  the appropriate one for the mark 
0.28 * 500 = 140 ; the second bin has limits  (3.5 – 6.5), its top indicates marks 
222 and the bin frequency indicates an increase of 87 marks in comparison to the 
first bin, which top corresponds to the mark 137, therefore further calculations are 
as follows: 

28P   =   
[(0.28 500 137)]

3 3.5 3.605882353
85

⋅ − ⋅ + =  

Comment 2: to determine the ranking percentile corresponding to the term  13.8 
years, it has to be noted that this term belongs to the fifth class with the boundaries 
of  (12.5, 15.5).  The mark showing cumulated frequency corresponding to the top 
of the bin spanning the fifth class is 367 (see the above Table). The fifth bin has 
class frequency 84 points bigger than the previous one. The cumulated frequency 
marking the top of the fourth bin shows  283.  All of this is inserted in the 
following calculations: 

( )
13.8

13.8 12.5
100 84 283 / 500 63.88

3
PR

− 
= + = 

 
 %  →  64% 

Problem 2.10  (see [1], p.96) 

For the data of Table X [1] showing the frequency distribution of fecundity (i.e. the 
ratio of the number of yearling foals produced to the number of coverings for brood-
mare race-horse, covered at least eight times) after 2000 observations, in 1899,  Karl 
Pearson determined all the statistical measures i.e. means, percentile 35, and ranking 
percentile for fertility  12/30 and also drew frequency histograms. 

Answers: 
 
Mean: given as a real number 0.632808333 or as convenient assignment   
18.98/30  ≈  19/30 
 

Standard deviation: 0.156452431   or   as  4.69/30
   

35 19.187730159 / 30P =   12/30 7.4875P =  
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Table X – Horse races fecundity [1] 

 

Numerical solutions: 

Table 2P.6 Direct method determining averages 

       X       F      FX         X²       F X² 
   29.5/30     19.0    18.683(3) 0.96694(4)    18.37194(4) 
     28/30     49.0    45.73(3)  0.871(1)    42.684(4) 
     26/30    127.0  110.06(6)  0.751(1)    95.391(1) 
     24/30    204.0  163.2  0.64  130.56 
     22/30    293.5  215.23(3)  0.537(7)  157.837(7) 
     20/30    337.0  224.6(6)  0.4(4)  149.7(7) 
     18/30    315.0  189.0  0.36  113.4 
     16/30    271.5  144.79(9)  0.284(4)    77.226(6) 
     14/30    182.0    84.93(3)  0.217(7)    39.635(5) 
     12/30    104.5    41.8  0.16    16.72 
     10/30      55.0    18.3(3)  0.1(1)      6.1(1) 
       8/30      21.5      5.73(3)  0.071(1)      1.528(8) 
       6/30      11.5      2.3  0.04      0.46 
       4/30        7.5      0.9(9)  0.017(7)      0.13(3) 
       2/30        2.0      0.13(3)  0.004(4)      0.08(8) 
            2000 1265.616(6)  849.84749(9) 
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Direct method to derive averages – numerical results: 

Mean:  632800332.0
2000

)6(616.1265

F

FX
x ===


     30/19

30
)9(984249.18

x ≈=  

Variance:  2

22
2
x ))3(6328083.0(

2000
)9(84749.849

F

FX

F

FX
−=










−=





σ  

024477363.0400446386.0424923749.02
x =−=σ  

Standard deviation:  156452432.0x =σ     30/69.430/69357296.4x ≈=σ  

Table 2P.7 Coded method determining averages 

X     F      U      FU     U²       F U² 
   29.5/30 19.0 6.75 128.25  45.5625     865.6875 
     28/30 49.0 6 294.0     36    1764 
     26/30 127.0 5 635.0     25    3175 
     24/30 204.0 4 816.0     16    3264 
     22/30 293.5 3 880.5       9    2641.5 
     20/30 337.0 2 674.0       4    1348 
     18/30 315.0 1 315.0       1      315 
     16/30 271.5 0 0       0        0 
     14/30 182.0 -1 -182       1      182 
     12/30 104.5 -2 -209       4      418 
     10/30 55.0 -3 -165       9      495 
       8/30 21.5 -4 -86      16      344 
       6/30 11.5 -5 -57.5      25      287.5 
       4/30 7.5 -6 -45      36      270 
       2/30 2.0 -7 -14      49        98 
         2000  2984.25  15467.6875 

 
Coded method to derive averages: 

Mean: 492125.1
2000

25.2984
F

FU
U ===


       2 and 16i R= =  

98425.18162492125.1RiUx =+⋅=+⋅=  

Variance:  2

22
2
U 492125.1

2000
6875.15467

F

FU

F

FU
−=










−=





σ  

 

755074067343.5252264370156.2733841375.72
U =−=σ  

0173467864697.2U =σ     036935729394.4iUx =⋅= σσ  

30/69.430/69357296.4x ≈=σ  
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Note: a necessary comment regarding two numerical procedures to determine the 
desired averages is left for the Student. In the end it has to be noted that instead of 
our own drawing of the frequency histogram we reproduce here the figure from 
[1], p.94 and encourage our Student to draw this histogram and next also a 
cumulative frequency histogram following the examples presented here. 

 

Fig. 2P.9 Frequency distribution of the fertility of the race-horses [1] 

Problem 2.11  (Specimen of a Final Examination Problem) 

For the grouped data shown in Table 2P.8 determine the averages and draw the 
frequency histogram. 

Table 2P.8 Grouped Data to Problem 2.11 

      Age  
    classes 

Class frequency 
      thousands 

      Age 
    classes 

 Class frequency 
      thousands 

      0 - 10           6840      40 -50              2890 
    10 -20           4980      50 -60              3120 
    20 -30           4560      60 -70              1950 
    30 -40                 4200      70 -80                460 
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Solution 

                      X        F         FF           XF           XXF          U         UF         UUF 
                     75      460    29000     34500      2587500       4         1840       7360 
                     65     1950   28540   126750      8238750       3         5850     17550 
                     55     3120   26590   171600      9438000       2         6240     12480 
                     45     2890   23470   130050      5852250       1         2890       2890 
                     35     4200   20580   147000      5145000       0           0             0 
                     25     4560   16380   114000      2850000     - 1       -4560       4560 
                     15     4980   11820     74700      1120500     - 2       -9960     19920 
                      5       6840    6840     34200        171000     - 3     -20520     61560 

            29000               832800    35403000              -18220   126320 

Both methods of determining averages: 

832800
28.71724138

29000
μ = =          ( )2 35403000

1220.793103
29000

E x = =    

18220
0.628275862

29000
U = − = −  

( )2 2 2
x E x xσ = −      →    1220.793103  -  ( 28.71724138 )²   =   396.113151   

  i = 10,  R = 35  19.90259156xσ =  

  ( )2 126320
4.355862069

29000
E U = =

    
( )2 2 2

U E U Uσ = −    →   2 3.96113151Uσ =  

 

Fig. 2P.10 Frequency distribution of the population age, Poland, year 1970 
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Problem 2.12 (see [1], p.104) 

Making use data of Table XV (see: [1] p.103), originally published by Karl 
Pearson [6] we suggest examining the frequencies of estimated intervals of 
cloudiness registered in the decade of 1876-85 in a city which has since that time 
changed its name from Breslau to Wrocław. The point is that the shape of the 
histogram belongs to the category of bimodal distributions. 
 
Table XV – Cloudiness at Breslau (now Wrocław) [1] 

 
 
Answers and comments: 

6.821516562μ = ,   4.29004631xσ =                                        

 = 3653F ;  = 24919FX ;  = 237217FX2

 
. 

Comment: this form of distribution, as in Fig.2P.11 is a rare case in the original 
comments of F. Galton, see also [1]. On our side we note that the case can be  
 

 

Fig. 2P.11  Frequency distribution of degrees of cloudiness at Breslau/Wrocław 
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considered as a discrete case. But the presented figure suggests that Karl Pearson 
who originally investigated these data claimed that they were a “novel case of 
frequency” considered as continuous data (see [6]). In  fact this distribution shows 
that the mean value is meaningless for such cases. Francis Galton in his Natural 
Inheritance associated this case with “consumptivity” amongst the offspring of 
consumptives. 

A very brief summary of the histogram shown in Fig.2P.12 is as follows: “sky 
completely or almost completely covered with clouds” such a forecast at the time 
of observation is the most common, then “practically clear sky” comes next and 
intermediates are much more rare. 

Problem 2.13  (Another Example of a Final Examination 
Problem) 

In a town the taxi cab club collects 60 cabs. Monthly the number of courses they 
provide for the public service is approximated in the following table. Draw to 
scale a frequency histogram for the grouped data assuming five classes and 
determine the basic averages. To get the full mark use both methods of 
determining averages: direct and coded. 
 

  738   729   743   740   736   741   735   731   726  737 
  728   737   736   735   724   733   742   736   739  735 
  745   736   742   740   728   738   725   733   734  732 
  733   730   732   730   739   734   738   739   727  735 
  735   732   735   727   734   732   736   741   736  744 
  732   737   731   746   735   735   729   734   730  740 

 
Solution 

 

Fig. 2P. 12  Frequency bar histogram following data from informal table of Problem 2.13. 
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                        X        F     FF       XF             XXF               U       UF      UUF 
                       746      3     60       2238        1669548             2         6         12 
                       741     11    57       8151        6039891             1        11        11 
                       736     25    46     18400      13542400             0         0          0 
                       731     15    21     10965        8015415            -1      -15        15 
                       726      6      6        4356        3162456            -2      -12        24 
                                  60             44110      32429710                     -10        62 

735.16(6)x =    i = 5    R  = 736     10
0.16(6)

60
U = − = −   →   735.16(6)x =  

2 25,138(8)xσ =      2 1.005(5)uσ =   →   2 25,138(8)xσ =  

Comment: the coded method shows a huge numerical simplification of the numerical 
procedure, however, the numerical results are identical with the direct method. The 
specificity of this problem makes it, so to speak, a typical examination problem. 
Regarding the data compare Prob.2.27 of [4], p.43. 
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Unit 3 
Regression vs. Correlation 

The subject of this illustrative material following the division of Chapter 3 is 
presented in two major parts. First we deal with the derivation of the two (always 
two!) regression lines with respect to the data which we call in this book two 
descriptive statistics combined into a set of paired values taken from each 
boundary statistics. In the second step, where some problems can be incorporated 
at the stage of deriving the regression lines, we determine the coefficient of 
correlation. Then we present a few examples of dealing with the subject regarding 
the grouped data, which require a much more developed tool, in view of what we 
call great array of correlation. The Student can note, that for instance Udny Yule 
[2], skipped the first stage dealing with descriptive statistics, moreover he entitled 
Chapter IX “Correlation”, and Yule’s examples offered to the reader are 
exclusively related to the grouped data. Paying a tribute to Sir Francis Galton in 
the opening part of our examples we strove to present problems from Galton’s 
publications even if we sometimes cannot indicate which of Galton’s papers 
exactly they come from. 

Problem 3.1  (see [3]) 

Considering data in the below Table 3P.1 examine the regression line approach to 
fit the data describing the relation between MRI sizing of the brain and the 
resulting IQ value for men’s data . Data was obtained in a special medical 
examination to 40 carefully selected students of both genders. 

The Student has to decode the way which is applied to present the major part of 
the solution provided by Table 3P.2.  Here instead of an additional row at the 
bottom of  Table 3P.2 to save space for the appropriate sums, we present them 
separately, below.  
 

 

3
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Table 3P.1 Two dimensional statistics MRI vs. QI – data 

 

Table 3P.2  MRI vs. IQ – Men’s data 

     X    Y      X   Y         X  X         X  X   Y Y   Y Y      X  Y     X  Y 
1001121 140 1038437 139 1002243256641 1078351402969 19600 19321 140156940 144342743 
  965353 133   904858   89   931906414609   818768000164 17689   7921 128391949   80532362 
  955466 133 1079549 141   912915277156 1165426043401 17689 19881 127076978 152216409 
  924059 135   945088 100   853885035481   893191327744 18225 10000 124747965   94508800 
  889083   80   892420   83   790468580889   796413456400   6400   6889   71126640   74070860 
  905940   97   955003 139   820727283600   912030730009   9409 19321   87876180 132745417 
  935494 141 1062462 103   875149024036 1128825501444 19881 10609 131904654 109433586 
  949589 144   997925 103   901719268921   995854305625 20736 10609 136740816 102786275 
  879987   90   949395 140   774377120169   901350866025   8100 19600   79198830 132915300 
  930016   81   935863   89   864929760256   875839554769   6561   7921   75331296   83291807 

 
19097108X = ,  954855.4X =   2300Y =   115Y =   2 276362Y =  (3P.1) 

2 18294372210308X =      2209395807X Y =                                (3P.2) 

To facilitate the subsequent substitutions, we provide all major formulae necessary 
in further calculations.  

( )
2

*
22

x y x x y
A

N x x

⋅ − ⋅ ⋅
=

−
   

 
                                   (3P.3) 

                               

( )
*

22

N x y x y
B

N x x

⋅ ⋅ − ⋅
=

−
  
 

                                      (3P.4) 
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Next, numerical results (3P.1) and  (3P.2) were substituted into formulae (3P.3) and  
(3P.4) for both coefficients of the first regression line and the obtained results were 
shown. 

*
2

18294372210308 2300 -19097108 2209395807

20 18294372210308 19097108
A

⋅ ⋅=
⋅ −

      (3P.5) 

     * -97.662477489873692969660117036897A =                       (3P.6) 

 *
2

20 2209395807 19097108 2300

20 18294372210308 19097108
B

⋅ − ⋅=
⋅ −

                                   (3P.7) 

  * 2.2271694487968931522999201453633e-4B =                  (3P.8) 
 

A similar approach concerns the second regression line: 

( )
2

* 22

y x y x y
A

N y y

⋅ − ⋅ ⋅
=

−
   

 
                                   (3P.9)  

( )* 22

N x y x y
B

N y y

⋅ ⋅ − ⋅
=

−
  
 

                                        (3P.10)                                         

*

276362 19097108 2300 2209395807

237240
A

⋅ − ⋅=            (3P.11) 

* 826608.51878266734108919237902546A =           (3P.12) 

* 2

264567749

20 276362 2300
B =

⋅ −
                                                 (3P.13) 

* 1115.1903093913336705445961895127B =           (3P.14) 

Here we calculate the correlation coefficient which gives the first numerical value 
in this succession which possesses unambiguous meaning and preserves the range  
(-1, +1), therefore we can see for ourselves whether the obtained results are 
correct. 

*
*r B B= ⋅    0.4983691188938910717262172737091r =    (3P.15) 

Of course, we do not pretend to be professional investigators of the subject (see [6]), 
but we use this opportunity to draw our Student’s attention to the meaning of the 
correlation coefficient obtained now: it confirms that the brain size/weight has a 
positive correlation to the intellect of the examined person. We now draw the 
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regression lines on the  x,y  plane with all the 20 pairs of data shown in Table 3P.1. 
Moreover, we emphasize that there is a division of the data in Fig.3P.1 – 
corresponding with the division into two types of people which we briefly mentioned 
in the opening pages of Chapter 1 – we mean a division according to specific 
terminology of Witold Gombrowicz into “bright” and “dumb/dim” people. Fig.3P.1 
very clearly also shows that the first regression line best fits the data seen vertically, 
while the second regression line is related to the horizontal distances between the 
points and the regression line. 

To determine the position of the first regression line * *y A B x= +  a point 

was chosen whose horizontal coordinate equals 1050000 – taking (3P.6)  and  
(3P.8) its vertical coordinate was determined as: 

 

136.19031463380008802183149766311 
 

Then the first regression line was drawn (blue line in Fig.3P.1).  

In a similar way the second regression line  * *x A B y= +  was determined. 

This time a point was chosen whose vertical coordinate equals 85 and using  (3P.12)  
and  (3P.14)  its horizontal coordinate was found to be: 

 

921399.69508093070308548305513392 
 

The second regression line was drawn through this point and an arbitrary point, it 
is shown as the green line in Fig.3P.1. 

 
Fig. 3P.1 Two regression lines, data of Table 3P.1 
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Problem 3.2 

Professor Moore swims 2000 yards regularly in a vain attempt to undo middle age. 
Here are his times (in minutes) and his pulse rate after swimming (in beats per 
minute) for 23 sessions in the pool. 

Table 3P.3  Two dimensional statistics Time vs. Pulse – data 

 

 
Provide a routine examination of Professor Moore’s health activities. 

Table 3P.4 Professor Moore’s health activities 

    X    Y     X   Y     X  X     X  X   Y Y   Y Y    X  Y    X  Y 
34.12 152 34.85 148 1164.1744 1214.5225 23104 21904 5186.24  5157.80 
35.72 124 34.70 144 1275.9184 1204.09 15376 20736 4429.28  4996.8 
34.72 140 34.75 156 1205.4784 1207.5625 19600 24336 4860.8   5421 
34.05 152 33.93 140 1159.4025 1151.2449 24649 19600 5175.6   4750.2 
34.13 146 34.60 136 1164.8569 1197.16 21316 18496 4982.98   4705.6 
35.72 128 34.00 148 1275.9184 1156 16384 21904 4572.16   5032 
36.17 136 34.35 148 1308.2689 1179.9225 18496 21904 4919.12   5083.8 
35.57 144 35.62 132 1265.2249 1268.7844 20736 17424 5122.08   4701.84 
35.37 148 35.68 124 1251.0369 1273.0624 21904 15376 5234.76   4424..32 
35.57 144 35.28 132 1265.2249 1244.6784 20736 17424 5122.08   4656..96 
35.43 136 35.97 139 1255.2849 1293.8409 18496 19321 4818.48   4999.83 
36.05 124  ----- ---- 1299.6025    ------- 15376    --- 4470.2    ---- 
 ----- ---- 806.35 3221      ----- 28281.26   --- 453053    ---- 112823.93 

 
806.35x =        35.05869565x =       2 28281.2605x =   

0.712657636xσ =      2 0.507880907xσ =  
 

3221y =    140.0434783y =    2 453053y =     

9.261788075yσ =    2 85.78071834yσ =  
 

112823.93x y =       

Note:   Coordinates x and y  determine an arbitrary point  K  shown in Fig.3P.2. 
 

From this place onwards we proceed in a routine way substituting first the above 
numerical results into formulae (3P.3)  and  (3P.4) to derive both coefficients of the 
first regression line. 
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*
2

28281.2605 3221- 806.35 112823.93

23 28281.2605 806.35
A

⋅ ⋅=
⋅ −

 

* 118364.115
440.55739590350952287014877042011

268.669
A = =  

* 23 112823.93 806.35 3221 -2302.96

268.669 268.669
B

⋅ − ⋅= =  

* -8.5717369700263149079350427477677B =  

Then we apply formulae  (3P.9)  and  (3P.10) to derive the coefficients determining the 
second regression line and the appropriate coefficient of linear correlation. 

* 2

453053 806.35 3221 112823.93

23 453053 3221
A

⋅ − ⋅=
⋅ −

 

*

1913408.02
42.165983956983560315571422275111

45378
A = =  

*

-2302.96
0.050750583983428092908457843007625

45378
B = = −  

*
*r B B= ⋅          -0.6574659582754917890692704373932r =  

To determine the position of the first regression line  * *y A B x= +   point  L  

was chosen whose horizontal coordinate equals 36.2Lx =  – while its vertical 

coordinate was calculated to be: 

130. 26051758855692320290022295092 

Then, eventually the first regression line (blue line in Fig.3P.2) was drawn.  

In a similar way the second regression line * *x A B y= +  was determined. This 

time point  M  was chosen whose vertical coordinate was selected as  My =  160, and 

using  (3P.12)  and  (3P.14)  its horizontal coordinate was found to be: 

34.045890078892855568777821851999 

Then the second regression line (green line in Fig.3P.2) was drawn.  
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Fig. 3P.2 Two regression lines, data of Table 3P.4 

Comment: with respect to professor Moore’s attempts to improve his health– 
negative correlation shows that the shorter time for swimming 2000 yards (by the 
way: 1 yard = 0.914 m) goes with a higher pulse rate measured just after 
swimming this distance. The Student should also notice the relatively high 
correlation between those two variables. 

Problem 3.3 [7] 

Examine the provided data (see Table 3P.5) presenting relations between the 
distances and velocities of 24 nebulae in Table 1 of paper [7] by Edwin Powell 
Hubble (1889-1953) published in 1929.  

21.873r =  0.911375r =  2 29.517795r =  0.631904846rσ =  
2 0.399303734rσ =  

8955υ =    373.125υ =    2 6511425υ =    363.4379031υσ =    
2 132087.1094υσ =           12513.695rυ =  
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Table 3P.5  Edwin Hubble’s paper [7] – Table 1 p.169 

    r    v     r   v     r r    r r  v v  v v   r v    r  v 

0.032 170 0.9 650 1164.1744 1214.5225 23104 21904   5.44     585 
0.034 290 0.9 150 1275.9184 1204.09 15376 20736   9.86     135 
0.214 130 0.9 500 1205.4784 1207.5625 19600 24336 27.82     450 
0.263  70 1.0 920 1159.4025 1151.2449 24649 19600 18.41     920 
0.275 185 1.1 450 1164.8569 1197.16 21316 18496 50.875     495 
0.275 220 1.1 500 1275.9184 1156 16384 21904 60.5     550 
0.45 200 1.4 500 1308.2689 1179.9225 18496 21904  90     700 
0.5 290 1.7 960 1265.2249 1268.7844 20736 17424 145   1632 
0.5 270 2.0 500 1251.0369 1273.0624 21904 15376 135   1000 
0.63 200 2.0 850 1265.2249 1244.6784 20736 17424 126   1700 
0.8 300 2.0 800 1255.2849 1293.8409 18496 19321 240   1600 
0.9  30 2.0 1090 1299.6025    ------- 15376    ---  27   2180 
 ----- ---- 21.873 8955      ----- 29.517795   --- 6511425    ---- 12513.695 

 
    Note 1: coordinates  r   and  υ   determine the arbitrary point  K seen in 
Fig.3P.3 and with this data obtained mainly through the SD procedure using a 
scientific calculator available on the market we shall commence a further routine 
examination of  Problem 3.3, whose final result is shown in Fig. 3P.3. To derive 
final numerical results we also apply the Word Calculator which shows 24 digits. 

 

 

Fig. 3P.3 Hubble’s paper, graphic representation of the data in Table 3P.5 
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Note 2: The picture in Fig.3P.3  presents not only an essential set of data from 
Hubble’s paper but also both regression lines derived below in a routine manner. First 
the coefficients of the blue regression line were determined. To draw this line, 
coordinates of point  N (2, 868) were determined.  A similar approach produced the 
green regression line with the point  M (2, 1166). Although this book is not about 
Cosmology and the data examined here is considered simply illustrative material for 
the regression and correlation, as a side note, we may mention temporary doubts 
regarding Hubble’s discovery on whether our Universe is really expanding (see [8]-
[9]). 

Now returning to the point, we will derive the parameters of the first regression 
line, and then draw it. 

* -9380.19651
-40.783649095860441554796482528305

229.998951
A = =  

* 104455.965
454.15844092262838190075049516204

229.998951
B = =  

Substitution of the coordinates of the arbitrary point into the equation of the first linear 
regression line confirms that the above derived coefficients are exact as they have to 
be. If we choose a new point with horizontal coordinate  of 2.0, then we obtain its 
vertical coordinate equal to  867.5332327493963222467045077961 which allows to 
draw the first regression line (blue line in  Fig.3P.3). Similarly we derive the 
coefficients of the second regression line and draw the second regression line (the 
green line in  Fig.3P.3). 

*

30364260.3
0.39909821584359279949607118881657

76082175
A = =  

*

104455.965
0.0013729361049417948422215847535904

76082175
B = =  

Again, it is easy to check that the arbitrary point lies in this second regression line. 
Moreover, the position of the second regression line is shown in  Fig.3P.3 whose 
vertical coordinate of the point  M  gives  1166.0424533917234884575524246255. 

But the most concise result concerns the coefficient of correlation, and thus 
according to (3P.15) we obtain: 

r = 0.78963948793531827355547883319608 

This result says that there is quite a significant linear relation between the position 
of the nebulae and their speed.  
 

Below we enclose four problems to be solved in a routine way by the Student. 
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Problem 3.4 

Manatees, sirenian mammals, are large sea creatures that live along the Florida 
coast (but not only). Many manatees are killed or injured by power boats. 
Statistics shows  X  data on powerboats registrations (in tons) and Y  the number of 
manatees killed by boats in Florida during the period 1977-90. 
 
Table 3P.6  Two dimensional statistics X  vs. Y – data 

 

Problem 3.5  

Analyze the possibility of predicting the collapse of  Franklin National Bank, position 
19 in the list showing assets in billions of dollars and income in millions of dollars,  
based on a general trend showing a weakening of US banks in 1973 
(see [9]). 

Table 3P.7 Two dimensional statistics of US Banks 

 

Problem 3.6 

Alcohol consumption seems to be connected with heart diseases. The below data 
is to be examined from this point of view (see [11]). 
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Table 3P.8  Two dimensional statistics wine vs heart disease 

 

Problem 3.7 

Examine the provided set showing the age of first word spelled vs. the Gesell 
score (see [10]).  

Table 3P.9  Two dimensional statistics Gesell score – age first word spelled 

 
 
*** 

From this place onwards we will draw the Student’s attention towards the 
grouped data examination. The first problem which we would like to present here 
is taken from the famous paper by F. Galton [1], which will be solved as Prob. 3.8 
afterwards. 
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Problem 3.8   

Examine the grouped data of Francis Galton [1], presented in Table 3P.10. 

Table 3P.10 Two dimensional grouped data of F. Galton 

 
 

To solve Problem 3.8 we apply Table 3P.11  whose structure and notations follow 
exactly the content of  Table 3.2  from  Chapter 3. The Student should note however, 
that the boundaries given by Galton were not used (rows and columns denoted as 
“below” and “above”), so we skip them reducing slightly the totals in both groups – 
parents and children (from 928 to 892). The first results given below concern the total 
number of objects, denoted x for parents, and y  for children while their coded symbols 
are denoted by  u  and   w, respectively: 

1

N

i
i

n n μ
=

=  =  
=

M

j
jn

1
μ       12,9 == MN          n = 892       i = 1     * 67.5R =    

* 67.2R =  
 

In the second step the main averages were derived:   
 

1

731
N

i i
i

u n μ
=

=  731
0.819506726

892
u =    →  68.3190673uμ =   parents 

1

759
M

j j
j

w nμ
=

=   759
0.850896861

892
w =    →   68.05089686wμ =  children 

( )22 u-uuVar =       2 3073

892
u =      →   2 2.773475991uσ =                                                 

( )22 w-wwVar =     2 1638

270
w =      →    2 5.604449868wσ =  
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Next, both regression lines were determined. Let us start this step by determining 
the directional coefficients: 

* ( ) -E uw u w
B

Var u
=        

*

( ) -E uw u w
B

Var w
=           keeping in mind that: 

                 ( )
1 1 1 1

1 1M N N M

j i i j i j i j
j i i j

E u w w u n u w n
n n= = = =

= =     

Here we face a disturbing fact which cannot be explained by the Author of this 
book: instead of a common value we get, for each of the above formulae, two 
slightly different values:  2050,  and  2056. Although they differ by practically a 
negligible amount nevertheless we do not know why. And this, somewhat 
disturbing question we have to leave unanswered. After making the above point 
we proceed further bringing into calculations this strange non dimensional 
moment value equal to  2050. 

( ) 2050
2.298206278

892
E u w = =  

* ( ) -E uw u w
B

Var u
=    →   * 1.600890577

0.577214507
2.77347599

B = =  

*

( ) -E uw u w
B

Var w
=   → 

*

1.600890577
0.285646337

5.604449868
B = =  they lead to the 

correlation coefficient: 

1 2r B B= ⋅      →   0.406053209r ≅      

Therefore the equations of both regression lines take the following form: 

28.6159049 0.577214507y x= +              

48.88057788 0.285646337x y= +                                   

We get them taking into account that these lines have to contain the same  
arbitrary point denoted by K whose coordinates (according to the symbols used in  
Table 3P.4)  we denote as  (68.319,  68.051). Then we determined the coordinates 
of point  L (73, 70.75256391) and point  M  (67.16194345, 64). In the last step we 
drew a graph of these two lines, Fig. 3P.4  where horizontal coordinate  x  presents 
the data of the stature of parents, and the vertical coordinate  y  denotes stature of 
children. In the end we would like to note that the paper [1] by Galton in 
comparison with the above (and below) given results probably shows some 
differences. But because this famous paper was written with more improvisation 
than the provided mathematical details, it is not easy to compare its results with 
any other results. 
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Fig. 3P.4 Galton’s paper [1], graphic representation of the data given in Table 3P.11 

The opportunity given by Fig.3P.4 encourages us to present the equations of 
both regression lines inserting imaginary coordinate axes at the arbitrary point: x 

horizontally, and  y  vertically, then skipping values  *A  and  *A ,  both 

regression lines are presented in the following way 

line CC w

u

y r x
σ
σ

=  line RR u

w

x r y
σ
σ

=  which applies 

*
*

w u

u w

B r B r
σ σ
σ σ

= =  

The above convention was in general used in the book by Yule [2].  

Problem 3.9   

Our next example, Problem 3.9, examines a similar problem, this time taken from 
another well known paper, by Karl Pearson [13]. Initial data have already been 
presented in Part One (see end of Chapter 3). We are going to examine the 
grouped data considering the relation between stature of fathers and sons given by 
Karl Pearson and copied from the book by Udny Yule [2] – see Table 3P.12. 
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Initiating calculations based on the results of Table 3P.12 we start by deriving 
the correlation coefficient. We choose the procedure which starts with the 
directional coefficients of the regression lines. 

( )
1 1 1 1

1 1M N N M

j i i j i j i j
j i i j

E u w w u n u w n
n n= = = =

= =     

* ( ) -E uw u w
B

Var u
=        

*

( ) -E uw u w
B

Var w
=            

( ) 4249.25
3.941790353

1078
E u w = = ,    therefore: 

* ( ) -E uw u w
B

Var u
=    →   * 3.852020594

0.482005076
7.991659811

B = =  

*

( ) -E uw u w
B

Var w
=   →   

*

3.852020594
0.520594635

7.399270621
B = =  they lead to 

correlation coefficient: 

1 2r B B= ⋅      →   0.500928395r ≅  

As a side note we suggest that the Student consider a point which is evident at first 
glance at the Great Correlation Array, given as Table 3P.12 in view of the 
fractional frequencies shown there. Udny Yule commented this absolutely unusual 
situation in the following way (see [2], p.162): 

The difficulty as to the intermediate observations – if the value of one variable 
alone is intermediate, the unit of frequency being divided between two adjacent 
compartments. If both values of the pair are intermediates, the observation must 
be divided among four adjacent compartments, and thus quarters as well as hales 
may occur in the table. In this case (of the above Table) the stature of fathers and 
sons were measured to the nearest quarter-inch and subsequently grouped by 1-
inch intervals: a pair in which the recorded stature of the father is 60.5 in. and 
that of the son 62.5 in. is accordingly entered as 0.25 to each of four 
compartments under the columns 59.5-60.5, 60.5-61.5, and the rows 61.5-62.5, 
62.5-63.5.  

In the above quotation the Student will see a trivial fact known in the theory of 
probability as the left band continuity. We explained this concept first in Chapter 2 
of Part One and then in Unit 2 of Part Two. Taking the above case by U.Yule – its 
contemporary solution is to regard the result of the father’s recorded stature such 
as 60.5 as one to be inserted in  the column  60.5-61.5, and of the son’s such as  
62.5 in the row  62.5-63.5 as a single reading each. Also it is difficult to guess 
what the accuracy of measurements can add to this matter. Unfortunately ex post it 
is impossible to change in this way the data shown by K. Pearson (and Alice Lee), 
therefore we have to accept them as such – although they are in an apparent 
contradiction to common sense. 
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Now let us prolong the routine procedure of examining the results obtained in 
the Great Correlation Table. We come to the point which allows to draw both 
regression lines shown in Fig.3P.5. 

  

Fig. 3P.5 Pearson’s paper [13], and his approach to the problem of stature, see Table 3P.12 

The Student can check that both regression lines shown in  Fig.3P.5  are given 
by the following equations: 

36.06432425 0.0.482005076y x= +  

31.93955817 0.520594635x y= +  

Scant description given by Udny Yule regarding Problem 3.9 considered here does not 
allow for a close comparison of the results obtained here with the results shown by 
Yule. Particularly his Fig. 37 in comparison with our  Fig. 3P.5 – shows a different 
convention in solving this problem. Therefore, we decided to include and solve in 
detail Problem 3.10 which will be in the same spirit as the solution shown in Fig. 37 of 
[2].  Nevertheless, we have to note that the coefficient of correlation obtained here 
with comparatively high accuracy shows value  r = 0.50 – while U. Yule’s result is 
close to 0.51. We think this is due to low accuracy in considering the same data by 
Pearson. Also the mean values which can be read from Fig.37 are close to the values 
obtained here. We also note that the results obtained in  Problem 3.8  exploring 
Galton’s data [1] differ  from the ones derived presently according to Pearson’s 
statistics [13]. It is easy to see that Pearson’s statistics shows a much wider range of 
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measured statures of fathers and sons which generally slightly changed the mean, and 
more essentially resulted in an increase of the variances. 

Problem 3.10 

Exploring data by Pearson [13] determine the so called column and row averages and 
compare them with the values shown by U. Yule in Fig. 37 of [2]. 
 
Solution 
 

We commence from the column averages. To solve the problem we first have to 
copy two selected rows from the  Great Correlation Array 3P.12 (at the bottom). 
The first row in Table 3P.13 shows class frequencies of the stature of fathers 

denoted by jnμ  (symbols follow those from Table 3P.12). 

Table 3P.13 Selected cells from Table 3P.12 

3.5 8 17 33.5 61.5 95.5 142 137.5 154 141.5 116 78 49 28.5 
11.75 21.25 58.5 82.75 139 173.25 198 144.25 12 54.5 86.25 116.75 91.75 85.5 

 60   61 62 63 64 65 66 67 68 69 70 71 72 73 

 
From Table 3P.11 we left out the boundaries leaving fourteen essential 

columns, and we added appropriate midpoint values of the fathers’ stature in the 
third row. Then for the sake of convenience of further calculations Table 3P.13 
was transformed into Table 3P.14. 

Table 3P.14 Transformed Table 3P.13 

   3.5 11.75 65.64286   60 137.5 144.25 67.95091   67 
    8 21.25 66.34375   61 154  12 69.07792   68 
   17 58.5 65.55882   62 141.5 54.5 69.38516   69 
 33.5 82.75 66.52985   63 116 86.25 69.74353   70 
 61.5 139 66.73984   64 78 116.75 70.49679   71  
95.5 173.25 67.18586   65 49 91.75 70.87245   72 
142 198 67.60563   66 28.5 85.5 72.   73 

 
The point is that we have to determine the average for each of all the fourteen 

selected columns. These values are inserted into a new column in Table 3P.14. 
Beside this new, essential column, the values of corresponding midpoints 
indicating the stature of fathers were also inserted. Then all such pairs of the 
stature have to be presented in a way similar to that show in Fig.37 of [2]. Below 
we provide the first example of the calculations leading to the first column 
average, that is the stature of the “average son”: 
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13

69 64.6(6)
3

− + =   corresponding to stature of father  equal to 59 in. 

Calculations to derive the all row averages are similar. In order to present them we 
have to copy two appropriate columns from Table 3P.5. And for the first pair of 
values below is an appropriate example of calculations to establish the stature of 
the average father. 

7.5
68 64.25

2

− + =   corresponds to the son whose midpoint indicates  60 in. 

The first and the fourth column from the right end of Table 3P.12 was copied and 
then re-arranged, this time without skipping any entries, into Table 3P.15. 
According to the pattern of calculations shown above, the values of the new 
column were added, repeating the midpoints of the stature of sons.  

Table 3P.15 Selected cells (columns) from Table 3P.12 

2       7.5 64.25 60 128 82 68.64063  70 
1.5       3.5 65.6(6) 61 108 102.25 68.94676  71 
3.5          2 64.57143 62  63 94.5 69.02381  72 
20.5        60 65.07317 63  42 82.5 69.96429  73 
38.5   10.75 65.12338 64  29 57.5 69.98276  74 
61.5 157.75 65.43496 65   8.5 24.25 70.85294  75 
89.5      150 66.32402 66   4 10.75 70.6875  76 
148 208.25 66.59291 67   4 9.75 70.375  77 
173.5        80 67.53757 68   3 7.75 70.5833  78 
149.5     9.75 67.93478 69 . 5 2.25 68.45  79 

 
In the next step the pairs of values from Table 3P.15 were inserted into  

Fig.3P.6 along the line denoted as  R – R . To allow comparison with the 
mentioned above  Fig. 37  from U. Yule’s book we provide a copy of this figure 
with some small geometrical re-arrangements for the sake of convenience. 

The first impression is that there is something wrong: possibly a reverse case, 
i.e. the positions of data were interchanged. But it is an illusion caused by an 
insignificant difference connected with how the coordinates in both cases are 
designated. The Student has to be warned: the right comparison requires some 
effort! Unintentionally we interchanged the significance of circles and crosses in 
our  Fig.3P.6 as compared to circles and crosses  in Fig. 3P.7 presenting Udny 
Yule results. Apart from this difference, the remaining symbolic conventions are 
the same in this book and in the book by U. Yule [2] – and the examined results in 
both figures correspond to one another.  
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Fig. 3P.6 Pearson’s data [13] to show 
the row and column averages 

Fig. 3P.7 Udny Yule’s [2] way of 
presenting Pearson’s data [13] 

*** 
Coming to the end of this unit below we propose two problems to the Student. 

The first problem – Problem 3.11 - again offers a chance to investigate the 
descriptive case. The second problem – Problem 3.12 - investigates once more the 
grouped data, this time taking into consideration the discrete case data taken also 
from U. Yule’s book [2].  

Problem 3.11 (see [4], Problem.16.11) 

Table 3P.16 presents the pairs of measurements, apparently related each to 
another: the chest girth  X   in inches, and the lung capacity  Y   in cubic inches of 
college 15 freshmen. 

Table 3P.16 The chest girth vs. the lung capacity 

 X 30.8 31.5 30.0 30.3 31.3 35.0 38.9 33.7 37.6 34.5 32.6 37.5 34.3 34.4 37.2 
 Y 305 238 269 210 330 305 311 219 226 278 310 275 220 219 265 

 
Solution uses the SD procedure twice and produces the following results: 

509.6ix =  33.973(3)x =  2 17429.28ix =    2.786507173xσ =  

 3980iy =   265.3(3)y =  2 1079408iy =     39.48107845yσ =  

Therefore, the only term to be determined is the mixed term  x y  and its value 

was obtained according to the results given in  Table 3P.17. 
The desired sum  is as follows:  135250.9x y = .  The most intriguing 

factor in this problem shows the correlation coefficient whose value obtained here 
shows  a lack of correlation, because   r  = + 0.022441525. 
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Note, that this value calculated using Pearson’s correlation formula (see (3.37) 
of Chapter 3) results mainly from distraction of two big numbers whose values are 
close to one another (see the results below). If calculations are not provided with 
sufficient accuracy, the obtained result may differ significantly (the answer to this 
problem in [4] claims  r = 0.04). 

 
Table 3P.17 The chest girth vs. the lung capacity; mixed term values 

  X   Y      X Y   X   Y      X Y   X   Y      X Y 
30.8 305    9394 35.0 305   10675  32.6 310  10106 
31.5 238    7497 38.9 311   12097.9  37.5 275  10312.5 
30.0 269    8070 33.7 219     7380.3  34.3 220    7546 
30.3 210    6363 37.6 226     8497.6  34.4 219   7533.6 
31.3 330   10329 34.5 278     9591  37.2 265   9858 

 
2028763.5 – 2028208 = 555.5 
41.797607587037801654370062726372 
592.21617674629591293284971866399 
24753.21936233749777577489427921;    r ≈ 555.5 / 24753.21936233749778 
r ≈ 0.02244152535751 
 

Expecting that the above given lines will be rightly deciphered by the Student we 
present the last problem in this Unit. 

Problem 3.12 

Discuss the case of the interrelation between the number of children in two successive 
generations  called  conventionally  mothers  and  daughters, using data shown in  
Table 3P.18. 

Table 3P.18 Mothers and daughters 
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The majority of the necessary results derived in  Table 3P.19  will be now used 
to present the desired components of the solution. First the results necessary to 
determine the main averages are derived: the mean and the variance for both 
variables. 

 

335
0.335

1000
u = =  102

0.102
1000

w
−= = −  1754

1.754
1000

u w⋅ = =    

2 8919
8.919

1000
u = =  2 8018

8.018
1000

w = =      

With the help of the above derived values the directional coefficients of both 
regression lines can be derived and then the correlation coefficient. 

 * 1.754 0.335 0.102
0.203044814

8.806775
B

+ ⋅= ≅ *

1.754 0.335 0.102
0.223309217

8.007596
B

+ ⋅= ≅  

                     *
* 0.203044814 0.223309217 0.21293609r B B= ⋅ ≅ ⋅ ≅   

 

 
Fig. 3P.8 Udny Yule’s [2] way of presenting solution of mother-daughter regression 
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In the final step the averages of both variables can be determined – expressing the 
mean number of children born by daughters and by mothers, together with the 
corresponding values of the variances and standard deviations. 
 

* 0.335 4 4.335x u R= + ≅ + ≅      daughters      

* 0.102 6 5.898y w R= + ≅ − + ≅   mothers 
 

2 2 2 2 2( ) 8.919 0.335 8.806775u x u uσ σ= = − ≅ − ≅  2.967621101xσ ≅  

2 2 2 2 2( ) 8.018 0.102 8.007596w y w wσ σ= = − ≅ − ≅  2.829769602yσ ≅   

Results of the solution given by Udny Yule [2] p.175 show satisfactory 
correspondence with the above results. In particular the values of the correlation 
coefficients are the same, also the point of intersection lines R–R  and  C-C agree 
with the values of both averages indicated above. The Student can easily continue 
our example. 

Problem – an extra case for consideration - presents IQ and school grades 
statistics intending to examine whether students with higher IQ test scores tend to 
do better in school. Data sheet presents  Fig.3P.9  displaying the pairs of results 
for 76 students examined from the above stated point of view. 

 

Fig. 3P.9 Scatter plot of school grade point average versus IQ test score for seventh-grade 
students. 
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The first task we concerns the grouping. We would like to recall the “trick” 
which used with respect to so called “Houbolt’s cloud”, see Chapter 3. We have 
the two dimensional statistics in the form of a graph depicted in Fig.3P.9. That is 
we have no numbers. The “trick” offers a procedure which does not need numbers 
for grouping the data shown this way: it is enough to count the dots corresponding 
to the appropriate squares. For the dots lying exactly on the boundaries we 
propose to use the rule of the right hand continuity which here is generalized as 
the rule of the lower band continuity. There is also a second remark: the net shown 
in Fig.3P.9 can be chosen in a way which reduces the cases of the dots on the 
mesh lines. Once the data has been grouped as in Tab.3P.20, further procedure 
takes us back to the procedure well documented in the Unit. 

Table 3P.20 School grades vs. IQ points 
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Unit 4 
Binomial Distribution 

We consider the subject of the binomial distribution as the subject opening the 
theoretical background of Statistics. All the problems in this part of Statistics have 
some reference to the Theory of Probability which is sometimes bigger and sometimes 
smaller, but always important. The binomial distribution [we know that binomial can 
be positive or negative] exemplifies this reference in a special way. Moreover, 
binomial distribution represents a topic, which we briefly presented in Chapter 4, and 
which has exceptionally rich history.  The subject of this illustrative part, mirroring the 
divisions from the Chapter 4, is presented through problems partly expanding the 
practice, and partly supporting the theory. It will be seen that the Unit presents a deep 
dependence between binomial and Poisson distributions. This time we cannot 
recommend to the Student a single textbook neither from the Author’s own books, nor 
from any other sources. The Student can note, that for instance Udny Yule [1] 
investigated binomial distribution making it the subject of one of the final chapters, 
[but here it is rather of no use] while in Weinberg’s book [2] it is only episodically 
mentioned in the context of the limiting behavior of the normal distribution. In this 
Unit we  have decided to follow the rule: it will not be said  in advance which 
particular part of the theory we are going to illustrate by the given problem. Therefore 
the Student is advised after reading the problem to close the book and try to solve the 
problem on his/her own, and only then consult the solution in this book. We are not 
always able to indicate which book served as the source of the considered problem, but 
more frequently than not we do provide this information. For instance, we owe the first 
two problems to the book by Emanuel Parzen [12]. However, the answer given by 
Parzen to the first problem is unfortunately wrong. The second problem has no 
answers. Then we would like to note that in this, and the following Unit we try to use 
the MathCad package  available on the Internet, making frequent suggestions 
commenting the results derived in this way. 

Problem 4.1  (see [12], Problem 3.1,  p.256, p.453) 

The incidence of polio during the years 1949-54 was approximately 25 per 
100,000 population. (i) In a city of 40,000 what is the probability of having 5 or 
fewer cases? (ii) In a city of 100,000 what is the probability of having 5 or fewer 
cases? State your assumptions.  

3
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Solution. For the above circumstances, the so called “small probability” 
corresponds to 25 per 100,000 therefore  p = 0.00025. Using the same notation as 
in Chapter 4, in the first city we have  n = 40, 000. So, let us apply the Poisson 
distribution determined by  λ =  n p  here equal to  10. The Student should 

decipher numbers obtained in this way in Table 4P.1. 

Table 4P.1 Poisson distribution, 10λ =  

 k                              P ( k ) 

 0  4.5399929762484851535591515560551e-5    

 1 4.5399929762484851535591515560551e-4    

 2 0.00226999648812424257677957577803       
9 3 0.00756665496041414192259858592676       

 4 0.0189166374010353548064964648169         

 5 0.03783327480207070961299292963379       

Question 1:  ( )P k = 0.06708596287903178228575906282665  (the answer 

given by Parzen is a number ten times greater,  0.671). 
 

Question 2: for  n = 100,000 and respectively for λ = 25, therefore looking for 

probabilities corresponding to  k  ≤ 5  we obtain negligible values, the greatest of 
them is 

 

                1.1573286554136683828884803121739e-8 
 

This answer may give a misleading impression: if you want to avoid polio – settle 
down in a big city! The right explanation indicates that the average number of 
people with polio in this big town is 25 (while in the smaller town the average is 
only  10).  

The Student is advised to compare the results obtained by applying the Poisson 
distribution – considering them as approximate  results in comparison to the exact 
solution given by the binomial distribution. Therefore, starting with this first 
problem, we are faced with an important question of what circumstances allow to 
expect successes in such a procedure. There are some general indicators which 
have to be taken into account. We know, that the Poisson distribution presents a 
limit of  the procedure corresponding to the  sufficiently high n, and sufficiently 
small p. From a practical point of view we recommend using MathCad but this is 
not always possible due to numerical restrictions. For instance the case under 
consideration rules out such a possibility. While with the help of the Windows 7 
calculator it is possible to derive the above six probabilities from binomial 
distribution, and such results have been inserted in Table 4P.2.  Therefore, an 
assessment of the results from Table 4P.1 may be conducted using the results from 
Table 4P.2.   
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Table 4P.2 Binomial distribution, n = 40 000,  p = 0.00025 
 
    k                              b ( k ) 

    0 4.53432058559290889469310284476e-5            

    1 4.535454449205210197242413448122e-4  
2 0.00226823759081969495723304945626  

3 0.00756230450592699499036488390026           
    4 0.018909070600372719344187563225714          

5 0.03782381534046047926432236953117           
40000 6.2230152778611417071440640537801e-361 

 
Therefore, the exact answer to Question 1 based on binomial distribution 
indicates: 
 

                          0.06706231668835633866477903848666 
 

Comments. Rounding both final results to a practical number of digits, we express 
the Poisson result as  0.067086, and the binomial as  0.067062. They differ by 
0.0358%. Also the difference between the presented probabilities can be analyzed 
in the same fashion showing an interesting variability of errors. The last result 
shown in Table 4P.2 gives the probability of all the inhabitants of the town getting 
polio. With  MathCad one can also get a drawing of the Poisson distribution. It is 
interesting to note that the diagram shown in  Fig.4P.1 apparently presents a 
continuous distribution, however, it is the discrete distribution, though infinite. 
 

 
Fig. 4P.1 Diagram of Poisson distribution  10λ =  
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The Student is encouraged to draw a diagram of Poisson distribution on his/her 
own. To support such effort we provide in  Table  4P.3  a set which covers a 
practical range of values for this distribution.  

Table 4P.3 Poisson distribution, 10λ =  

   k           P(k) k       P(k)
   0    0.0000453999     12 0.0947803301 
   1    0.0004539993     13 0.072907946 
   2    0.0022699965     14 0.052077104 
   3    0.0075666550     15 0.034718069 
   4    0.0189166374     16 0.021698793 
   5    0.0378332748     17 0.012763996 
   6    0.0630554580     18 0.007091108 
   7    0.0900792257     19 0.003732162 
   8    0.1125990321     20 0.001866081 
   9    0.1251100357     21 0.00088861 
  10    0.1251100357     22 0.000403905 
  11    0.1137363961     23 0.000175611 

Problem 4.2   (see [12], Problem 2.12, p.251) 

Suppose that among  10,000  students of a certain college  100  are  red-haired. 
What is the probability, that a sample of  100  students, selected with replacement, 
will contain at least one red-haired student? 
 
Solution 
 

To solve the above problem, let us first solve the following problem “what is the 
probability, that a sample of  100  students, selected with replacement, will 
contain no red-haired student”? 
 

We will present simultaneously both solutions, on the base of binomial and 
Poisson distribution. The parameters of the distributions are as follows    p = 0.01,  
q = 0.99,  n = 100 ,  1λ = . The case of “no red-haired students” corresponds to    

k  = 0 . Calculations make use of the formulas 

( ) ( )
!

; 100, 0.01
! !

k n kn
b k n p p q

k n k
−= = =

−
 ( );

!

k

P k e
k

λ λλ −=  leading to  

1000.99 0.36603234127322950493061602657252=           and   
 

1 0.36787944117144232159552377016146e − =  
 

Then we return to the first question looking for the probability of the  complement  
event and we get 
 

0.63396765872677049506938397342748    and   0.63212055882855767840447622983854 
 



Problem 4.3 249
 

These two results provide an answer to Problem 4.2 
To complement the case we present a diagram showing both distributions for 

an important range of the argument. Here, for the first time we draw the Student’s 
attention to a very simple formal condition: if the mean and the variance of the 
binomial are close to each other – it guarantees the applicability of the Poisson 
distribution where these two means are identical. In this respect Table 4P.4 also 
offers the first opportunity of a formal comparison between even four related 
distributions. 

 

Fig. 4P.2 Binomial and Poisson coupled distributions, n = 100, p = 0.01; 1λ =  

Problem 4.3 

If it is assumed that a newly printed a book of  500  pages  usually contains 50  
printing errors,  determine  the  probability  that  a  randomly  chosen  page has: 
(1) exactly 3 errors, (2) at least 3 errors  (3) not less than 3 errors?      
 
Solution 
 
The formal statement using standard notation of this book  (see also  Table 4P.2) 
determines the mean number of errors per page as  n p = 50/500 = 0.1.   Therefore 
applying the binomial distribution to solve the problem we have   
n = 500,  p = 0.0002  and solving the problem by applying the Poisson 
distribution we have  0.1λ = . 
 

The first solution requires the use of the Word calculator whereas if we apply the 
Poisson approximation a scientific calculator available on the market is enough. 
Below, in order to answer the first question we will use both distributions, then to 
answer the remaining two problems we will limit ourselves to the Poisson 
distribution. 
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First question  “exactly 3 errors” – a scientific calculator available on the market 
used to derive Poisson approximation gives us: 
 

3
0.1 0.1

( 3; 0.1) 0.904837418 0.00016(6) 0.00015080623
3!

p k eλ −= = = = ⋅ =  

 

while the Word 7 calculator gives us the following result: 
 

0. 90483741803595957316424905944644 * 0.00016(6) = 
= 1. 5080623633932659552737484324107e-4 
 

The Word 7 calculator used to derive the binomial ‘exact’  solution gives: 
 

3 498500!
0.0002 0.9998

3! 497!
⋅

⋅
   →     1.4996108458811648041671345841231e-4 

 

The Poisson distribution approximates the result slightly greater than the ‘exact’ 
solution (it exceeds the exact value by 0.54%) 
 
Second question   “at least 3 errors”, requires that we calculate : 

                       
3

0

( )
k

b k
=
   =  b (0) + b (1) + b (2) + b (3) 

                  b (0) = 0.904837418     b (1) = 0.0904837418  
 
                  b (2) = 0.004524187     b (3) = 0.00015080623 

                                 
3

0

( )
k

b k
=
  =  0.999996383 

 

Fig. 4P.3 Poisson distribution, 0.1λ =  
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Third question  “not less than 3 errors” requires us to calculate : 

1 – [b (0)  +  b (1)  +  b (2)]     →   0.00015442291 
 

This quite unusual distribution is shown in  Fig.4P.3. When we say “quite 
unusual” we mean that the distribution has practically only two (non zero) values. 

Problem 4.4   

Bernoulli trials were repeated  n = 20  times, with  p = 0.4;  determine the number 
of successes corresponding to the maximum probability and investigate its closest 
neighborhood.  
 
Solution 
 
It is known, that the maximum of the binomial distribution is associated with  
the mean. Therefore because   np = 8   the probability  ( 8)b k =  has to be 

determined. Auxiliary steps are as follows: 20!

8! 12!
=

⋅
125970, then 

80.4 0.00065536=   and 120.6 0.002176782= .  Combining them will give the 

desired result of    0.179705787. 
 
To investigate the neighboring values, we have to determine probabilities k = 7, 
and  k = 9. The results shown below precisely present the maximum position. 
 
b (k = 7)  =  77520 * 0.0016384 * 0.0013060694  =  0.165882265 
b (k = 9)  = 167960 * 0.000262144 * 0.0036279705  =  0.159738478 

Problem 4.5 

An unfair coin   p = 0.4  has been tossed   n = 11  times. Investigate the case by 
drawing the diagram of the binomial and Poisson distributions. Provide all the 
numerical values for the binomial distribution. 
 
Solution 
 
The complete solution was obtained using the  MathCad  package. Fig. 4P.4  
shows a diagram of both distributions and Table 4P.5 contains numerical values. 
Discuss and comment the results. 
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Fig. 4P.4  Binomial and Poisson distributions,  n = 11,  p = 0.4; 4.4λ=  

Table 4P.5 Binomial distribution  n = 11,  p = 0.4 

f(0)=.0036279706 f(4)=.2364899328 f(8)=.0233570304
f(1)=.0266051174 f(5)=.2207239373 f(9)=.0051904512
f(2)=.0886837248 f(6)=.1471492915 f(10)=.0006920602
f(3)=.1773674496 f(7)=.0700710912 f(11)=.000041943

Problem 4.6 

A Corporation employs 90 young managers. Assuming that with a probability of 
0.1  each of them will need a secretary when starting his/her morning duties, 
determine r, i.e. how many secretaries should be employed to assure their services 
in at least   0.95  chances.    [Hint: use De Moivre-Laplace theorem].                                         
 
Solution 
 
To remind the Student once more about both distributions applied in this context, 
binomial and Poisson: 

           ( ) ( )
!

; ,
! !

k n kn
b k n p p q

k n k
−=

−
      ( );

!

k

P k e
k

λ λλ −=                    

In the considered problem    n = 90 ,   p = 0.1   →   n p = 9   and    n p q = 8.1   and 
the formal requirement has the following direct formulation: 
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0

( ) 0.95
r

k

b k
=

=
 

and the following indirect formulation brought forward with respect to the 
complement event 

( ) 0.05
n

k n r

b k
= −

=
 

A priori it is impossible to make a rational guess regarding the value of   r   
therefore, we have no idea which way to recommend to obtain an answer most 
conveniently.  Thus, it is seems reasonable to make use of the hint and resort to 
the theorem of  de Moivre-Laplace, but this is beyond the present scope and to 
obtain a solution based on de Moivre-Laplace we have to go to Unit 5. In this 
situation we decided to solve the problem by direct approach - obtaining the 
complete results by using the Word 7 calculator. The problem can also be solved 
using MathCad. The numerical method is presented in Table 4P.6 and Fig.4P.5 
shows the graphic results. 

Table 4P.6 Binomial and Poisson distributions  n = 90,  p = 0.1; 9λ=  

 k                       P (k )                             b ( k ) 

k = 0 0.00012340980408667954949763669073 7.6177348045866392339289727720616e-5 

k = 1 0.00111068823678011594547873021657 7.6177348045866392339289727720616e-4 

k = 2 0.00499809706551052175465428597457 0.00376654665337894939899821431507 

k = 3 0.0149942911965315652639628579237 0.01227615205545731655969788369358 

k = 4 0.03373715519219602184391643032832 0.02966736746735518168593655225948 

k = 5 0.06072687934595283931904957459098 0.05669763560427879166645652209589 

k = 6 0.09109031901892925897857436188647 0.08924627826599439428979267366946 

k = 7 0.11711612445290904725816703671118 0.11899503768799252571972356489261 

k = 8 0.13175564000952267816543791630008 0.13717483511254693937134799841787 

k = 9 0.13175564000952267816543791630008 0.13886835159541788924013007247242 

k =10 0,11858007600857041034889412467007 0.12498151643587610031611706522517 

k =11 0.09702006218883033574000428382096 0.10099516479666755581100368907085 

k =12 0.07276504664162275180500321286572 0.07387609276793274915804899478331 

k =13 0.05037580152112344355730991659935 0.0492507285119551661053659965222 

k =14 0.03238444383500792800112780352815 0.03009766742397260150883477565246 

k =15 0.01943066630100475680067668211689 0.01694387203127346455312179962657     

k =16 0.01092974979431517570038063369075  0.00882493334962159612141760397217 
    0.00426826841746403995414969081007 k =17 0.00578633812640215184137798254216 
    0.00192335552144984516452424338972 k =18 0.00289316906320107592068899127108 

k =19 0.00137044850362156227822110112841    8.0983390376835585874704984830434e-4 

k =20 0.00555031643966732722679545957005  1.628500647801375348717212096967e-4  
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Fig. 4P.5  Binomial and Poisson coupled distributions, n = 90, p = 0.1;  9λ=  

Final numerical results:  
 
Taking the exact – binomial – solution we find out that 
employing 13th secretary leads to:          0.93663365778335808963835141442284 
while employing 14th secretary we get:  0.9667313252073306911471861900753 
 
Taking the Poisson approximation we find out that 
employing 13th secretary leads to:        0.92614923069208834769538828487878 
employing 14th secretary we get:          0.95853367452709627569651608840693 
 
By using MathCad  for solutions requiring 17 digits, the appropriate results are as 
follows. For the binomial distribution we get: 
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While for the Poisson distribution the appropriate results are as follows: 
 

 
 

The results obtained using both approaches coincide which eliminates the 
possibility of errors.  Similarity between the mean and the variance of the 
binomial distribution documents the applicability of the Poisson approximation. 
Therefore in the end we arrive at the same conclusion as obtained using the 
binomial distribution. However, the Poisson distribution gives a conservative 
account of both probabilities with respect to the exact binomial probabilities. 

At the beginning of Unit 5 we return to this Problem deriving the best 
approximation to this question using the Second Theorem of De Moivre-Laplace, 
proving, that this third solution also determines  r = 14 .  

Problem 4.7  (see: [13], p.125) 

The management of Premiere theater knows from past experience that 20 percent 
of the complimentary tickets sent to critics are not used. This percentage is 
apparently independent of the type of play and any other unidentifiable 
circumstances. The theater reserves 10 seats for critics. If 12 complimentary 
tickets are sent out, what is the probability of accommodating all those critics who 
actually go to the theatre? 
 
Solution 1 
 

It is obvious that the ambiguous wording of the problem does not express the 
question clearly. In the first solution we assume that success  corresponds to the 
use  of complimentary tickets, therefore from the formal point of view it is the 
case of  p = 0.8. Moreover, to be more precise, we assume that the question 
concerns  the probability that with  n = 12, and  p = 0.8,  the number of successes 
is  k =  10. Therefore, the answer is obtained in a single calculation 
 

( ) 10 212!
10 0.8 0.2 0.283467841536

10! 2!
b k = = ⋅ =

⋅
 

 

An attempt to derive an approximate solution by applying the Poisson distribution 
with  12 0.8 9.6λ = ⋅ =   gives the following result 
 

10
9.6 9.6

0.12408585321204846462566478873264
10!

e − =  

 

As we see this ”approximation” completely failed – the reason is that the 
circumstances  do  not  justify  the  application  of the Poisson distribution: value  
n p  is  9.6  and value  n p q  is  1.92   –  so they are exactly the opposite of what is 
required:  they have to be close to each other. 
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To complete this solution we derived the full set of values of the binomial 
distribution. 

Table 4P.7 Binomial, n = 12,  p = 0.8 

     k         P ( k )     6    0.015502147584 

0     0.000000004096               7    0.053150220288 

1    0.000000196608               8    0.13287555072 

2    0.000004325376               9    0.23622320128 

3    0.00005767168                10    0.283467841536 

4    0.00051904512    11    0.206158430208 

5    0.003321888768    12    0.068719476736 

 
Solution 2     together with some comments 
 
In the book [13], Hawkins & Weber, present a solution based upon binomial 
distribution defining success as corresponding to probability  p = 0.2  i.e.  they 
consider the empty seats as success and moreover claim that the answer to the 

problem is given by the formula ( )2; 12, 0.2b k n p< = =   giving result    

0.2749. Accidentally this answer is numerically close to the answer found above, 
but that is just by luck. We suggest discussing this point more closely. First, let us 
note, that this case gives an opportunity to make use of the complimentary event, 
therefore  

                         ( )2; 12, 0.2b k n p< = =  =  ( ) ( )0 1b k b k= + =  

Then, both required probabilities can be found in Table 4P.3. This is the result of 
the fact that by reversing the meaning of success  we can make use of the fact that 
for instance 

                      ( ) ( )0; 12, 0.2 12; 12, 0.8b k n p b k n p= = = = = = =  

Therefore ( )0b k = = 0.068719476736 and ( )1b k = = 0.206158430208,  their 

sum 0.274877906944. Moreover, this case of the binomial distribution can be well 
approximated by the Poisson distribution. Let us first find the result corresponding 
to k = 2 and  12 0.2 2.4λ = ⋅ =    applying the Poisson distribution, the result is 

2
2.4 2.4

0.26126770547350800972049599382951
2!

e − =  

The accuracy of this particular Poisson result with respect to the above obtained 
result ( )10; 12, 0.8 0.283467841536b k n p= = = =  remains within a range of  

4.95 %.   
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    Moreover, if we look at  Fig. 4P.6, it will be evident that both these 
distributions are so close to each other that the calculations of any probability 
shown in Table 4P.7 can be done based on the Poisson distribution. 
 

Note: consulting [13] (see p.125) the Student has to be ready to correct the errors 
which in the solution to this problem were provided by Hawkins and Weber.  

 

Fig. 4P.6 Coupled distributions, binomial  n =12, p = 0.2, and  Poisson 2.4λ =  

To illustrate how the binomial  distribution n = 12, p = 0.2 and the Poisson 
distribution λ  = 2.4 contrast with the binomial distribution n = 12,  
p = 0.8 and the Poisson distributions  λ  = 9.6  compare Fig. 4P.6 and Fig. 4P.7. 
The Student should notice that the source of this discrepancy is the difference in 
the values of the mean and the variance for both pairs of binominal distributions. 
In the first case it is 2.4 and 1.92 and in the second, 9.6 and 1.92. 
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Fig. 4P.7 Two distributions, binomial  n =12, p = 0.8, and  Poisson 9.6λ =  

Problem 4.8   

The Department of Municipal Services in a town monitors the number of failures 
of the sewage system. The provided sample was obtained over a monitoring 
period of one month: 

Table 4P.8  Sewage system failures 1 

Number of daily failures      0      1      2      3     4 
Frequencies (days)     22     30     22     16    10 

 
Examine whether the failures can be approximated by the Poisson distribution, 

restore this distribution, and then study the empirical and theoretical results. 
 
Solution 

Table 4P.9 Sewage system failures 2 

Number of daily failures       0       1       2       3      4 
Empirical Probability    0. 22     0.30     0.22     0.16    0.10 
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Estimating the mean and the variance: 


1λ  =  k  = ( )k P k  = 0.3 + 2*0.22 + 3*0.16 + 4*0.1 = 1.62 

2k  = ( )2k P k  = 0.3 + 4*0.22 + 9*0.16 + 16*0.1 = 4.22 

 ( )22
2 k kλ = − → 24.22 1.62 1.5956 1.6− = ≈  

The similarity of both estimators of a single Poisson distribution parameter λ   
indicates the applicability of the Poisson distribution to the empirical data. On the 
other hand  -  restoring both parameters of the associated binomial distribution as  
n = 100  and  p = 0.0162  - which gives  the mean  n p = 1.62, and the variance 
equal to  n p q  = 1.59  -  so similar to the estimators based on the empirical data – 
puts both distributions very close to each other. 

 

Fig.4P.8 Binomial and Poisson distributions, n = 100,  p = 0.0162; λ  = 1.62 

It is seen that with the scale of Fig.4P.8 both curves are identical. Small numerical 
differences are presented in Table 4P10 . 

Table 4P.10 Binomial and Poisson distributions, n = 100,  p = 0.0162 λ  = 1.62 

  Poisson distribution      Binomial distr.   Poisson distribution     Binomial distr. 

f1(0) = 0.1978986991 f2(0) = 0.195290817 f1(1) = 0.3205958925 f2(1) = 0.32158073     

f1(2) = 0.2596826729     f2(2) = 0.26212196       f1(3) = 0.1402286434 f2(3) = 0.140999129    

f1(4) = 0.0567926006     f2(4) = 0.056303627    f1(5) = 0.0184008026    f2(5) = 0.017801057     
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Problem 4.9 

A leading insurance company assumes that each year 1%  of their male customers 
die due in accidences. What is the probability that within one year the company 
will pay claims more than three times if the number of the insured is 100 persons? 
 
Solution 
 
Binomial  with    n = 100   and   p = 0.01 is the mother distribution while the 
Poisson approximation is determined by the mean 1.0λ = . Instead of discussing 

the details of such distributions we remind to our Student that such a case has 
already  been considered - therefore we only add that  Fig.4P.2 presents both these 
distributions and there is no need to repeat it again. But we suggest 
complementing  Problem 4.2  with Table 4P.11  which presents an analogy to  
Table  4P.10 – showing coupled numerical values of both distributions.                         

Table 4P.11 Binomial and Poisson distributions, n = 100,  p = 0.01;  1.0λ =  

  Poisson distribution      Binomial distr.   Poisson distribution     Binomial distr. 

f3 0( ) 0.3678794412= f1 0( ) 0.3660323413= f3 1( ) 0.3678794412= f1 1( ) 0.3697296376=

f3 2( ) 0.1839397206= f1 2( ) 0.1848648188= f3 3( ) 0.0613132402= f1 3( ) 0.0609991658=

f3 4( ) 0.01532831= f1 4( ) 0.0149417149= f3 5( ) 0.003065662= f1 5( ) 0.0028977871=

f3 6( ) 0.0005109437= f1 6( ) 0.0004634508= f3 7( ) 0.000072992= f1 7( ) 0.0000628635=  

To give a numerical answer to the question in Problem 4.9 we need to use 
MathCad and copy the results. In the notation used there the symbol  “F”  stands 
for Poisson, and “F1”  for the binomial distributions. They show: 

Table 4P.12 Probability of more than three claims 

F 0 3, ( ) 0.9816259636=  F1 0 3, ( ) 0.9810118431=  

1 F 0 3, ( )− 0.0183740364=  1 F1 0 3, ( )− 0.0189881569=
 
To be more specific we also provide symbolic notations used to obtain results 
given in  Table 4P.12: 

( ) ( )
2

1

1 2,
k

i
i k

F k k f k
=

=              ( ) ( )
2

1

1 1 2,
k

i
i k

F k k g k
=

=   

Where in turn, symbol ( )ig k  denotes binomial distribution, and symbol  ( )if k   

denotes Poisson distribution. 
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Problem 4.10  (see [2], Problem 9.15, p.178) 

Historically, 65%  of Senator Pete Low’s constituents have approved of his 
decisions. In a recent random sample of voters, in his district, more than 65 of 90 
people approved of his action on the state banking amendment. What was the 
probability of this occurring – based on his historical approval rate?   

Answers.  Weinberg: 0.0606, LML: 0.0587 due to binomial 
 
Solution 
 
Here   we   recognize  the  binomial  with  the  following  parameters:    n = 90,    
p = 0.65   and understand the question as the probability of   k > 65  taking place. 
Therefore we look for the answer by solving: 

( ) ( ) ( ) (90 )90!
0.65 1 0.65

! 90 !
kkf k

k k
−= ⋅ −

⋅ −
;  ( ) ( )

2

1

1 2,
k

i
i k

F k k f k
=

=   

MathCad solution:   

( )66,90 0.05871866696485527F =     [see Unit 5 for the normal solution]  
 

Fig.4P.9 shows “unmatched” binomial and Poisson distributions. In other words 
we cannot use the Poisson distribution with  58.5λ =    as a valuable 

approximation to the binominal distribution   n p = 58.5   and   n p q ≈  20.5. 

 

Fig. 4P.9 ‘Unmatched’ binomial and Poisson distributions  n = 90,  p = 0.65; 58.5λ =  
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To be certain that it “does not work” we use  MathCad to derive the appropriate 
answer and get the following numerical result: 

( )1 66,90 0.178938474670244F =  

*** 

Short remainder.  From this place onwards we will concentrate on the third 
distribution examined in this Unit. This third distribution is the negative binomial 
distribution. This distribution is completely different from binominal distribution, 
especially in the most advanced version presenting continuous distributions. So far 
we recall two main versions, both closely related and both presenting the discrete 
distribution but with infinite terms. We commence by listing the two main 
descriptions of this distribution. 

As the first version let us take the case where we count the  n  number of 
Bernoulli trials where the  r-th  success occurs. Here: 

( )1

1
| ,

1
r n rn

P X n p r p q
r

−− 
= = ⋅ ⋅ − 

 

In this formula there are two parameters:   real  p satisfying the following 
condition: 0  <  p  < 1, and  r  a positive integer ;  integer    n  ≥  0   is independent 
variable and infinite. 
 

The second version counts   k    i.e. the number of failures before the  r-th  success  
and here, 

( )2

1
| , k k rr k

P X k p r p q
k

−+ − 
= = ⋅ ⋅ 

 
,        

2 1X X r= −  

More equivalences are listed in Chapter 4, therefore the Student is advised to 
revise this material before starting the applications below. And we have to add that 
further on we also propose an extension of the results given in Chapter 4. 

Problem 4.11  (see  [13], p.128) 

Market studies have established that 20 percent of the housewives in Oatsville use 
Happiness detergent. Find the probability that in a random sample of Oatsville 
housewives, the 25th person interviewed is the 10th user of Happiness detergent. 
 
Solution 
 
Let us recall formula  (4.96)  from Book One 

( ) ( )1
1

1
n rrn

f n p p
r

−− = ⋅ ⋅ − − 
  assuming  n = 25,  r = 10,  and  p = 0.2  we 

get 



264 4   Binomial Distribution
 

( ) ( )151024
25 0.2 1 0.2

9
f

 
= ⋅ ⋅ − 
 

;   and finally 

 f ( 25 ) =  0.0047107796217483464015872  
 

Considering “n”  as an independent variable, we can generalize the answer to the 
form shown in   Fig.4P.10. 

 

Fig. 4P.10 Negative binomial  distribution  r = 10,  p = 0.2 

Problem 4.12  (see [5], p.165, p.63) 

If ( ) ( )1
1

krk r
f k p p

k

+ − 
= ⋅ ⋅ − 
 

 then, prove that 

( ) ( ) ( )1 1
k krr

f k p p
k

− 
= − ⋅ ⋅ ⋅ − 

 
 

by using an intermediate result stating that for any    r   >  0 
 

( ) 1
1

kr k r

k k

− + −   
= −   

   
 

Solution 

Expanding the left hand side we will find out that  
 

( ) ( )( ) 1 1

!

r r r r k

k k

− − ⋅ − − ⋅ ⋅ − − + 
= 

 


,   then from the right side of the above 

tautology  the  term   ( )1−  occurring   k-times   can be excluded  which will give us:  
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( ) ( ) ( ) ( ) ( )( ) 1 1 1 1
1

! !
kr r r k r r r k

k k

− ⋅ − − ⋅ ⋅ − − + ⋅ + ⋅ ⋅ + −
= − ⋅

 
;  then we 

apply 

( ) ( ) 11 1

!

k rr r r k

kk

+ −⋅ + ⋅ ⋅ + −  
=  
 


. With this result we come closer to the 

desired result. Now, let us finally prove that:  

( )1
1

kk r r

k k

+ − −   = − ⋅   
   

which can be established in the following way: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 1

! !
k k rr r r k r r r k

kk k

−⋅ + ⋅ ⋅ + − − ⋅ − − ⋅ ⋅ − − +  
= − = −  

 

 

 

Problem 4.13  (Source: Internet) 

Pat has to sell candy bars to earn his pocket money. There are forty houses in the 
neighborhood, and Pat cannot return home until he sells eight candy bars. So he goes 
from door to door, selling them. At each house, there is a 0.3 probability of selling one 
candy bar and a 0.7 probability of selling nothing. What is the probability of selling the 
last candy bar at the nth house? 
 
Solution 
 
The answer to such a general question presented in this problem can either take 
the form of a table or of a diagram (or both forms). We have chosen the second 
option and provided Fig. 4P.11. 

 

Fig. 4P.11 Negative binomial, r = 8,  p = 0.3 
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It can be noted here what a significant change takes place if probability is 
changed, e.g. to the compliment value of  p = 0.7. The result is seen in  Fig. 4P.12. 
Both diagrams were obtained using the MathCad tools. 

 

Fig. 4P.12 Negative binomial, r = 8,  p = 0.7 

Maybe it is also a good opportunity to underline an important fact which is in a 
way overshadowed by all our diagrams: the binomial distribution belongs  
to the family of the finite discrete distributions, and on the other hand, the 
negative binomial distributions belong to the family of continuous infinite 
distributions.  

Problem 4.14 

Investigate the probability ranges for the above given  three binomial distributions 
of  r = 10, p = 0.2;   r = 8, p =  0.3   and   r  =  8, p =  0.7 supplementing them with 
r = 5,  p = 0.4. 
 
Solution 
 
We suggest presenting the solution using Table 4P.13. The results shown there 
were obtained with MathCad . Unfortunately, the necessity of integration rules out 
the use of scientific calculators available on the market.  By rounding the figures 
in Table 4P.13 we wanted to save some space. 
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Table 4P.13 Negative Binomial distributions, four cases 

      r = 10,  p = 0.2          r = 8,   p = 0.3       r = 8,   p = 0.7       r = 5,    p = 0.4 

 10 - 20    0.026     8 – 10    0.0016     8 -10     0.383  5 – 10    0.367 

 21 - 30    0.058   11 – 20    0.226   11 –15     0.567 11 – 15    0.416 

 31 - 40    0.207   21 – 30    0.491   16 - 20     0.049 16 – 20    0.166 

 41 - 50    0.288   31 – 40     0.226     8 - 20     0.999 21 -  30    0.049 

 51 - 60    0.231   41 – 50    0.048    5  - 30    0.998 

 61 –70    0.129     8 -  60    0.999   

 71 - 80 
808808

   0.056  

 81 - 90    0.02 

 10-100    0.998 

 
*** 

 
Important Generalization.  Before giving the Student the next problem we suggest 
generalizing the negative binomial distribution formula to the form which recalls 
the Gamma function – as given in Chapter 2 by formula  (2.16). So, it is: 
 

              ( ) ( ) ( ) ( )
( )

1 1 1

! !

k r r r r k k r

k k k r

+ − ⋅ + ⋅ ⋅ + − Γ + 
= =  ⋅Γ 


   

 

In short, it states that: 

( )
( ) ( )

1

1

k r k r

k k r

+ − Γ + 
=  Γ + ⋅Γ 

 

Finally, the promised generalization takes the form: 

( ) ( )1
1

krk r
f k p p

k

+ − 
= ⋅ ⋅ − 
 

  → ( ) ( )
( ) ( ) ( )1

1
krk r

f k p p
k r

Γ +
= ⋅ ⋅ −

Γ + ⋅Γ
    (A) 

Important Remarks.  In the above formula, numbers   k   remain positive integer,  
playing the role of the independent variable, although   r   is now a positive real 
number. Moreover, this parameter loses its previous meaning as a kind of a 
restraint. Also the range of the validity for the variable  k  includes now the value 
zero.  Moreover this distribution belongs to the class of continuous distributions. 
Interestingly enough, the mentioned features are hardly to be seen in the 
publications which we recommend in Chapter  4 and to which we add here a new  
paper [14].  The generalization described here is useful in applications, the paper 
[14]  serves  just  as an example.  Other  examples can be found in references  
[42]-[43]  from Literature to  Chapter 4,  which  we  repeat here as references 
[15]-[16], complementing them with two short papers by Fisher [17]-[18]. To 
discuss this topic we propose the following example.  
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Problem 4.15   (see [14]) 

Investigate the provided statistics in  Table 4P. 14   which presents family size 
distribution  in Jordan presented in Table 1 of paper  [14]. This data are based on 
the general census in Jordan in 1994. 

Table 4P.14 Jordanian family size statistics 

 
 
Check in particular the mean and the variance with respect to the values given in 
[14], that is 4.32μ =   and   2 9.19σ = . Then derive both parameters of the 

approximation assuming that the negative binomial distribution fits the case. 
Provide calculations based on generalized formula  (A) . Recommended way 
suggests using the following formulae to determine values of both parameters:  

2
p

μ
σ

=           
2

2
r

μ
σ μ

=
−

 

The above formulae can be derived from the formulae in  Table 4P.1. The Student 
has to be conscious of some differences in the symbols used. The results given in  
[14] for these two parameters are as follows  0.4703p =    and  3.837r = .   

 
Solution 
 
Our calculations gave  4.27475μ =    2 9.21134σ =   0.4641p =    3.702r = . 

And  with  the help of  Mathcad   a comparison  was  made which is shown in  
Fig. 4P.13 and documents the similarity of both results and insignificance of the 
differences in all four parameters. The Red curve shows parameters given in [14], 
the blue curve, the parameters given here. By the way, curiously, the formula  
denoted in [14]  as  (5), expressing the probability distribution, contains three 
errors. There is also another remark in this context, authors of [14]  interpret  the 
value  f ( 0 )  as a major estimate, as they called it, the proportion of sterile 
couples in the Jordanian population. Leaving aside a possible discussion of this 
attitude, we add both values from the red and from the blue curves. For the red 
curve  ( )0 0.0583171redf =  and for the  blue  curve   ( )0 0.0553226bluef =  .  

The Student may easily check that the Jordanian census gave the value  
of ( )0 0.0941887censusf =   therefore, looking at the paper  [14]  it is difficult to 

understand why this approach favors the artificial value  of 0.058  instead of the 
real value  0.094 ? 
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Fig. 4P.13 Two negative binomial distributions – formula (A) 
 

*** 
Another generalization.  Continuing the theoretical considerations of this Unit, we 
present one more version of the distribution belonging to the discussed here family 
of continuous negative binomials, based on interesting publication [19] accessible 
on the Internet. For the theoretical origin of this version we can consult a textbook 
by M.Fisz [7] but instead of providing a lengthy detailed procedure we will 
describe it briefly recommending that the Student with a deeper theoretical interest 
consult [7]. 

The starting point is the Poisson distribution, whose formula we provide here to 
help with specific symbolic notation: 

                                       ( )
!

y

iY k e
k

λ λπ −= =  

In the second important step it is assumed that the parameter  λ    of this 
distribution is a random variable and follows gamma distribution with parameters  
a   and   v  given below: 

                                    ( ) ( )
1

r
r aa

f e
r

λλ λ − −=
Γ  

Then in the third step we can obtain (see [7], p.178)  the final, desired formula of 
the negative binomial in the following form: 
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( ) ( )
( ) ( ) ( )

( )

1 1

r

i k r

k r a
P Y k

k r a
+

Γ +
= =

Γ + Γ +
                         (B) 

It is possible to justify (see: [7]), that the formula  (B)  is equivalent to the 
negative binomial distribution in the form presented earlier as formula  (A). This 
point will be also discussed below. And now with all the presented theoretical 
background we propose to consider the following. 

Problem 4.16  (see [19]) 

Examine the sample of  19 013  individuals presenting the number of car accidents 
from 1982-83  from the province of Quebec shown in  Table  4P.15. 

Table 4P.15 Car accident statistics, Quebec 1982-83 

 f(0) = 17 784    f(1) = 1 139      f(2) = 79       f(3) = 9      f(4) = 2 

0.9353600168 0.0599063798 0.0041550518 0.0004733603 0.0001051912 

 
Solution 

Table 4P.16 Deriving empirical averages 

         iy           0           1           2           3            4 

   ( )iP y 0.9353600168 0.0599063798 0.0041550518 0.0004733603 0,0001051912 

( )i iy P y⋅  0,0700573291 0,0599063798 0,0083101036 0,0014200809 0,0004207648 

( )2

i iy P y⋅ 0,0824698889 0,0599063798 0,0166202072 0,0042602427 0,0016830592 
 

 
Numerical results given in Table 4P.16 allow to determine the mean value μ  of 

the investigated statistics and its mean square (second column of Table 4P.16). The 

mean square serves to derive 2σ , i.e. the variance. So, we get: 0.0700573291μ =  

and  2 0.07756185953937429319σ = .  Note: the variance is greater than the mean. 

In the next step,  by using well known relations:  

                                       
2

p
μ

σ
=           

2

2
r

μ
σ μ

=
−

 

we obtained both parameters   p  and  r   which are necessary to determine version  
(A)  of the negative binomial distribution. By using Word 7 calculator we obtained 
what follows: 
 

                    p = 0.90324457814778645369804715708992    and 
 

                     r = 0.65400885508766416629108304554246    
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In the last step the formula of the  distribution  (A)   was fed into  MathCad  to 
draw the diagram of this distribution and derive the initial values of this 
distribution, crucial for the investigated approximation.  

Simultaneously we checked again the version of the negative binomial 
distribution   (B)  used for calculations in paper  [19].  The  authors  of  paper  [19]  
gave  the  following  values  for  both  parameters  of  version  (B)  distribution  
1/a = 9.9359   and   r = 0.6960.  However, they do not provide the details of the 
procedure used to determine them. In the following step these values and formula  
(B)   distribution were entered in MathCad  and an appropriate diagram was 
drawn, together with the values of this distribution for the initial points.  

As Fig. 4P.14   shows both diagrams are very similar to each other, with the 
scale of the diagram  Fig. 4P.14,  they are practically identical. 

 

Fig. 4P.14  Negative binomials distributions  (A)  and  (B) of [19] 

The presented set of numerical values in  Table 4P.17  shows numerical identity of 
both distributions  i.e.  (A)  and  (B)  - supplied with the parameters derived in this 
book. For the sake of a numerical comparison we provide appropriate results based on 
paper  [19]. We denote them as case  (B) of [19].  Comparing the numerical results 
given in the two lowest rows of Table 4.P.17 clearly shows why in Fig.4P.14 both 
graphs seem to be identical.  
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Table 4P.17  Fitting by  theoretical distributions  (A)  and  (B) 

iy          0           1           2          3          4 

     (B) 0.9355837920 0.0592291902 0.0047415099 0.0004060427 0.0000359051 

     (A) 0.9355837920 0.0592291902 0.0047415099 0.0004060427 0.0000359051 

 (B)   [19] 0.9354344679 0.0595344267 0.0046164645 0.0003793618 0.0000320532 

Final remark: we resist the temptation to apply the test of the goodness of fit based on 
the  chi-square  distribution and establish quantitatively which case  (B)  or  (B) of [19]  
is closer to empirical data. Nevertheless, in any case both approximations fit this 
statistics surprisingly well. To complete the theoretical proof that cases  (A)  and  (B)  
are principally identical we provide the formulae given by M.Fisz [7]  combining the 
parameters of both cases  (A)  and  (B): 
 

( )1/ 1p a= +      and    ( )/ 1q a a= +     

( )1 /a p p= −    and    ( )1/ / 1a p p= −  

 
Ending this Unit we suggest to the Student one more approach to present the 
negative binomial distribution from the point of view  of the Bernoulli trials. 

Problem 4.17 

Prove the following Theorem: 
 
Performing  n  Bernoulli trials with the probability of success  p  until  the 
occurrence of  r  successes, the probability of performing exactly  n  trials is given 
by the formula: 
 

1
( )   (1 )

1
r n r

k

n
P S n p p

r
−− 

= = − − 
 

 

Proof 

Let  A   denote an event  described in the Theorem, let  1A   denotes an event in 

which irrespective to the sequence  r - 1  successes will occur  in  n – 1  trials, and 

let  2A   denote such an event that success will occur in the  n-th  trial.  

Moreover   1 2A A A= ∩ ,   and the events   1A   and  2A   are independent 

events, therefore we get the following results: 

         1 ( 1) ( 1)
1

1
( )   

1
r n rn

P A p q
r

− − − −− 
=  − 

      and      ( )2P A p=  
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Therefore, in consequence the final step concludes the proof: 
 

        -11 1
( )     

1 1
r n r r n rn n

P A p q p p q
r r

− −− −   
= ⋅ =   − −   

  . 
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Unit 5 
Normal Distribution. Binomial Heritage 

Acquaintance with the normal distribution, tables of the normal distribution. 
Probabilistic paper. Sample means distribution and Monte Carlo simulation. Two 
theorems of de Moivre-Laplace. When does normal approximation fit binomial 
distribution data?  

Instead of commencing this Unit with a numbered problem, we suggest following 
the below considerations which according to the promises made in Unit 4  apart 
from the solution to Problem 4.6 present the third approach to this problem. We 
commence by restating its main features. While solving Problem 4.6. we looked 
for such the lowest value  r  which  guarantees that 

0

( ) 0.95
r

k

b k
=

=
 

where  b (k)   is the probability either given by the binomial distribution or by 
Poisson distribution      

( ) ( )
!

; ,
! !

k n kn
b k n p p q

k n k
−=

−
      ( );

!

k

P k e
k

λ λλ −=  

It also has to be restated that in the considered problem we face   n = 90  Bernoulli 
trials, with   p = 0.1. Therefore, the mean value is equal to  n p  =  9   and the 
variance    n p q  =  8.1 .   

It is also to be mentioned that by resorting to the complement event there is also 
the following indirect formulation of the problem 

( ) 0.05
n

k n r

b k
= −

=
 

We will presently see that if we are looking for the solution with the help of De 
Moivre-Laplace’s second theorem,  a direct solution will produce the answer in a 
shorter time than an indirect one. In order to solve the problem by the applied 
method we have to apply the Normal Distribution Tables searching for such a 
value of the  z-variable  which corresponds to probability  0.45 (not 0.95). Doing 

3
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that we shall read the two closest values:   1z =  1.64  which corresponds to 

0.449497  and  1z =  1.65 giving   0.450520. In the last step we have to move 

from these two derived  z-scored variables to the real value variables – by using 
the formula: 

                             (1 )i ik n p z n p p= ⋅ + ⋅ ⋅ −  

Substituting the above given values of  iz   we will get two values of  ik  13.67  

and  13.70, respectively . Both of them lead to the same answer. Moreover, the 
answer to both approximations received above is the same as the exact answer 
known from the solution of Problem 4.6:  it is not enough to employ 13 
secretaries, the above derived answers also state that required minimum number of 
secretarial staff should be 14 persons. 

Closing the above considered problem we have to commence with the normal 
distribution problems from scratch. This Student who finds it difficult to follow 
the above given considerations may skip this passage and return to it later on. 

Problem 5.1  (see [5], Problem 7.16, p.129) 

Two students were informed that they received standard scores of  + 0.8  and  - 0.4  
respectively on a multiple choice examination in English. If their marks were  88  and  
64  respectively, find the mean and the standard deviation of the examination marks. 
 
Solution: to solve the problem we have to know the mean and the variance of the 
normal distribution. Then the z-scored  values can be obtained from: 

xX X z σ= + ⋅  

Data given in the problem allow to write two equations: 

                             1 1 xX X z σ= + ⋅         and        2 2 xX X z σ= + ⋅         

By substituting  1 188, 0.8X z= =     and     2 264, 0.4X z= = −        the 

two above equations can be solved with respect to unknown   X  and   xσ    --  

giving the answer    72X =    and    20xσ = . 

Problem 5.2  (see [5], Problem 7.20) 

The mean length of 500 laurel leaves from a certain bush is 151 mm and the 
standard deviation is 15 mm. Assuming that the lengths are normally distributed 
find how many leaves measure between 120 and 155 mm, and how many more 
than 185 mm? 
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Solution  can be obtained by using three methods, the first two methods apply 
MathCad, the third one uses a standard approach based on the Table values. 
Therefore, we have to consider the third one as the basic method, whereas the first 
two will serve as a specific décor of the Unit. Nevertheless, we apply the first, 
showing  Fig. 5P.1  and  Fig. 5P.2. 

 

Fig. 5P.1  Normal distribution,  μ = 151,  uσ = 15 

With the distribution illustrated by  Fig. 5P.1  we have to derive the following 
integral formula to give the answer to the first question: 

                                      ( ) ( ),
r

l

F l r g u du=      

here   g ( u )  is the probability density of the normal variable   u   with  the 

average  μ = 151 mm and standard deviation uσ = 15 mm, while the lower/upper 

bands of integration have to be  l =120 mm, and r =155 mm. We recall the 
formula for the normal distribution in general case: 

( ) ( )( )2 21
exp 2

2
u

u

g u u μ σ
σ π

= − −  

The answer to the first question obtained using MathCad  is as follows:  

( )120,155 0.5857543024471563F = , which corresponds after appropriate rounding 

to  293  leaves. 
This answer can be also derived by applying an approach which uses   z-scored   

values and resorts to the normalized distribution as shown in  Fig. 5P.2 .  
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Fig. 5P.2  Normalized  normal distribution,  μ = 0,  zσ = 1 

To derive the appropriate  z-scores  we will use the formula (1.18) given at the 
beginning of Unit 5 in a formally modified fashion, by using the present symbols: 

1
1

u

u
z

μ
σ
−

=     and    
2

2
u

u
z

μ
σ

−
=      moreover   1 2,u l u r= =  

Therefore, by substituting numerical values the desired  z-scores can be derived  

 
1 1

120 151
2.06(6)

15
z z

−= → = −     
2 2

155 151
0.26(6)

15
z z

−= → =  

To use MathCad, z-scores  must be given  in a suitable fashion, we assumed  

1 2.06666667z = −     and   
2 0.26666667z = +   respectively. 

This time we must also use a simplified integral formula applying normalized 
density  g ( z )  given by: 

 

          ( ) ( )21/ 2 exp 2g z uπ= − ,   nevertheless it will give us the result 

( ) ( ) ( )
2

1 2 1 2

1

, , 0.5857543038876679  
z

z

F z z g z dz F z z= → =   

 

which is practically identical with the above obtained result and leads to the same  
answer – indicating 293 leaves within the required limits. 

In the third step we will solve this problem by using the Tables of the normal 
integrals. The second step above will give us the necessary references. To make 
use of the Tables, as we have already shown in Chapter 5, we have to determine  
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z-scores  - as they were obtained, i.e.  
1 2.06(6)z = −   and  

2 0.26(6)z = +  after 

small corrections. We remind the Student that our Tables use the z-scored  
ordinates rounded to two decimal places, therefore in fact they are   

1 2.07z = −   

and   
2 0.27z = +  . Then, in the next step first we have to read from the Table the 

area which lies between the  above given  
1 2.07z = −   with   

2 0z =   and ignore 

the negative sign and read  the value  0.480774. Then, we find the area lying 
between   

1 0z =   and   
2 0.27z = +  which is  0.106420.  Their sum   0.587194  

gives the answer of  294  leaves,  slightly higher than the one obtained using the 
two more accurate approaches. In fact even this result could be corrected by using 
the method of linear interpolation – which, as it is easy to see, will give  (0.480616 
+ 0.105136) = 0.585752 also giving 293 leaves. The derivation of this more 
accurate value is left for the Student.  

The answer to the second question given in  [5]  indicates  5  leaves, although 
the answer to the first question given in [5] indicates a very rough result of  300  
leaves. 

Problem 5.3   (see 7.22 in [5], Modified) 

The grades on a short quiz in biology were  0, 1, 2 …, 10  points, depending on 
the number answered correctly out of 10 questions. The mean grade was  6.7  and 
the standard deviation was  1.2. Assuming the grades to be normally distributed 
find the limiting values for the traditional grades  A,  B, and C [consider also 
grades including “+” and “-” assuming they correspond to 1/3-rd of the space 
dividing full marks]. Hint: assume passing grade at 50%,  that grade A received 
the top 5%, and grade B  the next 15%.  
 
Solution 
 
The essential part of the solution can be read from  Fig. 5.P.3. Therefore, first we 
will follow what is shown there. 

The  z-scores  corresponding to the limiting values are proposed as follows, 
grade  C  starts from  z = 0  up to  z = 0.842, grade  B  starts from, say  z = 0.843  
up to  z = 1.645, and grade  A  lies above  z = 1.645. In Problem  5.3  we are 
asked to determine the grade points from the scale  (0, 10)  corresponding to the 
above determined  z-score  limits. They follow the equation 

1.2 6.7i ix z= ⋅ +    therefore      1 7.7x ≈    and   2 8.7x ≈  . 

A possible solution for the limiting values indicating fractional marks is left for 
the Student. Apparently in the context of the considered problem this fine partition 
has negligible applicability. 
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Fig. 5P.3  Grade distribution with a partition 

Problem 5.4  ([1], 7.28 – No Answer) 

Past experience has shown that the mean life of Whiz-Matic irons is 72 month 
with a standard deviation of 10 months. The product is sold with an unconditional 
four-year guarantee. The lives are normally distributed. (i) what fraction of the 
irons should be expected to be returned for failing to satisfy the guarantee? (ii) this 
year 100 irons were returned for not meeting the guarantee. Assuming that all 
four-year-old irons not still functioning were returned, how many irons were sold 
four years ago? 
 
Solution 
 

Numerical answers – supported by  Fig. 5P.4 
Regarding the first question, with the help of MathCad  we can obtain a numerical 
result giving the fraction equal to   a  =  0.008197535924596044 .  

 

 

Fig. 5P.4  Distribution of irons with four-year guarantee 

To answer the second question we have to perform the following calculations, first 
denote  b = 100 / a  then we get a numerical result (by using the Windows 7 
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calculator)  of   b = 12198.097096852890949011954135155 . This result  means 
that about 12,200 irons were sold in the past four years. 

Problem 5.5  ([1], 7.27 – Answers Enclosed) 

Professor Trash has just finished grading final exams and now must determine 
final grades. She knows from experience that the scores will be approximately 
normal in distribution. The mean grade proves to be 74, and the standard deviation 
9  (a) if the middle 35% are to be graded C, find the cut-off points for C [answer:  
69.95 – 78.05] (b) if Laura’s average is an 87, and if the top 10% received A’s, 
can Laura expect an A? [answer: yes]. 
 
Solution 
 
Problem 5.5  follows the above solved Problem 5.3  and we provide it to give our 
Student a chance to consider how teaching staff solves delicate problems of 
grading. We have in mind our final comments which we would like to propose for 
consideration. The starting points for this discussion are  Fig. 3P.3  and  Fig. 3P.5. 

First let us explain the meaning of the  “middle 35%”. We understand it in the 
way shown in  Fig.5P.5. The position of both markers in the first question follows 
from the fact that each side of the mean value covers  17.5%  of the distribution. 
The numerical value was not derived from the Table of normal distribution, but by 
using MathCad  in the way presented twice before in the previous problems. For 
convenience we present the result obtained in this way as 

( )
78.084

74

0.175005610187h u du =  

In this way the position of both  markers for the grade  C was found  to be  
(69.916, 78.084).  To give the position of the third marker, of grade  A, we get the 
following result: 

( )
85.52

74

0.399727432h u du =  

It is also justified to add that to determine the upper limits in both above integrals 
a method of trials an errors was used, as the simplest one for such purposes. The 
limits for the intermediate grade B were thus determined to give (78.084, 85.52).  
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Fig. 5P.5  Final grades distribution with a partition 

To obtain the percentage which covers grade  B we moreover determined the 
value of the third integral 

( )
85.52

78.084

0.22472182h u du =  

To conclude these calculations, there is a remark summarizing two ways of 
distributing grading points, one shown in Fig. 5P.3 and the other in  Fig. 5P.5.  
The so called passing grade is always a sensitive issue. In this matter the final 
decision is made by the instructor but sometimes important consequences follow 
from the policy of a particular university. Nevertheless the two examples depicted 
in  Fig. 5P.3  and  Fig. 5P.5 distinctly reflect two different attitudes in this respect 
which do not belong to the subject of Statistics. Returning to the second question: 
under the policy of professor Trash, if Laura gets 87  marks, she may get grade  A 
but with the grading system suggested in problem 5.3, Laura should get not less 
than  89  marks to get grade  A . Below we offer one more problem of a similar 
nature but not burdened with as much responsibility as academic grading 
philosophy. 

Problem 5.6  ([1], 7.29, with a Single Answer; Modified) 

Certain commodities are graded by weight and normally distributed; 20% are 
called standard, 50% large, 20% super, and 10% colossal. If the mean is  0.92  
ounce with a standard deviation of  0.08  ounce, what are the limits of the weights 
of the all classes? 
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Solution 
 
With the help offered by similar problems which we have already solved, this 
solution is given in Fig. 5P.6  together with numerical values for two classes of 
four shown in this figure, class  C  has limits (0.85267, 0.96195), and class   B  has 
limits  (0.96195,  1.02252).  Weinberg defines class  B  as  (0.9616,  1.0224).  The 
Student who wants to consider which boundaries are closer to ideal values 
ensuring the assumed percentage can personally try to find the answer.  

 

Fig. 5P.6  Weight distribution with complete partition 

 
It should be understood that the accuracy in showing the limiting values for the 

particular classes given here is redundant for practical purposes. We may add that 
the MathCad package used to derive them, first served to determine the 
appropriate z-scored values:  0.841622,  0.524401, 1.281552 – they ensure the 
appropriate probabilities up to 6 decimal places. In the end we can add that  1 oz  
is equivalent approximately to  28.3 g. 

Problem 5.7  (Following Problem 4.5) 

An unfair coin   p = 0.4  has been tossed   n =11  times. Investigate the case by 
drawing the diagram of both binomial and approximate normal distribution. Also 
provide numerical values for both these distributions. 
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Solution 
 
This time we start with the numerical values given in  Table  5P.1 

Table 5P.1  Binomial distribution and normal approximation,  n = 11,  p = 0.4 

Normal distribution Binomial distr. Normal distribution     Binomial distr. 

f1(0) = 0.0062761744 f2(0) = 0.0036279706 f1(1) = 0.0274958023 f2(1) = 0.0266051174 

f1(2) = 0.0824768952 f2(2) = 0.0886837248 f1(3) = 0.1693919340 f2(3) = 0.1773674496 

f1(4) = 0.2382032395 f2(4) = 0.2364899328 f1(5) = 0.2293491395 f2(5) = 0.2207239373 

f1(6) = 0.1511962712 f2(6) = 0.1471492915 f1(7) =  0.06824637075 f2(7) = 0 .0700710912 

f1(8) = 0.02109174713 f2(8) = 0.0233570304 f1(9) = 0.0044631354 f2(9) = 0.0051904512 

f1(10) = 0.0006466393 f2(10) =0.0006920602 f1(11) = 00006414734 f2(11) =  0.000041943 

 
To see how close binomial values and their normal approximation are we 

suggest using  Fig.5P.7. 
 

 

Fig. 5P.7  Goodness of approximation of the binomial and normal distributions 

      The Student  is recommended to go back  to  Fig. 4P.4  and compare it with  
Fig. 5P.7.  We  suggest  considering   (i)  to what extent normal approximation 
(Fig. 5P.7) is better than Poisson approximation (Fig. 4P.4)   (ii)  Fig. 5P.7 shows a 
certain insufficiency of MathCad  drawing functions – they allow either to display 
diagrams for discrete or for continuous argument but not to combine the two. 
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Therefore, only the drawing of the binomial distribution can be accepted without 
reservations, whereas the drawing of the normal distribution is artificially distorted. 

Problem 5.8  (Following Problem 4.7) 

From Problem 4.7  we borrow the notation of the binomial distribution as  n  = 12,  
and   p  = 0.8  - we will also make use of Table 4P.7, however, its values must be 
complemented by the normal distribution approximation which follows given 
binomial terms.  
 
Solution 
 

Following the above stated we provide  Table 5P.2  with numerical values of the 
binomial and normal distributions for the same rational arguments  starting from  
4, 5, up to 12  (skipping the less interesting lowest values) 

Table 5P.2  Binomial distribution and normal approximation, n =12, p = 0.8 

  Normal distribution     Binomial distr.   Normal distribution   Binomial distr. 

f1(4)  = 0.0000817563  f2(4)  = 0.00051904512 f1(5)  = 0.0011644367 f2(5)  = 0.003321888768  

f1(6)  = 0.0098517997 f2(6)  = 0.015502147584  f1(7)  =  0.0495131102 f2(7)  = 0.053150220288  

f1(8)  = 0.1478188424 f2(8)  = 0.13287555072  f1(9)  = 0.2621466691 f2(9)  = 0.23622320128  

f1(10) = 0.276161955 f2(10) =  0.283467841536 f1(11) = 0.1728177353 f2(11) = 0.206158430208 

f1(12) = 0.0642418041 f2(12) =  0.068719476736  

Problem 5.9  (Following Problem 4.8) 

Using the data from Problem 4.8,  i.e.   n = 100  and  p = 0.0162  which determine 
the binomial distribution, derive the appropriate values of the normal 
approximation to this binomial distribution assuming arguments  0, 1, …, 5  

Solution 

Table 5P.3  Binomial and normal distributions, n = 100,  p = 0.0162 

Normal distribution      Binomial distr.   Normal distribution     Binomial distr. 

f1(0) = 0.1387164500 f2(0) = 0.195290817 f1(1) = 0.2801077566 f2(1) = 0.32158073     

f1(2) = 0.3020124399   f2(2) = 0.26212196     f1(3) = 0.1738709616 f2(3) = 0.140999129    

f1(4) = 0.0563448043   f2(4) = 0.056303627   f1(5) = 0.0087728173    f2(5) = 0.017801057    

 
Comparing the similarity of the Poisson approximation and the binomial (see  

Table 4P.10) with the above given values approximating the same binomial by the 
normal distribution it is seen that the Poisson approximation fits the binomial very 
well, while the normal approximation does it much worse. 
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Problem 5.10  (Following  Problem 4.10) 

Solve  Problem 4.10  to derive the probability of events concerning   90  Bernoulli  
trials, with p = 0.65 filling the range  (66, 90)  by applying the normal 
approximation.  
 
Solution 1 
 
This  solution  is  based  on  the  Tables  of   the  normal  distribution.  We  have  
to determine  the  appropriate   z-scored   range,  assuming  that    m = 58.5,   and  

s  =  20.475 .   Considering  that  the  right  band  lies  well outside  of  the  
three-sigma limits we have to determine only the left band: 

( )1 1(66 0.5) 58.5 / 20.475 1.547z z= − − → ≈   with upper 

rounding we get  the following answer:  50 - 0.439429 = 0.060571,  i.e. the result  
given by Weinberg [1] as 0.0606.  
 
Solution 2 
 
With the help of  MathCad  we have already derived the exact result obtained on 
the base of the binomial. For convenience we repeat it here as  0.05871866696. 
But now we want to obtain the result based upon the normal distribution for the 
limits  (65.5, 90), which also using MathCad  is  0.0609334390.  It suggests that 
the distribution of errors in the approximations examined in this book and in this 
Unit is not so easy to follow: the above result may cause disappointment as there 
seems to be  much ado about nothing. In fact both results differ only by 3.7%. 
Uncertainty of Statistical data usually exceeds 5%. 
 

*** 
Further  problems from this place onwards will be related mainly to the second 

De Moivre-Laplace theorem  as it is for  Problem 5.10, while the previous ones 
mainly illustrated the first De Moivre-Laplace theorem. We commence with an 
example using the idea given by Spiegel [5]. The subsequent problems were taken 
from  Weinberg  [1]  generally with suitable modifications to fit the subject of 
Unit 5. Nevertheless all the solutions are the Author’s own and were first 
presented in [9], although the versions cited here were duly revised, frequently 
modified and expanded.  

Problem 5.11  (see [5], Problem 7.25) 

A fair coin is tossed  n = 500  times. Find the probability that the number of heads 
will not differ from  250  by more than  10  (options:  more than  30).  
The  answer  derived in  [5] for the range from   239.5   to  260.5  shows 
probability of  0.6528. 
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Solution 
 

Here as  n = 500  MathCad cannot be used to determine the binomial distribution , 
therefore we can derive the exact solution only by calculating the necessary 11  
probabilities with the Word 7 calculator. They are given in Table 5P.4. Then in the 
second approach we use  MathCad  to determine the normal distribution resorting 
to the second theorem of de Moivre-Laplace and apply the normal approximation. 
The third attempt uses Tables of the normal distribution (the answer given by 
Spiegel [5] was also obtained in this way). 
 

Table 5P.4  Binomial results and normal approximations,  n = 500,   p = 0.5 
 

       k  Normal approx.                  Binomial distribution 
240  or  260  0.0239186832  0.023923296060921815475216087849104 
241   or  259  0.025807364  0.025809365044977892213926069878701 
242   or  258  0.0276233071  0.02762241961425319869176385164704 
243   or  257  0.029331437  0.029327507244762655401131990637598 
244   or  256  0.0308970243  0.030890038368459026385618531122388 
245   or  255  0.0322868452  0.032276938050308207162115689662577 

246   or  254  0.0334703468  0.033457801637514604985119922211208 
247   or  253  0.0344207602  0.034405998445055504721540324864967 
248   or  252  0.0351161057  0.035099667768544526994152024963051 

249   or  251  0.0355400375  0.035522555332020967078418916830075  
250   or  250  0.0356824823  0.035664645553349050946732592497396 

 
Total normal for the range  (239.5 – 260.5):   0.65234551987  - MathCad 
Total binomial: 0.651490045560032968996205628089 – Word 7 calculator 

The binomial result is exact. In comparison with the estimate obtained by Spiegel 
who used Tables without interpolation, the difference is small and amounts to the 
marginal 0.2%, however, it saves a lot of effort.  The third attempt commences 
with the  z-scored  limits of  239.5  and  260.5. Our solution uses the general 
formula of z-scored values and leads to the following results: 

 

(239.5 250) / 125 0.9391lz = − ≈ −    (260.5 250) / 125 0.9391rz = − ≈ +  

 
If we round the  z-score  to  0.94, it  will allow us to read the following result from 
the Tables (in this book):  0.326391, if we then multiply this result by the “2”, we 
will get the third answer of 0.652782. To close our considerations we will obtain 
the fourth result improved by linear interpolation.  Reading from the Tables the 
area for  0.93 as 0.323814, and taking  fraction  0.91  from the difference – will 
finally lead to the fourth answer of 0.65231814. This value has the same four 
decimal places as the value obtained with the help of MathCad.  
 

Note:   avoid  the temptation of adding the results of the second column of 
Table 5P.4. However, the numerical methods to evaluate definite integrals apply 
the “trapezoid rule” and so the above mentioned values may be used to solve 
Problem 5.11 yet again. 
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Problem 5.12  (Weinberg [1]  10.5  p. 196) 

The consulting psychologist for a large seaboard city believes that 45% of the 
city’s gang members are White. The city crime commission decided to accept this 
claim if a random sample of 100 records of gang members on file with the Police 
department has from 40 to 50 White individuals (including this endpoints). What 
is probability that such a claim is wrong? Answer given in  [1] :  0.2670 

Solution 

Let us first use MathCad  to obtain the exact solution by resorting to the binomial 
distribution with the parameters  n = 100,  p = 0.45. They justify the mean  m = 

45 and the standard deviation  24.75s =  .  Therefore, looking for an event 

corresponding to the appearance of the range of successes  (40, 50)  we will find 
that its probability expressed by the sum 

  ( ) ( )
!

; ,
! !

k n kn
b k n p p q

k n k
−=

−
 ;          ( )

50

40

R b k=  

R = 0.731169745575726  was determined using MathCad. The answer to the 
question stated in the Problem indicates complement event probability  ( 1 – R )   
whose numerical value  can be rounded to   0.268830 . This result deserves to be 
called the exact answer as obtained by using the binomial distribution. The 
solution is supported by  Fig. 5P.8 . It is seen that the distribution is almost 
symmetrical. 

 

Fig. 5P.8  Central part of the binomial distribution  n = 100,  p = 0.45 

It is also possible to derive a similar result by using a calculator available on the 
market, but in order to do it, it is necessary to calculate 11 probabilities and then 
summarize them. We advise such a solution to the Student as good exercise in 
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using calculators. Continuing the examination of the problem we will use the 
normal approximation again by resorting to MathCad . The numerical results 
obtained in this way were paired with the appropriate result following the 
binomial distribution in order to see how close these values are. The Student’s 
attention is drawn to the method of pairing seen in  Table 5P.5. 

Table 5P.5  Binomial distribution and normal approximation,  n =100,  p = 0.45 

Normal approximation    Binomial distribution   Normal approximation  Binomial distribution 

---------------- f2(45) = 0.07998750025 f1(45) =0.0801904156 ----------------- 

f1(44) = 0.0785866613 f2(44) = 0.078559152034 f1(46) = 0.0785866613 f2(46) = 0.0782486415 

f1(43) = 0.073965289 f2(43) = 0.074118186325 f1(47) =  0.073965289 f2(47) = 0.073556750086 

f1(42) = 0.066858993 f2(42) = 0.0671607321  f1(48) = 0.066858993 f2(48) = 0.066451836725 

f1(41) = 0.0580422781 f2(41) = 0.0584336313 f1(49) = 0.0580422781 f2(49) = 0.057698440793 

f1(40) = 0.0483299187 f2(40) = 0.04880290316 f1(50) = 0.0483929187 f2(50) =  0.04815197150 

 
Returning now to answer the considered Problem, the MathCad  result obtained 

for the range  (39.5 – 50.5)  indicates probability of 0.7310750194883805; the 
exact result obtained above gave  0.731169745575726. 
Probabilities of the complementary events (under consideration) show that the 
exact result of 0.268830  and gives  0.268925 for the normal approximation. To 
finish our considerations, we have to resort to the Table data looking for the 
solution which is the easiest to get for the considered problem. Keeping in mind 
the symmetry of the limiting values with respect to the mean (value), it is enough 
to calculate a single  z-scored  limit: 

              (50.5 45) / 5.5 / 24.75 1.10554 1.11z σ= − = ≅ ≅  

The area read from Tables for this ordinate is  0.366500  -  multiplying this value 
by two and resorting to the complementary event we finally get 0.2670, i.e.  
exactly the same result as given by Weinberg. However, it is possible to obtain in 
this way a significantly better result by resorting to the linear approximation. To 
do that, we have to read the area corresponding to  z-scored  value of 1.10 , in our 
Table we will see  0.364334, then the difference of  0.002166 should be multiplied  
by the value   0.554  - getting a finer approximation of the area as  0.365534. 
Complementary event gives the result of (1-2*0.365534) = 0.268932 - which is 
very close to the  MathCad  solution obtained for normal approximation – i.e.  
0.268925. Comments are left for the Student. 

Problem 5.13 (Weinberg  [1], 10.7, p.196) 

An advertising agency promises that 65% of the market can be captured if a 
certain campaign is adopted. After six months 900 people are asked if they use the 
product. The decision rule is to accept the claim if the outcome is within 20 units 
of the mean (inclusive). Suppose, in fact, the campaign is adopted, but only 60% 
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of the marked is captured. Find the probability of accepting the claim of the 
advertising company.    Answers:  0.0475,  0.9525 given in [1] determine 
probability of a type-two-error, and the power of the test – i.e. the concepts lying 
outside of the scope discussed in this book. 
 
Solution 
 
Coming to this Problem we will first have to acknowledge that the binomial solution 
with  n = 900  lies outside MathCad  potential. Then let us note that the problem 
defines the binomial determined by   n = 900,   p = 0.6. Thus, the Student has to notice 
that the conditions which lead to accepting the claim of the advertising company refer 
to the 65% condition, which gives the value  of  900*0.65 = 585 – basic to determine 
the so called   critical range   denoting   successes  of  the advertising campaign as 
(565, 605). To clarify: we are asked for the probability of the appearance of  the above 
given critical range but by applying the binomial distribution  n = 900,  p = 0.6. Now 
let us turn our attention to mathematical tools. In fact, the  Word 7 calculator allows to 
determine the values of the probabilities under consideration – but it has to be done 40 
times. Difficult, though achievable. To document our suggestion we provide a single 
value   obtained  in  this  way,    showing  the  maximum  value  of  this  binomial  as  
b ( k = 540 ) = 0.027136626103199219293429397576225  and for the sake of instant 
comparison we provide here its normal approximation obtained by  MathCad  which 
equals  0.02714458399460666. As we see only the first three decimal places are 
identical and the next two are not so different (37 and 45). Although we consider the 
normal approximation as the only solution to the Problem with no further justification 
it should be obvious for the Student that the Poisson approximation cannot be expected 
to apply. It is enough to see that the mean  540, and the variance of about 216 are so 
different that they exclude such a possibility. Returning to the main subject, we have to 
determine the value of the following integral 

 ( ) ( )( )2 21
exp 2

2
u u

u

g u u μ σ
σ π

= − −      ( ) ( ),
r

l

F l r g u du=   

Limiting values of the above given integral are as follows   l = 564.5,   r = 605.5   
while the mean and the variance  2540, 216u uμ σ= =  - then the answer obtained 

in  this way gives   F ( 564.5, 605.5)  =  0.04775166384427319 . 
The above result has to be checked again using the Table data. It means that we 

have to determine the appropriate  z-scored  limiting values, due to the distant 
upper limit (outside 4 sigma) we consider only the lower one: 

                  
1 (564.5 540) / 1.66701 1.67z σ= − ≅ ≅  

After rounding the ordinate to  1.67  the area read from the Tables shows  
0.452540), therefore the answer is (0.5 – 0.452540) = 0.04746. Linear 
approximation can improve it giving 0.0477594. The last result coincides with the 
result of 0.0477517obtained using  MathCad. To complement the solution we 



Problem 5.14  (Weinberg [1], 10.9, s.196) 291
 

provide also Fig. 5P.9. In the end it will be noted that the first answer 0.0475 
given by Weinberg (see above) is almost the same as our result. This result 
ensures that in testing hypothesis procedure under consideration, type one error 
expressing the probability of the critical range was correctly determined.  

 

Fig. 5P.9  Normal distribution to approximate binomial  n = 900,  p = 0.6 

Problem 5.14  (Weinberg [1], 10.9, s.196) 

The developers of an achievement test for children between the ages of 9 and 11 
believe they have advised a new test whose scores will be distributed with a mean 
of 65 and a standard deviation of 15. If the test results of 150 students selected at 
random have a mean that deviates less than 1.5 standard deviation from its mean, 
the hypothesis will be accepted and published in promotional literature. What 
interval of outcomes (critical region) would allow for acceptance of the 
hypothesis? Find the probability of rejecting true hypothesis.  
Answers: (a)  (63.16 ÷ 66.83) ;  (b)  0.1336. 
 
Solution 
 
If Problem is to be unique and less ambiguous, it has to be complemented by the 
following assumptions. Firstly, the mother distribution described in the problem is 
normal with the mean 65 and standard deviation 15. Secondly, the sample of 150 
students is drawn from the mother distribution. With these additional assumptions 
the solution is presented below.  

Let us consider what interval of outcomes (critical region) is determined in the 
Problem. We know that it is symmetrically distributed with respect to the mean  
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65 and the range of the interval is 50% greater than the span of a single standard 
deviation of the sample. The standard deviation of the sample follows from the 
theorem known from Chapter 5. The sample volume is  N = 150, so, we recall 
Theorem 5.4 (from Chapter 5) which states: 

X Nσ σ=  

In this formula  Xσ   denotes the sample standard deviation and   σ   the standard 

deviation of the paternal population. Therefore the value of the standard deviation 

of the mean results from  15  / 150 . It allows to determine both limiting values, 

lower  l =  65 - 15  / 150 , and upper  r = 65 + 15  / 150 . 
Suitable numerical values rounded to three decimal places are   l = 63.163 and 

r = 66.837. With these limits we can move on to the normal distribution and 
calculate the following integral by using MathCad : 

( ) ( ),
r

l

F l r g u du=  . 

It will lead to the numerical value 0.8663855974622837. Therefore, it gives the final 
numerical result as (1 – 0.8663855974622837) =  0.1336144025377163.  Fig. 5P.10 
explains this procedure in a visual manner. 

 

 

Fig. 5P.10  Normal distribution,  m = 65,  s ≈ 1.2247, acceptance/rejection regions 



Problem 5.15 (Weinberg [1], 10.13, p.197) 293
 

In the last step of the proposed procedure we present the solution based on the 
Table data. From the point of view of the final goal we may use as a reference  
Fig. 5P.10  and determine a single  z-scored  value of the ordinate: 

1

(65 1.5 15 / 150) 65
1.5

15 / 150
z

+ ⋅ −= =  

Note: this is the exact value! For this ordinate the appropriate area found from the 
Tables will be  0.433193 , it means that the left tail of the distribution contains  
(0.5 - 0.433193) = 0.066807. Multiplying this fraction by two the final result  of 
0.133614 will be obtained.  It is interesting to note that with respect to the result 
obtained from  MathCad – all six decimal places are the same. This successive 
example shows growing confidence in the method based on the Table data. 

Problem 5.15 (Weinberg [1], 10.13, p.197) 

The placement office of Hallowed Hall College contends that each year it places a 
mean of 175 graduating seniors in social work positions (σ = 30). The sophomore 
statistics class has been assigned to test this contention by contacting all social 
work graduates for the past five years. The decision rule to be used is as follows: 
Accept the hypothesis if the sample mean deviates less than 20 units from the 
mean. 
 
a. What assumption(s) must the students make? 
b. What is the probability of rejecting the contend if the hypothesis is true? What 

risk is involved? 
c. If the true mean and standard deviation are 150 and 35 respectively, what is 

the probability that has been accepted the wrong hypothesis?   
  Answers: (b)  0.1362,  (c)  0.3724. 

 
Solution(s) 
 
In fact this problem can be considered similar to the previous one. Therefore, our 
Student is advised to try solving it by him/herself and only then to compare his/her 
own results with the results presented below. 

Let us begin by listing the assumptions requested in on (a). Firstly, it is 
implicitly assumed that the parent population describing one year distribution of 
the employed is normal  ( 175,  30 ). Secondly, the sample of  N = 5 (years) is 
entirely drawn from this parent population. Therefore, the sample mean 
distribution is normal  ( 175,  30 / 5  ) .  With these in mind we may go further. 

Assuming that the contend is right, the critical region  is given as  (155, 195)  - 
and with respect to question (b) about the probability of rejecting the true 
hypothesis – it is the probability of the tails of the normal distribution determined 
by  ( 175,  30 / 5  ) limited by the values 155 (the left tail) and 195 (the right 
tail). In this respect Fig. 5P.11  will be helpful. 
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Fig. 5P.11  Normal distribution,  m = 175,  s ≈ 13.4164, critical region α  

Skipping the same details as in  Problem 5.14  we provide the final answer 
obtained using MathCad   as   0.13603712811414348  . Then in a subsequent step 
we also derive a solution using the Table data.  So, we commence from 
determining the right limit  z-scored  value: 

2 2

195 175
1.4907 1.49

30 / 5
z z

−= ≈ → ≈  

The suitable area read from our tables of the normal distribution is   0.431888   

(the area from  1 0z =  to  2 1.49z ≈ ), therefore the probability of the right tail 

is  equal to ( 0.5  -  0.431888 )  =  0.068112.  This value has to be multiplied by 
two to get the answer, i.e.  0.136224. Note, that the refining  procedure in this case 
can be ignored as redundant.  

To answer (c), we have to examine it in the following procedure. Assuming that 
the contend  is wrong, the critical region will be determined by  (130, 170)  - and 
with respect to the value of the probability of accepting the false hypothesis – it is 
the probability of the occurrence of  events from the complement set to the critical 
region  (130, 170), still based on the normal distribution but now determined by 
the mean  175  and the standard deviation given by  35 / 5  (following a 
suggestion in sub point c).  

In  solving  this  part  of   Problem 5.15,  we  have to consult Fig. 5P.12 and 
Fig. 5P.11. Probability of the critical region  (130, 170)  derived by MathCad  is 
0.37267660013929 . This probability determines the situation of accepting the 
wrong contend. Following the terminology used in the theory of testing statistical 
hypothesis (which is here used implicitly) such a situations corresponds to so 
called  type-two-error , sometimes also called errorβ − , whereas the first 

problem examined above is called  type-one-error – and corresponds to the 
rejection of the true hypothesis – also called  errorα − . 
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Fig. 5P.12  Normal distribution,  m = 175,  s ≈ 15.6525, critical region β  

As always, the last step requires resorting to the Table data. This time we have 
to deal with two  z-scored  values of two necessary ordinates, as is clearly 
suggested by the provided Fig. 5P.12, i.e. 130, and  170: 

2 2

130 175
2.874944543 2.87

35 / 5
z z

−= ≈ − → ≈ − the area is  0.497948 

1 2

170 175
0.319438282 0.32

35 / 5
z z

−= ≈ − → ≈ −  the area is  0.125516 

The critical region area covers   ( 0.497948 - 0.125516 )  =  0.372432 . 
Moreover this time the result can be refined by using the linear interpolation.  

For the first result it will give us  0.4979796, and for the second result we will get  
0.1253028   -  all in all, we will get the result  0.37267687. And this refinement is 
significant: the first six decimal places coincides with the solution obtained using  
MathCad.  

Problem 5.16  (Weinberg [1], 10.15, p.197) 

The manager of the produce department of a large supermarket suspects that the 
mean diameter of the “2-inch apples” is really 1 ¾ inches with a standard 
deviation of a half inch. Into what interval would the mean of 49 randomly 
selected apples have to fall to support the manager’s belief, if the probability of a 
type-one-error is  0.05  and the acceptance interval is centered at the mean?  
Answer:  (1.61 – 1.89) in.  
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Solution(s) 
 
The main body of the solution can be outlined easily. Firstly, we must determine 
the probability distribution under the consideration. We have to determine a 
suspicious parent normal distribution suggested by the manager with the mean of 
1.75 inches, and standard deviation of 0.5 inch. But in the testing procedure we 
will deal with the sample mean distribution which inherits from the parent 
population the mean of  1.75  inches and whose standard deviation will reflect the 
sample volume  N = 49,  that is will be 0.5 / 7.   

To move further, the helpful numerical details are to be found in Fig. 5P.13. 
 

 

Fig. 5P.13  Normal distribution,  m = 1.75,  s ≈ 0.071, critical region β  

Problem 5.16  asks for the position of the symmetrical markers for the critical 
region β ,  in  other  words  we have to resort  to  Table  data  but  look  for  such 

ordinate   which   corresponds   to   the  area    given   by   the   following    result: 
( 0.5 -  0.025 ),  i.e.  for  0.475. In a lucky case the area   0.475002  is determined 
for the ordinate  + 1.96. This  z-scored  ordinate has to be transformed into the 
value in inches: 

 ( )2 1.75 1.96 0.5 / 7 1.89x = + ⋅ =    ( )1 1.75 1.96 0.5 / 7 1.61x = − ⋅ =  

It is, therefore seen that the above determined values exactly follow the answer 
given by Weinberg. In reverse succession we may now  recall a more accurate 
solution obtained using  MathCad . In the beginning it is reasonable to answer the 
following question of where we expect an improvement on the obtained solution. 
It is obvious that this improvement may regard a more accurate value of the 
ordinate which corresponds to the area of  0.475  with higher precision than the 
above obtained value of  1.96. But it can also be predicted in the beginning that 
such a search will apply a method called “trials and errors”  and from the 
practical point of view it may be described as an overestimation  if not an abuse  
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of the statistical tools. Therefore, we may leave it for the inquiring Student 
entirely as a sophisticated exercise.  

Problem 5.17  (Weinberg [1] 10.23, p.198) 

The president of Grey Goose Airlines maintains that, because of delays on the 
ground, the mean time that must be made up in the air is 12.5 minutes,  (with  
standard deviation  s = 3 minutes). A regulatory agency is willing to accept this 
contention if the mean of the times made up in the air of 64 randomly selected 
flights is between 12 and 13 minutes. What are the chances of a type-one-error 
being made?    
Answer [1]:  0.1868 

 
Solution 
 
Let us first define the paternal population as the normal with the mean 12.5 
minutes and standard deviation 3 minutes. In the second step let us define the 
sample mean distribution for the sample volume  N = 64, with the same mean and 
standard deviation equal to  3 / 8 minutes. This distribution obtained using 
MathCad is  shown in  Fig. 5P. 14. 
 

 

Fig. 5P.14  Normal distribution,  m = 12.5,  s ≈  0.375, critical regions α  

The probability of rejecting the contention of the president of Grey Goose Airlines 
corresponds to the probability of the shadowed region in  Fig. 5P.14. An 
apparently very accurate procedure to determine this probability is as follows: 
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   ( )
13.0

2

12.5

2 0.5 exp / 2 / 2 0.18242243945173564x dx π
 

⋅ − − → 
 

  

It is always justified to determine this answer using the Table data. In order to do 
that we have to resort to  z-scored  values of both limits. The left limit corresponds  

to  1 0z = , the right limit has to be calculated as: 

2 28 (13 12.5) / 3 1.3(3) 1.33z z= ⋅ − = → ≈  

The area corresponding to this ordinate is  0.408241 (and for the ordinate  1.34  
the area is 0.409877), therefore this first approach gives us  0.183518. Let us see 
now which value gives a refinement.  

It is easy to check that the linear interpolation leads to the area of 0.4087863(3), 
which finally gives the probability of 0.1824273(3), a result identical with the 
accurate result with respect to the first five decimal places. And also it is seen that 
this time Weinberg offers a less accurate answer. 

 

*** 
Problems which were presented here starting from  Problem 5.14 examine the 

normal sample means distribution. It is well known from teaching practice, that 
this distribution is frequently confused with the paternal population of normal or 
unknown distribution. Therefore, we decided to provide at the end of this Unit two 
more problems giving the Student a chance to practice this point. This passage 
will also be complemented by illustrative problems proposed by Weinberg but this 
time without answers.  

Problem 5.18 (Weinberg [1], 8.8, p.157, No Answers) 

The bus trip from Bathville to John City takes a mean of 85 minutes with a 
standard deviation of 15 minutes and is normally distributed. Bunny Hop Transit 
schedules eight buses daily between the two points. (i) what percent of the daily 
mean times should exceed an hour and half? (ii) one-fourth of the daily means are 
less than what time? 
 
Solution 
 
Paternal normal distribution is defined by averages  ( 85,  15 ), while the sample 
means normal distribution drawn from this paternal distribution is determined by 
the averages  ( 85, 15 / 8 ). This distribution is examined further in order to find 
the answers to two questions stated in the Problem. To help answering them we 
provide  Fig. 5P.15  which shows the sample means distribution under 
consideration. 
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Fig. 5P.15  Sample means distribution,  m = 85,  s ≈  5.3 

The first question is about the probability of the shadowed region in  Fig.5P.15. 
To derive a numerical answer we first use MathCad  getting 

 

             ( )
90

2

85

0.5 exp / 2 / 2 0.172889293075801x dx π
 

− − → 
 

  

Then we need to justify this answer by using the Table data. In order to do that, 
we have to resort to  z-scored  values of both limits. The left limit is simply  

1 0z = , the right limit has to be determined 

2 28 (90 85) /15 0.942809041 0.94z z= ⋅ − ≈ → ≈  

The area corresponding to this ordinate is  0.326391 (and for the ordinate  0.95  
the area is 0.328944), therefore this first approach gives us  0.173609. Let us see 
now which value gives a refinement. It is easy to check that the linear 
interpolation leads to the shadowed area of  0.172891851. A result almost 
identical with the accurate result with respect to the first five decimal places. 

Now let us have a look at the second question. Imagine that the shadowed area 
is exactly  0.25, and the question is which marker assesses this value. From the 
first answer it is clear that we are asked for a delay shorter than 5 minutes, but 
which exactly? We have again, two approaches: using  MathCad, and using the 
Table data. Let us begin this time from the solution based upon the Table data.  
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There are usually two ordinates which give the area corresponding roughly to 
the desired one. Ordinate   0.67  gives an area of  0.248571, while the ordinate  
0.68, an area of 0.251748. And now we have to derive the corresponding number 
of minutes to these two  z-scored  ordinates.  

( )85 0.67 15 / 8 88.5532116lx = + ⋅ =  ( )85 0.68 15 / 8 88.6062446hx = + ⋅ =  

These two answers show the upper and the lower time limits. But using the linear 
interpolation we can derive the  z-scored  value quite closely related to the area  
0.25  - the Student may check that it will be 0.67449795  which  corresponds to   

( )85 0.67449795 15 / 8 88.5770656x = + ⋅ = . 

Now let us resort to MathCad having in mind that the above approximation will 
be useful in determining the  MathCad  approximation by the method of trials and 
errors. Below we provide two of our results obtained in this way 

88.57702 0.250000124→            88.577021 0.250000064207→  

It is obvious that our efforts in looking for the results which from purely mathematical 
point of view are nearer of an ideal answer satisfy only purely theoretical discoveries. 
The next problem is somewhat similar and somewhat different. 

Problem 5.19  (Weinberg [1], 8.10, p.157 – No Answers) 

Ruth’s Poodle Palace schedules eight poodles for grooming each day. The times 
required to groom the dogs are normally distributed with a mean of 55 minutes 
and a standard deviation of 10 minutes. What percent of the time does Ruth work 
more than a 7-hour day (420 minutes) ? [Hint: this means the average μ  per dog 

must be more than 420/8 minutes]. 
 
Solution 
 
The paternal normal distribution has parameters  (55, 10), therefore with the 
sample volume of 8, the sample means normal distribution will be determined by 
(55, 10 / 8 ). To give the answer to the last question stated, it must be given an 
exact quantitative character. Guessing the intentionality (suggested by the hint) we 
should look for such a marker drawn in the sample means distribution which 
corresponds to 60 minutes. In conclusion: if there are seven such cases where each 
requires 60 minutes – it will fill a seven-hour working day. But according to the 
problem, there may be still be an eight dog waiting to be groomed. After solving 
this crucial point, the rest is rather trivial and evident from  Fig. 5P.16. The 
Student may check the numerical result resorting to the Table data. With the 
refinement we got  0.078663 which is very close to the MathCad solution. 
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Fig. 5P.16  Sample means distribution,  m = 55,  s ≈  3.54 

Problem 5.20 

Assuming that the normal distribution is determined by its mean  m  and the 
standard deviation  s,  determine parameters of the sister binomial distribution 
(with the same mean and the same variance). 
 
Solution 
 
 Following the symbols most often used in this Unit the two equations below state 
the problem: 
 

m n p= ⋅  

( )2 1s n p p= ⋅ ⋅ −  
 

It means that we have to determine two unknown parameters of the binomial 
distribution i.e.   n   and   p . In order to do that, we substitute   n = m/p   in the 
second equation and obtain: 

( )2 1
m

s p p
p

= ⋅ ⋅ −  by ordering this result we shall arrive at the formula  

2m p m s⋅ = −  

which indicates that the solution of the problem will correspond only to the case  
when  2m s>  and then – the final solution is given by what follows: 

2m s
p

m

−=         
2

2

m
n

m s
=

−
  . 
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Note: crucial condition  2m s>  selects such normal distributions which possess a 

property essential for the binomial distributions: their variance is always smaller 
than their mean. 
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Error Function 

 
     t         0.00          0.01           0.02         0.03          0.04          0.05           0.06          0.07         0.08           0.09 

0.0      0.0000      0.3989      0.7978      1.1966      1.5953      1.9939      2.3922      2.7903      3.1881      3.5856 
0.1      3.9828      4.3795      4.7758      5.1717      5.5670      5.9618      6.3559      6.7495      7.1424      7.5345 
0.2      7.9260      8.3166      8.7064      9.0954      9.4835      9.8706    10.2568    10.6420    11.0261    11.4092 
0.3    11.7911    12.1720    12.5516    12.9300    13.3072    13.6831    14.0576    14.4309    14.8027    15.1732 
0.4    15.5422    15.9097    16.2757    16.6402    17.0031    17.3645    17.7242    18.0822    18.4386    18.7933 

0.5    19.1462    19.4974    19.8468    20.1944    20.5401    20.8840    21.2260    21.5661    21.9043    22.2405 
0.6    22.5747    22.9069    23.2371    23.5653    23.8914    24.2154    24.5373    24.8571    25.1748    25.4903 
0.7    25.8036    26.1148    26.4238    26.7305    27.0350    27.3373    27.6373    27.9350    28.2305    28.5236 
0.8    28.8145    29.1030    29.3892    29.6731    29.9546    30.2337    30.5105    30.7850    31.0570    31.3267 
0.9    31.5940    31.8589    32.1214    32.3814    32.6391    32.8944    33.1472    33.3977    33.6457    33.8913 

1.0    34.1345    34.3752    34.6136    34.8495    35.0830    35.3141    35.5428    35.7690    35.9929    36.2143 
1.1    36.4334    36.6500    36.8643    37.0762    37.2857    37.4928    37.6976    37.9000    38.1000    38.2977 
1.2    38.4930    38.6861    38.8768    39.0651    39.2512    39.4350    39.6165    39.7958    39.9727    40.1475 
1.3    40.3200    40.4902    40.6682    40.8241    40.9877    41.1492    41.3085    41.4657    41.6207    41.7736 
1.4    41.9243    42.0730    42.2196    42.3641    42.5066    42.6471    42.7855    42.9219    43.0563    43.1888 

1.5    43.3193    43.4478    43.5745    43.6992    43.8220    43.9429    44.0620    44.1792    44.2947    44.4083 
1.6    44.5201    44.6301    44.7384    44.8449    44.9497    45.0529    45.1543    45.2540    45.3521    45.4486 
1.7    45.5435    45.6367    45.7284    45.8185    45.9070    45.9941    46.0796    46.1636    46.2462    46.3273 
1.8    46.4070    46.4852    46.5621    46.6375    46.7116    46.7843    46.8557    46.9258    46.9946    47.0621 
1.9    47.1283    47.1933    47.2571    47.3197    47.3810    47.4412    47.5002    47.5581    47.6148    47.6705 

2.0    47.7250    47.7784    47.8308    47.8822    47.9325    47.9818    48.0301    48.0774    48.1237    48.1691 
2.1    48.2136    48.2571    48.2997    48.3414    48.3823    48.4222    48.4614    48.4997    48.5371    48.5738 
2.2    48.6097    48.6447    48.6791    48.7126    48.7455    48.7776    48.8089    48.8396    48.8696    48.8989 
2.3    48.9276    48.9556    48.9830    49.0097    49.0358    49.0613    49.0863    49.1106    49.1344    49.1576 
2.4    49.1802    49.2024    49.2240    49.2451    49.2656    49.2857    49.3053    49.3244    49.3431    49.3613 

2.5    49.3790    49.3963    49.4132    49.4297    49.4457    49.4614    49.4766    49.4915    49.5060    49.5201 
2.6    49.5339    49.5473    49.5604    49.5731    49.5855    49.5975    49.6093    49.6207    49.6319    49.6427 
2.7    49.6533    49.6636    49.6736    49.6833    49.6928    49.7020    49.7110    49.7197    49.7282    49.7365 
2.8    49.7445    49.7523    49.7599    49.7673    49.7744    49.7814    49.7882    49.7948    49.8012    49.8074 
2.9    49.8134    49.8193    49.8250    49.8305    49.8359    49.8411    49.8462    49.8511    49.8559    49.8605 

3.0    49.8650    49.8694    49.8736    49.8777    49.8817    49.8856    49.8893    49.8930    49.8965    49.8999 
3.1    49.9032    49.9065    49.9096    49.9126    49.9155    49.9184    49.9211    49.9238    49.9264    49.9289 
3.2    49.9313    49.9336    49.9359    49.9381    49.9402    49.9423    49.9443    49.9462    49.9481    49.9499 
3.3    49.9517    49.9534    49.9550    49.9566    49.9581    49.9596    49.9610    49.9624    49.9638    49.9651 
3.4    49.9663    49.9675    49.9687    49.9698    49.9709    49.9720    49.9730    49.9740    49.9749    49.9758 

3.5    49.976737          4.0      49.996834         4.5      49.999664         5.0      49.999971         5.5      49.999998  
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