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Preface

This book is written for both theoretical and experimental scientist (chemists and
physicists) to help understand chemical bonding and electronic structure, from the
viewpoint of molecular orbital theory. A long time ago, quantum theory was
applied to very simple atoms. To connect quantum theory with complex systems,
there were many research activities in the fields of quantum chemistry and physics:
the Bohr model, wave-function, Schrodinger’s equation, the Hartree-Fock method,
Mulliken charge density analysis, density functional theory, etc. Due to this
research, we are now able to perform molecular orbital calculations from small
molecules through to advanced materials including transition metals. In this book,
chemical bonding and electronic structure are explained with the use of concrete
calculation results, density functional theory, and coupled cluster methods.

In Part I the theoretical background of quantum chemistry is clearly explained.
In Part II we introduce molecular orbital analysis of atoms and diatomic molecules
via concrete calculation results. After introducing the theoretical background of
inorganic chemistry in Part III, the concrete calculation results for advanced
materials such as photocatalysts, secondary batteries, and fuel cells are introduced
in Part IV. Finally, helium chemistry and the future of the subject are considered in
Part V.
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Chapter 1
Quantum Theory

Abstract By the difference of scale, matter is largely classified into solid, molecule
and cluster. The basis unit of matter is atom. Atom consists of quantum particles such
as electron, proton and neutron. In Bohr model, quantum effect is incorporated through
the concept of matter wave. In the case of hydrogen, the orbit radius was estimated to
be 0.5292 A, corresponding to the experimental distance. In addition, the discrete
energy was also reproduced. However, Bohr model was not able to be applicable to
many-electron system. In order to incorporate particle-wave duality in universal
manner, quantum wave-function was proposed. In wave-function theory, electron
does not correspond to classical point, but spreads as wave. It is difficult to interpret
wave-function itself. It is because it does not represent figure. Instead, the square of
wave-function represents electron density. Wave-function can be obtained by solving
the Schrodinger equation, where electron energy is given by operating wave-function
with Hamiltonian. As a feature of wave-function, it is normalized and satisfies
orthogonality. In quantum mechanics, one electron occupies one wave-function.
It implies that one electron is not distributed to several wave-functions.

Keywords Wave-particle duality - Bohr model - Quantum wave-function
Schrédinger equation

1.1 Matter and Atom

By the difference of scale, matter is largely classified into the three: solid, molecule and
cluster (nano-cluster), as shown in Fig. 1.1. Molecule and cluster exist in the basic
three fundamental states: gas, liquid and solid (molecular solid). In quantum chem-
istry, electronic structure is normally discussed in three fundamental states. As the
extreme environment, matter exists as plasma and superconducting states. In plasma
state, matter is divided into positively charged ion and negatively charged electron at
very high temperature. It has been considered that most of matter in space exists as
plasma state. On the other hand, in superconducting state, electric resistance becomes
zero at very low temperature, though matter keeps the same crystal structure.

© Springer Nature Singapore Pte Ltd. 2018 3
T. Onishi, Quantum Computational Chemistry,
DOI 10.1007/978-981-10-5933-9_1

vww.ebook3000.con)



http://www.ebook3000.org

4 1 Quantum Theory

Fig. 1.1 Basic three
fundamental states of matter

S

)
Ca——

The basis unit of matter is atom. Atom consists of quantum particles such as
electron, proton and neutron. As they belong to Fermi particle, the spin angular
momentum becomes half-integer. Atom has an atomic nucleus at the centre, con-
sisting of proton and neutron. As is well known, there are several kinds of atoms in
space. The kind of atom is called element. Element is represented by atomic number
(Z) that corresponds to the total number of protons. For example, the elements of
Z =1, 2 and 3 denote hydrogen, helium and lithium, respectively. When the same
element has the different total number of neutrons, it is called isotope. As the
magnitude of charge density of proton is e, the total charge density of atomic
nucleus becomes +Ze. Z electrons are allocated around atomic nucleus. Note that
the magnitude of electron charge density is —e.

1.2 Wave-Particle Duality

Quantum particle is defined as particle with wave-particle duality. The wave
property is incorporated through the concept of matter wave.

= (1.1)

where 1 is the wave-length of matter wave: h is Plank constant; m is the mass of
quantum particle; v is the velocity of quantum particle. In electron, m denotes the
mass of electron, which is expressed as m,.. Though the energy of classical particle
continuously changes, quantum particle has the discrete energy.

1.3 Bohr Model

Niels Bohr proposed a theoretical hydrogen model, which is well known as Bohr
model, to express positions of electron and atomic nucleus, under consideration of
wave-particle durability. In Bohr model, proton is located at atomic centre, and
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Fig. 1.2 Schematic drawing
of Bohr model. Proton is

located at atomic centre, and
electron goes around an orbit

\ Electron
) -¢

electron rotates around atomic centre, as shown in Fig. 1.2. The driving factor of
the rotation is the Coulomb interaction (f) between proton and electron:

62

= 1'2
4meyr? (1.2)

where ¢ is dielectric constant of vacuum; r is orbit radius. The centrifugal force,
which is obtained from the classical equation of circular motion, is equal to the
Coulomb interaction.

MmeV e

= 1.3
r 4regr? (1.3)

The equation implies that quantum effect is taken into account, by applying the
concept of matter wave to electron. Electron goes around an orbit, and orbit dis-
tance is mathematically determined to be 2znr. It must be also integer-multiple of
wave-length of matter wave.

2nr =nA(n=1,2,3,...) (1.4)

By the substitution of Eq. (1.1) in Eq. (1.4), it is rewritten:
nh
mevr:ﬂ(n:1,2,3,...) (1.5)

By the substitution of Eq. (1.5) in Eq. (1.3), the orbit radius of hydrogen is
obtained:

&o /’12 n2

r =
Tmee?

(n=1,2,3,..) (1.6)

As orbit radius depends on integer (n), it is found that orbit radius is quantized. It
implies that orbital radius has only discrete value. The orbit radius of n = 1 is called
Bohr radius. The value is estimated to be 0.5292 A.

vww.ebook3000.con)



http://www.ebook3000.org
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Let us consider an electron energy. It is obtained by the summation of electron
kinetic energy (KE) and potential energy (PE). In classical manner, KE is given by

mev? e’
KE = = 1.7
2 8megr (17)
From Coulomb’s law, PE is given by

2

e
PE = — 1.8
dmegr (18)

It is defined that PE is zero, when electron is infinitely apart from proton. Hence,
potential energy exhibits negative value. Finally, the total energy of electron is
given by

2

e
KE+PE = — 1.9
+ 8megr (1.9)
By the substitution of Eq. (1.6) in Eq. (1.9), it is rewritten:
KE+PE——Le4(n—123 ) (1.10)
o 8gmp2 T '

It is found that the electron energy is also quantized by the introduction of matter
wave. It implies that the discrete electron energy of hydrogen is successfully repro-
duced in Bohr model. When n = 1, the electronic state is called ground state,
exhibiting the smallest energy. When # is larger than two, the electronic state is called
excited state. In general, the electron energy of excited state is larger than ground state.

1.4 Quantum Wave-Function

In Bohr model, wave property is incorporated through the concept of matter wave.
Bohr model was not able to be extended to many-electron system. As the solution,
quantum wave-function was proposed. Let us consider an electron isolated in space.
It is mathematically represented by wave-function ((r;)), which contains one
radial parameter (r{). In wave-function theory, electron corresponds to not classical

Fig. 1.3 Schematic drawing

of quantum wave-function
o »

Point
Quantum Wave-function

W)



1.4 Quantum Wave-Function 7

point, but spreads as wave (see Fig. 1.3). Note that radial parameter is used for
representing the spread of electron. In many-electron system, n-radial parameters
are included. The wave-function is expressed as ¥(ry, rs,...,r,), Where ry, ra,....r,
are defined for electron 1, electron 2,..., electron n, respectively. Note that the
time-independent wave-function is considered in this book, though time evolution
is possible in wave-function.

1.5 Wave-Function Interpretation

One electron can be expressed as one wave-function. However, it is difficult to
interpret wave-function itself. It is because it does not represent figure (line, curved
surface, etc.). Instead, the square of wave-function represents electron density. It is
given by,

W= vy (L.11)

Electron density within the volume element (dt) is proportional to |1M2dr, where
dz is equal to dxdydz (see Fig. 1.4).

For the correspondence to the real electron, the normalization is performed for
the wave-function. The normalized wave-function (/') is expressed as

Y =Ny (1.12)

where N is the normalization constant. When integrating electron density within the
whole space, it must represent one electron.

T e =1 (1.13)

Fig. 1.4 Schematic drawing z
of the relationship between b
electron density and volume
element

vww.ebook3000.con)
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8 1 Quantum Theory

By substitution of Eq. (1.12) in Eq. (1.13), it is rewritten:

N2 [ yryde =1 (1.14)

In general, the normalized wave-function is utilized.

1.6 Schrodinger Equation

The basic equation of classical particle is motion equation. On the other hand, the
basic equation of electron is Schrédinger equation, where electron is expressed as
wave-function (). In one-dimensional system, it is expressed as

——m—+V(x)1//:El// (1.15)
where V(x) denotes the potential energy at x; E is the total energy; / is defined as
h=— (1.16)

Extending to three-dimensional system, it is expressed as

h2
—%VzlﬁJerp = Ey (1.17)
where V2 is defined as
?* &
2
V:@+a—y2+8—zz (1.18)

In the general expression, Schrodinger equation is expressed as
HYy = Ey (1.19)

where H is the Hamiltonian operator, which mathematically operates to
wave-function.
. P, .
H=—-—V‘+V 1.20
VT (1.20)

When wave-function operates with the Hamiltonian operator, the total energy is
given (see Fig. 1.5). Schrodinger equation is eigenvalue equation, where E and ¥/
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Fig. 1.5 Schematic drawing Schridinger equation
of Schrodinger equation —
H - ‘I) | E
Operate

denote eigenvalue and eigenfunction, respectively. It implies that one eigenvalue is
given for one wave-function.

Let us consider two different wave-functions. The wave-functions (i/; and /)
satisfy the following equations:

Hy; = Ey, (1.21)
H‘//j =Ey; (1.22)

where E; and E; are eigenvalues for 1; and /;, respectively. Integrating Eq. (1.21)
within the whole space, combined with the product of lpj‘ on the left side,

YiHYdt = E; | yiyde (1.23)
J vitwae = [ v

Integrating Eq. (1.22) within the whole space, combined with the product of ]
on the left side,

/ i Hydt = E / yiyde (1.24)
The complex conjugate of Eq. (1.23) becomes as

( / lp;ﬁhp,.dmu)*: E; / Yiyde (1.25)

In general, Hermitian operator satisfies the following relationship:

/ iz = (s i) (1.26)
By the substitution of Egs. (1.24)—(1.26),

(E: — E) [Y7dr =0 (1.27)

vww.ebook3000.con)
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10 1 Quantum Theory
When E; # E; is satisfied,
‘/u//jlpjdr =0 (1.29)

It implies that eigenfunctions with different eigenvalues are orthogonal.

1.7 Quantum Tiger

Quantum electron is represented as quantum wave-function, which is obtained from
Schrédinger equation. For the easy understanding, it is, here, assumed that one tiger
represents one quantum electron, and one box represents one wave-function. When
there are two boxes (box A and box B), where is tiger is staying? (See Fig. 1.6). In
conventional world, tiger stays in box A or B, without changing its figure. It means
that the density of tiger must be O or 100% in one box. If the density is between O
and 100%, tiger must be separated into two pieces. It does not occur.

If tiger is separated into two pieces, it means that one electron is delocalized over
two wave-functions. In fact, the ith quantum electron has specific energy (E;) and
exists in one wave-function (1;) (see Fig. 1.7). The ith electron cannot be allocated
in the different wave-function, due to the orthogonality between wave-functions
with different energies. In degenerated case, although the wave-functions are dif-
ferent, they have the same energy. However, the ith electron is allocated into one
wave-function.

.
A(0%) B(100%)

Fig. 1.6 Schematic figure of quantum tiger in two boxes
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Fig. 1.7 Schematic drawing Eigenvalue

of the relationship between
wave-function and eigenvalue . l//
n
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Chapter 2
Atomic Orbital

Abstract In one-electron atom such as hydrogen atom and hydrogenic atom, the
exact solution of Schrodinger equation can be obtained. The wave-function, which
stands for atomic orbital, is separated into the two radial and angular
wave-functions. Radial wave-function contains two quantum numbers such as
principal quantum number and orbital angular momentum quantum number. The
former and latter denote shell and subshell, respectively. Due to the relationship
between two quantum numbers, 2p and 3d orbitals have the three and five orbitals.
Angular wave-function expresses electron spread by using two angular parameters.
The wave-function cannot be directly plotted into three-dimensional space. Instead,
it is possible to visualize electron density, which is given by the square of
wave-function. In many-electron atom, the effect of spin cannot be negligible. Spin
has two quantum numbers of total spin angular momentum and spin angular
momentum along the standard direction. When the latter quantum number is +1/2
or —1/2, it is called a« or f8 spins, respectively. To incorporate electron spin in
wave-function, spin function is introduced. Spin orbital is expressed by the product
between spatial orbital and spin function. To satisfy inversion principle, the total
wave-function is represented by Slater determinant. Finally, building-up principle is
also explained.

Keywords Hydrogenic atom - Radial wave-function - Angular wave-function -
Electron spin - Slater determinant

2.1 Hydrogenic Atom

2.1.1 Schrodinger Equation

As explained in Chap. 1, in quantum manner, electron is represented by
wave-function. The wave-function standing for an electron is called orbital. In atom
and molecule, it is called atomic orbital (AO) and molecular orbital (MO),
respectively. Let us explain atomic orbitals of hydrogenic atom, where one electron

© Springer Nature Singapore Pte Ltd. 2018 13
T. Onishi, Quantum Computational Chemistry,
DOI 10.1007/978-981-10-5933-9_2



14 2 Atomic Orbital

exists around atomic nucleus with nuclear charge Ze. Note that Z is positive integer.
Coulomb potential energy (V) between atomic nucleus and electron is expressed as

Ze?
V=— 2.1
dre.r (2.1)

where e, ¢y and r denote charge, vacuum permittivity and electron-atom distance,
respectively. The Hamiltonian of hydrogenic atom is given by

n? vz_h_ZVQ Ze?

H=- —
2me 2my dmecr

(2.2)

where i = h/2m, m, is the mass of electron, and my is the mass of nucleus. The
first, second and third terms denote kinetic energy of electron, kinetic energy of
atomic nucleus and Coulomb potential energy, respectively. The Schrddinger
equation for hydrogenic atom is expressed as

i i Ze?
— V2o — V- Y =EY¥Y 2.3
( 2me 2mn 4nser> (2:3)

where ¥ and E denote the wave-function of an electron and the total energy,
respectively. The wave-function can be separated into two parts by three variables
such as radial (r) and two angular (0, ¢) components (see Fig. 2.1).

W(r,0,¢) =R(r)Y(0, ) (2.4)
When the reduced mass (u) is defined as
memN
=— 2.5
i (2.5)
Fig. 2.1 Relationship z

between Cartesian
coordinates and polar
coordinates
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2.1 Hydrogenic Atom 15

the u value is approximately similar to the electron mass.

1 1 1

1
W me mN Mg

It is because the nucleus mass is much larger than electron mass. By the sub-
stitution of Eq. (2.6), Eq. (2.3) is written as

n? Ze?
—— V- ¥ =E¥Y 2.7
< 2u 4nser) 27)

In spherical polar coordinates, V is defined as

& 20 1

20 20 1 5
v _6r2+r8r+r2A (2.8)

where A? is defined as

, 1 ® 1.9 . .0

=—5—5+ ——=-sin0— 29
sn200¢7 sm000°"" 90 (29)
The Schrodinger equation is rewritten as
r 208 1 Ze?
s34+ == +5A%)RY - RY = ERY 2.10
2u <8r2 * ror ta ) 4meer (2.10)
Finally, it is rewritten as
[ ,d°R drR\ z&* , W
Y (P Sl ) P — A’Y = Er? 2.11
2uR (r dr? e dr) + 4re, " 2u0P " (2.11)
Equation (2.11) can be separated into two equations.
h2
- Zu@cDAZY = constant (2.12)
R (R 2dR\ z& ,
- (22 2 - 222 Er? — _constant 2.13
2uR (dr2 r? dr) 4me, " " constan (2.13)

The parameters of Eq. (2.12) are two angular components (¢ and ). On the
other hand, r is the sole parameter in Eq. (2.13).
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Table 2.1 Radial wave-functions of hydrogenic atom

n 1 R(r)
0 Ry = 2(%)3/267‘0/2
’ 1 =3 (%)S/Zpe o2
. ‘ :#%)g 6—6p+pPer/?
’ ! Ry =5t (2) "4 = pppeer
. 2 Rsa =575 (a%)smpze*p/z

2.1.2 Radial Wave-Function

We go through the detailed mathematical process to solve the radial equation.
Table 2.1 shows the radial wave-functions of hydrogenic atom. The wave-functions
are written in terms of dimensionless quantity (p).

Zr
=_ 2.14
P = (2.14)
where ag is Bohr radius.
dmeoh?
= 2.15
a == "3 (2.15)

In radial wave-function, two quantum numbers are defined. One is the principal
quantum number (n), corresponding to a shell. For example, electrons with n = 2
belong to the L shell. The other is orbital angular momentum quantum number (1),
corresponding to a subshell. Two quantum numbers satisfies the following
condition.

1=0,1,2,3,....,(n— 1) (2.16)

Table 2.2 shows the relationship between quantum numbers, shell and subshell
in hydrogenic atom. When n = 1, there is only one s-type subshell (/ = 0). Quantum
numbers of n = 1 and [ = 0 stand for 1s atomic orbital. When n = 2, there are s-
type (I = 0) and p-type (I = 1) subshells. Quantum numbers of n =2 and [ =0
stand for 2s atomic orbital, and n =2 and [ =1 stand for 2p atomic orbital.
Figure 2.2 shows the variation of RI(Zrlay)*” value, changing Zr/a, value. In 2s, 3s
and 3p AOs, positive and negative R/(Zrlay)*"* values are given. The total energy
(E) is given by
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2.1 Hydrogenic Atom 17

Table 2.2 Relationship between quantum numbers, shell and subshell in hydrogenic atom

n Shell l Subshell Atomic orbital
1 K 0 S 1s
2 L 0 2s
2 L 1 P 2p
3 M 0 S 3s
3 M 1 p 3p
3 M 2 d 3d
2.00
——1s —=-2s 2 3s —=-3p —=-3d
1.75 P P
1.50
o 125
o~
RS
\S 1.00
N
2 075
0.50
0.25
0.00 : % = 1
0. 2.0 A 6.0 8.0 10.0 12.0 14.0 16.0 18.0 2010
-0.25

Zr/a,

Fig. 2.2 Variation of RI(Zrlag)*” value, changing Zr/a, value

o z?
E = —mn—z (217)

E depends only on principal quantum number. It is why 2s and 2p atomic
orbitals of hydrogenic atom are degenerated.

2.1.3 Angular Wave-Function

The sign of the total wave-function is determined by the signs of the radial and
angular wave-functions. The angular wave-functions are written in terms of angular
components (0 and ¢). We go through the detailed mathematical process to solve the
angular equation. Table 2.3 shows the angular wave-functions of hydrogenic atom.
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Table 2.3 Angular wave-functions of hydrogenic atom

! Y(0,¢)

1 $1/2 cos 0

1 %\ésin 0 cos ¢

1 i \/%sin a sin ¢

2 i\/%(300529 -1

2 %\/%sin()cos()coszb
2 %\/lgsiné?cosﬂsinqﬁ
2 : \/gsinze cos2¢

2 . \/gsinze sin2¢

In Is, 2s and 3s AOs, one angular wave-function has no angular parameter. It
implies that the AOs spread uniformly to all directions. The sign of wave-function
is determined by the radial wave-function. In 1s AO, the sign of wave-function
becomes positive. On the other hand, in 2s and 3s AOs, the sign of radial
wave-functions is positive or negative, depending on a radius. It implies that the
sign of wave-function is changeable.

In 2p and 3p AOs, three angular wave-functions are given. In n = 2, the AOs are
called 2p,, 2p, and 2p, AOs. Though the sign of radial wave-function (R5p) is
positive, the signs of angular wave-functions are positive or negative, depending on
angular parameters. Hence, the sign of wave-function is changeable in 2p AOs.

In 3d AOs, five angular wave-functions are given. The AOs are called 3d,,, 3d,.,
3d,;, 3d,2_y2,3d32_,2 AOs. Though the sign of radial wave-function (R3q) is pos-
itive, the signs of angular wave-functions are positive or negative, depending on
angular parameters. Hence, the sign of wave-function is changeable in 3d AOs.

The positive and negative signs in the wave-function represent the qualitative
difference of wave-function. In electron—electron interaction, the difference has an
important role.

2.1.4 Visualization of Hydrogenic Atomic Orbital

In hydrogenic atom, one electron spreads as one wave-function. The wave-function
of the ground state consists of R;; and Y (= 1/2+/x). It is because minimum total
energy is given when n = 1. However, the wave-function () cannot be directly
plotted into three-dimensional space. Instead, it is possible to visualize electron
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density, which is given by the square of wave-function ("I’2|). Electron density in
an finite volume (dt) is given by

|¥?|de (2.18)

Electron density is normalized in three-dimensional space.
/}‘Iﬂydr = 1.00 (2.19)

In general, the atomic orbital envelope diagrams are drawn based on the con-
tours, within which the values of electron density is 0.95. Figure 2.3 depicts the
atomic orbital envelope diagram of hydrogenic atom. Note that electron density is

1s Y

3d 3dyz

Xy

Fig. 2.3 Atomic orbital envelope diagrams of hydrogenic atom
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dense around the centre, though the radial wave-function spreads in a large dis-
tance. The positive and negative signs of wave-functions are discriminated by
colour difference. In this book, grey- and blue-coloured lobes represent the positive
and negative signs of wave-function, respectively.

2.2 Many-Electron Atom

2.2.1 Schréidinger Equation

First, we consider helium atom as the simple example of two-electron atom (see
Fig. 2.4). Two electrons are labelled as electron 1 and electron 2. Each electron has
both electron—atomic nucleus interaction and electron—electron interaction. The
Hamiltonian of the Schrddinger equation is expressed by

i 2 R 2 ®o_, 2¢2 2¢2 n e
U ome 2 2mn Ameer)  Ameer;  Ameorin

H= (2.20)

- 2me

In many-electron atom (n-electron system), all electron—atomic nucleus and
electron—electron interactions must be included in the Hamiltonian.

R w Ze* I~ 1 2 &1
H=—-Y V- v 25 © N (2.21)

2my 4dme, — T 4dme, =i

2.2.2 Electron Spin

In many-electron atom, which means that more than two electrons exist in one
atom, the effect of spin cannot be negligible. In general, two quantum numbers
related to spin are defined. One is quantum number of total spin angular momentum

Fig. 2.4 Schematic drawing Electron 1
of helium atom (-e) 9
T2
r, \

N Electron 2
-0 (-e)

L4
‘A r,

Atomic nucleus
(+2¢)
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2.2 Many-Electron Atom 21

No electron One electron Two electron