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Preface

Statistical inference is the science of analysing and interpreting data. It provides
essential tools for processing information, summarizing the amount of knowledge
gained and quantifying the remaining uncertainty.

This book provides an introduction to the principles and concepts of the two
most commonly used methods in scientific investigations: Likelihood and Bayesian
inference. The two approaches are usually seen as competing paradigms, but we
also emphasise connections, as there are many. In particular, both approaches are
linked to the notion of a statistical model and the corresponding likelihood function,
as described in the first two chapters. We discuss frequentist inference based on
the likelihood in detail, followed by the essentials of Bayesian inference. Advanced
topics that are important in practice are model selection, prediction and numerical
computation, and these are also discussed from both perspectives.

The intended audience are graduate students of Statistics, Biostatistics, Applied
Mathematics, Biomathematics and Bioinformatics. The reader should be familiar
with elementary concepts of probability, calculus, matrix algebra and numerical
analysis, as summarised in detailed Appendices A–C. Several applications, taken
from the area of biomedical research, are described in the Introduction and serve
as examples throughout the book. We hope that the R code provided will make it
easy for the reader to apply the methods discussed to her own statistical problem.
Each chapter finishes with exercises, which can be used to deepen the knowledge
obtained.

This textbook is based on a series of lectures and exercises that we gave at the
University of Zurich for Master students in Statistics and Biostatistics. It is a sub-
stantial extension of the German book “Methoden der statistischen Inferenz: Likeli-
hood und Bayes”, published by Spektrum Akademischer Verlag (Held 2008). Many
people have helped in various ways. We like to thank Eva and Reinhard Furrer,
Torsten Hothorn, Andrea Riebler, Malgorzata Roos, Kaspar Rufibach and all the
others that we forgot in this list. Last but not least, we are grateful to Niels Peter
Thomas, Alice Blanck and Ulrike Stricker-Komba from Springer-Verlag Heidelberg
for their continuing support and enthusiasm.

Leonhard Held, Daniel Sabanés BovéZurich, Switzerland
June 2013
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Statistics is a discipline with different branches. This book describes two central ap-
proaches to statistical inference, likelihood inference and Bayesian inference. Both
concepts have in common that they use statistical models depending on unknown
parameters to be estimated from the data. Moreover, both are constructive, i.e. pro-
vide precise procedures for obtaining the required results. A central role is played
by the likelihood function, which is determined by the choice of a statistical model.
While a likelihood approach bases inference only on the likelihood, the Bayesian
approach combines the likelihood with prior information. Also hybrid approaches
do exist.

What do we want to learn from data using statistical inference? We can distin-
guish three major goals. Of central importance is to estimate the unknown parame-
ters of a statistical model. This is the so-called estimation problem. However, how
do we know that the chosen model is correct? We may have a number of statistical
models and want to identify the one that describes the data best. This is the so-called
model selection problem. And finally, we may want to predict future observations
based on the observed ones. This is the prediction problem.

L. Held, D. Sabanés Bové, Applied Statistical Inference,
DOI 10.1007/978-3-642-37887-4_1, © Springer-Verlag Berlin Heidelberg 2014
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2 1 Introduction

1.1 Examples

Several examples will be considered throughout this book, many of them more than
once viewed from different perspectives or tackled with different techniques. We
will now give a brief overview.

1.1.1 Inference for a Proportion

One of the oldest statistical problems is the estimation of a probability based on an
observed proportion. The underlying statistical model assumes that a certain event
of interest occurs with probability π , say. For example, a possible event is the oc-
currence of a specific genetic defect, for example Klinefelter’s syndrome, among
male newborns in a population of interest. Suppose now that n male newborns are
screened for that genetic defect and x ∈ {0,1, . . . , n} newborns do have it, i.e. n − x

newborns do not have this defect. The statistical task is now to estimate from this
sample the underlying probability π for Klinefelter’s syndrome for a randomly se-
lected male newborn in that population.

The statistical model described above is called binomial. In that model, n is fixed,
and x is a the realisation of a binomial random variable. However, the binomial
model is not the only possible one: A proportion may in fact be the result of a
different sampling scheme with the role of x and n being reversed. The resulting
negative binomial model fixes x and checks all incoming newborns for the genetic
defect considered until x newborns with the genetic defects are observed. Thus,
in this model the total number n of newborns screened is random and follows a
negative binomial distribution. See Appendix A.5.1 for properties of the binomial
and negative binomial distributions. The observed proportion x/n of newborns with
Klinefelter’s syndrome is an estimate of the probability π in both cases, but the sta-
tistical model underlying the sampling process may still affect our inference for π .
We will return to this issue in Sect. 2.5.2.

Probabilities are often transformed to odds, where the odds ω = π/(1 − π) are
defined as the ratio of the probability π of the event considered and the probability
1 − π of the complementary event. For example, a probability π = 0.5 corresponds
to 1 to 1 odds (ω = 1), while odds of 9 to 1 (ω = 9) are equivalent to a probability of
π = 0.9. The corresponding estimate of ω is given by the empirical odds x/(n− x).
It is easy to show that any odds ω can be back-transformed to the corresponding
probability π via π = ω/(1 + ω).

1.1.2 Comparison of Proportions

Closely related to inference for a proportion is the comparison of two proportions.
For example, a clinical study may be conducted to compare the risk of a certain
disease in a treatment and a control group. We now have two unknown risk prob-
abilities π1 and π2, with observations x1 and x2 and samples sizes n1 and n2 in
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Table 1.1 Incidence of
preeclampsia (observed
proportion) in nine
randomised
placebo-controlled clinical
trials of diuretics. Empirical
odds ratios (OR) are also
given. The studies are
labelled with the name of the
principal author

Trial Treatment Control OR

Weseley 11 % (14/131) 10 % (14/136) 1.04

Flowers 5 % (21/385) 13 % (17/134) 0.40

Menzies 25 % (14/57) 50 % (24/48) 0.33

Fallis 16 % (6/38) 45 % (18/40) 0.23

Cuadros 1 % (12/1011) 5 % (35/760) 0.25

Landesman 10 % (138/1370) 13 % (175/1336) 0.74

Krans 3 % (15/506) 4 % (20/524) 0.77

Tervila 6 % (6/108) 2 % (2/103) 2.97

Campbell 42 % (65/153) 39 % (40/102) 1.14

the two groups. Different measures are now employed to compare the two groups,
among which the risk difference π1 − π2 and the risk ratio π1/π2 are the most
common ones. The odds ratio

ω1

ω2
= π1/(1 − π1)

π2/(1 − π2)
,

the ratio of the odds ω1 and ω2, is also often used. Note that if the risk in the two
groups is equal, i.e. π1 = π2, then the risk difference is zero, while both the risk ratio
and the odds ratio is one. Statistical methods can now be employed to investigate if
the simpler model with one parameter π = π1 = π2 can be preferred over the more
complex one with different risk parameters π1 and π2. Such questions may also be
of interest if more than two groups are considered.

A controlled clinical trial compares the effect of a certain treatment with a con-
trol group, where typically either a standard treatment or a placebo treatment is
provided. Several randomised controlled clinical trials have investigated the use of
diuretics in pregnancy to prevent preeclampsia. Preeclampsia is a medical condition
characterised by high blood pressure and significant amounts of protein in the urine
of a pregnant woman. It is a very dangerous complication of a pregnancy and may
affect both the mother and fetus. In each trial women were randomly assigned to one
of the two treatment groups. Randomisation is used to exclude possible subjective
influence from the examiner and to ensure equal distribution of relevant risk factors
in the two groups.

The results of nine such studies are reported in Table 1.1. For each trial the ob-
served proportions xi/ni in the treatment and placebo control group (i = 1,2) are
given, as well as the corresponding empirical odds ratio

x1/(n1 − x1)

x2/(n2 − x2)
.

One can see substantial variation of the empirical odds ratios reported in Table 1.1.
This raises the question if this variation is only statistical in nature or if there is
evidence for additional heterogeneity between the studies. In the latter case the true
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treatment effect differs from trial to trial due to different inclusion criteria, different
underlying populations, or other reasons. Such questions are addressed in a meta-
analysis, a combined analysis of results from different studies.

1.1.3 The Capture–Recapture Method

The capture–recapture method aims to estimate the size of a population of individ-
uals, say the number N of fish in a lake. To do so, a sample of M fishes is drawn
from the lake, with all the fish marked and then thrown back into the lake. After a
sufficient time, a second sample of size n is taken, and the number x of marked fish
in that sample is recorded.

The goal is now to infer N from M , n and x. An ad-hoc estimate can be ob-
tained by equating the proportion of marked fish in the lake with the corresponding
proportion in the sample:

M

N
≈ x

n
.

This leads to the estimate N̂ ≈ M · n/x for the number N of fish in the lake. As we
will see in Example 2.2, there is a rigorous theoretical basis for this estimate. How-
ever, the estimate N̂ has an obvious deficiency for x = 0, where N̂ is infinite. Other
estimates without this deficiency are available. Appropriate statistical techniques
will enable us to quantify the uncertainty associated with the different estimates
of N .

1.1.4 Hardy–Weinberg Equilibrium

The Hardy–Weinberg equilibrium (after Godfrey H. Hardy, 1879–1944, and Wil-
helm Weinberg, 1862–1937) plays a central in population genetics. Consider a pop-
ulation of diploid, sexually reproducing individuals and a specific locus on a chro-
mosome with alleles A and a. If the allele frequencies of A and a in the population
are υ and 1 − υ , then the expected genotype frequencies of AA, Aa and aa are

π1 = υ2, π2 = 2υ(1 − υ) and π3 = (1 − υ)2. (1.1)

The Hardy–Weinberg equilibrium implies that the allele frequency υ determines the
expected frequencies of the genotypes. If a population is not in Hardy–Weinberg
equilibrium at a specific locus, then two parameters π1 and π2 are necessary to de-
scribe the distribution. The de Finetti diagram shown in Fig. 1.1 is a useful graphical
visualization of Hardy–Weinberg equilibrium.

It is often of interest to investigate whether a certain population is in Hardy–
Weinberg equilibrium at a particular locus. For example, a random sample of
n = 747 individuals has been taken in a study of MN blood group frequencies in
Iceland. The MN blood group in humans is under the control of a pair of alleles,
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Fig. 1.1 The de Finetti diagram, named after the Italian statistician Bruno de Finetti (1906–1985),
displays the expected relative genotype frequencies Pr(AA) = π1, Pr(aa) = π3 and Pr(Aa) = π2
in a bi-allelic, diploid population as the length of the perpendiculars a, b and c from the inner
point F to the sides of a equilateral triangle. The ratio of the straight length aa,Q to the side
length aa,AA is the relative allele frequency υ of A. Hardy–Weinberg equilibrium is represented
by all points on the parabola 2υ(1 − υ). For example, the point G represents such a population
with υ = 0.5, whereas population F has substantially less heterozygous Aa than expected under
Hardy–Weinberg equilibrium

M and N. Most people in the Eskimo population are MM, while other populations
tend to possess the opposite genotype NN. In the sample from Iceland, the fre-
quencies of the underlying genotypes MM, MN and NN turned out to be x1 = 233,
x2 = 385 and x3 = 129. If we assume that the population is in Hardy–Weinberg
equilibrium, then the statistical task is to estimate the unknown allele frequency υ

from these data. Statistical methods can also address the question if the equilibrium
assumption is supported by the data or not. This is a model selection problem, which
can be addressed with a significance test or other techniques.

1.1.5 Estimation of Diagnostic Tests Characteristics

Screening of individuals is a popular public health approach to detect diseases in
an early and hopefully curable stage. In order to screen a large population, it is
imperative to use a fairly cheap diagnostic test, which typically makes errors in the
disease classification of individuals. A useful diagnostic test will have high

sensitivity = Pr(positive test | subject is diseased) and

specificity = Pr(negative test | subject is healthy).
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Table 1.2 Distribution of the number of positive test results among six consecutive screening tests
of 196 colon cancer cases

Number k of positive tests 0 1 2 3 4 5 6

Frequency Zk ? 37 22 25 29 34 49

Here Pr(A | B) denotes the conditional probability of an event A, given the infor-
mation B. The first line thus reads “the sensitivity is the conditional probability of
a positive test, given the fact that the subject is diseased”; see Appendix A.1.1 for
more details on conditional probabilities. Thus, high values for the sensitivity and
specificity mean that classification of diseased and non-diseased individuals is cor-
rect with high probability. The sensitivity is also known as the true positive fraction
whereas specificity is called the true negative fraction.

Screening examinations are particularly useful if the disease considered can be
treated better in an earlier stage than in a later stage. For example, a diagnostic
study in Australia involved 38 000 individuals, which have been screened for the
presence of colon cancer repeatedly on six consecutive days with a simple diagnostic
test. 3000 individuals had at least one positive test result, which was subsequently
verified with a coloscopy. 196 cancer cases were eventually identified, and Table 1.2
reports the frequency of positive test results among those. Note that the number Z0
of cancer patients that have never been positively tested is unavailable by design.
The closely related false negative fraction

Pr(negative test | subject is diseased),

which is 1 − sensitivity, is often of central public health interest. Statistical methods
can be used to estimate this quantity and the number of undetected cancer cases Z0.
Similarly, the false positive fraction

Pr(positive test | subject is healthy)

is 1 − specificity.

1.1.6 Quantifying Disease Risk from Cancer Registry Data

Cancer registries collect incidence and mortality data on different cancer locations.
For example, data on the incidence of lip cancer in Scotland have been collected
between 1975 and 1980. The raw counts of cancer cases in 56 administrative dis-
tricts of Scotland will vary a lot due to heterogeneity in the underlying popu-
lation counts. Other possible reasons for variation include different age distribu-
tions or heterogeneity in underlying risk factors for lip cancer in the different dis-
tricts.

A common approach to adjust for age heterogeneity is to calculate the expected
number of cases using age standardisation. The standardised incidence ratio (SIR)
of observed to expected number of cases is then often used to visually display ge-
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Fig. 1.2 The geographical
distribution of standardised
incidence ratios (SIRs) of lip
cancer in Scotland,
1975–1980. Note that some
SIRs are below or above the
interval [0.25,4] and are
marked white and black,
respectively

Fig. 1.3 Plot of the
standardised incidence ratios
(SIR) versus the expected
number of lip cancer cases.
Both variables are shown on a
square-root scale to improve
visibility. The horizontal line
SIR = 1 represents equal
observed and expected cases

ographical variation in disease risk. If the SIR is equal to 1, then the observed in-
cidence is as expected. Figure 1.2 maps the corresponding SIRs for lip cancer in
Scotland.

However, SIRs are unreliable indicators of disease incidence, in particular if the
disease is rare. For example, a small district may have zero observed cases just by
chance such that the SIR will be exactly zero. In Fig. 1.3, which plots the SIRs
versus the number of expected cases, we can identify two such districts. More gen-
erally, the statistical variation of the SIRs will depend on the population counts, so
more extreme SIRs will tend to occur in less populated areas, even if the underlying
disease risk does not vary from district to district. Indeed, we can see from Fig. 1.3
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Table 1.3 Mean and
standard deviation of the
transformation factor
TF = BAC/BrAC for females
and males

Gender Number of
volunteers

Transformation factor

Mean Standard deviation

Female 33 2318.5 220.1

Male 152 2477.5 232.5

Total 185 2449.2 237.8

that the variation of the SIRs increases with decreasing number of expected cases.
Statistical methods can be employed to obtain more reliable estimates of disease
risk. In addition, we can also investigate the question if there is evidence for hetero-
geneity of the underlying disease risk at all. If this is the case, then another question
is whether the variation in disease risk is spatially structured or not.

1.1.7 Predicting Blood Alcohol Concentration

In many countries it is not allowed to drive a car with a blood alcohol concentra-
tion (BAC) above a certain threshold. For example, in Switzerland this threshold
is 0.5 mg/g = 0.5 �. However, usually only a measurement of the breath alco-
hol concentration (BrAC) is taken from a suspicious driver in the first instance. It
is therefore important to accurately predict the BAC measurement from the BrAC
measurement. Usually this is done by multiplication of the BrAC measurement with
a transformation factor TF. Ideally this transformation should be accompanied with
a prediction interval to acknowledge the uncertainty of the BAC prediction.

In Switzerland, currently TF0 = 2000 is used in practise. As some experts con-
sider this too low, a study was conducted at the Forensic Institute of the University
of Zurich in the period 2003–2004. For n = 185 volunteers, both BrAC and BAC
were measured after consuming various amounts of alcoholic beverages of personal
choice. Mean and standard deviation of the ratio TF = BAC/BrAC are shown in
Table 1.3. One of the central questions of the study was if the currently used factor
of TF0 = 2000 needs to be adjusted. Moreover, it is of interest if the empirical dif-
ference between male and female volunteers provides evidence of a true difference
between genders.

1.1.8 Analysis of Survival Times

A randomised placebo-controlled trial of Azathioprine for primary biliary cirrhosis
(PBC) was designed with patient survival as primary outcome. PBC is a chronic and
eventually fatal liver disease, which affects mostly women. Table 1.4 gives the sur-
vival times (in days) of the 94 patients, which have been treated with Azathioprine.
The reported survival time is censored for 47 (50 %) of the patients. A censored
survival time does not represent the time of death but the last time point when the
patient was still known to be alive. It is not known whether, and if so when, a woman
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Table 1.4 Survival times of 94 patients under Azathioprine treatment in days. Censored observa-
tions are marked with a plus sign

8+ 9 38 96 144 167 177 191+ 193 201

207 251 287+ 335+ 379+ 421 425 464 498+ 500

574+ 582+ 586 616 630 636 647 651+ 688 743

754 769+ 797 799+ 804 828+ 904+ 932+ 947 962+

974 1113+ 1219 1247 1260 1268 1292+ 1408 1436+ 1499

1500 1522 1552 1554 1555+ 1626+ 1649+ 1942 1975 1982+

1998+ 2024+ 2058+ 2063+ 2101+ 2114+ 2148 2209 2254+ 2338+

2384+ 2387+ 2415+ 2426 2436+ 2470 2495+ 2500 2522 2529+

2744+ 2857 2929 3024 3056+ 3247+ 3299+ 3414+ 3456+ 3703+

3906+ 3912+ 4108+ 4253+

Fig. 1.4 Illustration of
partially censored survival
times using the first 10
observations of the first
column in Table 1.4.
A survival time marked with
a plus sign is censored,
whereas the other survival
times are actual deaths

with censored survival time actually died of PBC. Possible reasons for censoring in-
clude drop-out of the study, e.g. due to moving away, or death by some other cause,
e.g. due to a car accident. Figure 1.4 illustrates this type of data.

1.2 Statistical Models

The formulation of a suitable probabilistic model plays a central role in the statisti-
cal analysis of data. The terminology statistical model is also common. A statistical
model will describe the probability distribution of the data as a function of an un-
known parameter. If there is more than one unknown parameter, i.e. the unknown
parameters form a parameter vector, then the model is a multiparameter model. In
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this book we will concentrate on parametric models, where the number of parame-
ters is fixed, i.e. does not depend on the sample size. In contrast, in a non-parametric
model the number of parameters grows with the sample size and may even be infi-
nite.

Appropriate formulation of a statistical model is based on careful considerations
on the origin and properties of the data at hand. Certain approximations may often
be useful in order to simplify the model formulation. Often the observations are
assumed to be a random sample, i.e. independent realisations from a known distri-
bution. See Appendix A.5 for a comprehensive list of commonly used probability
distributions.

For example, estimation of a proportion is often based on a random sample of
size n drawn without replacement from some population with N individuals. The
appropriate statistical model for the number of observations in the sample with the
property of interest is the hypergeometric distribution. However, the hypergeomet-
ric distribution can be approximated by a binomial one, a statistical model for the
number of observations with some property of interest in a random sample with
replacement. The difference between these two models is negligible if n is much
smaller than N , and then the binomial model is typically preferred.

Capture–recapture methods are also based on a random sample of size n without
replacement, but now N is the unknown parameter of interest, so it is unclear if n

is much smaller than N . Hence, the hypergeometric distribution is the appropriate
statistical model, which has the additional advantage that the quantity of interest is
an explicit parameter contained in that model.

The validity of a statistical model can be checked with statistical methods. For
example, we will discuss methods to investigate if the underlying population of a
random sample of genotypes is in Hardy–Weinberg equilibrium. Another example
is the statistical analysis of continuous data, where the normal distribution is a pop-
ular statistical model. The distribution of survival times, for example, is typically
skewed, and hence other distributions such as the gamma or the Weibull distribution
are used.

For the analysis of count data, as for example the number of lip cancer cases in
the administrative districts of Scotland from Example 1.1.6, a suitable distribution
has to be chosen. A popular choice is the Poisson distribution, which is suitable if
the mean and variance of the counts are approximately equal. However, in many
cases there is overdispersion, i.e. the variance is larger than the mean. Then the
Poisson-gamma distribution, a generalisation of the Poisson distribution, is a suit-
able choice.

Statistical models can become considerably more complex if necessary. For ex-
ample, the statistical analysis of survival times needs to take into account that some
of the observations are censored, so an additional model (or some simplifying as-
sumption) for the censoring mechanism is typically needed. The formulation of a
suitable statistical model for the data obtained in the diagnostic study described in
Example 1.1.5 also requires careful thought since the study design does not deliver
direct information on the number of patients with solely negative test results.
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1.3 Contents and Notation of the Book

Chapter 2 introduces the central concept of a likelihood function and the maxi-
mum likelihood estimate. Basic elements of frequentist inference are summarised
in Chap. 3. Frequentist inference based on the likelihood, as described in Chaps. 4
and 5, enables us to construct confidence intervals and significance tests for parame-
ters of interest. Bayesian inference combines the likelihood with a prior distribution
and is conceptually different from the frequentist approach. Chapter 6 describes the
central aspects of this approach. Chapter 7 gives an introduction to model selection
from both a likelihood and a Bayesian perspective, while Chap. 8 discusses the use
of modern numerical methods for Bayesian inference and Bayesian model selec-
tion. In Chap. 9 we give an introduction to the construction and the assessment of
probabilistic predictions. Every chapter ends with exercises and some references to
additional literature.

Modern statistical inference is unthinkable without the use of a computer. Nu-
merous numerical techniques for optimization and integration are employed to solve
statistical problems. This book emphasises the role of the computer and gives many
examples with explicit R code. Appendix C is devoted to the background of these
numerical techniques. Modern statistical inference is also unthinkable without a
solid background in mathematics, in particular probability, which is covered in Ap-
pendix A. A collection of the most common probability distributions and their prop-
erties is also given. Appendix B describes some central results from matrix algebra
and calculus which are used in this book.

We finally describe some notational issues. Mathematical results are given in
italic font and are often followed by a proof of the result, which ends with an open
square (�). A filled square (�) denotes the end of an example. Definitions end with
a diamond (�). Vectorial parameters θ are reproduced in boldface to distinguish
them from scalar parameters θ . Similarly, independent univariate random variables
Xi from a certain distribution contribute to a random sample X1:n = (X1, . . . ,Xn),
whereas n independent multivariate random variables Xi = (Xi1, . . . ,Xik)

� are de-
noted as X1:n = (X1, . . . ,Xn). On page 363 we give a concise overview of the
notation used in this book.

1.4 References

Estimation and comparison of proportions are discussed in detail in Connor and
Imrey (2005). The data on preeclampsia trials is cited from Collins et al. (1985).
Applications of capture–recapture techniques are described in Seber (1982). Details
on the Hardy–Weinberg equilibrium can be found in Lange (2002), the data from
Iceland are taken from Falconer and Mackay (1996). The colon cancer screening
data is taken from Lloyd and Frommer (2004), while the data on lip cancer in Scot-
land is taken from Clayton and Bernardinelli (1992). The study on breath and blood
alcohol concentration is described in Iten (2009) and Iten and Wüst (2009). Kirk-
wood and Sterne (2003) report data on the clinical study on the treatment of primary
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biliary cirrhosis with Azathioprine. Jones et al. (2009) is a recent book on statistical
computing, which provides much of the background necessary to follow our nu-
merical examples using R. For a solid but at the same time accessible treatment of
probability theory, we recommend Grimmett and Stirzaker (2001, Chaps. 1–7).
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The term likelihood has been introduced by Sir Ronald A. Fisher (1890–1962). The
likelihood function forms the basis of likelihood-based statistical inference.

2.1 Likelihood and Log-Likelihood Function

Let X = x denote a realisation of a random variable or vector X with probability
mass or density function f (x; θ), cf. Appendix A.2. The function f (x; θ) depends
on the realisation x and on typically unknown parameters θ , but is otherwise as-
sumed to be known. It typically follows from the formulation of a suitable statistical
model. Note that θ can be a scalar or a vector; in the latter case we will write the pa-
rameter vector θ in boldface. The space T of all possible realisations of X is called
sample space, whereas the parameter θ can take values in the parameter space Θ .
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The function f (x; θ) describes the distribution of the random variable X for
fixed parameter θ . The goal of statistical inference is to infer θ from the observed
datum X = x. Playing a central role in this task is the likelihood function (or simply
likelihood)

L(θ;x) = f (x; θ), θ ∈ Θ,

viewed as a function of θ for fixed x. We will often write L(θ) for the likelihood if
it is clear to which observed datum x the likelihood refers to.

Definition 2.1 (Likelihood function) The likelihood function L(θ) is the probability
mass or density function of the observed data x, viewed as a function of the unknown
parameter θ . �

For discrete data, the likelihood function is the probability of the observed data
viewed as a function of the unknown parameter θ . This definition is not directly
transferable to continuous observations, where the probability of every exactly mea-
sured observed datum is strictly speaking zero. However, in reality continuous mea-
surements are always rounded to a certain degree, and the probability of the ob-
served datum x can therefore be written as Pr(x − ε

2 ≤ X ≤ x + ε
2 ) for some small

rounding interval width ε > 0. Here X denotes the underlying true continuous mea-
surement.

The above probability can be re-written as

Pr

(
x − ε

2
≤ X ≤ x + ε

2

)
=
∫ x+ ε

2

x− ε
2

f (y; θ) dy ≈ ε · f (x; θ),

so the probability of the observed datum x is approximately proportional to the
density function f (x; θ) of X at x. As we will see later, the multiplicative constant
ε can be ignored, and we therefore use the density function f (x; θ) as the likelihood
function of a continuous datum x.

2.1.1 Maximum Likelihood Estimate

Plausible values of θ should have a relatively high likelihood. The most plausible
value with maximum value of L(θ) is the maximum likelihood estimate.

Definition 2.2 (Maximum likelihood estimate) The maximum likelihood estimate
(MLE) θ̂ML of a parameter θ is obtained through maximising the likelihood function:

θ̂ML = arg max
θ∈Θ

L(θ). �

In order to compute the MLE, we can safely ignore multiplicative constants in
L(θ), as they have no influence on θ̂ML. To simplify notation, we therefore often only
report a likelihood function L(θ) without multiplicative constants, i.e. the likelihood
kernel.
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Definition 2.3 (Likelihood kernel) The likelihood kernel is obtained from a like-
lihood function by removing all multiplicative constants. We will use the symbol
L(θ) both for likelihood functions and kernels. �

It is often numerically convenient to use the log-likelihood function

l(θ) = logL(θ),

the natural logarithm of the likelihood function, for computation of the MLE. The
logarithm is a strictly monotone function, and therefore

θ̂ML = arg max
θ∈Θ

l(θ).

Multiplicative constants in L(θ) turn to additive constants in l(θ), which again can
often be ignored. A log-likelihood function without additive constants is called log-
likelihood kernel. We will use the symbol l(θ) both for log-likelihood functions and
kernels.

Example 2.1 (Inference for a proportion) Let X ∼ Bin(n,π) denote a binomially
distributed random variable. For example, X = x may represent the observed num-
ber of babies with Klinefelter’s syndrome among n male newborns. The number
of male newborns n is hence known, while the true prevalence π of Klinefelter’s
syndrome among male newborns is unknown.

The corresponding likelihood function is

L(π) =
(

n

x

)
πx(1 − π)n−x for π ∈ (0,1)

with unknown parameter π ∈ (0,1) and sample space T = {0,1, . . . , n}. The mul-
tiplicative term

(
n
x

)
does not depend on π and can therefore be ignored, i.e. it is

sufficient to consider the likelihood kernel πx(1 − π)n−x . The likelihood function
L(π) is displayed in Fig. 2.1 for a sample size of n = 10 with x = 2 and x = 0
babies with Klinefelter’s syndrome, respectively.

The log-likelihood kernel turns out to be

l(π) = x logπ + (n − x) log(1 − π)

with derivative

dl(π)

dπ
= x

π
− n − x

1 − π
.

Setting this derivative to zero gives the MLE π̂ML = x/n, the relative frequency of
Klinefelter’s syndrome in the sample. The MLEs are marked with a vertical line in
Fig. 2.1. �

The uniqueness of the MLE is not guaranteed, and in certain examples there may
exist at least two parameter values θ̂1 �= θ̂2 with L(θ̂1) = L(θ̂2) = arg maxθ∈Θ L(θ).
In other situations, the MLE may not exist at all. The following example illustrates



16 2 Likelihood

Fig. 2.1 Likelihood function for π in a binomial model. The MLEs are marked with a vertical
line

that application of the capture–recapture method can result both in non-unique and
non-existing MLEs.

Example 2.2 (Capture–recapture method) As described in Sect. 1.1.3, the goal of
capture–recapture methods is to estimate the number N of individuals in a popu-
lation. To achieve that goal, M individuals are marked and randomly mixed with
the total population. A sample of size n without replacement is then drawn, and the
number X = x of marked individuals is determined. The suitable statistical model
for X is therefore a hypergeometric distribution

X ∼ HypGeom(n,N,M)

with probability mass function

Pr(X = x) = f (x; θ = N) =
(
M
x

)(
N−M
n−x

)
(
N
n

)

for x ∈ T = {max{0, n− (N −M)}, . . . ,min(n,M)}. The likelihood function for N

is therefore

L(N) =
(
M
x

)(
N−M
n−x

)
(
N
n

)
for N ∈ Θ = {max(n,M + n − x),max(n,M + n − x) + 1, . . . }, where we could
have ignored the multiplicative constant

(
M
x

)
n!

(n−x)! . Figure 2.2 displays this likeli-
hood function for certain values of x, n and M . Note that the unknown parameter
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Fig. 2.2 Likelihood function
for N in the capture–recapture
experiment with M = 26,
n = 63 and x = 5. The
(unique) MLE is N̂ML = 327

θ = N can only take integer values and is not continuous, although the figure sug-
gests the opposite.

It is possible to show (cf. Exercise 3) that the likelihood function is maximised at
N̂ML = 	M · n/x
, where 	y
 denotes the largest integer not greater than y. For ex-
ample, for M = 26, n = 63 and x = 5 (cf. Fig. 2.2), we obtain N̂ML = 	26 · 63/5
 =
	327.6
 = 327.

However, sometimes the MLE is not unique, and the likelihood function attains
the same value at N̂ML − 1. For example, for M = 13, n = 10 and x = 5, we have
N̂ML = 13 · 10/5 = 26, but N̂ML = 25 also attains exactly the same value of L(N).
This can easily be verified empirically using the R-function dhyper, cf. Table A.1.

> M <- 13

> n <- 10

> x <- 5

> ml <- c(25, 26)

> (dhyper(x=x, m=M, n=ml-M, k=n))

[1] 0.311832 0.311832

On the other hand, the MLE will not exist for x = 0 because the likelihood function
L(N) is then monotonically increasing. �

We often have not only one observation x but a series x1, . . . , xn of n observa-
tions from f (x; θ), usually assumed to be independent. This leads to the concept of
a random sample.

Definition 2.4 (Random sample) Data x1:n = (x1, . . . , xn) are realisations of a ran-
dom sample X1:n = (X1, . . . ,Xn) of size n if the random variables X1, . . . ,Xn

are independent and identically distributed from some distribution with probabil-
ity mass or density function f (x; θ). The number n of observations is called the

sample size. This may be denoted as Xi
iid
∼ f (x; θ), i = 1, . . . , n. �
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The probability mass or density function of X1:n is

f (x1:n; θ) =
n∏

i=1

f (xi; θ)

due to assumed independence of the components of X1:n. The likelihood function
based on a random sample can therefore be written as the product of the individual
likelihood contributions L(θ;xi) = f (xi; θ):

L(θ;x1:n) =
n∏

i=1

L(θ;xi) =
n∏

i=1

f (xi; θ).

The log-likelihood is hence the sum of the individual log-likelihood contributions
l(θ;xi) = logf (xi; θ):

l(θ;x1:n) =
n∑

i=1

l(θ;xi) =
n∑

i=1

logf (xi; θ). (2.1)

Example 2.3 (Analysis of survival times) Let X1:n denote a random sample from
an exponential distribution Exp(λ). Then

L(λ) =
n∏

i=1

{
λ exp(−λxi)

}= λn exp

(
−λ

n∑
i=1

xi

)

is the likelihood function of λ ∈ R

+. The log-likelihood function is therefore

l(λ) = n logλ − λ

n∑
i=1

xi

with derivative

dl(λ)

dλ
= n

λ
−

n∑
i=1

xi.

Setting the derivative to zero, we easily obtain the MLE λ̂ML = 1/x̄ where x̄ =∑n
i=1 xi/n is the mean observed survival time. If our interest is instead in the the-

oretical mean μ = 1/λ of the exponential distribution, then the likelihood function
takes the form

L(μ) = μ−n exp

(
− 1

μ

n∑
i=1

xi

)
, μ ∈R

+,

with MLE μ̂ML = x̄.
For pure illustration, we now consider the n = 47 non-censored PBC survival

times from Example 1.1.8 and assume that they are exponentially distributed. We
emphasise that this approach is in general not acceptable, as ignoring the censored
observations will introduce bias if the distributions of censored and uncensored
events differ. It is also less efficient, as a certain proportion of the available data
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Fig. 2.3 Likelihood function for λ (left) and μ (right) assuming independent and exponentially
distributed PBC-survival times. Only uncensored observations are taken into account

is ignored. In Example 2.8 we will therefore also take into account the censored
observations.

The likelihood functions for the rate parameter λ and the mean survival time
μ = 1/λ are shown in Fig. 2.3. Note that the actual values of the likelihood functions
are identical, only the scale of the x-axis is transformed. This illustrates that the
likelihood function and in particular the MLE are invariant with respect to one-to-
one transformations of the parameter θ , see Sect. 2.1.3 for more details. It also shows
that a likelihood function cannot be interpreted as a density function of a random
variable. Indeed, assume that L(λ) was an (unnormalised) density function; then the
density of μ = 1/λ would be not equal to L(1/μ) because this change of variables
would also involve the derivative of the inverse transformation, cf. Eq. (A.11) in
Appendix A.2.3.

The assumption of exponentially distributed survival times may be unrealistic,
and a more flexible statistical model may be warranted. Both the gamma and the
Weibull distributions include the exponential distribution as a special case. The
Weibull distribution Wb(μ,α) is described in Appendix A.5.2 and depends on two
parameters μ and α, which both are required to be positive. A random sample X1:n
from a Weibull distribution has the density

f (x1:n;μ,α) =
n∏

i=1

f (xi;μ,α) =
n∏

i=1

α

μ

(
xi

μ

)α−1

exp

{
−
(

xi

μ

)α}
,

and the corresponding likelihood function can be written as

L(μ,α) = αn

μnα

(
n∏

i=1

xi

)α−1

exp

{
−

n∑
i=1

(
xi

μ

)α
}

, μ,α > 0.
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Fig. 2.4 Flexible modeling of survival times is achieved by a Weibull or gamma model. The
corresponding likelihood functions are displayed here. The vertical line at α = 1 corresponds to
the exponential model in both cases

For α = 1, we obtain the exponential distribution with expectation μ = 1/λ as a
special case.

A contour plot of the Weibull likelihood, a function of two parameters, is dis-
played in Fig. 2.4a. The likelihood function is maximised at α = 1.19, μ = 1195.
The assumption of exponentially distributed survival times does not appear to be
completely unrealistic, but the likelihood values for α = 1 are somewhat lower. In
Example 5.9 we will calculate a confidence interval for α, which can be used to
quantify the plausibility of the exponential model.

If we assume that the random sample comes from a gamma distribution G(α,β),
the likelihood is (cf. again Appendix A.5.2)

L(α,β) =
n∏

i=1

βα

�(α)
xα−1
i exp(−βxi) =

{
βα

�(α)

}n
(

n∏
i=1

xi

)α−1

exp

(
−β

n∑
i=1

xi

)
.

The exponential distribution with parameter λ = β corresponds to the special case
α = 1. Plausible values α and β of the gamma likelihood function tend to lie on the
diagonal in Fig. 2.4b: for larger values of α, plausible values of β tend to be also
larger. The sample is apparently informative about the mean μ = α/β , but not so
informative about the components α and β of that ratio.

Alternatively, the gamma likelihood function can be reparametrised, and the pa-
rameters μ = α/β and φ = 1/β , say, could be used. The second parameter φ now
represents the variance-to-mean ratio of the gamma distribution. Figure 2.5 displays
the likelihood function using this new parametrisation. The dependence between the
two parameters appears to be weaker than for the initial parametrisation shown in
Fig. 2.4b. �
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Fig. 2.5 Likelihood
L(μ,φ) · 10164 of the
reparametrised gamma model

A slightly less restrictive definition of a random sample still requires indepen-
dence, but no longer that the components Xi do all have the same distribution. For
example, they may still belong to the same distribution family, but with different
parameters.

Example 2.4 (Poisson model) Consider Example 1.1.6 and denote the observed and
expected number of cancer cases in the n = 56 regions of Scotland with xi and ei ,
respectively, i = 1, . . . , n. The simplest model for such registry data assumes that
the underlying relative risk λ is the same in all regions and that the observed counts
xi ’s constitute independent realisations from Poisson distributions with means eiλ.
The random variables Xi hence belong to the same distributional family but are
not identically distributed since the mean parameter eiλ varies from observation to
observation.

The log-likelihood kernel of the relative risk λ turns out to be

l(λ) =
n∑

i=1

xi logλ −
n∑

i=1

eiλ,

and the MLE of λ is

λ̂ML =
n∑

i=1

xi

/ n∑
i=1

ei = x̄/ē,

where x̄ =∑n
i=1 xi/n and ē =∑n

i=1 ei/n denote the mean observed and expected
number of cases, respectively. �
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2.1.2 Relative Likelihood

It is often useful to consider the likelihood (or log-likelihood) function relative to its
value at the MLE.

Definition 2.5 (Relative likelihood) The relative likelihood is

L̃(θ) = L(θ)

L(θ̂ML)
.

In particular we have 0 ≤ L̃(θ) ≤ 1 and L̃(θ̂ML) = 1. The relative likelihood is also
called the normalised likelihood.

Taking the logarithm of the relative likelihood gives the relative log-likelihood

l̃(θ) = log L̃(θ) = l(θ) − l(θ̂ML),

where we have −∞ < l̃(θ) ≤ 0 and l̃(θ̂ML) = 0. �

Example 2.5 (Inference for a proportion) All different likelihood functions are dis-
played for a binomial model (cf. Example 2.1) with sample size n = 10 and observa-
tion x = 2 in Fig. 2.6. Note that the change from an ordinary to a relative likelihood
changes the scaling of the y-axis, but the shape of the likelihood function remains
the same. This is also true for the log-likelihood function. �

It is important to consider the entire likelihood function as the carrier of the in-
formation regarding θ provided by the data. This is far more informative than to
consider only the MLE and to disregard the likelihood function itself. Using the val-
ues of the relative likelihood function gives us a method to derive a set of parameter
values (usually an interval), which are supported by the data. For example, the fol-
lowing categorisation based on thresholding the relative likelihood function using
the cutpoints 1/3, 1/10, 1/100 and 1/1000 has been proposed:

1 ≥ L̃(θ) >
1

3
θ very plausible,

1

3
≥ L̃(θ) >

1

10
θ plausible,

1

10
≥ L̃(θ) >

1

100
θ less plausible,

1

100
≥ L̃(θ) >

1

1000
θ barely plausible,

1

1000
≥ L̃(θ) ≥ 0 θ not plausible.

However, such a pure likelihood approach to inference has the disadvantage that the
scale and the thresholds are somewhat arbitrarily chosen. Indeed, the likelihood on
its own does not allow us to quantify the support for a certain set of parameter values
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Fig. 2.6 Various likelihood functions in a binomial model with n = 10 and x = 2

using probabilities. In Chap. 4 we will describe different approaches to calibrate the
likelihood based on the concept of a confidence interval. Alternatively, a Bayesian
approach can be employed, combining the likelihood with a prior distribution for θ

and using the concept of a credible interval. This approach is outlined in Chap. 6.

2.1.3 Invariance of the Likelihood

Suppose we parametrise the distribution of X not with respect to θ , but with respect
to a one-to-one transformation φ = h(θ). The likelihood function Lφ(φ) for φ and
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the likelihood function Lθ(θ) for θ are related as follows:

Lθ(θ) = Lθ

{
h−1(φ)

}= Lφ(φ).

The actual value of the likelihood will not be changed by this transformation, i.e.
the likelihood is invariant with respect to one-to-one parameter transformations. We
therefore have

φ̂ML = h(θ̂ML)

for the MLEs φ̂ML and θ̂ML. This is an important property of the maximum likelihood
estimate:

Invariance of the MLE
Let θ̂ML be the MLE of θ , and let φ = h(θ) be a one-to-one transformation
of θ . The MLE of φ can be obtained by inserting θ̂ML in h(θ): φ̂ML = h(θ̂ML).

Example 2.6 (Binomial model) Let X ∼ Bin(n,π), so that π̂ML = x/n. Now con-
sider the corresponding odds parameter ω = π/(1 − π). The MLE of ω is

ω̂ML = π̂ML

1 − π̂ML

=
x
n

1 − x
n

= x

n − x
.

Without knowledge of the invariance property of the likelihood function, we would
have to derive the likelihood function with respect to ω and subsequently maximise
it directly. We will do this now for illustrative purposes only.

The log-likelihood kernel for π is

lπ (π) = x log(π) + (n − x) log(1 − π).

We also have

ω = h(π) = π

1 − π
⇐⇒ π = h−1(ω) = ω

1 + ω
and 1 − π = 1

1 + ω

and therefore

lω(ω) = lπ
{
h−1(ω)

}

= x log

(
ω

1 + ω

)
+ (n − x) log

(
1

1 + ω

)

= x log(ω) − n log(1 + ω).

The derivative with respect to ω turns out to be

dlω(ω)

dω
= x

ω
− n

1 + ω
,
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so the root ω̂ML must fulfill x(1 + ω̂ML) = n ω̂ML. We easily obtain

ω̂ML = x

n − x
. �

Example 2.7 (Hardy–Weinberg Equilibrium) Let us now consider Example 1.1.4
and the observed frequencies x1 = 233, x2 = 385 and x3 = 129 of the three geno-
types MM, MN and NN. Assuming Hardy–Weinberg equilibrium, the multinomial
log-likelihood kernel

l(π) =
3∑

i=1

xi log(πi)

can be written with (1.1) as

l(υ) = x1 log
(
υ2)+ x2 log

{
2υ(1 − υ)

}+ x3 log
{
(1 − υ)2}

= 2x1 log(υ) + x2 log(2)︸ ︷︷ ︸
=const

+x2 log(υ) + x2 log(1 − υ) + 2x3 log(1 − υ)

= (2x1 + x2) log(υ) + (x2 + 2x3) log(1 − υ) + const.

The log-likelihood kernel for the allele frequency υ is therefore (2x1 +x2) log(υ)+
(x2 + 2x3) log(1 − υ), which can be identified as a binomial log-likelihood kernel
for the success probability υ with 2x1 + x2 successes and x2 + 2x3 failures.

The MLE of υ is therefore

υ̂ML = 2x1 + x2

2x1 + 2x2 + 2x3
= 2x1 + x2

2n
= x1 + x2/2

n
,

which is exactly the proportion of A alleles in the sample. For the data above, we
obtain υ̂ML ≈ 0.570. The MLEs of π1,π2 and π3 (assuming Hardy–Weinberg equi-
librium) are therefore

π̂1 = υ̂2
ML ≈ 0.324, π̂2 = 2υ̂ML(1 − υ̂ML) ≈ 0.490 and

π̂3 = (1 − υ̂ML)
2 ≈ 0.185,

using the invariance property of the likelihood. �

In the last example, the transformation to which the MLE is invariant is not really
a one-to-one transformation. A more detailed view of the situation is the following:
We have the more general multinomial model with two parameters π1, π2 (π3 is
determined by these) and the simpler Hardy–Weinberg model with one parame-
ter υ . We can restrict the multinomial model to the Hardy–Weinberg model, which
is hence a special case of the multinomial model. If we obtain an MLE for υ , we can
hence calculate the resulting MLEs for π1, π2 and also π3. However, in the other di-
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rection, i.e. by first calculating the unrestricted MLE π̂ML in the multinomial model,
we could not calculate a corresponding MLE υ̂ML in the simpler Hardy–Weinberg
model.

2.1.4 Generalised Likelihood

Declaring probability mass and density functions as appropriate likelihood func-
tions is not always sufficient. In some situations this definition must be suitably
generalised. A typical example is the analysis of survival data with some observa-
tions being censored.

Assume that observed survival times x1, . . . , xn are independent realisations from
a distribution with density function f (x; θ) and corresponding distribution function
F(x; θ) = Pr(X ≤ x; θ). The likelihood contribution of a non-censored observation
xi is then (as before) f (xi; θ). However, a censored observation will contribute the
term 1−F(xi; θ) = Pr(Xi > xi; θ) to the likelihood since in this case we only know
that the actual (unobserved) survival time is larger than xi .

Compact notation can be achieved using the censoring indicator δi , i = 1, . . . , n,
with δi = 0 if the survival time xi is censored and δi = 1 if it is observed. Due to
independence of the observations, the likelihood can be written as

L(θ) =
n∏

i=1

f (xi; θ)δi
{
1 − F(xi; θ)

}1−δi . (2.2)

Example 2.8 (Analysis of survival times) A simple statistical model to describe
survival times is to assume an exponential distribution with density and distribution
function

f (x) = λ exp(−λx) and

F(x) = 1 − exp(−λx),

respectively, so 1 − F(x) = exp(−λx). The likelihood function (2.2) now reduces
to

L(λ) = λnδ̄ exp(−λnx̄),

where δ̄ is the observed proportion of uncensored observations, and x̄ is the mean
observed survival time of all (censored and uncensored) observations. The MLE is
λ̂ML = δ̄/x̄. Due to invariance of the MLE, the estimate for the mean μ = 1/λ is
μ̂ML = x̄/δ̄.

Among the n = 94 observations from Example 1.1.8, there are
∑n

i=1 δi = 47
uncensored, and the total follow-up time is

∑n
i=1 xi = 143192 days. The estimated

rate is λ̂ML = 47/143 192 = 32.82 per 100 000 days, and the MLE of the expected
survival time is μ̂ML = 3046.6 days. This is substantially larger than in the analysis
of the uncensored observations only (cf. Example 2.3), where we have obtained the
estimate μ̂ML = 1130.8 days. �
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2.2 Score Function and Fisher Information

The MLE of θ is obtained by maximising the (relative) likelihood function,

θ̂ML = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

L̃(θ).

For numerical reasons, it is often easier to maximise the log-likelihood l(θ) =
logL(θ) or the relative log-likelihood l̃(θ) = l(θ) − l(θ̂ML) (cf. Sect. 2.1), which
yields the same result since

θ̂ML = arg max
θ∈Θ

l(θ) = arg max
θ∈Θ

l̃(θ).

However, the log-likelihood function l(θ) has much larger importance, besides sim-
plifying the computation of the MLE. Especially, its first and second derivatives are
important and have their own names, which are introduced in the following. For
simplicity, we assume that θ is a scalar.

Definition 2.6 (Score function) The first derivative of the log-likelihood function

S(θ) = dl(θ)

dθ

is called the score function. �

Computation of the MLE is typically done by solving the score equation
S(θ) = 0.

The second derivative, the curvature, of the log-likelihood function is also of
central importance and has its own name.

Definition 2.7 (Fisher information) The negative second derivative of the log-
likelihood function

I (θ) = −d2l(θ)

dθ2
= −dS(θ)

dθ

is called the Fisher information. The value of the Fisher information at the MLE
θ̂ML, i.e. I (θ̂ML), is the observed Fisher information. �

Note that the MLE θ̂ML is a function of the observed data, which explains the
terminology “observed” Fisher information for I (θ̂ML).

Example 2.9 (Normal model) Suppose we have realisations x1:n of a random sam-
ple from a normal distribution N(μ,σ 2) with unknown mean μ and known vari-
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ance σ 2. The log-likelihood kernel and score function are then

l(μ) = − 1

2σ 2

n∑
i=1

(xi − μ)2 and

S(μ) = 1

σ 2

n∑
i=1

(xi − μ),

respectively. The solution of the score equation S(μ) = 0 is the MLE μ̂ML = x̄.
Taking another derivative gives the Fisher information

I (μ) = n

σ 2
,

which does not depend on μ and so is equal to the observed Fisher information
I (μ̂ML), no matter what the actual value of μ̂ML is.

Suppose we switch the roles of the two parameters and treat μ as known and σ 2

as unknown. We now obtain

σ̂ 2
ML =

n∑
i=1

(xi − μ)2/n

with Fisher information

I
(
σ 2)= 1

σ 6

n∑
i=1

(xi − μ)2 − n

2σ 4
.

The Fisher information of σ 2 now really depends on its argument σ 2. The observed
Fisher information turns out to be

I
(
σ̂ 2

ML

)= n

2σ̂ 4
ML

. �

It is instructive at this stage to adopt a frequentist point of view and to consider
the MLE μ̂ML = x̄ from Example 2.9 as a random variable, i.e. μ̂ML = X̄ is now
a function of the random sample X1:n. We can then easily compute Var(μ̂ML) =
Var(X̄) = σ 2/n and note that

Var(μ̂ML) = 1

I (μ̂ML)

holds. In Sect. 4.2.3 we will see that this equality is approximately valid for other
statistical models. Indeed, under certain regularity conditions, the variance Var(θ̂ML)

of the MLE turns out to be approximately equal to the inverse observed Fisher infor-
mation 1/I (θ̂ML), and the accuracy of this approximation improves with increasing
sample size n. Example 2.9 is a special case, where this equality holds exactly for
any sample size.
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Example 2.10 (Binomial model) The score function of a binomial observation X =
x with X ∼ Bin(n,π) is

S(π) = dl(π)

dπ
= x

π
− n − x

1 − π

and has been derived already in Example 2.1. Taking the derivative of S(π) gives
the Fisher information

I (π) = −d2l(π)

dπ2
= −dS(π)

dπ

= x

π2
+ n − x

(1 − π)2

= n

{
x/n

π2
+ (n − x)/n

(1 − π)2

}
.

Plugging in the MLE π̂ML = x/n, we finally obtain the observed Fisher information

I (π̂ML) = n

π̂ML(1 − π̂ML)
.

This result is plausible if we take a frequentist point of view and consider the MLE
as a random variable. Then

Var(π̂ML) = Var

(
X

n

)
= 1

n2
· Var(X) = 1

n2
nπ(1 − π) = π(1 − π)

n
,

so the variance of π̂ML has the same form as the inverse observed Fisher information;
the only difference is that the MLE π̂ML is replaced by the true (and unknown)
parameter π . The inverse observed Fisher information is hence an estimate of the
variance of the MLE. �

How does the observed Fisher information change if we reparametrise our statis-
tical model? Here is the answer to this question.

Result 2.1 (Observed Fisher information after reparametrisation) Let Iθ (θ̂ML) de-
note the observed Fisher information of a scalar parameter θ and suppose that
φ = h(θ) is a one-to-one transformation of θ . The observed Fisher information
Iφ(φ̂ML) of φ is then

Iφ(φ̂ML) = Iθ (θ̂ML)

{
dh−1(φ̂ML)

dφ

}2

= Iθ (θ̂ML)

{
dh(θ̂ML)

dθ

}−2

. (2.3)

Proof The transformation h is assumed to be one-to-one, so θ = h−1(φ) and
lφ(φ) = lθ {h−1(φ)}. Application of the chain rule gives
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Sφ(φ) = dlφ(φ)

dφ
= dlθ {h−1(φ)}

dφ

= dlθ (θ)

dθ
· dh−1(φ)

dφ

= Sθ (θ) · dh−1(φ)

dφ
. (2.4)

The second derivative of lφ(φ) can be computed using the product and chain rules:

Iφ(φ) = −dSφ(φ)

dφ
= − d

dφ

{
Sθ (θ) · dh−1(φ)

dφ

}

= −dSθ (θ)

dφ
· dh−1(φ)

dφ
− Sθ (θ) · d2h−1(φ)

dφ2

= −dSθ (θ)

dθ
·
{

dh−1(φ)

dφ

}2

− Sθ (θ) · d2h−1(φ)

dφ2

= Iθ (θ)

{
dh−1(φ)

dφ

}2

− Sθ (θ) · d2h−1(φ)

dφ2
.

Evaluating Iφ(φ) at the MLE φ = φ̂ML (so θ = θ̂ML) leads to the first equation in (2.3)
(note that Sθ (θ̂ML) = 0). The second equation follows with

dh−1(φ)

dφ
=
{

dh(θ)

dθ

}−1

for
dh(θ)

dθ
�= 0. (2.5)

�

Example 2.11 (Binomial model) In Example 2.6 we saw that the MLE of the odds
ω = π/(1 − π) is ω̂ML = x/(n − x). What is the corresponding observed Fisher
information? First, we compute the derivative of h(π) = π/(1 − π), which is

dh(π)

dπ
= 1

(1 − π)2
.

Using the observed Fisher information of π derived in Example 2.10, we obtain

Iω(ω̂ML) = Iπ (π̂ML)

{
dh(π̂ML)

dπ

}−2

= n

π̂ML(1 − π̂ML)
· (1 − π̂ML)

4

= n · (1 − π̂ML)
3

π̂ML

= (n − x)3

nx
.
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As a function of x for fixed n, the observed Fisher information Iω(ω̂ML) is monoton-
ically decreasing (the numerator is monotonically decreasing, and the denominator
is monotonically increasing). In other words, the observed Fisher information in-
creases with decreasing MLE ω̂ML.

The observed Fisher information of the log odds φ = log(ω) can be similarly
computed, and we obtain

Iφ(φ̂ML) = Iω(ω̂ML)

(
1

ω̂ML

)−2

= (n − x)3

nx
· x2

(n − x)2
= x(n − x)

n
.

Note that Iφ(φ̂ML) does not change if we redefine successes as failures and vice
versa. This is also the case for the observed Fisher information Iπ (π̂ML) but not for
Iω(ω̂ML). �

2.3 Numerical Computation of the Maximum Likelihood
Estimate

Explicit formulas for the MLE and the observed Fisher information can typically
only be derived in simple models. In more complex models, numerical techniques
have to be applied to compute maximum and curvature of the log-likelihood func-
tion. We first describe the application of general purpose optimisation algorithms
to this setting and will discuss the Expectation-Maximisation (EM) algorithm in
Sect. 2.3.2.

2.3.1 Numerical Optimisation

Application of the Newton–Raphson algorithm (cf. Appendix C.1.3) requires the
first two derivatives of the function to be maximised, so for maximising the log-
likelihood function, we need the score function and the Fisher information. Iterative
application of the equation

θ(t+1) = θ(t) + S(θ(t))

I (θ(t))

gives after convergence (i.e. θ(t+1) = θ(t)) the MLE θ̂ML. As a by-product, the ob-
served Fisher information I (θ̂ML) can also be extracted.

To apply the Newton–Raphson algorithm in R, the function optim can conve-
niently be used, see Appendix C.1.3 for details. We need to pass the log-likelihood
function as an argument to optim. Explicitly passing the score function into optim
typically accelerates convergence. If the derivative is not available, it can sometimes
be computed symbolically using the R function deriv. Generally no derivatives
need to be passed to optim because it can approximate them numerically. Particu-
larly useful is the option hessian = TRUE, in which case optim will also return
the negative observed Fisher information.
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Example 2.12 (Screening for colon cancer) The goal of Example 1.1.5 is to esti-
mate the false negative fraction of a screening test, which consists of six consecutive
medical examinations. Let π denote the probability for a positive test result of the
ith diseased individual and denote by Xi the number of positive test results among
the six examinations. We start by assuming that individual test results are indepen-
dent and that π does not vary from patient to patient (two rather unrealistic assump-
tions, as we will see later), so that Xi is binomially distributed: Xi ∼ Bin(N = 6,π).
However, due to the study design, we will not observe a patient with Xi = 0 positive
tests. We therefore need to use the truncated binomial distribution as the appropriate
statistical model. The corresponding log-likelihood can be derived by considering

Pr(Xi = k | Xi > 0) = Pr(Xi = k)

Pr(Xi > 0)
, k = 1, . . . ,6, (2.6)

and turns out to be (cf. Example C.1 in Appendix C)

l(π) =
N∑

k=1

Zk

{
k log(π) + (N − k) log(1 − π)

}− n log
{
1 − (1 − π)N

}
. (2.7)

Here Zk denotes the number of patients with k positive test results, and n =∑N
k=1 Zk = 196 is the total number of diseased patients with at least one positive

test result.
Computation of the MLE is now most conveniently done with numerical tech-

niques. To do so, we write an R function log.likelihood, which returns the
log-likelihood kernel of the unknown probability (pi) for a given vector of counts
(data) and maximise, it with the optim function.

> ## Truncated binomial log-likelihood function

> ## pi: the parameter, the probability of a positive test result

> ## data: vector with counts Z_1, ..., Z_N

> log.likelihood <- function(pi, data)

{

n <- sum(data)

k <- length(data)

vec <- seq_len(k)

result <- sum(data * (vec * log(pi) + (k-vec) * log(1-pi))) -

n * log(1 - (1-pi)^k)

}

> data <- c(37, 22, 25, 29, 34, 49)

> eps <- 1e-10

> result <- optim(0.5, log.likelihood, data = data,

method = "L-BFGS-B", lower = eps, upper = 1-eps,

control = list(fnscale = -1), hessian = TRUE)

> (ml <- result$par)

[1] 0.6240838

The MLE turns out to be π̂ML = 0.6241, and the observed Fisher information
I (π̂ML) = 4885.3 is computed via
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> (observed.fisher <- - result$hessian)

[,1]

[1,] 4885.251

Invariance of the MLE immediately gives the MLE of the false negative fraction
ξ = Pr(Xi = 0) via

ξ̂ML = (1 − π̂ML)
N = 0.0028.

A naive estimate of the number of undetected cancer cases Z0 can be obtained
by solving Ẑ0/(196 + Ẑ0) = ξ̂ML for Ẑ0:

Ẑ0 = 196 · ξ̂ML

1 − ξ̂ML

= 0.55. (2.8)

It turns out that this estimate can be justified as a maximum likelihood estimate. To
see this, note that the probability to detect a cancer case in one particular application
of the six-stage screening test is 1 − ξ . The number of samples until the first cancer
case is detected therefore follows a geometric distribution with success probability
1−ξ , cf. Table A.1 in Appendix A.5.1. Thus, if n is the observed number of detected
cancer cases, the total number of cancer cases Z0 + n follows a negative binomial
distribution with parameters n and 1 − ξ (again cf. Appendix A.5.1):

Z0 + n ∼ NBin(n,1 − ξ),

so the expectation of Z0 + n is E(Z0 + n) = n/(1 − ξ). Our interest is in the expec-
tation of Z0,

E(Z0) = n

1 − ξ
− n = n · ξ

1 − ξ
. (2.9)

The MLE (2.8) of E(Z0) can now easily be obtained by replacing ξ with ξ̂ML.
A closer inspection of Table 1.2 makes 0.55 expected undetected cancer cases

rather implausible and raises questions about the appropriateness of the binomial
model. Indeed, a naive extrapolation of the observed frequencies Zk , k = 1, . . . ,6,
leads to a considerably larger values of Z0. The fact that the binomial model does not
fit the data well can also be seen from the frequencies in Table 1.2 with a “bathtub”
shape with extreme values k = 1 and k = 5,6 more likely than the intermediate val-
ues k = 2,3,4. Such a form is impossible with a (truncated) binomial distribution.
This can also be seen from the expected frequencies under the binomial model with
π̂ML = 0.6241, which are 5.5, 22.9, 50.8, 63.2, 42.0 and 11.6 for k = 1, . . . ,6. The
difference to the observed frequencies Zk is quite striking. In Example 5.18 we will
apply a goodness-of-fit test, which quantifies the evidence against this model. Ear-
lier in Chap. 5 we will introduce an alternative model with two parameters, which
describes the observed frequencies much better. �
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2.3.2 The EM Algorithm

The Expectation-Maximisation (EM) algorithm is an iterative algorithm to compute
MLEs. In certain situations it is particularly easy to apply, as the following example
illustrates.

Example 2.13 (Screening for colon cancer) We reconsider Example 1.1.5, where
the number Zk of 196 cancer patients with k ≥ 1 positive test results among six
cancer colon screening tests has been recorded. Due to the design of the study, we
have no information on the number Z0 of patients with solely negative test results
(cf. Table 1.2). Numerical techniques allow us to fit a truncated binomial distribution
to the observed data Z1, . . . ,Z6, cf. Example 2.12.

However, the EM algorithm could also be used to compute the MLEs. The idea
is that an explicit and simple formula for the MLE of π would be available if the
number Z0 was known as well:

π̂ =
∑6

k=0 k · Zk

6 ·∑6
k=0 Zk

. (2.10)

Indeed, in this case we are back in the untruncated binomial case with
∑6

k=0 k · Zk

positive tests among 6 ·∑6
k=0 Zk tests. However, Z0 is unknown, but if π and hence

ξ = (1 − π)6 are known, Z0 can be estimated by the expectation of a negative
binomial distribution (cf. Eq. (2.9) at the end of Example 2.12):

Ẑ0 = E(Z0) = n · ξ

1 − ξ
, (2.11)

where n = 196 and ξ = (1−π)6. The EM algorithm now iteratively computes (2.10)
and (2.11) and replaces the terms Z0 and π on the right-hand sides with their current
estimates Ẑ0 and π̂ , respectively. Implementation of the algorithm is shown in the
following R-code:

> ## data set

> fulldata <- c(NA, 37, 22, 25, 29, 34, 49)

> k <- 0:6

> n <- sum(fulldata[-1])

> ## impute start value for Z0 (first element)

> ## and initialise some different old value

> fulldata[1] <- 10

> Z0old <- 9

> ## the EM algorithm

> while(abs(Z0old - fulldata[1]) >= 1e-7)

{

Z0old <- fulldata[1]

pi <- sum(fulldata * k) / sum(fulldata) / 6

xi <- (1-pi)^6

fulldata[1] <- n * xi / (1-xi)

}



2.3 Numerical Computation of the Maximum Likelihood Estimate 35

Table 2.1 Values of the EM
algorithm until convergence
(Difference between old and
new estimate π̂ smaller
than 10−7)

Iteration π̂ Ẑ0

1 0.5954693 0.8627256

2 0.6231076 0.5633868

3 0.6240565 0.5549056

4 0.6240835 0.5546665

5 0.6240842 0.5546597

6 0.6240842 0.5546596

This method quickly converges, as illustrated in Table 2.1, with starting value
Z0 = 10. Note that the estimate π̂ from Table 2.1 is numerically equal to the MLE
(cf. Example 2.12) already after 5 iterations. As a by-product, we also obtain the
estimate Ẑ0 = 0.55. �

A general derivation of the EM algorithm distinguishes observed data X

(Z1, . . . ,Z6 in Example 2.13) and unobserved data U (Z0 in Example 2.13). The
joint probability mass or density function of the complete data X and U can always
be written as (cf. Eq. (A.7) in Appendix A.2)

f (x,u) = f (u | x)f (x),

so the corresponding log-likelihood functions of θ obey the relationship

l(θ;x,u) = l(θ;u | x) + l(θ;x). (2.12)

Note that the log-likelihood functions cannot be written in the simple form l(θ) as
they are based on different data: l(θ;x,u) is the complete data log-likelihood, while
l(θ;x) is the observed data log-likelihood. Now u is unobserved, so we replace it
in (2.12) by the random variable U :

l(θ;x,U) = l(θ;U | x) + l(θ;x)

and consider the expectation of this equation with respect to f (u | x; θ ′) (it will
soon become clear why we distinguish θ and θ ′):

E
{
l(θ;x,U); θ ′}︸ ︷︷ ︸

=:Q(θ;θ ′)

= E
{
l(θ;U | x); θ ′}︸ ︷︷ ︸

=:C(θ;θ ′)

+ l(θ;x)︸ ︷︷ ︸
=l(θ)

. (2.13)

Note that the last term does not change, as it does not depend on U . So if

Q
(
θ; θ ′)≥ Q

(
θ ′; θ ′), (2.14)

we have with (2.13):

l(θ) − l
(
θ ′)≥ C

(
θ ′; θ ′)− C

(
θ; θ ′)≥ 0, (2.15)

where the last inequality follows from the information inequality (cf. Appendix A.3.8).
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This leads to the EM algorithm with starting value θ ′:
1. Expectation (E-step): Compute Q(θ; θ ′).
2. Maximisation (M-step): Maximise Q(θ; θ ′) with respect to θ to obtain θ ′′.
3. Now iterate Steps 1 and 2 (i.e. set θ ′ = θ ′′ and apply Step 1), until the values of

θ converge. A possible stopping criterion is |θ ′ − θ ′′| < ε for some small ε > 0.
Equation (2.15) implies that every iteration of the EM algorithm increases the log-
likelihood. This follows from the fact that—through maximisation—Q(θ ′′; θ ′) is
larger than Q(θ; θ ′) for all θ , so in particular (2.14) holds (with θ = θ ′), and there-
fore l(θ ′′) ≥ l(θ ′). In contrast, the Newton–Raphson algorithm is not guaranteed to
increase the log-likelihood in every iteration.

Example 2.14 (Example 2.13 continued) The joint probability mass function of ob-
served data X = (Z1, . . . ,Z6) and unobserved data U = Z0 is multinomially dis-
tributed (cf. Appendix A.5.3) with size parameter equal to n + Z0 and probability
vector p with entries

pk =
(

6

k

)
πk(1 − π)6−k,

k = 0, . . . ,6, which we denote by

(Z0,Z1, . . . ,Z6)
� ∼ M7(n + Z0,p).

The corresponding log-likelihood

l(π) =
6∑

k=0

Zk log(pk) (2.16)

is linear in the unobserved data Z0. Therefore, the E-step of the EM algorithm is
achieved if we replace Z0 with its expectation conditional on the observed data
X = (Z1, . . . ,Z6) and on the unknown parameter π ′. From Example 2.12 we know
that this expectation is E(Z0 | Z1 = z1, . . . ,Z6 = z6;π ′) = n · ξ ′/(1 − ξ ′) with n =
z1 + · · · + z6 and ξ ′ = (1 − π ′)6. This completes the E-step.

The M-step now maximises (2.16) with Z0 = n · ξ ′/(1 − ξ ′) with respect to π .
We have argued earlier that the complete data MLE is (2.10). This estimate can
formally be derived from the complete data log-likelihood kernel

l(π) =
6∑

k=0

Zk

{
(6 − k) log(1 − π) + k log(π)

}
,

easily obtained from (2.16), which leads to the complete data score function

S(π) =
{

6∑
k=0

k · Zk/π − 6
6∑

k=0

Zk

}
/(1 − π).

It is easy to show that the root of this equation is (2.10). �
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One can also show that the EM algorithm always converges to a local or global
maximum, or at least to a saddlepoint of the log-likelihood. However, the conver-
gence can be quite slow; typically, more iterations are required than for the Newton–
Raphson algorithm. Another disadvantage is that the algorithm does not automati-
cally give the observed Fisher information. Of course, this can be calculated after
convergence if the second derivative of the log-likelihood l(θ;x) of the observed
data x is available.

2.4 Quadratic Approximation of the Log-Likelihood Function

An important approximation of the log-likelihood function is based on a quadratic
function. To do so, we apply a Taylor approximation of second order (cf. Ap-
pendix B.2.3) around the MLE θ̂ML:

l(θ) ≈ l(θ̂ML) + dl(θ̂ML)

dθ
(θ − θ̂ML) + 1

2

d2l(θ̂ML)

dθ2
(θ − θ̂ML)

2

= l(θ̂ML) + S(θ̂ML)(θ − θ̂ML) − 1

2
· I (θ̂ML)(θ − θ̂ML)

2.

Due to S(θ̂ML) = 0, the quadratic approximation of the relative log-likelihood is

l̃(θ) = l(θ) − l(θ̂ML) ≈ −1

2
· I (θ̂ML)(θ − θ̂ML)

2. (2.17)

Example 2.15 (Poisson model) Assume that we have one observation x = 11 from
a Poisson distribution Po(eλ) with known offset e = 3.04 and unknown parameter
λ. The MLE of λ is λ̂ML = x/e = 3.62, cf. Example 2.4. The observed Fisher infor-
mation turns out to be I (λ̂ML) = x/λ̂2

ML, so that the quadratic approximation of the
relative log-likelihood is

l̃(λ) ≈ −1

2

x

λ̂2
ML

(λ − λ̂ML)
2.

Figure 2.7 displays l̃(λ) and its quadratic approximation. �

Example 2.16 (Normal model) Let X1:n denote a random sample from a normal
distribution N(μ,σ 2) with unknown mean μ and known variance σ 2. We know
from Example 2.9 that

l(μ) = − 1

2σ 2

n∑
i=1

(xi − μ)2

= − 1

2σ 2

{
n∑

i=1

(xi − x̄)2 + n(x̄ − μ)2

}
,
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Fig. 2.7 Relative
log-likelihood l̃(λ) and its
quadratic approximation
(dashed line) for a single
observation x = 11 from a
Poisson distribution with
mean eλ and known offset
e = 3.04

l(μ̂ML) = − 1

2σ 2

n∑
i=1

(xi − x̄)2, and hence

l̃(μ) = l(μ) − l(μ̂ML) = − n

2σ 2
(x̄ − μ)2,

but we also have

−1

2
· I (μ̂ML)(μ − μ̂ML)

2 = − n

2σ 2
(μ − x̄)2.

Both sides of Eq. (2.17) are hence identical, so the quadratic approximation is here
exact. �

Under certain regularity conditions, which we will not discuss here, it can be
shown that a quadratic approximation of the log-likelihood improves with increasing
sample size. The following example illustrates this phenomenon in the binomial
model.

Example 2.17 (Binomial model) Figure 2.8 displays the relative log-likelihood of
the success probability π in a binomial model with sample size n = 10, 50, 200,
1000. The observed datum x has been fixed at x = 8, 40, 160, 800 such that the MLE
of π is π̂ML = 0.8 in all four cases. We see that the quadratic approximation of the
relative log-likelihood improves with increasing sample size n. The two functions
are nearly indistinguishable for n = 1000. �

The advantage of the quadratic approximation of the relative log-likelihood lies
in the fact that we only need to know the MLE θ̂ML and the observed Fisher in-
formation I (θ̂ML), no matter what the actual log-likelihood looks like. However, in
certain pathological cases the approximation may remain poor even if the sample
size increases.
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Fig. 2.8 Quadratic approximation (dashed line) of the relative log-likelihood (solid line) of the
success probability π in a binomial model

Example 2.18 (Uniform model) Let X1:n denote a random sample from a contin-
uous uniform distribution U(0, θ) with unknown upper limit θ ∈ R

+. The density
function of the uniform distribution is

f (x; θ) = 1

θ
I[0,θ)(x)

with indicator function IA(x) equal to one if x ∈ A and zero otherwise. The likeli-
hood function of θ is

L(θ) =
{∏n

i=1 f (xi; θ) = θ−n for θ ≥ maxi (xi),

0 otherwise,
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Fig. 2.9 Likelihood and log-likelihood function for a random sample of different size n from a
uniform distribution with unknown upper limit θ . Quadratic approximation of the log-likelihood is
impossible even for large n

with MLE θ̂ML = maxi (xi), cf. Fig. 2.9a.
The derivatives of the log-likelihood function

l(θ) = −n log(θ) for θ > maxi (xi)

are

S(θ̂ML) = dl(θ̂ML)

dθ
�= 0 and −I (θ̂ML) = d2l(θ̂ML)

dθ2
= n

θ̂2
ML

> 0,

so the log-likelihood l(θ) is not concave but convex, with negative (!) observed
Fisher information, cf. Fig. 2.9b. It is obvious from Fig. 2.9b that a quadratic ap-
proximation to l(θ) will remain poor even if the sample size n increases. The reason
for the irregular behaviour of the likelihood function is that the support of the uni-
form distribution depends on the unknown parameter θ . �

2.5 Sufficiency

Under certain regularity conditions, a likelihood function can be well characterised
by the MLE and the observed Fisher information. However, Example 2.18 illus-
trates that this is not always the case. An alternative characterisation of likelihood
functions is in terms of sufficient statistics, a concept which we will introduce in
the following. We will restrict our attention to random samples, but the description
could be easily generalised if required.
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Definition 2.8 (Statistic) Let x1:n denote the realisation of a random sample X1:n
from a distribution with probability mass of density function f (x; θ). Any function
T = h(X1:n) of X1:n with realisation t = h(x1:n) is called a statistic. �

For example, the mean X̄ = ∑n
i=1 Xi/n is a statistic. Also the maximum

maxi (Xi) and the range maxi (Xi) − mini (Xi) are statistics.

Definition 2.9 (Sufficiency) A statistic T = h(X1:n) is sufficient for θ if the condi-
tional distribution of X1:n given T = t is independent of θ , i.e. if

f (x1:n | T = t)

does not depend on θ . �

Example 2.19 (Poisson model) Let x1:n denote the realisation of a random sample
X1:n from a Po(λ) distribution with unknown rate parameter λ. The statistic T =
X1 + · · · + Xn is sufficient for λ since the conditional distribution of X1:n | T = t is
multinomial with parameters not depending on λ. Indeed, first note that f (t | X1:n =
x1:n) = 1 if t = x1 + · · · + xn and 0 elsewhere. We also know from Appendix A.5.1
that T ∼ Po(nλ), and therefore we have

f (x1:n | t) = f (t | x1:n)f (x1:n)
f (t)

= f (x1:n)
f (t)

=
∏n

i=1

{
λxi

xi ! exp(−λ)
}

(nλ)t

t ! exp(−nλ)

= t !∏n
i=1 xi !

(
1

n

)t

,

which can easily be identified as the probability mass function of a multinomial
distribution with size parameter t = x1 + · · ·+ xn and all probabilities equal to 1/n,
compare Appendix A.5.3. �

A sufficient statistic T contains all relevant information from the sample X1:n
with respect to θ . To show that a certain statistic is sufficient, the following result is
helpful.

Result 2.2 (Factorisation theorem) Let f (x1:n; θ) denote the probability mass or
density function of the random sample X1:n. A statistic T = h(X1:n) with realisation
t = h(x1:n) is sufficient for θ if and only if there exist functions g1(t; θ) and g2(x1:n)
such that for all possible realisations x1:n and all possible parameter values θ ∈ Θ ,

f (x1:n; θ) = g1(t; θ) · g2(x1:n). (2.18)
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Note that g1(t; θ) depends on the argument x1:n only through t = h(x1:n), but also
depends on θ . The second term g2(x1:n) must not depend on θ .

A proof of this result can be found in Casella and Berger (2001, p. 276). As a
function of θ , we can easily identify g1(t; θ) as the likelihood kernel, cf. Defini-
tion 2.3. The second term g2(x1:n) is the corresponding multiplicative constant.

Example 2.20 (Poisson model) We already know from Example 2.19 that T =
h(X1:n) = X1 + · · · + Xn is sufficient for λ, so the factorisation (2.18) must hold.
This is indeed the case:

f (x1:n; θ) =
n∏

i=1

f (xi; θ)

=
n∏

i=1

{
λxi

xi ! exp(−λ)

}

= λt exp(−nλ)︸ ︷︷ ︸
g1{t;λ}

n∏
i=1

1

xi !︸ ︷︷ ︸
g2(x1:n)

.

�

Example 2.21 (Normal model) Let x1:n denote a realisation of a random sample
from a normal distribution N(μ,σ 2) with known variance σ 2. We now show that
the sample mean X̄ =∑n

i=1 Xi/n is sufficient for μ. First, note that

f (x1:n;μ) =
n∏

i=1

(
2πσ 2)− 1

2 exp

{
−1

2
· (xi − μ)2

σ 2

}

= (2πσ 2)− n
2 exp

{
−1

2
·
∑n

i=1(xi − μ)2

σ 2

}
.

Now

n∑
i=1

(xi − μ)2 =
n∑

i=1

(xi − x̄)2 + n(x̄ − μ)2,

and we can therefore factorise f (x1:n;μ) as follows:

f (x1:n;μ) = (2πσ 2)− n
2 exp

{
−1

2
·
∑

(xi − x̄)2

σ 2

}
︸ ︷︷ ︸

g2(x1:n)

· exp

{
−1

2
· n(x̄ − μ)2

σ 2

}
︸ ︷︷ ︸

g1(t;μ) with t=x̄

.

Result 2.2 now ensures that the sample mean X̄ is sufficient for μ. Note that, for
example, also nX̄ =∑n

i=1 Xi is sufficient for μ.
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Suppose now that also σ 2 is unknown, i.e. θ = (μ,σ 2), and assume that n ≥ 2.
It is easy to show that now T = (X̄, S2), where

S2 = 1

n − 1

n∑
i=1

(Xi − X̄)2

is the sample variance, is sufficient for θ . Another sufficient statistic for θ is T̃ =
(
∑n

i=1 Xi,
∑n

i=1 X2
i ). �

Example 2.22 (Blood alcohol concentration) If we are prepared to assume that the
transformation factor is normally distributed, knowledge of n, x̄ and s2 (or s) in
each group (cf. Table 1.3) is sufficient to formulate the likelihood function. It is not
necessary to know the actual observations. �

Definition 2.10 (Likelihood ratio) The quantity

Λx1:n(θ1, θ2) = L(θ1;x1:n)
L(θ2;x1:n)

= L̃(θ1;x1:n)
L̃(θ2;x1:n)

is the likelihood ratio of one parameter value θ1 relative to another parameter value
θ2 with respect to the realisation x1:n of a random sample X1:n. �

Note that likelihood ratios between any two parameter values θ1 and θ2 can be
calculated from the relative likelihood function L̃(θ;x1:n). Note also that

L̃(θ;x1:n) = Λx1:n(θ, θ̂ML)

because L̃(θ̂ML;x1:n) = 1, so the relative likelihood function can be recovered from
the likelihood ratio.

Result 2.3 A statistic T = h(X1:n) is sufficient for θ if and only if for any pair x1:n
and x̃1:n such that h(x1:n) = h(x̃1:n),

Λx1:n(θ1, θ2) = Λx̃1:n(θ1, θ2) (2.19)

for all θ1, θ2 ∈ Θ .

Proof We show the equivalence of the factorisation (2.18) and Eq. (2.19). Suppose
that (2.18) holds. Then

Λx1:n(θ1, θ2) = g{h(x1:n); θ1} · h(x1:n)
g{h(x1:n); θ2} · h(x1:n)

= g{h(x1:n); θ1}
g{h(x1:n); θ2} ,

so if h(x1:n) = h(x̃1:n), we have Λx1:n(θ1, θ2) = Λx̃1:n(θ1, θ2) for all θ1 and θ2.
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Conversely, suppose that (2.19) holds if h(x1:n) = h(x̃1:n), so Λx1:n(θ1, θ2) is a
function (say g∗) of h(x1:n), θ1 and θ2 only. Let us now fix θ2 = θ0. With θ = θ1 we
obtain

f (x1:n; θ)

f (x1:n; θ0)
= Λx1:n(θ, θ0) = g∗{h(x1:n), θ, θ0

}
,

so (2.18) holds:

f (x1:n; θ) = g∗{h(x1:n), θ, θ0
}

︸ ︷︷ ︸
g1{h(x1:n);θ}

f (x1:n; θ0)︸ ︷︷ ︸
g2(x1:n)

.

�

This result establishes an important relationship between a sufficient statistic T

and the likelihood function: If T = h(X1:n) is a sufficient statistic and h(x1:n) =
h(x̃1:n), then x1:n and x̃1:n define the same likelihood ratio.

The following result establishes another important property of the likelihood
function. We distinguish in the following the likelihood L(θ;x1:n) with respect to
a realisation x1:n of a random sample X1:n and the likelihood L(θ; t) with respect
to the corresponding realisation t of a sufficient statistic T = h(X1:n) of the same
random sample X1:n.

Result 2.4 Let L(θ;x1:n) denote the likelihood function with respect to a realisa-
tion x1:n of a random sample X1:n. Let L(θ; t) denote the likelihood with respect to
the realisation t = h(x1:n) of a sufficient statistic T = h(X1:n) for θ . For all possible
realisations x1:n, the ratio

L(θ;x1:n)
L(θ; t)

will then not depend on θ , i.e. the two likelihood functions are (up to a proportion-
ality constant) identical.

Proof To show Result 2.4, first note that f (t | x1:n) = 1 if t = h(x1:n) and 0 other-
wise, so f (x1:n, t) = f (x1:n)f (t | x1:n) = f (x1:n) if t = h(x1:n). For t = h(x1:n),
the likelihood function can therefore be written as

L(θ;x1:n) = f (x1:n; θ) = f (x1:n, t; θ) = f (x1:n | t; θ)f (t; θ)

= f (x1:n | t; θ)L(θ; t).

Now T is sufficient for θ , so f (x1:n | t; θ) = f (x1:n | t) does not depend on θ . There-
fore, L(θ;x1:n) ∝ L(θ; t). The sign “∝”, in words “proportional to”, means that
there is a constant C > 0 (not depending on θ ) such that L(θ;x1:n) = C · L(θ; t). �
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Example 2.23 (Binomial model) Let X1:n denote a random sample from a
Bernoulli distribution B(π) with unknown parameter π ∈ (0,1). The likelihood
function based on the realisation x1:n equals

L(π;x1:n) = f (x1:n;π) =
n∏

i=1

πxi (1 − π)1−xi = πt (1 − π)n−t ,

where t =∑n
i=1 xi . Obviously, T = h(x1:n) =∑n

i=1 Xi is a sufficient statistic for π .
Now T follows the binomial distribution Bin(n,π), so the likelihood function with
respect to its realisation t is

L(π, t) =
(

n

t

)
πt (1 − π)n−t .

As Result 2.4 states, the likelihood functions with respect to x1:n and t are identical
up to the multiplicative constant

(
n
t

)
. �

Example 2.23 has shown that regarding the information about the proportion π ,
the whole random sample X1:n can be compressed into the total number of successes
T =∑n

i=1 Xi without any loss of information. This will be important in Chap. 4,
where we consider asymptotic properties of ML estimation, i.e. properties of certain
statistics for sample size n → ∞. Then we can consider a single binomial random
variable X ∼ Bin(n,π) because it implicitly contains the whole information of n

independent Bernoulli random variables with respect to π . We can also approximate
the binomial distribution Bin(n,π) by a Poisson distribution Po(nπ) when π is
small compared to n. Therefore, we can consider a single Poisson random variable
Po(eλ) and assume that the asymptotic properties of derived statistics are a good
approximation of their finite sample properties. We will often use this Poisson model
parametrisation with expected number of cases e = n · p and relative risk λ = π/p,
using a reference probability p, see e.g. Example 2.4.

2.5.1 Minimal Sufficiency

We have seen in the previous section that sufficient statistics are not unique. In
particular, the original sample X1:n is always sufficient due to Result 2.2:

f (x1:n; θ) = f (x1:n; θ)︸ ︷︷ ︸
=g1{h(x1:n)=x1:n;θ}

· 1︸︷︷︸
=g2(x1:n)

.

The concept of minimal sufficiency ensures that a sufficient statistic cannot be re-
duced further.

Definition 2.11 (Minimal sufficiency) A sufficient statistic T = h(X1:n) for θ is
called minimal sufficient, if, for every possible realisation x1:n of X1:n, t = h(x1:n)
can be written as a transformation of the realisation t̃ of any other sufficient statistic
T̃ = h̃(X1:n). �
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The following result describes the relationship between two minimal sufficient
statistics.

Result 2.5 If T and T̃ are minimal sufficient statistics, then there exists a one-to-
one function g such that T̃ = g(T ) and T = g−1(T̃ ).

Loosely speaking, a minimal sufficient statistic is unique up to any one-to-one
transformation. For example, if T is minimal sufficient, then T/2 will also be mini-
mal sufficient, but |T | will not be minimal sufficient if T can take values that differ
only in sign.

Result 2.6 A necessary and sufficient criterion for a statistic T (x1:n) to be minimal
sufficient is that h(x1:n) = h(x̃1:n) if and only if

Λx1:n(θ1, θ2) = Λx̃1:n(θ1, θ2)

for all θ1, θ2.

This is an extension of Result 2.3, where the sufficiency is characterised. For
sufficiency, only the implication of equal likelihood ratios from equal statistics is
needed. For minimal sufficiency, in addition, the implication of equal statistics from
equal likelihood ratios is required. A proof of this result can be found in Young and
Smith (2005, p. 92).

Result 2.6 means that any minimal sufficient statistic creates the same partition
of the sample space as the likelihood ratio function. A more exact formulation is
based on equivalence classes, where two different observations x1:n and x̃1:n are
equivalent if they lead to the same likelihood ratio function. The likelihood ratio
function partitions the sample space into the same equivalence classes as any min-
imal sufficient statistic. Therefore, the likelihood ratio is a one-to-one function of
a minimal sufficient statistic and hence also minimal sufficient. Since we have de-
scribed above that the likelihood ratio and the likelihood function can be recovered
from each other, they are one-to-one transformations of each other. Hence, also the
likelihood is minimal sufficient:

Minimal sufficiency of the likelihood
The likelihood function L(θ) is minimal sufficient for θ .

This implies that the likelihood function contains the whole information of the data
with respect to θ . Any further reduction will result in information loss.

Example 2.24 (Normal model) Let x1:n denote a realisation of a random sample
from a normal distribution N(μ,σ 2) with known variance σ 2. The mean h(X1:n) =
X̄ is minimal sufficient for μ, whereas T̃ (X1:n) = (X̄, S2) is sufficient but not min-
imal sufficient for μ. �
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2.5.2 The Likelihood Principle

Are there general principles how to infer information from data? In the previous
section we have seen that sufficient statistics contain the complete information of
a sample with respect to an unknown parameter. It is thus natural to state the suffi-
ciency principle:

Sufficiency principle
Consider a random sample X1:n from a distribution with probability mass or
density function f (x; θ) and unknown parameter θ . Assume that T = h(X1:n)
is a sufficient statistic for θ . If h(x1:n) = h(x̃1:n) for two realisations of X1:n,
then inference for θ should be the same whether x1:n or x̃1:n has been ob-
served.

The likelihood function is also sufficient, so we immediately have the likelihood
principle:

Likelihood principle
If realisations x1:n and x̃1:n from a random sample X1:n with probability
mass or density function f (x; θ) have proportional likelihood functions, i.e.
L(θ;x1:n) ∝ L(θ; x̃1:n) for all θ , then inference for θ should be the same,
whether x1:n or x̃1:n is observed.

This principle is also called the weak likelihood principle to distinguish it from the
strong likelihood principle:

Strong likelihood principle
Suppose x1:n1 is a realisation from a random sample X1:n1 with probability
mass or density function f1(x; θ). Let x̃1:n2 denote a realisation from a ran-
dom sample X̃1:n2 with probability mass or density function f2(x; θ), not
necessarily identical to f1(x; θ). If the corresponding two likelihood func-
tions are proportional, i.e. L1(θ;x1:n1) ∝ L2(θ; x̃1:n2), then inference for θ

should be the same, whether x1:n1 from f1(x; θ) or x̃1:n2 from f2(x; θ) has
been observed.

To illustrate the strong likelihood principle, we consider a classical example.

Example 2.25 (Binomial and negative binomial model) A binomial model X ∼
Bin(m,π) is appropriate if a fixed number m of independent and identical Bernoulli
experiments is conducted. The random variable X denotes the number of successes
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of the event considered with success probability π . The likelihood function of n1 =
1 realisation x is then

L1(π) =
(

m

x

)
πx(1 − π)m−x.

As discussed in Sect. 1.1.1, alternatively we can imagine a design where we con-
duct independent Bernoulli experiments until we have a total of x successes. In this
inverse binomial model x is fixed, but now the number of required samples m is a
realisation of a random variable M , say. Of interest is again the parameter π , the
unknown probability of the event of interest, with likelihood function

L2(π) =
(

m − 1

x − 1

)
πx(1 − π)m−x,

derived from the realisation m of a random sample of size n2 = 1 from the negative
binomial distribution M ∼ NBin(x,π). The likelihood functions L1(θ) and L2(θ)

are (up to different multiplicative constants) identical if m and x are the same. The
strong likelihood principle requires that statistical inference for θ must be the same,
whether or not the data have arisen from the binomial or the negative binomial
model. �

2.6 Exercises

1. Examine the likelihood function in the following examples.
(a) In a study of a fungus that infects wheat, 250 wheat seeds are dissemi-

nated after contaminating them with the fungus. The research question is
how large the probability θ is that an infected seed can germinate. Due to
technical problems, the exact number of germinated seeds cannot be eval-
uated, but we know only that less than 25 seeds have germinated. Write
down the likelihood function for θ based on the information available
from the experiment.

(b) Let X1:n be a random sample from an N(θ,1) distribution. However, only
the largest value of the sample, Y = max(X1, . . . ,Xn), is known. Show
that the density of Y is

f (y) = n
{
Φ(y − θ)

}n−1
ϕ(y − θ), y ∈R,

where Φ(·) is the distribution function, and ϕ(·) is the density function of
the standard normal distribution N(0,1). Derive the distribution function
of Y and the likelihood function L(θ).

(c) Let X1:3 denote a random sample of size n = 3 from a Cauchy C(θ,1)

distribution, cf. Appendix A.5.2. Here θ ∈R denotes the location param-
eter of the Cauchy distribution with density

f (x) = 1

π

1

1 + (x − θ)2
, x ∈ R.
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Derive the likelihood function for θ .
(d) Using R, produce a plot of the likelihood functions:

i. L(θ) in 1(a).
ii. L(θ) in 1(b) if the observed sample is x = (1.5,0.25,3.75,3.0,

2.5).
iii. L(θ) in 1(c) if the observed sample is x = (0,5,9).

2. A first-order autoregressive process X0,X1, . . . ,Xn is specified by the condi-
tional distribution

Xi | Xi−1 = xi−1, . . . ,X0 = x0 ∼ N(α · xi−1,1), i = 1,2, . . . , n,

and some initial distribution for X0. This is a popular model for time series
data.
(a) Consider the observation X0 = x0 as fixed. Show that the log-likelihood

kernel for a realisation x1, . . . , xn can be written as

l(α) = −1

2

n∑
i=1

(xi − αxi−1)
2.

(b) Derive the score equation for α, compute α̂ML and verify that it is really
the maximum of l(α).

(c) Create a plot of l(α) and compute α̂ML for the following sample:

(x0, . . . , x6) = (−0.560,−0.510,1.304,0.722,0.490,1.960,1.441).

3. Show that in Example 2.2 the likelihood function L(N) is maximised at N̂ =
	M · n/x
, where 	x
 is the largest integer that is smaller than x. To this end,
analyse the monotonic behaviour of the ratio L(N)/L(N − 1). In which cases
is the MLE not unique? Give a numeric example.

4. Derive the MLE of π for an observation x from a geometric Geom(π) distri-
bution. What is the MLE of π based on a realisation x1:n of a random sample
from this distribution?

5. A sample of 197 animals has been analysed regarding a specific phenotype. The
number of animals with phenotypes AB, Ab, aB and ab, respectively, turned out
to be

x = (x1, x2, x3, x4)
� = (125,18,20,34)�.

A genetic model now assumes that the counts are realisations of a multinomi-
ally distributed multivariate random variable X ∼ M4(n,π) with n = 197 and
probabilities π1 = (2 + φ)/4, π2 = π3 = (1 − φ)/4 and π4 = φ/4 (Rao 1973,
p. 368).
(a) What is the parameter space of φ? See Table A.3 in Appendix A for

details on the multinomial distribution and the parameter space of π .
(b) Show that the likelihood kernel function for φ, based on the observation

x, has the form

L(φ) = (2 + φ)m1(1 − φ)m2φm3
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and derive expressions for m1, m2 and m3 depending on x.
(c) Derive an explicit formula for the MLE φ̂ML, depending on m1, m2 and

m3. Compute the MLE given the data given above.
(d) What is the MLE of θ = √

φ?
6. Show that h(X) = maxi (Xi) is sufficient for θ in Example 2.18.
7. (a) Let X1:n be a random sample from a distribution with density

f (xi; θ) =
{

exp(iθ − xi), xi ≥ iθ,

0, xi < iθ,

for Xi , i = 1, . . . , n. Show that T = mini (Xi/i) is a sufficient statistic
for θ .

(b) Let X1:n denote a random sample from a distribution with density

f (x; θ) = exp
{−(x − θ)

}
, θ < x < ∞, −∞ < θ < ∞.

Derive a minimal sufficient statistic for θ .
8. Let T = h(X1:n) be a sufficient statistic for θ , g(·) a one-to-one function, and

T̃ = h̃(X1:n) = g{h(X1:n)}. Show that T̃ is sufficient for θ .
9. Let X1 and X2 denote two independent exponentially Exp(λ) distributed ran-

dom variables with parameter λ > 0. Show that h(X1,X2) = X1 + X2 is suffi-
cient for λ.

2.7 Bibliographic Notes

A good introduction to likelihood methods is given by Pawitan (2001). More am-
bitious and rigorous is the presentation in Davison (2003). The pure likelihood ap-
proach is described in Edwards (1992) and Royall (1997).
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Maximum likelihood estimation has been introduced as an intuitive technique to de-
rive the “most likely” parameter value θ for the observation x. But what properties
does this estimate have? Is it good or perhaps even the best estimate in a certain
sense? Are there other useful estimates? Can we derive an interval of plausible pa-
rameter values based on the likelihood, and can we quantify the associated certainty
of the interval?

Before answering these questions in Chap. 4, we will first introduce some ele-
mentary concepts of frequentist inference in this chapter. Frequentist inference is
based on hypothetical repetitions of the underlying sampling experiment. We will
discuss frequentist properties of both point and interval estimates of an unknown
parameter θ . Frequentist interval estimates are called confidence intervals to distin-
guish them from the Bayesian counterparts, so-called credible intervals as discussed
in Chap. 6. We will touch upon basic concepts of significance tests and introduce
the P -value as a quantitative measure of the evidence against a null hypothesis.

3.1 Unbiasedness and Consistency

Let X1:n denote a random sample from a distribution f (x; θ), which depends on the
true (but unknown) parameter value θ . Our goal is to estimate θ based on the real-
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isation x1:n of X1:n. The MLE θ̂ML is one particular estimate of θ , but here we will
consider any possible estimate θ̂ . To investigate and compare frequentist properties
of different estimates we first define the notion of an estimator based on a random
sample.

Definition 3.1 (Estimator) Consider a real-valued statistic (cf. Definition 2.8)

Tn = h(X1:n),

based on a random sample X1:n from a distribution with probability mass or density
function f (x; θ) where θ is an unknown scalar parameter θ . If the random variable
Tn is computed to make inference about θ , then it is called an estimator. We may
simply write T rather than Tn if the sample size n is not important. The particular
value t = h(x1:n) that an estimator takes for a realisation x1:n of the random sample
X1:n is called an estimate. �

What is a good estimator? At first glance it seems reasonable that a useful esti-
mator is “on average” equal to the true value θ . This leads to the notion of unbiased
estimators.

Definition 3.2 (Unbiasedness) An estimator Tn is called unbiased for θ if

E(Tn) = θ

for all θ ∈ Θ and for all n ∈N. Otherwise, the estimator Tn is called biased. �

Example 3.1 (Sample variance) Let X1:n denote a random sample from a distribu-
tion with unknown mean μ and variance σ 2 > 0. It is easy to show that the sample
mean X̄ = n−1∑n

i=1 Xi has the following properties:

E(X̄) = μ and Var(X̄) = σ 2

n
.

So μ̂ = X̄ is an unbiased estimator of the mean μ. The sample variance

S2 = 1

n − 1

n∑
i=1

(Xi − X̄)2 (3.1)

is unbiased for the true variance σ 2. To see this, first note that

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

{
Xi − μ − (X̄ − μ)

}2

=
n∑

i=1

(Xi − μ)2 − 2
n∑

i=1

(Xi − μ)(X̄ − μ) + n(X̄ − μ)2



3.1 Unbiasedness and Consistency 53

=
n∑

i=1

(Xi − μ)2 − 2n(X̄ − μ)2 + n(X̄ − μ)2

=
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2,

so

E
{
(n − 1)S2}= E

{
n∑

i=1

(Xi − X̄)2

}

= n · E
{
(Xi − μ)2}− n · E

{
(X̄ − μ)2}

= n · Var(Xi) − n · Var(X̄) = n · σ 2 − n · σ 2

n

= (n − 1)σ 2,

and therefore E(S2) = σ 2. �

Note that unbiased estimators are not invariant under nonlinear transformations.
For example, the sample standard deviation S = √

S2 is a biased estimator of the
standard deviation σ = √

σ 2. This can be shown using Jensen’s inequality (cf. Ap-
pendix A.3.7):

E(S) = E
(√

S2
)
<
√

σ 2 = σ

since g(x) = √
x is a strictly concave function and S is (for σ 2 > 0) not degenerate.

So S on average underestimates the standard deviation σ but is still commonly used
to estimate σ .

The following example illustrates that an unbiased estimator is not necessarily
better than a biased one.

Example 3.2 (Geometric model) Let x denote n = 1 realisation from a geometric
Geom(π) distribution with probability mass function

f (x;π) = π(1 − π)(x−1)

and unknown parameter π ∈ (0,1), cf. Table A.1. We assume that the parameter
space is an open interval, the limits π = 0 and π = 1 are not included. This is a
common assumption since f (x;π = 0) is not a proper distribution and X is for
π = 1 deterministic, i.e. only the realisation x = 1 can occur.

Now there is only one unbiased estimate of π because the requirement

E
{
T (X)

}=
∞∑

x=1

T (x)π(1 − π)(x−1) = π (3.2)
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for all π ∈ (0,1) leads to the solution

π̂ (x) = T (x) =
{

1 if x = 1,

0 else.
(3.3)

This solution is unique, because the requirement (3.2) can be written as

∞∑
x=1

T (x)(1 − π)(x−1) = 1 =
∞∑

x=1

π̂ (x)(1 − π)(x−1),

and the power series on the left and right sides are equal only if their coefficients
series, T (x) and π̂(x), are identical.

So (3.3) is the only unbiased estimator of π but appears to be not very sensible, as
it can only take two distinct values on the border of the parameter space. In contrast,
the ML estimator π̂ML = 1/X (cf. Exercise 4 in Chap. 2) seems more sensible but
is biased. Indeed, we have E(X) = 1/π , and since h(x) = 1/x is strictly convex on
the positive real line and X is not degenerate, we have

E(1/X) > 1/E(X) = π

as a consequence of Jensen’s inequality (cf. Appendix A.3.7). �

Asymptotic unbiasedness is a weaker requirement of an estimator. An asymptot-
ically unbiased estimator may be biased for any finite sample size n, but the bias
should go to zero for n → ∞.

Definition 3.3 (Asymptotic unbiasedness) An estimator Tn is called asymptotically
unbiased for θ if

lim
n→∞ E(Tn) = θ

for all θ ∈ Θ . �

An unbiased estimator is also asymptotically unbiased, but not vice versa.
Asymptotic unbiasedness has a strong connection to the notion of consistency.

Definition 3.4 (Consistency) An estimator Tn is called consistent if Tn converges
as n → ∞ in probability to θ , compare Appendix A.4.1. If Tn converges in mean
square to θ (compare again Appendix A.4.1), then we have consistency in mean
square. �

The underlying idea for defining consistency is that the estimator should be able
to identify the true parameter value when the sample size increases. Appendix A.4.1
lists important relationships between the different modes of convergence. These
properties translate to the relationships between the corresponding notions of consis-
tency. In particular, a mean square consistent estimate is also consistent. Application
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of the continuous mapping theorem (see Appendix A.4.2) shows that any continu-
ous function h of a consistent estimator for θ is consistent for h(θ). One can also
establish that a mean square consistent estimator is asymptotically unbiased, while
this is in general not true for a consistent estimator.

Consistency in mean square implies that

MSE = E
{
(Tn − θ)2} (3.4)

goes to zero as n → ∞. The quantity (3.4) is called the mean squared error (MSE).
The mean squared error is of particular importance because the following decom-
position holds:

MSE = Var(Tn) + {E(Tn) − θ
}2

. (3.5)

The quantity E(Tn) − θ is called the bias of Tn. The mean squared error is therefore
the sum of the variance of an estimator and its squared bias. Note that, of course,
the bias of an asymptotically unbiased estimator goes to zero for n → ∞. If the
variance of the estimator goes also to zero as n → ∞, then the estimator is, due to
the decomposition (3.5), consistent in mean square and also consistent.

Example 3.3 (Sample variance) As we have seen in Example 3.1, the sample vari-
ance S2 is unbiased for σ 2. An alternative estimator of σ 2 is

S̃2 = 1

n

n∑
i=1

(Xi − X̄)2,

which has the expectation

E
(
S̃2)= n − 1

n
E
(
S2)= n − 1

n
σ 2.

So this estimator is biased but still asymptotically unbiased. Suppose that the fourth
central moment c4 = E[{X − E(X)}4] of X (cf. Sect. A.3.3) exists. Then

Var
(
S2)= 1

n

{
c4 −

(
n − 3

n − 1

)
σ 4
}
,

cf. Exercise 4. Therefore, Var(S2) → 0 as n → ∞ and also Var(S̃2) → 0 as n → ∞.
So both S2 and S̃2 are consistent in mean square. �

3.2 Standard Error and Confidence Interval

An estimator T will be equal to the true parameter θ only in rare cases. However, it
will often be close to θ in a certain sense if the estimator is useful. The standard er-
ror quantifies how much an estimator varies in hypothetical independent repetitions
of the sampling experiment. If the estimator is unbiased or at least asymptotically
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unbiased, then the standard error is a consistent estimate of the standard deviation
of T .

Starting with a definition of the notion of the standard error, we will continue
introducing confidence intervals, i.e. intervals which cover plausible values of the
unknown parameter. Confidence intervals are interval estimators and consist of a
lower and an upper limit. This is in contrast to the real-valued (point) estimator.

3.2.1 Standard Error

To quantify the statistical variability of an estimator T and to construct confidence
intervals for the unknown parameter θ , the variance Var(T ) or the standard devi-
ation

√
Var(T ) of T is needed. However, Var(T ) is often just as unknown as the

unknown parameter itself. In many cases we can nevertheless consistently estimate
the standard deviation

√
Var(T ) with the standard error:

Definition 3.5 (Standard error) Let X1:n denote a random sample, and Tn = h(X1:n)
an estimator of an unknown parameter θ . Suppose V is a consistent estimator
of Var(Tn). The continuous mapping theorem (see Appendix A.4.2) then guaran-
tees that the standard error

√
V is a consistent estimator of the standard deviation√

Var(T ):

se(T ) = √
V . �

Example 3.4 (Sample variance) Let X1:n denote a random sample from a distribu-
tion with unknown mean μ and variance σ 2. Now μ̂ = X̄ is an unbiased estimator
of μ, and S2 is a consistent (and even unbiased) estimator of σ 2. We further have
Var(X̄) = σ 2/n, so V = S2/n is a consistent estimator of Var(X̄), and we obtain
the following standard error of μ̂ = X̄:

se(X̄) = S√
n
.

Using Example 3.3, we see that also S̃/
√

n is a standard error of X̄, which illustrates
that an estimator can have different standard errors. �

3.2.2 Confidence Interval

We will now introduce the concept of a confidence interval.

Definition 3.6 (Confidence interval) For fixed γ ∈ (0,1), a γ · 100 % confidence
interval for θ is defined by two statistics Tl = hl(X1:n) and Tu = hu(X1:n) based on
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a random sample X1:n, which fulfill

Pr(Tl ≤ θ ≤ Tu) = γ

for all θ ∈ Θ . The statistics Tl and Tu are the limits of the confidence interval,
and we assume Tl ≤ Tu throughout. The confidence level γ is also called coverage
probability. �

The limits of a confidence interval are functions of the random sample X1:n and
therefore also random. In contrast, the unknown parameter θ is fixed. If we imagine
identical repetitions of the underlying statistical sampling experiment, then a γ ·
100 % confidence interval will cover the unknown parameter θ in γ · 100 % of all
cases.

Confidence interval
For repeated random samples from a distribution with unknown parameter θ ,
a γ · 100 % confidence interval will cover θ in γ · 100 % of all cases.

However, we are not allowed to say that the unknown parameter θ is within a
γ · 100 % confidence interval with probability γ since θ is not a random variable.
Such a Bayesian interpretation is possible exclusively for credible intervals, see
Definition 6.3.

In the following we will concentrate on the commonly used two-sided confi-
dence intervals. One-sided confidence intervals can be obtained using Tl = −∞ or
Tu = ∞. However, such intervals are rarely used in practice.

Example 3.5 (Normal model) Let X1:n denote a random sample from a normal
distribution N(μ,σ 2) with known variance σ 2. The interval [Tl, Tu] with limits

Tl = X̄ − q · σ√
n

and

Tu = X̄ + q · σ√
n

defines a γ · 100 % confidence interval for μ, where q = z(1+γ )/2 denotes the (1 +
γ )/2 quantile of the standard normal distribution. To prove this, we have to show
that [Tl, Tu] has coverage probability γ for all μ. Now

X̄ ∼ N

(
μ,

σ 2

n

)
,

so

Z = √
n
X̄ − μ

σ
(3.6)
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has a standard normal distribution. Due to the symmetry of the standard normal
distribution around zero, we have z(1−γ )/2 = −q , and therefore

Pr(−q ≤ Z ≤ q) = Pr(Z ≤ q) − Pr(Z < −q)

= 1 + γ

2
− 1 − γ

2

= γ. (3.7)

Plugging the definition (3.6) into (3.7) and rearranging so that the unknown param-
eter μ is in the center of the inequalities, we finally obtain the coverage probability

Pr(Tl ≤ μ ≤ Tu) = γ. �

As for estimators, the question arises how we can characterise a “good” confi-
dence interval. We will discuss this topic at a later stage in Sect. 4.6. As a caution-
ary note, the following example illustrates that properly defined confidence intervals
may not be sensible at all from a likelihood perspective.

Example 3.6 (Uniform model) Let X1,X2 denote a random sample of size n = 2
from a continuous uniform distribution U(θ −0.5, θ +0.5) with unknown parameter
θ ∈ R (cf. Appendix A.5.2). It is straightforward to show (cf. Exercise 5) that the
interval [Tl, Tu] with limits

Tl = min(X1,X2) and

Tu = max(X1,X2)

is a 50 % confidence interval for θ .
Suppose tl and tu are realizations of Tl and Tu. Then the likelihood function is

L(θ) = I(tu−0.5,tl+0.5)(θ),

where IA(θ) denotes the indicator function of a set A (cf. Example 2.18). So
only parameter values in the interval (tu − 0.5, tl + 0.5) have a positive likeli-
hood. Suppose now we observe a specific realization x1 and x2 with tu − tl =
max(x1, x2) − min(x1, x2) ≥ 0.5. Then we have tl ≤ tu − 0.5 ≤ θ ≤ tl + 0.5 ≤ tu,
so all possible values of θ (those with positive likelihood) are within the interval
[tl , tu]. This has to be contrasted with the confidence level of [Tl, Tu], which is only
50 %.

This example illustrates that confidence intervals, which are not based on the
likelihood function but are constructed solely based on frequentist properties of the
two random variables Tl and Tu, can have rather odd properties in certain applica-
tions. �
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3.2.3 Pivots

In order to construct confidence intervals, the concept of a pivot is important.

Definition 3.7 (Pivot) A pivot is a function of the data X (viewed as random) and
the true parameter θ , with distribution not depending on θ . The distribution of a
pivot is called pivotal distribution. An approximate pivot is a pivot whose distribu-
tion does not asymptotically depend on the true parameter θ . �

So a pivot is a statistic, which also depends on the true parameter θ , having a
distribution not depending on θ .

Using a pivot, we can construct confidence intervals which are valid for all pos-
sible values of θ . For illustration, in Example 3.5 the random variable Z defined in
Eq. (3.6) is a pivot, which was used to construct a confidence interval for the mean
μ of a normal random sample. The following example describes the construction of
a confidence interval for the mean μ of an exponential random sample using a pivot.

Example 3.7 (Exponential model) Let X1:n denote a random sample from an ex-
ponential distribution Exp(λ), i.e. F(x) = Pr(Xi ≤ x) = 1 − exp(−λx), where the
rate parameter λ is unknown. The distribution function of λXi is therefore

Pr(λXi ≤ x) = Pr

(
Xi ≤ x

λ

)
= 1 − exp(−x),

so λXi ∼ Exp(1) = G(1,1) no matter what the actual value of λ is. The sum

n∑
i=1

λXi = λnX̄ (3.8)

then follows a gamma G(n,1) distribution (cf. Appendix A.5.2), so is a pivot for λ.
For illustration, consider n = 47 non-censored survival times from Sect. 1.1.8

and assume that they follow an exponential distribution with unknown parameter λ.
The total survival time in this sample is nx̄ = 53 146 days. The 2.5 % and 97.5 %
quantiles of the G(47,1) distribution are q0.025 = 34.53 and q0.975 = 61.36, respec-
tively, so

Pr(34.53 ≤ λnX̄ ≤ 61.36) = 0.95.

A rearrangement gives

q0.025 ≤ λnX̄ ≤ q0.975 ⇐⇒ q0.025/(nX̄) ≤ λ ≤ q0.975/(nX̄),

and we obtain a 95 % confidence interval for the rate λ with limits 6.5 · 10−4 and
1.15 ·10−3 events per day. The inverse values finally give a 95 % confidence interval
for the expected survival time E(Xi) = 1/λ from 866.2 to 1539.0 days.
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However, note that the assumption of an exponential distribution may not be real-
istic. In particular, this assumption implies that E(Xi) = √

Var(Xi). Also, ignoring
uncensored observations is likely to lead to bias, compare Example 2.8, where we
have taken the censored observations into account. �

In applications we often have an additional unknown nuisance parameter η,
which is not of primary interest, but must be taken into account in the statistical
analysis. To construct a confidence interval for the parameter of interest θ in the
presence of a nuisance parameter η, the distribution of a pivot for θ must not de-
pend on θ nor on η; the pivot itself must not depend on η.

Example 3.8 (Normal model) Let X1:n denote a random sample from a normal
distribution N(μ,σ 2), where both mean μ and variance σ 2 are unknown. Suppose
that the parameter of interest is μ while σ 2 is a nuisance parameter. The t statistic

T = √
n
X̄ − μ

S
∼ t(n − 1)

is a pivot for μ since the distribution of T is independent of μ and T does not depend
on σ 2. It is well known that T follows a standard t distribution (cf. Appendix A.5.2)
with n − 1 degrees of freedom, thus we have

Pr
{
t(1−γ )/2(n − 1) ≤ T ≤ t(1+γ )/2(n − 1)

}= γ,

where tα(k) denotes the α quantile of the standard t distribution with k degrees of
freedom. Using the property tα(n − 1) = −t1−α(n − 1), which follows from the
symmetry of the standard-t distribution around zero, the interval with limits

X̄ ± S√
n

· t(1+γ )/2(n − 1) (3.9)

is a γ · 100 % confidence interval for μ.
If instead σ 2 is the parameter of interest, then

n − 1

σ 2
S2 ∼ χ2(n − 1)

is a pivot for σ 2 with a chi-squared distribution with n − 1 degrees of freedom as
pivotal distribution. Using this pivot, we can easily construct confidence intervals
for σ 2:

γ = Pr

{
χ2

(1−γ )/2(n − 1) ≤ n − 1

σ 2
S2 ≤ χ2

(1+γ )/2(n − 1)

}

= Pr

{
1/χ2

(1−γ )/2(n − 1) ≥ σ 2

(n − 1)S2
≥ 1/χ2

(1+γ )/2(n − 1)

}

= Pr
{
(n − 1)S2/χ2

(1+γ )/2(n − 1) ≤ σ 2 ≤ (n − 1)S2/χ2
(1−γ )/2(n − 1)

}
, (3.10)
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where χ2
α(k) denotes the α quantile of the chi-squared distribution with k degrees

of freedom. �

Example 3.9 (Blood alcohol concentration) We want to illustrate the method with
the study on blood alcohol concentration, cf. Sect. 1.1.7. Assuming that the trans-
formation factors X1:n follow a normal distribution N(μ,σ 2), we obtain the 95 %
confidence interval (3.9) for μ from 2414.7 to 2483.7. The point estimate is the
arithmetic mean x̄ = 2449.2. Furthermore, computing (3.10) and taking the square
root of both limits yields the 95 % confidence interval from 215.8 to 264.8 for the
standard deviation σ . Note that the bounds are not symmetric around the point esti-
mate s = 237.8. �

Construction of exact confidence intervals using exact pivots is often impossi-
ble. It is often easier to use approximate pivots to construct approximate confidence
intervals. A particularly useful approximate pivot is the one described in the follow-
ing:

Result 3.1 (z-statistic) Let X1:n denote a random sample from some distribution
with probability mass or density function f (x; θ). Let Tn denote a consistent esti-
mator of the parameter θ with standard error se(Tn). Then the z-statistic

Z(θ) = Tn − θ

se(Tn)
(3.11)

is an approximate pivot, which follows under regularity conditions an asymptotic
standard normal distribution, so

Tn ± z 1+γ
2

se(Tn) (3.12)

are the limits of an approximate γ ·100 % confidence interval for θ . It is often called
the Wald confidence interval.

The name of this approximate pivot derives from the quantiles of the standard
normal distribution, which are often (also in this book) denoted by the symbol z.
We now show why the z-statistic does indeed have an approximate standard normal
distribution:

Proof The estimator Tn is consistent for θ , so it must be asymptotically unbiased,
i.e. E(Tn) → θ as n → ∞. Using the central limit theorem (cf. Appendix A.4.4), we
have under regularity conditions

Tn − θ√
Var(Tn)

a
∼ N(0,1).

By definition the standard error se(Tn) is consistent for
√

Var(Tn), and therefore
√

Var(Tn)

se(Tn)

P−→ 1.
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By Slutsky’s theorem (cf. Appendix A.4.2) it follows that we can replace the un-
known standard deviation of the estimator with the standard error, i.e.

√
Var(Tn)

se(Tn)
· Tn − θ√

Var(Tn)
= Tn − θ

se(Tn)

a
∼ N(0,1).

�

Example 3.10 (Analysis of survival times) The standard deviation of the survival
times is s = 874.4 days, so we obtain with (3.12) the limits of an approximate 95 %
confidence interval for the mean survival time E(Xi):

x̄ ± 1.96 · 874.4√
47

= 1130.8 ± 250.0 = 880.8 and 1380.8 days.

Here we have used the 97.5 % quantile z0.975 ≈ 1.96 of the standard normal dis-
tribution in the calculation. This number is worth remembering because it appears
very often in formulas for approximate 95 % confidence intervals.

This confidence interval is different from the one derived under the assumption
of an exponential distribution, compare Example 3.7. This can be explained by the
fact that the empirical standard deviation of the observed survival times s = 874.4 is
smaller than the empirical mean x̄ = 1130.8. By contrast, under the assumption of
an exponential distribution, the standard deviation must equal the mean. Therefore,
the above confidence interval is smaller. �

Example 3.11 (Inference for a proportion) We now consider the problem sketched
in Sect. 1.1.1 and aim to construct a confidence interval for the unknown success
probability π of a binomial sample X ∼ Bin(n,π), where X denotes the number of
successes, and n is the (known) number of trials. A commonly used estimator of π

is π̂ = X/n with variance

Var(π̂) = π(1 − π)

n
,

cf. Example 2.10. Because π̂ is consistent for π ,

se(π̂) =
√

π̂ (1 − π̂)/n

can be identified as a standard error of π̂ . The γ · 100 % Wald confidence interval
for π therefore has limits

π̂ ± z(1+γ )/2

√
π̂ (1 − π̂)

n
. (3.13)

�

It is possible that there exists more than one approximate pivot for a particular
parameter θ . For finite sample size, we typically have different confidence intervals,
and we need criteria to compare their properties. One particularly useful criterion
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is the actual coverage probability of a confidence interval with nominal coverage
probability γ . Complications will arise as the actual coverage probability may de-
pend on the unknown parameter θ . Another criterion is the width of the confidence
interval because smaller intervals are to be preferred for a given coverage probabil-
ity. In Example 4.22 we will describe a case study where we empirically compare
various confidence intervals for proportions.

3.2.4 The Delta Method

Suppose θ̂ is a consistent estimator of θ with standard error se(θ̂). The delta method
(cf. Appendix A.4.5) allows us to compute a standard error of h(θ̂) where h(θ) is
some transformation of θ with dh(θ)/dθ �= 0.

The delta method
A standard error of h(θ̂) can be obtained by multiplying the standard error of
θ̂ with the absolute value of the derivative dh(θ)/dθ evaluated at θ̂ :

se
(
h(θ̂)

)= se(θ̂ ) ·
∣∣∣∣dh(θ̂)

dθ

∣∣∣∣.

Assuming that dh(θ)/dθ �= 0 at the true value θ , the delta method allows us to
compute a Wald confidence interval for h(θ) with limits

h(θ̂) ± z(1+γ )/2 se
{
h(θ̂)

}
.

If h is assumed to be one-to-one, then we can apply the inverse function h−1

to the above limits and obtain another approximate confidence interval for θ . In
general, if h is a strictly increasing function, then

Tl ≤ h(θ) ≤ Tu

is equivalent to

h−1(Tl) ≤ θ ≤ h−1(Tu).

Hence, the coverage probability of the back-transformed confidence interval
[h−1(Tl), h

−1(Tu)] for θ will be the same as for the confidence interval [Tl, Tu]
for h(θ). For the Wald confidence intervals, the limits of the back-transformed con-
fidence interval will not equal the limits

θ̂ ± z(1+γ )/2 se(θ̂)

of the original γ · 100 % Wald confidence interval for θ , whenever h is a nonlinear
transformation. In particular, the new limits will no longer be symmetric around θ̂ .
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The question arises which transformation h(θ) should be selected to compute
a Wald confidence interval for θ . One argument against certain transformations is
the requirement that a confidence interval should be boundary-respecting, i.e. not
cover impossible values outside the parameter space. The following example gives
a confidence interval that is not boundary-respecting and uses a transformation to
fix that problem.

Example 3.12 (Inference for a proportion) Let X ∼ Bin(n,π) and suppose that
n = 100, x = 2, i.e. π̂ = 0.02 with se(π̂) = √π̂ (1 − π̂)/n = 0.014. In Exam-
ple 3.11 we derived the 95 % Wald confidence interval (3.13) for π with limits

0.02 ± 1.96 · 0.014 = −0.007 and 0.047,

so the lower limit is negative and thus outside the parameter space (0,1).
Alternatively, one can first apply the logit function

φ = h(π) = logit(π) = log

(
π

1 − π

)
,

which transforms a probability π ∈ (0,1) to the log odds φ ∈ R. We now need to
compute the MLE of φ and its standard error. Invariance of the MLE gives

φ̂ML = logit(π̂ML) = log

(
π̂ML

1 − π̂ML

)
= log

(
x

n − x

)
.

The standard error of φ̂ML can be computed with the delta method:

se(φ̂ML) = se(π̂ML) ·
∣∣∣∣dh(π̂ML)

dπ

∣∣∣∣,
where

dh(π̂ML)

dπ
= 1 − π

π
· 1 − π + π

(1 − π)2
= 1

π(1 − π)
,

so we obtain

se(φ̂ML) =
√

π̂ML(1 − π̂ML)

n
· 1

π̂ML(1 − π̂ML)

= 1√
n · π̂ML(1 − π̂ML)

=
√

n

x(n − x)

=
√

1

x
+ 1

n − x
.

For the above data, we obtain se(φ̂ML) ≈ 0.714, and the 95 % Wald confidence in-
terval for φ = logit(π) has limits

logit(0.02) ± 1.96 · 0.714 = −5.29 and −2.49.
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Back-transformation using the inverse logit function h−1(φ) = exp(φ)/{1+exp(φ)}
gives the interval [0.01,0.076] for π . By construction this interval can only cover
values in the unit interval, so it appears to be more useful. However, note that for
x = 0 (and also for x = n), the standard error se(φ̂ML) is infinite, so it is impossible
to compute a useful confidence interval. Also the original confidence interval (3.13)
fails in this case with standard error se(π̂) = 0. We will discuss an alternative confi-
dence interval that produces sensible results also in this case in Example 4.10. �

A different approach to construct Wald confidence intervals is to select the func-
tion h such that Var{h(θ̂)} does not (at least approximately) depend on θ . We will
discuss this approach in Sect. 4.3.

3.2.5 The Bootstrap

Finally, we describe a Monte Carlo technique, which can also be used for construct-
ing confidence intervals. Instead of analytically computing confidence intervals, the
help of a computer is needed here. Details on Monte Carlo methods for Bayesian
computations are given in Chap. 8.

We are interested in a model parameter θ and would like to estimate it with
the corresponding statistic θ̂ of the realisation x1:n of a random sample. Standard
errors and confidence intervals allow us to account for the sampling variability of

the underlying random variables Xi
iid
∼ f (x; θ), i = 1, . . . , n. These can often be

calculated from x1:n by the use of mathematical derivations, as discussed previously
in this section.

Of course, it would be easier when many samples x
(1)
1:n, . . . , x

(B)
1:n from the pop-

ulation would be available. Then we could directly estimate the distribution of
the parameter estimate θ̂ (X1:n) implied by the distribution of the random sample
X1:n. The idea of the bootstrap, which was invented by Bradley Efron (born 1938)
in 1979, is simple: We use the given sample x1:n to obtain an estimate f̂ (x) of
the unknown probability mass or density function f (x). Then we draw bootstrap
samples x

(1)
1:n, . . . , x

(B)
1:n by sampling from f̂ (x) instead from f (x), so, each boot-

strap sample is a realisation of Xi
iid
∼ f̂ (x), i = 1, . . . , n. Afterwards, we can di-

rectly estimate quantities of the distribution of θ̂ (X1:n) from the bootstrap samples
θ̂ (x

(1)
1:n), . . . , θ̂ (x

(B)
1:n ). For example, we can compute the bootstrap standard error of θ̂

by estimating the standard deviation of the bootstrap samples. Analogously, we can
compute the 2.5 % and 97.5 % quantiles of the bootstrap samples to obtain a 95 %
bootstrap confidence interval for θ . With this approach, we can directly estimate the
uncertainty attached to our estimate θ̂ = θ̂ (x1:n) in the original data set x1:n.

The most straightforward estimate of f (x) is the empirical distribution f̂n(x),
which puts weight 1/n on each realization x1, . . . , xn of the sample. Random sam-
pling from f̂n(x) reduces to drawing data points with replacement from the original
sample x1:n. The name of the bootstrap method traces back to this simple trick,
which is “pulling oneself up by one’s bootstraps”. This procedure does not make
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Fig. 3.1 Histogram of bootstrap means and coefficients of variation for the transformation factor.
The means of the bootstrap samples μ̂(x

(b)
1:n) and φ̂(x

(b)
1:n) are marked by continuous vertical lines,

and the estimates μ̂ and φ̂ in the original sample are marked by dashed vertical lines

any parametric assumptions about f (x) and is therefore known as the nonparamet-
ric bootstrap. Note that there are finitely many different bootstrap samples (actu-
ally nn ordered samples if there are no duplicate observations) that can be drawn
from f̂n(x). Since the nonparametric bootstrap distribution of θ̂ (X1:n) is discrete,
we could in principle avoid the sampling at all and work with the theoretical dis-
tribution instead to obtain uncertainty estimates. However, this is only feasible for
very small sample sizes, say n < 10. Otherwise, we have to proceed with Monte
Carlo sampling from the nonparametric bootstrap distribution, which reduces the
statistical accuracy only marginally in comparison with the sampling error of X1:n
when enough (e.g. B > 10 000) bootstrap samples are used.

Example 3.13 (Blood alcohol concentration) In Example 3.9 we computed the
mean transformation factor of μ̂ = x̄ = 2449.2 with 95 % Wald confidence inter-
val from 2414.7 to 2483.7.

The 95 % bootstrap confidence interval can now be obtained as the 2.5 %
and 97.5 % quantiles of the bootstrap means, which are shown in Fig. 3.1a. With
B = 10 000 bootstrap samples, we obtain the 95 % confidence interval from 2415.0
to 2483.4. This bootstrap confidence interval is very close to the Wald confidence
interval. This good agreement between both methods is due to the symmetry of the
distribution of the bootstrap means. The fact that both methods yield almost the
same intervals is reassuring for the results obtained with standard methods. When
both methods yield clearly different results, we are warned, and the results should
be interpreted with caution. In general, the bootstrap confidence interval is to be
preferred because it makes less assumptions than the standard Wald confidence in-
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terval. Of course, this comes at the cost of more extensive calculations and additional
Monte Carlo error through stochastic simulation. �

The great advantage of the bootstrap is that it can easily be applied to more com-
plicated statistics. If analytical methods for the computation of confidence intervals
are missing or rely on strong assumptions, we can always resort to bootstrap confi-
dence intervals.

Example 3.14 (Blood alcohol concentration) Besides the mean transformation fac-
tor μ (see Example 3.13), we may also be interested in a bootstrap confidence inter-
val for the coefficient of variation φ = μ/σ . The corresponding sample coefficient of
variation φ̂ = x̄/s can be computed for every bootstrap sample; the corresponding
histogram is shown in Fig. 3.1b. Based on the quantiles of the bootstrap distribution,
we obtain the 95 % bootstrap confidence interval from 0.086 to 0.108, with point
estimate of 0.097. In the same manner, a 95 % bootstrap confidence interval can be
constructed e.g. for the median, with the result [2411,2479]. �

We can also estimate the bias of an estimator using the bootstrap. The bias of θ̂

was defined in Sect. 3.1 as

Ef

{
θ̂ (X1:n)

}− θ,

where we use the subscript f to emphasise that the expectation is with respect to
the distribution f (x). Since the population parameter θ is linked to the distribution
f (x), plugging in f̂ (x) for f (x) yields the bootstrap bias estimate

E
f̂

{
θ̂ (X1:n)

}− θ̂ ≈ 1

B

B∑
b=1

θ̂
(
x

(b)
1:n
)− θ̂ ,

where θ̂ is the estimate in the original sample. A bias-corrected estimate of θ is thus
given by

θ̃ = θ̂ − [E
f̂

{
θ̂ (X1:n)

}− θ̂
]= 2θ̂ − E

f̂

{
θ̂ (X1:n)

}≈ 2θ̂ − 1

B

B∑
b=1

θ̂
(
x

(b)
1:n
)
.

The bootstrap approach described above for computing confidence intervals is
called the percentile method. If the bias of the estimator is relatively large, then
more sophisticated methods, which take this into account, should be used. We will
now sketch the bias-corrected and accelerated (BCa) method. Consider a bootstrap
estimator θ̂ for θ . Assume that there exists a one-to-one transformation φ = g(θ) of
the original parameter with estimate φ̂ = g(θ̂) and associated standard error se(φ̂) =
τ(1 + aφ), such that

φ̂ − φ

se(φ̂)

a
∼ N(−c,1). (3.14)
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This represents a generalisation of the approximate normal distribution in Result 3.1,
where c determines the remaining bias of the transformed bootstrap estimator. The
“acceleration constant” a steers the dependence of the standard error of φ̂ on the
true value φ, while τ is a constant. With (3.14) it is straightforward to construct a
confidence interval for φ. As in Sect. 3.2.4, the limits of this confidence interval can
then be transformed back to the θ -scale by the inverse transformation g−1.

However, the BCa method does not require us to specify the normalising trans-
formation g or the standard error constant τ . Given a set of B bootstrap samples
having empirical distribution function ĜB for the bootstrap estimates θ̂ (x

(b)
1:n), the

BCa confidence interval with confidence level γ has limits

Ĝ−1
B

{
Φ(q(1−γ )/2)

}
and Ĝ−1

B

{
Φ(q(1+γ )/2)

}
, (3.15)

where Ĝ−1
B (α) is the α quantile of the bootstrap estimates, Φ is the standard normal

distribution function, and

qα = c + c + zα

1 − a(c + zα)
.

Note that if the bias constant c = 0 and the acceleration constant a = 0, then
qα = zα where zα = Φ−1(α) is the α quantile of the standard normal distribution,
and hence (3.15) reduces to the simple percentile interval with limits Ĝ−1

B {(1 −
γ )/2} and Ĝ−1

B {(1 + γ )/2}. In general, these two constants can be estimated as

ĉ = Φ−1{ĜB(θ̂)
}

and

â = 1

6

∑n
i=1{θ̂∗ − θ̂ (x−i )}3

[∑n
i=1{θ̂∗ − θ̂ (x−i )}2]3/2

,

where θ̂ (x−i ) is the estimate of θ obtained from the original sample x1:n excluding
observation xi , and θ̂∗ = 1

n

∑n
i=1 θ̂ (x−i ) is their average.

Example 3.15 (Blood alcohol concentration) We see in Fig. 3.1 that while, for the
mean parameter μ (see Example 3.13), the average of the bootstrap estimates is very
close to the original estimate μ̂ (bias estimate divided by standard error: −0.006),
for the coefficient of variation φ (see Example 3.14), the relative size of the bias
estimate is larger (bias estimate divided by standard error: −0.070). Because the
bias estimates are negative, the estimates are expected to be too small, and the bias
correction shifts them upwards: μ̂ = 2449.176 is corrected to μ̃ = 2449.278, and
φ̂ = 0.09708 is corrected to φ̃ = 0.09747.

The 95 % BCa confidence intervals are computed from the estimated constants
â = 0.002 and ĉ = 0.018 for the mean estimator μ̂ and â = 0.048 and ĉ = 0.087
for the coefficient of variation estimator φ̂. Both constants are further away from
zero for φ̂, indicating a greater need to move from the simple percentile method to
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the BCa method. For μ, we obtain the 95 % BCa confidence interval [2416,2484],
which is practically identical to the percentile interval computed before. For φ, we
obtain [0.088,0.110], which has a notably larger upper bound than the percentile
interval. Indeed, not the 2.5 % and 97.5 % quantiles of the bootstrap estimates are
used here, but the 5.1 % and 99.1 % quantiles. �

For practical implementation of bootstrap methods, we recommend the R-package
boot, which provides BCa and other types of improved bootstrap confidence inter-
vals via the function boot.ci. It also helps in implementing the parametric boot-
strap, which estimates the unknown probability mass or density function f (x) by
taking samples from f (x; θ̂ ), a known distribution parametrised by θ , which is es-
timated from the original sample x as θ̂ . This approach can also be used in the
presence of nuisance parameters.

Sometimes, especially in irregular models like in the following example, both the
nonparametric bootstrap and the parametric bootstrap fail.

Example 3.16 (Uniform model) As in Example 2.18, we consider again a random
sample X1:n from a continuous uniform distribution U(0, θ). We are interested in
the parameter θ , which has MLE θ̂ = maxi (xi), and want to generate a confidence
interval for it with bootstrap methods.

If we use the nonparametric bootstrap, we have probability 1−1/n that maxi (xi)

is not drawn, at each of the n draws necessary to generate a new bootstrap sam-
ple x(b). So the probability that maxi (xi) is not part of a new bootstrap sample is
(1 − 1/n)n, or conversely, the probability that it is contained in a new bootstrap
sample x(b) is

1 −
(

1 − 1

n

)n

> 1 − exp(−1) ≈ 0.632.

This lower bound is the limit as n → ∞. Therefore, the bootstrap distribution always
puts more than 0.632 probability mass on θ̂ (X) = θ̂ , the MLE in the original sample.
That means that even if the sample size n increases, we do not get more information
on the distribution of the MLE by using the nonparametric bootstrap. The reason
is that the empirical distribution f̂n(x) is not a good estimator in the tails of the
distribution f (x).

If we apply a parametric bootstrap instead, we would draw each observation of
a new bootstrap sample independently from U(0, θ̂ ), which leads to a continuous
bootstrap distribution on θ̂ (X).

However, with both bootstrap approaches, there is a positive probability that the
maximum maxi (xi) is not included in a new bootstrap sample. Even worse, the
confidence intervals computed from the bootstrap samples will always contain val-
ues smaller than the maximum. But these values are impossible because then the
maximum value could not have been observed at all. Hence, a sensible confidence
interval will have a lower bound not smaller than the observed maximum, see Ex-
ample 4.20. �
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3.3 Significance Tests and P -Values

It is often of interest to quantify the evidence against a specific null hypothesis H0
given the observed data. Such a null hypothesis can often be represented by a par-
ticular value θ0 of the unknown parameter, i.e. H0 : θ = θ0. For example, in clinical
studies a typical null hypothesis is that there is no difference in the effect of two
treatments. If the outcome is binary, then this null hypothesis corresponds to an
odds ratio θ0 = 1.

A significance test quantifies the evidence against H0 using the P -value, defined
as the conditional probability of the observed or more extreme data given H0.

P -Value
The P -value is the probability, under the assumption of the null hypothesis
H0, of obtaining a result equal to or more extreme than what was actually
observed.

A P -value is a frequentist concept based on a large number of repetitions of the
study under the null hypothesis (for example, with odds ratio equal to 1). The P -
value can now be viewed as the proportion of these studies that provide equal or less
support for the null hypothesis than the observed study. The smaller the P -value, the
more evidence there is against the null hypothesis.

Calculation of a P -value depends on what we mean by “more extreme”. This
is usually accomplished by explicit specification of an alternative hypothesis H1.
Usually, the alternative hypothesis is represented by all parameter values except θ0,
i.e. H1 : θ �= θ0. This corresponds to the so-called two-sided significance test, in
contrast to the one-sided significance test, where the alternative hypothesis is either
H1 : θ < θ0 or H1 : θ > θ0. It turns out that a two-sided P -value is usually twice
as large as the corresponding one-sided P -value where the alternative hypothesis
is in the direction of the observed effect. At first sight it seems that one-sided P -
values should be preferred if the alternative hypothesis has been specified a priori,
for example in a study protocol. However, in biomedical research one-sided P -
values are often not well received. For example, in the absence of a study protocol
there is always the possibility that the alternative hypothesis has been selected after
having observed the data supporting it, in order to obtain a P -value just half the size
of the two-sided one.

There is another argument for using two-sided P -values. In certain situations we
may investigate a series of null hypotheses, not just one. For example, in a genomic
study we may want to identify genes that are associated with a specific phenotype
of interest. It turns out that two-sided P -values follow under the null hypothesis
(approximately) a standard uniform distribution. It is then convenient to investigate
if the empirical distribution of such P -values follows a uniform distribution or not.

We will interpret P -values as an informal and continuous measure of the ev-
idence against a certain null hypothesis. A rough but useful categorisation of P -
values uses integer thresholds on the log10-scale and is given in Fig. 3.2.
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Fig. 3.2 Evidence against
the null hypothesis H0 for
different P -values p

Table 3.1 Incidence of
preeclampsia in a randomised
placebo-controlled clinical
trial of diuretics

Treatment

Diuretics Placebo

Preeclampsia Yes x = 6 y = 2

No m − x = 102 n − y = 101

m = 108 n = 103

Example 3.17 (Fisher’s exact test) Let θ denote the odds ratio and suppose we
want to test the null hypothesis H0 : θ = 1 against the alternative H0 : θ > 1. Let
θ̂ML = θ̂ML(x) denote the observed odds ratio, assumed to be larger than 1. The one-
sided P -value for the alternative H0 : θ > 1 is then

P -value = Pr
{
θ̂ML(X) ≥ θ̂ML |H0 : θ0 = 0

}
,

where θ̂ML(X) denotes the MLE of θ viewed as a function of the data X.
For illustration, consider the data from the clinical study in Table 1.1 labelled

as “Tervila”. Table 3.1 summarises the data in a 2 × 2 table. The observed odds
ratio is 6 · 101/(2 · 102) ≈ 2.97. We will show in the following that if we fix both
margins of the 2 × 2 table and if we assume that true odds ratio equals 1, i.e. θ = 1,
the distribution of each entry of the table follows a hypergeometric distribution with
all parameters determined by the margins. This result can be used to calculate a P -
value for H0 : θ = 1. Note that it is sufficient to consider one entry of the table, for
example x1; the values of the other entries directly follow from the fixed margins.

Using the notation given in Table 3.1, we assume that X ∼ Bin(m,πx) and like-
wise Y ∼ Bin(n,πy), independent of X. Now let Z = X + Y . Then our interest is
in

Pr(X = x |Z = z) = Pr(X = x) · Pr(Z = z |X = x)

Pr(Z = z)
, (3.16)
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where we have used Bayes’ theorem (A.8). The numerator in (3.16) is
(

m

x

)
πx

x (1 − πx)
m−x ·

(
n

z − x

)
πz−x

y (1 − πy)
n−z+x

=
(

m

x

)(
n

z − x

){
πx/(1 − πx)

πy/(1 − πy)

}x

(1 − πx)
mπz

y(1 − πy)
n−z

=
(

m

x

)(
n

z − x

)
(1 − πx)

mπz
y(1 − πy)

n−z

since we assume that the odds ratio

θ = πx/(1 − πx)

πy/(1 − πy)
= 1.

The denominator in (3.16) can be written—using the law of total probability (A.9)—
as

Pr(Z = z) =
z∑

s=0

Pr(X1 = s) · Pr(Z = z |X1 = s),

so we finally obtain

Pr(X = x |Z = z) =
(
m
x

)(
n

z−x

)
∑z

s=0

(
m
s

)(
n

z−s

) ,
i.e. X |Z = z ∼ HypGeom(z,m + n,m).

For the data shown in Table 3.1, we have

X |Z = z ∼ HypGeom(z = 8,m + n = 211,m = 108),

so the one-sided P -value can be calculated as the sum of the hypergeometric prob-
abilities to observe x = 6, 7 or 8 entries:

(108
6

)(103
2

)
(211

8

) +
(108

7

)(103
1

)
(211

8

) +
(108

8

)(103
0

)
(211

8

) = 0.118 + 0.034 + 0.004 = 0.156.

Calculation of a two-sided P -value is also possible in this scenario. A common
approach is to add all hypergeometric probabilities that are equal to or less than
the probability of the observed table. For the data considered, this corresponds to
adding the probabilities for x = 0, 1 or 2 to the one-sided P -value, and we obtain
the two-sided P -value 0.281. Both P -values do not provide any evidence against
the null hypothesis that the true odds ratio is 1. �

Calculation of P -values is often based on the realisation t = T (x) of a test statis-
tic T , which follows (at least approximately) a known distribution under the as-
sumption of the null hypothesis. A pivot, fixing the parameter value θ at the null
hypothesis value θ0, is the obvious choice for a test statistic.
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Example 3.18 (Analysis of survival times) Suppose that survival times are exponen-
tially distributed with rate λ as in Example 3.7 and we wish to test the null hypothe-
sis H0 : λ0 = 1/1000, i.e. that the mean survival time θ is 1/λ0 = 1000 days. Using
the pivot (3.8) with λ = λ0 = 1/1000, we obtain the test statistic T = nX̄/1000 with
realisation

t = nx̄

1000
= 53.146.

The distribution of this test statistic is under the null hypothesis G(n = 47,1), so the
one-sided P -value (using the alternative H1 : λ < 1/1000) can be easily calculated
using the function pgamma in R:

> t

[1] 53.146

> n

[1] 47

> pgamma(t, shape=n, rate=1, lower.tail=FALSE)

[1] 0.1818647

The one-sided P -value turns out to be 0.18, so under the assumption of exponen-
tially distributed survival times, there is no evidence against the null hypothesis of a
mean survival time equal to 1000 days. �

Many pivots follow asymptotically a standard normal distribution, in which
case the P -value can easily be calculated based on the standard normal distri-
bution function. If t is the observed test statistic, then the two-sided P -value is
2 Pr(T ≥ |t |) = 2Φ(−|t |), where T denotes a standard normal random variable, and
Φ(x) its distribution function.

Example 3.19 (Analysis of survival times) Using the approximate pivot

Z(θ0) = Tn − θ0

se (Tn)
, (3.17)

from (3.11) we can test the null hypothesis that the mean survival time is θ0 = 1000
days, but now without assuming exponentially distributed survival times, similarly
as with the confidence interval in Example 3.10. Here Tn denotes a consistent esti-
mator of the parameter θ with standard error se (Tn).

The realisation of the test statistic (3.17) turns out to be

z = 1130.8 − 1000

874.4/
√

47
= 1.03

for the PBC data. The one-sided P -value can now be calculated using the standard
normal distribution function as Φ{−|z|} and turns out to be 0.15. The P -value is
fairly similar to the one based on the exponential model and provides no evidence
against the null hypothesis. A two-sided P -value can be easily obtained as twice the
one-sided one.
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Note that we have used the sample standard deviation s = 874.4 in the calculation
of the denominator of (3.17), based on the formula

s2 = 1

n − 1

n∑
i=1

(xi − x̄)2, (3.18)

where x̄ is the empirical mean survival time. The P -value is calculated assuming
that the null hypothesis is true, so it can be argued that x̄ in (3.18) should be replaced
by the null hypothesis value 1000. In this case, n− 1 can be replaced by n to ensure
that, under the null hypothesis, s2 is unbiased for σ 2. This leads to a slightly smaller
value of the test statistic and consequently to the slightly larger P -value 0.16. �

In practice the null hypothesis value is often the null value θ0 = 0. For example,
we might want to test the null hypothesis that the risk difference is zero. Similarly,
if we are interested to test the null hypothesis that the odds ratio is one, then this
corresponds to a log odds ratio of zero. For such null hypotheses, the test statistic
(3.17) takes a particularly simple form as the estimate Tn of θ divided by its standard
error:

Z = Tn

se(Tn)
.

A realisation of Z is called the Z-value.
It is important to realise that the P -value is a conditional probability under the

assumption that the null hypothesis is true. The P -value is not the probability of
the null hypothesis given the data, which is a common misinterpretation. The poste-
rior probability of a certain statistical model is a Bayesian concept (see Sect. 7.2.1),
which makes sense if prior probabilities are assigned to the null hypothesis and its
counterpart, the alternative hypothesis. However, from a frequentist perspective a
null hypothesis can only be true or false. As a consequence, the P -value is com-
monly viewed as an informal measure of the evidence against a null hypothesis.
Note also that a large P -value cannot be viewed as evidence for the null hypothe-
sis; a large P -value represents absence of evidence against the null hypothesis, and
“absence of evidence is not evidence of absence”.

The Neyman–Pearson approach to statistical inference rejects the P -value as an
informal measure of the evidence against the null hypothesis. Instead, this approach
postulates that there are only two possible “decisions” that can be reached after
having observed data: either “rejecting” or “not rejecting” the null hypothesis. This
theory then introduces the probability of the Type-I error α, defined as the condi-
tional probability of rejecting the null hypothesis although it is true in a series of
hypothetical repetitions of the study considered. It can now be easily shown that
the resulting hypothesis test will have a Type-I error probability equal to α, if the
null hypothesis is rejected whenever the P -value is smaller than α. Note that this
construction requires the Type-I error probability α to be specified before the study
is conducted. Indeed, in a clinical study the probability of the Type-I error (usually
5 %) will be fixed already in the study protocol. However, in observational studies
the P -value is commonly misinterpreted as a post-hoc Type-I error probability. For
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example, suppose that a P -value of 0.029 has been observed. This misconception
would suggest that the probability of rejecting the null hypothesis although it is true
in a series of imaginative repetitions of the study is 0.029. This interpretation of
the P -value is not correct, as it mixes a truly frequentist (unconditional) concept
(the probability of the Type-I error) with the P -value, a measure of the evidence
of the observed data against the null hypothesis, i.e. an (at least partly) conditional
concept.

In this book we will mostly use significance rather than hypothesis tests and
interpret P -values as a continuous measure of the evidence against the null hypoth-
esis, see Fig. 3.2. However, there is need to emphasise the duality of hypothesis
tests and confidence intervals. Indeed, the result of a two-sided hypothesis test of
the null hypothesis H0 : θ = θ0 at Type-I error probability α can be read off from
the corresponding (1 − α) · 100 % confidence interval for θ : If and only if θ0 is
within the confidence interval, then the Neyman–Pearson test would not reject the
null hypothesis.

Duality of hypothesis tests and confidence intervals
The set of values θ0 for which a certain hypothesis test does not reject the
null hypothesis H0 : θ = θ0 at Type-I error probability α is a (1 − α) · 100 %
confidence interval for θ .

So confidence intervals can be built based on inverting a certain hypothesis test.
P -values and significance tests are probably the most commonly used statisti-

cal tools for routine investigation of scientific hypotheses. However, because of the
widespread misinterpretation of P -values and significance tests, there have been at-
tempts to replace or at least accompany P -values by confidence intervals. Indeed,
confidence intervals are richer in the sense that we can always calculate (at least
approximately) a P -value for a certain null hypothesis from a confidence interval
at level 95 %, say, but the reverse step is typically not possible. In addition, confi-
dence intervals give a range of possible values for an effect size, so they inform not
only about statistical significance but also about the practical relevance of a certain
parameter estimate.

3.4 Exercises

1. Sketch why the MLE

N̂ML =
⌊

M · n
x

⌋

in the capture–recapture experiment (cf. Example 2.2) cannot be unbiased.
Show that the alternative estimator

N̂ = (M + 1) · (n + 1)

(x + 1)
− 1
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is unbiased if N ≤ M + n.
2. Let X1:n be a random sample from a distribution with mean μ and vari-

ance σ 2 > 0. Show that

E(X̄) = μ and Var(X̄) = σ 2

n
.

3. Let X1:n be a random sample from a normal distribution with mean μ and
variance σ 2 > 0. Show that the estimator

σ̂ =
√

n − 1

2

�(n−1
2 )

�(n
2 )

S

is unbiased for σ , where S is the square root of the sample variance S2 in (3.1).
4. Show that the sample variance S2 can be written as

S2 = 1

2n(n − 1)

n∑
i,j=1

(Xi − Xj)
2.

Use this representation to show that

Var
(
S2)= 1

n

{
c4 −

(
n − 3

n − 1

)
σ 4
}
,

where c4 = E[{X − E(X)}4] is the fourth central moment of X.
5. Show that the confidence interval defined in Example 3.6 indeed has coverage

probability 50 % for all values θ ∈ Θ .
6. Consider a random sample X1:n from the uniform model U(0, θ), cf. Exam-

ple 2.18. Let Y = max{X1, . . . ,Xn} denote the maximum of the random sam-
ple X1:n. Show that the confidence interval for θ with limits

Y and (1 − γ )−1/nY

has coverage γ .
7. Consider a population with mean μ and variance σ 2. Let X1, . . . ,X5 be inde-

pendent draws from this population. Consider the following estimators for μ:

T1 = 1

5
(X1 + X2 + X3 + X4 + X5),

T2 = 1

3
(X1 + X2 + X3),

T3 = 1

8
(X1 + X2 + X3 + X4) + 1

2
X5,

T4 = X1 + X2 and

T5 = X1.
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(a) Which estimators are unbiased for μ?
(b) Compute the MSE of each estimator.

8. The distribution of a multivariate random variable X belongs to an exponen-
tial family of order p if the logarithm of its probability mass or density func-
tion can be written as

log
{
f (x;τ )

}=
p∑

i=1

ηi(τ )Ti(x) − B(τ ) + c(x). (3.19)

Here τ is the p-dimensional parameter vector, and Ti, ηi,B and c are real-
valued functions. It is assumed that the set {1, η1(τ ), . . . , ηp(τ )} is linearly
independent. Then we define the canonical parameters θ1 = η1(τ1), . . . , θp =
ηp(τp). With θ = (θ1, . . . , θp)� and T (x) = (T1(x), . . . , Tp(x))� we can
write the log density in canonical form:

log
{
f (x; θ)

}= θ�T (x) − A(θ) + c(x). (3.20)

Exponential families are interesting because most of the commonly used
distributions, such as the Poisson, geometric, binomial, normal and gamma
distribution, are exponential families. Therefore, it is worthwhile to derive
general results for exponential families, which can then be applied to many
distributions at once. For example, two very useful results for the exponen-
tial family of order one in canonical form are E{T (X)} = dA/dθ(θ) and
Var{T (X)} = d2A/dθ2(θ).
(a) Show that T (X) is minimal sufficient for θ .
(b) Show that the density of the Poisson distribution Po(λ) can be written

in the forms (3.19) and (3.20), respectively. Thus, derive the expectation
and variance of X ∼ Po(λ).

(c) Show that the density of the normal distribution N(μ,σ 2) can be written
in the forms (3.19) and (3.20), respectively, where τ = (μ,σ 2)�. Hence,
derive a minimal sufficient statistic for τ .

(d) Show that for an exponential family of order one, I (τ̂ML) = J (τ̂ML). Ver-
ify this result for the Poisson distribution.

(e) Show that for an exponential family of order one in canonical form,
I (θ) = J (θ). Verify this result for the Poisson distribution.

(f) Suppose X1:n is a random sample from a one-parameter exponential
family with canonical parameter θ . Derive an expression for the log-
likelihood l(θ).

9. Assume that survival times X1:n form a random sample from a gamma distri-
bution G(α,α/μ) with mean E(Xi) = μ and shape parameter α.
(a) Show that X̄ = n−1∑n

i=1 Xi is a consistent estimator of the mean sur-
vival time μ.

(b) Show that Xi/μ ∼ G(α,α).
(c) Define the approximate pivot from Result 3.1,

Z = X̄ − μ

S/
√

n
,
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where S2 = (n − 1)−1∑n
i=1(Xi − X̄)2. Using the result from above,

show that the distribution of Z does not depend on μ.
(d) For n = 10 and α ∈ {1,2,5,10}, simulate 100 000 samples from Z and

compare the resulting 2.5 % and 97.5 % quantiles with those from
the asymptotic standard normal distribution. Is Z a good approximate
pivot?

(e) Show that X̄/μ ∼ G(nα,nα). If α was known, how could you use this
quantity to derive a confidence interval for μ?

(f) Suppose α is unknown; how could you derive a confidence interval
for μ?

10. All beds in a hospital are numbered consecutively from 1 to N > 1. In one
room a doctor sees n ≤ N beds, which are a random subset of all beds, with
(ordered) numbers X1 < · · · < Xn. The doctor now wants to estimate the total
number of beds N in the hospital.
(a) Show that the joint probability mass function of X = (X1, . . . ,Xn) is

f (x;N) =
(

N

n

)−1

I{n,...,N}(xn).

(b) Show that Xn is minimal sufficient for N .
(c) Confirm that the probability mass function of Xn is

fXn(xn;N) =
(
xn−1
n−1

)
(
N
n

) I{n,...,N}(xn).

(d) Show that

N̂ = n + 1

n
Xn − 1

is an unbiased estimator of N .
(e) Study the ratio L(N + 1)/L(N) and derive the ML estimator of N .

Compare it with N̂ .

3.5 References

The methods discussed in this chapter can be found in many books on statistical
inference, for example in Lehmann and Casella (1998), Casella and Berger (2001) or
Young and Smith (2005). The section on the bootstrap has only touched the surface
of a wealth of so-called resampling methods for frequentist statistical inference.
More details can be found e.g. in Davison and Hinkley (1997) and Chihara and
Hesterberg (2011).
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In Chap. 2 we have considered the likelihood and related quantities such as the
log-likelihood, the score function, the MLE and the (observed) Fisher information
for a fixed observation X = x from a distribution with probability mass or density
function f (x; θ). For example, in a binomial model with known sample size n and
unknown probability π we have

log-likelihood l(π;x) = x logπ + (n − x) log(1 − π),

score function S(π;x) = x

π
− n − x

1 − π
,

MLE π̂ML(x) = x

n
,

L. Held, D. Sabanés Bové, Applied Statistical Inference,
DOI 10.1007/978-3-642-37887-4_4, © Springer-Verlag Berlin Heidelberg 2014

79

http://dx.doi.org/10.1007/978-3-642-37887-4_4


80 4 Frequentist Properties of the Likelihood

and Fisher information I (π;x) = x

π2
+ n − x

(1 − π)2
.

Now we take a different point of view and apply the concepts of frequentist inference
as outlined in Chap. 3. To this end, we consider S(π), π̂ML and I (π) as random
variables, with distribution derived from the random variable X ∼ Bin(n,π). The
above equations now read

S(π;X) = X

π
− n − X

1 − π
,

π̂ML(X) = X

n
, and I (π;X) = X

π2
+ n − X

(1 − π)2

where X ∼ Bin(n,π) is an identical replication of the experiment underlying our
statistical model. The parameter π is now fixed and denotes the true (unknown)
parameter value. To ease notation, we will often not explicitly state the dependence
of the random variables S(π), π̂ML and I (π) on the random variable X.

The results we will describe in the following sections are valid under a standard
set of regularity conditions, often called Fisher regularity conditions.

Definition 4.1 (Fisher regularity conditions) Consider a distribution with probabil-
ity mass or density function f (x; θ) with unknown parameter θ ∈ Θ . Fisher regu-
larity conditions hold if
1. the parameter space Θ is an open interval, i.e. θ must not be at the boundary of

the parameter space,
2. the support of f (x; θ) does not depend on θ ,
3. the probability mass or density functions f (x; θ) indexed by θ are distinct, i.e.

f (x; θ1) �= f (x; θ2) whenever θ1 �= θ2, (4.1)

4. the likelihood L(θ) = f (x; θ) is twice continuously differentiable with respect
to θ ,

5. the integral
∫

f (x; θ) dx can be twice differentiated under the integral sign. �

This chapter will introduce three important test statistics based on the likelihood:
the score statistic, the Wald statistic and the likelihood ratio statistic. Many of the
results derived are asymptotic, i.e. are valid only for a random sample X1:n with
relatively large sample size n. A case study on different confidence intervals for
proportions completes this chapter.

4.1 The Expected Fisher Information and the Score Statistic

In this section we will derive frequentist properties of the score function and the
Fisher information. We will introduce the score statistic, which is useful to derive
likelihood-based significance tests and confidence intervals.
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4.1.1 The Expected Fisher Information

The Fisher information I (θ;x) of a parameter θ , the negative second derivative of
the log-likelihood (cf. Sect. 2.2), depends in many cases not only on θ , but also
on the observed data X = x. To free oneself from this dependence, it appears nat-
ural to consider the expected Fisher information, i.e. the expectation of the Fisher
information I (θ;X),

J (θ) = E
{
I (θ;X)

}
,

where I (θ;X) is viewed as a function of the random variable X. Note that taking
the expectation with respect to the distribution f (x; θ) of X implies that θ is the
true (unknown) parameter.

Definition 4.2 (Expected Fisher information) The expectation of the Fisher infor-
mation I (θ;X), viewed as a function of the data X with distribution f (x; θ), is the
expected Fisher information J (θ). �

We will usually assume that the expected Fisher information J (θ) is positive and
bounded, i.e. 0 < J(θ) < ∞.

Example 4.1 (Binomial model) If the data X follow a binomial distribution, X ∼
Bin(n,π), then we know from Example 2.10 that the Fisher information of π equals

I (π;x) = x

π2
+ n − x

(1 − π)2
.

Using E(X) = nπ , we obtain the expected Fisher information

J (π) = E
{
I (π;X)

}

= E

{
X

π2

}
+ E

{
n − X

(1 − π)2

}

= E(X)

π2
+ n − E(X)

(1 − π)2

= nπ

π2
+ n − nπ

(1 − π)2

= n

π
+ n

1 − π
= n

π(1 − π)
.

Note that the only difference to the observed Fisher information I (π̂ML;x) derived
in Example 2.10 is the replacement of the MLE π̂ML with the true value π . �

The expected Fisher information can also be described as the variance of the
score function. Before showing this general result, we first study a specific example.



82 4 Frequentist Properties of the Likelihood

Example 4.2 (Binomial model) For a binomial distributed random variable X ∼
Bin(n,π), the score function of the parameter π has been computed in Example 2.1:

S(π;x) = d

dπ
l(π) = x

π
− n − x

1 − π
.

We now replace x with X and calculate the expectation and variance of the score
function S(π;X), viewed as a function of the random variable X ∼ Bin(n,π),
where π denotes the true success probability.

With E(X) = nπ and Var(X) = nπ(1 − π) we obtain

E
{
S(π;X)

}= nπ

π
− n − nπ

1 − π
= n − n = 0

and

Var
{
S(π;X)

}= Var

(
X

π
− n − X

1 − π

)

= Var

{
X

(
1

π
+ 1

1 − π

)
− n

1 − π

}

= Var

(
X

π(1 − π)

)
= nπ(1 − π)

π2(1 − π)2
= n

π(1 − π)
.

So the expectation of the score function at the true parameter value θ is zero, and
the variance is equal to the expected Fisher information:

Var
{
S(π;X)

}= J (π) = E
{
I (π;X)

}
. �

Under the Fisher regularity conditions, this result holds in general:

Result 4.1 (Expectation and variance of the score function) Under the Fisher reg-
ularity conditions, which ensure that the order of differentiation and integration can
be changed, we have:

E
{
S(θ;X)

}= 0,

Var
{
S(θ;X)

}= J (θ).

Proof To prove Result 4.1, we assume without loss of generality that L(θ) =
f (x; θ), i.e. all multiplicative constants in f (x; θ) are included in the likelihood
function. First, note that

E
{
S(θ;X)

}=
∫

S(θ;x)f (x; θ) dx

=
∫ {

d

dθ
logL(θ)

}
f (x; θ) dx

=
∫ d

dθ
L(θ)

L(θ)
f (x; θ) dx, with the chain rule,
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=
∫

d

dθ
L(θ) dx, due to L(θ) = f (x; θ),

= d

dθ

∫
L(θ)dx, under the above regularity condition,

= d

dθ
1 = 0.

So we have E{S(θ;X)} = 0, and therefore Var{S(θ;X)} = E{S(θ;X)2}. It is there-
fore sufficient to show that J (θ) = E{S(θ;X)2} holds:

J (θ) = E

{
− d2

dθ2
logL(θ)

}

= E

{
− d

dθ

d
dθ

L(θ)

L(θ)

}
, with the chain rule,

= E

{
−

d2

dθ2 L(θ) · L(θ) − { d
dθ

L(θ)}2

L(θ)2

}
, with the quotient rule,

= −E

{ d2

dθ2 L(θ)

L(θ)

}
+ E

{
( d
dθ

L(θ))2

L(θ)2

}

= −
∫ d2

dθ2 L(θ)

L(θ)
f (x; θ) dx +

∫ { d
dθ

L(θ)}2

L(θ)2
f (x; θ) dx,

using the above regularity condition

= − d2

dθ2

∫
L(θ)dx

︸ ︷︷ ︸
=1

+
∫ {

d

dθ
logL(θ)

}2

︸ ︷︷ ︸
=S(θ)2

f (x; θ) dx

= E
{
S(θ;X)2}. �

Result 4.1 says that the score function at the true parameter value θ is on average
zero. This suggests that the MLE, which has a score function value of zero, is on
average equal to the true value. However, this is in general not true. It is true, though,
asymptotically, as we will see in Result 4.9.

The variance of the score function is due to Result 4.1 equal to the expected
Fisher information. How can we interpret this result? The expected Fisher informa-
tion is the average negative curvature of the log-likelihood at the true value. If the
log-likelihood function is steep and has a lot of curvature, then the information with
respect to θ is large, and the score function at the true value θ will vary a lot. Con-
versely, if the log likelihood function is flat, then the score function will not vary
much at the true value θ , so does not have much information with respect to θ .
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4.1.2 Properties of the Expected Fisher Information

We now study properties of the expected Fisher information.

Result 4.2 (Expected Fisher information from a random sample) Let X1:n denote
a random sample from a distribution with probability mass or density function
f (x; θ). Let J (θ) denote the expected unit Fisher information, i.e. the expected
Fisher information from one observation Xi from f (x; θ). The expected Fisher in-
formation J1:n(θ) from the whole random sample X1:n is then

J1:n(θ) = n · J (θ).

This property follows directly from the additivity of the log-likelihood function
for random samples, see Eq. (2.1).

Example 4.3 (Normal model) Consider a random sample X1:n from a normal dis-
tribution N(μ,σ 2), where our interest lies in the expectation μ, and we assume that
the variance σ 2 is known. We know from Example 2.9 that the unit Fisher informa-
tion is

I (μ;xi) = 1

σ 2
.

Now I (μ;xi) does not depend on xi and thus equals the expected unit Fisher infor-
mation J (μ), and the expected Fisher information from the whole random sample
X1:n is J1:n(μ) = nJ (μ) = nI (μ) = n/σ 2.

Suppose now that we are interested in the expected Fisher information of the
unknown variance σ 2 and treat the mean μ as known. We know from Example 2.9
that the unit Fisher information of σ 2 is

I
(
σ 2;xi

)= 1

σ 6
(xi − μ)2 − 1

2σ 4
.

Using E{(Xi − μ)2} = Var(Xi) = σ 2, we easily obtain the expected unit Fisher
information of σ 2:

J
(
σ 2)= 1

σ 4
− 1

2σ 4
= 1

2σ 4
.

The expected Fisher information from the whole random sample X1:n is therefore
J1:n(σ 2) = nJ (σ 2) = n/(2σ 4). �

The following result establishes that the property described in Result 2.1 for the
observed Fisher information also holds for the expected Fisher information.

Result 4.3 (Expected Fisher information of a transformation) Let Jθ (θ) denote
the expected Fisher information of a scalar parameter θ , and φ = h(θ) a one-to-
one transformation of θ . The expected Fisher information Jφ(φ) of φ can then be
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calculated as follows:

Jφ(φ) = Jθ (θ)

{
dh−1(φ)

dφ

}2

= Jθ (θ)

{
dh(θ)

dθ

}−2

.

Proof Using (2.4), we have

Sφ(φ;X) = Sθ (θ;X) · dh−1(φ)

dφ

and with Result 4.1 we have

Jφ(φ) = Var
{
Sφ(φ;X)

}

= Var
{
Sθ (θ;X)

} ·
{

dh−1(φ)

dφ

}2

= Jθ (θ) ·
{

dh−1(φ)

dφ

}2

.

The second equation follows from (2.5). �

Example 4.4 (Binomial model) The expected Fisher information of the success
probability π in a binomial experiment is

Jπ(π) = n

π(1 − π)
,

compare Example 4.1. The expected Fisher information of the log odds φ = h(π) =
log{π/(1 − π)} therefore is

Jφ(φ) = Jπ(π)

{
1

π(1 − π)

}−2

= nπ(1 − π)

due to

dh(π)

dπ
= 1

π(1 − π)
.

This corresponds to the observed Fisher information, as Jφ(φ̂ML) = Iφ(φ̂ML), cf.
Example 2.11. �

Example 4.5 (Normal model) In Example 4.3 we showed that the expected Fisher
information of the variance σ 2 is n/(2σ 4). Applying Result 4.3 to θ = σ 2 and σ =
h(θ) = √

θ , we obtain the expected Fisher information of σ :

Jσ (σ ) = Jσ 2

(
σ 2) · |2σ |2 = n

2σ 4
· 4σ 2 = 2n

σ 2
,

using dh−1(σ )/dσ = dσ 2/dσ = 2σ . �
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Location and scale parameters are commonly encountered in statistics. Here is a
definition.

Definition 4.3 (Location and scale parameters) Let X denote a random variable
with probability mass or density function fX(x) = f (x; θ), depending one scalar
parameter θ . If the probability mass or density function fY (y) of Y = X + c, where
c ∈ R is a constant, has the form fX(y; θ + c), then θ is called a location parameter.
If the probability mass or density function fY (y) of Y = cX, where c ∈ R

+ is a
positive constant, has the form fX(y; c θ) then θ is called a scale parameter. �

Example 4.6 (Normal model) Consider a normal random variable X ∼ N(μ,σ 2)

with density

fX(x) = 1√
2πσ 2

exp

{
−1

2

(x − μ)2

σ 2

}
.

We first view fX(x) = fX(x;μ) as a function of the mean μ. The density of Y =
X + c now is

fY (y) = 1√
2πσ 2

exp

{
−1

2

{(y − c) − μ}2

σ 2

}

= 1√
2πσ 2

exp

{
−1

2

(y − (μ + c))2

σ 2

}
= fX(y;μ + c),

using the change of variables formula (Appendix A.2.3), so μ can be identified as a
location parameter.

Suppose now that μ = 0 and consider fX(x) = f (x;σ) as a function of the
standard deviation σ . The density of Y = cX now is

fY (y) = 1

c

1√
2πσ 2

exp

{
−1

2

(y/c)2

σ 2

}

= 1√
2π(cσ )2

exp

{
−1

2

y2

(cσ )2

}
= fX(y; cσ ),

so σ can be identified as a scale parameter. �

The expected Fisher information of location or scale parameters has specific
properties:

Result 4.4 (Expected Fisher information of location and scale parameters)
1. The expected Fisher information J (θ) of a location parameter θ does not de-

pend on θ , i.e. is constant.
2. The expected Fisher information J (θ) of a scale parameter θ has the form

J (θ) ∝ θ−2.
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Example 4.7 (Normal model) Consider a random sample X1:n from a normal dis-
tribution N(μ,σ 2). The expected Fisher information of the location parameter μ is
J (μ) = n/σ 2 and indeed independent of μ (cf. Example 4.3). In Example 4.5 we
have also shown that J (σ ) = 2n/σ 2, which is in line with Result 4.4, which states
that the expected Fisher information of the scale parameter σ must be proportional
to σ−2. �

4.1.3 The Score Statistic

Result 4.1 has established formulas for the expectation and variance of the score
function. We can also make an asymptotic statement about the whole distribution of
the score function for a random sample:

Result 4.5 (Score statistic) Consider a random sample X1:n from a distribution
with probability mass or density function f (x; θ). Under the Fisher regularity con-
ditions, the following holds:

S(θ;X1:n)√
J1:n(θ)

a
∼ N(0,1). (4.2)

This result identifies the score statistic (4.2) as an approximate pivot for θ , with
the standard normal pivotal distribution, cf. Definition 3.7. We note that the symbol
a
∼ is to be understood as convergence in distribution as n → ∞, cf. Appendix A.4.1.
The alternative formulation

S(θ;X1:n)
a
∼ N

(
0, J1:n(θ)

)
is mathematically less precise but makes it more explicit that the asymptotic vari-
ance of the score function S(θ;X1:n) is equal to the expected Fisher information
J1:n(θ), a result which is commonly used in practice. However, Eq. (4.2) with a
limit distribution not depending on n is more rigid.

Proof To prove (4.2), consider

Yi = d

dθ
log
{
f (Xi; θ)

}

so S(θ;X1:n) =∑n
i=1 Yi . We know from Result 4.1 that E(Yi) = 0 and Var(Yi) =

J (θ), where J (θ) denotes the expected unit Fisher information. The expected Fisher
information J1:n(θ) with respect to the random sample X1:n is therefore n · J (θ),
see Result 4.2. We can now apply the central limit theorem (cf. Appendix A.4.4)
and obtain

1√
n
S(θ;X1:n) = 1√

n

n∑
i=1

Yi
D−→ N

(
0, J (θ)

)
, so

S(θ;X1:n)√
J1:n(θ)

a
∼ N(0,1).

�
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The next result shows that we can replace the expected Fisher information J1:n(θ)

with the ordinary Fisher information I (θ,X1:n) in Eq. (4.2).

Result 4.6 We can replace in Result 4.5 the expected Fisher information J1:n(θ) by
the ordinary Fisher information I (θ;X1:n), i.e.

S(θ;X1:n)√
I (θ;X1:n)

a
∼ N(0,1). (4.3)

Proof Due to

I (θ;Xi) = − d2

dθ2
log
{
f (Xi; θ)

}
and

E
{
I (θ;Xi)

}= J (θ),

the law of large numbers (cf. Appendix A.4.3) gives

1

n
I (θ;X1:n) = 1

n

n∑
i=1

I (θ;Xi)
P−→ J (θ), and therefore

I (θ;X1:n)
nJ (θ)

= I (θ;X1:n)
J1:n(θ)

P−→ 1.

The continuous mapping theorem (cf. Appendix A.4.2) ensures that also the inverse
square root converges to 1, i.e.

√
J1:n(θ)√

I (θ;X1:n)
P−→ 1.

By Slutsky’s theorem (cf. Appendix A.4.2) and Eq. (4.2) we finally obtain

√
J1:n(θ)√

I (θ;X1:n)
· S(θ;X1:n)√

J1:n(θ)

D−→ 1 · N(0,1),

i.e. we have established (4.3). �

There are two further variants of the score statistic. We can replace the true pa-
rameter value θ in the denominator

√
J1:n(θ) of Eq. (4.2) with θ̂ML = θ̂ML(X1:n).

Likewise, we can replace θ in the denominator
√

I1:n(θ;X1:n) of Eq. (4.3) with
θ̂ML = θ̂ML(X1:n). This will be justified later on page 98. In applications this requires
the calculation of the MLE θ̂ML.

The score statistic in Eq. (4.2) forms the basis of the corresponding significance
test, which we describe now.
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4.1.4 The Score Test

The score statistic can be used to construct significance tests and confidence inter-
vals. The significance test based on the score statistic is called score test. In the
following we still assume that the data has arisen through an appropriate random
sample of sufficiently large sample size n.

Suppose we are interested in the null hypothesis H0 : θ = θ0 with two-sided alter-
native H1 : θ �= θ0. Both S(θ0;x1:n)/

√
J (θ0) and S(θ0;x1:n)/

√
I (θ0;x1:n) can now

be used to calculate a P -value, as illustrated in the following example.

Example 4.8 (Scottish lip cancer) Consider Sect. 1.1.6, where we have observed
(xi ) and expected (ei ) counts of lip cancer in i = 1, . . . ,56 regions of Scotland.
We assume that xi is a realisation from a Poisson distribution Po(eiλi) with known
offset ei > 0 and unknown rate parameter λi .

In contrast to Example 2.4, we assume here that the rate parameters λi differ
between regions. Note that calculation of the expected counts ei has been done
under the constraint that the sum of the expected equals the sum of the observed
counts in Scotland. The value λ0 = 1 is hence a natural reference value for the rate
parameters because it corresponds to the overall relative risk

∑
xi/
∑

ei .
Consider a specific region i and omit the subscript i for ease of notation. Note

that the number of observed lip cancer cases x in a specific region can be viewed
as the sum of a very large number of binary observations (lip cancer yes/no)
based on the whole population in that region. So although we just have one Pois-
son observation, the usual asymptotics still apply, if the population size is large
enough.

We want to test the null hypothesis H0 : λ = λ0. It is easy to show that

S(λ;x) = x

λ
− e,

I (λ;x) = x/λ2,

λ̂ML = x/e and

J (λ) = e/λ.

The observed test statistic of the score test using the expected Fisher information in
(4.2) is therefore

T1(x) = S(λ0;x)√
J (λ0)

= x − eλ0√
eλ0

.

Using the ordinary Fisher information instead, we obtain the observed test statistic
from (4.3)

T2(x) = S(λ0;x)√
I (λ0;x)

= x − eλ0√
x

.



90 4 Frequentist Properties of the Likelihood

Fig. 4.1 Scatter plot of the
values of the different score
test statistics T1 and T2 for a
unity relative risk of lip
cancer in the 56 regions of
Scotland. The grey lines mark
the 2.5 % and
97.5 % quantiles of the
standard normal distribution,
the diagonal line corresponds
to the equality T1 = T2

Note that

T1(x)

T2(x)
=
√

x

eλ0

so if x > eλ0, both T1 and T2 are positive, and T1 will have a larger value than T2.
Conversely, if x < eλ0, both T1 and T2 are negative, and T2 will have a larger abso-
lute value than T1. Therefore, T1 ≥ T2 always holds.

We now consider all 56 regions separately in order to test the null hypothesis
H0 : λi = λ0 = 1 for each region i. Figure 4.1 plots the values of the two test statis-
tics T1 and T2 against each other.

Note that the test statistic T2 is infinite for the two observations with xi = 0.
The alternative test statistic T1 gives here still sensible values, namely −1.33 and
−2.04. Of course, it has to be noted that the assumption of an approximate nor-
mal distribution is questionable for small xi . This can be also seen from the dis-
crepancies between T1 and T2, two test statistics which should be asymptotically
equivalent.

It is interesting that 24 of the 56 regions have absolute values of T1 larger than
the critical value 1.96. This corresponds to 43 %, considerably more than the 5 %
to be expected under the null hypothesis. This can also be seen in a histogram of
the corresponding two-sided P -values, shown in Fig. 4.2a. We observe far more
small P -values (< 0.1) than we would expect under the null hypothesis, where the
P -values are (asymptotically) uniformly distributed.

This suggests that there is heterogeneity in relative lip cancer risk between the
different regions despite the somewhat questionable asymptotic regime. Very simi-
lar results can be obtained with the test statistic T2, excluding the two regions with
zero observed counts, cf. Fig. 4.2b. �

A remarkable feature of the score test is that it does not require calculation of the
MLE θ̂ML. This can make the application of the score test simpler that alternative
methods, which often require knowledge of the MLE.
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Fig. 4.2 Histograms of the P -values based on the two score test statistics T1 and T2 for a unity
relative risk of lip cancer in the 56 regions of Scotland

4.1.5 Score Confidence Intervals

The approximate pivots (4.2) and (4.3) can also be used to compute approximate
score confidence intervals for θ . Consider the score test statistic (4.2); then the du-
ality of hypothesis tests and confidence intervals implies that all values θ0 fulfilling

z(1−γ )/2 ≤ S(θ0;x1:n)√
J1:n(θ0)

≤ z(1+γ )/2

form a γ · 100 % score confidence interval for θ . Due to z(1−γ )/2 = −z(1+γ )/2, this
condition can also be written as

S(θ0;x1:n)2

J1:n(θ0)
≤ z2

(1+γ )/2.

The same holds for the score test statistic (4.3), which uses the observed Fisher
information. In summary we have the two approximate γ · 100 % score confidence
intervals {

θ : S(θ;x1:n)2

J1:n(θ)
≤ q2

}
and

{
θ : S(θ;x1:n)2

I (θ;x1:n)
≤ q2

}
, (4.4)

where q = z(1+γ )/2 denotes the (1 + γ )/2 quantile of the standard normal distri-
bution. Computation is in general not straightforward, but explicit formulas can be
derived in some special cases, as illustrated by the following examples.

Example 4.9 (Scottish lip cancer) We now want to compute a score confidence
interval for the relative risk λ in one specific region.
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Fig. 4.3 95 % score
confidence intervals for the
relative risk of lip cancer in
56 regions of Scotland. The
regions are ordered with
respect to the estimates
(xi + q2/2)/ei , which are
marked with a solid circle

With S(λ;x) and J (λ) from Example 4.8, we have

{S(λ;x)}2

J (λ)
= (x − λe)2

λe
≤ q2.

We obtain the limits of this confidence interval by solving the quadratic equation

e2λ2 − (2x + q2)eλ + x2 = 0

for λ. The two solutions are

λ1/2 = x + q2/2

e
± q

2e

√
4x + q2.

Note that the interval is boundary-respecting since the lower limit is always non-
negative and equal to zero for x = 0. The interval limits are symmetric around (x +
q2/2)/e, but not around the MLE λ̂ML = x/e. Nevertheless, it is easy to show that
the MLE is always inside the confidence interval for any confidence level γ . For the
data on lip cancer in Scotland, we obtain the 95 % score confidence intervals for the
relative risk in each region, as displayed in Fig. 4.3. �

Another famous example of a confidence interval based on the score statistic is
the Wilson confidence interval for a binomial success probability π .

Example 4.10 (Wilson confidence interval) Edwin B. Wilson (1879–1964) sug-
gested in 1927 an approximate γ · 100 % confidence interval with limits

x + q2/2

n + q2
± q

√
n

n + q2

√
π̂ML(1 − π̂ML) + q2

4n
(4.5)
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for the success probability π in the binomial model X ∼ Bin(n,π); here π̂ML = x/n.
We will now show that this confidence interval is a score confidence interval based
on (4.4) using the expected Fisher information. First note that

S(π;x) = x

π
− n − x

1 − π
= x − nπ

π(1 − π)
(4.6)

is the score function in the binomial model and

J (π) = n

π(1 − π)

is the expected Fisher information. Now

{
π : |S(π;x)|√

J (π)
≤ q

}
=
{
π : S(π;x)2

J (π)
≤ q2

}
,

so the limits of this approximate γ ·100 % confidence interval for π are the solutions
of the equation

π(1 − π)

n

{
x − nπ

π(1 − π)

}2

= (x − nπ)2

nπ(1 − π)
= q2,

which is equivalent to solving the quadratic equation

π2(n2 + nq2)+ π
(−2nx − nq2)+ x2 = 0

for π . The two solutions are

π1/2 = 2nx + nq2 ±√n2(2x + q2)2 − 4(n2 + nq2)x2

2(n2 + nq2)

= q2 + 2x

2(n + q2)
±
√

(q2 + 2x)2 − 4(1 + q2/n)x2

2(n + q2)

= x + q2/2

n + q2
± q

√
n

n + q2

√
(q2/2 + x)2 − (1 + q2/n)x2

q2n
.

Rewriting the term under the square root as

(q2/2 + x)2 − (1 + q2/n)x2

q2n
= q4/4 + q2x + x2 − x2 − (q2x2)/n

q2n

= x − x2/n

n
+ q2

4n
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= x

n

(
1 − x

n

)
+ q2

4n

= π̂ML(1 − π̂ML) + q2

4n
,

we finally obtain Eq. (4.5). �

An interesting property of the Wilson confidence interval is that the limits are
always within the unit interval, i.e. the Wilson interval is boundary-respecting. For
example, if there are x = 0 successes in n trials, the Wilson confidence interval has
limits 0 and q2/(q2 + n); for x = n the limits are n/(q2 + n) and 1. The Wald
interval does not have this property; see Example 4.22 for a thorough comparison
of different confidence intervals for proportions.

The underlying reason of this property of the Wilson confidence interval is that
the score confidence intervals based on the expected Fisher information J (θ) are
invariant with respect to one-to-one transformations of the parameter θ . For exam-
ple, suppose we would parametrise the binomial likelihood in terms of the log odds
φ = logit(π) instead of the success probability π . The limits of the score confidence
interval for φ are then simply the logit-transformed limits of the original Wilson
confidence interval for π . This is also true in general.

Result 4.7 (Invariance of score confidence intervals) Let φ = h(θ) denote a one-
to-one transformation of θ and use subscripts to differentiate between the score
function and expected Fisher information of the old (θ ) and new parameter (φ).
Then we have {

h(θ) : Sθ (θ;x)2

Jθ (θ)
≤ q2

}
=
{
φ : Sφ(φ;x)2

Jφ(φ)
≤ q2

}
.

Proof This property follows immediately from Result 4.3 and Eq. (2.4):

Sφ(φ;x)2

Jφ(φ)
=
{
Sθ (θ;x)

dh−1(φ)
dφ

}2

Jθ (θ)
{

dh−1(φ)
dφ

}2
= Sθ (θ;x)2

Jθ (θ)
.

�

We can therefore transform the limits of a score interval for θ and do not need to
re-calculate the score function of φ. This is an important and attractive property of
the score confidence interval based on the expected Fisher information. As we will
see in the next section, the more commonly used Wald confidence interval does not
have this property.

4.2 The Distribution of the ML Estimator and the Wald Statistic

In this section we will first discuss some properties of the ML estimator. We then
derive its asymptotic distribution, which leads to the Wald statistic, the most com-
monly used statistic for significance tests and confidence intervals.
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4.2.1 Cramér–Rao Lower Bound

The variance of an unbiased estimator is commonly calculated to assess its preci-
sion: The smaller the variance the better it is. The Cramér–Rao lower bound forms
a universal lower bound for the variance of all unbiased estimators. If an estimator
has variance equal to the Cramér–Rao lower bound, it is optimal because there is no
other unbiased estimator with smaller variance.

Result 4.8 Let T = h(X) denote an unbiased estimator of g(θ) based on some
data X from a distribution with probability mass or density function f (x; θ), i.e.

E(T ) = g(θ) for all θ ∈ Θ.

Let J (θ) denote the expected Fisher information of θ with respect to X. Under the
Fisher regularity conditions, we then have the following property:

Var(T ) ≥ g′(θ)2

J (θ)
. (4.7)

In particular, if g(θ) = θ , we have

Var(T ) ≥ 1

J (θ)
. (4.8)

The right-hand sides of (4.7) and (4.8) are called Cramér–Rao lower bounds.

Proof To prove (4.7), consider two arbitrary random variables S and T . Then the
squared correlation between S and T is

ρ(S,T )2 = Cov(S,T )2

Var(S) · Var(T )
≤ 1,

compare Appendix A.3.6. Suppose now that S = S(θ;X), i.e. S is the score func-
tion. We know that Var(S) = J (θ), so we have

Var(T ) ≥ Cov(S,T )2

J (θ)
.

It remains to show that Cov(S,T ) = g′(θ). Due to E(S) = 0, we have

Cov(S,T ) = E(S · T ) − E(S)︸︷︷︸
=0

E(T )

=
∫

S(θ;x)T (x)f (x; θ) dx

=
∫ d

dθ
f (x; θ)

f (x; θ)
T (x)f (x; θ) dx
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= d

dθ

∫
T (x)f (x; θ) dx

= d

dθ
E
{
T (X)

}= d

dθ
g(θ)

= g′(θ). �

Example 4.11 (Poisson model) Suppose X follows a Poisson distribution Po(eλ)

with known offset e > 0 and unknown parameter λ. We know that J (λ) = e/λ.
The ML estimator λ̂ML = X/e is unbiased for λ and has variance Var(λ̂ML) =
Var(X)/e2 = λ/e = 1/J (λ). Therefore, λ̂ML attains the Cramér–Rao lower bound
and is optimal, i.e. it has minimal variance under among all unbiased estimators. �

The ML estimator in the last example is optimal. However, in general, optimal
estimators are extremely rare. We will soon establish a more general but also slightly
weaker result, which states that the ML estimator is in general asymptotically op-
timal because it is asymptotically unbiased with asymptotic variance equal to the
inverse expected Fisher information. Estimators with this property are also called
efficient.

Efficient estimator
An estimator that is asymptotically unbiased and asymptotically attains the
Cramér–Rao lower bound is called efficient.

4.2.2 Consistency of the ML Estimator

We will now consider the ML estimator and show that it is consistent if the Fisher
regularity conditions hold. In particular, we need to assume that the support of the
statistical model f (x; θ) does not depend on θ , that L(θ) is continuous in θ and that
θ is (as always in this section) a scalar.

Result 4.9 (Consistency of the ML estimator) Let X1:n denote a random sample
from f (x; θ0) where θ0 denotes the true parameter value. For n → ∞, there is a
consistent sequence of MLEs θ̂n (defined as the local maximum of the likelihood
function).

Proof We have to show that for any ε > 0 (for n → ∞), there is a (possibly local)
maximum θ̂ in the interval (θ0 − ε, θ0 + ε). Now L(θ) is assumed to be continuous,
so it is sufficient to show that the probability of

L(θ0) > L(θ0 − ε) (4.9)
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and

L(θ0) > L(θ0 + ε) (4.10)

goes to 1 as n → ∞. First, consider (4.9), which can be rewritten as

1

n
log

{
L(θ0)

L(θ0 − ε)

}
> 0.

The law of large numbers now ensures that

1

n
log

{
L(θ0)

L(θ0 − ε)

}
= 1

n

n∑
i=1

log

{
f (xi; θ0)

f (xi; θ0 − ε)

}
P−→ E

[
log

{
f (X; θ0)

f (X; θ0 − ε)

}]
,

where X has density f (x; θ0). Application of the information inequality (cf. Ap-
pendix A.3.8) gives with assumption (4.1):

E

[
log

{
f (X; θ0)

f (X; θ0 − ε)

}]
> 0.

For Eq. (4.10), we can argue similarly. �

Note that in this proof the MLE is defined as a local maximiser of the likeli-
hood, so the uniqueness of the MLE is not shown. A proof with the MLE defined as
the global maximiser requires additional assumptions, and the proof becomes more
involved.

4.2.3 The Distribution of the ML Estimator

The following result, which establishes the asymptotic normality of the MLE, is one
of the most important results of likelihood theory.

Result 4.10 Let X1:n denote a random sample from f (x; θ0) and suppose that
θ̂ML = θ̂ML(X) is consistent for θ0. Assuming that the Fisher regularity conditions
hold, we then have:

√
n(θ̂ML − θ0)

D−→ N
(
0, J (θ0)

−1),
where J (θ0) denotes the expected unit Fisher information of one observation Xi

from f (x; θ0). The expected Fisher information of the full random sample is there-
fore J1:n(θ0) = n · J (θ0), and we have

√
J1:n(θ0)(θ̂ML − θ0)

a
∼ N(0,1). (4.11)

This result identifies (4.11) as an approximate pivot for θ0. Informally, we may
say that

θ̂ML
a
∼ N

(
θ0, J1:n(θ0)

−1).
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As a by-product, the result establishes two further properties of MLEs:

Properties of the ML estimator

1. The ML estimator is asymptotically unbiased.
2. The variance of the ML estimator asymptotically attains the Cramér–Rao

lower bound, so the ML estimator efficient.

Proof To show Result 4.10, consider a first-order Taylor expansion of the score
function around θ0,

S(θ;x1:n) ≈ S(θ0;x1:n) − I (θ0;x1:n)(θ − θ0).

For θ = θ̂ML with S(θ̂ML;x1:n) = 0, we then have:

I (θ0;x1:n)(θ̂ML − θ0) ≈ S(θ0;x1:n) respectively

√
n(θ̂ML − θ0) ≈ √

n · S(θ0;x1:n)
I (θ0;x1:n)

=
{

I (θ0;x1:n)
n

}−1

· S(θ0;x1:n)√
n

.

Result 4.5 now ensures that

S(θ0;X1:n)√
n

D−→ N
(
0, J (θ0)

)
,

and we also have (using the proof of Result 4.6) that

I (θ0;X1:n)
n

P−→ J (θ0).

The continuous mapping theorem (cf. Appendix A.4.2) gives

{
I (θ0;X1:n)

n

}−1
P−→ J (θ0)

−1,

and application of Slutsky’s theorem (cf. Appendix A.4.2) finally gives

√
n(θ̂ML − θ0)

D−→ J (θ0)
−1 · N

(
0, J (θ0)

)= N
(
0, J (θ0)

−1). �

We can now replace the expected Fisher information J1:n(θ0) in (4.11) with the
ordinary Fisher information I (θ0;X1:n), just as for the score statistic. Similarly, we
can evaluate both the expected and the ordinary Fisher information not at the true
parameter value θ0, but at the MLE θ̂ML. In total, we have the following three variants



4.2 The Distribution of the ML Estimator and the Wald Statistic 99

of Result 4.10:

θ̂ML
a
∼ N

(
θ0, J1:n(θ̂ML)

−1),
θ̂ML

a
∼ N

(
θ0, I (θ0;X1:n)−1),

θ̂ML
a
∼ N

(
θ0, I (θ̂ML;X1:n)−1).

This illustrates that we can use both 1/

√
I (θ̂ML;x1:n) and 1/

√
J1:n(θ̂ML) as a stan-

dard error of the MLE θ̂ML. This is an important result, as it justifies the usage of a
standard error based on I (θ̂ML;x1:n), i.e. the negative curvature of the log-likelihood,
evaluated at the MLE θ̂ML.

Standard error of the ML estimator
The reciprocal square root of the observed Fisher information is a standard
error of θ̂ML:

se(θ̂ML) = 1/

√
I (θ̂ML;x1:n).

4.2.4 The Wald Statistic

To test the null hypothesis H0 : θ = θ0, we can use one of the two test statistics

√
I (θ̂ML)(θ̂ML − θ0)

a
∼ N(0,1) (4.12)

and
√

J (θ̂ML)(θ̂ML − θ0)
a
∼ N(0,1), (4.13)

which are both asymptotically standard normally distributed under the null hypoth-
esis H0. These two statistics are therefore approximate pivots for θ and are usually
denoted as Wald statistic. The corresponding statistical test is called Wald test and
has been developed by Abraham Wald (1902–1950) in 1939.

Example 4.12 (Scottish lip cancer) Consider again a specific region of Scotland,
where we want to test whether the lip cancer risk is higher than on average. To test
the corresponding null hypothesis H0 : λ = λ0 with the Wald test, we know from
Example 4.8 that

I (λ) = x/λ2, λ̂ML = x/e and J (λ) = e/λ.
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It then follows that

J (λ̂ML) = I (λ̂ML) = e2/x

and the observed Wald test statistic (4.12) is

T3(x) =
√

I (λ̂ML)(λ̂ML − λ0) =
√

e2/x(λ̂ML − λ0) = x − eλ0√
x

.

We see that the Wald test statistic T3 is in this example equal to the score test statistic
using the ordinary Fisher information T2. �

Using the duality of hypothesis tests and confidence intervals, Wald confidence
intervals can be computed by inverting the Wald test based on the test statistics
(4.12) or (4.13), respectively. Using (4.12), all values θ0 that fulfill

z 1−γ
2

≤
√

I (θ̂ML)(θ̂ML − θ0) ≤ z 1+γ
2

would not lead to a rejection of the null hypothesis H0 : θ = θ0 when the significance
level is 1 − γ . These values form the γ · 100 % Wald confidence interval for θ with
limits

θ̂ML ± z 1+γ
2

/

√
I (θ̂ML).

Because 1/

√
I (θ̂ML) is commonly referred to as standard error of the MLE, we ob-

tain the limits

θ̂ML ± z 1+γ
2

se(θ̂ML),

of a γ · 100 % Wald confidence interval, already introduced in Result 3.1.

Example 4.13 (Hardy–Weinberg equilibrium) The likelihood function of υ is of
binomial form with success probability υ , 2x1 + x2 successes and x2 + 2x3 failures
among 2n trials, where n is the sample size (cf. Example 2.7). The MLE of υ is
therefore

υ̂ML = 2x1 + x2

2x1 + 2x2 + 2x3
= 2x1 + x2

2n
= x1 + 1

2x2

n
.

Also by arguing with the binomial form of the likelihood, we obtain the standard
error

se(υ̂ML) =
√

υ̂ML(1 − υ̂ML)/(2n)

of the MLE.
For the data from Example 2.7, we have n = 747 and obtain υ̂ML = 0.570 and

se(υ̂ML) ≈ 0.013 ,

so we can easily compute the 95 % Wald confidence interval [0.545,0.595]. �
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As discussed in Sect. 3.2.4, Wald confidence intervals are not invariant to nonlin-
ear transformations, and the choice of transformation may be guided by the require-
ment that the confidence interval respects the boundaries of the parameter space. We
will now describe another approach for determining a suitable parameter transfor-
mation.

4.3 Variance Stabilising Transformations

An alternative approach to constructing Wald confidence intervals is to search for
a transformation φ = h(θ) of the parameter θ such that the expected Fisher in-
formation Jφ(φ) does not depend on φ. Such a transformation is called variance
stabilising since Result 4.10 ensures that the asymptotic variance of φ̂ML does not
depend on φ. If the expected Fisher information Jθ (θ) is already independent of θ ,
then no additional transformation of θ is necessary. For example, this is always the
case if θ is a location parameter, cf. Result 4.4. If Jθ (θ) is not independent of θ , the
following result shows how to find the variance stabilising transformation.

Result 4.11 (Calculation of the variance stabilising transformation) Let X1:n de-
note a random sample from a distribution with probability mass or density function
f (x; θ) and associated Fisher information Jθ (θ). The transformation

φ = h(θ) ∝
∫ θ

Jθ (u)
1
2 du (4.14)

is then a variance stabilising transformation of θ with Jφ(φ) not depending on φ.

Here
∫ θ

g(u)du denotes the value of the anti-derivative of a function g, evaluated
at θ .

Proof To prove Result 4.11, note that

dh(θ)

dθ
∝ Jθ (θ)

1
2 ,

so with Result 4.3 we have

Jφ(φ) = Jθ (θ)

{
dh(θ)

dθ

}−2

∝ Jθ (θ)Jθ (θ)−1 = 1. �

Example 4.14 (Scottish lip cancer) In Example 4.9 we computed a score confi-
dence interval for the relative lip cancer risk λ in a specific region of Scotland, cf.
Sect. 1.1.6. The used data is the realisation x from a Poisson distribution Po(eλ)

with known offset e. The expected Fisher information of λ is Jλ(λ) = e/λ ∝ λ−1,
cf. Example 4.8. Therefore,

∫ λ

Jλ(u)1/2 du ∝
∫ λ

u−1/2 du = 2
√

λ.
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We can ignore the constant factor 2, so we can identify the square root transforma-
tion φ = h(λ) = √

λ as the variance stabilising transformation of the relative rate λ

of a Poisson distribution. The MLE of λ is λ̂ML = x/e, so using the invariance of the
MLE, we immediately obtain φ̂ML = √

x/e.
We know from Result 4.11 that the expected Fisher information Jφ(φ) does not

depend on φ, but what is its value? Using Result 4.3, we can easily compute

Jφ(φ) = Jλ(λ)

{
dh(λ)

dλ

}−2

= e

λ

∣∣∣∣12λ− 1
2

∣∣∣∣
−2

= 4e,

so the asymptotic variance of φ̂ML is 1/(4e).
We now use the variance stabilising transformation to compute confidence in-

tervals for all 56 regions in Scotland. As before, we construct confidence intervals
for each of the regions separately. For example, in a particular region of Scotland
there have been x = 11 lip cancer cases, but only e = 3.04 have been expected,

so λ̂ML = x/e = 3.62 and se(λ̂ML) = 1/

√
Jλ(λ̂ML) =

√
λ̂ML/e = 1.09. This gives the

95 % Wald confidence interval for λ with limits

3.62 ± 1.96 · 1.09 = 1.48 and 5.76.

Alternatively, we can compute the limits of a 95 % Wald confidence interval for

φ = √
λ using se(φ̂ML) = 1/

√
Jφ(φ̂ML) = √

1/(4e):

√
3.62 ± 1.96 ·√1/(4 · 3.04) = 1.34 and 2.46,

and back-transform those to the 95 % confidence interval [1.800,6.07] for λ. Note
that this interval is no longer symmetric around λ̂ML = 3.62 but slightly shifted to
the right.

Figure 4.4 displays the variance-stabilised Wald confidence intervals for the
56 regions of Scotland. The intervals look similar to the score intervals shown in
Fig. 4.3. �

Example 4.15 (Inference for a proportion) We now want to derive the variance-
stabilising transformation in the binomial model. The ML estimator of the success
probability π is π̂ML = X̄ = X/n with expected Fisher information

J (π) = n

π(1 − π)
∝ {π(1 − π)

}−1
,

so we have to compute
∫ π {u(1 − u)}− 1

2 du. Using the substitution

u = sin(p)2 ⇐⇒ p = arcsin(
√

u),

we have 1 − u = cos(p)2, du = 2 sin(p) cos(p)dp, and hence
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Fig. 4.4 95 % Wald
confidence intervals for the
relative risk of lip cancer
incidence in 56 regions of
Scotland based on the
variance-stabilising
transformation. The MLEs
xi/ei are given as solid
circles. The regions are
ordered as in Fig. 4.3

∫ π{
u(1 − u)

}− 1
2 du =

∫ arcsin(
√

π) 2 sin(p) cos(p)

|sin(p) cos(p)| dp

∝
∫ arcsin(

√
π)

2dp

= 2 arcsin(
√

π).

So h(π) = arcsin(
√

π) is the variance-stabilising transformation with approximate
variance 1/(4n), as can be shown easily. As intended, the approximate variance does
not depend on π .

Suppose n = 100 and x = 2, i.e. π̂ML = 0.02 and h(π̂ML) = arcsin(
√

π̂ML) =
0.142. The approximate 95 % confidence interval for φ = h(π) = arcsin(

√
π) now

has the limits

0.142 ± 1.96 · 1/
√

400 = 0.044 and 0.240.

Back-transformation using h−1(φ) = sin(φ)2 finally gives the 95 % confidence
interval [0.0019,0.0565] for π . It should be noted that application of the back-
transformation requires the limits of the confidence interval for φ to lie in the in-
terval [0,π/2 ≈ 1.5708] (here π denotes the circle constant). In extreme cases, for
example for x = 0, this may not be the case. �

Finally, we want to derive the variance-stabilising transformation of a scale pa-
rameter θ . With Result 4.4, we have J (θ) ∝ θ−2, so

∫ θ

J (u)1/2 du ∝
∫ θ

u−1 du = log(θ).

The variance-stabilising transformation of a scale parameter is therefore always the
logarithmic transformation.
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Example 4.16 (Fisher’s z-transformation) We now consider a problem with more
than one parameter to sketch another important variance-stabilising transformation.
Consider a random sample from a bivariate normal distribution N2(μ,Σ) with mean
μ = (μ1,μ2)

� and covariance matrix

Σ =
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
,

cf. Appendix A.5.3 for properties of the multivariate normal distribution. In total,
there are five unknown parameters, namely the means μ1 and μ2, the variances σ 2

1
and σ 2

2 and the correlation ρ ∈ (−1,1). The sample correlation

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

is the MLE of ρ.
It can be shown (with the central limit theorem and the delta method) that r has

an asymptotic normal distribution with mean ρ and variance V (ρ) = (1 − ρ2)2/n

(compare also Exercise 2 in Chap. 5). The asymptotic variance depends on ρ, so we
would like to find a transformation that removes this dependence.

Using (4.14) with the Fisher information replaced by the inverse variance, we
obtain

h(ρ) =
∫ ρ

V (u)−1/2 du

∝
∫ ρ 1

1 − u2
du

=
∫ ρ 1

2(1 + u)
du +

∫ ρ 1

2(1 − u)
du

= 1

2
log(1 + ρ) − 1

2
log(1 − ρ)

= 1

2
log

(
1 + ρ

1 − ρ

)
.

This variance-stabilising transformation can also be written as ζ = h(ρ) = tanh−1(ρ)

and has been discovered by R.A. Fisher. It is therefore known as Fisher’s z-
transformation. The transformed correlation z = tanh−1(r) is approximately nor-
mally distributed with mean ζ and constant variance 1/n (note that 1/(n − 3) is ac-
tually a slightly more accurate approximation of the variance). A confidence interval
for ζ can now be back-transformed using the inverse Fisher’s z-transformation

ρ = tanh(ζ ) = exp(2ζ ) − 1

exp(2ζ ) + 1
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to obtain a confidence interval for the correlation ρ. Note that this transformation
ensures that the limits of the confidence interval for ρ are inside the parameter space
(−1,1) of ρ. �

Example 4.17 (Blood alcohol concentration) We want to illustrate the method with
the study on blood alcohol concentration, cf. Sect. 1.1.7. We denote the BrAC mea-
surement from the ith proband as xi and the BAC value as yi , i = 1, . . . , n = 185,
and assume that they are realisations from a bivariate normal random sample.
We obtain the means x̄ = 1927.5 and ȳ = 0.7832 and the sample correlation
r = 0.9725. If we use the asymptotic normality of r , we obtain the standard error√

V (r) = 0.003994 for r and the 95 % Wald confidence interval [0.9646,0.9803]
for ρ.

The estimated transformed correlation is z = tanh(r) = 2.1357, with 95 % Wald
confidence interval z ± 1.96/

√
n = 1.9916 and 2.2798 for ζ . Transforming this to

the correlation scale gives the 95 % confidence interval [0.9634,0.9793] for ρ. This
is similar to the original Wald confidence interval above. The reason is that the
sample size n is quite large in this example, so that the asymptotics are effective
for both scales. If we had just n = 10 observations giving the same estimate, we
would get an upper bound for the original Wald confidence interval that is larger
than 1. �

4.4 The Likelihood Ratio Statistic

A second-order Taylor expansion of l(θ) at θ̂ML as in (2.17) gives

l(θ) ≈ l(θ̂ML) − 1

2
· I (θ̂ML)(θ − θ̂ML)

2

so

2 log

{
L(θ̂ML)

L(θ)

}
= 2
{
l(θ̂ML) − l(θ)

}≈ I (θ̂ML)(θ − θ̂ML)
2.

The left-hand side

W = 2 log

{
L(θ̂ML)

L(θ)

}
= −2l̃(θ) (4.15)

is called the likelihood ratio statistic. Here W = W(X1:n) is a function of the ran-
dom sample X1:n because the likelihood L(θ;X1:n) and the ML estimator θ̂ML =
θ̂ML(X1:n) depend on the data.

If θ denotes the true parameter value, then (4.12) implies that

I (θ̂ML)(θ̂ML − θ)2 a
∼ χ2(1),
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due to the fact that the squared standard normal random variable has a chi-squared
distribution with one degree of freedom, cf. Appendix A.5.2. So the likelihood ratio
statistic (4.15) follows a chi-squared distribution with one degree of freedom,

W
a
∼ χ2(1),

and is an approximate pivot. It can be used both for significance testing and the
calculation of confidence intervals.

4.4.1 The Likelihood Ratio Test

The likelihood ratio test to test the null hypothesis H0 : θ = θ0 is based on the
likelihood ratio statistic (4.15) with θ replaced by θ0. An equivalent formulation is
based on the signed likelihood ratio statistic

sign(θ̂ML − θ0) · √W, (4.16)

which under H0 asymptotically follows the standard normal distribution.

Example 4.18 (Scottish lip cancer) We now want to compute the likelihood ratio
test statistic for one specific region in Scotland with the null hypothesis H0 : λ = λ0.
The log-likelihood equals

l(λ) = x log(λ) − eλ,

so

W(x) =
{

2[x{log(x) − log(eλ0) − 1} + eλ0] for x > 0,

2eλ0 for x = 0,

and we easily obtain the signed likelihood ratio statistic (4.16), cf. Fig. 4.5. If posi-
tive, the signed likelihood ratio statistic T4 is more conservative than the score test
in this example. If negative, it is less conservative due to T5 ≤ T1. Figure 4.6 gives
a histogram of the corresponding P -values. The pattern is very similar to the one
based on the score statistic shown in Fig. 4.2. Note that 25 out of 56 regions have a
P -value smaller than 5 %, so many more than we would expect under the assump-
tion that the null hypothesis holds in all regions. �

4.4.2 Likelihood Ratio Confidence Intervals

Likelihood ratio confidence intervals can be obtained by inverting the likelihood
ratio test. More specifically, for a given MLE θ̂ML, all parameter values θ with W =
2 log{L(θ̂ML)/L(θ)} ≤ χ2

γ (1) form a γ · 100 % likelihood ratio confidence interval.
In exceptional cases (if the likelihood function is multimodal) this set will not be an
interval.
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Fig. 4.5 Scatter plot of the
score statistic T1 versus the
signed likelihood ratio
statistic T4 for the 56 regions
of Scotland

Fig. 4.6 Histogram of
P -values obtained from the
likelihood ratio test statistic
T4 for a unity relative risk of
lip cancer in the 56 regions of
Scotland

Likelihood ratio confidence intervals
The set {

θ : l̃(θ) ≥ −1

2
χ2

γ (1)

}
, (4.17)

which can also be represented as
{
θ : L̃(θ) ≥ exp

{
−1

2
χ2

γ (1)

}}
, (4.18)

forms an approximate γ · 100 % confidence interval for θ .
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Table 4.1 Thresholds
c = − 1

2 χ2
γ (1) and exp(c) for

the calibration of the relative
log-likelihood and relative
likelihood, respectively, of a
scalar parameter at
confidence level γ

γ c exp(c)

0.9 −1.35 0.259

0.95 −1.92 0.147

0.99 −3.32 0.036

0.999 −5.41 0.004

Note that the central quantity to compute a likelihood ratio confidence interval is the
relative log-likelihood l̃(θ), cf. Definition 2.5. We are now in a position to calibrate
the relative log-likelihood if θ is a scalar, as shown in Table 4.1. Of course, this also
induces a calibration of the relative likelihood L̃(θ). For example, all parameter
values with relative likelihood larger than 0.147 will be within the 95 % likelihood
ratio confidence interval.

Computation of the limits of a likelihood ratio confidence interval requires in
general numerical methods such as bisection (see Appendix C.1.2) to find the roots
of the equation

l̃(θ) = −1

2
χ2

γ (1).

This is now illustrated in the Poisson model.

Example 4.19 (Scottish lip cancer) For comparison with Examples 4.9 and 4.14, we
numerically compute 95 % likelihood ratio confidence intervals for λi in each of the
regions i = 1, . . . ,56 in Scotland. We use the R-function uniroot (cf. Appendix C
for more details):

> ## define a general function which computes likelihood confidence

> ## intervals

> likelihood.ci <- function(gamma, ## the confidence level

loglik, ## the log-likelihood function

theta.hat, ## the MLE

lower, ## lower bound of parameter space

upper, ## upper bound of parameter space

comp.lower = TRUE, ## compute lower bound of CI?

comp.upper = TRUE, ## compute upper bound of CI?

...)

## additional arguments for the log-likelihood

{

## target function, such that f(theta)=0 gives CI limits

f <- function(theta, ...)

{

loglik(theta, ...) - loglik(theta.hat, ...) + 1/2 * qchisq(gamma,

df=1)

}
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## compute lower and upper bounds of CI

ret <- c()

if(comp.lower)

{

hl.lower <- uniroot(f,

interval = c(lower, theta.hat),

...)$root

ret <- c(ret, hl.lower)

}

if(comp.upper)

{

hl.upper <- uniroot(f,

interval = c(theta.hat, upper),

...)$root

ret <- c(ret, hl.upper)

}

return(ret)

}

> ## the log-likelihood of lambda in the Poisson model

> loglik.poisson <- function(lambda, x, e, log = TRUE)

{

dpois(x = x, lambda = lambda * e, log = log)

}

> ## get the data

> x <- scotlandData[, 1]

> e <- scotlandData[, 2]

> ## here we will save the bounds of the CIs

> likCI <- matrix(nrow=length(x), ncol=2)

> ## confidence level

> confLevel <- 0.95

> ## small positive value

> eps <- sqrt(.Machine$double.eps)

> ## now process all regions

> for(i in seq_along(x))

{

res <- likelihood.ci(gamma = confLevel,

loglik = loglik.poisson,

theta.hat = x[i] / e[i],

lower = eps, upper = 1/eps,

x = x[i], e = e[i],

comp.lower = x[i] > 0)

if (x[i] == 0)

{

res <- c (0, res)

}

likCI[i, ] <- res

}

Note that we are careful in the R-code when xi = 0 because then the mode of the
likelihood is at zero, which is the left boundary of the parameter space R

+
0 . There-

fore, we only compute the upper bound numerically in that case. Moreover, we do
not search for the lower bound very close to zero, but only a small ε > 0 away from
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Fig. 4.7 95 % likelihood
ratio confidence intervals for
the relative risk in the 56
regions of Scotland. The
MLEs xi/ei are given as solid
circles. The regions are
ordered as in Fig. 4.3

that (here it is ε ≈ 1.5 · 10−8). Figure 4.7 displays the resulting intervals. They look
very similar to the ones based on the score statistic in Fig. 4.3. �

It is interesting that Wald confidence intervals can be viewed as approximate
likelihood ratio confidence intervals. To see this, we replace in (4.17) the relative
log-likelihood l̃(θ) with its quadratic approximation (2.17),

l̃(θ) ≈ −1

2
I (θ̂ML)(θ − θ̂ML)

2,

to obtain

{
θ : I (θ̂ML)(θ − θ̂ML)

2 ≤ χ2
γ (1)

}
,

which corresponds to

{
θ :
√

I (θ̂ML)|θ − θ̂ML| ≤ z 1+γ
2

}
,

i.e. the Wald confidence interval. This is because (z(1+γ )/2)
2 = χ2

γ (1) due to the
relation between the standard normal and the chi-squared distribution. Figure 4.8
illustrates this for X ∼ Po(eλ) with known offset e = 3.04 and observation x =
11. This comparison suggests that likelihood ratio confidence intervals are more
accurate than Wald confidence intervals, as they avoid the quadratic approximation
of the log-likelihood. Various theoretical results support this intuitive finding. In
particular, likelihood ratio intervals are invariant to one-to-one transformations, as
we have shown (implicitly) already in Sect. 2.1.3.
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Fig. 4.8 Comparison of the
95 % likelihood ratio
confidence interval for λ with
the corresponding Wald
confidence interval if
X ∼ Po(eλ), e = 3.04 is
known and x = 11 has been
observed

Invariance of likelihood ratio confidence intervals
Likelihood ratio confidence intervals are invariant with respect to one-to-one
transformations of the parameter.

Likelihood ratio confidence intervals can also be computed in cases where the
quadratic approximation of the log-likelihood fails, as in the following example.

Example 4.20 (Uniform model) In Example 2.18 we considered the uniform model
U(0, θ) with unknown upper bound θ as a counter-example, where quadratic ap-
proximation of the log-likelihood is not possible. However, we still can derive a
likelihood ratio confidence interval. Because the likelihood from the realization x1:n
of a random sample is

L(θ) = I[0,θ]
(

max
i

(xi)
)
θ−n

and thus zero for values θ < maxi (xi) = θ̂ML, we only need to compute the upper
limit of the interval. The relative likelihood is (in the range θ ≥ θ̂ML)

L̃(θ) = L(θ)

L(θ̂ML)
=
(

θ̂ML

θ

)n

,

so from (4.18) we obtain the upper bound

θ = maxi (xi)

exp
{− 1

2χ2
γ (1)

} 1
n

of the γ · 100 % likelihood ratio confidence interval for θ .
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Validity of this confidence interval is, however, questionable, as the Fisher regu-
larity conditions (4.1) are not fulfilled. Indeed, we can show (Exercise 6 in Chap. 3)
that the upper bound should be

θ = maxi (xi)

(1 − γ )
1
n

to achieve a confidence level of γ . Since 1 − γ < exp{− 1
2χ2

γ (1)} (see Table 4.1),
this upper bound is larger than the one obtained from the above likelihood calcu-
lation, and the likelihood ratio confidence interval will have lower than nominal
coverage. �

4.5 The p∗ Formula

Previous results have shown that θ̂ML
a
∼ N(θ, I (θ̂ML)

−1), so the density of the ML
estimator is

f (θ̂ML) ≈
√

I (θ̂ML)

2π
exp

{
−I (θ̂ML)

2
(θ̂ML − θ)2

}
. (4.19)

However, for finite sample size, the distribution of the ML estimator can be far from
normal, and better approximations may be useful. One way to improve (4.19) is
based on the quadratic approximation of the relative log-likelihood as described in
the previous section,

l̃(θ) = log

{
L(θ)

L(θ̂ML)

}
≈ −I (θ̂ML)

2
(θ̂ML − θ)2. (4.20)

Plugging the left-hand side of (4.20) into the exponential function in (4.19), we
obtain the following (approximate) formula for the density of the ML estimator θ̂ML:

f (θ̂ML) ≈ p∗(θ̂ML) =
√

I (θ̂ML)

2π

L(θ)

L(θ̂ML)
.

This is the p∗ formula, an approximation of the distribution of the ML estimator,
which is often very accurate. Note that p∗(θ̂ML) does not necessarily integrate to
one, so an additional normalisation step may be necessary.

Example 4.21 (Normal model) Let X1:n denote a random sample from a normal
distribution with unknown mean μ and known variance σ 2. The ML estimator of μ

is μ̂ML = x̄ =∑n
i=1 xi/n with observed Fisher information I (μ̂ML) = n/σ 2. Now X̄

is sufficient for μ, so the likelihood function of μ is (up to a multiplicative constant)

L(μ) = exp

{
− n

2σ 2
(x̄ − μ)2

}
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and L(μ̂ML) = 1. With μ̂ML = x̄, we therefore obtain

p∗(μ̂ML) =
√

n/σ 2

2π
exp

{
− n

2σ 2
(μ̂ML − μ)2

}
,

the density of a normal distribution with mean μ and variance σ 2/n. So here the p∗
formula gives the density of the exact distribution of the ML estimator. However,
this result could also have been obtained using the Wald statistic.

Suppose now that μ is known but σ 2 is unknown. Then σ̂ 2
ML =∑n

i=1(xi −μ)2/n,
I (σ̂ 2

ML) = n/(2σ̂ 4
ML) and J (σ 2) = n/(2σ 4). The usual normal approximation of the

distribution of σ̂ 2
ML has therefore mean σ 2 and variance 1/J (σ 2) = 2σ 4/n.

Now the likelihood function of σ 2 is

L
(
σ 2)= (σ 2)−n/2 exp

(
− n

2σ 2
σ̂ 2

ML

)
,

so

L
(
σ̂ 2

ML

)= (σ̂ 2
ML

)−n/2 exp

(
−n

2

)
.

We obtain the p∗ formula

p∗(σ̂ 2
ML

)=
√

I (σ̂ 2
ML)

2π

L(σ 2)

L(σ̂ 2
ML)

=
√

n/(2σ̂ 4
ML)

2π

(
σ 2

σ̂ 2
ML

)− n
2 exp(− n

2σ 2 σ̂ 2
ML)

exp(−n
2 )

= 1√
2π

√
n/2 exp(n/2)

(
σ 2)−n/2(

σ̂ 2
ML

)n/2−1 exp

(
− n

2σ 2
σ̂ 2

ML

)

∝ (σ̂ 2
ML

)n/2−1 exp

(
− n

2σ 2
σ̂ 2

ML

)
,

which can be identified as the kernel of a G(n/2, n/(2σ 2)) distribution, cf. Ap-
pendix A.5.2. After suitable normalisation, the p∗ formula hence gives σ̂ 2

ML ∼
G(n/2, n/(2σ 2)). Interestingly, this is the exact distribution of σ̂ 2

ML, since we know
from Example 3.8 that the pivot nσ̂ 2

ML/σ
2 has a χ2(n) distribution, i.e. a G(n/2,1/2)

distribution, so σ̂ 2
ML ∼ G(n/2, n/(2σ 2)). Note that this distribution has mean σ 2 and

variance (2σ 4)/n, which matches the mean and variance of the ordinary normal
approximation. �

4.6 A Comparison of Likelihood-Based Confidence Intervals

Using likelihood theory, we have discussed the following three approximate pivots
to construct confidence intervals and significance tests:
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Three approximate pivots for likelihood inference

S(θ;X1:n)/
√

J1:n(θ)
a
∼ N(0,1), (4.21)√

J1:n(θ)(θ̂ML − θ)
a
∼ N(0,1), (4.22)

2 log
L(θ̂ML)

L(θ)

a
∼ χ2(1). (4.23)

The asymptotic pivotal distribution in (4.21) and (4.22) still holds if we replace
J1:n(θ) by J1:n(θ̂ML), I (θ;X1:n) or I (θ̂ML;X1:n). Regarding the choice of the Fisher
information, it is typically recommended to use I (θ̂ML;X1:n). However, note that in
exponential families, I (θ̂ML;X1:n) = J1:n(θ̂ML), cf. Exercise 8 in Chap. 3.

The large number of possible statistics, that are all asymptotically equivalent but
give different results for finite samples is confusing. Which of the different pivots
should we use in practice? The score statistic is applied only in special cases such
as in the case of the Wilson confidence interval for a proportion (cf. Example 4.10).
More commonly used are Wald confidence intervals with limits

θ̂ML ± z(1+γ )/2 · se(θ̂ML),

with se(θ̂ML) = {I (θ̂ML)}− 1
2 or {J (θ̂ML)}− 1

2 . However, Wald confidence intervals are
not very accurate and may not be boundary-respecting. In contrast, likelihood ratio
confidence intervals will by construction cover only parameter values with non-zero
likelihood, a feature that is shared by score confidence intervals using the expected
Fisher information. The score test has certain optimality features (it is the “locally
most powerful test”) and does neither require computation of the MLE nor of the
observed Fisher information.

From that perspective it is surprising that Wald confidence intervals can be found
so often in applications. One reason is that for a Wald confidence interval, only the
MLE and the curvature of the log-likelihood at the MLE are required. Both quan-
tities are computed easily using numerical optimisation techniques. The numerical
computation of a likelihood ratio or a score confidence interval is typically more
involved. Moreover, for large sample size, the different confidence intervals become
more and more similar.

In the following case study we will empirically compare different confidence
intervals for a proportion.

Example 4.22 (Inference for a proportion) Consider the binomial model X ∼
Bin(n,π) and suppose that we are interested in the calculation of a confidence in-
terval for the success probability π (for known sample size n).
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1. With π̂ML = x/n and

se(π̂ML) = {I (π̂ML)
}− 1

2 =
{

n

π̂ML(1 − π̂ML)

}− 1
2 =

√
π̂ML(1 − π̂ML)

n
,

we can easily compute the limits of the γ · 100 % Wald confidence interval:

π̂ML ± q · se(π̂ML),

where q = z(1+γ )/2 denotes the (1 + γ )/2 quantile of the standard normal dis-
tribution. However, the standard error will be zero for x = 0 and x = n, so in
these cases we calculate the standard error based on x = 0.5 or x = n − 0.5
successes, respectively, and use it to calculate a one-sided confidence interval
for π with lower limit 0 and upper limit 1, respectively. If, for the other cases,
the limits of the Wald confidence interval lie outside the unit interval, they are
rounded to 0 and 1, respectively.

2. The Wald confidence interval for φ = logit(π) avoids this problem using the
logit transformation. First note that (due to invariance of the MLE)

φ̂ML = logit(π̂ML) = log

(
π̂ML

1 − π̂ML

)
= log

(
x

n − x

)
.

The standard error of φ̂ML can be easily computed with the delta method
(see Example 3.12):

se(φ̂ML) =
√

1

x
+ 1

n − x
.

The limits of the Wald confidence interval for φ = logit(π),

φ̂ML ± q · se(φ̂ML),

can finally be back-transformed using the inverse logit function

π(φ) = exp(φ)

1 + exp(φ)
= 1

1 + exp(−φ)
.

However, problems occur if x = 0 or x = n, where both φ̂ML and se(φ̂ML) are
infinite. In these cases we calculate the MLE and its standard error using x =
0.5 or x = n − 0.5 successes, respectively, and use it to calculate a one-sided
confidence interval with lower limit 0 and upper limit 1, respectively.

3. We can also calculate a Wald confidence interval for the variance stabilising
parameter transformation φ = arcsin(

√
π) (cf. Example 4.15), which has ap-

proximate variance equal to 1/(4n). This confidence interval has limits

arcsin(
√

π̂ML) ± q · (4n)−
1
2 ,
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which we back-transform to the unit interval using the inverse function π =
sin(φ)2. Note that for the extreme cases x = 0 or x = n, we calculate as before
a one-sided confidence interval with lower limit equal to zero if x = 0 and
upper limit equal to one if x = n.

4. The Wilson confidence interval described in Example 4.10 with limits

x + q2/2

n + q2
± q

√
n

n + q2

√
π̂ML(1 − π̂ML) + q2

4n

is another possibility. It is not centred around π̂ML, but around

x + q2/2

n + q2
,

the relative proportion in the sample after the addition of q2/2 successes and
q2/2 non-successes. For illustration, if γ = 0.95, then q2/2 = 1.962/2, so we
will add slightly less than two successes and non-successes.

5. Numerical methods (cf. Appendix C) are required to compute the limits of the
γ · 100 % likelihood ratio confidence interval

{
θ : l̃(θ) ≥ −χ2

γ (1)/2
}
.

6. The “exact” Clopper–Pearson confidence interval (Clopper and Pearson 1934)
has limits

b(1−γ )/2(x,n − x + 1) and b(1+γ )/2(x + 1, n − x)

if x /∈ {0, n}, where bα(α,β) denotes the α quantile of the beta distribution
with parameters α and β , see Appendix A.5.2. If x = 0, we set the lower limit
to zero, and if x = n, we set the upper limit to one.

Table 4.2 gives the limits of the different 95 % confidence intervals for selected
values of the sample size n and the number of successes x. There are substantial dif-
ferences for small x and n, but the intervals become more similar for larger sample
sizes and are quite close for n = 100 and x = 50.

What are the actual coverage probabilities of the different confidence intervals?
For example, for n = 50, there are 51 different confidence intervals CIγ (x) depend-
ing on the number of successes x ∈ T = {0,1, . . . ,50}. We can now compute the
coverage probability

Pr
{
π ∈ CIγ (X)

}=
∑
x∈T

f (x;π,n)ICIγ (x)(π)

for every true parameter value π based on the binomial probability mass function
f (x;π,n).

Ideally, Pr{π ∈ CIγ (X)} should be equal to the nominal level γ for every sample
size n and every true parameter value π . However, the binomial distribution is dis-
crete, so all confidence intervals will only approximately have the nominal coverage
level. Figure 4.9 illustrates that the true coverage of the various confidence intervals
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Table 4.2 Comparison of different confidence intervals for a binomial probability at level 95 %
for various values of sample size n and number of successes x

(a) Different Wald confidence intervals

n x (1) Wald for π (2) Wald for logit(π) (3) Wald for arcsin(
√

π)

10 0 0.000 to 0.113 0.000 to 0.364 0.000 to 0.066

10 1 0.000 to 0.286 0.014 to 0.467 0.000 to 0.349

10 5 0.190 to 0.810 0.225 to 0.775 0.210 to 0.790

100 0 0.000 to 0.012 0.000 to 0.049 0.000 to 0.007

100 10 0.041 to 0.159 0.055 to 0.176 0.049 to 0.166

100 50 0.402 to 0.598 0.403 to 0.597 0.403 to 0.597

(b) Score, likelihood ratio and Clopper–Pearson confidence intervals

n x (4) Wilson (5) Likelihood (6) Clopper–Pearson

10 0 0.000 to 0.278 0.000 to 0.175 0.000 to 0.308

10 1 0.018 to 0.404 0.006 to 0.372 0.003 to 0.445

10 5 0.237 to 0.763 0.218 to 0.782 0.187 to 0.813

100 0 0.000 to 0.037 0.000 to 0.019 0.000 to 0.036

100 10 0.055 to 0.174 0.051 to 0.169 0.049 to 0.176

100 50 0.404 to 0.596 0.403 to 0.597 0.398 to 0.602

Fig. 4.9 Coverage probabilities of 95 % confidence intervals in a binomial experiment with n = 50
trials. The exact values are shown in grey for π ∈ {0.001,0.002, . . . ,0.999}, locally smoothed
values are given in black

actually differs a lot. Shown are the actual coverage probabilities and smoothed
ones, which give a better impression of the locally averaged coverage probability.
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Fig. 4.9 (Continued)

Figure 4.9 shows that the Wald confidence interval has nearly always smaller
coverage than the nominal confidence level, sometimes considerably smaller. The
variance stabilised Wald confidence interval for arcsin(

√
π) behaves somewhat bet-

ter. The Wald confidence intervals for logit(π) tends to have larger coverage than
the nominal level. The best locally averaged coverage is achieved by the Wilson
confidence interval, followed by the likelihood ratio confidence interval, which be-
haves similarly for medium values of π and has slightly lower coverage than the
Wilson confidence interval. Of particular interest is the behaviour of the “exact”
Clopper–Pearson interval: its coverage is always larger than the nominal level, so
this confidence interval appears to be anything else but “exact”, at least in terms
of coverage. Only in rare applications such a conservative confidence interval may
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Fig. 4.10 Widths of the
95 % confidence intervals for
π with a sample size of
n = 50 in a binomial
experiment, depending on the
number of successes X = x.
The values are symmetric
around x = 25.5. The width
of the Wald confidence
interval on the logit scale is 1
for x = 0 and x = 1

be warranted. However, the Clopper–Pearson interval is widely used in practice,
presumably due to the misleading specification “exact”.

Figure 4.10 displays the widths of the confidence intervals, which is an alterna-
tive quality criterion: If several confidence intervals attain the same nominal level,
then the one with smaller width should be preferred. It is good to see from Fig. 4.10,
which displays the widths for values of x in the range between 0 and 25, that the
conservative Clopper–Pearson confidence interval has the largest width for x ≥ 4.
The Wilson confidence interval has the smallest width for x > 10, while for x ≤ 10,
the Wald for π and arcsin(

√
π) and the likelihood ratio confidence interval have the

smallest width. The Wald confidence interval for logit(π) has a quite large width
for x ≤ 10.

To summarise, this empirical comparison identifies the Wilson confidence inter-
val as the one with the best properties. The likelihood ratio confidence interval is not
much worse than Wilson, but computation is more demanding. The different Wald
confidence intervals do not have so good operational characteristics, in particular the
“standard” interval for π has poor properties. The Clopper–Pearson confidence in-
terval is a special case, as its coverage is always larger than (or equal to) the nominal
level. Hence, it tends to have a larger width than the competing ones. �

4.7 Exercises

1. Compute an approximate 95 % confidence interval for the true correlation
ρ based on the MLE r = 0.7, a sample of size of n = 20 and Fisher’s z-
transformation.

2. Derive a general formula for the score confidence interval in the Poisson
model based on the Fisher information, cf. Example 4.9.
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3. A study is conducted to quantify the evidence against the null hypothesis that
less than 80 percent of the Swiss population have antibodies against the hu-
man herpesvirus. Among a total of 117 persons investigated, 105 had anti-
bodies.
(a) Formulate an appropriate statistical model and the null and alternative

hypotheses. Which sort of P -value should be used to quantify the evi-
dence against the null hypothesis?

(b) Use the Wald statistic (4.12) and its approximate normal distribution to
obtain a P -value.

(c) Use the logit-transformation (compare Example 3.13) and the corre-
sponding Wald statistic to obtain a P -value.

(d) Use the score statistic (4.2) to obtain a P -value. Why do we not need to
consider parameter transformations when using this statistic?

(e) Use the exact null distribution from your model to obtain a P -value.
What are the advantages and disadvantages of this procedure in general?

4. Suppose X1:n is a random sample from an Exp(λ) distribution.
(a) Derive the score function of λ and solve the score equation to get λ̂ML.
(b) Calculate the observed Fisher information, the standard error of λ̂ML and

a 95 % Wald confidence interval for λ.
(c) Derive the expected Fisher information J (λ) and the variance stabilising

transformation φ = h(λ) of λ.
(d) Compute the MLE of φ and derive a 95 % confidence interval for λ by

back-transforming the limits of the 95 % Wald confidence interval for φ.
Compare with the result from 4(b).

(e) Derive the Cramér–Rao lower bound for the variance of unbiased esti-
mators of λ.

(f) Compute the expectation of λ̂ML and use this result to construct an unbi-
ased estimator of λ. Compute its variance and compare it to the Cramér–
Rao lower bound.

5. An alternative parametrisation of the exponential distribution is

fX(x) = 1

θ
exp

(
−x

θ

)
IR+(x), θ > 0.

Let X1:n denote a random sample from this density. We want to test the null
hypothesis H0 : θ = θ0 against the alternative hypothesis H1 : θ �= θ0.
(a) Calculate both variants T1 and T2 of the score test statistic.
(b) A sample of size n = 100 gave x̄ = 0.26142. Quantify the evidence

against H0 : θ0 = 0.25 using a suitable significance test.
6. In a study assessing the sensitivity π of a low-budget diagnostic test for

asthma, each of n asthma patients is tested repeatedly until the first positive
test result is obtained. Let Xi be the number of the first positive test for pa-
tient i. All patients and individual tests are independent, and the sensitivity π

is equal for all patients and tests.
(a) Derive the probability mass function f (x;π) of Xi .
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(b) Write down the log-likelihood function for the random sample X1:n and
compute the MLE π̂ML.

(c) Derive the standard error se(π̂ML) of the MLE.
(d) Give a general formula for an approximate 95 % confidence interval

for π . What could be the problem of this interval?
(e) Now we consider the parametrisation with φ = logit(π) =

log{π/(1 − π)}. Derive the corresponding MLE φ̂ML, its standard er-
ror and associated approximate 95 % confidence interval. What is the
advantage of this interval?

(f) n = 9 patients did undergo the trial, and the observed numbers were
x = (3,5,2,6,9,1,2,2,3). Calculate the MLEs π̂ML and φ̂ML, the con-
fidence intervals from 6(d) and 6(e) and compare them by transforming
the latter back to the π -scale.

(g) Produce a plot of the relative log-likelihood function l̃(π) and two ap-
proximations in the range π ∈ (0.01,0.5): The first approximation is
based on the direct quadratic approximation of l̃π (π) ≈ qπ(π), and
the second approximation is based on the quadratic approximation of
l̃φ(φ) ≈ qφ(φ), i.e. qφ{logit(π)} values are plotted. Comment the result.

7. A simple model for the drug concentration in plasma over time after a single
intravenous injection is c(t) = θ2 exp(−θ1t) with θ1, θ2 > 0. For simplicity,
we assume here that θ2 = 1.
(a) Assume that n probands had their concentrations ci , i = 1, . . . , n, mea-

sured at the same single time-point t , and assume that the model ci
iid
∼

N(c(t), σ 2) is appropriate for the data. Calculate the MLE of θ1.
(b) Calculate the asymptotic variance of the MLE.
(c) In pharmacokinetic studies one is often interested in the area under the

concentration curve, α = ∫∞
0 exp(−θ1t) dt . Calculate the MLE for α

and its variance estimate using the delta theorem.
(d) We now would like to determine the optimal time point for measuring

the concentrations ci . Minimise the asymptotic variance of the MLE
with respect to t , when θ1 is assumed to be known, to obtain an optimal
time point topt.

8. Assume the gamma model G(α,α/μ) for the random sample X1:n with mean
E(Xi) = μ > 0 and shape parameter α > 0.
(a) First assume that α is known. Derive the MLE μ̂ML and the observed

Fisher information I (μ̂ML).
(b) Use the p∗ formula to derive an asymptotic density of μ̂ML depending on

the true parameter μ. Show that the kernel of this approximate density
is exact in this case, i.e. it equals the kernel of the exact density known
from Exercise 9 from Chap. 4.

(c) Stirling’s approximation of the gamma function is

�(x) ≈
√

2π

x

xx

exp(x)
. (4.24)
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Show that approximating the normalising constant of the exact density
with (4.24) gives the normalising constant of the approximate p∗ for-
mula density.

(d) Now assume that μ is known. Derive the log-likelihood, score func-
tion and Fisher information of α. Use the digamma function ψ(x) =
d
dx

log{�(x)} and the trigamma function ψ ′(x) = d
dx

ψ(x).
(e) Show, by rewriting the score equation, that the MLE α̂ML fulfils

−nψ(α̂ML) + n log(α̂ML) + n = −
n∑

i=1

log(xi) + 1

μ

n∑
i=1

xi + n log(μ).

(4.25)
Hence, show that the log-likelihood kernel can be written as

l(α) = n
[
α log(α) − α − log

{
�(α)

}+ αψ(α̂ML) − α log(α̂ML)
]
.

(f) Implement an R-function of the p∗ formula, taking as arguments the
MLE value(s) α̂ML, at which to evaluate the density, and the true param-
eter α. For numerical reasons, first compute the approximate log-density

logf ∗(α̂ML) = −1

2
log(2π) + 1

2
log
{
I (α̂ML)

}+ l(α) − l(α̂ML)

and then exponentiate it. The R-functions digamma, trigamma and
lgamma can be used to calculate ψ(x), ψ ′(x) and log{�(x)}, respec-
tively.

(g) In order to illustrate the quality of this approximation, we consider the
case with α = 2 and μ = 3. Simulate 10 000 data sets of size n = 10
and compute the MLE α̂ML for each of them by numerically solv-
ing (4.25) using the R-function uniroot (cf. Appendix C.1.2). Plot a
histogram of the resulting 10 000 MLE samples (using hist with option
prob=TRUE). Add the approximate density derived above to compare.

4.8 References

The methods discussed in this chapter are found in many books on likelihood in-
ference, for example in Pawitan (2001) or Davison (2003), see also Millar (2011).
Further details on Fisher regularity conditions can be found in Lehmann and Casella
(1998, Chap. 6). Different confidence intervals for a binomial proportion are thor-
oughly discussed in Brown et al. (2001) and Connor and Imrey (2005), see also
Newcombe (2013). The smoothed coverage probabilities have been computed us-
ing a specific kernel function as described in Bayarri and Berger (2004).
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In the previous chapters we have discussed likelihood inference if the statistical
model depends on only one unknown parameter. However, in many applications the
statistical model contains more than one unknown parameter. This chapter describes
how the concepts of likelihood inference for scalar parameters can be extended to
vectorial parameters. We will print an unknown parameter vector θ in bold, to dis-
tinguish it from a single scalar parameter θ . We start with two classical examples.

Example 5.1 (Normal model) The normal model has two unknown parameters, the
expectation μ and the variance σ 2. Suppose that both are unknown and let X1:n
denote a random sample from an N(μ,σ 2) distribution, so the unknown parameter
vector is θ = (μ,σ 2)�. The log-likelihood

l(θ) = l
(
μ,σ 2)= −n

2
log
(
σ 2)− 1

2σ 2

n∑
i=1

(xi − μ)2

= −n

2
log
(
σ 2)− 1

2σ 2

{
(n − 1)s2 + n(x̄ − μ)2}

L. Held, D. Sabanés Bové, Applied Statistical Inference,
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Fig. 5.1 Contour plot of the
relative likelihood in the
normal model

is hence a function of μ and σ 2. Note that the data x1:n enter the likelihood function
through the sufficient statistics x̄ and s2, compare Example 2.21.

For illustration, consider the study on alcohol concentration from Sect. 1.1.7.
Assume that there is no difference between genders, so that we can look at the
overall n = 185 volunteers with empirical mean and variance of the transformation
factors given in Table 1.3. The resulting relative likelihood is shown in Fig. 5.1. �

Example 5.2 (Multinomial model) Let X ∼ Mk(n,π) denote a sample from a
multinomial distribution with unknown parameter vector θ = π = (π1, . . . , πk)

�.
The log-likelihood

l(θ) = l(π) = l(π1, . . . , πk) =
k∑

i=1

xi log(πi)

is a function of the k unknown probabilities π1, . . . , πk . Since they have to sum to
one, there are actually only k −1 free parameters. To compute the MLE, this restric-
tion has to be taken into account using the Lagrange method, cf. Example 5.4. For
illustration, we consider the frequencies of the genotypes MM, MN and NN from
Sect. 1.1.4, x1 = 233, x2 = 385 and x3 = 129. Here k = 3, so we have a trinomial
model with k−1 = 2 free parameters. Figure 5.2 displays the relative log-likelihood
with respect to π1 and π2 (π3 can be calculated via π3 = 1 − π1 − π2). �

5.1 Score Vector and Fisher Information Matrix

Definition 5.1 (Score vector) If the unknown parameter θ = (θ1, . . . , θp)� is a vec-
tor, the gradient of the log-likelihood
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Fig. 5.2 Contour plot of the
relative log-likelihood in the
trinomial model

S(θ) = ∂

∂θ
l(θ) =

(
∂

∂θ1
l(θ), . . . ,

∂

∂θp

l(θ)

)�

is called the score vector or score function. �

Definition 5.2 (Score equations) The system of p equations

S(θ) = 0

are called the score equations. �

The MLE θ̂ML = (θ̂1, . . . , θ̂p)� is now a vector and usually obtained by solving
the score equations.

Definition 5.3 (Fisher information matrix) The (symmetric) Fisher information
matrix I (θ) is the p × p matrix with entries

− ∂2

∂θi∂θj

l(θ), 1 ≤ i, j ≤ p.

The observed Fisher information matrix is I (θ̂ML). �

Example 5.3 (Normal model) The partial derivatives of the log-likelihood are

∂l(θ)

∂μ
= 1

σ 2

n∑
i=1

(xi − μ) and

∂l(θ)

∂σ 2
= − n

2σ 2
+ 1

2σ 4

n∑
i=1

(xi − μ)2,
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so the score vector is

S(θ) = 1

σ 2

( ∑n
i=1(xi − μ)

1
2σ 2 {∑n

i=1(xi − μ)2 − n}

)
.

The score equations simplify to

n∑
i=1

(xi − μ) = 0 and
1

σ 2

n∑
i=1

(xi − μ)2 = n,

so we easily compute the MLEs

μ̂ML = x̄ and σ̂ 2
ML = 1

n

n∑
i=1

(xi − x̄)2.

Note that the MLE of σ 2 is biased, as discussed previously in Example 3.1. The
Fisher information I (θ), the matrix containing the negative second partial deriva-
tives, turns out to be

I (θ) = −
⎛
⎝

∂2l(θ)

∂μ2
∂2l(θ)

∂μ∂σ 2

∂2l(θ)

∂σ 2∂μ

∂2l(θ)

∂(σ 2)2

⎞
⎠

= 1

σ 2

(
n 1

σ 2

∑n
i=1(xi − μ)

1
σ 2

∑n
i=1(xi − μ) 1

σ 4

∑n
i=1(xi − μ)2 − n

2σ 2

)
. (5.1)

The observed Fisher information, obtained by replacing μ and σ 2 with μ̂ML and
σ̂ 2

ML, respectively, turns out to be

I (θ̂ML) =
⎛
⎝

n

σ̂ 2
ML

0

0 n

2σ̂ 4
ML

⎞
⎠

and so is a diagonal matrix. �

Example 5.4 (Multinomial model) Maximisation of the log-likelihood in the multi-
nomial model from Example 5.2,

l(π) =
k∑

i=1

xi log(πi),

under the constraint g(π) =∑k
i=1(πi) − 1 = 0 can be done using the Lagrange

method (cf. Appendix B.2.5). The equation to solve is

∂

∂π
l(π) = λ · ∂

∂π
g(π),
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and plugging in the gradients gives

(
x1

π1
, . . . ,

xk

πk

)�
= λ · (1, . . . ,1)�.

The number of trials is n, so

n =
k∑

i=1

xi =
k∑

i=1

λπi = λ

k∑
i=1

πi = λ,

and therefore

π̂ML = (π̂1, . . . , π̂k)
�,

where π̂i = xi/n. So the MLEs of the multinomial probabilities are just the corre-
sponding relative frequencies.

An alternative approach explicitly replaces πk by 1 −∑k−1
i=1 πi in the probability

mass function of the multinomial distribution. The corresponding log-likelihood of
the trimmed parameter vector π̃ is then

l(π̃) =
k−1∑
i=1

xi log(πi) + xk log

(
1 −

k−1∑
i=1

πi

)
,

which directly leads to the score vector

S(π̃) = ∂

∂π̃
l(π̃) =

(
x1

π1
− xk

1 −∑k−1
i=1 πi

, . . . ,
xk−1

πk−1
− xk

1 −∑k−1
i=1 πi

)�
.

This defines a set of score equations, which will eventually lead to the same MLEs
as before.

The Fisher information matrix of π̃ has dimension (k − 1) × (k − 1) and is

I (π̃) = − ∂

∂π̃
S(π̃) = diag

{
xi

π2
i

}k−1

i=1
+ xk

(1 −∑k−1
i=1 πi)2

· 11�, (5.2)

where 1 is the unity vector of length k − 1 such that the matrix 11� contains only
ones. If we replace in (5.2) π̃ by ˆ̃πML, we obtain the observed Fisher information
matrix

I ( ˆ̃πML) = n

{
diag( ˆ̃πML)

−1 +
(

1 −
k−1∑
i=1

π̂i

)−1

11�
}

.

Applying a useful formula for matrix inversion (cf. Appendix B.1.4), we obtain the
inverse observed Fisher information matrix

I ( ˆ̃πML)
−1 = n−1{diag( ˆ̃πML) − ˆ̃πML

ˆ̃π�
ML

}
. (5.3)

�
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A quadratic approximation of the log-likelihood can be obtained with a multidi-
mensional Taylor expansion: Suppose that θ = (θ1, . . . , θp)� is the unknown true
p-dimensional parameter vector. Applying Eq. (B.6) from Appendix B.2.3, we ob-
tain the quadratic approximation

l̃(θ) ≈ −1

2
(θ − θ̂ML)

�I (θ̂ML)(θ − θ̂ML) (5.4)

of the relative log-likelihood, which only requires the MLE θ̂ML and the observed
Fisher information matrix I (θ̂ML). It is instructive to compare this approximation
with the corresponding one for a scalar parameter:

l̃(θ) ≈ −1

2
I (θ̂ML)(θ − θ̂ML)

2

as discussed in Sect. 2.4. As in the previous Chap. 4, many of the subsequent results
are based on the validity of the quadratic approximation (5.4).

5.2 Standard Error and Wald Confidence Interval

The Wald statistic (θ̂ML − θ)/se(θ̂ML)
a
∼ N(0,1) for a scalar parameter θ can be

generalised easily to multiparameter models, where we have a parameter vector
θ = (θ1, . . . , θp)�. Here we have

θ̂i − θi

se(θ̂i )

a
∼ N(0,1), i = 1, . . . , p,

where the standard error se(θ̂i) is defined as the square root of the ith diagonal entry
of the inverse observed Fisher information matrix.

Standard error of the ML estimator
The square root of the ith diagonal element of the inverse observed Fisher
information matrix is a standard error of the ith component θ̂i of the MLE
θ̂ML:

se(θ̂i) =
√[

I (θ̂ML)−1
]
ii
.

This result can be used to calculate the limits of a γ ·100 % Wald confidence interval
for θi :

θ̂i ± z(1+γ )/2 se(θ̂i). (5.5)

A justification of this procedure is given in Result 5.1; see also Sect. 5.4.2.
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Example 5.5 (Normal model) In Example 5.3 we have derived the observed Fisher
information matrix in the normal model. This matrix is diagonal, so its inverse can
easily be obtained by inverting the diagonal elements:

I (θ̂ML)
−1 =

(
σ̂ 2

ML
n

0

0
2σ̂ 4

ML
n

)
.

The standard errors are therefore se(μ̂ML) = σ̂ML/
√

n and se(σ̂ 2
ML) = σ̂ 2

ML

√
2/n, and

we obtain the γ · 100 % Wald confidence intervals with limits

x̄ ± z(1+γ )/2
σ̂ML√

n
and

σ̂ 2
ML ± z(1+γ )/2

√
2

n
σ̂ 2

ML

for μ and σ 2, respectively. Note that these intervals are only asymptotically valid.
Indeed, we know from Example 3.8 that the interval with limits

x̄ ± t(1+γ )/2(n − 1) · s√
n
,

where s2 =∑n
i=1(xi − x̄)2/(n − 1), forms an exact γ · 100 % confidence interval

for μ, which is wider because t(1+γ )/2(n − 1) > z(1+γ )/2 and s2 > σ̂ 2
ML. However,

asymptotically the two intervals are equivalent because, as n → ∞, both (σ̂ 2
ML −

s2) → 0 and t(1+γ )/2(n − 1) → z(1+γ )/2.
The lower limit of the confidence interval for σ 2 is σ̂ 2

ML(1 − z(1+γ )/2
√

2/n),
which may be negative, for example for γ = 95 % and n = 5. This once again
illustrates that Wald confidence intervals may not be boundary-respecting. The pro-
file likelihood confidence intervals, which will be introduced in the next section, are
boundary-respecting and should thus in general be preferred. �

Example 5.6 (Hardy–Weinberg equilibrium) The MLEs of the probabilities in the
trinomial model are

π̂1 = 233

747
≈ 0.312, π̂2 = 385

747
≈ 0.515 and π̂3 = 129

747
≈ 0.173.

These values are slightly different from the corresponding estimates assuming
Hardy–Weinberg equilibrium:

π̂1 ≈ 0.324, π̂2 ≈ 0.490 and π̂3 ≈ 0.185,

cf. Example 2.7. The standard errors of the MLEs in the multinomial model can be
easily obtained from (5.3):

se(π̂i) =
√

π̂i (1 − π̂i )

n
,
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which is exactly the same formula as in the binomial model. In our example we
obtain se(π̂1) = 0.017, se(π̂2) = 0.018 and se(π̂3) = 0.014. Note that the differ-
ence between the MLEs under Hardy–Weinberg equilibrium and the MLEs in the
trinomial model is less than two standard errors for all three parameters. This sug-
gests that the Hardy–Weinberg model fits these data quite well, although this in-
terpretation ignores the uncertainty of the estimates in the Hardy–Weinberg model.
We will describe more rigorous approaches to decide between these two models in
Sect. 7.1. �

5.3 Profile Likelihood

Visualisation of a multidimensional likelihood function of θ is in general difficult,
so instead one might want to look at one-dimensional likelihood functions of the
components θi . The problem is how to eliminate the remaining nuisance parameters
θj (j �= i) from the joint likelihood. This is done using the profile likelihood.

To ease notation, in the following the parameter vector of interest is denoted θ ,
and the vector of nuisance parameters is denoted η.

Definition 5.4 (Profile likelihood) Let L(θ ,η) be the joint likelihood function of
the parameter of interest θ and the nuisance parameter η. Let η̂ML(θ) denote the
MLE with respect to L(θ ,η) for fixed θ . Then

Lp(θ) = max
η

L(θ ,η) = L
{
θ , η̂ML(θ)

}

is called the profile likelihood of θ . The value of the profile likelihood at a particular
parameter value θ is obtained through maximising the joint likelihood L(θ ,η) with
respect to the nuisance parameter η. �

We often need numerical techniques to maximise the joint likelihood with respect
to the nuisance parameter η. To avoid this, it is tempting to just plug-in the MLE of
the nuisance parameter η in the joint likelihood L(θ ,η), which leads to the following
definition.

Definition 5.5 (Estimated likelihood) Let (θ̂ML, η̂ML) denote the MLE of (θ ,η)

based on the joint likelihood L(θ ,η). The function

Le(θ) = L(θ , η̂ML)

is called the estimated likelihood of θ . �

The estimated likelihood ignores the uncertainty of the MLE η̂ML: it assumes
that the true value of the nuisance parameter η is equal to its estimate η̂ML. As a
consequence, the estimated likelihood Le(θ) will in general not correctly quantify
the uncertainty with respect to θ .
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The logarithm of the profile likelihood Lp defines the profile log-likelihood lp .
We can also easily define the relative profile likelihood L̃p and relative profile log-
likelihood l̃p , compare Definition 2.5. Equivalent definitions are possible for the
estimated likelihood.

If θ is a scalar, then we can calculate confidence intervals based on the relative
profile likelihood using the standard thresholds 0.147 and 0.036 for γ = 95 % and
γ = 99 %, compare Table 4.1. In complete analogy to Eq. (4.18), the set

{
θ : L̃p(θ) ≥ exp

{
−1

2
χ2

γ (1)

}}

is then an approximate γ · 100 % profile likelihood confidence interval for θ . As in
Eq. (4.17), we can also derive this interval using the relative profile log-likelihood
l̃p(θ). A theoretical justification of this approach will be discussed in Sect. 5.5.

Example 5.7 (Normal model) Let X1:n denote a random sample from an N(μ,σ 2)

distribution with both parameters unknown. The MLE of σ 2 for fixed μ is

σ̂ 2
ML(μ) = 1

n

n∑
i=1

(xi − μ)2.

Plugging this in the joint likelihood of μ and σ 2,

L
(
μ,σ 2)= (σ 2)− n

2 exp

{
− 1

2σ 2

n∑
i=1

(xi − μ)2

}
, (5.6)

gives the profile likelihood of μ (ignoring multiplicative constants):

Lp(μ) = L
{
μ, σ̂ 2

ML(μ)
}= {σ̂ 2

ML(μ)
}− n

2

=
{

1

n

n∑
i=1

(xi − μ)2

}− n
2

=
{

(x̄ − μ)2 + 1

n

n∑
i=1

(xi − x̄)2

}− n
2

=
{
(x̄ − μ)2 + n − 1

n
s2
}− n

2

.

The estimated likelihood of μ turns out to be

Le(μ) = L
(
μ, σ̂ 2

ML

)= (σ̂ 2
ML

)− n
2 exp

{
− 1

2σ̂ 2
ML

n∑
i=1

(xi − μ)2

}
,
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Fig. 5.3 Comparison of estimated and profile likelihood in the normal model

where σ̂ 2
ML =∑n

i=1(xi − x̄)2/n.
Both the profile and the estimated relative likelihood for the alcohol concentra-

tion data set from Sect. 1.1.7 are shown in Fig. 5.3b. Here the estimated likelihood
is only slightly narrower than the profile likelihood. The difference is better to see
in Fig. 5.3a, which marks the points of the joint relative likelihood that define the
profile and estimated likelihood. The horizontal line σ 2 = σ̂ 2

ML corresponds to the
estimated likelihood, while the profile likelihood is obtained through maximisation
of the joint likelihood with respect to the nuisance parameter. The values of the
profile likelihood are marked in Fig. 5.3a using a solid line. The horizontal line at
exp{− 1

2χ2
0.95(1)} = 0.147 in Fig. 5.3b allows the calculation of the 95 % profile like-

lihood confidence interval for μ, which turns out to be [2414.83,2483.53]. For com-
parison, the exact 95 % confidence interval from Example 3.8 is [2414.92,2483.44].

Finally, we can also calculate the profile likelihood of σ 2 using μ̂ML(σ
2) = x̄:

Lp

(
σ 2)= (σ 2)− n

2 exp

{
− 1

2σ 2

n∑
i=1

(xi − x̄)2

}
.

Now μ̂ML(σ
2) = x̄ does not depend on σ 2, so the profile likelihood Lp(σ 2) and the

estimated likelihood Le(σ
2) are identical in this case. �

Wald confidence intervals as defined in (5.5) can be justified by a quadratic ap-
proximation of the profile log-likelihood. The curvature of the profile log-likelihood
at its maximum plays a central role in the argument. The following result derives this
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curvature for any dimension of the parameter of interest θ and the nuisance param-
eter η.

Result 5.1 (Curvature of the profile likelihood) Let γ = (θ�,η�)� (with dim(θ) =
p and dim(η) = q) denote the unknown parameter vector with likelihood L(θ ,η)

and observed Fisher information

I (θ̂ML, η̂ML) =
(

I 11 I 12
I 21 I 22

)
,

a symmetric (p+q)× (p+q) matrix (block dimensions for I 11: p × p, I 12: p × q ,
I 21: q × p, I 22: q × q). Now partition the inverse of I (θ̂ML, η̂ML) accordingly:

I (θ̂ML, η̂ML)
−1 =

(
I 11 I 12

I 21 I 22

)
.

The negative curvature of the profile log-likelihood of θ at θ̂ML is then equal to
(I 11)−1.

Proof To prove this result, recall that the profile log-likelihood lp(θ) = l{θ, η̂ML(θ)}
is defined through the conditional MLE η̂ML(θ) for fixed θ , which is found by solv-
ing ∂

∂η l(θ,η) = 0. Therefore, we know that

∂

∂η
l
{
θ , η̂ML(θ)

}= 0 (5.7)

for all θ . Hence, the derivative of this function with respect to θ is also zero:

∂

∂θ

[
∂

∂η� l
{
θ , η̂ML(θ)

}]= 0.

Note that this derivative is an r × q matrix. Also note the order: First, derivatives of
the log-likelihood is with respect to η are taken, then the conditional MLE η̂ML(θ)

is plugged in for η, and afterwards this function is differentiated. Since we have the
convention that the function to be differentiated gives column values, we use the
transpose symbol in the inner derivative here, which means that we transpose the
resulting row vector after taking derivatives. Using the multivariate chain rule for
differentiation, cf. Appendix B.2.2, we can rewrite this matrix as

∂

∂θ

[
∂

∂η� l
{
θ , η̂ML(θ)

}]= ∂

∂θ
h
{
g(θ)

}

with h(γ ) = ∂
∂η� l(γ ) and
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g(θ) = (θ , η̂ML(θ)
)�

= ∂

∂γ
h
{
g(θ)

} · ∂

∂θ
g(θ)

=
(

∂

∂θ
h
{
g(θ)

} ∂

∂η
h
{
g(θ)

})( Iq
∂
∂θ η̂ML(θ)

)

= ∂

∂θ
h
{
g(θ)

}+ ∂

∂η
h
{
g(θ)

} · ∂

∂θ
η̂ML(θ)

= ∂

∂θ

∂

∂η� l
{
θ , η̂ML(θ)

}
︸ ︷︷ ︸

r×q

+ ∂

∂η

∂

∂η� l
{
θ, η̂ML(θ)

}
︸ ︷︷ ︸

r×r

· ∂

∂θ
η̂ML(θ)︸ ︷︷ ︸
r×q

.

Note that in the first two matrices of the last line, the log-likelihood is differentiated
twice each, and afterwards the conditional MLE η̂ML(θ) is plugged in. From above
we know that g(θ) = 0, so we can solve the equation for ∂

∂θ η̂ML(θ) and obtain

∂

∂θ
η̂ML(θ) = −

[
∂

∂η

∂

∂η� l
{
θ , η̂ML(θ)

}]−1
∂

∂θ

∂

∂η� l
{
θ, η̂ML(θ)

}
. (5.8)

We can also use the multivariate chain rule to differentiate the profile log-likelihood
lp(θ). In order to be consistent with the notation in Appendix B.2.2, we use here a
1 × q row vector for this derivative, instead of the otherwise used convention that
the score vector is a column vector:

∂

∂θ
lp(θ) = ∂

∂θ
l
{
g(θ)

}

= ∂

∂γ
l
{
g(θ)

} · ∂

∂θ
g(θ)

= ∂

∂θ
l
{
θ , η̂ML(θ)

}+ ∂

∂η
l
{
θ , η̂ML(θ)

} · ∂

∂θ
η̂ML(θ)

= ∂

∂θ
l
{
θ , η̂ML(θ)

}
,

using (5.7) for the last line. Differentiating this again, we obtain the curvature of the
profile log-likelihood:

∂

∂θ

∂

∂θ� lp(θ) = ∂

∂θ

[
∂

∂θ�
{
θ, η̂ML(θ)

}]

= ∂

∂θ

∂

∂θ� l
{
θ , η̂ML(θ)

}+ ∂

∂η

∂

∂θ� l
{
θ , η̂ML(θ)

} · ∂

∂θ
η̂ML(θ). (5.9)

Substituting (5.8) into (5.9), we finally obtain
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∂

∂θ

∂

∂θ� lp(θ) = ∂

∂θ

∂

∂θ� l
{
θ , η̂ML(θ)

}

− ∂

∂η

∂

∂θ� l
{
θ , η̂ML(θ)

}[ ∂

∂η

∂

∂η� l
{
θ , η̂ML(θ)

}]−1

× ∂

∂θ

∂

∂η� l
{
θ, η̂ML(θ)

}
.

Note that this holds for all θ . However, we are mainly interested in the negative
curvature at the MLE θ̂ML, i.e.

Ip(θ̂ML) = − ∂

∂θ

∂

∂θ� lp(θ̂ML)

= I 11 − I 12(I 22)
−1I 21.

Application of the formula for the inversion of block matrices (cf. Appendix B.1.3)
gives

(
I 11)−1 = I 11 − I 12(I 22)

−1I 21, (5.10)

so we finally obtain Ip(θ̂ML) = (I 11)−1. �

Note that with (5.10) and the symmetry of the Fisher information matrix we have

(
I 11)−1 = I 11 − I 12(I 22)

−1I�
12︸ ︷︷ ︸

≥0

, so

(
I 11)−1 ≤ I 11,

where this inequality denotes that the difference of the two matrices is (zero or)
positive definite (cf. Appendix B.1.2). In particular, this implies that the diagonal
elements of the left-hand side matrix are smaller than (or equal to) the corresponding
diagonal elements of the right-hand side matrix. Now the Fisher information of
the estimated likelihood at its maximum is I 11. This inequality therefore shows
that the observed Fisher information of the profile likelihood (I 11)−1 is smaller
than or equal to the observed Fisher information of the estimated likelihood I 11.
This once again illustrates that the estimated likelihood ignores the uncertainty in
the estimation of the nuisance parameter η. If I 12 = I 21 = 0, then θ and η are
orthogonal. With Eq. (5.10), we then have

(
I 11)−1 = I 11,

i.e. the observed Fisher information of profile and estimated likelihood are identical.
As we have seen in Example 5.3, this is the case in the normal model.
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With the above result, we can approximate the profile log-likelihood l̃p(θi) of a
scalar parameter θi by a quadratic function

l̃p(θi) ≈ −1

2
· (I 11)−1

(θi − θ̂i )
2,

where I ii denotes the ith diagonal entry of I (θ̂ML)
−1. This result corresponds to our

definition of Wald confidence intervals in Sect. 5.2.
The following result considers the special case of a difference between two pa-

rameters coming from independent data sets.

Result 5.2 (Standard error of a difference) Suppose that the data can be split in two
independent parts (denoted by 0 and 1) and the corresponding likelihood functions
are parametrised by α and β , respectively. The standard error of δ̂ML = β̂ML − α̂ML

then has the form

se(δ̂ML) =
√

I0(α̂ML)−1 + I1(β̂ML)−1.

Proof To show Result 5.2, we start with the log-likelihood decomposition

l(α,β) = l0(α) + l1(β),

which is due to the independence of the two data sets. Now β = α + δ, so the joint
log-likelihood of α and δ is

l(α, δ) = l0(α) + l1(α + δ).

Furthermore, the score functions for α and δ are

∂

∂α
l(α, δ) = S0(α) + S1(α + δ) and

∂

∂δ
l(α, δ) = S1(α + δ),

where S0 and S1 are the score functions corresponding to l0 and l1, respectively. The
Fisher information matrix is hence

I (α, δ) =
(

I0(α) + I1(α + δ) I1(α + δ)

I1(α + δ) I1(α + δ)

)
,

where I0 and I1 denote the Fisher information corresponding to l0 and l1, respec-
tively.

We would like to calculate the Fisher information (negative curvature) of the
profile log-likelihood of δ at the MLE δ̂ML. From Result 5.1 we know that we need
to compute the inverse of I (α̂ML, δ̂ML) and then take the inverse of its lower right
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element. Using Appendix B.1.1 and the notation from Result 5.1, we know that this
lower right element is

1

Ip(δ̂ML)
= I 22

= 1

I11I22 − I12I21
I11

= I11

I11I22 − I22I22

= I11

(I11 − I22)I22

= I0(α̂ML) + I1(α̂ML + δ̂ML)

I0(α̂ML)I1(α̂ML + δ̂ML)

= 1

I0(α̂ML)
+ 1

I1(α̂ML + δ̂ML)
, (5.11)

which gives the result. See Exercise 3 for an alternative derivation of this formula. �

Example 5.8 (Comparison of proportions) Suppose that

X1 ∼ Bin(n1,π1) and X2 ∼ Bin(n2,π2)

are independent binomial random variables. To quantify any particular difference
between the probabilities π1 and π2 in the two groups, the odds ratio

θ = π1/(1 − π1)

π2/(1 − π2)

or the log odds ratio ψ = log(θ) is often used. The equality π1 = π2, which is often
used as a null hypothesis, corresponds to H0 : θ = 1 and H0 : ψ = 0, respectively.
Now

ψ = log(θ) = log

(
π1

1 − π1

)
− log

(
π2

1 − π2

)
,

so with π̂i = xi/ni , i = 1,2, and invariance of the MLE, we immediately obtain

ψ̂ML = log

(
x1

n1 − x1

)
− log

(
x2

n2 − x2

)
= log

{
x1/(n1 − x1)

x2/(n2 − x2)

}

as the MLE of ψ .
For illustration, consider Table 3.1 summarising the result from the clinical study

in Table 1.1 labelled as “Tervila”. Here we obtain

ψ̂ML = log

(
6/102

2/101

)
≈ 1.089.
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Now define the log odds φi = log{πi/(1 − πi)} for group i = 1,2. We know from
Example 2.11 that the observed Fisher information of the MLE φ̂i of φi is

Ii(φ̂i) = xi(ni − xi)

ni

.

With (5.11), the observed Fisher information of ψ̂ML is therefore

I (ψ̂ML) = {I1(φ̂1)
−1 + I2(φ̂2)

−1}−1

=
{

n1

x1(n1 − x1)
+ n2

x2(n2 − x2)

}−1

=
(

1

x1
+ 1

n1 − x1
+ 1

x2
+ 1

n2 − x2

)−1

,

so the standard error of ψ̂ML is

se(ψ̂ML) =
√

1

x1
+ 1

n1 − x1
+ 1

x2
+ 1

n2 − x2
.

In our example we obtain

se(ψ̂ML) =
√

1

6
+ 1

102
+ 1

2
+ 1

101
≈ 0.828,

so the 95 % Wald confidence interval for ψ has limits

ψ̂ML ± 1.96 · se(ψ̂ML) = 1.089 ± 1.96 · 0.828 = −0.54 and 2.71.

The reference value ψ = 0, which corresponds to the null hypothesis of no differ-
ence between the two groups, is inside this interval, so the corresponding P -value
must be larger than 0.05.

Calculation of the profile likelihood of ψ is more difficult. The joint likelihood
of the two binomial probabilities π1 and π2 is

L(π1,π2) = π
x1
1 (1 − π1)

n1−x1π
x2
2 (1 − π2)

n2−x2 .

We now reparametrise the likelihood in terms of

ψ = log

{
π1/(1 − π1)

π2/(1 − π2)

}
and η = log

(
π2

1 − π2

)
,

from which we can directly calculate the profile likelihood of the log odds ratio ψ .
Note that we could have also chosen a different nuisance parameter, and for example
let η be the log odds in group 1 instead. Invariance of the likelihood ensures that
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Fig. 5.4 Log-likelihood functions for the odds ratio ψ in the binomial model with the data from
Table 3.1

the profile likelihood of ψ would remain unchanged. The above reparametrisation
implies

π1 = exp(η + ψ)

1 + exp(η + ψ)
and π2 = exp(η)

1 + exp(η)
,

and we obtain the joint likelihood

L(ψ,η) = {exp(η + ψ)
}x1
{
1 + exp(η + ψ)

}−n1 · {exp(η)
}x2
{
1 + exp(η)

}−n2

= exp
{
η(x1 + x2)

}
exp(ψx1)

{
1 + exp(η + ψ)

}−n1
{
1 + exp(η)

}−n2 ,

shown in Fig. 5.4a as relative log-likelihood.
Calculation of the profile likelihood Lp(ψ) = maxη L(ψ,η) can be done numer-

ically, and we obtain the 95 % profile likelihood confidence interval [−0.41,3.02].
Compared with the Wald confidence interval, the profile likelihood confidence in-
terval is slightly shifted to the right but still covers the null hypothesis value ψ = 0,
compare Fig. 5.4b. �

Example 5.9 (Analysis of survival times) We now reconsider a Weibull model
Wb(μ,α) for the survival data described in Example 2.3 but want to incorporate the
censored observations as well in our analysis, cf. Sect. 2.1.4. The data pbcTreat
have the form (timei , di ). MLEs and observed Fisher information can be calcu-
lated with the following R program (the functions dweibull(), pweibull() are
explained in Appendix A.5.2):
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> weibullLik <- function(mualpha, log = TRUE)

{

mu <- mualpha[1]

alpha <- mualpha[2]

loglik <- with(pbcTreat,

sum(d * dweibull (time, alpha, mu, log = TRUE) +

(1 - d) * pweibull(time, alpha, mu,

lower.tail = FALSE,

log.p = TRUE)))

if(log)

return(loglik)

else

return(exp(loglik))

}

> start <- c(1000, 1)

> result <- optim(start, weibullLik, control=list(fnscale=-1), hessian=TRUE)

> (ml <- result$par)

[1] 3078.9660333 0.9756013

> (observedFisher <- - result$hessian)

[,1] [,2]

[1,] 4.718004e-06 0.006522228

[2,] 6.522228e-03 76.139214514

> (observedFisherInv <- solve(observedFisher))

[,1] [,2]

[1,] 240425.21837 -20.59527568

[2,] -20.59528 0.01489807

> (se <- sqrt(diag(observedFisherInv)))

[1] 490.3317432 0.1220576

We obtain the MLEs of the two parameters of the Weibull distribution Wb(μ,α) as
μ̂ML = 3078.966 and α̂ML = 0.976 with observed Fisher information

I (μ̂ML, α̂ML) =
(

4.72 · 10−6 6.52 · 10−3

6.52 · 10−3 7.61 · 101

)
,

which has inverse

I (μ̂ML, α̂ML)
−1 =

(
2.4 · 105 −2.06 · 101

−2.06 · 101 1.49 · 10−2

)
.

We therefore have se(μ̂ML) = √
2.4 · 105 = 490.3 and se(α̂ML) = √

1.49 · 10−2 =
0.122.

We can now calculate, for example, the limits of a 95 % Wald confidence interval
for α:

0.976 ± 1.96 · 0.122 = 0.736 and 1.215.

Note that the value α = 1, which corresponds to a simple exponential model, is
within this interval. The relative profile log-likelihood of α can be calculated nu-
merically and is shown in Fig. 5.5. The 95 % profile likelihood confidence inter-
val (using the threshold −1.92, cf. Table 4.1) turns out to be [0.753,1.231] and is
slightly shifted to the right in comparison with the Wald confidence interval.
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Fig. 5.5 Relative profile
log-likelihood of α

If we instead assume a gamma model, we obtain (using the parametrisation from
Fig. 2.5) μ̂ML = 3093.8 and φ̂ML = 3196.9 with observed Fisher information

I (μ̂ML, φ̂ML) =
(

1.4 · 10−5 −6.9 · 10−6

−6.9 · 10−6 4.6 · 10−6

)

and standard errors se(μ̂ML) = 520.2 and se(φ̂ML) = 910.3.
What would we have obtained in the original parametrisation with parameters

α = μ/φ and β = 1/φ? Invariance of the likelihood immediately gives

α̂ML = μ̂ML

φ̂ML

= 0.968 and β̂ML = 1

φ̂ML

= 3.1 · 10−4.

In Example 5.13 we will apply the multivariate delta method to compute the stan-
dard errors of α̂ML and β̂ML without directly maximising the log-likelihood of α

and β . �

Example 5.10 (Screening for colon cancer) A more general than the binomial
model from Example 2.12 is based on the beta-binomial distribution, which al-
lows for heterogeneity of the success probability π across individuals. Assume that
the numbers of positive test results X1:n, n = 196, are a random sample from a
beta-binomial BeB(N,α,β) distribution (cf. Appendix A.5.1). The probability for
k positive test results among N = 6 tests is therefore

Pr(Xi = k) =
(

N

k

)
B(α + k,β + N − k)

B(α,β)

for k = 0, . . . ,N and α,β > 0, where B(x, y) denotes the beta function (cf. Ap-
pendix B.2.1).
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As before, we need to truncate this distribution using Eq. (2.6) to obtain the log-
likelihood

l(α,β) =
N∑

k=1

Zk log

(
B(α + k,β + N − k)

B(α,β)

)
− n log

(
1 − B(α,β + N)

B(α,β)

)
.

However, because the parameters α and β are difficult to interpret, instead the
reparametrisation

μ = α

α + β
and ρ = 1

α + β + 1

is often used. Here Nμ is the mean of Xi , and ρ is the correlation between two
binary observations from the same individual. This can be easily seen from the
definition of the beta-binomial distribution as marginal distribution of Xi when
Xi |π ∼ Bin(N,π) and π ∼ Be(α,β). Therefore, Xi is a sum of binary dependent
random variables Xij ∈ {0,1}, j = 1, . . . ,N :

Xi = Xi1 + · · · + XiN .

The law of iterated expectations (cf. Appendix A.3.4) can be used to calculate co-
variance and correlation between Xij and Xik for j �= k (cf. Appendix A.3.6). Note
that the conditional independence of Xij and Xik given π is exploited:

E(Xij ) = E
{
E(Xij |π)

}= E(π) = α

α + β
,

Var(Xij ) = E
(
X2

ij

)− E(Xij )
2 = E(Xij ) − E(Xij )

2

= E(Xij )
{
1 − E(Xij )

}= αβ

(α + β)2
,

E(XijXik) = E
{
E(XijXik |π)

}= E
{
E(Xij |π)E(Xik |π)

}= E
(
π2)

= Var(π) + E(π)2 = αβ

(α + β)2(α + β + 1)
+
(

α

α + β

)2

,

Cov(Xij ,Xik) = E(XijXik) − E(Xij )E(Xik) = αβ

(α + β)2(α + β + 1)
and

ρ = Corr(Xij ,Xik) = Cov(Xij ,Xik)√
Var(Xij )Var(Xik)

= 1

α + β + 1
.

Therefore, ρ = 1/(α+β +1) can be interpreted as correlation between Xij and Xik .
Because our primary interest lies in the false negative fraction

ξ = Pr(Xi = 0) = B(α,β + N)

B(α,β)
,
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Fig. 5.6 Comparison of (relative) profile and estimated likelihood of the false negative fraction ξ

in the beta-binomial model

we actually prefer a third reparametrisation using ξ and ρ as seen in Fig. 5.6a.
Based on this, we obtain the profile log-likelihood of ξ shown in Fig. 5.6b with
MLE ξ̂ML = 0.238 and 95 % profile likelihood confidence interval [0.113,0.554].
Note that profile and estimated log-likelihood are substantially different.

The naive estimate of Z0 is now Ẑ0 = 196 · 0.238/(1 − 0.238) ≈ 61.22, much
larger than in the binomial model (Ẑ0 ≈ 0.55), compare Example 2.12. The 95 %
profile likelihood confidence interval [24.97,243.46] for Z0 can be calculated using
the transformation Z0 = 196 · ξ/(1 − ξ) of the limits of the 95 % profile likelihood
confidence interval for ξ . �

5.4 Frequentist Properties of the Multiparameter Likelihood

As in Chap. 4, we now consider the score vector and the Fisher information matrix
as random, i.e. both the score vector S(θ;X) and the Fisher information matrix
I (θ;X) are functions of the data X. We define the expected Fisher information
matrix, shortly expected Fisher information, J (θ) as

J (θ) = E
{
I (θ;X)

}
.

Example 5.11 (Normal model) Elementwise computation of the expectation of
(5.1) from Example 5.3 gives the expected Fisher information of a normal random
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sample

J (θ) =
(

n

σ 2 0

0 n

2σ 4

)
. �

Example 5.12 (Multinomial model) Elementwise computation of the expectation
of (5.2) from Example 5.4 gives the expected Fisher information in the multinomial
model as

J (π̃) = n

{
diag(π̃)−1 +

(
1 −

k−1∑
i=1

πi

)−1

11�
}

.

Applying the Sherman–Morrison formula (cf. Appendix B.1.4), we can easily com-
pute the inverse of the expected Fisher information:

J (π̃)−1 = n−1{diag(π̃) − π̃ π̃�}. �

In complete analogy to the case of a scalar parameter, we now define three ap-
proximate pivots: the score, the Wald and the likelihood ratio statistic. The important
properties of these statistics are sketched in the following.

5.4.1 The Score Statistic

As in Sect. 4.1.1, one can show that under the Fisher regularity conditions (suitably
generalised from Definition 4.1 to the multiparameter case) the expectation of each
element of the score vector is zero. The covariance matrix of the score vector is
equal to the expected Fisher information matrix.

Result 5.3 Under regularity conditions we have:

E
{
S(θ;X)

}= 0,

Cov
{
S(θ;X)

}= J (θ).

A direct consequence is

E
{
S(θ;X) · S(θ;X)�

}= J (θ).

A multivariate version of Result 4.5 is given by

J 1:n(θ)−
1
2 S(θ;X1:n)

a
∼ Np(0, Ip),

where Ip denotes the p × p identity matrix, and A− 1
2 is the Cholesky square root

of A−1 (cf. Appendix B.1.2), i.e.

(
A− 1

2
)�

A− 1
2 = A−1.
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If X ∼ Np(0, Ip), then X�X ∼ χ2(p), so we also have

{
J 1:n(θ)−

1
2 S(θ;X1:n)

}�{
J 1:n(θ)−

1
2 S(θ;X1:n)

}
= S(θ;X1:n)�

{
J 1:n(θ)−

1
2
}�

J 1:n(θ)−
1
2 S(θ;X1:n)

= S(θ;X1:n)�J 1:n(θ)−1S(θ;X1:n)
a
∼ χ2(p).

We can replace as in Sect. 4.1.3 the expected Fisher information matrix J 1:n(θ) by
the Fisher information matrix I (θ;X1:n). We can also replace the true value θ by
the MLE θ̂ML = θ̂ML(X1:n).

5.4.2 The Wald Statistic

The following results can be established, generalizing Result 4.10:

J 1:n(θ̂ML)
1
2 (θ̂ML − θ)

a
∼ Np(0, Ip), (5.12)

I (θ̂ML;X1:n)
1
2 (θ̂ML − θ)

a
∼ Np(0, Ip). (5.13)

So in a less rigorous formulation we can say that the MLE θ̂ML is asymptotically
normal with mean equal to the true value θ and covariance matrix equal to the
inverse observed Fisher information:

θ̂ML
a
∼ Np

(
θ , I (θ̂ML)

−1). (5.14)

A direct consequence of (5.14) is that the asymptotic distribution of the ith compo-
nent of θ̂ML is

θ̂i
a
∼ N

(
θi, I

ii
)
,

where I ii denotes the ith diagonal element of the inverse observed Fisher informa-
tion:

I ii = [I (θ̂ML)
−1]

ii
.

In addition to Result 5.1, this property provides an alternative justification of our
definition of Wald confidence intervals given in Sect. 5.2.

There is also a multidimensional extension of the Cramér–Rao inequality from
Sect. 4.2.1, which ensures that θ̂i is asymptotically efficient, i.e. has an asymptoti-
cally smallest variance among all asymptotically unbiased estimators.
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5.4.3 The Multivariate Delta Method

Application of the multivariate delta method (see Appendix A.4.5) to θ̂ML
a
∼

Np(θ , I (θ̂ML)
−1) for some continuously differentiable function g : Rp → R

q with
q ≤ p gives:

g(θ̂ML)
a
∼ Nq

(
g(θ),D(θ̂ML)I (θ̂ML)

−1D(θ̂ML)
�).

Here D(θ) denotes the q × p Jacobian of g(θ). The square root of the diagonal
elements of the q × q matrix D(θ̂ML)I (θ̂ML)

−1D(θ̂ML)
� are the standard errors of

the q components of g(θ̂ML).

Example 5.13 (Analysis of survival times) We revisit the gamma model from Ex-
ample 5.9 for the PBC survival times shown in Table 1.4, see also Example 2.3. The
unknown parameter vector is θ = (μ,φ)�, we are interested in the transformation

g(θ) = (α,β)� =
(

μ

φ
,

1

φ

)�
.

Now

D(θ) =
( 1

φ
− μ

φ2

0 − 1
φ2

)
,

and D(θ̂ML)I (θ̂ML)
−1D(θ̂ML)

� is a consistent estimate of the asymptotic covariance
matrix of g(θ̂ML). The square roots of the diagonal elements are the corresponding
standard errors se(α̂ML) = 0.1593 and se(β̂ML) = 8.91 · 10−5. Thus, the 95 % Wald
confidence interval for α has limits

α̂ML ± 1.96 · se(α̂ML) = 0.97 ± 0.31 = 0.66 and 1.28.

Note that the value α = 1, which corresponds to exponentially distributed survival
times, is covered by the 95 % confidence interval. �

5.4.4 The Likelihood Ratio Statistic

The likelihood ratio statistic can be defined in the multivariate case with parameter
vector θ just as for a scalar parameter θ :

W = 2 log

{
L(θ̂ML)

L(θ)

}
= −2l̃(θ).

Combining Eqs. (5.13) and (5.4) shows that the number of degrees of freedom of
the asymptotic χ2 distribution is equal to the dimension p of θ :

W ≈ (θ̂ML − θ)�I (θ̂ML)(θ̂ML − θ)
a
∼ χ2(p).
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Fig. 5.7 Relative likelihood
with 95 % confidence region
(shaded) for the parameter
vector θ = (α,μ)� in the
Weibull model from
Example 2.3

In analogy to (4.17) and (4.18), respectively, we can now construct γ · 100 % like-
lihood confidence regions for a multidimensional parameter θ :

{
θ : l̃(θ) ≥ −1

2
χ2

γ (p)

}

=
{
θ : L̃(θ) ≥ exp

{
−1

2
χ2

γ (p)

}}
. (5.15)

Of practical use is typically only the case p = 2, where interestingly

exp

{
−1

2
χ2

γ (2)

}
= 1 − γ.

Therefore, all values of a two-dimensional parameter vector θ = (θ1, θ2)
� with rel-

ative likelihood larger than 1−γ will form a γ ·100 % likelihood confidence region
for θ .

Example 5.14 (Analysis of survival times) Figure 5.7 shows a contour plot of the
relative likelihood for the parameter vector θ = (α,μ)� in a Weibull model for
survival times, compare Example 2.3. The 95 % confidence region is defined as all
values of θ with relative likelihood larger than 0.05 and is shaded in the figure. �

The general result (5.15) illustrates that a frequentist calibration of the relative
likelihood depends on the dimension of the unknown parameter vector. Table 5.1
lists the corresponding thresholds exp{− 1

2χ2
γ (p)} for various values of the confi-

dence level γ and the dimension p of the parameter vector.
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Table 5.1 Thresholds
exp{− 1

2 χ2
γ (p)} for the

calibration of the relative
likelihood of a parameter of
dimension p at confidence
level γ

γ p = 1 p = 2 p = 3 p = 4

90 % 0.259 0.100 0.044 0.020

95 % 0.147 0.050 0.020 0.009

99 % 0.036 0.010 0.003 0.001

5.5 The Generalised Likelihood Ratio Statistic

Let θ denote the q-dimensional parameter vector of interest, and η the r-dimensional
nuisance parameter vector. The total parameter space has thus dimension p = q + r .

The joint likelihood L(θ ,η) can be used to derive the profile likelihood of θ :

Lp(θ) = max
η

L(θ ,η) = L
{
θ , η̂ML(θ)

}
.

We will sketch in the following that the profile likelihood Lp(θ) can be treated as a
normal likelihood. In particular, we will show in Result 5.4 that

W = −2l̃p(θ) = −2 log
{
L̃p(θ)

}= 2 log

{
Lp(θ̂ML)

Lp(θ)

}
a
∼ χ2(q),

where W is called the generalised likelihood ratio statistic. Here θ denotes the true
parameter of interest and θ̂ML its MLE with respect to Lp(θ). This is identical to the
first q components of the MLE with respect to the joint likelihood L(θ ,η), i.e.

Lp(θ̂ML) = max
θ

{
max

η
L(θ ,η)

}
= max

θ ,η
L(θ ,η) = L(θ̂ML, η̂ML).

The particular form of the generalised likelihood ratio statistic W can be viewed
in the context of a significance test of the null hypothesis H0 : θ = θ0. Using the
transformation

Lp(θ0) = max
η

L(θ0,η) = max
H0

L(θ ,η),

we can write W as

W = 2 log

{
maxL(θ ,η)

maxH0 L(θ ,η)

}
= 2 log

{
Lp(θ̂ML)

Lp(θ0)

}
.

A large value of W implies that H0 has a relatively small likelihood. Calibration
of W is done using the asymptotic χ2(q) distribution, which will be derived subse-
quently.

In some cases we may even have an exact distribution of W for finite sample
size, as the following example shows.

Example 5.15 (Two-sample t test) Let X1:n1 denote a random sample from an
N(μ1, σ

2) distribution and X(n1+1):(n1+n2) a random sample from an N(μ2, σ
2) dis-

tribution with μ1, μ2 and σ 2 all unknown. Assume that the two random samples
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are independent from each other. Consider the null hypothesis H0 : μ = μ1 = μ2.
Using the reparametrisation μ2 = μ1 + c, the null hypothesis can be rewritten as
H0 : c = 0, which shows that H0 fixes one parameter of the unrestricted model at a
particular value (c = 0). Therefore, we are in the framework described above.

The likelihood is

L
(
μ1,μ2, σ

2)

= (2π)−
n
2
(
σ 2)− n

2 exp

{
−1

2

∑n1
i=1(xi − μ1)

2 +∑n
i=n1+1(xi − μ2)

2

σ 2

}
.

Under H0, the MLE of σ 2 is

σ̂ 2
0 = 1

n

n∑
i=1

(xi − μ̂)2,

where n = n1 + n2, and

μ̂ = 1

n

n∑
i=1

xi = x̄

is the MLE of μ. We therefore have

max
H0

L
(
μ1,μ2, σ

2)= L
(
μ̂, μ̂, σ̂ 2

0

)

= (2π)−
n
2
(
σ̂ 2

0

)− n
2 exp

{
−1

2

∑n
i=1(xi − x̄)2

1
n

∑n
i=1(xi − x̄)2

}

= (2π)−
n
2
(
σ̂ 2

0

)− n
2 exp

(
−n

2

)
.

Without the H0 restriction, we have the MLEs

μ̂1 = 1

n1

n1∑
i=1

xi,

μ̂2 = 1

n2

n∑
i=n1+1

xi and

σ̂ 2 = 1

n

{
n1∑
i=1

(xi − μ̂1)
2 +

n∑
i=n1+1

(xi − μ̂2)
2

}
,

and we obtain

maxL
(
μ1,μ2, σ

2)= L
(
μ̂1, μ̂2, σ̂

2)

= (2π)−
n
2
(
σ̂ 2)−n/2 · exp

(
−n

2

)
.
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The generalised likelihood ratio statistic is therefore

W = 2 log

{
maxL(μ1,μ2, σ

2)

maxH0 L(μ1,μ2, σ 2)

}
= 2 log

{(
σ̂ 2

σ̂ 2
0

)− n
2
}

= n log

(
σ̂ 2

0

σ̂ 2

)
.

Now

nσ̂ 2
0 =

n∑
i=1

(xi − μ̂)2

=
n1∑
i=1

(xi − μ̂1 + μ̂1 − μ̂)2 +
n∑

i=n1+1

(xi − μ̂2 + μ̂2 − μ̂)2

=
n1∑
i=1

(xi − μ̂1)
2 + n1(μ̂1 − μ̂)2 +

n∑
i=n1+1

(xi − μ̂2)
2 + n2(μ̂2 − μ̂)2

= nσ̂ 2 + n1(μ̂1 − μ̂)2 + n2(μ̂2 − μ̂)2

= nσ̂ 2 + n1n2

n
(μ̂1 − μ̂2)

2

= nσ̂ 2 + 1
1
n1

+ 1
n2

(μ̂1 − μ̂2)
2,

where the penultimate line follows from μ̂ = 1
n
(n1μ̂1 + n2μ̂2) and the combination

of quadratic forms in Appendix B.1.5. So we can rewrite W as

W = n log

{
1 + 1

1
n1

+ 1
n2

(μ̂1 − μ̂2)
2

nσ̂ 2

}

= n log

(
1 + 1

n − 2
t2
)

,

where

t = μ̂1 − μ̂2√
( 1
n1

+ 1
n2

) n
n−2 σ̂ 2

is the test statistic of the two-sample t test. Note that W is a monotone function of
t2 and hence of |t |. Under H0, the exact distribution of t is a standard t distribution
with n1 + n2 − 2 degrees of freedom, i.e. t ∼ t(n1 + n2 − 2). This also induces an
exact distribution for W under H0.
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Asymptotically (n → ∞), the t distribution converges to the standard normal
distribution, so t2 has asymptotically a χ2(1) distribution. Now, for large n, we
have

W = n log

(
1 + 1

n − 2
t2
)

≈ log

{(
1 + t2

n

)n}
≈ log

{
exp
(
t2)}= t2,

which illustrates that W and t2 have the same asymptotic distribution. We would
also have obtained the asymptotic χ2(1) distribution of W from a more general
result, which will be described below. �

Example 5.16 (Blood alcohol concentration) Consider the alcohol concentration
data from Sect. 1.1.7. We would like to test whether there is a real difference in the
transformation factor between the genders. We obtain a two-sample t test statistic
t = −3.59 with P -value 0.00042 on 183 degrees of freedom. The generalised like-
lihood ratio statistic is W = 12.61 with P -value 0.00038. So the P -values are very
similar, and the observed data set is very unlikely under the null hypothesis of equal
mean transformation factors across the genders. �

As noted before, the asymptotic distribution of the generalised likelihood ratio
statistic is a χ2 distribution.

Result 5.4 (Distribution of the generalised likelihood ratio statistic) Under regu-
larity conditions and assuming that H0 : θ = θ0 holds, we have that, as n → ∞,

W = 2 log

{
maxL(θ ,η)

maxH0 L(θ ,η)

}
D−→ χ2(q).

Proof To prove Result 5.4, let (θ̂ML, η̂ML)
� denote the unrestricted MLE and η̂0 =

η̂ML(θ0) the restricted MLE of η under the null hypothesis H0 : θ = θ0. Under H0,
the true parameter is denoted as (θ0,η)�. We know that, under H0,

(
θ̂ML

η̂ML

)
a
∼ Np

((
θ0
η

)
, I (θ̂ML, η̂ML)

−1
)

, (5.16)

where we partition the inverse observed Fisher information matrix as in Result 5.1:

I (θ̂ML, η̂ML)
−1 =

(
I 11 I 12

I 21 I 22

)
.

We now apply a second-order Taylor approximation from Appendix B.2.3 to
l̃p(θ) around θ = θ̂ML. From Result 5.1 we know that the Hessian of l̃p(θ) at the
MLE is −(I 11)−1, which gives us the quadratic approximation

l̃p(θ) ≈ −1

2
(θ − θ̂ML)

�(I 11)−1
(θ − θ̂ML)
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for the relative profile log-likelihood. The generalised likelihood ratio statistic W =
−2l̃p(θ0) can therefore be approximated as

W ≈ (θ̂ML − θ0)
�(I 11)−1

(θ̂ML − θ0).

But we have from (5.16) that the marginal distribution of the MLE for θ is θ̂ML
a
∼

Nq(θ0, I
11). Hence, we finally obtain

W
a
∼ χ2(q). �

Example 5.17 (Goodness-of-fit) We will now use the generalised likelihood ratio
statistic to derive a well-known goodness-of-fit statistic. Consider the MN blood
group data from Sect. 1.1.4 and suppose that we want to investigate if there is ev-
idence that the underlying population is not in Hardy–Weinberg equilibrium. The
restricted model now assumes that the population is in Hardy–Weinberg equilib-
rium. From Example 2.7 we know that υ̂ML ≈ 0.570 with log-likelihood value

l(υ̂ML) = x1 log
(
υ̂2

ML

)+ x2 log
{
2υ̂ML(1 − υ̂ML)

}+ x3 log
{
(1 − υ̂ML)

2}= −754.17.

Without restriction we have a trinomial model with MLE π̂ML = x/n, where
n = x1 + x2 + x3, and log-likelihood value

l(π̂ML) =
3∑

i=1

xi log(π̂i) = −753.19.

The generalised likelihood ratio statistic is therefore 2{l(π̂ML) − l(υ̂ML)} = 1.959,
from which we can easily compute the corresponding P -value 0.16, using the dis-
tribution function of the χ2(1) distribution. This P -value is fairly large, so we con-
clude that there is no evidence against Hardy–Weinberg equilibrium. �

In this example we have derived a special case of Wilk’s G2 statistic. The ob-
served frequencies x1, . . . , xk are compared with the fitted (“expected”) frequencies
ei in a restricted model with, say, r parameters. The G2 statistic is then

G2 = 2
k∑

i=1

xi log

(
xi

ei

)
,

using the convention that 0 log(0) = 0. This is also known as the deviance and is an
alternative to the χ2-statistic

χ2 =
k∑

i=1

(xi − ei)
2

ei

.

Both have under H0 an asymptotic χ2(k − 1 − r) distribution. In the above example
the χ2 statistic gives a quite similar value with χ2 = 1.956 (P -value 0.16).
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Example 5.18 (Screening for colon cancer) We now apply the χ2 and G2 statistic
to the data on colon cancer screening from Sect. 1.1.5 to investigate the plausi-
bility of the underlying binomial and beta-binomial models. The computations are
straightforward, so we briefly discuss only the derivation of the degrees of free-
dom. The data are given in k = 6 categories, so the saturated multinomial model
has five degrees of freedom. The truncated binomial model has one parameter, and
the truncated beta-binomial model has two. The corresponding goodness-of-fit tests
therefore have 5 − 1 = 4 and 5 − 2 = 3 degrees of freedom, respectively.

There is strong evidence against the truncated binomial model from Exam-
ple 2.12 (χ2 = 332.8, G2 = 185.1 at four degrees of freedom, with both P -values
<0.0001). This confirms our initial concerns at the end of Example 2.12. The more
flexible truncated beta-binomial model from Example 5.10 gives a much better fit
with χ2 = 2.12 and G2 = 2.19 at three degrees of freedom (P -values 0.55 and 0.53,
respectively). �

5.6 Conditional Likelihood

Conditional likelihood is an alternative approach to make inference for a parameter
of interest θ in the presence of a nuisance parameter η. Briefly, the idea is to find
a suitable one-to-one transformation (y1, y2), say, of the data x such that the con-
ditional distribution of y1 |y2 does not depend on the nuisance parameter η. If, in
addition, the distribution of y2 carries little or no information about θ , then we can
treat y2 as fixed and base inference only on the conditional likelihood Lc(θ) (or the
conditional log-likelihood lc(θ)) implied by the distribution of y1 |y2.

Example 5.19 (Poisson model) Suppose we want to compare disease counts x and
y in two areas with known expected numbers of cases ex and ey . The common sta-
tistical model is to assume that the corresponding random variables X and Y are
independent Poisson with means exλx and eyλy , respectively. The parameter of in-
terest is then the rate ratio θ = λx/λy , and we can consider λy as nuisance parameter
if we write exλx as exθλy . Intuitively, the sum Z = X + Y carries only little infor-
mation about the rate ratio, so we consider the conditional distribution of X |Z = z,
which is known to be a binomial Bin(z,π) distribution (cf. Appendix A.5.1) with
“number of trials” equal to z = x + y and “success probability” equal to

π = exθλy

exθλy + eyλy

= exθ

exθ + ey

,

which does not depend on the nuisance parameter λy . The corresponding odds
π/(1 − π) are (exθ)/ey , so the conditional log-likelihood for θ has the same form
as the odds in a binomial model, which we derived in Example 2.6:

lc(θ) = x log

(
exθ

ey

)
− (x + y) log

(
1 + exθ

ey

)
. (5.17)
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We can easily derive the MLE of θ by equating the empirical odds x/y with π/(1 −
π) = (exθ)/ey :

θ̂ML = x/ex

y/ey

.

Conditional likelihood confidence intervals can be obtained using the conditional
log-likelihood (5.17).

Now we consider profile likelihood as an alternative approach to eliminate the
nuisance parameter λy . First, we need to derive the MLE of λy for fixed θ . The joint
log-likelihood of θ and λy given the data x and y is

l(θ, λy) = x log(θλy) − exθλy + y log(λy) − eyλy

= x log(θ) + (x + y) log(λy) − (exθ + ey)λy,

from which we easily obtain

λ̂y(θ) = x + y

exθ + ey

.

This leads to the profile log-likelihood

lp(θ) = l
{
θ, λ̂y(θ)

}

= x log(θ) + (x + y) log

(
x + y

exθ + ey

)
− (x + y)

= x log(θ) − (x + y) log(exθ + ey) + (x + y) log(x + y) − (x + y).

The last two terms do not depend on θ , and so can be ignored. We are also at liberty
to add the constant

x
{
log(ex) + log(ey)

}
,

which gives, after some rearrangement,

lp(θ) = x log

(
exθ

ey

)
− (x + y) log

(
1 + exθ

ey

)
.

The conditional log-likelihood lc(θ) is therefore identical to the profile log-
likelihood lp(θ) in this case. �

Conditional likelihood can also be used for the comparison of two binomial sam-
ples.

Example 5.20 (Comparison of proportions) Suppose we want to compare two bino-
mial samples X ∼ Bin(m,πx) and Y ∼ Bin(n,πy) using the log odds ratio

ψ = log

{
πx/(1 − πx)

πy/(1 − πy)

}
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Fig. 5.8 Difference of the
relative profile and
conditional log-likelihood for
the “Tervila” study data. The
MLE location is marked with
a dashed vertical line

as in Example 5.8. As in the previous Example 5.19, conditioning on the value Z = z

of the sum Z = X +Y gives a likelihood that only depends on ψ , cf. Example 3.17,
where we have shown that X |Z = z follows a hypergeometric distribution under
the assumption ψ = 0. In the general case the distribution of X |Z = z turns out to
be noncentral hypergeometric NCHypGeom(z,m + n,m, exp(ψ)) with probability
mass function

f (x |x + y = z) =
(
m
x

)(
n

z−x

)
exp(ψx)∑z

s=0

(
m
s

)(
n

z−s

)
exp(ψs)

.

This conditional likelihood is not identical but close to the profile likelihood derived
in Example 5.8. Figure 5.8 compares the resulting relative log-likelihoods for the
“Tervila” data analysed in Example 5.8. We see that the differences between the
two functions are very small relative to the function values plotted in Fig. 5.4b. �

5.7 Exercises

1. In a cohort study on the incidence of ischaemic heart disease (IHD), 337 male
probands were enrolled. Each man was categorised as non-exposed (group 1,
daily energy consumption ≥2750 kcal) or exposed (group 2, daily energy con-
sumption <2750 kcal) to summarise his average level of physical activity. For
each group, the number of person years (Y1 = 2768.9 and Y2 = 1857.5), and
the number of IHD cases (D1 = 17 and D2 = 28) was registered thereafter.

We assume that Di |λi
ind
∼ Po(λiYi), i = 1,2, where λi > 0 is the group-

specific incidence rate.
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(a) For each group, derive the MLE λ̂i and a corresponding 95 % Wald
confidence interval for log(λi) with subsequent back-transformation to
the λi -scale.

(b) In order to analyse whether λ1 = λ2, we reparametrise the model with
λ = λ1 and θ = λ2/λ1. Show that the joint log-likelihood kernel of λ

and θ has the following form:

l(λ, θ) = D log(λ) + D2 log(θ) − λY1 − θλY2,

where D = D1 + D2.
(c) Compute the MLE (λ̂, θ̂ ), the observed Fisher information matrix

I (λ̂, θ̂ ) and derive expressions for both profile log-likelihood functions
lp(λ) = l{λ, θ̂(λ)} and lp(θ) = l{λ̂(θ), θ}.

(d) Plot both functions lp(λ) and lp(θ) and also create a contour plot of
the relative log-likelihood l̃(λ, θ) using the R-function contour. Add
the points {λ, θ̂(λ)} and {λ̂(θ), θ} to the contour plot, analogously to
Fig. 5.3a.

(e) Compute a 95 % Wald confidence interval for log(θ) based on the pro-
file log-likelihood. What can you say about the P -value for the null
hypothesis λ1 = λ2?

2. Let Z1:n be a random sample from a bivariate normal distribution N2(μ,Σ)

with mean vector μ = 0 and covariance matrix

Σ = σ 2
(

1 ρ

ρ 1

)
.

(a) Interpret σ 2 and ρ. Derive the MLE (σ̂ 2
ML, ρ̂ML).

(b) Show that the Fisher information matrix is

I
(
σ̂ 2

ML, ρ̂ML

)=
⎛
⎜⎝

n

σ̂ 4
ML

− nρ̂ML

σ̂ 2
ML(1−ρ̂2

ML)

− nρ̂ML

σ̂ 2
ML(1−ρ̂2

ML)

n(1+ρ̂2
ML)

(1−ρ̂2
ML)2

⎞
⎟⎠ .

(c) Show that

se(ρ̂ML) = 1 − ρ̂2
ML√

n
.

3. Calculate again the Fisher information of the profile log-likelihood in Exam-
ple 5.2, but this time without using Result 5.1. Use instead the fact that α̂ML(δ)

is a point where the partial derivative of l(α, δ) with respect to α equals zero.
4. Let X ∼ Bin(m,πx) and Y ∼ Bin(n,πy) be independent binomial random

variables. In order to analyse the null hypothesis H0 : πx = πy , one often
considers the relative risk θ = πx/πy or the log relative risk ψ = log(θ).
(a) Compute the MLE ψ̂ML and its standard error for the log relative risk

estimation. Proceed as in Example 5.8.
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(b) Compute a 95 % confidence interval for the relative risk θ given the data
in Table 3.1.

(c) Also compute the profile likelihood and the corresponding 95 % profile
likelihood confidence interval for θ .

5. Suppose that ML estimates of the sensitivity πx and specificity πy of a di-
agnostic test for a specific disease are obtained from independent binomial
samples X ∼ Bin(m,πx) and Y ∼ Bin(n,πy), respectively.
(a) Use Example 5.2 to compute the standard error of the logarithm of the

positive and negative likelihood ratio, defined as LR+ = πx/(1 − πy)

and LR− = (1 − πx)/πy . Suppose m = n = 100, x = 95 and y = 90.
Compute a point estimate and the limits of a 95 % confidence interval
for both LR+ and LR−, using the standard error from above.

(b) The positive predictive value PPV is the probability of disease, given a
positive test result. The equation

PPV

1 − PPV
= LR+ · ω

relates PPV to LR+ and to the pre-test odds of disease ω. Likewise,
the following equation holds for the negative predictive value NPV, the
probability to be disease-free, given a negative test result:

1 − NPV

NPV
= LR− · ω.

Suppose ω = 1/1000. Use the 95 % confidence interval for LR+ and
LR−, obtained in 5(a), to compute the limits of a 95 % confidence inter-
val for both PPV and NPV.

6. In the placebo-controlled clinical trial of diuretics during pregnancy to prevent
preeclampsia by Fallis et al. (cf. Table 1.1), 6 out of 38 treated women and 18
out of 40 untreated women got preeclampsia.
(a) Formulate a statistical model assuming independent binomial distribu-

tions in the two groups. Translate the null hypothesis “there is no differ-
ence in preeclampsia risk between the two groups” into a statement on
the model parameters.

(b) Let θ denote the risk difference between treated and untreated women.
Derive the MLE θ̂ML and a 95 % Wald confidence interval for θ . Also,
give the MLE for the number needed to treat (NNT), which is defined
as 1/θ .

(c) Write down the joint log-likelihood kernel l(π1, θ) of the risk parame-
ter π1 in the treatment group and θ . In order to derive the profile log-
likelihood of θ , consider θ as fixed and write down the score function
for π1,

Sπ1(π1, θ) = ∂

∂π1
l(π1, θ).

Which values are allowed for π1 when θ is fixed?
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Table 5.2 Probability of
offspring’s blood group given
allele frequencies in parental
generation and sample
realisations

Blood group Probability Observation

A = {AA,A0} π1 = p2 + 2pr x1 = 182

B = {BB,B0} π2 = q2 + 2qr x2 = 60

AB = {AB} π3 = 2pq x3 = 17

0 = {00} π4 = r2 x4 = 176

(d) Write an R-function that solves Sπ1(π1, θ) = 0 (use uniroot) and thus
gives an estimate π̂1(θ). Hence, write an R-function for the profile log-
likelihood lp(θ) = l{π̂1(θ), θ}.

(e) Compute a 95 % profile likelihood confidence interval for θ using nu-
merical tools. Compare it with the Wald interval. What can you say
about the P -value for the null hypothesis from Exercise 6(a)?

7. The AB0 blood group system was described by Karl Landsteiner in 1901,
who was awarded the Nobel Prize for this discovery in 1930. It is the most
important blood type system in human blood transfusion and comprises four
different groups: A, B, AB and 0.

Blood groups are inherited from both parents. Blood groups A and B are
dominant over 0 and codominant to each other. Therefore a phenotype blood
group A may have the genotype AA or A0; for phenotype B, the genotype is
BB or B0, for phenotype AB, there is only the genotype AB, and for pheno-
type 0, there is only the genotype 00.

Let p,q and r be the proportions of alleles A, B, and 0 in a population, so
p + q + r = 1 and p,q, r > 0. Then the probabilities of the four blood groups
for the offspring generation are given in Table 5.2. Moreover, the realisations
in a sample of size n = 435 are reported.
(a) Explain how the probabilities in Table 5.2 arise. What assumption is

tacitly made?
(b) Write down the log-likelihood kernel of θ = (p, q)�. To this end, as-

sume that x = (x1, x2, x3, x4)
� is a realisation from a multinomial dis-

tribution with parameters n = 435 and π = (π1,π2,π3,π4)
�.

(c) Compute the MLEs of p and q numerically, using the R function optim.
Use the option hessian = TRUE in optim and process the correspond-
ing output to receive the standard errors of p̂ML and q̂ML.

(d) Finally, compute r̂ML and se(r̂ML). Make use of Sect. 5.4.3.
(e) Create a contour plot of the relative log-likelihood and mark the 95 %

likelihood confidence region for θ . Use the R-functions contourLines
and polygon for sketching the confidence region.

(f) Use the χ2 and the G2 test statistic to analyse the plausibility of the
modeling assumptions.

8. Let T ∼ t(n − 1) be a standard t random variable with n − 1 degrees of free-
dom.
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(a) Derive the density function of the random variable

W = n log

(
1 + T 2

n − 1

)
,

see Example 5.15, and compare it graphically with the density function
of the χ2(1) distribution for different values of n.

(b) Show that as n → ∞, W follows indeed a χ2(1) distribution.
9. Consider the χ2 statistic given k categories with n observations. Let

Dn =
k∑

i=1

(ni − npi0)
2

npi0
and Wn = 2

k∑
i=1

ni log

(
ni

npi0

)
.

Show that Wn − Dn
P−→ 0 as n → ∞.

10. In a psychological experiment the forgetfulness of probands is tested with
the recognition of syllable triples. The proband has ten seconds to memorise
the triple, afterwards it is covered. After a waiting time of t seconds, it is
checked whether the proband remembers the triple. For each waiting time t ,
the experiment is repeated n times.

Let y = (y1, . . . , ym) be the relative frequencies of correctly remembered
syllable triples for the waiting times of t = 1, . . . ,m seconds. The power
model now assumes that

π(t; θ) = θ1t
−θ2 , 0 ≤ θ1 ≤ 1, θ2 > 0,

is the probability to correctly remember a syllable triple after the waiting time
t ≥ 1.
(a) Derive an expression for the log-likelihood l(θ) where θ = (θ1, θ2).
(b) Create a contour plot of the log-likelihood in the parameter range

[0.8,1] × [0.3,0.6] with n = 100 and

y = (0.94,0.77,0.40,0.26,0.24,0.16), t = (1,3,6,9,12,18).

11. Often the exponential model is used instead of the power model (described in
Exercise 10), assuming:

π(t; θ) = min
{
1, θ1 exp(−θ2t)

}
, t > 0, θ1 > 0 and θ2 > 0.

(a) Create a contour plot of the log-likelihood in the parameter range
[0.8,1.4] × [0,0.4] for the same data as in Exercise 10.

(b) Use the R-function optim to numerically compute the MLE θ̂ML. Add
the MLE to the contour plot from 11(a).

(c) For 0 ≤ t ≤ 20, create a plot of π(t; θ̂ML) and add the observations y.
12. Let X1:n be a random sample from a log-normal LN(μ,σ 2) distribution, cf.

Table A.2.
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(a) Derive the MLE of μ and σ 2. Use the connection between the densities
of the normal distribution and the log normal distribution. Also compute
the corresponding standard errors.

(b) Derive the profile log-likelihood functions of μ and σ 2 and plot them
for the following data:

x = (225,171,198,189,189,135,162,136,117,162).

Compare the profile log-likelihood functions with their quadratic ap-
proximations.

13. We assume an exponential model for the survival times in the randomised
placebo-controlled trial of Azathioprine for primary biliary cirrhosis (PBC)
from Sect. 1.1.8. The survival times (in days) of the n = 90 patients in the
placebo group are denoted by xi with censoring indicators γi (i = 1, . . . , n),
while the survival times of the m = 94 patients in the treatment group are
denoted by yi and have censoring indicators δi (i = 1, . . . ,m). The (partly
unobserved) uncensored survival times follow exponential models with rates
η and θη in the placebo and treatment group, respectively (η, θ > 0).
(a) Interpret η and θ . Show that their joint log-likelihood is

l(η, θ) = (nγ̄ + mδ̄) log(η) + mδ̄ log(θ) − η(nx̄ + θmȳ),

where γ̄ , δ̄, x̄, ȳ are the averages of the γi , δi , xi and yi , respectively.
(b) Calculate the MLE (η̂ML, θ̂ML) and the observed Fisher information ma-

trix I (η̂ML, θ̂ML).
(c) Show that

se(θ̂ML) = θ̂ML ·
√

nγ̄ + mδ̄

nγ̄ · mδ̄

and derive a general formula for a γ · 100 % Wald confidence interval
for θ . Use Appendix B.1.1 to compute the required entry of the inverse
observed Fisher information.

(d) Consider the transformation ψ = log(θ). Derive a γ · 100 % Wald con-
fidence interval for ψ using the delta method.

(e) Derive the profile log-likelihood for θ . Implement an R-function that
calculates a γ · 100 % profile likelihood confidence interval for θ .

(f) Calculate 95 % confidence intervals for θ based on Exercises 13(c),
13(d) and 13(e). Also compute for each of the three confidence intervals
13(c), 13(d) and 13(e) the corresponding P -value for the null hypoth-
esis that the exponential distribution for the PBC survival times in the
treatment group is not different from the placebo group.

14. Let X1:n be a random sample from the N(μ,σ 2) distribution.
(a) First assume that σ 2 is known. Derive the likelihood ratio statistic for

testing specific values of μ.
(b) Show that, in this special case, the likelihood ratio statistic is an exact

pivot and exactly has a χ2(1) distribution.
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(c) Show that, in this special case, the corresponding likelihood ratio confi-
dence interval equals the Wald confidence interval.

(d) Now assume that μ is known. Derive the likelihood ratio statistic for
testing specific values of σ 2.

(e) Compare the likelihood ratio statistic and its distribution with the exact
pivot mentioned in Example 4.21. Derive a general formula for a confi-
dence interval based on the exact pivot, analogously to Example 3.8.

(f) Consider the transformation factors from Table 1.3 and assume that the
“mean” is the known μ and the “standard deviation” is σ̂ML. Compute
both a 95 % likelihood ratio confidence interval and a 95 % confidence
interval based on the exact pivot for σ 2. Illustrate the likelihood ratio
confidence interval by plotting the relative log-likelihood and the cut-
value, similar to Fig. 4.8. In order to compute the likelihood ratio confi-
dence interval, use the R-function uniroot (cf. Appendix C.1.2).

15. Consider K independent groups of normally distributed observations with
group-specific means and variances, i.e. let Xi,1:ni

be a random sample from
N(μi, σ

2
i ) for group i = 1, . . . ,K . We want to test the null hypothesis that the

variances are identical, i.e. H0 : σ 2
i = σ 2.

(a) Write down the log-likelihood kernel for the parameter vector θ =
(μ1, . . . ,μK,σ 2

1 , . . . , σ 2
K)�. Derive the MLE θ̂ML by solving the score

equations Sμi
(θ) = 0 and then Sσ 2

i
(θ) = 0, for i = 1, . . . ,K .

(b) Compute the MLE θ̂0 under the restriction σ 2
i = σ 2 of the null hypoth-

esis.
(c) Show that the generalised likelihood ratio statistic for testing H0 : σ 2

i =
σ 2 is

W =
K∑

i=1

ni log
(
σ̂ 2

0 /σ̂ 2
i

)
,

where σ̂ 2
0 and σ̂ 2

i are the ML variance estimates for the ith group with
and without the H0 assumption, respectively. What is the approximate
distribution of W under H0?

(d) Consider the special case with K = 2 groups having equal sizes n1 =
n2 = n. Show that W is large when the ratio

R =
∑n

j=1(x1j − x̄1)
2∑n

j=1(x2j − x̄2)2

is large or small. Show that W is minimal if R = 1. Which value has W

for R = 1?
(e) Bartlett’s modified likelihood ratio test statistic (Bartlett 1937) is B =

T/C, where in

T =
K∑

i=1

(ni − 1) log
(
s2

0/s2
i

)
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compared to W , the numbers of observations ni have been replaced
by the degrees of freedom ni − 1, and the sample variances s2

i =
(ni − 1)−1∑ni

j=1(xij − x̄i )
2 define the pooled sample variance s2

0 =
{∑K

i=1(ni − 1)}−1∑K
i=1(ni − 1)s2

i . The correction factor

C = 1 + 1

3(K − 1)

{(
K∑

i=1

1

ni − 1

)
− 1∑K

i=1(ni − 1)

}

is used because T/C converges more rapidly to the asymptotic χ2(K −
1) distribution than T alone.

Write two R-functions that take the vectors of the group sizes
(n1, . . . , nK) and the sample variances (s2

1 , . . . , s2
K) and return the val-

ues of the statistics W and B , respectively.
(f) In the H0 setting with K = 3, ni = 5, μi = i, σ 2 = 1/4, simulate 10 000

data sets and compute the statistics W and B in each case. Compare the
empirical distributions with the approximate χ2(K − 1) distribution. Is
B closer to χ2(K − 1) than W in this case?

(g) Consider the alcohol concentration data from Sect. 1.1.7. Quantify the
evidence against equal variances of the transformation factor between
the genders using P -values based on the test statistics W and B .

16. In a 1:1 matched case-control study, one control (i.e. a disease-free individual)
is matched to each case (i.e. a diseased individual) based on certain individual
characteristics, e.g. age or gender. Exposure history to a potential risk factor is
then determined for each individual in the study. If exposure E is binary (e.g.
smoking history? yes/no), then it is common to display the data as frequencies
of case-control pairs, depending on exposure history:

History of control
Exposed Unexposed

History of case Exposed a b

Unexposed c d

For example, a is the number of case-control pairs with positive exposure
history of both the case and the control.

Let ω1 and ω0 denote the odds for a case and a control, respectively, to be
exposed, such that

Pr(E | case) = ω1

1 + ω1
and Pr(E | control) = ω0

1 + ω0
.

To derive conditional likelihood estimates of the odds ratio ψ = ω1/ω0, we
argue conditional on the number NE of exposed individuals in a case-control
pair. If NE = 2, then both the case and the control are exposed, so that the
corresponding a case-control pairs do not contribute to the conditional likeli-
hood. This is also the case for the d case-control pairs where both the case and
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the control are unexposed (NE = 0). In the following we therefore only con-
sider the case NE = 1, in which case either the case or the control is exposed,
but not both.
(a) Conditional on NE = 1, show that the probability that the case rather

than the control is exposed is ω1/(ω0 + ω1). Show that the correspond-
ing conditional odds are equal to the odds ratio ψ .

(b) Write down the binomial log-likelihood in terms of ψ and show
that the MLE of the odds ratio ψ is ψ̂ML = b/c with standard er-
ror se{log(ψ̂ML)} = √

1/b + 1/c. Derive the Wald test statistic for H0:
log(ψ) = 0.

(c) Derive the standard error se(ψ̂ML) of ψ̂ML and derive the Wald test statis-
tic for H0: ψ = 1. Compare your result with the Wald test statistic for
H0: log(ψ) = 0.

(d) Finally, compute the score test statistic for H0: ψ = 1 based on the
expected Fisher information of the conditional likelihood.

17. Let Yi
ind
∼ Bin(1,πi), i = 1, . . . , n, be the binary response variables in a logis-

tic regression model, where the probabilities πi = F(x�
i β) are parametrised

via the inverse logit function

F(x) = exp(x)

1 + exp(x)

by the regression coefficient vector β = (β1, . . . , βp)�. The vector xi =
(xi1, . . . , xip)� contains the values of the p covariates for the ith observa-
tion.
(a) Show that F is indeed the inverse of the logit function logit(x) =

log{x/(1 − x)}, and that d
dx

F (x) = F(x){1 − F(x)}.
(b) Use the results on multivariate derivatives outlined in Appendix B.2.2 to

show that the log-likelihood, score vector and Fisher information matrix
of β , given the realisation y = (y1, . . . , yn)

�, are

l(β) =
n∑

i=1

yi log(πi) + (1 − yi) log(1 − πi),

S(β) =
n∑

i=1

(yi − πi)xi = X�(y − π) and

I (β) =
n∑

i=1

πi(1 − πi)xix
�
i = X�WX,

respectively, where X = (x1, . . . ,xn)
� is the design matrix, π =

(π1, . . . , πn)
�, W = diag{πi(1 − πi)}ni=1.

(c) Show that the statistic T (y) =∑n
i=1 yixi is minimal sufficient for β .
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(d) Implement an R-function that maximises the log-likelihood using the
Newton–Raphson algorithm (see Appendix C.1.3) by iterating

β(t+1) = β(t) + I
(
β(t)
)−1

S
(
β(t)
)
, t = 1,2, . . .

until the new estimate β(t+1) and the old one β(t) are almost identical
and β̂ML = β(t+1). Start with β(1) = 0.

(e) Consider the data set amlxray on the connection between X-ray usage
and acute myeloid leukemia in childhood, which is available in the R-
package faraway. Here yi = 1 if the disease was diagnosed for the ith
child and yi = 0 otherwise (disease). We include an intercept in the
regression model, i.e. we set x1 = 1. We want to analyse the association
of the diabetes status with the covariates x2 (age in years), x3 (1 if the
child is male and 0 otherwise, Sex), x4 (1 if the mother ever have an
X-ray and 0 otherwise, Mray) and x5 (1 if the father ever have an X-ray
and 0 otherwise, Fray).

Interpret β2, . . . , β5 by means of odds ratios. Compute the MLE
β̂ML = (β̂1, . . . , β̂5)

� and standard errors se(β̂i) for all coefficient es-
timates β̂i and construct 95 % Wald confidence intervals for βi (i =
1, . . . ,5). Interpret the results and compare them with those from the
R-function glm (using the binomial family).

(f) Implement an R-function that returns the profile log-likelihood of one of
the p parameters. Use it to construct 95 % profile likelihood confidence
intervals for them. Compare with the Wald confidence intervals from
above and with the results from the R-function confint applied to the
glm model object.

(g) We want to test if the inclusion of the covariates x2, x3, x4 and x5 im-
proves the fit of the model to the data. To this end, we consider the null
hypothesis H0 : β2 = · · · = β5 = 0.

How can this be expressed in the form H0 : Cβ = δ, where C is a
q × p contrast matrix (of rank q ≤ p), and δ is a vector of length q?
Use a result from Appendix A.2.4 to show that under H0,

(Cβ̂ML − δ)�
{
CI (β̂ML)

−1C�}−1
(Cβ̂ML − δ)

a
∼ χ2(q). (5.18)

(h) Compute two P -values quantifying the evidence against H0, one based
on the squared Wald statistic (5.18) and the other based on the gener-
alised likelihood ratio statistic.

(i) Since the data is actually from a matched case-control study, where
pairs of one case and one control have been matched (by age, race and
county of residence; the variable ID denotes the matched pairs), it is
more appropriate to apply conditional logistic regression. Compute the
corresponding MLEs and 95 % confidence intervals with the R-function
clogit from the package survival and compare the results.
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18. In clinical dose-finding studies, the relationship between the dose d ≥ 0 of the
medication and the average response μ(d) in a population is to be inferred.
Considering a continuously measured response y, then a simple model for

the individual measurements assumes yij
ind
∼ N(μ(dij ; θ), σ 2), i = 1, . . . ,K ,

j = 1, . . . , ni . Here ni is the number of patients in the ith dose group with
dose di (placebo group has d = 0). The Emax model has the functional form

μ(d; θ) = θ1 + θ2
d

d + θ3
.

(a) Plot the function μ(d; θ) for different choices of the parameters
θ1, θ2, θ3 > 0. Give reasons for the interpretation of θ1 as the mean
placebo response, θ2 as the maximum treatment effect, and θ3 as the
dose giving 50 % of the maximum treatment effect.

(b) Compute the expected Fisher information for the parameter vector θ .
Using this result, implement an R function that calculates the approx-
imate covariance matrix of the MLE θ̂ML for a given set of doses
d1, . . . , dK , a total sample size N =∑K

i=1 ni , allocation weights wi =
ni/N and given error variance σ 2.

(c) Assume that θ1 = 0, θ2 = 1, θ3 = 0.5 and σ 2 = 1. Calculate the approx-
imate covariance matrix, first, for K = 5 doses 0, 1, 2, 3, 4 and, second,
for doses 0, 0.5, 1, 2, 4, both times with balanced allocations wi = 1/5
and total sample size N = 100. Compare the approximate standard de-
viations of the MLEs of the parameters between the two designs, also
compare the determinants of the two calculated matrices.

(d) Using the second design, determine the required total sample size N

so that the standard deviation for estimation of θ2 is 0.35 (so that the
half-length of a 95 % confidence interval is about 0.7).

5.8 References

Multiparameter likelihood inference is described comprehensively in Pawitan
(2001) and Davison (2003). The proof of Result 5.1 is adapted from Patefield
(1977). An efficient algorithm for the computation of profile likelihood intervals
is described in Venzon and Moolgavkar (1988).
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Frequentist inference treats the data X as random. Point and interval estimates of
the parameter θ are viewed as functions of the data X, in order to obtain frequentist
properties of the estimates. The parameter θ is unknown but treated as fixed, not as
random.

Things are just the other way round in the Bayesian approach to statistical infer-
ence, named after Thomas Bayes (1702–1761). The unknown parameter θ is now
a random variable with appropriate prior distribution f (θ). The posterior distri-
bution f (θ |x), computed with Bayes’ theorem, summarises the information about
θ after observing the data X = x. Note that Bayesian inference conditions on the
observation X = x, in contrast to frequentist inference.
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For the time being, we assume in the following that θ is a scalar. For simplicity,
we will always speak of a (prior or posterior) density function, even when it is in
fact a probability mass function of a discrete parameter.

6.1 Bayes’ Theorem

We start this chapter with a brief review of Bayes’ theorem for simple events, as
outlined in Appendix A.1.2.

For any two events A and B with 0 < Pr(A) < 1 and Pr(B) > 0, we have

Pr(A |B) = Pr(B |A)Pr(A)

Pr(B)
. (6.1)

The use of Bayes’ theorem in diagnostic testing is an established part of clinical
reasoning, as illustrated in the following example.

Example 6.1 (Diagnostic test) Suppose a simple diagnostic test for a specific dis-
ease, which produces either a positive or a negative test result, is known to have the
90 % sensitivity. This means that if the person being tested has the disease (D+),
the probability of a positive test result (T +) is 90 %: Pr(T +|D+) = 0.9. Now as-
sume that the test also has the 90 % specificity and write D− if the person being
tested is free of the disease. Similarly, let T − denote a negative test result. The 90 %
specificity now translates to Pr(T −|D−) = 0.9.

We can use Bayes’ formula to compute the conditional probability of disease
given a positive test result:

Pr(D+|T +) = Pr(T +|D+)Pr(D+)

Pr(T +)
. (6.2)

All we need to do is to multiply the prevalence Pr(D+) with the sensitivity
Pr(T +|D+) and divide through Pr(T +). For the time being, let us assume that
the prevalence Pr(D+) is 1 % for the disease considered. The denominator Pr(T +)

in (6.2), the unconditional probability of a positive test result, is unknown but can
be computed via the law of total probability, cf. Eq. (A.3) in Appendix A.1.1:

Pr(T +) = Pr(T +|D+)Pr(D+) + Pr(T +|D−)Pr(D−). (6.3)

Thus, we can calculate Pr(T +) if we know the sensitivity Pr(T +|D+), the preva-
lence Pr(D+), and Pr(T +|D−) = 1 − Pr(T −|D−), i.e. 1 minus the sensitivity.
In the above example,

Pr(T +) = 0.9 · 0.01 + 0.1 · 0.99 = 0.108,

and hence

Pr(D+|T +) = 0.9 · 0.01

0.108
≈ 0.083,
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i.e. the positive predictive value is 8.3 %. So if the test was positive, then the disease
risk increases from 1.0 % to 8.3 %.

It is up to the reader to write down an equivalent formula to (6.2) to compute
the negative predictive value Pr(D−|T −), which turns out to be approximately
99.89 %. So if the test was negative, then the disease risk decreases from 1.0 % to
Pr(D+|T −) = 1 − Pr(D−|T −) = 1 − 0.9989 = 0.0011, i.e. 0.11 %. The disease
risk changes in the expected direction depending on the test result. �

Example 6.1 exemplifies the process of Bayesian updating: We update the prior
risk Pr(D+) in the light of a positive test result T + to obtain the posterior risk
Pr(D+|T +), the conditional probability of disease given a positive test result, also
known as the positive predictive value.

However, Eq. (6.2), with the denominator Pr(T +) replaced by (6.3), is somewhat
complex and not particularly intuitive. A simpler version of Bayes’ theorem can be
obtained if we switch from probabilities to odds:

Pr(D+|T +)

Pr(D−|T +)
= Pr(T +|D+)

Pr(T +|D−)
· Pr(D+)

Pr(D−)
. (6.4)

Here Pr(D+)/Pr(D−) are the prior odds, Pr(D+|T +)/Pr(D−|T +) are the pos-
terior odds, and Pr(T +|D+)/Pr(T +|D−) is the so-called likelihood ratio for a
positive test result. Bayesian updating is thus just one simple mathematical opera-
tion: Multiply the prior odds with the likelihood ratio to obtain the posterior odds.
This also explains the formula for the positive predictive value given in Exercise 5
of Chap. 5 on page 157.

Example 6.2 (Diagnostic test) In Example 6.1 the prior odds are 1/99 and the like-
lihood ratio (for a positive test result) is 0.9/0.1 = 9. The posterior odds (given a
positive test result) are therefore 9 · 1/99 = 1/11 ≈ 0.09, which of course corre-
sponds to the posterior probability of 8.3 % calculated above. So the prior odds of 1
to 99 change to posterior odds of 1 to 11 in the light of a positive test result. If the test
result was negative, then the prior odds need to be multiplied with the likelihood ra-
tio for a negative test result, which is Pr(T −|D+)/Pr(T −|D−) = 0.1/0.9 = 1/9.
This leads to posterior odds of 1/9 · 1/99 = 1/891. We leave it up to the reader
to check that this corresponds to a negative predictive value of approximately
99.89 %. �

Formula (6.2) is specified for a positive test result T + and a diseased person
D+ but is equally valid if we replace a positive test result T + by a negative one,
i.e. T −, or a diseased person D+ by a non-diseased one, i.e. D−, or both. Thus,
a more general description of Bayes’ theorem is given by

f (D = d |T = t) = f (T = t |D = d) · f (D = d)

f (T = t)
, (6.5)
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where D and T are binary random variables taking values d and t , respectively.
In the diagnostic setting outlined above, d and t can be either + (“positive”) or −
(“negative”). Note that we have switched notation from Pr(·) to f (·) to emphasise
that (6.5) relates to general probability mass functions of the random variables D

and T , and not only to probabilities of the events D+ and T +, say.
A more compact version of (6.5) is

f (d | t) = f (t |d) · f (d)

f (t)
, (6.6)

cf. Eq. (A.8). Note that this equation also holds if the random variables D or T have
more than two possible values. The formula is also correct if it involves continuous
random variables, in which case f (·) denotes a density function, see Eq. (A.10).
This simple formula forms the basis for the whole rest of this chapter.

6.2 Posterior Distribution

The posterior distribution is the most important quantity in Bayesian inference. It
contains all the information available about the unknown parameter θ after having
observed the data X = x. Certain characteristics of the posterior distribution can be
used to derive Bayesian point and interval estimates.

Definition 6.1 (Posterior distribution) Let X = x denote the observed realisation of
a (possibly multivariate) random variable X with density function f (x | θ). Specify-
ing a prior distribution with density function f (θ) allows us to compute the density
function f (θ |x) of the posterior distribution using Bayes’ theorem

f (θ |x) = f (x | θ)f (θ)∫
f (x | θ)f (θ) dθ

, (6.7)

cf. Eq. (A.10). For discrete parameters θ , the integral in the denominator has to be
replaced with a sum. �

The term f (x | θ) in (6.7) is simply the likelihood function L(θ) previously de-
noted by f (x; θ). Since θ is now random, we explicitly condition on a specific value
θ and write L(θ) = f (x | θ). The denominator in (6.7) can be written as∫

f (x | θ)f (θ) dθ =
∫

f (x, θ) dθ = f (x),

which emphasises that it does not depend on θ . Note that Eq. (6.7) is then equivalent
to Eq. (6.6). The quantity f (x) is known as the marginal likelihood and is important
for Bayesian model selection, cf. Sect. 7.2.

The density of the posterior distribution is therefore proportional to the product of
the likelihood and the density of the prior distribution, with proportionality constant
1/f (x). This is usually denoted as

f (θ |x) ∝ f (x | θ)f (θ) or f (θ |x) ∝ L(θ)f (θ), (6.8)
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where “∝” stands for “is proportional to” and implies that 1/
∫

L(θ)f (θ) dθ is the
normalising constant to ensure that

∫
f (θ |x)dθ = 1, such that f (θ |x) is a valid

density function.

Posterior distribution
The density function of the posterior distribution can be obtained through
multiplication of the likelihood function and the density function of the prior
distribution with subsequent normalisation.

Statistical inference about θ is based solely on the posterior distribution. Suitable
point estimates are location parameters, such as the mean, median or mode, of the
posterior distribution. We will formally define those now for a scalar parameter θ :

Definition 6.2 (Bayesian point estimates) The posterior mean E(θ |x) is the expec-
tation of the posterior distribution:

E(θ |x) =
∫

θf (θ |x)dθ.

The posterior mode Mod(θ |x) is the mode of the posterior distribution:

Mod(θ |x) = arg max
θ

f (θ |x).

The posterior median Med(θ |x) is the median of the posterior distribution, i.e. any
number a that satisfies

∫ a

−∞
f (θ |x)dθ = 0.5 and

∫ ∞

a

f (θ |x)dθ = 0.5. (6.9)

�

Implicitly we often assume that the posterior mean is finite, in which case it is
also unique. However, the posterior mode and the posterior median are not neces-
sarily unique. Indeed, a posterior distribution can have several modes and is then
called multimodal. As an example where the median is not unique, consider a con-
tinuous real-valued parameter, where the (posterior) density is zero in a central in-
terval. If 50 % of the probability mass are distributed to the left and right of this
center, then any value a in the central interval fulfills (6.9), so is a posterior me-
dian.

Bayesian interval estimates are also derived from the posterior distribution. To
distinguish them from confidence intervals, which have a different interpretation,
they are called credible intervals. Here is the definition for a scalar parameter θ :



172 6 Bayesian Inference

Definition 6.3 (Credible interval) For fixed γ ∈ (0,1), a γ ·100 % credible interval
is defined through two real numbers tl and tu, that fulfill

∫ tu

tl

f (θ |x)dθ = γ. (6.10)

The quantity γ is called the credible level of the credible interval [tl , tu]. �

The definition implies that the random variable θ |x is contained in a γ · 100 %
credible interval with probability γ . The easiest way to construct credible intervals
is to choose tl as the (1 − γ )/2 quantile and tu as the (1 + γ )/2 quantile of the
posterior distribution. To compute such equi-tailed credible intervals, one needs to
be able to compute quantiles of the posterior distribution, see Appendix A.5 for
frequently used R-functions.

This simple and intuitive interpretation of credible intervals is to be compared
with the rather complex Definition 3.6 of frequentist confidence intervals. Now we
can say that an unknown parameter lies in a certain credible interval with probabil-
ity γ . This interpretation is not correct for confidence intervals.

Example 6.3 (Inference for a proportion) Inference for a proportion is based on a
random sample of size n and determines the number X = x of individuals in this
sample with a certain event of interest. It is often reasonable to assume that X ∼
Bin(n,π), where π ∈ (0,1) is the unknown probability of the event. It is tempting
to select a beta distribution as a prior distribution for π because the support of a
beta distribution equals the parameter space (0,1). So let a priori π ∼ Be(α,β)

with suitably chosen parameters α,β > 0. Then

f (x |π) =
(

n

x

)
πx(1 − π)n−x, x = 0,1, . . . , n,

f (π) = 1

B(α,β)
πα−1(1 − π)β−1, 0 < π < 1,

so the posterior distribution is

f (π |x) ∝ f (x |π) · f (π)

∝ πx(1 − π)n−x · πα−1(1 − π)β−1

= πα+x−1(1 − π)β+n−x−1.

This can be easily identified as yet another beta distribution with parameters α + x

and β + n − x:

π |x ∼ Be(α + x,β + n − x). (6.11)

Compared with the prior distribution Be(α,β) of π , the number of successes x is
added to the first prior parameter, while the number of failures n − x is added to the
second prior parameter. The prior and posterior density functions are displayed in
Fig. 6.1 for a simple example.
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Fig. 6.1 Posterior Be(11,4)

density of π (solid line) for a
Be(3,2) prior distribution
(dashed line) and observation
x = 8 in a binomial
experiment with n = 10 trials.
The posterior mean is 0.733,
and the posterior mode is
0.769. An equi-tailed 95 %
credible interval
[0.492,0.916] is also shown

It is convenient to think of the Be(α,β) prior distribution as that which would
have arisen if we had started with an “improper” Be(0,0) prior and then observed
α successes in α + β trials. Thus, n0 = α + β can be viewed as a prior sample size.
This interpretation of the prior parameters is useful in order to assess the weight
attached to the prior distribution, as we will see in the following.

There are simple explicit formulas for the mean and the mode of the Be(α,β)

distribution, see Appendix A.5.2 for details. For example, the mean is simply
α/(α + β). Therefore, the mean of π |x ∼ Be(α + x,β + n − x) is

α + x

α + β + n
.

Re-writing this posterior mean as

α + x

α + β + n
= α + β

α + β + n
· α

α + β
+ n

α + β + n
· x

n

shows that it is a weighted average of the prior mean α/(α + β) and the MLE x̄ =
x/n with weights proportional to the prior sample size n0 = α + β and the data
sample size n, respectively. The relative prior sample size n0/(n0 +n) quantifies the
weight of the prior mean in the posterior mean. Note that the relative prior sample
size decreases with increasing data sample size n.

The case α = β = 1 is of particular interest, as it corresponds to a uniform prior
distribution on the interval (0,1), an apparently natural choice in the absence of
any prior information. This is in fact exactly the prior used by Bayes in his famous
essay (Bayes 1763). The prior sample size n0 is 2, one success and one failure. The
posterior mean is now (x + 1)/(n + 2), and the posterior mode equals the MLE x̄.

The posterior median and other posterior quantiles can be easily calculated nu-
merically using the quantile function of the beta distribution (qbeta in R). Some
examples are shown in Table 6.1 assuming a uniform prior distribution. The Bayes
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Table 6.1 Summary characteristics of the posterior distribution of π under a uniform prior distri-
bution in the binomial model. The 95 % credible interval based on the 2.5 % and 97.5 % quantiles
should be compared with the 95 % confidence intervals from Table 4.2

Observation Posterior characteristics

n x Mean Mode Median 2.5 % quantile 97.5 % quantile

10 0 0.08 0.00 0.06 0.00 0.28

10 1 0.17 0.10 0.15 0.02 0.41

10 5 0.50 0.50 0.50 0.23 0.77

100 0 0.01 0.00 0.01 0.00 0.04

100 10 0.11 0.10 0.11 0.06 0.17

100 50 0.50 0.50 0.50 0.40 0.60

estimates seem to come fairly close to the MLEs x/n for increasing sample size n.
This empirical result will be discussed in more detail in Sect. 6.6.2. �

Example 6.4 (Diagnostic test) We now revisit the diagnostic testing problem dis-
cussed in Example 6.1 under the more realistic scenario that the disease prevalence
π = Pr(D+) is not known but only estimated from a prevalence study. We will
describe how the Bayesian approach can be used to assess the uncertainty of the
positive and negative predictive values in this case.

For example, suppose that there was x = 1 diseased individual in a prevalence
study with n = 100 participants. The Be(0.5,5) prior distribution for π expresses
our initial prior beliefs that the prevalence is below 33 % with approximately 95 %
probability and below 5 % with approximately 50 % probability. The posterior dis-
tribution of π is then Be(α̃, β̃) with updated parameters α̃ = 0.5 + x = 1.5 and
β̃ = 5 + n − x = 104. The posterior mean, median and mode are 0.014, 0.011
and 0.005, respectively. The difference between the point estimates indicates that
the posterior distribution is quite skewed. The equi-tailed 95 % credible interval is
[0.001,0.044].

In the posterior odds (6.4), the prevalence π enters:

ω = Pr(D+|T +)

Pr(D−|T +)
= Pr(T +|D+)

1 − Pr(T −|D−)
· π

1 − π
.

We can easily transform the odds ω into the corresponding probability Pr(D+|T +)

as follows:

Pr(D+|T +) = ω

1 + ω
= (1 + ω−1)−1

. (6.12)

Suppose we want to replace the fixed prevalence π = 1/100 with the posterior dis-
tribution π ∼ Be(α̃, β̃) to appreciate the uncertainty involved in the estimation of π .
It is possible to analytically compute the implied distribution of θ = Pr(D+|T +).
In Exercise 2 it is shown that the density of θ is

f (θ) = c · θ−2 · fF
(
c(1/θ − 1);2β̃,2α̃

)
, (6.13)
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where

c = α̃ Pr(T +|D+)

β̃{1 − Pr(T −|D−)} ,

and fF(x;2β̃,2α̃) is the density of the F distribution with parameters 2β̃ and 2α̃, cf.
Appendix A.5.2. Note that c does not depend on θ . One can analogously proceed
for the negative predictive value Pr(D−|T −), see Exercise 2.

Note that (6.12) is a monotone function of π , so any quantile of the posterior
distribution of π can be transformed using this function to obtain the corresponding
quantiles of the implied distribution of the positive predictive value Pr(D+|T +).
We obtain the posterior median 0.09 and the 95 % equi-tailed credible interval
[0.01,0.29]. The posterior mean and the posterior mode are slightly more difficult to
compute using numerical integration and optimization, respectively. The posterior
mean turns out to be 0.109 while the posterior mode is 0.049. The positive predic-
tive value 8.3 % obtained in Example 6.1 with fixed prevalence π = 0.01 lies in
between.

For the negative predictive value, we obtain the posterior mean 0.9984 and the
posterior mode 0.9995. This is to be compared with the negative predictive value
99.89 % for fixed prevalence π , cf. again Example 6.1. We further obtain the poste-
rior median 0.9987 and the 95 % equi-tailed credible interval [0.9949,0.9999].

It is also simple to generate a random sample from Pr(D+|T +) and Pr(D−|T −)

using samples from the beta distribution of π . The following R-code illustrates this.

> ## prior parameters

> a <- 0.5

> b <- 5

> ## data

> x <- 1

> n <- 100

> ## posterior parameters

> apost <- a+x

> bpost <- b+n-x

> ## sample size

> nsample <- 10^5

> ## prevalence values sampled from Be(1.5, 99.5) distribution

> prev <- rbeta(nsample, apost, bpost)

> ## set values for sensitivity and specificity

> sens <- 0.9

> spec <- 0.9

> ## compute resulting positive and negative predictive value samples

> ppv <- sens * prev / (sens * prev + (1 - spec) * (1 - prev))

> npv <- spec * (1 - prev) / ((1 - sens) * prev + spec * (1 - prev))

Histograms of these samples are shown in Fig. 6.2. The histograms are in per-
fect agreement with the true density functions. Such samples form the basis of
Monte Carlo techniques used for Bayesian inference, as discussed in more detail
in Chap. 8. �
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Fig. 6.2 Densities and samples histograms of the positive and negative predictive value if the
prevalence follows the Be(1.5,104) distribution, and the sensitivity and specificity are both 90 %

In Example 6.3 the posterior mode of the binomial proportion equals the MLE
when a uniform prior is used. This result holds in general:

Result 6.1 Under a uniform prior, the posterior mode equals the MLE.

Proof This can easily be seen from the fact that if the prior on θ is uniform, the
density f (θ) does not depend on θ . From Eq. (6.8) it follows that

f (θ |x) ∝ L(θ).

Hence, the mode of the posterior distribution must equal the value that maximises
the likelihood function, which is the MLE. �

There are infinitely many γ · 100 % credible intervals for fixed γ , at least if the
parameter θ is continuous. In the previous example with γ = 0.95 we cut off 2.5 %
probability mass of each tail of the posterior distribution to obtain an equi-tailed
credible interval. Alternatively, we could, for example, cut off 5 % probability mass
on the left side of the posterior distribution and fix the right limit of the credible
interval at the upper bound of the parameter space (which was 1 in Example 6.4).
Under some regularity conditions, the following additional requirement ensures the
uniqueness of credible intervals.

Definition 6.4 (Highest posterior density interval) Let γ ∈ (0,1) be a fixed credible
level. A γ · 100 % credible interval I = [tl , tu] is called a highest posterior density
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Fig. 6.3 Comparison of an
equi-tailed and a 95 % HPD
credible interval for the
Be(11,4) posterior
distribution of a probability π

(cf. Fig. 6.1). Both grey areas
cover 2.5 % probability mass
and embed the equi-tailed
credible interval
[0.492,0.916]. The shaded
areas define the HPD interval
[0.517,0.932], which
contains all values of π with
f (π |x) > 0.614. Note that
the range of the HPD interval
is 0.416, slightly smaller than
the range of the equi-tailed
interval, which is 0.424

interval (HPD interval) if

f (θ |x) ≥ f (θ̃ |x)

for all θ ∈ I and all θ̃ /∈ I . �

An HPD interval contains all those parameter values that have higher posterior
density than all parameter values not contained in the interval. Under some addi-
tional regularity conditions, the posterior density ordinates at the limits of an HPD
interval are equal, i.e.

f (tl |x) = f (tu |x). (6.14)

There are counterexamples where this property of HPD intervals is not fulfilled. For
example, suppose that the posterior distribution is exponential. The lower limit tl of
an HPD interval at any level will then be zero because the density of the exponential
distribution is monotonically decreasing. However, as we will see in Sect. 6.6.2,
the posterior distribution of a continuous parameter is asymptotically normal, i.e.
unimodal, if the sample size increases. Equation (6.14) will therefore typically hold
for larger sample sizes.

Numerical computation of HPD intervals typically requires iterative algorithms.
Figure 6.3 compares an HPD interval with an equi-tailed credible interval.

For discrete parameter spaces Θ , the definition of credible intervals has to be
modified since it might not be possible to find any interval with exact credible level
γ as required by Eq. (6.10). A γ · 100 % credible interval I = [tl , tu] for θ is then
defined through ∑

θ∈I∩Θ

f (θ |x) ≥ γ. (6.15)
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Similarly, the posterior median Med(θ |x) will typically not be unique if the param-
eter is discrete. One can add an additional arbitrary requirement to make it unique,
for example define Med(θ |x) as the smallest possible value with at least 50 % pos-
terior probability mass below it.

Example 6.5 (Capture–recapture method) Consider now Bayesian inference in the
capture–recapture experiment from Sect. 1.1.3. The unknown parameter is the num-
ber N of individuals in a population, e.g. the number of fish in a lake. We first
consider a discrete uniform prior for N :

f (N) = 1

Nmax − M + 1
for N ∈ T ,

where T = {M,M + 1, . . . ,Nmax} denotes the support of the prior distribution with
some suitable upper limit Nmax. Before observing the number of marked fish X = x

in a sample of size n, we only know that at least M (marked) fish are in the lake, so
M serves as a lower limit for the support T . The posterior probability mass function
of the discrete random variable N is

f (N |x) = f (x |N)f (N)∑
N∈T f (x |N)f (N)

with the likelihood

f (x |N) =
(
M
x

)(
N−M
n−x

)
(
N
n

) for N ∈ {max(n,M +n−x),max(n,M +n−x)+1, . . .
}

already derived in Example 2.2. The support P of the posterior distribution is the in-
tersection of the support T of the prior distribution and the parameter values allowed
in the likelihood. As max(n,M + n − x) ≥ M + n − x ≥ M , it is

P = {max(n,M + n − x), . . . ,Nmax
}
.

Since the prior probability function f (N) does not depend on N , the posterior prob-
ability function is proportional to the likelihood:

f (N |x) = f (x |N)∑
N∈P f (x |N)

.

Figure 6.4a gives the posterior distribution for M = 26, n = 63 and x = 5. Three
different point estimates and a 95 % HPD interval are shown. Note that the posterior
mode equals the MLE N̂ML = 327 (cf. Example 2.2).

To avoid the specification of the fairly arbitrary upper limit Nmax, a useful alter-
native to the uniform prior is a geometric distribution N ∼ Geom(π), truncated to
N ≥ M , i.e.

f (N) ∝ π(1 − π)N−1 for N = M,M + 1, . . . ,
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Fig. 6.4 Capture–recapture experiment: M = 26 fish have been marked, and x = 5 of them have
been caught in a sample of n = 63. The chosen prior probability function is shown in the upper
panels. The posterior probability functions can be seen in the lower panels and are to be compared
with the likelihood function in Fig. 2.2

cf. Fig. 6.4b. Under this prior, the point estimates and the limits of the 95 % credible
interval are slightly shifted to the left. The posterior distribution is slightly more
concentrated with a shorter range of the 95 % HPD interval. �

As we have seen in the previous example, different prior distributions can be
chosen for a given data model. The choice of the prior distribution is the topic of the
next section.

6.3 Choice of the Prior Distribution

Bayesian inference allows the probabilistic specification of prior beliefs through a
prior distribution. It is often useful and justified to restrict the range of possible prior
distributions to a specific family with one or two parameters, say. The choice of this
family can be based on the type of likelihood function encountered. We will now
discuss such a choice.

6.3.1 Conjugate Prior Distributions

A pragmatic approach to choosing a prior distribution is to select a member of a
specific family of distributions such that the posterior distribution belongs to the
same family. This is called a conjugate prior distribution.
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Definition 6.5 (Conjugate prior distribution) Let L(θ) = f (x | θ) denote a likeli-
hood function based on the observation X = x. A class G of distributions is called
conjugate with respect to L(θ) if the posterior distribution f (θ |x) is in G for all x

whenever the prior distribution f (θ) is in G. �

The family G = {all distributions} is trivially conjugate with respect to any like-
lihood function. In practice one tries to find smaller sets G that are specific to the
likelihood Lx(θ).

Example 6.6 (Binomial model) Let X |π ∼ Bin(n,π). The family of beta distri-
butions, π ∼ Be(α,β), is conjugate with respect to L(π) since the posterior
distribution is again a beta distribution: π |x ∼ Be(α + x,β + n − x), cf. Exam-
ple 6.3. �

Example 6.7 (Hardy–Weinberg equilibrium) Under the assumption of Hardy–
Weinberg equilibrium, the likelihood has the form

L(υ) = υ2x1+x2(1 − υ)x2+2x3

with allele frequency υ ∈ (0,1) (cf. Example 2.7). It is easy to see that a beta prior
distribution Be(α,β) for υ results in a beta posterior distribution,

υ |x ∼ Be(α + 2x1 + x2, β + x2 + 2x3),

so the beta distribution is a conjugate class for this likelihood. �

Before we study further conjugate prior distributions, we note that it is sufficient
to study conjugacy for one member Xi of a random sample X1:n. Indeed, if the prior
is conjugate, the posterior after observing the first observation, say, is by definition
of the same type and serves as the new prior distribution for the next observation.
The new posterior distribution, now incorporating also the second observation, is
again within the conjugate class, and so on. Only the parameters of the distribution
will change in such a sequential processing of the data.

Table 6.2 gives further examples of conjugate prior distributions with the corre-
sponding likelihood function. We now look at one entry of this table in more detail.

Example 6.8 (Normal model) Let X denote a sample from a normal N(μ,σ 2) dis-
tribution with unknown mean μ and known variance σ 2. The corresponding likeli-
hood function is

L(μ) ∝ exp

{
− 1

2σ 2
(x − μ)2

}
.

Combined with a normal prior distribution with mean ν and variance τ 2 for the
unknown mean μ, i.e.

f (μ) ∝ exp

{
− 1

2τ 2
(μ − ν)2

}
,
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Table 6.2 Summary of conjugate prior distributions for different likelihood functions

Likelihood Conjugate prior distribution Posterior distribution

X |π ∼ Bin(n,π) π ∼ Be(α,β) π |x ∼ Be(α + x,β + n − x)

X |π ∼ Geom(π) π ∼ Be(α,β) π |x ∼ Be(α + 1, β + x − 1)

X |λ ∼ Po(e · λ) λ ∼ G(α,β) λ |x ∼ G(α + x,β + e)

X |λ ∼ Exp(λ) λ ∼ G(α,β) λ |x ∼ G(α + 1, β + x)

X |μ ∼ N(μ,σ 2 known) μ ∼ N(ν, τ 2) see Eq. (6.16)

X |σ 2 ∼ N(μ known, σ 2) σ 2 ∼ IG(α,β) σ 2 |x ∼ IG(α + 1
2 , β + 1

2 (x − μ)2)

the posterior density of μ is given by

f (μ |x) ∝ L(μ) · f (μ)

∝ exp

[
−1

2

{
1

σ 2
(x − μ)2 + 1

τ 2
(μ − ν)2

}]

∝ exp

[
−1

2

(
1

σ 2
+ 1

τ 2

){
μ −

(
1

σ 2
+ 1

τ 2

)−1

·
(

x

σ 2
+ ν

τ 2

)}2]
,

see (B.5) for justification of the last rearrangement. So the posterior distribution is
also normal:

μ |x ∼ N

((
1

σ 2
+ 1

τ 2

)−1

·
(

x

σ 2
+ ν

τ 2

)
,

(
1

σ 2
+ 1

τ 2

)−1)
. (6.16)

As in the binomial model, the posterior mean is a weighted average of the prior
mean ν and the data x with weights proportional to 1/τ 2 and 1/σ 2, respectively.

Equation (6.16) simplifies if one uses precisions, i.e. inverse variances, rather
than the variances themselves. Indeed, let κ = 1/σ 2 and δ = 1/τ 2; then

μ |x ∼ N

(
κx + δν

κ + δ
, (κ + δ)−1

)
.

Therefore, a Bayesian analysis of normal observations often uses precision parame-
ters rather than variance parameters.

The above result can be easily extended to a random sample X1:n from an
N(μ,σ 2) distribution with known variance σ 2. For simplicity, we work with preci-
sions rather than variances and use the fact that x̄ is sufficient for μ, so the likelihood
function of μ is

L(μ) ∝ exp

{
− n

2σ 2
(μ − x̄)2

}
,
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Fig. 6.5 Posterior density for
mean transformation factor μ

(solid line) with posterior
expectation
E(μ |x1:n) = 2445.8 (vertical
dashed line). The
observations x1:n are marked
by small vertical lines at the
x-axis. The density of the
prior μ ∼ N(2000,2002) is
also shown (dashed line)

cf. Result 2.4. Combined with the prior μ ∼ N(ν, τ 2), we easily obtain

μ |x ∼ N

(
nκx̄ + δν

nκ + δ
, (nκ + δ)−1

)
.

The corresponding formula with variances rather than precisions reads

μ |x ∼ N

((
n

σ 2
+ 1

τ 2

)−1

·
(

nx̄

σ 2
+ ν

τ 2

)
,

(
n

σ 2
+ 1

τ 2

)−1)
.

Note that the posterior mean is a weighted average of the prior mean ν and the MLE
x̄, with weights proportional to δ = 1/τ 2 and nκ = n/σ 2, respectively. A larger
sample size n thus leads to a higher weight of the MLE and to a decreasing poste-
rior variance (nκ + δ)−1. This behaviour of the posterior distribution is intuitively
reasonable. Furthermore, we can interpret n0 = δ/κ as a prior sample size to obtain
the relative sample size n0/(n0 + n), cf. Example 6.3. �

Example 6.9 (Blood alcohol concentration) We illustrate Example 6.8 by applying
it to the alcohol concentration data from Sect. 1.1.7. If we consider the estimated
standard deviation σ = 237.8 of the transformation factors as known and specify a
normal prior with mean 2000 and standard deviation 200 for the mean transforma-
tion factor μ, then we obtain the prior and posterior densities in Fig. 6.5. �

Example 6.10 (Comparison of proportions) We know from Example 5.8 that the
MLE ψ̂ML = log{(a · d)/(b · c)} of the log odds ratio is approximately normal with
mean equal to the true log odds ratio ψ and variance σ 2 = a−1 + b−1 + c−1 + d−1.

For illustration, consider the data from the Tervila study from Table 1.1, sum-
marised in Table 3.1. Here we obtain ψ̂ML = 1.09 and σ 2 = 0.69. The MLE of the
odds ratio is θ̂ML = exp(ψ̂ML) = 2.97 with 95 % Wald confidence interval [0.59,
15.07].
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A Bayesian analysis selects a suitable prior that represents realistic prior beliefs
about the quantity of interest. A semi-Bayes analysis now uses the MLE ψ̂ML as
the data, instead of the underlying two binomial samples. This has the advantage
that the new likelihood depends directly on the parameter of interest ψ , with no
additional nuisance parameter. A suitable prior distribution is now placed directly
on ψ , rather than working with a multivariate prior for the success probabilities π1

and π2 of the two underlying binomial experiments. The MLE ψ̂ML is thus regarded
as the observed data, with likelihood depending on ψ , assuming that σ 2 is fixed at
its estimate.

For example, we might use a normal prior for the log odds ratio ψ with mean
zero and variance τ 2 = 1. Note that the prior mean (or median) of zero for the log
odds ratio corresponds to a prior median of one for the odds ratio, expressing prior
indifference regarding positive or negative treatment effects. This particular prior
implies that the odds ratio is a priori between 1/7 and 7 with approximately 95 %
probability. These numbers arise from the fact that exp(z0.975) ≈ 7 where z0.975 ≈
1.96 is the 97.5 % quantile of the standard normal distribution, the selected prior
for the log odds ratio. Using Eq. (6.16), the posterior variance of the log odds ratio
is (1/σ 2 + 1/τ 2)−1 = 0.41 and the posterior mean is (1/σ 2 + 1/τ 2)−1 · ψ̂ML/σ

2 =
0.65. Due to the normality of the posterior distribution, the posterior median and
mode are identical to the posterior mean.

The posterior median estimate of the odds ratio is therefore Med(θ | ψ̂ML) =
exp(0.65) ≈ 1.91 with equi-tailed 95 % credible interval [0.55, 6.66]. Note that
both the posterior median and the upper limit of the credible interval are consid-
erably smaller than the MLE and the upper limit of the confidence interval, re-
spectively, whereas the lower limit has barely changed. It is also straightforward to
calculate the posterior mean and the posterior mode of the odds ratio θ = exp(ψ)

based on properties of the log-normal distribution, cf. Appendix A.5.2. One obtains
E(θ | ψ̂ML) = 2.34 and Mod(θ | ψ̂ML) = 1.27. �

6.3.2 Improper Prior Distributions

The prior distribution has an (intended) influence on the posterior distribution. If
one wants to minimise the influence of the prior distribution, then it is common to
specify a “vague” prior, for example one with very large variance. In the limit this
may lead to an improper prior distribution, with a “density” function that does not
integrate to unity. Due to the missing normalizing constant, such density functions
are usually specified using the proportionality sign “∝”. If one uses improper priors,
then it is necessary to check that at least the posterior distribution is proper. If this
is the case, then improper priors can be used in a Bayesian analysis.

Example 6.11 (Comparison of proportions) It is easy to see that the likelihood anal-
ysis at the beginning of Example 6.10 has a Bayesian interpretation if one uses a nor-
mal prior for the log odds ratio ψ with zero mean and very large (infinite) variance.
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Indeed, if one lets the prior variance τ 2 in (6.16) go to infinity, then the posterior
distribution is simply

ψ | ψ̂ML ∼ N
(
ψ̂ML, σ

2).
Note that the limit τ 2 → ∞ induces an improper locally uniform density function
f (ψ) ∝ 1 on the real line. Nevertheless, the posterior distribution is proper. Now all
three Bayesian point estimates of the log odds ratio ψ are equal to the MLE ψ̂ML.
Furthermore, the equi-tailed credible intervals are numerically identical to Wald
confidence intervals for any choice of the credible/confidence level γ .

However, from a medical perspective it can be argued that this is not a realistic
prior since it places the same prior weight on odds ratios between 0.5 and 2 as on
odds ratios between 11 000 and 44 000, say. The reason is that these two intervals
have the same width log(4) on the log scale and the prior density for the log odds
ratio is constant across the whole real line. Such huge effect sizes are unrealistic and
rarely encountered in clinical or epidemiological research. �

We now add a formal definition of an improper prior distribution.

Definition 6.6 (Improper prior distribution) A prior distribution with density func-
tion f (θ) ≥ 0 is called improper if

∫
Θ

f (θ) dθ = ∞ or
∑
θ∈Θ

f (θ) = ∞

for continuous or discrete parameters θ , respectively. �

Example 6.12 (Haldane’s prior) The conjugate prior π ∼ Be(α,β) in the binomial
model X ∼ Bin(n,π) has the density

f (π) ∝ πα−1(1 − π)β−1

and is proper for α > 0 and β > 0. In the limiting case α = β = 0, one obtains an
improper prior distribution with density

f (π) ∝ π−1(1 − π)−1,

known as Haldane’s prior. We will denote this as a Be(0,0) distribution, being
aware that it is not really a member of the family of beta distributions. Due to Ex-
ample 6.3, the posterior distribution is the Be(x,n−x) distribution, which is proper
if x > 0 and n − x > 0. We note that Haldane’s prior is equivalent to an improper
locally uniform prior f (φ) ∝ 1 on the whole real line for φ = logit(π), which can
be shown using the change-of-variables formula (A.11) (see Example 6.13). �
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6.3.3 Jeffreys’ Prior Distributions

In some situations it may be useful to choose a prior distribution that does not convey
much information about the parameter because of weak or missing prior knowledge.
A first naive choice is a (locally) uniform prior fθ (θ) ∝ 1, in which case the poste-
rior is proportional to the likelihood function. Note that a locally uniform prior will
be improper if the parameter space is not bounded.

However, there are problems associated with this approach. Suppose that φ =
h(θ) is a one-to-one differentiable transformation of θ , that has a (locally) uniform
prior with density fθ (θ) ∝ 1. Using the change-of-variables formula (A.11), we
obtain the corresponding prior for φ,

fφ(φ) = fθ

{
h−1(φ)

} ·
∣∣∣∣dh−1(φ)

dφ

∣∣∣∣
∝
∣∣∣∣dh−1(φ)

dφ

∣∣∣∣.
Note that this term is not necessarily constant. Indeed, fφ(φ) will be independent
of φ only if h is linear. If h is nonlinear, the prior density fφ(φ) will depend on φ

and will thus not be (locally) uniform. However, if we had chosen a parametrisation
with φ from the start, we would have chosen a (locally) uniform prior fφ(φ) ∝ 1.
This lack of invariance under reparameterisation is an unappealing feature of the
(locally) uniform prior distribution. Note that we implicitly assume that we can
apply the change-of-variables formula to improper densities in the same way as to
proper densities.

Example 6.13 (Binomial model) Let X ∼ Bin(n,π) with a uniform prior for π ,
i.e. fπ(π) = 1 for π ∈ (0,1). Consider now the logit transformation φ = h(π) =
log{π/(1 − π)} ∈ R. Applying the change-of-variables formula, we obtain

fφ(φ) = exp(φ)

{1 + exp(φ)}2
,

i.e. the log odds φ follow a priori a standard logistic distribution (cf. Ap-
pendix A.5.2).

On the other hand, if we select an improper locally uniform prior for φ, i.e.
fφ(φ) ∝ 1, then

fπ(π) ∝ π−1(1 − π)−1,

again using the change-of-variables formula with π = h−1(φ) = exp(φ)/{1 +
exp(φ)}. This density can be identified as Haldane’s prior (see Example 6.12), which
is of course also improper. �

It turns out that a particular choice of prior distribution is invariant under
reparametrisation. This is Jeffreys’ prior (after Sir Harold Jeffreys, 1891–1989):
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Definition 6.7 (Jeffreys’ prior) Let X be a random variable with likelihood function
f (x | θ) where θ is an unknown scalar parameter. Jeffreys’ prior is defined as

f (θ) ∝√J (θ), (6.17)

where J (θ) is the expected Fisher information of θ . Equation (6.17) is also known
as Jeffreys’ rule. �

Jeffreys’ prior is proportional to the square root of the expected Fisher informa-
tion, which may give an improper prior distribution. At first sight, it is surprising
that this choice is supposed to be invariant under reparametrisation, but we will see
in the following result that this is indeed the case.

Result 6.2 (Invariance of Jeffreys’ prior) Jeffreys’ prior is invariant under a one-
to-one reparametrisation of θ : If

fθ (θ) ∝√Jθ (θ),

then the density function of φ = h(θ) is

fφ(φ) ∝√Jφ(φ),

where Jφ(φ) denotes the expected Fisher information of φ.

Proof From fθ (θ) ∝ √
Jθ (θ) it follows by the change-of-variables formula (A.11)

and Result 4.3 that

fφ(φ) = fθ (θ) ·
∣∣∣∣dh−1(φ)

dφ

∣∣∣∣

∝√Jθ (θ) ·
∣∣∣∣dh−1(φ)

dφ

∣∣∣∣=
√

Jθ (θ) ·
{

dh−1(φ)

dφ

}2

=√Jφ(φ),

which is the claim of Result 6.2. �

If we had chosen the parametrisation φ = h(θ) from the start, application of
Jeffreys’ rule would have given the same prior distribution: fφ(φ) ∝√Jφ(φ). Fig-
ure 6.6 illustrates this invariance property of Jeffreys’ prior: There are two ways to
move from θ to fφ(φ), but both give the same result fφ(φ) ∝√Jφ(φ).

Invariance under one-to-one transformations seems to be a minimal requirement
for a default prior, but does it really represent a sufficiently “non-informative” prior?
We will now outline such a justification of Jeffreys’ prior based on a different argu-
ment.

In Sect. 4.1 we have discussed the expected Fisher information Jθ (θ) as a (fre-
quentist) measure of the (average) information in the data with respect to the un-
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Fig. 6.6 Diagram illustrating
the invariance of Jeffreys’
prior

known parameter θ . If the Fisher information does not depend on the true parameter
θ , then the (average) information provided by the data is the same whatever the par-
ticular value of θ is. In this case it seems reasonable to select a (possibly improper)
locally uniform distribution for θ as a default prior.

However, if Jθ (θ) depends on θ , then it seems natural to first apply the variance-
stabilising transformation φ = h(θ) (cf. Sect. 4.3) to remove this dependence. Then
Jφ(φ) does not depend on φ, and we therefore select a locally uniform prior for φ,
i.e. fφ(φ) ∝ 1. Through a change of variables and with Eq. (4.14) it follows that

fθ (θ) ∝ fφ(φ) · ∣∣√Jθ (θ)
∣∣∝√Jθ (θ),

i.e. the argument leads directly to Jeffreys’ prior. To put it the other way round, the
derivative of a variance-stabilising transformation h(θ) equals Jeffreys’ prior for the
original parameter θ . For example, the variance-stabilising transformation for the
mean λ of Poisson distributed data is h(λ) = √

λ (cf. Example 4.14), so Jeffreys’
prior is given by

fλ(λ) ∝ d
√

λ

dλ
= 1

2
λ−1/2 ∝ λ−1/2.

This somewhat surprising result gives an interesting connection between likelihood
and Bayesian inference.

Jeffreys’ rule gives commonly accepted default priors for scalar parameters.
Quite often one obtains improper priors, which can be identified as limiting cases of
proper conjugate priors. Here are two examples.

Example 6.14 (Normal model) Let X1:n denote a random sample from a N(μ,σ 2)

distribution with unknown mean μ and known variance σ 2. From Example 4.3 we
know that J (μ) = n/σ 2 does not depend on μ, so Jeffreys’ prior for μ is locally uni-
form on the whole real line R, i.e. f (μ) ∝ 1, and is an improper prior distribution.
This is the limiting prior distribution if we assume the conjugate prior μ ∼ N(ν, τ 2)

and let τ 2 → ∞. The resulting posterior distribution is (cf. Example 6.11)

μ |x1:n ∼ N

(
x̄,

σ 2

n

)
.

The posterior mean, median and mode are therefore all equal to the MLE x̄.
Suppose now that the mean μ is known but the variance σ 2 is unknown. Then

J (σ 2) = n/(2σ 4), compare again Example 4.3, so Jeffreys’ prior is

f
(
σ 2)∝ 1/σ 2,
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an improper distribution. This is the limiting prior distribution if we initially assume
that the conjugate prior σ 2 ∼ IG(α,β) and let α,β → 0. Smaller values of σ 2 have
higher prior weight than larger values. Combined with the likelihood

L
(
σ 2)= (σ 2)−n/2 exp

{
− 1

2σ 2

n∑
i=1

(xi − μ)2

}
,

we obtain the posterior density

f
(
σ 2 |x1:n

)∝ (σ 2)−(1+n/2)
exp

{
− 1

2σ 2

n∑
i=1

(xi − μ)2

}
,

which can be identified as an inverse gamma distribution (cf. Appendix A.5.2) with
parameters n/2 and

∑n
i=1(xi − μ)2/2:

σ 2 |x1:n ∼ IG

(
n

2
,

∑n
i=1(xi − μ)2

2

)
.

Note that this is a regular distribution if n ≥ 1 (and, strictly speaking, if xi �= μ for
at least one observation, but this is the case with probability 1 already for n = 1).
The mean of the inverse gamma distribution IG(α,β) is β/(α − 1) if α > 1, and the
mode is β/(α + 1). Therefore, for n > 2, the posterior mean is

E
(
σ 2 |x1:n

)=
∑n

i=1(xi − μ)2

n − 2
,

and the posterior mode is

Mod
(
σ 2 |x1:n

)=
∑n

i=1(xi − μ)2

n + 2
.

Note that the MLE σ̂ 2
ML =∑n

i=1(xi − μ)2/n (compare Example 2.9) lies between
these two estimates and will have a very similar numerical value, provided that the
sample size n is not very small. �

Table 6.3 lists Jeffreys’ prior distributions for further likelihood functions. Only
in the binomial case Jeffreys’ prior, the Be(0.5,0.5) distribution, turns out to be
proper. All other priors in Table 6.3 are improper distributions. They can be viewed
as limiting cases of the corresponding conjugate proper prior distributions, and this
is how they are listed. Bayesian point estimates using Jeffreys’ prior are often very
close or even identical to the MLE. Table 6.4 illustrates this for the posterior mean.

It is also interesting to compare Bayesian credible intervals using Jeffreys’ prior
with the corresponding frequentist confidence intervals. Quite surprisingly, it turns
out that the frequentist properties of such Bayesian procedures may be as good
or even better than those of their truly frequentist counterparts, as the following
example illustrates.
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Table 6.3 Jeffreys’ prior for several likelihood functions. All the prior distributions are improper,
except for the binomial likelihood

Likelihood Jeffreys’ prior Density of Jeffreys’ prior

Bin(n,π) π ∼ Be( 1
2 , 1

2 ) f (π) ∝ {π(1 − π)}− 1
2

Geom(π) π ∼ Be(0, 1
2 ) f (π) ∝ π−1(1 − π)− 1

2

Po(λ) λ ∼ G( 1
2 ,0) f (λ) ∝ λ− 1

2

Exp(λ) λ ∼ G(0,0) f (λ) ∝ λ−1

N(μ,σ 2 known) μ ∼ N(0,∞) f (μ) ∝ 1

N(μ known, σ 2) σ 2 ∼ IG(0,0) f (σ 2) ∝ σ−2

Table 6.4 Comparison of MLEs and the posterior mean using Jeffreys’ prior

Likelihood θ̂ML Posterior mean using Jeffreys’ prior

Bin(n,π) x̄ n
n+1 (x̄ + 1

2n
)

Geom(π) 1/x̄ 1/(x̄ + 1
2n

)

Po(λ) x̄ x̄ + 1
2n

Exp(λ) 1/x̄ 1/x̄

N(μ,σ 2 known) x̄ x̄

N(μ known, σ 2) 1
n

∑n
i=1(xi − μ)2 1

n−2

∑n
i=1(xi − μ)2

Table 6.5 A comparison of different credible and confidence intervals for X ∼ Bin(n,π) and
π ∼ Be(1/2,1/2). If n = 100 and x = 50, the four approaches yield nearly identical intervals

Observation Interval at 95 % level of type

n x Equi-tailed HPD Wald Likelihood

10 0 0.000 to 0.217 0.000 to 0.171 0.000 to 0.000 0.000 to 0.175

10 1 0.011 to 0.381 0.000 to 0.331 −0.086 to 0.286 0.006 to 0.372

10 5 0.224 to 0.776 0.224 to 0.776 0.190 to 0.810 0.218 to 0.782

100 0 0.000 to 0.025 0.000 to 0.019 0.000 to 0.000 0.000 to 0.019

100 10 0.053 to 0.170 0.048 to 0.164 0.041 to 0.159 0.051 to 0.169

100 50 0.403 to 0.597 0.403 to 0.597 0.402 to 0.598 0.403 to 0.597

Example 6.15 (Inference for a proportion) For a binomial observation X ∼
Bin(n,π), Table 6.5 compares HPD and equi-tailed credible intervals using Jef-
freys’ prior π ∼ Be(1/2,1/2) with the corresponding Wald and likelihood con-
fidence intervals. The different techniques lead to nearly identical intervals if the
sample size n is relatively large. Note that the HPD interval tends to be the shortest,
compare Table 6.6. But how good are the frequentist properties of Bayesian credi-
ble intervals based on Jeffreys’ prior? To address this question, we have computed
the actual coverage probabilities for n = 50, just as we did in Example 4.22 for
confidence intervals. Figure 6.7 displays the actual coverage of the HPD and the
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Table 6.6 Comparison of
the widths of the different
confidence and credible
intervals from Table 6.5

Observation Width of 95 % interval of type

n x Equi-tailed HPD Wald Likelihood

10 0 0.217 0.171 0.000 0.175

10 1 0.370 0.330 0.372 0.366

10 5 0.553 0.553 0.620 0.565

100 0 0.025 0.019 0.000 0.019

100 10 0.118 0.116 0.118 0.117

100 50 0.194 0.194 0.196 0.194

Fig. 6.7 Actual (grey) and locally smoothed (black) coverage probabilities of 95 % credible inter-
vals based on Jeffreys’ prior for n = 50. For X = 0 or X = n, the limits of the HPD interval do not
have equal posterior density ordinates. In these two cases the HPD interval is [0, b0.95(0.5,50.5)]
or [b0.05(50.5,0.5),1], respectively, where bα(α,β) denotes the α quantile of the Be(α,β) distri-
bution

equi-tailed credible interval. They behave similarly to the likelihood confidence in-
terval in Fig. 6.9e with slightly lower coverage of the HPD interval as a result of the
smaller interval width. It is to be noted, though, that the coverage is actually com-
parable if not even better than that from the likelihood-based confidence intervals
discussed in Example 4.22. �

We know from Result 6.2 that one advantage of Jeffreys’ prior is that it is in-
variant under one-to-one transformations of the original parameter θ . For example,
one might be interested in the standard deviation σ or the precision κ = 1/σ 2 of the
normal distribution rather than the variance σ 2.
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Example 6.16 (Normal model) Jeffreys’ prior for the variance σ 2 of a normal dis-
tribution N(μ,σ 2) is

f
(
σ 2)∝ 1/σ 2

when μ is fixed. A change of variables gives us Jeffreys’ prior for the standard
deviation σ = h(σ 2) = √

σ 2:

f (σ ) ∝
∣∣∣∣dh−1(σ )

dσ

∣∣∣∣ · 1/σ 2 = 2σ · 1/σ 2 ∝ 1/σ.

For the precision κ = h(σ 2) = 1/σ 2, one obtains

f (κ) ∝
∣∣∣∣dh−1(κ)

dκ

∣∣∣∣ · 1/σ 2 = κ−2 · κ = 1/κ.

We note that Jeffreys’ priors for the variance σ 2, the standard deviation σ and the
precision κ of a normal distribution are all proportional to the respective recipro-
cal parameter. Another change of variables shows that the corresponding priors for
log(σ 2), log(σ ) and log(κ) are hence all locally uniform on the real line R. �

The relationship between the variance-stabilising transformation and Jeffreys’
prior can also be helpful to derive Jeffreys’ prior in the presence of nuisance pa-
rameters. To do this, we adopt a semi-Bayes approach and directly start with the
variance-stabilising transformation of the parameter of interest. The following ex-
ample illustrates this for the correlation parameter of the bivariate normal distribu-
tion.

Example 6.17 (Jeffreys’ prior for a correlation parameter) In Example 4.16 we
have shown that a variance-stabilising transformation of the correlation parameter
ρ ∈ (−1,1) of a normal distribution is

h(ρ) = tanh−1(ρ) = 0.5 log

(
1 + ρ

1 − ρ

)
.

The derivative is

dh(ρ)

dρ
= 1

1 − ρ2
,

so Jeffreys’ prior for ρ is

f (ρ) ∝ 1

1 − ρ2
,

again an improper distribution. This prior distribution gives more weight to ex-
treme values than to values close to zero. For example, f (±0.9)/f (0) = 5.3,
f (±0.99)/f (0) = 50.3 and f (±0.999)/f (0) is even 500.3, whereas this ratio
would always equal the unity for the uniform prior distribution. �
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6.4 Properties of Bayesian Point and Interval Estimates

To estimate an unknown parameter θ , there are at least three possible Bayesian
point estimates available, the posterior mean, mode and median. Which one should
we choose in a specific application? To answer this question, we take a decision-
theoretic view and first introduce the notion of a loss function.

6.4.1 Loss Function and Bayes Estimates

To simplify the notation, we denote in this section a point estimate of θ with a rather
than with θ̂ .

Definition 6.8 (Loss function) A loss function l(a, θ) ∈ R quantifies the loss en-
countered when estimating the true parameter θ by a. �

If a = θ , the associated loss is typically set to zero: l(θ, θ) = 0. A commonly
used loss function is the quadratic loss function l(a, θ) = (a − θ)2. Alternatively,
one might use the linear loss function l(a, θ) = |a − θ | or the zero–one loss function

lε(a, θ) =
{

0, |a − θ | ≤ ε,

1, |a − θ | > ε,

where we have to suitably choose the additional parameter ε > 0.
We now choose the point estimate a, such that it minimises the a posteriori ex-

pected loss with respect to f (θ |x). Such a point estimate is called a Bayes estimate.

Definition 6.9 (Bayes estimate) A Bayes estimate of θ with respect to a loss func-
tion l(a, θ) minimises the expected loss with respect to the posterior distribution
f (θ |x), i.e. it minimises

E
{
l(a, θ) |x}=

∫
Θ

l(a, θ)f (θ |x)dθ. �

It turns out that the commonly used Bayesian point estimates can be viewed as
Bayes estimates with respect to one of the loss functions described above.

Result 6.3 The posterior mean is the Bayes estimate with respect to quadratic loss.
The posterior median is the Bayes estimate with respect to linear loss. The posterior
mode is the Bayes estimate with respect to zero–one loss, as ε → 0.

Proof We first derive the posterior mean E(θ |x) as the Bayes estimate with respect
to quadratic loss. The expected quadratic loss is

E
{
l(a, θ) |x}=

∫
l(a, θ)f (θ |x)dθ =

∫
(a − θ)2 f (θ |x)dθ.
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Setting the derivative with respect to a to zero leads to

2 ·
∫

(a − θ)f (θ |x)dθ = 0 ⇐⇒ a −
∫

θf (θ |x)dθ = 0.

It immediately follows that a = ∫ θf (θ |x)dθ = E(θ |x).
Consider now the expected linear loss

E
{
l(a, θ) |x}=

∫
l(a, θ)f (θ |x)dθ =

∫
|a − θ |f (θ |x)dθ

=
∫

θ≤a

(a − θ)f (θ |x)dθ +
∫

θ>a

(θ − a)f (θ |x)dθ.

The derivative with respect to a can be calculated using Leibniz’s integral rule (cf.
Appendix B.2.4):

∂

∂a
E
{
l(a, θ) |x}

= ∂

∂a

∫ a

−∞
(a − θ)f (θ |x)dθ + ∂

∂a

∫ ∞

a

(θ − a)f (θ |x)dθ

=
∫ a

−∞
f (θ |x)dθ − (a − (−∞)

)
f (−∞|x) · 0 + (a − a)f (a |x) · 1

−
∫ ∞

a

f (θ |x)dθ − (a − a)f (a |x) · 1 + (∞ − a)f (∞|x) · 0

=
∫ a

−∞
f (θ |x)dθ −

∫ ∞

a

f (θ |x)dθ.

Setting this equal to zero yields the posterior median a = Med(θ |x) as the solution
for the estimate.

Finally, the expected zero–one loss is

E
{
l(a, θ) |x}=

∫
lε(a, θ)f (θ |x)dθ

=
∫ a−ε

−∞
f (θ |x)dθ +

∫ +∞

a+ε

f (θ |x)dθ

= 1 −
∫ a+ε

a−ε

f (θ |x)dθ.

This will be minimised if the integral
∫ a+ε

a−ε
f (θ |x)dθ is maximised. For small ε

the integral is approximately 2εf (a |x), which is maximised through the posterior
mode a = Mod(θ |x). �
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The question arises if credible intervals can also be optimal with respect to certain
loss functions. For simplicity, we assume again that the unknown parameter θ ∈ Θ is
a scalar with associated posterior density f (θ |x). First, we introduce the notion of
a credible region, a straightforward generalisation of a credible interval. Similarly,
a highest posterior density region (HPD region) can be defined.

Definition 6.10 (Credible region) A subset C ⊆ Θ with
∫

C

f (θ |x)dθ = γ

is called γ · 100 % credible region for θ with respect to f (θ |x). If C is a real
interval, then C is also called a credible interval. �

There is no unique γ · 100 % credible region for fixed γ . It is natural to force
uniqueness through the specification of a certain loss function l(C, θ). The follow-
ing loss function penalises (for fixed γ ) the size |C| of the credible region, i.e.
smaller regions are preferred. In addition, the loss function gives another penalty if
the true parameter θ does not lie within the credible region. We restrict our attention
to continuous posterior distributions.

Result 6.4 Let f (θ |x) denote the posterior density function of θ and let, for fixed
γ ∈ (0,1),

A = {C | Pr(θ ∈ C |x) = γ
}

denote the set of all γ · 100 % credible regions for θ . Consider now the loss function

l(C, θ) = |C| − IC(θ) for C ∈A, θ ∈ Θ.

C is optimal with respect to l(C, θ) if and only if, for all θ1 ∈ C and θ2 /∈ C,

f (θ1 |x) ≥ f (θ2 |x), (6.18)

i.e. if C is an HPD region.

Proof To prove Result 6.4, consider some set C ∈ A with expected loss
∫

Θ

l(C, θ)f (θ |x)dθ = |C|−
∫

Θ

IC(θ)f (θ |x)dθ = |C|− Pr(θ ∈ C |x) = |C|− γ.

For fixed γ , the γ · 100 % credible region C with smallest size |C| will therefore
minimise the expected loss. Now let C ∈ A with property (6.18), and let D ∈ A be
some other element in A. We need to show that |C| ≤ |D|. Let A ∪̇ B denote the
disjoint union of A and B , i.e. A ∪̇ B = A ∪ B and A ∩ B = ∅. Then:

C = C ∩ Θ = C ∩ (D ∪̇ Dc
)= (C ∩ D) ∪̇ (C ∩ Dc

)
and analogously D = (C ∩ D) ∪̇ (Cc ∩ D

)
.
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It therefore remains to show that |C ∩ Dc| ≤ |Cc ∩ D|. From (6.18) it follows that

sup
Cc∩D

f (θ |x) ≤ inf
C∩Dc

f (θ |x), (6.19)

and from C,D ∈ A it follows that

Pr(θ ∈ C |x) = Pr(θ ∈ D |x) = γ.

Using the above decompositions of C and D, we also have

Pr(θ ∈ C ∩ D |x) + Pr
(
θ ∈ C ∩ Dc |x)= Pr(θ ∈ C |x)

= Pr(θ ∈ D |x)

= Pr(θ ∈ C ∩ D |x) + Pr
(
θ ∈ Cc ∩ D |x)

and hence

Pr
(
θ ∈ C ∩ Dc |x)= Pr

(
θ ∈ Cc ∩ D |x). (6.20)

In total we obtain

inf
C∩Dc

f (θ |x) · ∣∣C ∩ Dc
∣∣≤
∫

C∩Dc

f (θ |x)dθ

=
∫

Cc∩D

f (θ |x)dθ with (6.20)

≤ sup
Cc∩D

f (θ |x) · ∣∣Cc ∩ D
∣∣

≤ inf
C∩Dc

f (θ |x) · ∣∣Cc ∩ D
∣∣ with (6.19).

Therefore, |C ∩ Dc| ≤ |Cc ∩ D| and hence |C| ≤ |D|. The proof in the other direc-
tion is similar. �

6.4.2 Compatible and Invariant Bayes Estimates

In practice point and interval estimates are often given jointly. The question arises
if all Bayesian point and interval estimates are compatible. A minimal requirement
appears to be that the point estimate is always within the credible interval. This is
fulfilled only by some combinations. The posterior mode, for example, will always
be within any HPD interval, and the posterior median is always within any equi-
tailed credible interval. In contrast, in extreme cases the posterior mean may not
necessarily be within the HPD nor the equi-tailed credible interval.

It is also interesting to study the behaviour of the different point and interval
estimates under a one-to-one transformation φ = h(θ) of the parameter θ . It turns
out that the posterior mode and the posterior mean are in general not invariant, for
example, E{h(θ) |x} = h{E(θ |x)} does not hold in general. In fact, E{h(θ) |x} <
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h{E(θ |x)} if h is strictly concave; if h is strictly convex, then the inequality sign
is in the other direction, cf. Appendix A.3.7. However, all characteristics based on
quantiles of the posterior distribution, such as the posterior median and equi-tailed
credible intervals, are invariant under (continuous) one-to-one transformations.

Example 6.18 (Inference for a proportion) The posterior median of the posterior
distribution π |x ∼ Be(11,4) derived in Example 6.3 and shown in Fig. 6.1 is
Med(π |x) = 0.744. The posterior median of the odds ω = π/(1 − π) is therefore
0.744/(1 − 0.744) = 2.905. �

6.5 Bayesian Inference in Multiparameter Models

Bayesian inference in multiparameter models with parameter vector θ proceeds as
for scalar parameters θ : Multiplication of a multivariate prior density f (θ) with the
likelihood and subsequent normalisation gives us the posterior density of θ . Before
we discuss how to eliminate nuisance parameters, we comment on the choice of the
prior distribution for parameter vectors θ .

6.5.1 Conjugate Prior Distributions

Conjugate prior distributions are available also for multivariate likelihood functions.
Here are a few examples.

Example 6.19 (Normal model) Let L(μ) denote the likelihood function of an ob-
servation x from a multivariate normal distribution Np(μ,Σ). The unknown mean
vector μ is a vector of dimension p, while the covariance matrix Σ is assumed
to be known. The Np(ν,T ) distribution is conjugate to L(μ) since the posterior
distribution of μ is again p-variate normal:

μ |x ∼ Np

((
Σ−1 + T −1)−1 · (�−1x + T −1ν

)
,
(
Σ−1 + T −1)−1)

.

This result can easily be derived using Eq. (B.4). It can also be generalised to a
random sample X1:n from an Np(μ,Σ) distribution:

μ |x1:n ∼ Np

((
nΣ−1 + T −1)−1 · (nΣ−1x̄ + T −1ν

)
,
(
nΣ−1 + T −1)−1)

,

where x̄ = 1
n

∑n
i=1 xi denotes the mean of the realisations x1:n. This generalises the

conjugate analysis for the univariate normal distribution, cf. Example 6.8. �
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Example 6.20 (Multinomial model) Consider a multinomially distributed random
variable X ∼ Mp(n, θ = π) with unknown probability vector π = (π1, . . . , πp)�.
The Dirichlet distribution π ∼ Dp(α1, . . . , αp) (cf. Appendix A.5.3) with density

f (π) ∝
p∏

i=1

π
αi−1
i , (6.21)

where πi > 0 (i = 1, . . . , p) and
∑p

i=1 πi = 1, is conjugate to the multinomial like-
lihood. Indeed, the likelihood function of a multinomial observation x is L(π) =∏p

i=1 π
xi

i , so the posterior distribution of π can be easily derived using (6.21):

π |x ∼ Dp(α1 + x1, . . . , αp + xp), (6.22)

a Dirichlet distribution with parameters αi + xi , i = 1, . . . , p. Note that for p = 2,
we obtain the special case of a binomial likelihood with a beta prior. The poste-
rior distribution (6.11) of a binomial success probability is hence a special case
of (6.22). The prior sample size of the Dirichlet prior (6.21) is now represented by
n0 =∑p

i αi , cf. the discussion in Example 6.3. �

Example 6.21 (Normal model) Of particular interest is Bayesian inference for a
random sample X1:n of a normal distribution N(μ,1/κ) if both parameters μ and κ

are unknown. To keep the notation simple, we parametrise the normal distribution
here in terms of the precision κ rather than the variance σ 2 = 1/κ . Our goal is to
specify a conjugate bivariate prior distribution f (θ) on R × R

+ for the parameter
vector θ = (μ, κ)�.

The normal-gamma distribution NG(ν, λ,α,β) is defined through the factoriza-
tion

f (θ) = f (κ) · f (μ |κ), (6.23)

where κ ∼ G(α,β) and μ |κ ∼ N(ν, (λ · κ)−1). The explicit functional form of the
density is hence

f (θ) ∝ κα−1 exp(−βκ) · (λκ)1/2 exp

{
−λκ

2
(μ − ν)2

}

= κα−1/2λ1/2 exp(−βκ) exp

{
−λκ

2
(μ − ν)2

}
. (6.24)

The density of a normal-gamma distribution is shown in Fig. 6.8.
It is straightforward to show that the posterior distribution is again normal-

gamma,

θ |x1:n ∼ NG

(
(λ + n)−1(λν + nx̄), λ + n,α + n

2
,

β + nσ̂ 2
ML + (λ + n)−1nλ(ν − x̄)2

2

)
, (6.25)
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Fig. 6.8 Density function
f (θ) of a normal-gamma
distribution NG(ν, λ,α,β)

for θ = (μ, κ)� with
parameters ν = 0, λ = 0.5
and α = 2, β = 1.2. The
mode of this distribution has
coordinates μ = 0 and
κ = (2 − 0.5)/1.2 = 1.25

so the normal-gamma distribution is conjugate to the normal likelihood when both
mean and variance are unknown. In (6.25), σ̂ 2

ML = n−1∑n
i=1(xi − x̄)2 is the usual

MLE of the variance σ 2.
It is interesting that all parameters ν, λ, α and β of the normal-gamma distri-

bution are updated additively based on the information in the data. In particular,
the first parameter of the posterior distribution (6.25), the posterior mean of μ, is
a weighted average of the prior mean ν and the sample average x̄ with weights
proportional to the prior precision λ and the sample size n, respectively. �

6.5.2 Jeffreys’ and Reference Prior Distributions

Jeffreys’ prior for a parameter vector θ is usually defined as

f (θ) ∝
√∣∣J (θ)

∣∣,
where |J (θ)| denotes the determinant of the expected Fisher information matrix.
This definition is a generalisation of Jeffreys’ rule (6.17) for scalar parameters.

Example 6.22 (Multinomial model) The expected Fisher information J (π) of a
multinomial observation X ∼ Mp(n,π) with unknown probability vector π =
(π1, . . . , πp)� has already been derived in Example 5.12. Its determinant is

∣∣J (θ)
∣∣= n∏p

i=1 πi

,
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so Jeffreys’ prior is

f (π) =
p∏

i=1

π
− 1

2
i .

This is the kernel of a Dirichlet distribution π ∼ Dp(1/2, . . . ,1/2) with all p param-
eters equal to 1/2. As in the binomial case, this distribution is proper. The posterior
is, using Eq. (6.22),

π |x ∼ Dp(1/2 + x1, . . . ,1/2 + xp). �

However, application of Jeffreys’ rule to vector-valued parameters θ is contro-
versial, although it fulfills the important invariance property. In the next example
we discuss one particular problem of the multivariate Jeffreys’ prior.

Example 6.23 (Normal model) Let X1:n denote a random sample of a N(μ,σ 2)

distribution with unknown parameter vector θ = (μ,σ 2)�. We know from Exam-
ple 5.11 that

J (θ) =
(

n

σ 2 0

0 n

2σ 4

)
,

so Jeffreys’ prior is

f (θ) ∝
√∣∣J (θ)

∣∣=
√

n2

2σ 6
∝ σ−3.

So μ and σ 2 are a priori independent with a locally uniform prior density for μ and
prior density proportional to (σ 2)−3/2 for σ 2.

This result is in conflict with Jeffreys’ prior if the parameter μ is known. In-
deed, it is always possible to factorise the prior f (μ,σ 2) ∝ (σ 2)−3/2 in the form
f (μ)f (σ 2 |μ). Due to prior independence of μ and σ 2, the conditional prior
f (σ 2 |μ) must therefore be equal to the marginal prior, which is proportional to
(σ 2)−3/2. But the conditional prior for σ 2 |μ should also equal Jeffreys’ prior for
known μ, which is, however, proportional to (σ 2)−1. �

A better approach is the so-called reference prior distribution. Loosely speaking,
the reference prior minimises the influence of the prior distribution on the posterior
distribution. Information of a probability distribution is measured using the entropy,
compare Appendix A.3.8.

The reference prior is identical to Jeffreys’ prior for scalar parameters, however
this analogy does no longer hold if the parameter is a vector. Then we need to sep-
arate the parameter vector θ into a parameter of interest and a nuisance parameter.
For example, a rigorous derivation of the reference prior for the correlation coef-
ficient, informally described in Example 6.17, is based on a multivariate normal
distribution with five unknown parameters, the correlation and the remaining four
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nuisance parameters, which are the means and variances of the two marginal normal
distributions. The following example discusses the reference prior for the univariate
normal distribution when both parameters are unknown.

Example 6.24 (Normal model) An alternative to Jeffreys’ prior from Example 6.23
is the reference prior

f (θ) ∝ σ−2

for θ = (μ, κ)�. Formally, this can be obtained through multiplication of Jeffreys’
prior for μ (with known σ 2) with Jeffreys’ prior for σ 2 (with μ known). In this
special case the reference prior remains the same, whether we treat μ or σ 2 as
parameter of interest and the other one as nuisance parameter.

Using the precision κ = σ−2 rather than the variance, the reference prior is

f (θ) ∝ κ−1.

Formally, this is the normal-gamma distribution NG(0,0,−1/2,0), compare
Eq. (6.24). Of course, this is an improper distribution, but this representation is
useful to derive the posterior with (6.25):

θ |x1:n ∼ NG

(
x̄, n,

1

2
(n − 1),

1

2

n∑
i=1

(xi − x̄)2

)
, (6.26)

which is a proper distribution if n ≥ 2. �

6.5.3 Elimination of Nuisance Parameters

Suppose we are only interested in the first component θ of the parameter vector
(θ ,η)�. Elimination of the nuisance parameter η is straightforward: all we need to
do is to integrate the joint posterior density f (θ ,η |x) with respect to η. This gives
us the marginal posterior density of the parameter of interest.

More specifically, let

f (θ ,η |x) = f (x | θ ,η) · f (θ ,η)

f (x)

denote the joint posterior density of θ and η. The marginal posterior of θ is then

f (θ |x) =
∫

f (θ ,η |x)dη. (6.27)

If θ is actually a scalar θ , then f (θ |x) can be used to calculate the commonly used
point and interval estimates.
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Fig. 6.9 Marginal distributions of a joint normal-gamma distribution NG(ν, λ,α,β) with param-
eters ν = 0, λ = 0.5 and α = 2, β = 1.2

Conceptually, the elimination of nuisance parameters is very simple in the
Bayesian inference approach. However, calculation of the integral (6.27) may be
difficult and may require numerical techniques. But in some circumstances, in par-
ticular if conjugate priors are used, analytic calculation may be possible. Here is an
example.

Example 6.25 (Normal-gamma distribution) Let θ = (μ, κ)� ∼ NG(ν, λ,α,β)

follow a normal-gamma distribution. The normal-gamma distribution is defined
through the factorisation (6.23) as a product of a marginal gamma distribution of
κ and a conditional normal distribution of μ given κ , so the marginal distribution of
κ is obviously κ ∼ G(α,β).

Analytic integration is required to compute the marginal density of μ, which
turns out to belong to a t distribution. Indeed, using the parametrisation from Ap-
pendix A.5.2 we have that

μ ∼ t

(
ν,

β

α · λ,2α

)
. (6.28)

For illustration, Fig. 6.9 displays the marginal densities of μ and κ for the joint
normal-gamma density shown in Fig. 6.8. �

Example 6.26 (Normal model) Let X1:n denote a random sample from an
N(μ, κ−1) distribution with known precision κ = 1/σ 2. We know from Exam-
ple 6.14 that Jeffreys’ prior for μ leads to the posterior μ |x1:n ∼ N(x̄, σ 2/n).
However, if the mean μ is known and Jeffreys’ prior f (σ 2) ∝ 1/σ 2 is used for
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the unknown variance σ 2 = 1/κ , then the posterior of σ 2 is

σ 2 |x1:n ∼ IG

(
n

2
,

1

2

n∑
i=1

(xi − μ)2

)
or, equivalently,

κ |x1:n ∼ G

(
n

2
,

1

2

n∑
i=1

(xi − μ)2

)

for the precision κ .
Suppose now that both μ and κ are unknown. Using the reference prior

f (μ,κ) ∝ κ−1 discussed in Example 6.24, the marginal posterior of κ is

κ |x1:n ∼ G

(
1

2
(n − 1),

1

2

n∑
i=1

(xi − x̄)2

)

as a direct consequence from (6.26). The first parameter is half of n − 1 rather than
n, so in complete analogy to the frequentist analysis, one degree of freedom is lost
if μ is treated as unknown. The marginal posterior of σ 2 = 1/κ is

σ 2 |x1:n ∼ IG

(
1

2
(n − 1),

1

2

n∑
i=1

(xi − x̄)2

)
(6.29)

with mean E(σ 2 |x1:n) =∑n
i=1(xi − x̄)2/(n − 3) and mode Mod(σ 2 |x1:n) =∑n

i=1(xi − x̄)2/(n + 1). The unbiased estimate S2 = ∑n
i=1(xi − x̄)2/(n − 1) lies

between the posterior mean and the posterior mode, and this is also true for the
MLE σ̂ 2

ML =∑n
i=1(xi − x̄)2/n. See Fig. 6.10b for an illustration.

The marginal posterior distribution of μ is a t distribution:

μ |x1:n ∼ t

(
x̄,

∑n
i=1(xi − x̄)2

n(n − 1)
, n − 1

)
. (6.30)

This can be shown straightforwardly by applying Example 6.25 to (6.26). Due to the
symmetry of the t distribution around x̄, the posterior mean, mode and median are
all identical to x̄ (if n > 2), and any γ · 100 % HPD interval will also be equi-tailed.

It is interesting that the frequentist approach discussed in Example 3.8 gives nu-
merically exactly the same result: The distribution of the pivot

√
n

X̄ − μ√
1

n−1

∑n
i=1(Xi − X̄)2

= X̄ − μ√
1

(n−1)n

∑n
i=1(Xi − X̄)2

∼ t(n − 1) = t(0,1, n − 1)

is due to

Y ∼ t
(
μ,σ 2, α

) ⇒ (Y − μ)/σ ∼ t(0,1, α)
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Fig. 6.10 Marginal posterior distributions for the mean and variance of the transformation factors
in the alcohol concentration data set

equivalent to the posterior distribution of the centred and standardised mean μ:

μ − x̄√
1

(n−1)n

∑n
i=1(xi − x̄)2

∣∣∣x1:n ∼ t(0,1, n − 1).

Since the standard t distribution is symmetric around the origin, this shows that the
limits of the equi-tailed γ · 100 % credible interval for μ will be equal to the limits
of the corresponding frequentist γ · 100 % confidence interval. �

Example 6.27 (Blood alcohol concentration) In Example 6.9 we have considered
the variance σ 2 = 1/κ of the transformation factors as known. Now we want to
estimate both the mean μ and the variance σ 2. In Fig. 6.10 the marginal posterior
densities resulting from the reference prior f (μ,σ 2) ∝ (σ 2)−1 are shown. They
can be obtained by plugging in the sufficient statistics n = 185, x̄ = 2449.18 and
s2 = 237.772 into (6.30) and (6.29). �

There is an interesting connection between Bayesian and frequentist techniques
for the elimination of nuisance parameters. The Bayesian approach requires in-
tegration of the joint posterior density with respect to the nuisance parameter η.
However, integration can be avoided by using the Laplace approximation (see Ap-
pendix C.2.2) for fixed θ . If one ignores the term in the Laplace approximation
that depends on the curvature of the posterior density and approximates the poste-
rior density by the likelihood function, then maximisation of the likelihood function
with respect to η for fixed θ is required. This approach leads to the profile likelihood
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as an approximation to the (unnormalised) marginal posterior density of θ , compare
Sect. 5.3.

6.5.4 Compatibility of Uni- and Multivariate Point Estimates

Two of the three commonly used point estimates for scalar parameters can also be
used if the posterior is multivariate: the posterior mean and the posterior mode. The
expectation of a multivariate random variable is defined as the vector of the expec-
tations of all its scalar components, which implies that the vector of the marginal
means is always equal to the joint mean, i.e.

{
E(μ |x),E(ρ |x)

}= E(μ,ρ |x).

However, this is not necessarily the case for the posterior mode. Marginal posterior
modes may not equal the components of the joint mode, i.e.

{
Mod(μ |x),Mod(ρ |x)

} �= Mod(μ,ρ |x),

as the following example illustrates.

Example 6.28 (Normal-gamma distribution) Let θ = (μ, κ)� ∼ NG(ν, λ,α,β).
For α > 1/2, the mode of the normal-gamma distribution is Mod(θ) = (ν, (α −
1/2)/β)�, cf. Appendix A.5.3. The marginal distribution of μ is the t distribution
(6.28), which also has mode Mod(μ) = ν. However, the marginal distribution of κ

is the gamma distribution κ ∼ G(α,β) with mode Mod(κ) = (α − 1)/β (if α > 1),
which is not equal to the second component of the mode of the joint distribution,
(α − 1/2)/β . Figures 6.8 and 6.9 illustrate this particular feature. �

6.6 Some Results from Bayesian Asymptotics

In this section we will discuss asymptotic properties of posterior distributions and
characteristics thereof. One important question is whether Bayesian point estimates
are consistent, i.e. whether they converge to the true value if the sample size goes to
infinity. We will see that this is indeed the case under certain regularity conditions.

Another important asymptotic property concerns the whole posterior distribution.
We will sketch that any posterior distribution is asymptotically normal if the Fisher
regularity conditions described in Definition 4.1 hold and the prior is not degenerate.
This result parallels the asymptotic normal distribution of the MLE discussed in
Sect. 4.2.3. In particular, it allows for a Bayesian interpretation of the MLE and its
standard error.
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6.6.1 Discrete Asymptotics

For discrete parameters, we cannot expect an asymptotically normal posterior dis-
tribution. However, the following result shows that the posterior mass gets more and
more concentrated around the true parameter value for increasing sample size.

Result 6.5 (Posterior consistency) Let θ ∈ Θ = {θ0, θ1, θ2, . . . } denote an unknown
discrete parameter with countable parameter space Θ . Let pi = f (θi) = Pr(θ = θi)

denote the corresponding prior probability mass function for i = 0,1,2, . . . . Let
X1:n denote a random sample from a distribution with density function f (x | θ) and
suppose that θ0 is the true parameter value. Then

lim
n→∞f (θ0 |x1:n) = 1 and lim

n→∞f (θi |x1:n) = 0 for all i �= 0.

Proof In order to show posterior consistency, we first consider n as fixed. The pos-
terior probability of θi is

f (θi |x1:n) = f (x1:n | θi)f (θi)

f (x1:n)
= pif (x1:n | θi)/f (x1:n | θ0)∑

j pjf (x1:n | θj )/f (x1:n | θ0)

= pi

∏n
k=1 f (xk | θi)/f (xk | θ0)∑

j pj

∏n
k=1 f (xk | θj )/f (xk | θ0)

= exp{log(pi) + S
(n)
i }∑

j exp{log(pj ) + S
(n)
j }

,

where S
(n)
j =∑n

k=1 log{f (xk | θj )/f (xk | θ0)} for j = 1, . . . , n.
Now let

D(θ0 ‖ θi) =
∫

f (x | θ0) log

{
f (x | θ0)

f (x | θi)

}
dx = EX | θ0

[
log

{
f (X | θ0)

f (X | θi)

}]

denote the Kullback–Leibler discrepancy between f (x | θ0) and f (x | θi) (cf. Ap-
pendix A.3.8). The information inequality implies that D(θ0 ‖ θ0) = 0 and D(θ0 ‖
θi) > 0 for all i �= 0. With the law of large numbers (Appendix A.4.3), we have

lim
n→∞

1

n
S

(n)
j = EX | θ0

[
log

{
f (X | θj )

f (X | θ0)

}]
= −D(θ0 ‖ θj )

{
= 0 for j = 0,

< 0 for j �= 0,

and therefore

lim
n→∞S

(n)
j =

{
0 for j = 0,

−∞ for j �= 0,

so that

lim
n→∞f (θi |x1:n) =

{
1 for i = 0,

0 for i �= 0.

The posterior probability of the true value θ0 hence converges to 1 as n → ∞. �
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Fig. 6.11 Inference for the proportion θ after simulation from a binomial distribution Bin(n, θ)

with n = 10,100,1000 and using a discrete uniform distribution on Θ = {0.05,0.15, . . . ,0.95}:
The posterior distribution (top) converges to the value θ ∈ Θ with smallest Kullback–Leibler dis-
crepancy (bottom) to the true model

Figure 6.11a illustrates this convergence property in a specific setting.
An interesting generalisation of the above proof concerns the case θ0 /∈ Θ : The

posterior distribution will then converge to the value θi ∈ Θ with smallest Kullback–
Leibler discrepancy to the true model. This phenomenon is illustrated in Fig. 6.11b.

6.6.2 Continuous Asymptotics

In this section we will sketch that an unknown continuous parameter is—under suit-
able regularity conditions—asymptotically normally distributed. We consider the
general case of an unknown parameter vector θ .

Let X1:n denote a random sample from a distribution with probability mass or
f (x | θ). The posterior density is then

f (θ |x1:n) ∝ f (θ)f (x1:n | θ) = exp
[
log
{
f (θ)

}
︸ ︷︷ ︸

(1)

+ log
{
f (x1:n | θ)

}
︸ ︷︷ ︸

(2)

]
,

where f (x1:n | θ) =∏n
i=1 f (xi | θ). A quadratic approximation using a Taylor ex-

pansion of the terms (1) and (2) around their maxima m0 (the prior mode) and the
MLE θ̂n = θ̂ML(x1:n), respectively, gives

log
{
f (θ)

}≈ log
{
f (m0)

}− 1

2
(θ − m0)

�I 0(θ − m0) and
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log
{
f (x1:n | θ)

}≈ log
{
f (x1:n | θ̂n)

}− 1

2
(θ − θ̂n)

�I (θ̂n)(θ − θ̂n).

Here I 0 denotes the negative curvature of log{f (θ)} at the mode m0, and I (θ̂n) =
I (θ̂n;x1:n) is the observed Fisher information matrix. Under regularity conditions,
it follows that the posterior density is asymptotically proportional to

exp

[
−1

2

{
(θ − m0)

�I 0(θ − m0) + (θ − θ̂n)
�I (θ̂n)(θ − θ̂n)

}]

∝ exp

{
−1

2
(θ − mn)

�In(θ − mn)

}
,

where

In = I 0 + I (θ̂n) and

mn = I−1
n

{
I 0m0 + I (θ̂n)θ̂n

}
,

compare Appendix B.1.5. If n is large, the posterior distribution of θ is therefore
approximately normal with mean mn and covariance matrix I−1

n :

θ |x1:n
a
∼ N

(
mn, I

−1
n

)
.

Further approximations are possible:
1. For large n, the prior precision I 0 will be negligible compared to the observed

Fisher information I (θ̂n). We then have

θ |x1:n
a
∼ N

(
θ̂n, I (θ̂n)

−1).

Asymptotic normality of the posterior distribution
Any posterior distribution is (under suitable regularity conditions) asymptoti-
cally normal with mean equal to the MLE and covariance equal to the inverse
observed Fisher information matrix:

θ |x1:n
a
∼ N

(
θ̂n, I (θ̂n)

−1).

This result gives a Bayesian interpretation of the MLE as asymptotic posterior mode
(or mean). In addition, for large sample size, the limits of a Wald confidence interval
for any component of θ will become numerically identical to the limits of an HPD
(or equi-tailed) credible interval if confidence and credible levels are identical.

There are at least three similar statements regarding asymptotic normality of the
posterior distribution:
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2. In complete analogy to likelihood asymptotics, the observed Fisher information
matrix I (θ̂n) can be replaced by the expected Fisher information matrix J (θ̂n),
so

θ |x1:n
a
∼ N

(
θ̂n,J (θ̂n)

−1).
3. If the posterior mode Mod(θ |x1:n) and the negative curvature Cn of the log

posterior density at the mode are available, e.g. by numerical techniques, then
also

θ |x1:n
a
∼ N

(
Mod(θ |x1:n),C−1

n

)
.

4. Often the posterior mean E(θ |x1:n) and the posterior covariance Cov(θ |x1:n)
can be computed analytically or can at least be approximated with Monte Carlo
techniques. The following approximation may then be useful:

θ |x1:n
a
∼ N

(
E(θ |x1:n),Cov(θ |x1:n)

)
.

Example 6.29 (Binomial model) Consider the binomial model X |π ∼ Bin(n,π).
We know that the likelihood corresponds to a random sample of size n from a
Bernoulli distribution with parameter π .

Given the observation X = x, the MLE is π̂ML = x/n, and we know from Exam-
ples 2.10 and 4.1 that here

I (π̂ML) = J (π̂ML) = n

π̂ML(1 − π̂ML)
.

Thus, the above approximations 1 and 2 are identical here. Under a conjugate beta
prior, π ∼ Be(α,β), the posterior equals

π |x ∼ Be(α + x,β + n − x),

with known mean, mode and variance. So we can compute approximation 4. We can
as well compute the negative curvature at the mode:

− d2

dπ2
log

{
1

B(α + x,β + n − x)
πα+x−1(1 − π)β+n−x−1

}∣∣∣∣
π= α+x−1

α+β+n−2

= (α + β + n − 2)3

(α + x − 1)(β + n − x − 1)
.

Hence, we can also investigate the approximation 3 described above. All three ap-
proximations are compared in Fig. 6.12. �
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Fig. 6.12 Normal approximation of the posterior f (π |x) based on simulated data from a
Bin(n,π = 0.1) distribution with a Be(1/2,1/2) prior for π and increasing sample size n. Ap-
proximation 2 (identical to approximation 1 in this case) uses the MLE and the inverse Fisher
information at the MLE, approximation 3 uses the posterior mode and the inverse negative curva-
ture at the mode, approximation 4 uses the mean and variance of the posterior

6.7 Empirical Bayes Methods

Empirical Bayes methods are a combination of the Bayesian approach with likeli-
hood techniques. The general idea is to estimate parameters of the prior distribu-
tion from multiple experiments, rather than fixing them based on prior knowledge.
Strictly speaking, this is not a fully Bayesian approach, but it can be shown that
empirical Bayes estimates have attractive theoretical properties. Empirical Bayes
techniques are often used in various applications.
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Example 6.30 (Scottish lip cancer) Consider Example 1.1.6, where we have anal-
ysed the incidence of lip cancer in n = 56 regions of Scotland. For each region
i = 1, . . . , n, the observed number of lip cancer cases xi are available as well as
the expected number ei under the assumption of a constant disease risk. We now
present a commonly used empirical Bayes procedure to estimate the disease risk in
each area while borrowing strength from the other areas.

Assume that x1, . . . , xn are independent realisations from Po(eiλi) distributions
with known expected counts ei > 0 and unknown region-specific parameters λi .
A suitable prior for the λis is a gamma distribution, λi ∼ G(α,β), due to the conju-
gacy of the gamma distribution to the Poisson likelihood. The posteriors turn out to
be

λi |xi ∼ G(α + xi, β + ei) (6.31)

with posterior means E(λi |xi) = (α + xi)/(β + ei), compare Table 6.2. If α and β

are fixed in advance, the posterior of λi does not depend on the data xj and ej from
other regions j �= i.

An alternative approach is to assume that the relative risk is the same for all
regions. Then the posterior of λ is

λ |x1:n ∼ G

(
α +

n∑
i=1

xi, β +
n∑

i=1

ei

)
.

An empirical Bayes approach is a compromise between these two extreme cases:
The estimate of λi is based on Eq. (6.31), but the parameters α and β of the prior dis-
tribution are now estimated through all observed data. This is done by maximising
the implied prior predictive distribution or marginal likelihood, which depends only
on α and β: If xi |λi ∼ Po(eiλi) and λi ∼ G(α,β), we know that the marginal distri-
bution of xi has the Poisson-gamma form: xi ∼ PoG(α,β, ei), cf. Appendix A.5.1.
Due to the independence assumption, the corresponding log-likelihood is

l(α,β) =
n∑

i=1

[
α log(β) + log

{
�(α + xi)

�(α)

}
− (α + xi) log(β + ei)

]

and can be maximised numerically with respect to α and β . One obtains MLEs α̂ML

and β̂ML of α and β , which are plugged into formula (6.31). The resulting posterior
means estimates

E(λi |xi) = (α̂ML + xi)/(β̂ML + ei)

are called empirical Bayes estimates of λi . Here we obtain α̂ML = 1.876 and β̂ML =
1.317. Figure 6.13 displays the empirical Bayes estimates and the corresponding
equi-tailed 95 % credible intervals. We can see that the MLEs xi/ei are shrunk
towards the prior mean, i.e. the empirical Bayes estimates lie between these two
extremes. This phenomenon is called shrinkage.
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Fig. 6.13 95 % equi-tailed
credible intervals for Scottish
lip cancer incidence rates λi

(i = 1, . . . ,56), calculated
with an empirical Bayes
approach. The dotted line
marks the MLE
α̂ML/β̂ML = 1.4240 of the
prior mean. Open circles
denote the posterior mean
estimates of λi , while filled
circles denote the MLEs
xi/ei . The regions are
ordered as in Fig. 4.3

It is illustrative to consider the partial derivative of the log-likelihood l(α,β) with
respect to β and to set it to zero. This score equation will hold for the MLE β̂ML, i.e.

1

n

n∑
i=1

α̂ML + xi

β̂ML + ei

= α̂ML

β̂ML

.

So the average of the empirical Bayes estimates equals the MLE α̂ML/β̂ML of the
prior mean α/β . For the Scotland lip cancer data, this prior mean equals 1.424. �

Example 6.31 (Comparison of proportions) We would like to combine the results
from the nine different clinical studies on the use of diuretics in pregnancy to pre-
vent preeclampsia, which are shown in Table 1.1, in a meta-analysis. Our goal is to
estimate the log odds ratio ψ based on the available data from all studies.

First, we assume that the unknown disease risks for treated and control women do
not vary across the different studies. In total there are 291 diseased and 3468 healthy
women, which were treated with diuretics, while there were 345 diseased and 2838
healthy women in the control group. Using the results from Example 5.8 on these
total counts, we obtain the MLE ψ̂ML = log{(291 · 2838)/(3468 · 345)} = −0.37 of
the log odds ratio with 95 % Wald confidence interval from −0.53 to −0.21.

Alternatively, we can proceed similarly to the semi-Bayes approach in Exam-
ple 6.10. Let ai, bi, ci , di denote the corresponding cell entries in the ith study; then
the MLE of ψi is ψ̂i = log{(ai ·di)/(bi · ci)}. The difference to the analysis above is
that we do not pool the whole data. Instead, we compute separate MLEs for the stud-
ies but assume that the underlying true treatment effect does not vary across studies.
This already slightly relaxes the unrealistic assumption from above, where the data
was treated as obtained from a single large study. The approximate likelihood of the
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Fig. 6.14 95 % Wald
confidence intervals for the
study-specific log odds ratios
ψi

observed log odds ratio ψ̂i is thus

ψ̂i |ψ ∼ N
(
ψ,σ 2

i

)
,

where σ 2
i = a−1

i +b−1
i +c−1

i +d−1
i . All studies are based on relatively large sample

sizes, so the above normal approximation is likely to be fairly accurate. Figure 6.14
shows the study-specific log odds ratio estimates ψ̂i with corresponding Wald confi-
dence intervals. Under a locally uniform reference prior for ψ , its posterior is normal
with mean

ψ̂ =
∑9

i=1 wiψ̂i∑9
i=1 wi

(6.32)

and variance 1/
∑9

i=1 wi , where wi = 1/σ 2
i is the precision of the ith study-specific

estimate. This is the so-called fixed effect model to meta-analysis, which gives an
overall treatment effect estimate as the weighted average of the study-specific treat-
ment effects with weights proportional to the inverse squared standard errors. Based
on this approach, we obtain the overall estimate ψ̂ = −0.40 with 95 % credible
interval for ψ from −0.57 to −0.22, so very similar values as before.

We now allow the underlying true treatment effects to vary from study to study,
i.e.

ψ̂i |ψ ∼ N
(
ψi,σ

2
i

)
,

ψi ∼ N
(
ν, τ 2),

and ν, the average treatment effect across all studies, is now of primary interest. The
study-specific effects ψi are allowed to vary randomly around ν, therefore such a
model is called a random effects model. If ν and τ 2 are known, we can easily derive
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Fig. 6.15 95 % credible
intervals for the log odds
ratios ψi in an empirical
Bayes random effects model.
Also shown is a 95 % profile
likelihood confidence interval
for the mean effect ν

(“random effects”) as well as
a 95 % Wald confidence
interval for ψ under the
assumption of equal study
effects (“fixed effect”)

the posterior distribution

ψi | ψ̂i ∼ N
(
ν̃i , σ̃

2
i

)
(6.33)

of each study effect ψi , compare Example 6.8. Here σ̃ 2
i = 1/(1/σ 2

i + 1/τ 2) and
ν̃i = σ̃ 2

i (ψ̂i/σ
2
i + ν/τ 2). So the posterior mean is a weighted average of the study-

specific log odds ratio estimate ψ̂i and the prior mean ν with weights proportional
to 1/σ 2

i and 1/τ 2, respectively.
Of course, application of this formula requires knowledge of ν and τ 2. These

can be estimated in an empirical Bayes fashion by (numerical) maximisation of the
marginal likelihood. For fixed τ 2, the marginal distribution of the ith log odds ratio
is known to be ψ̂i ∼ N(ν, σ 2

i + τ 2). Then the estimate ν̂ML(τ
2) of the underlying

treatment effect is as in the fixed effects model (6.32) a weighted mean of the indi-
vidual study effects ψ̂i , but now with weights proportional to wi = σ 2

i + τ 2 rather
than wi = σ 2

i . In other words, in moving from a fixed effect to a random effects
analysis, the weights given to each study become more evenly distributed, so that in
a random effects analysis small studies receive relatively large weight. Estimation of
the variance τ 2 between true study effects can be done by numerically maximising
the profile log-likelihood

lp
(
τ 2)= −1

2

n∑
i=1

[
log
(
σ 2

i + τ 2)+ {ψ̂i − ν̂ML(τ
2)}2

σ 2
i + τ 2

]
.

Empirical Bayes estimates of the individual study effects ψi are finally obtained by
plugging the MLEs ν̂ML and τ̂ 2

ML into (6.33) in place of the fixed values ν and τ 2.
For the preeclampsia data, we obtain ν̂ML = −0.52 and τ̂ 2

ML = 0.24. Note that the
MLE ν̂ML = −0.52 in the model with random effects is smaller than under a fixed
effect model (ψ̂ML = −0.37). Figure 6.15 displays 95 % empirical Bayes credible
intervals for the individual study effects. Five of them lie below zero, so for these
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studies, we can identify a positive treatment effect. Note, however, that the intervals
tend to be too small, as they do not take into account the uncertainty in the estima-
tion of ν and τ 2. Also displayed is a 95 % confidence interval based on the profile
likelihood of the mean study effect ν. Note that this is substantially wider than the
corresponding one for the fixed effect ψ under a homogeneity assumption. �

6.8 Exercises

1. In 1995, O.J. Simpson, a retired American football player and actor, was ac-
cused of the murder of his ex-wife Nicole Simpson and her friend Ronald
Goldman. His lawyer, Alan M. Dershowitz stated on T.V. that only one-tenth
of 1 % of men who abuse their wives go on to murder them. He wanted his au-
dience to interpret this to mean that the evidence of abuse by Simpson would
only suggest a 1 in 1000 chance of being guilty of murdering her.

However, Merz and Caulkins (1995) and Good (1995) argue that a dif-
ferent probability needs to be considered: the probability that the husband is
guilty of murdering his wife given both that he abused his wife and his wife
was murdered. Both compute this probability using Bayes theorem but in two
different ways. Define the following events:
A: “The woman was abused by her husband.”
M : “The woman was murdered by somebody.”
G: “The husband is guilty of murdering his wife.”
(a) Merz and Caulkins (1995) write the desired probability in terms of the

corresponding odds as

Pr(G |A,M)

Pr(Gc |A,M)
= Pr(A |G,M)

Pr(A |Gc,M)
· Pr(G |M)

Pr(Gc |M)
. (6.34)

They use the fact that, of the 4936 women who were murdered in 1992,
about 1430 were killed by their husband. In a newspaper article, Der-
showitz stated that “It is, of course, true that, among the small number
of men who do kill their present or former mates, a considerable num-
ber did first assault them.” Merz and Caulkins (1995) interpret “a con-
siderable number” to be 1/2. Finally, they assume that the probability
of a wife being abused by her husband, given that she was murdered
by somebody else, is the same as the probability of a randomly chosen
woman being abused, namely 0.05.

Calculate the odds (6.34) based on this information. What is the cor-
responding probability of O.J. Simpson being guilty, given that he has
abused his wife and she has been murdered?

(b) Good (1995) uses the alternative representation

Pr(G |A,M)

Pr(Gc |A,M)
= Pr(M |G,A)

Pr(M |Gc,A)
· Pr(G |A)

Pr(Gc |A)
. (6.35)
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He first needs to estimate Pr(G |A) and starts with Dershowitz’s esti-
mate of 1/1000 that the abuser will murder his wife. He assumes that
the probability that this will happen in the year in question is at least
1/10. Thus, Pr(G |A) is at least 1/10 000. Obviously, Pr(M |Gc,A) =
Pr(M |A) ≈ Pr(M). Since there are about 25 000 murders a year in the
U.S. population of 250 000 000, Good (1995) estimates Pr(M |Gc,A)

to be 1/10 000.
Calculate the odds (6.35) based on this information. What is the cor-

responding probability of O.J. Simpson being guilty, given that he has
abused his wife and she has been murdered?

(c) Good (1996) revised this calculation, noting that approximately only
a quarter of murdered victims are female, so Pr(M |Gc,A) reduces to
1/20 000. He also corrected Pr(G |A) to 1/2000, when he realised that
Dershowitz’s estimate was an annual and not a lifetime risk. Calculate
the probability of O.J. Simpson being guilty based on this updated in-
formation.

2. Consider Example 6.4. Here we will derive the implied distribution of θ =
Pr(D+|T +) if the prevalence is π ∼ Be(α̃, β̃).
(a) Deduce with the help of Appendix A.5.2 that

γ = α̃

β̃
· 1 − π

π

follows an F distribution with parameters 2β̃ and 2α̃, denoted by
F(2β̃,2α̃).

(b) Show that as a function of γ , the transformation (6.12) reduces to

θ = g(γ ) = (1 + γ /c)−1,

where

c = α̃ Pr(T +|D+)

β̃{1 − Pr(T −|D−)} .

(c) Show that

d

dγ
g(γ ) = − 1

c(1 + γ /c)2

and that g(γ ) is a strictly monotonically decreasing function of γ .
(d) Use the change-of-variables formula (A.11) to derive the density of θ in

(6.13).
(e) Analogously proceed with the negative predictive value τ = Pr(D−|T −)

to show that the density of τ is

f (τ) = d · τ−2 · fF
(
d(1/τ − 1);2α̃,2β̃

)
,
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where

d = β̃ Pr(T −|D−)

α̃{1 − Pr(T +|D+)} ,

and fF(x;2α̃,2β̃) is the density of the F distribution with parameters
2α̃ and 2β̃ .

3. Suppose that the heights of male students are normally distributed with mean
180 and unknown variance σ 2. We believe that σ 2 is in the range [22,41]
with approximately 95 % probability. Thus, we assign an inverse-gamma dis-
tribution IG(38,1110) as prior distribution for σ 2.
(a) Verify with R that the parameters of the inverse-gamma distribution lead

to a prior probability of approximately 95 % that σ 2 ∈ [22,41].
(b) Derive and plot the posterior density of σ 2 corresponding to the follow-

ing data:

183,173,181,170,176,180,187,176,171,190,184,173,176,179,

181,186.

(c) Compute the posterior density of the standard deviation σ .
4. Assume that n throat swabs have been tested for influenza. We denote by X

the number of throat swabs that yield a positive result and assume that X is
binomially distributed with parameters n and unknown probability π , so that
X |π ∼ Bin(n,π).
(a) Determine the expected Fisher information and obtain Jeffreys’ prior.
(b) Reparametrise the binomial model using the log odds η = log{π/(1 −

π)}, leading to

f (x |η) =
(

n

x

)
exp(ηx)

{
1 + exp(η)

}−n
.

Obtain Jeffreys’ prior distribution directly for this likelihood and not
with the change-of-variables formula.

(c) Take the prior distribution of 4(a) and apply the change-of-variables for-
mula to obtain the induced prior for η. Because of the invariance under
reparametrisation this prior density should be the same as in part 4(b).

5. Suppose that the survival times X1:n form a random sample from an exponen-
tial distribution with parameter λ.
(a) Derive Jeffreys’ prior for λ and show that it is improper.
(b) Suppose that the survival times are only partially observed until the r th

death such that n−r observations are actually censored. Write down the
corresponding likelihood function and derive the posterior distribution
under Jeffreys’ prior.

(c) Show that the posterior is improper if all observations are censored.
6. After observing a patient, his/her LDL cholesterol level θ is estimated by a.

Due to the increased health risk of high cholesterol levels, the consequences of
underestimating a patient’s cholesterol level are considered more serious than
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those of overestimation. That is to say, |a − θ | should be penalised more when
a ≤ θ than when a > θ . Consider the following loss function parameterised
in terms of c, d > 0:

l(a, θ) =
{

−c(a − θ) if a − θ ≤ 0,

d(a − θ) if a − θ > 0.

(a) Plot l(a, θ) as a function of a − θ for c = 1 and d = 3.
(b) Compute the Bayes estimate with respect to the loss function l(a, θ).

7. Our goal is to estimate the allele frequency at one bi-allelic marker, which
has either allele A or B . DNA sequences for this location are provided for
n individuals. We denote the observed number of allele A by X and the un-
derlying (unknown) allele frequency with π . A formal model specification is
then a binomial distribution X |π ∼ Bin(n,π), and we assume a beta prior
distribution π ∼ Be(α,β) where α,β > 0.
(a) Derive the posterior distribution of π and determine the posterior mean

and mode.
(b) For some genetic markers, the assumption of a beta prior may be re-

strictive and a bimodal prior density, e.g., might be more appropriate.
For example, we can easily generate a bimodal shape by considering a
mixture of two beta distributions:

f (π) = wfBe(π;α1, β1) + (1 − w)fBe(π;α2, β2)

with mixing weight w ∈ (0,1).
(i) Derive the posterior distribution of π .

(ii) The posterior distribution is a mixture of two familiar distribu-
tions. Identify these distributions and the corresponding posterior
weights.

(iii) Determine the posterior mean of π .
(iv) Write an R-function that numerically computes the limits of an

equi-tailed credible interval.
(v) Let n = 10 and x = 3. Assume an even mixture (w = 0.5) of two

beta distributions, Be(10,20) and Be(20,10). Plot the prior and
posterior distributions in one figure.

8. The negative binomial distribution is used to represent the number of trials, x,
needed to get r successes, with probability π of success in any one trial. Let
X be negative binomial, X |π ∼ NBin(r,π), so that

f (x |π) =
(

x − 1

r − 1

)
πr(1 − π)x−r

with 0 < π < 1, r ∈ N and support T = {r, r + 1, . . . }. As a prior distribution,
assume π ∼ Be(α,β),

f (π) = B(α,β)−1πα−1(1 − π)β−1,
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with α,β > 0.
(a) Derive the posterior density f (π |x). Which distribution is this and

what are its parameters?
(b) Define conjugacy and explain why, or why not, the beta prior is conju-

gate with respect to the negative binomial likelihood.
(c) Show that the expected Fisher information is proportional to π−2(1 −

π)−1 and derive therefrom Jeffreys’ prior and the resulting posterior
distribution.

9. Let X1:n denote a random sample from a uniform distribution on the interval
[0, θ ] with unknown upper limit θ . Suppose we select a Pareto distribution
Par(α,β) with parameters α > 0 and β > 0 as a prior distribution for θ , cf.
Table A.2 in Sect. A.5.2.
(a) Show that T (X1:n) = max{X1, . . . ,Xn} is sufficient for θ .
(b) Derive the posterior distribution of θ and identify the distribution type.
(c) Determine posterior mode Mod(θ |x1:n), posterior mean E(θ |x1:n), and

the general form of the 95 % HPD interval for θ .
10. We continue Exercise 1 in Chap. 5, so we assume that the number of IHD

cases is Di |λi
ind
∼ Po(λiYi), i = 1,2, where λi > 0 is the group-specific inci-

dence rate. We use independent Jeffreys’ priors for the rates λ1 and λ2.
(a) Derive the posterior distribution of λ1 and λ2. Plot these in R for com-

parison.
(b) Derive the posterior distribution of the relative risk θ = λ2/λ1 as fol-

lows:
(i) Derive the posterior distributions of τ1 = λ1Y1 and τ2 = λ2Y2.

(ii) An appropriate multivariate transformation of τ = (τ1, τ2)
� to

work with is g(τ ) = η = (η1, η2)
� with η1 = τ2/τ1 and η2 =

τ2 +τ1 to obtain the joint density fη(η) = fτ {g−1(η)}|(g−1)′(η)|,
cf. Appendix A.2.3.

(iii) Since η1 = τ2/τ1 is the parameter of interest, integrate η2 out of
fη(η) and show that the marginal density is

f (η1) = η
α1−1
1 (1 + η1)

−α1−α2

B(α1, α2)
,

which is a beta prime distribution with parameters α1 and α2.
(iv) From this distribution of τ2/τ1 the posterior distribution of λ2/λ1

is then easily found.
(c) For the given data, compute a 95 % credible interval for θ and compare

the results with those from Exercise 1 in Chap. 5.
11. Consider Exercise 10 in Chap. 3. Our goal is now to perform Bayesian infer-

ence with an improper discrete uniform prior for the unknown number N of
beds:

f (N) ∝ 1 for N = 2,3, . . . ,



6.9 References 219

(a) Why is the posterior mode equal to the MLE?
(b) Show that for n > 1, the posterior probability mass function is

f (N |xn) = n − 1

xn

(
xn

n

)(
N

n

)−1

for N ≥ xn.

(c) Show that the posterior expectation is

E(N |xn) = n − 1

n − 2
· (xn − 1) for n > 2.

(d) Compare the frequentist estimates from Exercise 10 in Chap. 3 with
the posterior mode and mean for n = 48 and xn = 1812. Numerically
compute the associated 95 % HPD interval for N .

12. Assume that X1, . . . ,Xn are independent samples from the binomial models

Bin(m,πi) and assume that πi
iid
∼ Be(α,β). Compute empirical Bayes esti-

mates π̂i of πi as follows:
(a) Show that the marginal distribution of Xi is beta-binomial, see Ap-

pendix A.5.1 for details. The first two moments of this distribution are

μ1 = E(Xi) = m
α

α + β
,

μ2 = E
(
X2

i

)= m
α{m(1 + α) + β}

(α + β)(1 + α + β)
.

Solve for α and β using the sample moments μ̂1 = n−1∑n
i=1 xi , μ̂2 =

n−1∑n
i=1 x2

i to obtain estimates of α and β .
(b) Now derive the empirical Bayes estimates π̂i . Compare them with the

corresponding MLEs.

6.9 References

Lee (2004) gives an accessible introduction to Bayesian inference. The introductory
article to Bayesian inference by Edwards et al. (1963) is still worth reading. A com-
prehensive description can be found in Bernardo and Smith (2000) and O’Hagan
and Forster (2004). Further classics are Jeffreys (1961), Box and Tiao (1973) and
Robert (2001). See Mossman and Berger (2001) and Bayarri and Berger (2004) for
background to Example 6.4, and Bernardo and Smith (2000, Sect. 5.4) for a rigor-
ous treatment of reference priors. Empirical Bayes methods are described in Carlin
and Louis (2002), but see also Davison (2003, Sect. 11.5). The empirical Bayes
approach outlined in Example 6.30 is due to Clayton and Kaldor (1987).
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Parametric statistical inference is based on the assumption of a model that describes
the stochastic properties of the data. A fundamental question of statistics therefore
is how one selects a model—given the data—from a set of candidate models? This
chapter introduces likelihood and Bayesian methods to address this problem.

Frequently, it is the context that influences the choice of a particular type of
model. For example, the assumption of a normal distribution is obviously inadequate
for binary observations. However, there are many situations where the choice of a
specific model for the available data is far from obvious. In the analysis of survival
data, for example, any distribution with a positive support seems appropriate. In
Example 5.9 we fitted the Weibull and the gamma model to survival times of patients
treated with Azathioprine for primary biliary cirrhosis (PBC), see also Sect. 1.1.8.
Both formulations are generalisations of the exponential model. But which model is
best describing the data?

Recall from Sect. 5.5 that the generalised likelihood ratio (LR) statistic W can be
used to compare two models, if the simpler model is a special case of the more com-
plex model with some parameters being fixed. The dimension of the unknown pa-
rameter vector will then differ between the models, and the simpler model is called
nested in the more general model.
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Suppose M1 is the simpler model and M2 the more complex. We can now apply
the generalised LR statistic

W = 2 log

{
maxM2 L(θ)

maxM1 L(θ)

}
= 2
{

max
M2

l(θ) − max
M1

l(θ)
}

to compare the two models. Here the log-likelihood l(θ) is understood as the log-
likelihood in the more general model M2. Model M1 can be written as a restriction
of model M2, so the maximised log-likelihood in model M1 is identical to l(θ) max-
imised under the restriction corresponding to M1, which we denote as maxM1 l(θ).
Under the assumption that model M1 is correct, W is asymptotically χ2 distributed.
The associated degrees of freedom are given by the difference of the number of un-
known parameters of the two models considered. For example, if the more complex
model M2 has one parameter more than the simpler model M1, a P -value can be
computed based on the upper tail of the χ2 distribution with one degree of freedom,
evaluated at the observed value w of W : Pr(X ≥ w) where X ∼ χ2(1). For example,
if w = 3.84, then the P -value is 0.05.

Example 7.1 (Analysis of survival times) Coming back to the introductory ex-
ample, we want to determine an adequate model for the survival data of the PBC
patients, see Sect. 1.1.8. In particular, we need to take into account that the observa-
tions are right censored.

In the exponential model (M1) of Example 2.8, it is possible to determine the
MLE analytically. Substituting this estimator into the log-likelihood function gives
l(λ̂ML) = −424.0243.

We can use the code from Example 5.9 to determine the maximal log-likelihood
in the Weibull model M2.

> start <- c(1000, 1)

> resultWeibull <- optim(start, weibullLik, log=TRUE,

control=list(fnscale=-1), hessian=TRUE)

> logLikWeibull <- resultWeibull$value

> logLikWeibull

[1] -424.0043

So we obtain the maximised log-likelihood l(θ̂ML) = −424.0043 at the MLE θ̂ML =
(μ̂ML, α̂ML)

�.
Since the Weibull model with α = 1 corresponds to the exponential model, we

can use the generalised LR statistic to compare the two models. We obtain the test
statistic

W21 = 2
{

max
M2

l(θ) − max
M1

l(θ)
}

= 2
{−424.0043 − (−424.0243)

}= 0.0400

with corresponding P -value 0.84 computed from the χ2 distribution function with
one degree of freedom. So we have no evidence against the simpler exponential
model.
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In Example 2.3 a gamma model for the uncensored data has been described.
Analogously to the approach above, we can determine the maximal log-likelihood
for the gamma model M3 in the parametrisation using μ and φ:

> ## implement the (log) likelihood in the gamma model:

> gammaLik <- function(muphi, log = TRUE){

mu <- muphi[1]

phi <- muphi[2]

loglik <- with (pbcTreat,

sum(d * dgamma (time,

shape = mu / phi,

scale = phi,

log = TRUE) +

(1 - d) * pgamma (time,

shape = mu / phi,

scale = phi,

lower.tail = FALSE,

log.p = TRUE)))

if(log)

{

return(loglik)

} else {

return(exp(loglik))

}

}

> start <- c (1000, 1000)

> resultGamma <- optim(start, gammaLik, control=list(fnscale=-1),

hessian=TRUE)

> logLikGamma <- resultGamma$value

> logLikGamma

[1] -424.0047

This is almost the same value as for the Weibull model. Also the gamma model is a
generalisation of the exponential model, which is obtained when μ = φ. Hence, we
can test this null hypothesis with the generalised LR statistic

W31 = 2
{

max
M3

l(θ) − max
M1

l(θ)
}

= 2
{−424.0047 − (−424.0243)

}= 0.0393

and obtain the same P -value 0.84 as before, with the same conclusion that there is
no evidence against the exponential model. �

The LR statistic is a valuable method for model selection and is frequently used.
However, for several reasons, it is not appropriate as a general method for model
selection. First, only nested models can be compared, the comparison of non-nested
models is not possible. For example, the LR statistic cannot be used to choose be-
tween the Weibull and the gamma model in Example 7.1 since none of the two
models can be written as a special case of the other. Second, the procedure is based
on a significance test, so it is asymmetric in nature: it can only provide evidence
against, but not for, the simpler model. Finally, the LR test cannot be generalised
to a comparison of more than two models, it can only be used for pairwise model
comparisons.
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The form of the LR statistic indicates that the maximal value of the likelihood
function under the respective model maxMi

L(θ) is the central quantity for model
selection. However, a more complex model, in which the simpler model is nested,
will always increase the likelihood at the corresponding MLE. It is therefore not a
sensible strategy to choose the model with the largest maximal likelihood because
one would always select the most complex model. Ultimately, the dimensions of the
different models also have to be taken into account.

The penalisation of model complexity is in line with William of Ockham, whose
famous quotation of 1320

“Pluralitas non ponenda est sine necessitate”
(plurality should not be posited without necessity)

was later interpreted statistically under the name Ockham’s razor. John Ponce of
Cork, for example, wrote in 1639:

“Variation must be taken as random until there is positive evidence to the contrary; and
new parameters in laws, when they are suggested, must be tested one at a time unless there
is specific reason to the contrary.”

We will see that all approaches to model selection that are described in this chap-
ter, i.e. both likelihood methods (Sect. 7.1) and Bayesian methods (Sect. 7.2), do
indeed penalise model complexity somehow. As a more fundamental question we
have to discuss if there even is a “true” model or if all models are more or less bad
descriptions of the available data. This aspect is reflected in Sect. 7.2.4, where not
one single model is chosen, but where results from different models are combined.

7.1 Likelihood-Based Model Selection

The value of the likelihood function at the MLE θ̂ML describes the quality of the
model fit. This value will in the following be combined with measures of model
complexity resulting in different model selection criteria, which allow the compar-
ison of non-nested models. The measure of model complexity will in some form
depend on the dimension p of the parameter vector θ . The model with the best
value of the criterion is then chosen as the best model. Note that it now crucial to
include all multiplicative constants in the likelihood since otherwise the comparison
of two models based on a likelihood criterion is meaningless.

7.1.1 Akaike’s Information Criterion

Akaike’s information criterion (after Hirotugu Akaike, 1927–2009)

AIC = −2l(θ̂ML) + 2p (7.1)

penalises the maximised log-likelihood with the number of parameters p. The crite-
rion is negatively oriented, i.e. the model with minimal AIC is selected. Therefore,
a difference of 2q is sufficient for a model with q additional parameters to be pre-
ferred. For example, for q = 1, a difference of 2 is sufficient, which corresponds
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Table 7.1 P -value thresholds based on the LR statistic with q degrees of freedom, which corre-
spond to model selection based on AIC with penalty 2q

q 1 2 3 4 5 6 7 8

P -value 0.16 0.14 0.11 0.092 0.075 0.062 0.051 0.042

to a P -value of 0.16 for the comparison of two nested models using the LR test.
For q = 2, the corresponding P -value is 0.14. Table 7.1 shows that the correspond-
ing P -values decrease with increasing q . This indicates that model selection based
on AIC is not equivalent to or compatible with model selection based on the LR
statistic.

Example 7.2 (Analysis of survival times) For comparing the three survival models
with AIC, we take the maximised log-likelihood values from Example 7.1 and the
number of parameters (2 for the gamma and Weibull models and 1 for the expo-
nential model), and obtain the AIC values 850.0486, 852.0087 and 852.0094 for
M1, M2 and M3, respectively. The conclusion is the same as before: the exponential
model M1 is preferred because it has the smallest AIC. The Weibull model M2 and
the gamma model M3 have nearly the same AIC values. �

The original derivation of Akaike’s information criterion is a generalisation of
the maximum likelihood principle from parameter estimation to model selection.
We will now sketch why this is so. In general, we must assume that none of the
proposed models f (x; θ) will match the true data-generating model g(x) exactly.
Then the models are misspecified. The true density g(x) is unknown, and we want to
approximate it as good as possible with one of the parametric models, i.e. we want
a model that is as close as possible to the underlying true mechanism. We restrict
our attention to a random sample X1:n from g(x).

We measure the closeness between the two densities g(x) and f (x; θ) with the
Kullback–Leibler discrepancy (see Appendix A.3.8):

D
(
g ‖ f (·; θ)

)=
∫

g(x) log

{
g(x)

f (x; θ)

}
dx

=
∫

g(x) logg(x)dx −
∫

g(x) logf (x; θ) dx

= Eg

{
logg(X)

}− Eg

{
logf (X; θ)

}
. (7.2)

Since g is fixed but unknown, minimisation of (7.2) reduces to maximising the mean
log-likelihood Eg{logf (X; θ)}, which also depends on the unknown distribution g.
For a fixed model, let θ0 denote the resulting optimal (“least false”) parameter value.
If the model is actually correct, then g(x) and f (x; θ0) are identical. Consider now
the MLE θ̂ML, that maximises the log-likelihood l(θ;x1:n) =∑n

i=1 logf (xi; θ). Due
to the law of large numbers (Appendix A.4.3), we have

1

n
l(θ;X1:n)

D−→ Eg

{
logf (X; θ)

}
,
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and thus θ̂ML → θ0 as n → ∞. This perspective justifies the use of the MLE even
in settings when model misspecification is suspected. Moreover, the MLE can now
be viewed as the parameter estimate which minimises approximately the Kullback–
Leibler discrepancy to the truth: When the true distribution g is replaced with the
empirical distribution ĝn of the data, we have Eĝn

{logf (X; θ)} = 1
n
l(θ;x1:n).

Now consider a collection of parametric models f (x; θ), from which we want
to select the best approximating one. Again, we study the closeness of the models
to the truth via the Kullback–Leibler discrepancy. From above we know that the
MLE is a good estimate of the optimal parameter within one model, so we consider
D(g ‖ f (·; θ̂ML(X1:n))). We emphasise that this is a random variable depending on
the data X1:n through the ML estimator θ̂ML(X1:n). Since we would like to select a
model that works well for new data Y , i.e. for predictive purposes, we would like
to choose the model that minimises the expected Kullback–Leibler discrepancy. To
this end, we only need to estimate the expectation of the mean log-likelihood

K = Eg

{
M(X1:n)

}= Eg

[
Eg

{
logf

(
Y ; θ̂ML(X1:n)

)}]
(7.3)

because the first term in the Kullback–Leibler discrepancy (7.2) does not depend on
the model. The inner expectation in (7.3) computes the mean log-likelihood M with
respect to the data Y , while the outer expectation is taken with respect to the inde-
pendent random sample X1:n from g. Replacing g with the empirical distribution ĝn

in (7.3), we obtain the estimate

K̂ = Eĝn

{
1

n
l
(
θ̂ML(X1:n);x1:n

)}= 1

n
l
(
θ̂ML(x1:n);x1:n

)
.

It is intuitively clear that this estimate will be biased because we have used the same
data x1:n = (x1, . . . , xn) twice, both for estimating the mean log-likelihood and for
estimating its expectation. The AIC thus includes a bias correction for this estimate:
We will now show that

E(K̂ − K) ≈ p/n, (7.4)

where p is the number of parameters in the model, so that the bias-corrected esti-
mate is

K̂ − p/n = 1

n

{
l(θ̂ML) − p

}= − 1

2n
AIC. (7.5)

Hence, choosing the model that minimises the AIC is approximately the same as
minimising the expected Kullback–Leibler discrepancy to the truth.

To prove Eq. (7.5), we use a Taylor expansion of logf (x; θ̂ML) around θ0. The
difference between the estimate K̂(X1:n) and the mean log-likelihood M(X1:n) can
now be approximated by

K̂ − M ≈ 1

n

n∑
i=1

Zi + (θ̂ML − θ0)
�G1(θ̂ML − θ0), (7.6)
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where G1 = Eg{I 1(θ0;X)} is the expected unit information. Since the random vari-
ables Zi = logf (Xi; θ0) − Eg{logf (X; θ0)} have zero mean, the expectation of
(7.6) reduces to the expectation of the quadratic form (θ̂ML − θ0)

�G1(θ̂ML − θ0).
Analogously to the case in Sect. 4.2.3 where the model is correctly specified, there
is the following more general result for the distribution of the ML estimator in case
of model misspecification:

√
n(θ̂ML − θ0)

D−→ G−1
1 U ,

where U = S(θ0;X1:n)/
√

n
a
∼ Np(0,H 1) due to the central limit theorem (cf. Ap-

pendix A.4.4), because Eg{S1(θ0;X)} = 0 and H 1 = Covg{S1(θ0;X)}. Hence, we
have

(θ̂ML − θ0)
�G1(θ̂ML − θ0)

D−→ 1

n
U�G−1

1 G1G
−1
1 U = 1

n
U�G−1

1 U . (7.7)

Using the approximate normal distribution of U and a result from Appendix A.2.4,
we obtain

Eg

(
U�G−1

1 U
)≈ tr

(
G−1

1 H 1
)= p∗, (7.8)

where p∗ can be interpreted as a generalised parameter dimension. Note that
G1 = H 1 = J 1(θ0) is the expected unit Fisher information in the case where the
model is correctly specified. Then we have exactly p∗ = tr(Ip) = p, the number of
parameters in the model. This directly leads to (7.4). However, even in the case of
misspecification, the AIC approximation p∗ ≈ p is justifiable. More sophisticated
estimates of (7.8) are only rarely used in practice and may have larger variance.

7.1.2 Cross Validation and AIC

Recall that the plain value l(θ̂ML) cannot be used as a model selection criterion since
the value of the maximal log-likelihood automatically increases for a more complex
model. The underlying problem is that the available data x1:n are used twice: on the
one hand, to calculate the estimate θ̂ML(x1:n) and, on the other hand, to calculate
the model selection criterion, the log-likelihood l(θ;x1:n). A better approach is to
divide the data into a training and a validation sample. The training sample is used
to estimate the parameters, and the validation sample is used to evaluate the model
selection criterion. The splitting into training and validation part is then repeated
such that each observation is contained once in a training sample, and the average
value of the model criterion is calculated. Instead of an automatic increase, for more
complex models, this average will decrease once the model is overfitted. This quite
general method is known as cross validation.

AIC can approximately be interpreted as a cross validation criterion, as explained
in the following. Suppose that in each cross validation iteration only one observation
(xi ) is left out to create the validation sample and the remaining observations (x−i )
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constitute the training sample. In general, this is called leave-one-out cross valida-
tion. Then it turns out that the resulting cross-validated average log-likelihood

K̂CV = 1

n

n∑
i=1

l
(
θ̂ML(x−i );xi

)
(7.9)

is an approximately unbiased estimate of the expected mean log-likelihood (7.3).
This is intuitive because

Eg(K̂CV) = 1

n

n∑
i=1

Eg

[
Eg

{
logf

(
Y ; θ̂ML(X1:(n−1))

)}]≈ 1

n
nK = K

for large sample sizes n. That means that both the scaled AIC (7.5) and the cross-
validated average log-likelihood (7.9) are approximately unbiased estimates of K

and are hence equivalent model selection criteria for large sample sizes.

Example 7.3 (Analysis of survival times) We can compute the cross-validated av-
erage log-likelihood values (7.9) for the three survival models by a simple adapta-
tion of the R-functions to compute the log-likelihood: Each function obtains an ad-
ditional subset argument, which gives the indices of the data points that are used
to compute the log-likelihood. Looping over all observations i = 1, . . . , n, for each
observation xi , the MLE is computed with the remaining observations x−i , and the
log-likelihood is evaluated at this estimate for the observation xi . As an example,
we show R-code for the gamma model:

> ## Copy function gammaLik to gammaLik2, add an argument "subset" and

> ## replace "pbcTreat" by "pbcTreat[subset, , drop=FALSE]" in the function.

> cvLogliksGamma <- numeric(nrow(pbcTreat))

> for(i in seq_len(nrow(pbcTreat)))

{

## compute the MLE from the training sample:

subsetMle <- optim(c(1000, 1),

gammaLik2,

log=TRUE,

subset=

setdiff(x=seq_len(nrow(pbcTreat)),

y=i),

control=list(fnscale=-1),

hessian=TRUE)

stopifnot(subsetMle$convergence==0)

subsetMle <- subsetMle$par

## compute the log-likelihood for the validation observation:

cvLogliksGamma[i] <- gammaLik2(subsetMle,

log=TRUE,

subset=i)

}

> meanCvLoglikGamma <- mean(cvLogliksGamma)

Averaging these values for each model as in the last R-code line, we obtain −4.5219,
−4.5330 and −4.5331 for the models M1, M2 and M3, respectively. On the other
hand, if we scale the AIC values from Example 7.2 by dividing with −2n, we obtain
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−4.5215, −4.5320 and −4.5320. These values are very close to the cross-validated
average log-likelihood values. �

We now sketch a proof of the equivalence of the cross-validated average log-
likelihood and AIC. This can also be seen as an alternative derivation of the AIC.
Let θ̂ i = θ̂ML(X−i ) denote the ML estimator in the ith cross validation iteration, and
write li (θ) = logf (xi; θ), Si (θ) = ∂

∂θ li (θ) for the log-likelihood and score vector
contribution of the ith observation, respectively. Using a first-order Taylor expan-
sion of li (θ̂ i ) around the ML estimator θ̂ML = θ̂ML(X1:n) based on the complete data
X1:n, we obtain

nK̂CV =
n∑

i=1

li (θ̂ i )

=
n∑

i=1

li (θ̂ML) + ∂

∂θ� li
(
θ∗

i

)
(θ̂ i − θ̂ML)

= l(θ̂ML) +
n∑

i=1

Si

(
θ∗

i

)�
(θ̂ i − θ̂ML), (7.10)

where θ∗
i lies somewhere on the line between θ̂ML and θ̂ i (see Appendix B.2.3). We

also use a Taylor expansion around θ̂ML to rewrite the score vector as

S(θ̂ i ) = ∂

∂θ
l(θ̂ i )

= ∂

∂θ
l(θ̂ML) + ∂2

∂θ∂θ� l
(
θ∗

i

)
(θ̂ i − θ̂ML)

≈ 0 − nG1(θ̂ i − θ̂ML). (7.11)

Replacement of the observed information − ∂2

∂θ∂θ� l(θ i ) at θ i = θ∗
i by the expected

information nG1 at θ0 is justified because θ∗
i → θ0 as for n → ∞ due to θ̂ i →

θ̂ML → θ0. Since θ̂ i maximises the reduced data log-likelihood
∑

j �=i lj (θ) = l(θ)−
li (θ), we know that its derivative evaluated at θ̂ i is zero: S(θ̂ i )−Si (θ̂ i ) = 0. Hence,
also Si (θ̂ i ) is approximately (7.11), which yields

θ̂ i − θ̂ML ≈ −1

n
G−1

1 Si (θ̂ i ).

If we plug this into (7.10), we obtain

nK̂CV ≈ l(θ̂ML) − 1

n

n∑
i=1

Si

(
θ∗

i

)�
G−1

1 Si (θ̂ i )
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= l(θ̂ML) − 1

n

n∑
i=1

tr
{
G−1

1 Si (θ̂ i )Si

(
θ∗

i

)�} (7.12)

≈ l(θ̂ML) − tr
(
G−1

1 H 1
)
, (7.13)

≈ l(θ̂ML) − p = −1

2
AIC, (7.14)

where we used properties of the trace operation (see Appendix B.1.1) in (7.12).
In (7.13) we replaced the observed score “covariance” matrix Si (θ̂ i )Si (θ

∗
i )

� with
the expected one H 1, arguing again with the convergence of θ∗

i and θ̂ i to θ0. This
approximation is the same as in the AIC derivation, and we again replaced the trace
by the dimension p in (7.14) to arrive at the scaled AIC.

7.1.3 Bayesian Information Criterion

As an alternative, the Bayesian information criterion

BIC = −2l(θ̂ML) + p log(n)

is frequently used, where n denotes the size of the sample. Half of the negative BIC
is also known as the Schwarz criterion. It has the same orientation as AIC, such that
models with smaller BIC are preferred. It penalises model complexity in general (i.e.
if log(n) ≥ 2 ⇔ n ≥ 8) more distinctly than AIC. A derivation of BIC is outlined in
Sect. 7.2.2.

Example 7.4 (Hardy–Weinberg equilibrium) In Example 5.17 we used the LR test
to test the presence of the Hardy–Weinberg equilibrium for the MN blood group
frequencies from Iceland. The value of the test statistic was W = 1.96 with one
degree of freedom, which corresponds to a P -value of 0.16. We conclude that there
is no evidence against the assumption of the Hardy–Weinberg equilibrium.

The corresponding maximal values of the log-likelihood have been −754.17 in
the case of the Hardy–Weinberg equilibrium with one free parameter and −753.19
in the trinomial model with two free parameters. The corresponding AIC val-
ues hence are 2 · 754.17 + 2 = 1510.34 and 2 · 753.19 + 4 = 1510.38. AIC is
therefore preferring the Hardy–Weinberg equilibrium, where the difference to the
trinomial model is admittedly minimal. The use of BIC leads to a more clear-
cut difference. With n = 747 and thus log(n) ≈ 6.62, we obtain BIC values of
2 · 754.17 + 6.62 = 1514.96 and 2 · 753.19 + 2 · 6.62 = 1519.61 for the Hardy–
Weinberg and the trinomial model, respectively. The Hardy–Weinberg model is
clearly preferred to the trinomial model.

Now we evaluate if the Hardy–Weinberg equilibrium with υ = 1/2 is present or
if υ �= 1/2. The LR statistic is 29.05 (P -value < 0.0001), so there is strong evidence
against H0 : υ = 1/2. This is in accordance with the standard error of υ̂ML, which
allows us to obtain a 95 % Wald confidence interval for υ . This goes from 0.545 to
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0.595, so it does not contain the value υ = 0.5. Due to p = 0 parameters, AIC and
BIC are identical and equal to twice the negative value of the log-likelihood: AIC =
BIC = 1537.39, substantially larger than for the Hardy–Weinberg equilibrium and
for the saturated trinomial model. Hence in this example, both AIC and BIC support
the assumption of the Hardy–Weinberg equilibrium. �

Example 7.5 (Analysis of survival times) We can also use BIC to compare the
three survival models. Since we have n = 94 observations, we get p log(n) = 4.54p

as the penalty term instead of 2p for the AIC, which we used in Example 7.2. We
obtain the BIC values 852.5919, 857.0953 and 857.0960 for models M1, M2 and
M3, respectively. Now the difference between the more complex models M2, M3

and the simpler model M1 is larger due to the larger penalty factor. However, the
conclusion remains unchanged. �

BIC is very similar to AIC in that it is composed of the model fit measured
by the maximised log-likelihood l(θ̂ML) and a penalty term incorporating the model
complexity measured by the number of parameters p. However, the penalty is higher
in BIC, where p is multiplied by log(n) instead of the factor 2 in the AIC. The
question is now how this affects the statistical properties of AIC and BIC.

As in the derivation of the AIC, let us assume that none of the models
M1, . . . ,MK under study corresponds to the true model g(x) that generated the
data. That means that we cannot pick a model Mk such that f (x; θ ,Mk) = g(x) for
some parameter value θ . Therefore, we would like to pick a model that is closest
to the truth in terms of the Kullback–Leibler discrepancy. If we use AIC or BIC to
guide this decision, the probability that we pick the model reaching the minimum
Kullback–Leibler discrepancy goes to one with increasing sample size n.

However, there might be multiple models that are closest to the truth. In that case,
we would like to pick the model that is most parsimonious, i.e. has the smallest num-
ber of parameters p among the closest models. If we use BIC for model selection,
the probability that we pick the closest and most parsimonious model goes also to
one with increasing sample size n. In contrast, the AIC does not guarantee this kind
of model selection consistency. That means, AIC may select models that are too
complex. This overfitting tendency of the AIC is due to the penalty term’s inde-
pendence of the sample size n. For BIC, the complexity penalty is increasing for
growing n, which guards the criterion against overfitting.

7.2 Bayesian Model Selection

In comparison to likelihood-based model selection, Bayesian model selection incor-
porates two additional components. First, the prior distributions on the parameters
in the different models are taken into account by averaging the ordinary likelihood
with respect to the prior density to obtain the so-called marginal likelihood. The ra-
tio of marginal likelihoods of two models is the Bayes factor defined in Sect. 7.2.1.
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BIC can be seen as an approximation of the marginal likelihood; the asymptotic ar-
guments are outlined in Sect. 7.2.2. The other popular criterion, the AIC, also has a
Bayesian counterpart, which is described in Sect. 7.2.3. Second, the models them-
selves are assigned prior probabilities. After updating these probabilities with the
data, posterior model probabilities are obtained, which can also be used to average
over multiple models instead of selecting one of them. Model averaging is discussed
in Sect. 7.2.4.

7.2.1 Marginal Likelihood and Bayes Factor

From a Bayesian point of view, it is natural to assign prior probabilities Pr(M1)

and Pr(M2) when one has to select one of two models M1 and M2, where naturally
Pr(M1) + Pr(M2) = 1 has to be satisfied. After observing the data x, the question is
what the posterior model probabilities Pr(M1 |x) and Pr(M2 |x) are. Using Bayes’
theorem (see Appendix A.1.2), they are easily calculated as

Pr(Mi |x) = f (x |Mi)Pr(Mi)∑2
j=1 f (x |Mj)Pr(Mj )

, i = 1,2.

The posterior odds Pr(M1 |x)/Pr(M2 |x) can hence be written as the product
of the so-called Bayes factor BF12 = f (x |M1)/f (x |M2) and the prior odds
Pr(M1)/Pr(M2):

Pr(M1 |x)

Pr(M2 |x)
= f (x |M1)

f (x |M2)
· Pr(M1)

Pr(M2)
.

The Bayes factor can therefore be interpreted as the ratio of the posterior odds of
M1 and the prior odds of M1, i.e.

{
BF12 > 1
BF12 < 1

}
if the data x

{
increased
decreased

}
the probability of M1.

The Bayes factor is identical to the likelihood ratio if the models M1 and M2 are
completely specified, i.e. do not contain unknown parameters. Otherwise, the prior
predictive distribution

f (x |Mi) =
∫

f (x | θ i ,Mi) · f (θ i |Mi)dθ i , i = 1,2, (7.15)

has to be evaluated at the observed data x, where θ i is the unknown parameter vector
in model Mi . This value is called the marginal likelihood of the model Mi .

Marginal likelihood
The marginal likelihood f (x |M) of a model M is the value of the prior pre-
dictive distribution at the observed data x.
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Fig. 7.1 Evidence for M1
against M2 for different
Bayes factors BF12

For discrete data x, the marginal likelihood can therefore be interpreted as the prob-
ability of the data for a given model Mi . The marginal likelihood f (x |Mi) can be
derived by integration with respect to the prior distribution from the ordinary like-
lihood f (x | θ i ,Mi). Note that the prior distribution f (θ i |Mi) cannot be improper
since otherwise f (x |Mi) would be indeterminate.

The term Bayes factor has been coined by Irving John Good (1916–2009). For
numerical reasons, it is often the logarithm of the marginal likelihood or the Bayes
factor that is being calculated. For the interpretation of Bayes factors it is common
to use equidistant thresholds on the logarithmic scale, which form the basis of the
categories shown in Fig. 7.1.

Bayes factor
The Bayes factor BF12 is the ratio of marginal likelihoods of two models M1
and M2.

The integration in (7.15) can be avoided in conjugate families. The reason for this is
that f (x) = ∫ f (x | θ)f (θ) dθ (we leave out the additional conditioning on Mi for
readability) appears as denominator in the posterior distribution

f (θ |x) = f (x | θ)f (θ)

f (x)
,

and hence f (x) is simply

f (x) = f (x | θ)f (θ)

f (θ |x)
(7.16)
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Table 7.2 Summary of prior predictive distributions in conjugate settings

Likelihood f (x | θ) Prior f (θ) Prior predictive f (x)

Binomial beta beta-binomial

Poisson gamma Poisson-gamma

Exponential gamma gamma-gamma

Normal (variance known) normal normal

Normal (variance unknown) inverse gamma t distribution

Normal (both unknown) normal-gamma t distribution

for all θ ∈ Θ . Note that here the proportionality constants in f (x | θ), f (θ) and
f (θ |x) are important. However, these are known in conjugate cases, and Table 7.2
summarises the most common examples.

Example 7.6 (Hardy–Weinberg equilibrium) Under the assumption of a Be(α,β)

prior distribution for the parameter υ in the Hardy–Weinberg equilibrium, the pos-
terior distribution is given as

υ |x ∼ Be(α + 2x1 + x2, β + x2 + 2x3),

cf. Example 6.7. The marginal likelihood f (x) is hence calculated easily through:

f (x) = f (x |υ)f (υ)

f (υ |x)

=
n!

x1!x2!x3! (υ
2)x1{2υ(1 − υ)}x2{(1 − υ)2}x3 · 1

B(α,β)
υα−1(1 − υ)β−1

1
B(α+2x1+x2,β+x2+2x3)

υα+2x1+x2−1(1 − υ)β+x2+2x3−1

= n!
x1!x2!x3! · 2x2 B(α + 2x1 + x2, β + x2 + 2x3)

B(α,β)

= n!
x1!x2!x3! · 2x2�(α + β)

�(α)�(β)
· �(α + 2x1 + x2)�(β + x2 + 2x3)

�(α + β + 2n)
. (7.17)

Under the assumption of a Dirichlet prior distribution, i.e. π ∼ D3(α) with
α = (α1, α2, α3)

�, in the general trinomial model x ∼ M3(n,π) we obtain as a
prior predictive distribution the so-called multinomial Dirichlet distribution with
probability function

f (x) = n!�(
∑k

j=1 αj )∏k
j=1 �(αj )

·
∏k

j=1 �(α∗
j )

�(
∑k

j=1 α∗
j ) ·∏k

j=1 xj !
,

where α∗
j = αj + xj , cf. Appendix A.5.3.

Comparing the Hardy–Weinberg equilibrium model (M1) with the general trino-
mial model (M2) under Be(1,1) and D3((1,1,1)�) priors, respectively, we obtain
a Bayes factor of BF12 = 4.3, i.e. positive evidence for the simpler model M1 of
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the Hardy–Weinberg equilibrium. Comparing M1 with the model M3 that assumes
a factor υ = 1/2 in the Hardy–Weinberg equilibrium, we obtain a Bayes factor of
BF13 = 65 336 and hence very strong evidence for the more complex model M1. In
contrast to that, the use of Be(1/2,1/2) and D3((1/2,1/2,1/2)�) priors leads to
the Bayes factors BF12 = 5.8 and BF13 = 42 017, i.e. values of comparable size.

The analysis using the LR test in Example 7.4 gave a similar result: while there
was no evidence for model M2 against model M1, there was strong evidence for
model M2 against M3. �

Example 7.7 (Blood alcohol concentration) In Example 6.9 we have conducted in-
ference for the overall mean μ of the observed blood alcohol transformation factors,
where the corresponding variance σ 2 was assumed to be known. Now we would like
to compare both genders and calculate the posterior probability that the mean trans-
formation factor for women (μ1) is different than the one for men (μ2). To this end,
we compare two models, the first one having a single mean for the population and
the second one having gender-specific means.

Initially, we suppose that all observations, regardless of the subgroup they belong
to, are independent realisations of a normal distribution with unknown expected
value μ. We denote this model of no differences between subgroups as M1. For
simplicity, we assume that the estimated standard deviation of the underlying normal
distribution is known, i.e. κ−1/2 = 237.8; but conceptually the procedure is the same
in the case of unknown variance, see Exercise 3. As a prior for μ, we choose the
conjugate normal distribution with expected value ν = 2000 and standard deviation
δ−1/2 = 200. This means that we expect a priori with 95-% probability an average
transformation factor between 1600 and 2400. The marginal likelihood in this model
can be explicitly calculated as

f (x |M1) =
(

κ

2π

) n
2
(

δ

nκ + δ

) 1
2

exp

[
−κ

2

{
n∑

i=1

(xi − x̄)2 + nδ

nκ + δ
(x̄ − ν)2

}]
.

(7.18)
For the available data, we obtain a log marginal likelihood value of logf (x |M1) =
−1279.14.

We would like to compare the model M1 with a model allowing different ex-
pected values in the different subgroups. In this model M2, the data are partitioned
into the two gender groups, and in both groups a conjugate prior N(ν, δ−1) for μ1
and μ2 is used. The marginal likelihood for each group is then calculated anal-
ogously to above, where of course only the data belonging to each subgroup are
included in the calculation. If we suppose furthermore that μ1 and μ2 are a pri-
ori independent, then the marginal likelihood of the model M2 is given as the
product of the marginal likelihood values within both subgroups. For the available
data, we obtain the value logf (x |M2) = −1276.11, i.e. a higher value than for
model M1. The Bayes factor of the model M2 compared to the model M1 is hence
BF21 = exp{−1276.11 − (−1279.14)} = 20.6, strongly indicating that the model
M2 better describes the data. In other words, there is strong evidence for a differ-
ence in the average transformation factor between genders. Assigning both models
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the same prior probability Pr(M1) = Pr(M2) = 0.5, we obtain the posterior proba-
bilities Pr(M1 |x) = 0.0463 and Pr(M2 |x) = 0.9537.

In this example, the posterior probabilities are ordered according to the number
of unknown parameters in the model, i.e. higher flexibility in the model is rewarded
with higher posterior probability. However, we emphasise that Bayesian model se-
lection does not automatically favour the more complex model, see Example 7.8.
This aspect will be discussed in more detail in Sect. 7.2.2. �

Bayesian model selection strongly depends on the prior distribution for the
model parameters. While for Bayesian estimation of parameters the influence of
the prior distribution is asymptotically negligible for large samples, this is not true
for Bayesian model selection. We already saw that the definition of the marginal
likelihood does not allow improper priors. Of course, one could use proper but very
vague (i.e. having large variation) priors that are still integrable. However, such an
approach should be discouraged since it can be shown that for ever increasing prior
variation, the posterior probability of the simplest model will always converge to 1,
regardless of the information in the data. This phenomenon is known as Lindley’s
paradox and prohibits the use of vague prior distributions in Bayesian model selec-
tion.

Example 7.8 (Blood alcohol concentration) If we repeat the analysis from Exam-
ple 7.7 using a prior variance of δ−1 = 1010, then the simpler model M1 has the
posterior probability 0.8360. Using δ−1 = 10100, the posterior probability of M1 is
effectively equal to 1. �

7.2.2 Marginal Likelihood and BIC

AIC and BIC criteria are frequently used for model selection in classical approaches.
Both combine the maximised log-likelihood with a term penalising the number
of parameters in the model. The penalisation term receives more weight in BIC
than in AIC. Model selection based on BIC is actually asymptotically equivalent
to Bayesian model selection based on the marginal likelihood as described in the
following.

For a model with parameter θ of dimension p, we can write the marginal likeli-
hood f (x1:n) of the realisation x1:n from a random sample X1:n as

f (x1:n) =
∫

f (x1:n | θ)f (θ) dθ

=
∫

exp
{
logf (x1:n | θ) + logf (θ)

}
dθ

=
∫

exp
{−nk(θ)

}
dθ,
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where k(θ) = −{logf (x1:n | θ) + logf (θ)}/n and −nk(θ) is the non-normalised
log-posterior density. To this representation we can apply the Laplace approxima-
tion (see Appendix C.2.2). The minimum θ̃ of k(θ) is a maximum of −nk(θ) and
hence equal to the posterior mode. Denoting the Hessian of k at the point θ̃ by K

(see Appendix B.2.2), we obtain the following approximation for the log-marginal
likelihood:

logf (x1:n) ≈ log

[(
2π

n

) p
2 |K|− 1

2 exp
{−nk(θ̃)

}]

= p

2
log(2π) − p

2
log(n) − 1

2
log|K| + logf (x1:n | θ̃) + logf (θ̃).

The terms p/2 · log(2π) and logf (θ̃) can be neglected if the sample size n is large.
Further, one can show that the determinant |K| of the p × p Hessian is bounded
from above by a constant and is hence also negligible. The contribution of the prior
to the posterior is also small for large n, so we can replace θ̃ with the MLE θ̂ML (see
Sect. 6.6.2). Combining these approximations, we obtain the Bayesian information
criterion of Sect. 7.1.3

−2 logf (x1:n) ≈ BIC = −2 logf (x1:n | θ̂ML) + p log(n).

The error of this approximation is of order O(1) under certain regularity con-
ditions (see Appendix B.2.6), so is constant for increasing sample size. However,
the values of the log marginal likelihood and BIC are increasing with larger sample
size, so the relative error decreases with increasing sample size n:

2 logf (x1:n) − BIC

2 logf (x1:n)
→ 0.

Hence, in the same way as the prior becomes less important compared to the likeli-
hood in its contribution to the posterior, so does the BIC approximation improve for
increasing sample sizes. Therefore, selecting the model with smallest BIC is indeed
asymptotically equivalent to selecting the maximum a posteriori (MAP) model with
the largest posterior model probability.

We note that exp(−BIC/2) can be interpreted as an approximate marginal likeli-
hood, from which posterior probabilities can be calculated. Moreover, half the dif-
ference of the BIC values of two different models is an approximation of the log
Bayes factor. The Bayes factor, as a ratio of two marginal likelihoods, incorporates
the parameter priors, which even for large sample sizes have a non-negligible in-
fluence on the marginal likelihood. However, it is important to recall that in the
calculation of BIC these priors do not enter. Posterior probabilities derived from
BIC values will therefore in general only be rough approximations of those derived
from full Bayesian approaches. In the following example the agreement is rather
good, though.
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Example 7.9 (Blood alcohol concentration) We intend to evaluate how an ap-
proximate Bayesian model selection procedure based on BIC performs compared
to an exact Bayesian approach. We obtain BIC values of 2553.6 and 2546.7 for
the models M1 and M2 resulting in approximate log-marginal likelihood values
of f (x |M1) ≈ −1276.8 and f (x |M2) ≈ −1273.4. Qualitatively, these values are
similar to the values obtained in Example 7.7. Transforming the BIC values to pos-
terior model probabilities while assuming equal prior model probabilities, we obtain
Pr(M1 |x) ≈ 0.0307 and Pr(M2 |x) ≈ 0.9693. These values are again quite close to
the results of Example 7.7.

As a comparison, the AIC values of the two models M1 and M2 are respectively
2550.4 and 2540.3, and hence again model M2 is preferred. �

We noted above that the accuracy of the BIC approximation to the log marginal
likelihood is of order O(1) in general. For a specific choice of a parameter
prior, the accuracy is higher: Using the so-called unit information prior, we have
−2 logf (x) − BIC = O(n−1/2), that the approximation error gets smaller for in-
creasing sample size. The unit information prior

θ ∼ Np

(
θ0,J 1(θ0)

−1),
contains as much information as one unit of the data, quantified by the expected unit
Fisher information J 1(θ0) at the prior mean θ0. This approach can be extended to
the case where the models to be compared have a common nuisance parameter.

Example 7.10 (Normal model) Assume the normal model N(μ,σ 2) with unknown
mean μ and known variance σ 2 for the random sample X1:n, as we did in Exam-
ple 6.8. From Example 2.9 we know that the expected unit Fisher information is
J1(μ) = 1/σ 2. Hence, the unit information prior is

μ ∼ N
(
μ0, σ

2)

and thus has the same variance as the likelihood, to which it is also conjugate. The
log marginal likelihood can easily be derived from Eq. (7.18):

logf (x1:n) = n

2
log

(
κ

2π

)
− 1

2
log(n + 1) − κ

2

{
n∑

i=1

(xi − x̄)2 + n

n + 1
(x̄ − μ0)

2

}
,

where κ = 1/σ 2 denotes the precision.
We obtain BIC by plugging the MLE μ̂ML = x̄ into the normal log-likelihood and

accounting for the p = 1 parameter:

BIC = −2l(μ̂ML) + log(n) = n log

(
2π

κ

)
+ κ

n∑
i=1

(xi − x̄)2 + log(n).
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The difference of the scaled log-marginal likelihood and BIC is hence

−2 logf (x1:n) − BIC = log(n + 1) + κ
n

n + 1
(x̄ − μ0)

2 − log(n)

= log

(
n + 1

n

)
+ κ

n

n + 1
(x̄ − μ0)

2.

Now, as n → ∞, we have (n + 1)/n → 1, and thus the log term goes to zero.
Moreover, κn/(n + 1) goes to κ . Furthermore, we need the assumption that μ̂ML

converges to μ0 at an appropriate rate, which holds if μ0 is the true mean parameter
(this assumption can also be relaxed for the alternative model). Then (x̄ − μ0)

2 will
also be small for large enough sample size n. �

7.2.3 Deviance Information Criterion

An alternative to BIC is the deviance information criterion

DIC = −2l(θ̄) + 2pD,

where θ̄ = E(θ |y) is the posterior mean of the parameter vector, and pD is an es-
timate of the effective number of parameters in the model. Note that this resembles
very much the AIC definition in (7.1). pD is defined as the posterior expected de-
viance

pD = E
{
D(θ , θ̄) |y}=

∫
D(θ , θ̄)f (θ |y)dθ,

where

D(θ , θ̄) = 2
{
l(θ̄) − l(θ)

}
is the deviance of θ versus the point estimate θ̄ . While analytic computation of
DIC is rarely possible, it can easily be approximated if parameter samples, say
θ (1), . . . , θ (B), from the posterior are available. Then θ̄ ≈ B−1∑B

b=1 θ (b) is approx-
imated by the average of the samples, and pD ≈ B−1∑B

b=1 D(θ (b), θ̄) is approxi-
mated by the average of the sampled deviances. See Sect. 8.3 for more details.

The proximity of DIC to AIC can be established as follows. Using a second-order
Taylor expansion of D(θ , θ̄) in θ around θ̄ as e.g. in (5.4) in Sect. 5.1, we obtain the
approximation

D(θ , θ̄) ≈ (θ − θ̄)�I (θ̄)(θ − θ̄).

Using the asymptotic normality of the posterior from Sect. 6.6.2, we have θ |y a
∼

Np(θ̄ , I (θ̄)−1) for large sample sizes. Therefore, we have

(θ − θ̄)�I (θ̄)(θ − θ̄)
D−→ U�G−1

1 U .
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This is analogous to (7.7) in the AIC derivation. From the AIC derivation we know
that the expected value of the right-hand side is p∗ = tr(G−1

1 H 1). Hence, pD ≈ p∗
and DIC ≈ AIC for large sample sizes under the regularity conditions in Sect. 6.6.

Example 7.11 (Hardy–Weinberg equilibrium) We now want to use DIC to decide
between the Hardy–Weinberg model and the trinomial model for the blood group
frequencies x1 = 233, x2 = 385 and x3 = 129 from Sect. 1.1.4. In Example 6.7 we
have seen that the beta prior is conjugate to the Hardy–Weinberg model with log-
likelihood kernel

l(υ) = (2x1 + x2) log(υ) + (x2 + 2x3) log(1 − υ)

derived in Example 2.7. We choose a uniform prior for υ , i.e. υ ∼ Be(1,1), which
results in the posterior

υ |x ∼ Be(1 + 2x1 + x2,1 + x2 + 2x3).

In Example 6.20 we have seen that the Dirichlet prior is conjugate to the trinomial
likelihood

l(π) = x1 log(π1) + x2 log(π2) + x3 log(π3),

cf. Example 5.2. Again we choose a uniform prior on the probability simplex, i.e.
π ∼ D3(1,1,1). This results in the posterior

π |x ∼ D3(1 + x1,1 + x2,1 + x3).

In Example 8.8 we will compute the DIC values for these two models using
samples from the posterior distributions. Note that the posterior expectations are
analytically available because we are working with conjugate priors. Moreover, the
same log-likelihood constants must be used in both models: If we directly used the
log-likelihood kernel from above for the Hardy–Weinberg model, then we would
miss the constant x2 log(2), which is incorporated in the trinomial log-likelihood.
Then the DIC values would no longer be on the same scale.

The resulting values, 1510.33 for the Hardy–Weinberg model and 1510.37 for
the trinomial model, are very close to the AIC values determined in Example 7.4.
The reason is that the uniform prior we have used has only little information com-
pared to the information from the data. Therefore, the posterior expectations of the
parameters are almost identical to the MLEs. Also, the estimated numbers of pa-
rameters (pD = 0.99 and 1.99 for the two models) are almost identical to the true
numbers of parameters (1 and 2) for both models. �

7.2.4 Model Averaging

Suppose we have computed the posterior probabilities

Pr(Mk |x) = Pr(x |Mk)Pr(Mk)∑K
j=1 Pr(x |Mj)Pr(Mj )
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of all models M1, . . . ,MK . The question arises what to do with these probabilities.
The answer involves again a discussion of the notion of a true model.

The simplest perspective is that the model collection contains the true model
generating the data. So we are sure that we have included the true model in our
collection, but we do not know which one of the models it is. Intuitively, one can
then choose the model with the highest posterior probability, the MAP-model. In
that case, one only uses the probabilities Pr(Mk |x) for ranking the models and picks
the model that is on top of the list. This approach can be justified using a decision-
theoretic view. Recalling Sect. 6.4.1, which introduced loss functions and resulting
optimal Bayes estimates, consider the zero–one loss function l(a, θ), where a is the
model choice, and θ is the true model. If we choose the true model, i.e. a = θ , then
we have zero loss, and in all other cases we have a positive loss of value one. Then
the Bayes estimate, which minimises the posterior expected loss, is the MAP-model.
Note that the “parameter” θ , which is in fact the model here, is discrete, so that we
do not have to work with an ε > 0 for defining the zero–one loss function.

The implicit use of the zero–one loss function for deciding on the optimal model
choice may be inappropriate if the models are close in their description of the data
generating process. More application-specific loss functions could be constructed,
which might lead to another model being chosen as the Bayes estimate. We do not
proceed further here with this discussion, but describe an alternative approach for
using the posterior model probabilities. Especially in situations where the posterior
model probabilities are quite similar in size, so that now a clear “winner” model
arises, choosing the MAP-model and discarding the other models appears as an
inappropriate approach. Do we really need to select a single model at all? What is
the ultimate goal of the statistical analysis? Often an unknown quantity, say λ =
h(θ), is the object of interest, and uncertainty statements about λ are the ultimate
goal of the statistical analysis. In that case, we can simply calculate the marginal
posterior distribution of λ, which is a discrete mixture of K model-specific posterior
distributions with weights given by the posterior model probabilities:

f (λ |x) =
K∑

k=1

f (λ |x,Mk) · Pr(Mk |x).

This is a Bayesian model average. It fully takes into account the model uncertainty
in the estimation of λ.

We can easily compute the model-averaged posterior expectation and variance
of λ, using the law of iterated expectations and the law of total variance from Ap-
pendix A.3.4, respectively. First, we have

E(λ |x) = E
{
E(λ |x,M)

}=
K∑

k=1

E(λ |x,Mk)Pr(Mk |x),

where the outer expectation is with respect to the distribution of M given x, i.e. the
posterior model distribution. Second, we have

Var(λ |x) = E
{
Var(λ |x,M)

}+ Var
{
E(λ |x,M)

}
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Table 7.3 Estimated mean transformation factors in the alcohol concentration data. The models
are M1: no difference between genders and M2: difference between genders

Gender Transformation factor within model

M1 M2 Model-averaged

Female 2445.8 2305.5 2311.9

Male 2445.8 2473.1 2471.9

= E
{
Var(λ |x,M) + E(λ |x,M)2}− [E{E(λ |x,M)

}]2

=
K∑

k=1

{
Var(λ |x,Mk) + E(λ |x,Mk)

2}Pr(Mk |x) − E(λ |x)2.

So we can easily compute the model-averaged central moments for the quantity
λ from the model-specific expectations E(λ |x,Mk) and variances Var(λ |x,Mk),
using the weights Pr(Mk |x) from the model average.

Example 7.12 (Blood alcohol concentration) In Example 7.7 the model M2 has
been determined as a MAP-model. The primary interest in this example, though, is
the average transformation factor μi in the two gender groups i = 1,2. For exam-
ple, in the model M2 the posterior mean transformation factor is μ̂1 = 2305.5 for
females. The estimates of the average transformation factors for both models are
given in Table 7.3. Additionally, the model-averaged estimates are given as well.
They are quite similar to the estimates obtained under the MAP-model M2 because
of its large posterior probability. The influence of the model M1 is negligible be-
cause it has a small posterior probability. �

The perspective we considered so far, which assumes that the true model is con-
tained in our chosen model space M1, . . . ,Mk , is known as “M-closed”. It is a rather
unrealistic perspective because the real world is almost always much more complex
than our simple statistical models. While often the most important and prevailing
features can be captured quite well with these models and we can proceed as if the
truth was included in the model space, sometimes this may not be adequate. For ex-
ample, we might have a more complicated model, say Mt , in which we believe in,
but need to restrict ourselves for some reason to simpler models M1, . . . ,MK . This
is the “M-completed” perspective, under which we might evaluate all simple mod-
els in the light of our belief model Mt . The computations are more intricate because
the expected losses of the possible model choices must be evaluated with respect to
the model Mt . Usually, this does not allow for closed-form solutions for the Bayes
estimates. The third case is the “M-open” perspective, which does not assume any
belief model at all. This cautious view leads to cross-validation as the only way to
evaluate the models.

While Bayesian model averaging arises naturally from integrating out the model
from the posterior distribution, there are also proposals for frequentist model aver-
aging. The weights for these frequentist model averages are usually derived from
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information criteria as for example AIC or BIC. For BIC, the rationale is due to the
fact that BIC is an approximation of twice the log marginal likelihood of a model,
see Sect. 7.2.2. Hence, we have

f (x |Mk) ≈ exp(−BICk/2),

where BICk denotes the BIC for the model Mk . Assuming a flat prior on the model
space, i.e. Pr(Mk) = 1/K , the weight wk for the model Mk is its resulting approxi-
mate posterior model probability

wk = exp(−BICk/2)∑K
j=1 exp(−BICj /2)

.

There are proposals to replace BIC with AIC for calculating the weights wk . Other
information criteria can be used as well in principle. However, the analogy to
Bayesian model averaging is lost, but frequentist properties of the resulting esti-
mators can still be studied.

7.3 Exercises

1. Derive Eq. (7.18).

2. Let Yi
ind
∼ N(μi, σ

2), i = 1, . . . , n, be the response variables in a normal re-
gression model, where the variance σ 2 is assumed known, and the conditional
means are μi = x�

i β . The design vectors xi and the coefficient vector β have
dimension p and are defined as for the logistic regression model (Exercise 17
in Chap. 5).
(a) Derive AIC for this normal regression model.
(b) Mallow’s Cp statistic

Cp = SS

s2
+ 2p − n

is often used to assess the fit of a regression model. Here SS =∑n
i=1(yi −

μ̂i)
2 is the residual sum of squares, and σ̂ 2

ML is the MLE of the variance
σ 2. How does AIC relate to Cp?

(c) Now assume that σ 2 is unknown as well. Show that AIC is given by

AIC = n log
(
σ̂ 2

ML

)+ 2p + n + 2.

3. Repeat the analysis of Example 7.7 with unknown variance κ−1 using the con-
jugate normal-gamma distribution (see Example 6.21) as a prior distribution
for κ and μ.
(a) First, calculate the marginal likelihood of the model by using the rear-

rangement of Bayes’ theorem in (7.16).
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(b) Next, calculate explicitly the posterior probabilities of the four (a pri-
ori equally probable) models M1 to M3 using an NG(2000,5,1,50 000)

distribution as a prior for κ and μ.
(c) Evaluate the behaviour of the posterior probabilities depending on vary-

ing parameters of the prior normal-gamma distribution.
4. Let X1:n be a random sample from a normal distribution with expected value μ

and known variance κ−1, for which we want to compare two models. In the first
model (M1) the parameter μ is fixed to μ = μ0. In the second model (M2) we
suppose that the parameter μ is unknown with prior distribution μ ∼ N(ν, δ−1),
where ν and δ are fixed.
(a) Determine analytically the Bayes factor BF12 of model M1 compared to

model M2.
(b) As an example, calculate the Bayes factor for the alcohol concentration

data using μ0 = 0, ν = 0 and δ = 1/100.
(c) Show that the Bayes factor tends to ∞ as δ → 0 irrespective of the data

and the sample size n.
5. In order to compare the models

M0 : X ∼ N
(
0, σ 2) and

M1 : X ∼ N
(
μ,σ 2)

with known σ 2, we calculate the Bayes factor BF01.
(a) Show that

BF01 ≥ exp

{
−1

2
z2
}

for arbitrary prior distribution on μ, where z = x/σ is standard normal
under the model M0. The expression exp(−1/2z2) is called the minimum
Bayes factor (Goodman 1999).

(b) Calculate for selected values of z the two-sided P -value 2{1 − Φ(|z|)},
the minimum Bayes factor and the corresponding posterior probability of
M0, assuming equal prior probabilities Pr(M0) = Pr(M1) = 1/2. Com-
pare the results.

6. Consider the models

M0 : p ∼ U(0,1) and

M1 : p ∼ Be(θ,1),

where 0 < θ < 1. This scenario aims to reflect the distribution of a two-sided
P -value p under the null hypothesis (M0) and some alternative hypothesis
(M1), where smaller P -values are more likely (Sellke et al. 2001). This is cap-
tured by the decreasing density of the Be(θ,1) for 0 < θ < 1. Note that the data
are now represented by the P -value.
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(a) Show that the Bayes factor for M0 versus M1 is

BF(p) =
{∫ 1

0
θpθ−1f (θ)dθ

}−1

for some prior density f (θ) for θ .
(b) Show that the minimum Bayes factor mBF over all prior densities f (θ)

has the form

mBF(p) =
{−ep logp for p < e−1,

1 otherwise,

where e = exp(1) is Euler’s number.
(c) Compute and interpret the minimum Bayes factor for selected values of

p (e.g. p = 0.05, p = 0.01, p = 0.001).
7. Box (1980) suggested a method to investigate the compatibility of a prior with

the observed data. The approach is based on computation of a P -value obtained
from the prior predictive distribution f (x) and the actually observed datum
xo. Small p-values indicate a prior-data conflict and can be used for prior
criticism.

Box’s p-value is defined as the probability of obtaining a result with prior
predictive ordinate f (X) equal to or lower than at the actual observation xo:

Pr
{
f (X) ≤ f (xo)

}
,

where X is distributed according to the prior predictive distribution f (x), so
f (X) is a random variable. Suppose that both likelihood and prior are normal,
i.e. X |μ ∼ N(μ,σ 2) and μ ∼ N(ν, τ 2). Show that Box’s p-value is the upper
tail probability of a χ2(1) distribution evaluated at

(xo − ν)2

σ 2 + τ 2
.
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In Chap. 6 we have combined likelihood functions with conjugate priors such
that calculation of the posterior distribution was analytically possible. Similarly,
Sect. 7.2 described Bayesian model choice based on closed formulas for the
marginal likelihood due to the conjugacy of prior and likelihood. A potential prob-
lem in the application of Bayesian inference to more complex (non-conjugate) mod-
els is the integration necessary to compute the normalising constant of the posterior
distribution in Bayes’ theorem, i.e. the marginal likelihood. The calculation of cer-
tain characteristics of the posterior distribution such as the posterior mean or mode
may require additional numerical techniques.

In this chapter we will discuss numerical techniques to perform such integrations.
We will first describe standard (deterministic) methods, in particular the Laplace
approximation. We will then move on to Monte Carlo and Markov chain Monte
Carlo methods, which enable us to avoid explicit integration by simulating from the
posterior distribution. Finally, we describe methods for numerical calculation of the
marginal likelihood, which is a central quantity in Bayesian model selection.
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8.1 Standard Numerical Techniques

Numerical integration techniques can be used if the dimension of the parameter
vector is small or modest. In addition, optimisation and root finding methods are
useful. Appendix C gives a summary of such techniques.

We will first sketch a general recipe to analyse a posterior distribution with nu-
merical techniques. The following pseudo code illustrates a general strategy to cal-
culate posterior quantities of interest. Although it uses the R language, it can easily
be adapted for any other programming language.

Suppose that a specific model implies a likelihood (or log-likelihood) function
L(θ) (or l(θ)) and that the prior density f (θ) is also known. These functions should
be implemented on the log scale:

> log.likelihood <- function(theta, data){...}

> log.prior <- function(theta){...}

It is often convenient to first derive the posterior mode Mod(θ |x) based on max-
imisation of the unnormalised posterior density L(θ) · f (θ) or, equivalently but nu-
merically preferable, the unnormalised log-posterior density l(θ) + logf (θ). It is
advisable (especially for application of the integration routines below) to allow vec-
tors of parameter values as input for this function. We can easily achieve this with
the Vectorize function in R:

> log.unnorm.posterior <- function(theta, data)

log.likelihood(theta, data) + log.prior(theta)

> log.unnorm.posterior <- Vectorize(log.unnorm.posterior, "theta")

> result.opt <- optimize(log.unnorm.posterior, maximum=TRUE, data=...,

lower=..., upper=...)

> post.mode <- result.opt$maximum

> ordinate <- result.opt$objective

The ordinate at the posterior mode can be used to scale the unnormalised log-
posterior such that it attains zero at the posterior mode and is negative everywhere
else. This typically stabilises the numerical integration necessary to obtain the nor-
malised posterior:

> unnorm.posterior <- function(theta, data)

exp(log.unnorm.posterior(theta, data) - ordinate)

> norm.const <- integrate(unnorm.posterior, data=...,

lower=..., upper=...)$value

> norm.posterior <- function(theta, data)

unnorm.posterior(theta, data) / norm.const

Note that the limits lower and upper must span the whole support of the pos-
terior. The posterior mean can of course also be obtained via numerical integration:

> post.mean <- integrate(function(theta) theta * norm.posterior(theta,

data=...),

lower=..., upper=...)$value

The posterior distribution function and its inverse, the quantile function, can be
implemented in the following scheme:
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> post.cdf <- function(x, data)

integrate(norm.posterior, data=data,

lower=..., upper=x)$value

> post.quantile <- function(q, data)

uniroot(function(x) post.cdf(x, data) - q,

lower=..., upper=...)$root

The quantile function can then be used to compute the posterior median and
equi-tailed credible intervals, e.g.:

> post.median <- post.quantile(0.5, data=...)

> post.ci <- function(gamma, data)

c(post.quantile((1 - gamma) / 2, data),

post.quantile((1 + gamma) / 2, data))

> post.95ci <- post.ci(0.95, data=...)

For the calculation of HPD intervals, see Example 8.9 for an illustration.
The following two examples illustrate the application in the context of the colon

cancer screening example, see Sect. 1.1.5.

Example 8.1 (Screening for colon cancer) It is not obvious if there is a conjugate
prior distribution for the truncated binomial likelihood from Example 2.12. The log-
likelihood was given in (2.7), and the data are N = 6, n = 196, Z1 = 37, Z2 = 22,
Z3 = 25, Z4 = 29, Z5 = 34 and Z6 = 49. An R implementation of the log-likelihood
function is taken from Example 2.12:

> ## Truncated binomial log-likelihood function

> ## pi: the parameter, the probability of a positive test result

> ## data: vector with counts Z_1, ..., Z_N

> log.likelihood <- function(pi, data)

{

n <- sum(data)

k <- length(data)

vec <- seq_len(k)

result <-

sum(data * (vec * log(pi) + (k - vec) * log(1 - pi))) -

n * log(1 - (1 - pi)^k)

return(result)

}

> log.likelihood <- Vectorize(log.likelihood, "pi")

If we choose the beta prior Be(0.5,0.5) for the sensitivity π and combine it with
the likelihood, we first obtain the unnormalised log posterior:

> log.prior <- function(pi)

dbeta(pi, 0.5, 0.5, log=TRUE)

> log.unnorm.posterior <- function(pi, data)

log.likelihood(pi, data) + log.prior(pi)

We can calculate the normalising constant in Bayes’ theorem numerically, which
leads to the posterior density shown in Fig. 8.1.

> ## the data:

> counts
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Fig. 8.1 Posterior density of
π using a π ∼ Be(0.5,0.5)

prior and a truncated
binomial likelihood for the
colon cancer screening data

[1] 37 22 25 29 34 49

> ## get posterior mode and its density ordinate:

> result.opt <- optimize(log.unnorm.posterior, maximum=TRUE, data=counts,

lower=0, upper=1)

> post.mode <- result.opt$maximum

> post.mode

[1] 0.6241869

> ordinate <- result.opt$objective

> ## use that to compute the normalised posterior density:

> unnorm.posterior <- function(pi, data)

exp(log.unnorm.posterior(pi, data) - ordinate)

> norm.const <- integrate(unnorm.posterior, data=counts,

lower=0, upper=1)$value

> norm.posterior <- function(pi, data)

unnorm.posterior(pi, data) / norm.const

Following further our general recipe from above, we can calculate the posterior
mean and median of π :

> ## posterior mean calculation as in the pseudo code:

> post.mean <- integrate(function(pi) pi * norm.posterior(pi, data=counts),

lower=0, upper=1)$value

> post.mean

[1] 0.6239458

> ## likewise for the cdf and quantile functions, and hence the median:

> post.cdf <- function(x, data)

integrate(norm.posterior, data=data,

lower=0, upper=x)$value

> ## numerical problems occur if we go exactly to the boundaries here,

> ## therefore go away some small epsilon:

> eps <- 1e-10

> post.quantile <- function(q, data)

uniroot(function(x) post.cdf(x, data) - q,

lower=0 + eps, upper=1 - eps)$root
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> post.median <- post.quantile(0.5, data=counts)

> post.median

[1] 0.6240066

We find that the posterior distribution is nearly symmetric around the posterior
mean 0.6239 and median 0.6240, respectively. The posterior mode 0.6242 is very
close to the MLE derived in Example 2.12. To obtain the equi-tailed 95 % credible
interval, we code:

> post.ci <- function(gamma, data)

c(post.quantile((1 - gamma) / 2, data),

post.quantile((1 + gamma) / 2, data))

> post.95ci <- post.ci(0.95, data=counts)

> post.95ci

[1] 0.5956939 0.6517494

If the interest is in point estimates of the corresponding false negative fraction ξ ,
then application of the change-of-variables formula (cf. Appendix A.2.3) gives the
posterior density of ξ , from which the posterior mean, say, can be calculated. The
posterior median is easier to derive since it is invariant to one-to-one transformations
(see Sect. 6.4.2); therefore,

Med(ξ |x) = {1 − Med(π |x)
}N = (1 − 0.6240)6 = 0.0028.

The corresponding posterior median estimate of the number Z0 of undetected cancer
cases in the original screening study is therefore 0.56, so also very close to the MLE
of Z0, cf. Example 2.12. �

We will now consider an example with two unknown parameters. Here numerical
integration is necessary to derive the marginal posterior distributions. Since the R
code follows the same scheme as in the example above, we will only show some
parts of it.

Example 8.2 (Screening for colon cancer) Assuming two independent Be(1,1)

priors, i.e. uniform prior distributions for the parameters μ and ρ of the beta-
binomial likelihood in Example 5.10, the joint posterior density is shown in Fig. 8.2.
Computation is of course based on Bayes’ theorem

f (θ |x) = f (x | θ)f (θ)

f (x)

with θ = (μ,ρ)�. The denominator f (x) can be calculated using two-dimensional
numerical integration over Θ = [0,1] × [0,1] (for example, using the package
cubature in R, cf. Appendix C.2.1):

f (x) =
∫

Θ

f (x, θ) dθ =
∫

Θ

f (x | θ)f (θ) dθ . (8.1)
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Fig. 8.2 Joint posterior
density f (μ,ρ |x) assuming

a μ,ρ
ind
∼ Be(1,1) prior

The marginal posterior densities

f (μ |x) =
∫ 1

0
f (μ,ρ |x)dρ and f (ρ |x) =

∫ 1

0
f (μ,ρ |x)dμ

can be calculated with a second numerical integration and are shown in Fig. 8.3. For
example, the marginal posterior density of ρ can be calculated at grid points (which
are stored in the vector rgrid) with the following code:

> posterior.r <- numeric(length(rgrid))

> for(j in seq_along(rgrid))

{

posterior.r[j] <- integrate(posterior.norm.mu, myr=rgrid[j],

norm=norm, counts=data,

lower=0, upper=1, rel.tol=1e-6)[["value"]]

}

Here posterior.norm.mu contains the joint posterior density function of μ and ρ,
where the first argument (over which the function is integrated) is a vector of μ

values, and the second argument (called myr) is a single value of ρ.
Bayesian inference for the false negative fraction ξ = B(α,β + N)/B(α,β) is

now possible with the multivariate change-of-variables formula (A.12), using the
relationships

α = μ · 1 − ρ

ρ
and β = (1 − μ) · 1 − ρ

ρ
,

which follow from μ = α/(α + β) and ρ = (α + β + 1)−1. However, this will re-
quire the partial derivatives of the beta function B(x, y), which may be quite in-
volved. An alternative Monte Carlo approach is described in Example 8.14. �
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Fig. 8.3 Marginal posterior density of μ and ρ

8.2 Laplace Approximation

We will now outline how to apply the Laplace approximation to calculate charac-
teristics of the posterior distribution of an unknown scalar parameter θ . Application
of the Laplace approximation to this task involves optimisation, rather than inte-
gration, which is typically much easier. Analytical results are available to study the
approximation error in detail. The Laplace approximation can be applied also for
multiparameter problems, which will be demonstrated in Example 8.4.

Let f (θ |x1:n) denote a posterior distribution obtained from a realisation x1:n
from a random sample X1:n from some probability mass or density function f (x | θ).
If n is large enough then, under certain regularity conditions, the posterior will be
unimodal, cf. Sect. 6.6.2.

Suppose, we are interested in the posterior expectation

E
{
g(θ) |x1:n

}=
∫

g(θ)f (θ |x1:n) dθ, (8.2)

of a certain positive function g(θ) of the parameter θ . For example, if θ is positive
and g(θ) = θ , we obtain the posterior mean E(θ |x1:n). To calculate (8.2), we write

f (θ |x1:n) = f (x1:n | θ)f (θ)∫
f (x1:n | θ)f (θ) dθ

,

to obtain

E
{
g(θ) |x1:n

}=
∫

g(θ)f (x1:n | θ)f (θ) dθ∫
f (x1:n | θ)f (θ) dθ

, (8.3)
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i.e. the ratio of two integrals. Now (8.3) can be written as

E
{
g(θ) |x1:n

}=
∫

exp{−nkg(θ)}dθ∫
exp{−nk(θ)}dθ

, (8.4)

where

−nk(θ) = log
{
f (x1:n | θ)

}+ log
{
f (θ)

}
and

−nkg(θ) = log
{
g(θ)

}+ log
{
f (x1:n | θ)

}+ log
{
f (θ)

}
.

(8.5)

Let θ̂ and θ̂g denote the locations of the minima of k(θ) and kg(θ), respectively, i.e.
the values where the terms −nk(θ) and −nkg(θ) are maximal. Further, let

κ̂ = d2k(θ̂)

dθ2
and κ̂g = d2kg(θ̂g)

dθ2

denote the curvatures of k(θ) and kg(θ), respectively, at the corresponding minima.
Separate application of the Laplace approximation (see Appendix C.2.2) to both the
numerator and denominator gives

E
{
g(θ) |x1:n

}≈
√

κ̂

κ̂g

exp
[−n

{
kg(θ̂g) − k(θ̂)

}]
. (8.6)

Although the approximation error of the Laplace approximation for the two integrals
in (8.4) is of order O(n−1), the leading terms in the two errors cancel in (8.6). As a
result, the error of the Laplace approximation of the posterior mean is only of order
O(n−2). Similar results can be obtained for the posterior variance.

We note that the Laplace approximation (8.6) is not invariant to changes in the
parametrisation chosen for the likelihood and prior density. For example, suppose
we reparametrise θ one-to-one to φ = h(θ), i.e. θ = h−1(φ). Applying the substitu-
tion rule for integration to both numerator and denominator of (8.3), we obtain

E
{
g(θ) |x1:n

}=
∫

g{h−1(φ)}f {x1:n |h−1(φ)}f (φ)dφ∫
f {x1:n |h−1(φ)}f (φ)dφ

,

where f (φ) is the appropriate, Jacobian adjusted, prior density of φ, cf. Ap-
pendix A.2.3. If h(θ) is well selected, the Laplace approximation may become more
accurate. A possible candidate for h(θ) is the variance-stabilising transformation, if
available. See Example 8.3 for further illustration.

We note that a similar formula as (8.6) can be obtained for an unknown parameter
vector θ by replacing κ̂ and κ̂g with the determinants of the corresponding Hessian
matrices (cf. Appendix B.2.2). As before, g must be a positive real-valued function.

Example 8.3 (Binomial model) Consider the posterior π |x ∼ Be(x + 0.5, n −
x + 0.5) resulting from combining a Be(0.5,0.5) prior for the success probabil-
ity π with a Bernoulli random sample of size n, which is equivalent to one bi-
nomial sample X ∼ Bin(n,π). The posterior expectation is analytically known as
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E(π |x) = (x + 0.5)/(n + 1), which makes it possible to quantify the approxima-
tion error of the Laplace approximation.

To derive the Laplace approximation of E(π |x), we note that

f (x |π) =
(

n

x

)
πx(1 − π)n−x, (8.7)

f (π) = B(0.5,0.5)−1{π(1 − π)
}− 1

2 (8.8)

and g(π) = π , so the log integrands in (8.4) are

−nk(π) = log
{
f (π)

}+ log
{
f (x |π)

}
= −0.5 log(π) − 0.5 log(1 − π) + x log(π) + (n − x) log(1 − π) + const

= (x − 0.5) log(π) + (n − x − 0.5) log(1 − π) + const and

−nkg(π) = log(π) − nk(π)

= (x + 0.5) log(π) + (n − x − 0.5) log(1 − π) + const,

with derivatives

−n
dk(π)

dπ
= x − 0.5

π
− n − x − 0.5

(1 − π)
= π(1 − n) + x − 0.5

π(1 − π)
and

−n
dkg(π)

dπ
= −n

dk(π)

dπ
+ 1 − π

π(1 − π)
= −nπ + x + 0.5

π(1 − π)
,

respectively. The roots of these derivatives are π̂ = (x − 0.5)/(n − 1) and π̂g =
(x + 0.5)/n, respectively, and those values therefore minimise k(π) and kg(π). The
curvature of k(π) at π̂ is

κ̂ = d2k(π̂)

dπ2

= −1

n
· (1 − n)π̂(1 − π̂ )

{π̂(1 − π̂)}2
= n − 1

n
· {π̂ (1 − π̂)

}−1

= (n − 1)3

n(x − 0.5)(n − x − 0.5)
,

and similarly we obtain κ̂g = n2/{(x + 0.5)(n − x − 0.5)}. Collecting all these re-
sults, we obtain the Laplace approximation Ê1(π |x) of the posterior mean E(π |x):

Ê1(π |x)

=
√

(n − 1)3(x + 0.5)(n − x − 0.5)

n3(x − 0.5)(n − x − 0.5)
· π̂g

(
π̂g

π̂

)x−0.5(1 − π̂g

1 − π̂

)n−x−0.5
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Table 8.1 Comparison of two Laplace approximations Ê1(π |x) and Ê2(π |x) with the true pos-
terior mean E(π |x) in a binomial experiment with Jeffreys’ prior. The corresponding relative error
of the approximation is printed in brackets

Observation Posterior mean

x/n n E(π |x) Ê1(π |x) Ê2(π |x)

0.6 5 0.5833 0.5630 (−0.0349) 0.5797 (−0.0062)

0.6 20 0.5952 0.5940 (−0.0021) 0.5950 (−0.0005)

0.6 100 0.5990 0.5990 (−0.0001) 0.5990 (−0.0000)

0.8 5 0.7500 0.7208 (−0.0389) 0.7464 (−0.0048)

0.8 20 0.7857 0.7838 (−0.0024) 0.7854 (−0.0004)

0.8 100 0.7970 0.7970 (−0.0001) 0.7970 (−0.0000)

1 5 0.9167 0.8793 (−0.0408) 0.9129 (−0.0041)

1 20 0.9762 0.9737 (−0.0025) 0.9759 (−0.0003)

1 100 0.9950 0.9949 (−0.0001) 0.9950 (−0.0000)

=
√

(n − 1)3(x + 0.5)

n3(x − 0.5)
· x + 0.5

n

{
(n − 1)(x + 0.5)

n(x − 0.5)

}x−0.5(
n − 1

n

)n−x−0.5

= (x + 0.5)x+1(n − 1)n+0.5

(x − 0.5)xnn+3/2
.

Alternatively, we can consider the Laplace approximation of the posterior mean
using the variance-stabilising transformation φ = arcsin(

√
π) (cf. Example 4.15),

which turns out to be (Exercise 2)

Ê2(π |x) = (x + 1)x+1nn+0.5

xx(n + 1)n+3/2
. (8.9)

Table 8.1 compares the true posterior mean with both Laplace approximations for
different values of n and x. Also shown is the relative error

Ê(π |x) − E(π |x)

E(π |x)

of each approximation. The reparametrised Laplace approximation is more accurate
than the Laplace approximation under the original parametrisation. We can see that
the accuracy of both approximations improves considerably with increasing sample
size n for fixed proportions x/n. In the limit, the error of the Laplace approximation
will disappear due to the asymptotic normality of the posterior distribution, under
which the Laplace approximation is exact (compare Sect. 6.6.2). �

In the previous example we could obtain analytical results for mode and curva-
ture of the integrands of both integrals in (8.4). If this is not possible, then numerical
maximisation is required. The same techniques as for maximising likelihood func-
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tions can be applied, so in R we will use the functions optimize or optim. The
following example illustrates this approach.

Example 8.4 (Screening for colon cancer) In order to approximate the posterior
expectation of μ and ρ in Example 8.2, we first calculate the mode and curvature of
the unnormalised log-posterior density function log.unnorm.posterior, which
represents −nk(θ) in (8.4):

> optimObj <- optim(c(0.5, 0.5), log.unnorm.posterior, counts = data,

control = list(fnscale = -1), hessian = TRUE)

> (mode <- optimObj$par)

[1] 0.4749234 0.4816687

> curvature <- optimObj$hessian

> (logDetCurvature <- as.numeric(determinant(curvature)$modulus))

[1] 11.96775

The variable mode now contains the mode θ̂ = (0.475,0.482)�, and the variable
curvature contains the corresponding Hessian matrix K̂ with log determinant
log{|K̂|} = 11.968, saved under the name logDetCurvature. Note that we save
the original log value of the determinant to avoid loss of numerical precision below.
The R-function determinant also returns the sign of the determinant in the list
element sign, which we know to be positive in this case.

First, we are interested in the posterior expectation of μ, so we set g(θ) = μ.
After suitable definition of −nkg(θ) we proceed as above:

> log.mu.times.unnorm.posterior <- function (theta, counts)

log (theta[1]) + log.unnorm.posterior (theta, counts)

> muOptimObj <- optim(c(0.5, 0.5), log.mu.times.unnorm.posterior,

counts = data, control = list (fnscale = -1),

hessian = TRUE)

> (muMode <- muOptimObj$par)

[1] 0.4841198 0.4739346

> muCurvature <- muOptimObj$hessian

> (muLogDetCurvature <- as.numeric(determinant(muCurvature)$modulus))

[1] 12.09874

The mode of this function is θ̂g = (0.484,0.474)� with log determinant of the Hes-
sian matrix equal to log{|K̂g|} = 12.099. We now have all quantities necessary to
calculate the multiparameter version of (8.6). We implement it on the log-scale to
avoid loss of numerical precision.

log
[
E
{
g(θ) |x}]≈ 1/2 log

{|K̂|}− 1/2 log
{|K̂g|

}− n
{
kg(θ̂g) − k(θ̂)

}
.

> logPosteriorExpectationMu <-

1/2 * logDetCurvature - 1/2 * muLogDetCurvature +

muOptimObj$value - optimObj$value

> (posteriorExpectationMu <- exp(logPosteriorExpectationMu))

[1] 0.4491689
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The posterior mean E(μ |x) ≈ 0.449 is hence smaller than the posterior mode
Mod(μ |x) = 0.475, which is also reflected in the skewness of the marginal pos-
terior f (μ |x) shown in Fig. 8.3a.

To compute the posterior mean of the second parameter ρ, we can proceed analo-
gously and obtain the approximation E(ρ |x) ≈ 0.505, slightly larger than the corre-
sponding mode and again in accordance with the skewness of the marginal posterior
density shown in Fig. 8.3b. �

8.3 Monte Carlo Methods

In order to calculate characteristics of the posterior distribution, we often need to in-
tegrate certain functions. We have discussed numerical techniques and the Laplace
approximation as potentially useful approaches to integration when analytic compu-
tation is not possible. The third approach is using the so-called Monte Carlo meth-
ods.

8.3.1 Monte Carlo Integration

Assume first that it is easy to generate independent samples θ(1), . . . , θ (M) from the
posterior distribution f (θ |x) of interest. A Monte Carlo estimate of the posterior
mean

E(θ |x) =
∫

θf (θ |x)dθ (8.10)

is then given by

Ê(θ |x) = 1

M

M∑
m=1

θ(m).

The law of large numbers (cf. Appendix A.4.3) ensures that this estimate is
simulation-consistent, i.e. the estimate converges to the true posterior mean as
M → ∞.

This approach is called Monte Carlo integration and avoids the analytical inte-
gration in (8.10). More general, for any suitable function g,

Ê
{
g(θ) |x}= 1

M

M∑
m=1

g
(
θ(m)

)
(8.11)

is a simulation-consistent estimate of E{g(θ) |x}, again easily shown with the law
of large numbers. For example, with g(θ) = θ2, we obtain an estimate of E(θ2 |x),
which can be used to estimate the posterior variance: V̂ar(θ |x) = Ê(θ2 |x) −
Ê(θ |x)2. Another example is the indicator function g(θ) = I(−∞,θ0](θ) to estimate
Pr(θ ≤ θ0 |x).
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The estimate Ê{g(θ) |x} is unbiased and has the variance

Var
[
Ê
{
g(θ) |x}]= 1

M

∫ [
g(θ) − E

{
g(θ) |x}]2f (θ |x)dθ.

The associated Monte Carlo standard error is

se
[
Ê
{
g(θ) |x}]= 1√

M

√√√√ M∑
m=1

[
g
(
θ(m)

)− Ê
{
g(θ) |x}]2/(M − 1),

which is of order O(M−1/2).
We note that independent samples are not necessary for simulation consistency,

which may still hold if the samples θ(1), . . . , θ (M) are dependent. However, the ac-
curacy of a Monte Carlo estimate of E{g(θ) |x} will be reduced if the transformed
samples g(θ(1)), . . . , g(θ(M)) are positively correlated.

Example 8.5 (Binomial model) Suppose that we have obtained a Be(4.5,1.5)

posterior distribution for the success probability π in a binomial model. Assume
that we want to estimate the posterior expectation and the posterior probability
Pr(π < 0.5 |x) by Monte Carlo sampling. Both quantities can be written in the gen-
eral form E{g(π) |x} with g(π) = π and g(π) = I[0,0.5)(π), respectively. Here we
generate M = 10 000 independent samples, which typically gives sufficient accu-
racy for most quantities of interest.

> M <- 10000

> theta <- rbeta(M, 4.5, 1.5)

> (Etheta <- mean(theta))

[1] 0.748382

> (se.Etheta <- sqrt(var(theta)/M))

[1] 0.001649922

> (Ptheta <- mean(theta < 0.5))

[1] 0.0875

> (se.Ptheta <- sqrt(var(theta < 0.5)/M))

[1] 0.002825805

We obtain the Monte Carlo estimates Ê(π |x) = 0.7484 and P̂r(π < 0.5 |x) =
0.0875 with Monte Carlo standard errors se{Ê(π |x)} = 0.0016 and se{P̂r(π <

0.5 |x)} = 0.0028, respectively. The true values E(π |x) = 4.5/(1.5 + 4.5) = 0.75
and Pr(π < 0.5 |x) ≈ 0.087713 (calculated using the R call pbeta(0.5,4.5,1.5))
are both less than two Monte Carlo standard errors away from their respective esti-
mates. �

Example 8.6 (Diagnostic test) We reconsider the problem to calculate the positive
predictive value of a diagnostic test under the scenario that the disease prevalence
π = Pr(D+) is estimated from a prevalence study. We now extend the approach
from Example 6.4 and assume that also the sensitivity and specificity of the diag-
nostic test, previously both fixed at 90 %, are actually derived from a diagnostic
study. Suppose that this study reported that 36 of 40 people who had the disease
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Fig. 8.4 Boxplots of Monte
Carlo samples from the
positive predictive value
under (a) fixed sensitivity and
specificity and
(b) incorporating the
uncertainty attached to these
estimates. In both cases the
uncertainty of the prevalence
estimates is taken into
account. The boxplot (a)
corresponds to Fig. 6.2

also had positive tests, but only 4 of 40 people who did not have the disease had
positive tests. Again using Jeffreys’ prior, we obtain independent Be(36.5,4.5) pos-
teriors both for sensitivity and specificity. A Monte Carlo approach allows us to in-
tegrate this additional uncertainty in the estimation of the positive predictive value
θ = Pr(D+|T +). The following R-code illustrates this:

> M <- 10000

> ## prev: samples from Beta(1.5, 99.5) distribution

> prev <- rbeta(n, 1.5, 104)

> ## first use fixed values for sensitivity and specificity

> sens <- 0.9

> spec <- 0.9

> ## and calculate positive predictive value (PPV)

> ppv <- sens * prev / (sens * prev + (1-spec)*(1-prev))

> ## now assume distributions for sensitivity and specificity

> sens <- rbeta(n, 36.5, 4.5)

> spec <- rbeta(n, 36.5, 4.5)

> ## and calculate the resulting samples for PPV

> ppv2 <- sens * prev / (sens * prev + (1-spec)*(1-prev))

The samples are visualised as boxplots in Fig. 8.4. The boxplots illustrate that the
point estimate of the positive predictive value rarely changes after incorporating
the uncertainty with respect to sensitivity and specificity. However, the variance
of the samples increases, so the uncertainty about this point estimate increases. In
particular, larger positive predictive values become more likely. �

Example 8.7 (Blood alcohol concentration) In Example 7.7 we have already tried
to answer the question whether there exists a difference in mean transformation
factors between men and women. There we computed the Bayes factor between
a model with only one population mean and a model with gender-specific means.
Here we take a different route: We are going to compute the posterior distribution
of the difference of the gender-specific means using Monte Carlo methodology.
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Fig. 8.5 Histogram of Monte
Carlo samples θ(m),
m = 1, . . . ,M , from the
posterior distribution f (θ |x)

If we specify independent non-informative prior distributions f (μi, σ
2
i ) ∝ σ−2

i

(i = 1,2) in the two groups, we obtain from Example 6.26 the marginal posterior
distributions of μi by plugging the sufficient statistics of the respective data subsets
into (6.30) as

μ1 |x1 ∼ t
(
2318.5, (38.32)2,32

)
and (8.12)

μ2 |x2 ∼ t
(
2477.5, (18.86)2,151

)
. (8.13)

The posterior distribution of the difference θ = μ1 −μ2 can now easily be estimated
by simulation of M random numbers, each from (8.12), and (8.13), and subsequent
computation of the differences θ(m) = μ

(m)
1 − μ

(m)
2 . For the simulation, we use the

R-function rst, cf. Appendix A.5.2. In Fig. 8.5 we plot the histogram of simulated
differences θ(m), m = 1, . . . ,M = 10 000. The posterior probability Pr(θ > 0 |x)

that the mean transformation factor for women is smaller than for men is estimated
as 0.0003, i.e. only 3 of the M = 10 000 samples from f (θ |x) are positive.

A rigorous frequentist analysis of this model with unequal variances in the two
groups is impossible due to the famous Behrens–Fisher problem. However, if we
assume equal variances in the two groups, we can apply the two-sample t test as we
did in Example 5.16. There is an analogous Bayesian approach for this easier prob-
lem, which is an extension of the one-sample problem described in Example 6.24 to
two samples. In this case the posterior distribution can be computed analytically. �

Example 8.8 (Hardy–Weinberg equilibrium) We will now show how to compute
the DIC values in Example 7.11 using Monte Carlo integration:

> ## data:

> x <- c(233, 385, 129)

> n <- sum(x)

> ## log-likelihoods:
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> triLoglik <- function(pi)

{

if(is.vector(pi))

{

pi <- t(pi)

}

apply(pi, 1,

FUN=function(onePi) sum(x * log(onePi)))

}

> hwLoglik <- function(upsilon)

{

pi <- cbind(upsilon * upsilon,

2 * upsilon * (1 - upsilon),

(1 - upsilon) * (1 - upsilon))

triLoglik(pi)

}

> ## sample from the Hardy-Weinberg posterior:

> aPost <- 1 + 2 * x[1] + x[2]

> bPost <- 1 + x[2] + 2 * x[3]

> upsilonSamples <- rbeta(n=10000, aPost, bPost)

> ## calculate DIC:

> upsilonBar <- aPost / (aPost + bPost)

> upsilonBar - mean(upsilonSamples) ## check: OK

[1] 0.0001126755

> hwDf <- mean(2 * (hwLoglik(upsilonBar) - hwLoglik(upsilonSamples)))

> hwDf

[1] 0.990882

> hwDic <- - 2 * hwLoglik(upsilonBar) + 2 * hwDf

> hwDic

[1] 1510.329

> ## sample from the Dirichlet posterior:

> alphaPost <- 1 + x

> piSamples <- rdirichlet(n=10000,

alphaPost)

> head(piSamples)

[,1] [,2] [,3]

[1,] 0.2889879 0.5354279 0.1755842

[2,] 0.2926704 0.5642561 0.1430735

[3,] 0.3133803 0.5250923 0.1615275

[4,] 0.2967536 0.5212148 0.1820316

[5,] 0.3427231 0.4894122 0.1678647

[6,] 0.3196069 0.5078508 0.1725423

> ## calculate DIC:

> piBar <- alphaPost / sum(alphaPost)

> piBar - colMeans(piSamples) ## check: OK

[1] 8.369696e-05 -2.725740e-04 1.888771e-04

> triDf <- mean(2 * (triLoglik(piBar) - triLoglik(piSamples)))

> triDf

[1] 1.988951

> triDic <- - 2 * triLoglik(piBar) + 2 * triDf

> triDic

[1] 1510.369
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Note that we checked whether the Monte Carlo estimates of the posterior expecta-
tions are close to the analytically computed values: the differences were very small
for both models, which indicates that the sample size (B = 10 000) is large enough
to obtain good accuracy for the DIC estimates. �

It is surprising, how easy it is to obtain Monte Carlo estimates of posterior char-
acteristics. Estimates of the posterior median and other posterior quantiles, as well
as of the posterior variance etc. can be calculated analogously using the samples
θ(1), . . . , θ (M). Even HPD intervals can be estimated consistently, at least for con-
tinuous parameters. To do so, we use the property of HPD intervals to have minimal
length among all credible intervals at a certain fixed level. We hence calculate all
possible credible intervals (based on the ordered samples) with fixed coverage of the
whole sample and choose the one with minimal length as a Monte Carlo estimate of
the true HPD interval. For example, suppose that M = 100 and we want to estimate
the 95 % HPD interval. We first order the sample and obtain the ordered sample
θ [1] ≤ · · · ≤ θ [100]. Possible empirical credible intervals of 95 % empirical coverage
are [θ [1], θ [95]], [θ [2], θ [96]], [θ [3], θ [97]], [θ [4], θ [98]], [θ [5], θ [99]], [θ [6], θ [100]], and
we pick the one with smallest length as a Monte Carlo estimate of the 95 % HPD
interval.

We note that one can roughly estimate the posterior mode by the center of an
empirical HPD interval at a very small level, say 1 %. Although this is a quite crude
approach, the alternative based on kernel density estimation has also drawbacks
because it depends on the bandwidth of the kernel.

Example 8.9 (Binomial model) In Example 8.5 we estimated the posterior expec-
tations of (transformations of) the proportion π in the binomial model using Monte
Carlo methodology. Now we would like to estimate the 95 % HPD interval for π by
Monte Carlo and compare it to the 95 % equi-tailed credible interval:

> ## sort parameter samples

> thetaorder <- theta[order(theta)]

> ## determine number and sizes of all possible credible intervals

> M <- 10000

> level <- 0.95

> n.cis <- round(M * (1-level)) + 1

> size <- numeric(n.cis)

> for(i in seq_len(n.cis)){

lower <- thetaorder[i]

upper <- thetaorder[M - n.cis + i]

size[i] <- upper - lower

}

> ## get the one with smallest size: the HPD interval

> size.min <- which.min(size)

> HPD.lower <- thetaorder[size.min]

> HPD.upper <- thetaorder[M - n.cis + size.min]

> ## also compute the equi-tailed interval

> ET.lower <- thetaorder[(M * (1-level)) / 2]

> ET.upper <- thetaorder[M - (M * (1-level)) / 2]
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> ## compare the results:

> c(HPD.lower, HPD.upper)

[1] 0.435557 0.998196

> c(ET.lower, ET.upper)

[1] 0.3647148 0.9763416

So the 95 % HPD interval is [0.4356,0.9982], which is shifted to the right compared
with the 95 % equi-tailed credible interval [0.3647,0.9763].

Alternatively, root finding methods (cf. Appendix C.1.2) can be used to com-
pute the HPD interval numerically. To this end, the following R-code first de-
fines a function outerdens, which computes the probability of all π that fulfill
fBe(π;α,β) < h, i.e. the probability of all π that would not be contained in the cor-
responding HPD interval {π : fBe(π;α,β) > h} (cf. Fig. 6.3). Then in the second
function betaHpd, the value hopt is determined that gives an outer probability of
5 %, so that the credible level of the inner π values is 95 %. The boundaries of the
HPD interval are then obtained as the values π fulfilling fBe(π;α,β) = hopt.

> outerdens <- function(h, alpha, beta)

{

## compute the mode of this beta distribution

mode <- max(min((alpha-1)/(alpha + beta - 2),

1), 0)

## to compute the intersection points of the height h

## and the density function, only go up to epsilon

## to the mode:

eps <- 1e-15

## compute the lower intersection point

lower <-

if(mode <= 0)

{

0 # when the density is monotonically decreasing

} else {

uniroot(function(x){dbeta(x, alpha, beta) - h},

interval = c(0, mode - eps))$root

}

## compute the upper intersection point

upper <-

if(mode >= 1)

{

1 # when the density is monotonically increasing

} else {

uniroot(function(x){dbeta(x, alpha, beta) - h},

interval = c(mode + eps, 1))$root

}

## compute the probability inside the interval (lower, upper):

prob <- pbeta(lower, alpha, beta) +

pbeta(upper, alpha, beta, lower.tail = FALSE)
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## return everything

return(c(prob=prob,

lower=lower,

upper=upper))

}

> betaHpd <- function(alpha,

beta,

level=0.95)

{

## compute the mode of this beta distribution,

## but go epsilon away from 0 or 1

eps <- 1e-15

mode <- max(min((alpha-1)/(alpha + beta - 2),

1-eps), 0+eps)

## determine h_opt:

result <- uniroot(function(h){outerdens(h, alpha, beta)["prob"] -

(1 - level)},

## search in the interval (eps, f(mode) - eps)

interval =

c(eps,

dbeta(mode, alpha, beta) - eps))

height <- result$root

## this gives the HPD interval

hpd <- outerdens(height, alpha, beta)[c("lower", "upper")]

hpd

}

> alpha <- 4.5

> beta <- 1.5

> hpd <- betaHpd(alpha, beta)

> hpd

lower upper

0.4359927 0.9982651

So the result is [0.4360,0.9983], which is very close to the Monte Carlo estimate
obtained above. The equi-tailed credible interval is [0.3714,0.9775], which can be
calculated with the R-function qbeta. This is slightly shifted to the right compared
with the Monte Carlo result above.

Note that both credible intervals are larger than the corresponding ones in
Fig. 6.3, where the uncertainty in the sensitivity and specificity estimates was not
incorporated. �

8.3.2 Importance Sampling

Importance Sampling is an extension of ordinary Monte Carlo integration. Up to
now we have assumed that independent samples from the posterior f (θ |x) are
available to estimate

E
{
g(θ) |x}=

∫
g(θ)f (θ |x)dθ. (8.14)
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However, perhaps only samples from some other (and for the moment arbitrary)
density f ∗(θ) can be produced, but not from f (θ |x). We can re-write Eq. (8.14) to
obtain

E
{
g(θ) |x}=

∫
g(θ)

f (θ |x)

f ∗(θ)
f ∗(θ) dθ,

so based on the sample θ(1), . . . , θ (M) from f ∗(θ), a suitable Monte Carlo estimate
of (8.14) is

Ê
{
g(θ) |x}= 1∑M

m=1 wm

M∑
m=1

wmg
(
θ(m)

)
, (8.15)

where wm = f (θ(m) |x)/f ∗(θ(m)). So the importance sampling estimate of (8.14)
is a weighted average of g(θ(m)), m = 1, . . . ,M , with importance weights wm. For
f ∗(θ) = f (θ |x), we obtain the ordinary Monte Carlo estimate (8.11).

In expectation, the weights wm are equal to one since
∫

f (θ |x)

f ∗(θ)
f ∗(θ) dθ =

∫
f (θ |x)dθ = 1,

and therefore
∑M

m=1 wm ≈ M . An alternative importance sampling estimate, some-
times reported in the literature, is therefore (8.15) with 1/

∑M
m=1 wm replaced by

1/M . The difference between these two estimates is usually small.
It can be shown that the importance sampling estimate (8.15) of E{g(θ) |x} is

unbiased and has the Monte Carlo standard error

se
[
Ê
{
g(θ) |x}]= 1∑M

m=1 wm

√√√√ M∑
m=1

w2
m

[
g
(
θ(m)

)− Ê
{
g(θ) |x}]2.

Example 8.10 (Binomial model) Let us reconsider Monte Carlo estimation of the
posterior mean E(π |x) and the posterior probability Pr(π < 0.5 |x) from Exam-
ple 8.5. We now want to use importance sampling based on independent samples
from a standard uniform distribution. Computation of (8.15) is done with the fol-
lowing R-code:

> u <- runif(M)

> w <- dbeta(u, 4.5, 1.5)

> (sum(w))

[1] 10151.34

> (Etheta.u <- sum(u * w) / sum(w))

[1] 0.7494834

> (se.Etheta.u <- sqrt(sum((u - Etheta.u)^2 * w^2))) / sum(w)

[1] 0.001780926

> (Ptheta.u <- sum((u < 0.5) * w) / sum(w))

[1] 0.08824196

> (se.Ptheta.u <- sqrt(sum(((u < 0.5) - Ptheta.u)^2 * w^2))) / sum(w)

[1] 0.00211711
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First, note that the sum of the weights is 10151.3, so as expected quite close to
the number of samples M = 10 000. The importance sampling estimates appear
to be also of quite good accuracy with standard errors similar to ordinary Monte
Carlo. Note that the standard error for the mean estimate is slightly larger than with
ordinary Monte Carlo, while the standard error for the Pr(π < 0.5 |x) estimate is
slightly smaller. �

In the previous example, we noted a decrease in the standard error for estimat-
ing the probability Pr(π < 0.5 |x) when importance sampling from the uniform
distribution is used. This illustrates the possibility to improve the Monte Carlo pre-
cision by choosing a suitable importance sampling distribution f ∗(θ). If the density
f ∗(θ) is approximately proportional to |g(θ)|f (θ |x), then the importance sam-
pling estimate (8.15) can be shown to have minimal variance. Note that, when
g(θ) > 0, the proportionality constant for the normalisation of this optimal f ∗(θ)

is 1/
∫

g(θ)f (θ |x)dθ , the reciprocal of the quantity we want to estimate. Unless
we can simulate from g(θ)f (θ |x) without knowledge of the normalising constant,
this result seems therefore of limited practical value. For more details, we point the
interested reader to the relevant literature listed at the end of this chapter.

8.3.3 Rejection Sampling

Importance sampling offers a way to estimate posterior expectations of certain func-
tions of the parameter θ but does not provide samples from the posterior distribution
of interest. Such samples are, however, necessary for certain posterior characteristics
such as posterior quantiles or HPD intervals. We want to discuss a general approach
to generate samples from some target distribution with density fX(x), say, with-
out actually sampling from fX(x). The algorithm is called rejection sampling. Our
target fX(x) is usually the posterior distribution of some scalar parameter, but the
technique can be applied more widely. The goal is to effectively simulate X from
fX(x) using two independent random numbers U ∼ U(0,1) and Z with density
fZ(z). The proposal distribution fZ(z) can be chosen arbitrarily under the assump-
tion that there exists an a ≥ 1 with

fX(z) ≤ a · fZ(z) for all z ∈ R. (8.16)

The rejection sampling algorithm to simulate X from fX(x) hence proceeds as fol-
lows:
1. Generate independent random variables Z from fZ(z) and U ∼ U(0,1).
2. If U ≤ fX(Z)/{a · fZ(Z)}, set X = Z (acceptance step).
3. Otherwise, go back to 1 (rejection step).
The quantity α(z) = fX(z)/{a ·fZ(z)} is called the acceptance probability since the
realisation Z = z from fZ(z) is accepted as a random number from fX(x) with this
probability.
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To understand the principle of rejection sampling, consider first

Pr
{
Z ≤ x |a · U · fZ(Z) ≤ fX(Z)

}

= Pr{Z ≤ x, a · U · fZ(Z) ≤ fX(Z)}
Pr{a · U · fZ(Z) ≤ fX(Z)}

=
∫ x

−∞ Pr{a · U · fZ(Z) ≤ fX(Z) |Z = z}fZ(z) dz∫ +∞
−∞ Pr{a · U · fZ(Z) ≤ fX(Z) |Z = z}fZ(z) dz

. (8.17)

Now

Pr
{
a · U · fZ(Z) ≤ fX(Z) |Z = z

}= P

{
U ≤ fX(z)

a · fZ(z)

}
= fX(z)

a · fZ(z)

because fX(z)/{a · fZ(z)} ≤ 1 and U ∼ U(0,1) by assumption. Equation (8.17) is
therefore equal to

∫ x

−∞
fX(z)

a·fZ(z)
fZ(z) dz∫ +∞

−∞
fX(z)

a·fZ(z)
fZ(z) dz

=
∫ x

−∞ fX(z) dz∫ +∞
−∞ fX(z) dz

=
∫ x

−∞
fX(z) dz = FX(x),

i.e. conditional on the event E = {a · U · fZ(Z) ≤ fX(Z)}, the random variable Z

has a distribution function FX with associated density fX . Every pair (U,Z) fulfills
the condition E with probability a−1:

Pr
{
a · U · fZ(Z) ≤ fX(Z)

}=
∫ ∞

−∞
fX(z)

a · fZ(z)
fZ(z) dz =

∫ ∞

−∞
fX(z)

a
dz = a−1.

The single trials are independent, so the number of trials up to the first success
is geometrically distributed with parameter 1/a. The expected number of trials up
to the first success is therefore a; if a is large, the algorithm is hence not very
efficient. The constant a should thus be chosen as small as possible while fulfilling
condition (8.16), so typically a = maxz∈R fX(z)/fZ(z), as in the following example.

Example 8.11 (Binomial model) To simulate from the posterior distribution θ |x ∼
Be(4.5,1.5), as we already did in Example 8.10, we now use rejection sampling
based on a uniform proposal distribution. First, we need to determine the con-
stant a. Due to fZ(θ) = 1, the ordinate of the target density f (θ |x) at its mode
Mod(θ |x) = (4.5 − 1)/(4.5 + 1.5 − 2) = 7/8 can be used:

> ## posterior parameters and mode:

> alpha <- 4.5

> beta <- 1.5

> mode <- (alpha - 1) / (alpha + beta - 2)

> a <- dbeta(mode, alpha, beta)

> ## number of samples to be produced:

> M <- 10000

> ## vector where the samples will be stored:
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> theta <- numeric(M)

> ## also save the number of trials for each sample:

> trials <- numeric(M)

> ## for each sample:

> for(m in seq_along(theta))

{

k <- 0

while(TRUE)

{

k <- k + 1

## sample random variables

u <- runif(1)

z <- runif(1)

## check for acceptance, then exit the loop

if(u <= dbeta(z, alpha, beta) / a)

break

}

## save the z realization as a theta sample

theta[m] <- z

## and the number of trials

trials[m] <- k

}

> ## average number of trials required:

> mean(trials)

[1] 2.5756

> ## estimate posterior mean of theta:

> (Etheta <- mean(theta))

[1] 0.7506988

> (se.Etheta <- sqrt(var(theta) / M))

[1] 0.001636567

> ## estimate P(theta < 0.5 | y):

> (Ptheta <- mean(theta < 0.5))

[1] 0.0888

> (se.Ptheta <- sqrt(var(theta < 0.5) / M))

[1] 0.002844691

The estimates of the true values 0.75 and 0.0877, respectively, appear to be also
quite good using rejection sampling. This is not surprising, as the resulting samples
have the same distributional properties as if we had directly used the R-function
rbeta as in Example 8.5. Hence, also the standard errors have a similar size. �

8.4 Markov Chain Monte Carlo

Application of ordinary Monte Carlo methods is difficult if the unknown param-
eter is of high dimension. However, Markov chain Monte Carlo (MCMC) meth-
ods will then be a useful alternative. The idea is to simulate a Markov chain
θ (1), . . . , θ (m), . . . , which is designed in a way such that it converges to the pos-
terior distribution f (θ |x). After convergence we obtain samples from the posterior
distribution, which can be used to estimate posterior characteristics as described in
Sect. 8.3. However, these samples will typically be dependent, an inherent feature
of Markov chains.
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Similar to rejection sampling, there is great liberty in the actual design of an
MCMC algorithm. In each iteration m, samples are generated from some proposal
distribution, which can depend on the current state θ (m) of the Markov chain. Let
f ∗(θ | θ (m)) denote the probability mass or density function of this proposal dis-
tribution. The Metropolis–Hastings algorithm, a very general MCMC technique,
accepts the proposal θ∗ from f ∗(θ | θ (m)) as the new state of the Markov chain with
probability

α = min

{
1,

f (θ∗ |x)

f (θ (m) |x)
· f ∗(θ (m) | θ∗)
f ∗(θ∗ | θ (m))

}
. (8.18)

If the proposal is accepted, then θ (m+1) = θ∗, otherwise θ (m+1) = θ (m), i.e. the pro-
posal θ∗ is rejected. The term f (θ∗ |x)/f (θ (m) |x) in (8.18) is the posterior ratio
while f ∗(θ (m) | θ∗)/f ∗(θ∗ | θ (m)) is the proposal ratio. The acceptance probability
(8.18) is the product of the posterior ratio and the proposal ratio, suitably truncated
to the unit interval. Under certain regularity conditions, one can show that this algo-
rithm converges to the target distribution f (θ |x), regardless of the specific choice
of the proposal distribution f ∗(θ | θ (m)). Specification of the regularity conditions
requires some insight into limit theory for Markov chains. This is beyond the scope
of this book, but at the end of this chapter we give some suitable references for
readers interested in MCMC theory.

The speed of convergence and the dependence between successive samples will
depend heavily on the choice of the proposal distribution. It is very important in
practice to have a good proposal distribution for the specific model at hand. Some
special cases of the general Metropolis–Hastings algorithm have special names. If
the proposal distribution is symmetric around the current value, i.e. f ∗(θ (m) | θ∗) =
f ∗(θ∗ | θ (m)), one obtains the Metropolis algorithm with acceptance probability

α = min

{
1,

f (θ∗ |x)

f (θ (m) |x)

}
.

A special case of this is the so-called random walk proposal, which is defined as
the current value θ (m) plus a random number variate of a zero-centred symmetric
distribution. If the proposal density does not depend on θ (m), i.e. f ∗(θ | θ (m)) =
f ∗(θ), then the proposal is called the independence proposal.

Another special case leads to the acceptance probability α always equal to one.
This is the case if f ∗(θ∗ | θ (m)) = f (θ∗ |x), i.e. if the proposal density is equal
to the posterior density, the target density. At first sight this appears to be of lim-
ited value, as we implicitly assumed that direct sampling from the target density
is unavailable. However, α will also equal unity if a specific component θj of θ is
updated by a sample from its full conditional distribution f (θj |x, θ−j ), where θ−j

denotes the vector θ without the component θj . Because f (θj |x, θ−j ) ∝ f (θ |x),
j = 1, . . . , p, the acceptance probability α is still one in this case. Iteratively updat-
ing all p components of θ with samples from their corresponding full conditionals is
called Gibbs sampling. The approach can be adopted to updating multidimensional
blocks of scalar parameters (not just single parameters) of θ from their respective
full conditional distributions.
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We note that care must be taken when an improper prior distribution is used,
because this may lead to an improper posterior distribution. Impropriety implies
that there does not exist a joint density to which the full-conditional distributions
correspond. However, the Gibbs sampling output might still look as if the approach
was working.

The efficiency of the Metropolis–Hastings algorithm depends crucially on the
acceptance rate, i.e. the relative frequency of acceptance (typically assessed after
convergence of the Markov chain). However, an acceptance rate close to one is
not always good. For example, for random walk proposals, a too large acceptance
rate implies that the proposal density is too close around the current value, so the
algorithm needs many small steps to explore the target distribution sufficiently. On
the other hand, if the acceptance rate of a random walk proposal is too small, large
moves are often proposed but rarely accepted. In some cases, the algorithm may
even get stuck at a specific value, and subsequent proposals will get rejected for a
large number of iterations. For random walk proposals, acceptance rates between
30 and 50 % are typically recommended, which can be easily achieved through
appropriate choice of the variance of the proposal distribution. Things are different
for independence proposals, where a high acceptance rate is desired, which means
that the proposal density is close to the target density.

Example 8.12 (Screening for colon cancer) We now want to apply Gibbs sam-
pling to the problem described in Sect. 1.1.5 and also to compare the likelihood
approaches in Example 2.12 and Sect. 2.3.2. For the probability π , we choose a
Be(0.5,0.5) prior, so the full conditional of π , is

π |Z ∼ Be

(
0.5 +

6∑
k=0

k · Zk,0.5 +
6∑

k=0

(6 − k)Zk

)
. (8.19)

However, we do not know Z0, but we do know the full conditional distribution of
Z0 for known π (cf. Example 2.12):

Z0 |π ∼ NBin
(
n,1 − (1 − π)N

)− n, (8.20)

where N = 6 and n = 196. This suggests to implement a Gibbs sampler in R by
iteratively simulating from (8.19) and (8.20). Here is the R-code:

> ## data set:

> fulldata <- c(NA, 37, 22, 25, 29, 34, 49)

> k <- 0:6

> n <- sum(fulldata[-1])

> ## impute start value for Z0 (first element):

> fulldata[1] <- 10

> ## MCMC settings:

> nburnin <- 100

> niter <- 10000

> ## where the samples will be saved:

> pisamples <- Z0samples <- numeric(niter)
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Fig. 8.6 Paths of the Gibbs sampling Markov chain (without burn-in of first 100 iterations). Both
plots suggest the convergence of the Markov chain

> ## set the random seed:

> set.seed(920)

> ## do the sampling:

> for(i in (- nburnin + 1):niter)

{

## draw pi from full conditional

pi <- rbeta(1, 0.5 + sum(k * fulldata), 0.5 + sum((6 - k) * fulldata))

## draw Z0 from full conditional

fulldata[1] <- rnbinom(1, size=n, prob=1-(1-pi)^6)

## if the burn-in iterations have passed, save the samples

if(i>0)

{

pisamples[i] <- pi

Z0samples[i] <- fulldata[1]

}

}

Note that the R function rnbinom generates a random number from a differently
parametrised negative binomial distribution, where the number of non-successes
and not the number of trials up to the first success is counted; the latter one is used
in the definition of Z0.

In practice one has to decide when the simulated Markov chain has reached its
target distribution. A common approach is to ignore the first few iterations, the so-
called burn-in phase, so the remaining random numbers can be regarded as samples
from the target distribution. In the above code, the nburnin first samples are ignored
as burn-in. One should still inspect the trace plots of the parameter samples to ensure
that the samples at least “visually” converge. Figure 8.6 suggests that this is the case
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Fig. 8.7 Estimated posterior distributions of π and Z0

here. We can now compute summary statistics of posterior characteristics of interest,
e.g. estimates of quantiles and expectations.

> summary(pisamples)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5683 0.6142 0.6240 0.6240 0.6337 0.6776

> summary(Z0samples)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.5638 1.0000 5.0000

The estimated marginal posterior distributions of π and Z0 are shown as histograms
in Fig. 8.7. �

Application of Gibbs sampling requires that random numbers from the full con-
ditional distributions can be generated easily. However, this may not always be the
case, so alternative approaches need to be investigated. One idea is to use rejection
sampling or other techniques to obtain samples from the full conditional distribu-
tion indirectly. However, it is typically easier to use a simple Metropolis–Hastings
proposal to update the corresponding component of θ . The latter approach is some-
times called Metropolis-within-Gibbs. We illustrate the approach with the following
example.

Example 8.13 (Hardy–Weinberg equilibrium) To avoid the assumptions underlying
Hardy–Weinberg equilibrium as discussed in Sect. 1.1.4, sometimes a more general
model allowing for Hardy–Weinberg disequilibrium is used. This introduces a sec-
ond disequilibrium parameter δ in the definition of the probabilities:

π1 = υ2 + δ, π2 = 2υ(1 − υ) − 2δ and π3 = (1 − υ)2 + δ.
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Fig. 8.8 10 000 independent samples from the prior f (υ, δ) with α = β = 1, i.e. a marginal uni-
form prior for υ

If δ = 0, one obtains the usual Hardy–Weinberg equilibrium with parameter υ .
Clearly, this extended formulation ensures that the probabilities π1, π2 and π3 add
up to one, and the additional restriction

max
{−υ2,−(1 − υ)2}≤ δ ≤ υ(1 − υ) (8.21)

ensures that the individual probabilities are all within the unit interval. The corre-
sponding likelihood function of υ and δ is of course only a reparametrisation of a
multinomial likelihood. This reparametrisation is useful to investigate the presence
of Hardy–Weinberg equilibrium, represented by the null hypothesis H0 : δ = 0.

A Bayesian analysis starts by choosing appropriate prior distributions for υ and δ.
Due to (8.21), these distributions cannot be independent, and we therefore factorise
the prior in the form

f (υ, δ) = f (υ)f (δ |υ) (8.22)

and select the Be(α,β) distribution for the marginal prior of υ and the uniform
distribution on the interval (8.21) for the conditional prior of δ given υ .

Figure 8.8a illustrates for α = β = 1 the dependence between the two parame-
ters using 10 000 simulations from the prior by first simulating υ∗ from f (υ) and
subsequently δ∗ from f (δ |υ∗). Via (8.22), this gives samples from the joint distri-
bution f (υ, δ) as well as from the marginal distribution f (δ). Figure 8.8b shows
that the marginal prior of δ is not at all uniform and not even symmetric around
zero. The prior probability Pr(δ > 0) is approximately 0.75, estimated based on the
samples.
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Turning to posterior inference based on the MN blood group frequencies in Ice-
land as described in Sect. 1.1.4, note that the full conditional distributions of υ and
δ are not of closed form and not easy to sample from. We therefore use Metropolis–
Hastings proposals for both conditional distributions. For υ , it may be useful to use
the posterior distribution of υ under the assumption δ = 0 as the proposal distribu-
tion (compare Example 6.7):

υ |x ∼ Be(α + 2x1 + x2, β + x2 + 2x3).

This is an independence proposal, as it does not depend on the current value of υ .
To update δ, we choose a uniform distribution of length 2s (the variable scale is
representing s in the following R-code), centred at the current value. This has the
form of a random walk proposal, but the additional restriction (8.21) has to be taken
into account, so the proposal ratio is not always equal to unity. We choose the scale
parameter s in a way that the acceptance rate for δ is between 30 and 50 %. Al-
ternatively, one could use a uniform proposal distribution on the interval defined
by (8.21), but this choice leads to quite low acceptance rates in our case.

The following R-code illustrates the implementation of this MCMC algorithm.

> ## data set

> x <- c(233, 385, 129)

> ## limits for delta as functions of v

> lower <- function(v)

{

lower <- pmax(-v^2, -(1-v)^2)

return(lower)

}

> upper <- function(v)

{

upper <- v * (1 - v)

return(upper)

}

> ## function to compute probabilities from v and d

> myprob <- function(v, d)

{

p1 <- v^2 + d

p2 <- 2 * v * (1-v) - 2 * d

p3 <- (1-v)^2 + d

p <- c(p1, p2, p3)

## if the result is valid, return it,

## otherwise NAs:

if(all(p >= 0) & all(p <= 1))

{

return(p)

} else {

return(rep(NA, 3))

}

}

> ## use a uniform prior on v:

> alpha <- 1

> beta <- 1

> ## MCMC sampling setup
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> scale <- 0.03

> niter <- 10000

> nburnin <- 100

> ## Initialise samples and counters

> vsamples <- numeric(niter)

> dsamples <- numeric(niter)

> v <- 0.5

> d <- 0

> vyes <- 0

> dyes <- 0

> ## start MCMC sampling

> for(i in (-nburnin + 1):niter)

{

## proposal for v:

first <- alpha + 2 * x[1] + x[2]

second <- beta + x[2] + 2 * x[3]

vstar <- rbeta(1, first, second)

## is this a valid combination of v and d?

valid <- (d >= lower(vstar)) && (d <= upper(vstar))

## compute the log-posterior ratio

logPostRatio <-

if(valid)

{

## from the likelihood

dmultinom(x, prob=myprob(vstar, d), log=TRUE) -

dmultinom(x, prob=myprob(v, d), log=TRUE) +

## from the marginal prior on v

dbeta(vstar, alpha, beta, log=TRUE) -

dbeta(v, alpha, beta, log=TRUE) +

## from the prior on d given v

dunif(x=d, lower(vstar), upper(vstar),

log=TRUE) -

dunif(x=d, min=lower(v), max=upper(v),

log=TRUE)

} else {

## if the combination is not valid, then the likelihood of

## the proposal is zero.

- Inf

}

## compute the log proposal ratio

logPropRatio <- dbeta(v, first, second, log=TRUE) -

dbeta(vstar, first, second, log=TRUE)

## hence we obtain the log acceptance probability

logAcc <- logPostRatio + logPropRatio

## decide acceptance

if(log(runif(1)) <= logAcc)

{

v <- vstar

## count acceptances

if(i > 0)

{

vyes <- vyes + 1

}

}
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## proposal for d:

first <- max(d - scale, lower(v))

second <- min(d + scale, upper(v))

dstar <- runif(1, min=first, max=second)

## compute the log posterior ratio

logPostRatio <-

## from the likelihood

dmultinom(x, prob=myprob(v, dstar), log=TRUE) -

dmultinom(x, prob=myprob(v, d), log=TRUE) +

## from the prior on d given v

dunif(x=dstar, lower(v), upper(v), log=TRUE) -

dunif(x=d, min=lower(v), max=upper(v), log=TRUE)

## compute the log proposal ratio

logPropRatio <- dunif(d, first,second, log=TRUE) -

dunif(dstar, first, second, log=TRUE)

## hence we obtain the log acceptance probability

logAcc <- logPostRatio + logPropRatio

## decide acceptance

if(log(runif(1)) <= logAcc)

{

d <- dstar

## count acceptances

if(i > 0)

{

dyes <- dyes + 1

}

}

## if burnin was passed, save the samples

if(i > 0)

{

vsamples[i] <- v

dsamples[i] <- d

}

}

The empirical acceptance rates turn out to be vyes/niter = 97.6 % and
dyes/niter = 45.6 % for υ and δ, respectively. Figures 8.9a and 8.9b show the
empirical posterior distribution of υ and δ and also the marginal posterior of δ.
The estimated posterior means are Ê(υ |x) = 0.5697 and Ê(δ |x) = −0.0122. The
posterior probability Pr(δ > 0 |x) is estimated as 0.0911, so substantially smaller
than a priori, but not decisively close to zero. This suggests that the assumption of
Hardy–Weinberg equilibrium for these data may not be completely unreasonable.

Similar results are obtained using a likelihood analysis, as we will show
now. The MLEs (with standard errors in brackets) υ̂ML = 0.5696 (0.0125) and
δ̂ML = −0.0125 (0.0089) are easily obtained. If we interpret these estimates from
a Bayesian point of view using the second normal approximation described in
Sect. 6.6.2, we obtain the posterior probability

Pr(δ > 0 |x) = 1 − Pr

{
δ − δ̂ML

se(δ̂ML)
≤ −δ̂ML

se(δ̂ML)

}
≈ 1 − Φ

{ −δ̂ML

se(δ̂ML)

}
= 0.0803,
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Fig. 8.9 Estimated joint posterior distribution of υ and δ and marginal posterior distribution of δ

based on 10 000 MCMC samples

where Φ(·) denotes the standard normal distribution function. This is again close
to the fully Bayes estimate. We will revisit this example in Example 8.16, where
we will apply explicit Bayesian model selection in order to decide between the
Hardy–Weinberg and the multinomial model. �

Example 8.14 (Screening for colon cancer) In Example 8.2 we have already nu-
merically derived the posterior distribution of the parameters μ and ρ in the trun-
cated beta-binomial model, cf. Fig. 8.2. To estimate the posterior distribution of
the false negative fraction ξ , we now use random numbers from the joint posterior
f (θ |x) of θ = (μ,ρ)�, generated using a bivariate Metropolis sampler. Samples
ξ (m) = ξ(θ (m)) from the posterior distribution of the transformation ξ can then eas-
ily be obtained. Those can in turn be used to compute Z

(m)
0 = 196 · ξ (m)/(1 − ξ (m))

which are samples from the posterior of Z0.
We choose a normal proposal h(θ∗ | θ (m)) with mean equal to the current value

and covariance matrix proportional to the negative inverse curvature of the log-
posterior at the posterior mode (cf. Sect. 6.6.2). The corresponding proportionality
constant is chosen such that the acceptance rates are between 30 and 50 %.

Figure 8.10a displays a kernel density estimate of the posterior of the false neg-
ative fraction based on the last 9000 random numbers (1000 burn-in samples have
been disregarded). The posterior distribution is quite skewed with estimated mean
0.28 much larger than the empirical median 0.26 or mode 0.20. The mode has
been estimated as the mean of the limits of the empirical 1 % HPD interval. The
empirical 95 % HPD interval is [0.10,0.51]. Compared with the MLE ξ̂ML = 0.24
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Fig. 8.10 Estimated posterior distribution of ξ and Z0 based on 10 000 MCMC samples

from Example 5.10, both mean and median are larger, and the uncertainty is smaller
than the one based on the profile likelihood interval [0.11,0.55]. Figure 8.10b dis-
plays a histogram of the posterior Z0 samples. The estimated posterior median is
M̂ed(Z0 |x) = 70, but there is large uncertainty with 95 % equi-tailed credible in-
terval estimated as [28,257]. �

Example 8.15 (Scottish lip cancer) We revisit the data introduced in Sect. 1.1.6
on the incidence of lip cancer in the n = 56 geographical regions of Scotland. Let
xi and ei , i = 1, . . . , n, denote the observed and expected cases, respectively. We
assume that the xi are independent conditional realisations from a Poisson distribu-
tion with mean eiλi , where λi denotes the unknown relative risk in region i. We now
specify a prior on the log relative risks ηi = log(λi) that takes into account spatial
structure and thus allows for spatial dependence. More specifically, we use a Gaus-
sian Markov random field, which is most easily specified through the conditional
distribution of ηi given all other {ηj }j �=i . A common choice is to assume that

ηi | {ηj }j �=i , σ
2 ∼ N

(
η̄i ,

σ 2

ni

)
,

where η̄i = n−1
i

∑
j∼i ηj denotes the mean of the ni spatially neighbouring regions

of region i, and σ 2 is an unknown variance parameter.
To simulate from the posterior distribution, the obvious choice is a Gibbs sam-

pler that iteratively updates the n + 1 unknown parameters λ1, . . . , λn, σ
2. Due to

conditional conjugacy, we use an inverse gamma prior for σ 2, i.e. σ 2 ∼ IG(α,β)
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a priori, so the full conditional distribution of σ 2 is again inverse gamma,

σ 2 |η ∼ IG

(
α + n − 1

2
, β + 1

2

∑
i∼j

(ηi − ηj )
2
)

,

where the sum in the second (scale) parameter goes over all pairs of neighbouring
regions i ∼ j . Slightly more involved is simulation from the full conditional dis-
tribution of λi , i = 1, . . . , n, which is not of a known form. This problem can be
circumvented by using a Metropolis–Hastings step with (conditional) independence
proposal

λi ∼ G

(
xi + μ̃2

σ̃ 2
, ei + μ̃

σ̃ 2

)
. (8.23)

This choice is motivated by the fact that the conditional prior of λi | {λj }j �=i , by the
definition a log-normal distribution, can be well approximated through a gamma
distribution G(μ̃2/σ̃ 2, μ̃/σ̃ 2) with matching moments. The two parameters μ̃ and
σ̃ 2 are expectation and variance of that log-normal distribution and are given by

μ̃ = exp

(
η̄i + σ 2

2ni

)
and

σ̃ 2 = {exp
(
σ 2/ni

)− 1
}

exp
(
2η̄i + σ 2/ni

)
,

cf. Appendix A.5.2. The gamma distribution is conjugate to the Poisson likelihood
and can be analytically combined to obtain the proposal distribution (8.23) as an
approximation to the full conditional of λi .

A simulation of length 100 000 with burn-in of 10 000 gave an average accep-
tance rate of 94 %. For the individual λis, the acceptance rate was never below 67 %.
We used the prior parameters α = 1 and β = 0.01. Figure 8.11 displays the corre-
sponding posterior mean estimates E(λi |x1:n). Compared with the MLEs shown
in Fig. 1.2, obtained from a model without spatial dependence, a much smoother
picture can be observed. The empirical Bayes estimates displayed in Fig. 6.13 are
also less variable than the MLEs but do not take the spatial structure of the data into
account. �

8.5 Numerical Calculation of the Marginal Likelihood

The calculation of the marginal likelihood f (x) in the non-conjugate case is the
greatest challenge in the implementation of Bayesian statistics.

8.5.1 Calculation Through Numerical Integration

In case the necessary integration in (8.1) is not feasible analytically, a natural ap-
proach is to try numerical methods of integration.
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Fig. 8.11 Geographical
distribution of the posterior
mean estimates E(λi |x) of
the relative risk of lip cancer
in Scotland

Example 8.16 (Hardy–Weinberg equilibrium) We now use Bayesian model selec-
tion to decide between the Hardy–Weinberg equilibrium (M1) and disequilibrium
(M2, see Example 8.13). The marginal likelihood of the Hardy–Weinberg equilib-
rium model M1 is given in (7.17); under the prior parameters α = β = 1, we obtain
f (x |M1) = 1.5 · 10−5. The calculation of the marginal likelihood is more difficult
in the disequilibrium model M2. Using the uniform distribution as a prior for υ like
in Example 8.13 and the uniform distribution on the interval bounded by (8.21) as a
prior for δ |υ , we obtain

f (x) =
∫ 1

0

{
u(υ) − l(υ)

}−1
[∫ u(υ)

l(υ)

(
υ2 + δ

)x1
{
2υ(1 − υ) − 2δ

}x2

× {(1 − υ)2 + δ
}x3 dδ

]
dυ

n!
x1!x2!x3!

with bounds from (8.21):

l(υ) = max
{−υ2,−(1 − υ)2} and u(υ) = υ(1 − υ).

This integration is feasible only numerically, so we use the R-function integrate
(see Appendix C.2.1). We obtain f (x |M2) = 2.1 · 10−6, which yields a Bayes fac-
tor of BF12 = 7.44 and thus positive evidence for the Hardy–Weinberg equilibrium
model. This is comparable with the results of Example 7.6, where another prior was
used in the more general model M2 through a different (multinomial) parametrisa-
tion and its conjugate (Dirichlet) prior. �
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Example 8.17 (Screening for colon cancer) Using likelihood inference, the trun-
cated beta-binomial model has been clearly preferred over the truncated binomial
model on the basis of a χ2 goodness-of-fit test (see Example 5.18). For a Bayesian
model selection procedure between the simpler model M2 of Example 8.1 and the
more flexible model M1 of Example 8.2, we calculate the Bayes factor

BF12 = f (x |M1)

f (x |M2)
,

where the numerator and denominator were already used in the calculation of
the posterior parameter densities. The necessary integration is again not feasible
analytically, and the R-function integrate has been applied instead. We obtain
BF12 = 1.62 · 1039 and therefore again overwhelming evidence for the truncated
beta-binomial model compared to the simpler binomial one. �

8.5.2 Monte Carlo Estimation of the Marginal Likelihood

In more complex models, numerical methods and the Laplace approximation are
computationally costly and/or imply non-negligible inaccuracies. An obvious idea
then is to adapt (MC)MC methods to not only estimate posterior densities but also
marginal likelihoods. Certainly, this involves higher costs and/or lower accuracies
as well. We illustrate this fact with three possible procedures.

First, observe that the equation

f (x) =
∫

f (x | θ)f (θ) dθ

allows a direct application of Monte Carlo integration (see Sect. 8.3) using randomly
drawn numbers θ (1), . . . , θ (M) from the prior distribution f (θ). The resulting Monte
Carlo estimator is given as

f̂ (x) = 1

M

M∑
m=1

f
(
x | θ (m)

)
, (8.24)

the arithmetic average of the likelihood values of the random numbers drawn from
the prior distribution. We apply this simple approach to Example 8.12.

Example 8.18 (Screening for colon cancer) The parameter θ = π in the considered
binomial model is a scalar, and the observed data x are given by Z = (Z1, . . . ,Zk)

�.
Since Z0 is not observed, the likelihood function is given in this case by a binomial
distribution truncated to positive values (see Example 2.12):

f (Z |π) =
N∏

k=1

{(
N

k

)
πk(1 − π)N−k

}Zk

/
{
1 − (1 − π)N

}n
, (8.25)
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Fig. 8.12 Application of the estimator (8.24) in the binomial model of the colon cancer screening
study

with N = 6 tests per patient and a total number of n = 196 positively tested pa-
tients. We used Jeffreys’ prior Be(0.5,0.5) as a prior distribution for π and now
draw M = 30 000 random numbers from it and then calculate their average like-
lihood value. In order to assess the variability of the estimator (8.24) we show in
Fig. 8.12a estimations for five different simulations as functions of the sample size
m = 1, . . . ,M . For M = 30 000 the estimates range between exp(−440.520) and
exp(−440.437). �

The variance of the estimator (8.24) is typically quite high if the likelihood func-
tion is distinctly more concentrated than the prior distribution. This means that the
likelihood function will take values close to zero at most of the random numbers
drawn from the prior distribution but very high values for very few of those random
numbers. This is the case in Example 8.18, where the prior has very different mass
centres than the likelihood function, see Fig. 8.12b. Therefore, it is advisable to use
random numbers drawn from the posterior distribution instead the prior distribution.
For a direct application of importance sampling, the posterior distribution f (θ |x)

has to be available including the proportionality constant, which is identical to the
inverse of the marginal likelihood. But this is precisely the quantity we are intending
to calculate, such that importance sampling cannot be applied directly.
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The trick here is to instead apply importance sampling to estimate the integral

∫
f (θ) dθ =

∫
f (θ)

f (θ |x)
f (θ |x)dθ,

known to be equal to one. Drawing θ (1), . . . , θ (M) from the posterior distribution
f (θ |x), we obtain the following “estimate” of the above integral:

1 = 1

M

M∑
m=1

f (θ (m))

f (θ (m) |x)
= 1

M

M∑
m=1

f (x)

f (x | θ (m))
.

Rearranging provides an estimate of the marginal likelihood:

f̂ (x) =
{

1

M

M∑
m=1

1

f (x | θ (m))

}−1

, (8.26)

the harmonic average of the likelihood values at the random numbers drawn from the
posterior distribution. Unfortunately, the statistical performance of this estimator is
again quite poor. Since the variance of the inverse likelihood is in most cases infinite,
the estimator is unstable in many applications. However, it is at least simulation-
consistent due to the law of large numbers, i.e. f̂ (x) converges to f (x) as M → ∞.

Example 8.19 (Screening for colon cancer) We now take a different route than in
Example 8.18 to compute the marginal likelihood for the colon cancer screening
model. Using the likelihood (8.25) and applying (8.26), we obtain the estimator

f̂ (Z) = M

[
M∑

m=1

{
1 − (1 − π(m)

)N}n N∏
k=1

{(
N

k

)(
π(m)

)k(1 − π(m)
)N−k

}−Zk

]−1

.

(8.27)
Figure 8.13 shows this estimator of the marginal likelihood as a function of the sam-
ple size M , where we drew M random numbers from the (approximate) posterior
distribution using a Gibbs sampler as described in Example 8.12. �

A third approach is based on the formula

f (x) = f (x | θ)f (θ)

f (θ |x)
, (8.28)

which is a simple rearrangement of Bayes’ theorem and holds for all θ ∈ Θ . It will
mostly be evaluated at parameter values θ in the centre of the posterior distribution,
e.g. the posterior mean or the posterior mode since in these regions a higher accu-
racy of the density estimation can be expected for a fixed number of random draws
from the posterior. The denominator f (θ |x) in the above identity is typically only
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Fig. 8.13 Development of
estimate (8.27) of the
marginal likelihood in the
binomial model of the colon
cancer screening study as a
function of the number of
random numbers drawn from
the posterior distribution.
Shown is the logarithm of the
estimate for five different
Markov chains. The sharp
changes in the estimates in
the course of adding more
random numbers are
noteworthy. The final values
of log{f̂ (x)} differ maximally
by 6.32 · 10−1, and their
mean value is −438.339

known up to proportionality. Indeed, the corresponding normalising constant f (x)

is actually the quantity we intend to calculate. The representation

f (θ |x) =
∫

f (θ |x, z)f (z |x)dz (8.29)

allows a Monte Carlo estimation of f (θ |x) in the case of latent, i.e. unobserved,
data z, if at least random numbers from f (z |x) and the density f (θ |x, z) are avail-
able. The idea here is to update the parameter vector θ , similarly to z, as an entire
block within the Gibbs sampling, which is hence implemented using random num-
bers from the two full conditional densities f (θ |x, z) and f (z |x, θ). The Gibbs
sampler then provides random numbers from the marginal posterior f (z |x), which
are substituted into the full conditional density f (θ |x, z) of θ to obtain the Monte
Carlo estimate

f̂ (θ |x) = 1

M

M∑
m=1

f
(
θ |x, z(m)

)

of the required posterior (8.29). Note that the full conditional density f (θ |x, z)

used in the Gibbs sampler is known, including its normalisation constant.

Example 8.20 (Screening for colon cancer) Again, we intend to illustrate this
method using the colon cancer screening example. Here θ corresponds to the un-
known probability π , the observed data x is Z, and the unobserved data z is Z0.
The value of the density f (π |x) at the estimated posterior mean Ê(π |Z) = 0.624
can be estimated directly by

1

M

M∑
m=1

f
(
0.624 |Z,Z

(m)
0

)= 27.889,
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where we use M = 100 000 simulations of Z0 |Z using Gibbs sampling, and (8.19)
gives the density f (π |x, z). Substitution into Eq. (8.28) leads to the Monte Carlo
estimate of the log marginal likelihood

log
{
f̂ (x)

}= log
{
f (x |0.624)

}+ log
{
f (0.624)

}− log(27.889) = −440.469,

which is actually quite close to the first estimate log{f̂ (x)} = −440.475 from Ex-
ample 8.18. �

8.6 Exercises

1. Let X ∼ Po(eλ) with known e, and assume the prior λ ∼ G(α,β).
(a) Compute the posterior expectation of λ.
(b) Compute the Laplace approximation of this posterior expectation.
(c) For α = 0.5 and β = 0, compare the Laplace approximation with the

exact value, given the observations x = 11 and e = 3.04, or x = 110 and
e = 30.4. Also compute the relative error of the Laplace approximation.

(d) Now consider θ = log(λ). First, derive the posterior density function
using the change-of-variables formula (A.11). Second, compute the
Laplace approximation of the posterior expectation of θ and compare
again with the exact value you have obtained by numerical integration
using the R-function integrate.

2. In Example 8.3, derive the Laplace approximation (8.9) for the posterior ex-
pectation of π using the variance stabilising transformation.

3. For estimating the odds ratio θ from Example 5.8, we will now use Bayesian
inference. We assume independent Be(0.5,0.5) distributions as priors for the
probabilities π1 and π2.
(a) Compute the posterior distributions of π1 and π2 for the data given

in Table 3.1. Simulate samples from these posterior distributions and
transform them into samples from the posterior distributions of θ and
ψ = log(θ). Use the samples to compute Monte Carlo estimates of the
posterior expectations, medians, equi-tailed credible intervals and HPD
intervals for θ and ψ . Compare with the results from likelihood infer-
ence in Example 5.8.

(b) Try to compute the posterior densities of θ and ψ analytically. Use the
density functions to numerically compute the posterior expectations and
HPD intervals. Compare with the Monte Carlo estimates from 3(a).

4. In this exercise we will estimate a Bayesian hierarchical model with MCMC
methods. Consider Example 6.31, where we had the following model:

ψ̂i |ψi ∼ N
(
ψi,σ

2
i

)
,

ψi |ν, τ ∼ N
(
ν, τ 2),
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where we assume that the empirical log odds ratios ψ̂i and corresponding vari-
ances σ 2

i := 1/ai + 1/bi + 1/ci + 1/di are known for all studies i = 1, . . . , n.
Instead of empirical Bayes estimation of the hyper-parameters ν and τ 2, we
here proceed in a fully Bayesian way by assuming hyper-priors for them. We
choose ν ∼ N(0,10) and τ 2 ∼ IG(1,1).
(a) Derive the full conditional distributions of the unknown parameters

ψ1, . . . ,ψn, ν and τ 2.
(b) Implement a Gibbs sampler to simulate from the corresponding poste-

rior distributions.
(c) For the data given in Table 1.1, compute 95 % credible intervals for

ψ1, . . . ,ψn and ν. Produce a plot similar to Fig. 6.15 and compare with
the results from the empirical Bayes estimation.

5. Let Xi , i = 1, . . . , n, denote a random sample from a Po(λ) distribution with
gamma prior λ ∼ G(α,β) for the mean λ.
(a) Derive closed forms of E(λ |x1:n) and Var(λ |x1:n) by computing the

posterior distribution of λ |x1:n.
(b) Approximate E(λ |x1:n) and Var(λ |x1:n) by exploiting the asymptotic

normality of the posterior (cf. Sect. 6.6.2).
(c) Consider now the log mean θ = log(λ). Use the change-of-variables

formula (A.11) to compute the posterior density f (θ |x1:n).
(d) Let α = 1, β = 1 and assume that x̄ = 9.9 has been obtained for n = 10

observations from the model. Compute approximate values of E(θ |x1:n)
and Var(θ |x1:n) via:

(i) the asymptotic normality of the posterior,
(ii) numerical integration (cf. Appendix C.2.1) and

(iii) Monte Carlo integration.
6. Consider the genetic linkage model from Exercise 5 in Chap. 2. Here we

assume a uniform prior on the proportion φ, i.e. φ ∼ U(0,1). We would like
to compute the posterior mean E(φ |x).
(a) Construct a rejection sampling algorithm to simulate from f (φ |x) us-

ing the prior density as the proposal density.
(b) Estimate the posterior mean of φ by Monte Carlo integration using M =

10 000 samples from f (φ |x). Calculate also the Monte Carlo standard
error.

(c) In 6(b) we obtained samples of the posterior distribution assuming a
uniform prior on φ. Suppose we now assume a Be(0.5,0.5) prior in-
stead of the previous U(0,1) = Be(1,1). Use the importance sampling
weights to estimate the posterior mean and Monte Carlo standard error
under the new prior based on the old samples from 6(b).

7. As in Exercise 6, we consider the genetic linkage model from Exercise 5 in
Chap. 2. Now, we would like to sample from the posterior distribution of φ us-
ing MCMC. Using the Metropolis–Hastings algorithm, an arbitrary proposal
distribution can be used, and the algorithm will always converge to the target
distribution. However, the time until convergence and the degree of depen-
dence between the samples depends on the chosen proposal distribution.
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(a) To sample from the posterior distribution, construct an MCMC sampler
based on the following normal independence proposal (cf. approxima-
tion 3 in Sect. 6.6.2):

φ∗ ∼ N
(
Mod(φ |x),F 2 · C−1),

where Mod(φ |x) denotes the posterior mode, C the negative curvature
of the log-posterior at the mode and F a factor to blow up the variance.

(b) Construct an MCMC sampler based on the following random walk pro-
posal:

φ∗ ∼ U
(
φ(m) − d,φ(m) + d

)
,

where φ(m) denotes the current state of the Markov chain, and d is a
constant.

(c) Generate M = 10 000 samples from algorithm 7(a), setting F = 1 and
F = 10, and from algorithm 7(b) with d = 0.1 and d = 0.2. To check
the convergence of the Markov chain:

(i) plot the generated samples to visually check the traces,
(ii) plot the autocorrelation function using the R-function acf,

(iii) generate a histogram of the samples,
(iv) compare the acceptance rates.
What do you observe?

8. Cole et al. (2012) describe a rejection sampling approach to sample from a
posterior distribution as a simple and efficient alternative to MCMC. They
summarise their approach as:

I. Define a model with likelihood function L(θ;y) and prior f (θ).
II. Obtain the maximum likelihood estimate θ̂ML.

III. To obtain a sample from the posterior:
(i) Draw θ∗ from the prior distribution (note: this must cover the

range of the posterior).
(ii) Compute the ratio p = L(θ∗;y)/L(θ̂ML;y).

(iii) Draw u from U(0,1).
(iv) If u ≤ p, then accept θ∗. Otherwise, reject θ∗ and repeat.

(a) Using Bayes’ rule, write out the posterior density of f (θ |y). In the
notation of Sect. 8.3.3, what are the functions fX(θ), fZ(θ) and L(θ;x)

in the Bayesian formulation?
(b) Show that the acceptance probability fX(θ∗)/{afZ(θ∗)} is equal to

L(θ∗;y)/L(θ̂ML;y). What is a?
(c) Explain why the inequality fX(θ) ≤ afZ(θ) is guaranteed by the ap-

proach of Cole et al. (2012).
(d) In the model of Exercise 6(c), use the proposed rejection sampling

scheme to generate samples from the posterior of φ.
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8.7 References

An overview of numerical methods in Bayesian inference is given by Evans and
Swartz (1995). Tierney and Kadane (1986) have studied application of the Laplace
approximation to Bayesian inference in detail, see also Bernardo and Smith (2000,
Sect. 5.5.1). Classical texts on stochastic simulation and Monte Carlo inference are
Ripley (1987) and Devroye (1986), while Robert and Casella (2004, 2010) are more
recent books. An excellent introduction to Markov chain Monte Carlo methods is
given in Green (2001), more details can be found in Gilks et al. (1996). Further
seminal papers are Tierney (1994) and Besag et al. (1995). Different approaches for
the Monte Carlo estimation of the marginal likelihood are described in Newton and
Raftery (1994) and Chib (1995).
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A common problem in statistics concerns the prediction of future data. Consider the
following scenario: Let x1:n denote the realisation of a random sample X1:n from
a distribution with density (or probability mass) function f (x; θ) with unknown
parameter θ . Our goal is to predict a future independent observation Y = Xn+1, also
from f (x; θ). Obviously, the observed data x1:n should be taken into account in this
task.

In contrast to previous chapters, which were concerned with inference for un-
known parameters, that are inherently unobservable, we now want to infer a quantity
that we will be able to observe. We are interested in predictive inference.

We may want to derive a point prediction Ŷ , but also a predictive distribution
with predictive density f (y). The point prediction is then just a function of the
predictive distribution, for example its mean. A 95 % prediction interval can be
obtained based, for example, on the 2.5 % and 97.5 % quantiles of the predictive
distribution.

For simplicity, in the following we will call f (y) a density function even if Y

may also be a discrete random variable. The methods are described for scalar Y

and θ but can easily be generalised to vectorial Y or θ .
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9.1 Plug-in Prediction

A naive approach to compute a predictive distribution is the plug-in prediction: We
simply use the density function f (x; θ) underlying our random sample and replace
the unknown parameter θ with the MLE θ̂ML, i.e. f (y) = f (y; θ̂ML). This leads to
the plug-in predictive distribution with density

f (y) = f (y; θ̂ML), (9.1)

where θ̂ML = θ̂ML(x1:n) has been calculated based on the realisation x1:n of the ran-
dom sample X1:n. However, by replacing the true, unknown parameter θ with the
MLE θ̂ML, the uncertainty in estimating θ is ignored. The plug-in prediction there-
fore produces prediction intervals that are often too narrow. Because of its simplic-
ity, this method is nevertheless commonly used.

Example 9.1 (Scottish lip cancer) Suppose we observe n = 1 observation x from
a Poisson distribution X ∼ Po(exλ). Our goal is to predict Y ∼ Po(eyλ), and we
assume that both ex > 0 and ey > 0 are known. The MLE of λ is λ̂ML = x/ex , so the
plug-in prediction is Y ∼ Po(x · ey/ex).

As an illustration, consider Sect. 1.1.6 and assume that in a particular region of
Scotland there have been x = 11 cases of lip cancer in a five-year period; however,
only ex = 3.04 cases have been expected. Our goal is to predict the number of
cases Y in the next five years, and for simplicity, we assume that ex = ey . The
plug-in predictive distribution of Y is now a Poisson distribution with mean (and
variance) x · ey/ex = x = 11. The interval [5,17] is a 95 % prediction interval since∑17

y=5 f (y;λ = 11) ≈ 0.95.
However, suppose now that no case (x = 0) has been observed in that region.

The plug-in prediction is then a degenerate Poisson distribution with mean zero,
i.e. predicts with absolute certainty that there will be no case in the future, a rather
untenable forecast. �

This example illustrates that the plug-in prediction is in general unsatisfactory.
Instead, one should try to incorporate the uncertainty in the estimation of the un-
known parameter θ into the prediction. This goal can be achieved by both likelihood
or Bayesian approaches.

9.2 Likelihood Prediction

In this section we introduce two prediction approaches based on the likelihood,
which both take into account the uncertainty of the estimated parameters.
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9.2.1 Predictive Likelihood

To obtain a predictive distribution of Y = Xn+1, we introduce the so-called predic-
tive likelihood Lp(y). For this purpose, we first consider the likelihood function
L(θ;x1:n, y) = f (x, y; θ) with respect to the observations X1:n = x1:n and Y = y.
Since the realisation Y = y is unobserved, this may be understood as a function of
θ and y for fixed x1:n.

Definition 9.1 (Extended likelihood function) The extended likelihood function
L(θ, y) is the likelihood function with respect to the observations X1:n = x1:n and
Y = y, understood as a function of θ and y for fixed x1:n:

L(θ, y) = f (x1:n, y; θ). �

Now assume that X1:n and Y are independent and distributed according to a
density function f (x; θ). Then we have

f (x1:n, y; θ) = f (y; θ)

n∏
i=1

f (xi; θ).

To determine the predictive likelihood of y, the parameter θ has to be eliminated.
Formally, this can be done analogously to obtaining the profile likelihood, see
Sect. 5.3.

Definition 9.2 (Predictive likelihood) The predictive likelihood function, or shorter
the predictive likelihood, Lp(y) is obtained by maximising the extended likelihood
function L(θ, y) with respect to θ while y is kept fixed, i.e.

Lp(y) = max
θ

L(θ, y) = L
(
θ̂ (y), y

)
.

Here the estimate θ̂ (y) is the MLE of θ based on the extended data x1:n and y. �

Since Y is a random variable, the predictive likelihood Lp(y) can be viewed as
a non-normalised density function. After suitable normalisation, we obtain a proper
density function from which we can compute point predictions and prediction in-
tervals. We call the corresponding predictive distribution the likelihood prediction
with density function fp(y) = Lp(y)/

∫
Lp(u)du.

Example 9.2 (Normal distribution) Let X1:n denote a random sample from an
N(μ,σ 2) distribution, from which a future observation Y has to be predicted. The
variance σ 2 is assumed known, the expectation μ unknown. The joint density func-
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tion of X1:n and Y is

f (x1:n, y;μ) = C · exp

[
− 1

2σ 2

{
n∑

i=1

(xi − μ)2 + (y − μ)2

}]

= C · exp

[
− 1

2σ 2

{
n∑

i=1

(xi − x̄)2 + n(x̄ − μ)2 + (y − μ)2

}]
.

From that the extended likelihood function can be derived as

L(μ,y) = exp

[
− 1

2σ 2

{
n(x̄ − μ)2 + (y − μ)2}],

which is (for fixed y) maximised by

μ̂(y) = nx̄ + y

n + 1
.

Substituting μ̂(y) into L(μ,y) leads to the predictive likelihood

Lp(y) = L
(
μ̂(y), y

)= exp

[
− 1

2σ 2

{
n

(
x̄ − nx̄ + y

n + 1

)2

+
(

y − nx̄ + y

n + 1

)2}]

= exp

[
− 1

2σ 2

{
n

(
y − x̄

n + 1

)2

+ n2
(

y − x̄

n + 1

)2}]

= exp

{
− 1

2σ 2

n + n2

(n + 1)2
(y − x̄)2

}

= exp

{
− 1

2σ 2

n

n + 1
(y − x̄)2

}
,

which can be identified as the kernel of a normal density with expectation x̄ and
variance (1 + 1/n)σ 2. Hence, the likelihood prediction

Y ∼ N
(
x̄, σ 2(1 + 1/n)

)
(9.2)

differs from the plug-in prediction Y ∼ N(x̄, σ 2) only through a larger variance. The
likelihood prediction therefore provides somewhat larger prediction intervals since
the uncertainty in the MLE μ̂ML = x̄ has been accounted for. �

Example 9.3 (Blood alcohol concentration) If we consider the estimated standard
deviation σ = 237.8 of the transformation factors in Sect. 1.1.7 as known, a like-
lihood prediction interval for the transformation factor of a new individual can be
computed from (9.2). In particular, the 95 % prediction interval has limits

2449.2 ± 1.96 ·√1 + 1/185 · 237.8 = 1981.9 and 2916.5,
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cf. Table 1.3. The point prediction is of course equal to 2449.2. Note that√
1 + 1/185 ≈ 1.003, so very close to one. The 95 % plug-in prediction interval

will therefore be essentially the same.
It is interesting that the lower limit of the above prediction interval for TF is

close to the currently used transformation factor of TF0 = 2000 in Switzerland. So
the factor TF0 = 2000 can be justified as the approximate lower limit of a 95 %
prediction interval, but not as a useful point prediction. �

Example 9.4 (Poisson model) We aim to apply the predictive likelihood approach
in Example 9.1. The extended likelihood of λ and y is (after elimination of multi-
plicative constants) given by

L(λ,y) = e
y
y

y! λ
x+y exp

{−(ex + ey)λ
}
.

For fixed y, L(λ,y) is maximised by

λ̂(y) = x + y

ex + ey

.

Substituting this into L(λ,y) leads to the predictive likelihood

Lp(y) = e
y
y

y!
(

x + y

ex + ey

)x+y

exp
{−(x + y)

}
.

This function can be normalised numerically if the required infinite summation of
Lp(y) is truncated at a sufficiently large upper bound ymax, for example, at ymax =
1000. We then obtain the predictive probability mass function fp(y), from which
the expectation and the variance can be derived. For x = 11 and ex = ey = 3.04,
these are given as 11.498 and 22.998, respectively. The mean and variance of the
plug-in prediction are 11, cf. Example 9.1. While the mean of the predictive like-
lihood prediction is fairly close to the mean of the plug-in prediction, the variance
of the likelihood prediction is more than twice as large as the variance of the plug-
in prediction. The prediction interval [5,17] has probability 0.95 for the plug-in
prediction. In contrast, the interval has only probability 0.84 for the likelihood pre-
diction. �

9.2.2 Bootstrap Prediction

Another approach to incorporate the uncertainty of the estimate θ̂ML into the pre-
diction procedure is as follows: Let f (θ̂ML; θ) denote the density function of the
ML estimator θ̂ML depending on a random sample X1:n from f (x; θ) with true but
unknown parameter θ . The idea is now to replace the too optimistic predictive dis-
tribution (9.1) with the density

g(y; θ) =
∫

f (y; θ̂ML)f (θ̂ML; θ) dθ̂ML (9.3)
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such that θ̂ML has been eliminated from f (y; θ̂ML) through integration. If the ML
estimator has a discrete distribution, the integral has to be replaced by a sum. The
idea to eliminate the unknown parameter by integration from the likelihood function
can also be motivated through a Bayesian argumentation, see Sect. 9.3.

A shortcoming of the distribution (9.3) is that g(y; θ) still depends on the true but
unknown parameter θ . A possible remedy to this is to replace θ in g(y; θ) with the
MLE θ̂ML = θ̂ML(x1:n) based on the observed realisation x1:n of the random sample
X1:n. This leads to the so-called bootstrap predictive distribution

f (y) = g
(
y; θ̂ML(x1:n)

)
. (9.4)

The reasons for calling this prediction approach the bootstrap prediction will be
discussed after the following two examples.

Example 9.5 (Normal model) As in Example 9.2, let X1:n denote a random sam-
ple from an N(μ,σ 2) distribution with θ = μ unknown and σ 2 known. The ML
estimator μ̂ML = X̄ has the distribution N(μ,σ 2/n). Note that this is true not only
asymptotically but in this case also for finite samples. Now we have

g(y;μ) =
∫

1√
2π

1

σ
exp

{
−1

2

(y − μ̂ML)
2

σ 2

}

× 1√
2π

√
n

σ
exp

{
−1

2

(μ̂ML − μ)2

σ 2/n

}
dμ̂ML

= C

∫
exp

[
−1

2

{
(μ̂ML − y)2

σ 2
+ (μ̂ML − μ)2

σ 2/n

}]
dμ̂ML,

where C = √
n/(2πσ 2). Setting τ 2 = σ 2/(1 + n) and

c = τ 2
(

y

σ 2
+ n

σ 2
μ

)
= y + nμ

1 + n
,

we obtain (cf. Appendix B.1.5)

g(y;μ) = C

∫
exp

[
−1

2

{
(μ̂ML − c)2

τ 2
+ (y − μ)2

σ 2(1 + 1
n
)

}]
dμ̂ML

= C exp

{
−1

2

(y − μ)2

σ 2(1 + 1
n
)

}∫
exp

{
−1

2

(μ̂ML − c)2

τ 2

}
dμ̂ML

︸ ︷︷ ︸
= √

2π ·τ=σ
√

2π/
√

1+n

= 1√
2π

1

σ

1√
1 + 1

n

exp

{
−1

2

(y − μ)2

σ 2(1 + 1
n
)

}
,
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i.e. a normal density with expectation μ and variance (1 + 1/n)σ 2. By replacing
μ in g(y;μ) with μ̂ML(x) = x̄ we identify the bootstrap prediction as the normal
distribution with mean x̄ and variance (1+1/n)σ 2. Therefore, predictive likelihood
and bootstrap prediction are in this case identical, cf. Example 9.2. �

Example 9.6 (Poisson model) Let X ∼ Po(exλ). Then the MLE is λ̂ML = x/ex .
Since X follows the Poisson distribution with parameter exλ, the probability mass
function of λ̂ML is

f (λ̂ML;λ) = (exλ)ex λ̂ML

(exλ̂ML)!
exp(−exλ) for λ̂ML = 0,

1

ex

,
2

ex

, . . . .

For (9.4), we therefore obtain

f (y) =
∑

t=0, 1
ex

,...

(eyt)
y

y! exp(−eyt)
(exλ̂ML)

ex t

(ext)! exp(−exλ̂ML)

= exp(−exλ̂ML)

y!
(

ey

ex

)y ∞∑
s=0

sy(exλ̂ML)
s

s! exp

(
−ey

ex

s

)
,

where the last equality is due to the substitution s = t · ex . It is difficult to compute
the sum in this equation analytically. An alternative is a Monte Carlo approximation
of the integral (9.4):

f̂ (y) = 1

m

m∑
i=1

f
(
y; λ̂(i)

ML

)
. (9.5)

Here, λ̂(1)
ML, . . . , λ̂

(m)
ML denote independent samples from f (λ̂ML;λ), where the true pa-

rameter λ has been replaced by the MLE λ̂ML(x) based on the actual observation x.
This procedure is easily implemented in R as follows:

> ## Data:

> x <- 11

> ex <- 3.04

> ey <- 3.04

> ## MLE:

> (lambdahat <- x/ex)

[1] 3.618421

> ## bootstrap prediction:

> set.seed(1)

> m <- 10000

> lambdasample <- rpois(m, lambda=lambdahat * ex) / ex

> support <- 0:100

> ghat <- rep(0, length(support))

> for(i in 1:m)

{

ghat <- ghat + dpois(support, lambda=lambdasample[i] * ey)

}
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Fig. 9.1 Comparison of the probability mass functions of plug-in, likelihood and bootstrap pre-
dictions in the Poisson example (the bars are centred around their x-value)

> ghat <- ghat/m

> ## empirical moments of the predictive distribution:

> (e.g <- sum(ghat*support))

[1] 11.0068

> e.g2 <- sum(ghat*support^2)

> (var.g <- e.g2 - e.g^2)

[1] 22.07575

The empirical mean e.g = 11.0068 of the bootstrap predictive distribution is
very close to the mean of the plug-in prediction. The empirical prediction variance
var.g = 22.0758 is, however, larger as for the plug-in prediction. The resulting
predictive distribution is very similar to the predictive likelihood distribution, cf.
Fig. 9.1.

Incidentally, note that we can calculate the expectation and the variance of the
prediction Y analytically using the law of total expectation and the law of total
variance (cf. Appendix A.3.4). Starting with the expectation and variance belonging
to the distribution (9.3), we have

E(Y ) = E
{
E(Y | λ̂ML)

}= E(eyλ̂ML) = eyλ and

Var(Y ) = E
{
Var(Y | λ̂ML)

}+ Var
{
E(Y | λ̂ML)

}
= E(eyλ̂ML) + Var(eyλ̂ML)

= eyλ + e2
y

ex

λ.
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We obtain the corresponding moments of the bootstrap prediction (9.4) by replacing
λ with λ̂ML, giving

E(Y ) = eyλ̂ML and (9.6)

Var(Y ) = eyλ̂ML + e2
y

ex

λ̂ML. (9.7)

In our case (ex = ey = 3.04 and λ̂ML = 11/3.04) we therefore have E(Y ) = 11 and
Var(Y ) = 22. The empirical estimates above differ slightly from this due to addi-
tional Monte Carlo error. �

Implementation of the Monte Carlo version of the predictive distribution (9.4)
requires independent samples from the distribution f (θ̂ML; θ), where the true pa-
rameter θ is replaced by the MLE θ̂ML(x1:n) based on the observed data x1:n. If this
distribution is unknown, there are two alternatives. First, one can use the asymp-
totic normal distribution of the ML estimator as an approximation of f (θ̂ML; θ).
Another approximate but more accurate approach is based on the bootstrap, see
also Sect. 3.2.5. For repeated samples of size n with replacement from the original
data, the MLE is calculated. The empirical distribution of those MLEs is under cer-
tain regularity conditions a good approximation of the true distribution. The term
f (θ̂ML; θ) in (9.3) is then replaced with this approximation, and the integral reduces
to a sum as in (9.5). Note, however, that a bootstrap approach requires a reasonably
large sample size n, it would not be possible in Example 9.6, where only n = 1
observation is available.

9.3 Bayesian Prediction

A Bayesian viewpoint offers a very natural approach to the prediction problem.

9.3.1 Posterior Predictive Distribution

Consider a random sample X1:n from a distribution with density f (x | θ). Our goal is
to predict a future (independent) observation Y = Xn+1 from f (x | θ). The posterior
predictive distribution of Y |x1:n, which can be calculated easily using elementary
rules from probability, is the central quantity of interest:

f (y |x1:n) =
∫

f (y, θ |x1:n) dθ =
∫

f (y | θ, x1:n)f (θ |x1:n) dθ

=
∫

f (y | θ)f (θ |x1:n) dθ. (9.8)

Note that the last line follows from the assumption of conditional independence of
X1:n and Y , given θ . Thus, to compute f (y |x1:n), we simply need to integrate the
product of the likelihood f (y | θ) and the posterior density f (θ |x1:n) with respect
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to θ . The result f (y |x1:n) is called the posterior predictive distribution in contrast
to the prior predictive distribution

f (y) =
∫

f (y | θ)f (θ) dθ. (9.9)

Compared to Eq. (9.8), the posterior f (θ |x1:n) has been replaced by the prior f (θ)

to obtain the prior predictive distribution, which plays a central role in Bayesian
model choice, cf. Sect. 7.2.1.

It is worth emphasizing that the posterior predictive distribution f (y |x1:n) is not
equal to the naive plug-in prediction f (y | θ̂ ). In fact, f (y | θ̂ ) is obtained by replac-
ing the posterior distribution f (θ |x1:n) in (9.8) with a point measure at θ̂ , typically
the MLE. In contrast, the Bayesian prediction automatically incorporates the uncer-
tainty in the parameter estimation. There is, however, a connection between the two
approaches. As we have seen in Sect. 6.6, the posterior distribution is asymptotically
normal with mean equal to the MLE and variance approaching zero if the sample
size n tends to infinity. Therefore,

f (θ |x1:n)
n→∞−−−→ point mass distribution in θ̂ML.

The Bayesian prediction will therefore converge to the plug-in prediction for in-
creasing sample size n:

f (y |x1:n)
n→∞−−−→ f (y | θ̂ML).

Example 9.7 (Normal model) Let X1:n denote a random sample from an N(μ,σ 2)

distribution with unknown mean μ and known variance σ 2. Our goal is to predict
a future-independent observation Y = Xn+1 from the same distribution. Using Jef-
freys’ prior f (μ) ∝ 1 for μ, we know that the posterior is (cf. Example 6.14)

μ |x1:n ∼ N

(
x̄,

σ 2

n

)
.

The posterior predictive distribution of Y |x1:n has therefore the density

f (y |x1:n) =
∫

f (y |μ)f (μ |x1:n) dμ

∝
∫

exp

[
−1

2

{
(μ − y)2

σ 2
+ n(μ − x̄)2

σ 2

}]
dμ.

Using Appendix B.1.5, we have

(μ − y)2

σ 2
+ n(μ − x̄)2

σ 2
= C(μ − c)2 + (y − x̄)2

(1 + 1
n
)σ 2

,

where C = (n + 1)/σ 2 and c = (y + nx̄)/(n + 1). Note that the first term in this
sum is a quadratic form of μ, whereas the second term does not depend on μ. It
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then follows that

f (y |x1:n) ∝
∫

exp

{
−C

2
(μ − c)2 − 1

2

(y − x̄)2

(1 + 1
n
)σ 2

}
dμ

= exp

{
−1

2

(y − x̄)2

(1 + 1
n
)σ 2

}∫
exp

{
−C

2
(μ − c)2

}
dμ

︸ ︷︷ ︸
=√

2πσ/
√

n+1

∝ exp

{
−1

2

(y − x̄)2

(1 + 1
n
)σ 2

}
.

This is the kernel of the normal density with mean x̄ and variance σ 2(1 + 1
n
), so the

posterior predictive distribution is

Y |x1:n ∼ N

(
x̄, σ 2

(
1 + 1

n

))
. (9.10)

Note that the plug-in prediction is also normal with mean x̄, but has smaller vari-
ance σ 2. However, the likelihood and the bootstrap prediction give exactly the same
result, cf. Examples 9.2 and 9.5.

We note that if the variance is also unknown, application of a reference prior
f (μ,σ 2) ∝ σ−2 leads to a t distribution as posterior predictive distribution:

Y |x1:n ∼ t

(
x̄,

(
1 + 1

n

)∑n
i=1(xi − x̄)2

n − 1
, n − 1

)
,

see Exercise 2. �

Example 9.8 (Blood alcohol concentration) Suppose that instead of Jeffreys’ prior
as in Example 9.7, we now use a normal prior μ ∼ N(ν, δ−1) for the mean μ of a
normal random sample with known variance σ 2. The posterior predictive distribu-
tion is then

Y |x1:n ∼ N

(
E(μ |x1:n), σ 2

(
δσ 2 + n + 1

δσ 2 + n

))
. (9.11)

Here E(μ |x1:n) denotes the posterior mean of μ as derived in Example 6.8. Note
that the posterior predictive variance in (9.11) is always larger than σ 2 and reduces
to σ 2(1 + 1

n
) for δ = 0 as it should, cf. Eq. (9.10).

We now compute the posterior predictive distribution for the transformation fac-
tor both separately for females and males and overall, using a μ ∼ N(ν, δ−1) prior
and with known standard deviation σ = 237.8. The mean and standard deviation of
the posterior predictive normal distribution (9.11) are shown in Table 9.1. �

Example 9.9 (Laplace’s rule of succession) Laplace’s rule of succession describes a
famous predictive distribution, derived in the 18th century by Pierre-Simon Laplace
(1749–1827). Laplace tried to calculate the probability that the sun will rise tomor-
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Table 9.1 Mean and
standard deviation of the
posterior predictive
distribution of the
transformation factor

Gender Number of
volunteers

Predictive distribution

Mean Standard deviation

Female 33 2305.5 241.2

Male 152 2473.1 238.5

Total 185 2445.8 238.4

row, given that it has risen every day for the past n days, say. More generally, one
may assume that the sun has risen x times in the past n days. Laplace was of course
mainly interested in the case x = n.

Assume that X1:n is a random sample from the B(π) distribution. Then

X =
n∑

i=1

Xi ∼ Bin(n,π).

A priori we assume that π ∼ Be(α,β), so the posterior distribution is π |x ∼
Be(α +x,β +n−x). Our goal is to predict a future observation Y = Xn+1 ∼ B(π).
Now Y |x is a beta-binomial distribution with parameters 1, α + x and β + n − x,
which is simply a Bernoulli distribution with success probability Pr(Y = 1 |x) =
(α + x)/(α + β + n), cf. Appendix A.5.1.

Laplace was particularly interested in the case α = β = 1, i.e. a uniform prior
distribution. The posterior predictive probability for success is now

Pr(Y = 1 |x) = x + 1

n + 2
,

and therefore

Pr(Y = 0 |x) = n − x + 1

n + 2
.

For example, suppose that the sun has risen in the past x = n = 1 000 000 days, say.
The probability that it will not rise tomorrow (without additional information) is

Pr(Y = 0 |x) = 1

1 000 002
≈ 10−6. �

Laplace’s rule of succession can be applied also to more interesting situations, as
in the following example.

Example 9.10 (Sequential analysis of binary outcomes from a clinical trial) Sup-
pose that a clinical trial is conducted where the primary outcome is the success rate
of a novel therapy. The therapy comes with certain side effects, so it is generally
agreed upon that a success probability below 0.5 cannot be justified for individual
therapy. However, there is some optimism that the success rate π is around 0.75,
and this is reflected in a Be(6,2) prior for π .
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Table 9.2 Successive
change of the posterior
predictive probability
Pr(Y = 1 |data so far) for
success using a Be(6,8) prior
for the success probability at
the start of the trial

Patient ID Patient outcome Pr(Y = 1 |data so far)

(start of clinical trial) 6/8 = 0.75

1 0 6/9 ≈ 0.67

2 0 6/10 = 0.60

3 1 7/11 ≈ 0.64

4 0 7/12 ≈ 0.58

5 1 8/13 ≈ 0.62

6 1 9/14 ≈ 0.64

7 1 10/15 ≈ 0.67

8 1 11/16 ≈ 0.69

9 1 12/17 ≈ 0.71

10 0 12/18 ≈ 0.67

11 0 12/19 ≈ 0.63

.

.

.
.
.
.

.

.

.

The outcomes Y from patients enrolled enter sequentially in the order shown in
Table 9.2, with success coded as 1 if the patient had a successful therapy and 0
otherwise. The predictive probability Pr(Y = 1 |data so far), the probability that the
therapy is successful for a future patient given the data so far, may now be used
as an early stopping criterion: if it falls below 0.5, then the trial must be stopped.
Fortunately, this is not the case for the data shown in Table 9.2. This scenario is of
course somewhat simplistic but contains important features of a sequential analysis
of clinical trials using predictive probabilities. �

9.3.2 Computation of the Posterior Predictive Distribution

In Sect. 7.2.1 we noted that the prior predictive distribution (9.9) is simply the de-
nominator in Bayes’ theorem; it can therefore be calculated if likelihood, prior and
posterior are known:

f (y) = f (y | θ)f (θ)

f (θ |y)
,

which holds for any θ . A similar formula also holds for the posterior predictive
distribution:

f (y |x) = f (y |x, θ)f (θ |x)

f (θ |x, y)

= f (y | θ)f (θ |x)

f (θ |x, y)
,
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where the last equation follows from conditional independence of X and Y given λ.
If f (θ) is conjugate with respect to f (x | θ), then f (θ |x) and f (θ |x, y) belong

to the same family of distributions considered. The posterior predictive distribution
can then be derived without explicit integration. We will illustrate the procedure in
the following example.

Example 9.11 (Poisson model) Let X ∼ Po(exλ), Y ∼ Po(eyλ) and λ ∼ G(α,β) a
priori, with X and Y being conditionally independent. From Example 6.30 we know
that

λ |x ∼ G(α̃, β̃) and

λ |x, y ∼ G(α̃ + y, β̃ + ey),

where α̃ = α + x and β̃ = β + ex . The posterior predictive distribution is therefore

f (y |x) = f (y |λ)f (λ |x)

f (λ |x, y)

=
(eyλ)y

y! exp(−eyλ)
β̃α̃

�(α̃)
λα̃−1 exp(−β̃λ)

(β̃+ey)α̃+y

�(α̃+y)
λα̃+y−1 exp{−(β̃ + ey)λ}

= β̃α̃

�(α̃)

e
y
y�(α̃ + y)

y! (β̃ + ey)
−(α̃+y),

i.e. the Poisson-gamma distribution with parameters α̃, β̃ and ey , compare Ap-
pendix A.5.1.

An equivalent way to obtain the posterior predictive distribution is to first iden-
tify the prior predictive distribution f (y) as the Poisson-gamma distribution with
parameters α, β and ex . The posterior predictive distribution f (y |x) can then be
obtained by replacing the prior parameters α and β by the posterior parameters α̃

and β̃ , respectively, and ex by ey , compare (9.9) with (9.8).
The mean and variance of this posterior predictive distribution are

E(Y |x) = α + x

β + ex

ey and

Var(Y |x) = α + x

β + ex

ey

(
1 + ey

β + ex

)
.

Under Jeffreys’ prior, i.e. α = 1/2 and β = 0 (cf. Table 6.3), these formulas simplify
to

E(Y |x) = ey

ex

(
x + 1

2

)
and
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Table 9.3 Mean and
variance of different
predictive distributions for
x = 11 and ex = ey = 3.04.
Exact values are given for the
bootstrap prediction based on
(9.6) and (9.7)

Predictive distribution Mean Variance

Plug-in 11.000 11.000

Likelihood 11.498 22.998

Bootstrap 11.000 22.000

Bayesian 11.500 23.000

Var(Y |x) =
(

1 + ey

ex

)
ey

ex

(
x + 1

2

)
.

In our original example with x = 11, ex = ey = 3.04 we obtain E(Y |x) = 11.5 and
Var(Y |x) = 23. Table 9.3 contains the mean and variance of all predictive distri-
butions considered for the Poisson model example. The results of likelihood and
Bayesian approaches to prediction are very close, whereas the bootstrap prediction
leads to somewhat smaller values of the predictive mean and variance. Also, the pre-
dictive mean of all prediction methods is close to the mean of the plug-in predictive
distribution, but the variance is nearly twice as large. For x = 0, the Bayesian ap-
proach gives E(Y |x) = 0.5 and Var(Y |x) = 1, again in sharp contrast to the plug-in
predictive distribution with mean and variance equal to zero. �

9.3.3 Model Averaging

In Sect. 7.2.4 Bayesian model averaging has been introduced, which allows one
to combine estimates from different models with respect to their posterior proba-
bilities. Analogously, it is possible to combine different predictions from different
models: Let M1, . . . ,MK denote the models considered and f (y |x,Mk) the pos-
terior predictive density in model Mk , then the model-averaged posterior predictive
density is

f (y |x) =
K∑

k=1

f (y |x,Mk) · Pr(Mk |x), (9.12)

where the posterior model probabilities Pr(Mk |x) are appearing as weights sim-
ilar as in Sect. 7.2.4. Prediction based on model averaging takes therefore model
uncertainty into account.

Example 9.12 (Blood alcohol concentration) In Example 7.7 we have considered
two models for the blood alcohol transformation data. Model M1 did not distinguish
the two subgroups defined by gender whereas model M2 did. The posterior model
probabilities turned out to be Pr(M1 |x) = 0.0463 and Pr(M2 |x) = 0.9537.
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In Example 9.8 we have computed the corresponding posterior predictive distri-
bution under the two models. The posterior predictive mean

E(y |x) =
2∑

k=1

E(y |x,Mk) · Pr(Mk |x)

is equal to the model-averaged mean transformation factor shown in Table 7.3. Note
that the posterior predictive distribution (9.12) is now a mixture of two normal dis-
tributions, with mixture weights equal to Pr(M1 |x) and Pr(M2 |x). The mean and
standard deviation of the two normal components can be read off from Table 9.1. �

Predictions based on model averaging are more than a technical gadget using
elementary probability. Frequently, one has to assume that a statistical model does
not reflect the truth entirely, cf. the discussion at the end of Sect. 7.2.4. Even if there
is a correct model, it is uncertain that it has been considered as a candidate model.
Under uncertainty on which model fits the underlying data, predictions based on
model averaging will generally provide better results than predictions based on a
single model. For example, the model-averaged expectation

E(y |x) =
K∑

k=1

E(y |x,Mk) · Pr(Mk |x)

of the posterior predictive distribution (9.12) minimises the expectation of the pos-
terior predictive squared error-loss l(a, y) = (a − y)2, i.e.

E(y |x) = arg min
d

∫
l(a, y)f (y |x)dy.

The proof is similar to the proof that the posterior mean minimises the expected
squared error loss, see Sect. 6.4.1 for comparison.

9.4 Assessment of Predictions

Prediction of future events is one of the main challenges of statistical methodology.
We saw that both likelihood and Bayesian approaches provide a predictive distribu-
tion f (y), i.e. a probabilistic prediction in contrast to a deterministic point predic-
tion. But how can we assess the quality of a probabilistic prediction? In this section
we will discuss how the performance of a prediction method can be quantified. We
will introduce scoring rules that allow us to measure the quality of a probabilistic
prediction method through comparison with the actually observed event.
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9.4.1 Discrimination and Calibration

In order to judge the performance of a statistical model, the actual observations are
compared with the corresponding predictive distributions. At least two aspects are
of importance in this comparison: discrimination and calibration. Discrimination
describes how well the model is able to predict different observations with different
predictions. Point predictions are central to discrimination, whereas the uncertainty
of the prediction may not be considered at all. Calibration, however, takes into ac-
count the entire predictive distribution in the sense of a statistical agreement with
the actual observations. For example, there should be on average only five out of
a hundred observations outside a 95 % prediction interval if the prediction is cali-
brated.

Any further discussion of these concepts heavily depends on whether the predic-
tive distribution is discrete or continuous. To begin with, we will consider (multiple)
binary predictive distributions f (yi) (indexed with i), which are completely charac-
terised by the corresponding prediction probabilities Pr(Yi = 1) = πi . Subsequently,
we will discuss the univariate continuous case.

For a binary variable Yi ∈ {0,1}, perfect agreement between the prediction prob-
abilities πi ∈ [0,1] and the actually observed realisations yi ∈ {0,1} is not achiev-
able. The discrimination of a binary prediction describes in this case the capacity to
correctly predict the classification (yi = 0 or yi = 1). Classification will usually be
achieved using a threshold πt assigning the classes yi = 0 or yi = 1 to the probabil-
ities πi if πi < πt or πi ≥ πt is satisfied, respectively. This rule is not specifically
connected to the probabilities πi , one could just as well use logit(πi) with threshold
logit(πt ) for classification.

Calibration on the other hand is directly connected to the prediction probabilities
πi and implies that on average πi · 100 % of the events actually occur with pre-
diction probability πi . For example, events that are predicted with a probability of
80 % should on average occur in four out of five cases. Good discrimination does
not necessarily coincide with good calibration, as the following fictitious example
shows.

Example 9.13 (Prediction of soccer matches) Suppose we aim to predict the
outcome of soccer matches. For simplicity, the outcome of the ith match is di-
chotomised in home victory (yi = 1) and tie or away win (yi = 0).

From experience it is known that approximately 50 % of all professional soccer
matches are won by the home team. A possible strategy therefore is to choose πi =
0.5 no matter which teams are playing. Such a prediction is well calibrated but is
obviously not discriminating. Since only the frequency of the event of interest comes
into play for this strategy, we will be referring to it as the prevalence prediction.

A soccer expert may classify all matches into two equally sized groups, where the
home victory probability is predicted as πi = 0.8 in the first group and as πi = 0.2
in the second. Assume that actually all matches of the first group have been home
victories, whereas all games in the second group are not. The prediction of this
expert has then optimal discrimination but is on the other hand not calibrated since
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not 80 % but 100 % of the matches in the first group and not 20 % but 0 % in
the second group are home victories. We will refer to this prediction as the expert
prediction.

Both criteria would be satisfied by a perfect prediction of πi = 1 for all home
victories and πi = 0 for all ties and away wins. This prediction will therefore be
called the oracle prediction. �

By far the most frequently used measure of discrimination for binary predictions
is the so-called area under the curve (AUC), also called c-index, which is usually
defined as the area under the ROC curve, where ROC stands for “receiver operating
characteristic”, a term commonly used in signal detection theory. In general, AUC
is a number between zero and one, where only values above 0.5 reflect a certain
quality of classification. AUC can also be defined in a different way:

Definition 9.3 (AUC) AUC is the probability that a randomly chosen event i, which
actually occurred (yi = 1), has a larger prediction probability than another randomly
chosen event j , which actually did not occur (yj = 0):

AUC = Pr(πi > πj ).

In the case that different events may have the same probabilities this definition has
to be extended to

AUC = Pr(πi > πj ) + 1

2
Pr(πi = πj ). �

Note that AUC has not necessarily to be defined through the probabilities πi since
one could alternatively use any strictly monotone transformation as, for example,
logit(πi). AUC can be estimated by the Wilcoxon rank sum statistic, which also
provides a standard error.

To empirically assess calibration of binary predictions, the probabilities have
to be grouped. In practice identical or at least very close prediction probabilities
are combined in J groups with representative probabilities π1, . . . , πJ . The groups
should be of roughly the same size, and observations with the same prediction prob-
ability should not be in different groups. For each πj , let nj be the number of pre-
dicted events, and ȳj the relative frequency of the predicted event in the j th group.
The total number of predictions is denoted by N =∑J

j=1 nj .

Definition 9.4 (Sanders’ calibration) Sanders’ calibration is defined as

SC =
∑J

j=1 nj (ȳj − πj )
2

N
. �

Smaller values of SC are better, perfect calibration corresponds to SC = 0.
Grouping of the data allows us to define an alternative measure of discrimination.
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Table 9.4 Comparison of
the different predictions in the
soccer example using AUC,
Sanders’ calibration (SC),
Murphy’s resolution (MR)
and the Brier score (BS)

Prediction AUC SC MR BS

Prevalence 0.5 0 0 0.25

Expert 1 0.04 0.25 0.04

Oracle 1 0 0.25 0

Inverted oracle 0 1 0.25 1

Definition 9.5 (Murphy’s resolution) Murphy’s resolution is given by

MR =
∑J

j=1 nj (ȳj − ȳ)2

N
,

where ȳ = N−1∑N
i=1 yi denotes the overall prevalence. �

MR is a measure that should be as large as possible. Since it does not take into
account the order of the predictions, it is much less commonly used than AUC. In
fact a prediction, which always classifies incorrectly, will have the largest possible
value of MR. Limited to predictions with AUC ≥ 0.5, it is nevertheless a sensible
measure, and it will be revisited in Sect. 9.4.2.

Example 9.14 (Prediction of soccer matches) The values of AUC, SC and MR
are summarised in Table 9.4 for the three different predictions of Example 9.13.
Additionally the inverted oracle prediction, which classifies all matches incorrectly,
is given for illustration. The prevalence prediction is well calibrated (SC = 0) but
not discriminating (AUC = 0.5 and MR = 0). The expert prediction is not well
calibrated (SC = 0.04 > 0) but always classifies correctly (AUC = 1). The oracle
prediction always classifies correctly as well and is perfectly calibrated, whereas the
inverted oracle prediction has the worst possible values of AUC and SC. The values
of MR are, however, identical for expert, oracle and inverted oracle prediction since
it is assessing only discrimination but not the direction of classification. The values
of the Brier score BS in the last column are discussed in Example 9.16. �

Next, we will discuss continuous predictions with density f (y) and correspond-
ing distribution function F(y). In this case the following quantity is often used as a
calibration measure:

Definition 9.6 (PIT) The probability integral transform (PIT) is the value of the
predictive distribution function F(y) = Pr(Y ≤ y) at the actually observed value yo:

PIT(yo) = F(yo). �

Displaying a PIT histogram is a commonly used method to check calibration of
a set of predictions because PIT values from perfect predictions follow the standard
uniform distribution: PIT(Yo) ∼ U(0,1). Indeed, Yo has a distribution function F
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Fig. 9.2 PIT histograms of the plug-in and the Bayesian prediction of Yo ∼ N(μ,1) based on an
independent realization of X ∼ N(μ,1)

if Yo = F−1(U) where U ∼ U(0,1), so F(Yo) ∼ U(0,1). However, predictions not
equal to the data-generating distribution may also have uniform PIT histograms, as
the following example shows.

Example 9.15 (Normal model) Suppose X and Yo are independent, normally dis-
tributed random variables, both with unknown expectation μ and known vari-
ance σ 2 = 1. We want to predict Yo after observing X = x. The plug-in predic-
tion is in this case Y |X = x ∼ N(x,1), whereas the Bayesian prediction with
Jeffreys’ prior for μ (just as the likelihood or the bootstrap prediction) predicts
Y |X = x ∼ N(x,2), cf. Example 9.7.

Based on M = 10 000 independent realisations of X and Yo (with true μ = 0),
PIT values for the plug-in and the Bayesian prediction have been computed as fol-
lows and are shown in Fig. 9.2:

> set.seed(1)

> M <- 10000

> x <- rnorm(M)

> y <- rnorm(M)

> pit.plugin <- pnorm(y, mean = x, sd = 1)

> pit.bayes <- pnorm(y, mean = x, sd = sqrt(2))

The plug-in prediction is obviously not well calibrated since the corresponding
PIT histogram in Fig. 9.2 does not resemble a uniform distribution but has a bowl
shape, which is typical for predictions with too small variances. The Bayesian pre-
diction Y |X = x ∼ N(x,2) seems to be well calibrated, which can be confirmed
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analytically. First, note that

PIT(yo) = Pr(Y ≤ yo)

= Pr

(
Y − x√

2
≤ yo − x√

2

)

= Φ

(
yo − x√

2

)
,

where Φ(·) denotes the distribution function of the standard normal distribution.
Now x is a realisation of X ∼ N(μ,1), and yo is a realisation of Yo ∼ N(μ,1).
We have Z = (Yo − X)/

√
2 ∼ N(0,1) and therefore Φ(Z) ∼ U(0,1). Viewed as a

function of the random variables X and Yo, we thus have

PIT(Yo) = Φ

(
Yo − X√

2

)
∼ U(0,1).

Note that, by definition, the oracle prediction Y ∼ N(0,1), which is equal to the
true data-generating distribution of Yo, also has uniform PIT values. �

As for binary events, perfect calibration is not sufficient for a good prediction. In
the above example both the Bayesian and oracle predictions are well calibrated, but
common sense suggests that the oracle prediction is better. Indeed, another aspect
of a good continuous prediction is sharpness, i.e. how concentrated a predictive dis-
tribution is. The oracle has smaller variance (or higher sharpness) than the Bayesian
prediction, so should be preferred.

For the assessment of the accuracy of continuous predictions, the focus is often
on the point prediction Ŷ , which is in most cases the expectation E(Y ) of the pre-
dictive distribution. A very frequently used criterion is the squared prediction error

SPE = (Ŷ − yo)
2.

However, the reduction of the predictive distribution to a point prediction ig-
nores the uncertainty of the prediction. The squared prediction error (similarly to the
AUC) does not take into account if the underlying predictive distribution is correctly
calibrated. In the following section we will introduce scoring rules which allow us
to simultaneously quantify calibration and discrimination (for binary predictions) or
calibration and sharpness (for continuous predictions).

9.4.2 Scoring Rules

To be able to incorporate the entire predictive distribution in the assessment of the
prediction, so-called scoring rules are considered.

Definition 9.7 (Scoring rules) A scoring rule S(f (y), yo) assigns a real number to
the probability mass or density function f (y) of a predictive distribution and the
actually observed value yo. �
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Scoring rules are typically negatively oriented, i.e. smaller values of S(f (y), yo)

reflect a better prediction. It is reasonable to only use proper scoring rules, defined
as follows.

Definition 9.8 (Proper scoring rule) A scoring rule S(f (y), yo) is called proper if
the expected score E{S(f (y),Yo)} with respect to the true data-generating distri-
bution Yo ∼ fo is minimised if the predictive distribution f is equal to the data-
generating distribution fo. If the minimum is unique, then the scoring rule is called
strictly proper. �

For strictly proper scoring rules, it is therefore disadvantageous to deviate from
the true data-generating distribution fo(y) since the expected score is optimal if
f (y) = fo(y).

In practice scoring rules will be applied for as many events as possible in order
to rely on a better basis for the assessment of the quality of the prediction. A strictly
proper scoring rule can be used for several events since the sum and the average of
the scores remain strictly proper.

Definition 9.9 (Scoring rules for binary predictions) Let Y ∼ B(π) be the predic-
tive distribution for a binary event, i.e.

f (y) =
{

π for y = 1,

1 − π for y = 0.

The Brier score BS, the absolute score AS and the logarithmic score LS are defined
as

BS
(
f (y), yo

)= (yo − π)2, (9.13)

AS
(
f (y), yo

)= |yo − π | and (9.14)

LS
(
f (y), yo

)= − logf (yo), (9.15)

respectively. �

The Brier score is also known as the probability score.

Result 9.1 (Brier score) The Brier score (9.13) is strictly proper.

Proof To show Result 9.1, let B(πo) be the true distribution of Yo. Then the expected
Brier score is given by

E
{
BS
(
f (y),Yo

)}= E
{
(Yo − π)2}

= E
(
Y 2

o

)− 2π E(Yo) + π2

= E(Yo) − 2ππo + π2

= πo − 2ππo + π2.
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Hence, we have

d E{BS(f (y),Yo)}
dπ

= −2πo + 2π,

from which we derive the root π = πo. Inspecting the second derivative

d2 E{BS(f (y),Yo)}
dπ2

= 2

shows that the minimum is unique. Using the true success probability πo as predic-
tive probability hence gives the minimal expected score. �

In the following we decompose the mean Brier score BS—averaged over a se-
ries of binary predictions—in two terms measuring calibration and discrimination,
respectively. To do so, we consider a series of N binary predictions with predic-
tive probabilities π1, . . . , πN . The corresponding observed events are denoted by
y1, . . . , yN , and ȳ denotes the overall prevalence of the observed binary events.

We first note that the Brier score of the prevalence prediction is ȳ(1 − ȳ) and
may be used as an upper bound for useful predictions. In Murphy’s decomposition
the predictions are first grouped as in Sect. 9.4.1 leading to the decomposition

BS = 1

N

N∑
i=1

(yi − πi)
2 = ȳ(1 − ȳ) − MR+SC (9.16)

of the mean Brier score. This shows explicitly that the Brier score assesses both
discrimination and calibration, through MR and SC, respectively.

Example 9.16 (Prediction of soccer matches) In the last column of Table 9.4 the
Brier score of each prediction is given. The Brier score orders the four predictions
by combining discrimination and calibration in a sensible way: the oracle prediction
is the best, followed by the expert and the prevalence prediction, and the inverted
oracle prediction is the worst.

Note that the overall prevalence of matches won by the home team is 50 %, so
the upper bound on the Brier score is 0.25, and this is of course the Brier score
of the prevalence prediction. It is easily confirmed that Murphy’s decomposition is
fulfilled for all predictions considered. �

Result 9.2 (Absolute score) The absolute score (9.14) is not proper.

Proof To show this result, let B(πo) be the true distribution of Yo. Then the expected
absolute score is

E
{
AS
(
f (y),Yo

)}= E
{|Yo − π |}

= (1 − π)πo + π(1 − πo)

= π(1 − 2πo) + πo.
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The expected score is not minimised by π = πo but by

π =
{

0 for πo < 1/2,

1 for πo > 1/2,

so the absolute score is not proper. For πo = 1/2, the expected score is 1/2 and hence
independent of π . �

Result 9.3 (Logarithmic score) The logarithmic score (9.15) is strictly proper.

Proof To show the propriety of the logarithmic score, let again B(πo) be the true
distribution of Yo. The expected logarithmic score is given by

E
{
LS
(
f (y),Yo

)}= −E
{
logf (Yo)

}
= − log(π)πo − log(1 − π)(1 − πo).

Hence, we have

d E{LS(f (y),Yo)}
dπ

= −πo/π + (1 − πo)/(1 − π),

from which we derive the root π = πo. Through inspection of the second derivative
we conclude that this minimum is unique. �

The logarithmic score is strictly proper not only for binary events but for ar-
bitrary probability mass or density functions of Y . For example, if the predictive
distribution is normal, i.e. Y ∼ N(μ,σ 2), then the logarithmic score is

LS
(
f (y), yo

)= 1

2

{
log(2π) + log

(
σ 2)+ (yo − μ)2

σ 2

}
.

As an alternative, one can use the continuous ranked probability score (CRPS),
which is defined as

CRPS
(
f (y), yo

)=
∫ {

F(t) − I[yo,∞)(t)
}2

dt

and which is also strictly proper for arbitrary predictions with distribution function
F(y). The CRPS is closely related to the Brier score (9.13). For fixed t , we have

I[yo,∞)(t) =
{

1 for yo ≤ t,

0 for yo > t,

with corresponding success probability Pr(Y ≤ t) = F(t). So {F(t) − I[yo,∞)(t)}2

is a Brier score, and the CRPS is the integral of the Brier score over all possible
thresholds t .
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Table 9.5 Comparison of the different predictions in the normal model example with respect
to the logarithmic score (LS), the continuous ranked probability score (CRPS) and the squared
prediction error (SPE)

Prediction LS CRPS SPE

Plug-in 1.9172 0.9196 1.9966

Bayesian 1.7647 0.7950 1.9966

Oracle 1.4097 0.5546 0.9816

It is possible to show that the CRPS can be written as

CRPS
(
f (y), yo

)= E
{|Y1 − yo|

}− 1

2
E
{|Y1 − Y2|

}
,

where Y1 and Y2 are independent random variables with density function f (y) or
distribution function F(y). This representation allows a simplification of the for-
mula for the CRPS for certain predictive distributions. For example, for a normally
distributed prediction Y ∼ N(μ,σ 2), the CRPS is

CRPS
(
f (y), yo

)= σ

[
ỹo
{
2Φ(ỹo) − 1

}+ 2ϕ(ỹo) − 1√
π

]
, (9.17)

where ỹo = (yo − μ)/σ , while ϕ(·) and Φ(·) denote the density and distribution
functions, respectively, of the standard normal distribution. A derivation of this re-
sult is discussed in Exercise 6.

Example 9.17 (Normal model) For the predictions of Example 9.15, we calculated
the logarithmic score and the CRPS for each of the M = 10 000 independent reali-
sations of X and Yo and averaged these values afterwards. Table 9.5 shows that the
plug-in prediction performs worse for both scores and that the Bayesian prediction
is always better. This is due to the lack of calibration of the plug-in prediction. The
oracle prediction performs best. Table 9.5 also gives the averaged squared prediction
error, which is the same for the plug-in and Bayesian predictions since both provide
the same point predictions. Differences in the predictive variances are not taken into
account. Again, the oracle prediction performs best. �

9.5 Exercises

1. Five physicians participate in a study to evaluate the effect of a medication for
migraine. Physician i = 1, . . . ,5 treats ni patients with the new medication,
and it shows positive effects for yi of the patients. Let π be the probability that
an arbitrary migraine patient reacts positively to the medication. Given that

n = (3,2,4,4,3) and y = (2,1,4,3,3),
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(a) provide an expression for the likelihood L(π) for this study and
(b) specify a conjugate prior distribution f (π) for π and choose appropriate

values for its parameters. Using these parameters, derive the posterior
distribution f (π |n,y).

(c) A sixth physician wants to participate in the study with n6 = 5 patients.
Determine the posterior predictive distribution for y6 (the number of pa-
tients out of the five for which the medication will have a positive effect).

(d) Calculate the likelihood prediction as well.
2. Let X1:n be a random sample from an N(μ,σ 2) distribution, from which a

further observation Y = Xn+1 is to be predicted. Both the expectation μ and
the variance σ 2 are unknown.
(a) Start by determining the plug-in predictive distribution.
(b) Calculate the likelihood and bootstrap predictive distributions.
(c) Derive the Bayesian predictive distribution under the assumption of the

reference prior f (μ,σ 2) ∝ σ−2.
3. Derive Eq. (9.11).
4. Prove Murphy’s decomposition (9.16) of the Brier score.
5. Investigate if the scoring rule

S
(
f (y), yo

)= −f (yo)

is proper for a binary observation Y .
6. For a normally distributed prediction show that it is possible to write the CRPS

as in (9.17) using the formula for the expectation of the folded normal distri-
bution in Appendix A.5.2.

9.6 References

A classical monograph on statistical prediction is Geisser (1993). For the theoretical
properties and other propositions, we refer to Pawitan (2001, Chap. 16) and for the
more detailed description, to Young and Smith (2005, Chap. 10), where Bayesian
prediction is discussed as well. Bernardo and Smith (2000) provide an extensive
discussion on the Bayesian approach. An introduction into the assessment of pre-
dictions is given in O’Hagan et al. (2006, Chap. 8). A theoretical exposition on
scoring rules is given in Gneiting and Raftery (2007), and calibration is reviewed in
detail in Gneiting et al. (2007).
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A.1 Events and Probabilities

Any experiment involving randomness can be modeled with probabilities. Probabil-
ities Pr(A) between zero and one are assigned to events A such as “It will be raining
tomorrow” or “I will suffer a heart attack in the next year”. The certain event has
probability one, while the impossible event has probability zero.

Any event A has a disjoint, complementary event Ac such that Pr(A) +
Pr(Ac) = 1. For example, if A is the event that “It will be raining tomorrow”, then
Ac is the event that “It will not be raining tomorrow”. More generally, a series of
events A1,A2, . . . ,An is called a partition if the events are pairwise disjoint and if
Pr(A1) + · · · + Pr(An) = 1.

A.1.1 Conditional Probabilities and Independence

Conditional probabilities Pr(A |B) are calculated to update the probability Pr(A)

of a particular event under the additional information that a second event B has
occurred. They can be calculated via

Pr(A |B) = Pr(A,B)

Pr(B)
, (A.1)

where Pr(A,B) is the probability that both A and B occur. This definition is only
sensible if the occurrence of B is possible, i.e. if Pr(B) > 0. Rearranging this equa-
tion gives Pr(A,B) = Pr(A |B)Pr(B), but Pr(A,B) = Pr(B |A)Pr(A) must obvi-
ously also hold. Equating and rearranging these two formulas gives Bayes’ theorem:

Pr(A |B) = Pr(B |A)Pr(A)

Pr(B)
, (A.2)

which will be discussed in more detail in Appendix A.1.2.
Two events A and B are called independent if the occurrence of B does not

change the probability of A occurring:

Pr(A |B) = Pr(A).

From (A.1) it follows that under independence

Pr(A,B) = Pr(A) · Pr(B)

and

Pr(B |A) = Pr(B).

Conditional probabilities behave like ordinary probabilities if the conditional
event is fixed, so Pr(A |B) + Pr(Ac |B) = 1, for example. It then follows that

Pr(B) = Pr(B |A)Pr(A) + Pr
(
B |Ac

)
Pr
(
Ac
)

(A.3)
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and more generally

Pr(B) = Pr(B |A1)Pr(A1) + Pr(B |A2)Pr(A2) + · · · + Pr(B |An)Pr(An) (A.4)

if A1,A2, . . . ,An is a partition. This is called the law of total probability.

A.1.2 Bayes’ Theorem

Let A and B denote two events A,B with 0 < Pr(A) < 1 and Pr(B) > 0. Then

Pr(A |B) = Pr(B |A) · Pr(A)

Pr(B)

= Pr(B |A) · Pr(A)

Pr(B |A) · Pr(A) + Pr(B |Ac) · Pr(Ac)
. (A.5)

For a general partition A1,A2, . . . ,An with Pr(Ai) > 0 for all i = 1, . . . , n, we have
that

Pr(Aj |B) = Pr(B |Aj) · Pr(Aj )∑n
i=1 Pr(B |Ai) · Pr(Ai)

(A.6)

for each j = 1, . . . , n.
For only n = 2 events Pr(A) and Pr(Ac) in the denominator of (A.6), i.e.

Eq. (A.5), a formulation using odds ω = π/(1 − π) rather than probabilities π pro-
vides a simpler version without the uncomfortable sum in the denominator of (A.5):

Pr(A |B)

Pr(Ac |B)︸ ︷︷ ︸
Posterior Odds

= Pr(A)

Pr(Ac)︸ ︷︷ ︸
Prior Odds

· Pr(B |A)

Pr(B |Ac)︸ ︷︷ ︸
Likelihood Ratio

.

Odds ω can be easily transformed back to probabilities π = ω/(1 + ω).

A.2 Random Variables

A.2.1 Discrete Random Variables

We now consider possible real-valued realisations x of a discrete random vari-
able X. The probability mass function of a discrete random variable X,

f (x) = Pr(X = x),

describes the distribution of X by assigning probabilities for the events {X = x}.
The set of all realisations x with truly positive probabilities f (x) > 0 is called the
support of X.



320 A Probabilities, Random Variables and Distributions

A multivariate discrete random variable X = (X1, . . . ,Xp) has realisations x =
(x1, . . . , xp) in R

p and the probability mass function

f (x) = Pr(X = x) = Pr(X1 = x1, . . . ,Xp = xp).

Of particular interest is often the joint bivariate distribution of two discrete random
variables X and Y with probability mass function f (x, y). The conditional proba-
bility mass function f (x |y) is then defined via (A.1):

f (x |y) = f (x, y)

f (y)
. (A.7)

Bayes’ theorem (A.2) now translates to

f (x |y) = f (y |x)f (x)

f (y)
. (A.8)

Similarly, the law of total probability (A.4) now reads

f (y) =
∑
x

f (y |x)f (x), (A.9)

where the sum is over the support of X. Combining (A.7) and (A.9) shows that the
argument x can be removed from the joint density f (x, y) via summation to obtain
the marginal probability mass function f (y) of Y :

f (y) =
∑
x

f (x, y),

again the sum over the support of X.
Two random variables X and Y are called independent if the events {X = x} and

{Y = y} are independent for all x and y. Under independence, we can therefore
factorise the joint distribution into the product of the marginal distributions:

f (x, y) = f (x) · f (y).

If X and Y are independent and g and h are arbitrary real-valued functions, then
g(X) and h(Y ) are also independent.

A.2.2 Continuous Random Variables

A continuous random variable X is usually defined with its density function f (x),
a non-negative real-valued function. The density function is the derivative of the
distribution function F(x) = Pr(X ≤ x), and therefore

∫ x

−∞ f (u)du = F(x) and∫ +∞
−∞ f (x)dx = 1. In the following we assume that this derivative exists. We then
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have

Pr(a ≤ X ≤ b) =
∫ b

a

f (x) dx

for any real numbers a and b, which determines the distribution of X.
Under suitable regularity conditions, the results derived in Appendix A.2.1 for

probability mass functions also hold for density functions with replacement of sum-
mation by integrals. Suppose that f (x, y) is the joint density function of two random
variables X and Y , i.e.

Pr(X ≤ x,Y ≤ y) =
∫ y

−∞

∫ x

−∞
f (u, v) dudv.

The marginal density function f (y) of Y is

f (y) =
∫

f (x, y) dx,

and the law of total probability now reads

f (y) =
∫

f (y |x)f (x) dx.

Bayes’ theorem (A.8) still reads

f (x |y) = f (y |x)f (x)

f (y)
. (A.10)

If X and Y are independent continuous random variables with density functions
f (x) and f (y), then

f (x, y) = f (x) · f (y)

for all x and y.

A.2.3 The Change-of-Variables Formula

When the transformation g(·) is one-to-one and differentiable, there is a formula for
the probability density function fY (y) of Y = g(X) directly in terms of the proba-
bility density function fX(x) of a continuous random variable X. This is known as
the change-of-variables formula:

fY (y) = fX

{
g−1(y)

} ·
∣∣∣∣dg−1(y)

dy

∣∣∣∣
= fX(x) ·

∣∣∣∣dg(x)

dx

∣∣∣∣
−1

, (A.11)



322 A Probabilities, Random Variables and Distributions

where x = g−1(y). As an example, we will derive the density function of a log-
normal random variable Y = exp(X), where X ∼ N(μ,σ 2). From y = g(x) =
exp(x) we find that the inverse transformation is x = g−1(y) = log(y), which has
the derivative dg−1(y)/dy = 1/y. Using the formula (A.11), we get the density
function

fY (y) = fX

{
g−1(y)

} ·
∣∣∣∣dg−1(y)

dy

∣∣∣∣
= 1√

2πσ 2
exp

{
−1

2

(log(y) − μ)2

σ 2

}∣∣∣∣ 1y
∣∣∣∣

= 1

σ

1

y
ϕ

{
log(y) − μ

σ

}
,

where ϕ(x) is the standard normal density function.
Consider a multivariate continuous random variable X that takes values in R

p

and a one-to-one and differentiable transformation g : Rp → R

p , which yields
Y = g(X). As defined in Appendix B.2.2, let g′(x) and (g−1)′(y) be the Jaco-
bian matrices of the transformation g and its inverse g−1, respectively. Then the
multivariate change-of-variables formula is:

fY (y) = fX

{
g−1(y)

} · ∣∣(g−1)′(y)
∣∣

= fX(x) · ∣∣g′(x)
∣∣−1

, (A.12)

where x = g−1(y) and the absolute values of the determinants of the Jacobian ma-
trices are meant. As an example, we will derive the density function of the multivari-
ate normal distribution from a location and scale transformation of univariate stan-
dard normal random variables. Consider X = (X1, . . . ,Xp)� with Xi

iid
∼ N(0,1),

i = 1, . . . , p. So the joint density function is

fX(x) =
p∏

i=1

(2π)−1/2 exp

(
−1

2
x2
i

)
= (2π)−p/2 exp

(
−1

2
x�x

)
,

which is of course the density function the Np(0, I ) distribution. Let the location
and scale transformation be defined by y = g(x) = Ax+μ, where A is an invertible
p × p matrix, and μ is a p-dimensional vector of real numbers. Then the inverse
transformation is given by x = g−1(y) = A−1(y − μ) with Jacobian (g−1)′(y) =
A−1. Therefore, the density function of the multivariate continuous random variable
Y = g(X) is

fY (y) = fX

{
g−1(y)

} · ∣∣(g−1)′(y)
∣∣

= (2π)−p/2 exp

{
−1

2
g−1(y)�g−1(y)

}∣∣A−1
∣∣
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= (2π)−p/2|A|−1 exp

{
−1

2
(y − μ)�

(
AA�)−1

(y − μ)

}
, (A.13)

where we have used |A−1| = |A|−1 and (A−1)�A−1 = (AA�)−1 in the last step.
If we define Σ = AA� and compare (A.13) with the density function for the mul-
tivariate normal distribution Np(μ,Σ) from Appendix A.5.3, we find that the cor-
responding kernels match. The normalising constant can also be matched by noting
that

|Σ |−1/2 = ∣∣AA�∣∣−1/2 = (|A||A|)−1/2 = |A|−1.

A.2.4 Multivariate Normal Distributions

Marginal and conditional distributions of a multivariate normal distribution (com-
pare Appendix A.5.3) are also normal. Let the multivariate random variables X and
Y be jointly multivariate normal with

mean μ =
(

μX

μY

)
and covariance matrix Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
,

where μ and Σ are partitioned according to the dimensions of X and Y . Then the
marginal distributions of X and Y are

X ∼ N(μX,ΣXX),

Y ∼ N(μY ,ΣYY ).

The corresponding conditional distributions are

Y |X = x ∼ N(μY |X=x,ΣY |X=x), where

μY |X=x = μY + ΣYXΣ−1
XX(x − μX) and

ΣY |X=x = ΣYY − ΣYXΣ−1
XXΣXY .

If X and Y are jointly multivariate normal and uncorrelated, i.e. ΣXY = 0, then X

and Y are also independent.
A linear transformation AX of a multivariate normal random variable X ∼

Np(μ,Σ) is again normal: AX ∼ Nq(Aμ,AΣA�). Here A denotes a q ×p matrix
of full rank q ≤ p.

Sometimes quadratic forms of a multivariate normal random variable X ∼
Np(μ,Σ) are also of interest. One useful formula is for the expectation of Q =
X�AX, where A is a p × p square matrix:

E(Q) = tr(AΣ) + μ�Aμ.
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A.3 Expectation, Variance and Covariance

This section describes fundamental summaries of the distribution of random vari-
ables, namely their expectation and variance. For multivariate random variables, the
association between the components is summarised by their covariance or correla-
tion. Moreover, we list some useful inequalities.

A.3.1 Expectation

For a continuous random variable X with density function f (x), the expectation or
mean value of X is the real number

E(X) =
∫

xf (x)dx. (A.14)

The expectation of a function h(X) of X is

E
{
h(X)

}=
∫

h(x)f (x) dx. (A.15)

Note that the expectation of a random variable not necessarily exists; we then say
that X has an infinite expectation. If the integral exists, then X has a finite expec-
tation. For a discrete random variable X with probability mass function f (x), the
integral in (A.14) and (A.15) has to be replaced with a sum over the support of X.

For any real numbers a and b, we have

E(a · X + b) = a · E(X) + b.

For any two random variables X and Y , we have

E(X + Y) = E(X) + E(Y ),

i.e. the expectation of a sum of random variables equals the sum of the expectations
of the random variables. If X and Y are independent, then

E(X · Y) = E(X) · E(Y ).

The expectation of a p-dimensional random variable X = (X1, . . . ,Xp)� is the
vector E(X) with components equal to the individual expectations:

E(X) = (E(X1), . . . ,E(Xp)
)�

.

The expectation of a real-valued function h(X) of a p-dimensional random variable
X = (X1, . . . ,Xp)� is

E
{
h(X)

}=
∫

h(X)f (X) dx. (A.16)
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A.3.2 Variance

The variance of a random variable X is defined as

Var(X) = E
{
X − E(X)

}2
.

The variance of X may also be written as

Var(X) = E
(
X2)− E(X)2

and

Var(X) = 1

2
E
{
(X1 − X2)

2},
where X1 and X2 are independent copies of X, i.e. X, X1 and X2 are independent
and identically distributed. The square root

√
Var(X) of the variance of X is called

the standard deviation.
For any real numbers a and b, we have

Var(a · X + b) = a2 · Var(X).

A.3.3 Moments

Let k denote a positive integer. The kth moment mk of a random variable X is
defined as

mk = E
(
Xk
)
,

whereas the kth central moment is

ck = E
{
(X − m1)

k
}
.

The expectation E(X) of a random variable X is therefore its first moment, whereas
the variance Var(X) is the second central moment. Those two quantities are there-
fore often referred to as “the first two moments”. The third and fourth moments of a
random variable quantify its skewness and kurtosis, respectively. If the kth moment
of a random variable exists, then all lower moments also exist.

A.3.4 Conditional Expectation and Variance

For continuous random variables, the conditional expectation of Y given X = x,

E(Y |X = x) =
∫

yf (y |x)dy, (A.17)
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is the expectation of Y with respect to the conditional density of Y given X = x,
f (y |x). It is a real number (if it exists). For discrete random variables, the integral
in (A.17) has to be replaced with a sum, and the conditional density has to be re-
placed with the conditional probability mass function f (y |x) = Pr(Y = y |X = x).
The conditional expectation can be interpreted as the mean of Y , if the value x of the
random variable X is already known. The conditional variance of Y given X = x,

Var(Y |X = x) = E
[{

Y − E(Y |X = x)
}2 |X = x

]
, (A.18)

is the variance of Y , conditional on X = x. Note that the outer expectation is again
with respect to the conditional density of Y given X = x.

However, if we now consider the realisation x of the random variable X in
g(x) = E(Y |X = x) as unknown, then g(X) is a function of the random variable
X and therefore also a random variable. This is the conditional expectation of Y

given X. Similarly, the random variable h(X) with h(x) = Var(Y |X = x) is called
the conditional variance of Y given X = x. Note that the nomenclature is somewhat
confusing since only the addendum “of Y given X” indicates that we do not refer
to the numbers (A.17) nor (A.18), respectively, but to the corresponding random
variables.

These definitions give rise to two useful results. The law of total expectation
states that the expectation of the conditional expectation of Y given X equals the
(ordinary) expectation of Y for any two random variables X and Y :

E(Y ) = E
{
E(Y |X)

}
. (A.19)

Equation (A.19) is also known as the law of iterated expectations. The law of total
variance provides a useful decomposition of the variance of Y :

Var(Y ) = E
{
Var(Y |X)

}+ Var
{
E(Y |X)

}
. (A.20)

These two results are particularly useful if the first two moments of Y |X = x and
X are known. Calculation of expectation and variance of Y via (A.19) and (A.20) is
then often simpler than directly based on the marginal distribution of Y .

A.3.5 Covariance

Let (X,Y )� denote a bivariate random variable with joint probability mass or den-
sity function fX,Y (x, y). The covariance of X and Y is defined as

Cov(X,Y ) = E
[{

X − E(X)
}{

Y − E(Y )
}]

= E(XY) − E(X)E(Y ),

where E(XY) = ∫ xyfX,Y (x, y) dx dy, see (A.16). Note that Cov(X,X) = Var(X)

and Cov(X,Y ) = 0 if X and Y are independent.



A.3 Expectation, Variance and Covariance 327

For any real numbers a, b, c and d , we have

Cov(a · X + b, c · Y + d) = a · c · Cov(X,Y ).

The covariance matrix of a p-dimensional random variable X = (X1, . . . ,Xp)�
is

Cov(X) = E
[{

X − E(X)
} · {X − E(X)

}�]
.

The covariance matrix can also be written as

Cov(X) = E
(
X · X�)− E(X) · E(X)�

and has entry Cov(Xi,Xj ) in the ith row and j th column. In particular, on the
diagonal of Cov(X) there are the variances of the components of X.

If X is a p-dimensional random variable and A is a q × p matrix, we have

Cov(A · X) = A · Cov(X) · A�.

In particular, for the bivariate random variable (X,Y )� and matrix A = (1,1), we
have

Var(X + Y) = Var(X) + Var(Y ) + 2 · Cov(X,Y ).

If X and Y are independent, then

Var(X + Y) = Var(X) + Var(Y ) and

Var(X · Y) = E(X)2 Var(Y ) + E(Y )2 Var(X) + Var(X)Var(Y ).

A.3.6 Correlation

The correlation of X and Y is defined as

Corr(X,Y ) = Cov(X,Y )√
Var(X)Var(Y )

,

as long as the variances Var(X) and Var(Y ) are positive.
An important property of the correlation is

∣∣Corr(X,Y )
∣∣≤ 1, (A.21)

which can be shown with the Cauchy–Schwarz inequality (after Augustin Louis
Cauchy, 1789–1857, and Hermann Amandus Schwarz, 1843–1921). This inequality
states that for two random variables X and Y with finite second moments E(X2) and
E(Y 2),

E(X · Y)2 ≤ E
(
X2)E

(
Y 2). (A.22)
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Applying (A.22) to the random variables X − E(X) and Y − E(Y ), one obtains

E
[{

X − E(X)
}{

Y − E(Y )
}]2 ≤ E

[{
X − E(X)

}2]
E
[{

Y − E(Y )
}2]

,

from which

Corr(X,Y )2 = Cov(X,Y )2

Var(X)Var(Y )
≤ 1,

i.e. (A.21), easily follows. If Y = a ·X+b for some a > 0 and b, then Corr(X,Y ) =
+1. If a < 0, then Corr(X,Y ) = −1.

Let Σ denote the covariance matrix of a p-dimensional random variable X =
(X1, . . . ,Xp)�. The correlation matrix R of X can be obtained via

R = SΣS,

where S denotes the diagonal matrix with entries equal to the standard deviations√
Var(Xi), i = 1, . . . , n, of the components of X. A correlation matrix R has the en-

try Corr(Xi,Xj ) in the ith row and j th column. In particular, the diagonal elements
are all one.

A.3.7 Jensen’s Inequality

Let X denote a random variable with finite expectation E(X), and g(x) a convex
function (if the second derivative g′′(x) exists, this is equivalent to g′′(x) ≥ 0 for
all x ∈R). Then

E
{
g(X)

}≥ g
{
E(X)

}
.

If g(x) is even strictly convex (g′′(x) > 0 for all real x) and X is not a constant, i.e.
not degenerate, then

E
{
g(X)

}
> g
{
E(X)

}
.

For (strictly) concave functions g(x) (if the second derivative g′′(x) exists, this is
equivalent to the fact that for all x ∈ R, g′′(x) ≤ 0 and g′′(x) < 0, respectively), the
analogous results

E
{
g(X)

}≤ g
{
E(X)

}
and

E
{
g(X)

}
< g
{
E(X)

}
,

respectively, can be obtained.
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A.3.8 Kullback–Leibler Discrepancy and Information Inequality

Let fX(x) and fY (y) denote two density or probability functions, respectively, of
random variables X and Y . The quantity

D(fX ‖ fY ) = E

[
log

{
fX(X)

fY (X)

}]
= E
[
log
{
fX(X)

}]− E
[
log
{
fY (X)

}]

is called the Kullback–Leibler discrepancy from fX to fY (after Solomon Kullback,
1907–1994, and Richard Leibler, 1914–2003) and quantifies effectively the “dis-
tance” between fX and fY . However, note that in general

D(fX ‖ fY ) �= D(fY ‖ fX)

since D(fX ‖ fY ) is not symmetric in fX and fY , so D(· ‖ ·) is not a distance in the
usual sense.

If X and Y have equal support, then the information inequality holds:

D(fX ‖ fY ) = E

[
log

{
fX(X)

fY (X)

}]
≥ 0,

where equality holds if and only if fX(x) = fY (x) for all x ∈ R.

A.4 Convergence of Random Variables

After a definition of the different modes of convergence of random variables, several
limit theorems are described, which have important applications in statistics.

A.4.1 Modes of Convergence

Let X1,X2, . . . be a sequence of random variables. We say:
1. Xn → X converges in r th mean, r ≥ 1, written as Xn

r−→ X, if E(|Xr
n|) < ∞

for all n and

E
(|Xn − X|r)→ 0 as n → ∞.

The case r = 2, called convergence in mean square, is often of particular inter-
est.

2. Xn → X converges in probability, written as Xn
P−→ X, if

Pr
(|Xn − X| > ε

)→ 0 as n → ∞ for all ε > 0.

3. Xn → X converges in distribution, written as Xn
D−→ X, if

Pr(Xn ≤ x) → Pr(X ≤ x) as n → ∞
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for all points x ∈ R at which the distribution function FX(x) = Pr(X ≤ x) is
continuous.

The following relationships between the different modes of convergence can be es-
tablished:

Xn
r−→ X =⇒ Xn

P−→ X for any r ≥ 1,

Xn
P−→ X =⇒ Xn

D−→ X,

Xn
D−→ c =⇒ Xn

P−→ c,

where c ∈R is a constant.

A.4.2 Continuous Mapping and Slutsky’s Theorem

The continuous mapping theorem states that any continuous function g : R → R is
limit-preserving for convergence in probability and convergence in distribution:

Xn
P−→ X =⇒ g(Xn)

P−→ g(X),

Xn
D−→ X =⇒ g(Xn)

D−→ g(X).

Slutsky’s theorem states that the limits of Xn
D−→ X and Yn

P−→ a ∈R are preserved
under addition and multiplication:

Xn + Yn
D−→ X + a

Xn · Yn
D−→ a · X.

A.4.3 Law of Large Numbers

Let X1,X2, . . . be a sequence of independent and identically distributed random
variables with finite expectation μ. Then

1

n

n∑
i=1

Xi
P−→ μ as n → ∞.
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A.4.4 Central Limit Theorem

Let X1,X2, . . . denote a sequence of independent and identically distributed random
variables with mean μ = E(Xi) < ∞ and finite, non-zero variance (0 < Var(Xi) =
σ 2 < ∞). Then, as n → ∞,

1√
nσ 2

(
n∑

i=1

Xi − nμ

)
D−→ Z,

where Z ∼ N(0,1). A more compact notation is

1√
nσ 2

(
n∑

i=1

Xi − nμ

)
a
∼ N(0,1),

where
a
∼ stands for “is asymptotically distributed as”.

If X1,X2, . . . denotes a sequence of independent and identically distributed
p-dimensional random variables with mean μ = E(Xi ) and finite, positive definite
covariance matrix Σ = Cov(Xi ), then, as n → ∞,

1√
n

(
n∑

i=1

Xi − nμ

)
D−→ Z,

where Z ∼ Np(0,Σ) denotes a p-dimensional normal distribution with expecta-
tion 0 and covariance matrix Σ , compare Appendix A.5.3. In more compact nota-
tion we have

1√
n

(
n∑

i=1

Xi − nμ

)
a
∼ Np(0,Σ).

A.4.5 Delta Method

Consider Tn = 1
n

∑n
i=1 Xi , where the Xis are independent and identically dis-

tributed random variables with finite expectation μ and variance σ 2. Suppose g(·)
is (at least in a neighbourhood of μ) continuously differentiable with derivative g′
and g′(μ) �= 0. Then

√
n
{
g(Tn) − g(μ)

} a
∼ N

(
0, g′(μ)2 · σ 2)

as n → ∞.
Somewhat simplifying, the delta method states that

g(Z)
a
∼ N

(
g(ν), g′(ν)2 · τ 2)

if Z
a
∼ N(ν, τ 2).
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Now consider T n = 1
n
(X1 + · · · + Xn), where the p-dimensional random vari-

ables Xi are independent and identically distributed with finite expectation μ and
covariance matrix Σ . Suppose that g : Rp → R

q (q ≤ p) is a mapping continu-
ously differentiable in a neighbourhood of μ with q × p Jacobian matrix D (cf.
Appendix B.2.2) of full rank q . Then

√
n
{
g(T n) − g(μ)

} a
∼ Nq

(
0,DΣD�)

as n → ∞.
Somewhat simplifying, the multivariate delta method states that if Z

a
∼ Np(ν,T ),

then

g(Z)
a
∼ Nq

(
g(ν),DT D�).

A.5 Probability Distributions

In this section we summarise the most important properties of the probability distri-
butions used in this book. A random variable is denoted by X, and its probability or
density function is denoted by f (x). The probability or density function is defined
for values in the support T of each distribution and is always zero outside of T . For
each distribution, the mean E(X), variance Var(X) and mode Mod(X) are listed, if
appropriate.

In the first row we list the name of the distribution, an abbreviation and the core
of the corresponding R-function (e.g. norm), indicating the parametrisation imple-
mented in R. Depending on the first letter, these functions can be conveniently used
as follows:
r stands for random and generates independent random numbers or vectors from

the distribution considered. For example, rnorm(n, mean = 0, sd = 1)
generates n random numbers from the standard normal distribution.

d stands for density and returns the probability and density function, respectively.
For example, dnorm(x) gives the density of the standard normal distribution.

p stands for probability and gives the distribution function F(x) = Pr(X ≤ x) of
X. For example, if X is standard normal, then pnorm(0) returns 0.5, while
pnorm(1.96) is 0.975002 ≈ 0.975.

q stands for quantile and gives the quantile function. For example, qnorm(0.975)
is 1.959964 ≈ 1.96.

The first argument of each function is not listed since it depends on the particular
function used. It is either the number n of random variables generated, a value x in
the domain T of the random variable or a probability p ∈ [0,1]. The arguments x

and p can be vectors, as well as some parameter values. The option log = TRUE
is useful to compute the log of the density, distribution or quantile function. For ex-
ample, multiplication of very small numbers, which may cause numerical problems,
can be replaced by addition of the log numbers and subsequent application of the
exponential function exp() to the obtained sum.
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With the option lower.tail = FALSE, available in p- and q-type functions,
the upper tail of the distribution function Pr(X > x) and the upper quantile z with
Pr(X > z) = p, respectively, are returned. Further details can be found in the docu-
mentation to each function, e.g. by typing ?rnorm.

A.5.1 Univariate Discrete Distributions

Table A.1 gives some elementary facts about the most important univariate discrete
distributions used in this book. The function sample can be applied in various set-
tings, for example to simulate discrete random variables with finite support or for
resampling. Functions for the beta-binomial distribution (except for the quantile
function) are available in the package VGAM. The density and random number gen-
erator functions of the noncentral hypergeometric distribution are available in the
package MCMCpack.

Table A.1 Univariate discrete distributions

Urn model: sample(x,size,replace = FALSE,prob = NULL)

A sample of size size is drawn from an urn with elements x. The corresponding sample
probabilities are listed in the vector prob, which does not need to be normalised. If prob = NULL,
all elements are equally likely. If replace = TRUE, these probabilities do not change after the
first draw. The default, however, is replace = FALSE, in which case the probabilities are updated
draw by draw. The call sample(x) takes a random sample of size length(x) without
replacement, hence returns a random permutation of the elements of x. The call sample(x,
replace = TRUE) returns a random sample from the empirical distribution function of x, which
is useful for (nonparametric) bootstrap approaches.

Bernoulli: B(π) _binom(. . . ,size = 1,prob = π)

0 < π < 1 T = {0,1}

f (x) = πx(1 − π)1−x Mod(X) =
{

0, π ≤ 0.5,

1, π ≥ 0.5.

E(X) = π Var(X) = π(1 − π)

If Xi ∼ B(π), i = 1, . . . , n, are independent, then
∑n

i=1 Xi ∼ Bin(n,π).

Binomial: Bin(n,π) _binom(. . . ,size = n,prob = π)

0 < π < 1, n ∈ N T = {0, . . . , n}
f (x) = (n

x

)
πx(1 − π)n−x Mod(X) ={

	zm = (n + 1)π
, zm �∈ N,

zm − 1 and zm, else.

E(X) = nπ Var(X) = nπ(1 − π)

The case n = 1 corresponds to a Bernoulli distribution with success probability π . If
Xi ∼ Bin(ni ,π), i = 1, . . . , n, are independent, then

∑n
i=1 Xi ∼ Bin(

∑n
i=1 ni,π).
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Table A.1 (Continued)

Geometric: Geom(π) _geom(. . . ,prob = π)

0 < π < 1 T = N

f (x) = π(1 − π)x−1

E(X) = 1/π Var(X) = (1 − π)/π2

Caution: The functions in R relate to the random variable X − 1, i.e. the number of failures until a
success has been observed. If Xi ∼ Geom(π), i = 1, . . . , n, are independent, then∑n

i=1 Xi ∼ NBin(n,π).

Hypergeometric: HypGeom(n,N,M) _hyper(. . . ,m= M,n= N − M,k= n)

N ∈ N, M ∈ {0, . . . ,N}, n ∈ {1, . . . ,N}
T = {max{0, n + M − N}, . . . ,min{n,M}}
f (x) = C · (M

x

)(
N−M
n−x

)
C = (N

n

)−1

Mod(X) =
{

	xm
, xm �∈ N,

xm − 1 and xm, else.
xm = (n+1)(M+1)

(N+2)

E(X) = nM
N

Var(X) = nM
N

N−M
N

(N−n)
(N−1)

Noncentral hypergeometric:
NCHypGeom(n,N,M,θ)

{r,d}noncenhypergeom(. . . ,n1= M,

n2= N − M,m1= n,psi = θ)

N ∈ N, M ∈ {0, . . . ,N}, n ∈ {0, . . . ,N}, θ ∈ R+
T = {max{0, n + M − N}, . . . ,min{n,M}}
f (x) = C · (M

x

)(
N−M
n−x

)
θx C = {∑x∈T

(
M
x

)(
N−M
n−x

)
θx}−1

Mod(X) =
⌊ −2c

b+sign(b)
√

b2−4ac

⌋
a = θ − 1,
b = (M + n + 2)θ + N − M − n,
c = θ(M + 1)(n + 1)

This distribution arises if X ∼ Bin(M,π1) independent of Y ∼ Bin(N − M,π2) and Z = X + Y ,
then X |Z = n ∼ NCHypGeom(n,N,M,θ) with the odds ratio θ = π1(1−π2)

(1−π1)π2
. For θ = 1, this

reduces to HypGeom(n,N,M).

Negative binomial: NBin(r,π) _nbinom(. . . ,size = r,prob = π)

0 < π < 1, r ∈ N T = {r, r + 1, . . . }
f (x) = (x−1

r−1

)
πr(1 − π)x−r Mod(X) ={

	zm = 1 + r−1
π


, zm �∈ N,

zm − 1 and zm, else.

E(X) = r
π

Var(X) = r(1−π)

π2

Caution: The functions in R relate to the random variable X − r , i.e. the number of failures until r

successes have been observed. The NBin(1,π) distribution is a geometric distribution with
parameter π . If Xi ∼ NBin(ri , π), i = 1, . . . , n, are independent, then∑n

i=1 Xi ∼ NBin(
∑n

i=1 ri , π).
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Table A.1 (Continued)

Poisson: Po(λ) _pois(. . . ,lambda = λ)

λ > 0 T = N0

f (x) = λx

x! exp(−λ) Mod(X) =
{

	λ
, λ �∈ N,

λ − 1, λ, else.

E(X) = λ Var(X) = λ

If Xi ∼ Po(λi), i = 1, . . . , n, are independent, then
∑n

i=1 Xi ∼ Po(
∑n

i=1 λi). Moreover,
X1 | {X1 + X2 = n} ∼ Bin(n,λ1/(λ1 + λ2)).

Poisson-gamma: PoG(α,β, ν) _nbinom(. . . ,size = α,prob = β
β+ν

)

α,β > 0 T = N0

f (x) = C · �(α+x)
x!

(
ν

β+ν

)x
C = ( β

β+ν

)α 1
�(α)

Mod(X) =

⎧⎪⎨
⎪⎩

⌈
ν(α−1)

β
− 1
⌉
, αν > β + ν,

0,1 αν = β + ν,

0, αν < β + ν.

E(X) = ν α
β

Var(X) = α ν
β
(1 + ν

β
)

The gamma function �(x) is described in Appendix B.2.1. The Poisson-gamma distribution
generalises the negative binomial distribution, since X + α ∼ NBin(α,

β
β+ν

), if α ∈ N. In R there
is only one function for both distributions.

Beta-binomial: BeB(n,α,β) {r,d,p}betabin.ab(. . . ,size = n,α,β)

α,β > 0, n ∈ N T = {0, . . . , n}
f (x) = (n

x

)B(α+x,β+n−x)
B(α,β)

Mod(X) =
{

	xm
, xm �∈ N,

xm − 1 and xm, else.
xm = (n+1)(α−1)

α+β−2

E(X) = n α
α+β

Var(X) = n
αβ

(α+β)2
(α+β+n)
(α+β+1)

The beta function B(x, y) is described in Appendix B.2.1. The BeB(n,1,1) distribution is a
discrete uniform distribution with support T and f (x) = (n + 1)−1. For n = 1, the beta-binomial
distribution BeB(1, α,β) reduces to the Bernoulli distribution B(π) with success probability
π = α/(α + β).

A.5.2 Univariate Continuous Distributions

Table A.2 gives some elementary facts about the most important univariate con-
tinuous distributions used in this book. The density and random number generator
functions of the inverse gamma distribution are available in the package MCMCpack.
The distribution and quantile function (as well as random numbers) can be cal-
culated with the corresponding functions of the gamma distribution. Functions re-
lating to the general t distribution are available in the package sn. The functions
_t(. . . ,df= α) available by default in R cover the standard t distribution. The log-
normal, folded normal, Gumbel and the Pareto distributions are available in the
package VGAM. The gamma–gamma distribution is currently not available.
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Table A.2 Univariate continuous distributions

Uniform: U(a, b) _unif(. . . ,min = a,max = b)

b > a T = (a, b)

f (x) = 1/(b − a)

E(X) = (a + b)/2 Var(X) = (b − a)2/12

X is standard uniform if a = 0 and b = 1.

Beta: Be(α,β) _beta(. . . ,shape1 = α,shape2 = β)

α,β > 0 T = (0,1)

f (x) = B(α,β)−1xα−1(1 − x)β−1 Mod(X) = α−1
α+β−2 if α,β > 1

E(X) = α
α+β

Var(X) = αβ

(α+β)2(α+β+1)

The beta function B(x, y) is described in Appendix B.2.1. The Be(1,1) distribution is a standard
uniform distribution. If X ∼ Be(α,β) then 1 − X ∼ Be(β,α) and β/α · X/(1 − X) ∼ F(2α,2β).

Exponential: Exp(λ) _exp(. . . ,rate = λ)

λ > 0 T = R

+

f (x) = λ exp(−λx) Mod(X) = 0

E(X) = 1/λ Var(X) = 1/λ2

If Xi ∼ Exp(λ), i = 1, . . . , n, are independent, then
∑n

i=1 Xi ∼ G(n,λ).

Weibull: Wb(μ,α) _weibull(. . . ,shape = α,scale = μ)

μ,α > 0 T = R+
f (x) = α

μ
( x

μ
)α−1 exp{−( x

μ
)α} Mod(X) = μ · (1 − 1

α
)

1
α

E(X) = μ · �( 1
α

+ 1) Var(X) = μ · {�( 2
α

+ 1) − �( 1
α

+ 1)2}
The gamma function �(x) is described in Appendix B.2.1. The Wb(μ,1) distribution is the
exponential distribution with parameter 1/μ. Although it was discovered earlier in the 20th
century, the Weibull distribution is named after the Swedish engineer Waloddi Weibull,
1887–1979, who described it in 1951.

Gamma: G(α,β) _gamma(. . . ,shape = α,rate = β)

α,β > 0 T = R

+

f (x) = βα

�(α)
xα−1 exp(−βx) Mod(X) = α−1

β
if α > 1

E(X) = α/β Var(X) = α/β2

The gamma function �(x) is described in Appendix B.2.1. β is an inverse scale parameter, which
means that Y = c · X has the gamma distribution G(α,β/c). The G(1, β) is the exponential
distribution with parameter β. For α = d/2 and β = 1/2, one obtains the chi-squared distribution
χ2(d). If Xi ∼ G(αi , β), i = 1, . . . , n, are independent, then

∑n
i=1 Xi ∼ G(

∑n
i=1 αi,β).

Inverse gamma: IG(α,β) {r,d}invgamma(. . . ,shape = α,scale = β)

α,β > 0 T = R

+

f (x) = βα

�(α)
x−(α+1) exp(−β/x) Mod(X) = β

α+1

E(X) = β
α−1 if α > 1 Var(X) = β2

(α−1)2(α−2)
if α > 2

The gamma function �(x) is described in Appendix B.2.1. If X ∼ G(α,β) then 1/X ∼ IG(α,β).
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Table A.2 (Continued)

Gamma–gamma: Gg(α,β, δ)

α,β, δ > 0 T = R

+

f (x) = βα

B(α,δ)
xδ−1

(β+x)α+δ Mod(X) = (δ−1)β
α+1 if δ > 1

E(X) = δβ
α−1 if α > 1 Var(X) = β2(δ2+δ(α−1))

(α−1)2(α−2)
if α > 2

The beta function B(x, y) is described in Appendix B.2.1. A gamma–gamma random variable
Y ∼ Gg(α,β, δ) is generated by the mixture X ∼ G(α,β), Y | {X = x} ∼ G(δ, x).

Chi-squared: χ2(d) _chisq(. . . ,df = d)

d > 0 T = R

+

f (x) = ( 1
2 )

d
2

�( d
2 )

x
d
2 −1 exp(−x/2) Mod(X) = d − 2 if d > 2

E(X) = d Var(X) = 2d

The gamma function �(x) is described in Appendix B.2.1. If Xi ∼ N(0,1), i = 1, . . . , n, are
independent, then

∑n
i=1 X2

i ∼ χ2(n).

Normal: N(μ,σ 2) _norm(. . . ,mu= μ,sd = σ)

μ ∈ R, σ 2 > 0 T = R

f (x) = 1√
2πσ 2

exp{− 1
2

(x−μ)2

σ 2 } Mod(X) = μ

E(X) = μ Var(X) = σ 2

X is standard normal if μ = 0 and σ 2 = 1, i.e. f (x) = ϕ(x) = 1√
2π

exp(− 1
2 x2). If X is standard

normal, then σX + μ ∼ N(μ,σ 2).

Log-normal: LN(μ,σ 2) _lnorm(. . . ,meanlog = μ,sdlog = σ)

μ ∈ R, σ 2 > 0 T = R

+

f (x) = 1
σ

1
x
ϕ{ log(x)−μ

σ
} Mod(X) = exp(μ − σ 2)

E(X) = exp(μ + σ 2/2) Var(X) = {exp(σ 2) − 1} exp(2μ + σ 2)

If X is normal, i.e. X ∼ N(μ,σ 2), then exp(X) ∼ LN(μ,σ 2).

Folded normal: FN(μ,σ 2) _fnorm(. . . ,mean = μ,sd= σ)

μ ∈ R, σ 2 > 0 T = R

+
0

f (x) = 1
σ
{ϕ(

x−μ
σ

) + ϕ(
x+μ

σ
)} Mod(X)

{
= 0, |μ| ≤ σ,

∈ (0, |μ|), |μ| > σ.

E(X) = 2σϕ(μ/σ) + μ(2Φ(μ/σ) − 1) Var(X) = σ 2 + μ2 − E(X)2

If X is normal, i.e. X ∼ N(μ,σ 2), then |X| ∼ FN(μ,σ 2). The mode can be calculated
numerically if |μ| > σ . If μ = 0, one obtains the half normal distribution with E(X) = σ

√
2/π

and Var(X) = σ 2(1 − 2/π).
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Table A.2 (Continued)

Student (t): t(μ,σ 2, α) _st(. . . ,location = μ,scale = σ,df = α)

μ ∈ R, σ 2, α > 0 T = R

f (x) = C · {1 + 1
ασ 2 (x − μ)2}− α+1

2 C = {√ασ 2B(α
2 , 1

2 )}−1

Mod(X) = μ

E(X) = μ if α > 1 Var(X) = σ 2 · α
α−2 if α > 2

The Cauchy distribution C(μ,σ 2) arises for α = 1, in which case both E(X) and Var(X) do not
exist. If X is standard t distributed with degrees of freedom α, i.e. X ∼ t(0,1, α) =: t(α), then
σX + μ ∼ t(μ,σ 2, α). A t distributed random variable X ∼ t(μ,σ 2, α) converges in distribution
to a normal random variable Y ∼ N(μ,σ 2) as α → ∞.

F: F(α,β) _f(. . . ,df1 = α,df2 = β)

α,β > 0 T = R

+

f (x) = C · 1
x
(1 + β

αx
)−α/2(1 + αx

β
)−β/2 C = B(α/2, β/2)−1

Mod(X) = (α−2)β
α(β+2)

if α > 2

E(X) = β
β−2 if β > 2 Var(X) = 2β2(α+β−2)

α(β−2)2(β−4)
if β > 4

The beta function B(x, y) is described in Appendix B.2.1. If X ∼ χ2(α) and Y ∼ χ2(β) are
independent, then Z = X/α

Y/β
follows an F distribution, i.e. Z ∼ F(α,β).

Logistic: Log(μ,σ 2) _logis(. . . ,location = μ,scale = σ)

μ ∈ R, σ > 0 T = R

f (x) = 1
σ

exp(− x−μ
σ

){1 + exp(− x−μ
σ

)}−2 Mod(X) = μ

E(X) = μ Var(X) = σ 2 · π2/3

X has the standard logistic distribution if μ = 0 and σ = 1. In this case the distribution function
has the simple form F(x) = {1 + exp(−x)}−1, and the quantile function is the logit function
F−1(p) = log{p/(1 − p)}.
Gumbel: Gu(μ,σ 2) _gumbel(. . . ,location = μ,scale = σ)

μ ∈ R, σ > 0 T = R

f (x) = 1
σ

exp{− x−μ
σ

− exp(− x−μ
σ

)} Mod(X) = μ

E(X) = μ + σγ Var(X) = σ 2 π2

2

The Euler–Mascheroni constant γ is defined as γ = limn→∞
∑n

k=1
1
k

− log(n) ≈ 0.577215. If
X ∼ Wb(μ,α), then − log(X) ∼ Gu(− log(μ),1/α2). Thus the Gumbel distribution (named after
the German mathematician Emil Julius Gumbel, 1891–1966) is also known as the log-Weibull
distribution.

Pareto: Par(α,β) _pareto(. . . ,shape = α,location = β)

α > 0, β > 0

f (x) =
{

αβαx−(α+1) if x ≥ β,

0 else
Mod(X) = β

E(X) = αβ
α−1 if α > 1 Var(X) = αβ2

(α−1)2(α−2)
if α > 2

A Pareto random variable Y ∼ Par(α,β) is generated by the mixture X ∼ G(α,β),
Y | {X = x} ∼ Exp(x) + β. The Pareto distribution is named after the Italian economist Vilfredo
Pareto, 1848–1923.
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A.5.3 Multivariate Distributions

Table A.3 gives details about the most important multivariate probability distribu-
tions used in this book. Multivariate random variables X are always given in bold
face. Note that there is no distribution or quantile function available in R for the
multinomial, Dirichlet, Wishart and inverse Wishart distributions. The density func-
tion and random variable generator functions for Dirichlet, Wishart and inverse
Wishart are available in the package MCMCpack. The package mvtnorm offers the
density, distribution, and quantile functions of the multivariate normal distribution,

Table A.3 Multivariate distributions

Multinomial: Mk(n,π) {r,d}multinom(. . . ,size = n,prob = π)

π = (π1, . . . , πk)
�, n ∈ N x = (x1, . . . , xk)

�

πi ∈ (0,1),
∑k

j=1 πj = 1 xi ∈ N0,
∑k

j=1 xj = n

f (x) = n!∏k
j=1 xj !

∏k
j=1 π

xj

j

E(Xi) = nπi Var(Xi) = nπi(1 − πi)

E(X) = nπ Cov(X) = n{diag(π) − ππ�}
The binomial distribution is a special case of the multinomial distribution: If X ∼ Bin(n,π), then
(X,n − X)� ∼ M2(n, (π,1 − π)�).

Dirichlet: Dk(α) {r,d}dirichlet(. . . ,alpha = α)

α = (α1, . . . , αk)
� x = (x1, . . . , xk)

�

αi > 0 xi ∈ (0,1),
∑k

j=1 xj = 1

f (x) = C ·∏k
j=1 x

αj −1
j C = �(

∑k
j=1 αj )/

∏k
j=1 �(αj )

E(Xi) = αi∑k
j=1 αj

Var(Xi) = E(Xi ){1−E(Xi )}
1+∑k

j=1 αj

E(X) = α(e�
k α)−1

where e�
k = (1, . . . ,1)

Cov(X) = (1 + e�
k α)−1 · [diag{E(X)} − E(X)E(X)�]

The gamma function �(x) is described in Appendix B.2.1. The beta distribution is a special case
of the Dirichlet distribution: If X ∼ Be(α,β), then (X,1 − X)� ∼ D2((α,β)�).

Multinomial-Dirichlet: MDk(n,α)

α = (α1, . . . , αk)
�, n ∈ N x = (x1, . . . , xk)

�

αi > 0 xi ∈N0,
∑k

j=1 xj = n

f (x) = C ·
∏k

j=1 �(α∗
j )

�(
∑k

j=1 α∗
j )
∏k

j=1 xj ! C = n!�(
∑k

j=1 αj )/
∏k

j=1 �(αj )

α∗
j = αj + xj π = α(e�

k α)−1

E(Xi) = nπi Var(Xi) =
∑k

j=1 α∗
j

1+∑k
j=1 αj

nπi(1 − πi)

E(X) = nπ Cov(X) =
∑k

j=1 α∗
j

1+∑k
j=1 αj

n{diag(π) − ππ�}
The gamma function �(x) is described in Appendix B.2.1. The beta-binomial distribution is a
special case of the multinomial-Dirichlet distribution: If X ∼ BeB(n,α,β), then
(X,n − X)� ∼ MD2(n, (α,β)�).
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Table A.3 (Continued)

Multivariate normal: Nk(μ,Σ) _mvnorm(. . . ,mean = μ,sigma = Σ)

μ = (μ1, . . . ,μk)
� ∈ R

k x = (x1, . . . , xk)
� ∈ R

k

Σ ∈ R

k×k symmetric and positive definite

f (x) = C · exp{− 1
2 (x − μ)�Σ−1(x − μ)} C = {(2π)k |Σ |}− 1

2

E(X) = μ Cov(X) = Σ

Normal-gamma: NG(μ,λ,α,β)

μ ∈ R, λ,α,β > 0 x = (x1, x2)
�, x1 ∈ R, x2 ∈ R

+

f (x1, x2) = f (x1 |x2)f (x2) where X2 ∼ G(α,β), and
X1 |X2 ∼ N(μ, (λ · x2)

−1)

E(X1) = Mod(X1) = μ Var(X1) = β
λ(α−1)

Cov(X1,X2) = 0 Mod(X) = (μ, (α − 1/2)/β)� if α > 1/2

The marginal distribution of X1 is a t distribution: X1 ∼ t(μ,β/(αλ),2α).

Wishart: Wik(α,Σ) {r,d}wish(. . . ,v= α,S= Σ)

α ≥ k,Σ ∈ R

k×k positive definite X ∈ R

k×k positive definite

f (X) = C · |X| α−k−1
2 exp{− 1

2 tr(Σ−1X)} tr(A) =∑k
i=1 aii

C = {2αk/2|Σ |α/2�k(α/2)}−1 �k(α/2) = πk(k−1)/4∏k
j=1 �(

α+1−j
2 )

E(X) = αΣ

If Xi ∼ Nk(0,Σ), i = 1, . . . , n, are independent, then
∑n

i=1 XiX
�
i ∼ Wik(n,Σ). For a diagonal

element Xii of the matrix X = (Xij ), we have Xii ∼ G(α/2,1/(2σii )), where σii is the
corresponding diagonal element of Σ = (σij ).

Inverse Wishart: IWik(α,Ψ ) {r,d}iwish(. . . ,v= α,S= Ψ )

α ≥ k,Ψ ∈ R

k×k positive definite X ∈ R

k×k positive definite

f (X) = C · |X|− α+k+1
2 exp{− 1

2 tr(X−1Ψ )}
C = |Ψ |α/2{2αk/2�k(α/2)}−1 �k(α/2) = πk(k−1)/4∏k

j=1 �(
α+1−j

2 )

E(X) = {(α − k − 1)Ψ }−1 if α > k + 1

If X ∼ Wik(α,Σ), then X−1 ∼ IWik(α,Σ−1). For a diagonal element Xii of the matrix
X = (Xij ), we have Xii ∼ IG((α − k + 1)/2,ψii/2), where ψii is the corresponding diagonal
element of Ψ = (ψij ).

as well as a random number generator function. The multinomial-Dirichlet and the
normal-gamma distributions are currently not available in R.
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This appendix contains several results and definitions from linear algebra and
mathematical calculus that are important in statistics.

B.1 Some Matrix Algebra

Matrix algebra is important for handling multivariate random variables and param-
eter vectors. After discussing important operations on square matrices, we describe
several useful tools for inversion of matrices and for combining two quadratic forms.
We assume that the reader is familiar with basic concepts of linear algebra.

B.1.1 Trace, Determinant and Inverse

Trace tr(A), determinant |A| and inverse A−1 are all operations on square matrices

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎠= (aij )1≤i,j≤n ∈R

n×n.
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While the first two produce a scalar number, the last one produces again a square
matrix. In this section we will review the most important properties of these opera-
tions.

The trace operation is the simplest one of the three mentioned in this section. It
computes the sum of the diagonal elements of the matrix:

tr(A) =
n∑

i=1

aii .

From this one can easily derive some important properties of the trace operation, as
for example invariance to transpose of the matrix tr(A) = tr(A�), invariance to the
order in a matrix product tr(AB) = tr(BA) or additivity tr(A+B) = tr(A)+ tr(B).

A non-zero determinant indicates that the corresponding system of linear equa-
tions has a unique solution. For example, the 2 × 2 matrix

A =
(

a b

c d

)
(B.1)

has the determinant

|A| =
∣∣∣∣a b

c d

∣∣∣∣= ad − bc.

Sarrus’ scheme is a method to compute the determinant of 3 × 3 matrices:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12.

For the calculation of the determinant of higher-dimensional matrices, similar
schemes exist. Here, it is crucial to observe that the determinant of a triangular
matrix is the product of its diagonal elements and that the determinant of the prod-
uct of two matrices is the product of the individual determinants. Hence, using some
form of Gaussian elimination/triangularisation, the determinant of any square matrix
can be calculated. The command det(A) in R provides the determinant; however,
for very high dimensions, a log transformation may be necessary to avoid numer-
ical problems as illustrated in the following example. To calculate the likelihood
of a vector y drawn from a multivariate normal distribution Nn(μ,Σ), one would
naively use

> set.seed(15)

> n <- 500

> mu <- rep(1, n)

> Sigma <- 0.5^abs(outer(1:n, 1:n, "-"))

> y <- rnorm(n, mu, sd=0.1)

> 1/sqrt(det(2*pi*Sigma)) *

exp(-1/2 * t(y-mu) %*% solve(Sigma) %*% (y-mu))

[,1]

[1,] 0
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The result is approximately correct because the involved determinant is returned as
infinity, i.e. the likelihood is zero through division by infinity. Using a log trans-
formation, which is by default provided by the function determinant, and back-
transforming after the calculation provides the correct result:

> exp(-1/2 * (n * log(2*pi) +

determinant(Sigma)$modulus +

t(y-mu) %*% solve(Sigma) %*% (y-mu)))

[,1]

[1,] 7.390949e-171

attr(,"logarithm")

[1] TRUE

The inverse A−1 of a square matrix A, if it exists, satisfies

AA−1 = A−1A = I ,

where I denotes the identity matrix. The inverse exists if and only if the determinant
of A is non-zero. For the 2 × 2 matrix from Appendix B.1, the inverse is

A−1 = 1

|A|
(

d −b

−c a

)
.

Using the inverse, it is easy to find solutions of systems of linear equations of the
form Ax = b since simply x = A−1b. In R, this close relationship is reflected by
the fact that the command solve(A) returns the inverse A−1 and the command
solve(A,b) returns the solution of Ax = b. See also the example in the next
section.

B.1.2 Cholesky Decomposition

A matrix B is positive definite if x�Bx > 0 for all x �= 0. A symmetric matrix A is
positive definite if and only if there exists an upper triangular matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

g11 g12 . . . . . . g1n

0 g22 . . . . . . g2n

... 0
. . .

...
...

. . .
. . .

...

0 . . . . . . 0 gnn

⎞
⎟⎟⎟⎟⎟⎟⎠

such that

G�G = A.

G is called the Cholesky square root of the matrix A.
The Cholesky decomposition is a numerical method to determine the Cholesky

root G. The command chol(A) in R provides the matrix G.
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Using the Cholesky decomposition in the calculation of the multivariate normal
likelihood from above not only leads to the correct result without running into nu-
merical problems

> U <- chol(Sigma)

> x <- forwardsolve(t(U), y - mu)

> (2*pi)^(-n/2) / prod(diag(U)) * exp(- sum(x^2)/2)

[1] 7.390949e-171

it also speeds up the calculation considerably

> system.time(1/sqrt(det(2 * pi * Sigma)) * exp(-1/2 *

t(y - mu) %*% solve(Sigma) %*% (y - mu)))

user system elapsed

0.312 0.008 0.321

> system.time({

U <- chol(Sigma)

x <- forwardsolve(t(U), y - mu)

(2 * pi)^(-n/2)/prod(diag(U)) * exp(-sum(x^2)/2)

})

user system elapsed

0.056 0.000 0.058

Here, the function system.time returns (several different) CPU times of the current
R process. Usually, the last of them is of interest because it displays the elapsed wall-
clock time.

B.1.3 Inversion of Block Matrices

Let a matrix A be partitioned into four blocks:

A =
(

A11 A12
A21 A22

)
,

where A11, A12 have the same numbers of rows, and A11, A21 the same numbers
of columns. If A,A11 and A22 are quadratic and invertible, then the inverse A−1

satisfies

A−1 =
(

B−1 −B−1A12A
−1
22

−A−1
22 A21B

−1 A−1
22 + A−1

22 A21B
−1A12A

−1
22

)

with B = A11 − A12A
−1
22 A21 (B.2)

or alternatively

A−1 =
(

A−1
11 + A11A12C

−1A21A
−1
11 −A−1

11 A12C
−1

−C−1A21A
−1
11 C−1

)

with C = A22 − A21A
−1
11 A12. (B.3)
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B.1.4 Sherman–Morrison Formula

Let A be an invertible n × n matrix and u,v column vectors of length n, such that
1 + v�A−1u �= 0. The Sherman–Morrison formula provides a closed form for the
inverse of the sum of the matrix A and the dyadic product uv�. It depends on the
(original) inverse A−1 as follows:

(
A + uv�)−1 = A−1 − A−1uv�A−1

1 + v�A−1u
.

B.1.5 Combining Quadratic Forms

Let x,a and b be n × 1 vectors, and A,B symmetric n × n matrices such that the
inverse of the sum C = A + B exists. Then we have that

(x − a)�A(x − a) + (x − b)�B(x − b)

= (x − c)�C(x − c) + (a − b)�AC−1B(a − b), (B.4)

where c = C−1(Aa + Bb). In particular, if n = 1, (B.4) simplifies to

A(x − a)2 + B(x − b)2 = C(x − c)2 + AB

C
(a − b)2 (B.5)

with C = A + B and c = (Aa + Bb)/C.

B.2 Some Results from Mathematical Calculus

In this section we describe the gamma and beta functions, which appear in many
density formulas. Multivariate derivatives are defined, which are used mostly for
Taylor expansions in this book, and these are also explained in this section. More-
over, two results for integration and optimisation and the explanation of the Landau
notation used for asymptotic statements are included.

B.2.1 The Gamma and Beta Functions

The gamma function is defined as

�(x) =
∫ ∞

0
tx−1 exp(−t) dt
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for all x ∈ R except zero and negative integers. It is implemented in R in the function
gamma(). The function lgamma() returns log{�(x)}. The gamma function is said
to interpolate the factorial x! because �(x + 1) = x! for non-negative integers x.

The beta function is related to the gamma function as follows:

B(x, y) = �(x)�(y)

�(x + y)
.

It is implemented in R in the function beta(). The function lbeta() returns
log{B(x, y)}.

B.2.2 Multivariate Derivatives

Let f be a real-valued function defined on R

m, i.e.

f : R

m −→ R,

x −→ f (x),

and g : Rp → R

q a generally vector-valued mapping with function values g(x) =
(g1(x), . . . , gq(x))�. Derivatives can easily be extended to such a mutivariate set-
ting. Here, the symbol d for a univariate derivative is replaced by the symbol ∂

for partial derivatives. The notation f ′ and f ′′ for the first and second univariate
derivatives can be generalised to the multivariate setting as well:
1. The vector of the partial derivatives of f with respect to the m components,

f ′(x) =
(

∂

∂x1
f (x), . . . ,

∂

∂xm

f (x)

)�
,

is called the gradient of f at x. Obviously, we have f ′(x) ∈ R

m. We also
denote this vector as ∂

∂x f (x). The ith component of the gradient can be inter-
preted as the slope of f in the ith direction (parallel to the coordinate axis).

For example, if f (x) = a�x for some m-dimensional vector a, we have
f ′(x) = a. If f (x) is a quadratic form, i.e. f (x) = x�Ax for some m × m

matrix A, we obtain f ′(x) = (A + A�)x. If A is symmetric, this reduces to
f ′(x) = 2Ax.

2. Taking the derivatives of every component of the gradient with respect to each
coordinate xj of x gives the Hessian matrix or Hessian

f ′′(x) =
(

∂2

∂ xi ∂ xj

f (x)

)
1≤i,j≤m

of f at x. This matrix f ′′ has dimension m × m. The Hessian hence contains
all second-order derivatives of f . Each second-order derivative exists under
the regularity condition that the corresponding first-order partial derivative is
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continuously differentiable. The matrix f ′′(x) quantifies the curvature of f

at x. We also denote this matrix as ∂
∂x

∂
∂x� f (x) or ∂

∂x f ′(x).
3. The q × p Jacobian matrix of g,

g′(x) =
(

∂ gi(x)

∂ xj

)
1≤i≤q
1≤j≤p

,

is the matrix representation of the derivative of g at x. We also denote this
matrix as ∂

∂x g(x). The Jacobian matrix provides a linear approximation of g

at x. Note that the Hessian corresponds to the Jacobian matrix of f ′(x), where
p = q = m.

The chain rule for differentiation can also be generalised to vector-valued functions.
Let h : Rq → R

r be another differentiable function such that its Jacobian h′(y) is
an r × q matrix. Define the composition of g and h as k(x) = h{g(x)}, so k :
R

p →R

r . The multivariate chain rule now states that

k′(x) = h′{g(x)
} · g′(x).

The entry in the ith row and j th column of this r × p Jacobian is the partial deriva-
tive of k(x) of the ith component ki(x) with respect to the j th coordinate xj :

∂ki(x)

∂xj

=
q∑

l=1

∂hi{g(x)}
∂yl

∂gl(x)

∂xj

.

B.2.3 Taylor Approximation

A differentiable function can be approximated with a polynomial using Taylor’s
theorem: For a real interval I , any (n + 1) times continuously differentiable real-
valued function f satisfies for a, x ∈ I that

f (x) =
n∑

k=0

f (k)(a)

k! (x − a)k + f (n+1)(ξ)

(n + 1)! (x − a)n+1,

where ξ is between a and x, and f (k) denotes the kth derivative of f . Moreover, we
have that

f (x) =
n∑

k=0

f (k)(a)

k! (x − a)k + o
(|x − a|n) as x → a.

Therefore, any function f that is n times continuously differentiable in the neigh-
bourhood of a can be approximated up to an error of order o(|x − a|n) (see Ap-

pendix B.2.6) by the nth-order Taylor polynomial
∑n

k=0
f (k)(a)

k! (x − a)k .
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The Taylor formula can be extended to a multi-dimensional setting for real-
valued functions f that are (n + 1)-times continuously differentiable on an open
subset M of Rm: let a ∈ M ; then for all x ∈ M with S(x,a) = {a + t (x − a) | t ∈
[0,1]} ⊂ M , there exists a ξ ∈ S(x,a) with

f (x) =
∑
|k|≤n

Dkf (a)

k! (x − a)k +
∑

|k|=n+1

Dkf (ξ)

k! (x − a)k,

where k ∈N

m
0 , |k| = k1 +· · ·+ km, k! =∏m

i=1 ki !, (x − a)k =∏m
i=1(xi − ai)

ki , and

Dkf (x) = d |k|

dx
k1
1 · · ·dx

km
m

f (x).

In particular, the second-order Taylor polynomial of f around a is given by

∑
|k|≤2

Dkf (a)

k! (x −a)k = f (a)+ (x −a)�f ′(a)+ 1

2
(x −a)�f ′′(a)(x −a) (B.6)

where f ′(a) = ( ∂
∂x1

f (a), . . . , ∂
∂xm

f (a))� ∈ R

m is the gradient, and f ′′(a) =
( ∂2

∂xi∂xj
f (a))1≤i,j≤m ∈ R

m×m is the Hessian (see Appendix B.2.2).

B.2.4 Leibniz Integral Rule

Let a, b and f be real-valued functions that are continuously differentiable in t .
Then the Leibniz integral rule is

∂

∂t

∫ b(t)

a(t)

f (x, t) dx

=
∫ b(t)

a(t)

∂

∂t
f (x, t) dx − f

{
a(t), t

} · d

dt
a(t) + f

{
b(t), t

} · d

dt
b(t).

This rule is also known as differentiation under the integral sign.

B.2.5 Lagrange Multipliers

The method of Lagrange multipliers (named after Joseph-Louis Lagrange, 1736–
1813) is a technique in mathematical optimisation that allows one to reformulate an
optimisation problem with constraints such that potential extrema can be determined
using the gradient descent method. Let M be an open subset of Rm, x0 ∈ M , and
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f,g be continuously differentiable functions from M to R with g(x0) = 0 and non-
zero gradient of g at x0, i.e.

∂

∂x
g(x0) =

(
∂

∂x1
f (x0), . . . ,

∂

∂xm

f (x0)

)�
�= 0.

Suppose that x0 is a local maximum or minimum of f |g−1(0) (the function f con-
strained to the zeros of g in M). Then there exists a Lagrange multiplier λ ∈ R with

∂

∂x
f (x0) = λ · ∂

∂x
g(x0).

B.2.6 Landau Notation

Paul Bachmann (1837–1920) and Edmund Landau (1877–1938) introduced two
nowadays popular notations allowing to compare functions with respect to growth
rates. The Landau notation is also often called big-O and little-o notation. For ex-
ample, let f,g be real-valued functions defined on the interval (a,∞) with a ∈R.
1. We call f (x) little-o of g(x) as x → ∞,

f (x) = o
{
g(x)

}
as x → ∞,

if for every ε > 0, there exists a real number δ(ε) > a such that the inequality
|f (x)| ≤ ε|g(x)| is true for x > δ(ε). If g(x) is non-zero for all x larger than a
certain value, this is equivalent to

lim
x→∞

f (x)

g(x)
= 0.

Hence, the asymptotic growth of the function f is slower than that of g, and
f (x) vanishes for large values of x compared to g(x).

The same notation can be defined for limits x → x0 with x0 ≥ a:

f (x) = o
{
g(x)

}
as x → x0

means that for any ε > 0, there exists a real number δ(ε) > 0 such that the
inequality |f (x)| ≤ ε|g(x)| is true for all x > a with |x − x0| < δ(ε). If g does
not vanish on its domain, this is again equivalent to

lim
x→x0
x>a

f (x)

g(x)
= 0.

2. We call f (x) big-O of g(x) as x → ∞,

f (x) = O
{
g(x)

}
as x → ∞,
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if there exist constants Q > 0 and R > a such that the inequality |f (x)| ≤
Q|g(x)| is true for all x > R. Again, an equivalent condition is

lim sup
x→∞

∣∣∣∣f (x)

g(x)

∣∣∣∣< ∞

if g(x) �= 0 for all x larger than a certain value. The function f is, as x → ∞,
asymptotically as at most of the same order as the function g, i.e. it grows at
most as fast as g.

Analogously to little-o, the notation big-O for limits x → x0 can also be
defined:

f (x) = O
{
g(x)

}
as x → x0

denotes that there exist constants Q,δ > 0, such that the inequality |f (x)| ≤
Q|g(x)| is true for all x > a with |x − x0| < δ. If g does not vanish on its
domain, this is again equivalent to

lim sup
x→x0
x>a

∣∣∣∣f (x)

g(x)

∣∣∣∣< ∞.
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Numerical methods have been steadily gaining importance in statistics. In this
appendix we summarise the most important techniques.

C.1 Optimisation and Root Finding Algorithms

Numerical methods for optimisation and for finding roots of functions are very fre-
quently used in likelihood inference. This section provides an overview of the com-
monly used approaches.

C.1.1 Motivation

Optimisation aims to determine the maximum of a function over a certain range
of values. Consider a univariate function g(θ) defined for values θ ∈ Θ . Then we
want to find the value θ∗ such that g(θ∗) ≥ g(θ) for all values θ ∈ Θ . Note that the
maximum θ∗ might not be unique. Even if the global maximum θ∗ is unique, there
might be different local maxima in subsets of Θ , in which case the function g(θ) is
called multimodal. Otherwise, it is called unimodal.

Of course, maximising g(θ) is equivalent to minimising h(θ) = −g(θ). There-
fore, we can restrict our presentation to the first case.

For suitably differentiable functions g(θ), the first derivative g′(θ) is very useful
to find the extrema of g(θ). This is because every maximum θ∗ is also a root of
the first derivative, i.e. g′(θ∗) = 0. The second derivative g′′(θ) evaluated at such a
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root may then be used to decide whether it is a maximum of g(θ), in which case
we have g′′(θ∗) < 0. For a minimum, we have g′′(θ∗) > 0, and for a saddle point,
g′′(θ∗) = 0. Note that a univariate search for a root of g′(θ) corresponds to a uni-
variate optimisation problem: it is equivalent to the minimisation of |g′(θ)|.

One example where numerical optimisation methods are often necessary is solv-
ing the score equation S(θ) = 0 to find the maximum likelihood estimate θ∗ = θ̂ML

as the root. Frequently, it is impossible to do that analytically as in the following
application.

Example C.1 Let X ∼ Bin(N,π). Suppose that observations are however only
available of Y = X | {X > 0} (Y follows a truncated binomial distribution). Con-
sequently, we have the following probability mass for the observations k =
1,2, . . . ,N :

Pr(X = k |X > 0) = Pr(X = k)

Pr(X > 0)
= Pr(X = k)

1 − Pr(X = 0)

=
(
N
k

)
πk(1 − π)N−k

1 − (1 − π)N
.

The log-likelihood kernel and score functions for π are then given by

l(π) = k · log(π) + (N − k) · log(1 − π) − log
{
1 − (1 − π)N

}
,

S(π) = k

π
− N − k

1 − π
− 1

1 − (1 − π)N
· {−N(1 − π)N−1}(−1)

= k

π
− N − k

1 − π
− N(1 − π)N−1

1 − (1 − π)N
.

The solution of the score equation S(π) = 0 corresponds to the solution of

−k + k(1 − π)N + π · N = 0.

Since finding closed forms for the roots of such a polynomial equation of degree
N is only possible up to N = 3, for larger N , numerical methods are necessary to
solve the score equation. �

In the following we describe the most important algorithms. We focus on contin-
uous univariate functions.

C.1.2 Bisection Method

Suppose that we have g′(a0) ·g′(b0) < 0 for two points a0, b0 ∈ Θ . The intermediate
value theorem (e.g. Clarke 1971, p. 284) then guarantees that there exists at least
one root θ∗ ∈ [a0, b0] of g′(θ). The bisection method searches for a root θ∗ with the
following iterative algorithm:
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Fig. C.1 Bisection method
for the score function S(π) of
Example C.1 for y = 4 and
n = 6. Shown are the iterated
intervals with corresponding
index. After 14 iterations
convergence was reached
based on the relative
approximate error (ε = 10−4)
with approximated root
π = 0.6657. This
approximation is slightly
smaller than the maximum
likelihood estimate
π̂ = 4/6 ≈ 0.6667 if Y would
be considered exactly
binomially distributed

1. Let θ(0) = (a0 + b0)/2 and t = 1.
2. Reduce the interval containing the root to

[at , bt ] =
{

[at−1, θ
(t−1)] if g′(at−1) · g′(θ(t−1)) < 0,

[θ(t−1), bt−1] otherwise.

3. Calculate the midpoint of the interval, θ(t) = 1
2 (at + bt ).

4. If convergence has not yet been reached, set t ← t + 1 and go back to step 2;
otherwise, θ(t) is the final approximation of the root θ∗.

Note that the bisection method is a so-called bracketing method: if the initial con-
ditions are satisfied, the root can always be determined. Moreover, no second-order
derivatives g′′(θ) are necessary. A stopping criterion to assess convergence is, for
example, based on the relative approximate error: The convergence is stated when

|θ(t) − θ(t−1)|
|θ(t−1)| < ε.

The bisection method is illustrated in Fig. C.1 using Example C.1 with y = 4 and
n = 6.

There exist several optimised bracketing methods. One of them is Brent’s
method, which has been proposed in 1973 by Richard Peirce Brent (1946–) and
combines the bisection method with linear and quadratic interpolation of the inverse
function. It results in a faster convergence rate for sufficiently smooth functions. If
only linear interpolation is used, then Brent’s method is equivalent to the secant
method described in Appendix C.1.4.

Brent’s method is implemented in the R-function uniroot(f, interval,
tol, ...), which searches in a given interval [a0, b0] (interval = c(a0, b0)) for
a root of the function f. The convergence criterion can be controlled with the option
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Fig. C.2 Illustration of the
idea of the Newton–Raphson
algorithm

tol. The result of a call is a list with four elements containing the approximated
root (root), the value of the function at the root (froot), the number of performed
iterations (iter) and the estimated deviation from the true root (estim.prec). The
function f may take more than one argument, but the value θ needs to be the first.
Further arguments, which apply for all values of θ , can be passed to uniroot as
additional named parameters. This is formally hinted at through the “. . . ” argument
at the end of the list of arguments of uniroot.

C.1.3 Newton–Raphson Method

A faster root finding method for sufficiently smooth functions g(θ) is the Newton–
Raphson algorithm, which is named after the Englishmen Isaac Newton (1643–
1727) and Joseph Raphson (1648–1715). Suppose that g′(θ) is differentiable with
root θ∗ and g′′(θ∗) �= 0, i.e. θ∗ is either a local minimum or maximum of g(θ).

In every iteration t of the Newton–Raphson algorithm, the derivative g′(θ) is
approximated using a linear Taylor expansion around the current approximation θ(t)

of the root θ∗:

g′(θ) ≈ g̃′(θ) = g′(θ(t)
)+ g′′(θ(t)

)(
θ − θ(t)

)
.

The function g′(θ) is hence approximated using the tangent line to g′(θ) at θ(t). The
idea is then to approximate the root of g′(θ) by the root of g̃′(θ):

g̃′(θ) = 0 ⇐⇒ θ = θ(t) − g′(θ(t))

g′′(θ(t))
.

The iterative procedure is thus defined as follows (see Fig. C.2 for an illustration):
1. Start with a value θ(0) for which the second derivative is non-zero, g′′(θ0) �= 0,

i.e. the function g(θ) is curved at θ(0).
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Fig. C.3 Convergence is dependent on the starting value as well: two searches for a root of
f (x) = arctan(x). The dashed lines correspond to the tangent lines and the vertical lines between
their roots and the function f (x). While for x(0) = 1.35, in (a) convergence to the true root θ∗ = 0
is obtained, (b) illustrates that for x(0) = 1.4, the algorithm diverges

2. Set the next approximation to

θ(t+1) = θ(t) − g′(θ(t))

g′′(θ(t))
. (C.1)

3. If the convergence has not yet been reached go back to step 2; otherwise, θ(t+1)

is the final approximation of the root θ∗ of g′(θ).
The convergence of the Newton–Raphson algorithm depends on the form of the

function g(θ) and the starting value θ(0) (see Fig. C.3 for the importance of the
latter). If, however, g′(θ) is two times differentiable, convex and has a root, the
algorithm converges irrespective of the starting point.

Another perspective on the Newton–Raphson method is the following. An ap-
proximation of g through a second-order Taylor expansion around θ(t) is given by

g(θ) ≈ g̃(θ) = g
(
θ(t)
)+ g′(θ(t)

)(
θ − θ(t)

)+ 1

2
g′′(θ(t)

)(
θ − θ(t)

)2
.

Minimising this quadratic approximation through

g̃′(θ) = 0 ⇔ g′(θ(t)
)+ g′′(θ(t)

)(
θ − θ(t)

)= 0

⇔ θ = θ(t) − g′(θ(t))

g′′(θ(t))

leads to the same algorithm.
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However, there are better alternatives in a univariate setting as, for example, the
golden section search, for which no derivative is required. In every iteration of this
method a fixed fraction (3 − √

5)/2 ≈ 0.382, i.e. the complement of the golden
section ratio to (1) of the subsequent search interval, is discarded. The R-function
optimize(f, interval, maximum = FALSE, tol, ...) extends this method
by iterating it with quadratic interpolation of f if the search interval is already small.
By default it searches for a minimum in the initial interval interval, which can be
changed using the option maximum = TRUE.

If the optimisation corresponds to a maximum likelihood problem, it is also
possible to replace the observed Fisher information −l′′(θ;x) = I (θ;x) with the
expected Fisher information J (θ) = E{I (θ;X)}. This method is known as Fisher
scoring. For some models, Fisher scoring is equivalent to Newton–Raphson. Oth-
erwise, the expected Fisher information frequently has (depending on the model) a
simpler form than the observed Fisher information, so that Fisher scoring might be
advantageous.

The Newton–Raphson algorithm is easily generalised to multivariate real-valued
functions g(x) taking arguments x ∈ R

n (see Appendix B.2.2 for the definitions of
the multivariate derivatives). Using the n×n Hessian g′′(θ (t)) and the n×1 gradient
g′(θ (t)), the update is defined as follows:

θ (t+1) = θ (t) − {g′′(θ (t)
)}−1 · g′(θ (t)

)
.

Extensions of the multivariate Newton–Raphson algorithm are quasi-Newton
methods, which are not using the exact Hessian but calculate a positive definite
approximation based on the successively calculated gradients. Consequently, Fisher
scoring is a quasi-Newton method. The gradients in turn do not need to be specified
as functions but can be approximated numerically, for example, through

∂ g(θ)

∂ θi

≈ g(θ + ε · ei ) − g(θ − ε · ei )

2ε
, i = 1, . . . , n, (C.2)

where the ith basis vector ei has zero components except for the ith component,
which is 1, and ε is small. The derivative in the ith direction, which would be ob-
tained from (C.2) by letting ε → 0, is hence replaced by a finite approximation.

In general, multivariate optimisation of a function fn in R is done using the func-
tion optim(par, fn, gr, method, lower, upper, control, hessian =
FALSE, ...), where the gradient function can be specified using the optional ar-
gument gr. By default, however, the gradient-free Nelder–Mead method is used,
which is robust against discontinuous functions but is in exchange rather slow. One
can choose the quasi-Newton methods sketched above by assigning the value BFGS
or L-BFGS-B to the argument method. For these methods, gradients are numeri-
cally approximated by default. For the method L-BFGS-B, it is possible to specify a
search rectangle through the vectors lower and upper. The values assigned in the
list control can have important consequences. For example, the maximum num-
ber of iterations is set with maxit. An overall scaling is applied to the values of the
function using fnscale, for example, control = list(fnscale = -1) implies
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Fig. C.4 Secant method for
Example C.1 with
observation y = 4 and n = 6.
The starting points have been
chosen as θ(0) = 0.1 and
θ(1) = 0.2

that -fn is minimised, i.e. fn is maximised. This and the option hessian = TRUE
are necessary to maximise a log-likelihood and to obtain the numerically obtained
curvature at the estimate. The function optim returns a list containing the optimal
function value (value), its corresponding x-value (par) and, if indicated, the cur-
vature (hessian) as well as the important convergence message: the algorithm has
obtained convergence if and only if the convergence code is 0.

C.1.4 Secant Method

A disadvantage of the Newton–Raphson and Fisher scoring methods is that they
require the second derivative g′′(θ), which in some cases may be very difficult to
determine. The idea of the secant method is to replace g′′(θ(t)) in (C.1) with the
approximation

g̃′′(θ(t)
)= g′(θ(t)) − g′(θ(t−1))

θ (t) − θ(t−1)
,

whereby the update is

θ(t+1) = θ(t) − θ(t) − θ(t−1)

g′(θ(t)) − g′(θ(t−1))
· g′(θ(t)

)
.

Note that this method requires the specification of two starting points θ(0) and θ(1).
The convergence is slower than for the Newton–Raphson method but faster than for
the bisection method. The secant method is illustrated in Fig. C.4 for Example C.1
with y = 4 and n = 6.
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C.2 Integration

In statistics we frequently need to determine the definite integral

I =
∫ b

a

f (x) dx.

of a univariate function f (x). Unfortunately, there are only few functions f (x) for
which the primitive F(x) = ∫ x

f (u)du is available in closed form such that we
could calculate

I = F(b) − F(a)

directly. Otherwise, we need to apply numerical methods to obtain an approximation
for I .

For example, already the familiar density function of the standard normal distri-
bution

ϕ(x) = 1√
2π

exp

(
−1

2
x2
)

,

does not have a primitive. Therefore, the distribution function Φ(x) of the standard
normal distribution can only be specified in the general integral form as

Φ(x) =
∫ x

−∞
ϕ(u)du,

and its calculation needs to rely on numerical methods.

C.2.1 Newton–Cotes Formulas

The Newton–Cotes formulas, which are named after Newton and Roger Cotes
(1682–1716), are based on the piecewise integration of f (x):

I =
∫ b

a

f (x) dx =
n−1∑
i=0

∫ xi+1

xi

f (x) dx (C.3)

over the decomposition of the interval [a, b] into n − 1 pieces using the knots x0 =
a < x1 < · · · < xn−1 < xn = b. Each summand Ti = ∫ xi+1

xi
f (x) dx in (C.3) is then

approximated as follows: the function f is evaluated at the m+1 equally-spaced in-
terpolation points xi0 = xi < xi1 < · · · < xi,m−1 < xi,m = xi+1. The resulting m + 1
points (xij , f (xij )) can be interpolated using a polynomial pi of degree m satisfy-
ing pi(xij ) = f (xij ) for j = 0, . . . ,m. Therefore, we obtain an approximation of
the function f (x) in the interval [xi, xi+1], which we can integrate analytically:

Ti ≈
∫ xi+1

xi

pi(x) dx =
m∑

j=0

wijf (xij ), (C.4)
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Fig. C.5 Illustration of the trapezoidal rule for f (x) = cos(x) sin(x) + 1, a = 0.5, b = 2.5 and
n = 3 and decomposition into two parts, [0.5,1.5] and [1.5,2.5]. The solid gray areas T0 and T1
are approximated by the corresponding areas of the hatched trapezoids. The function f in this case
can be integrated analytically resulting in I = 1

4 {cos(2a) − cos(2b)} + (b − a). Substituting the
bounds leads to I = 2.0642. The approximation I ≈ 1 · { 1

2 f (0.5) + f (1.5) + 1
2 f (2.5)} = 2.0412

is hence inaccurate (relative error of (2.0642 − 2.0412)/2.0642 = 0.0111)

where the wij are weighting the function values at the interpolation points xij and
are available in closed form.

Choosing, for example, as interpolation points the bounds xi0 = xi and xi1 =
xi+1 of each interval implies interpolation polynomials of degree 1, i.e. a straight
line through the end points. Each summand Ti is then approximated by the area of
a trapezoid (see Fig. C.5),

Ti ≈ 1

2
(xi+1 − xi) · f (xi) + 1

2
(xi+1 − xi) · f (xi+1),

and the weights are in this case given by wi0 = wi1 = 1
2 (xi+1 − xi). The Newton–

Cotes formula for m = 1 is in view of this also called the trapezoidal rule. Substitu-
tion into (C.3) leads to

I ≈
n−1∑
i=0

1

2
(xi+1 − xi)

{
f (xi) + f (xi+1)

}= h

{
1

2
f (x0) +

n−1∑
i=1

f (xi) + 1

2
f (xn)

}
,

(C.5)
where the last identity is only valid if the decomposition of the interval [a, b] is
equally-spaced with xi+1 − xi = h.

Intuitively, it is clear that a higher degree m results in a locally better approx-
imation of f (x). In particular, this allows the exact integration of polynomials up
to degree m. From (C.4) the question comes up if the 2(m + 1) degrees of free-
dom (from m + 1 weights and function values) can be fully exploited in order to
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exactly integrate polynomials up to degree 2(m + 1). Indeed, there exist sophisti-
cated methods, which are based on Gaussian quadrature and which choose weights
and interpolation points cleverly, achieving this. Another important extension is the
adaptive choice of knots with unequally spaced knots over [a, b]. Here, only few
knots are chosen initially. After evaluation of f (x) at intermediate points more new
knots are assigned to areas where the approximation of the integral varies strongly
when introducing knots or where the function has large absolute value. Hence, the
density of knots is higher in difficult areas of the integration interval, paralleling the
Monte Carlo integration of Sect. 8.3.

The R function integrate(f, lower, upper, rel.tol, abs.tol, ...)
implements such an adaptive method for the integration of f on the interval between
lower and upper. Improper integrals with boundaries -Inf or Inf can also be cal-
culated (by mapping the interval to [0,1] through substitution and then applying the
algorithm for bounded intervals). The function f must be vectorised, i.e. accepting
a vector as a first argument and return a vector of same length. Hence, the following
will fail:

> f <- function(x) 2

> try(integrate(f, 0, 1))

The function Vectorize is helpful here, because it converts a given function to a
vectorised version.

> fv <- Vectorize(f)

> integrate(fv, 0, 1)

2 with absolute error < 2.2e-14

The desired accuracy of integrate is specified through the options rel.tol and
abs.tol (by default typically set to 1.22 · 10−4). The returned object is a list con-
taining among other things the approximated value of the integral (value), the esti-
mation of the absolute error (abs.error) and the convergence message (message),
which reads OK in case of convergence. However, one has to keep in mind that, for
example, singularities in the interior of the integration interval could be missed.
Then, it is advisable to calculate the integral piece by piece so that the singularities
lie on the boundaries of the integral pieces and can hence be handled appropriately
by the integrate function.

Multidimensional integrals of multivariate real-valued functions f (x) over a
multidimensional rectangle A ⊂ R

n,

I =
∫
A

f (x) dx =
∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f (x) dxn · · ·dx2 dx1,

are handled by the R function adaptIntegrate(f, lowerLimit, upperLimit,
tol = 1e-05, fDim = 1, maxEval = 0, absError = 0) contained in the
package cubature. Here the function f (x) is given by f and lowerLimit = c(a1,

. . . , an), upperLimit = c(b1, . . . , bn). One can specify a maximum number of
function evaluations using maxEval (default is 0, meaning the unlimited number of
function evaluations). Otherwise, the integration routine stops when the estimated
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error is less than the absolute error requested (absError) or when the estimated er-
ror is less in absolute value than tol times the integral. The returned object is again a
list containing the approximated value of the integral and some further information,
see the help page ?adaptIntegrate for details. Note that such integration routines
are only useful for a moderate dimension (say, up to n = 20). Higher dimensions
require, for example, MCMC approaches.

C.2.2 Laplace Approximation

The Laplace approximation is a method to approximate integrals of the form

In =
∫ +∞

−∞
exp
{−nk(u)

}
du, (C.6)

where k(u) is a convex and twice differentiable function with minimum at u = ũ.
Such integrals appear, for example, when calculating characteristics of posterior

distributions. For u = ũ, we thus have dk(ũ)
du

= 0 and κ = d2k(ũ)

du2 > 0. A second-

order Taylor expansion of k(u) around ũ gives k(u) ≈ k(ũ) + 1
2κ(u − ũ)2, so (C.6)

can be approximately written as

In ≈ exp
{−nk(ũ)

}∫ +∞

−∞
exp

{
−1

2
nκ(u − ũ)2

}
︸ ︷︷ ︸

kernel of N(u | ũ,(nκ)−1)

du

= exp
{−nk(ũ)

} ·
√

2π

nκ
.

In the multivariate case we consider the integral

In =
∫
Rp

exp
{−nk(u)

}
du

and obtain the approximation

In ≈
(

2π

n

) p
2 |K|− 1

2 exp
{−nk(ũ)

}
,

where K denotes the p × p Hessian of k(u) at ũ, and |K| is the determinant of K .



Notation

A event or set
|A| cardinality of a set A

x ∈ A x is an element of A

x �∈ A x is not an element of A

Ac complement of A

A ∩ B joint event: A and B

A ∪ B union event: A and/or B

A∪̇B disjoint event: either A or B

A ⊂ B A is a subset of B

Pr(A) probability of A

Pr(A |B) conditional probability of A given B

X random variable
X multivariate random variable
X1:n,X1:n random sample
X = x event that X equals realisation x

fX(x) density (or probability mass) function of X

fX,Y (x, y) joint density function of X and Y

fY |X(y |x) conditional density of Y given X = x

FX(x) distribution function of X

FX,Y (x, y) joint distribution function of X and Y

FY |X(y |x) conditional distribution function of Y given X = x

T support of a random variable or vector
E(X) expectation of X

Var(X) variance of X

mk kth moment of X

ck kth central moment of X

Cov(X) covariance matrix of X

Mod(X) mode of X

Med(X) median of X

Cov(X,Y ) covariance of X and Y

Corr(X,Y ) correlation of X and Y

D(fX ‖ fY ) Kullback–Leibler discrepancy from fX to fY

E(Y |X = x) conditional expectation of Y given X = x

Var(Y |X = x) conditional variance of Y given X = x
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364 Notation

Xn
r−→ X convergence in r th mean

Xn
D−→ X convergence in distribution

Xn
P−→ X convergence in probability

X ∼ F X distributed as F

Xn
a
∼ F Xn asymptotically distributed as F

Xi
iid
∼ F Xi independent and identically distributed as F

Xi
ind
∼ Fi Xi independent with distribution Fi

A ∈ R

a×b a × b matrix with entries aij ∈R

a ∈ R

k vector with k entries ai ∈R

dim(a) dimension of a vector a

|A| determinant of A

A� transpose of A

tr(A) trace of A

A−1 inverse of A

diag(a) diagonal matrix with a on diagonal
diag{ai}ki=1 diagonal matrix with a1, . . . , ak on diagonal
I identity matrix
1,0 ones and zeroes vectors
IA(x) indicator function of a set A

�x� least integer not less than x

	x
 integer part of x

|x| absolute value of x

log(x) natural logarithm function
exp(x) exponential function
logit(x) logit function log{x/(1 − x)}
sign(x) sign function with value 1 for x > 0, 0 for x = 0 and

−1 for x < 0
ϕ(x) standard normal density function
Φ(x) standard normal distribution function
x! factorial of non-negative integer x(
n
x

)
binomial coefficient n!

x!(n−x)! (n ≥ x)
�(x) Gamma function
B(x, y) Beta function
f ′(x), d

dx
f (x) first derivative of f (x)

f ′′(x), d2

dx2 f (x) second derivative of f (x)

f ′(x), ∂
∂xi

f (x) gradient, (which contains) partial first derivatives of
f (x)

f ′′(x), ∂2

∂xi ∂xj
f (x) Hessian, (which contains) partial second derivatives

of f (x)

arg maxx∈A f (x) argument of the maximum of f (x) from A

R set of all real numbers
R

+ set of all positive real numbers
R

+
0 set of all positive real numbers and zero
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R

p set of all p-dimensional real vectors
N set of natural numbers
N0 set of natural numbers and zero
(a, b) set of real numbers a < x < b

(a, b] set of real numbers a < x ≤ b

[a, b] set of real numbers a ≤ x ≤ b

a ± x a − x and a + x, where x > 0
θ scalar parameter
θ vectorial parameter
θ̂ estimator of θ

se(θ̂) standard error of θ̂

zγ γ quantile of the standard normal distribution
tγ (α) γ quantile of the standard t distribution with α de-

grees of freedom
χ2

γ (α) γ quantile of the χ2 distribution with α degrees of
freedom

θ̂ML maximum likelihood estimate of θ

X1:n = (X1, . . . ,Xn) random sample of scalar random variables
X̄ arithmetic mean of the sample
S2 sample variance
X1:n = (X1, . . . ,Xn) random sample of multivariate random variables
f (x; θ) density function parametrised by θ

L(θ), l(θ) likelihood and log-likelihood function
L̃(θ), l̃(θ) relative likelihood and log-likelihood
Lp(θ), lp(θ) profile likelihood and log-likelihood
Lp(y), lp(y) predictive likelihood and log-likelihood
S(θ) score function
S(θ) score vector
I (θ) Fisher information
I (θ) Fisher information matrix
I (θ̂ML) observed Fisher information
J (θ) per unit expected Fisher information
J1:n(θ) expected Fisher information from a random sample

X1:n
χ2(d) chi-squared distribution
B(π) Bernoulli distribution
Be(α,β) beta distribution
BeB(n,α,β) beta-binomial distribution
Bin(n,π) binomial distribution
C(μ,σ 2) Cauchy distribution
Dk(α) Dirichlet distribution
Exp(λ) exponential distribution
F(α,β) F distribution
FN(μ,σ 2) folded normal distribution
G(α,β) gamma distribution



366 Notation

Geom(π) geometric distribution
Gg(α,β, δ) gamma–gamma distribution
Gu(μ,σ 2) Gumbel distribution
HypGeom(n,N,M) hypergeometric distribution
IG(α,β) inverse gamma distribution
IWik(α,Ψ ) inverse Wishart distribution
LN(μ,σ 2) log-normal distribution
Log(μ,σ 2) logistic distribution
Mk(n,π) multinomial distribution
MDk(n,α) multinomial-Dirichlet distribution
NCHypGeom(n,N,M,θ) noncentral hypergeometric distribution
N(μ,σ 2) normal distribution
Nk(μ,Σ) multivariate normal distribution
NBin(r,π) negative binomial distribution
NG(μ,λ,α,β) normal-gamma distribution
Par(α,β) Pareto distribution
Po(λ) Poisson distribution
PoG(α,β, ν) Poisson-gamma distribution
t(μ,σ 2, α) Student (t) distribution
U(a, b) uniform distribution
Wb(μ,α) Weibull distribution
Wik(α,Σ) Wishart distribution
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Index

A
Akaike’s information criterion, 224

derivation, 225
relation to cross validation, 227

Alternative hypothesis, 70
Area under the curve, 308

B
Bayes factor, 232, 233
Bayes’ theorem, 168, 319

in odds form, 169, 319
Bayesian inference, 167

asymptotics, 204
empirical, 209
semi-Bayes, 183

Bayesian information criterion, 230
derivation, 236

Bayesian updating, 169
Behrens–Fisher problem, 261
Bernoulli distribution, 45, 333
Beta distribution, 116, 172, 336
Beta-binomial distribution, 141, 234, 335
Bias, 55
Big-O notation, 349
Binomial distribution, 333

truncated, 32, 352
Bisection method, 352
Bootstrap, 65, 299

prediction, 296
Bracketing method, 353

C
c-index, see area under the curve
Calibration, 307

Sanders’, 308
Capture–recapture method, see examples
Case-control study

matched, 162
Cauchy distribution, 338
Censoring, 26

indicator, 26

Central limit theorem, 331
Change of variables, 321

multivariate, 322
Chi-squared distribution, 60, 337
χ2-statistic, 152
Cholesky

decomposition, 343
square root, 144, 343

Clopper–Pearson confidence interval, 116
Coefficient of variation, 67
Conditional likelihood, 153
Confidence interval, 23, 56

boundary-respecting, 64
confidence level, 57
coverage probability, 57, 116
duality to hypothesis test, 75
limits, 57

Continuous mapping theorem, 330
Convergence

in distribution, 329
in mean, 329
in mean square, 329
in probability, 329

Correlation, 104, 191, 327
matrix, 328

Covariance, 326
matrix, 327

Cramér-Rao lower bound, 95
Credible interval, 23, 57, 171, 194

credible level, 172
equi-tailed, 172, 176
highest posterior density, 177

Credible region, 194
highest posterior density, 194

Cross validation, 227
leave-one-out, 228

D
De Finetti diagram, 4
Delta method, 63, 331

multivariate, 146

L. Held, D. Sabanés Bové, Applied Statistical Inference,
DOI 10.1007/978-3-642-37887-4, © Springer-Verlag Berlin Heidelberg 2014

371

http://dx.doi.org/10.1007/978-3-642-37887-4


372 Index

Density function, 13, 320
conditional, 320
marginal, 321

Deviance, 152
information criterion, 239

Diagnostic test, 168
Differentiation

chain rule, 347
multivariate, 346
under the integral sign, see Leibniz integral

rule
Dirichlet distribution, 197, 339
Discrimination, 307
Distribution, 319, 321

function, 320

E
EM algorithm, 34
Emax model, 165
Entropy, 199
Estimate, 52

Bayes, 192
maximum likelihood, 14
posterior mean, 171
posterior median, 171
posterior mode, 171

Estimation, 1
Estimator, 52, 56

asymptotically optimal, 96
asymptotically unbiased, 54
biased, 52
consistent, 54
efficient, 96
optimal, 96
simulation-consistent, 284
unbiased, 52

Event, 318
certain, 318
complementary, 318
impossible, 318
independent, 318

Examples
analysis of survival times, 8, 18, 26, 59, 62,

73, 139, 146, 147, 160, 222, 225, 228
binomial model, 2, 24, 29, 30, 38, 45, 47,

81, 82, 85, 172, 180, 185, 196, 208,
254, 259, 263, 266, 268

blood alcohol concentration, 8, 43, 61,
66–68, 105, 124, 132, 151, 162, 182,
203, 235, 236, 238, 242, 243, 260, 294,
301, 305

capture–recapture method, 4, 16, 49, 178
comparison of proportions, 2, 137, 154,

182, 183, 211

diagnostic test, 168, 169, 174, 259
exponential model, 18, 59, 222, 225, 228,

231
gamma model, 222, 225, 228, 231
geometric model, 53
Hardy–Weinberg equilibrium, 4, 25, 100,

124, 129, 152, 180, 230, 234, 240, 261,
273, 274, 281

inference for a proportion, 2, 15, 22, 62,
64, 102, 113, 114, 172, 189, 196

multinomial model, 124, 126, 144, 197,
198

negative binomial model, 2, 47
normal model, 27, 37, 42, 46, 57, 60,

84–87, 112, 123, 125, 129, 131, 143,
180, 187, 191, 196, 197, 199–201, 238,
293, 296, 300, 301, 310, 315

Poisson model, 21, 37, 41, 42, 89, 91, 96,
99, 101, 106, 153, 292, 295, 297, 304

prediction of soccer matches, 307, 309, 313
prevention of preeclampsia, 3, 71, 157,

182, 211, 286
Scottish lip cancer, 6, 89, 91, 92, 99, 101,

102, 106, 108, 210, 279, 292
screening for colon cancer, 6, 32, 34, 36,

141, 153, 249, 251, 257, 271, 278, 282,
284, 285

uniform model, 39, 58, 69, 111
Weibull model, 222, 225, 228, 231

Expectation, 324
conditional, 325, 326
finite, 324
infinite, 324

Exponential distribution, 336
Exponential model, 159

F
F distribution, 338
Fisher information, 27

after reparametrisation, 29
expected, 81
expected unit, 84
observed, 27
of a transformation, 84
unit, 84

Fisher information matrix, 125
expected, 143
observed, 125

Fisher regularity conditions, 80
Fisher scoring, 356
Fisher’s exact test, 71
Fisher’s z-transformation, 104
Fraction

false negative, 6
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false positive, 6
true negative, 6
true positive, 6

Frequentist inference, 28
Full conditional distribution, 270
Function

multimodal, 351
(strictly) concave, 328
(strictly) convex, 328
unimodal, 351

G
G2 statistic, 152
Gamma distribution, 19, 336
Gamma-gamma distribution, 234, 337
Gaussian Markov random field, 279
Gaussian quadrature, 360
Geometric distribution, 53, 334
Gibbs sampling, 270
Golden section search, 356
Goodness-of-fit, 152, 230, 282
Gradient, 346
Gumbel distribution, 338

H
Hardy–Weinberg

disequilibrium, 273
equilibrium, 4, 25

Hessian, 346
Hypergeometric distribution, 16, 334

noncentral, 155, 334
Hypothesis test, 74

inverting, 75

I
Importance sampling, 265

weights, 266
Indicator function, 39
Inequality

Cauchy–Schwarz, 327
information, 329
Jensen’s, 328

Interval estimator, 56
Invariance

likelihood, 24
likelihood ratio confidence interval, 110
maximum likelihood estimate, 19, 24
score confidence interval, 94

Inverse gamma distribution, 188, 336
Inverse Wishart distribution, 340

K
Kullback–Leibler discrepancy, 329

L
Lagrange multipliers, 348
Landau notation, 349
Laplace approximation, 253, 361
Laplace’s rule of succession, 301
Law of iterated expectations, 326
Law of large numbers, 330
Law of total expectation, 326
Law of total probability, 168, 319
Law of total variance, 326
Leibniz integral rule, 348
Likelihood, 13, 14, 26

calibration, 23, 147
estimated, 130
extended, 293
frequentist properties, 79
generalised, 26
interpretation, 22
kernel, 14
marginal, 170, 232, 280
minimal sufficiency, 46
predictive, 293
relative, 22
reparametrisation, 20, 23

Likelihood function, see likelihood
Likelihood inference, 79

pure, 22
Likelihood principle, 47

strong, 47
weak, 47

Likelihood ratio, 43, 169
Likelihood ratio confidence interval, 106, 110
Likelihood ratio statistic, 105, 146

generalised, 148, 150, 221
signed, 106

Likelihood ratio test, 106
Lindley’s paradox, 236
Location parameter, 86
Log-likelihood, 15

quadratic approximation, 37, 128
relative, 22

Log-likelihood function, see log-likelihood
Log-likelihood kernel, 15
Logistic distribution, 185, 338
Logit transformation, 64, 115
Loss function, 192

linear, 192
quadratic, 192
zero-one, 192

M
Mallow’s Cp statistic, 243
Markov chain, 269
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Markov chain Monte Carlo, 269
burn-in phase, 272
proposal distribution, 270

Matrix
block, 344
determinant, 342
Hessian, 346
Jacobian, 347
positive definite, 343

Maximum likelihood estimate, 14
iterative calculation, 31
standard error, 128

Maximum likelihood estimator
consistency, 96
distribution, 97
standard error, 99

Mean squared error, 55
Mean value, see expectation
Meta-analysis, 4, 211

fixed effect model, 212
random effects model, 212

Metropolis algorithm, 270
Metropolis–Hastings algorithm, 270

acceptance probability, 270
independence proposal, 270
random walk proposal, 270

Minimum Bayes factor, 244
Model

average, 240, 241, 305
complexity, 224
maximum a posteriori (MAP), 237, 241
misspecification, 225
multiparameter, 9
nested, 221
non-parametric, 10
parametric, 10
statistical, 9

Model selection, 1, 221
Bayesian, 231
likelihood-based, 224

Moment, 325
central, 325

Monte Carlo
estimate, 258
integration, 258
methods, 258
techniques, 65, 175

Multinomial distribution, 197, 339
trinomial distribution, 129

Multinomial-Dirichlet distribution, 234, 339
Murphy’s decomposition, 313
Murphy’s resolution, 309

N
Negative binomial distribution, 334
Negative predictive value, 169
Nelder–Mead method, 356
Newton–Cotes formulas, 358
Newton–Raphson algorithm, 31, 354
Normal distribution, 337

folded, 316, 337
half, 337
log-, 337
multivariate, 196, 323, 340
standard, 337

Normal-gamma distribution, 197, 201, 340
Nuisance parameter, 60, 130, 200
Null hypothesis, 70

O
Ockham’s razor, 224
Odds, 2

empirical, 2
posterior, 169, 232
prior, 169, 232

Odds ratio, 3, 137
empirical, 3
log, 137

Optimisation, 351
Overdispersion, 10

P
p∗ formula, 112
P -value, 70

one-sided, 71
Parameter, 9, 13

orthogonal, 135
space, 13
vector, 9

Pareto distribution, 218, 338
Partition, 318
PIT histogram, 309
Pivot, 59

approximate, 59
pivotal distribution, 59

Poisson distribution, 335
Poisson-gamma distribution, 234, 335
Population, 2
Positive predictive value, 169
Posterior distribution, 167, 170, 171

asymptotic normality, 206
multimodal, 171

Posterior model probability, 232
Posterior predictive distribution, 299
Power model, 159
Precision, 181
Prediction, 1, 291
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assessment of, 306
Bayesian, 299
binary, 307
bootstrap, 296
continuous, 309
interval, 291
likelihood, 293
model average, 305
plug-in, 292
point, 291

Predictive density, 291
Predictive distribution, 291

posterior, 300
prior, 232, 300

Predictive inference, 291
Prevalence study, 174
Prior

-data conflict, 245
criticism, 245

Prior distribution, 23, 167, 171
conjugate, 179, 196
Haldane’s, 184
improper, 183, 184
Jeffreys’, 186, 198
Jeffreys’ rule, 186
locally uniform, 184
non informative, 185, 198
reference, 185, 199

Prior sample size, 173, 182, 197
relative, 173, 182

Probability, 318
Probability integral transform, 309
Probability mass function, 13, 319

conditional, 320
marginal, 320

Profile likelihood, 130
confidence interval, 131
curvature, 133

Proportion
comparison of proportions, 2
inference for, 62, 64, 102, 114, 189

Q
Quadratic form, 345
Quasi-Newton method, 356

R
Random sample, 10, 17
Random variable

continuous, 320
discrete, 319
independent, 320
multivariate continuous, 322

multivariate discrete, 320
support, 319

Regression model
logistic, 163
normal, 243

Rejection sampling, 267
acceptance probability, 267
proposal distribution, 267

Resampling methods, 78
Risk

difference, 3
log relative, 156
ratio, 3
relative, 156

ROC curve, 308

S
Sample, 2

coefficient of variation, 67
correlation, 104
mean, 42, 52
size, 17
space, 13
standard deviation, 53
training, 227
validation, 227
variance, 43, 52, 55, 56
with replacement, 10
without replacement, 10

Scale parameter, 86
Schwarz criterion, see Bayesian information

criterion
Score confidence interval, 91, 94
Score function, 27, 125

distribution of, 81
score equation, 27

Score statistic, 87, 144
Score test, 89
Score vector, 125

distribution, 144
score equations, 125

Scoring rule, 311
absolute score, 312
Brier score, 312
continuous ranked probability score, 314
logarithmic score, 312, 314
probability score, 312
proper, 312
strictly proper, 312

Screening, 5
Secant method, 357
Sensitivity, 5, 168
Sharpness, 311
Sherman–Morrison formula, 345
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Shrinkage, 210
Significance test, 70

one-sided, 70
two-sided, 70

Slutsky’s theorem, 330
Specificity, 5, 168
Squared prediction error, 311
Standard deviation, 325
Standard error, 55, 56

of a difference, 136
Standardised incidence ratio, 6
Statistic, 41

minimal sufficient, 45
sufficient, 41

Student distribution, see t distribution
Sufficiency, 40

minimal, 45
Sufficiency principle, 47
Survival time, 8

censored, 8

T
t distribution, 234, 338
t statistic, 60
t test, 148
Taylor approximation, 347
Taylor polynomial, 347

Test statistic, 72
observed, 73

Trace, 342
Trapezoidal rule, 359
Type-I error, 74

U
Uniform distribution, 336

standard, 336
Urn model, 333

V
Variance, 325

conditional, 326
stabilising transformation, 101

W
Wald confidence interval, 61, 62, 100, 114
Wald statistic, 99, 145
Wald test, 99
Weibull distribution, 19, 139, 336
Wilcoxon rank sum statistic, 308
Wilson confidence interval, 92
Wishart distribution, 340

Z
z-statistic, 61
z-value, 74
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