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Preface

The final form of this volume differs a lot from our initial project that was born
in 2003. Our collaboration that was initiated about 10 years before was then
at a pace and we formulated the objective of reviving it through a project
that could be conducted over several years (we thought three or four) and
could serve as a motivation for maintaining regular exchanges between us.
Our initial idea was to write a short monograph that would expose the con-
nections between the asymptotic properties of estimators and experimental
design. This corresponds basically to parts which are covered by Chaps. 2–4.
The deviation from this initial project was progressive. First, we realized that
we had more to say about regression models with heteroscedastic errors than
what we expected initially and we found that the investigation of asymptotic
normality in the case of singular designs required a rather fundamental re-
vision (Chap. 3). We then quickly agreed that we could not avoid writing
a chapter on optimality criteria and optimum experimental design based on
asymptotic normality (Chap. 5). Up to that point, the presentation was rather
standard, although we gave more emphasis than usual to some particular as-
pects, like the estimation of a nonlinear function of the model parameters
and models with heteroscedastic errors. The results obtained during our col-
laboration in the 1990s encouraged us to write a chapter on non-asymptotic
design approaches (Chap. 6). The motivation for exposing our views on the
specific difficulties caused by nonlinear models in LS estimation had always
been present in our mind; this project gave us the opportunity to develop and
present some of these ideas (Chap. 7). Since this book focused on nonlinear
models, having a chapter devoted to the problem raised by the dependency
of an optimal experiment on the value of the parameters to be estimated ap-
peared to be essential (Chap. 8). Here some kind of prior for design purposes
is unavoidable, with the property that an incorrect prior causes less damage
when used for design than for estimation. Finally, we hesitated about indi-
cating or not algorithms for the optimization of the different design criteria
that are presented throughout the chapters. This could have led us quite far
from the initial project but at the same time was essential for the practical
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VIII Preface

use of the methods suggested. We reached a compromise solution where all
algorithms are gathered in a specific chapter (Chap. 9), where the principles
are indicated, in connection with more classical optimization methods. The
result is thus much different from what we planned in 2003 and this book
covers the following aspects.

Asymptotic Normality. The first three chapters expose the necessary back-
ground on asymptotic properties of estimators in nonlinear models. The pre-
sentation is mathematically rigorous, with detailed proofs indicated in an
appendix to improve readability. The stress here is on deriving asymptotic
properties of estimators from properties of the experimental design, in par-
ticular the “design measure” which is a basic notion in classical experimental
design since the pioneering work of Jack Kiefer in the early 1960s. For non-
linear models, this is not covered in other books on design and considered
in a few research papers only; in general, the published proofs of asymptotic
properties of estimators require many assumptions of different types, which
are usually rather technical and not directly related to the design. Besides
that, some results in Chap. 3 are new, e.g., on singular designs and on models
with misspecification or with parameterized variance.

Optimality Criteria. The next chapters concern optimum design more di-
rectly. Readers only interested in the application of optimal design method-
ology can possibly start by reading Chap. 5, where the classical theory is
presented together with several new aspects and results. The optimality cri-
teria considered in Chap. 5 are related to the asymptotic behavior of es-
timators. Optimality criteria obtained under non-asymptotic considerations
(small-sample situation) are considered in Chap. 6, while Chap. 7 concerns
the connection between design and identifiability/estimability issues, includ-
ing new extensions of some classical optimality criteria. Nonlinear models have
the particularity that an optimal design depends on the value of the parame-
ters to be estimated; this is considered in detail in Chap. 8. Once an optimality
criterion is chosen, we still need to optimize it; algorithms are presented in
Chap. 9 that cover all situations presented in Chaps. 5–8.

Small-sample Properties. The small-sample differential-geometric approach
to the subject is considered in Chap. 6; it mainly corresponds to results ob-
tained by the second author in a series of research papers. Chapter 7 contains
results on situations when the nonlinearity of the model is such that the es-
timator can be totally erroneous because of too small a sample at hand. This
subject is not much considered in the literature, even in research papers, al-
though it may be of crucial importance in applications.

Several academic friends gave a substantial support through exchanges of
different forms; a special mention goes to Radoslav Harman, Werner Müller,
Éric Thierry, Henry Wynn, and Anatoly Zhigljavsky. We thank Jean-Pierre
Gauchi, Rainer Schwabe, and particularly Henry Wynn, for their help and
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encouragement in reviewing our manuscript. Of course all possible mistakes
remain ours. Our friends and families gave a remarkable level of support. The
first author expresses his deepest thanks to the Bittner clan in St. Peter in
der Au (Austria) whose kind hospitality provided a perfect environment for
precious periods of intensive work during winter and summer holidays. The
second author thanks the I3S Laboratory for the friendly working atmosphere
during his many visits at Sophia Antipolis.

A long-term project like this one necessarily involves supports and grants of
different sources. In particular, the research of Andrej Pázman has been partly
supported by the VEGA grants Nb. 1/3016/06, 1/0077/09, and 2/0038/12.
The work of Luc Pronzato was partially supported by the IST Programme of
the European Community, under the PASCAL Network of Excellence, IST-
2002-506778; he also benefited from invitations by the Isaac Newton Institute
for Mathematical Sciences, Cambridge, UK, in summer 2008 and 2011. Andrej
Pázman benefited from several invitations from the University of Nice Sophia
Antipolis. The institutions of both authors, CNRS for Luc Pronzato and the
Comenius University for Andrej Pázman, are gratefully acknowledged for the
freedom they allowed through the years.
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Introduction

1.1 Experiments and Their Designs

This book is about experiments ; it concerns situations where we have to
organize an experiment in order to gain some information about an object
of interest. Fragments of this information can be obtained by making obser-
vations within some elementary experiments called trials. We shall confound
the action of making an experiment with the variables that characterize this
action and use the term experimental design for both. The set of all trials
which can be incorporated in a prepared experiment will be denoted by X ,
which we shall call the design space. The problem to be solved in experimen-
tal design is how to choose, say N trials xi ∈ X , i = 1, . . . , N , called the
support points of the design, or eventually how to choose the size N of the
design, to gather enough information about the object of interest. Optimum
experimental design corresponds to the maximization, in some sense, of this
information. Throughout this monograph we shall generally assume that all
the trials have to be chosen before the collection of information starts; that is,
the experiment is designed nonsequentially. A brief exposition on sequential
design is given in Sect. 8.5.

There are almost no restrictions on the definition of the set X . For
example, X can be the set of all scientific instruments that could be used
in the experiment and is then a finite set. In general, we can suppose that
in each trial d control variables are chosen that specify the experimental con-
ditions in the trial. Each point x ∈ X , called design point, is then a vector
in a d-dimensional space, with components given by the chosen values of the
controlled variables. If these can be changed continuously, then X can be
considered as a subset of Rd.

By design of (fixed) size N (sometimes called exact design), we understand
the choice of N trials X = (x1, . . . , xN ). Usually, replications (or repetitions)
are permitted; that is, we can have xi = xj for i �= j. We suppose that in
each trial xi we can observe a random variable y(xi). The observation y(xi)
may eventually denote a vector of random variables, or a realization of a
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2 1 Introduction

random process, etc. In the present setup we suppose that observations in
different trials are independent. This is a key assumption. It does hold in most
designed experiments, which justifies that the restriction to this case is rather
standard. Only this case will be considered in this volume.1 Note that it does
not mean that observations inside one trial (in case there are several) must
be independent or uncorrelated; see Sect. 5.6.

When observations are independent, it is convenient to reformulate the
concept of a design. The design X = (x1, . . . , xN ) can be equivalently defined
by its size N and the associated design measure

ξ (x) =
N(x)

N
, x ∈ X ,

which corresponds to the relative frequency of the trial x in the N -tuple
x1, . . . , xN : N(x) denotes the number of replications of the trial x in the
sequence x1, . . . , xN . Alternatively, if the total cost C is fixed instead of the
size N of the design, one may define the design measure as

ξ (x) =
c(x)N(x)

C
, x ∈ X ,

where c(x) denotes the cost of one replication of the trial x. One may go further
and take ξ as any probability measure supported on some finite subset of X ,
or even any probability measure on X , with X a subset of an Euclidian
space. One then speaks of approximate (or continuous) design. For a given
ξ ∈ Ξ, with Ξ the set of design measures on X , and a given size N (or
cost C), implementing the experiment generally requires approximating N(x)
by an integer (hence the name approximate design), which does not cause
difficulties when N is large. This is briefly considered in Sect. 9.2.2

A major consequence of the independence of observations entering into the
experiment is that, in some situations, the information obtained from the ex-
periment is the sum of informations from the individual trials. It depends on
how this information is measured, but the property typically holds when mea-
suring information by the Fisher information matrix: the information matrix

1Situations where the assumption of independence for different trials does not
hold require a special treatment, and the methods to be used differ very much
according to the type of prior knowledge about the dependence structure of the ob-
servations; see, e.g., Fedorov and Hackl (1997, Sect. 5.3), Pázman and Müller (2001,
2010), Müller and Pázman (2003), and Zhu and Zhang (2006). However, replacing
the assumption of independent errors by that of errors forming a martingale dif-
ference sequence does not modify the situation very much for regression models,
in particular in the context of sequential design; see, e.g., Lai and Wei (1982) and
Pronzato (2009a).

2There exist situations, however, where a continuous design can be implemented
without any approximation; this is the case, for example, when designing the exper-
iment corresponds to choosing the power spectral density of the input signal for a
dynamical system; see Goodwin and Payne (1977, Chap. 6), Zarrop (1979), Ljung
(1987, Chap. 14), and Walter and Pronzato (1997, Chap. 6).
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for the whole experiment is the sum of the information matrices for the trials
x1, . . . , xN ; when a design measure ξ is used, it corresponds to the weighted
mean of the matrices for trials at x. This simple structure is extremely useful
in optimum experimental design and makes the concept of design measure ξ
extremely effective. It is central in the developments presented in most mono-
graphs on optimum experimental design; see Fedorov (1972), Silvey (1980),
Pázman (1986), Atkinson and Donev (1992), Pukelsheim (1993), and Fedorov
and Hackl (1997). We shall see, however, that in many circumstances the in-
formation cannot be measured in such a simple form, even asymptotically, so
that the additivity of information for independent trials is lost; see Chaps. 3
and 4 and Sect. 5.5.

1.2 Models

Designing an experiment requires a model. Indeed, since the design is anterior
to observations, it requires the possibility to predict somehow the amount of
useful information that will be obtained from observations in the experiment.
This cannot be done without some model assumptions on the probability dis-
tributions of the observed variables y(x1), . . . , y(xN ). Naturally, the method
to be used to design the experiment, and the design itself, will much depend
on these assumptions.

Unless otherwise stated, the observations y(xi) will be assumed to be
scalar real variables. A very common (although rather strong) assumption
corresponds to regression modeling. In this case, one usually supposes that
all useful information to be obtained from the experiment is contained in the
mean ν(x) = IE[y(x)] of the observed variable. We shall call the function ν(·)
the (mean or expected) response function. We then have

y(xi) = ν(xi) + εi , i = 1, . . . , N , (1.1)

with IE(εi) = 0. In this context, εi = ε(xi) is a nuisance random term, contain-
ing no useful information (excepted for testing the correctness of the model),
and is called the random error. When nothing precise is known about ν(·),
excepted, for instance, some smoothness and regularity properties, one may
use a nonparametric approach; see, e.g., Tsybakov (2004). This is related to
the rather fashionable framework of statistical learning, for which one may
refer, e.g., to the books (Vapnik 1998, 2000; Hastie et al. 2001) and the sur-
veys (Cucker and Smale 2001; Bartlett 2003). Typically, based on so-called
training data {[x1, y(x1)], . . . , [xN , y(xN )]}, the objective is then to predict the
response y(x) at some unsampled site x using Nadaraya–Watson regression
(1964), Radial Basis Functions (RBF), Support Vector Machine (SVM) re-
gression, or kriging (Gaussian process). All these approaches can be casted in
the class of kernel methods; see Vazquez (2005), Vazquez and Walter (2003),
Schaback (2003), Berlinet and Thomas-Agnan (2004) for a detailed exposi-
tion. Due to the lack of precise knowledge on ν(·), the design points xi should
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then be somewhat spread in X and have a space-filling property; see, e.g.,
Morris and Mitchell (1995), Müller (2007), and Pronzato and Müller (2012).
When X is a compact subset of Rd, the optimal design in such a nonpara-
metric setting corresponds to a measure having a density with respect to the
Lebesgue measure (see, for instance, Müller (1984), and Cheng et al. (1998)),
in contrast with the more standard parametric situation where the optimal de-
sign concentrates at a few locations only. The optimal density depends on the
unknown function ν(·), and, when considering minimax-optimality in terms
of integrated mean-squared error over some Sobolev classes of functions, the
uniform distribution may turn out to be optimal; see, e.g., Biedermann and
Dette (2001).

We shall restrict our attention to the parametric situation, with the excep-
tion of Sect. 3.4 where modeling error is considered. In the case of a regression
model, the mean response function is then parameterized as

ν(x) = η(x, θ) ,

where θ is a vector of unknown parameters, a priori restricted to a feasible
parameter space Θ ⊂ R

p. In such models, the information about the response
function η(·, θ), in terms of prediction for instance, is obtained through the
information about the parameters θ. In some cases these parameters may re-
ceive a strong interpretation by themselves (for instance, they may correspond
to some physical quantities of interest) and not only in terms of the response
function. The situation is simple when η(x, θ) is linear in θ, i.e., when

η(x, θ) = f�(x)θ .

The regression is then termed linear . Notice that a linear regression can still
be nonlinear in x, depending on the form of the vector function x ∈ X −→
f(x) ∈ R

p. Design methods for linear regression models with uncorrelated
observations are very well elaborated and are exposed in many textbooks and
papers. Here we shall focus our attention on nonlinear models.

Other types of models, becoming more and more popular, can be consid-
ered as “nearly regression models.” In these models, also the variance of the
observation errors contains some useful information. Usually, this variance is
also parameterized, but these parameters may differ from those appearing in
the response function. Such models are usually termed variance-component
models or mixed regression models since the information about the response,
and the variance components is mixed when the same parameters appear in
the variance and the response function.

Regression modeling is a very powerful tool in statistical analysis since
most often, we have little knowledge about the exact distribution of the ob-
served variables. Some important exceptions exist, however. For example, in
many dichotomic “yes–no” experiments there is a strong evidence that the
underlying distribution is binomial. In some other situations, it may be multi-
nomial, Poisson, etc. All these distributions belong to the exponential family,
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and, when the so-called canonical variable is linearly parameterized, they are
known as generalized linear model . In these models, the mean of the observed
variables is still a nonlinear function of the parameters, and, concerning ex-
perimental design, we shall consider them as nonlinear models. Design theory
for such models is much less elaborated than for regression models. We shall
see however (Sect. 4.3) that the information carried by an experiment in such
models can be measured (asymptotically) in a similar way to nonlinear re-
gression models.

In many circumstances, the analytic form of the response η(x, θ) as a
function of x is not available and can only be obtained through the simulation
of a differential or difference equation. The computation of derivatives with
respect to θ (sensitivity functions), which are required for most developments
throughout the book, is considered in Appendix B.

1.3 Parameters

As indicated above, we shall consider parametric models and suppose that
the objective of the experiment is to obtain a “precise” estimator for the
parameters, or parametric functions, which are considered as useful.

Parameter estimation is of wider statistical interest than the estimation
of the values of parameters per se. This may include tests for the validity of
a model, model discrimination, tests for homoscedasticity of the data, rejec-
tion of outliers, etc., a variety of situations where parameter estimation can
be put at work to get the solution. For example, when testing the validity of
a regression model, we can incorporate it in a larger model by adding some
extra parameters and accept the original model if the estimates of these new
parameters are close to zero; when testing for homoscedasticity of the data,
we can estimate the trend of the variance of the residuals; robust estimators
can be used to neutralize the influence of outliers, which again leads to a
parameter estimation problem; etc. Therefore, the restriction of experimental
design to parameter estimation problems is not as severe as it might seem,
and applications to other statistical problems are often natural if not straight-
forward.

We give special attention to least-squares (LS) estimation (Chaps. 3 and 6)
but also consider maximum likelihood (ML) and to a certain extent also
Bayesian estimation (Chap. 4). In all circumstances, we consider that there
exists a true value θ̄ for the parameters, which is used to generate the obser-
vations; θ denotes a generic value for the parameters, and estimators based
on N observations will be denoted by θ̂N . Although in Bayesian estimation
the main concepts are traditionally the prior and posterior distributions for
θ, we only consider the situation where one can safely assume that a “true”
θ̄ does exist. We can then consider, say the convergence of the maximum a
posteriori estimator θ̂N to θ̄ as N → ∞.
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The primary objective of experimental design should be to ensure that
the parameters are estimable. In linear regression models, this means that,
under the given design, there exists at least one linear unbiased estimator of
the parameters of interest. The existence of a design making the parameters
estimable corresponds to the requirement of identifiability. By identifiability
of a regression model, we mean that the mapping θ −→ η(·, θ) is one-to-one;
see, e.g., Walter (1982, 1987), and Walter and Pronzato (1995, 1997, Chap. 2).
With a large and rich enough set of trials x1, x2, . . . , xN , one should then be
able to approach the true value θ̄ of the model parameters with arbitrary
precision. There is a large amount of literature on how to construct designs
of reasonable size N that ensure estimability in simple linear models, such
as ANOVA models (linear models for which the components of the vectors
f(xi) can only take the values 0 and 1), or factorial models (for which the
components of f(xi) correspond to different levels of the controlled factors,
which may be categorial, or qualitative, variables). Such problems are solved
in the so-called classical experimental design theory and are outside the scope
of this book; see, e.g., Cochran and Cox (1957), Montgomery (1976), and
Casella (2008) for references.

In nonlinear regression models the estimability of θ, or of some function
of θ, cannot be reduced to the issue of identifiability. For example, when θ is
estimated by least squares (LS), the numerical estimability of θ means that
the function

θ ∈ Θ −→
N∑

i=1

[y(xi)− η(xi, θ)]
2

(the sum of squares) has a unique global minimum and no other important
local minima. Similarly, for maximum likelihood (ML) estimation in a non-
linear model, we require that the likelihood function does not have several
important local maxima. This type of statistical identifiability, related to the
sensitivity of the estimates with respect to variations in the values of the ob-
servations for a finite horizon N , raises difficult issues, too often overlooked,
that are considered in Chap. 7.

1.4 Information and Design Criteria

Since our interest is in parameter estimation, the information carried by an
experiment will be related to the precision of the estimation it allows. The
precision of an estimator θ̂ can be expressed in different ways, in particular
through the mean-squared error (MSE) matrix

MSEθ(θ̂) = IEθ

{
(θ̂ − θ)(θ̂ − θ)�

}
,

which forms a standard and widely accepted characteristic. Here, IEθ denotes
the conditional mean, given θ. Different functionals can be used to express
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some aspects of this information. For example, the i-th diagonal element of
MSEθ(θ̂) is the MSE of the estimator {θ̂}i. We have

MSEθ(θ̂) = Varθ(θ̂) + bθ(θ̂)b
�
θ (θ̂) ,

where Varθ(θ̂) is the variance–covariance matrix and bθ(θ̂) = IEθ(θ̂) − θ the

bias vector of θ̂.
In linear regression models where uniformly minimum variance unbiased

estimators θ̂ (UMVUE) of θ exist, we have

MSEθ(θ̂) = Varθ(θ̂)

for such an estimator. Optimality criteria are then usually based on the
variance–covariance matrix of the estimator, which is often available even for
a finite sample size N . Moreover, in linear situations Varθ(θ̂) does not depend
on the unknown true value of θ. The situation is more complex in nonlinear
regression, or more generally in nonlinear models, essentially for two reasons
which form the core of this book.

First, neither Varθ(θ̂) nor bθ(θ̂) may be known exactly, so that approx-
imations are required. The most widely used relies on the asymptotic nor-
mality of the estimator θ̂, so that the most classical approach to optimum
experimental design relies on criteria that are scalar functions of the covari-
ance matrix of the estimator (linear models) or of the covariance matrix of
the asymptotic normal distribution of the estimator (nonlinear models). In
some situations this matrix coincides with that in the Cramér–Rao bound,
which gives a further justification for this asymptotic approach. This leads to
measuring information through the Fisher information matrix which has the
attractive property of being additive for independent trials, with important
consequences concerning properties of optimal designs and methods for their
construction.

However, it is only under some specific assumptions on the experimental
design that information matrices characterize the asymptotic precision of es-
timators, which creates a sort of circular argument: optimal experiments are
designed on the basis of asymptotic properties, which, as we shall see, may
not hold depending on how the optimal design is approached or implemented.

One of the objectives of Chaps. 2–4 is to expose the connections between
general properties of estimators, such as (strong) consistency, asymptotic nor-
mality, efficiency, and Cramér–Rao inequality on one side and properties of
designs on the other side. In general, the correct proofs of asymptotic prop-
erties require many assumptions of different types, which are usually very
technical and not directly related to the design; see, e.g., the assumptions on
finite tail products of the regression function and its derivatives used in the
classical paper of Jennrich (1969) on the least-squares (LS) estimator or the
Lipschitz and growth conditions in (Wu, 1981). See also Gallant (1987) and
Ivanov (1997). A second objective here is to obtain simple but still rigorous
proofs by formulating assumptions just in terms of designs. In particular, clear
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results can be obtained in the case when the design measure ξ has a finite
support, which covers most situations where the design space X is finite, or
when the design is randomly generated according to a probability measure
ξ. We detail the proofs of asymptotic theorems for these cases, indicate the
method, and give references in more general situations.

Experimental design based on information matrices is considered in
detail in Chap. 5. Although it covers classical approaches to optimum design,
new results and proofs are presented. In particular, we shall see in Chaps. 3
and 4 that for many estimators the asymptotic covariance matrix takes a more
complicated expression than the inverse of a standard information matrix, this
simple form being obtained under particular circumstances only: maximum
likelihood estimation, weighted least squares with optimum weights, etc. The
design of optimal experiments based on such covariance matrices is considered
in Sect. 5.5.

More accurate small-sample characteristics of the precision of the estima-
tion than the asymptotic normal approximation can be used to design ex-
periments in a nonlinear situation, such as the volumes of confidence regions
(Hamilton and Watts 1985), the mean-squared error (Pázman and Pronzato
1992; Gauchi and Pázman 2006) or the entropy of the distribution of the LS
estimator (Pronzato and Pázman 1994b). They are considered in Chap. 6,
which also contains a survey on the geometry of nonlinear regression models
and on approximations of the density of the LS estimator as developed in
(Pázman, 1993b) and related papers.

Chapter 7 discusses a topic which is usually overlooked in the statistical
literature: how can we take the issues of identifiability and estimability into
account at the design stage? Neither the Fisher information matrix nor the
approximate densities of Chap. 6 can be used to solve this problem. This forms
a difficult area which is still in evolution; some extended notions of measures
of nonlinearity and optimality criteria are presented.

Another important difficulty raised by nonlinear models comes from the
fact that the information carried by the experiment, for instance, through
Varθ(θ̂) or bθ(θ̂), may very much depend on the unknown θ, creating a second
circular argument: the optimal experiment for estimating θ depends on the
value of θ to be estimated. The knowledge of a prior distribution for θ can
be used to overcome this conundrum, through the use of average-optimum
(Bayesian) or maximin-optimum design, or probability-level criteria. These
approaches are considered in Chap. 8, which also gives a brief exposition of
sequential design in two particular situations: the experiment only contains
two stages or is multistage but the design space X is finite.

Chapter 9 gives an overview of algorithms that can be used to construct
optimal experiments. Local design criteria based on the information matrix
evaluated at a given nominal value of the model parameters (Chap. 5) are
considered, as well as average and maximin-optimum designs of Chap. 8.

Basic notions on subdifferentials and subgradients are presented in
Appendix A. Appendix B indicates how to compute derivatives with respect
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to parameters (sensitivity functions) in a model given by differential or differ-
ence equations. The proofs of auxiliary lemmas are given in Appendix C.

Theorems, lemmas, remarks, examples, etc., are numbered consecutively
inside a chapter, so that, for instance, Lemma 5.16 follows Theorem 5.15. The
symbol � closes remarks and examples. A list of symbols and notations is
given at the end of the volume together with the list of labeled assumptions
that are used.



2

Asymptotic Designs and Uniform Convergence

2.1 Asymptotic Designs

In order to study the asymptotic properties of estimators, we need to indicate
how the sequence of design points x1, x2, . . . in X ⊂ R

d is generated, i.e., spec-
ify some properties of the experimental design. Throughout the monograph
(excepted in Sect. 8.5), we suppose that the design is not sequential; that is,
each point xi is chosen independently of the observations already collected. It
means in particular that the design can be considered as constructed in ad-
vance, prior to the collection of observations. To each truncated subsequence
x1, . . . , xN , we associate the empirical design measure ξN and its (cumulative)
distribution function (d.f.)

IFξN (x) =

N∑

i=1, xi≤x

1

N
,

where the inequality xi ≤ x must be understood componentwise.
We shall denote by ξN ⇒ ξ the weak convergence of the empirical design

measure ξN to ξ and by IFξN ⇒ IFξ the weak convergence of the associated
d.f. IFξN (see, e.g., Shiryaev (1996, Sect. III.1) and Billingsley (1995, Sect. 25)),
that is,

lim
N→∞

IFξN (x) = IFξ(x) for every continuity point x of IFξ(·) .

We shall see through several examples (see, e.g., Example 2.4) that weak
convergence is not always enough to ensure that an estimator using the design
corresponding to ξN has the same asymptotic properties (same asymptotic
variance–covariance matrix in particular) as an estimator that uses ξ.

We shall consider two special cases for designs on a given set X . A first
motivation is that those cases cover most practical situations in experimental
design and that they allow us to easily obtain uniform strong laws of large
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numbers (SLLN) which are essential for deriving asymptotic properties of
estimators. Moreover, they permit to avoid the aforementioned difficulty with
weak convergence of design measures.

The first one concerns the case where ξN converges strongly, i.e., in varia-
tion (see Shiryaev 1996, p. 360) to a discrete limiting design ξ. Asymptotically
the design points thus belong to a finite set, each point being sampled with
a given frequency; this covers in particular the case of designs consisting of
repetitions of a given set of trials.

Definition 2.1 (Asymptotically discrete design). Let ξ be a discrete
probability measure on X , with finite support

Sξ = {x ∈ X : ξ({x}) > 0} = {x(1), . . . , x(k)} . (2.1)

We say that the design sequence {xi} is asymptotically discrete when ξN con-
verges strongly to ξ:

lim
N→∞

ξN ({x}) = ξ({x}) for any x ∈ X .

Since X usually corresponds to a subset of Rd, ξ(·) is defined on the Borel
algebra of subsets of X . With a somewhat abusive notation, we shall write
ξ(x) = ξ({x}). Also, for any function f(·) on X we shall write

∫
X f(x)ξ(dx) =∑

x∈X f(x)ξ(x) =
∑k
i=1 wif(x

(i)) with wi = ξ(x(i)). In the literature the
discrete design ξ is often denoted by

ξ =

{
x(1) · · · x(k)
w1 · · · wk

}
.

In the second situation considered, the limiting design measure ξ is not
necessary discrete but the design sequence is a random sample from ξ; that is,
the design is randomized and the points are independently sampled according
to the probability measure ξ.

Definition 2.2 (Randomized design). We call randomized design with
measure ξ on X ,

∫
X
ξ(dx) = 1, a sequence {xi} of design points indepen-

dently sampled from the measure ξ on X .

Naturally, ξN ⇒ ξ with probability one (w.p.1) as N → ∞ for a ran-
domized design, but the asymptotic properties are much stronger than that:
from the SLLN, ξN (A) → ξ(A) w.p.1 as N → ∞ for any ξ-measurable set A,
and, when X ⊂ R, then supx |IFξN (x) − IF(x)| → 0 w.p.1 as N → ∞ from
Glivenko–Cantelli theorem; see, e.g., Billingsley (1995, p. 269)—with possible
extension to other sets X with empirical measures ξN (A) indexed by mea-
surable sets A in some suitable class C and uniform convergence of ξN on this
class.

When considering consistency of estimators, almost sure (a.s.) conver-
gence, that is, strong consistency, or convergence w.p.1, will be with respect
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to both the sequences of errors {εi} and design points {xi}. We shall see that
the random fluctuations induced by a randomized design are asymptotically
negligible, in the sense that they have no effect on the asymptotic variance–
covariance matrix of estimators; see Remark 3.9-(iii).

Notice the difference between the two definitions above: there is no re-
quirement of randomness in Definition 2.1, but the support of the asymptotic
design is finite. The support is not necessarily finite in Definition 2.2, but the
sequence of design points is an i.i.d. sample from ξ. Of course, not all situations
are covered by these definitions. The examples below, however, illustrate the
difficulties that can be encountered when the assumptions on the design are
too relaxed and thus stress the importance of the design for the asymptotic
properties of the estimator, its asymptotic normality in particular. In the first
example we construct a nonrandom sequence {xi} of design points such that
the sample distribution IFξN does not converge. Of course, such sequences are
excluded by Definition 2.1 and cannot be generated randomly according to
Definition 2.2.

Example 2.3. We construct a non-converging sequence on the finite set X =
{x(1), x(2)}. Define n1(N) = N(x(1)) and n2(N) = N − n1(N) with N(x(1))
the number of times x(1) is used in the sequence x1, . . . , xN . The construction
is as follows: take n1(0) = 0 and n1(N+1) = n1(N)+c(N+1) where c(n) = 0
for n ≤ N0, c(N0) = 1, and then

c(N + 1) =

⎧
⎨

⎩

1 if n1(N) ≤ αN
c(N) if αN < n1(N) ≤ βN
0 otherwise ;

that is, c(N + 1) = c(N) II [0,βN ][n1(N)] + [1 − c(N)] II [0,αN ][n1(N)], for some
α, β satisfying 0 < α < β < 1. n1(N)/N then oscillates between α and β
with lim infN→∞ n1(N)/N = α �= lim supN→∞ n1(N)/N = β, and the design
does not converge to a discrete design; that is, it does not correspond to
Definition 2.1.

This has obvious consequences on the asymptotic properties of estimators.
Even in a model as simple as the linear regression with response η(x, θ) =
θ1 + θ2x and observations yi = η(xi, θ̄) + εi, where θ̄ = (θ̄1, θ̄2)

� denotes
the true value of the parameters θ and the errors εi are normal N (0, σ2), if

θ̂NLS denotes the ordinary least-squares (LS) estimator of θ (see Sect. 3.1) the

covariance matrix of
√
N(θ̂NLS − θ̄) does not converge to a limit as N → ∞. �

Consider now a deterministic sequence supported on an interval in R
d, a

rather standard situation not covered by Definitions 2.1 and 2.2, and, in order
to avoid the difficulty met in the example above, suppose that the sample dis-
tribution IFξN converges weakly to some d.f. IF. Denote by ξ the probability
measure on X corresponding to IF. In that case, most often the asymptotic
results do not differ from the situation where the sequence {xi} is random
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and generated according to ξ. Heuristically, this can be explained as follows:
for any N , a random permutation of the sequence of the independent obser-
vations y(x1), . . . , y(xN ) does not modify the estimate θ̂N . Since the design
points are chosen nonsequentially, this is equivalent to a random permutation
of the design points. Although this is not a formal proof, it indicates why
deterministic design sequences often yield the same asymptotic properties as
randomized sequences. One may refer to Lemma 2.6’ of Sect. 2.3 to obtain
asymptotic properties of estimators under nonrandomized designs; different
assumptions are used in (Jennrich, 1969) for the LS estimator.

The following example, however, shows that in some situations ξN ⇒ ξ is
not enough to yield the same asymptotic properties for the estimators obtained
with ξN and with a randomized design with measure ξ. In this example we
construct a sequence {xi} of design points such that IFξN ⇒ IFξ, with ξ
a discrete design allocating mass 1 to some point x∗, but ξN (x∗) does not
converge to ξ(x∗) = 1. Notice that, again, such a sequence is excluded by
Definition 2.1 and that, w.p.1, it is also excluded by Definition 2.2.

Example 2.4. Consider a linear regression model with p = 2 parameters and
observations

y(xi) = θ̄1xi + θ̄2x
2
i + εi , i = 1, 2 . . .

where true value θ̄ of the model parameters θ = (θ1, θ2)
� is assumed to

satisfy θ̄1 ≥ 0, θ̄2 < 0 and the errors εi are i.i.d., with zero mean and variance
1. The LS estimator of θ = (θ1, θ2)

� for N observations, see Sect. 3.1, is

θ̂NLS = M−1
N

∑N
i=1 y(xi)(xi, x

2
i )

� with

MN =
N∑

i=1

(
x2i x3i
x3i x4i

)
.

Define ξ∗ = δx∗ , the delta measure that puts mass 1 at some point x∗ �= 0.
When ξ∗ is used, θ1x∗+ θ2x

2∗ is estimable since c∗ = (x∗, x2∗)� is in the range
of

M(ξ∗) =
(
x2∗ x3∗
x3∗ x4∗

)
.

The variance of c�∗ θ̂
N
LS for ξ∗, which we denote by var(c�∗ θ̂

N
LS |ξ∗), satisfies

N var(c�∗ θ̂
N
LS|ξ∗) = c�∗ M

−(ξ∗)c∗ = 1 ,

with M− any g-inverse of M (i.e., such that MM−M = M).
We construct now design sequences such that ξN ⇒ ξ∗ by considering

design points that satisfy

xi =

{
x∗ if i = 2k − 1
x∗ + (1/k)α if i = 2k

(2.2)

for some α > 0, i = 1, 2, . . . with
√
2 − 1 < x∗ ≤ 1. From Corollary 1 of Wu

(1980), c�θ̂NLS
a.s.→ c�θ̄ for any c ∈ R

2 when S∞(w) =
∑∞

i=1[w
�f(xi)]2 = ∞
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for all w = (w1, w2)
� �= 0, with

a.s.→ denoting almost sure convergence, i.e.,
convergence with probability one (w.p.1), with respect to the random sequence

{εi}; c�θ̂NLS is then a strongly consistent estimator of c�θ. Here we have

S∞(w) =

∞∑

k=1

x2∗(w1 + x∗w2)
2 +

∞∑

k=1

[
w1(x∗ + 1/kα) + w2(x∗ + 1/kα)2

]2

so that S∞(w) = ∞ when w1 + x∗w2 �= 0. When w1 + x∗w2 = 0,

S∞(w) =
w2

1

x2∗

∞∑

k=1

(1 + x∗kα)2

k4α
> w2

1

∞∑

k=1

k−2α ,

and w1 �= 0 sincew �= 0, so that S∞(w) = ∞ when α ≤ 1/2. The LS estimator

θ̂NLS is thus strongly consistent when ξN converges to ξ∗ slowly enough, i.e.,
when α ≤ 1/2, which we suppose in the rest of the example.

The variance of c�∗ θ̂NLS , with c∗ = (x∗, x2∗)�, for the design ξN satisfies

N var(c�∗ θ̂
N
LS |ξN ) = c�∗ M

−1(ξN )c∗ with,

M(ξN ) = MN/N =

(
μ2(N) μ3(N)
μ3(N) μ4(N)

)

and, for N = 2M , μi(N) = xi∗/2 + (1/N)
∑M
k=1[x∗ + (1/k)α]i, i = 2, 3, 4. We

then obtain

lim
N→∞

N var(c�∗ θ̂
N
LS|ξN ) = V (α) =

2(1 − α)2

α2 + (1 − α)2
, (2.3)

which is monotonically decreasing in α for 0 < α < 1/2, with V (0) = 2 and
V (1/2) = 1. For any α ∈ [0, 1/2) we thus have

lim
N→∞

N var(c�∗ θ̂
N
LS|ξN ) = V (α) > N var(c�∗ θ̂

N
LS|ξ∗) = 1 .

That is, the limiting variance for ξN is always larger than the variance for the
limiting design ξ∗. This is due to the discontinuity of the function M(ξ) −→
N var(c�∗ θ̂NLS |ξ) at M(ξ∗); see Pázman (1980, 1986, p. 67) and Sects. 5.1.6
and 5.1.7.

Moreover, one can show that Lindeberg’s condition is satisfied for any
linear combination of θ (see, e.g., Shiryaev 1996) and for any c �= 0,

√
N

c�(θ̂NLS − θ̄)

(c�M−1(ξN )c)1/2
d→ ζ ∼ N (0, 1) , N → ∞ .

For c = c∗, c�∗ M−1(ξN )c∗ tends to V (α) and

√
Nc�∗ (θ̂

N
LS − θ̄)

d→ ζ∗ ∼ N (0, V (α)) , N → ∞ ,
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whereas c�M−1(ξN )c grows as N2α for c not parallel to c∗. Hence, the rate

of convergence of c�θ̂NLS to c�θ̄ depends on the direction of the vector c. For
instance, for c = c0 = (1, 0)�, we obtain

N1/2−αc�0 (θ̂
N
LS − θ̄)

d→ ζ0 ∼ N (0,W (α)) , N → ∞ , (2.4)

with

W (α) = 22(1−α)
(1 − 2α)(1 − α)2

α2 + (1 − α)2
. (2.5)

�

As previous example shows, the asymptotic properties of the estimator
obtained for a design with empirical measure ξN converging weakly to some ξ
and of the estimator for a randomized design with measure ξ may differ. This
is true in particular for the estimation of scalar functions of the parameters;
see Sect. 3.2. Using designs that obey Definitions 2.1 and 2.2 allow us to
avoid the difficulties raised by Examples 2.3 and 2.4. In particular, we shall
give a rigorous proof (Sect. 3.1) that both definitions give the same asymptotic
properties for the LS estimator. For other estimators considered in the rest of
the book only randomized designs will be used, but the results can easily be
extended to the asymptotically discrete designs of Definition 2.1.

2.2 Uniform Convergence

Our proofs are based on uniform convergence with respect to θ of the function
JN (θ), called the estimation criterion, that defines the estimator θ̂N though

θ̂N = argminθ JN (θ). We shall thus need uniform SLLN.
In the case of an asymptotically discrete design we shall use the following

result to establish asymptotic properties of the LS estimator.

Lemma 2.5 (Uniform SLLN 1). Let {xi} be an asymptotically discrete
design with measure ξ. Assume that a(x, θ) is a bounded function on X × Θ
and that to every x ∈ X we can associate a random variable ε(x). Let {εi}
be a sequence of independent random variables, with εi distributed like ε(xi),
and assume that for all x ∈ X ,

IE{b[ε(x)]} = m(x) , |m(x)| < m̄ < ∞ ,

var{b[ε(x)]} = V (x) < V̄ < ∞ ,

with b(·) a Borel function on R. Then we have

1

N

N∑

k=1

a(xk, θ)b(εk)
θ�
∑

x∈Sξ

a(x, θ)m(x)ξ(x)
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as N tends to ∞, where
θ� means uniform convergence with respect to θ ∈ Θ,

and the convergence is almost sure (a.s.), i.e., with probability one, with respect
to the random sequence {εi}.

In the case of randomized designs we shall use the following result. An
extension to more general situations is given in Lemma 2.6’ of Sect. 2.3.

Lemma 2.6 (Uniform SLLN 2). Let {zi} be a sequence of i.i.d. random
vectors of R

r and a(z, θ) be a Borel measurable real function on R
r × Θ,

continuous in θ ∈ Θ for any z, with Θ a compact subset of Rp. Assume that

IE{max
θ∈Θ

|a(z1, θ)|} < ∞ , (2.6)

then IE{a(z1, θ)} is continuous in θ ∈ Θ and

1

N

N∑

i=1

a(zi, θ)
θ� IE[a(z1, θ)] a.s. when N → ∞ .

In the proofs of the theorems of Chaps. 3 and 4, we shall have zi = (xi, εi)
for regression models, with xi the design variable and εi the error for the i-th
observation yi or more generally zi = (xi, yi). The condition (2.6) will then be
fulfilled when IEx1{maxθ∈Θ |a(z1, θ)|} is bounded for x1 ∈ X , i.e., in particu-
lar when the design space X is a compact set and IEx1{maxθ∈Θ |a(z1, θ)|} is
a continuous function of x1. More generally, a simple sufficient condition for
(2.6) to be satisfied is when the continuity of a(z, θ) with respect to θ is uni-
form in z, as shown in the following lemma. In the case of randomized designs
this assumption thus allows us to avoid any reference to uniform convergence
properties; see, e.g., Fourgeaud and Fuchs (1967, p. 214) for maximum likeli-
hood estimation.

Lemma 2.7. Let {zi}, θ, Θ and a(z, θ) be defined as in Lemma 2.6. Assume
that

sup
θ∈Θ

IE{|a(z1, θ)|} < ∞

and that a(z, θ) is continuous in θ ∈ Θ uniformly in z. Then the conclusions
of Lemma 2.6 apply.

For the case of asymptotically discrete designs and other estimators than
LS, we shall use the following property.

Lemma 2.8 (Uniform SLLN 3). Let {xi} be an asymptotically discrete
design with measure ξ. Assume that to every x ∈ X we can associate a
random variable ε(x). Let {εi} be a sequence of independent random variables,
with εi distributed like ε(xi). Let a(x, ε, θ) be a Borel measurable function of
ε for any (x, θ) ∈ X × Θ, continuous in θ ∈ Θ for any x and ε, with Θ a
compact subset of Rp. Assume that
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∀x ∈ Sξ , IE{max
θ∈Θ

|a[x, ε(x), θ]|} < ∞ ,

∀x ∈ X \ Sξ , IE{max
θ∈Θ

|a[x, ε(x), θ]|2} < ∞ ,

with Sξ defined by (2.1). Then we have

1

N

N∑

k=1

a(xk, εk, θ)
θ�
∑

x∈Sξ

IE{a[x, ε(x), θ]} ξ(x) a.s. when N → ∞ ,

where the function on the right-hand side is continuous in θ on Θ.

The uniform SLLN properties given in the lemmas above will be used to
obtain the almost sure uniform convergence of the criterion function JN (·), but
first, we need the estimator to be properly defined as a random variable. This is
ensured by the following lemma, taken from Jennrich (1969); see also Bierens
(1994, p. 16). For the sake of completeness the proof is given in Appendix C.

Lemma 2.9. Let Θ be a compact subset of Rp, Z be a measurable subset of
R
m, and J(z, θ) be a Borel measurable real function on Z ×Θ, continuous in

θ ∈ Θ for any z ∈ Z . Then there exists a mapping θ̂ from Z into Θ with Borel
measurable components such that J [z, θ̂(z)] = minθ∈Θ J(z, θ), which therefore
is also Borel measurable. If, moreover, J(z, θ) is continuous on Z ×Θ, then
minθ∈Θ J(z, θ) is a continuous function on Z .

In the following, θ̂N will always denote the measurable choice from
argminθ JN (θ) according to Lemma 2.9. The almost sure convergence of the
estimator will then follow from the next lemma.

Lemma 2.10. Assume that the sequence of functions {JN (θ)} converges uni-
formly on Θ to the function Jθ̄(θ), with JN (θ) continuous with respect to θ ∈ Θ
for any N , Θ a compact subset of Rp and Jθ̄(θ) such that

∀θ ∈ Θ , θ �= θ̄ =⇒ Jθ̄(θ) > Jθ̄(θ̄) .

Then limN→∞ θ̂N = θ̄, where θ̂N ∈ argminθ∈Θ JN (θ). When the functions
JN (·) are random and the uniform convergence to Jθ̄(·) is almost sure, the

convergence of θ̂N to θ̄ is also almost sure.

This lemma admits a straightforward extension to the case where the func-
tion Jθ̄(θ) has several global minimizers. We then denote Θ#=argminθ∈Θ
Jθ̄(θ) the set of these minimizers and say that θ converges to Θ# when
d(θ,Θ#) = minθ′∈Θ# ‖θ − θ′‖ converges to zero. We have the following.

Lemma 2.11. Assume that the sequence of functions {JN (θ)} converges uni-
formly on Θ to the function Jθ̄(θ), with JN (θ) continuous with respect to
θ ∈ Θ for any N , Θ a compact subset of R

p. Let Θ# = argminθ∈Θ Jθ̄(θ)
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denote the set of minimizers of Jθ̄(θ). Then limN→∞ d(θ̂N , Θ#) = 0, where

θ̂N ∈ argminθ∈Θ JN (θ). When the functions JN (·) are random and the uni-

form convergence to Jθ̄(·) is almost sure, the convergence of d(θ̂N , Θ#) to 0
is also almost sure.

We shall also need to perform Taylor developments and apply a random
version of the mean value theorem. This is possible through the following
Lemma, taken from Jennrich (1969).

Lemma 2.12. Let Θ be a convex compact subset of Rp, Z be a measurable
subset of R

m, and J(z, θ) be a Borel measurable real function on Z × Θ,
continuously differentiable in θ ∈ int(Θ) for any z ∈ Z . Let θ1(z) and θ2(z)
be measurable functions from Z into Θ. There exists a measurable function θ̃
from Z into int(Θ) such that for all z ∈ Z , θ̃(z) lies on the segment joining
θ1(z) and θ2(z) and

J [z, θ1(z)]− J [z, θ2(z)] =
∂J(z, θ)

∂θ�

∣∣∣∣
θ̃(z)

[θ1(z)− θ2(z)] .

2.3 Bibliographic Notes and Further Remarks

A general SLLN

Lemma 2.6 can be extended to situations where the zk are not i.i.d., which,
concerning the applications considered in this book, is of interest to establish
asymptotic properties of estimators when the experiment does not correspond
to a randomized design as defined by Definition 2.2. This extension is as
follows; see Bierens (1994, Theorem 2.7.1).

Lemma 2.6’. Let z1, z2 . . . be a sequence of independent random vectors with
distribution functions IF1, IF2, . . . and a(z, θ) be a continuous real function of
(z, θ) ∈ R

r ×Θ, with Θ a compact subset of Rp. Suppose that

1

N

N∑

k=1

IFk ⇒ IF when N → ∞

lim sup
N→∞

1

N

N∑

k=1

IE{max
θ∈Θ

|a(zk, θ)|2+α} < ∞ for some α > 0 ,

then IE{a(z, θ)} is continuous in θ ∈ Θ and

1

N

N∑

i=1

a(zi, θ)
θ� IE[a(z, θ)] a.s. when N → ∞

with z having the distribution IF.
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Uniform Convergence and Stochastic Equicontinuity

A general approach for obtaining uniform convergence results over classes of
functions (possibly parameterized) is to use properties of empirical processes;
see, e.g., van de Geer (2000), van der Vaart and Wellner (1996), and van der
Vaart (1998). Also, although not considered here, stochastic equicontinuity is
a powerful tool to derive uniform laws of large numbers; see Andrews (1987,
1992), and Newey (1991), for several extensions, in particular to strong (a.s.)
convergence and totally bounded parameter spaces instead of compact sets.1

The standard definition of equicontinuity is as follows; see, e.g., Andrews
(1992). A family of functions {JN (·) : N ≥ 1} is stochastically equicontinuous
on Θ if for any ε > 0 there exists δ > 0 such that

lim sup
N→∞

Prob

{
sup
θ∈Θ

sup
θ′∈B(θ,δ)

|JN (θ′)− JN (θ)| > ε

}
< ε .

Andrews (1992, Theorem 1) then shows that when Θ is totally bounded and

JN (θ)
p→ J(θ) as N → ∞ for any θ ∈ Θ (pointwise convergence in proba-

bility), then the equicontinuity of {JN (·) : N ≥ 1} implies the uniform con-

vergence of JN (·) to J(·) in probability; that is, supθ∈Θ |JN (θ) − J(θ)| p→ 0,
N → ∞. Conversely, the uniform convergence in probability is shown to im-
ply the pointwise convergence and stochastic equicontinuity of JN (·); see also
Newey (1991, Theorem 2.1). In the case where JN (θ) = (1/N)

∑N
i=1 ji(θ), this

yields uniform laws of large numbers under growth conditions for the random
functions ji(·); see, e.g., Newey (1991, Corollary 3.1).

1A subset of a metric space is totally bounded if it can be covered by a finite
number of balls with radius ε for any ε, which is weaker than compactness. A subset
of an Euclidean space Θ is totally bounded if and only if it is bounded, which com-
pared to compactness relaxes the condition of Θ being closed. In the next chapters,
the assumption of compactness of Θ will force us to work in the interior of Θ when
differentiability will be required, in particular, to obtain the asymptotic normality
of estimators.
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Asymptotic Properties of the LS Estimator

3.1 Asymptotic Properties of the LS Estimator
in Regression Models

We consider asymptotic properties (N → ∞) of the (ordinary) LS estimator

θ̂NLS for a model defined by the mean (or expected) response η(x, θ). For

observations y(x1), . . . , y(xN ), θ̂NLS is obtained by minimizing

JN (θ) =
1

N

N∑

i=1

[y(xi)− η(xi, θ)]
2 , (3.1)

with respect to θ ∈ Θ. We assume that the true model is

y(xi) = η(xi, θ̄) + εi , with θ̄ ∈ Θ and IE{εi} = 0 for all i , (3.2)

where {εi} is a sequence of independent random variables. The errors can be
(second-order) stationary (or homoscedastic)

IE{ε2i } = σ2 < ∞, (3.3)

or nonstationary (heteroscedastic)

IE{ε2i } = σ2(xi) , (3.4)

where σ2(x) is defined for every x ∈ X with the property 0 < a < σ2(x) < b <
∞. In the nonstationary case, we assume that the distribution of the errors εi
in (3.2) only depends on the design point xi. Notice that the random variables
(vectors) zi = (xi, εi) are then i.i.d. when the xi are i.i.d. (randomized design).

We shall also consider weighted LS estimation, where θ̂NWLS minimizes

JN (θ) =
1

N

N∑

i=1

w(xi)[y(xi) − η(xi, θ)]
2 , (3.5)

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 3,
© Springer Science+Business Media New York 2013
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with w(x) ≥ 0 the weighting function. The following hypotheses will be used
throughout this book:

HΘ: Θ is a compact subset of Rp such that Θ ⊂ int(Θ).
H1η: η(x, θ) is bounded on X ×Θ and η(x, θ) is continuous on Θ, ∀x ∈ X .
H2η: θ̄ ∈ int(Θ) and, ∀x ∈ X , η(x, θ) is twice continuously differentiable

with respect to θ ∈ int(Θ), and its first two derivatives are bounded on
X × int(Θ).

We first prove the strong consistency of the ordinary LS estimator θ̂NLS
(Sect. 3.1.1). The extension to weighted LS (WLS) is straightforward. Next,
in Sect. 3.1.2, we relax the estimability condition on the support of ξ and
show that consistency can still be obtained when X is finite, by taking into
account the information provided by design points that asymptotically receive
zero mass, i.e. such that ξ(x) = 0. Again, the proof is given for θ̂NLS , but the
extension to WLS and nonstationary errors is immediate. The asymptotic
normality of the WLS estimator is considered in Sect. 3.1.3, both for random-
ized and nonrandomized (asymptotically discrete) designs. The estimation of

a scalar function of θ̂NLS is considered in Sects. 3.1.4 and 3.2 for situations

where θ̂NLS is not consistent.

3.1.1 Consistency

Theorem 3.1 (Consistency of the LS estimator). Let {xi} be an asymp-
totically discrete design (Definition 2.1) or a randomized design (Defini-

tion 2.2) on X ⊂ R
d. Consider the estimator θ̂NLS that minimizes (3.1) in

the model (3.2), (3.4). Assume that HΘ and H1η are satisfied and that the
parameters of the model are LS estimable for the design ξ at θ̄, that is:

∀θ ∈ Θ ,

∫

X

[η(x, θ) − η(x, θ̄)]2ξ(dx) = 0 ⇐⇒ θ = θ̄ . (3.6)

Then, w.p.1 the observed sequence y(x1), y(x2), . . . is such that

lim
N→∞

θ̂NLS = θ̄ and lim
N→∞

[
σ̂2
]N

=

∫

X

σ2(x)ξ(dx)

where
[
σ̂2
]N

=
1

N − p

N∑

k=1

[
y(xk) − η(xk, θ̂

N
LS)
]2

(3.7)

with p = dim(θ).

Proof. For any θ ∈ Θ
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JN (θ) =
1

N

N∑

k=1

ε2k +
2

N

N∑

k=1

[
η
(
xk, θ̄

)
− η (xk, θ)

]
εk

+
1

N

N∑

k=1

[
η
(
xk, θ̄

)
− η (xk, θ)

]2
. (3.8)

The first term in (3.8) converges a.s. to
∫

X σ2(x)ξ(dx) as N → ∞ (SLLN).
Consider first the case where {xi} is an asymptotically discrete design.

Define a(x, θ) = [η(x, θ̄) − η(x, θ)], b(ε) = ε. Lemma 2.5 implies that the
second term of (3.8) converges to zero uniformly in θ and a.s. The third term
converges to

∫
X
[η(x, θ̄) − η(x, θ)]2ξ(dx) uniformly in θ.

Consider now the case where {xi} is a randomized design. Define a(z, θ) =
[η(x, θ̄) − η(x, θ)]ε with z = (x, ε). We have

IE{max
θ∈Θ

|a(z, θ)|} =

∫

X

max
θ∈Θ

|η(x, θ̄)− η(x, θ)| IEx{|ε|} ξ(dx)

≤
∫

X

σ(x) max
θ∈Θ

|η(x, θ̄)− η(x, θ)|ξ(dx) < ∞ ,

so that Lemma 2.6 implies that the second term in (3.8) converges to
IE{a(z, θ)} = 0 as N → ∞ and the convergence is uniform in θ and a.s.
with respect to x and ε. Take now a(z, θ) = [η(x, θ̄) − η(x, θ)]2 with z = x.
We have IE{maxθ∈Θ |a(z, θ)|} =

∫
X

maxθ∈Θ[η(x, θ̄)−η(x, θ)]2ξ(dx) < ∞, and
Lemma 2.6 implies for the third term in (3.8):

1

N

N∑

k=1

[
η
(
xk, θ̄

)
− η (xk, θ)

]2 θ�
∫

X

[η(x, θ̄) − η(x, θ)]2ξ(dx) , a.s.

Therefore, for both types of designs,

JN (θ)
θ� Jθ̄(θ) =

∫

X

σ2(x)ξ(dx) +

∫

X

[η(x, θ̄) − η(x, θ)]2ξ(dx) , a.s.

as N → ∞. The conditions of Lemma 2.10 are satisfied and θ̂NLS
a.s.→ θ̄ as

N → ∞.
Finally, the strong consistency of θ̂NLS and JN (θ)

θ� Jθ̄(θ) a.s. imply that
the estimator (3.7) converges to

∫
X σ2(x)ξ(dx) a.s.

Remark 3.2.

(i) When {xi} is a randomized design, the assumption of boundedness of
η(x, θ) can be replaced by

∫

X

sup
θ∈Θ

[η(x, θ) − η(x, θ̄)]2 ξ(dx) < ∞ . (3.9)
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(ii) One can readily check that the WLS estimator that minimizes (3.5) is
strongly consistent when w(x) is bounded and the LS estimability con-
dition (3.6) in Theorem 3.1 is replaced by

∀θ ∈ Θ ,

∫

X

w(x)[η(x, θ) − η(x, θ̄)]2ξ(dx) = 0 ⇐⇒ θ = θ̄ . (3.10)

When {xi} is a randomized design, the condition of boundedness of w(x)
and of η(x, θ) in H1η can be replaced by

∫

X

w(x) sup
θ∈Θ

[η(x, θ) − η(x, θ̄)]2 ξ(dx) < ∞ . (3.11)

(iii) When σ2(x) = σ2 for any x, [σ̂2]N given by (3.7) is a strongly consistent

estimator of σ2. It remains strongly consistent when θ̂NLS is replaced by
any strongly consistent estimator of θ.

(iv) When {xi} is asymptotically discrete, with Sξ = (x(1), . . . , x(k)) the
support of the limiting measure ξ, under HΘ and H1η, the WLS cri-
terion (3.5) satisfies

JN (θ)
θ� 1

k

k∑

i=1

w(x(i))ξ(x(i))σ2(x(i))

+
1

k

k∑

i=1

w(x(i))ξ(x(i))[η(x(i), θ) − η(x(i), θ̄)]2 , a.s.

and therefore

JN (θ) − JN (θ̂NWLS)
θ� 1

k

k∑

i=1

w(x(i))ξ(x(i))[η(x(i), θ) − η(x(i), θ̄)]2 , a.s. �

Even when the LS estimability condition (3.6) of Theorem 3.1 is not sat-
isfied, the estimator of a parametric function h(θ) can still be strongly con-
sistent. This is expressed in the following theorem. Notice that the case of
a vector function h(·) : Θ −→ R

q need not be considered separately since
the consistency of an estimator of h(θ) is equivalent to that of its individual
components.

Theorem 3.3 (Consistency of a function of the LS estimator). Sup-
pose that the condition (3.6) of Theorem 3.1 is replaced by

∀θ ∈ Θ ,

∫

X

[η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0 =⇒ h(θ) = h(θ̄) (3.12)

for some scalar function h(·) continuous on Θ. Assume that the other assump-

tions of Theorem 3.1 remain valid, then h(θ̂NLS)
a.s.→ h(θ̄) as N → ∞.
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Proof. Take Θ# = {θ ∈ Θ :
∫

X [η(x, θ) − η(x, θ̄)]2ξ(dx) = 0}. Following the

same arguments as in the proof of Theorem 3.1, according to Lemma 2.11, θ̂NLS
converges to Θ#; that is, all limit points of θ̂NLS belong to Θ# a.s. From the

continuity of h(·), it follows that all limit points of h(θ̂NLS) belong to h(Θ#);
that is, they are equal to h(θ̄), a.s.

This property can be generalized as follows. Let θ̂N be a measurable choice

from argminθ∈Θ JN (θ) for some criterion JN (·) and assume that JN (θ)
θ�

Jθ̄(θ) a.s. when N → ∞. Suppose that h(·) is continuous on Θ and that θ∗ ∈
argminθ∈Θ Jθ̄(θ) implies h(θ∗) = h(θ̄). Then, h(θ̂N )

a.s.→ h(θ̄) when N → ∞.

3.1.2 Consistency Under a Weaker LS Estimability Condition

Suppose that {xi} is an asymptotically discrete design; see Definition 2.1.
The LS estimability condition (3.6) in Theorem 3.1 concerns the asymptotic
support Sξ of the design. For a linear model with η(x, θ) = f�(x)θ, it implies

that limN→∞ λmin(MN/N) > ε > 0, with MN =
∑N
k=1 f(xk)f

�(xk), which is
clearly over-restrictive. Indeed, using martingale convergence results, Lai et al.
(1978, 1979) show that λmin(MN ) → ∞ is sufficient for the strong consistency
of the LS estimator1 (provided that the design is not sequential).

The condition (3.6) was used in order to apply Lemma 2.10, which sup-
poses that NJN(θ) grows to infinity at rate N when θ �= θ̄, which is also used
in the classic reference (Jennrich 1969). On the other hand, using this condi-
tion amounts to ignoring the information provided by design points x ∈ X
with a relative frequency N(x)/N tending to zero, which therefore do not
appear in the support of ξ. In order to acknowledge the information carried
by such points, we shall follow the same approach as in (Wu, 1981), based on
an idea originated from Wald’s proof of the strong consistency of the max-
imum likelihood (ML) estimator (Wald 1949). Since the points x such that
N(x)/N → 0 do not contribute to the (discrete) design measure ξ, the follow-
ing asymptotic results cannot be expressed in terms of ξ. However, they are
of importance for sequential design of experiments; see Sect. 8.5.

We denote

SN(θ) = NJN (θ) =

N∑

k=1

[y(xk) − η(xk, θ)]
2 . (3.13)

We shall need the following lemma of Wu (1981); see Appendix C.

1In fact, they consider the more general situation where the errors εk form a
martingale difference sequence with respect to an increasing sequence of σ-fields
Fk such that supk(ε

2
k|Fk−1) < ∞. When the errors εk are i.i.d. with zero mean

and variance σ2 > 0, they also show that λmin(MN) → ∞ is both necessary and
sufficient for the strong consistency of θ̂NLS .
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Lemma 3.4. If for any δ > 0

lim inf
N→∞

inf
‖θ−θ̄‖≥δ

[SN (θ) − SN (θ̄)] > 0 a.s. (3.14)

then θ̂NLS
a.s.→ θ̄ as N → ∞. If for any δ > 0,

Prob

{
inf

‖θ−θ̄‖≥δ
[SN (θ) − SN (θ̄)] > 0

}
→ 1 , N → ∞ , (3.15)

then θ̂NLS
p→ θ̄ as N → ∞.

One can then prove the convergence of the LS estimator, in probability
and a.s., when the sum

∑N
k=1[η(xk, θ)−η(xk, θ̄)]2 tends to infinity fast enough

for ‖θ − θ̄‖ ≥ δ > 0 and the design space X for the xk is finite.

Theorem 3.5 (Consistency of the LS estimator with finite X ). Let
{xi} be a design sequence on a finite set X . Assume that

DN (θ, θ̄) =
N∑

k=1

[η(xk, θ) − η(xk, θ̄)]
2 (3.16)

satisfies

∀δ > 0 ,

[
inf

‖θ−θ̄‖≥δ
DN (θ, θ̄)

]
/(log logN)

a.s.→ ∞ , N → ∞ . (3.17)

Then, θ̂NLS
a.s.→ θ̄ as N → ∞, where θ̂NLS minimizes SN (θ) in the model (3.2),

(3.3). When DN (θ, θ̄) simply satisfies inf‖θ−θ̄‖≥δDN (θ, θ̄) → ∞ as N → ∞,

then θ̂NLS
p→ θ̄.

Proof. The proof is based on Lemma 3.4. Denote IN (x) = {k ∈ {1, . . . , N} :
xk = x}. We have

SN (θ) − SN (θ̄)

= DN(θ, θ̄)

⎡

⎣1 + 2

∑
x∈X

(∑
k∈IN (x) εk

)
[η(x, θ̄) − η(x, θ)]

DN(θ, θ̄)

⎤

⎦

≥ DN (θ, θ̄)

⎡

⎣1 − 2

∑
x∈X

∣∣∣
∑

k∈IN (x) εk

∣∣∣ |η(x, θ̄)− η(x, θ)|
DN (θ, θ̄)

⎤

⎦ .

From Lemma 3.4, under the condition (3.17) it suffices to prove that

sup
‖θ−θ̄‖≥δ

∑
x∈X

∣∣∣
∑

k∈IN (x) εk

∣∣∣ |η(x, θ̄) − η(x, θ)|
DN(θ, θ̄)

a.s.→ 0 (3.18)
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for any δ > 0 to obtain the strong consistency of θ̂NLS . Since DN(θ, θ̄) → ∞,
only the design points such that N(x) → ∞ have to be considered, where
N(x) denotes the number of times x appears in the sequence x1, . . . , xN .
Define β(n) =

√
n log logn. We have

∀x ∈ X , lim sup
N(x)→∞

∣∣∣∣∣∣
1

β[N(x)]

∑

k∈IN (x)

εk

∣∣∣∣∣∣
< B , a.s. (3.19)

for some B > 0 from the Law of the Iterated Logarithm; see, e.g., Shiryaev
(1996, p. 397). Next, Cauchy–Schwarz inequality gives

∑

x∈X

β[N(x)]|η(x, θ̄) − η(x, θ)|
DN(θ, θ̄)

≤

1

DN (θ, θ̄)

(
∑

x∈X

log logN(x)

)1/2(∑

x∈X

N(x)[η(x, θ̄) − η(x, θ)]2

)1/2

=

(∑
x∈X log logN(x)

DN (θ, θ̄)

)1/2

.

Using the concavity of the function log log(·), we obtain
∑

x∈X

log logN(x) ≤ �[log log(N/�)]

where � is the number of elements of X , so that

∑

x∈X

β[N(x)]|η(x, θ̄)− η(x, θ)|
DN (θ, θ̄)

≤
(
�[log log(N/�)]

DN (θ, θ̄)

)1/2

,

which, together with (3.17) and (3.19), gives (3.18).
When inf‖θ−θ̄‖≥δDN (θ, θ̄) → ∞ as N → ∞, we only need to prove that

sup
‖θ−θ̄‖≥δ

∑
x∈X

∣∣∣
∑

k∈IN (x) εk

∣∣∣ |η(x, θ̄) − η(x, θ)|
DN(θ, θ̄)

p→ 0 (3.20)

for any δ > 0 to obtain the weak consistency of θ̂NLS. We proceed as above and
only consider the design points such that N(x) → ∞, with now β(n) =

√
n.

From the central limit theorem for i.i.d. random variables, for any x ∈ X ,(∑
k∈IN (x) εk

)
/
√
N(x)

d→ ζx ∼ N (0, σ2) as N → ∞ and is thus bounded in

probability. From Cauchy–Schwarz inequality

∑

x∈X

√
N(x)|η(x, θ̄) − η(x, θ)|

DN (θ, θ̄)
≤ 1

D
1/2
N (θ, θ̄)

,

which gives (3.20).
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Remark 3.6.

(i) The condition

∀θ �= θ̄ , DN (θ, θ̄) =
N∑

k=1

[η(xk, θ) − η(xk, θ̄)]
2 → ∞ as N → ∞ (3.21)

is proved in (Wu, 1981) to be necessary for the existence of a weakly
consistent estimator of θ̄ in the regression model y(xi) = η(xi, θ̄) + εi
with i.i.d. errors εi having a distribution with density ϕ̄(·) with respect
to the Lebesgue measure, positive almost everywhere, and with finite
Fisher information for location (

∫
[ϕ̄′(x)]2/ϕ̄(x)dx < ∞). Notice that the

LS estimability condition (3.6) corresponds to DN(θ, θ̄) = O(N), which
is much stronger than (3.17).

(ii) The condition (3.21) is also sufficient for the strong consistency of θ̂NLS
when the parameter set Θ is finite; see Wu (1981). From Theorem 3.5,
when X is finite, this condition is sufficient for the weak consistency of
θ̂NLS without restriction on Θ.

(iii) As for Theorem 3.1, the theorem remains valid if the errors εi in (3.2)
are no longer stationary but satisfy (3.4) and/or if the LS estimator

θ̂NLS is replaced by the WLS estimator θ̂NWLS that minimizes (3.5) with
w(x) > 0 and bounded on X . The extension to {εi} forming a martingale
difference sequence is considered in (Pronzato, 2009a, Theorem 1). In that

case, the a.s. convergence of θ̂NLS is obtained under the condition ∀δ > 0,[
inf‖θ−θ̄‖≥δDN (θ, θ̄)

]
/(logN)ρ

a.s.→ ∞ as N → ∞ for some ρ > 1.

(iv) The continuity of η(x, θ) with respect to θ is not required in Theorem 3.5.

(v) Wu (1981) also considers the asymptotic normality of θ̂NLS and shows
that, under suitable conditions, when DN (θ, θ̄) tends to infinity at a

rate slower than N for θ �= θ̄, then τN (θ̂NLS − θ̄) tends to be normally
distributed as N → ∞, with τN tending to infinity more slowly than
the usual

√
N ; compare with the results in Sect. 3.1.3. See also Pronzato

(2009a, Theorem 2). Theorem 3.5 will be used in Sect. 3.2.2 to obtain

the asymptotic normality of a scalar function of θ̂NLS . �

It is important to notice that we never used the condition that the xi were
nonrandom constants, so that Theorem 3.5 also applies for sequential design
provided that X is finite; this will be used in Sect. 8.5.2. In this context,
it is interesting to compare the results of the theorem with those obtained
without the assumption of a finite design space X . For linear regression,
the condition (3.17) takes the form log logN = o[λmin(MN )]. Noticing that
λmax(MN ) = O(N), we thus get a condition weaker than the sufficient condi-
tion {log[λmax(MN )]}1+α = o[λmin(MN)] derived by Lai and Wei (1982) for
the strong convergence of the LS estimator in a linear regression model under
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a sequential design. Also, in nonlinear regression, (3.17) is much less restric-
tive than the condition obtained by Lai (1994) for the strong consistency of
the LS estimator under a sequential design.2

3.1.3 Asymptotic Normality

The following lemma will be useful to compare the asymptotic covariance
matrices of different estimators. Its proof is given in Appendix C.

Lemma 3.7. Let u,v be two random vectors of Rr and R
s respectively defined

on a probability space with probability measure μ, with IE(‖u‖2) < ∞ and
IE(‖v‖2) < ∞. We have

IE(uu�) � IE(uv�)[IE(vv�)]+IE(vu�) , (3.22)

where M+ denotes the Moore–Penrose g-inverse of M (i.e., is such that
MM+M = M, M+MM+ = M+, (MM+)� = MM+ and (M+M)� =
M+M) and A � B means that A−B is nonnegative definite. Moreover, the
equality is obtained in (3.22) if and only if u = Av μ-a.s. for some nonrandom
matrix A.

We consider directly the case of WLS estimation with the criterion (3.5).

Theorem 3.8 (Asymptotic normality of the WLS estimator). Let
{xi} be an asymptotically discrete design (Definition 2.1) or a randomized

design (Definition 2.2) on X ⊂ R
d. Consider the estimator θ̂NWLS that mini-

mizes (3.5) in the model (3.2), (3.4). Assume that HΘ, H1η, H2η, and the LS
estimability condition (3.10) are satisfied and that the matrix

M1(ξ, θ̄) =

∫

X

w(x)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (3.23)

is nonsingular, with w(x) bounded on X . Then, θ̂NWLS satisfies

√
N(θ̂NWLS − θ̄)

d→ z ∼ N (0,C(w, ξ, θ̄)) , N → ∞ ,

where
C(w, ξ, θ) = M−1

1 (ξ, θ)M2(ξ, θ)M
−1
1 (ξ, θ) (3.24)

with

M2(ξ, θ) =

∫

X

w2(x)σ2(x)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) . (3.25)

2His proof, based on properties of Hilbert space valued martingales, requires a
condition that gives for linear regression λmax(MN) = O{[λmin(MN)]ρ} for some
ρ ∈ (1, 2), to be compared to the condition log log λmax(MN) = o[λmin(MN)].
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Moreover, C(w, ξ, θ̄) − M−1(ξ, θ̄) is nonnegative definite for any choice of
w(x), where

M(ξ, θ̄) =

∫

X

σ−2(x)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (3.26)

and C(w, ξ, θ̄) = M−1(ξ, θ̄) for w(x) = c σ−2(x) with c a positive constant.

Proof. The criterion JN (·) satisfies

∇θJN (θ) = − 2

N

N∑

k=1

w(xk)[y(xk)− η(xk, θ)]
∂η(xk, θ)

∂θ
,

∇2
θJN (θ) =

2

N

N∑

k=1

w(xk)
∂η(xk, θ)

∂θ

∂η(xk, θ)

∂θ�

− 2

N

N∑

k=1

w(xk)[y(xk)− η(xk, θ)]
∂2η(xk, θ)

∂θ∂θ�
.

Since θ̄ ∈ int(Θ) and θ̂NWLS
a.s.→ θ̄ as N → ∞, θ̂NWLS ∈ int(Θ) for N larger

than some N0 (which exists w.p.1), and thus, since JN (θ) is differentiable for

θ ∈ int(Θ), ∇θJN (θ̂NWLS) = 0 for N > N0. Using a Taylor development of the
i-th component of ∇θJN (·), we get

{∇θJN (θ̂NWLS)}i = {∇θJN (θ̄)}i + {∇2
θJN (βNi )(θ̂NWLS − θ̄)}i

for some βNi = (1− αN,i)θ̄+αN,i θ̂
N
WLS , αN,i ∈ (0, 1) (and βNi is measurable;

see Lemma 2.12). Since θ̂NWLS
a.s.→ θ̄, βNi

a.s.→ θ̄. For N > N0, the previous
equation can be written

{∇2
θJN (βNi )(θ̂NWLS − θ̄)}i = −{∇θJN (θ̄)}i . (3.27)

Consider first the case where {xi} is asymptotically discrete with measure
ξ. Since η(x, θ) is twice continuously differentiable with respect to θ ∈ Θ for
any x ∈ X , Lemma 2.5 gives

1

N

N∑

k=1

w(xk)
∂η(xk, θ)

∂θ

∂η(xk, θ)

∂θ�
θ� M1(ξ, θ) a.s.

and

1

N

N∑

k=1

w(xk)[y(xk) − η(xk, θ)]
∂2η(xk, θ)

∂θ∂θ�

θ�
∫

X

w(x)[η(x, θ̄) − η(x, θ)]
∂2η(x, θ)

∂θ∂θ�
ξ(dx) a.s.
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as N → ∞. Therefore, ∇2
θJN (βNi )

a.s.→ 2M1(ξ, θ̄), and since M1(ξ, θ̄) is non-
singular,

M−1
1 (ξ, θ̄)∇2

θJN (βNi )
a.s.→ 2 Ip . (3.28)

We shall now consider the distribution of

−
√
N∇θJN (θ̄) =

2√
N

N∑

k=1, xk �∈Sξ

w(xk)εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

+
2√
N

N∑

k=1, xk∈Sξ

w(xk)εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

. (3.29)

Let N(X \ Sξ) denote the number of points of the sequence x1, . . . , xN that
do not belong to Sξ. The first term can be written as

2

√
N(X \ Sξ)√

N

1√
N(X \ Sξ)

N∑

k=1, xk �∈Sξ

w(xk)εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

= 2

√
N(X \ Sξ)√

N
tN

where, for all i = 1, . . . , p, IE{[tN ]i} = 0 and

var{[tN ]i} =
1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

(
∂η(xk, θ)

∂θi

∣∣∣∣
θ̄

)2

w2(xk)σ
2(xk)

≤ V̄i = max
x∈X ,θ∈Θ

(
∂η(x, θ)

∂θi

∣∣∣∣
θ̄

)2

max
x∈X

w2(x) max
x∈X

σ2(x) .

Chebyshev inequality then gives ∀ε > 0, Prob{|[tN ]i| > Ai} < ε, with Ai =√
V̄i/ε, so that [tN ]i is bounded in probability3 and N(X \Sξ)/N → 0 implies

that the first term on the right-hand side of (3.29) tends to zero in probability.
The second term can be written as

2
∑

x∈Sξ

√
N(x)

N

⎛

⎝ 1√
N(x)

N∑

k=1, xk=x

εk

⎞

⎠ ∂η(x, θ)

∂θ

∣∣∣∣
θ̄

w(x)

with
√
N(x)/N →

√
ξ(x) and (

∑N
k=1, xk=x

εk)/
√
N(x)

d→ u(x)∼N (0, σ2(x)).
Therefore,

−
√
N∇θJN (θ̄)

d→ 2
∑

x∈Sξ

√
ξ(x)

∂η(x, θ)

∂θ

∣∣∣∣
θ̄

w(x)u(x) ;

3A sequence of random variables zn is bounded in probability if for any ε > 0,
there exist A and n0 such that ∀n > n0, Prob{|zn| > A} < ε.



32 3 Asymptotic Properties of the LS Estimator

that is
−

√
N∇θJN (θ̄)

d→ v ∼ N (0, 4M2(ξ, θ̄)) .

Finally, (3.27) and (3.28) show that
√
N(θ̂NWLS − θ̄)

d→ z ∼ N (0,C(w, ξ, θ̄))
as N → ∞.

Concerning the consequences of the choice ofw(x) for the matrixC(w, ξ, θ̄),
denote a(x) = w(x)σ2(x), x ∈ Sξ and consider the vectors

v(x) =

√
ξ(x)

σ(x)

∂η(x, θ)

∂θ

∣∣∣∣
θ̄

e(x) , x ∈ Sξ ,

where the e(x) are independent normal random variables N (0, 1). Denote

M̄(a) =

(
M2(ξ, θ̄) M1(ξ, θ̄)
M1(ξ, θ̄) M(ξ, θ̄)

)
.

We have

M̄(a) = IE

⎧
⎨

⎩

(∑
x∈Sξ

a(x)v(x)∑
x∈Sξ

v(x)

)(∑
x∈Sξ

a(x)v(x)∑
x∈Sξ

v(x)

)�⎫⎬

⎭

and from Lemma 3.7, M2(ξ, θ̄) � M1(ξ, θ̄)M
−1(ξ, θ̄)M1(ξ, θ̄), or equivalently

C(w, ξ, θ̄) = M−1
1 (ξ, θ̄)M2(ξ, θ̄)M

−1
1 (ξ, θ̄) � M−1(ξ, θ̄) .

One can readily check that C(w, ξ, θ̄) = M−1(ξ, θ̄) for w(x) = c σ−2(x).

Consider now the case of a randomized design. Lemma 2.6 with z = x
gives

1

N

N∑

k=1

w(xk)
∂η(xk, θ)

∂θ

∂η(xk, θ)

∂θ�
θ� M1(ξ, θ) a.s.

as N → ∞. Similarly, we can write

1

N

N∑

k=1

w(xk)[y(xk) − η(xk, θ)]
∂2η(xk, θ)

∂θ∂θ�
=

1

N

N∑

k=1

w(xk)ε(xk)
∂2η(xk, θ)

∂θ∂θ�

+
1

N

N∑

k=1

w(xk)[η(xk, θ̄)− η(xk, θ)]
∂2η(xk, θ)

∂θ∂θ�
. (3.30)

Define a(z, θ) = ∂2η(x, θ)/(∂θi∂θj)ε(x) with z = (x, ε). We have

IE{max
θ∈Θ

|a(z, θ)|} =

∫

X

w(x) max
θ∈Θ

∣∣∣∣
∂2η(xk, θ)

∂θi∂θj

∣∣∣∣ IEx{|ε|} ξ(dx)

≤
∫

X

w(x)σ(x) max
θ∈Θ

∣∣∣∣
∂2η(xk, θ)

∂θi∂θj

∣∣∣∣ ξ(dx) < ∞ ,
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so that Lemma 2.6 implies that the first term in (3.30) converges to IE{a(z, θ)}
= 0 when N → ∞ and the convergence is uniform in θ and almost sure with
respect to x and ε. Similarly, Lemma 2.6 implies that

1

N

N∑

k=1

w(xk) [y(xk)− η(xk, θ)]
∂2η(xk, θ)

∂θ∂θ�
θ�

∫

X

w(x) [η(x, θ̄) − η(x, θ)]
∂2η(x, θ)

∂θ∂θ�
ξ(dx) a.s.

as N → ∞. Therefore,

∇2
θJN (θ)

θ� 2M1(ξ, θ) − 2

∫

X

w(x) [η(x, θ̄)− η(x, θ)]
∂2η(x, θ)

∂θ∂θ�
ξ(dx) a.s.

and ∇2
θJN (βNi )

a.s.→ 2M1(ξ, θ̄). Since M1(ξ, θ̄) is nonsingular, we have again

M−1
1 (ξ, θ̄)∇2

θJN (βNi )
a.s.→ 2 Ip . (3.31)

We consider now the distribution of

−
√
N∇θJN (θ̄) =

2√
N

N∑

k=1

w(xk) εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

.

We have
−

√
N∇θJN (θ̄)

d→ v ∼ N (0, 4M2(ξ, θ̄)) .

Finally, (3.27) and (3.31) give
√
N(θ̂NWLS − θ̄)

d→ z ∼ N (0,C(w, ξ, θ̄)).
The rest of the proof is similar to the case of a nonrandomized design,

with now

v(x) =
1

σ(x)

∂η(x, θ)

∂θ

∣∣∣∣
θ̄

,

so that the vectors v(x) are i.i.d.

Remark 3.9.

(i) Theorem 3.8 indicates that, in general, the best choice of weighting
factors in terms of asymptotic covariance of the WLS estimator is
w(x) = σ−2(x); see also Sects. 4.2 and 4.4. However, the choice of w(x)
is indifferent when ξ is supported on p point only. Indeed, suppose that
ξ has support {x(1), . . . , x(p)}, that

F�
θ (ξ) =

[
∂η(x(1), θ)

∂θ
, . . . ,

∂η(x(p), θ)

∂θ

]

has full rank, and that w(x(i)) > 0 for all i = 1, . . . , p. Define W1 =
diag{ξ(x(i))w(x(i)), i = 1, . . . , p}, W2 = diag{ξ(x(i))w2(x(i))σ2(x(i)),
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i = 1, . . . , p}, and W = diag{ξ(x(i))/σ2(x(i)), i = 1, . . . , p} so that M1

(ξ, θ) = F�
θ (ξ)W1Fθ(ξ), M2(ξ, θ) = F�

θ (ξ)W2Fθ(ξ), and M(ξ, θ) =
F�
θ (ξ)WFθ(ξ). We then obtain

C(w, ξ, θ) = M−1
1 (ξ, θ)M2(ξ, θ)M

−1
1 (ξ, θ)

= F−1
θ (ξ)W−1

1 W2W
−1
1 (F�

θ )
−1

= M−1(ξ, θ)

and all WLS estimators have the same asymptotic covariance matrix.
(ii) In the case of a randomized design, the boundedness assumption of w(x)

and η(x, θ) and its derivatives in H1η and H2η can be replaced by (3.11)
and

∫

X

w(x) sup
θ∈Θ

∣∣∣∣
∂η(x, θ)

∂θi

∂η(x, θ)

∂θj

∣∣∣∣ ξ(dx) < ∞ ,

∫

X

w(x)σ(x) sup
θ∈Θ

∣∣∣∣
∂2η(x, θ)

∂θi∂θj

∣∣∣∣ ξ(dx) < ∞ ,

∫

X

w(x) sup
θ∈Θ

[
|η(x, θ̄) − η(x, θ)|

∣∣∣∣
∂2η(x, θ)

∂θi∂θj

∣∣∣∣

]
ξ(dx) < ∞ .

(iii) The random fluctuations due to the use of a randomized design according
to Definition 2.2 have (asymptotically) no effect on the covariance matrix
of the WLS estimator. We shall see later that this is also true for other
estimators. However, the situation is different in presence of modeling
error; see Remark 3.38. �

When the design is such that M1(ξ, θ̄) is singular, asymptotic normality

may still hold for θ̂NWLS , but with a norming constant smaller than
√
N ; see Wu

(1981) for nonsequential design and Lai and Wei (1982) and Pronzato (2009a)
for respectively linear and nonlinear models under a sequential design.

Consider the case where w(x) ≡ 1 (ordinary LS) and σ2(x) ≡ σ2 (station-

ary errors). Theorem 3.8 then gives
√
N(θ̂NLS − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄))
with

M(ξ, θ) =
1

σ2

∫

X

∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) , (3.32)

provided that M(ξ, θ̄) has full rank. The situation is totally different when
M(ξ, θ̄) is singular.

We shall say that the design ξ is singular (for the matrix M and the
parameter space Θ) when M(ξ, θ) is singular for some θ ∈ Θ. It may be the
case in particular because ξ is supported on less than p = dim(θ) points,

M(ξ, θ) being thus singular for all θ ∈ Θ. Then, linear functions c�θ̂NLS of the
LS estimator can be asymptotically normal, but with a normalizing constant
different from

√
N ; see Examples 2.4 and 5.39, respectively, for a linear and

nonlinear model; see also Examples 3.13 and 3.17 for the estimation of a



3.1 Asymptotic Properties of the LS Estimator in Regression Models 35

nonlinear function h(θ) in a linear model. Another situation, more atypical, is
when M(ξ, θ) is nonsingular for almost all θ but is singular for the particular
parameter value θ = θ̄. The following example illustrates the situation.

Example 3.10. Take η(x, θ) = x θ3 in the model (3.2), (3.3). For θ̄ = 0,
M(ξ, θ̄) = 0 for any ξ, whereas

∫
X [η(x, θ) − η(x, θ̄)]2ξ(dx) = 0 implies θ = θ̄

for any ξ �= δ0, the delta measure with weight one at 0. Take, for instance,

xi = x∗ for i = 1, 2 . . . with x∗ �= 0. Then (θ̂NLS)
3 = (1/x∗)

(∑N
i=1 εi

)
/N

is strongly consistent and
√
N(θ̂NLS)

3 is asymptotically normal N (0, σ2/x2∗).
More generally, when {xi} is an asymptotically discrete design (Definition 2.1)
or a randomized design (Definition 2.2), we can use the same approach as in
the proof of Theorem 3.8 and construct a Taylor development of the LS cri-
terion JN (θ). The difference is that here the first two nonzero derivatives at
θ̄ are the third and the sixth, which gives

0 = ∇θJN (θ̂NLS) = (1/2)(θ̂NLS)
2∇3

θJN (θ̄) + (1/5!)(θ̂NLS)
5∇6

θJN

with ∇3
θJN (θ) = 120 θ3 (

∑N
i=1 x

2
i )/N − 12 (

∑N
i=1 xiεi)/N , so that ∇3

θJN (θ̄) =

−12 (
∑N
i=1 xiεi)/N and ∇6

θJN = 720 (
∑N
i=1 x

2
i )/N . Therefore, ∇6

θJN
a.s.→

720 IEξ(x
2) and

√
N∇3

θJN (θ̄)
d→ z ∼ N (0, 144 σ2IEξ(x

2)) when N → ∞,
with IEξ(x

2) =
∫

X x2 ξ(dx), which gives

√
N(θ̂NLS)

3 d→ ζ ∼ N (0, σ2/IEξ(x
2)) , N → ∞ .

Straightforward calculation then gives N1/6 θ̂NLS
d→ [σ/IEξ(x

2)]1/3 t as N →
∞, where t has the p.d.f.

f(t) =
3√
2π

t2 exp(−t6/2) . (3.33)

The LS estimator thus converges as slowly as N−1/6 with a bimodal limiting
distribution; see Fig. 3.1.

In the case of normal errors, i.e., when εi ∼ N (0, σ2) for all i, the distri-
bution above is exact for any N when all the xi coincide. The derivation of
the exact finite sample distribution of the LS estimator with normal errors in
such a situation where the design consists of repetitions of observations at p
points only is considered in Sect. 6.2.1. Finite sample approximations are also
presented in the same section for the case of designs supported on more than
p points. �

Previous example illustrates the importance of considering designs ξ such
that M(ξ, θ) is nonsingular for all θ ∈ Θ. The model is then said to be regular
for ξ. A model which is not regular for ξ is called singular; it is such that
M(ξ, θ) is singular for some θ ∈ Θ. Under the assumption H2η (p. 22), when
M(ξ, θ) is nonsingular at some θ it is also nonsingular in some neighborhood of
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Fig. 3.1. Probability density function (3.33)

θ; in such cases one may sometimes suppose that Θ is chosen such that M(ξ, θ)
is nonsingular for all θ ∈ Θ. On the other hand, the model is often singular
simply because ξ is a design supported on less than p = dim(θ) points. In that
case M(ξ, θ) is singular for every θ ∈ Θ. This is what we consider mainly in
our examples with singular designs in the rest of the book.

3.1.4 Asymptotic Normality of a Scalar Function of the LS
Estimator

For the sake of simplicity, only the case w(x) ≡ 1 (ordinary LS) and
σ2(x) ≡ σ2 (stationary errors) is considered, so that C(w, ξ, θ̄) = M−1(ξ, θ̄)
in Theorem 3.8 with M(ξ, θ) given by (3.32). We shall use the following
assumption:

H1h: The function h(·) : Θ −→ R is continuous and has continuous second-
order derivatives in int(Θ).

The so-called delta method (Lehmann and Casella 1998, p. 61) then gives
the following.

Theorem 3.11 (The delta method). Let {θ̂N} be a sequence of ran-

dom vectors of Θ satisfying θ̂N
p→ θ̄ ∈ int(Θ) and

√
N(θ̂N − θ̄)

d→ z ∼
N (0,V(ξ, θ̄)), N → ∞, for some matrix V(ξ, θ̄). When H1h holds and
∂h(θ)/∂θ

∣∣
θ̄
�= 0, then

√
N [h(θ̂N ) − h(θ̄)]

d→ ζ ∼ N

(
0,
∂h(θ)

∂θ�

∣∣∣∣
θ̄

V(ξ, θ̄)
∂h(θ)

∂θ

∣∣∣∣
θ̄

)
, N → ∞ .
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Proof. We can write

h(θ̂N ) = h(θ̄) +
∂h(θ)

∂θ�

∣∣∣∣
θ̄

(θ̂N − θ̄) +
1

2
(θ̂N − θ̄)�

∂2h(θ)

∂θ∂θ�

∣∣∣∣
βN

(θ̂N − θ̄)

for some βN on the segment connecting θ̂N and θ̄. Since θ̂N
p→ θ̄, βN

p→ θ̄ too

and ∂2h(θ)/∂θ∂θ�
∣∣
βN (θ̂

N− θ̄) p→ 0. Hence
√
N [h(θ̂N )−h(θ̄)] converges in dis-

tribution to the same limit as ∂h(θ)/∂θ�
∣∣
θ̄

√
N(θ̂N − θ̄), i.e., to ∂h(θ)/∂θ�

∣∣
θ̄
z.

The theorem is not valid when ∂h(θ)/∂θ
∣∣
θ̄
= 0. We have in that case,

supposing that h(·) is three times continuously differentiable,

N [h(θ̂N ) − h(θ̄)] =
1

2

√
N(θ̂N − θ̄)�

∂2h(θ)

∂θ∂θ�

∣∣∣∣
θ̄

√
N(θ̂N − θ̄)

+
1

6

p∑

i,j,k=1

√
N{θ̂N − θ̄}i

√
N{θ̂N − θ̄}j

[
{θ̂N − θ̄}k

∂3h(θ)

∂θi∂θjθk

∣∣∣∣
βN

]
.

The term between brackets converges to zero in probability; hence, N [h(θ̂N )−
h(θ̄)]

d→ ζ where ζ is distributed as (1/2)z�∂2h(θ)/∂θ∂θ�
∣∣
θ̄
z, which is not

normal. On the other hand,
√
N [h(θ̂N ) − h(θ̄)] may be asymptotically nor-

mal in situations where θ̂N is not consistent, or even not unique, and not
asymptotically normal. We investigate this situation more deeply in the next
section.

3.2 Asymptotic Properties of Functions of the LS
Estimator Under Singular Designs

Again, for the sake of simplicity we shall assume that σ2(x) ≡ 1 and take
w(x) ≡ 1. When applied to LS estimation, under the conditions of Theo-
rem 3.8, Theorem 3.11 gives

√
N [h(θ̂NLS) − h(θ̄)]

d→ ζ ∼ N

(
0,
∂h(θ)

∂θ�

∣∣∣∣
θ̄

M−1(ξ, θ̄)
∂h(θ)

∂θ

∣∣∣∣
θ̄

)
, N → ∞ ,

with M(ξ, θ) given by (3.32). We shall call this property regular asymptotic
normality, with M−1 replaced by a g-inverse M− when M is singular.

Definition 3.12 (Regular asymptotic normality). We say that h(θ̂NLS)
satisfies the property of regular asymptotic normality when

√
N [h(θ̂NLS)− h(θ̄)]

d→ ζ ∼ N

(
0,
∂h(θ)

∂θ�

∣∣∣∣
θ̄

M−(ξ, θ̄)
∂h(θ)

∂θ

∣∣∣∣
θ̄

)
, N → ∞ .
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Singular designs cause no special difficulty in linear regression (which
partly explains why singularity issues have been somewhat disregarded in
the design literature): a linear combination c�θ of the parameters is either
estimable or not, depending on the direction of c.

3.2.1 Singular Designs in Linear Models

Consider an exact design of size N formed by N points x1, . . . , xN from X ,
with associated observations y(x1), . . . , y(xN ) modeled by

y (xi) = f�(xi)θ̄ + εi , i = 1, . . . , N , (3.34)

where the errors εi are independent and IE(εi) = 0, Var(εi) = σ2 for all i. If
the information matrix

MN = M(x1, . . . , xN ) =

N∑

i=1

f(xi)f
�(xi)

is nonsingular, then the least-squares estimator of θ,

θ̂N ∈ argmin
θ

N∑

i=1

[
y(xi) − f�(xi)θ

]2
(3.35)

is unique, and its variance is

Var(θ̂N ) = σ2M−1
N .

On the other hand, if MN is singular, then θ̂N is not defined uniquely. How-
ever, c�θ̂N does not depend on the choice of the solution θ̂N of (3.35) if (and
only if) c ∈ M(MN); that is, c = MNu for some u ∈ R

p. Then

Var(c�θ̂N ) = σ2c�M−
Nc (3.36)

where the choice of the g-inverse M−
N is arbitrary. This last expression can

be used as a criterion (the c-optimality criterion, see Chap. 5) for an optimal
choice of the N -point design x1, . . . , xN , and the design minimizing this crite-
rion may be singular; see Silvey (1980) and Pázman (1980) for some properties

and Wu (1980, 1983) for a detailed investigation of the consistency of c�θ̂N

when N → ∞. As shown below, the situation is much more complicated in the
nonlinear case, and we shall see in particular how the condition c ∈ M(MN )
has then to be modified; see (3.39) and assumption H2h.

3.2.2 Singular Designs in Nonlinear Models

In a nonlinear situation with M(ξ, θ̄) singular, regular asymptotic normality
relies on precise conditions concerning the model η(x, θ), the true value θ̄ of
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its parameters, the function h(·), and the convergence of the empirical design
measure ξN associated with the design sequence x1, x2 . . . to the design mea-
sure ξ. The following example illustrates the difficulties that may occur when
ξN converges weakly to a singular ξ and h(·) is a nonlinear function, even if

the regression model is linear. In this example, θ̂NLS is consistent, but in gen-

eral h(θ̂NLS) converges more slowly than 1/
√
N ; it may be not asymptotically

normal, and, in the very specific situation where it is asymptotically normal
and converges as 1/

√
N , its limiting variance is larger than that obtained

when using the limiting design ξ.

Example 3.13. We consider the same situation as in Example 2.4 and are now
interested in the estimation of the point x where η(x, θ) = θ1x + θ2x

2 is
maximum, i.e., in the estimation of h(θ) = −θ1/(2θ2), with h ≥ 0 and

∂h(θ)

∂θ
= − 1

2θ2

(
1
2h

)
.

Let θ∗ be a prior guess for θ with θ∗1 ≥ 0, θ∗2 < 0; let h∗ = −θ∗1/(2θ∗2) denote the
corresponding prior guess for h, and define x∗ = 2h∗. The c-optimum design
ξ∗ supported in X = [0, 1] that minimizes [∂h(θ)/∂θ� M−(ξ) ∂h(θ)/∂θ]θ∗ is
easily computed from Elfving’s theorem (1952), see Sect. 5.3.1, and is given by

ξ∗ =

{
γ∗δ√2−1 + (1 − γ∗)δ1 if 0 ≤ x∗ ≤

√
2 − 1 or 1 ≤ x∗ ,

δx∗ otherwise ,
(3.37)

with δx the delta measure that puts weight 1 at x and

γ∗ =

√
2

2

1 − x∗
2(

√
2 − 1)− x∗

.

Suppose that the prior guess θ∗ is such that
√
2 − 1 < x∗ ≤ 1 so that the

c-optimum design puts mass 1 at x∗; that is, it coincides with ξ∗ considered
in Example 2.4. We consider the design given by (2.2) for which the empir-
ical design measure ξN converges weakly to ξ∗, with α ≤ 1/2 to ensure the

consistency of θ̂NLS .

We show the following in the rest of the example: (i) h(θ̂NLS) is generally
asymptotically normal but converges as slowly asNα−1/2; (ii) in the particular

case when x∗ = argmaxx η(x, θ̄), we obtain that h(θ̂NLS) is not asymptotically
normal supposing that 1/4 ≤ α ≤ 1/2, although such a choice of x∗ may be
considered as optimal for the estimation of the maximum of the regression
function. On the other hand, for the same choice of x∗ but with α < 1/4 the

estimator h(θ̂NLS) is asymptotically normal and converges as 1/
√
N , but its

limiting variance is larger than that obtained with the limiting design ξ∗.

(i) When θ̄1+x∗θ̄2 �= 0, i.e., when h(θ̄) �= h∗, which corresponds to the typical
situation, we have
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h(θ̂NLS) = h(θ̄) + (θ̂NLS − θ̄)�
[
∂h(θ)

∂θ

∣∣∣∣
θ̄

+ op(1)

]
,

with ∂h(θ)/∂θ
∣∣
θ̄
= −1/(2θ̄2)[1, 2h(θ̄)]� not parallel to c∗ = (x∗, x2∗)

�,
and

N1/2−α [h(θ̂NLS) − h(θ̄)]
d→ ζ ∼ N (0, vθ̄) , N → ∞ ,

with vθ̄ =W (α)[x∗−2h(θ̄)]2/(4θ̄22x
2∗) whereW (α) is given by (2.5); h(θ̂NLS)

is thus asymptotically normal but converges as Nα−1/2.
(ii) In the particular situation where the prior guess h∗ coincides with the

true value h(θ̄), θ̄1 + x∗θ̄2 = 0 and we write

h(θ̂NLS) = h(θ̄) + (θ̂NLS − θ̄)�
∂h(θ)

∂θ

∣∣∣∣
θ̄

+
1

2
(θ̂NLS − θ̄)�

[
∂2h(θ)

∂θ∂θ�

∣∣∣∣
θ̄

+ op(1)

]
(θ̂NLS − θ̄) , (3.38)

with

∂h(θ)

∂θ

∣∣∣∣
θ̄

= − 1

2θ̄2x∗
c∗ and

∂2h(θ)

∂θ∂θ�

∣∣∣∣
θ̄

=
1

2θ̄22

(
0 1
1 2x∗

)
.

Define ΔN = θ̂NLS− θ̄ and EN = 2θ̄22Δ
�
N [∂2h(θ)/∂θ∂θ�]

∣∣
θ̄
ΔN . The eigen-

vector decomposition of [∂2h(θ)/∂θ∂θ�]
∣∣
θ̄
gives

EN = β
[
(v�

1 ΔN )2 − (v�
2 ΔN )2

]

with v1,2 = (1, x∗ ±
√
1 + x2∗) and β = (x∗ +

√
1 + x2∗)/[2(1 + x2∗ +

x∗
√
1 + x2∗)]. Similarly to (2.4) we then obtain

N1/2−αv�
1,2ΔN

d→ ζ1,2 ∼ N (0, [1 + 1/x2∗]W (α)) , N → ∞ ,

withW (α) given by (2.5). From (3.38), the limiting distribution of h(θ̂NLS)

is not normal when α ≥ 1/4; when α > 1/4, N1−2α[h(θ̂NLS) − h(θ̄)] tends
to be distributed as [1/(4θ̄22)]βW (α)(1 + 1/x2∗) times the difference of
two independent chi-square random variables. When α < 1/4 we have√
N EN = op(1), N → ∞, and (3.38) implies

√
N [h(θ̂NLS)− h(θ̄)]

d→ ζ ∼ N (0, V (α)/(4θ̄22x
2
∗)) , N → ∞ ,

with V (α) given by (2.3). The limiting variance is thus larger than

[∂h(θ)/∂θ� M−(ξ∗) ∂h(θ)/∂θ]θ̄ = 1/(4θ̄22x
2
∗) . �

As previous example shows, regular asymptotic normality may fail to hold
when the empirical design measure ξN converges weakly to a singular de-
sign. Stronger types of convergence are thus required, and we shall focus our
attention on the sequences defined in Sect. 2.1. Besides conditions on the de-
sign sequence, we shall see that regular asymptotic normality also relies on
conditions concerning:
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(i) The true value θ̄ of the model parameters in relation to the geometry of
the model

(ii) The function h(·)

We first consider the situation when the design sequence is such that the em-
pirical measure ξN converges strongly to a singular discrete design, but the
convergence is slow enough to ensure the consistency of θ̂NLS. Such a condi-
tion on the design sequence can be obtained by invoking Theorem 3.5. The
more general situation of design sequences obeying to Definition 2.1 or 2.2 is
considered next.

Regular Asymptotic Normality when X is Finite

When the design space X is finite, we can invoke Theorem 3.5 to ensure
the consistency of θ̂NLS, and regular asymptotic normality follows for suitable
functions h(·).

Theorem 3.14. Let {xi} be an asymptotically discrete design (Definition 2.1)
on the finite design space X ⊂ R

d, the limiting design ξ being possibly singu-
lar. Suppose that the assumptions HΘ, H1η, H2η, and H1h given in Sects. 3.1

and 3.1.4 and the condition (3.17) of Theorem 3.5 are satisfied, so that θ̂NLS
is strongly consistent. If, moreover, ∂h(θ)/∂θ

∣∣
θ̄
�= 0 and

∂h(θ)

∂θ

∣∣∣∣
θ̄

∈ M[M(ξ, θ̄)] , (3.39)

then h(θ̂NLS) satisfies

√
N [h(θ̂NLS)− h(θ̄)]

d→ ζ ∼ N

(
0,
∂h(θ)

∂θ�

∣∣∣∣
θ̄

M−(ξ, θ̄)
∂h(θ)

∂θ

∣∣∣∣
θ̄

)
, N → ∞ ,

(3.40)

where M(ξ, θ) is given by (3.32) and the choice of the g-inverse is arbitrary.

Proof. Similarly to the proof of Theorem 3.8, we can write for N larger than
some N0,

{∇θJN (θ̂NLS)}i = 0 = {∇θJN (θ̄)}i + {∇2
θJN (βNi )(θ̂NLS − θ̄)}i , i = 1, . . . , p ,

with JN (·) the LS criterion (3.1) and βNi between θ̂NLS and θ̄. Moreover,

−
√
N∇θJN (θ̄)

d→ v ∼ N (0, 4M(ξ, θ̄)) and ∇2
θJN (βNi )

a.s.→ 2M(ξ, θ̄) as
N → ∞. From that, we obtain

√
Nc�M(ξ, θ̄)(θ̂NLS − θ̄)

d→ z ∼ N (0, c�M(ξ, θ̄)c) , N → ∞ ,
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for any c ∈ R
p. Applying the Taylor formula again we can write

√
N [h(θ̂NLS) − h(θ̄)] =

√
N
∂h(θ)

∂θ�

∣∣∣∣
αN

(θ̂NLS − θ̄)

for some αN between θ̂NLS and θ̄ and ∂h(θ)/∂θ
∣∣
αN

a.s.→ ∂h(θ)/∂θ
∣∣
θ̄
as N → ∞.

When (3.39) is satisfied, we can write ∂h(θ)/∂θ
∣∣
θ̄
= M(ξ, θ̄)u for some u ∈ R

p,
which gives (3.40).

Remark 3.15.

(i) When the limiting design ξ is singular, the property of regular asymp-
totic normality in Theorem 3.14 relies on all the design sequence and
is not a property of ξ. Even more importantly, the sequence itself, not
ξ, is responsible for the consistency of h(θ̂NLS). Using a c-optimal exper-
iment ξ∗c that minimizes

[
∂h(θ)/∂θ�M−(ξ, θ) ∂h(θ)/∂θ

]
θ∗ for some θ∗

(see Chap. 5) may thus raise difficulties when ξ∗c is singular.
(ii) It is instructive to consider the case of a linear function h(·), i.e.,

h(θ) = c�θ, in Theorem 3.14. The choice of c is then not arbitrary when
the limiting design ξ is singular: from (3.39), the vectors c for which
regular asymptotic normality holds depend on the (unknown) value of
θ̄; see Example 5.39 in Sect. 5.4. This means in particular that regular
asymptotic normality does not hold in general for the estimation of a
component {θ}i of θ in a nonlinear regression model when the limiting
design ξ is singular.

(iii) The conclusion of the theorem remains valid when DN (θ, θ̄) in Theo-
rem 3.5 only satisfies inf‖θ−θ̄‖≥δDN (θ, θ̄) → ∞ as N → ∞ (which en-

sures θ̂NLS
p→ θ̄) with Θ a convex set; see Bierens (1994, Theorem 4.2.2);

see also Theorem 4.15. �

Regular Asymptotic Normality when θ̂N
LS is not Consistent

The situation is much more complicated than above when θ̂NLS does not

converge to θ̄. Indeed, all possible limit points of the sequence {θ̂NLS} in
Θ# = {θ ∈ Θ :

∫
X [η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0} should be considered; see

Theorem 3.3. This can be investigated through the geometry of the model
under the design measure ξ.

For ξ any design measure, we define L2(ξ) as the Hilbert space of real-
valued functions f(·) on X which are square integrable with the norm

‖f‖ξ =
[∫

X

f2(x) ξ(dx)

]1/2
< ∞ . (3.41)

Under H2η, the functions η(·, θ) and

{fθ}i(·) = ∂η(·, θ)/∂θi , i = 1, . . . , p , (3.42)
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belong to L2(ξ). We shall write

θ
ξ≡ θ∗

when the values θ and θ∗ satisfy ‖η(·, θ) − η(·, θ∗)‖ξ = 0. Note that θ
ξ≡ θ̄ is

equivalent to θ ∈ Θ# as defined in the proof of Theorem 3.3.
We shall need the following technical assumptions on the geometry of the

model:

H3η: Let Sε denote the set
{
θ ∈ int(Θ) :

∥∥η(·, θ) − η(·, θ̄)
∥∥2
ξ
< ε
}
, then

there exists ε > 0 such that for every θ# and θ∗ in Sε, we have

[
∂

∂θ

∥∥η(·, θ) − η(·, θ#)
∥∥2
ξ

]

θ=θ∗
= 0 =⇒ θ#

ξ≡ θ∗ .

H4η: For any point θ∗
ξ≡ θ̄, there exists a neighborhood V(θ∗) such that

∀θ ∈ V(θ∗) , rank[M(ξ, θ)] = rank[M(ξ, θ∗)] .

The assumptions H3η and H4η admit a straightforward geometrical and
statistical interpretation in the case where the measure ξ is discrete. Let X =
Sξ =

{
x(1), . . . , x(k)

}
denote the support of ξ and define η(θ) = (η(x(1), θ), . . . ,

η(x(k), θ))�. The set Sη = {η(θ) : θ ∈ Θ} is then the expectation surface of

the model under the design ξ, and θ∗
ξ≡ θ̄ is equivalent to η(θ∗) = η(θ̄). When

H3η is not satisfied, it means that the surface Sη intersects itself at the point
η(θ̄), and therefore, there are points η(θ) arbitrary close to η(θ̄) with θ far

from θ̄. The asymptotic distribution of
√
N(θ̂NLS − θ̄) is then not normal, even

if M(ξ, θ̄) has full rank. When H4η is not satisfied, it means that the surface
Sη possesses edges, and the point η(θ̄) belongs to such an edge, although

θ̄ ∈ int(Θ). Again, the asymptotic distribution of
√
N(θ̂NLS − θ̄) is not normal.

Besides the geometrical assumptions above on the model, we need an as-
sumption that generalizes (3.39) to the case where the set Θ# is not reduced
to {θ̄}.

H2h: The function h(·) is defined and has a continuous nonzero vector of

derivatives ∂h(θ)/∂θ on int(Θ). Moreover, for any θ
ξ≡ θ̄, there exists a linear

mapping Aθ from L2(ξ) to R (a continuous linear functional on L2(ξ)), such
that Aθ = Aθ̄ and that

∂h(θ)

∂θi
= Aθ [{fθ}i] , i = 1, . . . , p ,

where {fθ}i is defined by (3.42).



44 3 Asymptotic Properties of the LS Estimator

When Θ# = {θ̄}, H2h corresponds to (3.39) used in Theorem 3.14. In a
linear model η(x, θ) = f�(x)θ with h(θ) = c�θ, H2h is equivalent to the classi-
cal condition c ∈ M[M(ξ)]; see Pázman and Pronzato (2009). More generally,
it receives a simple interpretation when ξ is a discrete design measure with
support X = Sξ =

{
x(1), . . . , x(k)

}
. Suppose that h(·) is continuously differ-

entiable, then H2h and (3.12) are satisfied under the following assumption:

H2′
h: There exists a function Ψ(·), with continuous gradient, such that

h(θ) = Ψ [η(θ)], with η(θ) = (η(x(1), θ), . . . , η(x(k), θ))�.

We then obtain
∂h(θ)

∂θ�
=
∂Ψ(t)

∂t�

∣∣∣∣
t=η(θ)

∂η(θ)

∂θ�
.

H2h thus holds for every θ̄ ∈ int(Θ) with Aθ = ∂Ψ(t)/∂t�
∣∣
t=η(θ)

.

When ξ is a continuous design measure, an example where H2h holds
and (3.12) is satisfied is when the following assumption is satisfied.

H2′′
h: h(θ) = Ψ [h1(θ), . . . , hk(θ)] with Ψ(·) a continuously differentiable

function of k variables and with

hi(θ) =

∫

X

gi[η(x, θ), x] ξ(dx) , i = 1, . . . , k ,

for some functions gi(t, x) differentiable with respect to t for any x in the
support of ξ.

Indeed, supposing that we can interchange the order of derivatives and
integrals, we obtain

∂h(θ)

∂θi
=

k∑

j=1

[
∂Ψ(v)

∂vj

]

vj=hj(θ)

∫

X

[
∂gj(t, x)

∂t

]

t=η(x,θ)

{fθ}i(x) ξ(dx) ,

and, for any f ∈ L2(ξ),

Aθ(f) =

k∑

j=1

[
∂Ψ(v)

∂vj

]

vj=hj(θ)

∫

X

[
∂gj(t, x)

∂t

]

t=η(x,θ)

f(x) ξ(dx) ,

so that H2h holds.

The following result on regular asymptotic normality without consistency
of θ̂NLS is proved in (Pázman and Pronzato, 2009).

Theorem 3.16. Let {xi} be an asymptotically discrete design (Definition 2.1)
or a randomized design (Definition 2.2) on X ⊂ R

d. Suppose that HΘ,
H1η, and H2η are satisfied and that the function of interest h(·) is contin-

uous and satisfies (3.12) and H2h. Let {θ̂NLS} be a sequence of LS estima-
tors. Then, H3η and H4η imply regular asymptotic normality: the sequence



3.2 Asymptotic Properties of Functions of the LS Estimator 45

√
N
{
h(θ̂NLS)− h(θ̄)

}
converges in distribution as N → ∞ to a random vari-

able distributed

N

(
0,

[
∂h(θ)

∂θ�
M−(ξ, θ)

∂h(θ)

∂θ

]

θ=θ̄

)
,

where the choice of the g-inverse is arbitrary.

The importance of the assumption H2h in a nonlinear situation is illus-
trated in Example 3.17 below. In this example, the empirical design measure
ξN converges strongly to a singular ξ∗, but regular asymptotic normality only
holds in the special situation when H2h is satisfied.

Example 3.17. We consider the same linear regression model as in Exam-
ple 3.13, but now the design is such that N − m observations are taken at
x = x∗ = 2h∗ ∈ (0, 1], with h∗ = −θ∗1/(2θ∗2) a prior guess for the location of
the maximum of the function θ1x + θ2x

2, and m observations are taken at
x = z ∈ (0, 1], z �= x∗. We shall suppose that either m is fixed4 or m → ∞
with m/N → 0 as N tends to infinity. In both cases the sequence {xi} is such
that the empirical measure ξN converges strongly to δx∗ as N → ∞, in the
sense of Definition 2.1. Note that δx∗ = ξ∗, the c-optimum design measure for
h(θ∗), when

√
2 − 1 < x∗ ≤ 1; see (3.37).

The LS estimator θ̂NLS is given by

θ̂NLS = θ̄ +
1

x∗z(x∗ − z)

[
βm√
m

(
x2∗
−x∗

)
+

γN−m√
N −m

(
−z2
z

)]
, (3.43)

where βm = (1/
√
m)
∑
xi=z

εi and γN−m = (1/
√
N −m)

∑
xi=x∗ εi are inde-

pendent random variables that tend to be distributed N (0, 1) as m → ∞ and

N −m → ∞. θ̂NLS is consistent if and only if m → ∞. However, h(θ̂NLS) is also
consistent when m is finite provided that θ̄1 + x∗θ̄2 = 0. Indeed, for m finite
we have

θ̂NLS
a.s.→ θ̂# = θ̄ +

1

z(x∗ − z)

βm√
m

(
x∗
−1

)
, N → ∞ ,

and h(θ̂#) = −θ̂#1 /(2θ̂
#
2 ) = x∗/2 = h(θ̄). Also,

√
N [h(θ̂NLS)− h(θ̄)] =

√
N [h(θ̂NLS) − h(θ̂#)]

=
√
N(θ̂NLS − θ̂#)�

[
∂h(θ)

∂θ

∣∣∣∣
θ̂#

+ op(1)

]
,

4Taking only a finite number of observations at another place than x∗ might
seem an odd strategy; note, however, that Wynn’s algorithm (Wynn, 1972) for the
minimization of [∂h(θ)/∂θ� M−(ξ) ∂h(θ)/∂θ]θ∗ generates such a sequence of design
points when the design space is X = [−1, 1], see Pázman and Pronzato (2006b), or
when X is a finite set containing x∗.
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with ∂h(θ)/∂θ
∣∣
θ̂#

= −1/(2θ̂#2 )[1, x∗]�, and

√
N(θ̂NLS − θ̂#) =

√
N

x∗(x∗ − z)

γN−m√
N −m

(
−z
1

)
.

Therefore,
√
N [h(θ̂NLS)−h(θ̄)]

d→ ν/(2ζ) with ν ∼ N (0, 1/x2∗) and ζ ∼ N (θ̄2,

1/[mz2(x∗ − z)2]), and h(θ̂NLS) is not asymptotically normal.
Suppose now that m = m(N) → ∞ with m/N → 0 as N → ∞. If

θ̄1 + x∗θ̄2 �= 0, we can write

√
m[h(θ̂NLS) − h(θ̄)] =

√
m(θ̂NLS − θ̄)�

[
∂h(θ)

∂θ

∣∣∣∣
θ̄

+ op(1)

]

and, using (3.43), we get

√
m[h(θ̂NLS) − h(θ̄)]

d→ ζ ∼ N

(
0,

(θ̄1 + x∗θ̄2)2

4θ̄42z
2(x∗ − z)2

)
, N → ∞ .

h(θ̂NLS) thus converges as 1/
√
m and is asymptotically normal with a limiting

variance depending on z. If θ̄1 + x∗θ̄2 = 0,

√
N [h(θ̂NLS) − h(θ̄)] =

√
N

(
− θ̂N1

2θ̂N2
− x∗

2

)
= −

√
N

2

γN−m√
N −m

1

x∗θ̂N2
and √

N [h(θ̂NLS) − h(θ̄)]
d→ ζ ∼ N (0, 1/(4θ̄22x

2
∗)) .

This is the only situation within Examples 3.13 and 3.17 where regular asymp-
totic normality holds: h(θ̂NLS) converges as 1/

√
N , is asymptotically normal

and has a limiting variance that can be computed from the limiting design ξ∗,
i.e., which coincides with [∂h(θ)/∂θ� M−(ξ∗) ∂h(θ)/∂θ]θ̄. Note that assuming
that θ̄1 + x∗θ̄2 = 0 amounts to assuming that the prior guess h∗ = x∗/2 coin-
cides with the true location of the maximum of the model response, which is
rather unrealistic.

It is instructive to discuss (3.12) and H2h in the context this example. The
limiting design is ξ∗ = δx∗ , the measure that puts mass one at x∗. Therefore,

θ
ξ∗≡ θ̄ ⇐⇒ θ1 + x∗θ2 = θ̄1 + x∗θ̄2. It follows that θ

ξ∗≡ θ̄ =⇒ h(θ) = h(θ̄)
only if θ̄1 + x∗θ̄2 = 0, and this is the only case where the condition (3.12)
is satisfied. Since we have seen above that regular asymptotic normality does
not hold when θ̄1 + x∗θ̄2 �= 0, this shows the importance of (3.12). Consider
now the derivative of h(θ). We have ∂h(θ)/∂θ = −1/(2θ2)[1, −θ1/θ2]� and

∂η(x∗, θ)/∂θ = (x∗, x2∗)�. Therefore, even if θ̄1 + x∗θ̄2 = 0, we obtain θ
ξ∗≡

θ̄ =⇒ ∂h(θ)/∂θ = [−1/(2θ2)][1, x∗]� = [−1/(2x∗θ2)]∂η(x∗, θ)/∂θ, and H2h
does not hold if θ �= θ̄. When m is fixed, Θ# = argmin Jθ̄(θ), with Jθ̄(θ) =
limN→∞ JN (θ), contains points other than θ̄; H2h does not hold and there is

no regular asymptotic normality for h(θ̂N ). On the opposite, when m → ∞,
Θ# = {θ̄} and H2h holds: this is the only situation in the example where
regular asymptotic normality holds. �
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Regular Asymptotic Normality of a Multidimensional Function
h(θ)

Let h(θ) = [h1(θ), . . . , hq(θ)]
� be a q-dimensional function defined on Θ. We

then have the following straightforward extension of Theorem 3.3.

Theorem 3.18. Suppose that the q functions hi(·) are continuous on Θ.
Then, under the assumptions of Theorem 3.3, but with

θ
ξ≡ θ̄ =⇒ h(θ) = h(θ̄) (3.44)

replacing (3.12), we have limN→∞ h(θ̂NLS) = h(θ̄) a.s. for {θ̂NLS} any sequence
of LS estimators.

Also, Theorem 3.14 can be extended into the following.

Theorem 3.19. Under the assumptions of Theorem 3.14 but with

∂h�(θ)
∂θ

∣∣∣∣
θ̄

∈ M[M(ξ, θ̄)] ,

replacing (3.39), h(θ̂NLS) satisfies

√
N
{
h(θ̂NLS) − h(θ̄)

}
d→ z ∼ N

(
0,

[
∂h(θ)

∂θ�
M−(ξ, θ)

∂h�(θ)
∂θ

]

θ̄

)

as N → ∞, where the choice of the g-inverse is arbitrary.

Proof. Take any c ∈ R
q, and define hc(θ) = c�h(θ). Evidently hc(θ) satisfies

the assumptions of Theorem 3.14 and
√
N
{
hc(θ̂

N
LS) − hc(θ̄)

}
converges in

distribution as N → ∞ to a random variable distributed

N

(
0, c�

[
∂h(θ)

∂θ�
M−(ξ, θ)

∂h�(θ)
∂θ

]

θ̄

c

)
.

Consider now the following assumption; its substitution for H2h in Theo-
rem 3.16 gives Theorem 3.20 below.

H3h: The vector function h(θ) has a continuous Jacobian ∂h(θ)/∂θ� on

int(Θ). Moreover, for each θ
ξ≡ θ̄, there exists a continuous linear mapping Bθ

from L2(ξ) to R
q such that Bθ = Bθ̄ and that

∂h(θ)

∂θi
= Bθ [{fθ}i] , i = 1, . . . , p ,

where {fθ}i is given by (3.42).
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Theorem 3.20. Under the assumptions of Theorem 3.16, but with (3.44) and

H3h replacing (3.12) and H2h, respectively, for any sequence {θ̂NLS} of LS
estimators

√
N
{
h(θ̂NLS) − h(θ̄)

}
d→ z ∼ N

(
0,

[
∂h(θ)

∂θ�
M−(ξ, θ)

∂h�(θ)
∂θ

]

θ̄

)

as N → ∞, where the choice of the g-inverse is arbitrary.

3.3 LS Estimation with Parameterized Variance

In some situations, more information than the mean response η(x, θ) can be
included in the characteristics of the model, even if the full parameterized
probability distribution of the observations is not available. In particular, this
includes the situation where the variance function σ2(xi) of the error εi in the
model (3.2) has a known parametric form.

The (ordinary) LS estimator, which ignores this information, is still
strongly consistent and asymptotically normally distributed under the con-
ditions given in Sect. 3.1. However, when the parameters θ that enter into the
mean response also enter the variance function, it is natural to expect that us-
ing the variance information will provide a more precise estimation of θ. Only
the case of randomized designs will be considered, but similar developments
can be obtained for asymptotically discrete designs using Lemma 2.5 instead
of Lemma 2.6.

We consider the situation where the errors in (3.2) satisfy

IE{ε2i } = σ2(xi) = β̄ λ(xi, θ̄) ≥ 0 for all i , (3.45)

with β̄ a positive scaling factor, either known or estimated (see Sect. 3.3.6).
We shall use the following assumptions:

H1λ: λ(x, θ̄) is bounded and strictly positive on X , λ−1(x, θ) is bounded on
X ×Θ, and λ(x, θ) is continuous on Θ for all x ∈ X .

H2λ: For all x ∈ X , λ(x, θ) is twice continuously differentiable with respect
to θ ∈ int(Θ), and its first two derivatives are bounded on X × int(Θ).

The influence of a misspecification of the variance function λ(x, θ), in par-
ticular of β̄ in (3.45), is considered in Sect. 3.3.5, and the case of variance
functions depending on parameters other than θ is treated in Sect. 3.3.6.

3.3.1 Inconsistency of WLS with Parameter-Dependent Weights

Since the optimum weights given in Theorem 3.8, w(x) = λ−1(x, θ̄), cannot
be used (θ̄ is unknown), it is tempting to use the weights λ−1(x, θ), i.e., to

choose θ̂N that minimizes the criterion
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JN (θ) =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, θ)
. (3.46)

However, this approach is not recommended since θ̂N is generally not consis-
tent, as shown in the following theorem.

Theorem 3.21. Let {xi} be a randomized design with measure ξ on X ⊂ R
d;

see Definition 2.2. Consider the estimator θ̂N that minimizes (3.46) in the
model (3.2), (3.45). Assume that HΘ, H1η, and H1λ are satisfied. Then, as

N → ∞, θ̂N converges a.s. to the set Θ# of values of θ that minimize

Jθ̄(θ) = β̄

∫

X

λ(x, θ̄)λ−1(x, θ) ξ(dx) +

∫

X

λ−1(x, θ)[η(x, θ) − η(x, θ̄)]2 ξ(dx) .

Notice that, in general, θ̄ �∈ Θ#.

Proof. As in Theorem 3.1, we have for every θ,

JN (θ) =
1

N

N∑

k=1

λ−1(xk, θ)[y(xk) − η(xk, θ)]
2

=
1

N

N∑

k=1

λ−1(xk, θ)ε
2
k +

2

N

N∑

k=1

λ−1(xk, θ)[η(xk, θ̄)− η(xk, θ)]εk

+
1

N

N∑

k=1

λ−1(xk, θ)[η(xk, θ̄) − η(xk, θ)]
2 .

Lemma 2.6 implies that, when N → ∞, the first term on the right-hand side
converges a.s. to β̄

∫
X λ−1(x, θ)λ(x, θ̄)ξ(dx), the second to zero, and the third

to
∫

X
λ−1(x, θ) [η(x, θ) − η(x, θ̄)]2ξ(dx), and for each term, the convergence

is uniform with respect to θ. Lemma 2.11 then gives the result.

3.3.2 Consistency and Asymptotic Normality of Penalized WLS

Consider now the following modification of the criterion (3.46),

JN (θ) =
1

N

N∑

k=1

[y(xk)− η(xk, θ)]
2

λ(xk, θ)
+

β̄

N

N∑

k=1

logλ(xk, θ) . (3.47)

It can be considered as a penalized WLS estimator, where the term (β̄/N)
∑N
k=1

logλ(xk, θ) penalizes large variances. This construction will receive a formal
justification in Sects. 4.2 and 4.3; see in particular Example 4.12: it corre-
sponds to the maximum likelihood estimator when the errors εi are normally
distributed. It can be obtained numerically by direct minimization of (3.47)
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using a nonlinear optimization method or by solving an infinite sequence5

of weighted LS problems as suggested in (Downing et al., 2001); see also
Sect. 4.3.2. Next theorems show that this estimator is strongly consistent and
asymptotically normally distributed without the assumption of normal errors.
Notice that the method requires that β̄ is known. The consequences of a mis-
specification of β̄ will be considered in Sect. 3.3.5 and the joint estimation of
β̄ and θ in Sect. 3.3.6. On the other hand, the two-stage method of Sect. 3.3.3
does not require β̄ to be known.

Theorem 3.22 (Consistency of the penalized WLS estimator). Let
{xi} be a randomized design with measure ξ on X ⊂ R

d; see Definition 2.2.

Consider the estimator θ̂NPWLS that minimizes (3.47) in the model (3.2),
(3.45). Assume that HΘ, H1η, and H1λ are satisfied and that

∀θ ∈ Θ ,

{∫
X λ−1(x, θ)[η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0∫

X
|λ−1(x, θ)λ(x, θ̄) − 1| ξ(dx) = 0

}
⇐⇒ θ = θ̄ . (3.48)

Then θ̂NPWLS converges a.s. to θ̄ as N → ∞.

Proof. The proof follows the same lines as for Theorem 3.1. Using Lemma 2.6,

we show that JN (θ)
θ� Jθ̄(θ) a.s. when N → ∞, with

Jθ̄(θ) = β̄

∫

X

λ(x, θ̄)λ−1(x, θ) ξ(dx) +

∫

X

λ−1(x, θ)[η(x, θ) − η(x, θ̄)]2 ξ(dx)

+ β̄

∫

X

logλ(x, θ) ξ(dx)

=

∫

X

λ−1(x, θ)[η(x, θ) − η(x, θ̄)]2 ξ(dx)

+ β̄

∫

X

{
λ(x, θ̄)λ−1(x, θ) − log

[
λ(x, θ̄)λ−1(x, θ)

]}
ξ(dx)

+ β̄

∫

X

logλ(x, θ̄) ξ(dx) .

The function x − log x is positive and minimum at x = 1, so that Jθ̄(θ) ≥
β̄[1+

∫
X

logλ(x, θ̄) ξ(dx)]. From (3.48) the equality is obtained only at θ = θ̄.

Lemma 2.10 then implies that θ̂N
a.s.→ θ̄ as N → ∞.

Remark 3.23. Suppose that β̄ in (3.45) is an unknown positive constant that
forms a nuisance parameter for the estimation of θ. Assuming that y(xk)
is normally distributed N (η(xk , θ̄), β̄λ(xk, θ̄)) for all k, we obtain that the
maximum likelihood estimator of θ and β minimizes

JN (θ, β) =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

β λ(xk, θ)
+

1

N

N∑

k=1

logλ(xk, θ) + log(β)

5However, we shall in Remark 3.28-(iv) that two steps are enough to obtain the
same asymptotic behavior as the maximum likelihood estimator for normal errors.
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with respect to θ and β; see Example 4.12. For any θ, this function reaches
its minimum with respect to β at

β̂N =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, θ)

and the substitution of β̂N for β in JN (θ, β) yields the criterion

JN (θ) = log

{
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, θ)

}
+

1

N

N∑

k=1

logλ(xk, θ) , (3.49)

to be minimized with respect to θ. Similarly to the proof of Theorem 3.22, we

obtain that JN (θ)
θ� Jθ̄(θ) a.s. for {xk} a randomized design with measure ξ,

where now

Jθ̄(θ) = log

{
β̄

∫

X

λ(x, θ̄)

λ(x, θ)
ξ(dx) +

∫

X

[η(x, θ) − η(x, θ̄)]2

λ(x, θ)
ξ(dx)

}

+

∫

X

logλ(x, θ) ξ(dx) .

Therefore,

Jθ̄(θ) − Jθ̄(θ̄) = log

{∫

X

λ(x, θ̄)

λ(x, θ)
ξ(dx) +

∫

X

[η(x, θ) − η(x, θ̄)]2

β̄λ(x, θ)
ξ(dx)

}

+

∫

X

log
λ(x, θ)

λ(x, θ̄)
ξ(dx)

≥ log

{∫

X

λ(x, θ̄)

λ(x, θ)
ξ(dx)

}
+

∫

X

log
λ(x, θ)

λ(x, θ̄)
ξ(dx)

≥ 0

(from Jensen’s inequality), with equality if and only if

∫

X

[η(x, θ) − η(x, θ̄)]2

λ(x, θ)
ξ(dx) = 0 (3.50)

and
∫

X

∣∣∣∣
λ(x, θ̄)

λ(x, θ)
− C

∣∣∣∣ ξ(dx) = 0 for some constant C > 0 . (3.51)

Under the estimability condition [(3.50) and (3.51) =⇒ θ = θ̄], the estimator
that minimizes (3.49) thus converges a.s. to θ̄ as N → ∞. �

Theorem 3.24 (Asymptotic normality of the penalized WLS esti-
mator). Let {xi} be a randomized design with measure ξ on X ⊂ R

d; see
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Definition 2.2. Consider the penalized WLS estimator θ̂NPWLS that minimizes
the criterion (3.47) in the model (3.2), (3.45) where the errors εi have fi-
nite fourth moments IE(ε4i ). Assume that HΘ, H1η, H2η, H1λ, and H2λ are
satisfied, that the condition (3.48) is satisfied, and that the matrix

M1(ξ, θ̄) =

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx)

+
β̄

2

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (3.52)

is nonsingular. Then, θ̂NPWLS satisfies

√
N(θ̂NPWLS − θ̄)

d→ z ∼ N (0,M−1
1 (ξ, θ̄)M2(ξ, θ̄)M

−1
1 (ξ, θ̄)) , N → ∞ ,

with

M2(ξ, θ̄) = β̄M1(ξ, θ̄)

+
β̄3/2

2

∫

X

λ−3/2(x, θ̄)

[
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

+
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

]
s(x)ξ(dx)

+
β̄2

4

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

κ(x) ξ(dx) , (3.53)

where s(x) = IEx{ε3(x)}σ−3(x) is the skewness and κ(x)= IEx{ε4(x)}σ−4(x)
−3 the kurtosis of the distribution of ε(x).

Proof. The proof is similar to that of Theorem 3.8. Using Lemma 2.6 with the
conditions stated in the theorem, the calculation of the derivatives of JN (θ)

gives ∇2
θJN (θ̂NPWLS)

a.s.→ 2M1(ξ, θ̄) as N → ∞. Also,

−
√
N∇θJN (θ̄) =

2√
N

N∑

k=1

{
λ−1(xk, θ̄)εk

∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

+
1

2
λ−2(xk, θ̄)ε

2
k

∂λ(xk, θ)

∂θ

∣∣∣∣
θ̄

− β̄

2
λ−1(xk, θ̄)

∂λ(xk, θ)

∂θ

∣∣∣∣
θ̄

}

=
2√
N

N∑

k=1

wk ,

where the wk are independent. Direct calculation gives IE{wk} = 0 and

IE{wkw
�
k } = M2(ξ, θ̄). Therefore,

√
N(θ̂NPWLS − θ̄)

d→ z as N → ∞, with
z distributed N (0,M−1

1 (ξ, θ̄)M2(ξ, θ̄)M
−1
1 (ξ, θ̄)).

Remark 3.25. When the errors εk are normally distributed, s(x) = κ(x) = 0,

M2(ξ, θ̄) = β̄M1(ξ, θ̄), and
√
N(θ̂NPWLS − θ̄)

d→ z ∼ N (0, β̄M−1
1 (ξ, θ̄)) as

N → ∞ . �
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3.3.3 Consistency and Asymptotic Normality of Two-stage LS

By two-stage LS, we mean using first some estimator θ̂N1 and then plugging
this estimate into the weight function λ(x, θ). The second-stage estimator

θ̂NTSLS is then obtained by minimizing

JN (θ, θ̂N1 ) =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, θ̂N1 )
(3.54)

with respect to θ ∈ Θ. We shall write

∇θJN (θ, θ′) =
∂JN(θ, θ

′)
∂θ

, ∇2
θ,θJN (θ, θ′) =

∂2JN (θ, θ′)
∂θ∂θ�

,

and

∇2
θ,θ′JN (θ, θ′) =

∂2JN (θ, θ′)
∂θ∂θ′�

.

We first show that θ̂NTSLS is consistent when θ̂N1 converges to some θ̄1 ∈ Θ; θ̂N1
does not need to be consistent, i.e., its convergence to θ̄ is not required. Then,
we show that when θ̂N1 is

√
N -consistent, i.e., when

√
N(θ̂N1 − θ̄) is bounded

in probability,6 θ̂NTSLS is asymptotically normally distributed with the best
possible covariance matrix among WLS estimators. Note that we implicitly
assume that, excepted for the scaling factor β̄, the variance function λ does not
depend on any unknown parameter other than θ. The more general situation
where such other parameters enter λ will be considered in Sect. 3.3.6. Also
note that, in opposition to previous section, β̄ does not need to be known.

Theorem 3.26 (Consistency of the two-stage LS estimator). Let {xi}
be a randomized design with measure ξ on X ⊂ R

d; see Definition 2.2. Con-
sider the estimator θ̂NTSLS that minimizes (3.54) in the model (3.2), (3.45).

Assume that HΘ, H1η, and H1λ are satisfied, that θ̂N1 converges a.s. to some
θ̄1 ∈ Θ, and that

∀θ ∈ Θ ,

∫

X

λ−1(x, θ̄1)[η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0 ⇐⇒ θ = θ̄ . (3.55)

Then, θ̂NTSLS converges a.s. to θ̄ as N → ∞.

Proof. Using Lemma 2.6, one can easily show that JN (θ, θ′) converges a.s.
and uniformly in θ, θ′ to

Jθ̄(θ, θ
′)= β̄

∫

X

λ(x, θ̄)λ−1(x, θ′) ξ(dx)+
∫

X

λ−1(x, θ′)[η(x, θ)−η(x, θ̄)]2 ξ(dx) ,

so that Jθ̄(θ, θ̂
N
1 ) converges a.s. and uniformly in θ to Jθ̄(θ, θ̄1) as N → ∞.

Lemma 2.10 and (3.55) then give the result.

6See page 31 for the definition.



54 3 Asymptotic Properties of the LS Estimator

Theorem 3.27 (Asymptotic normality of the two-stage LS estima-
tor). Let {xi} be a randomized design with measure ξ on X ⊂ R

d; see

Definition 2.2. Consider the two-stage LS estimator θ̂NTSLS that minimizes
the criterion (3.54) in the model (3.2), (3.45). Assume that HΘ, H1η, H2η,
H1λ, and H2λ are satisfied, that the condition (3.55) is satisfied, and that the
matrix

M(ξ, θ̄) =

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (3.56)

is nonsingular. Assume that the first-stage estimator θ̂N1 plugged in (3.54) is√
N -consistent. Then, θ̂NTSLS satisfies

√
N(θ̂NTSLS − θ̄)

d→ z ∼ N (0, β̄M−1(ξ, θ̄)) , N → ∞ .

Proof. We use the same approach as in Theorem 3.8. Since θ̂N1 is strongly

consistent, θ̂NTSLS is strongly consistent too from Theorem 3.26 and, since

θ̄ ∈ int(Θ), θ̂NTSLS ∈ int(Θ) for N large enough. JN (θ, θ̂N1 ) is differentiable

with respect to θ and ∇θJN (θ̂NTSLS , θ̂
N
1 ) = 0 for large N . A Taylor series

development of {∇θJN (θ, θ′)}i for i = 1, . . . , p then gives

0 = {∇θJN (θ̂NTSLS , θ̂
N
1 )}i={∇θJN (θ̄, θ̂N1 )}i + {∇2

θ,θJN (βNi , θ̂
N
1 )(θ̂NTSLS − θ̄)}i

={∇θJN (θ̄, θ̄)}i + {∇2
θ,θ′JN (θ̄, γNi )(θ̂N1 − θ̄)}i

+{∇2
θ,θJN (βNi , θ̂

N
1 )(θ̂NTSLS − θ̄)}i

for some βNi = (1−α1,i,N )θ̄+α1,i,N θ̂
N
TSLS and γNi = (1−α2,i,N )θ̄+α2,i,N θ̂

N
1 ,

α1,i,N , α2,i,N ∈ (0, 1) (and βNi , γ
N
i are measurable; see Lemma 2.12). Previous

equation can be written

{∇2
θ,θJN (βNi , θ̂

N
1 )[

√
N(θ̂NTSLS − θ̄)]}i = −

√
N{∇θJN (θ̄, θ̄)}i

−{∇2
θ,θ′JN (θ̄, γNi )[

√
N(θ̂N1 − θ̄)]}i .

Using Lemma 2.6, we can easily show that ∇2
θ,θJN (θ, θ′) tends a.s. and uni-

formly in θ, θ′ to the matrix 2M(ξ, θ, θ′) − 2
∫
X λ−1(x, θ′)[η(x, θ̄) − η(x, θ)]

∂2η(x, θ)/∂θ∂θ� ξ(dx) as N → ∞, with

M(ξ, θ, θ′) =
∫

X

λ−1(x, θ′)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) .

Therefore, ∇2
θ,θJN (βNi , θ̂

N
1 )

a.s.→ 2M(ξ, θ̄) when N → ∞. Similarly, Lemma 2.6

implies that ∇2
θ,θ′JN (θ̄, γNi )

a.s.→ O when N → ∞. Since θ̂N1 is
√
N -consistent,

∇2
θ,θ′JN (θ̄, γNi )[

√
N(θ̂N1 − θ̄)]

p→ 0. Next, we obtain

−
√
N∇θJN (θ̄, θ̄)

d→ v ∼ N (0, 4 β̄M(ξ, θ̄))

which finally gives
√
N(θ̂NTSLS − θ̄)

d→ z ∼ N (0, β̄M−1(ξ, θ̄)) , N → ∞ .
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Remark 3.28.

(i) A natural candidate for the first-stage estimator θ̂N1 is the WLS estimator

θ̂NWLS , which is
√
N -consistent under the assumptions of Theorem 3.8. In

particular, we can use the ordinary LS estimator θ̂NLS for which w(x) ≡ 1.
(ii) β̄M−1(ξ, θ̄) gives the asymptotic covariance matrix of the WLS estimator

of θ when the optimum weights λ−1(x, θ̄) are used; see Sect. 3.1.3.
(iii) The sequence of weights in (3.54) can also be computed recursively by

replacing λ(xk, θ̂
N
1 ) by λ(xk, θ̂

k
1 ), where θ̂

k
1 is constructed from the k first

observations and design points only. Under suitable assumptions, see
Pronzato and Pázman (2004), the corresponding recursively reweighted

estimator θ̂NRWLS has the same asymptotic properties as θ̂NTSLS; that is,
the recursive estimation of the weights does not increase the asymptotic
variance of the estimates. When the regression model is linear7 in θ,
i.e., η(x, θ) = f�(x)θ, the ordinary LS estimator θ̂NLS can be computed
recursively through

Ck+1 = Ck − Ckf(xk+1)f
�(xk+1)Ck

1 + f�(xk+1)Ckf(xk+1)
,

θ̂k+1
LS = θ̂kLS +

Ckf(xk+1)

1 + f�(xk+1)Ckf(xk+1)
[y(xk+1) − f�(xk+1)θ̂

k
LS ] ,

with Ck initialized by

Ck0 =

[
k0∑

i=1

f(xi)f
�(xi)

]−1

for k0 the first integer such that f(x1), . . . , f(xk0 ) span R
p. When the

auxiliary estimator θ̂N1 is taken equal to θ̂NLS , θ̂
N
RWLS can be computed

simultaneously by a similar recursion

C′
k+1 = C′

k − C′
kf(xk+1)f

�(xk+1)C
′
k

λ(xk+1, θ̂
k+1
LS ) + f�(xk+1)C′

kf(xk+1)
,

θ̂k+1
RWLS = θ̂kRWLS +

C′
kf(xk+1)

λ(xk+1, θ̂
k+1
LS ) + f�(xk+1)C′

kf(xk+1)

×[y(xk+1)− f�(xk+1)θ̂
k
RWLS ] ,

with the initialization C′
k0

= Ck0 and θ̂k0RWLS = θ̂k0LS . Note that θ̂NLS is

linear in the observations y1, . . . , yN but θ̂NRWLS is not.
(iv) M1(ξ, θ̄) � M(ξ, θ̄), see (3.52) and (3.56), so that, from Remark 3.25,

θ̂NPWLS has a smaller asymptotic covariance matrix than θ̂NTSLS for nor-
mal errors. However, when the two-stage procedure is modified such that
at the second stage θ̂NTSLS′ minimizes

7The variance function λ(x, θ) may be nonlinear.
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JN (θ, θ̂N1 ) =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

β̄λ(xk, θ̂N1 )

+
1

2N

N∑

k=1

{
[y(xk)− η(xk, θ̂

N
1 )]2 − β̄λ(xk, θ)

}2

β̄2λ2(xk, θ̂N1 )
(3.57)

with respect to θ ∈ Θ, then, under the assumptions of Theorem 3.22,
θ̂NTSLS′

a.s.→ θ̄ when N → ∞, and, under the assumptions of Theo-

rem 3.24,
√
N(θ̂NTSLS′ − θ̄) has the same asymptotic normal distribution

as
√
N(θ̂NPWLS − θ̄). See also Example 4.12. �

3.3.4 Consistency and Asymptotic Normality of Iteratively
Reweighted LS

Iteratively reweighted LS estimation relies on sequence of estimators con-
structed as follows:

θ̂Nk = argmin
θ∈Θ

JN (θ, θ̂Nk−1) , k = 2, 3 . . . (3.58)

where JN (θ, θ′) is defined by (3.54) and where θ̂N1 can be taken equal to the
LS estimator. One may refer to Green (1984) and del Pino (1989) for itera-
tively reweighted LS procedures in more general situations than the nonlinear
regression considered here.

Using Theorems. 3.26 and 3.27, a simple induction shows that, for any fixed
k, θ̂Nk is strongly consistent and has the same asymptotic normal distribution
as the TSLS estimator of previous section.

The following property states that the recursion (3.58) converges a.s. for
any fixed N large enough.

Theorem 3.29. Under the conditions of Theorem 3.27, the iteratively re-
weighted LS estimator defined by (3.58) in the model (3.2), (3.45) converges
a.s. when k → ∞ for N fixed but large enough:

lim
N0→∞

Prob{∀N > N0 , lim
k→∞

θ̂Nk exists} = 1 .

Proof. Define τN (θ′) = argminθ∈Θ JN (θ, θ′), so that the recursion (3.58) cor-

responds to θ̂Nk = τN (θ̂Nk−1), k = 1, 2, . . . with θ̂N1
√
N -consistent. τN (θ′) is

solution of the stationary equation ∇JN [τN (θ′), θ′] = 0; that is

− 2

N

N∑

k=1

λ−1(xk, θ
′) {y(xk) − η[xk, τN (θ′)]} ∂η(xk, θ)

∂θ

∣∣∣∣
τN (θ′)

= 0 ,
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which implicitly relates θ′ to τN (θ′). The implicit function theorem then gives

∇2
θ,θJN [τN (θ′), θ′]

∂τN (θ′)
∂θ′�

+
2

N

N∑

k=1

λ−2(xk, θ
′) {[y(xk) − η[xk, τN (θ′)]} ∂η(xk, θ)

∂θ

∣∣∣∣
τN (θ′)

∂λ(xk, θ
′)

∂θ′�
= O .

Lemma 2.6 implies that second term tends to zero a.s. and uniformly in θ′

when N → ∞. Also, ∇2
θ,θJN [τN (θ′), θ′] tends a.s. and uniformly in θ′ to

2M(ξ, θ̄, θ′) when N → ∞; see the proof of Theorem 3.27. This implies that

lim sup
N→∞

max
i

sup
θ∈Θ

∣∣∣∣
∂τN (θ)

∂θi

∣∣∣∣ = 0 a.s.

and, for any ε > 0, Prob{∀N > N0 , ∀θ, θ′ ∈ Θ , ‖τN (θ)−τN (θ′)‖ ≤ ε‖θ−θ′‖}
tends to 1 when N0 → ∞. Fix ε to some value smaller than 1. By a classical
theorem in fixed-point theory, see, e.g., Stoer and Bulirsch (1993, p. 267), this
implies that the probability PN0 that the recursion (3.58) converges to a fixed
point for all N > N0 tends to 1 as N0 → ∞.

Remark 3.30.

(i) The value of ε in the preceding proof can be chosen arbitrarily small,
which indicates that the convergence of the recursion to a fixed point
will accelerate as N increases.

(ii) The convergence of the recursion (3.58) implies that θ̂N∞ tends to θ̄ a.s.

(Theorem 3.26) and θ̂N∞ is asymptotically normal according to Theo-
rem 3.27. Apparently, there is thus no gain in pushing this recursion to
its limit, rather than using simply the two-stage LS estimator, with, for
instance, θ̂N1 = θ̂NLS, the ordinary LS estimator. However, these are only
asymptotic results, and the finite sample behaviors of both methods may
differ.

(iii) Replacing in (3.58) JN (θ, θ′) by the expression given by (3.57), we obtain
the iterative procedure suggested in (Downing et al., 2001), which in case
of normal errors has the same asymptotic behavior as penalized WLS
estimation.

(iv) By letting the weights λ(xk, θ) depend on the observations y(xk), we
can use iteratively reweighted LS iterations to determine estimators of
other types than LS. For instance, the L1 estimator θ̂NL1

that minimizes

(1/N)
∑N

i=1 |y(xi)−η(xi, θ)| can be obtained by using λ(xi, θ) = |y(xi)−
η(xi, θ)| ; see Schlossmacher (1973). The method then possesses strong
links with the EM algorithm; see Phillips (2002). �

3.3.5 Misspecification of the Variance Function

The penalized WLS estimator of Sect. 3.3.2 requires β̄ to be known in (3.45),

whereas the asymptotic properties of θ̂NTSLS (Sect. 3.3.3) do not depend on β̄.
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More generally, the functional relation between σ2 and x, θ is typically at best
an approximation, even in situations where the model for the mean response
can be considered as fairly accurate. The robustness of the estimator with
respect to misspecification of the variance function λ(x, θ) is therefore an
important issue.

Suppose that the true variance of the measurement errors εi in (3.2) sat-
isfies

IE{ε2i } = σ2(xi) = λ̄(xi, θ̄)

whereas the variance function λ(xi, θ) is used for estimation. We suppose that
both λ and λ̄ satisfy H1λ and H2λ.

The only consequence on TSLS estimation is the use of wrong weights at
the second stage, λ−1(x, θ̂N1 ) instead of λ̄−1(x, θ̂N1 ). Under conditions similar

to those of Theorem 3.26, we still have θ̂NTSLS
a.s.→ θ̄, N → ∞, and, using

Theorem 3.8 and 3.27, we obtain

√
N(θ̂NTSLS − θ̄)

d→ z ∼ N (0,C(w, ξ, θ̄)) , N → ∞ ,

where C(w, ξ, θ̄) is given by (3.24) with the weight function w(x) = λ−1(x, θ̄)
and the variance σ2(x) = λ̄(x, θ̄).

The situation is much different for the penalized WLS estimator. Assume,
for instance, that

IE{ε2i } = β̄λ(xi, θ̄)

whereas βλ(x, θ) is used for estimation, with β �= β̄; that is, the error is only in
the scaling factor β in (3.47). Under the same assumptions as in Theorem 3.22,

we obtain JN (θ)
θ� Jθ̄(θ) a.s., N → ∞, with now

Jθ̄(θ) =

∫

X

λ−1(x, θ)[η(x, θ) − η(x, θ̄)]2 ξ(dx)

+β

∫

X

{[
β̄

β
λ(x, θ̄)λ−1(x, θ)

]
− log

[
β̄

β
λ(x, θ̄)λ−1(x, θ)

]}
ξ(dx)

+β

∫

X

logλ(x, θ̄) ξ(dx) + β log(β̄/β) ,

which, in general, is minimum for some θ̂ different from θ̄ when β �= β̄. Then,
θ̂NPWLS

a.s.→ θ̂ �= θ̄ when N → ∞, and θ̂NPWLS is not consistent.8

Following the same approach as in (Carroll and Ruppert, 1982), consider
small deviations from λ(x, θ), in the form

IE{ε2i } = λ(xi, θ̄)

[
1 +

2B√
N
h(xi, θ̄)

]
, (3.59)

8It seems therefore more reasonable to consider β an unknown nuisance parame-
ter for the estimation of θ; this approach will be considered in the next section. See
also Remark 3.23.



3.3 LS Estimation with Parameterized Variance 59

with B some positive constant and h(x, θ̄) bounded on X . This may account
for

√
N deviation of the assumed (e.g., estimated) variance from its true ex-

pression. In this case, the asymptotic properties of θ̂NTSLS remain identical to

those given in Sect. 3.3.3. Concerning θ̂NPWLS , we still obtain θ̂NPWLS
a.s.→ θ̄

under the conditions of Theorem 3.22, but the asymptotic distribution of√
N(θ̂NPWLS − θ̄) is now different. Following the same lines as in the proof of

Theorem 3.24, for JN (θ) given by (3.47) (with β̄ = 1), we obtain

−
√
N∇θJN (θ̄) =

2√
N

N∑

k=1

{
λ−1(xk, θ̄)εk

∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

+
1

2
λ−2(xk, θ̄)ε

2
k

∂λ(xk, θ)

∂θ

∣∣∣∣
θ̄

− 1

2
λ−1(xk, θ̄)

∂λ(xk, θ)

∂θ

∣∣∣∣
θ̄

}
;

that is,

−
√
N∇θJN (θ̄) =

2

N

N∑

k=1

Bλ−1(xk, θ̄)h(xk, θ̄)
∂λ(xk, θ)

∂θ

∣∣∣∣
θ̄

+
2√
N

N∑

k=1

wk (3.60)

with

wk = λ−1(xk, θ̄)εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

+
1

2

[
ε2kλ

−2(xk, θ̄) − λ−1(xk, θ̄) − 2B√
N
λ−1(xk, θ̄)h(xk, θ̄)

]
∂λ(xk, θ)

∂θ

∣∣∣∣
θ̄

.

As N → ∞, the first sum in (3.60) tends to 2Bb(ξ, θ̄) a.s., with

b(ξ, θ̄) =

∫

X

λ−1(x, θ̄)h(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

ξ(dx) . (3.61)

The wk are i.i.d., and again

2√
N

N∑

k=1

wk
d→ z ∼ N (0, 4M2(ξ, θ̄)) , N → ∞ ,

with M2(ξ, θ̄) given by (3.53) (with β̄ = 1). Also, ∇2
θJN (βN )

a.s.→ 2M1(ξ, θ̄)

when βN
a.s.→ θ̄, with M1(ξ, θ̄) given by (3.52) (with β̄ = 1). The Taylor series

developments

{
√
N∇θJN (θ̂NPWLS)}i = 0 =

√
N{∇θJN (θ̄)}i+{∇2

θJN (βNi )
√
N(θ̂NPWLS−θ̄)}i
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for some βNi = (1 − αi,N )θ̄ + αi,N θ̂
N
PWLS

a.s.→ θ̄, N → ∞, i = 1, . . . , p, give

√
N(θ̂NPWLS − θ̄)

d→ z∼N (BM−1
1 (ξ, θ̄)b(ξ, θ̄),M−1

1 (ξ, θ̄)M2(ξ, θ̄)M
−1
1 (ξ, θ̄))

(3.62)

as N → ∞. Notice the presence of the asymptotically vanishing bias term
BM−1

1 (ξ, θ̄)b(ξ, θ̄), where b(ξ, θ̄) is given by (3.61). In the particular case
where the misspecification only concerns the scaling factor β̄ in (3.45),
h(x, θ̄) = 1 in (3.59) and

b(ξ, θ̄) =

∫

X

∂ logλ(x, θ)

∂θ

∣∣∣∣
θ̄

ξ(dx) . (3.63)

Instead of incurring the risk of a bias in penalized WLS estimation, one
may wish to include additional parameters, besides θ, in the variance function.
For instance, the constant β̄ in (3.45) might be considered as a nuisance
parameter for the estimation of θ, as in the next section.

3.3.6 Different Parameterizations for the Mean and Variance

Suppose that the true variance of the measurement errors εi in (3.2) satisfies

IE{ε2i } = σ2(xi) = λ(xi, ᾱ, β̄) (3.64)

with α a subset of the parameters θ of the mean function η(x, θ) and β a
vector of q additional parameters entering only the variance function. We
shall denote by γ the full vector of unknown parameters, γ = (θ�, β�)�, with
γ ∈ Γ ⊂ R

p+q, and γ̄ = (θ̄�, β̄�)� its true value.

Penalized WLS Estimation

Denote η̃(x, γ) = η(x, θ) and λ̃(x, γ) = λ(x, α, β). Under conditions similar to
those of Theorem 3.22, with now

∀γ ∈ Γ ,

{∫
X
λ̃−1(x, γ)[η̃(x, γ) − η̃(x, γ̄)]2 ξ(dx) = 0∫

X
|λ̃−1(x, γ)λ̃(x, γ̄) − 1| ξ(dx) = 0

}
⇐⇒ γ = γ̄ , (3.65)

the penalized WLS estimator γ̂NPWLS that minimizes

JN (γ) =
1

N

N∑

k=1

[y(xk) − η̃(xk, γ)]
2

λ̃(xk, γ)
+

1

N

N∑

k=1

log λ̃(xk, γ) (3.66)

converges strongly to γ̄.
Consider in particular the situation where α = θ and β is a positive scalar

that corresponds to the scaling factor in (3.45), i.e., λ(x, α, β) = λ̃(x, γ) =
βλ(x, θ). The condition (3.65) then becomes
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∀β>0, θ ∈ Θ ,

{∫
X
λ−1(x, θ)[η(x, θ) − η(x, θ̄)]2 ξ(dx) = 0∫
X |[βλ(x, θ)]−1β̄λ(x, θ̄)− 1| ξ(dx) = 0

}
⇐⇒θ = θ̄ , β = β̄ .

Note that it is equivalent to the estimability condition in Remark 3.23. When
β is considered as a nuisance parameter for the estimation of θ, the asymptotic
distribution of the estimator of θ can be obtained in two different ways: either
we use developments similar to those in the proof of Theorem 3.24 but for the
criterion (3.49) of Remark 3.23 or we use the asymptotic distribution given in
Theorem 3.24 and marginalize out β, that is, we integrate the joint p.d.f. of θ
and β over β. Suppose for simplicity that the errors are normally distributed,
the second approach then gives

√
N(γ̂NPWLS − γ̄)

d→ z ∼ N (0,M−1
1 (ξ, γ̄)) , N → ∞ , (3.67)

with

M1(ξ, γ̄) = β̄−1

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂γ

∣∣∣∣
γ̄

∂η(x, θ)

∂γ�

∣∣∣∣
γ̄

ξ(dx)

+
1

2β̄2

∫

X

λ−2(x, θ̄)
∂[βλ(x, θ)]

∂γ

∣∣∣∣
γ̄

∂[βλ(x, θ)]

∂γ�

∣∣∣∣
γ̄

ξ(dx) .

Notice that compared to (3.47) the scaling factor β̄ equals one in (3.66). The
matrix M1(ξ, γ̄) can be partitioned into

M1(ξ, γ̄) =

[
M1,θ(ξ, γ̄) v1(ξ, γ̄)
v�
1 (ξ, γ̄) m1(β̄)

]

where

M1,θ(ξ, γ̄) = β̄−1

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx)

+
1

2

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) ,

v1(ξ, γ̄) =
1

2β̄

∫

X

λ−1(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

ξ(dx) =
1

2β̄
b(ξ, θ̄) ,

see (3.63), and

m1(β̄) =
1

2β̄2
.

When marginalizing out β, we obtain

√
N(θ̂NPWLS − θ̄)

d→ z ∼ N (0,Cθ(ξ, γ̄)) , N → ∞ , (3.68)

with

Cθ(ξ, γ̄) =

[
M1,θ(ξ, γ̄) − v1(ξ, γ̄)v

�
1 (ξ, γ̄)

m1(β̄)

]−1

. (3.69)
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Similarly, marginalizing out θ, we get

√
N(β̂NPWLS − β̄)

d→ z ∼ N (0, Cβ(ξ, γ̄)) , N → ∞ ,

where

Cβ(ξ, γ̄) =
1

m1(β̄) − v�
1 (ξ, γ̄)M

−1
1,θ(ξ, γ̄)v1(ξ, γ̄)

.

Remark 3.31. The asymptotic result (3.68) can be compared with that ob-
tained when β is assumed to be known but the relative misspecification is of
order 2B/

√
N ; that is, IE{ε2i } = βλ(xi, θ̄)[1 + 2Bh(xi, θ̄)/

√
N ]; see (3.59). In

that case (still for normal errors), similarly to (3.62), we obtain

√
N(θ̂NPWLS − θ̄)

d→ z ∼ N (BM−1
1,θ(ξ, θ̄)b(ξ, θ̄),M

−1
1,θ(ξ, θ̄)) , N → ∞ ,

(3.70)
where b(ξ, θ̄) is given by (3.61). Hence, the mean-squared error satisfies

N IE{(θ̂NPWLS − θ̄)�(θ̂NPWLS − θ̄)} → B2b�(ξ, θ̄)M−2
1,θ(ξ, θ̄)b(ξ, θ̄)

+ trace[M−1
1,θ(ξ, θ̄)] . (3.71)

When β is considered as a nuisance parameter that we marginalize out, the
asymptotic mean-squared error is

trace[Cθ(ξ, γ̄)] = Cβ(ξ, γ̄)v
�
1 (ξ, γ̄)M

−2
1,θ(ξ, θ̄)v1(ξ, γ̄) + trace[M−1

1,θ(ξ, θ̄)]

=
Cβ(ξ, γ̄)

4β̄2
b�(ξ, θ̄)M−2

1,θ(ξ, θ̄)b(ξ, θ̄) + trace[M−1
1,θ(ξ, θ̄)] ,

which is smaller than (3.71) as soon as 2B >
√
Cβ(ξ, γ̄)/β̄. �

Two-stage LS Estimation

The developments of Sect. 3.3.3 must be modified, since the estimation of θ
by ordinary LS at the first stage does not give an estimate of β̄ in (3.64),
which is required to compute the weights used at the second stage. We thus
introduce an intermediate stage 1’ for the estimation of β̄ by β̂N1 . We shall
denote by δ = (α�, β�)� the parameters of the variance function and write
λ(x, δ) = λ̄(x, α, β); δ̄ = (ᾱ�, β̄�)� will denote the true value of δ. Both δ
and θ are assumed to belong to compact sets. The procedure is as follows.

First, we estimate θ̂N1 = θ̂NLS which minimizes

JN,1(θ) =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

with respect to θ ∈ Θ; this is similar to stage 1 of Sect. 3.3.3. Next, we estimate
δ̂N1 that minimizes
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JN,1′(δ) = JN (δ, θ̂N1 ) =
1

N

N∑

k=1

{
[y(xk) − η(xk, θ̂

N
1 )]2 − λ(xk, δ)

}2

(3.72)

with respect to δ; this is the new intermediate step, similar to LS estimation for
the model λ(x, δ) with parameters δ and “observations” [y(xk)− η(xk, θ̂

N
1 )]2.

Finally, the second stage is similar to that of Sect. 3.3.3, and θ̂NTSLS minimizes

JN,2(θ) =
1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, δ̂N1 )

with respect to θ ∈ Θ. Following the same lines as in Sect. 3.3.3, one can show
that θ̂NTSLS is strongly consistent when δ̂N1 converges to some δ̄1 a.s. Also,

when δ̂N1 is
√
N -consistent,

√
N(θ̂NTSLS − θ̄)

d→ z ∼ N (0,M−1(ξ, γ̄)) , N → ∞ , (3.73)

with

M(ξ, γ̄) =

∫

X

λ−1(x, δ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) .

Note that M−1(ξ, γ̄) is the asymptotic covariance matrix obtained for WLS
estimation with the optimum weights λ̄−1(x, ᾱ, β̄). The rest of the section is

devoted to the asymptotic properties of δ̂N1 obtained by the minimization of
JN,1′(δ).

Consider JN (δ, θ) defined by (3.72). Under conditions similar to those of
Theorem 3.26 (plus the additional assumption that the errors εi have finite
fourth moments IE(ε4i )), JN (δ, θ) tends a.s. and uniformly in δ and θ to

Jθ̄(δ, θ) =

∫

X

[κ(x) + 2]λ2(x, δ̄) ξ(dx)

+ 4

∫

X

λ3/2(x, δ)[η(x, θ̄) − η(x, θ)]s(x) ξ(dx)

+ 4

∫

X

λ(x, δ)[η(x, θ̄) − η(x, θ)]2 ξ(dx)

+

∫

X

{
[η(x, θ̄) − η(x, θ)]2 + λ(x, δ̄) − λ(x, δ)

}2
ξ(dx) ,

with s(x) and κ(x), respectively, the skewness and kurtosis of the distribution

of ε(x); see Theorem 3.24. Therefore, when θ̂N1
a.s.→ θ̄, JN,1′(δ) = JN (δ, θ̂N1 )

tends a.s. and uniformly in δ to

Jθ̄(δ, θ̄) =

∫

X

[κ(x) + 2]λ2(x, δ̄) ξ(dx)

+

∫

X

[λ(x, δ̄) − λ(x, δ)]2 ξ(dx) ,
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and, under the estimability condition

∀δ ,
∫

X

[λ(x, δ) − λ(x, δ̄)]2 ξ(dx) = 0 ⇐⇒ δ = δ̄ , (3.74)

δ̂N1
a.s.→ δ̄ when N → ∞. The asymptotic normality of δ̂N1 can be proved

following the same lines as in Theorem 3.27. Using notations for derivatives
similar to those of Sect. 3.3.3, we can write

{∇δJN (δ̂N1 , θ̂
N
1 )}j = 0 = {∇δJN (δ̄, θ̂N1 )}j + {∇2

δ,δJN (uNj , θ̂
N
1 )(δ̂N1 − δ̄)}j

= {∇δJN (δ̄, θ̄)} + {∇2
δ,θJN (δ̄,vNj )(θ̂N1 − θ̄)}j

+{∇2
δ,δJN (uNj , θ̂

N
1 )(δ̂N1 − δ̄)}j (3.75)

for some uNj
a.s.→ δ̄ and vNj

a.s.→ θ̄, N → ∞, for j = 1, . . . , dim(δ). Direct
calculation gives

∇2
δ,δJN (uNj , θ̂

N
1 )

a.s.→ 2N1(ξ, δ̄) = 2

∫

X

∂λ(x, δ)

∂δ

∣∣∣∣
δ̄

∂λ(x, δ)

∂δ�

∣∣∣∣
δ̄

ξ(dx) (3.76)

∇2
δ,θJN (δ̄,vNj )

a.s.→ O

as N → ∞ and

−
√
N∇δJN (δ̄, θ̄) =

2√
N

N∑

k=1

[
ε2k − λ(xk, δ̄)

] ∂λ(xk, δ)
∂δ

∣∣∣∣
δ̄

d→ z ∼ N (0, 4N2(ξ, γ̄))

with

N2(ξ, δ̄) =

∫

X

[κ(x) + 2]λ2(x, δ̄)
∂λ(x, δ)

∂δ

∣∣∣∣
δ̄

∂λ(x, δ)

∂δ�

∣∣∣∣
δ̄

ξ(dx) . (3.77)

Together with (3.75), this gives

√
N(δ̂N1 − δ̄)

d→ z ∼ N (0,N−1
1 (ξ, δ̄)N2(ξ, δ̄)N

−1
1 (ξ, δ̄)) . (3.78)

The estimator δ̂N1 minimizing JN,1′(δ) is thus
√
N -consistent9 and the TSLS

estimator θ̂NTSLS satisfies (3.73).

Remark 3.32.

(i) A modification of the second stage similar to (3.57) yields an estimator

θ̂NTSLS′ with the same asymptotic properties as θ̂NPWLS ; see Remark 3.28-
(iv).

9The asymptotic normality mentioned above for δ̂N1 extends Theorem 1 of Jobson
and Fuller (1980) which concerns the case where η(x, θ) is linear in θ and the errors
εk are normally distributed.
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(ii) The estimability condition (3.74) involves some parameters α that are
present in θ and are thus already estimated at the first stage by α̂N1 , a

part of θ̂N1 . A less restrictive condition would be

∀β ,
∫

X

[λ̄(x, ᾱ, β) − λ̄(x, ᾱ, β̄)]2 ξ(dx) = 0 ⇐⇒ β = β̄ ,

to be applied when only β is estimated at stage 1’ by

β̂N1 = argmin
β

1

N

N∑

k=1

{
[y(xk) − η(xk, θ̂

N
1 )]2 − λ̄(xk, α̂

N
1 , β)

}2

.

Again, one can prove that βN1 is strongly consistent and asymptotically
normal as N → ∞, but with a covariance matrix different from that
obtained by marginalizing out α in the normal distribution (3.78). �

3.3.7 Penalized WLS or Two-Stage LS?

Normal Errors

Suppose that the variance of the errors satisfies (3.45). When the kurtosis and
skewness are zero (e.g., for normal errors), M2(ξ, θ̄), given by (3.53), equals
β̄M1(ξ, θ̄), see (3.52), with M1(ξ, θ̄) � M(ξ, θ̄) (see (3.56)), and penalized
WLS should be preferred to TSLS estimation.

This remains true when the scaling factor β̄ in (3.45) is unknown and

estimated by penalized WLS. In that case, the estimator θ̂NPWLS satisfies

√
N(θ̂NPWLS − θ̄)

d→ z ∼ N (0,Cθ(ξ, γ̄)) , N → ∞ ,

see (3.68), with Cθ(ξ, γ̄) given by (3.69), whereas θ̂NTSLS satisfies

√
N(θ̂NTSLS − θ̄)

d→ z ∼ N (0,M−1(ξ, γ̄)) , N → ∞ ,

with

M(ξ, γ̄) = β̄−1

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) ,

see (3.73). Direct calculation gives

C−1
θ (ξ, γ̄) − M(ξ, γ̄) =

1

2

∫

X

z(x, θ̄)z�(x, θ̄) ξ(dx)

where

z(x, θ) =
∂ logλ(x, θ)

∂θ
−
∫

X

∂ logλ(x, θ)

∂θ
ξ(dx)

and thus C−1
θ (ξ, γ̄) � M(ξ, γ̄).
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No Common Parameters in the Mean and Variance Functions

Suppose again that the distribution of errors has no kurtosis and no skewness,
and that no parameter of the mean function enter the variance function, i.e.,
IE{ε2i } = λ(xi, β̄); see (3.64).

The asymptotic covariance matrix for penalized WLS estimation is then
block diagonal, with M−1

θ (ξ, θ̄) the block corresponding to the parameters θ
and

Mθ(ξ, γ̄) =

∫

X

λ−1(x, β̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) ,

see (3.52). It coincides with the information matrix obtained for TSLS estima-
tion; see (3.73). The two estimation methods thus have the same asymptotic
behavior.

Remark 3.33. Consider the estimation of the parameters β of the variance
function. The asymptotic covariance matrix is M−1

β (ξ, β̄) for penalized WLS
estimation, with

Mβ(ξ, β̄) =
1

2

∫

X

λ−2(x, β̄)
∂λ(x, β)

∂β

∣∣∣∣
β̄

∂λ(x, β)

∂β�

∣∣∣∣
β̄

ξ(dx) .

The asymptotic covariance matrix for β̂N1 estimated at stage 1’ of the TSLS
method is C(ξ, β̄) = N−1

1 (ξ, β̄)N2(ξ, β̄)N
−1
1 (ξ, β̄); see (3.78) and (3.76),

(3.77). Lemma 3.7 with

u = λ(x, β̄)
∂λ(x, β)

∂β

∣∣∣∣
β̄

and v = λ−1(x, β̄)
∂λ(x, β)

∂β

∣∣∣∣
β̄

gives C(ξ, β̄) � M−1
β (ξ, β̄). This is due to the use of ordinary LS in the

minimization of (3.72). Indeed, consider a second stage, similar to WLS, where
β is estimated by

β̂NTSLS = argmin
β

1

N

N∑

k=1

{
[y(xk)− η(xk, θ̂

N
1 )]2 − λ(xk, β)

}2

λ2(xk, β̂N1 )
.

The asymptotic covariance matrix is then the same as for penalized WLS
estimation. �

Non-normal Errors

The advantage of θ̂NPWLS over θ̂NTSLS when the mean and variance functions
have common parameters may disappear when the distribution of the errors is
not normal, e.g., when it has a large positive kurtosis. In general, the conclu-
sion depends on the design ξ, which raises the issue of choosing simultaneously
the method of estimation and the design. In some cases, however, as illustrated
by the following example, the conclusion does not depend on ξ, one estimation
method being uniformly better.
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Example 3.34. Suppose that in the model (3.2) the variance of the errors sat-
isfies

IE{ε2k} = β̄1λ(xk, θ̄) = β̄1[η(xk, θ̄) + β̄2]
2 for all k ,

which in particular, when β̄2 = 0, corresponds to the situation where the
relative precision of the observations is constant. Suppose, moreover, that the
distribution of the errors is symmetric (so that the skewness s(x) equals zero)
and has a constant kurtosis κ (which is the case when the distributions of
errors at different x are similar and only differ by a scaling factor).

Direct calculation then gives for the asymptotic covariance matrix of the
penalized WLS estimator with β̄1 known:

M−1
1 (ξ, θ̄)M2(ξ, θ̄)M

−1
1 (ξ, θ̄) =

1 + 2β̄1 + κβ̄1

(1 + 2β̄1)2
β̄1 M

−1(ξ, θ̄) ,

see (3.52), (3.53), with β̄1M
−1(ξ, θ) the asymptotic covariance matrix of the

two-stage LS estimator; see (3.56).
Two-stage LS should thus be preferred to penalized WLS when κ > 2 and

β̄1 < β∗
1 = (κ − 2)/4 and vice versa otherwise. Generally speaking, it means

that the two-stage procedure is always preferable when κ > 2, provided that
the errors are small enough. For instance, when the errors have the exponential
distribution ϕ̄(ε) = [

√
2/(2σ)] exp(−|ε|

√
2/σ), κ = 3 and the limiting value

for β̄1 is β∗
1 = 1/4. Figure 3.2 gives the evolution of the ratio

ρ(κ, β1) =
1 + 2β1 + κβ1
(1 + 2β1)2

as a function of β1 for κ = 3. �

In more general situations the estimator and the design must be chosen
simultaneously. The following approach is suggested in (Pázman and Pron-
zato, 2004) for the case of errors with constant kurtosis κ (not depending on
x) and no skewness: (a) determine the optimum design ξ∗PWLS for the penal-
ized WLS estimator under the assumption of zero kurtosis and the optimum
design ξ∗TSLS for the two-stage LS estimator; (b) compare the values of the
design criteria for both estimators at different values of the kurtosis κ. Note
that the asymptotic covariance matrix of θ̂PWLS is linear in κ. Therefore, for
any isotonic design criterion Φ(·), see Definition 5.3, a value κ∗ exists such

that (ξ∗TSLS , θ̂TSLS) should be preferred to (ξ∗PWLS , θ̂PWLS) for κ > κ∗.

Bernoulli Experiments

Consider the case of qualitative binary observations, indicating for instance a
success or failure, and take y(x) = 1 for a successful trial at the design point
x and y(x) = 0 otherwise. When the probability of success is parameterized,
Prob{y(x) = 1} = π(x, θ̄), with π(x, θ) a known function of x and θ, we get
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Fig. 3.2. Evolution of ρ(κ, β1) as a function of β1 in Example 3.34: κ = 3 and θ̂NTSLS

should be preferred to θ̂NPWLS for β1 < 1/4

IE{y(x)} = π(x, θ̄) and var{y(x)} = π(x, θ̄)[1−π(x, θ̄)]. Forgetting the binary
character of y(x), we may consider this as a regression model with parame-
terized variance and take η(x, θ) = π(x, θ) and λ(x, θ) = π(x, θ)[1 − π(x, θ)];
see also Sect. 4.3.1. In that case, the asymptotic covariance matrix for TSLS
estimation is M−1(ξ, θ̄) with

M(ξ, θ) =

∫

X

1

π(x, θ)[1 − π(x, θ)]

∂π(x, θ)

∂θ

∂π(x, θ)

∂θ�
ξ(dx) ,

i.e., the same as for maximum likelihood estimation; see (4.38). See also Green
(1984). From the results in Sect. 4.4, TSLS estimation is thus preferable
(asymptotically) to penalized LS estimation for Bernoulli experiments. This
can also be checked directly. The asymptotic covariance matrix C(ξ, θ) for
penalized WLS estimation is as indicated in Theorem 3.24, with the skewness

s(x) =
1 − 2π(x, θ)√

π(x, θ)[1 − π(x, θ)]

and kurtosis

κ(x) =
1 − 6π(x, θ) + 6π2(x, θ)

π(x, θ)[1 − π(x, θ)]
.

Substitution in (3.52), (3.53) gives

M1(ξ, θ) =

∫

X

2π2(x, θ) − 2π(x, θ) + 1

2π2(x, θ)[1 − π(x, θ)]2
∂π(x, θ)

∂θ

∂π(x, θ)

∂θ�
ξ(dx) ,

M2(ξ, θ) =

∫

X

[2π2(x, θ) − 2π(x, θ) + 1]2

4π3(x, θ)[1 − π(x, θ)]3
∂π(x, θ)

∂θ

∂π(x, θ)

∂θ�
ξ(dx) .
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Denote

v =

⎛

⎝
2π2(x,θ)−2π(x,θ)+1

2π3/2(x,θ)[1−π(x,θ)]3/2
∂π(x,θ)
∂θ

1√
π(x,θ)[1−π(x,θ)]

∂π(x,θ)
∂θ

⎞

⎠ ,

so that

IE{vv�} =

(
M2(ξ, θ) M1(ξ, θ)
M1(ξ, θ) M(ξ, θ)

)
,

where the expectation is with respect to ξ(dx). Using Lemma 3.7, we get
M2(ξ, θ) � M1(ξ, θ)M

−1(ξ, θ)M1(ξ, θ), and thus, C(ξ, θ) � M−1(ξ, θ); see
Theorem 3.24.

3.3.8 Variance Stabilization

A parametric transformation Tω(·) can be applied to the regression model
and the observations when the errors satisfy (3.45), in order to stabilize the
variance and use ordinary LS. In the seminal paper (Box and Cox, 1964),
it is assumed that the transformed observations z(xi) = Tω[y(xi)] are inde-
pendently normally distributed with constant variance σ2 for some unknown
parameters ω. The transformation Tω(·) is obtained as follows. Assume that
λ(x, θ) in (3.45) takes the form

λ(x, θ) = [η(x, θ) + c]2(1−α) .

Then, neglecting terms of power in β̄ larger than 1, we have

var[z(xi)] ≈ β̄ [η(xi, θ̄) + c]2(1−α)
[
dTω(t)

dt

∣∣∣∣
η(xi,θ̄)

]2

which becomes constant when dTω(t)/dt = (t+ c)α−1, i.e., when

Tω(t) =

{
(t+c)α−1

α if α �= 0
log(t+ c) if α = 0

(3.79)

where ω = (α, c). The choice Tω(t) = (t + c)α when α �= 0 is equally valid,
but (3.79) presents the advantage of being continuous at α = 0. In Box and
Cox (1964), the unknown ω is estimated by maximum likelihood, see Sect. 4.2,
or by maximum a posteriori using a suitable prior. A regression model is
formed for the transformed observations z(xi) directly, in the form IE[z(xi)] =
ν(xi, θ) and var[z(xi)] = σ2 for all i, independently of any model for the
original variables y(xi).

On the other hand, one may wish to start from the model (3.2), (3.45) of
the original observations y(xi). This entails several difficulties and approxi-
mations.

First, the transformation (3.79) makes sense only if y(xi)−c > 0, i.e., εi >
−η(xi, θ̄) + c, for all i. For a given set of observations, this is easily overcome
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by choosing a suitable value for c. However, for asymptotic considerations
concerning the estimation of θ, it requires that the support of the distribution
of the εi is bounded from below or simply bounded if the distribution is
symmetric.

Second, when the original observations y(xi) are independently distributed
with mean η(xi, θ̄) and variance β̄λ(xi, θ̄) = β̄[η(xi, θ̄) + c]2(1−α), in general
the transformed observations z(xi) do not have mean Tω[η(xi, θ̄)] and constant
variance. This can be checked by calculating the Taylor expansion of z(xi) =
T [η(xi, θ̄) + εi] at εi = 0. For instance, for α = 0, we obtain

IE[z(xi)] = log[η(xi, θ̄) + c] +

∞∑

k=1

(−1)k+1μk
k

with μk the k-th moment of the random variable ui = εi/[η(xi, θ̄) + c]. In
general, IE[z(x)] is thus difficult to express as a function of θ and x, so that
a transformed nonlinear regression model (with constant variance) for the
transformed observations z(xi) is not directly available from η(x, θ). Whereas
the effect of an error in the variance of the z(xi) will asymptotically disappear
when replicating observations at xi, the bias will remain. The regression model

z(xi) = Tω[η(xi, θ̄)] + ε′i with IE(ε′i) = 0 and IE[(ε′i)
2] = σ2 for all i (3.80)

may thus be rather inaccurate and the asymptotic properties given in Sect. 3.1
for the LS estimator in such models may therefore not be valid here. The
asymptotic variance of the LS estimator for the model (3.80) may nevertheless
be used to design experiments; see, e.g., Atkinson (2003, 2004). Alternatively,
assuming that the observations transformed by Tω(·) are independently nor-
mally distributed with constant variance σ2, the parameters ω, σ2 and θ can
be estimated by maximum likelihood, see Sect. 4.2. The asymptotic covariance
matrix of the estimator can then be used for experimental design, considering
σ2 and ω as nuisance parameters for the estimation of θ; see Atkinson and
Cook (1996).

3.4 LS Estimation with Model Error

So far, we assumed that there is no modeling error, see (3.2), a condition
rarely satisfied in practice. It is thus important to investigate the asymptotic
behavior of the estimator in presence of modeling errors, i.e. when the true
response function ν(·) is not of the form η(·, θ) for some θ. Only the case of
randomized designs with second-order stationary measurement errors will be
considered. The results can easily be extended to nonstationary errors.

Assume that

y(xk) = ν(xk) + εk , with IE{εk} = 0 for all k , (3.81)

where ν(·) is some unknown function of x, bounded on X . Theorem 3.1 can
then be modified as follows.
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Theorem 3.35. Let {xi} be a randomized design on Sξ; see Definition 2.2.

Consider the estimator θ̂NLS that minimizes (3.1) in the model (3.81) with
second-order stationary errors, that is, var(εk) = σ2 for all k. Assume that

HΘ and H1η are satisfied. Then, as N → ∞, θ̂NLS converges a.s. to the set
Θ# ⊂ Θ of values of θ that minimize

Jν(θ) =

∫

X

[ν(x) − η(x, θ)]2 ξ(dx) . (3.82)

Moreover, the estimator

[
σ̂2
]N

=
1

N − p

N∑

k=1

[
y(xk) − η(xk, θ̂

N
LS)
]2

converges a.s. to σ2 + Jν(θ̄), θ̄ ∈ Θ#.

The proof is similar to that of Theorem 3.1. In particular, when Θ# is
reduced to a singleton {θ̄}, θ̂NLS converges a.s. to that value θ̄ that gives the
closest approximation to ν(x) in terms of L2 norm. The presence of modeling

error can be detected by comparing the value of
[
σ̂2
]N

, which converges a.s. to
σ2 + Jν(θ̄), to the estimated value of σ2 obtained by replicating observations
at a given design point x.

For nonlinear models, modeling errors affect the asymptotic distribution
of the LS estimator as shown by the next theorem. We first introduce some
notations. Define the matrices

M(ξ, θ) =

∫

X

∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,

Dν(ξ, θ) =

∫

X

[η(x, θ) − ν(x)]
∂2η(x, θ)

∂θ∂θ�
ξ(dx) ,

Mν(ξ, θ) =

∫

X

[η(x, θ) − ν(x)]2
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) .

Let Pθ denote the orthogonal projector onto Lθ = {α�∂η(·, θ)/∂θ : α ∈ R
p},

(Pθf) (x
′) =

∂η(x′, θ)
∂θ�

M−1(ξ, θ)

∫

X

∂η(x, θ)

∂θ
f(x) ξ(dx) . (3.83)

We define the intrinsic curvature of the model at θ for the design measure by

Cint(ξ, θ) = sup
u∈Rp−{0}

‖[I − Pθ]
∑p

i,j=1 ui[∂
2η(·, θ)/∂θi∂θj]uj‖ξ

u�M(ξ, θ)u
, (3.84)

where I denotes the identity operator and ‖f‖ξ = [
∫

X
f2(x) ξ(dx)]1/2 for any

f(·) in L2(ξ). Notice that replacing ξ by the empirical measure ξN associated
with the N design points XN = (x1, . . . , xN ), we obtain
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Cint(ξN , θ) =
√
N Cint(XN , θ)

with Cint(XN , θ) the intrinsic curvature of the model at θ for the exact design
XN ; see, e.g., Bates and Watts (1988), Pázman (1993b) and Remark 6.1.

Theorem 3.36. Let {xi} be a randomized design on X ; see Definition 2.2.

Consider the LS estimator θ̂NLS that minimizes (3.1) in the model (3.81) with
second-order stationary errors (var(εk) = σ2 for all k). Assume that HΘ, H1η,
and H2η are satisfied, that Θ# = {θ̄}, that the matrix M(ξ, θ̄) is nonsingular,
and that

Cint(ξ, θ̄)‖ν(·) − η(·, θ̄)‖ξ < 1 .

Then, the matrix M(ξ, θ̄) +Dν(ξ, θ̄) is nonsingular, and θ̂NLS satisfies

√
N(θ̂NLS − θ̄)

d→ z ∼ N (0, σ2Cν(ξ, θ̄)) , N → ∞ , (3.85)

with

Cν(ξ, θ) = [M(ξ, θ) +Dν(ξ, θ)]
−1[M(ξ, θ) + (1/σ2)Mν(ξ, θ)]

×[M(ξ, θ) +Dν(ξ, θ)]
−1 . (3.86)

Proof. We first show that under the conditions of the theorem, the matrix
M(ξ, θ̄)+Dν(ξ, θ̄) is nonsingular. Since θ̄ minimizes Jν(θ) given by (3.82), we
have ∫

X

[η(x, θ̄) − ν(x)]
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

ξ(dx) = 0

so that Pθ̄[η(·, θ̄) − ν(·)] = 0 and

Dν(ξ, θ̄) =

∫

X

([I − Pθ̄][η(·, θ̄) − ν(·)])(x) ∂
2η(x, θ)

∂θ∂θ�

∣∣∣∣
θ̄

ξ(dx) .

Cauchy–Schwarz inequality gives for any u ∈ R
p − {0}

u�[M(ξ, θ̄) +Dν(ξ, θ̄)]u = u�M(ξ, θ̄)u

×

⎛

⎜⎜⎝1 +

∫
X ([I − Pθ̄][η(·, θ̄)− ν(·)])(x) [u� ∂2η(x,θ)

∂θ∂θ�

∣∣∣∣
θ̄

u] ξ(dx)

u�M(ξ, θ̄)u

⎞

⎟⎟⎠

≥ u�M(ξ, θ̄)u
[
1 − ‖η(·, θ̄) − ν(·)‖ξ Cint(ξ, θ̄)

]
> 0 .

The rest of proof is similar to that of Theorem 3.8. The second-order
derivative ∇2

θJN (θ) of the LS criterion (3.1) tends a.s. and uniformly in θ to
2[M(ξ, θ) +Dν(ξ, θ)] when N → ∞. The first-order derivative evaluated at θ̄
satisfies
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−
√
N∇θJN (θ̄) =

2√
N

{
N∑

k=1

εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

+

N∑

k=1

[ν(xk) − η(xk, θ)]
∂η(xk, θ̄)

∂θ

∣∣∣∣
θ̄

}
(3.87)

and converges in distribution to a vector distributed N (0, 4[σ2M(ξ, θ̄) +
Mν(ξ, θ̄)]). A Taylor development of ∇θJN (θ) at θ̄ gives the result; see the
proof of Theorem 3.8.

The asymptotic distribution of the estimator is thus generally affected by
the presence of modeling errors. As shown below, one can easily construct
examples where the precision can be either deteriorated or improved.

Example 3.37. Take ν(x) = exp(−x) and η(x, θ) = 1/(x+θ), with Θ = [0,∞),
X = [0,∞), and σ2 = 1. The design is obtained by equal replications of
observations at the three points {0, 1, 2}.

Direct calculation gives Θ# = {θ̄} with θ̄ � 1.0573, and M(ξ, θ̄) � 0.2892,
Dν(ξ, θ̄) � −0.0170 and Mν(ξ, θ̄) � 0.0010. We getM−1(ξ, θ̄) � 3.4577, while
Cν(ξ, θ̄) � 3.9181, and the modeling error increases the asymptotic variance
of the LS estimator.

Take now η(x, θ) = 1/(x + θ) − 1/2. We get Θ# = {θ̄} with θ̄ � 0.6431,
and M(ξ, θ̄) � 2.001, Dν(ξ, θ̄) � 0.0894 and Mν(ξ, θ̄) � 0.0088 so that
M−1(ξ, θ̄) � 0.4997, while Cν(ξ, θ̄) � 0.4599, and the modeling error de-
creases the asymptotic variance of the LS estimator. �

When the model response η(x, θ) is linear in θ, i.e., when η(x, θ) = f�(x)θ,
the presence of modeling errors always increases the asymptotic variance of
the LS estimator. Indeed, when the matrix M(ξ) =

∫
X

f(x)f�(x) ξ(dx) is

nonsingular, the set Θ# of Theorem 3.35 only contains the vector

θ̄ = M−1(ξ)

∫

X

f(x) ν(x) ξ(dx) ,

Dν(ξ, θ̄) is the null matrix, Mν(ξ, θ) =
∫

X [f�(x)θ − ν(x)]2 f(x)f�(x) ξ(dx)
and Cν(ξ, θ̄) = M−1(ξ) + (1/σ2)M−1(ξ)Mν(ξ, θ̄)M

−1(ξ) � M−1(ξ) in
Theorem 3.36.

The expression of the asymptotic covariance matrixCν(ξ, θ) given by (3.86)
cannot be used directly for optimum design since the true mean function ν(x)
is unknown. For Φ(·), a positively homogeneous design criterion, see Defi-
nition 5.3, bounds on Φ[C−1

ν (ξ, θ)] are given in Sect. 5.5.3, to be used for
experimental design; see also Pázman and Pronzato (2006a).

Remark 3.38. The covariance σ2Cν(ξ, θ̄) in (3.85) contains a term that does
not disappear when the variance of the observations tends to zero:

lim
σ2→0

σ2Cν(ξ, θ̄) = [M(ξ, θ̄) +Dν(ξ, θ̄)]
−1Mν(ξ, θ̄)[M(ξ, θ̄) +Dν(ξ, θ̄)]

−1 .
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This term comes from the second sum in (3.87); its presence is due to the
fact that the design is considered as randomly generated with the probability
measure ξ.

When the design sequence is deterministic and such that the empirical
measure ξN converges to ξ according to Definition 2.1, the other conditions of
Theorem 3.36 being unchanged, then θ̂NLS fluctuates around θ̄ and the fluctu-

ations decrease as 1/
√
N , with a random component due to the observation

errors and a deterministic component due to the variability of the sequence
of design points x1, x2 . . . When there are no observation errors (σ2 = 0), the
deterministic fluctuations remain. �

3.5 LS Estimation with Equality Constraints

Suppose that Θ is defined by the q equations c(θ) = (c1(θ), . . . , cq(θ))
� = 0,

q < p. The constrained LS estimator θ̂NLS in the model (3.2), (3.3) is obtained
by minimizing the criterion JN (θ) given by (3.1) under the constraint c(θ) =
0. Assume that c(θ̄) = 0 —the situation gets more complicated when θ̄ does
not satisfy the constraints.10 Theorem 3.1 then remains valid and it is enough
to consider a neighborhood of θ̄ when investigating the asymptotic distribution
of θ̂NLS .

The following construction is used in (Pázman, 2002a), assuming suitable
regularity conditions on c(·) and η(x, ·). Denote L(θ) = ∂c(θ)/∂θ� ∈ R

q×p

and assume that L(θ̄) has rank q; without any loss of generality, we may
assume that the first q columns of L(θ̄) are linearly independent. We then
denote α = (θ1, . . . , θq)

� and β = (θq+1, . . . , θp)
� and use β to reparameterize

the regression model. Since c(θ) = c(α, β) = 0, by the implicit function
theorem, there exist a neighborhood V of θ̄, an open set B or Rp−q containing
β̄ = (θ̄q+1, . . . , θ̄p)

�, and a mapping g(·) continuously differentiable on B such
that L(θ) has rank q for all θ ∈ V , g(β̄) = ᾱ = (θ̄1, . . . , θ̄q)

�, c(g(β), β) = 0
on B, and

∂g(β)

∂β� = −
[
∂c(α, β)

∂α�

∣∣∣∣
α=g(β)

]−1
∂c(α, β)

∂β� , ∀β ∈ B .

Now, φ(β) = (g�(β), β�)� defines a reparameterization for the regression
model such that φ(β̄) = θ̄ and c[φ(β)] = 0 for all β ∈ B. Moreover,

D(β) =
∂φ(β)

∂β� =

(
∂g(β)
∂β�

Ip−q

)
, β ∈ B , (3.88)

10By enforcing constraints c(θ) = 0 in the estimation in a situation where c(θ̄) �=
0, we introduce a modeling error, the effect of which on the asymptotic properties
of the LS estimator θ̂NLS could be taken into account by combining the developments
below with those in Sect. 3.4.
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which has rank p − q. The regression model (3.2), (3.3) with the constraints
c(θ) = 0 is thus asymptotically equivalent to

y(xi) = η[xi, φ(β̄)] + εi , β̄ ∈ B ⊂ R
p−q

with i.i.d. errors εi satisfying (3.3). This means in particular that the asymp-
totic normality property of Theorem 3.8 remains valid and, under the regu-
larity assumptions mentioned in this theorem,

√
N(β̂NLS − β̄)

d→ z ∼ N (0, σ2M−1
β (ξ, β̄)) , N → ∞ ,

where

Mβ(ξ, β) =

∫

X

∂η[x, φ(β)]

∂β

∂η[x, φ(β)]

∂β� ξ(dx)

= D�(β)M[ξ, φ(β)]D(β) , (3.89)

with D(β) given by (3.88) and

M(ξ, θ) =

∫

X

∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,

the matrix given in (3.32) for σ2 = 1.
The conditions of Theorem 3.8 require in particular that Mβ(ξ, β̄) be

nonsingular. It is worthwhile to notice that we do not need to have M(ξ, θ̄)
nonsingular. Indeed, it is enough if the p× p matrix

H(ξ, θ̄) = M(ξ, θ̄) + L�(θ̄)L(θ̄) (3.90)

has full rank: c[φ(β)] = 0 on B implies that

∂c[φ(β)]

∂β�

∣∣∣∣
β̄

= L(β̄)D(β̄) = Oq,p−q , (3.91)

the q × (p − q)-dimensional null matrix, so that the matrix Mβ(ξ, β̄) =
D�(β̄)M(ξ, θ̄)D(β̄) = D�(β̄)H(ξ, θ̄)D(β̄) has the same rank as D(β̄), i.e.,
p− q, see (3.88), and is nonsingular as required by Theorem 3.8.

Consider now the asymptotic distribution of θ̂NLS = φ(βNLS). The delta
method (see Theorem 3.11) gives

√
N(θ̂NLS − θ̄)

d→ z′ ∼ N (0, σ2Vθ,ξ(β̄)) , N → ∞ ,

where

Vθ,ξ(β̄) = D(β̄)M−1
β (ξ, β̄)D�(β̄)

= D(β̄)[D�(β̄)H(ξ, θ̄)D(β̄)]−1D�(β̄) . (3.92)



76 3 Asymptotic Properties of the LS Estimator

However, this expression depends on D(β), which is not known explicitly.
We can write Vθ,ξ(β̄) = H−1/2(ξ, θ̄)Z(ξ, θ̄)H−1/2(ξ, θ̄), where H(ξ, θ̄) is given
by (3.90) and

Z(ξ, θ̄) = H1/2(ξ, θ̄)D(β̄)[D�(β̄)H(ξ, θ̄)D(β̄)]−1D�(β̄)H1/2(ξ, θ̄)

is the orthogonal projector onto the column space of H1/2(ξ, θ̄)D(β̄). Since
L(β̄)D(β̄) = Oq,p−q, see (3.91), H1/2(ξ, θ̄)D(β̄) and H−1/2(ξ, θ̄)L�(θ̄) are
mutually orthogonal, with rank[H1/2(ξ, θ̄)D(β̄)] = rank[D(β̄)] = p − q, and
rank[H−1/2(ξ, θ̄)L�(θ̄)] = rank[L(θ̄)] = q. Therefore, Z(ξ, θ̄) = I − U(ξ, θ̄),
with U(ξ, θ̄) the complementary orthogonal projector of Z(ξ, θ̄):

U(ξ, θ̄) = H−1/2(ξ, θ̄)L�(θ̄)[L(θ̄)H−1(ξ, θ̄)L�(θ̄)]−1L(θ̄)H−1/2(ξ, θ̄) .

We thus obtain

Vθ,ξ(β̄)=H−1(ξ, θ̄)−H−1(ξ, θ̄)L�(θ̄)[L(θ̄)H−1(ξ, θ̄)L�(θ̄)]−1L(θ̄)H−1(ξ, θ̄)

(3.93)

with H(ξ, θ̄) given by (3.90). Optimum design for the estimation of θ in this
context will be briefly considered in Sect. 5.6 where a simpler form of Vθ,ξ(β̄)
will be used.

3.6 Bibliographic Notes and Further Remarks

Slow rates of convergence, cube-root asymptotics

The asymptotic properties considered in this book concern
√
N -consistency:

we consider estimators θ̂N which, under suitable conditions, satisfy
√
N(θ̂N −

θ̄)
d→ z ∼ N (0,C) as N → ∞, with C some positive-definite matrix;√

N(θ̂N − θ̄) is thus bounded in probability. When other asymptotic con-
vergence rates are mentioned, it is in relation with the design sequence {xi};
see Remark 3.6-(v) and Examples 2.4, 3.13, 3.17, and 5.39.11

There are, however, situations where
√
N -consistency cannot be obtained,

independently of the design. For instance, this is the standard situation when
the estimation of the parameters involves the estimation of a nonparametric
component;12 see, e.g., Parzen (1962) for the estimation of the mode of a
density. There are also situations where the slow rate of convergence is only

11We only pay attention to rates slower than
√
N because X is compact, but

notice that by allowing the design points to expand to infinity, we might easily
generate convergence rates faster than

√
N .

12However it is not always so: adaptive estimation precisely concerns efficient
parameter estimation for models involving a nonparametric component; see the ref-
erences in Sect. 4.4.2.
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due to the parametric estimation procedure itself, as it is the case for some
robust estimation methods, e.g., the least median of squares estimator; see
Rousseeuw (1984) and Rousseeuw and Leroy (1987). A convergence rate of
N1/3 is obtained in this case, as well as in many other situations as shown in
(Kim and Pollard, 1990). See also van der Vaart (1998, p. 77).
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Asymptotic Properties of M, ML,

and Maximum A Posteriori Estimators

4.1 M Estimators in Regression Models

We consider the regression model (3.2) where the errors εi are independently
distributed, εi having the p.d.f. ϕ̄xi(·). Notice that the vectors (εi, xi) are i.i.d.
in the case of a randomized design. An M estimator θ̂NM = θ̂NM (y) is obtained
by minimizing a function

JN (θ) =
1

N

N∑

k=1

ρ[y(xk)− η(xk, θ)] (4.1)

with respect to θ, with ρ(z) minimum at z = 0. This includes LS estima-
tion, for which ρ(z) = z2. Choosing a function ρ(·) with slower increase than
quadratic conveys some robustness to the estimation; see in particular Huber
(1981). Here we shall briefly consider the asymptotic properties of M estima-
tors under randomized designs when ρ(·) is a smooth function. This is by no
way exhaustive since it does not cover situations as simple as ρ(z) = |z|. How-
ever, the techniques required in such cases are more advanced and beyond the
scope of this monograph; one may refer, for instance, to the books (van de Geer
2000; van der Vaart 1998, Chap. 5) for methods based on empirical processes.

The presentation used below follows the same lines as in Sects. 3.1.1 and
3.1.3 and corresponds to randomized designs; remember that almost sure prop-
erties are then over the product measure for the errors εi and design points xi.
Similar developments can be obtained for asymptotically discrete designs, us-
ing Lemma 2.8 instead of Lemma 2.6. One may notice that when θ̂NM ∈ int(Θ)

and JN (·) is differentiable in int(Θ), then θ̂NM satisfies the estimating equation

∇θJN (θ̂NM ) = 0; see Sect. 4.6.

Theorem 4.1 (Consistency of M estimators). Let {xi} be a randomized
design with measure ξ on X ⊂ R

d; see Definition 2.2. Assume that HΘ and
H1η are satisfied, that

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 4,
© Springer Science+Business Media New York 2013
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∫

X

{∫ ∞

−∞
max
θ∈Θ

∣∣ρ[η(x, θ̄)− η(x, θ) + ε]
∣∣ ϕ̄x(ε) dε

}
ξ(dx) < ∞ (4.2)

with ρ(·) a continuous function, and that the estimability condition (3.6) is
satisfied, together with

∀x ∈ X , ∀z �= 0 ,

Jx(z) =

∫ ∞

−∞
ρ(ε− z) ϕ̄x(ε) dε >

∫ ∞

−∞
ρ(ε) ϕ̄x(ε) dε = Jx(0) . (4.3)

Then θ̂NM
a.s.→ θ̄, N → ∞, where θ̂NM minimizes (4.1) in the model (3.2) with

errors εk = ε(xk) ∼ ϕ̄xk
(·).

Proof. The proof is similar to that of Theorem 3.1. We get from Lemma 2.6

JN (θ)
θ� Jθ̄(θ) =

∫

X

{∫ ∞

−∞
ρ[η(x, θ̄)− η(x, θ) + ε] ϕ̄x(ε) dε

}
ξ(dx)

a.s. as N → ∞. In order to use Lemma 2.10, we only need to prove that for
all θ ∈ Θ, θ �= θ̄, Jθ̄(θ) > Jθ̄(θ̄). First note that Jθ̄(θ̄) =

∫
X
Jx(0)ξ(dx). From

the estimability condition (3.6), θ �= θ̄ implies that η(x, θ̄) �= η(x, θ) on some
set A with ξ(A) > 0. From (4.3), this implies

∫

A

{∫ ∞

−∞
ρ[η(x, θ̄)− η(x, θ) + ε] ϕ̄x(ε) dε

}
ξ(dx) >

∫

A
Jx(0) ξ(dx)

and thus Jθ̄(θ) > Jθ̄(θ̄). Lemma 2.10 implies θ̂NM
a.s.→ θ̄ as N → ∞.

Remark 4.2.

(i) Suppose that ρ(·) is twice continuously differentiable and that conditions
allowing differentiation under the integral in Jx(·) are fulfilled; see (4.4).
Then, (4.3) implies that the function Jx(·) is convex at z = 0 so that∫∞
−∞ ρ′′(ε) ϕ̄x(ε) dε ≥ 0.
The condition (4.3) is satisfied, for instance, when ϕ̄x(·) and ρ(·) are sym-
metric, i.e., ∀x ∈ X , ∀z ∈ R , ϕ̄x(−z) = ϕ̄x(z) , ρ(−z) = ρ(z) , and,
respectively, decreasing and increasing for z > 0, i.e., ∀x ∈ X , ∀z2 >
z1 ≥ 0 , ϕ̄x(z2) < ϕ̄x(z1) , ρ(z2) > ρ(z1) . Indeed, we have in this case, for
any x ∈ X and any z �= 0,

Jx(z)− Jx(0) =

∫ 0

−∞
[ρ(ε− z)− ρ(ε)][ϕ̄x(ε) − ϕ̄x(ε− z)] dε > 0 .

(ii) When X is compact and η(x, θ) is continuous in (x, θ) on X ×Θ, |η(x, θ)|
is bounded on X ×Θ, say by A. The condition (4.2) can then be replaced
by
∫∞
−∞ sup|z|<2A |ρ(ε+ z)|ϕ̄x(ε) dε is bounded for x ∈ X . �
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Theorem 4.3 (Asymptotic normality of M estimators). Let {xi} be a
randomized design with measure ξ on X ⊂ R

d; see Definition 2.2. Assume
that the conditions of Theorem 4.1 and H2η are satisfied, that ρ(·) is twice
continuously differentiable, with derivatives ρ′(·) and ρ′′(·) satisfying for all
x ∈ X
∫ ∞

−∞
ρ′(ε)ϕ̄x(ε)dε = 0 ,

∫ ∞

−∞
[ρ′(ε)]2ϕ̄x(ε)dε < ∞ ,

∫ ∞

−∞
|ρ′′(ε)|ϕ̄x(ε)dε < ∞ ,

(4.4)
that the matrix

M1(ξ, θ̄) =

∫

X

{∫ ∞

−∞
ρ′′(ε) ϕ̄x(ε) dε

}
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (4.5)

is nonsingular and that for all i, j = 1, . . . , p,

∫

X

[∫ ∞

−∞
max
θ∈Θ

{∣∣ρ′′[η(x, θ̄)− η(x, θ) + ε]
∣∣
∣∣∣∣
∂η(x, θ)

∂θi

∂η(x, θ)

∂θj

∣∣∣∣

}
ϕ̄x(ε) dε

]

× ξ(dx) < ∞ , (4.6)
∫

X

[∫ ∞

−∞
max
θ∈Θ

{∣∣ρ′[η(x, θ̄) − η(x, θ) + ε]
∣∣
∣∣∣∣
∂2η(x, θ)

∂θi∂θj

∣∣∣∣

}
ϕ̄x(ε) dε

]

× ξ(dx) < ∞ . (4.7)

Then, the M estimator θ̂NM that minimizes (4.1) in the model (3.2) with errors
εk = ε(xk) ∼ ϕ̄xk

(·) satisfies
√
N(θ̂NM − θ̄)

d→ z ∼ N (0,C(ξ, θ̄)) , N → ∞ ,

where
C(ξ, θ) = M−1

1 (ξ, θ)M2(ξ, θ)M
−1
1 (ξ, θ)

with

M2(ξ, θ) =

∫

X

{∫ ∞

−∞
[ρ′(ε)]2 ϕ̄x(ε) dε

}
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) .

Proof. The proof is similar to that of Theorem 3.8. Lemma 2.6, and Theo-
rem 4.1 imply that ∇2

θJN (θ̂NM )
a.s.→ M1(ξ, θ̄), and since M1(ξ, θ̄) is nonsingular,

[∇2
θJN (θ̂NM )]−1 a.s.→ M−1

1 (ξ, θ̄)

as N → ∞. Also,

−
√
N∇θJN (θ̄) =

1√
N

N∑

k=1

ρ′(εk)
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

d→ v ∼ N (0,M2(ξ, θ̄))

for N → ∞, which gives
√
N(θ̂NM − θ̄)

d→ z ∼ N (0,C(ξ, θ̄)).
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Remark 4.4. Suppose that X is compact and that η(x, θ) and its first two
derivatives in θ are continuous in (x, θ) on X × Θ. Then, |η(x, θ)| < A for
some A > 0, and the conditions (4.6), (4.7) can be replaced by

∫ ∞

−∞
sup

|z|<2A

|ρ′′(ε+ z)|ϕ̄x(ε) dε and

∫ ∞

−∞
sup

|z|<2A

|ρ′(ε+ z)|ϕ̄x(ε) dε

are bounded for any x ∈ X . �

When the errors εk are i.i.d. with a p.d.f. ϕ̄(·), previous theorem gives

√
N(θ̂NM − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ ,

with

M(ξ, θ) = I(ρ, ϕ̄)
∫

X

∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) , (4.8)

where

I(ρ, ϕ̄) =

[∫∞
−∞ ρ′′(ε) ϕ̄(ε) dε

]2

∫∞
−∞[ρ′(ε)]2 ϕ̄(ε) dε

. (4.9)

Choosing ρ(z) = z2, which corresponds to LS estimation, gives I(ρ, ϕ̄) = 1/σ2

in (4.8), a result already obtained in Sect. 3.1.3.
Assume that the Fisher information for location for ϕ̄ exists; that is,

Iϕ̄ =

∫ ∞

−∞

[
ϕ̄′(ε)
ϕ̄(ε)

]2
ϕ̄(ε) dε < ∞

with ϕ̄′(·) the derivative of ϕ̄(·). Then, integration by parts and Cauchy–
Schwarz inequality give

[∫ ∞

−∞
ρ′′(ε) ϕ̄(ε) dε

]2
=

[∫ ∞

−∞
ρ′(ε)

ϕ̄′(ε)
ϕ̄(ε)

ϕ̄(ε) dε

]2

≤
∫ ∞

−∞
[ρ′(ε)]2 ϕ̄(ε) dε×

∫ ∞

−∞

[
ϕ̄′(ε)
ϕ̄(ε)

]2
ϕ̄(ε) dε ;

that is,
I(ρ, ϕ̄) ≤ Iϕ̄ (4.10)

for any function ρ(·) twice continuously differentiable and such that
∫ ∞

−∞
[ρ′(ε)]2 ϕ̄(ε) dε < ∞ .

The equality is achieved in (4.10) for ρ′(z) = K1 ϕ̄′(z)/ϕ̄(z), i.e., ρ(z) =
K1 log ϕ̄(z) + K2, with K1 < 0 since ρ(·) is minimum at zero. This choice
is legitimate if − log ϕ̄(z) satisfies the conditions in Theorems. 4.1 and 4.3;
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it corresponds to maximum likelihood estimation, considered in the following
section. We can already notice that the condition (4.2) then requires that the
support of the p.d.f. ϕ̄(·) is infinite.1 The inequality (4.10) shows that the
minimum asymptotic variance, in the class of estimators defined by (4.1) and
for regression models with i.i.d. errors, is obtained for maximum likelihood
estimation. A similar result will be presented below in a more general con-
text, see Theorem 4.7, which corresponds to extending the class of estimators
considered by allowing ρ(·) to depend on x; that is, we shall consider estima-
tors obtained by the minimization of

JN (θ) =
1

N

N∑

k=1

ρxk
[y(xk) − η(xk, θ)] . (4.11)

The properties stated in Theorems. 4.1 and 4.3 remain valid for such esti-
mators, provided that the assumptions mentioned are satisfied when ρ(·) is
replaced by ρx(·).

4.2 The Maximum Likelihood Estimator

Let ϕx,θ(y) denote the probability density function of the observation y(x) at
the design point x for some postulated true value θ of the model parameters.
The observations y(x1), y(x2), . . . are assumed to be independent.2 The maxi-

mum likelihood (ML) estimator θ̂NML maximizes the likelihood function, which
is defined as being proportional to the density of the observations given θ,
that is,

LX,y(·) : θ −→ LX,y(θ) = C(y)
N∏

k=1

ϕxk,θ(yk) ,

for some positive measurable function C(·) of y = [y(x1), . . . , y(xN )]�, not
depending on θ. Notice that the value of C(y) is arbitrary in the sense that

it has no influence on θ̂NML. The choice C(y) ≡ 1 is usual; see, e.g., Cox and

Hinkley (1974, p. 11), Lehmann and Casella (1998, p. 238). Equivalently, θ̂NML

minimizes

JN (θ) = − 1

N

N∑

k=1

logϕxk,θ(yk) , (4.12)

with yk = y(xk). For instance, when ϕx,θ(·) is the normal density

1A more standard condition, used in more general situations than regression
models, is that the support of the density of the observations should not depend on
the value θ of the parameters in the model generating these observations.

2See Sect. 4.6 for a brief discussion on the application of maximum likelihood
estimation to dynamical systems, for which the independence assumption does not
hold.
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ϕx,θ(y) =
1

σ(x)
√
2π

exp

{
− [y − η(x, θ)]2

2σ2(x)

}
,

then the ML estimator θ̂NML coincides with the WLS estimator minimizing
(3.5) for the optimal weights w(xi) = 1/σ2(xi).

4.2.1 Regression Models

Denote η(x, θ) = IEx,θ(y) =
∫∞
−∞ y ϕx,θ(y) dy and ϕ̄x(·) the p.d.f. of ε(x) =

y(x) − η(x, θ̄), with θ̄ ∈ Θ the true value of the model parameters, used to

generate the observations yk. The model thus takes the usual form (3.2); θ̂NML

is an M estimator with ρx(·) = − log ϕ̄x(·), see (4.11), and Theorems. 4.1
and 4.3 apply. We repeat these properties below for the special case of ML
estimation. Again, similar developments can be obtained for asymptotically
discrete designs, using Lemma 2.8 instead of Lemma 2.6.

Theorem 4.5 (Consistency of ML estimators in regression models).
Let {xi} be a randomized design with measure ξ on X ⊂ R

d; see Definition 2.2.

Consider the ML estimator θ̂NML that minimizes (4.12) in the model (3.2) with
errors εk = ε(xk) ∼ ϕ̄xk

(·). Assume that HΘ and H1η are satisfied, that ϕ̄x(·)
is continuous for any x with

∫

X

{∫ ∞

−∞
max
θ∈Θ

| log ϕ̄x[η(x, θ̄) − η(x, θ) + ε]| ϕ̄x(ε) dε
}
ξ(dx) < ∞ , (4.13)

and that the estimability condition (3.6) is satisfied, with the function

Jx(z) = −
∫ ∞

−∞
log[ϕ̄x(ε− z)] ϕ̄x(ε) dε (4.14)

having a unique minimum at z = 0 for any x ∈ X . Then θ̂NML satisfies

θ̂NML
a.s.→ θ̄ as N → ∞.

Note that Jx(z)− Jx(0) = D(Px,0‖Px,z), the Kullback–Leibler divergence
(or information divergence, or relative entropy) between the probability dis-
tributions having densities ϕx,0(ε) = ϕ̄x(ε) and ϕx,z(ε) = ϕ̄x(ε−z). Also note
that (4.13) implies that the support of ϕ̄x(·) must be infinite.

Theorem 4.6 (Asymptotic normality of ML estimators in regression
models). Let {xi} be a randomized design with measure ξ on X ⊂ R

d;
see Definition 2.2. Assume that the conditions of Theorem 4.5 and H2η are
satisfied, that ϕ̄x(·) is twice continuously differentiable for any x ∈ X , and
such that the Fisher information for location exists at any x,

∀x ∈ X , Iϕ̄(x) =
∫ ∞

−∞

[
ϕ̄′
x(ε)

ϕ̄x(ε)

]2
ϕ̄x(ε) dε < ∞ , (4.15)
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with ϕ̄′
x(ε) = dϕ̄x(ε)/dε, that for all i, j = 1, . . . , p,

∫

X

[∫ ∞

−∞
max
θ∈Θ

{∣∣∣∣∣
d2 log ϕ̄x(z)

dz2

∣∣∣∣
η(x,θ̄)−η(x,θ)+ε

∣∣∣∣∣

∣∣∣∣
∂η(x, θ)

∂θi

∂η(x, θ)

∂θj

∣∣∣∣

}
ϕ̄x(ε) dε

]

× ξ(dx) < ∞ ,
∫

X

[∫ ∞

−∞
max
θ∈Θ

{∣∣∣∣∣
d log ϕ̄x(z)

dz

∣∣∣∣
η(x,θ̄)−η(x,θ)+ε

∣∣∣∣∣

∣∣∣∣
∂2η(x, θ)

∂θi∂θj

∣∣∣∣

}
ϕ̄x(ε) dε

]

× ξ(dx) < ∞ ,

and that the average Fisher information matrix per sample (for the parame-
ters θ)

M(ξ, θ̄) =

∫

X

Iϕ̄(x)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (4.16)

is nonsingular. Then, the ML estimator θ̂NML that minimizes (4.12) in the
model (3.2) with the errors εk = ε(xk) ∼ ϕ̄xk

(·) satisfies
√
N(θ̂NML − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ .

Moreover, we have the following property which states that in a regres-
sion model, any estimator defined by the minimization of a function of the
form (4.11), with suitable regularity properties for ρx(·), has an asymptotic
covariance matrix at least as large as that obtained for ML estimation. This
corresponds to a Cramér–Rao-type inequality; see also Theorem 4.10 and
Sect. 4.4.

Theorem 4.7. Assume that the conditions of Theorem 4.6 and those of
Theorem 4.3 with ρ(·) replaced by ρx(·) are satisfied. Then, the estimator θ̂N

that minimizes (4.11) satisfies

√
N(θ̂N − θ̄)

d→ z ∼ N (0,C(ξ, θ̄)) , N → ∞ ,

where C(ξ, θ) is defined as in Theorem 4.3, with ρ(·) replaced by ρx(·), and,
for any θ ∈ Θ,

C(ξ, θ) � M−1(ξ, θ) (4.17)

with M(ξ, θ) defined by (4.16). The equality is obtained when

ρx(z) = K1 log ϕ̄x(z) +K2 , K1 < 0 .

Proof. We have C(ξ, θ) = M−1
1 (ξ, θ)M2(ξ, θ)M

−1
1 (ξ, θ) with

M1(ξ, θ̄) =

∫

X

{∫ ∞

−∞
ρ′′x(ε) ϕ̄x(ε) dε

}
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) (4.18)

M2(ξ, θ) =

∫

X

{∫ ∞

−∞
[ρ′x(ε)]

2 ϕ̄x(ε) dε

}
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,
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where ρ′x(ε) = dρx(ε)/dε and ρ
′′
x(ε) = d2ρx(ε)/dε

2. We use the same approach
as in the proof of Theorem 3.8, and define

v =

⎛

⎜⎝

{∫∞
−∞[ρ′x(ε)]

2 ϕ̄x(ε) dε
}1/2

∂η(x,θ)
∂θ{∫∞

−∞ ρ′′x(ε) ϕ̄x(ε) dε
} {∫∞

−∞[ρ′x(ε)]
2 ϕ̄x(ε) dε

}−1/2
∂η(x,θ)
∂θ

⎞

⎟⎠ .

It gives

IE{vv�} =

(
M2(ξ, θ) M1(ξ, θ)

M1(ξ, θ) M̃(ξ, θ)

)
,

where the expectation is with respect to ξ(dx) and

M̃(ξ, θ) =

∫

X

I(ρx, ϕ̄x)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx)

with I(ρ, ϕ̄) defined by (4.9). We have I(ρx, ϕ̄x) ≤ Iϕ̄(x) for any x, with
Iϕ̄(x) given by (4.15); see the discussion following the proof of Theorem 4.3.

Therefore, M̃(ξ, θ) � M(ξ, θ) and M2(ξ, θ) � M1(ξ, θ)M̃
−1(ξ, θ)M1(ξ, θ)

from Lemma 3.7, which together give (4.17).

4.2.2 General Situation

We are interested in the properties of the estimator θ̂NML that minimizes (4.12)
when the observations yk = y(xk) are independent random variables, y(x)
having the density (or Radon–Nikodým derivative) ϕx,θ̄(y) with respect to a

σ-finite measure μx on the set Yx ⊂ R to which y(x) belongs, with θ̄ ∈ Θ.
In parallel, we shall consider estimators defined by the minimization of a

criterion given by

JN (θ) =
1

N

N∑

k=1

�xk
(yk, θ) (4.19)

for some functions �xk
(y, θ). We proceed as previously: we first present the

results for an estimator defined by the minimization of (4.19), then we
particularize these results to the case of ML estimation by taking �x(y, θ) =
− logϕx,θ(y) and compare the asymptotic variances.

Theorem 4.8 (Consistency). Let {xi} be a randomized design with mea-
sure ξ on X ⊂ R

d; see Definition 2.2. Assume that HΘ is satisfied, that
�x(y, θ) is continuous in θ ∈ Θ for any (x, y) in X × R, that

∫

X

{∫ ∞

−∞
max
θ∈Θ

|�x(y, θ)|ϕx,θ̄(y)μx(dy)
}
ξ(dx) < ∞ , (4.20)

and that the function
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Jθ̄(θ) =

∫

X

{∫ ∞

−∞
�x(y, θ)ϕx,θ̄(y)μx(dy)

}
ξ(dx) (4.21)

has a unique minimum at θ = θ̄ ∈ Θ. Then the estimator θ̂N that minimizes
(4.19), with independent observations yk ∼ ϕxk,θ̄(·), satisfies θ̂N

a.s.→ θ̄ as
N → ∞.

Proof. The proof directly follows from the application of Lemmas 2.6 and
2.10.

Theorem 4.9 (Asymptotic normality). Let {xi} be a randomized design
with measure ξ on X ⊂ R

d; see Definition 2.2. Assume that �x(y, θ) is twice
continuously differentiable in θ ∈ int(Θ) for any (x, y) in X × R and that
θ̄ ∈ int(Θ). Assume moreover that the conditions of Theorem 4.8 are satisfied,
that for all i, j = 1, . . . , p,

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂�x(y, θ)

∂θi

∣∣∣∣ ϕx,θ̄(y)μx(dy)
]
ξ(dx) < ∞ , (4.22)

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂2�x(y, θ)

∂θi∂θj

∣∣∣∣ ϕx,θ̄(y)μx(dy)
]
ξ(dx) < ∞ ,

and that the matrix

M1(ξ, θ̄) =

∫

X

[∫ ∞

−∞

∂2�x(y, θ)

∂θ∂θ�

∣∣∣∣
θ̄

ϕx,θ̄(y)μx(dy)

]
ξ(dx) (4.23)

is nonsingular. Then, the estimator θ̂N that minimizes (4.19), with indepen-
dent observations yk ∼ ϕxk,θ̄(·), satisfies

√
N(θ̂N − θ̄)

d→ z ∼ N (0,C(ξ, θ̄)) , N → ∞ ,

where C(ξ, θ) = M−1
1 (ξ, θ)M2(ξ, θ)M

−1
1 (ξ, θ), with

M2(ξ, θ) =

∫

X

[∫ ∞

−∞

∂�x(y, θ)

∂θ

∂�x(y, θ)

∂θ�
ϕx,θ̄(y)μx(dy)

]
ξ(dx) .

Proof. The proof follows the same lines as that of Theorem 4.3. An additional
requirement is that IE{∇θJN (θ̄)} should be proved to be equal to zero, where
IE{·} denotes expectation with respect to y and x. Under the conditions (4.20),
(4.22), we can write IE{∇θJN (θ)} = ∇θIE{JN (θ)} = ∇θJθ̄(θ), with Jθ̄(θ)
given by (4.21), which is indeed differentiable with respect to θ and satisfies
∇θJθ̄(θ̄) = 0 since Jθ̄(θ) is minimum at θ̄ ∈ int(Θ).

The choice �x(y, θ) = − logϕx,θ(y) corresponds to ML estimation, with
the following asymptotic properties. Notice that the condition (4.20) implies
that the support of ϕx,θ(·) does not depend on θ.
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Theorem 4.10 (Asymptotic normality of ML estimators–II). Assume
that the conditions of Theorems. 4.8 and 4.9 are satisfied with �x(y, θ) =
− logϕx,θ(y) and that for all i, j = 1, . . . , p,

∫

X

[∫ ∞

−∞
max
θ∈Θ

ϕx,θ(y)μx(dy)

]
ξ(dx) < ∞ , (4.24)

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂ϕx,θ(y)

∂θi

∣∣∣∣ μx(dy)
]
ξ(dx) < ∞ , (4.25)

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂2ϕx,θ(y)

∂θi∂θj

∣∣∣∣ μx(dy)
]
ξ(dx) < ∞ . (4.26)

Then the ML estimator θ̂NML that minimizes (4.12), with independent obser-
vations yk having the p.d.f. ϕxk,θ̄(·), satisfies

√
N(θ̂NML − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ , (4.27)

with

M(ξ, θ) =

∫

X

[∫ ∞

−∞

∂ logϕx,θ(y)

∂θ

∂ logϕx,θ(y)

∂θ�
ϕx,θ(y)μx(dy)

]
ξ(dx) (4.28)

the average Fisher information matrix per sample for the parameters θ. More-
over, for any estimator θ̂N that minimizes (4.19), with �x(·, ·) satisfying the
conditions of Theorem 4.8 and 4.9 and such that for all i, j = 1, . . . , p,

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂�x(y, θ)

∂θi

∣∣∣∣ ϕx,θ(y)μx(dy)
]
ξ(dx) < ∞ , (4.29)

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂2�x(y, θ)

∂θi∂θj

∣∣∣∣ ϕx,θ(y)μx(dy)
]
ξ(dx) < ∞ , (4.30)

∫

X

[∫ ∞

−∞
max
θ∈Θ

∣∣∣∣
∂�x(y, θ)

∂θi

∂ϕx,θ(y)

∂θj

∣∣∣∣ μx(dy)
]
ξ(dx) < ∞ , (4.31)

the asymptotic covariance matrix C(ξ, θ̄) of
√
N(θ̂N − θ̄) satisfies

C(ξ, θ̄) � M−1(ξ, θ̄) . (4.32)

Proof. To prove (4.27) we only need to compute C(ξ, θ̄) as defined in The-
orem 4.9. Direct calculation for �x(y, θ) = − logϕx,θ(y) gives M2(ξ, θ) =
M(ξ, θ) and

M1(ξ, θ̄) = −
∫

X

[∫ ∞

−∞

∂2ϕx,θ(y)

∂θ∂θ�

∣∣∣∣
θ̄

μx(dy)

]
ξ(dx) +M(ξ, θ̄) .

We prove now C(ξ, θ̄) � M−1(ξ, θ̄) for any arbitrary �x(·, ·). The condi-
tions (4.24)–(4.26) imply that the first term on the right-hand side of the
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equation above is zero, so that M1(ξ, θ̄) = M(ξ, θ̄) and C(ξ, θ̄) = M−1(ξ, θ̄)
for �x(y, θ) = − logϕx,θ(y).

The conditions (4.20), (4.22) give

∫

X

[∫ ∞

−∞

∂�x(y, θ)

∂θ

∣∣∣∣
θ̄

ϕx,θ̄(y)μx(dy)

]
ξ(dx) = ∇θJθ̄(θ̄) = 0 ,

where Jθ̄(θ) is given by (4.21). Using (4.29)–(4.31), differentiation with respect
to θ̄ gives

∫

X

[∫ ∞

−∞

∂2�x(y, θ)

∂θ∂θ�

∣∣∣∣
θ̄

ϕx,θ̄(y)μx(dy)

]
ξ(dx) =

−
∫

X

[∫ ∞

−∞

∂�x(y, θ)

∂θ

∣∣∣∣
θ̄

∂ϕx,θ(y)

∂θ�

∣∣∣∣
θ̄

μx(dy)

]
ξ(dx)

and thus the matrix M1(ξ, θ̄) defined by (4.23) is also given by

M1(ξ, θ̄) = −
∫

X

[∫ ∞

−∞

∂�x(y, θ)

∂θ

∣∣∣∣
θ̄

∂ logϕx,θ(y)

∂θ�

∣∣∣∣
θ̄

ϕx,θ̄(y)μx(dy)

]
ξ(dx) .

Define

v =

(
∂�x(y,θ)

∂θ

∣∣
θ̄

∂ logϕx,θ(y)

∂θ�
∣∣
θ̄

)
,

we have

IE{vv�} =

(
M2(ξ, θ̄) M1(ξ, θ̄)
M1(ξ, θ̄) M(ξ, θ̄)

)
,

and C(ξ, θ̄) � M−1(ξ, θ̄) from Lemma 3.7.

The properties (4.17) and (4.32) of Theorems. 4.7 and 4.10 correspond
to Cramér–Rao-type inequalities, which, together with the related notion of
efficiency, will form the subject of Sect. 4.4.

4.3 Generalized Linear Models and Exponential Families

Models from exponential families have received much attention due in par-
ticular to their interest for practical applications; see, e.g., Barndorff-Nielsen
(1978), Jørgensen (1997), and McCullagh and Nelder (1989). They correspond
to the situation where the observations yk = y(xk) are independent and the
variable y(x), the observation at x ∈ X , is distributed according to an ex-
ponential family. This means that for any x ∈ X , there is a measurable set
Yx ⊂ R with a σ-finite measure μx on Yx, and the p.d.f. ϕx,θ̄(·) of y(x) (with
respect to μx) is of the exponential form. We consider first the case where the
sufficient statistic is one dimensional and then the multidimensional case in
Sect. 4.3.2.
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4.3.1 Models with a One-Dimensional Sufficient Statistic

In this case, the p.d.f. ϕx,θ(·) has the form

ϕx,θ(y) = exp{−ψx(y) + yγ(x, θ) − ζx[γ(x, θ)]} , (4.33)

where ψx(y) is a measurable function on Yx and γ(x, θ) is continuous on Θ
and twice continuously differentiable with respect to θ ∈ int(Θ). When γ(x, θ)
is linear in θ, γ(x, θ) = f�(x)θ, the model is called a generalized linear model.

Example 4.11. In the so-called Bernoulli experiments, y(x) ∈ Yx = {0, 1},
and the success probability Prob{y(x) = 1} of a trial at x is given by
Prob{y(x) = 1} = π(x, θ̄), with π(x, θ) a known function of the design point
x and parameter vector θ. With μx{0} = μx{1} = 1 (this choice is somewhat
arbitrary3), we obtain ϕx,θ(y) = [π(x, θ)]y [1 − π(x, θ)]1−y .

If nx independent trials are made at x, the number of successes is a suffi-
cient statistic. Let now y(x) denote the observed value of this number, the set
Yx becoming Yx = {0, 1, . . . , nx}. We take again μx{y} = 1 for every y ∈ Yx,
and obtain y(x) ∼ Bi(π(x, θ̄), nx); that is,

ϕx,θ(y) =

(
nx
y

)
[π(x, θ)]y [1 − π(x, θ)]nx−y

= exp

{
log

(
nx
y

)
+ y log

[
π(x, θ)

1 − π(x, θ)

]
+ nx log[1 − π(x, θ)]

}
,

which is of the form (4.33), with γ(x, θ) = log{π(x, θ)/[1 − π(x, θ)]}, or

π(x, θ) =
eγ(x,θ)

1 + eγ(x,θ)
,

and ζx(γ) = nx log(1 + eγ).
The mean IEx,θ{y(x)} = nxπ(x, θ) is bounded by nx, which is not appro-

priate for a linear regression. On the other hand, γ(x, θ) ∈ (−∞,∞), so that
one often takes γ(x, θ) = f�(x)θ which gives

η(x, θ) = IEx,θ{y(x)} = nx
ef

�(x)θ

1 + ef�(x)θ
,

the well-known logistic regression model. �

Coming back to the general density (4.33), from

∫

Yx

ϕx,θ(y)μx(dy) = 1 (4.34)

we obtain, for γ = γ(x, θ) with x, θ fixed,

3μx and ϕx,θ(·) only need to satisfy the condition (4.34).
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ζx(γ) = log

∫

Yx

exp{yγ − ψx(y)}μx(dy) .

Define Γ = {t ∈ R :
∫
Yx

exp{yt − ψx(y)}μx(dy) < ∞}. Supposing that γ ∈
int(Γ ), we can differentiate ζx(γ) and

dζx(γ)

dγ
=

∫
Yx
y exp{yγ − ψx(y)}μx(dy)∫

Yx
exp{yγ − ψx(y)}μx(dy)

=

∫

Yx

yϕx,θ(y)μx(dy) = IEx,θ{y} .

Similarly, we obtain d2ζx(γ)/dγ
2 = varx,θ{y}. Denote

η(x, θ) = IEx,θ{y} =
dζx(γ)

dγ

∣∣∣∣
γ(x,θ)

, (4.35)

λ(x, θ) = varx,θ{y} =
d2ζx(γ)

dγ2

∣∣∣∣
γ(x,θ)

,

which gives
∂η(x, θ)

∂θ
=

d2ζx(γ)

dγ2

∣∣∣∣
γ(x,θ)

∂γ(x, θ)

∂θ
;

that is,
∂γ(x, θ)

∂θ
= λ−1(x, θ)

∂η(x, θ)

∂θ
.

From (4.33), (4.35) we obtain

∂ logϕx,θ(y)

∂θ
= [y − η(x, θ)]

∂γ(x, θ)

∂θ
, (4.36)

∂2 logϕx,θ(y)

∂θ∂θ�
= −∂γ(x, θ)

∂θ

∂η(x, θ)

∂θ�
+ [y − η(x, θ)]

∂2γ(x, θ)

∂θ∂θ�
. (4.37)

Hence the Fisher information matrix at x is

IEx,θ

{
∂ logϕx,θ(y)

∂θ

∂ logϕx,θ(y)

∂θ�

}
= λ(x, θ)

∂γ(x, θ)

∂θ

∂γ(x, θ)

∂θ�
,

= λ−1(x, θ)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�

and the average Fisher information matrix per sample (4.28) for a design ξ is
equal to

M(ξ, θ) =

∫

X

λ−1(x, θ)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) . (4.38)

In particular, the validity of the assumptions of Theorem 4.10 can be checked
by using (4.36), (4.37). The matrixM(ξ, θ) coincides with the matrix obtained
in Sect. 3.3.3 for the TSLS estimator in a regression model with parameterized
variance; see (3.56). See also Sect. 3.3.7. Note, however, that the situation
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concerned here does not correspond to nonlinear regression, which will be
considered in Sect. 4.3.2.

This connection with two-stage LS (or iteratively reweighted LS; see
Sect. 3.3.4) is even stronger, as revealed by considering the normal equation

of the ML estimator θ̂NML that minimizes (4.19). We have

θ̂NML = argmin
θ∈Θ

N∑

k=1

{ζxk
[γ(xk, θ)] − y(k)γ(xk, θ)}

and the normal equation for θ̂NML is

0 =

N∑

k=1

[
dζxk

(γ)

dγ

∣∣∣∣
γ(xk,θ̂NML)

− y(xk)

]
∂γ(xk, θ)

∂θ

∣∣∣∣
θ̂NML

=

N∑

k=1

λ−1(xk, θ̂
N
ML)[η(xk, θ̂

N
ML)− y(xk)]

∂η(xk, θ)

∂θ

∣∣∣∣
θ̂NML

.

Exactly the same expression is obtained if in the normal equation for the
WLS estimator θ̂NWLS that minimizes (3.5) the weights w(x) are replaced by

λ−1(x, θ̂NWLS). This forms the basis for the iteratively reweighted LS method
of Sect. 3.3.4; see (3.58).

4.3.2 Models with a Multidimensional Sufficient Statistic

For a model from the general exponential family, the p.d.f. ϕx,θ̄(·) has the
form

ϕx,θ(y) = exp{−ψx(y) + t�(y)γ(x, θ) − ζx[γ(x, θ)]} . (4.39)

We obtain as in Sect. 4.3.1

dζx(γ)

dγ

∣∣∣∣
γ(x,θ)

= IEx,θ{t(y)} = ν(x, θ) ,

d2ζx(γ)

dγ2

∣∣∣∣
γ(x,θ)

= Varx,θ{t(y)} = V(x, θ) ,

and

M(ξ, θ) =

∫

X

∂ν�(x, θ)
∂θ

V−1(x, θ)
∂ν(x, θ)

∂θ�
ξ(dx) ,

for the average Fisher information matrix per sample for the parameters θ.
The normal equation for the ML estimator θ̂NML is then

0 =

N∑

k=1

{ν(xk, θ̂NML) − t[y(xk)]}�V−1(xk, θ̂
N
ML)

∂ν(xk, θ)

∂θ

∣∣∣∣
θ̂NML

.

The regression model with normal errors is a typical example.
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Example 4.12. Consider a regression model with parameterized variance and
normal errors, y(xk) ∼ N (η(xk, θ̄), λ(xk , θ̄)); that is,

ϕx,θ(y) = exp

{
−1

2
log(2π) + y

η(x, θ)

λ(x, θ)
− y2

1

2λ(x, θ)

−
[
1

2
logλ(x, θ) +

η2(x, θ)

2λ(x, θ)

]}
. (4.40)

Notice that the ML criterion (4.12) then coincides with the penalized WLS
criterion (3.47). If we compare (4.40) to a model from the general exponential
family (4.39), we obtain

t(y) =

(
y
y2

)
, γ(x, θ) = λ−1(x, θ)

(
η(x, θ)
−1/2

)

and

ζ(γ) =
1

2
log(−2{γ}2)−

{γ}21
4{γ}2

.

We also obtain directly

IEx,θ

(
y
y2

)
=

(
η(x, θ)

λ(x, θ) + η2(x, θ)

)
,

Varx,θ

(
y
y2

)
=

(
λ(x, θ) 2η(x, θ)λ(x, θ)

2η(x, θ)λ(x, θ) 2λ2(x, θ) + 4η2(x, θ)λ(x, θ)

)
.

This gives the normal equation

N∑

k=1

(
y(xk) − η(xk, θ̂

N
ML)

λ(xk, θ̂NML)

∂η(xk, θ)

∂θ

∣∣∣∣
θ̂NML

+
[y(xk) − η(xk, θ̂

N
ML)]

2 − λ(xk, θ̂
N
ML)

2λ2(xk, θ̂NML)

∂λ(xk, θ)

∂θ

∣∣∣∣
θ̂NML

)
= 0.

It exactly coincides with the normal equation of the WLS problem defined by
the criterion

1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, θ̂NML)
+

1

2N

N∑

k=1

{
[y(xk) − η(xk, θ̂

N
ML)]

2 − λ(xk, θ)
}2

λ2(xk, θ̂NML)
,

hence, the iteratively reweighted LS procedure

θ̂Nk = argmin
θ∈Θ

1

N

N∑

k=1

[y(xk) − η(xk, θ)]
2

λ(xk, θ̂Nk−1)

+
1

2N

N∑

k=1

{
[y(xk) − η(xk, θ̂

N
k−1)]

2 − λ(xk, θ)
}2

λ2(xk, θ̂Nk−1)
, k = 2, 3, . . .

suggested in (Downing et al., 2001). See also Green (1984) and del Pino (1989)
for more general procedures. �
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4.4 The Cramér–Rao Inequality: Efficiency of Estimators

4.4.1 Efficiency

Consider N observations y = [y(x1), . . . , y(xN )]� obtained for the design
X = (x1, . . . , xN ). The likelihood of θ at y can be written as LX,y(θ) =
C(y)ϕX,θ(y), with C(·) an arbitrary positive measurable function of y and
ϕX,θ(·) the density (Radon–Nikodým derivative) of y supposed to be gener-
ated by a model with parameters θ, with respect to a σ-finite measure μX on
YX = Yx1 × · · · × YxN . Note that

∂ log LX,y(θ)

∂θ
=
∂ logϕX,θ(y)

∂θ
(4.41)

when the derivatives exist. Under suitable regularity conditions, any unbiased
estimator θ̂N = θ̂N (y) based on the N observations y satisfies the Cramér–
Rao inequality, which can be formulated as follows.

Theorem 4.13. Let θ̂N be an unbiased estimator of θ (i.e., such that IEX,θ{θ̂N}
= θ), based on N observations y, satisfying IEX,θ[‖θ̂N − θ)‖2] < ∞. Assume
that the support of ϕX,θ(·), {y ∈ R

N : ϕX,θ(y) > 0}, does not depend on θ
and that ϕX,θ(y), considered as a function of θ, is continuously differentiable

in θ and satisfies IEX,θ

[
‖∂ϕX,θ(y)/∂θ‖2

]
< ∞ and, for all i, j = 1, . . . , p, for

all θ ∈ Θ,

∫

YX

∣∣∣{θ̂N (y)}i
∣∣∣ ϕX,θ(y)μX(dy) < ∞ , (4.42)

∫

YX

∣∣∣∣
∂ϕX,θ(y)

∂θi

∣∣∣∣ μX(dy) < ∞ , (4.43)

∫

YX

∣∣∣∣{θ̂
N (y)}i

∂ϕX,θ(y)

∂θj

∣∣∣∣ μX(dy) < ∞ . (4.44)

The variance–covariance matrix VarX,θ{θ̂N} of θ̂N then satisfies

VarX,θ{θ̂N} = IEX,θ{(θ̂N − θ)(θ̂N − θ)�} � M+(X, θ)

N
(4.45)

where

M(X, θ) =
1

N
IEX,θ

{
∂ log LX,y(θ)

∂θ

∂ log LX,y(θ)

∂θ�

}
(4.46)

is the average Fisher information matrix per sample for the parameters θ and
design X and M+ denotes the Moore–Penrose g-inverse of M.

Proof. We apply Lemma 3.7 with u = θ̂N − θ and v = ∂ logϕX,θ(y)/∂θ.
Under (4.42)–(4.44), we can differentiate under the integral sign, which gives
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IEX,θ{uv�} =

∫

YX

u(y)v�(y)ϕX,θ(y)μX (dy)

=

∫

YX

[θ̂N (y) − θ]
∂ϕX,θ(y)

∂θ�
μX(dy)

=
∂IEX,θ{θ̂N}

∂θ�
− θ

∂IEX,θ{1}
∂θ�

= Ip ,

the p-dimensional identity matrix. Lemma 3.7 and (4.41) give (4.45), (4.46).

Remark 4.14.

(i) Within the setup of Sect. 4.2.2 the conditions (4.24), (4.25) used for the
asymptotic normality of the ML estimator imply (4.42)–(4.44).

(ii) An estimator that achieves equality in (4.45) is said to be efficient. From
Lemma 3.7, an efficient unbiased estimator of θ, if it exists (which is
seldom the case in nonlinear situations), satisfies

∂ log LX,y(θ)

∂θ
= C(X, θ)(θ̂N − θ)

for some nonrandom matrix C(X, θ); it therefore coincides with the ML
estimator.

(iii) Relaxing the constrained that θ̂N is unbiased in Theorem 4.13, one
can use the same approach as in the proof above, with now u =
θ̂N − IEX,θ{θ̂N}. We then obtain

VarX,θ{θ̂N} � ∂IEX,θ{θ̂N}
∂θ�

M+(X, θ)

N

∂[IEX,θ{θ̂N}]�
∂θ

.

From Lemma 3.7, the equality is obtained if and only if

∂ log LX,y(θ)

∂θ
= C(X, θ)(θ̂N − IEX,θ{θ̂N})

for some matrix C(X, θ), which means that the model is from the expo-
nential family; see Lehmann and Casella (1998, p. 128).

(iv) Under suitable regularity conditions (ensuring the existence of second-
order derivatives ∂2LX,y(θ)/∂θi∂θj , i, j = 1, . . . , p, and allowing differ-
entiation under the integral sign), M(X, θ) given by (4.46) can also be
written as

M(X, θ) = − 1

N
IEX,θ

{
∂2 log LX,y(θ)

∂θ∂θ�

}
. �
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4.4.2 Asymptotic Efficiency

Consider the situation of Sect. 4.2.2, where the observations yk = y(xk) are
independent random variables, y(x) having the density (or Radon–Nikodým
derivative) ϕx,θ̄(·) with respect to a σ-finite measure μx on the set Yx ⊂ R.
Suppose that the conditions of Theorem 4.10 are satisfied. Then, the matrix
M(X, θ) given by (4.46) can also be written as

M(X, θ) =
1

N

∫

YX

⎛

⎝
N∑

j=1

∂ logϕxj ,θ(yj)

∂θ

N∑

k=1

∂ logϕxk,θ(yk)

∂θ�

⎞

⎠

×
N∏

l=1

[ϕxl,θ(yl)μxl
(dyl)]

=
1

N

N∑

k=1

∫

Yxk

∂ logϕxk,θ(t)

∂θ

∂ logϕxk,θ(t)

∂θ�
ϕxk,θ(t)μxk

(dt)

+
1

N

N∑

j,k=1, j �=k

(∫

Yxj

∂ logϕxj ,θ(t)

∂θ
ϕxj ,θ(t)μxj (dt)

)

×
(∫

Yxk

∂ logϕxk,θ(t)

∂θ�
ϕxk,θ(yl)μxk

(dt)

)
.

Now, for any k = 1, . . . , N ,

∫

Yxk

∂ logϕxk,θ(t)

∂θ
ϕxk,θ(t)μxk

(dt) =
∂
[∫

Yxk

ϕxk,θ(t)μxk
(dt)

]

∂θ
=
∂1

∂θ
= 0

and therefore M(X, θ) = M(ξN , θ) given by (4.28) for the discrete design
measure ξN that allocates the mass 1/N to each xk, k = 1, . . . , N . From

Theorem 4.10 the ML estimator θ̂NML is asymptotically unbiased and asymp-
totically normally distributed,

√
N(θ̂NML − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) , (4.47)

see (4.27). When ξN converges to ξ, M−1(X, θ) converges to M−1(ξ, θ), and

θ̂NML is asymptotically efficient, in the sense that it asymptotically attains the
bound of Theorem 4.13; see Lehmann and Casella (1998, p. 439).

There are alternatives to ML estimation that achieve asymptotic efficiency
under milder conditions than the ML estimator. For instance, there exist
adaptive estimators that are asymptotically efficient in the regression model
when the distribution of errors is only known to be symmetric and thus forms
an infinite-dimensional nuisance component in a semi-parametric model; see
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Bickel (1982) and Manski (1984).4 Also, some estimators may be easier to

compute than θ̂NML and still be asymptotically efficient. This is the case for
the following one-step estimator, see, e.g., Bierens (1994, p. 81) and van der
Vaart (1998, p. 71). We only consider the general situation of Sect. 4.2.2,
which can easily be particularized to the case of regression models.

Theorem 4.15 (Asymptotic efficiency of one-step estimators). Sup-
pose that Θ is convex, that the conditions of Theorem 4.10 are satisfied, and
that θ̂N1 is a

√
N -consistent5 estimator of θ for independent observations yk

having the p.d.f. ϕxk,θ̄(·). Consider the one-step estimator θ̂N2 obtained by
performing one single Newton step for the minimization of the ML criterion
JN (θ) given by (4.12), starting from θ̂N1 ,

θ̂N2 = θ̂N1 −
[
∇2
θJN (θ̂N1 )

]−1

∇θJN (θ̂N1 ) . (4.48)

It is asymptotically efficient,

√
N(θ̂N2 − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ , (4.49)

with M(ξ, θ̄) the average Fisher information matrix per observation; see
(4.28).

Proof. Using Lemma 2.6, we can prove that ∇2
θJN (θ)

θ� M(ξ, θ) a.s., so

that ∇2
θJN (θ̂N1 )

p→ M(ξ, θ̄), which is nonsingular. Since Θ is convex, we can

consider the following Taylor expansion of {∇θJN (θ̂N1 )}i at θ̄ for i = 1, . . . , p :

{∇θJN (θ̂N1 )}i = {∇θJN (θ̄)}i + {∇2
θJN (βNi )(θ̂N1 − θ̄)}i

for some βNi = (1 − αi,N )θ̄ + αi,N θ̂
N
1 , αi,N ∈ (0, 1), with βNi measurable; see

Lemma 2.12. Using (4.48), we obtain

√
N{∇2

θJN (θ̂N1 )(θ̂N2 − θ̄)}i =
√
N
{
[∇2

θJN (θ̂N1 ) − ∇2
θJN (βNi )](θ̂N1 − θ̄)

}

i

−
√
N{∇θJN (θ̄)}i , i = 1, . . . , p . (4.50)

Since θ̂N1
p→ θ̄, βNi

p→ θ̄, and we have ∇2
θJN (θ̂N1 )

p→ M(ξ, θ̄), ∇2
θJN (βN )

p→
M(ξ, θ̄). Since

√
N(θ̂N1 − θ̄) is bounded in probability, the first term on the

right-hand side of (4.50) tends to zero in probability. As in Theorem 4.10, the
second one is asymptotically distributed N (0,M(ξ, θ̄)), which gives (4.49).

4The notion of adaptive estimation originated in (Stein, 1956); one can refer
to Beran (1974), Stone (1975), and Bickel et al. (1993) for the main steps in the
developments.

5That is,
√
N(θ̂N1 − θ̄) is bounded in probability; see page 31.
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4.5 The Maximum A Posteriori Estimator

Suppose that N observations y = [y(x1), . . . , y(xN )]� have been obtained
with the design X = (x1, . . . , xN ) and let π(·) denote a prior p.d.f. for θ on
R
p or a subset of it. Bayesian estimation relies on the construction of the

posterior p.d.f. for θ,

πX,y(θ) =
ϕX,θ(y)π(θ)

ϕ∗
X(y)

, (4.51)

with ϕ∗
X(·) the p.d.f. of the marginal distribution of the observations y and

ϕX,θ(·) the p.d.f. of their conditional distribution given θ.
When the yk are independent, yk = y(xk) having the density ϕxk,θ̄(y) with

respect to the measure μxk
on Yxk

⊂ R, we have ϕX,θ(y) =
∏N
k=1 ϕxk,θ(yk)

and thus

log πX,y(θ) =
N∑

k=1

logϕxk,θ(yk) + log π(θ) − logϕ∗
X(y) .

The maximum a posteriori estimator θ̂N maximizes log πX,y(θ) with respect

to θ ∈ Θ. We shall investigate the behaviors of θ̂N and πX,y(·) as N → ∞ in
a classical sense, that is, assuming that the observations y are generated with
a fixed but unknown parameter value θ̄.

The maximum a posteriori estimator then satisfies the following.

Theorem 4.16. Assume that the conditions of Theorem 4.8 are satisfied for
�x(y, θ) = − logϕx,θ(y) and that π(·) is continuous on Θ with π(θ) > ε > 0

for any θ ∈ Θ. Then θ̂N = argmaxθ∈Θ log πX,y(θ)
a.s.→ θ̄ as N → ∞. If,

moreover, π(·) is twice continuously differentiable on int(Θ) and the conditions

of Theorem 4.10 are satisfied, then θ̂N satisfies

√
N(θ̂N − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ ,

with M(ξ, θ) given by (4.28).

Proof. Under the conditions of Theorem 4.8, with �x(y, θ) = − logϕx,θ(y), we
obtain

1

N
[log πX,y(θ) + logϕ∗

X(y)]
θ� Jθ̄(θ) a.s. , N → ∞ ,

with

Jθ̄(θ) = −
∫

X

{∫ ∞

−∞
log[ϕx,θ(y)]ϕx,θ̄(y)μx(dy)

}
ξ(dx) .

This means that the influence of the prior term log π(θ) asymptotically van-
ishes in (1/N) log πX,y(θ). This influence also vanishes in the first- and second-
order derivatives with respect to θ, and the asymptotic normality follows from
Theorem 4.10.
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More generally, under some regularity conditions, for large N , the poste-
rior density of θ is approximately normal with mean tending to θ̄ and variance
tending to (1/N)M−1(ξ, θ̄), and the asymptotic properties of a Bayes’ estima-
tor based on πX,y(θ), for instance, the posterior expectation

∫
Θ
θ πX,y(θ) dθ,

are the same as those of the ML estimator based on the likelihood LX,y(θ); see,
e.g., Lehmann and Casella (1998, pp. 487–496) for details. In terms of asymp-
totic characteristics of the precision of the estimation, there is therefore no
modification with respect to the results in previous sections.

The situation is different for finite N , where a Bayesian form of the
Cramér–Rao inequality (4.45) can be derived.

Theorem 4.17. Let θ̂N be an estimator of θ based on N observations y.
Assume that ϕX,θ(y) and π(θ) are continuously differentiable in θ and that
the conditions (4.42)–(4.44) are satisfied. Assume, moreover, that Θ is un-
bounded, that the support of ϕX,θ(·), {y ∈ R

N : ϕX,θ(y) > 0} does not depend

on θ, that lim‖θ‖→∞[IEX,θ{θ̂N}−θ]π(θ) = 0, and that IE[‖θ̂N −θ‖2] < ∞ and
IE[‖∂ log πX,y(θ)/∂θ‖2] < ∞ with IE(·) = IEπ[IEX,θ(·)]. The mean-squared er-

ror matrix IE{(θ̂N − θ)(θ̂N − θ)�} then satisfies

IE{(θ̂N − θ)(θ̂N − θ)�} � [M̃(X)]+

N
(4.52)

where

M̃(X) =
1

N
IE

{
∂ log πX,y(θ)

∂θ

∂ log πX,y(θ)

∂θ�

}
(4.53)

and M+ denotes the Moore–Penrose g-inverse of M.

Proof. The proof is similar to that of Theorem 4.13. Again we apply Lemma 3.7
with now u = θ̂N − θ and v = ∂ log[ϕX,θ(y)π(θ)]/∂θ. It gives

IE

{
(θ̂N − θ)

∂ log[ϕX,θ(y)π(θ)]

∂θ�

}
=

∫

Θ

∫

YX

(θ̂N − θ)
∂[ϕX,θ(y)π(θ)]

∂θ�
μX(dy)dθ

=

∫

Θ

[∫

YX

(θ̂N − θ)
∂ϕX,θ(y)

∂θ�
μX(dy)

]
π(θ) dθ

+

∫

Θ

[∫

YX

(θ̂N − θ)ϕX,θ(y)μX (dy)

]
∂π(θ)

∂θ�
dθ .

By differentiation under the integral sign, which is allowed from (4.42)–(4.44),

the first integral on the right-hand side is equal to
∫
Θ
{∂IEX,θ(θ̂N )/∂θ�}

π(θ) dθ; the second is equal to
∫
Θ[IEX,θ(θ̂

N )− θ] {∂π(θ)/∂θ�} dθ, which gives

IE(uv�) =
∫

Θ

∂{[IEX,θ(θ̂N ) − θ]π(θ)}
∂θ�

dθ + Ip = Ip ,

the p-dimensional identity matrix. Using (4.51) and Lemma 3.7 we obtain
(4.52), (4.53).
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Remark 4.18.

(i) Under the conditions (4.42)–(4.44),

IEX,θ

{
∂ logϕX,θ(y)

∂θ

}
=

∫

YX

∂ϕX,θ(y)

∂θ
μX(dy)

=
∂
[∫

YX
ϕX,θ(y)μX(dy)

]

∂θ
= 0

and the matrix M̃(X) given by (4.53) can also be written as

M̃(X) = IEπ{M(X, θ)}+ 1

N
IEπ

{
∂ log π(θ)

∂θ

∂ log π(θ)

∂θ�

}

with M(X, θ) the average Fisher information matrix per sample for the
parameters θ and design X , given by (4.46). In a linear model, M(X, θ) =
M(X) does not depend on θ and

M̃(X) = M(X) +
1

N
IEπ

{
∂ log π(θ)

∂θ

∂ log π(θ)

∂θ�

}
.

In particular, if the prior is normal N (θ̂0,Ω) then M̃(X) = M(X) +
Ω−1/N . Note that the influence of the prior vanishes as N increases.

(ii) From Lemma 3.7, equality in (4.52) is equivalent to ∂ log πX,y(θ)/∂θ =

A(θ̂N − θ) for some nonrandom matrix A. Moreover, A = NM̃(X), see
the proof of Lemma 3.7, and when M̃(X) is nonsingular one can check

that the posterior is the normal N (θ̂N , [NM̃(X)]−1); that is,

πX,y(θ) =

√
det[M̃(X)]

Np/2

(2π)p/2
exp

[
−N

2
(θ − θ̂N )M̃(X)(θ − θ̂N )

]
.

It implies that if the equality in (4.52) is attained for some estimator θ̂N ,

θ̂N corresponds to the maximum a posteriori estimator. From the normal
form of πX,y(θ), it is also the posterior mean for θ. This is the case for
linear regression with normal errors and a normal prior. �

4.6 Bibliographic Notes and Further Remarks

M Estimators Without Smoothness

Only the case of a smooth function ρ(·) has been considered in Sect. 4.1 and
also only the case of a smooth density ϕ̄(·) in Sect. 4.2. The extension of
Theorem 4.3 to the case where ρ(·) is not a smooth function requires specific
developments; see, e.g., van der Vaart (1998, Chap. 5). A heuristic justifica-
tion of the results can be given in situations where ρ(·) is twice continuously
differentiable almost everywhere, i.e., when the probability that ρ(·) is twice
continuously differentiable at εk equals one when εk has the p.d.f. ϕ̄xk

(·) and
xk is distributed with the probability measure ξ.
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Estimating Functions and Quasi-Likelihood

The approach we used in Chaps. 3 and 4 to show that an estimator θ̂N is
asymptotically normal relies on the fact that θ̂N ∈ int(Θ) for N large enough

so that the vector of derivatives ∇JN (θ) equals 0 at θ̂N when the criterion
JN (·) that we minimize is differentiable in int(Θ). More generally, an equa-
tion dN (θ) = d(θ;y, ξN ) = 0, with dN (θ) ∈ R

p, y = (y1, . . . , yN )� the vector
of observations and ξN the empirical design measure, is called an estimat-
ing equation for θ ∈ R

p, and dN (·) is an unbiased estimating function when
IEθ{dN (θ)} = 0 for all θ. A typical example is when dN (·) is the score func-
tion,

uN (θ) =
∂ log LX,y(θ)

∂θ
=
∂ logϕX,θ(y)

∂θ
, (4.54)

which satisfies IEX,θ{uN(θ)} = 0 under (4.42)–(4.44); see Remark 4.18-(i).
Under conditions similar to those used in Chaps. 3 and 4, one can show
that estimators θ̂N defined by suitable estimating equations dN (θ̂N ) = 0
are strongly consistent and asymptotically normal.

The following standardized form of an estimating function is often used,

d
(s)
N (θ) = −IEθ

{
∂dN(θ)

∂θ�

}� [
IEθ{dN (θ)d�

N (θ)}
]−1

dN (θ) ,

so that

IEθ

{
∂dN(θ)

∂θ�

}� [
IEθ{dN(θ)d�

N (θ)}
]−1

IEθ

{
∂dN (θ)

∂θ�

}
=

IEθ

{
d
(s)
N (θ)d

(s)
N

�
(θ)

}
.

Note that the score function (4.54) satisfies u
(s)
N (θ) = uN (θ); see Remark 4.14-

(iv). The matrix IEθ{d(s)
N (θ)d

(s)
N

�
(θ)} forms a natural generalization of the

Fisher information matrix to other estimating functions than the score func-
tion.

When dN (·) belongs to some class D of functions which have zero mean
and are square integrable, one may choose a function d∗

N (·) such that

IEθ

{
d
∗(s)
N (θ)d

∗(s)
N

�
(θ)

}
� IEθ

{
d
(s)
N (θ)d

(s)
N

�
(θ)

}

for all dN (·) in D and all θ, or, equivalently, such that

IEθ

{
[uN (θ) − d

(s)
N (θ)] [uN (θ) − d

(s)
N (θ)]�

}
�

IEθ

{
[uN (θ) − d

∗(s)
N (θ)] [uN (θ) − d

∗(s)
N (θ)]�

}
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for all dN (·) in D and all θ; see Heyde (1997, Chap. 2). Such a d∗
N (·) is

called a quasi-score estimating function; estimators associated with quasi-
score estimating functions are called quasi-likelihood estimators.

The construction of estimating functions (or estimating equations) yields
a rich set of tools for parameter estimation in stochastic models. They can
provide simple estimators for dynamical systems, at the expense, in general,
of a loss of precision compared to LS or ML estimation. One may refer to
Heyde (1997) for a general exposition of the methodology; see also the dis-
cussion paper (Liang and Zeger, 1995). Instrumental variable methods, see,
e.g., Söderström and Stoica (1981, 1983) and Söderström and Stoica (1989,
Chap. 8), used in dynamical systems as an alternative to LS estimation when
the regressors and errors are correlated and the LS estimator is biased, can
be considered as methods for constructing unbiased estimating functions.

Superefficiency

An estimator θ̂N satisfying
√
N(θ̂N − θ̄) ∼ N (0,C(ξ, θ̄)) is said to be

asymptotically efficient when C(ξ, θ̄) = M−1(ξ, θ̄), the inverse of the aver-
age Fisher information matrix per observation; see Sect. 4.4.2. Under suit-
able conditions, this is the case for the ML estimator; see (4.47). One might
think that the Cramér–Rao inequality (4.45) would imply that in general
C(ξ, θ̄) � M−1(ξ, θ̄), at least under some conditions on the probability model

generating the observations. However, there typically exist estimators θ̂N such
that

√
N(θ̂N − θ̄) ∼ N (0,C(ξ, θ̄)) but with C(ξ, θ̄) ≺ M−1(ξ, θ̄) at some par-

ticular points θ̄, which are called points of superefficiency. A well-known exam-
ple is due to J.L. Hodges; see Lehmann and Casella (1998, p. 440), Ibragimov
and Has’minskii (1981, p. 91). However, Le Cam (1953) has shown that the
set of points of superefficiency has zero Lebesgue measure, so that supereffi-
ciency is not really significant from a statistical point of view, and asymptotic
efficiency remains an important notion.

The LAN Property

A most important step in the construction of asymptotically efficient estima-
tors is the concept of local asymptotic normality (LAN), due to Le Cam; see
Le Cam (1960) and the review by van der Vaart (2002) of his contributions to
statistics. Under minimal assumptions (e.g., replication of independent exper-
iments), the LAN condition holds, and an asymptotically efficient estimator
can be constructed from an initial estimator that is simply

√
N consistent.

This extends the approach of Sect. 4.4.2 to situations where the ML estimator
cannot be computed. For instance, it is a key feature for the construction of
adaptive estimators in (Bickel, 1982) and (Manski, 1984).

Dynamical Systems and Dependent observations

It is assumed throughout the monograph that the observations yk form an
independent sequence of random variables. However, it may happen that this
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assumption of independence does not hold. This is the case in particular for
dynamical systems where yk can be written as

yk = F (k, Y k−1, Uk−1, θ̄) + εk

with Y k−1 the observations y1, . . . , yk−1 available at time k, Uk−1 the values
of inputs (controls) u1, . . . , uk used up to time k and {εk} a sequence of
independent random variables, and εk being distributed with a p.d.f. ϕ̄k(·)
which possibly depends on uk. Here F (·) simply expresses some dependence
of yk on the passed values of y and u, as in time-series models, for instance.
The observations yk are not independent, but the prediction errors

ε̂(θ, k) = yk − F (k, Y k−1, Uk−1, θ) (4.55)

form a sequence of independent random variables for θ = θ̄. The results pre-
sented in Chaps. 3 and 4 for regression models can then be extended to that
situation; see, e.g., Goodwin and Payne (1977) and Ljung (1987) for a detailed
presentation including more complex models. For instance, the LS criterion
now takes the form

JN (θ) =
1

N

N∑

k=1

ε̂2(θ, k) ,

and for a deterministic sequence of inputs uk, the likelihood can be written
as

LUN ,Y N (θ) = C(Y N )

N∏

k=1

ϕ̄k[ε̂(θ, k)] , (4.56)

with C(·) some positive measurable function of Y N not depending on θ.
The corresponding estimation procedure is then called a prediction-error
method. Notice that (4.56) contains no approximation when the predic-
tor F (k, Y k−1, Uk−1, θ) can be calculated exactly6 in (4.55). Under suitable
assumptions, the ML estimator is still asymptotically efficient in this situ-
ation. For some particular models, e.g., those given by linear differential or
recurrence equations, the Fisher information matrix can be computed ex-
plicitly in closed form; see, for instance, Zarrop (1979), Goodwin and Payne
(1977), Ljung (1987) and Walter and Pronzato (1997, Chap. 6). Notice that
the sequence of inputs uk plays here the role of the experimental design.

Data-Recursive Estimation Methods

It may be necessary, for dynamical systems in particular, to have an estimate
of the model parameters available on line; that is, θ̂N−1 should be available
immediately after yN−1 has been observed. Data-recursive methods concern

6Typically, this implies that unknown initial values have been replaced by zero
in the dynamical systems; the ML method is then called conditional ML, where
conditional refers to this choice of initial values.
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estimation procedures where θ̂N is constructed from θ̂N−1 and yN (and the
design point xN associated with yN , or the N -th control for a dynamical
system); see, for instance, Remark 3.28-(iii) for recursive LS and recursively
reweighted LS in a linear regression model. We shall not develop this point
but only mention that when θ̂N is obtained by a Newton-type step similar
to (4.48) with θ̂N1 replaced by θ̂N−1, the asymptotic properties of the off-
line (nonrecursive) estimator are preserved.7 In particular, data-recursive ML
estimation is still efficient under suitable conditions. The proofs are rather
technical; see, e.g., Ljung (1987), Caines (1988), and Söderström and Stoica
(1989).

Cramér–Rao Inequality for Estimation with Constraints

Assume that θ̄ ∈ Θ′, with Θ′ ⊂ Θ a continuousm-dimensional manifold of Rp,
m < p, and consider constrained parameter estimation where θ̂N is forced to
belong to Θ′. Then, under the conditions of Theorem 4.13, with the addition
that M(X, θ̄) is nonsingular, any constrained estimator θ̂N ∈ Θ′ with finite
variance satisfies

VarX,θ̄{θ̂N} �
∂IEX,θ̄{θ̂N}

∂θ̄�
Pθ̄

M−1(X, θ̄)

N

∂[IEX,θ̄{θ̂N}]�

∂θ̄
(4.57)

where Pθ̄ is the projector

Pθ̄ = M−1(X, θ̄)Q[Q�M−1(X, θ̄)Q]−1Q�

and Q = [q1, . . . ,qm] is formed by m arbitrary linearly independent tangent
directions on Θ′ at θ̄; see Gorman and Hero (1990). The case where M(X, θ̄)
is singular is considered in (Stoica, 1998, 2001). A geometrical investigation of
the small sample properties in nonlinear models with parameter constraints
has been done in (Pázman, 2002b). Since equality constraints as considered
in Sect. 3.5 also define a restriction of the parameter space Θ to a subset
Θ′ ⊂ Θ, the generalized Cramér–Rao inequality (4.57) can also be applied to
that case.

7Many methods exist, they receive different names (recursive ML, recursive
pseudo-linear regression, recursive generalized LS, extended LS. . . ) depending on
the type of model to which they are applied and on the type of approximations used
in the implementation of the Newton step.
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Local Optimality Criteria Based

on Asymptotic Normality

The approach considered in this chapter is probably the most common for
designing experiments in nonlinear situations. It consists in optimizing a scalar
function of the asymptotic covariance matrix of the estimator and thus relies
on asymptotic normality, as considered in Chaps. 3 and 4. Design based on
more accurate characterizations of the precision of the estimation will be con-
sidered in Chap. 6. Additionally to asymptotic normality, the approach also
supposes that the asymptotic covariance matrix takes the form of the inverse
of an information matrix,1 as it is the case, for instance, for weighted LS
with optimum weights, see Sect. 3.1.3, or maximum likelihood estimation, see
Sect. 4.2. The case of asymptotic covariance matrices that are products of
information matrices and their inverses, as those encountered, for instance, in
Sects. 3.1.3, 3.3.2, 3.4, 4.1, is considered in Sect. 5.5.

In this chapter we thus consider design criteria that can be written as

φ(ξ) = Φ[M(ξ, θ)]

with M(ξ, θ) an information matrix of the form

M(ξ, θ) =

∫

X

Mθ(x) ξ(dx) . (5.1)

Here,Mθ(x) denotes the symmetric nonnegative-definite p×pmatrixM(δx, θ)
with δx the delta measure putting mass one at x.

In regression models with scalar observations Mθ(x) has often rank one
and

Mθ(x) = gθ(x)g
�
θ (x) , gθ(x) ∈ R

p .

For instance, in the model (3.2), (3.4) the asymptotic variance–covariance ma-
trix of the WLS estimator with weights proportional to σ−2(x) is the inverse

1Another interpretation is that locally optimum design is based on the Cramér–
Rao bound and the Fisher information matrix; see Sect. 4.4.2. Note, however, that
the Cramér–Rao inequality gives a lower bound, whereas an upper bound would be
more suitable, but unfortunately is not available.

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 5,
© Springer Science+Business Media New York 2013
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of the matrix given by (3.26); see Theorem 3.8. In the model (3.2), (3.45)
with parameterized variance, the asymptotic variance–covariance matrix of
the two-stage LS estimator is proportional to the inverse of (3.56); see Theo-
rem 3.27. See also Theorem 4.6 for the case of ML estimation. Note, however,
that the matrix Mθ(x) may have rank larger than one although the observa-
tions are scalar; see, e.g., Remark 3.25 for the penalized WLS estimator with
normal errors and Sect. 4.3.2. Naturally, Mθ(x) has generally rank larger than
one in the case of multivariate observations; see Sect. 5.6.

We shall denote by Mθ(X ) and Mθ(Ξ) the sets

Mθ(X ) = {Mθ(x) : x ∈ X } , (5.2)

Mθ(Ξ) = {M(ξ, θ) : ξ ∈ Ξ} , (5.3)

with Ξ the set of probability measures on X . One may already notice that
Mθ(Ξ) is the convex hull of Mθ(X ) and that Mθ(Ξ) ⊂ M

≥, the set of
symmetric nonnegative-definite p× p matrices, which forms a closed cone in
the set M of symmetric p× p matrices. The set of symmetric positive-definite
p × p matrices, an open cone included in M

≥, will be denoted by M
>. We

shall always assume that Mθ(X ) is compact, which is not too restrictive
since it holds, for instance, when X is finite or when X is a compact set with
nonempty interior and Mθ(x) is continuous on X . We shall also assume that
Mθ(Ξ) contains at least a nonsingular information matrix.

The term locally in locally optimum design is due to the dependence of
the criterion, and thus of the optimal design, on the value of the parameters
that we precisely intend to estimate. This phenomenon is typical in nonlinear
situations. The idea is then to assume a nominal value θ0 for θ and to design
for θ0, with the hope that the optimal design for that θ0 will not differ too
much from the optimal one for the unknown true value θ̄. Since in this chapter
θ0 will be kept fixed, we shall most often omit the dependence in θ and simply
write M(ξ) = M(ξ, θ0) for the information matrix (5.1) computed at θ0. Also,
the sets (5.2), (5.3) should be considered at the value θ = θ0. Approaches that
aim at achieving some robustness with respect to the choice of θ0 in a nonlinear
situation will be considered in Chap. 8.

When Φ(·) is such that the information matrix M∗ = M(ξ∗) associated
with an optimal design ξ∗ has full rank, the local design problem is similar
to that encountered in a linear situation where M does not depend on θ.
However, there are situations where no such similarity exists. Indeed, some
of the functions Φ(·) that are classical in experimental design may lead to
optimal designs that are singular, i.e., such that M(ξ) is singular. This does
not raise any special difficulty in a linear situation: θ is not estimable for a
singular design ξ, and the linear combination c�θ is estimable if and only if
c = Mu for some u ∈ R

p. We have seen in Sect. 3.2 that singular designs
cause difficulties in nonlinear situations. Typically, the conditions (3.39) and
the assumption H2h (p. 43) for the asymptotic normality of the estimator
of a function of θ indicate that the use of a singular design requires some
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knowledge on the true value of the model parameters, see Example 3.17 and
Remark 3.15-(ii). Singular designs should thus be handled with great care in
nonlinear situations. These issues will be considered in Sect. 5.4 for the case
where we are interested into the estimation of a scalar function of θ.

We shall consider criteria φ(ξ) = Φ[M(ξ)] that measure the amount of in-
formation provided by the experiment characterized by ξ; they will therefore
be maximized; see in particular Pukelsheim (1993) for a justification of this
choice. Concavity2 will thus play an important role in terms of the properties
of a φ-optimal design ξ∗ and in terms of the construction of algorithms for
the determination of ξ∗. This is a rather universal observation, and we shall
keep the presentation general enough to be able to refer to some of the re-
sults presented in this chapter when we shall consider average, maximin, and
probabilistic optimum design in Chap. 8.

The developments in this chapter involve a lot of linear algebra (due to
the similarity between locally optimum design and optimum design for linear
models), convex analysis, and geometry. We keep the presentation as simple
as possible, giving the full proof of results when they are strongly design
oriented, but only indicating references for more general properties. As in
some other work on optimum design, the presentation goes through a list of
optimality criteria (Sect. 5.1), each with its own merits. Their main properties
are indicated, which should motivate the choice of a particular criterion in
most situations.

The success of optimum design theory is largely due to the equivalence
theorem, first established by Kiefer and Wolfowitz (1960) for D-optimality
and then extended to any concave criterion, and to its consequences for the
development of globally convergent algorithms for the optimization of design
measures. The equivalence theorem forms the core of Sect. 5.2. The presen-
tation is based on directional derivatives. An alternative introduction would
be through subdifferentials and subgradients. This is briefly considered in
Appendix A where the connection between the two approaches is indicated.

The case of c-optimum design, motivated by the estimation of a scalar
function of the parameters, receives special attention in Sects. 5.3 and 5.4
in the light of the developments of Sect. 3.2. Several methods are proposed
to overcome the difficulties raised by singular c-optimal designs in nonlinear
situations.

2When necessary, we shall extend the definition of a concave criterion Φ(·) over
the whole set M of symmetric p×p matrices by allowing Φ(·) to take the value −∞.
All the criteria considered are proper functions; that is, they satisfy Φ(M) < ∞ for
all M ∈ M, and their effective domain dom(Φ) = {M ∈ M : Φ(M) > −∞} is non
empty.
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5.1 Design Criteria and Their Properties

5.1.1 Ellipsoid of Concentration

Consider the situation where an estimator θ̂N satisfies
√
N(θ̂N − θ̄)

d→ z ∼
N (0,M−1(ξ, θ̄)) as N → ∞, with θ̄ the unknown true value of the parameters
and M(ξ, θ) an information matrix of the form (5.1). It means that asymp-

totically the density of θ̂N − θ̄ can be approximated by the normal density

nθ̄(t) =
Np/2

(2π)p/2 det−1/2 M(ξ, θ̄)
exp

[
−N

2
t�M(ξ, θ̄)t

]
. (5.4)

The concentration of this density can be expressed by the extend of the set

Eθ̄ = {t ∈ R
p : t�M(ξ, θ̄)t ≤ 1} =

{
t ∈ R

p : log

[
maxt∈Rp nθ̄(t)

nθ̄(t)

]
≤ N

2

}

which is called the (asymptotic) ellipsoid of concentration; see, e.g., Cramér
(1946, Chap. 22) and Fedorov and Pázman (1968). Some geometrical proper-
ties of this ellipsoid are summarized in the following lemma. Its proof is given
in Appendix C.

Lemma 5.1. Let A be a p× p positive-definite matrix and let EA = {t ∈ R
p :

t�At ≤ 1}. Then

(i) vol(EA) = Vp det
−1/2 A, with Vp = πp/2/Γ (p/2 + 1) = vol[B(0, 1)], the

volume of the unit ball B(0, 1) in R
p.

(ii) For any vector c ∈ R
p we have

max
t∈EA

(c�t)2 = c�A−1c ;

in particular, when ‖c‖ = 1, then c�A−1c is the squared half-length of
the orthogonal projection of EA onto the straight line defined by c.

(iii) max‖c‖=1 c
�A−1c = 1/λmin(A) = R2(EA), with λmin(A) the minimum

eigenvalue of A and R(EA) the radius of the smallest ball containing
EA; the length of a principal axis of EA equals 2/

√
λi(A) with λi(A) an

eigenvalue of A.
(iv) The squared length of the half-diagonal of the parallelepiped containing

EA and parallel to the coordinate axes of the Euclidean space R
p equals

the sum of the squared half-lengths of the principal axes of EA and is
given by trace(A−1).

(v) Let EB be defined similarly to EA but for the p×p positive-definite matrix
B, then the following statements are equivalent:

(a) EA ⊆ EB.
(b) A � B, i.e., the matrix A − B is nonnegative definite.
(c) For any c ∈ R

p, c�A−1c ≤ c�B−1c, i.e., B−1 � A−1.
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Since θ̂N is asymptotically normal and M(ξ, θ̂N ) converges to M(ξ, θ̄), the

ellipsoid {θ ∈ R
p : N(θ̂N − θ)�M(ξ, θ̂N )(θ̂N − θ) ≤ q} can be considered as

an approximate (asymptotically correct) confidence region for θ̄; see Sect. 6.5
for exact regions. Here, q is proportional to a quantile of some distribution.
For instance, in the case of a regression model as considered in Sect. 3.1,
an approximate 95% confidence region is obtained for q equal to the 95%
quantile of the χ2

p distribution (chi-square with p degrees of freedom) when
the variance σ2 of the errors is known. Hence, ellipsoids of concentration Eθ are
homothetic to (asymptotic) confidence ellipsoids. We also have the following
property concerning asymptotic confidence regions for the response function
in a regression model; see Appendix C.

Lemma 5.2. Suppose that the estimator θ̂N in the regression model (3.2)

satisfies
√
N(θ̂N − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) as N → ∞. Then, for N large
we have approximately

Prob
{
y(x1), . . . , y(xN ) : ∀x ∈ X , |η(x, θ̂N ) − η(x, θ̄)| ≤

1√
N

[
χ2
p(1 − α)

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

M−1(ξ, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

]1/2}
≥ 1− α (5.5)

where χ2
p(1 − α) is the (1 − α) quantile of the χ2

p distribution.

Most of the classical design criteria presented below can be related to
characteristics of the ellipsoids Eθ. Indeed, a rather natural motivation for de-
signing an experiment is to have a “small” ellipsoid Eθ, where several meanings
can be attached to the adjective small. Asymptotic confidence regions for the
regression function η(·, θ̄) are based on (5.5) and can also be related to criteria
based on Eθ. The situation in thus similar to that in linear models.

5.1.2 Classical Design Criteria

D-Optimality

The criterion ofD-optimality is defined by ΦD(M) = det1/p(M). According to
Lemma 5.1-(i), maximizing ΦD(M) amounts to minimizing the volume of the
ellipsoid of concentration. The negative (Shannon) entropy of a distribution is
a measure of its concentration. For the asymptotic normal distribution (5.4)
it is given by

H1(nθ̄) = −
∫

Rp

nθ̄(t) log[nθ̄(t)] dt (5.6)

=
p

2
[1 + log(2π) − log(N)]− 1

2
log detM(ξ, θ̄) , (5.7)

so that a D-optimal experiment minimizes the Shannon entropy of the asymp-
totic distribution of the estimator. Since the Rényi (1961) entropy of order q
of the normal distribution (5.4) is given by
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Hq(nθ̄) =
1

1 − q
log

∫

Rp

[nθ̄(t)]
q dt = H1(nθ̄)−

p

2

(
1 +

log q

1 − q

)
, q > 0 , q �= 1

(with Hq(nθ̄) → H1(nθ̄) as q → 1), a D-optimal experiment more generally
minimizes the Rényi entropy of any order q > 0 of the distribution (5.4).

An important property of D-optimum design is its invariance with respect
to reparameterization: let β = Aθ define another parameterization of the
model,3 with A a full-rank p × p matrix. Then, det[M(ξ, β)] = det[M(ξ, θ)]
det−2(A), so that the ordering of designs and the optimal designs will be the
same for both parameterizations.

Ds-Optimality

It corresponds to D-optimum design for the estimation of a subset of θ. By
reordering the parameters, we may always suppose that the first s components
of θ are of interest. Denote by θ[1] this part of θ and θ = (θ�[1] , θ

�
[2])

�. Also
denote by

M =

(
M11 M12

M21 M22

)
and M− =

(
M11 M12

M21 M22

)

the corresponding partitions for the information matrix and a g-inverse of it.
A Ds-optimal design then maximizes det1/s(M∗), or equivalently

φDs(M) = log det(M∗) , (5.8)

where M∗ = M11 − M12M
−
22M21. The value of M∗ does not depend on the

choice of the g-inverse M−
22; see Karlin and Studden (1966, Lemma 6.2). If M

is nonsingular, so is M22, M
− = M−1, and θ is estimable; however, θ[1] may

remain estimable in situations where M is singular. In fact, θ[1] is estimable
if and only if M∗ is nonsingular; in that case M11 = (M∗)−1, and under the
conditions for asymptotic normality considered in Chaps. 3 and 4, (M∗)−1

is proportional to the inverse of the (asymptotic) covariance matrix for the
estimation of θ[1]. This justifies the name information matrix for θ[1] given to
M∗; see, e.g., Atwood (1980).

A-Optimality

The criterion of A-optimality is defined by ΦA(M) = −trace(M−1) when M
is invertible and ΦA(M) = −∞ otherwise. A-optimum design corresponds
to minimizing the sum of the asymptotic variances of the estimators of the
components of θ and, from Lemma 5.1-(iv), to minimizing the squared length
of the diagonal of the parallelepiped parallel to the coordinate axes of the
Euclidean space and containing the ellipsoid of concentration.

3The reparameterization may also be nonlinear, with A = ∂β/∂θ�|θ0 , where θ0

denotes the nominal value for θ used in locally optimum design.
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c-Optimality

The criterion of c-optimality is defined by

Φc(M) =

{
−trace(cc�M−) = −c�M−c if c ∈ M(M)
−∞ otherwise,

(5.9)

with M− a g-inverse of M (i.e., such that MM−M = M) and c a vector
of Rp. According to Theorem 3.11, a c-optimal design ξ∗ such that M(ξ∗, θ̄)
is nonsingular minimizes the asymptotic variance of a parametric function
h(θ) such that ∂h(θ)/∂θ

∣∣
θ̄
= c. Notice, however, that Φc(M) remains finite

for M singular provided that c ∈ M(M), i.e., c = Mu for some u ∈ R
p. In

that case, Φc(M) = −u�MM−Mu = −u�Mu, and the value of Φc(M) is
thus independent of the choice of the g-inverse. Also note that the set M

≥
c

of symmetric nonnegative-definite matrices such that c ∈ M(M) forms a
convex cone such that M> ⊂ M

≥
c ⊂ M

≥, see Pukelsheim (1993, Chap. 2). An
extension of the notion of c-optimality to the case where h(θ) is a homogeneous
polynomial of θ is presented in (Pázman, 1986, Sect. 7.4).

For a design such that M(ξ, θ̄) is singular, the asymptotic distribution of
a function h(θ) is normal with a variance related to Φc[M(ξ, θ̄)] under very
particular circumstances only; see Sect. 3.2. These difficulties are considered
in Sect. 5.4.

L-Optimality

L-optimum design forms a generalization of A and c-optimum design, see,
e.g., Fedorov (1972, p. 122), and concerns criteria that are linear in M−1. A
particular case that covers most applications is ΦL(M) = −trace[QQ�M−1]
with Q some p×m matrix, which generalizes to semi-definite matrices M as
follows:

ΦL(M) =

{
−trace(QQ�M−) if M(Q) ⊆ M(M)
−∞ otherwise.

(5.10)

Notice that if ci denotes the i-th column of Q, trace(QQ�M−) can be writ-

ten as
∑m

i=1 c
�
i M

−ci. As for c-optimum design, the feasibility set M
≥
Q of

symmetric nonnegative-definite matrices M such that M(Q) ⊆ M(M) forms

a convex cone such that M
> ⊂ M

≥
Q ⊂ M

≥, see Pukelsheim (1993, Chap. 3).
The choice of Q can be motivated by the relative importance given to different
components of θ. For instance, Q = diag{1/θ0i , i = 1, . . . , p} standardizes the
asymptotic variances of the estimates.

E and MV -Optimality

E-optimum design aims at maximizing the minimum eigenvalue of M, i.e.,
ΦE(M) = λmin[M]. According to Lemma 5.1-(iii), it minimizes the radius of
the smallest ball containing the ellipsoid of concentration. Note that maximiz-
ing ΦE(M) is equivalent to minimizing λmax(M

−1) = max{c:‖c‖2=1} c�M−1c;
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that is, E-optimum design minimizes the maximum (asymptotic) variance of
linear combinations of parameters c�θ for vectors c of L2 norm one. If a
nonsingular design exists, then a E-optimal design is nonsingular.

Using the L1 norm ‖c‖1 =
∑p

i=1 |ci| instead of the L2 norm gives another
criterion

max
{c:‖c‖1=1}

c�M−1c = max
i=1,...,p

e�i M
−1ei ,

with ei the i-th basis vector. This is called MV -optimality and is considered,
for instance, in (López-Fidalgo et al., 1998). MV -optimum design minimizes
the maximum of the (asymptotic) variances of individual parameters, which is
given by the maximum diagonal element of M−1. Notice that when a nonsin-
gular design exists, a MV -optimal design is necessarily nonsingular. Indeed,
maxi=1,...,p e

�
i M

−1ei finite implies that ei ∈ M(M) for all i = 1, . . . , p so
that M has full rank.

c-Maximin and G-Optimality

c-, E-, and MV -optimality form particular cases of what we shall call c-
maximin-optimum design, which aims at maximizing minc∈C Φc(M) for some
compact set C ⊂ R

p. For instance, the set C is given by {c} (respectively, {c ∈
R
p : ‖c‖ = 1} and {c ∈ R

p : ‖c‖1 = 1}) for c-optimum design (respectively,
E- and MV -optimum design).

G-optimum design is another important particular case of c-maximin-
optimum design. Consider a regression model η(x, θ) with homoscedastic
errors, see (3.2), (3.3), and define C = {fθ(x) : x ∈ X }, with fθ(x) =
∂η(x, θ)/∂θ. Then, maximizing minc∈C −c�M−(ξ)c with M(ξ) = σ−2

∫
X

fθ(x)f
�
θ (x) ξ(dx) amounts to minimizing the maximum value of the (asymp-

totic) variance of the model prediction η(x, θ̂NLS) over the design space X and
is called G-optimum design. This is equivalent to minimizing the maximum
width of the asymptotic confidence region (5.5) in Lemma 5.2. One of the con-
sequences of the equivalence theorem of Sect. 5.1.4 is thatG-optimum design is
equivalent to D-optimum design; see Remark 5.22-(ii). One may also notice
that minimizing the average (asymptotic) variance of the model prediction

η(x, θ̂NLS) over X , i.e.,
∫

X
f�θ (x)M−(ξ)fθ(ξ)μ(dx), for some probability mea-

sure μ on X , corresponds to L-optimum design (5.10) with QQ� = M(μ).
When the set C is large enough to span R

p, minc∈C −c�M−c is infinite for
any singular M, so that M is nonsingular at the optimum—provided that at
least one nonsingular matrix exists in Mθ(Ξ). In that case, the attention can
be restricted to matrices in M

>, as for D-, A-, E-, and MV -optimum design.

Φq-Class of Criteria

An important class of criteria defined by Kiefer (1974) includes4

4Up to a change of sign, since Kiefer considered criteria that should be minimized.
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Φq,Q(M) =

{
−
{

1
m trace[(Q�M−Q)q]

}1/q
if M(Q) ⊆ M(M)

−∞ otherwise
(5.11)

with q ≥ −1 and Q some (p ×m)-dimensional matrix. The classical criteria
considered above correspond to particular cases in this class: q = 1 gives L-
optimum design; if moreover Q = Ip, the p-dimensional identity matrix, it
gives A-optimum design; taking Q as a p-dimensional vector c and q = 1, we
get c-optimum design; taking the limit when q tends to zero with Q = Ip,

we obtain Φ0,I(M) = − det−1/p(M), the maximization of which is equivalent

to that of det1/p(M), i.e., to D-optimum design; and taking the limit when
q tends to +∞ with Q = Ip, we obtain Φ∞,I(M) = −1/λmin(M), which
corresponds to E-optimum design. Apart from the special cases of c- and Ds-
optimality (and at a lesser extend of L-optimality), we shall only consider
the case Q = Ip in what follows. The influence of the function CQ(·) : M ∈
M

≥
Q −→ (Q�M−Q)−1 (called information mapping) on the properties of

Φq,Q(·) is detailed in (Pukelsheim, 1993, Chap. 3). One may notice that the
use of information mappings covers the situation where we are interested into
the estimation of a subset of θ only: take Q diagonal with {Q}ii = 0 or 1. In
particular, for q = 0 it corresponds to Ds-optimum design.

Orthogonally Invariant Criteria

When Q = Ip, the criteria in the Φq,I-class have the property of being orthog-
onally invariant; that is,

Φ(U�MU) = Φ(M) for U a p× p orthogonal matrix

(i.e., such that U�U = Ip). This property of orthogonal invariance is equiva-
lent to the assumption that Φ(M) only depends on the eigenvalues of M. In
terms of ellipsoid of concentration, it means that the criterion depends on the
shape of the ellipsoid, but not on its orientation. Less common examples of
orthogonally invariant criteria are given by the coefficients of the characteris-
tic polynomial of M−1, as considered in (López-Fidalgo and Rodŕıguez-Dı́az,
1998), which gives A- and D-optimality as particular cases and the criteria of
Ek-optimality of Harman (2004a,b),

ΦEk
(M) =

k∑

i=1

λi(M) , 1 ≤ k ≤ p , (5.12)

where λ1(M) ≤ λ2(M) ≤ · · · ≤ λp(M) denote the eigenvalues of M. Another
example of orthogonally invariant criterion is the condition number of M
for the Frobenius norm ‖M‖F = trace1/2(M2), which is given by ρF (M) =
‖M‖F ‖M−1‖F and measures how well conditioned the estimation problem
is.5

5From Cauchy–Schwarz inequality, ρF (M) ≥ p with equality if and only if M is
proportional to the identity matrix.
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5.1.3 Positive Homogeneity, Concavity, and Isotonicity

Among the desirable properties of a design criterion, positive homogeneity,
concavity, and monotonicity play particularly important and imbricated roles.
Here we shall simply state the definitions, mention the connections with other
properties, and give some examples. One may refer in particular to Pukelsheim
(1993, Chap. 5) for a detailed exposition. Also, only Loewner’s partial ordering
is considered6; one may refer, e.g., to Pázman (1986, Chap. 3) for developments
concerning Schur’s ordering.7

Definition 5.3. An optimality criterion Φ(·) defined on the closed set M≥ of
symmetric nonnegative-definite p× p matrices is:

(i) Positively homogeneous when

Φ(αM) = αΦ(M) , ∀α > 0 and ∀M ∈ M
≥ .

(ii) Concave when

Φ[(1 − α)M1 + αM2] ≥ (1 − α)Φ(M1) + αΦ(M2) ,

∀α ∈ (0, 1) and ∀M1,M2 ∈ M
≥

and strictly concave on M
> when the inequality is strict for any M1 ∈

M
>, M2 ∈ M

≥, M2 �= O and M2 not proportional to M1.
(iii) Monotonic for Loewner’s ordering (or isotonic) when

Φ(M1) ≥ Φ(M2) , ∀M1 � M2 ∈ M
≥ .

If, moreover, Φ(M1) > Φ(M2) when M1 �= M2, Φ(·) is strictly isotonic
on M

≥ (on M
> if the condition M1,M2 ∈ M

> is required).

The following properties are easily obtained; see, for instance, Pukelsheim
(1993, Sects. 5.2, 5.4) and Appendix C. In particular, the last one shows that
positively homogeneous and isotonic criteria can be compared using a scaling
standardization such that Φ(Ip) = 1; see Sect. 5.1.4.

Lemma 5.4. Let Φ(·) be a function from M
≥ to R. Then,

(i) When Φ(·) is positively homogeneous, it is concave if and only if it is
superadditive, i.e., Φ(M1+M2) ≥ Φ(M1)+Φ(M2) for all M1,M2 ∈ M

≥.
(ii) When Φ(·) is superadditive, nonnegativity implies isotonicity.
(iii) When Φ(·) is positively homogeneous, isotonicity implies nonnegativity

(i.e., Φ(M) ≥ 0 for all M in M
≥); moreover, either Φ is identically zero

or Φ(.) is strictly positive on the open set M>.

6For any M1, M2 ∈ M, M1 	 M2 (M1 
 M2) if and only if M1 − M2 ∈ M
≥

(M>).
7For any M1, M2 ∈ M, M1 is better that M2 according to Schur’s ordering if

and only if ΦEk (M1) ≥ ΦEk (M2) for k = 1, . . . , p, see (5.12), with strict inequality
for one k at least.
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Monotonicity simply means that Φ[M(ξ)] increases when M(ξ) increases.
The practical interpretation of superadditivity and positive homogeneity is
more easily understood when considering non-normalized information matri-
ces NM(ξ), with N the number of observations performed. Superadditivity
means that when N1 observations are taken with ξ1 in experiment E1 and
N2 with ξ2 in experiment E2, the merge of the two experiments yields more
information than the sum of the informations in E1 and E2 in terms of Φ(·);
that is, Φ[N1M(ξ1)+N2M(ξ2)] ≥ Φ[N1M(ξ1)]+Φ[N2M(ξ2)]. Finally, positive
homogeneity corresponds to a normalization that ensures that doubling the
number of observations N doubles the information measured by Φ(·).

5.1.4 Equivalence Between Criteria

For Φ(·), a design criterion (to be maximized) and ψ(·) : R −→ R a strictly
increasing function, Φ̃(·) = ψ[Φ(·)] defines an optimality criterion equivalent
to Φ(·), in the sense that it preserves the ordering of designs. Such a transfor-
mation preserves (strict) isotonicity and can be used, for instance, to obtain
a positive homogeneous criterion and then to form an efficiency criterion, see
Sect. 5.1.8, or a compound criterion, see Sect. 5.1.9. Also, equivalence with a
strictly concave criterion ensures the uniqueness of the optimal information
matrix. At the same time, from a more practical point of view, such transfor-
mations allow us to use simple equivalent forms of criteria for optimization,
where simplifications, for instance, in terms of computations of derivatives,
may be of interest.8

Consider, for instance, D-optimum design that maximizes det1/p(M),
which is a positively homogenous, concave, and isotonic function of M; see
Sect. 5.1.5. One might consider equivalently the maximization of det(M); how-
ever, this function is neither positively homogeneous nor concave. Concerning
the numerical determination of a D-optimal design, it may be of interest to
work with log det(M), which is clearly not positively homogeneous but has

simpler derivatives than det1/p(M), see Sect. 5.2.1; it is also a concave function
of M, see Sect. 5.1.5.

We shall denote by Φ+(·) the positively homogenous form of a criterion
Φ(·). A typical convention is to use a normalization such that Φ+(Ip) = 1.
The positively homogeneous form of a strictly isotonic criterion Φ(·) is easily
obtained as follows. Set Φ+(M) = ψ[Φ(M)]; for M = I, we should have
ψ[Φ(aIp)] = aψ[Φ(Ip)] = aΦ+(Ip) = a, and ψ(·) is simply the inverse function
of a −→ Φ(aIp). We obtain, respectively, for D-, A-, c-, L-, and E-optimality

8It should be stressed here that neither positive homogeneity nor concavity do
necessarily matter for the optimization of a differentiable criterion. Positive ho-
mogeneity is important when we wish to compare criteria through their efficiency.
Equivalence with a concave criterion is crucial for preventing the existence of local
maxima, but concavity itself is required in some particular situations only (typi-
cally, when the criterion is not differentiable). One may refer, e.g., to Avriel (2003,
Chap. 6), for extensions of the notion of convexity.
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Φ+
D(M) = det1/p(M) , (5.13)

Φ+
A(M) =

{[
1
p trace(M

−1)
]−1

if det(M) �= 0

0 otherwise,

Φ+
c (M) =

{
(c�c) (c�M−c)−1 if c ∈ M(M)
0 otherwise,

(5.14)

Φ+
L(M) =

{
trace(QQ�)

trace(QQ�M−)
if M(Q) ⊆ M(M)

0 otherwise,

Φ+
E(M) = λmin(M) .

Similarly, for the criteria Φq,I(·), see (5.11), we define

Φ+
q,I(M) =

{[
1
p trace(M

−q)
]−1/q

if det(M) �= 0

0 otherwise.
(5.15)

The composition of Φ+
q,I(·) with an information mapping M −→ CQ(M) =

(Q�M−Q)−1 yields a positively homogeneous form for the criterion (5.11);
see Pukelsheim (1993, Chap. 5).

5.1.5 Concavity and Isotonicity of Classical Criteria

Concavity

The following property shows that the c-optimality criterion defined by (5.9)
is concave. It will also be used in Sect. 5.2.1 to obtain its directional derivative.
The proof is given in Appendix C.

Lemma 5.5. For any p× p matrix M in M
≥ and any c ∈ M(M) (i.e., such

that c = Mu for some u ∈ R
p), we have

Φc(M) = −c�M−c = min
z∈Rp

[z�Mz − 2z�c] .

When c �∈ M(M), the right-hand side equals −∞.

For any M ∈ M
≥, we can thus define Φc(M) as in Lemma 5.5, compare

with (5.9). Since the function M −→ z�Mz is concave for any z ∈ R
p, it

implies that Φc(·) is concave on M
≥
c (as the minimum of a family of concave

functions). It also implies that ΦL(·) given by (5.10) is concave on M
≥
Q. Also,

any c-maximin-optimality criterion

ΦC(M) = min
c∈C

−c�M−c (5.16)

is concave. It implies in particular that
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ΦE(M) = −λmax(M
−1) = min

‖c‖=1
−c�M−1c ,

ΦMV (M) = min
i=1,...,p

−e�i M
−1ei (5.17)

and
ΦG(M) = min

x∈X
−f�θ (x)M−1fθ(x) (5.18)

are concave on M
>.

The following lemma is the analogue of Lemma 5.5 for the criterion Φ+
c (·).

The proof is given in Appendix C.

Lemma 5.6. For any p× p matrix M in M
≥ and any c ∈ M(M), we have

Φ+
c (M) = (c�c)(c�M−c)−1 = (c�c) min

z�c=1
z�Mz .

When c �∈ M(M), the minimum on the right-hand side equals 0.

Φ+
c (·) is thus concave on M ∈ M

≥ as the minimum of a family of concave
functions.9 Similarly, since Φ+

E(M) = λmin(M) = min‖c‖=1 c
�Mc, this crite-

rion is concave on the set M of symmetric p×p matrices for the same reasons.
The criteria ΦEk

(·) defined by (5.12) are also concave on M since we can write

ΦEk
(M) = min

Q�Q=Ik
trace(Q�MQ) ,

see, e.g., Magnus and Neudecker (1999, p. 211). The strict concavity of the cri-
teria Φ+

q,I(·) onM
> for q ∈ (−1,∞) is proved in (Pukelsheim, 1993, Chap. 6).10

Notice that it directly implies the concavity of Φ+
D(·) and Φ+

A(·). Also, since
the function logarithm is concave, log det(·) = p log[Φ+

D(·)] is strictly concave
on M

>; see also Pázman (1986, p. 81) for a direct proof.

The following lemma shows that the Ds-optimality criterion is concave;
the proof is given in Appendix C.

Lemma 5.7. For any p× p matrix M in M
≥ partitioned as

M =

(
M11 M12

M21 M22

)

with M11 of dimension s× s we have

log det(M11 −M12M
−
22M21) ≤ log det(M11 +D�M22D−M12D−D�M21)

for any D ∈ R
(p−s)×s, with equality if and only if M22D = M12.

9Notice that it implies that log[−Φc(·)] is convex on M
≥
c , which is a stronger

results than Φc(·) being concave on M
≥
c .

10Note that log[Φ+
q,I(M)] is therefore concave on M

> for q ∈ (−1,∞), so that

log[trace(M−q)]1/q is convex, which is stronger than the convexity results mentioned,
e.g., in (Kiefer, 1974) for [trace(M−q)]1/q .
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Isotonicity

Lemma 5.1 directly implies that theD-, A-, c-, E-, andMV -optimality criteria
are isotonic on M

>. Since in (5.10) trace(QQ�M−) =
∑m

i=1 c
�
i M

−ci for Q =
(c1, . . . , cm), it also implies that the L-optimality criterion (5.10) is isotonic.
From Lemma 5.1-(iv), the squared half-length of the i-th principal axis of the
ellipsoid EM is λ−1

i (M), where λmin(M) = λ1(M) ≤ λ2(M) ≤ · · · ≤ λp(M) =
λmax(M). Therefore,M1 � M2 implies EM1 ⊆ EM2 and λi(M1) ≥ λi(M2) for
any i = 1, . . . , p and anyM1,M2 ∈ M

>, and the criteria ΦEk
(·) given by (5.12)

are isotonic on M
>. Also, we can write Φq,I(M) = −

[
(1/p)

∑p
i=1 λ

−q
i (M)

]1/q
,

which is an increasing function of each λi for any q ∈ R. Φq,I(·) is thus isotonic
on M

> for any q; see also Pukelsheim (1993, Chap. 6) who proves the strict
isotonicity of Φq,I(·) on M

≥ for q ∈ [−1, 0) and on M
> for q ∈ [0,∞).

5.1.6 Classification into Global and Partial Optimality Criteria

As a rule, the matrix functions Φ(·) from M
≥ to R that we consider are well

defined, finite, and continuous on the setM> of positive-definite p×pmatrices.
A positively homogeneous, isotonic, and nonconstant criterion Φ+(·) is strictly
positive on M

>; see Lemma 5.4-(iii). However, Φ+(·) may also take strictly
positive values for singular matrices, so that the optimum can sometimes be
obtained at a singular M. In that case the attention cannot be restricted to
the set M>. Some of the difficulties that may result, in particular in terms of
differentiability, will be mentioned later. An additional difficulty concerns the
absence of continuity on M

≥, which we detail below for the case of c-optimum
design.

The following classification, see Pázman (1986), singularizes the situations
where continuity on M

≥ may not hold.

Definition 5.8. An isotonic design criterion Φ(·) from M
≥ to R is said to

be global when its nonnegative positively homogeneous version Φ+(·) satisfies
Φ+(M) > 0 if and only if M is nonsingular; it is said to be partial (or
singular) when Φ+(M) > 0 also for some singular M.

The criteria (5.8)–(5.11) are typical examples of partial optimality criteria.
As a rule, a partial optimality criterion is only upper semicontinuous on M

≥,
where upper semicontinuity is defined as follows; one may refer to Rockafellar
(1970, Chap. 7) for alternative definitions.

Definition 5.9. A design criterion Φ(·) is said to be upper semicontinuous
at M∗ when lim supn→∞ Φ(Mn) ≤ Φ(M∗) for any sequence of matrices Mn

converging to M∗. Similarly, a design criterion φ(·) is said to be upper semi-
continuous at ξ∗ when lim supn→∞ φ(ξn) ≤ Φ(ξ∗) for any sequence of measures
ξn such that ξn ⇒ ξ∗.
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A proof of upper semicontinuity for the traditional criteria of Sect. 5.1.2
can be found in (Pázman, 1986). Design criteria Φ+(·) that are positively
homogeneous, concave, nonnegative, nonconstant, and upper semicontinuous
are called information functions in (Pukelsheim, 1993). In the next section
we consider more particularly the case of c-optimality; notice that it forms a
particular case of Ds-optimality with s = 1 when c is a basis vector ei.

5.1.7 The Upper Semicontinuity of the c-Optimality Criterion

Next example from Pázman (1986, p. 67) shows that φc(ξ) = Φc[M(ξ)], with
Φc(M) given by (5.9), may be discontinuous at a ξ∗ such that M(ξ∗) ∈ M

≥
c

is singular. See also Pukelsheim (1993, Sect. 3.16).

Example 5.10. Consider again the two parameter regression model of
Example 2.4 with η(x, θ) = θ1x + θ2x

2 and let ξ∗ = δx∗ (x∗ �= 0), so that
the associated information matrix M(ξ∗) is singular (the model being linear
in θ, the information matrix does not depend on θ). Take c∗ = (x∗, x2∗), which
is in the range of M(ξ∗). We shall see in Example 5.34 that ξ∗ is c-optimal
for the estimation of c�∗ θ when

√
2− 1 < x∗ ≤ 1. In Example 2.4 we obtained

limN→∞ c�∗ M
−1(ξN )c∗ > c�∗ M

−1(ξ∗)c∗ = 1 for some design sequences such
that ξN ⇒ ξ∗, illustrating that the criterion φ(ξ) = −c�∗ M

−1(ξ)c∗ is not con-
tinuous at ξ∗ and that the criterion Φ(M) = −c�∗ M−1c∗ is not continuous at
M(ξ∗). This phenomenon is not due to the particular type of sequence that
was considered, and a similar discontinuity occurs for other ξN converging to
ξ∗. Take, for instance, ξN = (1/2)δx1,N + (1/2)δx2,N with x1,N = x∗ + 1/N ,
x2,N = x∗ + β/N , β �= 1. We have ξN ⇒ ξx∗ , and the matrix M(ξN ) is
invertible for any N . Direct calculations give

c�∗ M
−1(ξN )c∗ =

2x2∗
(1 − β)2

[
1

(x∗ + β/N)2
+

β2

(x∗ + 1/N)2

]

→ 2(1 + β2)

(1 − β)2
, N → ∞ ,

with
2(1 + β2)

(1 − β)2
= 1 +

(1 + β)2

(1 − β)2
> 1 = c�∗ M

−1(ξ∗)c∗ .

Note that c�∗ M−1(ξN )c∗ can thus become arbitrarily large as β approaches 1
and N → ∞. �

Although not continuous at every ξ where it is defined (finite), φc(·) sat-
isfies the following (see Appendix C).

Lemma 5.11. The criterion φc(·) = Φc[M(·)], with Φc(M) given by (5.9), is
upper semicontinuous at any ξ∗ ∈ Ξc = {ξ ∈ Ξ : c ∈ M[M(ξ)]}.
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This property will be used in Sect. 5.4 to justify the use of a regularized
version of the criterion.

Consider a sequence of matrices M(t) converging to M0 = M(0) as t → 0
and take c ∈ M(M0). As we have seen in Example 5.10, Φc[M(t)] does not
necessarily converge to Φc(M0) as t → 0 when M0 is singular; it is therefore
of interest to investigate under which conditions on M(t) the function t −→
Φc[M(t)] is continuous at t = 0. For sequences of matrices defined by

M(t) = M0 + tαMα +Rt , t, α > 0 , M0 ∈ M
≥ , Mα,Rt ∈ M , (5.19)

a partial answer is given in the following lemma and its corollary, which use
the following two conditions:

C1: ‖Rt‖ = [trace(R�
t Rt)]

1/2 = o(tα) as t → 0+.
C2: M0 + tαMα ∈ M

> for arbitrary small t > 0.

The proofs are given in Appendix C.

Lemma 5.12. Consider a sequence of matrices satisfying (5.19) and suppose
that c ∈ M(M0). Then, under the conditions C1 and C2, we have

lim
t→0+

Φc[M(t)] = Φc(M0) . (5.20)

Corollary 5.13. For a sequence of matrices M(t) ∈ M
≥ satisfying (5.19)

with c ∈ M(M0) and the condition C1, either the continuity property (5.20)
is satisfied or the convergence of M(t) to M0 is along a hyperplane tangent
to the cone M

≥ at M0, i.e., Mα belongs to a supporting hyperplane to M
≥ at

M0.

It is instructive to consider again Example 5.10 in the light of the properties
above.

Example 5.14. Consider the sequence of matrices M(ξN ) in Example 5.10.
Setting t = 1/N , we obtain

M(t) = (1/2)

(
(x+ t)

2
(x+ t)

3

(x+ t)3 (x+ t)4

)
+ (1/2)

(
(x+ β t)

2
(x+ β t)

3

(x+ β t)3 (x+ β t)4

)
.

Suppose first that β �= −1. We obtain M(t) = M0 + tM1 +Rt with

M0 =

(
x2 x3

x3 x4

)
, M1 = (1 + β)

(
x (3/2)x2

(3/2)x2 2 x3

)

and ‖R(t)‖ = O(t2) when t → 0. The sequence M(t) is thus of the form (5.19)
and satisfies C1.
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The normal to the cone M
≥ at M0 is one-dimensional and defined by the

rank-one matrices of the form A = aa� with a�M0a = 0, i.e., [x x2]a = 0.
Writing a = (a1, a2)

�, we get a1 + xa2 = 0, and direct calculation gives
a�M1a = 0; that is, M1 belongs to the supporting hyperplane to M

≥ at M0,
which explains the discontinuity observed in Example 5.10.

Suppose now that β = −1. Then, M(t) = M0 + t2M2 +Rt with

M2 =

(
1 3 x

3 x 6 x2

)
, Rt = t4

(
0 0

0 1

)
.

We then obtain a�M2a = (xa2)
2 �= 0, and (5.20) is satisfied. �

5.1.8 Efficiency

Consider a positively homogeneous and isotonic criterion Φ+(·). Let ξ∗ be an
optimal design for the criterion φ+(ξ) = Φ+[M(ξ)]; i.e., ξ∗ = argmaxΞ φ

+(ξ),
with Ξ the set of design measures on X ⊂ R

d (we assume for the moment that
such a ξ∗ exists). With the criteria Φ+(·) and φ+(·), we can then, respectively,
associate the efficiency criteria

EΦ(M) =
Φ+(M)

Φ+[M(ξ∗)]
and Eφ(ξ) =

φ+(ξ)

φ+(ξ∗)
,

with Eφ(ξ) ∈ [0, 1] for any ξ ∈ Ξ. For instance, the D- and c-efficiency criteria
are, respectively, defined by

ED(ξ) =
det1/p[M(ξ)]

det1/p[M(ξ∗D)]
, Ec(ξ) =

c�M−(ξ∗c )c
c�M−(ξ)c

, (5.21)

with ξ∗D and ξ∗c , respectively, a D- and a c-optimal design measure.
The c-maximin efficiency criterion is defined by

Emmc(ξ) = min
c∈C

Ec(ξ) (5.22)

with Ec(·) given in (5.21) and C a set of directions of interest. This criterion
is concave (as the minimum over a family of concave criteria), and we shall
see in Sect. 5.3.2 that, under suitable conditions on C, an optimal design for
Emmc(·) is D-optimal.

Maximizing Efficiency over a Class of Criteria

Designing experiments that are reasonably efficient for a variety of criteria is a
quite natural objective, hence the importance of establishing lower bounds on
efficiency over a large class of criteria. The next important theorem (Harman,
2004a,b) shows that minimum efficiency over the class C⊥ of orthogonally in-
variant criteria (see Sect. 5.1.2) is reached in the finite set of the Ek-optimality
criteria (5.12) and that a lower bound can be constructed from a Φq,I-optimal
design; see (5.15). We first state the theorem (without proof) and then men-
tion some of its consequences.
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Theorem 5.15. For any design measure ξ on X and any orthogonally in-
variant design criterion φ(·) ∈ C⊥,

Eφ(ξ) ≥ min
k=1,...,p

EφEk
(ξ)

where EφEk
(ξ) = ΦEk

[M(ξ)]/ΦEk
[M(ξ∗Ek

)], with ΦEk
[M(ξ)] given by (5.12)

and ξ∗Ek
an optimal design for ΦEk

(·). Consequently,

min
φ∈C⊥

Eφ(ξ) = min
k=1,...,p

EφEk
(ξ)

for any measure ξ on X . Moreover, for any q ∈ [−1,∞) the maximum value
of ΦEk

satisfies

ΦEk
[M(ξ∗Ek

)] ≤ max
r=1,...,k

r
∑p

i=1 1/(λ
∗
i,q)

q

∑p
i=k+1−r 1/(λ

∗
i,q)

q+1
(5.23)

where λ∗1,q ≤ λ∗2,q ≤ · · · ≤ λ∗p,q denote the eigenvalues of M(ξ∗q ) with ξ∗q an

optimal design measure for Φ+
q,I[M(ξ)]; see (5.15).

One may notice that (5.23) directly gives a lower bound on the Ek-
efficiency of a Φq,I-optimal design. This simplifies for k = 1, where Ek-
efficiency is E-efficiency. Indeed, with the same notations as in the theorem,
we obtain

EE(ξ
∗
q ) =

λ∗1,q
ΦE1 [M(ξ∗E1

)]
≥
∑p
i=1(λ

∗
1,q/λ

∗
i,q)

q+1

∑p
i=1(λ

∗
1,q/λ

∗
i,q)

q

for any Φq,I-optimal design ξ∗q , q ∈ [−1,∞).
In the special case of D-optimality, for which q = 0, this gives

EE(ξ
∗
D) ≥ 1

p

p∑

i=1

λ∗1,0/λ
∗
i,0 ≥ m/p

with m the multiplicity of the smallest eigenvalue λ∗1,0 of M(ξ∗D). Moreover,
for a D-optimal design measure ξ∗D, Theorem 5.15 gives

Eφ(ξ
∗
D) ≥ min

k=1,...,p

∑k
i=1 λ

∗
i,0

ΦEk
[M(ξ∗Ek

)]

≥ min
k=1,...,p

min
r=1,...,k

1

rp

(
k∑

i=1

λ∗i,0

)(
p∑

i=k+1−r
1/λ∗i,0

)
≥ 1

p

for any orthogonally invariant criterion Φ(·), where the last inequality fol-

lows from
∑k

i=1 λ
∗
i,0 =

∑k
j=1 λ

∗
k+1−j,0 ≥

∑r
j=1 λ

∗
k+1−j,0 ≥ rλ∗k+1−r,0 for all

r ∈ {1, . . . , k}. This property of D-optimal designs is rather exceptional:
for ξ∗q a Φq,I-optimal measure with q > 0, examples can be constructed for
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which the D-efficiency ED(ξ
∗
q ) is arbitrarily small; see Galil and Kiefer (1977,

Theorem 5.2).
Consider finally the case where there exists an optimal measure ξ∗q for some

q ∈ [−1,∞) such that the associated information matrix is proportional to the
identity, i.e.,M(ξ∗q ) = αIp for some α > 0. Theorem 5.15 then gives Eφ(ξ∗q ) = 1
for any orthogonally invariant criterion φ(·); that is, ξ∗q is universally optimal
in the class of orthogonally invariant criteria. Harman (2004a) shows that
the same universal optimality property holds when M(ξ∗q ) has at most two
distinct eigenvalues.

5.1.9 Combining Criteria

Compound Criteria

The positively homogeneous forms Φ+(·) of different design criteria can be
easily combined. Possible objectives are the achievement of a reasonable ef-
ficiency for several criteria simultaneously and the regularization of the op-
timization of a partial design criterion Φ+

0 (·) through the introduction of a
second global criterion Φ+

1 (·); see Definition 5.8. This may be facilitated by a
prior normalization of the criteria as done in Sect. 5.1.4.

Consider, for instance, the case where two positively homogeneous criteria
Φ+
0 (·) and Φ+

1 (·), possibly normalized such that Φ+
i (Ip) = 1, i = 0, 1, are

combined into

Φα(·) = (1 − α)Φ+
0 (·) + αΦ+

1 (·) , α ∈ [0, 1] . (5.24)

Φα(·) is positively homogeneous, isotonic, and concave when Φ+
0 (·) and Φ+

1 (·)
are. Moreover, the directional derivative of Φα(·) is simply the weighted sum
of the directional derivatives for Φ+

0 (·) and Φ+
1 (·); see Sect. 5.2.1. Choosing

α close to 0 will make an optimal design for Φα(·) almost optimal for Φ+
0 (·).

Indeed, let ξ∗α and ξ∗0 denote two optimal design measures for Φα(·) and Φ+
0 (·),

respectively. Since Φα[M(ξ∗α)] ≥ Φα[M(ξ∗0 )] and Φ
+
0 [M(ξ∗0)] ≥ Φ+

0 [M(ξ∗α)], we
have Φ+

1 [M(ξ∗α)] ≥ Φ+
1 [M(ξ∗0)], with a strict inequality if one of the previous

two inequalities is strict, and direct calculations give

EΦ0(ξ
∗
α) =

Φ+
0 [M(ξ∗α)]

Φ+
0 [M(ξ∗0)]

≥ 1 − α
Φ+
1 [M(ξ∗α)]− Φ+

1 [M(ξ∗0)]
Φα[M(ξ∗α)] − αΦ+

1 [M(ξ∗0)]

≥ 1 − α

1 − α

Φ+
1 [M(ξ∗α)] − Φ+

1 [M(ξ∗0)]
Φ+
0 [M(ξ∗0 )]

,

which tends to one as α tends to zero.

Using Design Criteria as Constraints

Another possibility for combining two criteria Φ0(·) and Φ1(·) is to maximize
Φ0(M) under the constraint that Φ1(M) ≥ Δ for some Δ ∈ R, see Mikulecká
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(1983)—we suppose that Δ is such that there exists M ∈ Mθ(ξ) such that
Φ0(M) > −∞ and Φ1(M) > Δ. See also Cook and Wong (1994) for the
equivalence between constrained and compound optimum design. When Φ0(·)
and Φ1(·) are concave, so is the Lagrangian

L(M, λ) = Φ0(M) + λ[Φ1(M)−Δ]

used in the Kuhn–Tucker theorem, see, e.g., Alexéev et al. (1987, p. 75), from
which a necessary-and-sufficient condition for optimality can be obtained; see
Sect. 5.2.2. The extension to the case where several constraints are present is
straightforward.

Maximin Criteria

We can also combine two (or more) criteria Φ0(·) and Φ1(·) using a maximin
approach through the definition of

Φ(M) = min[Φ0(M), Φ1(M)] , (5.25)

which is concave, positively homogeneous, and isotonic when Φ0(·) and Φ1(·)
are. The criteria of c-maximin optimality (5.16) and c-maximin efficiency
(5.22) form examples of maximin criteria over possibly infinite classes. Sec-
tion 5.1.8 provides lower bounds on c-maximin efficiency over the whole class
C⊥ of orthogonally invariant criteria. Few general results of this type exist,
and most often one should be contented with the numerical determination of
a maximin-optimal design. A necessary-and-sufficient condition for maximin
optimality is given in Sect. 5.2.2.

5.1.10 Design with a Cost Constraint

A related but somewhat different situation is when cost constraints are
present, of the form

ψi(ξ) =

∫

X

Ci(x) ξ(dx) ≤ ci , i = 1, . . . , nc , (5.26)

where the Ci(·) are continuous in x; see Cook and Fedorov (1995) and Fedorov
and Hackl (1997, p. 57). The treatment is then similar to the case above where
one criterion is used as constraint. A noticeable particular situation is when
only one constraint is present, in the form of a total-cost constraint

N ψC(ξ) = N

∫

X

C(x) ξ(dx) ≤ C , C(x) ≥ 0 , C > 0 , (5.27)

with N the number of observations, considered as a free variable. For any
isotonic criterion Φ0(·), maximizing the total information Φ0[NM(ξ)] with
respect to ξ and N gives N = N(ξ) = C/ψC(ξ), so that ξ should maximize



5.2 Derivatives and Conditions for Optimality of Designs 125

φ(ξ) = Φ0

[
CM(ξ)

ψC(ξ)

]
. (5.28)

An alternative presentation is as follows. Define ξ̃ = N ξ, so that
∫

X ξ̃(dx) =

N , NM(ξ) = M(ξ̃); ξ̃ should then maximize Φ0[M(ξ̃)] under the constraint
ψC(ξ̃) ≤ C. From the isotonicity of Φ0(·), the constraint is saturated at the
optimum, and defining ξ′(dx) = ξ̃(dx)C(x)/C, we obtain from (5.1) M(ξ̃) =∫

X
Mθ(x) ξ̃(dx) =

∫
X

Mθ(x) [C/C(x)] ξ′(dx) with
∫

X
ξ′(dx) = 1. The design

problem thus recovers a standard unconstrained form; see, e.g., Fedorov and
Hackl (1997, p. 57). Notice that C only appears as a multiplicative factor in
the expression of M(ξ̃) and has thus no influence on the optimal design. The
case where Φ0(·) corresponds to D-optimality is considered in (Dragalin and
Fedorov, 2006) and (Pronzato, 2010b).

5.2 Derivatives and Conditions for Optimality
of Designs

5.2.1 Derivatives

Definitions and Notations

For a function f(·) : Rd −→ R, the one-sided directional derivative of f(·) at
x ∈ R

d in the direction y ∈ R
d (when it exists) is usually defined as

f ′(x;y) = lim
α→0+

f(x+ αy) − f(x)

α
. (5.29)

For a function Φ(·) : M≥ −→ R, this gives the definition

Φ′(M1;M2) = lim
α→0+

Φ(M1 + αM2) − Φ(M1)

α
, (5.30)

M1,M2 ∈ M
≥. However, the design problem concerns information matrices

of the form (5.1) with
∫

X ξ(dx) = 1, i.e., matrices that belong to Mθ(Ξ), see
(5.3), whereas M1 + αM2 /∈ Mθ(Ξ) for α > 0 and M1,M2 ∈ Mθ(Ξ). For
that reason, it is common in design theory to define the directional derivative
of Φ(·) at M1 in the direction M2 as

FΦ(M1;M2) = lim
α→0+

Φ[(1 − α)M1 + αM2]− Φ(M1)

α
, (5.31)

where now (1 − α)M1 + αM2 ∈ Mθ(Ξ) for any M1,M2 ∈ Mθ(Ξ) and
α ∈ [0, 1]. Note that FΦ(M1;M2) = Φ′(M1,M2 − M1), so that the existence
of one type of directional derivative implies the existence of the other.

Consider in particular the case where Φ(·) is differentiable on the open set
of nonsingular p× p matrices, i.e., when
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Φ(M2) = Φ(M1) + trace[(M2 − M1)∇MΦ(M1)] + o(‖M2 − M1‖)
for any M1,M2 nonsingular, where ∇MΦ(M1), the gradient of Φ at M1, is
the p× p matrix with elements

{∇MΦ(M1)}ij =
∂Φ(M)

∂{M}ij

∣∣∣∣
M=M1

.

We then obtain Φ′(M1;M2) = trace[M2∇MΦ(M1)] and

FΦ(M1;M2) = trace[(M2 − M1)∇MΦ(M1)] . (5.32)

In this finite-dimensional situation, when Φ(·) is concave, the linearity of
Φ′(M1;M2) in M2, or of FΦ(M1;M2) in M2 − M1, is a necessary-and-
sufficient condition for the differentiability of Φ(·) at M1; see Rockafellar
(1970, p. 244). Note that ∇MΦ(M) is nonnegative definite when Φ(·) is iso-
tonic, see Definition 5.3.

Slightly more generally, consider now the case of a design criterion φ(·)
defined on the set Ξ of design measures on X ⊂ R

d. We shall use the following
definition for the directional derivative Fφ(ξ; ν) of φ(·) at ξ in the direction ν:

Fφ(ξ; ν) = lim
α→0+

φ[(1 − α)ξ + αν] − φ(ξ)

α
, (5.33)

which is also standard in design theory; see, e.g., Silvey (1980). Suppose that
φ(·) is concave, i.e., φ[(1−α)ξ +αν] ≥ (1− α)φ(ξ) +αξ(ν) for any α ∈ (0, 1)
and ξ, ν ∈ Ξ. Take any α1, α2 such that 0 < α1 < α2 < 1. We can write

φ(ξ) − φ[(1 − α1)ξ + α1ν] = φ(ξ) − φ

{
α1

α2
[(1 − α2)ξ + α2ν] +

(
1 − α1

α2

)
ξ

}

≤ φ(ξ) −
{
α1

α2
φ[(1 − α2)ξ + α2ν] +

(
1 − α1

α2

)
φ(ξ)

}

=
α1

α2
{φ(ξ) − φ[(1 − α2)ξ + α2ν]} .

Therefore, the function α ∈ (0, 1) −→ {φ[(1 − α)ξ + αν] − φ(ξ)}/α is nonin-
creasing, so that the limit in (5.33) exists in R∪{+∞}. A similar formulation
can be given in terms of FΦ(M1;M2) for a concave Φ(·). We thus have the
following property.

Lemma 5.16. If φ(·) is concave on Ξ, then the directional derivative Fφ(ξ; ν)
exists in R ∪ {+∞} for any ν ∈ Ξ and any ξ ∈ Ξ such that φ(ξ) > −∞.
Similarly, if Φ(·) is concave on Mθ(Ξ), then FΦ(M1;M2) exists in R∪{+∞}
for any M2 ∈ Mθ(Ξ) and any M1 ∈ Mθ(Ξ) such that Φ(M1) > −∞.

In particular, when φ(ξ) = Φ[M(ξ)], with M(ξ) an information matrix of
the form (5.1) and Φ(·) differentiable, we have

Fφ(ξ; ν) = trace {[M(ν) − M(ξ)]∇MΦ[M(ξ)]} , (5.34)

which corresponds to the first-order derivative of the function α −→ φ[(1 − α)
ξ + αν] at α = 0. Notice that Fφ(ξ; ν) is linear in ν.
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Composition with a Differentiable Function

Let ψ(·) : R −→ R be a differentiable function with derivative ψ′(·). Consider
a design criterion Φ(·) that admits a directional derivative FΦ(M1;M2). The
criterion Φ̃(·) = ψ[Φ(·)] has the directional derivative

FΦ̃(M1;M2) = ψ′[Φ(M1)]FΦ(M1;M2) .

Derivatives of Compound Criteria

A compound criterion of the form (5.24) is especially useful in situations
where the optimal design for Φ0(·) is difficult to determine, e.g., because it
may be obtained at a singular information matrix, so that attention cannot
be restricted to M

>, and Φ0(·) is not differentiable on M
≥. The presence

of Φ1(·) then introduces some regularization. Suppose that Φ0(·) and Φ1(·)
are concave, so that their directional derivatives exist from Lemma 5.16, and
denote φα(·) = Φα[M(·)]. We then obtain Fφα(ξ; ν) = (1 − α)Fφ0 (ξ; ν) +
αFφ1(ξ; ν). More than two criteria can be combined similarly by defining
φμ(·) =

∑m
i=1 μi φi(·) with μi ≥ 0 for all i and

∑m
i=1 μi = 1. We then have

Fφμ(ξ; ν) =
∑m

i=1 μi Fφi(ξ; ν). For a continuous version, one may consider
a class of criteria φt(·) indexed by a continuous variable t ∈ R

m and define
φ(·) =

∫
Rm φt(·)μ(dt) for some measure μ on (a subset of) Rm. The directional

derivative Fφ(ξ; ν) is then
∫
Rm Fφt(ξ; ν)μ(dt).

Derivatives of Maximin Criteria

The following properties which we state without proof, see Dem’yanov and
Malozemov (1974, Chap. 3, Theorem 2.1 and Chap. 6, Theorem 2.1), are ex-
tremely useful for obtaining the expression of directional derivatives of max-
imin criteria.

Lemma 5.17. Assume that the functions fi(·) : Rd −→ R are continuously
differentiable in a neighborhood B(x0, δ) of x0, i = 1, . . . , n. Then the function
x −→ f∗(x) = mini=1,...,n fi(x) is differentiable at x0 in any direction y and

f ′
∗(x0;y) = min

i∈I∗(x0)
f ′
i(x0;y)

where I∗(x) = {i ∈ {1, . . . , n} : fi(x) = f∗(x)} and f ′
i(x0;y) = y�∇xfi(x0).

Lemma 5.18. Assume that the function f(·, ·) : A × B −→ R is continuous
in (x,y) and continuously differentiable in x on A×B, with A and B, respec-
tively, an open subset of Rd1 and a compact subset of Rd2 . Then the function
x −→ f∗(x) = miny∈B f(x,y) is differentiable at any x0 ∈ A in any direction
z ∈ R

d1 and
f ′
∗(x0; z) = min

y∈B∗(x0)
f ′
x(x0,y; z)

where B∗(x) = {y ∈ B : f(x,y) = f∗(x)} and f ′
x(x0,y; z) = z�∇xf(x0,y).
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Consider the following extension of the criterion (5.25) of Sect. 5.1.9,

Φ(M) = min
i=1,...,m

Φi(M) ,

and denote φ(ξ) = Φ[M(ξ)] and φi(ξ) = Φi[M(ξ)], i = 1, . . . ,m. Suppose that
all Φi(·) are differentiable so that Lemma 5.17 applies. Then,

φ′(ξ; ν) = Φ′[M(ξ);M(ν)] = min
i∈I∗(ξ)

Φ′
i(ξ; ν)

where I∗(ξ) = {i ∈ {0, . . . ,m} : φi(ξ) = φ(ξ)}. Similarly,

Fφ(ξ; ν) = Φ′[M(ξ);M(ν) − M(ξ)] = min
i∈I∗(ξ)

Fφi(ξ; ν) . (5.35)

The property (5.35) will be used below to obtain the directional derivatives
of the MV -, E-, c-, and Ds-optimality criteria. By substituting Lemma 5.18
for Lemma 5.17, it can be directly extended to criteria of the form

φ(ξ) = min
ω∈Ω

Φω[M(ξ)]

where {Φω(·), ω ∈ Ω} defines a parameterized family of criteria such that
Φω(·) is differentiable for all ω ∈ Ω. We have in that case

Fφ(ξ; ν) = min
ω∈Ω(ξ)

FΦω [M(ξ);M(ν)] (5.36)

with Ω(ξ) = {ω ∈ Ω : Φω[M(ξ)] = φ(ξ)}.
The situation will be the same for the maximin-optimality criteria of

Sect. 8.2 where φ(ξ) = minθ∈Θ Φ[M(ξ, θ)] when Φ(·) is differentiable. We
shall then have

Fφ(ξ; ν) = min
θ∈Θ(ξ)

FΦ[M(ξ, θ);M(ν, θ)]

with Θ(ξ) = {θ ∈ Θ : Φ[M(ξ, θ)] = φ(ξ)}.

Application to Classical Criteria

For D-optimality we get ∇MΦ(M) = M−1 when Φ(M) = log detM and

∇MΦ(M) = [(1/p) det1/pM]M−1 when Φ(M) = det1/pM; when M has
full rank, the gradient of Φ(M) = −trace(AM−q) for q ≥ 1 is ∇MΦ(M) =∑q
i=1 M

−iA�M−(q+1−i); see, e.g., Harville (1997, Chap. 15).

The cases ofMV -optimality given by (5.17) ofE-optimality with Φ+
E(M) =

λmin(M) or of c- and Ds-optimality are more subtle since the criterion is not
differentiable everywhere. However, they correspond to particular versions of
a maximin criterion and (5.35), (5.36) can be used.

For the criterion of MV -optimality (5.17), (5.35) directly gives at a non-
singular M1
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FΦMV (M1;M2) = min
i∈I∗(M1)

e�i M
−1
1 (M2 − M1)M

−1
1 ei

= min
i∈I∗(M1)

{M−1
1 M2M

−1
1 − M−1

1 }ii ,

where I∗(M1) = {i : −e�i M
−1
1 ei = ΦMV (M1)}. The criterion is differen-

tiable at M when I∗(M) is a singleton, I∗(M) = {i∗}, with ∇MΦMV (M) =
M−1ei∗e

�
i∗M

−1.
For the case of E-optimality, we can write Φ+

E(M) = min{c:‖c‖=1} c�Mc,
and (5.36) gives

FΦ+
E
(M1;M2) = min

c∈B∗(M1)
c�(M2 − M1)c ,

where B∗(M1) = {c ∈ R
p : ‖c‖ = 1 and M1c = λmin(M1)c}. Here the

criterion is differentiable at M when its minimum eigenvalue λmin(M) has
multiplicity of one, and in that case ∇MΦ+

E(M) = cc� with c the associated
eigenvector of unit length—unique up to multiplication by −1.

More generally, at a nonsingular M1, the c-maximin-optimality criterion
(5.16) has the directional derivative

FΦC(M1;M2) = min
c∈B∗(M1)

c�M−1
1 (M2 − M1)M

−1
1 c ,

where B∗(M) = {c ∈ C : −c�M−1c = ΦC(M)}. In the case of G-optimality,
see (5.18), this gives

FG(M1;M2) = min
x∈B∗(M)

f�θ (x)M−1
1 (M2 − M1)M

−1
1 fθ(x)

with B∗(M) = {x ∈ X : −f�θ (x)M−1fθ(x) = ΦG(M)}.

Consider now the case of c-optimality into more details. When M1 has full
rank, the criterion Φc(M1) defined by (5.9) is differentiable at M1 with gradi-
ent ∇M(Φc)(M1) = M−1

1 cc�M−1
1 . The directional derivative FΦc(M1;M2)

can thus be written in the form

FΦc(M1;M2) = c�M−1
1 M2M

−1
1 c+ Φc(M1) ,

see (5.32). However, a similar formula

FΦc(M1;M2) = c�M−
1

�
M2M

−
1 c+ Φc(M1) , (5.37)

cannot be used if M1 is singular, even when c ∈ M(M1), i.e., when c = M1u
for some u ∈ R

p. Indeed, when M1 is singular, Φc(M1) keeps a finite value
that does not depend on the choice of the g-inverse that is used provided that
c ∈ M(M1), but its directional derivative FΦc(M1;M2) generally differs from
FΦc(M1;M2) which depends on the choice of the g-inverse. This is illustrated
by the following example:
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Example 5.19. Take

M1 =

⎛

⎝
2 1 0
1 2 0
0 0 0

⎞

⎠, M2 =

⎛

⎝
0 0 0
0 3 1
0 1 3

⎞

⎠ and c = (1, 1, 0)� ∈ M(M1),

together with the g-inverse

M−
1 =

⎛

⎝
2/3 −1/3 0

−1/3 2/3 0
0 0 1

⎞

⎠.

Then, the directional derivative computed according to the definition (5.31)
is FΦc(M1;M2) = −10/27 < FΦc(M1;M2) = −1/3. �

Using (5.36), one can show that FΦc(M1;M2) given by (5.37) forms an
upper bound on FΦc(M1;M2) for any choice of the g-inverse M−

1 and, more
precisely, that FΦc(M1;M2) is the minimum of FΦc(M1;M2) over the set of
all g-inverses M−

1 . Indeed, from Lemma 5.5, Φc(M1) = minz∈Rp [z�M1z −
2z�c], the minimum being attained at z = M−

1 c (see the proof of Lemma 5.5
in appendix) so that from (5.36),

FΦc(M1;M2) = min
{z:M1z=c}

z�M2z − z�c .

Using Harville (1997, Theorem 11.5.1), M1z = c is equivalent to z = M−
1 c

for some g-inverse M−
1 , so that

FΦc(M1;M2) = min
{A:M1AM1=M1}

c�A�M2Ac − c�Ac . (5.38)

Since c-optimum design with c equal to a basis vector ei forms a particular
case of Ds-optimum design (with s = 1), it is not surprising that difficulties
similar to those encountered for c-optimality exist for Ds-optimality.

There is no special difficulty when M has full rank. Denote A� = [Is O]
with Is the s-dimensional identity matrix and O the s× (p− s) null matrix.
We have ΦDs(M) = − log det[A�M−1A], with directional derivative

FΦDs
(M;M′) = trace[M−1A(A�M−1A)−1A�M−1 (M′ − M)]

= trace[M−1A(A�M−1A)−1A�M−1M′]− s .

This expression is also valid for other choices for A, which corresponds to the
criterion of DA-optimality; see Sibson (1974). In the general situation, where
M may be singular, we define

ΦD(M) = log det
[
M11 +D�M22D− M12D − D�M21

]
.

According to Lemma 5.7, ΦDs(M) = minD∈R(p−s)×s ΦD(M). The directional
derivative of ΦD(·) is easily calculated as
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FΦD(M;M′) = trace
[
(M11 +D�M22D − M12D − D�M21)

−1

× (M′
11 +D�M′

22D − M′
12D − D�M′

21)
]
− s .

From Lemma 5.7 and (5.36), we then obtain

FΦDs
(M;M′) = min

{D∈R(p−s)×s:M22D=M21}
FΦD(M;M′)

= min
{D∈R(p−s)×s:M22D=M21}

trace
[
(M∗)−1

× (M′
11 +D�M′

22D − M′
12D − D�M′

21)
]
− s ,

with M∗ = M11 − M12M
−
22M21.

5.2.2 The Equivalence Theorem

When the set Mθ(X ) given by (5.2) is compact and φ(·) is concave, a φ-
optimum design ξ∗ on X always exists. It may not be unique, but the set of
such designs is then convex; when φ(ξ) = Φ[M(ξ)] with Φ(·) equivalent to a
strictly concave criterion, then the φ-optimal matrix M(ξ∗) is unique.

We first formulate precisely the rather intuitive property that for a con-
cave criterion φ(·) the maximum value of the directional derivative gives an
indication of the distance to the optimum value φ∗ = maxξ∈Ξ φ(ξ).

Lemma 5.20. Let φ(·) be a concave functional on the set Ξ of design mea-
sures on X and let ξ be a design measure with φ(ξ) > −∞. Then,

0 ≤ φ∗ − φ(ξ) ≤ d(ξ) = sup
ν∈Ξ

Fφ(ξ; ν) .

In particular, when φ(ξ) = Φ[M(ξ)] with Φ(·) differentiable and when Mθ(X )
given by (5.2) is a compact subset of M, then

d(ξ) = max
x∈X

Fφ(ξ, x) (5.39)

with

Fφ(ξ, x) = trace {Mθ(x)∇MΦ[M(ξ)]} − trace {M(ξ)∇MΦ[M(ξ)]} . (5.40)

Proof. From the concavity of φ(·) and the proof of Lemma 5.16 we obtain
that for any ν ∈ Ξ,

φ(ν) − φ(ξ) ≤ φ[(1 − α)ξ + αν] − φ(ξ)

α
≤ Fφ(ξ; ν) . (5.41)

In particular, when ν = ξ∗, an optimum measure such that φ(ξ∗) = φ∗,
0 ≤ φ∗ − φ(ξ) ≤ Fφ(ξ; ξ

∗) ≤ supν∈Ξ Fφ(ξ; ν).
For the rest of the proof we use (5.34) and
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trace {M(ν)∇MΦ[M(ξ)]} =

∫

X

trace {Mθ(x)∇MΦ[M(ξ)]} ν(dx)

≤ max
x∈X

trace {Mθ(x)∇MΦ[M(ξ)]}.

Let x∗ be such that

trace {Mθ(x
∗)∇MΦ[M(ξ)]} = max

x∈X
trace {Mθ(x)∇MΦ[M(ξ)]}.

Then,

sup
ν∈Ξ

trace {M(ν)∇MΦ[M(ξ)]} ≤ trace {Mθ(x
∗)∇MΦ[M(ξ)]}

= trace {M(δx∗)∇MΦ[M(ξ)]}
≤ sup

ν∈Ξ
trace {M(ν)∇MΦ[M(ξ)]}

which completes the proof.

A direct consequence of Lemma 5.20 is that d(ξ∗) = 0 is a sufficient con-
dition for ξ∗ to be φ-optimal. The next theorem shows that this condition is
also necessary.

Theorem 5.21 (Equivalence theorem11 for φ-optimality). Let φ(·) be
a concave functional on the set Ξ of design measures on X . A design ξ∗ is
φ-optimal if and only if d(ξ∗) = 0 with d(ξ) = supν∈Ξ Fφ(ξ; ν).

Proof. Following Lemma 5.20, we only need to prove that the condition is
necessary. Suppose that d(ξ∗) > 0. It means that there exists ν ∈ Ξ such that
Fφ(ξ

∗; ν) > 0, and therefore, there exists α > 0 such that φ[(1−α)ξ∗ +αν] >
φ(ξ∗), which contradicts the optimality of ξ∗.

Remark 5.22.

(i) The equivalence theorem only expresses that for a concave criterion de-
fined on a convex set a necessary-and-sufficient condition for being at the
optimum is that the slope is not positive in any direction. It is thus clear
that concavity is not indispensable; only the absence of local maxima is
really required and equivalence with a concave criterion is enough. The
equivalence theorem thus remains valid for a criterion φ(·) that can be
written as φ(·) = ψ[φ̃(·)] with ψ(·) strictly increasing and φ̃(·) concave.

(ii) The equivalence theorem takes a very special form for D-optimality,
which, additionally to the properties mentioned in Sect. 5.1.2, gives a

11The now classical denomination “equivalence theorem” can be considered as a
tribute to the work of Kiefer and Wolfowitz (1960); we use this term throughout
the book although “Necessary and Sufficient condition for optimality” would be
appropriate too.
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motivation for considering D-optimum design. For Φ(M) = log detM,
∇MΦ(M) = M−1. When Mθ(X ) is compact, we have

d(ξ) = max
x∈X

trace[Mθ(x)M
−1(ξ)] − p

for any ξ ∈ Ξ such thatM(ξ) is nonsingular; see (5.39), (5.40). We thus ob-
tain the following: ξ∗D isD-optimal if and only if maxx∈X trace[Mθ(x)M

−1

(ξ∗D)] ≤ p = dim(θ), i.e., if and only if ξ∗D minimizes maxx∈X

trace[Mθ(x)M
−1(ξ)]. When Mθ(x) = c fθ(x)f

�
θ (x) for some c > 0, this

corresponds to G-optimality, which is related to the maximum variance
of the prediction or to the maximum width of the confidence region in
Lemma 5.2. �

Since d(ξ∗) > 0 when ξ∗ is not φ-optimal, we also have that ξ∗ is φ-
optimal if and only if it minimizes d(ξ). When d(ξ) is given by (5.39), (5.40),
we obtain that ξ∗ is φ-optimum if and only if it minimizes maxx∈X Fφ(ξ, x),
i.e., if and only if maxx∈X Fφ(ξ

∗, x) = 0. Notice that this condition is often
easy to check, e.g., by computing all the values Fφ(ξ

∗, x) for x ∈ X when X
is a finite set or by plotting Fφ(ξ

∗, x) as a function of x when dim(x) ≤ 2;
see Example 5.23 below. Moreover, since Fφ(ξ

∗; ξ∗) = 0, see (5.40), we have
Fφ(ξ

∗, x) = 0 ξ∗-almost everywhere, i.e., Fφ(ξ
∗, x) = 0 on the support of ξ∗.

Also, for any ξ ∈ Ξ, φ(ξ∗) ≤ φ(ξ) + maxx∈X Fφ(ξ, x); see Lemma 5.20.

Example 5.23. Consider the same regression model as in (Box and Lucas,
1959) with

η(x, θ) =
θ1

θ1 − θ2
[exp(−θ2x) − exp(−θ1x)] . (5.42)

We suppose that the observation errors are stationary and x ∈ X =
[0, 10]. Without any loss of generality we take σ2 = 1 so that M(ξ) =∫

X fθ0(x)f
�
θ0(x) ξ(dx) with fθ0(x) = ∂η(x, θ)∂θ

∣∣
θ0
. When θ0 = (0.7, 0.2)�,

the associated D-optimal design measure ξ∗D on X , which can be computed
by one of the algorithms presented in Sect. 9.1, puts mass 1/2 at each of the
two support points given by x(1) � 1.23, x(2) � 6.86.

Figure 5.1 presents the evolution of FφD (ξ, x) = f�θ0(x)M
−1(ξ)fθ0(x) − p

(dashed line) and of FφD (ξ
∗
D, x) (solid line) as functions of x, when ξ =

(1/3)δx(1) + (2/3)δx(2) . For any nonsingular design ξ, FφD (ξ, x) + 2 is pro-

portional to the asymptotic variance of the LS predictor η(x, θ̂NLS), under the

assumption θ̄ = θ0, when θ̂NLS is estimated with a design sequence satisfying
Definition 2.1 or 2.2. The D-optimality of ξ∗D (and the non-optimality of ξ) is
clear from the figure. Notice that FΦD (ξ

∗
D, x

(1)) = FΦD (ξ
∗
D, x

(2)) = 0. �

Remark 5.24. The equivalence theorem is a most useful tool for construct-
ing optimal designs analytically in particular situations. A well-known ex-
ample concerns D-optimal designs for polynomial models, see, e.g., Fedorov
(1972, Sect. 2.3) and Pukelsheim (1993, pp. 418–421) for developments and
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Fig. 5.1. Directional derivatives FφD (ξ, x) (dashed line) and FφD (ξ∗D, x) (solid line)

references. Consider, for instance, the case of the second-order polynomial
η(x, θ) = θ1 + θ2x + θ3x

2; the D-optimal design measure on X = [a, b]
gives weight 1/3 at each of the points a, b, and (a + b)/2. This is true
whatever the basis chosen for the polynomial since a D-optimal design is
invariant by reparameterization, see Sect. 5.1.2; for instance, the design mea-
sure above is also D-optimal for estimating α = (α1, α2, α3)

� in the model
η(x, α) = α1(x − α2)(x − α3) when α1 �= 0 and α2 �= α3, the Jacobian of the
transformation α −→ θ being equal to α2

1(α2 − α3).
The equivalence theorem is also most useful for establishing general prop-

erties about design optimality. For instance, it is used in (Torsney, 1986)
and (Pronzato et al., 2005) to obtain generalizations of various moment
inequalities. Important results, much useful for simplifying the construction
of optimal designs in complicated multifactor models, are proven in (Schwabe,
1996). In particular, when ξ1 is D-optimal for the estimation of the parame-
ters (α0, α

�)� in the linear model with intercept η1(x, α0, α) = α0 + f�1 (x)α,
x ∈ X1 and ξ2 is D-optimal for the estimation of the parameters (β0, β

�)� in
the linear model with intercept η2(y, β0, β) = β0 + f�2 (y)β, y ∈ X2, then the
product design12 ξ = ξ1 ⊗ ξ2 on X = X1 × X2 is D-optimal for the estima-
tion of θ = (θ0 , α

� , β�)� in the model η([x, y], θ) = θ0 + f�1 (x)α+ f�2 (y)β.
An additional condition is required when the intercept term is not present
in both models; see (Schwabe, 1996, Sect. 5.2). This product design is also
D-optimal in the complete product-type interaction model η([x, y], θ) =
η1(x, α) ⊗ η2(y, β), see Schwabe (1996, Chap. 4), see also Schwabe and Wong
(1999). For instance, it implies that the design measure allocating equal

12ξ = ξ1 ⊗ ξ2 is the joint design measure on X = X1 × X2 with ξ(dx,dy) given
by the product ξ1(dx) × ξ2(dy) of the marginal measures, respectively, on X1 and
X2.
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weight 1/9 to each of the design points (a, c), (a, d), (a, [c + d]/2), (b, c),
(b, d), (b, [c + d]/2), ([a + b]/2, c), ([a + b]/2, d), and ([a + b]/2, [c + d]/2) is
D-optimal for estimating θ = (θ0, α1, α2, β1, β2)

� in the model η([x, y], θ) =
θ0 +α1x+ α2x

2 + β1y+ β2y
2 and θ = (θ0, α1, α2, β1, β2, θ1, θ2, θ3, θ4)

� in the
model η([x, y], θ) = θ0+α1x+α2x

2+β1y+β2y
2+θ1xy+θ2x

2y+θ3xy
2+θ4x

2y2,
with x ∈ [a, b] and y ∈ [c, d].

The optimality of products of D-optimal measures extends to the sum
of nonlinear models with intercepts, where η1(x, α0, α) = α0 + η′1(x, α),
η2(y, β0, β) = β0 + η′1(y, β), η

′
1(x, α) and η′2(y, β) being nonlinear in α and

β, respectively; see Schwabe (1995). Even more interestingly, it also applies
to maximin D-optimal designs, see Sect. 8.2: the maximin D-optimal de-
sign measure over X1 × X2 that maximizes min(αβ)∈A×B det[M(ξ, α, β)] is
the product ξ1 ⊗ ξ2 of the maximin D-optimal measures that respectively
maximize minα∈A det[M1(ξ, α)] over X1 and minβ∈B det[M2(ξ, β)] over X2,
with M1(ξ, α) the information matrix for the estimation of (α0 , α

�)� in
η1(x, α0, α), M2(ξ, β) the information matrix for the estimation of (β0 , β

�)�

in η2(y, β0, β), and M(ξ, α, β) the information matrix for the estimation of
θ = (θ0 , α

� , β�)� in η([x, y], θ) = θ0 + η′1(x, α) + η′2(y, β). �

Equivalence Theorem for Constrained Design

Consider again the problem of maximizing Φ0(M) under the constraint that
Φ1(M) ≥ Δ for some Δ ∈ R, with Φ0(·) and Φ1(·) concave on Mθ(Ξ). The
presentation is for one constraint only but can easily be extended to several
constraints of the form Φj(M) ≥ Δj with Φj(·) concave, j = 1, . . . ,m. The
Lagrangian L(M, λ) = Φ0(M) + λ[Φ1(M) − Δ] is also a concave function of
M for any λ. Suppose that there exists M ∈ Mθ(ξ) with Φ0(M) > −∞
and Φ1(M) > Δ, so that Slater’s condition is satisfied in the Kuhn–Tucker
theorem; see Alexéev et al. (1987, p. 75). A necessary-and-sufficient condition
for the optimality of M∗ satisfying Φ1(M

∗) ≥ Δ is the existence of λ such
that

λ ≥ 0 , λ[Φ1(M
∗) −Δ] = 0 , (5.43)

with M∗ maximizing L(M, λ). Since L(M, λ) is concave for any λ, the equiv-
alence theorem applies, and a necessary-and-sufficient condition for the opti-
mality of M∗ satisfying Φ1(M

∗) ≥ Δ is the existence of λ satisfying (5.43)
with

FΦ0(M
∗;A) + λFΦ1(M

∗;A) ≤ 0 , ∀A ∈ Mθ(Ξ) .

Notice that M∗ is then optimal for the compound criterion (5.24) with α =
λ/(1 + λ), see, e.g., Cook and Fedorov (1995) and the enclosed discussion
for the connection between compound and constrained designs. An optimal
constrained design can thus be obtained by solving a series of compound
design problems associated with increasing values of α, starting at α = 0 and
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stopping at the first α such that the associated optimal matrixM∗(α) satisfies
Φ1[M

∗(α)] ≥ Δ; see Mikulecká (1983). See also the algorithms in Sect. 9.5.
Take, for instance, Φ0(M) = log detM and Φ1(M) = −trace(M−1). Then,

ξ∗ satisfying Φ1[M(ξ∗)] ≥ Δ is optimal in Ξ if and only if there exists λ ≥ 0,
with λ{trace[M−1(ξ∗)] +Δ} = 0 and

max
x∈X

{
trace[Mθ(x)M

−1(ξ∗)] + λ trace[Mθ(x)M
−2(ξ∗)]

}

≤ p+ λ trace[M−1(ξ∗)] ,

see Fedorov and Hackl (1997, p. 63).

Equivalence Theorem for Maximin Design

Consider the maximin criterion

φ(ξ) = min
ω∈Ω

Φω[M(ξ)]

where {Φω(·), ω ∈ Ω} defines a parameterized family of criteria such that
Φω(·) is concave and differentiable for all ω ∈ Ω. Its directional derivative is
given by Fφ(ξ; ν) = minω∈Ω(ξ) FΦω [M(ξ);M(ν)] with

Ω(ξ) = {ω ∈ Ω : Φω[M(ξ)] = φ(ξ)} ,

see (5.36). The equivalence theorem 5.21 then says that ξ∗ is optimal for φ(·)
if and only if

sup
ν∈Ξ

min
ω∈Ω(ξ)

Fφω (ξ
∗; ν) = 0 , (5.44)

where Fφω (ξ; ν) = FΦω [M(ξ);M(ν)]. An alternative form is as follows.

Theorem 5.25. A design ξ∗ is optimal for φ(·) if and only if

max
x∈X

∫

Ω(ξ∗)
Fφω(ξ

∗, x)μ∗(dθ) = 0 for some measure μ∗ ∈ Mξ∗ , (5.45)

with Mξ the set of probability measures on Ω(ξ), Fφω (ξ
∗, x) = Fφω(ξ

∗; δx),
and δx the delta measure at x.

Proof. Since Φω(·) is differentiable for all ω ∈ Ω, Fφω (ξ; ν) is linear in ν, and
we can write

Fφω (ξ; ν) =

∫

X

Fφω (ξ, x) ν(dx) .

Since
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0 ≤ sup
ν∈Ξ

min
ω∈Ω(ξ)

∫

X

Fφω (ξ, x) ν(dx)

= sup
ν∈Ξ

min
μ∈Mξ

∫

X

∫

Ω(ξ)

Fφω (ξ, x)μ(dθ) ν(dx)

= min
μ∈Mξ

sup
ν∈Ξ

∫

X

∫

Ω(ξ)

Fφω (ξ, x)μ(dθ) ν(dx)

= min
μ∈Mξ

max
x∈X

∫

Ω(ξ)

Fφω (ξ, x)μ(dθ) , (5.46)

the necessary-and-sufficient condition (5.44) can be written as (5.45).

Remark 5.26.

(i) A necessary-and-sufficient condition for maximin c-optimality similar to
(5.45) allowed Müller and Pázman (1998) to obtain explicit expressions
for the optimal ξ∗ for some simple polynomial models. However, the
application of (5.45) is difficult in general situations.

(ii) The construction of supν∈Ξ Fφ(ξ; ν) in (5.44) is useful for checking the φ-
optimality of a given design measure ξ. Also, we shall see in Chap. 9 that
this construction is central in several optimization algorithms. One should
then notice that supν∈Ξ Fφ(ξ; ν) is generally not obtained for ν∗ equal to
a one-point (delta) measure. Indeed, the minimax problem (5.46) has gen-
erally several solutions x(i) for x, i = 1, . . . , s, and the optimal ν∗ is then a
linear combination

∑s
i=1 wiδx(i) , with wi ≥ 0 and

∑s
i=1 wi = 1; see Pron-

zato et al. (1991) for developments on a similar difficulty in T -optimum
design for model discrimination. This property, due to the fact that φ(·) is
not differentiable, has the important consequence that the determination
of a maximin-optimal design cannot be obtained via a standard vertex-
direction optimization algorithm such as considered in Sect. 9.1.1. We
should resort either to methods for non-differentiable optimization, see
Sect. 9.3.1, or to a regularization of the design criterion, see Sect. 8.3.

(iii) When φ(ξ) = Φ[M(ξ)] with Φ(·) differentiable, maximizing the directional
derivative Fφ(ξ; ν) defined by (5.33) is equivalent to maximizing the di-
rectional derivative defined in the usual way (5.29) since FΦ(M1;M2) =
Φ′(M1;M2 − M1) which is linear in M2 − M1. This is not so obvious
when φ(ξ) = minω∈Ω Φω [M(ξ)], and one may wonder whether the max-
ima of Fφ(ξ; ν) and φ

′(ξ; ν) are reached for the same ν ∈ Ξ. The answer is
positive at least in the following situation. Suppose that Φω(·) is isotonic
and differentiable for all ω ∈ Ω. Then, according to (5.36),

Fφ(ξ; ν) = min
ω∈Ω(ξ)

FΦω [M(ξ);M(ν)]

where FΦω (M1;M2) = Φ′
ω(M1;M2−M1) is linear inM2−M1. Therefore,

we only need to check that Φ′
ω(M1;M1) is a constant for all M1 = M1(ξ)

such that Φω(M1) = φ(ξ). But this is the case if Φω(·) = ψ[Φ+
ω (·)] for all
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ω, with Φ+
ω (·) the positively homogeneous form of Φω(·) and ψ(·) contin-

uous and strictly increasing, see Sect. 5.1.4: indeed, we have in this case
Φ′
ω(M1;M1) = ψ′[Φ+

ω (M1)]Φ
+
ω (M1); see (5.30).

The situation will be the same for the maximin-optimality criteria of
Sect. 8.2 when φ(ξ) = minθ∈Θ Φ[M(ξ, θ)] and Φ(·) is isotonic and differen-
tiable. �

Ds-Optimality

As mentioned above, the equivalence theorem takes a more complicated form
for criteria that are not differentiable everywhere. We detail below the case
of Ds-optimum design; the case of c-optimum design will be considered in
Sect. 5.3.4. We use the notations of Sect. 5.2.1. Take M = M(ξ) for some
ξ ∈ Ξ such that M∗ = M11 − M12M

−
22M21 has full rank.

A sufficient condition for the Ds-optimality of ξ is as follows. If there
exists D ∈ R

(p−s)×s such that M22D = M21 and FφD(M;M′) ≤ 0 for all
M′ ∈ Mθ(Ξ), then FφDs

(M;M′) ≤ 0 for all M′ ∈ Mθ(Ξ) and ξ is Ds-
optimal. This condition can be slightly improved as follows. Define

FΦD(M;M′) = trace
[
(M∗)−1(M′

11 +D�M′
22D − M′

12D− D�M′
21)
]
− s .

Then, FΦD(M;M) = trace[(M∗)−1(C−D)�M22(C−D)] with C any matrix
such that M22C = M21; see the proof of Lemma 5.7. We thus have the
following: if there exists D ∈ R

(p−s)×s such that and FφD(M;M′) ≤ 0
for all M′ ∈ Mθ(Ξ), then D necessarily satisfies M22D = M21 (other-
wise FΦD(M;M) would be strictly positive), and we have the same result
as above, FφDs

(M;M′) ≤ 0 for all M′ ∈ Mθ(Ξ) and ξ is Ds-optimal. When
M(ξ) =

∫
X gθ(x)g

�
θ (x) ξ(dx), denote FφDs

(ξ; ν) = FφDs
[M(ξ);M′(ν)] and

FΦD(ξ; ν) =FΦD [M(ξ);M′(ν)]

=

∫

X

[g[1](x) − D�g[2](x)]
�(M∗)−1[g[1](x) − D�g[2](x)] ν(dx) − s,

where gθ(x) has been partitioned as gθ(x) = [g�
[1](x) g

�
[2](x)]

�. The sufficient

condition above for the Ds-optimality of ξ becomes: there exists D ∈ R
(p−s)×s

such that

FΦD(ξ, x) = [g[1](x) − D�g[2](x)]
�(M∗)−1[g[1](x) − D�g[2](x)] − s ≤ 0

for any x ∈ X . It corresponds to the sufficient condition in (Atwood, 1969,
Sect. 3)—a corrected version of a condition in (Karlin and Studden, 1966).

On the other hand, the minimax theorem applies, see, e.g., Dem’yanov
and Malozemov (1974, Theorem 5.2, p. 218) and Polak (1987, Corollary 5.5.6,
p. 707), and
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max
M′∈Mθ(Ξ)

min
{D∈R(p−s)×s:M22D=M21}

FφD(M;M′)

= min
{D∈R(p−s)×s:M22D=M21}

max
M′∈Mθ(Ξ)

FφD(M;M′) .

Therefore, if ξ is Ds-optimal, it implies that there exists D ∈ R
(p−s)×s

such that M22D = M21 and FφD(M;M′) ≤ 0 for all M′ ∈ Mθ(Ξ).

Since FφD(M;M′) = FφD(M;M′) when M22D = M21, the Ds-optimality

of ξ implies that there exists D ∈ R
(p−s)×s such that FφD(M;M′) ≤ 0

for all M′ ∈ Mθ(Ξ). When M(ξ) =
∫

X gθ(x)g
�
θ (x) ξ(dx), it implies that

FΦD(ξ, x) ≤ 0 for all x ∈ X . This corresponds to the necessary condition in
(Atwood, 1969, Theorem 3.2).

5.2.3 Number of Support Points

We already noticed that Mθ(Ξ) is the convex hull of the set Mθ(X ). Also,
Mθ(Ξ) being a set of symmetric p × p matrices, it is a subset of Rp(p+1)/2.
Therefore, from Caratheodory’s theorem, see, e.g., Silvey (1980, p. 72), any
matrix inMθ(Ξ) can be written as the linear combination ofm = p(p+1)/2+1
elements ofMθ(X ) at most.13 In other words, with any design measure ξ ∈ Ξ,
one may associate a discrete measure ξd, supported onm points of X at most,
such that M(ξ) = M(ξd). This bound can be quite pessimistic. In particular,
we shall see in Sect. 5.3.1 that one can always find a c-optimal design measure
supported on m ≤ p points. Also, even if there exist situations where the
bound m = p(p+ 1)/2 is reached for D-optimal measures, the number of D-
optimal support points is usually much smaller, and p points are often enough.
One may refer to Yang and Stufken (2009) for general results concerning the
optimality of two-point designs for isotonic criteria in nonlinear models with
two parameters. The generalization to models with more than two parameters
is presented in (Yang, 2010) and (Dette and Melas, 2011), extending de la
Garza (1954) result on polynomial regression to general nonlinear models.
The duality property presented below provides a geometrical interpretation
for this phenomenon.

Remark 5.27. The bound m on the number of support points of an optimal
design measure is not modified by the presence of constraints defined by cri-
teria that are functions of M(ξ). However, in the case of linear constraints
of the form (5.26), see Sect. 5.1.10, {M(ξ), ψ1(ξ), . . . , ψnc(ξ)} belongs to the
convex hull of the set {Mθ(x), C1(x), . . . , Cnc(x) : x ∈ X }, and the bound

13We have m = p(p+1)/2 when the design criterion Φ(·) is strictly isotonic since
an optimum design matrix M∗ (unique if Φ(·) is strictly concave or is equivalent
to a strictly concave criterion) necessarily lies on the boundary of Mθ(Ξ). Indeed,
when M is in the interior of Mθ(Ξ), there exists α > 1 such that αM ∈ Mθ(Ξ)
and Φ(αM) > Φ(M). From Caratheodory’s theorem, M∗ can then be written as the
linear combination of p(p+ 1)/2 elements of Mθ(X ).
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on the number of support points becomes p(p+ 1)/2 + nc + 1; see Cook and
Fedorov (1995). �

5.2.4 Elfving’s Set and Some Duality Properties

It is a general fact that the maximization of a concave function Φ(·) over a
convex set (here the set Mθ(Ξ)) admits a dual representation. It happens
that for some design criteria this dual representation has a nice geometrical
interpretation.

Consider the situation where Mθ(x) in (5.1) has rank one; that is, it takes
the form

Mθ(x) = gθ(x)g
�
θ (x) . (5.47)

For instance, in a regression model, gθ(x) = σ−1fθ(x) in (3.26) and gθ(x) =
λ−1/2(x, θ)fθ(x) in (3.56). The Elfving’s set Fθ is then defined as the convex
closure of the set {gθ(x) : x ∈ X } ∪ {−gθ(x) : x ∈ X }. We first state a
property concerning the support of an optimal design when Φ(·) is isotonic; see
Fellman (1974) and Pázman (1986, p. 56). The proof is given in Appendix C.

Lemma 5.28. When the design criterion Φ(·) is isotonic, an optimal design
is supported at values of x such that gθ(x) is on the boundary of the Elfving’s
set Fθ.

Consider now ellipsoids EA defined by

EA = {t ∈ R
p : t�At ≤ 1} ,

that contain Fθ, i.e., such that g�
θ (x)Agθ(x) ≤ 1 for all x ∈ X . Note that

from Lemma 5.1-(i), the volume of EA is proportional to det−1/2 A.
Using Lagrangian theory, one can show that the determination of a D-

optimal design measure ξ∗D on X that maximizes detM(ξ) is equivalent to the
determination of the minimum-volume ellipsoid EA∗ that contains Elfving’s set
Fθ, with the optimum value forA (such that detA is maximal) equal to A∗ =
M−1(ξ∗D)/p. Moreover, the support points of ξ∗D satisfy g�

θ (x)A
∗gθ(x) = 1;

that is, they correspond to the points of contact between EA∗ and Fθ; see,
e.g., Silvey (1980, p. 78), Pronzato and Walter (1994). When X is finite, Fθ

is a bounded convex polyhedron, and there exist fast algorithms for solving
this minimal ellipsoid problem, see, e.g., Welzl (1991) and Sun and Freund
(2004); see also Sect. 9.1.4. Once A∗ is found and the support points of ξ∗D
are located, only their weights have to be determined. The connection with
other ellipsoid problems is briefly considered in Sect. 5.6.

Example 5.29. Consider again the regression model of Example 5.23, with
θ0 = (0.7, 0.2)�. The associated D-optimal measure is ξ∗D = (1/2)δx(1) +
(1/2)δx(2) , x(1) � 1.23, x(2) � 6.86.

Figure 5.2 shows the set {fθ0(x) : x ∈ X } (solid line), its symmetric
{−fθ0(x) : x ∈ X } (dashed line), and Elfving’s set Fθ0 (colored region)
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Fig. 5.2. Minimum-volume ellipsoid containing Elfving’s set in Example 5.29

together with the minimum-volume ellipsoid containing Fθ0 . Note that the
points of contact correspond to the support points of ξ∗D. �

Since the support points of ξ∗D correspond to the points of contact of the
minimum-volume ellipsoid containing Fθ with the set {fθ(x) : x ∈ X }, it is
clear that a D-optimal measure has often much less than p(p+ 1)/2 support
points. In fact, it often has p support points only, as in the example above, and
when this happens, those p points x(i), i = 1, . . . , p, all receive the same mass
1/p. Indeed, we then have log detM(ξ∗D) = 2 log det[fθ(x

(1)), . . . , fθ(x
(p))] +

log
∏p
i=1 ξ

∗
D(x

(i)), which, under the constraint
∑p

i=1 ξ
∗
D(x

(i)) = 1 is maximal
for ξ∗D(x

(i)) = 1/p, i = 1, . . . , p.
The duality property above, originally noticed by Sibson (1972), can be

extended to other design criteria. For instance, one can show with the same
Lagrangian technique that the determination of an A-optimal design measure
ξ∗A that minimizes trace[M−1(ξ)] is equivalent to the determination of an
ellipsoid EA that contains Fθ and such that trace(A1/2) is maximal. The
corresponding value for A is then A∗ = M−2(ξ∗A)/trace[M

−1(ξ∗A)].
More generally, duality can be connected with the notion of polarity as

considered in (Pukelsheim, 1993, Chap. 7). The two cases above, namely, max-
imizing Φ+

D[M(ξ)] is equivalent to maximizing Φ+
D(A), see (5.13), and max-

imizing Φ+
1,I[M(ξ)] is equivalent to maximizing Φ+

−1/2,I(A), see (5.15), both

under the constraint that Fθ ⊂ EA, are then special instances of polar pairs
of criteria; see Pukelsheim (1993, p. 153).

The optimization of partial optimality criteria also admits a dual represen-
tation. For instance, the dual problem to Ds-optimum design (see Sect. 5.1.2)
is the determination of the thinnest cylinder containing the Elfving’s set Fθ;
see Silvey and Titterington (1973). The dual problem to c-optimum design
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will be considered in Sect. 5.3.3. One may refer to Dette and Studden (1993)
for the geometrical properties of E-optimum design.

5.3 c-Optimum Design in Linearized Nonlinear Models

In this section we consider some properties that are useful for the construc-
tion of c-optimal designs, i.e., designs that maximize the criterion φc(ξ) =
Φc[M(ξ)], see (5.9), which is related to the precision of the estimation of a
scalar function of θ. For a nonlinear model we write M(ξ) = M(ξ, θ0), with θ0

a nominal value for θ0. Similarly, for a nonlinear function of interest h(·) we
use c = ∂h(θ)/∂θθ0 in (5.9). In terms of design, the situation is thus similar
to that encountered for a linear model with a linear function of interest.

We shall see that a c-optimal design can be singular, i.e., it can be sup-
ported on less than p = dim(θ) points. The lack of continuity of the design
criterion, see Sect. 5.1.7, then raises some specific difficulties that have been
illustrated by Examples 2.4 and 5.10. The additional troubles in terms of es-
timation of θ and h(θ) caused by singular designs in presence of nonlinearity,
of the model or of the function of interest h(·), will be considered in Sect. 5.4.

5.3.1 Elfving’s Theorem and Related Properties

The equivalence theorem 5.21 is valid for c-optimality, but the criterion being
not differentiable everywhere d(ξ) does not take the simple form (5.39), (5.40).
One may refer to Silvey (1980, p. 49) for a formulation of the equivalence
theorem in this particular case. See also Sect. 5.3.4.

The following theorem is a much useful alternative formulation of a neces-
sary and sufficient condition for c-optimality when Mθ(x) has the form (5.47).

Theorem 5.30 (Elfving 1952). When Mθ(x) in (5.1) is the rank-one ma-
trix (5.47), the design ξ∗c is c-optimal if and only if there exists a subset S∗

c

of the support Sξ∗c of ξ∗c and a strictly positive number γ such that γc lies on
the boundary of Elfving’s set Fθ and

γc =

∫

S∗
c

gθ(x) ξ
∗
c (dx) −

∫

Sξ∗c \S∗
c

gθ(x) ξ
∗
c (dx) .

Our proof of Elfving’s theorem will rely on the following lemma which is
also interesting per se.

Lemma 5.31. When Mθ(x) in (5.1) is the rank-one matrix (5.47), the design
ξ∗c is c-optimal if and only if c�M−(ξ∗c )c = 1/(γ∗)2 where

γ∗ = max{γ : γc ∈ Fθ} . (5.48)
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Proof. We consider design measures ξ such that c = M(ξ)u for some u ∈ R
p.

Define the measure μξ by μξ(dx) = |u�gθ(x)|γ(ξ)ξ(dx) where

γ(ξ) =

[∫

X

|u�gθ(x)| ξ(dx)
]−1

(so that
∫

X μξ(dx) = 1). The constraint c = M(ξ)u can then be written as

γ(ξ) c =

∫

X

sign[u�gθ(x)]gθ(x)μξ(dx) . (5.49)

Hence, γ(ξ)c ∈ Fθ. Moreover, from Cauchy–Schwarz inequality, we have

c�M−(ξ)c = u�M(ξ)u =

∫

X

|u�gθ(x)|2 ξ(dx) ≥ 1

γ2(ξ)
, (5.50)

with equality if and only if |u�gθ(x)| is constant for ξ-almost every x.
We first show that the condition c�M−(ξ∗c )c = 1/(γ∗)2 is sufficient for

the c-optimality of ξ∗c . The right-hand side of (5.50) is minimum when ξ is
such that γ(ξ) = γ∗ as defined in (5.48). Therefore, c�M−(ξ)c ≥ 1/(γ∗)2 for
any design measure ξ on X , and c�M−(ξ∗c )c = 1/(γ∗)2 implies that ξ∗c is
c-optimal.

We show now that the condition is necessary through the construction of
a measure μ satisfying c�M−(μ)c = 1/(γ∗)2. From Caratheodory’s theorem,
the vector γ∗c of Fθ can be represented as a finite linear combination

γ∗c =
∑

i∈I+

μigθ(x
(i)) −

∑

i∈I−
μigθ(x

(i)) ,

where μi > 0 and x(i) ∈ X for all i ∈ I+ ∪ I−,
∑

i∈I+∪I− μi = 1, and the
number m of elements in I+ ∪I− is bounded by p—indeed, only p points are
required since γ∗c is on the boundary or Fθ. From that we construct a vector
u∗ such that

γ∗u�
∗ gθ(x

(i)) = 1 for i ∈ I+ and γ∗u�
∗ gθ(x

(i)) = −1 for i ∈ I− .

Such a vector exists since there are p linear constraints at most. This gives

γ∗c =

m∑

i=1

μiγ
∗[u�

∗ gθ(x
(i))]gθ(x

(i)) .

Therefore, c = M(μ)u∗ where μ is the measure μ =
∑m

i=1 μi δx(i) , and

c�M−(μ)c = u�
∗ M(μ)u∗ =

m∑

i=1

μi [u
�
∗ gθ(x

(i))]2 = 1/(γ∗)2 .
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Proof of Theorem 5.30.
We first show that a design measure ξ∗c satisfying the conditions of the

theorem is such that c�M−(ξ∗c )c = 1/(γ∗)2, with γ∗ defined in (5.48), and is
thus c-optimal according to Lemma 5.31. Since γc lies on the boundary of Fθ,
γ = γ∗, and gθ(x) lies on the boundary of Fθ for any x in the support Sξ∗c
of ξ∗c . Moreover, the vectors gθ(x), x ∈ S∗

c , and −gθ(x), x ∈ Sξ∗c \ S∗
c belong

to a face F of Fθ, i.e. , a m-dimensional hyperplane with m < p, or form a
vertex of Fθ if m = 0. Define O′ as the orthogonal projection of the origin

O onto this face F and take u∗ as the vector
−−→
OO′/(γ∗‖−−→OO′‖2). It satisfies

γ∗u�∗ gθ(x) = 1 for x ∈ S∗
c and γ∗u�∗ gθ(x) = −1 for x ∈ Sξ∗c \ S∗

c . The rest of
the proof is as in Lemma 5.31. We have

γ∗c =

∫

S∗
c

γ∗ gθ(x) [g�
θ (x)u∗] ξ∗c (dx) +

∫

Sξ∗c \S∗
c

γ∗ gθ(x) [g�
θ (x)u∗] ξ∗c (dx)

= γ∗
[∫

Sξ∗c

gθ(x)g
�
θ (x) ξ

∗
c (dx)

]
u∗ = γ∗ M(ξ∗c )u∗

and

c�M−(ξ∗c )c = u∗M(ξ∗c )u∗ =

∫

Sξ∗c

[u�
∗ gθ(x)]

2 ξ∗c (dx) = 1/(γ∗)2

so that ξ∗c is c-optimal.
Conversely, we show now that any c-optimal design measure ξ∗c can be

put in the form given in Theorem 5.30. From Lemma 5.31, the optimality of
ξ∗c implies c�M−(ξ∗c )c = 1/(γ∗)2 with c = M(ξ∗c )u for some u ∈ R

p. From
Cauchy–Schwarz inequality, see (5.50) in the proof of Lemma 5.31, we then
have that |u�gθ(x)| equals some constant β for ξ∗c -almost any x. Defining μξ
and γ(ξ) as in the proof of Lemma 5.31, we get μξ∗c = ξ∗c and

c�M−(ξ∗c )c = u�M(ξ∗c )u =

∫

X

[u�gθ(x)]2 ξ∗c (dx) = β2 ,

so that β = 1/γ∗. We also obtain

γ(ξ∗c ) c =

∫

X

sign[u�gθ(x)]gθ(x) ξ∗c (dx) , (5.51)

see (5.49), and

c�M−(ξ∗c )c = u�c =

∫

X

sign[u�gθ(x)]u�gθ(x) ξ∗c (dx)/γ(ξ
∗
c ) = β/γ(ξ∗c )

so that γ(ξ∗c ) = γ∗; (5.51) then gives
∫

X
sign[u�gθ(x)]gθ(x) ξ∗c (dx) = γ∗c

and ξ∗c can thus be put in the form indicated in the theorem.
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Remark 5.32.

(i) The proof of Lemma 5.31 involves the construction of a c-optimal design
measure μ supported on p points at most. Hence, a c-optimal design mea-
sure can always be put in the form

∑m
i=1 μi δx(i) where the x(i) belong to

X and m ≤ p = dim(θ).
(ii) When the design space X is finite, X = {x(1), . . . , x(�)}, the Elfving’s

set Fθ corresponds to the convex hull of the finite set {gθ(x(i)) , i =
1, . . . , �}∪{−gθ(x

(i)) , i = 1, . . . , �}, and Elfving’s theorem indicates that
a c-optimal design can be obtained by solving the following LP problem:
find some weights w1, . . . , w2�, with wi ≥ 0 for all i, that maximize γ
under the p + 1 constraints

∑�
i=1 wi gθ(x

(i)) −
∑2�

i=�+1 wi gθ(x
(i)) = γ c

and
∑2�

i=1 wi = 1; see Harman and Juŕık (2008). �

Using Theorem 5.30 and the representations of c�M−c obtained in Lem-
mas 5.5 and 5.6, one can easily prove the following. We follow the approach of
Pázman (2001) where graphical representations complementary to Elfving’s
set are also presented.

Lemma 5.33. When Mθ(x) in (5.1) is the rank-one matrix (5.47), the opti-
mum value of the c-optimality criterion satisfies

min
ξ∈Ξ

c�M−(ξ)c = sup
z∈Rp

min
x∈X

{
2z�c − [z�gθ(x)]2

}

= sup
z∈Rp

min
x∈X

(z�c)2

[z�gθ(x)]2
,

where Ξc = {ξ ∈ Ξ : c ∈ M[M(ξ)]}.

Proof. From Lemma 5.5, for any ξ ∈ Ξc,

c�M−(ξ)c = sup
z∈Rp

{
2z�c − z�M(ξ)z

}
≥ sup

z∈Rp

{
2z�c − max

x∈X
[z�gθ(x)]2

}

≥ 2u�
∗ c − max

x∈X
[u�

∗ gθ(x)]
2 =

1

(γ∗)2
= c�M−(ξ∗c )c

with u∗ and γ∗ defined in the proof of Lemma 5.31. We have similarly,

c�M−(ξ)c = sup
z�M(ξ)z�=0

(z�c)2

z�M(ξ)z
, (5.52)

see the proof of Lemma 5.6. Take now any ξ ∈ Ξc, it satisfies

(z�c)2

z�M(ξ)z
≥ (z�c)2

maxx∈X [z�gθ(x)]2
=

[z�M(ξ)u]2

maxx∈X [z�gθ(x)]2

for some u ∈ R
p, and (5.52) gives
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Fig. 5.3. Elfving’s set and illustration of Elfving’s theorem

c�M−(ξ)c ≥ sup
z�M(ξ)z�=0

[z�M(ξ)u]2

maxx∈X [z�gθ(x)]2

= sup
z∈Rp

[z�M(ξ)u]2

maxx∈X [z�gθ(x)]2
= sup

z∈Rp

(z�c)2

maxx∈X [z�gθ(x)]2
.

As above, taking z = u∗ as defined in the proof of Lemma 5.31, we get

min
ξ∈Ξ

c�M−(ξ)c ≥ sup
z∈Rp

(z�c)2

maxx∈X [z�gθ(x)]2

≥ (u�
∗ c)

2

maxx∈X [u�∗ gθ(x)]2
=

1

(γ∗)2
= c�M−(ξ∗c )c .

A generalization of Elfving’s theorem to A- andD-optimality can be found,
respectively, in (Studden, 1971) and (Dette, 1993).

Example 5.34. We consider c-optimum design for the linear regression model
used in Examples 2.4 and 3.13, i.e., η(x, θ) = θ1x+ θ2x

2, x ∈ [0, 1]. Figure 5.3
presents the corresponding Elfving’s set Fθ (colored area). The points A and
A′, respectively, have coordinates (a, a2) and (−a,−a2) with a =

√
2 − 1, B

and B′ are the points (1, 1) and (−1,−1), and O is the origin (0, 0). The
c-optimal design ξ∗c takes a different form depending on the direction of the
vector c.

When c is such that the intersection C1 of the line {γc , γ > 0} with the
boundary of Fθ is between A and B, or between A′ and B′, ξ∗c is supported
at a single point. For instance, when γ∗c =

−−→
OC1 = (x1, x

2
1)

� with a ≤ x1 ≤ 1,
as shown on Fig. 5.3 for x1 =

√
0.6, then ξ∗c = δx1 .
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When the intersection C2 of the line {γc , γ > 0} with the boundary of
Fθ is between A′ and B, then ξ∗c is supported on the two points a and 1. Let
γ∗c =

−−→
OC2 = (α, β)� (with α = 0.45 on Fig. 5.3). Then direct calculations

give
−−→
OC2 = w1

−−→
OA′ + (1 − w1)

−−→
OB, i.e., ξ∗c = w1δa + (1 − w1)δ1, with w1 =

(1 − α)/(1 + a). The situation is similar when C2 is between A and B′ since
reversing c leaves the design problem unchanged. In particular, when c =
α(z, z2) with α > 0 and 0 < z ≤ a or z ≥ 1, we get ξ∗c = w1δa + (1 − w1)δ1,
with w1 =

√
2(1 − z)/[2(2a− z)]. �

Example 5.35. Consider again Example 5.23. When the function of interest is
the value xmax where the regression function (5.42) is maximum, i.e.,

h(θ) =
1

t1 − t2
log

(
t1
t2

)
,

we obtain cθ0 = ∂h(θ)/∂θ
∣∣
θ0

� (−2.1539, −4.9889)� at θ0 = (0.7, 0.2)�. A
direct application of Elfving’s theorem (e.g., through a geometrical construc-
tion on Fig. 5.2) gives the c-optimal design measure ξ∗c = αδx1 + (1 − α)δx2

with x1 � 0.9940, x2 � 7.1223, and α � 0.5395.
When the function of interest is now the maximum of the response, h(θ) =

maxx η(x, θ) = η(xmax, θ), we obtain cθ0 = ∂h(θ)/∂θ
∣∣
θ0

� (0.26, −0.91)� at

θ0 and the c-optimal design measure is the one-point delta measure δx∗ with
x∗ � 2.5055. �

5.3.2 c-Maximin Efficiency and D-Optimality

c-maximin efficiency defined by the criterion (5.22) is closely related to
D-optimality, as the next theorem shows; see Kiefer (1962) from whom we
reproduce the proof.

Theorem 5.36. When M(ξ) =
∫

X
gθ(x)g

�
θ (x) ξ(dx) and C = CX = {gθ(x) :

x ∈ X }, a design measure ξ∗ on X is c-maximin efficient (i.e., ξ∗ maximizes
Emmc(ξ) = minc∈CX [c�M−(ξ∗c )c]/[c

�M−(ξ)c] with ξ∗c a c-optimal design
measure minimizing c�M−(ξ)c) if and only if it is D-optimal on X , i.e.,
ξ∗ maximizes log detM(ξ).

Proof. For any x ∈ X , g�
θ (x)θ is estimable from the delta measure δx

and g�
θ (x)M

−(δx)gθ(x) = 1. Therefore, minξ∈Ξ g�
θ (x)M

−(ξ)gθ(x) ≤ 1.
When applied to D-optimality, the equivalence theorem 5.21 implies that
maxx∈X g�

θ (x)M
−(ξ)gθ(x) ≥ p for any ξ ∈ Ξ, so that

Emmc(ξ) ≤ min
x∈X

g�
θ (x)M

−(δx)gθ(x)
g�
θ (x)M

−(ξ)gθ(x)
≤ 1/p .

Suppose first that ξ∗ is D-optimal. We show that Emmc(ξ∗) = 1/p, which
implies that ξ∗ is c-maximin efficient. If Emmc(ξ∗) < 1/p, there exist x ∈ X
and ξ ∈ Ξ such that



148 5 Local Optimality Criteria Based on Asymptotic Normality

g�
θ (x)M

−(ξ)gθ(x)
g�
θ (x)M

−(ξ∗)gθ(x)
< 1/p . (5.53)

We can always assume that M(ξ) is nonsingular, since otherwise we can
replace ξ by (1 − α)ξ + αξ∗ with α small. Also, we can perform a linear
transformation that makes M(ξ∗) the identity and M(ξ) diagonal with ele-
ments Di, i = 1, . . . , p; see, e.g., Harville (1997, p. 562). Then (5.53) gives
∑p
i=1{gθ(x)}2i

(∑p
j=1{gθ(x)}2j

)−1

D−1
i < 1/p, so that at least one Di is

strictly larger than p. But then FφD (ξ
∗; ξ) = trace{[M(ξ)−M(ξ∗)]M−1(ξ∗)} =∑p

i=1(Di − 1) > 0, which contradicts the D-optimality of ξ∗.
Conversely, suppose that ξ∗ is c-maximin efficient. Since Emmc(ξ∗D) = 1/p

for a D-optimal measure ξ∗D and Emmc(ξ) ≤ 1/p for any ξ, we must have
Emmc(ξ∗) = 1/p. But then minξ∈Ξ g�

θ (x)M
−(ξ)gθ(x) ≤ 1 implies that

maxx∈X g�
θ (x)M

−(ξ∗)gθ(x) ≤ p, so that ξ∗ is D-optimal.

Remark 5.37.

(i) Kiefer (1962) also shows that, under the conditions of Theorem 5.36, a
design measure ξ∗ is D-optimal if and only if it maximizes the criterion
φAR(ξ) = minc∈CX

{
[c�M−(ξ∗c )c] − [c�M−(ξ)c]

}
.

(ii) Schwabe (1997) extends the theorem above to situations where M(ξ) =∫
X gθ(x)g

�
θ (x) ξ(dx), but C has a more general form than CX = {gθ(x) :

x ∈ X }. His extension is as follows, see also Müller and Pázman (1998) for
part (a): for C a subset of Rp, let C(λ) denote the set {λc : c ∈ C , λ ∈ R}
and let C(λ) be its closure; then:
(a) A D-optimal design measure ξ∗D with support Sξ∗

D
satisfying {gθ(x) :

x ∈ Sξ∗D} ⊆ C(λ) is c-maximin efficient on C.
(b) A design measure ξ∗ c-maximin efficient on C is D-optimal if CX ⊆

C(λ). �

5.3.3 A Duality Property for c-Optimality

A duality property can be formulated for c-optimum design, similarly to what
was presented in Sect. 5.2.4. We only consider the case where Mθ(x) has rank
one; see (5.47).

Consider an ellipsoid EA = {t ∈ R
d : t�At ≤ 1}, possibly degenerate,

i.e., with A ∈ M
≥. Suppose that EA contains the Elfving’s set Fθ, i.e.,

g�
θ (x)Agθ(x) ≤ 1 for all x ∈ X , which implies

trace[M(ξ)A] ≤ 1 , ∀ξ ∈ Ξ ,

with equality if and only if g�
θ (x)Agθ(x) = 1 for ξ-almost any x. Since γ∗c

as defined in Lemma 5.31 belongs to Fθ, (γ∗)2c�Ac ≤ 1, i.e., c�Ac ≤
c�M−(ξ∗c )c. Therefore,

sup
{A∈M≥:Fθ⊂EA}

c�Ac ≤ c�M−(ξ∗c )c = 1/(γ∗)2 .
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One can show, moreover, that equality is attained. Indeed, takeA = (γ∗)2u∗u�
∗

with u∗ and γ∗ as in the proof of Theorem 5.30, so that g�
θ (x)Agθ(x) =

(γ∗)2[g�
θ (x)u∗]2 ≤ 1 for all x ∈ X ; that is, Fθ ⊂ EA. We also have

c�Ac = (γ∗)2‖c�u∗‖2 = 1/(γ∗)2. The problem of maximizing c�Ac un-
der the constraint that Fθ ⊂ EA is thus dual to c-optimum design that aims
at minimizing c�M−(ξ)c.

5.3.4 Equivalence Theorem for c-Optimality

Elfving’s theorem (Theorem 5.30) is almost constructive, in the sense that it
characterizes optimality in terms of a property for ξ∗c . One may thus wonder in
which aspects it differs from the equivalence theorem 5.21 and which particular
form this theorem may take in the case of c-optimality.

A direct application of Theorem 5.21 with the directional derivative given
by (5.38) shows that ξ∗c is c-optimal if and only if

max
M2∈Mθ(Ξ)

min
{A:M∗AM∗=M∗}

c�A�M2Ac − c�Ac = 0

where M∗ = M(ξ∗c ) ∈ M
≥
c . The set of generalized inverses of M∗ can be

linearly parameterized, see Harville (1997, Theorem 9.2.7), and is thus convex.
The function (M2,A) −→ c�A�M2Ac−c�Ac is convex in A and concave in
M2 so that the minimax theorem applies, see, e.g., Dem’yanov and Malozemov
(1974, Theorem 5.2, p. 218) and Polak (1987, Corollary 5.5.6, p. 707), and

max
M2∈Mθ(Ξ)

min
{A:M∗AM∗=M∗}

c�A�M2Ac − c�Ac

= min
{A:M∗AM∗=M∗}

max
M2∈Mθ(Ξ)

c�A�M2Ac − c�Ac .

The equivalence theorem for c-optimality can thus be formulated as follows;
see Pukelsheim (1993, p. 52).

Theorem 5.38 (Equivalence theorem for c-optimality). A design ξ∗c is
c-optimal if and only if M(ξ∗c ) ∈ M

≥
c and there exists a g-inverse A of M(ξ∗c )

such that
c�A�MAc ≤ c�Ac , ∀M ∈ Mθ(Ξ) .

Notice that this theorem is much less constructive than Elfving’s theorem. On
the other hand, it does not require Mθ(x) to have rank one. When Mθ(x) =
gθ(x)g

�
θ (x) and M(ξ) =

∫
X

gθ(x)g
�
θ (x) ξ(dx), the necessary-and-sufficient

condition above becomes [c�Agθ(x)]
2 ≤ c�Ac for all x ∈ X .

5.4 Specific Difficulties with c-Optimum Design
in Presence of Nonlinearity

We assume throughout the section that Mθ(x) in (5.1) is the rank-one matrix
gθ(x)g

�
θ (x); see (5.47). In Example 5.34, where we considered a linear model
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and a linear function of interest, the possible singularity of the optimal design
does not raise any special difficulty. The situation is quite different when (i)
the function of interest h(·) is nonlinear so that cθ = ∂h(θ)/∂θ depends on
θ, see Examples 3.13 and 3.17, or (ii) the model is nonlinear, so that M(ξ, θ)
depends on θ, as illustrated by the example below; see also Example 7.12.
Indeed, a singular optimal design ξ∗ cannot be used directly in such situations
since it allows the estimation of the quantity of interest only in the special
case where the true value θ̄ of the parameters exactly equals the nominal value
θ0 used to construct ξ∗ as an optimal design. This is of course unrealistic in
applications since we do not know θ̄ beforehand. When using a sequence of
design points such that the empirical design measure ξN converges to ξ∗, then
different rates of convergence are obtained for the estimator of the quantity
of interest, depending on how ξN converges to ξ∗.

Example 5.39. Consider again Example 5.23 and take any x∗ ∈ [x(1), x(2)],
with x(1) � 1.23, x(2) � 6.86 (see Example 5.29). Take c = βfθ0(x∗), β �= 0.
The corresponding c-optimal design is then the delta measure δx∗ ; see Fig. 5.2
(this is true also for x∗ slightly outside [x(1), x(2)]). Obviously, the singular
design δx∗ only allows us to estimate η(x∗, θ).

Consider now a second design point x0 �= x∗ and suppose that when N
observations are performed, m are taken at x0 and N − m at x∗, where
m/(log logN) → ∞ with m/N → 0. Then, for x0 �= 0 the conditions of
Theorem 3.5 are satisfied. Indeed, the design space equals {x0, x∗} and is
thus finite, and

DN(θ, θ̄) =
N∑

k=1

[η(xk, θ) − η(xk, θ̄)]
2

= (N − 2m)[η(x∗, θ) − η(x∗, θ̄)]2

+m
{
[η(x∗, θ) − η(x∗, θ̄)]2 + [η(x0, θ) − η(x0, θ̄)]2

}

so that inf‖θ−θ̄‖>ΔDN(θ, θ̄) ≥ mC(x0, x∗, Δ), with C(x0, x∗, Δ) a positive

constant, and inf‖θ−θ̄‖>ΔDN (θ, θ̄)/(log logN) → ∞ as N → ∞. Therefore,
although the empirical measure ξN of the design points converges strongly to
the singular design δx∗ which does not allow the estimation of θ, this conver-

gence is sufficiently slow to make the LS estimator θ̂NLS (strongly) consistent.

Moreover, for h(θ) a function satisfying the conditions of Theorem 3.14, h(θ̂NLS)
satisfies the regular asymptotic property of Definition 3.12. In the present ex-
ample, this means that when ∂h(θ)/∂θ

∣∣
θ̄
= βfθ̄(x∗) for some β ∈ R, with

fθ̄(x) = ∂η(x, θ)/∂θ
∣∣
θ̄
, then

√
N [h(θ̂NLS) − h(θ̄)] converges in distribution to

a variable distributed N (0,
[
∂h(θ)/∂θ�M−(δx∗ , θ) ∂h(θ)/∂θ

]
θ̄
). This holds,

for instance, when h(·) = η(x∗, ·) or is a function of η(x∗, ·). Notice that when
θ̄ and x∗ are such that fθ̄(x∗) is a boundary point of the Elfving’s set Fθ̄ for
the value θ̄, Theorem 5.30 implies

[
∂h(θ)/∂θ�M−(δx∗ , θ) ∂h(θ)/∂θ

]
θ̄
= β2.
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Although this seems to be an argument for considering δx∗ as an optimum
design for estimating h(θ), there is a serious flaw in it, and quite severe limi-
tations exist that restrain the application of this result in practical situations,
even when the function of interest is linear, i.e., when h(θ) = c�θ:

1. The consistency of θ̂NLS and regular asymptotic normality of h(θ̂NLS) are
due to the use of two different design points, so that ξN is nonsingular
for any N ; these asymptotic properties of the estimators are therefore not
attached to the limiting design itself, here δx∗ .

2. The direction fθ̄(x∗) for which regular asymptotic normality holds is un-
known since θ̄ is unknown. Let c be a direction of interest chosen in
advance and θ0 be the nominal value of the parameters used for local
design. The associated c-optimal design ξ∗c is then determined for this
nominal value. For instance, when c = (0, 1)�, which means that we are
only interested into the estimation of the component θ2, ξ

∗
c = δx∗ with x∗

solution of {fθ0(x)}1 = 0 (see Fig. 5.2), that is, x∗ satisfies

θ02 = [θ02 + θ01(θ
0
1 − θ02)x∗] exp[−(θ01 − θ02)x∗] .

For θ0 = (0.7, 0.2)�, this gives x∗ = x∗(θ0) � 4.28. In general,
fθ̄(x∗) �= fθ0(x∗) to which c is proportional. Therefore, c /∈ M[M(ξ∗c , θ̄)],
and regular asymptotic normality does not hold for c�θ̂NLS.

The present example is simple enough to be able to investigate the limiting
behavior of c�θ̂NLS by direct calculation. In particular, we show that different

choices of c give different speeds of convergence for c�θ̂NLS . Using a Taylor
development of the LS criterion JN (θ), see (3.1), similar to that used in the
proof of Theorem 3.8, we obtain

0 = {∇θJN (θ̂NLS)}i = {∇θJN (θ̄)}i + {∇2
θJN (βNi )(θ̂NLS − θ̄)}i , i = 1, 2 ,

where βNi
a.s.→ θ̄ as N → ∞. Direct calculations give

∇θJN (θ̄) = − 2

N

[√
mβm fθ̄(x

0) +
√
N −mγN−m fθ̄(x∗)

]
,

∇2
θJN (θ̄) =

2

N

[
m fθ̄(x

0)f �̄θ (x0) + (N −m) fθ̄(x∗)f
�̄
θ (x∗)

]
+ Op(

√
m/N) ,

where βm = (1/
√
m)
∑

xi=x0 εi and γN−m = (1/
√
N −m)

∑
xi=x∗ εi are in-

dependent random variables that tend to be distributed N (0, 1) as m → ∞
and N −m → ∞. We then obtain that

√
N f �̄

θ
(x∗)(θ̂NLS − θ̄) is asymptotically

normal N (0, 1), whereas for any direction c not parallel to fθ̄(x∗) and not or-

thogonal to fθ̄(x
0),

√
mc�(θ̂NLS − θ̄) is asymptotically normal and c�(θ̂NLS − θ̄)

converges not faster than 1/
√
m. In particular,

√
mf �̄

θ
(x0)(θ̂NLS − θ̄) is asymp-

totically normal N (0, 1), and
√
m{θ̂NLS − θ̄}2 is asymptotically normal with

zero mean and variance {fθ̄(x∗)}21 det−2[fθ̄(x∗), fθ̄(x0)]. �
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A first intuitive remedy to the difficulties encountered in Example 5.39
consists in replacing the singular design ξ∗c by a nonsingular one, with support
points close to those of ξ∗c . As shown now in a continuation of the example,
letting these support points approach those of ξ∗c may create difficulties in the
limit.

Example 5.40. We continue Example 5.39 by placing now the proportion
m = N/2 of the observations at x0. We thus consider the design measure
ξγ,x0 = (1 − γ)δx∗ + γδx0 for γ = 1/2. Since the c-optimal design is δx∗ , we

consider the limiting behavior of c�(θ̂NLS − θ̄) when N tends to infinity for
x0 approaching x∗. Note that ξN then converges weakly to δx∗ . Since ξ1/2,x0

is nonsingular for x0 �= x∗ (and x0 �= 0),
√
Nc�(θ̂NLS − θ̄) is asymptotically

normal N (0, c�M−1(ξ1/2,x0 , θ̄)c).

A first difficulty is that the asymptotic variance c�M−1(ξ1/2,x0 , θ̄)c tends
to infinity as x0 tends to x∗ when c is not proportional to fθ̄(x∗). This is
hardly avoidable: in the limit, estimation is possible in one direction c only,
dictated by the value of θ̄ due to the nonlinearity of the model.

Moreover, when c = fθ̄(x∗), f �̄θ (x∗)M−1(ξ1/2,x0 , θ̄)fθ̄(x∗) equals 2 for any
x0 �= x∗, twice more than what could be achieved with the singular design
δx∗ since f �̄

θ
(x∗)M−(δx∗ , θ̄)fθ̄(x∗) = 1 (this result coincides with that of Ex-

ample 5.10 for β = 0). �

Examples 3.13, 3.17, 5.39, and 5.40 show that, in a nonlinear situation,
when using a design sequence such that ξN converges to a singular c-optimal
design, the estimator of the quantity of interest may converge at a slow rate or
have an excessively large variance in the limit. A possible way to circumvent
these difficulties is to regularize the c-optimality criterion. Indeed, a regular-
ization of the criterion evaluated at some θ0 allows us to construct nonsingular
designs with performance close to that of the singular optimal design for θ̄
when θ0 is not too far from θ̄.

Such a regularization can be based, for instance, on ridge estimation; see
Pázman (1986, Sect. 4.5). Another possibility is to replace M by M + γIp
in Φc(·), which can be interpreted as designing for maximum a posteriori
estimation with a vague prior; see Remark 4.18-(i). The regularized criterion
is then

Φ(γ)
c (M) = −c�(M + γIp)

−1c ,

with γ a small positive number. Note that M + γIp ∈ M
> and that Φ

(γ)
c (M)

is differentiable at any M ∈ M
≥. The motivation for this approach is that any

value Φc(M1) for M1 ∈ M
≥ can be obtained as a limit of values Φc(M1 +

γkIp) with γk > 0 and tending to zero. Indeed, using the isotonicity property,

Φ
(γk)
c (M1) ≥ Φc(M1), and from the upper semicontinuity, M1 + γkIp →

M1 implies lim supk→∞ Φ
(γk)
c (M1) ≤ Φc(M1). Therefore, limγ→0 Φ

(γ)
c (M1) =

Φc(M1).
We may also consider the regularized criterion defined by
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Φ(γ)
c (M) = Φc[(1 − γ)M+ γM(ξ0)] , (5.54)

with γ ∈ (0, 1] and ξ0 a design measure in Ξ such that M(ξ0) has full rank;
see Fedorov and Hackl (1997, p. 51). For M = M(ξ), this equivalently defines
the criterion

φ(γ)c (ξ) = φc[(1 − γ)ξ + γξ0] , (5.55)

with (1 − γ)ξ + γξ0 a regularized version of ξ. Notice that such regularized
designs are easy to implement: using the design (1 − γ)ξ + γξ0 means that
when N observations are performed, approximately (1− γ)N are to be taken
with ξ and γ N with ξ0. Note that when the design measure ξ is discrete,
then the design is asymptotically discrete in the sense of Definition 2.1 when

N → ∞ with γ = γ(N) tending to zero. Also note that the criterion Φ
(γ)
c (M)

is continuous in γ at γ = 0, see Lemma 5.12, and differentiable with respect

to M at any M ∈ M
≥ when γ > 0. Let ξ∗γ be an optimal design for φ

(γ)
c (ξ) =

Φ
(γ)
c [M(ξ)] and ξ∗ be a c-optimal design. Then (1−γ)ξ∗γ+γξ0 tends to become

c-optimal as γ → 0. Indeed, from the concavity of φ(·) and the proof of
Lemma 5.16, we have

φc(ξ
∗) ≥ φ(γ)c (ξ∗γ) = Φc[(1 − γ)M(ξ∗γ) + γM(ξ0)]

≥ Φc[(1 − γ)M(ξ∗) + γM(ξ0)]

≥ γ{Φc[M(ξ0)] − φc(ξ
∗)} + φc(ξ

∗) ,

so that
0 ≤ φc(ξ

∗)− φ(γ)c (ξ∗γ) ≤ γ{φc(ξ∗) − Φc[M(ξ0)]}

where the right-hand side tends to zero as γ → 0.
On the other hand, Examples 3.17 and 5.39 have shown the possible pitfalls

caused by γ tending to zero in a nonlinear situation when the optimal design
is constructed for θ0 �= θ̄. When c = c(θ) = ∂h(θ)/∂θ, with h(·) the function
of interest, the value of γ in the regularized criterion (5.54) can then be chosen
by maximizing

Jreg(γ) = min
θ∈Θ0

Φc[(1 − γ)M(ξ∗c , θ) + γM(ξ0, θ)] , γ ∈ [0, 1] , (5.56)

where Θ0 denotes a feasible set for θ and ξ∗c maximizes Φc[M(ξ, θ0)] with
θ0 ∈ Θ0 a nominal value for θ. Note that Jreg(γ) is a concave function of γ
(as the minimum of a family of concave functions). Also note that if neither
cθ nor M(ξ, θ) depend on θ, the maximum of Jreg(·) is attained at γ = 0.

Other approaches for avoiding singular c-optimal designs, based on c-
maximin-optimum design or on regularization through D-optimum design
(using the results of Sect. 5.3.2), are suggested in (Pronzato, 2009b). See
also Sect. 7.7.2.
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5.5 Optimality Criteria for Asymptotic
Variance–Covariance Matrices in Product Form

In Chaps. 3 and 4 we have encountered several cases when the asymp-
totic variance–covariance matrix of the estimator of θ is in product form
N−1C(ξ) = N−1M−1

1 (ξ)M2(ξ)M
−1
1 (ξ), where M1(ξ) �= M2(ξ) are “informa-

tion-like” matrices; see, for instance, Sects. 3.1.3, 3.3.2, 3.4, and 4.1. Although
from a statistical point of view it seems that design criteria should then be
built on C(ξ), they cannot in general since C(ξ) depends on quantities that
are unknown a priori , and moreover, C−1(ξ) does not possess the properties
required for information matrices.

In general, this raises nonstandard design problems which we do not
address here.14 In this section we consider four situations that we have met in
Chaps. 3 and 4. In each case, the design is performed under idealistic assump-
tions (optimum weights in WLS estimation, normal errors for penalized WLS,
no modeling error, etc..), and we give bounds on the loss of efficiency result-
ing from a violation of those assumptions. One may also refer to Sect. 7.8 for
another justification, related to estimability properties, for designing under
such idealistic assumptions.

5.5.1 The WLS Estimator

In Theorem 3.8 we proved that the asymptotic variance–covariance matrix of
the WLS estimator is equal to N−1C(w, ξ, θ̄), with θ̄ the unknown true value
of θ and

C(w, ξ, θ) = M−1
1 (ξ, θ)M2(ξ, θ)M

−1
1 (ξ, θ) ,

where

M1(ξ, θ) =

∫

X

w(x)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,

M2(ξ, θ) =

∫

X

w2(x)σ2(x)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,

w(x) is the (known) weight function and σ2(x) is the (unknown) variance of
the observation at x. In the particular case where w(x) = c σ−2(x), c > 0, the
matrix C(w, ξ, θ) is proportional to M−1(ξ, θ̄) with

M(ξ, θ) =

∫

X

σ−2(x)
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) .

For other choices of the weight function w(·) we only know that C(w, ξ, θ̄) −
M−1(ξ, θ̄) is positive definite, with both C(w, ξ, θ̄) and M(ξ, θ̄) depending

14Possible developments may involve the use of bounds, obtained, e.g., from
Kantorovich-type inequalities; see Bloomfield and Watson (1975), Pečarić et al.
(1996), and Liu and Neudecker (1997).
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on the variance function σ2(·) which, in general, is unknown. The choice of
the weight function w(·) in WLS estimation is thus always based on a prior
guess σ̂2(·) for σ2(·) so that the corresponding guessed asymptotic variance–
covariance matrix of the estimator is M−1

1 (ξ, θ̄). It is thus natural to build
optimality criteria on the matrix M1 and proceed as in previous sections of
this chapter. Since θ̄ is unknown, we use again a local design approach and
substitute a nominal value θ0 for θ̄ in all places where θ̄ appears. We then
omit the dependence in θ and write C(w, ξ) for C(w, ξ, θ0), M(ξ) = M(ξ, θ0),
etc.

The loss of efficiency induced by using M1(ξ) instead of C−1(ξ) for con-
structing an optimal design is evaluated in the following theorem.

Theorem 5.41. Let Φ+(·) be an isotonic and positively homogeneous global
criterion, see Definitions 5.3 and 5.8. Then, for every design ξ such that
M1(ξ) and M2(ξ) are nonsingular the efficiencies

Eφ+,M1
(ξ) =

Φ+[M1(ξ)]

maxν Φ+[M1(ν)]
, (5.57)

Eφ+,C−1(ξ) =
Φ+[M1(ξ)M

−1
2 (ξ)M1(ξ)]

maxν Φ+[M1(ν)M
−1
2 (ν)M1(ν)]

(5.58)

satisfy the inequalities

k

K
Eφ+,M1

(ξ) ≤ Eφ+,C−1(ξ) ≤ K

k
Eφ+,M1

(ξ) (5.59)

with
K = max

x∈X
w(x)σ2(x) and k = min

x∈X
w(x)σ2(x) ,

so that k = K and Eφ+,M1
(ξ) = Eφ+,C−1(ξ) when w(x) = c σ−2(x) for some

c > 0.

Proof. For any vector u ∈ R
p we have

k u�M1(ξ)u ≤ u�M2(ξ)u =

∫

X

[w(x)σ2(x)]w(x)

[
u� ∂η(x, θ)

∂θ

∣∣∣∣
θ0

]2
ξ(dx)

≤ K u�M1(ξ)u .

Hence, from Lemma 5.1-(v),

K−1M1(ξ) � M1(ξ)M
−1
2 (ξ)M1(ξ) � k−1 M1(ξ) .

From the isotonicity and positive homogeneity of Φ+(·) we obtain

K−1 Φ+[M1(ξ)] ≤ Φ+[M1(ξ)M
−1
2 (ξ)M1(ξ)] ≤ k−1 Φ+[M1(ξ)]

k−1 max
ν

Φ+[M1(ν)] ≥ max
ν

Φ+[M1(ν)M
−1
2 (ν)M1(ν)] ≥ K−1 max

ν
Φ+[M1(ν)]

which yields the required result.
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5.5.2 The Penalized WLS Estimator

In Theorem 3.24 we proved that the asymptotic variance–covariance matrix of
the penalized WLS estimator is equal to N−1C(ξ, θ̄), with C(ξ, θ) still given
by M−1

1 (ξ, θ)M2(ξ, θ)M
−1
1 (ξ, θ) where now

M1(ξ, θ̄) =

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx)

+
β̄

2

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

ξ(dx) ,

M2(ξ, θ̄) = β̄M1(ξ, θ̄)

+
β̄3/2

2

∫

X

λ−3/2(x, θ̄)

[
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

+
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

]
s(x) ξ(dx)

+
β̄2

4

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ

∣∣∣∣
θ̄

∂λ(x, θ)

∂θ�

∣∣∣∣
θ̄

κ(x) ξ(dx) ,

with s(x) = IEx{ε3(x)}σ−3(x) the skewness and κ(x) = IEx{ε4(x)}σ−4(x)− 3
the kurtosis of the distribution of the error ε(x) and β̄ the (known) scal-
ing factor in the error variance (3.45) used in the penalized criterion (3.47).
We suppose that either X is finite, or s(x) and κ(x) are continuous on X
compact.

Again,C−1(ξ, θ̄) is not in the form of an information matrix, and moreover,
it contains unknown functions s(·) and κ(·). Only in the particular case that
s(x) = κ(x) = 0 for all x (normal errors, for instance), we have C−1(ξ, θ̄) =
β̄−1 M1(ξ, θ̄), see Remark 3.25, which corresponds to an information matrix.
A reasonable approach consists in assuming that s(x) = κ(x) = 0 at the design
stage, which amounts to using a design criterion based on M1(ξ) = M1(ξ, θ

0),
with θ0 a nominal value for θ (locally optimum design). The resulting loss
of efficiency, due to the substitution of M1(ξ) for C−1(ξ) = C−1(ξ, θ0), is
evaluated in the following theorem.

Theorem 5.42. Let Φ+(·) be an isotonic and positively homogeneous global
criterion, see Definitions 5.3 and 5.8, and let

K = max
x∈X

γmax(x) , k = min
x∈X

γmin(x) ,

where γmax(x) ≥ γmin(x) > 0 are the two solutions of the quadratic equation

det[V(x) − γI2] = 0

with V(x) the 2 × 2 matrix

V(x) = β̄

(
1 s(x)/

√
2

s(x)/
√
2 1 + κ(x)/2

)
.

Then, for every design ξ such that M1(ξ) and M2(ξ) are nonsingular the
efficiencies EΦ+,M1

(ξ) and EΦ+,C−1(ξ) defined by (5.57) and (5.58) satisfy the
inequalities (5.59), with equality when s(x) = κ(x) = 0 for all x ∈ X .
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Proof. Define

a(x) = λ−1/2(x, θ0)
∂η(x, θ)

∂θ

∣∣∣∣
θ0
, b(x) = (β̄/2)1/2 λ−1(x, θ0)

∂λ(x, θ)

∂θ

∣∣∣∣
θ0
,

so that we can write

M1(ξ) =

∫

X

(
a(x) b(x)

)
I2

(
a�(x)
b�(x)

)
ξ(dx) ,

M2(ξ) =

∫

X

(
a(x) b(x)

)
V(x)

(
a�(x)
b�(x)

)
ξ(dx) .

Consider now the matrixV(x). From Cauchy–Schwarz inequality, 1+κ(x)/2 =
[IE{ε4(x)} − σ4]/(2σ4) ≥ 0, which implies that trace[V(x)] ≥ β̄. Also,

det[V(x)] = β̄2

[
1 +

κ(x)

2
− s2(x)

2

]

=
β̄2

2σ6

[
IE{ε2(x)}IE{ε4(x)} − (IE{ε3(x)})2 − (IE{ε2(x)})3

]

=
β̄2

2σ6
det[IE{v(x)v�(x)}] ,

with v�(x) = [1 ε(x) ε2(x)] (remember that IE{ε(x)} = 0). Hence, V(x) is
positive definite with positive eigenvalues γmin(x) and γmax(x). Since kI2 �
V(x) � KI2, we have ku�M1(ξ)u ≤ u�M2(ξ)u ≤ Ku�M1(ξ)u for any
u ∈ R

p. The rest of the proof is like in Theorem 5.41.

5.5.3 The LS Estimator with Model Error

In Sect. 3.4 we considered the situation where the supposed regression model
y(xk) = η(xk, θ) + εk is incorrect; see (3.81). As in Sect. 3.4, we assume that
σ2 = var[ε(x)] does not depend on x ∈ X . In Theorem 3.36 we proved that
in that case the asymptotic variance–covariance matrix of the LS estimator is
proportional to Cν(ξ, θ̄), with θ̄ = argminθ∈Θ

∫
X
[η(x, θ) − ν(x)]2 ξ(dx) and

Cν(ξ, θ) = [M(ξ, θ) +Dν(ξ, θ)]
−1[M(ξ, θ) + (1/σ2)Mν(ξ, θ)]

×[M(ξ, θ) +Dν(ξ, θ)]
−1 .

As before, we omit the dependence in θ when the evaluation is at a nominal
value θ0 and write Cν(ξ) = Cν(ξ, θ

0). The matrices M(ξ),Dν(ξ), and Mν(ξ)
are then given by

M(ξ) =

∫

X

∂η(x, θ)

∂θ

∣∣∣∣
θ0

∂η(x, θ)

∂θ�

∣∣∣∣
θ0
ξ(dx) ,

Dν(ξ) =

∫

X

[η(x, θ0)− ν(x)]
∂2η(x, θ)

∂θ∂θ�

∣∣∣∣
θ0
ξ(dx) ,

Mν(ξ) =

∫

X

[η(x, θ0)− ν(x)]2
∂η(x, θ)

∂θ

∣∣∣∣
θ0

∂η(x, θ)

∂θ�

∣∣∣∣
θ0
ξ(dx) ,
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see Sect. 3.4. We also define Nν(ξ) = C−1
ν (ξ). In the particular case where

the supposed model is correct, i.e., when η(x, θ0) = ν(x) for every x, we have
Nν(ξ) = M(ξ) for every ξ. In general one does not know θ̄, ν(x), and σ a
priori , and we base optimality criteria again on the matrix M(ξ). The loss
of efficiency due to the substitution of M(ξ) for Nν(ξ) in a design optimality
criterion is evaluated in the following theorem.

Theorem 5.43. Let Φ+(·) be an isotonic and positively homogeneous global
criterion, see Definitions 5.3 and 5.8. Suppose that the assumptions of The-
orem 3.36 hold at θ0, i.e., M(ξ, θ0) is nonsingular and Cint(ξ, θ

0)‖ν(·) −
η(·, θ̄0)‖ξ < 1, where Cint(ξ, θ) is defined in (3.84) and ‖ν(·) − η(·, θ0)‖2ξ =∫

X [η(x, θ0)− ν(x)]2 ξ(dx). Then,

δ2

b
Φ+[M(ξ)] ≤ Φ+[Nν(ξ)] ≤ Δ2 Φ+[M(ξ)] , (5.60)

where

b = 1 +
maxx∈X [ν(x) − η(x, θ0)]2

σ2
,

δ = 1 − Cint(ξ, θ
0)‖ν(·) − η(·, θ0)‖ξ ,

Δ = 1 + Cint(ξ, θ
0)‖ν(·) − η(·, θ0)‖ξ .

Moreover, the efficiencies

EΦ+,M(ξ) =
Φ+[M(ξ)]

maxμ Φ+[M(μ)]
and EΦ+,Nν

(ξ) =
Φ+[Nν(ξ)]

maxμ Φ+[Nν(μ)]

satisfy the inequalities

δ2

bΔ2
EΦ+,M(ξ) ≤ EΦ+,Nν

(ξ) ≤ bΔ2

δ2
EΦ+,M(ξ) , (5.61)

which are changed to equalities when the model is correct.

Proof. Define Ñν(ξ) = [M(ξ) +Dν(ξ)]M
−1(ξ)[M(ξ) +Dν(ξ)]. Since Mν(ξ)

is positive semi-definite, we have [M(ξ) + σ−2Mν(ξ)] � M(ξ), and from the
definition of b, N−1

ν (ξ) � Ñ−1
ν (ξ) and N−1

ν (ξ) � b Ñ−1
ν (ξ). Therefore, from

Lemma 5.1-(v), Nν(ξ) � Ñν(ξ) � bNν(ξ) . From the proof of Theorem 3.36
we know that for any u ∈ R

p

u�[M(ξ) +Dν(ξ)]u ≥ u�M(ξ)u [1 − Cint(ξ, θ
0)‖ν(·) − η(·, θ0)‖ξ]

= δ u�M(ξ)u > 0 ;

that is, M(ξ) +Dν(ξ) � δM(ξ). Similarly, M(ξ) +Dν(ξ) � ΔM(ξ). Hence
(see Lemma 5.1-(v)),

1

Δ
M−1(ξ) � [M(ξ) +Dν(ξ)]

−1 � 1

δ
M−1(ξ) .
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Multiplying by [M(ξ) +Dν(ξ)] from both sides, we obtain

1

Δ
Ñν(ξ) � M(ξ) +Dν(ξ) � 1

δ
Ñν(ξ) .

Collecting and combining the results, we get

Nν(ξ) � Ñν(ξ) � Δ2 M(ξ) ,

bNν(ξ) � Ñν(ξ) � δ2 M(ξ) ,

and (δ2/b)M(ξ) � Nν(ξ) � Δ2 M(ξ) . Applying the criterion Φ+(·) to these
inequalities, we finally obtain (5.60). The inequalities (5.61) for efficiencies
follow straightforwardly by maximizing with respect to ξ.

One may note that δ = Δ = 1 when the model is intrinsically linear with,
however, b �= 1 when modeling errors are present.

5.5.4 The M Estimator

Under the assumptions of Theorem 4.7 the asymptotic variance of the M
estimator

θ̂NM = argmin
θ∈Θ

N∑

k=1

ρxk
[y(xk) − η(xk, θ)]

is equal to N−1C(ξ, θ̄), with C(ξ, θ) = M−1
1 (ξ, θ)M2(ξ, θ)M

−1
1 (ξ, θ) where

M1(ξ, θ) =

∫

X

{∫ ∞

−∞
ρ′′x(ε) ϕ̄x(ε) dε

}
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,

M2(ξ, θ) =

∫

X

{∫ ∞

−∞
[ρ′x(ε)]

2 ϕ̄x(ε) dε

}
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ�
ξ(dx) ,

with ρ′x(ε) = dρx(ε)/dε and ρ′′x(ε) = d2ρx(ε)/dε
2. Again, we substitute a

nominal value θ0 for the unknown θ̄ and denote M1(ξ) = M1(ξ, θ
0), M2(ξ) =

M2(ξ, θ
0) and C(ξ) = C(ξ, θ0). Since the minimum variance is obtained for

ρx(·) = K1 log ϕ̄x(·)+K2, K1 < 0, see Theorem 4.7, we choose ρx(·) according
to an a priori guessed p.d.f. ϕ̂x(·), so that

ρx(·) = − log ϕ̂x(·) .

It is natural to assume that ϕ̂′
x(ε)ϕ̄

′
x(ε) ≥ 0 for any x and ε, with ϕ̂′

x(ε) =
dϕ̂x(ε)/dε and ϕ̄′

x(ε) = dϕ̄x(ε)/dε, so that

∫ ∞

−∞
ρ′′x(ε) ϕ̄x(ε) dε =

∫ ∞

−∞

ϕ̂′
x(ε)ϕ̄

′
x(ε)

ϕ̂x(ε)
dε ≥ 0

for all x; see also Remark 4.2-(i). The associated M estimator corresponds
to the maximum likelihood estimator under the supposed error density ϕ̂x(·).
Following this supposition, we choose
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M(ξ) =

∫

X

Iϕ̂(x)
∂η(x, θ)

∂θ

∣∣∣∣
θ0

∂η(x, θ)

∂θ�

∣∣∣∣
θ0
ξ(dx)

instead of C−1(ξ) to construct optimality criteria, with

Iϕ̂(x) =
∫ ∞

−∞

[
ϕ̂′
x(ε)

ϕ̂x(ε)

]2
ϕ̂x(ε) dε .

The influence of this choice on the efficiency of designs is evaluated in the
following theorem.

Theorem 5.44. Let Φ+(·) be an isotonic and positively homogeneous global
criterion; see Definitions 5.3 and 5.8. Suppose that the assumptions of Theo-
rem 4.7 hold and that

∫∞
−∞ ρ′′x(ε) ϕ̄x(ε) dε ≥ 0 for all x. Then, for any design

ξ such that M1(ξ) and M2(ξ) are nonsingular, the efficiencies Eφ+,M(ξ) and
Eφ+,C−1(ξ) given by (5.57), (5.58) satisfy the inequalities

k21 k2
K2

1 K2
Eφ+,M(ξ) ≤ Eφ+,C−1(ξ) ≤ K2

1 K2

k21 k2
Eφ+,M(ξ)

with

K1 = max
x∈X

∫∞
−∞ ρ′′x(ε) ϕ̄x(ε) dε

Iϕ̂(x)
, k1 = min

x∈X

∫∞
−∞ ρ′′x(ε) ϕ̄x(ε) dε

Iϕ̂(x)
,

K2 = max
x∈X

∫∞
−∞[ρ′x(ε)]

2 ϕ̄x(ε) dε

Iϕ̂(x)
, k2 = min

x∈X

∫∞
−∞[ρ′x(ε)]

2 ϕ̄x(ε) dε

Iϕ̂(x)
,

so that k1 = K1 = k2 = K2 = 1 and Eφ+,M(ξ) = Eφ+,C−1(ξ) when ϕ̂(·) = ϕ̄(·).

Proof. We have k1 M(ξ) � M1(ξ) � K1 M(ξ) and k2 M(ξ) � M2(ξ) �
K2M(ξ). The rest of the proof is like in Theorem 5.41.

5.6 Bibliographic Notes and Further Remarks

Ellipsoid Problems

As mentioned in Sect. 5.2.4, the dual of a D-optimal design problem corre-
sponds to a minimum ellipsoid problem where the center of the ellipsoid is
fixed—it coincides with the origin. The determination of the ellipsoid E∗ of
free center containing a given set of points Z� = {x(i) , i = 1, . . . , �} ⊂ R

p

and having minimal volume can be shown to be equivalent to a D-optimal
design problem in R

p+1; see Titterington (1975). The ellipsoid E∗ is the inter-
section of the minimal-volume ellipsoid containing the Elfving’s set associated
with the linear regression model η(x, θ) = [x� 1]θ, θ ∈ R

p+1, x ∈ Z�, and
the hyperplane {z ∈ R

p+1 : zp+1 = 1}. A geometrical proof can be found in
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(Shor and Berezovski, 1992) and (Khachiyan and Todd, 1993). One may re-
fer, e.g., to Welzl (1991), Khachiyan (1996), Todd and Yildirim (2007), and
Sun and Freund (2004) for algorithms. The construction of this minimal el-
lipsoid finds applications, for instance, in the robust estimation of correlation
coefficients through ellipsoidal trimming, see, e.g., Cook et al. (1993), Davies
(1992), and Titterington (1978); in robust control, see Raynaud et al. (2000),
and quality control, see Hadjihassan et al. (1997).

The determination of the ellipsoid of maximal volume contained in a con-
vex polyhedron can be used to form a very efficient algorithm for convex
programming; see Tarasov et al. (1988). The determination of the maximum-
volume ellipsoid with fixed center contained in a polyhedron is equivalent
to the determination of the ellipsoid with same center containing the polar
of the polyhedron and of minimal volume; see, e.g., Khachiyan and Todd
(1993). This equivalence does not hold when the center is free, and one
may refer, for instance, to Khachiyan and Todd (1993), Pronzato and Wal-
ter (1996), and Zhang and Gao (2003) for algorithms for the construction
of maximum-volume inner ellipsoids in this more general situation. See also
Pronzato et al. (2000, Chap. 6) for algorithms derived from Khachiyan (1979)
algorithm for LP. Finally, one may refer to Vandenberghe et al. (1998) for a
general-purpose interior-point algorithm for problems involving determinant
optimization, with an overview of applications.

A short exposition on covering ellipsoids is given in Sect. 9.1.4 on algo-
rithms for D-optimum design. See also Sect. 9.5.2.

Multidimensional Regression Models

Most of the developments in the chapter can easily be extended to the situa-
tion where the matrix Mθ(x) in (5.1) has rank larger than one, see Fedorov
(1971), Fedorov (1972, Chap. 5). A typical case corresponds to regression mod-
els with multidimensional observations

y(xi) = η(xi, θ̄) + εi ∈ R
n ,

where {εi} is a sequence of n-dimensional independent random vectors with
IE{εi} = 0 for all i. The errors can be (second-order) stationary

IE{ε2i } = Σ for all i ,

or nonstationary
IE{ε2i } = Σ(xi) for all i . (5.62)

The results of Chap. 3 can easily be adapted to this multidimensional case. For
instance, under conditions similar to those of Theorem 3.8, when the errors
satisfy (5.62), the WLS estimator θ̂NWLS that minimizes

JN (θ) =
1

N

N∑

i=1

[y(xi) − η(xi, θ)]
�Σ−1(xi)[y(xi) − η(xi, θ)]
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satisfies
√
N(θ̂NWLS − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)), N → ∞, where

M(ξ, θ) =

∫

X

∂η�(x, θ)
∂θ

Σ−1(x)
∂η(x, θ)

∂θ�
ξ(dx) .

One may refer in particular to Fedorov (1971) and Harman and Trnovská
(2009) for a presentation of results concerning D-optimum design when the
information matrix takes this form.

Optimum Design for LS Estimation with Equality Constraints

The presence of constraints c(θ) = 0 in nonlinear regression models has been
considered in Sect. 3.5, where we have shown that the asymptotic variance–
covariance matrix σ2Vθ,ξ of the LS estimator θ̂NLS is given by (3.92) or equiv-
alently (3.93). These expressions can be used to define criteria for optimum
design; see Pázman (2002a).

One should notice that Vθ,ξ is singular since the presence of constraints
makes the model over-parameterized. We can nevertheless use A-optimum
design and maximize

φA(ξ) = −trace[Vθ,ξ]

= −trace[H−1(ξ, θ)]

+trace[H−1(ξ, θ)L�(θ)[L(θ)H−1(ξ, θ)L�(θ)]−1L(θ)H−1(ξ, θ)] ,

see (3.93), where we used the notations of Sect. 3.5 with θ = θ0 some nominal
value for θ (locally optimum design). The concavity of φA(·) follows from the
expression (3.92) of Vθ,ξ. Similarly, one may consider E-optimum design and
maximize φE(ξ) = minu∈Rp, ‖u‖=1 −u�Vθ0,ξu.

D-optimum design cannot be used directly since Vθ,ξ is singular for any ξ.
To overcome the problem induced by the over-parameterization of the model,
we should consider the reparameterization of the regression model with the
auxiliary parameters β so that a D-optimal design can be obtained by max-
imizing the expression log det[D�

0 M(ξ, θ0)D0] with respect to ξ ∈ Ξ, with
θ0 = φ(θ0); see (3.89) for the notation. Here the matrix D0 = D(β0) given by
(3.88) is not known explicitly, but any other parameterization can be substi-
tuted. We can in particular follow the recommendation in (Pázman, 2002a):
since L(θ0)D0 = Oq,p−q, see (3.91), construct a QR decomposition of L�(θ0),
see, e.g., Harville (1997, p. 66),

L�(θ0) = (Q T)

(
R
Op−q,q

)

where R is q × q upper triangular, Q�Q = Iq, T
�T = Ip−q, and Q�T =

Oq,p−q, so that the columns of Q form an orthogonal basis for the range of
L�(θ0) and those of T form an orthogonal basis for the column space of D0,
and consider the maximization of φD(ξ) = log det[T�M(ξ, θ0)T]. Note that
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from (3.89), (3.92), the asymptotic variance–covariance matrix of θ̂NLS at θ0

is given by σ2Vθ0,ξ = σ2T[T�M(ξ, θ0)T]−1T�. One may also notice that
direct calculations give the following expression for the directional derivative
of log det[D�

0 M(·, θ0)D0] at ξ in the direction ν, see (5.33),

FφD (ξ; ν) = trace
{
[D�

0 M(ξ, θ0)D0]
−1D�

0 [M(ν, θ0) − M(ξ, θ0)]D0

}

=

∫

X

∂η(x, θ)

∂θ�

∣∣∣∣
θ0
D0[D

�
0 M(ξ, θ0)D0]

−1D�
0

∂η(x, θ)

∂θ

∣∣∣∣
θ0
ν(dx) − (p− q)

=

∫

X

∂η(x, θ)

∂θ�

∣∣∣∣
θ0
Vθ0,ξ

∂η(x, θ)

∂θ

∣∣∣∣
θ0
ν(dx) − (p− q)

where the last equality follows from (3.92). Note that FφD (ξ; ν) does not
depend on D0. The equivalence theorem 5.21 then indicates that a design
measure ξ∗ is D-optimal in the framework of Sect. 3.5 if and only if

max
x∈X

∂η(x, θ)

∂θ�

∣∣∣∣
θ0
Vθ0,ξ∗

∂η(x, θ)

∂θ

∣∣∣∣
θ0

≤ p− q ,

which resembles a G-optimality condition; see Remark 5.22-(ii).

Design for Bayesian Estimation

Consider a linear regression model y = F(X)θ+ε, with ε ∼ N (0, σ2IN ), and
suppose that θ has the prior normal distribution N (θ0,Ω). Its posterior p.d.f.

is then the density of the normal distribution N (θ̂N , [NM(X)+Ω−1]−1), with

M(X) = F�(X)F(X)/(Nσ2) and θ̂N the maximum a posteriori estimator,

θ̂N = [NM(X) +Ω−1]−1 [F�(X)y/σ2 +Ω−1θ0]. When designing an optimal
experiment for Bayesian estimation, it is then natural to apply the criteria of
Sect. 5.1.2 to the (Bayesian information) matrix M(X) +Ω−1/N .

More generally, for Bayesian estimation in a nonlinear model we can re-
place the information matrix M(ξ, θ) by MB(ξ, θ) = M(ξ, θ) +Ω−1/N with
Ω the prior covariance matrix for θ; see Remark 4.18-(i). Properties such as
concavity, the existence of directional derivatives, and equivalence theorems
can be obtained in this context too; one may refer to Pilz (1983) for a thor-
ough presentation and to the survey (Chaloner and Verdinelli, 1995) for a
bibliography; see also Pukelsheim (1993, Chap. 11).

Design Measures Bounded from Above

Let μ(·) denote a probability measure on X and, for a given α ∈ (0, 1), denote
by D(μ, α) the set of measures on X bounded by μ/α,

D(μ, α) = {ξ ∈ Ξ : ξ(dx) ≤ μ(dx)/α} .

Optimum design problems with such constraints occur, for instance, in sam-
pling, see Wynn (1977, 1982), and in experiments with spatially distributed
observations or with time as independent variable, see Fedorov (1989).
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Suppose that φ(ξ) = Φ[M(ξ)], with Φ(·) isotonic, concave, and lin-
early differentiable. Denote by ξ∗α a φ-optimal design measure in D(μ, α).
The theorem below (Wynn, 1982, Sahm and Schwabe, 2001) states that
the design space X can be partitioned into three subsets X ∗

1,α, X ∗
2,α, and

X ∗
3,α = X \(X ∗

1,α ∪ X ∗
2,α), with ξ∗α = 0 on X ∗

1,α, ξ
∗
α = μ/α on X ∗

2,α and the
directional derivative Fφ(ξ

∗
α, x) constant on X ∗

3,α.

Theorem 5.45. The following statements are equivalent:

(i) ξ∗α is a φ-optimum constrained design measure.
(ii) There exists a number c such that Fφ(ξ

∗
α, x) ≥ c for ξ∗α-almost all x and

Fφ(ξ
∗
α, x) ≤ c for (μ− αξ∗α)-almost all x.

(iii) There exist two subsets X ∗
1,α and X ∗

2,α of X such that
– ξ∗α = 0 on X ∗

1,α and ξ∗α = μ/α on X ∗
2,α.

– infx∈X ∗
2,α

Fφ(ξ
∗
α, x) ≥ c ≥ supx∈X ∗

1,α
Fφ(ξ

∗
α, x).

– Fφ(ξ
∗
α, x) = c on X ∗

3,α = X \(X ∗
1,α ∪ X ∗

2,α).

Wynn (1982), Fedorov (1989), and Fedorov and Hackl (1997) consider the
case where μ has no atoms; that is, for any A ⊂ X there exists A′ ⊂ X such
that

∫
A′ μ(dx) <

∫
A μ(dx). As a consequence, μ(X ∗

3,α) = 0, and ξ∗α belongs
to the following subclass of D(μ, α):

D∗(μ, α) = {ξ ∈ D(μ, α) : ∃A ⊂ X , ξ(A) = μ(A)/α , ξ(X \A) = 0} .

The condition (ii) of Theorem 5.45 is then formulated as Fφ(ξ
∗
α, x) separating

the two sets X ∗
α and X \X ∗

α , with

X ∗
α = suppξ∗α = {x ∈ X : ξ∗α(x) > 0} .

Moreover,
∫

X ∗
α
Fφ(ξ

∗
α, x) μ(dx) =

∫
X Fφ(ξ

∗
α, x)ξ

∗
α(dx) = 0, see Fedorov (1989)

and Fedorov and Hackl (1997) who also present iterative algorithms of the
exchange type for the construction of ξ∗α.

For a given ξ, consider the random variable Fφ(ξ,X1) where X1 is dis-
tributed with the probability measure μ, and let IFξ denote the correspond-
ing distribution function, IFξ(s) = μ{x : Fφ(ξ, x) ≤ s} . Define cα(ξ) as
cα(ξ) = min{s : IFξ(s) ≥ 1 − α} and

X1,α(ξ) = {x : Fφ(ξ, x) < cα(ξ)} ,
X2,α(ξ) = {x : Fφ(ξ, x) > cα(ξ)} ,
X3,α(ξ) = {x : Fφ(ξ, x) = cα(ξ)} .

We then obtain X ∗
j,α = Xj,α(ξ

∗
α), j = 1, 2, 3, and cα(ξ

∗
α) is the constant c of

Theorem 5.45. Consider now the transformation Tφ,α : ξ ∈ Ξ −→ Tφ,α(ξ) ∈
D(μ, α) defined by

Tφ,α(ξ) =

⎧
⎨

⎩

μ/α on X2,α(ξ) ,
α−μ[X2,α(ξ)]
μ[X3,α(ξ)] μ/α on X3,α(ξ) ,

0 on X1,α(ξ) .
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Notice that Fφ[ξ;Tφ,α(ξ)] = maxν∈D(μ,α) Fφ(ξ; ν); indeed, Tφ,α(ξ) distributes
its mass on X where Fφ(ξ, x) takes its highest values. Next theorem (see
Pronzato, 2004, 2006), complements Theorem 5.45 by a minimax formulation
similar to the equivalence theorem 5.21.

Theorem 5.46. The following statements are equivalent:

(i) ξ∗α is a φ-optimum constrained design measure.
(ii) Fφ[ξ

∗
α;Tφ,α(ξ

∗
α)] = 0.

(iii) ξ∗α minimizes Fφ[ξ;Tφ,α(ξ)] with respect to ξ ∈ D(μ, α).
(iv) ξ∗α minimizes maxν∈D(μ,α) Fφ(ξ; ν) with respect to ξ ∈ D(μ, α).

The continuity and differentiability of φ(ξ∗α) with respect to α are con-
sidered in (Pronzato, 2004). A method is presented in (Pronzato, 2006) that
allows us to sample (asymptotically) from ξ∗α by applying a simple accepta-
tion/rejection rule to samples from μ, without requiring the construction of
ξ∗α or the knowledge of the sets X ∗

j,α, or even the knowledge of μ itself.
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Criteria Based on the Small-Sample Precision

of the LS Estimator

This chapter deals with designs with a fixed finite size N (exact designs), of
the form X = (x1, . . . , xN ), possibly with replications; that is, we may have
xi = xj for some i �= j. The number N of observations will be supposed to
be small, so that the limit theorems of Chap. 3 concerning the asymptotic
normal distribution of estimators cannot be used and the introduction of a
design measure ξ to approximate X is not helpful. We consider regression
models (3.2), (3.3); that is

yi = y(xi) = η(xi, θ̄) + εi , i = 1, . . . , N ,

with

IE(εi) = 0 , var(εi) = σ2 , cov(εi, εj) = 0 if i �= j , i, j = 1, . . . , N .

We suppose that the assumptions HΘ, H1η, and H2η of Sect. 3.1 are satisfied:

θ̄ ∈ int(Θ) with Θ a compact subset of Rp such that Θ ⊂ int(Θ), and η(x, θ)
is twice continuously differentiable with respect to θ ∈ int(Θ) for any x ∈ X .
In a vector notation, we shall write

y = η(θ̄) + ε , with IE(ε) = 0 , Var(ε) = σ2IN , (6.1)

where η(θ) = ηX(θ) = (η(x1, θ), . . . , η(xN , θ))
�, y = (y1, . . . , yN)

� and ε =
(ε1, . . . , εN)

�. The more general nonstationary (heteroscedastic) case where
var(εi) = σ2(xi) can easily be transformed into the model (6.1) with σ2 = 1
via the division of yi and η(xi, θ) by σ(xi).

The geometrical properties of the model (6.1) are considered in Sect. 6.1
and used to obtain a classification of nonlinear regression models. The prob-
ability density q(·|θ̄) of the LS estimator θ̂ = θ̂NLS is derived in Sect. 6.2;
depending on the model and the design X , the expression obtained is exact
or approximate. Criteria for designing optimal experiments based on q(·|θ̄)
are considered in Sect. 6.3. Since N is too small to use the asymptotic results
of Chap. 3, assumptions on the distribution of ε are required to investigate

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 6,
© Springer Science+Business Media New York 2013
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the statistical properties of the LS estimator. In Sects. 6.2 and 6.3, we shall
suppose that the errors are normal, ε ∼ N (0, σ2IN ). Higher-order approxi-
mations of optimality criteria are considered in Sect. 6.4.

6.1 The Geometry of the Regression Model

6.1.1 Basic Notions

A geometrical interpretation of the model (6.1) is extremely useful to inves-
tigate the statistical properties of the LS estimator of θ. One can refer to
Pázman (1993b) for details and precise proofs.

In the sample space R
N of the model we consider the expectation surface

Sη = {η(θ) : θ ∈ Θ} , (6.2)

it corresponds to the set of all hypothetical means of the observed vectors
y in (6.1). Since η(θ) is supposed to have continuous first- and second-order
derivatives in int(Θ), Sη is a smooth surface in R

N with a (local) dimension
given by r = rank[∂η(θ)/∂θ�]. If r = p, which means full rank, we call the
model (6.1) regular. In regular models with no overlapping of Sη, i.e., when
η(θ) = η(θ′) implies θ = θ′, the LS estimator

θ̂ = θ̂NLS = argmin
θ∈Θ

‖y − η(θ)‖2 (6.3)

is defined uniquely (with probability one; see Theorem 7.2); hence, only
designs corresponding to regular models will be considered. Then, Sη is a

p-dimensional surface, and η(θ̂) is the orthogonal projection of y onto Sη,

unless θ̂ /∈ int(Θ)—the boundary of Θ requires special considerations; a
smooth approximation will be considered in Sect. 6.2.5.

The vectors ∂η(θ)/∂θ1, . . . , ∂η(θ)/∂θp of R
N are tangent to Sη at the point

η(θ), and their linear span is the tangent space Tθ to Sη at η(θ). Since they
are linearly independent, Tθ is a p-dimensional subspace of RN . We denote by
Pθ the orthogonal projector onto Tθ, i.e., the N ×N matrix

Pθ = J(θ)M−1
X (θ)J�(θ) , (6.4)

where J(θ) is the Jacobian matrix ∂η(θ)/∂θ� and

MX(θ) = J�(θ)J(θ) =
N∑

i=1

∂η(xi, θ)

∂θ

∂η(xi, θ)

∂θ�

is the information matrix for σ = 1. Note that MX(θ) is un-normalized, in
the sense that MX(θ) = NM(ξN , θ) with ξN the empirical design measure
associated with X that gives weight 1/N to each design point xi, i = 1, . . . , N .
Also note that η(θ), J(θ), MX(θ), and Pθ depend on the design X .
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6.1.2 A Classification of Nonlinear Regression Models

Intrinsically Linear Models

The model (6.1) is intrinsically linear if

PθH
�
ij(θ) = H�

ij(θ) , ∀i, j = 1, . . . , p and ∀θ ∈ int(Θ) , (6.5)

where

H�
ij(θ) =

∂2η(θ)

∂θi∂θj
. (6.6)

Such a model has a planar expectation surface Sη. In terms of the Bates and
Watts (1980) intrinsic measure of nonlinearity,

Cint(X, θ;u) =
‖[IN − Pθ]

∑p
i,j=1 uiH

�
ij(θ)uj‖

u�MX(θ)u
, (6.7)

see Pázman (1993b) for a detailed derivation of this expression, we have
Cint(X, θ;u) = 0 at any point θ ∈ int(Θ) and in any direction u ∈ R

p. An
intrinsically linear model can be reparameterized to become a linear model,
with eventual boundaries on the parametric space. That means that there
exists a one-to-one continuously differentiable mapping β = β(θ) having an
inverse θ = θ(β) such that for a matrix F and a vector v we can write

η[θ(β)] = Fβ + v , η(θ) = Fβ(θ) + v (6.8)

for every θ and β in the corresponding parameter spaces. Evidently, every lin-
ear model is intrinsically linear. More interestingly, when the designX consists
of repetitions of trials at p distinct design points only, say (x(1), . . . , x(p)), a
nonlinear regression model becomes intrinsically linear, with the obvious repa-
rameterization βi = η(x(i), θ), i = 1, . . . , p, making the model linear. One may
refer to Ross (1990) for the use of such designs.

Remark 6.1. The curvature Cint(X, θ;u) varies like 1/
√
N . More precisely

Cint(X, θ) = sup
u∈Rp−{0}

Cint(X, θ;u) =
1√
N
Cint(ξN , θ) , (6.9)

where the intrinsic curvature Cint(ξ, θ) is defined by (3.84) and where ξN is
the empirical design measure associated with X . Denote by X⊗n the design
obtained by replicating n times each point of X , we thus have Cint(X

⊗n, θ) =
Cint(X, θ)/

√
n. Now, the n replications of X have the same statistical effect as

a reduction of the standard deviation σ of the errors by a factor
√
n, i.e., the

same effect as a reduction of ‖y−η(θ̄)‖ by a factor
√
n. It is this phenomenon

of getting closer to the surface Sη that reduces the effect of its curvature. �
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Remark 6.2. It is often advocated that the inverse of the observed information
matrix provides a better approximation of the covariance matrix of the maxi-
mum likelihood estimator than the inverse of the expected information matrix;
see, e.g., Efron and Hinkley (1978) and Lindsay and Li (1997). The reason for
nevertheless using the expected information matrix throughout this book is
that the observed matrix generally depends on the observations. It happens,
however, that for the nonlinear regression models (6.1), these two matrices
coincide when evaluated at the LS estimator, provided that the model is in-
trinsically linear and the errors are normal; see Clyde and Chaloner (2002).
Indeed, the observed matrix, equal to the opposite of the second derivative of
the log-likelihood, can then be written as

Mobs
X (θ,y) =

1

σ2
MX(θ) +

1

σ2

N∑

i=1

∂2η(xi, θ)

∂θ∂θ�
[y(xi) − η(xi, θ)].

Using (6.5), we get

{Mobs
X (θ,y)}ij =

1

σ2
{MX(θ)}ij +

1

σ2
[y − η(θ)]�PθH�

ij(θ)

where the second term is zero for θ = θ̂NLS since [y − η(θ̂NLS)] is orthogonal to

the tangent plane to Sη at η(θ̂NLS). �

Parametrically Linear Models

The model (6.1) is parametrically linear if

PθH
�
ij(θ) = 0 , ∀i, j = 1, . . . , p and ∀θ ∈ int(Θ) . (6.10)

According to the definition of Pθ, this is equivalent to J�(θ)H�
ij(θ) = 0 for

all i, j = 1, . . . , p and all θ ∈ int(Θ) and holds evidently if MX(θ) = M con-
stant in int(Θ). These conditions are in fact equivalent, so that parametrically
linear models are those with a constant information matrix. Further, (6.10)
holds if and only if the parametric-effect measure of nonlinearity (parametric
curvature) of Bates and Watts (1980)

Cpar(X, θ;u) =
‖Pθ

∑p
i,j=1 uiH

�
ij(θ)uj‖

u�MX(θ)u
(6.11)

is zero for any θ ∈ int(Θ) and in any direction u ∈ R
p.

Linear Models

The model (6.1) is linear, i.e., η(xi, θ) = f�(xi)θ + c(xi) for some f(xi) ∈ R
p

and c(xi) ∈ R, if and only if it is intrinsically and parametrically lin-
ear. Geometrically, the model is intrinsically but not parametrically linear
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if Sη is planar, but the parametric curves {η(θ1, . . . , θi−1, t, θi+1, . . . , θp) :
(θ1, . . . , θi−1, t, θi+1, . . . , θp) ∈ Θ}, parameterized in t, do not correspond to
parallel lines when θ varies. Conversely, the model is parametrically linear
but not intrinsically linear when the surface Sη is curved, but the parametric
curves above are regularly spaced over Sη when θ varies.

Flat Models

The notion of flat models is related to the existence of a regular reparame-
terization θ = θ(β) such that the model y = ν(β) + ε with ν(β) = η[θ(β)]
has a constant information matrix.1 Contrary to a rather common opinion,
such a reparameterization does not always exist. The problem is related to an
old issue in differential geometry which was solved by Riemann; see Eisenhart
(1960, p. 25): such a reparameterization exists if and only if the Riemannian
curvature tensor R(θ) with components

Rhijk(θ) = Thjik(θ) − Thkij(θ) ,

where
Thjik(θ) = [H�

hj(θ)]
�[IN − Pθ]H

�
ik(θ) ,

is identically zero:

Rhijk(θ) = 0 for all i, j, h, k = 1, . . . , p and for all θ ∈ int(Θ) ,

which we shall denote R(θ) ≡ 0. Any parametrically linear model is such
that R(θ) = 0 for any θ ∈ int(Θ). Also, from the definition of R(θ), we have
R(θ) ≡ 0 in any intrinsically linear model.

Regression models of the form (6.1) can thus be classified as shown in
Fig. 6.1; see Pázman (1992a).

Only some particular models can be at the same time parametrically linear
and not intrinsically linear; a typical example is η(θ) = (cos(θ), sin(θ))�. On
the other hand, any regression model (6.1) with dim(θ) = 1 is flat. Also, all
models that are linear in all components of θ but one are flat. An example
of intrinsically and parametrically nonlinear but flat model is the Michaelis–
Menten model, defined by

η(x, θ) =
θ1 x

θ2 + x
,

which is nonlinear in θ2 only. Notice that in the case dim(θ) = 1, the repa-
rameterization β = β(θ) that makes the information matrix constant has the
form

β(θ) = β0 +

∫ θ

θ0

∥∥∥∥
dη(t)

dt

∥∥∥∥ dt

for some θ0 ∈ Θ and β0 ∈ R.

1Our definition of flat models thus differs from that of intrinsically linear models
with which it is sometimes confounded in the literature.
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regression models (6.1)

flat models (R(θ) ≡ 0)

intrinsically
linear models

parametrically
linear models

linear models

Fig. 6.1. A classification of regression models

6.1.3 Avoiding Failures of LS Estimation

A nonzero parametric curvature influences the statistical properties of the
LS estimator θ̂ in that its p.d.f. may be nonsymmetrical, biased, and even
bimodal; see, e.g., Example 3.10. A small intrinsic curvature does not have
such an influence, but a large value of σCint(X, θ,u) can lead to a very unsta-
ble estimator; see Example 7.5. Also, when the expectation surface is almost
overlapping, i.e., when min‖θ−θ′‖2=δ ‖η(θ)− η(θ′)‖2 is small for a large δ, the
estimator can be obtained at a large distance from θ̄, which is statistically not
justified; see Example 7.6 in Sect. 7.3. Here we formulate some assumptions
on the model (6.1) and on θ̄ that remove such difficulties.

For any r > 0, denote G(r) = {y ∈ R
N : ‖y − η(θ̄)‖ < r}. We call θ a

r-projection of y if ‖y − η(θ)‖ < r and

∂‖y − η(θ)‖2
∂θ

= 0 or θ = θ̂(y) is on the boundary of Θ .

Denote by B(r) the set of all r-projections of points of G(r) and consider the
tube T (r) around the expectation surface Sη,

T (r) = {y ∈ R
N : ∃θ ∈ B(r) such that θ is an r-projection of y} ,

see Fig. 6.2. The assumption is as follows:

HS : There exists r > 0 such that:

a) Probθ̄[G(r)] = Prob(‖y − η(θ)‖ < r) ≥ 1 − ε .
b) Every y ∈ T (r) has one r-projection only.

Note that this assumption implies that Cint(X, θ,u) ≤ 1/r for every θ ∈
B(r) and any u ∈ R

p.
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η(θ̄)

G (r)

T (r)

Sη

Fig. 6.2. r-projections and tube T (r) around Sη

6.2 The Probability Density of the LS Estimator in
Nonlinear Models with Normal Errors

We suppose throughout this section that the errors ε are normally distributed
N (0, σ2IN ). When the regression model (6.1) is linear, i.e., when η(x, θ) =

f�(x)θ + c(x), then the LS estimator θ̂ has the probability density

q(θ|θ̄) = det1/2(F�F)
(2π)p/2 σp

exp

{
− 1

2σ2
‖F(θ − θ̄)‖2

}
(6.12)

in int(Θ), where {F}i,� = f�(xi). As noticed in the next remark, the assump-
tion of normal errors is justified when the design consists of repetitions of
observations.

Remark 6.3. Consider the design X⊗n consisting of n repetitions of each of
the N points of the design X . Denote by yj(xi) the j-th observation at xi for
j = 1, . . . , n. The corresponding LS criterion (3.1) can be written as

JN (θ) =
1

N

N∑

i=1

1

n

n∑

j=1

[yj(xi)− η(xi, θ)]
2

=
1

N

N∑

i=1

[ȳ(xi) − η(xi, θ)]
2 +

1

N

N∑

i=1

⎡

⎣ 1

n

n∑

j=1

y2j (xi) − ȳ2(xi)

⎤

⎦ (6.13)

where ȳ(xi) = (1/n)
∑n
j=1 yj(xi) is the empirical mean of the observations at

xi and the last term within square brackets in (6.13) is their empirical vari-
ance. Since this part does not depend on θ, minimizing JN (θ) is equivalent to

minimizing (1/N)
∑N
i=1[ȳ(xi) − η(xi, θ)]

2, i.e., an LS criterion for the design
X , the n observations at xi being replaced by their empirical mean. This gen-
eralizes to the case of unequal numbers of repetitions of observations. Indeed,
let ni be the number of observations at xi; the associated LS criterion is
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JN (θ) =

N∑

i=1

wi [ȳ(xi) − η(xi, θ)]
2 +

N∑

i=1

wi

⎡

⎣ 1

ni

ni∑

j=1

y2j (xi) − ȳ2(xi)

⎤

⎦

where wi = ni/
(∑N

i=1 ni

)
and ȳ(xi) = (1/ni)

∑ni

j=1 yj(xi). Again, the sec-

ond term does not depend on θ, and minimizing JN (θ) is thus equivalent to

minimizing the weighted LS criterion
∑N

i=1 wi[ȳ(xi) − η(xi, θ)]
2.

From the central limit theorem, ȳ(xi) is asymptotically normal when ni
tends to infinity provided that the errors have a finite variance, whatever their
distribution is. The assumption of normality of the errors is thus reasonable
for designs consisting of repetitions when the number of repetitions of each
design points is large enough. �

6.2.1 Intrinsically Linear Models

For such models there exists a reparameterization β = β(θ) with the property
(6.8). Hence, from (6.12) we have for the p.d.f. of the LS estimator of θ

q(θ|θ̄) = det1/2(F�F)
(2π)p/2 σp

exp

{
− 1

2σ2
‖F[β(θ) − β(θ̄)]‖2

}
×
∣∣∣∣det

(
∂β(θ)

∂θ

)∣∣∣∣ .

Using (6.8), we obtain F[β(θ) − β(θ̄)] = η(θ) − η(θ̄) and

∂β�(θ)
∂θ

F�F
∂β(θ)

∂θ�
= J�(θ)J(θ) = MX(θ) .

Hence,

q(θ|θ̄) = det1/2 MX(θ)

(2π)p/2 σp
exp

{
− 1

2σ2
‖η(θ) − η(θ̄)‖2

}
. (6.14)

When the designX consists of repetitions of trials at p distinct points only, the
model is intrinsically linear (see Sect. 6.1.2) and (6.14) gives the exact density
of the LS estimator. Note that D-optimal designs (based on the information
matrix) are often supported on p points only; see Sect. 5.2.3.

6.2.2 Models with dim(θ) = 1

The case where θ is unidimensional is presented separately since accurate
approximations of the p.d.f. of θ̂ are obtained rather easily. The expectation
surface Sη is then a curve in R

N , and we can approximate the distribution

function of θ̂ at a point t ∈ int(Θ) by

IF(t|θ̄) = Probθ̄{y ∈ R
N : θ̂(y) < t} = Probθ̄{Qt} ,

where Qt is the set of all samples of RN having orthogonal projections onto Sη

on that side of η(t) which is opposite to the direction of the vector dη(t)/dt;
that is,
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Qt = {y ∈ R
N : [y − η(t)]�

dη(t)

dt
< 0} .

This involves an approximation since not all projections from points from
Qt correspond in reality to solutions of (6.3)—they may correspond to other
stationary points of the function t −→ ‖y − η(t)‖2. Also, some points y not

in Qt may yield LS estimates θ̂(y) < t. However, if the model (6.1) is such
that HS (p. 172) is satisfied, this approximation is reasonable. Then we have

IF(t|θ̄) = Probθ̄{Qt}

= Probθ̄

{
y ∈ R

N : [y − η(θ̄)]�
dη(t)/dt

‖dη(t)/dt‖ < [η(t) − η(θ̄)]�
dη(t)/dt

‖dη(t)/dt‖

}

=

∫ a(t)

−∞

1√
2π σ

exp

{
− x2

2σ2

}
dx ,

with

a(t) = [η(t) − η(θ̄)]�
dη(t)/dt

‖dη(t)/dt‖ ,

since

[y − η(θ̄)]�
dη(t)/dt

‖dη(t)/dt‖ ∼ N (0, σ2) .

The p.d.f. of θ̂ is then obtained by differentiating IF(t|θ̄) with respect to t,
which gives

q(t|θ̄) = 1√
2π σ

exp

{
−a2(t)

2σ2

}
da(t)

dt
.

After rearrangements, we obtain

q(θ|θ̄) = MX(θ) + [η(θ) − η(θ̄)]�[IN − Pθ](d
2η(θ)/dθ2)

√
2π σM

1/2
X (θ)

× exp

{
− 1

2σ2
‖Pθ[η(θ) − η(θ̄)]‖2

}
. (6.15)

Notice that

M
1/2
X (θ) =

∥∥∥∥
dη(θ)

dθ

∥∥∥∥ and Pθ =
dη(θ)

dθ

dη�(θ)
dθ

/

∥∥∥∥
dη(θ)

dθ

∥∥∥∥
2

since dim(θ) = 1.

6.2.3 Flat Models

This corresponds to a generalization of (6.15) to the case dim(θ) > 1 but still
with the Riemannian curvature tensor R(θ) = 0 for all θ ∈ int(Θ). The p.d.f.

of θ̂ can be obtained either as a direct extension of (6.15) to the multivariate
case, as done in (Pázman, 1984b), or via a more algebraic approach. The later
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introduces new coordinates in the sample space RN , some of which being equal
to the components of θ̂, and the normal density of y is then transferred to those
new coordinates; see Pázman (1993b) for details. The resulting (approximate)

p.d.f. of θ̂ takes the form

q(θ|θ̄) = det[Q(θ, θ̄)]

(2π)p/2 σp det1/2 MX(θ)
exp

{
− 1

2σ2
‖Pθ[η(θ) − η(θ̄)]‖2

}
, (6.16)

where

{Q(θ, θ̄)}ij = {MX(θ)}ij + [η(θ) − η(θ̄)]�[IN − Pθ]H
�
ij(θ) . (6.17)

The approximation is as precise as (6.15), i.e., is very accurate, if HS (p. 172)
can be satisfied with a small ε. Then, we can say that q(θ|θ̄) is “almost exact”
in the region B(r) defined in Sect. 6.1.3. The p.d.f. (6.16) can also be obtained
asymptotically for any model (6.1) through the saddle-point approximation
technique, sometimes called the “small-sample asymptotics” (Hougaard 1985);
see also Pázman (1990) for a discussion.

6.2.4 Models with Riemannian Curvature Tensor R(θ) �≡ 0

When R(θ) �≡ 0, under HS (p. 172), an accurate approximation of the p.d.f.

of θ̂ can be obtained, similar to (6.16) but with det[Q(θ, θ̄)] replaced by an
expression depending on the components of Q(θ, θ̄) and R(θ). In the special
case dim(θ) = 2, det[Q(θ, θ̄)] is simply replaced by det[Q(θ, θ̄)]+R1212(θ); see
Pázman (1993b, p. 186). The expression becomes much more complicated for
larger values of dim(θ); see Pázman (1993a) and Gauchi and Pázman (2006).

6.2.5 Density of the Penalized LS Estimator

We consider here the p.d.f. of the penalized LS estimator defined by

θ̃ = argmin
θ∈Θ

{
‖y − η(θ)‖2 + 2w(θ)

}
(6.18)

where w(θ) is the penalty term. The introduction of the penalty function w(·)
allows us to take the influence of the boundary ∂Θ of Θ on the p.d.f. of the
LS estimator into account. Consider a domain D ⊂ Θ, close to the boundary
of Θ, say a tube defined by

D = {θ ∈ Θ : min
θ∗∈∂Θ

‖θ − θ∗‖ < ε} .

Take a twice continuously differentiable penalty w(θ) which is zero on Θ \ D,
+∞ on ∂Θ, positive on D \ ∂Θ, and increasing when θ approaches ∂Θ. The
p.d.f. of θ̃ in the case R(θ) ≡ 0 is given by
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q̃(θ|θ̄) =
det
[
Q(θ, θ̄) − A(θ) + ∂2w(θ)

∂θ∂θ�

]

(2π)p/2 σp det1/2 MX(θ)

× exp

{
− 1

2σ2
‖Pθ[η(θ) − η(θ̄) + u(θ)]‖2

}
, (6.19)

where

{A(θ)}ij = u�(θ)H�
ij(θ) and u(θ) = J(θ)M−1

X (θ)
∂w(θ)

∂θ
,

see Pázman and Pronzato (1992) and Pázman (1992b). Note that (6.19) coin-

cides with (6.16) when θ ∈ Θ\D; the values of the LS estimator θ̂ that should
lie on ∂Θ are simply shifted inside D.

Remark 6.4. In a Bayesian setting where θ has the prior density π(·), the
maximum a posteriori estimator θ̃ is

θ̃ = argmax
θ∈Θ

log π(y|θ)

= argmin
θ∈Θ

{
‖y − η(θ)‖2 − 2σ2 log π(θ)

}

and its density in the case R(θ) ≡ 0 is also given by (6.19), with w(θ) =
−σ2 log π(θ). �

6.2.6 Marginal Densities of the LS Estimator

Marginal densities, i.e., densities of the components of θ̂ or the density of a
scalar function h(θ̂), are much more difficult to approximate than the density

of the whole vector θ̂. The difficulty comes from the fact that the set Rγ of

samples that give the same estimator of h(θ), Rγ = {y ∈ R
N : h[θ̂(y)] = γ},

is composed of hyperplanes in R
N which intersect the expectation surface Sη

orthogonally along the subsurface Cγ = {η(θ) : θ ∈ Θ, h(θ) = γ} of Sη. An

approximation of the density of h(θ̂) at the point γ is proposed in (Pázman
and Pronzato, 1996), based on a local approximation of Rγ by a (N − p)-
dimensional hyperplane in R

N with p = dim(θ),

q(γ|θ̄) = 1√
2πσ‖bγ‖

exp

{
− 1

2σ2
‖Pγ [η(θγ) − η(θ̄)]‖2

}
,

where

θγ = arg min
θ:h(θ)=γ

‖η(θ) − η(θ̄)‖2 ,

bγ = J(θγ)M
−1
X (θγ)

∂h(θ)

∂θ

∣∣∣∣
θγ

,

Pγ =
bγb

�
γ

‖bγ‖2
.
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A more precise approximation, taking the curvature of Rγ into account, is also
proposed in (Pázman and Pronzato, 1996). The extension to bias-corrected LS
estimators, see Remark 6.5, can be found in (Pázman and Pronzato, 1998).
Marginal densities can easily be plotted and can thus be used to compare
visually different experiments in terms of precision of the estimation of each
individual component of θ; see Pronzato and Pázman (2001).

6.3 Optimality Criteria Based on the p.d.f.
of the LS Estimator

The mean-squared error matrix of θ̂ is equal to

S(X, θ̄) = IEX,θ̄

{
(θ̂ − θ̄)(θ̂ − θ̄)�

}
.

The numerical evaluation of this quantity, or the optimization of a function
of S(X, θ̄) with respect to the design X , will be based on integration over a
bounded domain Θ, possibly through a Monte Carlo technique. This requires
that the boundary of Θ is taken into account. Indeed, ignoring the vectors θ̂
falling outside Θ would falsify the evaluation of S(X, θ̄) and, when optimizing
a function of S(X, θ̄) with respect to X , would enforce the choice of a singular

design ensuring that the distribution of θ̂ is widely spread outside Θ. The
definition of Θ should also account for mathematical or physical constraints on
the model parameters when such constraints exist: e.g.the response function
η(θ) may be not defined beyond some limit on θ, or physical constraints may
be imposed on θ for the response function to make sense. We must therefore
consider the density of the penalized LS estimator (6.18) when expressing the
components of S(X, θ̄) as integrals. When the errors are normal N (0, σ2IN ),
the approximation (6.19) of this density can be used, which yields

Sij(X, θ̄) =

∫

int(Θ)

(θ − θ̄)i(θ − θ̄)j q̃X(θ|θ̄) dθ ,

where the dependence of the p.d.f. on the design X is mentioned explicitly.
Classical optimality criteria (to be maximized) can be applied to S(X, θ̄),

for instance

ΦA(X ; θ̄) = −trace[S(X, θ̄)] = −
∫

int(Θ)

‖θ − θ̄‖2 q̃X(θ|θ̄) dθ

for A-optimality,
ΦD(X ; θ̄) = [detS(X, θ̄)]−1/p

for D-optimality, and

Φq,I(X ; θ̄) = −
{
1

p
trace[Sq(X, θ̄)]

}1/q
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for criteria from the Φq-class; see Sect. 5.1.2. When we are interested in the
estimation of a function h(θ), a natural extension of the c-optimality criterion
is

Φc(X ; θ̄) = −
∫

int(Θ)

[h(θ) − h(θ̄)]2 q̃X(θ|θ̄) dθ .

As noticed in Sect. 5.1.2, D-optimality is related to the minimization of
the Shannon entropy of the asymptotic normal distribution of the estima-
tor. When the p.d.f. (6.19) is used, we get the following entropy criterion (to
be minimized):

H1(X ; θ̄) = −
∫

int

q̃X(θ|θ̄) log[q̃X(θ|θ̄)] dθ ,

see (5.6).
Writing a criterion Φ(X ; θ̄) in the form of one multivariate integral of a

real-valued function is adequate for its minimization through a stochastic ap-
proximation technique (see, for instance, Kushner and Clark (1978), Ermoliev
and Wets (1988), and Kushner and Yin (1997)), stochastic approximation
being used for optimum design in (Pronzato and Walter, 1985), (Pázman
and Pronzato, 1992) and presented in details in (Gauchi and Pázman, 2006);
see also Sect. 9.4. This concerns directly ΦA(X ; θ̄), Φc(X ; θ̄) and H1(X ; θ̄);
we show below that it also applies to ΦD(X ; θ̄) and Φq,I(X ; θ̄). Notice that
maximizing ΦD(X ; θ̄) is equivalent to minimizing detS(X, θ̄) and maximiz-
ing Φq,I(X ; θ̄) is equivalent to minimizing trace[Sq(X, θ̄)]. We can write, see
Gauchi and Pázman (2006),

detS(X, θ̄) =
∑

π

[
sign(π)

p∏

k=1

{S(X, θ̄)}k,π(k)

]

=
∑

π

[
sign(π)

p∏

k=1

∫

int(Θ)

{θ(k) − θ̄}k{θ(k) − θ̄}π(k) q̃X(θ(k)|θ̄)dθ(k)
]

=

∫

{int(Θ)}⊗p

L(θ(1), . . . , θ(p), θ̄, X) dθ(1) · · ·dθ(p) ,

where the sum is taken over all permutations of the set {1, . . . , p} (with signs
±1),

L(θ(1), . . . , θ(p), θ̄, X) =
∑

π

[
sign(π)

p∏

k=1

{θ(k) − θ̄}k{θ(k) − θ̄}π(k) q̃X(θ(k)|θ̄)
]
,

and where we use the notation θ(k) to distinguish between the p variables in
the multivariate integral. Similarly, we get for the criterion Φq,I(X ; θ̄)

trace[Sq(X, θ̄)] =

∫

{int(Θ)}⊗q

L′(θ(1), . . . , θ(q), θ̄, X) dθ(1) · · · dθ(q)
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with

L′(θ(1), . . . , θ(q), θ̄, X) = trace

[
q∏

k=1

(θ(k) − θ̄)(θ(k) − θ̄)� q̃X(θ(k)|θ̄)
]
.

6.4 Higher-Order Approximations of Optimality Criteria

The criteria presented in Sect. 6.3 are adequate even for small-sample ex-
periments. However, their optimization may be difficult, even if it is carried
through the use of stochastic approximation, hence the motivation for deriv-
ing analytical expressions. This happens to be feasible, at least approximately,
when the errors ε in (6.1) have finite moments up to order three, with σ small,
and when Θ = R

p, that is, when we can neglect the influence of the boundary
of Θ on the estimation—which is justified if σ is small enough since we always
assume that θ̄ ∈ int(Θ).

We first rewrite the criteria as integrals with respect to the density ϕX,θ̄(y)
of the observations. We obtain

∫

RN

{h[θ̂(y)] − h(θ̄)}2 ϕX,θ̄(y) dy

for c-optimality and

∫

RN

{θ̂(y) − θ̄}i{θ̂(y) − θ̄}j ϕX,θ̄(y) dy

for the components of S(X, θ̄). The entropy of the p.d.f. qX(·|θ̄) of θ̂ can be
approximated by

Ent[qX(·|θ̄)] = −
∫

RN

log{qX [θ̂(y)|θ̄]}ϕX,θ̄(y) dy . (6.20)

It gives the exact entropy of qX(·|θ̄), and thus the exact entropy of the p.d.f.

of θ̂, in intrinsically linear models where qX(·|θ̄) is exact; see Sect. 6.2.1. More
generally, we obtain an integral of the form

∫

RN

F [θ̂(y), θ̄, X ]ϕX,θ̄(y) dy (6.21)

where F (·, θ̄, X) is a given differentiable function. Compared to Sect. 6.3,
we have now integrals over RN instead of Rp. However, we can approximate
the function F (·, θ̄, X) to be integrated by using a Taylor development in the
neighborhood of the point η(θ̄).

Since θ̂(y) = argminθ ‖y − η(θ)‖2, we have θ̂[η(θ̄)] = θ̄ and
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F [θ̂(y), θ̄, X ] = F (θ̄, θ̄, X) +
∂F (θ, θ̄, X)

∂θ�

∣∣∣∣
θ̄

∂θ̂(y)

∂y�

∣∣∣∣
η(θ̄)

ε

+
1

2
ε�
{

p∑

i=1

∂F (θ, θ̄, X)

∂θi

∣∣∣∣
θ̄

∂2[θ̂(y)]i
∂y∂y�

∣∣∣∣
η(θ̄)

+
∂θ̂�(y)
∂y

∣∣∣∣
η(θ̄)

∂2F (θ, θ̄, X)

∂θ∂θ�

∣∣∣∣
θ̄

∂θ̂(y)

∂y�

∣∣∣∣
η(θ̄)

}
ε+ . . .

where ε = y − η(θ̄) has zero mean and variance–covariance matrix σ2IN .
Therefore, the criterion (6.21) equals

∫

RN

F [θ̂(y), θ̄, X ]ϕX,θ̄(y) dy = F (θ̄, θ̄, X)

+
σ2

2

N∑

i=1

{
∂F (θ, θ̄, X)

∂θ�

∣∣∣∣
θ̄

∂2θ̂(y)

∂y2i

∣∣∣∣
η(θ̄)

+
∂θ̂�(y)
∂yi

∣∣∣∣
η(θ̄)

∂2F (θ, θ̄, X)

∂θ∂θ�

∣∣∣∣
θ̄

∂θ̂(y)

∂yi

∣∣∣∣
η(θ̄)

}
+ O(σ3) .

The only remaining difficulty is to express the derivatives of θ̂(y) with respect
to the components yi. These derivatives can be obtained by using the implicit
definition of θ̂(y) through the equations

∂

∂θ
‖y − η(θ)‖2

∣∣∣∣
θ=θ̂(y)

= 0 .

Denote g(θ,y) = [∂η�(θ)/∂θ] [η(θ) − y]. We then obtain g[θ̄, η(θ̄)] = 0,

g[θ̂(y),y] = 0,

∂g(θ,y)

∂θ�
=

{
MX(θ) +

N∑

i=1

∂2η(xi, θ)

∂θ∂θ�
[η(xi, θ) − y(xi)]

}
,

∂g(θ,y)

∂y� = −∂η�(θ)
∂θ

.

Hence, from the implicit function theorem,

∂θ̂(y)

∂y� = −
[
∂g(θ,y)

∂θ�

∣∣∣∣
θ=θ̂(y)

]−1
∂g(θ,y)

∂y�

∣∣∣∣
θ=θ̂(y)

. (6.22)

Since θ̂[η(θ̄)] = θ̄, we get

∂θ̂(y)

∂y�

∣∣∣∣
η(θ̄)

= −M−1
X (θ̄)J�(θ̄) . (6.23)
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The higher-order derivatives of θ̂(y) are obtained by differentiating (6.22) with
respect to the components of y. For the second-order derivatives we obtain

∂2θ̂(y)

∂y2i

∣∣∣∣
η(θ̄)

= −M−1
X (θ̄)

∂

∂yi

[
∂g(θ,y)

∂θ�

∣∣∣∣
θ=θ̂(y)

] ∣∣∣∣
y=η(θ̄)

M−1
X (θ̄)

∂η(xi, θ)

∂θ

∣∣∣∣
θ̄

+M−1
X (θ̄)

∂2η(xi, θ)

∂θ∂θ�

∣∣∣∣
θ̄

∂θ̂(y)

∂yi

∣∣∣∣
η(θ̄)

. (6.24)

We have

∂

∂yi

[
∂g(θ,y)

∂θ�

∣∣∣∣
θ=θ̂(y)

] ∣∣∣∣
y=η(θ̄)

=

p∑

j=1

∂2g[θ, η(θ̄)]

∂θj∂θ�

∣∣∣∣
θ̄

∂[θ̂(y)]j
∂yi

∣∣∣∣
η(θ̄)

+
∂

∂yi

[
∂g(θ,y)

∂θ�

∣∣∣∣
θ̄

] ∣∣∣∣
y=η(θ̄)

=

p∑

j=1

{
∂2η�(θ)
∂θj∂θ

∣∣∣∣
θ̄

∂η(θ)

∂θ�

∣∣∣∣
θ̄

+
∂η�(θ)
∂θ

∣∣∣∣
θ̄

∂2η(θ)

∂θj∂θ�

∣∣∣∣
θ̄

+

N∑

k=1

∂2η(xk, θ)

∂θ∂θ�

∣∣∣∣
θ̄

∂η(xk, θ)

∂θj

∣∣∣∣
θ̄

} {
M−1

X (θ̄)
∂η(xi, θ)

∂θ

∣∣∣∣
θ̄

}

j

−∂2η(xi, θ)

∂θ∂θ�

∣∣∣∣
θ̄

,

which, together with (6.24), gives after simplification,

N∑

i=1

∂2θ̂(y)

∂y2i

∣∣∣∣
η(θ̄)

= −M−1
X (θ̄)J�(θ̄)

p∑

i,j=1

H�
ij(θ̄){M−1

X (θ̄)}ij , (6.25)

with H�
ij(θ) defined in (6.6).

Notice that, in the case of normal errors ε ∼ N (0, σ2IN ), using the first-

order approximation for θ̂(y) amounts to using the asymptotic normal ap-

proximation for θ̂. Indeed, we have

θ̂[η(θ̄)] +
∂θ̂(y)

∂y�

∣∣∣∣
η(θ̄)

ε = θ̄ +M−1
X (θ̄)J�(θ̄) ε ∼ N (θ̄, σ2M−1

X (θ̄)) .

6.4.1 Approximate Bias and Mean-squared Error

Using the developments above we obtain that the bias of θ̂ is given by

b(X, θ̄) = IEX,θ̄{θ̂} − θ̄

= IEX,θ̄

⎧
⎨

⎩M−1
X (θ̄)J�(θ̄) ε+

1

2

N∑

i,j=1

[
εiεj

∂2θ̂(y)

∂yi∂yj

∣∣∣∣
η(θ̄)

]⎫⎬

⎭+ O(σ3)

= b2(θ) + O(σ3) , (6.26)
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with

b2(θ) = b2(X, θ̄) = −σ2

2
M−1

X (θ̄)J�(θ̄)
p∑

i,j=1

H�
ij(θ̄) {M−1

X (θ̄)}ij , (6.27)

see (6.25), which corresponds to the expression obtained by Box (1971) using
a different technique. When the errors εi are normal, the third-order moments
IE{εiεjεk} equal zero for all i, j and k, and the first neglected term in (6.26)
is of order O(σ4).

Remark 6.5. The approximate expression (6.27) for the bias of the LS estima-
tor is at the origin of two methods for constructing bias-corrected estimators.
The first one (Firth 1993) corresponds to the score-corrected estimator θ̂sc
obtained by solving the modified normal equations

v(θ) − MX(θ)b2(X, θ) = 0

for θ, where v(θ) = J�(θ) [y − η(θ)] is the score function of the LS estimator

θ̂. The second one (Pronzato and Pázman 1994a) is based on the identity

IEX,θ̄{θ̂(y)− θ̄−b(X, θ̄)} = 0, and the estimator θ̂ts is obtained by solving the

equations θ + b2(θ) = θ̂ for θ. It thus corresponds to a two-stage procedure,

with the LS estimator θ̂ determined first and θ̂ts constructed from θ̂. The
approximate joint and marginal densities of θ̂sc and θ̂ts are derived in (Pázman
and Pronzato, 1998). �

From the developments above for the bias of the LS estimator, we see that
the second-order approximation of mean-squared error matrix S(X, θ̄) is

S(X, θ̄) = σ2M−1
X (θ̄) + O(σ3) .

The first neglected term is of order O(σ4) when the errors εi are normal. The
calculation of this next term in the development requires the expression of
fourth-order derivatives of θ̂(y) with respect to y. An approximation of S(X, θ̄)
is derived in (Clarke, 1980) using a different approach. However, the expression
obtained is very complicated and thus difficult to use for the construction of
design criteria.

6.4.2 Approximate Entropy of the p.d.f. of the LS Estimator

When the errors are normal N (0, σ2IN ), the (Shannon) entropy of the p.d.f.

qX(·|θ̄) of θ̂ can be approximated by (6.20), which gives

Ent[qX(·|θ̄)] = − log qX(θ̄|θ̄) − σ2

2

N∑

i=1

∂2 log qX [θ̂(y)|θ̄]
∂y2i

∣∣∣∣
η(θ̄)

+ O(σ4)

= − log qX(θ̄|θ̄) − σ2

2

N∑

i=1

{
∂θ̂�(y)
∂yi

∣∣∣∣
η(θ̄)

∂2 log qX(θ|θ̄)
∂θ∂θ�

∣∣∣∣
θ̄

∂θ̂(y)

∂yi

∣∣∣∣
η(θ̄)
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+
∂ log qX(θ|θ̄)

∂θ�

∣∣∣∣
θ̄

∂2θ̂(y)

∂y2i

∣∣∣∣
η(θ̄)

}
+ O(σ4) .

Direct calculation gives

− log qX(θ̄|θ̄) = −1

2
log detMX(θ̄) +

p

2
log(2πσ2) .

Calculating the first- and second-order derivatives of log qX(θ|θ̄) with respect
to θ and using (6.23), (6.25), we obtain after simplification

Ent[qX(·|θ̄)] = Ent1[qX(·|θ̄)]

−σ2

2

p∑

h,i,j,k=1

(
{M−1

X (θ̄)}ij
[
{M−1

X (θ̄)}kh[Rkjhi(θ̄) + Uhkij(θ̄)]

−Ghki(θ̄)Gkhj(θ̄) −Gkkh(θ̄)G
h
ij(θ̄)

])
+ O(σ4) ,

where

Ent1[qX(·|θ̄)] = p

2
[1 + log(2πσ2)] − 1

2
log detMX(θ̄) ,

Uhkij(θ) =
∂η�(θ)

∂θk∂θi∂θj

∂η(θ)

∂θh

Gkij(θ) =

p∑

h=1

∂η�(θ)
∂θh

H�
ij {M−1

X (θ̄)}hk

and Rhijk(θ) is defined in Sect. 6.1.2, see Pronzato and Pázman (1994b).
Notice that the approximation Ent1[qX(·|θ̄)] coincides with the entropy of

the asymptotic normal distribution of θ̂, as can be checked by substituting
MX(θ̄)/[Nσ2] for M(ξ, θ̄) in (5.7).

6.5 Bibliographic Notes and Further Remarks

Design criteria based on confidence regions

Define e(θ) = y−η(θ); one may observe that e�(θ̄)Pθ̄ e(θ̄)/σ2 and e�(θ̄) [IN−
Pθ̄] e(θ̄)/σ

2, with Pθ the projector given by (6.4), are, respectively, distributed
like χ2

p and χ2
N−p random variables under the assumption of normal errors.

Moreover, these variables are independent. Therefore, the region

{
θ ∈ R

p : e�(θ)Pθ e(θ)/σ2 < χ2
p(1 − α)

}
,

where χ2
p(1 − α) is the (1 − α) quantile of the χ2

p distribution, is an exact
confidence region of level 1− α when σ2 is known, whereas the region
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{
θ ∈ R

p :
N − p

p

e�(θ)Pθ e(θ)
e�(θ) [IN − Pθ] e(θ)

< Fp,N−p(1 − α)

}
, (6.28)

where Fp,N−p(1 − α) is the (1 − α) quantile of the F distribution with p and
N − p degrees of freedom, is an exact confidence region of level 1 − α for
the case where σ2 is unknown; see, e.g., Halperin (1963), Hartley (1964), and
Sundaraij (1978). Although the regions above are exact, in general they are
not of minimum volume. Also, they can be composed of disconnected subsets
when Sη is curved.

Approximate confidence regions can be obtained from the likelihood ratio.
When σ2 is known,

{
θ ∈ R

p : ‖e(θ)‖2 − ‖e(θ̂)‖2 < σ2χ2
p(1 − α)

}

has confidence level approximately 1 − α and, when σ2 is unknown, the con-
fidence level of

{
θ ∈ R

p : ‖e(θ)‖2/‖e(θ̂)‖2 < 1 +
p

N − p
Fp,N−p(1 − α)

}

is also approximately 1 − α. These regions are usually connected.
Hamilton et al. (1982) use a quadratic approximation of Sη and approxi-

mate projections of confidence regions like those above on the tangent plane
to Sη at η(θ̂). They obtain in this way ellipsoids on this tangent plane (instead
of the spheres obtained when a linear approximation of Sη is used), which can
then be mapped into the parameter space. A nice quadratic approximation of
the volume of the resulting regions is used in (Hamilton and Watts, 1985) as a
substitute to the D-optimality criterion, which is related to the volume of the
asymptotic ellipsoid of concentration; see Sect. 5.1. Vila (1990) considers the
design criterion defined by the exact expected volume of confidence regions
(6.28) for a given α, which he then optimizes by stochastic approximation
techniques; see also Vila and Gauchi (2007).

When σ2 is unknown, instead of using an estimate of σ2 based on residuals,
like in (6.28), we can estimate σ2 from replications of observations at some
design points. Let ni denote the number of observations at x(i), i = 1, . . . ,m,
with

∑m
i=1 ni = N , and define ȳi = (1/ni)

∑ni

j=1 yj(x
(i)) with yj(x

(i)) the j-th

observation at x(i). Suppose that ni > 1 for i = 1, . . . ,m′ ≤ m. Then, the esti-

mator σ̂2 = [1/(N−m′)]
∑m′

i=1

∑ni

j=1[yj(x
(i))− ȳi]2 is such that (N−m′)σ̂2/σ2

has the χ2
N−m′ distribution. One may thus consider confidence regions given

by {
θ ∈ R

p : e�(θ)Pθ e(θ)/(p σ̂2) < Fp,N−m′(1 − α)
}
. (6.29)

Let ȳ denote the vector obtained by replacing each component yj(x
(i)) by

ȳi in y. One can easily check that (y − ȳ)�Pθ̄ e(θ̄) = 0, so that, under the
assumption of normal errors, e�(θ̄)Pθ̄ e(θ̄) and σ̂2 are independent and the
regions (6.29) are exact. When the intrinsic curvature of the model is not too
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large, these regions are larger than the regions (6.28); on the other hand, they
are not so much affected by a large intrinsic curvature. Since different designs
allow different degrees of freedom N −m′ for the estimation of σ2, the value
of m′ should enter the definition of design criteria based on the confidence
regions (6.29), a problem considered in (Gilmour and Trinca, 2012) for the
case of linear models.



7

Identifiability, Estimability, and Extended

Optimality Criteria

Among the major difficulties that one may encounter when estimating
parameters in a nonlinear model are the nonuniqueness of the estimator,
its instability with respect to small perturbations of the observations, and
the presence of local optimizers of the estimation criterion. Classically, those
issues are ignored at the design stage: the designs of Chap. 5 are based on
asymptotic local properties of the estimator; the approaches of Chap. 6 make
use of an assumption (HS , p. 172) which allows us to avoid these difficulties.
The main message of this chapter is that estimability issues can be taken into
account at the design stage, through the definition of suitable design criteria.
This forms a difficult area, still under development. Several new notions will
be introduced, and a series of examples will illustrate the importance of the
geometry of the model.

The qualitative notions of identifiability and estimability are introduced
in Sects. 7.1 and 7.2, respectively. Numerical difficulties for the estimation of
the model parameters, such as the presence of local optima and the instability
of the estimator with respect to small perturbations of the observations, are
considered in Sect. 7.3. They are related to a notion of estimability which is
more quantitative and which we suggest to measure through the construction
of an estimability function (Sect. 7.4) or an extended measure of nonlinearity
(Sect. 7.5). The advantages and drawbacks of using p-point design in this
context are exposed in Sect. 7.6. Section 7.7 suggests optimality criteria for
designing experiments that take potential numerical difficulties into account.
The notion of estimability is related to the estimator that is used; we focus
our attention on LS estimation throughout the chapter, and the presentation
of estimability for estimators other than LS is postponed to Sect. 7.8.

Throughout the chapter we consider the same framework as in Chap. 6,
that is, we assume that the observations satisfy

yi = y(xi) = η(xi, θ̄) + εi , i = 1, . . . , N , (7.1)

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 7,
© Springer Science+Business Media New York 2013
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with IE(εi) = 0 , var(εi) = σ2 , cov(εi, εj) = 0 if i �= j , i, j = 1, . . . , N .
We write in a vector notation

y = η(θ̄) + ε , with IE(ε) = 0 , Var(ε) = σ2IN , (7.2)

where η(θ) = ηX(θ) = (η(x1, θ), . . . , η(xN , θ))
�, y = (y1, . . . , yN )�, ε =

(ε1, . . . , εN)
�, and X = (x1, . . . , xN ). Also, we suppose that the assumptions

HΘ, H1η, and H2η of Sect. 3.1 are satisfied: Θ is a compact subset of Rp such

that Θ ⊂ int(Θ), and η(x, θ) is twice continuously differentiable with respect
to θ ∈ int(Θ) for any x ∈ X . We denote

JN (θ) =
1

N
‖η(θ) − y‖2 =

1

N

N∑

i=1

[y(xi) − η(xi, θ)]
2 (7.3)

the LS criterion, and the LS estimator corresponds to the global minimizer of
‖η(θ) − y‖2 for θ ∈ Θ,

θ̂NLS(y) = argmin
θ∈Θ

‖η(θ) − y‖2 .

7.1 Identifiability

Given a parametric model describing how observations are generated,
identifiability addresses the following question: is it possible to estimate the
model parameters uniquely from a (possibly infinite) set of observations?
The answer depends on the model structure itself, given by mathematical
equations, on the choice of the design and on the set Θ in which the model
parameters are looked for. One may refer to Koopmans and Reiersøl (1950)
for an illuminating introduction to these ideas for general statistical models
(design issues being not considered in that paper, however).

In the case of regression models such as (7.2), the issue of identifiability
reduces to that of the uniqueness of a vector θ of model parameters associated
with a given response vector η(θ) = (η(x1, θ), . . . , η(xN , θ))

� when N is arbi-
trarily large and X = (x1, . . . , xN ) is arbitrary. One may refer, e.g., to Walter
(1982, 1987) for definitions in a more general context. An important notion
there is that of global identifiability: the model is globally identifiable when
for almost any θ (in the sense of zero Lebesgue measure on Θ) it satisfies

θ′ ∈ Θ and η(θ) = η(θ′) for all designs X =⇒ θ′ = θ .

The restriction to almost all θ is to avoid pathological situations; the
consideration of all designs X makes the property depend on the model equa-
tions only. On the other hand, when the property is true in some neighbor-
hood of θ (i.e., for almost any θ, there exists V(θ) such that η(θ) = η(θ′) for
all designs X and θ′ ∈ V(θ) implies θ′ = θ), the model is said to be locally
identifiable. When the result θ′ = θ is weakened into the equality of some com-
ponent of θ, {θ′}i = {θ}i say, this component is said to be globally (or locally)
identifiable.
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7.2 LS Estimability of Regression Models

We call estimability a notion, related to identifiability, that concerns the
uniqueness of the estimate of the model parameters θ for a given design.
The notion is thus related to the estimator which is considered—notice that
the estimability conditions given in the consistency theorems of Chaps. 3 and 4
depend on the model and estimator. We focus here on LS estimation; other
estimators will be considered in Sect. 7.8.

LS estimability can be understood as identifiability for a given design X :
a regression model is globally LS estimable at θ ∈ Θ for X if

θ′ ∈ Θ and η(θ′) = η(θ) =⇒ θ′ = θ .

When the property is valid for almost all θ, in the sense of the Lebesgue
measure on Θ, again in order to avoid pathological situations, the model
is said to be globally LS estimable for X . Geometrically, this corresponds
to a nonoverlapping expectation surface; see Sect. 6.1.1. A justification of
this notion is as follows. Suppose that the experiment characterized by X
is repeated n times. The global LS estimability at θ̄ for X guarantees the
strong consistency of the LS estimator of θ when n tends to infinity. This is
in accordance with the LS estimability condition (3.6) used in Theorem 3.1.

The definitions of local LS estimability at θ and local LS estimability for
X follow similarly from the notion of local identifiability: the model is locally
LS estimable at θ ∈ Θ for X if there exists some neighborhood V(θ) of θ
such that

θ′ ∈ V(θ) and η(θ′) = η(θ) =⇒ θ′ = θ ;

if this is true for almost any θ, then the model is locally LS estimable for X .
Notice that the existence of at least one design X such that the model is glob-
ally (respectively, locally) LS estimable for X implies the global (respectively,
local) identifiability of the model.

Example 7.1. Consider a one-parameter model with one observation at x for
which the response η(x, θ) is the continuous function of θ plotted in Fig. 7.1.
Then the model is globally LS estimable for x at any θ < θa or θ > θd, locally
LS estimable for x at any θ ∈ [θa, θb) ∪ (θc, θd], and not estimable for x at
a θ ∈ [θb, θc]. �

Let X = (x1, . . . , xN ) be any given design and consider the associated
responses η(θ) = (η(x1, θ), . . . , η(xN , θ))

�. The next theorem (see Pázman

1984a) states that η(θ̂NLS) = minz∈Sη ‖z − y‖2, with Sη = {η(θ) : θ ∈ Θ}
the expectation surface, is unique with probability 1 under fairly general
conditions. We do not reproduce the proof, which requires long differential-
geometric arguments presented in (Pázman, 1993b).
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Fig. 7.1. Local and global estimability at θ

Theorem 7.2. When the probability measure of the observation errors εi in
the regression model (7.2) has a density with respect to the Lebesgue mea-

sure, the value of z = η[θ̂NLS(y)] on the expectation surface Sη closest (for the
Euclidian distance) to y is unique w.p.1.

This does not mean in general that θ̂NLS(y) is unique, but due to
Theorem 7.2, this uniqueness is ensured w.p.1 if the mapping θ ∈ Θ −→
η(θ) ∈ R

N is unique, i.e., if the model is globally LS estimable for X . This
evidences the practical importance of estimability.

Local LS estimability at a given θ for the experimental design X is easily
tested by computing the information matrix

MX(θ) =
∂η�(θ)
∂θ

∂η(θ)

∂θ�
. (7.4)

Indeed, rank[MX(θ)] = dim(θ) implies that the model is locally LS estimable
at θ for X . The situation is particularly simple for linear models where η(θ) is
linear in θ, η(θ) = F(X)θ+ v(X): local and global LS estimabilities are then
equivalent. Testing global LS estimability for models nonlinear in θ is more
complicated; a numerical approach will be proposed in Sect. 7.4 through the
construction of an estimability function.

7.3 Numerical Issues Related to Estimability
in Regression Models

Examples of difficulties with LS estimation concern the uniqueness of the
global minimizer θ̂NLS(y) of JN (·) given by (7.3), the possible existence of
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values of θ far from θ̂NLS but with almost similar values of JN (·), the stability

of θ̂NLS(y) with respect to small perturbations of y, the possible presence of
local minimizers for JN (·), etc.

Local Minimizers and Instability of θ̂N
LS

A major issue in parameter estimation concerns the presence of local
minimizers of the mapping θ ∈ Θ −→ ‖η(θ) − y‖2 or of the mapping
z ∈ Sη −→ ‖z−y‖2. Indeed, most algorithms for LS estimation only perform
a local search, and it is then difficult to certify that the minimizer obtained
is the global one. In fact, when the probability measure of the observations
y(xi) has a density with respect to the Lebesgue measure and Sη is curved,
i.e., Cint(X, θ) > 0 for some θ (see (6.9)), there is a strictly positive probabil-
ity that the LS criterion JN (·) has local minimizers that differ from the global
one; see Demidenko (1989, 2000).

In the extreme situation where the expectation surface Sη is curved and
y is close to its center of curvature, small perturbations of y may change
drastically the values of η[θ̂NLS(y)] and θ̂

N
LS(y). If such a situation may occur

with non-negligible probability for a design X , then either we should be sure
to repeat observations at X a large enough number of times, see Remarks 6.1
and 6.3, or we should use another design.

Although it is intuitively clear that local minima will not exist if (i) the
feasible domain Θ is not too large and (ii) the observations y are sufficiently
close to the expectation surface Sη, few precise results exist in this domain.
The following property, stated in (Chavent, 1983), defines a tube T around
Sη such that, for any y ∈ T , the LS criterion (7.3) has a unique global min-
imizer and no other local minimizer. See also Chavent (1987); more precise
developments are presented in (Chavent, 1990, 1991).

Theorem 7.3. Assume that η(·) is twice continuously differentiable in the
interior of Θ, a compact subset of Rp, and that ∂η�(θ)/∂θ has full rank p for
any θ ∈ int(Θ). Define

αη = αη(X,Θ) =

(
min
θ∈Θ

λmin[MX(θ)]

)1/2

(7.5)

and

βη = βη(X,Θ) = max
θ∈Θ

max
u∈Rp , ‖u‖=1

(
N∑

i=1

[
u� ∂2η(xi, θ)

∂θ∂θ�
u

]2)1/2

. (7.6)

Assume that

diam(Θ) < 2
√
2
αη
βη

(7.7)
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with diam(Θ) = maxθ,θ′∈Θ ‖θ′ − θ‖. Then, for any y such that

d(y, Sη) = min
θ∈Θ

‖y − η(θ)‖ =
√
N min

θ∈Θ

√
JN (θ) <

α2
η

βη
− βη

8
[diam(Θ)]2 (7.8)

the LS criterion JN (·) given by (7.3) has a unique global minimizer θ̂NLS(y)

and no other local minimizer in Θ, with θ̂NLS(y) depending continuously on y.

Convexity of the LS Criterion

From (7.7), local minimizers of the LS criterion may exist in Θ when its

diameter is large. In general, having determined a minimizer θ̂N in a given
set Θ, one may thus still wonder if it corresponds to the global optimum.
The following property (Demidenko, 2000) gives a partial answer. The proof,
based on simple convexity arguments, is reproduced below. Define the total
radius of curvature of the model at θ as

Rη(θ) = Rη(X, θ) = inf
u∈Rp−{0}

u�MX(θ)u
(∑N

i=1

[
u� ∂2η(xi,θ)

∂θ∂θ� u
]2)1/2

. (7.9)

Notice that α2
η/βη ≤ Rη = minθ∈ΘRη(θ).

Theorem 7.4. Assume that η(·) is twice continuously differentiable in the

interior of Θ, a compact set of Rp. Let θ̂N be a local minimizer for the criterion
(7.3). If

N JN (θ̂N ) < min
θ∈Θ

R2
η(θ) = R2

η (7.10)

and

Θη = {θ ∈ Θ : N JN (θ) < R2
η} is a convex set , (7.11)

then θ̂N is the global minimizer of JN (·). Moreover, JN (·) is convex on Θη.

Proof. We have

∇2
θJN (θ) =

∂2JN (θ)

∂θ∂θ�
=

2

N
MX(θ) − 2

N

N∑

i=1

[y(xi) − η(xi, θ)]
∂2η(xi, θ)

∂θ∂θ�
.

Therefore, for any u ∈ R
p,

1

2
u�∇2

θJN (θ)u ≥ 1

N
u�MX(θ)u − 1

N

(
N∑

i=1

[y(xi) − η(xi, θ)]
2

)1/2

×
(

N∑

i=1

[
u� ∂

2η(xi, θ)

∂θ∂θ�
u

]2)1/2

=
1

N
u�MX(θ)u − J

1/2
N (θ)

(
1

N

N∑

i=1

[
u� ∂

2η(xi, θ)

∂θ∂θ�
u

]2)1/2
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and N JN (θ) < R2
η implies u�∇2

θJN (θ)u > 0 so that JN (·) is convex on Θη.
If θ̂N is a local minimizer of JN (·) that belongs to Θη, when Θη is convex, θ̂N

is necessarily the global minimizer of JN (·).

One may notice that the conditions (7.10), (7.11) of Theorem 7.4 can be
replaced by Θη(t) = {θ ∈ Θ : N JN (θ) < t} is a convex set for some t

satisfying N JN (θ̂N ) < t ≤ R2
η.

The two theorems above somewhat complete each other: under the
assumption that the model structure used for estimation is correct, i.e.,
IE{y} = η(θ̄) for some θ̄, Theorem 7.3 can be used to bound the proba-
bility that the LS criterion will have a unique global minimizer and no other
local minimizer on a given set Θ; Theorem 7.4 gives a sufficient condition for
a local minimum to be the global one, once the data have been collected.

However, some issues remain open. A first reason is that the computation
of αη, βη, or Rη is not easy. An algorithm for computing Rη(θ) can be found
in (Bates and Watts, 1980) and (Demidenko, 2000), and a lower bound on Rη
can be obtained analytically in particular examples; see Demidenko (2000). A
second reason, even more serious, is that the results of both theorems often
cover limited regions of the parameter space only. Theorem 7.3 puts a condi-
tion on diam(Θ) (see (7.7)) that can be very conservative; the condition (7.11)
of Theorem 7.4 is generally extremely difficult to check, and in general situa-
tions, the set Θη can be non-convex or even disconnected. In fact the examples
in (Demidenko, 2000) require a case-by-case specific construction of convex
sets, as large as possible, on which the LS criterion is convex. The following
examples, originated from (Demidenko, 2000), illustrate the difficulties. We
call convexity region the set of y ∈ R

N such that the function θ −→ JN (θ)
is convex on Θ and multimodality region the set of y such that this function
admits several local minimizers.

Example 7.5. Consider the following one-parameter model:

η(x, θ) = θ{x}1 + θ2{x}2

with Θ ⊂ R and two observations at the design points x1 = (1, 0), x2 = (0, 1).
Direct calculations give

MX(θ) = 2Rη(θ) = 1 + 4θ2 , Rη =
1

2
, αη = 1 , βη = 2 .

Also, the intrinsic curvature defined by (6.9) equals

Cint(X, θ) =
2

(1 + 4θ2)3/2

and is maximum at θ = 0. The expectation surface Sη = {(θ, θ2)� : θ ∈ R} is
shown in Fig. 7.2 (solid-line parabola). The LS criterion (7.3) is a convex func-
tion of θ for y2 < 1/2; the derivative ∇θJ2(θ) has three real roots, and J2(θ)
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has thus two minima for y2 > 1/2+(3/4)(2|y1|)2/3, y1 ∈ R. The corresponding
regions of convexity and multimodality in the (y1, y2) plane are presented on
the figure. Consider the tubes T (ε) = {y : d(y, Sη) ≤ ε} around Sη. The con-
dition ε ≤ 1/2 is necessary to guarantee that the LS criterion has a unique
global minimizer for any y ∈ T (ε). Indeed, for any ε′ > 1/2, y = (0, ε′)�

belongs to the multimodality region, and the LS criterion J2(θ) has then two
global minimizers at ±

√
ε′ − 1/2 (note that the probability measure of the

set of such points is zero according to Theorem 7.2).
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Fig. 7.2. Expectation surface (solid-line parabola), regions of convexity and mul-
timodality of the LS criterion in the (y1, y2) plane (colored), and limits on y given
by (7.8) for diam(Θ) = 1 (dashed line) and diam(Θ) = 0 (dotted line)

The bound on d(y, Sη) given by (7.8) equals b = b(Θ) = 1/2−[diam(Θ)]2/4,
which, for any value of diam(Θ), defines a tube T (b) around Sη (see the
dashed-line parabolas on Fig. 7.2 obtained for diam(Θ) = 1).

As we shall show now, this example illustrates that the bound (7.8) is

rather pessimistic. Indeed, let θ̂1 and θ̂2 denote the two minimizers of J2(θ)

when y belongs to the multimodality region. One can check that |θ̂2 − θ̂1|
is minimum when y is on the boundary of the region, i.e., when it satisfies
y2 = 1/2 + (3/4)(2|y1|)2/3. The two minimizers are then θ̂1 = (2y1)

1/3 and

θ̂2 = −(y1/4)
1/3, and the minimum of |θ̂2−θ̂1| when d(y, Sη) ≤ 1/2 is obtained

at y � (0.6222 , 1.3677)� and approximately equals Δ = 1.6134. This means
that for any Θ such that diam(Θ) < Δ and any y such that d(y, Sη) < 1/2,
there is one unique minimizer of J2(θ) in Θ, a situation much more favorable
than indicated by the bound (7.8).
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Consider now the condition given by (7.10). One can check that when y

is in the multimodality region, J2(θ̂i) ≥ R2
η/2 = 1/8 for at least one of the

two minimizers θ̂1, θ̂2. Any minimizer θ̂i satisfying (7.10) is thus the global
minimizer of J2(θ). The results given in Theorem 7.4 are more partial than
that. The setΘη defined in (7.11) is not empty when (y1−θ)2+(y2−θ2)2 < 1/4
for some θ, which defines the tube T (1/2) around Sη; see the dotted parabolas
on Fig. 7.2. Theorem 7.4 only covers the situation where y lies between these
lines: it indicates that the local minimizer θ̂ such that ‖y − η(θ̂)‖ < 1/2 is
the global one and that the LS criterion is convex for θ in the set Θη = {θ :
‖y − η(θ)‖ < 1/2}. One may notice that convexity is in fact satisfied in a
larger set. Indeed, for any y, the LS criterion is convex for θ in C(y) = {θ :
θ2 > (2y2 − 1)/6}, whereas θ ∈ Θη implies θ2 > y2 − 1/2, so that Θη ⊂ C(y).

�

Example 7.6. We modify previous example by changing η(x, θ) for negative θ,
η(x, θ) = (θ{x}1 + θ2{x}2) IIR+(θ) + (sin(θ){x}1 + 2[1 − cos(θ)]{x}2) IIR−(θ),
with Θ = [γ,∞), γ > −2π. Again, we make two observations at the design
points x1 = (1, 0) and x2 = (0, 1), and η(θ) is twice continuously differentiable
in the interior of Θ. We get MX(θ) = cos2 θ + 4 sin2 θ for θ ≤ 0, with the
same values as in Example 7.5 for αη, βη, and Rη. For θ ≤ 0, the intrinsic
curvature (6.9) is now

Cint(X, θ) =
2

(4 − 3 cos2 θ)3/2

and is maximum at θ = 0. The situation is thus not worse than in Example 7.5
in terms of intrinsic curvature of the model.

Figure 7.3 presents the expectation surface Sη. Note that γ > −2π implies
that the model is globally LS estimable at any θ ∈ Θ for this design: to any
z ∈ Sη corresponds a unique θ ∈ Θ such that z = η(θ).
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Fig. 7.3. Expectation surface Sη in Example 7.6 for γ = −5.5
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Although the expectation surface Sη almost overlaps, the situation is
similar to previous example concerning Theorem 7.3: when y belongs to a
tube T (ε) = {y : d(y, Sη) ≤ ε} with ε < 1/2, if there exist two minimizers

θ̂1 and θ̂2, they are well separated: |θ̂1 − θ̂2| is larger than some computable
bound. At the same time, if γ is close enough to −2π, we can find observa-
tions y that yield two local minimizers θ̂1 and θ̂2 such that J2(θ̂1) and J2(θ̂2)

are smaller than R2
η/2 (and J2(θ̂1), J2(θ̂2) can be arbitrarily close if γ ap-

proaches −2π), that is, condition (7.11) of Theorem 7.4 may not be satisfied.
The reason is that Θη can be disconnected. �

Examples 7.5 and 7.6 show that the information provided by the curvature
of the model is clearly not enough to measure the difficulty of the estimation
of its parameters caused by an expectation surface that folds over itself. It is
therefore extremely important to keep in view the possibility that Sη may
overlap when choosing the experimental design X , i.e., before collecting the
observations. In the next section we construct a function that gives a quanti-
tative information on the LS estimability of the model for a given design X .

7.4 Estimability Function

7.4.1 Definition

Define the (local) estimability function at θ

Eη,θ(·) : δ ∈ R
+ −→ Eη,θ(δ) = min

θ′∈Θ, ‖θ′−θ‖2=δ
‖η(θ′) − η(θ)‖2 (7.12)

and the (global) estimability function

Eη(·) : δ ∈ R
+ −→ Eη(δ) = min

θ∈Θ
Eη,θ(δ) = min

(θ,θ′)∈Θ2, ‖θ′−θ‖2=δ
‖η(θ′) − η(θ)‖2

with the minimum over an empty set taken as +∞. Notice that Eη,θ(δ) and
Eη(δ) depend on the design X . Although Eη,θ(·) is defined at a particular θ,
its construction involves the consideration of ‖η(θ′)− η(θ)‖ for θ′ far from θ;
it therefore carries information on the global LS estimability of the model; see
in particular Theorem 7.10. Note that by repeating n times the experiment
characterized by X , we multiply Eη,θ(δ) and Eη(δ) by n. Also notice that
Eη,θ(·) and Eη(·) are one-dimensional curves that can be plotted whatever
the values of N and p = dim(θ), whereas the expectation surface can only be
visualized for p = 1 or 2 and N ≤ 3. An example with p = 3 and N = 16 will
be given in Sect. 7.7.4.

7.4.2 Properties

Relation with E-optimality

When the model is linear in θ with Θ = R
p and η(θ) = F(X)θ + v(X), the

function Eη(δ) is linear,
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Eη(δ) = λmin[F
�(X)F(X)] δ = λmin(MX) δ ,

which is related to the criterion of E-optimality; see Sect. 5.1.2.
For nonlinear models, we can use a second-order expansion of η(θ′) for θ′

close to θ ∈ int(Θ),

η(θ′) = η(θ) + (θ′ − θ)�
∂η(θ)

∂θ�

+
1

2

p∑

i,j=1

(θ′ − θ)i (θ
′ − θ)j

∂2η(θ)

∂θi∂θj
+ O(‖θ′ − θ‖3) ,

to obtain

‖η(θ′)− η(θ)‖2 = (θ′ − θ)�MX(θ)(θ′ − θ) +RX(θ, θ′) + O(‖θ′ − θ‖4) ,

where

RX(θ, θ′) =
p∑

i,j,k=1

(θ′ − θ)i (θ
′ − θ)j (θ

′ − θ)k
∂η�(θ)
∂θi

∂2η(θ)

∂θj∂θk
.

For ‖θ′ − θ‖2 = δ, we get

‖η(θ′)− η(θ)‖2 = δ u�MX(θ)u+ δ3/2AX(θ;u) + O(δ2) , (7.13)

with u = (θ′ − θ)/‖θ′ − θ‖ and

AX(θ;u) =

p∑

i,j,k=1

ui uj uk
∂η�(θ)
∂θi

∂2η(θ)

∂θj∂θk
.

Therefore, for small δ,

Eη,θ(δ) = λmin[MX(θ)] δ + O(δ3/2) , (7.14)

Eη(δ) = min
θ∈Θ

λmin[MX(θ)] δ + O(δ3/2) ,

and more precisely

Eη,θ(δ) = λmin[MX(θ)] δ +AX(θ) δ3/2 + O(δ2) (7.15)

for some scalar AX(θ) depending on X and θ.

Remark 7.7. The term AX(θ;u) can be rewritten as

AX(θ;u) =

p∑

i,j,k=1

ui uj uk
∂η�(θ)
∂θi

Pθ
∂2η(θ)

∂θj∂θk
,
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with Pθ the projector defined by (6.4). Using Cauchy–Schwarz inequality, we
obtain |AX(θ;u)| ≤ [u�MX(θ)u]3/2 Cpar(X, θ;u), with Cpar(X, θ;u) defined
by (6.11), and therefore

max
‖u‖=1

|AX(θ;u)| ≤ λ3/2max[MX(θ)]Cpar(X, θ) ,

with Cpar(X, θ) = supu∈Rp−{0} Cpar(X, θ;u) the parametric curvature of the

model. The major effect of nonlinearity on Eη,θ(δ) for small δ is thus para-
metric and related to Cpar(X, θ). �

Remark 7.8. Suppose that η(·) is continuous in θ. Eη,θ(·) is then a continuous
function of δ if a minimizing point θ′(δ) in (7.12) belongs to int(Θ)—the case
when all points θ′(δ) are on the boundary of Θ is more delicate and may
lead to left or right discontinuity of Eη,θ(·). Similarly, denote by (θ(δ), θ′(δ))
a minimizing pair (θ, θ′) in Eη(·); Eη(·) is then continuous in δ when θ(δ) or
θ′(δ) belong to int(Θ). When Θ is convex, Eη(δ) is thus continuous at any
δ < diam(Θ).

Eη,θ(·) is lower semicontinuous since its lower sets L(α) = {δ ∈ R
+ :

Eη,θ(δ) ≤ α} are closed for all α. Indeed, L(α) = {δ ∈ R
+ : Dθ(α) �= ∅}

where Dθ(α) = {(θ′, δ) ∈ Θ × R
+ : ‖θ′ − θ‖2 = δ and ‖η(θ′) − η(θ)‖2 ≤ α}

is a closed set. Eη(·) is lower semicontinuous from similar arguments. As a
consequence, Eη,θ(·) has a minimum on any compact subset of R

+. Also,
ω∗
θ = minδ∈R+ Eη,θ(δ)/δ is well defined (see (7.16)) and so is ΦeE(X ; θ) =

minδ∈R+ Eη,θ(δ)(K + 1/δ)/N for some K > 0, see Sect. 7.7.1. �

Relation with the Localization of the LS Estimator

The model is locally LS estimable at θ for X if Eη,θ(δ) > 0 for all δ ∈ (0, Δ)
for some Δ > 0; it is globally LS estimable at θ for X if Eη,θ(δ) > 0 for
all δ > 0. Similarly, the function Eη(·) provides information about the global
LS estimability for the design X (see Sect. 7.2), the model being globally LS
estimable for X when Eη(δ) > 0 for any δ > 0. We shall see in Example 7.14
that Eη(δ) may be null for all δ in some interval Iη when the model is only
locally LS estimable for X .

More importantly, we show hereafter that the functions Eη,θ(·) and Eη(·)
also provide information on the numerical properties of estimators, in con-
nection with Theorems. 7.3 and 7.4. The first part of the results given below
(Lemma 7.9) relates the estimability function Eη(·) to the results in The-
orem 7.4. Those results are rather of the negative sort: in particular, it is
shown that the set Θη defined by (7.11) is disconnected with positive proba-
bility when there exists δ′ < δ with Eη(δ) < R2

η < Eη(δ
′). The second part

(Theorem 7.10) is more positive: we show that, for any θ, the search for θ̂NLS
can be restricted to a ball centered at θ with radius related to ‖y − η(θ)‖.

For any given y ∈ R
N , consider the sets
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Θη(t) = {θ ∈ Θ : ‖y − η(θ)‖2 < t} , t > 0 .

Note that Θη(t) depends on X and y and that the set Θη of Theorem 7.4
corresponds to t = R2

η. The following lemma relates the size and connec-
tivity of Θη(t) to properties of the function Eη(·) and gives indications on
the possibility for condition (7.11) not to be satisfied. The proof is given in
Appendix C.

Lemma 7.9. Assume that η(θ) is continuous for θ ∈ Θ, a compact subset of
R
p. We have:

(i) For any θ, θ′ ∈ Θη(t), Eη(‖θ − θ′‖2) < 4t, and the maximum diameter

D(t) of any connected part of Θη(t) satisfies D
2
(t) ≤ inf{δ : Eη(δ) ≥ 4t}.

(ii) Suppose that the probability measure of the observations y has a density
with respect to the Lebesgue measure in R

N . If there exists δ′ < δ such
that Eη(δ) < t < Eη(δ

′), then the probability that the set Θη(t) is not
connected is strictly positive.

Next theorem shows that the calculation of

ω∗
θ = min

δ∈R+

Eη,θ(δ)

δ
= min
θ′∈Θ

‖η(θ′)− η(θ)‖2
‖θ′ − θ‖2 (7.16)

allows us to draw conclusions about the location of θ̂NLS , thereby extending
the results of Theorem 7.3.

Theorem 7.10. For any θ ∈ Θ, θ̂NLS belongs to the set Θθ defined by

Θθ = Θ ∩ B(θ, 2dθ/
√
ω∗
θ) ,

where dθ = ‖y−η(θ)‖ denotes the distance between y and η(θ). Moreover, Θθ
contains no other local minimizer of (7.3) when

dθ < d∗θ =
1

4βη,θ

[√
ω∗
θ(ω

∗
θ + 8α2

η,θ) − ω∗
θ

]
(7.17)

where αη,θ = αη(X,Θθ), βη,θ = βη(X,Θθ), and ω∗
θ are, respectively, given

by (7.5), (7.6), and (7.16).

Proof. The global minimizer θ̂NLS of (7.3) satisfies ‖y − η(θ̂NLS)‖ ≤ dθ, so that

θ̂NLS ∈ {θ′ ∈ Θ : ‖y − η(θ′)‖ ≤ dθ} ⊂ {θ′ ∈ Θ : ‖η(θ′) − η(θ)‖ ≤ 2dθ} . (7.18)

Now, from the definition of ω∗
θ , ‖θ′−θ‖2 = δ > 4d2θ/ω

∗
θ implies that Eη,θ(δ) >

4d2θ, and thus ‖η(θ′) − η(θ)‖2 > 4d2θ. Therefore, θ̂
N
LS ∈ Θθ.

For the second part of the theorem we simply apply Theorem 7.3 to the set
Θθ, which indicates that Θθ contains no other local optimizer of (7.3) when
dθ + 2βη,θd

2
θ/ω

∗
θ < α2

η,θ/βη,θ, i.e., when dθ satisfies (7.17).
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Remark 7.11. The results in Theorem 7.10 can be improved as follows. Define←−
E η,θ(s) as the solution of the following optimization problem:

←−
E η,θ(s) = max

θ′∈Θ, ‖η(θ′)−η(θ)‖2≤s
‖θ′ − θ‖2 .

Then, for all θ′ ∈ Θ, ‖θ′−θ‖2 > δ∗θ =
←−
E η,θ(4d

2
θ) implies that ‖η(θ′)−η(θ)‖2 >

4d2θ. From (7.18), we can thus substitute Θ′
θ = Θ ∩ B(θ,

√
δ∗θ ) for Θθ in

Theorem 7.10. Notice that δ∗θ ≤ 4d2θ/ω
∗
θ , so that Θ′

θ ⊆ Θθ, which gives a

better localization of θ̂NLS. Moreover, αη(X,Θ
′
θ) ≥ αη(X,Θθ) and βη(X,Θ

′
θ) ≤

βη(X,Θθ) (see the definitions (7.5), (7.6)), which gives a larger upper bound

of admissible dθ in (7.17). However, this requires the computation
←−
E η,θ(4d

2
θ),

which is more difficult than that of ω∗
θ used in Theorem 7.10. �

Theorem 7.10 shows the potential interest of having the estimability
function increasing as fast as possible at points θ where ‖y − η(θ)‖ is small.
In practice, we can select a nominal value θ0, such that we think that y will
not be too far from η(θ0) and then use a local design approach and construct
a design X that makes Eη,θ0(δ) increase fast when δ increases. This type of
experimental design will be considered in Sect. 7.7.1.

One important feature of Eη(δ) is that it accounts for the global effect of
the intrinsic curvature of the model for θ varying in Θ. Indeed, the shape of the
function Eη(·) is very different depending on whether the curvature is high
only locally or over a large portion of Θ, yielding quite different situations
concerning the presence of local minimizers. This is illustrated below by a
continuation of Examples 7.5 and 7.6.

Example 7.5 (continued). Straightforward calculation gives

Eη,θ(δ) = δ min{1 + (2θ +
√
δ)2, 1 + (2θ −

√
δ)2} ,

and thus Eη(δ) = δ. The model is globally LS estimable for X . The maximum
diameter Dη of Θη (with Θη = Θη(t) for t = R2

η) equals 1 and is obtained for

y = (0, 1/4)�, which coincides with the bound
√
4R2

η given by Lemma 7.9-

(i). The value of ω∗
θ defined by (7.16) equals 1 for all θ. Using the bounds

βη,θ ≤ βη = 2, αη,θ ≥ αη = 1, we get the underestimated value 1/4 for
d∗θ in (7.17). The balls B(θ, 2d∗θ/

√
ω∗
θ) thus have diameter at least 1. This

indicates that if we find a θ such that ‖y − η(θ)‖ < 1/4, then we can be sure

that |θ̂NLS − θ| ≤ 1/2 and that there is no other local minimum of (7.3) in
[θ − 1/2, θ + 1/2]. Notice that Theorem 7.3 alone indicates that for any θ,
there is a unique local minimizer of the LS criterion in [θ− 1/2, θ+1/2] when
‖y − η(θ)‖ < 1/4, but it does not guarantee that the global minimizer over
Θ = R is in [θ − 1/2, θ+ 1/2]. �

Example 7.6 (continued). The behavior of the estimability function Eη,θ(·)
can be inferred directly from Fig. 7.3 and is presented on Fig. 7.4, in log
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scale, for θ = 1.5 (solid line) and θ = 0.75 (dashed line). The presence of
local minimas for θ = 1.5 indicates that the expectation surface is curved;
the situation is more extreme for θ = 0.75 (which corresponds to point A on
Fig. 7.3), where the presence of a local minimum with small value indicates
that the expectation surface is almost folded over itself. Note that Eη,θ(·) is
discontinuous at δ = (θ − γ)2.

The global estimability function Eη(δ) is plotted in Fig. 7.5 for δ between
0 and 50, showing a local minimum at δ∗ � 39.007 where Eη(δ

∗) � 2.32 ·10−3.
Parameter estimation is clearly more difficult in this case than in Example 7.5.
Easy calculations indicate that Eη(δ) = 4 sin2(

√
δ/2) for δ ∈ [0,−2(γ + π)]

when γ < −π with Θ = [γ,∞) and that, from Lemma 7.9, the maximum
diameter of any connected part ofΘη satisfiesDη ≤ π/3. When the probability
measure of y has a density with respect to the Lebesgue measure, there is a
strictly positive probability that Θη is not connected. �
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Fig. 7.4. Estimability function Eη,θ(δ) (log scale) in Example 7.6 for θ = 1.5 (solid
line) and θ = 0.75 (dashed line); Θ = [γ,∞) with γ = −5.5

7.4.3 Replications and Design Measures

Denote by X⊗n the design obtained by replicating n times each point of X .
From Remark 6.3, the estimation problem with the design X⊗n is equivalent
to an estimation problem with the design X with, for i = 1, . . . , N , the ob-
servation ȳ(xi) at xi given by the empirical mean of the n observations at
the same point. In this equivalent problem, the quantities αη, βη, and Rη are
not modified, but the variance of ȳ(xi) is reduced by a factor n compared
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to var[y(xi)]. Replications thus increase the probability that the LS crite-
rion has a unique global minimizer and no other local minimizer; see (7.8) in
Theorem 7.3. The benefit of replications is also revealed in Theorem 7.4 by
considering JN (θ) = (1/N)

∑N
i=1[ȳ(xi)− η(xi, θ)]

2 for the replicated design.
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Fig. 7.5. Estimability function Eη(δ) in Example 7.6 for Θ = [γ,∞) with γ = −5.5

The direct benefit of using X⊗n in place of X is further evidenced by
considering the estimability function Eη,θ(δ). For small δ, the estimability
function for the design X approximately equals δ λmin[MX(θ)] (provided that
the model is locally LS estimable at θ for X), see (7.14), and we have for the
replicated design X⊗n

λmin[MX⊗n(θ)] = n lim
δ→0

Eη,θ(δ)/δ .

Note that λmin[MX⊗n(θ)] can be related to the size of (asymptotic) confidence
ellipsoids for θ when n → ∞; see Sect. 5.1.1.

Since the estimability function for the replicated design X⊗n depends
linearly on n, the number of replications, it is natural to define estimability
functions for design measures. Denoting ‖η(·, θ′) − η(·, θ)‖2ξ =

∫
X
[η(x, θ′) −

η(x, θ)]2 ξ(dx), with the estimability functions Eη,θ(·), we associate a nor-

malized version, denoted Eξη,θ(·), where the norm ‖η(·, θ′) − η(·, θ)‖2ξ is used
instead of ‖η(θ′) − η(θ)‖, that is,

Eξη,θ(δ) = min
θ′∈Θ, ‖θ′−θ‖2=δ

‖η(·, θ′)− η(·, θ)‖2ξ . (7.19)

A model is globally LS estimable at θ for ξ, i.e., globally LS estimable at θ
for the design X corresponding to the support of ξ, if θ′ ∈ Θ and ‖η(·, θ′) −



7.4 Estimability Function 203

η(·, θ)‖2ξ = 0 imply θ′ = θ. An equivalent condition is thus Eξη,θ(δ) > 0 for
all δ > 0. In the same way, the model is locally LS estimable at θ for ξ if
Eξη,θ(δ) > 0 for all δ ∈ (0, Δ) for some Δ > 0. Similarly to what was obtained
in Sect. 7.4 (see (7.13)), we have

‖η(·, θ′)− η(·, θ)‖2ξ = δ u�M(ξ, θ)u+ δ3/2A(ξ, θ;u) + O(δ2) , (7.20)

with ‖θ′ − θ‖2 = δ, u = (θ′ − θ)/‖θ′ − θ‖ and

A(ξ, θ;u) =

p∑

i,j,k=1

ui uj uk

∫

X

∂�η(x, θ)
∂θi

∂2η(x, θ)

∂θj∂θk
ξ(dx) .

Therefore, for small δ,

Eξη,θ(δ) = λmin[M(ξ, θ)] δ +A(ξ, θ) δ3/2 + O(δ2) ,

where the scalar A(ξ, θ) depends on ξ and θ. Similarly to the developments in
Remark 7.7, we also get that

max
‖u‖=1

|A(ξ, θ;u)| ≤ λ3/2max[M(ξ, θ)]Cpar(ξ, θ) ,

with

Cpar(ξ, θ) = sup
u∈Rp−{0}

‖Pθ
∑p
i,j=1 ui[∂

2η(·, θ)/∂θi∂θj ]uj‖ξ
u�M(ξ, θ)u

the parametric curvature of the model for the design measure ξ, where Pθ is
the projector defined by (3.83).

7.4.4 Estimability for Parametric Functions

Consider the situation where we are interested in estimating a scalar function
h(θ) of the model parameters. We shall suppose that h(·) satisfies assumption
H1h of Sect. 3.1.4, that is, h(·) is twice continuously differentiable in int(Θ).

We say that h(·) is globally LS estimable on Θ at θ for ξ if

θ′ ∈ Θ and ‖η(·, θ′) − η(·, θ)‖2ξ = 0 =⇒ h(θ′) = h(θ) ,

in agreement with the estimability condition (3.12), and that h(·) is locally
LS estimable on Θ at θ for ξ if there exists some ε > 0 such that

θ′ ∈ Θ , |h(θ′) − h(θ)| < ε and ‖η(·, θ′)− η(·, θ)‖2ξ = 0 =⇒ h(θ′) = h(θ) .

The definitions are similar for an exact design X , with the condition η(θ′) =
η(θ) substituted for ‖η(·, θ′) − η(·, θ)‖2ξ = 0. For a linear model with η(θ) =

F(X)θ + v(X) and a linear function of interest h(θ) = c�θ, the condition
of global LS estimability of h(·) is equivalent to c ∈ M(MX) with MX =
F�(X)F(X), which is in agreement with the definition of the c-optimality
criterion; see Sect. 5.1.2.
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Consider the following generalizations of (7.12) and (7.19), respectively,
for an exact design X and a design measure ξ:

Eη,θ,h(δ) = min
θ′∈Θ, |h(θ′)−h(θ)|=√

δ
‖η(θ′) − η(θ)‖2 ,

Eξη,θ,h(δ) = min
θ′∈Θ, |h(θ′)−h(θ)|=√

δ
‖η(·, θ′) − η(·, θ)‖2ξ .

Only the case of design measures is considered below; similar developments
can be made for exact designs.

The function h(·) is globally LS estimable on Θ at θ for ξ in the model

η(x, ·) if Eξη,θ,h(δ) > 0 for all δ > 0; when the model itself is globally LS
estimable at θ for ξ, then h(·) is globally LS estimable at θ for ξ. In that case,
using

|h(θ′) − h(θ)|2 = ε

(
u� ∂h(θ)

∂θ

)2

+ ε3/2
(
u� ∂h(θ)

∂θ

) (
u� ∂

2h(θ)

∂θ∂θ�
u

)
+ O(ε2)

and (7.20) with ε = ‖θ′ − θ‖2 and u = (θ′ − θ)/
√
ε, we obtain

Eξη,θ,h(δ) =
δ

c�M−1(ξ, θ)c
+ O(δ3/2) (7.21)

where c = ∂h(θ)/∂θ.
When ξ is singular, h(·) is globally LS estimable on Θ at any θ for ξ if h(·)

satisfies H2′′h (p. 44). Below is a simple example of a function h(·) that does
not satisfy this condition and is not LS estimable.

Example 7.12. Consider the model η(x, θ) = x θ21 + θ2, with θ = (θ1 , θ2)
� ∈

R
2, x ∈ [−1, 1], and the function of interest h(θ) = 2θ1 − θ2. The Elfving’s

set Fθ0 for θ0 = (1 , 1)� (see Sect. 5.2.4) corresponds to the rectangle {z ∈
R

2 : −2 ≤ z1 ≤ 2 and − 1 ≤ z2 ≤ 1}. Elfving’s theorem (see Sect. 5.3.1) then
indicates that the c-optimal design ξ∗c for h(·) at θ0 is the delta measure δx∗
at x∗ = −1. Figure 7.6 presents the sets {θ ∈ R

2 : ‖η(·, θ) − η(·, θ0)‖2ξ∗c = 0}
and {θ ∈ R

2 : h(θ) = h(θ0)}. For any δ > 0, there exist two values of θ such
that h(θ) = h(θ0)−

√
δ and η(x∗, θ) = η(x∗, θ0). These two values tend to θ0

as δ → 0. This means that E
ξ∗c
η,θ0,h(δ) = 0 and h(·) is not LS estimable, on any

arbitrarily small ball centered at θ0, at θ0 for the c-optimal design ξ∗c = δx∗ .
This estimability problem is due to the nonlinearity of η(x, θ) in θ1. Indeed,

consider the linearized version of η(x, θ) at θ0, ηL(x, θ) = 2x(θ1 − 1) + θ2 − 1.
It satisfies ηL(x∗, θ) = θ2 − 2θ1 + 1 = 1 − h(θ), so that h(·) is clearly LS
estimable on R

2 for ξ∗c in this linearized model. �

The example above illustrates the fact that since c-optimum design is
based on a linearization (here of the model response, but more generally of
the model response and function of interest), in general it does not guarantee
the LS estimability of h(·) due to the curvatures of the sets Θη,θ0 = {θ ∈
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Fig. 7.6. {θ ∈ R
2 : ‖η(·, θ) − η(·, θ0)‖2ξ∗c = 0} (solid parabola) and {θ ∈ R

2 : h(θ) =

h(θ0)} (dashed line)

R
p : ‖η(·, θ) − η(·, θ0)‖2ξ = 0} and Θh,θ0 = {θ ∈ R

p : h(θ) = h(θ0)}. In some
rather pathological situations, however, it may happen that Θη,θ0 is included
in Θh,θ0 although ξ is singular (with less than p = dim(θ) support points)
and h(θ) does not depend explicitly on η(·, θ). Example 3.17 provides such
a situation.

Example 3.17 (continued). We have η(x, θ) = θ1x + θ2x
2 and h(θ) =

−θ1/(2θ2).
Take any θ such that θ2 �= 0 and any x �= x∗ = −θ1/θ2 and set ξ = δx

the delta measure at x. When θ1 + xθ2 �= 2θ2
√
δ, the line {θ′ ∈ R

2 : h(θ′) =
h(θ) +

√
δ} is not parallel to the line Θη,θ = {θ′ ∈ R

2 : η(x, θ′) = η(x, θ)} and
they both intersect at

θ′1 =
(θ1 + xθ2)(θ1 − 2θ2

√
δ)

θ1 + xθ2 − 2θ2
√
δ

, θ′2 =
θ2(θ1 + xθ2)

θ1 + xθ2 − 2θ2
√
δ
.

When the two lines are parallel, i.e., when θ1 + xθ2 = 2θ2
√
δ, then Θη,θ

intersects the line {θ′ ∈ R
2 : h(θ′) = h(θ) −

√
δ}. Therefore, for any δ > 0,

there exists θ′ such that η(x, θ′) = η(x, θ) and |h(θ′) − h(θ)| =
√
δ so that

Eξη,θ,h(δ) = 0. In other words, h(·) is not LS estimable at θ for ξ, due to the

fact that Θη,θ is not included in Θh,θ = {θ′ ∈ R
2 : h(θ′) = h(θ)}.

Take now x = x∗ = −θ1/θ2. The intersection between Θη,θ and the two

lines {θ′ ∈ R
2 : |h(θ′)−h(θ)| =

√
δ} is at θ′ = 0 for any δ; h(·) is thus globally
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LS estimable on any compact set excluding 0 at θ for ξ = δx∗ . The reason
is that Θη,θ ⊂ Θh,θ. However, h(·) is not LS estimable at any θ′′ such that
θ′′1 + x∗θ′′2 �= 0; see Examples 3.13 and 3.17. �

If we discard pathological situations like the one in previous example, we
are typically in one of the following two configurations:

1. h(·) depends directly on the model response on the support of some ξ
(see H2′′h (p. 44)); a typical case is when the function of interest is the
response itself at some particular x0 and h(θ) = η(x0, θ)); h(·) is then
globally LS estimable for ξ although ξ may be singular. In particular,
this is the case in a linear model η(x, θ) = f�(x)θ with a linear function
of interest h(θ) = c�θ: h(·) remains globally LS estimable when ξ is
singular but c ∈ M[M(ξ)] since c = M(ξ)u for some u ∈ R

p and thus
h(θ) =

∫
X

u�f(x)f�(x)θ ξ(dx) =
∫

X
[u�f(x)] η(x, θ) ξ(dx).

2. h(·) does not depend directly on the model response. When ξ is singular
(typically, it has less than p support points), there is no reason why the
manifold Θη,θ = {θ′ ∈ R

p : ‖η(·, θ′) − η(·, θ)‖2ξ = 0} passing through
θ, typically (p − k)-dimensional when ξ has k support points, should be
included in the (p − 1)-dimensional manifold Θh,θ = {θ′ ∈ R

p : h(θ′) =
h(θ)}, and h(·) is not LS estimable at θ. When ξ is such that the two
manifolds are tangent at θ, which is the case when ξ is a c-optimal design
for h(·) at θ, a linearization of the model and function of interest may
hide the difficulty; see Example 7.12.

Remark 7.13. When the interest is in some specific components {θ}i of the
parameter vector θ, i.e., h(θ) = θi for some i = 1, . . . , dim(θ), for computa-
tional reasons one may prefer to use the following alternative definition:

E′
η,θ,i(δ) = min

θ′∈Θθ,i(δ)
‖η(θ′) − η(θ)‖2 ,

where Θθ,i(δ) = {θ′ ∈ Θ : {θ′}i = {θ}i ±
√
δ and {θ′}j = {θ}j for j �= i}.

Using the approximation (7.13) for small δ, we obtainE′
η,θ,i(δ) = δ{MX(θ)}ii+

O(δ3/2)—which is not related to any of the criteria of Chap. 5. In the case of
a design measure we can define similarly

E′ξ
η,θ,i(δ) = min

θ′∈Θθ,i(δ)
‖η(·, θ′) − η(·, θ)‖2ξ . (7.22)

Also, when the function of interest is linear in θ we can use

E′
η,θ,c(δ) = min

θ′∈Θθ,c(δ)
‖η(θ′) − η(θ)‖2 , (7.23)

with Θθ,c(δ) = {θ′ ∈ Θ : θ′ = θ ±
√
δc/‖c‖}, c ∈ R

p, which gives E′
η,θ,c(δ) =

δ c�MX(θ)c/(c�c)+O(δ3/2) for small δ. For a design measure we can define

E′ξ
η,θ,c(δ) = min

θ′∈Θθ,c(δ)
‖η(·, θ′) − η(·, θ)‖2ξ , c ∈ R

p . (7.24)
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Notice that E′
η,θ,i(·) and E′

η,θ,c(·) can easily be computed for any p since each
one of the sets Θθ,i(δ) and Θθ,c(δ) contains at most two points; see Sect. 7.7.4
for examples. �

7.5 An Extended Measure of Intrinsic Nonlinearity

As illustrated in Examples 7.5 and 7.6, a major source of difficulties for the
determination of the LS estimator (existence of local minimizers of the LS
criterion, instability with respect to small perturbations of the observations)
comes from the intrinsic curvature Cint(X, θ) of the model, i.e., the curvature
of Sη. At the same time, controlling the value of Cint(X, θ) is not enough,
as long as it can be positive: for instance, the curvatures are identical in
Examples 7.5 and 7.6 although the situation is clearly more difficult in the
latter. In this section we present an extended measure of intrinsic nonlinearity
that takes the global behavior of the model more deeply into account.

The intrinsic curvature defined by (6.9) can be extended as follows.
We define

Kint,α(X, θ) = max
θ′∈int(Θ)

Kint,α(X, θ; θ
′) (7.25)

with

Kint,α(X, θ; θ
′) = 2

‖[IN − Pθ][η(θ) − η(θ′)]‖
‖η(θ) − η(θ′)‖2

(
(θ − θ′)�MX(θ)(θ − θ′)

‖η(θ) − η(θ′)‖2

)α
,

for some α ∈ R
+, wherePθ is the projector (6.4) andMX(θ) is the information

matrix (7.4).
When the model is intrinsically linear (see Sect. 6.1.2), then η(θ) = Fβ(θ)+

v for some invertible continuously differentiable reparameterization (see (6.8))
and [IN−Pθ][η(θ)−η(θ′)] = 0 for all θ, θ′. Conversely, if X is such that MX(θ)
has full rank for all θ (regular model), then Kint,α(X, θ; θ

′) = 0 for all θ, θ′

implies that the model is intrinsically linear.
Moreover, when Θ in (7.25) is restricted to a small neighborhood of θ, we

show below thatKint,α(X, θ) corresponds to the intrinsic curvature Cint(X, θ)
defined by (6.9) so that Kint,α(X, θ) can be considered as an extended, global-
ized version of Cint(X, θ). Indeed, for θ

′ close to θ ∈ int(Θ), define δ = ‖θ−θ′‖
and u = (θ− θ′)/δ. We then have, using a Taylor development of η(θ′) at the
point θ,

‖[IN − Pθ][η(θ) − η(θ′)]‖ =
δ2

2

∥∥∥∥∥∥
[IN − Pθ]

⎛

⎝
p∑

i,j=1

ui
∂2η(θ)

∂θi∂θj
uj

⎞

⎠

∥∥∥∥∥∥
+ O(δ3)

and ‖η(θ)− η(θ′)‖2 = δ2[u�MX(θ)u] +O(δ3), which gives Kint,α(X, θ; θ
′) =

Cint(X, θ;u) + O(δ), with Cint(X, θ;u) the intrinsic measure of nonlinearity
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given by (6.7). On the other hand, Cint(X, θ;u) only gives a local measure of
nonlinearity, while Kint,α(X, θ; θ

′) is also affected by the behavior of η(θ′) for
θ′ far from θ.

Consider, for instance, the situation in Fig. 7.7 where the expectation
surface Sη is almost overlapping. For θ′ such that η(θ)−η(θ′) is orthogonal to
the tangent plane to Sη at η(θ), we have [IN −Pθ][η(θ)−η(θ′)] = η(θ)−η(θ′),
so that

Kint,α(X, θ; θ
′) = 2

[(θ − θ′)�MX(θ)(θ − θ′)]α

‖η(θ) − η(θ′)‖1+2α

= 2
[(θ − θ′)�MX(θ)(θ − θ′)]α

ε1+2α

which tends to infinity when ε → 0. Suppose now that dim(θ) = 1 and that Sη
overlaps because η(θ) is a periodic function of θ with period T . Then direct
calculations give

Kint,α(X, θ; θ
′) = Cint(X, θ;u)

T 2α

t2α
[1 + O(t)]

for small t = θ′ − (θ + T ).

η(θ)

η(θ )

Fig. 7.7. An almost overlapping expectation surface

A continuation of Examples 7.5 and 7.6 will illustrate the different behav-
iors of Kint,α(X, θ) and Cint(X, θ) and will serve to give some hints on how
to choose α.

Example 7.5 (continued). Direct calculations yield

Kint,α(X, θ; θ
′) =

2(1 + 4θ2)α−1/2

[1 + (θ + θ′)2]1+α
which is maximum for θ′ = −θ. This gives

Kint,α(X, θ) = 2(1 + 4θ2)α−1/2 ,
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to be compared with Cint(X, θ) = 2/(1 + 4θ2)3/2. Figure 7.8 presents a
plot of Cint(X, θ) and Kint,1(X, θ) as functions of θ. Although Sη is curved
(see Fig. 7.2), there is no reason to consider that the effect of nonlinearity
becomes more severe as |θ| increases. It thus seems reasonable to choose α
such that

max
θ′∈Θ

[(θ − θ′)�MX(θ)(θ − θ′)]α

‖η(θ) − η(θ′)‖1+2α

remains bounded when ‖θ‖ → ∞. When taking α = 1/2 in Example 7.5, we
obtain Kint,1/2(X, θ) = 2 for all θ. �

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

θ

C
in

t(X
,θ

) 
an

d 
K

in
t,1

(X
,θ

)

Fig. 7.8. Cint(X, θ) (dashed line) and Kint,1(X, θ) (solid line) as functions of θ in
Example 7.5

Example 7.6 (continued). The expression of Kint,α(X, θ; θ
′) is more compli-

cated than in Example 7.5. Consider the situation at θ = 0. Kint,α(X, 0; θ
′)

has the same expression as in Example 7.5 for θ′ ≥ 0, i.e., Kint,α(X, 0; θ
′) =

2/(1 + θ′2)1+α, and equals

Kint,α(X, 0; θ
′) =

4θ′2α

(1 − cos θ′)α(5 − 3 cos θ′)1+α

for θ′ ≤ 0, which gives, for instance,Kint,1(X, 0; θ
′) = 8π2/(θ′+2π)2−8π/(θ′+

2π) + O(1) and Kint,1/2(X, 0; θ
′) = 4π/(θ′ + 2π) − 2 + O(θ′ + 2π) when θ′

approaches −2π. Figure 7.9 presents Kint,1(X, 0; θ
′) as a function of θ′; the

curve increases to infinity as θ′ approaches −2π due to the overlapping of Sη
caused by the periodicity of η(θ) for θ < 0. For Θ = [γ,∞) with γ � −4.4768
Kint,1(X, 0; γ) > Kint,1(X, 0; 0) = 2.
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Fig. 7.10. Cint(X, θ) (dashed line) and Kint,1/2(X, θ) (solid line) as functions of θ
in Example 7.6 for Θ = [−4, 4]

Figure 7.10 shows Kint,1/2(X, θ) as a function of θ when Θ = [−4, 4].
The intrinsic curvature
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Cint(X, θ) =

{
2

(1+4θ2)3/2
if θ ≥ 0

2
(4−3 cos2 θ)3/2

if θ ≤ 0

is plotted in dashed line on the same figure. The fact that Sη tends to
overlap (see Fig. 7.3) has no effect on Cint(X, θ) but has a strong influence
on Kint,1/2(X, θ); in particular, η(−4) is close to η(θ) for θ around 1.75 which
produces large values of Kint,1/2(X, θ) for θ close to −4 or 1.75.

One may also calculate Kint,α(X, θ) in a neighborhood of θ only, i.e.,
Kint,α(X, θ) = maxθ′∈int(Θθ)Kint,α(X, θ; θ

′) with Θθ = B(θ, δ) ∩ Θ, δ > 0.
As Fig. 7.11 illustrates (for δ = 2), this may be enough to detect a nonlinearity
effect which is not revealed by Cint(X, θ). �
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Fig. 7.11. Kint,1/2(X, θ) = maxθ′∈int(Θθ) Kint,1/2(X, θ; θ′) with Θθ = B(θ, 2) ∩ Θ
(solid line) as a function of θ in Example 7.6; Cint(X, θ) is in dashed line, Θ = [−4, 4]

7.6 Advantages and Drawbacks of Using p-point Designs

Since the intrinsic curvature of the model may cause numerical difficulties
for the optimization of the LS criterion, the recommendation was made in
(Pronzato and Walter, 2001) to choose an experimental design that ensures
Cint(X, θ) = 0 for (almost) all θ. The advantages and drawbacks of this
approach are investigated below.

Consider a design X that consists of repetitions of trials at p different
points only, denoted by x(1), . . . , x(p); see, e.g., Ross (1990) for the use of
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such designs. The model is then intrinsically linear (see Sect. 6.1.2), and ‖y−
z‖2 has a unique minimum with respect to z ∈ Sη. Furthermore, using the
reparameterization βi = η(x(i), θ), i = 1, . . . , p, we obtain a linear model
η(β) = Fβ with F ∈ R

N×p and {F}ij ∈ {0, 1} for all i, j. The minimizer

β̂ = argminβ∈R ‖y − Fβ‖2 is given by

β̂ = (F�F)−1F�y

and the LS estimator is obtained by solving the equations

β̂i = η(x(i), θ) , i = 1, . . . , p , (7.26)

for θ ∈ Θ, or by minimizing
∑p
i=1 ni[β̂i − η(x(i), θ)]2, with ni the number of

repetitions at x(i), when (7.26) has no solution. Using a p-point design thus
seems helpful.

However, it may happen that (7.26) has several solutions. That is, choosing
a design that makes the model intrinsically linear may entail difficulties
concerning global LS estimability. This drawback is illustrated by the next
example.

Example 7.14. We take the same model as in Example 7.6, but change the
second design point x2. When x2 = x1 = (1, 0), the expectation surface Sη

is included in the diagonal y1 = y2, and its intrinsic curvature Cint(X, θ) is
zero for almost all θ: for Θ = [γ,∞) and γ < −π/2, Sη = {z = (−1,−1)� +
α(1, 1)� , α > 0}. Therefore, for any y in R

2, ‖y− z‖ has a unique minimum
with respect to z ∈ Sη. However, several values of θ may correspond to this
minimizing ẑ, that is, global LS estimability may be lost.

Figure 7.12 presents the expectation surface Sη for x2 = (1, 0.1), γ =
−5.5 and shows the difficulty: when x2 gets close to x1 = (1, 0), the intrinsic
curvature of Sη tends to infinity for θ = −π/2 and θ = −3π/2.

When x2 = x1 = (1, 0), having determined ẑ (unique) that minimizes

‖y − z‖, z ∈ Sη, for γ > −2π there may exist one, two, or three values of θ̂

such that η(θ̂) = ẑ. For instance, when γ = −7π/4, if {ẑ}1 > 1, θ̂ = {ẑ}1 is

the unique solution; if 1/2 ≤ {ẑ}1 ≤ 1, there are three solutions θ̂ = {ẑ}1 and

θ̂ = arc sin({ẑ}1) (which gives two values in [−7π/4, 0]); if 0 ≤ {ẑ}1 < 1/2,

there are two solutions θ̂ = {ẑ}1 and θ̂ = arc sin({ẑ}1) (which gives one value
in [−7π/4, 0]); for −1 ≤ {ẑ}1 < 0, there are two solutions again, satisfying

θ̂ = arc sin({ẑ}1).
Figure 7.13 shows a plot of the estimability function Eη,θ(·) when x2 =

x1 = (1, 0) for θ = 1.5 (solid line) and θ = 0.75 (dashed line); the possible

existence of three solutions for θ̂ is revealed by Eη,θ(δ) being equal to zero for
three distinct values of δ: 0 and approximately 22.464 and 38.256. Figure 7.14
presents Eη(δ) for δ between 0 and 50. The fact that the model is only locally
LS estimable results in Eη(δ) being equal to 0 for δ in the interval [0, (sin(γ)−
γ)2], i.e., approximately [0, 38.51] for γ = −5.5. �
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Fig. 7.13. Estimability function Eη,θ(δ) (log scale) in Example 7.14 for θ = 1.5
(solid line) and θ = 0.75 (dashed line); γ = −5.5 and x2 = x1 = (1, 0)

Despite the estimability problems it may cause, choosing a design X that
makes Sη plane can help to determine all local minima in a situation where
Sη is curved. Indeed, having determined the unique ẑ ∈ Sη that minimizes
‖y − z‖ in the intrinsically linear model, the determination of all values of

θ̂ such that η(θ̂) = ẑ is purely algebraic. Let θ̂(i), i = 1, . . . , s, denote these
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Fig. 7.14. Function Eη(δ) in Example 7.14 for γ = −5.5 and x2 = x1 = (1, 0)

solutions. When performing n repetitions of the design X , θ̂(i) tends to θ̄ for
some i ∈ {1, . . . , s} as n → ∞ provided that the model structure is locally LS
estimable for X (and under suitable regularity conditions, see Chap. 3).

Augment now the design X⊗n by adding new design points, in order to
form a design X ′ such that the model is globally LS estimable for X ′. The es-
timates θ̂(i) obtained with X⊗n can then be used as initial values for the
minimization of the LS criterion in the new problem with the design X ′ and
its associated observations y′.

Example 7.14 (continued). Take a design consisting of n repetitions of
observations at x1 = (1, 0) and consider the situation where there are three

solutions θ̂(i) for θ̂, i = 1, 2, 3. For n large enough, θ̂(i) is close to θ̄ for some
i. Consider the design X ′ obtained by augmenting X⊗n = x⊗n

1 by x2 = (0, 1)

and suppose that the responses [η(x1, θ̂
(i)), η(x2, θ̂

(i))] are indicated by the
points A, B, and C on Fig. 7.3. Initializing the search for the LS estimator at
each θ̂(i) successively then facilitates the determination of the global minimum
of the LS criterion for the design X ′.

Notice that when some ambiguity remains about which local minimizer to
consider as the LS estimator of θ, because the local and global minimum values
of the LS criterion are close, this ambiguity can be removed by repeating m
observations at x2. Indeed, [ȳ(x1), ȳ(x2)], with ȳ(xi), the empirical mean of
the observations at xi, converges to a point in the neighborhood of A, B, or C
when n and m tend to infinity. More precisely, suppose that n → ∞, m → ∞,
and m/n ≥ α > 0; then, the global minimum of the LS criterion

[n/(n+m)][ȳ(x1) − η(x1, θ)]
2 + [m/(n+m)][ȳ(x2) − η(x1, θ)]

2 ,
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tends to zero (see Remark 6.3), whereas the other local minima remain
bounded away from zero. A related test was proposed in (Pázman et al.,
1969) in the context of elementary particle physics. �

7.7 Design of Experiments for Improving Estimability

Natural objectives for choosing a design X that ensures good estimabil-
ity properties include the maximization of αη and the minimization of βη
in Theorem 7.3 and the maximization of Rη in Theorem 7.4; note that

α2
η/βη ≤ Rη. The maximization of αη corresponds to maximin E-optimal

design; see Sects. 5.1.2 and 8.2. Additional requirements on the radius of cur-
vature Rη(θ) can be taken into account by setting constraints on the curvature
of the model while optimizing the design criterion; see, for instance, Clyde and
Chaloner (2002). However, as the examples above illustrated, taking care of
the curvature of the model is not enough to guarantee satisfying estimability
properties. Also, as shown in Sect. 7.6, forcing the model to be intrinsically
linear by using repetitions of a p-point design may entail difficulties concerning
global LS estimability. For that reason, we consider below new design criteria
that can be related to the estimability function defined in Sect. 7.4.1

7.7.1 Extended (Globalized) E-Optimality

Definition

Denote

Dη,θ,δ(X) =
Eη,θ(δ)

N
(K + 1/δ) ,

with K some positive number, and for a design measure ξ,

Dη,θ,δ(ξ) = Eξη,θ(δ) (K + 1/δ) ,

= min
θ′∈Θ, ‖θ′−θ‖2=δ

{
‖η(·, θ′)− η(·, θ)‖2ξ (K + 1/δ)

}
, (7.27)

see (7.19). Consider the design criterion defined by

φeE(X) = φeE(X ; θ) = min
δ≥0

Dη,θ,δ(X) ,

= min
θ′∈Θ

{
‖η(θ′) − η(θ)‖2 (K + ‖θ′ − θ‖−2)

}
,

1Another possibility, not explored here, would be to use a more classical opti-
mality criterion (see Chap. 5) while imposing a constraint on the extended measure
of nonlinearity Kint,α(X, θ) defined in (7.25).
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to be maximized with respect to X , and similarly

φeE(ξ) = φeE(ξ; θ) = min
δ≥0

Dη,θ,δ(ξ) ,

= min
θ′∈Θ

{
‖η(·, θ′) − η(·, θ)‖2ξ (K + ‖θ′ − θ‖−2)

}
,

to be maximized with respect to the design measure ξ. Notice that in a
nonlinear regression model φeE(·) depends on the value chosen for θ and
can thus be considered as a local optimality criterion, in the same sense as
in Chap. 5 when θ is set to a nominal value θ0. On the other hand, the criterion
is global in the sense that it depends on the behavior of η(·, θ′) for θ′ far from
θ. We can remove this (limited) locality by using φMeE(ξ) = minθ∈Θ φeE(ξ),
which corresponds to maximin-optimum design as considered in Sect. 8.2.

For a linear regression model with η(θ) = F(X)θ + v(X) and Θ = R
p,

we have Eη,θ(δ) = Eη(δ) = δ λmin(MX) = N δ λmin[M(X)], with M(X) =

MX/N = F�(X)F(X)/N , and Eξη,θ(δ) = δ λmin[M(ξ)], so that

φeE(X) = λmin[M(X)] and φeE(ξ) = λmin[M(ξ)] for any K ≥ 0 ,

which corresponds to the E-optimality criterion of Sect. 5.1.2. φeE(·) can thus
be considered as an extended E-optimality criterion.

Consider now the case of nonlinear regression. When the model is
locally LS estimable at θ for X , Eη,θ(δ)/(Nδ) tends to λmin[MX(θ)]/N =
λmin[M(X, θ)] as δ tends to zero; see (7.14). By continuity, we can thus define
Dη,θ,0(X) = λmin[M(X, θ)]. Denote δ∗ = argminδ≥0Dη,θ,δ(X). We have

φeE(X ; θ) = Dη,θ,δ∗(X) =
Eη,θ(δ

∗)
N

(K + 1/δ∗) ≤ λmin[M(X, θ)]

and thus

Eη,θ(δ
∗)

N
<
λmin[M(X, θ)]

K
.

Therefore, when the model is globally LS estimable for X at θ, so that
Eη,θ(δ) > 0 for all δ > 0, δ∗ can be made arbitrarily small by taking K
large enough. We show that this implies that φeE(X ; θ) can be made arbitrar-
ily close to λmin[M(X, θ)] by increasing K. Using the approximation (7.15)
when AX(θ) ≥ 0, we obtain that Dη,θ,δ(X) is an increasing function of δ for
δ small enough, which yields δ∗ = 0 and φeE(X ; θ) = λmin[M(X, θ)] for K
large enough. When AX(θ) < 0, direct calculations give

δ∗ =
A2(X, θ)

4K2 λ2min[M(X, θ)]
+ O(1/K3)

φeE(X ; θ) = λmin[M(X, θ)] − A2(X, θ)

4K λmin[M(X, θ)]
+ O(1/K2)

for large K, with A(X, θ) = AX(θ)/N . Therefore, φeE(X ; θ) can always be
made arbitrarily close to λmin[M(X, θ)] by choosingK large enough. The same
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is true for φeE(ξ; θ) which can be made arbitrarily close to λmin[M(ξ, θ)] for
K sufficiently large when the model is globally LS estimable for ξ at θ. Hence,
the name of extended E-optimality criterion is justified for nonlinear models
as well as for linear ones.

In the following we shall only consider the case of design measures and omit
the dependence in θ for nonlinear models; the criterion is considered as eval-
uated at a nominal value θ0. We have just seen that choosing K large makes
φeE(ξ; θ

0) approach the E-optimality criterion φE(ξ; θ
0) = ΦE [M(ξ, θ0)] of

Sect. 5.1.2. This can also be enforced by taking Θ as (a subset of) a small ball
around θ0. At the same time, choosing K not too large ensures some protec-
tion against ‖η(θ0)− η(θ)‖ξ being small for some θ far from θ0. A reasonable
choice consists in taking K proportional to N/σ2, so that for σ2 sufficiently
small, or N sufficiently large, the criterion φeE(·) is close to φE(·).

Example 7.15. We consider again Example 7.6 with different designs sup-
ported at x1 = (1, 0) and x2 = (0, 1) and defined by ξα = αδx1 + (1 − α)δx2 ,
α ∈ [0, 1]. For θ = 0.75, K = 1, we have φeE(ξ0) � 1.4 · 10−5, φeE(ξ1) �
9.7 · 10−8, and the optimal design for φeE(·) in this family is obtained for
α∗ � 0.67, with φeE(ξ0.67) = 1.4 · 10−3. Figure 7.15 gives a plot of Dη,θ,δ(ξα)
defined by (7.27) for α = 0, 1, and 0.67. Notice that the E-optimal design,
maximizing M(X, θ) = α + (1 − α)4θ2, is obtained for α = 0. Other choices
for K yield other optimal designs for φeE(·), the optimal α approaching 0 as
K increases (α∗ � 0.32 for K = 2, 000, α∗ � 0.01 for K = 5, 000, and α∗ = 0
for K � 5 · 105). �
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Fig. 7.15. Dη,θ,δ(ξ) (log scale) as a function of δ in Example 7.15 for θ = 0.75,
K = 1, γ = −5.5 and different designs ξα = αδx1 + (1− α)δx2 : α = 0 (dashed line),
α = 1 (dotted line), and α = α∗ = 0.67 (solid line)
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Properties of φeE(·)
We show below that φeE(·) shares some properties with criteria considered
in Chap. 5 (concavity, positive homogeneity, existence of a directional deriva-
tive. . . ).

As the minimum of linear functions of ξ, φeE(·) is concave: for all ξ, ν ∈
Ξ, the set of design measures on X , for all α ∈ [0, 1], and for all θ ∈ Θ,
φeE [(1−α)ξ+αν] ≥ (1−α)φeE(ξ)+αφeE(ν). It is also positively homogeneous:
φeE(aξ) = a φeE(ξ) for all ξ ∈ Ξ, θ ∈ Θ, and a > 0. Concavity implies the
existence of directional derivatives; see Lemma 5.16. We can write

φeE(ξ) = min
θ′∈Θ

{
‖η(·, θ′) − η(·, θ)‖2ξ

(
K + ‖θ′ − θ‖−2

)}
, (7.28)

and Lemma 5.18 gives the following (we suppose that η(x, θ) is continuous in
θ over Θ, a compact subset of Rp, for all x ∈ X ):

Theorem 7.16. For any ξ, ν ∈ Ξ, the directional derivative of the criterion
φeE(·) at ξ in the direction ν (see (5.33)) is given by

FφeE (ξ; ν) = min
θ′∈Θθ(ξ)

{
‖η(·, θ′) − η(·, θ)‖2ν

(
K + ‖θ′ − θ‖−2

)}
− φeE(ξ) ,

where

Θθ(ξ) =
{
θ′ ∈ Θ : ‖η(·, θ′) − η(·, θ)‖2ξ

(
K + ‖θ′ − θ‖−2

)
= φeE(ξ)

}
.

A necessary-and-sufficient condition for optimality, based on the direc-
tional derivatives FφeE (ξ; ν), can be expressed in the same form as Theo-
rem 5.21. We can write

FφeE (ξ; ν) = min
θ′∈Θθ(ξ)

∫

X

ΨeE(x, θ
′, ξ) ν(dx)

where

ΨeE(x, θ
′, ξ) = (K + ‖θ′ − θ‖−2)

×
{
[η(x, θ′) − η(x, θ)]2 − ‖η(·, θ′)− η(·, θ)‖2ξ

}
(7.29)

and ξ∗ is optimal for φeE(·) if and only if supν∈Ξ FφeE (ξ
∗; ν) ≤ 0.

One should notice that supν∈Ξ FφeE (ξ
∗; ν) is generally not obtained for ν

equal to a one-point (delta) measure (see Remark 5.26-(ii)), which prohibits
the usage of the classical vertex-direction algorithms of Sect. 9.1.1 for opti-
mizing φeE(·). A regularized version φeE,λ(·) of φeE(·) will be considered in
Sect. 7.7.3, with the property that supν∈Ξ FφeE,λ

(ξ; ν) is obtained when ν is
the delta measure δx∗ at some x∗ ∈ X (depending on ξ). Alternatively, one
may notice that the maximization of φeE(·) corresponds to a linear program.

Indeed, when Θ is finite, i.e., Θ = {θ(1), θ(2), . . . , θ(m)}, φeE(ξ) can be
written as φeE(ξ) = minj=1,...,mHE(ξ, θ

(j)), where
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HE(ξ, θ
′) = ‖η(·, θ′) − η(·, θ)‖2ξ(K + ‖θ′ − θ‖−2) , (7.30)

which is linear in ξ. If the design space X is finite too, that is, X =
{x(1), x(2), . . . , x(�)}, then the determination of an optimal design measure for
φeE(·) amounts to the determination of a scalar γ and of a vector of weights
w = (w1, w2, . . . , w�)

� such that γ is maximized with w and γ satisfying the
linear constraints

�∑

i=1

wi = 1 ,

wi ≥ 0 , i = 1, . . . , � ,
�∑

i=1

wi[η(x
(i), θ(j)) − η(x(i), θ)]2(K + ‖θ(j) − θ‖−2) ≥ γ , j = 1, . . . ,m .

The finite set Θ can be enlarged iteratively (see the relaxation algorithm of
Sect. 9.3.2); solving the corresponding sequence of LP problems then corre-
sponds to the method of cutting planes of Sect. 9.5.3.

7.7.2 Extended (Globalized) c-Optimality

We have seen in Sects. 5.1.2 and 5.4 that a c-optimal design for the estimation
of a function h(θ) may be singular and that this raises specific difficulties
in a nonlinear situation. Here we shall use a construction similar to that in
Sect. 7.7.1 and define an extended version of c-optimality, with the objective
to circumvent those difficulties and at the same time ensure some protection
against ‖η(·, θ′) − η(·, θ)‖ξ being small for some θ′ such that |h(θ′) − h(θ)| is
large. The criterion that we construct is based on η(x, θ) and h(θ) but does not
rely on a linearization with respect to θ, although it corresponds to c-optimum
design for a linear model and a linear function of interest h(θ) = c�θ.

Definition

We define

φec(ξ) = min
δ≥0

{
Eξη,θ,h(δ) (K + 1/δ)

}
(7.31)

= min
θ′∈Θ

{
‖η(·, θ′) − η(·, θ)‖2ξ

(
K + |h(θ′) − h(θ)|−2

)}
, (7.32)

with K some positive constant.
When η(x, θ) and h(θ) are both linear in θ, we get

φec(ξ) = min
θ′∈Θ, c�(θ′−θ) �=0

(θ′ − θ)�M(ξ)(θ′ − θ)

[c�(θ′ − θ)]2

and therefore, using Lemma 5.6, φec(ξ)=[c�M−(ξ)c]−1=Φ+
c [M(ξ, θ)]/(c�c),

which justifies that we consider φec(ξ) as an extended c-optimality criterion.
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In a nonlinear situation, when the model is globally LS estimable at θ for
ξ, we obtain

lim
δ→0

Eξη,θ,h(δ) (K + 1/δ) =
1

c�M−1(ξ, θ)c
,

with c = ∂h(θ)/∂θ; see (7.21). Therefore, φec(ξ) ≤ [c�M−(ξ, θ)c]−1. Let δ∗

denote the minimizing δ in (7.31), we obtain

Eξη,θ,h(δ
∗) ≤ 1

K c�M−1(ξ, θ)c
,

which implies that δ∗ can be made arbitrarily small by increasing K and,
similarly to Sect. 7.7.1, φec(ξ) can be approximated by [c�M−1(ξ, θ)c]−1 for
large K. On the other hand, choosing K not too large ensures some pro-
tection against ‖η(·, θ′) − η(·, θ)‖2ξ being small for some θ′ such that h(θ′) is
significantly different from h(θ).

Properties of φec(·)
Similarly to the case of the extended E-optimality criterion, φec(·) is concave
and positively homogeneous. Also, concavity implies the existence of direc-
tional derivatives, and Lemma 5.18 gives the following:

Theorem 7.17. For any ξ, ν ∈ Ξ, the directional derivative of the criterion
φec(·) at ξ in the direction ν is given by

Fφec(ξ; ν) = min
θ′∈Θθ,c(ξ)

{
‖η(·, θ′) − η(·, θ)‖2ν

(
K + |h(θ′) − h(θ)|−2

)}
− φec(ξ) ,

where

Θθ,c(ξ) =
{
θ′ ∈ Θ : ‖η(·, θ′) − η(·, θ)‖2ξ

(
K + |h(θ′) − h(θ)|−2

)
= φec(ξ)

}
.

A necessary-and-sufficient condition for optimality based on the directional
derivatives Fφec(ξ; ν) can be expressed in the same form as Theorem 5.21,
and ξ∗ is optimal for φec if and only if supν∈Ξ Fφec(ξ

∗; ν) ≤ 0. A regularized
version φec,λ(·) of φec(·) will be considered in Sect. 7.7.3, with the property
that supν∈Ξ Fφec,λ

(ξ; ν) is obtained for ν = δx∗ , the delta measure at some
x∗ ∈ X (depending on ξ). Also, when both Θ and X are finite, an optimal
design maximizing φec(·) can be obtained by LP, following the same approach
as for φeE(·).

Remark 7.18 (Extended G-Optimality). Following the same lines as above, we
can also define an extended G-optimality criterion by

φGG(ξ) = min
θ′∈Θ

[
‖η(·, θ′) − η(·, θ)‖2ξ

{
K +

1

maxx∈X [η(x, θ′) − η(x, θ)]2

}]
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with K some positive constant. The fact that it corresponds to the G-
optimality criterion of Sect. 5.1.2 for a linear model can easily be seen, noticing
that in the model (7.2) with η(x, θ) = f�(x)θ + v(x), we have

{
max
x∈X

N

σ2
var
[
f�(x)θ̂NLS

]}−1

= inf
x∈X

inf
u∈Rp,u�f(x) �=0

u�M(X)u

[f�(x)u]2

= inf
u∈Rp,u�f(x) �=0

[
u�M(X)u

{
K +

1

maxx∈X [f�(x)u]2

}]
,

see Lemma 5.6. Directional derivatives can be computed similarly to the cases
of extended E and c-optimality; an optimal design can be obtained by LP
when both Θ and X are finite. �

7.7.3 Maximum-Entropy Regularization of Estimability Criteria

Extended E-optimality

Applying the results of Sect. 8.3.2 on maximum-entropy regularization to the
criterion φeE(·) given by (7.28), we obtain the regularized version

φeE,λ(ξ) = − 1

λ
log

∫

Θ

exp {−λHE(ξ, θ
′)} dθ′ (7.33)

where HE(ξ, θ
′) is given by (7.30). The regularized criterion φeE,λ(·) is

concave; its directional derivative at ξ in the direction ν is

FφeE,λ
(ξ; ν) =

∫
X

∫
Θ
exp {−λHE(ξ, θ

′)} ΨeE(x, θ′, ξ) dθ′ ν(dx)∫
Θ
exp {−λHE(ξ, θ′)} dθ′

(7.34)

with ΨeE(x, θ
′, ξ) given by (7.29). Moreover, φeE,λ(·) is differentiable, contrary

to φeE(·), and in the same vein as Lemma 5.20 and Theorem 5.21, we obtain
a necessary-and-sufficient condition of optimality for φeE,λ(·): ξ∗ is optimal
for φeE,λ(·) if an only if

max
x∈X

∫

Θ

exp {−λHE(ξ
∗, θ′)} ΨeE(x, θ′, ξ∗) dθ′ ≤ 0 .

Note that (7.33) depends on the choice made for the set Θ. Also note that
in order to make the computations easier, the integrals on θ′ in (7.33), (7.34)
can be replaced by finite sums. This will be illustrated by the examples of
Sect. 7.7.4.

Extended c-optimality

The situation is similar to the case of extended E-optimality. Applying the
results of Sect. 8.3.2 to the criterion φec(·) given by (7.32), we obtain the
regularized version
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φec,λ(ξ) = − 1

λ
log

∫

Θ

exp {−λHc(ξ, θ
′)} dθ′ (7.35)

where

Hc(ξ, θ
′) = ‖η(·, θ′) − η(·, θ)‖2ξ(K + |h(θ′)− h(θ)|−2) .

The regularized criterion φec,λ(·) is concave and differentiable with respect to
ξ. Its directional derivative at ξ in the direction ν is

Fφec,λ
(ξ; ν) =

∫
X

∫
Θ exp {−λHc(ξ, θ

′)} Ψec(x, θ′, ξ) dθ′ ν(dx)∫
Θ
exp {−λHc(ξ, θ′)} dθ′

, (7.36)

where

Ψec(x, θ
′, ξ) = (K + |h(θ′) − h(θ)|−2)

×
{
[η(x, θ′)− η(x, θ)]2 − ‖η(·, θ′) − η(·, θ)‖2ξ

}
.

A necessary-and-sufficient condition for optimality is as follows: ξ∗ is optimal
for φec,λ(·) if an only if

max
x∈X

∫

Θ

exp {−λHc(ξ
∗, θ′)} Ψec(x, θ′, ξ∗) dθ′ ≤ 0 .

Again, in order to make the computations easier, the integrals on θ′ in (7.35),
(7.36) can be replaced by finite sums.

7.7.4 Numerical Examples

Three examples are presented below that illustrate the influence of the design
on LS estimability and serve to indicate some implementation details for the
construction of extended E and c-optimal designs.

Example 7.19. We consider the same example as in (Kieffer and Walter, 1998),
see also Pronzato and Walter (2001), with

η(x, θ) = θ1[exp(−θ2x) − exp(−θ3x)] , θ = (θ1, θ2, θ3)
� , x ∈ R

+ . (7.37)

The analysis is made at θ0 = (0.773 , 0.214 , 2.09)�, the value of the LS
estimator obtained from the data in (Kieffer and Walter, 1998) with the 16-
point design X0 = (1, 2, . . . , 16). We shall denote by ξ0 the associated design
measure

ξ0 =

{
1 2 · · · 16

1/16 1/16 · · · 1/16

}
,

where the first row gives the support points and the second one their respective
weights. The design space X is given by a regular grid of 1601 points in [0, 16]
spaced by 1/100.
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The D and E-optimal designs for θ0 in X are supported on three points
and are, respectively, given by

ξ∗D(θ
0) �

{
0.42 1.82 6.80
1/3 1/3 1/3

}
,

ξ∗E(θ
0) �

{
0.29 1.83 9.0

0.4424 0.3318 0.2258

}
.

The values of det[M(ξ, θ0)] and λmin[M(ξ, θ0)] for the three designs ξ0, ξ
∗
D and

ξ∗E are indicated in Table 7.1. We also indicate in the same table the values
of the parametric, intrinsic, and total curvatures, computed at θ0 using the
algorithm from Bates and Watts (1980), for the different designs. Since they
have different numbers of support points, normalized curvatures—for design
measures—are considered (see Remark 6.1), that is,

Cint(ξ, θ) = sup
u∈Rp−{0}

‖[I − Pθ]
∑p

i,j=1 ui[∂
2η(·, θ)/∂θi∂θj ]uj‖ξ

u�M(ξ, θ)u
,

Cpar(ξ, θ) = sup
u∈Rp−{0}

‖Pθ
∑p
i,j=1 ui[∂

2η(·, θ)/∂θi∂θj ]uj‖ξ
u�M(ξ, θ)u

,

Ctot(ξ, θ) = sup
u∈Rp−{0}

‖
∑p
i,j=1 ui[∂

2η(·, θ)/∂θi∂θj]uj‖ξ
u�M(ξ, θ)u

,

≤ Cint(ξ, θ) + Cpar(ξ, θ) ,

with Pθ the projector defined by (3.83).

Table 7.1. Performances of different designs in Example 7.19

ξ det[M(ξ, θ0)] λmin[M(ξ, θ0)] φeE,λ(ξ) Cpar(ξ, θ
0) Cint(ξ, θ

0) Ctot(ξ, θ
0)

ξ0 6.38 · 10−6 1.92 · 10−4 3.12 · 10−4 180.7 15.73 181.3
ξ∗D 1.40 · 10−4 1.69 · 10−3 1.88 · 10−3 58.03 0 58.03
ξ∗E 9.19 · 10−5 2.04 · 10−3 2.41 · 10−3 50.72 0 50.72
ξ∗eE,λ 9.73 · 10−5 2.00 · 10−3 2.52 · 10−3 55.35 0 55.35

The design ξ∗eE,λ is optimal for the criterion φeE,λ(·) given by (7.33); with K = 1,
λ = 105 and with the integral replaced by a discrete sum over 800 points uniformly
distributed over the sphere centered at θ0 and of radius 10−2

One may notice that the model (7.37) is only locally identifiable2 if
θ ∈ R

3. Indeed, exchanging the value of θ2 and θ3 and changing θ1 into

2This is true for almost any θ (in the sense of zero Lebesgue measure on compact
subsets on R

3); notice that the model is not identifiable for θ1 = 0.
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Fig. 7.16. Estimability function E′
η,θ0,c(·) given by (7.23) for the design X0 and

c = (1 , −1.2135 , 1.2135)� in Example 7.19

−θ1 leaves η(x, θ) unmodified for any x. This is revealed when plotting
the function E′

η,θ0,c(·) given by (7.23) for the design X0 and c close to

(1 , −1.2135 , 1.2135)� (with 1.2135 � (θ03 − θ02)/(2θ
0
1)); see Fig. 7.16.

This problem of identifiability can be avoided by restricting Θ to positive
θ1 only. Taking Θ = [0, 5]× [0, 5]× [0, 5], Kieffer and Walter (1998) find that
for the observations y given in their Table 13.1, the LS criterion (7.3) has a
global minimizer (the value we have taken here for θ0) and two other local
minimizers in Θ. This is due to the intrinsic curvature of the expectation
surface for ξ0; see Table 7.1. Figure 7.17 (resp. 7.18) presents the function

E′ξ
η,θ0,2(·) (resp. E

′ξ
η,θ0,3(·)) defined by (7.22) for the three designs ξ0, ξ

∗
D, and

ξ∗E . The influence of the curvatures given in Table 7.1 for the three designs
can be seen on those two figures. We construct below an optimal design for
φeE,λ(·) (see (7.33)) and show that it also yields Cint(ξ, θ) = 0 for all θ.

To replace integrals by finite sums in (7.33), (7.34), we consider regular
grids of points uniformly distributed on spheres centered at θ0. Denote by
G(ρ,M) such a grid, formed of M points at distance ρ from θ0. We take
K = 1. Note that the choice of K does not affect the optimal design when
‖θ′ − θ‖ is kept constant. The regularizing parameter λ in φeE,λ(·) is set to
105. The optimal design for φeE,λ(·) may be singular, i.e., supported on less
than 3 points, when M is too small. When ρ tends to zero and M is large
enough, the optimal design for the grid G(ρ,M) tends to ξ∗E ; we obtain

ξ∗eE,λ(θ
0) �

{
0.3 1.7 7.9

0.491 0.307 0.202

}
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Fig. 7.17. Estimability function E′ξ
η,θ0,2

(·) given by (7.22) for the designs ξ0 (solid

line), ξ∗D (dashed line), ξ∗E (dotted line), and ξ∗eE,λ (dash-dotted line) in Example 7.19
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Fig. 7.18. Same as Fig. 7.17 but for E′ξ
η,θ0,3

(·)

for ρ = 0.01 and M = 800. Its performances are indicated in Table 7.1.
The normalized functions E′ξ

η,θ0,2(·) and E
′ξ
η,θ0,3(·) obtained for ξ∗eE,λ are plot-

ted in Figs. 7.17 and 7.18 (dash-dotted lines) and demonstrate the superior-
ity of ξ∗eE,λ over the three other designs considered in terms of estimability
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properties. A direct optimization of φeE(·) by LP for θ′ on the same grid
G(0.01, 800) yields a design ξ∗eE close to ξ∗eE,λ:

ξ∗eE(θ
0) �

{
0.32 1.76 8.22
0.481 0.309 0.210

}
,

with φeE(ξ
∗
eE) � 2.55 · 10−3 (evaluated on G(0.01, 800)). �

Example 7.20. The model response is given by

η(x, θ) = θ1{x}1 + θ31(1 − {x}1) + θ2{x}2 + θ22(1 − {x}2) , θ = (θ1, θ2)
� ,

for x ∈ X = [0, 1]2. We consider local designs for θ0 = (1/8, 1/8)�. One may
notice that the set {∂η(x, θ)/∂θ

∣∣
θ0

: x ∈ X } is the rectangle [3/64, 1]×[1/4, 1],
so that optimal designs for any isotonic criterion Φ(·) (see Definition 5.3) are
supported on the vertices (0, 1), (1, 0), and (1, 1) of X . The D- and E-
optimal designs are supported on three and two points, respectively,

ξ∗D(θ
0) �

⎧
⎨

⎩

(
0
1

) (
1
0

) (
1
1

)

0.4134 0.3184 0.2682

⎫
⎬

⎭ , ξ∗E(θ
0) �

⎧
⎨

⎩

(
0
1

) (
1
0

)

0.5113 0.4887

⎫
⎬

⎭ .

When only the design points x1 = (0 1) and x2 = (1 0) are used, the
model is only locally LS estimable. Indeed, the equations in θ′

η(x1, θ
′) = η(x1, θ)

η(x2, θ
′) = η(x2, θ)

give not only the trivial solutions θ′1 = θ1 and θ′2 = θ2 but also θ′1 and θ′2
as roots of two univariate polynomials of the fifth degree, with coefficients
depending on θ. Since these polynomials always admit at least one real root,
at least one solution exists for θ′ that is different from θ. For θ = θ0, the
vector θ0

′
= (−0.9760 , 0.3094)� gives approximately the same values as θ0

for the responses at x1 and x2. This is confirmed by plotting the function
E′ξ
η,θ0,c(·) given by (7.24) for ξ = ξ∗E and c = (1 , −0.8462)� (with −0.8462 �

(θ0
′
2 − θ02)/(θ

0′
1 − θ01)); see Fig. 7.19. See also Fig. 7.21 for a plot of E

ξ∗E
η,θ0(·)

given by (7.19).
The model is globally LS estimable when the design points x1 = (0 1),

x2 = (1 0), and x3 = (1 1) are used, that is, the polynomial equations in θ′

given by

η(x1, θ
′) = η(x1, θ)

η(x2, θ
′) = η(x2, θ)

η(x3, θ
′) = η(x3, θ)
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Fig. 7.19. Estimability function E′ξ
η,θ0,c

(·) given by (7.24) for ξ = ξ∗E and c =

(1 , −0.8462)� in Example 7.20
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Fig. 7.20. Expectation surface Sη in Example 7.20 for the design (x1,x2,x3) and
θ ∈ [−3, 4]× [−2, 2] (ηi = η(xi, θ), i = 1, 2, 3)

only have the solution θ′ = θ. However, the expectation surface Sη for the
design (x1,x2,x3) has a rather complicated and strongly curved shape; see
Fig. 7.20. The situation is thus favorable to the presence of local minima for the
LS criterion; see Pronzato and Walter (2001) and Walter and Pronzato (1997,
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Table 7.2. Performances of different designs in Example 7.20

ξ det[M(ξ, θ0)] λmin[M(ξ, θ0)] φeE(ξ) Cpar(ξ, θ
0) Cint(ξ, θ

0) Ctot(ξ, θ
0)

ξ∗D 0.277 0.273 3.30 · 10−3 1.096 0.541 1.221
ξ∗E 0.244 0.367 3.23 · 10−4 1.191 0 1.191

ξ∗,1eE,λ 7.68 · 10−3 5.06 · 10−3 2.36 · 10−5 43.33 0 43.33

ξ∗,2eE,λ 8.63 · 10−2 7.98 · 10−2 7.28 · 10−3 0.581 2.277 2.350

ξ∗eE 7.25 · 10−2 4.57 · 10−2 9.80 · 10−3 0.776 3.201 3.290

K = 0.01 and λ = 103 for ξ∗,ieE,λ, i = 1, 2; φeE(·) is evaluated by a discrete sum

(40,000 points) over ∪200
i=1G(0.01 i, 200)

Chap. 4). The values of det[M(ξ, θ0)] and λmin[M(ξ, θ0)] and the curvatures
Cint(ξ, θ), Cint(ξ, θ), and Cint(ξ, θ) for the designs ξ

∗
D and ξ∗E are indicated in

Table 7.2.
We have seen that estimability criterion (7.33) can produce designs close to

an E-optimal design. Since here the design ξ∗E makes the model only locally LS
estimable, a design optimal for (7.33) can be expected to be significantly
different. Similarly to what was done in Example 7.19, we replace integrals by
finite sums in (7.33), (7.34) and consider regular grids G(ρ,M) formed of M
points uniformly distributed on a circle centered at θ0 with radius ρ. We take
K = 0.01 (to enforce the protection against η(θ′) being close to η(θ0) for θ′

far from θ0) and λ = 103.
We first take a single grid G(1.25, 100); the choice ρ = 1.25 is to allow us

to detect the presence of θ0
′
= (−0.9760 , 0.3094)� at approximate distance

1.116 from θ0. The optimal design is then

ξ∗,1eE,λ(θ
0) �

⎧
⎨

⎩

(
0
0

) (
1
1

)

0.2472 0.7528

⎫
⎬

⎭ .

This design ensures that η(θ′) is significantly different from η(θ0) for all θ′

at a distance about 1.25 from θ0, but it does not protect against η(θ′) being
close to η(θ0) for some θ closer or further from θ0. In fact, the model is

still only locally LS estimable for ξ∗,1eE,λ: the two vectors of parameters θ0
′′
=

(1/16) (−9−
√
173 , 13+

√
173)� and θ0

′′′
= (1/16) (−9+

√
173 , 13−

√
173)�,

respectively at approximate distances 2.135 and 0.190 from θ0, yield the same
model responses as θ0. This shows that the choice of the set over which is
computed the integral (or the discrete sum) in φeE,λ(·) must be large enough
to cover the region of interest around θ0.

Take now a collection of grids G(ρ, 100) to optimize φeE,λ(·), with ρ varying
from 0.1 to 2, i.e., G = ∪20

i=1G(0.1 i, 100). The corresponding optimal design is
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ξ∗,2eE,λ(θ
0) �

⎧
⎨

⎩

(
0
0

) (
1
0

) (
1
1

)

0.2600 0.3575 0.3825

⎫
⎬

⎭ .

When we use the finer grid G = ∪200
i=1G(0.01 i, 200) and optimize φeE(·) by LP,

we get the optimal design

ξ∗eE(θ
0) �

⎧
⎨

⎩

(
0
0

) (
0
1

) (
1
0

) (
1
1

)

0.1131 0.0143 0.1377 0.7349

⎫
⎬

⎭ .

The model is globally LS estimable for ξ∗,2eE,λ and ξ∗eE . Figure 7.21 shows the

estimability function Eξη,θ0(·) given by (7.19) for the four designs ξ∗D, ξ
∗
E , ξ

∗,2
eE,λ,

and ξ∗eE . The values of det[M(ξ, θ0)], λmin[M(ξ, θ0)], and φeE(ξ) and of the

curvatures Cint(ξ, θ), Cint(ξ, θ), and Cint(ξ, θ) for ξ∗,1eE,λ, ξ
∗,2
eE,λ, and ξ∗eE are

indicated in Table 7.2. The intrinsic and total curvatures for ξ∗,2eE,λ and ξ∗eE
are significantly larger than those for ξ∗D and ξ∗E . However, Fig. 7.21 indicates
that the minimum of ‖η(·, θ′)− η(·, θ0)‖ξ, say for ‖θ′ − θ0‖2 > 1.5, is 0.149 for

ξ∗eE and 0.131 for ξ∗,2eE,λ, but only 0.082 for ξ∗D; it is zero for ξ∗E since the model
is only locally LS estimable for this design. Since K is small (K = 0.01), the
computed values of φeE(·) and ω∗

θ0 given by (7.16) for the different designs
are rather close; we get ω∗

θ0 � 3.23 · 10−3, 3.16 · 10−4, 2.36 · 10−5, 7.11 · 10−3,

and 9.55 · 10−3 for ξ∗D, ξ
∗
E , ξ

∗,1
eE,λ, ξ

∗,2
eE,λ, and ξ

∗
eE , respectively. �

Example 7.21. Consider again the model (7.37) of Example 7.19, with now
θ0 = (21.80 , 0.05884 , 4.298)�, the nominal value used in (Atkinson et al.,
1993). The D- and E-optimal designs for θ0 are, respectively, given by

ξ∗D(θ
0) �

{
0.229 1.389 18.42
1/3 1/3 1/3

}
,

ξ∗E(θ
0) �

{
0.170 1.398 23.36
0.199 0.662 0.139

}
.

The c-optimal design for the estimation of the area under the curve

h(θ) =

∫ ∞

0

η(x, θ) dx = θ1 (1/θ2 − 1/θ3) (7.38)

is the two-point design

ξ∗c (θ
0) �

{
0.233 17.63
0.0135 0.9865

}
.

Consider now the regularized criterion φec,λ(·) given by (7.35). We takeK = 1
and λ = 103 and replace the integral in (7.35) by a discrete sum on a grid
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Fig. 7.21. Estimability function Eξ

η,θ0
(·) given by (7.19) for the four designs ξ∗D

(dashed line), ξ∗E (dotted line), ξ∗,2eE,λ (solid line), and ξ∗eE (dash-dotted line) in
Example 7.20

Table 7.3. Performances of different designs in Example 7.21

ξ det[M(ξ, θ0)] λmin[M(ξ, θ0)] c�M−(ξ, θ0)c φec,λ(ξ)

ξ∗D 1.62 · 103 0.191 6.39 · 103 0.315
ξ∗E 6.87 · 102 0.316 1.65 · 104 0.156
ξ∗c 0 0 2.19 · 103 � 0
ξ∗ec 1.28 · 103 0.220 5.79 · 103 0.363

c = ∂h(θ)/∂θ|θ0 , with h(θ) given by (7.38); K = 1 and λ = 103 in φec,λ(ξ),
see (7.35), with the integral replaced by a discrete sum (5,000 points on the
ellipsoid defined by (θ − θ0)�Ω(θ − θ0) = 1 with Ω = diag(1/4, 104, 1))

of 5,000 points on the ellipsoid defined by (θ − θ0)�Ω(θ − θ0) = 1 with
Ω = diag(1/4, 104, 1), thus allowing a variation of ±2, ±0.01 and ±1 on
θ1, θ2, and θ3, respectively. We restrict the design space to the eight points
corresponding to the union of the supports of ξ∗D(θ

0), ξ∗E(θ
0), and ξ∗c (θ

0). We
then obtain the three-point optimal design

ξ∗ec(θ
0) �

{
0.170 1.389 23.36
0.233 0.368 0.399

}
.

The performances of these different designs are indicated in Table 7.3.
One may notice that the design ξ∗ec(θ

0), optimal for φec,λ(·), is second best
for each other criterion. �
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7.8 Remarks on Estimability for Estimators
Other than LS

As mentioned in Sect. 7.2, the notion of estimability depends on the estimator
that is used. Only the case of LS estimation has been considered throughout
this chapter. This is not necessarily a strong limitation since the global LS
estimability at θ̄ for X also guarantees that for the replicated design X⊗n

with n tending to infinity, the WLS estimator with strictly positive weights
(see (3.10)), the TSLS estimator (see (3.55) in Theorem 3.26), and the M and
ML estimators (see Theorems. 4.1 and 4.5) are all strongly consistent. It seems
useful, however, to give precise definitions of estimability in regression models
for the estimators considered in Chaps. 3 and 4 and to construct their specific
estimability functions and extended optimality criteria. This is the objective
of this section.

Take any exact design X = (x1, . . . , xk) and consider the replicated design

X⊗n. Consider one of the estimators θ̂N of Chaps. 3 and 4, with θ̂N minimizing
a criterion JN (θ), with N = n × k and k the number of design points in X .

The notion of estimability for the estimator θ̂N is then based on the property

JN (θ)
θ� Jθ̄(θ) a.s. as n → ∞ with Jθ̄(·) having a unique minimum at θ = θ̄:

the model is globally estimable at θ̄ for X if

θ′ ∈ Θ and Jθ̄(θ
′) = Jθ̄(θ̄) =⇒ θ′ = θ̄ ,

in agreement with the estimability conditions used in the consistency theorems
of Chaps. 3 and 4. Notice that the estimator is defined by the criterion JN (·)
and that estimability is defined by a property of the limiting function Jθ̄(·).

Now, to any limiting function Jθ(·), we associate the estimability function

EJθ,θ(·) : δ ∈ R
+ −→ EJθ,θ(δ) = min

θ′∈Θ,‖θ′−θ‖2=δ
Jθ(θ

′)− Jθ(θ) .

For instance, for LS estimation we have Jθ(θ
′) − Jθ(θ) = ‖η(·, θ′) − η(·, θ)‖2ξ

with ξ the design measure that put weight 1/k at each point ofX (see the proof

of Theorem 3.1), and we recover the definition (7.19) of Eξη,θ(·). When Jθ(θ
′)

is a smooth function of θ′, we have Jθ(θ
′) − Jθ(θ) = 1

2 (θ
′ − θ)�H(ξ, θ)(θ′ −

θ) + O(‖θ′ − θ‖3) and obtain

EJθ,θ(δ) =
δ

2
λmin[H(ξ, θ)] + O(δ3/2)

with H(ξ, θ) the Hessian matrix H(ξ, θ) = ∇2
θJθ(θ) = ∂2Jθ(θ

′)/∂θ′∂θ′�
∣∣
θ′=θ.

An extended E-optimality criterion can be defined similarly to what was
done in Sect. 7.7.1,

φeE(ξ; θ) = min
δ≥0

{EJθ,θ(δ)(K + 1/δ)}
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withK some positive number. By letting K tend to infinity, we obtain optimal
designs that tend to be E-optimal for H(ξ, θ), whereas by taking K not too
large, we enable some protection against Jθ(θ

′) − Jθ(θ) being small for some
θ′ far from θ. Other extended optimality criteria can be defined in a similar
way; see Sect. 7.7.2 for c-optimality and Remark 7.18 for G-optimality.

We have already used the Hessian matrix H(ξ, θ) when investigating the
asymptotic distribution of estimators, and several situations encountered in
Chaps. 3 and 4 are considered below. It appears that constructing an optimal
design based on the matrix H(ξ, θ) corresponds to designing under the same
idealistic assumptions as those considered in Sect. 5.5 for situations where the
asymptotic variance–covariance matrix of the estimator is in product form.

The WLS estimator

The estimator minimizes JN (θ) given by (3.5) and

Jθ(θ
′) − Jθ(θ) =

∫

X

w(x)[η(x, θ′)− η(x, θ)]2 ξ(dx) ,

see Remark 3.2-(ii). Direct calculation gives H(ξ, θ) = 2M1(ξ, θ) given
by (3.23); see also Sect. 5.5.1.

The penalized WLS estimator

The estimator minimizes JN (θ) given by (3.47) and

Jθ(θ
′)− Jθ(θ) =

∫

X

λ−1(x, θ′)[η(x, θ′) − η(x, θ)]2 ξ(dx)

+β̄

∫

X

[
λ(x, θ)

λ(x, θ′)
− log

λ(x, θ)

λ(x, θ′)
− 1

]
ξ(dx) ,

see the proof of Theorem 3.22. Direct calculation gives H(ξ, θ) = 2M1(ξ, θ)
given by (3.52); see also Sect. 5.5.2.

When β̄ is considered as a nuisance parameter in the variance func-
tion (3.45), the estimator minimizes (3.49), see Remark 3.23, and

Jθ(θ
′) − Jθ(θ) =

∫

X

log
λ(x, θ′)
λ(x, θ)

ξ(dx)

+ log

{∫

X

λ(x, θ)

λ(x, θ′)
ξ(dx) +

∫

X

[η(x, θ′) − η(x, θ)]2

βλ(x, θ′)
ξ(dx)

}
,

which gives

H(ξ, θ) = 2

[
M1,θ(ξ, γ̄) − v1(ξ, γ̄)v

�
1 (ξ, γ̄)

m1(β̄)

]
,

see (3.69).
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The M estimator

The estimator minimizes JN (θ) given by (4.11). We obtain

Jθ(θ
′)−Jθ(θ) =

∫

X

(∫ ∞

−∞
{ρx[η(x, θ) − η(x, θ′) + ε]− ρx(ε)} ϕ̄x(ε)dε

)
ξ(dx) ,

see the proof of Theorem 4.1, and H(ξ, θ) = M1(ξ, θ) given by (4.18); see also
Sect. 5.5.4.

The ML estimator

The estimator minimizes JN (θ) given by (4.12). Direct calculations give
Jθ(θ

′) − Jθ(θ) = D(P0‖Pη(·,θ′)−η(·,θ)), the Kullback–Leibler divergence be-
tween P0(dε, dx) = ϕ̄x(ε)dε ξ(dx) and Pη(·,θ′)−η(·,θ)(dε, dx) = ϕ̄x[ε+η(x, θ)−
η(x, θ′)]dε ξ(dx), see Theorem 4.5, and H(ξ, θ) = M(ξ, θ) given by (4.16).

7.9 Bibliographic Notes and Further Remarks

Distinguishability and discrimination

Distinguishability refers to the possibility of selecting one model structure
among several candidates, the best one in terms of reproduction (and pre-
diction) of the observations, see, e.g., Walter (1982, 1987) and Walter and
Pronzato (1995). Although the notions of identifiability and distinguishabil-
ity are not related (identifiability of two model structures is neither neces-
sary nor sufficient for their distinguishability), distinguishability can be tested
with methods similar to those used for testing identifiability. The quantitative
counterpart to identifiability is experimental design for parameter estimation,
which is the subject of this book. The quantitative counterpart to distin-
guishability is experimental design for model discrimination, where we try to
maximize the power of statistical tests for choosing one model structure, see,
e.g., Atkinson and Fedorov (1975a,b) for T -optimum design and the survey
papers (Atkinson and Cox, 1974, Hill, 1978).

Experimental design for discrimination will not be considered here. How-
ever, as indicated in Sect. 1.3, parameter estimation can be used to test the
validity of a model. Ds-optimum design, which focuses on the estimation of a
subset of the parameter vector θ, see Chap. 5, can therefore also be used for
model discrimination.
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Nonlocal Optimum Design

The design criteria considered in Chap. 5 for nonlinear models are local, in the
sense that they depend on the choice of a prior nominal value θ0 for the model
parameters θ. Similarly, the criteria of Chap. 6 for LS estimation in nonlinear
regression models depend on the true value θ̄ of the parameters, and at the
design stage, the unknown θ̄ must be replaced by some nominal value θ0.
The design criteria of Chap. 7 are based on a local estimability function and,
in a certain sense, are thus local too.

This dependence of criteria on the location of θ in Θ is fundamental for
nonlinear models since the amount of information collected from an experi-
ment may very much depend on the true value θ̄ of the parameters. Therefore,
choosing a design criterion is not enough in a nonlinear situation; we must
also guess a value θ0 for θ. Nothing forces this choice of θ0 to be unique, and
we may (should) consider a family of criteria ξ −→ φ(ξ; θ(i)) for θ(i) ∈ Θ.
A first intuitive approach is to consider a finite set {θ(1), . . . , θ(M)}, solve M
local design problems, one for each θ(i), and compare the values φ(ξj ; θ(i)) for
each pair (i, j), with ξj the optimal design for θ(j). Alternatively, comparing
the performances of a procedure on a set of examples is usually done through
mean, extremal, median, or quantile values. It is the purpose of this chapter
to formalize such approaches and present their main properties. We shall al-
ways suppose that the criterion φ(ξ; θ) for a given θ is to be maximized with
respect to ξ. The presentation is for design measures, but the transposition
to exact designs X is straightforward.

Section 8.1 is devoted to average-optimum design, where a prior
probability measure μ(·) is set on Θ. The average-optimal version of φ(ξ; θ)
is then φAO(ξ) =

∫
Θ
φ(ξ; θ)μ(dθ). Maximin-optimum design is considered in

Sect. 8.2, with φ(ξ; θ) replaced by φMmO(ξ) = minθ∈Θ φ(ξ; θ). Section 8.3
shows that a smooth transition between average and maximin optimality is
possible, which allows us to avoid some algorithmic difficulties inherent to
the maximin approach. Section 8.4 considers quantiles and probability level
criteria, with the substitution of the median for the mean value for μ(·) as
a particular case. Sequential design is briefly considered in Sect. 8.5 in two

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 8,
© Springer Science+Business Media New York 2013
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particular situations: (i) the experiment is constructed in two stages, (ii) the
experiment is fully sequential, i.e., we choose one design point at a time, and
the design space X is finite.

8.1 Average-Optimum Design

When φ(ξ; θ) is the design criterion for parameters θ, the associated average-
optimality criterion is

φAO(ξ) = IEμ{φ(ξ; θ)} =

∫

Θ

φ(ξ; θ)μ(dθ) (8.1)

with μ(·) a prior probability measure on Θ. Of course, when μ(·) is the delta
measure δθ0 , we recover the locally optimal design approach considered in
previous chapters. We shall consider in particular the case where φ(ξ; θ) =
Φ[M(ξ, θ)] with Φ(·) one of the criteria considered in Chap. 5 and M(ξ, θ) an
information matrix.

One may wonder if it is legitimate to use a prior μ(·) on θ for designing
the experiment but not for estimating θ. This can be justified by asymptotic
considerations (see, e.g., Theorem 4.16) or by the substitution of the prior
on θ for the predictive distribution of the estimator, see Sect. 8.1.2. Another
heuristic justification is that the harm caused by a bad prior at the design
stage is usually less severe than the one that may result from using the same
prior for estimation. Moreover, in many situations objective conclusions are
required that should be based on standardized procedures not depending on
subjective priors, whereas the use of all possible sources of information about
the possible location of θ̄, even of subjective origin, is recommended to increase
the chance of selecting an informative experiment.

8.1.1 Properties

When φ(·; θ) is positively homogeneous for all θ ∈ Θ, i.e., φ(aξ; θ) = aφ(ξ; θ)
for any a > 0, any θ ∈ Θ, and any ξ ∈ Ξ, the set of probability mea-
sures on X (see Definition 5.3) then φAO(·) is positively homogeneous too.
An optimal design for φ(·; θ) is invariant with respect to the composition
by a strictly increasing differentiable function ψ(·), i.e., argmaxξ φ(ξ; θ) =
argmaxξ ψ[φ(ξ; θ)]; see Sect. 5.2.1 and Remark 5.22-(i). However, optimal
designs for

∫
Θ
ψ[φ(·; θ)]μ(dθ) and ψ

[∫
Θ
φ(·; θ)μ(dθ)

]
generally differ when

ψ(·) is a nonlinear function; see, e.g., Fedorov (1980). Also, maximizing
IEμ{φ(ξ; θ)} is different from maximizing the average efficiency

EφAO(ξ) = IEμ{Eφ(ξ; θ)} = IEμ

{
φ(ξ; θ)

φ(ξ∗θ ; θ)

}
,
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where ξ∗θ = argmaxξ∈Ξ φ(ξ; θ); see Sect. 5.1.8. Note that using an efficiency
criterion may prove quite useful when the magnitude of φ(ξ; θ) depends
strongly on the value of θ ∈ Θ.

The criterion φAO(·) is concave when φ(·; θ) is concave for any θ ∈ Θ.
Its directional derivative FφAO (ξ; ν) then exists for any ξ, ν ∈ Ξ such that
φAO(ξ) > −∞ (see Lemma 5.16) and is given by

FφAO (ξ; ν) =

∫

Θ

Fφθ
(ξ; ν)μ(dθ),

with Fφθ
(ξ; ν) the directional derivative of φ(·; θ) at ξ in the direction ν.

We thus obtain the following equivalence theorem for average-optimum design.

Theorem 8.1. Let φ(·; θ) be a concave functional on the set Ξ of probability
measures on X for any θ ∈ Θ. A design ξ∗ is optimal for the criterion φAO(·)
defined by (8.1) (or φAO-optimal) if and only if

sup
ν∈Ξ

∫

Θ

Fφθ
(ξ∗; ν)μ(dθ) = 0.

The theorem above takes a simple form when φ(ξ; θ) = Φ[M(ξ, θ)] with
Φ(·) differentiable; see Lemma 5.20: ξ∗ is φAO-optimal if and only if

max
x∈X

∫

Θ

trace {[Mθ(x) − M(ξ, θ)]∇MΦ[M(ξ, θ)]} μ(dθ) = 0.

In that case, the determination of an average-optimal design ξ∗AO does not
raise any special difficulty apart from heavier computations than for locally
optimum design due to evaluations of expected values for μ(·). Numerical
calculations are facilitated by taking μ(·) as a discrete measure over a finite
subset ofΘ. When μ(·) has a density with respect to the Lebesgue measure, the
computations of integrals can be avoided by using stochastic approximation
techniques; see Sect. 9.4.

Note that the bound on the number of support points indicated in
Sect. 5.2.3 does not apply to φAO(ξ) =

∫
Θ Φ[M(ξ, θ)]μ(dθ). It has been re-

ported by many authors that the number of support points of an average-
optimal design ξ∗ increases when the prior μ(·) becomes less informative (see,
e.g., Chaloner and Larntz (1989)); a sufficient condition is given in (Braess
and Dette, 2007) under which the number of support points of ξ∗ can be
made arbitrarily large. On the other hand, average-optimal design measures
generally have a moderate number of support points when Θ is not too big.

Example 8.2. Consider the simple case of the one-parameter regression model
η(x, θ) = exp(−θx) with homoscedastic errors having variance 1, θ > 0, x ≥ 0.
The information matrix (here a scalar) for LS estimation with a design ξ on
X is given by (3.32) which yields here M(ξ, θ) =

∫
X x2 exp(−2θx) ξ(dx).
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For any isotonic criterion Φ(·), the optimal design ξ∗θ on X = R
+ is the

delta measure at 1/θ, and the associated value of the information matrix is
M(ξ∗θ , θ) = 1/(e θ)2. We consider two different situations.

(A) Suppose that θ has the prior μ(·) on a subset Θ of R+ and consider

φAO(ξ) =

∫

Θ

M(ξ, θ)μ(dθ) =

∫

X

∫

Θ

x2 exp(−2θx)μ(dθ) ξ(dx).

Due to its linearity in ξ, we directly obtain that the optimal design is the
delta measure at x∗ = argmaxx∈X

∫
Θ
x2 exp(−2θx)μ(dθ); see Fig. 8.5

for an illustration.
Consider now the criterion φED(ξ) =

∫
Θ
log[M(ξ, θ)]μ(dθ). For ξ the delta

measure at x we obtain φED(δx) =
∫
Θ
log[x2 exp(−2θx)]μ(dθ), and one

can easily check that the optimal design among one-point design mea-
sures on X = R

+ is supported at x∗ = 1/IEμ(θ). One can then check
numerically that δx∗ is optimal among all design measures on X when Θ
remains reasonably small by computing

FφED (δx∗ , x) =

∫

Θ

(
x2IE2

μ(θ) exp{−2θ[x− 1/IEμ(θ)]} − 1
)
μ(dθ)

and checking that maxx∈X FφED (δx∗ , x) ≤ 0. When μ(·) is uniform on
[θ∗ − ε, θ∗ + ε], ε ≤ θ∗, this is true if ε is not too large and numerical
calculations indicate that δx∗ is optimal on X = R

+ when ε/θ∗ � 0.9344.
It remains optimal for larger ε on a smaller design space X . For instance,
with X = [0, 1], δx∗ is optimal when ε � 4.680 for θ∗ = 5, when ε � 3.768
for θ∗ = 4, and when ε � 2.881 for θ∗ = 3 and is optimal for μ(·) uniform
on Θ = [0, 4].

(B) Consider now the efficiency criterion

EφAO(ξ) = IEμ

{
M(ξ, θ)

M(ξ∗θ , θ)

}
=

∫

Θ

∫

X

e2θ2x2 exp(−2θx) ξ(dx)μ(dθ).

Due to its linearity in ξ, we directly obtain that the optimal design is the
delta measure at x∗ = argmaxx∈X

∫
Θ θ

2x2 exp(−2θx)μ(dθ). �

The next section shows that some average-optimality criteria, which may
be considered as ad hoc modifications of local criteria aimed at taking the
dependence in θ0 into account, correspond in fact to approximations of a
Bayesian formulation of the design problem.

8.1.2 A Bayesian Interpretation

Maximizing the Expected Information Provided by an Experiment

Suppose that μ(·) has a density π(·) with respect to the Lebesgue measure
on Θ and denote by πX,y(·) the posterior p.d.f. of θ for the observations
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y = [y(x1), . . . , y(xN )]�. The amount of information provided by the
experiment characterized by the design X is defined by the decrease in the
(Shannon) entropy of the distribution of θ,

J (X ;y) = −
∫

Θ

π(θ) log[π(θ)] dθ +

∫

Θ

πX,y(θ) log[πX,y(θ)] dθ,

see Lindley (1956). Since J (X ;y) depends on the observations y, it must be
averaged with respect to y to form a design criterion. The expected gain in
information provided by X is then

I(X) = IE

{∫

Θ

(πX,y(θ) log[πX,y(θ)] − π(θ) log[π(θ)]) dθ

}
, (8.2)

where the expectation IE{·} is with respect to the marginal distribution of y,
the p.d.f. of which is denoted by ϕ∗

X(·).
Denote by D(ϕ(·)‖ψ(·)) the Kullback–Leibler divergence (or information

divergence, or relative entropy) between the p.d.f. ϕ(·) and ψ(·),

D(ϕ(·)‖ψ(·)) =
∫
ϕ(t) log

ϕ(t)

ψ(t)
dt.

Since IE{πX,y(θ)} = π(θ), we can write

I(X) = IE

{∫

Θ

πX,y(θ) log

[
πX,y(θ)

π(θ)

]
dθ

}
= IE{D(πX,y(·)‖π(·))}

=

∫

RN

∫

Θ

"X(θ,y) log

[
"X(θ,y)

π(θ)ϕ∗
X (y)

]
dθ dy

= D("X(·, ·)‖π(·)ϕ∗
X(·)) (8.3)

=

∫

Θ

D(ϕX,θ(·)‖ϕ∗
X(·))π(θ) dθ, (8.4)

with "X(θ,y) = πX,y(θ)ϕ
∗
X(y) the joint density of θ and y and ϕX,θ(y) =

πX,y(θ)ϕ
∗
X(y)/π(θ). Note that (8.3) shows a full symmetry between θ and y.

One can show that I(X) ≥ 0 with equality if and only if ϕX,θ(y) does not
depend on θ (except possibly on a set of zero Lebesgue measure for θ); see
Lindley (1956). This does not mean, however, that the gain in information
provided by an experiment J (X ;y) is necessarily positive: it is so only on
the average; surprising results may lead to the posterior for θ being a severe
revision of the prior and to a decrease of the amount of information; one may
refer to Wynn (2004, 2007) for generalizations.

Average-Optimality Criteria

Only the first term of I(X) depends on X in (8.2), which we write

φI(X) =

∫

RN

∫

Θ

πX,y(θ) log[πX,y(θ)]ϕ
∗
X(y) dθ dy.
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Using the approximation

πX,y(θ) ≈ N (θ̂NML(y),M
−1(X, θ̂NML(y))/N), (8.5)

see Sect. 4.5 and, e.g., Cox and Hinkley (1974, p. 399), we obtain from (5.7)
that maximizing φI(X) is approximately equivalent to maximizing

∫

RN

log det[M(X, θ̂NML(y))]ϕ
∗
X (y) dy.

Under the assumption that the experiment is informative enough, the pre-
dictive distribution of θ̂NML(y) can be approximated by the prior, which then
yields the average (or expected) D-optimality criterion

φED(X) =

∫

Θ

log det[M(X, θ)]μ(dθ), (8.6)

see D’Argenio (1990) and Chaloner and Verdinelli (1995). Another approxi-
mation can alternatively be used for πX,y(θ):

πX,y(θ) ≈ N (θ̂N (y), [N M(X, θ̂N(y)) +Ω−1]−1), (8.7)

with θ̂N (y) the mode of πX,y(·), i.e., the maximum a posteriori estimator, and
Ω the prior covariance matrix of θ, or IEπ{[∂ log π(θ)/∂θ] [∂ log π(θ)/∂θ�]};
see Remark 4.18-(i). Supposing again that the predictive distribution of θ̂N

is close to the prior, we obtain the criterion

φBED(X) =

∫

Θ

log det[M(X, θ) +Ω−1/N ]μ(dθ).

In the case where μ(·) is the delta measure at some θ0, or in a linear situation
where M(X, θ) does not depend on θ, we obtain a Bayesian version of the
D-optimality criterion; see Sect. 5.6.

Consider now a utility function based on the (weighted) variance of the
posterior rather than on its entropy, i.e., −IE{

∫
Θ
(θ − θ̃N )�QQ�

(θ − θ̃N )πX,y(θ) dθ}, with θ̃N the posterior mean of θ, θ̃N =
∫
Θ
θ πX,y(θ) dθ,

and Q some p×m matrix. Using the approximation (8.5) and assuming that

the predictive distribution of θ̂NML is close to the prior, we obtain the average
(or expected) L-optimality criterion

φEL(X) = −
∫

Θ

trace[QQ�M−1(X, θ)]μ(dθ).

Similarly, using the approximation (8.7), we obtain

φBEL(X) = −
∫

Θ

trace{QQ�[M(X, θ) +Ω−1/N ]−1}μ(dθ),
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which can be related to Bayesian L-optimum design; see Sect. 5.6 and Pilz
(1983). Other utility functions are considered in the survey (Chaloner and
Verdinelli 1995); one may also refer to Eaton et al. (1996) for a decision
theoretic formulation of the Bayesian design problem.

The connection between the information provided by an experiment and
average-optimality criteria can be made more rigorous through asymptotic
considerations when the experiment characterized by X is replicated n times
with n → ∞. Clarke and Barron (1994) interpret D(ϕX,θ(·)‖ϕ∗

X(·)) in (8.4) as
the risk of a Bayesian strategy in a game against nature and I(X) is then the
corresponding Bayes risk. It is shown in the same paper that, under suitable
regularity conditions, we have for the design X⊗n consisting of n independent
replications of the experiment at X

D(ϕX,θ(·)‖ϕ∗
X(·)) = p

2
log

n

2πe
+

1

2
log det[M(X, θ)] + log

1

π(θ)
+ o(1)

as n → ∞, uniformly on compact sets in the interior of the support of π(·).
Integration with respect to π(·) then gives

I(X⊗n) =
p

2
log

n

2πe
+

1

2

∫

Θ

log det[M(X, θ)]π(θ) dθ +H1(π) + o(1) (8.8)

with H1(π) = −
∫
Θ π(θ) log π(θ) dθ the Shannon entropy of the prior for θ.

The criterion to be maximized thus takes the form of the averageD-optimality
criterion given by (8.6).

Non-informative Priors

The expected gain in information (8.8) can be rewritten as

I(X⊗n) =
p

2
log

n

2πe
−D(π(·)‖π∗(·)) + log

{∫

Θ

det1/2[M(X, θ)] dθ

}
+ o(1)

with π∗(·) given by Jeffrey’s prior,

π∗(θ) =
det1/2[M(X, θ)]

∫
Θ
det1/2[M(X, θ)] dθ

. (8.9)

Neglecting the terms that tend to zero as n → ∞, the maximum of I(X⊗n)
with respect to π(·) is obtained for π(·) = π∗(·) and equals

I∗(X⊗n) =
p

2
log

n

2πe
+ log

{∫

Θ

det1/2[M(X, θ)] dθ

}
+ o(1).

To summarize, we should thus maximize
∫
Θ
det1/2 M(X, θ) dθ when using

Jeffrey’s prior and maximize the average D-optimality criterion (8.6) when
the prior density π(·) is given (and does not depend on X).
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Other choices than (8.9) for a non-informative prior π(·) can be motivated
by the objective of obtaining a uniform distribution of responses η(x, θ) for
regression models, or more generally of (expected) log-likelihoods, over (a part
of) X . This is the approach proposed in (Bornkamp, 2011), which we follow
in the rest of this section.

For a regression model (3.2), (3.3) we can define a new metric in Θ by
considering the sets

Aε(ν, θ
0) = {θ ∈ Θ : ‖η(·, θ) − η(·, θ0)‖ν ≤ ε},

with ν(·) a probability measure on X related to the importance given to
different regions of interest, θ0 a point in int(Θ) and ‖ · ‖ν the norm in L2(ν);
see (3.41). Let mε(ν, θ

0) denote the mass allocated to Aε(ν, θ
0) when θ has

the prior π(·). Uniformity in the response space is then obtained when all
Aε(ν, θ

0) receive the same mass as ε tends to zero, i.e., when mε(ν, θ
0)/εp

tends to a constant not depending on θ0 as ε → 0; see, e.g., Dembski (1990)
for precise statements. For small ε, the set Aε(ν, θ

0) can be approximated by

Eε(ν, θ0) = {θ′ ∈ Θ : [(θ − θ0)�M(ν, θ0)(θ − θ0)]1/2 ≤ (ε/σ)},

with M(ν, θ0) the information matrix (3.32). The volume of the ellipsoid
Eε(ν, θ0) equals εpVp det−1/2M(ν, θ0)/σp, with Vp the volume of the unit ball
B(0, 1) of Rp; see Lemma 5.1-(i). The prior π(·) that yields a uniform distri-
bution for the new metric is thus proportional to det 1/2M(ν, θ), that is,

π∗
ν(θ) =

det1/2[M(ν, θ)]
∫
Θ det1/2[M(ν, θ)] dθ

. (8.10)

Bornkamp (2011) considers the case where ν(·) corresponds to the uniform
distribution on X . One may notice that taking ν = ξ, the design measure
corresponding to the design X itself, gives Jeffrey’s prior (8.9).

More generally, within the framework of Sect. 4.4, one may define a new
metric on Θ by considering the sets

Aε(Z, θ
0) =

{
θ ∈ Θ :

2

m
IEZ,θ0

[
log

(
LZ,y(θ

0)

LZ,y(θ)

)]
≤ ε2

}
,

with Z = (z1, . . . , zm) an m-point design on X and LZ,y(θ
0) the likelihood of

parameters θ0 for the design Z at observations y. The expected log-likelihood
ratio in the definition of Aε(Z, θ

0) corresponds to Kullback–Leibler divergence
between the distributions of y for θ0 and θ, a similar result is obtained when
using Hellinger distance. For small ε, the set Aε(Z, θ

0) can be approximated by

Eε(Z, θ0) =
{
θ′ ∈ Θ : − 1

m
(θ − θ0)�IEZ,θ0

[
∂2 log LZ,y(θ

0)

∂θ∂θ�

∣∣∣∣
θ0

]
(θ − θ0) ≤ ε2

}
;

that is, from Remark 4.14-(iv),
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Fig. 8.1. α-quantiles for the distribution of η(x, θ) as functions of x for
α=0, 0.1, 0.2 . . . , 1; π is uniform on Θ

Eε(Z, θ0) = {θ′ ∈ Θ : [(θ − θ0)�M(Z, θ0)(θ − θ0)]1/2 ≤ ε},

with M(Z, θ0) the information matrix (4.46). The volume of Eε(Z, θ0) equals
εpVp det

−1/2M(Z, θ0), which yields the prior

π∗
Z(θ) =

det1/2[M(Z, θ)]
∫
Θ det1/2[M(Z, θ)] dθ

.

Again, the choice of Z can be guided by regions of interest in X where we
wish the expected log-likelihood to be uniformly distributed.

Example 8.3. Consider again the one-parameter regression model η(x, θ) =
exp(−θx) with homoscedastic errors, x ≥ 0, θ ∈ Θ = [θmin, θmax], θmin > 0.

We have M(ξ, θ) =
∫

X
x2 exp(−2θx) ξ(dx). Suppose that ξ is the delta

measure at x. When the prior p.d.f. π(·) corresponds to Jeffrey’s prior (8.9), we
obtain

∫
Θ
M1/2(δx, θ) dθ = exp(−θminx) − exp(−θmaxx) so that the optimal

value of x is x∗ = [log θmax − log θmin]/[θmax − θmin], with x∗ � 0.2558 for
Θ = [1, 10].

Figures 8.1–8.3 present the α-quantiles for the distribution of η(x, θ) as
functions of x for Θ = [1, 10], α = 0, 0.1, 0.2, . . . , 1 and different priors π(·):
π(·) are uniform in Fig. 8.1; π(·) = π∗

ν(·) given by (8.10) in Fig. 8.2 (with ν
uniform on [0, 2]) and Fig. 8.3 (ν is uniform on [1.5, 2]). The value of x that
maximizes φED(δx) =

∫
Θ log[x2 exp(−2θx)]π(θ) dθ is given by x∗ = 1/IEπ(θ);

see Example 8.2-A. We obtain x∗ � 0.1818, x∗ � 0.3118 and x∗ � 0.6279,
respectively, for π(·) uniform on Θ, π(·) = π∗

ν(·) with ν uniform on [0, 2] and
π(·) = π∗

ν(·) with ν is uniform on [1.5, 2]. �
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Fig. 8.2. α-quantiles for the distribution of η(x, θ) as functions of x for
α=0, 0.1, 0.2 . . . , 1; π(·) = π∗

ν(·) given by (8.10) with ν uniform on [0, 2]
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Fig. 8.3. α-quantiles for the distribution of η(x, θ) as functions of x for
α=0, 0.1, 0.2 . . . , 1; π(·) = π∗

ν(·) given by (8.10) with ν uniform on [1.5, 2]

8.2 Maximin-Optimum Design

Let φ(ξ; θ) denote the criterion of interest for a given θ, to be maximized with
respect to ξ. Its associated maximin-optimality version is

φMmO(ξ) = min
θ∈Θ

φ(ξ; θ), (8.11)

where Θ is a finite set or a compact subset of Rp with nonempty interior.
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The bound on the number of support points of an optimal design given in
Sect. 5.2.3 does not apply to φMmO(ξ) = minθ∈Θ Φ[M(ξ, θ)]. Braess and Dette
(2007) give a sufficient condition under which the number of support points
of a maximin D-optimal design can be made arbitrarily large by increasing
the size of Θ. An example where this happens is given in (Rojas et al., 2007).

The maximin criterion φMmO(·) is positively homogeneous when φ(ξ; θ) is
positively homogeneous for all θ ∈ Θ; see Definition 5.3. When the magnitude
of φ(ξ; θ) depends strongly on the value of θ ∈ Θ, it is recommended to
consider the maximin-efficiency criterion

EφMmO(ξ) = min
θ∈Θ

Eφ(ξ; θ) = min
θ∈Θ

{
φ(ξ; θ)

φ(ξ∗θ ; θ)

}
,

where ξ∗θ = argmaxξ∈Ξ φ(ξ; θ).
If φ(ξ; θ) is concave for all θ ∈ Θ, then φMmO(·) is concave (as the minimum

over a family of concave functionals). It thus admits a directional derivative
FφMmO(ξ; ν) at any ξ such that φMmO(ξ) > −∞; see Lemma 5.16. When
φ(·; θ) is differentiable for all θ,

FφMmO (ξ; ν) = min
θ∈Θ(ξ)

Fφθ
(ξ; ν),

with Fφθ
(ξ; ν) the directional derivative of φ(·; θ) at ξ in the direction ν and

Θ(ξ) = {θ ∈ Θ : φ(ξ; θ) = φMmO(ξ)}, (8.12)

see (5.36). We thus obtain an equivalence theorem for φMmO(·), which is a
simple reformulation of Theorem 5.25 in Sect. 5.2.2.

Theorem 8.4. Let φ(·; θ) be a concave and differentiable functional on the
set Ξ of probability measures on X for any θ ∈ Θ. A design ξ∗ is optimal for
the criterion φMmO(·) defined by (8.11) (or φMmO-optimal) if and only if

sup
ν∈Ξ

min
θ∈Θ(ξ∗)

Fφθ
(ξ∗; ν) = 0, (8.13)

with Θ(ξ) defined by (8.12). An equivalent condition is

max
x∈X

∫

Θ(ξ∗)
Fφθ

(ξ∗, x)μ∗(dθ) = 0 for some μ∗ ∈ Mξ∗ , (8.14)

with Mξ the set of probability measures on Θ(ξ), Fφθ
(ξ, x) = Fφθ

(ξ; δx) and
δx the delta measure at x.

Consider, for instance, the following global version of the estimability cri-
terion φeE(X ; θ) of Sect. 7.7.1,

φMeE(X) = min
δ≥0

Eη(δ)

N
(K + 1/δ) = min

θ∈Θ
φeE(X, θ),
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to be maximized with respect to X . We can define similarly

φMeE(ξ) = min
(θ′,θ)∈Θ2

‖η(·, θ′)− η(·, θ)‖2ξ
(
K + ‖θ′ − θ‖−2

)
,

see (7.28), the directional derivative of which is given by

FφMeE (ξ; ν) = min
θ,θ′∈Θ2(ξ)

‖η(·, θ′) − η(·, θ)‖2ν
(
K + ‖θ′ − θ‖−2

)
− φMeE(ξ)

where

Θ2(ξ) =
{
(θ, θ′) ∈ Θ2 : ‖η(·, θ′) − η(·, θ)‖2ξ

(
K + ‖θ′ − θ‖−2

)
= φMeE(ξ)

}
.

The conditions of Theorem 8.4 are satisfied, and the necessary-and-sufficient
condition (8.14) applies.

Example 8.5. Consider again the model of Example 8.2, for which M(ξ, θ) =∫
X
x2 exp(−2θx) ξ(dx) with θ > 0 and X ⊆ R

+, in the same two situations
as in p. 238.

(A) The optimal design ξ∗θ on X = R
+ for any isotonic criterion Φ(·) maxi-

mizesM(ξ, θ) and is given by the delta measure at 1/θ. ForΘ any compact
subset of R+, the φMmO-optimal design that maximizes

φMmO(ξ) = min
θ∈Θ

Φ[M(ξ, θ)]

is then the delta measure at 1/θmax with θmax = max(θ); see Fig. 8.5 for
an illustration.

(B) Consider now the efficiency criterion E (ξ; θ) = M(ξ, θ)/M(ξ∗θ , θ) and its
maximin version

EφMmO(ξ) = min
θ∈Θ

{
M(ξ, θ)

M(ξ∗θ , θ)

}
= min

θ∈Θ

∫

X

e2θ2x2 exp(−2θx) ξ(dx).

Suppose that Θ = [θmin, θmax]. For θmax−θmin small enough, the optimal
design maximizing EφMmO(ξ) is the delta measure at the point

x∗ =
log(θmax)− log(θmin)

θmax − θmin

satisfying E (δx∗ ; θmax) = E (δx∗ ; θmin). The optimality of this one-point
design can be verified by using Theorem 8.4. Denote φθ(ξ) = φ(ξ; θ) =
E (ξ; θ), then Fφθ

(ξ, x) = e2θ2x2 exp(−2θx) − φ(ξ; θ). Take μ∗ = (1 −
β)δθmin + βδθmax . Numerical calculations show that the condition (8.14)
is satisfied, for instance, when β � 0.4427 for θmin = 1/2, θmax = 1 and
when β � 0.4102 for θmin = 1, θmax = 3. The one-point design δx∗ ceases
to be optimal if θmax − θmin exceeds some threshold; for instance, it is
already not optimal for θmin = 1 and θmax = 4. One can refer to Rojas
et al. (2007) for a detailed analysis in another example with dim(θ) = 1.

�
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Example 8.6. We consider the maximin D-efficiency criterion EMmD(ξ) =
minθ∈Θ φ(ξ; θ), with

φ(ξ; θ) = ED(ξ; θ) =
det1/p[M(ξ, θ)]

det1/p{M[ξ∗D(θ), θ]}

and ξ∗D(θ) a D-optimal design measure for θ (see Sect. 5.1.8), for the
two-parameter regression model η(x, θ) = θ1 exp(−θ2x), with θ2 > 0 and
x ∈ X = [0, 1]. Since the response η(x, θ) is linear in θ1, ED(ξ; θ) does not
depend on θ1 and ξ∗D(θ) = (1/2)δ0 + (1/2)δ1/θ2 . Suppose that θ2 ∈ [0, θmax].
The optimal design measure ξ∗ for EMmD(·) depends on θmax, and the num-
ber of its support points increases with θmax; see Braess and Dette (2007).
The cutting-plane algorithm of Sect. 9.5.3, with Θ replaced by a regular grid
with steps 10−3, gives

ξ∗ =

{
0 log 2 � 0.6931

1/2 1/2

}
, Θ(ξ∗) = {1, 2}, for θmax = 2,

ξ∗ �
{

0 0.1405 0.7345
0.4470 0.3447 0.2083

}
, Θ(ξ∗) � {1, 3.491, 10}, for θmax = 10,

and

ξ∗ �
{

0 0.0635 0.274 0.9
0.4201 0.3020 0.1484 0.1295

}
, Θ(ξ∗) � {1, 3.604, 7.115, 20},

for θmax = 20, where Θ(ξ∗) = {θ ∈ Θ : φ(ξ; θ) = EMmD(ξ)}; see (8.12).
The optimality of ξ∗ can be checked via condition (8.14): the measure μ∗ that
minimizes maxx∈X

∫
Θ(ξ∗) Fφθ

(ξ∗, x)μ∗(dθ) is obtained as solution of an LP

problem and is given by

μ∗ �
{

1 2
0.5553 0.4447

}
for θmax = 2,

μ∗ �
{

1 3.491 10
0.3916 0.3140 0.2944

}
for θmax = 10,

μ∗ �
{

1 3.604 7.115 20
0.3272 0.2107 0.1905 0.2716

}
for θmax = 20,

with the first line indicating the support points (the points in Θ(ξ∗)) and the
second their respective weights. Figure 8.4 shows

∫
Θ(ξ∗) Fφθ

(ξ∗, x)μ∗(dθ) as a
function of x when θmax = 2 (solid line) and θmax = 20 (dashed line). �

The supremum of FφMmO (ξ; ν) with respect to ν in (8.13) is generally not
obtained for ν∗ equal to a one-point (delta) measure; see Remark 5.26-(ii).
Therefore, a maximin-optimal design cannot be obtained by using one of the
vertex-direction algorithms of Sect. 9.1.1, and we should either use a specific
algorithm (see Sects. 9.3.1 and 9.5) or smooth the design criterion. The latter
is considered in the next section.
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Fig. 8.4. Plot of
∫
Θ(ξ∗) Fφθ

(ξ∗, x)μ∗(dθ) as a function of x in Example 8.6 for

θmax = 2 (solid line) and θmax = 20 (dashed line)

8.3 Regularization of Maximin Criteria via
Average Criteria

Two approaches are considered that ensure a smooth transition between the
average-optimality criterion (8.1) and the maximin criterion (8.11), which
is usually non-differentiable. The first one simply relies on properties of Lq

norms; the second one relies on a maximum-entropy principle. In both cases
the criterion that is constructed is concave and differentiable, so that its op-
timization can be carried out by using the algorithms of Sect. 9.1.

8.3.1 Regularization via Lq Norms

Consider the design criterion

φMmO,q(ξ) =

[∫

Θ

φ−q(ξ; θ)μ(dθ)
]−1/q

. (8.15)

We suppose that φMmO(ξ) = minθ∈Θ φ(ξ; θ) ≥ 0 and φMmO(ξ) > 0 for some
ξ ∈ Ξ, the set of probability measures on X . We denote by Ξ+ the set
{ξ ∈ Ξ : φMmO(ξ) > 0}. Either Θ is a finite set {θ(1), . . . , θ(M)} and the
probability measure μ(·) for θ is such that mini=1,...,M μ(θ(i)) > 0 orΘ satisfies
HΘ (p. 22), μ(·) has a density with respect to the Lebesgue measure which is
bounded away from zero on Θ, and we suppose that φ(ξ; θ) is continuous in
θ ∈ Θ for any ξ ∈ Ξ+.
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For any ξ ∈ Ξ+ and any q > 0 we can write

φMmO(ξ) = [max
θ∈Θ

φ−q(ξ; θ)]−1/q (8.16)

and maxθ∈Θ φ−q(ξ; θ) ≥
∫
Θ
φ−q(ξ; θ)μ(dθ) implies that

φMmO(ξ) ≤ φMmO,q(ξ). (8.17)

Similarly, φMmO(ξ) = [minθ∈Θ φ−q(ξ; θ)]−1/q for q < 0 and minθ∈Θ φ−q(ξ; θ) ≤∫
Θ φ

−q(ξ; θ)μ(dθ) implies (8.17).

Pointwise Convergence of φMmO,q(ξ) to φMmO(ξ) as q → ∞

For any given ξ ∈ Ξ+, φMmO,q(ξ) → φMmO(ξ) as q tends to ∞. Indeed,
consider, for instance, the case where Θ is a compact set satisfying HΘ. From
the continuity in θ of φ(ξ; θ) and the assumptions on Θ and μ(·), for any
ξ ∈ Ξ+ and any ε > 0, the set Aε(ξ) = {θ ∈ Θ : φ(ξ; θ) < φMmO(ξ) + ε} has
positive measure μ[Aε(ξ)] = cε(ξ) > 0. For q > 0, φ−q(ξ; θ) > [φMmO(ξ) +

ε]−q on Aε(ξ), so that φMmO,q(ξ) ≤ [φMmO(ξ) + ε] c
−1/q
ε (ξ) and therefore

lim supq→∞ φMmO,q(ξ) ≤ φMmO(ξ) + ε. Together with (8.17), it implies that

limq→∞ φMmO,q(ξ) = φMmO(ξ).

The computation of the derivative ∂φMmO,q(ξ)/∂q gives

∂φMmO,q(ξ)

∂q
=

φMmO,q(ξ)

q2
∫
Θ φ

−q(ξ; θ)μ(dθ)

×
{[∫

Θ

φ−q(ξ; θ)μ(dθ)
]
log

[∫

Θ

φ−q(ξ; θ)μ(dθ)
]

−
∫

Θ

φ−q(ξ; θ) log[φ−q(ξ; θ)]μ(dθ)
}

≤ 0 for any q, (8.18)

where the inequality follows from Jensen’s inequality (the function x −→
x log x being convex). Equality is obtained when φ(ξ; ·) is μ-a.s. constant; the
inequality is strict in other situations, and φMmO,q(ξ) decreases monotonically
from maxθ∈Θ φ(ξ; θ) for q → −∞ to φMmO(ξ) as q increases to +∞.

Notice that φMmO,−1(ξ) = φAO(ξ) (see (8.1)) and that for any ξ ∈ Ξ+ we

have limq→0 φMmO,q(ξ) = exp
{∫

Θ
log[φ(ξ; θ)]μ(dθ)

}
; we can thus define by

continuity

φMmO,0(ξ) = exp

{∫

Θ

log[φ(ξ; θ)]μ(dθ)

}
. (8.19)

We thus obtain from (8.17) that φMmO,q(ξ) ≥ φMmO(ξ) for all q.
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Uniform Convergence of φMmO,q(·) to φMmO(·) as q → ∞
when Θ is Finite

Suppose now that Θ is finite, Θ = {θ(1), . . . , θ(M)}, and consider

φ
MmO,q

(ξ) =

[
M∑

i=1

φ−q(ξ; θ(i))

]−1/q

, q > 0. (8.20)

For q > 0 and any ξ ∈ Ξ+, (8.16) and maxθ∈Θ φ−q(ξ; θ) ≤
∑M
i=1 φ

−q(ξ; θ(i))
(since φ(ξ; θ(i)) > 0 for all i) imply that φMmO(ξ) ≥ φ

MmO,q
(ξ).

From a property of Lq norms, φ
MmO,q2

(ξ) ≤ φ
MmO,q1

(ξ) for any q1 >

q2 > 0 and any ξ ∈ Ξ+, so that φ
MmO,q

(ξ) with q > 0 forms a lower bound

on φMmO(ξ) which tends to φMmO(ξ) as q → ∞. Notice that φ
MmO,0

(ξ) is

not defined, with limq→0− φMmO,q
(ξ) = ∞ and limq→0+ φMmO,q

(ξ) = 0, and

that φ
MmO,q

(ξ) tends to maxθ∈Θ φ(ξ; θ) as q → −∞.

Denote by μi = μ(θ(i)) the weight given by the measure μ(·) of (8.15) to
θ(i) for i = 1, . . . ,M and μ = mini=1,...,M μi. We have, for any ξ ∈ Ξ+ and
any q > 0,

φ
MmO,q

(ξ) ≤ φMmO(ξ) ≤ φMmO,q(ξ) ≤ μ−1/qφ
MmO,q

(ξ), (8.21)

so that

0 ≤ φMmO(ξ) − φ
MmO,q

(ξ) ≤ (μ−1/q − 1)φMmO(ξ
∗)

and

0 ≤ φMmO,q(ξ) − φMmO(ξ) ≤ (μ−1/q − 1)φMmO(ξ
∗),

where ξ∗ is optimal for φMmO(·) and μ−1/q tends to 1 as q → ∞.
The inequalities (8.21) can be used to obtain lower bounds on the maximin

efficiency of designs optimal for φ
MmO,q

(ξ) or φMmO,q(ξ). Indeed, let ξ
∗
1 , ξ

∗
2

be, respectively, optimal for φ
MmO,q

(·) and φMmO,q(·) and let φ∗MmO denote

the optimal value of φMmO(·), obtained for some design ξ∗MmO. Then, using
(8.21) and the optimality of ξ∗1 and ξ∗2 , we obtain

φMmO(ξ
∗
1)

φ∗MmO

≥
φ
MmO,q

(ξ∗1)

φ∗MmO

≥
φ
MmO,q

(ξ∗MmO)

φ∗MmO

≥ μ1/q

and

φMmO(ξ
∗
2 )

φ∗MmO

≥
μ1/qφMmO,q(ξ

∗
2 )

φ∗MmO

≥
μ1/qφMmO,q(ξ

∗
MmO)

φ∗MmO

≥ μ1/q.

Note that the best efficiencies are obtained for μ the uniform measure with μ =

1/M ; in that case φMmO,q(·) = M1/qφ
MmO,q

(·), and the maximin efficiency

of optimal designs for φ
MmO,q

(ξ) or φMmO,q(ξ) is at least M
−1/q.
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Remark 8.7. In the case where Θ has a nonempty interior and satisfies HΘ
(p. 22), we can also define for ξ ∈ Ξ+, similarly to (8.15),

φ
MmO,q

(ξ) =

[∫

Θ

φ−q(ξ; θ) dθ
]−1/q

, q > 0.

However, φ
MmO,q

(ξ) does not necessarily form a lower bound on φMmO(ξ),

and the convergence of φ
MmO,q

(ξ) to φMmO(ξ) as q → ∞ is not neces-

sarily monotone in q, Example 8.10 will give an illustration. Taking μ(θ)
as the Lebesgue measure on Θ, i.e., μ(dθ) = dθ/V with V = vol(Θ), we
obtain that the derivative ∂φ

MmO,q
(ξ)/∂q is given by an expression like

(8.18) plus a term φ
MmO,q

(ξ) log(V )/q2 which may be positive enough to

counter Jensen’s inequality. This criterion nevertheless satisfies the follow-
ing; see, e.g., Rudin (1987): for any ξ ∈ Ξ+ and q1 > q > q2 > 0,
φ
MmO,q

(ξ) ≥ min{φ
MmO,q1

(ξ), φ
MmO,q2

(ξ)}. �

Concavity of φMmO,q(·) for q ≥ −1

Suppose that φ(·; θ) is twice differentiable and concave for any θ. Defining
ξ = (1 − α)ξ0 + αν, we obtain

∂φMmO,q(ξ)

∂α
=

[∫

Θ

φ−q(ξ; θ)μ(dθ)
]−1/q−1 ∫

Θ

φ−q−1(ξ; θ)
∂φ(ξ; θ)

∂α
μ(dθ).

Direct calculations then give

∂2φMmO,q(ξ)

∂α2
=

[∫

Θ

φ−q(ξ; θ)μ(dθ)
]−1/q−1 ∫

Θ

φ−q−1(ξ; θ)
∂2φ(ξ; θ)

∂α2
μ(dθ)

+(q + 1)

[∫

Θ

φ−q(ξ; θ)μ(dθ)
]−1/q−2

×
{[∫

Θ

φ−q−1(ξ; θ)
∂φ(ξ; θ)

∂α
μ(dθ)

]2

−
(∫

Θ

φ−q(ξ; θ)μ(dθ)
)(∫

Θ

φ−q−2(ξ; θ)

[
∂φ(ξ; θ)

∂α

]2
μ(dθ)

)}
.

Cauchy–Schwarz inequality implies that the term within curly brackets is
smaller or equal than zero. For q ≥ −1 we thus obtain

∂2φMmO,q(ξ)

∂α2
≤
[∫

Θ

φ−q(ξ; θ)μ(dθ)
]−1/q−1 ∫

Θ

φ−q−1(ξ; θ)
∂2φ(ξ; θ)

∂α2
μ(dθ)

≤ 0.
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Directional Derivative

Denote by Fφθ
(ξ; ν) the directional derivative of φ(·; θ) at ξ in the direction ν.

Using the expression (8.15) of the criterion φMmO,q(·), we directly obtain that
its directional derivative is given by

FφMmO,q
(ξ; ν) =

∫
Θ φ

−q−1(ξ; θ)Fφθ
(ξ; ν)μ(dθ)

[
φMmO,q(ξ)

]−q−1 .

Example 8.8. This is a continuation of Examples 8.2 and 8.5.

(A) Take first φ(ξ; θ) = M(ξ, θ) =
∫

X
x2 exp(−2θx) ξ(dx). The associated

average-optimal design maximizing (8.1) is the delta measure at x∗AO =
argmaxx∈X

∫
Θ x

2 exp(−2θx)μ(dθ), and the maximin-optimal design
maximizing (8.11) is the delta measure at x∗MmO = 1/θmax. For this par-
ticular situation where M(ξ, θ) is scalar, the criterion φMmO,0(·) given by

(8.19) is given by φMmO,0(·) = exp[
∫
Θ
log[M(ξ, θ)]μ(dθ)] = exp[φED(ξ)].

When Θ is not too large, the associated optimal design is the delta mea-
sure at x∗MmO,0 = 1/IEμ(θ); see Example 8.2. Figure 8.5 presents those
criteria as functions of x when ξ = δx and μ(·) is the uniform measure on
Θ = [1, 3]; in that case, x∗AO � 0.6149, x∗MmO = 1/3 and x∗MmO,0 = 1/2.

The graph of φMmO,q(δx) as a function of x is presented on the same

figure for several values of q, illustrating the decrease of φMmO,q(ξ) as
q increases, the closeness to φAO(ξ) for q close to −1, the closeness to
φMmO,0(ξ) = exp[φED(ξ)] for q close to 0, and the closeness to φMmO(ξ)
for q large enough. Notice that we are more interested into the position of
the maxima of the criteria than in their magnitude; also note that a con-
cave function of ξ is not necessarily concave when expressed as a function
of the support points of ξ.

(B) Take now φ(ξ; θ) = M(ξ, θ)/M(ξ∗θ , θ) =
∫

X e2θ2x2 exp(−2θx) ξ(dx). The
associated average-optimal design maximizing (8.1) is δx∗

AO
with x∗AO =

argmaxx∈X

∫
Θ
θ2x2 exp(−2θx)μ(dθ). When Θ = [θmin, θmax] and θmax−

θmin is small enough, the optimal design maximizing (8.11) is the delta
measure at x∗MmO = [log(θmax)−log(θmin)]/[θmax−θmin]; see Example 8.5.
We have φMmO(δx) = e2x2 min{θ2min exp(−2θmin), θ

2
max exp(−2θmax)}.

The maximization of the criterion φMmO,0(·) given by (8.19) is equiva-

lent to the maximization of φMmO,0(·) in the situation considered above
where φ(ξ; θ) was equal to M(ξ, θ); the associated optimal design is the
delta measure at x∗MmO,0 = 1/IEμ(θ) when Θ is not too large. Fig-
ure 8.6 presents those criteria as functions of x when ξ = δx and μ(·)
is the uniform measure on Θ = [1, 3]; in that case, x∗AO � 0.4961,
x∗MmO = log(9)/4 � 0.5493, and x∗MmO,0 = 1/2. The graph of φMmO,q(δx)
as a function of x is also presented for q = −0.8, 0.4 and 40. Note the close-
ness of the maximizers of φMmO,40(δx) and φMmO(δx) although the for-
mer is differentiable with respect to x and the latter is not differentiable
at x∗MmO . �
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Fig. 8.5. φAO(δx) (dashed line), φMmO,0(δx) (dotted line), φMmO(δx) (dash-dotted

line), and φMmO,q(δx) (solid lines, q = −0.9,−0.1, 0.1, 20) as functions of x in
Example 8.8-A; μ(·) is the uniform measure on Θ = [1, 3]
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Fig. 8.6. φAO(δx) (dashed line), φMmO,0(δx) (dotted line), φMmO(δx) (dash-dotted

line), and φMmO,q(δx) (solid lines, q = −0.8, 0.4, 40) as functions of x in Exam-
ple 8.8-B; μ(·) is the uniform measure on Θ = [1, 3]

A direct generalization of regularization by Lq norm is as follows. Let ψ(·)
be a strictly increasing function and

←−
ψ (·) denote its inverse. Then,

φMmO(ξ) =
←−
ψ {min

θ∈Θ
ψ[φ(ξ; θ)]}.
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Applying the Lq regularization above to the min function in this formulation
of the maximin-optimality criterion, we can define

φMmO,q,ψ(ξ) =
←−
ψ

{[∫

Θ

{ψ[φ(ξ; θ)]}−q μ(dθ)
]−1/q

}
(8.22)

and

φ
MmO,q,ψ

(ξ) =
←−
ψ

{[∫

Θ

{ψ[φ(ξ; θ)]}−q dθ

]−1/q
}
. (8.23)

Concavity is not necessarily preserved, however. The regularization method
presented in the next section corresponds to choosing ψ(·) = exp(·), which can
be justified by maximum-entropy arguments in the case of (8.23) and is ap-
pealing in situations where φ(ξ; θ) can take negative values. In that particular
case, concavity is preserved.

8.3.2 Maximum-Entropy Regularization

The criterion φMmO(·) can be equivalently defined by

φMmO(ξ) = min
μ∈M (Θ)

∫

Θ

φ(ξ; θ)μ(dθ),

where M (Θ) denotes the set of probability measures on Θ. The minimum is
obtained for μ(·) the delta measure at some θ ∈ Θ. The idea used by Li and
Fang (1997) in the finite case is to regularize φMmO(·) through a penalization
of measures having small (Shannon) entropy, with a penalty coefficient that
sets the amount of regularization introduced.1 Consider the situation where
Θ is a compact subset of Rp with nonempty interior that satisfies HΘ (p. 22)
and μ(·) is a probability measure having the density π(·) with respect to the
Lebesgue measure. We suppose that φ(ξ; θ) is continuous in θ ∈ Θ for any
ξ ∈ Ξ, the set of probability measures on X . Define

φME,λ(ξ) = min
π∈D(Θ)

{∫

Θ

φ(ξ; θ)π(θ) dθ +
1

λ

∫

Θ

π(θ) log[π(θ)] dθ

}
, λ > 0,

where D(Θ) is the set of p.d.f. on Θ. This minimization problem has the
solution

π∗(θ) =
exp[−λφ(ξ; θ)]∫

Θ
exp[−λφ(ξ; θ)] dθ ,

1In a finite setting,
∑M

i=1 μiφ(ξ; θ
(i)) can be interpreted as the Lagrange function

for the maximization of φMmO(·) with μ = (μ1, . . . , μM ) the vector of Lagrange
multipliers, restricted to sum to one; see Li and Fang (1997).
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which gives after straightforward calculation

φME,λ(ξ) = − 1

λ
log

{∫

Θ

exp[−λφ(ξ; θ)] dθ
}
. (8.24)

This exactly corresponds to the specialization of (8.23) to ψ(·) = exp(·).
When Θ is finite, Θ = {θ(1), . . . , θ(M)}, which corresponds to the situation

considered in (Li and Fang, 1997), we simply replace integrals by finite sums
and obtain

φME,λ(ξ) = − 1

λ
log

{
M∑

i=1

exp[−λφ(ξ; θ(i))]
}
.

Remark 8.9. This method could be used to smooth some of the criteria con-
sidered in Sect. 5.1.2 that are not differentiable everywhere, for instance, those
of E and MV -optimality, see Sect. 5.2.

A smoothing method for minimizing the sum of the r largest functions
among m, or equivalently for maximizing the sum of the r smallest functions
among m, is presented in (Pan et al., 2007), which could be used to smooth
the Ek-optimality criteria, see Sect. 5.1.2. �

Pointwise Convergence of φME,λ(ξ) to φMmO(ξ) as λ → ∞
For any ξ ∈ Ξ we have

φME,λ(ξ) = log

{∫

Θ

exp[−λφ(ξ; θ)] dθ
}−1/λ

= − log

{∫

Θ

(exp[−φ(ξ; θ)])λ dθ
}1/λ

(8.25)

and thus limλ→∞ φME,λ(ξ) = − logmaxθ∈Θ exp[−φ(ξ; θ)] = φMmO(ξ).

Uniform Convergence of φME,λ(·) to φMmO(·) as λ → ∞ when Θ
is Finite

Suppose that Θ = {θ(1), . . . , θ(M)} and take any λ2 ≥ λ1 > 0. By a property
of Lq norms,

{
M∑

i=1

(exp[−φ(ξ; θ(i))])λ2

}1/λ2

≤
{

M∑

i=1

(exp[−φ(ξ; θ(i))])λ1

}1/λ1
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for any ξ ∈ Ξ and therefore φME,λ2 (ξ) ≥ φME,λ1 (ξ); see (8.25). This implies
that φME,λ(ξ) is a lower bound on φMmO(ξ) for any ξ ∈ Ξ and any λ > 0
and

0 ≤ φMmO(ξ) − φME,λ(ξ) = log{exp[φMmO(ξ)]}

+
1

λ
log

{
M∑

i=1

exp[−λφ(ξ; θ(i))]
}

=
1

λ
log

{
M∑

i=1

exp[−λφ(ξ; θ(i))]
exp[−λφMmO(ξ)]

}

=
1

λ
log

{
M∑

i=1

exp(−λ[φ(ξ; θ) − φMmO(ξ)])

}

≤ 1

λ
logM

which tends to zero as λ tends to infinity. Notice that this tells us how far
an optimal design ξ∗ for φME,λ(·) is from being maximin optimal. Indeed, let
ξ∗MmO denote an optimal design for φMmO(·); we have

φMmO(ξ
∗) ≥ φME,λ(ξ

∗) ≥ φME,λ(ξ
∗
MmO) ≥ φMmO(ξ

∗
MmO) − 1

λ
logM,

so that

φMmO(ξ
∗)

φMmO(ξ∗MmO)
≥ 1 − logM

λφMmO(ξ∗MmO)
.

Concavity of φME,λ(·)
If φ(·; θ) is concave for all θ ∈ Θ, then φME,λ(·) is concave for any λ > 0.
Indeed, for any ξ0, ξ1 ∈ Ξ and any α ∈ (0, 1),

φME,λ[(1 − α)ξ0 + αξ1] = − 1

λ
log

{∫

Θ

exp(−λφ[(1 − α)ξ0 + αξ1; θ]) dθ

}

≥ − 1

λ
log

{∫

Θ

(exp[−λφ(ξ0; θ)])1−α (exp[−λφ(ξ1; θ)])α dθ
}
,

since φ[(1−α)ξ0 +αξ1; θ] ≥ (1−α)φ(ξ0; θ) +αφ(ξ1; θ) for all θ ∈ Θ. Hölder’s
inequality then gives

φME,λ[(1 − α)ξ0 + αξ1] ≥ − 1

λ
log

{(∫

Θ

exp[−λφ(ξ0; θ)] dθ
)1−α

(∫

Θ

exp[−λφ(ξ1; θ)] dθ
)α}

= (1 − α)φME,λ(ξ0) + αφME,λ(ξ1).
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Fig. 8.7. φMmO(δx) (dash-dotted line) and φME,λ(δx) (solid lines, λ = 102, 103, 104)
as functions of x in Example 8.10; μ(·) is the uniform measure on Θ = [1, 3]

Since the criterion φME,λ(·) given by (8.24) is concave, it enjoys the same
properties as the local optimality criterion φ(ξ; θ) on which it is based, that is,
an equivalence theorem can be formulated (see Sect. 5.2.2) and optimization
algorithms that converge globally to an optimum design measure are thus
available; see Sect. 9.1.

Directional Derivative

Denote by Fφθ
(ξ; ν) the directional derivative of φ(·; θ) at ξ in the direction

ν. From the expression (8.24) of the criterion φME,λ(·), its directional deriva-
tive is

FφME,λ
(ξ; ν) =

∫
Θ exp[−λφ(ξ; θ)]Fφθ

(ξ; ν) dθ∫
Θ
exp[−λφ(ξ; θ)] dθ . (8.26)

Note that it corresponds to a weighted average of Fφθ
(ξ; ν) that gives more

weight to θ such that φ(ξ; θ) is small.

Example 8.10. This is a continuation of Examples 8.2, 8.5, and 8.8. We only
consider situation A where φ(ξ; θ) = M(ξ, θ) =

∫
X x2 exp(−2θx) ξ(dx). Fig-

ure 8.7 presents φMmO(δx) and φME,λ(δx) as functions of x, for λ = 102,
103, and 104, when μ(·) is the uniform measure on Θ = [1, 3]. Notice that the
convergence of φME,λ(δx) to φMmO(δx) as λ increases is not monotonic. �

An Upper Bound on φMmO(ξ)

A criterion of the form (8.24) has been used in Sect. 7.7.3 to regularize the
estimability criteria of Sect. 7.7. However, as the example above illustrates, the
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convergence of φME,λ(ξ) to φMmO(ξ) as λ tends to infinity is not monotonic
when μ(·) is not finitely supported. Also, φME,λ(·) being constructed with the
Lebesgue measure, we cannot make connections with average-optimum design
of Sect. 8.1 for particular values of λ. This motivates the introduction of an
alternative regularization, related to φMmO,q(·) of Sect. 8.3.1.

Define

φME,λ(ξ) = − 1

λ
log

{∫

Θ

exp[−λφ(ξ; θ)]μ(dθ)
}
, λ > 0,

with μ(·) a probability measure on Θ satisfying the same conditions as in
Sect. 8.3.1. It corresponds to the specialization of (8.22) to ψ(·) = exp(·)
and enjoys the same properties of convergence to φMmO(ξ) when λ → ∞
as φMmO,q(·) when q → ∞. Also, for all ξ ∈ Ξ and all λ > 0, φME,λ(ξ) ≥
φMmO(ξ) and the convergence to φMmO(ξ) is monotonic as λ increases. Note
that when Θ has a nonempty interior, by taking μ(dθ) = dθ/vol(Θ) we obtain
φME,λ(ξ) + {log[vol(Θ)]}/λ ≥ φMmO(ξ). Since limλ→0 φME,λ(ξ) = φAO(ξ)
defined by (8.1), we can define by continuity

φME,0(ξ) = φAO(ξ).

The concavity of φME,λ(·) follows from the same arguments as those used for
φME,λ(·): we use Hölder’s inequality with now integration with respect to the
measure μ(·). Its directional derivative takes the same form as (8.26), with
μ(dθ) substituted for dθ. When Θ is finite, with Θ = {θ(1), . . . , θ(M)}, and
μ gives weight μi to θ

(i) with μ = mini=1,...,M μi > 0, we have φME,λ(ξ) ≤
φME,λ(ξ) − (1/λ) logμ and thus

φME,λ(ξ) +
logμ

λ
≤ φME,λ(ξ) ≤ φMmO(ξ) ≤ φME,λ(ξ).

This implies that an optimal design ξ∗ for φME,λ(·) satisfies

φMmO(ξ
∗)

φ∗MmO

≥ 1 +
logμ

λφ∗MmO

,

where φ∗MmO is the optimal value of φ∗MmO(·); the best bound is obtained for
μ being the uniform measure and μ = 1/M .

Example 8.11. Consider again the situation of Example 8.10. Figure 8.8
presents φAO(δx), φMmO(δx), and φME,λ(δx) as functions of x, for λ = 1,
102, 103, and 104, when μ(·) is the uniform measure on Θ = [1, 3]. Note the
closeness of φME,λ(δx) to φAO(δx) when λ is small and the monotonicity of
the convergence to φMmO(δx) when λ increases (compare with Fig. 8.7). �
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Fig. 8.8. φAO(δx) (dashed line), φMmO(δx) (dash-dotted line), and φME,λ(δx) (solid

lines, λ = 1, 102, 103, 104) as functions of x in Example 8.11; μ(·) is the uniform
measure on Θ = [1, 3]

8.4 Probability Level and Quantile Criteria

Average and maximin-optimum designs can be considered as attempts to
protect against a bad choice of the prior value θ0 in locally optimum de-
sign. However, as shown below, the protection they provide is not totally
satisfactory, and some difficulties remain.

Difficulties with Average and Maximin-Optimum Design

(i) Consider a design ξ∗A0 optimal for the criterion φAO(·) given by (8.1).
Although optimal in the average sense, ξ∗A0 may perform poorly for
“many” values of θ, in the sense that μ{φ(ξ∗AO; θ) < u} may be large
for some unacceptably low value of u.

(ii) For ψ(·) an increasing real function, the maximization of ψ[φ(ξ; θ)] is
equivalent to that of φ(ξ; θ), but maximizing IEμ{ψ[φ(ξ; θ)]} is not equiv-
alent to maximizing IEμ{φ(ξ; θ)} in general. Therefore, a single design
criterion for local optimality yields infinitely many criteria for average
optimality; see, e.g., Fedorov (1980). For instance, with the D-optimality

criterion we can associate IEμ{log det[M(ξ, θ)]} and IEμ{det1/p[M(ξ, θ)]},
both being concave on M

>.
(iii) Consider a design ξ∗MmO optimal for φMmO(·) given by (8.11) with Θ

a compact subset of Rp with nonempty interior. It frequently happens
that, in fact,

ξ∗MmO = argmax
ξ∈Ξ

min
θ∈∂Θ

φ(ξ; θ),
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with ∂Θ the boundary of Θ. The dependency of a locally optimal design
in the value chosen for θ0 is then simply replaced by the dependency of
ξ∗MmO in the choice of some extreme points of Θ. Another (sometimes
related) difficulty is that Θ may contain values of θ such that M(ξ, θ) is
close to being singular for all ξ ∈ Ξ and the optimal design ξ∗MmO then
focuses on such θ; one may even encounter pathological situations where
there exists some θ ∈ Θ such that M(ξ, θ) is singular for all ξ ∈ Ξ and
no maximin-optimal design exists.

Probability Level and Quantile Criteria

We consider here new stochastic design criteria based on the distribution of
φ(ξ; θ) when θ is distributed with some prior probability measure μ(·) on
Θ ⊂ R

p. In particular, we shall consider the probability levels

Pu(ξ) = μ{φ(ξ; θ) ≥ u} (8.27)

and quantiles

Qα(ξ) = max{u : Pu(ξ) ≥ 1 − α}, α ∈ [0, 1], (8.28)

with u and α considered as free parameters, chosen by the user. When
the range of possible values for φ(ξ; θ) is known, which is the case, for in-
stance, when φ(·; θ) is an efficiency criterion Eφ(·; θ) with values in [0, 1] (see
Sect. 5.1.8), we can specify a target level u and then maximize the probability
Pu(ξ) that the target is reached, or equivalently minimize the risk 1 − Pu(ξ)
that it is not. In other situations, we can specify a probability level α that de-
fines an acceptable risk and maximize the value of u such that the probability
that φ(ξ; θ) is smaller than u is less than α, which corresponds to maximizing
Qα(ξ). We shall assume that φ[(1−γ)ξ+γν; θ] is continuously differentiable in
γ ∈ [0, 1) for any θ and any probability measures ξ, ν on X such that M(ξ, θ)
is nonsingular. We also assume that φ(ξ; θ) is continuous in θ and that the
measure μ(·) has a positive density on every open subset of Θ. This implies
that Qα(ξ) is defined as the solution in u of the equation 1 − Pu(ξ) = α; see
Fig. 8.9.

One may notice that the difficulties (i–iii) mentioned above for average
and maximin-optimum design are explicitly taken into account by the pro-
posed approach: the probability indicated in (i) is precisely 1 − Pu(ξ) which
is minimized, (ii) substituting ψ[φ(ξ; θ)] for φ(ξ; θ) with ψ(·) increasing leaves
(8.27) and (8.28) unchanged, (iii) the role of the boundary of Θ is negligible
when a small probability is attached to it, and moreover, probability mea-
sures with infinite support are allowed. It will be shown below that kernel
smoothing can be used to make Pu(·) and Qα(·) differentiable. When φ(ξ; θ)
is concave in ξ for all θ, φAO(·) and φMmO(·) are also concave. Unfortunately,
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Fig. 8.9. Probability levels and quantiles for a design criterion φ(ξ; θ)

Pu(·) and Qα(·) are generally not, which is probably the main drawback of
the approach. However, Qα satisfies the following: suppose that the support
Θ of μ(·) is compact, then, Qα(ξ) → φMmO(ξ) when α → 0, and a design
optimal for Qα will tend to be optimal for φMmO(·) and vice versa.

Example 8.12. Consider again the situation of Examples 8.10 and 8.11 for
which we have φ(ξ; θ) =

∫
X
x2 exp(−2θx) ξ(dx), x ≥ 0. Take μ(·) as the

uniform measure on Θ = [θmin, θmax]. Direct calculations give

Pu(δx) =
log[x2 exp(−2θminx)] − log(u)

2x(θmax − θmin)

and

Qα(δx) = φMmO(δx) exp[2xα(θmax − θmin)],

where φMmO(δx) = x2 exp(−2θmaxx) is defined by (8.11).Qα(δx)≥φMmO(δx)
and tends to φMmO(δx) when α → 0. Figure 8.10 presents φMmO(δx) and
Qα(δx) as functions of x for different values of α when μ(·) is the uniform
measure on Θ = [1, 3]. �

In the next section we show how to compute the directional derivatives of
Pu(ξ) and Qα(ξ). A steepest-ascent optimization algorithm can then be used
to optimize Pu(·) or Qα(·), with guaranteed convergence to a local maximum
only since the criteria are not necessarily concave.
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Fig. 8.10. φAO(δx) (dashed line), φMmO(δx) (dash-dotted line), and Qα(δx) (solid
lines, α = 0.5, 0.1, 0.05) as functions of x in Example 8.12; μ(·) is the uniform
measure on Θ = [1, 3]

Computation of Derivatives

Let ξ = (1 − γ)ξ0 + γν and consider the directional derivatives

FPu (ξ; ν) =
∂Pu(ξ)

∂γ

∣∣∣∣
γ=0

, (8.29)

FQα(ξ; ν) =
∂Qα(ξ)

∂γ

∣∣∣∣
γ=0

. (8.30)

Since Qα(ξ) satisfies the implicit equation PQα(ξ)(ξ) = 1 − α, we can write

∂Pu(ξ)

∂γ

∣∣∣∣
u=Qα(ξ)

+
∂Pu(ξ)

∂u

∣∣∣∣
u=Qα(ξ)

∂Qα(ξ)

∂γ
= 0,

which gives

∂Qα(ξ)

∂γ
= −

(
∂Pu(ξ)

∂γ
/
∂Pu(ξ)

∂u

) ∣∣∣∣
u=Qα(ξ)

. (8.31)

To compute the derivatives ∂Pu(ξ)/∂γ and ∂Pu(ξ)/∂u, we write Pu(ξ) as

Pu(ξ) =

∫

Θ

II[u,∞)[φ(ξ; θ)]μ(dθ) =

∫

Θ

II(−∞,φ(ξ;θ)](u)μ(dθ),

with IIA(·) the indicator function of the set A. When approximating the
indicator step function by a normal distribution function with small variance
σ2, the two expressions above respectively become
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Pu(ξ) ≈
∫

Θ

IFu,σ2 [φ(ξ; θ)]μ(dθ) =

∫

Θ

[1 − IFφ(ξ;θ),σ2(u)]μ(dθ)

with IFa,σ2(·) the distribution function of the normal N (a, σ2). Differentiating
these approximations, respectively, with respect to γ and u, we get

∂Pu(ξ)

∂γ

∣∣∣∣
γ=0

≈
∫

Θ

nu,σ2 [φ(ξ0; θ)]
∂φ(ξ; θ)

∂γ

∣∣∣∣
γ=0

μ(dθ), (8.32)

∂Pu(ξ)

∂u |γ=0
≈ −

∫

Θ

nφ(ξ0;θ),σ2(u)μ(dθ), (8.33)

with na,σ2(·) the density of IFa,σ2(·). These expressions can be substituted
in (8.31) to form an approximation of ∂Qα(ξ)/∂γ

∣∣
γ=0

. As shown below, this

type of approximation can be related to kernel smoothing.

Pu(ξ) and Qα(ξ) for a Normal Prior with Small Variance

Suppose that θ has the prior normal distribution N (θ0,Ω) with Ω small,
which may be considered as a slight relaxation of locally optimum design.
Define θu = θu(ξ) = argmin{θ:φ(θ,ξ)=u} ‖θ− θ0‖2Ω−1 , with ‖a‖2Ω−1 = a�Ω−1a.
Replacing φ(ξ; θ) by its linear approximation around θu in the definition of
Pu(ξ), we get

Pu(ξ) ≈ μ

{
φ(ξ; θu) + (θ − θu)

� ∂φ(ξ; θ)
∂θ

∣∣∣∣
θu

≥ u

}

= μ

{
(θ − θu)

� ∂φ(ξ; θ)
∂θ

∣∣∣∣
θu

≥ 0

}

= μ

{
(θ − θ0)�Ω−1hξ(θu)

[h�
ξ (θu)Ω

−1hξ(θu)]1/2
≥ (θu − θ0)�Ω−1hξ(θu)

[h�
ξ (θu)Ω

−1hξ(θu)]1/2

}

where hξ(t) = Ω∂φ(ξ; θ)/∂θ
∣∣
θ=t

. The term on the left-hand side of the in-
equality is normally distributed N (0, 1), and direct calculation shows that the
term on the right-hand side equals z‖θu− θ0‖Ω−1 , with z = sign[u−φ(ξ; θ0)].
This gives the approximation

Pu(ξ) ≈
∫ ∞

z‖θu−θ0‖Ω−1

n0,1(t) dt.

The value α in (8.28) satisfies α =
∫ z‖θu−θ0‖Ω−1

−∞ n0,1(t) dt. Let qα denote

the α-quantile of the standard normal N (0, 1), i.e.,
∫ qα
−∞ n0,1(t) dt = α, Qα(ξ)

is thus defined by the value of u such that z‖θu − θ0‖Ω−1 = qα.
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These expressions become simpler when the linear approximation of φ(ξ; θ)
is around θ0, and we get

Pu(ξ) ≈
∫ ∞

su(ξ)

n0,1(t) dt,

Qα(ξ) ≈ φ(ξ; θ0) + qα[h
�
ξ (θ

0)Ω−1hξ(θ
0)]1/2,

with su(ξ) = [u − φ(ξ; θ0)]/[h�
ξ (θ

0)Ω−1hξ(θ
0)]1/2. However, using a linear

approximation of the boundary of the set Su(ξ) = {θ ∈ R
p : φ(ξ; θ) ≥ u} may

give rather approximate results, and other approximations based on kernel
smoothing are considered below.

Kernel Smoothing

The idea is to estimate Pu(ξ), Qα(ξ), and their derivatives through an
approximation of the p.d.f. of φ(ξ; θ) obtained by a standard kernel estimator

ϕM,ξ(z) = 1/(MhM )

M∑

i=1

K
{
[z − φ(ξ; θ(i))]/hM

}
.

Here K (·) is a symmetric kernel function, typically the p.d.f. of a probability
measure on R with K (z) = K (−z), e.g., K (·) = n0,1(·), and θ(i), i =
1, . . . ,M , is a sample of values of θ independently randomly generated with
the prior measure μ(·). The bandwidth hM tends to zero as M → ∞. From
this we obtain directly

Pu(ξ) ≈ P̂Mu (ξ) =

∫ ∞

−∞
II[u,∞)(z)ϕM,ξ(z) dz, (8.34)

which is easily computed when
∫∞
u

K (z)dz has a simple form. The value of
Qα(ξ) can then be estimated by

Q̂Mα (ξ) = {u : P̂Mu (ξ) = 1 − α}, (8.35)

which is also easily computed numerically. Alternatively, we may use kernel
smoothing again and compute

Q̃Mα (ξ) =
1

hM

M∑

i=1

φMi (ξ)

∫ i/M

(i−1)/M

K [(z − α)/hM ] dz,

with φM1 (ξ) ≤ φM2 (ξ) ≤ · · · ≤ φMM (ξ) the order statistics obtained from the
φ(ξ; θ(i)); see, e.g., Parzen (1979) and Yang (1985). However, this latter form
seems to be less precise for values of α close to zero or one.

Consider now the computation of directional derivatives, with again ξ =
(1 − γ)ξ0 + γν. Direct calculations give
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Fig. 8.11. D-efficiencies as function of λ for different designs; solid line, local D-
optimal ξ∗2 ; dashed line, optimal for P0.75; dash-dotted line, optimal for Q0.1

∂P̂Mu (ξ)

∂γ

∣∣∣∣
γ=0

=
1

MhM

M∑

i=1

∂φ(ξ; θ(i))

∂γ

∣∣∣∣
γ=0

K

(
u− φ(ξ0; θ

(i))

hM

)
, (8.36)

∂P̂Mu (ξ)

∂u

∣∣∣∣
γ=0

= − 1

MhM

M∑

i=1

K

(
u− φ(ξ0; θ

(i))

hM

)
, (8.37)

to be used in (8.29)–(8.31). Notice that when taking σ2 = hM and μ(·) as the
discrete measure with mass 1/M at each θ(i), (8.32) and (8.33) respectively
give (8.36) and (8.37) with K (·) = n0,1(·).

The accuracy of the kernel approximations (8.34)–(8.37) improves as M
increases with, on the other hand, a computational cost that increases withM .

Example 8.13. Consider the nonlinear regression model η(x, θ) = βe−λx, with
θ = (β, λ)� the vector of parameters to be estimated. We suppose that
the errors are i.i.d. with variance 1. The information matrix M(ξ, θ) for LS
estimation with a design measure ξ then takes the form (3.32). We suppose
that β > 0 and take X = [0,∞). The local D-optimal experiment ξ∗θ that
maximizes detM(ξ, θ) puts mass 1/2 at x = 0 and x = 1/λ; the associated
value of detM(ξ, θ) is detM(ξ∗θ , θ) = β2/(4e2λ2). We consider theD-efficiency

criterion defined by ED(ξ; θ) = {detM(ξ, θ)/ detM(ξ∗θ , θ)}
1/2 ∈ [0, 1]. Due to

the linear dependency of η(x, θ) in β, ξ∗θ and ED(ξ; θ) only depend on λ, and
we shall write ξ∗λ, ED(ξ;λ) instead of ξ∗θ , ED(ξ; θ). Supposing that λ = 2 when
designing the experiment, the efficiency ED(ξ∗2 ;λ) is plotted as a function of
λ (solid line) in Fig. 8.11.



266 8 Nonlocal Optimum Design

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

P
u(

ξ)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α
Q

α(
ξ)

Fig. 8.12. Left : P̂n
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Suppose now that we only know that λ ∈ [1/2, 7/2] and put a uniform prior
for λ on that interval; ξ∗2 is then optimal for the midpoint, but its efficiency is
less than 53% for the endpoint λ = 1/2. We approximate Pu(ξ) and Qα(ξ) by

kernel smoothing with K (·) = n0,1(·) for M = 100 values λ̂(i) equally spaced
in [0.5, 3.5]. No special care is taken for the choice of hM , and we simply use
the rule hM = σ̂M (ED)M−1/5 (see, e.g., Scott 1992 p. 152), with σ̂M (ED) the
empirical standard deviation of the values ED(ξ;λ(i)), i = 1, . . . , n. Figure 8.12
shows the estimated values P̂Mu (left) and Q̂Mα (right), in dashed lines, as
functions of u and α, respectively, for ξ = ξ∗2 . One can check the reasonably
good agreement with the exact values of Pu and Qα, plotted in solid lines;
increasing M to 1, 000 makes the curves almost indistinguishable.

The optimization of P̂n0.75 and Q̂n0.10 with a vertex-direction (steepest-
ascent) algorithm on the finite design space {0, 0.1, 0.2, . . . , 5} (see Sect. 9.1.1)
gives the four-point designs

ξ∗(P0.75) �
{

0 0.3 0.4 1.7
0.4523 0.0977 0.2532 0.1968

}
,

and

ξ∗(Q0.10) �
{

0 0.3 0.4 1.3
0.4688 0.1008 0.2634 0.1670

}
,

where the first row indicates the support points and the second one their
respective weights. They satisfy P̂M0.75[ξ

∗(P0.75)] � 0.9999 and Q̂Mα [ξ∗(Q0.10)] �
0.783. The efficiencies of these designs are plotted in Fig. 8.11. The exact value
Pu[ξ

∗(P0.75)] equals one, indicating that the efficiency is larger than 75% for
all possible values of λ.
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We decrease now α to the value 0.01 in Qα(·). The optimization of Q̂n0.01
gives a design very close to ξ∗(P0.75) which, together with the shape of the
curve in dashed line on Fig. 8.11, suggests that ξ∗(P0.75) is almost maximin
optimal. The comparison with the curve in dash-dotted line on the same
figure, obtained for α = 0.1, indicates that accepting a small loss of efficiency
for about 10% of the values of λ produces a significant increase of efficiency
on most of the interval [1/2, 7/2]. �

8.5 Sequential Design

A radically different approach can sometimes be used to tackle the problem
of dependency of the optimal design into the unknown value of θ. It consists
in constructing the design sequentially, step by step, using at each step the
information available for choosing an experiment adapted for next step. In full-
sequential design, a single design point xk+1 is chosen after each observation
y(xk). In batch-sequential design, design points are chosenm bym, withm the
size of the batches. The number of design stages can also be fixed a priori, with
the number of observations to be collected at each stage considered as a tuning
parameter. In a standard two-stage strategy, for instance, a first experiment
is run, e.g., optimal for some nominal value θ0, with n observations collected;
the model parameters are then estimated, say by θ̂n; the remaining N − n
observations are collected with an experiment optimal for θ̂n.

The literature on sequential experimental design is vast and rich, the
applications are abundant. Sequential design is directly related to sequen-
tial analysis and testing, but such issues will not be considered here, and we
shall only focus on the parameter estimation problem.2 Also, we shall not
touch to the field of adaptive design in clinical trials, to which many papers
and books are devoted.

A Bayesian point of view is well adapted to formalize the increase of
information on the location of θ or, equivalently, the decrease of uncertainty
on θ, when the number of observations collected increases. When the horizon
N is fixed, the optimal sequential experiment is then obtained as the solution
of a stochastic dynamic programming problem. This is usually untractable,
and approximations must be used, such as approximations of the posterior and
pre-posterior distributions of θ (see Gautier and Pronzato 1998), together with
Laplace approximations for integrals or stochastic approximation to avoid the
calculation of such integrals; see Gautier and Pronzato (2000). However, nu-
merical simulations indicate that there is not much to gain compared to tradi-
tional sequential design, where future planning is ignored and each design step

2The term adaptive design would thus be more appropriate to describe the kind
of problem we shall deal with, which has strong connections with adaptive control;
see, e.g., Pronzato (2008). Sequential design remains the usual denomination in the
literature, however.
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is considered as being the last one. There, the m design points at stage k, with
m = 1 in full-sequential design, are chosen at best using the current estimated
value θ̂k of θ, which corresponds to a forced-certainty-equivalence control in
terms of stochastic control. We shall restrict our attention to such adaptive
designs.

The Bayesian paradigm can also be used in asymptotic considerations.
This is adopted, for instance, by Hu (1998) for full-sequential design and by
Spokoinyi (1992) for a two-stage strategy, optimal in the asymptotically min-
imax sense. In particular, it facilitates the investigation of consistency issues,
since the sequence of posterior means for θ forms a martingale which converges
a.s. from the martingale convergence theorem. Hu (1998) also shows that
the sequence of posterior variances of f(θ), with f(·) any bounded measur-
able function, forms a positive supermartingale which thus also converges a.s.
However, estimating the parameters by their posterior mean is not practical
in nonlinear situations, and we shall focus our attention on sequential design
for LS estimation in regression models with stationary errors; see (3.2), (3.3).
Similar developments can be made for other estimators and models consid-
ered in Chaps. 3 and 4. We shall denote by θ̂N the estimator based on N
observations.

Our objective here will be modest: we simply want to construct
experiments that are asymptotically optimal for the true value of the model
parameters. More precisely, we want the asymptotic covariance matrix of the
estimator to be the same as for an optimal experiment designed for the true
(unknown) value of the model parameters. Two situations will be consid-
ered. In the first one (Sect. 8.5.1), the horizon is fixed, and the experiment is
designed in two stages; we show that one should allocate n = O(

√
N) obser-

vations at the first stage—and thus N−n at the second. The second situation
considered (Sect. 8.5.2) corresponds to full-sequential design. There are two
major difficulties there. First, the sequential construction of the experiment
destroys the independence among the observations y(x1), . . . , y(xN ), which
raises specific difficulties for proving the consistency of the estimator of θ.
Second, the design of the experiment is usually based on a matrix M con-
structed similarly to the information matrices encountered in Chaps. 3 and 4;
however, M is no longer the information matrix when the experiment is built
sequentially. Therefore, this construction only makes sense if we can prove
that the asymptotic covariance matrix of the estimator corresponds to M−1.

8.5.1 Two-Stage Allocation

Let Φ(·) denote a strictly concave and differentiable criterion and ξ∗θ denote
the optimal design for θ, that is, ξ∗θ maximizes Φ[M(ξ, θ)], with M(ξ, θ) the
information matrix for the design ξ and parameters θ in the model considered.
We consider a two-stage strategy, where n observations are collected at stage
1 with some design ξ(1) and N − n at stage 2 with the optimal design ξ∗

θ̂n
,

where θ̂n denotes the estimated value of θ obtained from the n observations of



8.5 Sequential Design 269

stage 1. Such a problem is considered in (Gautier and Pronzato, 1999) within a
Bayesian framework: the optimal proportion n/N can be obtained by solving a
stochastic dynamic programming problem; calculations are facilitated by using
various approximations for integrals or stochastic approximation to avoid the
calculation of integrals. We shall adopt here a non-Bayesian point of view.

Asymptotic Considerations

There are no particular difficulties with the asymptotic behavior of θ̂N ; see,
for instance, Chaudhuri and Mykland (1993) for a similar situation with ML
estimation. We suppose that the design {xk} at first stage, for k = 1, . . . , n, is
asymptotically discrete with limiting measure ξ(1) (discrete) and that the de-
sign at second stage is also asymptotically discrete with limiting measure ξ∗

θ̂n

(conditionally on stage 1). This is not restrictive: in practice we can choose
the design points at each stage among the support points of the corresponding
design measure and adjust the frequencies in order to guarantee convergence
of the sampling measure to the target one, ξ(1) or ξ

∗
θ̂n
.

Suppose that the number n of observations at stage 1 tends to infinity.
For a ξ(1) ensuring usual estimability conditions (see (3.6)), θ̂n then satisfies

θ̂n
a.s.→ θ̄ as n → ∞; see Theorem 3.1. The strong consistency of θ̂N follows

from arguments similar to those used in the same theorem.
Since θ̂n

a.s.→ θ̄ as n → ∞, Φ[M(ξ∗
θ̂n
, θ̄)]

a.s.→ Φ[M(ξ∗̄
θ
, θ̄)]; that is, ξ∗

θ̂n
tends to

be optimal for θ̄ and M(ξ∗
θ̂n
, θ̄) → M(ξ∗̄

θ
, θ̄), which is unique due to the strict

concavity of Φ(·)—notice, however, that the optimal design measure for θ̄ is
not necessarily unique. Suppose now that n → ∞ and n/N → 0 as N → ∞.
Consider the proof of Theorem 3.8. A Taylor development gives an equation
similar to (3.27), where again ∇2

θJN (βNi )
a.s.→ 2M1(ξ, θ̄), with M1(ξ, θ) given

by (3.23) with w(x) ≡ 1 (ordinary LS). We decompose −
√
N∇θJN (θ̄) into

−
√
N∇θJN (θ̄) =

2
√
n√
N

1√
n

n∑

k=1

εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

+
2
√
N − n√
N

1√
N − n

N∑

k=n+1

εk
∂η(xk, θ)

∂θ

∣∣∣∣
θ̄

.

We then have (1/
√
n)
∑n
k=1 εk ∂η(xk, θ)/∂θ

∣∣
θ̄

d→ v ∼ N (0,M2(ξ(1), θ̄)) and

(1/
√
N − n)

∑N
k=n+1 εk ∂η(xk, θ)/∂θ

∣∣
θ̄

d→ w ∼ N (0,M2(ξ
∗
θ̂n
, θ̄)) condition-

ally on stage 1, with M2(ξ, θ) given by (3.25) with w(x) ≡ 1 and σ2(x) ≡ σ2.

Therefore,
√
N(θ̂N−θ̄) d→ z ∼ N (0,M−1(ξ∗̄

θ
, θ̄)), N → ∞, withM(ξ, θ) given

by (3.26) with σ2(x) ≡ σ2. The two-stage experiment is thus asymptotically
optimal for θ̄.

One can easily go further and give an indication of the optimal choice for
n as N → ∞; this is considered below.
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Optimal Sample-Size for Stage 1

Suppose that n → ∞ and n/N → 0 as N → ∞ and let ξN denote the
two-stage design. We have ξN = (n/N) ξ(1) + (1 − n/N) ξ∗

θ̂n
so that

Φ[M(ξN , θ̄)] = Φ[M(ξ∗
θ̂n
, θ̄)] +

n

N
T (ξ∗

θ̂n
, ξ(1), θ̄) + O(n2/N2)

where

T (ξ∗θ , ξ(1), θ̄) = trace
{
∇MΦ[M(ξ∗θ , θ̄)]× [M(ξ(1), θ̄) − M(ξ∗θ , θ̄)]

}
.

Now, the first two terms in the development above for Φ[M(ξN , θ̄)] are

random since θ̂n is a random variable that satisfies
√
n(θ̂n − θ̄)

d→ z ∼
N (0,M−1(ξ(1), θ̄)), n → ∞. Denote A(θ̄) the Hessian matrix

A(θ̄) =
∂2Φ[M(ξ∗θ , θ̄)]

∂θ∂θ�

∣∣∣∣
θ=θ̄

,

which is nonpositive definite since Φ[M(ξ∗θ , θ̄)] as a function of θ is maximum
at θ = θ̄. We obtain

IE{Φ[M(ξN , θ̄)]} = Φ[M(ξ∗̄θ , θ̄)] +
1

2n
trace[A(θ̄)M−1(ξ(1), θ̄)]

+
n

N
T (ξ∗̄θ , ξ(1), θ̄) + O(1/N) + O(n2/N2) + O(1/n3/2).

Note that T (ξ∗̄
θ
, ξ(1), θ̄) ≤ 0 with equality when ξ(1) = ξ∗̄

θ
. Neglecting the terms

of order 1/N , n2/N2, and 1/n3/2, we choose n that minimizes

t(n) =

∣∣∣∣
1

2n
trace[A(θ̄)M−1(ξ(1), θ̄)] +

n

N
T (ξ∗̄θ , ξ(1), θ̄)

∣∣∣∣ ,

i.e., collect n∗ = �ρ
√
N� observations at stage 1 with

ρ =

(
trace[A(θ̄)M−1(ξ(1), θ̄)]

2T (ξ∗̄
θ
, ξ(1), θ̄)

)1/2

. (8.38)

Since the value of ρ depends on θ̄, it cannot be used as a precise indication for
the number of observations that should be collected at stage 1. It may serve
as a guideline, however.

For instance, if a prior measure μ(·) is set on θ̄, we may choose ξ(1) as the
optimal design for the prior mean θ0 = IEμ{θ} and then choose n that max-
imizes IEμ{trace[A(θ)M−1(ξ(1), θ)]/(2n) + (n/N)T (ξ∗θ , ξ(1), θ)}, with IEμ{·}
the expectation with respect to θ. This gives n∗ = �ρμ

√
N� with

ρμ =

(
IEμ{trace[A(θ)M−1(ξ(1), θ)]}

2 IEμ{T (ξ∗θ , ξ(1), θ)}

)1/2

. (8.39)
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Example 8.14. Consider LS estimation in the two-parameter model η(x, θ)= θ1
exp(−θ2 x), x ∈ R

+, with homoscedastic errors having variance σ2 = 1. We
take Φ(M) = log det(M). Easy calculations indicate that the optimal design
ξ∗θ is given by ξ∗θ = (1/2) δ0 + (1/2) δ1/θ2 with δz the delta measure at z,
which gives

A(θ̄) =

(
0 0
0 −2/θ̄22

)
.

We take ξ(1), the design measure at stage one, as the two-point measure
ξ(1) = (1/2) δ0 + (1/2) δx. This gives

trace[A(θ̄)M−1(ξ(1), θ̄)] =
−4[1 + exp(2θ̄2 x)]

θ̄21 θ̄
2
2 x

2
,

T (ξ∗̄θ , ξ(1), θ̄) = [e2θ̄22 x
2 + (1 − θ̄2 x)

2] exp(−2θ̄2 x) − 1.

Notice that trace[A(θ̄)M−1(ξ(1), θ̄)] < 0 and T (ξ∗̄
θ
, ξ(1), θ̄) ≤ 0 for any x > 0,

with T (ξ∗̄
θ
, ξ(1), θ̄) = 0 when x = 1/θ̄2. When considered as a function of x, ρ

given by (8.38) tends to infinity when x tends to zero or 1/θ̄2, with a unique
minimizer in (0, 1/θ̄2); it also tends to infinity when x → ∞ with a unique
minimizer in (1/θ̄2,∞). The situation x = 1/θ̄2 corresponds to ξ(1) = ξ∗̄

θ
, and

all observations should then be taken at stage 1 (if we know the value of θ̄,
we can design optimally for θ̄ at stage 1, and there is no reason for using a
second stage); on the other hand, the sample size at stage 1 should increase
to compensate the lack of information carried by ξ(1) when x is close to zero
or very large.

Suppose now that θ1 and θ2 are independently distributed, with θ2
uniformly distributed in [2 − δ, 2 + δ]. We take x = 1/2, so that ξ(1) is D-
optimal for IEμ{θ2} = 2. The number of observations to collect at stage 1 to
maximize IEμ{Φ[M(ξN , θ)]} then satisfies approximately (for N large enough)

n∗ � �ρμ
√
N�, where ρμ given by (8.39) is proportional to 1/

√
IEμ{θ21}.

Figure 8.13 presents ρμ as a function of δ (for 1/
√
IEμ{θ21} = 1). �

8.5.2 Full-Sequential D-Optimum Design for LS Estimation
in Nonlinear Regression Models

Full-sequential D-optimum design obeys the following rule. Take x1, . . . , xk0 ,
k0 ≥ p, such that the associated information matrix M(ξk0 , θ) is nonsingular
for any θ ∈ Θ, with ξk the empirical measure for x1, . . . , xk. Then, for k ≥ k0,
select xk+1 so as to maximize detM(ξk+1, θ̂

k), with θ̂k the estimated value
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Fig. 8.13. Normalized ρμ (1/
√

IEμ{θ21} = 1) as a function of δ in Example 8.14
when θ1 and θ2 are independent and θ2 is uniformly distributed in [2− δ, 2 + δ]

of θ obtained for the observations y(x1), . . . , y(xk). For the regression model
(3.2), (3.3), direct calculations show that xk+1 is equivalently given by

xk+1 = argmax
x∈X

f�
θ̂k
(x)M−1(ξk, θ̂

k)fθ̂k(x) (8.40)

with fθ(x) = ∂η(x, θ)/∂θ.
One may notice that when a fixed nominal value θ0 is substituted for

θ̂k, (8.40) corresponds to one iteration of a vertex-direction algorithm for
the maximization of log det[M(ξ, θ0)], with stepsize 1/(k+1); see (9.2), (9.3).

One may thus expect that the almost sure convergence of θ̂k to some θ̂∞ would
ensure the convergence of ξk to a design measure maximizing det[M(ξ, θ̂∞)].
Conversely, if the empirical measure ξk converges to a nonsingular design,
we may expect θ̂k to be strongly consistent, and ξk should thus converge to
a measure maximizing det[M(ξ, θ̄)]. To obtain consistency results for θ̂k and
convergence of ξk to an optimal design for θ̄, we need to get out of this circular
argument.

Using a Bayesian estimator is a possible option, since the sequence of
posterior means for θ forms a martingale which converges almost surely; this
type of argumentation is used by Hu (1998). Few results are available for LS
estimation: Ford and Silvey (1980) and Müller and Pötscher (1992) consider
sequential c-optimum design in a particular model; Lai (1994) and Chaudhuri
and Mykland (1995) introduce a subsequence of nonadaptive design points
to ensure the consistency of the estimator; Chaudhuri and Mykland (1993)
require that the size k0 of the (nonadaptive) initial experiment grows with
the increase in size of the total experiment, similarly to the situation where
n → ∞ in the two-stage approach of Sect. 8.5.1.
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As already mentioned, the difficulty is due to the fact that the sequential
construction of the experiment destroys the independence among the observa-
tions y(x1), . . . , y(xk), so that usual arguments for proving consistency do not
apply. We shall thus resort to Theorem 3.5 to obtain the strong consistency
of the estimator θ̂k, using the assumption that the design space X is finite.

Suppose that
X = {x(1), x(2), . . . , x(�)}, � < ∞.

The idea used in (Pronzato, 2010a) is to consider separately the properties

of the iterations (8.40) and the asymptotic behavior of θ̂k by considering the

situation where {θ̂k} used in (8.40) is any sequence in Θ. We shall use the
following assumption on the model

HX -(i): infθ∈Θ λmin

[∑�
i=1 fθ(x

(i))f�θ (x(i))
]
> γ > 0.

The following property is proved in (Pronzato, 2010a).

Theorem 8.15. Let {θ̂k} be an arbitrary sequence in Θ used to generate
design points according to (8.40) in a finite design space X with an initializa-
tion such that M(ξk0 , θ) is nonsingular for all θ in Θ. Let rk,i = rk(x

(i)) denote
the number of times x(i) appears in the sequence x1, . . . , xk, i = 1, . . . , �, and
consider the associated order statistics rk,1:� ≥ rk,2:� ≥ · · · ≥ rk,�:�. Define

q∗ = max{j : there exists α > 0 such that lim inf
k→∞

rk,j:�/k > α},

Then HX -(i) implies q∗ ≥ p.

For any sequence {θ̂k} used in (8.40), the conditions of Theorem 8.15
ensure the existence of k1 and α > 0 such that rk,j:� > αk for all k > k1 and
all j = 1, . . . , p. Under the additional assumption:

HX -(ii): For all δ > 0, there exists ε(δ) > 0 such that for any subset
{i1, . . . , ip} of distinct elements of {1, . . . , �}, inf‖θ−θ̄‖≥δ

∑p
j=1[η(x

(ij ), θ) −
η(x(ij), θ̄)]2 > ε(δ)

we thus obtain that Dk(θ, θ̄) given by (3.16) satisfies inf‖θ−θ̄‖≥δDk(θ, θ̄) >

αk ε(δ), k > k1. Therefore, when {θ̂k} in (8.40) is the sequence of LS esti-

mates, θ̂k
a.s.→ θ̄ (k → ∞) from Theorem 3.5.

Having proved the strong consistency of θ̂k, the next step is to show that
M(ξk, θ̄)

a.s.→ M(ξ∗̄
θ
, θ̄), with ξ∗̄

θ
maximizing det[M(ξ, θ̄)]. This is proved in

(Pronzato, 2010a) under the following additional assumption on X :

HX -(iii): λmin

[∑p
j=1 fθ̄(x

(ij))f �̄
θ
(x(ij))

]
≥ γ̄ > 0 for any subset {i1, . . . , ip}

of distinct elements of {1, . . . , �}.

One difficulty remains: M(ξk, θ) is not the information matrix for θ, due to
the sequential construction of the design. One may refer to Ford and Silvey
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(1980) for an empirical justifications for using M−1(ξk, θ̂
k) to characterize the

precision of the estimation in a (particular) sequential context; see also Ford
et al. (1985) and Wu (1985) who make use of results in (Lai and Wei, 1982)
on linear stochastic regression models. Other asymptotic considerations show
that M(ξk, θ̂

k) can be used although it is not the information matrix, since

√
kM1/2(ξk, θ̂

k)(θ̂k − θ̄)
d→ v ∼ N (0, Ip), (8.41)

a consequence of Pronzato (2009a, Theorem 2).

Example 8.16. Suppose that y(xi) = θ̄1xi/(θ̄2 + xi) + εi, with {εi} satisfying
(3.2), (3.3), Θ = [L1, U1] × [L2, U2], 0 < Lj < θ̄j < Uj, j = 1, 2. When
X = (0, x̄], the D-optimal measure for θ on X is

ξ∗D(θ) = (1/2) δx∗
1(θ)

+ (1/2) δx∗
2

(8.42)

with x∗1(θ) = θ2x̄/(2θ2 + x̄) < x∗2 = x̄. For θ̂k the LS estimator, Lai (1994)
suggests the following design sequence:

⎧
⎨

⎩

xk = x∗1(θ̂
k−1) if k is even and k �∈ {k1, k2 . . .}

xk = x̄ if k is odd and k �∈ {k1, k2 . . .}
c/(1 + log k) if k ∈ {k1, k2 . . .}

where ki ∼ iα as i → ∞, for some c > 0 and 1 < α < 2, in order to obtain
the strong convergence of θ̂k; see also Sect. 3.1.2. Hu (1998) shows that the
introduction of the perturbations xk = c/(1 + log k) if k ∈ {k1, k2 . . .} is not

necessary when θ̂k is the posterior mean of θ given y(x1), . . . , y(xk) and that
the sequence

{
xk = x∗1(θ̂k−1) if k is even
xk = x̄ if k is odd

(8.43)

ensures θ̂k
a.s.→ θ̄, k → ∞.

Suppose now that X is finite, with 0 < min(X ) < max(X ) = x̄. One can
check that HX -(ii) is satisfied for θ ∈ Θ. Indeed, η(x, θ) = η(x, θ̄) and
η(z, θ) = η(z, θ̄) for θ, θ̄ ∈ Θ, x > 0, z > 0, and x �= z imply θ = θ̄.
Also, det[fθ(x)f

�
θ (x)+fθ(z)f

�
θ (z)] = x2z2θ21(x−z)2/[θ2+x)4(θ2+z)4] so that

HX -(i), HX -(iii) are satisfied, and the results above apply: when θ̂k in (8.40)

is the LS estimator, θ̂k is strongly consistent and satisfies (8.41). Note that the
LS estimator is much easier to obtain than the posterior mean of θ and that
we do not need to know the form (8.42) of the D-optimal design to construct
a design ξk asymptotically optimal for θ̄ through (8.40). �
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Example 8.17. Consider again the model of Example 8.14 with homoscedastic
errors satisfying (3.2), (3.3) and with Θ as in Example 8.16. Take X finite
with min(X ) = x ≥ 0. The D-optimal design measure is then ξ∗D(θ) =
(1/2) δx + (1/2) δx+1/θ2 . One can check that HX -(ii) is satisfied for θ ∈ Θ,
since η(x, θ) = η(x, θ̄) and η(z, θ) = η(z, θ̄) for x �= z imply θ = θ̄; HX -
(i), HX -(iii) are satisfied too since det[fθ(x)f

�
θ (x) + fθ(z)f

�
θ (z)] = θ21(x −

z)2 exp[−2θ2(x+ z)]. Therefore, the results above apply again: θ̂k is strongly
consistent and satisfies (8.41) when we use (8.40). �
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Algorithms: A Survey

9.1 Maximizing a Concave Differentiable Functional
of a Probability Measure

We consider the maximization of a design criterion φ(·) with respect to ξ ∈ Ξ,
the set of probability measures on X compact. The algorithms we consider
often rely on a discretization of X into a finite set X� = {x(1), . . . , x(�)}, which
may be necessary for their practical implementation. This discretization can
be progressively refined; see, e.g., Sect. 9.1.2 and Wu (1978a). For ξ a discrete
design measure on the finite set X�, we shall denote by w the vector formed
by its weights, w = (w1, . . . , w�)

� with wi = ξ(x(i)) for all i. We shall keep
the same notation for the design criterion in terms of probability measure ξ or
vector of weights w and write φ(w) = φ(ξ); φ∗ will denote the optimal value
of φ(·), and we shall denote by ∇φ(w) = ∂φ(w′)/∂w′∣∣

w′=w
the gradient of

φ(·) at w.
The construction of a φ-optimal design on X� amounts to minimizing

−φ(·), convex and differentiable, with respect to w belonging to the convex
set

P�−1 =

{
w ∈ R

� : wi ≥ 0 ,

�∑

i=1

wi = 1

}
. (9.1)

In the optimization literature, such a problem is now considered as easy; one
may refer, for instance, to the books (Hiriart-Urruty and Lemaréchal 1993;
den Hertog 1994; Nesterov and Nemirovskii 1994; Ben-Tal and Nemirovskii
2001; Boyd and Vandenberghe 2004; Nesterov 2004) for recent developments
on convex optimization. Two classical methods for convex programming (the
ellipsoid and the cutting-plane methods), which are rather straightforward to
implement and adapt to the optimization of design criteria (differentiable or
not), are presented in Sect. 9.5. A peculiarity of design problems, however, is
that the cardinality � of the discretized set X� may be quite large, making
the convex optimization problem high dimensional. For that reason, some
algorithms specifically dedicated to design problems are competitive compared

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4 9,
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to general-purpose convex-programming algorithms. It is the purpose of this
section to present such design-specific algorithms and their connection with
more classical optimization methods.

We shall not detail the convergence properties of all algorithms presented.
Also, we shall neither indicate the required tuning of the various constants
involved, in particular in the definitions of stopping rules, that makes an al-
gorithm efficient—or simply makes it work—nor the ad hoc rules that allow
us to remove support points with negligible mass or to merge support points
that are close enough. The assumptions we shall make on φ(·) are not neces-
sarily the weakest possible, and only basic arguments justifying the principles
of the algorithmic constructions will be given, supposing that calculations are
performed with infinite precision. These arguments rely in particular on The-
orem 5.21, which forms a most useful tool to check the optimality of a given
design, and on Lemma 5.20 which indicates how far a given design is from the
optimum.

A key idea is to keep the iterations simple, due to the large dimension of
w. Although we try to keep the presentation as general as possible, in partic-
ular, in order to cover the case of criteria considered in Chap. 8, we shall often
refer to the situation where φ(ξ) = Φ[M(ξ, θ)], with Φ(·) one of the criteria
of Sect. 5.1.2 and M(ξ, θ) a p × p information matrix. We shall always sup-
pose that Φ(·) is bounded from above and concave and differentiable on the set
M
> of positive-definite p×p matrices. When M(ξ, θ) =

∫
X gθ(x)g

�
θ (x) ξ(dx),

gθ ∈ R
p, and Φ(·) is isotonic (see Definition 5.3), an optimal design is then

supported on points x such that gθ(x) is on the boundary of the Elfving’s set
Fθ, see Lemma 5.28. When X is discretized into X�, only the design points
corresponding to vertices of the set Fθ have to be considered. This may dras-
tically reduce the cardinality of X�. One may refer, e.g., to Boissonnat and
Yvinec (1998) and Cormen et al. (2001) for algorithms for the determination
of the convex hull of a finite set. Notice that for the average optimality cri-
terion

∫
Θ Φ[M(ξ, θ)]μ(dθ), see Sect. 8.1, or the maximin-optimality criterion

minθ∈Θ Φ[M(ξ, θ)] (see Sect. 8.2), when Θ is finite only the x(i) corresponding
to a finite union of sets formed by vertices of Fθ, θ ∈ Θ, have to be considered.

Although the maximization of Φ(M) with respect to M ∈ Mθ(Ξ) given
by (5.3) is a p(p + 1)/2-dimensional problem, the optimal design ξ∗ rather
than the associated information matrix M(ξ∗, θ) is usually the main concern.
This excludes the use of duality theory (see Sect. 5.2.4) since we wish to use
iterations that update design measures.

The design measure at the iteration k of an algorithm will be denoted
by ξk and wk will be the associated vector of weights. All the algorithms
considered are such that ξk ∈ Ξ and wk ∈ P�−1 for each k. The case of D-
optimum design plays a special role in terms of optimization, due in particular
to its connection with an optimal-ellipsoid problem (see Sect. 5.6) and to the
simplifications it allows in some algorithms; Sect. 9.1.4 is devoted to the case
φ(ξ) = log det[M(ξ, θ)].
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9.1.1 Vertex-Direction Algorithms

Suppose that φ(ξ) = Φ[M(ξ, θ)] with Φ(·) concave and differentiable on M
>

and that ξ0 is a probability measure on X such that M(ξ0, θ) has full rank.
Consider an algorithm that updates ξk at iteration k into

ξk+1 = (1 − αk)ξk + αkδx+
k+1

(9.2)

where

x+k+1 = argmax
x∈X

Fφ(ξk, x) , (9.3)

Fφ(ξ, x) = Fφ(ξ; δx), with δx the delta measure at x and Fφ(ξ; ν) the
directional derivative of φ(·) at ξ in the direction ν; see Sect. 5.2.1. Sev-
eral choices are possible for the stepsize αk. It can be set to the value α+

k

in [0, 1] that maximizes φ(ξk+1); this corresponds to a one-dimensional con-
cave optimization problem for which many line-search methods can be used;
see in particular den Boeff and den Hertog (2007). It can also be taken as
the k-th point in a sequence {αn} that satisfies 0 ≤ αn ≤ 1, αn → 0, and∑∞
n=0 αn = ∞. A simple algorithm is thus as follows:

0. Start from ξ0, a probability measure of X such that φ(ξ0) > −∞; choose
ε0 > 0; set k = 0.

1. Compute x+k+1 given by (9.3).

2. If Fφ(ξk, x
+
k+1) < ε0 stop; otherwise, perform one iteration (9.2), k ← k+1,

return to step 1.

Although the algorithm can in principle be applied when X is a compact
subset of Rd with nonempty interior, Fφ(ξk, x) in (9.3) is generally a mul-
timodal function, and the determination of x+k+1 is often obtained by dis-
cretizing X into X�; local search in X with multistart can be used too. The
extreme points of the set Mθ(Ξ�), with Ξ� the set of probability measures on
X�, are of the form Mθ(x

(i)), see (5.1), and (9.2) adjusts ξk along the direc-
tion of one vertex of Mθ(Ξ�), hence the name of vertex-direction algorithm.
When there are several solutions for x+k+1 in (9.3), it is enough to select one
of them.1 This method corresponds in fact to the method proposed by Frank
and Wolfe (1956) in a more general context.

The example below is extremely simple but rich enough to illustrate the
behavior of the various algorithms to be considered for differentiable criteria.

Example 9.1. We take � = 3 and φ(·) a quadratic function with a maximum
at w∗ = (1/2 , 1/2 , 0)�, on the boundary of the simplex P2 given by (9.1).

1It may happen that the maximum in (9.3) is reached at several x, in particular
when the model possesses some symmetry. In that case, a faster convergence is
obtained if the multiple maximizers x+

k+1,i (i = 1, 2, . . . , q) are introduced in one
single step, using ξk+1 = (1− αk)ξk + (αk/q)

∑
i δx+

k+1,i
; see Atwood (1973).
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Fig. 9.1. Behavior of the vertex-direction algorithm (9.2), (9.3) with optimal step-
size in Example 9.1

BA

C

Fig. 9.2. Behavior of the vertex-direction algorithm (9.2), (9.3) with predefined
stepsize sequence αk = 1/(2 + k) in Example 9.1

Figure 9.1 presents the evolution in P2 of 50 iterates wk corresponding to
ξk generated by the algorithm above, initialized at w0 = (1/4 , 1/4 , 1/2)�,
when the stepsize αk is chosen optimally. The corners A, B, and C respectively
correspond to the vertices (1 , 0 , 0), (0 , 1 , 0), and (0 , 0 , 1); the level sets of
the function φ(·) are indicated by dotted lines. As it can be seen on Fig. 9.1, the
convergence to the optimum (the middle point between A and B) is rather
slow. Figure 9.2 shows the path followed by the iterates for the predefined
stepsize sequence αk = 1/(2+k). The behavior is very similar to Fig. 9.1, and
convergence to the optimum is also quite slow. �

Remark 9.2. Instead of choosing x+k+1 given by (9.3), it may be easier to simply

use any x+k+1 satisfying
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Fφ(ξk, x
+
k+1) ≥ min{γ, rmax

x∈X
Fφ(ξk, x)}

for some small γ > 0 and some r ∈ (0, 1]; see Wu (1978a). �

In the case of D-optimality, the proof of convergence to an optimal design
can be found, respectively, in (Wynn, 1970) and (Fedorov, 1971, 1972) for αk
the k-th element of a non-summable sequence and αk chosen optimally; the
extension to Ds-optimum design is considered in (Wynn, 1972) and (Pázman,
1986, Proposition 5.1) when {αk} is a predefined non-summable sequence and
in (Atwood, 1980) when αk is chosen optimally. Basic arguments justifying
convergence to an optimal design in more general situations are given below.

Denote

∇2φ(ξ; ν) =
∂2φ[(1 − α)ξ + αν]

∂α2

∣∣∣∣
α=0

(possibly equal to −∞) and define

B(t) = sup
{∣∣∇2φ(ξ; δx)

∣∣ : ξ ∈ Ξ , x ∈ X , φ(ξ) ≥ t
}

with δx the delta measure at x. When φ(ξ) = Φ[M(ξ, θ)] with Φ(·) a positively
homogeneous, isotonic, and global criterion (see Definitions 5.3 and 5.8), we
assume that

B(ε) < ∞ for all ε > 0 . (9.4)

Would the criterion not be written in a positively homogeneous form, so that
φ(·) may reach the value −∞ (think in particular of the case φ(ξ) = Φ[M(ξ, θ)]
with Φ(M) = −∞ for a singular M), we would replace (9.4) by

B(t) < ∞ for all t > −∞ ,

which is satisfied in particular by φ(ξ) = log det[M(ξ, θ)] and φ(ξ) =
−trace[M−1(ξ, θ)].

Convergence with Optimal Stepsize

Define x+(ξ) = argmaxx∈X Fφ(ξ, x), α
+(ξ) = argmaxα∈[0,1] φ[(1 − α)ξ +

αδx+(ξ)] and suppose that αk = α+
k = α+(ξk). The idea is to construct a

lower bound on hk(α) = φ[(1 − α)ξk + αδx+
k+1

], quadratic in α, in order to

obtain a lower bound on φ(ξk+1) − φ(ξk) when φ(ξk) is bounded away from
the optimal value φ∗. By that we shall prove the convergence of φ(ξk) to φ

∗.
Suppose that φ(ξ) = Φ[M(ξ, θ)] with Φ(·) a positively homogeneous, iso-

tonic, and global criterion. Then, φ[(1 − α)ξ + αδx] → 0 when α → 1 for
any x and any ξ, so that for any ε > 0, there exists C(ε) < 1 such that
α+(ξ) < C(ε) for all ξ satisfying φ(ξ) ≥ ε. The developments are similar
when Φ(·) is not written in a positively homogeneous form, so that, for in-
stance, φ[(1 − α)ξ + αδx] → −∞ when α → 1 for any x and any ξ; then
α+(ξ) < C(t) < 1 for all ξ such that φ(ξ) ≥ t > −∞. Since the sequence
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{φ(ξk)} is nondecreasing, we have α+
k < C0 = C[φ(ξ0)], k ≥ 0. For α ∈ [0, C0]

we have

hk(α) = φ(ξk) + αFφ(ξk, x
+
k+1)

+
α2

2
∇2φ[(1 − β)ξk + βδx+

k+1
; δx+

k+1
] , k ≥ 0 ,

for some β ∈ [0, α]. Since β < C0 and φ(ξk) ≥ φ(ξ0), φ[(1−β)ξk+βδx+
k+1

] ≥ ε0

for some ε0 > 0; therefore, ∇2φ[(1− β)ξk + βδx+
k+1

; δx+
k+1

] ≥ −B(ε0). We thus

obtain, for all α ∈ [0, C0],

hk(α) ≥ φ(ξk) + αFφ(ξk, x
+
k+1) − α2B(ε0)

2
, k ≥ 0 .

Since {φ(ξk)} is nondecreasing and bounded, φ(ξk) converges to some constant
φ∞. Suppose that φ∗ ≥ φ∞ +Δ with φ∗ the optimal value of φ(·) and Δ > 0.
From Lemma 5.20, it implies that Fφ(ξk, x

+
k+1) ≥ Δ for all k. Let Δ′ =

min{Δ,C0B(ε0)}. We obtain

∀α ∈ [0, C0] , hk(α) ≥ φ(ξk) + αΔ′ − α2 B(ε0)

2
, k ≥ 0 .

The right-hand side reaches its maximum value φ(ξk) +Δ′2/[2B(ε0)] at α
∗ =

Δ′/B(ε0) ≤ C0, so that

φ(ξk+1) = max
α∈[0,1]

hk(α) = max
α∈[0,C0]

hk(α) ≥ φ(ξk) +Δ′2/[2B(ε0)] .

This implies that φ(ξk) → ∞, contradicting the fact that φ(·) is bounded.
Therefore, φ∞ = φ∗. The result remains valid when x+k+1 is chosen as in
Remark 9.2.

Remark 9.3.

(i) Using Armijo type arguments, we may relax the assumption of second-
order differentiability and only suppose that ∇Φ(·) is continuous on the
set {M ∈ Mθ(Ξ) : Φ(M) ≥ Φ[M(ξ0, θ)]}; see Wu (1978a, Theorem 1).

(ii) When Φ(·) is a singular (or partial; see Sect. 5.1.6) criterion, an optimal
design ξ∗ may be singular, i.e., such that M(ξ∗, θ) is singular. Also, Φ(·)
is generally not differentiable and not continuous at a singular M; see
Example 5.19 and Sect. 5.1.7. We may then use a regularized version
of the criterion, φ(ξ) = Φ{M[(1 − γ)ξ + γξ̃, θ]} with γ a small positive
number and ξ̃ such thatM(ξ̃, θ) has full rank; see (5.55) for regularized c-
optimality. In that case,

∣∣∇2φ(ξ; δx)
∣∣ < B < ∞ for all ξ ∈ Ξ and x ∈ X ,

and we have for any α ∈ [0, 1]

hk(α) ≥ φ(ξk) + αFφ(ξk, x
+
k+1)−

α2 B

2
, k ≥ 0 .

The convergence of φ(ξk) to φ
∗ then follows from arguments identical to

those used above.
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(iii) Suppose that the algorithm (9.2), (9.3) is used for the optimization of
φ(·) = Φ[M(·, θ)] with Φ(·) singular (and not regularized). Notice that
we may have α+

k = 1 at some iterations since an optimal design ξ∗ may
be singular. By imposing αk < 1 in (9.2), we can force ξk to remain
nonsingular (provided that ξ0 is nonsingular), which plays the same role
as enforcing a form of regularization. The idea is to prevent ξk from
becoming close to singularity before it is close enough from being optimal
and to force the matrix M(ξk, θ) to remain well inside the cone M

>; see
Sect. 5.1.7. One may refer to Atwood (1980) for a detailed exposition on
optimization algorithms for singular criteria. �

Convergence with a Non-Summable Stepsize Sequence

Suppose now that {αk} satisfies αk ≥ 0, αk → 0, and
∑k

i=0 αi → ∞ as k → ∞
and that φ(ξ) = Φ[M(ξ, θ)] with Φ(·) a positively homogeneous, isotonic, and
global criterion satisfying (9.4). Also suppose that lim infk→∞ φ(ξk) > ε for
some ε > 0—it is satisfied, for instance, when the criterion is regularized; see
(5.55) for c-optimality. Using (9.4) and following the same approach as above,
we obtain that, for k large enough,

φ(ξk+1) = φ[(1−αk)ξk+αkδx+
k+1

] > φ(ξk)+αk Fφ(ξk, x
+
k+1)−

α2
kB(ε′)
2

(9.5)

for some ε′ > 0. Suppose that φ∗ > lim supk→∞ φ(ξk) + Δ for some Δ > 0.
From Lemma 5.20, it implies that Fφ(ξk, x

+
k+1) > Δ for k large enough and

(9.5) shows that φ(ξk) → ∞, contradicting the fact that φ(·) is bounded from
above. Therefore, lim supk→∞ φ(ξk) = φ∗. Moreover, (9.5) implies that, for
any Δ > 0, φ(ξk+1) > φ(ξk) − Δ for k large enough. Also, φ(ξk) < φ∗ − Δ
implies Fφ(ξk, x

+
k+1) > Δ and thus φ(ξk+1) > φ(ξk) for large k. Altogether, it

implies that φ(ξk+1) > φ(ξk) − 2Δ for k large enough. Since Δ is arbitrary,
we obtain that φ(ξk) → φ∗ as k → ∞. This remains true when x+k+1 is chosen
as in Remark 9.2.

We have thus obtained a dichotomous property, see Wu and Wynn (1978):
either there exists a subsequence {ξkn} such that φ(ξkn) → 0 or φ(ξk) → φ∗,
k → ∞. Precise condition for eliminating the first possibility can be found,
e.g., in (Wu and Wynn, 1978); see also Pázman (1986, Chap. 5) and Wu
(1978a, Theorems 4 and 5). They are satisfied in particular for D-optimality,
with φ(ξ) = log det[M(ξ, θ)]; A-optimality, with φ(ξ) = −trace[M−1(ξ, θ)];

and for Φq-optimality, where φ(ξ) = −
{
(1/p)trace[(Q�M−1(ξ, θ)Q)q]

}1/q

with q > 0 and Q a full-rank p × p matrix—which can be taken equal to
identity by applying a linear transformation to M ∈ Mθ(Ξ) given by (5.3).

Although the weights of some support points of ξk may decrease
continuously along iterations (9.2), when αk ∈ (0, 1), they always stay strictly
positive; i.e., support points of ξ0 cannot be totally removed. The convergence
of φ(ξk) to the optimal value φ∗ is thus inevitably slow when we get close to
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the optimum. The method presented next allows us to set some weights to
zero if necessary and is thus able to reduce the support of the initial design
measure; this will also be the case for the algorithms of Sect. 9.1.2.

Vertex-Exchange Algorithm

When ξ0, and therefore ξi for all i ≥ 0, has finite support, Atwood (1973)
has suggested that αk in (9.2) could sometimes be taken negative in order to
remove support points from ξk if necessary. We then compute

α+
k = arg max

α∈[0,1]
φ[(1 − α)ξk + αδx+

k+1
] (9.6)

with x+k+1 given by (9.3), and

x−k+1 = arg min
x∈Sξk

Fφ(ξk, x) (9.7)

α−
k = arg max

α∈[−ξk(x−
k+1)/[1−ξk(x−

k+1)],0]
φ[(1 − α)ξk + αδx−

k+1
] , (9.8)

with Sξk the support of ξk. The admissible interval for α in α−
k is chosen so that

the weight at x−k+1 remains nonnegative. When there are several solutions for

x−k+1, any of them can be selected. The choice between (1−α+
k )ξk + α+

k δx+
k+1

and (1 − α−
k )ξk + α−

k δx−
k+1

is made by comparing the associated values of

φ(·). See also St. John and Draper (1975) for other suggestions, in particular
concerning the distribution of the weight removed from x−k+1 on the other
support points of ξk. We may alternatively decide earlier between the two
types of iteration by taking

{
xk+1 = x+k+1 and αk = α+

k if Fφ(ξk, x
+
k+1) ≥ −Fφ(ξk, x−k+1)

xk+1 = x−k+1 and αk = α−
k otherwise,

(9.9)

and then
ξk+1 = (1 − αk)ξk + αkδxk+1

. (9.10)

In that case, only one optimization with respect to α is required at each
iteration. This corresponds to the method suggested by Wolfe (1970) in a
more general context.

A related but slightly different approach is proposed by Böhning (1985,
1986) and Molchanov and Zuyev (2001, 2002). By considering the set Ξ̃
of signed measures on X instead of the set Ξ, the directional derivative
limα→0+ [φ(ξ + αν) − φ(α)]/α, ν ∈ Ξ̃, instead of Fφ(ξ; ν), ν ∈ Ξ, and using
the total variation norm for ν, they obtain that the steepest-ascent direction
at ξk corresponds to adding some weight α to x+k+1 given by (9.3) and remov-

ing the same weight from x−k+1 given by (9.7), with α → 0. The iteration k of
the corresponding algorithm is thus

ξk+1 = ξk + αk(δx+
k+1

− δx−
k+1

) (9.11)
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Fig. 9.3. Behavior of the vertex-direction algorithm (9.11), (9.12) in Example 9.1.
Notice that compared with Fig. 9.1 the trajectory of the iterates is now parallel to
the edges of P�−1

with

αk = arg max
α∈[0,ξk(x

−
k+1)]

φ[ξk + α(δx+
k+1

− δx−
k+1

)] . (9.12)

Note that when αk = ξk(x
−
k+1), the support point x−k+1 is removed from ξk,

whereas a new support point x+k+1 is introduced, hence the name of vertex-
exchange algorithm.

Example 9.1 (continued). We consider the same problem as in Example 9.1.
Figure 9.3 presents the evolution in P2 of iterates wk corresponding to ξk
generated by (9.11), (9.12), initialized at w0 = (1/4 , 1/4 , 1/2)�; compare
with Fig. 9.1. �

A method is suggested in (Böhning, 1985) for the construction of αk, with
quadratic convergence to the optimum. A simple modification allows us to
consider stepsizes αk ∈ [0, 1] larger than ξk(x

−
k+1):

⎧
⎨

⎩

1) Sort the support points of ξk by increasing values of Fφ(ξk, x),
with {x−k+1, x

2−
k+1, x

3−
k+1 . . .} the corresponding ordered set.

2) Transfer weight successively from x−k+1, x
2−
k+1. . . to x+k+1.

(9.13)
Both the method of Atwood and (9.11) allow the suppression of support

points from ξk, which yields a significant improvement in the speed of conver-
gence to the optimum compared to (9.2); see Example 9.14 for an illustration.
Clearly, when a support point is suppressed from ξk, it would be important to
know whether it can be considered as suppressed for ever or not, i.e., whether
it can be removed from X� or not. We shall see in Sect. 9.1.4 how to answer
this question in the case of D-optimum design.
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9.1.2 Constrained Gradient and Gradient Projection

We suppose that φ(·) is concave and differentiable for all ξ ∈ Ξ, that X
is discretized into X�, and consider the problem of maximizing φ(w) with
respect to w ∈ P�−1; see (9.1). We denote by ∇φ(w) the gradient vector
∂φ(w)/∂w ∈ R

�.

Constrained Gradient

The constrained-gradient (or conditional gradient) method transforms wk at
iteration k into

wk+1 = wk + αk(u
k
+ − wk)

with uk+ ∈ P�−1 and (uk+ − wk)�∇φ(wk) as large as possible, i.e.,

uk+ = arg max
u∈P
−1

u�∇φ(wk) = ei ,

the i-th unit vector, with

i = arg max
j∈{1,...,�}

{∇φ(wk)}j = arg max
j∈{1,...,�}

Fφ(ξk, δx(j)) .

This is also called the iterative barycentric coordinate method; see Khachiyan
(1996). This algorithm thus coincides with (9.2), (9.3). The constrained-
gradient algorithm is known to sometimes converge quite slowly; see, e.g.,
Polyak (1987); see also Example 9.1. The gradient-projection algorithm con-
sidered below generally yields significantly faster convergence to the optimum.

Gradient Projection

Suppose that wk has strictly positive components. We then project ∇φ(wk)
orthogonally on the linear space L = {z ∈ R

� : 1�z = 0} with 1 = (1, . . . , 1)�,
to form

dk = ∇φ(wk)− [1�∇φ(wk)]1/� . (9.14)

The next point wk+1 is then constructed according to

wk+1 = wk + αkd
k (9.15)

where

αk = arg max
α∈[0,ᾱk]

φ(wk + αdk) with ᾱk = min{wki /|dki | : dki < 0} (9.16)

and dki the i-th component of dk. Notice that 1�dk = 0, so that
∑�

i=1 w
k+1
i =

1, and that α ∈ [0, ᾱk] ensures that w
k+1
i ≥ 0 for all i. Also,
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dφ(wk+1)

dαk

∣∣∣∣
αk=0+

= ∇�φ(wk)dk

= ‖∇φ(wk)‖2 − [1�∇φ(wk)]2/� ≥ 0

(from Cauchy–Schwarz inequality), with equality if and only if ∇φ(wk) is
proportional to 1, i.e., e�i ∇φ(wk) = c for all i and some scalar c, and thus

e�i ∇φ(wk) = wk�∇φ(wk), or equivalently Fφ(ξk, x
(i)) = 0 for all i; see

Sect. 5.2.1. From the equivalence theorem, see the discussion following Re-
mark 5.22, this is equivalent to wk being optimal for φ(·). For a non-optimal
wk with positive components, dk is thus a direction of increase for φ(·).

More generally, when some components of wk equal zero, the gradient-
projection method constructs wk+1 according to

wk+1 = PP
−1

[
wk + αk∇φ(wk)

]
(9.17)

with PP
−1
(z) the orthogonal projection of z ∈ R

� onto P�−1 given by (9.1)
and αk a suitably chosen stepsize. It can be chosen to maximize φ[wk

+(α)] with
respect to α ≥ 0, with wk

+(α) = PP
−1

[
wk + α∇φ(wk)

]
; see McCormick and

Tapia (1972) for a proof of convergence. One may refer to Calamai and Moré
(1987) for an analysis of the algorithm when using inexact line search. Note
that a non-monotone method may yield faster convergence to the optimum;
see Birgin et al. (2000) and Dai and Fletcher (2006). In Sect. 9.3.1 (subgradient
algorithm), we shall see that, under suitable assumptions on φ(·), choosing αk
as the k-th element of a positive sequence satisfying αk → 0 and

∑k
i=0 αi → ∞

also yields (non-monotonic) convergence to an optimal design.

Remark 9.4. The method requires the computation of a projection onto P�−1

for each value of α. This projection can be obtained as the solution of the
following quadratic-programming (QP) problem:wk

+(α) minimizes ‖w−[wk+
α∇φ(wk)]‖2 with respect to w satisfying the linear constraints w ∈ P�−1.
One may also use the following property: for any z ∈ R

�, the projection of z
onto P�−1 is given by PP
−1

(z) = w(z, t∗), where w(z, t) = max{z − t1,0}
(componentwise) and t∗ maximizes L[w(z, t), t] with respect to t, with L(w, t)
the partial Lagrangian L(w, t) = (1/2)‖w−z‖2+ t [1�w− 1]. Indeed, L(w, t)
can be written as

L(w, t) = (1/2)‖w− (z − t1)‖2 + t [1�z − 1]− � t2/2 ,

which reaches its minimum with respect to w ≥ 0 for w = w(z, t). One
may notice that max{maxi(zi)− t∗, 0} ≤ 1�w(z, t∗) = 1 ≤ �max{maxi(zi)−
t∗, 0}, so that the search for t∗ can be restricted to the interval [maxi(zi) −
1,maxi(zi) − 1/�].

When additional constraints to w ∈ P�−1 are present that define a convex
set P ′ ⊂ P�−1 (see Sects. 5.1.9 and 5.1.10), one should consider the orthog-
onal projection onto P ′. One may refer, e.g., to Dai and Fletcher (2006) for
an efficient algorithm for computing such projections. �
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Fig. 9.4. Behavior of the gradient-projection algorithm (9.15), (9.16) in Example 9.1

Example 9.1 (continued). We consider the same problem as in Example 9.1.
Figure 9.4 presents the evolution in P2 of iterates wk generated by (9.15),
(9.16), initialized at w0 = (1/4 , 1/4 , 1/2)�; compare with Figs. 9.1 and 9.3.

�

The high dimension of w may set a limitation on the use of this method.
It is thus recommended to combine vertex-direction iterations with iterations
of the type (9.17). A simple prototype algorithm is as follows:

0. Start from ξ0, a discrete probability measure on X with finite support Sξ0
(ξ0(x) > 0 for all x ∈ Sξ0) and such that φ(ξ0) > −∞; choose ε1 > ε0 > 0,
set k = 0.

1. Set k0 = k, optimize the weights wk for designs supported on Sξk0 us-
ing iterations of the type (9.17) initialized at ξk0 , increment k, and stop
iterating at the first k for which maxx∈Sξk0

Fφ(ξk, x) < ε0.

2. If maxx∈X Fφ(ξk, x) < ε1 stop; otherwise perform one iteration of a vertex-
direction algorithm initialized at ξk, k ← k + 1, return to step 1.

Notice that the dimension of wk0 at step 1 may vary. We do not detail the
choice of constants ε0, ε1 (and of those hidden in the definitions of stop-
ping rules for determining the stepsizes of the gradient-projection and vertex-
direction iterations of steps 1 and 2) ensuring a fast enough convergence of
the algorithm; one may refer, e.g., to Polak (1971) for a general exposition.

In the algorithm proposed by Wu (1978a,b), which we reproduce below,
gradient-projection iterations are only used with vectors wk having strictly
positive components; they can thus be based on (9.14), (9.15) and do not
require computations of projections (9.17). The switching criterion between
gradient projection and vertex direction is based on the observation that,
due to the concavity of φ(·), wk+1 given by (9.15) satisfies φ(wk+1) ≤



9.1 Maximizing a Concave Differentiable Functional of a Probability Measure 289

φ(wk) + ᾱk∇�φ(wk)dk with ᾱk defined in (9.16). When φ(wk) cannot be
very much improved, the search for a suitable αk ∈ [0, ᾱk] is thus futile, and
it is advantageous to switch to the vertex-direction method (9.2), (9.3). Notice
that this is the case in particular when ᾱk equals zero, i.e., when some com-
ponents of wk equal zero. One vertex-direction iteration with (9.2), (9.3) may
then reset all components of the next w to positive values if necessary or leave
some weights equal to zero, depending on which vertex direction is used. The
algorithm is as follows. Every time a new vector of weights wk is formed from
a measure ξk (at steps 0 and 3), only support points with positive weights are
considered, so that the dimension of wk may vary along the iterations.

0. Start from ξ0, a discrete probability measure on X with finite support
Sξ0 and such that φ(ξ(0)) > −∞, choose ε0 and Δ > 0, set k = 0, and
form w0.

1. Compute dk and ᾱk of (9.14) and (9.16); if ᾱk∇�φ(wk)dk ≤ ε0, go to
step 3; otherwise, go to step 2.

2. Update wk according to (9.15) with αk given by (9.16), k ← k + 1; go to
step 1.

3. If maxx∈X Fφ(ξk, x) < Δ stop; otherwise perform one iteration of the
vertex-direction algorithm (9.2), (9.3) with αk maximizing φ[(1 − α)ξk +
αδx+

k+1
] with respect to α ∈ [0, 1]; k ← k + 1, form wk, and go to step 1.

When φ(·) = Φ[M(·, θ)] with Φ(·) a criterion from Chap. 5, the algorithm
performs a sequence of optimizations over a sequence of polyhedra inscribed
in Mθ(Ξ) given by (5.3). Detailed explanations and proof of convergence are
given in (Wu, 1978a); results of numerical experiments are presented in (Wu,
1978b).

Several improvements are suggested in the same papers, which we repro-
duce below:

(i) At step 3 we may choose x+k+1 as suggested in Remark 9.2.
(ii) Using arguments similar to those in Sect. 9.1.1, one can show that step

2 is eventually skipped for δ small enough. In order to benefit for the
efficiency of the gradient-projection iterations of step 2, we may thus use
a sequence of constants εi decreasing to zero at step 1, instead of using
a fixed value ε0. In that case εi is decreased to εi+1 whenever a value
maxx∈X Fφ(ξk, x) smaller than all previous ones is observed at step 3.

(iii) In order to favor reduction of support size, we may start step 3 by an
attempt to move from wk to wk + ᾱkd

k and accept the move (which
reduces the support size) if φ(wk + ᾱkd

k) ≥ φ(wk).

Step 3 of the algorithm above requires the determination of maxx∈X Fφ(ξk, x),
which is difficult to implement when X is not finite. The usual practice is
then to refine progressively a discretization of X , i.e., to consider a sequence
of imbedded finite sets X� ⊂ X�+1 ⊂ · · · ⊂ X , and to use a positive sequence
{Δj} decreasing to zero instead of a fixed Δ at step 3. A new version of step
3 is then as follows (with j initialized at � at step 0); see Wu (1978a).
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3’) If maxx∈Xj Fφ(ξk, x) ≥ Δj , choose x
+
k+1 = argmaxx∈Xj Fφ(ξk, x) and

update ξk into ξk+1 = (1 − αk)ξk + αkδx+
k+1

with αk maximizing φ[(1 −
α)ξk + αδx+

k+1
] with respect to α ∈ [0, 1], k ← k + 1, form wk, and go to

step 1; otherwise j ← j + 1, repeat step 3’.

When step 3’ is repeated, the search for x+k+1 is made in Xj \Xj−1. Note that
{φ(ξk)} forms a monotone increasing sequence. Suppose that the sets Xj are
such that

max
x∈X

Fφ(ξ, x) ≤ max
x∈Xj

Fφ(ξ, x) +Δ′
j (9.18)

for all j ≥ � and all ξ such that φ(ξ) ≥ φ(ξ0), with {Δ′
j} a positive se-

quence decreasing to zero. Then, an infinite loop with ξk at step 3’ means
that maxx∈X Fφ(ξk, x) < Δj +Δ′

j for all j; therefore, maxx∈X Fφ(ξk, x) = 0,
and ξk is optimal on X . If an infinite loop does not occur, step 2 is even-
tually skipped (see point (ii) above) and all iterations are eventually of the
vertex-direction type (9.2), (9.3). Suppose that the sets Xj are such that
Δj ≥ γΔ′

j for some γ > 0, then (9.18) implies that Fφ(ξk, x
+
k+1) ≥ [γ/(1 +

γ)]maxx∈X Fφ(ξ, x) at step 3’; the choice of x+k+1 is thus compatible with Re-
mark 9.2, and the convergence to an optimal design follows from that of the
vertex-direction algorithm; see Sect. 9.1.1. When φ(·) is such that Fφ(ξ, ·) is
Lipschitz on X with Lipschitz constant L for all ξ such that φ(ξ) ≥ φ(ξ0), we
have maxx∈X Fφ(ξ, x) ≤ maxx∈Xj Fφ(ξ, x)+Lmaxx∈X minx(t)∈Xj

‖x−x(t)‖,
so that we may take Δj = Cmaxx∈X minx(t)∈Xj

‖x−x(t)‖ for some constant
C, and we only require that the sets Xj satisfy a space-filling property in X
(Δj → 0 as j → ∞).

Second-Order Methods

Suppose again that wk has strictly positive components. For Λ a positive-
definite � × � matrix, instead of using (9.14), we can also construct dk from
the projection ofΛ∇φ(wk) onto L = {z ∈ R

� : 1�z = 0} for the norm induced
by Λ−1, ‖z‖Λ−1 = z�Λ−1z. We thereby obtain the following generalization
of (9.14):

dk = Λ∇φ(wk) − 1�Λ∇φ(wk)

1�Λ1
Λ1 . (9.19)

Note that (9.19) coincides with (9.14) for Λ = I�. Again, 1
�dk = 0 and

dφ(wk+1)

dαk

∣∣∣∣
αk=0+

= ∇�φ(wk)Λ∇φ(wk)− [1�Λ∇φ(wk)]2

1�Λ1
≥ 0 ,

with equality if and only if (ei − wk)�∇φ(wk) = 0 for all i, which means
that wk is optimal for φ(·). The direction dk is thus an ascent direction
at wk, and we can use an iteration of the form (9.15). Notice that Λ may
depend on the iteration number k. Taking Λ = Λk = H−1(wk), the inverse of
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the Hessian matrix of second-order derivatives of φ(·), we obtain the Newton
method, quasi-Newton methods correspond to using an approximation of the
inverse of the Hessian, etc. One can refer, e.g., to Polyak (1987) and Bonnans
et al. (2006) for a general exposition on such second-order methods, including
the popular sequential quadratic programming, and to Atwood (1976) for the
implementation of the Newton method in a design setting. Particular choices
of Λ = Λk adapted to the design context are considered in the next section.

9.1.3 Multiplicative Algorithms

Suppose that X is discretized into X�. Taking Λ = diag{wk1 , . . . , wk� } in
(9.19) gives

dki = wki {∇φ(wk)}i − [∇�φ(wk)wk]wki

= wki (ei − wk)�∇φ(wk) = wki Fφ(ξk, x
(i)) ,

with dki the i-th component of dk, and therefore, from (9.15),

wk+1
i = wki

[
1 + αk Fφ(ξk, x

(i))
]
, (9.20)

which increases the weights of points such that Fφ(ξk, x
(i)) > 0 and decreases

the weights of the others. As shown below, a simple choice of αk may provide
a simple globally convergent monotonic algorithm in some situations.

Consider the case of D-optimum design, where φ(ξ) = log det[M(ξ, θ)],
with M(ξ, θ) =

∫
X

gθ(x)g
�
θ (x) ξ(dx) and gθ(x) ∈ R

p, so that Fφ(ξ, x) =

g�
θ (x)M

−1(ξ, θ)gθ(x) − p. The iteration (9.20) with αk = 1/p then gives

wk+1
i = wki

D(x(i); ξk)

p
, (9.21)

with

D(x; ξ) = g�
θ (x)M

−1(ξ, θ)gθ(x) . (9.22)

This algorithm is shown in (Titterington, 1976) and (Pázman, 1986) to be
globally monotonically convergent on X� when ξ0(x

(i)) > 0 for all x(i) ∈ X�.
More generally, by taking

αk =
1

∇�φ(wk)wk

in (9.20), we obtain

wk+1
i = wki

{∇φ(wk)}i
∇�φ(wk)wk

, (9.23)

or equivalently
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wk+1
i = wki

g�
θ (x

(i))∇MΦ[M(ξk, θ)]gθ(x
(i))

trace {M(ξk, θ)∇MΦ[M(ξk, θ)]}
when φ(ξ) = Φ[M(ξ, θ)]. This can be further generalized into

wk+1
i = wki

{∇φ(wk)}λi∑�
i=1 w

k
i {∇φ(wk)}λi

, λ > 0 , (9.24)

see Silvey et al. (1978) and Fellman (1989). Monotonicity is proved in
(Torsney, 1983) for A-optimality and in (Fellman, 1974) for c-optimality,
both with λ = 1/2. One may refer to Torsney (2009) for a historical re-
view. Yu (2010a) shows that (9.24) is monotonic for any λ ∈ (0, 1] when
φ(ξ) = Φ[M(ξ, θ)] and the function Ψ(·) defined by Ψ(M) = −Φ(M−1) is iso-
tonic and concave on M

>; see Sect. 5.1.3. Global convergence to an optimal
design is proved in the same paper for a large class of criteria, including D-
and A-optimality.

Take now

αk =
1

∇�φ(wk)wk − βk

which gives another generalization of (9.23), considered in (Dette et al., 2008):

wk+1
i = wki

{∇φ(wk)}i − βk
∇�φ(wk)wk − βk

. (9.25)

In the case of D-optimality, we get αk = 1/(p− βk) and

wk+1
i = wki

D(x(i); ξk) − βk
p− βk

,

with D(x; ξ) given by (9.22). The condition 0 < αk ≤ ᾱk = min{wki /|dki | :
dki < 0} (see (9.16)) gives−∞ < βk ≤ β̄k = mini=1,...,�D(x(i); ξk) .Dette et al.
(2008) prove global monotonic convergence to aD-optimal design when −∞ <
βk ≤ β̄k/2 for all k. Numerical simulations indicate that the convergence to
the optimum is significantly faster for βk = β̄k/2 than for βk = 0 which
corresponds to (9.21).

Remark 9.5. When gθ(x) = [z�θ (x) 1]
�, with zθ(x) ∈ R

p−1, p ≥ 2, the dual of
the D-optimal design problem on X� corresponds to the construction of the
minimum-volume ellipsoid, with free center, containing the points zθ(x

(i)); see
Sect. 5.6 and the section below. The algorithm (9.25) with βk = 1 for all k then
corresponds to a method proposed by Silvey et al. (1978) and Titterington
(1976, 1978). The monotonicity and global convergence to the optimum when
p ≥ 3 was left as a conjecture, supported by numerical simulations, until the
recent proof in (Yu, 2010a,b). It had been noticed in (Pronzato et al., 2000,
Chap. 7) that when p = 2 and g(x) = [x 1]� with x in some interval, then
the algorithm corresponds to a renormalized version of the steepest descent
method for the minimization of a quadratic function and may oscillate between
two non-optimal solutions. �
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Remark 9.6. Multiplicative iterations similar to (9.21) suffer from the same
defect as vertex-direction iterations (9.2) with αk ∈ (0, 1): all support points
present in the initial design measure ξ0 keep a strictly positive weight along
iterations, and the convergence of φ(ξk) to the optimal φ∗ is ineluctably
slow when approaching the optimum. A mixture of multiplicative and vertex-
exchange algorithms is proposed in (Yu, 2011) for D-optimum design; it in-
cludes a nearest-neighbor exchange strategy that helps apportioning weights
between adjacent points and has the property that poor support points are
quickly removed from the support of ξk. �

9.1.4 D-optimum Design

Besides motivations related to the properties of the D-optimality criterion in
terms of characterization of the precision of the estimation (see Sects. 5.1.2
and 5.1.8), D-optimum design has attracted a lot of attention due to the
simplifications it allows in vertex-direction algorithms and to the connec-
tion with a classical problem in geometry. Here φ(ξ) = log det[M(ξ, θ)], with
M(ξ, θ) =

∫
X

gθ(x)g
�
θ (x) ξ(dx).

Exploiting Submodularity

The submodularity property of the determinant function and of the function
X −→ D(x; ξ) given by (9.22), with ξ the design measure associated with the
exact design X , can be used to simplify calculations in a D-optimal design
algorithm based on (9.2), (9.3); see Robertazzi and Schwartz (1989). When
the design space is the finite set X� = {x(1), . . . , x(�)}, we have from (9.3)
x+k+1 = argmaxx∈X


D(x; ξk). One can show that it is not necessary to com-

pute D(x; ξk) for all x ∈ X� at each iteration to obtain x+k+1. Indeed, we have
for any v ∈ R

p and any j ≥ 0

v�M−1(ξj+1, θ)v =
v�M−1(ξj , θ)v

1 − αj
−

αj
[
v�M−1(ξj , θ)gθ(xj+1)

]2

(1 − αj)[(1 − αj) + αjD(xj+1, ξj)]
.

Hence,

v�M−1(ξj+1, θ)v ≤ v�M−1(ξj , θ)v

1 − αj
, 0 < αj < 1 ,

and by induction

∀n ≥ 1 , v�M−1(ξj+n, θ)v ≤ v�M−1(ξj , θ)v

j+n−1∏

i=j

(1 − αi)
−1 .
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Suppose that at iteration k = j+n > j, the value D(x(l); ξj) has been stored.
Then, knowing that

D(x(i
∗); ξk) > D(x(l); ξj)

k−1∏

i=j

(1 − αi)
−1

we can safely conclude that D(x(i
∗); ξk) > D(x(l); ξk) without having to com-

pute D(x(l); ξk). This is exploited in the algorithm below; see Robertazzi and

Schwartz (1989). For any sequence {γi}, we define
∏b
i=a γi = 1 if b < a:

0. Start from ξ0, a discrete probability measure on the set X� such that
det[M(ξ0, θ)] > 0; set k = 0 and s(i) = 0 for all i; compute and store
the values D(i; s(i)) = D(x(i); ξ0) for all x

(i) ∈ X�; choose ε0 > 0.
1. At current iteration k:

1a. Find j∗ = argmaxj=1,...,�D(j; s(j))
∏k−1
i=s(j)(1 − αi)

−1; if k = 0, go
to step 2.

1b. Set s(j∗) = k; compute D(j∗; k) = D(x(j
∗); ξk); if D(j∗; s(j∗)) ≥

D(j; s(j))
∏k−1
i=s(j)(1−αi)−1 for all j = 1, . . . , �, go to step 2; otherwise,

return to step 1a.
2. If D(j∗; s(j∗)) < p + ε0, stop ; otherwise take x+k+1 = x(j

∗); perform one
iteration (9.2) to update ξk into ξk+1, k ← k + 1 and return to step 1.

Explicit Optimal Stepsizes

One can easily check that α+
k and α−

k , respectively defined by (9.6) and (9.8),
are given explicitly as

α+
k = hk(x

+
k+1) (9.26)

α−
k =

⎧
⎨

⎩

hk(x
−
k+1) if D(x−k+1; ξk) >

p

1+(p−1)ξk(x
−
k+1)

−ξk(x−
k+1)

1−ξk(x−
k+1)

otherwise ,
(9.27)

with

hk(x) =
D(x; ξk) − p

p[D(x; ξk) − 1]

and D(x; ξ) given by (9.22). Similarly, direct calculations show that αk given
by (9.12) satisfies

αk = min

{
ξk(x

−
k+1),

D(x+k+1; ξk)−D(x−k+1; ξk)

2[D(x+k+1; ξk)D(x−k+1; ξk) −D2(x+k+1, x
−
k+1; ξk)]

}

(9.28)

where

D(x1, x2; ξ) = g�
θ (x1)M

−1(ξ, θ)gθ(x2) .
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Reduction of the Design Space

When αk = α−
k = −ξk(x−k+1)/[1 − ξk(x

−
k+1)] in (9.27) or αk = ξk(x

−
k+1) in

(9.28), it means that the weight at x−k+1 is set at 0, that is, x−k+1 is removed

from ξk+1. This does not mean that x−k+1 may not reenter the support of ξk′
for some k′ > k. However, it is shown in (Harman and Pronzato, 2007) that
any design point x satisfying

D(x; ξk) ≤ H(εk) = p

[
1 +

εk
2

−
√
εk(4 + εk − 4/p)

2

]
, (9.29)

with εk = maxx∈X D(x; ξk) − p, cannot be support point for a D-optimal
design and can thus be safely removed from X . This can be used for any
ξk and thus implemented as an additional ingredient to any optimization
algorithm for D-optimum design. In the case of a finite design space X�,
the cardinality of the space can thus be decreased during the progress of the
algorithm; see, for instance, Examples 9.16 and 9.17 for an illustration. Notice
thatH(ε) is a decreasing function of ε, satisfyingH(0) = p and limε→∞H(ε) =
1, so that the inequality above becomes more and more powerful for removing
points from X as εk gets smaller and smaller, i.e., during the progress of ξk
towards a D-optimal design.

Minimum-Volume Covering Ellipsoids and the Complexity of D-optimum
Design

An algorithm based on (9.2), (9.3) for the construction of the minimum-
volume ellipsoid enclosing a given set of points Z� = {z(1), . . . , z(�)} ⊂ R

d

is analyzed in (Khachiyan, 1996). Denote

M(ξ) =

∫ [
z
1

]
[z� 1]

ξ(dz) ,

with ξ a probability measure on R
d, and denote by E(ξ) the ellipsoid

E(ξ) = {u ∈ R
d+1 : u�[(d+ 1)M(ξ)]−1u ≤ 1} .

Let ξ∗D be a D-optimal design measure for the linear regression model with

regressors [z(i)
�

1]�; that is, ξ∗D maximizes log det[M(ξ)] with respect to ξ
in the set of probability measures on Z�. The intersection of E(ξ∗D) with
the hyperplane H = {u ∈ R

d+1 : ud+1 = 1} gives the minimum-volume
ellipsoid containing Z�; see Shor and Berezovski (1992) and Khachiyan and
Todd (1993). The method in (Khachiyan, 1996) uses iterations (9.2), (9.3),
initialized at ξ0 giving weight 1/� at each point of Z�, to construct a sequence
of discrete design measures ξk on Z� that converges to a D-optimal measure
ξ∗D. To the sequence of design measures ξk generated corresponds a sequence
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of ellipsoids E(ξk). It is shown in (Todd and Yildirim, 2007) that the polar
ellipsoids

Eo(ξk) = {v ∈ R
d+1 : v�M(ξk)v ≤ 1}

all contain the polar polytope

Z o
� = {v ∈ R

d+1 :
∣∣∣[z(i)

�
1]v
∣∣∣ ≤ 1 , i = 1, . . . , �}

and (surprisingly) exactly coincide with the ellipsoids generated by the
parallel-cut version of the ellipsoid method2 for enclosing Z o

� into an ellipsoid;
see Bland et al. (1981), and Todd (1982); see also Sect. 9.3.1. If the algorithm
is stopped when Fφ(ξn, x

+
n+1) ≤ (d+1)ε, then the convex hull of Z� is included

in
√
1 + ε [E(ξn) ∩ H] and [1/

√
(d+ 1)(1 + ε)] Eo(ξn) is contained in Z o

� .
Todd and Yildirim (2007) also show that an algorithm based on (9.9),

(9.10), with α+
k and α−

k given by (9.26) and (9.27), computes an approximate
D-optimal design ξ∗ on a finite space X�, satisfying

{
maxi=1,...,�D(x(i); ξ∗) ≤ (1 + ε)p

D(x(i); ξ∗) ≥ (1 − ε)p for all i such that ξ∗(x(i)) > 0 ,

in O{p[log(p) + 1/ε]} iterations, with D(x; ξ) given by (9.22); see Ahipasaoglu
et al. (2008) for more precise results and extensions to other concave differ-
entiable criteria.

9.2 Exact Design

The exact design problem corresponds to the situation where the number N of
observations to be collected is fixed. We denote by X the collection of design
points to be used, X = (x1, . . . , xN ), with possible repetitions; that is, we may
have xi = xj for some i �= j. We only consider here locally optimum design:
when the criterion depends on the value of the model parameters θ, we assume
that a nominal value θ0 is used for θ. An optimal exact design is denoted
by X∗. Maximin-optimum exact design will be considered in Sect. 9.3.2 and
average-optimum exact design in Sect. 9.4.2.

In approximate design theory an optimal design measure ξ∗ is character-
ized by its support points x(i) and associated weights w∗

i , i = 1, . . . ,m, which
are positive reals that sum to one. When N is fixed, one may thus consider
constructing an exact design by rounding the weights w∗

i of an optimal design
measure ξ∗. The support points are then unchanged, each quota Nw∗

i being
rounded to an integer ri, the number of repetitions of observations at x(i),
with the constraint that

∑m
i=1 ri = N , which in general precludes using a

simple numerical rounding of each Nw∗
i to its closest integer.

2This is the ellipsoid method used by Khachiyan (1979) to prove the polynomial
complexity of LP.
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Fedorov (1972, p. 157) suggests to allocate observations in several steps.
First allocate r0i = �(N − m)w∗

i � observations at x(i), i = 1, . . . ,m, where
�t� is the smallest integer satisfying �t� ≥ t. The remaining N −

∑m
i=1 r

0
i

observations can then be added one by one to points where (N −m)w∗
i − r0i is

larger than −1/2. This allocation rule gets close to optimality as N increases
when φ(X) = Φ[M(X, θ)] with Φ(·) isotonic and positively homogeneous; see
Definition 5.3. Indeed, denote by X0 the exact design with r0i observations at
X(i), i = 1, . . . ,m. We have

φ(ξ∗) ≥ φ(X∗) ≥ φ(X0) ≥ N −m

N
φ(ξ∗) ,

so that

φ(X∗) − φ(X0) ≤ m

N
φ(ξ∗) ,

see Fedorov (1972, Corollary 1, p. 157). Notice that this indicates that when
the optimal design measure ξ∗ is not unique, the one with fewer support points
should be used in the rounding procedure.

Other rounding methods are discussed in (Pukelsheim and Reider, 1992),
where it is shown that Adams apportionment, which consists in choosing the ri
that maximize mini=1,...,m ri/w

∗
i , guarantees the best efficiency bounds for all

isotonic and positively homogeneous criteria. Although this rounding method
is the most efficient, one should note that an exact optimal design is not nec-
essarily in the class of designs having the same support as an approximate
optimal design—consider in particular the case where p ≤ N < m. It is there-
fore of interest to consider techniques for constructing exact optimal designs
directly, without passing through the intermediate step of an approximate
design.3

When the design space X is a compact subset of R
d with nonempty

interior and X = (x1, . . . , xN ), the design problem is a continuous optimiza-
tion problem in R

N×d with N constraints (xi ∈ X for all i). If N × d is
not too large, general-purpose optimization algorithms can be used. However,
since there exist local optima (notice in particular that any permutation of the
xi leaves the criterion value unchanged), global optimization algorithms must
be used. A straightforward application of a global algorithm in dimension
N × d is computationally prohibitive even for moderate values of N and d.
It is thus recommended to use algorithms that take the specific structure

3There exists a situation, however, where an approximate design can be imple-
mented directly, without requiring any rounding of its weights, whatever their value
might be. This is when the design corresponds to the construction of the optimal
input signal for a dynamical system, this input signal being characterized by its
power spectral density (which plays the same role as the design measure ξ); see,
e.g., Goodwin and Payne (1977, Chap. 6), Zarrop (1979), Ljung (1987, Chap. 14),
Walter and Pronzato (1997, Chap. 6).
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of the problem into account and attempt to decompose the optimization in
R
N×d into a series of optimizations in R

d. This is the objective of exchange
algorithms, the principles of which are presented in Sect. 9.2.1.

Consider now the case where X is a finite set, X = {x(1), . . . , x(�)}. Since
there are (� + N − 1)!/[N !(� − 1)!] possible designs with N points, exhaus-
tive search is clearly computationally unfeasible even for moderate N and �.
Exchange algorithms can be used in this case too. However, when the design
criterion is a function of the information matrix, φ(X) = Φ[M(X, θ)], and
Φ(·) is concave, a continuous relaxation can be used in a branch-and-bound
tree search, with guaranteed convergence to the optimum. This is considered
in Sect. 9.2.2.

9.2.1 Exchange Methods

The presentation is for general criteria φ(·), not necessarily of the form φ(X) =
Φ[M(X, θ)]. No concavity property is exploited, and the algorithms can thus
also be used to optimize the criteria considered in Chap. 6.

The central idea of exchange algorithms is to exchange one design point
xkj at iteration k with a better one x∗ according to φ(·), which we represent as

Xk = (xk1 , . . . , x
k
j

�
x∗

, . . . , xkN ) .

There basically exist two variants.
In Fedorov’s algorithm (1972), all N possible exchanges are considered suc-

cessively, each time starting from Xk. At iteration k, for every j = 1, . . . , N
we solve the optimization problem (continuous if X has a nonempty in-
terior, or grid-search problem if X is finite) x∗j = maxx∈X φ([Xk

−j , x]),
where [Xk

−j , x] denotes the N -point design Xk with x substituted for xkj .

The exchange finally retained corresponds to j0 such that φ([Xk
−j0 , x

∗
j0 ]) =

maxj=1,...,N φ([Xk
−j , x

∗
j ]), and X

k is updated into Xk+1 = [Xk
−j0 , x

∗
j0
].

In the simplest version of Mitchell’s DETMAX algorithm (1974), at it-
eration k, we suppose that one additional observation is allowed, at some
xN+1 ∈ X . Denote x∗N+1 = argmaxxN+1∈X φ([Xk, XN+1]) and

Xk+ = (xk1 , . . . , x
k
j , . . . , x

k
N , x

∗
N+1)

the resulting (N + 1)-point design. We then return to a N -point design by
removing one design point. All possible cancellations are considered; that is,
we consider the N designs Xk+

−j , j = 1, . . . , N , with xkj removed from Xk.
The less penalizing one in terms of φ(·) is retained, which corresponds to j0
such that φ(Xk+

−j0) = argmaxj=1,...,N Xk+
−j . Globally, it means that the design

point xkj0 has been replaced by x∗N+1. This corresponds to what is called an
excursion of length 1, and longer excursions may also be considered; see also
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Galil and Kiefer (1980) and Johnson and Nachtsheim (1983). One iteration of
the basic algorithm only requires one optimization with respect to xN+1 ∈ X ,
followed by N evaluations of the criterion φ(·). The iterations are thus simpler
than with Fedorov’s algorithm; however, more iterations are usually required
to reach convergence. One may refer to Cook and Nachtsheim (1980) for a
comparison between these algorithms.

It must be noticed that dead ends are possible for both types of algorithms:
the DETMAX algorithm is stopped when φ(Xk+

−j0) < φ(Xk) at some iteration;
in Fedorov’s algorithm, it may be impossible to improve φ(·) when optimizing
with respect to one point xkj at a time only. Since there is no guarantee of
convergence to an optimal design, it is recommended to restart the algorithms
several times using different initializations. Heuristics have been proposed
to escape from local optima (see, for instance, Bohachevsky et al. (1986)
for a method based on simulated annealing), however without guaranteed
convergence to the neighborhood of an optimal design in a finite number of
iterations.

9.2.2 Branch and Bound

Here we suppose that φ(X) = Φ[M(X, θ)], with Φ(·) concave and differentiable
in M

> (see Chap. 5), and that Mθ(x) in (5.1) has rank one, i.e., Mθ(x) =
gθ(x)g

�
θ (x). We also suppose that X is finite, X = {x(1), . . . , x(�)}. Denote

by ri the number of repetitions of observations at the point x(i). The exact
design problem then consists in maximizing

φ(r/N) = Φ

[
1

N

�∑

i=1

ri gθ(x
(i))g�

θ (x
(i))

]

with respect to r = (r1, . . . , r�) ∈ N
� subject to

0 ≤ ri ≤ N , i = 1, . . . , N , (9.30)

and
∑�

i=1 ri = N . We shall consider generalizations of this problem, obtained
by replacing the constraints (9.30) by

0 ≤ ri ≤ ri ≤ ri ≤ N , i = 1, . . . , � .

Notice that we must have
∑

i ri ≤ N and
∑

i ri ≥ N to be consistent with the

constraint
∑�

i=1 ri = N . The vectors r = (r1, . . . , r�) and r = (r1, . . . , r�) then
define a node N(r, r) in a tree structure (see Welch 1982), with the following
problem attached to it:

{
maximize φ(r) with respect to r ∈ N

�

subject to r ≤ r ≤ r and
∑�

i=1 ri = N ,
(9.31)

where inequalities for vectors should be interpreted componentwise. The root
of the tree, at level 0, corresponds to r = (0, . . . , 0) and r = (N, . . . , N);
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the problem attached to the root is thus the original exact design problem.
A node such that r = r is called a leaf (a node with no descendants); solving
the attached problem simply means evaluating φ(r). A node N(r, r) which is
not a leaf can be split into two descendant nodes (of higher level), obtained
by partitioning the set {r ∈ N

� : r ≤ r ≤ r} into the two subsets

N(rL(i0, r0), r
L(i0, r0)) and N(rR(i0, r0), r

R(i0, r0)) , (9.32)

respectively such that less than r0 observations and at least r0 observations
are made at x(i0). In order to obtain nonempty partitions, we must choose i0
and r0 such that

ri0 + 1 ≤ r0 ≤ ri0 ,∑

i�=i0
ri + r0 ≤ N ,

N ≤
∑

i�=i0
ri + r0 − 1 .

The lower and upper bounds rL, rL, rR, and rR are then given by

rLi (i0, r0) = rRi (i0, r0) = ri and r
L
i (i0, r0) = rRi (i0, r0) = ri for all i �= i0

rLi0(i0, r0) = ri0 , r
R
i0(i0, r0) = ri0

rLi0(i0, r0) = r0 − 1 , rRi0(i0, r0) = r0 .

Starting from the root and applying the branching process above to all nodes
encountered, we reach all leafs of the tree. The central idea of branch-and-
bound algorithms is that exhaustive inspection of all leafs can be avoided if an
upper bound B(r, r) on the optimal criterion value for the problem attached
to the node N(r, r) is available. Indeed, let B denote a lower bound on the
optimal value φ∗ of φ(r) in the original problem (i.e., at the root of the tree);
then, if B(r, r) < B, the node N(r, r) and all its descendant nodes need
not be further considered and can thus be discarded. The lower bound B of
φ∗ may result from an evaluation at any guessed solution, e.g., obtained from
rounding an optimal approximate design, or from the execution of an exchange
algorithm. It can be improved, i.e., increased, during the branch-and-bound
search by simply making use of the maximum value of φ(·) encountered.

Four ingredients still have to be specified to define entirely the algorithm:

1. The construction of the upper bounds B(r, r)
2. The rule for choosing the nodes N(r, r) to be processed
3. The splitting rule, i.e., the choice of i0 and r0 in (9.32)

We consider them successively.

1. Construction of an upper bound B(r, r). Classically, in discrete search
problems, the construction relies on a continuous relaxation of the problem



9.2 Exact Design 301

attached to the node. A detailed construction is given in (Welch, 1982) for
the case of D-optimum design. The relaxed version of (9.31) is

{
maximize φ(w) = Φ

[∑�
i=1 wi gθ(x

(i))g�
θ (x

(i))
]
with respect to w ∈ R

�

subject to w ∈ P(r, r) ,
(9.33)

with

P(r, r) = {w ∈ R
� : r/N ≤ w ≤ r/N and

�∑

i=1

wi = 1} .

When Φ(·) is concave and differentiable, we can invoke Lemma 5.20 to obtain
an upper bound on φ(w) for w ∈ P(r, r). Take any w′ ∈ P(r, r), denote by ξ
and ξ′ the design measures respectively associated with w and w′ and denote
by Ξ(r, r) the set of design measures associated with elements of P(r, r). We
then have

max
w∈P(r,r)

φ(w) = max
ξ∈Ξ(r,r)

φ(ξ) ≤ φ(ξ′) + sup
ν∈Ξ(r,r)

Fφ(ξ
′; ν) ,

which can be rewritten as

max
w∈P(r,r)

φ(w) ≤ φ(w′) + max
w′′∈P(r,r)

(w′′ − w′)�∇φ(w′) .

The maximization of (w′′ − w′)�∇φ(w′) with respect to w′′ ∈ P(r, r) is an
LP problem which can be solved by standard procedures, such as the simplex
algorithm, for instance. This yields the bound

B(r, r) = φ(w′) + max
w′′∈P(r,r)

(w′′ − w′)�∇φ(w′) (9.34)

on the optimal criterion value for the problem attached to N(r, r), where
w′ is any point in P(r, r). This bound can be improved, i.e., decreased, by
constructing w′ through a few optimization steps for the problem (9.33),
using algorithms from Sect. 9.1. As usual in branch-and-bound algorithms, a
compromise between the quality of the bound and the amount of calculations
required needs to be made; see, e.g., Minoux (1983, Chap. 7, Vol. 2).

2. Choice of the node to be processed. The two classical rules are called “depth
first” and “width first.” In the depth-first method, the node selected among
those awaiting treatment is the one with highest level. When several such
nodes exist, the one with highest upper bound B(r, r) is selected, i.e., the most
promising one. This presents the advantage that leafs are reached quickly, so
that a lower bound B on φ∗ can be found or improved. This approach is
used in (Uciński and Patan, 1982). In the width-first method, the node with
highest upper bound B(r, r) is always selected first. This usually requires more
exploration before finding a solution, i.e., reaching a leaf, but the first solution
obtained is generally of better quality than with the depth-first method.
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Since there is no universal best rule, one usually resorts to heuristics.
In (Welch, 1982), the next node to be evaluated after branching is the descen-
dant N(rR(i0, r0), r

R(i0, r0)), the other descendant N(rL(i0, r0), r
L(i0, r0))

being placed on the top of a stack of nodes awaiting treatment. When there
are no descendants, because the node is a leaf (which may be used to update
B) or because the inequality B(r, r) < B indicates that it can be discarded,
the next node to be processed in taken from the top of the stack.

3. Splitting rule. Many variants exist, mainly based on heuristics. Welch (1982)
uses r0 = ri0 + 1 and selects i0 such that {∇φ(r + γ1)}i0 is maximal among
all components such that ri < ri, with γ a small positive constant and 1 the
vector of � ones. This is to avoid ∇φ being infinite when r has less than p pos-
itive values. One might also consider choosing i0 such that ri− ri is maximal.
Another technique consists in choosing i0 and r0 such that the upper bounds
associated with the descendants differ most. This choice is in some sense the
most informative, one of the descendants being a much better candidate that
the other for containing the optimum. It is rather computationally intensive,
however, which means that a compromise between performance and cost has
again to be made.

9.3 Maximin-Optimum Design

9.3.1 Non-Differentiable Optimization of a Design Measure

The methods presented in Sect. 9.1 cannot be used directly when φ(·) is not
differentiable. We shall only consider here the case where X is discretized into
X� having � elements, so that the design problem corresponds to the maxi-
mization of φ(w) with respect to the vector of weightsw ∈ P�−1; see (9.1). We
suppose that φ(·) is concave and denote by Fφ(ξ; ν) the directional derivative
of φ(·) at ξ in the direction ν; see Sect. 5.2.1. One may refer, e.g., to Minoux
(1983, Vol. 1, Chap. 4), Shor (1985) and Bonnans et al. (2006, Chaps. 8–10)
for a general exposition on methods for non-differentiable problems; see also
Sect. 9.5.

We shall pay special attention to the case where φ(ξ) = φMmO(ξ) =
minθ∈Θ φ(ξ; θ), with φ(·; θ) concave and differentiable for all θ ∈ Θ; see
Sect. 8.2. In practical situations, it is reasonable to suppose that Θ is a finite
set. The grid method in (Dem’yanov and Malozemov, 1974, Chap. 6), based
on the construction of a sequence of discretized sets Θj ⊂ Θj+1 ⊂ · · · ⊂ Θ
satisfying limj→∞ maxθ∈Θminθ′∈Θj ‖θ − θ′‖ = 0, can be used when Θ is a
compact subset of Rp. The relaxation method of Sect. 9.3.2 allows us to iter-
atively add points to a finite Θ; see also Sect. 9.5.3 for the related method of
cutting planes. The directional derivative Fφ(ξ; ν) of φ(·) at ξ in the direction
ν is given by

Fφ(ξ; ν) = min
θ∈Θ(ξ)

Fφθ
(ξ; ν) (9.35)
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where

Θ(ξ) = {θ ∈ Θ : φ(ξ; θ) = φ(ξ)} (9.36)

and Fφθ
(ξ; ν) is the directional derivative of φ(·; θ), see Sect. 8.2.

A Multi-Vertex Direction Method

In general, the steepest-ascent direction ν∗ maximizing Fφ(ξ; ν) given by
(9.35) is not equal to the delta measure at some x; see Remark 5.26-(ii).
Moreover, it may happen that no such vertex direction is a direction of in-
crease for φ(·); see Example 9.8. This precludes the direct use of one of the
vertex-direction algorithms of Sect. 9.1.1.

A natural (but rather unfortunate) idea is to nevertheless use an algorithm
based on the multi-vertex steepest-ascent direction, that is, take

ξk+1 = (1 − αk)ξk + αkν
+
k (9.37)

with

ν+k = argmax
ν∈Ξ

Fφ(ξk; ν) = argmax
ν∈Ξ

min
θ∈Θ(ξk)

Fφθ
(ξk; ν)

= argmax
ν∈Ξ

min
θ∈Θ(ξk)

�∑

i=1

wi Fφθ
(ξk, x

(i)) ,

where wi = ν(x(i)) for all i, Fφθ
(ξk, x

(i)) = Fφθ
(ξk; δx(i)) with δx the delta

measure at x and where we used the linearity in ν of Fφθ
(ξk; ν). The stepsize

αk is obtained by maximizing φ[(1 − α)ξk + αν+k ] with respect to α ∈ [0, 1].
This line search corresponds to a non-differentiable but concave maximization
problem for which a Golden-Section or Fibonacci type algorithm can be used;
see also den Boeff and den Hertog (2007). Written in terms of an iteration on
the vector of weights wk, with wki = ξk(x

(i)) for all i, (9.37) becomes

wk+1 = (1 − αk)w
k + αkw

k
+ (9.38)

where

wk
+ = arg max

w∈P
−1

min
θ∈Θ(ξk)

∇�φθ(wk)(w − wk) (9.39)

and ∇φθ(w) is the gradient of φ(·; θ) at w, ∇φθ(w) = ∂φ(w′; θ)/∂w′∣∣
w′=w

.

Remark 9.7.

(i) wk
+ given by (9.39) is easily determined when Θ is a finite set since it

corresponds to the solution of an (finite dimensional) LP problem. It may
differ in general from

wk
+ = arg max

w∈P
−1

min
θ∈Θ(ξk)

∇�φθ(wk)w .

However, from Remark 5.26-(iii), they both coincide when φθ(ξ) =
Φ[M(ξ, θ)] with Φ(·) isotonic and differentiable.
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(ii) The calculation of Fφ(ξk; ν
+
k ) = minθ∈Θ(ξk) ∇�φθ(wk)(wk

+ − wk) can be
used to form a stopping criterion for the algorithm since Lemma 5.20
indicates that the maximum value φ∗ of φ(·) over Ξ satisfies φ∗ ≤ φ(ξk)+
Fφ(ξk; ν

+
k ). �

Since {φ(ξk)} forms an increasing sequence bounded by φ∗, it converges
to some φ∞. However, a direct implementation of this method is not recom-
mended since the sequence it generates may be such that φ∞ < φ∗. This is
illustrated by the following simple example, rich enough to reveal the difficul-
ties caused by non-differentiable criteria. It will be used as a test-case for the
algorithms to be presented for non-differentiable optimization.

Example 9.8. The example is derived from Example 9.1 in (Bonnans et al.,
2006). We take � = 3 and consider a new orthonormal system of coordinates
in R

3 defined by the transformation w ∈ R
3 −→ z = Tw, with

T =

⎛

⎜⎝
−

√
2
2

√
2
2 0

− 1√
6

− 1√
6

√
2√
3

1√
3

1√
3

1√
3

⎞

⎟⎠ .

Then, t = (z1 , z2)
� = T2w, with

T2 =

(
−

√
2
2

√
2
2 0

− 1√
6

− 1√
6

√
2√
3

)
,

defines coordinates on the simplex P2 given by (9.1). The criterion φ(·) is de-
fined by φ(w) = min{φ1(w), φ2(w), φ3(w), φ4(w)} with φi(w) = φ(w; θ(i)) =
w�T�

2 θ
(i), i = 1, . . . , 4, and θ(1) = (−5 , −2)�, θ(2) = (−2 , −3)�, θ(3) =

(5 , −2)�, θ(4) = (2 , −3)�.
Figure 9.5 presents the level sets of φ(·) (dotted lines) on P2, together

with the kinks (dash-dotted lines), i.e., the lines on P2 on which φ(·) is not
differentiable: when φ1(w) = φ2(w), or φ1(w) = φ3(w), or φ2(w) = φ4(w),
or φ3(w) = φ4(w). The corners A, B, and C respectively correspond to the
vertices e1 = (1 , 0 , 0)�, e2 = (0 , 1 , 0)�, and e3 = (0 , 0 , 1)�; the point O
at the center of the triangle ABC corresponds to w = (1/3 , 1/3 , 1/3)� (and
t = 0 in new coordinates on P2). Note that all vertex directions originated
from O are directions along which φ(·) decreases, although the maximum
value of φ(·) in P2 is obtained at the midpoint between A and B, i.e., w∗ =
(1/2 , 1/2 , 0)�, marked by a circle in Fig. 9.5.

Consider the kink defined by φ3(w) = φ4(w). Its equation on P2 is t2 =
−3t1. One can easily check that for any w corresponding to a point on this
line, the value w+ maximizing mini=3,4 ∇�φi(w)(w′ − w) with respect to
w′ ∈ P2 is given by e2. Note that ∇�φ3(w)w = ∇�φ4(w)w when w is
such that φ3(w) = φ4(w) = φ(w); see Remark 9.7-(i). Similarly, the steepest-
ascent direction at a w on the kink defined by φ1(w) = φ2(w) (the line
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BA

C

O

Fig. 9.5. Level sets (dotted lines) and kinks (dash-dotted lines) on P2 for the non-
differentiable problem in Example 9.8, together with a sequence of iterates generated
by the steepest-ascent method (9.38), (9.39) with optimal stepsize

t2 = 3t1 in new coordinates on P2) corresponds to e1. A sequence of iterates
wk for the multi-vertex direction algorithm with optimal stepsize, initialized
at w0 = (1/12 , 2/12 , 3/4)�, is plotted in Fig. 9.5. The sequence converges
(slowly) to w∞ = (1/3 , 1/3 , 1/3)� which is not optimal. �

A reason for the failure of the multi-vertex direction algorithm (9.38),
(9.39) is the fact that the set Θ(ξ) defined by (9.36) is too small. Consider
instead

Θε(ξ) = {θ ∈ Θ : φ(ξ; θ) ≤ φ(ξ) + ε} , ε > 0 ,

and use at iteration k

ν+k = argmax
ν∈Ξ

min
θ∈Θε(ξk)

Fφθ
(ξk; ν) .

The substitution of Θε(ξ) for Θ(ξ) in the necessary-and-sufficient condition
for optimality

max
ν∈Ξ

min
θ∈Θ(ξ)

Fφθ
(ξ; ν) = 0 ⇐⇒ φ(ξ) = φ∗ ,

see Theorem 5.21, is not without consequences. Indeed, we have for any θ ∈
Θε(ξ) and any optimal design ξ∗ such that φ(ξ∗) = φ∗,

φ∗ ≤ φ(ξ∗; θ) ≤ φ(ξ; θ) + Fφθ
(ξ; ξ∗) ≤ φ(ξ) + ε + Fφθ

(ξ; ξ∗) .

Therefore,

φ∗ ≤ φ(ξ) + ε+ min
θ∈Θε(ξ)

Fφθ
(ξ; ξ∗) ≤ φ(ξ) + ε+max

ν∈Ξ
min

θ∈Θε(ξ)
Fφθ

(ξ; ν) ,
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BA

C

O

Fig. 9.6. Same as Fig. 9.5 but for iterations using Θε(ξk) in (9.39) with ε = 0.2

so that maxν∈Ξ minθ∈Θε(ξ) Fφθ
(ξ; ν) = 0 only implies that φ(ξ) ≥ φ∗ − ε. It is

thus recommended to take ε = εk decreasing with k and use iterations of
the form (9.38), (9.39) with Θεk(ξk) substituted for Θ(ξk) in (9.39). This can
be related to bundle methods used for general non-differentiable problems;
see Lemaréchal et al. (1995); Bonnans et al. (2006, Chap. 10).

Example 9.8 (continued). We consider the same problem as in Example 9.8.
Figure 9.6 presents the evolution in P2 of iterates wk generated by the multi-
vertex steepest-ascent method (9.38), (9.39) with optimal stepsize, initialized
at w0 = (1/12 , 2/12 , 3/4)�, when Θ0.2(ξk) is substituted for Θ(ξk) in (9.39);
compare with Fig. 9.5. �

Subgradient Projection

Subgradient-projection methods form a direct extension of the method of
Sect. 9.1.2. Denote by ∇̃φ(w) a subgradient of φ(·) at w ∈ R

�; see Ap-
pendix A for definitions and properties of subdifferentials and subgradi-
ents. We consider in particular the case of maximin-optimum design where
φ(w) = φMmO(w) = minθ∈Θ φ(w; θ), with φ(·; θ) concave and differentiable
for all θ ∈ Θ and Θ finite. A subgradient ∇̃φ(w) is then directly available,
and we may take ∇̃φ(w) = ∇φθ∗(w), the gradient of φθ∗(·) = φ(·; θ∗), with
θ∗ any point in

Θ(w) = {θ ∈ Θ : φ(w; θ) = φ(w)} .
Notice that the whole subdifferential ∂φ(w) is available:

∂φ(w) =

{∫

Θ

∇̃φθ(w)μ(dθ) : μ ∈ Mw

}
, (9.40)

with Mw the set of probability measures on Θ(w).
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A direct substitution of a subgradient ∇̃φ(wk) for ∇φ(wk) in the gradient-
projection method of Sect. 9.1.2 is bound to failure since ∇̃φ(wk) does not
necessarily correspond to a direction of increase for φ(·). The steepest-ascent
direction, given by

∇̄φ(wk) = arg min
z∈∂φ(wk)

‖z‖ , (9.41)

see Dem’yanov and Malozemov (1974, Chap. 3), can be used instead. Note
that the determination of ∇̄φ(wk) corresponds to the solution of a finite
dimensional QP problem when Θ is finite. However, the method does not
necessarily converge to the optimum, for the same reasons as for the multi-
vertex steepest-ascent method presented above: the set Θ(w) is too small, and
instead of ∂φ(wk), we should consider

∂εφ(w) =

{∫

Θ

∇̃φθ(w)μ(dθ) : μ ∈ Mw,ε

}
(9.42)

in the construction of the steepest-ascent direction (9.41), with Mw,ε the set
of probability measures on

Θε(w) = {θ ∈ Θ : φ(w; θ) ≤ φ(w) + ε} , ε > 0 .

One may take ε decreasing with k; see the method of successive approxima-
tions in (Dem’yanov and Malozemov, 1974, Chap. 3). A definition of ∂φ(w)
more general than (9.40) is

∂φ(w) = {z ∈ R
� : φ(w′) ≤ φ(w) + z�(w′ − w) for all w′ ∈ R

�} ,

and we may define the ε-subdifferential ∂φε(w) accordingly by

∂εφ(w) = {z ∈ R
� : φ(w′) ≤ φ(w) + z�(w′ − w) + ε for all w′ ∈ R

�} .

Example 9.8 (continued). We consider the same problem as in Example 9.8.
Figure 9.7 presents the evolution in P2 of iterates wk generated by the
projected-subgradient algorithm when using the steepest-ascent direction
(9.41), with optimal stepsize, initialized at w0 = (1/12 , 2/12 , 3/4)�. The se-
quence converges (slowly) to w∞ = (1/3 , 1/3 , 1/3)� which is not optimal;
the behavior is similar to that in Fig. 9.5.

Figure 9.8 corresponds to the situation where (9.42) is substituted for
∂φ(wk) in (9.41). The algorithm now converges to the optimum in four
iterations. �

One may refer, e.g., to Lemaréchal et al. (1995) and Bonnans et al. (2006,
Chap. 10) for an exposition on more sophisticated methods, called bundle
methods, which do not require the knowledge of the whole ε-subdifferential
∂εφ(w). Methods that only require the knowledge of one arbitrary subgra-
dient ∇̃φ(w) instead of the whole subdifferential are called black-box meth-
ods. The (projected) subgradient algorithm presented below is probably the
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Fig. 9.7. Same as Fig. 9.5 but for the projected-subgradient algorithm using the
steepest-ascent direction (9.41)

BA

C

O

Fig. 9.8. Same as Fig. 9.5 but for the projected-subgradient algorithm using the
steepest-ascent direction (9.41) with the ε-subdifferential (9.42) (ε = 0.2)

simplest among them; two other black-box methods (ellipsoid and cutting
planes) will be presented in Sect. 9.5; see especially Sect. 9.5.3 for a particular
bundle method called the level method.

Instead of trying to construct an ascent direction from the subdifferentials
∂φ(w) or ∂εφ(w) and then optimize the stepsize in that direction, we may
abandon the objective of ensuring a monotonic increase of φ(·) and directly
use subgradient directions ∇̃φ(w) with a predefined stepsize sequence {αk}.
We may then simply substitute a subgradient ∇̃φ(wk) for ∇φ(wk) in (9.17)
and choose a sequence {αk} that satisfies
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αk ≥ 0 , αk → 0 ,

∞∑

k=0

αk = ∞ . (9.43)

Other choices can be made for the stepsize αk; see, for instance, Goffin and
Kiwiel (1999) for a target-level approach. Since wk+1 is the orthogonal projec-
tion of wk

+ = wk +αk∇̃φ(wk) onto P�−1, we have ‖wk+1 −w‖ ≤ ‖wk
+ −w‖

for any w ∈ P�−1.
Suppose that φ(·) is a positive criterion satisfying sup{‖∇̃φ(w)‖ : w ∈

P�−1 and φ(w) ≥ Δ} = C(Δ) < ∞. Then, assuming that lim infk→∞ φ(wk) >
ε for some ε > 0, standard arguments, reproduced below, show that the algo-
rithm satisfies lim supk→∞ φ(wk) = φ∗ = maxw∈P
−1

φ(w) when αk satisfies
(9.43); see Correa and Lemaréchal (1993). Indeed, the subgradient inequality

φ(w′) ≤ φ(w) + ∇̃�φ(w)(w′ − w) for all w′ , (9.44)

see (A.1), and the inequality

‖wk+1 − w‖2 ≤ ‖wk
+ − w‖2

= ‖wk − w‖2 + 2αk∇̃�φ(wk)(wk − w) + α2
k‖∇̃φ(wk)‖2

imply that

‖wk+1 − w‖2 ≤ ‖wk − w‖2 + 2αk[φ(w
k) − φ(w)] + α2

k‖∇̃φ(wk)‖2 (9.45)

for any w ∈ P�−1. Suppose that there exist Δ > 0 and k0 such that φ(wk) <
φ∗ −Δ for all k ≥ k0. We may assume that k0 is large enough to ensure that
‖∇̃φ(wk)‖ < C(ε) and αk < Δ/C2(ε) for any k ≥ k0, which implies that

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2αkΔ+ αkΔ for all k ≥ k0 ,

where w∗ ∈ P�−1 is such that φ(w∗) = φ∗. We obtain by summation

0 ≤ ‖wk − w∗‖2 ≤ ‖wk0 − w∗‖2 −Δ

k−1∑

j=k0

αj , k > k0 ,

which contradicts (9.43). Therefore, for any Δ > 0 and any k0, there exists
some k > k0 such that φ(wk) ≥ φ∗ −Δ, that is, lim supk→∞ φ(wk) = φ∗.

If we suppose, moreover, that {αk} is square summable, i.e.,
∑∞
k=0 α

2
k <

∞, we obtain that wk tends to a maximum point of φ(·) as k → ∞; see Cor-
rea and Lemaréchal (1993). The proof goes as follows. Since wk ∈ P�−1

for all k, {wk} has a cluster point in P�−1. The continuity of φ(·) and
lim supk→∞ φ(wk) = φ∗ imply that such a cluster point maximizes φ(·); de-
note it by w∗. Applying (9.45) to w∗ we obtain, for k large enough,

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 + α2
k C

2(ε) .
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Take any Δ > 0 and choose k0 large enough so that ‖wk0 −w∗‖2 < Δ/2 and
C2(ε)

∑∞
k0
α2
k < Δ/2. Then, by summation,

‖wk+1 − w∗‖2 ≤ ‖wk0 − w∗‖2 + C2(ε)

k∑

j=k0

α2
j < Δ

for all k ≥ k0.
To summarize, we have thus obtained a dichotomous property similar

to that in Sect. 9.1.1: either there exists a subsequence {wkn} such that
φ(wkn) → 0, or lim supk→∞ φ(wk) = φ∗ when {αk} satisfies (9.43) and, more-
over, wk tends to some maximizer w∗ of φ(·) when {αk} is square summable
in addition to (9.43).

Remark 9.9.

(i) The diverging case is eliminated when we can guarantee that ‖∇̃φ(w)‖ <
C for all w ∈ P�−1. Suppose that φ(ξ) = minθ∈Θ Φ[M(ξ, θ)] with Φ(·)
one of the criteria of Sect. 5.1. This condition can be obtained by a
regularization of the criterion (see Remark 9.3-(ii) and (iii)) or by a
truncation of P�−1 that avoids singular designs. Indeed, we can force all
designs to be supported on p points at least by projecting wk

+ onto the
set obtained by truncating all (p− 1)-dimensional faces from the simplex
P�−1, i.e., by projecting wk

+ onto

P ′
�−1 = {w ∈ R

� : wi ≥ 0 ,

�∑

i=1

wi = 1 and

wi1 + · · ·+ wim ≤ 1 −Δ for all i1 < i2 < · · · < im and m < p}

for some small Δ > 0. For some particular criteria φ(·), the diverging
case can also be eliminated following arguments similar to those in (Wu
and Wynn, 1978).

(ii) One can check that in order to obtain lim supk→∞ φ(wk) = φ∗, it is
enough to have

∑∞
k=0 αk = ∞ and αk ‖∇̃φ(wk)‖2 → 0; see (9.45). When

normalized stepsizes αk = γk/‖∇̃φ(wk)‖ are used, it is thus enough to
have γk ‖∇̃φ(wk)‖ → 0 and

∑∞
k=0 γk/‖∇̃φ(wk)‖ = ∞. To obtain ad-

ditionally that wk tend to a maximizer of φ(·) it is enough to have∑∞
k=0 α

2
k ‖∇̃φ(wk)‖2 =

∑∞
k=0 γ

2
k < ∞ .

(iii) Additional constraints that define a convex set P ′ ⊂ P�−1 (see
Sects. 5.1.9 and 5.1.10) can be taken into account by considering the
projection of wk

+ = wk + αk∇̃φ(wk) onto P ′ (see Remark 9.4). �

Example 9.8 (continued). We consider the same problem as in Example 9.8.
Figure 9.9 presents the evolution in P2 of iterates wk generated by the
projected-subgradient algorithm with a predefined stepsize sequence satisfy-
ing (9.43). Notice the oscillations of the path followed by the iterates and the
slow convergence to the optimum, a behavior similar to that in Fig. 9.2. �
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Fig. 9.9. Same as Fig. 9.5 but for the projected-subgradient algorithm using the
stepsize sequence αk = 1/(20 + k)

9.3.2 Maximin-Optimum Exact Design

Consider the maximization of the criterion

φMmO(X) = min
θ∈Θ

φ(X ; θ) ,

with X = (x1, . . . , xN ) an exact design of given size N . The algorithms of
Sect. 9.2 can be used directly for this maximin-optimum design problem when
the admissible parameter space Θ is finite, Θ = {θ(1), . . . , θ(M)}, since the
calculation of minθ∈Θ φ(X ; θ) simply amounts to M evaluations φ(X ; θ(i)),
i = 1, . . . ,M . The situation is much more complicated when Θ is a compact
subset of Rp with nonempty interior. A relaxation algorithm is proposed for
this case in (Pronzato and Walter, 1988), based on a method by Shimizu and
Aiyoshi (1980). It amounts to solving a series a maximin problems for an
imbedded sequence of finite sets Θ1 ⊂ Θ2 ⊂ . . .

0. Choose ε > 0 and θ(1) ∈ Θ; set Θ1 = {θ(1)} and i = 1.
1. Compute X∗

i = argmaxX∈X N minθ∈Θi φ(X ; θ).
2. Compute θ(i+1) = argminθ∈Θ φ(X∗

i ; θ); if

min
θ∈Θi

φ(X∗
i ; θ) − φ(X∗

i ; θ
(i+1)) < ε ,

stop, take X∗
i as an ε-optimal design for φMmO(·); otherwise, set Θi+1 =

Θi ∪ {θ(i+1)}, i ← i+ 1 and return to step 1.

Remark 9.10. A similar idea can be used to maximize a function of weights w
allocated to given support points, φ(w) = φMmO(w) = minθ∈Θ φ(w; θ), with
φ(·; θ) concave and differentiable for all θ ∈ Θ, as in Sect. 9.3.1. Each passage
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through step 1 then requires the maximization of a non-differentiable function
of the weightsw. We may also combine the augmentation ofΘi with the search
for the optimal w, as in the method of cutting planes of Sect. 9.5.3. �

9.4 Average-Optimum Design

9.4.1 Average-Optimal Design Measures and Stochastic
Approximation

The methods presented in Sects. 9.1.1 and 9.1.2 can be used directly when

φ(ξ) = φAO(ξ) =

∫

Θ

φ(ξ; θ)μ(dθ) (9.46)

and all φ(·; θ), θ ∈ Θ, are concave and differentiable functions; see Sect. 8.1.
Indeed, φ(·) is then concave and differentiable; its directional derivative at ξ
in the direction ν is

Fφ(ξ; ν) =

∫

Θ

Fφθ
(ξ; ν)μ(dθ) ,

with Fφθ
(ξ; ν) the directional derivative of φ(·; θ). Similarly, for ξ a discrete

measure with weights w, the gradient of φ(·) at w is

∇φ(w) =

∫

Θ

∇φ(w; θ)μ(dθ) ,

with ∇φ(w; θ) the gradient of φ(·; θ). However, each evaluation of φ(·), of its
directional derivative, or gradient, requires the computation of an expected
value for the probability measure μ(·) on Θ. This does not raise any special
difficulty when the integral in (9.46) is reduced to a finite sum, i.e., when
μ(·) is a discrete measure on a finite set, but is computationally heavy in
other situations. On the other hand, stochastic approximation techniques yield
simple methods for the iterative maximization of (9.46) without the explicit
computation of expected values for μ(·).

A direct application of these techniques to the gradient-projection algo-
rithm (9.15) yields the following stochastic algorithm. Define w+

k = wk +

αk ∇φ(wk; θ̃k) with θ̃k the k-th element of an i.i.d. sequence generated with
the probability measure μ(·). We then take wk+1 = PP
−1

(wk
+) with PP
−1

(·)
the orthogonal projection onto P�−1; see Remark 9.4. The stepsize αk is usu-
ally taken as the k-th element of a positive sequence satisfying

∑∞
k=0 αk = ∞

and
∑∞
k=0 α

2
k < ∞. General conditions for the convergence of such stochas-

tic algorithms can be found, e.g., in (Kushner and Clark, 1978), (Ermoliev
and Wets, 1988) and (Kushner and Yin, 1997). Polyak (1990) and Polyak
and Juditsky (1992) have shown that by choosing a sequence {αk} with
slower convergence towards 0, such that αk/αk+1 = 1 + o(αk), for instance,



9.4 Average-Optimum Design 313

αk = 1/(k+1)γ , 0 < γ < 1, one can obtain the fastest possible convergence to
the optimum when the successive iterates are averaged, i.e., when considering
w̃k = [1/(k + 1)]

∑k
i=0 w

i; see also Kushner and Yang (1993) and Kushner
and Yin (1997, Chap. 11).

9.4.2 Average-Optimum Exact Design

When X is an exact design, the algorithms of Sect. 9.2 can be used directly if
μ(·) is a discrete measure on a finite set since the evaluation of

∫
Θ
φ(X ; θ)μ(dθ)

simply amounts to the calculation of a discrete sum. A stochastic approxima-
tion method can be used to maximize φAO(ξ) =

∫
Θ φ(X ; θ)μ(dθ) when X

is a compact subset of Rd with nonempty interior and μ(·) is any probability
measure on Θ, possibly with a density with respect to the Lebesgue mea-
sure. Starting from some X0 = {x0

1, . . . ,x
0
N} ∈ X N , the k-th iteration of the

algorithm has the form

xk+1
i = PX

[
xki + αk

∂φ(X ; θ̃k)

∂xi

∣∣∣∣
X=Xk

]
, i = 1, . . . , N ,

where θ̃k is the k-th element of a sequence of i.i.d. random variables distributed
with the probability measure μ(·) and PX (·) denotes the orthogonal projec-
tion onto X . This projection corresponds to a simple truncation of each com-
ponent of x when X is the hyper-rectangle {x ∈ R

d : a ≤ x ≤ b}, where
inequalities should be interpreted componentwise. A typical choice for the
stepsize is αk = α/(k + 1) for some α > 0. In order to avoid the difficult
choice of a suitable constant α, it is suggested in (Pronzato and Walter, 1985)
to use

xk+1
i = PX

[
xki + αkDi,k

∂φ(X ; θ̃k)

∂xi

∣∣∣∣
X=Xk

]
, i = 1, . . . , N ,

where Di,k is diagonal, Di,k = diag{uki } with uki the vector defined by

{uki }j =
{xmax}j − {xmin}j

[
1

k+1

∑k
n=0

(
∂φ(X;θ̃n)
∂{xi}j

∣∣∣∣
X=Xn

)2
]1/2

with {xmax}j = maxx∈X ({x}j), {xmin}j = minx∈X ({x}j), j = 1, . . . , d.
Note that x1

i = PX (x0
i,+) with {x0

i,+}j = {x0
i }j ± α0{xmax − xmin}j for all

i, which may serve as a guideline for choosing α0. Again, one may consider
averaging the iterates with αk = α/(k + 1)γ with 0 < α < 1; see Polyak
(1990); Polyak and Juditsky (1992); and Kushner and Yang (1993). Since this
corresponds to a stochastic version of a local search algorithm, one may only
expect convergence to a local optimum. It is therefore recommended to repeat
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several optimizations initialized at different designs X0. Average exact D-
optimum design is considered in (Pronzato and Walter, 1985); an application
of stochastic approximation to the criteria considered in Sect. 6.3 is presented
in (Pázman and Pronzato, 1992) and (Gauchi and Pázman, 2006).

9.5 Two Methods for Convex Programming

The objective of this section is to present two classical methods for convex
programming (ellipsoid and cutting planes) that can be used for the maximiza-
tion of a concave design criterion φ(·) with respect to w in the probability
simplex P�−1 given by (9.1). Among the multitude of methods available, we
single out those two because (i) they are easy to implement and (ii) they
can optimize differentiable and non-differentiable criteria without requiring
any specific adaptation. In particular, they can be applied rather straightfor-
wardly to maximin-optimum design. The first one (the ellipsoid method) has
the reputation of being fairly robust (see Ecker and Kupferschmid 1983) and
does not rely on any external solver or optimizer; however, it is rather slow
when the dimension � gets large. The second one (cutting planes) is based on
LP: similarly to the relaxation algorithm of Sect. 9.3.2, it amounts to solving a
series of maximin problems, but with the particularity that each maximization
(step 1) forms now an LP problem. The method thus requires the application
of an LP solver; we believe, however, that this is not a strong handicap since
such solvers are widely available. Its application to E-, c-, G-, and D-optimum
design is detailed. The performance of the cutting-plane method can be im-
proved by adding a QP step at each iteration. This yields a particular bundle
method, called the level method, which is briefly presented.

Throughout the section we shall denote indifferently by∇φ(w) the gradient
of φ(·) at w when φ(·) is differentiable or an arbitrary subgradient if φ(·) is
not differentiable.

9.5.1 Principles for Cutting Strategies and Interior-Point Methods

Suppose that k+1 gradients of φ(·), or k+1 arbitrary subgradients if φ(·) is not
differentiable, have been evaluated at w0,w1, . . . ,wk, all in P�−1. The sub-
gradient inequality (9.44) gives

φ(w′) ≤ φ(w) + ∇�φ(w)(w′ − w) for any w, w′ ∈ P�−1 , (9.47)

which implies that the solution w∗ that maximizes φ(·) satisfies, for j =
0, . . . , k,

0 ≤ φk − φ(wj) ≤ φ(w∗) − φ(wj) ≤ ∇�φ(wj)(w∗ − wj) , (9.48)

where
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φk = max
i=0,...,k

φ(wi) .

Hence,

φk ≤ φ(w∗) ≤ min
j=0,...,k

{
φ(wj) + ∇�φ(wj)(w∗ − wj)

}
.

The k-th iteration of the cutting-plane method (Kelley, 1960), presented into
more details in Sect. 9.5.3, chooses wk+1 that maximizes a piecewise linear
(upper) approximation of φ(·) based on previous evaluations; that is,

wk+1 = arg max
w∈P
−1

min
j=0,...,k

{
φ(wj) + ∇�φ(wj)(w − wj)

}
, (9.49)

which corresponds to the solution of a linear program.
Instead of solving this linear program accurately at each iteration, we may

alternatively choose wk+1 as an interior point of the polytope Pk ∈ P�−1

defined by

Pk = {w ∈ P�−1 : ∇�φ(wj)(w − wj) ≥ φk − φ(wj) , j = 0, . . . , k} ,

see (9.48). Taking wk+1 at the center of gravity of Pk gives the fastest method
(in the worst case) in terms of number of iterations, among all methods us-
ing only subgradient information; see Levin (1965). However, computing the
center of gravity of a polytope in R

� is not an easy task, and alternative cen-
ters must be considered. Taking wk+1 as the center of the maximum-volume
ellipsoid inscribed in Pk forms a very efficient method in terms of number of
iterations required for a given accuracy on the location of w∗. However, each
iteration requires the computation of a maximum-volume inscribed ellipsoid
for Pk (see Tarasov et al. 1988; Khachiyan and Todd 1993), which is computa-
tionally expensive, especially when the dimension � is large. We may also take
wk+1 as the analytic center wk

c of Pk; see Nesterov (1995). Rewriting the con-
straints that define Pk as a�i w ≤ bi, i = 1, . . . ,mk, w

k
c is defined as the point

in R
� that minimizes the logarithmic-barrier function −

∑mk

i=1 log(bi − a�i w).
When an initial point in Pk is known, wk

c can be obtained via a standard New-
ton method; techniques exist that allow us to use unfeasible starting points;
see, e.g., Boyd and Vandenberghe (2004, Chap. 10). These ideas are key in-
gredients for sophisticated interior-point methods for convex programming,
and one may refer to den Hertog (1994), Nesterov and Nemirovskii (1994),
Ye (1997), Wright (1998), and Nesterov (2004) for general expositions on the
subject.

The so-called ellipsoid method, presented below, constructs a sequence of
outer ellipsoids for Pk, with decreasing volumes, that shrink to w∗.

9.5.2 The Ellipsoid Method

The method is known to be quite slow in high dimension (see Example 9.13
for an illustration), but it deserves particular attention due to the facility of
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its implementation, its very general applicability, and the simplicity of the
geometric ideas on which it relies. Therefore, it may sometimes form a useful
tool for solving design problems, differentiable or not, in small dimension (i.e.,
if the cardinality � of X� is small enough) when no other specialized algorithm
is available.

The method exploits the subgradient inequality (9.47) which implies that
the optimum w∗ satisfies

∇�φ(wk)(w∗ − wk) ≥ φ(w∗) − φ(wk) ≥ 0 (9.50)

for any choice of wk in P�−1—and any subgradient ∇φ(wk) if φ(·) is
not differentiable. If wk is the center of some ellipsoid Ek that contains
w∗, then we know that w∗ should belong to the half-ellipsoid {w ∈ Ek :
∇�φ(wk)(w−wk) ≥ 0}. It happens that the minimum-volume ellipsoid con-
taining a half-ellipsoid is easy to determine, and we can then take wk+1 as the
center of this new ellipsoid Ek+1. Ek+1 has smaller volume than Ek and nec-
essarily contains w∗, so that a sequence of such ellipsoids will shrink around
w∗ (provided that E0 contains w∗). We shall see that the sequence of volumes
vol(Ek) decreases at the rate of a geometric progression. One may refer to
Grötschel et al. (1980) and Bland et al. (1981) for a general exposition on
the ellipsoid method for combinatorial and LP problems. The method, ini-
tially proposed by Shor (1977), has been used by Khachiyan (1979) to prove
the polynomial complexity of LP. It can be interpreted as a modification of
the subgradient algorithm, with a space dilation in the subgradient direction;
see Bland et al. (1981). It is often considered as of theoretical interest only,
since its convergence is rather slow when the dimension is large and, more-
over, because handling ellipsoids in large dimensions is rather cumbersome.
However, Ecker and Kupferschmid (1983, 1985) show that the method is com-
petitive for nonlinear programming when the dimension is moderate—up to
36 in (Ecker and Kupferschmid, 1985). Its simplicity and quite general appli-
cability make it attractive for design problems when the cardinality � of the
discretized set X� is small enough.

In the lines above we have ignored the presence of the constraints w ∈
P�−1 defined by (9.1). Suppose for the moment that only inequality con-
straints are present, in the form Aw ≤ b, with A ∈ R

m×� and b ∈ R
m,

where the inequality should be interpreted componentwise. Suppose that
at iteration k, wk constructed as above violates (at least one of) these
constraints. Let j denote the index of a violated constraint, for instance,
the most violated. Instead of cutting the ellipsoid Ek by the hyperplane
Ho
k = {w : ∇�φ(wk)(w − wk) = 0} defined by the objective function to

be maximized, we cut it by the hyperplane Hc
k,j = {w : a�j (w − wk) = 0}

defined by a violated constraint, with a�j the j-th row of A. Note that this
cut goes through the center of Ek; for that reason it is called a central cut.
Using a deeper cut is possible and produces a larger volume reduction for the
next ellipsoid: the cut is then defined by the hyperplane {w : a�j w = bj}.
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The construction of the minimum-volume ellipsoid containing such a portion
of an ellipsoid is also easy to construct; see below. Such cuts by constraints,
followed by the construction of new ellipsoids with decreasing volumes, are re-
peated until a center wk′ is obtained that satisfies all constraints Awk′ ≤ b.
A central cut by Ho

k′ = {w : ∇�φ(wk′ )(w − wk′ ) = 0} is then operated, and
the process is repeated.

The constraints w ∈ P�−1 contain the equality constraint w�1 = 1,
with 1 the �-dimensional vector of ones. Shah et al. (2000) use a projection
method to take equality constraints into account within an ellipsoid algorithm.
Due to the simplicity of the constraint w�1 = 1, it is easier here to eliminate
a variable, say the last one w�, and write admissible points in R

�−1 as

w = (w1, . . . , w�−1)
� ∈ W�−1 =

{
w ∈ R

�−1 : wi ≥ 0 ,

�−1∑

i=1

wi ≤ 1

}
.

Note that w� = 1 −
∑�−1
i=1 wi. Simulations indicate that the choice of the

variable eliminated has marginal influence on the behavior of the algorithm.
With a slight abuse of notation, we shall write φ(w) for the value of φ(·) at
the associated w. Denoting by ∇φ�−1(·) a gradient (or subgradient) in these
new coordinates w, we have

∇φ�−1(w) = [I�−1 − 1�−1] ∇φ(w) ,

with I�−1 and 1�−1, respectively, the (�− 1)-dimensional identity matrix and
vector of ones; that is,

{∇φ�−1(w)}i = {∇φ(w)}i − {∇φ(w)}� , i = 1, . . . , �− 1 .

The inequality constraints w ∈ W�−1 are in the form Aw ≤ b, where

A =

[
−I�−1

1�
�−1

]
and b =

[
0�−1

1

]

with 0�−1 the (� − 1)-dimensional null vector.
The algorithm goes as follows. We denote by E(c,E) the ellipsoid in R

�−1

defined by

E(c,E) = {w ∈ R
�−1 : (w − c)�E−1(w − c) ≤ 1} ,

with c ∈ R
�−1 and E a (� − 1)× (�− 1) symmetric positive-definite matrix.

0. Start from w0 and E0 such that W�−1 ⊂ E0 = E(w0,E0); choose ε > 0; set
k = 0.

1. If Awk ≤ b, go to step 3, otherwise go to step 2.
2. Construct Ek+1 = E(wk+1,Ek+1), the minimum-volume ellipsoid contain-

ing the intersection between Ek and the half-space Hk,j∗ = {w ∈ R
�−1 :

a�j∗(w − wk) ≤ 0}, where a�j∗w
k − bj∗ = maxj a

�
j w

k − bj (j∗ corresponds
to the most violated constraint); k ← k + 1, return to step 1.
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3. If maxw∈Ek
∇�φ�−1(w

k)(w − wk) < ε stop; otherwise go to step 4.
4. Construct Ek+1 = E(wk+1,Ek+1), the minimum-volume ellipsoid contain-

ing Ek ∩ {w ∈ R
�−1 : ∇�φ�−1(w

k)(w − wk) ≥ 0}; k ← k + 1, return to
step 1.

A reasonable choice for E0 is the minimum-volume ellipsoid containing the
simplex W�−1. Easy calculations show that it corresponds to

w0 = 1�−1/� ,
E0 = �−1

�

[
I�−1 − 1�−11

�
�−1/�

]
.

(9.51)

Notice that maxw∈Ek
a�(w − wk) =

√
a�Eka for any a ∈ R

�−1 and that
maxw∈Ek

∇�φ�−1(w
k)(w−wk) < ε at step 3 implies that φ(wk) > φ(w∗)−ε;

see (9.50). The explicit construction of wk+1 and Ek+1 at steps 2 and 4 is as
follows (see Grötschel et al. 1980 and Bland et al. 1981):

wk+1 = wk − ρ Eka√
a�Eka

,

Ek+1 = s
[
Ek − τ Ekaa

�Ek

a�Eka

]
,

(9.52)

where a = aj∗ at step 2 and a = −∇φ�−1(w
k) at step 4 and where

ρ =
1

δ + 1
, s =

δ2

δ2 − 1
, τ =

2

δ + 1
, (9.53)

with δ = � − 1 denoting the space dimension. Note that we may update
the Cholesky factorization of Ek instead of updating Ek itself, which ren-
ders the computations simpler and numerically more robust. The ratio of the
volume of Ek+1 to the volume of Ek is

r(δ) =
vol(Ek+1)

vol(Ek)
= sδ/2

√
1 − τ =

δ

δ + 1

(
δ2

δ2 − 1

)(δ−1)/2

< 1 . (9.54)

The volumes of the ellipsoids constructed thus decrease as a geometric series
with (constant) ratio r(δ). Figure 9.10 shows r(δ) as a function of δ; it is clear
that the algorithm becomes very slow if � = δ + 1 is very large.

As already noticed, a deeper cut can be used at step 2 by constructing
Ek+1 = E(wk+1,Ek+1) as the minimum-volume ellipsoid containing Ek∩H′

k,j∗ ,

with H′
k,j∗ = {w ∈ R

�−1 : a�j∗w ≤ bj∗}. In that case, denoting

α =
a�j∗w

k − bj∗√
a�j∗Ekaj∗

,

which is strictly positive since the index j∗ corresponds to a violated con-
straint, we compute ρ, s, and τ as
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Fig. 9.10. Ratio of the volume of Ek+1 to the volume of Ek in the ellipsoid algorithm
with central cuts in dimension δ

ρ =
1 + αδ

δ + 1
, s =

δ2(1 − α2)

δ2 − 1
, τ =

2(1 + αδ)

(α+ 1)(δ + 1)
. (9.55)

Note that α ≤ 1; the value α = 1 corresponds to the situation where the
hyperplane {w ∈ R

�−1 : a�j∗w = bj∗} is tangent to the ellipsoid Ek: the next

ellipsoid Ek+1 is then reduced to the single point wk − Ekaj∗/
√
a�j∗Ekaj∗ .

The ratio of the volume of Ek+1 to the volume of Ek is still given by r(δ, α) =
sδ/2

√
1 − τ and is now smaller than the value given in (9.54). Figure 9.11

shows r(δ, α) as a function of δ for values of α ranging from 0 (top curve,
identical to that in Fig. 9.10) to 0.9, by steps of 0.1.

One might think that the acceleration due to deep cuts compared to central
cuts is important, especially in high dimension. However, it should be noted
that constraint cuts with a large α can occur at early iterations only—and even
not so if the initial ellipsoid E0 is well chosen. Indeed, consider the iteration
following a central cut of Ek at step 4 with direction orthogonal to a. Direct
calculations show that when a�j w

k+1 > bj , the depth of a cut by the constraint

a�j w ≤ bj satisfies

α =

√
a�Eka (a�j w

k − bj) − ρ a�j Eka
√
s
[
(a�j Ekaj)(a�Eka) − τ (a�j Eka)2

]1/2 ,

with ρ, s, and τ given by (9.53). Now, a�j w
k − bj is negative since step 4 was

used the iteration before, so that, from Cauchy–Schwarz inequality,

α ≤ α∗ =
ρ√

s(1 − τ)
=

1

δ
,



320 9 Algorithms: A Survey

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

r(
δ,

α)

Fig. 9.11. Ratio of the volume of Ek+1 to the volume of Ek in the ellipsoid algorithm
with deep cuts in dimension δ: r(δ, α) as a function of δ for α = 0 (top), 0.1, . . . , 0.9
(bottom)

see Fig. 9.13 (left) for an illustration. Figure 9.12 shows r(δ, α) as a function
of δ for α = 0 and α = α∗. As it can be seen, the improvement due to deep
cuts cannot be important.

Another possible improvement consists in using cuts deeper than through
the center of the ellipsoid also at step 4 of the algorithm. Indeed, from (9.48)
the optimal weights w∗ satisfy

∇�φ�−1(w
k)(w∗ − wk) ≥ γk = max

wi∈P
−1, i=0,...,k
φ(wi) − φ(wk)

when wk ∈ P�−1, and we can thus use a deep cut with

α =
γk√

∇�φ�−1(wk)Ek∇φ�−1(wk)
,

which is strictly positive at some iterations, rather than a central cut with
α = 0; ρ, s, and τ to be used in (9.52) are then given by (9.55). Although
the algorithm usually goes less often through step 4 than step 2 (see, e.g., the
figures in Table 9.1), cuts are often deeper in step 4 than in step 2, and the
effects on the acceleration of the algorithm are then comparable. Figure 9.13
shows a typical picture of the evolution of the depth αk of the cut along k, for
step 2 on the left and step 4 on the right (notice the different vertical scales).

Remark 9.11. The algorithm can easily manage linear cost constraints like
(5.26); they simply need to be added to those defining W�−1. Also, if linear
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Fig. 9.12. Ratio of the volume of Ek+1 to the volume of Ek in the ellipsoid algorithm
with deep cuts in dimension δ: r(δ, α) as a function of δ for α = 0 (solid line) and
α = 1/δ (dashed line)
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2, � = 41)
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equality constraints are present, we can eliminate more variables to define a
vector w with dimension less than � − 1 or use the projection approach of
Shah et al. (2000).

The situation is only slightly more complicated when the constraints are
nonlinear but define a convex set, as in Sect. 5.1.9. Suppose that to the linear
constraints Aw ≤ b, we add a new constraint φ1(w) ≥ Δ, with φ1(·) a
concave design criterion. Denote by ∇φ1,�−1(w) a gradient (or subgradient)
of φ1(·) at w ∈ W�−1. Step 1 of the ellipsoid algorithm is then changed into:

1’) If Awk ≤ b and φ1(w
k) ≥ Δ, go to step 3, otherwise go to step 2.

Step 2 is not modified if a�j∗w
k − bj∗ ≥ Δ − φ1(w

k). If, on the other hand,

Δ − φ1(w
k) > a�j∗w

k − bj∗ , the constraint φ1(w) ≥ Δ is the most violated,
and we construct the minimum-volume ellipsoid containing the intersection
between Ek and the half-space

Hφ1,k = {w ∈ R
�−1 : ∇�φ1,�−1(w

k)(w − wk) ≥ 0} ,

which corresponds to a central cut, or the half-space

H′
φ1,k = {w ∈ R

�−1 : ∇�φ1,�−1(w
k)(w − wk) ≥ Δ− φ1(w

k)} ,

which corresponds to a deep cut with

α =
Δ− φ1(w

k)√
∇�φ1,�−1(wk)Ek∇φ1,�−1(wk)

. �

Example 9.12.

A. Consider the same non-differentiable problem as in Example 9.8.
Figure 9.14 presents the evolution in the simplex P2 of the sequence
of points wk corresponding to the centers wk obtained at step 4 of the el-
lipsoid algorithm above (with central cuts), initialized according to (9.51).
The first three ellipsoids constructed are plotted. The first constraint cut
arrives at iteration 4. When ε is set to 10−3, the algorithm stops after
passing 46 times through step 4 (central cut by the objective) and 21
times through step 2 (central cut by a violated constraint). These figures
become, respectively, 50 and 24 when ε is set to 10−6. When deep cuts
are used at step 2, the algorithm stops a little earlier and goes 45 times
through step 4 and 14 times through step 2 for ε = 10−3 and 50 times
through step 4 and 16 times through step 2 for ε = 10−6, indicating that
the effect of using deep rather than central cuts at step 2 is limited.

B. We apply now the ellipsoid algorithm to the optimization of a differentiable
criterion and consider the same problem as in Example 9.1. Figure 9.15
shows the sequence of centers and the first three ellipsoid generated by
the algorithm with central cuts. Again, there is no big difference in per-
formance between using deep and central cuts at step 2.
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Fig. 9.14. Ellipsoids E0, E1, E2, and sequence of centers wk obtained at step 4 of
the ellipsoid algorithm with central cuts in Example 9.12-A

BA

C

Fig. 9.15. Same as Fig. 9.14 but for Example 9.12-B

�
The simplicity of the ellipsoid algorithm can make it attractive when � is

small enough, but it must be stressed that it becomes desperately slow when
� is large, as shown in the next example.

Example 9.13 (Behavior in High Dimension).

A. We use the c-optimal design problem of Example 5.34 to illustrate
the slow convergence of the ellipsoid algorithm in “high” dimension
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(δ=dim(w)=100). We take c = (0.5, 0.25)�; the c-optimal design in
X = [0, 1] is then singular and puts mass one at x∗ = 0.5, and the
c-optimality criterion is non-differentiable at the optimum.

We discretize X into a regular grid X� of 101 points x(1) = 0, x(2) =
0.01, . . . , x(100) = 0.99, x(101) = 1. Let wi denote the weight given at x(i).
A subgradient at w is then given by {∇φc(w)}i = [f�(x(i))M−(w)c]2 for
i = 1, . . . , � (see Sect. 5.2.1) with f(x) = ∂η(x, θ)/∂θ and M−(w) any
g-inverse of the information matrix for the weights w. When initialized
according to (9.51), the ellipsoid algorithm with central cuts stops after
going 2,288 times through step 4 and 112,270 times through step 2 for
ε = 10−3. The mass at x∗ = 0.5 is then approximately 0.980. Using deep
cuts at step 2 does not help very much, since the algorithm still goes 2,213
times through step 4 and 102,598 times through step 2 before stopping,
with a mass at x∗ of about 0.981. It is clear that much more efficient
techniques could be used to solve this problem: for instance, an LP solver
(see Remark 5.32-(ii)) or the cutting-plane method, see Example 9.15 in
Sect. 9.5.3.

B. We consider D-optimum design for two quadratic models; the optimal
solutions are indicated in Remark 5.24.

The first model is η(x, θ) = θ1+θ2x+θ3x
2, with x ∈ X = [−1, 1] which

is discretized in a uniform grid of � points. Table 9.1 indicates the number
of times ellipsoid algorithms with central and deep cuts and ε = 10−3,
initialized by (9.51), go through steps 2 and 4 for different choices of �.
The second model is given by the sum of two polynomial models as above,
η([x, y], θ) = θ0+α1x+α2x

2+β1y+β2y
2, with θ = (θ0, α1, α2, β1, β2)

� and
x ∈ [−1, 1], y ∈ [−1, 1]. We discretize the square [−1, 1]2 into a uniform
grid with � points and use ellipsoid algorithms with central and deep cuts,
initialized by (9.51). Table 9.1 indicates number of passages through steps
2 and 4 for � = 52 and � = 92 when ε = 10−3. �

Table 9.1. Behavior of ellipsoid algorithms with central and deep cuts for
D-optimum design in Example 9.13-B: number of passages through steps 2 and 4 and
total number of ellipsoids constructed for different discretizations of X (ε = 10−3

and E0 is given by (9.51))

Central cuts Deep cuts Deep cuts
at step 2 at steps 2 and 4

Model � Step 2 Step 4 Total Step 2 Step 4 Total Step 2 Step 4 Total

η(x, θ) 21 4 600 636 5 236 4 132 603 4 735 3 822 455 4 277
41 19 998 1 308 21 306 18 299 1 247 19 546 17 287 922 18 209

101 130 428 3 302 133 730 121 179 3 167 124 346 115 254 2 070 117 324

η([x, y], θ) 25 5 624 2 148 7 772 5 304 2 088 7 392 4 821 1 588 6 509

81 95 340 8 100 103 440 90 616 7 768 98 384 86 587 5 931 92 518
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It is instructive to compare numerically the performance of the ellipsoid
method with that of an algorithm of Sect. 9.1.1 on the same example.

We shall use the vertex-exchange algorithm defined by (9.11), (9.12) with
the modification (9.13). This algorithm requires an initial measure ξ0. The
convergence to the optimum is ensured for all ξ0 such that the initial informa-
tion matrix is nonsingular. However, most design algorithms tend to converge
slowly close to the optimum because they have difficulties in removing poor
support points or in merging clusters around good ones; see Remark 9.6.4

Choosing a ξ0 with a small number of support points may thus help a vertex-
exchange algorithm since it has the ability to exchange them for better points
and may avoid introducing poor points along the iterations. In order to present
results that do not depend on the particular ξ0 selected, we choose a rather
unfavorable configuration and take ξ0 as the uniform measure on the � points
of the design space. If clusters of neighboring points are present after conver-
gence of the algorithm, i.e., when the directional derivative Fφ(ξk, x) is less
than some prescribed ε for all x, they are simply aggregated. Another possible
option, more sophisticated, would be to make a few iterations with gradient
projection (see Sect. 9.1.2) or with the cutting-plane method (see Sect. 9.5.3)
while restricting the design space to the support of the design returned by the
vertex-exchange algorithm.

Example 9.14. We continue Example 9.13-B, but with an algorithm based on
(9.11)–(9.13); the design space X is discretized in a grid X� with � points; the
initial measure ξ0 is uniform on X�; the stopping rule is maxx∈X


Fφ(ξk, x) <
10−4.

For the model η(x, θ) = θ1 + θ2x + θ3x
2 with X = [−1, 1] discretized

in a uniform grid X� of 2,001 points, the algorithm stops after 27 iterations
only, requiring 488 evaluations of log detM(·)—most of them are used for the
line search in (9.12), (9.13), performed with a golden-section type algorithm.
The design obtained is supported on −1 and 1 (with weights approximately
1/3+1.3 ·10−7 and 1/3+1.3 ·10−6) and on 25 points around zero (at distance
less than 1.2 ·10−2) that receive the rest of the mass. The aggregation of those
points gives a measure supported on −1, 0, and 1 with a maximum error on
the optimal weights of about 1.5 · 10−6.

For the second model η([x, y], θ) = θ0 + α2x + α3x
2 + β2y + β3y

2 with
X = [−1, 1]2 discretized into a uniform grid with � = 41 × 41 = 1, 681
points, the algorithm stops after 172 iterations, requiring 3,516 evaluations
of log detM(·); the 9 optimal support points are returned, no aggregation
is required, and the optimal weights are determined with an error less than
3.0 · 10−6. �

4The cutting-plane method of Sect. 9.5.3 forms an exception due to the use of
an LP solver providing precise solutions; however, it is restricted to moderate values
of �; see Examples 9.16 and 9.17.
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9.5.3 The Cutting-Plane Method

We first consider the case of design criteria that can be written in the form

φU (w) = min
u∈U

u�M(w)u , (9.56)

with M(w) the p×p information matrix for a vectorw of weights wi allocated
to design points x(i), i = 1, . . . , �,

M(w) =

�∑

i=1

wi Mθ(x
(i)) , (9.57)

see (5.1), and U some set of vectors in R
p. This covers in particular the cases of

E-, c-, and G-optimum design; see Sect. 5.1.2. In general, the set U is infinite,
and the maximization of φU (·) involves an infinite number of constraints. We
shall see that the application of the relaxation procedure of Sect. 9.3.2 then
yields an algorithm that exactly coincides with the method of cutting planes
introduced in Sect. 9.5.1. The algorithm will be detailed for E-, c-, and G-
optimum design before we consider the maximization of a concave criterion
φ(·) in more general terms, with D-optimality as a particular case. A simple
modification of the algorithm gives a particular bundle method (the level
method) which is briefly presented.

E-, c-, and G-Optimum Design

Since the term u�M(w)u in (9.56) is linear in w, maximizing φU (w) with
respect to w ∈ P�−1 amounts to solving the following LP problem, with an
infinite number of constraints if U is not finite:

maximize a�z , where a = (0, . . . , 0, 1)� ∈ R
�+1 ,

with respect to z = (w�, t)� ∈ R
�+1

subject to w ∈ P�−1

and u�M(w)u ≥ t for all u ∈ U .

Using a relaxation procedure similar to that of Shimizu and Aiyoshi (1980)
(see Sect. 9.3.2), one may thus consider the solution of a series of relaxed LP
problems, using at step k the finite set of constraints

w ∈ P�−1 and u�M(w)u ≥ t for all u ∈ Uk ,

where Uk = {u(1), . . . ,u(k)} ⊂ U . Once a solution wk of this problem is
obtained, using a standard LP solver, the set Uk is enlarged to Uk+1 = Uk ∪
{u(k+1)} with u(k+1) given by the constraint most violated by wk, i.e.,

u(k+1) = argmin
u∈U

u�M(wk)u . (9.58)

This yields the following algorithm for the maximization of φU (w).
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0. Take any w0 ∈ P�−1, choose ε > 0, and set U0 = ∅ and k = 0.
1. Compute u(k+1) given by (9.58) and set Uk+1 = Uk ∪ {u(k+1)}.
2. Use an LP solver to determine ẑ = (ŵ�, t̂)� solution of

maximize a�z , where a = (0, . . . , 0, 1)� ∈ R
�+1 ,

with respect to z = (w�, t)� ∈ R
�+1

subject to w ∈ P�−1 and u�M(w)u ≥ t for all u ∈ Uk+1 .

3. Set wk+1 = ŵ. If Δk+1 = t̂ − φU (wk+1) < ε, take wk+1 as an ε-optimal
solution and stop; otherwise k ← k + 1, return to step 1.

One may observe that φU (wj) = u(j+1)�M(wj)u(j+1) for all j = 0, 1, 2 . . .
and that the vector with components

{∇φU (wj)}i = u(j+1)�Mθ(x
(i))u(j+1) , i = 1, . . . , � ,

forms a subgradient of φU (·) at wj ; see Appendix A and Lemma 5.18. It also

satisfies u(j+1)�M(w)u(j+1) = ∇�φU (wj)w for all w ∈ P�−1. Each of the
constraints

u(j+1)�M(w)u(j+1) ≥ t

used at step 2, with j = 0, . . . , k, can thus be written as

∇�φU (wj)w = ∇�φU (wj)(w − wj) + φU (wj) ≥ t .

Therefore, wk+1 = ŵ determined at step 2 maximizes

min
j=0,...,k

{φU (wj) + ∇�φU (wj)(w − wj)}

with respect tow ∈ P�−1, and the algorithm corresponds to the cutting-plane
method (9.49). Also, the optimal value φ∗U satisfies φU (wk+1) ≤ φ∗U ≤ t̂ at
every iteration, and the value Δk+1 of step 3 gives an upper bound on the
distance to the optimum in terms of criterion value.

E-optimum Design

The E-optimality criterion

φE(w) = λmin[M(w)] = min
‖u‖=1

u�M(w)u

corresponds to (9.56) with U = {u ∈ R
p : ‖u‖ = 1}. The vector u(k+1) to

be used at step 1 of the algorithm can be taken as any eigenvector of M(wk)
associated with its minimum eigenvalue and normed to 1.
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c-optimum Design

For c a given vector of Rp, which we suppose of norm 1 without any loss of
generality, the positively homogeneous form of the c-optimality criterion is

φ+c (w) = {c�M−(w)c}−1 if c ∈ M(M(w)) and φ+c (w) = 0 otherwise ,

with M− any g-inverse of M; see Sects. 5.1.2 and 5.1.4. Using Lemma 5.6, we
can rewrite φ+c (w) as

φ+c (w) = min
u�c=1

u�M(w)u ,

which has the form (9.56) with U = {u ∈ R
p : u�c = 1}. Using Lemma 5.6

again, the vector u(k+1) of (9.58) can be taken as

u(k+1) =

{
M−(wk)c

c�M−(wk)c if c ∈ M(M(wk))

v/(v�c) for some v ∈ N (M(wk)) satisfying v�c �= 0 otherwise.

Example 9.15. Consider the same situation as in Example 9.13-A. When X =
[0, 1] is discretized into a regular grid with 101 points, the algorithm above
with ε = 10−3 and initialized with w0

i = 1/101 for all i returns the optimal
design measure (the delta measure at x∗ = 0.5) in 6 iterations, thus requiring
the solutions of 6 LP problems in R

102. �

The behavior of the algorithm is similar when we replace the g-inverse
M−(w) by [M(w) + γI]−1, with Ip the p-dimensional identity matrix and γ
a small positive number (e.g., γ = 10−6), thus simplifying the construction of
u(k+1) at step 1. Note that, using Remark 5.32-(ii), a c-optimal design can
be obtained as the solution of one LP problem. However, the algorithm above
can be generalized to any concave criterion φ(·), whereas the LP formulation
of Remark 5.32 is specific to c-optimality.

G-optimum Design

Suppose that the information matrix M(w) can be written as

M(w) =
�∑

i=1

wi fθ(x
(i))f�θ (x(i))

and consider the following form of the G-optimality criterion (see Sect. 5.1.2):

φG(w) = min
x∈X

1

f�θ (x)M−(w)fθ(x)
= min

x∈X
min

u�fθ(x)=1
u�M(w)u , (9.59)

where we used Lemma 5.6. Suppose that M(w) is nonsingular. The minimum
on the right-hand side of (9.59) is then obtained for
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x = x∗(w) = arg max
x∈X

f�θ (x)M−1(w)fθ(x)

and u = u∗(w) =
M−1(w)fθ [x∗(w)]

f�θ [x∗(w)]M−1(w)fθ[x∗(w)]

and equals {f�θ [x∗(w)]M−1(w)fθ [x∗(w)]}−1. Therefore, the criterion φG(w)
has the form (9.56), with U = {u ∈ R

p : u�fθ(x) = 1 for some x ∈ X }.
The vector u(k+1) to be used at step 1 of the algorithm is given by u∗(wk).

At first iterations, when the set Uk+1 is still not rich enough, the vector of
weights ŵ constructed at step 2 has generally less than p nonzero components
and the matrix M(ŵ) is thus singular. One may then use regularization and
substitute M(wk+1) + γI for M(wk+1) in the calculation of u∗(wk+1), with
γ a small positive number. Another possibility is to construct wk+1 at step 3
as wk+1 = (1−α)wk+αŵ when M(ŵ) is singular, or close to being singular,
with α some number in (0, 1). When M(w0) has full rank, this ensures that
M(wk) has full rank for all k. This modified construction of wk+1 can be
used at every iteration, but in that case, all weights that are initially strictly
positive remain strictly positive in all subsequent iterations; see Remark 9.6.

Example 9.16. We consider G-optimum design (equivalent to D-optimum
design) for the two models of Example 9.13-B: η(x, θ) = θ1 + θ2x + θ3x

2,
x ∈ X = [−1, 1], and η([x, y], θ) = θ0 + α1x + α2x

2 + β1y + β2y
2, (x, y) ∈

X = [−1, 1]2; X is discretized into a uniform grid X� with � points. The
algorithm is initialized at the uniform measure on X�, and we take ε = 10−6.
When λmin[M(ŵ)] < 10−6, we set wk+1 = (1 − α)wk + αŵ at step 3, with
α = 0.9. Table 9.2 gives the number kmax of steps before the algorithm above
stops. The maximum error between the weights returned by the algorithm
and the optimal weights (1/3 for the first model, 1/9 for the second) is less
than 10−16 for the first model and 10−6 for the second.

The inequality (9.29) can be used to remove from X� points that cannot
be support points of an optimal design measure, and Table 9.2 also indicates
the number �∗kmax

of remaining points after kmax iterations. The reduction of
the cardinality of X� corresponds to a reduction of the dimension of the LP
problem to be solved at each iteration and thus yields a significant acceleration
of the algorithm—even if it generally does not reduce the number of iterations
necessary to reach the required accuracy ε. However, when � gets large, the
first iterations require an important computational effort, and the method is
then not competitive compared with the algorithm defined by (9.11)–(9.13);
see Example 9.14. �

General Concave Criteria

For φ(·) a general concave function of w ∈ P�−1, differentiable or not, the
cutting-plane algorithm is based on (9.49). For all k ≥ 0, we define φk =
maxi=0,...,k φ(w

i).
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Table 9.2. Behavior of the cutting-plane method for G-optimum design in Ex-
ample 9.16 and D-optimum design in Example 9.17: number kmax of steps before
Δk+1 < 10−6 for different discretizations of X (w0

i = 1/� for all i); number �∗kmax

of remaining points in X� after kmax iterations when (9.29) is used to reduce the
design space; (9.60) is used with α = 0.9 when λmin[M(ŵ)] < 10−6

G-optimality D-optimality D-optimality

log detM det1/pM
Model � kmax �∗kmax

kmax �∗kmax
kmax �∗kmax

η(x, θ) 21 6 3 29 5 11 5
41 7 3 32 7 25 11

101 7 5 27 15 25 19
η([x, y], θ) 25 28 9 198 9 24 9

81 29 9 207 9 182 21

0. Take any w0 ∈ P�−1, choose ε > 0, and set k = 0.
1. Use an LP solver to determine ẑ = (ŵ�, t̂)� solution of

maximize a�z , where a = (0, . . . , 0, 1)� ∈ R
�+1 ,

with respect to z = (w�, t)� ∈ R
�+1

subject to w ∈ P�−1

and ∇�φ(wj)(w − wj) + φ(wj) ≥ t for j = 0, . . . , k .

2. Set wk+1 = ŵ. If Δk+1 = t̂ − φk+1 < ε, take wj∗ such that j∗ =
argmaxj=0,...,k+1 φ(w

j) as an ε-optimal solution and stop; otherwise k ←
k + 1, return to step 1.

The vector ŵ constructed at step 1 has generally less than p nonzero
components at first iterations. Regularization can then be used to avoid sin-
gular matrices M(wk) if necessary. One may also construct wk+1 at step 2
according to

wk+1 = (1 − α)wk + αŵ , α ∈ (0, 1) , (9.60)

when M(ŵ) is close to singularity; M(wk) has then full rank for all k when
M(w0) has full rank. This form of updating can be used at every iteration
of the algorithm. However, if α is maintained strictly smaller than 1, then all
nonzero initial weights remain strictly positive; see Remark 9.6. When φ(·) is
differentiable, ŵ−wk is an ascent direction (see Hearn and Lawphongpanich
1989), and one may thus determine an optimal stepsize in (9.60).

Example 9.17. We consider the maximization of φD(w) = log detM(w), with
gradient {∇φD(w)}i = trace[M−1(w)Mθ(x

(i))] when M(w) is given by
(9.57), in the same situation as in Example 9.16. We use (9.60) at step 2,
with α = 0.9, when λmin[M(ŵ)] < 10−6. Table 9.2 gives the number kmax of
steps before the algorithm above stops when initialized at the uniform mea-
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sure on X� and ε = 10−6 at step 2. The maximum error between the weights
returned by the algorithm and the D-optimal weights (1/3 for the first model,
1/9 for the second) is less than 2.0 ·10−4. The table also indicates the number
�∗kmax

of remaining points in X� after kmax iterations when (9.29) is used to
remove points that cannot be support points of a D-optimal design measure.

The cutting-plane algorithm may behave differently when an equivalent
form of the design criterion is used (see Sect. 5.1.4), and we also consider

φ+D(w) = det1/p[M(w)], with gradient ∇φ+D(w) = (1/p)φ+D(w)∇φD(w). The
performances obtained with this criterion are also indicated in Table 9.2. �

The cutting-plane algorithm can easily manage linear inequalities defined
by cost constraints like (5.26), or linear equality constraints, since they can
be directly taken into account by the LP solver. As shown in (Veinott, 1967)
(see also Avriel 2003, Chap. 14), the algorithm can also be adapted to the
presence of nonlinear constraints defining a convex set; see Sect. 5.1.9.

When φ(·) is not differentiable, ∇φ(w) can be taken as any subgradient of
φ(·) at w. The method can thus be used in particular for maximin-optimum
design where the criterion is φMmO(w) = minθ∈Θ φ(w; θ), with Θ a compact
subset of Rp, finite of with nonempty interior, and φ(·; θ) is concave for all
θ ∈ Θ; see Sect. 9.3.1. In that case, a subgradient of φMmO(·) at wj , to
be used at step 1, is given by ∇φMmO(w

j) = ∇φθ∗(wj), with θ∗ such that
φθ∗(w

j) = φ(wj ; θ∗) = minθ∈Θ φ(wj ; θ). Example 8.6 gives an illustration.

The Level Method

Although the examples presented above indicate convincing performance
when the value of � remains moderate, the method of cutting planes is known
to have sometimes rather poor convergence properties; see, e.g., Bonnans et al.
(2006, Chap. 9), Nesterov (2004, Sect. 3.3.2). In particular, the search for ŵ in
the whole simplex P�−1 at step 1 sometimes produces numerical instability.
It is then helpful to restrict this search to some neighborhood of the best solu-
tion obtained so far. This is a central idea in bundle methods; see Lemaréchal
et al. (1995), Bonnans et al. (2006, Chaps. 9–10). One may use in particular
the level method (see Nesterov 2004, Sect. 3.3.3), which we briefly describe
hereafter.

The level method adds to each iteration of the cutting-plane algorithm
presented above a QP step. The solution of the LP problem of step 1, based
on a piecewise linear approximation of φ(·) (see (9.49)) is only used to compute
an upper bound tk+1 on the optimal criterion value φ∗. The next weightswk+1

are then obtained as the orthogonal projection of wk onto the polyhedron

Pk = {w ∈ P�−1 : ∇�φ(wj)(w − wj) + φ(wj) ≥ Lk(α) for j = 0, . . . , k} ,
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where

Lk(α) = (1 − α)tk+1 + αφk ,

with φk = maxj=0,...,k φ(w
j), for some given α ∈ (0, 1). The algorithm is as

follows:

0. Take any w0 ∈ P�−1, choose ε > 0, and set k = 0.
1. Use an LP solver to determine tk+1 solution of

maximize t

subject to w ∈ P�−1

and ∇�φ(wj)(w − wj) + φ(wj) ≥ t for j = 0, . . . , k .

2. If Δk+1 = tk+1 − φk < ε, take wj∗ with j∗ = argmaxj=0,...,k φ(w
j) as an

ε-optimal solution and stop; otherwise go to step 3.
3. Find wk+1 solution of the QP problem

minimize ‖w − wk‖2

subject to w ∈ P�−1

and ∇�φ(wj)(w − wj) + φ(wj) ≥ Lk(α) for j = 0, . . . , k ,

k ← k + 1, return to step 1.

Note that the sequence {φk} of record values is increasing while {tk}
is decreasing, with the optimal value φ∗ satisfying φk ≤ φ∗ ≤ tk for all
k. The complexity analysis in (Nesterov, 2004) yields the optimal choice
α∗ = 1/(2+

√
2) � 0.2929 for α. The method can be used for differentiable or

non-differentiable criteria; when φ(·) is not differentiable, ∇φ(w) can be any
subgradient of φ(·) at w. When additional linear (equality or inequality) con-
straints are present (see Sect. 5.1.10), they can be directly taken into account
at steps 1 (LP) and 3 (QP).

Compared with the method of cutting planes, each iteration of the level
method requires the solutions of an LP and a QP problem. However, the the-
oretical performance of the method, measured through complexity bounds, is
much better, and numerical experimentations indicate that in general signifi-
cantly less iterations than with the method of cutting planes are required to
reach a solution with similar accuracy on the criterion value. Next example
gives an illustration.

Example 9.17 (continued). We consider D-optimum design for the two models

of Example 9.16 with φD(w) = log detM(w) and φ+D(w) = det1/p[M(w)]. We
take ε = 10−6 and w0 corresponds to the uniform measure on X�. Table 9.3
reports the results obtained with the level method with α = α∗: number
kmax of steps before the algorithm above stops and number �∗kmax

of remain-
ing points in X� after kmax iterations when (9.29) is used to remove points
that cannot be support points of a D-optimal design measure. The designs
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Table 9.3. Behavior of the level method with α = α∗ for D-optimum design in
Example 9.17: number kmax of steps before Δk+1 < 10−6 for different discretizations
of X (w0

i = 1/� for all i,) and number �∗kmax
of remaining points in X� after kmax

iterations when (9.29) is used to reduce the design space

log detM det1/pM
Model � kmax �∗kmax

kmax �∗kmax

η(x, θ) 21 15 5 15 5
41 16 5 16 9

101 18 15 17 15
η([x, y], θ) 25 19 9 14 9

81 22 9 16 9

generated along the iterations are nonsingular, so that we do not need to take
care of singular information matrices. The method behaves similarly for the
two criteria φD(·) and φ+D(·). Notice the smaller number of iterations required
to reach convergence compared with Table 9.2. �



Appendix A

Subdifferentials and Subgradients

Let Φ(·) be a concave criterion function defined on some set M ⊂ M, e.g.,
M = M

≥. The definition of Φ(·) can be extended to any p×p symmetric matrix
in M by setting Φ(M) = −∞ for M /∈ M. This extension is then concave on
M; its effective domain is the set dom(Φ) = {M ∈ M : Φ(M) > −∞}.
Note that M≥ ⊂ dom(Φ) when Φ(·) positively homogeneous and isotonic; see
Lemma 5.4-(iii). A concave function Φ(·) is called proper when dom(Φ) �= ∅

and Φ(M) < ∞ for all M ∈ M. As a rule all the criteria we consider are
proper.

When Φ(·) : M −→ R is non-differentiable, the notion of gradient can be
generalized as follows. A matrix M̃ is called a subgradient of Φ(·) at M if

Φ(A) ≤ Φ(M) + trace[M̃(A − M)] , ∀A ∈ M . (A.1)

Here trace(A,B) is the usual scalar product between A and B in M. The set
of all subgradients of Φ(·) at M is called the subdifferential1 of Φ(·) at M and
is denoted by ∂Φ(M). The fact that these notions generalize that of gradient
is due to the property ∂Φ(M) = {∇MΦ(M)} when Φ(·) is differentiable at M.
In other situations ∂Φ(M) is not reduced to that singleton; it defines a convex
set, closed if bounded, empty when M /∈ dom(Φ), and satisfies the following
properties. For any Φ(·) concave on M,

∂(αΦ)(M) = α∂Φ(M) , ∀M ∈ M , ∀α > 0 . (A.2)

For any Φ(·) and f(·) concave on M

∂[Φ+ f ](M) = ∂Φ(M) + ∂f(M) , ∀M ∈ M , (A.3)

1Subgradients and subdifferentials are usually defined for convex functions. We
keep the same denomination here, although supergradients and superdifferentials
might be more appropriate due to the upper-bound property (A.1); see Rockafellar
(1970, p. 308).
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if there exists some A ∈ M where f(A) is finite and Φ(·) is continuous; see
Alexéev et al. (1987, Sect. 3). Another sufficient condition is that the effective
domains of Φ(·) and f(·) overlap sufficiently, i.e., that their relative interiors2

have a point in common; see Rockafellar (1970, p. 223). Also, for any Φ1(·),
Φ2(·) concave on M, continuous at M̂ such that Φ1(M̂) = Φ2(M̂),

∂[min(Φ1, Φ2)](M̂) = conv[∂Φ1(M̂) ∪ ∂Φ2(M̂)] (A.4)

with conv(S) the convex hull of the set S; see Alexéev et al. (1987, Sect. 3).
For a continuous version of this property, consider a set of proper criteria
functions Φγ(·) from M to R (i.e., such that Φγ(M) > −∞ for some M and
Φγ(M) < ∞ for all M ∈ M) with γ ∈ Γ , a compact subset of R, such that
Φγ(·) is concave and upper semicontinuous for all γ ∈ Γ and the function
γ −→ Φγ(M) is lower semicontinuous in γ for all M. Suppose that Φγ(·)
is continuous at M̂ for all γ ∈ Γ and define Φ∗(M) = minγ∈Γ Φγ(M) and
Γ ∗(M) = {γ ∈ Γ : Φγ(M) = Φ∗(M)}. Then, Φ∗(·) is concave, and any

element M̃ of its subdifferential ∂Φ∗(M̂) at M̂ can be written as

M̃ =

r∑

i=1

αiM̃i (A.5)

with r ≤ p(p + 1)/2 + 1,
∑r

i=1 αi = 1, αi > 0, and M̃i ∈ ∂Φγi(M̂) for some

γi ∈ Γ ∗(M̂), i = 1, . . . , r; see Alexéev et al. (1987, p. 67).
Subgradients can also be defined for indicator functions. Let M be a con-

vex subset of M and define

ÎIM(M) =

{
0 if M ∈ M
−∞ otherwise.

Then, M̃ ∈ ∂ ÎIM(M) if and only if ÎIM(A) ≤ ÎIM(M) + trace[M̃(A − M)] for
all A ∈ M, see (A.1), and therefore A ∈ M implies M ∈ M and trace[M̃(A−
M)] ≥ 0, which means that −M̃ is normal to M at M; see Rockafellar (1970,
p. 215).

With the notions of subgradients and subdifferentials a large part of the
results of differential calculus remain valid for non-differentiable functions.
In particular, a necessary-and-sufficient condition for a concave criterion Φ(·)
to reach its maximum value on M at M∗ is that O ∈ ∂Φ(M∗), with O the
null matrix; see Rockafellar (1970, p. 264). From this we directly obtain the
following; see Pukelsheim (1993, p. 162).

2The relative interior of a convex set S is the interior of S regarded as a subset
of the smallest affine set containing S (i.e., the affine hull of S).
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Theorem A.1. Let Φ(·) be a concave criterion taking finite values on M
>

and let M be a convex subset of M≥ that intersects M>. Then M∗ maximizes
Φ(·) over M if and only if there exists M̃ ∈ ∂Φ(M∗) such that

trace[M̃(A − M∗)] ≤ 0 , ∀A ∈ M . (A.6)

Indeed, using (A.3) the necessary-and-sufficient condition O ∈ ∂[Φ +
ÎIM](M∗) becomes: there exists M̃ ∈ ∂Φ(M∗) such that −M̃ ∈ ∂ ÎIM(M∗),
which gives (A.6).

In the particular case where Φ(·) is differentiable with M = Mθ(Ξ), The-
orem A.1 says that M∗ is Φ-optimal on Mθ(Ξ) if and only if FΦ(M

∗,A) =
trace[∇MΦ(M∗)(A − M∗)] ≤ 0 for all A ∈ Mθ(Ξ). Writing M∗ = M(ξ∗)
and A = M(ν) for some ξ∗ and ν in Ξ, we obtain that ξ∗ is φ-optimal on Ξ
if and only if Fφ(ξ

∗; ν) ≤ 0 for all ν ∈ Ξ, see (5.34), which corresponds to the
equivalence theorem 5.21 (note that Fφ(ξ; ξ) = 0 for all ξ).

More generally, consider the case where Φ(·) is not differentiable every-
where. Then, the one-sided directional derivative Φ′(M∗,A) defined by (5.30)
is given by

Φ′(M∗,A) = inf{trace(M̃A) : M̃ ∈ ∂Φ(M∗)} , (A.7)

see Rockafellar (1970, pp. 216–217), and the subgradient theorem says that
M∗ is Φ-optimal on Mθ(Ξ) if and only if

FΦ(M
∗,A) = Φ′(M∗,A − M∗)

= inf
M̃∈∂Φ(M∗)

trace[M̃(A− M∗)] ≤ 0 , ∀A ∈ Mθ(Ξ) , (A.8)

which again corresponds to the equivalence theorem. Since the subdifferential
∂Φ(M∗) is convex, the minimax theorem applies (Dem’yanov and Malozemov
1974, Theorem 5.2, p. 218). The necessary-and-sufficient condition (A.8) for
the Φ-optimality of M∗ on Mθ(Ξ) can be expressed as the existence of M̃ ∈
∂Φ(M∗) such that trace[M̃(A − M∗)] ≤ 0 for all A ∈ Mθ(Ξ). This type of
condition has been used, for instance, in Theorem 5.38.

Finally, notice that the expressions for the directional derivatives of non-
differentiable criteria obtained in Sect. 5.2.1 by using Lemmas 5.17 and 5.18
are direct consequences of (A.7) and (A.4), (A.5).



Appendix B

Computation of Derivatives Through

Sensitivity Functions

The computation of the derivatives ∂η(x, θ)/∂θi, i = 1, . . . , p, of the model
response η(x, θ) with respect to the model parameters θ is a mandatory step
for most of the developments presented throughout the book: they are re-
quired, for instance, to evaluate the information matrix, the curvatures of the
model, etc. However, in many circumstances the analytic expression of η(x, θ)
is unknown, and its derivatives can only be obtained numerically. This ap-
pendix shows that this does not raise any particular difficulty, apart perhaps
the computational time required by numerical calculations performed on a
computer.

Consider the case, often met in practical applications, when η(x, θ) is the
solution of a differential equation (similar developments can be made for re-
currence equations).1 Then, the derivatives ∂η(x, θ)/∂θi, also called sensitiv-
ity functions, are solutions of other differential equations, which can easily be
derived from the original one; see, e.g., Rabitz et al. (1983) and Walter and
Pronzato (1997, Chap. 4). Only first-order derivatives are considered hereafter,
but the developments easily extend to higher-order derivation. One can refer
to classical textbooks on numerical analysis for methods to solve initial-value
problems; see, e.g., Stoer and Bulirsch (1993).

Consider, for instance, the following state-space representation for the
equations that give the response η(x, θ):

v̇(x, θ, t) =
dv(x, θ, t)

dt
= F[v(x, θ, t), θ], v(x, θ, 0) = v0(x, θ) , (B.1)

η(x, θ, t) = H[v(x, θ, t), θ] . (B.2)

Here t denotes the time and v(x, θ, t) the vector of state variables at time t for
experimental conditions x and model parameters θ. The dependence of the

1Other methods for exact differentiation, based on adjoint state or adjoint code
approaches, are available for more general situations where η(x, θ) is not given by a
differential or recurrence equation, see, e.g., Walter and Pronzato (1997, Chap. 4).
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right-hand side in some input signal u(t) is omitted for the sake of simplicity
of notations. Also, the (matrix) functions F and H might depend explicitly on
t, which would correspond to a nonstationary system. The notation v0(x, θ)
is to stress the fact that the initial conditions may be part of the unknown
parameters to be estimated.

We wish to determine the values of ∂η(x, θ, t)/∂θi, i = 1, . . . , p, at some
particular values of t given by the sampling times t1, t2, . . . , tN at which the
observations are performed. Note that, although we write η(x, θ, t), these sam-
pling times may be part of the design variables x. Also, x may include some
control variables that influence the input signal u(t), in which case we would
write u(t) = u(x, t).

The derivation of (B.2) with respect to θi gives

∂η(x, θ, t)

∂θi
=
∂H(v, θ)

∂v�

∣∣∣∣
v(x,θ,t)

∂v(x, θ, t)

∂θi
+
∂H(v, θ)

∂θi

∣∣∣∣
v(x,θ,t)

(B.3)

which requires the evaluation of the derivative ∂v(x, θ, t)/∂θi. It is obtained
by differentiating the evolution equations (B.1) of the system,

d

dt

∂v(x, θ, t)

∂θi
=
∂F(v, θ)

∂v�

∣∣∣∣
v(x,θ,t)

∂v(x, θ, t)

∂θi
+
∂F(v, θ)

∂θi

∣∣∣∣
v(x,θ,t)

, (B.4)

and the initial conditions

∂v(x, θ, 0)

∂θi
=
∂v0(x, θ)

∂θi
.

Therefore, the solution of the initial-value problem (B.1) gives η(x, θ, t), and
the solution of p initial-value problems similar to (B.4) gives the sensitiv-
ity functions ∂η(x, θ, t)/∂θi, i = 1, . . . , p, through (B.3); see Valko and Vajda
(1984) and Bilardello et al. (1993) for details. Notice that the differential equa-
tions (B.4) corresponding to θi and θj with i �= j are independent, i.e., the
solutions can be obtained independently once the trajectory of v(x, θ, t) has
been obtained. Also note that (B.4) is linear in ∂v(x, θ, t)/∂θi (but nonsta-
tionary since ∂F(v, θ)/∂v�∣∣

v(x,θ,t)
depends on t), and only the driving term

∂F(v, θ)/∂θi
∣∣
v(x,θ,t)

and initial conditions ∂v0(x, θ)/∂θi depend on i.

On the other hand, although approximating the derivatives ∂η(x, θ, t)/∂θi
by finite differences might seem simpler, it would require the solutions of
p + 1 initial-value problems of the type (B.1) and would thus only produce
approximate results for similar efforts. The situation is even more favorable
to exact calculations when the state-space representation (B.1) is linear, i.e.,
when the differential equation that gives η(x, θ, t) is linear, with known initial
conditions. Then, if η(x, θ, t) is solution of anm-th-order differential equation,
η(x, θ, t) and its derivatives ∂η(x, θ, t)/∂θi, i = 1, . . . , p, can be obtained by
solving an initial-value problem for a differential equation of order 2m only,
whatever the number p of parameters. Indeed, consider the following m-th-
order differential equation
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η(m)(x, θ, t) +

m−1∑

i=0

θi η
(i)(x, θ, t) =

m+q∑

i=m

θi u
(i−m)(t) , (B.5)

where η(k)(x, θ, t) and u(k)(t), k ≥ 0, respectively denote the k-th-order deriva-
tives of η(x, θ, t) and u(t) with respect to t (with η(0)(x, θ, t) = η(x, θ, t)
and u(0)(t) = u(t)) and where the initial conditions η(i)(x, θ, 0) = αi,
i = 0, . . . ,m− 1, are known. Denote by sj(x, θ, t) the sensitivity functions

sj(x, θ, t) =
∂η(x, θ, t)

∂θj
, j = 0, . . . ,m+ q .

They are solutions of differential equations of order m, obtained by differen-
tiating (B.5) with respect to the m+ q + 1 parameters θi,

s
(m)
j (x, θ, t) +

m−1∑

i=0

θi s
(i)
j (x, θ, t) = u(j−m)(t) , j = m, . . . ,m+ q , (B.6)

s
(m)
j (x, θ, t) +

m−1∑

i=0

θi s
(i)
j (x, θ, t) = −η(j)(x, θ, t) , j = 0, . . . ,m− 1 , (B.7)

with zero initial conditions since the αi are known. The computation of
η(x, θ, t) and its derivatives sj(x, θ, t) then seems to require the solution of
an initial-value problem for m+ q+ 2 differential equations of order m. How-
ever, one may notice that all these differential equations have the same ho-
mogeneous part (left-hand side) and only differ by their driving terms. The
computations can thus be simplified as follows. First solve (B.6) for j = m to
obtain sm(x, θ, t). Then, by linearity, we have sm+k(x, θ, t) = ṡm+k−1(x, θ, t)
for k = 1, . . . , q. Assume for the moment that the initial conditions αi
equal zero. Then, by linearity again, η(x, θ, t) =

∑m+q
j=m θjsj(x, θ, t). The

solution of (B.7) for j = 0 gives s0(x, θ, t), and by differentiation with
respect to t we get sk(x, θ, t) = ṡk−1(x, θ, t) for k = 1, . . . ,m − 1. The
response η(x, θ, t) and the m + q + 1 sensitivity functions are thus ob-
tained by solving two initial-value problems for a differential equation of or-
der m. When the αi are not zero, the solution η(x, θ, t) must be corrected
to take those initial conditions into account. This can be done through a
state-space representation. Define the vector of state variables at time t by
w(x, θ, t) = [η(m−1)(x, θ, t), η(m−2)(x, θ, t), . . . , η(0)(x, θ, t)]�. It satisfies the
differential equation

ẇ(x, θ, t) = A(θ)w(x, θ, t) +

m+q∑

i=m

θi u
(i−m)(t) e1

with e1 = (1, 0, . . . , 0)� the first basis vector of Rm and A = A(θ) the m×m
matrix
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A =

⎛

⎜⎜⎜⎜⎜⎝

−θm−1 −θm−2 · · · −θ1 −θ0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎠
.

The response η(x, θ, t) is then given by

η(x, θ, t) =

m+q∑

j=m

θjsj(x, θ, t) +

nλ∑

i=1

nλi∑

j=1

ci,j t
j−1 exp(λit) ,

where nλ denotes the number of distinct eigenvalues of A, the eigenvalue λi
having the multiplicity nλi . The m constants ci,j are determined from the
initial conditions η(i)(x, θ, 0) = αi, i = 0, . . . ,m− 1.
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Proofs

Lemma 2.5. Let {xi} be an asymptotically discrete design with measure ξ.
Assume that a(x, θ) is a bounded function on X ×Θ and that to every x ∈ X
we can associate a random variable ε(x). Let {εi} be a sequence of independent
random variables, with εi distributed like ε(xi), and assume that for all x ∈ X

IE{b[ε(x)]} = m(x) , |m(x)| < m̄ < ∞ ,

var{b[ε(x)]} = V (x) < V̄ < ∞ ,

with b(·) a Borel function on R. Then we have

1

N

N∑

k=1

a(xk, θ)b(εk)
θ�
∑

x∈Sξ

a(x, θ)m(x)ξ(x)

as N tends to ∞, where
θ� means uniform convergence with respect to θ ∈ Θ,

and the convergence is almost sure (a.s.), i.e., with probability one, with respect
to the random sequence {εi}.
Proof. For any θ, we can write

∣∣∣∣∣∣
1

N

N∑

k=1

a(xk, θ)b(εk) −
∑

x∈Sξ

a(x, θ)m(x)ξ(x)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

N

N∑

k=1, xk �∈Sξ

a(xk, θ)b(εk)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

N

N∑

k=1, xk∈Sξ

a(xk, θ)b(εk) −
∑

x∈Sξ

a(x, θ)m(x)ξ(x)

∣∣∣∣∣∣
. (C.1)

LetN(x)/N be the relative frequency of the point x in the sequence x1, . . . , xN .
The second term is bounded by

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4,
© Springer Science+Business Media New York 2013
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∑

x∈Sξ

sup
θ∈Θ

|a(x, θ)|

∣∣∣∣∣∣
N(x)

N

1

N(x)

N(x)∑

k=1

b(εk) −m(x)ξ(x)

∣∣∣∣∣∣
;

since
∑N(x)

k=1 b(εk)/N(x) converges a.s. to m(x) (SLLN) and N(x)/N − ξ(x)
tends to zero, this term tends a.s. to zero, uniformly in θ. Let AN denote the
first term on the right-hand side of (C.1) and N(X \ Sξ) denote the number
of points among x1, . . . , xN that belong to the set X \ Sξ. If N(X \ Sξ) is
finite, the lemma is proved. Otherwise, AN satisfies

|AN | =

∣∣∣∣∣∣
1

N

N∑

k=1, xk �∈Sξ

a(xk, θ)b(εk)

∣∣∣∣∣∣
≤

sup
x∈X , θ∈Θ

|a(x, θ)|N(X \ Sξ)
N

1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

|b(εk)| .

Now, the SLLN applied to the independent sequence of random variables
|b(εk)| gives

1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

|b(εk)| −
1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

IE{|b[ε(xk)]|} a.s.→ 0

as N → ∞. Moreover,

1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

IE{|b[ε(xk)]|} ≤ sup
x∈X

IE{|b[ε(x)]|}

≤ sup
x∈X

√
V (x) +m2(x) < ∞ .

Since N(X \ Sξ)/N → 0, AN tends to zero a.s. and uniformly in θ, which
completes the proof.

Lemma 2.6. Let {zi} be a sequence of i.i.d. random vectors of Rr and a(z, θ)
be a Borel measurable real function on R

r × Θ, continuous in θ ∈ Θ for any
z, with Θ a compact subset of Rp. Assume that

IE{max
θ∈Θ

|a(z1, θ)|} < ∞ , (C.2)

then IE{a(z1, θ)} is continuous in θ ∈ Θ and

1

N

N∑

i=1

a(zi, θ)
θ� IE[a(z1, θ)] a.s. when N → ∞ .
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Proof. We use a construction similar to that in (Bierens, 1994, p. 43). Take
some fixed θ1 ∈ Θ and consider the set

B(θ1, δ) =
{
θ ∈ Θ :

∥∥θ − θ1
∥∥ ≤ δ

}
.

Define āδ(z) and aδ(z) as the maximum and the minimum of a(z, θ) over the
set B(θ1, δ), which are properly defined random variables from Lemma 2.9.
The expectations IE{|aδ(z1)|} and IE{|āδ(z1)|} are bounded by

IE{max
θ∈Θ

|a(z1, θ)|} < ∞ .

Also, āδ(z) − aδ(z) is an increasing function of δ. Hence, we can interchange
the order of the limit and expectation in the following expression:

lim
δ↘0

[IE{āδ(z1)} − IE{aδ(z1)}] = IE

{
lim
δ↘0

[āδ(z1) − aδ(z1)]

}
= 0 ,

which proves the continuity of IE{a(z1, θ)} at θ1 and implies

∀β > 0 , ∃δ(β) > 0 such that
∣∣∣IE{āδ(β)(z1)} − IE{aδ(β)(z1)}

∣∣∣ <
β

2
.

Hence we can write for every θ ∈ B(θ1, δ(β))

1

N

∑

k

aδ(β)(zk)− IE{aδ(β)(z1)} − β

2
≤ 1

N

∑

k

aδ(β)(zk) − IE{āδ(β)(z1)}

≤ 1

N

∑

k

a(zk, θ) − IE{a(z1, θ)}

≤ 1

N

∑

k

āδ(β)(zk) − IE{aδ(β)(z1)}

≤ 1

N

∑

k

āδ(β)(zk) − IE{āδ(β)(z1)} +
β

2
.

From the SLLN, we have that ∀γ > 0, ∃N1(β, γ) such that

Prob

{
∀N > N1(β, γ) ,

∣∣∣∣∣
1

N

∑

k

āδ(β)(zk) − IE{āδ(β)(z1)}
∣∣∣∣∣ <

β

2

}
> 1 − γ

2
,

Prob

{
∀N > N1(β, γ) ,

∣∣∣∣∣
1

N

∑

k

aδ(β)(zk) − IE{aδ(β)(z1)}
∣∣∣∣∣ <

β

2

}
> 1 − γ

2
.

Combining with previous inequalities, we obtain

Prob

{
∀N > N1(β, γ), max

θ∈B(θ1,δ(β))

∣∣∣∣∣
1

N

∑

k

a(zk, θ)−IE{a(z1, θ)}
∣∣∣∣∣ < β

}
> 1−γ.
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It only remains to cover Θ with a finite numbers of sets B(θi, δ(β)), i =
1, . . . , n(β), which is always possible from the compactness assumption. For
any α > 0, β > 0, take γ = α/n(β), N(β) = maxiNi(β, γ). We obtain

Prob

{
∀N > N(β) , max

θ∈Θ

∣∣∣∣∣
1

N

∑

k

a(zk, θ) − IE{a(z1, θ)}
∣∣∣∣∣ < β

}
> 1 − α ,

which completes the proof.

Lemma 2.7. Let {zi}, θ, Θ and a(z, θ) be defined as in Lemma 2.6. Assume
that

sup
θ∈Θ

IE{|a(z1, θ)|} < ∞

and that a(z, θ) is continuous in θ ∈ Θ uniformly in z. Then the conclusions
of Lemma 2.6 apply.

Proof. We only need to prove (C.2). The continuity of a(z, θ) with respect to
θ being uniform in z, we have: ∀θ1 ∈ Θ , ∀ε > 0 , ∃δ(ε) > 0 such that

∀θ ∈ C(θ1, δ(ε)) = B(θ1, δ(ε)) ∩Θ , sup
z

|a(z, θ)− a(z, θ1)| < ε .

This implies that for all θ ∈ C(θ1, δ(ε)), |a(z, θ)| < |a(z, θ1)| + ε ∀z; that is,

ā1δ(ε)(z) = max
θ∈C(θ1,δ(ε))

|a(z, θ)| < |a(z, θ1)| + ε ∀z ,

with IE{|a(z1, θ1)|} < ∞ by assumption. Therefore, IE{|ā1δ(ε)(z1)|} < ∞. Now,

we can cover Θ by a finite number of balls B(θk, δk(ε)), k = 1, . . . , n(ε) and

max
θ∈Θ

|a(z, θ)| = max
k=1,...,n(ε)

ā1δk(ε)(z)

which implies (C.2).

Lemma 2.8. Let {xi} be an asymptotically discrete design with measure ξ.
Assume that to every x ∈ X we can associate a random variable ε(x). Let
{εi} be a sequence of independent random variables, with εi distributed like
ε(xi). Let a(x, ε, θ) be a Borel measurable function of ε for any (x, θ) ∈ X ×Θ,
continuous in θ ∈ Θ for any x and ε, with Θ a compact subset of Rp. Assume
that

∀x ∈ Sξ , IE{max
θ∈Θ

|a[x, ε(x), θ]|} < ∞ , (C.3)

∀x ∈ X \ Sξ , IE{max
θ∈Θ

|a[x, ε(x), θ]|2} < ∞ . (C.4)
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Then we have

1

N

N∑

k=1

a(xk, εk, θ)
θ�
∑

x∈Sξ

IE{a[x, ε(x), θ]} ξ(x) a.s. when N → ∞ ,

where the function on the right-hand side is continuous in θ on Θ.

Proof. We have
∣∣∣∣∣∣
1

N

N∑

k=1

a(xk, εk, θ) −
∑

x∈Sξ

IE{a[x, ε(x), θ]}ξ(x)

∣∣∣∣∣∣
≤ AN +BN

with

AN =

∣∣∣∣∣∣
1

N

N∑

k=1, xk �∈Sξ

a(xk, εk, θ)

∣∣∣∣∣∣

and

BN =

∣∣∣∣∣∣
1

N

N∑

k=1, xk∈Sξ

a(xk, εk, θ) −
∑

x∈Sξ

IE{a[x, ε(x), θ]}ξ(x)

∣∣∣∣∣∣
.

Then

BN ≤
∑

x∈Sξ

∣∣∣∣∣∣

⎡

⎣N(x)

N

1

N(x)

N∑

k=1, xk=x

a(x, εk, θ)

⎤

⎦− IE{a[x, ε(x), θ]}ξ(x)

∣∣∣∣∣∣

where, for each x ∈ Sξ, the a(x, εk, θ) are i.i.d. random variables satisfying

(C.3). Lemma 2.6 thus applies, and, since N(x)/N tends to ξ(x), BN
θ� 0 a.s.

when N → ∞. Also, from the same lemma, IE{a[x, ε(x), θ]} is a continuous
function of θ for any x.

AN ≤ ĀN =
N(X \ Sξ)

N

1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

max
θ∈Θ

|a(xk, εk, θ)| ,

where N(X \Sξ) denotes the number of points among x1, . . . , xN that belong

to the set X \Sξ. If N(X \Sξ) < ∞, AN
θ� 0 a.s. when N → ∞. Otherwise,

the independent random variables maxθ∈Θ |a(xk, εk, θ)| satisfy (C.4), and the
SLLN then implies

1

N(X \ Sξ)

N∑

k=1, xk �∈Sξ

(
max
θ∈Θ

|a(xk, εk, θ)| − IE{max
θ∈Θ

|a[xk, ε(xk), θ]|}
)

a.s.→ 0

when N → ∞, which implies ĀN
a.s.→ 0 since N(X \Sξ)/N → 0, and therefore

AN
θ� 0 a.s. when N → ∞.
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Lemma 2.9 (Jennrich 1969). Let Θ be a compact subset of Rp, Z be a
measurable subset of Rm and J(z, θ) be a Borel measurable real function on
Z × Θ, continuous in θ ∈ Θ for any z ∈ Z . Then there exists a mapping
θ̂ from Z into Θ with Borel measurable components such that J [z, θ̂(z)] =
minθ∈Θ J(z, θ), which therefore is also Borel measurable. If, moreover, J(z, θ)
is continuous on Z ×Θ, then minθ∈Θ J(z, θ) is a continuous function on Z .

Proof. J(z, θ) is a measurable function of z for any θ ∈ Θ and a continuous
function of θ for any z ∈ Z . Let {Θk} be an increasing sequence of finite
subsets of Θ whose limit is dense in Θ. For any k, there exists a measurable
function θ̃k from Z into Θk such that

∀z ∈ Z , J(z, θ̃k) = min
θ∈Θk

J(z, θ) .

Define θ̂1 = θ̂1(z) = lim infk→∞ θ̃k1 (z) (with θ̃k1 the first component of θ̃k),

and notice that θ̂1 is measurable. For any z ∈ Z , there exists a subsequence
{θ̃ki(z)} of {θ̃k(z)} that converges to a point θ̃ ∈ Θ such that

θ̃ = θ̃(z) = (θ̂1(z), θ̃2, . . . , θ̃p) .

Now,

min
(θ2,...,θp);(θ̂1(z),θ2,...,θp)∈Θ

J [z, (θ̂1(z), θ2, . . . , θp)] ≤ J [z, (θ̂1(z), θ̃2, . . . , θ̃p)]

= J(z, θ̃)

= lim
i→∞

J [z, θ̃ki(z)]

= lim
i→∞

min
θ∈Θki

J(z, θ)

= min
θ∈Θ

J(z, θ)

where the last equality follows from the fact that limk→∞Θk is dense in Θ.
Therefore, for any z ∈ Z ,

min
(θ2,...,θp);(θ̂1(z),θ2,...,θp)∈Θ

J [z, (θ̂1(z), θ2, . . . , θp)] = min
θ∈Θ

J(z, θ) .

Define J1[z, (θ2, . . . , θp)] = J [z, (θ̂1(z), θ2, . . . , θp)]. It is a continuous function
of (θ2, . . . , θp) for all z ∈ Z and a measurable function of z for all (θ2, . . . , θp)

such that (θ̂1(z), θ2, . . . , θp) ∈ Θ. Apply the same arguments to J1 to obtain

a measurable function θ̂2 such that, for any z ∈ Z ,

min
(θ3,...,θp);(θ̂1(z),θ̂2(z),θ3,...,θp)∈Θ

J [z, (θ̂1(z), θ̂2(z), θ3, . . . , θp)] = min
θ∈Θ

J(z, θ) .

Continuing in this manner, we construct real-valued functions θ̂1, . . . , θ̂p such
that, for any z ∈ Z ,
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J [z, (θ̂1(z), . . . , θ̂p(z))] = min
θ∈Θ

J(z, θ) .

Hence, θ̂ = (θ̂1(z), . . . , θ̂p(z)) is a measurable function from Z into Θ with
the desirable property.

We show now that the continuity of J(z, θ) on Z ×Θ, Θ compact, implies
that minθ∈Θ J(z, θ) is continuous in z.

J(·, ·) is uniformly continuous on compact subsets of Z ×Θ ⊂ R
m × R

p.
Therefore, ∀z0 ∈ Z , ∀ε > 0, ∃δ > 0 such that

∀θ ∈ Θ , ∀z ∈ B(z0, δ) , J(z0, θ) − ε < J(z, θ) < J(z0, θ) + ε ,

where B(z0, δ) = {z ∈ R
m : ‖z − z0‖ ≤ δ}. This implies

∀z ∈ B(z0, δ) , min
θ∈Θ

J(z0, θ) − ε ≤ min
θ∈Θ

J(z, θ) ≤ min
θ∈Θ

J(z0, θ) + ε

and minθ∈Θ J(z, θ) is thus continuous at z0. Since z0 is arbitrary, it is contin-
uous for all z ∈ Z .

Lemma 2.10. Assume that the sequence of functions {JN (θ)} converges uni-
formly on Θ to the function Jθ̄(θ), with JN (θ) continuous with respect to θ ∈ Θ
for any N , Θ a compact subset of Rp, and Jθ̄(θ) such that

∀θ ∈ Θ , θ �= θ̄ =⇒ Jθ̄(θ) > Jθ̄(θ̄) .

Then limN→∞ θ̂N = θ̄, where θ̂N ∈ argminθ∈Θ JN (θ). When the functions
JN (·) are random, and the uniform convergence to Jθ̄(·) is almost sure, the

convergence of θ̂N to θ̄ is also almost sure.

Proof. The function Jθ̄(·) is continuous, and therefore, ∀β > 0, ∃ε > 0 such
that Jθ̄(θ) < Jθ̄(θ̄) + ε implies ‖θ − θ̄‖ < β. Indeed, for any β > 0 define

J(β) = min
{θ∈Θ: ‖θ−θ̄‖≥β}

Jθ̄(θ) , ε = ε(β) =
J(β) − Jθ̄(θ̄)

2
.

We have J(β) > Jθ̄(θ̄) and thus ε(β) > 0. Assume that Jθ̄(θ) < Jθ̄(θ̄) + ε =
[J(β) + Jθ̄(θ̄)]/2. It implies Jθ̄(θ) < J(β) and thus ‖θ − θ̄‖ < β.

Now, the uniform convergence of JN (·) implies that there exists N0 such
that ∀N > N0 and ∀θ ∈ Θ, |JN (θ) − Jθ̄(θ)| < ε/2. Therefore, |JN (θ̄) −
Jθ̄(θ̄)| < ε/2, |JN (θ̂N ) − Jθ̄(θ̂

N )| < ε/2; hence, Jθ̄(θ̂
N ) < JN (θ̂N ) + ε/2 ≤

JN (θ̄)+ε/2 < Jθ̄(θ̄)+ε, and thus ‖θ̂N− θ̄‖ < β. Almost sure statements follow
immediately.

Lemma 2.11. Assume that the sequence of functions {JN (θ)} converges uni-
formly on Θ to the function Jθ̄(θ), with JN (θ) continuous with respect to
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θ ∈ Θ for any N , Θ a compact subset of R
p. Let Θ# = argminθ∈Θ Jθ̄(θ)

denote the set of minimizers of Jθ̄(θ). Then limN→∞ d(θ̂N , Θ#) = 0, where

θ̂N ∈ argminθ∈Θ JN (θ). When the functions JN (·) are random and the uni-

form convergence to Jθ̄(·) is almost sure, the convergence of d(θ̂N , Θ#) to 0
is also almost sure.

Proof. The proof is similar to that of Lemma 2.10, we simply change Jθ̄(θ̄)
into Jθ̄(Θ

#) = minθ∈Θ Jθ̄(θ) and define

J(β) = min
{θ∈Θ: d(θ,Θ#)≥β}

Jθ̄(θ)

with d(θ,Θ#) = minθ′∈Θ# ‖θ − θ′‖.

Lemma 2.12 (Jennrich 1969). Let Θ be a convex compact subset of Rp, Z
be a measurable subset of Rm and J(z, θ) be a Borel measurable real function
on Z ×Θ, continuously differentiable in θ ∈ int(Θ) for any z ∈ Z . Let θ1(z)
and θ2(z) be measurable functions from Z into Θ. There exists a measurable
function θ̃ from Z into int(Θ) such that for all z ∈ Z θ̃(z) lies on the segment
joining θ1(z) and θ2(z) and

J [z, θ1(z)]− J [z, θ2(z)] =
∂J(z, θ)

∂θ�

∣∣∣∣
θ̃(z)

[θ1(z)− θ2(z)] .

Proof. Let d(z, θ) denote the Euclidian distance from θ to the segment joining
θ1(z) and θ2(z) and define

D(z, θ) =

∣∣∣∣J [z, θ
1(z)] − J [z, θ2(z)] − ∂J(z, θ)

∂θ�
[θ1(z)− θ2(z)]

∣∣∣∣+ d(z, θ) ,

which is a measurable function of z for any θ ∈ Θ and is continuous in θ for
any z ∈ Z . We can then apply Lemma 2.9: there exists a measurable function
θ̃(z) from Z into Θ such that for any z ∈ Z , θ̃(z) minimizes D(z, θ) with
respect to θ ∈ Θ. From the (Taylor) mean value theorem, this θ̃(z) has the
property that for any z ∈ Z , D[z, θ̃(z)] = 0, which completes the proof.

Lemma 3.4 (Wu 1981). If for any δ > 0

lim inf
N→∞

inf
‖θ−θ̄‖≥δ

[SN (θ) − SN (θ̄)] > 0 a.s. (C.5)

then θ̂NLS
a.s.→ θ̄ as N → ∞. If for any δ > 0

Prob

{
inf

‖θ−θ̄‖≥δ
[SN (θ) − SN (θ̄)] > 0

}
→ 1 , N → ∞ , (C.6)

then θ̂NLS
p→ θ̄ as N → ∞.
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Proof. If θ̂NLS
a.s.→ θ̄ is not true, there exists some δ > 0 such that

Prob(lim sup
N→∞

‖θ̂NLS − θ̄‖ ≥ δ) > 0 .

Now, SN (θ̂NLS)−SN (θ̄) ≤ 0 from the definition of θ̂NLS , and ‖θ̂NLS − θ̄‖ ≥ δ im-
plies inf‖θ−θ̄‖≥δ[SN (θ) − SN(θ̄)] ≤ 0. Therefore, Prob[lim infN→∞ inf‖θ−θ̄‖≥δ
[SN (θ) − SN (θ̄)] ≤ 0] > 0, which contradicts (C.5).

When inf‖θ−θ̄‖≥δ[SN (θ)−SN (θ̄)] > 0, then ‖θ̂NLS− θ̄‖ < δ. Therefore, when
(C.6) is satisfied, for any δ > 0 and ε > 0 there exists N0 such that for all

N > N0 Prob{‖θ̂NLS − θ̄‖ < δ} ≥ 1 − ε, that is, θ̂NLS
p→ θ̄.

Lemma 3.7. Let u,v be two random vectors of Rr and R
s respectively defined

on a probability space with measure μ, with IE(‖u‖2) < ∞ and IE(‖v‖2) < ∞.
We have

IE(uu�) � IE(uv�)[IE(vv�)]+IE(vu�) , (C.7)

where M+ denotes the Moore–Penrose g-inverse of M and A � B means that
A − B is nonnegative definite. Moreover, the equality is obtained in (C.7) if
and only if u = Av μ-a.s. for some nonrandom matrix A.

Proof. Since IE({u}2i ) < ∞, i = 1, . . . , r and IE({v}2i ) < ∞, i = 1, . . . , s,
Cauchy–Schwarz inequality gives

{
IE

[(
u
v

)
(u� v�)

]}

ij

< ∞

for any i, j = 1, . . . , r + s, so that IE(uu�), IE(uv�), and IE(vv�) are well
defined. Consider IE[(x�u + y�v)2] for some nonrandom (x,y) ∈ R

r × R
s.

By direct expansion, we obtain

IE[(x�u)2] + 2x�IE(uv�)y + y�IE(vv�)y ≥ 0 (C.8)

which reaches its minimum value with respect to y when

IE(vv�)y = −IE(vu�)x .

This system is compatible, and thus consistent; see Harville (1997, p. 73).
Indeed,

z�IE(vv�) = 0� =⇒ IE(z�vv�z) = 0 =⇒ z�v = 0 μ-a.s.

=⇒ z�IE(vu�)x = IE(z�vu�x) = 0 .

Therefore, the solution y∗ is given by

y∗ = −[IE(vv�)]−IE(vu�)x
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for any g-inverse of IE(vv�); see Harville (1997, p. 108). Take

y∗ = −[IE(vv�)]+IE(vu�)x

with M+ the Moore–Penrose g-inverse of M, see Harville (1997, p. 493), and
substitute y∗ for y in (C.8). We obtain

x�IE(uu�)x ≥ x�IE(uv�)[IE(vv�)]+IE(vu�)x

for any nonrandom vector x ∈ R
r, i.e., (C.7).

Assume that equality is attained. Taking A = IE(uv�)[IE(vv�)]+ we ob-
tain IE[(u − Av)(u − Av)�] = O and thus u = Av, μ-a.s.

Lemma 5.1. Let A be a p× p positive-definite matrix and let EA = {t ∈ R
p :

t�At ≤ 1}. Then:

(i) vol(EA) = Vp det
−1/2 A, with Vp = πp/2/Γ (p/2 + 1) = vol[B(0, 1)], the

volume of the unit ball B(0, 1) in R
p.

(ii) For any vector c ∈ R
p we have

max
t∈EA

(c�t)2 = c�A−1c ;

in particular, when ‖c‖ = 1, then c�A−1c is the squared half-length of
the orthogonal projection of EA onto the straight line defined by c.

(iii) max‖c‖=1 c
�A−1c = 1/λmin(A) = R2(EA), with λmin(A) the minimum

eigenvalue of A and R(EA) the radius of the smallest ball containing
EA; the length of a principal axis of EA equals 2/

√
λi(A) with λi(A) an

eigenvalue of A.
(iv) The squared length of the half-diagonal of the parallelepiped containing

EA and parallel to the coordinate axes of the Euclidean space R
p equals

the sum of the squared half-lengths of the principal axes of EA and is
given by trace(A−1).

(v) Let EB be defined similarly to EA but for the p×p positive-definite matrix
B, then the following statements are equivalent:

(a) EA ⊆ EB.
(b) A � B, i.e., the matrix A − B is nonnegative definite.
(c) For any c ∈ R

p, c�A−1c ≤ c�B−1c, i.e., B−1 � A−1.

Proof.

(i) We can write

vol(EA) =
∫

{t∈Rp:t�At≤1}
dt =

∫

{u∈Rp:u�u≤1}
det−1/2(A) du

= [det−1/2A] vol[B(0, 1)] .
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(ii) From Cauchy–Schwarz inequality we have

∀t ∈ R
p , (c�t)2 = [(A−1/2c)�(A1/2t)]2 ≤ (c�A−1c)(t�At) .

Therefore,

c�A−1c ≥ sup
t�=0

(c�t)2

tAt
.

For t = A−1c, the ratio on right-hand side equals c�A−1c, so that

c�A−1c = max
t�=0

(c�t)2

tAt
= max

{t∈Rp:t�At≤1 , t�=0}
(c�t)2

tAt
= max

t∈EA

(c�t)2 .

When ‖c‖ = 1, then cc�t is the orthogonal projection of t onto the
straight line defined by c and its squared length equals ‖cc�t‖2 =
(c�t)2.

(iii) The largest orthogonal projection of EA onto the straight line defined by
c is obtained when c goes in the direction of the main axis of EA. Let
λ1 = λmin(A) ≤ λ2 ≤ · · · ≤ λp denote the eigenvalues of A. In a basis
of associated eigenvectors, EA is defined by {y ∈ R

p :
∑p

i=1 y
2
i λi ≤ 1},

with yi the i-th component of y. The half-length of the longest principal
axis of EA is thus R(EA) = 1/

√
λ1. The length of the i-th principal axis

is 2/
√
λi.

(iv) From the same arguments as above, the sum of the squared half-lengths
of the principal axes of EA is

∑p
i=1 λ

−1
i = trace(A−1). Let ek denote the

k-th basis vector of Rp; then {A−1}kk = e�kA
−1ek is the squared half-

length of the orthogonal projection of EA onto the k-th coordinate axis.
By the Pythagorean relation in R

p, we obtain that the squared length
of the half-diagonal of the parallelepiped containing EA and parallel to
the coordinate axes equals

∑p
k=1{A−1}kk = trace(A−1).

(v) The implication (b) =⇒ (a) is a direct consequence of the definitions of
EA and EB. The implication (a) =⇒ (c) follows from (ii). Suppose that
(c) holds. Take any vector v ∈ R

p and denote s = Av, z = Bv. We have

0 ≤ (s− z)�A−1(s − z) = s�A−1s+ z�A−1z − 2s�A−1z

≤ s�A−1s + z�B−1z − 2v�z = s�A−1s + z�B−1z − 2z�B−1z

= v�Av − v�Bv ;

that is, A � B.

Lemma 5.2. Suppose that the estimator θ̂N in the regression model (3.2)

satisfies
√
N(θ̂N − θ̄)

d→ z ∼ N (0,M−1(ξ, θ̄)) as N → ∞. Then, for N large
we have approximately
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Prob
{
y(x1), . . . , y(xN ) : ∀x ∈ X , |η(x, θ̂N ) − η(x, θ̄)| ≤

1√
N

[
χ2
p(1 − α)

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

M−1(ξ, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

]1/2}
≥ 1 − α

where χ2
p(1 − α) is the (1 − α) quantile of the χ2

p distribution.

Proof. Since θ̂N−θ̄ is approximately normal N (0,M−1(ξ, θ̄)/N), the quantity

N(θ̂N − θ̄)�M(ξ, θ̄)(θ̂N − θ̄) follows approximately the χ2
p distribution. Hence,

for N large

Prob
{
y : (θ̂N − θ̄)�H(θ̂N − θ̄) ≤ 1

}
� 1 − α

where H = NM(ξ, θ̄)/χ2
p(1−α) and y = [y(x1), . . . , y(xN )]�. Since u�Hu ≤

1 is equivalent to (v�u)2 ≤ v�H−1v for all v ∈ R
p (from Cauchy–Schwarz

inequality), for large N we have

Prob
{
y : ∀x ∈ X , |η(x, θ̂N ) − η(x, θ̄)|2 ≤

1

N
χ2
p(1 − α)

∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

M−1(ξ, θ̄)
∂η(x, θ)

∂θ

∣∣∣∣
θ̄

}

� Prob

{
y : ∀x ∈ X ,

∣∣∣∣
∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

(θ̂N − θ̄)

∣∣∣∣
2

≤ ∂η(x, θ)

∂θ�

∣∣∣∣
θ̄

H−1∂η(x, θ)

∂θ

∣∣∣∣
θ̄

}

≥ Prob

{
y : ∀v ∈ R

p ,
∣∣∣v�(θ̂N − θ̄)

∣∣∣
2

≤ v�H−1v

}

= Prob
{
y : (θ̂N − θ̄)�H(θ̂N − θ̄) ≤ 1

}
� 1 − α .

Lemma 5.4 (Pukelsheim 1993, Sects. 5.2, 5.4). Let Φ(·) be a function
from M

≥ to R. Then,

(i) When Φ(·) is positively homogeneous, it is concave if and only if it is
superadditive, i.e., Φ(M1+M2) ≥ Φ(M1)+Φ(M2) for all M1,M2 ∈ M

≥.
(ii) When Φ(·) is superadditive, nonnegativity implies isotonicity.
(iii) When Φ(·) is positively homogeneous, isotonicity implies nonnegativity

(i.e., Φ(M) ≥ 0 for all M in M
≥); moreover, either Φ is identically zero

or Φ(.) is strictly positive on the open set M>.

Proof.

(i) Take any M1,M2 ∈ M
≥, any α ∈ (0, 1). Superadditivity gives Φ[(1 −

α)M1 + αM2] ≥ Φ[(1 − α)M1] + Φ(αM2) = (1 − α)Φ(M1) + αΦ(M2)
and thus implies concavity. Conversely, concavity implies Φ(M1+M2) =
Φ[(2M1 + 2M2)/2) ≥ (1/2)Φ(2M1) + (1/2)Φ(2M2) = Φ(M1) + Φ(M2).
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(ii) Take any M1 � M2 ∈ M
≥. Superadditivity and nonnegativity imply

Φ(M1)− Φ(M2) = Φ(M1 −M2 +M2)− Φ(M2) ≥ Φ(M1 −M2) ≥ 0 so
that Φ(·) is isotonic.

(iii) Isotonicity implies Φ(M) ≥ Φ(O) for any M ∈ M
≥, and positive

homogeneity gives Φ(O) = Φ(0M) = 0, so that Φ(·) is nonnega-
tive. If Φ is non identically zero, there exists some M∗ in M

≥ such
that Φ(M∗) > 0. Then, for any M ∈ M

>, there exists α > 0 such
that αM − M∗ � O and isotonicity with positive homogeneity imply
Φ(M) = Φ(αM)/α ≥ Φ(M∗)/α > 0.

Lemma 5.5. For any p× p matrix M in M
≥ and any c ∈ M(M) (i.e., such

that c = Mu for some u ∈ R
p) we have

Φc(M) = −c�M−c = min
z∈Rp

[z�Mz − 2z�c] .

When c �∈ M(M), the right-hand side equals −∞.

Proof. When c ∈ M(M), we can write [z�Mz − 2z�c] − Φc(M) = (M−c −
z)�M(M−c − z) ≥ 0, with M− any g-inverse of M. When c �∈ M(M), take
z = γu with γ > 0 and u any element of N (M) = {u ∈ R

p : Mu = 0}
such that c�u = s > 0. Then, z�Mz = 0 and z�c = γs which can be made
arbitrarily large.

Lemma 5.6. For any p× p matrix M in M
≥ and any c ∈ M(M), we have

Φ+
c (M) = (c�c)(c�M−c)−1 = (c�c) min

z�c=1
z�Mz .

When c �∈ M(M), the minimum on the right-hand side equals 0.

Proof. When c ∈ M(M), Cauchy–Schwarz inequality gives

(c�M−c)(z�Mz) = (c�M−MM−c)(z�Mz)

≥ (c�M−Mz)2 = (c�z)2

for any z ∈ R
p. Therefore,

c�M−c ≥ sup
z�Mz�=0

(c�z)2

z�Mz
.

Taking z = M−c gives equality since then z�Mz = c�M−c > 0. We can
thus write

(c�M−c) = sup
z�Mz�=0

(c�z)2

z�Mz
= sup

z�c=1

1

z�Mz
.

When c �∈ M(M), take z as any element of N (M) such that c�z �= 0. Then,
z�Mz = 0, and the supremum in the equation above is infinite.
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Lemma 5.7. For any p× p matrix M in M
≥ partitioned as

M =

(
M11 M12

M21 M22

)

with M11 of dimension s× s, we have

log det(M11 −M12M
−
22M21) ≤ log det(M11 +D�M22D−M12D−D�M21)

for any D ∈ R
(p−s)×s, with equality if and only if M22D = M12.

Proof. Take any matrix C solution of M22C = M21 (which is equivalent to
C = M−

22M21 for some g-inverse M−
22 of M22), and denote M∗ = M11 −

M12M
−
22M21. Then, for any matrix D in R

(p−s)×s,

M11 +D�M22D − M12D− D�M21 − M∗ = (C− D)�M22(C− D) ,

which is positive definite unless M22D = M22C = M21. When M∗ is nonsin-
gular, the strict isotonicity of the function log det(·) on M

> (see Sect. 5.1.5)
concludes the proof. When M∗ is singular, log det(M∗) = −∞, we also have
log det[M11+D�M22D−M12D−D�M21] = −∞ when M22D = M21 since
then M11 +D�M22D− M12D − D�M21 = M∗.

Lemma 5.11. The criterion φc(·) = Φc[M(·)], with Φc(M) given by (5.9), is
upper semicontinuous at any ξ∗ ∈ Ξc = {ξ ∈ Ξ : c ∈ M[M(ξ)]}.

Proof. Take ξ∗ ∈ Ξc, and consider any sequence {ξn} of measures in Ξ
converging weakly to ξ∗. We have φc(ξn) = −∞ if ξn ∈ Ξ \ Ξc and, from
Lemma 5.5, φc(ξn) ≤ z�M(ξn)z− 2z�c for any z ∈ R

p otherwise. Therefore,
for any z ∈ R

p,

lim sup
n→∞

φc(ξn) ≤ lim sup
n→∞

[z�M(ξn)z − 2z�c] = z�M(ξ∗)z − 2z�c ;

that is,
lim sup
n→∞

φc(ξn) ≤ min
z∈Rp

[z�M(ξ∗)z − 2z�c] = φc(ξ∗) ,

so that φc(·) is upper semicontinuous at ξ∗.

Lemma 5.12. Consider a sequence of matrices satisfying (5.19) and suppose
that c ∈ M(M0). Then, under the conditions
C1: ‖Rt‖ = [trace(R�

t Rt)]
1/2 = o(tα) as t → 0+,

and
C2: M0 + tαMα ∈ M

> for arbitrary small t > 0,
we have

lim
t→0+

Φc[M(t)] = Φc(M0) . (C.9)
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Proof. Define rt = ‖Rt‖/tα. We first show that M(t) − (1 − √
rt)(M0 +

tαMα) ∈ M
> for t small enough. Take any z ∈ R

p, z �= 0. We have

z�M(t)z − (1 − √
rt) z

�(M0 + tαMα)z =
√
rt z

�(M0 + tαMα)z+ z�Rtz

≥ √
rt z

�(M0 + tαMα)z − ‖z‖2‖Rt‖

=
√
rt t

α ‖z‖2
(
z�(M0/t

α +Mα)z

‖z‖2 − √
rt

)

≥ √
rt t

α ‖z‖2
(
z�(M0 + tα0Mα)z

tα0 ‖z‖2
− √

rt

)

for all t < t0. z
�(M0+ t

α
0Mα)z/[t

α
0 ‖z‖2] > 0 from C2, while

√
rt tends to zero

as t → 0 from C1. Therefore, there exists t1 such that M(t)− (1−√
rt)(M0+

tαMα) ∈ M
> for 0 < t < t1. We thus obtain Φc[M(t)] ≥ (1−√

rt)
−1Φc(M0+

tαMα) for 0 < t < t1.
Next, we write M0 + tαMα as

M0 + tαMα = (1 − γt)M0 + γtM0,α

with M0,α = M0+ t
αMα and γt = (t/t0)

α. Then, from the concavity of Φc(·),
Φc(M0 + tαMα) ≥ (1 − γt)Φc(M0) + γtΦc(M0,α), which implies

lim inf
t→0+

Φc[M(t)] ≥ lim
t→0+

1

1 − √
rt

[(1 − γt)Φc(M0) + γtΦc(M0,α)] = Φc(M0) .

Finally, from the upper semicontinuity of Φc(·) we have lim supt→0+ Φc[M(t)]
≤ Φc(M0), which implies (C.9).

Corollary 5.13. For a sequence of matrices M(t) ∈ M
≥ satisfying (5.19)

with c ∈ M(M0) and the condition C1, either the continuity property (C.9)
is satisfied or the convergence of M(t) to M0 is along a hyperplane tangent
to the cone M

≥ at M0, i.e., Mα belongs to a supporting hyperplane to M
≥

at M0.

Proof. Let A ∈ M define a supporting hyperplane HA to the cone M
≥ at

M0; it satisfies trace(AM0) = 0 and trace(AM) ≥ 0 for any M ∈ M
≥

(A is thus normal to M
≥ at M0 and A ∈ M

≥). We have trace[AM(t)] =
tα trace(AMα)+trace(ARt) ≥ 0 (sinceM(t) ∈ M

≥), and thus trace(AMα) ≥
−‖A‖ ‖Rt‖/tα, which tends to zero from C1. This implies trace(AMα) ≥ 0;
that is, Mα is on the same side of HA as M≥.

There are two alternatives. Either C2 is satisfied and Lemma 5.12 implies
(C.9), or C2 in not satisfied. In the latter case, for any t > 0 there exists zt
with ‖zt‖ = 1 such that z�t (M0 + tαMα)zt ≤ 0. From any such sequence
{zt} we extract a subsequence converging to some z∗, which thus satisfies
z�∗ M0z∗ ≤ 0, and therefore z�∗ M0z∗ = 0 since M0 ∈ M

≥. Also, z�t Mαzt ≤ 0
(since z�t M0zt ≥ 0) and thus z�∗ Mαz∗ ≤ 0. Take A = z∗z�∗ ; it defines a
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supporting hyperplane HA to M
≥ at M0. From the developments above we

obtain trace(AMα) = z�∗ Mαz∗ ≥ 0 and thus trace(AMα) = 0; that is, Mα

belongs to HA.

Remark.

(i) When the sequence of matrices M(t) satisfies (5.19) and C1 with c ∈
M(M0), if limt→0+ Φc[M(t)] �= Φc(M0), it means that C2 is not satisfied
and, from the proof of Corollary 5.13, that Mα belongs to a supporting
hyperplane to M

≥ at M0. Conversely, if Mα does not belong to such a
tangent hyperplane, C2 and thus (C.9) are satisfied.

(ii) The condition C1 in Corollary 5.13 can be replaced by Rt ∈ M
≥. Indeed,

in that case M(t)− (M0+ tαRt) ∈ M
≥, Φc[M(t)] ≥ Φc(M0+ tαRt), and

the rest of the proof is similar to that of Corollary 5.13. �

Lemma 5.28. When the design criterion Φ(·) is isotonic, an optimal design
is supported at values of x such that gθ(x) is on the boundary of the Elfving’s
set Fθ.

Proof. Suppose that M(ξ, θ) =
∑m

i=1 ξi gθ(x
(i))g�

θ (x
(i)), m ≤ p(p+ 1)/2 + 1,

see Sect. 5.2.3, with x(1) such that gθ(x
(1)) lies in the interior of Fθ. We can

then decompose gθ(x
(1)) into

gθ(x
(1)) =

p+1∑

j=1

αjgj ,

with αj ≥ 0,
∑p+1
j=1 αj = 1, and gj = ±gθ(x

(j)) for some x(j) with gj belonging

to the boundary of Fθ. For any u ∈ R
p, consider Δ(u) = u�M′(ξ, θ)u −

u�M(ξ, θ)u, where M′(ξ, θ) is obtained by substituting
∑p+1
j=1 αjgjg

�
j for

gθ(x
(1))g�

θ (x
(1)) in M(ξ, θ). We have

Δ(u) = ξ1

⎧
⎨

⎩

p+1∑

j=1

αj [u
�gθ(x(j))]2 − [u�gθ(x(1))]2

⎫
⎬

⎭

= ξ1

⎧
⎪⎨

⎪⎩

p+1∑

j=1

αj [u
�gj ]2 −

⎡

⎣
p+1∑

j=1

αj(u
�gj)

⎤

⎦
2
⎫
⎪⎬

⎪⎭

and Δ(u) ≥ 0 from Cauchy–Schwarz inequality. Therefore M′(ξ, θ) � M(ξ, θ)
and Φ[M′(ξ, θ)] ≥ Φ[M(ξ, θ)].

Lemma 7.9. Assume that η(θ) is continuous for θ ∈ Θ, a compact subset of
R
p. We have:
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(i) For any θ, θ′ ∈ Θη(t), Eη(‖θ − θ′‖2) < 4t, and the maximum diameter

D(t) of any connected part of Θη(t) satisfies D
2
(t) ≤ inf{δ : Eη(δ) ≥ 4t}.

(ii) Suppose that the probability measure of the observations y has a density
with respect to the Lebesgue measure in R

N . If there exists δ′ < δ such
that Eη(δ) < t < Eη(δ

′), then the probability that the set Θη(t) is not
connected is strictly positive.

Proof.

(i) For any θ, θ′ ∈ Θη(t), ‖η(θ) − η(θ′)‖ ≤ ‖η(θ) − y‖ + ‖y − η(θ′)‖ < 2
√
t,

therefore Eη(‖θ−θ′‖2) < 4t. Let C(t) denote any connected part of Θη(t);

if θ and θ′ are in C(t), for any δ ∈ [0, ‖θ−θ′‖2], there exists θ′′ ∈ B(θ,
√
δ)

such that θ′′ ∈ C(t), with B(θ,
√
δ) the closed ball of center θ and radius√

δ. This implies Eη(δ) < 4t for any δ ∈ [0, diam2[C(t)]], and therefore
diam2[C(t)] ≤ inf{δ : Eη(δ) ≥ 4t}.

(ii) Define α = (1/2)min{Eη(δ′) − t, t − Eη(δ)}, take θ1 and θ2 in Θ such
that ‖θ1 − θ2‖2 = δ and ‖η(θ1) − η(θ2)‖2 = Eη(δ). Consider the set
Aδ′ = Θ ∩ {θ : ‖θ − θ1‖2 = δ′}.
Suppose first that Aδ′ is empty. Suppose that ‖y−η(θ1)‖ ≤

√
Eη(δ) and

‖y−η(θ2)‖ ≤
√
Eη(δ), which happens with a strictly positive probability.

Then Eη(δ) < t implies that θ1 ∈ Θη(t), θ2 ∈ Θη(t), and Θη(t) is not
connected.
Suppose now that Aδ′ is not empty and that y satisfies ‖y − η(θ2)‖ ≤√
Eη(δ) and ‖y−η(θ1)‖ <

√
t+ α−

√
t, which again happens with strictly

positive probability. Since α < t,
√
t+ α−

√
t <

√
t and θ1 ∈ Θη(t). Also,

Eη(δ) < t implies θ2 ∈ Θη(t). Any θ in Aδ′ satisfies ‖η(θ) − η(θ1)‖2 ≥
Eη(δ

′) > t+ α; therefore,

‖y − η(θ)‖ ≥ ‖η(θ) − η(θ1)‖ − ‖y − η(θ1)‖
>

√
t+ α− ‖η(θ1)− y‖ >

√
t

and θ �∈ Θη(t), which implies that Θη(t) is not connected.



Symbols and Notation

⇒ Convergence in general or weak convergence (of probability
measures or distribution functions)

d→ Convergence in distribution
p→ Convergence in probability
a.s.→ Almost sure convergence
θ� Uniform convergence with respect to θ
∼ Distributed
a, A Scalars
A, A , A Sets
a Column vector
α Scalar or column vector
A Matrix
a�, A� Transposed of a and A
A− A generalized inverse of A (i.e., AA−A = A)
A+ The Moore–Penrose g-inverse of A (i.e., AA+A = A,

A+AA+ = A+, (AA+)� = AA+ and (A+A)� = A+A)
‖a‖ = ‖a‖2 Euclidian norm of a = (a1, . . . , ad)

� ∈ R
d,

‖a‖ =
(∑d

i=1 a
2
i

)1/2

‖a‖1 L1 norm of a = (a1, . . . , ad)
� ∈ R

d, ‖a‖1 =
∑d

i=1 |ai|
‖a‖Ω (a�Ωa)1/2, for some Ω ∈ M

≥

‖·‖ξ Norm in L2(ξ), ‖φ‖ξ =
[∫

X φ2(x) ξ(dx)
]1/2

, φ ∈ L2(ξ)

〈·, ·〉ξ Inner product in L2(ξ),
〈φ, ψ〉ξ =

∫
X
φ(x)ψ(x) ξ(dx), φ, ψ ∈ L2(ξ)

ξ≡ Parameter equivalence for the design ξ in a regression model,

θ
ξ≡ θ∗ when ‖η(·, θ) − η(·, θ∗)‖ξ = 0

{ai}j j-th component of ai
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{A}ij (i, j)-th entry of A
{A}i,� i-th row of A
A � B A − B ∈ M

≥ (is nonnegative definite), A,B ∈ M

A ! B A − B ∈ M
> (is positive definite), A,B ∈ M

∇f(·) Gradient vector of f(·), {∇f(α)}i = ∂f(θ)/∂θi
∣∣
θ=α

∇2f(·) Hessian matrix of f(·),
{
∇2f(α)

}
ij
= ∂2f(θ)/∂θi∂θj

∣∣
θ=α

∇̃f(·) Subgradient of f(·)
∂f(·) Subdifferential of f(·)
x′(·) Derivative of x(·)
x′′(·) Second-order derivative of x(·)
0 Null vector, {0}i = 0 for all i
O Null matrix, {O}i,j = 0 for all i, j
1 Vector of ones, {1}i = 1 for all i

a.s. Almost sure(ly)
B(c, r) Closed ball {x ∈ R

d : ‖x− c‖ ≤ r}
Cint(ξ, θ) Intrinsic curvature of a regression model at θ

for the design measure ξ
Cint(X, θ) Intrinsic curvature of a regression model at θ

for the exact design X
Cpar(ξ, θ) Parametric curvature at θ for ξ
Cpar(X, θ) Parametric curvature at θ for X
Ctot(ξ, θ) Total curvature at θ for ξ
diag(a) Diagonal matrix with vector a on its diagonal
d.f. (Cumulative) distribution function
ei i-th basis vector
Eφ(·) Efficiency criterion associated with φ(·),

Eφ(ξ) =
φ+(ξ)
φ+(ξ∗) with ξ∗ optimal for φ(·)

IE(·) Expectation
IEμ(·) Expectation for the probability measure μ
IEπ(·) Expectation for the p.d.f. π(·)
IEx(·) Conditional expectation for a given x, IEx(ω) = IE(ω|x)
IF(·) Distribution function (d.f.)
f(·) Regressor in a linear regression model, η(x, θ) = f�(x)θ
fθ(·) Derivative in a nonlinear regression model, fθ(x) = ∂η(x, θ)/∂θ
Fφ(ξ; ν) Directional derivative of φ(·) at ξ in the direction ν
Fφ(ξ, x) Directional derivative of φ(·) at ξ in the direction δx
Fθ Elfving’s set, convex closure of the set

{fθ(x) : x ∈ X } ∪ {−fθ(x) : x ∈ X }
Iq q-dimensional identity matrix
i.i.d. Independently and identically distributed
IIA(·) Indicator function of the set A
int(A) Interior of the set A
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JN (·) Estimation criterion
Jθ̄(·) Limiting value of JN (·) as N → ∞ (under

uniform convergence conditions)
� Number of elements in the finite design space X�

LP Linear programming
LS Least squares
LX,y(θ) Likelihood of parameters θ for the design X at observations y
L2(ξ) Hilbert space of square-integrable real-valued functions φ,

L2(ξ) = {φ(·) : X −→ R,
∫

X φ2(x) ξ(dx) < ∞}
ML Maximum likelihood
MSE Mean-squared error
MX(θ) Information matrix for the (exact) design X
M(X, θ) Normalized information matrix for the (exact) design X ,

M(X, θ) = MX(θ)/N
M(ξ, θ) Normalized information matrix for the design measure ξ
M(ξ) Normalized information matrix M(ξ, θ0) (local design)
Mθ(x) Normalized information matrix M(δx, θ)
M Set of symmetric p× p matrices
M

≥ Subset of M formed by nonnegative-definite matrices
M
> Subset of M formed by positive-definite matrices

M(M) Column space of the matrix M, M(M) = {Mu : u ∈ R
p}

Mθ(X ) {Mθ(x) : x ∈ X }
Mθ(Ξ) {M(ξ, θ) : ξ ∈ Ξ}
M Set of probability measures
N Number of observations
N (M) Null space of the matrix M, N (M) = {u ∈ R

p : Mu = 0}
N (a,V) Normal distribution (mean a, variance–covariance matrix V)

op(·) αn = op(βn) if {αn/βn}
p→ 0, n → ∞

Op(·) αn = Op(βn) if {αn/βn} is bounded in probability, n → ∞
p Dimension of the parameter vector θ
p.d.f. Probability density function
Pθ, Pθ Projectors

P�−1 Probability simplex {w ∈ R
� : wi ≥ 0 ,

∑�
i=1 wi = 1}

QP Quadratic programming
R
p p-dimensional Euclidian space of real column vectors

R(θ) Riemannian curvature tensor
s(x) Skewness of the p.d.f. ϕ̄x(·), s(x) = IEx{ε3(x)}σ−3(x)
Sη Expectation surface, Sη = {η(θ) : θ ∈ Θ}
Sξ Support of the design measure ξ
SLLN Strong law of large numbers
TSLS Two-stage least squares
var(·) Variance
varx(·) Conditional variance for a given x
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Var(·) Variance–covariance matrix
w.p.1 With probability one

W�−1 {w ∈ R
�−1 : wi ≥ 0 ,

∑�−1
i=1 wi ≤ 1}

WLS Weighted least squares
xi i-th design point, experimental variables for the i-th trial

x(i) i-th element in a finite design space X�

X Exact design with fixed size N , X = (x1, . . . , xN )
X Design space (in general a compact subset of Rd)
X� Finite design space with � elements
y(x) Observation (random variable) at x
y Vector of observations, y = [y(x1), . . . , y(xN )]�

δx Delta measure with mass 1 at x
εi = ε(xi) Measurement error (with zero mean, IEx{ε(x)} = 0)
η(x, θ) Mean (or expected) response at x ∈ X for parameters θ

in a regression model
η(θ) Vector of responses, η(θ) = ηX(θ) = [η(x1, θ), . . . , η(xN , θ)]

�

θ Vector of parameters (θ1, . . . , θp)
� ∈ Θ ⊂ R

p

θ̂N Estimator of θ for N observations
θ̄ True value of θ
Θ Parameter space, a subset of Rp

Θ Closure of Θ
∂Θ Boundary of Θ
Θ# Set of global minimizers of Jθ̄(·)
κ(x) Kurtosis of the p.d.f. ϕ̄x(·), κ(x) = IEx{ε4(x)}σ−4(x) − 3
λ(x, θ̄) Parameterized variance function IEx{ε2(x)}

in a (mixed) regression model
λmin(A) Minimum eigenvalue of A
λmax(A) Maximum eigenvalue of A
μ Probability measure (e.g., prior measure for θ)
ξ Design measure (a probability measure on X )
ξ∗ Optimum design measure
Ξ Set of design measures on X
π(·) Prior p.d.f. for θ
πX,y(·) Posterior p.d.f. for θ given y for the design X
"X(·, ·) p.d.f. of the joint distribution of θ and y for the design X
σ2(x) Variance of the error ε(x)
ϕ̄(·) p.d.f. of the errors ε (regression model with i.i.d. errors)
ϕ̄x(·) p.d.f. of the errors ε(x) (regression model)
ϕx,θ(·) p.d.f. of the observations y(x) (e.g., exponential family with

parameters θ)
ϕX,θ(·) p.d.f. of y given θ for the design X
ϕ∗
X(·) p.d.f. of the marginal distribution of y for the design X

φ(·) Design criterion, function of a design measure ξ
φ+(·) Positively homogenous form of φ(·)
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φ∗ Optimum (i.e., maximum) value of φ(ξ), ξ ∈ Ξ
Φ(·) Design criterion, function of an information matrix
Φ+(·) Positively homogenous form of Φ(·)



List of Labeled Assumptions

HΘ, page 22: Θ is a compact subset of Rp such that Θ ⊂ int(Θ).

H1η, page 22: η(x, θ) is bounded on X × Θ and η(x, θ) is continuous on
Θ, ∀x ∈ X .

H2η, page 22: θ̄ ∈ int(Θ) and, ∀x ∈ X , η(x, θ) is twice continuously
differentiable with respect to θ ∈ int(Θ), and its first two derivatives are
bounded on X × int(Θ).

H1h, page 36: The function h(·) : Θ −→ R is continuous and has contin-
uous second-order derivatives in int(Θ).

H3η, page 43: Let Sε denote the set
{
θ ∈ int(Θ) :

∥∥η(·, θ) − η(·, θ̄)
∥∥2
ξ
< ε
}
,

then there exists ε > 0 such that for every θ# and θ∗ in Sε we have

[
∂

∂θ

∥∥η(·, θ) − η(·, θ#)
∥∥2
ξ

]

θ=θ∗
= 0 =⇒ θ#

ξ≡ θ∗ .

H4η, page 43: For any point θ∗
ξ≡ θ̄ there exists a neighborhood V(θ∗)

such that
∀θ ∈ V(θ∗) , rank[M(ξ, θ)] = rank[M(ξ, θ∗)] .

H2h, page 43: The function h(·) is defined and has a continuous nonzero

vector of derivatives ∂h(θ)/∂θ on int(Θ). Moreover, for any θ
ξ≡ θ̄, there

exists a linear mapping Aθ from L2(ξ) to R (a continuous linear functional
on L2(ξ)), such that Aθ = Aθ̄ and that
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368 List of Labeled Assumptions

∂h(θ)

∂θi
= Aθ [{fθ}i] , i = 1, . . . , p ,

where {fθ}i is defined by (3.42).

H2′
h, page 44: There exists a function Ψ(·), with continuous gradient, such

that h(θ) = Ψ [η(θ)], with η(θ) = (η(x(1), θ), . . . , η(x(k), θ))�.

H2′′
h, page 44: h(θ) = Ψ [h1(θ), . . . , hk(θ)] with Ψ(·) a continuously differ-

entiable function of k variables and with

hi(θ) =

∫

X

gi[η(x, θ), x] ξ(dx) , i = 1, . . . , k ,

for some functions gi(t, x) differentiable with respect to t for any x in the
support of ξ.

H3h, page 47: The vector function h(θ) has a continuous Jacobian

∂h(θ)/∂θ� on int(Θ). Moreover, for each θ
ξ≡ θ̄ there exists a continuous linear

mapping Bθ from L2(ξ) to R
q such that Bθ = Bθ̄ and that

∂h(θ)

∂θi
= Bθ [{fθ}i] , i = 1, . . . , p ,

where {fθ}i is given by (3.42).

H1λ, page 48: λ(x, θ̄) is bounded and strictly positive on X , λ−1(x, θ) is
bounded on X ×Θ, and λ(x, θ) is continuous on Θ for all x ∈ X .

H2λ, page 48: For all x ∈ X , λ(x, θ) is twice continuously differentiable
with respect to θ ∈ int(Θ), and its first two derivatives are bounded on X ×
int(Θ).

HS , page 172: There exists r > 0 such that:

(a) Probθ̄[G(r)] = Prob(‖y − η(θ)‖ < r) ≥ 1 − ε .
(b) Every y ∈ T (r) has one r-projection only.

HX -(i), page 273: infθ∈Θ λmin

[∑�
i=1 fθ(x

(i))f�θ (x(i))
]
> γ > 0.

HX -(ii), page 273: For all δ > 0 there exists ε(δ) > 0 such that for any sub-
set {i1, . . . , ip} of distinct elements of {1, . . . , �}, inf‖θ−θ̄‖≥δ

∑p
j=1[η(x

(ij), θ)−
η(x(ij), θ̄)]2 > ε(δ).

HX -(iii), page 273: λmin

[∑p
j=1 fθ̄(x

(ij ))f �̄
θ
(x(ij))

]
≥ γ̄ > 0 for any subset

{i1, . . . , ip} of distinct elements of {1, . . . , �}.
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vol. 1 & 2. Paris: Dunod.

Mitchell, T. (1974). An algorithm for the construction of “D-optimal” exper-
imental designs. Technometrics 16, 203–210.

Molchanov, I. and S. Zuyev (2001). Variational calculus in the space of mea-
sures and optimal design. In A. Atkinson, B. Bogacka, and A. Zhigljavsky
(Eds.), Optimum Design 2000, Chapter 8, pp. 79–90. Dordrecht: Kluwer.

Molchanov, I. and S. Zuyev (2002). Steepest descent algorithm in a space of
measures. Stat. Comput. 12, 115–123.

Montgomery, D. (1976). Design and Analysis of Experiments. New York:
Wiley. [6th ed., 2005].

Morris, M. and T. Mitchell (1995). Exploratory designs for computational
experiments. J. Stat. Plann. Inference 43, 381–402.



References 379

Müller, C. and A. Pázman (1998). Applications of necessary and sufficient
conditions for maximin efficient designs. Metrika 48, 1–19.

Müller, H.-G. (1984). Optimal designs for nonparametric kernel regression.
Statist. Probab. Lett. 2, 285–290.

Müller, W. (2007). Collecting Spatial Data. Optimum Design of Experiments
for Random Fields. Heidelberg: Physica-Verlag. [3rd ed.].

Müller, W. and A. Pázman (2003). Measures for designs in experiments with
correlated errors. Biometrika 90 (2), 423–434.

Müller, W. and B. Pötscher (1992). Batch sequential design for a nonlin-
ear estimation problem. In V. Fedorov, W. Müller, and I. Vuchkov (Eds.),
Model-Oriented Data Analysis II, Proc. 2nd IIASA Workshop, St Kyrik
(Bulgaria), May 1990, pp. 77–87. Heidelberg: Physica Verlag.

Nadaraya, E. (1964). On estimating regression. Theory Probab. Appl. 9,
141–142.

Nesterov, Y. (1995). Complexity estimates of some cutting plane methods
based on the analytic center. Math. Programming 69, 149–176.

Nesterov, Y. (2004). Introductory Lectures to Convex Optimization: A Basic
Course. Dordrecht: Kluwer.

Nesterov, Y. and A. Nemirovskii (1994). Interior-Point Polynomial Algo-
rithms in Convex Programming. Philadelphia: SIAM.

Newey, W. (1991). Uniform convergence in probability and stochastic equicon-
tinuity. Econometrica 9 (4), 1161–1167.

Pan, S., S. He, and X. Li (2007). Smoothing method for minimizing the sum
of the r largest functions. Optim. Methods Softw. 22, 267–277.

Parzen, E. (1962). On estimation of a probability density function and mode.
Ann. Math. Statist. 35, 1065–1076.

Parzen, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist.
Assoc. 74 (365), 105–121.

Pázman, A. (1980). Singular experimental designs. Math. Operationsforsch.
Statist. Ser. Statist. 16, 137–149.

Pázman, A. (1984a). Nonlinear least squares – uniqueness versus ambiguity.
Math. Operationsforsch. Statist. Ser. Statist. 15, 323–336.

Pázman, A. (1984b). Probability distribution of the multivariate nonlinear
least-squares estimates. Kybernetika 20, 209–230.

Pázman, A. (1986). Foundations of Optimum Experimental Design. Dordrecht
(co-pub. VEDA, Bratislava): Reidel (Kluwer group).

Pázman, A. (1990). Small-sample distributional properties of nonlinear regres-
sion estimators. a geometric approach (with discussion). Statistics 21 (3),
323–367.

Pázman, A. (1992a). A classification of nonlinear regression models and pa-
rameter confidence regions. Kybernetika 28 (6), 444–453.

Pázman, A. (1992b). Geometry of the nonlinear regression with prior. Acta
Math. Univ. Comenianae LXI, 263–276.

Pázman, A. (1993a). Higher dimensional nonlinear regression — a statistical
use of the Riemannian curvature tensor. Statistics 25, 17–28.



380 References

Pázman, A. (1993b). Nonlinear Statistical Models. Dordrecht: Kluwer.
Pázman, A. (2001). Concentration sets, Elfving sets and norms in optimum
design. In A. Atkinson, B. Bogacka, and A. Zhigljavsky (Eds.), Optimum
Design 2000, Chapter 10, pp. 101–112. Dordrecht: Kluwer.

Pázman, A. (2002a). Optimal design of nonlinear experiments with parameter
constraints. Metrika 56, 113–130.

Pázman, A. (2002b). Results on nonlinear least squares estimators under non-
linear equality constraints. J. Stat. Plann. Inference 103, 401–420.

Pázman, A., S. Bilenkaya, J. Bystrický, Z. Janout, and F. Lehar (1969). The
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Uciński, D. 301

Vajda, S. 340
Valko, P. 340
van de Geer, S. 20, 79
van der Vaart, A.W. 20, 77, 79, 97, 100,

102
Vandenberghe, L. 161, 277, 315
Vapnik, V.N. 3
Vazquez, E. 3
Veinott, A.F. 331
Verdinelli, I. 163, 240, 241
Vila, J.-P. 185
Vuchkov, I.N. 161

Wald, A. 25
Walter, E. 2, 3, 6, 103, 137, 140, 161,

179, 188, 211, 222, 224, 227, 228,
233, 297, 311, 313, 314, 339

Watson, G.S. 154
Watts, D.G. 8, 169, 170, 185, 193,

223
Wei, C.Z. 2, 25, 28, 34, 274
Weisberg, S. 161
Welch, W.J. 299, 301, 302
Wellner, J.A. 20, 97
Welsh, J.S. 245, 246
Welzl, E. 140, 161
Wolfe, P. 279, 284
Wolfowitz, J. 107, 132
Wong, W.K. 124, 134
Wright, M.H. 315
Wu, C.F.J. 7, 14, 25, 28, 34, 38, 274,

277, 281–283, 288, 289, 310, 350
Wu, S.-P. 161
Wynn, H.P. 45, 134, 161, 163, 164, 239,

281, 283, 292, 310

Yang, J. 313



Author Index 393

Yang, M. 139
Yang, S.-S. 264
Ye, Y. 315
Yildirim, E.A. 161, 296
Yin, G.G. 179, 312, 313
Yu, Y. 292, 293
Yvinec, M. 278

Zarrop, M.B. 2, 103, 297
Zeger, S.L. 102
Zhang, H. 2
Zhang, Y. 161
Zhigljavsky, A.A. 134, 161, 292
Zhu, Z. 2
Zuyev, S. 284



Subject Index

A-optimality, 110
for the MSE matrix, 178

adaptive design, 267
algorithm

black-box method, 307
branch-and-bound, 299
bundle method, 306, 331

conditional gradient, 286
constrained gradient, 286

cutting-plane, 219, 326
DETMAX, 298
ellipsoid, 315

exchange, 298
interior-point, 315

level method, 331
multi-vertex direction, 303
multiplicative, 291

Newton, 291
projected gradient, 286

projected subgradient, 306
simulated annealing, 299
vertex-direction, 137, 272, 279

vertex-exchange, 285
approximate bias, 182

approximate design, 2
asymptotic normality, 29

local, 102

of a function of the LS estimator, 36
of the M estimator, 81

of the ML estimator, 88
in regression, 84

of the penalized WLS estimator, 51

of the TSLS estimator, 54

of the WLS estimator, 29
regular, see regular asymptotic

normality
average efficiency, 236
average-optimum design, 236

algorithm, 312
equivalence theorem, 237

average-optimum exact design, 313

batch-sequential design, 267
Bayesian design, 163, 238
Bayesian estimation, 98
Bernoulli experiments, 67, 90
bias-corrected LS estimator, 183
bounded design measure, 163
bundle method, 306, 331

c-maximin efficiency, 147
c-maximin optimality, 112

derivative, 129
c-optimality, 38, 42, 111, 142, 203

algorithm, 145, 328
derivative, 129
duality, 148
equivalence theorem, 149
extended, 219
for nonlinear models, 149
for the MSE matrix, 179
semicontinuity, 15, 119

Caratheodory’s theorem, 139, 143
central cut, 316
compound optimum design, 123

derivative, 127
equivalence theorem, 135

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
Lecture Notes in Statistics 212, DOI 10.1007/978-1-4614-6363-4,
© Springer Science+Business Media New York 2013

395



396 Subject Index

concavity, 114, 116
condition number, 113
confidence

ellipsoid, 109
region, 109, 184
approximate volume, 185

consistency
of a function of the LS estimator, 24
of the LS estimator, 22
with finite X , 26

of the M estimator, 79
of the ML estimator, 86
in regression, 84

of the penalized WLS estimator, 50
of the TSLS estimator, 53
of the WLS estimator, 24
strong, 12, 15

constrained optimum design, 123, 320,
331

equivalence theorem, 135
continuous design, 2
convergence

rate, 28, 76
uniform, 16, 20
weak, 11

Cramér–Rao inequality, 85, 89, 94
Bayesian form, 99
with constraints, 104

curvature
intrinsic, 71, 169
parametric, 170, 198, 203
total, 223

cutting plane, 326
cutting planes, 219

D-optimality, 109, 185, 271
algorithms, 293
and c-maximin efficiency, 147
average, 240, 241
Bayesian, 240
derivative, 128
duality, 140
equivalence theorem, 132
for the MSE matrix, 178

DA-optimality
derivative, 130

Ds-optimality, 110
derivative, 130
duality, 141

equivalence theorem, 138
deep cut, 316, 318
delta method, 36
dependent observations, 2, 25, 28, 102
design

asymptotically discrete, 12
product, 134
randomized, 12
sequential, 267

design criterion
global, 118
local, 106
partial, 118
positively homogenous, 115
regularized, 152
singular, 118
with constraints, 123

design measure, 2
bounded, 163

differential equation, 339
directional derivative, 125
discrimination, 5, 137, 233
distinguishability, 233
duality properties, 140

E-optimality, 111, 197, 215, 255
algorithm, 327
derivative, 129
extended, 215, 231, 245

Ek-optimality, 113, 255
efficiency, 94

asymptotic, 96
super, 102

efficiency criterion, 121
lower bounds, 121

Elfving’s set, 140, 278
Elfving’s theorem, 142
ellipsoid

confidence, 109
method, 296, 315
of concentration, 108
of maximum volume, 161, 315
of minimum volume, 140, 160, 295

entropy, 109
approximation, 180, 183

equality constraints, 74, 104
equivalence theorem, 132, 337
estimability, 6, 189, 231

function, 196



Subject Index 397

estimating functions and equations, 101
estimation criterion, 16
estimation with constraints, 74, 162
estimator

adaptive, 76, 96
Bayesian, 98
L1, 57
LS, see LS estimator
M, see M estimator
ML, see ML estimator
one-(Newton) step, 97
(data-) recursive, 55, 103
robust, 77
TSLS, see TSLS estimator
unbiased, 94
WLS, see WLS estimator

exact design, 1, 296
expectation surface, 43, 168, 190

overlapping, 168, 172, 196, 208
exponential family, 4, 89, 95

Fisher information
for location, 28, 82, 84
matrix, 85, 88, 91, 92, 94

Frobenius norm, 113
full sequential design, 271

g-inverse, 14
Moore–Penrose, 29

G-optimality, 112
algorithm, 328
extended, 220

generalized linear model, 5, 89
global criterion, 118
gradient, 126, 286

heteroscedasticity, 21, 167
homoscedasticity, 5, 21

identifiability, 6, 188
implicit function theorem, 74, 181
information

function, 119
mapping, 113

information matrix, 2, 38, 105, 268
observed, 170

instrumental variables, 102
intrinsic curvature, 71, 169

isotonicity, 114, 118
iteratively reweighted LS, 56, 92

Jeffrey’s prior, 241

Kullback–Leibler divergence, 84, 233,
239

kurtosis, 52

L-optimality, 111, 112
average, 240
Bayesian, 241

level method, 331
likelihood function, 83
linear programming, 145, 218, 220, 296,

303, 316
locally optimum design, 106, 216
Loewner’s ordering, 114
LS estimability, 22, 189, 196, 212
LS estimator, 21

approximate bias, 182
asymptotic normality, 29, 274
bias-corrected, 183
consistency, 22
iteratively reweighted, 56
marginal densities, 177
probability density, 173
with parameterized variance, 48

M estimator, 79, 159, 233
asymptotic normality, 81
consistency, 79

marginal densities, 177, 178
maximin efficiency, 245

bounds, 250
maximin-optimum design, 124, 244

algorithm, 302
derivative, 127
equivalence theorem, 136, 245

maximin-optimum exact design, 311
maximum a posteriori estimator, 98,

152
probability density, 177

maximum-entropy regularization, 221,
254

mean-squared error matrix, 6, 178, 183
ML estimator, 49, 83, 233

asymptotic normality, 84, 88
consistency, 84, 86



398 Subject Index

model
flat, 171, 175
generalized linear, 5, 89
intrinsically linear, 169, 174, 212
linear, 170
mixed regression, 4, 48
nonparametric, 3
parametrically linear, 170
product-type, 134
regular, 35, 168
variance-component, 4, 48

modeling error, 70, 157
monotonicity, 114
MV -optimality, 111, 255

derivative, 128

non-differentiable optimization, 302
non-informative prior, 242
nuisance parameter, 50, 61, 70, 232

orthogonal invariance, 113

partial criterion, 118
penalized WLS estimator, 49, 60, 93,

156, 232
asymptotic normality, 51
consistency, 50

polarity, 141
positive homogeneity, 114
prediction-error method, 103
probability density

of the LS estimator, 173
of the maximum a posteriori

estimator, 177
of the penalized LS estimator, 176

probability level criterion, 259
product design, 134
projection, 287
projector, 71, 168

quadratic programming, 287, 307, 331
quantile criterion, 259
quasi-likelihood, 102

radius of curvature, 192
regression model, 21

classification, 172
geometry, 168
linear, 4

logistic, 90
mixed, 4, 48
multidimensional, 161

regular asymptotic normality, 37, 151
for finite X , 41
of a multidimensional function, 47

regularization, 152
via Lq norms, 248
via maximum-entropy, 221, 254

reparameterization, 110, 169
repetitions, 1, 12, 169, 173, 185, 201,

211
replications, see repetitions
response function, 3
Riemannian curvature tensor, 171
rounding, 296

saddle-point approximation, 176
Schur’s ordering, 114
score function, 101, 183
semicontinuity, 15, 118, 152, 198, 336
sensitivity functions, 339
sequential design, 267
singular criterion, 118
singular design, 34, 204

in nonlinear models, 38, 149
skewness, 52
small sample asymptotics, 176
space filling design, 4
state-space representation, 339
steepest ascent, 284, 303, 307
stochastic approximation, 180, 267, 312
stochastic dynamic programming, 267
stochastic equicontinuity, 20
subdifferential, 306, 335
subgradient, 335

algorithm, 307
inequality, 309
projection, 306

submodularity, 293
sufficient statistic

multidimensional, 92
one-dimensional, 90

superadditivity, 114, 354
support points, 1, 295

number, 139, 145, 245

T -optimality, 137, 233
thinnest cylinder, 141



Subject Index 399

TSLS estimator, 53, 62, 91

asymptotic normality, 54

consistency, 53

two-stage allocation, 268

uniform SLLN, 16, 19

universal optimality, 123

variance
misspecification, 57
parameterized, 48, 93
stabilization, 69

WLS estimator, 21, 154, 232
asymptotic normality, 29
consistency, 24


	Preface
	Contents
	1 Introduction
	1.1 Experiments and Their Designs
	1.2 Models
	1.3 Parameters
	1.4 Information and Design Criteria

	2 Asymptotic Designs and Uniform Convergence
	2.1 Asymptotic Designs
	2.2 Uniform Convergence
	2.3 Bibliographic Notes and Further Remarks

	3 Asymptotic Properties of the LS Estimator
	3.1 Asymptotic Properties of the LS Estimator in Regression Models
	3.1.1 Consistency
	3.1.2 Consistency Under a Weaker LS EstimabilityCondition
	3.1.3 Asymptotic Normality
	3.1.4 Asymptotic Normality of a Scalar Function of the LS Estimator

	3.2 Asymptotic Properties of Functions of the LS Estimator Under Singular Designs
	3.2.1 Singular Designs in Linear Models
	3.2.2 Singular Designs in Nonlinear Models
	Regular Asymptotic Normality when X is Finite
	Regular Asymptotic Normality when "705ELSN is not Consistent
	Regular Asymptotic Normality of a Multidimensional Function h()


	3.3 LS Estimation with Parameterized Variance
	3.3.1 Inconsistency of WLS with Parameter-Dependent Weights
	3.3.2 Consistency and Asymptotic Normality of Penalized WLS
	3.3.3 Consistency and Asymptotic Normalityof Two-stage LS
	3.3.4 Consistency and Asymptotic Normality of Iteratively Reweighted LS
	3.3.5 Misspecification of the Variance Function
	3.3.6 Different Parameterizations for the Meanand Variance
	Penalized WLS Estimation
	Two-stage LS Estimation

	3.3.7 Penalized WLS or Two-Stage LS?
	Normal Errors
	No Common Parameters in the Mean and Variance Functions
	Non-normal Errors
	Bernoulli Experiments

	3.3.8 Variance Stabilization

	3.4 LS Estimation with Model Error
	3.5 LS Estimation with Equality Constraints
	3.6 Bibliographic Notes and Further Remarks

	4 Asymptotic Properties of M, ML, and Maximum A Posteriori Estimators
	4.1 M Estimators in Regression Models
	4.2 The Maximum Likelihood Estimator
	4.2.1 Regression Models
	4.2.2 General Situation

	4.3 Generalized Linear Models and Exponential Families
	4.3.1 Models with a One-Dimensional Sufficient Statistic
	4.3.2 Models with a Multidimensional Sufficient Statistic

	4.4 The Cramér–Rao Inequality: Efficiency of Estimators
	4.4.1 Efficiency
	4.4.2 Asymptotic Efficiency

	4.5  The Maximum A Posteriori Estimator
	4.6 Bibliographic Notes and Further Remarks

	5 Local Optimality Criteria Based on AsymptoticNormality
	5.1 Design Criteria and Their Properties
	5.1.1 Ellipsoid of Concentration
	5.1.2 Classical Design Criteria
	5.1.3 Positive Homogeneity, Concavity, and Isotonicity
	5.1.4 Equivalence Between Criteria
	5.1.5 Concavity and Isotonicity of Classical Criteria
	5.1.6 Classification into Global and Partial Optimality Criteria
	5.1.7 The Upper Semicontinuity of the c-OptimalityCriterion
	5.1.8 Efficiency
	5.1.9 Combining Criteria
	Compound Criteria
	Using Design Criteria as Constraints

	5.1.10 Design with a Cost Constraint

	5.2 Derivatives and Conditions for Optimality of Designs
	5.2.1 Derivatives
	5.2.2 The Equivalence Theorem
	5.2.3 Number of Support Points
	5.2.4 Elfving's Set and Some Duality Properties

	5.3 c-Optimum Design in Linearized Nonlinear Models
	5.3.1 Elfving's Theorem and Related Properties
	5.3.2 c-Maximin Efficiency and D-Optimality
	5.3.3 A Duality Property for c-Optimality
	5.3.4 Equivalence Theorem for c-Optimality

	5.4 Specific Difficulties with c-Optimum Design in Presence of Nonlinearity
	5.5 Optimality Criteria for Asymptotic Variance–Covariance Matrices in Product Form
	5.5.1 The WLS Estimator
	5.5.2 The Penalized WLS Estimator
	5.5.3 The LS Estimator with Model Error
	5.5.4 The M Estimator

	5.6 Bibliographic Notes and Further Remarks

	6 Criteria Based on the Small-Sample Precision of the LS Estimator
	6.1 The Geometry of the Regression Model
	6.1.1 Basic Notions
	6.1.2 A Classification of Nonlinear Regression Models
	Intrinsically Linear Models

	6.1.3 Avoiding Failures of LS Estimation

	6.2 The Probability Density of the LS Estimator in Nonlinear Models with Normal Errors
	6.2.1 Intrinsically Linear Models
	6.2.2 Models with dim()=1
	6.2.3 Flat Models
	6.2.4 Models with Riemannian Curvature Tensor R() 0
	6.2.5 Density of the Penalized LS Estimator
	6.2.6 Marginal Densities of the LS Estimator

	6.3 Optimality Criteria Based on the p.d.f. of the LS Estimator
	6.4 Higher-Order Approximations of Optimality Criteria
	6.4.1 Approximate Bias and Mean-squared Error
	6.4.2 Approximate Entropy of the p.d.f. of the LS Estimator

	6.5 Bibliographic Notes and Further Remarks

	7 Identifiability, Estimability, and Extended Optimality Criteria
	7.1 Identifiability
	7.2 LS Estimability of Regression Models
	7.3 Numerical Issues Related to Estimability in RegressionModels
	Local Minimizers and Instability of "705ELSN
	Convexity of the LS Criterion

	7.4 Estimability Function
	7.4.1 Definition
	7.4.2 Properties
	Relation with E-optimality
	Relation with the Localization of the LS Estimator

	7.4.3 Replications and Design Measures
	7.4.4 Estimability for Parametric Functions

	7.5 An Extended Measure of Intrinsic Nonlinearity
	7.6 Advantages and Drawbacks of Using p-point Designs
	7.7 Design of Experiments for Improving Estimability
	7.7.1 Extended (Globalized) E-Optimality
	Definition
	Properties of eE()

	7.7.2 Extended (Globalized) c-Optimality
	Definition
	Properties of ec()

	7.7.3 Maximum-Entropy Regularization of Estimability Criteria
	7.7.4 Numerical Examples

	7.8 Remarks on Estimability for Estimators Other than LS
	7.9 Bibliographic Notes and Further Remarks

	8 Nonlocal Optimum Design
	8.1 Average-Optimum Design
	8.1.1 Properties
	8.1.2 A Bayesian Interpretation

	8.2 Maximin-Optimum Design
	8.3 Regularization of Maximin Criteria via Average Criteria
	8.3.1 Regularization via Lq Norms
	Pointwise Convergence of MmO,q() to MmO() as q
	Uniform Convergence of MmO,q() to MmO() as qwhen  is Finite
	Concavity of MmO,q() for q-1
	Directional Derivative

	8.3.2 Maximum-Entropy Regularization
	Pointwise Convergence of ME,() to MmO() as 
	Uniform Convergence of ME,() to MmO() as  when  is Finite
	Concavity of ME,()
	Directional Derivative
	An Upper Bound on MmO()


	8.4 Probability Level and Quantile Criteria
	Difficulties with Average and Maximin-Optimum Design
	Probability Level and Quantile Criteria
	Computation of Derivatives
	Pu() and Q() for a Normal Prior with Small Variance
	Kernel Smoothing

	8.5 Sequential Design
	8.5.1 Two-Stage Allocation
	8.5.2 Full-Sequential D-Optimum Design for LS Estimation in Nonlinear Regression Models


	9 Algorithms: A Survey
	9.1 Maximizing a Concave Differentiable Functional of a Probability Measure
	9.1.1 Vertex-Direction Algorithms
	9.1.2 Constrained Gradient and Gradient Projection
	9.1.3 Multiplicative Algorithms
	9.1.4 D-optimum Design

	9.2 Exact Design
	9.2.1 Exchange Methods
	9.2.2 Branch and Bound

	9.3 Maximin-Optimum Design
	9.3.1 Non-Differentiable Optimization of a Design Measure
	9.3.2 Maximin-Optimum Exact Design

	9.4 Average-Optimum Design
	9.4.1 Average-Optimal Design Measures and Stochastic Approximation
	9.4.2 Average-Optimum Exact Design

	9.5 Two Methods for Convex Programming
	9.5.1 Principles for Cutting Strategies and Interior-Point Methods
	9.5.2 The Ellipsoid Method
	9.5.3 The Cutting-Plane Method
	E-, c-, and G-Optimum Design
	General Concave Criteria
	The Level Method



	Appendix A Subdifferentials and Subgradients
	Subdifferentials and Subgradients

	Appendix BComputation of Derivatives Through Sensitivity Functions
	Computation of Derivatives ThroughSensitivity Functions

	Appendix CProofs
	Proofs

	Symbols and Notation
	List of Labeled Assumptions
	References
	Author Index
	Subject Index

