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To John Hartigan and Amie Wilkinson



Who can hide in secret places so that I cannot see them? Do I not fill
heaven and earth?

Jeremiah 23.24

Cleave a piece of wood, I am there; lift up the stone and you will find
me there.

Gospel of Thomas 77

God hides in the smallest pieces. 
Caspar Barlaeus

God hides in the details.
Aby Warburg

God is in the details.
Ludwig Mies van der Rohe

The devil is in the details.
George Shultz

Bad programmers ignore details. Bad designers get lost in details.
Nate Kirby



Preface

Preface to First Edition
Before writing the graphics for SYSTAT in the 1980’s, I began by teaching a
seminar in statistical graphics and collecting as many different quantitative
graphics as I could find. I was determined to produce a package that could
draw every statistical graphic I had ever seen. The structure of the program
was a collection of procedures named after the basic graph types they pro-
duced. The graphics code was roughly one and a half megabytes in size.

In the early 1990’s, I redesigned the SYSTAT graphics package using ob-
ject-based technology. I intended to produce a more comprehensive and dy-
namic package. I accomplished this by embedding graphical elements in a tree
structure. Rendering graphics was done by walking the tree and editing
worked by adding and deleting nodes. The code size fell to under a megabyte.

In the late 1990’s, I collaborated with Dan Rope at the Bureau of Labor
Statistics and Dan Carr at George Mason University to produce a graphics pro-
duction library called GPL, this time in Java. Our goal was to develop graphics
components. This book was nourished by that project. So far, the GPL code
size is under half a megabyte.

I have not yet achieved that elusive zero-byte graphics program, but I do
believe that bulk, in programming or in writing, can sometimes be an inverse
measure of clarity of thought. Users dislike “bloatware” not only because it is
a pig that wastes their computers’ resources but also because they know it usu-
ally reflects design-by-committee and sloppy thinking.

Notwithstanding my aversion to bulk, this book is longer than I had antic-
ipated. My original intent was to outline a new paradigm for quantitative
graphics using examples from publications and from SYSTAT. As the GPL
project proceeded and we were able to test concepts in a working program, I
began to realize that the details of the system were as important as the outlines.
I also found that it was easier to write about the generalities of graphics than
about the particulars. As every programmer knows, it is easier to wave one’s
hands than to put them to the keyboard. And as every programmer knows in
the middle of the night, the computer “wonderfully focuses the mind.”

The consequence is a book that is not, as some like to say, “an easy read.”
I do not apologize for this. Statistical graphics is not an easy field. With rare
exceptions, theorists have not taken graphics seriously or examined the field
deeply. And I am convinced that those who have, like Jacques Bertin, are not
often read carefully. It has taken me ten years of programming graphics to un-
derstand and appreciate the details in Bertin.

I am not referring to the abstruseness of the mathematics in scientific and
technical charts when I say this is not an easy field. It is easier to graph New-
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ton’s law of gravitation than to draw a pie chart. And I do not mean that no one
has explored aspects of graphics in depth or covered the whole field with illu-
mination. I mean simply that few have viewed quantitative graphics as an area
that has peculiar rules and deep grammatical structure. As a result, we have
come to expect we can understand graphics by looking at pictures and speak-
ing in generalities. Against that expectation, I designed this book to be read
more than once. On second reading, you will discover the significance of the
details and that will help you understand the necessity of the framework. 

Who should read this book? The simple answer is, of course, anyone who
is interested in business or scientific graphics. At the most elementary level are
readers who are looking for a graphical catalog or thesaurus. There are not
many types of graphics that do not appear somewhere in this book. At the next
level are those who want to follow the arguments without the mathematics.
One can skip all the mathematics and still learn what the fundamental compo-
nents of quantitative graphics are and how they interact. At the next level are
those who have completed enough college mathematics to follow the notation.
I have tried to build the argument, except for the statistical methods in Chapter
7, from elementary definitions. I chose a level comparable to an introductory
computer science or discrete math text, and a notation that documents the al-
gorithms in set terminology computer science students will recognize.

I intend to reach several groups. First are college and graduate students in
computer science and statistics. This is the only book in print that lays out in
detail how to write computer programs for business or scientific graphics. For
all the attention computer graphics courses devote to theory, modeling, anima-
tion, and realism, the vast majority of commercial applications involve quan-
titative graphics. As a software developer, I believe the largest business market
for graphics will continue to be analysis and reporting, despite the enthusiastic
predictions (driven by conventional wisdom) for data mining, visualization,
animation, and virtual reality. The reason, I think, is simple. People in business
and science have more trouble communicating than discovering.

The second target group for this book comprises mathematicians, statisti-
cians, and computer scientists who are not experts in quantitative graphics. I
hope to be able to convey to them the richness of this field and to encourage
them to explore it beyond what I have been able to do. Among his many ac-
complishments in the fields of graphics and statistics, William Cleveland is
largely responsible for stimulating psychologists (including me) to take a clos-
er look at graphical perception and cognition. I hope this book will stimulate
experts in other fields to examine the language of graphics.

The third target group consists of statistics and computer science special-
ists in graphics. These are the colleagues most likely to recognize that this
book is more the assembly of a large puzzle than the weaving of a whole cloth.
I cannot assume every expert will understand this book, however, for reasons
similar to why expertise in procedural programming can hinder one from
learning object-oriented design. Those who skim through or jump into the
middle of this book are most likely to misunderstand. There are many terms in
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this book — graph, graphic, variable, frame, point, line, shape, scale — that
have unfortunately come to be overloaded in ordinary and technical discourse.
I have taken care to define these terms when they first appear and then to refine
the definitions in context later in the book. Preconceptions about these terms,
however technical, can prevent one from following my argument. And those
who have heard me talk about graphics algebra in meetings or colloquia need
to keep in mind that algebra is only one of fifteen chapters in this book. Before
drawing any conclusions, one should read the book from start to finish and at-
tend to the details.

The popular saying “God is in the details,” whose lineage I have traced on
the frontispiece, has an ancient heritage. It is usually attributed in English to
the architect Ludwig Mies van der Rohe, who probably was quoting the art
historian Aby Warburg. Elizabeth Sears, a Warburg scholar, told me that War-
burg’s saying is “much quoted, its sources variously sought.” She cited Kany
(1985), who devoted an entire article to the topic. William Heckscher (1958)
found a possible source in the 17th century humanist Caspar Barlaeus (see cor-
respondents’ notes in Safire, 1997). The idea has much older roots in Western
culture, however. It is a corollary of an immanent creator — the opposite of an
absconding God. Church fathers and rabbis discussed God’s omnipresence
along these lines in the first millennium, and I have cited a verse from Jeremi-
ah that gives evidence of biblical roots. In our time, we have altered its mean-
ing by focusing on our attending to details rather than on God being in them.
I do not know if George Shultz is the first to have given the saying an ironic
twist. He used the expression “the devil is in the details” when referring to the
intricacies of the SALT talks in a speech to the Council on Foreign Relations.
In retrospect, however, Shultz informed me that he may have been quoting
some earlier wit. My favorite recent redaction is by a programmer at SPSS.
Nate Kirby’s observation that bad programmers ignore details and bad design-
ers get lost in them captures for me the difficulty in creating a complex system.

This book was composed in Times® Roman and Italic with Adobe
FrameMaker®. The quantitative graphics were produced with SYSTAT®. Rick
Wessler drew Figure 9.57 with Caligari TrueSpace®. Figure 20.1 (also on the
cover) was created originally in GPL. The remaining non-statistical diagrams
and tables were drawn with tools in FrameMaker and Adobe Photoshop®.

I have many to thank. Dan Rope is one of the few individuals I have met
who is both master designer and master coder. He gave me the rare opportuni-
ty to test almost every idea in this book in detail and contributed many of his
own. The few untested ideas will probably be discovered some years from now
when others program them, but they will not be Dan’s fault. Dan Carr, my oth-
er GPL collaborator, taught me with examples. One graphic from Dan (he has
done many) can teach me more about good design than some books. 

The group once at Bell Labs and now at its descendent institutions has
continued to be a unique source of inspiration. Bill Cleveland has energized
and advised me for almost two decades; he wins the citation derby in this
book. John Chambers, John Tukey, Paul Tukey, Rick Becker, Deborah
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Swayne, Andreas Buja, Allan Wilks, Daryl Pregibon, James Landwehr, Lor-
raine Denby, and Mark Hansen have listened encouragingly and repeatedly to
half-baked ideas.

At Northwestern, Bruce Spencer, Shelby Haberman, Martin Tanner, Keith
Burns, and Amie Wilkinson have provided critical advice and support. At the
University of Chicago, Stephen Stigler, William Kruskal, Ron Thisted, Ben-
son Farb, and Peter McCullaugh have done the same. My Yale cohorts Jerry
Dallal and Bill Eddy have helped me over more years than the work in this
book spans.

At SYSTAT, Dan Michaels and Steve Willie introduced me to object-ori-
ented design. Tom Leuthner worked extensively with me on maps. Mark
Bjerknes, Greg Mullins, Mike Pechnyo, and Sasha Khalileev helped alert me
to graphical issues raised by Mac, DOS, Windows, UNIX, and other environ-
ments. Laszlo Engelman shared numerical and graphical tricks that continue
to amaze me. Pat Fleury and MaryAnn Hill made sure I continued to think
about the graphical needs of real users. 

At SPSS, Jack Noonan, Ed Hamburg, Mark Battaglia, and Nancy Do-
brozdravic provided me the environment needed to complete this project. Josh
Barr, Matt Levine, Andrew Walaszek, Jay Jayaprasad, Matt Rubin, Rajesh Se-
lukar, John Burkey, Scott Adler, Janice Krinsky, Sheri Gilley, ViAnn Beadle,
Rick Marcantonio, Joel York, Keith Kroeger, Jing Shyr, Ming-Long Lam, Jim
Cortese, Scott Sipiora, Dave Hess, Tex Hull, Kim Peck, John Fry, Bonnie Sha-
piro, Richard Oliver, and Hiroaki Minato contributed numerous suggestions.

Elsewhere, I have received support and advice from several colleagues.
The most significant have been Robert Abelson (my dissertation advisor at
Yale), Susanna Epp, and Helmut Epp. Jack Cohen and Louis Guttman, no
longer here to guide me, are always in my thoughts. 

Some have graciously taken time to read all or part of this manuscript. I
thank Amie Wilkinson, Paul Velleman, Howard Wainer, Wendell Garner,
Michael Kubovy, Stephen Kosslyn, Wayne Oldford, David Scott, Cynthia
Brewer, Alan MacEachren, Dianne Cook, Jürgen S�������, Jim Russell, and
Stephen Stigler. And I especially thank a series editor at Springer-Verlag who
made the effort to tell me what was sense and what was nonsense so I could
revise intelligently.

At Springer-Verlag, I thank John Kimmel. John is a gentleman. A gentle-
man (or gentlewoman) is someone who never needs to sign a contract. I finally
signed one for this book, but it was many years after I knew, and I know John
knew, that I would not publish this book with anyone but John. I also thank
Mary Ann Cottone for gentle persistence in coordinating the production of an
extremely complex four-color manuscript.

My wife Ruth VanDemark has patiently lived with this book through
many nights and weekends. And, while thanking family, I must confess a spe-
cial pleasure in joining my son-in-law Benson Farb as a Springer author. Ben-
son tutored me in the rudiments of geometry.
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Lastly, the two to whom this book is dedicated — my mentor and my
daughter. John Hartigan made me feel at home during my visits to the Yale sta-
tistics department in the early 1970’s and encouraged my steps. Amie Wilkin-
son urged me to keep walking and taught me new steps. John and Amie share
a remarkable intensity and an ability, rare among mathematicians, to explain
to people like me what they do. This book is only a shadow of what they gave. 

Chicago, Illinois Leland Wilkinson

Preface to Second Edition
The first edition of this book was a monograph. I intended to present a new,
object-oriented way of thinking about statistical graphics. The second edition
is a multigraph. I intend to supplement this presentation with a survey of ideas
that are useful for understanding the meaning of statistical graphics. I have ex-
tended the grammar metaphor by calling the first part Syntax, and the second
Semantics. Consequently, the second part of this book includes more of the
work of others. Although it is not a survey, it covers the main themes that I
consider essential to understanding how charts and graphs work.

Part 2 takes mathematical, psychological, and applied points of view.
Quantitative graphics are meaningless unless they have mathematical founda-
tions. They are solipsistic unless they follow experimentally tested psycholog-
ical principles. And they are irrelevant unless they reveal patterns in real data
so we can understand our world.

The first edition used “I” throughout. The second uses “we” because the
visualization team I have been privileged to work with at SPSS has shaped my
ideas as much as I have shaped theirs. Dan Rope, as I mentioned in the first
edition, has been a master at developing these ideas; he has added manage-
ment to his other talents without giving up coding. Graham Wills, in a fortu-
nate circumstance, joined us shortly after the first edition of this book
appeared; he brought unique energy (if you’ve met Graham you know what I
mean) and extensive knowledge of graphics and statistics to our thinking.
Andy Norton has been an old friend; he brought us a deep understanding of
object-oriented design, Java, and database technology. And Roger Dubbs
joined SPSS from a computer game company; it should be obvious what he
brought us, in addition to a keen design sense and extensive knowledge of pro-
gramming methodology. I should also mention Taylor Stockwell, Valeri
McGuire, Will LaForest, and Fred Esch, who worked for Illumitek and even-
tually for SPSS; their enthusiasm and dedication remind me of the early days
at SYSTAT in the 1980’s.

Graham Wills contributed to the Automation chapter and developed the
proofs in the Algebra chapter. He and Roger Dubbs wrote ViZml. Dan Rope
contributed to the Control chapter and wrote the bulk of nViZn. Andy Norton
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contributed to the Time chapter and wrote Dancer and the GPL interpreter.
Roger Dubbs contributed to the How to Make a Pie chapter and, with Graham,
wrote ViZml. I also thank Andy for an especially close reading of the entire
book; all the mistakes in this book are Andy’s fault, not mine. 

As we mention in the text, this book is about more than visualization. It is
about communicating information. This perspective unites the era of comput-
ing with the eras of mapping, charts, and graphics from previous centuries. We
have tried to reference the original sources for ideas whenever possible and we
have tried to avoid referencing rediscoveries and reinterpretations that appear
in different fields unless they contribute substantial new information. If our
references look quaint sometimes, it is because they are original. As much as
possible, we have tried to avoid reprising Stigler’s law of eponomy (“No sci-
entific  discovery is named after its original discoverer”).

Finally, I want to thank Jack Noonan for supporting an environment that
has demonstrated that discovery and innovation are possible in a publicly–
owned company.

Leland Wilkinson
Chicago, 2005
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1
Introduction

Grammar gives language rules. The word stems from the Greek noun for letter
or mark ( ). And that derives from the Greek verb for writing
( �, which is the source of our English word graph. Grammar means,
more generally, rules for art and science, as in the richly illustrated The Gram-
mar of Ornament (Jones, 1856), and Karl Pearson’s The Grammar of Science
(Pearson, 1892). 

Grammar has a technical meaning in linguistics. In the transformational
theory of Chomsky (1956), a grammar is a formal system of rules for generat-
ing lawful statements in a language. Chomsky helped explain many surface
characteristics of specific natural languages through a deep, universal struc-
ture. Chomsky’s context-free grammar is the progenitor of modern computer
language parsers.

Grammar makes language expressive. A language consisting of words
and no grammar (statement = word) expresses only as many ideas as there are
words. By specifying how words are combined in statements, a grammar ex-
pands a language’s scope.

This book is about grammatical rules for creating perceivable graphs, or
what we call graphics. The grammar of graphics takes us beyond a limited set
of charts (words) to an almost unlimited world of graphical forms (state-
ments). The rules of graphics grammar are sometimes mathematical and
sometimes aesthetic. Mathematics provides symbolic tools for representing
abstractions. Aesthetics, in the original Greek sense, offers principles for re-
lating sensory attributes (color, shape, sound, etc.) to abstractions. In modern
usage, aesthetics can also mean taste. This book is not about good taste, prac-
tice, or graphic design, however. There are many fine guides to creating good
graphics (e.g., Cleveland, 1985, 1995; Tufte, 1983, 1990, 1997; Kosslyn,
1994). This book focuses instead on rules for constructing graphs mathemati-
cally and then representing them as graphics aesthetically. 

The title of this book also recalls Bertin’s Semiology of Graphics (1967),
the first and most influential structural theory of statistical graphics. Bertin’s
work has pervaded our thinking. Semiology deals with signs. Although Bertin
put his signs on paper, his work applies as well to virtual space.

���� ���
���� ��
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Some of the rules and graphics in this book may seem self-evident, espe-
cially to those who have never written a computer program. Programming a
computer exposes contradictions in commonsense thinking, however. And
programming a computer to draw graphs teaches most surely the ancient les-
son that God is in the details.

1.1 Graphics Versus Charts
We often call graphics charts (from or Latin charta, a leaf of paper
or papyrus). There are pie charts, bar charts, line charts, and so on. This book
shuns chart typologies. For one thing, charts are usually instances of much
more general objects. Once we understand that a pie is a divided bar in polar
coordinates, we can construct other polar graphics that are less well known.
We will also come to realize why a histogram is not a bar chart and why many
other graphics that look similar nevertheless have different grammars. 

There is also a practical reason for shunning chart typology. If we endeav-
or to develop a charting instead of a graphing program, we will accomplish
two things. First, we inevitably will offer fewer charts than people want. Sec-
ond, our package will have no deep structure. Our computer program will be
unnecessarily complex, because we will fail to reuse objects or routines that
function similarly in different charts. And we will have no way to add new
charts to our system without generating complex new code. Elegant design re-
quires us to think about a theory of graphics, not charts.

A chart metaphor is especially popular in user interfaces. The typical in-
terface for a charting program is a catalog of little icons of charts. This is easy
to construct from information gathered in focus groups, surveys, competitive
analysis, and user testing. Much more difficult is to understand what users in-
tend to do with their data when making a graphic. Instead of taking this risk,
most charting packages channel user requests into a rigid array of chart types.
To atone for this lack of flexibility, they offer a kit of post-creation editing
tools to return the image to what the user originally envisioned. They give the
user an impression of having explored data rather than the experience.

If a chart view is restrictive, how do we impose structure on a graphic
view? The concept of a graphic is so general that we need organizing princi-
ples to create instances of graphics. We may not want to put a pie chart in a
catalog, but we need to give users some simple way to produce one. For that,
we need methodologies based on object-oriented design.

	�� �
��
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1.2 Object-Oriented Design
Many of the insights in this book were stimulated by a recent development in
applied computer science called object-oriented analysis and design (Mey-
er, 1988; Rumbaugh et al., 1991; Booch, 1994). Object-oriented design
(OOD) involves a plethora of techniques and principles that often baffle those
trained in classical procedural programming languages and software design.
Its methodology resembles a search for the objects that throw shadows on the
wall of Plato’s cave. Good objects are hard to find.

1.2.1  What is OOD?

OOD uses a variety of strategies for making software flexible and reusable:

• Objects are basic components of systems. They represent relatively
autonomous agents that go about their business doing things useful for
each other and for the general community of objects that comprise the
system. The names of some of the most widely used objects in contem-
porary OOD systems express this utilitarian perspective: Factory, Deco-
rator, Facade, Proxy, Iterator, Observer, Visitor (Gamma et al., 1995).
These objects do things that are aptly described by their names. A factory
builds things. A decorator applies patterns to things. An observer looks
for messages. A visitor roams and brings gifts.

• Objects communicate with each other through simple messages. These
messages are distributed throughout the system. Because they may float
freely throughout system, instead of being confined to the rigid protocols
of classical programs, they resemble the communications within a living
community.

• Objects are relatively stupid. They do a few things well, as do lobsters. 
• Intelligence resides in the system, not in objects, because activities in

concert have a life of their own that cannot be explained by separate,
uncoordinated activities. For an OOD, as for life itself, the whole is more
than the sum of its parts.

• Because objects are relatively stupid, they are also relatively simple and
useful for a variety of purposes, even in new systems. Objects are often
reusable, although this aspect of OOD has been oversold by some pro-
ponents.

• Because objects respond only to a few messages, and talk to other objects
via simple messages of their own, what they do is encapsulated. Other
objects have no idea how they work. And they don’t care. They only need
to know what to do with messages.

• Components of object-oriented systems are relatively modular. If parts
of the system are discarded or malfunction, the rest of the system usually
can continue to function.
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• Objects can inherit attributes and behavior from other objects. This
saves time and space in a well-organized system, because we can derive
instances of things from more general classes of things.

• Objects are often polymorphous. That is, different objects can be
induced to respond to the same message in different ways. Their
responses may even be unanticipated by their designer, but in an elegant
system their responses will not usually be harmful. Polymorphism also
implies that objects don’t care what type of data they process. They are
flexible enough to return reasonable responses to all sorts of data. This
includes the simplest response, which is not to respond. This kind of
robustness is quite different from classical procedural systems which
crash or cause other routines to crash when fed illegal or unanticipated
data. Well-designed polymorphous objects are not perverse.

• OOD induces designers to abstract. Nate Kirby, an object-oriented pro-
grammer and designer at SPSS, has noted that bad programmers ignore
details and bad designers get lost in details. To a designer, whenever a
category or class of object seems fitting, it elicits thoughts of a more gen-
eral category of which it is an instance. Because of this generalizing ten-
dency, object-oriented systems are intrinsically hierarchical.

1.2.2  What is not OOD?

1.2.2.1  OOD is not a Language

OOD is not a programming language. Some languages, like Simula, Small-
talk, and Java, make it easy to implement objects and difficult to implement
procedures. Others, like C++, enable development of both objects and proce-
dures. And others, like C, Pascal, Ada, BASIC, Algol, Lisp, APL, and FOR-
TRAN, make it difficult (but not impossible) to develop objects. Using a
language that facilitates object specifications is no guarantee that a system will
be object-oriented, however. Indeed, some commercial C++ graphics and nu-
merical libraries are translations of older FORTRAN and C procedures. These
older routines are disguised in wrappers whose names are designed to make
them appear to be objects. By the definitions in this book, a Java library with
classes that are called PieChartModel, PieChartViewer, and PieChartControl-
ler, is no more object-oriented than a FORTRAN program with three subrou-
tines of the same names.

1.2.2.2  OOD is not a GUI

OOD has been associated with the development of modern graphical user in-
terfaces (GUIs) because it is easiest to instantiate the behavior of an icon or
graphic control through well-defined objects. OODs can be implemented in
scripting or command-based systems, however, and GUIs with behavior indis-
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tinguishable from object-driven ones can be programmed through direct calls
to an operating system tool kit. It is extremely difficult (though not impossi-
ble) to infer the design of a system through its behavior. 

1.2.2.3  OOD is not an Interactive System

While a modern desktop system tends to allow a user to interact with its com-
ponents in a flexible manner, this has nothing to do with OOD. For example,
Data Desk, the most interactive commercial statistics package (Velleman,
1998), is not based on OOD. This is not necessarily a drawback. Indeed, it can
be an advantage. Data Desk’s design has served the package well because it
was conceived with a close attention to the capabilities of the operating sys-
tems under which it resides. The extent to which an OOD system is interactive
depends on how controller classes are implemented. Without user controls,
OOD systems may be relatively autonomous. 

1.2.3  Why OOD?

OOD has failed to realize some of the more extravagant claims of its propo-
nents in the last decade. In our experience, OOD has not brought increased re-
liability to the development process. Reliability of a system depends more on
clean design and intensive testing early in the development process than on a
particular design method. Nor has OOD given us increased portability of pro-
grams. Operating systems have evolved more rapidly in the last few years than
ever before. Manufacturers’ promises that their object frameworks (the ob-
jects programmers use for routine tasks) would remain immutable, or at least
upward-compatible, have not been kept. Nor has OOD given us more rapid
and responsive software. It is hard to beat assembly language or C programs
at execution time. While there are exceptions, it is generally true that the most
attractive elements of OOD — encapsulation and polymorphism — usually
penalize performance. Nor has OOD given us more rapid development sched-
ules. Indeed, OOD can retard development because objects are often more
difficult to conceive properly, and modifying pre-existing objects is more dif-
ficult than changing procedures. Despite the marketing hype for OOD, it is
hard to beat the development cycles realized in some of the APL and Lisp sys-
tems of two decades ago. 

Still, an OOD paradigm is the best way to think about graphics. APL is
ideally suited to developing small matrix algebra functions because it is a ma-
trix functional language. It is unbeatable for prototyping numerical methods.
Lisp is ideal for manipulating lists of words and symbols because it is a list
processing language. OOD, by contrast, is a natural framework for thinking
about graphics because graphics are objects (Hurley and Oldford, 1991). We
can see and touch these objects. Having a language that naturally implements
these objects is an added benefit. If none of this work appeared on a computer,
however, we would still find the effort worthwhile. Defining objects helps or-
ganize thoughts.
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1.3 An Object-Oriented Graphics System
A graph is a set of points. A mathematical graph cannot be seen. It is an ab-
straction. A graphic, however, is a physical representation of a graph. This
representation is accomplished by realizing graphs with aesthetic attributes
such as size or color.

An object-oriented graphics system requires explicit definitions for these
realizations and rules for relating them to data and for organizing their behav-
ior in a computational environment. If we are lucky, this graphics system
should have generality, yet will rest on a few simple objects and rules. This
book is an attempt to reveal the richness of such a system.

From the OOD perspective, graphics are collections of objects. If the mes-
sages between these objects follow a simple grammar, then they will behave
consistently and flexibly. To introduce this idea, we will focus on three stages
of graphic creation:

1)  Specification
2)  Assembly
3)  Display

After introducing these stages, we will show how they work in an example.

1.3.1  Specification

Specification involves the translation of user actions into a formal language.
The user may not be aware of this language, but it is required for an automated
system to understand the graphic request. Another way of defining specifica-
tion is to say that it is the deep grammar of a graphic. A graphic, unlike a pic-
ture, has a highly organized and constrained set of rules. A picture, of course,
has its own rules, especially real pictures such as photographs and videos (Bie-
derman, 1981). Nevertheless, an artist is privileged to bend the rules to make
a point (Bosch, Dali, or Picasso, obviously, but also Rembrandt, Cezanne, or
Close). And a special-effects technician may use tricks to make us think that
a video or virtual scene is more real than what we observe in our daily lives.
Not so with graphics. We have only a few rules and tools. We cannot change
the location of a point or the color of an object (assuming these are data-rep-
resenting attributes) without lying about our data and violating the purpose of
the statistical graphic — to represent data accurately and appropriately. Con-
sequently, the core of a graphics system must rest on specification. 
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Statistical graphic specifications are expressed in six statements: 

1)  DATA: a set of data operations that create variables from datasets,
2)  TRANS: variable transformations (e.g., rank),
3)  SCALE: scale transformations (e.g., log),
4)  COORD: a coordinate system (e.g., polar), 
5)  ELEMENT: graphs (e.g., points) and their aesthetic attributes (e.g., color),
6)  GUIDE: one or more guides (axes, legends, etc.).

In most of the figures in this book, we will add a syntactical specification of
the graphic in order to make the definition explicit. An earlier version of this
specification language (Wilkinson, 1996) incorporated all aspects in a single
algebra. The notation was unwieldy and idiosyncratic, however, so we have
separated them into components. These components link data to objects and
specify a scene containing those objects. 

1.3.2  Assembly

A scene and its description are different. In order to portray a scene, we must
coordinate its geometry, layout, and aesthetics in order to render it accurately.
A statistical graphics computer program must be able to assemble a graphical
scene from a specification in the same manner as a drawing or modeling pro-
gram puts together a realistic scene from specification components. This book
is more about specification than scene assembly, but it is important to think
about assembly while learning about specification so that we do not confuse
surface features with deep structures. How we build a scene from a specifica-
tion affects how the result behaves. A scene can be dynamic or static, linked
to external data or isolated, modifiable or immutable, depending on how we
assemble it.

1.3.3  Display

For us to perceive it, a graph must be rendered using aesthetic attributes and a
display system (e.g., paper, video, hologram). Contemporary operating sys-
tems provide access to rendering methods, preferably through well-defined,
abstract interfaces. Production graphics require little in this area other than ba-
sic drawing capabilities. Dynamic graphics and scientific visualization, by
contrast, require sophisticated designs to enable brushing, drill-down, zoom-
ing, linking, and other operations relating data to graphics. Becker and Cleve-
land (1987), Cleveland and McGill (1988), Cook and Weisberg (1994), and
Swayne et al. (1998) introduce these issues. More recently, virtual reality dis-
plays and immersive environments have expanded the available aesthetics to
touch and sound.
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1.4 An Example
Figure 1.1 shows a graphic of 1990 death rates against birth rates per 100,000
population for 27 selected countries in a UN databank. The plot contains two
graphic elements: a point (collection of points) whose labels show country
names, and a contour of a kernel density estimate (Silverman, 1986) that rep-
resents the concentration of the countries. We have also included three guides
that help us understand the graphics. The first is a general geometric object
called a form that is, in this instance, a line delineating zero population growth.
Countries to the left of this line tend to lose population, and countries to the
right tend to gain. The other two are guides that delineate axes for the repre-
sented space. Other examples of guides are legends and titles.

The graphic is striking because it reveals clearly the patterns of explosive
population growth. The density contours show two concentrations of coun-
tries. One, to the left, has relatively lower death rates and small-to-moderate
birth rates. The second, in the upper right, has high death rates and extraordi-
narily high birth rates. The latter countries tend to be developing. We have kept
the sample of countries small so that we can read the country labels. Adding
other countries from the database does not change the overall picture. 

ELEMENT: point(position(birth*death), size(0), label(country))
ELEMENT: contour(position(
                  smooth.density.kernel.epanechnikov.joint(birth*death)),

color.hue())
GUIDE: form.line(position((0,0),(30,30)), label("Zero Population Growth"))
GUIDE: axis(dim(1), label("Birth Rate"))
GUIDE: axis(dim(2), label("Death Rate"))

Figure 1.1  Plot of death rates against birth rates for selected countries
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1.4.1  Specification

The specification above the figure makes use of only ELEMENT, and GUIDE
components. The data are assumed to have been organized in a cases-by-vari-
ables matrix, there are no transformations, and the coordinates are rectangular,
so we can assume default settings. The first two lines show the two graphic
elements in the plot: a point, and a contour. Both graphic elements are posi-
tioned by the variables birth and death, which are scaled as percents. The
frame in which they are embedded is determined by the algebraic expression
birth*death. The point graphic actually does not show because its size at-
tribute is set to zero. Normally, we would see symbols (perhaps dots) for each
country. Instead, we have country labels for each point in the cloud set to the
values of the variable country in the data. The contour graphic represents the
density of countries in different regions of the frame. Where there are more
countries near each other, the density contour is higher. These contours are
computed by a kernel smoothing algorithm that we will discuss further in
Chapter 7. The dot notation smooth.density.kernel.epanechnikov.joint() means
that Epanechnikov kernel smoothing is a member of a hierarchy of density
smoothing methods. Different contours are given a color.hue aesthetic based
on the kernel density values at the level of each contour. 

The guides consist of the line, the axes, and their corresponding scales and
labels. The form guide is displayed with a line from (0,0) to (30,30) in the met-
ric anchored by both rate measures. This line is labeled with an associated text
string ("Zero Population Growth"). In most of the figures, we will omit GUIDE
specifications to keep the description simpler.

1.4.2  Assembly

Assembling a scene from a specification requires a variety of structures in or-
der to index and link components with each other. One of the structures we can
use is a network or a tree. Figure 1.2 shows a tree for the graphic in Figure 1.1.
Each node in the tree, shown with a box, represents a type of object in Figure
1.1. Each branch in the tree, shown with an arrow, represents a type of relation
between objects. The triangular-headed arrows represent “is a” relations. The
diamond-headed arrows represent “has a” relations.

"Is a" relations provide a way to derive common functionality from one
class. The result of such relations is inheritance. For example, an Axis is a
Guide in the same sense that a piano is a keyboard instrument. Any aspect of
a piano that has to do with being a keyboard instrument (having a sound pro-
duced by pressing one or more keys, for example) is inherited by other key-
board instruments. Any aspect of a piano that does not have to do with being
a keyboard instrument (having hammers, for example) is not necessarily
shared by other keyboard instruments (harpsichords pluck, pianos strike). If
we derive common functionality from a general class, then a subclass can in-
herit skills from its parent without having to do any extra work. Tasks related
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to having keys, for example, can be defined and implemented in one Keyboard
class. Tasks relating to guiding, such as relating numeric values to text strings,
can be implemented in one Guide class. In a similar manner, the Contour and
Point classes are both Graphs. They inherit capabilities that enable them to
represent themselves in a frame.

"Has a" relations provide a way to group related attributes and functions
under a class. The result of such relations is aggregation. For example, an
Axis has a Scale, a Rule, and a Label in the same sense that a piano has a key-
board, strings, and pedals. The aggregation of these features and functions is
what helps us distinguish a piano from other objects. In a similar manner, a
Chart has a Frame, one or more Guides, and one or more Graphs. If we imple-
ment aggregation well, our objects will be small and efficient and our comput-
er code will be comprehensible and modular.

.

Figure 1.2  Design tree for chart in Figure 1.1

1.4.3  Display

The tree in Figure 1.2, together with a set of rendering tools (symbols,
polylines, polygons) and layout designer, provides a structured environment
in which each object in a graphic can draw itself. There is no single agent
needed to figure out all the rules for drawing each object. 

A grammar of graphics facilitates coordinated activity in a set of relatively
autonomous components. This grammar enables us to develop a system in
which adding a graphic to a frame (say, a surface) requires no adjustments or
changes in definitions other than the simple message “add this graphic.” Sim-
ilarly, we can remove graphics, transform scales, permute attributes, and make
other alterations without redefining the basic structure.

Chart

Guide Frame Graph

Axis Form

Scale Rule Label

Line

Contour Point

Label

LabelSymbolCurve
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1.4.4  Revision

Revision means, literally, to see again. For graphics, it implies that we want to
change, query, and explore without having to go through all the work of spec-
ifying and creating a new graphic. By carefully separating the process of graph
creation into hierarchical components, we enable a flexible environment that
offers new views without recalculating every step in the system. And we can
link controllers to any component or property in the system to provide direct
manipulation of data, variables, frames, or rendering. If more than one graphic
depends on the same sub-component, then they are linked as well. 

Figure 1.3 shows an example. Even though the graphic looks different, the
positional frame is the same as in Figure 1.1. We have omitted point and form
and we have replaced contour with polygon to represent a kernel density. The
hue of each polygon comes from the estimated density of the countries at that
location. We have omitted the guides from this and subsequent specifications
to save space. These will be discussed in more detail in Chapter 12.

ELEMENT: polygon(position(
                 smooth.density.kernel.epanechnikov.joint(birth*death)), color.hue())

Figure 1.3  Kernel density of death and birth rates

Figure 1.4 adds a new variable to the specification of the point graphic in
Figure 1.1. This variable, military, is the annual military expenditures per cap-
ita normalized as U.S. dollar equivalents. We are using this variable to deter-
mine the size of each symbol, so that size of plotting symbol represents
military expenditure for each country.
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ELEMENT: contour(position(
                 smooth.density.kernel.epanechnikov.joint(birth*death), color.hue())
ELEMENT: point(position(birth*death), size(military))

Figure 1.4  Military expenditures vs. birth and death rates

Figure 1.4 conveys a rather troubling message. The highest relative mili-
tary expenditures are often in the most rapidly growing, politically unstable
countries. Still, this statistic conceals the absolute level of military expendi-
tures. The highest absolute levels of military spending are in advanced nations
with larger populations.

Finally, Figure 1.5 shows a map of the difference between death and birth
for the selected countries. The goal is to reveal the location of countries that
are growing rapidly in population. We have used size of the plotting symbol to
represent the magnitude of the difference (the few small negative differences
have been set to zero). 

There are two sets of positioning variables that define the frame. The first,
lat and lon, represent the location of the countries measured. These are used to
plot the circles showing death-birth differences. The second, latitude and lon-
gitude, are used to denote the locations on the map that anchor the boundaries
of the polygons defining the continental borders. The polygons for the map are
read from a shape file containing their vertices. The map data function handles
the translation of polygon IDs and polygon vertices in the file to a splitter vari-
able and longitude and latitude vertices for the polygon geometric function.
The point and polygon graphics both use a position attribute to control which
variables determine their position. The position dimensions are transformed
with a mercator cartographic projection. The axes and grid lines respond to the
projection, as well as the graphics in the frame. We will examine in Chapter 9
map projections that are better suited for representing the countries data.
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DATA: longitude, latitude = map(source("World"))
TRANS: bd = max(birth-death, 0)
COORD: project.mercator()
ELEMENT: point(position(lon*lat), size(bd), color(color.red))
ELEMENT: polygon(position(longitude*latitude))

Figure 1.5  Excess birth (vs. death) rates in selected countries

1.5 What This Book Is Not
Because this book spans the fields of computer science, geography, statistics,
and graphic design, it is likely to be misunderstood by specialists in different
areas for different reasons. We cannot anticipate all of these reasons, but here
are a likely few.

1.5.1  Not a Command Language

A cursory reading of this book might lead one to conclude that its purpose is
to present a new graphics scripting language. Indeed, each figure is accompa-
nied by a specification that resembles a command language. One impetus for
this conclusion would be occasional similarities to existing quantitative graph-
ics languages such as those in Mathematica®, SYSTAT®, S-Plus®, and SAS-
Graph®. These packages can produce a large variety of statistical graphics be-
cause they evolved to fulfill the needs of statisticians for sophisticated and
flexible technical graphics. They were not developed with a comprehensive
theory of graphics in mind, however. Often, their constructs have similar reg-
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ularities because of the constraints of the graphics world. We owe a debt to all
of these systems for being able to produce unusual graphics with them and to
discover the common implicit structures. To appreciate the real difference be-
tween this and command-based systems, however, see Chapter 17.

Another conclusion one might draw after a brief glance is that this system
is designed to be a static specification language instead of a dynamic, explor-
atory system. On the contrary, by regularizing the rules for graph behavior in
graphics frames, it provides a richer environment for dynamic and exploratory
graphics. This is especially true for paneled graphics, which are either avoided
altogether in most dynamic graphics systems or hard-wired to specific data
structures. In fact, the primary focus of our interest is in designing a system
that is flexible enough to change state without re-specification. A naive ap-
proach to implementing such a system would be to create commands from
user gestures, feed those commands to an interpreter, and then display the re-
sults. This method, employed in some existing packages, would indeed con-
strain it to be a static system. There is nothing in the theory presented in this
book, however, to suggest that this is the best or even most appropriate imple-
mentation method.

1.5.2  Not a Taxonomy

Taxonomies are useful to scientists when they lead to new theory or stimulate
insights into a problem that previous theorizing might conceal. Classification
for its own sake, however, is as unproductive in design as it is in science. In
design, objects are only as useful as the system they support. And the test of a
design is its ability to handle scenarios that include surprises, exceptions, and
strategic reversals. This book includes a few classifications, but they are in the
service of developing objects that are flexible and powerful in a coherent sys-
tem. Other classifications of the same problem domain are possible, but many
of them would not lead to a parsimonious and general system. Some classifi-
cations have been attempted based on cluster analyses of ordinary users’ visu-
al judgments of similarities among real statistical graphics (e.g., Lohse et al.,
1994). This approach may be useful for developing interfaces but contributes
nothing to a deeper understanding of graphs. Customary usage and standards
can blind us to the diversity of the graphics domain; a formal system can lib-
erate us from conventional restrictions.

1.5.3  Not a Drafting Package

This system was not designed to produce any graphic imaginable. Indeed, the
motivation is almost the opposite: to develop a closed system and then to ex-
amine whether it can produce both popular and esoteric graphics. We have
tried to avoid adding functions, graphs, or operators that do not work indepen-
dently across the system. There are doubtless many statistical graphics the
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system in this book cannot completely specify. We can add many different
graphs, transformations, types of axes, annotations, etc., but there are two lim-
itations we will always face with a formal system.

The first limitation applies to any free-hand drawing. Clearly, we cannot
expect to use a formal data-driven system to produce sketches on cocktail nap-
kins. It will always be possible to find creative designs that are not formally
linked to data. The province of drafting systems is computer-assisted design
(CAD) and desktop publishing (DTP). Those areas have their own rules driven
more by the physical appearance of real objects than by the theoretical con-
structs of functional and data analysis.

The second limitation derives from the syntactical structure of the system
itself. The operators in this system are capable, as we shall see, of producing
a surprisingly wide variety of graphics, perhaps more than any other formal
system or computer graphing program. Nevertheless, one can imagine certain
structures that may not be modeled by a language with the operators presented
here. It is, after all, a closed system. This graphics system was designed with
surveys of statistical graphics usage (e.g., Fienberg, 1979) and existing com-
mercial and scientific graphics software in mind. Nevertheless, one cannot
over-estimate the inventiveness and ingenuity of real users when they display
their ideas.

1.5.4  Not a Book of Virtues

This system is capable of producing some hideous graphics. There is nothing
in its design to prevent its misuse. We will occasionally point out some of
these instances (e.g., Figure 9.25). That the system can produce such graphics
is simply a consequence of its basis on the mathematical rules that determine
the meaning of graphs, rather than on the ad hoc rules we sometimes use to
produce graphics. These rules are not based on personal preferences but rather
on the mathematics and perceptual dimensions underlying the graphics we
draw in practice. These rules are just as capable of producing graphics for USA
Today as for Scientific American.

This system cannot produce a meaningless graphic, however. This is a
strong claim, vulnerable to a single counter-example. It is a claim based on the
formal rules of the system, however, not on the evaluation of specific graphics
it may produce. This is an essential difference between the approach in this
book and in other texts on statistical graphics and visualization. We are much
less interested in designing or evaluating specific graphics than in understand-
ing the rules that produced them. Unless one specifies those rules explicitly,
one cannot begin to claim that a particular graphic is meaningless or not.

We also cannot disagree strongly enough with statements about the dan-
gers of putting powerful tools in the hands of novices. Computer algebra, sta-
tistics, and graphics systems provide plenty of rope for novices to hang
themselves and may even help to inhibit the learning of essential skills needed
by researchers. The obvious problems caused by this situation do not justify
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blunting our tools, however. They require better education in the imaginative
and disciplined use of these tools. And they call for more attention to the way
powerful and sophisticated tools are presented to novice users.

1.5.5  Not a Heuristic System

The title of this book is The Grammar of Graphics, not A Grammar of Graph-
ics. While heuristic strategies are fun, pragmatic, and often remarkably adap-
tive, there is seldom reason to pursue them unless formal systems are shown
to be deficient or elusive. It is sometimes fashionable to apply heuristics to
well-defined problems in the name of artificial intelligence. If we take such an
approach, it is our burden to prove that a heuristic system can accomplish ev-
erything a formal system can plus something more. Until we define the capa-
bilities of a formal system, there is no way to make such a comparison.

Defining a formal system has practical implications in this field. Until re-
cently, graphics were drawn by hand to represent mathematical, statistical, and
geometric relations. Computer graphics programs, particularly scientific and
mathematical plotting packages, have made this task much easier but they
have not altered its ad hoc aspect. Nor have statistical and mathematical pack-
ages that generate more complex graphics contributed to our understanding of
how they are created. Each new graphic in these programs was developed by
an engineer who knew many of the rules in this book instinctively and applied
them to a specific instance. 

Now that data mining is popular, we need to be able to construct graphics
systematically in order to handle more complex multivariate environments.
Unfortunately, the sophistication of data mining algorithms far exceeds the
graphical methods used in their displays. Most data mining systems still rely
on pie, line, and bar charts of slices of data cubes (multi-way aggregations of
a subset of a database). These charts fail to reveal the relationships among the
entities they represent because they have no deep grammar for generating
them. They are simply hard-wired to facets of the data cube. If we drill
through the cube to view a different slice of the data, we still get a simple pie
chart. A similar hard-wiring exists in displays from tree classifiers, neural net-
works, and other algorithms. 

The remarkable consequence of building a closed formal system is that,
while it solves more complex applied problems, it can appear more adaptive
to the user. Paradoxically, closed systems often behave more “openly” than
open systems. We should not confuse heuristics with flexibility. In the end,
this book rests on what is perhaps an extreme position, but one we share with
Jacques Bertin: designing and producing statistical graphics is not an art. 
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1.5.6  Not a Geographic Information System

This book includes several maps (e.g., Figure 1.5). That might lead some read-
ers to conclude that we regard it as the framework for a geographical informa-
tion system (GIS). Indeed, we adopted from geographers some basic parts of
this system, such as projections, layering, and aesthetic attributes (graphic
variables). We believe that many statisticians interested in graphics have not
given enough attention to the work of geographers. This situation has been
changing recently, thanks to efforts of statisticians such as Daniel Carr and
Linda Pickle, as well as geographers such as Mark Monmonier, Waldo Tobler,
and Alan MacEachren. 

The system in this book is not a model for a GIS, however, because geog-
raphy and statistics differ in a crucial respect. Geography is anchored in real
space-time and statistics in abstract dimensions. This is a distinction along a
continuum rather than a sharp break; after all, there is a whole field called spa-
tial statistics (Cressie, 1991). But this difference in focus clearly means that a
system optimized to handle geography will not be graceful when dealing with
statistical graphics such as Figure 11.15, and the system in this book would not
do well if asked to provide a real-time tour through a geographical scene.
There are many other consequences of this difference in focus. Geographers
have developed topological algebras for scene analysis (e.g., Egenhofer et al.,
1991), whereas we have employed a design algebra to model factorial struc-
tures. Geographers are concerned with iconography; we are concerned with
relations.

Some geographers might disagree with our real-abstract distinction here.
There is no question that the capabilities of a GIS can prove invaluable in vi-
sualizing abstract data. As Pinker (1996) has said, statistical graphics are often
most effective when they exploit mental models that evolved as humans strug-
gled to survive in a competitive world. But that brings us to our next point.

1.5.7  Not a Visualization System

This book includes some visualizations (e.g., Figure 9.55). Scientific visual-
ization uses realistic solid modeling and rendering techniques to represent real
and abstract objects. We have taken advantage of some methods developed in
the visualization literature. A visualization data-flow model is used for the
backbone of this system, for example. And as with GIS, there is some cross-
fertilization with statistics. Statisticians such as Dianne Cook, Jürgen Syman-
zik, and Edward Wegman (e.g., Symanzik et al., 1997) have employed immer-
sive visualization technology developed by computer scientists such as
Carolina Cruz-Neira and Thomas DeFanti (Cruz-Neira et al., 1993) to display
data.

We could define scientific visualization broadly to include GIS and statis-
tical graphics. This would, we believe, vitiate its meaning. A better way to un-
derstand the differences between visualization and statistical graphics would
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be to compare visualization programs like PV~Wave® and Data Visualizer®

to statistical graphics packages like SYSTAT® or S-Plus®. Going to extremes,
we could even use a CAD-CAM engineering or an illustration package to do
statistical graphics. Because we could does not mean we should.

1.6 Background
The scope of this book precludes an historical review of the field of statistical
graphics. When designing a system, however, it is crucial to keep in mind the
diverse and long-standing history of graphics and charts. Collins (1993) clas-
sifies historical trends in visualization, reminding us that the display methods
used in modern computer visualization systems are centuries old. His illustra-
tions, some dating to the 12th century, are especially informative. Collins
shows that the principal contribution of the enormous recent literature on sci-
entific visualization is its application to non-physical data rather than the dis-
plays themselves. Funkhouser (1937), Tilling (1975), Beniger and Robyn
(1978), Fienberg (1979), Robinson (1982), Stigler (1983), Tufte (1983, 1990,
1997), and Wainer (1997) offer additional material on the history of statistical
graphics that supports Collins’ argument.

Others have investigated statistical graphics from a theoretical viewpoint,
often providing ideas that are used in this book. Bertin (1967, 1977) is the pi-
oneer in the area of modern graphic classification and design; his work under-
lies almost all of Chapter 10. Mackinlay (1986) extended Bertin’s ideas to
develop a system that intelligently created graphics from relational data.
Cleveland (1985) helped establish a framework for understanding the role of
graphical elements in displays. Pinker (1990) proposed an information-pro-
cessing model of graphical reading. Brodlie (1993) integrated concepts under-
lying both scientific visualization and statistical graphics. MacEachren (1995)
extended Bertin’s work by following systematic psychological and design
principles. And Roth et al. (1995) developed a graphical system for querying
and manipulating data. Their work, independent of ours and based on a differ-
ent foundation, is nevertheless close in spirit to the content of this book. 

1.7 Sequel
The remainder of this book consists of two parts. Part 1 lays out the syntactic
foundations of the grammar of graphics; it covers most of the first edition of
this book. Part 2 is devoted to the semantic foundations of graphics; it covers
concepts from mathematics, psychology, and statistics that are fundamental to
understanding what graphics and visualizations mean. Part 2 also has several
chapters that summarize research in the area of graphical analysis and produc-
tion.
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Part 1 is summarized in Chapter 2, particularly in Figure 2.2. We begin by
defining concepts through the task of constructing a pie graphic from data.
The subsequent chapters proceed through the components of Figure 2.2, from
left to right. The title of each chapter is a major component. Chapter 3 covers
data and datasets, including functions for organizing data. Chapter 4 covers
variables and variable sets, the entities by which we define graphs. The next
six chapters — Algebra, Scales, Statistics, Geometry, Coordinates, and
Aesthetics — form the heart of the system. These are the six components that
we assemble in various combinations to construct a huge variety of graphics.
Algebra comprises the operations that allow us to combine variables and spec-
ify dimensions of graphs. Scales involves the representation of variables on
measured dimensions. Statistics covers the functions that allow graphs to
change their appearance and representation schemes. Geometry covers the
creation of geometric graphs from variables. Coordinates covers coordinate
systems, from polar coordinates to more complex map projections and general
transformations. Finally, Aesthetics covers the sensory attributes used to rep-
resent graphics. The remaining chapters in Part 1 involve additional aspects of
graphics grammar. Chapter 11 covers facets, the coordinates that enable us to
construct graphics of tables and tables of graphics. Chapter 12 deals with
guides, such as axes and legends. 

Part 2 begins with three chapters that summarize issues involved in graph-
ing space, time, and uncertainty. The following chapter, titled Analysis, covers
methods for preparing data for graphing. Some methods presented in this
chapter are statistical in nature, but each is peculiarly constrained by the re-
quirements of visualizing the results. The chapter titled Control covers meth-
ods for creating and exploring graphics interactively. And, by contrast, the
chapter titled Automation covers methods for doing these things programmat-
ically, without interaction. The chapter titled Reader inverts the problems cov-
ered elsewhere in this book; given a graphic, how do we read it? Finally, Part
2 concludes with a detailed analysis of two beautiful graphics in order to show
how syntax and semantics are linked in the process of constructing and under-
standing graphics. 

The titles of each chapter in Part 1 are (with the exception of the next) a
single word. These words designate components that contain objects and be-
haviors more like each other than like those in other components. Not every
one of these components is named in Figure 2.2 because some are subsystems
or stages of the ones named. Nevertheless, it is reasonable to regard these
chapters as cumulative, so it would not be easy to jump in at randomly selected
locations. You may want to look ahead to see where applications fit into the
system, but much of the terminology in later chapters depends on the defini-
tions given earlier in the book.



Part I

Syntax

Syntax is derived from the Greek word , which means an orderly
arrangement (as in a lining up of soldiers). In classical grammar, syntax is the
set of rules for combining words and sentences.

The first part of this book is about the syntax needed to create charts.
Nearly every chart in this part is accompanied by a grammar-of-graphics spec-
ification. These specifications are subsets of the general graphics language
that we discuss later in Chapter 18. In Part 2, we will discuss the semantics of
graphics, or the meanings of the representative symbols and arrangements we
use to display information. Part 1 presents a unique system for generating
charts through a parsimonious syntax. Part 2 discusses the meanings of these
charts through concepts employed in a variety of fields.

���
����



2
How To Make a Pie

A pie chart is perhaps the most ubiquitous of modern graphics. It has been re-
viled by statisticians (unjustifiably) and adored by managers (unjustifiably). It
may be the most concrete chart, in the sense that it is a pie. A five-year-old can
look at a slice and be a fairly good judge of proportion. (To prevent bias, give
the child the knife and someone else the first choice of slices.) The pie is so
popular nowadays that graphical operating systems include a primitive func-
tion for drawing a pie slice.

Figure 2.1 shows a simple data flow model of how to make a pie. Data
values flow from the data store called Source through a Make-a-pie process
that creates a graphic, which is then sent to an actor called Renderer. The de-
tails of the Renderer are ignored here. It could render to any one of many
graphics formats, or render a text description of the graphic, or even render a
sonification. 

Figure 2.1 How to make a pie

Foley et al. (1993) discuss graphics pipelines, and Upson et al. (1989) dis-
cuss how pipeline architecture is used in scientific visualization. This pipeline
could be (and has been) written as a single function. Nothing could be simpler.
However, simple things usually deserve deeper examination. What is the for-
mat of the data being passed in? How are the pie wedges to be colored? What
variables should we use to label the pie? Do we want to have a table of pie
charts by subgroup? Once we have a pie function that has options to account
for these questions, we then have to consider the bar chart, the scatterplot, the
Pareto chart, and so on ad infinitum. Each chart type has to answer these ques-
tions and more. 

Make a pieSource
Data

Renderer
Graphic

Make a pieSourceSource
Data

RendererRenderer
Graphic
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The grammar of graphics was developed with all these questions in mind
in order to produce a flexible system that can create a rich variety of charts as
simply as possible, without duplication of methods. It is also extensible, which
means that processes can be added easily to create new kinds of charts.

Despite the apparent simplicity of a pie, making one invokes almost every
aspect of the grammar. Figure 2.2 shows a data-flow diagram for how a chart
is constructed under this system. Figure 2.2 is simply a refinement of Figure
2.1. The internal processes of make a pie are shown in more detail. These in-
ternal processes constitute the syntax of the grammar of graphics.

Figure 2.2  From data to graphic

Mixing and matching the available processes at each step creates a wide
variety of charts with a minimum of effort. Some charts will be as simple as
the pie. Others will be more complex, as for instance the map of Napoleon’s
march to Moscow and associated temperature graphic in Chapter 20. If we
learn how to make a pie, we can create almost any statistical graphic. We will
first present the general recipe for making a graphic and then we will go step-
by-step through the process of making a pie, pausing occasionally for defini-
tions.

Figure 2.2 is only one part of the design of the system. As a data flow di-
agram, it simply shows what the stages are, how they must be ordered, and
what data are required along the way. It says very little about the actual imple-
mentation of the system. For example, it could be implemented as:
• A procedural library in which the various processes are procedures that

are assembled in a main program loop for each chart. 
• A functional program in which each process is a function and the actual

graphing function itself is computed and then executed. 
• An object-oriented program in which each of the processes is an object

with its own data and behavior.
• A path in a graph model through which an application pushes data.
• A path in a graph model through which the renderer pulls data.
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It is important to keep in mind that Figure 2.2 is only one slice through the
architecture of a system that produces graphics. As Booch (1994) indicates, an
object-oriented system can be represented by a series of “orthogonal” object
diagrams, each of which provides a different functional view of the system.
Figure 2.2 gives us the ingredients and the dependencies among them, but it
does not tell us how to assemble the ingredients. 

A premise of this book, however, is that we cannot change the ordering of
stages in the pipeline. We cannot compute scales after we do statistics, for ex-
ample. And, obviously, we cannot apply aesthetics before we compute geo-
metric objects that can be colored and textured. In one sense, the data flow
model is a truism. Data must be processed before they can be plotted. Many
have used some type of data flow to illustrate how visualization systems work.
Few have identified the necessary sub-sequences these systems must follow. 

In the first edition of this book, this chapter showed how to make one pie.
We will make two pies this time. Making two illustrates graphics algebra and
other components of the pipeline more completely. Before making our pies,
however, we will provide some elementary definitions of terms so that we can
assemble ingredients.

2.1 Definitions
The following definitions are fairly standard. Because words like relation are
used differently in various applications in mathematics, computer science, and
statistics, we have tried to give them a common notation and structure wher-
ever possible. This means that our notation may differ from that used in some
specialized fields. Choosing a level of abstraction and a level of detail is not
easy. We have tried to avoid abstraction when it does not suit our purposes and
we have included terms only when they are needed for clarity.

2.1.1  Sets

A set is a collection of unique objects, which we denote by a capital letter (e.g.,
X). An object in a set is called an element or a member of the set. We denote
an element by a lower-case letter (e.g., x), and state that “x is an element of X”
with the notation . We delimit the elements in a set with braces, e.g.,

. We define the complement of a set, denoted , as the set of
all elements not in X.

The null set ( ) is an empty set, or a set with no elements. We denote
the set of real numbers by R, the integers by Z, and natural numbers (integers
greater than zero) by N. We use the notation to denote
the statement “A is the set of elements a such that each a is a member of the
set of real numbers and each a is greater than zero.” If every element of a set
A is also an element of a set B, then A is a subset of B, denoted . If A is
a subset of B, but there is at least one element of B that is not in A, then A is a
proper subset of B, denoted .

x X�
X a b c� �� �= X

�

A a�	�a R� a 
��� �=

A B�

A B�
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If each element of A can be paired with an element of B such that each el-
ement of A occurs exactly once, and each element of B occurs exactly once, in
the pairings, we say A and B are equivalent, denoted . If a set A is equiv-
alent to a subset of the set of integers, we say the set A is countable. If A is
null or equivalent to the set {1, 2, ... , m}, where m is a positive integer, we say
A is a finite set. The cardinality of a finite set is m, the count of its elements.
An indexed set is a set of the form {(1, a1), (2, a2), ... , (m, am)}.

A bag is a set in which duplicate elements are allowed. We delimit the el-
ements in a bag with brackets, e.g., . A list is an ordered bag.
Another way to define a list is to say it is an indexed set. Another way to define
a list is to say it is a completely ordered sequence of zero or more elements.

Two real numbers a and b, with a < b, determine an interval in R. Two
types of intervals are

   an open interval, and

   a closed interval

We may also have intervals closed on the left and open on the right, or open
on the left and closed on the right. 

The intersection of two sets A and B, denoted by , is the set 

 = {x: and }

If A = {1, 2} and B = {2, 3, 4} then  = {2}. Two sets are disjoint if 

The union of two sets A and B, denoted by , is the set 

 = {x: or }

For example, if A = {1, 2} and B = {2, 3, 4}, then  = {1, 2, 3, 4}.
The disjoint union of two sets A and B, denoted by , produces a

set whose members are tagged elements. A tagged element is one of the form
x:$, where is the element and the symbol $ is the tag. A tag is some-
times called an identifier or a color; it may be a string, a numerical value, or
another piece of information. With a disjoint union, we tag an element with the
name of the set containing it. For example, if A = {1, 2} and B = {2, 3, 4} then

 = {1:A, 2:A, 2:B, 3:B, 4:B}. Tags are only tags. They do not enter into
numerical calculations. 

A partition of a set A is a collection of nonempty, pairwise disjoint sub-
sets  whose union is A. The subsets are called blocks. One par-
tition P1 is said to refine another partition P2 if every block of P1 is contained
in some block of P2. Successive refinement (P1 refine P2 refine P3 ...) is called
recursive partitioning in the literature on clustering and decision trees (e.g.,
Breiman et al., 1984).

A B�
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A B� x A� x B�

A B�

A B� �=

A B�

A B� x A� x B�

A B�
A B�

x X�

A B�

A� " An� �� �



2.1  Definitions 27

The (Cartesian) product of sets A and B, denoted by , is the set

 = {(a, b): and }

For our example,  = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4)}.
We call (a, b) an ordered pair or a tuple. Although the notation is the

same as that for an open interval, the meaning should be clear from context.
We call (a1, a2, ... , an) an n-tuple. We call the item ai (i = 1, ... , n) in an n-
tuple an entry. The degree of an n-tuple is n. We denote the product set of n-
tuples of the real numbers by Rn.

2.1.2  Relations

Let A and B be sets. A binary relation R between A and B is a subset of .
Given a tuple (a, b) in , we say that a is related to b by R if .
An example is the “less than or equal to” relation between the set of real num-
bers R and itself given by . Another exam-
ple is the gender-name relation R between the sets 

A = {"boy", "girl"} , and 

B = {"Mary", "John", "Jean", "Pittsburgh"} , given by 

R = {("boy", "John"), ("boy", "Jean"), ("girl", "Mary"), ("girl", "Jean")}

It is possible for some members of A not to be related through R to any mem-
ber of B and possible for some members of B not to be related through R to
any members of A (unless we assume someone might be named Pittsburgh!). 

An n-ary relation R on  is a subset of .
Some authors notate such a relation by tagging, e.g.,

R = {(a11: A1, a12:A2, ... , a1n: An), ..., (am1: A1, am2:A2, ... , amn: An)}

where 

2.1.3  Functions

Suppose that to each element of a set A we assign a unique element of a set B.
The collection of these assignments is a function, which is also called a map-
ping from A into B. To indicate that f assigns elements of B to elements of A,
we write 

f: A # B

A B$

A B$ a A� b B�

A B$

A B$
A B$ a b�� � R�

R x y�� ��	�x y x R y R����!� �=
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We call A the domain of f and B the co-domain of f. The element 
is the unique element in B that f assigns to . We call the set of these el-
ements {f(a): } the image of A under f or the range of f. Another way
to describe a function (without naming it explicitly) is to use the symbol .
In this usage, “a b” means “the function that assigns b to a.”

An object that acts like a function can be viewed as a black box that re-
ceives input and returns output. For every input, there is only one possible out-
put. That output need not be a single number or string. The output is whatever
form the elements of the co-domain B take. Many different inputs may pro-
duce the same output, but we may not have more than one tagged output for a
given input. This black-box definition includes the function f(x) %&x2 as well
as the function f(a binary tree) %&the list of its parent-child relations.

2.1.4  Graphs

For each function f: A # B there is a subset of ,

{(a, f(a)): }

that we call the graph of f. The graph of the function f(x) %&x2, where x belongs
to the set of real numbers, is the set of all tuples (x, x2), which is a subset of
the crossing of the set of real numbers with itself. The graph of the function
f(a binary tree) %&the list of its parent-child relations is the set of all tuples de-
fined by (a binary tree, the list of its parent-child relations), which is a subset
of the crossing of the set of all binary trees with the set of all lists of parent-
child relations. The graph of a function uniquely determines the function, and
vice versa. For example, if (2, 4) is the graph of f, then f(2) = 4.

2.1.5  Compositions

A composition is a function formed from a chain of functions. Let f	�
and g��  be functions for which the co-domain of f is a subset of the do-
main of g (i.e., ). The function : X # Z defined by the rule

is the composition or composite function of f and g.
For example, if f and g are string functions and the functional rule for f is

<capitalize leftmost letter> and the rule for g is <count number of capitals>,
then the following compositions are defined because all the inputs are mem-
bers of the set of text strings and any output of f is a legal input for g.

g(f("wow")) %&'
g(f("Wow")) %&'
g(f("123")) %&(
g(f("")) %&(

f a� � B�
a A�

a A�
#

#

A B$

a A�

X Y#
Y� Z#

Y Y�� g)f

g)f� � x� � g f x� �� ������������x X�=
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The range of the composition is the range of g, namely, the set of non-neg-
ative integers. Also, the null string is a member of the set of strings. If we im-
plement these functions in a language like C, we must be sure to handle nulls
properly.

2.1.6  Transformations

A transformation is a function f��A�#�A mapping a set A to itself. All trans-
formations are functions, but not all functions are transformations. Because a
transformation maps a set to itself, a composition of transformations is a trans-
formation.

For example, if f and g are text string transformations and the rule for f is
<capitalize leftmost letter> and the rule for g is <append exclamation>, then
the following compositions are all transformations.

g(f("wow")) % "Wow!"
f(f("wow")) % "Wow"
g(g("wow")) % "wow!!"
f(g(f("wow"))) % "Wow!"
g(f(g("wow"))) % "Wow!!"
f(g("")) % "!"

2.1.7  Algebras

An algebra is a collection of 1) sets, 2) operators on sets, and 3) rules for the
combination of these operators. This definition includes algebras more gener-
al, limited, or abstract than the classical algebra underlying ordinary arith-
metic on real numbers.

An operator generalizes the notion of transformation. An operator on a set
X is a function defined on the set  that returns a value in X. Op-
erators are unary or monadic (having one argument, i.e., defined on X, and so
a transformation), binary or diladic (having two arguments, i.e., defined on

), or n-ary (having many arguments, i.e., defined on the n-fold product
of X with itself). Algebraic rules specify how operators are to be composed.
An example is the operator “+” on the set R defined by (a, b) a+b.

2.1.8  Variables

A variable X is a mapping , which we consider as a triple:

, where

the domain O is a set of objects,

the codomain V is a set of values,

the function f assigns to each element of O an element in V,

X X$ ��X$

X X$

#

f 	O V#

X O V f� ��  =
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The image of O under f contains the values of X. We denote a possible value
as x, where . We denote a value of an object as X(o), where . A
variable is continuous if V is an interval. A variable is categorical if there ex-
ists an equivalence between V and a finite subset of the integers.

Variables may be multidimensional. is a p-dimensional variable made
up of p one-dimensional variables:

    

    

The element , is a p-dimensional value of X.

2.1.9  Varsets

We call the triple:

a varset. The word stands for variable set.
A varset inverts the mapping used for variables. That is,

the domain V is a set of values,

the codomain  is a set of all possible bags of objects,

the function f assigns to each element of V an element in ,

We invert the mapping customarily used for variables in order to simplify
the definitions of graphics algebra operations on varsets. In doing so, we also
replace the variable’s set of objects with the varset’s set of bags. We use bags in
the codomain because it is possible for a value to be mapped to an object more than
once (as in repeated measurements).

2.1.10 Frames

A frame is a set of tuples  ranging over all possible values in the
domain of a p-dimensional varset. Frames thus depend on algebra expressions.
Frames serve as reference structures for computing aesthetics. Popular writers
often call a frame the rectangular bounds demarcated by axes — in analogy to
a picture frame. There are several problems with this popular notion. First,
axes are guides for coordinate systems; they are not bounds on a space. Sec-
ond, frames are not only positional; we can have a color frame constructed
from an algebraic expression that yields a color space, for example. Third,
frames are not rectangles; they are sets of tuples.
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2.2 Recipe
The following subsections will implement our recipe from beginning to end.
We will use as our example the ACLS survey data summarized in Figure 2.3
(Morton and Price, 1989). We will look at the perceived bias against women
in reviewing academic papers, as seen by each gender. 

Figure 2.3  ACLS data

2.2.1  Create Variables

Our first step is to extract data into variables. There are many versions of this
process. For example, one version could create a variable from a relational da-
tabase. Another could create a variable by indexing a stream of data. Another
could create a variable from a text document by indexing words. Another
could generate values from a mathematical function. For our pies, we will sim-
ply load the data from a database. We will assume that the data in Figure 2.3
are organized in a database table of the form shown in Table 2.1.

A survey of U.S. scholars.
Commissioned by the American Council of Learned Societies.
Reported in Morton and Price (1989). 
Surveyed were 5,385. 
Respondents numbered 3,835. 
Response rate was 71 percent.
Among respondents, 74 percent were male, 26 percent female.
Respondents answered the question, “How often, if at all, do you think 
   the peer review refereeing system for scholarly journals in your field 
   is biased in favor of the following categories of people?” Males were 
   listed as one of the target categories. 
The percentages of respondents choosing each of five adverbs for how 
   often the review process is biased in favor of males were: 
   Males:     Rarely (30), Infrequently (15), Occasionally (10), 
                   Frequently (7), Not sure (38).
   Females: Rarely (8), Infrequently (11), Occasionally (17), 
                  Frequently (32), Not Sure (32).
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Table 2.1  ACLS Database Table

We can extract the data we need with the following queries:  

�����������	�
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���������������������������
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The function loadFromSQL(table, variable, case) constructs a query of
the form (SELECT variable, case FROM ACLS), connects to the database and
executes the query, storing the result in a variable. For our pie we get variables
shown in Table 2.2. For convenience, we represent variables as columns in a
table, even though the definition of a variable in Section 2.1.8 does not imply
this organization.

Table 2.2  Subtables From ACLS Database

2.2.2  Apply Algebra

A general definition of an algebra is given in Section 2.1.7. Chapter 5 defines
a graphics algebra consisting of three operators — cross, blend and nest —
applied to a set of variables, together with a set of associated rules. The output
of the algebra is a varset.

Since our extract-variables process made two separate variables, we need
to combine them into one variable so that the rows are associated with each
other. We use the algebraic cross function to accomplish this. In Chapter 5 we
use an operator (*) for the cross function in order to construct more complex
expressions in an algebraic notation, but we do not need that complexity here.
The result appears in Table 2.3.

CaseID Gender Bias in favor of males ...

CaseID Response CaseID Gender

� ���������� � ����

� �������� � ������

� ���������� � ����

 �  �

���� ������ ���� ����

���� ������������ ���� ������
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Table 2.3 cross(��������, �����)

2.2.3  Apply Scales

The categorical variables Response and Gender must have a defined or-
der. A categorical scale transformation associates the values of a categorical
variable with the set of integers. It may do this through a variety of possible
methods. Any number of automatic categorical scale transformations can be
devised, such as natural (alphabetical) order, relative frequency of the answer,
or even the length of the string. 

We will use a custom ordering that maps Rarely#1, Infrequently#2,
Occasionally#3, Frequently#4, Not Sure#5. This is derived from the or-
dering of the frequency implied by the responses, where the Not Sure case isn't
comparable and is arbitrarily placed last. We will use an alphabetical ordering
for the Gender variable. The result appears in Table 2.4.

Table 2.4  cat(��������� values(��
�	��    �!����"��))�
cat(������ values(����
	��� �#
	��))

CaseID Response Gender
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 � �
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CaseID Response Gender
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2.2.4  Compute Statistics

Our system will ultimately make one graphical element per row of a varset. A
pie chart of the data we have so far would therefore have 3,835 slices in it. This
data layout isn't what we usually have in mind when we make a pie. In order
to reduce the number of cases, we will need to do some statistics on the data. 

A pie chart uses the pie wedges to represent the proportion of the whole
for some category. The summary.proportion function is an aggregating statis-
tic. It aggregates over columns constituting a whole pie’s domain — in this
case, each gender is a whole. The aggregated variable is Response. Table 2.5
shows the result, using the summary.proportion() statistical method.

Table 2.5  summary.proportion()

2.2.5  Construct Geometry

The grammar of graphics has a variety of different geometric graphing opera-
tions, as described in Chapter 8. In this case, we will use the interval graph.
The interval() function converts an interval into a (usually rectangular) geo-
metric object with a length proportional to the interval and a nonzero (usually
constant) width. How does interval() get an interval out of the summary() sta-
tistical function if a summary is only one point statistic? The convention we
use is that interval() will add a lower bound of zero if there is only one point
statistic it receives. This convention is derived from ordinary usage, where bar
charts commonly are anchored at zero unless an explicit lower bound is spec-
ified.

CaseID Summary Response Gender

 ������!���!"��#��$�%������%& 0.08 � �

 ������!���!"��#��$�%������������%& 0.11 � �

 ������!���!"��#��$�%�''�!�������%& 0.17 � �

 ������!���!"��#��$�%����������%& 0.32 � �

 ������!���!"��#��$�%����!���%& 0.32 � �

 ����!���!"��#��$�%������%& 0.30 � �

 ����!���!"��#��$�%������������%& 0.15 � �

 ����!���!"��#��$�%�''�!�������%& 0.10 � �

 ����!���!"��#��$�%����������%& 0.07 � �

 ����!���!"��#��$�%����!���%& 0.38 � �
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The interval.stack() function cumulates the intervals constructed by the
interval geometric object. In other words, stack is a modifier method on the in-
terval class. Each interval is modified by incrementing its lower and upper
bounds by the upper bound of the preceding interval in a sequence.

Table 2.6 shows the result. Note that we maintain case information in our
graph (the leftmost column), as we will need it when we compute aesthetics.

Table 2.6  interval.stack()

2.2.6  Apply Coordinates

To make pie wedges, we apply a polar transformation to the shapes that were
produced from the geometry. We send (x, y) to (r, theta) for the shapes. Our
program might accomplish this by digitizing the edges and sending each of the
points through a simple transformation, or it might recognize that when we
transform a rectangle, we actually are creating a partial annulus and represent
the shape directly. We can even special-case the pie wedge to take advantage
of the disk-sector graphical primitive provided by many graphics systems. 

Table 2.7 shows the result of the polar coordinate transformation. We note
that this transformation applies only to the position aesthetic. It is possible in
the grammar of graphics to apply coordinate transformations to other aesthet-
ics as well, e.g., COORD: polar.theta(aesthetic(color)). This is how we can em-
ploy different color spaces, for example, in a graphic. It is important to
remember that a frame is a space and that every aesthetic, not just position, has
a frame. We are so accustomed to thinking about positional aspects of visual-
izations that we forget that coordinate spaces apply to all the aesthetics, using
similar rules in each ease.

CaseID Interval Response Gender

 ������!���!"��#��$�%������%& � 1

 ������!���!"��#��$�%������������%& � 1

 ������!���!"��#��$�%�''�!�������%& � 1

 ������!���!"��#��$�%����������%& � 1

 ������!���!"��#��$�%����!���%& � 1

 ����!���!"��#��$�%������%& � 2

 ����!���!"��#��$�%������������%& � 2

 ����!���!"��#��$�%�''�!�������%& � 2

 ����!���!"��#��$�%����������%& � 2

 ����!���!"��#��$�%����!���%& � 2
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Table 2.7 polar.theta()

By postponing the coordinates operation as late in the pipeline as possible,
we have made the system more flexible. The same code can produce a divided
bar or pie. This is one example that follows one of our favorite maxims of good
design, the title of an MIT AI Lab report, “Planning is just a way of avoiding
figuring out what to do next” (Brooks, 1987). 

2.2.7  Compute Aesthetics

We have created a graph, but a graph is a mathematical abstraction. We cannot
sense mathematical abstractions. We must therefore give this abstraction per-
ceivable form. Aesthetic functions translate a graph into a graphic. Table 2.8
adds three aesthetic functions — position, color, and label. We have not in-
cluded the text for each label in the table, but assume the proper text is acces-
sible in an additional column.

The input to each of the aesthetic functions is a set of tuples, constituting
the frame for each aesthetic. Let’s try to specify each in a sentence. The tuples
input to the position aesthetic are in a region defined by the polar transforma-
tion of the region created by the interval.stack() geometric element operating
on the summary.proportion() function operating on the varset created by crossing
Response and Gender; the output tuples are used as references to screen or
page coordinates. The tuples input to the color aesthetic are in a region containing
all possible values of the Response variable; the output tuples are used as point-
ers to the entries of a color table. The tuples input to the label aesthetic are the
same as those input to the color aesthetic; the output tuples are used as pointers to
the character strings containing the labels.

CaseID Slice Response Gender

 ������!���!"��#��$�%������%& � 1

 ������!���!"��#��$�%������������%& � 1

 ������!���!"��#��$�%�''�!�������%& � 1

 ������!���!"��#��$�%����������%& � 1

 ������!���!"��#��$�%����!���%& � 1

 ����!���!"��#��$�%������%& � 2

 ����!���!"��#��$�%������������%& � 2

 ����!���!"��#��$�%�''�!�������%& � 2

 ����!���!"��#��$�%����������%& � 2

 ����!���!"��#��$�%����!���%& � 2
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The output of each aesthetic function is a graphic, which is a set of draw-
ing instructions for a renderer. The position() aesthetic translates the tuples
corresponding to the vertices of the objects to be drawn into a renderer coor-
dinate system (usually pixel-based). The color() aesthetic function produces
an index to a color table so that the renderer can apply the appropriate color.
We have colored the wedges in the table to signify this. The label() aesthetic
function associates strings with values.

Sometimes attention to detail leads to a level of detail that appears unnec-
essary. In programming these operations, however, we cannot ignore details.
Entrusting a rendering system to implement the details can cause problems in
a grammar-based system. For example, the grammar requires us to be able to
chain coordinate systems, as we have done here for the pie chart. Some ren-
derers that offer different coordinate systems do not allow chaining them,
however, because not all coordinate transformations are invertible. If we use
default coordinate systems in these graphics systems, we will not be imple-
menting the grammar.

Table 2.8 position(��������� �����), color(��������), label(��������)

Figure 2.4 shows a possible result of a renderer working on the data in Ta-
ble 2.8, together with the formal specification for the graph. The layout fol-
lows certain conventions that we will discuss later in this book. For example,
the two pies are arranged horizontally and the labels are placed below the pies.
These conventions, of course, are arbitrary. It is important, of course, that they
be applied consistently and with good design considerations.

CaseID Slice Response Gender

 ������!���!"��#��$�%������%& � 1

 ������!���!"��#��$�%������������%& � 1

 ������!���!"��#��$�%�''�!�������%& � 1

 ������!���!"��#��$�%����������%& � 1

 ������!���!"��#��$�%����!���%& � 1

 ����!���!"��#��$�%������%& � 2

 ����!���!"��#��$�%������������%& � 2

 ����!���!"��#��$�%�''�!�������%& � 2

 ����!���!"��#��$�%����������%& � 2

 ����!���!"��#��$�%����!���%& � 2
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DATA: response = Response
DATA: gender = Gender
SCALE: cat(dim(1),
             values("Rarely","Infrequently","Occasionally","Frequently","Not Sure"))
SCALE: cat(dim(2), values("Female","Male"))
COORD: rect(dim(2), polar.theta(dim(1)))
ELEMENT: interval.stack(position(summary.proportion(response*gender)),

label(response), color(response))

Figure 2.4  Pair of pies

2.3 Notation
Each graphic in the first part of this book is accompanied by a symbolic spec-
ification. The main purpose of the specification syntax is to allow compact
summarization of the components represented in Figure 2.2. When you exam-
ine a particular graphic, it is important to spend enough time on the specifica-
tion to understand the meaning of the graphic. The meaning of a graphic is its
specification and associated data.

2.3.1  Specifications

The specifications at the head of each graphic follow these conventions:

1)  SMALL-CAPS: statement type
2)  typewriter: data fields
3)  sans-serif: variables
4)  italic: functions

Not every printed specification is sufficient for producing the entire graph
shown in the figure. We have omitted details such as positioning of legends,
annotation, and labeling of axes in order to focus on the fundamental structure
of the graphics. In addition, we have occasionally used color to highlight
graphical elements referenced by the text. This use of color does not always
appear in the specification. Finally, we have used text sparingly in some places
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in order to emphasize the essential features of the graphics being discussed.
Some of the graphics in this book lack the labels and other annotation that
would be desirable for substantive publications.

For any graphic, the expression, attributes, and graphs will be represented
in a multi-line notation that comprises the specification. The first line or lines
contain the DATA functions that create variables from data. These are normally
omitted if the data are assumed to be organized in a cases-by-variables matrix.
The next lines give the TRANS specifications that define the transformation to
be applied to the variables. These lines are optional if we assume an identity
transformation. The next lines are the SCALE specifications that specify dimen-
sions on which the graphs will orient themselves. The SCALE specifications are
optional if an ordinary interval scale is used on all dimensions. The next line
or lines is the COORD specification that defines the coordinate system in which
the graphs are to be embedded. We usually set the coordinates for the position
aesthetic, but we could set coordinates for other aesthetics as well in a similar
statement. This line is optional if we assume rectangular Cartesian coordi-
nates. The next line or lines is the GUIDE specification for axes and legends and
other guide notation. The remaining lines contain the geometric graphing
functions for the graphs appearing in the frame. These are denoted with the la-
bel ELEMENT.

For example, a two-dimensional scatterplot can be represented by

DATA: x = x
DATA: y = y
TRANS: x = x
TRANS: y = y
SCALE: linear(dim(1))
SCALE: linear(dim(2))
COORD: rect(dim(1, 2))
GUIDE: axis(dim(1))
GUIDE: axis(dim(2))
ELEMENT: point(position(x*y))

or equivalently for this example,

ELEMENT: point(position(x*y))

The DATA specification assigns a unique index to each element of the data
using an index function. Sequential indexing is used in this example, so it can
be omitted. The TRANS specification transforms the resulting variables. The
identity transformation is used here, so it can be omitted. The SCALE specifi-
cation sets the scales for each dimension. Linear decimal scales (as opposed
to, say, log scales) are used, so it can be omitted. The COORD specification sets
the coordinate system. Rectangular coordinates are used, so it can be omitted.
The GUIDE specifications determine two axes. These default to the dimensions
in the frame, so they can be omitted. And the GRAPH specification includes any
functional graphs.
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2.3.2  Functions

Functions are notated in italics, e.g.,

color()
position()
point.statistic.mean()
log()

Functions may be overloaded. This is a method for grouping under one name
several functions that perform similar tasks but have different arguments. If
we need to assign an index to a value of a variable, for example, we can make
several versions of a function and name all of them index(). One version ac-
cepts real numbers, another accepts strings, and so on. By using the same
name for each function and letting the system determine which version to use
after examining the type of arguments, we can keep our design simple. For ex-
ample, the following three functions return the same result (assuming the vari-
able group contains a single value of either color.red or 0 and assuming the
value of color.red is 0):

color(color.red)
color(0)
color(group)

Precise definitions of this behavior are required, but overloading is easy to im-
plement in object-oriented languages like Java. It is more difficult (but not im-
possible) in languages like C and FORTRAN.

See Chapter 18 for more information on the Graphics Production Lan-
guage (GPL) used in this book. It is a well-formed executable computer lan-
guage.

2.4 Sequel
The rest of this book examines Figure 2.2 in more detail. The next chapter
starts at the beginning. It covers data and datasets, the classes of objects that
are at the lowest stage of the graph creation hierarchy.



3
Data

The word data is the plural of the Latin datum, meaning a given, or that which
we take for granted and use as the basis of our calculations. This meaning is
carried in the French word for statistical data, données. We ordinarily think of
data as derived from measurements from a machine, survey, census, test, rat-
ing, or questionnaire — most frequently numerical. In a more general sense,
however, data are symbolic representations of observations or thoughts about
the world. As we have seen, we do not need to begin with numerals to create
a graphic. Text strings, symbols, shapes, pictures, graphs themselves, can all
be graphed. 

Older graphing systems required data to be stored in flat files containing
row-by-column arrays of numerical observations on a set of variables. Spread-
sheet graphics systems also arrange data this way. In these systems, the struc-
ture of the data determines the types of displays possible: line charts, bar
charts, pie charts, or scatterplots. More recent object-oriented graphics sys-
tems assume their data are in a data source. And the most flexible systems
provide an object-oriented interface to the data source which makes no as-
sumptions about the underlying structure of the data. The graphing system it-
self has a view of the data that it uses for its initial mapping. This view may
have no simple relation to the actual organization of the data source. In addi-
tion, the view may change from moment to moment because the system may
be fed by a streaming data source. A well-designed graphics system must be
able to handle these situations in order to avoid static views that can misrep-
resent the underlying data.

This chapter outlines three types of data: empirical, abstract, and meta.
These types are distinguished by their sources and function. Empirical data are
collected from observations of the real world. Abstract data arise from formal
models. And metadata are data on data. Treinish (1993) provides further de-
tails on these types and elucidates them within the general context of graphics
production. Fortner (1995) discusses empirical and abstract scientific data.
We will first summarize data functions and then discuss these three types of
data. We will conclude with a brief section on the emerging field of data min-
ing and its relationship to the models needed to support a graphical system.
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3.1 Data Functions
Table 3.1 lists some functions we will use in this chapter to create variables
from datasets. We use the convention that the typewriter letters refer to
column names (domain names) of a relation. The results of these functions are
function variables. As we mentioned in the last chapter, we could apply these
functions to the contents of an object-oriented database as long as we devised
a relational interface to insure that related sets are indexed properly. In any
case, the actual referencing scheme we need is independent of the physical or
formal organization of the data themselves.

Table 3.1  Data Functions

The empirical functions operate on columns of observed data. The col()
function links a variable to a column in a data source. If this function is not
used in a specification, then the names of variables are assumed to be the same
as the names of fields in the data source. The unit() argument assigns measure-
ment units. The weight() argument maps a column to case weights used for
statistical calculations. The map() function is for maps, the stream() function
is for streaming data sources, and the image() function is for image sources.

The sample() function implements sampling. Sampling methods include
sample.srs (simple random), sample.jackknife (Tukey, 1958) and sample.boot
(Efron & Tibshirani, 1993). The reshape() function reshapes a matrix or table
of columns (corresponding to an n-ary relation) into a single variable. Let
Xm$n be a matrix produced by concatenating the columns (x1,...,xn). Let i and
j be row and column indices respectively of the matrix X (i = 1, ... , m and j =
1, ... , n). Let k be the row index of the variable x output by the reshape() func-
tion. The reshape() functions compute the index k as follows:

reshape.rect():
reshape.tri():
reshape.low():
reshape.diag():

Empirical Data Abstract Data Metadata

col(source(), name(), unit(),
      weight())
map(source(), id())
stream(source(), id())
image(source())
sample(x, n)
reshape(x1,...,xn , "<index>")

iter(from,to,step)
mesh(min, max, n)
count(n)
proportion(n)
percent(n)
constant(c, n)
string("<string>", n)
rand(n)

meta(source(), name())

k n i �–� �* j+=
k i i �–� �* �+ j�	� i j,� �+=
k i �–� � i �–� �* �+ j�	� i j�� �+=
k i�	� i j=� �=
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Note the name of the function is what it converts from, not to. The re-
shape.rect() function unwraps the rows of a rectangular matrix into a single
column. The reshape.tri() function unravels the lower triangular half (includ-
ing the diagonal) of a square matrix into a single column. The reshape.low()
function does the same for the triangular half excluding the diagonal. And the
reshape.diag() function places the diagonal of a square matrix into a column.

The <index> argument to the reshape() function has several alternatives:

value: the value of the entries
rowindex: the row index
colindex: the column index
rowname: the row name
colname: the column name

The reshape() functions leave one with the impression that a matrix alge-
bra package could provide many (but not all) of the functions needed for struc-
turing data at the first stage of a graphics system. Many of the graphics we
draw in practice depend on a matrix data model. Notable exceptions, however,
are geographic, physical, and mathematical objects that must depend on dif-
ferent data organizations.

The abstract functions create columns. They operate across rows and most
take an argument (n) for the number of rows; if the argument is omitted and
we are processing a real dataset, n is the number of rows in the dataset. The
iter() function is a simple iterator for creating arithmetic series. The series
iter(1, 10, 1) contains a sequence of the integers 1 through 10, for example.
The mesh() functions computes a 1D, 2D, or 3D mesh. The count(), propor-
tion(), and percent() functions are iterators as well. The count(10) function, for
example, is equivalent to iter(1, 10, 1). A comparable proportion(10) iterator
would be equivalent to iter(.1, 1.0, .1). Finally, the constant() and string() it-
erators supply n instances of an item and the rand() iterator generates indepen-
dent random numbers. The rand() iterator has methods such as rand.uniform()
and rand.normal(). We will occasionally use <string> as shorthand for the
string("<string>") function, e.g.,

DATA: s = string("Hello world")
DATA: s = "Hello world"

The meta() function associates metadata with rows of datasets. We have
included an atomistic example to suggest the association of a single metadata
item with a row of a dataset. Each index in the source() of the meta() function
might point to a video image, a Web address in the form of a Universal Re-
source Locator (URL), or some other item of metadata.

Finally, there is a system variable that may be used in place of user vari-
ables. It is an identity variable, notated 1, which is an identity element for the
cross and nest operators in graphics algebra. It is discussed in Section 5.1.3.3. 
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3.2 Empirical Data
Empirical data arise from our observations of the world. The Greek term

, the source of the English word empirical, means experience or
acquaintance with some thing. Among the many prevailing views of the role
of empirical data in modern science, there are two opposing extremes. On the
one hand, the realist assumes data are manifestations of latent phenomena. In
this view, data are pointers to universal, underlying truths. On the other hand,
the nominalist assumes data are what they describe. From this latter point of
view, as the philosopher Ludwig Feuerbach noted, “you are what you eat.” We
use the historical realist-nominalist terminology to emphasize that these dif-
fering perspectives, in one form or another, have origins in Medieval theolog-
ical controversies and their classical antecedents in Greek philosophy.

Many working scientists adopt some form of a realist position, particular-
ly those in the natural sciences. Even social scientists, despite the myriad par-
ticulars of their field, have often endorsed a similar position. Watson (1924)
and Hull (1943), for example, believed that behavioral data could be explained
best through universal quantitative laws. More recently, Webb et al. (1981)
promoted “unobtrusive” data collection methods that point to or help us trian-
gulate on basic truths about behavior. 

Alternatively, operationalists like Skinner (1969) have argued that behav-
ioral data are best understood by avoiding unobservables and inferences. Skin-
ner even rejected statistical modeling, arguing that smoothing or aggregation
obscures details that could help falsify theories. The graphics in Skinner
(1961), for example, are the cumulative traces over time by a stylus connected
to a lever or button pressed by a pigeon (“untouched by human hands”). Figure
3.1 shows an example of this type of graphic. The horizontal axis marks the
linear movement of the stylus over time. The vertical axis marks the increment
of the stylus following each bar press. The vertical trace lines are due to reset-
ting of the stylus to keep it on a single page. Skinner argued that these graphics
are sufficient representations of responses to schedules of reinforcement. He
contended that smoothing, interpolation, aggregation, or model fitting only
hide the associations that the scientist needs to see in order to refine theory.

Figure 3.1  Cumulative record
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Skinner’s cumulative-record graphic would appear to short-circuit the di-
agram presented in Figure 2.2. It would seem that the physical production of
such a graphic obviates the need for data functions, variables, indeed, a com-
puter. In fact, however, Skinner’s hard-wired device performs our data func-
tions implicitly. Each pen movement involves a sequential indexing of the bar
press events and time increments. Skinner’s variables are Time and Cumula-
tive Response Count.

Computer data acquisition systems now perform the functions originally
designed into mechanical lab equipment like Skinner’s. In doing so, they en-
able alternative data organization and views not always anticipated by the sci-
entist collecting the data. Consider Figure 3.1. It is visually indistinguishable
from several of the cumulative records in Ferster and Skinner (1957). Howev-
er, if we had Skinner’s raw data we could use modern statistical time-series
methods (unavailable to Skinner) to show that the data underlying Figure 3.1
were not produced by a real organism (human, mouse, or pigeon) in an oper-
ant conditioning chamber. They were generated by a computer from a stochas-
tic equation. This detective work would involve producing a different graphic
from the same data. We can sometimes image-scan older graphics to retrieve
data, but there is no substitute for having the original observations and devis-
ing our own analyses.

 The following examples illustrate some methods for referencing and or-
ganizing raw data to produce variables that can be graphed. The first example
shows how variables are not always derived from columns in files. The second
shows how they may be derived from repeated random samples.

3.2.1  Reshaping Data

Since any matrix is transposable, we can convert row data into column data
and graph them when appropriate (e.g., Jobson, 1992, p. 428). Or, as Figure
3.2 shows, we can construct a graphic based on a subset of a matrix. 

A correlation matrix is a symmetric matrix of the correlations among a set
of variables. If our received data are in a correlation matrix and we wish to
graph the correlations, we have to restructure them into one variable using the
reshape.low() function. This takes the lower-triangular elements of a symmet-
ric matrix and strings them into one variable.

DATA: r = reshape.low(pounding, sinking, shaking, nauseous, stiff,
faint, vomit, bowels, urine, "value")

ELEMENT: point.dodge.asymmetric(position.bin.dot(r))

Figure 3.2  Dot plot of correlations from correlation matrix
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These correlations are based on recalled experiences of symptoms of
combat stress (1=yes, 0=no) among soldiers who experience battle in World
War II. These data fit a Guttman scale (Stouffer et al., 1950). A Guttman scale
is an ordinal relation that Guttman called a simplex. Presence of a given symp-
tom implies presence of all milder symptoms and absence of a given symptom
implies absence of all stronger symptoms. Such a relation implies that the ma-
trix of correlations among symptoms should have all positive elements that
follow a banded structure, with the largest correlations near the diagonal and
the smallest near the corner opposite the diagonal. 

We can display this structure by reshaping the correlation matrix in a dif-
ferent way. This time, we will create three variables — a row index, a column
index, and the value of the correlation corresponding to each combination of
these indices. Then we will plot the entire correlation matrix using color to
represent the value of each correlation. This method works well in this exam-
ple because all the correlations (as expected for a simplex) are positive. 

Figure 3.3 reveals this structure. We have used the reshape() data func-
tions to derive indices for plotting the rows and columns of the correlation ma-
trix directly and a polygon graph within binning (see Chapter 8) to represent
the correlations as colored rectangles. Notice that the colors get warmer as we
approach the diagonal.

DATA: row = reshape.tri(pounding, sinking, shaking, nauseous,
stiff, faint, vomit, bowels, urine, "rowname")

DATA: col = reshape.tri(pounding, sinking, shaking, nauseous,
stiff, faint, vomit, bowels, urine, "colname")

DATA: r = reshape.tri(pounding, sinking, shaking, nauseous, stiff,
faint, vomit, bowels, urine, "value")

ELEMENT: polygon(position(bin.rect(col*row)), color.hue(r))

Figure 3.3  Correlation matrix of combat symptoms
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3.2.2  Bootstrapping

Efron and Tibshirani (1993) discuss a procedure for repeatedly computing a
statistic using random samples (with replacement) from a dataset. This proce-
dure, called bootstrapping, offers a way to compute confidence intervals
when conventional methods are inefficient or unavailable. A bootstrap sample
is a sample with replacement from a dataset. Usually, the size of the sample is
the same size as the dataset, so that some cases are sampled more than once.
Figure 3.4 shows an example of a histogram of a dataset and a histogram of
means from 1,000 bootstrap samples of that dataset. The variable mean is in-
dexed to a set of bootstrapped means, each of which was computed from the
original dataset. This operation is equivalent to computing the mean of a set
of values by making a single pass through a column of a database, repeating
this database query 1,000 times, and then assembling all the means into a col-
umn of 1,000 values. This computationally intensive operation is not one cal-
culated to endear a user to a database administrator. Although automated
boostrapping is not available in database systems, some statistical packages
that have data management subsystems do perform bootstrapping.

ELEMENT: interval(position(summary.count(bin.rect(military, dim(1)))))

DATA: mean = sample.boot(military, 1000, "mean")
ELEMENT: interval(position(summary.count(bin.rect(mean, dim(1)))))

Figure 3.4  Bootstrapped means

Two salient contrasts are apparent in Figure 3.4. The first is that the his-
togram of bootstrapped means is less positively skewed. The second is that the
variation in the bootstrapped means is smaller. The standard deviation of the
values in the left histogram is 214.1 and the standard deviation of the mean
values in the right histogram is 42.3. These differ by a factor of approximately
5, which is the square root of the sample size, 25. The bootstrapping results
are consistent with the standard statistical theory for the sampling distribution
of means. Nevertheless, the distribution of means is still positively skewed. If
the sample size were larger than 25, the means would look more normally dis-
tributed.
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3.3 Abstract Data
Abstract data functions are most often used to create variables consisting of
series, lattices, and other indexing schemes that we use to arrange observed
data values. There are many generating functions for series that are useful in
the data manipulation needed for statistical graphics. Knuth (1968) discusses
some of these functions. Sometimes we construct graphics using abstract data
that are determined by a mathematical rule or function. We will first present
some simple examples of the former and then one example of the latter.

3.3.1  Time Series

Time series datasets do not always include a column for time. Even when they
do, we sometimes wish to plot against the index of the measurement rather
than against time. Figure 3.5 contains 256 instantaneous firing rate measure-
ments of a single cat retinal ganglion cell during a 7 second interval (Levine
et al., 1987). The points are connected by a line graph. Most time series pack-
ages automatically create this index variable for equally spaced time series;
some go further and code the series in calendar time. In this example, we have
used the iter data function to create a time index running from 1 to 256.

We have chosen an aspect ratio for this plot that reveals a low-frequency
component of roughly one-and-a-half cycles over the duration of the series.
This component is due to the respiration of the cat, according to Michael Le-
vine (personal communication). Firing rate tends to increase with more oxy-
gen in the blood.

DATA: case = iter(1, 256, 1)
ELEMENT: line(position(case*rate))

Figure 3.5  Firing rate of cat retinal cell ganglion
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3.3.2  Counts

Bar charts of counts often need to be constructed when there is no explicit
count variable in the data. Figure 3.6 shows a bar chart constructed from the
countries data used in Chapter 8. The constant() implicit function fills a col-
umn with ones. The summary.count statistical function (see Chapter 7) tallies
the counts in all combinations of gov and urban values. Notice that we did not
use the bin statistical function as we did for histograms. The data are already
classified into distinct groups by the categorical variables. In some histogram
examples and bar charts of counts, we omit the constant variable. In the GPL
language, we assume the summary.count function constructs it if it is missing.

DATA: z = constant(1)
COORD: rect(dim(1, 2, 3))
ELEMENT: interval(position(summary.count(gov*urban*z)))

Figure 3.6  Count bar chart

3.3.3  Mathematical Functions

Data for a graphing system may exist only as an abstraction. This happened in
a system developed for automatically graphing interesting subsets of mathe-
matical functions (Wilkinson, 1993a). The data for this system are expressed
by an equation. The system examines the equation to determine bounded, pe-
riodic, and asymptotic behavior and then chooses a suitable range and domain
for graphing the function. The system then renders the function based on its
analysis. 
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Figure 3.7 shows an example of such a plot using a polar arc-tangent func-
tion. The system determined that the behavior outside of [–5 < x,y < +5] in the
domain could be inferred relatively accurately by looking at the behavior in
the visibly graphed domain. It scaled the range to [0 < f(x, y) < .9] to encom-
pass the interesting behavior there as well.

DATA: x, y = mesh(min(–5, –5), max(5, 5))
TRANS: z = (x^2+y^2)/sqrt(x^2+y^2
COORD: rect(dim(1, 2, 3))
ELEMENT: surface(position(x*y*z))   

Figure 3.7  Automated function plot

It is easy to miss the point in the example because of the existence of sym-
bolic and numeric mathematics systems which plot functions by generating a
regular or irregular mesh of data points within a specified range and domain.
The searchable dataset in the system described here, by contrast, is theoreti-
cally infinite. It varies depending on the function being examined. For some
functions, the system spends most of its time examining values densely in a
local neighborhood and for others, it ranges far-and-wide looking for global
behavior. Thus, abstract data are not static values generated by a theoretical
function and residing in memory or a file. They are instead produced by a
mathematical system or simulation algorithm that is capable of changing its
search space dynamically. Abstract datasets are not massive. They are infinite.
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3.4 Metadata
Because our thoughts and observations are structured by the situation in which
we make them, data always include metadata. These are the facts about the
setting and circumstances under which we made our observations. Metadata
are data about data. Our countries data, for example, include information
about the statistical reporting methods for each country, the reliability and bi-
ases in the reports, types of missing data, the collection of these reports
through an agency of the United Nations, the encoding into a computer file,
the distribution of the file via electronic and printed methods, as well as nu-
merous other details. Metadata affect the way we select data for and interpret
data in our graphics. They can influence our display formally through imputa-
tion models (Rubin, 1987) or informally through written annotations attached
to the graphic. 

Several fields of study make use of metadata in different ways. Database
metadata define descriptions of fields, columns, domains, and sometimes con-
straints. A primary advantage of this technique is that applications can discov-
er the structure of information contained in a database at run time. Web
applications encode metadata in hidden tags used within the page to provide
keywords or other summary information about what a web page contains. This
information is specifically hunted by search engines for classifying web pages.
In geographic systems, information regarding area, perimeter, topography, or
demography is considered metadata and stored separately from the polygons
and images. In statistical graphics, the ancillary statistics calculated to pro-
duce a graphic can be considered metadata relevant to the graphic. For exam-
ple, a box plot produces inner and outer outliers, hinge points, fence points and
a median. All of this information can be structured in a way that parallels the
geometry of the resulting graphic as metadata. 

Combining contextual metadata with the graphics grammar can enable us
to generate graphics automatically from user queries. Assuming table- and
column-level metadata are available to describe logical, metric, and statistical
aspects of variables, we can generate grammar rules to produce one or more
graphics relevant to the query. 

3.5 Data Mining
Recent developments in data warehousing, data mining, and knowledge dis-
covery in databases (KDD) have blurred the distinctions between graphics,
statistics, and data management. Indeed, some proponents of KDD have
claimed that it will replace graphical and statistical analysis packages in the
future. These claims, however extreme, must be examined in terms of models
rather than commercial products. It is easy to mimic functionality and wrap
old designs in new interfaces in commercial software, so product comparisons
are generally not good ways to evaluate such claims.
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It is difficult to discuss this field without invoking its acronyms. A popu-
lar one is OLAP, or on-line analytical processing. OLAP is intended to de-
scribe a computing environment that provides multiple views of data in real
time (or, at least, responsive-to-my-needs time). These views are composites
of text and graphics that can be manipulated by the user to develop alternative
views. There are two main approaches to implementing an OLAP system:
Multidimensional OLAP (MOLAP), and Relational OLAP (ROLAP). We
will discuss these first and then conclude with a brief introduction to visual
query of databases.

3.5.1  MOLAP
MOLAP depends on a basic object called a data cube. This object is a

multidimensional array. Each dimension of this array is a set of sets represent-
ing a content domain such as time or geography. The dimensions are scaled
categorically (region of country, state, quarter of year, week of quarter, etc.)
so that the whole object defines a multidimensional array of cells. The cells of
this array contain aggregated measures of variables such as income or gender.
The data cube is the data for a MOLAP. In fact, this cube is usually prepared
before the user begins to explore patterns in the data, sometimes in overnight
processing runs on massive relational databases.

Exploring relations in the cube involves several operations. The popular
names for these are drill-down, drill-up, and drill-through. Drill-down in-
volves splitting an aggregation into subsets. For example, data for regions on
a geographic dimension may be split into data for states. Drill-up is the reverse
of drill-down; the user aggregates subsets on a dimension. Drill-through in-
volves subsets of crossings of sets. The user might investigate statistics within
a particular state and time period, for example.

These operations work well with statistics like counts, means, propor-
tions, and standard deviations. Simple aggregations over subclasses can be
computed by operating on sums, sums of squares, and other terms that are
combined in linear functions to produce basic summary statistics. They do not
work properly with statistics like the median, mode, and percentiles because
the aggregate of these statistics is not the statistic of their aggregates. The me-
dian of medians is not the median of the aggregate, for example. A telling in-
dicator of this fact is the lack of medians and modes from the menus of
MOLAP front-ends.

It is unnecessary to provide examples to illustrate the importance of these
alternative summary statistics. Every statistics student is introduced to the dif-
ferences between the mean and median within the first few weeks of the first
course in high school or college. One can find few governmental or commer-
cial summaries based on mean income, mean housing prices, or mean choles-
terol in the population. The median is used on these variables because of the
extreme skewness in their distributions or because of the prevalence of outli-
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ers. And for marketing data, the mean cannot substitute for the modal choice
over alternatives in a study of preferences. 

Few of the graphics in this book and in other important applications can
be computed from a data cube. There are several reasons for this situation.
First, many of the statistics presented in Chapter 7 require raw data for their
computation. These statistics give graphs the ability to represent sampling er-
ror within subclassifications. Second, spatial and time series statistics require
raw data because the distribution of errors across space and time is not inde-
pendent of space and time. Third, aggregation often involves weighting of
subclassifications by measures other than sample size. This has emerged as a
focal problem in the governmental deliberations over census taking versus
sampling. Glymour et al. (1996) discuss other factors that disqualify the data
cube from serious consideration as an informative database exploration mod-
el. 

A recent exception to this evaluation is a model presented in Sarawagi et
al. (1998). While the system they describe is not designed for producing gen-
eral graphics, it does incorporate a statistical model at the cube-building phase
that allows later exploration of the cube to be guided by robust statistical pro-
cedures. Outlier detection based on these models is used to drive the coloring
of surprising cells in the cube so that ordinary users are drawn to investigate
anomalies further. Their model could be used as one approach toward adapt-
ing cubes to more general graphical displays. 

3.5.2  ROLAP

ROLAP places an interactive data-view at the front-end or client-side of a re-
lational database. Some ROLAPs are based on a data cube model and can be
disqualified from serious consideration for reasons similar to the ones we have
given in the previous section. A more sophisticated ROLAP model has
emerged recently, however. It is possible, through several technologies, to
give statistical algorithms access to raw data through the relational model in
real time. This is an approach we advocate in this book.

One method is to use extended Structured Query Language (SQL) to cre-
ate relations that can be presented to other language clients (Java, C++, etc.)
for use as variables. This approach requires either storage of the data on the
client side (the preferable arrangement) or slow, case-by-case processing
across a communications link (network or Internet). Nevertheless, this method
provides access to the raw data and, if an extension to SQL is used, allows the
kind of data reshapings that are featured in this and the next chapter. 

Another method has become available with the advent of platform-inde-
pendent languages like Java and the encapsulation offered by software com-
ponents. These components permit remote invocation of methods that
ordinarily would be an internal part of an executing program. In this way, sta-
tistical modules can be sent to servers or remote sites to process data locally
and return summaries and other statistical objects. This approach is more
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promising than the rigid aggregations offered by structures such as data cubes.
In the most elegant form of this architecture, applications can request remote
components to provide information about their data-handling methods and
take suitable action depending on the returned information. In this form, com-
ponent architecture can achieve the real promise of distributed computing: de-
sign and execution that are independent of site, operating system, or language.

3.5.3  Visual Query of Databases
In a MOLAP or ROLAP, graphical displays are driven by the relational

structure of a database. Queries through a language such as SQL yield tables
that can be graphed. Researchers are beginning to develop approaches that re-
verse this dependency: they are designing search methods that are driven by
visual query languages rather than relational languages. The original impetus
for these methods came from Geographic Information Systems (GIS), where
spatial relations rather than variable relations necessarily govern the search
structure.

Papantonakis and King (1995) devised a graphical query language called
GQL, which functions like SQL but operates on graphical objects rather than
relational variables. Derthick, Kolojejchick, and Roth (1997) have extended
this model to allow dynamic exploration rather than static queries. In their sys-
tem, graphics are linked views into a database; manipulating graphical objects
immediately updates data objects and updating data objects immediately up-
dates graphical objects. Many of the graphical methods for accomplishing
these actions are derived from the work of the original Bell Labs statistics
group (see Cleveland and McGill, 1988). 

Chi et al. (1997) have used a spreadsheet metaphor to organize graphical
exploration. Their implementation is a prototype, but it can integrate multiple
data sources in a single display. This allows exploration through dynamically
linked views. This work resembles the trellis graphic of Becker and Cleveland
(1996) but is designed to be a controller as well as a display.

The graphics algebra presented in this book is related to this research but
comes from the opposite direction — derived from the structure of graphics
rather than the structure of data. We can expect to see convergence in database
query methods and graphic displays in coming years. Graphics will evolve be-
yond passive displays and will begin to play a role in the organization of data.
This trend is driven by the need to get beyond static query to real-time inter-
action.

3.6 Sequel
Now that we have data assembled into a reference system, we need to link data
to theoretical constructs. The next chapter covers variables and variable sets
(varsets). These are the entities that graphs describe.



4
Variables

The word variable is derived from the Latin variare, to vary. A variable gives
us a method for associating a concept like income with a set of data. Variables
are used together with operators in the syntactical portion of our specification
language (e.g., death*birth). 

In older statistical graphics systems, a variable refers to a column in a rect-
angular cases-by-variables file. Many statistical packages assume rows are
cases or observations that comprise instances or samples of a variable repre-
sented by the column. There is nothing in our definition of a variable which
requires it to represent a row or column, however. The only requirement is that
the variable mapping function return a single value in the range for every in-
dex. This generality is especially important for graphing geometric and spatial
data (Cressie, 1991). But it affects the way we approach other data as well. In
a landmark book, now out of print and seldom read by statisticians, Coombs
(1964) examined the relationship between structural models and patterns of
data. Like Guttman (1971, 1977), Coombs believed that the prevalent practice
of modeling based on cases-by-variables data layouts often prevents research-
ers from considering more parsimonious structural theories and keeps them
from noticing meaningful patterns in their data. 

In computer languages, a variable is a symbol for a data structure or con-
tainer. The data contained in the structure are assumed to vary from some state
of a program to another. The index function for a variable in a computer lan-
guage is often called an address. Some computer languages type variables
(logicals, strings, integers, reals, etc.) by confining their ranges to one of these
or some other data types. Typing can prevent undefined or nonsensical results
with some operations (adding apples and oranges), but there is nothing in our
definition of a variable to require typing based on data classes. Some opera-
tions on variables do not require type compatibility. We do require that scales
(see Chapter 6) map sets of variables to a common range, however. Otherwise,
some coordinate transformations covered in Chapter 9 would not be possible.
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4.1 Transforms
Transforms are transformations on variables. One purpose of transforms is to
make statistical operations on variables appropriate and meaningful. Another
is to create new variables, aggregates, or other types of summaries. 

Table 4.1 shows several variable transforms. This sample list is intended
to cover the examples in this book and to be a template for designing the sig-
nature and behavior of new functions. We omit ordinary algebraic operators
and standard functions here, but will use them elsewhere in the book.

Table 4.1  Variable Transforms

The mathematical functions return values that are case-by-case transfor-
mations of the values in x, where x is a varset. The log function returns natural
logarithms. The exponential and trigonometric functions are standard. The
sign() function returns 1 if a value of x is positive and –1 if it is negative. The
pow() function transforms x to the pth power of itself.

The statistical functions compute basic statistics. The mean, median, and
mode fill each value in the column with the corresponding column summary
statistic. The residual function returns the residuals of a regression of y on x.
It has several methods for regression type, with linear being the default. The
sort function orders all variables in a variable set according to the sorted order
of x. The rank function fills a column with the ranks of x, assigning fractional
ranks when there are ties. The prank function fills each case in the column
with the value (i–.5)/n for i = 1, ... , n cases assuming (as if) the column were
sorted on x. The cut function cuts a sorted column into k groups, replacing the
value of the argument with an integer from 1 to k. The zinv function replaces
a value with the inverse normal cumulative distribution function value. The lag
function replaces value xi with xi-1, setting the first value in the column to
missing. It has an optional second argument, a positive or negative integer

Mathematical Statistical Multivariate

log(x)
exp(x)
sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
atanh(x)
sign(x)
pow(x, p)

mean(x)
median(x)
mode(x)
residual(x,y)
sort(x)
rank(x)
prank(x)
cut(x,k)
zinv(x)
lag(x)
grpfun(x,g,"<f>")

sum(x1,x2,...,xn)
diff(x1,x2)
prod(x1,x2)
quotient(x1,x2)
influence(x1,x2,...,xn)
miss(x1,x2,...,xn,"<f>")



4.2  Examples 57

specifying the amount and direction of shifting. The grpfn function is a routine
that evaluates the function f named between the quotes separately for each of
the groups specified by the g argument in the parameter list.

The multivariate functions use more than one variable to construct a new
variable. The sum function fills a column with the sum of values of its argu-
ments. The diff function does the same for differences. The prod and quotient
functions compute products and ratios. The influence function computes an in-
fluence function (see Figure 10.34). The miss function imputes missing values
assuming a function named f (see Figure 20.1).

4.2 Examples
The following examples have been constructed to show that transforms are
more powerful than simple recodings of variables. Together with data func-
tions, transforms can help us create graphics that employ structures unavail-
able to ordinary graphics systems.

4.2.1  Sorting

We once met a statistician who worked for the FBI. He had helped uncover
the Chicago Machine’s voting fraud in the 1970’s. We were curious about the
methods the Federal team had used to expose the fraud, so we asked him about
discriminant analysis, logistic regression, and other techniques the statisti-
cians might have used. He replied, “We sorted the voter tape and looked for
duplicate names and addresses.” This statistical methodology may have been
inspired by the fabled Chicago Machine slogan, “Vote early and often.”

Sorting is one of the most elementary and powerful methods of statistical
and graphical analyses. A sort is a one-to-one transformation. When we use
position to represent the values of a variable, we are implicitly sorting those
values. Sorting variables displayed by position not only reveals patterns but
also makes it easier to make comparisons and locate subsets. Sorting categor-
ical variables according to the values of associated numerical variables can it-
self constitute a graphical method. 

Figure 4.1 shows an example. The data are numbers of arrests by sex re-
ported to the FBI in 1985 for selected crimes. The graphic displays the differ-
ences in proportions of each crime committed by males and females. To create
the graphic, we must standardize the data within crime category (dividing by
the row totals). The first two TRANS statements accomplish this. The next
TRANS statement creates an mf varset consisting of the difference in crime pro-
portions. We sort this varset and then plot it against the crime categories. The
pattern of the dots indicates that males predominate in almost every crime cat-
egory except vice and runaways. The largest biases are in the violent crimes.
Rape, not surprisingly, is almost exclusively male. For brevity, we have omit-
ted the GPL for the bipolar arrow annotation at the bottom.
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TRANS: total = sum(male, female)
TRANS: m = quotient(male, total)
TRANS: f = quotient(female, total)
TRANS: mf = diff(m, f)
TRANS: mf = sort(mf)
ELEMENT: point(position(mf*crime))

Figure 4.1  Gender differences in crime patterns

4.2.2  Probability Plots

Probability plots compare the n ordered values of a variable to the n-tiles of a
specified probability distribution. If we have 100 values, for example, we base
a normal probability plot on the pairs (x1, z1), (x2, z2), ... , (x99, z99), where xi
are the data values ordered smallest to largest and zi is the lower 100� percent-
age point of the standard normal probability distribution. To fit all 100 values,
we change the computation of � from i/100 to (i-.5)/100. If a probability plot
follows roughly a diagonal straight line, then we infer that the shape of our
sample distribution is approximately normal.

Figure 4.2 shows a probability plot of military expenditures from the
countries data. Our first transformation is prank(), a proportional-rank that
computes the value (i–.5) / n, i = 1 , ... n, corresponding to the values xi after
an ascending sort. Instead of reordering the data, however, prank() returns the
values in the original data sequence. Next, the zinv() function computes the
values of the cumulative standard normal distribution corresponding to the
points produced by prank(). In other words, we apply the zinv function to the
prank() values to get the theoretical normal variables we plot the data against
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(students usually have difficulty with this two-fold indirection). The left panel
of Figure 4.2 shows the raw military values and the right panel shows the plot
on a log10 scale. Logging straightens out the plot, which is another way of say-
ing that it transforms the distribution from a positively skewed shape to a more
normal one.

A probability plot can also be produced through a probability scale trans-
formation. We will show an example in Figure 6.13. We compute prank() and
then rescale the � values through a probability scale transformation. The
method in this chapter produces a new variable zinv(), while the scale method
in Chapter 6 changes only the scale on which prank() is plotted.

TRANS: alpha = prank(military)
TRANS: z = zinv(alpha)
ELEMENT: point(position(military*z))

TRANS: alpha = prank(military)
TRANS: z = zinv(alpha)
SCALE: log(dim(1), base(10))
ELEMENT: point(position(military*z))

Figure 4.2 Probability plots of military expenditures

4.2.3  Aggregating Variables

Figure 4.3 shows a box plot (see Section 8.1.1.6) of the birth rate data. This
plot divides a variable into a set of fractiles and then displays the variation in
each fractile against the median value of the variable within that fractile. It can
be used to determine whether we need a transformation for heteroscedastic
data, in which the spread increases (or decreases) proportionally to some pow-
er of the location. See Section 15.3.1.1 for a similar plot. 
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The grpfun() function computes a function (median) on a variable (birth)
within each separate group defined by a grouping variable (quartile). Notice
that the frame crosses the same variable (birth) with itself, but the position()
function for the box graph selects the values of birthquart to fix the location
of each box.

TRANS: quartile = cut(birth, 4)
TRANS: birthquart = grpfun(birth, quartile,"median")
ELEMENT: schema(shape(shape.box), position(birthquart*birth))

Figure 4.3  Box plot of a variable against its quartile medians

4.2.4  Regression Residuals

Figure 4.4 shows a linear regression residuals plot. The independent variable
in the regression is the birth rate variable from the countries data and the de-
pendent variable is death rate. The residuals are calculated from this regres-
sion, standardized, and then used as the dependent variable in the frame model
for Figure 4.4. The U-shaped pattern of residuals suggests that the linear mod-
el is not a good representation of the relationship between death rates and birth
rates for the countries.

One might ask whether statistical procedures have a useful role within a
graphical system. Two alternatives are traditional graphics packages, which
receive pre-calculated data from spreadsheets and statistics packages, and tra-
ditional statistics packages, which send their calculations to basic graphics
sub-systems. Both of these are compromises, however. Obviously, a graphics
system should not incorporate the entire range of procedures within a statisti-
cal package; this would reduce its focus. However, there are analyses that can
be performed only when graphics and statistics are intimately tied. 
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Exploratory statistical packages such as Data Desk implement such a
model. Embedding statistical procedures such as regression and correlation in
a graphics system provides functions that are unavailable in other software. In
the end, the grammar of graphics has much to do with the grammar of statis-
tics. We will discuss this further at the end of Chapter 7.

TRANS: residual = residual.linear.student(birth, death)
ELEMENT: point(position(birth*residual))

Figure 4.4  Studentized residual plot

4.3 Sequel
Now that we have variables to describe relationships through links to data, we
need a system for expressing those relationships. The next chapter covers the
formal definitions for varset algebra. 
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Algebra

The word algebra is derived from the Arabic al-jebr, which means the restor-
ing or reunion of broken parts. Its use in the West dates from the publication
in the 9th century of Muhammad ibn Musa al-Khwarizmi’s Book of Restoring
and Balancing. Khwarizimi’s name gave rise to the word algorithm. A classic
discussion of the origins of algebra is given in Jourdain (1919).

This chapter deals with restoring and balancing sets of variables in order
to create the specification for the frames in which graphs are embedded. The
first part of a specification contains the algebraic expression relating sets of
variables. We will review the rules for syntactical expressions and then present
examples of typical expressions.

5.1 Syntax

5.1.1  Symbols

A symbol is used to represent an entity operated on by an algebra. The sym-
bols in varset algebra are varsets. We will use capital italic letters for these
names in this chapter. This notation emphasizes that we are dealing with sets
when we do these operations. In examples involving algebraic specifications
on variables based on real data, we will use lowercase sans-serif names of
variables. We will also use a special variable (1), which represents the unity
variable. Its range is one unity value. When we make a scale for this variable,
no tick marks or scale values appear, but unity is located at the middle of the
scale.

5.1.2  Operators

An operator is a method for relating symbols in an algebra. There are three
operators in the graphical system, called cross, nest, and blend. We will intro-
duce them with simple tabular examples and then show the resulting mappings
for typical varsets A and B and their value domains VA and VB.
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5.1.2.1  Cross ( )

Cross joins the left varset with the right to produce a set of tuples:

The resulting set of tuples is a subset of the product of the domains of the two var-
sets. The domain of a varset produced by a cross is the product of the separate do-
mains. One may think of a cross as a horizontal concatenation of the tabular
representation of two varsets, assuming the rows of each varset are equivalent
and in the same order. The definition of cross is:

The following example shows the mappings and domains for a crossing
of two varsets using simple integer keys for the objects:

A: red # �1, 4�
blue # �2, 3�

VA = {red, blue}

B: /10 # �1�
5 # �2, 3�

10 # �4�
VB = [/10, 10]

A*B: (red, -10)# �1�
(blue, 5) # �2, 3�
(red, 10) # �4�

VA*B = {red, blue} $&[/10, 10]

5.1.2.2  Nest (/)

Nest produces a varset that looks like the result of a cross:
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The domain of a nest is not a subset of the domain of a cross, however.
Even though they look the same, the tuples of a nest are colored or tagged and
the tuples of a cross are not. The definition of nest is

The nesting variable tags the nested variable such that (s, t) implies (s : t). We
will not use this notation below, but we will assume an algebra system can
identify the nesting elements through a tagging index. The domain for a nest
must be pre-defined. To construct a nested domain, we have three options:

1)  Data values — identify the minimal domain containing the data by 
enumerating unique data tuples.

2)  Metadata — define the domain using external rules contained in a 
metadata resource or from known principles.

3)  Data organization — identify nested domains using the predefined struc-
ture of a hierarchical database or OLAP cube.

The following example shows a nesting of two categorical variables:

A: ant # �1�
fly # �2, 3�

bee # �4�
VA = {ant, fly, bee}

B: noun # �1, 2, 4�
verb # �3�

VB = {noun, verb}

A/B: (ant, noun) # �1�
(fly, noun) # �2�
(fly, verb) # �3�

(bee, noun) # �4�
VA/B = {(ant, noun), (fly, noun), (fly, verb), (bee, noun)}

If we look at the first entry in each tuple resulting from a nesting, then we
can interpret nesting as an operation that defines meaning conditionally. In this
example, the meaning of fly is ambiguous unless we know whether it is a noun
or a verb. Furthermore, there is no verb for ant or bee in the English language,
so the domain of A/B does not include this combination. In a sense, there is a
dependency in the entries of the tuple defined by a nest that does not exist in
the entries defined by a cross. And this dependency is described by interpret-
ing the first entry of a tuple conditioned on the value of the second.

A B+ �	� s t�� � A s� � B t� ��#

VA B+ s t�� � s VA t VB�	�A s� � B t� � �1��0��0�� �=
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If A is a continuous variable, then we have something like the following:

A: 0 # �1�
8 # �2�

1.4 # �3�
3 # �4�

10 # �5, 6�
VA = [0, 10]

B: 1 # �1, 2, 3�
2 # �4, 5, 6�

VB = {1, 2}

A/B: (0, 1) # �1�
(8, 1) # �2�

(1.4, 1) # �3�
(3, 2) # �4�

(10, 2) # �5, 6�
VA/B = {[0, 8] $&{1}, [3, 10] $&{2}}

In this example, the elements of the nesting A/B result in intervals condi-
tioned on the values of B. A represents 6 ratings (ranging from 0 to 10) of the
behavior of patients by two psychiatrists. B represents the identity of the psy-
chiatrist making each rating. The intervals [0, 8] and [3, 10] imply that psychi-
atrist 1 will not use a rating greater than 8 and psychiatrist 2 will not use a
rating less than 3. Nesting in this case is based on the (realistic) assumption
that the two psychiatrists assign numbers to their perceptions in a different
manner. A rating of 2 by one psychiatrist cannot be compared to the same rat-
ing by the other, because of possible differences in location, scale, and even
local nonlinearities. Much of psychometrics is concerned with the problem of
equating ratings in this type of example so that nesting would not be needed,
although it is not always possible to do so plausibly.

 The name nest comes from design-of-experiments usage (e.g., Neter,
Wasserman, and Kutner, 1990). We use the word within to describe its effect.
For example, the phrase “teachers within schools” means that teachers are
nested within schools. If each teacher works at only one school, two teachers
with the same name at different schools are different people. 

Those familiar with experimental design may recognize that the expres-
sion A/B is equivalent to the notation A(B) in a design specification. Both ex-
pressions mean ‘‘A is nested within B.” Statisticians’ customary use of
parentheses to denote nesting conceals the fact that nesting involves an oper-
ator, however. Because nesting is distributive over blending, we have made
this operator explicit and retained the conventional mathematical use of paren-
theses in an algebra. 
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5.1.2.3  Blend (+)

Blend produces a union of varsets:

Notice that we lose information about which value came from which column.
We should restrict blend to varsets with composable domains, even though we do
not need this restriction for the operation to be defined. It would make little sense
to blend Age and Weight, much less Name and Height. The definition of blend
is

In vernacular, we often use the conjunction and to signify that two sets are
blended into one (although the word or would be more appropriate technical-
ly). For example, if we measure diastolic and systolic blood pressure among
patients in various treatment conditions and we want to see blood pressure
plotted on a common axis, we can plot diastolic and systolic against treatment.
The following example shows a blending of two varsets:

A: 0 # �1�
120 # �2�
90 # �3, 4�

VA = [0, 120]

B: 10 # �1�
200 # �2, 3�
90 # �4�

VB = {10, 200}

A+B: 0 # �1�
10 # �1�

120 # �2�
90 # �3, 4, 4�

200 # �2, 3�
VA+B = [0, 200]
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5.1.2.4  Shorthand

For convenience, we occasionally make use of two operator aliases that reduce
the complexity of graphics algebra expressions. The first is “exponentiation” 

The second is a “dot-cross” operation (assuming the arguments conform)

Of course, this operation is practical only if we have our hands on X, Y, A, and
B. Once they are blended, we cannot disentangle them.

Neither of these additional operators is necessary, but they are convenient.
Inventing new operations leads to a question: Can we get along with only three
operators or is that too many? It is not easy to prove necessity or sufficiency
for the graphical applications of the three operators in this chapter because the
domain of applications is ill-defined. Nevertheless, we claim that only three
operators are necessary and sufficient for doing statistical graphics. The bases
for this claim are several assertions. 

First, these operators have reproduced published graphics via an automat-
ed system. They have been tested against a set of graphics we have collected
over a fifteen-year period. Second, there were four operators in this system be-
fore we discovered that one could be replaced with a simple combination of
two others. We have not found any straightforward way to collapse the current
three into two and have not found a published graphic that requires four.

In evaluating these assertions, one must not interpret these three operators
as data transformations or as means for organizing data before plotting — as
if we were rearranging cells in a spreadsheet prior to producing a graphic. We
have seen those types of data operations in Chapter 3. They occur before alge-
braic operations on variables. If we replaced operators with ad hoc combina-
tions of rows and columns of data, then we would lose the connection between
variables and graphics. An automated system would not be able to respond to
queries concerning variables. We will discuss some of these issues further at
the end of this chapter when we compare graphics algebra to other algebras.

5.1.3  Rules

We separate each of the following proofs into two parts. First, we show map-
pings are the same for the left and right varset expressions in each equality col-
ored red; that is, we show , where L and R are the varsets on the
left and right of each red equality and s is a value in both domains. Second, we
show the domains are the same for the left and right varset expressions; that
is, we show .

X^2 X*X=

X^3 X*X*X=

X Y+� � A B+� �2 X*A Y*B+=

L s� � R s� �=

VL VR=
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5.1.3.1  Associativity
Cross

Nest

Blend

5.1.3.2  Distributivity
Cross

X Y*� � Z* X Y Z*� �*=
X Y*� � Z*� � r s� t�� � X Y*� � r s�� � Z t� ��=

X r� � Y Z*� � s t�� ��=

X Y Z*� �*� � r s t��� �=

V X Y*� � Z* r s� t�� � r s�� � VX Y*� t VZ�0�0�� �=

r s t��� � r VX� s t�� � VY Z*�0�0�� �=

VX Y Z*� �*=

X Y+� � Z+ X Y Z+� �+=
X Y+� � Z+� � r s� t�� � X Y+� � r s�� � Z t� ��=

X r� � Y Z+� � s t�� ��=

X Y Z+� �+� � r s t��� �=

V X Y+� � Z+ r s� t�� � r s�� � VX Y+� t VZ�0�0�� ��	� X Y+� � r s�� � Z t� � �1�� �=

r s t��� � r VX� s t�� � VY Z+�0�0�� ��	�X r� � Y Z+� � s t�� � �1�� �=

VX Y Z+� �+=

X Y+� � Z+ X Y Z+� �+=
X Y+� � Z+� � s� � X Y+� � s� � Z s� ��=

X s� � Y Z+� � s� ��=

X Y Z+� �+� � s� �=

V X Y+� � Z+ VX VY�� � VZ�� �=

VX VY VZ�� ��� �=

VX Y Z+� �+=

X Y Z+� �* X Y X Z*+*=
X Y Z+� �*� � r s�� � X r� � Y Z+� � s� ��=

X r� � Y s� � Z s� ��� ��=

X r� � Y s� � X r� � Z s� ����=

X Y* X Z*+� � r s�� �=

VX Y Z+� �* r s�� � r VX� s VY VZ��0�0�� �=

r s�� � r s�� � VX VY� VX VZ���0�� �=

r s�� � r s�� � VX Y* VX Z*��0�� �=

VX Y* X Z*+=
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Similar to above.

Nest

Similar to above.

5.1.3.3  Identity

The identity element for blend is a null set. The varset

where  covers all caseIDs, is called the unity varset. Its domain is the unity
value. We annotate the unity value in GPL as 1. When we make a scale for
unity, no tick marks or scale values appear, but unity is located at the middle
of the scale. This varset is a pseudo-identity for cross and nest. The expres-
sions p1980 and p1980*1, for example, produce identical appearing graphics
(see Figure 5.1). 

5.1.3.4  Commutativity

The first edition asserted commutativity for the blend operator. This is easy to
show for setwise operations in the above notation (the proof is left to the read-
er). Nevertheless, there are certain geometric elements (path, for instance),
that are order-dependent with respect to blend. Rather than place restrictions
on blends, we prefer to make graphics algebra noncommutative. Our parser
made no use of commutativity, so nothing changes.

X Y+� � Z* X Z Y Z*+*=

X Y Z+� �+ X Y+ X Z++=
X Y Z+� �+� � r s�� � X r� � Y Z+� � s� ��=

X r� � Y s� � Z s� ��� ��=

X r� � Y s� � X r� � Z s� ����=

X Y+ X Z++� � r s�� �=

VX Y Z+� �+ r s�� � r VX� s VY Z+ �	�X r� � Y Z+� � s� � �1��0�0�� �=

r s�� � r VX� s VY VZ �	�X r� � Y s� � Z s� ��� � �1���0�0�� �=

r s�� � r s�� � VX VY� VX VZ �	�X r� � Y s� � X r� � Z s� ��� �1����0�� �=

r s�� � r s�� � VX Y+ VX Z+ �	�X r� � Y s� � X r� � Z s� ��� �1���0�� �=

VX Y+ X Z++=

X Y+� � Z+ X Z+ Y Z++=

��	�unity 3#

V
�

unity=

3
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5.1.4  Expressions

An expression is an ordered sequence of one or more symbols with operators
between each pair of adjacent symbols in the sequence. A term is an expres-
sion with no + operator (e.g., A or  or . A factor is a term with
no * operator (e.g., or ). The expression  has one term and
four factors. The expression  has two terms; after expanding to

, we can see one factor in each term. A monomial is an expres-
sion with one term. A polynomial is an expression with more than one term.
The expressions  and are monomials, while the expressions 
and are polynomials.

5.1.4.1  Algebraic Form

An algebraic form is a monomial or a polynomial whose terms all have the
same number of factors. The order of an algebraic form is the number of fac-
tors in one of its terms. The expression  is an algebraic form of
order 2, but  is not an algebraic form because the first term has two
factors and the second has one.

If we want to identify how many dimensions there are in a graphic con-
structed from a general algebraic expression, and to find which variables are
assigned to each dimension, we can implement a symbolic algebra machine
that can convert general algebraic expressions into algebraic forms. The first
stage in normalizing an expression to algebraic form is to expand the expres-
sion into a collection of monomials. Then we determine the largest order
among the monomials, say k. Finally, we augment any monomial less than or-
der k by crossing on the right with the unity element enough times to make it
order k. For example, we expand the expression 

to 

and note that k = 2. Then we convert the expression to 

5.1.4.2  Operator Precedence

Nest takes precedence over cross and blend. Cross takes precedence over
blend. This hierarchical order may be altered through the use of parentheses.

A*B A*B C+
A A B+ A*B*C*D

A B+� � C+
A C+ B C++

A A B+ A B+
A B C++

A B* C D*+
A B* C+

G A B+� � C D+*+

G A C D+* B C D+*+ +

G �* A C D+* B C D+*+ +
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5.1.5  SQL Equivalents

We will discuss the relation of graphics algebra to relational algebras at the
end of this chapter. In this section, we summarize Structured Query Language
(SQL) statements that can be used to implement the algebra in a database.

5.1.5.1  Cross

Cross can be accomplished with an inner join:

select a.*, b.*
from X a, Y b;
where a.key = b.key;

5.1.5.2  Nest

Nest can be accomplished through a SQL nest operator. This operator re-
quires that the database allow tables as primitives, either as relation-valued at-
tributes (Date and Darwen, 1992) or as nested tables (Abiteboul et al., 1989).
If the database does not support the nest operator, we can accumulate the
subset of tuples in a nest operation with an inner join:

select a.*, b.*
from X a, Y b;

We then must remember to treat the entries from the right-hand table as tags
for the entries on the left.

5.1.5.3  Blend

Blend is performed through union all:

select * from X
union all
select * from Y;

If union all is not available, we can concatenate extra key columns to be
sure that all rows appear in the result set.

5.1.5.4  Composition and Optimization

SQL statements can be composed by using the grammar for chart algebra.
Compound statements can then be submitted for optimization and execution
by a database compiler. Preferably, pre-optimization can be performed on the
chart algebra parse-tree and the result used to generate SQL. Secondary opti-
mization is then performed by the database compiler.
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5.2 Examples
We will begin with the simplest syntax for a one-dimensional graph. Figure
5.1 is a scatterplot of the 1980 population of selected world cities. Because
there is only one dimension, the point cloud designates points on the number
line at the values of the data.

ELEMENT: point(position(pop1980))

Figure 5.1 One-dimensional scatterplot

5.2.1  Cross

Figure 5.2 shows a two-dimensional scatterplot. The 1980 and 2000 city pop-
ulations are plotted against each other. There is one frame with two dimen-
sions and data values represented by position of points. 

ELEMENT: point(position(pop1980*pop2000))

Figure 5.2  Two-dimensional scatterplot
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If one of the crossed variables is categorical, then it splits any graphs in
the frame into as many categories as there are in the crossing. Figure 5.3 shows
an example of this splitting. We plot 2000 population against the names of the
cities. There are 17 sets of points in this frame. 

ELEMENT: point(position(city*pop2000))

Figure 5.3 Two-dimensional dot plot

We notice there are two points for some of the cities. During various pe-
riods in US history, it was fashionable to name towns and cities after their Eu-
ropean and Asian counterparts. Sometimes this naming was driven by
immigration, particularly in the colonial era (New Amsterdam, New York, New
London). At other times, exotic names reflected a fascination with foreign
travel and culture, particularly in the Midwest (Paris, Madrid).

Figure 5.4 separates out the two groups of cities by using a three-way
crossing. The crossing is based on the three-dimensional algebraic expression
city * pop2000 * group, where group contains the values USA for every city in
the USA and World for all other cities. This expression produces a varset with
three columns. The first column is assigned to the horizontal axis, the second
to the vertical, and the third to the horizontal axis again, which has the effect
of splitting the frame into two frames. This general pattern of alternating hor-
izontal and vertical roles for the columns of a varset provides a simple layout
scheme for complex algebraic expressions.

Chicago stands out as an anomaly in Figure 5.4 because of its relatively
large population. We might want to sort the cities in a different order for the
left panel or eliminate cities not found in the US, but the algebraic expression
won’t let us do that. Because group is crossed with the other variables, there
is only one domain of cities shared by both country groups. If we want to have
different domains for the two panels, we need our next operator, nest.
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ELEMENT: point(position(city*pop2000*group))

Figure 5.4  Three-dimensional (grouped) dot plot

5.2.2  Nest

Nesting looks like crossing in certain respects. That is not a coincidence. In
experimental design, nesting is like crossing with certain cells deleted:

By deleting cells, we can rearrange the nesting layout to save space. We nest
the expression on the left of the slash under the expression to the right. The
layout thus appears to be one-dimensional, but it actually contains a hierarchy,
In the figure above, the levels of a are nested within the levels of b.

Figure 5.5 shows a nested dot plot based on the nested algebraic expres-
sion city/group*pop2000. Because of the hierarchy of operators, this expres-
sion is equivalent to (city/group)*pop2000. The horizontal axis in each panel
now shows a different set of cities: one for the USA and one for the rest of the
world. This graphic differs from the one in Figure 5.4 not only because the
axes look different, but also because the meanings of the cities in each panels
are different. For example, the city named Paris appears twice in both figures.
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In Figure 5.4, on the one hand, we assume the name Paris in the left panel is
comparable to the name Paris in the right. That is, it refers to a common name
occurring in two different contexts. In Figure 5.5, on the other hand, we as-
sume the name Paris references two different cities. They happen to have the
same name, but are not equivalent. Such distinctions are critical, but often sub-
tle.

ELEMENT: point(position(city/group*pop2000))

Figure 5.5  Nested dot plot

5.2.3  Blend

Blending increases the number of cases in a graphic. Figure 5.6 shows a sim-
ple example of this arrangement. We have doubled the number of cases in the
graphic by using two variables on the vertical dimension and two on the hor-
izontal. This amounts to two scatterplots overlaid on a common range and do-
main: 

If we had blended before crossing, we would have produced four times the
number of cases:

The graphic in Figure 5.6 is based on the expression
city*(pop1980+pop2000). The horizontal axis represents the cities and the
vertical axis represents the two repeated population measures.
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DATA: p1980 = "1980"
DATA: p2000 = "2000"
ELEMENT: point(position(city*(pop1980+pop2000)), color(p1980 + p2000))

Figure 5.6  Blended scatterplot

We use color to distinguish the two sets of cases that the blend operator
has created, red for 1980 and blue for 2000. Since a variable that carries this
information does not exist in the dataset, we have to create a variable to split
the cases and make the legend. The variable p1980 contains the string "1980"
for all cases. Similarly, p2000 contains the string "2000" for every case. We
use the blend of these two variables to color the cases. Notice that a blend is
required to specify the colors. Without a blend in the color specification, we
wouldn’t have a color for every case in the graph. We will see in Chapter 10 how
color aesthetics are used with the algebra.

Blending categorical variables combines common categories. Only the
distinct categories from the blended variable sets appear on the common scale.
Figure 5.7 shows an example. The data on which this dot plot is based consist
of the social status of the first two speakers in Act 1, Scene 1 of each of
Shakespeare’s plays. The status of the first speaker is encoded in a variable
called first, and the second in a variable called second. Each of these variables
has been coded into one of six possible social status categories, shown on the
scale at the bottom of the plot. The Royalty category includes kings, queens,
and emperors. The Nobility category includes dukes, earls, counts, countesses,
princes, and marquesses. The Gentry category includes justices, tribunes,
archbishops, bishops, and governors. The Citizens category includes citizens,
merchants, tradesmen, and ship’s masters. The Yeomanry category includes
servants, boatswains, messengers, soldiers, hostesses, and porters. Finally, the
Beggars category includes beggars.
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ELEMENT: point.stack(position(first+second))

Figure 5.7  First two speakers in Shakespeare’s plays

Blending and nesting are often combined. In Figure 5.6, for example, it is
difficult to distinguish US and world cities. Figure 5.8 makes the distinction
clear by splitting the horizontal axis into two nested subgroups. 

ELEMENT: point(position((city/group)*(pop1980+pop2000))

Figure 5.8  Blended and nested scatterplot
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The graphic in Figure 5.8 is derived from the nested algebraic expression
(city/group)*(pop1980+pop2000). The vertical axis represents the two repeat-
ed population measures blended on a single dimension. We see most of the cit-
ies gaining population between 1980 and 2000. Unfortunately, the vertical
scales in Figure 5.8 still make it difficult to discern population growth in the
US cities. The blue (2000) symbols cover the red (1980) ones for cities whose
populations are less than 3 million. One remedy for this situation is to log the
vertical scale. See Figure 6.8 for the result.

Sometimes we nest under a variable that has only one value. This device
is used to force separate scales when variables are blended. Figure 5.9 shows
an example. The variable p1980 contains the string "Pop 1980 (millions)" for
all cases. Similarly, p2000 contains the string "Pop 2000 (millions)" for every
case. When we blend pop1980 and pop2000, their values would ordinarily be
pooled on a common scale. To prevent this, we blend pop1980/p1980 and
pop2000/p2000 so that the population values are different. We have forced, in
effect, two panels onto our graphic. Notice that the two vertical scales differ.
To facilitate comparisons between panels, it might be better to adjust the as-
pect ratio of the upper panel to be larger so that the physical units of the scales
match. In Chapter 11, we will discuss joint nesting and blending further.

DATA: p1980 = "Pop 1980 (millions)"
DATA: p2000 = "Pop 2000 (millions)"
ELEMENT: point(position(city*(pop1980/p1980+pop2000/p2000)))

Figure 5.9 Blending nests to create separate scales
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5.3 Other Algebras
Several algebras developed for computer applications are related to the one we
have presented in this chapter. In some cases, we need to show where we have
drawn from the ideas behind these algebras, and in others, We need to show
where we have not.

5.3.1  Design Algebra

An experimental design is a factorial structure that contains sets of categories
embedded within other sets of categories. A design algebra operates on de-
signs and is an application of rules derived from lattice theory and other fields
of discrete mathematics. Nelder (1965) introduced a notation for implement-
ing a computer algebra that specifies experimental designs. Wilkinson and
Rogers (1973) and others have extended this notation. See Heiberger (1989)
for a review. 

Nelder’s and more recent design algebras are intended for producing ma-
trices of binary indicator variables that represent presence or absence of exper-
imental treatment categories. These matrices are used in the estimation of
treatment effects on outcomes for designed experiments. Nelder’s work has in-
fluenced almost every subsequent statistical implementation of the general
(and generalized) linear model, including GENSTAT (Alvey et al., 1977),
GLIM (Nelder and Wedderburn 1972; Baker and Nelder, 1978), SAS4 GLM
(SAS Institute, 1976), and SYSTAT4 MGLH (Wilkinson, 1983a). 

The cross and nest operators presented in this chapter are related to, but
not the same as, the operators of the same name in Nelder’s system. Where
Nelder’s syntax is intended to produce a correct design matrix for a particular
design specification, we have been concerned to have the algebra produce a
graphic or table that correctly summarizes the design. This does not mean that
the two notations are syntactically compatible, however. The blend operator
does not exist in Nelder’s system, and application of the rules presented in
Section 5.1.3 can lead to structures that are not employed in experimental de-
sign. Such structures appear in applications such as market research tables and
graphical layouts not intended to be analyzed by a single statistical model. 

5.3.2  Relational Algebra

The algebra presented in this chapter is related to, but not the same as, a rela-
tional algebra (Codd, 1970). For an introduction to relational algebras, see
Date (1995). A relation R is defined in Section 2.1.2. A varset, because it is a
function, is a special case of a relation. Consider the relation 

{(a11: D1, a12:D2, ... , a1p:Dp), ... , (an1: D1, an2:D2, ... , anp:Dp)}



5.3  Other Algebras 81

where aij are n p-tuples of attribute values measured on p domains Dj, with n
representing the cardinality of the set (number of tuples), and p the degree of
the relation (number of attributes in each tuple). This type of relation underlies
the organization of a relational database system. In the language of vari-
ables, the aij are values and the Dj are tags based on the names of the variables
and their ranges. The tagged attribute values aij:Dj share an equivalence rela-
tion ( ) by being members of a common class. A relational da-
tabase system uses the rules induced by these equivalence relations to store
and retrieve subsets of data. A relational algebra is a set of operators together
with a set of relations and rules for the operators. For our purposes, the rela-
tional operators of interest are union, join, and nest.

The union relational operator (Codd, 1970) produces a union of sets (re-
lations). Relations on identical domains are blended into a single relation and
duplicate tuples are eliminated. If we create a unique tagged value for the key
in each set and assign these values to a single domain, then union resembles
blend in the graphics algebra. 

The join relational operator (Codd, 1970) is an element-wise crossing of
indexed sets such that tuples with a common index value are merged into new
tuples. If we restrict the relational join to a common index (key) that is unique
for each tuple, then a join of two relations is like cross in the graphics algebra.
Such a join produces a relation of degree 2 (ignoring the index attribute). 

The nest relational operator (Roth et al., 1988) involves a hierarchy that
was not defined in Codd’s original algebra. It produces a nesting of relations
under other relations and resembles the definition of nest in the graphics alge-
bra. 

The similarities in algebras lead one to ask whether a graphics system
with the capabilities enabled by a graphics algebra could be implemented by
attaching a simple viewer to a relational database. An extended Structured
Query Language (SQL) that implements the relational model could be used in
this effort (see Section 5.1.5). There are several reasons why this approach
would not be the best way to implement graphics algebra, however. 

First, although one language can be used to imitate another, there are com-
plexities and inefficiencies introduced when trying to adapt a system designed
for a different purpose. One problem is commutativity. The graphics algebra
operators are non-commutative (because graphs are functional). The corre-
sponding join and nest relational operators are commutative. Restrictions can
be built into a specific implementation, but they would be messy side condi-
tions.

Second, locating the algebraic system in a database query removes knowl-
edge in the graphics system needed for identifying and manipulating graphic
objects. This would amount to a client-server model in which a graphics sys-
tem is simply a viewer into a database. This system would resemble the data-
cube data-mining system we criticized in Chapter 3. 

aij	Dj akj	Dj�
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Third, relational database systems are not designed to interface well with
interactive controllers and other tools needed to explore data dynamically.
When put to such uses, relational databases are cumbersome and slow because
of the high transaction demands placed on them by exploratory graphics cli-
ents.

All this is not to say that a SQL client-server link could not be valuable
for implementing the graphics system outlined in this book. On the contrary,
such a link is an essential part of implementing the algebra for business and
other systems that require centralized data security and limited user access.
Choosing the locus of the algebra, however, profoundly affects the behavior of
the system.

Despite these problems, the relational model can play a role in a general
graphics system. The graphics algebra, like relational algebra, is built on a set-
theoretic approach to relations and functions that is easily packaged in objects.
Embedding this algebra in an object data-model gives graphs the opportunity
to view data without worrying about its structure. Graphs do not understand
algebra. Algebra simply creates dimensions that govern their behavior. Con-
sequently, a well-designed graphical system should include abstract interfaces
that allow us to perform algebraic computations using functions in a relational
database when they are available and appropriate. If these interfaces are de-
signed to allow introspection or reflection (objects providing information
about themselves during run-time), then we have a system that adapts to cli-
ent-server and distributed environments. For an example of an implementation
of our graphics algebra within an OLAP environment, see Stolte et al. (2000).

5.3.3  Functional Algebra

Functional programming languages (Bird and De Moor, 1996) are based on
universal algebras on abstract data classes. Functional algebras have been ap-
plied to a variety of computer geometry and graphics problems. For example,
Egenhofer, Herring, Smith, and Park (1991), and Rugg, Egenhofer, and Kuhn
(1995) have investigated the use of functional algebras for specifying geo-
graphic maps and navigating through spatial databases. 

As with relational algebras, there are similarities between the graphics al-
gebra operators presented in this chapter and operators in functional algebra
systems. The cross operator produces a product set. The nest operator produc-
es a subset of a product set called a dependent product. And the blend operator
produces a union.

Functional algebra systems are more general than the system proposed in
this chapter. While functional programming languages based on these alge-
bras could be used for creating graph specifications, their generality exceeds
the scope needed for a statistical graphics system.
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5.3.4  Table Algebra

The US Bureau of Labor Statistics pioneered a language for laying out tables
(Mendelssohn 1974). While not a formal algebra, this Table Producing Lan-
guage (TPL) contained many of the elements needed to assemble complex ta-
bles. Gyssens et al. (1996) outlined an algebra for displaying relational data;
this algebra closely followed TPL, although the latter is not referenced.
Wilkinson (1996) presented an algebra for structuring tables and graphics.

5.3.5  Query Algebra

Pedersen et al. (2002) described an algebra for querying OLAP cubes. The re-
sult sets from their algebraic expressions could be used for graphic displays.
Agrawal et al. (1997) used a similar algebra for statistical modeling of data
contained in a cube.

5.3.6  Display Algebra

Mackinlay (1986) developed an algebra for querying relational databases and
generating charts. His general goal was to develop an intelligent system that
could offer graphical responses to verbal or structural queries. Roth et al.
(1994) followed a similar strategy in developing graphical representations of
relational data. They extended Mackinlay’s and others’ ideas by using con-
cepts from computational geometry.

5.4 Sequel
We now have an algebraic system for relating variables. The next chapter will
cover scale transformations. These transformations are used primarily to meet
statistical assumptions or to scale graphs on meaningful units such as time.
Scales must be computed before statistical operations because, among other
things, the sum of logs does not equal the log of that sum.



6
Scales

The word scale derives from the Latin scala, or ladder. The Latin meaning is
particularly apt for graphics. The visual representation of a scale — an axis
with ticks — looks like a ladder. Scales are the types of functions we use to
map varsets to dimensions. At first glance, it would seem that constructing a
scale is simply a matter of selecting a range for our numbers and intervals to
mark ticks. There is more involved, however. Scales measure the contents of
a frame. They determine how we perceive the size, shape, and location of
graphics. Choosing a scale (even a default decimal interval scale) requires us
to think about what we are measuring and the meaning of our measurements.
Ultimately, that choice determines how we interpret a graphic. 

6.1 Scaling Theory
Scaling is a field with a long history in physics and psychometrics. We will
briefly cover this area. Then we will discuss a variety of measurement scales
and how to construct the axes that display them. A useful introduction to these
ideas is Luce and Suppes (1991). 

6.1.1  Axiomatic Measurement

In a widely cited paper “On the theory of scales of measurement” (1946), the
psychophysicist S.S. Stevens presented a theory of measurement based on the
invariance of the meaning of scales under different classes of transformations.
Stevens showed that measurement scales that preserve meaning under a wide
variety of transformations in some sense convey less information than those
whose meaning is preserved by only a restricted class of transformations. 

Axiomatic scale theory defines scale types through measurement axioms.
Stevens postulated four basic scale types: nominal, ordinal, interval, and ratio.
To define a nominal scale, we assume there exists at least one equivalence
class together with a binary equivalence relation ( ) that can be applied to ob-�



86 6  Scales

jects in the domain D(X) (e.g., the class of this object is the same as the class
of that object). We then say that a scale is nominal if, for its values X(d),

To define an ordinal scale, we assume there exists a binary total order re-
lation ( ) that can be applied to objects in the domain (e.g., this stone is heavi-
er than that stone). We then say that a scale is ordinal if

To define an interval scale, we assume there exists a symmetric concate-
nation operation ( ) that can be applied to objects in the domain (e.g., the
length of this stick appended to the length of that stick). We then say that a
scale is interval if

To define a ratio scale, we assume there exists a magnitude comparison
operation ( ) that can be applied to objects in the domain (e.g., the ratio of the
brightness of this patch to the brightness of that patch). We then say that a
scale is ratio if

Axiomatic scale theory is often used in data mining and graphics, but it is
not sufficient for determining scales on statistical graphics produced by chart
algebra. The blend operation, for example, allows us to union values on differ-
ent variables. We can require that blended variables share the same measure-
ment level (e.g., diastolic and systolic blood pressure), but this will not always
produce a meaningful scale. For example, we will have a meaningless com-
posite scale if we attempt to blend height and weight, even assuming both are
ratio variables. We need a different level of detail so that we can restrict the
blend operation in a manner similar to the flagging of domain check errors for
the union operation in a relational database (Date 1990).

6.1.2  Unit Measurement

An alternative scale classification is based on units of measurement. Unit
scales permit standardization and conversion of metrics. In particular, the In-
ternational System of Units (SI), summarized in Taylor (1997), unifies mea-
surement under transformation rules encapsulated in a set of base classes.
These classes are length, mass, time, electric current, temperature, amount of
substance, and luminous intensity. Within the base classes, there are default
metrics (meter, kilogram, second, etc.) and methods for converting from one

di dj� X di� � X dj� � di dj� D
X� �

�0=5

�

di �dj X di� � X dj� � di dj� D
X� �
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� 
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metric to another. From these base classes, a set of derived classes yields com-
posite measurements such as pressure, energy, capacitance, volume, power,
and illuminance.

Table 6.1 shows a set of elemental measurement, or primary unit, class-
es. The first seven constitute the SI base classes. Default SI base units are bold-
ed in the table. We have added three more classes: angular measurement units,
counting units, and a base class for currencies. Angular measurement is dis-
cussed in the SI standard but is not in the core. Counting units provide number
bases. The currency class implements exchange rates. Currencies are time de-
pendent, since daily exchange rates determine conversion rules and an infla-
tion adjustment method varies with time. These adjustments can be imprecise,
but they are usually sufficient for reasonable historical comparisons. The SI
base classes, under certain assumptions, behave like ratio scales in Stevens’
system. Each unit in a cell is related proportionally to the base unit, so conver-
sions require only a single multiplier (e.g., 1 inch = 2.54 cm). And zero is pre-
sumably an absolute value (zero length, zero mass).

Table 6.1  Elemental (Primary) Unit Measurements

Table 6.2 shows SI and other derived measurement, or secondary unit,
classes. These units can be derived from the base units by simple algebraic formu-
las (e.g., 1 acre = 4046.838 meter2). Several of these derivations are not obvious.
Force, for example, is derived from mass relative to gravitational setting. Geocen-
tric latitude and longitude are derived from angle relative to the earth’s equatorial
plane and standard meridian. Dates are derived from time, using an arbitrary ori-
gin and a scale determined by orbits referenced to the moon or sun. Rates are an

Length Mass Time Current Temperature

meter
point
pica
inch
foot
yard
mile
furlong
fathom

kilogram
gram
grain
slug
carat

second
minute
hour
day
week
month
quarter
year
century

amp kelvin
rankine
celsius
fahrenheit

Substance Luminous
Intensity

Angle Count Currency

mole candela radian
degree
minute
second

unit
dozen
gross

dollar
euro
pound
yen



88 6  Scales

exception to the other derived units in Table 6.2. We have printed the selected rates
in gray because they are not convertible within the class. To convert one rate to an-
other rate, the classes of the numerators must match and the classes of the denom-
inators must match.

Table 6.2 Derived (Secondary) Unit Measurements

There are some widely used scales that are not classified within the SI system
and do not involve measurement units. These so-called dimensionless measure-
ment classes involve categories (states, countries, colors, names, species), orders
(letter grades, tennis ladders) and measures (correlations, percentages). Table 6.3
contains a sample of scales in these three classes. The entries in the cells of this
table are not necessarily convertible through simple algebraic formulas, as are the
entries in Table 6.1 and Table 6.2. The category class includes names and classi-
fications. The order class includes ordinal measures. Ranks vary from a value of
1 (best, highest, ...) to n (worst, lowest, ...). Indices vary from 1 (lowest, ...) to n

Area Volume Pressure Density Frequency

square meter
square mile
hectare
acre

liter
teaspoon
tablespoon
cup
pint
quart
gallon
barrel

pascal
bar
atmosphere

gm per liter
oz per quart

hertz

Inductance Voltage Capacitance Charge Resistance

henry volt farad coulomb ohm

Energy Power Force Torque Speed

joule
erg
calorie
therm
btu

watt
horsepower

ounce
pound
stone
ton

newton-meter
foot-pound

kph
mph

Rate Income Latitude Longitude Date

cost per unit
birth rate
death rate

annual dollar
weekly euro

degree
minute
second

degree
minute
second

gregorian
julian
chinese
mayan
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(highest, ...). Partial orders are represented by tied ranks or indices. Finally, the
measure class includes real-valued statistical indices and derived measures,

For our purposes, unit measurement gives us the level of detail needed to con-
struct a numerical or categorical scale. We consider unit measurement a form
of strong typing that enables reasonable default behavior. Because of the class
structure and conversion methods, we can handle labels and relations for de-
rived quantities such as miles-per-gallon, gallons-per-mile, and liters-per-kilo-
meter. Furthermore, automatic unit conversion within base and derived classes
allows meaningful blends. As with domain check overrides in a database, we
allow explicit type overrides for the blend operation. 

Table 6.3  Dimensionless Measurements

6.1.3  Applied Scaling

Since Stevens’ paper, many methodologists have used his axiomatic system to
prescribe, and occasionally proscribe, statistical and graphical methods. The
most extreme of Steven’s methodological heirs have attempted to scare re-
searchers into using only nonparametric statistical methods. The problem with
this approach, as Velleman and Wilkinson (1994) argued, is that data offer
scant help in choosing a scale and the wrong choice can hinder discovery. See
Hand (1996) for a response and rejoinders to our paper. 

Velleman and Wilkinson pointed out that scientists must rely on extrinsic
information (metadata) to decide what level of measurement might be appro-
priate for their data. Since we are not God, the best we can do is understand
the context in which the data were collected and use our intuition and substan-
tive scientific knowledge to choose scales. Often, we need to consider several
scales for the same data. As Sir Ronald Fisher (1935) noted in reaction to stat-
isticians who were promoting routine use of nonparametric statistics,

Category Order Measure

town
city
county
province
state
country
continent
name
gender
class
species

rank
index

correlation
probability
variance
proportion
percent
similarity
dissimilarity
distance
ratio
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Experimenters should remember that they and their col-
leagues usually know more about the kind of material they
are dealing with than do the authors of text-books written
without such personal experience, and that a more complex,
or less intelligible, test is not likely to serve their purpose
better, in any sense, than those of proved value in their own
subject.

6.1.3.1  The Naive Approach

The naive approach to scaling is to decide the measurement level and then as-
sign a variable to a scale corresponding to this measurement level. Figure 6.1
shows the countries data from Chapter 1 mapped to Stevens’ scale types. They
are represented visually in the figure by a set of axes. 

The nominal scale is shown by ordering the country names alphabetically.
Any ordering will do. All that matters for a nominal scale is that the mapping
be one-to-one: that each country have a unique identifier. The ordinal scale is
represented by a rank ordering of the countries on military expenditures. The
spacing of the countries on this scale is arbitrary. All that matters is that the
ordering preserve the relative ranks of the countries. The interval scale is rep-
resented by the military expenditures themselves. The spacing of the countries
matters, but the origin is arbitrary. That is, the difference in spending between
Iraq and Libya should be comparable to that between Canada and Italy be-
cause both pairs are spaced approximately the same distance apart on the
scale. (We will discuss how to deal with the compression of the labels at the
bottom of the scale later in the chapter.) Finally, the ratio scale is represented
by the count of the countries within three major types of government. On this
scale, the zero tick is significant; counts are referenced by this point. We can
say by looking at the graphic that the count of countries in the sample with a
Military form of government is a third larger than the count of countries with
One Party government. 

Figure 6.1  Graphical displays of Stevens’ scale types
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6.1.3.2  Ambiguities

If we examine the data more closely, however, the neatness of these assign-
ments breaks down. For example, we could say that normalized per-capita
military expenditures map more appropriately to a ratio scale. Zero dollars
seems like an absolute reference point. Spending 200 dollars per-capita seems
like twice spending 100. 

Money is not a physical or fundamental quantity, however. It is a measure
of utility in the exchange of goods. Research by Kahneman and Tversky
(1979) has shown that zero (no loss, no gain) is not an absolute anchor for
monetary measurement. Individual and group indifference points can drift de-
pending on the framing of a transaction or expenditure. This is why we clas-
sified the military expenditures as an interval rather than ratio scale.

A similar argument can be made against our classification of the country
counts as a ratio scale. It would appear to make more sense to call this an ab-
solute scale. While not an original Stevens scale type, it follows from his rea-
soning that an absolute scale has no permissible transformation other than the
identity. This makes sense for counts. Ten means a count of ten — until one
asks what is being counted. Counts depend on categorizations, which are not
as concrete as Aristotle might have wished. The assignment of One Party, De-
mocracy, and Military as forms of government is non-overlapping in our ex-
ample. It is arguable, however, that some countries might have more than one
of these types. Similar arguments can be made about most of the variables we
choose to represent in graphics. While the axioms of scaling theory are undis-
putable, there is no way to determine surely which one applies to a set of data.

6.1.3.3  Scales as Roles

Sometimes it is more useful to think of scales as roles for dimensions that help
reveal patterns in an analysis. Figure 6.2 shows that we can represent the same
data on two different scales in the same graphic. It is a quantile plot of per-
capita military expenditures. The horizontal scale is perhaps interval, based on
the numeric values themselves. What is the vertical scale? It is based on the
rank order of the data values, so it might be called ordinal. The equal spacings
are important, however, because we are using it to anchor the shape of the
curve traced by the points. Thus, it is being employed as an interval scale for
the purposes of analyzing shape. If we keep the aspect ratio 1 (a square frame),
then the shape is invariant under any interval scale transformation. The posi-
tive skewness is readily apparent in the convex shape of the curve. A unimodal
symmetric distribution would have plotted in an S shape. Finally, we could
call it an absolute scale because we are using it to display the empirical cu-
mulative distribution function of per-capita military spending. If we are at-
tending to the scale values rather than the shape, then we are processing
numerical information on an absolute scale between zero and one. 
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TRANS: rmil = prank(military)
ELEMENT: point(position(military*rmil))

Figure 6.2  Quantile plot of military expenditure

6.1.4  Graphics and Scales

Graphics do not care about the scales on which they are drawn. Bars, for ex-
ample, do not know whether they measure counts, proportions, or other quan-
tities. What, then, can we say about the common prescription (e.g., Schmid
and Schmid, 1979; Cleveland, 1985) that bars require a zero base to be mean-
ingful? The answer is, we think, that these are statements about scales rather
than graphics. Bars are multi-valued graphics. They represent two values on
their range — a lower and upper point. When referenced against a ratio scale,
it is most appropriate for the bottom of a bar to be at zero so that ratio compar-
isons can be made. Even when all the bases are at zero, however, both ends
are marking an interval. There is nothing in the definition of a bar itself that
requires it to have a base at the value zero.
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6.2 Scale Transformations
In Chapter 4 we saw how to transform variables by doing such operations as
logging or square-rooting. The purpose of variable transformations in a graph-
ics system is to make statistical operations on variables appropriate and mean-
ingful. Scales, however, operate on sets of variables (dimensions). The
purpose of scale transformations is similar — to make statistical objects dis-
played on dimensions appropriate and meaningful. The next chapter will cov-
er a third class: coordinate transformations. The purpose of those
transformations is to manipulate the geometry of graphics to help us perceive
relationships and find meaningful structures for representing variation. In
some cases, we use scale and coordinate transformations together. And in
some rare cases, we might apply transformations three times — once to a vari-
able, once to a dimension, and once to a coordinate system. 

The reason for separating transformations according to the sets on which
they operate (variables, dimensions, and coordinates) is to keep clear the dis-
tinction between statistical and geometric operations. Statistical methods (e.g.,
smoothing and aggregation) often require assumptions about the statistical
distribution of the variables on which they operate. Thus, variable and scale
transformations must be done before these statistical methods do their work.
However, coordinate transformations change the appearance of graphics (e.g.,
bars become pie slices) but do not alter their statistical properties. Thus, coor-
dinate transformations must be done after statistical methods do their work.

The log() transformation may help us to see this distinction. If we log a
variable, the numbers displayed on an axis will be logs (e.g., 1, 2, 3) and the
title of the axis should be something like “Log of Income.” If we log a dimen-
sion, however, the numbers displayed will be on a log scale (e.g., 10, 100,
1000) and the title of the axis should be something like “Income.” Finally, if
we use a log coordinate transformation, we should expect to see portions of
graphics near the high end of the scale compressed more than those near the
low end. The numbers on the axis should be unchanged, but their locations
(and tick marks) should be compressed logarithmically.

Table 6.4 shows several scale transformation functions. This sample list is
intended to cover the examples in this book and to be a template for designing
the signature and behavior of new functions. All the functions have a standard
form that includes a dimension name followed by other optional parameters.
Examples are: 

interval(dim(1), min(0), max(1000))
time(dim(2), format("mmm dd, yyyy"))

The number of optional parameters are peculiar to each function, but their or-
der is irrelevant.
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Table 6.4  Scales

The categorical scale demarcates k points for locating k categories in a se-
rial ordering. The interval scale has the property that any two equal-length in-
tervals on the scale have the same measure. For example, if an interval from 0
to 2 on an axis measures two inches, then an interval from 4 to 6 must measure
two inches. We use the term linear to describe this scale because it is the most
common usage. The time scale measures time. The one-bend functions are in-
creasing or decreasing concave or convex. The log scale returns logs. The
pow() transformation computes f : x p. However, pow(x,0)=log(x). The two-
bend functions are ogive shaped. The asn(), logit(), probit(), and atanh() scales
are arcsine, logit, probit, and Fisher’s z statistical transformations. The proba-
bility scales implement various probability distributions.

6.2.1  Categorical Scales

The syntax for cat() is

cat(dim(), values("string1","string2", ...))     or

cat(dim(), values(val1, val2, ...))

The extra parameters after dim() are optional. Categorical scales index catego-
ries. Because scales must order categories by design, there is no visible differ-
ence between a nominal and an ordinal scale in a graphic. String variables are
by definition categorical, so we need not use a cat() scale to ensure that they
are mapped to categories. The optional parameters for a categorical scale de-
termine the choice and ordering of the categories and their format, e.g.,
cat(dim(1), values(“Jane”,”Jean”,”June”)). The system searches all values
available in the data, does a string match to determine the unique assignments,
and then uses the strings in the cat() list to label the scale.

Picking numbers for numerical categorical scales is easy. Simply choose
the natural numbers, since categories are best displayed evenly spaced. Figure
6.3 shows three examples of categorical scales. Notice that the endpoints of
the scale are not mapped to categories. This makes it easy to distinguish a cat-
egorical scale with numerals from a numerical scale with the same numerals.
It also keeps graphics (such as bars) from colliding with the edges of the
frame.

Categorical Interval Time One-bend Two-bend Probability

cat() linear() time() log()
pow()

asn()
logit()
probit()
atanh()

prob()
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We have chosen three categorical representations of hue in Figure 6.3: na-
nometer wavelength, color name, and a color index. Provided the values are
mapped properly to the scales, all three representations would produce the
same graphic for a particular graph.

Figure 6.3  Categorical scales

6.2.2  Linear Scales

The syntax for linear() is 

linear(dim(), min(), max(), base(), ticks(), delta(), cycle())

The extra parameters after dim() are optional. The min() and max() functions
set minimum and maximum scale values. The base() function (default is 10)
sets the number base. The ticks() function sets the number of tick marks (de-
fault is determined by program). The delta() function sets the interval between
ticks (default is determined by program). The cycle() function has an integer
argument specifying how many cycles there are to be between min() and
max(). The default is 1. This is useful for specifying more than one revolution
on polar plots, but it can be used on rectangular coordinates to overlay subsec-
tions of a time series.

Constructing axes for default linear scales requires us to choose minimum
and maximum values, the number of tick marks, and numbers to go with the
tick marks. Most people prefer to see nice numbers on these scales so that they
can use them like rulers to measure graphics. There are several approaches to
this problem. We will begin with numbers in base 10.

6.2.2.1  Nice Numbers

Nice numbers include the numbers we preferred as children when we learned
arithmetic. These numbers persist in our habits and preferences when we label
and view decimal scales on graphics. Although there might be some disagree-
ment (perhaps cultural) over definition, nice numbers are members of an infi-
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nite subset of the real numbers, e.g., RN = {... , .1, .2, .5, 1, 2, 5, ...}. A nice
scale is an interval scale marked with an ordered sequence of numbers whose
first differences are nice numbers. The following sequences all have this prop-
erty for the set RN given above.

..., 1, 2, 3, 4, 5, ...

..., 2, 4, 6, 8, 10, ...

..., 0, 50, 100, 150, 200, ...

..., .001, .003, .005, .007, .009, ...

Really nice scales have an additional property: they include zero. The first
three series above have this property, but the last does not. Nice scales can also
be defined for some nonlinear scales. For scales like log and power, nice scales
can be chosen in the transformed metric and inverse transformed to the origi-
nal. For example, if we choose the nice scale [–1, 0, 1, 2, 3] in logarithms, then
our log scale will be [.1, 1, 10, 100, 1000].

Nelder (1976), Stirling (1981), and Heckbert(1990) discuss nice numbers
and provide algorithms for producing them when we are given a range of data
values. These simple algorithms work well for a variety of instances. When
they fail, we end up with too few or too many tick marks or a scale that does
not fit closely the range of the data. 

 A more effective method is to compute scales using a multi-parameter
search algorithm. First of all, we need to expand our set of nice numbers a bit
in order to improve our chances of an attractive solution. We begin with the
finite, ordered set Q = {1, 5, 2, 25, 3}. We may reorder, expand, or contract
this set to suit our tastes, although we have found this set works well in prac-
tice. Then our set of nice numbers is RN = {q $&'( z: q�Q, z�Z}, where Z is the
set of integers. 

Let n be the cardinality of the set Q (n=5 in this case). Let i = 1, ... , n be
the index of an element of Q. Let k be the number of ticks on a scale. Let rd be
the range of the data and rs be the range of the scale (we assume rs , rd). Let
S be a finite, ordered solution set of k numbers for our nice scale. (Note that
usually .) Let v = 1 if S contains zero, otherwise, let v = 0. Finally, let
m be an ideal number of tick marks for a scale. This may depend on the phys-
ical size of a graphic and the size of fonts used for scale numbers, although the
choice m = 5 usually suffices. Now we can construct a scale goodness index
from the following components, each of which varies between 0 and 1:

simplicity:   s = 1 – i / n + v / n

granularity: 

coverage:    c = rd / rs
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For a given scale S, the simplicity value is based mainly on the index i of
the element chosen from Q that determines the set RN that includes the first
differences among the ordered elements of S. This simplicity value is incre-
mented by 1/n if the set S contains zero. The granularity value reflects close-
ness to an ideal number of tick marks. Too few tick marks hamper scale look-
up and too many clutter the display. The coverage measure rewards solutions
that leave less white space around the data. Cleveland, Diaconis, and McGill
(1982) have shown, for example, that this white space can bias judgments of
correlation in scatterplots. We prefer to set a floor on coverage, say, .75, so that
we will never automatically select a data range that fills less than 3/4 of a scale.

We claim that w = (s + g + c) / 3 is an indicator (0 ! w ! 1) of the goodness
of a scale. There might be other functions of s, g, and c that do better for this
purpose, but in our experience, this simple composite works well. Optimizing
w can be done by direct search through the whole parameter space or, if we
want to consider more values, by using algorithms such as O’Neill (1971). An
advantage of the optimization approach is that any parameter can be con-
strained. This is especially important when users choose to fix the number of
ticks, the minimum or maximum scale value, data coverage, or some combi-
nation of these and other parameters.

We tend to prefer restricting the search so that extreme ticks and numbers
coincide with the ends of the scale, as opposed to allowing the tick marks to
float elsewhere along the scale. The examples in this book generally have jus-
tified scales like this. When data cover intervals like [0, 1] or [0, 100], we may
want to relax this restriction by indenting the tick marks to allow some empty
space at both ends. 

Nice numbers are not particularly interesting; they’re just nice. If we are
willing to relax the requirement that tick marks be evenly spaced on a scale,
we can pick other number sequences that might be useful for emphasizing fea-
tures of our data. For example, it may be useful to have more tick marks in the
center of a scale than at the edges, depending on the distribution of data ruled
by the scale. Knuth (1969) and Conway and Guy (1996) discuss a variety of
interesting number sequences and algorithms for generating them. Tufte
(1983) discusses scales that have ticks at significant data landmarks.

6.2.2.2  Number Bases

Different number bases affect the choice of nice numbers but not the treatment
of tick marks. The methods we outlined in Section 6.2.2.1 can be modified
easily for other number bases. We modify RN to be RN = {q $&b z: q�Q, z�Z},
where b is the number base (2, 8, 10, 16, etc.). We also need to modify Q to
contain nice numbers in the chosen base.
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6.2.3  Time Scales

The syntax for time() is 

time(dim(), min(), max(), origin(), cycle())

The extra parameters after dim() are optional. The min() and max() functions
set minimum and maximum scale values in formatted time. The origin() func-
tion (default is January 1, 1900) sets the time origin for the numerical scale.
The cycle() function is an integer specifying how many cycles there are to be
between min() and max(). The default is 1.

As Einstein famously established, time is the fourth dimension of our
physical world. In Western and most other cultures, time is measured in lunar
and solar astronomical cycles: days, months, and years. Other units have ob-
scure etiologies. Seconds, minutes, and hours probably derive from the Sum-
erian practice of sexagesimal (base 60) arithmetic (Conway and Guy, 1996).
Weeks, however, may have their origin in the Babylonian sacred number 7
(Ronan, 1991).

The annual circuit of the earth around the sun presents an arithmetic prob-
lem. It occurs in approximately 365.242 days. In 46 BCE, the Julian calendar
added an extra day every four years to adjust for the roughly quarter-day-per-
year gain. The difference between .242 and .250 is enough to have caused sig-
nificant accumulation over centuries, however, so the Gregorian calendar in-
troduced a new calculation in 1582. This calendar, now prevalent, specifies a
leap year every four years except for centuries not divisible exactly by 400.
Thus 2000 is a leap year, but 1900 is not. 

Setting an origin for time requires relative precision (apologies to Ein-
stein). If we want to measure and record century time to the resolution of mean
solar seconds (based on a mean solar day of 86,400 seconds), we need a long
number (more than 10 decimal digits) to span several centuries in daily units.
With that precision, we can place our origin at 1582 if we are historically in-
clined or at 1900 if we are more financially motivated. The latter scale is used
by modern spreadsheets and accounting packages, with positive units denot-
ing day of the century. Negative numbers record time before 1900. Thus, the
first author’s birthday (November 5, 1944) is the 16,380th day of the 20th cen-
tury. Apparently the developers of the most widely used spreadsheets did not
consult an encyclopedia to learn that 1900 is not a leap year, so their dates are
off by one day after February 28, 1900. This error has consequences when data
from spreadsheets are imported into other database, statistical, and accounting
packages that compute time correctly.

The Year 2000 or Y2K problem, as it is popularly called, arose in software
for a variety of reasons. The most common problem is that some computer
programs encode years as two-character strings or two-digit integers. This
causes problems when they compute time spans or make comparisons. Trun-
cating years is not the only way to make a program vulnerable to the advent of
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a millennium, however. If software employs a real-valued variable for storing
time, careless programmers may fail to use sufficient numerical precision to
store day-of-the-century. Finally, as we have noted, some programmers may
not know how to compute leap years correctly. Having failed to note that 1900
was not a leap year, they may not realize that 2000 is.

Contemporary popular discussions concerning what an operating system
is supposed to be and do often ignore the most important basics like dealing
with time correctly. International date formats, time zones, and correct calcu-
lation of leap years is a critical function that an operating system should pro-
vide so that programmers are freed from having to think about the numerous
details involved in calculations. Java performs these tasks correctly and con-
veniently because it has an object DateFormat that uses a long signed integer
for recording absolute time in milliseconds, with an origin at Jan 1, 1970. With
wisdom beyond its years, Java also seems to understand leap years backwards
and forwards for many centuries.

In a nice time scale, tick numbers are separated by intervals contained in
the set TN = {... , second, minute, hour, day, week, month, year, ...}, where the
words we have used in the braces denote numerical time values anchored at
some origin such as the first second of January 1, 1900. While niceness for
numbers depends on numerals, niceness for time depends on calendar nota-
tion. Thus, an algorithm for nice time scales requires an understanding of
Julian or other calendars used to display continuous time. Calendars differ
across cultures, so the task can be quite complex when we intend to develop
international software.

Figure 6.4 shows examples of several different time scales. Daily and
weekly scales have evenly spaced ticks, but monthly and yearly scales do not.
Notice that the gap between February and March is less than that between any
other two months because February has the fewest days. The same irregularity
can occur for years. The yearly scale in this example would have slightly ir-
regular ticks if it included a leap year. 

Figure 6.4  Time scales
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Using time scales allows us to display graphics at the points on the scale
that correspond to real dates. Figure 7.5 and Figure 7.13 illustrate this princi-
ple. Figure 6.5 shows a selection from the SPSS stock price series that shows
specific dates formatted in slash notation. The major tick marks are set to Sun-
days, so the weekday trades occur between the weekend gaps. We are accus-
tomed to seeing equally-spaced bars in printed charts and computer software.
Time series data show us how restrictive this limitation can be.

SCALE: time(dim(1))
GUIDE: axis(dim(1), format("mm/dd/yy"))
ELEMENT: interval(position(region.spread.range(date*(high+low))))

Figure 6.5  Stock price ranges

6.2.4  One-bend Scales

One-bend scales are convex (concave) upward or concave (convex) down-
ward in their mapping functions. They include a variety of logarithmic, power,
and probability scales.

6.2.4.1  Logarithmic Scales

The syntax for log() is 

log(dim(), base(), min(), max(), ticks(), cycle())

The extra parameters after dim() are optional. The base() function (default ar-
gument is e, or natural logarithm) sets the log base. The min() and max() func-
tions set minimum and maximum scale values. The ticks() function
determines the number of ticks. The cycle() function takes an integer specify-
ing how many cycles there are to be between min() and max(). The default is 1. 
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The logarithmic scale is usually computed on base 10, although other
bases are possible and many are useful. The log base has no effect on the visual
appearance of the plot; only the labeling of the tick marks on axes is affected.
The same is true for most statistical tests of significance on logged data. This
equivalence follows from logb(x) = ln(x)/ln(b), where ln() is the natural loga-
rithm and b > 1. 

Figure 6.6 shows examples of log scales to several bases. Base 2 is useful
when it makes sense to represent doublings. Base 3 is for triplings. Base 7 is
for biblical time. (Logging time is an eschatological transformation, or per-
haps a sign of old age!) The upper limit of the log septenary scale in Figure
6.6 comes just before Pentecost or Jubilee, depending on whether we count
days or years. Base 10, of course, is customary in a decimal society.

Figure 6.6 Log base scales

Programmers often overlook a detail when they implement log scales. If
a user requests, say, a minimum value of 3 and a maximum of 105 on a decimal
log scale, a well-designed scale algorithm ought to position the minor tick
marks at exactly those values and display two major tick marks at 10 and 100.
This requires more computation but is worth the effort for saving white space
inside the borders of the frame. See Figure 10.37 for an example.

Figure 6.7 shows a log scale using data from Allison and Cicchetti (1976),
a study of the relation between sleep habits of animals and their chance of be-
ing eaten by predators. The variable brainweight is the weight in grams of the
brains of the animals surveyed. The variable exposure is a rating of the degree
an animal is exposed to predators while sleeping (1=sheltered, 5=exposed).
We have logged the data in order to make them more normally distributed.
This makes it more reasonable to use the standard deviation as a symmetric
measure of spread. The bars are symmetric in the log metric and asymmetric
in the raw metric. We can relate both metrics through viewing the vertical
scale. Log and other nonlinear transformations have interesting consequences
for statistical inference and interpretation. See Section 9.1.8.1 for further dis-
cussion of this topic.
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SCALE: cat(dim(1))
SCALE: log(dim(2), base(10))
ELEMENT: point(position(summary.mean(exposure*brainweight)))
ELEMENT: interval(position(spread.sd(exposure*brainweight),

color(color.red))

Figure 6.7  Error bars on logarithmic scale

Sometimes we log simply to separate overlapping values when the data
are positively skewed. Figure 6.8 shows a blended and nested plot on a log
scale. It incorporates the world cities data used in Chapter 5. Compare this dis-
play to Figure 5.8 to see the difference logging makes. By logging, we are bet-
ter able to see small and large population changes in the same plot. 

SCALE: cat(dim(1))
SCALE: log(dim(2), base(10))
ELEMENT: point(position((city/group)*(pop1980+pop2000))

Figure 6.8 Blended and nested scatterplot on log scale
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6.2.4.2  Power Scales

The syntax for pow() is 

pow(dim(), exponent(), min(), max(), ticks(), cycle())

The extra parameters after dim() are optional. The exponent() function (default
argument is .5, or square-root) sets the exponent. The min() and max() func-
tions set minimum and maximum scale values. The ticks() function deter-
mines the number of ticks. The cycle() function takes an integer specifying
how many cycles there are to be between min() and max(). The default is 1. 

Figure 6.9 shows examples of power scales to several powers. For the in-
verse transformation (p = –1), we have reflected the scale to keep the polarity
consistent. Reflecting the scale for negative powers makes it easier to compare
the effects of different power transformations on graphics.

Tukey (1957) introduced and discussed the role of the simple algebraic
transformation pow: in data analysis. He elucidated how this transforma-
tion could be used to handle both negative and positive skewness in data and
noted that it formed a continuously varying family of transformations (except,
obviously, in the neighborhood of zero). He also showed that pow effectively
subsumes the log transformation when p approaches zero. 

If we reëxpress Tukey’s transformation as pow: , we can see
that pow approximates the log transformation when p approaches zero, since

Box and Cox (1964) used this modified form of Tukey’s power transformation
and derived maximum-likelihood estimates for p under the normal regression
model. This version of Tukey’s pow() is called the Box–Cox transformation.
Tukey was one of the discussants accompanying Box and Cox’s paper.

Figure 6.9 Power scales
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It is difficult to find equally spaced nice numbers for power scales, except
for reciprocals of positive integers (e.g., square or cube roots). Consequently,
it is easier to move the tick marks than to search for nice numbers on power
scales. There is another advantage to this method. If we COORD transform the
scale with the reciprocal of the exponent (see Chapter 9), the ticks and scale
values will return to their original locations. To gain the same duality with
logs, we implement the natural log scale by moving ticks and retaining the
original scale values. Then the exponential coordinate transformation exp()
will return the ticks to their original positions (see Figure 9.32).

Figure 6.10 illustrates three examples of tick-moving for power scales on
the brain weight data for p = 1 (bottom), p = .5 (middle) and p = .01 (top). Al-
though the scale values are different, the top plot is visually indistinguishable
from a dot plot of the log-transformed values. Notice that the ticks and scale
values move to the right as the exponent of the power transformation decreas-
es. On a dynamic display system, this movement provides an additional cue to
the change in shape of the distribution.

SCALE: pow(dim(1), exponent(.01))
ELEMENT: point.dodge(position(bin.dot(brainweight)))

SCALE: pow(dim(1), exponent(.05))
ELEMENT: point.dodge(position(bin.dot(brainweight)))

SCALE: pow(dim(1), exponent(1.0))
ELEMENT: point.dodge(position(bin.dot(brainweight)))

Figure 6.10  Power transformations
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6.2.5  Two-bend Scales

The syntax for the two-bend scale transformations is, in general 

function(dim(), ...)

The extra parameters after dim() are optional. These are usually probability
distribution functions. Two-bend scales are ogival (S shaped) in their mapping
functions. They include several statistical scales used to normalize data.

6.2.5.1  Arcsine Scales

Proportions fall in the closed interval [0,1]. The binomial proportion p = x / n
(e.g., x heads in n coin tosses) has mean  and variance , where

 is the population proportion estimated by p. This statistic thus has its vari-
ance dependent on its mean. The left panel of Figure 6.11 shows this behavior
for 1,000 replications of 25 tosses of a coin. On the lower level is a dot plot of
the sample distribution of the proportion of heads in 25 tosses when the coin
is biased to come up heads only 10 percent of the time. On the middle level is
the dot plot for a fair coin. And the top level shows the dot plot for a coin bi-
ased to yield heads 90 percent of the time.

We can derive a transformation of  such that the variance of the trans-
formed variate is constant across its range. Following the inverse weighting
approach for stabilizing variance in Section 9.1.4, and assuming that n is fixed,
we can integrate the reciprocal function of this variance to get the standardized
arcsine transformation

asn:

In other words, since the derivative of this transformation,

is proportional to the reciprocal of the standard deviation, we end up holding
the standard deviation relatively constant for different location values of the
transformed variate (Rao, 1973).

The right panel of Figure 6.11 illustrates this transformation on the coin
toss data. Notice that the values near the bounds of the [0,1] interval are
stretched compared to those in the middle. The only difference in the specifi-
cations between the left and right panels is the addition of the asn() function
to the TRANS specification. As with power scales, it is easier to move tick
marks than to search for round numbers in the inverse domain. 
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ELEMENT: point.dodge(position(bin.dot(p1)) ELEMENT: point.dodge(position(bin.dot(p1)),
                SCALE: asn(dim(1))

ELEMENT: point.dodge(position(bin.dot(p1)) ELEMENT: point.dodge(position(bin.dot(p1)),
                SCALE: asn(dim(1))

ELEMENT: point.dodge(position(bin.dot(p1)) ELEMENT: point.dodge(position(bin.dot(p1)),
                SCALE: asn(dim(1))

Figure 6.11  Proportion of heads in 25 tosses for =.1, .5, .9 (1,000 samples)

6.2.5.2  Logit and Probit Scales

The logit and probit transformations are based on probability frames. When p
is assumed to be a probability measure on the interval [0,1], we can use the
inverse probability function to transform p into a distribution. When probabil-
ity density functions are symmetric and unimodal, these transformations have
an ogive shape similar to the arcsine transformation. The lower panel of Fig-
ure 6.12 shows two of these functions, the probit, based on the standard nor-
mal distribution:
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and the logit, based on the logistic distribution:

DATA: x = iter(0., 1., 0.01) DATA: x = iter(–1., 1., 0.01)
TRANS: y = asn(x) TRANS: y = ath(x)
ELEMENT: line(position(x*y)) ELEMENT: line(position(x*y))

DATA: x = iter(0., 1., 0.01) DATA: x = iter(0., 1., 0.01)
TRANS: y = probit(x) TRANS: y = logit(x)
ELEMENT: line(position(x*y)) ELEMENT: line(position(x*y))

Figure 6.12 Probit, logit, arcsine, and Fisher’s z transformations

We have drawn the functions in the lower two panels of Figure 6.12 as
 and , respectively, in order to match them to the orientation

of the other panels in the figure. Inverse probability functions are usually an-
cillary to formal statistical modeling using these distributions. Sometimes we

p := x� � �

�.
----------

;–

x

< e
�

�
---z–

�

zd=

p L= x� �
e

z–

� e
z–

+� �
�

-----------------------
;–

x

< zd e
x

� e
x

+
--------------= =

���5��

�� �� �� �� �+ ��

��6-&��/�

;�

;�

�

�

�
��
	
�
0�
��
�


-&
�
�/
�

*����

;�

;�

�

�

�
��
	
�
0 �
��
�


-&
�
�/
�

�� �� �� �� �+ ��

��6-&��/�

#�8��	�

�� �� �� �� �+ ��

��6-&��/�

�

�

�

�

�
��
	
�
0�
��
�


-&
�
�/
�

%��9��-:

;�� ;�� �� �� ��

��6-&��/�

;�

;�

�

�

�

�
��
	
�
0 �
��
�


-&
�
�/
�

: �– p� � L �– p� �



108 6  Scales

need to use them directly, however. One example is probability plotting (e.g.,
Chambers et al., 1983), in which we plot ordered data values against the in-
verse probability values of their fractiles, assuming a particular distribution.
We also use these transformations occasionally in statistical modeling where
the data are probabilities, such as in meta-analysis (Hedges and Olkin, 1985).

6.2.5.3  Fisher’s z Scale

Fisher (1915; see also 1925) developed a transformation to stabilize the vari-
ance and skewness of the Pearson correlation coefficient:

Fisher’s transformation can be understood with the same logic that we used
for the arcsine transformation. In this case, the derivative of the transformation
is , which is proportional to the reciprocal of the standard devia-
tion of r. Figure 6.12 shows this transformation in the upper right panel. The
range of the correlation is (–1, 1) but the shape of the transformation closely
resembles the others for proportions and probabilities.

6.2.6  Probability Scales

The syntax for prob() is 

prob(dim(), distribution(<parameters>), ...)

The extra parameters vary by type of distribution. The default is the normal
probability distribution, which yields the same result as probit().

We have already seen the logit and probit scale types under Section 6.2.5.
Other probability distribution functions can be used for a variety of purposes.
Figure 6.13 shows a gamma probability plot of the firing rate variable in the
cat dataset used in Figure 3.5. We have square-rooted the firing rate scale and
applied a gamma probability scale with parameter 40 to the fractiles. This joint
rescaling straightens out the cumulative distribution function shown in the
right panel of the figure. The compression of the tick marks at the center of the
vertical scale is the same phenomenon we see with the transformations in Fig-
ure 6.12. Since the gamma probability density is not symmetric, however, the
tick marks do not compress the same amount at each end. 

We might want to follow the enumeration strategy used for log scales in
order to enhance the detail at the ends of the probability scale. That is, we have
room to add tick marks on the lower end at .01, .001, .0001, and so on. Simi-
larly, we could add marks at .99, .999, .9999 at the higher end. Grid lines at
these major tick marks could help in decoding information.
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Compare this result with Figure 4.2. What is the difference between using
a variable transformation and a scale transformation to produce a probability
plot? Does this difference affect real-time events such as brushing, linking,
and metadata access? The linearized probability plot is based on the idea that
it is easier to perceive straight lines than to evaluate curvilinear cumulative dis-
tribution functions in the mind’s eye. Are there other graphical applications
where a probability scale would be useful? If so, is there any 3D application? 

TRANS: p = prank(rate)
SCALE: pow(dim(1), exponent(.5))
SCALE: prob(dim(2), gamma(40))
ELEMENT: point(position(rate*p))

TRANS: p = prank(rate)
ELEMENT: point(position(rate*p))

Figure 6.13  Gamma probability scale

6.3 Sequel
We now have the tools for making a wide range of basic graphics. More com-
plex graphics require statistical functions. The next chapter covers the statis-
tical functions that graphing functions use to create statistical graphs.
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7
Statistics

Statistics state the status of the state. All these s words derive from the Greek
 and Latin status, or standing. Standing (for humans) is a state of be-

ing, a condition that represents literally or figuratively the active status of an
individual, group, or state. Modern statistics as a discipline arose in the early
18th century, when collection of data about the state was recognized as essen-
tial to serving the needs of its constituents. This Enlightenment perspective
gave rise not only to the modern social sciences, but also to mathematical
methods for analyzing data measured with error (Stigler, 1983). 

In a graphical system, statistics are methods that alter the position of geo-
metric graphs. We are accustomed to think of a chart as a display of a statistic
or a statistical function (e.g., a bar chart of budget expenditures). As such, it
would seem that we should begin by aggregating data, computing statistics,
and drawing a chart. This would be wrong, however. By putting statistics un-
der control of graphing functions, rather than whole charts under the control
of statistics, we accomplish several things. First, we can represent more than
one statistic in a frame. One graphic can represent a mean and another a me-
dian, in the same frame. Second, making statistics into graphing methods forc-
es them to be views or summaries of the raw data rather than data themselves.
In other words, the casewise data and a graphic are inextricably bound because
we never break the connection between the variables and the graphics that rep-
resent them. This allows us to drill-down, brush, and investigate values with
other dynamic tools. This functions would be lost if we pre-aggregated the da-
ta. Finally, by putting statistics under the control of graphing functions, we can
modularize and localize computations in a distributed system. Adding graph-
ics to a frame is easy when we do not have to worry about the structure of the
data and how aggregations were computed. We will return to this issue in Sec-
tion 7.3 at the end of this chapter.

The simplest graphing method is the one students first learn for plotting
algebraic functions: for every x, compute f(x) so that one may draw a graph
based on the tuples of the form (x, f(x)) that comprise the graph. Students learn
to construct a list of these tuples (a finite subset of the graph of the function)
in order to plot selected points in Cartesian coordinates. In the functional no-
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tation of this book, students usually draw graphs of algebraic functions using
the graphing function line(position(f()).

While students learn graphing methods for polynomial and other simple
algebraic functions, most charts are based on statistical functions of observed
values of one or more variables. In our notation, examples of statistical graphs
are produced by the functions

point(position(summary.mean())) and 
line(position(smooth.linear())), 

which implement the statistical graphing functions summary.mean() and
smooth.linear(), respectively. Statistical functions can be complicated, but
their output looks the same to their geometric clients as the output of algebraic
functions. A line does not care who produced the points it needs to plot itself.

Statistics are static (unchanging) methods that are available to all geomet-
ric graph types. For example, we can use 

interval(position(summary.mean())) or 
point(position(summary.mean())) or 
line(position(summary.mean())) 

to produce a geometric graph of a mean. Some of the combinations of graphs
and statistical methods may be degenerate or bizarre, but there is no moral rea-
son to restrict them. 

Statistics have the potential to alter the appearance of graphics, in some
cases as radically as do coordinate transformations. It is sometimes difficult to
recognize a graphic after its geometry has been altered by a statistic and, con-
versely, it often can be difficult to infer a statistical function from the geometry
of a graphic. For example, 

line(position(smooth.linear())) 

creates a single regression line, while 

line(position(region.confi.smooth.linear())) 

creates a pair of lines that delineate a confidence interval on a smoother. They
are easy to distinguish. However, both the linear regression 

line(position(smooth.linear())) 

and the mean smoother 

line(position(smooth.mean())) 

can create straight lines. Sometimes we can distinguish them only if there are
differences in the data on which they are based.

This chapter invokes some methods whose particulars are beyond the
scope of this book. We have used these in examples to illustrate the diversity
of a statistical graphing system and to alert statisticians to the design issues in-
volved in putting statistical procedures at the service of graphics. Although the
topic is graphics, the organization of this chapter, summarized in Table 7.1,
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gives some indication of the way we would design an object-oriented statisti-
cal package as well. If the design principles of orthogonality (as much as pos-
sible, everything should work everywhere and in every combination) and
hierarchy (complicated tasks should be done by enlisting the support of sim-
ple helpers) are applied to statistical methods, a comprehensive package re-
quires a minimum of code.

One can consult a statistics text for further information, although there are
many technical issues that are not immediately apparent when looking at sta-
tistical formulas. The best sources for further information about computing
and statistics are Chambers (1977), Kennedy and Gentle (1980), Maindonald
(1984), and Thisted (1988).

7.1 Methods
Table 7.1 lists the most important statistical methods available to graphs. They
fall under five super-classes: bin (partitions and meshes for tiling and histo-
grams), summary (basic statistics), region (interval and region bounds),
smooth (regression, smoothing, interpolation, and density estimation), and
link (methods for computing edges of graphs based on a set of nodes or
points). The table is not exhaustive, of course. We have tried to include
enough examples to make clear where new methods can be added to this sys-
tem and also to cover the examples in this book.

Table 7.1  Statistical Methods

Many statistical methods rely on a scalar quantity called a loss, which we
attempt to minimize when calculating statistics. Others rely on a scalar quan-
tity called a likelihood that we attempt to maximize. We may qualify a method
by appending the name of its loss or likelihood function to the method name.
Ordinary least squares, called ols, involves a quadratic loss function of the re-

Bin Summary Region Smooth Link

rect
tri
hex
quantile
boundary
voronoi
dot
stem

count
proportion
sum
mean
median
mode
sd
se
range
leaf

spread
  sd
  se
  range
confi
  mean
  sd
  smooth

linear
quadratic
cubic
log
mean
median
mode
spline
density
  normal
  kernel

join
sequence
mst
delaunay
hull
tsp
complete
neighbor
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siduals (differences between fitted and observed values). Robust estimation,
by contrast, involves a variety of loss functions that are designed to down-
weight large residuals (Huber, 1972; Tukey, 1977). These weighted loss func-
tions have names like biweight. We may distinguish different methods by add-
ing the proper suffix. For example, we can specify smooth.linear.ols or
smooth.linear.biweight. These examples follow the syntax smooth.model.loss.
We will now summarize the methods in each of the super-classes.

7.1.1  Bin

The bin methods partition a space. Binning must happen before other statistics
are calculated. Binning produces two results. First, binning methods use a
mesh or tiling that affects the position and shape of geometric objects embed-
ded in the space partitioned by a mesh. For example, rectangular binning of a
1D or 2D space turns a bar chart into a histogram, with the width of the bars
determined by the spacing of the mesh. Second, binning tags cases with an
identifier of the bin in which they fall. In this way, statistics executed after bin-
ning are calculated separately within each bin. In short, binning takes scattered
points and collects them into a (usually much smaller) set of regions within
which statistics may be calculated by other statistical functions.

The rect binning method partitions a space with equally spaced cutpoints
on one or more dimensions. In two dimensions, the regions partitioned are
rectangles. The tri method partitions the plane with equilateral triangles. The
hex method partitions the plane with hexagons. The quantile methods partition
by computing sample quantiles (such as quartiles, deciles, or percentiles). An
example is bin.quantile.quartile. Quantiles from fractions i / n, (i = 1, ..., n)
can be used to construct a sample cumulative distribution function, on
which the sample density is based. Letter values Tukey (1977), used for the
box plot are produced by bin.quantile.letter and for the stem-and-leaf plot by
bin.stem.

The boundary method partitions the plane with irregular polygons that are
usually derived from geographic boundary or shape files. In geographic maps,
these polygons represent entities such as counties, states, or countries. Most
Geographic Information Systems (GIS) include a key for relating statistical
and polygon data. This is efficient but not necessary. We can instead compute
membership by testing if a point is inside a polygon.

The remaining methods surround each point in a space with a polygon.
The voronoi method partitions the plane with Voronoi polygons. By definition,
there is only one point contained in a polygon (assuming no ties). We may
merge Voronoi polygons, however, to produce a clustering of points. This
method is used to create a gap histogram (Figure 7.15). The dot method par-
titions a space with an irregular mesh designed to cluster unidimensional data.
Some of the resulting polygons overlap, so that point elements can be used to
produce symmetric or asymmetric dot plots (Wilkinson, 1999). 
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7.1.2  Summary

The summary class includes statistical algorithms for producing a single value
that comprises a statistical summary. The count, proportion, and sum methods
return simple or weighted counts, proportions, or sums. The mean, median,
and mode methods return measures of location. The sd, se, and range methods
return measures of dispersion. Some might regard these methods as disparate
from a computational point of view. From a graphical point of view, however,
they are all common objects; all produce a result that is graphable as a geomet-
ric point. A dot plot of standard deviations within groups, for example, would
require the graphing function position(statistic.sd()) to make a point for each
standard deviation. We could also plot standard deviations as intervals using
the function position(region.spread.sd()), but if our interest is only in disper-
sion and not location, it is easier to examine standard deviations directly than
to view them as differences between the bounds of intervals. Finally, the leaf
function computes leaves for a stem-and-leaf plot using a modulo function on
the binning used on the stems.

7.1.3  Region

The region class includes statistical algorithms that produce two values
bounding an interval in one dimension, or a set of vertices bounding a region
in higher dimensions. There are two ways to do this. 

The first method is to use a measure of spread (sd, range, etc.). Examples
are region.spread.sd and region.spread.range. The sd method is the default.

The second method for computing a region is to use a theoretical distribu-
tion to compute a confidence interval, not necessarily symmetric, on some sta-
tistic. This is what the confi method does. Unlike spread, which bounds only
points, the confi method can construct regions that bound a variety of statisti-
cal objects. For example, region.confi.mean is a method for producing a con-
fidence interval on a mean using a probability distribution (usually Student’s
t distribution). The method region.confi.sd produces a confidence interval on
a standard deviation. The method region.confi.smooth.linear produces a con-
fidence interval on an ordinary regression line. As this last example indicates,
we can append to the confi method any statistical methods for which we know
how to produce a valid (under appropriate assumptions) confidence interval.
This can result in a rather long method function, but one that makes sense hi-
erarchically (from left to right) and also reveals the order in which we do the
computations (from right to left).

7.1.4  Smooth

The smooth class includes a variety of methods for computing smoothed val-
ues. The term derives from the smoothness of a parametric function, but it
covers a more general class of functions of variables that produce connected
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sets of values. These include ordinary linear regression, interpolators, and step
functions that pass through data values. The word smooth should not be taken
to imply that the result has many derivatives or is even continuous.

The linear smoothing method is perhaps the most widely used in practice.
It computes the function f(x) = xb for any real-valued input vector x. The de-
fault linear.ols smoother computes the vector b via the method of least squares
on the set of pairs {(xi, yi): i = 1, ..., n} taken from a set of data values. If our
frame is x*y, then x = x and y = y. The graphic of this 2D smooth is a straight
line whose intercept and slope are b0 and b1, respectively. If our frame is
x*y*z, then x = (x, y) and y = z. The graphic of this 3D smooth is a plane whose
intercept and slopes are b0, b1, and b2, respectively. 

The quadratic smoothing method fits a quadratic polynomial using a lin-
ear model f(x) = xb. If our frame is x*y, then x = (x, x2) and y = y. The graphic
of this 2D smooth is a parabola. If our frame is x*y*z, then x = (x, y, x2, y2, xy)
and y = z. The graphic of this 3D smooth is a parabolic surface or a saddle. The
cubic method and higher-degree polynomial smoothers are defined similarly.

The log smoothing method fits the function f(x) = log(a) + blog(x) to com-
pute smoothed values. If our data follow the model y = axb-, with - represent-
ing identically distributed independent errors, then we can log transform y and
x to fit this model with ordinary least squares. Estimating the coefficients of
other nonlinear models usually requires iterative methods that must be care-
fully designed to avoid local minima and loss of accuracy (Dennis and Schna-
bel, 1983). Robust nonlinear methods can be implemented through the same
terminology used for linear methods (e.g., smooth.log.biweight).

The mean, median, and mode smoothing methods produce a constant
smoother. A graphic of line(position.smooth.mean()) in the frame x*y is a hor-
izontal line whose height corresponds to the mean of y. In the frame x*y*z, a
graphic of line(position.smooth.mean()) is a horizontal plane positioned at the
mean of z. These constant smoothers are useful as reference objects in graph-
ics (to mark a mean level, for example). The smooth.median method is useful
for computing reference levels when the values to be smoothed are skewed or
contain outliers. The smooth.mode method is useful for computing reference
levels when the values to be smoothed are categorical.

So far, we have given global definitions for parametric smoothers. There
is also a large literature in statistics that covers what is usually called non-
parametric smoothing, locally parametric smoothing, or kernel smooth-
ing (Härdle, 1990; Hastie and Tibshirani, 1990; Scott, 1992; Green and
Silverman, 1994; Fan and Gijbels, 1996; Simonoff, 1996). These local
smoothing methods are flexible, follow the data closely, and are especially
useful for exploratory data analysis. They work by computing a weighted fit
of a smoothing model inside a window containing an ordered subset of the da-
ta. The set of weights used to define the smoothing window is derived from a
probability kernel function, which is a function on the real numbers with in-
tegral 1/n, where n is the number of cases in the set of data to be smoothed. In
2D, the most useful window functions are the following:
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uniform: f(x) = a : (–w ! x ! w), else 0

epanechnikov: f(x) = a(1 – (x/w))2 : (–w ! x ! w), else 0

biweight: f(x) = a(1 –  (x/w)2)2 : (–w ! x ! w), else 0

triweight: f(x) = a(1 –  (x/w)2)3 : (–w ! x ! w), else 0

tricube: f(x) = a(1 – |x/w|3)3 : (–w ! x ! w), else 0

gaussian: f(x) = ae– (x/w)²

cauchy: f(x) = a/(b+ (x/w)2)

The constant a that scales these formulas as probability kernel functions may
be set to 1 for smoothers because it cancels out in the algorithms if they are
designed properly. The constant w determines the width of the window or, for
kernels like gaussian and cauchy that have nonzero tails, the spread of the ker-
nel. We can adapt these functions to 3D smoothing (assuming x and y are in-
dependent and identically distributed) by transforming them into polar
coordinates. Non-circular 3D window functions are slightly more complex.
See Figure 14.5 for a graphical example of how kernel smoothing works.

There are two simple ways, among others, that we can set the window
width w for computing a smoothed value at a location xi (not necessarily a data
point). The first is to set w to be fixed at a chosen bandwidth value for all xi.
The second is to set w to be the distance from xi to the kth nearest neighbor in
the data. This method, called knn, generally means that the width of a window
will vary at different points xi. The fixed window guarantees that smoothed
values will be based on a common range and the knn window guarantees that
they will be based on the same number of data points, namely k.

As a consequence of their evolution, nonparametric smoothers have ac-
quired many different names, but there is a simple scheme that makes it easy
to implement almost every one of them in an object-oriented system. Each of
the global methods we have described (linear, quadratic, cubic, log, mean,
median, and mode) can be turned into a local method by adding the name of
the type of kernel weighting function used to do the smoothing. An example
is smooth.linear.epanechnikov. For local smoothers, the default bandwidth is
fixed and the default loss function is ols. If we wish to specify knn or other loss
functions, we can use the extended syntax smooth.model.kernel.window.loss.
An example is smooth.mean.uniform.knn.biweight.

This scheme yields many of the kernel and polynomial smoothers de-
scribed in the literature under other names. For example, a running-means or
moving-averages smoother (Makridakis and Wheelwright, 1989) is
smooth.mean.uniform. The Nadaraya–Watson kernel smoother (Nadaraya,
1964; Watson, 1964) is smooth.mean.epanechnikov. Shepard’s smoother
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(Shepard, 1965), sometimes called an inverse-distance smoother (McLain,
1974), is smooth.mean.cauchy. The distance-weighted least squares
(DWLS) smoother (McLain, 1974) is smooth.quadratic.gaussian. The step
smoother (Cleveland, 1995) is smooth.mean.uniform.knn with k = 1 (the num-
ber of nearest neighbors is set to 1). For convenience, we will name this
smooth.step in the examples. The image-processing digital filter called a dis-
crete gaussian convolution that is used to smooth black-and-white images
(Gonzalez and Wintz, 1977) is smooth.mean.gaussian.knn. It is a knn method
because the pixels on which it operates are evenly spaced, so it does weighted
averages over a fixed number of pixels. Finally, Cleveland’s loess smoother
(Cleveland and Devlin, 1988) is smooth.linear.tricube.knn.biweight. Notice
that Cleveland’s loss function involves robust biweighting instead of ordinary
least squares, which makes his smoother resistant to outliers. For convenience,
we have denoted it as smooth.loess in the examples. The quadratic version of
loess is smooth.quadratic.tricube.knn.biweight.

The local version of the median smoother is discussed in Tukey (1977).
Tukey’s smoother is equivalent to smooth.median.uniform.knn. The local
mode method is based on a kernel estimate of the conditional mode, discussed
in Scott (1992). The spline method implements cubic splines, which are piece-
wise cubic polynomials. These are used most frequently for smooth interpola-
tion of a set of data points (Lancaster and Salkauskas, 1986) but also have
applications in nonparametric regression (Wahba, 1990). Finally, note that all
the smooth methods provide the possibility of computing confidence intervals
when they are defined. This is done by using the region.confi method prefix on
the smoother, as in region.confi.smooth.linear.

Finally, the density methods estimate a density using a variety of
smoothers. The normal method estimates the parameters of the normal distri-
bution from sample data and returns the density function. Other parametric
densities can be computed similarly. The kernel methods perform kernel den-
sity estimation using the kernels discussed under smoothing methods above.
An example is density.kernel.epanechnikov. Silverman (1986) and Scott
(1992) discuss kernel density estimation. 

7.1.5  Link

Finally, the link methods input tuples representing nodes in a graph, and return
edges according to various algorithms. Given a list of n nodes (n assumed
even) represented by the indices , the join method returns a list of
edges represented by the indices . This
method is useful for blending two varsets of nodes because it pairs the first
node in the first column with the first node in the second, and so on. We use
this method for constructing trees from parent-child lists. The sequence meth-
od links adjacent nodes in a sequence , producing the list of links

.
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The mst method returns the minimum spanning tree, which is the shortest
set of edges (in terms of total length) connecting every node. The delaunay
method returns the Delaunay triangulation of the nodes, which is the triangu-
lation of a set of points that is as close as possible to being isosceles, thus min-
imizing narrow triangles. The hull method returns the convex hull of a set of
points, which is the set of edges connecting the outermost nodes in a planar
graph. In three dimensions, the convex hull is made up of planar facets instead
of lines. The tsp method computes the traveling salesman problem, or at least
an approximation. This computation involves finding the shortest path through
a set of points such that every point is visited once. The lonely salesman is usu-
ally allowed to return home. The complete method returns the set of edges in
a complete graph for a set of nodes. The neighbor method returns the edges in
a nearest-neighbor graph.

Algorithms for many of these methods, including the Voronoi tessellation
used for bin, have been developed by computational geometers. The standard
reference in this field is Preparata and Shamos (1985). A more recent refer-
ence is O’Rourke (1998).

7.1.6  Conditional and Joint Methods
There are two subclasses of statistical functions: conditional and joint.

The input to the conditional form of the functions is a finite set {(xi,yi)}, where
x is a d-dimensional vector variable and i = 1, ..., n. This set is defined by the
d factors of the common term x1*x2*...*xd*y found after expanding the frame
specification to algebraic form using the distributivity axioms presented in
Chapter 5. The input to the joint form of the functions is the finite set of data
{xi}, where x is a d-dimensional vector variable and i = 1, ..., n. This set is de-
fined by the d factors of the common term x1*x2*...*xd.

The conditional methods compute f(x) from y conditioned on values of x.
These include methods like linear and nonlinear regression. The joint methods
compute f(x) from x alone. These include methods like principal components,
orthogonal regression, minimum spanning trees, and network algorithms. In
most joint methods, f(x) is a multi-function. In the minimum spanning tree
method, for example, we input a set of tuples {x1...xn} and output a set of
nodes and edges comprising a minimum spanning tree. 

We designate conditional or joint methods by adding the suffix condition-
al or joint to statistical method functions. For example, if we have a frame con-
sisting of x*y, we can specify the conditional means of x given y through the
graphing function statistic.mean.conditional() and we can specify the centroid
of x and y as statistic.mean.joint(). The conditional methods are useful for dis-
playing prediction models and the joint methods are useful for displaying mul-
tivariate distributions. See Table 7.2 for examples.
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7.1.7  Form and Function
The consequence of distinguishing statistical methods from the graphics

displaying them is to separate form from function. That is, the same statistic
can be represented by different types of graphics, and the same type of graphic
can be used to display two different statistics. Figure 7.1 illustrates the former
and Figure 7.2 the latter. This separability of statistical and geometric objects
is what gives a system a wide range of representational opportunities. Objects
such as error bars, regression lines, and confidence intervals have evolved into
customary forms that employ bars, lines, or other geometric objects. This
makes them recognizable by viewers trained in certain disciplines, but we
must understand that these representations do not necessarily reflect the deep-
er structure of the graphs. For example, stockbrokers are accustomed to high-
low-close plots and scientists are familiar with error bars. Both are using the
same graphs but different statistical methods. However, we expect to see
binned data displayed using bars in a histogram, but sometimes points or lines
are more useful for displaying bins.

No less important, the separation of form and function allows us to con-
serve computer code. The groupings in Table 7.1 are based not only on taxon-
omies drawn from the statistical literature, but also on shared algorithms
needed to execute these functions. This saves both time and space.

Notice in Figure 7.1 that region.confi.smooth.linear() returns intervals
ranging between upper and lower confidence bounds on a line, so that each
graphic adjusts itself to an interval: point marks the upper and lower bound,
area fills in the area between the bounds, line delineates the upper and lower
bounds, and interval marks the bounds with a set of bars. 

In Figure 7.2, line responds differently to functions (statistic, smooth) and
multifunctions (spread, confi). For multifunctions, line is split into two or
more segments. This is shown in the bottom two panels. The line splits in the
lower left panel wherever there is more than one value on female for a value
of birth, spanning the range of the data at that point.
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ELEMENT: point(position(region.confi.smooth.linear(female*birth)))

ELEMENT: line(position(region.confi.smooth.linear(female*birth)))

ELEMENT: area(position(region.confi.smooth.linear(female*birth)))

ELEMENT: interval(position(region.confi.smooth.linear(female*birth)))

Figure 7.1 Different graph types, same statistical method
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ELEMENT: line(position(summary.mean(female*birth)))

ELEMENT: line(position(region.spread.range(female*birth)))

ELEMENT: line(position(smooth.quadratic(female*birth)))

ELEMENT: line(position(region.confi.smooth.linear(female*birth)))

Figure 7.2 Different statistical methods, same graph type
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7.2 Examples
Now we will proceed to explore the effects of these functional methods on
each type of geometric element. The remainder of this section is organized by
graph type.

7.2.1  Point

Graphs have a default statistical function. Their position is usually determined
by one or more values on the domain and range. Graphs like schema employ
a multivalued function (multifunction) that outputs values needed to deter-
mine the position of features like a midrange box, whiskers, and the outer
points (outliers). For other graphs like point, line, interval, or area, position
may be determined by a single-valued function (such as a mean) or a multi-
function (such as a confidence interval). The type of the function determines
how many shapes will be drawn for a given value in the domain.

7.2.1.1  Means in 2D

Figure 7.3 illustrates a point graphic on the countries data used in Chapter 1.
The gov variable represents a classification of the type of government for each
country. The female variable represents female life expectancy. Later graphics
will also use male, the corresponding variable for male life expectancy. While
Figure 1.1 used a subset of the countries, the full dataset of 57 countries is used
in this chapter. 

ELEMENT: point(position(summary.mean(gov*birth))) 

ELEMENT: point(position(summary.mean(female*birth)))

Figure 7.3  Points on categorical (left) and continuous (right) domains
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The point graph can use a summary function to determine location in a
frame when there are duplicate cases in a subclass. For example, if we use the
summary.mean() method, then each point represents the mean of the birth val-
ues within each category of gov or value of female. Every dot represents a
mean, even for continuous domains. The right graphic in Figure 7.3 looks like
the cloud in the right panel of Figure 8.1 only because most of the data points
are singletons (tuples with a unique first value). The mean of a singleton is the
singleton’s value.

7.2.1.2  Means in 3D

Figure 7.4 shows an example of point graphics embedded in a 3D frame using
the summary.mean() function. We have used a three-dimensional marker. Be-
cause of scale decoding and perspective illusion problems in 3D graphics
(Cleveland, 1985; Kosslyn, 1994), it is usually better to represent summary
graphics in 2D by facets (see Chapter 11). With point summary graphics, we
want to be able to compare means across different groups. We need to discern
the values of the means as well as their differences. The 3D environment
makes this especially difficult, even when there are grid lines in the back-
ground. Our task in interpreting 3D scatterplots and surfaces, however, is quite
different. With those objects, we need to discern the shape of the entire cloud
or surface and make a holistic judgment on the relations among the variables
assigned to the axes. The 3D display can facilitate these tasks.

COORD: rect(dim(1, 2, 3) 
ELEMENT: point(position(summary.mean(urban*gov*birth)),

shape(shape.cube))

Figure 7.4  3D point plot on categorical domain
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7.2.2  Line/Surface

Lines and surfaces are the same geometric graph type. The differences we as-
sociate with them are related to dimensionality rather than geometry. This
subsection illustrates several variations in these graphs produced by different
statistical methods. Some are simple functions and others are multifunctions.

7.2.2.1  Range Lines

Figure 7.5 shows a time series of the daily price of the stock of SPSS. The
same series is used in Figure 7.13. Because we used the graphing multifunc-
tion position.region.spread.range() to position the line graph, we get two
lines, one connecting the low and the other connecting the high values. This
creates an envelope for the daily stock price.

Graphs like point and line divide into two or more instances when driven
by multifunctions. Other graphs like interval and area do not divide for two-
valued multifunctions because they are intrinsically interval valued. Other ex-
amples of this behavior are shown in Figure 7.1.

We plotted this series on a time scale using a monthly format. Other for-
mats can be specified with the GUIDE statement (see Chapter 12). Notice that
the tick marks bracketing the month of February are closer together than those
bracketing other months. This means that the time scale on the horizontal axis
is an interval (rather than categorical) scale. See Chapter 6 for a more detailed
discussion.

SCALE: time(dim(1))
GUIDE: axis(dim(1), format("mmm"))
ELEMENT: line(position(region.spread.range(date*(high+low))))

Figure 7.5  Line plot of high-low-close
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7.2.2.2  The Loess Smoother

The preceding graphing functions compute their summaries using data only
for values in the range (y) for a given value in the domain (xi). The smooth
function uses other (x, y) values to compute an estimate at xi. Parametric glo-
bal smoothers do this by means of a function whose parameters are estimated
from all the (x, y) values. Nonparametric smoothers do this with local func-
tions estimated from (usually overlapping) values in the neighborhood of xi.

Figure 7.6 shows a scatterplot of the birth rates against female life expect-
ancy. It employs the loess smoother (Cleveland and Devlin, 1988), which is a
locally weighted robust regression method. The smoother is specified by the
smooth.loess function. The advantage of loess over other smoothers is that it
employs a robust fitting method that makes it resistant to outliers in the data.

Loess works by fitting polynomial (usually linear) regressions to fixed-
size subsets of the data using a weighting function based on the distance of a
data point from xi, the location where we wish to fit f(x). This fit is performed
iteratively, using a biweight robust weighting function. The robust iterations
tend to downweight large residuals, so that the final fit at xi is more represen-
tative of the mass of the data near xi.

The loess smoother indicates that the variables in Figure 7.6 are fairly lin-
early related to each other. We could explore a linear model to test this possi-
bility. Local smoothers can help us in the choice of models and save us from
erroneous conclusions, as the next example will show.

ELEMENT: line(position(smooth.loess(female*birth)))
ELEMENT: point(position(female*birth))

Figure 7.6  Loess smooth on scatterplot
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7.2.2.3  A Conditional Mode Kernel Smoother

Nonparametric smoothers can be especially useful in detecting nonlinearities
before deciding to fit linear models. Figure 7.7 shows an example of an anal-
ysis whose conclusions might have been substantially different had non-para-
metric smoothers been used. 

The data underlying the figure were digitized from a graphic in Gonnelli
et al. (1996). A linear regression (the green line) was computed by the authors
separately for males and females to support their conclusion that bone alkaline
phosphatase increased linearly for both groups with age. Figure 7.7 shows the
plot for females. The curvilinear smoother (red curves) is a modal kernel re-
gression procedure (Scott, 1992) that fits an estimate of the conditional mode
at points on the domain. The advantage of a modal smoother is that disconti-
nuities are revealed when they exist in the data. When the data support it, we
get two or more smoothers instead of one. Since the smoother can accommo-
date multimodality, it can even fit multiple estimates at given values in the do-
main. In other words, we can get two or more smoothers at different altitudes
in the same scatterplot. Conventional regression smoothers do not have this
property. The modal smoother shows that there is evidence of a discontinuity
in BAP levels for females at menopause. There is little evidence of a trend
within the separate age levels, however. Kernel smoothers are known for re-
gressing (going flat) at their extremes. For these data, however, other
smoothers support the same conclusion (see Figure 15.25).

ELEMENT: line(position(smooth.mode.epanechnikov(age*bone)), 
color(color.red))

ELEMENT: line(position(smooth.linear(age*bone)), color(color.green))
ELEMENT: point(position(age*bone))

Figure 7.7 Linear vs. modal smooth
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7.2.2.4  Joint Smoothing

Conditional smoothers minimize the sum of a function of the vertical distanc-
es (measured along y) between data values and fitted curve for all values mea-
sured on x. Joint smoothers generally minimize the sum of a function of the
shortest distances between data values and fitted curve for all values measured
on x. The joint method can be useful when there is no reason to distinguish a
dependent variable from an independent variable. Hastie and Stuetzle (1989)
generalize this idea to principal curves, which are curvilinear segments that
pass through a set of points in a similar manner to the medial axis or skeleton
of set of points (Preparata and Shamos, 1985). 

Figure 7.8 shows a simple example of a joint linear fit to Quantitative and
Verbal Graduate Record Examination scores of students in a psychology de-
partment. The conditional regression line (green) has a shallower slope than
the joint regression line. The loss function for conditional linear regression is

and the loss for the orthogonal regression is

ELEMENT: line(position(smooth.linear.conditional(greq*grev)), 
color(color.green))

ELEMENT: line(position(smooth.linear.joint(greq*grev)), color(color.red))
ELEMENT: point(position(greq*grev))

Figure 7.8  Conditional (green) and joint (red) linear smoothers
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7.2.2.5  2D Step Interpolation
Step interpolation fits points with a step function. Figure 7.9 shows a statistical
plot called the Kaplan–Meier survival function. This plot displays the proba-
bility of survival from some onset time until a given time, estimated from a
sample of cancer patients. The same graphic can be used on other populations
subject to finite survival times, such as light bulbs, rumors, and marriages.
Step interpolation is also useful for displaying empirical cumulative distribu-
tion functions (see Figure 6.2).

ELEMENT: line(position(smooth.step(days*survive)))

Figure 7.9  Kaplan–Meier survival curve

7.2.2.6  3D Step Interpolation
A 3D step smoother resembles a Voronoi tessellation (see Section 7.2.5.3).
Figure 7.10 shows a stepped surface fitted to the car data used in Figure 8.2. 

COORD: position(rect(dim(1, 2, 3)))
ELEMENT: surface(position(smooth.step(weight*hp*quarter)), 

color(color.green))
ELEMENT: point(position(weight*hp*quarter), color(color.blue))

Figure 7.10  3D stepped surface
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7.2.2.7  3D Inverse-Distance Smoothing
Figure 7.11 shows a 3D surface smoother on the difference between US sum-
mer and winter temperatures. The specification includes a stereographic pro-
jected frame for the first two dimensions. The map is drawn within this
projection via the polygon graphic whose position(longitude*latitude) func-
tion places it on the bottom facet of the 3D frame. The temperature variation
for each state is represented in the range by a contour graphic. We assume the
variables lon, lat, summer, and winter are variables in an associated data file.

The smoother for the contour graph is computed by the
smooth.mean.cauchy function. The contours are colored with color.hue. Like
the map itself, the contours are plotted on the bottom facet because only two
variables are included in its position() aesthetic. Finally, the third graphic adds
the surface representation of the smoother in 3D. This is accomplished by in-
cluding all three variables of the specification implicitly in the position() aes-
thetic. The map reveals that midwesterners are hardy folk. They are forced to
tolerate fluctuations in the weather. And because of stiff airline fares (see Fig-
ure 9.39), they have difficulty fleeing to places where the weather is fair.

DATA: longitude, latitude = map(source("US States"))
TRANS: sw = diff(summer, winter)
COORD: rect(dim(1, 2, 3), project.stereo(dim(1, 2)))
ELEMENT: polygon(position(longitude*latitude), color.hue(sw))
ELEMENT: contour(position(smooth.mean.cauchy(lon*lat*sw)), color.hue())
ELEMENT: surface(position(smooth.mean.cauchy(lon*lat*sw)))

Figure 7.11 Smooth of temperature variation in continental US
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7.2.3  Interval

Bar graphs represent interval-valued functions, or relations in which the range
can have two values in the function set for a given tuple in the domain. Ordi-
narily, one end of an interval is fixed at the value of zero to make a bar chart.
The following examples illustrate applications in which both ends are used.

7.2.3.1  Error bars

Sometimes we need to represent a range, standard deviation, confidence inter-
val, or some other spread measure. The most common example is the ordinary
error bar used in scientific graphics. Figure 7.12 shows an example for the
birth rate data within different types of government. 

ELEMENT: interval(position(region.spread.se(gov*birth)), shape(shape.tick))
ELEMENT: point(position(statistic.mean(gov*birth)))

Figure 7.12  Error bars

The error bars in this figure are based on one standard-error in both direc-
tions from the mean estimates represented by the dots in the graphic. We have
used the region.spread.se() function to compute an interval containing the
mean, plus or minus one standard error. The shape of the bars is arbitrary. The
one chosen for the figure, shape(shape.tick), is the most popular, but solid bars
and other graphics for representing an interval would do as well. We could use
several different graphics to represent several different spread statistics at the
same time (standard deviation and range, for example).
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7.2.3.2  Range Bars

The high-low-close graphic used for financial trading series is a combination
of an interval and a point graphic. Figure 7.13 shows a high-low-close graphic
for the SPSS stock series. The shape chosen for the graphic emphasizes the
closing price with a horizontal tick. Other graphic shapes are possible. 

The region.spread.range() graphing function creates the vertical lines by set-
ting shape with the shape(shape.line) aesthetic attribute function (see Figure 6.5
for range bars on this stock series using regular bars). The range() statistical meth-
od returns two values that define the ends of each bar. The closing price is posi-
tioned by the summary.median() graphing function. Because there are only
three y (high+low+close) values for each x (date) value, the median() method
always returns the close value.

The time scale is noteworthy. See Chapter 6 for details. Notice that the
time scale spaces dates unevenly according to the lengths of different months.
The interval between February and March is smaller than the other intervals
because there are fewer days in February. Weekends properly appear as blank
spaces because of this time scale. This scaling of time variables is especially
critical for graphics based on interrupted or unevenly spaced time series data,
such as financial series or clinical trials.

SCALE: time(dim(1))
GUIDE: axis(dim(1), format("mmm"))
ELEMENT: interval(position(region.spread.range(date*(high+low+close))), 

shape(shape.line))
ELEMENT: point(position(statistic.median(date*(high+low+close))),

shape(shape.hyphen))

Figure 7.13  High-low-close plot
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7Statistics7.2  Examples

7.2.4  Bins

Densities measure the relative concentration of a sample at different values of
a variable. These statistical measures range from ordinary histograms to dot
plots to kernel density estimates. 

7.2.4.1  Ordinary Histogram

The interval graph with a binning statistical function creates histograms. The
ordinary histogram is constructed by binning data on a uniform grid. Although
this is probably the most widely used statistical graphic, it is one of the more
difficult ones to compute. Several problems arise, including choosing the
number of bins (bars) and deciding where to place the cutpoints between bars. 

The choice of bin width h (or its dual, k, the number of bins) has been a
topic of research in the statistical community for more than 70 years. Sturges
(1926) proposed that k be proportional to log2(n), where n is the sample size.
He reasoned this from the approximation of the binomial by the normal distri-
bution. For the binomial,

 , so

k = log2(n)

Doane (1976) showed that more bins are needed, particularly for skewed data.
He included a measure of skewness into the calculation of k. If we can’t read
the data to calculate skewness before doing the histogram, the approximation 

k = 3 + log10(n)log2(n)

increases k enough to cover most of the examples Doane describes.
Working with h instead of k frames the problem in terms of density esti-

mation. Freedman and Diaconis (1981) computed bin width from asymptotic
theoretical results. For a normal distribution, Scott (1979) derived a bin width 

h = 3.5sn-1/3

where s is the sample standard deviation.
An additional problem arises when data are granular. The above estimates

should not be used when data consist of only a few distinct values. If our data
consist of the integers between 0 and 10, for example, we should pick 9 bins
regardless of the sample size. If the data consist only of the integers 3 and 7,
we should pick the 5 bins {3, 4, 5, 6, 7}. A similar argument applies to real
numbers.
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It is worth a preliminary pass through the data to determine if granularity
exists. A simple test is to sort the data and take differences between adjacent
values. If these differences are all an integer multiple of the smallest nonzero
difference, then granularity exists. In this case the bin width should be the
smallest nonzero difference or the width calculated with Scott’s formula,
whichever is larger.

Deciding where to place the cutpoints between bars is not simple either.
Generally, we want one cutpoint to be at zero, but this should not be a hard
rule. Scott (1992) showed that the choice of cutpoints between bars can affect
substantially the shape of the histogram. To counteract this tendency, he con-
structed a density estimator called the Averaged Shifted Histogram (ASH) by
shifting the cutpoints while maintaining bin width and then averaging all the
bins. There is a trade-off between choosing cutpoints at nice values (see Chap-
ter 6) and choosing them to create a relatively smooth histogram.

Statistics textbooks usually illustrate histograms with bell-shaped
datasets. Let’s turn things upside down. Figure 7.14 shows traffic fatalities by
age for the US in 2001. The statistics, unintentional motor vehicle occupant
death rates per 100,000 population, are from the US Centers for Disease Con-
trol and Prevention (CDC). We have superimposed a red theoretical curve
based on the arcsine distribution. 

Notice that we used a weighting variable with the summary.sum() statisti-
cal function; we did this to illustrate how to construct histograms on weighted
variables. If a case-weighting variable is taken from a field in the data source,
then the case-by-case values will be used instead of the default value of 1. In
most cases, the weighting variable appears nowhere else in the specification;
it is always used in statistical calculations, so there is usually no point in add-
ing a redundant reference in a model. With histograms, however, the vertical
axis consists of counts (or another statistic such as proportions). Therefore, we
use age*weight to determine the 2D frame for the graph.

The arcsine is a special case of the beta distribution (see Section 11.3.2.4)
and is useful for representing trade-offs in bounded random variables. Its den-
sity function is proportional to . Notice the trade-off in this for-
mula. Within the [0, 1] interval, density increases as x deviates from a half. Our
simple model specifies that one’s chance of a traffic fatality depends on how
far one is from 50 years old (we picked a round number). We cannot draw firm
conclusions about the relationship of age to driver performance based on these
data, however. First of all, these data include both drivers and passengers. Sec-
ond, they are confounded with alcohol use. Third, the data are not standard-
ized by miles driven. The risk of having an accident is mostly due to the time
spent traveling in a car.

� x � x–� �+
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DATA: weight = col(source("traffic.txt"), name("percent"), weight())
ELEMENT: interval(position(summary.sum(bin.rect(age*weight), dim(1))))
ELEMENT: line(position(age*arcsin))

Figure 7.14 Histogram of traffic fatality rates by age

7.2.4.2  Gap Histogram

Figure 7.15 shows an ordinary histogram of birth rate in the left panel and a
gap histogram in the right. The gap binning is a partial Voronoi tessellation of
the data in one dimension (see Section 7.2.5.3 for a 2D example). The edge of
each bin represents the Voronoi boundary midway between two points. Not
all boundaries are computed, however; some bins are left to contain more than
one data point. The area of a bar in either graphic is determined by the number
of cases in the bar times its width. The gap histogram is more useful for iden-
tifying gaps in the data than for representing the density itself. 

ELEMENT: interval(position(summary.count(bin.rect(birth))))

ELEMENT: interval(position(summary.count(bin.voronoi(birth))))

Figure 7.15 Histogram and gap histogram of birth rates
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Figure 7.16 shows in more detail how a gap histogram works. We have su-
perimposed a dot plot on the gap histogram to illustrate where the cuts are
made. Not every adjacent pair of dots is separated by bins. The algorithm stops
when it finds local clumps that are better left together than split. Notice, how-
ever, how the 1D Voronoi cuts are midway between adjacent towers of dots.

The vertical scales of the two graphics do not coincide. This is because the
dot plot has no vertical scale; it is a tally. If we wished to make a dot plot with
a scale, we would have to construct a count variable to control the heights of
the dot-piles.

ELEMENT: interval(position(summary.count(bin.voronoi(birth))))
ELEMENT: point.dodge(position(bin.dot(birth))))

Figure 7.16 Gap histogram with superimposed dot plot

7.2.4.3  Dot Plots

Asymmetrical dot plots (which are like dot histograms) and their close cous-
ins, symmetrical dot plots appear in a variety of statistical graphics packages.
Most of these displays are computed incorrectly. These packages simply bin
the data as if they were doing a regular histogram and then use dots instead of
bars to represent the count in each bar. Hand-drawn dot plots, used for well
over a century in medicine, economics, and other fields, place the dots where
the data values actually occur so that they avoid misleadingly granularizing
the data. The stacking that we see in dot plots should happen only when two
or more scaled data values differ by less than some proportion of the diameter
of a dot. One may think of the dots as a set of poker chips that must be arranged
as closely as possible to their coordinate locations without overlapping. The
larger the chips, the more stacking there is at common levels. The size of the
dot is, in certain respects, a smoothing parameter. Wilkinson (1999) discusses
the details of the problem.
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Figure 7.17 illustrates a dot plot on the traffic accident data. We have
made a weighting variable and multiplied it by 10 so that each dot represents a
tenth of a percent (the resolution of the original data source). We did not need to
do this with the histogram example because the height of the intervals is measured
on a continuous dimension. With dot plots, we don’t want to use fractional dots.

The plot tells us the data are granular in the data source, something we
could not ascertain with the histogram. There is an important lesson here. Sta-
tistics texts and statistical packages that recommend the histogram as the
graphical starting point for a data analysis are giving bad advice. The same
goes for kernel density estimates. These are appropriate second stages for
graphical data analysis. The best starting point for getting a sense of the dis-
tribution of a variable is a tally, stem-and-leaf, or a dot plot. A dot plot is a spe-
cial case of a tally (perhaps best thought of as a delta-neighborhood tally).
Once we see that the data are not granular, we may move on to a histogram or
kernel density, which smooths the data more than a dot plot. 

The SYSTAT histogram algorithm does take granularity into account (by
picking the number of bars to coincide with the number of distinct values even
for massive datasets), but this does not save us from investigating the data first
with a tally. It simply addresses the problem of misapplying standard binning
size estimates to granular data when constructing histograms. Because bars in
a histogram insist on staying glued together, we do not get to see the granular-
ity. If we know in advance that our data are granular, of course, then there is
no problem.

Incidentally, some might argue that making dot plots a default first step
for analysis is not a good idea for massive datasets containing numerous dis-
tinct values. Wilkinson (1999) addresses that point; it is not a problem.

DATA: wt = col(source("traffic.txt"), name("percent"), weight())
TRANS: wt = prod(y, 10)
ELEMENT: point.dodge(position(bin.dot(age)))

Figure 7.17  Dot plot on binned data
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7.2.4.4  Stem-and-leaf Diagrams

Tukey (1977) discusses a variety of tallies, from the simple crossed-out
groups of five marks to the stem-and-leaf plot. This latter display adds to the
simple tally a set of significant digits to convey essential numerical informa-
tion. The most significant digit or digits are chosen to be the stem on the left
of the tally. The next digit to the right of the stem in each data value is chosen
for the “leaf” on the right. This digit is not rounded. The leaves are stacked in
order to the right so that the entire tally resembles a histogram. Figure 7.18
shows an example for the birth rate data. The plot is transposed to take the
form of Tukey’s original. In other words, a stem-and-leaf diagram is a trans-
posed, stacked dot plot in which the dots are represented by numerals. The
binning method is a bit different from that used by dot plots, however. Can you
see why?

ELEMENT: point.dodge(position(bin.stem(birth)),
shape(summary.leaf(birth)))

COORD: transpose(dim(1, 2))

               1   01112222222333444444
               1   5788
               2   011
               2   6678888899
               3   04
               3   57777
               4   23444
               4   556778
               5   12

Figure 7.18  Stem-and-leaf diagram

7.2.4.5  Kernel Densities

There are many methods for estimating probability densities from sample data
(Silverman, 1986; Scott, 1992). Figure 7.19 shows two popular density esti-
mates superimposed on histograms of brainweight on a log scale. The normal
method uses a parametric Gaussian distribution to produce the curve from
sample estimates of its two parameters. The kernel method uses nonparamet-
ric kernel density estimation with an Epanechnikov kernel as the default meth-
od (Silverman, 1986). Both methods are types of smoothers, so we calculate
them in the smooth() class. Many of the same basic windowing methods are
used for both kernel smoothers and kernel density estimates.

The vertical axis is not shown, but this dimension consists of the density
represented by the smooths. The densities match the height of the histogram
bars because we used a proportion() summary function for the vertical mea-
sure of the histogram bars. This requires an area calculation, for both the his-
tograms and the densities, that sums to 1. 
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SCALE: log(dim(1), base(10))
ELEMENT: interval(position(summary.proportion(bin.rect(brainweight))),

color(color.blue))
ELEMENT: line(position(smooth.density.normal(brainweight)), 

color(color.red))

SCALE: log(dim(1), base(10))
ELEMENT: interval(position(summary.proportion(bin.rect(brainweight))),

color(color.blue))
ELEMENT: line(position(smooth.density.kernel(brainweight)), 

color(color.red))

Figure 7.19  Normal and kernel densities superimposed on histogram

7.2.4.6  Bivariate Densities

Scott (1992) and Silverman (1986) discuss 2D and higher-dimensional kernel
density estimates. Figure 7.20 shows joint bivariate densities for the sleep da-
ta. The left panel shows contours for a normal bivariate density estimate, and
the right panel shows contours for a kernel density estimate. The normal den-
sity is computed from estimates of the parameters of the bivariate normal dis-
tribution and the kernel density is computed from an Epanechnikov kernel.
This kernel looks like a quadratic function (parabolic solid) in two dimensions
that is moved around the plane of the points and is used to compute a weighted
sum of the counts of the observations within the bounds of the kernel. 

As with the 2D kernel density, the 3D kernel density requires scaling the
density to sum to 1. We do this by numerically integrating the density (by Sim-
pson’s method) and then choosing level curves that correspond to nice num-
bers. We start at the mode of the density and move down, so that after
rescaling, the numbers on the level curves (assuming we display them) corre-
spond to empirical probabilities. If there are two or more modes, we insure
that all of them are included in the scaling calculations. A horizontal scan-
plane algorithm helps us with this problem. The net result of all this work is
that 95 percent (or another selected value) normals and kernels can be super-
imposed in the same plot.
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SCALE: log(dim(1), base(10))
SCALE: log(dim(2), base(10))
ELEMENT: point(position(bodyweight*brainweight))
ELEMENT: contour(position(smooth.density.normal.joint(bodyweight*brainweight)),

color.hue())

SCALE: position(log(dim(1), base(10)))
SCALE: position(log(dim(2), base(10)))
ELEMENT: point(position(bodyweight*brainweight))
ELEMENT: contour(position(smooth.density.kernel.epanechnikov.joint(

bodyweight*brainweight)), color.hue())

Figure 7.20  Normal and kernel bivariate densities 

7.2.5  Polygon
We have seen how functions can be used to create different tilings using the
same polygon element. This section shows a variety of examples.

7.2.5.1  Binning
Figure 7.21 shows a simple scatterplot. The data for the graphic were adapted
from Daly et al. (1994), who developed an analytic method called Parameter-
elevation Regressions on Independent Slopes Model (PRISM) that uses point
data and a digital elevation model to generate 2.5 minute square gridded esti-
mates of monthly and annual US climate parameters. Carr et al. (1999) used
those gridded summaries for the time period 1961–1990 to develop graphics
characterizing the spatial variation of climatic parameters within ecoregions.
They associated each grid cell with an Omernik level II ecoregion (Omernik
1987, 1995) using a point-in-polygon matching procedure. The horizontal axis
of Figure 7.21 represents the average yearly precipitation in millimeters over
the three decades. The vertical axis represents average annual growing degree
days, a measure of the number of degrees in daily average temperature above
50 degrees summed over all days with a daily average temperature above 50.
There are 78,766 data points in Figure 7.21.
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ELEMENT: point(position(rainfall*degdays))

Figure 7.21  Simple scatterplot

Scatterplots on large datasets tend to look like inkblots, even when we try
to use non-occluding symbols such as hollow circles. Binning helps to reveal
more detail. Figure 7.22 shows a 30 by 30 rectangular grid of the same data.

ELEMENT: polygon(position(bin.rect(rainfall*degdays)), 
color.hue(summary.count()))

Figure 7.22  Rectangular binning with color representing counts

Carr suggested a modification that uses binning but results in a plot that
looks more like a scatterplot. We bin as usual but use a symbol to represent the
centroid of the points in each bin. The symbols are sized according to the fre-
quency in each bin. Figure 7.23 shows the result for the Omernik data. 
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ELEMENT: point(position(bin.rect.centroid(rainfall*degdays)), 
size(summary.count()))

Figure 7.23 Rectangular binning with symbols positioned at bin centroids 
and size of symbols representing counts

Rectangular bins lead the eye to align bin centers and to see regularity
where there is none. Such patterning is evident in Figure 7.23 despite moving
the points to the bin centroids. Carr et al. (1987) devised hexagon binning to
mitigate this visual artifact. The hexagon tiling staggers the locations of alter-
nate rows of bins. Figure 7.24 shows an example of hexagon binning on the
Omernik data. We could also use bin.hex.centroid with point as in Figure 7.23.

ELEMENT: polygon(position(bin.hex(rainfall*degdays)), 
color.hue(summary.count()))

Figure 7.24 Hexagon binning
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7.2.5.2  Heatmaps

A heatmap is a tiled 2D graphic with the tiles colored by a third variable. Fig-
ure 7.25 shows a microarray plot (Alon et al., 1999). We have assumed that
the binning in this case produces only one bin per value (although we haven’t
shown a parameter to control the binning in the example), so the data are full-
resolution. See Section 16.5 for further discussion of matrix permutation as an
analytic procedure.

DATA: x = reshape.rect(x(1..62), "colname")
DATA: y = reshape.rect(x(1..62), "rowname")
DATA: d = reshape.rect(x(1..62), "value")
ELEMENT: polygon(position(bin.rect(x*y)), color.hue(d))

Figure 7.25  Microarray plot

7.2.5.3  Voronoi Tessellations

The Voronoi tessellation is one of the most prevalent tilings to appear in sci-
entific graphics. Each pair of points is separated by a boundary based on the
perpendicular bisector of the line segment joining both points. Preparata and
Shamos (1985) survey algorithms for computing this tiling. Stoyan et al.
(1987), Cressie (1991), and Okabe et al. (1992) cover statistical and probabil-
ity measures related to the Voronoi tessellation. 

Figure 7.26 shows a graphic of the spatial location of fiddler crab holes in
an 80 centimeter square section of the Pamet river tidal marsh in Truro, Mas-
sachusetts. We collected these data, in bare feet, at substantial personal risk.
The right panel contains a sample of uniform random points distributed in the
same square. Both panels contain a Voronoi tessellation. Notice the irregular
structure of the polygons on the right. The contrast in tiling between the two
figures suggests the territorial constraints of the real holes vs. the random
grouping of the artificial. 
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ELEMENT: polygon(position(bin.voronoi(crabx*craby)))
ELEMENT: point(position(crabx*craby))

DATA: uranx=rand.uniform(23)
DATA: urany=rand.uniform(23)
ELEMENT: polygon(position(bin.voronoi(uranx*urany)))
ELEMENT: point(position(uranx*urany))

Figure 7.26  Voronoi tessellation of fiddler crab holes

7.2.6  Path

The path() graphing function computes a path according to the order of a set
of points in a list. The order may come from the original dataset or we can sort
the data. The following method computes an ordering using an algorithm.

7.2.6.1  Traveling Salesman Problem
Figure 7.27 shows a path that rejoins itself to make a complete circuit. The ex-
ample here comprises a short path through the continental US that covers ev-
ery state just once and returns to the beginning. This graphic is an approximate
solution to the traveling salesman problem (Preparata and Shamos, 1985).
Several caveats are in order, however. First, the path was computed in Euclid-
ean 2D space after transforming with the stereographic projection. This meth-
od does not produce the shortest path on the surface of the globe. Second, the
locus of the point in each state is arbitrary and was not chosen to make the path
shorter. Finally, the solution itself was computed by simulated annealing
(Press et al., 1986), which cannot guarantee the shortest path. The advantage
of this sub-optimal algorithm, however, is that Figure 7.27 can be computed
in a few seconds on a desktop computer. The link.tsp() function computes the
path and ensures that it returns to its start in a closed loop or circuit.
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7Statistics7.2  Examples7.2.5  Figure 7.26  

DATA: longitude*latitude = map(source("US states"))
COORD: project.stereo()
ELEMENT: polygon(position(longitude*latitude))
ELEMENT: path(position(link.tsp(lon*lat)))

Figure 7.27 Short bicycle ride through US

7.2.7 Edge

The edge() graphing function computes a vertex-edge graph element. The sta-
tistical link() functions offer several different methods for computing the links
between vertices.

7.2.7.1  Minimum Spanning Tree

A minimum spanning tree (MST) connects points represented in a space using
line segments that have minimum total length and that join all points without
creating any circuits (cycles). The result is that any two nodes in an MST are
connected by exactly one path. This tree has the shortest total length of all pos-
sible spanning trees connecting the points in the plotted space. Preparata and
Shamos (1985) survey algorithms for computing this tree efficiently and Har-
tigan (1975a) discusses its application to cluster analysis. Deleting the longest
link in a minimum spanning tree results in two clusters whose total edge
length is minimum among all possible two-cluster trees. Recursively deleting
links follows the same computational steps (in reverse order) as the widely
used single linkage, or nearest neighbor cluster analysis algorithm. The al-
gorithm is conventionally applied to a Euclidean minimum spanning tree, but
it can be adapted to other coordinates.
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Figure 7.28 shows a Euclidean minimum spanning tree on the fiddler crab
data. For our fiddler crabs, the solution in Figure 7.28 shows the smallest
amount of wire needed to install telephones in their holes so they can commu-
nicate with each other without clicking their claws.

ELEMENT: point(position(crabx*craby))
ELEMENT: edge(position(link.mst(crabx*craby)))

Figure 7.28 Minimum spanning tree

7.2.7.2  Hull

Figure 7.29 shows an example of a convex hull. As we shall see in Section
7.2.7.3, the convex hull is computable from the outermost edges of the De-
launay triangulation. The peeled hull (see Figure 8.13) is not a subgraph of the
same triangulation, however. It makes more sense to compute hulls with rou-
tines tailored to the problem (Preparata and Shamos, 1985). 

Our fiddler crabs have installed a convex hull to establish a gated retire-
ment community. We have used an edge element to draw the hull, but a poly-
gon element would be a reasonable choice as well.
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ELEMENT: point(position(crabx*craby))
ELEMENT: edge(position(link.hull(crabx*craby)))

Figure 7.29  Convex hull around crab holes

7.2.7.3  Triangulation
A triangulation joins points with segments such that all the bounded regions
are triangles. Figure 7.30 shows a Delaunay triangulation on the crab data. 

ELEMENT: point(position(crabx*craby))
ELEMENT: edge(position(link.delaunay(crabx*craby)))

Figure 7.30  Delaunay triangulation of crab holes

Figure 7.31 superimposes the last three figures plus the Voronoi diagram. 

0 20 40 60 80

Horizontal (cm)

0

20

40

60

80

V
e
rt

ic
a

l 
(c

m
)

0 20 40 60 80

Horizontal (cm)

0

20

40

60

80

V
e
rt

ic
a
l 
(c

m
)



148 7  Statistics

ELEMENT: point(position(crabx*craby))
ELEMENT: edge(position(bin.voronoi(crabx*craby)), color(color.red))
ELEMENT: edge(position(link.mst(crabx*craby)), color(color.blue))
ELEMENT: edge(position(link.hull(crabx*craby)), color(color.violet))
ELEMENT: edge(position(link.delaunay(crabx*craby)), color(color.green))

Figure 7.31  Convex hull (purple), Voronoi tessellation (red), Delaunay 
triangulation (green), and minimum spanning tree (blue)

The Delaunay triangulation is a dual of the Voronoi tessellation (Prepara-
ta and Shamos, 1985). The computation of one implies the computation of the
other. The Voronoi edges are perpendicular to the sides of the Delaunay train-
gles. Each Delaunay segment bisects a Voronoi edge. The convex hull is the
outermost collection of line segments from the Delaunay triangulation. Many
algorithms for computing the Voronoi–Delaunay problem yield the convex
hull as a by-product. Finally, the minimum spanning tree is a subgraph of the
Delaunay triangulation. 

7.2.7.4  Building Bridges with Join

The link.join() function joins sets of points from a blend. If two variables are
blended, link.join() joins pairs, if three are blended, link.join() joins triples,
and so on. A bridge is a join that links points from two or more sets of vari-
ables in the same graphic. It is designed to display repeated measures, migra-
tions, flows, biplots, correspondence diagrams, and other multiple relations
over time or space. Figure 7.32 illustrates an application of this graphic to
Procrustes rotation (see Borg and Groenen, 1997). 

0 20 40 60 80

Horizontal (cm)

0

20

40

60

80
V

e
rt

ic
a

l 
(c

m
)



7.2  Examples 149

ELEMENT: point(position(caragility*carsize+dogagility*dogsize),
label(car+dog))

ELEMENT: edge(position(link.join(caragility*carsize+dogagility*dogsize)))

Figure 7.32  Bridge plot

Procrustes rotation matches two or more spatial configurations to each
other using a loss function based on Euclidean distance or some other discrep-
ancy measure between corresponding points. The data are from Wilkinson
(1975). Cars and dogs were rated for similarity by dedicated (obsessed) car
and dog club members. The author stepped around cars in front yards and
stepped over dogs in living rooms in order to collect these data.

Each subject rated a set of ordinary objects known (and loved) intensely
and another set known only superficially. (There were no subjects with enough
time in a day to be fascinated with both.) On the basis of external measures,
correspondences were inferred between pairs of cars and dogs. These links
were used to establish the ordering of coordinates for the Procrustes rotation.
Figure 7.32 shows the rotation of the results of two multidimensional scalings
of the car and dog similarity ratings. The graphics offer a visual summary of
the goodness of fit. The shorter the lines, the better the fit. The results of this
analysis have absolutely no commercial potential. 

7.2.7.5  Drawing Vectors with Join

Figure 7.33 illustrates how join can be used to plot vectors from an origin. The
variables factor1 and factor2 are the first two columns of the matrix V in the
singular value decomposition X = UDVT. The matrix X consists of scaled bi-
nary data on grounds for divorce among 50 US states in 1971. The original
source is Long (1971), suggested to us by Gerard E. Dallal, and analyzed in
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Wilkinson et al. (1996). By constructing a new variable called zero, we join
all the points to paired values at (0,0). In addition, we choose arrows to shape
the vectors.

DATA: zero = constant(0)
ELEMENT: edge(position(link.join(zero*zero + factor1*factor2)),

shape(shape.arrow), label(ground))

Figure 7.33  Vector plot

7.2.7.6  Drawing Vectors to a Line or Surface with Join

Figure 7.34 illustrates the use of link.join() for drawing vectors to a line using
the countries data. This method can be used to draw vectors to a curve or sur-
face as well. The data are based on the residuals from a linear regression of
birth on female for our countries dataset. In this figure, vectors are drawn from
residual points to points at a zero value. 

We construct this column of zero values by employing the data function
constant() in the expression zero = constant(0). Because the frame model con-
tains female*(residual+zero), the link.join() function connects points in the tuple
female*residual with points in female*zero, producing the vertical lines. We
don’t want two sets of point clouds, however. The illusory contour of the spikes
is sufficient to demarcate the values at zero (Levine, 2000).
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DATA: zero = constant(0)
ELEMENT: edge(position(link.join(female*(residual+zero)))
ELEMENT: point(position(female*residual))

Figure 7.34  Spikes for residuals

7.2.7.7  Drawing Trees with Join

Among the most widespread uses of graphical trees in statistics and data anal-
ysis are displays of the results of hierarchical cluster analysis (Hartigan,
1975a) and recursive partitioning schemes (Breiman et al., 1984). These struc-
tures also appear in the directed graphs used to represent trees in computer sci-
ence algorithms (Knuth, 1969).

A tree is an acyclic graph that may be represented by a list of parents and
their children. If we compute coordinates for parents and children with a lay-
out method (see Section 16.3) then the join() statistic makes it easy to draw the
tree. 

Figure 7.35 shows a tree depicting the results of a single-linkage cluster-
ing of sociometric ratings of U.S. cities (Boyer and Savageau, 1996). The dis-
tance scale measures the closest distance between pairs of points in the two
clusters joined at each node. 
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ELEMENT: edge(position(link.join(xparent*yparent+xchild*ychild))),
label(rating))

Figure 7.35 Cluster tree

7.3 Summary
Table 7.2 summarizes the statistical methods discussed in this chapter. Each
cell of the table shows an exemplar for the type of method in 1D, 2D, or 3D.
We have included points to represent data values in the graphical exemplars;
these are colored light blue. The graphics that display the results of statistical
methods are colored dark blue. The conditional methods are in the upper half
of the table and the joint methods are in the lower.

The conditional methods compute a unique value or unique set of values
on a selected variable for every distinct value of x. For 1D, x is a constant. For
2D, x is a variable. For 3D, x is a two-dimensional vector-valued variable. If x
is categorical, then the computed estimates are spaced on a lattice. If x is con-
tinuous, then these estimates are distributed in a real space. The summary
methods involve a single point. The region methods involve intervals or types
of convex regions. The smooth methods involve connected sets of unique
points for every value of x. The density methods involve binning or parametric
smoothing for computing a density in a local region. Finally, the link methods
involve computations on points that are nodes in directed or general graphs. 
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The joint methods compute a unique value or unique set of values on a se-
lected set of variables. For 1D, these methods are identical to conditional
methods because conditioning on a constant is equivalent to not conditioning
at all. Thus, the first column of Table 7.2 is identical for conditional and joint
methods. The 2D and 3D joint methods, however, differ from their conditional
counterparts. The differences are most apparent when considering the geomet-
rical features of the graphics in Table 7.2. 

Table 7.2 Statistical Methods by Dimensionality

1D 2D 3D

Conditional

  Bin

  Summary

  Region

  Smooth

  Link

Joint

  Bin

  Summary

  Region

  Smooth

  Link
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For example, the function smooth.conditional() is single-valued for y on
each different value of x. The function smooth.joint(), by contrast, can produce
a curve that can loop back on itself in 2D or a surface that can do the same in
3D. This is because smooth.conditional() is based on a loss defined only on y,
while smooth.joint() is based on a loss defined by x and y jointly (or x and y in
3D).

Similarly, the function region.conditional() is conditionally one-dimen-
sional in 2D and 3D, while region.joint() is usually convex in 2D and 3D. (Any
line connecting two points in a convex region lies entirely in that region.) Ac-
tually, region.joint() produces estimates that fall within a superset of the con-
vex class, called star convex. (Any line connecting one central point with
another point in a star convex region lie entirely in that region.) Thus, while
region.conditional() produces an interval on y for any given x, region.joint()
produces a region comprised of intervals constructed in polar coordinates. To
compute region.joint(), we look in all directions away from a centroid point
and we compute bounding intervals in each of those directions. In statistical
procedures based on the multivariate normal distribution, this region is calcu-
lated from a covariance matrix. The off-diagonal elements of this matrix de-
termine the rotational angle of a joint elliptical region and the diagonal
elements determine its major and minor axes. Under other distributions, how-
ever, region.joint() can produce a region shaped like a starfish or a daisy.

While statistical methods are associated with geometric regions in a
space, we must remember that these regions can be represented by various
geometric graphs. That is the message of Figure 7.1 at the beginning of this
chapter. Some of the results may be aesthetically bizarre, but they are not ill-
defined. Indeed, the power of a system that distinguishes geometric graphs and
their statistical methods lies in offering a complete choice of representation
methods rather than dictating a subset on the basis of custom.

7.4 Sequel
The next chapter presents the different geometry classes and how these func-
tions produce geometric objects that can be represented by aesthetics as per-
ceivable shapes.



8
Geometry

The word geometry comes from the Greek , which means land
measurement. A geometer measures magnitudes in space. This chapter is
about geometric functions produced by a Grapher object. The Grapher object
contains functions to create graphs that can be represented by magnitudes in a
space. Grapher cannot make every graph in the set of all possible graphs. Gra-
pher produces only certain graphs that can be expressed as geometric objects.
We will call these geometric graphs.

The geometric graphs in this chapter are subsets of product sets of real
numbers Rm or natural numbers Nm. We will be concerned with geometric ob-
jects for which 1 !&m ! 3. These objects will be embedded in a space Rn in which
m !&n !&3. Geometric graphs are built from bounded regions. Bounded regions
are produced by the Cartesian product of bounded intervals. The set Bm is
bounded if

These intervals define the edges of a bounding box (like the bounds of a
frame) in m-dimensional space. There are two reasons we need bounded re-
gions. First, in order to define certain useful geometric graphs, we need con-
cepts like the end of a line or the edge of a rectangle. Second, we want to save
ink and electricity. We don’t want to take forever to compute and draw a line.
More precisely, we need to embed geometric graphs in a frame, which is itself
a bounded region. We want the image of the function that produces a geomet-
ric graph to be bounded (although a few of the transformations in Chapter 9
can produce images unbounded in Rn that we will have to clip in a renderer). 

Geometric graphs are produced by graphing functions F: Bm # Rn that
have geometric names like line() or polygon(). A geometric graph is the image
of F. And a graphic, as used in the title of this book, is the image of a graph
under one or more aesthetic functions. Geometric graphs are not visible. As
Bertin (1967, 1977) points out, visible elements have features not present in
their geometric counterparts. Chapter 10 will cover methods for making
graphs perceivable. Meanwhile, we will use aesthetic functions in this chapter
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to illustrate different types of graphs. These graphs will be displayed using po-
sition, color, size, and shape, but the same graphs could be realized using
sound or even, theoretically, odors. Although this chapter is about geometry,
we will discuss briefly issues in rendering these geometric objects in order to
reinforce this distinction.

To maintain the distinction between a graph and its physical representa-
tion, we will call the output of a line() graphing function a line graph and we
will call the output of the composite of a line() graphing function and its aes-
thetic functions (position(), color(), size(), ...) a line graphic. To distinguish
geometry from function, we will use Roman type to refer to a geometric line,
and Italic type to refer to the specialized line produced by line().

There are several ways to classify graphics. First, we could organize them
by their appearance under standard aesthetic functions: for example, interval
as opposed to line. This would consolidate drawing methods and thus con-
serve display code. Organizing by surface appearance makes it more difficult
to collect similar geometric methods in single classes, however. Although they
appear similar, line and path are fundamentally different geometric objects. A
second approach would be to classify them by their geometric dimensionality
(the m parameter in Bm). This would consolidate rendering methods. Organiz-
ing by dimensionality makes it difficult to consolidate data methods, however.
A third approach would be to organize them by their data methods, regardless
of appearance. Any method which involved computing a location estimate
(mean, median, mode, etc.) could be grouped together. This approach, of
course, would disperse drawing methods.

We have chosen to organize graphs by their data and geometry. Because
this system is about statistical graphics, the most fruitful classifying scheme,
we believe, is based on how graphs function in representing statistical data
geometrically. Graphs that behave similarly in a variety of contexts are
grouped together. This scheme results in three major categories of graphs:
functions, partitions, and networks. Functions map values in a domain to
values in a range using graphs that enable one to locate a value or collection
of values in the range for any selected value in the domain. Partitions separate
a set of points into two or more subsets. Networks connect two or more points
with line segments. Table 8.1 summarizes these classifications.

The remarkable feature of this table is its parsimony. An enormous num-
ber of graphical elements can be grouped into a relatively small number of
graphical element types. Undoubtedly there are other graph types needed to
reproduce some graphics not found in this book, but adding them to this sys-
tem should not require altering its architecture. New graphing functions, if de-
fined properly, should be self-contained and housebroken enough to avoid
doing violence to the rest of the system. In addition, many graphics that appear
radically different from the ones found in this chapter are either transforma-
tions of the geometry or functions of the data that underlie the graphs in Table
8.1. Before you wonder why a popular graphic is missing in this chapter, see
Chapter 7 or Chapter 9 for how it may be derived from the base graph classes.
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Table 8.1  Geometric Graphs

8.0.1  Collision Modifiers
Ties sometimes cause graphical elements to overlap in frames. Also, aggrega-
tion statistics sometimes cause geometric objects to superimpose. For exam-
ple, a scatterplot may have overlapping points or a bar chart may have multiple
bars at one tick point on a categorical axis (each colored by a different value
of a splitter). Because geometric objects know their locations and can ask oth-
er geometric objects for their locations, they can avoid collisions in a variety
of systematic ways. Table 8.2 lists various collision modifiers.

Table 8.2  Collision Modifiers

The stack method cumulates elements in order of the values on a splitter.
For example, we can make a stacked bar chart by having superimposed bars
stack on their second categorical dimension. The standard stacking option is
asymmetric; that is, the bottoms of stacks are anchored on a common position.
The other option is symmetric; the centers of stacks are anchored on a common
position. The dodge method does not cumulate. It simply moves objects
around locally so they do not collide. And the jitter method moves objects ran-
domly in their local neighborhood. Sometimes stack and dodge can produce a
similar-appearing graphic. Stack cumulates on a scale (e.g., a stacked bar
chart) while dodge piles things in open space (e.g., a tally or dot plot).

Functions Partitions Networks

point
line
area
interval
path
schema

polygon
contour

edge

Modifier

stack
  symmetric
  asymmetric
dodge
  symmetric
  asymmetric
jitter
  uniform
  normal
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8.1 Examples
The following examples show the basic geometric objects embedded in 2D
and 3D spaces. While rendering methods in different dimensions are quite dif-
ferent in some cases, the classification we use simplifies data processing in
most cases.

8.1.1  Functions

Functional graphs associate one or more values in a domain with a value or
collection of values in a range. This is the largest super-class of graphs and one
that contains most of the representation objects seen in popular charts. 

8.1.1.1  Point

The point() graphing function produces a geometric point, which is an n-tuple.
This function can also produce a finite set of points, called a multipoint or a
point cloud. The set of points produced by point() is called a point graph. 

In graphics software, there is a choice that object-oriented designers have
argued over for years. On the one hand, we may call a point cloud a single ob-
ject. On the other hand, we may call each point a single object. When object-
oriented language compilers were slow to create objects, this choice was
forced by circumstance. Modern compilers can construct millions of objects
in a second, however, so the choice is less obvious. We prefer to regard a point
cloud as a collection of points in order to encapsulate functions that are most
appropriately handled at the point level. As an object, each point can encapsu-
late metadata, calculate derived statistics, and do other tasks for clients in the
system. If efficiency is still a concern, the designer can incorporate the trade-
off in the software itself. Beyond about 5,000 points, for example, there is not
much point in point-based functions. Aggregations and kernels do better.

Rendering a point is relatively straightforward. To visualize a point graph
as a point graphic, we need a shape attribute of a circle, a diamond, a face, or
some other image. And we need a size attribute that makes it large enough to
be discernible. We also need a hue attribute that makes its color different from
the background color of the frame graphic in which it is displayed. If points
overlap, we can use transparency to prevent occlusion.

Figure 8.1 shows examples of a point cloud on a categorical and continu-
ous domain. The left panel contains three point graphics (one for each catego-
ry) and the right panel, one. The point graphic can have numerous variations,
produced mainly by varying the shape attribute of their symbols and by the ag-
gregation function used, as we shall see in Chapter 7, where we will show ex-
amples of multivariate icon clouds. Otherwise, this most common of graphics
is one of the simplest to visualize.
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ELEMENT: point(position(gov*birth))

ELEMENT: point(position(female*birth))

Figure 8.1  A point cloud on categorical (left) and continuous (right) domains

Figure 8.2 shows an example of point graphics in 3D. For the left panel,
we have introduced another categorical variable, urban, which is a measure of
urbanization for each country. For the right panel, the data are measurements
of automobile performance in various 1996 issues of the magazine Road &
Track. The three variables are seconds to cover a quarter mile from a standing
start (quarter), horsepower (hp), and weight in pounds (weight).

COORD: rect(dim(1, 2, 3))
ELEMENT: point(position(urban*gov*birth))

COORD: rect(dim(1, 2, 3))
ELEMENT: point(position(weight*hp*quarter))

Figure 8.2 3D points on categorical (left) and continuous (right) domains
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8.1.1.2  Line

Let Bm be a bounded region in Rm. Consider the function F: Bm # Rn, where
n = m+1, with the following additional properties:

1) the image of F is bounded,

2) F(x) = (v, f(v)), where f: Bm # R and v = (x1, ... , xm) � Bm

If m = 1, this function maps an interval to a functional curve on a bounded
plane. And if m = 2, it maps a bounded region to a functional surface in a
bounded 3D space. The line() graphing function produces these graphs. Like
point(), line() can produce a finite set of lines. A set of lines is called a multi-
line. We need this capability for representing multimodal smoothers, confi-
dence intervals on regression lines, and other multifunctional lines. An
example is shown in the lower left panel of Figure 7.2. 

Rendering a line is not simple. The line() graphing function returns a val-
ue on a line for any tuple (x1, ... , xm). We cannot compute every possible tuple
in Bm in order to draw a line as a set of points, however (although some pro-
grams like MacSpin (Donoho et al., 1988) and Data Desk (Velleman, 1998)
that were designed to animate point clouds do represent a line or surface by a
fine mesh of points that are rendered in pixels). Instead, we must choose a few
knots that define the ends of line segments and then interpolate between these
knots. For straight lines, this is straightforward: we linearly interpolate be-
tween two endpoints. For curved lines, we may either construct many knots
and use linear interpolation or make fewer knots and use a spline function to
interpolate curvilinearly (Lancaster and Salkauskas, 1986; Dierckx, 1993).
The advantage of splines is that some operating systems include them among
their primitives, so that time and memory can be saved. For 3D surfaces, knots
define a rectangular or triangular mesh that yields polygons for rendering. As
with 2D, some operating systems include 3D spline functions, so we should
design a renderer to take advantage of them when available. 

There are many other problems we face in rendering a line. We must be
able to handle conditions where the slope approaches infinity. If we have miss-
ing values, we need rules to determine how a gap (or a hole in 3D) should be
treated. And if we want to achieve the full range of aesthetic representations
shown in Chapter 10, we have to treat a line as a collection of polygons or
sometimes even symbols so that we can give it size (thickness), shape (sym-
bols), and texture (dashing patterns). Few operating systems give us the prim-
itives needed to draw a curved, dashed line made up of dots, for example. 

We will further explore the aesthetics of lines in Chapter 10. At this point,
however, it is useful to keep in mind that the definition of a line as a set of
points is probably the best way to approach the rendering problem. What dis-
tinguishes a line from a cloud of points is that the points comprising it are or-
dered. Thus, we can render a line by stamping copies of symbols in a given
ordering or by connecting a set of polygons to make segments.
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Figure 8.3 shows line graphics of average birth rates on categorical (left)
and continuous (right) domains.

ELEMENT: line(position(summary.mean(gov*birth)))

ELEMENT: line(position(summary.mean(female*birth)))

Figure 8.3  Line on categorical (left) and continuous (right) domains

Figure 8.4 shows 3D line graphics. The left panel is based on a categorical
domain (gov*birth), so it contains a collection of line graphics. We have given
them thickness to make them look like ribbons, a popular representation. We
use the alias surface for the graphic on the right, but it is nevertheless a line
class.

COORD: rect(dim(1, 2, 3))
ELEMENT: line(position(summary.mean(urban*gov*birth)))

COORD: rect(dim(1, 2, 3))
ELEMENT: surface(position(x*y*z))

Figure 8.4  Surface on categorical (left) and continuous (right) domain

0��$ 
� � 7��*�
�� &	�	��
�

/���$6�$.�
�����

�

��

��

��

��

��

��

�� �� �� 1� 2� 4�

������-	6�,9�� ��� �

�

��

��

��

��

��

��

�
	


��
�

�
��

�
	


��
�

�
��



162 8  Geometry

8.1.1.3  Area
The area() graphing function produces a graph containing all points within the
region under the line graph. The area() function is the integral of line(). Ren-
dering an area involves the same caveats as for line. Figure 8.5 shows area
graphics of average birth rates. The area graphic looks like a line graphic with
the area between it and the abscissa filled. 

ELEMENT: area(position(summary.mean(gov*birth)))

ELEMENT: area(position(summary.mean(female*birth)))

Figure 8.5  Area on categorical (left) and continuous (right) domains

The area graphic is a volume in 3D. Figure 8.6 shows an example. 

COORD: rect(dim(1, 2, 3))
ELEMENT: area(position(summary.mean(urban*gov*birth)))

COORD: rect(dim(1, 2, 3))
ELEMENT: area(position(x*y*z))

Figure 8.6  Volume on categorical (left) and continuous (right) domain
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8.1.1.4  Interval
The interval() graphing function produces a set of closed intervals. An interval
has two ends. Ordinarily, however, bars are used to denote a single value
through the location of one end. The other end is anchored at a common ref-
erence point (usually zero). Figure 8.7 shows a 2D interval graphic. 

ELEMENT: interval(position(summary.mean(gov*birth)))

ELEMENT: interval(position(summary.mean(female*birth)))

Figure 8.7  Interval graphic on categorical and continuous domains

Figure 8.8 shows a 3D interval graphic for the car data used in Figure 8.2. 

COORD: rect(dim(1, 2, 3))
ELEMENT: interval(position(summary.mean(urban*gov*birth)))

COORD: rect(dim(1, 2, 3))
ELEMENT: interval(position(summary.mean(weight*hp*quarter)))

Figure 8.8  3D interval graphic on categorical and continuous domains
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Despite appearances, there is only one interval graphic in each of the right
panels of these two figures. The bars in the left panels, by contrast, are split by
the categorical variables. This is consistent with the behavior of point() (see
Figure 8.1, where there are three clouds on the left and one on the right). The
only way to sense this behavior would be to query the objects in a dynamic
system by brushing or editing. In such an environment, the left panel bars
would respond singly and the right ones would respond in unison.

The interval graphic uses a mean aggregation function for its position in
this example. This function returns the mean of all values in the range for a
given value or tuple of values in the domain. The top of each bar in the left
panel of Figure 8.7 represents the average birth rate in each of the three gov
categories and the top of each bar in the left panel of Figure 8.8 represents the
average birth rate in each of the six combinations of gov and urban.

The interval() graphing function can be used to produce a histogram. Or-
dinarily, a bar’s width is an arbitrary constant. The width of a histogram bar,
by contrast, is determined by the bin statistical function. Because bin is a par-
titioning, the result produces space-filling intervals on the dimension of bin-
ning. Figure 8.9 shows examples of 2D and 3D histograms.

ELEMENT: interval(position(summary.count(bin.rect(birth))))

COORD: rect(dim(1, 2, 3))
ELEMENT: interval(position(summary.count(bin.rect(female*male))))

Figure 8.9  2D and 3D histograms
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The histogram graphic reveals some subtle characteristics when it is com-
pared to similar-appearing graphics. Unlike the ordinary bar graphic, which
represents intervals (usually anchored at zero), the histogram graphic repre-
sents area. Unlike the area graph, which represents a single area, the histo-
gram graphic is a collection of areas, one for each bar. Although most
published examples show ordinary histograms with bars representing counts
on equal intervals, the bars in the histogram graphic need not be of equal
width. Some may even have zero area. Unlike the interval graphic applied to
statistical functions other than bin, however, the bars in a histogram must be
connected. There cannot be gaps between bars unless these are due to bars
with zero cases in a bin. 

8.1.1.5  Path
The path() graphing function produces a path. A path visits all points and con-
nects all points such that each point touches no more than two line segments.
Thus, a path visits every point in a collection of points only once. If a path is
closed (every point touches two line segments), we call it a circuit.

A path sometimes looks like a line. There is an important difference be-
tween the two, however. A line is functional on x; there can be only one point
on a line for any value in the domain. In contrast, a path may loop, zigzag, and
even cross itself inside a frame. We can use functional vs. parametric coordi-
nates to represent this distinction. A 2D line is comprised of the tuples (x, f(x)).
A 3D line is comprised of the tuples (x, y, f(x,y)). If t is a variable representing
a sequence, then a 2D path is comprised of the tuples (x(t), y(t)) and a 3D path
is comprised of the tuples (x(t), y(t), z(t)). From this perspective, it is clear that
a path can be defined for a continuous function, so we include path as a mem-
ber of the functions superclass rather than the networks superclass.

There is another important distinction between a path and a line. The aes-
thetics of a path may vary along different segments of the path, while a line
has a single aesthetic value across its entire extent. We make use of this dis-
tinction in the Napoleon graphic in Chapter 20.

Figure 8.10 shows a price–consumption curve for cigarettes sold in the
US between 1964 and 1986 (Harris, 1987). The path order, based on time, is
labeled on the curve. Notice that the segmented structure of a path allows us
to label each point along its way. We could not do this with a line.

Prior to 1981, the demand for cigarettes was often inelastic. From 1975 to
1981, however, lowering prices were accompanied by reduced demand. After
that time, consumption declined further and prices increased. This trend was
most likely due to the growth of anti-smoking legislation and negative public-
ity. 

For other examples of paths, see theoretical Hertzsprung–Russell dia-
grams used by astronomers (Mihalas and Binney, 1981), phase-plane plots
(Figure 14.12), or Figure 20.1.
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ELEMENT: path(position(price*consumption), label(year))

Figure 8.10 Consumption-price curve for cigarettes

8.1.1.6  Schema
A schema is a collection of one or more points and intervals used to represent
a data density. Because it is a collection of relations, the computer code to
build a schema is derived from the point() and interval() functions. The name
is due to Tukey (1977), who invented the schematic plot, which has come to
be known as the box plot because of its physical appearance. Schema graphics
can take many shapes and can be based on different statistics. Tukey’s box
plot is the default. This plot is based on statistics called letter values. The cen-
tral vertical line in the box is the median, computed by sorting a list of values
and taking the middle sorted value. If the number of cases is even, then the two
middle values are averaged. The edges of the box are the hinges, computed
from the medians of the two batches produced when the sorted values are split
at the overall median. The ends of the whiskers in the box plot extend to the
most extreme values inside the inner fences. These fences are defined as fol-
lows:

lower fence = lower hinge – 1.5Hspread
upper fence = upper hinge + 1.5Hspread,   where

Hspread is the spread of the hinges, namely, the upper hinge minus the lower
hinge. Finally, the outer fences are computed using 3Hspread in the same for-
mulas. Values outside the outer fences (far outside values) are plotted with a
small circle and remaining values outside the inner fences are plotted with as-
terisks. This rather complicated set of definitions produces a remarkably par-
simonious plot in which outlying values are immediately recognizable and the
distribution of the remaining values is schematically represented by a box and
whiskers. The general information is conveyed in the box and whiskers, and
the particular information is conveyed in the outliers.
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Figure 8.11 shows a box plot of the distribution of horsepower among the
cars in the Road & Track dataset. Two cars are highlighted as extreme. These
are the Lamborghini Diablo (asterisk) and the Ferrari 333 race car (circle). 

ELEMENT: schema(position(bin.quantile.letter(hp)))

Figure 8.11 Schematic (box) plot

When plotted against continuous variables, boxes are usually unevenly
spaced. We compute a box where there is more than one y value for a given x.
Elsewhere, the median horizontal line marks the unique y value. Figure 8.12
shows an example using data on gas and electricity consumption from Tukey
(1977). The electricity values were grouped into batches before plotting.

ELEMENT: schema(position(bin.quantile.letter(electric*gas)))

Figure 8.12  Box plots on continuous domain

The behavior of the 2D joint box plot is different from the usual condition-
al box plot. Figure 8.13 shows an example of the joint plot. Notice that the box
plot is composed of peeled convex hulls. Tukey (1974; also see Huber, 1972)
suggested this method for generalizing the box plot to more than one dimen-
sion. Each hull in this plot contains a different percentage of the total number
of countries. The outermost hull contains all the countries, and each successive
hull contains fewer by about 25 percent. See Rousseeuw, Ruts, and Tukey
(1999) for a coded implementation and a beautifully rendered display.
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ELEMENT: schema(position(bin.quantile.letter.joint(female*birth)))
ELEMENT: point(position(summary.median.joint(female*birth)))

Figure 8.13  Bivariate box plot

8.1.2  Partitions

Partitions divide datasets into subsets. One type of element (polygon) sepa-
rates a space into two mutually exclusive regions (areas or volumes). Multiple
polygons may overlap each other or not. Mutually exclusive and exhaustive
polygons can be used to tile the plane or a 3D space. The second class of par-
titions (contour) separates points into two or more regions, possibly nested.
Polygons are closed, but contours need not be. Level curves for saddle func-
tions are open, for example.

8.1.2.1  Polygon

A polygon() graphing function can tile a surface or space, filling the space
with mutually exclusive polygons. The Latinate tessellation (for tiling) is of-
ten used to describe the appearance of the result. Figure 8.14 shows a tiling
based on the mathematical function 

There are 10,000 tiles in the figure (a 100 by 100 rectangular grid).
There is a detail concerning the arguments that we should note. As Chap-

ter 18 describes, GPL functions take functions, primitives, or lists of primi-
tives as arguments. Thus, min(–5, –5), max(5, 5) is equivalent to the function list
min1(–5), max1(5), min2(–5), max2(5) in another language. Notice, also, that the
DATA statement can take a list of identifiers, x, y and the TRANS statement has an
algebraic parser.
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DATA: x, y = mesh(min(–5, –5), max(5, 5), n(100, 100))
TRANS: z = x*y*(sin(x^2) - cos(y^2))^2
ELEMENT: polygon(position(bin.rect(x*y)), color.hue(z))

Figure 8.14  Tiled equation

The polygon graphic is also used in geographic mapping. Figure 8.15
shows a map of Europe using a robinson projection. The map data function
sets the source for the map polygons. We have set it to refer to a shape file
called "Europe" that contains country boundaries. We could have set the ref-
erence to a different shape file containing other boundaries such as cantons or
provinces.

There is no statistical data file in this example, so the position of the poly-
gons (the position frame for the graphic) is determined by the information in
the boundary file. Most of the other map examples include statistical data. To
save space, we omit the DATA statements for defining the statistical variables
in many of these examples (as in the next example), but we assume that they
would be included in a GPL program to plot the examples.

Maps and tilings are not the same. The polygon graphic is useful for map-
ping political boundaries, islands, lakes, archipelagos, and any other geo-
graphic objects that tile the plane or sphere. In addition, we can use other
graphics such as point (for towns or cities), path and link (for roads, railroads,
etc.) and even images (for terrain) to create more detailed maps. Comprehen-
sive GIS programs require more graphic representation objects in order to deal
with topological data, but a statistical graphics environment can produce a
substantial subset of the geographic representations needed for analysis of
spatial data.
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DATA: longitude, latitude = map(source("Europe"))
COORD: project.robinson(dim(1, 2))
ELEMENT: polygon(position(longitude*latitude))

Figure 8.15  Map of Europe

8.1.2.2  Contour
A contour() graphing function produces contours, or level curves. A contour
graphic is used frequently in weather and topographic maps. Contours can be
used to delineate any continuous surface. Figure 8.16 shows contours for the
inverse distance smoother relating average winter temperatures to latitude and
longitude. We have superimposed the smoother contours on a map of the US
We discussed this inverse distance smoothing method in Chapter 7. 

DATA: longitude, latitude = map(source("US states"), id("state"))
COORD: project.stereo(dim(1, 2))
ELEMENT: polygon(position(longitude*latitude))
ELEMENT:contour(position(smooth.mean.cauchy(lon*lat*winter)),
                               color.hue())

Figure 8.16 Contour plot of smoothed winter temperatures
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8.1.3  Networks

Network graphs join points with lines. Networks represent vertex–edge theo-
retic graphs (Harary, 1969). Although networks join points, a point graph is
not needed in a frame in order for a network graph to be visible. 

8.1.3.1  Edge
The edge() graphing function produces a collection of edges. The various
graphs in this class are subsets of a complete network connecting every pair
of points. Figure 8.17 shows a graph of all possible links among points at the
vertices of an octagon.

ELEMENT: edge(position(link.complete(x*y)))

Figure 8.17  A complete network for eight points at the vertices of an octagon

Figure 8.18 shows a 3D minimum spanning tree on the car data used in
the right panel of Figure 8.2. Adding a tree like this to a 3D scatterplot can
sometimes help enhance depth, especially when rotating the plot in real time.

COORD: rect(dim(1, 2, 3))
ELEMENT: point(position(weight*hp*quarter))
ELEMENT: edge(position(link.complete(weight*hp*quarter)))

Figure 8.18  Minimum spanning tree in three dimensions
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8.1.4  Collision Modifier Examples

Collision modifiers generate a variety of graphics whose structure is not im-
mediately obvious. We will provide several examples in this section.

8.1.4.1  Stack

Stacking cumulates elements. Divided bar charts, for example, consist of col-
lections of interval-valued bars. The lower value of each bar is the previous
case’s value in the dataset (the first case defaults to zero) and the upper value
is the current case. Figure 8.19 shows an example on the ACLS data. 

ELEMENT: interval.stack(position(summary.proportion(gender*response), 
color(response)))

Figure 8.19  Divided bar graphic

Figure 8.20 shows a stacked area chart. The data are taken from tests on our
Java grammar-of-graphics platform. We use this graphic to monitor perfor-
mance over development cycles. When the total stacked area becomes espe-
cially large, we pause for several days and work on optimizing our code.
When a particular test performs poorly, we concentrate on the code for that
section.

This graphic was generated as part of our automated production process.
When programmers change even one line of code, the build system runs unit
and acceptance tests to assure that the system is not broken by the changes.
Performance tests are run periodically to assure that changes do not adversely
affect overall performance of the system.
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DATA: s1 = string("scatter70K")
DATA: s2 = string("colorSc70K")
...
DATA: s9 = string("pie15x15x8")
ELEMENT: area.stack(position(date*(g1+ ... +g9)), color(s1+ ... +s9))

Figure 8.20 Stacked area chart

8.1.4.2  Dodge

Figure 8.21 shows examples of dot plots on the countries dataset. The dot plot
on the left looks like a tally or a histogram of dots. The dot plot on the right is
used by medical researchers and other scientists to graph small batches of da-
ta. It is simply a symmetrized form of the asymmetrical dot plot.

ELEMENT:point.dodge.asymmetric(position(bin.dot(birth)))

ELEMENT: point.dodge.symmetric(position(bin.dot(birth)))

Figure 8.21  Asymmetric dot plot (left) and symmetric dot plot (right)
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The dodge() collision modifier is useful for creating clustered bar charts
and other grouped graphics. Figure 8.22 shows an example using the countries
data. The default dodging is symmetric about each tick mark on the horizontal
axis. The categorical color splitter is responsible for producing two sets of
bars, but the dodge() function is responsible for separating them.

ELEMENT: interval.dodge(position(summary.mean(gov*birth)),
color(urban))

Figure 8.22  Clustered bar chart.

There is an important but subtle consequence of using dodge() for clus-
tered bar charts. If a subcategory is missing for a class (e.g., rural democra-
cies), it will not appear in the cluster for that class. To allocate space for empty
subclasses, we must use a full crossing:  interval(position(urban*birth*gov)).

Figure 8.23 shows an example of a clustered box plot of the same data.
The dodging works the same way.

ELEMENT: schema.dodge(position(bin.quantile.letter(gov*birth)), 
color(urban))

Figure 8.23  Clustered box plot
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8.1.4.3  Jitter

Figure 8.24 illustrates how to jitter a 1D plot. The data and frame are the same
as for Figure 5.1. 

ELEMENT: point.jitter(position(sepallength))

Figure 8.24  One-dimensional jittered scatterplot

Figure 8.25 illustrates jittering of a two-way table using normally distrib-
uted random stripes. The data are from 1,606 respondents to the General So-
cial Survey (GSS) reported in Davis et al. (1993). US residents were asked,
"How many sex partners have you had in the last 12 months?" Those reporting
more than 4 partners (some reported up to 100) were consolidated into the last
category. There were 1,466 responses in the resulting 6 categories. The vari-
able represented on the vertical axis of the graph was measured by the re-
sponse to the question, "Which of these statements comes closest to describing
your feelings about the Bible?" The responses coded are 1 (Word of God), 2
(Inspired Word), and 3 (Book of Fables).

In Figure 8.25, the stripes are jittered as random normals, so that approx-
imately 68 percent of the stripes are within one standard deviation of the mean.
Stripe jittering is effective at handling sparse counts but less effective in dis-
tinguishing the cells with large counts.

ELEMENT: point.jitter.normal(position(sex*bible))

Figure 8.25 Jittered counts
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8.1.5  Splitting vs. Shading

Categorical variables split graphs. Figure 8.26 shows an example of this split-
ting. The data consist of centimeter measurements from the Anderson Iris
flower dataset analyzed by Fisher (Anderson, 1935). Anderson measured se-
pal length and width and petal length and width in centimeters for 50 flowers
in each of three Iris species — Setosa, Versicolor, and Virginica. Since there
are three categories for species, the point graph is split into three objects. 

Because species is set to be categorical, we would expect to see three sets
of dots in the graphic for the Iris data, each consisting of 50 points for each of
the three species. Because there is no attribute other than position assigned to
the splitting variable on a common axis, we would not be able to distinguish
the points in these clouds visually. In a dynamic graphics system, we could ob-
serve behavior (selection, editing, etc.) which would indicate this splitting. 

ELEMENT: point.dodge.symmetric(position(bin.dot(species*sepalwidth)))

Figure 8.26 Two-dimensional grouped dot plot

Any use of a categorical variable in a specification splits graphs. Nesting
splits because nesting variables are required to be categorical. A simple exam-
ple would be

ELEMENT: point(position(sepalwidth/species))

This would produce three point clouds, one for each set of 50 points derived
from each of the species. For a multiple nesting like a/b/c, we must count all
existing combinations of b and c to determine the number of splits. If nesting
is combined with blending and/or crossing, then do this count before consid-
ering splits due to crossing and blending.
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Categorical variables used for aesthetic attributes split graphs:

ELEMENT: point(position(sepalwidth*sepallength), color(species))

This produces three point clouds, one for each set of 50 points within each val-
ue of species, and each a different color.

A continuous variable produces a visual result similar to that for a cate-
gorical variable but it does not split. We say that it shades. For many graphics,
we cannot tell whether a variable splits or shades unless we know in advance
whether that variable is continuous or categorical or we can explore the graph-
ic using interactive tools that let us identify whether subgroups belong to a
common class or to separate classes.

Finally, when we want to force splitting without using a variable for any
other purpose, we can specify splitting explicitly by adding split() to the aes-
thetic methods, for example:

ELEMENT: point(position(sepalwidth*sepallength), split(species))

This method is not often used, because it leaves no aesthetic attribute to signal
that splitting has happened. Figure 20.1 in the last chapter reproduces an his-
torical graphic that requires this operation. In the original graphic, the same
color was used to represent different split groups — not ordinarily a good
idea.

8.2 Summary
Table 8.3 summarizes the graphs in this chapter for 1D through 3D. The pic-
tures in the cells are graphical exemplars for the graphs shown in Table 8.1.
The 1D rendering environment leaves us few opportunities to discriminate be-
tween graph types. We may use thickness in 1D when this does not measure a
data attribute. For example, we can choose a symbol shape in a 1D graphic to
represent some aspect of our data, but the center of all the symbols must still
fall on a line and their size has no data meaning. Similarly, the thickness of
interval, schema, and polygon has no data meaning in 1D. The 2D graphics
provide an extra degree of freedom to represent data variation. Graphics such
as area, contour, path, and edge require at least two dimensions to be useful.
While 1D graphics are most constrained, 3D ones are least. The line graph be-
comes a surface and the area becomes a volume. In like manner, the polygon
graph partitions a 3D space so that each polytope encloses a volume. The con-
tour graph partitions 3D space similarly.
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8.3 Sequel
Most business and scientific graphics are displayed in rectangular coordinates.
The next chapter covers coordinate systems that alter the appearance of graph-
ics. Some of these coordinate transformations are so radical that we may fail
to recognize the same geometric object embedded in different coordinate sys-
tems.

Table 8.3  Geometric Graphs

1D 2D 3D

Functions

  Point

  Line

  Area

  Interval

  Path

  Schema

Partitions

  Polygon

  Contour

Networks

  Edge
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Coordinates

The word coordinate derives from the Latin ordinare, which means to order
or arrange. Coordinates are sets that locate points in space. These sets are usu-
ally numbers grouped in tuples, one tuple for each point. Because spaces can
be defined as sets of geometric objects plus axioms defining their behavior,
coordinates can be thought of more generally as schemes for mapping ele-
ments of sets to geometric objects. 

The most familiar coordinates are Cartesian. A point is located on a Car-
tesian plane, for example, by its distances from two intersecting straight lines.
The distance from one line is measured along a parallel to the other line. Usu-
ally, the reference lines (axes) are perpendicular. Most popular graphics, such
as line or bar charts, are drawn using Cartesian coordinates. The same real
numbers behind these graphics can be mapped to points along circles, curves,
and other objects, however. This chapter examines functions that transform a
set of coordinates to another set of coordinates. 

There are many reasons for displaying graphics in different coordinate
systems. One reason is to simplify. For example, coordinate transformations
can change some curvilinear graphics to linear. Another reason is to reshape
graphics so that important variation or covariation is more salient or accurately
perceived. For example, a pie chart is generally better for judging proportions
of wholes than is a bar chart (Simkin and Hastie, 1987). Yet another reason is
to match the form of a graphic to theory or reality. For example, we might map
a variable to the left-closed and right-open interval [0, 1) on a line or to the
interval [0, 2.) on the circumference of a circle. If our variable measures de-
fects within a track of a computer disk drive in terms of rotational angle, it is
usually better to stay within the domain of a circle for our graphic. Another
reason is to make detail visible. For example, we may have a cloud with many
points in a local region. Viewing those points may be facilitated by zooming
in (enlarging a region of the graphic) or smoothly distorting the local area so
that the points are more separated in the local region. 

In the figures in this chapter, axes often become curves or change their ori-
entation or scaling or direction after a change of coordinates. This is an impor-
tant consequence of coordinate transformations. Axes, or guides, share
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geometry with graphics and are therefore subject to the same transforming ef-
fects as bars, boxes, and other graphics. Not everything in a guide changes,
however. In particular, text may rotate or move in other ways, but the place-
ment and orientation of text is a special problem created by some coordinate
systems. We must be able to read text. Because of this constraint, we cannot
draw an image of a graphic and its text and then transform the entire image.
The technical problem of text placement is not trivial and may account for why
so few graphics and geometry programs handle text well. 

There are many ways to organize this material, because coordinates are
basic to analysis, geometry, algebra, and other areas of mathematics. In apply-
ing these concepts to graphics, however, we are most interested in the appear-
ance of a result and its effect on the perception of variation being represented
in a graphic. Therefore, we will tend to organize concepts by geometry. 

Most of this chapter concerns continuous transformations, but we will
cover discrete examples briefly. We will begin with the classic transformation
groups involved in mapping the plane to itself. Then we will discuss polar and
other general planar transformations. Next, we will cover projections to the
plane, including global map projections. We will conclude with triangular,
spherical, cylindrical, and parallel coordinates. We will omit detail in some of
the specifications when it is not needed to make clear the geometry.

None of these treatments pretends to be comprehensive or abstract. The
focus here is on practical methods for representation and organization of this
material in a form that lends itself to efficient computer code for the task. In-
troductory core and tangential references for some of the topics discussed in
this chapter are Preparata and Shamos (1985), Rogers and Adams (1990), Fo-
ley et al. (1993), Emmer (1995), Banchoff (1996), and Gomes and Costa
(1998).

9.1 Transformations of the Plane
If (x, y) and (u, v) are elements, respectively, of two sets S1 and S2, then the set
of equations

 ,

where g and h are functions, transforms (x, y) to (u, v). As with all functions,
we call (u, v) the image of (x, y) and T(x, y)=(g(x, y), h(x, y)) a mapping of S1
to S2. Ordinary graphics such as intervals and polygons take on radically dif-
ferent appearances under different planar transformations. Furthermore, if we
don’t recognize this visually profound effect of shape transformations, we are
likely to think a particular chart involves a new type of graphic or a different
source of variation when, in fact, it is a simple coordinate transformation of a
popular rectangular graphic. 

u g x y�� �=
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The first part of this section is organized in terms of the class hierarchy of
planar transformations in Figure 9.1. The CLASS column shows each class of
transformation inheriting from its more general parent. For example, an isom-
etry is a similarity, but a similarity is not an isometry. The TRANSFORMA-
TION column indicates the methods within the transformation class. The
INVARIANCE column indicates the feature of graphical objects unchanged
after transformation. Finally, the IMAGE column shows the effect of each
transformation on a dino graphic (you didn’t see one in Chapter 8?). 

The isometry group is the set of transformations that preserve distance
between points. These operations obey the axioms of Euclidean geometry. The
three isometric transformations are the rigid transformations: translation, ro-
tation, and reflection. Translation moves an object vertically or horizontally
without changing its shape, size or orientation. Rotation rotates an object
around a point (usually its center) without changing shape or size. Reflection
inverts an object horizontally or vertically without changing its size or shape,
like looking in a mirror. 

The similarity group is the set of transformations that change the size of
an object. The transformation name, dilation, suggests enlargement. Never-
theless, dilation includes both shrinking and enlargement. The name of the
group implies that two objects of the same shape but of different sizes and at
different locations are nevertheless similar.

The affine group is the set of transformations that cause a dimension to
stretch independently of the other. It also includes a shear, which is like turn-
ing Roman into Italic letters. The word affine implies that linearly stretched
and sheared objects, regardless of their size and location, share an affinity of
form. We call stretch and shear affine transformations.

The projective group is the set of transformations that is most easily vi-
sualized by thinking of a light source shining on graphics drawn on a transpar-
ent plane and projecting an image on another plane. This transformation
preserves straight lines but can modify angles. The best physical model for
imagining this group of transformations is a slide projector that we can move
to any angle and location relative to a white wall. A picture projected on the
wall from an oblique or acute angle will fan out across the wall; straight lines
in the picture (sidewalks, buildings, etc.) will remain straight on the wall. 

The conformal class covers conformal mappings. Conformal mappings
preserve local angles in graphics, but may distort global shape considerably.
The conformal class, like the affine class, is a parent of the similarity class.
The conformal class is not a parent of the affine class, however, because affine
transformations do not preserve angles. Similarity transformations (unlike af-
fine transformations) are angle preserving. In fact, a conformal map looks like
a similarity map at the local level. “Small” objects maintain their shape under
a conformal transformation. “Big” objects are bent, sometimes considerably,
so that straight lines become curves. 
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Figure 9.1  Hierarchy of planar transformations

INVARIANCE    CLASS           TRANSFORMATION         IMAGE

conform

project

shear
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dilate

reflect

rotate

translate
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affine

similarity

isometry

angle

straightness

parallelism

shape

distance
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9.1.1  Isometric Transformations

A metric space is a set S together with a function 

 , where

Although this definition is general enough to be applied to objects other than
real numbers, we will assume d is a distance measure and x, y, z are points in
a space defined on the real numbers. Thus, (1) zero distance between two
points implies that the points are the same, and if two points are the same, the
distance between them is zero, (2) the distance between the point x and the
point y is the same as the distance between the point y and the point x, and (3)
a triangle inequality among distances exists for any three points x, y, and z.

An instance of a metric space is the n-dimensional Euclidean space con-
sisting of n-tuples (x1, ... , xn) of real numbers xi, with distance metric

If S1 and S2 are metric spaces with distance functions d1 and d2, then a
function g��S1�#�S2 is an isometry transformation if and only if 

 for all 

Isometries on the plane involve translation, rotation, and reflection. All of
these preserve distance. While there are formal proofs for this assertion, the
simplest thing is to look at the pictures.

9.1.1.1  Translation

Translation sends the coordinates (x, y) to (x+a, y+b). We will not show a fig-
ure for this, because translation is nothing more than moving a graphic right
or left, up or down, or a combination of both, without changing its orientation.
The dinosaur in Figure 9.1 has been translated from somewhere off the page
(in space, not time), perhaps from Philadelphia.

The most frequent use for translation is in paneled graphics. As we will
show in Chapter 11, we use translation to arrange a set of frames in a table of
graphics. By composing translations with other coordinate transformations,
we can produce even more unusual arrangements of multigraphics.
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9.1.1.2  Rotation

Rotation sends the polar coordinates (r, D) to (r, D+c). This is equivalent to
sending (x, y) to (cosD x – sinD y, sinD x + cosD y). The dinosaur in Figure 9.1
is rotated 45 degrees. Figure 9.2 shows a bar chart rotated D&= 270 degrees
counter-clockwise. This is the coordinate transformation most commonly
done to produce horizontal bar graphics. Notice that not everything is rotated
in the graphic, however. Because the rotate() function operates on the view in-
stead of the frame, the location of text rotates to follow the location of associ-
ated elements (axes in this case), but its orientation can be governed by other
aesthetic considerations or constraints. The position() function signifies that
the coordinates apply to the position aesthetic. This is almost always the case,
although it possible to do coordinate transformations on other aesthetics.

ELEMENT: interval(position(gov*birth))

COORD: rotate(dim(1, 2), angle(270))
ELEMENT: interval(position(gov*birth))

Figure 9.2  270 degree orthogonal rotation

Figure 9.3 shows an unusual graphical application of the rotation transfor-
mation. This example is taken from Tukey (1977). Tukey devised this graphic
to represent simple additive models involving effects computed from a row-
by-column two-way table. The model he graphs is

fit = row + column

where fit is the predicted value for a cell in the table. Tukey plots fit against a
“forget it” dimension (row – column) through the transformation:

(row, column) # ((row + column), (row – column))

This is proportional to the rotation (cosD x – sinD y, sinD x + cosD y), where D
is –45 degrees, x is the column, and y is the row.
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The data are mean monthly temperatures for three places in Arizona.
Tukey’s fitted values that determine the raw coordinates in Figure 9.3 are
based on row and column medians of the means. The motivation for these cal-
culations is to enable both simple paper-and-pencil methods and robustness of
the fit. The size of the plotting symbols is proportional to the residuals of the
fit. Crosses (+) indicate positive residuals and circles (o) indicate negative.

Tukey calls the horizontal direction of the rotated graphic a “forget-it” di-
mension. The vertical dimension that shows the fitted average temperatures
across locations and months defines the principal variation of interest. Tukey
has produced a scale of temperature based on joint variation among places and
months. We will present in Chapter 11 another example of this approach in the
context of a procedure that Duncan Luce and Tukey developed, called con-
joint measurement (Luce and Tukey, 1964). 

To keep this example simple, we omitted from the specification the over-
lay to produce the vertical temperature scale on the right. We also omitted a
dilation constant of  (due to using cosines and sines). Related applica-
tions motivated by Tukey’s graphic can be found in numerous sources, includ-
ing Velleman and Hoaglin (1981) and Hsu (1996). See, for example, Figure
15.24. Tukey’s graphic reminds us to turn our heads occasionally so that we
can see hidden relationships.

TRANS: ar = abs(residual)
TRANS: sr = sign(residual)
COORD: rotate(dim(1, 2), angle(-45))
ELEMENT: point(position(month*city), size(ar), shape(sr))

Figure 9.3  Tukey additive two-way plot
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9.1.1.3  Reflection

Reflection sends (x, y) to (–x, y) or to (x, –y). This operation reverses the ver-
tical or horizontal orientation of a graphic. The dinosaur in Figure 9.1 is up-
ended by negating the second coordinate. In Figure 9.4, we have used the
reflect() method to accomplish a vertical reflection. The last argument (2) ties
the reflection to the second dimension.

Vertical reflection produces stalactites from stalagmites. To switch simi-
les, reflection is a way to make icicles out of trees. When the tree display used
in cluster analysis is turned upside-down so that the leaves are at the bottom
and the root is at the top, it is called an icicle plot.

ELEMENT: interval(position(gov*birth))

COORD: reflect(dim(2))
ELEMENT: interval(position(gov*birth))

Figure 9.4 Vertical reflection

Figure 9.5 illustrates the composite transformation of reflect followed by
rotate. This composite transformation is useful enough to merit its own func-
tion, which we call transpose(). A transposition is a flip of a graphic around
its northeast–southwest diagonal, similar to a matrix transpose, but on the oth-
er diagonal. 

A reflection followed by a rotation is still an isometry. Indeed, any se-
quence of T1(T2(T3(...))) is still an isometry if each Ti is a reflect(), translate()
or rotate(). However, the result of the sequence rotate(reflect()) is not equiva-
lent to that of the sequence reflect(rotate()). Even within their own class (e.g.,
isometry) planar transformations are not commutative. As we shall see, these
transformations are equivalent to matrix products and matrices are not com-
mutative under multiplication. Compare Figure 9.5 to Figure 9.6.
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9.1  Transformations of the Plane 187

ELEMENT: interval(position(gov*birth))

COORD: reflect(dim(1), rotate(dim(1, 2), angle(270)))
ELEMENT: interval(position(gov*birth))

Figure 9.5  Reflection followed by rotation

ELEMENT: interval(position(gov*birth))

COORD: rotate(dim(1, 2), angle(270), reflect(dim(1)))
ELEMENT: interval(position(gov*birth))

Figure 9.6 Rotation followed by reflection

As we have seen, the transpose transformation is easily mistaken for a ro-
tation, but there is an even more subtle consequence that is easily overlooked.
This involves the role of the range and domain in a graph. In Figure 9.5, birth
is assigned to the range and gov is assigned to the domain. That is, the graph
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188 9  Coordinates

and its resulting graphic are designed to treat birth rates as a function of type
of government. Whether or not this is true in real life is another matter. 

What if we decided to reverse these roles? Figure 9.7 shows the differ-
ence. This operation is a pivot of the frame. We have reassigned the range to
gov and the domain to birth in the specification. The resulting graphic express-
es type of government as a function of birth rates. Note that the range need not
be continuous. In this case a categorical range works fine. If we wanted a sum-
mary measure (instead of one bar for every value), we could use the mode. In
any case, the graphics and summary measures inside a frame do not change
the following fundamental rules of a specification:

x*y y*x

x*y transpose(y*x)

x*y = pivot(y*x)

Figure 9.7 shows that careless use of pivoting may have unintended conse-
quences. To get what we want, we need to pay attention to the model rather
than to the appearance of the graphic.

ELEMENT: interval(position(birth*gov))

Figure 9.7  Pivot of gov*birth
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9.1  Transformations of the Plane 189

We have adopted the name pivot from tables and database terminology. A
pivot of a two-way table in spreadsheets and other computer software is an ex-
change of rows and columns. Tables aren’t ordinarily thought of as having a
range and domain, but statisticians who have developed models for analyzing
variation in tables know well the difference between a log-linear model and a
logistic regression model. The former model adopts the cell entries for the
range and the cell margins (averages or other functions of rows and averages
or other functions of columns) for the domain. The latter model adopts one
margin for the range and the other for the domain. Sharing terminology be-
tween tables and graphs is not motivated by convenience or analogy, however.
Tables are graphs. We will discuss in Chapter 11 the isomorphism between ta-
bles and graphs that makes clearer why pivoting a graph is the same operation
as pivoting a table. This has important implications for spreadsheet technolo-
gy, particularly those spreadsheets that produce graphics. Graphics algebra
takes the guesswork out of producing a pivoted graphic from a pivoted table. 

Figure 9.8 illustrates these important points in a pair of graphics that differ
only subtly. In both graphics, the clouds look identical because point graphics
look the same across range-domain exchanges. In the left plot, however, we
have embedded a logarithmic regression smoother

where y is assigned to data and x is assigned to dist. In the right plot, we have
embedded the same smoother except y is assigned to dist and x to data because
of the pivot. The differences between the two curves are due to the different
regression models. On the left, estimates for data are conditioned on dist and
on the right, estimates for dist are conditioned on data. In the left plot, residu-
als (differences between the points and the regression line) are calculated ver-
tically and in the right, horizontally. In the left plot, the range is on the vertical
axis and domain on the horizontal. In the right plot, the range is on the hori-
zontal and the domain on the vertical.

The graphic consequences of these specification rules are more than aes-
thetic. Figure 9.8 presents a Shepard diagram from a multidimensional scaling
(MDS) of Morse code confusion data in Rothkopf (1957). The variable data
contains the confusions (similarities) among the 26 Morse codes for the letters
of the alphabet (numbers have been omitted here). The variable dist contains
corresponding distances between points in the MDS configuration represent-
ing the letters. The smaller the residuals in the Shepard diagram, the better the
fit of the MDS configuration to the original data. 

Roger Shepard, the inventor of nonmetric multidimensional scaling and
the person after whom this plot was named, oriented the plot as in the left pan-
el of Figure 9.8 because the problem had been posed in the classical frame-
work of fitting a theoretical configuration of points to a set of observed data
values (Shepard, 1962). Subsequently, Kruskal (1964) and others formulated
the problem as a multidimensional minimization of a loss function defined on
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190 9  Coordinates

the distances instead of the data. Rather than change the orientation of the
Shepard diagram, Kruskal changed the assignments of the range and domain
and represented his residuals horizontally. Later computer programs finally
transposed the plot, presumably to reduce confusion over this matter. 

This example is related to the statistical procedure known as inverse re-
gression (Brown, 1986). In linear inverse regression, we employ the linear
model to predict X, as opposed to the model 
to predict Y. If the ordinary least squares estimates of the parameters of these
models are a0, a1, b0, and b1, then the prediction for a value of X at a given
value yh is  for inverse regression and for
ordinary regression. This model was originally proposed for machine calibra-
tion problems and is now chiefly of historical interest.

ELEMENT: point(position(dist*data))
ELEMENT: line(position(smooth.log(dist*data), color(“red”))

COORD: pivot(transpose())
ELEMENT: point(position(dist*data))
ELEMENT: line(position(smooth.log(dist*data)), color(“red”))

Figure 9.8  Reflection and rotation exchanges range and domain

Sometimes we transpose a graphic simply to make it more readable. This
happens frequently with graphics that involve many categories on an axis. In
English and other languages that are written horizontally, it is more convenient
to orient a categorical axis vertically so that category names can be written
easily. Figure 9.9 shows an example using the cities data from Chapter 5.
Compare this to Figure 5.6.
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9.1  Transformations of the Plane 191

DATA: p1980 = "1980"
DATA: p2000 = "2000"
SCALE: log(dim(2), base(10))
COORD: transpose(dim(1, 2)))
ELEMENT: point(position(city*(pop1980+pop2000)), color(p1980 + p2000))

Figure 9.9  Blended dot plot

9.1.2  Similarity Transformations

A transformation g is a similarity if and only if there is a positive number r
such that 

 for all 

Similarities on the plane involve isometries as well as dilation.

9.1.2.1  Dilation

Dilation sends polar coordinates (�, D)  to (c�, D) or rectangular coordinates
(x, y) to (cx, cy). The dinosaur in Figure 9.1 is shrunk by 50 percent. Figure
9.10 illustrates a dilatation for the countries data. The dilatation works like a
photo magnifier or reducer. The multigraphics found in Chapter 11 require di-
lation transformations in order to size frames properly within an array of
graphics. 

Another application of dilation is for zooming in to reveal detail or zoom-
ing out to expose global structure. It is important to distinguish this graphical
zoom from a data zoom. In a graphical zoom, we enlarge or reduce every-
thing, including the axes and text. This operation is achieved through the dila-
tion transformation. The graphical zoom is best thought of as an optical
manipulation. It enables us to examine small areas of a graphic to analyze de-
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192 9  Coordinates

tailed structure. In a data zoom, however, we reduce or enlarge a frame by ad-
justing its bounds in data units. The physical size of the frame graphic (the box
demarcated by the axes) and the size of the other graphics inside the frame
(points, lines, bars) do not change. Instead, a data zoom-in subsets the data and
a data zoom-out embeds the data in a wider range than usual. This data zoom
operation has consequences for embedded graphics; they must be recalculated
based on the subset of the data in the frame. A graphical zoom, by contrast,
requires no recalculations; only the image is transformed. We will discuss the
subtleties of this problem at length in Section 9.1.8.1 later in this chapter. 

ELEMENT: interval(position(gov*birth))

COORD: dilate(factor(.5)))
ELEMENT: interval(position(gov*birth))

Figure 9.10  Dilation transformation

9.1.3  Affine Transformations

The n-tuple coordinate for a point in a space can be represented by the vector
x = (x1, ... , xn). Vector notation allows us to express simply the affine class of
transformations:

x* = xT + c ,

where x*, x, and c are row vectors and T is an n by n transformation matrix.
In this notation, xT is the image of x. If c = 0, we call this a linear map. The
linear subset of the affine class includes rotation, reflection, and dilation, as
well as stretch and shear. If c 0, we call it an affine map. This adds transla-
tion to these operations.
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9.1  Transformations of the Plane 193

Let’s first review the matrix form of the isometric and similarity transfor-
mations we have seen so far. Beginning with T, we can see that an identity
transformation results from making T an identity matrix:

T = 

Rotation involves the more general matrix

T = 

where D is the angle of rotation. 
Reflection involves an identity matrix with one or more diagonal elements

signed negative, e.g.:

T = 

Any negative diagonal element will reflect the corresponding dimension of x.
This particular T matrix reflects both dimensions. 

Dilation involves a matrix of the form

T = 

where a is a real number.
Finally, translation involves a row vector of the form

c = 

where u and v are real numbers.
The affine class permits T to be a real matrix of the form

T = 

where a, b, c, and d are real numbers. Stretch and shear are produced by two
types of this matrix.
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9.1.3.1  Stretch

 Stretch is the transformation that sends (x, y) to (ax, dy), so

T =  .

The dinosaur in Figure 9.1 is stretched by a factor of 2 on the second coordi-
nate (vertical axis). 

The stretch transformation varies the aspect ratio of a graphic. This is the
ratio of the physical height to the physical width of the frame graphic. Often
this ratio is chosen to make a graphic fit in a page layout or on a computer
screen. This practice of convenience more often degrades than improves the
accuracy of the perception of the information underlying the graphic. As
Cleveland, McGill, and McGill (1988) have shown, many conventional pre-
scriptions for aspect ratios in a plot (“make it square,” “make it a Greek golden
rectangle,” etc.) have no empirical or theoretical justification. Instead, aspect
ratios should be determined by the perceptual considerations of the content in
the frame, namely, the shape of the graphics. Cleveland has shown that for line
plots, perception of relative changes in slope is most accurate near a 45-degree
orientation. (Sensitivity to absolute slope differences near threshold is highest
near verticals or horizontals, but this is not relevant to this context.) 

Figure 9.11 shows a stretch transformation of a time series graphic. The
two graphics in this figure are rescalings of the sunspot data from Andrews
and Herzberg (1985). The aspect ratio on the left makes a global absolute
slope component of approximately 45 degrees. The extreme shear transforma-
tion on the right highlights local, high-frequency detail in the plot. It was com-
puted by setting the median absolute slope of the line segments
(approximately 500 in number) to unity, following a procedure outlined in
Cleveland, McGill, and McGill (1988). The choice of aspect ratio must be
guided by the information we wish to communicate. Sometimes more than one
graphic is needed to highlight the important frequency components. In a dy-
namic graphics system, we could connect aspect ratio to a controller so that
the user could explore these variations in real time. The simplest implementa-
tion of such a controller would be on the frame itself, so that we could resize
by dragging vertically or horizontally.
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ELEMENT: line(position(year*spots))

COORD: stretch(factor(2.0, 0.111))
ELEMENT: line(position(year*spots))

Figure 9.11  Stretch transformation

9.1.3.2  Shear

Shear is the transformation that sends (x, y) to ((ax+cy), (bx+dy)), so

T =  

The dinosaur in Figure 9.1 was produced by the matrix whose elements
are a = .96, b = .3, c = .3, d = .96. Figure 9.12 shows the same shear transfor-
mation on a data graphic. The data are principal components of the sociomet-
ric ratings of US cities (Boyer and Savageau, 1996). The components have
been rotated using an oblique rotation method called oblimin (Harman, 1976;
Clarkson and Jennrich, 1988). This rotation fits basis vectors through bundles
of component vectors without a restriction that the basis vectors be orthogo-
nal. Computer packages typically graph oblique rotations in the manner of the
left panel of Figure 9.12. Making the basis orthogonal helps us to see the sep-
aration between components, but conceals the dependency among oblique fac-
tors. The right panel shows a shear transformation applied to the graphic
underlying the left pane. It makes clear the dependency between factors and
thus encourages us not to make independent unitary interpretations. 
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Applications of oblique transformations in factor analysis sometimes
show oblique axes running through the center of the vectors in an oblique
cross. This graphic can be helpful for thinking of an oblique rotation as a fit-
ting of a non-orthogonal basis under some loss function. As the right panel of
Figure 9.12 shows, however, it can be helpful sometimes to place the axes at
the edge of the plot to keep clutter outside the center of the frame, especially
when there are many vectors.

DATA: zero = constant(0)
ELEMENT: edge(position(link.join(factor1*factor2 + zero*zero)),

label(name))

DATA: zero = constant(0)
COORD: shear(matrix(0.96, 0.3, 0.3, 0.96))
ELEMENT: edge(position(link.join(factor1*factor2 + zero*zero)),

label(name)) 

Figure 9.12  Oblique factor rotation (shear)

9.1.4  Planar Projections

A planar projection is the mapping of one plane to another by perspective pro-
jection from any point not lying on either. Figure 9.13 illustrates this mapping
spatially. For every point in the image on the lower plane in the figure, there
is a single corresponding point in the domain on the upper plane.

As the figure suggests, we may use a similar model to produce a perspec-
tive projection that creates 2D perspective views of 3D objects in computer
graphics. Planar projections are more restrictive than 3D-to-2D projections,
however. They share the composition behavior of other planar transforma-
tions. We can, in other words, project a projection and stay within the projec-
tive class. In the 3D-to-2D projection, it is possible to have more than one
point in the domain for a single point in the image.
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Figure 9.13  Projection of one plane on another

To notate projections, it is helpful to adopt homogeneous coordinates.
We combine the T and c matrices into one general square matrix A:

A =  

The elements a, b, c, and d are from the T matrix and u and v are from the
c vector that we used for affine transformations. The elements p, q, and s are
for projection. To make this system work, we need to express x in homoge-
neous coordinates by augmenting our coordinate vector by one element:

x = (x, y, h)

If h = 1, then our Cartesian coordinates are simply x = x/h and y = y/h. This
re-parameterization makes the general projective transformation

x* = xA 

This matrix equation produces the following homogeneous coordinates:

x* = ((ax + cy +u), (bx + dy + v), (px + qy +s))

If we renormalize after the transformation so that the third coordinate is
unity, we can retrieve (x*,y*) as the Cartesian coordinates from the projection.
To see what projection adds to the affine class, we should notice that the third
column of A produces a different scaling of x and y, depending on their values.
And because all the transformations are linear, the straightness of lines is pre-
served in the class.

a b p
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9.1.4.1  Project

The projected dinosaur in Figure 9.1 was produced by the coordinate transfor-
mation

(x, y) #&�1/x, y/x) . 

This projection involves a transformation used in the statistical technique
called weighted least squares. We will present an example.

Figure 9.14 shows a scatterplot relating diastolic blood pressure to age.
Neter, Wasserman, and Kutner (1990) devised this dataset to illustrate a pop-
ular technique for dealing with unequal variances (heteroscedasticity) in lin-
ear regression. As the left panel of the figure shows, the variation around the
fitted line is larger for older people than for younger. This violates an assump-
tion of equal variances (homoscedasticity) needed for conventional tests of
hypotheses involving the regression coefficient relating blood pressure and
age. The panel on the right of the figure shows the distribution of data we
would like to see for testing these hypotheses appropriately. 

One simple approach statisticians have used to ameliorate this problem is
to transform the data before fitting the line. This transformation involves
weighting the values of age and blood pressure according to the corresponding
blood pressure value. We start by noticing that the envelope of the variation
about the line in the left panel is like a fan with straight sides. Assuming we
have a random sample of values, this pattern suggests that the population vari-
ance of blood pressure at a given level of age increases linearly with age, i.e.,

Neter, Wasserman, and Kutner illustrate some statistical and graphical ap-
proaches to confirming this supposition by examining the distribution of the
data. If we believe the data fit this model, then we can attempt to equalize the
conditional variances by dividing both variables by the value of age for each
pair. In other words, we transform a model we are almost certain is false to one
that appears to be true:

The graphic in the right panel of Figure 9.14 is a fit of this latter model. It
is plotted using the transformed data (age/bp and 1/bp). The result resembles
the classic textbook example of linear regression. The fan shape has been
transformed into a stripe; the variance of y appears to be constant across all
values of x. The regression line runs through the center of this stripe, as it
should.
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ELEMENT: line(position(smooth.linear(age*bp))
ELEMENT: point(position(age*bp))

TRANS: inverseage = inverse(age)
TRANS: bpbyage = ratio(bp, age)
ELEMENT: line(position(smooth.linear(inverseage*bpbyage))
ELEMENT: point(position(inverseage*bpbyage))

Figure 9.14  Weighted least squares via transformation of variables

A problem students often have with this approach is understanding what
was done to the data. It is difficult to relate the plot in the right panel to the one
in the left. The cloud is reversed horizontally and the scale values are not in
the original metric. If we parameterize this model as a projection, however, we
can produce a graphic in the original metric transformed. Note that the weight-
ed model can be viewed as the coordinate transformation

(x, y) #&�1/x, y/x)

The projection matrix for expressing this transformation is

A =  

This takes x in homogeneous coordinates to x* = (1, y, x), which produces the
result we want in Cartesian coordinates after dividing through by x. Figure
9.15 shows the result. We have included the A matrix in the parameter list as
the array a[]. Now we see explicitly that the transformation reflects the x axis
because of inversion and fans out blood pressure for younger ages. Notice that
the regression line passes through the same observations in all these plots. The
ordinary fit of the line under heteroscedasticity is unbiased. It is the variances
we have adjusted. 
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Data-modeling statisticians have devised more elaborate methods to deal
with these problems, including iterative reweighting, maximum likelihood,
and generalized least squares. While Figure 9.15 may look unfamiliar even to
some experts at first glance, however, it is no different in spirit from polar co-
ordinates, log scales, and other coordinate transformations we routinely use to
produce more familiar scientific graphics. Coordinate transformations allow
us to see what was done to our data.

COORD: project(matrix(..))
ELEMENT: line(position(smooth.linear(age*bp)))
ELEMENT: point(position(age*bp))

Figure 9.15 Projection

Figure 9.15 highlights an interpretive problem with transformations. Sta-
tistical modeling via transformation or weighting is a widely used method for
dealing with unusual distributions. The problem is that we most often want to
state our conclusions in terms of the original variables. Sometimes we can es-
cape the problem by keeping the transformation and not inverting it to explain
our result. Miles per gallon, for example, can be transformed to gallons per
mile in order to make it more normally distributed. This form of the index may
be more useful anyway. Paul Velleman (Velleman and Wilkinson, 1994) has
suggested this transformation for routine use and has noted that Europeans use
this form (liters per kilometer), presumably because it enables travelers to
compute more easily their gas needs on a trip. If we transform, do statistics,
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and invert our transformation, however, we must be extremely careful in our
interpretations of the result, particularly when random error is included in our
models. We will examine this problem further in Section 9.1.8. 

9.1.5  Conformal Mappings

We need to generalize our coordinates once more in order to move to the next
level of the planar transformation hierarchy. By working on the complex
plane, we can define functions that would be messy or difficult to understand
in the real domain. A complex number z = x + iy may be represented by a vec-
tor z on the complex plane whose coordinates are Re(z) = x and Im(z) = y. Co-
ordinate transformations on (x, y) can then be expressed in the form 

w = f(z) = u(z) + iv(z)

where u(z) and v(z) are real functions of z and w is the image point of z under f.
First, as we did with the affine and projective classes, let us dress the child

of the conformal class in the clothes of this new notation. Similarity transfor-
mations can be expressed in the complex formula 

w = az +b

where w, a, b, and z are all complex. We can see this by noting that

(a1 + ia2)(x + iy) = (a1x – a2y) + i(a2x + a1y) + (b1 + ib2)

which is the same set of operations involved in the similarity subclass of the
projective transformation

xA = 

The projective matrix notation tells us that the complex constant b is in-
volved in translation and the complex constant a is involved in rotation and
dilation of the plane represented in z, since the submatrix

 =   r  ,

x y �� �� �

a� a� 


a�– a� 


b� b� �

*

a� a�

a�– a�

D'�! D!��

D!��– D'�!
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where r is a real number. There is another way to show the rotational role of
the complex constant a. Euler’s formula 

locates a point on the unit circle at angle D&on the complex plane. It tells us that
any complex number can be expressed as

 .

We can thus re-express the complex constant a and define a similarity trans-
formation as

 ,

which rotates z by D and dilatates it by r.
A conformal mapping adds a peculiar geometric characteristic to a simi-

larity transformation: local angles (at the intersection of two curves) are pre-
served, but straight lines may become curves. A planar mapping is conformal
if every point on the plane is transformed so that all possible infinitesimal vec-
tors emanating from that point are rotated and dilated by the same amount in
the image. This local rotation and dilation means that very small squares re-
main squares in the image, but large squares can be distorted considerably.
The paradoxical beauty of this transformation is that locally it looks like a sim-
ilarity but globally it looks like a nonlinear warping.

The conformal dinosaur in Figure 9.1 was produced by the transformation

Figure 9.16 shows several examples of conformal mappings of a chess-
board pattern of square tiles. We have set the domain of these mappings to the
interval [–.�F.] on both x and y. Several of these transformations are a sub-
class of the Möbius transformation

 ,

where all the constants and variables are complex. This transformation has in-
spired a variety of basic applications in physics, fluid dynamics, electromag-
netic fields, and other areas. Needham (1997) offers a glimpse into this world
from a geometric perspective and illustrates its application to vector flows and
other graphics in physics. Running graphics through variations of this trans-
formation to see what they look like can be addictive.
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COORD: conform(matrix(..))
ELEMENT: polygon(position(x*y))

Figure 9.16  Conformal mappings of a chess board

9.1.5.1   Conform

Figure 9.16 may seem a looking-glass world for most of the graphics in Chap-
ter 8, but there are practical applications of planar conformal maps. We will
omit the vector flow diagrams used in physics and instead show a simple
graphic from the field of meteorology. Figure 9.17 is a graphic relating humid-
ity to wind direction for a ground-level site. The data comprise hourly meteo-
rological measurements over a year at the Greenland Humboldt automatic
weather station operated by NASA and NSF. These measurements are part of
the Greenland Climate Network (GC-Net) sponsored by these federal agen-
cies. Data like these are available at numerous sites on the World Wide Web.

sin(z) z / (4 + z)

z2 ez
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COORD: conform(matrix(..))
ELEMENT: line(position(smooth.loess(direction*humidity)))
ELEMENT: point(position(direction*humidity))

Figure 9.17  Conformal mapping

On first glance, Figure 9.17 resembles a polar wind chart with a loess
smoother. The wind direction is represented by a polar angle from 0 to 360 de-
grees and humidity is represented by the outer section of the radius. The con-
formal mapping (ez) underlying the graphic is not a polar transformation,
however. Notice that the radial dimension (humidity) is exponentially spaced.
High humidities are spaced farther apart than low. This nonlinear scale trans-
forms the negatively skewed distribution of humidity to a more normal one.
The other feature distinguishing this from a polar chart is that zero humidity
is not mapped to the center of the circle. In the complex exponential transfor-
mation, the center of the circle corresponds to negative infinity. This graphic
is not a pie. Its center is a black hole.

The loess robust smooth shows that humidities tend to be lower for winds
coming from a south-easterly direction. The highest humidities prevail in the
west. The cloud reveals that there are few wind measurements over the year in
the northerly sectors.
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9.1.6  Polar Coordinates

If (u, v) represents the polar coordinates ( ) of a point, then the polar coor-
dinate function P(u, v) #&�x, y) corresponds to the case , , where

 and . There are numerous important applications of
the polar transformation in graphics. Mathematicians and scientists usually
deal with polar coordinates measured on the real numbers such that one revo-
lution corresponds to an interval of 2. radians. 

Figure 9.18 shows an example for the cosine function with period . G 3.
The range of this graph is on the interval [–1, +1] and the domain is on the in-
terval . Our graphic shows a domain only on the interval [0, 2.). This
means that we can see only one cosine curve at each petal even though there
would be an infinite number of these curves at each petal if we allowed the do-
main to cycle more than once around the circle (see the cycle parameter in Sec-
tion 6.2.2). There are not many good ways to fix this representation problem.
We could plot the function in cylindrical coordinates (see Section 9.3.3) with
the cylindrical axis assigned to the same variable as D.

We could treat polar coordinates as an exception to the way all other
scales are handled in this system. That is, we could interpret angular values ab-
solutely as radians. This would make sense if all our graphics were mathemat-
ical or engineering applications involving radians. We have chosen not to do
this, however, so that we can hide scaling details when doing coordinate con-
versions. This makes it easy, for example, to represent yearly time in polar co-
ordinates. In the polar coordinate conversion, therefore, we align 0 radians
with the minimum scale value in data units (degrees, radians, proportions, etc.)
and 2. radians with the maximum. The cycle parameter, together with min and
max parameters in the scale functions allows us to create polar graphs with
more than one revolution if we wish. 

A note about the polar() function in the COORD specification: the argu-
ments are reversed from the order given for P(u,v) above. That is, the first di-
mension is taken to be the domain, which is assigned to D. The second
dimension is taken to be the range, which is assigned to �. This is in keeping
with the general order of algebraic specifications within a frame: the factors
are ordered as domain1, domain2, ... , range.

As we will show in this section, applications of polar coordinates range
far beyond technical and mathematical graphics. The polar transformation is
useful whenever data lend themselves to circular arrangements. This includes
directional data (vector wind, compass bearings), rotational data (defects on
disk drives), astronomical time (daily, monthly, annual), periodic waveforms
(radio signals), and proportions (the humble pie chart). Sometimes, circular
arrangements offer simpler parameterizations or structures for making sense
of a phenomenon. Polar models of facial expressions, for example, provide the
most parsimonious summaries of behavioral observations (see Figure 10.46).

� D�
u �= v D=

x � D'�!= y � D!��=
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DATA: x = iter(0, 6.28, 0.01)
TRANS: y = cos(6*x)
SCALE: interval(dim(1), min(0), max(6.28), format(format.pi)
COORD: polar()
ELEMENT: line(position(x*y))

Figure 9.18 Polar cosine

Polar plots are often a means to a geometric end. In these cases, we are
happy to limit our domain to one revolution because our goal is to represent
objects in a circular arrangement. Figure 9.19 shows a polar dinosaur. The co-
ordinates for the tail-to-head dimension have been scaled to vary between 0
and 2. and we have oriented the graphic to make 0 at the top by transposing it
after the polar transformation. This dinosaur is hibernating.

COORD: transpose(polar())
ELEMENT: edge(position(link.mst(x*y)))

Figure 9.19  Polar dinosaur
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The specification for the graphic reveals how we created these dinosaur
transformations. Instead of working with bitmaps, we digitized the outlines
into (x, y) coordinates computed at closely spaced intervals. Then we added
the minimum spanning tree (MST) version of the link graph to “connect the
dots.” Occasional irregularities and gaps are due to the resolution of the dot
spacing we chose and the MST algorithm’s compulsion to go to the nearest ad-
jacent dot.

Any circular directional variable is an obvious candidate for polar repre-
sentation. Compass direction, for example, varies between 0 and 360 degrees.
There are other reasons to send graphics through a polar transformation, how-
ever. The most popular application in graphics is the pie chart, which we will
discuss first. Pies lend themselves to proportion-of-whole representations for
valid visual-processing reasons. Polar coordinates also provide a useful medi-
um for fitting a lot of information in a small space. Polar trees allow the high-
est resolution in the area of their leaves, which makes them popular among
geneticists and others who must cluster large sets of objects. 

There are several different polar coordinate methods needed for statistical
graphics. The conventional polar function requires two arguments. We use
this one for embedding graphics in two-dimensional frames, such as in scat-
terplots and mathematical graphs of polar functions. The other polar functions
take only one argument. The polar.theta function assigns its argument to D and
sets � to unity. The polar.rho function assigns its argument to � and sets D to
unity. The polar.rho.plus function works like polar.rho except 1 is added to �
before the transformation. This pushes the range outside the unit circle. This
function is used for producing rose diagrams (see Section 9.1.6.3). 

9.1.6.1  Polar.theta

As we have seen in Chapter 2, a pie chart is a stacked bar in polar coordinates.
The polar.theta function assigns its only argument (the position attribute) to
D, and assigns the radius (�) to a constant that determines the size of the pie. 

Figure 9.20 shows a pie chart for the females in the ACLU data. Notice
that the labels for the slices are not part of an axis, scale, or other guide. They
are attached to each slice through the label() aesthetic function. We will dis-
cuss this further in Chapter 12, where we will cover guides. The appearance
of a graphic can sometimes deceive us. We must analyze text carefully to de-
termine whether it is part of a guide or part of a graphic.

It seems odd to go through a function to produce the most popular chart
of all. Simplicity is in the eye of the beholder, however. Once we learn to bake
pies in round and square pans, we can graduate to other shapes, as the next ex-
ample will show.
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COORD: polar.theta()
ELEMENT: interval.stack(position(summary.proportion(response)), 

label(response), color(response))

Figure 9.20  Pie chart

9.1.6.2  Polar.rho

A circular pie chart is a variation on the divided bar in polar coordinates. It
bakes a pie in a bundt cake pan. The polar.rho projection assigns the position
attribute to � and wraps D around the circle. 

Figure 9.21 shows an example of the chart for the bias data. This graphic
is occasionally used by newspaper and magazine marketing departments to
represent spheres of circulation among different readerships. The perceptual
problem with the graphic is that areas are confounded with the radial variable.

COORD: polar.rho()
ELEMENT: interval.stack(position(summary.proportion(response)), 

label(response), color(response))

Figure 9.21  Circular pie chart
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9.1.6.3  Polar.plus

The polar.plus and polar.rho.plus functions are for rendering graphs along the
circumference of a circle. This is needed when essential features of graphics
get jammed together near the center of the polar domain. Graphics in this form
are seen most frequently in ecology and spatial statistics applications, where
circular distributions are analyzed (e.g., Upton and Fingleton, 1989). Figure
9.22 shows a polar dot plot and rose histogram for the wind direction data used
in Figure 9.17. 

COORD: polar.rho.plus()
ELEMENT: point.dodge(position(bin.dot(direction)))

COORD: polar.rho.plus()
ELEMENT: interval(position(summary.count(bin.rect(direction))))

Figure 9.22  Polar dot plot and histogram

The wind rose (rosa ventorum) has been drawn for centuries by cartogra-
phers. Predating the compass rose, it appeared on navigational charts as early
as the 13th century. Wainer (1995) shows an example by Léon Lalanne from
1830. Lalanne drew by hand his estimates of prevailing ocean wind strength
and direction. 

We can construct a similar graphic by computer today. Figure 9.23 shows
a statistically based smoothing of the Greenland wind direction data. We have
drawn the axes to resemble Lalanne’s chart. This rose results from embedding
a kernel smoother density graphic in a polar frame. Because we used the polar
function in this figure, much of the detail near the center is lost. 
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This graphic would benefit from a nonlinear transformation of the radial
scale. Nevertheless, it is interesting that coordinate-based applications of rel-
atively recent technology (kernel smoothing) can benefit from clever carto-
graphic insights of the past. One thing to note: the radial distance from the
center represents the proportion of measured times that the wind was blowing
in a given direction, not the strength of the wind itself.

COORD: polar(transpose())
ELEMENT: line(position(smooth.density.kernel.epanechnikov(direction)))

Figure 9.23 Rose kernel density

9.1.6.4  Polar

The standard polar two-argument function has numerous applications. Figure
9.24 shows a Nightingale rose chart and the bars from which it is constructed.
We have used the female data from the ACLS dataset in Chapter 2. The left
panel shows the rectangular coordinate graphic as an ordinary bar chart. The
bar thicknesses are set to full width so that the bars touch each other. This
makes the segments in the polar graphic in the right panel span the entire cir-
cle. Notice that, unlike Figure 9.20, the polar angles are constant for every bar.
While this figure seems to be a type of pie chart, it is in fact a fundamentally
different graphic based on multiple bars instead of a partitioned (stacked) bar.
This chart derives its name from a graphic devised by Florence Nightingale
(Wainer, 1995). Attractive as it may be, the polar bar chart confounds area
with radius. Square rooting the radii only partly ameliorates this confounding.
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ELEMENT: interval(position(response), color(response), size(2))

COORD: polar()
ELEMENT: interval(position(response), color(response), size(2))

Figure 9.24   Bar graphic and Nightingale rose

Figure 9.25 shows a reflection of the Nightingale rose. We have included
this rather atrocious chart to illustrate further the composition of coordinate
functions. Notice that the reflect function reverses the range scale before map-
ping to polar coordinates. 

COORD: polar(reflect(dim(2)))
ELEMENT: interval(position(response), color(response), size(2))

Figure 9.25   Reflected Nightingale rose
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Figure 9.26 shows a polar transformation of a dual stacked bar. As in the
previous example, polar coordinates do not help to elucidate the structure, but
this example illustrates the roles the dimensions play in the coordinate trans-
formation. Compare these results to the un-transposed version in Figure 8.19.
What would the right panel look like if we did not use transpose()?

COORD: transpose()
ELEMENT: interval.stack(position(summary.proportion(gender*response)), 

color(response), label(response))

COORD: polar(transpose())
ELEMENT: interval.stack(position(summary.proportion(gender*response)), 

color(response), label(response))

Figure 9.26  Polar divided bar of ACLS data

Polar coordinates can be used to enhance detail in areas where it is impor-
tant. When there are many leaves, or terminal nodes, a cluster tree becomes
unwieldy. Placing the tree in polar coordinates leaves room for displaying
more leaves. Figure 9.27 shows a polar tree on the cities data. Notice that
straight lines become curves in the polar representation, although we could
take special steps to prevent this behavior if we wished to design the software
that way. 

Polar trees are often used by biologists to display results of cluster analy-
ses or large genetic trees. Recently, computer scientists have taken an interest
in similar layouts for displaying large trees in browsers and other windows.
The fish-eye coordinate transformation (see Section 9.1.8) can be used to
show more detail in a region of the tree. Lamping, Rao, and Pirolli (1995) de-
scribe a hyperbolic tree transformation for embedding large trees within a cir-
cle. Munzner (1997) extended this model to 3D.
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COORD: polar()
ELEMENT: edge(position(link.join(xnode*ynode),label(city)))

Figure 9.27  Polar cluster tree

Polar coordinates have many uses for displaying seasonal data. Time se-
ries are usually displayed linearly. This is the format in which we are accus-
tomed to viewing stock market data, for example. This format facilitates scale
look-up and decoding of prices. When seasonal characteristics are of interest,
however, strip charts of annual time series are less effective as a display. Figure
9.28 shows a three-year time series of the daily closing price of the stock of
SPSS. We have omitted the stock price scale because the focus of interest here
is the trend. We have also specified a three-year cycle for the time scale; see
Chapter 6 for information on the format of the time() scale function. Polar co-
ordinates make it easy to compare local features across seasons, especially at
the end/beginning of years. Moreover, the plot enables a global assessment not
possible with strip charts of time series: if the stock is everywhere increasing
over its previous season’s price, the line graphic will appear as a spiral. Sea-
sonal comparison is most prevalent in the language of companies when they
present quarterly results to the brokers who set earnings numbers. Wadsworth
et al. (1986) have made this same observation in the context of process control
monitoring.

Carlis and Konstan (1998) propose polar visualizations for periodic se-
ries, although they employ a spiral for anchoring the data (see Figure 9.31).
This method can be effective for series where the inspection of trend compo-
nents is less critical than seasonal. Stock series would not be appropriate for
their method, but they present other series for which it makes sense. Tufte
(1983) shows historical examples. 
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SCALE: time(dim(1), cycle(3))
GUIDE: axis(dim(1), format(format.month))
COORD: polar()
ELEMENT: line(position(date*price))

Figure 9.28  Polar time series (SPSS stock)

A favorite graphic among quality control engineers, particularly in Japan,
is the radar plot. Like the spiral time series, this display facilitates rapid dis-
crimination of a single important feature: is an ordered set of numbers pair-
wise larger than another ordered set of the same size? The radar plot makes
this relation easy to detect because the convex hull of the larger set completely
contains the hull of the smaller. This display generalizes easily to more than
two sets of numbers. General Motors used this graphic in 1997 advertising to
demonstrate that the envelope of performance features for its C5 Corvette —
handling, economy, acceleration, safety, etc. — substantially exceeded the
numbers for its previous model. Figure 9.29 shows this type of plot for the US
weather data. The two polar profiles show average summer and winter temper-
atures for eight regions of the US. Not surprisingly, average summer temper-
atures are higher than winter in all regions. Some radar plots involve different
scales for each variable in the plot. These are instances of polar parallel coor-
dinate plots rather than polar profiles. See Figure 9.61 for an example.

There is one technical detail concerning the shape of Figure 9.29. Why is
the outer edge of the area graphic a set of straight lines instead of arcs? The
answer has to do with what is being measured. Since region is a categorical
variable, the line segments linking regions are not in a metric region of the
graph. That is, the segments of the domain between regions are not measurable
and thus the straight lines or edges linking them are arbitrary and perhaps not
subject to geometric transformation. There is one other problem with the
grammatical specification of this figure. Can you spot it? Undo the polar trans-
formation and think about the domain of the plot. We cheated.
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DATA: s = string("Summer")
DATA: w = string("Winter")
COORD: polar()
ELEMENT: area(position(region*(summer+winter)), color(s+w))

Figure 9.29 Radar plot

The polar domain offers numerous opportunities for contouring and other
graphs that represent additional dimensions. Figure 9.30 shows a transposed
polar plot of barometric pressure by wind speed by wind direction. The pres-
sure values have been smoothed by distance-weighted least squares onto the
surface represented by wind speed and direction. The contours have been col-
ored by level of barometric pressure. Lower pressures (blue) correspond to
southeasterly high speed winds, while higher pressures (red) correspond to
westerly low-speed winds. The plotted speeds are the highest gust recorded
each hour, so they have a ceiling, as evidenced by the uniform boundary of val-
ues in the cloud near 11 meters per second at the bottom of the circle.

When contouring in the polar domain, we must be careful in the way we
compute contours. If we contour in rectangular coordinates and then transform
the contours, there will be discontinuities at the boundaries, especially with
polynomial and related smoothers. A similar problem exists when contouring
on the sphere. To solve the problem, we must do our calculations in the trans-
formed metric.
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COORD: transpose(dim(1, 2), polar())
ELEMENT: point(position(direction*speed))
ELEMENT: contour(position(
                                smooth.quadratic.cauchy(direction*speed*pressure)), 
                                color.hue())

Figure 9.30 Barometric pressure (contours) by wind speed by direction 

9.1.7  Inversion

Complex inversion is a turning inside-out of the plane. It is most easily under-
stood by considering the transformation  in polar coordi-
nates, where radii are converted to their reciprocals. More generally, we define
the complex conjugate of  to be . Then the transforma-
tion of the complex plane  is a geometric inversion. The invariance
of this transformation is that circles remain circles (notice that D is unchanged
and � is simply inverted in the polar representation of the transformation).

Figure 9.31 shows an inversion of a spiral. Notice that the points outside
the unit circle are turned in and the points inside are turned out. This coordi-
nate transformation would be useful for highly skewed data or whenever we
wish to expose the detail in the center of the polar coordinate world. Inverting
an image suggests some interesting possibilities. Inverting a face is best re-
served for Halloween.
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DATA: x = iter(0., 18.86, 1000)
TRANS: y = x / 8 – .2
SCALE: linear(dim(1), min(0), max(18.86), base(10), cycle(3))
COORD: polar()
ELEMENT: point(position(x*y), color.hue(x))

DATA: x = iter(0., 18.86, 1000)
TRANS: y = x / 8 – .2
SCALE: linear(dim(1), min(0), max(18.86), base(10), cycle(3))
COORD: inverse(polar())
ELEMENT: point(position(x*y), color.hue(x))

Figure 9.31 Inversion of a spiral

9.1.8  Bendings

This section covers coordinate transformations that bend the plane like a sheet
of plastic. Bendings stretch the plane along x or y or in both directions. We will
first discuss single bending, most frequently used to straighten curves and lin-
earize scales. Then we will discuss double bends, used to compress or dilate
sections of the plane. Bendings involve the continuous planar transformation

(x, y) #&�f(x), g(y)) = (u, v)

One way to visualize this class of transformations is to think of a frame graph-
ic with axes and grid lines and note that the grid lines remain parallel after
transformation and the axes remain perpendicular. Bendings involve no shear.
This is because u and v depend only on x and y, respectively.
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9.1.8.1  Inverting a Scale Transformation

The logarithmic planar transformation is 

(x, y) #&�log(x), y) ,  or

(x, y) #&�x, log(y)) , or

(x, y) #&�log(x), log(y))

where the log function is

log: x #&ln(x)/ln(k)  ,   k > 0 ,  x > 0

Many graphs use aggregation functions in their position computations.
However, the mean of the log is not the log of the mean. Nor is the sd of the
log the log of the sd. In general, any aggregation must be computed after non-
linear transformations in order for the results to be statistically correct. Thus,
we should not use a log coordinate transformation to deal with skewness in our
data. Instead, we should use a log scale to address this problem. We may anti-
log our results, however, if we wish to view them in the original metric. Figure
9.32 shows how this works.

SCALE: log(dim(2), max(2000))
COORD: exp(dim(2))
ELEMENT: point(position(summary.mean(exposure*brainweight)))
ELEMENT: interval(position(region.spread.sd(exposure*brainweight)), 

color(“red”))

Figure 9.32  Log error bars on raw scale
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In Figure 9.32 we have inverse-transformed the log scale to the raw metric
by exponentiating the graphic of the sleep data shown in Figure 6.7. We have
restricted the range to 2,000 by leaving the log base parameter to missing (de-
fault natural log) and setting the max to 2,000. Now the standard deviation bars
are asymmetrical because they have been computed on the logged data. This
may seem odd until we consider that the raw distributions are asymmetric, so
conventional mean and sd calculations make sense only after log transforma-
tion of the brain weight values. Computing this way, and assuming the logged
values are normally distributed, we would expect the bars to cover approxi-
mately 68 percent of the values (the central two-standard deviation spread for
a normal distribution). That would not be true if the calculations were done on
the raw data.

Figure 9.32 is misleading. The two largest brain weights in the dataset
(5,712 and 4,603) belong to elephants, yet the vertical scale suggests that the
data range between 0 and 2,000 grams. One might argue that we are faithfully
representing the standard deviations and means, but we would reply that this
misrepresents the data. It also violates our fundamental rule for a statistical
graphics system: the frame should always cover the data on which the graphs
are based. The range of any dimension should not depend on the graphs that
live in the frame. Graph dependence is dangerous.

Defining the range independently of summary functions means that the
displayed range covers all the data included in the calculation of all the means.
If the data are positively skewed, as in this example, the points will tend to
congregate at the bottom of the display unless the data are transformed to be
roughly symmetric about the means. Figure 9.33 shows the same data on the
proper scale. The cloud graphic in the left panel shows why Figure 9.32 is mis-
leading.

Statisticians are accustomed to doing these transformations before plot-
ting and analysis because statistics like means are otherwise unrepresentative
of their data batches. That is why we logged the data before plotting. If the data
were not logged, and if we restricted the range to less than 1000, say, then the
dot summaries would have excluded humans as well as elephants and their lo-
cations would have been different. This can be disconcerting to those users
who might want to place the points to conserve white space or to make them
look pretty. The only possible answer to this desire is to point out that the sum-
mary would be misleading. It is a fundamental principle (some would call it a
drawback) of the system presented here that displayed ranges and domains de-
fine the behavior of graphics, not the other way around. If a graph summarizes
data in this system (e.g., regression lines, confidence intervals, etc.) this sum-
mary is based on data within the bounds of the frame only. We would claim
that the alternative — clipping white space around a summary graphic for aes-
thetic purposes — is a form of lying with graphics (Huff, 1954). We have
spent some time on this issue because it is so widely misunderstood. After de-
signing this behavior for SYSTAT’s graphics, we heard from some users who
thought this was a bug. We began to realize that this preference for the geom-
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etry of summaries over the geometry of data may be a worrisome and perva-
sive problem in scientific practice. Some scientists are publishing graphics
that conceal the range and variability of their data. Graphics programs that en-
courage them to do this thoughtlessly are promoting scientific malpractice.
There are exceptions to this statement, as there are to all generalizations. But
we believe we are usually better served by showing, rather than hiding, our da-
ta. 

ELEMENT: point(position(exposure*brainweight))

SCALE: log(dim(2))
COORD: exp(dim(2))
ELEMENT: point(position(summary.mean(exposure*brainweight)))
ELEMENT: interval(position(region.spread.sd(exposure*brainweight)), 

color(color.red)) 

Figure 9.33  Cloud and error bars on raw scale

After looking at Figure 9.33, a persistent sceptic might argue that ele-
phants and humans are outliers in this dataset, so we might as well exclude
them and then restrict our range. This would solve our data-clipping problem
in Figure 9.32 but would also be wrong. Figure 9.34 shows normal curves su-
perimposed on dot plots of these data in the logged metric. The value most out-
lying from its group is the brain weight of the smallest animal (.14 gm); the
lesser short-tailed shrew sits at the far left end of the dot density for the group
corresponding to a value of exposure equal to 2. The brain weights of the el-
ephants (at the right end of the scale in the group with an exposure value equal
to 5) are not remarkable relative to their exposure cohorts. Logging often has
this effect. Values that we suspect are outliers in the raw metric are not neces-
sarily outliers in the transformed metric. The problem is not with our measure-
ments; it is with the way we think about scales. 
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COORD: transpose()
SCALE: log(dim(1), base(10))
ELEMENT: point.dodge(position(bin.dot(exposure*brainweight)))
ELEMENT: line(position(smooth.density.normal(exposure*brainweight))

Figure 9.34  Transformed densities

9.1.8.2  Lensing and Fisheye Transformations

The fish transformation expands a graphic away from an arbitrary locus, usu-
ally the center of the frame or viewing area. This class of transformations has
received a lot of attention from computer interface designers because of the
need to make the best use of limited screen “real estate” when navigating
through dense networks and graphical browsers (Furnas, 1986; Sarkar and
Brown, 1994; Leung and Apperly, 1994). Smooth versions of fisheye func-
tions look like the transpose of the graphics in Figure 6.12. This is because we
wish to perform the opposite of those transformations: instead of lengthening
the periphery and shortening the center so as not to be distracted by extreme
variation, we wish to push the center toward the periphery in order to see more
variation in the center. A broad class of functions will serve; one example is
the logit cumulative distribution function f(x) = ex / (1 + ex). We can improve
speed by using the function

fish:   

which allows us to use bit-shifts in integer arithmetic instead of exponentiat-
ing floating-point numbers.

Figure 9.35 shows how to make our dinosaur put on weight by a simple
transformation. The important feature to notice is the independence of the
transformation on x and y. The center of the dinosaur is pushed to the edges of
a square, not a circle.
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COORD: fisheye()
ELEMENT: edge(position(link.mst(x*y)))

Figure 9.35  Fisheye dinosaur

Figure 9.36 shows a fisheye transformation of a circular Gaussian scatter-
plot cloud with a message embedded in the center (patterned after a dataset
constructed by David Coleman). This transformation is especially suited for
dynamic displays where the center of magnification (a constant subtracted
from x before the transformation) can be moved with a mouse or joystick.
Carpendale, Cowperthwaite, and Fracchia (1997) discuss applications for 3D
graphics.

ELEMENT: point(position(x*y))

COORD: fisheye()
ELEMENT: point(position(x*y))

Figure 9.36  Fisheye transformation
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9Coordinates9.1  Transformations of the Plane

9.1.9  Warpings

Warpings involve the continuous planar transformation

(x, y) #&�f(x, y), g(x, y)) = (u, v)

This introduces shear into the general bending transformation, because u and
v both depend on x and y. Many global and local transformations fit this mod-
el, but we will focus on two simple examples that reflect what cartographers
sometimes call rubber sheeting.

9.1.9.1  Parametric Warping

The left two panels of Figure 9.37 are reproduced from D’Arcy Thompson’s
On Growth and Form (Thompson, 1942, page 1064). As Gould (1980) ex-
plains, Thompson attempted to offer an alternative to Darwin’s principle of
natural selection by attributing morphology mainly to the effect of physical
forces on biomatter. This idea led Thompson to look for mathematical simi-
larities in the shapes of organisms — simple transformations that could relate
one biological shape to another. John O'Connor and Edmund Robertson illus-
trate Thompson’s ideas in the MacTutor archive at the School of Mathematics
and Statistics, University of St. Andrews. They propose a simple quadratic
map for most of Thompson’s transformations: 

x # a1x + a2y + a3x2 + a4y2 + a5xy = u

y # b1x + b2y + b3x2 + b4y2 + b5xy = v

Figure 9.37 shows Thompson’s drawing of a different warping transformation
of the species Diodon (pufferfish) to the species Orthagoriscus (sunfish). He
describes the transformation as follows: 

I have deformed its vertical coordinates into a system of con-
centric circles and its horizontal coordinates into a system of
curves which, approximately and provisionally, are made to
resemble a system of hyperbolas.

In the rightmost panel of the figure, we have implemented Thompson’s trans-
formation on his drawing of the pufferfish. The result is not far from Thomp-
son’s drawing of the sunfish superimposed on the same grid. Other than the
tail, the fit is quite close. Except for the size. We need to do a rather large di-
lation of the pufferfish to get a fish weighing several thousand pounds.
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COORD: circular.hyperbolic()
ELEMENT: point(position(x*y))

Figure 9.37  Thompson’s growth transformation (Diodon left, Orthagoriscus 
middle, transformed Diodon right)

9.1.9.2  Dynamic Time Warping

Suppose we have two sequences,

  and   ,

each representing an acoustic measurement of a non-repeating segment of a
bird song. Both songs are produced by the same bird, but the two series are a
different length. How do we compute a measure of similarity between the two
series that allows for local stretching of the time scale (by repeating indices)
in order to match the shapes of the two series as closely as possible? 

Sakoe and Chiba (1978) devised one solution to this problem. First, based
on some distance function, compute a distance matrix 

Then compute a path through D from  to  such that
the sum of the path weights  is minimum and the path is monotoni-
cally increasing. Because the algorithm is best implemented through dynamic
programming (recursively computing the path at each point), the procedure is
called dynamic time warping (DTW). Sankoff and Kruskal (1983) cover ap-
plications of this algorithm to a variety of areas. Zhang and Lu (2004) review
applications to shape analysis. Ratanamahatana and Keogh (2004) discuss ap-
plications in data mining.
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Figure 9.38 shows an example. The data (Legrand, 2002), represent a for-
mant for the word “right.” A formant is a resonant region of a spectrum asso-
ciated with a wind instrument or voice. The red trace is the formant for the
word spoken slowly and the blue is for the word spoken rapidly. Computing a
measure of agreement based on dynamic time warping allows both traces to
be recognized as the same word. An ordinary cross-correlation would fail to
match similar segments of the curves.

ELEMENT: line(position(x*y))

COORD: dtw()
ELEMENT: line(position(x*y))

Figure 9.38  Dynamic time warping of formant

9.1.9.3  Locally Parametric Warping

Because of terrain, congestion, road conditions, and other factors, the set of all
points at the end of one hour’s travel time from a point located on a road map
does not lie on a circle centered at that point on the map. Tobler (1993, 1997)
proposed to analyze travel-time geometry as a two-manifold of variable cur-
vature. From this analysis, one could construct polar geodesic maps showing
isochrones (contours of equal travel time) centered on a selected location. 

Tobler collected data on a number of measures for this type of spatial
modeling, including road travel times, airline travel costs, parcel shipment
costs, and estimates of distances by individuals. Tobler’s non-Euclidean spa-
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tial methodology brings to mind Saul Steinberg’s famous New Yorker cover
that shows a native New Yorker’s parochial view of the United States. Stein-
berg’s map compresses almost all of the country west of the Hudson river.

Figure 9.39 contains a map for airline travel costs using a similar concept
but different methodology from Tobler’s. This map is not centered at any lo-
cation, but instead reflects the distortion of the plane due to variations in fares
within all pairs of cities. It is designed so that the airline fare can be approxi-
mated by computing a straight-line distance between any two points.

To make this graphic, we began by visiting several travel sites on the In-
ternet to collect the cheapest round-trip airline fares on September 1, 1998 for
all pairs of 36 continental US cities. We then used nonmetric multidimensional
scaling to compute a configuration of cities embedded in a two-dimensional
Euclidean space. The stress for this solution was .19 and the Shepard diagram
revealed a roughly linear relation between prices in dollars and distances be-
tween cities in the MDS solution. If the airline fares had been perfectly pro-
portional to distances between cities, then the stress would have been zero and
the MDS solution would have been similarity transformable (see Figure 9.1)
to a map of the US on the Euclidean plane.

Next, we used Procrustes rotation (Borg and Groenen, 1997) to align the
MDS configuration as closely as possible with the geographic map. The Pro-
crustes rotation produces a similarity transformation (translation, rotation, re-
flection, dilation) minimizing the sum of the squared differences between the
transformed source and target coordinates. This computation produced a set of
airline-fare-spaced city “knots” that we could use to pin down the distortions
in a map. The following equation shows the transformation we used. Let 
be the longitude of the ith city (i = 1, ... , 36) and let  be its latitude. Let ri
be the coordinate of the ith city on the first rotated MDS dimension and let si
be its coordinate on the second rotated MDS dimension. For any point at co-
ordinates (x, y) on the geographic plane, we computed new coordinates (u, v)
with an inverse distance-weighted average of the displacements of the cities:

  ,  where

The summation is taken over the 36 cities. The parameter  is a small value
chosen to prevent division by zero when a point is located at one of the cities.

 The map reveals that Midwesterners pay relatively higher fares to get out
of town. The “distance” from New York to Los Angeles is roughly the same
as that from Duluth to Los Angeles. And, cruel fate, Midwesterners have to
sacrifice their first-born (relatively speaking) to get to Florida! For recent work
on flexible warping algorithms for choropleth maps, see Keim, North, and
Panse (2004) and Gastner and Newman (2004).
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DATA: longitude, latitude = map(source("US states"))
COORD: warp(r(), s())
ELEMENT: polygon(position(longitude*latitude))

Figure 9.39 US Airline Pricing Map

9.2 Projections onto the Plane
So far, we have examined coordinate transformations that help to enhance the
perception of patterns and structures in two dimensions. Now we are going to
look at transformations that allow us to explore 3D and higher-dimensional
worlds through a 2D window. This enterprise is doomed from the start. If we
attempt to view pairs of dimensions separately, we will have trouble detecting
second-order or higher relations between pairs not in the same view. If we try
to find linear combinations of dimensions that reveal structures, we will have
difficulty orienting ourselves in the full dimensional space. And, if we use
some nonlinear projection or compression method to characterize an entire
structure, we risk distorting our view enough to prevent accurate interpreta-
tion. In short, 2D windows into higher-dimensional spaces can give us a
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glimpse into another world but may either confuse us with apparent complex-
ity so that we overlook global coherence or mislead us with apparent simplic-
ity that leads us to incorrect global inferences. The complexity of representing
structures in high-dimensional spaces has been called the curse of dimension-
ality (Bellman, 1961). This curse does not prevent us from devising methods
for circumventing it in specific instances, however. We will begin with the 3D
issues and then move to higher dimensions. 

9.2.1  Perspective Projections

We saw in Figure 9.13 how planar linear projection works. Figure 9.40 illus-
trates linear projection of a 3D object onto a plane. Rogers and Adams (1990)
show how to construct the projection matrix from the coordinates of the pro-
jection point, projection plane, and object. This is the perspective planar pro-
jection used in computer graphics libraries. It is not exactly the model for
realizing an image on our retina and definitely not the model for how images
are processed in our visual cortex. But it does provide a result good enough to
allow our visual system to use its tricks to reconstruct a 3D scene from a pic-
ture. Pinker (1997) explains these tricks to non-psychologists in a beautiful
work of general science writing.  

Figure 9.40  Perspective projection onto plane

Figure 9.41 contains a perspective projection of a 3D compound object.
The points, axes, grid lines, and text are all put through the same projection.
These are the countries data we used in Chapter 1. We have plotted annual per-
capita health care expenditures in adjusted US dollars against death and birth
rates for selected countries. The heaviest investment in health care is in those
countries with low birth and death rates. In general, countries with lower death
rates (except for the lowest) tend to have heavier investments in health care.
As birth rates increase, however, per capita investment declines.
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COORD: project(matrix(..))
ELEMENT: point(position(birth*death*health), shape(shape.cube))

Figure 9.41  Health expenditures by birth and death rates (enhanced)

Why do we display data in 3D? As we will argue in Chapter 10, there is
often an effective 2D alternative to a specific 3D display. Unfortunately, 3D
graphics often elicit more perceptual illusions and make it difficult to use scale
look-up in perspective to recover data values. Nevertheless, 3D graphics can
be useful when we encounter configurality among variables (Meehl, 1950).
While it is possible to define configurality for some functions using partial de-
rivatives or parallelism of level-curves, it is perhaps simpler and more general
to describe it in ordinary language and to illustrate it with these data. For three
variables x, y, and z, configurality occurs when the way z changes across val-
ues of y at some level of x is different from the way z changes across values of
y at some other level of x. There is a duality in this definition. Configurality
also implies that the way z changes across values of x at some level of y is dif-
ferent from the way z changes across values of x at some other level of y. Stat-
isticians often describe this condition as an interaction between y and x with
respect to z, but we mean something more general (which is why we used the
more general word “way” rather than “rate”). My definition of configurality
assumes that an interaction cannot be removed by the coordinate transforma-
tions in this chapter; if it could, we could do a transformation and resort to a
2D plot instead (see Abelson, 1995).
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Consider Figure 9.42. If there were no configurality among health expen-
ditures (z), death rates (y), and birth rates (x), then this figure would be an ad-
equate representation of the relation between health expenditures and death
and birth rates. We could look at the left panel, for example, and conclude that
health expenditures decline precipitously with increasing birth rate regardless
of death rate. Similarly, we could conclude that health expenditures hit a peak
for death rates slightly less than 10 per 100,000 regardless of birth rates. Com-
paring Figure 9.41 to Figure 9.42 reveals that these descriptions are mislead-
ing, however. The high health expenditures for low death rate countries are
spread across a large range of birth rates, for example. 

DATA: b = "Birth Rate"
DATA: d = "Death Rate"
ELEMENT: point(position((birth/b + death/d)*health))

Figure 9.42  Health expenditures by birth and death rates

We can graphically model configurality by blocking (or stratifying) on
the x or y variables so that we can see the z variable at various levels of one or
the other. This is shown in Figure 9.43. We cut the distribution on birth rate
into three equal intervals and then plotted health expenditures against death
rate within each interval. Now the change in the relationship is clearly appar-
ent. We could construct a similar plot by stratifying on death rate and plotting
health expenditures against birth rate. Becker, Cleveland, and Shyu (1996) de-
veloped the trellis display to produce such plots automatically.
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TRANS: birthgroup = cut(birth, 3)
ELEMENT: point(position(death*health*birthgroup))

Figure 9.43  Health expenditures jointly by birth and death rate

We will discuss faceted displays like Figure 9.42 and Figure 9.43 in Chap-
ter 11. These can be effective for dealing with configurality. And they facilitate
scale look-up to help recover data values. There is some price we pay for this
stratification, however. First of all, we may have too few cases left in some of
the strata, particularly if we stratify on more than one variable. Cleveland
(1995) has a clever way of dealing with this problem. He calls it shingling,
which is cutting the distribution into overlapping groups. This provides more
cases in each cell and provides more continuity in the changes across cells. 

We are left with a second, more difficult problem, however. Faceted dis-
plays are designed to answer one type of question, and 3D displays another.
To illustrate this problem, we need to distinguish variable world from object
world. (We might say dimension world rather than variable world, but we will
assume that there is one variable per dimension in this discussion). Variable
world requires variable descriptions, e.g., “health expenditures tend to de-
crease with increasing birth rate.” Object world requires object descriptions,
e.g., “the points spiral in a ram’s horn pattern from low and thin in the rear of
the plot to high and thick in the foreground.” Engineers alternate between
these two worlds when they speak of rotating an object or rotating axes. Math-
ematicians alternate between these two worlds when they describe a function
either as z = x2 – y2 or as a saddle. 

We believe that if we have a three-variable system, we are better served
by displaying the data in 3D when we are interested in object world and we do
better with facets when we are interested in variable world. The ram’s horn
that we see in Figure 9.41 is not readily discernible in any faceted plot of these
data. Furthermore, this ram’s horn is memorable as a single object. We would
expect that, following results in Wilkinson and McConathy (1990), we would
recognize and recall configural relationships in 3D plots better than we would
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in faceted displays because they more closely fit the way we deal with objects
in the physical world. However, we would decode values more accurately
when presented with a faceted graphic. There are limits, however. Cleveland
(personal communication) has stated that effective 3D graphics require coher-
ence. If a geometric graphic does not cohere in a single recognizable thing, 3D
representation won’t help us much. There are enough problems when parts of
objects remain hidden behind other parts in a 3D plot. If points, lines, and oth-
er primitives do not cohere, we are better served by a faceted display.

Other questions: How are trellis displays related to linear projections?
Would it make sense to facet a display with nonorthogonal or nonlinear pro-
jections? There is one sleight-of-hand we played in Figure 9.41. What did we
do and does it help or hurt our perception of the structure? Hint: look at the
size of the boxes.

9.2.2  Stereo Pairs

Our minds perceive depth through a variety of strategies. Illumination, tex-
ture, occlusion, contiguity, surface color, and other features of a scene all pro-
vide clues to the 3D orientation of objects in that scene. One important optical
mechanism for depth measurement is called parallax. If we observe an object
in space from two different points of view, then we have a triangle whose base
lies between the observation points and whose apex lies at the object. Figure
9.44 shows two examples. The baseline distance and the angles at each end of
the baseline are sufficient information to compute the dotted line perpendicu-
lar to the baseline in the figure. This technique has been used in astronomy and
surveying for centuries, and it is not surprising that it should play a role in the
visual system through the physical separation and orientation of the eyes. 

In order to use parallax to elicit a sense of depth from a 2D scene, we have
to present a different perspective projection to each eye separately so that the
parallax effect will resemble that found in viewing a real 3D scene. In other
words, the same object must be projected to different coordinates on each ret-
ina as it is in Figure 9.44. Sir Charles Wheatstone, the English physicist, found
a way to do this in 1938. His stereoscope projected a separate image to each
eye through the use of mirrors. Each image was produced from a photograph
taken with a camera located at one of two different positions in front of a
scene. The stereoscope artificially reproduced the optical projection that takes
place when we view a natural scene. The inexpensive contemporary equiva-
lent of Wheatstone’s stereoscope is the plastic ViewMaster stereo slide viewer.
ISSCO, a mainframe technical graphics company, used ViewMasters to
present some spectacular visualizations in the early 1980s before virtual real-
ity technology was generally available. 
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Figure 9.44  Parallax

If we do not have a stereoscope, we can project a separate 2D image on
each retina by crossing our eyes. To see how this works, we begin with Figure
9.45. The left panel shows two eyes aimed at a common focal point represent-
ed by a red dot. We have drawn an arrow from the center of the retina to the
focal point. Two objects, a spade and a heart, are viewed by the eyes. We have
drawn dotted lines from these objects to the retinas in order to indicate where
they are projected onto the retinal surface. 

The blue eye in the middle represents the cyclopean eye (named after Ul-
ysses’ one-eyed nemesis). This is not a real eye, but instead a schematic rep-
resentation of the result of the visual system’s merging separate patterns of
retinal stimulation into a common perceptual image. Because spade and heart
are projected to similar coordinates on each separate retina, they coalesce in
the cyclopean image and we see them as single objects. The arrows below the
eyes show how the spade and heart are merged.

The right panel of Figure 9.45 shows the same eyes presented with a sin-
gle heart closer than the point of focus. This time, the object projects to a dif-
ferent part of each separate retina. The visual system cannot merge the sources
of stimulation into a single cyclopean image, so we see double in this circum-
stance. You can verify this by focusing on your right index finger held at arm’s
length while you hold your left index finger at half the distance. The left finger
doubles. If you switch your gaze to the foreground, the finger in the back-
ground doubles.

If we do the same thing with a double graphic that looks like Figure 9.46,
then we get a double of doubles. If we focus our gaze at the correct distance,
and hold the page at half that distance, then the doubling of doubles overlaps
in the center and we see a single middle composite image and two surrounding
separate images. This means that the central overlapping image is compiled
from both graphics, mimicking the result that happens when we look at a real
scene at the focused depth. By plotting each graphic from a different perspec-
tive (by a few degrees), we trick our visual system into blending them stereo-
scopically, as if they were real projections on each eye.
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Figure 9.45  Cyclopean vision

Not everyone can view these graphics without mechanical assistance. We
find it easiest to place the page two feet from our eyes (not two eyes from our
feet), and force the image to double by focusing on our index finger held about
8 inches from our eyes. Then we move the index finger away while carefully
transferring our concentration to the central composite image. Remember to
do this only with Figure 9.46. If you focus on Figure 9.45 by mistake, you will
permanently cross your eyes and lose your driving privileges (except in Bos-
ton). Actually, the eye-crossing lockup is a myth, but if you gaze too long on
Figure 9.45, you may turn into a post-modernist.

Three-dimensional virtual reality systems use mechanical stereoscopic
devices based on cathode-ray tubes or liquid-crystal displays to present a sep-
arate image to each retina. Goggles with separate displays for each eye can
present images controlled by separate processors. The most intense psycho-
logical experience, however, is offered by the CAVE immersive environment
(Cruz-Neira, Sandin, and DeFanti, 1993). This apparatus consists of separate
color projectors aimed at the walls of a room large enough to hold three or four
people. Each person wears polarizing glasses controlled by the same comput-
ers running the projectors. The perspective images are switched at a high
enough rate to blend in a single perception, like a movie. Because the environ-
ment is immersive, allowing other people to move about the room, it provides
the highest level of virtual reality currently obtainable. Recent advances in
desktop computers and LCD color projector technology are bringing this ca-
pability that once cost over a million dollars to smaller laboratories and homes.
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COORD: project(dim(1, 2, 3), matrix(..))
ELEMENT: point(position(birth*death*health), shape(shape.cube))

COORD: project(dim(1, 2, 3), matrix(..))
ELEMENT: point(position(birth*death*health), shape(shape.cube))

Figure 9.46  Stereo pair

9.2.3  Triangular (Barycentric) Coordinates
If three variables are constrained to sum to a constant, the set of all possi-

ble values they may take lies on a plane. If all these values are constrained to
be positive, they are bounded by a triangle. Figure 9.47 shows an example of
this triangle. Triangular coordinates are especially useful for representing
mixtures of three variables. Perhaps the best known application is the CIE col-
or diagram which shows perceptible mixtures of the three color primaries red,
green, and blue (Levine, 2000). Other interesting applications of barycentric
coordinates are discussed in Mosteller and Tukey (1968).

A formula for computing this projection is

The tangent function is on 60 degrees, the angle of the vertices of an equilat-
eral triangle. This triangle is shown tilted in Figure 9.47. The denominator of
the expression (x + y + z) controls the scaling of the triangle.
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Figure 9.47  Triangular coordinate plane

Nielsen et al. (1973), cited in Andrews and Herzberg (1985), reported percent-
ages of three components — sand, silt, and clay — in core borings from 20
different plots in a soil field. Figure 9.48 shows a triangular coordinate plot of
their data. To read the values on a given axis, choose the grid lines that are par-
allel to the axis that shares an apex at the zero end of the axis. For example,
the silt axis grid lines are horizontal and the clay grid lines tilt 30 degrees to
the right. 

COORD: triangular(dim(1, 2, 3, 4))
ELEMENT: point(position(sand*silt*clay), color.hue(plot))

Figure 9.48  Triangular coordinates plot of soil samples
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We can see that most of the samples contain fairly high percentages of
clay and lower percentages of silt and sand. Furthermore, the plots with lower
index numbers tend to have higher concentrations of clay and somewhat lower
percentages of sand. 

Triangular coordinates are especially important for displaying the results
of mixtures experiments. When engineers seek to find optimal combinations
of three ingredients (on some price, quality, or performance criterion), a trian-
gular coordinate plot provides a convenient summary of the model they fit to
predict the criterion. Cornell (1990) presents the results of an experiment de-
signed to measure the suppression of the population of mites on strawberry
plants after spraying with a mixture of three different pesticides. The surface
plotted with contours represents the seasonal average mite population per leaf
after a period of spraying. Cornell fit these numbers with a variety of paramet-
ric models, all of which fairly closely resemble the nonparametric fit in Figure
9.49.

Notice that the data points were chosen to provide support for estimating
parameter values of the fitted function. The contours of the fitted function fol-
low a valley running from the lower right apex to the middle of the x1 axis.
Cornell selected more data points along this valley in anticipation of finding a
surface roughly resembling this form. Since collecting data at each mixture
point can be costly, careful planning and iterated experimentation is needed to
converge on a model that identifies the optimal combination of ingredients. 

COORD: triangular(dim(1, 2, 3, 4))
ELEMENT: point(position(x1*x2*x3))
ELEMENT: contour(position(smooth.quadratic.cauchy(x1*x2*x3*mites)), 

color.hue())

Figure 9.49  Contours in triangular coordinates
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9.2.4  Map Projections

This class of mappings involves the continuous transformation

(x, y, z, ...) #&�f(x, y, z,...), g(x, y, z,...)) = (u, v)

It includes everything from linear projections of the hemisphere onto the plane
to nonlinear and piecewise projections of the whole globe onto the plane. 

Map projections have a long history in cartography, beyond the scope of
this book (see Maling, 1992; Snyder, 1989). Spherical projections are basic to
non-Euclidean geometry, another area beyond the scope of this book. Map-
ping the sphere to the plane has graphical applications beyond representing the
earth in a 2D map. Map projections are useful for representing graphically any
statistical distribution on the sphere.

Most cartographic projections can be classified according to their projec-
tive surface: planes, cylinders, or cones. Figure 9.50 shows three normal pla-
nar projections of the Eastern hemisphere. we have projected latitudes
between –75 and 75 degrees and longitudes from 0 to 180 degrees. The light-
ray model is realistic, but there is one small anomaly that you should be able
to detect even if you are not a geographer. Hint: “Wrong Way” Corrigan would
have liked our map. Double hint: Australians are used to being down-under,
but not backwards. We needed to do this to maintain the physical model.

The gnomonic projection assumes a light source located at the center of
the sphere and a projection plane tangent to the surface (or parallel to this
plane) at a selected point on the sphere. It can project only a hemisphere. As
the figure shows, area distortions are severe at the poles. Longitudes project to
straight lines and latitudes (except the Equator) to curves. The stereographic
projection places the light source on the surface of the globe and the projection
plane tangent to the point on the opposite side of the globe. This important
geometric projection maps the whole sphere (except for one point) to the
plane. It figures in geometric theory as well as geography (Stillwell, 1992).
The orthographic projection places the light source at infinity. This projec-
tion produces a result that resembles the view of the Earth from the moon. All
three of these planar projections are a form of perspective projection (see Sec-
tion 9.2.1). 

Figure 9.51 shows cylindrical and conical projections. By bending the
plane, these methods help to represent more of the global surface and, in some
cases, distort area less. Normal cylindrical methods project longitudes and lat-
itudes to straight lines. The classic Mercator cylindrical projection is especial-
ly useful for navigation because compass bearings plot as straight line
segments on the plane. Standard nautical maps still use the Mercator projec-
tion. The conical methods are most suited for regional maps. In the normal
conical projections, longitudes plot as oblique lines and latitudes as straight
lines or curves.



9.2  Projections onto the Plane 239

Figure 9.50  Planar map projections
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Figure 9.51  Cylindrical and conical map projections
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9.2.4.1  Global Maps

Figure 9.52 shows several global map projections. The Peters, Miller, and
Mercator projections are recognizable as cylindrical because the longitudes
are parallel. The Peters projection favors the Southern Hemisphere in a polit-
ically motivated attempt to counter the influence of centuries of maps posi-
tioned transversely on the Northern Hemisphere. The Robinson projection
(Robinson, 1974) achieves more balance. Unlike the others, the Robinson pro-
jection is not the result of a single trigonometric function; it is a smooth piece-
wise blending. Robinson has been a projection used by The National
Geographic in many of its maps because it favors the temperate zones without
discriminating against the Southern Hemisphere. Sadly, the Robinson projec-
tion discriminates against penguins.

We have included axes on all the maps to reveal global distortions. Instead
of repeating the specification four times, we have substituted <projection> for
the projection name in the specification.

DATA: longitude, latitude = map(source("World"))
COORD: project.<projection>()
ELEMENT: polygon(position(longitude*latitude))

Figure 9.52  Global map projections
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9.2.4.2  Local Maps

Local maps suffer less from global distortion. Figure 9.53 illustrates several.

DATA: longitude, latitude = map(source("US states"))
COORD: project.<projection>()
ELEMENT: polygon(position(longitude*latitude))

Figure 9.53 Map projections of US
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9.2.4.3  Statistical Graphics on the Sphere

Map projections transform the geometry of graphics. Except for symbols,
which maintain their shape regardless of coordinate systems, graphic shapes
are modified by coordinate transformations. Figure 9.54 shows an example.
The data were taken from a compilation of worldwide carbon and nitrogen soil
levels for more than 3,500 scattered sites. These data were compiled by P.J.
Zinke and A.G. Stangenberger of the Department of Forestry and Resource
Management at the University of California, Berkeley. The full dataset is
available at the US Carbon Dioxide Information Analysis Center (CDIAC)
site on the World Wide Web (cdiac.esd.ornl.gov).

We logged the carbon values because they are positively skewed in the da-
ta. They appeared to be normally distributed after logging. We used log base
2 for two reasons: the scale is easily read as doublings and the range of colors
is better covered on a round log2 scale than on a round log10 scale. The high
carbon soil sites in the Pacific Northwest and in Florida are easily identified.
They are twice as high as the average levels in the rest of the country.

The sampling grid for these data was not uniform. We have used a polygon
graphic to represent the carbon levels in bins delineated by latitude and longi-
tude boundaries. The stereographic spherical projection changes the shapes of
these bins from spherical rectangles to planar arcs. This is not a cartographic
map. It is a statistical distribution measured in geographic coordinates. Unfor-
tunately, rectangular bins do not represent equal sampling areas on the surface
of a sphere. Carr et al. (1992) comment on the usefulness of hexagonal bins
for this purpose. 

TRANS: carbon = log.2(carbon + 1)
COORD: project.stereo()
ELEMENT: polygon(position(bin.rect(lon*lat)), color.hue(carbon))

Figure 9.54 Tiles of soil samples
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9.2.5  Higher-Dimensional Projections

Projections to the plane in higher dimensions present more severe problems
than we have already encountered. We tend to encounter both fragmentation
(inability to keep adjacent objects near each other on the plane) and distortion
(preserving lines, circles, angles, etc.). We will discuss projections from high-
dimensional spaces in more detail in Section 9.4

9.3 3D Coordinate Systems
So far, we have considered 2D, 3D, and higher-dimensional objects. We have
visualized all these objects through the plane, sometimes directly and some-
times through projections. Some higher-dimensional coordinate systems are
interesting in themselves, apart from their projected representations. We have
already seen some of these — for example, the spherical coordinates used for
mapping the globe.

The coordinate systems in this section resemble polar and certain other
non-rectangular 2D coordinates. In order for us to visualize objects in these
systems, we will have to use 2D perspective projections, but this is only be-
cause they are presented in a book. Virtual reality systems — especially im-
mersive environments — could be used to represent these structures in a 3D
setting.

The focus of our interest in this section is thus on non-rectangular 3D co-
ordinates, including spherical, triangular, and cylindrical. As the examples
will show, these coordinates are useful for applications that involve both spa-
tial and non-spatial statistics. While geography has motivated the most popu-
lar applications, other theoretical structures are best represented in these non-
rectangular coordinate systems.

9.3.1  Spherical Coordinates
If (u, v, w) represents the spherical coordinates ( ) of a point, then a
spherical coordinate function S(u, v, w) #&�x, y, z) corresponds to the case

, ,  where , , and
. Spherical coordinates are useful for representing points on a

sphere when � is a constant, and bundles of vectors at a common origin when
it is not. 

Contouring on the sphere presents special problems because distances
must be calculated on the surface rather than in rectangular coordinates. There
are technical problems with the drawing of other graphics as well. Figure 9.55
shows an example of tiling the sphere using geographic data. McNish (1948)
reports magnetic declinations for 22 locations on the globe. We have used in-
verse distance smoothing on the surface of the sphere to represent the average
declination at different areas on the globe. The spherical.phitheta() coordinate
function takes two arguments only: � and D. The radius is assumed to be constant.

� D �� �

u �= v D= w �= x � � D'�!!��= y � � D!��!��=
z � �'�!=
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This function is similar to the way we handled polar coordinates in Section 9.1.6.1
when only one argument is used to make a pie chart. Spherical coordinates for
three arguments are handled with spherical().

DATA: longitude, latitude = map(source("World"))
COORD: spherical.phitheta(p(), t())
ELEMENT: polygon(position(smooth.mean.cauchy(lon*lat*declination)), 

color.hue())
ELEMENT: polygon(position(longitude*latitude))

Figure 9.55  Spherical distribution of magnetic declination

9.3.2  Triangular-Rectangular Coordinates
Figure 9.56 shows a 3D triangular coordinate plot whose first three dimen-
sions are embedded in 2D triangular coordinates and whose fourth dimension
(the vertical axis) is represented by a rectangular coordinate system. This rep-
resentation allows us to show a surface as a function of mixtures of three in-
gredients. This type of surface was represented by contours in Figure 9.49. 

We need a different coordinate function here, however, because the graph-
ic involves a projection from a 4D space to a 3D. The tri4() function computes
this projection by computing triangular coordinates on the first three dimen-
sions and rectangular on the fourth. We have used the soil data from Figure
9.48 and let the fourth axis represent the depth of the core samples. The plot
shows that there is a higher percentage of silt and lower percentage of sand to-
ward the surface, and there is a higher percentage of sand and lower percent-
age of silt deeper down.
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COORD: rect(dim(4), triangular(dim(1, 2, 3)))
ELEMENT: point(position(sand*silt*clay*depth), color.hue(plot))
ELEMENT: surface(position(smooth.mean.cauchy(sand*silt*clay*depth)))

Figure 9.56  3D triangular/rectangular coordinates

9.3.3  Cylindrical Coordinates

If (u,v,w) represents the cylindrical coordinates ( ) of a point, then a
spherical coordinate function S(u, v, w) #&�x, y, z) corresponds to the case

, , , where , , and . Cylin-
drical coordinates are useful for representing cylinders, spirals, and cones. 

Krumhansl (1979) analyzed the perception of musical pitch in a tonal con-
text. She presented her multidimensional scaling results in a 3D graphic show-
ing the configuration of musical tones lying on the surface of a cone. Figure
9.57 shows the specification and graphic based on her model.
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u �= v D= w N= x � D'�!= y � D!��= z N=
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COORD: cylindrical(dim(1, 2, 3))
ELEMENT: point(position(pitch*tone*chroma), label(note),

shape(shape.sphere), texture(texture.silver))
ELEMENT: surface(position(smooth.linear(pitch*tone*chroma)),

transparency(.8), texture(texture.silk), color(color.mauve)

Figure 9.57  Cylindrical plot of pitch perception (courtesy of H.F. Wessler)

We have used Krumhansl’s data to illustrate the usefulness of a cylindrical
coordinate representation for certain configurations. The linear smooth based
on a single parameter predicts her results quite well. An equivalent parameter-
ization would be to think of her tone-pitch model as a modular surface. The
modulus of a complex number is r = |z|, the length of z in its vector represen-
tation. In this form, her surface is simply f(z) = |z|.

Krumhansl’s original article contains a simple line drawing that we think
is superior to the representation in Figure 9.57. The original figure shows a
black-and-white line-drawing outline of the cone with a vertical cut (like an
open shirt collar) to highlight the depth of the cone and the fact that the notes
do not span a full 360 degrees in one octave. This is probably a case where re-
alism in scientific visualization contributes little to the comprehension of the
graphical information, as Becker and Cleveland (1991) have argued.
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9.4 High-Dimensional Spaces
The methods we use to represent 2D and 3D spaces graphically do not gener-
alize well to higher dimensions. The curse of dimensionality introduces pecu-
liar problems. Near-neighbor sets of data points are relatively compact in 2D
but not generally compact in high-dimensional spaces. Search algorithms that
work efficiently in 2D or 3D become intractable in high dimensions. Hastie et
al. (2001) discuss these problems further.

Three general approaches to representing high-dimensional data graphi-
cally have been taken in the visualization and data mining literature. The first
is linear and nonlinear projection onto a 2D space. The second is representa-
tion by sets of continuous functions of the data. The third is representation
through recursive partitioning, which produces nested coordinate spaces.

9.4.1  Projection

One scheme is to employ a linear or nonlinear projection from p-dimensions
to a few. This may cause loss of information because a projection onto a sub-
space is many-to-one. Also, projection is most suitable for displaying points
or {V, E} graphs. It is less suitable for many other geometric chart types. Nev-
ertheless, some low-dimensional projections have been designed to capture
structures contained in subspaces, such as manifolds, simplices, or clusters. 

Linear projection from high-dimensional spaces into low-dimensional
spaces has a long history in many fields, such as psychology, biology, and as-
tronomy. Despite the differences in names for these methods in various fields,
they all depend on the singular decomposition of a real rectangular matrix of
the form X = UDVT. The columns of UD are generally called the principal
components of X. Plotting the first two or three principle components gives
us the linear projection we seek. If the first few singular values (diagonal ele-
ments of D) are nonzero and the rest near zero, then we conclude that the ma-
jor variation in the high-dimensional space lies on a hyperplane that we have
captured in the projection. Examples can be seen in Section 9.1.3.2, and Sec-
tion 16.5.4.2.

Several approaches to nonlinear projection have been taken. The first is to
relax global structure in order to reveal local. Banchoff (1996) summarizes a
variety of applications involving the visualization of higher-dimensional geo-
metric objects. Shepard and Carroll (1966) present a numerical relaxation
method for representing on the plane nonlinear configurations of points in
higher dimensions. 

A second approach is to compute interesting 2D projections and present
them singly or jointly. Friedman and Stuetzle (1981) and Friedman (1987) de-
veloped loss functions for such problems and a method for minimizing them
called projection pursuit. Their algorithm has been used, for example, to lo-
cate configurations of points bounded by a triangle when projected to a plane.
Asimov (1985) and Buja and Asimov (1986) developed a method for comput-



9.4  High-Dimensional Spaces 249

ing a series of 2D projections that follow a continuous path through a higher-
dimensional space. Animating these projections with a video player in a
Grand Tour allows a viewer to perceive aspects of higher dimensional struc-
ture.

A third approach focuses on identifying low-dimensional manifolds em-
bedded in high-dimensional space. A simple example would be a surface that
spirals (like a Swiss roll) or twists (like DNA). Such manifolds are not un-
wrappable by global warpings or nonlinear projections. By using nearest-
neighbor graphs or locally-weighted distance functions, however, we can relax
the distortions produced by large distances in a configuration of points. Tenen-
baum et al. (2000) devised an iterative method of this type. Roweis and Saul
(2000) developed a locally linear approximation for this purpose. He and
Niyogi (2002) implemented an eigendecomposition of the Laplacian matrix
derived from a k-nearest neighbor graph on the points.

Probably the most widely used nonlinear projection method is multidi-
mensional scaling (MDS). Figure 9.58 shows a multidimensional scaling of
the world countries data. We have selected five variables: birth rate, death rate,
plus per-capita annual investment in education, health care, and military.
Through the multidimensional scaling projection, we are collapsing a five-di-
mensional space to a two-dimensional space. 

COORD: project.mds(dim(1, 2))
ELEMENT: point(position(birth*death*education*health*military), 

color(gov))

Figure 9.58 Multidimensional scaling of world countries
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Many analysts attempt to interpret the axes of a multidimensional scaling
as if they were principal components or simple linear scales, but this is usually
a mistake. Figure 9.58 is a good illustration of this pitfall. Because the points
cover the ranges of both axes, it would appear that we have two relatively in-
dependent dimensions in this plot. In fact, we have only one. There is an al-
most perfect “V” pattern in the distribution of points, which indicates that the
solution is topologically one-dimensional. This is a well-known phenomenon
in nonmetric, iterative MDS. One-dimensional data tend to distribute in a
horseshoe or “V” pattern when scaled this way in two dimensions. 

If we trace a path along the “V” in Figure 9.58, we can see that the coun-
tries run from liberal/socialist democracies in the upper right to conservative/
militaristic autocracies in the upper left. Thus, there is little point to interpret-
ing the axes or trying to understand the meaning of the composite variables.
The essential information is concerned with what countries are similar to each
other and what is the overall shape of the manifold in which the countries are
embedded.

9.4.2  Sets of Functions. 

A second possibility for dealing with high-dimensional data is to map a set of
n points in Rp one-to-one to a set of n functions in R2. A particularly useful
class of functions is formed by taking the first p terms in a Fourier series as
coefficients for (x1, ..., xp). Another useful class is the set of Chebysheff or-
thogonal polynomials. The most popular class is the set of p piecewise linear
functions with (x1, ..., xp) as knots, often called parallel coordinates. An ad-
vantage of function space representations is that there is no loss of informa-
tion, since the set of all possible functions for each of these types in R2 is
infinite. Orthogonal functions (such as Fourier and Chebysheff) are useful be-
cause zero inner products are evidence of linear independence. Parallel coor-
dinates are useful because it is relatively easy to decode values on particular
variables. A disadvantage of functional representations is that manifolds and
distances are difficult to discern.

9.4.2.1  Fourier Functions

Andrews (1972) proposed using a Fourier function for summarizing data. The
function Andrews used is

where x is a p-dimensional variate and t varies continuously from –. to .. Fig-
ure 9.59 shows an Andrews Fourier plot of the countries data. See Figure
10.43 for an example of polar Fourier plots, called blobs.

f t� �
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COORD: fourier()
ELEMENT: line(position(birth*death*education*health*military),

color(gov))

Figure 9.59 Fourier coordinates

9.4.2.2  Parallel Coordinates

A popular chart that has existed for over a century represents multivariate data
with profiles drawn in a simple line graph. For example, psychologists and ed-
ucators have traditionally represented multidimensional test scores with diag-
nostic profiles. The tests are ordered on a horizontal axis and the standardized
scores on a vertical axis. By standardizing the scores, all the separate scales
are given a common domain. Horizontally oriented zigzag lines are used to
connect the scores so that more than one profile can be represented in the same
plot.

Inselberg (1984) generalized this idea by assigning a separate, parallel
axis to each dimension. Even though the parallel coordinate plot is almost in-
distinguishable from a profile plot, what made the contribution novel was the
recognition of the dual between a high-dimensional space and the 2D parallel
coordinate space. Wegman (1990) went further and examined the relation be-
tween estimating densities in high-dimensional space and in parallel coordi-
nate space. 

Figure 9.60 contains a parallel coordinate plot on the world countries data.
The line graphic is one of the few that is of any use in this coordinate system.
Most other graphics go to points on each line. Even if we colored them, they
would be difficult to recognize. 
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COORD: parallel()
ELEMENT: line(position(birth*death*education*health*military),

color(gov))

Figure 9.60  Parallel coordinates

9.4.2.3  Polar Parallel Coordinates

We can send parallel coordinates through a polar transformation to produce
something called a spider web or star plot. Figure 9.61 shows an example us-
ing the data from the previous Figure 9.60. This plot is analogous to the radar
plot shown in Figure 9.29.

COORD: polar(parallel())
ELEMENT: line(position(birth*death*education*health*military),

color(gov))

Figure 9.61 Parallel coordinates in polar form
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9.4.2.4  Recursive Partitioning. 

A third approach to representing high-dimensional data is recursive partition-
ing. We choose an interval [u1, u2] and partition the first dimension of Rp into
a set of disjoint intervals each of size (u2 - u1), in the same manner as histogram
binning. This yields a set of rectangular subspaces of Rp. We then partition the
second dimension of Rp similarly. This second partition produces a set of rect-
angular subspaces within each of the previous subspaces. We continue choos-
ing intervals and partitioning until we finish the last dimension. We then plot
each subspace in an ordering that follows the ancestry of the partitioning. Re-
cursive partitioning layout schemes have appeared in many guises: Rp#R3

(Feiner and Beshers, 1990), Rp#R2 (Mihalisin et al., 1991), R4#R2 (Becker
et al., 1996). 

There are several modifications we may make to this scheme. First, if a
dimension is based on a categorical variable, then we assume (u2 - u1) = 1,
which assures one partition per category. Second, we need not partition a di-
mension into equal intervals; instead, we can make [u1, u2] adaptive to the den-
sity of the data (see Section 7.2.4.2). Third, we can choose a variety of layouts
for displaying the nodes of the partitioning tree. We can display the cells as an
n-ary tree, which is the method used by popular decision-tree programs. Or,
we can alternate odd/even dimensions by plotting horizontally/vertically. This
display produces a 2D nested table, which has been variously named a mosaic
(Hartigan and Kleiner, 1981) or treemap (Johnson and Schneiderman, 1991). 

Like simple projection, this method can cause loss of information because
aggregation occurs within cells. Nevertheless, it yields an interpretable 2D
plot that is familiar to readers of tables. Because recursive partitioning works
with either continuous or categorical variables, there is no display distinction
between a table and a chart. This equivalence between tables and graphs has
been noted in other contexts (Shoshani, 1997; Pedersen et al., 2002). With re-
cursive partitioning, we can display tables of charts and charts of tables.

9.5 Tools and Coordinates
A brush is a bounded region inside a frame that is movable via a translation
controller such that all points inside it are highlighted in other graphics based
on the same data (Cleveland and McGill, 1988). This linking is accomplished
through the relational key index (case number) associated with a variable set
as defined in Chapter 2. This tool allows a user to select points in one plot, for
example, and see them highlighted in another. In a continuous mapping, we
would expect to see points that are close together in one graphic (inside the
brush region) close in the other, but this is not generally the case with statisti-
cal graphics. Two cars may have similar acceleration but differ in weight or
fuel economy. A brush helps us to perceive these second-order relationships.
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In a rectangular coordinate scatterplot, a brush is usually a square. It de-
marcates intervals on two orthogonal scales. What shape would this brush as-
sume in triangular coordinates? Did you guess triangle? What shape would
this brush have in polar coordinates? Hint: it’s not a circle. A brush does not
change size or shape when moved in rectangular coordinate space. It is trans-
lated. What happens in polar coordinates? What is the polar equivalent of
movement along the vertical rectangular axis? Horizontal? Diagonal? Try
sending a square brush through the various other coordinate transformations
in this chapter. 

Some writers have suggested that circular brushes would be more appro-
priate than square ones for rectangular coordinates; a circle is the iso-distance
contour on the Euclidean plane. How would a circular brush behave in polar
coordinates? Would this make more sense than the transformed square? Final-
ly, how do coordinate transformations affect the behavior of other selection
tools? Some software implements a lasso tool that allows the user to select
points within any closed region, for example. Would that require any special
programming attention under coordinate transformations?

9.6 Sequel
So far, we have graphs that describe functions, but we cannot perceive them.
The next chapter presents functions that link graphs to aesthetic attributes and
thus make graphs perceivable as graphics.



10
Aesthetics

The term aesthetics derives from the Greek , which means per-
ception. The derivative modern meanings of beauty, taste, and artistic criteria
arose in the 18th century. We have chosen the name aesthetics to describe an
object in our graphical system because of its original connotations and be-
cause the modern word perception is subjective rather than objective; percep-
tion refers to the perceiver rather than the object. Aesthetics turn graphs into
graphics so that they are perceivable, but they are not the perceptions them-
selves. A modern psychologist would most likely call aesthetics in this sense
stimuli, aspects, or features, but these words are less precise for our purposes.

The preceding chapters have discussed the components of the system for
producing graphs, but up to this point we having nothing to show. Without aes-
thetics, graphs are invisible, silent, indeed imperceptible. Aesthetics are func-
tions that govern how a graph is represented as a visible or otherwise
perceivable graphic.

Since this book focuses on developing statistical graphics systems that
can transmit measurable multidimensional information to perceivers, the cog-
nitive and perceptual psychological research on scaling aesthetics is relevant.
The field of perception research is wide and long-standing. Its contemporary
roots are in 19th-century medicine and philosophy. Its recent growth has been
nourished by neuroscience. For an introduction, see Shiffman (1990), Levine
(2000), or Anderson (1995).

To make a statistical graphics system, we need to map qualitative and
quantitative scales to sensory aspects of physical stimuli. Each dimension of a
graph must be represented by an aesthetic attribute such as color or sound. We
will first examine problems in the mapping of continuous scales. Then we will
examine similar issues with categorical scales. Next, we will look at problems
introduced when we work with multiple dimensions. Then we will discuss the
role of realism in constructing graphics. 

Finally, we will discuss specific aesthetic attributes. We have extended the
classification system of Bertin (1967, 1977), who, while not a psychologist,
has formalized attributes in a system that can be related to psychological the-
ories of perception. Indeed, while Bertin’s work is based entirely on visual dis-
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plays, his variables apply, with small modifications, to other sensory
modalities. For a psychological perspective on Bertin’s work, see Kosslyn
(1985). For a review of cartographers’ extensions of Bertin’s system, see
MacEachren (1995)

10.1 Continuous Scales
When we map real numbers to the intensity of a physical stimulus, how do we
know that magnitude will be perceived as a linear function of the values? We
know from physics, for example, that the brightness of a light source decreases
as the square of its distance from a receptor. Even if we measure brightness at
the retina, however, neural processes may nonlinearize, truncate, or otherwise
filter the signal. We will examine this problem in the next section and then
consider its implication for the use of aesthetic attributes.

10.1.1 Psychophysics

The field of psychophysics is devoted to relating the magnitude of a physical
stimulus to the intensity of a perception (Stevens, 1985; Falmagne, 1985). The
German biologist and physicist Gustav Theodor Fechner coined this term in
his Elemente der Psychophysik (1860). Although Fechner spent most of his
career on metaphysics and religion and his psychophysical work focused on
human perception, there is nothing in psychophysical theory that would limit
it to humans. Psychophysics in the general sense involves mapping the inten-
sity of a quantitative stimulus (light, sound, motion) to the response of a sens-
ing system (human, insect, computer). 

Fechner built his theory on an observation of one of his medical profes-
sors, Ernst Heinrich Weber. Weber had discovered that the change in magni-
tude of a stimulus needed to produce a just noticeable difference (JND) in
sensation appeared to be a constant. For example, if we place a kilogram
weight in each of your hands you will most likely perceive no difference in
weight between the two. If we add more weight to one hand, you will just be-
gin to notice the difference at around 1.1 vs. 1 kilograms. Similarly, if we place
ten kilograms in each of your hands, we will need to add approximately one
kilogram to one hand for you to begin to notice the difference. In both cases,
the ratio of the difference to the magnitude is 0.1. This ratio differs for indi-
viduals and for kinds of stimuli, but the phenomenon of constancy within ex-
periment is remarkable.

Figure 10.1 (adapted from Levine, 2000) shows a graph of a function
based on Weber’s observation. Each unit increase in sensation (OS) occurs af-
ter the stimulus intensity increases by a JND (OI). In other words,

OS k
OI
I

-----
= >
? @=
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The left panel of the figure shows the graph for a fixed value of OS. The
units of the scales are arbitrary. It is the shape of the function that led Fechner
to his formulation. 

Figure 10.1 JND’s following Fechner–Weber law

Fechner integrated the function

to yield 

S = k log(I) + c

Fechner called this Weber’s law, but it really was Fechner’s, based on We-
ber’s observation. This logarithmic function is plotted in the right panel of
Figure 10.1, with c = 8 and k = 5. 

Boring (1950) discusses the assumptions Fechner made, including the po-
tential for negative sensation, since his log function had no limits. This and
other questionable assumptions caused a sensation of its own and led to con-
troversies which have persisted for over 100 years. Nevertheless, Fechner’s
unique achievement was to infer from Weber’s simple observation the shape
of the psychophysical function without having to measure perceived intensity. 

Weber’s discovery and Fechner’s formulation prompted other researchers
to consider measuring sensation directly. Plateau (1872) had artists paint a
gray patch midway between black and white under different levels of illumi-
nation. On observing that all the patches were virtually the same gray, he pro-
posed the power function
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S.S. Stevens (1961) tested Plateau’s function with numerous experiments
employing direct scaling. Instead of asking subjects to report when a JND oc-
curred, Stevens requested direct numerical estimates of the ratio of intensities
of different stimuli. His model fit observed data across a wide variety of sub-
jects, intensities, modes of stimuli, and measurement methods. 

For Weber–Fechner, equal stimulus ratios produce equal sensation differ-
ences. For Plateau–Stevens, equal stimulus ratios produce equal subjective ra-
tios. The reason for the discrepancy between their models is that they begin
with a different latent variable. Both infer sensation rather than measure it di-
rectly. Because of this difference in definition and because both are based on
a latent variable, scientists are still unable to reject conclusively one or the oth-
er model, despite numerous claims to the contrary. In the end, neither model
may be correct, or even more likely, neither may be of much use to a theory of
perception (Ekman, 1964; Gregson, 1988; Lockhead, 1992).

For our purposes, these functions tell us that intensity may not be linearly
related to sensation. Figure 10.2 shows power-function psychophysical curves
for a variety of stimuli using data from Shiffman (1990), Stevens (1961), and
other sources. Note that electric shock has an exponent greater than 3. For this
and other reasons, shock would not be a good aesthetic candidate for repre-
senting a dimension in a statistical graphic.

Figure 10.2  Psychophysical functions for various stimuli

10.1.2 Consequences for Attributes
As we have seen, different aesthetic attributes will more-or-less nonlinearize
our signal. Should we adjust for this by including the Stevens exponents in the
scaling of graphics in an automated statistical graphics system? The recom-
mendation has been made at various times by both psychologists and statisti-
cians, but it would be a mistake. Unfortunately, even numbers themselves
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behave like other stimuli in psychophysical experiments (Schneider et al.,
1974). So does numerosity (Krueger, 1982). If our goal for a statistical graph-
ics system is to communicate accurately quantitative or qualitative informa-
tion, should we root all our displayed numbers? This would certainly be a
radical change in the output of statistical packages! Most certainly, however,
the presence of bias in human information processing does not imply that we
should normalize the physical world to an inferred perceptual world. As we
will see in Section 10.3, nonlinearities have their uses in perceiving objects.
There are ways to accommodate them.

One way is to ensure that the range of variation in an aesthetic attribute
does not exceed too many orders of magnitude in intensity. If there is nonlin-
earity, clamping limits the psychophysical response function to a roughly lin-
ear segment. We might worry that our effect is too subtle in these
circumstances, but we have to acknowledge the speed–accuracy trade-off in
the perceptual process. If our goal is to emphasize differences, then we should
be more willing to accept bias.

Another way is to live with the bias. With positively skewed data, we can
turn a sow’s ear into a silk purse. Using circle areas to represent magnitude of
a third variable on a scatterplot, we will de-emphasize extremely large values
because their areas will be less salient (the Stevens exponent for area is .8). If
this is the effect we wish to achieve, particularly with positively skewed data,
then a bubble plot like this might be the best representation, despite admoni-
tions to the contrary (Cleveland, Harris, and McGill, 1981).

Finally, we can choose attributes that are closer to a Stevens exponent of
1 when we are concerned about linearity. This approach underlies Cleveland’s
(1985) recommended hierarchy of graphical elements. Figure 10.3 displays
this hierarchy, derived from a series of graphical element perception studies by
Cleveland and his associates. In most of these experiments, Cleveland used a
paradigm not unlike direct scaling. He simply compared subjects’ numerical
judgments with the generating stimulus magnitude. The rank order of Cleve-
land’s elements corresponds roughly to the rank of the absolute differences be-
tween their Stevens exponents (averaged across different studies) and 1.
Additional variation contributing to Cleveland’s results is probably due to the
effects of visual illusions (especially with angular judgments). 

Cleveland’s hierarchy has sometimes been recommended as a general cri-
terion for evaluating statistical graphics (e.g., Wallgren et al., 1996). Several
researchers have found that Cleveland’s results are contextual, however. Spen-
ce and Lewandowsky (1991), for example, found support for the predictions
of the hierarchy only in the initial, pre-attentive stages of processing where
rapid and direct evaluation of magnitude was required. Simkin and Hastie
(1987) found that accuracy of comparative, magnitude, and ratio judgments
depends on types of graphic elements and types of tasks. And Carswell (1992)
found support for the hierarchy mainly when attention was focused on a por-
tion of a graphic. Kosslyn (1994) discusses these and other findings concern-
ing the hierarchy at greater length. It must be remembered, however, that
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Cleveland’s original intention was to evaluate different elements when isolat-
ed, out of context. Furthermore, the task was deliberately restricted to magni-
tude and ratio comparisons. Such restriction is often desirable when
attempting new research in an ill-defined field. Like all psychophysical ap-
proaches that isolate stimuli in order to examine their psychometric functions,
however, the results apply only to certain restricted, indeed artificial, situa-
tions. As we shall see in Section 10.4, cognitive psychologists have recently
turned away from psychophysics and toward a more integrated, ecological ap-
proach for just this reason.

Figure 10.3 Cleveland graphic elements hierarchy

1. Position along common scale

2. Position along nonaligned scales

3. Length

4. Angle/Slope

5. Area

6. Volume

7. Color

BEST

WORST
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10.2 Categorical Scales
If we assign the values of an attribute, such as color, to a set of categories, how
do we know that a person will perceive categories? For example, we might as-
sign two shades of red to a scale distinguishing males and females on a gender
variable. Is it enough simply for these shades to differ by at least one JND, or
will we do better assigning, say, red and green? Are there color categories at
all, or is color perceived simply as a continuum in three dimensions? Indeed,
does perceptual categorization itself exist, or do we simply respond to a con-
tinuum of perceived similarity among stimuli? 

We take answers to many of these questions for granted when we place
legends on graphics or use tick marks to separate categories on an axis. The
system described in this book depends on mapping real numbers (for contin-
uous scales) or integers (for categorical scales) to perceptual attributes. If the
perceptual result is the same in both cases, then this aesthetic distinction can-
not be supported. For answers, we need to consult the field of categorical per-
ception.

Categories enable us to recognize objects in the world. Consider two ber-
ries, one black, one blue, both otherwise indistinguishable to the eye. The
chokeberry is poisonous, the blueberry delicious. Color categorization allows
us to distinguish them. We identify the poisonous berry as different from the
tasty even though they appear identical on most available sensory attributes
(size, shape, firmness, etc.). The consequences of our mistakes in categoriza-
tion can be themselves categorical: we eat and die (or die and are eaten).

We should not assume that the ability to make effective categorical judg-
ments in the world implies a categorical perceptual mechanism, however. We
need instead to examine whether there is experimental evidence for categori-
cal processing and then see if it can affect the assignment of attributes to cat-
egorical scales. First, we will review the evidence for innate categorical
processing and then examine learned categories.

10.2.1 Innate Categories

Aristotle made categorization basic to his logic. His categories — substance,
quantity, quality, relation, place, time, position, state, action, and affection —
formed the basis of simple propositions whose truth could not be determined
by logic. Although Aristotle did not claim his categories were self-evident in
all cases, they were nevertheless taken to be real by most philosophers and
theologians until the medieval Nominalists challenged their meaning. Catego-
ries, the Nominalists claimed, are by-products of expressions of similarity and
difference between particular things, but they have no reality in themselves.
There is an echo of this distinction in recent psychological theorizing on
whether prototypes (Realist) or exemplars (Nominalist) underlie categoriza-
tion in memory.
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We can evade the philosophical question of whether categories are real
and still ask if categorization can be perceptually innate. The Gestalt psychol-
ogists were driven by the belief that in perception, the whole is different from
the sum of its parts (Wertheimer, 1958). Several Gestalt principles suggest an
innateness to visual categorization. The principle of proximity, for example,
states that things that are close to each other seem to belong together. The dot
pattern in Figure 10.4, for example, is seen as comprising four pairs and a sin-
gle rather than three triples.

Figure 10.4  Grouping by proximity

Figure 10.5 shows that this principle of proximity is neurological, orga-
nized elsewhere in the visual system than in the stimulus or retinal image it-
self. In both halves of this figure, the dots are closer to their neighbors
horizontally than vertically. Viewed separately, these figures show three rows
of three dots. Viewed as a stereogram, however, three columns emerge be-
cause the differences in the perceived depths of the dots are greater than the
vertical differences. Proximity applies to the perceived rather than retinal im-
age. (Not everyone can view the stereogram easily. It requires crossing the
eyes until the images blend into a third, central square. See Chapter 9).

Figure 10.5  Stereogram from Kaufman (1974)

Developmental psychologists have uncovered evidence which suggests
innate categorization (Bornstein, 1987). A categorical response to color exists
in humans shortly after birth, well before language is available to name the cat-
egories (Bornstein, Kessen, and Weiskopf, 1976). This result is consistent with
the findings on color categorization in the cat visual system (deValois and Ja-
cobs, 1968). Eimas (1974) has found similar categorical boundaries in the pro-
cessing of sound. From an evolutionary perspective, pre-wired categorical
perception would make sense. Some skills may be too critical for survival to
leave them to learning alone.
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10.2.2 Learned Categories

Categories do not have to be innate to shape perception. There is also evidence
that categories learned on a dimension influence perception of stimuli invok-
ing that dimension. Whorf (1941) is best known for inferring this phenomenon
for language. Observing that Eskimos have many different words for snow,
while English speakers have only one, Whorf concluded that they perceive
this category differently from English speakers.

Although Whorf’s hypothesis has not been widely verified by anthropol-
ogists, there is laboratory evidence for learned perceptual categorization ef-
fects (Harnad, 1987; Gibson, 1991; Goldstone, 1994). Burns and Ward (1978),
for example, found that expert musicians recognized categories in pitch that
novices could not detect. Categorical perception is especially pronounced in
the recognition of speech. Lisker and Abramson (1970) used a computer to
generate sounds continuously varying between the voiced and unvoiced pho-
nemes [b] and [p]. English–speaking listeners showed a sharp switch from rec-
ognizing one to the other. Figure 10.6 summarizes their result.

Figure 10.6 Percentage identification of [b] vs. [p] as function of voice onset 
time (adapted from Lisker and Abramson, 1970)

10.2.3 Scaling Categories

Although it was not done in the original study, we fit logistic distributions to
the two sets of data in Figure 10.6. The fit of the functions to these data is ex-
tremely good. The curves show that, although it is a discrete concept, catego-
rization can be modeled with a continuous probability distribution. Signal
detection theory has been used to parameterize categorical responding based
on continuous probability distributions (Swets, Tanner, and Birdsall, 1961).
From another perspective, Massaro (1992) has argued that the observation of
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sharp boundaries between categories is not sufficient evidence for concluding
that categorical perception exists. He has modeled sharp identification bound-
aries using a Fuzzy Logical Model of Perception (FLMP). 

One can always fit a continuous distribution with a steep slope parameter
to model a categorical response. Nevertheless, the slopes of the curves in Fig-
ure 10.6 are substantially steeper than those for most continuously varying
stimuli. As with the Weber–Fechner vs. Plateau–Stevens debate, it is not likely
that the continuous-categorical scaling question will be resolved soon by
mathematical modeling. What matters most for our purposes is that perceivers
bring a different set of perceptual biases to categorical stimuli than they do to
continuous.

10.2.4 Consequences for Attributes

That perceivers may respond to stimuli categorically creates several problems
for categorical scaling of graphics. We may have the misfortune, for example,
to assign two categories to two different colors that are perceived as belonging
to a single color category. In general, natural category boundaries for a stim-
ulus may interfere with the values we assign to our artificial categories. This
is more likely to happen when we attempt to represent a large number of cat-
egories in a graphic. With a small number of categories, we can avoid prob-
lems by choosing as wide a range as possible for the stimulus dimension. 

Even if our assignments are perceived as one-to-one, some categories may
dominate our categorical scale by appearing more salient. One way this can
occur is because of their perceived frequency. Tversky and Kahneman (1974)
have shown that base rates can overwhelm other evidence in attributions and
quantitative judgments involving categories. Rips and Collins (1993) show
that category frequency can influence category judgments even more than per-
ceived similarity. We need to be careful that this salience-bias does not conflict
with the categories we are attempting to emphasize in graphing our data.

 Category ideal types (prototypes) may subsume or draw other categories
to themselves and thus change our intended categorization. This can occur at
the earliest perceptual stages or the latest. Rosch (1975) showed, for example,
that category judgments are faster for instances that are close to typical cate-
gory members than atypical. Stevens and Coupe (1978) introduced nonlinear
boundaries on hypothetical maps and were able to distort subjects’ distance
judgments and category memberships on the remembered maps. Tversky and
Schiano (1989) induced a variety of similar distortions in memory for maps by
manipulating categorical dimensions.

Finally, as we have seen, categories can underlie apparently continuous
perceptual dimensions, through either innate or learned processes. For exam-
ple, simple cells in the visual cortex are organized to detect, among other
things, orientation. The most common receptive field maps of these cells in-
volve vertical, horizontal, and diagonal patterns (Hubel and Wiesel, 1962).
Stimuli presented at angles near these directions will tend to cause firing in
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these receptors. Thus, our best angular sensitivity is near these canonical ori-
entations. This may account for the relatively poor performance of angle/slope
in the Cleveland hierarchy (see Figure 10.3) and for why slope is most accu-
rately judged at 45 degrees in statistical line charts (Cleveland, McGill, and
McGill, 1988).

10.3 Dimensions
What happens when we combine several scales in a single display? Can we
represent one quantitative dimension with color and another with orientation
and expect a perceiver to respond to both dimensions? If so, how many dimen-
sions can we represent without producing perceptual chaos? Five or six quan-
titative dimensions are commonplace in scientific visualization. Does this
make psychological sense?

10.3.1 Integral Versus Separable Dimensions

The Gestaltists were interested primarily in wholistic perception, in which
multidimensional stimuli were perceived in an unanalyzable whole. At the
other pole were classical psychophysicists, who believed that the perception
of multidimensional stimuli involved a summation or aggregation of separate
unidimensional percepts. While this is an oversimplification, the synthesis of
these positions came from a few researchers who believed that complex stim-
uli could be analyzed in their parts without resorting to simple functions of di-
mensional attributes such as summation or weighted linear composites.
Wendell Garner (Garner, 1970, 1974; Garner and Felfoldy, 1970) has been
one of the pioneers in this effort.

To Garner, “a configuration has properties that have to be expressed as
some form of interaction or interrelation between the components, be they fea-
tures or dimensions” (Garner, 1981). The analysis of configuration implies
more than paying attention to covariation, however. A configural property ex-
ists in addition to, not as a consequence of, other properties such as dimen-
sions. Specifically, Garner distinguished integral dimensions — such as hue
vs. brightness — from separable dimensions — such as size vs. texture. In-
tegral dimensions are not as easily decomposable by perceivers as separable.

This distinction has several important practical consequences, supported
by numerous studies. First, discriminations between classes defined by multi-
ple integral stimuli are more difficult than those between classes defined by
separable stimuli when the perceiver must attend to only one dimension. Se-
lective attention to only one dimension, in other words, is more difficult with
integral stimuli. Second, discrimination between classes using all dimensions
together is easier for integral stimuli than for separable. Third, redundant cues
in classification improve performance for integral stimuli and degrade perfor-
mance for separable. 
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The implications of these findings for assignment of aesthetic attributes to
dimensions in graphics are several. First, if we wish to facilitate comparisons
among and within subgroups, it is better to assign relatively uncorrelated vari-
ables to separable aesthetic dimensions. Wainer and Francolini (1984) show,
for example, that using integral dimensions in color choropleth maps makes it
almost impossible to decode quantitative information separately for the color
dimensions. Figure 10.7 demonstrates this phenomenon for symbols. The data
are a subset of the barley yield dataset from Fisher (1935). As part of a larger
experiment, three strains of barley (Manchuria, No. 475, Wisconsin) were
grown at three Minnesota sites (Duluth, Crookston, Waseca). The left panel of
the figure uses a double symbol to represent each of the nine combinations of
strain and site. Because the symbols are configural (the pair constitutes a “su-
per symbol” with its own recognizable shape), distinguishing the trend in
growth within site or within strain is extremely difficult. 

The right panel uses symbol and size to represent strain and site, respec-
tively. We are able to focus on symbol type to notice that growth increases
across sites both years, on average, within strains as they are ordered. Similar-
ly, we can focus on size to notice that growth increases by strains within sites,
as they are ordered. There are better ways to organize a display of these data
showing this additive growth increase by strain and site (e.g., Cleveland,
1996), but when multiple coding of symbols is necessary, this example shows
that the choice of attributes is critical.

Figure 10.7  Using separable dimensions for independent discrimination
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If we do need to discriminate groups jointly on several variables, then in-
tegral dimensions can help us facilitate the discrimination. Figure 10.8 shows
a FACES display (Chernoff, 1973) of the cities data used in Chapter 7. Each
variable is assigned to a different feature of the face. The rating of a city’s
health-care facilities is assigned to the curvature of the mouth, for example,
and pleasantness of climate is assigned to angle of the eyebrow. Section
10.6.3.3 covers the glyph functions needed to produce the specification. We
have inserted them for reference, but you should ignore them for now.

We perceive each face as a whole. The primary component of our percep-
tion is emotional, but there are structural elements as well, such as the length
and width of the nose. The face is integral because we cannot separate these
components easily. A sad face with a long nose (Orlando) does not have the
same emotional impact as a sad face with a short nose (Anchorage). This
wholeness confounds the measured variables but helps us to recognize the
similarity between Los Angeles and San Francisco, or San Diego and Oak-
land. Because the dimensions are integral, there is less load on working mem-
ory for making these comparisons and recognizing clusters. In other words,
the display offers us a way to do perceptual clustering (Tidmore and Turner,
1977).

Since its original presentation by Chernoff, FACES have been widely mis-
understood by statisticians and data analysts. Some have dismissed them for
their lack of seriousness. For example, Haber and Wilkinson (1982) proposed
a real-time multivariate FACES display for command-and-control facilities
where a limited number of different rapid decisions needed to be made in a
multi-cue environment. The proposal received good technical ratings but was
ultimately rejected for fear of it receiving a “Golden Fleece” award. Rapid,
multi-attribute decision-making with a limited response repertoire is exactly
where we would expect FACES to excel.

Others, particularly statisticians, consider FACES subjective, not realiz-
ing that facial perception is more consistent and innate than many other types
of complex object perception. Specific neuronal responses have been found
for both physical and emotional facial dimensions (Young and Yamane, 1992).
The recognition of emotional expressions is well developed in human new-
borns and infants (Haith, 1980; Johnson and Morton, 1991). Faces are readily
categorizable into prototypes (Reed, 1972). And faces appear to be the most
memorizable stimulus in psychological research. Standing (1973) has demon-
strated recognition memory for up to 10,000 faces viewed in brief sessions.
Bahrick et al. (1975) found extraordinary memory persistence for faces vs.
other types of stimuli. Spoehr and Lehmkuhle (1982) summarize other studies
showing the perceptual uniqueness of faces. Finally, Wilkinson (1982) showed
that FACES outperform other graphical glyphs when used as cues in multivari-
ate similarity judgments.
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There are two caveats concerning FACES, however. First, FACES have
little utility when decoding information for separate variables is required. This
problem is shared by all graphic methods which map quantitative variables to
highly integral stimuli. Second, the assignment of quantitative variables to fa-
cial features is critical (Chernoff, 1975; De Soete, 1986). This is a problem
with configural stimuli in general, but especially so for FACES. Assigning
variables with relatively large variance to facial features with relatively small
perceptual salience (or vice versa) can result in false-negative or false-positive
classification errors. The most successful recent automated facial recognition
models (e.g., Turk and Pentland, 1991) distill facial images to a relatively
small number of eigenfaces. This research suggests that the overall facial con-
figuration is more important to classification than isolated features. A promis-
ing approach to assignment would be to ensure that the eigenstructure of the
quantitative variables matched as closely as possible the eigenstructure of the
perceived set of faces.

ELEMENT: point(position(col*row), shape.glyph.face(health..arts), 
label(city))

Figure 10.8  Using integral dimensions to classify
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The fundamental misunderstanding among many critics of FACES, how-
ever, has most to do with a failure to appreciate the difference between integral
and separable dimensions. To repeat, selective attention is more difficult with
integral than separable stimuli but discrimination using all dimensions is eas-
ier for integral stimuli than for separable. We can see this by comparing FAC-
ES to glyphs based on more separable perceptual dimensions.

Figure 10.9 shows the same data displayed with bar glyphs. Each city’s
value on each variable is now measurable by the height of each bar. The bar
glyphs make it easier to compare the health rating of Honolulu to that of Tren-
ton, but it is more difficult to recognize that the two cities are quite different
in their profile across all nine variables. Try comparing the faces for these cit-
ies in Figure 10.8 with the bars in Figure 10.9. 

ELEMENT: point(position(col*row), shape.glyph.bar(health..arts),
label(city))

Figure 10.9 Using separable dimensions to classify
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10.4 Realism
Perceptual psychology has had a long tradition of searching for principles of
organization in the mind of the perceiver. In part, this has been a consequence
of its phenomenological origins in Wundt’s introspectionist psychology labo-
ratory in Leipzig in the late nineteenth century. For almost a century, percep-
tual psychologists resisted the pressure of the behaviorists to explain
perceptual constancies by looking to the regularities of the stimulus rather
than those of the perceiver.

In reaction to the phenomenological tradition, James J. Gibson (Gibson,
1966, 1979) argued that the researcher must pay more attention to the perceiv-
er interacting with a structured environment. Before imputing constancies to
the perceiver, we must look for constancies in the environment. Gibson reject-
ed the laboratory tradition of isolating stimuli to the point of making them im-
poverished. As an alternative, Gibson was interested in the persistent aspects
of objects and their arrangements on the retina that allow us to perceive effec-
tively and adapt to a changing world. Gibson’s evolutionary perspective has
influenced artificial intelligence approaches to perception, where machines
must recognize and interact with their world (Marr, 1982; Winston, 1984).

Gibson helped stimulate a new trend in perceptual and cognitive psychol-
ogy. Supported by new methodologies, advances in neuroscience, and the ma-
turing of cognitive and computer science, theorists have enlarged their
laboratories and turned their attention to the real world. Irving Biederman
(1972, 1981) has analyzed schemas needed to comprehend creatures, objects,
and their interactions in real scenes and pictures. Stephen Kosslyn (Kosslyn,
1980, 1983; Kosslyn, Ball, and Reiser, 1978) has examined the mental images
used in navigating and remembering real-world situations. And Roger Shep-
ard (Shepard and Metzler, 1971; Shepard and Cooper, 1983) has elucidated
mental rotations and other cognitive operations which mirror a spatial world
and derive from our need to interact with that world. Lockhead (1992) reviews
this trend in perception research and Glenberg (1997) reviews recent evolu-
tionary developments in the related field of memory.

This ecological focus offers several implications for representing multiple
quantitative dimensions in graphical (aesthetic) systems. First of all, there is a
new theoretical foundation for statistical graphics to achieve richer, more re-
alistic expressions. For years, some writers on statistical graphics (e.g., Tufte,
1983; Wainer, 1997) adopted Mies van der Rohe’s adage, less is more. For
Tufte, this means not wasting ink. The primary message of these writers has
been that statistical graphics should be spare, abstract designs. For this formal-
ist Bauhaus school of graphics, intent on minimizing the ink/data ratio, the
major nemesis is the Rococo school of Holmes (1991), U.S.A. Today, and oth-
er popular pictographers. The controversy centers on chartjunk: 3D bar
charts, pseudorealism, and pictographs. However witty the criticisms by the
formalists and however sincere their aesthetic motivations, it must be remem-
bered that these are basically ad hoc and unsupported by psychological theory.
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Psychological research has a lot to say about the use of aesthetic/sensory fea-
tures in graphic perception, but offers little support for the simple idea that less
is more or that a small ink/data ratio facilitates accurate decoding.

On the contrary, there is some evidence that chartjunk is no less effective
than abstract displays in conveying statistical information accurately (Lewan-
dowsky and Myers, 1993). Pseudo 3D, drop shadows, and pictographs add re-
dundant dimensions to multidimensional graphics. As we have seen, Garner’s
and others’ research shows that redundant cues do not impair, and can actually
improve, performance for integral dimensions. Additional dimensions de-
grade performance only when they are irrelevant to and vary independently of
the dimensions needed for proper classification. Wilkinson and McConathy
(1990) found, for example, that meaningful pictograms can contribute to
memory for graphics. In short, there may be good reasons to dislike chartjunk,
and Tufte’s graphics are indisputably beautiful, but the crusade against chart-
junk is not supported by scientific research and psychological theory.

From a somewhat different perspective, but still more Bauhaus than Ro-
coco, Becker and Cleveland (1991) have argued that the field of scientific vi-
sualization has incorporated too much virtual reality and not enough abstract
formal structure. Making a statistical graphics scene realistic, they claim, does
not improve its information processing potential or its capability to convey in-
formation accurately. In light of the psychological research, however, we
should emphasize the complement of their statement: realism is not bad, but
ignoring the constraints of realism is really bad. In other words, what matters
in statistical graphics (or in the assignment of aesthetic features to quantitative
or qualitative dimensions), is whether we construct configurations that satisfy
the rules of attributes in the real world. If we violate these rules (see Bieder-
man, 1981, for examples), our message will be distorted or meaningless.

This principle implies, for example, that we should exercise care to avoid
perceptual illusions when we use cues from the 3D world to convey a 2D
graphical scene to our senses. Many of the classical visual illusions are prob-
ably due to 3D cues mistakenly applied to 2D scenes (Gregory, 1978; Coren
and Girgus, 1978). Huff (1954), Hochberg and Krantz (1986), and Kosslyn
(1994) provide a variety of examples of distorted graphics which invoke these
illusions. Consistent with Cleveland’s hierarchy shown in Figure 10.3, most of
these illusions involve angles or features related to the processing of 3D
scenes. Perhaps the best (or worst) example of a graphic eliciting these illu-
sions is the 3D pie chart, which allows perspective illusions to interfere with
angular part/whole judgments. 

Most of all, we should avoid representations that not only do not exist in
the real world, but contradict or grossly exaggerate real-world phenomena.
Figure 10.10 shows an example of this problem. In an effort to improve Cher-
noff’s FACES, Flury and Riedwyl (1981) added an asymmetrical dimension
to the glyph in order to represent paired data. Each face in Figure 10.10 repre-
sents a strain of barley in the Fisher (1935) dataset; the left half of each face
represents the yields for 1931 and the right half represents the yields for 1932. 
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This display is simply confusing. Indeed, humans are sensitive to asym-
metries in faces (Troje and Bülthoff, 1996), but this is a subtle configural phe-
nomenon usually associated with emotions (Ekman, 1984) and the range of
sensitivity is far narrower than that implemented in the asymmetrical FACES
glyphs. Recognizing and recalling facial asymmetry (as evidence of lying, for
example) is a skill requiring intensive training (Ekman et al., 1988). More se-
vere asymmetry is associated with paralysis, trauma, or congenital defects. In
Figure 10.10, the face of No. 457 is suffering from a case of Bell’s palsy.

Asymmetrical faces present viewers with a glyph based on distracting an-
alogues to the real world and with a perceptual task that introduces unneces-
sary complexity into pairwise comparisons. Half a face is no better, however.
Following Flury and Riedwyl, Tufte (1983) suggested using only half of Cher-
noff’s FACE glyph. Tufte advised that symmetries should be avoided in statis-
tical graphics because they introduce unnecessary redundancies. While this
may be true for some abstract stimuli, it makes little sense to enlist a wired-in
perceptual mechanism and then defeat it by radical surgery.

ELEMENT: point(position(col*row),
shape.glyph.face2(university31..duluth32), label(site))

.

Figure 10.10  Asymmetrical FACES (1931, 1932) of Fisher barley data
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Figure 10.11 shows the same barley data represented by pairs of symmet-
rical faces. The pairings clearly make it easier to compare faces between and
within pairs. Grouping faces as siblings also allows us to consider larger fam-
ilies, as arise in repeated measurements. The reason comparison of siblings is
easier than teasing apart halves of faces is that it resembles a real-world task.
Faces are perceived as wholes. We are rarely called upon to make a second-
order judgment that depends on the difference between the left and right side
of a face (including its laterality). If there is asymmetry, we perceive it to have
either a single emotional or congenital explanation. However, we are frequent-
ly called upon to make judgments concerning siblings and family member-
ship. We might notice in Figure 10.11 that older (on the right) siblings tend to
look unhappier or have smaller eyes. Similarly, we can easily make compari-
sons between families. We notice, for example, that the Trebi family is well
fed and that the Svansota family is not thriving.

ELEMENT: point(position(row1*col1),       
shape.glyph.face2(university31..duluth31), label(site))

ELEMENT: point(position(row2*col2),       
shape.glyph.face2(university32..duluth32), label(site))

Figure 10.11 Paired (1931, 1932) symmetrical FACES of Fisher barley data
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10.5 Aesthetic Attributes
The remainder of this chapter covers assignments of quantitative dimensions
to aesthetic attributes. Table 10.1 summarizes these aesthetic attributes. We
have grouped these attributes in five categories: form, surface, motion, sound,
and text. This is not intended to be an exhaustive list; other attributes, such as
odor, can be devised. Seven of these attributes are derived from the visual
variables of Bertin (1967): position (position), size (taille), shape (forme),
orientation (orientation), brightness (valeur), color (couleur), and granularity
(grain). Bertin’s grain is often translated as texture, but he really means gran-
ularity (as in the granularity of a photograph). Granularity in this sense is also
related to the spatial frequency of a texture.

Some of the major attribute functions have several methods. These are in-
dented in the table. For example, color() is an attribute function that normally
indexes a categorical color table or scale. If one wishes to specify only hue,
then one may use color.hue(). One can also specify only brightness by using
color.brightness(). Custom color scales can be constructed as other named
methods of the color() attribute function, such as color.spectrum(). We will not
discuss these in more detail. Similarly, shape() specifies a table of indexed
shapes (such as symbols). If one wants to reference different types of shape
modification, one can use shape.polygon() for a general polygon,
shape.glyph() for a multivariate glyph shape, or shape.image() for a general
image such as a bitmap.

Aesthetic attribute functions are used in two ways. Most commonly, we
specify a variable or blend of variables that constitutes a dimension, such as
size(population) or color(trial1+trial2). Or, we may assign a constant, such as
size(3) or color(“red”). The position() function cannot take constants as argu-
ments, but it is the one attribute that can accept more than one dimension, as
in position(x*y).

Table 10.1  Aesthetic Attributes

Form Surface Motion Sound Text

position
size
shape
   polygon
   glyph
   image
rotation
resolution

color
   hue
   brightness
   saturation
texture
   pattern
   granularity
   orientation
blur
transparency

direction
speed
acceleration

tone
volume
rhythm
voice

label
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These aesthetic attributes do not represent the aspects of perception inves-
tigated by psychologists. This lack of fit often underlies the difficulty graphic
designers and computer specialists have in understanding psychological re-
search relevant to graphics and the corresponding difficulty psychologists
have with questions asked by designers. Furthermore, these attributes are not
ones customarily used in computer graphics to create realistic scenes. They are
not even sufficient for a semblance of realism. Notice, for example, that pat-
tern, granularity, and orientation are not sufficient for representing most of the
textures needed for representing real objects. Instead, these attributes are cho-
sen in a trade-off between the psychological dimensions they elicit and the
types of routines that can be implemented in a rendering system. Specifically,

• An attribute must be capable of representing both continuous and cate-
gorical variables.

• When representing a continuous variable, an attribute must vary prima-
rily on one psychophysical dimension. In order to use multidimensional
attributes such as color, we must scale them on a single dimension such
as hue or brightness, or compute linear or nonlinear combinations of
these components to create a unidimensional scale.

• An attribute does not imply a linear perceptual scale. As Section 10.1.2
indicates, few attributes scale linearly. In fact, some attributes such as
hue scale along curvilinear segments in two- or three-dimensional space.
All linear scales are unidimensional but not all unidimensional scales are
linear.

• A perceiver must be able to report a value of a variable relatively accu-
rately and effortlessly when observing an instance of that attribute repre-
senting that variable.

• A perceiver must be able to report values on each of two variables rela-
tively accurately upon observing a graphic instantiating two attributes.
This task usually, but not necessarily, requires selective attention. This
criterion probably isn’t achievable for all of our attributes and may not
even be achievable for any pair of them. But any attribute that is clearly
non-separable with another should be rejected for our system. It is too
much to expect, of course, that higher-order interactions among attributes
be nonexistent. Much of the skill in graphic design is knowing what com-
binations of attributes to avoid. Kosslyn (1994) offers useful guidelines.

• Each attribute must name a distinct feature in a rendering system. We
cannot implement an attribute that does not uniquely refer to a drawable
(or otherwise perceivable) feature. An attribute cannot be mapped to a
miscellaneous collection of widgets or controls, for example. 
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Bertin’s books are a rich source of examples for many of these attributes
and their various combinations. Discerning the full breadth of his classifica-
tion scheme requires careful reading and testing on specific scenarios. We
have made a few modifications to Bertin’s scheme. These can be seen by com-
paring our Table 10.2 at the end of this chapter with the figure on page 230 of
Bertin (1981). We have reorganized four of Bertin’s graphic variables (size,
shape, orientation, and granularity) into two sets of parallel components un-
der form (size, shape, rotation) and texture (granularity, pattern, orientation).

The motivation for this separation is the following. Graphics must re-
spond independently to messages concerning their aesthetic attributes. At the
same time, these independent responses must function in concert so that the
graphic produced is consistent and coherent. This requires making a few of
Bertin’s categories independent, by employing what computer designers call
orthogonalization. Bertin uses size, shape, and orientation to characterize
both the exterior form of objects (such as symbol shapes) and their interior tex-
ture pattern (such as cross-hatching). This appears natural and parsimonious
(especially when looking at his examples) until one has to write a computer
program to implement these attributes. It becomes apparent in architecting the
attribute functions that Bertin has confounded form and texture attributes. Be-
cause Bertin uses shape to determine both the shape of an area and the pattern
of a texture, it is impossible to produce a circular symbol filled with a triangu-
lar mesh pattern or a dashed line consisting of images of the French flag. Ber-
tin has his reasons for these strictures, although they may have more to do with
preventing chartjunk (making dashes out of flags) than with spanning the per-
ceptual and representational space.

We have avoided this confounding of attributes by separating form and
texture. These modifications are discussed in more detail in the sections be-
low. None of this implies, however, that attributes orthogonalized in a design
sense are not correlated in the way they are perceived by our visual system.
Orthogonalization in design means making every dimension of variation that
is available to one object available to another. How these variations are per-
ceived is another matter. 

Many aesthetic attributes, even ones such as size or position that are usu-
ally considered visual, need not be perceived visually. There is nothing in the
definition of a graphic given in Chapter 2 to limit it to vision. Provided we use
devices other than computer screens and printers, we can develop graphical
environments for non-sighted people or for those unable to attend to a visual
channel because, perhaps, they are busy, restrained, or multiprocessing.
Touch, hearing, and other senses can be used to convey information with as
much detail and sensitivity as can vision. While three sensory modalities —
vision, sound, and touch — can accommodate all the attributes discussed here,
taste and smell involve multidimensional processing as well (Levine, 2000).
The psychophysical components of these latter senses are not as well under-
stood, however. Nor are they practical in current display environments. We
will not discuss these specific implementations further.
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10.5.1 Position

Spatial position refers to location in a (multi-) dimensional space. Bertin re-
stricts his analysis to a sheet of paper or the plane (plan), but spatial position
in a graphics system need not be restricted to even three dimensions. For ex-
ample, a frame can be represented (with loss of generality) by a variety of pro-
jections into 3D, 2D, or 1D space. A positional attribute simply requires that
values on a quantitative scale map to coordinates in a space.

Continuous variables map to densely distributed locations on a positional
dimension. Categorical variables map to a lattice. These positions are ordered,
but the ordering may or may not have meaning in terms of the scale of the mea-
surements represented by the variable. Some projections may send two differ-
ent coordinates to the same position, rendering them indistinguishable (see
Chapter 9 for more information). This is commonplace in maps, where hemi-
spheres may overlap in spherical projections, or in mixture coordinates (such
as triangular), where the projection is a subspace of the data. Sometimes posi-
tion is used simply to keep objects from overlapping and has no other purpose
in a layout. Other times, position is used to place objects near to each other.
We see this in Figure 10.11.

Cleveland (1985) rates position on a common scale as the best way to rep-
resent a quantitative dimension visually. This reflects the research finding that
points or line lengths placed adjacent to a common axis enable judgments with
the least bias and error. This recommendation requires a major qualification,
however: it depends on how far a point, line, or other graphic is from a refer-
ence axis. If a graphic is distant from an axis, the multiple steps needed to store
and decode the variation can impair the judgment (Simkin and Hastie, 1987;
Lohse, 1993; Kosslyn, 1994). Grid lines can reduce this problem somewhat.

10.5.2 Size

Bertin defines size variation in terms of length or area. The extension of this
definition to three dimensions would be volume. Cleveland ranks area and
volume representations among the worst attributes to use for graphing data
(see Figure 10.3). Indeed, area and volume both have Stevens exponents sub-
stantially less than 1 (see Figure 10.2). Figure 10.12 reveals this clearly. The
circles in the upper row have diameters proportional to the integers 1 to 5.
Those in the lower row have areas proportional to the same integers. It is self-
evident that the areas are not perceived in a linear relationship to the scale val-
ues.

Size for lines is usually equivalent to thickness. This is less likely to in-
duce perceptual distortion than it does for symbols, although extremely thick
lines present problems of their own. Thick lines must be mitred and fill pat-
terns must be handled carefully. Size can be used to great effect with path,
however. A notable example is the famous graphic by Minard featured in
Chapter 20.
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Figure 10.12 Symbol size: diameters (upper) and areas (lower)

Areas can change their size only if their perimeters are unconstrained. An
area is defined by a perimeter that is determined by data or by a tiling or by
some other enclosure element. Thus, size for area is a data attribute, not an ar-
bitrary value we may change for aesthetic purposes. We can modify the
coarseness of a texture inside an area, however. For example, we may use tex-
ture.granularity() to produce Bertin’s “size” effects for areas.

Surfaces can change size in a manner similar to the way lines do. That is,
lines may become thicker or thinner and so may surfaces. The ribbon element
used in the left panel of Figure 8.4, for example, is relatively thick. Modifying
the thickness of surfaces presents problems similar to those involved in mod-
ifying thickness of lines.

Finally, solids may change size in any dimension not constrained by data
or geometry. As with areas, we cannot modify size of solids to suit arbitrary
aesthetic goals. Size of volumes must be driven by data. Size distortion is
worse for volumes, however. Figure 10.13 shows a size series for a set of box-
es. The upper row shows boxes increased in size from left to right by magni-
fying each dimension proportionally to the integers 1 to 5. The lower row
shows increases in volume according to the same series. The size of the upper
boxes increases as a cubic function while the size of the lower follows a linear
function.

Figure 10.13 Solid sizes: diameters (upper) and volumes (lower)
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For objects that have rotational symmetry, like circles, we can map size to
the diameter rather than area (the upper rows of Figure 10.12 and Figure
10.13). The result is not always undesirable, especially for negatively skewed
data or data with short upper tails. Conversely, representing size through area
or volume should probably be confined to positively skewed data that can ben-
efit from the perceptual equivalent of a root transformation. Otherwise, we
might do best by following Cleveland’s advice and avoiding size as an at-
tribute.

Some designers assign size to only one dimension of an object, as in the
width of a rectangle. This can confound perceptual dimensions, making selec-
tive attention to the size component difficult. Bar charts, for example, use the
height of interval graphics to represent a variable. Their width is usually held
constant. If we vary their widths according to an additional variable, we may
run into trouble. The following example illustrates this.

Figure 10.14 shows four different displays of the same data with various
uses of size and other aesthetic attributes. The data are from Allison and Cic-
chetti (1976). They represent ratings of animals, on a 1 to 5 scale, of their ex-
posure to predators while sleeping (exposure) and likelihood of being eaten
by predators in their environment (predation). Needless to say, the habitat pre-
sumed in this study is not urban. As the New Yorker Woody Allen once said
after visiting the countryside in Connecticut, “I am at-two with nature.” 

The clustered bar graphic in the upper-left corner represents exposure and
predation using separate bars. It is difficult to discern the relationship between
the two variables in this plot. The vertical axis is sorted on the predation val-
ues, but we cannot sort both variables in the same frame. The dot plot in the
upper right panel has a similar problem, even though it separates the variables
into two sub-frames. The graphic in the lower-left corner attempts to represent
joint variation by varying the height and width of the rectangles used for bars.
Height and width of rectangles are configural dimensions, however. This
makes it difficult to perceive the dimensions separately. Notice how difficult
it is to perceive that Pig has the same value on both variables, while Kangaroo
is discrepant on the same variables. 

The scatterplot in the lower-right corner does not suffer from these prob-
lems, It is easy to discern the relative rankings of the animals on both vari-
ables. Furthermore, it is easy to locate clusters of animals (e.g., goat, pig,
kangaroo) in the scatterplot. The moral of this story is that configurality can
cause problems with size and other aesthetics. It is best to let aesthetics vary
on only one dimension.
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Figure 10.14  Sized bars (lower left) versus other representations
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10.5.3 Shape

Shape refers to the exterior shape or boundary of an object. Symbols are the
most obvious example, but every graph has the potential for taking on a dif-
ferent shape. Figure 10.15 shows several examples of shape variation in sym-
bols. The top row shows a morph of a hexagon into a circular shape.
Morphing is the technique needed to vary shape along a continuous dimen-
sion. The second row shows another morph of an ellipse into another ellipse.
This example is problematic, however, because it is not rotationally invariant.
Shape must vary without affecting size, rotation, and other attributes. The
graphics in the second row could be used for representing negative and posi-
tive variation, but it is not clear that they would work as well as sized plus and
minus signs. 

The bottom row shows categorical shape variation. Several researchers
have investigated optimal symbol shapes for categorization (Lewandowsky
and Spence, 1989; Cleveland 1993). The symbols in this row of Figure 10.15
were selected for this purpose.

Figure 10.15  Symbol shape: continuous (upper 2) and categorical (lower)

Figure 10.16 shows several examples of continuous and categorical shape
variation for lines. The left panel varies the roughness of the line to create a
continuous shape dimension. The right modifies the outer contours of the line
to create categorical shape variation.

Figure 10.16  Line shape: continuous (left) and categorical (right)
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Areas can change shape only if their perimeters are unconstrained by a po-
sitional variable. The polygon() graphic can be set to a hexagon, for example,
in order to tile a surface or it can be set to the outline of a state in order to create
a geographic map. If we want to produce some of the “shape” effects Bertin
shows for areas, then we can use texture.pattern().

Surfaces can change shape in a manner similar to lines (e.g., bumpy sur-
faces), although taking advantage of this behavior is a dubious practice. Like
areas, surfaces can change shape in other ways if their shape is unconstrained
by positional variables.

Figure 10.17 shows continuous and categorical shape variation for solids.
Some solids, like interval graphics, are constrained on one or more axes for the
purpose of representing size variation. This usually leaves at least one physical
dimension free to vary in shape. The solids in Figure 10.17 have constant
height but vary in their shape along the other two dimensions.

Figure 10.17 Solid shape: continuous (upper) and categorical (lower)

10.5.4 Rotation

The rotation of a graphic is its rotational angle. Figure 10.18 illustrates rota-
tion variation for 2D and 3D objects. Lines, areas, and surfaces can rotate only
if they are positionally unconstrained. We can produce the “orientation” ef-
fects Bertin shows in these graphics by using texture.orientation() instead. 

Figure 10.18  Rotation: symbol (upper) and solid (lower)
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10.5.5 Resolution

The resolution of a graphic is a function of the amount of information con-
tained in its frame. There are many ways to measure information. Most are
based on a measure of entropy (Shannon, 1948):

 ,

where x is a random variable with n possible states, pi is the probability asso-
ciated with the ith state, and K is a positive constant.

 Consider the rightmost panel of Figure 10.19. If we assume this picture
has n possible states (based on a finite set of pixels each with a finite number
of darkness values) and each state has an associated probability (assume it is
equal in this case), then we can see that the entropy of this picture is the lowest
in the series, according to Shannon’s formula. 

It is not coincidental that the greater the entropy, the less compressible is
the binary file representing the picture. Shannon proved that if one wishes to
code a given signal into a sequence of binary symbols (bits) so that a receiver
of the binary sequence can reconstruct the original signal perfectly, then one
needs at least H(x) bits to do so. Having more pixels does not guarantee greater
entropy, however, since multiple pixels could have the same gray-scale value.
The point is, decreasing the number of pixels cannot increase entropy or in-
formation.

The resolution aesthetic modifies the appearance of geometric elements
by grouping the units on which statistical calculations are based. With lower
resolution, statistical functions operate on groups of similar cases (analogous
to pixels) rather than on single cases. The result of this operation is evident in
histograms (see Figure 10.49). We usually modify resolution through the bin()
statistical function, but when there are no variables to bin (as with images) we
can use the aesthetic function resolution() instead.

Figure 10.19  Resolution from high on left to low on right (photograph 
courtesy of Stuart–Rodgers Photography, Evanston, IL)
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10.5.6 Color
Color is a psychological phenomenon, a fabrication of the visual system (Le-
vine, 2000). The physical stimulus for color is light. Light has no color; it is
electromagnetic energy of different wavelengths. We see color because we
have three different photoreceptors in our retinas sensitive to light of different
wavelengths. Thomas Young proposed this mechanism in 1802, assuming a
mixture of the output of three primary receptors for red, green, and violet
would produce any visible color. Hermann von Helmholtz formalized
Young’s conjecture in 1866 by delineating hypothetical excitation curves for
each of the three types of receptor fibers Young postulated. 

Because our color perceptual system is three-dimensional, we can repre-
sent all visible colors with any three non-collinear axes in that space. Comput-
er monitors employ an RGB model, named for its use of red, green, and blue
as a basis. This basis provides a wide range of color variation using compara-
ble additive weights, and corresponds roughly to the sensitivity of the photo-
receptors in the retina. Printers use a CYM model, named for cyan, yellow, and
magenta. When used as pigment on an opaque surface, the colors in the CYM
model absorb red, blue, and green light, respectively. This makes the CYM
model subtractive for light, while the RGB model is additive. A third model
called HLS refers to hue, lightness, and saturation. This model derives from
Newton’s analysis of the spectrum. The Munsell color solid for artists
(hue = hue, value = brightness, chroma = saturation) is related to this system.
See Travis (1991) for a review of color theory. Sacks (1995) discusses histor-
ical issues in the context of an intriguing study of a monochromatic perceiver.

 Figure 10.20 shows the color cube for the RGB model. We have displayed
both the front (on the left) and the back (on the right) of this cube in order to
show the full color range available in this model. There are several things to
note about this cube. First, it does not represent the full range of perceivable
colors. Color displays are nevertheless quite good at giving us the impression
of real-world colors. Second, it does not represent the metric space of per-
ceived colors. We cannot assume that because two hues are near each other on
the surface of the cube that we perceive them as similar or conversely, that if
two are distant we perceive them as much different. Third, the colors on the
surface of the cube are fully saturated. If we displayed the interior, we would
see less saturated colors, with the center being gray. 

Figure 10.20  RGB color cube (front left, rear right)
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Figure 10.21 shows the RGB cube space with annotations. The values of
the tuples at the vertices of the cube are shown, as well as the primary (red,
blue, green) and secondary (magenta, cyan, yellow) colors generated. 

Figure 10.21  RGB color space

How do make a color scale? As with other scales, we require a mapping.
In short, we are mapping a 3D color space to a 1D color space through a con-
nected path. Figure 10.22 illustrates how this works. We wrote a little Java pro-
gram to generate linear color scales for the figure. We have indicated in red on
the little cubes where the paths are located for several popular scales. Some of
these paths are rather nonlinear. Remember, this implies nothing about the lin-
earity of the scale for perceptual purposes. Perceptual linearity means that a
plot of perceived color differences against metric color differences (derived by
measuring the color locations on the scale with a ruler) would be linear for all
intervals on the scale. 

The brightness scale is simply a diagonal path through the cube. Because
it involves an equal mixture of all three primaries, it is a gray scale. The heat
scale was developed by Levkowitz (1997) to be a perceptually linear temper-
ature scale. Notice that it includes green and blue components toward the end
in order to end up white. The rainbow scale is perhaps the most popular in use
today. It runs through all the spectral colors on the cube. By staying on the
edges, it does not compress color subcomponents disproportionately. If you
are good at mental rotations, see if you can rotate the cube in this figure to be
congruent with the projection in Figure 13.14 (which is close to a rainbow
scale). The circular scale closes the path; it is rarely used, but can be valuable
for circular variables. Finally, the bipolar scale is useful for representing bi-
polar variables. We ran the center through black to indicate zero on the scale,
although we could have run it through gray (in the center of the cube) instead.
Also, we could pick other hues to fit the application.
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REDBLACK
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Figure 10.22  Color scales based on paths through RGB color space

10.5.6.1  Perceptual Issues

Trichromatic color theory accounts for three-dimensional color perception,
but it fails to accommodate some curious color phenomena. One of these is
color afterimages. Staring at a green patch for about 30 seconds leaves us
with the perception of a red patch when we look at a white background. Sim-
ilarly, a red patch leaves us with green, and a blue, yellow. Another curious
phenomenon involves color naming. When asked to give additive mixture
names to spectral colors, we employ more than three primaries (Judd, 1951).
To cover the spectrum, we need names such as “reddish blue” and “yellowish
green.” This phenomenon occurs across cultures as well (Berlin and Kay,
1969). For these and other reasons, it would appear that an opponent process
theory is needed to account for human color perception. The modern form of
this theory is integrated with trichromatic theory in a stagewise model.
Trichromatic theory involves the initial integration of receptor signals, while
opponent process involves later stages. The three opponent mechanisms are
white-black, red-green, and blue-yellow.

Brightness

Heat

Rainbow

Circular

Bipolar
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We must be careful not to assign multiple color components to multiple
variables. Even using two at once is dubious (see Wainer and Francolini,
1980). In general, it is safer to use a single color dimension such as color.hue,
or the parent function color() to index a specific color scale (Brewer et al.,
1997). Travis (1991) and Brewer (1994, 1996) present strategies for effective
color representation. Olson and Brewer (1997) discuss ways to construct
scales for the color-vision impaired. 

10.5.6.2  Brightness
Brightness is the luminance, or lightness/darkness of a patch. Figure 10.23
shows a brightness scale for five patches. Brightness can be used to represent
categorical dimensions, but only with a few categories.

Figure 10.23  Brightness variation

10.5.6.3  Hue
Hue is the pure spectral component (constant intensity) of a color. Figure
10.24 shows five different hues: red, yellow, green, blue, purple. Hue is par-
ticularly suitable for representing categorical scales. Boynton (1988) names
11 basic colors: red, yellow, green, blue, white, gray, black, orange, purple,
pink, and brown. These are especially suited for categorical scales, although
Kosslyn (1996) advises against using all 11 at the same time. 

Figure 10.24 Hue variation

10.5.6.4  Saturation

Saturation is the degree of pure color (hue) in a patch. Figure 10.25 shows five
different saturation levels for a red patch, from gray (lacking any hue) to red
(pure hue). The brightness of the patches should be constant. MacEachren
(1992) recommends saturation for representing uncertainty in a graphic.

Figure 10.25  Saturation variation
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10.5.7 Texture

Texture includes pattern, granularity, and orientation. Pattern is similar to fill
style in older computer graphics systems, such as GKS (Hopgood et al., 1983)
or paint programs. Granularity is the repetition of a pattern per unit of area.
Bertin describes it as “photographic reduction.” Orientation is the angle of pat-
tern elements. The word orient derives from the Latin word for sunrise (in the
East). Conversely, the word occident is derived from the Latin word for sunset
(in the West). Thus, orientation is alignment relative to the East.

A mathematical definition of texture is the spatial distribution of bright-
ness values of the 2D image of an illuminated surface. This definition under-
lies the texture perception research of Julesz (1965, 1971, 1975). Spatial
distribution can be represented in several ways. One of the most common is
through the Fourier transform, which decomposes a grid of brightness val-
ues into sums of trigonometric components. This decomposition is orienta-
tion-dependent. Rotate the image, and another decomposition results. Another
representation is the auto-correlogram, used by Julesz to characterize the
spatial moments of a texture. The correlogram can be calculated in ways that
make it orientation independent. These and other spatial functions have been
used to construct machine texture-perceivers (see Watt, 1991 for a general dis-
cussion of texture/form issues). This topic also gives us the opportunity to cite
our favorite title for a statistical paper on this or any subject, Besag (1986).

Texture alone can be a basis for form perception. Two gray areas that have
the same overall level of brightness can be discriminated if their texture is dif-
ferent. The letter “R” rendered in a gray sand texture is readable against a
background rendered in a gray woven cloth texture. Surprisingly, this form
perception occurs even when the outlines of the form itself do not exist on the
retina. Julesz demonstrated this with an invention of his called the random-
dot stereogram. This display has been popularized recently in books whose
pages have paired patches of computer-generated dots that reveal hidden fig-
ures when the reader fuses both images in the mind’s eye. Julesz’s research
shows that a form emerges when the spatial distributions of the separate retinal
images are processed in the visual cortex. Papathomas and Julesz (1988) dem-
onstrate some graphical applications of the random-dot stereogram. 

Form, pattern, and granularity interact. The top row of Figure 10.26
(adapted from Julesz, 1981) shows how. In the leftmost patch, we see a back-
wards “R” embedded in a field of regular “R”s. English (Indo-European) read-
ers recognize this as a shape violation. They can distinguish this on the basis
of form alone without resorting to texture perception. Others can recognize the
figure from a single form comparison with any adjacent letter. Still others can
recognize the figure by paying attention to the texture of the whole patch. For
the middle patch, either form or texture detection picks up the array of back-
wards “R”s embedded in the lower right corner. The right patch, however, in-
vokes purely texture perception, at least if held at the proper distance from the
eye. 
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The interaction shown in this example helps explain Bertin’s use of shape
and orientation to describe both form and texture. Given a continuum, Bertin’s
taking an opportunity to reduce the number of basic constructs makes sense.
As we have explained earlier in this chapter, however, implementing a render-
er requires us to keep these concepts separate but parallel.

The bottom row of Figure 10.26 shows how random orientation can defeat
texture-based perception of form. Each patch is a randomly oriented version
of the patch in the upper row. In the left patch, it is possible to discern the back-
wards R by serially scanning the forms. It is still possible to do this in the mid-
dle patch, although quite difficult. It is almost impossible to do so in the
rightmost figure. The random orientation masks the spatial boundaries of the
sub-patch so that it is no longer detectable as it is in the patches in the top row. 

Figure 10.26  Granularity and orientation affect perception of form

10.5.7.1  Granularity

The top row of Figure 10.26 illustrates continuous granularity variation. Fig-
ure 10.27 shows another example. This is a grating of constant brightness that
varies in spatial frequency. Optometrists use these patterns to measure resolu-
tion of the visual system. Less grainy patterns (having fewer low-frequency
spatial components) are more difficult to resolve.

Figure 10.27  One-dimensional granularity
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Figure 10.28 shows several degrees of granularity variation for lines. No-
tice the similarity between this example and the ones in Figure 10.27. Each
row of Figure 10.28 can be considered to be a vertically compressed pattern
like those in Figure 10.27. Both figures contain, in fact, 1D texture maps. 

Figure 10.28  Line granularity

10.5.7.2  Pattern

Figure 10.29 shows continuous and categorical variation in pattern. The con-
tinuous examples (upper row) make use of increasing degrees randomness in
a uniform spatial distribution. The categorical examples employ different
shapes for their elements. The luminosity (brightness) of each patch is con-
trolled by maintaining the same proportion of black pixels in each. 

Figure 10.29  Pattern: continuous (upper) and categorical (lower)

Line patterns can be varied by filling thick lines with different patterns. A
dashed line, for example, can be constructed by filling the interior of a thick
line with a one-dimensional grid pattern, as in Figure 10.28. With apologies to
Tufte, this is also the method we use for making lines out of flags. We fill the
polygon defined by a thick line with a bitmap image of a flag. Some countries
have laws against this sort of thing; check with your local authorities before
using flags in graphics. 
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10.5.7.3  Orientation
Figure 10.30 shows several degrees of orientation variation. Orientation

affects other components of texture, so it is not always a good idea to use it for
representing a variable. Notice how variation in texture orientation introduces
a visual illusion, making the lines seem not parallel. Tufte (1983) has excellent
examples illustrating why use of orientation — whether for lines or for
areas — introduces visual vibration, Moire patterns, and other undesirable ef-
fects.

Figure 10.30  Line texture orientation

10.5.8 Blur

Blur describes the effect of changing focal length in a display. It is implement-
ed by filtering a bitmap. As MacEachren (1992) discusses, blur is an attribute
ideally suited for representing confidence, risk, or uncertainty in a process.
Wilkinson (1983b) used blur to represent sampling error in histograms. Figure
10.31 shows five different blur levels.

Figure 10.31 Blur variation

10.5.9 Transparency
Transparency, like blur, is an attribute suited for the display of uncertainty. It
is implemented by blending layers of a color or gray-scale bitmap. Figure
10.32 shows five different transparency levels.

Figure 10.32  Transparency variation
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10.5.10 Motion

Animation is discussed in Cleveland and McGill (1988) and Earnshaw and
Watson (1993). It is implemented in a wide range of visualization software.
For obvious reasons, a book is not the ideal format for presenting animation.
For a glimpse, flip the pages and watch the page numbers in the corner change.

10.5.11 Sound

Sound can be used to display graphics in different ways. One approach is to
use pitch, amplitude, texture, and other waveform features to represent sepa-
rate quantitative dimensions (Bly, 1983; Mezrich et al., 1984; Bly et al., 1985,
Fisher, 1994). This is the approach taken when a sound attribute is added to
other dimensions in a visual graphic. The other approach is to treat every ob-
ject in a graphic as a sound source and embed all objects in a virtual spatial
environment (Julesz and Levitt, 1966; Blattner et al., 1989; Bregman, 1990;
Smith et al., 1990; Hollander, 1994). In this soundscape approach, the meta-
phor of a symphony or opera performance is not inappropriate. A scatterplot
cloud can be represented by a chorus of “singers” distributed appropriately in
space. Thus, instead of using sound to represent a quantitative dimension, we
can use sound to paint a real scene, a sonic image that realizes the graphic it-
self. An added benefit of this method is that motion can be represented in time
without interfering with other dimensions of the signal. Sighted people must
be reminded that the potential dimensionality of a sound environment is at
least as large as a visual. Soundscape technology now makes this feasible, par-
ticularly for development environments like Java, where soundscape capabil-
ity is built into 3D graphics foundation classes. Krygier (1994) reviews issues
in the use of sound for multidimensional data representation. See also Shepard
(1964), Kramer (1994), and Figure 9.57 for further information on the struc-
ture of sound perception. In the end, however, you can listen to this book for
a long time before you hear any sound.

10.5.12 Text

Text has not generally been thought of as an aesthetic attribute. We classify it
this way because reading involves perceptual and cognitive processing that
helps one to decode a graphic in the same way that perceiving color or pattern
does. The label() text attribute function allows us to associate a descriptive la-
bel with any graphic. It places text next to a point, on top of a bar, or near a
line, for example. We will not present a separate example for the label() func-
tion in this chapter. Instead, it appears in numerous graphics throughout this
book (e.g., Figure 10.33, the next example). The label() attribute function al-
lows us to associate with the graphic a descriptive text constant (e.g., "New
York") or a value that is automatically converted from numeric to text (e.g.,
"3.14159").
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10Aesthetics

10.6 Examples
The following examples illustrate selected aesthetic attributes. Each is set by
using one of the attribute functions in a graphing function parameter list.

10.6.1 Position

Position is used so often as the primary attribute for a graphic that we can fail
to notice the variations we can produce by altering it. One application is to em-
bed multiple graphics in a common frame by using different positional vari-
ables. This section outlines a variety of applications.

10.6.1.1  Embedding Graphics

Ordinarily, multiple elements in a frame share the same algebraic expression
on the same variables inside the position() aesthetic function. Sometimes we
wish to embed graphics in a common frame using different variables, howev-
er. As long as the variables share scale specifications (categorical or continu-
ous), these embeddings are meaningful. 

As part of a study of lay self-diagnosis, Wilkinson, Gimbel, and Koepke
(1982) collected co-occurrences of symptoms within disease classifications of
the Merck Manual. We computed a multidimensional scaling of these selected
symptoms in order to provide a framework for analyzing self-diagnosis from
the same symptoms. Figure 10.33 shows the result of that scaling. 

ELEMENT: point(position(dim(1)*dim(2)), shape(cluster), label(symptom))
ELEMENT: polygon(position(bin.voronoi(mean(1)*mean(2))))

Figure 10.33  Disease symptoms
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The coordinates of the 18 symptoms and their labels are fixed by the
dim(1) and dim(2) variables in the first position() specification. Separate rat-
ings of the symptoms yielded four clusters: respiratory, neurologic, muscular,
and abdominal. Figure 10.33 shows a Voronoi tessellation (see Section
10.6.3.5) superimposed on the graphic. This graphic was positioned by using
two variables containing only the means of the four clusters on the two dimen-
sions. The boundaries almost perfectly separate the clusters in a radial pattern
that closely resembles the hand-drawn graphic in the original article. Note that
the positional frame is set by the union of dim(1) and mean(1) and dim(2) and
mean(2), respectively. This works the same way a blend does.

10.6.2 Size
The size() attribute is most applicable to point graphics, but it has interesting
applications elsewhere. Figure 20.1, for example, shows how size() can be
used to control the segment-by-segment thickness of a path. The size() at-
tribute can also be used to control the width of bars. The most popular appli-
cation of size() is the bubble plot.

10.6.2.1  Bubble Plots
Figure 10.34 shows a bubble plot using symbol size to represent the reflectiv-
ity (albedo measure) of the planets in our solar system. The frame plots dis-
tance from the Sun (normalized so that the Earth–Sun distance is 1 unit) by
mean temperature (in Kelvin). We have logged both scales so that the planets
align roughly along the diagonal and the discrepancy of Venus is highlighted.
The data are from the NASA Web site (nssdc.gsfc.nasa.gov).

SCALE: log(dim(1), base(10))
SCALE: log(dim(2), base(10))
ELEMENT: point(position(distance*temperature), size(albedo), 

label(planet))

Figure 10.34 Bubble plot of planet reflectivity (albedo)
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Another application of the size() attribute is in assessing statistical as-
sumptions via graphics. The Pearson correlation coefficient, for example,
measures the standardized linear association between two random variables
that vary jointly. It is calculated by standardizing both variables to have zero
mean and unit standard deviation and then averaging the cross-products of the
standard scores. Certain extreme cases can contribute disproportionately to
this computation, so it is often useful to look for such cases before trusting the
correlation as a measure of association on a given set of data. One straightfor-
ward index of influence of a case on the computations is to compute the Pear-
son correlation with and without the case and examine the difference. This can
be done for all cases and the influence measure used to size plotting symbols. 

Figure 10.35 shows an example. We have plotted torque against horse-
power for the cars dataset used in Figure 8.2. These performance statistics are
usually linearly correlated among production automobile engines. One case
stands out at the top of the plot, however. It is the Ferrari 333P race car. Some
race car engine designers sacrifice torque for horsepower because they wish to
favor top speed (at high RPM’s) over acceleration. They compensate for this
bias by making the car bodies as light as possible.

We have inserted two point clouds into the frame, one in blue to reveal
each point and one in red to represent the influence function. The filled circles
denote negative influence (correlation increased when the case was omitted)
and the hollow circles denote positive (correlation decreased when the case
was omitted). The filled circle for the Ferrari shows that it is attenuating the
correlation by more than .10 even though it is in the upper right quadrant of
the plot. 

TRANS: influence = influence.pearson(torque, hp)
TRANS: polarity = sign(influence)
ELEMENT: point(position(torque*hp), color(color.blue))
ELEMENT: point(position(torque*hp), size(influence), color(color.red),

texture.pattern(polarity))

Figure 10.35  Pearson correlation influence scatterplot
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Figure 10.36 shows how to use size to represent the counts in the GSS
dataset. Note the contrast between this result and that in Figure 8.25. There,
small counts were distinguishable; here, large counts are distinguishable. We
could change this perception by transforming and threshholding the size scale,
but representing the entire range would be problematic.

ELEMENT: point(position(sex*bible), size(count))

Figure 10.36  Representing counts with size aesthetic

10.6.3 Shape

The shape() attribute function is most often used to determine the shape of
plotted symbols in point graphics. It also affects the shape of bars and other
graphics.

10.6.3.1  Symbol Shapes

We are accustomed to seeing dot plots constructed from dots. There is nothing
in the algorithm to prevent us from using other symbol shapes, however. Fig-
ure 10.37 shows an example of a dot plot using squares. The plot is computed
on the sleep data from Allison and Cicchetti (1976), containing brain weights
of 62 animals. We have logged the scale and used square dot shapes to empha-
size the uneven spacing of the dots. For the singletons, the center of the square
is placed exactly above the scale value it represents. This makes dot plots look
more like histograms.
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SCALE: log(dim(1), base(10))
ELEMENT: point.dodge(position.bin.dot(brainweight), shape(shape.square))

Figure 10.37 Logged dot plot

Figure 10.38 shows a scatterplot of the distribution of king crabs captured
in a 1973 survey off Kodiak Island, Alaska. The data, posted on Statlib
(www.lib.stat.cmu.edu/crab), were provided by the Alaska Department of Fish
and Game. Each symbol is located at one of the survey sites marking a string
of crab pots resembling the ones used by the commercial fishing fleet. The
pots were left in the water for approximately a day, removed, and the crabs
counted. 

The symbols in Figure 10.38 are used to characterize the distribution by
sex at the sites. Yields of more than 10 males at a site are marked with a ver-
tical line, yields of more than 10 females are marked with a horizontal line,
yields with more than 10 of both sexes are marked with the union of these
symbols (a plus), and all other yields (including no crabs) are marked with a
dot. This plot is patterned after several featured in Hill and Wilkinson (1990).
Notice that the waters southwest of the island had a dearth of female crabs that
year.

The choice of symbol shapes affects how distributions in a scatterplot are
perceived. The obvious choice of male and female symbols ( ) is not a good
one, because there is little perceptual contrast between the two. See Cleveland
(1993) and the accompanying discussion of issues involving symbol choices.
We have used vertical and horizontal line symbols in Figure 10.38 in order to
maximize the orientation contrast, following a suggestion made in a comment
on Cleveland (Wilkinson, 1993b), and also to highlight the potential union of
crabs at a site.
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DATA: longitude, latitude = map(source("Kodiak"))
ELEMENT: point(position(lon*lat), shape(group))
ELEMENT: polygon(position(longitude*latitude))

Figure 10.38 King crabs near Kodiak Island by gender

10.6.3.2  Polygon Shapes

Symbol shapes need not be determined by a fixed repertoire of symbols. They
can also be set by arbitrary polygons. Figure 10.39 shows a scatterplot of win-
ter and summer temperatures using state outlines derived from a shape file.
We got the idea for this plot from Woodruff et al. (1998). It is a clever appli-
cation, although labeling the points with the names of the states using
point(label(state)) would make it easier to identify them. Perhaps this graphic
would find its best use in a secondary school geography contest.
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ELEMENT: point(position(winter*summer), shape.polygon(state))

Figure 10.39  Scatterplot of states

10.6.3.3  Glyphs

Symbol shapes can be determined by even more complex algorithms. The fol-
lowing sections discuss glyph() functions. These are used to determine the
shape of point graphics based on one or more variables extrinsic to the frame.
Glyphs are geometric forms used to represent several variables at once (Fien-
berg, 1979; Carr et al., 1992; Haber and McNabb, 1990). 

glyph.face

Herman Chernoff (1973) invented the FACES display. Figure 10.8 shows an
example of Bruckner’s (1978) revision of Chernoff’s FACES, and Figure
10.10 shows an example of Flury and Riedwyl’s (1981) version. Consult those
figures to see how the glyph.face (Bruckner) and glyph.face2 (Flury and Ried-
wyl) act on the shape attribute of point to produce the glyphs. The figures ear-
lier in this chapter show them plotted in a rectangular array, but some of the
examples here will show how glyphs can be used in other configurations.

glyph.bar

Figure 10.9 shows an example of the glyph.bar function. This creates a histo-
gram profile for each row in the dataset across the specified variables. 
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glyph.profile

The profile glyph is constructed similarly to a bar, except the bar heights are
connected with a single profile line. Figure 10.40 shows an example.

ELEMENT: point(position(col*row), shape.glyph.profile(health..arts),
label(city))

Figure 10.40 Profile glyphs

glyph.star

The star function is simply a profile function in polar coordinates. Figure
10.41 shows an example. 

ELEMENT: point(position(col*row), shape.glyph.star(health..arts),
label(city))

Figure 10.41  Star glyphs
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glyph.sun

The sun glyph substitutes rays for the perimeter of a star. Figure 10.42 shows
an example that uses a coordinate scaling procedure developed by Borg and
Staufenbiel (1992). Instead of plotting evenly spaced polar rays, Borg and
Staufenbiel compute a set of row vectors taken from the first two columns of
the matrix V in the singular value decomposition X = UDVT of the data matrix
X. These vectors are proportional to the variable coordinates of a 2D biplot
(Gabriel, 1971, 1995; Gower, 1995). For each observation, Borg and Staufen-
biel scale the length of the vectors to be proportional to the normalized values
of the variables. This produces a set of stars varying only in the length of their
rays.

An advantage of this procedure is that, unlike the other glyphs, it does not
depend on the order of the variables in the function parameter list. Further-
more, variables that covary in the data are represented by vectors that have rel-
atively small mutual angles. This reduces the emphasis given to redundant
variables. Borg and Staufenbiel compared their method to other popular glyph
displays and found that judgments of similarity based on sun glyphs were
more accurate on generated data than judgements based on the other displays.

ELEMENT: point(position(col*row), shape.glyph.sun(health..arts),
label(city))

Figure 10.42 Sun glyphs
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glyph.blob

Andrews (1972) introduced a Fourier transform on rows of a data matrix that
allows one to plot a separate curve for each row. Cases that have similar values
across all variables have comparable wave forms. Section 9.4.2.1 presents An-
drews’ method. The function Andrews used is

where x is a p-dimensional variate and t varies continuously from –. to .. The
blob glyph plots Andrews’ function for each case in polar coordinates. Figure
10.43 shows an example. The shape of the blobs depends on the order variates
are entered in the Fourier function. Thus, blobs share a variable-ordering prob-
lem with most of the other glyph methods.

ELEMENT: point(position(col*row), shape.glyph.blob(health..arts),
label(city))

Figure 10.43 Fourier blobs
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glyph.therm

The therm glyph resembles a thermometer. Ordinarily, it is useful for repre-
senting only one variable, in a mode that resembles the mercury level in a ther-
mometer. Cleveland and McGill (1984b) recommend it for adding a variable
to scatterplots (as opposed to using size or shape attributes) because of the op-
portunity for accurate linear scale decoding that it offers. Dunn (1987) pro-
posed varying the width of the therm to display yet another variable. Figure
10.44 shows an example. We have superimposed the glyphs on a map of the
continental US. The width of the thermometers is proportional to winter tem-
peratures and the filled area is proportional to rainfall. Varying width is a clev-
er idea, but it introduces configurality into the judgment of the symbols. It
needs to be used with caution.

DATA: longitude, latitude = map(source("US states"))
ELEMENT: polygon(position(longitude*latitude), pattern(pattern.dash))
ELEMENT: point(position(lon*lat), shape.glyph.therm(rain, winter))

Figure 10.44  Thermometer glyphs
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glyph.vane

The vane glyph uses direction and length and size of circle to represent three
variables. Carr and Nicholson (1988) discuss the use of this and other “ray”
representations. Many of them derive from the weather map symbols for wind
vectors. These symbols resemble small flags that point in the direction of the
wind.

Figure 10.45 shows an example involving continental US climate data.
The size of the symbols is proportional to rainfall, the length of the vanes is
proportional to summer temperatures, and the rotational angle is proportional
to winter temperatures. The problem in using vanes this way is that the wind
metaphor interferes with decoding values when we do not map the angles to
wind direction and lengths to wind speed. See Figure 10.48 for comparison.

DATA: longitude, latitude = map(source("US states"))
ELEMENT: polygon(position(longitude*latitude), pattern(pattern.dash))
ELEMENT: point(position(lon*lat), shape.glyph.vane(rain, summer, winter))

Figure 10.45  Vane glyphs
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10.6.3.4  Shape set by Image

Images can be used to determine the shape of points, bars, and other graphics.
Figure 10.46 shows a scatterplot of facial expressions adapted from psycho-
metric research documented in Russell and Fernandez-Dols (1997). The con-
figuration in this plot fits a pattern called a circumplex (Guttman, 1954),
which is best interpreted through polar coordinates. In this example, the center
of the configuration is marked by a face showing lack of emotion. Radial dis-
tance from this point in any direction represents intensity of emotion and polar
angle represents type of emotion. These two polar variates can be more inter-
pretively useful than the rectangular axis labels (sleepiness-activation and un-
pleasantness-pleasantness) shown here. When images have substantive
meaning, as in this example, they can legend a graphic more effectively than
any other type of symbol or guide.

DATA: face = link("faces")
ELEMENT: point(position(pleasantness*activation), shape.image(face))

Figure 10.46  Scatterplot of faces (images courtesy of James A. Russell)
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10.6.3.5  Bar Shapes

Figure 10.47 shows a shape variation on bars using a “pyramid” shape func-
tion. This form of bars is not recommended because the slopes of the bar sides
change with their height, a confusing visual illusion.

ELEMENT: interval(position(summary.mean(gov*birth)), 
shape(shape.pyramid))

Figure 10.47 Pyramid-shaped bars

10.6.4 Rotation
Figure 10.48 shows how to use rotation() and size() to plot velocity of winds
with an arrow symbol. The data are from the Seasat-A satellite scatterometer
(podaac.jpl.nasa.gov) reported in Chelton et al. (1990).

DATA: longitude, latitude = map(source("World"))
COORD: project.robinson(dim(1, 2))
ELEMENT: polygon(position(longitude*latitude), color(color.green))
ELEMENT: point(position(lon*lat), shape(shape.arrow), rotation(direction),

size(strength))

Figure 10.48  Global prevailing winds
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10.6.5 Resolution
Figure 10.49 shows how to control the number of bars in a histogram. The data
are standard normal pseudorandom numbers. Notice how the shape of the his-
togram changes under different resolutions.

ELEMENT: interval(position(summary.count(bin.rect(z, bins(b)))))

Figure 10.49  Standard normal histograms

10.6.5.1  Dot-Box Plots

Resolution need not affect the number of geometric elements in a graph. Dot
plots, for example, are binned by placing nearly overlapping points at the same
location and then stacking them like a tally. This reduces the data resolution
but not the number of points. Figure 10.50 shows schema and point graphics
grouped by a categorical variable (gov). This plot, suggested to us by Jerry
Dallal when he superimposed separate SYSTAT graphics, resembles some
variations in the box plot devised by Tukey (1977).

ELEMENT: schema(position(gov*birth))
ELEMENT: point.dodge.symmetric(position(bin.dot(gov*birth, dim(2))),

color(color.green))

Figure 10.50  Box and dot plots by group
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10.6.6 Color

Color can be especially effective for categorical coding. This section also fea-
tures continuous color scales.

10.6.6.1  Representing Counts with Color

Figure 10.51 shows two uses of color on the GSS dataset. The upper panel
uses color.brightness and the lower panel uses color.hue.

ELEMENT: point(position(sex*bible), color.brightness(count))

ELEMENT: point(position(sex*bible), color.hue(count))

Figure 10.51  Representing counts with color aesthetic
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10.6.6.2  Shading with Color (continuous color scales)

Figure 10.52 shows an example of shading (setting an attribute by a continu-
ous variable) with the Iris data. The values of petalwidth determine the shades
of color of the symbols plotted. We must use color.hue() instead of color() be-
cause we are mapping to a continuous scale rather than a table of color cate-
gories. Even though there are several species in the plot, there is only one
cloud of points. No subgrouping occurs because species was not used to split
this graphic. The shading shows that petal width varies more strongly with the
difference between sepal length and sepal width than with their sum.

ELEMENT: point(position(sepallength*sepalwidth), color.hue(petalwidth))

Figure 10.52  Scatterplot shaded by color

10.6.6.3  Splitting with Color (categorical color scales)

Exchanging the continuous shading variable in Figure 10.52 for a categorical
splitting variable produces the graphic in Figure 10.53. There are now three
ellipses and point clouds, one for each species. Without the contour graphic,
we would have no way of knowing whether there are one or three clouds. This
is because we could have treated species as continuous (by giving it numerical
values), which would yield one point cloud shaded with three values.
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ELEMENT: point(position(sepallength*sepalwidth), color(species))
ELEMENT: contour(position(region.confi.mean.joint(sepallength*sepalwidth)), 

color(species))

Figure 10.53 Scatterplot split by subgroups

10.6.6.4  Legending a Blend with Color

Blends usually require legends to distinguish the variables on which the
blends are based. The string() data function fills a column with a specified
string (see Section 3.1). For example, string() indexes a blend of variables A
and B in the following manner: 

The string() data function doesn’t actually allocate storage to do this; it
simply returns the appropriate string value whenever a blend is used. If there
is no blend, then string() returns a string for as many cases as exist in the
FRAME specification. We ordinarily use a string() variable to label, color, or
otherwise describe a blend. 

�����-�����

�
�

�
�

�
;

	�
��

� � � 1 2

�

�

�

�

�

��� 	�%

���$%�
5�
%	 $�$

5	
�	�	 �

A
a1
a2
a3
a4

B

b1
b2
b3
b4

+

(A+B)
a1
a2
a3
a4
b1
b2
b3
b4

string("a")+string("b")

a
a
a
a
b
b
b
b

=



10.6  Examples 311

Figure 10.54 shows an example. Notice that the color attribute function
operates on the string() function to add color to the point and contour graphics.
Notice also that because string() creates a categorical variable, it splits the one
cloud into two. Using a variable in a graphing function is like crossing with
that variable.

DATA: s=string("Sepal width")
DATA: p=string("Petal width")
ELEMENT: point(position(sepallength*(sepalwidth+petalwidth)),

color(s+p))
ELEMENT: contour(position(region.confi.mean.joint(
                                                sepallength*(sepalwidth+petalwidth)),
                                color(s+p))

Figure 10.54  Blended scatterplot

For repeated measures and multivariate data, we often wish to plot values
against a variable that represents the indices of the measures. For example, we
might have measurements on subjects before and after an experimental treat-
ment and we want a plot with measurements on the vertical axis and two val-
ues, before and after on the horizontal axis. Figure 10.55 shows an example of
this type of design, using data from Estes (1994). The experiment involved a
320-trial learning series requiring subjects to classify artificial words as adjec-
tives or verbs. The exemplar variable denotes whether words in the trials were
first occurrences (new) or first repetitions (old). The trials were grouped in 4
blocks of 80 trials each.

The blend in the specification (vertical axis) is plotted against the names
of the blend variables (horizontal axis). The exemplar variable is used to de-
termine the hue of both graphics and the shape of the symbols in the point
graphic. 
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DATA: b1=string("BLOCK(1)")
DATA: b2=string("BLOCK(2)")
DATA: b3=string("BLOCK(3)")
DATA: b4=string("BLOCK(4)")
ELEMENT: line(position(b1* block1+b2*block2+ b3*block3+b4*block4), 

color(exemplar))
ELEMENT: point(position(b1* block1+b2*block2+ b3*block3+b4*block4),

color(exemplar), shape(exemplar))

Figure 10.55  Repeated measures experiment from Estes (1994)

Figure 10.56 shows an application of color to distinguish groups in a nest-
ed design. The figure is based on data of Charles Darwin, reprinted in Fisher
(1935). The design included 15 pairs of plants (self-fertilized and cross-fertil-
ized) distributed across 4 pots. Plant pairs were nested within pots. Pots 1 and
2 contained 3 plant pairs each, Pot 3 contained 5, and Pot 4 contained 4. 

Fisher used these data to illustrate the power of Student’s t-test, arguing
against Galton’s analysis of the same data. In doing so, he noted the peculiar
reversals of plant pair 2 in pot 1 and plant pair 4 in pot 4. Figure 10.56 reveals
these reversals more readily than an examination of the raw numbers. The
graphic is produced by the expression plant/pot*(self+cross). The vertical di-
mension is a blend of the two fertilization variables self and cross. This blend-
ing corresponds to the repeated measure in the design. The horizontal
dimension is a nested factor plant/pot. Notice that the tick marks are spaced
categorically (on integers) and indicate plant within pot. The sections within
the frame are of unequal width because there are different numbers of plants
within the pots. The horizontal axis is telling us that plant pair 1 in pot 1 is not
the same as plant pair 1 in pot 2. Finally, the implicit variables s and c are used
to color the dots according to the measure type (self or cross). Blending these
creates a categorical variable set whose value is the string “Self” or “Cross”
and whose index (1 or 2) is used to determine the color from a preset color ta-
ble.
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DATA: s = string("Self")
DATA: c = string("Cross")
ELEMENT: line(position(plant/pot*(self+cross)), color(s+c))

Figure 10.56  Nested experimental design

Figure 10.57 shows the dot plot of the Shakespeare data featured in Figure
5.7. This time we are coloring the dots according to the name of the blended
variable, which we have encoded in two data strings (f and s).

DATA: f = string("First")
DATA: s = string("Second")
ELEMENT: point.dodge(position(bin.dot(first+second)), color(f+s))

Figure 10.57  Blended dot plot
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Several other widely used plots employ color to mark blends. Figure
10.58 shows how the string() function is used to create a profile plot. This plot
has been used by individual-differences psychologists for almost a century to
display profiles on psychometric tests (see Hartigan, 1975a). The vertical axis
displays the subtest score and the horizontal axis shows the name of the sub-
test. In general, profile plots can be used to display repeated measurements of
a single variable or a multivariate profile on several comparable measure-
ments. In this example, we have used the Fisher Iris flower measurements and
added color to the profiles in Figure 10.58 by referencing the species variable
in the dataset. The three species are distinguished clearly in the plot. Compare
this plot to the parallel coordinate plot shown in Figure 9.60. The difference
between the two is that profile plots have a common measurement scale and
parallel coordinate plots do not.

DATA: sw=string("SEPALWID")
DATA: sl=string("SEPALLEN")
DATA: pw=string("PETALWID")
DATA: pl=string("PETALLEN")
ELEMENT: line(position(sw*sepalwid+sl*sepallen+pw*petalwid+
                                    pl*petallen), color(species))

Figure 10.58  Profile plot of Iris data

10.6.6.5  Using Color in Matrix Plots

Figure 10.59 shows the entire Iris dataset plotted as a matrix using the row and
column data functions. The layout of the cells is determined by the index vari-
ables. The rectangular cuts between datapoints (the lattice of row and column
indices) create the tiles. These tiles are colored by color.hue(). The same
graphic can be created through the blend operator. Can you write a specifica-
tion to do this?

�,*!-;�0 �,*!--,8 *,/!-;�0 *,/!--,8

5�
	�(��

�

�

�

�

�

�

�

1

2

���$%�

5�
%	 $�$


5	
�	�	 �

�*,��,�

�
�
�
��
��
�
�
�
	



10.6  Examples 315

DATA: x = reshape.rect(species, sepalwid, sepallen, petalwid,
petallen, "rowindex")

DATA: y = reshape.rect(species, sepalwid, sepallen, petalwid,
petallen, "colname")

DATA: d = reshape.rect(species, sepalwid, sepallen, petalwid,
petallen, "value")

ELEMENT: polygon(position(bin.rect(x*y), color.hue(d))

Figure 10.59  Matrix plot of Iris data

10.6.6.6  Choropleth Maps

Figure 10.60 shows a choropleth map representing the logged population of
each county in the continental US. This map is based on the Bureau of the Cen-
sus Summary Tape File 3A. Geographers have traditionally disparaged the
spectrum, or rainbow, color scale we have used for representing population in
this choropleth map, but recent perceptual research by Brewer (1996) fails to
support this conventional opinion.

It is interesting to compare this map to two others: the population density
map GE-70, prepared by the Geography Division at Census (reproduced in
Tufte, 1983, and available as a poster from the US Government Printing Of-
fice), and the nighttime satellite composite photo of the US, available through
NASA. Not surprisingly, the distribution of artificial light emanating from cit-
ies and towns matches the Census population distribution figures almost per-
fectly.

We logged the population of each county because the distribution of pop-
ulation in the US is highly skewed. Without logging, almost every county
would be blue or dark green and only a few would be orange or red. An alter-
native approach would be to assign population a dimension and display it on
a decimal log scale. Then the legend would show population on a log scale
(see Chapter 6) rather than the log values themselves.
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DATA: longitude, latitude = map(source("US counties"))
TRANS: lpop = log.10(population)
COORD: project.stereo(dim(1, 2))
ELEMENT: polygon(position(longitude*latitude), color.hue(lpop))

Figure 10.60 Color map of logged county population

10.7 Summary
The major attributes discussed in this chapter are summarized in Table 10.2.
The columns represent geometric forms that are employed by different graph
types: point, line, area, surface, and solid. The rows represent the attributes di-
vided into four super-classes: form, color, texture, and optics.

Table 10.2 is relatively straightforward except for the subtable covering
form attributes. In other sections of the table, we are free to vary an attribute
independently of the other attributes. For example, the hue of any geometric
object is free to vary independently of position, size, shape, and other at-
tributes. With form attributes, however, we sometimes collide with the con-
straints of position. The size of a point is free to vary independently of its
position because changing its size does not change its location. The size of a
line, however, can vary only in its thickness unless its length is not constrained
by a positional variable. The size of an area can be changed only if its bound-
ary is not determined by a positional variable. The size of a polygon, for ex-
ample, can be modified under certain circumstances, but the size of an area
cannot. For similar reasons, the shape of an area can be changed only if it is
not constrained by a positional variable. Similar rules apply to rotation of
lines, areas, surfaces, and solids. In each case, we must look for a degree-of-
freedom from positional constraint.
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Table 10.2  Aesthetic Attributes by Geometry

Point Line Area Surface Solid

Form

  Size

  Shape

  Rotation

Color

  Brightness

  Hue

  Saturation

Texture

  Granularity

  Pattern

  Orientation

Optics

  Blur

  Transparency
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A point is rendered by a symbol, polygon, or image positioned at the co-
ordinates of the point. It has the most degrees-of-freedom of any object be-
cause we can vary every attribute independently of position. Point objects
maintain their appearance under different coordinate systems. For example,
the shape of a point graphic does not change under a polar transformation.

A line is rendered by one or more symbols, polygons, or images posi-
tioned at the coordinates of points on that line. Dashed lines, for example, are
rendered by placing a small number of rectangular polygons or symbols at
points along a line. We change the size of a line by increasing the size of those
symbols in a direction orthogonal to the line itself. This increases the thickness
of the line. The shape of a line is determined by the shape of the object used
to render it — polygon, image, or symbol. Its granularity is determined by the
number of symbols used to render it (if a dashed shaped is used) or by the
granularity of the pattern that fills the line polygon. 

An area is rendered by one or more symbols, polygons, or images posi-
tioned at selected coordinates on a plane. We can vary the size of an area, its
shape, or its rotation only if we have degrees-of-freedom to do so.

A surface is rendered by positioning one or more symbols, polygons, or
images in a 3D space so that the coordinates of one of their vertices or their
centroids lie on a surface. As with lines in 2D space, we vary size of surfaces
by varying their thickness. For example, we could make the surfaces thicker
in Figure 8.4 by adding a size() attribute to the graphics. We can vary shape by
changing the shape of the polygons or elements used to render it. This could
be used to make a surface bumpy or smooth, for example. We can vary the ex-
terior shape of a surface if we have the degrees-of-freedom to do so. We can
also modify the texture of a surface (independently of shape) by changing the
texture map used to render it.

A solid is rendered similarly to a surface. Depending on how they are em-
ployed by a graphic, solids may have more than one degree-of-freedom avail-
able for varying attributes like size, shape, and rotation. Thus, we may change
the size of one or more facets of a rectangular solid and we can vary its rotation
along one or more dimensions depending on which facets are positionally an-
chored. We have shown this in the last column of Table 10.2. If a solid has no
degrees-of-freedom for representing an attribute such as size, then we cannot
vary such an attribute.

10.8 Sequel
We have so far concentrated on single graphics. Often, we want to create ta-
bles and other structures of graphics. The next chapter covers facets, which
create such multiplicities.



11
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The English word facet is derived from the Latin facies, which means face. A
facet implies a little face, such as one of the sides of an object (e.g., a cut dia-
mond) that has many faces. This word is useful for describing an object that
creates many little graphics that are variations of a single graphic. In a graph-
ical system, facets are frames of frames. Because of this recursion, facets
make frames behave like points in the sense that the center of a frame can be
located by coordinates derived from a facet. Thus, we can use facets to make
graphs of graphs or tables of graphs. Indeed, tables are graphs. This general
conception allows us to create structures of graphs that are more general than
the specific examples of multigraphics such as scatterplot matrices (Chambers
et al., 1983), row-plots (Carr, 1994), or trellises (Becker and Cleveland, 1996).
We can also construct trees and other networks of graphs because we can link
together graphic frames in the same way we link points in a network. And we
can transform facets as well as frames to make, for example, rectangular ar-
rays of polar graphics or polar arrangements of rectangular graphics. For a
similar concept in the field of visualization, see Beshers and Feiner (1993).

All the machinery to make a faceted graphic can be derived from the def-
inition of a frame itself in Chapter 2. In other words, a facet is simply another
frame extended from the frame class. Its name denotes its role as a pattern
maker for other frames. How patterns of frames are produced, organized, and
displayed is a matter of attaching various schemes to their drawing methods.
These schemes may be driven by explicit data (as in most of the examples in
this chapter) or by implicit methods that involve simple iterations. 

11.1 Facet Specification
Facets are embeddings. A facet of a facet specifies a frame embedded within
a frame. A facet of a facet of a facet specifies a frame embedded within a frame
embedded within a frame. Each frame is a bounded set which is assigned to
its own coordinate system. To construct facets, therefore, we use the COORD

specification.
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For example, the three-dimensional frame

COORD: rect(dim(1, 2, 3))

consists of a 3D frame. The rect() function denotes rectangular coordinates.
Adding graphics to this specification produces a single 3D plot. By contrast,
the three-dimensional frame

COORD: rect(dim(3), rect(dim(1, 2)))

consists of a 2D frame represented by the first two measures embedded in the
1D facet frame represented by third variable. Adding graphics to this specifi-
cation would produce a row of 2D plots.

More complex facet structures follow the same model. That is, a four-di-
mensional graph can be realized in four 1D frames, a 1D frame embedded in
a 2D frame embedded in a 1D frame, two 2D frames, a 3D frame embedded
in a 1D frame, and so on. A chain of nested COORD specifications is a tree of
facets, with the first child of the second, the second child of the third, and so on.

11.2 Algebra of Facets
Trees and tables are alternate ways to represent facets. Table 11.2 lists a vari-
ety of facets sharing a common COORD specification. We have omitted the first
variable set (say, x) associated with the first dimension in order to show the
remaining terms in the frame that produce a table in each case. You may think
of these examples as involving a dot plot of x for each combination of the fac-
ets determined by the variables in Table 11.1. 

Table 11.1 contains the data on which Table 11.2 is based. 

The first row of Table 11.2 shows the simple expression a, which yields a
tree with two branches and a table with two cells, one for each value of a. We
have used a dot in each cell to represent the presence of a graphic within the
cell. We could put a one-dimensional graphic in each of the two cells of this

Table 11.1  Data for Table 11.2

a b c d

-��3 9��� 4���$ �0���

9��� 9��� 4���$ �0���

-��3 ���� 4���$ �0���

9��� 9��� ?�# �0���

9��� 9��� ?�# 5���

9��� 9��� ?�# 5���
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table with the expression x*a. The full specification for a one-dimensional
scatterplot split into these two cells would therefore be:

COORD: rect(dim(1), rect(dim(2)))
ELEMENT: point(position(x*a))

The specification for a two-dimensional scatterplot split into these two cells
would be:

COORD: rect(dim(3), rect(dim(1, 2)))
ELEMENT: point(position(x*y*a))

The second row of Table 11.2 shows a crossing a*b, which produces a 2x2
table in this case. We should not assume this operator always implies a cross-
tabulation structure, however. As we will show in row 5 of Table 11.2, a cross-
ing can look superficially like a nesting. Market-research, data-mining, and
statistical tabulation packages fail to make this distinction and thus miss the
fact that crossing is an aspect of a frame, not a layout. A frame and a view must
be carefully distinguished. Notice that only three of the four cells are filled.
The fourth cell has no dot, but there remains the possibility that data may be
encountered that fit this combination of categories.

The third row shows the nested expression a/b. As the definition of nesting
in Chapter 2 reveals, the term a*b is two-dimensional, while the term a/b is
one-dimensional. In other words, there is only one scale of values above the
three cells in row 3 of Table 11.2. We have made these reference values italic
to indicate that they are nesting rather than crossing categories. 

The distinction between row 2 and row 3 may appear subtle and of only
surface importance. Imagine, however, the difference between the following
two associations. The first to consider is the crossing of gender with marital
status. The possible combinations are married men, married women, single
men, and single women. The second is the nesting of pregnancy status under
gender. The possible combinations are pregnant women, non-pregnant wom-
en, and non-pregnant men. Non-pregnancy has a different meaning for men
than for women. Marital status by gender is two-dimensional because all pos-
sible combinations of the values are possible. Pregnancy status by gender is
one-dimensional because only three combinations are possible and the values
of status are not comparable across the gender variable. We could design a va-
riety of physical layouts to convey the difference between nesting and cross-
ing, but any layout for nesting must clearly show only the possible
combinations. If a cell is left empty, we might imagine that it could be filled
by an observation. This must never occur for a physical representation of an
impossible category in a nested structure.

Row 4 shows a blending. A blending is a one-dimensional operation that
collapses tied categories. We see only three cells because the name Jean within
variable a is taken to be the same value as the name Jean within variable b.
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Row 5 illustrates the subtlety with crossing that we mentioned in discuss-
ing row 2. It also illustrates the use of a constant value (1) as a place-holder.
The a variable set is crossed with 1 to yield one row of two values. This set, in
turn, is split into two by the values of b. The placement of the 1 is critical. The
sequence of orientations in the faceted coordinate system is h, v, h, v, ... , where
v is vertical and h is horizontal. The lattice on which this coordinate system is
based has no limit. Remember, also, that the cross operator is not commuta-
tive.

Row 6 shows a tree and table for the expression (a + b) * c, which is equiv-
alent to a*c + b*c. Notice, as in row 4, that there are only three levels for the blend-
ed dimension because of the presumed tie in data values.

Row 7 shows a tree and table for the expression (a + b)/c, which is equiv-
alent to a/c + b/c. This operation blends two trees like the one in row 3.

Row 8 illustrates the expression a*b + c*1. There is no row label for the two
columns Y and O because the crossing set for this group is unity. Using a nesting
operator in combination with crossing may produce row or column labels in the
middle of the aggregated table, however (see row 12).

Table 11.2 Tables and Trees

Expression Tree Table

1

a

2

a * b

3

a/b

        

 B  J

         B       J

 J M

 B  B J  J

         B       J

 J

M

J M

 B    B J

B        J        B   
J             M
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4

a+b

5

a*1*b

        

6

(a+b)*c

7

(a+b)/c

8

a*b+c*1

Table 11.2 Tables and Trees (Continued)

Expression Tree Table

 B M   J

 B        J       M 

M J

B  J    B     J

1 1

B        J       B        J
J                 M 

 B     J     M      B     J     M     

         OY

 B        J       M

Y

 O

      

OY

B      J     M      J

 B        J       M        J

     Y                 O

 J M

 B  B J  J

1

 Y  O

J

M

B        J        Y        O
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9

a*b*c

10

a/b/c

11

a*b/c

12

(a*b)/c

13

a/(b*c)

Table 11.2 Tables and Trees (Continued)

Expression Tree Table

 OY

 J M    J    M

 B  J  B  J  B  J B   J

         B     J       B     J

 J

M

 Y   O

OY

J M   J

B   J  B  J

J          M    J      
Y         O

B      J      B     J

OY

 J M    J

 B  J  B  J       B  J

         B     J

 J

M

 J

Y

O

OY

 J M    J

 B  J  B  J         J

         B     J         

 J

M
J

Y             O

J

MJ

B J

MJ

Y 0

     B   J

         B      J           B

           J

  J                 M

Y

O
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14

a/(b*1*c)

        

15

a*b*1*c

16

a*b*c*d

17

a/c*b/d

Table 11.2 Tables and Trees (Continued)

Expression Tree Table

OY

J M    J   M

B   J

1 1

 B  J

J          M    J      M
Y              O

B      J      B     J

OY

 J M    J    M

B   J B   J  B   J B   J

1 1

         B      J

 J

M

     

 J

M

Y

O

OY

J M   J    M

 B J  B J  B J  B J

OY

J M   J   M

 B J  B J  B J  B J

S T

        B      J

 J

M

         B     J
 Y  O

 J

M

S

T

MJ

Y O Y O

B  J    J  B  J    J

       J

Y O

S T

B  J    J

         B      J

 J

M

           J 
  Y        O

 J

S

T
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Row 9 illustrates a three-way crossing a*b*c. Because the COORD specifi-
cation for Table 11.2 is 2D, we end up with two groups of 2x2 cross-tabula-
tions. Many of the cells are empty, but the layout of the table signals that these
combinations are theoretically possible.

Row 10 illustrates a three-way nesting a/b/c. Only combinations existing
in the data appear in the tree and table.

Row 11 illustrates the expression a*b/c, which is a crossing with a nested
factor. The layout shows a full crossing, but the vertical table axis contains
italic labels to indicated that the cells fall under a nesting of b within c.

Row 12 shows a tree and table for the expression (a*b)/c. This example
has an unusual structure that shares a number of subtleties with the example
in row 8. We are nesting a crossing under variable c. To do this, we must ex-
amine each separate value of the nesting variable c for all combinations of the
crossing variables a and b. As the tree and table show, there are two values of
a and b available to cross under c = "Young" but only one value of a and b un-
der c = "Old". Consequently, we produce a 2x2 and 1x1 table to nest under c.

Row 13 shows a tree and table for the expression a/(b*c). The b*c part of
the term determines a two-way table under which the levels of a are nested. 

Row 14 shows a tree and table for the expression a/(b*1*c). This time, the
b*1*c part of the term determines a crossing aligned in a row because of the
unity operator taking place for a crossed variable. The levels of a are nested
within each of these levels of crossing. 

Row 15 shows a table that, on the surface, appears to be a crossing of a
nested variable with another. The corresponding expression a*b*1*c shows,
however, that this is a three-dimensional rather two-dimensional table. Rein-
forcing this in the view is the lack of italics that would denote nesting.

Row 16 shows a simple four-way table. The expression a*b*c*d produces
a table with many empty cells, but is fully crossed.

Row 17 shows a two-dimensional table produced by the nested expression
a/c * b/d. This expression is a simple crossing of two nested variables. 

18

(a*b)/(c*d)

Table 11.2 Tables and Trees (Continued)

Expression Tree Table

OY

J M       J   

 B J  B J        J

OY

       J

       J

S T          B      J
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Finally, row 18 shows a nesting of two crossings. Producing this table re-
quires us to compute the crossing c*d and then examine every possible cross-
ing a*b nested within each of the resulting combinations. The layout seems to
violate the rule that a nesting cannot be represented as a crossing. There are no
data under the combination T by Y. Nevertheless, the expression tells us that
this is a meaningful combination even if there are no values for it in the data
set. Therefore, a crossed layout is required. There are two dimensions in the
resulting graph.

11.3 Examples
Multiplots are graphics faceted on extrinsic variables. For example, we might
want to plot heart rate against blood pressure for different clinical populations
or for males and females separately. These would be categorical multiplots.
We could also make scatterplots of scatterplots, employing continuous vari-
ables to lay out the graphics. These would be continuous multiplots. The fol-
lowing sections show examples of both kinds.

11.3.1 One-Way Tables of Graphics

11.3.1.1  Tables of Scatterplots

Figure 11.1 shows a table of ordered categories. The data are from the sleep
dataset. Each scatterplot of body weight against sleep is ordered by the dan-
ger-of-being-eaten index. This enables us to discern a trend in the orientation
and position of the scatterplot cloud. The animals most in danger tend to have
the lowest levels of sleep and highest body weights. 

SCALE: log(dim(1), base(10))
COORD: rect(dim(3), rect(dim(1, 2)))
ELEMENT: point(position(bodyweight*sleep*danger))
ELEMENT: contour(

position(region.confi.mean.joint(bodyweight*sleep*danger)))

Figure 11.1 Table of scatterplots
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11.3.1.2  Tables of 3D Plots

Figure 11.2 shows a table of 3D interval graphics. The data are from the king
crab dataset used in Figure 10.38. Each bar measures the yield of crabs per pot
at the sampled location. The plots are ordered by year, revealing the decline in
yield over a six-year period.

DATA: longitude, latitude = map(source("Kodiak"))
COORD: rect(dim(4, 5), rect(dim(1, 2, 3)))
ELEMENT: polygon(position(longitude*latitude*yield*1*year), 

color(color.green))
ELEMENT: interval(position(lon*lat*yield*1*year), color(color.blue))

Figure 11.2 Table of 3D bars

1979

1980

1981

1982

1983

1984
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11.3.2 Multi-way Tables

Multi-way tables are produced by categorical facet variables. The popular
word for this is cross-tabs. The following examples show how to embed a va-
riety of graphics within multi-way tables.

11.3.2.1  Simple Crossing

Figure 11.3 shows a two-way table of line plots using the barley dataset from
Chapter 10. The barley yields by variety have been plotted in an array of site
by year. The average yields have been ordered from left to right. This table fol-
lows a general layout that we prefer for tables of graphics. The top and left
axes are devoted to the table variables and the bottom and right for the scale
variables. The table values are ordered from top to bottom and left to right.
This fits the format table viewers are accustomed to seeing. The scale vari-
ables are ordered according to the usual layout for a single graphic. If higher-
way tables of graphics are needed, then the scale variables are always moved
to the bottom and right sides of the tables. This makes table look-up a left-top
scan for categorical information and a bottom-right scan for scale information.
The regularity of this layout generalizes nicely to any number of facets.

The problem with this layout for this particular graphic is that the lengthy
string values for variety on the horizontal axis are unreadable. Ordinarily, this
scale would be numerical and there would be only a few tick marks. With a
categorical variable, however, we need one tick per category. Thus, when we
have a categorical variable on an inner frame, we often need to change the lay-
out. We will fix this problem in the next figure.

COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: line(position(variety*yield*site*year))

Figure 11.3  Two-way table of graphics
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11.3.2.2  Transposed Tables

Figure 11.4 transposes the table in Figure 11.3 to provide more readable label-
ing, following a layout in Cleveland (1995). This makes the range of the inner
frames (yield) horizontal and the domain (variety) vertical.

COORD: transpose(rect(dim(3, 4), rect(dim(1, 2))))
ELEMENT: line(position(variety*yield*site*year))

Figure 11.4 Transposed barley data
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11.3.2.3  Blended Facets

Figure 10.56 showed a nested design based on the data from Darwin used in
Chapter 10. We can rearrange the nested factor to produce another tabular dis-
play of the same data. Figure 11.5 shows an example. This time, we use the
nested variable plant/pot to determine the color used for the line graphic. This
causes line to split into a different number of graphics in each panel.

The first facet consists of the blend s*self + c*cross. This is plotted in rect-
angular coordinates. The second frame consists of 1*pot, which makes the panels
stack vertically. The expanded expression is equivalent to the blend of
s*self*1*pot + c*cross*1*pot.

DATA: s = string("SELF")
DATA: c = string("CROSS")
COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: line(position((s*self+c*cross)*1*pot), color(plant/pot))

Figure 11.5  Darwin data
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11.3.2.4  Tables of Mathematical Functions

Tables of graphics are often useful for visualizing different slices through
higher-dimensional objects. Figure 11.6 shows an example of a 3D object we
can tabulate. It is a beta density function (bdf) for parameters p and q, where
q = p. We have truncated the vertical axis to show more detail, since the spiked
tails in the rear go to infinity.

DATA: x, p = mesh(min(0, 0), max(1, 10))
TRANS: z =  bdf(x, p, p)
ELEMENT: surface(position(x*p*z), color.hue(z))

Figure 11.6  Beta density
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Figure 11.7 shows a table of slices through this density. We vary the two
beta parameters independently. The values of the p and q parameters deter-
mine the orientation of the outer frame. Slices of Figure 11.6 can be seen on
the diagonal of the table from the lower left to the upper right.

DATA: x, p, q = mesh(min(0, .1, .1), max(1, 6.1, 6.1), n(100, 4, 4))
TRANS: z =  bdf(x, p, q)
COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: line(position(z*x*p*q))

Figure 11.7  Table of beta densities
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11.3.2.5  Nesting under Crossed Tables

Figure 11.8 shows a graphic nested within a crossed table. The data are from
Lewis et al. (1982). This was a study of the fixation of six different types of tibial
prosthetic components used in total knee operations. The authors used finite-ele-
ment analysis to determine the maximum stress at several locations around the
prostheses. The variables were configuration (type of prosthesis component),
material (metal or polyethylene), mode (location and type of stress), and stress
(meganewtons per square meter under 2000-newton total load). 

DATA: configuration = link("prostheses")
COORD: rect(dim(2, 3), transpose(rect(dim(1))))
ELEMENT: interval(position(stress / (mode*material/configuration)))

Figure 11.8  Stress measures on total knee prostheses

The material is nested under configuration because not all designs are
available in both plastic and metal. To produce the outer crossing, the stress
mode is crossed with material/configuration. To make the left margin more
readable, the values of configuration are associated via metadata links with
images of the prostheses. There are 32 potential graphics in the crossing (4
stress modes and 8 materials given configuration). The stress is not measur-
able at the Shear at PMMA-Bone Interface Around Posts value of mode, how-
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ever. This is because the first configuration (top left in the figure) has no posts
(represented in the other images by small circles to the right and left of the cen-
tral notch). Consequently, there can be no bar graphic and no frame for two of
the combinations. This situation is not like having missing stress data or zero
values, however. The nesting tells us that the combination is not defined for
stress.

This may seem to be a small point, but it is important. The original graphic
in Figure 5 of Lewis et al. (1982) places all the bars in a regular grid of 32
frames and leaves these two cells empty, assuming the readers will realize that
the measurement of stress under this combination makes no sense. This is
confusing. To see why, we can draw an analogy from survey research. Poll-
sters are careful to distinguish several types of missing values for a response:
"refuse to answer" vs. "no opinion" vs. "not asked" and so on. Their care shows
that it is important to understand whether lack of information is due to a struc-
tural condition or to a failure to measure. 

One remedy for the original journal graphic layout would be to place the
words Not Measurable in these two empty cells. That would substitute for the
two missing inner frames in the layout of Figure 11.8. This strategy would be
satisfactory for a printed graphic, but it would not satisfy the structural prob-
lem in a live display system. The reason we need the nesting operator is so that
a query to an area containing a missing frame yields a different response (con-
cerning metadata, links to other graphics, etc.) than does a query to an area
containing an empty frame.

There is another consequence of nesting that profoundly affects the func-
tioning of a graphics system involving tables. Some market research programs
compute statistical tests such as chi-square tests and t-tests on tables that vio-
late basic assumptions needed for inference. This happens because these pro-
grams have no concept of statistical independence when they are given data to
tabulate. A system that correctly implements the cross and nest operators can
be designed to prevent these situations. The details of this implementation are
beyond the scope of this book, but solving these problems can yield for the
first time a system that is at once capable of producing complex tables and ap-
propriate statistical tests.

One final point. With the crossing of mode*material/configuration, we are
assuming that some possible variable (not stress) could be measured under all
the combinations. This assumption is implicit in the layout of Lewis et al.’s
Figure 5. It could be argued, however, that mode is not crossed but is instead
nested under material/configuration because no measurement of any kind
could be made around nonexistent posts. This argument highlights the role of
algebra versus display. An automated system cannot tell us how to structure
displays if extrinsic knowledge is required. Making specifications explicit,
however, is the only way to insure that we will recognize the difference be-
tween two graphics that are visually similar but structurally different.
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11.3.3 Continuous Multiplots

Continuous multiplots are rare, but have their uses. Scatterplots can be posi-
tioned on a map, for example, to show the relations among variables at differ-
ent geographical locations. Scatterplots of scatterplots can sometimes reveal
second-order relations among non-spatial variables as well.

11.3.3.1  Scatterplots of Scatterplots
Figure 11.9 shows a scatterplot of scatterplots. The spacing of the plots is

determined by an additive linear model based on the means of beginning and
current salary at a Chicago bank sued for discrimination (SPSS, 1996). We
used the CONJOINT procedure in SYSTAT to compute the marginal scales.
The unity constant (1) insures that the gender variable plots in a vertical ori-
entation. The last facet is thus 1*gender. The salary spacing makes sense for
education but is harder to defend for the other variables.

COORD: rect(dim(5, 6), rect(dim(3, 4), rect(dim(1, 2))))
ELEMENT: point(position(salbeg*salnow*education*race*1*gender))

Figure 11.9  Bank salaries
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11.3.4 Scatterplot Matrices (SPLOMs)

The scatterplot matrix (SPLOM) was invented by John Hartigan (1975b).
The idea has been rediscovered several times since and has been most exten-
sively developed by the research group originally at Bell Labs (Chambers et
al., 1983; Cleveland, 1985). The SPLOM replaces the numbers in a covari-
ance or correlation matrix with the scatterplots of the data on which they were
computed. Most SPLOM’s are symmetric, but they can be constructed from
rectangular sub-matrices as well. Hartigan included scatterplots in off-diago-
nal cells and histograms in the diagonal cells, but other graphics may be used. 

Figure 11.10 is a SPLOM of the 1997 EPA emissions data for cars sold in
the US. The variables are horsepower (HP), miles-per-gallon (MPG), hydro-
carbons (HC), carbon monoxide (CO), and carbon dioxide (CO2). The emis-
sions of pollutants are measured in per-mile weight. We use the exponentiation
operator (^) to save space in the quadratic position specification.

DATA: s1 = "HP"
DATA: s2 = "MPG"
DATA: s3 = "HC"
DATA: s4 = "CO"
DATA: s5 = "CO2"
COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: point(position((hp/s1+mpg/s2+hc/s3+co/s4+co2/s5)^2))

Figure 11.10  Scatterplot matrix of EPA data
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11.3.5 Facet Graphs
Facets can be proxies for graphs themselves. By structuring the organization
of a facet through a function, we can orient graphics in more complex or cus-
tomized structures. See Butler and Pendley (1989) for an example.

Facet graphs extend graphing functions such as link(). They require data
to construct graphs of graphs. Like maps, facet graphs use sets of variables (re-
lational tables) that are linked through common keys or functions. For exam-
ple, to make a tree of scatterplots, we need triples (e.g., xnode, ynode, parent)
for the tree and tuples (e.g., x, y) for the scatterplot. The following examples
illustrate how this works. 

11.3.5.1  Trees
Organizational charts, clustering trees, prediction trees, and other directed
graphs offer a superstructure for embedding graphics. Figure 11.11 shows a
regression tree (Breiman et al., 1984) for predicting accident rates from socio-
metric variables aggregated by states in the continental US. 

We are assuming that the tree() coordinate system includes the annotation
methods for delineating the branches. This is a rather heavyweight assump-
tion, with a lot of accompanying code to accomplish it. The boxes around the
dot plots are not the problem. It is the edges connecting them. Further work
needs to be done on this idea.

COORD: tree(dim(2, 3), rect(dim(1)))
ELEMENT: point.dodge(position(bin.dot(accident*xnode*ynode)), 

color(leaf))

Figure 11.11  Regression tree predicting accident rates
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Incidentally, this tree is called a mobile (Wilkinson, 1997). This display
format gets its name from the hanging sculptures created by Calder and other
artists. If the rectangles were boxes, the dots marbles, the horizontal branches
metal rods, and the vertical lines wires, the physical model would hang in a
plane as shown in the figure. Each box contains a dot density based on a proper
subset of its parent’s collection of dots. The scale at the bottom of each box
runs from low accident rates on the left to high on the right. The dots are color
coded according to which terminal (red) box they fall in. There are 46 dots al-
together because two states have missing data.

11.3.5.2  Reflection: Population Pyramids and Dual Histograms

Reflecting facets enables us to take advantage of symmetry to contrast paired
graphics. The most popular application of this method is a favorite plot of de-
mographers, called a population pyramid (Cox, 1986). This plot places age
histograms back-to-back, one for males and the other for females. Figure
11.12 shows an age–sex pyramid for the United States, based on the 1980
Census. The coordinate function mirror() implements a composite transfor-
mation consisting of reflection and translation. For an even number of catego-
ries on a facet (usually two), it reflects half of the graphics contained in the
facet.

COORD: transpose(mirror(dim(3), rect(dim(1, 2))))
ELEMENT: interval(position(age*pop*sex), color(sex), size(2))

Figure 11.12 Age–sex pyramid of 1980 US population
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 Dallal and Finseth (1977) extended this idea to general dual histograms. Fig-
ure 11.13 shows a dual histogram for times in the 2004 Chicago Marathon.
The panels are split by gender. An interesting aspect of the distribution is the
discontinuity at four hours. Runners near that boundary evidently push them-
selves to come in under the limit. Roger Dubbs ran in this marathon; his time
was 3:34:28.

COORD: mirror(dim(3), rect(dim(1, 2)))
ELEMENT: interval(position(hours*count*sex), color(sex))

Figure 11.13  Times for Chicago Marathon

11.3.5.3  Tables of Polar Plots

Figure 11.14 shows a table of polar graphics of death-month by social group.
The data are from Andrews and Herzberg (1985), contributed by C. O’Brien.
The polar arrangement makes sense for years because it allows us to examine
relations across the annual boundary. 

COORD: rect(dim(3), polar(dim(1, 2)))
ELEMENT: point(position(month*death*group))
ELEMENT: line(position(month*death*group))

Figure 11.14 Deaths as function of months from last birthday
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11.3.5.4  Polar Array of Polar Plots

Figure 11.15 shows a polar plot of polar plots of the Greenland wind data. This
arrangement is particularly appropriate because wind direction and astronom-
ical time (month of year) are intrinsically polar. The plot reveals cyclic trends
that would be difficult to discern in a rectangular time-series plot. Changing
the coordinate transformations from polar to rectangular would turn this into
a trellis plot.

COORD: polar.theta(dim(3), polar(dim(1, 2)))
ELEMENT: interval(position(summary.count(bin.rect(month*direction,

dim(2)))))

Figure 11.15 One year of wind data
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11.3.5.5  Mosaics

The mosaic plot is a method for displaying categorical data in a contingency
table whose cell areas are proportional to counts. Its application to contingen-
cy table models is due to Hartigan and Kleiner (1981, 1984), but it has a long
history as a type of data display (Friendly, 2002). It is a type of tiling. Friendly
(1994) presented a generalization of the mosaic that is equivalent to a set of
crossed frames (see also Unwin et al., 1996 and Theus, 1998). We will use a
famous dataset to illustrate how the mosaic and its generalization works. 

Figure 11.16 shows a 3D bar graphic representing proportions of survi-
vors of the Titanic sinking, categorized by age, social class, and sex. The data
are from (Dawson, 1995), who discusses various versions and their history. Si-
monoff (1997) fits a logistic regression model to these data that predicts sur-
vival from class, sex, and the interaction of class by sex. The two bar graphics
were produced by a facet on sex, which aligns each on a horizontal facet di-
mension.

COORD: rect(dim(4), rect(dim(1, 2, 3)))
ELEMENT: interval(position(summary.mean(class*age*survived*sex)))

Figure 11.16  3D bar graphic of Titanic survivor data

Figure 11.17 shows a tiling of these data with the same faceting on sex. In
this graphic, survived is used to determine the color of the tiles instead of the
heights of bars. This graphic shows more clearly that there were no registered
children among the crew. It also reveals the poignant fact that a relatively small
proportion of the third-class passengers (even children) survived. Although
color is not always suited for representing continuous variables (see Chapter
10), Figure 11.17 is preferable to Figure 11.16 because 3D bars tend to hide
each other and the 3D display angle makes it difficult to decode the height of
the bars.
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COORD: rect(dim(3), rect(dim(1, 2)))
ELEMENT: polygon(position(class*age*sex), color.hue(survived))

Figure 11.17 Tiled graphic of Titanic survivor data

The mosaic plot varies the area of each tile according to another variable,
usually the count of the cases represented by that tile. Figure 11.18 shows how
this works for the Titanic data. The innermost frame (1*1) holds one polygon
graphic colored by survived. The remaining facet variables define coordinates
that are modified by the mosaic() transformation. Eliminating axes leaves gaps
between the tiles.

COORD: mosaic(dim(3, 4, 5, 6, 7), rect(dim(1, 2)))
ELEMENT: polygon(position(1*1*age*1*1*sex*class),
                                 color.hue(survived))

Figure 11.18  General mosaic plot of Titanic survivor data
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11.3.6 Multiple Frame Models

For some tables of graphics, we have no choice but to set up multiple frames.
Carr et al. (1998) present a paneled graphic called a linked micromap plot,  de-
signed for displaying spatially indexed statistical summaries. Figure 11.19
shows a variety of this plot. 

DATA: longitude, latitude = map(source("US states"))
TRANS: octile = cut(popden, 8)
GRAPH: begin(origin(0, 0))

COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: polygon(position(longitude*latitude*1*octile), color.hue(popden))

GRAPH: end
GRAPH: begin(origin(1in, 0))

COORD: transpose(dim(3, 4), rect(dim(1, 2)))
ELEMENT: point(position(state/octile*popden*1*1), color.hue(popden))
ELEMENT: line(position(state/octile*popden*1*1))

GRAPH: end

Figure 11.19 Linked micromap plot of US population density
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The reason we need two frame models in this specification is that we can-
not blend state and latitude. One is categorical and the other continuous, so the
two cannot overlap on a common scale. Because we want to position the maps
to align with the plot frames, we must make two separate graphics and align
them using octile (the 8 fractiles of popden). Facets allow us to construct a tre-
mendous variety of tabled graphics in a single frame specification, but there
are limits. Some tabled graphics are really two or more graphics glued togeth-
er. Because common variables are defined through a single data view, howev-
er, all such graphics are linked for the purposes of brushing, drill-down, and
other operations.

We have taken one liberty with Carr’s graphic (apart from minor differ-
ences in layout). Carr uses the same categorical color palette within each map
block. This facilitates look-up and comparisons with the maps. We have in-
stead represented each value with its appropriate color on a continuous scale
within blocks. This reinforces the anchoring in the data values but makes look-
up more difficult. Either method is preferable to using a single color scale
across blocks. That would make the colors within most maps almost identical,
particularly for a variable with a skewed distribution like popden’s. 

11.4 Sequel
So far, we have taken axes and legends for granted. The next chapter covers
guides, such as axes and legends and titles, which help us to decode graphics.
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Guides

Guides show us the way. They give us absolute directions in a relative world.
We need guides in graphics to help us associate categories or quantities with
aesthetics. Position, for example, allows us to compare magnitudes among
graphics in a frame, but we need a positional guide to help us to relate magni-
tudes to non-graphical information. Color can help us discriminate categories,
but we cannot associate colors with specific categories without a color guide. 

Table 12.1 contains a list of standard graphical guides. Scale guides apply
to aesthetics. These guides help us to decode continuous and categorical
scales. Position guides are usually called axes. Other aesthetic guides are usu-
ally called legends. Annotation guides include text and form, and picture.
These guides link a graphic to extrinsic metadata. Guide functions work like
graphing functions (see Chapter 8). Their syntax is type(dim(), args). The ar-
guments are aesthetic functions and formats.

Table 12.1 Guides

In thinking about guides, we must keep in mind a built-in guide that all
graphics share: the label() aesthetic attribute. This attribute associates a text
string with each instance of a graphic. Because text can represent categorical

Scales Annotations

axis
legend
  size
  shape
  color
  ...

text
  title
  footnote
form
  line
  rectangle
  ellipse
  arrow
  tag
image
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or continuous values, the label() attribute can serve as a guide. It can be used
to attach numerals to the tops of bar graphics, for example, or category names
next to line graphics. Labeling of graphic elements is sometimes preferable to
axes or separate legends because it allows local look-up without changing our
focus and it can provide exact values without requiring comparative judg-
ments. Kosslyn (1994) surveys some of the literature showing the superiority
of labeling to legends. We also need to keep in mind that label() is an available
attribute for guides themselves. It provides, in essence, a guide to a guide. Fig-
ure 1.1, for example, shows a label attached to a reference line guide. Labels
are also used to annotate axes and legends.

12.1 Scale Guides
Chapter 6 covers continuous and categorical scales. Scale guides help us to de-
code specific scale values, translating them to numerical or string values that
help us access metadata (in our memory or through hyper-links). Pinker
(1990) and Simkin and Hastie (1987) discuss the perceptual issues and Cleve-
land (1993) addresses statistical issues in this process. 

Scale guides are so ubiquitous and necessary that they should appear by
default. Axes, for example, routinely define the position of a frame. Legends
regularly appear when size(), color(), or other attributes are specified. It is eas-
ier to turn off guides than to require them in the specification every time an
aesthetic attribute is used. To suppress the horizontal axis, for example, we add
GUIDE: axis(dim(1), null) to the specification.

12.1.1 Legends

The color(), size(), and other non-position aesthetic guide functions produce a
legend. Legends serve as guides for all aesthetics except position (although an
axis, we shall see, is best thought of as a positional legend). Table 12.2 shows
some examples of size, shape, brightness, and hue legends. A legend contains
a scale, a label, and a rule. In the left panel of Table 12.2, the scale consists
of the numbers 0 through 9. The label consists of the string "X" at the top of
the legends. The rule consists of the linear arrangement of symbols or colors
used to represent the attribute for the legend. The English word rule comes
from the Latin regula, a straightedge. Rules help us measure lines, which is
the role they play in an axis guide. Rules also give us formal methods for mak-
ing associations, which is the role they play in a legend. On an axis, the rule
spans the frame dimension referenced by the position attribute and, through
the placement of tick marks, allows us to measure location and decode it
through the adjacent scale. On a legend, the rule spans the dimension refer-
enced by size, shape, and other attributes by instantiating reference values on
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that attribute. Tick marks, usually absent in legends because they are redun-
dant, connect the points on the rule with the values on the adjacent scale so
that we can decode the attribute.

Continuous legends have a continuous rule and categorical legends have
a categorical rule. Some continuous legends blend hues to create a linear spec-
trum, marking the scale values with ticks. We have chosen to keep a slight
space between the values, which obviates the need for tick marks and makes
color attributes behave like other attributes such as size and shape. For cate-
gorical legends, we have chosen a wide spacing to differentiate the rule and
scale from continuous legends. See Brewer et al. (1997) for further informa-
tion on legending color.

There are many styles for legends. We have listed a few in Table 12.1. The
legends in Table 12.2 are produced by the argument vertical(), the default.
Horizontal legends, produced by the argument horizontal(), are useful when
located underneath or above a frame graphic. Legends inside a frame graphic
are produced by the argument interior(). These are used when there is avail-
able blank space inside a frame graphic.

Table 12.2 Size, Shape, Brightness, and Hue Legends

Figure 12.1 shows an example of a double legend. It is not generally a
good practice to legend more than one attribute in a graphic, although it works
in this example because similar symbols and colors are contiguous. Multiple
legends raise configural/separable issues in perception and often make decod-
ing difficult. See Chapter 10 for more information. 

We have included the two legend functions in the specification, although
these are automatically created by the use of the attributes in the point() func-
tion. Including them explicitly allows us to add a label() aesthetic attribute to
each legend that we would customarily call a legend title. In this case, each la-
bel serves as a guide to a guide. We have also included the default axes, each
with its own label. 

Continuous Categorical



�
�
�
�
�
<
=
�
B

T



�
�
�
�
�
<
=
�
B

T



�
�
�
�
�
<
=
�
B

T



�
�
�
�
�
<
=
�
B

T

>

/

-

,

4

>

/

-

,

4

>

/

-

,

4

>

/

-

,

4



350 12  Guides

ELEMENT: point(position(birth*death), shape(government), 
color(continent))

GUIDE: legend.color(dim(1), label("Continent"))
GUIDE: legend.shape(dim(1), label("Government"))
GUIDE: axis(dim(1), label("Birth Rate"))
GUIDE: axis(dim(2), label("Death Rate"))

Figure 12.1 Double legend

12.1.2 Axes
The axis() guide function produces an axis. Axes are positional legends. As a
legend, an axis contains a scale, a label, and a rule. The rule includes associ-
ated tick marks. As with legends, there are several styles for axes. The cross()
argument crosses all axes in 2D or 3D at their zero values. The single() argu-
ment produces a single axis. The double() argument (the default) produces a
single axis plus a parallel rule at another side of the frame. This default option
produces squares in 2D and cubes in 3D.

The format() argument specifies the format of the scale associated with an
axis. For example, a format() function for a time scale takes a picture format
to specify dates. The symbol set "YMDhms" is used to denote year, month,
day, hour, minute, second. When there is no ambiguity between month and
minute, case may be ignored. All other characters in a format are used literally.
Examples are "mmm dd, yyyy", "mm/dd/yy", "dd-mm-yy". When fewer than
two characters are available for month, numerals are used. Examples of for-
matted dates are "Jan  1, 1956" or " 6/ 1/ 95". The format() function for a nu-
merical scale specifies scientific or other notation. 

The pains we take to devise uniform terminology for the components of
axes and legends are not driven solely by semantics. We group components
like scales, labels, and rules together so that the drawing methods to produce
them are programmed only once. There is no reason to have one routine to
draw a legend and another to draw an axis. Both should extend naturally from
the architecture of a guide. Even if we are not programming, however, we can
avoid confusion by learning why axes and legends are members of the same
species.
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There is one fundamental difference between an axis and a legend, how-
ever. Axes are transformable and legends are not. As numerous examples in
this book show, especially in Chapter 9, axes can be bent all sorts of ways by
coordinate transformations. Legends cannot, because the relative positions of
their rules, scales and labels is governed by readability and not by frame coor-
dinates. This is a simple distinction to implement. We simply transform the lo-
cation of a legend into other coordinate systems, but not its components.

Figure 12.2 shows the super-smooth function y = exp(–1 / x2) plotted on
crossed axes. Because the y-axis has its zero value at one end, the axes form
an inverted “T” rather than a cross. This function, with its infinite number of
derivatives, should be used in designing roller coasters for senior citizens.

DATA: x = mesh(min(–2), max(2))
TRANS: y =  exp(–1/ x^2)
ELEMENT: line(position(x*y))
GUIDE: axis(dim(1), cross(), label("Y"))
GUIDE: axis(dim(2), cross(), label("X"))

Figure 12.2  Crossed axes

12.1.3 Scale Breaks

In Section 9.1.8.1, we discussed the behavior of graphs when data exceed the
bounds of frames. We indicated that nonlinear transformations can help this
problem and simultaneously remedy some violations of statistical assump-
tions. We also questioned the wisdom of allowing data outside the bounds of
a frame to determine the geometry of a graph inside a frame and claimed that
this was a form of lying with graphics. 

Sometimes graphic designers encounter the opposite problem. They have
a graphic located far from the value of zero inside a frame spanning positive
numbers. In a desire to include zero on the scale, these designers add a scale
break that looks like this  or this  to the axis. This de-
vice allows them to indicate zero without representing its value — to seem to
use position() but not to invoke it. Curiously, this device appears to be favored
by scientists, although it occasionally appears in business graphics as well. 
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If zero really is important, then it should be part of a scale. If it is not, then
it should be omitted. Some would say scale breaks are confusing. If we think
about what they are intended to do, we must conclude they are meaningless. 

12.1.4 Double Axes

Some scientific and business graphics have double axes (dual scales). These
usually appear as right and left vertical axes with different scales in 2D graph-
ics. Double axes can serve two different purposes. The first is to represent two
different scales for the same variable. For example, we might wish to present
US dollars on the left vertical scale and the Euro on the right. The second pur-
pose is to index different graphical elements inside the frame against different
variables. For example, we might wish to align two different line graphics —
one for educational spending and another for students’ test scores — so that
we can compare trends across time. Wainer (1997) comments on this question-
able practice. Multiple axes with multiple graphics gives the designer extraor-
dinary license to manipulate conclusions. 

In either case, double axes imply double, superimposed frames. This is
easy to implement with two graph specifications. Recognizing this geometri-
cal fact should alert us to the danger of hiding it from the viewer. Double (or
multiple) axes generally should be avoided.

12.2 Annotation Guides
Annotations become guides when they are driven by data. Otherwise, they are
scribbles or doodles. Being driven by data means that the aesthetics of an an-
notation object are linked to variables in a dataset in a similar manner to that
for a graphic. A text annotation, for example, might be positioned according
to a value of a variable, or its color might be determined by a variable value,
or its content might be determined by statistical parameters. There are many
consequences to this data linking. For example, annotations that are anchored
in a 3D frame rotate and stay frontally visible in 3D when the view is changed.
Other linked annotation attributes, such as color, change when databases or
other data sources are updated. This section offers a few examples to indicate
how these graphical objects can function in a system.
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12.2.1 Text

The text() guide function produces a text string. There are many types of
strings that can be attached to graphics. We have included only two in Table
12.1: title() and footnote(). Ordinarily, we devise annotation from our own
subject knowledge and embed it in a graphic as a simple string, for example,
GUIDE: text.title(label("This is a title")). The other aesthetic attributes of text
(e.g., color or size) can be determined by a constant or a variable. 

Figure 12.3 shows an example of text determined by a statistical model.
The data are taken from the car performance dataset used in Figure 8.2. We
have fitted a quadratic regression predicting the acceleration of the cars from
horsepower and vehicle weight. The title is determined by the parameters from
the smooth through the smooth.quadratic() function that is passed to label().
This device assumes that statistical procedures have interfaces for reporting
their parameter estimates as strings and that label() is written to know how to
ask for such strings. The coefficients for WEIGHT*WEIGHT and
HP*WEIGHT have been deleted from the string because they were zero (to
printed precision). We have added interval(dim(3), min(0), max(25)) to the spec-
ification to avoid truncating the surface; this gives a larger range than used in Fig-
ure 8.2.

SCALE: interval(dim(3), min(0), max(25))
ELEMENT:surface(position(smooth.quadratic(weight*hp*quarter)))
GUIDE: axis(dim(1), single(), label("WEIGHT"))
GUIDE: axis(dim(2), single(), label("HP"))
GUIDE: axis(dim(3), single(), label("QUARTER"))
GUIDE: text.title(label(smooth.quadratic()))

Figure 12.3 Title text determined by parameters
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This example gives us the opportunity for a brief statistical digression.
The model in Figure 12.3 is nonsensical. It implies that increasing horsepower
above 500 retards quarter-mile acceleration. Dragsters are an existence proof
against such a model. Nevertheless, the fit of this quadratic model to the car
data is quite good. The squared multiple correlation is above .9 and residuals
are reasonably distributed. Unfortunately, some researchers who use statistical
methods pay more attention to goodness of fit than to the meaning of a model.
It is not always convenient to remember that the right model for a population
can fit a sample of data worse than a wrong model — even a wrong model
with fewer parameters. We cannot rely on statistical diagnostics to save us, es-
pecially with small samples. We must think about what our models mean, re-
gardless of fit, or we will promulgate nonsense.

12.2.2 Form
The form() guide function produces a geometric primitive form such as a line,
rectangle, or ellipse. We have included only a few form methods in Table
12.1. A well-designed graphics system will have a set of drawing and text
tools in its user interface. These tools will operate on the display surface in
inch or centimeter coordinates referenced by a 2D or 3D grid system. Never-
theless, it is useful to include primitive objects that live in variable coordinate
space so that we can drive them with data or direct value references. 

Figure 12.4 shows an example of a form.tag() object. This allows us to an-
notate points or other elements in a frame by providing their coordinates.
Through a constraint system, the software can determine where to place tags
so that they do not collide with themselves or other graphic objects. Figure
12.4 annotates two unusual cases — a race car and a utility van — for the scat-
terplot introduced in Figure 8.2. Another example of a form object is the
form.line() in Figure 1.1.

As we mentioned at the beginning of this chapter, the label() aesthetic at-
tribute function can provide similar identification to the form.tag() and other
annotations. The difference is that a form is a single object and must be spec-
ified repeatedly for more than one instance. Also, a form is not necessarily
bound to a graphic such as a point cloud. We could attach a form.tag() to the
edge of a frame, for example, or even to a title in a graphic. If we wished to
label all points in a cloud, then using form.tag() would be inefficient.
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ELEMENT: point(position(weight*hp*quarter))
GUIDE: axis(dim(1), single(), label("WEIGHT"))
GUIDE: axis(dim(2), single(), label("HP"))
GUIDE: axis(dim(3), single(), label("QUARTER"))
GUIDE: form.tag(position(4245, 109, 21.6), label("VW Van"))
GUIDE: form.tag(position(1950, 650, 11.3), label("Ferrari 333SP"))

Figure 12.4 Tag annotations

12.2.3 Image

The image() guide function attaches an image to a frame. Figure 12.5 shows
an example. This figure is adapted from a portion of a graphic in Shepard and
Cooper (1982). The data are from a perceptual experiment in which subjects
viewed pairs of objects differing only by rotational angle. Three different ob-
jects are represented in the panels of the figure. The rt variable is reaction time
(delay in saying "same" for a pair). The depth variable marks the type of rota-
tion used in the pair. Circles stand for picture-plane (2D) rotated pairs and
squares stand for depth (3D) rotated pairs. Shepard’s remarkable discovery in
this and other experiments was that rotational angle is linearly related to reac-
tion time. The February 19, 1971 cover of Science magazine displayed five of
Shepard’s computer-generated images under various rotations. This research
has been replicated by psychologists and neuroscientists studying spatial pro-
cessing in humans and other primates. Shepard received the National Medal
of Science for this and other work in cognitive psychology.

As with form.tag(), the image() guide shares functionality with the label()
aesthetic attribute function and even with legends. We could construct a leg-
end, for example, by associating the three images in Shepard’s graphic with
the values of object. They could then appear as axis scale values (see Figure
11.8) or as legend scale values. We used the image() guide function in this ex-
ample in order to place the images inside the frames where Shepard did. 
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This usage annotates the entire frame, but we can imagine other applica-
tions where a one-to-one relationship between an image() and a frame would
not exist. For example, we could use image() to place images along various
parts of a curve in a 2D plot to signify another dimension. Imagine, for exam-
ple, pictures of cigarette packs along various sections of the path in Figure
8.10.

DATA: s1 = link("figure1")
DATA: s2 = link("figure2")
DATA: s3 = link("figure3")
COORD: rect(dim(3), rect(dim(1, 2)))
ELEMENT: point(position(angle*rt*object), shape(depth))
ELEMENT: line(position(smooth.linear(angle*rt*object)))
GUIDE: image(position(60, 6, 1), shape(s1))
GUIDE: image(position(60, 6, 2), shape(s2))
GUIDE: image(position(60, 6, 3), shape(s3))
GUIDE: shape(dim(1), label("Rotation"))
GUIDE: axis(dim(1), label("Angle of Rotation (degrees)"))
GUIDE: axis(dim(2),label("Mean Reaction Time (seconds)"))

Figure 12.5  An image annotation

12.3 Sequel
We have completed our survey of the world of graphics. We move on to the
second part, which covers the semantics, or meaning, of graphics. The remain-
ing chapters demonstrate the consequences of our new world view. The next
chapter covers the use of space in graphics.
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Part 2

Semantics

Semantics is derived from the Greek , or sign. This same word under-
lies the title of Bertin’s Semiology of Graphics. In linguistics, semantics in-
volve questions of meaning. The second part of this book covers the
theoretical aspects of representing data graphically. We omit grammar-of-
graphics specifications in this section because we want to focus on content
rather than structure. We also include in this part many more graphics gener-
ated by researchers, companies, and projects. In Part 1, it is important to show
the capabilities of the grammar-of-graphics syntax for generating a diversity
of charts. In Part 2, it is important to understand the concepts used in the
broader fields of visualization and statistical graphics. The first edition of this
book, and Part 1 of the current edition, explicitly cautioned that the grammar
of graphics is not a visualization system. The second part of this book exam-
ines the field of visualization to identify common themes.

These themes are representing space, time, and uncertainty, linking statis-
tical and data-mining analytics to graphic displays, user control of dynamic
graphics systems, automation of production graphics through programming
languages, and the theory of reading graphics to extract data and relations. We
choose a theory-oriented (rather than applications-oriented) approach because
we think it integrates results from fields outside the relatively small scientific
visualization community. Geographers, psychologists, designers, statisticians,
and political scientists all have a lot to contribute to the field of graphics. Con-
sequently, our references in this part range more widely than they do in the
first part.

We risk covering material in this part that is routine to some readers. Stat-
isticians, for example, can skip the introduction to Bayesian methods and in-
ference in Chapter 15. Engineers can skip the material on Fourier analysis and
convolutions. We are surprised, nevertheless, to discover how little some visu-
alization researchers in various fields know about the origins of many of the
techniques that are routinely applied in visualization. We believe that research
in visualization requires a basic understanding of statistics, experimental de-
sign, user interfaces, cognition, perception, and other fields. We hope this part
provides a useful introduction to this material.
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Space

The word space comes from the Latin spatium, which means a room or space.
The Latin and English both carry as well the meaning of time. The space to do
something implies both room and duration. Long before Einstein placed space
and time in a common coordinate system, time was perceived to be spatial. We
will discuss this relationship in the next chapter. In this chapter, we will dis-
cuss the role spaces play in organizing graphics. We begin with a review of
terms.

A graphics frame, as defined in Section 2.1.10, is a set of tuples ranging
over all possible values in the domain of a p-dimensional varset. A graph, as
defined in Section 2.1.4, is a subset of these tuples. A graphic, as defined in
Section 2.2.7, is a perceptual realization of a graph. Most of the time, we rep-
resent tuples using points of ink on a page or light on a computer screen. How
do we decide where to locate these points in the viewing area in order to com-
municate the underlying graphic model? We use a space. Briefly stated, a
space is a way of organizing tuples. 

Actually, we use two spaces to make a graphic. The first is the underlying
space in which we embed the tuples of our frame. Our graphic model (using
algebra and statistics) organizes this space. This underlying mathematical
space may have one, two, or many dimensions; it may be defined on the inte-
gers, real numbers, or {V, E} graphs; and it may be indexed by rectangular,
polar, or other coordinate systems. 

The second space is the 2D or 3D physical display space in which we em-
bed points. This display space is Euclidean. How we map tuples in underlying
space to points in the display space determines the interpretability of our
graphic.

The following example illustrates this mechanism. Figure 13.1 shows a
photograph of beadlet anemones (Actinia equina). Kooijman (1979) examined
a colony of these creatures and measured their locations on the surface of a
boulder near Quiberon Island off the Brittany coast. For more information on
anemone anatomy, see McCloskey (2003).
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Figure 13.1 Beadlet anemones (photo used by permission, UWPhoto ANS)

Figure 13.2 shows a graphic of Kooijman’s data. Each of his (x, y) tuples
consists of the relative location of an anemone on the surface of the rock. The
underlying space in which Kooijman embedded his tuples is a 2D Euclidean
representation of the rock surface. (Kooijman used a 2D space because the
rock was relatively flat.) The display space is a different 2D Euclidean space
resting on the plane of this page. Each point in the underlying space has been
mapped to a point in the display space such that the Euclidean distances be-
tween points in the underlying space are proportional to the corresponding Eu-
clidean distances in the display space.

Figure 13.2 Beadlet anemone minimum spanning tree on a rock
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There is a second element (in addition to the points) used in Figure 13.2.
We computed a minimum spanning tree (MST) on Kooijman’s tuples embed-
ded in his underlying Euclidean space and mapped the edges of this {V, E}
graph to line segments in the display space. What information does this com-
municate? First, we can find the nearest neighbor to any anemone by looking
for the shortest edge connected to that anemone. Second, we can find clusters
of anemones by looking for connected subsets of relatively short edges. Third,
we can find shortest paths between anemones by walking the tree. There are
other inferences we can make from the MST embedding as well. The point is,
we can make inferences about Kooijman’s original measurements by looking
at a display space because the tree has been mapped from the underlying space
to the display space in a meaningful way.

Now, suppose our underlying space is different. Suppose Kooijman did
not give us the (x, y) coordinates of the anemones. Suppose instead that he
gave us a list of anemone names (Amie, Andrew, Angel, Anita, ...), a list of
MST links between names (Amie–Angel, Andrew–Anita, Angel–Anita, ...),
and a list of weights, one for each link, corresponding to the Euclidean dis-
tance between the linked anemones. 

What underlying space could we use to organize these objects? One can-
didate would be a graph-theoretic space. This space organizes a set of verti-
ces and a set of edges such that vertices are related to each other by being
connected with an edge. This space also allows us to associate an edge weight
with each edge, so that we can induce a weighted distance relation between
vertices.

Figure 13.3 shows each vertex in this underlying graph-theoretic space
mapped to a point in display space. And it shows each edge in the underlying
graph-theoretic space mapped to a line segment in the display space such that
the length of the line segment is proportional to the corresponding edge weight
in the graph-theoretic space. 

What information can we infer from this display? First, we can find the
nearest neighbor to any anemone by looking for the shortest edge connected
to that anemone. Second, we can find clusters of anemones by looking for con-
nected subsets of relatively short edges. Third, we can find shortest paths be-
tween anemones by walking the tree. These are the same inferences we were
able to make from Figure 13.3. Note, however, that we can not make strong
inferences about the relative location of the anemones on the surface of the
rock (although the MST graph allows us to make some weak inferences). Spe-
cifically, the Euclidean distances between the unlinked points in Figure 13.3
are not meaningful. The only distances we can calculate in the display space
are along the edges. There is less information in this figure than in Figure 13.3.

How, then, did we map the objects in the underlying graph-theoretic space
to objects in this display space? We used a layout algorithm that places points
on the plane so as to minimize crossings between edges. This gives us a clean
layout, but not a unique one. There are many other acceptable layouts we
could have computed. We will discuss these methods in Section 16.3. 
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Figure 13.3 Beadlet anemone minimum spanning tree on the plane

The point of this example is to indicate that there is a mathematical space
underlying a meaningful graphic. The display space gives us a view of that un-
derlying space but it is not the underlying space itself. Therefore, if we have
no information about the underlying space, we cannot understand a graphic.
Figure 13.2 looks different from Figure 13.3, but we have no way of knowing
whether these differences are ignorable or are an essential part of the structure
of the graph. 

This simple fact applies to pie charts and bar charts as much as it does to
these more exotic charts. We take the underlying space of ordinary charts for
granted because we often assume it has the same structure as the display space.
That might not get us into trouble with Figure 13.2, because we can approxi-
mate Kooijman’s point of view by imagining that the display space is an aerial
photograph of the rock, with links superimposed by bits of string. The same
assumption would get us into trouble with Figure 13.3, however. 

More formally, graphics involve a mapping through the function
, where S is the underlying mathematical space of the graph and P

is the Euclidean physical display space represented on the page by a position
aesthetic. To understand a graphic, we must know f and S. Because we omitted
in these two figures some guides that might have helped the reader, there is no
way to discern f and S by looking at either of the pictures. 

We will now review some mathematical spaces that are frequently used in
graphics. Then we will discuss the psychological spaces that underlie our per-
ception and understanding of spatial layouts. Finally, we will illustrate
through examples ways to make clear the mathematical space S underlying a
graphic as well as the function  f  that maps S to P.

f S P
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13.1 Mathematical Space
In making a graphic, we begin with a set of tuples. The elements comprising
these tuples may be real numbers, integers, strings, images, or other objects.
Depending on our measurements, these tuples may have various kinds of or-
ganization.

• Some values may lie on a continuum or otherwise be connected to each
other.

• Other values may be categorical or otherwise be isolated from each other.
• The values may lie in a compact region.
• The values may lie in an unbounded region.

These kinds of organization are called topological properties. All the
spaces we will consider in this chapter are topological. An important subclass
of topological space is called a metric space. Most of the examples in this
chapter involve metric spaces. We will first introduce topological space and
later discuss various metric spaces. Munkres (1975) covers these topics in
more detail.

13.1.1 Topological Space

A topological space S is a set X together with a collection T of subsets of X
satisfying the following three axioms:

1)  The empty set and X are in T.
2)  The union of any number of sets in T is also in T.
3)  The intersection of any pair of sets in T is also in T.

The elements of X are usually called points. The set T is called a topology on
X. The elements of T are called the open sets of X. A subset of X is closed if
its complement is open. A set B is called a basis for T if every member of T is
a union of members of B.

The real line is an example of a topological space when we give it the fol-
lowing topology. We say that a set is open if every point in that set is contained
in an open interval in that set. One can verify that this definition satisfies the
three axioms. For example, the open interval  is an open set in the topol-
ogy we have just defined. And the union of two open intervals 
is also an open set. There are also more complicated open sets in this topology,
such as a Cantor set complement, which is the union of infinitely many open
intervals. Examples of closed sets are closed intervals, unions of finitely many
closed intervals, and more complicated sets such as Cantor sets. Some sets,
such as the interval , are neither closed nor open. The topology we have
just defined is the standard topology on the real line.

�
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Note that a given set can have more than one topology on it. Another ex-
ample of a topology on the real line is the topology where every set is open. In
this topology, T equals the set of all subsets of X (the power set of X). This is
called the discrete topology on the real numbers. Another topology at the op-
posite extreme has only two open sets: the empty set and the entire real line.

13.1.2 Connected and Disconnected Space

A topological space S is connected if it cannot be partitioned into two disjoint
non-empty open sets on the topology T. A topological space is totally discon-
nected if it has no connected subset with more than one point. A discrete to-
pological space is one in which every subset of X (including single points) is
open. This condition implies that a discrete space is not connected.

In the grammar of graphics, a frame consisting of the product of categor-
ical variables (whose range is equivalent to the integers) has tuples that we em-
bed in a totally disconnected space. A frame consisting of the product of
continuous variables (whose range is equivalent to the real numbers) has tu-
ples we embed in a connected space. And a frame consisting of the product of
continuous and categorical variables has tuples that we embed in a collection
of connected spaces. These conditions lead us to look for empty regions in
charts based on categorical variables. As we will see, these empty regions give
us the opportunity to encode additional sources of variation using positional
and other aesthetics.

A topology tells us when points in a space are related, namely, when they
belong to the same open set. Usually, however, we want to add some condi-
tions having to do with the strength of relations between tuples. These condi-
tions have to do with metrics that formally define the concept of distance. We
will now introduce metric spaces.

13.1.3 Metric Space

A metric space is a set S together with a distance function 

 , satisfying the following three conditions

The three metric axioms above are called the identity, symmetry, and trian-
gle inequality.

d S S

1) d x y = x y=

2) d x y d y x=

3) d x z d x y d y z+
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A metric space is a topological space. We construct a basis for this metric
space topology using open balls (a type of open set). A ball is a set containing
all points within a specified distance of a given point. For a metric space S, an
open ball centered on point p with radius r is defined as:

 .

We use the words ball and radius in an abstract sense, since balls need not
be spheres and the radius r is simply a distance value. A 1D ball is an interval.
A 2D ball is a disk, square, diamond, or other convex region. A 3D ball is a
sphere, ellipsoid, or other centrally-symmetric convex solid. We will examine
these more closely in Section 13.1.9 below.

The most familiar example of a metric space is n-dimensional Euclidean
space. Its basis consists of the balls

containing all points within radius r. Notice that when n = 1, the space is the
real line and balls are open intervals. The metric topology here is the standard
topology on the real line that we defined above.

The metric axioms seem so natural to us, perhaps because of our experi-
ence with Euclidean space, that we might be led to overlook how restrictive
they are. The identity axiom means that we cannot use a metric space to rep-
resent comparisons of objects to themselves that yield less similarity than
comparisons of different objects, as in some human judgments (Woody
Allen’s chameleon-like character Zelig seems to be less similar to himself than
he is to Woody Allen). The symmetry axiom means that we cannot use a met-
ric space to represent concepts such as commuting times (because traffic con-
gestion is not symmetric). And the triangle inequality means we cannot use a
metric space to represent contextual relations between objects (because intro-
ducing a third object might change the context of comparison). We will ex-
plore these issues further when we discuss using mathematical spaces to
represent psychological spaces.

We must avoid the perception that the metric axioms are sacred or that
nonmetric spaces are inferior to metric spaces. Spaces are simply structures on
sets, so the suitability of a structure depends on what we are trying to represent
in our data. If we need to forego metric assumptions in order to represent our
data more effectively or parsimoniously, then so be it (this is what topologists
do every day). Restrictiveness should not drive us to abandon the metric axi-
oms too readily, however. Metric spaces should be our starting point for graph-
ics and we should consider other representational methods only after
identifying where the axioms are violated by our data. We will discuss this is-
sue further in Section 13.3.

Br p x S d x p r=

xi

i =

n

r
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So far, we have examined features of an underlying space for representing
relations among tuples. We now have to investigate how to map an underlying
space to a display space. For that, we need to define a mapping.

13.1.4 Maps

A map  is a function from one set to another. 

• A map is injective if, for every element in Y, there is at most one element
in X mapped to it. This definition allows for elements in Y that have no
mapping from X, but it does not allow two different elements in X to map
to the same element in Y. Injective maps are often called one-to-one.

• A map is surjective if every element in Y has at least one element in X
mapped to it. This definition allows for two different elements in X to
map to the same element in Y, but it does not allow an element in Y to
lack a mapping from X. Surjective maps are often called onto.

• A map that is both injective and surjective is called bijective.
• A map  from a space S to a space P is continuous if points

that are arbitrarily close in S (i.e., in the same neighborhood) map to
points that are arbitrarily close in P. For a continuous mapping, every
open set in P is mapped from an open set in S. Examples of continuous
maps are functions given by algebraic formulas such as .

Now we introduce an important class of maps.

13.1.5 Embeddings

A map  from one topological space to another is an embedding if
S and its image f(S) in P are homeomorphic. A homeomorphism is a contin-
uous one-to-one function whose inverse is also continuous. Roughly speaking,
a homeomorphism between two shapes means we can stretch and bend (but
not tear or glue) one shape to fit the other. Topological embeddings are thus
both injective and continuous. 

As geographers know, the sphere cannot be topologically embedded in the
plane. Even though the surface of the sphere and plane are both intrinsically
2D, planar spherical projections must cut the sphere somewhere in order to
flatten its surface or must form many-to-one mappings that blend two hemi-
spheres (see the projections in Section 9.2.4).

We’ve come far enough now to sense that in the world of charts, where we
must map mathematical space (S) to physical space (P) in order to display our
data, it would be nice always to have a topological embedding. It would be
nice for psychological reasons, if for none other. That is, a mapping in which
points close to each other in mathematical space are far from each other in the
chart (because of a tear) can be confusing. And a chart where entire regions
are reduced to a single line or point can be confusing. Most map readers are
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accustomed not to fall off the edge of a map or into a hole, but we cannot count
on this restraint among all chart readers looking at all kinds of charts.

Having said embeddings are nice for charts, however, we must add that
embeddings are not necessary for making interpretable charts. Restricting our-
selves to homeomorphic mappings would eliminate many useful charts, the
most obvious being planar geographic maps.

Embedding points in a metric space allows us to make powerful inferenc-
es about relations among objects represented by those points in that space. The
next section discusses how to invert this inference.

13.1.6 Multidimensional Scaling

Distances in a metric space are computed with a distance function. Given a fi-
nite configuration of points in a metric space, we can compute a symmetric
matrix of pairwise distances on all pairs of points. By definition, the diagonal
of this matrix is zero and the off-diagonal elements are positive.

Suppose we invert this condition and say that we are given a metric and a
distance matrix D and wish to compute a matrix X containing the coordinates
of points in the metric space that can be used to reproduce these distances.
Young and Householder (1938) did this for a Euclidean space. Take any pair
of points and apply the cosine rule for triangles:

So,

The term left of the equality is the scalar product xj'xk, where the vector xj con-
tains the coordinates for point j relative to any point i. Renaming the right-
hand quantity, we have

xj'xk  =  wjk

Thus, we may take any point i represented in D and use its distances to the oth-
er points to create a scalar products matrix

W  =  X'X

A singular value decomposition of W yields X, which contains the coordi-
nates for the set of points. Point i will be at the centroid of the configuration.

Now suppose the distances contain random error. Torgerson (1952) de-
vised a least-squares solution by centering W at the centroid of all the points
(as opposed to an arbitrarily selected data point i). Torgerson coined the term
multidimensional scaling (MDS) for this procedure, as an extension of the
unidimensional scaling model used by psychophysicists for almost a century
earlier.

djk dij dik dijdik jik–+=

dijdik jik dij dik djk–+=
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Dissimilarity data often contain an additive constant, a condition that vi-
olates the identity axiom and produces bad fits with Torgerson’s model. Mes-
sick and Abelson (1956) offered a solution to the additive constant problem,
allowing users to apply Torgerson's method to dissimilarity data of the form

. That is, a dissimilarity is assumed in this model to be a
function of an additive constant c, a multiple of a distance d, plus random error
e. After estimating and subtracting the additive constant, we can apply Torg-
erson’s method to these adjusted dissimilarities. Torgerson’s method with the
additive constant adjustment is now called classic MDS.

Torgerson's MDS model is linear. Because psychological similarity or dis-
similarity data often consist of ranks, psychologists were anxious to relax the
linearity requirement. Roger Shepard solved this problem in the early 1960s
(Shepard, 1962). Shepard's iterative algorithm was sui generis; it offered a
simple computational method for achieving a feasible solution to the problem. 

Shepard had developed his ideas while a graduate student at Yale working
with his advisor Robert Abelson. He took a position at Bell Labs and met the
mathematician Joseph Kruskal (brother of the statistician William Kruskal).
Kruskal (1964) recast Shepard’s scheme as a least squares problem. Kruskal
regressed distances between points in the spatial configuration onto the ob-
served dissimilarities. He developed a loss function based on residuals from
this regression and used a gradient method to find a solution with (locally)
minimum loss. Kruskal’s linear regression version of this algorithm became
known as metric MDS. Kruskal also included a monotonic regression proce-
dure in his scheme. The monotonic version of his algorithm became known as
nonmetric MDS. Kruskal’s algorithm had one other elegant aspect. He imple-
mented the Minkowski metric function for computing distances between
points and thus extended the model to non-Euclidean spaces. 

Other significant contributors to the MDS literature were Louis Guttman,
Forrest Young, Jan deLeeuw, and J. Douglas Carroll. Young and Hamer
(1987), Cox and Cox (1994), and Borg and Groenen (1997) cover this history
in more detail. The classic, metric, and nonmetric MDS models have been re-
discovered, modified, and renamed many times over the last few decades (e.g.,
Sammon, 1969), perhaps because it has so many applications in various fields.

MDS depends on computing distances among points in a metric space. It
was developed for embedding points in Euclidean space, but the concept is
more general. We can do MDS on points in other spaces by computing dis-
tances along geodesics.

13.1.7 Geodesics

A geodesic is a locally length-minimizing path. In a topological space S a path
is a continuous mapping from the unit interval [0,1] into S. In graph-theoretic
space, a path is a sequence of connected edges. The word geodesic comes from
the Greek , which means earth-dividing or surveying. In Euclid-

d c ad e+ += d
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ean space, geodesics are straight lines. On a sphere, geodesics are arcs of great
circles; we speak of shortest global routes as great circles. In graph-theoretic
space, geodesics are paths along edges.

Geodesics are associated with metrics. Since a geodesic requires an algo-
rithm for computing the shortest distance between two points in a space, a geo-
desic depends on the definition of the spatial metric. Geodesics have several
uses. Following a geodesic path through a graph or through a geographic space
tells us about traversal time. Marking a geodesic locus around a point or node
(by computing a set of geodesics of a fixed length) helps us to identify neigh-
borhoods in space. We will identify geodesics for many of the spaces we dis-
cuss. Before we go further with this, however, we need to consider what is
meant by the dimension of a space.

13.1.8 Dimensions

A naive definition of the dimension of a geometric object is the number of co-
ordinates needed to represent an instance of the object in a Euclidean space.
For example, a point is one-dimensional, a circle is two, a sphere is three, and
so on.

Another definition of the dimension of a geometric object is the number
of coordinates needed to specify a point on the object. For example, a square
is two-dimensional and a cube is three-dimensional. A sphere is two-dimen-
sional, however, because we can express any point on it with only two coordi-
nates (we do that when we navigate the globe). Refining this definition leads
to what mathematicians call topological dimension. Topological dimensions
are integral. They characterize a large set of geometrical objects whose dimen-
sionality is unchanged under a broad class of deforming transformations. 

Fractal objects are not included in this class of objects, however. For them,
a different mathematical definition of dimension is taken from the exponent in
a power law for self-similar objects , where n is a parameter for the
number of elements in an object and s is a parameter for the scale of the ele-
ments. While the definition is quite technical, the exponent in this formula is
an example of what is called the Hausdorff dimension, which can take frac-
tional values. Edgar (1990) and Schroeder (1991) survey these ideas. We will
discuss them briefly in Section 13.1.11.

Applied fields assign many different meanings to the word dimension. For
example, vision scientists (e.g., Marr, 1982), computer scientists (e.g.,
Strothotte and Schlechtweg, 2002), and geographers (e.g., MacEachren, 1995)
use the term 2½D to describe a space in which the half-dimension is used to
contain geometric metadata such as texture and hue depth cues and shape rules
that allow us to generate a 3D scene from the 2D information. Similarly, in
graphics we talk about extra dimensions that exist in display space but are not
used to represent data. Tallies, for example, arrange marks on a plane so that
they can be counted individually or in clusters. The dimensions of the plane
mean nothing except to define an area within which marks can be made.

n sd=
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13.1.9 Connected Spaces

We now examine some connected spaces used in graphing data. Most often
these are metric spaces, but we will show some examples of quasi-metric spac-
es that have interesting uses.

13.1.9.1  Metric Connected Spaces

A well-known metric often used on connected spaces is called the power met-
ric or Minkowski metric:

This formula is based on the Lp norm of the vector of coordinate differences
in n dimensions. When p = 2 (the L2 metric), this formula evaluates to the Eu-
clidean metric. When p takes other values from 1 to infinity, the power metric
corresponds to some interesting measurement models. 

Figure 13.4 shows isodistance contours (level curves showing equal dis-
tance from a locus point) for selected values of p in a 2D space (n = 2). Dis-
tances from the center of each square run from red (near) to blue (far). When
p = 1 (the L1 metric), the contours resemble diamonds. This value of p corre-
sponds to the so-called city-block or taxicab metric. City-block contours are
computed as a sum of horizontal and vertical distance components. This type
of function is used in least-absolute-values regression. When p = 2, the con-
tours are circular. This is the familiar Euclidean metric. This type of function
is used in ordinary least-squares regression. As p approaches infinity, the con-
tours approach a square, because 

We call the Lp metric with large p a dominance metric, because one dimen-
sion dominates the distance computation. It is not difficult to imagine plausi-
ble psychological models with this metric. In such models, the most salient
dimension dominates all others; these models fit the judgments of some fanat-
ics and extremists. Markov models and neural networks where single nodes
outvote all others in an ensemble may fit a dominance metric as well.
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Figure 13.4 Isodistance contours for power metrics in two dimensions

13.1.9.2  Quasi-metric Connected Spaces

When a metric space fails to fit our data or our assumptions about the data, we
might consider a quasi-metric and an associated quasi-distance model that
violates one or more of the metric axioms. The word violate suggests mayhem,
but it has its uses. We begin with the triangle inequality. 

Nonconvex Distance Maps

One way to violate the triangle inequality axiom is to use a non-convex dis-
tance map. Figure 13.5 shows a space in which we use the power formula with
p < 1 to compute distances among three points. In a psychological context, this
type of distance function indicates that subjects judge distances by focusing
on the smaller of the dimensional differences (the reverse of the dominance
model). Notice that the distance from A to B and from B to C is roughly 5 con-
tour units. A and C, by contrast, are separated by many more than 10 contour
units. It is shorter to go from A to C (or C to A) by going through B than by
going directly. This is not an implausible model for some psychological pro-
cesses. Psychologists call this type of model, when applied to series of behav-
iors or a sequence of preferences, chaining.

Figure 13.5 Triangle inequality violation

p = 1 p = 2 p = 3 p =
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Asymmetric Distance Maps

It is easy to violate the symmetry axiom. One way is to use an asymmetric dis-
tance function. Figure 13.6 shows an example. In this case, distance is direc-
tional. Calculating the distance between two points involves a different
direction for each point to the other. Can you see why this type of distance map
would also violate the triangle inequality?

Figure 13.6  Asymmetric isodistance contours at two points

Another way to violate symmetry is to use two different distance maps,
one for each point in a pair. Figure 13.7 shows an example using a separate
kernel density estimate for each of two groups of data. The distance of any
point to a group centroid is calculated by using the group’s own distance map.
This procedure is used routinely in nonparametric classification using Bayes’
theorem. See Duda et al. (2001) or Hastie et al. (2001) for more examples.

Figure 13.7 Kernel density functions and their isodistance contours

13.1.9.3  Geodesics on Connected Spaces

In Euclidean space, geodesics are unique straight lines. In 2D city-block
space, geodesics are not unique. They are instead a set of zigzag paths laid out
on a rectangular grid. Other exponents in Minkowski space produce curvilin-
ear geodesics. On the complex plane under conformal mappings (see Section
9.1.5), geodesics are curvilinear as well.

In smooth Minkowski spaces (p > 1) geodesics can be drawn by using
small straight-line plotting steps perpendicular to the tangent at the nearest
point on the next contour (isolevel curve). This method (due to Gauss) works
with other smooth spaces as well. If we embed the distance map in 3D space,
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where distances are represented by the height of a surface rather than a con-
tour, then the projection of the geodesic onto the distance map delineates a
gradient. A gradient is the path a ball would follow from a point near the top
of a hill while rolling down the hill. The gradient, because it is a shortest path,
figures in many maximization algorithms. Figure 13.8 shows a selected gradi-
ent (white curve) on one of the two densities shown in Figure 13.7.

Figure 13.8  Gradient on 3D kernel density

13.1.10 Fractals
A fractal is a shape made of parts similar to the whole. Being similar to the
whole implies self-similarity. A set is self-similar if it can be cut into arbitrari-
ly small subsets, each of which is similar to the entire set. A line of length 1,
for example, can be broken into n lines, each of size 1/n. Each of those sepa-
rate lines can be broken into n lines, and so on. Self-similarity is not sufficient
for defining a fractal, however. All fractals are self-similar, but not all self-
similar objects are fractals. We need an additional requirement.

The second requirement is that an object’s Hausdorff dimension be differ-
ent from its topological dimension. Figure 13.9 contrasts our line example
with the Koch curve, which is a fractal object. Both objects are constructed by
an iterative scheme. The columns to the left of the graphics show the iteration
(i), the number of segments (n), the length of the curve (l), and the scaling fac-
tor (s). For the line, n = s because the length of the line is constant. For the
Koch curve, however, the length of the curve increases by a factor of 4/3 on
each iteration. This makes the function relating n and s the power function

. We solve for d in this equation by taking logs, . At
any iteration, we get the same result d ~ 1.262, which is log(4) / log(3).

For the line, the power function is equivalent to n = s because d = 1. Thus,
the topological and Hausdorff dimensions are the same. If we divide a square
by the same iterative procedure, the number of sub-elements resulting from the
partitioning increases quadratically relative to the scaling factor, so the power
function yields d = 2. Again, the topological and Hausdorff dimensions are
equal, so the recursively partitioned square is not a fractal object. For a cube,
d = 3. And so on. Thus, fractal objects are different from simple iterative par-
titionings of geometric objects.

n sd= d n s=
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Figure 13.9  Koch curve and partitioned line

Figure 13.10 shows another fractal, the Sierpinski gasket. For the Sierpin-
ski gasket, the Hausdorff dimension is log(3) / log(2), which is approximately
1.585. Figure 13.24, later in this chapter, contains an example of a data graphic
based on a Sierpinski gasket iterative scheme. 

Figure 13.10 Sierpinski gasket

The Koch curve and Sierpinski gasket are self-repeating fractals. Self-rep-
etition is a restriction of self-similarity to the condition in which every subset
is a copy of the original. The Koch curve and Sierpinski gasket are self-repeat-
ing because the generator pattern (see the object at i = 1) is applied identically
to every subset at each iteration. Self-similar fractals do not necessarily have
this repetitive characteristic within each level of detail. 
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Figure 13.11 shows an example of one of the most famous self-similar
fractal objects, the Julia set. This example was produced by iterating the com-
plex function , where c = .11 + .625i. (Review Section 9.1.5 for
the basics of the complex plane.) The black areas of the graphic depict the set
itself (within the resolution of the plot). The other areas are colored, using a
scale running from blue to red, according to how quickly the iterated function
goes to infinity (i.e., far outside the unit circle on the complex plane). There
are numerous interactive programs on the Web for exploring the family of
Julia sets, popularly known as the Mandelbrot set.

Figure 13.11  A Julia set

The question naturally arises whether fractal objects have a use in repre-
senting statistical data. The word fractal has been applied loosely to some re-
cursive graphics (e.g., Rabenhorst, 1993), but these are not fractal objects
because their Hausdorff and topological dimensions are the same. Recursion
and nesting are indeed useful graphical tools; we discussed them in Chapter
11. Fractals, though visually fascinating, are nevertheless specialized objects.
The excitement fractals and chaos theory originally raised in the social and
natural sciences has not been long lasting. The obvious applications of fractals
to graphics have already been explored. It remains to be seen how they can be
used to display data.

zi zi – c+=
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13.1.11 Discrete Metric Spaces
A discrete metric can be defined by letting the distance between any distinct
points x and y be 1, and otherwise 0. Other definitions are possible. This sec-
tion introduces a type of discrete space that has received a lot of attention re-
cently. It is based on an iterative process for generating points. A cellular
automaton is a recursive algorithm for generating a set of cells from another
set of cells (Toffoli and Margolus, 1987). A one-dimensional automaton gen-
erates a row of child cells given the pattern in a row of parent cells. Here is a
depiction of one such algorithm (parent cells above, child below):

The generating rule summarized in the two rows of this diagram specifies that
a cell in a child row is to be black if its three adjacent parent cells have any of
four patterns. The pattern of black and white cells arrayed in the second row
of the figure represents binary(00011110) = decimal(30). Given eight possible
binary patterns of three cells, there are 256 nearest-neighbor rules for generat-
ing child cells (2 to the eighth power) for this type of automaton. Figure 13.12
displays several hundred iterations of the Rule 30 automaton shown above.
Wolfram (2000) shows all 256 patterns. There is a surprising variety of pat-
terns in this one-dimensional inventory. Wolfram also discusses multidimen-
sional cellular automata, as well as continuous and probabilistic automata.

Figure 13.12  Cellular automaton, Wolfram’s Rule 30

Wolfram is the comprehensive source for general and specific issues re-
lated to this class of algorithms. As a physicist, he focuses most intensely on
the contrasts between continuous and discrete spatial theories of the cosmos.
As with fractals, it remains to be seen how fruitful these models will be for
graphical displays.
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13.1.12 Graph-Theoretic Space

A graph, notated as G = {V, E}, consists of a finite set of vertices (V) and a
finite set of edges (E). Vertices are sometimes called nodes and edges are
sometimes called arcs or links. Each edge in a graph is an unordered pair of
vertices (vi, vj). An edge with vi = vj is a self-loop. A simple graph has no self-
loops. A weighted graph assigns a non-negative real number to each edge. A
directed graph is a graph whose edges consist of ordered pairs. A complete
graph has an edge between every pair of vertices. 

Vertices vi and vj are adjacent if they occur together in an edge. A neigh-
bor of a vertex is an adjacent vertex. The degree of a vertex is the number of
its neighbors. A graph can be represented by an adjacency matrix. The en-
tries aij of this  matrix contain a 1 if vertices vi and vj are adjacent and a
0 otherwise. In a weighted adjacency matrix, the nonzero entries contain
weights instead of 1’s.

 A path is an ordered set of vertices (v1, v2, ..., vn) in which vi is adjacent
to vi+1 for i = 1 to n – 1. The length of a path is the count of the edges covering
it (or the sum of the weights of the covering edges). A cycle (or circuit) is a
path in which v1 = vn. An acyclic graph has no cycles. A graph is connected
if there exists a path between each pair of vertices.

The dimensionality of a graph is sometimes defined in terms of the mini-
mum dimensionality of a space into which it can be embedded. For example,
a planar graph can be represented in 2D Euclidean space as a set of points
connected by non-intersecting lines. The dimensionality of a planar graph in
this context is 2.

13.1.12.1  Metrics and Geodesics on Graphs

A geodesic on a graph is the shortest path (not always unique) between two
vertices. Graph-theoretic distances are the lengths of geodesics between
pairs of vertices. Recall that a metric space is a set S together with a distance
function on . If we associate the vertices of a graph with elements of S
and let our distance function be the length of a geodesic path for each pair of
vertices, then a graph is a metric space. You can verify that the three metric
axioms are satisfied by this definition. 

An adjacency matrix is a distance matrix for a complete graph. For con-
nected incomplete graphs, we can calculate a distance matrix by powering the
adjacency graph, but this is not computationally efficient. Skiena (1998) cov-
ers more efficient algorithms.

n n
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13.2 Psychological Space
The terms cognitive map, cognitive landscape, and mental terrain in popu-
lar science writing reflect a metaphor that has existed for centuries: the geog-
raphy of the mind. As a template for cognitive science, mental maps derive
from a time in the history of psychology when continuous spatial models were
thought to be useful representations for both memory and cognition. It is an
appealing psychological model. Pavlov, for example, theorized that the brain
is an associative network in which evocation of a response to a stimulus is
likely to activate spatially associated cortical events. This spreading activation
model underlies many cognitive neural network theories, and brain imaging
studies have often supported the notion that similar processes are located in
contiguous areas of the cortex.

The history of spatial perception models has been closely linked to the
history of mechanical models — from the camera obscura to the digital com-
puter (Neumann, 1996), The camera model of vision includes a lens and/or ap-
erture (lens and iris), film (the retina), and a stereoscopic arrangement of the
eyes that is supposed to account for depth perception (see Section 9.2.2). This
model has long been recognized as deficient (if only for the fact that two eyes
are not needed for depth perception; cover one of your eyes and walk around).
Even if the eye were a stereo camera, however, it would not mean that images
are processed and stored as 2D pictures or 3D models.

Is there a mental landscape? This question has no simple answer. First,
there is no necessary connection between cortical adjacency and mental asso-
ciations. Showing that similar memories arise from stimulating adjacent areas
of the cortex does not prove that mental events are organized spatially, and
showing that adjacent areas of the cortex are activated by similar thoughts does
not prove that the cortex is organized spatially. Second, we must distinguish
the various perceptual processes before trying to answer this question. Most
theories of perception postulate at least two stages of processing: 1) pre-atten-
tive stages, in which we perceive a stimulus without effort, and 2) higher cog-
nitive stages, in which we analyze aspects of the stimulus to make judgments.
It is possible that color vision, for example, is representable by a metric space
but judgment of risk is not.

13.2.1 Spatial Models of Pre-attentive Processes
Pre-attentive visual and auditory processes appear to be spatial because

the prevailing model of both perceptual systems is a space-time component
model. In audition, the time domain appears to be transformed and decom-
posed in the frequency domain. In vision, the spatial domain appears to be
transformed and decomposed in the spatial frequency domain. Without get-
ting into details, we can imagine feature detectors that work like filters. They
look like the function on the right in Figure 13.13, which is a difference of
Gaussians (DOG) shown on the left (red subtracted from blue). Functions like
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this are used in image processing and other applications to filter out unwanted
frequencies. See the next chapter for more information on filters. Also, see
Section 7.1.4 for information on smoothing kernels. These kernels are con-
structed from probability functions, which (unlike DOG) cannot be negative.  

Figure 13.13 Difference of Gaussians function

These component models fit both psychological and physical evidence
(Levine, 2000). Stimulation of cells in the retina and the visual cortex, for ex-
ample, reveals a circular area of excitation centered on the site of stimulation,
surrounded by a ring of inhibition, as suggested by a 2D polar DOG and sim-
ilar functions. It is easy to imagine contrast, orientation, and other feature de-
tectors based on this model, and again, the physiological evidence supports
that conjecture.

The frequency-components-of-space/time model fits better locally than
globally, however. The experimental evidence appears to suggest that pre-at-
tentive processing is more similar to specialized video or audio filters used to
process local areas of a video or audio stream (Kehrer and Meinecke, 1995).
The perceptual system does not appear to process the whole image or stream
with a single filter. The experimental evidence thus suggests that there is not
a global Euclidean perceptual space, but other spatial models have done quite
well.

Perceived color space, for example, appears to be metric (Indow, 1988),
although not Euclidean. The left configuration in Figure 13.14 shows a sample
of 12 spectral colors from the 1931 CIE chromaticity diagram used for color
calibration. This is a 2D projection of a Euclidean three-component theoretical
color space (see triangular coordinates in Section 9.2.3). The CIE space is
used in calibrating computer monitors and other graphic displays. The right
configuration shows an MDS solution for a matrix of similarities judged by a
group of subjects on samples of the same spectral colors (Ekman, 1954). One
is clearly transformable to the other, although not through simple isometry or
similarity transformations. Indow has examined 3D perceptual color space
more extensively and found that the metric axioms do apply. Question: Why
is the bottom of the circle open? Hint: Try to imagine the colors that fit there.
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Figure 13.14  1931 CIE (left), MDS of Ekman data (right)

There is good evidence for a similarity model based on a metric space in
the pre-attentive perception of form as well. The mental rotation research of
Shepard, an example of which is shown in Figure 12.5, supports this model,
as do other studies of Shepard (e.g., Shepard and Cermak, 1973; Shepard and
Chipman, 1970). Krumhansl (1978) reviews other evidence. Santini and Jain
(1997) and Edelman (1999) have had success applying these similarity models
to shape recognition and retrieval of spatial information from databases.

13.2.2 Spatial Models of Cognitive Processes

In an influential paper, Amos Tversky (1977) wrote that human judgment of
similarity often does not follow the metric axioms. Tversky was well-known
for carefully designed experiments with human subjects that revealed system-
atic violations of classic assumptions underlying psychological and economic
models, such as violations of transitivity (A > B > C > A) and violations of the
triangle inequality (dik > dij + djk). His work with his colleague Daniel Kahne-
mann, which showed people’s decisions under risk do not follow expected
utility theory, established the field of behavioral economics and resulted in a
Nobel prize. Tversky’s research showed, among other things, that higher cog-
nitive processes often distort perceptual information and result in behavior
that is not consistent with the metric axioms. Subsequent research on judg-
ment of similarity has supported Tversky’s claims (e.g., Deregowski and Mc-
George, 1998).

The significance of Tversky’s research for graphics is that we cannot as-
sume people will judge quantities and relationships the same way after a
glance and after lengthy consideration. And we need to take into account the
biases introduced by cognitive processes when people judge spatial material.
Research by Barbara Tversky (Tversky and Schiano, 1989), for example,
showed that adding a political boundary on a map will change the judgment of
distances between towns in that map. 
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13.2.3 Spatial Cognition

What about the perception of space itself? Does a spatial model fit our percep-
tion of space? As we have indicated, the visual system is not a stereoscopic
camera. Binocular depth cues are important in the perception of space, but so
also are monocular depth cues such as linear perspective, size, lighting, tex-
ture, color, and kinetic cues. 

The experimental and observational evidence indicates that the perceptual
world integrated from these cues is not Euclidean. It is a space shaped by the
surrounding environment. In the outdoor world it is probably a flattened
spherical world, with the sky perceived as closer at the zenith than at the hori-
zon (Koenderink et al., 2000). The moon illusion, in which the moon is per-
ceived to be larger at the horizon than overhead, supports this hypothesis
(Kaufman and Kaufman, 2000). In the indoor world, spatial perception is in-
fluenced by the structure of the room. The famous Ames room, whose walls
are distorted in a way that causes people to become giants or dwarfs and balls
to appear to roll uphill is one example of this influence (Levine, 2000). In flat
world (a piece of paper or computer screen), perception is influenced by the
monocular depth cues (texture, color, etc.) that govern our perception of 3D
space; the 3D world, no matter how we try to flatten it, is inescapable. Wickens
and Hollands (1999) is a good place to explore these issues further.

13.3 Graphing Space
Graphics live in physical space. Physical space is not physicists’ space. It is
the Euclidean physical space (a page, a screen, an immersive video environ-
ment) indexed by a simple 2D or 3D Cartesian coordinate system in which
graphs are rendered through the use of aesthetics. When Bertin (1967) speaks
of position, he means the placement of an object in a physical scene. As we
have seen, graphs can be embedded in different mathematical spaces, but ul-
timately, we must render graphics of these mathematical graphs in a Euclidean
physical space. 

Thus, this section is about the issues involved in the mapping ,
where S is an underlying mathematical space, and P is 2D or 3D Euclidean
space. We will first examine the cases where S is a connected space. Then we
will explore the cases when S is discrete. Then we will look at examples when
S is a {V, E} graph. Finally, we will examine mappings where S is a collection
of nested spaces.

S P
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13.3.1 Mapping Connected Space to Euclidean Space

We discuss mappings of non-Euclidean connected spaces to Euclidean space.

13.3.1.1  Mapping City-Block Space to Euclidean Space

Table 13.1 shows a distance matrix consisting of the number of blocks a pe-
destrian has to walk to get from one landmark in New York City to another.
We assumed that walks through Central Park (e.g., Lincoln Center to Hunter
College) would follow the same grid as elsewhere and we disallowed any
shortcuts or trips down Broadway.

Table 13.1  New York City Blocks Between Landmarks

Figure 13.15 shows an MDS spatial layout of the New York City land-
marks, using the city-block metric. The stress of this solution is almost zero.
We set the SYSTAT MDS program to use the exponent p = 1 in the power met-
ric. Because New York City blocks are approximately three times longer be-
tween avenues than between streets, we stretched the plot after the MDS
computation to be three times taller than wide. This is equivalent to using a
weighted city-block metric in the scaling.

The result is an almost perfect similarity between geographic and virtual
MDS coordinates. This looks like an ordinary map of Manhattan. Why did this
happen? The simple explanation is that New York’s street grid is embedded in
2D Euclidean space. Actually, it’s embedded in another 2D space the surface
of a sphere — but the differences between plane and sphere are negligible at
this resolution. Thus, there is a similarity mapping from city-block to Euclid-
ean coordinates at this scale. In reading the map, therefore, we can assess re-
lations between landmarks in both Euclidean and city-block space. This is not
always the case. When we examine MDS scalings of dissimilarities not de-
rived from physical space, we cannot interpret Euclidean distances between
points. We must instead train our eye to follow city-block paths.

A
Lincoln
Center

B
Hunter
College

C
Carnegie

Hall

D
Port

Authority

E
Rocke-
feller

F
Times
Square

G
Empire
State

H
Chrysler
Building

I
Grand
Central

A 0
B 9 0
C 9 14 0
D 22 32 16 0
E 18 20 8 11 0
F 22 29 12 4 7 0
G 34 37 28 11 17 13 0
H 28 26 18 6 10 5 11 0
I 25 25 16 6 8 4 10 1 0
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Figure 13.15  City-block space and geodesics

At the bottom of the figure, we show all the city-block metric geodesics
between the Port Authority terminal and the Empire State Building (actually
between the nearest street corners). Every geodesic lies on the black grid. We
have highlighted two of these paths in red and green. There is no unique short-
est geodesic in the city-block metric (unlike the Euclidean "crow-flies" metric
on the plane, which in this case lies on a straight line between the two land-
marks). Another way to understand the multiplicity of city-block geodesics is
to realize that the green path and the red paths will take a pedestrian the same
amount of time to walk (assuming no differences in stoplights or sidewalk ob-
structions). There is an interesting psychological artifact in this figure. Does it
seem that the red path is shorter than the green? Pedestrians (and many driv-
ers) experience this phenomenon when navigating through city space. They
prefer zigzag paths through city streets, thinking they are shorter.
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13.3.1.2  Mapping Affine Space to Euclidean Space

Recall from Chapter 9 that distances in a Euclidean space are invariant with
respect to isometry transformations (including rotation). In the Euclidean met-
ric, distance is not directional; the distance contours in Figure 13.4 are circu-
lar. That means geodesics of a fixed length all end on the circumference of a
circle. We call a Euclidean space isotropic (from the Greek ,
which means the same in any direction).

Affine transformations introduce a dependency in the distance calcula-
tions, making distance directional. We call an affine space anisotropic. In
some applications, we compute distances directionally because of gravitation,
magnetism, temperature, or other biasing factors. It is easy to modify the Eu-
clidean metric to be anisotropic. First apply different weights to the dimen-
sions and then rotate. We modify the Euclidean formula as follows:

This formula has the effect of stretching or shrinking each dimension separate-
ly. You can verify graphically that identity, symmetry, and the triangle ine-
quality hold for this case. To create an anisotropic distance function, we rotate
the weighted Euclidean distance function through a change of variables. 

A well-known application of this metric to models in probability space is
expressed through so-called Mahalanobis distances (named after P. C. Ma-
halanobis, founder of the Indian Statistical Institute). Let (x1, ..., xp) be i.i.d.
normals (independent, common mean and standard deviation). The joint den-
sity is the product of the marginal densities

In matrix form, this is

Set the exponent to a constant:

In two dimensions, this is the equation for a circle, assuming  is an iden-
tity matrix. If  is a diagonal matrix with different diagonal entries, this be-
comes the equation for an ellipse (weighted Euclidean metric). If  is a
positive-definite symmetric matrix with a nonzero off-diagonal element, this
becomes the equation for a rotated ellipse (anisotropic metric). Figure 13.16
shows an example of Mahalanobis isodistance contours.
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Figure 13.16  Mahalanobic anisotropic isodistance contours

The following example highlights the consequences of evaluating aniso-
tropic distances. In Figure 13.17, we use a within-group bivariate normal dis-
tribution estimated from the Iris data to classify a specimen as one of two
species. In the left panel, it appears that the blue star representing a new spec-
imen is closer to the red distribution. By displaying a larger level curve for the
density in the right panel, we see that it is (in the anisotropic metric) closer to
the blue distribution. Graphically, the contours function as guides for distance
calculations. Plotting more than one contour can assist us in evaluating the 2D
space.

Figure 13.17  Anisotropic classification

13.3.1.3  Mapping the Sphere to 2D Euclidean Space

As we have seen, most geographic projections involve locally continuous
mappings from the surface of the sphere to the plane. Tobler (1999) presents
a number of unusual spherical-planar mappings. Figure 13.18 is a map projec-
tion based on the ocean routes between ports. In some geographic projections,
great circle routes map to straight lines in Euclidean space. Tobler’s projection
in Figure 13.18 maps paths along shipping lanes between world ports to short
curves in 2D Euclidean space. Tobler has turned land-world into water-world
and has given us a sense of the space-time characteristics of ocean travel.
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Is this mapping continuous. Is it a homeomorphism? Do the North and
South Poles go to points in this mapping? Are the shortest paths between ports
straight lines?

Figure 13.18 Tobler’s map of ocean distances (courtesy of Waldo Tobler)

13.3.1.4  Sharing Space

Every scatterplot involves shared space. This is because symbols have nonze-
ro sizes and thus occupy real space, often overlapping each other. We try to
choose symbol sizes that minimize these overlaps. A popular chart called the
bubble plot steals even more space, because symbols are sized according to
an extrinsic variable. Figure 13.19 shows a simple example of this representa-
tion. We have sized the anemones according to an extra variable in Kooij-
man’s dataset — the diameter of the anemones. This bubble plot helps us
locate anemone bullies. Anemones can be territorial and aggressive toward
each other (McCloskey, 2003). For this dataset, however, it is curious that
there is almost no correlation (r = .09) between the size of the anemones and
the area of their Voronoi polygons. Voronoi polygons are one estimate of the
territory owned by each anemone (see the fiddler crab example in Section
7.2.5.3), so one might expect larger anemones to have larger territories if size
gave them a competitive advantage.
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Figure 13.19  Beadlet anemone sizes

There is a problem with this example, however. If the size variable repre-
sents the physical sizes of the anemones, then we are not stealing space at all.
In fact, Figure 13.19 can be considered more like a photograph of the scene.
Two anemones cannot occupy the same space. Figure 13.20 shows a more typ-
ical example of a bubble plot. We have represented cancer rates aggregated
within US states. The bubbles steal geographic space. Despite their visual sim-
ilarity, these two plots are fundamentally different.

Figure 13.20  US cancer rates
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13.3.1.5  Label Layout

Labels usually steal more space than do symbols. In a scatterplot, we can think
of them as sitting on a second layer above the primary layer, with both layers
representing the same space. How do we keep them from occluding the data?
Figure 13.21 shows two scatterplots of the countries data shown in Figure 1.1.
In the first, the labels collide. In the second, the labels have been moved slight-
ly in order to avoid overlaps. The technology for doing this has been devel-
oped by geographers and computer scientists in the last few years. Although
the problem complexity grows exponentially in its most general form, simple
heuristics based on simulated annealing (a probabilistic iterative minimization
scheme) do quite well. Christensen et al. (1995) provide a survey. The lower
plot in Figure 13.21 makes use of an additional remedy. If the algorithm can-
not find a clear place for a label, it hides the label. 

Figure 13.21 Country labels
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13.3.2 Mapping Discrete Space to Euclidean

When we map discrete space to Euclidean space, there are areas inside the
frame but outside the image of the mapping. That is, there is free space where
no points go. We may use free space for shape and size aesthetics and for an-
notation. If we change rectangular shapes to anemone shapes for a bar graph,
we need room to render the shapes without colliding with other elements. If
we change the width of bars, we have a similar problem. This problem is dif-
ferent from the one we encounter when choosing the shape of a symbol in a
scatterplot or finding a place to put a label. In that case, we share space with
the layout of the points in a frame. This section covers how to employ free
space.

13.3.2.1  Categorical Dimensions
Categorical variables are the most obvious creators of free space. A categori-
cal dimension involves only the integers, so the space between tick marks is
meaningless (has no measure). Figure 13.22 shows various charts on the same
data from the EPA involving mileage of cars from several manufacturers. The
charts in the middle row, popular in business graphics, disguise the lattice or
mesh spacing on the horizontal axis. Because the lattice spacing is arbitrary,
slopes or areas based on a categorical axis are subject to misinterpretation.

Slopes between categories are meaningful only if the categories are
spaced on an interval scale. That is clearly not the case here, since the catego-
ries are sorted alphabetically — an arbitrary ordering relative to the data at
hand. Accordingly, we have reordered and linearized the scale in the charts at
the bottom of the figure. This ordering highlights the outstanding performance
of VW and Honda. The bottom charts contain the same information as the
ones above. They contain more perceivable information, however, because
they make clearer the differences in scale. We have deformed the categorical
space to reveal a simple pattern. 

Rescaling doesn’t solve all our problems, however. The areas between the
bars or vertices of the line and area charts are free space — meaningless space.
It makes no sense to connect them. We would argue that for applications such
as this one, users stay with bar charts or dot plots to represent their data. Pop-
ular graphics software makes categorical line and area charts easy to do, but
they are rarely appropriate.

Figure 13.23 shows how we can use free space (width of the bars) to rep-
resent an extra variable (sample size) with the size aesthetic. Bar sizes have
one degree-of-freedom. That is, their lengths are determined by a position aes-
thetic, so their widths are free to vary with size in 2D. We can exploit this extra
degree-of-freedom by attaching it to a variable. Because height and width of
rectangles are configural dimensions, however, we are not fond of this prac-
tice. Try comparing the height of “Working full-time” with “Retired” and
“Temp not working” with “Retired.” The differences in width influence the
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comparative judgment of height. There are other reasons we do not like this
graphic. Because the origin of the vertical axis is not zero, we question the use-
fulness of bars. It would be better, in our opinion, to use dot plots sized by sam-
ple size in this frame. See Cleveland (1995) for further discussion.

Figure 13.22  Bar, dot, line, and area charts of EPA data
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Figure 13.23  Bar widths proportional to counts

13.3.2.2  Fractals

Few data displays have employed self-similar discrete structures. An excep-
tion is Dan Carr’s 3D Sierpinski gasket of biosequences (Carr, 2002). Figure
13.24 shows an example. This structure encodes sequences of the four letter
base codes. One letter is situated at each of the four vertices of the tetrahedron.
The example in the figure encodes six-letter sequences, so the corners repre-
sent the four uniform sequences AAAAAA, CCCCCC, GGGGGG, TTTTTT.
Compound sequences, such as ACAAGT are represented as interior points.
The right figure shows a rotation to the ACGT plane, where projections of
subsequences can be observed. Coloring is used to identify subclassifications
of sequences. The power of this chart resides in its ability to encode a huge
number of sequences. This chart handles sequential patterns of length 6. Oth-
ers following the same algorithm can handle many more. Amie Wilkinson has
noted that base codes early in the sequence have more influence on location
of points than later. Can you see why?

Figure 13.24  Carr Sierpinski Gasket (courtesy Dan Carr)
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13.3.3 Mapping Graph-Theoretic Space to Euclidean
We will first discuss trees used to represent distances. Then we will discuss
examples of layouts for other types of undirected and directed graphs.

13.3.3.1  Distance Trees

A tree is an acyclic connected graph. Any two nodes in a tree are connected
by only one path. In this section, we will cover trees used to represent distanc-
es. In Section 16.3 we will discuss layouts for directed trees.

Suppose we wanted to represent the distances among all of our anemones
with a tree instead of the Euclidean space used in Figure 13.2. This might seem
like a peculiar desire, given that we already know all the distances exactly by
computing Euclidean distances for each pair. But suppose that there is a net-
work with fewer than n(n – 1)/2 edges that could account for all the Euclidean
distances quite well. Imagine, further, that this network revealed something
about anemone society, such as anemone economies. 

Spanning Trees

Our first candidate for such a network would be the tree in Figure 13.3. In a
spanning tree, each object is represented by a node and each distance is com-
puted along the edges connecting the nodes. Spanning trees have n – 1 edges,
quite a reduction in parameters from n(n – 1)/2 possible edges. A minimum
spanning tree (MST) has the shortest edge length of all possible spanning
trees. The graph-theoretic distances among nodes on the minimum spanning
tree in Figure 13.3 correlate .67 with the Euclidean distances — not a bad fit,
but we can do better. 

Is the MST the best graph of relatively small degree that we can construct
to represent all the pairwise distances? If the anemones were arrayed on the
rock near the vertices of an equilateral triangular or hexagonal grid (like anem-
one honey bees), it might be. If they were arrayed on a rectangular grid (like
anemone urbanites), it definitely would not be (Holman, 1972). Notice in Fig-
ure 13.3 that some of the shortest paths between anemone nodes are rather cir-
cuitous. We need to examine some other distance-fitting trees. 

Ultrametric Trees

A hierarchical tree has a set of leaf nodes (nodes of degree 1) representing a
set of objects and a set of parent nodes representing relations among the ob-
jects. In a hierarchical tree, every node has exactly one parent, except for a
root node, which has one or more children and no parent. A hierarchical tree
can be represented by a one-dimensional lexical ordering through the use of
parentheses. Figure 13.25 shows an example.
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Figure 13.25 Lexical ordering of a hierarchical tree

While the linear layout is compact, a hierarchical tree is usually displayed
along a distance dimension with the root node at one end (maximum distance)
and the leaves at the other end (zero distance). In this layout, the distances be-
tween any two leaves is represented by the coordinate of their common ances-
tor on the distance dimension. 

If the node distances are monotonically non-decreasing (i.e., every parent
is no closer to the leaves than its children are), then a hierarchical tree is ul-
trametric. An ultrametric is a metric with a more restricted form of the trian-
gle inequality: 

The graph-theoretic distances in an ultrametric tree take a maximum of
n – 1 possible values, where n is the number of leaves. This is because of the
ultrametric three-point condition, which says we can rename any x, y, z such
that 

.

Another way to see this is to note that the distance between any two leaves is
determined by the distance of either to the common ancestor.

The hierarchical trees in Figure 13.26 were produced by several popular
hierarchical clustering methods. Hierarchical clustering outputs binary trees
(parents having two-child families) from an input distance matrix. An hierar-
chical clustering algorithm joins the two closest objects among n objects, cre-
ating a new cluster object. At the next step, the algorithm joins the two closest
objects among n – 1 objects, one of which is the previously joined cluster of
size two. The algorithm continues joining until the last two objects are joined. 

The trees in Figure 13.26 are displayed with the distance dimension ori-
ented horizontally from zero distance on the left to maximum distance on the
right. SYSTAT colors the tree branches to highlight the cluster structure.

(((ab)(cde))fg)a cb d e gf (((ab)(cde))fg)a cb d e gfaa ccbb dd ee ggff

d x y max d x z d y z

d x y d x z d y z=
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Figure 13.26  Cluster trees on anemone data

Single Complete

Average
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Notice that the parent nodes are not spaced uniformly in the horizontal
distance dimension. The horizontal spacing of the parent nodes in the three
sub-figures is a consequence of the clustering algorithms used to join leaves.
Single linkage assumes that the distance between two nodes is the minimum
distance between any leaf belonging to the first node and any leaf belonging
to the second; the correlation of this tree’s geodesic distances with the input
distances is .40. Complete linkage assumes that the distance between two
nodes is the maximum distance between any leaf belonging to the first node
and any leaf belonging to the second; the correlation of this tree’s geodesic dis-
tances with the input distances is .66. Average linkage assumes that the dis-
tance between two nodes is the average of the distances between the leaves
belonging to the first node and the leaves belonging to the second; the corre-
lation of this tree’s geodesic distances with the input distances is .57. These
three (and other) linkage methods produce widely varying results on the same
data. You can read further on the reasons for these differences in Hartigan
(1975), Duda et al. (2001), or Hastie et al. (2001).

Of the widely used hierarchical clustering methods, only single and com-
plete linkage always produce an ultrametric tree. In other words, these are the
only popular cluster methods that allow us always to lay out a tree on a dis-
tance scale (with no branches crossing) and to compute graph-theoretic dis-
tances between leaves. Table 13.2 contains data that join with monotonically
decreasing distances under the popular median linkage (median of the dis-
tances between the leaves belonging to the first node and the leaves belonging
to the second) and centroid linkage (distance between the weighted center of
the values of the leaves belonging to the first node and the weighted center of
the values of the leaves belonging to the second). With centroid linkage, for
example, B and D are joined at a distance of 303. Then C is joined with that
cluster at distance 299.75. Then E is joined with that cluster at distance of
265.89. Finally, A is joined at a distance of 283.31. Try clustering these data
with median or centroid linkage in your favorite statistical package to see how
the cluster tree is displayed, if it is displayed at all. For these linkage methods
on this distance matrix, SYSTAT evenly spaces the nodes in join order rather
than distance order. For single and complete linkage, SYSTAT outputs the ul-
trametric tree.

Table 13.2  Perverse Distance Matrix

A B C D E
A 0
B 385 0
C 449 384 0
D 389 303 367 0
E 461 462 310 377 0
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The distance monotonicity condition led Fisher and Van Ness (1971) to
call single and complete linkage admissible clustering procedures and to ex-
clude other hierarchical methods from normal use. This categorization is ex-
treme for at least three reasons. First, most methods produce ultrametric trees
for the vast majority of real datasets, and when they don’t, it is easy to verify.
Second, hierarchical clustering is most often used to find clusters rather than
to model distances. The cluster tree is used as a guide to identifying clusters,
not a distance model. Third, single and complete linkage anchor a continuum
of hierarchical clustering methods running from those that produce stringy
clusters to those that produce compact clusters. Methods like average and me-
dian linkage, as well as a variety of other cluster algorithms, are often better
at finding clusters with other shapes.

The monotonicity condition for cluster distances does mean that single
and complete linkage are the only popular cluster methods that are invariant
under monotonic transformations of the input distances (Johnson, 1967). This
characteristic makes them especially suited for analyzing ranked dissimilari-
ties, often in tandem with nonmetric multidimensional scaling. In these appli-
cations, we usually begin with a dissimilarity matrix that we believe is
monotonically related to a set of distances. In this case, single and complete
linkage and MDS give us useful tools for modeling the data.

Additive Trees

Let D be a symmetric n by n matrix of distances dij. Let T be a hierarchical tree
with one leaf for each row/column of D. T is an additive tree for D if, for ev-
ery pair of leaves (ti, tj), the graph theoretic distance between the leaves is
equal to dij. Spanning trees are additive as well (as in Figure 13.3), but we will
focus on additive hierarchical trees in this section.

The idea of approximating distances by additive trees originated among
psychometricians working with similarity/dissimilarity data (Carroll and
Chang, 1976). Sattath and Tversky (1977) introduced a method for fitting an
additive tree to a matrix of dissimilarities. Since then, biologists and computer
scientists have investigated additive trees extensively and reduced significant-
ly the complexity of the fitting algorithms. Gusfield (1997) summarizes this
more recent literature.

Figure 13.27 shows the Sattath-Tversky additive tree solution for the dis-
tance matrix derived from our anemones. The SYSTAT implementation of the
algorithm for computing the fit was developed by Corter (1982). The correla-
tion with the input distances is .91, which is a better fit than for any tree we
have seen so far. The distances between any two nodes in this tree are comput-
ed by summing the vertical edges connecting the nodes. The horizontal edges
are used simply to position the nodes conveniently for reading.

This additive hierarchical tree should not be confused with either a rooted
spanning tree or a hierarchical tree display in some statistical software. The
rooted spanning tree in Figure 13.3 is not hierarchical. And the trees displayed
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in some computer programs (e.g., S and R) have shortened leaves that make
them look similar to an additive tree. This truncation is ad hoc, however. Pro-
grams such as S truncate long edges leading to terminal nodes in a hierarchical
tree to reduce the amount of ink in the display. While the S tree is less cluttered
with long edges, particularly for single linkage trees, some might argue this
aesthetic invites confused interpretations. Truncating edges at terminal nodes
breaks the ultrametric properties of the tree. 

Figure 13.27  Additive tree on anemone data

Steiner Trees

There is a graph related to the additive tree called the Steiner tree (Skiena,
1998). This is the smallest tree connecting all the vertices of a graph. Unlike
the minimum spanning tree, the Steiner tree is allowed to have intermediate
connection points (pseudo-vertices) in order to reduce the cost (total length)
of the tree. The Steiner tree of a planar graph is the shortest additive tree pos-
sible for that graph.
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13.3.3.2  Spaces of Graphs

Figure 13.28 shows the nearest-neighbor graph of the anemones. For each ver-
tex, we drew an edge to the closest neighbor vertex. This is a directed graph
because the closest neighbor to a vertex may have some other vertex that is
closer to that neighbor. If we ignore edge direction, however, we can see this
graph is a subset of the MST. In any case, the resulting graph shows clusters
of anemones that are closer to each other than to other clusters.

Figure 13.28  Nearest neighbor graph for anemones

Points in a space can represent sets. Consider a space based on nearest-
neighbor clusters, for example. We can define distance functions on these
clusters that follow the metric axioms. 

A metric function of this sort is the nearest-neighbor cluster distance,
which is the minimal distance between a point p in set A and a point q in set
B. These distances are shown in green for selected pairs of clusters in Figure
13.29, If the nearest-neighbor distance between A and B is d, then at least one
point of A must be within distance d of at least one point of B.

Another metric function is called the Hausdorff distance, which is the
maximum of: (1) the maximal distance from a point p in A to its closest neigh-
bor in B and (2) the maximal distance from a point q in B to its closest neighbor
in A. Selected Hausdorff distances are shown in red in Figure 13.29. If the
Hausdorff distance between A and B is d, then every point in A must be within
distance d of some point in B and vice versa.

We use this example to illustrate that definitions of a space can involve
levels of indirection. C programmers use pointers to refer to an object and they
use pointers to pointers to add levels of indirection. Similarly, we have col-
ored the graph in Figure 13.29 to show a distance that is based on the compu-
tation of another distance. Can you devise other graphical methods to make
this relation clearer? Are there other examples where it makes sense to con-
struct a graph of a graph?
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Figure 13.29  Nearest-neighbor distances (green) and Hausdorff distances 
(red) between selected anemone nearest-neighbor clusters

13.3.4 Mapping Nested Space to Euclidean

Nested space involves nesting of connected spaces. There have been many
graphical incarnations of this idea. We will discuss two.

13.3.4.1  Treemaps

Treemaps (Johnson and Schneiderman, 1991; Schneiderman, 1992; Johnson,
1993) are hierarchical partitionings of 2D space. The partitioning algorithm is
a fixed alternating sequence of vertical and horizontal cuts of nested blocks
based on a hierarchical tree. We begin by cutting a rectangle vertically. We
then cut each of the partitioned blocks horizontally. We then cut the blocks
vertically, and so on. There is no requirement that the cuts be binary, although
our examples are all based on binary trees. 

Figure 13.30 shows an example using a simple binary tree. The first cut
partitions (AB)(CDE). The second cut partitions (AB)((CD)(E)). The third cut
partitions ((A)(B))((CD)(E)). The last cut partitions ((A)(B))(((C)(D))(E)).
We have sized the rectangles according to the within-cluster distance taken
from the ultrametric tree. Splits involving leaves are sized using their parents’
distance. In most published treemaps, the blocks are resized according to the
values of an extrinsic variable, such as stock market trading volume or market
share.
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Figure 13.30  Mapping a tree to a treemap

The treemap is a dual of a hierarchical tree. This means that the layout of
a treemap is best understood in terms of the known properties of hierarchical
trees. Despite its appearance, the metric space of a treemap is not the 2D Eu-
clidean plane. It is the graph-theoretic space of the tree that produced it.

What are the consequences of this? First of all, a treemap follows an ul-
trametric rather than a metric. Many distances derived from the treemap, like
those derived from hierarchical clustering trees, are tied. Second, adjacency of
blocks is not a distance measure. Two blocks may be adjacent (or near each
other) and yet have different parents in the corresponding tree. Third, the di-
mensions (horizontal and vertical) of the treemap have no simple meaning in
terms of the data on which they are based. While they may appear similar to
the dimensions of a mosaic or other tiled plots, they have no intrinsic meaning
related to the data because they can be reordered without changing the metric
properties of the tree on which they are based.

A variety of algorithms have been suggested for constructing treemaps
when the data are not already structured as a tree. Because of the dualism be-
tween treemaps and hierarchical trees, it is most fruitful to derive and evaluate
these algorithms within the framework of the hierarchical clustering literature.
To create a treemap, we simply (1) perform a hierarchical clustering, (2) apply
the alternating recursive splitting rule, and (3) resize the tiles according to an
extrinsic variable. This approach has several advantages. First, we are not lim-
ited to one variable or index for producing the splitting tree. We can, of course,
cluster on a single variable. Or, we may choose a multivariate distance mea-
sure on several variables at once. Second, we may choose different linkage
methods to produce different trees. Third, we may devise a tree-ordering algo-
rithm to arrange blocks within each split (see Section 16.5.4). 

Figure 13.31 shows three treemaps on the anemone dataset. We used sin-
gle, complete, and average linkage to compute the trees and we sized the
blocks according to the within-cluster distance. In order to make the blocks
relatively distinguishable, the colors were randomly chosen, with the same
random seed for all three treemaps.
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Figure 13.31  Hierarchical clustering treemaps

We have already pointed out that it is a mistake to interpret the embedding
plane of the 2D treemap as a metric space. Nevertheless, if we pretended it
were a partitioning of a Euclidean space, how good is the fit of the distances
between the centers of blocks in the treemap to the original distances? For sin-
gle linkage, the correlation is .14. For complete linkage, the correlation is .33.
And for average linkage, it is .39. Not a good fit. A graph-theoretic distance
model does much better. 

This assessment misses the point of treemaps, however. They are best
thought of as rectangular pie charts where the categories are nested within a
2D rectangle. Even though the global arrangement of the tiles is not driven di-
rectly by similarity, closely associated categories will nevertheless tend to be
near each other.

Figure 13.32 shows another kind of treemap. The data are intrinsically hi-
erarchical. They are the packages, classes, and methods of ViZml.

Single Complete

Average
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Figure 13.32  Hierarchical data treemap

If we think our data are best represented by a metric model, then multidi-
mensional scaling can be used to represent the same information as a treemap.
We simply plot the MDS solution and size the points according to the extrinsic
variable. For example, if we had a measure of dissimilarity among anemones
and if we had an extrinsic variable to represent size of the anemones, then we
could use MDS to fit points in a Euclidean space and size them appropriately.
The result would look like Figure 13.19. For intrinsically hierarchical data, as
in Figure 13.32, treemaps are not a bad way to fit a large amount of informa-
tion into a relatively small region.

Recursive partitioning trees also partition 2D (or higher-dimensional)
space. What is the difference between a treemap and a tiling based on a recur-
sive partitioning tree algorithm?
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13.3.4.2  Temple MVV

Mihalisin et al. (1991) devised (in a program called TempleMVV) a nested
disjoint partitioning that resembles treemaps. Unlike treemaps, however, this
display is based on a nested set of metric spaces. Each block is a bounded
space that is disjointly partitioned into similar subspaces based on the values
of a categorical variable. The simplest incarnation of this idea is a bar graph
within a bar graph within a bar graph . . .

Figure 13.33 shows a display of this sort for data representing proportions
of survivors of the Titanic sinking, categorized by age, social class, and sex.
The data are from Dawson (1995), who discusses various versions of these
data and their history. Simonoff (1997) fits a logistic regression model to these
data that predicts survival from class, sex, and the interaction of class by sex. 

The top-level rectangle (green) includes all the passengers. The next level
(blue) represents the proportion surviving within each of the four Class cate-
gories (Crew, First Class, Second Class, Third Class). The third level (red) rep-
resents the proportion surviving among two Age categories (Child, Adult).
And the fourth level (yellow) represents the proportion surviving among two
Gender categories (Male, Female). Each of the proportions is computed within
the parent level of the hierarchy. Some of the bars (especially the yellow ones)
cover their parent bars completely. This means that everyone in that subcate-
gory survived.

Because the partitioning is hierarchical, this display does not provide the
marginal information needed for most categorical analytic models: row, col-
umn, layer, and subtable margins. For this reason, there is no straightforward
link between a nested partitioning and standard categorical techniques such as
logistic regression or logit analysis. Mosaic displays, by contrast, were devel-
oped with categorical statistical models in mind. See Section 11.3.5.5 for a
mosaic display of the same data. The mosaic reveals not only the proportion
surviving (the color scale), but also (importantly) the relative sizes of each of
the subgroups.

The layout underlying TempleMVV is based on a popular data structure
called the OLAP cube. As Shoshani (1997) elucidates, the OLAP model is
representable by a series of nested tables. The margins of these tables are or-
ganized in a dimension hierarchy. In graphics algebra, a dimension hierarchy
is a nested facet: (a(b(c))), for example, is the same as c / b / a. Both space and
time lend themselves to representation as dimension hierarchies. An example
of a spatial hierarchy is (continent(country(state(county)))) and an example of
a temporal hierarchy is (year(quarter(month(day(hour(minute(second))))))).
In Figure 13.33, the hierarchy is (class(age(gender))). 

The motivation behind OLAP is efficiency. OLAPs can compress large
datasets because they aggregate the data inside each subclassification in the di-
mension hierarchy. The aggregation usually depends on sums, but it can also
employ other statistics, such as means or standard deviations, as long as they
require only one pass over the data to compute. 
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The price paid for this efficiency is the loss of flexibility. We cannot ex-
amine relations not represented in the hierarchies. Navigation through OLAPs
is quite difficult, which is why so many graphical models for representing
them have been proposed. And it is no coincidence that programs such as Tem-
pleMVV have more controllers than graphics in their displays.

Figure 13.33  Nested tiling of Titanic data

What is the dimensionality of a dimension hierarchy? OLAP designers
call a dimension hierarchy a single dimension (e.g., time). Is the hierarchy
(class(age(gender))) a single dimension? The display in Figure 13.33 suggests
this by the shared ordering on a horizontal dimension. We would say a multi-
dimensional contingency table of these three variables was three-dimensional,
but do we produce a single dimension when we organize them in a hierarchy?
One way to approach this question is to see that the nested sequence a / b / c
expresses a partial order and the sequence a*b*c expresses a product set.

13.3.4.3  Region Trees

Like 3D bar graphs, nested tilings can occlude subregions. For example, the
yellow M/F bars cover the red Child bars in Figure 13.33. One solution to this
problem is to break dimension hierarchies into panels so we can view each
separately. Putting each panel on a common scale allows us to make compar-
isons among survival rates within subcategory. And coloring each child by the
hue of its parent category (with saturation used to distinguish subcategories)
makes it easier to navigate the tree. We call this display a region tree, because
it is a tree of regions (or rectangles in this case). Kleiner and Hartigan (1981),
Dirschedl (1991), Lausen et al. (1994). Vach (1995), Urbanek and Unwin
(2001), and Urbanek (2003) discuss this type of tree.



13.4  Sequel 405

Figure 13.34 shows a region tree of the Titanic data. Compare this figure
with Figure 13.33 and the figures in Section 11.3.5.5. We believe the region
tree makes it easier to explore and understand factorial or nested data. As with
other graphics, region trees are easily paneled or faceted on conditioning vari-
ables. Those looking for more detail may wish to add three vertical scales
(running from 0 to 1) on the left side of the display. 

Figure 13.34  Region tree of Titanic data

13.4 Sequel
The next chapter covers the use of time in graphics. How do we represent
time? How do we do graphics in real-time?
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Time

The word time is closely related to the Latin tempus, which means time or sea-
son. The related word tempo means frequency or rate. Extent in time has long
been viewed as similar to extent in space. In fact, the more closely we examine
time as a variable, the more it resembles a state of space. If we think of cosmic
space as a structure containing energy and matter, for example, then time is
simply an ordering of different positional states. Past, present, and future are
embedded in that ordering. Time is the fourth spatial dimension.

Time has a cultural aspect as well. Most cultures assume the following:

• Time is ordered. We assume one time point precedes another, is simulta-
neous with the other, or follows. The notion of time being ordered is
closely bound to a notion of causality. A cause is linked to an effect only
if it precedes the effect. Time ordering is also closely bound to cultural
concepts of knowledge. Recalling events from the past is a routine skill.
Predicting events in the future is an extraordinary (usually religious) gift.

• Time is continuous. Between any two times we can find another time.
Some physicists consider time as discrete, but most people think of time
as a flowing stream.

• Time intervals are additive. We speak of an interval of time without hav-
ing to identify the location of that interval. When we say something took
24 hours, we do not need to know what day it was. 

• Time is cyclical. Some properties of time are defined by natural cycles
related to the Earth, Moon, and Sun, including day, month, and year.
Many things we measure are directly affected by these natural cycles
(such as outdoor temperature), and others are affected by patterns corre-
lated with these cycles (such as airline ticket sales, commitments to men-
tal hospitals, and escapes from prisons).

• Time is independent of location. Einstein’s theory of relativity posits that
time cannot be measured independently of the location of measurement
(and its motion). But in practice, we typically ignore such issues. Time
measurement has not always been independent of location. Medieval
clocks divided daylight into a set of fixed intervals. These intervals var-
ied in length by season and location, despite having common names.
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• Dates are identified by month, day, and year and are synchronized with
astronomical cycles by a series of ad hoc adjustments. The exact details
of these adjustments have varied over time, so that the dates on different
calendars and dates on the same calendar at different epochs do not nec-
essarily correspond. For example, when the Gregorian calendar was
instituted, the date October 15, 1582 would have corresponded to the
date October 5, 1582 in the prior Julian system. Even though we think of
time as being continuous, the calendar system in use may change.

• Superimposed across the astronomical periods are periods such as quar-
ter (which varies in length so four quarters fit into the year) and week
(which is fixed in length but overlaps yearly boundaries). 

• Time is statutory. If a measurement is scheduled for 2 AM, we consider it
to match another measurement scheduled for 2 AM, even if one was actu-
ally taken at 1:59:57 and the other at 2:00:01. For statutory purposes,
time is treated as a partial rather than a complete order. That is, events
within a time window may be treated as contemporaneous. Daylight Sav-
ing Time, said to have been invented by Ben Franklin, is a statutory
adjustment of time to accommodate seasons.

• Time zones discretize solar time, so that within a range of longitudes all
locations have the same time. In our indoor age, it is convenient to refer
to the same moment with the same time, but if our movements were lim-
ited and the sun were of immediate interest, we might prefer local solar
time. Time zones were developed for the railroads, when it became
important to reference the same moment across a range of locations.

14.1 Mathematics of Time
Three models predominate in measurement of time: deterministic, sto-

chastic, and chaotic. Deterministic models are based on linear or nonlinear
functions of time itself. They usually, but not necessarily, include an error
term. Stochastic models are based on recursive functions of time. They always
incorporate random error in these functions. Chaotic models have no random
component, but like stochastic models, they involve recursive functions.

14.1.1 Deterministic Models of Time

Deterministic time models can involve simple linear functions that are linear
in the parameters (as in linear forecast models) or nonlinear in the parameters
(as in quadratic models). They can also involve nonlinear functions (as in ex-
ponential growth models). And they often involve periodic functions. Period-
ic time series appear in graphics as waveforms, or sinusoidal patterns. We see
these patterns when we examine graphics of monthly temperature, rainfall, or
migration. We hear them when we listen to music. Because periodic models
are peculiar to time series, we will focus on them in this section.
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14.1.1.1  Orbits and Vibrations

Orbits and vibrations generate periodic time series. Figure 14.1 shows this
graphically. The spokes on the wheel at the left of the top figure demarcate 32
equal-time intervals in a circular orbit of constant speed. From these spokes
we derive 17 horizontal grid lines. The vertical gridlines on the right rectangle
demarcate the same 32 equal-time intervals. Mapping from intervals equally
spaced on the circumference of a circle to intervals equally spaced on a line
produces a grid whose intersections fall on a sine wave, as shown in the figure.
A cosine wave can be produced by rotating the circle by 90 degrees. This
shifts the phase of the sine wave by  radians.

The bottom figure shows a simple string of fixed mass and elasticity vi-
brating at a constant frequency. We assume the initial state of the string is rep-
resented by the topmost blue curve (not a triangular shape from plucking).
And we assume that this is a free string (the vibration is not damped over time
by friction or other forces). And we assume that the force responsible for the
motion is always directed toward the equilibrium point in the center and is pro-
portional to the displacement. At maximum displacement, the speed is zero
and acceleration is maximum; at zero displacement, the speed is maximum
and the acceleration zero. Under these assumptions, the red cosine function
represents the displacement of the string from the center state at equal time in-
tervals beginning at the top and returning to the top.

Figure 14.1  Periodic functions

14.1.1.2  Harmonics
In the sixth century BCE, Pythagoras observed that the most pleasing combi-
nations of tones are produced by vibrating strings whose lengths are related
through integer ratios. Pythagoras believed that these ratios applied to both in-
struments and natural phenomena, including the music of the spheres. The
three consonant Greek intervals had the ratio of 2 / 1 (octave), 3 / 2 (fifth), and
4 / 3 (fourth). Overall, the preferred Greek intervals consisted of all fractions
of the form , with the numerator and denominator having only 2, 3,
and 5 as prime factors.

. �+

n �+� � n+
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Pythagoras’ scale works in the range of an octave, but breaks down for
larger ranges. For example, concatenating 12 fifths should yield 7 octaves (as
happens on a modern keyboard), but  is not equal to . Conse-
quently, the tempered scale used in modern Western music replaced the 16/15
diatonic semitone in the Greek scale with the interval , which is just a few
thousandths less in magnitude. Since scales are multiplicative in frequency (or
additive in log frequency), concatenating 12 tempered semitones yields the ra-
tio 2 / 1 on the tempered scale. Concatenations of other intervals on the tem-
pered scale are transitive as well, so the instruments tuned to the tempered
scale can transpose music without retuning. Recent musical theorists have in-
vestigated intervals generated by ratios of other small prime numbers. Playing
this microtonic music requires a computer or a carefully tuned fretless
stringed instrument. Papadopoulos (2002) discusses the mathematics of musi-
cal scales in more detail.

When music is played on several instruments, or several notes are played
simultaneously on a single instrument, the waveforms blend. And, as Pythag-
oras determined, if the ratios of frequencies involve prime integers, they will
sound pleasing. Moreover, most instruments (strings and winds) have pleasing
tones because they produce overtones when they play a single note. Strings,
for example, vibrate at several frequencies simultaneously depending on how
they are plucked, hit or rubbed. The combination of these waves is what gives
instruments their timbre or character. Each frequency component produces its
own audible pitch called a partial. Figure 14.2 shows four standing waves
whose frequencies follow a ratio of 2 to 1: red is twice black, green is twice
red and blue is twice green. The partials of a string vibrating like this would
be audible as four different octaves. The partials would be at lower volume
than the black fundamental, but would be audible nonetheless. Partials usu-
ally occur at all integer multiples of a fundamental frequency — not just at
doublings. On a modern piano, for example, hitting the lowest C key (C1) pro-
duces a series of overtones that are integer multiples of the fundamental fre-
quency. The single string produces the frequencies (in cycles per second,
starting at the fundamental): 33, 66, 99, 132, 165, 198, ... These frequencies
correspond to the notes C1, C2, G2, C3, E3, G3, ... A professional musician can
hear at least the first several of these overtones. You can hear them more clear-
ly by holding down several of those notes while striking C1. They will resonate
sympathetically. Hold down nearby notes and you will not hear them resonate. 

Figure 14.2  Octave harmonics
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14.1.1.3  The Fourier Transform
Given a blended waveform produced by several simultaneous frequencies

(like that from C1 on the piano), can we recover those frequencies in separate
waveforms? It had long been known that sinusoidal waveforms could be com-
bined to produce smooth periodic functions, but the French mathematician Jo-
seph Fourier surprised the French Academy in 1807 by claiming that
sinusoidal waveforms could be combined to produce any periodic function —
smooth or rough. Fourier’s series consists of weighted sinusoidal functions at
integer multiples of frequencies. If we take discrete measurements over time
and if time periods are equally spaced (t, 2t, 3t, ...), then Fourier’s function has
a simple form. The discrete Fourier series is 

Figure 14.3 shows an example in the interval 0 to 2., where  and
.

Figure 14.3  Fourier components

The discrete Fourier function can also be parameterized to map from the
complex plane to the complex plane. If we use Euler’s formula

then the discrete Fourier function becomes
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In this form,  represents frequency and zt is a complex number whose
real component represents a point in a data series and whose imaginary com-
ponent is zero. Each point in the image on the complex plane represents a pair
of coefficients for a frequency component, corresponding to the sine and co-
sine weights for that frequency.

14.1.1.4  The Periodogram

We call the quantity , where R is the real (sine) coefficient and
I is the imaginary (cosine) coefficient, magnitude, This quantity represents
the relative contribution of each frequency component to the overall function.
The plot of squared magnitude against frequency is called the periodogram
or (if based on the theoretical model) the spectrum or spectral density. Fig-
ure 14.4 shows the periodogram for the composite waveform in Figure 14.3.
Notice that only three frequencies have nonzero magnitudes.

Figure 14.4  Periodogram for series in Figure 14.3

14.1.1.5  Smoothers, Convolutions, and Filters

The usefulness of the Fourier decomposition as a framework for smoothers is
evident in applications that are fit well by only a few terms in the series. We
show an example in Figure 14.16. The Fourier decomposition also provides a
framework for applying the kernel smoothers discussed in Section 7.1.4. Ker-
nel smoothing is often defined as a convolution of functions:

In this formula, g is the function (or data density) to be convolved and h
is a kernel. A convolution is the product of these two functions integrated over
t (in this case, time). The kernel moves along x and at each point t on x, it op-
erates on values of g wherever h overlaps g. Figure 14.5 shows a convolution
of a discrete function g (represented by red spikes) and an Epanechnikov ker-
nel h (represented by blue curves). To keep the display simple, we have drawn
the kernels only at the locations of the spikes. 
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The convolution is the green function. At the right end of this function,
the kernel functions overlap exactly with the convolution because they cover
only one spike in that neighborhood. Notice that the convolution goes to zero
between these last two spikes because the moving kernel covers neither spike
in that interval.

Figure 14.5  Convolution

The Fourier decomposition is widely used for developing kernels to
smooth time series and spatial images because of a dualism inherent in the
Fourier theorem. This theorem states that 

 ,

where F is the Fourier function and  is its inverse. Thus, we may kernel
smooth in the time domain or smooth in the frequency domain and inverse-
transform back to the time domain. We will illustrate this method in Section
14.3.1.2.

The Fourier theorem is used by engineers to develop digital linear filters.
A typical low-pass filter, for example, has a frequency magnitude response of
1 from 0 to 50 Hertz (cycles per second) and zero elsewhere. The inverse Fou-
rier transform of this rectangular function is the sine cardinal function: 

In pictorial form,  
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Thus, we may filter frequency components in the frequency domain and
inverse transform the result, or we may use the sinc function to smooth in the
time domain directly. If we use a truncated sinc function (as shown here), then
the results will differ to a small extent (because the sinc function is wavy ev-
erywhere on its infinite domain). Many kernels, such as the Epanechnikov (see
Section 7.1.4), are shaped similarly enough to the sinc function that they pro-
duce similar results as well.

14.1.2 Stochastic Models of Time

As we have seen, deterministic time models take the form , where
the  are independent, identically distributed random errors. Examples of
these models are the linear regression model , or the sinuso-
idal regression model , where � is a phase pa-
rameter and � is a frequency parameter. We fit these models by ordinary least
squares or maximum likelihood. 

Independence of errors rarely happens in time series data, however. Time
series data are usually serially correlated — measurements at one time period
are correlated with measurements at nearby time periods. And if we try to use
deterministic models on time series with serially correlated errors, our fits will
be biased. Furthermore, we may end up fitting models to aspects of the data
that are simply random. Time series data can fool us into thinking there is or-
der where there is none.

Stochastic time models take the form of the recursive equation
, or  where d is a time delay (lag). The

word stochastic comes from the Greek , which means able to
hit a mark or to guess. The Greek sense of target practice — hitting something
with an arrow — makes sense in the modern usage, since stochastic equations
are especially suited to describing such things as the track of machine gun bul-
lets across a wall.

Figure 14.6 presents several illustrative stochastic series. The first and
simplest is white noise, shown in the top row. This is generated by the equa-
tion , where the errors are independent Gaussians. White noise sounds
like the hissing noise between stations on the radio or the waterfall sound used
in relaxation audiotapes. The periodogram for this series shows a fairly uni-
form density, albeit with considerable variability in the magnitude of frequen-
cies. The theoretical spectral density for white noise is uniform. The
autocorrelation function plot (ACF) in the middle column of the white noise
row is also uniform. This plot shows the correlations between the series itself
and the same series shifted to the right by one time period, by two, and so on.
The red bands in this plot are approximate confidence intervals on the corre-
lations. For white noise, all the autocorrelations are near zero. Since every-
thing in this chapter seems to be related to everything else in the chapter
through the Fourier transformation, we note that the periodogram is the Fou-
rier transform of the ACF. 
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The next three rows show different forms of noise whose names are based
on a pun. Brown noise (third row) is named after Brownian motion, the ran-
dom jittering of particles first observed in the early 19th century by the Scot-
tish botanist Robert Brown. This series is a 2D random walk, in which the
location of a point is given by the location of the previous point plus random
error. Pink noise is so named because it lies between white and (reddish)
brown. Black noise is named for being darker than brown. The spectral den-
sities of these series follow a simple functional progression. The spectrum of
pink noise is proportional to , where f stands for frequency. The spectrum
of brown noise is proportional to . And the spectrum of black noise is
proportional to , where p > 2. We see increasing coherence (smoothness)
in these series, mirrored by increasing dependence in the ACF plot. 

One person’s noise is another’s music (depending on one’s age). If we use
the vertical axis in a time series to represent pitch rather than amplitude, then
interesting patterns appear in melodic music. Voss and Clarke (1978) found a

 spectrum (pink noise) in a variety of music. Brillinger and Irizarry (1998)
found  in samples of Baroque, Classical, Romantic, Atonal, Spanish Gui-
tar, Jazz, Latin, Rock & Roll, and Hip Hop music. You can listen to Irizarry’s
random series generated to produce white, pink, and brown music at his Web
site (Google his name).

The next series in Figure 14.6 was generated by the stochastic equation
, where = 0.95 and  represents standard-normal random

error. (In these recursive equations we follow the convention that x is mea-
sured at unitary time points.) This series is a first-order autoregressive, or
AR(1) process. Do you notice the similarity between this series and brown
noise? That’s not coincidental. Brownian motion is a first-order autoregressive
process, but = 1. Unlike the AR(1), a random walk diverges infinitely.

The next to the last row of Figure 14.6 contains a first-order moving av-
erage model, or MA(1), where  and  = 0.8. Notice the large
first spike in the ACF plot. This reflects the single MA coefficient. The last
row contains the same model with  = /0.8. The spike in the ACF plot is neg-
ative. Notice the difference between the two periodograms. The spectral den-
sities are almost complementary. The positive coefficient enhances the low
frequencies (more coherence in the series). The negative coefficient enhances
high frequencies.
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Figure 14.6 Stochastic series
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There are many other stochastic models, including the seasonal autore-
gressive model, where  (s is a seasonal period), and the sea-
sonal moving average model, where . We will present a
seasonal model on real data in Section 14.3.1.3. There are also compositions
of autoregressive and moving average models. Box and Jenkins (1976) discuss
these models in more detail. All of these stochastic models share the essential
component of correlated errors across time. They differ in the structure of
those errors, which is to say they differ in the way errors are incorporated in
the model. And without visual tools such as the ACF plot and the peri-
odogram, it is often difficult to distinguish them by looking at the raw series

14.1.2.1  Stationarity

The left panel of Figure 14.7 shows a scatterplot matrix of a random walk se-
ries and the first nine lags (shifts) of the series. The first row/column of this
matrix contains the scatterplots corresponding to the first 10 autocorrelations
in an ACF plot. There is a discernible pattern in the SPLOM; as we move away
from the diagonal, the correlations decrease uniformly. We discuss this pat-
tern, typical of autoregressive processes, in Section 16.5.2.1. 

The correlations between adjacent points in the series are an obvious con-
sequence of the generating model. Why are the correlations between non-ad-
jacent points nonzero? Because the lags are related by a sequence of backward
shifts in the model. If we remove the first-order dependency by differencing
the series once, however, the resulting series is white noise. The right panel of
Figure 14.7 shows the result.

Our differencing has also made our series stationary. Stationarity means
(weakly, not strictly) that the mean, variance and autocorrelation structure of
a process are defined and do not change over time. A stationary process even-
tually drifts back toward its mean (and variance) from extreme values. In the
case of a random walk, the series does not drift back to some mean value. It
keeps wandering farther afield. You don’t want to bet against a random walk.
Unless you have infinite reserves, it will eventually lead to your ruin.

Figure 14.7  SPLOM of random walk series (9 lags) and differenced series

xt �xt s– -t+=
xt D-t s– -t+=
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14.1.3 Chaotic Models of Time

Chaotic models of time are related to deterministic models of time in the sense
that both incorporate deterministic equations. Chaotic models of time are re-
lated to stochastic models of time in the sense that both are based on recursive
equations. Chaotic models do not have a random component, however. The
apparently random behavior of series produced by chaotic models is a conse-
quence of the behavior of certain nonlinear equations under iteration.

Chaotic models are instances of dynamical systems. A dynamical system
models a set of ordered states. The evolution of states over the ordering corre-
sponds to a trajectory in a space of all possible states of that system. Consider
the following three-parameter recursive system (originally due to Lorenz,
1963), where , , and :

Figure 14.8 shows two different 3D views of 10,000 points generated by
this system, plotted in what is called a phase space. A phase space contains
all possible states of a dynamical system. Each point in this plot corresponds
to a value of x, y, and z at a given point in time. Each time point is colored to
run from blue (early) to red (late). Following Lorenz, we have rescaled t in the
legend to run from 0 to 50 instead of 0 to 10,000.

Figure 14.8 Lorenz butterfly
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The striking feature of this configuration is its bifurcation into two orbits.
This configuration of orbits is called a strange attractor. The term suggests
that the orbits are attracted to (lie on) a manifold that is embedded in the phase
space. For the Lorenz attractor, this manifold has a distinctive structure shaped
like a butterfly. What does the shape imply? It indicates that the Lorenz system
generates two types of states and, if we examine the graphic in more detail, we
see that the system jumps between these two states at apparently random
points in time. The wings of the butterfly contain a mixture of colors.

Not every deterministic system based on recursive equations generates
strange attractors. Consider the following recursive system:

The percentage sign (R) represents a modulo (remainder) operator. As with
the Lorenz equations, there is no random component in this system. Paradox-
ically, however, this system is frequently used to generate random numbers.
More precisely, this is the generating system that underlies a mixed-triple
multiplicative linear congruential pseudorandom number generator
(Wichman and Hill, 1982; L’Ecuyer, 1988). Despite its deterministic origins,
it passes the standard statistical tests for randomness.

Figure 14.9 shows 10,000 points generated by this system. Compare this
configuration of points filling the interior of a cube with the Lorenz butterfly
in Figure 14.8. No coherent attractor is visible. 

Figure 14.9 Plot of pseudorandom system
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420 14  Time

Let’s examine the behavior of the Lorenz system over time in more detail.
In Figure 14.10 we plot x against t. Suppose we are given this plot and do not
know the generating model. Is there a way to discern whether this series is
based on a chaotic system rather than a stochastic or deterministic system with
a random component?

Figure 14.10 Lorenz series (x component over time)

Obviously, we cannot inspect the series itself to determine that it is gen-
erated by a three-parameter system or to know that its attractor is two-dimen-
sional. And despite the local regularities (funnel-shaped envelope surrounding
a periodic oscillation over time), we can’t tell if the global behavior is random
or chaotic, As with stochastic models, a visual inspection of a raw time series
reveals little about its generating model.

The standard time series graphical tools we have examined so far will not
be of much use to us either. Figure 14.11 shows both the ACF and peri-
odogram for this series. The ACF is smooth, but so is the ACF for black noise.
And the spectrum closely resembles a spectrum for 1/f noise. The chaotic be-
havior is not evident in these plots.

Figure 14.11  Lorenz butterfly series autocorrelation plot and periodogram

There is a phase space derivable from a time series that is remarkably use-
ful for this purpose, however. We will illustrate this with a simple example.
Consider the series at the top of Figure 14.12. It consists of three subseries:

, white noise, and a squarish wave produced by the function
. The graphic at the bottom of Figure 14.13 plots 

against x. To construct the graph, we numerically difference the original series
by computing ( ) and then plot this differenced series against x.
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This phase plane plot picks up the two types of subseries in the series at
the top of the figure. The points on the sine wave subseries appear on the nar-
row green ellipse at the center. The points on the square wave appear on the
red rectangular trajectory. The other points are distributed randomly through-
out the plot.

What makes this phase plane plot useful is that trajectories in phase space
that represent similar subseries in the time domain are located near each other
regardless of how far the subseries are separated in time and regardless of
whether the subseries are in phase.

Figure 14.12 Phase plane plot of composite series

How does this particular phase plane plot work for the Lorenz data? Fig-
ure 14.13 contains a phase plane plot for that system. The essential features of
the butterfly have been captured. This plot looks much like the projection
shown in the right plot in Figure 14.8.
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Figure 14.13  Phase plane plot of Lorenz system

The phase plane plot reveals attractors if they are low-dimensional and if
they involve primarily first-differences. For higher-dimensional attractors, we
can use Poincare sections to examine slices of the attractors. A Poincare sec-
tion is a (usually 2D) slice of phase space that captures one state (or a small
neighborhood of one state) of a trajectory. We can put several sections together
to infer the topology of an attractor. We will not examine these plots in more
detail, partly because we want to include a particularly interesting multidi-
mensional plot that can be used to distinguish chaotic from random behavior.

The recurrence plot displays repeating patterns at multiple lags. The sim-
plest form of this plot is to graph  in the  plane. The upper
left corner of Figure 14.14 shows this plot for the sine function. We graph

 against  for . The periodicity of the sine func-
tion is evident in the repeating pattern.

For diagnosing chaos, we generalize this plot (Eckmann et al, 1987; Cas-
dagli, 1997; Gao and Cai, 2000). For each time point in a given dataset, we
compute the vector

where m is an embedding dimension and d is a time delay. Then we compute
a matrix of all possible distances between these vectors. The distances are
used to color the plot. We use city-block distances and d = 1 and m = 3 for the
examples in Figure 14.14. The plots are relatively resilient to the choice of dis-
tance metrics and d and m, although the above references offer guidelines for
good choices (similar to the choice of kernels in smoothing).

f t�� � f t�� �– t� t�$

t�� �!�� t�� �!�� �
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The result is a symmetric plot (around a diagonal running from southwest
to northeast) whose colors represent the distance between subsections of the
series. In a phase plane plot, times in the neighborhood of similar subseries
will overlap. In a recurrence plot, times in the neighborhood of similar sub-
series will have the same color denoting small distances (blue in the examples
in Figure 14.14).

Figure 14.14  Recurrence plots

The lower-left plot in the figure shows what we can expect for white noise.
There is a faint plaid pattern to the colors, but it is not systematic. The upper-
right plot shows a recurrence plot for a random walk. Why is this plot pat-
terned if the series is random? Remember, the random walk has large autocor-
relations and is not stationary (see the Brown series in Figure 14.6). Nearby
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values are likely to be similar and relatively distant subseries are likely to have
different mean values. This leads to smaller distances (blue values) near the
diagonal and larger distances (redder values) elsewhere in the plot (see also
Figure 14.7). This condition should alert us to make sure a series is stationary
before doing a recurrence plot. Otherwise random behavior will look system-
atic.

Finally, the recurrence plot for the Lorenz series in the lower-right corner
shows distinctive patterning. How do we infer the shape of the attractor from
the pattern in the recurrence plot? This problem is similar to that of inferring
the shape of high-dimensional densities from parallel coordinates plots (see
Wegman, 1990). More research needs to be done to make 2D multivariate
plots useful for discerning topology. Nevertheless, recurrence plots can be
helpful in distinguishing chaotic from random behavior.

14.2 Psychology of Time
The psychological literature on time is vast, long-standing, and diverse. Con-
sequently, we will present only a few theories and findings that apply to the
development and viewing of time graphics. First, we will ask what it means to
sense time. Second, we will discuss aspects of the perception of duration and
production of estimates of duration. Third, we will discuss the perception of
motion. For a recent review of psychological research on time, see Grondin
(2001).

14.2.1 Sensation

Although we speak of sensing time, we do not perceive it the same way we do
other stimuli such as light or temperature. Identifying a time stimulus is prob-
lematic, since time is a dimension rather than an aspect of matter or energy.
Furthermore, perceiving temporal relations requires us to employ memory, so
a sense of time cannot be said to be immediate. For example, we can perceive
binary spatial relations (left, right, above, below) by attending to two points in
space at one point in time, but we cannot perceive binary temporal relations
without storing events in memory and comparing them. Even our experience
of the present is derived from memory, since the psychological present is a
window on a continuous stream of sensations across time. In light of these
problems, psychologists have taken a variety of approaches to temporal sen-
sation. Two contrasting models illustrate the diversity of these approaches.

On the one hand, despite common sense, time may not be sensed at all.
Instead, perceived time might be viewed as constructed logically from short-
term and long-term remembered events in space-time (Gibson, 1975). We
summarized Gibson’s realist perspective with regard to other stimuli in Sec-
tion 10.4. If, as Gibson argues, the perception of duration and motion can be
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constructed from perceived sequences of events (states of space), it may not
be necessary to invoke a sixth sense to account for time perception. 

On the other hand, perceived time can be regarded as a response to an in-
ternal clock or pacemaker that might be modified or reset by other stimuli such
as light or temperature (Killeen and Fetterman, 1988; Triesman, 1993). Re-
searchers have found evidence of a neurological clock in both human and an-
imal experiments. The period of such a clock is debated; there may be several
different periods in a single clock or even multiple clocks. A clock with a daily
period is called circadian, from the Latin circa (around) and dies (day). The
synchronization of internal clocks with external or ecological stimuli is called
entrainment. There is a lot of folklore and pseudo-science concerning en-
trainment (especially in popular psychotherapies), but the phenomenon has
been widely observed.

Neither approach implies that the sensation of time is a uniquely human
attribute. Animal studies investigating phenomena such as migration, rhyth-
mic behaviors, and predation all show responsiveness to time. Nevertheless,
there is considerable experimental support for the idea that animals are stuck
in time (Roberts, 2002). Despite their ability to learn and react to different
schedules of reinforcement and periodic stimuli, animals do not appear to be
able to anticipate long-term future events or to remember sequences of events
in the past.

If we are to use changes in visual or acoustic signals over time to represent
variation in data, we must ask how duration is perceived and how we interpret
motion through space. The following sections summarize these issues. 

14.2.2 Duration

The energy of a stimulus is the product of its duration and intensity. Two stim-
uli of equal energy hitting the same sensor will be perceived as different if
their durations are different or if their intensities are different. There is a crit-
ical duration, however, within which this is not true. If two focal stimuli are
separated by a time interval less than a critical duration, then they will be per-
ceived as the same if their energy is the same. From this perspective, the crit-
ical duration can be thought of as the shortest perceivable duration. The
critical duration is the temporal equivalent of the just noticeable difference
(JND) between simultaneously presented stimuli.

For vision, the best theoretical and empirical estimate of critical duration
appears to be around 34 milliseconds (Reeves, 1996). Two equal-energy stim-
uli presented to the same retinal location within this time interval cannot be
distinguished. For hearing, the best estimate is approximately 100 millisec-
onds for spatially separated stimuli (Andreeva and Vartanyan, 2004).

Not surprisingly, the 24 frames-per-second Hollywood movie frame rate
is within the same neighborhood as the critical duration for foveal vision. This
is not to say that perceivers could not detect frame-to-frame changes in a mov-
ie that ran at a faster frame rate. Keep in mind that the visual critical duration
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refers to stimuli at the same foveal location. Changes over different areas of
the visual field will be detected at higher frame rates. To adjust for this, com-
mercial movies enhance the perception of smooth motion by blurring parts of
scenes that are changing rapidly. Without this blurring, we would perceive a
strobe effect (as if a strobe light were illuminating the scene). This use of mo-
tion blur is a form of temporal anti-aliasing.

Durations less than a second are processed differently than those of more
than a second, for both vision and hearing (Grimm et al., 2004). Judgment of
shorter durations is pre-attentive, or at least pre-cognitive. Judgment of longer
durations involves working memory and higher cognitive processes. For short
intervals, the Stevens exponent for duration is approximately 1.1 (see Figure
10.2); this makes the perceptual curve for duration concave, while that for ar-
ea, volume, brightness, and loudness is convex. For longer intervals, the re-
sults are mixed (Grondin, 2001) and for extended intervals, social and cultural
effects influence duration judgments (Flaherty, 1999). And, not surprisingly,
there are temporal illusions that functionally resemble many of the well-
known visual illusions (Hellström, 1985). 

Given the complexities and contextual dependencies of these results,
there is nevertheless experimental evidence that temporal sonifications and vi-
sualizations can result in judgments that are no less reliable than those based
on static visual stimuli such as areas or lengths of lines (Walker, 2002). At the
least, sonifications and animations can be used to supplement static graphics
and reinforce pattern detection; at the most, they can potentially reveal pat-
terns not evident in static displays.

14.2.3 Motion

Statistical graphics usually involve more than one dimension. Temporal sta-
tistical graphics map data dimensions to location, pitch, tempo, and other mo-
dalities. Changes in these modalities over time produce what we call the
sensation of motion. That sensation can be produced across both visual and
auditory fields. 

The Gestalt principles we introduced in Chapter 10 — proximity, similar-
ity, good continuation, closure — apply to the perception of motion as well as
to shapes in static space. Deutsch (1996) summarizes their role in audition.
The serial aspect of temporal sensation, however, has certain consequences.
For example, we recognize rotated, reflected, and translated objects in static
visual presentations. We do not generally recognize reflected temporal pat-
terns, however. Have you ever heard a tune played backwards? It is unlikely
you recognized it. We do recognize transposed (in pitch) musical tunes and we
recognize the same tunes when moderately dilated or compressed. Thus, we
cannot expect sonifications or animations to represent coherent patterns in the
same ways that static visual representations do.
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14.3 Graphing Time
We will discuss three types of time graphics in this section: static graphics,
dynamic graphics, and real-time graphics. Static graphics, by definition, in-
clude all the figures in this book. None of the graphics in this book move. They
represent either an instant in time, or (through the use of aesthetics such as po-
sition or color) an interval of time. Dynamic graphics use motion to represent
time or another variable. Each time instant is represented by a frame; graphics
are displayed by playing frames like a movie. We may play a hundred years
of a country’s economic productivity in five seconds or animate a DNA se-
quence in a minute. Real-time graphics, sometimes called streaming graph-
ics, are visually indistinguishable from dynamic graphics, but they include the
present as well as the past. We play one second as one second, one minute as
one minute. Structurally, real-time graphics involve peculiar computing issues
that we will discuss in a separate subsection.

14.3.1 Static Graphics

Time series are usually plotted with point, bar, line or area elements. In this
section, we will present several examples in which the choice of element is
guided by the model of the process that generated the series. 

14.3.1.1  Fourier Decomposition

We begin with the data from Figure 3.5. These data consist of instantaneous
firing rate measurements of a cat retinal ganglion cell in a 7-second interval.
We noted in Chapter 3 that there is a low-frequency component in the series
due to respiration. Oxygen uptake causes the firing rate to increase. Figure
14.15 shows the periodogram for this series. We see two conspicuous spikes.
The first is around a half-cycle per second and the second is around two cycles
per second. The half-cycle spike corresponds to the respiration component. 

Figure 14.15  Cat respiration periodogram
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To display the respiration component in data space, we compute a Fourier
transform of the series and smooth the spectrum by retaining the first four Fou-
rier components. Figure 14.16 shows the inverse Fourier transform of the first
four components displayed as a red line. The respiration cycle is clearly dis-
cernable.

Figure 14.16  Cat respiration revealed in neural firing rate by smoother 
based on first four Fourier components

The respiration component is an artifact from the point of view of the
study itself (Levine et al., 1987). Of focal interest was a higher-frequency
component involving the light stimulus. To investigate this response, we rerun
the analysis and retain the first 15 Fourier components. Figure 14.17 shows the
result. A regular series of cycles, approximately two per second, is visible on
top of the fundamental respiration component.

Figure 14.17  Multi-component Fourier smooth

Figure 14.18 shows an ACF plot of the residuals from this Fourier smooth.
The red lines are approximate 95 percent confidence intervals on the autocor-
relations. The residuals show no significant autocorrelations remaining after
the smooth.
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Figure 14.18  ACF plot of residuals from Fourier smooth

Figure 14.19 shows the Fourier coefficients on the complex plane. The
full set of coefficients (except for the constant) are on the left and the coeffi-
cients we retained are on the right. Notice that we retained some frequencies
with rather small magnitudes (coefficients near the center of the plots). If we
didn’t mind fitting just a few sine and cosine waves, we could throw these out.
In that case the smooth would be very regular, but fairly biased.

Figure 14.19  Fourier coefficients on the complex plane (all coefficients in left 
panel, retained coefficients in right panel)

14.3.1.2  Kernel Smoothing

We mentioned in Section 14.1.1 that smoothing in the frequency domain and
back-transforming is equivalent to smoothing in the time domain directly with
a kernel that is the inverse of the smoother used in the frequency domain. Fig-
ure 14.20 shows an Epanechnikov smooth of the cat data with a window width
of .2 seconds. As we noted earlier, the center of the Epanechnikov kernel

 is shaped like the center of the sinc function 
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near . Thus, the result is similar to that in Figure 14.17. Note, however,
that there is slightly less regularity in the kernel smooth. The Epanechnikov
filter allows a few more high-frequency components into the smooth.

Figure 14.20 Epanechnikov kernel smooth of cat series

Thoughtlessly applying smoothers to stochastic processes can lead to mis-
taken conclusions. Perhaps the most egregious example is using ordinary lin-
ear regression to fit the model  to a stochastic process. The
residuals will be correlated. We are less likely to pay attention to this problem
when applying kernel smoothers, however, because we can choose a kernel
that makes the residuals practically uncorrelated. Achieving independence in
the residuals should not be our only goal, however. There is a trade-off be-
tween bias and variance.

Figure 14.21 shows a moving average fit to a random walk series. The
moving average was calculated by averaging values within a time interval us-
ing a rectangular kernel. This method is commonly used on financial time se-
ries. We chose a window width of five time points, which made the
autocorrelations of the residuals relatively small. 

Figure 14.21  Moving average of random walk

If we consider what we have done, however, we realize that we have mod-
eled the random fluctuations in the process. Our smoother fits the data too
well. In short, kernel or local polynomial smoothers can track the series more
closely than simple global parametric smoothers, and the residuals can appear
to be independent, but this is no guarantee that the smoothers are picking up
nonrandom features in the data. Once again, there is no substitute for knowing
the model that generated the data. Absent that, large autocorrelations should
point us toward stochastic models. We should be careful about using any de-
terministic model, including locally parametric ones, on stochastic data.
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14.3.1.3  Stochastic Modeling

What if the Great Depression had never happened? Specifically, can we show
that US Patent applications would have followed a different trajectory if the
Depression had not occurred? We want to change the course of time and see
what would have happened.

This goal is dubious for several reasons. The first problem is that the mod-
el we propose may be implausible even though it fits the data well. The second
problem is that, like all analyses of historical data, postdicting (predicting his-
torical events from previous historical events) usually involves counterfacts.
Asking,  “What would have happened if the Great Depression had not oc-
curred?” is like trying to describe what a man’s attitude about his wife would
be if he were a woman (but otherwise the same person). The best we can do is
to make sure that the assumptions on which our conclusions are based are
plausible in most respects. Specifically, if we can imagine an experiment in
which we could intervene economically to see the effect on patent applica-
tions, then we are in a better position to justify our conclusions. Rubin (1974,
1976) and Holland (1986) discuss this approach in more detail.

Nevertheless, we will forge ahead to illustrate the graphical display of
forecasts. The data consist of US patent applications for new inventions since
1880. These data were compiled from several US government sources, includ-
ing Historical Statistics, Colonial Times to 1970, and the U.S. Statistical Ab-
stract for years following 1970. We have normalized patent applications in
each year by the Census population in hundred thousands.

Figure 14.22 shows this series plotted in blue. The red series is a forecast
of patent applications per 100,000 starting at 1931. The model we fit for the
forecast is , where  = 0.64. This is a seasonal moving aver-
age model, where we presumed a cycle of eight years. Some would call this a
trend-cycle model because the cyclic period is longer than a year, but the mod-
el is mathematically the same in either case. We settled on an eight–year cycle
by inspecting the ACF for the entire series. And we took first differences and
seasonal differences before fitting the model (making it an integrated seasonal
moving average model). Notice that the forecast series reflects this periodic
cycle as well as the upward trend from the pre-Depression era. The hills and
valleys in the forecast mirror most of the ones in the post-Depression series.
Regardless of quibbles over the choice of model or ceteris-paribus assump-
tions (not the least of which is World War II), it is not implausible that the De-
pression harmed US innovation in the long term. And this example illustrates
that a good graphic is one of the best ways to communicate the results of a time
series model.

xt D-t �– -t+= D
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Figure 14.22 Patent applications per 100,000 US population

14.3.1.4  “Causal” Modeling

Do increases in patent applications cause economic upturns? This question
raises almost as many problems as the speculation in the previous section. To
avoid some of them, we will modify our statement to be, “Are patent applica-
tions leading indicators of economic upturns?” We worded the question in its
original form to highlight the common desire to inspect joint series and make
causal statements when the series appear to be congruent. This is a risky en-
terprise. As we shall see, despite its widespread use, visual inspection of raw
series is almost of no use in estimating correlation, much less causation.

Figure 14.24 plots annual total US patent applications against time and
GNP against time in the same frame. GNP is the US gross national product ad-
justed for 1970 dollars. We have colored the scales to match the series. The
correlation between the two series is .76, yet they do not appear to be strongly
associated visually. Why is that? Despite the lack of parallelism, the upward
trend in both series substantially influences the correlation. Any two series
trending up or down over their length will be strongly correlated.

Figure 14.23  Raw GNP and patent series
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We can enhance the correlation even more by transforming the series. In
Figure 14.24 we log the series and adjust the scales to make the series roughly
parallel. Now the correlation is .85 and it is easier to see local features shared
by both series.

Figure 14.24  Logged GNP and patent series

Comparing series visually can be misleading, however. Local variation is
hidden when scaling the trends. We first need to make the series stationary (re-
moving trend and/or seasonal components and/or differences in variability)
and then compare changes over time. To do this, we log the series (to equalize
variability) and difference each of them by subtracting last year’s value from
this year’s value. Figure 14.25 shows the result. We are now in a position to
ask, “Do year-to-year fluctuations in patent applications follow year-to-year
fluctuations in GNP?”

Figure 14.25  Logged and differenced GNP and patent series

Closely inspecting Figure 14.25, we can see that GNP changes appear to
precede patent changes by a few years, especially in the second half of the se-
ries. Our eyes can fool us, however, so we resort to another graphic to reveal
this structure more formally. The cross-correlation function plot is similar to
the ACF plot. It lags both series forward and backward (the ACF lags only
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backward). Then the correlations between lagged series are displayed with
bars. Figure 14.26 shows the result. There appears to be a significant correla-
tion at forward lag 3, indicating that changes in patent applications trail those
in GNP by 3 years. The plot is not symmetric, indicating that the correlations
do not work in the other direction. Notice that the eight–year seasonal varia-
tion remains in the CCF plot. We could go on to deseasonalize the series and
see whether we are left with white noise.

Figure 14.26  CCF of differenced GNP and patent series

Smookler (1966) came to similar conclusions with similar data, Smookler
found that invention follows economic trends rather than scientific develop-
ments:

When time series of investment (or capital goods output) and
the number of capital goods inventions are compared for a
single industry, both the long-term trend and the long swings
exhibit great similarities, with the notable difference that
lower turning points in major cycles or long swings general-
ly occur in capital goods sales before they do in capital goods
patents. (page 205)

 Smookler concluded that 

(1) invention is largely an economic activity which, like oth-
er economic activities, is pursued for gain; (2) expected gain
varies with expected sales of goods embodying the inven-
tion; and (3) expected sales of improved capital goods are
largely determined by present capital goods sales. (page 206)

It does not follow from these conclusions that investment in scientific research
is unrelated to future economic prosperity, however. Our finding of a leading
indicator of patent activity is only part of the picture.
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14.3.2 Dynamic Graphics

If we render a graph on a video display or analog projector (as opposed to pa-
per), we are not restricted to static methods; we can change the display over
time. Such a display can be used to represent data that are themselves chang-
ing over time or space or some other continuum. Motion is an aesthetic, since
it is something we perceive and construct an internal representation for, in or-
der to process dynamic information. 

One of the more intriguing uses of motion is to animate immersive scenes.
We can do this in a virtual-reality environment such as the Cave (Symanzik et
al., 1997), or we can do it on a perspective wall or large computer display of
a 3D scene (Wegman and Symanzik, 2002). Eddy and Oue (1995) present an
example that is now well-known to pilots around the world.

The data were taken from an FAA tape containing a data stream of all
commercial flights in the US during a 24–hour period. Much of Eddy and
Oue’s work involved sifting through the dataset to recover instantaneous lati-
tude, longitude, and altitude coordinates for thousands of flights and merging
these coordinates with geographic metadata. They then rendered these flights
in two ways. The first involved a “satellite” view of all flights moving across
the country, with 24 hours compressed into a minute’s time frame. The second
involved following a single flight from takeoff in Newark, NJ, to landing in
Denver, CO. 

Figure 14.27 shows selected frames from the Newark–Denver flight mov-
ie. The black squares represent the airports. We begin with an introductory
zoom from satellite view into Newark. The movie ends with a return to satel-
lite view after the landing. Two interesting aspects of the flight are apparent.
The first is a course adjustment near Chicago. At 6:20, the jet takes a relatively
sharp turn north and then readjusts its course about 10 minutes later. This ad-
justment appears to be related to another flight crossing its path (viewable in
the upper right of the ninth panel (6:26). The intruding flight passes quickly
through in the next panel and the jet returns to its original path. The second
pattern most visible in the film is the lining up of flights during the landing
(visible in the 13th panel, 7:43) like a string of pearls. 

The striking aspect of the Eddy and Oue animation is the simplicity in the
choice of rendering and representation elements. Airliners are represented as
pearls with size as a distance cue, geography is represented by a US state
boundary map, and airports are represented as black squares. Additional real-
ism would do little to improve the communication of temporal/spatial infor-
mation in the animation; more likely, more would be less.

There are other interesting applications of dynamic graphics involving
variables animated over time. We discuss these in Chapter 17.
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Figure 14.27  Eddy and Oue airline flight movie
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14.3.3 Real-Time Graphics

Real-time graphics are not new. Sundials, thermometers, barometers, clocks,
speedometers, oscilloscopes, lie detectors, and heart monitors are all real-time
graphics devices, What is new is the technology to record massive data
streams, sample from them, analyze them in real time, and display intricate
graphics that incorporate these analytics.

We call this recent phenomenon streaming graphics, that is, graphics
based on streaming data (Norton, Rubin, and Wilkinson, 2001). The term
streaming graphics evokes the term streaming media (e.g., Feamster, 2001).
While similar in outward appearance, streaming graphics are fundamentally
different from streaming media, however. Streaming media systems are gen-
erally concerned with delivering sound and video information in real time. In
streaming media, the data structures are defined by the aspects of the display.
In streaming graphics, the display is defined by aspects of the data. Applica-
tions of streaming graphics involve many different environments and data
structures, including real-time monitoring of manufacturing processes, per-
sonal health indicators, financial series, telephony, Web, and sensor networks.

Streaming graphics displays also look similar to video animations. They
are fundamentally different, however. Rendering and animating virtual reality
frames is similar to making computer movies. These frames require minutes
or hours to render in order to achieve a high degree of realism. Streaming
graphics systems cannot afford this rendering luxury. They must render scenes
up to 30 times a second in order to keep up with real time. 

Preparing a streaming graph is similar to preparing a static graph. The
data values are read, statistically summarized, converted to aesthetic values,
and rendered on the screen. But unlike a static graph, the display must be up-
dated if the data change. The most efficient way to do this is to process only
the ramifications of the changes, rather than to recreate the entire graph on
each change.

14.3.3.1  Data

Streaming data consist of an indexed set {x1, x2, ...}, where each xi is a state
space. Alternatively, a data stream may be viewed as a set of ordered tuples
{(x1, t1), (x2, t2), ... }, where ti is calendar time or elapsed time. The simplest
state space is a binary digit (bit). More complex state spaces are text strings,
images, data tables, or geographic spaces. We assume streaming data sources
are ordered in time, but in practice they may not always arrive at a queue or
gate in a complete time ordering, because physical sensors and transmission
systems are subject to bias (asynchronicity) and error (noise).

This definition subsumes all the data structures considered so far in this
chapter, but streaming data involve certain restrictions. First, data streams are
typically massive in extent. In fact, they are infinite in extent when they have
no known beginning or end. Second, data streams are often massive in packet



438 14  Time

size, particularly when sensors are multiplexed into a single feed. Both these
characteristics mean that data streams usually cannot be stored or archived.
Thus, algorithms designed to handle streaming data cannot allocate enough
memory to allow multiple passes over an entire stream. And we cannot solve
this problem by random sampling, because a probability sample from an infi-
nite stream is infinite in size.

Two approaches to processing streaming data have received the most at-
tention by computer scientists (Henzinger et al., 1998; Feigenbaum et al.,
2004). The first is called the streaming model. In this approach, we process
each data packet sequentially and update a model (sum, median, spectrum,
subgraph, etc.) as we proceed. By definition, we are allowed only one pass
through the data. In statistics, this approach has been called the sequential
sampling model (e.g., DeGroot, 1970). Statisticians have tended to focus on
estimation (when is an estimate good enough to be able to stop sampling?) and
computer scientists have focused on efficiency (what are the most efficient al-
gorithms with respect to time/space dimensions?).

The second approach has been called the sliding-window model. In this
approach, we choose a window (interval) of fixed time width or fixed number
of data points. We analyze tuples in the data stream falling within that interval.
In statistics, this approach has been called the kernel or moving-window
model, and has been used for forecasting, smoothing, and density estimation.
See Section 7.1.1 in the Statistics chapter and Section 14.3.1.2 in this chapter
for examples.

The sliding-window model may have more applications in streaming
graphics because we are most often interested in viewing recent history (only
n prior packets) or the present (only one packet). There are important applica-
tions of the streaming model, however. Imagine, for example, a sequential
polling scenario in which the standard errors of estimates shrink in real time.
Observing the rate of convergence can help viewers, particularly those not
trained in statistics, to understand the behavior of estimators with respect to
sample size.

Updates

In order to update a graph, the first step is to identify what has changed since
the graph was last updated. If we have access to the process by which the data
are changed, we can leverage the process to update our graph. For example,
we might install a proxy that will intercept the updates, running additional
code after the data have been changed. If we are using a database, the database
may support triggers, which are bits of code that are run whenever a value of
a particular variable is changed. 

The added code could directly update the graph. But a more general solu-
tion is to follow the observer pattern (Gamma et al., 1995). A list is main-
tained of all objects that want to be notified when a change occurs. Whenever
a change occurs, each of the observing objects is sent an event object identi-
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fying the location and type of change. Each observer can then take appropriate
action, such as updating a graph or table.

Because each event is represented as an object, the events can be stored,
classified, replayed, and otherwise manipulated. In particular, repeated update
events for the same table cell can be coalesced within a specified time period
into a single event.

Distributed processing

The Internet and distributed computing technology make it possible to collect
live information from around the world. When the events are coming from an-
other computer or sensor, it is important to minimize communications cost
and delay. A productive approach is to make use of agents (that is, information
about the client) on the server side to collect and filter events. Rather than
sending irrelevant information to the client, this approach processes the events
on the server side on behalf of each client.

For example, if the client is only interested in certain variables or certain
cases, the server needs only to send events pertaining to those cases and vari-
ables. By assembling the requirements of all clients, the server can restrict the
monitoring that it needs to do. Many clients use events periodically (for exam-
ple, to update a graph image) even if the updates are more frequent. The num-
ber of transmissions can be reduced by coalescing events on the server and
sending them to the client on request, so that all information required to render
a graph is obtained at once. An enhancement is to keep track of the last noti-
fications sent to each listener, and to send updates only if the current value dif-
fers significantly from the value held by the listener. Minor changes might not
be worth the cost of updating the graph. 

A further refinement, called dead reckoning, can be used when variables
change at a nearly constant velocity. In this approach, the client keeps track of
both the current position and the current velocity, and assumes that changes
continue at the same velocity. The server compares the client estimate to the
actual position, and sends only those updates that diverge beyond some spec-
ified tolerance. When an event is sent, it includes both updates to current po-
sition as well as the current velocity vector. 

New data values

In a streaming data context, we may encounter new data values that have not
previously been in the data. How do we extend a graph to accommodate these
new values? The first line of defense is through domain declarations. The
frame is not defined by the transient contents of the data, but by declarations.
For each variable, an administrator declares the valid contents of that variable:
perhaps a range, perhaps a list of valid values. Thus, it does not matter if some
rare values are present sometimes but not others, because the domains, aes-
thetic functions, legends, and axes will remain constant. 
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In many cases, we will not know all of the data values until we encounter
them in the data. Domain definitions can handle previously declared rare val-
ues, but they are of no use for unanticipated values. The solution requires do-
mains, aesthetic functions, and legends to be extensible. If a domain is
designed to be extensible, a new value can be added if the domain considers it
valid. It then notifies all aesthetic functions dependent on the domain. Further-
more, if we extend the domain in round numbers (e.g. extending the maximum
salary in increments of $50,000), we will not have to extend the domain for
each new value.

When an aesthetic function is notified of an extension to a data domain, it
must modify itself to handle the new data values. For example, the new data
value might be assigned to the next available value from a pool of values. Ide-
ally, the extension can be accomplished without changing the mapping of ex-
isting values, but this might not be possible.

Invalid values are those which the domain will not accept, because of type
incompatibility, impossible values, missing values, or server faults. A typical
approach for a static graph is to produce an error message instead of a graph
or to render the graph without the invalid values. In a streaming graphics con-
text, the graph already may be active when an invalid value is encountered. We
need to anticipate this possibility and provide recovery methods when an ex-
ception is encountered.

14.3.3.2  Statistics

Statistical algorithms for streaming data require special attention. In the
streaming model, we need to minimize the number of update computations in
order to keep up with the velocity of the data. In the sliding-window model,
we need to downdate and update efficiently. Rectangular kernel methods are
trivial. We simply drop the last case and add the next from the stream to update
the model. Non-rectangular kernels require reweighting of each point in the
window. Step-function kernels can be designed to reduce the number of new
multiplications required at each increment.

Figure 14.28 shows an example of this approach. The data are a daily se-
ries of SPSS and Oracle stock prices. An exponential smoothing model was fit
to the data in order to produce a forecast over subsequent days. (This forecast
models customer behavior more than market performance of the stocks.) Be-
cause the computations in the exponential smoothing are programmed effi-
ciently, the series can be animated to cover 10 days per second on a typical
laptop computer. The vertical scales of the frames are log–transformed in or-
der to control variance in the process. In the animation, one can sense the con-
vergence and divergence of the series over the entire period.
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Figure 14.28  Moving forecast
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Figure 14.29 shows an example of a surface fitted with a loess smoother
in real time. This data model is different from the stock example. In this case,
we have a finite number of points whose values are changing in real time. Each
packet consists of a set of tuples (x, y, z) at a given time point. The loess cal-
culations must be computed for each time period in order to render the moving
surface. If the number of points is not large, the calculations can be accelerated
by using observers to identify the points that change coordinates, leaving other
unchanging points out of the update.

Figure 14.29  Moving loess surface

14.3.3.3  Frames

A frame is a region that is a subspace of the domain-range product, as defined
in Chapter 2. In streaming graphics, frames are displayed up to 25 times a sec-
ond in order to give the illusion of movement. It is not necessary to update the
screen every time a data value is updated, however. Rendering 500 frames per
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second is not ten times better than 50 frames per second, because computing
resources are being used to produce a result that no human being can perceive.
The frame rate can be controlled through a timer that updates the screen when
there have been changes, but no faster than a specified minimum delay be-
tween frames. 

In general, there is no guarantee in a streaming graphics system that
frames will be rendered at an even rate. Frame rendering is competing with
other processes for computing resources. Consequently, we need mechanisms
to handle data change notifications that may arrive at any time relative to ren-
dering. Recall that event notification is generated through the process of mon-
itoring the data. Monitoring must not interfere with rendering, so we use
multiple threads to handle monitoring and rendering. 

Data values may be updated far more rapidly than the frame rate. There is
no advantage to processing updates that will never make it to the screen, how-
ever. Consequently, we maintain a set of dirty values (ones that have changed
since the last frame was rendered). The rendering thread reads the data for
each of the dirty values, and updates the graph. 

While it is possible to render each frame from scratch, it is more efficient
to preserve as much information as possible from the preceding frame. Data
that are expensive to obtain (due to remote access or extensive computations)
may be cached for future use. When new data arrive, we discard obsolete data
values, downdate their contributions to any accumulated statistics, and update
the statistics from the new contribution. This process can accumulate rounding
error, so we need to recalculate occasionally from all values. Among those
working on such issues are Guha et al. (2000) and Datar et al. (2002). 

Interpolation

The eye is very sensitive to fluctuations in the speed of movement. For a glyph
to appear to move at a constant rate, the change of position between frames
must correspond to the actual time lag between rendered frames. If rendering
of a frame is delayed, the glyph must move a greater distance. In order to pre-
serve the illusion of smooth movement, we need to coordinate frame rendering
and glyph positioning.

Even if frames are rendered at a constant rate, there is no guarantee that a
data value will be available at frame display time. For example, if measure-
ments are made infrequently, the same outdated value will be used for several
frames, and then there will be a jerky movement as the accumulated change is
applied in a single frame. One solution to this problem is to interpolate or ex-
trapolate data values to yield estimates for several intermediate frames.
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Inconsistencies within a frame

Inconsistencies within frames arise when the measurement time varies be-
tween values in the same frame. Random inconsistencies within frames are
usually a minor concern because they are corrected when new data arrive, but
there could be a problem if the renderer is not prepared to deal with inconsis-
tent data. Estimation techniques can be used to combine data measured at dif-
ferent times.

More serious problems arise if the inconsistencies are systematic from
frame to frame. Typically this occurs when iterating over every geometric el-
ement to gather current measurements. If we always iterate in the same order,
the later glyphs will always have later measurements. The resulting graph may
display systematic biases such as shortening or lengthening of distances. 

One solution is to adjust for the differing measurement times through es-
timation. The problem can also be alleviated by obtaining all data values as
quickly as possible (and not rendering until after collocation), or by random-
izing the order of iteration. Such randomizing is similar to frameless render-
ing, in which pixels are updated in a random order (Bishop et al., 1994).

Scale of motion

The minimum acceptable frame rate depends upon the physical speed of
movement of the glyph. A frame rate of only once per second is adequate if a
dot only moves a slight distance (e.g., ½ the diameter of the dot or less). But
if a dot moves too far on each refresh, it may be perceived as two dots flashing
rather than one dot moving. We cannot help the speed of a dot moving — it
comes from the data. But we can reduce the absolute distance the dot moves
between frames, either by increasing the range of the axes or physically reduc-
ing the size of the display. The more we zoom in on a moving graph, the more
movement there is, and the more likely we are to lose the illusion of motion.
So we can successfully zoom in closer if movement is slower, or if the frame
rate is faster.

Instant replay

The advantages of animation (pausing, random access, varying speed) can be
applied to data that arrive in a live data stream. If we save recent data (or ren-
dered frames) in a buffer, we can access recent events at will. When the user
invokes instant replay (such as by pulling a current time slider backwards), an-
imation begins from the buffer, rewinding and replaying from the selected
point. We continue adding data to the buffer during replay, so the replay can
continue beyond the original stopping point. 

Buffering data allows us to transform time as well as replay time. For ex-
ample, we can log or power past time and replay frames on a nonlinear time
scale (Eames and Eames, 1996). Or we can reverse time to deconstruct a pro-
cess. Auditory feedback can be used to cue the user to speed changes. 
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Time axes
When time is used as an axis in an animated graph, the gridlines change over
time. This usually causes no confusion to the user because the motion of grid-
lines is readily visible and comprehensible. Such graphs display new informa-
tion at the leading edge, and show older information for context. Graphs with
a time axis may be differentiated by the animation of that axis: neither end
moving (filling in the contents), the top end moving (compressing as it goes),
or both ends moving (a sliding window). If the time axis is fixed at the low end
and the high end changes over time, then the distance allocated to each unit of
time gradually becomes smaller. Such a graph always shows all available data
using all of the available space. The disadvantage is that slopes change over
time. In a sliding-window axis, the low and high ends change together so that
the total distance of the axis remains fixed. Slopes and distances remain con-
stant.

Figure 14.30 shows a sliding window of stock trades. Three symbols are
used in the right panel: a downward-oriented triangle to indicate an offer to
sell, an upward-oriented triangle to indicate an offer to buy, and a square to in-
dicate a cross trade. The symbols are colored by trader. The top panel shows
trades shortly after the exchange opening. By the middle of the day, trades be-
come more dense. And by the end of the day they thin. The traded stock (Mi-
crosoft) has sufficient volume to allow tick marks at each second. Anomalous
offers stand out from the series and can be recognized within a second of the
event. The bar graphs on the left are linked to the trading data. Together with
various controls at the top of the window, these graphs can be used to get more
detailed information on the traders.

Alerts
Alerts are trigger conditions that identify when something interesting has hap-
pened, such as a value crossing a threshold. By having a computer monitor the
conditions, we can avoid the tedium of visually monitoring a process. When
an alert does occur, appropriate action will often include saving the data (and
the context around it) for later review. By maintaining a buffer of recent
events, we can store both events before and after the alert. If multiple alerts
have occurred, they can be matched and compared using time series analytics.

Zooming
Zooming is the adjusting of aesthetic functions to clearly distinguish the cur-
rent data. It is necessary because data change over time, and a frame that
serves well for today’s data may not be so effective for tomorrow’s data.
Zooming differs from merely excluding certain cases from the graph, because
the aesthetic functions are modified to increase the contrast between the cases
of interest. The term zooming comes from the traditional use of the technique:
reducing the range of an axis to spread the points out across the available po-
sitional area. 
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Figure 14.30  Stock trades
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We can zoom for a continuous aesthetic by specifying the maximum and
minimum data values to be used. For example, instead of mapping 0 to black
and 100 to red, we may map 70 to black and 90 to red, more clearly differen-
tiating between values in the 70-90 range. Values falling outside of the speci-
fied range may be mapped to the extreme aesthetic values (clamping) or made
invisible (clipping). In the case of positional aesthetics, we usually clip values
outside of the selected range. But in the color example, we might choose to
represent all values under 70 as black and all values over 90 as red.

We can also zoom for categorical aesthetics (e.g., shape). Even if we have
a great number of categories in simultaneous use, it is still possible to use a
limited number of codes, provided that some categories are not represented or
share a code. For example, we could select only the top n categories based
upon some criterion, allowing the user to distinguish between those categories
while ignoring the others (excluded or collapsed into an “other” category).
This ranking approach is easiest to follow if the ranking is itself represented
in the graph, so we can see categories come into the graph and fall out of the
graph.

We can control zooming automatically, based on the values currently
within the data. But how do we orient the user so that changes in the frame are
not confused with actual movement? There are two contrasting approaches:
(1) make the frame changes rare and obvious, or (2) make the frame changes
continuous and predictable. If changes are made suddenly, the shifting of aes-
thetics, legends, and gridlines indicates to the user that a change has occurred.
It is easier for the user to follow changes in position alone, with scale held con-
stant. By providing some leeway beyond the current data range, the changes
can be kept to a minimum to avoid distracting the user.

The alternative is to make changes at a constant rate, such as advancing a
sliding window at a specified speed. For animated data, regression can be used
to determine a suitable speed that will keep up with the data. Another approach
is to designate a given glyph of interest and always keep that glyph at the cen-
ter of the graph.

14.3.3.4  Rendering

The frame provides context. Once users become familiar with the coordinates
and legends, they only have to refer to the frame occasionally. Typically, the
frame either changes in a regular way or does not change. 

The elements, by contrast, change constantly. Elements represent the data
itself, and thus are the focus of the user’s attention and monitoring. Compre-
hending the elements requires perceptual tasks that may be somewhat diffi-
cult, including locating and tracking a glyph within a collection of glyphs,
identifying which glyphs are changing, and distinguishing trends from noise.
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Tracking glyphs

In order to perceive a glyph as moving, the user needs to recognize it as being
the same glyph. This can be difficult if there are many glyphs on the screen or
if position changes are large.

Confusion occurs when position changes at the same time as other aes-
thetics. It helps if some aesthetic is distinctive (e.g. a unique color, label, or
icon), or if the aesthetics (e.g. color or size) are changed gradually and consis-
tently. A useful aid to glyph tracking is to label or highlight the points of in-
terest. The label might only made visible when the user clicks on a point (to
avoid clutter from other points not of interest). Or the user might select all
points within a given region and watch them move as a flock (or diverge).

Another aid to glyph tracking is to control the rendering layer, so that ob-
jects of interest are rendered on top, where they can clearly be seen moving
across other objects. Larger or slower-moving objects can be rendered on the
bottom, where they will be less likely to obscure other objects.

Velocity can be explicitly represented on the screen by another aesthetic,
such as vector arrows (showing current direction and speed), coloring glyphs
by speed, or hiding slow moving objects. We need not restrict ourselves to rep-
resenting velocity. Graphing acceleration or percentage change may help us
spot interesting changes earlier. If a path is displayed showing positions within
a fixed window of time, the distance between points indicates the speed. Faster
moving paths are longer.

Gradual change

It is crucial to avoid movement or change that does not convey information. A
good streaming graphics design will direct the user’s attention toward changes
of interest. One way to do this is to represent changes gradually over time.
Abrupt changes are difficult to comprehend, because by the time you have no-
ticed a change it has already completed, and you have to remember what used
to be there.

Events have zero duration by definition. But by extending the representa-
tion of an event over time, the change attracts the eye. In the computer anima-
tion world, this is called anticipation. When introducing or removing a new
glyph, the shapes can fade in and out, or grow and shrink in size. When chang-
ing values, colors or shapes can gradually mutate from one value to the next. 

One possible objection is that we are no longer literally representing the
data. We are representing events before they take place or after they have com-
pleted, and we are showing intermediate values on the way from one state to
another. But sometimes, this is actually what happened, and we just don’t have
all of the intermediate measurements.
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14.4 Sequel
The next chapter covers issues involved in representing uncertainty in graph-
ics. Uncertainty occurs in many forms: missing data, measurement error, hid-
den bias. We discuss how these forms affect interpretation and how we can
represent uncertainty graphically in order to facilitate reasonable decision
making that depends on displays.



15
Uncertainty

The word uncertainty derives from the Latin adjective certus (determined,
fixed, settled), which itself is derived from the verb cernere (to discern or per-
ceive, usually with the eyes). This etymology is relevant to our perspective on
graphics and aesthetics because we encounter uncertainty when we are unable
to perceive without doubt (sine dubio). 

If we must choose a single word to characterize the focus of modern sta-
tistics, it would be uncertainty (Stigler, 1983). It is tempting to ignore uncer-
tainty. Statisticians have shown, however, that including terms for bias and
error in models improves predictions. If we allow for error, we are less likely
to find rules in randomness. This fact was often ignored by early data miners,
many of whom lacked statistical training, until Glymour et al. (1996), Hastie
et al. (2001), and others brought it to their attention.

This chapter is about graphics that guide, qualify, or soften our judgments
of uncertain data. Popular summary graphics (e.g., simple pie charts, bar
charts) omit uncertainty. When used on data containing error, these graphics
can be deceptive because they conceal variation. In this chapter, we will dis-
cuss ways to add uncertain aspects to these and other graphics so that perceiv-
ers can temper their conclusions. We will also discuss graphics that can be
used to guide decisions based on uncertain evidence.

15.1 Mathematics of Uncertainty
This section will cover some of the basics of probability and other measures
of uncertainty. It is not intended to be an introduction to statistical inference,
although statisticians and readers familiar with probability theory can skip this
section without loss. The primary purpose of the section is to provide a com-
mon notation and set of definitions so that we can discuss the graphics of un-
certainty beyond the obvious applications.
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15.1.1 Defining Uncertainty

First, a few definitions. Many words are associated with uncertainty (or its op-
posite). The following list runs roughly from primitive to composite and from
negative to positive.

• Variability is non-constancy. A set of data is variable if it has two or more
elements and if any two of its values differ. Data variability leads to
uncertainty only if we do not know how it occurs.

• Noise is variability produced by a stationary stochastic process (see Sec-
tion 14.1.2). Perhaps the most obvious example is Gaussian white noise
in a linear system. Noise produces uncertainty because it is random.

• Incompleteness is the presence of missing data. Missing values can be
produced by breakdowns in equipment, refusal to answer questions, con-
fidentiality restrictions, and other factors. Missing values produce uncer-
tainty when we cannot reliably impute them.

• Indeterminacy is the existence of more than one set of parameter values
satisfying the conditions of a model and its associated data.

• Bias is systematic discrepancy from a standard, as in a biased opinion.
Measurement bias is systematic discrepancy between a true value that we
attempt to measure and an observed measurement of the value.

• Error is random discrepancy between a measured and true value. Unlike
bias, error varies to the left or right of the truth with equal likelihood.

• Accuracy is relative lack of bias and error. If a measurement is represent-
able by the equation measurement = truth + bias + error, then a high
level of accuracy reflects a high level of truth in the measurement.

• Precision is relative lack of error. A highly precise measurement can be
biased. We associate significant digits (the number of digits in a mea-
surement that are not affected by error) with precision of a measurement.

• Reliability is the repeatability of a measurement over time. The smaller
the variance in a series of measurements, the higher their reliability.

• Validity is the association of a measurement with the true process gener-
ating what is measured. A valid measurement need not measure a vari-
able itself. It simply needs to measure something perfectly correlated
with what is measured under all relevant measuring conditions.

• Quality is a combination of completeness, reliability, and validity.
• Integrity is the presence of information that allows a judge to establish

quality. This usually involves an audit trail or lineage for a set of mea-
surements and the context in which they were made.

Further definitions are available in the Guide to the Expression of Uncer-
tainty in Measurement (GUM), published by the ISO in Geneva, Switzerland
and in the NIST Technical Note 1297, available from the NIST website. We
will now begin with the theory of probability, on which rests the concept of
randomness, the concept of error, and much of the concept of uncertainty.
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15.1.2 Defining Probability

Let S be a countable set of values, e.g., {true, false}, {heads, tails}, {1, 2, 3},
{S, K, �, �}. We call S a sample space. An event A, , is a subset of S.
The set of all possible events based on S is the power set of S:

E = 2S = {all subsets of S, including the null set and S itself}.

The function P(.) on the domain E is a probability function if

 ,

 , and

  when

These three axioms are known as Kolmogorov’s Laws. From these laws,
we can deduce that the range of P(.) is the interval [0, 1]. We can also deduce
that 

 ,

 , where , and

 If A and B are events in S, we define the conditional probability of A
given B (assuming ) as

Notice that

Notice also that if A and B are disjoint, i.e. , then

And if , then A and B are independent. In this case, 

Now we present the famous rule for computing conditional probabilities.
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15.1.3 Bayes’ Theorem

We illustrate Bayes’ theorem with a simple example (French, 1984; Lee,
1989). Many introductions to Bayes’ theorem employ a two-by-two table or
cross-tab, but there is no necessary relation between the theorem and a cross-
tab. This example, which we have modified to fit actual distributions, better
illustrates the generality of the theorem.

Approximately three percent of human births involve twins. Approxi-
mately one-fourth of twin births are identical or monozygotic (MZ) and ap-
proximately three-fourths are fraternal or dizygotic (DZ). Of MZ twins,
roughly half are male and half female. Of DZ pairs, approximately one-fourth
are both males, one-fourth are both females, and one-half are mixed gender.

Figure 15.1 shows a mosaic plot representing these proportions. The sam-
ple space corresponding to the plot is all possible combinations of cohort gen-
der and zygosity. We assume an equivalence between the tiles and the
combinations. For example, the area of the pink tile in the upper left corner
corresponds to , assuming M stands for monozygotic
twins and G stands for twin girls.

Figure 15.1 Cohort gender of twins

Suppose we are told that a particular set of twins is boy-boy (BB). Using
Figure 15.1 as our reference, what would we say is the probability that this is
an identical set of twins (MZ)? Looking at the areas in Figure 15.1 and using
M to represent MZ and B to represent BB, we find
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Bayes’ formula can be derived from our definitions and this setwise for-
mula as follows:

Using this latter formula, we of course get the same result as before:

We now have expressed the conditional probability  (usually
called the posterior probability) as the ratio of inverted conditional and un-
conditional probabilities. The value  is usually called the likelihood
of B and the value  is usually called the prior probability of M. The
numerator of Bayes’ formula tells us that posterior probability is proportional
to the product of a likelihood and a prior probability: 

In other words, the chance of twins being monozygotic if they are boys is pro-
portional to the likelihood that they are boys if they are monozygic times the
chance that twins in general are monozygotic.

We specify Bayes’ formula more generally as follows. Let A1, A2, ..., An
be any partition of S and let B be any event such that . Then

Applications of Bayes’ formula can lead to surprising results. Consider,
for example, an airline passenger screening procedure. Let’s assume this pro-
cedure has a .999 probability of alarming when a terrorist is encountered. Let’s
also assume the procedure has only a .001 probability of alarming when an in-
nocent citizen is encountered. And let’s assume the prior probability of en-
countering a terrorist at the test site is .00001 (we are alarmists). Under these
assumptions, the chance of there being a terrorist if the procedure alarms is
only one in a hundred, according to Bayes’ theorem.
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15.1.3.1  Continuous Distributions

Although we began this tutorial with discrete probability functions, Bayes’
theorem applies to continuous probability functions as well. A random vari-
able is a function defined on S. Let X be a random variable whose range is a
set of real values {x: }, called a realization of X. We assume a proba-
bility density function  is continuous over the sample space
S. Then, as with the discrete formulation, we have

For a continuous density based on a parameter , Bayes’ formula is

where  is the posterior probability function,  is a likelihood
function, and  is a prior probability function. The continuous version of
Bayes’ formula is similar to the discrete. Continuous probability density func-
tions replace discrete probability functions and the integral replaces the sum-
mation in the denominator. 

Figure 15.2 shows two examples of how the formula works. In the upper
panel, we compose a normal prior (green) and normal likelihood function
(blue) to derive a normal posterior density function (red). In the lower panel,
we compose an arcsine or beta prior (green) and binomial likelihood (blue) to
derive a beta posterior (red). Bayesian updating works like a convolution (see
Figure 14.5). Each red ordinate is proportional to the product (not the sum) of
a blue and green ordinate.

Figure 15.2  Normal (top) and binomial n=24 (bottom)
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To use Bayes’ formula, we need to assume a probability function. The
next section summarizes the theorem on which much statistical inference and
graphical display of error rests.

15.1.4 The Central Limit Theorem

Choosing a discrete or continuous probability distribution for representing a
process depends on prior knowledge (however scanty) of the physical system
that we assume underlies the process. We have many choices available, of
course, and there is not room to discuss them here. However, the widespread
use of the normal distribution in statistical inference is due to the fact that the
sampling distribution of means tends to be normal. More precisely, the cen-
tral limit theorem states that as the number of independent, identically dis-
tributed random variables with finite variance  increases, the distribution
of their mean becomes increasingly normal. Furthermore, the variance of the
mean decreases proportionally to n ( ). The square root of the vari-
ance of the mean ( ) is called the standard error of the mean.

Figure 15.3  Central limit theorem behavior, uniform left, beta(.1, .1) right
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Even if variables are not normally distributed, means based on them be-
come more normally distributed as n increases. Figure 15.3 illustrates this
convergence. We chose two distributions that are far from normal — a uni-
form(0, 1) and a beta(0.1, 0.1). We generated 10,000 cases on n variates from
these distributions ( ). We produced the histograms by averaging n
of these variates in each row of the figure. We have superimposed normal
curves for . Notice that the spread of these distributions decreases as the
square root of n.

If you see a symmetric error bar on the mean of a sample of data repre-
sented in a chart, it is most likely based on the percentage points of a normal
distribution (or a t distribution if n is small). The justification for this usage is
the central limit theorem. This practice is not always secure, however. Means
based on asymmetric and/or bounded distributions converge more slowly to
the normal. And interactions of multiple skewed variables can get nasty.

15.1.5 Interpreting Probability

So far, we have not related the probability function P(.) to supposedly random
events in our world except by analogy. Kolmogorov’s axioms and the axioms
of set theory give us a foundation for computing functions of probabilities, but
relating our results to real-world events leads to interpretive problems. With-
out getting into philosophical and mathematical thickets, we will nevertheless
try to summarize three prevailing approaches to interpreting probabilities.
There are other interpretations and there are many nuances, but we will restrict
ourselves to short summaries in order to save space. The important thing is
that these approaches lead to different interpretations of uncertain data and,
importantly for our purposes, they lead to different ways of representing
events and their associated probabilities in graphics.

15.1.5.1  Combinatoric

The combinatoric interpretation is often called classical, probably because
some form of it was employed in Classical and Enlightenment analyses of
games of chance. In this view, we define S to contain n elements, each equally
likely. The probability associated with an element of S is defined to be .
We use set-theoretic operations to combine these primitive probabilities and
calculate the probability of an event in E. Computing a probability of an event
is thus a matter of enumerating subsets of the sample space. For example, we
define a fair die as a cube with one of six different values on each face. The
probability associated with each value is 1/6.

One criticism of this approach focuses on the equal-likelihood premise. In
short, the definition is circular, because it uses the concept of probability in its
premise. There have been refinements that ameliorate this problem, but they
have flaws as well. Nevertheless, statisticians, gamblers, and card players rou-
tinely use enumeration to calculate probabilities in real-world scenarios.

� n ��, ,

n �,

� n+
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15.1.5.2  Frequentist

The frequentist interpretation is based on the long-term behavior of a process.
In this view, probability is the ratio of the number of times an event occurs in
a series to the total number of trials in the series. Computing a probability pre-
cisely would therefore involve an indefinitely repeated experiment.

One criticism of this approach rests on the ambiguity of the repeatability
assumption. This assumption is similar to, and shares flaws with, the equal
likelihood assumption of the classical view. In practice, we can never repeat
all the circumstances involved in, say, flipping a coin. Moreover, even if we
could repeat them, frequentists cannot make statements such as “the probabil-
ity that this coin will be a head on the next toss is ½” because such statements
refer to a particular event rather than a process. For similar reasons, frequen-
tists would say that statements like “the probability that it will rain tomorrow
is extremely small” are meaningless.

15.1.5.3  Subjective

The subjective interpretation of probability avoids these problems through a
radical definition. Subjectivists say probability is a measure of the degree of
belief that an event will occur. Thus, probability is the primitive operand of
the functions that a rational decision-maker uses when placing bets or assess-
ing risks. Statisticians who employ some variant of this definition are usually
called Bayesians (although not all Bayesians employ a purely subjective inter-
pretation of probability).

The essence of this definition constitutes its principal weakness, accord-
ing to Bayesians’ opponents (usually frequentists). They say subjective prob-
ability is not objective (!). In other words, there is no assurance that subjective
probabilities will obey Kolmogorov’s axioms the way classical or frequentist
probabilities do. Bayesians have responded to these objections with several ar-
guments. First, subjective doesn’t mean psychological. Subjective probability
estimates may be produced by a person, an animal, or an automaton. Second,
subjective doesn’t mean arbitrary. In fact, rules for the behavior of a rational
decision-maker can be defined (without circularity) so that the Kolmogorov
axioms are satisfied. A decision-maker following such rules is said to be co-
herent. Third, applications of Bayes’ theorem can be made remarkably insen-
sitive to variations in prior probability distributions, at least in simple cases
(although not necessarily for all univariate or, especially, multivariate proba-
bility distributions). To deal with these exceptions, Bayesians sometimes rec-
ommend testing the sensitivity of posteriors to variations in subjective priors
before promoting models.
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15.1.6 Uncertainty Intervals

We now have the basic framework for computing errors in order to represent
uncertainty graphically. In this section we will show how this is done for the
most common application — constructing uncertainty intervals from the nor-
mal distribution of means. We begin with the frequentist approach.

15.1.6.1  Confidence Intervals

Frequentists construct a confidence interval to express the precision of a pa-
rameter estimate. To construct a confidence interval, the frequentist assumes
that observed data {x1, ..., xn} are sampled from a continuous theoretical prob-
ability function having one or more unknown fixed parameters ,

. To approximate , the frequentist seeks a function  of the data,
called an estimator, that ideally should have the following properties:

• Sufficiency. Given the estimator, there is no other estimator that provides
additional information about .

• Consistency. As the sample size increases, the estimator should con-
verge in probability to .

• Efficiency. For a given sample size, the estimator should have the small-
est variance among all unbiased estimators.

• Unbiasedness. The expected value of the estimator is .

For the normal distribution, . Several theorems regard-
ing the above properties lead to the choice of the sample mean ( ) as an esti-
mator of  and the sample standard deviation (s) as an estimator of .

To construct a confidence interval on , the frequentist assembles the in-
terval  from the parameter estimates. For convenience,
this interval is centered on , which makes it the shortest interval bounding
approximately 68 percent of the area under the normal distribution. To change
the width of the interval (to, say, 95 percent bounds), the frequentist uses some
multiple of the estimate of the standard error of the mean. 

The frequentist says something like the following about this interval: “Ap-
proximately 68 percent of a large number of confidence intervals constructed
from replications of this procedure on samples from the same distribution will
cover the unknown parameter .” Statements about the probability of the pa-
rameter falling inside a given interval, while frequently made by frequentist
practitioners, are meaningless. The parameter is not a random variable and a
given interval is an instance, not a process.

Figure 15.4 shows an example of this procedure repeated 100 times on
samples of size 100 taken from the standard normal distribution. We have
drawn a red horizontal line to highlight the fact that 30 intervals, including the
first, fail to cover . This result is not far from our expectation of 32.
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Figure 15.4  Confidence intervals

15.1.6.2  Credible Intervals

Bayesians construct a credible interval to express the range of their belief in
an outcome. In contrast to frequentists, who assume  is a fixed parameter as-
sociated with an estimator, Bayesians assume  is a random variable with
probability density . The prior density  usually has relatively large
variance, unless a Bayesian has information from previous experiments to re-
duce the uncertainty. 

Bayesians compute the likelihood  from the sample data. Some-
times they use the same sufficient estimators employed by frequentists, but
they often use other functions of the data in order to get a likelihood. For a
Bayesian, the data values themselves are sufficient statistics. Using a comput-
ed likelihood, Bayesians revise the prior belief expressed in  by comput-
ing the posterior density . Bayesians construct the credible interval

 directly from the percentage points of the posterior
distribution. 

Figure 15.5 shows an example of this procedure applied to the same data
used in Figure 15.4. Because we used a standardized normal likelihood and a
uniform prior for the first interval, we get the same result as the frequentist.
The remaining intervals are quite different from the corresponding confidence
intervals, however. They were calculated using the posterior distribution from
the previous interval calculation as the prior distribution for the current. 

Figure 15.5  Credible intervals
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Each interval constructed in the sequential procedure shown in Figure
15.5 relies on an informative or sharp prior distribution derived from the pos-
teriors of previous experiments. This accounts for the sharpening of the esti-
mates over time. Depending on the situation, however, Bayesians may employ
other types of prior distributions when constructing credible intervals. If there
is little experimental or theoretical information available for deriving priors
(as in frontier physics experiments), then Bayesians may employ an uninfor-
mative or diffuse prior. Uninformative priors have the following features: (1)
the prior density is proper (it integrates to unity); (2) within the region cover-
ing the data, the prior density is relatively uniform; and (3) most of the poste-
rior density is concentrated inside the region covering the data. These
conditions allow the information in the data to dominate prior information (see
the arcsine prior in the lower panel of Figure 15.2). Alternatively, Bayesians
may use a reference prior that serves as a non-controversial standard in an
application domain. In physics, for example, certain parameters are strongly
constrained by theory to lie in relatively small regions. 

Each of these specialized classes of prior is evidence of Bayesians’ desire
to remove arbitrariness and sensitivity from the choice of a prior. In real ap-
plications, these attempts are more or less successful. In any case, the se-
quence shown in Figure 15.5 illustrates the trial-by-trial convergence that one
might expect when scientists apply Bayesian methods to replicated experi-
ments. See Figure 15.22 for an example taken from applied physics. 

By contrast, frequentists have developed a field called meta-analysis
(Hedges and Olkin, 1985) to evaluate the credibility of the results of repeated
frequentist-analyzed experiments. Meta-analysts pool statistical results over
separate experiments, often using the same algorithms (such as inverse-vari-
ance weighting) that Bayesians employ. Meta-analysts use these pooled esti-
mates to construct confidence intervals on the aggregated outcome. Although
there are disagreements over this issue, some would say that more routine ap-
plication of Bayesian methods by scientists would obviate the need for this
type of retrospective analysis. An alternative to this view is a Bayesian ap-
proach to meta-analysis of existing studies (DuMouchel, 1990).

For a non-technical introduction to Bayesian methods see Edwards, Lind-
man, and Savage (1963) or Mosteller and Tukey (1968). For statistical texts,
see Box and Tiao (1973), Hartigan (1983), or Gelman et al. (2003). Because
we do not identify completely with either the frequentist or Bayesian camps,
we are skeptical of some claims made by a few radical proponents in either
group. It is fair to say that Bayesian methods rest on a firmer philosophical
foundation and that frequentist methods are more objective. But is unfair to
say that priors are necessarily arbitrary or that frequentist methods are always
noninformative. There are many statisticians who use a Bayesian approach to
some problems and a frequentist approach to others. And there are some, such
as Berger (1985, 1997) who have gone a long way toward developing a syn-
thesis.
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15.1.7 Model Error

We have seen how statisticians represent parameter error. How do they repre-
sent model error? The left panel of Figure 15.6 shows an example of a fixed
regression or analysis of variance model , where  and

. The right panel of Figure 15.6 shows an example of a joint bi-
variate model , where  and  and

and  and , where  is a covariance
matrix. These two models, or simple linear and nonlinear extensions of them,
are common and long-standing in the scientific literature. Of course, there are
numerous other models suited to either Bayesian or frequentist analysis, in-
cluding probabilistic graphs, stochastic systems, tree classifiers, and so on. 

Figure 15.6 Conditional and joint models

For Bayesians, model error is represented in the spread of the posterior distri-
bution , where X represents the data tuples and  represents the pa-
rameters in the model. For frequentists, error is represented in the spread of
the random variable . In either case, the differences between the observed
values and the modeled values, called residuals, help us diagnose our model
by revealing whether the error distribution posited for the model is plausible
for the data.

Following standard practice leads to models that fit a sample of data in
some optimal sense (least squares, maximum likelihood, minimum risk, ...)
based on aspects of the data and assumptions about the process that generated
the data. We call the error associated with this fit in-sample error. In contrast,
we call the error associated with applying this fit to a new sample from the
same population out-of-sample error. A common example involves the error
of a forecast computed on a time series (in-sample) and the error from apply-
ing the forecast model to data from a non-overlapping or subsequent interval
of the series (out-of-sample). Another example involves the error of a regres-
sion predicting grades for a randomly selected group of college students (in-
sample) and the error resulting from applying the same regression equation to
a different randomly selected group (out-of-sample). In-sample error does not
provide an estimate of how well a model will do in a new sample. Estimating
out-of-sample error requires a new sample (to test the model) or, in certain cir-
cumstances, a specialized statistical function of in-sample error. Hastie et al.
(2001) cover these issues in more detail.
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15.1.8 Resampling

Several circumstances can thwart our use of parametric models to estimate er-
ror. Traditionally, researchers resorted to nonparametric methods in these cir-
cumstances, although computers now make several alternatives more
attractive. We will describe two.

On the one hand, we might know the distribution that generated the data
but be unable to find a closed-form expression for a posterior distribution. In
this case, we can resort to Monte Carlo methods. We generate pseudo-ran-
dom samples from the hypothesized distribution and use these samples to es-
timate functions of the distribution. As an example, Wilkinson and Dallal
(1981) used Monte Carlo sampling to analyze the null distribution of the
squared multiple correlation coefficient under stepwise regression. In a major
recent development in statistics, Bayesians have begun to employ Markov
Chain Monte Carlo methods (MCMC or MC2) for models that are not analyt-
ically tractable. Robert and Casella (2004) discuss these methods. 

On the other hand, we may not know the distribution that generated the
data. In this case we can employ a procedure called the bootstrap (Efron,
1979). Given a set of (possibly multivariate) data X = {x1, ..., xn}, we random-
ly draw with replacement a sample dataset of size n. We do this m times (m
is usually in the neighborhood of a few hundred). Then we fit our model to
each of the bootstrap datasets and derive our error estimate from the bootstrap
residuals. While there are qualifications, Efron and Tibshirani (1993) show
that the following equation (derived from the usual sample variance estimator)

is in general an estimate of the variance of a function of the data under the em-
pirical distribution for the data X. Fortunately for graphical use, the qualifica-
tions are usually negligible.

The bootstrap’s generality underlies its usefulness. For linear models with
independent-normal error assumptions, the bootstrap results mirror the stan-
dard theoretical results. For many nonlinear functions, however, we can con-
struct error estimates that are otherwise intractable. We can do this for
smoothers, kernel density estimates, and other unusual statistics. Examples
can be seen in Figure 15.25 and Figure 15.26 below.

15.1.9 Missing Data

The methods we have discussed so far require a complete dataset. Missing val-
ues are not defined in textbook statistical formulas. And in computational sys-
tems they are usually assigned a unique non-numeric value (called Not a
Number or NaN; see Stevenson, 1981). This value produces a non-numeric
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result when used in arithmetic operations, so it is not ignorable. Furthermore,
statistics packages tend to deal with missing values in an ad-hoc manner.
Thus, we need well-defined methods for accommodating missing values.

Missing values occur in datasets for many reasons. In general, the pro-
cesses that generate missing values can be grouped under systematic, random,
or a mixture of systematic and random effects. Estimating or imputing missing
values requires an understanding of the process that produced them. Graphics
can help in this understanding, but there is no substitute for prior knowledge.
And, as Little and Rubin (2002) make clear, to think about missing values is
to think about models.

Systematic effects include structural components that produce missing-
ness by design. For example, a sampling scheme or fractional factorial exper-
imental design may cover only a subset of possible category combinations.
Analyzing data based on these schemes requires structural models that incor-
porate the scheme itself. Systematic effects also include fixed response biases,
such as responses unavailable to subsets of subjects or units measured. This
happens with conditional responses (e.g., “If you have lived here longer than
3 years ...”), as well as conditional attributes (e.g., options lists for cars). Con-
ditional statistical models are needed to analyze data from these sources.

Random effects include factors such as random dropouts, equipment fail-
ures, and interference with data collection. If values are missing at random
(MAR), then we can use the expectation maximization (EM) algorithm to es-
timate them (Dempster, Laird, and Rubin, 1977). Roughly speaking, the algo-
rithm consists of iterative cycles: (1) replace missing values by estimated
values, (2) estimate parameters of the model using current estimated values,
and (3) estimate missing values using current parameter estimates. Steps 1
through 3 are repeated until estimates converge. A typical model might be
based on a joint multivariate normal distribution, though the algorithm is gen-
eral enough to accommodate a large variety of models. Little and Rubin
(2002) discuss these methods in more detail and relate EM to maximum like-
lihood and Bayesian estimation.

Estimating the missing values in a dataset solves one problem — imput-
ing reasonable values that have well-defined statistical properties. It fails to
solve another, however — drawing inferences about parameters in a model fit
to the estimated data. Treating imputed values as if they were known (like the
rest of the observed data) causes confidence intervals to be too narrow and
tends to bias other estimates that depend on the variability of the imputed val-
ues (such as correlations). Consequently, Rubin (1978) developed a proce-
dure, called multiple imputation, that works like the bootstrap. We estimate
m sets of missing values (using m different models and/or sampling methods).
We then analyze each set of data as if it were complete (known). Finally, we
combine the estimates to construct confidence intervals in a manner similar to
that used for the bootstrap. Rubin (1987) discusses this in more detail. We will
illustrate graphics that are related to these methods in Section 15.3.6.
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15.2 Psychology of Uncertainty
Given a prior opinion concerning the probability of an outcome and new evi-
dence updating the information on which that opinion is based, Bayes’ theo-
rem is the optimal way to revise that opinion. Given the exalted anthropology
found in the writings of the Psalmist (“little less than a god ...”), Shakespeare
(“in apprehension, how like a god!”), and Darwin (“his god-like intellect ...”),
one might expect that man (sic) is by nature a Bayesian. 

No. Human decision-making in the face of uncertainty is not only prone
to error, it is also biased against Bayesian principles. We are not randomly sub-
optimal in our decisions. We are systematically suboptimal. Until psycholo-
gists, led by Amos Tversky and Daniel Kahneman, began to study decision-
making experimentally, social scientists thought that suboptimality in human
decision-making was due to either fallibility or ignorance. Numerous studies
of decision-making now make it clear that the mistakes novices and experts
make are due mainly to innate biases. We will summarize these biases in the
following subsections. More detailed reviews are available in Kahneman,
Slovic, and Tversky (1982) and Hastie and Dawes (2003). See also Hogarth
(1975) and Tversky (2003).

15.2.0.1  Misuse of Priors

Decision-makers process priors incorrectly in several ways. First, people tend
to assess probability from the representativeness of an outcome rather than
from its frequency. When supporting information is added to make an out-
come more coherent and congruent with a representative mental image, peo-
ple tend to judge the outcome more probable, even though the added
qualifications and constraints by definition make it less probable. Tversky and
Kahneman (1983) called this conjunction probability error.

Second, humans often judge relative probability of outcomes by assessing
similarity rather than frequency. For example, when asked to rank occupations
by similarity and by probability, subjects produced the same rankings in both
cases; the rankings were substantially wrong in the case of probability (Kah-
neman and Tversky, 1973). 

Third, when given worthless evidence in a Bayesian framework, people
tend to ignore prior probabilities and use the worthless evidence (Kahneman
and Tversky, 1973). The existence of superstition based on artifactual correla-
tions is well known; what is surprising is that people would favor uninforma-
tive evidence over informative priors. Moreover, people often ignore prior
probabilities even when they are explicitly and authoritatively given them. For
example, when told two classes have different base rates, people ignore this
information and assume they have similar rates if the classes share enough
common features. 
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Fourth, people often judge the frequency of a class on the basis of avail-
ability of typical instances. For example, Tversky and Kahneman (1973)
found that most subjects think there are more English words beginning with
the letter R than words having R in the third position (not true). This bias is
probably due to the ease of recalling a word beginning with R and the difficul-
ty of recalling one having R in the third position. Tversky and Kahneman have
conducted numerous other experiments showing similar biases due to the
availability in memory of prototypical instances of a class.

15.2.0.2  Misuse of Likelihoods

People often ignore priors, but at least as often, they ignore or discount evi-
dence. Edwards (1968) has denoted the systematic underestimation of the im-
pact of evidence conservatism. People often hold on to prior beliefs in the
face of conflicting evidence.

Although Edwards and most statisticians and economists have believed
people behave approximately (if conservatively) like Bayesians, the experi-
mental evidence is more consistent with our not being Bayesians at all. In fact,
people (novices and experts alike) often confuse likelihoods with posteriors.
For example, many well-trained medical doctors have been found to assume
that the probability of cancer given a positive X-ray is equivalent to the prob-
ability of a positive X-ray given cancer (Eddy, 1982). 

15.2.0.3  Insensitivity to Sample Size

People usually pay attention to sample proportions but often ignore sample
sizes on which those proportions are based. This has been called belief in the
law of small numbers (Tversky and Kahneman, 1971). Examples are scien-
tists who overestimate the power of small-sample experiments to demonstrate
experimental effects, who are overconfident in the replicability of results
found in small samples, and who rarely attribute deviations from expectations
to sampling variability. This bias is so powerful that it is often resistant to
training. Amos Tversky was famous for devising simple judgment scenarios
that frequently fooled statisticians at colloquia.

15.2.0.4  Nonlinearity

We discussed nonlinear psychophysical functions involving aesthetic stimuli
in Chapter 10. Not surprisingly, the function relating actual frequencies to
judged frequencies for a variety of events is nonlinear as well (Slovic, Fis-
chhoff, and Lichtenstein, 1982). In addition, there are regression effects in
these judgments — infrequent events are judged relatively more frequent and
frequent events are judged relatively less frequent. We cannot assume that
subjective probability is proportional to observed frequency, even in the most
controlled and objective circumstances.
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15.2.0.5  Implications for Graphics

The overwhelming experimental evidence that we are not innate Bayesians
does not discredit the use of Bayes’ theorem in practice. We believe it leads to
the opposite conclusion: decision-makers need statistical tools to formalize
the scenarios they encounter and they need graphical aids to keep them from
making irrational decisions. The analogy with visual illusions is apt. We need
to design aircraft or automotive displays to counteract visual illusions and we
need to design statistical graphics to counteract probability illusions.

What graphical aids are available? We used a simple one in Figure 15.1 to
illustrate Bayes’ theorem — the mosaic plot. We present additional ones in the
next section. Others have yet to be discovered, because the use of graphics for
decision-making under uncertainty is a relatively recent field. Underlying all
of this, of course, is our belief in the importance of representing error in sta-
tistical graphics. We need to go beyond the use of error bars to incorporate oth-
er aesthetics in the representation of error. And we need research to assess the
effectiveness of decision-making based on these graphics using a Bayesian
yardstick.

15.3 Graphing Uncertainty
We will begin with a section on the use of aesthetics to display error. Then we
will show examples of specialized uncertainty displays.

15.3.1 Aesthetics

It is probably the scientific and geographic visualization communities that
have given the most attention to devising and evaluating aesthetics for repre-
senting uncertainty. MacEachren (1992) added blur and transparency to the
Bertin visual variables for this purpose. Other geographers have experimented
with size, shape, color, texture, and other visual variables. Pang et al. (1997),
Buttenfield (2000), Djurcilov (2001), Pang (2001), and Johnson and Sander-
son (2003) cover recent developments in the visualization community. We
will introduce some examples in this section.

15.3.1.1  Position

Perhaps the simplest representation of error is to plot an error estimate against
some other variable. Instead of plotting means, we can plot standard devia-
tions. Nearly as simple is to plot intervals such as standard errors or confidence
intervals. We will show several examples of these types of plots. First, howev-
er, we will use position on the plane to represent confusability directly.

 We featured data from Rothkopf (1957) in Figure 9.8. In the Rothkopf
study, 598 subjects were presented with the sound of a Morse code letter or
digit, followed by the sound of another coded letter or digit. Subjects answered
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“same” or “different” to each possible pair. The data matrix consists of one
row for each leading code and one column for each trailing code. The data en-
tries of this asymmetric square matrix consist of the percentage of “same” an-
swers for each ordered pair.

Figure 15.7 shows a nonmetric multidimensional scaling of the Rothkopf
data after symmetrizing (averaging complementary off-diagonal elements).
We have omitted the digits for simplicity. The plot reveals that letters repre-
sented by few primitives (like E and T) are confused less often with letters rep-
resented by more (like X and Z). Also, letters represented by dots (like S and
H) tend to be confused less with letters represented by dashes (like O and M). 

Figure 15.7 Nonmetric MDS of Rothkopf data

We can get a better idea of the structure of this configuration by looking
at the codes themselves. Figure 15.8 shows this plot. Shorter codes are to the
left and dashes are toward the top. 

Figure 15.8  Nonmetric MDS of Rothkopf data plotted with codes
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We discussed in Chapter 13 how Tversky (1977) explained the inappro-
priateness of the Euclidean metric for representing asymmetric similarity data.
Nevertheless, if the asymmetry ( ) is not severe, an MDS plot
can be quite useful for getting a first look at confusability and other quasi-mea-
sures of similarity. Let’s now look at the ordered data.

To construct Figure 15.9, we fit a log-normal distribution to the set of con-
fusions for each leading letter. The intervals are mildly asymmetric about their
modes because of our using the log-normal distribution. We could do the same
plot conditioned on the second letter in each pair, but we will not show it here.

In the lower panel, we have sorted the confusions by magnitude. In devis-
ing his code, Samuel Morse counted the number of slugs in each compartment
of a typecase and assigned the simplest codes to the letters with the highest
counts. He took the counts to be indicative of frequency-of-occurrence of let-
ters in the English language. This procedure would tend to make typical mes-
sages shorter, but not necessarily less confusable. The Spearman correlation
between Morse’s letter frequency rankings and the confusion ranks in the
Rothkopf data is only .32.

Figure 15.9  Confusions of Morse Code sounds

sij sji– i j�0�

! � � 0 , � � � � " q - & 8 7 * < � � / B 5 ; k ' |

-����


�

��

��

��

�
$

�
6�

%
	$

�

, / � 8 ! � & � 7 � q 5 � B � ; " 0 ' < | � - k * �

-����


�

��

��

��

�
$

�
6�

%
	$

�



15.3  Graphing Uncertainty 471

Notice how the sorting improves interpretability if we are interested in
confusability, although it is probably best to display both orderings together to
facilitate different lookup strategies for different decision tasks. There is a
problem with the interpretation of both displays, however. We must keep in
mind that the letter confusions are not statistically independent. Each letter in-
volves a reference to one of the other letters and the correlations among the
letters are not uniform. We will have more to say about this in Section 15.3.3.

We fit a log-normal distribution in Figure 15.9 because the data were pos-
itively skewed and the log transformation yielded approximate normality. This
gives us the occasion to present another valuable plot that displays variation in
data through position of an estimate of variation. Tukey (1977) devised a
spread-level plot to help with transformation decisions where a power trans-
formation can yield constant spread across location. To accomplish this goal
Tukey plotted a measure of spread against a measure of location. An obvious
case would be to plot the standard deviation of subgroups against their means,
although Tukey preferred hinge spreads (interquartile ranges) against medians
because the influence of outliers is reduced.

Figure 15.10 shows a spread-level plot of the brain weight variable from
the sleep dataset. We divided the data into quintiles and computed the median
and H-spread within quintile. Section 6.2.4.2 discusses the theory behind
Tukey’s ladder of power transformations and the related Box-Cox transforma-
tion. If we log both axes in the spread-level plot and fit a linear regression to
the points, then 1 – slope of the regression line is a good choice for the expo-
nent in the power transformation. The slope of the regression line in Figure
15.10 is approximately 1, indicating that a log transformation would be appro-
priate. Figure 6.10 supports this choice for these data.

Figure 15.10 Spread-level plot
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Some might ask whether it is better to proceed directly to the machinery
of the Box-Cox transformation and estimate the exponent directly. As with
most comparisons that pit statistics against graphics, this begs the question.
Neither approach is to be preferred. They are complementary. To support the
Box-Cox model, we need to know that the regression of spread on level is lin-
ear with good residuals. We need graphics to see that. Also, as Tukey pointed
out in his discussion of the original Box-Cox paper, the maximum-likelihood
estimation procedure is sensitive to asymmetric outliers. Inspecting spread-
level plots on medians and H-spreads is a robust check on the model.

15.3.1.2  Size

We are not finished mining Rothkopf’s dataset for examples. We will illus-
trate the use of size to represent confusability. In Figure 15.11, we construct
an eye chart using the confusion values from Figure 15.9. It is a simple chart,
but it conveys graphically the distinctiveness of letters when represented by
Morse Code. Some of the letters (B, P, X) almost disappear because they are
frequently confused with other letters.

Figure 15.11 Morse code confusability

15.3.1.3  Color

Color can be useful for representing confusions or uncertainties. Figure 15.12
shows a color representation of the entire Rothkopf dataset. We have logged
the brightness scale to reveal small variations. This display gives us a chance
to examine the asymmetries directly. P followed by J is confused more often
than J followed by P, for example. Two other pairs (DK and OG) stand out as
well. Using hue instead of lightness does little for this chart. Constructing lin-
ear color scales is problematic (although see the matrix examples in Chapter
16).

The data mining and classification communities use the term confusion
matrix to refer to a slightly different kind of dataset. Classification confusion
matrices show observed classes against predicted classes. Using color (light-
ness) to represent the values in these matrices can improve readability when
there are many classes. It helps readability to sort rows and columns, as we
have done with the Rothkopf matrix.
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Figure 15.12  Rothkopf data represented by lightness

15.3.1.4  Shape

The shapes of icons and glyphs can be modified to incorporate uncertainty fea-
tures. Figure 15.13 shows an application of vector glyphs modified to repre-
sent uncertainty by fanning them (Wittenbrink et al., 1996). The data are
measured surface wind vectors from buoys and meteorological stations, inter-
polated and resampled over the Monterey Bay region on the coast of Califor-
nia.

Figure 15.13  Glyphs (© 2005 IEEE, used with permission)
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15.3.1.5  Blur
Figure 15.14 contains a semicircle or ring chart, similar to a pie chart. The

chart is based on the GSS dataset used in Chapter 10. The ring chart represents
the number-of-reported-sex-partners variable. Figure 15.15 shows the same
chart with blurring based on an arc-sine transformation of the proportions un-
derlying each sector. The edges of the blur correspond to the 95 percent con-
fidence intervals on these proportions. 

Figure 15.14  Number of sex partners in last year

Figure 15.15 Number of sex partners in last year with blur for error

As MacEachren (1992) pointed out, blurring can be an especially useful
method for representing uncertainty on geographic fields because the eye is
prevented from focusing in uncertain areas. Figure 15.16 shows an example
from Jimenez et al. (2003). This virtual picture uses blur to represent an esti-
mated density front at the edge of a freshwater plume.
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Figure 15.16  Detail of fresh water plume during ebb tide (green denotes 
fresh water, blue, salt water, and red, density front)  (© 2005 IEEE, used with 

permission)

Figure 15.17 shows the use of blur in a model of Crambin, a small protein
molecule (Lee and Varshney, 2002). The crisp version on the left is based on
a smooth molecular surface model, which is defined as the surface which an
external probe sphere touches when it is rolled over the spherical atoms of a
molecule. Because atoms vibrate, however, there is statistical uncertainty as-
sociated with each atom visible on the surface. Lee and Varshney developed a
Gaussian model for this uncertainty and applied it to the surface in the right
panel of Figure 15.17. Grigoryan and Rheingans (2004) have followed a sim-
ilar approach using pixel blurring on tumor surfaces.

Figure 15.17  Crisp and uncertain visualizations of Crambin molecule (© 
2005 SPIE, used with permission)
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15.3.1.6  Transparency
Figure 15.18 uses transparency to represent the size of residuals. The data are
from a national survey on religion and values (Bowman, 2005). The rows of
the table represent responses to the question, “Homosexuality should be con-
sidered an acceptable alternative lifestyle.” The columns represent responses
to the question, “America should help Americans first and the rest of the world
later.” The standardized residuals in the table are computed from an indepen-
dence model, making them contributions to the chi-square test of interaction.
Bowman colored the negative residuals red and the positive black, with larger
residuals opaque. We see a negative association between the two questions.

Figure 15.18 Transparency used to represent residual values

Figure 15.19 shows confidence intervals on a multiple regression. We re-
gressed life expectancy on the log of health and military expenditures from the
countries dataset. We included an interaction term, which makes the surface
nonplanar. The pink surface is the upper 95 percent bound, and the green is the
lower 95 percent bound, for the conditional values of the predicted life expect-
ancy. We are able to see both surfaces plus the data points themselves because
of the choice of approximately 50 percent transparency for both surfaces.

Figure 15.19 Transparency used to represent uncertainty isosurfaces
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Figure 15.20 shows a 3D kernel density of three variables from the EPA
car data (horsepower, carbon monoxide, and carbon dioxide) produced by the
JMP statistical package. Transparency is used to reveal an inner contour for
the data. Wegman and Luo (2002) present other examples.

Figure 15.20  3D kernel density of EPA car data (JMP statistical software, 
courtesy of John Sall)

15.3.2 Uncertainty Intervals

We discussed frequentist vs. Bayesian approaches to constructing uncertainty
intervals in Section 15.1.6. In this section, we will show several examples in-
volving both approaches.

15.3.2.1  Confidence Intervals and Sample Size

A confidence interval can be wide because of small sample size or because of
large error. Figure 15.21 illustrates this fact using some variables from the
GSS dataset. For this application, we assume that feelings about the Bible can
be regarded as continuous (biblical absolutism vs. relativism?) even though
the responses are integers. We have computed 95 percent confidence intervals
on these reported feelings separately for groups reporting 0 or more sex part-
ners in the last year.

The upper panel represents the square root of sample size with saturation.
The lower panel uses size (width). There are advantages and disadvantages to
both approaches. The important thing to note is that the intervals increase in
size as the number of sex partners increase not because of heteroscedasticity
but because the sample sizes decrease. 
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Figure 15.21  Confidence intervals with saturation (top) and size (bottom)

15.3.2.2  Confidence Versus Credible Intervals

In Section 15.1.6 we contrasted Bayesian and frequentist approaches to uncer-
tainty intervals. Here we present a real example based on a historical dataset.
Gillies (1997) discusses the reasons why the estimation of Newton’s gravita-
tional constant has varied considerably over more than two centuries of exper-
iments. We have assembled data from Gillies and from Setterfield and
Norman (1987). The latter is a creationist document whose conclusions are
based on a statistical artifact, but the authors appear to have diligently com-
piled data from primary and secondary sources (according to our random
checks for accuracy). 

 In the upper panel of Figure 15.22 we have graphed the 68% individual
confidence intervals based on these estimates. In the lower panel, we have
graphed 68% credible intervals based on the same data.
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As Gillies notes, much of the variation in location and spread can be ac-
counted for by the design of instruments. Thus, there is most likely substantial
bias and error in the series. Nevertheless, if we construct credible intervals by
inverse variance weighting, then we find that the data swamp the priors by the
beginning of the twentieth century. 

Figure 15.22  Measurements of gravitational constant (upper panel shows 
s68% confidence intervals, lower panel shows 68% credible intervals)

15.3.3 Multiple Comparisons

Cleveland (1984) sampled a variety of articles from 1980–81 scientific jour-
nals and computed the percentage of page area devoted to graphics in each ar-
ticle. Figure 15.23 shows these area percentages grouped by discipline for 47
of Cleveland’s articles. We have computed 95 percent t-distribution confi-
dence intervals for these percents, based on inverted arc-sine transformed pro-
portions (see Section 6.2.5.1).

Analysts often want to make multiple comparisons of groups in exam-
ples like this one. They compare all possible pairs of means to see if they sig-
nificantly differ. We can do this informally for Figure 15.23 by seeing whether
two confidence intervals overlap. We see that the error bars for the percentage
areas of Physical and Social articles do not overlap, for example, so we con-
clude they are significantly different.
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Figure 15.23  95 percent confidence intervals

There are problems with this idea. First, using separate confidence inter-
vals for multiple comparisons does not correct for the number of comparisons
being made. Let 

A = false result on test A

B = false result on test B

Set P(A) = P(B). For multiple comparisons, we define

P(A) = P(B) = the comparisonwise error rate

 = the experimentwise error rate

If A and B are independent, then 

and if not (which is more likely on real data), then 

Either way, the comparisonwise and experimentwise error rates are not the
same. The definitions above extend straightforwardly to k comparisons. We
can use the Bonferroni inequality

to set an upper bound on experimentwise error rate by dividing our desired ex-
perimentwise error rate by 2 (or k) for each comparison. The problem with this
approach, however, is that the tests become more conservative as k increases. 
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To remedy this, we can use a simultaneous test method such as Tukey’s
HSD test (Tukey, 1953). If the counts in the groups differ, we need to adjust
the Tukey bounds with the Tukey-Kramer formula (Kramer, 1956). This for-
mula involves a factor of  for each comparison. However, each
pairwise comparison requires a different interval in this case, and there is no
way to compute lengths for the error bars on the separate means that always
satisfy every comparison. 

Hsu and Perrugia (1994) addressed these problems in a new display. Fig-
ure 15.24 shows a version of their plot for the Cleveland data. Four pairs of
orthogonal dotted gray gridlines are drawn so their central intersections align
on the vertical axis at the mean values for each of the four groups (P, L, M, S).
The other intersections of these gridlines demarcate the differences between
means on the horizontal scale. Because of the constraint that the grid be a
square rotated 45 degrees, the horizontal axis must be scaled accordingly. The
lengths of the horizontal colored lines are computed from the Tukey-Kramer
formula. We have colored red those intervals that do not contain a contrast or
difference value of zero.

The Hsu-Perrugia-Tukey plot is easy to inspect and difficult to under-
stand. It is easy to inspect because each pairwise contrast can be examined
separately on the horizontal scale and significant contrasts are readily located.
It is difficult to understand because the display involves the Pythagorean the-
orem (the lengths of the horizontal intervals are proportional to the hypotenuse
of triangles in the 45 degree rotated metric of the gridlines) and because the
display has dual scales for means and differences. Complex theory does not
diminish the usefulness of a plot, however. This graphic is designed for a sin-
gle purpose and may be the best available display for this application. For al-
ternative multiple comparison displays and further reading on this topic, see
Sall (1992), Heiberger and Holland (2004), and Benjamini and Braun (2002). 

Figure 15.24 Hsu-Peruggia-Tukey multiple comparison chart
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15.3.4 Resampling

We discussed bootstrapping in Section 15.1.8. As an illustration of an applica-
tion to graphics, Figure 15.25 shows the bone alkaline phosphatase (BAP)
data we used in Figure 7.7. The original authors modeled these data with a sin-
gle linear regression of BAP on age, noting that BAP increased with age, es-
pecially among women. If we do a piecewise regression of BAP on age for
women, however, we find that the increase is in level only, not slope. It occurs
at the onset of menopause. 

Figure 15.25  Confidence intervals (left) bootstrap (right) for BAP in women

The left panel of Figure 15.25 shows the standard 95 percent confidence
intervals for the piecewise regression. The right panel shows piecewise regres-
sions for 20 bootstrap samples from the dataset. We would expect to see at
most one of these outside the theoretical intervals on the left. The coverage, as
expected, is quite good.

Figure 15.26  Bootstrapped kernel density contours
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Bootstrapping is more valuable on data and models where analytic esti-
mates are problematic. As an example, Figure 15.26 shows kernel density con-
tours with integrated 95 percent coverage for 20 samples of the birth and death
rate variables from the countries dataset. Compare this graphic to Figure 1.1
and to Figure 1.3. We see clearly two clusters of Third World and developed
countries.

15.3.5 Indeterminacy

Suppose we have a random vector Y made up of p random variables Yj, each a
linear function of a single random variable X plus random error:

,   

We assume Y is multinormal with covariance matrix , where
 is diagonal. We also assume X has a standard normal distribution. So far,

we have an instance of the multivariate normal linear regression model. How-
ever, we will add the assumption that X is unobservable. Adding this assump-
tion transforms the multivariate linear model into the common factor model
(Spearman, 1904).

Given a sample covariance matrix Syy, we can estimate � via maximum
likelihood. Our estimates will have several sources of uncertainty. One source,
of course, is sampling uncertainty. The smaller our sample, the less precise
our estimate of � will be. Another is rotational uncertainty. If � is multivari-
ate (as in the multiple factor model), we may apply an orthogonal rotation to
our estimate of � without affecting loss. The same type of uncertainty applies
to other orthogonal decompositions such as principal components, and we of-
ten use it to our advantage in order to improve the interpretability of explor-
atory decompositions. Another source is scaling uncertainty. We may rescale
our estimates (a dilatation) without affecting loss. Factor analysts commonly
assume variables are standardized to unit variances in order to avoid this prob-
lem. A fourth type of uncertainty is indeterminacy. The common factor
model contains a mathematical indeterminacy that is of a different kind from
the statistical uncertainties we have encountered in this chapter. We will illus-
trate this graphically.

Figure 15.27 shows a fit of a single common factor model to a correlation
matrix of the combat data in Figure 3.2. The vectors are plotted in what we call
score space. Instead of plotting n observations as a set of points in p dimen-
sions (as in a scatterplot), we plot p variables as a set of vectors in n dimen-
sions. Figure 15.27 shows a 3-dimensional subspace of this 93-dimensional
score space. The orientation of each symptom vector is determined by the es-
timate of � (the relative depth is cued by the size of the typeface). Because the
data are standardized, the angle between any two vectors in this space is an es-
timate of the observed correlation between the corresponding variables. 

Yj EjX -j+= j � " p� �=
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We have plotted all the Y variables in the figure. How do we plot X? One
approach advocated by most factor analysts is to plug our estimate of � into
the model and then solve for X as an inverse regression problem. The result is
the red vector running through the center of all the vectors — the average of
the regressions of the Y variables on X. This is not an estimate of the unob-
served X, however. It does not take into account the unobserved error associ-
ated with X. If we include the unobserved error, we find there are infinitely
many vectors, all lying on the surface of the green cone (or more generally, hy-
percone) that satisfy the model and its assumptions. The factor scores cannot
be uniquely determined from the specification of the model. Wilson (1928)
and Guttman (1955) explain this problem in more detail.

If the X variable were observed or were a function of observed variables,
then the green cone would collapse to a single vector. An example would be
the principal component model. In the common factor model, however, any
factor score vector on the surface of the cone will fit the data equally well. This
nondeterminacy is not caused by sampling error; it will not go away if we let
n go to infinity. It will decrease if the number of observed variables increases
(all else being equal), but slowly.

 Steiger and Schönemann (1977) recount the history of the factor score
controversy. Factor analysts have argued over this problem for over 80 years,
often in esoteric and heated language. One can get a flavor of these disputes in
the volume 31 (1996) issue of Multivariate Behavioral Research. Economists
have named a variant of this the model identification problem. Aitkin and
Aitkin (2004) have resolved the controversy, we believe, in a lucid Bayesian
analysis that compares the frequentist and Bayesian interpretations of the
problem. 

Figure 15.27 Common factor model

Incidentally, we transformed the dataset before doing the maximum-like-
lihood factor analysis. We sorted the rows according to the row sums and dif-
ferenced each tied block of values across the rows. We then computed the
weighted correlation matrix of the first differences. This resulted in a single-
factor model. Otherwise, we would have required multiple factors to represent
the data. Can you see why? See Section 16.5.2.1 for clues.
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Finally, notice that the cone represents indeterminacy in this example.
Cones can also be used to represent confidence regions on vectors. Examine
Figure 15.13. Would the use of small 3D cones instead of white outlines im-
prove the representation? Is there a trade-off between realism and readability?

15.3.6 Missing Values

Graphics help us to identify missing values on a variable and patterns of miss-
ing values in a dataset. Neither task is simple. First of all, computer statistics
packages and databases code missing values in a bewildering variety of
schemes. Early relational databases had no code for missing because of re-
strictions in the relational algebra. More recent databases allow a miscellany
of approaches. Early statistical packages that were capable of dealing with
missing values took one of two approaches. On the one hand, packages such
as Data-Text and SAS implemented a unique value designed to propagate it-
self in mathematical calculations (including three-valued logic). On the other
hand, packages such as SPSS used integer numerical values associated with
value labels to indicate different types of missingness (No Answer, Not Ap-
plicable, . . .). The latter approach fit the needs of survey analysts who had to
encode different types of nonresponse.

Numerically coded missing values have the potential for doing great dam-
age when ignored or miscoded because they are usually designed to look like
outliers. Codes such as 99, or –999 can profoundly affect numerical calcula-
tions, even when sparse in the data. Jasso (1985), for example, analyzed the
frequency of marital coitus in the prior month reported by a sample of 2,361
married couples. In her paper she computed a ceteris paribus effect of over
100 acts of coitus per month for a prototypical 45-year-old married woman.
Reanalyzing her data, Kahn and Udry (1986) discovered four cases with high-
ly unusual values of 88; no other coded value was greater than 63 and almost
all were under 40. Since the missing value code for this variable was 99, Kahn
and Udry concluded that the peculiar values were keypunch errors. While Jas-
so (1986) offered a rejoinder, it is most likely that inspecting histograms or ta-
bles prior to modeling would have triggered an alarm on Berkson’s
intraocular traumatic test (Edwards et al., 1963).

15.3.6.1  Representing Missing Values

Figure 15.28 shows how we might display such histograms. The 1993 GSS
survey contains the question, “How many sex partners have you had in the last
12 months?” Figure 15.28 shows a bar graph of the responses coded numeri-
cally and another bar graph of the responses displayed with their value labels.
The missing value codes and labels we used for this item were 99 = No Reply
(no answer) and <blank> = No Apply (not applicable). Jointly inspecting val-
ues and labels helps identify incorrect values or labels. 
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Figure 15.28  Responses to “How many sex partners have you had in the last 
12 months?” on 1993 GSS

Some software fails to display labels if no value is assigned or fails to dis-
play values if no label is assigned, Notice that the upper panel of Figure 15.28
omits the “No Apply” cases because they were coded as blanks. To protect
ourselves, we should inspect a sorted table containing all values and labels.
Table 15.1 shows an example for these data.

Table 15.1 Reported Sex Partners

Count CumCount Percent CumPercent Value    Label
313 313 19.5 19.5 0    0
983 1,296 61.2 80.7 1    1
87 1,383 5.4 86.1 2    2
33 1,416 2.1 88.2 3    3
25 1,441 1.6 89.7 4    4
20 1,461 1.2 91.0 5    5–10
4 1,465 0.2 91.2 6    11–20
1 1,466 0.1 91.3 7    21–100
0 1,466 0.0 91.3 8    >100
0 1,466 0.0 91.3 9    1+
0 1,466 0.0 91.3 95    Several

26 1,492 1.6 92.9 99    No Reply
114 1,606 7.1 100.0 blank    No Apply
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15.3.6.2  Displaying Patterns of Missing Data

To analyze patterns of missing values across variables and cases, we need mul-
tivariate plots. Unfortunately, placing variables on common scales can be dif-
ficult, especially when they involve disparate missing value codes. 

Figure 15.29 illustrates one approach. The Gender variable was coded
1 = Male, 2 = Female. The Partners variable was coded as in Figure 15.28,
with values greater than 7 changed to missing. Five additional variables were
derived from five follow-up questions to the Partners question. Matesex, for
example, was derived from the question, “Was one of the partners your hus-
band or wife or regular sexual partner?” Each of the sex variables was coded
1 = Yes, 2 = No, with values greater than 2 changed to missing.  

Figure 15.29  Missing data in 1993 GSS for selected sex variables

The left panel of Figure 15.29 was produced by a two-way complete link-
age cluster analysis (see Section 16.5.4 for further examples). The resulting
structure was clean enough to suggest another strategy. We reordered the col-
umns to reflect an a priori sexual behavior scale (marital . . . prostitution) and
reordered the rows in a nested (lexical) sort. That is, we sorted Gender, then
sorted Partners within the Gender blocks, and so on. 

A simple structure is evident. Respondents not reporting a partner or re-
porting zero partners also reported no additional encounters. There do not ap-
pear to be any illogical combinations such as reporting more sex partners in
the type of partner columns than are shown in the number of partners column.
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15.4 Sequel
The next chapter covers analytic methods. Fitting models to data reveals pat-
terns in graphics. Model fitting also helps to simply complex displays. Anal-
ysis involves filtering data before display.



16
Analysis

The word analysis derives from the Greek , which means to loos-
en. To analyze means to untangle. Even when we “let the data speak for them-
selves,” we need to untangle some aspect of the data before displaying things
in a graphic. The more analytics we can include in the process of displaying
graphics, the more flexibility our tools will have. 

In graphics grammar, statistics and analytics are different. They occur at
different locations in the graphics pipeline. The Statistics component of the
pipeline outlined in Chapter 2 is designed to provide flexibility whenever a
statistical function can operate on a few variables. Statistics functions such as
summaries and smoothers operate on the variables that constitute a graphics
frame. Because they are embedded in the data flow, these functions automati-
cally update graphics when data change. Furthermore, they can be interactive-
ly modified by controllers to provide different views of the same data. 

Sometimes we wish to analyze models based on variables that do not ap-
pear in graphics, however. To accomplish this, we insert analytics at the begin-
ning of the pipeline. These analytics receive a varset whose variables
correspond to columns of the data source; they output another varset whose
variables are used to construct a frame. By putting analytic functions in the
same pipeline as statistical functions, we maintain automatic updating and in-
teractive control of our model.

This chapter will present several analytics that depend on graphics for
their usefulness. In contrast to conventional graphic displays of parameters or
posterior distributions, these analytics are tightly bound to specific types of
displays and are usually highly multivariate. We have already seen some ex-
amples of this type of analytic in the preceding chapters, such as multidimen-
sional scalings and network diagrams. Here, we will focus on displays not
covered earlier or discussed only briefly. We do not intend to cover the field
of data mining or statistical analytics here. Each method covered in this chap-
ter is defined by graphic display, inspired by graphic display, or enhanced by
graphic display.
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16.1 Variance Analysis
The analysis of variance was developed by Fisher (1925, 1935) for decom-
posing the effects of agricultural experiments. Suppose we wish to analyze the
effects on plant growth of two different types of fertilizer. We suspect these ef-
fects might differ across three crop species, so we fertilize each crop with each
fertilizer — six treatments in all. These six treatments comprise all combina-
tions of the levels of two factors — species and fertilizer. Fisher demonstrated
that conducting the experiment jointly this way provides more information
than examining factors alone in separate experiments. Specifically, it gives us
the opportunity to assess the interaction of the factors. We are able to answer
the question of whether the effects of fertilizer type differ among species. 

We stated in Section 5.3.1 that chart algebra is related to the algebra used
in the design of factorial experiments. In this section, we show more specifi-
cally how chart algebra corresponds to the chief operators used in the design
of experiments. Introductions to the design notation used for statistical models
are Heiberger (1989) and Kutner et al. (2003). In the following subsections,
we assume a functional model Z = f(X, Y), where Z is a (possibly multivariate)
variable. In statistical terms, we sometimes call Z a dependent variable and
X and Y independent variables or treatments. In this section, we ignore Z
and focus on expressions involving X and Y. These expressions are used to con-
struct statistical models that help to estimate Z. Each example shows the chart
algebra notation on the left of each red equivalence expression and the statis-
tical model notation on the right. Note that some symbols (e.g., +) are common
to both notations but have different meanings. 

16.1.1 Cross.
X * Y ~ C + X + Y + XY

The cross operator corresponds to a fully factorial experimental design speci-
fication. This design employs a product set that includes every combination of
levels of a set of experimental factors or treatments. The terms on the right of
the similarity represent the linear model for fitting fully factorial designs. The
terms in the model are

C : constant term (grand mean)
X : levels of factor X (X main effect)
Y : levels of factor Y (Y main effect)
XY : product of factors X and Y (interactions)

An example of a two-way factorial design would be the basis for a study
of how teaching method and class size affect the job satisfaction of teachers.
In such a design, each teaching method (factor X) is paired with each class size
(factor Y) and teachers and students in a school are randomly assigned to the
combinations.
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16.1.2 6.2.2 Nest.
X / Y ~ C + Y + X(Y)

The nest operator corresponds to a nested experimental design specification.
The term X(Y) represents the series X | (Y = Y1) + X | (Y = Y2) + . . . The terms on
the right of the similarity are

C : constant term
Y : levels of factor Y (Y main effect)
X(Y) : X levels nested within levels of Y

Notice that there is no interaction term involving X and Y because X is
nested within Y. In a nested design, not all combinations of the levels of X and
Y are necessarily defined. An example of a nested design would be the basis
for a study of the effectiveness of different teachers and schools in raising
reading scores. Teachers are nested within schools when no teacher in the
study can teach at more than one school. With nesting, two teachers with the
same name in different schools are different people. With crossing, two teach-
ers with the same name in different schools may be the same person.

16.1.3 Blend.
X + Y ~ C + FXY

The blend operator corresponds to a repeated measures experimental design
specification. The terms on the right of the similarity are

C : constant term
FXY : function of X and Y (e.g., X – Y)

In a repeated measures design, we predict using functions of a time series.
The simplest case is a prediction based on first differences of a series. Time is
not the only possible dimension for ordering variables, of course. Other mul-
tivariate functional models can be used to analyze the results of blends (Ram-
say and Silverman, 1997). An example of a repeated measures design would
be the basis for a study of improvement in reading scores under different cur-
ricula. Students are randomly assigned to curriculum and the comparison of
interest involves differences between pre-test and post-test reading scores.

16.1.4 Smoothing by Design 

Smoothing data reveals systematic structure. Tukey (1977) used the word in a
specific sense, by pairing the two equations

data = fit + residual
data = smooth + rough
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Tukey’s use of the word is different from other mathematical meanings,
such as smooth functions having many derivatives. We smooth data in graph-
ics to highlight patterns in order to make inferences. Graphics for displaying
results of factorial analysis of variance have traditionally involved plotting
means and standard deviations in paneled or overlaid plots (see Figure 11.4).
The factorial structure of most designs can produce rather complex models,
however. We need to consider strategies for selecting subset models that are
adequate fits to the data and that simplify a display of results. We will discuss
one simple approach in this section. This approach involves eliminating inter-
actions (products of factors) in factorial designs.

Interactions are often regarded as nuisances because they are difficult to
interpret. Comprehending interactions requires thinking about partial deriva-
tives. A three-way interaction XYZ, for example, means that the relation be-
tween X and Y depends on the level of Z. And the relation between X and Z
depends on the level of Y. And the relation between Y and Z depends on the
level of X. Without any interaction, we can speak about these simple relations
unconditionally. 

One strategy for fitting useful subset models is to search for plausible sub-
set models with as few interactions as possible. In this search, we require that
any variables in an interaction be present as a main effect in the model. This
restriction reduces the search space for plausible submodels. By using branch-
and-bound methods, we can reduce the search even further. Mosteller and
Parunak (1985) and Linhart and Zucchini (1986) cover this area in more detail.
Figure 16.1 shows a subset model tree for a three-factor design. The further
we go down the branches of this tree to select a model, the smoother our fit
will be. If we go too far, of course, our fit will be biased and not a good repre-
sentation of the data. Finding the “right” node is best done with Bayesian or
sequential methods.

Figure 16.1 Tree of subset models 
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16.1.5 An Example

Figure 16.2 shows NHTSA crash test results for selected vehicles tested be-
fore 1999. The dependent variable shown on the horizontal axis of the chart is
the Head Injury Index computed by the agency. The full model is generated by
the chart algebra H*T / (M*V) * O.

Figure 16.2  Estimated crash head injury criterion (P=passenger, D= driver)
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The full algebra expression corresponds to the model

H = C + M + V + O + T(MV) + MV + MO + VO + OT(MV) + MVO

where the symbols are

H : Head Injury Index
C : constant term (grand mean)
M : Manufacturer
V : Vehicle (car/truck)
O : Occupant (driver/passenger)
T : Model

The display in Figure 16.2 is difficult to interpret. We need to fit a model
and order the display to find patterns in the results. 

Figure 16.3 charts fitted values from the smallest plausible subset model: 

H = C + V + O + T(MV)

Figure 16.3 has several notable features. First, the models are sorted ac-
cording to the estimated Head Injury Index. This makes it easier to compare
different cells. Second, some values have been estimated for vehicles with
missing values (e.g., GM G-20 driver data). Third, the trends are smoother
than the raw data. This is the result of fitting a subset model. We conclude that
drivers should expect more head injuries than passengers, occupants of trucks
and SUVs should expect more head injuries than occupants of cars, and occu-
pants of some models should expect more injuries than occupants of others.

We must remember this is a smoothing of the raw data based on the most
plausible statistical model for all the data. There are exceptions to the general
pattern (e.g., Chevrolet Beretta) that we can detect by plotting residuals to the
model. Viewers of smoothed graphs need to be informed in the annotation that
the results are smoothed or modeled rather than raw.

The main factor underlying greater head injuries in certain trucks and
SUVs is the rigid frame rail that is part of body-on-frame truck design. The
frame transmits more kinetic energy to the passengers than does a crushable
engine compartment. Popular discussions of the danger of these vehicles have
focused on rollovers, but frame rail truck design remains a serious problem for
trucks used as passenger vehicles. Some manufacturers have ameliorated this
problem by using unibody construction for their passenger trucks and SUVs.
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Figure 16.3  Subset model for crash data sorted by estimate
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16.2 Shape Analysis
Shape analysis brings to mind the field of morphometrics, where we attempt
to distill 2D or 3D shapes into a few analyzable components or manifolds
(Bookstein, 1991; Kendall et al., 1999). Morphometrics arose in biology as a
mathematical method for recognizing physical growth paths within species
and similarity of form between species (Thompson, 1928). See Section 9.1.9.1
for an example. 

In this section, we will focus on an important but little-known application
of the analysis of shape to statistical data analysis called scagnostics (Tukey
and Tukey, 1985; Tukey, 1993). The term is a neologism (a John Tukey hall-
mark) derived from the words scatterplot diagnostics. The Tukeys used scat-
terplot matrices to discern unusual structures in high-dimensional data.

Before we discuss the machinery used by Tukey and Tukey, however, we
will demonstrate the usefulness of SPLOMs for revealing unusual structures
in low-dimensional datasets. Figure 16.4 shows a lower-triangular symmetric
SPLOM. The data are from Chartrand (1997). This was a national survey of
attitudes regarding psychological counseling. There were 3,035 respondents
to the survey. The variables in the SPLOM are age, gender, income, number
of children, and number of years together with one’s partner in a current rela-
tionship. The dot plots on the diagonal are especially handy for SPLOM ap-
plications. They serve as ordinary histograms for marginal continuous
distributions and as discrete histograms for marginal categorical distributions.

Figure 16.4 Triangular SPLOM of Chartrand survey
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There are several anomalies in this SPLOM, including the single low val-
ue on the children variable and the multiple extreme values at the high end of
the age scale. One anomaly is striking, however; the graphic leads us to it. The
age–together plot at the lower left corner has an unusual shape. A regular tri-
angular distribution like this suggests an implication. If x is greater than y for
nearly every pair (x, y) then it may be due to a necessary relation between x
and y rather than a stochastic relation. The necessary relation, in this case,
would be that the duration of a relationship must be less than the age of the
respondent. There appear to be some respondents represented above the main
diagonal in this panel who either believe in reincarnation or have made a seri-
ous error in judging their age or the duration of their relationship (assuming
both scales are the same). This curiosity was not detected in the preliminary
data cleaning performed by the polling organization. Sometimes only graphi-
cal methods will reveal anomalies like this.

We can use Chartrand’s data to examine this further. Another item in the
survey asked respondents to choose the type of work that they liked the best.
Respondents were asked to make all six pairwise comparisons between the de-
scriptive words IDEAS, DATA, PEOPLE, and THINGS. Summing these com-
parisons, we created four new variables to indicate the strength of these
preferences. We also created a fifth variable, namely the difference between
respondents’ reported years in the relationship and their reported age. We call
this a TOGETHER–AGE discrepancy (TA). Figure 16.5 shows a rectangular
SPLOM of this variable against the others. The SPLOM reveals that those
more interested in data are less likely to make errors on the TOGETHER ques-
tion and those more interested in people are more likely to make such errors.

Figure 16.5 Rectangular SPLOM

We discovered these anomalies by examining pairwise scatterplots. Can
we develop tools to regularize this process? Imagine a p-dimensional space
(where p >> 25) containing a cloud of points. We seek unusual 2D views of
this cloud. Standard methods for doing this involve projections, such as pro-
jection pursuit (Friedman, 1987) or the grand tour (Buja and Asimov, 1986).
Tukey and Tukey (fifth cousins) devised a different attack on this problem.
They focused on the p(p - 1) / 2 marginal subspaces of the joint p-dimensional
space of observations, to look for unusual bivariate distributions. The Tukeys
employed a variety of measures to detect unusual distributions: area of closed
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2D kernel density contours, perimeter length of these contours, convexity of
these contours, multimodality of the 2D densities, nonlinearity of principal
curves fitted to the bivariate distributions, average nearest–neighbor distance
between points, and so on. They then displayed these derived measures in a
scatterplot matrix (SPLOM) for user exploration. Each point in the frames of
this scagnostic SPLOM represented one 2D scatterplot. By linking the scag-
nostic SPLOM to the data SPLOM as well as to separate scatterplots, the
Tukeys assembled a system that is capable of interactive exploration in ex-
tremely high-dimensional spaces. It is one of the few graphics systems to over-
come the curse of dimensionality.

We will show a simplified example. The lower panel of Figure 16.6 con-
tains a SPLOM of the 1997 EPA emissions data for cars sold in the US. The
variables are horsepower (HP), gallons-per-mile (GPM), hydrocarbons (HC),
carbon monoxide (CO), and carbon dioxide (CO2). The emissions of pollut-
ants are measured in per-mile weight. To highlight the shape information used
in scagnostics, we have used filled kernel density contours to represent the
point clouds. See Figure 11.10 for the raw SPLOM of these data.

The upper panel of the figure shows the scagnostic SPLOM. We have se-
lected five scagnostic variables to keep the plot simple. We have highlighted
one outlier in red and highlighted the corresponding panel in the lower
SPLOM to show how the linking works. The high correlation between fuel
consumption and carbon dioxide emissions is flagged by the slope, perimeter,
and area statistics. Had we used miles-per-gallon instead of gallons-per-mile,
then the curvature statistic would have flagged it as well (see Figure 11.10).
There are other outliers in the scagnostic SPLOM we might examine. The plot
HP-CO2, for example, is an outlier on nearest neighbor distances. This is be-
cause it has a number of outliers in the raw scatterplot, evident in Figure 11.10.

There are limitations to what scagnostics can uncover. First, we must re-
member that marginal 2D distributions do not give us full information about
the joint p-dimensional distribution. For example, this 

and this 

both have the same x and y margins that look like this 

Second, scagnostics are only as good as the measures chosen. Curvature,
density, and volume are obvious choices, but there may be other shape indica-
tors that we may need to uncover subregions in our data. Third, scagnostics
depend on a well-designed interface. Interactive controllers such as brushes
and lassos are essential to exploiting the power of the method.
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Figure 16.6 Scagnostics
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Recently, Wilkinson et al. (2005) employed graph theory to develop mea-
sures of shape, trend, density, and other aspects that the Tukeys assessed. The
advantages of the graph-theoretic approach are (1) improvement in computa-
tional complexity; graph algorithms have been intensely investigated recently
and are now  or better in performance, and (2) relaxing of assump-
tions; measures on graphs can be developed for continuous and categorical
variables without making assumptions of smoothness or continuity.

16.3 Graph Drawing.
A graph {V, E} is planar if it is embeddable on the plane such that no two line
segments representing edges cross each other. The graph drawing (or graph
layout) problem is as follows. Given a planar graph, how do we produce an
embedding such that no two edges cross? And if a graph is not planar, how do
we produce an embedding that minimizes edge crossings? The problem has
generalizations (layouts on the surface of a sphere, 3D layouts, etc.), but it is
usually restricted to 2D Euclidean space. 

Kruja et al. (2001) survey the history of graph drawing, especially the pe-
riod before computer-assisted methods. Di Battista et al. (1999) survey the
more recent literature in computer-assisted graph drawing. The use of comput-
ers to lay out graphs got its start in the period when multidimensional scaling
was being developed, probably because the algorithms are closely related.
Kruskal and Seery (1980) were among the first to demonstrate an automated
graph layout. They adapted the Kruskal iterative MDS algorithm to graph-the-
oretic distances.

Different types of graphs require different algorithms for clean layouts.
We begin with simple network graphs. Then we discus laying out trees. We
conclude with directed graphs. In all cases, the input data are non-numeric.
They consist of an unordered list of vertices (node labels) and an unordered
list of edges (pairs of node labels).

16.3.1 Networks

A network is a simple graph. It makes sense that we might be able to lay out a
network nicely if we approximate graph-theoretic distance with Euclidean dis-
tance. This should tend to place adjacent vertices close together and push ver-
tices separated by many edges far apart. The most popular algorithm for doing
this is a variant of multidimensional scaling called the springs algorithm
(Fruchterman and Reingold, 1989; Kamada and Kawai, 1989). It uses a phys-
ical analogy (springs under tension represent edges) to derive a loss function
representing total energy in the system (similar to MDS stress). Iterations em-
ploy steepest descent to reduce that energy. The basic springs algorithm has a
flaw, however. It is vulnerable to local minima because it starts with a random
layout. The original nonmetric MDS programs had the same flaw; more recent

O n n��$� �



16.3  Graph Drawing. 501

MDS programs begin with a metric stage. Consequently, we recommend a
two-stage procedure: (1) compute a geodesic distance matrix, break tied dis-
tances randomly, and do a scalar products metric MDS to get an initial layout
for the nodes; and (2) compute a few iterations with the springs algorithm to
reduce crossings. This approach works well for layouts of up to a few thou-
sand nodes.

We offer a simple example. Following Henley (1969), we asked 37 people
to speak the names of the first ten or so ordinary animals that came to mind.
Our definition of an edge was adjacency in a list. We included in the layout all
animals adjacent to each other in at least 3 of the 37 lists. This subset consti-
tuted a graph with 17 nodes and 20 edges. Figure 16.7 shows a planar layout
of the animal data graph. Consistent with earlier published results, we can
identify clusters of barnyard animals, zoo animals, and domestic animals.

Figure 16.7  Network layout of animal naming data 

16.3.2 Trees

A tree is an acyclic graph. Rooted trees are usually arranged vertically with the
root at top or bottom. Spanning (unrooted) trees are usually arranged to cover
a region somewhat uniformly. Laying out rooted trees on the plane is relatively
simple. We assign layers for each node by finding the longest path to a leaf.
By this calculation, the root is at layer n and the leaves are at layer 0. Then we
begin with the leaves, group daughters by parent, and align parents above the
middle daughter(s) in each group. After this sweep, we can move leaves up the
hierarchy to make shorter branches, as we did in the following example. Di
Battista et al. (1999) present other algorithms for laying out rooted trees.

pig
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lion

giraffe

elephant

monkey

snake

zebra
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Figure 16.8 shows a small Web site represented as a hierarchical tree. This
application is designed to allow interactive exploration of the Web site graph.
We used the simple layout method and made the thickness of the branches pro-
portional to the number of visitors traversing nodes. The colors of the nodes
represent page categories. The home page is at the top.

Figure 16.8 Web site as rooted tree

Unrooted trees have no implicit hierarchy. Consequently, the springs al-
gorithm works nicely for unrooted trees. In Figure 16.9 we lay out the same
Web data as a spanning tree. Notice the popup that reveals data about a select-
ed node. Because the layout makes greater use of the frame, the spanning tree
makes better use of the display space than the rooted tree layout.

Figure 16.9  Web site as spanning tree
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Figure 16.10 illustrates a different type of graph layout using a display
from Wills (1999). Wills arranges trees and other graphs on a hexagonal grid,
using a variety of algorithms from simulated annealing to steepest descent.
Using the hexagonal grid regularizes the structure and facilitates navigation.
The coloring of the nodes in this figure reflects the Web resource type (pages,
images, or scripts).

Figure 16.10  Wills Web data

16.3.3 Directed Graphs

Directed graphs, like rooted trees, are usually arranged in a vertical partial or-
dering with source node(s) at top and sink node(s) at bottom. Nicely laying out
a directed graph requires a topological sort (Skiena, 1998). We temporarily
invert cyclical edges to convert the graph to a directed acyclic graph (DAG) so
that the paths-to-sink can be identified. Then we do a topological sort to pro-
duce a linear ordering of the DAG such that for each edge (u, v), vertex u is
above vertex v. After sorting, we iteratively arrange vertices with tied sort or-
der so as to minimize the number of edge crossings. Of course, we may flip or
rotate the configuration when we are done.

Let’s compare a network layout with a directed layout computed this way.
Figure 16.11 shows an example of a network layout of a graph from Figure
10.12 in Di Battista et al. (1999). The layout in Figure 16.11 was produced by
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the springs algorithm. The resulting graphic has two crossings and the posi-
tions of the nodes do not reveal the hierarchy. Di Battista et al. illustrate a vari-
ant of the springs algorithm on this graph that results in five crossings. 

Figure 16.11  Network graph drawing

The graph in Figure 16.12, by contrast, was produced by the layered meth-
od for a directed graph, resulting in no crossings. Notice that the horizontal
layout is rather intricate. Several iterations were needed to avoid collisions be-
tween nodes. The solution can be improved aesthetically by dragging a few
nodes horizontally to eliminate gaps and make edges more vertical. Most
graph layout software allows manual adjustment after iterating.

Figure 16.12  Layered graph drawing
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16.4 Sequence Analysis
A sequence is a list of objects, e.g., . The ordering of the list is giv-
en by an order relation. Let R be a binary relation defined on a set A. For R to
establish a sequence, x R y must imply  for all x, y in A. Let’s examine
this for several types of order relation. 

We begin with a partial order relation. A relation R is a partial order if
and only if it is

reflexive (x R x for all x in A), 

transitive (x R y and y R z implies x R z for all x, y, z in A), and 

antisymmetric (if x R y and y R x, then x = y for all x, y in A).

Under these conditions, we call A given R a partially ordered set, or poset.
The elements of a poset are only partially ordered because not all elements are
related through R. We say elements x and y are comparable if either x R y or
y R x. If neither x R y nor y R x, then x and y are noncomparable. For example,
{x, z} and {x, y, z} are comparable under the relation , but {x, z} and {x, y}
are noncomparable under the same relation.

We may represent a poset with a directed graph (digraph). Vertices in this
graph are elements of A and edges are the relation R. The left panel of Figure
16.13 shows a digraph for a three-element set partially ordered by the subset
( ) relation. We see, for example, that {x, y} is a subset of {x, y, z} because
there is a path from the {x, y} vertex to the {x, y, z} vertex. Note that there is
no path from {x, y} to {x, z} because they are noncomparable. Also, note that
every vertex has an edge looped to itself because the relation is reflexive.

Figure 16.13  Directed graph for a poset and its Hasse diagram
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Digraphs for even simple posets are fairly messy. The right panel of Fig-
ure 16.14 shows a cleaner alternative called a Hasse diagram. It preserves all
the information in the digraph without the clutter. The rules for recovering the
digraph from the Hasse diagram are simple: (1) make all edges directionally
upward, (2) add self-referent loops to every vertex, and (3) add upward edges
for every pair of connected vertices if they are missing. To go the other way,
reverse these rules.

Any path in a digraph of a poset delineates a sequence based on the rela-
tion R. We call such a path a chain. All elements of a chain are comparable,
which makes the elements in a chain a totally ordered set. Thus, to generate
a set of sequences that follow a partial order relation R, we search for totally
ordered subsets of a partially ordered set based on R. Figure 16.14 shows an
example of the longest nonrepetitive sequences that are contained in a three-
element set partially ordered by the subset ( ) relation. We can trace these
chains in the poset by starting at the bottom of the Hasse diagram and follow-
ing all paths to the top. Note that there is an infinite number of additional se-
quences that follow R. They are all possible subsequences of the ones in
Figure 16.14, including infinite repetitions of any vertex. 

Figure 16.14 Sequences generated by the subset relation

Now suppose that a relation R is irreflexive (i.e., x R x is undefined) and
transitive and antisymmetric. Such a relation (which we call a quasi order
relation) induces a sequence that has no repetitions. For example, x < y < z
implies the sequence . From this definition, we can see that a quasi
order is a restriction of a partial order. It eliminates the loops from the corre-
sponding digraph.

We have introduced order relations that generate sequences. Given a se-
quence, is it possible to deduce an order relation? Not generally. But usually
we can rule out some relations and we can identify candidate relations that are
not inconsistent with the observed sequences. In any case, it helps to have long
sequences to make these inferences less speculative. We will now examine a
few algorithms for analyzing observed sequences.
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16.4.1 Identifying Numeric Sequences

Identifying a numeric sequence is a nontrivial exercise. The subject is vast, so
we will restrict ourselves to sequences of integers (Sloane and Plouffe, 1995).
That narrows the range to many thousands of regular sequences and a huge
amount of associated mathematics. To narrow further, we will focus on a few
integer sequences involved in computing and graphics.

Suppose we are given the integer sequence .
How do we provide the next integer in the sequence? If we know this sequence
represents the number of graphs with n nodes, for example, we can enumerate
to determine the answer (the numbers in this case get large very quickly, how-
ever). If we do not know what it represents, we can apply a number of heuristic
strategies. In the end, we will identify a sequence by finding either (1) an im-
plicit recursive algorithm or (2) an explicit generating function. 

16.4.1.1  Recursions

An implicit recursive algorithm expresses an element in a sequence as a
function of prior elements  (where p > 0) in the sequence. We may some-
times identify implicit recursive sequence algorithms by induction. We look
for (1) a recurrence relation and (2) an initial condition that both fit the
numbers in the sequence. Recurrence relations take several forms. 

A linear recurrence relation has the form

• If , we call the relation homogeneous.

• If , we say the relation has constant
coefficients.

• If , we say the relation is first order. If , we say
the relation is second order, and so on.

• If we have a second–order linear homogeneous recurrence
relation with constant coefficients and initial condition

, we have the famous Fibonacci sequence

.
• If , , and , we have a simple arithmetic

sequence, such as . If , the
sequence decreases. If , the sequence increases.

• If  , , and , we have a simple geometric
sequence, such as . If , the
sequence decreases. If , the sequence increases.
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A nonlinear recurrence relation has a nonlinear form, such as

We saw this type of recurrence relation used in Chapter 13. We will not
explore it further here.

16.4.1.2  Generating Functions

An explicit generating function expresses an element in a sequence as a
function of n. Explicit generating functions for a given sequence are often hard
to find and sometimes nonexistent. Wilf (1994) presents ingenious methods
for guiding this search. A few standard methods follow.

If a sequence is based on a second–order linear homogeneous recurrence
relation with distinct characteristic roots, then we can construct an explicit for-
mula from the roots. The Fibonacci sequence, for example, has the generating
function

based on the roots 

 and 

The positive root is called the golden number ( ). The golden rectangle has
 for its aspect ratio. Conway and Guy (1996) and Koshy (2001) give many

fascinating contexts in which this number appears. There is a huge amount of
lore concerning  in nature, especially on the Internet. Much of the latter is
nonsense. Many popular examples in biology (seashells, plant growth), art
(Classical, Renaissance), psychology (form and music perception), and fi-
nance (Fibonacci calculators) are only approximately true and sometimes
plainly false. They are most subjective when they involve numerological or
theological application of mathematics to physical phenomena. The golden
rectangle has been suggested by some as the ideal reference frame for charts,
for example. There is little psychological evidence (and less theory) to support
this idea. In fact, the experimental evidence points elsewhere (Cleveland et al.,
1988).

If a sequence is based on a polynomial function, then we can use finite dif-
ferences to derive the polynomial equation. The finite backward difference of
a numerical sequence is of the form . The finite forward dif-
ference is of the form . If the polynomial generating function
has degree p, then p successive forward differences of the sequence will result
in a constant series. This result stems from the fact that the finite difference is
the discrete analog of the derivative. We can get coefficients by a small amount
of additional work.
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Finite differences can tell us something even if a sequence is not polyno-
mial. Differencing the Fibonacci sequence, for example, yields a Fibonacci se-
quence (shifted by one). Why? We can work out an answer in terms of the
recurrence formula, but let’s look at the generating function. Note that for
large n, the second term in the Fibonacci generating function approaches zero,
so we have . (This works even for small n if we round the func-
tion to an integer.) Thus, our differencing the Fibonacci sequence is compara-
ble to differentiating an exponential function. Finding a derivative equal or
proportional to the function itself points to an exponential form.

 If all else fails, Neil Sloane maintains an online database of more than
80,000 sequences. You can type in a sequence and the database yields known
generating functions. 

16.4.1.3  Graphing Algorithm Performance

The link between simple recurrence relations and generating functions under-
lies an important application: the analysis of algorithms. Generating functions
allow us to make global assessments of algorithm performance. If we can
break down an algorithm into a simple set of primitive operations that each
take one unit of time, and if we can specify the size of a problem as an integer
(n), then we can count the number of computation steps for given values of n
(sometimes in theory, sometimes by running a program) and construct an in-
teger sequence over n. If, for example, an algorithm requires visiting every leaf
of a complete binary tree whose depth is n, the number of visits is represent-
able by a geometric sequence with a multiplicative factor of 2. 

Figure 16.15 shows three different integer sequences and their associated
continuous functions. We have already encountered the Fibonacci sequence.
The powers-of-two sequence is . This
is a geometric sequence with a = 2. The perfect squares sequence (a nonlinear
recurrence) is . The right panel contains
the continuous versions of their generating functions. If the range of these
functions is time, then over the long run, some do better than others.

Figure 16.15  Integer sequences and their associated continuous functions
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Figure 16.16 shows some of the most common time complexity functions
encountered in algorithms. Clearly, we should prefer those functions at the
cooler (blue) end of the scale. Some programmers wonder, however, why al-
gorithm designers don’t care a lot about the specific values of parameters as-
sociated with these classes of functions and focus instead on worst-case
performance. In other words, why do algorithm designers use an order-of-
magnitude function instead of a complexity function based on, say, average
performance? First, a definition:

If f(n) and g(n) are functions of n, then we say that f is O(g)
if kg(n) is an upper bound on f(n) for sufficiently large n.

We say “sufficiently large” because we don’t care about small n. The O(.)
function gives us a bound on the worst performance of an algorithm. Suppose,
for example, we plotted the function f(n) = n9 instead of f(n) = n2 (the green
curve). In the frame for Figure 16.16, that would place the curve to the left of
the factorial function f(n) = n! (seemingly worse performance). Nevertheless,
the factorial crosses f(n) = n9 at n = 14. In other words, there is a big payoff
for jumping to a different O(.) class of algorithm and little payoff for fine-tun-
ing within a class. If a computational unit required 1 nanosecond, for example,
then 30! = 8.4 x 1015 years. As Illinois Senator Everett Dirksen once said, “A
billion here. A billion there. Pretty soon we're talking real money.” 

Figure 16.16 Complexity functions

Can we look at code and get some idea of its time complexity? Eick et al.
(1992) developed a system for viewing large software code files called See-
Soft. This simple but ingenious idea involved reducing the font size enough to
represent thousands of lines of code on a computer screen. Lensing tools allow
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zooming to view specific sections of code. By looking for deeply nested loops,
one can identify segments of the code with polynomial execution time.

Code profilers automate this process by recording execution time and dis-
playing bar charts of time for different segments of a running program. Soft-
ware developers use these routinely to optimize code. Algorithm animation
can also reveal interesting patterns in executing programs.

Figure 16.17 shows a different approach. Instead of displaying code itself
or histograms of execution time, we assume a constant-time operation and rep-
resent each operation with a bar. The bars for nested operations have half the
height of their parent. Recursions raise the level of the bars altogether. We
have chosen n = 3 for this example. The linear time algorithm executes 3 op-
erations. The quadratic time algorithm executes 9. The cubic, 27. The factorial
time algorithm has six recursions (3!) of the triply nested operation. Finally,
we show the execution profile of a Cholesky decomposition of a size 3 sym-
metric matrix, which has an order of magnitude of n3. This graph is somewhat
like a horizontal bar graph. We can measure performance by the length of the
“bars” and get an idea of computational profiles by their shape. Deep recur-
sions will severely skew the bars, a sign that we might encounter stack over-
flows when running our program. 

Figure 16.17  Complexity graphs

16.4.2 Finding Sequences in Strings

In many applications of sequence analysis, objects are represented by tokens
and sequences are represented by strings of tokens. In biosequencing, for ex-
ample, the letters A, C, T, G are used to represent the four bases in a DNA
strand. Suppose we are given a length n string of tokens and want to find the
most frequently occurring substrings of length m in the string (m << n). A sim-
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ple (not especially fast) algorithm to do this involves generating candidate sub-
strings and testing them against the target string. We begin with strings of
length 1, each comprised of a different token. Then we build candidate subse-
quences of length 2. We count the frequency of each of these subsequences in
the target string. Using any of these length 2 subsequences with a count greater
than zero, we build candidate subsequences of length 3. We continue the gen-
erate-and-test process until we have tested the candidates of length m or until
all counts are zero. This stepwise procedure traverses a subset of the branches
of the tree of all possible subsequences so we do not have as many tests to per-
form.

 Embedding a sequence analysis in a graph layout often gives us a simple
way to visualize these subsequences. The layout may be based on known co-
ordinates (as in geographic problems) or on an empirical layout using adjacen-
cy in the sequence list as edge information. Figure 16.18 shows sequences
computed this way, superimposed on the animal names graph in Figure 16.7.
We have included all sequences of length three or greater that were found in
at least two persons’ lists. Because the task allowed no repetitions (we sup-
posed a quasi order), we did not have as large a set of candidate sequences to
generate.

Notice that dog and cat have the same number of input and output edges
between them, so neither appears to dominate the other (thinking of a dog ap-
parently leads to thinking of a cat as much as the reverse). Other nodes, such
as elephant, appear to be more a source than sink among this subset of popular
animals. And nodes such as zebra are sinks. Of the 18 mentions of zebra in the
lists, only two involved the first occurrence of a zoo animal. 

Figure 16.18  Sequences of recalled animal names
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When repetitions are allowed, we have a larger set of candidates to test.
Figure 16.19 shows a musical example. Our data come from the scores for the
six Gregorian chant settings of the creed found in the Liber Usualis (1953).
We transcribed the notes in the scores into six extended sequences of the let-
ters A through G (we did not differentiate octaves). We restricted our search
to sequences found in at least four of the chants. 

Instead of annotating a graph with sequences, we decided to present the
results in musical notation. Chant is written in neumes, which are notes sung
on a single syllable of the text. The single staff consists of only four lines, in-
stead of the five used in modern musical notation. The Do clef ( ) marks
where Do or C is on the staff. The notation, of course, can be produced in the
grammar by using points with musical note shapes in a time series frame rep-
resented by five grid lines and a scale anchored at the clef. 

If you sing or play these notes you will immediately recognize the Grego-
rian tonalities. Chant has had a renaissance (sorry) among busy, secular
moderns. Its original upward gaze has been turned inward by many, from wor-
ship toward meditation. The next step in this sequence will be for someone to
market these clips as “Chant-lite for busy people on the go.” 

Figure 16.19  All sequences of six or more notes occurring in at least four of 
the Gregorian chants for the Credo (I – VI) (Liber Usualis, 1953)

For further reading on sequencing, especially in bioinformatics, see Gus-
field (1997). Agrawal and Srikant (1995) developed a general sequencing al-
gorithm for market basket analysis. Wong et al. (2002) developed a
visualization tool for Agrawal’s algorithm.
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16.4.3 Comparing Sequences

Suppose we have two sequences of characters or objects and we wish to com-
pare them. If the sequences are of length n, we can construct an n by n table of
zeros and place a 1 in a diagonal cell if the value in each sequence at the cor-
responding position is the same. We would have an identity matrix if both se-
quences were identical.

 With real data, however, we are more likely to encounter matching runs
of subsequences that occur in different locations in each sequence. Moreover,
we often encounter missing or ignorable values in subsections of sequences,
especially in sequences of DNA base letters. In these cases, our table is more
likely to look like the one in Figure 16.20, adapted from Altschul et al. (2001).
This graph reveals matching subsequences beginning at the positions indicat-
ed by the circles at the top left of the red paths. For multiple strings, we could
construct a casement plot of pairs of strings.

The plot in Figure 16.20 bears a close resemblance to the recurrence plot
shown in Figure 14.14. In fact, the plots are equivalent. Can you see why?
There are differences, of course. In Figure 14.14, the orientation runs from
southwest to northeast, while here the orientation runs from northwest to
southeast. And in Figure 14.14, the cell values are computed by a real–valued
distance function, while here they are computed by a binary–valued indicator
function. Nevertheless, both have the same lag structure. To assess overall
strength of agreement in either type of plot, we should look for the number,
length, and regularity of similar diagonal paths. 

Since a sequence is mathematically equivalent to a time series, it should
not be surprising to find similar plots based on similar models arising in dif-
ferent literatures. Models are the mothers of invention.

Figure 16.20  Comparing two sequences (courtesy of Steven Altschul)
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16.4.4 Critical Paths

Suppose we have a directed acyclic graph (DAG) where the vertices represent
tasks and an edge (u, v) implies that task u must be completed before task v.
How do we schedule tasks to minimize overall time to completion? This job
scheduling problem has many variants. One customary variant is to weight the
edges by the time it takes to complete tasks. We will mention two aspects of
the problem that involve graphing. 

First, how do we layout a graph of the project? We use the layout for a di-
rected graph described in Section 16.3.3 above and flip the graph to a horizon-
tal orientation. The result of our efforts is called a CPM (critical path method)
graph. We have added a constraint to our layout by forcing the critical path to
be linear in the layout. Di Battista et al. (1999) discuss how to do this.

Second, how do we identify and color the critical path? Identifying the
critical path is easy if the edges are not weighted. We simply do a breadth-first
search of the DAG and keep a running tally of the path length. Finding the
shortest path through a weighted graph requires dynamic programming. Skie-
na (1998) discusses standard methods.

Figure 16.21 shows an example of a CPM layout for a simple visualiza-
tion software project. Each task is represented by a rectangle. The lengths of
the edges are often made proportional to the weights (months to complete the
tasks in this case). We have chosen instead to keep a sum (left to right) of the
weights inside the rectangles. Each number in the rectangle is the sum of the
largest sum from a precedent node plus the corresponding input edge weight.
Can you derive the edge weights from these numbers?

The source node for the project is the decision to commit to the project.
We have given this a weight of zero, although some huge software companies
seem to spend more time on this decision than on doing the project itself. The
design tasks (Model, View, UI) are prerequisites to coding, although some
software companies have been known to do design (including the SOR, or
statement of requirements) after the code is written. Web tools and templates
are prerequisites to beta testing, although some companies seem to shorten the
beta test period to a duration of zero. Finally, promotion and marketing mate-
rials and documentation tasks are prerequisites to shipping the product, except
in those instances where software companies can get users to pay for beta
product.

The critical path represents tasks that cannot slip without affecting the
ship deadline. Thus, identifying the critical path (which we have colored in
red) is a matter of accumulating edge weights at each node and identifying the
precursor with the maximum cumulative weight. Despite our levity, we recog-
nize the value in a CPM analysis because the critical path highlights the de-
pendencies within a project. Long critical paths (like the one in Figure 16.21)
reflect a poorly designed project. By reducing dependencies, we reduce risk
of delay. 
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We reduce dependencies in a software project by modularizing and short-
ening tasks. The Extreme Programming methodology (Beck, 2000) is one
approach to this problem. XP, as it is called, places coding at the center of
project development. (Notice how code is the backbone of the critical path in
our example?) By paying close attention to client needs, carving goals into
small pieces, focusing on “the simplest thing that could possibly work” for a
given goal, and testing while the code is being written, XP attempts to elimi-
nate the bottlenecks that paralyze large projects.

Figure 16.21 CPM graph

Graph layouts of large projects can become messy. Even without edge
crossings, a large CPM graph can be difficult to interpret. Figure 16.22 shows
an alternative called a Gantt chart. The horizontal axis measures time. The
length of a bar represents the duration of a task. The vertical axis separates the
tasks. The coloring categorizes tasks.

The original form of the chart (Gantt, 1903) did not have the benefit of the
graph theory behind CPM, but modern incarnations have blended the bars of
the Gantt chart with the information on the critical path. Most computer
project management packages compute the critical path with graph-theoretic
algorithms and display the results in some variety of the Gantt chart.

We have colored the critical path elements red in Figure 16.22 and placed
a bar delineating the length of the entire project at the top of the frame. The
remaining non-critical tasks are colored purple. Because of the coloring, there
is less need to place the critical path tasks adjacent to each other. The group-
ings can be organized by length, teams, task type, or other variables.
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Figure 16.22 Gantt chart

16.5 Pattern Analysis
Pattern analysis frequently refers to the search for patterns and structures in
pictures and bitmaps. This section goes one step further. Suppose we scramble
the pixels in a bitmap. Can we unscramble them to find patterns? More specif-
ically, this section deals with a specific kind of display called a heatmap. This
display is not new. Sneath (1957) suggested ordering the rows/columns of a
similarity matrix via hierarchical clustering and shading the values according
to similarity. Bertin (1967) used light and dark values to highlight a Guttman
scale pattern in data matrices. Ling (1973) used shading to highlight numeric
structure in correlation and data matrices. BMDP and SYSTAT have included
heatmap matrix displays in their clustering modules since the early 1980s.
Gower and Digby (1981) present a variety of permuted matrix displays.

16.5.1 Matrix Permutation

Suppose we have a data matrix

whose rows and columns we wish to permute. To do this, we define row and
column permutation matrices, e.g.,
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and apply the product

Note that P is composable:

so we may perform the permutation as a sequence of transformations.
To permute data matrices, we require some objective function for deter-

mining the row and column permutation matrices. A general requirement
might be to permute so that similar values in the data matrix are near each oth-
er and there are as few regions of similar values as possible. Unfortunately, this
requirement is so general that we would have an NP-hard problem achieving
it. We would have to examine every possible permutation and look for the PR
and PC that produce the best result. Consequently, most approaches to this
problem have involved separately permuting rows and columns using cluster
analysis, singular value decomposition, multidimensional scaling, or some
other multivariate analytic method. In the following sections we will generate
some canonical data patterns and examine the performance of a variety of
methods for permuting the generated data.

16.5.2 Canonical Data Patterns

The top of Figure 16.23 shows heatmaps of five different covariance matrices.
Below these are heatmaps of the datasets that produced them. Because we
scaled the columns of the datasets to have zero mean and unit standard devia-
tion, the covariance matrices are simple quadratic forms, namely, 

where X is the data matrix and S the covariance matrix. Because of
this scaling, the covariance matrices are equivalent to correlation matrices,
with 1’s on the diagonal and entries between –1 and 1 elsewhere. We used a
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bipolar color scale (red for negative, black for zero, green for positive) to rep-
resent the correlations. We chose a perceptually linearized monopolar color
scale from Levkowitz (1997) to represent the data values in the lower matrices.

Figure 16.23  Data structures (simplex, band, circumplex, equi, block)

We call these data patterns canonical not because they are exhaustive or
strictly typical of real datasets. Instead, they represent different multivariate
distributions of data that form a basis for generating a variety of interesting
patterns presumably discoverable by heatmaps. More complex patterns can be
generated from the product of these patterns. We will cite examples of real
data for each of these patterns in the sections below.

Most of these patterns differ from the one presumed in simple statistical
models: n independent and identically distributed (i.i.d.) cases sampled from
a p-variate distribution. As such, they comprise a good set for testing the ef-
fectiveness of various permutation schemes where there is a structure on both
rows and columns. They extend the universe of permutation problems in other
ways as well. Because most matrix permutation programs use some form of
cluster analysis, we are accustomed to view this as a method to be applied
when data are segmented or clustered. Our analysis does not make that as-
sumption.

Simplex Band Circumplex Equi Block
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16.5.2.1  Simplex

The data values in the first dataset (Simplex) were generated from the follow-
ing formula (ignoring rescaling the columns to unit standard deviations):

,

where 

,

,

, and

.

The positive, nonzero parameter b determines the slope of the logistic function
generated by the exponentials, and thus the sharpness of the boundary between
the blue and pink regions. The random error uij is based on a weighted stan-
dard normal random variable Z:

where

The parameter k determines the relative amount of random error overall in the
data. This dataset is named after the term coined by Louis Guttman (Guttman,
1954). If b is near zero and k is zero, we have the data structure Guttman called
simplex, As Guttman noted for simplex-type data structures, the correlations
are all positive; correlations between near columns are high and the correla-
tions between distant columns are low. Guttman’s simplex correlation pattern
is a specific case of a Toeplitz matrix, which is a square matrix in which all
the elements are the same along any diagonal that slopes from northwest to
southeast.

The simplex correlation structure is produced by a number of data models
and arises in numerous applications. If the columns of X can be assumed to
consist of measurements ordered in time, for example, then a first-order au-
toregressive model based on the indices of these columns produces a Markov
process whose correlation matrix has a simplex structure (Morrison, 1976). In
social measurements, the latent structure model (Lazarsfeld and Henry,
1968) and ordered multinomial model (Goodman, 1978) involve a simplex
correlation structure. In educational measurement, the latent trait model (Ra-
sch, 1960; Lord and Novick, 1968; Bock, 1975) is a generalization of the sim-
plex. In the latent trait model, the columns of X represent an item difficulty
dimension (one column per item) and the rows of X represent subjects (e.g.,
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students). Each row of data contains a set of item scores (usually binary) for a
given subject. The estimate of a subject’s ability is based on a logistic or nor-
mal cumulative distribution fit to the profile of test scores. In physics, Brown-
ian motion follows a Wiener stochastic process. A Wiener process is a
continuous-time stochastic process W(t) for , with W(0) = 0 and

 The differences are normally distributed and the
covariance matrix is a simplex. In archaeology, seriation problems are defined
in terms of a Robinson matrix (Robinson, 1951), which is a Toeplitz dissimi-
larity matrix.

16.5.2.2  Band

The data values in the second dataset (Band) were generated from the formula

,

where the parameters are defined similarly to the simplex model. Unlike the
simplex, correlations are both positive and negative; correlations between near
columns are positive and correlations between distant columns are negative.

The band correlation structure can be found in a variety of fields. Thurst-
one (1927) proposed a law of comparative judgment that involved a one-di-
mensional probabilistic, non-monotonic magnitude item scale. Coombs and
Avrunin (1977) presented a similar model for preferences. If the columns of X
index a set of ordered objects and the rows represent a set of subjects, then a
subject’s preference for a set of objects can be represented by a (usually single-
peaked, symmetric) probability density function centered on or near the most
preferred object. Coombs, Dawes, and Tversky (1970) describe several other
varieties of this model. In some physical systems (acoustics, optics), single-
peaked multivariate spectra exhibit a banded correlation structure when or-
dered along a common frequency dimension according to spectral sensitivity.
In information retrieval, citation patterns sometimes follow a band structure
(Packer, 1989). Related texts cite each other but unrelated texts do not. More
general citation and hyperlink data often involve a band structure.

16.5.2.3  Circumplex

The data values in the third dataset (Circumplex) were generated from the
same formula used for Band, except the variate has been circularized:
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This dataset is named after a term coined by Louis Guttman (1954) to describe
a circular correlation structure. In a circumplex correlation matrix, correla-
tions between near columns are positive and correlations between distant col-
umns are negative. As with Guttman’s simplex, the circumplex correlation
matrix follows a Toeplitz pattern. With the circumplex, however distance is
measured on the circumference of a circle. That is, the series  is
mapped to points on a circle between  and . 

The circumplex structure arises in a variety of contexts. In psychology, ex-
amples occur in personality, social psychology, and perception (Plutchik and
Conte, 1997). LaForge and Suczek (1955) found this structure in student’s rat-
ings of other’s personalties. The psychopharmic (pharmopsychic?) Timothy
Leary popularized a variant of this scale as the Leary Interpersonal Circle
(Leary, 1957). Other psychological phenomena have been found to be best fit
by a circumplex model: emotions (Ekman and Friesen, 1978; Benjamin, 1979;
Russell, 1980), interpersonal traits (Schaefer, 1959; Wiggins, 1979, 1982,
1996), color perception (Ekman, 1954), and pitch perception (Shepard, 1964).
Browne (1977, 1992) and Shepard (1978) describe other circumplex models
in psychology. In time and spatial models, the circular serial correlation co-
efficient measures circular dependence. Olkin and Press (1969) discuss a cir-
cular moving average model.

16.5.2.4  Equi-correlation

The data values in the fourth dataset (Equi) were generated from the formula

where 

and uij is sampled from a standard normal random variable. The correlations
in this dataset are relatively large and positive ( ).

The equi-correlation pattern is found in single-factor datasets. That is,
data depending on a single factor have an equi-correlation matrix. Single-fac-
tor datasets occur when there are multiple measurements of a single trait, all
with common reliability. Perhaps the most famous single-factor model is the
general intelligence factor called g, originally proposed by Spearman (1904).
Spearman analyzed tests involving cognitive abilities and found that all the
correlations among these tests were positive. Spearman mistakenly concluded
that this positive manifold of correlations was evidence of a single underlying
intelligence factor. It was a mistaken conclusion because there are ways to
generate equi-correlations other than a single factor. Even intercorrelations
above .9 do not prove that a set of variates measure (or are caused by) the same
thing.
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16.5.2.5  Block

Finally, the data values in the fifth dataset (Block) were generated by comput-
ing the row-wise k-bit pattern

for blocks of size  by  and adding error. In this example, k = 2. For
k = 3, we would use the bit pattern 

The resulting dataset is a set of points near the vertices of a p-dimensional hy-
percube. Of these vertices,  have few points near them.

The ordering of the blocks and the ordering of the rows/columns within
blocks is arbitrary. Instead of generating the sorted binary sequence given
above, we could use another ordering called the Gray bits sequence, for ex-
ample. A Gray bits sequence is an ordering of 2n binary numbers such that
only one bit changes from one entry to the next. A Gray ordering for n = 3 is 

These sequences are useful in encoding because they minimize bit chang-
es across tokens, improving the reliability of a physical encoder. They were
used by the French engineer Émile Baudot (from whose name we get the com-
puter modem unit baud) in 1878 and were patented for use in telecommunica-
tions by Frank Gray, a Bell Labs researcher, in 1953.

The block data pattern corresponds to a block-diagonal covariance matrix.
Correlations between blocks are near zero (although if some row patterns are
missing, these correlations will be larger). And correlations within blocks are
near one. Block patterns are common in real data. Experimental designs are an
obvious example. The multimethod-multitrait matrix defined by Campbell
and Fiske (1959) is another. Its high-correlation blocks consist of multiple
measurements of a single trait and its low-correlation blocks consist of mea-
surements of different traits. The Thurstone (1945) simple structure pattern
for describing a simple multiple factor solution is another. From a clustering
perspective, we expect to see a block pattern when clusters are convex and dis-
tributed on the vertices of a simplex. Some structures in microarray studies in
biology appear to be block patterns (Liu et al., 2003).
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16.5.3 Permuting Randomly

We begin our analysis by scrambling the data. Figure 16.24 shows our five
datasets with rows and columns randomly permuted. Only the Simplex and
Equi data matrices appear to have a systematic pattern under this random per-
mutation. While they look similar in the raw data matrix, the scrambled cova-
riance matrix shows them to be different. 

Figure 16.24 Randomized data structures

The visual similarity between the Simplex and Equi data matrices is not
surprising. Researchers have long been concerned that Guttman scaling pro-
grams that permute data to a simplex structure are surprisingly effective on
single-factor data. An algorithm tailored to shuffling rows and columns to a
simplex structure will push dark rows to the bottom and light columns to the
right. We see the other side of the coin in the random shuffling of these two
matrices. Dark and light rows are interspersed randomly in both matrices. Be-
cause of the column permutations, the half-dark/half-light rows in the Simplex
dataset are hidden in the interstices.

Simplex Band Circumplex Equi Block
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16.5.4 Permuting Systematically

We now ask whether there exists an algorithm for permuting the rows and col-
umns of the randomized matrices so as to restore the structures shown in Fig-
ure 16.23? Many have investigated this topic in many different fields.

If we define the problem as seeking a row/column permutation that un-
covers (possibly non-convex) clusters of similar values in the data matrix
when they exist, as well as continuous fields or flows (such as simplex) when
they exist, then the problem becomes NP hard. To evaluate the relative good-
ness of a solution, we would have to compare it to another solution, and to ver-
ify that a solution is global, we would have to compare it to every other
possible solution. And since the total number of permutations grows factorial-
ly with matrix size, the solution time would be worse than polynomial.

Consequently, researchers have tended to focus on multivariate statistical
methods designed to recover specific multivariate structures. They usually
have applied these methods to XX’ and to X’X separately, although some have
devised algorithms to work on rows and columns jointly. Many of these meth-
ods have been rediscovered and given peculiar names, particularly in different
fields. In this research summary, we cite earlier sources rather than some of
the recent incarnations and rediscoveries.

 Stouffer et al. (1950), Bertin (1967) and others seriated matrices by hand-
sorting to a Guttman simplex structure. When computer card sorters became
generally available in the 1960’s, many researchers used them to sort data card
decks to a Guttman scale pattern. Wilkinson (1979) developed an efficient
computing method for doing this particular seriation on large matrices.

Hartigan (1972) applied cluster analysis to the matrix permutation prob-
lem. He devised a procedure that clustered rows and columns jointly. His al-
gorithm was implemented in the Block Clustering routine of the BMDP
statistical package. Slagel et al. (1975), Defays (1978), and many others used
row/column clustering to permute a matrix.

McQuitty (1968) observed the convergence (to a binary matrix) of the se-
quence R(1), R(2), . . ., R(n), where R(i) is the correlation matrix of R(i-1).
Breiger, Boorman and Arabie (1975) applied this method to seriation. 

Others have placed matrix permutation in a class of graph-theoretic sort-
ing problems, and have used dynamic programming methods to attack them
(McCormick et al., 1972; Lenstra,1974; Hubert, 1974a, b, 1976; Hubert and
Golledge, 1981). Matrix reordering has relevance to many graph partitioning
and sparse matrix problems, but this application is less relevant to our situa-
tion, since we expect to encounter more general patterns.

Many have recommended principal components (PC), singular value de-
composition (SVD), correspondence analysis (CA), and multidimensional
scaling (MDS) for the matrix permutation problem. Computationally, PC (on
XX’ and X’X), SVD, and CA are all based on the same matrix decomposition,
so they are equivalent (apart from minor rescaling issues). We will have more
to say about these methods later.
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Finally, Wilkinson (2004) and Niermann (2005) explored pixel–based
methods for permuting. These methods attempt to minimize a local measure
of entropy, roughness, or stress computed over all the pixels of the matrix, Be-
cause the problem is NP hard, Wilkinson proposed simulated annealing and
Niermann proposed genetic algorithms as heuristic solutions.

16.5.4.1  Permuting by Cluster Analysis

Perhaps the simplest and most popular permutation method is to apply hierar-
chical clustering separately to rows and columns. For permuting the columns,
we use the Euclidean distance matrix of the columns and for permuting the
rows, we use the Euclidean distance matrix of the rows. If the data are stan-
dardized, as in our example, then the column Euclidean distances and correla-
tions are a simple function of each other, through the formula .

To produce Figure 16.25, we computed a hierarchical clustering using av-
erage linkage to seriate our data. Average linkage assumes the distance be-
tween two clusters is equivalent to the average of all the distances between
members of one cluster and members of the other. Average linkage is a mid-
dle-ground between two extremes (single and complete linkage). Over all i in
cluster A and j in cluster B, we define

single linkage: 

average linkage: 

complete linkage: 

Complete linkage and single linkage are at the extremes of a continuum that
includes most other hierarchical methods (Mirkin, 1996). Complete linkage
tends to produce spherical clusters and single linkage tends to produce snaky
clusters.

Although hierarchical clustering is a popular method for permuting data
in heatmaps, it is not sufficient for producing a seriation of the sort we are
seeking. Because a rooted tree is invariant under transposition of its branches,
we must find an ordering of the leaves that is unique and desirable for our ap-
plication. Consequently, we follow a method in Gruvaeus and Wainer (1972)
for producing a unique ordering of a binary hierarchical clustering tree (as-
suming no tied distances). After each join step, we compare all four possible
edge permutations of leaves as follows.

dij � rij–=

dAB min dij� �=

dAB avg dij� �=

dAB max dij� �=

A DCB B DCAA CDB B CDA

closest
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We pick the permutation that has the closest data distance between the two
middle leaves. For example, if , we pick the ABDC
ordering for this join step, as shown in this figure. This is the default method
for displaying hierarchical clustering trees in SYSTAT. Figure 16.25 shows the
result. Hierarchical clustering rearranges Simplex and Band into blocks, al-
though they are ordered sufficiently to reveal the diagonal and banded struc-
tures. The Circumplex and Equi-correlation data are rearranged quite well.
Clustering uncovers the blocks in the Block dataset, but the rows are not sorted
to the original pattern. Notice that the bottom block of values in the original
matrix is split in two, a consequence of the local behavior of most clustering
algorithms.

Figure 16.25  Matrices permuted by average-linkage clustering

16.5.4.2  Permuting by Eigen Decomposition

Figure 16.26 shows the SVD permutation of our datasets. SVD does well on
Simplex, Band, and Equi. It degenerates the middle of Circumplex, however,
because it cannot find the circular dimension. We will discuss this further be-
low. The Block pattern is clear in the columns, but the rows are less distinct.

The Simplex, Band, Circumplex, and Equi datasets have intrinsic dimen-
sionality of 1. That is, the deterministic component of each depends on a sin-
gle parameter (i, or the row index). Thus, we should expect that any effective
permutation method for these matrices should identify this unidimensionality.
If we evaluate SVD on this criterion, it fails. Let’s examine this further.

dBD dBC dAC dAD� � �

Simplex Band Circumplex Equi  Block
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Figure 16.26 Matrices permuted by singular value decomposition (SVD)

Figure 16.27 shows the first two principal components, colored by the
original column indices. Simplex and Band are forced into two dimensions be-
cause the model computes similarity on the basis of cosines between pairs of
vectors. Since the vectors are constrained to have unit length, the projection
requires two dimensions. The circumplex is recovered in the first two compo-
nents. Unfortunately, we cannot detect its unidimensionality unless we convert
to polar coordinates, and we cannot know that in advance. Finally, SVD recov-
ers the single factor underlying Equi and the two factors in Block.  

Figure 16.27  Two-dimensional factor solutions

Simplex Band Circumplex Equi  Block

Simplex Band Circumplex Equi Block
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16.5.4.3  Permuting by Multidimensional Scaling

Because it works well in recovering nonlinear data structures, iterative non-
metric MDS has been suggested as a seriation alternative. Figure 16.28 shows
the solution for our datasets. MDS performs similarly to SVD.

Figure 16.28  Matrices permuted by multidimensional scaling (MDS)

 Figure 16.29 shows two-dimensional MDS solutions for the columns of
our datasets. For the SVD model, correlations are mapped to cosines between
vectors. For the MDS model, we work with Euclidean distances, so we do not
draw vectors. The Simplex result appears surprising. Euclidean distances from
a perfect simplex maps to a real number line, so why do we have a horseshoe
in two dimensions? Kendall (1971) discussed this artifact. When the distances
are measured with error, large distances tend to pull the ends together in MDS
solutions. See Section 9.4.1 for an example of this phenomenon with real data.
A similar artifact occurs for Band. This, too, appears surprising. However,
Wilkinson and Ramanathan (1976) proved that logistic variates scaled in two
dimensions fall within a football-shaped envelope. They also proved that the
stress of the solution is a function of the slope of the logistic curves, not the
number of points. Thus, tabled distributions of MDS stress values (e.g., Spen-
ce and Graef, 1974) cannot be used for testing unidimensionality in this case.

Simplex Band Circumplex Equi  Block
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Figure 16.29  Two–dimensional MDS solutions

16.5.4.4  Permuting by Graph-Theoretic Dimension Reduction

There are several other nonlinear dimension reduction methods that can be
adapted to the matrix permutation problem. Locality Preserving Projection
(LPP) is a locally linear method for finding low–dimensional manifolds em-
bedded in high–dimensional space (He and Niyogi, 2002). It is similar to met-
ric MDS, but decomposes distances on the k-nearest–neighbor graph of a set
of points rather than distances on the complete graph of all possible pairwise
relations. Figure 16.30 shows an LPP solution for our data. The results are re-
markably similar to MDS and SVD, although this similarity is due to the spe-
cific manifolds we are working with rather than the algorithms themselves. 

Figure 16.30 Matrices permuted by locality preserving projection (LPP)

Simplex Band Circumplex Equi Block

Simplex Band Circumplex Equi  Block
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16.5.4.5  Permuting by Minimizing Entropy

If we view a heatmap as an image whose pixel values are the row–column en-
tries of a matrix, then it makes sense to permute by maximizing the size of lo-
cal regions whose pixel values are relatively constant. Suitable measures of
this state can be developed from information theory. For example, we de-
scribed the resolution of an image in terms of Shannon’s entropy measure in
Section 10.5.5. A well–permuted image can be thought of as one requiring a
minimum number of bits to encode it (compared to other permutations). In
other words, a well–permuted image is more compressible.

A number of loss functions are related to entropy. Niermann (2005) pro-
posed a variance measure for the neighborhood of pixel xij

where n is an integer (usually 2) governing the size of the neighborhood.
Wilkinson (2004) proposed a residual variance measure

where  is the smoothed value derived from averaging the neighboring pixel
values.

Each of these measures is summed over all pixels. Minimizing these mea-
sures over all possible combinations of row–column permutations is expen-
sive. Wilkinson proposed simulated annealing as a heuristic approach. Each
annealing step consisted of an exchange of two rows or two columns. Nier-
mann proposed a genetic evolutionary algorithm. Niermann’s crossover (mat-
ing) stage consisted of exchanging column (or row) permutations between two
parents. His mutation stage consisted of reversing the order of randomly se-
lected subsequences of row and column indices. His tournament stage con-
sisted of comparing stress values for randomly selected pairs of offspring.

We programmed both approaches and were disappointed to find that they
did not work well on our datasets. There were several problems. First, these
algorithms converge too slowly to be useful on larger datasets. Second, they
are sensitive to parameter settings (annealing constants, evolutionary popula-
tion sizes, mutation probabilities, etc.). These settings need to differ depend-
ing on the structure and size of datasets. Third, they did not overcome the
difficulties we have seen elsewhere with the Circumplex and Block datasets. 

Our hope was to permute initially with SVD and then use a pixel–based
method to refine the solution. We saw improvements in the badness–of–fit
measure, but not large enough improvements to make a visible difference.
Consequently, we do not show results for these methods. For smaller datasets,
as in Niermann’s paper, they may be useful, although it remains to be seen
how much of an improvement over SVD they make in general.

S xij xkl–� �
�

l j– n�

A
k i– n�

A=

R x̂ij xkl–� �
�

l j– n�

A
k i– n�

A=

x̂
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16.5.5 Summary

Figure 16.31 summarizes our results. We generated 20 samples of these five
matrices and permuted them with the four methods. For each permutation, we
computed a Spearman correlation between the known row indices and the per-
muted indices. We did the same for columns. Figure 16.31 shows the average
correlations and their standard errors from the simulation. 

Figure 16.31  Performance of sorting methods

We see a number of patterns in these results. Circumplex is difficult to fit
because it needs to be cut and unwound. To do this, we would have to know
we have a closed circle. The Equi column order is random, so no method can
be of any use. LPP does poorly with Block because points do not lie on a man-
ifold in that configuration. In general, SVD and MDS do best on these pat-
terns, although clustering might do better on some other structures.

We draw several conclusions from this analysis.

1)  Unordered heatmaps of raw data or covariance/correlation matrices are
a fairly useless form of graphic display. The information in heatmaps
is limited to the spatial distribution of the color map. If rows and col-
umns are not ordered so as to make that distribution coherent, there is
little useful information available. Displays such as SPLOMs and par-
allel coordinate plots have a similar ordering problem, but they contain
other information (e.g., marginal distributions of the variates) that can
be useful even when the ordering is not optimal.
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2)  Ordered heatmaps of data matrices are most effective when a unique
ordering (based on time, space, or another variable) is known a priori.

3)  There are no methods we know of that can recover the generated pat-
tern in all five of these datasets. Of the methods we tested, SVD and
MDS worked the best. Liu et al. (2003) present a robust SVD method
that improves solutions for data contaminated by outliers and contain-
ing missing values. We see no advantage to using cluster analysis for
seriation or matrix permutation unless the point of the display is to
document a cluster analysis already used for other reasons. 

4)  In general, we believe these findings apply to most multivariate dis-
plays, including scatterplot matrices (SPLOMs), parallel coordinates
displays, Fourier curves, and glyphs. Without a meaningful ordering,
these multivariate displays are difficult to interpret. We recommend
that statistical graphics software automatically seriate these displays
unless the user selects a pre-determined ordering. 

5)  Other patterns can be constructed as the product of these patterns.
Olkin (1973) discusses a product of Circumplex and Equi. The radex
pattern of Guttman (1954) is a product of Simplex and Circumplex.
We would expect to see similar results with these product sets.

6)    Pictures are not always worth 1,000 words.

16.6 Sequel
The next chapter covers issues related to controlling graphics. Controllers are
interface devices that allow us to change the methods of representation,
change aesthetics, and explore data underlying graphics.



17
Control

The word control is related to the French words contre (from the Latin word
for against) and rôle (a roll or register). To control is to keep a list of accounts
so that one can regulate transactions. To control a computer is to regulate its
activity through a set of controllers — pointers, sliders, buttons, brushes,
scripts, and menus. There is a large literature on UI controllers, produced
mainly by cognitive and computer scientists. There is also a considerable lit-
erature on chart controllers, produced mainly by statisticians. In fact, most
graphics controllers used today can be traced to inventions by John Tukey and
his collaborators at Bell Laboratories and elsewhere. For a history and original
sources of many of these ideas, see Cleveland and McGill (1988), Cleveland
(1988), Buja, Cook, and Swayne (1996), Swayne and Buja (1998), Unwin
(1999), and Friedman and Stuetzle (2002).

We will discuss two aspects of user control in this chapter. First we will
present methods for building charts. This area is often neglected, perhaps be-
cause it is assumed that standard operating system controllers are sufficient for
chart creation. Second, we will cover interactive methods for exploring data.
As with chart building, we will see that chart exploring involves many meth-
ods peculiar to the world of statistical graphics.

17.1  Building
Specifying to an application how to draw a graph has evolved significantly in
the last 25 years. Command lines and procedural programs designed for ex-
perts have given way to dialog boxes, wizards, and drag-and-drop interfaces.
Building a basic chart is now a routine task. Unfortunately, point-and-click
and drag-and-drop operations have made more difficult the auditing and auto-
mating of graphics production. No interface is best for all graph-creation
tasks. In this section, we will review briefly the history of graph-creation
methods and indicate their strengths and weaknesses.
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17.1.1 Procedural Languages

The older statistical software packages (e.g., SPSS, SAS, SYSTAT) have un-
derlying procedural languages accessible through a command-line interface.
This is not only because these packages predate graphical user interfaces but
also because scripting languages provide a degree of control not readily ob-
tained in a menued system. In addition, graphics programs provide a reproduc-
ible log of an analysis that can be rerun or modified to run on a different data
set. Once GUIs became popular, nearly all of the older packages added dialog
boxes to generate code for their language interpreters. 

Figure 17.1 shows a SAS-GRAPH® program to produce the graph in Fig-
ure 6.2. The code is verbose because it includes transformations and specifies
details concerning the size of the plot and configuration of its axes.

Figure 17.1 Picture of a SAS® graph command line interface
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17.1.2 Object-Based Languages

Some statistical software tools, such as the S and R programming languages,
use an object-based approach. The advantage of these tools is that they encap-
sulate details inside objects. The disadvantage, shared with other graphics pro-
gramming languages, is learning to use all their options. In these systems,
graphics and statistical functions are objects that have numerous detailed
methods hidden but available. As with procedural languages, GUI interfaces
with dialog boxes are often used to generate the code for the interpreter.

Figure 17.2 shows the creation of the same graph using the R console. Be-
cause R is a programming language for statistics and graphics, it works the
same way on Linux, Unix, Macintosh, and Windows machines. Figure 17.2
was created on a Macintosh.

Figure 17.2 Picture of the R command line interface
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17.1.3 Dialog Boxes

The word dialog comes from the Greek , which means alternating
speech, as in a conversation. The use of the term dialog to describe menus,
panels of check boxes, tool bars, and other miscellaneous collections of visual
controls is a misnomer. Controls involve dialogs only when they force the user
to interact sequentially. To novices, dialogs can be comforting because they
present available alternatives in panels of choices. To experts, dialogs can be
frustrating because they are modal; they partition specifications into response
classes (menus, subdialogs) that force a user to follow a fixed construction
framework. Modal frameworks are especially inappropriate for constructing
graphics because they compartmentalize fluid tasks. 

Figure 17.3 shows an example of the scatterplot construction dialog and
the smoother subdialog in SYSTAT. Because SYSTAT offers a large number
of smoothers, the choices in a dialog can intimidate a novice. A large number
of features drives GUIs to a large number of dialogs, which is perhaps why
many graphics systems that offer only dialogs tend to skimp on features. 

Figure 17.3 SYSTAT dialog box for specifying a scatterplot

O��� WZ�Z�
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17.1.4 Wizards
Dialogs group sets of tasks into conversational units. Despite this organiza-
tion, novices can be paralyzed by choices. Wizards are dialogs taken to ex-
tremes. They force tasks into a fixed order so that a casual user has no
opportunity to make a wrong choice. Needless to say, wizards are the most
frustrating interface for expert users. And for richly featured graphics packag-
es, they are impractical.

Figure 17.4 shows a panel from the Excel chart wizard. To keep things
simple, the wizard employs a chart metaphor, which severely limits the capa-
bility of the package. In order to get a user to a recognizable state or sub-goal,
wizard chart interfaces serialize the construction process. They then provide a
chart editor to modify details of the original construction. This backtracking
strategy helps novices achieve their goal but wastes steps for the expert. 

Figure 17.4  Chart Wizard in Microsoft Excel

17.1.5 Graphboard
The graphboard interface for creating and modifying graphics was intro-
duced in the first edition of this book. Its name suggests a whiteboard, but it
also incorporates rules that make objects written on it behave in a predictable
manner. The graphboard is a whiteboard with a grammar.

The following sections are organized by types of interaction. The first sec-
tion, Learning, describes available help. The second, Playing, describes the
process of graph creation and exploration. These are not serial stages of inter-
action. One may play before learning or learn before playing. We have tried to
eliminate dialogs, wizards, and other order-dependent devices so that both
novices and experts can explore, backtrack, and modify without being forced
through steps someone else imagined to be helpful.
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The style of these sections is motivated by user scenarios rather than the-
oretical issues. As much as possible, we will present issues within the flow of
actual user interactions in a session. This requires more figures, but is closer
to the experience of using the real system. Macintosh users should substitute
“command-click” for the term “right-button mouse click” in the following de-
scriptions.

17.1.5.1  Learning

Figure 17.5 shows a basic graphboard. It is split into two regions: a control
panel and a whiteboard. The whiteboard in Figure 17.5 contains the help
screen a user sees after pressing the help (?) button in the control panel when
the screen is empty (although it can be pressed at any time). The help screen
contains a lot of information, but it has a transparent typeface that overlays ex-
isting graphics without obscuring them. This help overlay obviates the need
for a separate hierarchical help system that requires multiple user-interactions
before offering the desired assistance. And unlike some context-sensitive
help, this system facilitates browsing in a single screen. This is not the only
help available within the system, of course. Other help is offered after signif-
icant user delays in responding or in specific contexts where the system rec-
ognizes the need for support or as pop-up tips. This text in the basic help
screen reveals the fundamental characteristics of the graphboard. 

First, most user interactions with the system are based on the graphics
themselves, not on dialogs or wizards. We also avoid remote controllers,
which pop up as tool bars or extra windows and thus clutter the work environ-
ment. Wherever possible, we prefer to manipulate the objects themselves in-
stead of manipulating proxies.

Second, all actions in the graphboard are reversible, so it is straightfor-
ward to return to where one was several steps back. There is no need for UNDO.
This characteristic is due partly to the grammar underlying the board and part-
ly to the design of the controls themselves. 

Third, the order of operations needed to reach a goal is usually not fixed.
There are often several paths to reaching the same goal. This characteristic re-
flects the way we draw many complex figures. We can assemble components
in any order as long as the result contains all the needed components.

Controls

The control panel contains the basic tools needed to create graphics. At the top
is a scroll-list of variable names in the data source. These are drag-and-drop
objects that represent variables in the graph specification. When we wish to
include a variable in a graph, we place our cursor arrow on the name and hold
down our mouse button and drag a copy of the variable name into the white-
board. To remove a variable from a graph, we do the reverse: drag the copy of
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the name back into the scroll-list. Some applications use a double click to sig-
nal this kind of reversal. We prefer to use the drag-out-of-frame operation to
reinforce the idea that gestures are invertible. 

At the bottom of the list are italicized names of synthetic variables. These
names do not exist in the data source. They are needed whenever we wish to
construct a dimension from functions of the data, as with histograms or bar
graphs of counts. See Figure 3.6 for examples.

The section below the scroll-list is a glyph tray. Dragging an image of a
graphic into the whiteboard specifies that a graph is to be represented with this
object. We may drag one or more of any of these into the whiteboard in any
order, before or after we have dragged variable names into this area. 

The design and behavior of this tray is meant to convey to the user that it
is not a list of chart types. Some graphics programs have buttons with lines,
bars, and other images that enable users to choose a type of chart. The glyph
tray works instead by dragging, so that a user is encouraged to try more than
one graphic in a frame. We have made two conspicuous concessions to user
preconceptions, however. One is the pie icon at the bottom of the tray. As we
have seen in Chapter 2, a pie is a stacked interval in polar coordinates. This
insight is too much to expect of non-technical users, however. Dragging a pie
icon is therefore equivalent to dragging a interval icon and setting the coordi-
nates of the frame to polar. Similarly, the smoother icon (to the left of the pie)
is designed to be equivalent to dragging a line and setting the statistical meth-
od to a smoother. Other icons could be added to this tray for similar purposes.
It is designed to grow to accommodate them. There is always a tension, how-
ever, between keeping an interface simple versus making it look like the cock-
pit of a fighter jet in order to impress technical users or to expose rarely used
options. These decisions must be made carefully and with accompanying user
testing. Finally, the numerical icon (123) is for using numerals instead of other
graphics to represent quantity.

Below the glyph tray is a set of annotation tools. These tools are for
drawing forms on a graphic, such as lines, rectangles, ellipses, or text. They
are not intended to replace or duplicate paint programs. Instead, annotations
are intended to link meaningfully to objects in a frame. The leftmost arrow-
button is for restoring the cursor to the standard pick-arrow after drawing with
a tool.

At the bottom of the control panel are two exploration tools. The one on
the left is a rotation pad for orienting 3D images. Its central home button re-
stores the orientation to the default view and the other buttons control two de-
grees-of-freedom of rotation. On the right is a pan-and-zoom controller. The
central, darker square can be resized to demarcate the subset of the graphic
shown in the whiteboard. For tables of graphics, this controller can be used to
show anything from a single frame up to the entire table.
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Finally, the help button (?) controls the help system. Help is always given
in the whiteboard and is contingent on the material displayed. At times, this
material may obscure the material in the whiteboard, but only when necessary
to avoid clutter.

Figure 17.5 Graphboard help (?)

As we shall see, the graphboard offers additional capabilities for interact-
ing with the system, but these are not implemented with visible controls. There
are several means for accomplishing this. First, as the help screen shows, drag-
ging operations are defined by their target area in the whiteboard. Dragging
variable names into the vertical target area at the left of the whiteboard as-
signs them to a vertical (y) dimension. If there are any variables already as-
signed to this vertical dimension, then dragging a variable name to this area
panels the frames according to the values of the variable being dragged. We
will see this operation in Section 17.1.5.2. Dragging variable names into the
horizontal target area at the bottom of the whiteboard assigns them to a hor-
izontal (x) dimension in the same manner as the vertical. Dragging variable
names to the frame target area adds a third (z) dimension to the graph. Final-
ly, dragging variable names on top of other variable names blends the two vari-
ables (see Section 5.1.2 for the definition of a blend).

The second method for implementing other controls is the use of delay.
After 1,500 milliseconds, the system responds with prompts. These may be
help messages or modal choice options presented to qualify the meaning of a
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gesture. This time-dependent modality, such as a delayed interruption requir-
ing a choice between cross and nest, is employed when one option (in this
case, cross) overwhelmingly predominates in ordinary applications. Expert
users can turn off this delay feature.

17.1.5.2  Playing

We begin with the countries data used in Chapter 1. The variables in that
dataset are listed in the variable scroll-list of Figure 17.6. In each figure of this
section, we will represent the user action by a strobed arrow (pale blue) next
to the thing being dragged (pink). The consequence of the action is what
shows in the figure. In Figure 17.6, dragging a variable name (lifem) into the
horizontal target area of the whiteboard creates a horizontal (x) axis with scale
values produced from the data. If we placed our cursor arrow on the axis label
("Male Life Expectancy") in the whiteboard and dragged it back to the scroll-
list, we would return to our previous state, an empty whiteboard. If, alterna-
tively, we dragged the axis label to the vertical target area at the left edge of
the whiteboard, we would have created a vertical axis. The specification pro-
duced by the action is shown above the figure.

GUIDE: axis(dim(1), label("Male Life Expectancy")

Figure 17.6  Adding a variable to create a dimension
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Figure 17.7 shows the result of adding a point graphic to the frame. We
have dragged the point icon from the glyph tray into the central frame target
area. The result is a one-dimensional scatterplot.

GUIDE: axis(dim(1), label("Male Life Expectancy")
ELEMENT: point(position(lifem))

Figure 17.7  Adding a point graphic to a frame

Notice that the result looks like a one-dimensional scatterplot. If we had
originally dragged lifem to the left-most area controlling the vertical axis, then
the gesture in Figure 17.7 would have resulted in a one-dimensional vertical
scatterplot. If we had wanted to put in two axes before dragging in a point, then
we could have dragged a second variable to the other axis box, viewed two
empty axes, dragged in point, and viewed a 2D scatterplot. This latter series of
gestures is probably closer to the graph-construction script most users would
expect. However, few non-technical users are aware that a one-dimensional
scatterplot exists at all. Exposing users to new creatures is part of the purpose
of creating a zoo-like environment that allows them to visit cages without a
prior appointment. Or, even better: select the right animals and environment
so that we can do away with cages.

Figure 17.8 shows the result of dragging a second variable from the scroll-
list to the vertical target area. This adds a second dimension to the frame. Now
we see two axes, and the point cloud expands to become a 2D scatterplot.
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GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
ELEMENT: point(position(lifem*lifef))

Figure 17.8  Adding a second dimension to a frame

At this point, we could reverse any of the actions we have taken by drag-
ging from the whiteboard back to the control panel. For example, we could re-
move the point graphic and leave ourselves with an empty frame. Or, we could
drag the horizontal axis variable lifem back to the scroll list and leave ourselves
with a one-dimensional scatterplot on lifef (Female Life Expectancy). We will
move forward, however. 

Figure 17.9 adds a smoother to the scatterplot. We have dragged the
smoother icon from the glyph tray to the frame target area. As we mentioned
in Section 17.1.5.1, this single action is equivalent to dragging a line graphic
icon into the frame and then right-button mouse clicking on the line to change
its statistical method to a smoother. We assume the loess method is the default
for a smoother. Figure 17.11 shows an example of this right-button gesture. 
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GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
ELEMENT: point(position(lifem*lifef))
ELEMENT: line(position(smooth.loess(lifem*lifef)))

Figure 17.9  Adding a second graphic to a frame

So far, we have two variables in our graphical frame model. How do we
add more variables? Getting a user to think about dimensions versus variables
is a difficult problem. Specifically, we could represent a third variable in this
graphic by using position() in the frame model to go to 3D, using position()
with faceting to panel the graphic, or using some other aesthetic attribute such
as color() to modify the point graph. In the graphboard, the 3D world is sig-
nalled by dragging a variable into the center of a frame. Paneling through fac-
ets is signalled by dragging a variable to one of the edges of a frame. And
adding a variable to aesthetic attributes is accomplished by right-button click-
ing the graphic itself. By applying these rules consistently, we can add more
dimensions to simple graphics, paneled graphics, and 3D graphics. We will
continue this example by going to 3D first. Then we will backtrack and try at-
tributes. Finally, we will try paneling.

Figure 17.10 shows the result of adding a third dimension to the frame by
dragging birth from the scroll-list to the inside of the frame target area. This
creates a 3D scatterplot with a surface smoother.

�
 �
 �
 <
 =
 �


�����8����1;"�'���'�

�


�


<


=


�


B

�
��

��
��
8
��
� �
1
;
"
�'
��
�
'�



17.1  Building 547

GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
GUIDE: axis(dim(3), label("Birth Rate")
COORD: rect(dim(1, 2, 3))
ELEMENT: point(position(lifem*lifef*birth))
ELEMENT: line(position(smooth.loess(lifem*lifef*birth)))

Figure 17.10  Adding a third dimension to a frame

Figure 17.11 shows how to remove the third dimension by dragging the
birth variable name off the vertical axis and back to the scroll-list. We have
also highlighted three other gestures that reveal how to change properties of
graphics, frames, and variables. The graph drop-down list in the middle of
the frame was created by pointing to the smoother in the frame area and click-
ing with the right mouse button. This list contains three modifiable domains:
attributes (hue, size, orientation, etc.), statistical methods (smooth.linear,
smooth.loess, etc.), and properties (associated metadata, annotations, etc.).
The content of these domains is documented in Chapter 10 and Chapter 7. 

An example of a scale drop-down list is shown at the bottom of the
frame. It is produced by right-button mouse clicking on a variable label for the
desired dimension. The modifiable entries in the list are transformations (list-
ed in Table 4.1), categorization (making a scale categorical or continuous), and
properties (metadata and other annotations). These actions would affect the
SCALE statement of the specification.
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Finally, the figure shows an example of a frame drop-down list accessed
by right-button mouse clicking in the frame target area (but not on a graphic
itself). The coordinates listing directs the user to the coordinate transforma-
tions available in the system. And the properties listing points to frame-level
properties. 

All of these directives arise from right-button mouse operations. In gener-
al, right-button (command-click) mousing is a modify operation in the white-
board. It is always relevant to the particular object being pointed to. The right-
button is never used for miscellaneous short-cuts or other operations. The
specification represented in this figure is the same as for Figure 17.9.

GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
ELEMENT: point(position(lifem*lifef))
ELEMENT: line(position(smooth.loess(lifem*lifef)))

Figure 17.11  Right button mouse clicks

Figure 17.12 shows how to panel graphics. We have dragged a variable
(gov) into the horizontal target area. This action creates three graphics, one for
each value of the gov variable.
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GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
GUIDE: axis(dim(3), label("Type of Government")
COORD: rect(dim(3), rect(dim(1, 2)))
ELEMENT: point(position(lifem*lifef*gov))
ELEMENT: line(position(smooth.loess(lifem*lifef*gov)))

Figure 17.12  Paneling

This paneling operation can be carried on indefinitely. We simply drag
new paneling variables to either of the margins of the current frame. This im-
plies a structural model for tables of graphics that is documented at the begin-
ning of Chapter 11. That is, we create frames of frames by working from the
inside out, like the layers of an onion. The graphboard displays these faceted
graphics as larger tables of frames. It would not be difficult to add layout tem-
plates to allow layers, or pages of tables. Layout, it must be remembered, is an
aspect of the view, not the model.

Figure 17.13 shows how to panel with two variables. We have dragged a
second variable (urban) into the vertical target area. This produces two rows
of paneled graphics, one for each level of the urbanization variable.
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GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
GUIDE: axis(dim(3), label("Type of Government")
GUIDE: axis(dim(4), label("Urbanization")
COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: point(position(lifem*lifef*gov*urban))
ELEMENT: line(position(smooth.loess(lifem*lifef*gov*urban)))

Figure 17.13 Two-way paneling

Although layout is an attribute of views, not models, there are some oper-
ations that change appearance through modifying a model. As we explained in
Chapter 9, pivoting is an operation that exchanges the domain and range of a
graph. The following example shows how this operation can be accomplished
in the graphboard. This pivoting is performed by drag-and-drop of a variable
name (instantiated as an axis label) onto another (on a different axis). The
graphboard does not limit this operation to outer variables. Any two axes can
be exchanged, thereby modifying the model.

Figure 17.14 shows how to pivot a panel. We have dragged a variable
name from one paneling dimension to another paneling dimension. This flips
the graphic.
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GUIDE: axis(dim(1), label("Male Life Expectancy")
GUIDE: axis(dim(2), label("Female Life Expectancy")
GUIDE: axis(dim(3), label("Urbanization")
GUIDE: axis(dim(4), label("Type of Government")
COORD: rect(dim(3, 4), rect(dim(1, 2)))
ELEMENT: point(position(lifem*lifef*urban*gov))
ELEMENT: line(position(smooth.loess(lifem*lifef*urban*gov)))

Figure 17.14  Basic graphboard

In order to maintain a simple drag-and-drop environment, we have con-
strained the graphics algebra to models that expand alternatively in vertical
and horizontal directions, e.g., a*b*c*d is mapped to h*v*h*v. Are there any
expressions in Table 11.2 that cannot be created by the graphboard GUI? Can
this interface be adapted to work in all the coordinate systems described in
Chapter 9? Are there any drag-and-drop gestures available between the control
panel and whiteboard that would not be reversible because of the result of a
transformation or its non-invertibility? Finally, what special problems does a
3D coordinate system present to this GUI?
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17.2 Exploring
The era of interactive exploring of online statistical data began with the
PRIM9 project at the Stanford Linear Accelerator Center (Fisherkeller, Fried-
man, and Tukey, 1974). Among this project’s innovations were real-time 3D
rotation of scatterplots, built-in analytics and data flow through the PL/I com-
puter language, 2D projections of high-dimensional data through automated
projection pursuit and marginal scatterplots, and masking and filtering. Tukey
(1988) later went on to describe a variety of additional controllers useful for
exploring multivariate data. Many of these tools found their way into explor-
atory packages such as XGobi (Swayne, Cook, and Buja, 1988), DataDesk
(Velleman, 1998), and Spotfire (Ahlberg and Shneiderman, 1994). They are
taken for granted in modern visualization systems (Seo and Shneiderman,
2005).

We will discuss exploratory controllers in sections organized by their
functionality. In most sections we will illustrate two types of controllers: an
indirect manipulation tool (usually a widget in a separate window or palette)
and a direct manipulation tool (usually a mouse-driven selector that works
directly on the graphic). Indirect manipulation tools operate on a duplicate im-
age or cartoon of the graphic itself; manipulations of the image are reflected
in changes to the original graphic. Examples are sliders, joysticks, and buttons.
Direct manipulation tools operate on the graphic itself, so user focus stays on
the frame rather than elsewhere in the work environment. Examples are drag-
and-drop gestures, haptic (touch) tools, and whiskers and handles for rotating
and resizing 3D objects. While there are some advantages to indirect manipu-
lation tools (programmer convenience, a game-style GUI for users under the
age of 16), we generally prefer a direct manipulation tool that operates on the
object itself. 

17.2.1 Filtering

Filtering is one of the most common ways of focusing on specific information
within a graphic. It is usually helpful to see a certain graphic under a set of
constraints that are defined either by categories or ranges of continuous val-
ues. Filtering addresses questions like: “what happens in the southeast re-
gion?” or “what about those older than 20 and younger than 35?” When
filtering was first introduced in database applications with standard charts, it
launched a phenomenon in the industry called drill-down. In fact, drill-down
is simply a set of nested filters.

17.2.1.1  Categorical Filtering

Categorical filtering requires a tool for selecting categories on one or more
variables. A simple indirect method is to present a series of checkboxes, one
set for each variable. If the box for a category is checked, then the cases con-
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taining that category are included in the results. Figure 17.15 shows an exam-
ple. If the filtering variable is also used for an aesthetic (such as color) in the
graphic, it may be possible to apply the aesthetic to the checkbox labels. This
allows the filter to serve as a legend, which saves precious display real estate.

If filter variables are available within the domain of the graphic, direct se-
lection is usually preferable. We can provide a filter selection tool (such as a
mouse-driven pointer) and use it to select categories directly in a legend or
within the frame of a graphic. Multiple filters can be implemented with mul-
tiple selection gestures.

Figure 17.15  Categorical filtering with checkboxes

17.2.1.2  Continuous Filtering

Range filtering on a continuous variable requires range selection tools. A sim-
ple indirect tool is a double-ended slider. Figure 17.16 shows an example. If
an operating system GUI does not offer double-ended sliders, then input boxes
for the user to supply minimum and maximum values may suffice. The filter-
ing works by retaining cases whose values lie within the selected interval. The
user may slide either the lower or upper handle to adjust the width of the in-
terval, or may slide the whole interval to move the selection region. A useful
addition to the slider is to allow for the inverse of the selection. That is, allow
a simple gesture so that the user can include only the values lower than the
lowest value and higher than the highest value.
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Figure 17.16  Continuous filtering with a double-ended slider

Figure 17.17 shows an example of direct selection. The user has drawn a
loop with a lasso tool in Data Desk to select three outliers. Usually, a rectan-
gular selection tool is convenient for choosing a two-dimensional selection re-
gion, but sometimes we wish to choose a joint region with a non-rectangular
shape. Freehand drawing tools provide this flexibility. 

Figure 17.17  Data Desk lasso tool for graphical filtering

17.2.1.3  Multiple Filters

Sometimes an application may include several filters working in conjunction.
Figure 17.18 contains an example. When there are multiple filters, there is a
performance trade-off between redrawing immediately after each selection, or
redrawing after all selections have been made. The issue arises because the ap-
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plication may respond faster if the user doesn’t have to wait for one filter to
finish being applied before moving on to the next. This may not be an issue if
the application allows fast filtering (next section). 

Figure 17.18  Using multiple filters in a tree on slot machine data

17.2.1.4  Fast Filtering

Applications that are required to filter with millisecond response time imple-
ment filtering as the graphic is rendered. This model is very fast and works
very well as long as no complex statistics are required for the graphic. A clas-
sic example of a graphic well-suited for this is a scatterplot. Here, the filtering
happens fast enough so that the points appear and disappear as the user drags
the slider. This high level of interaction has the perceptual advantage of be-
having like a controlled animation.

17.2.2 Navigating

Navigation is the ability to move around and to focus on interesting areas
within a graphic. Navigation can be similar to filtering; the difference is that
navigation moves about the graphic, while filtering moves around the data.
Another difference is that navigation only involves the positional dimensions
included in the graphic as opposed to filtering which can be done using any
dimension that exists in the data. 
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17.2.2.1  Zooming

A common navigation technique is to zoom in on or pan around an area of in-
terest. There are two ways to implement zooming: physical zooming and log-
ical zooming. Physical zooming simply draws a selected small region of a
graphic onto a larger area of the screen. This technique is commonly used in
image editing, but has limited value for data analysis unless both context and
focus are addressed (as in Lensing described below). Logical zooming chang-
es the minimum and maximum values on an axis, but does not change the
physical size of the elements in the graphic. Typically, zooming is done by
clicking and dragging the mouse to form a rectangular region of interest that
becomes the new axes limits. Figure 17.19 shows an example. 

Figure 17.19  Selecting a region of data to zoom-in on

Zooming within non-rectangular coordinate systems requires transformed
zoom-regions. This is most obvious when zooming on a map. Note how the
zoom box in Figure 17.20 respects the Lambert projection. 

Figure 17.20  Selecting a region of data under a Lambert projection
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There are several ways to undo a zoom. We can employ an undo button.
We can implement a gesture that goes outside the zooming area to signify
zooming out. Or, we can implement an indirect zooming tool

17.2.2.2  Panning

Panning is equivalent to moving a data region of fixed size along an axis. This
is particularly useful for categorical axes where there simply are too many cat-
egories for the screen real estate that is available. This action can easily be tied
to a scrollbar in an application; however, note the difference between panning
vs. embedding an entire graphic within a scrollable region. The latter simply
moves a picture of the graphic around within a fixed viewable region, thus ob-
scuring the axes at times.

 Panning can be combined with zooming. Figure 17.21 shows an example
of an indirect pan-and-zoom tool that allows us to change focus and navigate
at the same time. We resize the box to change the zooming region and move
the box around the view-window to change relative focus. 

Figure 17.21  Pan and zoom box
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17.2.2.3  Lensing

Lensing is a type of physical zoom that is able to retain focus while at the same
time providing context. Lensing works like a magnifying glass that is dragged
over the display. The items in focus become larger and easier to see, while the
items at the fringes are pushed aside, yet still visible. This action can provide
a glance into data that are highly concentrated in places. Figure 17.22 shows
an example.

Figure 17.22  Fisheye lens is dragged from left to right over the “Eureka” 
dataset

The common mouse behavior for lensing is to tie the center of the lens to
the x and y position of the mouse as the user drags the mouse over the graphic.
Another useful addition when modern hardware is available is to couple the
dilation factor of the lensing to the mouse wheel which allows the user to eas-
ily expand or contract the magnified region with simple forefinger move-
ments. Figure 17.23 shows an example.

Figure 17.23  Using the mouse wheel to increase the dilation factor
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There are some graphics where lensing can play an interesting role.
Graphics containing the link element frequently make use of lensing. Here,
lensing provides a useful tool for viewing regions that are too tangled due to a
large number of edges in a local region. 

Another graphic that can benefit from lensing is a time series plot. Figure
17.24 contains an example using two CPI series from the Bureau of Labor Sta-
tistics. Since the lens projection can be parameterized to work on only one di-
mension, lensing makes it easy to examine patterns that may have a lot of
variation within relatively short time frames. 

Figure 17.24 1D Fisheye lens used in a time series

One of the most famous lensing displays is the hyperbolic tree (Lamping,
Rao, and Pirolli, 1995). Technically, however, it is not an optical lens. Instead,
the hyperbolic tree transformation embeds the entire complex plane inside the
Poincare disk; the edge of the disk is infinitely far from the center. The con-
troller for this display (usually the mouse cursor) drags the tree up/down and
left/right on the complex plane, but these draggings result in local translation,
rotation, and dilation on the Poincare disk. Straight lines on the plane become
curves on the disk. This nonlinear mapping can sometimes make it difficult for
users to maintain orientation while exploring.

Figure 17.25 shows a hyperbolic tree from the UC Berkeley Herbarium
website (http://ucjeps.berkeley.edu/TreeofLife/hyperbolic.php). This tree can
be navigated online through its thousands of branches by clicking and drag-
ging with a mouse. The root of the tree, all green plants, is at the middle-right
of the display window. We have dragged the Tracheophytes toward the center
so that we can see their children to the left.
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Figure 17.25 Hyperbolic tree of green plant relationships from the Green 
Tree of Life website (supported by NSF Grant 0228729, used by permission of 

the University and Jepson Herbaria, UC Berkeley)

 In Figure 17.26, we have dragged the Moniliformopses node to the right in
order to reveal more children of that node. Notice that the shape of the entire
tree changes as it is dragged in any direction.

Figure 17.26 Hyperbolic tree display of plant species dragged to right 
(courtesy of University and Jepson Herbaria, UC Berkeley)
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17.2.3 Manipulating

Manipulation is direct modification of a completed graphic. At first, this may
sound like cheating since it implies changing the graphic to suit one’s needs.
But, actually, the idea here is to modify the graphic in such a way that the in-
formation is more clearly conveyed without altering the quantitative content.
Manipulation also allows examination of detail by moving parts of the graphic
outside the focal viewing area. This operation is in a sense the dual of lensing.
Instead of manipulating our view, we manipulate the shape of the object with-
in our view.

17.2.3.1  Node Dragging

As the name implies, node dragging is specific to graphics containing the Link
element. The action here is to use the mouse to drag the nodes of a Link ele-
ment into a new arrangement. Node dragging can be useful when the Link el-
ement is being used to show the results of a graph layout. This is because
sometimes graph layout algorithms produce nodes that are so close to each
other that they are indistinguishable and, assuming the distance between the
nodes is not important, simply moving them apart does not alter the interpre-
tation of the graphic. Figure 17.27 shows an example. Obviously, uses of the
Link element where the node position is critical to the interpretation of the
graphic, such as connections between cities on a map, or the results of a cluster
tree where proximity to other nodes is critical should not allow the user to drag
the nodes.

Figure 17.27  The four nodes on the lower right have been dragged
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17.2.3.2  Categorical Reordering

Another type of manipulation is reordering the categories of a categorical vari-
able. A category ordering controller allows categories to be reordered by di-
rectly dragging them on the graphic itself or by using a separate widget. Figure
17.28 shows an unordered categorical plot of market research results.

Figure 17.28  Unordered categorical display

Figure 17.29 shows a reordering of the display in Figure 17.28 using a cat-
egory ordering tool that lets the user click on a panel’s title to drag-and-drop
it to the new desired location.

Figure 17.29  The “Integral” panel was dragged two places to the left
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17.2.4 Brushing and Linking

Brushing highlights objects within a region of a graphic and linking connects
highlighting between two or more graphics such that all of the linked graphics
highlight the same cases or objects in the data. Figure 17.30 shows an example
of brushing and linking between a single scatterplot and a scatterplot matrix. 

Figure 17.30  Brushing a scatterplot matrix in GGobi

The program used in Figure 17.30 is GGobi, a reincarnation of XGobi.
The data, consisting of measurements of several body parts of flea beetles, are
from Lubischew (1962). The diagonals of the SPLOM contain averaged
shifted histograms (Scott, 1992). GGobi uses color to indicate the brushing
status. Because color tables are easy to manipulate in hardware, color has been
traditionally used to indicate whether something is brushed. Other aesthetics
can be used as well, however. Motion (using vibrating points) is used in some
graphics programs to indicate selection.

Sometimes multiple brushes are used to delineate different selections of
data. Since various graphs using different statistics have geometric objects
that represent or aggregate the data in different ways, we must ask which geo-
metric object should be brushed for a given graph. Some packages avoid this
question by allowing brushing and linking only on scatterplots, but this ap-
proach lacks the generality of a grammar-based system. The answer is that a
highlighted region should be based on the cases of data that are relevant to the
specific part of the geometry that is brushed. For example, a bar should be
highlighted if any brushed points in a scatter plot correspond to points lying in
the region of the bar. This mapping is invertible. When a bar is brushed, all
points in a scatterplot that correspond to points lying in the region of the bar
should be highlighted. More granular options are possible, but the utility of
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this is debatable. One approach would be to brush a portion of the bar that is
equal to the proportion of data contained by the bar currently brushed. 

Figure 17.31 shows brushing on a bar chart linked to a scatterplot. Brush-
ing the bar allows us to examine the distribution of the cases in the bar on other
variables.

Figure 17.31  Brushing single bar highlights points contained in bar

 Figure 17.32 shows brushing on the same scatterplot linked to the bar
chart. We are able to locate the bar containing the scatterplot outlier.

Figure 17.32  Brushing scatterplot highlights bar(s) containing same case(s)
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 Figure 17.33 shows brushing on parallel coordinates, using ExplorN
(Carr, Wegman, and Luo, 1997). This brush allow the user to select an interval
on any one of the axes; it then highlights all profiles in that interval.

Figure 17.33  Brushing parallel coordinates (courtesy of Ed Wegman)

17.2.4.1  Brush Shapes

The term brushing was originally used in the PRIM9 system because the met-
aphor was to attach a brush of a selectable size onto the mouse and then objects
become brushed when the mouse intersects them as it is moved around the
data space. More generally, a brush is a region that is used to condition ac-
tions. A 2D brush is conventionally defined as the rectangular region

. This definition simplifies hit testing, but it
may not always serve our needs. 

We must remember that a region is transformable under the coordinate
system in which it is embedded (see Figure 17.20 for an example of a trans-
formed rectangular zoom region). In fact, any of the isocontours shown in Sec-
tion 13.1.3 could be used to define a 2D brush. A brush for capturing nearest
neighbors in the Euclidean metric would be circular in 2D or would be a ball
in higher dimensions. This is the brush we use for a pointer. When the mouse
cursor is within a delta neighborhood (Euclidean distance less than delta) we
signal a hit. In other words, we use a tiny circular brush for picking objects
within a frame. What would a brush for capturing nearest neighbors in a city
block metric look like? How would you design a brush for parallel coordi-
nates? (Winkler, 2000; Hauser et al., 2002).

minx maxx��  miny maxy��  $
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17.2.4.2  Brush Logic

We can add logic to brushes by offering setwise operations. Union, intersec-
tion, complement, and other operations give us the ability to combine separate
brushes or brush inclusion criteria. These selection modes allow the user to
fine tune the intended brush performance. Wilhelm (2003) discusses these is-
sues further. Chen (2003) discusses applications of fuzzy logic to brushing.

17.2.4.3  Fast Brushing

Brushing always needs to happen with sub-second response time; however,
some brushing can happen faster than other brushing. For example, when us-
ing color for brushing, the highlight color can be drawn on top of the existing
plot instead of re-rendering the entire scene or the color table itself can be ma-
nipulated in hardware. Other aesthetics used for brushing might not work well
this way since the original graph may still show through. For example, if a tri-
angle shape is used to brush something that is a circle, pieces of the circle
might still show through.

Traditionally, fast brushing has been used by statisticians in desktop data
analysis packages. However, since both the brushing action as well as the re-
sults that brushing produces are so intuitive, brushing can be embedded within
business applications. Figure 17.34 shows an example for choosing an airline
flight. The horizontal axis is time and the vertical axis is price of the ticket.
The link colors yellow those flights with a common airline. This facilitates
choosing a round trip with the same airline.

Figure 17.34 Using brushing to choose an airline flight
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Figure 17.35 shows an example of brushing and linking for a text analysis
system. The nodes of the graph in the left panel are defined by a set of news
topics. Their coloring is based on a measure of concordance among news
sources reporting on those topics. The darkness of the edges (links) between
the topic nodes is proportional to the number of sources covering both topics.
The user of this software clicks on a particular edge and the concordance in-
formation for the news sources is shown in the right panel. Because there can
be only one bar graph in the right panel for one edge, this display is intrinsi-
cally interactive. It is highly responsive so that the user can check any edge at
will.

Figure 17.35  Text analysis brushing application

Finally, Figure 17.36 shows a treemap linked to a bar graph. The data un-
derlying the graphics are trading statistics for a set of stocks. The user has se-
lect trading volume as the variable of interest and the treemap displays the
companies on this measure. The color of the tiles is based on percentage
change in volume. The bar graph on the left displays the volumes directly. The
user can brush either the bar graph or the treemap to link to the other panel.
This linkage facilitates exploration of the variables in two different graphical
layouts. Other options of this application allow the user to choose different
variables and cluster analytic methods to explore the underlying data.
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Figure 17.36 Linked treemap

17.2.5 Animating

Animation can add insight to statistical graphics. Typically, systems that pro-
vide control over animation are more useful than ones that just let the anima-
tion play over and over in a loop. This section provides a brief overview of
animation under user control.

17.2.5.1  Frame Animation

Graphics can be animated over variables intrinsic or extrinsic to the graph. In
this case, the animation does not necessarily have to be fast enough for
smooth-motion video. More importantly, the user should have control over the
frames and be able to pause, move forward, or move backward in the anima-
tion at will. This can be accomplished with a pause button and a slider that the
user can move where each tick on the slider corresponds to a single frame. If
the animation is allowed to continue in a loop, there should be some indication
of restarts.

Usually animation is implemented by generating a set of static pictures
and then playing them in sequence. This is because performance is critical and
some applications and datasets may require extensive time to render frames.
When an animation is paused, however, it is often useful to be able to interact
with the graphic in the usual ways. This means that tooltips, brushing and link-
ing, or other interactive features should be enabled when the animation is
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stopped. Figure 17.37 shows an example. This animation is paused near the
middle of a time series. Popup metadata (for each state) and linking to other
graphs of the data are available during this pause. The unusual map projection
was designed by Dan Carr to reveal patterns in the smaller states.

Figure 17.37  Controlled animation of a map showing breast cancer 
mortality rates over time

17.2.6 Rotating
3D graphics often require rotation to get a sense of their structure or to see, as
it were, the dark side of the moon. Controlling rotation is not simple, however.
Physical joysticks and trackballs can be used to get true three degrees of free-
dom, but screen devices (virtual sliders, arcballs, and thumbwheels) can offer
only two degrees of freedom. Designers of virtual rotation devices derive a
third degree of freedom from the velocity of mouse movements. Interestingly,
Hinckley et al. (1997) found no difference in rotation-to-target accuracy be-
tween physical and virtual devices. Physical devices did improve rotation
speeds, however. The first, and probably still definitive, study of virtual rota-
tion devices was done in the Apple Computer labs (Chen et al., 1988). For un-
constrained rotation, the Apple authors found a virtual trackball to be most
effective. For constrained rotation, sliders and other single degree-of-freedom
devices worked comparatively well.

We must remember, however, that we seldom wish to use unconstrained
rotation on 3D graphics. There has been a mini-controversy over whether ex-
ploratory 3D scatterplot rotation is effective compared to other 2D and 3D
graphical methods, but most of the evidence supporting arguments on either
side is anecdotal or derived from poorly designed experiments. For 3D scat-
terplot rotation, probably the best controller (on the basis of the Apple results)
is a virtual trackball implemented by a mouse cursor operating directly on the
cloud of points (as if the points were inside a transparent trackball sphere). 
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For other charts, such as 3D bars and surfaces, we need only a two degree-
of-freedom rotation: up-down or left-right (from the user point of view).
Moreover, we probably never want to allow a user to rotate one of these func-
tional graphics below the horizon. That is, in a well-designed system we
should not allow the user to get underneath a 3D bar graph. Consequently, our
rotation world for most 3D graphics is the upper hemisphere. In this case, two
virtual thumb wheels or sliders are sufficient and help prevent users from be-
coming disoriented by Necker cube and other perspective illusions.

17.2.7 Transforming
In Chapter 7, we gave several reasons for placing statistics under the control
of graphs by making them graph methods. This is different enough from the
way most statistical graphics packages work that we need to examine it fur-
ther. The following example illustrates the behavior this design produces. 

Most statistical graphics systems perform transformations (when request-
ed) and pass through the data in one step to accumulate basic statistics that are
used in creating a chart. In these systems, the scene assembly and rendering
components are fed aggregated data to make bars and other graphics. The mo-
tivation for doing this is to keep the architecture simple by computing statistics
before scene assembly so that different graphic elements can share common
aggregated statistics. This approach severely limits the capabilities of a graph-
ics system because it makes statistics determine functionality for graphs rather
than the other way around. Ironically, limitation is not required to maintain
simplicity. In a properly designed graphics system, we can employ data views
and proxies to make sure that multiple graphic clients of the same statistic do
not force the system to duplicate the computations. 

The following scenario illustrates why graphs must control their own sta-
tistics. It is an aspect of a dynamic interface that is essential for exploration.
Unlike other dynamic scripts, this scenario requires the recalculation of a dif-
ferent statistic for each separate graphical element in a common frame every
time a button is pressed or a slider moved. And each recalculation requires a
pass through the raw data, because a nonlinear transformation is involved.
Even though such interactions are fundamental to real data mining, where
MOLAPs have been heavily promoted by some, this scenario cannot be im-
plemented by a MOLAP or data cube model (see Section 3.5.1).

This scenario is due to Sanford Weisberg (personal communication), who
choreographed it using Lisp-Stat (Tierney, 1991). The application involves
one of the most widely used modeling procedures: linear regression. Weisberg
connected a residual plot to a transformation controller in order to examine dy-
namically the distribution of residuals under different values of a power trans-
formation applied to the dependent variable in a linear regression. The reason
for doing this is to be able to identify a proper power transformation by exam-
ining the residuals directly. Pressing a button or slider to determine the value
of the power parameter (p) helps the investigator understand the behavior of



17.2  Exploring 571

the transformation over a plausible range of values. The alternative would be
to run hundreds of analyses and then to examine the residuals for each analysis
by plotting them separately. Although this example involves power transfor-
mations, it is only one of many similar operations that are required in a graph-
ical system for data modeling and discovery.

17.2.7.1  Specification
We will use the sleep dataset in Allison and Cicchetti (1976) to predict brain
weight from the average number of hours of sleep an animal takes per day (no
causal relation is implied). The specification is similar to Weisberg’s, but we
will add a regression plot so that we can see the residuals and the regression
at the same time. 

DATA: zero = constant(0)
TRANS: bp = pow(brainweight, p)
TRANS: resid = residual.linear.student(sleep, bp)
ELEMENT: link(position.edge.join(sleep*resid + sleep*zero))
ELEMENT: line(position.smooth.loess(sleep*resid), color(color.red))
GUIDE: position(dim(2), label("Linear Regression Residual"))

SCALE: position(pow(dim(2), exponent(p)))
ELEMENT: point()
ELEMENT: line(position.smooth.linear(sleep*brainweight), color(color.red))
GUIDE: position(dim(1), label("Daily Hours of Sleep"))
GUIDE: position(dim(2), label("Brainweight"))

The first specification produces the upper facet in Figure 17.38 and the second
specification produces the lower. The lower plot includes a point graphic for
the scatterplot cloud and a line(position.smooth.linear()) graphic for the re-
gression line. The upper plot contains the residuals. The residuals are calculat-
ed with the residual.linear.student() function, which computes studentized
residuals so that we can compare them to a t distribution. Instead of point(),
we have used spikes to zero with a link(position.edge.join()) in the residual
plot so that we can see the distribution of the residuals more clearly. In addi-
tion, we have included a line(position.smooth.loess()) smoother in order to
highlight any trend in the residuals across values of the predictor (there is not
supposed to be a trend). The transformations will be accomplished through the
pow() function applied as a scale specification in the lower frame and a data
transformation in the upper. Since both functions share the same parameter
(p), the transformation will be shared by both frames.

The position function for the line smoother in the upper plot requires some
explanation. It includes a blend of sleep*resid and miss*miss. We used the
same device in Figure 7.34 to prevent points from plotting. Here, it prevents
the smoother from trying to include the zero values in its computation. Since
the blend operation is like stacking columns on top of each other, we use the
missing values to force the graphing function to ignore the extra cases. 
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17.2.7.2  Assembly

The assembly of the scene parallels the structure of the specification. First,
each Frame object is constructed. This involves (1) parsing the frame model
and executing the algebra, (2) linking variables to appropriate data, (3) asso-
ciating the variables with the dimensions specified in the model, (4) register-
ing the transforms, and (5) registering the scale for each dimension. Next, the
graphs are set into action. Once the Frames are known, the graph computations
may be done in any order, or may even be done in parallel if the environment
is multi-threaded (allowing separate processes to execute independently or
simultaneously). The point graph, for example, asks its Frame for values on
brainweight and sleep. Frame notices that a scale transformation is registered
for brainweight and requests DataView to return transformed values. Since the
value of the exponent is 1, no transformation is performed. The point graph
now has data to assemble itself, so it puts together a package of tuples and at-
tribute values (default symbol shape and color) and sends the package off to
Display to render a cloud whenever it is ready. 

The line(position.smooth.loess()) graphing function asks its Frame to re-
turn values on resid and zero and sleep. Frame has a residual() transform reg-
istered for resid, so DataView must perform linear regression calculations and
return studentized residuals to line(position.smooth.loess()). Because a pow()
transformation is registered for bp, which is used in residual(), the data values
must be transformed before doing the regression (although the value of the ex-
ponent is still 1 at this time). As far as the graphs are concerned, they are re-
ceiving values for their own calculations. They don’t care how those values
were assembled. The line graphing function will proceed to do another regres-
sion on the residuals using the LOESS locally parametric regression smoother,
and link will connect the residuals to a zero level on resid.

A similar process is followed by the other graphs. If more than one graph
requests values on the same variable, DataView can cache the requests (collect
the requests for execution at one time) or persist the view (hold the values un-
til clients stop registering requests for them) in order to make things more ef-
ficient in a client-server or Web environment. The essential thing to notice
about this assembly process is that each graph must do something different
with its data. Geometry drives data. However, there is no implication here that
every graph must waste time reading data and doing the same work over and
over again. Frame is a central clearing-house for graph activity and maintains
the knowledge needed to keep graphs from thrashing. 

17.2.7.3  Display

Figure 17.38 shows the graphic from this specification in the SYSTAT graph-
ics controller window (Wilkinson, 1998). This program has a display system
that implements widgets, or graphical toolbar controls, for dynamic graphics.
The tool we will use is the Y-Power spinner widget, which sets p for the scale
specification for brainweight. (The other tools are irrelevant to the scenario).
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The lower graphic in the window shows a regression line that does not pass
through the center of the y values for most x values. This is because the brain-
weight data are severely skewed. The residuals plot directly above corrobo-
rates the finding; the LOESS smoother reveals a trend in the residuals due to
this skewness. If our regression were appropriate, the residuals would be fairly
symmetrically distributed about zero across the whole horizontal range.

Figure 17.38 Regression and residuals

Tap
Now we are ready to press the Y-Power spinner on the controller toolbar. We
want to lower the p exponent toward zero to see if transforming brainweight
with f : yp will improve our regression fit. Figure 17.39 shows the result after
we have tapped the Y-Power spinner to change its value to .5 (square-root).
The regression now appears better behaved. The residual plot shows less trend
in the LOESS smooth and the values are more evenly spread around zero.

How did this happen? First of all, the controller for the Y-Power spinner
sent out a ScaleChangeEvent message. Each Frame has a listener for this and
other messages and orders a redraw because the graphic no longer reflects the
state of the specification. All the graphs receive this redraw message and put
together a new set of geometry based on the changed situation. 
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The only difference between the ensuing events and the assembly we de-
scribed in Section 17.2.7.2 is that the transformation is now applied to brain-
weight because p = .5. For example, the line(position.smooth.loess()) graphing
function asks its Frame to return values on resid and sleep. That Frame has a
residual() transform registered for resid, so DataView will compute a linear re-
gression and return studentized residuals to line(position.smooth.loess()). Be-
fore it can do that, however, Frame has a power transform registered on
brainweight. So, the brainweight values are square-rooted before the regres-
sion is computed. At this point, line is looking at the residuals from a power-
transformed regression. It proceeds to do its own LOESS regression smooth-
ing on these residuals and presents the resulting geometric curve to Displayer.

Figure 17.39  Regression and residuals under square-root transformation

Notice that some elements, such as axis1(), get values that are unchanged
by the event that originally forced the redraw. They remain unchanged because
there is no power transformation hooked up to their data. We can save some of
this effort by having Frame keep track of regions on the Canvas where graphs
are being drawn, so that unchanged areas can be left untouched. In our expe-
rience, this is not worth the extra accounting effort.
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Tap Tap

We tap the Y-power spinner again and its value drops to zero. The display re-
freshes with the graphic shown in Figure 17.40. At this point, we have a fairly
good model. The LOESS smoother and spikes show some irregularity in the
residuals, but not enough to worry us. Incidentally, the scale numbers on the
lower graphic are intended to collide at the top of the vertical axis. This signals
the extent of the transformation. On the computer display, they move in real
time as the button is pressed, so their behavior is smooth and predictable.

Figure 17.40  Regression and residuals under log (pow=0) transformation

Tap Tap Tap

Figure 17.41 shows the result of a tap on the Tension spinner near the bottom
of the control panel. The controller for this spinner sends out a message to any
smoothers or statistical procedures that have a tension parameter. This param-
eter governs the amount of smoothing desired: large tension values corre-
spond to more smoothing, smaller values to less. Its default value is t = .5,
halfway between zero and one.
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Figure 17.41  Regression and residuals under log transformation, tension=.3

When notified of a TensionChangeEvent, each Frame broadcasts a redraw
to the graphs. This time, the line(position.smooth.loess()) graph relaxes a bit be-
cause the value of one of its parameters has been ordered changed through its
Frame. Notice, again, that none of the other graphs are modified, because they
do not have tension parameters to listen for. This type of local behavior under
the control of widgets through Frame messaging can be used to produce ani-
mations over statistical parameters. We can, in effect, see a movie of the be-
havior of a graph like line when tension changes in small increments over a
larger range in real time. To save space, we have illustrated only one tension
event over a large step. In SYSTAT, these taps change all the spinners in incre-
ments of .1 so that we can see small changes in tension or power instead of
sudden jumps.

The point of this scenario is to demonstrate the value of putting statistical
calculations under the control of graphs so that we can fine-tune a system and
represent behavior that is far more nuanced than what we see in typical data
mining displays. What our general design attempts to do is to get away from
static graphic entities and instead to treat graphs and their statistical methods
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like little creatures that respond to different messages and do their calculations
in their own peculiar ways. After all, these statistical methods evolved over
centuries in the interplay between mathematics and engineering. This evolu-
tionary perspective is not simply poetic license. We believe, following Gould
(1996) and Pinker (1997), that evolutionary theory can provide clues to good
design: build an ecosystem of many small organisms instead of a single dino-
saur. Dinosaurs were adaptive, but nobody beats insects.

Finally, this scenario was intended to illustrate the importance of autono-
my and cooperation among graphs in assembling and using statistical meth-
ods. Some contemporary graphics and statistics programs can perform part of
this scenario already because they are hard-wired to animate, link, drill–down,
and brush within certain widely used graphics such as bar charts and scatter-
plots. The real trick, however, is to replicate this behavior for any graph, on
any scale, in any coordinate system, in any ensemble of graphics. A graphics
grammar gives us the means.

17.3 Sequel
The next chapter concerns automating graphics. How do we construct jobs
that produce a large number of graphics automatically? How do we allow
components of a larger production system to access graphical methods and
produce their own displays without user intervention?



18
Automation

The word automation comes from the Greek  (self-moving ma-
chines). When we view graphics, we tend to think of them as created individ-
ually, like a painting. The computer tools for creating statistical graphics —
spreadsheets, statistics packages, and charting programs — are usually used
this way. A few, such as SAS, SPSS, Stata, and SYSTAT, are designed to be
able to produce large numbers of graphics in a single run. These packages are
often used for automated production graphics. Market research companies, for
example, routinely construct reports containing thousands of pages of tables
and graphics. Alternatively, scientific and media sites sometimes need to up-
date a single graphic every minute, hour, or day.

Such intensive applications are most effectively implemented with a pro-
gramming language designed specifically for graphics (as opposed to a gener-
al automation facility or macro language). Statistics packages such as SAS and
SYSTAT implement a proprietary graphics programming language. This can
be effective if one stays within a single programming environment. Linking
graphic and analytical applications from different vendors and locations re-
quires a more open standard, however. 

This chapter covers two complementary methods for automating produc-
tion graphics. The first is called Graphics Production Language (GPL). This
language originated in a project at the US Bureau of Labor Statistics. The BLS
wanted a system for graphics that would mirror its Table Producing Language
(Mendelssohn, 1974) so that the Bureau could produce reports containing ta-
bles of graphics. Dan Rope at the BLS worked with Dan Carr (1994) to devel-
op an implementation in Java. Leland Wilkinson joined them in 1997 and
continued the work jointly under the support of SPSS to reshape GPL into a
grammar-based system. Andy Norton developed the GPL parser.

The second method is called Visualization Markup Language (ViZml).
ViZml is designed to automate aesthetics. ViZml is also designed as an imple-
mentation layer so that complete graphic specifications can be transported
from machine to machine or network to network. ViZml was designed by Gra-
ham Wills and Roger Dubbs at SPSS to enable thin-client XML-based imple-
mentations of the grammar.
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18.1 Graphics Production Language
GPL consists of statements. Statements may span several lines and several
statements may appear on one line. There is no termination character for a
statement. A new statement is denoted by a label followed by a colon. GPL is
not case sensitive, except for characters inside quotation marks ("). 

The form of a statement is

<LABEL>: <name> = <function>

• The <LABEL> element and its associated colon are required. It is used to
identify a statement. A <LABEL> element consists of one of the following
labels: COMMENT, SOURCE, DATA, TRANS, SCALE, COORD, GUIDE, ELE-
MENT, DO, PAGE, and GRAPH.

• There are four types of statements. 

1) Comment statements (COMMENT).
2) Data definition statements (SOURCE, DATA, TRANS).
3) Specification statements (SCALE, COORD, GUIDE, and ELEMENT).
4) Control statements (DO, PAGE, GRAPH).

• COMMENT statements may appear anywhere.
• SOURCE, DATA, and TRANS statements apply throughout an entire pro-

gram (they have global scope) and may appear anywhere.
• Specification statements apply within a block defined by a GRAPH state-

ment (they have local scope). If no GRAPH statement exists, there is a sin-
gle implied GRAPH statement. Specification statements may appear in
any order within a block defined by a GRAPH statement.

• The <name> element and its associated equal sign may only be used for
DO, SOURCE, DATA and TRANS statements. Names consist of one or more
letter characters followed by zero or more letter characters, digits, and/or
the underscore character (_). A <variable name> is a name defined by a
DO, SOURCE, DATA, or TRANS statement.

• The <function> element is required. It consists of a function name fol-
lowed by an argument enclosed in parentheses.

• An argument consists of

1) a primitive list, or
2) a function set.

• A primitive list is a list of zero or more primitives separated by commas. 
• A function set is a set of zero or more functions separated by commas.
• A list is an ordered collection of elements (duplicates allowed).
• A set is an unordered collection of unique elements (no duplicates).
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• The collection [1, 2, 1] contains a duplicate. The collection [1, 2, 3] does
not. The collection [f(), f()] contains a duplicate. The collection [f(), g()]
does not. For GPL, the collection [f(a), f(b)] is considered to contain a
duplicate, even though the arguments to the functions are different. In
other words, (position(x), color(y), position(z)) is not a proper GPL argu-
ment because it contains a duplicate (by GPL definition) and sets may
not contain duplicates.

• A primitive consists of 

1) a string enclosed in quotation marks, or
2) a number, or
3) a name.

• A string is an ordered list of characters. 
• A number is a string representing an integer, real, or complex number. 
• A name is a <name>, namely, a <source name>, a <field name>, a <vari-

able name>, or the unity value (1).
• A graphics algebra expression consists of one or more <variable name>,

or <system variable name> elements separated by graphics algebra opera-
tors.

• Graphics algebra operators are the characters "*", "/", and "+".
• In GPL, a graphics algebra expression is considered a function. For con-

venience, the function op(x*y) and the expression x*y are equivalent.

The syntax for each of the statement types follows.

Comment Statements

COMMENT: <comment>

• The optional COMMENT statement consists of a comment, which may
contain any string of characters except one that includes a <LABEL> fol-
lowed by a colon.

Data Definition Statements

SOURCE: <source name> = <fn>(<args>)
DATA: <variable name> = <fn>(<args>)
TRANS: <variable name> = <fn>(<args>)

• The SOURCE statement specifies a data source. It is optional if the source
is specified in a DATA statement.
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• The DATA statement assigns a variable name to a column or field in a
data source. It is optional if variable names are already defined through
context (such as a database access utility). Permissible data functions are
listed in Chapter 3. The <variable name> element specifies a single vari-
able, but some of the data functions (e.g., shape.low) have multiple columns
for the <field name> argument list.

• The optional TRANS statement specifies a variable transformation. Per-
missible transformations are listed in Chapter 4.

Specification Statements

SCALE: <scale type>(aesthetic("<aesthetic type>"), <args>)
COORD: <coordinate type>(aesthetic("<aesthetic type>"), <args>)
GUIDE: <guide type>(aesthetic("<aesthetic type>"), <args>)
ELEMENT: <element type>(<args>)

• The optional SCALE statement specifies a scale for a dimension. The
default <aesthetic type> is aesthetic("position"), so 

SCALE: <scale type>()  and
SCALE: <scale type>(aesthetic("<aesthetic type>")  are equivalent.

Only one SCALE statement per dimension and one dimension per SCALE
statement are allowed. Permissible scale types are discussed in Chapter 6.
If a SCALE statement is omitted, the default scale is interval().

• The optional COORD statement specifies a coordinate system for graph-
ics. The default <aesthetic type> is aesthetic("position"), so 

COORD: <coordinate type>() and
COORD: <coordinate type>(aesthetic("<aesthetic type>") are equivalent.

Only one COORD statement per aesthetic is allowed. Coordinate functions
are covered in Chapter 9. If a COORD statement is omitted, the default is
rectangular coordinates. Coordinate functions may be nested. The expre-
sion rect(dim(3, 4), polar(dim(1, 2))) is a rectangular layout of polar plots.

• The optional GUIDE statement specifies axes, legends, and other guides.
Only one GUIDE statement per dimension and one dimension per GUIDE
statement is allowed. Guide functions are discussed in Chapter 12. If a
GUIDE statement is omitted, the default guide is one axis for each position
dimension and one legend for each non-position aesthetic dimension.
Guides may be suppressed with a null() argument.

• The optional ELEMENT statement specifies a geometric element. Permis-
sible geometric elements are discussed in Chapter 7. Graphics algebra
expressions are discussed in Chapter 5. If an ELEMENT statement is omit-
ted, only an empty frame is produced.
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Control Statements

DO: <variable name> = step(from(<number>), to(<number>), by(<number>))
DO: if(<expression>)
DO: end
PAGE: begin
PAGE: end
GRAPH: begin(origin(<measure, measure>), scale(<measure, measure>))
GRAPH: end

• The optional DO statement acts as an iterator or conditional executor.
Either form requires a closing DO:end statement. The <number> argument
for the iterator form of DO may be an integer or real number.

• The optional PAGE statement groups all graphics within its range to a sin-
gle display area with a fixed origin. This statement does not set or pre-
sume a page size. Graphs are sized and placed with the GRAPH statement.
The PAGE statement simply groups graphs together on a single page with
a common origin. A measure is a number expressed in length units, e.g.,
1cm, 2in, 72pt. Measures increase to the right and up relative to the page
origin.

• The optional GRAPH statement groups all elements within its range to a
single frame for each aesthetic. It also sizes and locates graphics on a
page using origin and scale values expressed in inch or centimeter units.
GRAPH statements may not be nested, but multiple graph statements may
be nested within a PAGE statement.

18.1.1 Examples

We begin with a few examples that illustrate the syntax. We omit the graph in
these examples to save space. After these introductory examples, we show
graphs that depend on the use of GPL itself, particularly to do overlays.

First, an example of a data source specification:

SOURCE: u = source("url")
DATA: d = col(source(u), name("date"), unit.time())
DATA: r = col(source(u), name("revenue"), unit.currency())
DATA: c = col(source(u), name("company"), unit.category())
DATA: s = col(source(u), name("state"), unit.category())
DATA: p = col(source(u), name("price"), unit.currency())
DATA: e = col(source(u), name("earnings"), unit.currency())
DATA: lon = col(source(u), name("longitude_coordinate"))
DATA: lat = col(source(u), name("latitude_coordinate"))
DATA: longitude, latitude = map(source(s), id(s))
TRANS: pe = ratio(p, e)

$
$
$
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To create a paneled scatterplot, we need only one statement:

ELEMENT: point(position(d*r*c*s))

The following verbose program creates a similar graph with coloring to
mark the price–earnings ratios. We have added optional statements to indicate
how they can be used.

PAGE: begin
SCALE: time(dim(1))
SCALE: interval(dim(2), min(0), max(1.0d8), unit(currency.dollar))
SCALE: cat(dim(3))
SCALE: cat(dim(4))
COORD: rect(dim(3,4), rect(dim(1,2)))
GUIDE: axis(dim(1), label("Date"), format("mm/dd/yy"))
GUIDE: axis(dim(2), label("Revenue"))
GUIDE: axis(dim(3), label("Company"))
GUIDE: axis(dim(4), label("State"))
GUIDE: legend(aesthetic(color.blue), dim(1))
ELEMENT: point(position(d*r*c*s), color(pe))

PAGE: end

The following program is similar to the preceding, but it uses a different
COORD statement to create a one-dimensional paneling of 3D graphs.

PAGE: begin
SCALE: time(dim(1))
SCALE: interval(dim(2), min(0), max(1.0d8), unit(currency.dollar))
SCALE: cat(dim(3))
SCALE: cat(dim(4))
COORD: rect(dim(4), rect(dim(1,2,3)))
GUIDE: axis(dim(1), label("Date"), format("mm/dd/yy"))
GUIDE: axis(dim(2), label("Revenue"))
GUIDE: axis(dim(3), label("Company"))
GUIDE: axis(dim(4), label("State"))
GUIDE: legend(aesthetic(color.blue), dim(1))
ELEMENT: point(position(d*r*c*s), color(pe))

PAGE: end

The following program places two graphs on a page.

PAGE: begin
GRAPH: begin(origin(0, 0), scale(10cm, 5cm))

    ELEMENT: point(position(d*r))
GRAPH: end
GRAPH: begin(origin(0, 8cm), scale(5cm, 5cm))

    ELEMENT: interval(position(pe*c))
GRAPH: end

PAGE: end
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18.1.1.1  Syntax for Typical Graphs

For review, we now show examples of GPL programs for typical graphs.

scatterplot
ELEMENT: point(position(d*r))

line chart
ELEMENT: line(position(d*r))

bar chart
ELEMENT: interval(position(d*r))

horizontal bar chart
COORD: rotate(270)
ELEMENT: interval(position(d*r))

clustered bar chart
ELEMENT: interval.dodge(position(d*r), color(c))

stacked bar chart
ELEMENT: interval.stack(position(summary.proportion(r)), color(c))

stacked bars chart
ELEMENT: interval.stack(position(summary.proportion(d*r)), color(c))

pie chart
COORD: polar.theta(dim(1))
ELEMENT: interval.stack(position(summary.proportion(r)), color(c))

paneled pie charts
COORD: rect(dim(2), polar.theta(dim(1)))
ELEMENT: interval.stack(position(summary.proportion(d*r)), color(c))

map
ELEMENT: polygon(position(longitude*latitude))

choropleth map
ELEMENT: polygon(position(longitude*latitude, split(s)),
                              color.hue(summary.mean(y))) 
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scatterplot on top of map
ELEMENT: polygon(position(longitude*latitude))
ELEMENT: point(position(longitude*latitude))

tree
ELEMENT: edge(position(link.join(xparent*yparent + xchild*ychild)))

minimum spanning tree
ELEMENT: edge(position(link.mst(xnode*ynode))
contour
ELEMENT: contour(position(smooth.quadratic(x*y*z)),
                             color(smooth.quadratic(x*y*z)))

histogram
ELEMENT: interval(position(summary.count(bin.rect(y))))

frequency polygon
ELEMENT: area(position(summary.count(bin.rect(y))))

kernel density
ELEMENT: area(position(smooth.density.kernel(y)))

3D histogram
COORD: rect(dim(1,2, 3))
ELEMENT: interval(position(summary.count(bin.rect(x*y))))

2D hex-binned scatterplot
ELEMENT: polygon(position(bin.hex(x*y)), color(summary.count(bin.hex(x*y))))

dot histogram
ELEMENT: point.dodge(position(bin.dot(y)))

symmetric dot plot
ELEMENT: point.dodge.symmetric(position(bin.dot(y))

loess smoother
ELEMENT: point(position(smooth.loess(x*y)))

The following sections contain overlaid graphs that depend on the use of
GPL
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18.1.1.2  Bordering Scatterplots

Overlays can be used to position graphics relative to frames. They are espe-
cially useful for representing marginal variation in rectangular plots. Figure
18.1 shows an example for a quantile plot on the same data used in Figure 5.1.
We have added dot plots to the top and right borders of the plot so that we can
see the skewness of the distribution. 

TRANS: rmil = prank(military)
GRAPH: begin(origin(0, 0), scale(10cm, 10cm))
   ELEMENT: point(position(military*rmil))
GRAPH: end
GRAPH: begin(origin(0, 10cm), scale(10cm, 5cm))
   ELEMENT: point.dodge(position(military))
GRAPH: end
GRAPH: begin(origin(10cm, 0cm), scale(5cm, 10cm))
   COORD: position(transpose(dim(1, 2)))
   ELEMENT: point.dodge(position(rmil))
GRAPH: end

Figure 18.1  Quantile plot of military expenditures

Densities are especially suited for bordering. They help reveal skewness
in scatterplots and can be helpful for assessing the need for power or log trans-
formations. Bordering in three dimensions requires us to consider facets and
viewing angle for displaying graphics appropriately.
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18.1.1.3  Bordering Heatmaps with Cluster Trees

Figure 18.2 shows an example of permuting a small matrix whose values are
represented by colored tiles. The display is bordered by cluster trees.

DATA: unode = col(source("col tree"))
DATA: vnode = col(source("col tree"))
DATA: xnode = col(source("row tree"))
DATA: ynode = col(source("row tree"))
DATA: x = reshape.rect(climate, economic, recreation, transport,

arts, health, education, crime, housing, "colname")
DATA: y = reshape.rect(climate,economic,recreation,transport,arts,

health, education, crime, housing, "rowname")
DATA: d = reshape.rect(climate, economic, recreation, transport,

arts, health, education, crime, housing, "value")
GRAPH: begin(origin(0, 0), scale(4cm, 8cm))
   ELEMENT: polygon(position(bin.rect(x*y)), color.hue(d))
GRAPH: end
GRAPH: begin(origin(0, -2cm), scale(4cm, 2cm))
   COORD: transpose(dim(1, 2), reflect(dim(2)))
   ELEMENT: edge(position(link.join(unode*vnode)))
GRAPH: end
GRAPH: begin(origin(4cm, 0cm), scale(2cm, 8cm))
   ELEMENT: edge(position(link.join(xnode*ynode)))
GRAPH: end

Figure 18.2  Permuted tiling
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18.1.2 GPL Development Environment

Figure 18.2 shows an example of a development environment for GPL. The
upper left window shows a program for generating a stacked bar chart on the
countries data. The window below it shows the generated ViZml. The output
graphic is in the upper right window. The lower right window shows a tree
control for editing and updating the program. A key–value pair structure al-
lows users to modify the graph without knowing GPL.

Figure 18.3 Editing a GPL program

18.2 Visualization Markup Language
ViZml is an extensible markup language (XML) for specifying graphics us-
ing the grammar-based concepts. XML is not a language; it is a specification
mechanism based on a particular data structure — a tree. Because it is based
on a tree, XML is suited for graphics grammar specifications (see Figure 1.2).
XML allows us to automate the production of graphics with a simple structure
that provides an arbitrarily level of detail.

There are many reasons for adopting XML as a graphics specification me-
dium. First, XML parsers offer syntax checking and editing tools. Second,
there are numerous GUI tools available for working with XML; one need not
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type XML itself. Third, many open-source and commercial systems include
XML utilities or are based on XML for their Web services. Fourth, XML al-
lows us to remove stylistic details from a language like GPL. XML offers a
hierarchical key-value pair mechanism that lets us specify a huge number of
stylistic details in a parsimonious manner. A designer can create style tem-
plates in ViZml, for example, for a GPL programmer to employ in a produc-
tion system. Fifth, by writing a GPL parser that generates ViZml, we enhance
portability, improve debugging, and open the system to future modification
and extension.

ViZml is an XML schema that takes the basic grammar concepts and
places them within an XML framework. Core grammar concepts are mapped
to high-level nodes within the schema, and a hierarchy is defined so that only
charts that are grammatically correct can be specified. With this schema,
XML-aware editors can be used directly to construct specifications, and pro-
grams can read specifications that use the schema and automatically have de-
fault values provided. Using an XML schema, we can be confident, for
example, that no one can set the color of gridlines on a nonexistent axis.

Figure 18.4 shows a graphic based on the same model underlying Figure
6.5. We have added the kind of stylistic features demanded in many business
applications — drop shadows, color flows, text formatting, and 3D effects.
The bars have been colored by intraday volatility (difference between high and
low price). This coloring, of course, is redundant with the length of the bars.
Some may object to such redundancy, but it generally does no harm to, and of-
ten enhances, perceptual decoding.

Figure 18.4 Bar chart of SPSS stock price
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The XML that generated Figure 18.4 follows. We have colorized the three
main sections of the specification. The Data components are in green. The
Structure components are in blue. And the Style components are in red.

<?xml version="1.0"?>
<graph>

<source id="data">
<fileAccess fileName="stockValues.csv" separator="," 

header="true"/>
</source>
<variable id="date" sourceName="date" source="data" cate-

gorical="false">
<meta>

<dateTimeFormat>
<dateFormat>

<dayOfMonth/>
<monthName long="true"/>
<year showCentury="true"/>

</dateFormat>
</dateTimeFormat>

</meta>
</variable>
<variable id="high" sourceName="high" source="data" cate-

gorical="false"/>
<variable id="low" sourceName="low" source="data" cate-

gorical="false"/>
<variable id="close" sourceName="close" source="data" 

categorical="false"/>
<variable id="range" categorical="false" expres-

sion="high+low"
source="data"/>

<domain categorical="false" id="dateDomain">
<interval min="1996-06-02" max="1996-06-23"/>

</domain>

<frame id="outer" style="cell">
<dimension role="x" domain="dateDomain" lowerMar-

gin="4.4%"
upperMargin="4%" upperMapping="exact"
lowerMapping="exact">
<axis id="xaxis" baselineStyle="hidden">

<majorTicks markStyle="ms" delta="7"
tickLabelStyle="ital"/>

</axis>
</dimension>
<dimension role="y">

<axis id="yaxis" baselineStyle="hidden">
<majorTicks markStyle="ms" delta="1"

tickLabelStyle="fonts"/>
</axis>

</dimension>

<element type="interval" id="bars" style="element-
Style">

<x variable="date"/>
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<y variable="range">
<statistic method="range"/>

</y>
<color variable="range" low="navy" high="red">

<statistic method="range"/>
</color>

</element>
</frame>

<style id="fonts" value="font-family:Arial;font-
size:8pt">

<style id="ital" value="font-style:italic"/>
</style>
<style id="hidden" value="visibility:hidden"/>
<style id="f" value="fill:transparent; stroke:transpar-

ent;margin:20px"/>
<style id="cell" value="stroke:black;fill:#4af;stroke-

width:0.5px;
gradient:#8bf; gradient-angle:60"/>

<style id="ms" value="stroke:black;stroke-width:0.5px"/>
<style id="elementStyle" value="stroke-

width:0.5px;width:0.27cm;fill:
navy; gradient:white; gradient-focus:-0.5;shad-

ow:gray;
shadow-dx:5;shadow-dy:5;shadow-opacity:0.4">

<style id="element2Style" value="stroke:navy; stroke-
width:2px"/>

</style>
</graph>

18.2.1 Data Definition

Nodes in this section define grammar entities from Chapter 3 and Chapter 4
(data and variables). They are colored green in the above listing. 

The source node defines where the actual data values can be found. This
may be embedded in the XML as row and value nodes, making up a simple
table, or can refer to an external source such as a database, a native object or,
as in this case, a file. The columns of data in the source, which will correspond
to variables, are not typed by the source, so the same column may be used as
a category and as a date or scalar value. There may be multiple sources of data
for a chart.

The variable node defines how the source data will be used in the
chart. Its necessary attributes are id of the variable, which is effectively its
name, the sourceName, and source. The latter two attributes state which
column of which source to use. The only access to the sources is via the vari-
able, so modifying ViZml to use different sources or change the target data
does not require any changes outside this section. This strong separation be-
tween data and the use of data in the chart definition is an important concept;
it not only makes it easy to change the underlying data, but it also allows data
to be used in different ways without needing to go to the source to redefine the
data.
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The final required attribute is the categorical flag. This defines
whether the variable defines categories or numbers. From the viewpoint of the
grammar, this is the single most important piece of metadata that the system
needs to know. It indicates how a variable is used as the second operand in a
blend, determines the type of axis and controls which aesthetics may use the
variable. Therefore ViZml requires this flag be defined for each variable.

The variable node may contain other nodes that define metadata, sort or-
der, display characteristics and formatting, whether it is to be used as a weight
variable, categories to combine or drop, and formulas to apply to create de-
rived variables.

Finally, the domain node defines the domain of a dimension. Domains
are used for several purposes, including the following.

Comparability: A common use of charts is to look at the same data
across time or across another variable. In such a case we want the charts to
look as similar as possible. By defining a same domain for the axes, we ensure
that the charts using the same ViZml definitions but different data do not
change the axes’ ranges. This is not just a case of ensuring that a scalar axis
runs from, say, 0 to 100 for each chart, but also ensures that even if a category
is missing from a given set of data, a bar chart will allocate space on the axis
for that category. 

Filtering: If we are uninterested in certain categories for a chart, or want
to concentrate on certain ranges, we may define a domain to include only those
categories or ranges we are interested in. The “out-of-domain” values are
omitted.

Including important values in a plot: The most common use here is to
ensure that zero is included in bar charts or other charts which measure addi-
tive quantities.

Exact aesthetic mapping: If we are using a variable to map to size, for
example, we may want to ensure that zero maps to zero, even if no value in the
data actually is zero. A domain including zero solves this problem.

18.2.2 Structure

This section, colored blue in the listing, defines the essence of the chart. It is
where the algebra, geometry, aesthetics, statistics, scales, coordinates, facets
and guides are all defined. If this section is changed, the resulting chart will be
fundamentally different. If this section is not changed, all that can change are
style details and underlying data.

The outer node of this section is a frame node. Each frame node may
contain some text (to form a title, annotation, footnote or other label), a legend
(for an aesthetic), sub-frames, or, as in this case, nodes defining a graph. The
frames may be given a location in absolute or percentage coordinates, allow-
ing some simple layouts to be created. In this example, there is a single frame
containing the chart.
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To define the chart, we first define a coordinate system consisting of one
dimension or a set of such nodes. These define the inner coordinate system
(that is, the coordinate system within each panel of a faceted chart, if faceting
is defined). For this example, we simply define two dimensions, with a role of
“x” and a role of “y”. We could have chosen a coordinateTransform node
with a transpose method if we wished to transpose the plot. Other coordinate
transforms include polar and fisheye transforms and some 3D projection trans-
forms.

One other option we did not define in this plot is a scale for each dimen-
sion. If missing, the scale defaults to a linear scale, and since no domain is de-
fined, the domain is chosen so that all the points defined by the element node
below will be visible.

Next is the element node. We have a very simple element; an interval
element. It is an error to define an element dimension that does not have a cor-
responding frame dimension. It is not an error to leave one out. The rule is that
an element must be able to be embedded within the frame. If a dimension is
missing the element can be drawn assuming a constant value for that dimen-
sion, typically either in the middle of the dimension’s domain (for points,
lines, and similar) or filling the entire domain (for intervals).

We have added a color aesthetic to this element with the node 

<color variable="range" low="navy" high="red">
<statistic method="range"/>

</color>

Notice we used the same statistical method for color as we did for posi-
tion. We can add statistics in two ways — either individually on a dimension
(or an aesthetic) or we can replace all the element dimension information by a
position statistic node, which allows complex, multi-dimensional statistics to
be used. Thus on a scatterplot we could have a line element with position de-
fined by:

<x variable="xv"/>
<y variable="yv">

<statistic method="median"/>
</y>

This will draw a line connecting the median values of yv for each group
defined by having the same value of xv. Under the second formulation, we
could have

<position>
<statistic method="smooth"/>
<x variable="xv"/>
<y variable="yv"/>

</position>
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This will create a set of x and y values that define a smooth fit to the data.
For the default case shown, the default smooth is a simple linear regression, so
the actual data generated by the smooth will simply be the endpoints of a line.

In this example, we have not defined any faceting. To do so we would add
a tableFacet or coordinateFacet node as a peer of the dimension def-
initions. Each graph must have the same faceting for all the elements of the
chart, and this mechanism enforces that. It is legal to have different variables
being used to display the points, lines or other elements within each cell, but
they must all share the same layout of facets.

18.2.3 Style

The final section defines styles that are used to make cosmetic appearance
modifications to the chart. In the structure section, any node that defines a vis-
ible entity may have a style attribute. This reference is to a style node in
the final section of the XML. The decision was made to allow style modifica-
tions only by reference to style in this section. Other XML systems using
styles allow inline embedding of styles, but ViZml requires styles to be out-
side the structure section. This is slightly more cumbersome if only minor
changes are required, but it makes it much easier to replace styles and create,
in effect, style sheets that can be used with multiple charts.

The implementation of styles in ViZml is based on the Cascading Style
Sheet (CSS) standard that is extensively used to define styles for web pages.
Each style node contains an id naming it and a string value that defines the
style. As in CSS, the style string is a semicolon separated list of key:value
pairs, each of which changes the default appearance. We have supplemented
the CSS definitions with additional ones that are useful in our specific domain.
Where possible we have based our extensions on similar CSS attributes. We
also used Scalable Vector Graphics (SVG) and Vector Markup Language
(VML) as a reference and guide to defining attributes, with the intent that peo-
ple familiar with these markup languages will be able to read and write ViZml
styles more easily.

In Figure 18.4, the bars have been given a style that modifies their appear-
ance. Child nodes inherit all the properties of their parent and so hierarchies
of styles may be defined.

The set of styles attributes that can be set is given in Table 18.1. In several
cases the definitions are quite complex, and the reader is referred to the CSS
definition for the attribute. Attributes of type color conform to either the
CSS ‘#RRGGBB’ syntax or may be a name from the SVG list of color names
(which expands the smaller CSS list of names). Length attributes consist of a
number and a unit. Units may be inches, centimeters, millimeters, pixels,
points or percentages. Fractional amounts are legal.
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Table 18.1 Style Attributes

Attribute Region Target
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18.2.4 Levels of Specification

If someone were to describe the composition of Figure 18.4, the description
might read something like the following.

The figure shows a plot with vertical bars placed along the
horizontal axis at data locations. The data shown are dates.
The horizontal axis has tick marks at weekly intervals, start-
ing on June 1, 1996 and continuing to June 22, 1996. There
is no title for the plot or for the axes (haven’t you read
Tufte?).

If we pressed for more detail, we might also get the following.

The dates are formatted as the US English comma-delimited
form of the month, day, and year. The tick labels for the dates
are drawn horizontally. The plot is drawn against a blue
background. It looks like the font used is Helvetica or some
other san-serif font. All the lines look about normal thick-
ness.

In both natural language and in the general grammar, there is an impor-
tance ranking for chart features. Although a typesetter might think of fonts as
preëminent, the axes are a parent class of the labels on the scales. One of the
core principles of ViZml is that the XML description of a chart should reflect
this type of ranking. There are three levels of importance within ViZml:

Attribute Region Target
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Named Nodes: Core elements of the specification are represented in the
XML as nodes with a unique name (or “tag” in XML nomenclature). They are
named to parallel the grammar. Many of them have a required id attribute that
allows easy programmatic manipulation of the XML. Some of these nodes
may also have attributes that must be specified and have no default value.
These required attributes are at the same level of importance and will radically
affect chart appearance.

Optional Child Elements and Attributes: These modify a parent node’s
appearance. The rule for ViZml is that an optional attribute or child should not
radically modify a chart. Typically an optional child element will add some-
thing to the graphic representation of the parent node, whereas an optional at-
tribute will typically modify a default value. 

Styles: All XML nodes that have a visible representation have a default
style. That default style can be modified by referring to a style that overrides
some of the attributes of the style (attributes are given in Table 18.1). While
some of them might dramatically affect the visual appearance of a chart, they
do not affect the basic representation or the mapping from the data.

18.2.5 Default Settings

One of the more difficult decisions underlying ViZml was the conclusion that
a missing node implies that the corresponding graphic representation is to be
absent. Because it is very common for axes to have tick marks, it would seem
to make more sense to have them visible by default and to add an option to
hide them. This was in fact the initial standard, but the decision was changed
for two reasons. The first reason is consistency. It puts a burden on the user
(and on software processing XML) to differentiate between items that default
to hidden and ones that default to visible. For example, what should be the de-
fault title for a blended dimension? Supporting this consistency is the behavior
of other markup languages, such as HTML, where the default behavior is only
to show items if explicitly defined. The second reason is more pragmatic. In
an interactive system, it is usually important for a graphic system to be able to
report information that the user has clicked on (to perform drill-down, editing
or other interactions). It is much easier and makes more sense to be able to re-
port the node that the user clicked on (e.g. the user clicked on the majorTicks
node) rather than report that the axis node was clicked on and pass extra infor-
mation to indicate it was the ticks that were clicked on. As a general principle,
then, ViZml assumes that if an element could be defined, but is not, it will not
be shown. This is extended to attributes as far as possible, so that the default
value for all Boolean attributes is false.
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18.2.6 Locales

We handle locales in as parsimonious manner as possible. That is to say, we
specify locale for the entire graph and let the local system determine appropri-
ate formatting. In most formatting systems, a pattern is given for dates, such
as “mm/dd/yyyy” which is taken to be a two-digit month, followed by a for-
ward slash, followed by a two-digit day of month, followed by a forward slash
followed by a four-digit year. Although adequate within some locales, this ap-
proach fails when used in other locales. In ViZml, we require that a chart cre-
ated in one locale be as intelligible as possible in another locale. Therefore we
do not use the pattern model in ViZml, but instead specify those date elements
that are wanted in the tick labels. It is possible to define a format that is non-
sensical using this scheme, as it is with a pattern-based scheme, but that is the
price of flexibility. Following our general principle we only display those date
segments that occur in the XML, so if a user specifies only week and year,
“Friday, 1999” will be the result.

Figure 18.5 shows an example. We have made a minor modification to set
the locale of the entire graph to Chinese:

<graph lang="zh">
  ...
</graph>

.

Figure 18.5 Bar chart of SPSS stock price in Chinese
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Figure 18.6 shows the same graph in Latvian. 

Figure 18.6  Bar chart of SPSS stock price in Latvian

18.2.7 Extensibility

In graphics grammar, we may construct many combinations of graphic ele-
ments, coordinate systems, aesthetics, statistics, styles, and so on. ViZml al-
lows for these combinations, but the intent is not simply to be able to specify
all the currently imaginable charts; it is also to be extensible to other charts
that use pieces yet to be invented. The ‘X’ in XML stands for extensible, and
ViZml employs the following techniques for extensibility.

18.2.7.1  Schema Support

ViZml makes use of a feature of XML schemas that allows nodes to be defined
as extensible. A user of ViZml who wants to be able to add a new attribute to
an element simply has to write a small schema that includes the ViZml schema
and defines a new node based on the element node. That new node can then be
used wherever the original one was used. 

In a similar way, if a new aesthetic is desired, that aesthetic can be defined
in the new schema and added to the new node derived from element. In some
cases, there are a number of definitions all of which share similar specifica-
tions (aesthetics require a variable and an id and may have a domain). ViZml
has been defined with a base node that encompasses this required behavior,
thus making it simple to create a new aesthetic. 



18.2  Visualization Markup Language 601

In summary, schemas allow a fairly simple object-oriented design ap-
proach, which ViZml takes advantage of. A user who wants to extend ViZml
need only design a new schema that includes the ViZml schema, and adapt it
as desired. In fact, the schema is also open to restriction, so that an application
that cannot cope with certain aspects of the grammar may explicitly forbid
them. However, in most cases, it would be preferable simply to ignore XML
that cannot be processed, perhaps logging a warning message. Thus a very
simple engine that only knew how to create bar charts, scatterplots and histo-
grams has two options:

1)  Define an XML that includes ViZml and restricts the elements so that 
only those charts may be defined.

2)  When processing input XML, ignore all irrelevant XML.

The latter option is easier to implement, but has the disadvantage that valida-
tion cannot be used prior to processing an XML specification. Fortunately, the
approaches are consistent with each other, so the second approach can be tak-
en initially and the first added later. 

18.2.7.2  New Decorations: Modifying Style

Modifying style specifications is trivial; all that is needed is to document a
new key-value pair. For example, when gradients were added to the list of
available style attributes, there was no change made to the XML schema, and
the following style was immediately legal.

<style id="s" value="fill: blue; 
 gradient: white; gradient-angle: 45;
 gradient-focus: 0.5"/>

Following the second rule in Section 18.2.7.1, all the gradient terms
were ignored and the graph displayed without gradients. When the code was
written to display gradient fills, the gradient style definition was applied and
used. Users of previous application versions can read the new XML and will
see essentially the same charts, with some style features ignored. This behav-
ior is similar to the behavior of web browsers when confronted with more re-
cent HTML or CSS definitions than the ones they were written to
accommodate.

18.2.7.3  Nodes for Generalization: Parameter and Method

The grammar defines some concepts, such as axes, dimensions, variables, and
faceting, that are unlikely to need much extension. Axes are well understood
and ViZml provides means of specifying margins, rounding, formatting of
numbers/dates/strings, tick frequency and base, tick length, label angle, and
staggering. It is unlikely that many applications will need to override these.
Dimensions, variables, and faceting have specific meaning in the grammar,
and so are not amenable to much change. For these types, modifying the sche-
ma is the preferred means of extension. 
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In contrast, there are other structural entities defined that are practically
certain to be extended. A prime candidate for extension is the statistic
node, which is used to define any statistic that could be calculated on data.
This is a huge class and is constantly growing. Even were we to define all the
statistics currently available, next year would see the list incomplete. Rather
than attempt such a definition, ViZml explicitly defines statistic in terms of one
or more parameter nodes, which contain a textual key attribute and a com-
pletely general value attribute. This freedom allows any parameter to be de-
fined, at the expense of losing the ability to validate that the parameter makes
sense. The statistic node also has a required method attribute, which al-
lows the main type of statistic to be defined. Using this system, a robust linear
fit is defined as follows.

<statistic method="smooth">
  <parameter name="model" value="linear"/>
  <parameter name="robust" 
   value="biweight"/>
</statistic>

and a loess smooth with uniform kernel and window of width 25% of the data
is defined by the following.

<statistic method="smooth">
  <parameter name="model" value="loess"/>
  <parameter name="kernel" 
   value="uniform"/>
  <parameter name="width" value="25%"/>
</statistic>

The disadvantage of such flexibility is that the following XML is valid, but un-
likely to be useful.

<statistic method="smooth">
  <parameter name="model" 
   value="polynomial"/>
  <parameter name="degree" 
   value="should be a positive integer"/>
</statistic>

Another example of the use of the method / parameter approach is Coor-
dinateTransform. This node takes a set of defined dimensions and trans-
forms them. The initial version of ViZml defined the following transforms.

transpose – reflects the coordinate system around the line y = x
polar – interprets the first two coordinates as theta and radius
rectangular – performs a metric transform into 3D
oblique – performs an oblique transform in 3D
triangular – converts 3D coordinates to 2D barycentric coordinates
inset – insets dimensions to change the aspect ratio or trim edges
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These coordinate transformations can be chained. For example, if we ini-
tially have a single stacked bar and apply the following transforms, we create
what we might call a “3D doughnut chart.” The first transform takes the
stacked bar and converts it to polar coordinates (a pie chart). The second trans-
form insets the lower radius so as to remove a radius from the center of the pie.
The final transform locates the result in 3D.

<coordinateTransform method="polar"/>
<coordinateTransform method="inset">
  <parameter name="r-min" value="10%"/>
</coordinateTransform >
<coordinateTransform method="rectangular">
  <parameter name="phi" value="45"/>
  <parameter name="theta" value="15"/>
</coordinateTransform >

Figure 18.7 shows the result of a rather unusual CalendarTransform ap-
plied to a scatterplot that includes a path element. This figure is not easily rec-
ognizable as a scatterplot, yet each day in the calendar is a simple frame.

Figure 18.7  A calendar rendition of the SPSS stock data (color represents 
intraday volatility and height of dot represents closing price)
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The complete XML for the graphic in Figure 18.7 is as follows:

<?xml version="1.0"?>
<graph>

<source id="data">
</source>
<variable id="date" sourceName="date" source="data" cate-

gorical="false">
<meta>

<dateTimeFormat>
<dateFormat>

<dayOfMonth/>
<monthName long="true"/>
<year showCentury="true"/>

</dateFormat>
</dateTimeFormat>

</meta>
</variable>
<variable id="high" sourceName="high" source="data" cate-

gorical="false"/>
<variable id="low" sourceName="low" source="data" cate-

gorical="false"/>
<variable id="close" sourceName="close" source="data" 

categorical="false"
domain="vd"/>

<variable id="exist" sourceName="close" source="data" 
categorical="true"/>

<variable id="range" categorical="false" expres-
sion="high+low" 
         source="data"/>

<domain categorical="false" id="dateDomain">
<interval min="1996-06-01" max="1996-06-30"/>

</domain>

<domain categorical="false" id="vd">
<interval min="23" max="27"/>

</domain>

<frame id="outer">
<frame id="main" style="f">

<dimension role="x" upperMapping="exact" lowerMap-
ping="exact">

</dimension>
<dimension role="y">
</dimension>
<coordinateTransform method="extension">

<parameter name="class" 
value="com.spss.vis.sample.CalendarTrans-

form"/>
<parameter name="start" value="1996-06-01"/>
<parameter name="end" value="1996-06-30"/>

</coordinateTransform>

<element type="point" id="p" style="elementStyle">
<x variable="date"/>
<styleBy variable="exist" styleCycle="a"/>
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<color variable="range">
<statistic method="range"/>

</color>
<labeling variable="date" style="ital">

<dateTimeFormat>
<dateFormat>

<dayOfWeek long="false"/>
<dayOfMonth fill="false"/>

</dateFormat>
</dateTimeFormat>

</labeling>
</element>
<element type="path" id="pp" style="spp">

<x variable="date"/>
<y variable="close"/>

</element>
<element type="point" id="ppp" style="spp">

<x variable="date"/>
<y variable="close"/>

</element>
</frame>

</frame>

<styleCycle id="a">
<cycle>

<style id="a" value="fill:navy; gradient:white; 
gradient-angle:45"/>

</cycle>
</styleCycle>
<style id="fonts" value="label-location-x:negative;label-

location-y:
positive;label-location-inside:true;font-fami-

ly:Arial;
font-size:8pt">

<style id="ital" value="font-style:italic;font-
size:7pt;margin:1px"/>

</style>
<style id="hidden" value="visibility:hidden"/>
<style id="f" value="fill:transparent; stroke:transpar-

ent;margin:20px"/>
<style id="cell" value="stroke:transparent;fill:transpar-

ent"/>
<style id="ms" value="stroke:black;stroke-width:0.5px"/>
<style id="elementStyle" value="fill:grey;glyph-

type:square;
glyph-size:1.50cm;stroke-width:0.5px"/>

<style id="spp" value="stroke-width:2px;stroke:navy; 
fill:navy; 

glyph-size:4px"/>
</graph>

This XML shows the method/parameter extensibility approach for both statis-
tics and for coordinate transforms. 
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18.2.8 Comparison with Other XMLs

As we have discussed, the approach taken in defining ViZml was starting with
core grammar entities in a central structure section, then adding optional child
elements and attributes to expand possibilities and override defaults. The
specification forms a clear separation between data, structure and styles. Style
specifications are based on open standards, primarily cascading style sheets
(CSS) definitions. Data specifications are based on tables, either embedded or
external, with extensive metadata definable. We considered a number of other
markup languages in the design of ViZml and used them for motivation. In
this section we compare them to ViZml.

18.2.8.1  HTML

The most extensively used markup language, even if it is not actually an XML,
is Hypertext Markup Language (HTML). In combination with cascading style
sheets, HTML provided motivation for the following.

1)  The separation of styles and structure (HTML style sheets and the 
common injunction not to embed style information in HTML).

2)  Simple methods for creating frames which can be relatively or abso-
lutely positioned.

3)  Minimal formatting and styling attributes that solve most users’ prob-
lems.

4)  Syntax for specifying lengths in multiple units and colors. 

18.2.8.2  VML and SVG

The Vector Markup Language is an XML designed by Microsoft for the dis-
play of vector images within their Office suite and for display of vector images
on the web in Internet Explorer. SVG is the acronym for Scalable Vector
Graphics, an open-source initiative supported by Adobe that has similar goals.
Both systems allow objects such as rectangles, ovals, polygons and text to be
defined. Fills, gradients, patterns, transparency, dashing, etc., are all exten-
sively defined. VML has a few more high-level operations, such as extrusion
and shadows, whereas SVG has more low-end operations, such as better path
support and clipping.

ViZml defines items at a higher level than these languages, and has more
semantic information. An axis in VML or SVG is simply a set of styled lines
and text. However, the structure of items in SVG and VML was used to moti-
vate the design of similar items in ViZml. This means that the ViZml engine
can produce VML and SVG output that aligns with the source ViZml. In par-
ticular, when VML output is requested from the ViZml engine, the VML pro-
duced by an axis is grouped logically, with groups given id tags and class
attributes so that, for example, a JavaScript click handler can identify the part
clicked on. This is helpful in building interactive thin-client web applications.
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Also borrowed from these two XMLs were the names of general attributes
and style attributes which were not specified by CSS. The names of the gradi-
ent attributes presented in Table 18.1 were based on VML names, for example.

18.2.8.3  MathML

MathML is a low-level specification for formatting mathematical expressions
and encoding them for machine-to-machine communication. It also provides
a foundation for the inclusion of mathematical expressions in Web pages. As
a language for expressions, ViZml adopts the syntax of MathML for the cre-
ation of faceting expressions. The notion of operators and operands with sim-
ple rules was adopted after some trial and error with other systems. To
represent a complex facet expression such as: (x*y + w*z) / (a*b), we use the
following XML, which aligns closely with the style of MathML.

<tableFacet>
  <nest>
    <blend>
      <cross>
        <facetVariable variable="x"/>
        <facetVariable variable="y"/>
      </cross>
      <cross>
        <facetVariable variable="w"/>
        <facetVariable variable="z"/>
      </cross>
    </blend>
    <cross>
      <facetVariable variable="a"/>
      <facetVariable variable="b"/>
    </cross>
  </nest>
</tableFacet>

18.2.8.4  PMML

Predictive Model Markup Language (PMML), was a natural choice for exam-
ination when constructing an XML for statistical graphics. The standard is
documented at www.dmg.org. The intent of PMML is rather different from
ViZml, however. PMML describes the output from a model, rather than spec-
ifying the type of a model, and so it is less of a prescriptive language than a
descriptive one. Some of the features of the language are similar (notably the
similar importance of distinguishing variables (PMML DataFields) based on
whether or not they are categorical, but in general PMML forms a separate
XML that can be used in conjunction with ViZml, but not as a similar system. 
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18.2.9 GraphML

GraphML is a language for describing the structural properties of graphs in the
sense of node-link or node-edge diagrams. It incorporates a flexible extension
mechanism for handling application-specific data. As node-edge graphs are a
subset of the graphs that ViZml can produce, GraphML was examined closely.
GraphML is a later version of GraphXML. Because of its specific focus, many
of the GraphML concepts do not generalize well and were not considered suf-
ficiently useful to include in ViZml. Perhaps the biggest contribution of
GraphML was in the negative sense. GraphML ties the data extremely tightly
to the structure and presentation of the graph. As such it is very flexible —
nodes can be given explicit representations, links can be styled in an arbitrary
fashion, and so on. However, this makes it very hard to use GraphML to build
a template — a specification that can be applied to many datasets. In a strong
sense, GraphML is an output XML like PMML; it describes a single instanti-
ation of a node-edge graph very well, but provides little support for specifying
general presentations of graphs.

18.3 Summary
Although the reasons to create statistical graphics are varied, and although
there are many different tasks that might be attempted using such graphics, the
fundamental function of a statistical graphic is to present data visually.
Whether the user will view the graphic as printed on a high–quality printer, or
whether they will interact with it on a 96 dpi screen with 32-bit color, in either
case the user should be viewing something that presents the data in a truthful
way, does not obscure features that may be of interest, and is aesthetically
pleasing.

In any system apart from demoware or research systems, it will be neces-
sary to store specifications of charts. Paper or online reports will need to be
run at regular intervals with the same specification, users will want to save
their explorations and come back to them later, etc. The grammar of graphics
provides a simple specification aimed at describing the basic structure of a
chart; this chapter has expanded the basic specification to a wider set of pos-
sibilities. Users from different countries, users with different abilities to per-
ceive color, and users with different aesthetic sensibilities will all need to
specify charts with the same fundamental structure, vis-à-vis the grammar, but
with different presentation characteristics. And, although it may sound trivial,
if there is any aspect of a chart that you cannot control, and you dislike the
original designer’s choice, it will be a constant source of irritation. 

The use of XML for specifying graphics is natural since charts are tree-
like, charts are thought of in terms of major elements such as axes and bars,
and because the extensibility of XML allows us to plan for unthought of future
graphics. The many freely available tools and resources for working with
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XML are a useful bonus. We divide the ViZml schema specification into sec-
tions so that we can isolate data, structure and style. By doing so we can apply
style sheets to existing specifications in a similar way to the way CSS style
sheets are applied to web page, we can change the structure of a chart without
needing to worry about the effect on data and styles, and we can easily adapt
a specification without needing to understand the structure of the chart.

Finally, by coupling GPL with ViZml, we provide two alternative meth-
ods for constructing and editing graphics in a production environment. Since
GPL generates ViZml as its intermediate code, we allow inspection and de-
bugging with a wider array of tools. And for those more interested in models
than styles, we allow GPL users to employ ViZml templates to specify consis-
tent default styles. This keeps the GPL language simple and customizable.

18.4 Sequel
The next chapter turns everything inside-out. We will learn how to pro-

duce data from graphics.



19
Reader

The word read, according to the Oxford English Dictionary, has obscure ori-
gins in Old English, French, and other Indo-European languages. Its earlier
meanings have mostly to do with giving counsel, considering, expounding, or
explaining something obscure. Its modern association with text derives from
the older sense of understanding, rather than just looking. This interpretation
suits our purposes, because a reader in this sense is someone who can parse
and understand a graphic, including both text and image. This chapter intro-
duces the design of a graphics reader.

This task is formidable. As Pinker (1997) says,

A seeing machine must solve a problem called inverse op-
tics. Ordinary optics is the branch of physics that allows one
to predict how an object with a certain shape, material, and
illumination projects the mosaic of colors we call the retinal
image. Optics is a well-understood subject, put to use in
drawing, photography, television engineering, and more re-
cently, computer graphics and virtual reality. But the brain
must solve the opposite problem. The input is the retinal im-
age, and the output is a specification of the objects in the
world and what they are made of — that is, what we know
we are seeing. And there’s the rub. Inverse optics is what en-
gineers call an “ill-posed problem.” It literally has no solu-
tion. (p. 28)

In designing a graphics reader, our goals are less ambitious. First, we will
limit the problem to a particular decoding task. Then we will leverage what we
have learned so far about the organization of objects in graphics world. Spe-
cifically, we will invert the functions we have already used to create graphics.
Because we designed these functions to be invertible, this becomes a “well-
posed problem.” We have been making graphics from data. Now we are going
to examine how to make data from graphics.
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The function

f: S # T

is invertible if there exists a function 

g: T # S

such that for every x in S, g(f(x)) = x and for every y in T, f(g(y)) = y. We call
g the inverse of f and denote it as f–1. In a sense, inversion is how to get from
there to here assuming we know how to get from here to there. Not every func-
tion is invertible. And not every system or composition of functions is invert-
ible. If all the functions in a chain of functions are invertible, however, then
the chain itself is invertible by executing the inverse functions in reverse or-
der.

In the development of this system, we have been concerned about invert-
ibility because it keeps objects clean and domesticates their behavior in an in-
teractive environment where we often need to know where we came from.
Sometimes it is not easy to invert a function without doing a lot of extra work
or carrying along extra information (as with 3D to 2D perspective projections),
but this should not deter us from pursuing the goal wherever we can. 

In the next section, we will present the problem. Then, we will summarize
Steven Pinker’s propositional model of graphics reading to provide psycho-
logical background. Finally, we will outline the approach to a solution through
a graphics grammar.

19.1 The Problem
Suppose we have the graphic shown in Figure 19.1. Our problem is how to de-
rive the table at the bottom of this figure by scanning the graphic. We may
bring to the task prior knowledge about what graphs and graphics are, but not
knowledge about this specific graphic. 

There are several constraints we must place on the problem. First of all,
we accept as a solution any table whose organization allows us to decode the
data correctly. For example, if summer and winter were stacked in a single
column called temperature and we had an extra index column called season,
this would be a feasible solution. Without metadata, we have no way to deter-
mine whether summer/winter denotes independent groups or repeated mea-
sures. In other words, this graphic could have been produced by either 

DATA: s = string("SUMMER")
DATA: w = string("WINTER")
ELEMENT: interval(position(region*(summer+winter)), color(s+w))

or



19.1  The Problem 613

ELEMENT: interval(position(region*temperature), color(season))

Figure 19.1  From graphic to data

Second, we expect rounding error. But we assume this error is uniform
over the field of the graphic if we are working in rectangular coordinates. If a
scale or coordinate transformation is involved, then we expect error to be
transformed in the process. 

Third, we are not concerned with general understanding. The problems
Pinker addresses — detecting relationships, reasoning about trends, propor-
tions, and so on — are not part of our problem domain. Of course, if we pro-
duce a graphics reader capable of decoding data, then we can feed the data
mining and statistical engines already designed to address these more general
problems in an automated system. People are better than computers when
finding patterns in images, but computers are better than people when finding
patterns in numbers. 

Region Summer Winter

New England
Mid Atlantic
Great Lakes
Plains
Southeast
South
Mountain
Pacific

71
75
74
76
79
82
75
68

25
32
26
21
44
45
31
40
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19.2 A Psychological Reader Model
Bertin (1967), Simkin and Hastie (1987), Kosslyn (1989), Pinker (1990),
Cleveland (1993), and MacEachren (1995) have all developed models to ex-
plain how people decode graphics. Pinker’s model goes farthest toward solv-
ing the specific decoding problem we have posed. Pinker’s model also
resembles in many respects the object-oriented approach we have taken later
in this chapter. This is not surprising, because Pinker used a propositional sys-
tem developed by mathematical logicians (see Copi, 1967; Epp, 1990) and im-
plemented by cognitive psychologists for modeling memory (see Rumelhart,
1977; Anderson, 1983) that influenced the development of object-oriented de-
sign itself. 

A propositional calculus is a system that involves the following.

1)  a set of variables whose truth or falsity is assumed,
2)  symbolic operators, and 
3)  syntactical rules for producing expressions. 

Expressions consisting of variables and operators following proper syn-
tactical rules are called well-formed formulas (wff). A wff produces a truth ta-
ble that can be used for a variety of purposes ranging from testing a logical
argument to producing an electronic circuit. A predicate calculus, by con-
trast, is a propositional system that involves variables whose truth or falsity is
not assumed. A predicate calculus consists of a set of objects (variables) and
predicates (functions). The predicate functions operate on variables. These
functions are unary, binary, or n-ary. Some examples are circle(x), part(x, y),
and parallel(x, y). If x = ‘body’ and y = ‘head’, then part(x, y) is true, but
part(y, x) is false.

It is often convenient to represent object-predicate relationships in a graph
consisting of a network of labeled nodes and edges. Nodes are labeled with ob-
ject names and edges are labeled according to predicates. Figure 19.2 shows
Pinker’s general graph schema based on a predicate calculus system. Pinker
has omitted variable names inside the nodes (except for iterators, which we
will discuss later) and has labeled the graph with predicate function names. We
will use the name of the unary predicate function operating on a node to de-
scribe the node itself. The node at the top of the graph, for example, represents
scene_graph(x). This entity stands in a part/whole relationship with every-
thing below it. The framework() node stands in relation to scene_graph() via
the function part(scene_graph(), framework()). There is a formal duality be-
tween the graph and the predicate calculus. This formalism distinguishes Fig-
ure 19.2 from the loosely-drawn network diagrams that people use to make ad
hoc collections of objects look like information processing systems.
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Figure 19.2 Propositional reader model (adapted from Pinker, 1990)

Some of the nodes in Figure 19.2 contain iterator variable names, which
are denoted by an asterisk. The *n iterator, for example, specifies an iterated
replication of the node plus all its predicate relationships. Because the iterators
are variables, their values are known to other functions linked to them. For ex-
ample, each iteration of the geometric_shape(*n) node is associated with a re-
sult value Vn at the bottom of the graph. 

Another notation peculiar to Figure 19.2 is the capital letter designation
for predicate functions at the bottom of the figure. These are unknown predi-
cates, which are functions that are instantiated at “run-time” when specific
values of the variables are available. 

The output of this system is defined in the bold outlined boxes below the
unknown predicates at the bottom of the figure. The two extent measures C()
and E() are for comparisons of size or intensity that are used by graph readers
to answer questions like “Is the third bar taller than the second?”. The A(), B()
and D() predicates yield the numbers or strings that we need to enter into our
data table of Figure 19.1. 
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Let’s focus on the problem of decoding the leftmost red bar in Figure 19.1.
In the following explanation, we will supply the predicate function names spe-
cific to a bar graph schema that are missing in the general graph schema of
Figure 19.2. We will try to do this in a series of sentences. First of all, the *j
node directly below and to the left of pictorial_material() would be bar(*j) in
a bar graph schema. The first bar would thus be recognized by the reader as
part(pictorial_material(), bar(1)). To the left of bar(*j) would be several at-
tributes (color, size, position, etc.). The horizontal position() attribute would
be linked through a coord_sys() rectangular coordinate system to a horizontal
axis element geometric_shape(1) that is part() of framework(). This axis
geometric_shape(1) is associated() with text() that spells() “New England”
and is assigned to the first variable V1. The bar(1) also has an attribute() of
vertical position() which is linked through a coord_sys() to a vertical axis
geometric_shape(2) that is part() of the same framework(). The location on
the vertical axis line geometric_shape(2) that is indexed by the position() of
the top of the bar() has near(tick(), text()) that spells() “70.” We enumerate and
assign a value of 70 to the second variable V2. Finally, the variable names “Re-
gion of US” and “Average Temperature” would have been located through the
A() function tied to the part() of the vertical and horizontal geometric_shape()
axes that is near() the text() containing them.

To make our description more rigorous, we would have to collect all the
predicate functions in a linked list. We chose a sentence format to make this
complex sequence more readable. Nevertheless, we should be able to get an
idea of how this system functions from our description. There are several crit-
ical aspects to note. 

First, look-up and scale decoding is done for every object and part-object
in the system. The reader must locate and examine text every time a direct
evaluation on a categorical or continuous scale is required. This apparently in-
efficient process fits empirical data of Pinker (1990), Simken and Hastie
(1987), and other researchers quite well. As we shall see, it is not a model we
need for efficient decoding in an automated system. Once coordinates are
known and scales calculated, every measurement of position is a simple affine
transformation for a system that is capable of doing linear algebra in its head
(obviously not human). 

Second, the propositional system says nothing about the number of sche-
mas required for its implementation. There are presumably bar graph sche-
mas, line graph schemas, and so on. Each of these may be a close relative of
another and all are presumably children of the general schema in Figure 19.2.
This plethora of schemas probably fits the human data better than the system
we will develop in the next section. As Pinker indicates, efficient decoding of
graphics is a learned skill that improves with the acquisition of new schemas
rather than the refinement of a single global algorithm. 

Third, Pinker’s coordinate system is driven by a computational vision
model outlined in Marr and Nishihara (1978). This means that graphic evalu-
ation is confined to rectangular and polar coordinates. Again, this may follow
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the human decoding model more closely. It may be next to impossible for a
human to decode raw values in a graph represented by a projectively trans-
formed logarithmic scale, for example. This is no more difficult for a machine
than handling rectangular coordinates. 

Fourth, Pinker’s model has no provision for composing functions outside
of the network. The bar dodging in Figure 19.1, for example, is seen by hu-
mans in a variety of clustered bar charts, but inducing the rule for other graphs
and coordinate systems is nontrivial. As Pinker (1997) discusses, people do
not compose even simple functions in the way we are proposing. 

None of these characteristics of Pinker’s model makes it less rigorous or
adequate for describing how we humans read graphics. Indeed, as we have
said, it almost certainly fits experimental data better than the system we will
propose in the next section. Nor does this imply that it would be futile to build
a graphics reading system along the lines Pinker suggests. Pinker’s model can
be implemented in a closed system. One might learn a lot from unexpected re-
sults and from comparing machine to human data. This is a venerable tradition
in cognitive psychology.

Two lessons, we believe, can be taken from examining this model, how-
ever. First, it is not always desirable to use the strategies people actually bring
to well-defined problems as methods for solving these problems automatical-
ly. In engineering, we should use psychological research for guidance, but not
as a template. Secondly, well-articulated psychological models based on em-
pirical research give us a head start in defining the basic objects we need for
an automated system. We are more impressed by the similarities of Pinker’s
model to the one we will propose than by the differences. 

19.3 A Graphics Grammar Reader Model
Figure 19.3 presents our design of a graphics reader. The notation differs from
Figure 19.2. We have adopted a subset of the Booch–Jacobson–Rumbaugh
Unified Modeling Language (UML) notation (see Fowler and Scott, 1997).
The triangular–shaped arrows represent “is a” relationships (inheritance). The
diamond–shaped arrows represent “has a” relationships (aggregation). The
hollow arrows represent interfaces. An interface is a specification for how a
task is to be performed. This specification can be fulfilled by a variety of dif-
ferent implementations or devices. We use these interfaces to avoid making
the objects they point to part of the system. Finally, italic type denotes abstract
classes. These are classes that are containers for concrete classes. They specify
how a class is to behave and what are its interfaces, but exist only as patterns
for creating concrete classes. Using abstract classes helps to keep the design
free of implementation details and provides an economical method for group-
ing classes that inherit from a common ancestor and whose differences in
functionality are not substantively important. 
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 The bold boxes for Image and Data show the input and output of the sys-
tem. Image contains a bitmap or other representation of the graphic image.
Data contains some representation of the table in Figure 19.1. The first thing
we need is a Scanner. This object converts Image into an object discernible by
the children of Reader. Since Reader has a Scanner, the converted graphic Im-
age is now owned by the Reader. 

Reader has three main components: an Identifier, a Measurer, and a Fram-
er. The general strategy for converting geometric entities to numerical and tex-
tual tables is to measure extents or other aesthetic attributes and convert these
to numbers or text. To do this, Measurer needs to have two packets of infor-
mation. First Measurer must know how to identify an object in order to assem-
ble a measuring strategy and methods. Second, Measurer must know about the
coordinate system and frame that defines the dimensions on which graphs are
measured. we will review these two in turn.

Identifier examines the shapes and attributes of objects and compares
them to its list of known graphic elements. This is not a simple pattern match-
ing or template procedure, however. Because Identifier knows about the coor-
dinate system (through Reader), it is capable of knowing that a section of a
divided bar in rectangular coordinates is the same object as a pie slice in polar
coordinates. It uses an inverse polar-to-rectangular transformation to make
this comparison. Identifier requires shape recognition methods for accom-
plishing its work, but because it has top-down information (like the rest of the
system) about the array of shapes it is seeking, Identifier’s methods can be cus-
tomized for this purpose. Identifier supervises several children. AxisIdentifier,
for example, looks for ordered text near rules and tick marks with an associat-
ed label. PointIdentifier looks for clouds of points inside a frame. It knows that
a cloud may consist of points that do not look like geometric points, but it
seeks to determine if they are a collection of similar atoms within a common
pattern and grouped inside the frame. Finally, Identifier evaluates the votes of
each of its children and picks the strongest vote. This follows the Pandemoni-
um model described in Selfridge (1959) and later employed as a foundation
for neural networks.

Framer is responsible for establishing the model underlying the graphic.
It must associate variables with dimensions, set the coordinate system, and de-
termine the scales on which dimensions are mapped. The first of these three
tasks is accomplished by Modeler. Through Framer, Modeler can parse text
and determine whether more than one variable name is associated with an axis
or guide. Modeler, like the other agents in the system, knows where to look for
an axis or guide because of the information provided by Identifier through
Reader, the common parent. In addition to recognizing blends by parsing text,
Modeler recognizes crossings by looking for perpendicular axes (after inverse
transformation to rectangular coordinates). With legended variables, Modeler
looks for all possible combinations of attributes to recognize a crossing. Mod-
eler recognizes nestings by looking for subscales with different ranges on
common variables. The CoordinateSetter depends on the presence of a Guide
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to determine coordinates. For example, a circular axis with appropriate ticks
would signal CoordinateSetter that it is looking at polar coordinates. Addition-
al methods for error checking (seeing that angles radiate from a central origin,
for example) are available to CoordinateSetter to verify its hypothesis. Finally,
Scaler computes scales by examining the spacing of tick marks on axes and
their associated numerical labels. It inverse transforms the tick locations to see
if the physical spacing of ticks in the transformed metric can be made propor-
tional (after adjusting for arbitrary constant) to the numerical values at the
ticks. Scaler, like Modeler, requires prior work by CoordinateSetter. Thus,
Framer is usually given first priority by Reader and CoordinateSetter is given
first priority by Framer. 

The result of this process is that Measurer can do its work through a sim-
ple chain of coordinate and scale transformations without further reference to
text or other cues in the scene. Measurer is an abstract class because it is a col-
lection of different measuring objects that all return a common data structure.
The actual measurements require location methods that are specific to the
graphics being measured. For example, PointMeasurer requires a centroid
computation to find the center of a point graphic. LinkMeasurer requires a
skeletonizer to assure that the links are measured at their central mass (assum-
ing they have thickness). ColorMeasurer requires a colorimeter. Once these
readings are taken and collected, Measurer returns to Reader the information
that Reader must pass to Data. This is the collection of numbers and text and
field identifiers that is the dataset we seek. 

How does this process work for the graphic in Figure 19.1? Let’s consider
AxisIdentifier first. This animal hunts around for an axis and barks when it
finds one. The components it is looking for are a rule, ticks, tick labels (letters
or numbers), and an axis title (e.g., “Average Temperature”). The rule may be
curved, so this little beast has to sniff along line segments that do not cross
themselves and look for the associated elements attached to or near the line,
much the way a contour-following algorithm works. When AxisIdentifier
barks, it must then furnish to other clients the coordinates (in Image space) of
the components of an axis. At this point, we are conversing in Image World
coordinates, which we will call w coordinates.

How are these w coordinates and their object descriptors used by clients?
Let’s examine CoordinateSetter first. This calculating engine must examine
one or more axis objects and try a number of inverse transformations of the
plane that transform the axis rules to a set of orthogonal or parallel lines. In
the case of Figure 19.1, an identity transformation yields the result immediate-
ly. At this point, we are conversing in rectangular coordinates, which we will
call r coordinates. 

AxisScaler examines the spacing of the tick marks on the plane in r coor-
dinates and applies a set of inverse transformations (log(), exp(), etc.) to get
them to be equally spaced. Then it uses TextConverter to convert the numerals
near the ticks (located by AxisIdentifier) to numbers, assuming the scale is nu-
merical. Through these operations, it can determine the scale transformation.
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Again, for Figure 19.1 this would be an identity. At this point, we are convers-
ing in scaled coordinates, which we will call s coordinates.

We still do not have data values, which we will call d coordinates. For this
last step, which is an affine transformation, we need to bring in the scale val-
ues. A simple rescaling involves the transformation

For the values on the horizontal axis, we need to remember that the character
string labels correspond to the integers 1 through n. In the case of Figure 19.1,
n=8, so dmin=0 and dmax=9. 

The importance of inversion is nowhere more apparent than with coordi-
nate systems. We draw the graphics in Chapter 9 through the composition
chain d # s # r # w. We read the graphics in Chapter 10 by inverting our
transformations in the chain w # r # s # d.

We will not discuss the remaining objects in Figure 19.3 with respect to
the reading of the graphic in Figure 19.1. How does Reader recognize that the
bars are dodging, and how does it link this information to the legend? Can
Reader use the axis titles to infer whether blending is in the model? What text
would it look for to identify this situation? Is AxisIdentifier fooled by the top
and right axes or can it recognize that these are associated with the other two?
How does color in the legend get linked to color in the bars? How are Legen-
dIdentifier, ColorMeasurer, LegendScaler, and LegendModeler involved in
this inference?

Additional questions are raised by scenarios involving other figures in this
book. How does AxisIdentifier avoid thinking the path graphic in Figure 8.10
is an axis? Assume this path did not cross itself; could AxisIdentifier then rec-
ognize it as a graphic rather than a guide? What does Reader produce when
there are no axes, such as in Figure 10.60? How does Reader approach facets,
from simple Trellises to the complex polar graphic in Figure 11.15? Could
Reader be modified to handle facets? If so, could Reader be modified to handle
facet graphs, such as the tree in Figure 11.11? What problems are introduced
by reading 3D graphics? Can this be done at all with the model we have devel-
oped? What does Reader do with Table 20.1? Would it have to take a course
with Ed Tufte or Bill Cleveland first?

Going through the scenarios necessary to understand parsing for these in-
stances is the best set of exercises one can pursue in learning the aspects of the
system in this book. The Reader is not only a useful application, it is also an
exercise constructed to test the limits of a graphics grammar. 
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Figure 19.3  A graphics grammar reader model
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19.4 Research
Automated graphics reading has recently become a focal area in the more gen-
eral field of document recognition. The International Workshop on Graphics
Recognition (GREC) has been sponsored by the The International Association
for Pattern Recognition (IAPR). In the five biannual meetings held so far, sev-
eral papers specifically devoted to chart recognition (pie, bar, line, scatter)
have been presented. Springer Verlag has been publishing the proceedings of
this conference in its Lecture Notes in Computer Science series. Springer also
publishes the International Journal on Document Analysis and Recognition,
which carries occasional articles on graphics recognition. The IAPR also helps
to organize the International Conference on Document Analysis and Recogni-
tion, which meets every two years.

19.5 Sequel
The next, final chapter will analyze two unusual graphics in detail in order to
show how a specification and data contain the meaning of a graphic.
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The word coda comes from the Latin cauda, or tail. In music, a coda is the tail
end of a composition. In grammar, it is the last of the three phonetic pieces of
a syllable — the onset, nucleus, and coda. In this concluding chapter, we in-
tend to show how the grammar of graphics can inform our understanding of
the meaning of graphics. With Pinker (1990) and MacEachren (1995), we be-
lieve that understanding the meaning of a graphic is a lexical task. The syntac-
tical information is expressed in its grammar and its semantic information is
encapsulated in its associated data. We will examine this proposition through
a detailed analysis of two statistical graphics.

20.1 Napoleon’s March
Minard’s “Figurative map of the successive losses of men in the French army
during the Russian campaign, 1812–1813” is now one of the most famous sta-
tistical graphics, thanks to Tufte (1983). Tufte said of Minard’s creation, “It
may well be the best statistical graphic ever drawn.” Tufte’s devotion to this
and other historical graphics is extraordinary; his books are worth owning for
the quality of the reproductions alone. It would help during this discussion if
you kept a copy of Tufte’s book nearby. Also helpful is the fine analysis of
this same graphic in Roth et al. (1997).

20.1.1 The Data

Table 20.1 shows the data behind Minard’s graphic. We produced this table
through a combination of digitizing the map itself, analyzing the annotations,
and locating the geographic landmarks. Table 20.1 consists of three
subtables — the city data, the temperature data, and the army data. We have
omitted the data that define the rivers. There are other ways to organize these
data, but we believe the structure of Table 20.1 is closest to the way Minard
himself would have arranged the information. The data in Table 20.1 are de-
signed to reproduce Minard’s graphic, not to represent accurately the histori-
cal record. 
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Table 20.1 Napoleon’s March Data

lonc latc city lont temp date lonp latp survivors direction group

24.0
25.3
26.4
26.8
27.7
27.6
28.5
28.7
29.2
30.2
30.4
30.4
32.0
33.2
34.3
34.4
36.0
37.6
36.6
36.5

55.0
54.7
54.4
54.3
55.2
53.9
54.3
55.5
54.4
55.3
54.5
53.9
54.8
54.9
55.2
55.5
55.5
55.8
55.3
55.0

Kowno
Wilna
Smorgoni
Molodexno
Gloubokoe
Minsk
Studienska
Polotzk
Bobr
Witebsk
Orscha
Mohilow
Smolensk
Dorogobouge
Wixma
Chjat
Mojaisk
Moscou
Tarantino
Malo-jarosewli

37.6
36.0
33.2
32.0
29.2
28.5
27.2
26.7
25.3

0
0

–9
–21
–11
–20
–24
–30
–26

Oct 18
Oct 24
Nov 9
Nov 14

Nov 28
Dec 1
Dec 6
Dec 7

24.0
24.5
25.5
26.0
27.0
28.0
28.5
29.0
30.0
30.3
32.0
33.2
34.4
35.5
36.0
37.6
37.7
37.5
37.0
36.8
35.4
34.3
33.3
32.0
30.4
29.2
28.5
28.3
27.5
26.8
26.4
25.0
24.4
24.2
24.1
24.0
24.5
25.5
26.6
27.4
28.7
28.7
29.2
28.5
28.3
24.0
24.5
24.6
24.6
24.2
24.1

54.9
55.0
54.5
54.7
54.8
54.9
55.0
55.1
55.2
55.3
54.8
54.9
55.5
55.4
55.5
55.8
55.7
55.7
55.0
55.0
55.3
55.2
54.8
54.6
54.4
54.3
54.2
54.3
54.5
54.3
54.4
54.4
54.4
54.4
54.4
55.1
55.2
54.7
55.7
55.6
55.5
55.5
54.2
54.1
54.2
55.2
55.3
55.8
55.8
54.4
54.4

340,000
340,000
340,000
320,000
300,000
280,000
240,000
210,000
180,000
175,000
145,000
140,000
127,100
100,000
100,000
100,000
100,000
98,000
97,000
96,000
87,000
55,000
37,000
24,000
20,000
20,000
20,000
20,000
20,000
12,000
14,000
8,000
4,000
4,000
4,000

60,000
60,000
60,000
40,000
33,000
33,000
33,000
30,000
30,000
28,000
22,000
22,000
6,000
6,000
6,000
6,000

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
A
A
A
A
A
A
R
R
R
R
A
A
A
R
R
R

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
II
II
II
II
II
II
II
II
II
III
III
III
III
III
III
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Digitizing Minard’s graphic reveals several anomalies. First, Minard gave
no date for the –11 degree temperature measurement at Bobr (the dates are la-
beled on the temperature line at the bottom of the graphic). Second, Minard’s
temperature line indicates that the last retreating troops covered more than 50
miles in only one day (between December 6 and December 7). This is implau-
sible. It also does not fit the contemporary descriptions of the events. One of
Minard’s sources (de Fezensac, 1849) wrote of those early December days, 

Imagine vast snow-covered plains stretching as far as the eye
can see, deep pine forests, half-burned and deserted villages,
and marching through this mournful countryside an im-
mense column of miserable wretches, almost all without
weapons, moving along rag-tag and bobtail, slipping on the
ice at each step and falling down beside the carcasses of
horses and the corpses of their comrades.

M. de Fezensac’s detailed timeline (with locations and events) does not
match Minard’s. It would appear Minard inconsistently amalgamated dates
from the four sources he mentioned in his annotations to the graphic. Minard
took other minor liberties with the numbers and the historical record. He com-
bined some events in the campaign, as he says, “in order to make it easier to
judge by eye the diminution of the army.” For example, Minard drew one thin
path for the final retreat west of Smorgoni and labeled it with numbers from
12,000 to 14,000 to 8,000 without changing its thickness. 

Checking Minard’s graphic against authoritative historical sources (e.g.,
the statistical appendix in Chandler, 1966) makes several things clear. First, it
must have taken him considerable effort to assemble these data from the pub-
lished diaries, memoirs, and histories of the campaign that he cites in his com-
ments. The authors of these works did not tabulate the troop losses
consistently or in a readily usable form. Minard had to make quantitative in-
ferences based on descriptions, estimates, and anecdotes. At best, the numbers
printed alongside the paths in his map (especially the intermediate ones) are
speculative. Second, he took liberties with the events in order to simplify his
graphic. More happened in the campaign — routs, excursions, regroupings,
bivouacs — than the graphic suggests. As Minard himself notes, he omitted
major segments of the southern front. Altogether, his troop figures are about
20 percent short of the numbers reported in his sources.

One cannot argue that all these liberties are not significant. There are con-
temporary 19th-century maps of the campaign that lack these imprecisions, in-
cluding some in the works Minard cites in his annotations. Minard’s graphic
is even less accurate in its portrayal of the central army’s movements. The
army retraced its path during retreat in several places (e.g., Mojaisk to Smo-
lensk), but Minard kept the advance–retreat paths geographically separate.
This was unnecessary because he used separate colors for advance and retreat
and the paths would have superimposed nicely (as is shown, for example, in
the revision of Roth et al., 1997)
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In short, Minard’s graphic cannot be taken as an accurate geographic or
statistical summary of the campaign. It is, as he says, a “figurative map,” a
popular chart (like ones in newspapers and magazines today) intended to make
a political point. One that ignores details. These observations do not diminish
the credit Minard deserves for a beautiful piece of work. Although he did not
invent the idea of representing a variable by thickness of a path (Playfair,
among others, had done that a century earlier), he used it to great effect. Mi-
nard was an engineer, not a statistician or cartographer. Despite the liberties he
took, however, Minard’s chart is not meaningless. It is well-formed and based
on a clearly structured dataset. The test of this assertion is that a properly de-
signed computer program can draw his graphic from the data and a properly
structured specification. Now we will examine that specification.

20.1.2 The Graphic

Figure 20.1 shows the specification and a graphic that reproduces the deep
structure and content of Minard’s original. Tufte says, “Six variables are plot-
ted: the size of the army, its location on a two-dimensional surface, direction
of the army’s movement, and temperature on various dates during the retreat
from Moscow.” Tufte’s statement refers to variable sets or dimensions in the
specification, because there is a blending. The six dimensions are survivors,
longitude (a blend of lonp, lonc, lont), latitude (a blend of latp, latc), direction,
temp, and date.

In fact, there are seven dimensions in this plot. The seventh is group. This
is not obvious from looking at the graphic. It only becomes apparent when we
attempt to choose a graph for representing the troop movements from the data.
In addition to path, possible candidates are edge and polygon. The last two are
clearly inappropriate; they would require structures not easily computable
from the original data and certainly not meaningful in terms of the variables.
The polygon graph would require polygon vertices describing the outline of
the path. The edge.link.tree graph would require a scheme for producing the
branching. Obviously, the physical movement of an army is a path. Our prob-
lem is that there is no single path that would describe the actual movements.
It is clear that there are three paths required — each corresponding to collect-
ed divisions of the army (as Minard indicates in his annotations). These are (1)
the path of the central army group, (2) the path of the left flank taking the ex-
cursion northward between Kaunas and Vilnius, and (3) another central army
group consisting of the second and sixth corps that marched from Vilnius to
Polotzk and rejoined the others at Bobr (we combined the remnant of this
group with the central army’s retreat west of the Berezina River because Mi-
nard provides only aggregate numbers after this point). It is likely that Minard
chose not to assign a visible attribute to the group variable in order to keep the
aesthetic simple and conserve color. His focus was on overall attrition. If we
did not have to be explicit about specifying a graph correctly, we would have
taken the structure of this part of the graphic for granted.
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The position frame specification for the upper point graphic is based on
the longitudes and latitudes of the cities (lonc*latc) through and around which
the troops passed. The position frame specification for the path itself is based
on the coordinates of the itinerary (lonp*latp). Each of the three path graphics
is determined by setting split() to the value of group. Since group is categori-
cal, this splits one path into three. Since Minard chose not to represent group
through size, shape, color, texture, or any other aesthetic attribute, we must use
the split() function explicitly to split the paths. Otherwise, the path() graphing
function would display a jumble of paths.

The size of each segment of the path graphics is determined by survivors.
And the color is determined by direction (advance or retreat). The advance is
red and the retreat is black. Tufte’s faithful reproduction shows the advance path
in pale brown. The original was almost certainly bright red for two reasons. First,
Minard said it was red in his annotations on the graphic. Second, red in a litho-
graph oxidizes and fades to brown in months under direct sunlight and in years un-
der indirect light. Saturated reds fade faster than dull. Tufte’s comment, “Minard’s
refined use of color contrasts with the brutal tones often seen in current-day graph-
ics” is probably not historically correct. It is similar to the mistakes archaeologists
once made in failing to notice that frescoes fade.

Unlike Minard’s graphic, the two north–south black retreat paths are su-
perimposed on the red advances in Figure 20.1. If Minard intended to show
that these southerly retreats occurred earlier in time by putting them under-
neath the red paths, then this is puzzling. The black path from Polotsk to Bobr,
for example, consisted primarily of the second corps under Marshal Oudinot.
They rejoined the central army at the Berezina River near Bobr months after
the central army had passed through the region on the way to Moscow. More
likely, Minard did not want the black to cut the red path into sections because
he wished to emphasize the drive toward Moscow in a single swath of red. We
cannot do this without changing the definition of a path, however. A path
wants to be drawn from beginning to end in sequence. In a statistical graphic,
the choice of position cannot be made on the artistic merits. This is one of the
few instances in the chart where Minard is graphically ungrammatical.

There remains the other major element in Minard’s display: the tempera-
ture graphic below. This is defined by a GRAPH specification containing a path
based on lont*temp. Ordinarily, we would use a line to represent temperature.
We used a path instead because we wanted to modify each segment through
another variable. As we discussed in Chapter 8, a path must be used in place
of a line if we wish to modify the appearance of each separate segment. To do
this, we added an eighth dimension to Minard’s seven and realized it with the
aesthetic function texture.granularity(days). We did this because it is difficult to
discern the pace of the armies’ retreat from the date labels on the temperature
graphic. 

The days variable is created by differencing the lagged dates with them-
selves; the arithmetic is done by diff() after converting to numerical day-of-
century values (numeric functions are overloaded to be able to handle string
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time variables). Notice that we had to fill in the missing value by linear inter-
polation using the miss() function before we could do this. Otherwise, the
missing date between Nov 14 and Nov 28 would have caused missing values
for days after using the lag() function. Once we have the days values, we use
them to make each dash in the temperature line correspond to one day of
marching. The implausible distance covered in the last day is immediately ap-
parent.

The horizontal scale for the temperature graphic is linear in longitude and
nonlinear in time — an ingenious linking of space and time on a single phys-
ical dimension. We have made this link more perceivable by supplementing
the date annotations with the dash lengths. The two graphics (the march and
the temperature) share a single horizontal dimension yet they vie for the ver-
tical space in the display area. This is the same situation we encounter with
bordered graphics, where we link on a common variable.

TRANS: date = miss(date, lont, "linear")
TRANS: ldate = lag(date, –1)
TRANS: days = diff(date, ldate)
GRAPH: begin(origin(0, 0), scale(12cm, 4cm))

ELEMENT: point(position(lonc*latc), label(city), size(0))
ELEMENT: path(position(lonp*latp), size(survivors), color(direction),    

split(group))
GUIDE: legend.color(dim(1))

GRAPH: end
GRAPH: begin(origin(0, -2cm), scale(12cm, 2cm))
ELEMENT: path(position(lont*temp), label(date), texture.granularity(days)   

color.brightness(.5))
GUIDE: axis(dim(1), label("Longitude"))
GUIDE: axis(dim(2), label("Temperature"))

GRAPH: end

Figure 20.1 Napoleon’s Russian campaign (after Minard)
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20.1.3 The Meaning

Understanding the meaning of Minard’s graphic is a matter of attending to the
data and metadata underlying the graphic and then parsing the specification.
There are other ways to specify this graph with a graphics algebra, but we have
found none that is simpler and none that alters the substantive interpretation.
The subtleties of this graphic (including Minard’s errors and omissions) are
revealed through a detailed analysis of the data in the light of the specification.
Constructing a valid specification forces us to reconstruct the data properly.

Aside from the details that emerged from the process of producing Table
20.1, what is the main structure of the graph underlying this graphic? First of
all, we know the data are geographic and temporal. We could hook up this
specification to non-spatio/temporal data, but the path and line graphics would
have a different meaning if this were the case. The path graphic is related to
time only by indirection and only for half its extent (during retreat). The indi-
rection is accomplished through the date variable. 

Thus, Minard’s graph is a path through geographical space linked to a
meta-variable (temperature) through the time needed to cover the path. And
his graphic is an aesthetically superb (better than mine) realization of that
graph. What is unusual about the graphic is the positional sharing of the hori-
zontal dimension (longitude) between the path frame and the temperature
frame. A similar positional device is used to link panels of a SPLOM, but Mi-
nard employs it in a geographic context.

What other data could we link to a geographical path specification? We
could use this specification (as Minard did) to represent the campaigns of oth-
er armies. We could use it to represent trade routes in the Hellenistic era
(Koester, 1982). We could use it to represent the resettling of refugees in Ger-
many, Eastern Europe, and Russia after World War II (Barraclough, 1984). Or,
we could use it to represent migrations, as in the following example. As we
will show, however, migration data do not always allow us to use a path.

20.2 Monarch Butterfly Migration
In the early 1970’s, Fred Urquhart and his associates at the University of Tor-
onto began tagging Monarch butterflies (Danaus plexippus) in an effort to
track their southward migratory movements in eastern North America. The
tags returned to his laboratory pointed to a site somewhere in Mexico. This led
Urquhart to advertise in Mexico for assistance in locating the site more pre-
cisely. Kenneth Brugger, a textile engineer working in Mexico, contacted
Urquhart after seeing one of the advertisements in a Mexican newspaper.
Brugger joined the team, and in January 1975 he and his wife found the site in
the Sierra Madre mountains west of Mexico City. This spectacular discovery
revealed trees veiled in orange by countless Monarchs waiting to return north
in the spring.
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Many newspapers, magazines, and Web sites covering this story have pre-
sented a graphic consisting of a tree whose root is anchored at the Mexican site
and whose trunk splits just north of Mexico into four branches. This branching
tree portrays the butterflies heading north and splitting into four major migra-
tory routes. The data do not support such a graphic. With Minard’s graphic, we
might dispute the accuracy of his data but not his grammar. In this case, we
may accept the data but we dispute the grammar. We will summarize the data
and then present an alternative graphic based on grammatical rules.

20.2.1 The Data

The data underlying Figure 20.2 were collected in the first six months of 1997
by children, teachers, and other observers reporting to the Journey North
Project under the auspices of the Annenberg/CPB Learner Online program
(www.learner.org). Each data point is an observer’s first sighting of an adult
Monarch butterfly during the period of northward migration in 1977. The date
of the sighting was coded in two-week intervals and the location of the sight-
ing was given in latitude and longitude. We omitted a few observations from
the West Coast because these Monarch populations generally do not migrate
to the same site in Mexico. Data and theory indicate that the butterflies are
fenced in by the Rocky Mountains — both by climate and the lack of their
critical nesting and food source, the milkweed.

There are other datasets on which we could build a migration graphic.
Capture–recapture data arise when we capture a butterfly, tag it, release it, and
capture it again. This allows us to infer survival, spatial distribution, and other
aspects of a population distributed in space and time. It is particularly difficult
with a fragile and dispersed migrating population such as Monarch butterflies,
however. Further information on Monarch capture-recapture is available at
www.monarchwatch.org, established by Orley R. Taylor at the University of
Kansas Department of Entomology and co-sponsored by the University of
Minnesota Department of Biology. Recently, Wassenaar and Hobson (1998)
have linked additional variables to Monarch data by analyzing chemical signa-
tures in butterfly wings. This method has helped to identify the US origins of but-
terflies wintering in Mexico.

20.2.2 The Graphic

Figure 20.2 presents our alternative to the prevalent tree-form butterfly graph-
ic. We will discuss this alternative first and then show why a tree graphic (or
a path) is ungrammatical. The specification of Figure 20.2 is simpler than the
one for Minard’s. This graphic consists of a map of the continental US over-
laid with traces of the advancing front of Monarch northerly migration. The
Journey North Web site has a map of the raw data plotted as colored points,
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one point for each sighting. Figure 20.2 shows more clearly the contours of the
advance over time. These contours were computed by nonparametric smooth-
ing. 

Although we used the word contours to describe the butterflies’ advance,
the graphic we used in the specification is line instead of contour. This is be-
cause we chose to recognize the observations as containing random errors and thus
ran the lines through the concentration of points at each different time interval
rather than through their northernmost edges. Since the date scale is categorical,
each smoother is computed separately on the subgroup of sightings occurring in
each time interval. 

Alternatively, we could have chosen point to represent every separate
sighting. This would have reproduced the original Journey North map. Or, we
could have chosen polygon to aggregate the points into a regional representa-
tion of the concentration of sightings. Finally, we could have chosen contour,
as we mentioned earlier. As we shall see, however, there are other glyphs we
cannot choose for these data, including the path graphic Minard used and the
tree graphic used in the popular maps of the Monarch migration. The grammar
of graphics prevents us from doing so.

DATA: longitude, latitude = map(source(“US states”))
COORD: project.stereo(dim(1, 2))
ELEMENT: line(position(smooth.quadratic.cauchy(lonp*latp)), color(date))
ELEMENT: polygon(position(longitude*latitude), 

pattern(texture.pattern.dash))

Figure 20.2 Northerly migration of the Monarch butterfly
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20.2.3 The Meaning

The butterfly graphic shares substantial elements of meaning with Minard’s.
Both are migration graphics. There is an important difference, however. Mi-
nard used a path graphic to represent troop migration and we have used a line
graphic to represent butterfly migration. In each case, the organization of the
data constrains this usage.

We have already discussed why Minard’s data require a set of path or edge
graphics based on a group variable. However, we cannot use a path or edge
graphic on the Monarch data. The reason the Monarch data cannot support a
path or edge graphic is because there is no information to delineate the branch-
ing. To gather such information, we would have to tag butterflies and recapture
them repeatedly along the northward migration route (not only at their final
destination) to detect whether branching occurs. And if there were only four
branches, we would expect to see large regions in central and northeastern US
devoid of Monarchs. The Journey North dataset suggests that the pattern is
otherwise. The sightings are continuously distributed across the eastern US in
an advancing wave rather than in four widely separated branching migratory
routes. Given the genesis of the data, we would have to call a tree representa-
tion not simply misleading, but meaningless.

20.3 Conclusion
Do we care whether we use a tree or contours to represent a migration? Don’t
both convey the same sense of movement in some direction? The answers to
these questions depend on whether we intend to construct a graphic to repre-
sent ideas or to represent variables. Pictograms, ideograms, and thematic
maps have their uses. Many abstract ideas are communicated especially well
through figurative graphics (Herdeg, 1981; Lieberman, 1997). If we want to
use graphics to represent magnitudes and relations among variables, however,
we are not dealing with the grammar of ornament. We are dealing with the
grammar of graphics.

Do we need a grammar of graphics for this task? Obviously, we think we
do. Programs to draw graphics abound. They are built into spreadsheets, data-
bases, and statistical packages. While many designers of these applications
take pains to insure data integrity, fewer seem concerned about graphical mis-
takes, such as confusing pivoting with transposing. Graphical errors are subtle
but serious, and remind one of Lincoln’s saying that one can fool some of the
people all of the time and all of the people some of the time. As with psychol-
ogy, too many designers appear to consider themselves experts in graphics be-
cause they have good visual instincts. Just as psychological theory and
experiments expose mistaken notions about graphical perception, however,
the grammar of graphics exposes mistaken ideas about graphical structure.
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20.3.1 The Grammar of Graphics

The grammar of graphics determines how algebra, geometry, aesthetics, sta-
tistics, scales, and coordinates interact. In the world of statistical graphics, we
cannot confuse aesthetics with geometry by picking a tree graphic to represent
a continuous flow of migrating insects across a geographic field simply be-
cause we like the impression it conveys. We can color a whole tree red to suit
our design preferences, but we cannot use a tree in the first place unless we
have the variables to generate one. By contrast, Minard took liberties with the
data to influence the appearance of his graphic. His specification is tightly
coupled to the data, however. We might disagree with his data manipulation,
but we cannot call his graphic meaningless. For the Monarch data, by contrast,
the variables drive us toward a representation like that in Figure 20.2.

The rules we have been invoking to make these claims constitute what we
call the grammar of graphics. It is important not to confuse this grammar with
the particular language we have used to describe it. The grammar of graphics
is not about whether the function directedGraph() is a better way to implement
edge(position(link.mst())). It is not about whether plot(smoother, method) is
preferable to line(position(smooth.method())). It is not about whether a graph-
ical system should use functions like near(), enclose(), or intersect() to define
geometric relations. It is not about Java. It is not even about whether a different
syntactical system can produce many or all of the graphics shown in this book.

We can make these statements because we did not invent this grammar or
even discover it by analyzing a collection of charts and deciding how they re-
semble each other. We began instead by constructing definitions of data, vari-
ables, and other primitives that underlie what we call statistical charts. These
definitions are embedded in the mathematical history that determined the evo-
lution of statistical charts and maps. One cannot separate that history from the
functionality that we see in printed and computer charts today, as Collins
(1993) and others have made clear. 

Figure 2.2 summarizes the grammar of graphics. It tells us that we cannot
make a graphic without defining and using the objects shown in that figure —
in the implicational ordering denoted there. Its consequences are many. Figure
2.2 epitomizes not only the rules of graphics usage, but also the domain of sta-
tistical graphics. A graphic without a concept of a variable is not a statistical
graphic. A graphic without an associated coordinate system is not a statistical
graphic.

Everything after Figure 2.2 involves the details that follow from this gen-
eral structure. These are most evident in the examples. We cannot flip a bar
chart from vertical to horizontal without making assumptions about its domain
and range. We cannot log the scale of a bar chart without re-aggregating the
data. A line cannot be used to represent Minard’s path. A tree cannot be used
to represent the butterfly data. These assertions and others we have made in
the previous chapters are grounded in the grammar of graphics that follows
from Figure 2.2.
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20.3.2 The Language of Graphics

We now have the outline for designing a language of graphics. A scatterplot
is a point graphic embedded in a frame. A bar chart is an interval graphic
bound to an aggregation function embedded in a frame. A pie chart is a polar,
stacked, interval graphic mapped on proportions. A radar chart is a line graph-
ic in polar parallel coordinates. A SPLOM is a crossing of nested scatterplots
in rectangular coordinates. A trellis display is a graphic faceted on crossed cat-
egorical variables in a rectangular coordinate system. 

If these descriptions make sense to you, then we have come a long way
since Chapter 1. Deciding whether they are simpler than the ordinary language
found in handbooks on statistical graphics is a matter of evaluating the parsi-
mony and generality of the specifications at the head of the figures in this
book. This effort should help us to see why statements like “a trellis employs
small multiples” are too general to be useful and statements like “a pie slice is
a wedge” are too particular.

Some of these specifications require study; they were not meant for light
reading. Rather, they were designed to encapsulate the definitions and algo-
rithms all of us use — consciously or unconsciously — when we create statis-
tical graphics. The ultimate goal of this effort is to understand how graphics
work by designing a system that can understand the content of graphics, com-
mute effortlessly between the world of tabular data and the world of charts,
and respond to creative and inquisitive users interacting through a graphical
interface. By thinking about how to design such a system, we take steps toward
understanding what graphics mean. And consequently, we may teach a com-
puter to understand what they mean.

We return to the beginning. Grammar gives language rules. Graphics are
generated by a language. The syntax of graphics lies in their specification. The
semantics of graphics lies in their data.

20.4 Sequel
There is an important detail that does not appear in the Monarch specification.
It is the connection between thousands of teachers and school children, out-
doors in the spring searching for butterflies, and a Web site that provides them
with the opportunity to share what they found. God is in the details.
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